Loran-C for Boat Navigating
Math Software for Elf Computers
The State of Stereo TV Sound

SPECIAL FOCUS ON
Home Energy-Saving Applications

This Issue:
T200-4 Microcomputer
Kardon PM650 Stereo Amplifier
GE 19PC3708W 19" Color TV Receiver
Someday, in the comfort of your home, you'll be able to shop and bank electronically, read instantly updated newswires, analyze the performance of a stock that interests you, send electronic mail across the country, then play Bridge with three strangers in LA, Chicago and Dallas.

Welcome to someday.

Someday is today with the CompuServe Information Service. CompuServe is available through a local phone call in most major U.S. cities. It connects almost any brand or type of personal computer or terminal with our big mainframe computers and data bases. All you need to get started is an inexpensive telephone coupler and easy-to-use software.

CompuServe’s basic service costs only $5.00 per hour, billed in minute increments to your charge card.

The CompuServe Information Service is available at many computer stores across the country. Check with your favorite computer center or contact CompuServe.

Welcome to someday.

CompuServe
Information Service Division, 5000 Arlington Centre Blvd.
Columbus, Ohio 43220 (614) 457-8650

An H&R Block Company
CIRCLE NO. 9 ON FREE INFORMATION CARD
Introducing a direct line to a 60 MHz Tektronix scope built for your bench!

From the world's most respected name in oscilloscopes: a new scope, plus a new direct order number, that finally makes it practical to put Tektronix quality on your bench...at work or home.

Among professional engineers and technicians there is no substitute for the performance and reliability of Tektronix oscilloscopes.

Now, for the first time, Tektronix is offering an advanced scope at an unprecedented low price—and has a direct order line that lets you get your order processed today!

The scope: the 2213. Its radical new design brings you Tektronix quality for well below what you would pay for lesser-name scopes.

The 2213's practical design includes 65% fewer mechanical parts, fewer circuit boards, electrical connectors and cabling. Result: a lower price for you plus far greater reliability.

Yet performance is pure Tektronix: there's 60 MHz bandwidth for digital and high-speed analog circuits. The sensitivity for low signal measurements. The sweep speeds for fast logic families. A complete trigger system for digital, analog or video waveforms. And new high-performance Tektronix probes are included!

2213 PERFORMANCE DATA
Bandwidth: Two channels, dc—60 MHz from 10 V/div to 20 mV/div (50 MHz from 2 mV/div to 10 mV/div).
Sweep speeds: Sweeps from 0.5 s to 50 ns (to 5 ns/div with X10 mag).
Sensitivity: Scale factors from 100 V/div (10X probe) to 2 mV/div (1X probe). Accurate to ±3%. Ac or dc coupling.
Delayed sweep measurements: Standard sweep, intensified after delay, and delayed.
(need dual time-base performance and timing accuracy to ±1.5%. Ask about our 2215 priced at $1400.)
Complete trigger system: Modes include TV field, normal, vertical mode, and automatic; internal, external, and line sources. Variable holdoff.
Probes: High performance, positive attachment, 10-14 pF and 60 MHz at the probe tip.

The price: Just $1100 complete*. Order direct from Tektronix National Marketing Center. Phones are staffed by technical people to answer your questions about the 2213. Your direct order includes a 15-day return policy and full Tektronix warranty.

Now it's easier than ever to get your hands on a Tek scope!

ORDER TOLL-FREE 800-547-1845
Ask for Dept. A0228
(In Oregon, Alaska and Hawaii: 1-503-627-5402 collect.) Lines are open from 8 am EST to 5 pm PST.

*Price F.O.B., Beaverton, OR.
Special Focus on Home Energy Savings

New "Vacation" Thermostat, Set to Just Above Freezing, Saves Heating Costs/Tom Fox

Triac Motor Control for Warm-Air Systems Reduces Fuel Use and Eliminates Cool Spots/Anthony Caristi

Power Motor Keeps Tabs of How Much Electricity an Appliance Uses/Cass Lewart

How to Use Solar Energy to Recharge Your Batteries/Ed Karns

Feature Articles

LORAN-C A MARINE LONG RANGE NAVIGATION TOOL/Ken Englert

Measures precision of coordinates by one-tenth of a mile.

A 16-BIT MATH PACKAGE FOR ALEF COMPUTERS/R. Scott Fitzgerald

Operates on a minimum configuration of 256 bytes.

Construction Articles

PROGRAMMING EPROMS WITH A SMALL COMPUTER/J. Doolittle and S. Tkalecnic

Part 2: Construction plans and software information for the EPROM programmer.

Equipment Reviews

HARMAN-KARDON MODEL PM650 INTEGRATED AMPLIFIER

GENERAL ELECTRIC MODEL 19PC370BW 19" COLOR TV

TOSHIBA MODEL T200-4 COMPUTER SYSTEM

TRIPLETT MODEL 7000 UNIVERSAL COUNTER

Columns

ENTERTAINMENT ELECTRONICS/Len Feldman

Stereo TV is Coming Soon.

34

COMPUTER BITS/Carl Warren

Accessories and Software.

73

COMPUTER SOURCES/Leslie Solomon

SOLID-STATE DEVELOPMENTS/Forrest M. Mims

PICS: Photonic Integrated Circuits.

76

EXPERIMENTER'S CORNER/Forrest M. Mims

SOURCES/Leslie Solomon

EXPERIMENTING WITH PIEZOELECTRIC DEVICES.

84

PROGRAMMER'S NOTEBOOK/James Keogh

Drawing Bar Graphs.

PROJECT OF THE MONTH/Forrest M. Mims

A Tunable Notch Filter.

90

Departments

EDITORIAL/Art Salsberg

Free Energy.

LETTERS

NEW PRODUCTS

OPERATION ASSIST

PERSONAL ELECTRONIC NEWS

106
If you’re familiar with Maxell UD-XL tapes you probably find it hard to believe that any tape could give you higher performance.

But hearing is believing. And while we can’t play our newest tape for you right here on this page, we can replay the comments of Audio Video Magazine.

"Those who thought it was impossible to improve on Maxell's UD-XL II were mistaken. The 1981 tape of the year award goes to Maxell XL II-S."

How does high bias XL II-S and our normal bias equivalent XL I-S give you such high performance? By engineering smaller and more uniformly shaped epitaxial oxide particles we were able to pack more into a given area of tape. Resulting in a higher maximum output level, improved signal-to-noise ratio and better frequency response.

To keep the particles from rubbing off on your recording heads Maxell XL-S also has an improved binder system. And to eliminate tape deformation, XL-S comes with our unique Quin-Lok Clamp/Hub Assembly to hold the leader firmly in place.

Of course, Maxell XL II-S and XL I-S carry a little higher price tag than lesser cassettes.

We think you’ll find it a small price to pay for higher performance.
Introducing the Sinclair ZX81.

If you're ever going to buy a personal computer, now is the time to do it.

The Sinclair ZX81 is the most powerful, yet easy-to-use computer ever offered for anywhere near the price: only $99.95* completely assembled.

Don't let the price fool you. The ZX81 has just about everything you could ask for in a personal computer.

A breakthrough in personal computers.

The ZX81 is a major advance over the original Sinclair ZX80 – the first personal computer to break the price barrier at $200.

In fact, the ZX81's 8K extended BASIC offers features found only on computers costing two or three times as much.

Just look at what you get:

- Continuous display, including moving graphics
- Multi-dimensional string and numerical arrays
- Mathematical and scientific functions accurate to 8 decimal places
- Unique one-touch entry of key words like PRINT, RUN and LIST
- Automatic syntax error detection and easy editing
- Randomize function useful for both games and serious applications
- 1K of memory expandable to 16K
- A comprehensive programming guide and operating manual

The ZX81 is also very convenient to use. It hooks up to any television set to produce a clear 32-column by 24-line display. It comes with a comprehensive programming guide and operating manual designed for both beginners and experienced computer users. And you can use a regular cassette recorder to store and recall programs by name.

Sinclair technology is also available in Timex/Sinclair computers under a license from Sinclair Research Ltd.
Order at no risk.**

We'll give you 10 days to try out the ZX81. If you're not completely satisfied, just return it to Sinclair Research and we'll give you a full refund.

And if you have a problem with your ZX81, send it to Sinclair Research within 90 days and we'll repair or replace it at no charge.

Introducing the ZX81 kit.

If you really want to save money, and you enjoy building electronic kits, you can order the ZX81 in kit form for the incredible price of just $79.95.* It's the same, full-featured computer, only you put it together yourself. We'll send complete, easy-to-follow instructions on how you can assemble your ZX81 in just a few hours. All you have to supply is the soldering iron.

A leader in microelectronics.

The ZX81 represents the latest technology in microelectronics. More than 10,000 are sold every week. In fact, the ZX81 is the fastest selling personal computer in the world.

We urge you to place your order for the ZX81 today.

To order.

To order, simply call toll free. Or use the coupon below. Remember, you can try it for 10 days at no risk.** The sooner you order, the sooner you can start enjoying your own computer.

Call toll free 800-543-3000.

Ask for operator #509.

In Ohio call: 800-582-1364; in Canada call: 513-729-4300.

Ask for operator #509. Phones open 24 hours a day, 7 days a week. Have your MasterCard or VISA ready.

These numbers are for orders only. If you just want information, please write: Sinclair Research Ltd., 2 Sinclair Plaza, Nashua, NH 03061.

*Plus shipping and handling. Price includes connectors for TV and cassette, AC adaptor, and FREE manual.
**Does not apply to ZX81 kits.

NEW SOFTWARE: Sinclair has published pre-recorded programs on cassettes for your ZX81. We're constantly coming out with new programs, so we'll send you our latest software catalog with your computer.

16K MEMORY MODULE: Like any powerful, full fledged computer, the ZX81 is expandable. Sinclair's 16K memory module plugs right onto the back of your ZX81. Cost is $49.95, plus shipping and handling.

To order call toll free: 800-543-3000

<table>
<thead>
<tr>
<th>Ad Code</th>
<th>Price*</th>
<th>Qty</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZX81</td>
<td>$99.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZX81 Kit</td>
<td>79.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16K Memory Module</td>
<td>49.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shipping and Handling</td>
<td>4.95</td>
<td></td>
<td>$4.95</td>
</tr>
</tbody>
</table>

MAIL TO: Sinclair Research Ltd.,
One Sinclair Plaza, Nashua, NH 03061.

Name

Address

City State Zip

*U.S. dollars
Free Energy

Many people point to the sun as a source of free energy. It really isn't, of course, just as hydro power and wind power aren't free. Converting these energy sources requires the expenditure of much money, which in many instances is not as economical as employing fossil fuels and their accompanying converters.

We're all fascinated by the sun, naturally, and anticipate that at some distant time there will be an economic crossover point where it would pay to make more use of it. However, solar power is indeed being used today for a variety of purposes, though it still represents a very minor source of energy.

As you know, there are tax breaks available to sweeten the cost of voluntary use of solar power for home space heating and for hot-water heating. The basic reason for this incentive is to diminish the use of oil, a significant portion of which is imported at high cost. Given such an allowance, it is claimed that the system saves money for energy use after a moderate period of time for amortization of new equipment and installation costs. But it is subsidized by our taxes.

Feasibility studies are being made for an attractive, science-fiction-like possibility for solar power generation from large satellites. These satellites would be exposed to continuous sunlight, collecting solar energy and transmitting it through microwaves to collection points on earth. It is said, however, that such an undertaking would be the costliest technological venture ever attempted.

At present, the greatest saving in energy appears to be through conservation in one form or another. This route is represented by using less energy through buying automobiles with better gas mileage, eliminating unnecessary automobile trips, raising air conditioning thermostats in the summer and lowering heating thermostats in the winter, buying appliances that consume less energy, and by automatic energy management.

The latter approach is explored in this issue by a few interesting, innovative articles. One reduces fuel use through a more efficient heat-system blower-motor control. Another presents plans for a novel thermostat that can be set well below the traditional 55°F minimum of standard thermostats. Also in this home energy-saving focus are an inexpensive electric power meter that tells you quickly how much electricity any appliance consumes and ways to use photovoltaic cells to recharge batteries using the sun as the power source.

Should you want to explore solar power further, a recent book, the "Photovoltaic Product Directory and Buyers Guide," will give you a good working knowledge on the subject for use in a home. (Order #DE81030186, $13.50, from National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.)
Explore the excellence of your ZX81 with a

MEMOPAK 64K memory extension for $179.95

Give your diminishing memory more byte.

MEMOPAK 64K RAM $179.95
The Sinclair ZX81 has revolutionized home computing. The MEMOPAK 64K RAM extends the memory of ZX81 by a further 64K to a full 64K. It is neither switched nor paged and is Directly Addressable. The unit is user transparent and accepts such basic commands as 10 DIM A (9000). It plugs directly into the back of ZX81 and does not inhibit the use of the printer or other add-on units. There is no need for an additional power supply or leads.

Description of memory
0-8K...Sinclair ROM
8-16K...This section of memory switches in or out in 4K blocks to leave space for memory mapping, holds its contents during cassette loads, allows communication between programs, and can be used to run assembly language routines.
16-32K...This area can be used for basic programs and assembly language routines.
32-64K...32K of RAM memory for basic variables and large arrays. With the MEMOPAK 64K extension the ZX81 is transformed into a powerful computer, suitable for business, leisure and educational use, at a fraction of the cost of comparable systems.

MEMOPAK 16K RAM $59.95
With the addition of MEMOPAK 16K, your ZX81 will have a full 16K of Directly Addressable RAM. It is neither switched nor paged and enables you to execute longer and more sophisticated programs and to hold an extended data base.

The 16K and 64K Memopaks come in attractive, custom-designed and engineered cases which fit snugly to the back of the ZX81 giving a firm connection.

Free service on your MEMOPAK
Within the first six months, should anything go wrong with your MEMOPAK, return it to us and we will repair or replace it free of charge.

Try MEMOPAK with no obligation
You can use our MEMOPAK in your home without obligation. After 10 days if you are not completely satisfied, simply return it for a full refund.

Coming soon...
A complete range of ZX81 plug-in peripherals:
MEMOTECH Hi-Res Graphics
MEMOTECH Digitising Tablets
RS232 Interface
Centronic Interface and Software Drivers
All these products are designed to fit "piggy-back" fashion on to each other and use the ZX81 power supply.

Further information forthcoming.

| Memotech Corp. 7550 W. Yale Ave. Suite 220 Denver, Colo. 80227 |
| Yes! I would like to try the Memopak. I understand that if I’m not completely satisfied, I can return it in 10 days for a full refund. |

□ Check	Memopak 64k RAM	$179.95
□ Visa	Memopak 16k RAM	$59.95
□ MC	Shipping and Handling	$4.95
Act. No.	Exp.	Total

Price + **Qty.** **Amount**

| U.S. Dollars |

Name__________________________
Street________________________
City__________________________ State Zip________________________

CIRCLE NO. 32 ON FREE INFORMATION CARD
How to put the big board on a small screen.

To take stock of the situation, an investor could use the IBM Personal Computer.

With our Dow Jones™ Reporter, a device called a modem and a telephone, you can access Wall Street and the world.

Tap the Dow Jones News/Retrieval Service for historical and current stock quotes—day or night. (Use our Dow Jones Reporter not only for easy access, but to save money on connect time.)

Pull 10K extracts of over 6,000 companies.

Get industry news.

Even enjoy sports news when you've had your fill of business.

To better manage your portfolio, visit an authorized IBM Personal Computer dealer. And learn how a small IBM investment can give you a high yield in quality, power and performance.

The IBM Personal Computer
A tool for modern times

LETTERS

Computer Comparisons

I liked the article "Computers—Which One Is for You?" in the May issue. I particularly enjoyed the fact that you compared the user features of the computers rather than covering the technical and hardware features only. It was the best comparison of computers I have seen.—T. Sunday, Klamath Falls, OK.

Macro-Editor/Assembler Availability

I enjoyed the excellent review of the TRS-80 Model III computer in your May issue, but I believe there was an error with regard to availability of software. Radio Shack does not carry a Macro-Editor/Assembler for the Model III at this time. However, a Macro-Editor/Assembler, called M-ZAL, that is compatible with the Model III, is available from our company.—D.C. Willen, President, Computer Applications Unlimited, Box 214, Rye, NY 10580.

Wrong Flip-Flop Answer?

In "Learning Quizes for Electronics" (May 1982), the Flip-Flop Quiz seems to contain an error. In question 3, since the J input received the last pulse and a clock pulse occurred too, shouldn't the flip-flop's Q output have been a 1 instead of a 0.—R.A. Finnegan, Merrick, NY.

It seems that your view of the starting time of the input pulses was different from what the author intended. He started the timing with zero at the left. You obviously interpreted it to be on the right. It would have been clearer if we had included a time scale.—Ed.

Likes Program Development Board

I recently finished building the CPU module and Program Development Board from the series "Designing with the 8080 Microprocessor" by Randy Carlstrom. I have programmed big machines (such as the IBM 3089) and I was interested in learning about microcomputers. The material in the articles was well presented and the features available on the PDB left little to be desired. Keep up the good work and let's see more of this type of article.—Robert Cox, Jacksonville, FL.

OUT OF TUNE

In "Enhance TV Sound with Stereo" (May 1983), the resistance for R24 and R25 in the Parts List should have been 390 ohms, as it was on the schematic.

In "Learning Quizes for Electronics" (June, p 70), in the Digital Counter Quiz, the note reading "FF, is initially turned on" should have been with part 2 of the quiz not part 1.
Why use their flexible discs:
BASF, Control Data, Dysan, IBM, Kybe, Maxell, Nashua, Scotch, Syncom, Verbatim or Wabash when you could be using

MEMOREX

high quality error free discs?

Offer. This offer the Discs. or workmanship within one year on.

Memorex Flexible Full language care and handling tutoring, and record length. Envelopes with multi provide full information filing and storage. Both box labels and carton box labels are equipped to help us get the quality product you need, when you need it. If you need further assistance to find the flexible disc that's right for you, call the Memorex compatibility hotline. Dial toll-free 800-538-8080 and ask for the flexible disc hotline extension 0989. In California dial 800-672-3525 extension 0989. Outside the U.S.A., dial 408-967-0987.

Product Description

<table>
<thead>
<tr>
<th>Part #</th>
<th>CE quant.</th>
<th>100 price per disc ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3062</td>
<td>100</td>
<td>2.09</td>
</tr>
<tr>
<td>3015</td>
<td>100</td>
<td>2.09</td>
</tr>
<tr>
<td>3045</td>
<td>100</td>
<td>2.99</td>
</tr>
<tr>
<td>3090</td>
<td>100</td>
<td>2.74</td>
</tr>
<tr>
<td>3102</td>
<td>100</td>
<td>3.34</td>
</tr>
<tr>
<td>3115</td>
<td>100</td>
<td>3.34</td>
</tr>
<tr>
<td>3103</td>
<td>100</td>
<td>3.34</td>
</tr>
<tr>
<td>3114</td>
<td>100</td>
<td>3.34</td>
</tr>
<tr>
<td>3104</td>
<td>100</td>
<td>3.34</td>
</tr>
<tr>
<td>3481</td>
<td>100</td>
<td>2.34</td>
</tr>
<tr>
<td>3483</td>
<td>100</td>
<td>2.34</td>
</tr>
<tr>
<td>3485</td>
<td>100</td>
<td>2.34</td>
</tr>
<tr>
<td>3491</td>
<td>100</td>
<td>3.09</td>
</tr>
<tr>
<td>3493</td>
<td>100</td>
<td>3.09</td>
</tr>
<tr>
<td>3495</td>
<td>100</td>
<td>3.09</td>
</tr>
<tr>
<td>3504</td>
<td>100</td>
<td>2.99</td>
</tr>
<tr>
<td>3501</td>
<td>100</td>
<td>3.99</td>
</tr>
</tbody>
</table>

Free disc offer
Save 10%

Order Toll-Free!
(800) 521-4414
In Michigan (313) 994-4444

For Data Reliability—Memorex Flexible Discs

Communications ELECTRICS

Computer Products Division
B54 Phoenix Box 1002 Ann Arbor, Michigan 48106 U.S.A.
Call TOLL-FREE (800) 521-4414 or outside U.S.A. (313) 994-4444

AUGUST 1982

MEMOREX Flexible Discs... The Ultimate in Memory Excellence
Free Memorex Mini-Disc Offer - Save 10%
Every carton of 10 Memorex 5" inch mini-discs sold by Communications Electronics, now has a coupon good for a free Memorex mini-disc. For every case of 10 Memorex mini-discs you buy, CE will include 10 free mini-discs directly from Memorex. There is no limit to the number of discs you can purchase on this special offer. This offer is good only in the U.S.A. and ends on December 31, 1982.

Quality
Memorex means quality products that you can depend on. Quality control at Memorex means starting with the best materials available and continual surveillance throughout the entire manufacturing process. The benefit of Memorex's years of experience in magnetic media production, providing quality assurance, proprietary coating formulations. The most sophisticated testing procedures you'll find anywhere in the business.

100 Percent Error Free
Each and every Memorex Flexible Disc is certified to be 100 percent error free. Each track of each flexible disc is tested, individually, to Memorex's stringent standards of excellence. They test signal amplitude, resolution, low-pass modulation, overwrite, missing pulse error and extra pulse error. Rigid quality audits are built into every step of the manufacturing process and stringent testing result in a standard of excellence that assures you, our customer, of a quality product designed for increased reliability and consistent top performance.

Customer-Oriented Packaging
The desk-top box containing ten discs is convenient for filling and storage. Both box labels and jacket labels provide full information on compatibility, density, sectoring, and record length. Envelopes with multi-language care and handling instructions and color-coded removable labels are included. A write-protect feature is available to provide security.

Full One-Year Warranty—Your Assurance of Quality
Memorex Flexible Discs will be replaced free of charge by Memorex if they are found to be defective in materials or workmanship within one year of the date of purchase. Other than replacement, Memorex will not be responsible for any damages or losses (including consequential damages) caused by the use of Memorex Flexible Discs.

November 1982

MEMOREX Flexible Discs... The Ultimate in Memory Excellence
Free Memorex Mini-Disc Offer - Save 10%
Every carton of 10 Memorex 5" inch mini-discs sold by Communications Electronics, now has a coupon good for a free Memorex mini-disc. For every case of 10 Memorex mini-discs you buy, CE will include 10 free mini-discs directly from Memorex. There is no limit to the number of discs you can purchase on this special offer. This offer is good only in the U.S.A. and ends on December 31, 1982.

Quality
Memorex means quality products that you can depend on. Quality control at Memorex means starting with the best materials available and continual surveillance throughout the entire manufacturing process. The benefit of Memorex's years of experience in magnetic media production, providing quality assurance, proprietary coating formulations. The most sophisticated testing procedures you'll find anywhere in the business.

100 Percent Error Free
Each and every Memorex Flexible Disc is certified to be 100 percent error free. Each track of each flexible disc is tested, individually, to Memorex's stringent standards of excellence. They test signal amplitude, resolution, low-pass modulation, overwrite, missing pulse error and extra pulse error. Rigid quality audits are built into every step of the manufacturing process and stringent testing result in a standard of excellence that assures you, our customer, of a quality product designed for increased reliability and consistent top performance.

Customer-Oriented Packaging
The desk-top box containing ten discs is convenient for filling and storage. Both box labels and jacket labels provide full information on compatibility, density, sectoring, and record length. Envelopes with multi-language care and handling instructions and color-coded removable labels are included. A write-protect feature is available to provide security.

Full One-Year Warranty—Your Assurance of Quality
Memorex Flexible Discs will be replaced free of charge by Memorex if they are found to be defective in materials or workmanship within one year of the date of purchase. Other than replacement, Memorex will not be responsible for any damages or losses (including consequential damages) caused by the use of Memorex Flexible Discs.

November 1982
NEW PRODUCTS

Additional information on new products covered in this section is available from the manufacturers. Either circle the item's code number on the Free Information Card or write to the manufacturer at the address given.

DEC Personal Computer

The Rainbow 100, Digital Equipment Corp.'s entry in the personal computer field, is designed to run both 8- and 16-bit application software from a wide variety of independent suppliers. These include the Select Information Systems Word Processor, Microsoft's Multiplication Spred Sheet Calculator, and the Mark Williams Co.'s "C" Compiler. The Rainbow 100 will run a hybrid version of the CP/M-80 and CP/M-86 and can use other operating systems such as Microsoft's MS-DOS, the same as IBM and others. DEC has also provided an advanced communications package to enable the Rainbow 100 to transmit from a CP/M file to a host computer and vice versa. It uses Z80 and 8088 microprocessors and has a maximum of 256K bytes of memory. The mass data storage is 800K bytes in 5¼" double-density, dual drives. This can be expanded to 1.6M bytes of floppy-disk storage or 5M bytes of Winchester disk storage. The CRT display is a 12" monochrome of 24 lines by 80 or 132 characters. Options include a 5¼", 5M-byte external hard disk, a color video monitor and character cell graphics. Language support includes MBASIC and the C Compiler. $3495.

Circle No. 89 on Free Information Card

Microprocessor-Equipped Turntable

The Denon DP-52F turntable uses a microprocessor to control arm motion, motor speed, record sensing, and ON/OFF functions. A servo mechanism is reported to continuously adjust tracking force and anti-skating pressure for optimum stylus-disc contact, correcting for warps and resonance. The DP-52F has an ac servo-motor direct-drive platter with magnetic-pulse speed monitoring, and automatic sensing of the presence and size of a record. A smoked acrylic dust cover is provided. Control pads include a REPEAT button. Wow and flutter is rated at 0.0122%; rumble at 78 dB. Dimensions are 17.9" W x 5.1" H x 16.7" D. $525.

Circle No. 90 on Free Information Card

Wahl Soldering Station

The Iso-Tip 7470 Micro Soldering Station is reported to eliminate continuous switching (and the voltage spikes that can damage electrical equipment) by maintaining an even tip temperature. The unit is totally grounded and can be adjusted to any temperature between 500° and 700°F. It comes with a sponge holder, tip-wiping sponge, soldering iron, and stand (which takes up 12 sq. in. of bench space).

CIRCLE NO. 91 ON FREE INFORMATION CARD

Bose Speakers

The 501 Series III Direct/Reflecting loudspeakers from Bose are floor-standing units with a dual-frequency crossover network. According to Bose, woofers and tweeters are allowed to operate simultaneously over more than a full octave, thereby avoiding the effects of phase shift. There are two separate protection systems: a current-sensitive circuit for the tweeters and a thermal overload circuit for the woofer. If the circuits detect an energy level high enough to cause damage, they absorb the excess power without interrupting the music. The drivers consist of one 10" woofer and two 3" tweeters (inward and outward "firing"). Nominal impedance is 8 ohms; crossover transition frequencies are 1.5 kHz and 2.5 kHz; power rating is 20 W min., 100 W max. Cabinet is walnut-grain vinyl veneer and dimensions are 24" H x 14½" W x 14½" D. $680 per pair.

CIRCLE NO. 92 ON FREE INFORMATION CARD

A/D System for Apple

Applied Engineering announces availability of a memory-buffered analog/digital system for all versions of the Apple computer. Called the A/D Board, this peripheral consists of an eight-bit successive-approximation A/D converter, an eight-channel multiplexer, and an 8 x 8 RAM. A/D conversion takes place on a continuous channel-sequencing basis, and data is automatically transferred to an on-board memory at the end of each conversion. The converter has a speed rated at 0.078 ms/channel, a full-scale voltage range from ±5 to ±15 V dc and an operating temperature from 0° to 70°C. Accuracy is given as 0.3%. Applications include monitoring ambient weather conditions, light intensity, pressure, rpm, etc. $129.

PC Board Holder

The PCBH-50 from OK Machine and Tool Co. is designed for use as a printed circuit board holder and solder station. The unit is spring-loaded for easy board removal and a self-locking end support adjusts to different board widths (up to 10" x 12"). A board can be rotated 360° and locked at any angle. Also included is a soldering iron holder and a cleaning tip sponge. The PCBH-50 can be either free-standing or mounted on a workbench.

CIRCLE NO. 94 ON FREE INFORMATION CARD

Rechargeable Video Battery Pack

Cinema IV's Porta-Power II battery pack is reported to permit the simultaneous use of a video camera, VCR, and halogen spotlight. A built-in voltmeter determines the remain-
THE PROBLEM: BURGLARY, HOLD-UP, MEDICAL FIRE

PROTECT YOUR HOME AND BUSINESS WITH A PROFESSIONAL SECURITY SYSTEM BEFORE YOU'RE THE VICTIM!!

HOW MUCH COULD I SAVE WITH A GUARDEX SYSTEM?
WHAT TYPE OF SYSTEM IS BEST FOR ME?
BURGLARY, HOLD-UP, MEDICAL OR FIRE?
We have security consultants available to review your needs right over the telephone. Our toll free numbers are listed below. Our new Guardex 4300 professional security system can be tailored for almost every requirement. The Guardex 4300 can monitor for burglary plus your choice of hold-up, medical emergency or fire.

WHAT IS THE GUARDEX 4300 SYSTEM?
The Guardex 4300 system is built around the 4300 microprocessor-communicator control panel. To the 4300 control panel you add wireless sensors for doors and windows, infrared motion detectors, photoelectric smoke detectors and emergency panic buttons. All the sensor/transmitters operate up to a year on a 9 volt radio battery and require no wiring to the control panel.

HOW DOES A CENTRAL STATION ALARM WORK?
When a burglary, fire or medical sensor is tripped, a signal is sent to the control panel up to 200 feet away. The control panel starts a siren screaming and starts an electronic telephone dialer programmed to call our central monitoring station. The receiver at our central station decodes the telephone message and displays the type of emergency to the operator. Stored in the computer is all the information required to dispatch for each emergency. Within seconds, your local Police Department, Fire Department or Paramedics have been notified.

The central station is staffed 24 hours a day, 7 days a week with trained personnel to quickly dispatch emergency services. We can monitor your home or business anywhere in the continental United States over toll free WATS lines.

SIMPLE INSTALLATION - SIMPLE TO OPERATE
The biggest cost of most central monitored security systems is all the labor to completely wire the building. With the wireless Guardex 4300 system you can install the complete system in less than an hour with only a screwdriver. (If you're not the handyman type, installations are available in many areas.)

Guardex 4300 Control Panel - $499.95
Includes backup battery and power supply.
Door/Window Transmitters, Magnetic Switch - $43.45 ea.
Infrared Motion Detector/Transmitter - $179.95
Photoelectric Smoke Detector/Transmitter - $89.95
Emergency Medical/Hold-up Panic Button - $39.95
Siren with 50 Feet of Wire - $39.95

DEALERS NEEDED
Make money installing our alarms in your area. If you have a general knowledge of electronic equipment and take pride in your work, call us to see if your area is still available. Work part time or full time, evenings and weekends call and ask for Field Installation Department.

30 Day Money Back Guarantee - 1 Year Warranty

SPECIAL LIMITED TIME OFFER!! ORDER A SYSTEM OVER $900.00 AND RECEIVE ONE YEAR MONITORING FREE!
(Regular price at $19.95 per month is $239.40.)
It's like getting a 26% discount on your system!

GUARDIAN ELECTRONICS, INC.

Call during California business hours for your no obligation consultation.
Outside CA Toll Free (800) 423-5499
Inside CA Collect (213) 889-1414
31117 W. Via Colinas, P.O. Westlake Village, CA 91362

CIRCLE NO. 2 ON FREE INFORMATION CARD
is the latest in a low-cost line of terminals, featuring editing capabilities, character insert/delete, and local print. It is buffered and can display the full 128-character ASCII code.

Circle No. 96 on Free Information Card

Linear-Tracking Phono Cartridge

Shure Brothers has announced a new direct plug-in phono cartridge especially designed for use with linear-tracking turntables. Designated Model M96LT, it has a telescoped shank structure and a lightweight magnet reported to give a frequency response flat from 20 to 20,000 Hz. The cartridge has a bi-radial elliptical diamond stylus that tracks at 1.25 g. $80.

CIRCLE NO. 97 ON FREE INFORMATION CARD

TV Satellite Receiver

A new satellite receiver, the System 7, has been announced by Lowrance Electronics. It provides detent tuning, in conjunction with automatic frequency control tuning, for quick channel selection. If fine tuning is needed, states the manufacturer, video outputs with a video invert switch, and a built-in modulator selectable for channels 3 or 4. I-f frequency is 70 MHz, with a 30-MHz bandwidth. $1325.

CIRCLE NO. 98 ON FREE INFORMATION CARD

Cassette Deck Cleaner

Allsop’s new Ultraline Cassette Deck cleaning system (Model 71300) features cartridge-mounted independent cleaning felts that can individually clean heads, capstans, and pinch rollers. A gear-driven wiper arm, upon which the head-cleaning felt is mounted, is said to increase the versatility of the

P OPULAR ELECTRONICS
cleaner by assuring uniform cleaning of all types of cassette decks, including those with three-motor drives and takeup-reel sensors. Equipped with two sets of capstan pinch roller flets, the Ultraline is also suitable for auto-reverse decks. The cassette cleaner includes a ½-oz bottle of Alshop cleaning solution. $10.

CIRCLE NO. 99 ON FREE INFORMATION CARD

Floppy Drive Tester

TEACO’S CD2-3 is said to offer the user of floppy drives three levels of testing: isolation of the drive from computer problems; a check of the chasis components and their mechanical operation; and troubleshooting of the component level on the circuit board. The unit’s capabilities include: testing of single- or dual-sided drives, testing of all tracks (with a 0.5” track counter), single-step or continuous testing, head load troubleshooting, dynamic indication of index pulse rate, “Ready Status” display, separate testing of clock and data functions, and erasure verification. $275. Address: The Computer Center, Div. of TEACO INC., P.O. Box E, Michigan City, IN 46360.

Amplifier with Built-in Equalizer

The A-X50 stereo integrated amplifier from JVC is equipped with a five-band SEA graphic equalizer rather than the customary bass/treble tone controls, with each control adjusting narrow-frequency bands centered at 63, 250, 1000, and 16,000 Hz. A peak indicator is calibrated to correspond to the five center frequencies of the equalizer and to show each response on a fluorescent display. Also shown are right and left total response and the aggregate response for both channels. Other features include a selector for MM or MC phono cartridges, a touch volume up-down control, and a muting switch. Its “Super-A” circuit design is said to provide the advantages of class-A operation at higher efficiency. The amplifier has a rated output power of 65 W/ch into 8 ohms from 20 to 20,000 Hz with a THD of 0.007%. Intermodulation distortion is given 0.05% at rated output. $430.

CIRCLE NO. 100 ON FREE INFORMATION CARD

Computer Static Mat

Designed to drain away static electricity before it can cause any damage to voltagesensitive IC chips, the Stati-Ex mat from Spirig Enterprises is intended for use with microcomputer installations consisting of a terminal, disc drives, and a printer. Made of electrically conductive rubber, the one-millimeter thick mat is also reported to be insensitive to heat; if you use it as a work surface, a hot ball of solder will not burn through. Dimensions are 100 cm x 50 cm. $20. Address: S.A.T. South End Bridge Circle, Agawam, MA 01001.

NEW
Understanding Electronic Control of Energy Systems
$6.95

Understanding Automotive Electronics
$6.95

Buy any two books in the Texas Instruments Understanding Series™ and get a third book... Free.

Important books. Important subjects. Learn quickly and easily how electronic technology is impacting today’s automotive and energy control systems.

For a complete list of current book titles, send for a Learning Center Library catalog. It’s free, too.

Send orders to:
Texas Instruments
P.O. Box 3640, M/S 84
Dallas, Texas 75285

All books $6.95.

Check your choices below.

□ Learning Center Library Catalog - CMII0K (Free)
□ Understanding Electronic Control of Energy Systems - LC69642
□ Understanding Automotive Electronics - LCB5771
□ Understanding Solid-State Electronics-LCB3361
□ Understanding Digital Electronics-LCB3311
□ Understanding Microprocessors-LCB4023
□ Understanding Calculators Math-LCB3321
□ Understanding Communications Systems-
LCB4521
□ Understanding Computer Science-LCB4571
□ Understanding Optronics-LCB4572

Enclose check or money order with sales tax (except AK, DE, NH, OR). Foreign orders must be in U.S. dollars and include shipping charges. No phone orders, please.

Name ____________________________
Address __________________________

City __________________ State ______ Zip ______

NOTE: Offer expires 11/1/82

Prices subject to change without notice.

© 1982 Texas Instruments

TEXAS INSTRUMENTS INCORPORATED

PE882
360116PE

AUGUST 1982
Stereo TV Is Coming Soon

In Japan, TV viewers have been able to listen to many programs in stereo for nearly four years. When feature films made in other countries are shown on Japanese TV, the viewer has the option of listening to a dubbed, Japanese sound track or to the original. In Germany, with its wide-bandwidth (7 MHz per channel) PAL system, room was found for a second audio r-f carrier; and stereo TV was initiated in September of last year. Yet, in the United States, the only way you can enjoy stereo TV is by combining a stereo FM receiver with your set when simulcasts of concerts are offered through the cooperative efforts of a TV channel and an FM station.

But all that is likely to change very soon. At a recently conducted Midwest Acoustics Conference held in Chicago, entitled “Audio Technology for Video,” Mr. E. M. Tingley provided an update on the work of the Multichannel TV Sound Committee. It is this committee, operating under the aegis of the Electronic Industries Association (of which Mr. Tingley is a senior Vice President of Engineering) that has been studying and testing three basic systems for the transmission of multi-channel TV audio for more than three years. Now, all of the data regarding the three proposed systems has been sifted down to a comprehensive report, and by late fall of this year, that report, along with a recommendation for a specific industry-endorsed system for stereo/bilingual TV standards, will be submitted to the Federal Communications Commission.

Whenever any new broadcast service is to be authorized, one of the chief concerns of the FCC is that it be compatible with existing service and with existing equipment. This is especially true in the case of multi-channel TV audio, since there is hardly a home in the U.S. that does not have at least one TV set. The majority of receivers are color sets, and represent an investment that should not have to be replaced when stereo or bilingual audio begins. The “mono” set must be able to receive a mono equivalent (left-plus-right) of the stereo program or, in the case of bilingual broadcasts, the primary language in which the program is transmitted.

Other matters of concern to the FCC are possible interference problems that may arise from the new transmissions as well as degradation in signal quality and possible excessive use of spectrum space. Broadcasters, on the other hand, are concerned with coverage and do not want to let the poorest stereo or bilingual performance be degraded by the new service. As Mr. Tingley explained, all of the three proposed systems do in fact cause a loss of audio signal-to-noise ratio (much as stereo FM offers poorer signal-to-noise performance at great distances from the station compared with mono FM).

However, since picture signal coverage has always been poorer than audio coverage in TV broadcasting, Mr. Tingley pointed out that as long as audio coverage does not decrease below that of video coverage, broadcasters will not object. To achieve this result, one of several proposed compounding noise-reduction systems may be used as part of the broadcast standard.

Three Systems for TV Stereo. All three proposed stereo TV systems achieve mono compatibility because the sum of the left and right channel signals is used to frequency-modulate the main audio carrier, just as the mono signal modulates that carrier now. A difference signal (left-minus-right) is used to modulate a subcarrier the way a difference signal (L- R) is now used to modulate the double-sideband suppressed AM 38-kHz subcarrier in stereo FM broadcasting. The major differences among the three systems, however, are in the nature and frequency of this subcarrier.

A similarity between the three systems is in the addition of a second, frequency-modulated subchannel as a baseband frequency of 78.67 kHz—five times the horizontal TV line rate. This additional subcarrier is intended for other audio service in the future.

The EIAJ System. The Electronic Industries Association of Japan has proposed a multi-channel stereo TV system for use in the U.S. that is very similar, but not identical, to the one that has been in operation in Japan for several years. As illustrated in the baseband diagram of Fig. 1, this system employs an FM subcarrier with a frequency of 31.47 kHz, or twice the horizontal line frequency (Fy = 15.734 kHz).

As in all the proposed systems, the main audio carrier is modulated to a maximum of ±25 kHz by a “sum” (L + R) signal. The stereo difference subchannel is frequency-modulated by the difference signal (L- R) with maximum deviation of the center frequency of the subchannel reaching ±10 kHz. When stereo is broadcast, this first subchannel modulates the main r-f carrier by ±20 kHz (this is indicated by the height of the block in Fig. 1). But if this first subcarrier is used for bilingual (second language) transmission, it deviates the main carrier by only ±15 kHz.

Audio frequency response for both main and subchannels is flat from 50 Hz to 15 kHz, and the pre-emphasis used for main and subchannels is the same as that currently used (75 μs). The control tone shown at 3.5Fy provides the data to automatically switch receivers from the stereo mode to the bilingual mode.

Odd-Multiple Subcarrier. Teleonics, a small Midwest company, was formed for the sole purpose of promoting its stereo/bilingual TV broadcast system. The baseband frequency distribution is illustrated in Fig. 2. In this system, a double-sideband suppressed AM subcarrier is used to modulate the main carrier with stereo difference or bilingual information. The system is very similar to the

Fig. 1. Baseband diagram of the signal used in the Electronic Industries of Japan system.
now-familiar stereo FM broadcast system used throughout the world.

What makes the system unique, however, is Telesonics’ choice of a primary subcarrier frequency that has been set, not at a multiple of the horizontal TV line rate, but at 2.5 times that rate, or 39.939 kHz. The system requires a pilot signal that at one half the subcarrier frequency, happens to fall very near the 19 kHz pilot frequency used in stereo FM; specifically, at 19.686 kHz.

Because the use of an AM subcarrier inherently results in a poorer signal-to-noise ratio, Telesonics has elected to let the subcarrier modulate the main carrier by a full ±30 kHz. The result is a mono-to-stereo signal-to-noise degradation that is only marginally worse than that encountered with the all-FM EIAJ system.

In addition, Telesonics claims certain advantages in its ability to reject specific noise impulses caused by noise impulses caused by noise ratio, Telesonics has elected to use a pilot carrier for receiver synchronization and reconstitution of the suppressed carrier, (such as

The 19-kHz stereo pilot used in FM, co-invented by Zenith), the TV horizontal line scan rate itself is used. The center frequency of the suppressed carrier is therefore set at exactly twice the horizontal line rate (2FH). As shown in the dia-

Signal-to-Noise Degradation.

When Mr. Tingley presented his progress report concerning stereo/bilingual TV in Chicago, he was not prepared to disclose the 19-kHz stereo pilot used in FM, co-invented by Zenith), the TV horizontal line scan rate itself is used. The center frequency of the suppressed carrier is therefore set at exactly twice the horizontal line rate (2FH). As shown in the diagram of Fig. 3, the additional FM subcarrier is again located at 5FH, as it is in the other two systems.

Companding Considered.

For these reasons, the committee has been considering the possible use of companding or noise-reduction systems as part of a standard system for stereo or bilingual TV audio. Interests, parties were invited to submit their proposals. Those who responded included Dolby (which offered its newest consumer noise reduction system, Dolby C); dbx, Inc. (which offered a modified version of one of its systems as a disc companding system). In addition to the basic tests and evaluations involving transmissions, the committee undertook a program of listening tests to evaluate the effectiveness of the three companding systems by simulating conditions that would prevail with AM and FM subcarriers in Grade A (close-in) and Grade B TV reception areas. One requirement insisted upon by the committee was that the companding systems offer both stereo and mono compatibility (to protect the investment of the owners of old mono sets as well as new, stereo TV sets not equipped with companding circuitry). This requirement apparently reduced the effectiveness of the proposed noise reduction systems so that there was no "clear winner." The Committee is now considering altering the requirement to mono compatibility only. This would mean that all future sets built with stereo decoding would also have to include the noise-reduction circuitry that is eventually chosen as the industry standard. In this way, more effective companding circuits would be applied to the monaural stereo/bilingual subcarrier, but the main carrier containing the mono information would not be affected. These newer companding considerations are not, however, expected to delay the Committee’s work.

The present timetable is maintained, the FCC should be presented with an industry report and system recommendation in October or November 1982. Assuming that the FCC acts quickly, we could have an approved stereo TV broadcast system as early as mid-1983. Of course, if the FCC once again insists upon issuing another "marketplace" decision, (see "The AM Stereo Situation" in the July "Entertainment Electronics" column) we could end up with three totally incompatible stereo TV systems. Furthermore, if the FCC leaves the choice of companding systems up to the "marketplace" we’ll have nine possible system permutations.

Fig. 2. Complete signal used in Telesonics TV audio system.

Fig. 3. Baseband diagram of signal in the Zenith stereo bilingual TV audio system.

AUGUST 1982
Now! Learn on the latest...
NRI training includes
25" Heath/Zenith
color TV with state-of-the-art features

- 6-function infrared remote control
- space phone lets you answer or call from your chair
- microprocessor-controlled PLL varactor tuner
- 82 VHF/UHF, 35 cable channels
- 24-hour programmable channel selection
- electronic time display
- 4-speaker FM sound system
- choice of three cabinets at student discount
We've taken the finest, most advanced, most complete TV/Audio/Video course available and made it even better. Now NRI brings your training up to and even beyond today's technology with the exciting, advanced performance Heath/Zenith Model 2501 TV. Now you can learn how to service even the latest circuitry on the most expensive TV sets as you assemble and perform experiments on your Heathkit/Zenith. Only NRI combines such complete training with such up-to-date equipment.

Choice of Three Specialties

And only NRI gives you the opportunity to specialize in any of three areas. You get the same complete training covering TV, audio systems, and video recorders, but you select your own specialty for practical, hands-on training.

You can choose to build the Heath/Zenith color TV; specialize in audio systems and build your own AM/FM stereo system; or take your bench training with remote-controlled videotape recorder featuring NRI training on videotape. No matter which specialty you elect, your practical training also includes experiments and demonstrations with the exclusive NRI Discovery Lab® and your own professional digital multimeter. All equipment is yours to use and keep.

Learn in Your Spare Time

No need to quit your job or tie up your evenings with night school...no classroom competition or rigid schedules. NRI trains you in your own home at your convenience. You're a class of one with complete course materials, practical training on the latest equipment, and the backing of a full staff of professional educators. NRI brings it all to you.

The Professional's Choice

A million and a half students have already chosen the NRI way. And over half the practicing TV service technicians in the U.S. have advanced their careers with convenient home training. Among them, it's NRI 3 to 1 over any other school (summary of national survey on request).

Free Catalog... No Salesman Will Call

Get all the facts on complete, convenient NRI training. See all the equipment, look over complete lesson plans, check out our convenient time payment plans. And see the many other opportunities in fields like Microcomputers, Electronic Design, Communications Electronics, and more. Send postage-paid card and see what advanced training is all about. If card has been removed, please write to us.

NRI Schools
McGraw-Hill Continuing Education Center
3939 Wisconsin Ave.
Washington, D.C. 20016

We'll give you tomorrow.
Harman-Kardon PM650 Integrated Amplifier

The Model PM650 is one of Harman-Kardon's new high-current-capability integrated amplifiers. It has an instantaneous current output capability of 40 A, which enables it to drive very low load impedances (such as those presented by some loudspeakers at certain frequencies and parallel pairs of low-impedance speakers) without distortion or damage to the amplifier. The absence of the usual current-limiting circuits in the output stages also eliminates this as a potential source of distortion.

The H-K PM650 has a rated output of 50 W per channel into 8 ohms from 20 to 20,000 Hz with less than 0.03% total harmonic distortion. It has a complete array of control functions, including selectable terminating capacitance for the phono cartridge, yet presents a neat and uncluttered appearance.

The overall dimensions of the H-K PM650 are 17 1/2" W × 16 1/2" H. It weighs 26 lb. Suggested retail price of the amplifier is $369.95.

General Description. Harman-Kardon has been a proponent of wide-band circuitry for many years, and the Model 650 continues that tradition. Its low-level frequency response is specified as 4 to 140,000 Hz + 0/-3 dB, with a 2-μs rise time and an 80-V/μs slew rate.

Except for its large volume knob, all the control knobs of the H-K PM650 are of identical size (¾"). Its other front-panel controls are "push on, push off" buttons of different sizes and shapes, according to their function—except that the three function (input selector) buttons are mechanically interlocked. A narrow tinted-glass window across the top of the panel conceals identifier words that light to show the selected program source, and whether one or both of the two tape circuits has been selected, as well as an on indicator next to the power switch button. The separation of the program and tape recorder selection functions makes it possible to listen to one program source while dubbing or making tapes from another.

The three input sources are AUX, TUNER, and PHONO. A small button gives an additional choice of MM (moving magnet) or MC (moving coil) cartridge inputs through separate sets of input jacks and preamplifier stages. The MM input also has a small front-panel knob that terminates a cartridge in a capacitance of either 100, 150, 200, or 300 pF, in addition to 47-kilohm input resistance.

Laboratory Measurements. Following a one-hour preconditioning period with both channels driving 8-ohm loads at 1000 Hz with one-third of rated power, and five minutes of full-power operating, the output of the Model PM650 clipped at 68 W per channel with both channels operating, giving a clipping headroom rating of 1.34 dB. As claimed by the manufacturer, the PM650 delivers progressively higher output power as the load impedance is reduced. Into 4 ohms, it developed 102 W per channel, and into 2 ohms its output was an impressive 141 W. This limit was set by the tripping of the amplifier's internal protective circuit breaker; and actual waveform clipping was not observed with 2-ohm operation.

When we drove the amplifier with the pulsed dynamic headroom test signal, the maximum power output was 79 W into 8 ohms, giving the amplifier a dynamic headroom rating of 2 dB. We also performed the dynamic headroom test at two lower load impedances, obtaining 139 W into 4 ohms and 208 W into 2 ohms. The 1000-Hz distortion of the PM650 was between 0.016% and 0.02% for all output powers up to 50 W, and only 0.05% at 65 W. When driving 4-ohm loads, the distortion varied from...
0.023% to 0.2% for power outputs between 1 and 100 W. The distortion with a 2-ohm load could not be measured because the circuit breaker tended to trip quickly at fairly high power outputs. Across the full 20- to 20,000-Hz frequency range and at power levels from 5 to 50 W, the distortion was between 0.016% and 0.035%.

The amplifier's sensitivity for a reference output of 1 W was 18 mV (AUX) and 0.09 mV (PHONO MM), with an A-weighted S/N ratio for either input of 79.5 dB referred to 1 W. The amplifier was stable with reactive loads, and its slew factor exceeded our measurement limit of 25.

The intermodulation (1M) distortion was measured with equal amplitude input signals of 19 and 20 kHz, having a combined peak amplitude equal to that of a 50-W sine-wave signal. This level served as the 0-dB reference. A spectrum analysis of the amplifier output (driving 8-ohm loads) showed a -82-dB second-order 1M product at 1000 Hz, and a -83-dB third-order product at 18 kHz. The fifth-order intermodulation distortion at 17 kHz was measured as -88 dB.

The amplifier's tone controls had conventional characteristics—the bass control moves the low-end turnover frequency between 150 and 300 Hz, and the treble control positions high-end response curves that are hinged at about 3 kHz. The loudness compensation boosted both low and high frequencies as the volume setting was reduced, but the amount of boost was moderate and did not cause any unpleasant alteration in sound quality. The SUBSONIC filter response was down 2.5 dB at 20 Hz, which was our lower measurement limit, and the CUTOFF filter response was down 3 dB at 6 kHz. It appeared to roll off the output at 12 dB per octave above the audio range, but we could not determine the ultimate slope of the SUBSONIC filter response.

The amplifier's RIAA phono equalization was accurate within ±0.5 dB from 20 to 20,000 Hz. It was affected only slightly by the inductance of a typical phono cartridge connected to the input (the total change was only about 1 dB from 1 to 20 kHz). The PHONO (MM) input impedance was 55 kilohms in parallel with capacitance values of 175, 225, 275, or 375 pF—depending on the setting of the front-panel switch. The MC input had a 400-ohm resistance. The MM input overload level was often at a very good 240 mV at 1000 Hz and at slightly higher levels at 100 and 20,000 Hz.

User Comment. Not only did the H-K PM650 sound as sweet and clean as would be expected from its fine measured performance, it also managed to sound like a much more powerful amplifier than its ratings would suggest. In fact, the more current we drew from the amplifier, the more impressive it became (especially when we paralleled several pairs of speakers to form a very low-impedance load). This is hardly a normal condition—many amplifiers rebel at this sort of treatment, yet the PM650 takes it in stride.

While we do not necessarily subscribe to the theory that sonic performance is improved when the amplifier bandwidth is far in excess of the audible frequency range, it seems unarguable that a high-current output capability, low distortion and noise level, and complete stability—regardless of load—result in an amplifier with a very fine sound.

We also appreciate the PM650's lack of switching transients or other disturbing sounds, and overall smooth operation. Even the delayed connection of the speakers that allows the amplifier circuits to stabilize is done in a graceful fade (instead of the usual abrupt "click"). In short, this is a fine product, well-suited for situations where one might ordinarily expect that far more powerful amplifiers are required.

—Julian Hirsch

CIRCLE NO. 101 ON FREE INFORMATION CARD

CONTROLS AND INDICATORS

FRONT PANEL:

Knobs:
- **BASS and TREBLE:** Tone controls.
- **BALANCE:** Control to center stereo image.
- **MODE:** Selects REVERSE, STEREO, and MONO modes.
- **TAPE OUT:** Controls the signal delivered to external tape decks. Positions marked SOURCE, TUNER OFF, and COPY (twice). The two copy settings are for dubbing tape deck 2 to deck 1 and vice versa.
- **VOLUME CAP. TRIM:** Selects phono (MM) input capacitance of NORMAL, +50 pF, +100 pF, +200 pF.

Pushbuttons:
- **POWER:** Large rectangular button at left.
- **SPEAKERS 1, SPEAKERS 2:** Activates two pairs of speaker outputs independently of each other.
- **TONE DEFEAT:** Bypasses tone control circuits.
- **SUBSONIC:** Inserts high-pass filter at app. 15 Hz.
- **HIGH CUT:** Inserts low-pass filter at app. 6 kHz.

LOUDNESS: Inserts Fletcher-Munson compensation into volume control circuit.
- **CARTRIDGE:** Selects moving magnet (MM) or moving coil (MC) phono cartridge input.
- **TAPE MONITOR 1 and 2:** Connects playback outputs of either external tape deck to the amplifier's circuits for playing tape or monitoring recordings. TAPE 1 has priority.
- **FUNCTION:** Mechanically interlocked buttons for selecting program sources: AUX, TUNER, and PHONO.
- **Display:** Illuminated words and numerals show selected program source and TAPE MONITOR settings, as well as power on.

REAR PANEL:
- **Jacks:** Standard phono jacks for all signal inputs and outputs. Speaker System: Insulated binding posts for two pairs of speakers. Insert stripped ends of wires and clamp firmly.
General Electric Model 19PC3708W
19" Color TV

General Description. Channel selection is accomplished by a separate rotary switch, with concentric, push-in, fine tuning for vhf and uhf channels, and a separate, illuminated indication next to each switch. The receiver's i-f section uses a SAW (Surface Acoustic Wave) filter and separate adjustments for the 41.25-MHz audio trap, and the 45.75-MHz trap for adjacent channel interference. A single IC performs the amplification, video and audio detection, noise filtering, automatic fine tuning (aft) and automatic gain control (agc) functions, and also includes a preamplifier for the video and the audio i-f (4.5 MHz).

The vertical and horizontal sync and the deflection sections use standard circuits. However, in an effort to reduce weight and in the interest of energy-efficiency, all dc voltages except one are obtained from the high-voltage flyback section. The ac power supply provides only one voltage, the well-regulated 116 V dc, to operate the horizontal oscillator and flyback driver. A separate current-sensing and regulating circuit controls the high voltage (HV), which, if excessive current is drawn, will automatically disable the 116 V dc regulator. Thus, service technicians should keep in mind that a HV defect can cause loss of the 116 V dc as well.

A single IC also performs all of the color sync, automatic color control (acc), color i-f amp, color killer, and demultiplying and matrixing functions. The three-color output amplifiers are mounted on a separate pc board at the base of the three-gun, in-line color picture tube, and receive the Y or brightness signal on their emitters. Direct-current coupling, together with diode dc-level control, provides excellent dc restoration.

The outstanding technical feature of the Model 19PC3708W, however, is the VIR II Broadcast Controlled Color System, introduced in 1980. The VIR board contains a special, 24-pin DIP IC (Matsushita AN5330) and six transistors. It connects to the main chassis, and to the VIR on-off switch and the VIR LED indicator.

The special VIR IC performs all of the VIR functions in a compact space. When a broadcast station uses a VIR signal (not all stations do), the receiver can lock in the same tint and chroma levels being transmitted. The line-recognizer section uses the composite sync signal, together with the horizontal blanking pulse, to find the vertical sync pulse and to count down to the 19th line. Outputs from the recognizer section are sensed by the VIR circuitry. When the VIR signal is detected, a LED indicator lights up.

A tint-controller section receives the R minus Y (R - Y) signal, which is then compared against the color signal obtained from the VIR reference. Manual tint-control voltage and the tint-preference control voltage (from the acc cir-
The Workbench

OK Machine & Tool Corporation
3455 Conner St., Bronx, N.Y. 10475 U.S.A.
Tel. (212) 994-6600 Telex 125091

CIRCLE NO. 36 ON FREE INFORMATION CARD
cuit) are compared with the VIR information. The resulting output then goes to the color-sync circuit in the main chassis. The color controller section operates in a similar manner, but its input is the combination of the B — Y and the Y signal. The Y signal is also clamped to the proper black level in the Y amp.

The mechanical layout of the new GE chassis is intended for easy servicing. The main pc board can be withdrawn from the cabinet and locked into a stable servicing position, with the cabinet resting on its side. This permits access from both sides. Also, the pc board layout supplied with the service manual certainly makes it easy to find individual parts and test points.

We found that the letters and numerals on the main pc board and on the CRT socket pc board were not very legible, but this was attributed to the printing of our particular set. We also noted that some of the test points are located between larger components, making it difficult to reach them with a standard scope probe.

Test results summarized in the accompanying table indicate that the GE Model 19PC3708W has good vhf sensitivity and noise figure. Measuring — 55 dBm at 300 ohms corresponds to about 8 µV input, for a noise-free picture. The uhf sensitivity is — 52 dBm corresponds to double, or 16 µV, which also promises good fringe-area performance. Unfortunately, the relatively higher noise figure for the uhf tuner limits the effectiveness of the VIR system to relatively noise-free signals.

The video bandwidth of 3.85 MHz was measured with the sharpness control set at its midpoint. We also observed that this control reduced the video response curve to 3.80 MHz at its soft setting and caused a +3 dB peak at 3.75 MHz at the sharp setting. Since the sharpness control is located at the rear of the set, the owner does not ordinarily worry about it. Its effect on a normal picture is barely noticeable, but on a weak signal it seems to sharpen the edges of displayed images.

R-f oscillator frequency stability and accuracy were measured with the aft operating. Considering that this is not an electronically tuned or a crystal-controlled system, stability and accuracy are quite acceptable. The remaining parameters are affected by the VIR performance and were measured with the VIR system in operation. They indicate very good dc restoration, excellent linearity and convergence, and no noticeable pincushion effect.

Applying a color-bar pattern on channel 3 proved to produce good color fidelity, even though the VIR system was not operating (a VIR signal must originate at a transmitter). Figure 1 shows a scope photo of the composite video signal as it entered the color section. At an amplitude of about 0.5 V and with the 3.58-MHz sine-wave burst perfectly reproduced, this photo quantifies the observed picture quality. The results of applying a gray scale (staircase) signal were equally good. Apparently, the factory adjustment for frequency response, gray scale, linearity, convergence, and pincushion effect were precise.

According to GE’s service manual the 116 V dc (from which the other dc voltages are derived) should be adjusted to within 0.5 V, but the regulation of that voltage only covered 98%. Assuming the 2% difference to be equally distributed, this means that the 116 V dc could change by ±1.16 V. However, we noticed no degradation of performance, even with changes in line voltage from 105 to 130 V ac. The stated range of regulation for the high voltage is from 26 to 28.5 kV, which is about 10%, and the measured values were better than that.

User Comments. Performance of this 19" color TV receiver was especially fine in terms of picture quality. Colors appeared crisp and sharp, with a bright and steady picture.

The VIR color control system was a boon in maintaining correct colors as we switched channels—provided the TV station was transmitting the VIR signal. Since many cable TV and educational TV stations do not transmit the VIR signal, it provides no automatic assistance in these instances. Moreover, it was annoying to switch from a perfectly tuned VIR channel to one that required adjustments because the signal was not used. Furthermore, the fine-tuning adjustment had to be precisely adjusted to activate the VIR circuitry.

The mechanical tuners worked very well. In the interest of long-term reliability, however, which appears to be boosted in this set with the new main pc board, we prefer electronic tuning. In addition, mid-band and super-band cable stations are not available with them. (One can view these stations when subscribing to a cable service, however, with a supplied cable channel selector.) Using mechanical tuners contributes to a lower price, though.

In summary, we liked the overall performance of the Model 19PC3708W, and particularly appreciate the easy serviceability of the receiver as compared to earlier GE models. — Walter Buchbaum

Fig. 1. Color-bar video at I-F input shows almost perfect sine wave.

Table: General Electric Model 19PC3708W 19" Color TV Receiver Laboratory Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity, vhf (Ch. 3)</td>
<td>−55 dBm</td>
</tr>
<tr>
<td>Sensitivity, uhf (Ch. 20)</td>
<td>−52 dBm</td>
</tr>
<tr>
<td>Noise figure, vhf (Ch. 3)</td>
<td>8 dB</td>
</tr>
<tr>
<td>Noise figure, uhf (Ch. 20)</td>
<td>15 dB</td>
</tr>
<tr>
<td>Video bandwidth to CRT (−6 dB)</td>
<td>3.85 MHz</td>
</tr>
<tr>
<td>R-f oscillator frequency stability:</td>
<td>0.085 MHz</td>
</tr>
<tr>
<td>(Ch. 3 at 30 to 130 V ac, 0 hr)</td>
<td>0.0615 MHz</td>
</tr>
<tr>
<td>R-f oscillator frequency error:</td>
<td></td>
</tr>
<tr>
<td>(Ch. 3)</td>
<td></td>
</tr>
<tr>
<td>Agc dynamic range:</td>
<td>65 dB</td>
</tr>
<tr>
<td>Dc restoration:</td>
<td>95%</td>
</tr>
<tr>
<td>Horizontal linearity:</td>
<td>100% left, 95% right</td>
</tr>
<tr>
<td>Vertical linearity:</td>
<td>98% top, 95% bottom</td>
</tr>
<tr>
<td>Color:</td>
<td>95% at worst area</td>
</tr>
<tr>
<td>Dc voltage regulation, B+:</td>
<td>93%</td>
</tr>
<tr>
<td>(105 to 130 V ac)</td>
<td></td>
</tr>
<tr>
<td>High-voltage regulation:</td>
<td></td>
</tr>
<tr>
<td>(105 to 130 V ac)</td>
<td></td>
</tr>
<tr>
<td>Power rating:</td>
<td>75 W</td>
</tr>
</tbody>
</table>
Build your own computer for $79.95

Imagine building your own computer for only $79.95! That's exactly what you can do with the ZX81 kit. It comes with all the parts you need and complete diagrams and instructions for putting it together. All you have to supply is soldering iron, solder, and a screwdriver. Plus, of course, a little bit of work.

But you get a lot more than several hours of kit-building fun. You also get a surprisingly powerful personal computer. The ZX81 hooks up to any TV for a 32-character by 24-line display (we provide the connecting cables). You can also use a standard cassette recorder to store your programs (again, we provide the cables).

Most important, you get a BASIC programming language that's powerful enough to challenge and interest the most experienced programmers. The ZX81 can handle multidimensional string and numerical arrays. It has full mathematical functions accurate to eight decimal places. Single-key entry for every command. Syntax error detection, debugging codes, and easy editing. Plus features that are ideal for creating games, such as 20 graphic symbols, continuous display, and random number generator.

The ZX81 can be expanded too. You can increase the memory from 1K to 16K with our Memory Module for $49.95. And you get a comprehensive manual that completely documents the capabilities of the ZX81, and teaches programming from the ground up.

In short, you get all the features that have made the Sinclair ZX81 the fastest selling personal computer in the world. And you get the satisfaction and fun of building it yourself.

A few years ago, this kind of computer power was simply unavailable to the individual. Even today, most personal computers are too expensive to buy for personal use.

But the ZX81 kit can be yours for only $79.95. Take advantage of this unique offer today. To order, send the coupon along with a check or money order. Or for faster delivery, call our toll-free number and use your MasterCard or VISA ready. These numbers are for orders only. If you just want information, please write: Sinclair Research Ltd., 2 Sinclair Plaza, Nashua, NH 03061.

<table>
<thead>
<tr>
<th>AD CODE</th>
<th>ORDER CODE</th>
<th>MAIL TO: Sinclair Research Ltd.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZX81 Kit</td>
<td>$79.95</td>
<td>Sinclair Research Ltd., 2 Sinclair Plaza, Nashua, NH 03061</td>
</tr>
<tr>
<td>16K Memory Module</td>
<td>$49.95</td>
<td></td>
</tr>
<tr>
<td>Shipping and Handling</td>
<td>$4.95</td>
<td></td>
</tr>
</tbody>
</table>

*U.S. dollars TOTAL

Name
Address
City State Zip

Sinclair technology is also available in Timex/Sinclair computers under a license from Sinclair Research Ltd.

AmericanRadioHistory.Com
If you have put off learning more electronics for any of these reasons, act now!

☐ I don't have the time.

☐ High school was hard for me and electronics sounds like it may be hard to learn.

☐ I can't afford any more education.

☐ I have a family now.

☐ I'm here. You're there. I've never learned that way before. I'm not sure it will work for me.

Read the opposite page and see how you can get started today!

26
Be honest with yourself. Are the reasons really excuses? You already know enough about electronics to be interested in reading this magazine. So why not learn more? If you need encouragement, read on and see how excuses can be turned into results.

You don’t have the time. Be realistic. All you have in life is a period of time. Use it. Try to know more tomorrow than you do today. That’s the proven way to success. CIE studies require just about 12 hours of your time a week, two hours a day. You probably do have the time.

Electronics sounds like it may be hard to learn. You already know something about electronics or you wouldn’t be reading this now. Build on that. CIE Auto-Programmed Lessons help you learn. Topics are presented in simple, logical sequence. All text is clear and concise, for quick, easy understanding. You learn step by step, at your own pace. No classes to attend. Nobody pressures you. You can learn.

You can’t afford any more education. Actually, you can’t afford NOT to gain the skills that can put you ahead of the others. You know what inflation is doing to you now. Education — learning a skill — is an inflation-fighter that can be yours. If you are not able to pay full tuition now, CIE will lend you funds on a monthly payment plan.

You have a family now. All the more reason why you have the responsibility to advance yourself. For the sake of your family. Do you want them to have what you had or have more than you had? The choice is yours. Electronics is a rewarding career choice. CIE can help you to get started on that career.

You’re there, We’re here. How does CIE help you learn? First, we want you to succeed. You may study at home, but you are not alone. When you have a question about your course, a postcard gets you your answer fast. You may find this even better than having a classroom teacher. CIE understands people need to learn at their own pace. When CIE receives your completed lesson before noon any day of the week, it will be graded and mailed back the same day with appropriate instructional help. Your satisfaction with your progress comes by return mail. That’s how CIE helps you learn.

NOW, IF YOU AGREE CIE TRAINING CAN WORK FOR YOU, HOW ELSE CAN CIE HELP YOU?

Cleveland Institute of Electronics is the largest independent home study school in the world that specializes exclusively in electronics. Although “big” does not always mean “best,” it is evident that CIE is a strong, successful institution with the people and resources to help you succeed.

Step-by-step learning includes “hands-on” training.

The kind of professional you want to be needs more than theory. That’s why some of CIE’s courses include the Personal Training Laboratory, which helps you put lesson theory into actual practice. Other courses train you to use tools of the trade such as a 5 MHz triggered-sweep, solid-state oscilloscope you build yourself — and use to practice troubleshooting. Or a Digital Learning Laboratory to let you apply the digital theory that’s essential today for anyone who wants to keep pace with electronics in the eighties.

Your FCC License can impress employers.

For some electronics jobs, you must have your FCC License. For others, employers usually consider it a mark in your favor. Either way, your License is government-certified proof of your knowledge and skills. More than half of CIE’s courses prepare you to pass this exam. Surveys show that some 80% of CIE graduates who take the exam are successful.

Find out more! Today, Now.

There’s a card with this ad. Fill it in and return. If some other ambitious person has already removed it, use the coupon.

You’ll get a copy of CIE’s free school catalog, along with a complete package of personal home study information.

For your convenience, we’ll try to arrange for a CIE representative to contact you to answer any questions you may have.

If you are serious about a rewarding career, about learning electronics or building on your present skills, your best bet is to go with the electronics specialists — CIE. Mail the card or coupon today or write CIE (please mention the name and date of this magazine), 1776 East 17th Street, Cleveland, Ohio 44114.

This could be the best decision you’ve made all year.

Associate Degree

Now, CIE offers an Associate in Applied Science Degree in Electronics Engineering Technology. In fact, all or most of every CIE Career Course is directly creditable towards the Associate Degree.

“If you’re going to learn electronics, you might as well learn it right!”

John Cunningham
Senior Technical Director

CIE Cleveland Institute of Electronics, Inc.

1776 East 17th Street, Cleveland, Ohio 44114

Accredited Member National Home Study Council

☐ YES . . . I want to learn from the specialists in electronics — CIE. Send me my FREE CIE school catalog . . . including details about the Associate Degree program . . . plus my FREE package of home study information.

Print Name_________________________Apt._________

City_________________________State_________________Zip

Age_________________________Phone (area code)_________________

Check box for G.I. Bill bulletin on Educational Benefits: ☐ Veteran ☐ Active Duty

MAIL TODAY!
Toshiba T200-4 Computer System

Toshiba's new T200/T250 Computer System is an integrated desktop business computer that includes a dot-matrix printer and a software package. Software accompanying the system consists of word processing, CP/M, Microsoft BASIC-80, and CBASIC 2. More business-application software is available as an option.

The only difference between the T200 computer and the T250 computer is the data-storage capacity. Whereas the T250 has drives with a storage capacity of 1M bytes/drive, the T200 is equipped with 5 1/4", double-sided, double-density drives with a capacity of 180K bytes/drive. There are single- and dual-drive models available for both the T250 and the T200.

This test review covers the T200-4 computer, which has two 5 1/4" drives. Suggested retail price for this system is $5750, including the software package and the printer.

The T200-4 computer is mounted in a desktop cabinet made of reinforced fiberglass and metal. It has two vertically mounted disk drives and a 12-in. CRT. A detached keyboard is connected to the housing by cable.

The typewriter-style keyboard has 85 keys, including 10 programmable function keys and a numeric keypad. The keys are mounted at a 15-degree typing angle, for greater visibility, and the typing keys are white, while control keys are black. The keyboard is controlled by an 8279 keyboard controller chip and the keyswitches have N-key rollover.

Implementation. The T200-4 is implemented as a single-board computer with the disk controller and the I/O circuits on separate boards. The microprocessor is a Toshiba 8085 operating at 5 MHz. The RAM memory consists of 64K bytes of dynamic RAM controlled by an 8257 programmable DMA (Direct Memory Access) controller IC.

The disk controller subassembly circuit board is mounted over the main system board. It uses an NEC 765 controller chip and phase-locked-loop circuits to control up to four disk drives. The drives themselves are quiet and reliable.

The 12-in., green-phosphor CRT has a wide bandwidth (22 MHz) and displays an 80-character, 25-line format in a high-resolution 8-by-8-character matrix. The CRT is not used at its rated capability—an example of Toshiba's conservative design philosophy.

The I/O circuit board is located at the rear of the machine and is connected to the main board by a shielded cable. The T200-4 comes with a parallel input port for the keyboard, an 8-bit parallel port configured for a Centronics printer, and an RS-232C serial port.

The T200-4 is completely shielded. All RF1 and EMI sources are covered with a ventilated aluminum cover. This shielding and the weight of the power supply make the T200-4 computer a very solid unit. The table-top computer weighs 66 lb, and the associated keyboard unit weighs 4.4 lb. The computer unit measures 171/4" W x 321/4" H x 81/2" D.

Power requirements for the computer are 115-V ac, at 60 Hz. Without the printer, the computer uses under 2.2 A.

The dot-matrix printer supplied with the system has a full 15-in. carriage, permitting a full-sized 132-column printout. It prints 125 characters per second bidirectionally. The character set is derived from a 9-by-7 dot matrix with a spacing of 10 characters per inch, and a line spacing of 6 lines per inch. The print mechanism is a full-stroke unit, which means that the print head is mounted on a helical cam that causes the head to move the full 132 columns on each pass. However, the operation is fairly quiet for a dot-matrix printer. A pin-feed roller handles paper flow, and a plastic window is provided to observe printing. All the controls are on the front panel. The printer weighs 31.0 lb and measures 22" W x 91/4" H x 145/8" D. It operates on 115-V, 60-Hz ac power and uses less than 1 A of current.

This printer is designed for data processing, and is not intended for word-processing applications. However, a high-density dot-matrix printer (such as
AUGUST 1982

a C. Itoh Model 8510) can be connected in place of the system printer to provide better print quality.

Software. The system software consists of Digital Research’s CP/M operating system. However, the software is not of the same quality as the hardware. The implementation of CP/M is still undergoing change. (The CP/M version 1.2 we tested does offer improvements in terms of handling the CRT.)

We particularly liked the T200-4’s booting. The screen tells you to insert the diskette, then the rest of the booting process is automatic.

Making backup diskettes or data diskettes is equally simple. First, enter FORMAT. This will cause the Toshiba format program to load and tell you that the three minutes—with verification.

As good as the surface functions are, Toshiba’s implementation of CP/M still leaves something to be desired. For example, all the ports except the RS-232C port are initialized on power-up. A separate diskette is needed to use the serial port, and yet another diskette is required to set baud rates, parity, and direction. Unfortunately, the serial drivers aren’t implemented in the Basic Input Output System (BIOS) of CP/M, nor is there room to do so. But Toshiba claims that an updated version of CP/M that handles all the I/O correctly is being readied.

Toshiba offers a full range of applications packages for the T200-4, including business, word processing, and communications. For this review, we used Wordstar 3.0, Microplan (an electronic package manuals. Very little information is provided about the machine operation, but virtually no in-depth technical detail is currently available.

Toshiba has employed the services of a California-based documentation company, called The Writery, to improve the T200-4’s documentation.

Evaluation. The T200-4 is a data-processing tool that is as functional as any of the other high-end microcomputer systems currently available. And it’s a breeze to set up. All we did was remove it from the box, plug in the printer system, and attach the keyboard.

Each of the interface cables is tied directly to the machine and requires no plug-in. Electrical power is fed into the back of the system. The I/O cables are multi-wire, heavily shielded types. Unfortunately, the keyboard cable is extremely stiff and a little too short, so moving the detached keyboard around to a comfortable position can be difficult.

The keyboard uses a design similar to Wang, in that the essential function keys are located on the top row, including the CONTROL key. After a couple hours of use, this layout proved more of an asset than a detriment. We also liked the keyboard’s ability to re-boot the system—simply depress the CONTROL key and IPL key. The PRINT key allows you to automatically send output to the printer with a single keystroke. Want to lock the keyboard? Just depress the KEY-LOCK key.

Below the first disk drive is a CRT intensity control so the operator can easily set the screen intensity to fit the room lighting. The CRT also employs an etched screen to reduce glare and eye-strain—a real help in an office environment.

During our testing for RFI/EMI, we were unable to detect any measurable radiation. Even with the machine’s cover removed. Apparently, good internal shielding, several wide ground paths, and shielded and grounded cables have eliminated potential RFI/EMI difficulties.

Our basic speed test of 10 GOSUB 10, using BASIC-80, yielded an average time-to-error of 0.29 seconds—revealing an excellent handling of memory processing. Using a 14,000-character Wordstar file, we found that average screen updates took only 14 seconds, from top-of-file to end-of-file. In addition, to load 200 bytes of diskette, CP/M requires: only 5 seconds, and loading Wordstar took just 5.2 seconds, with the first overlay coming after a scant 1.2 seconds. Printing the file took approximately 3 minutes—slightly longer using Wordstar’s spooler.

Using our disk test, which is a BASIC program that writes an entire disk with the letter “A” and then retrieves it, took an average of 27 seconds. Using Digital Research’s PL/I Chess program to develop a maximum processing speed, we found that it took an average of 1.83 seconds to compile and load the program, this is benchmarked against an Altos 4-
MUSIC LIVES ON TDK

Music sets the tone in your life. Creates a world of enjoyment all your own. If you want nothing to interfere, choose TDK.

TDK cassettes make music live. With a performance as full and vibrant as the original. In its special way TDK does more than record. It recreates. Music is magic. Don’t lose any of it, now that you know where it lives.
FOR ONLY $129.95 Learn Computing From The Ground Up

Build a Computer that grows with you, and can expand to 64K RAM, Microsoft BASIC, Text Editor, Assembler, Word Processor, Floppy Disks and more.

EXPLORER '85

Here is your first chance to learn the fundamentals of computing. All the important basics you’ll need more and more of as you grow. This is an ideal computer for anyone planning to use computers in their professional future. The EXPLORER ‘85 is not the “smart” version of the popular SMART PACKAGE, but much more. Designed to be your own personal computer, the EXPLORER ‘85 is designed to make the whole process of learning computers enjoyable and easy. It is the complete computer with all the components you’ll need to run- your first computer as well as programs learned and written. When you purchase the EXPLORER ‘85 you are purchasing a complete computer system which makes it easy to learn computing from all parts of the system in sequence. This is an excellent teaching tool since it allows you to copy and view all programs on your computer. The EXPLORER ‘85 comes with an in-depth instruction manual and a number of programs that will provide you with a solid foundation of computer knowledge.

EXPLORER '85

The EXPLORER ‘85 is a complete computer kit, ready to plug in and use. To order Fax Kit/Display/customer service desk: $75.00 plus $7.50 postage and handling.

EXPLORER '85 - Text Editor Kit (text only) $15.95

EXPLORER '85 - Calculator Kit $15.95

EXPLORER '85 - Disk Editor Kit $15.95

Order From Text Editor, Calculator, Disk Editor, Fax Kit/Display, or by asking your dealer.

OPTIONS:

1. Order level A kit (one of the two) $79.00 plus $7.50 postage and handling.

2. Order level B kit (one of the two) $79.00 plus $7.50 postage and handling.

3. Order level C kit (one of the two) $79.00 plus $7.50 postage and handling.

4. Order level D kit (one of the two) $79.00 plus $7.50 postage and handling.

5. Order level E kit (one of the two) $79.00 plus $7.50 postage and handling.

6. Order level F kit (one of the two) $79.00 plus $7.50 postage and handling.

7. Order level G kit (one of the two) $79.00 plus $7.50 postage and handling.

8. Order level H kit (one of the two) $79.00 plus $7.50 postage and handling.

9. Order level I kit (one of the two) $79.00 plus $7.50 postage and handling.

10. Order level J kit (one of the two) $79.00 plus $7.50 postage and handling.

FOR ONLY $129.95 LEARN COMPUTER FROM THE GROUND UP

The EXPLORER ‘85 is a complete computer kit, ready to plug in and use. To order Fax Kit/Display/customer service desk: $75.00 plus $7.50 postage and handling.

EXPLORER '85

The EXPLORER ‘85 is a complete computer kit, ready to plug in and use. To order Fax Kit/Display/customer service desk: $75.00 plus $7.50 postage and handling.

EXPLORER '85 - Text Editor Kit (text only) $15.95

EXPLORER '85 - Calculator Kit $15.95

EXPLORER '85 - Disk Editor Kit $15.95

Order From Text Editor, Calculator, Disk Editor, Fax Kit/Display, or by asking your dealer.

OPTIONS:

1. Order level A kit (one of the two) $79.00 plus $7.50 postage and handling.

2. Order level B kit (one of the two) $79.00 plus $7.50 postage and handling.

3. Order level C kit (one of the two) $79.00 plus $7.50 postage and handling.

4. Order level D kit (one of the two) $79.00 plus $7.50 postage and handling.

5. Order level E kit (one of the two) $79.00 plus $7.50 postage and handling.

6. Order level F kit (one of the two) $79.00 plus $7.50 postage and handling.

7. Order level G kit (one of the two) $79.00 plus $7.50 postage and handling.

8. Order level H kit (one of the two) $79.00 plus $7.50 postage and handling.

9. Order level I kit (one of the two) $79.00 plus $7.50 postage and handling.

10. Order level J kit (one of the two) $79.00 plus $7.50 postage and handling.

FOR ONLY $129.95 LEARN COMPUTER FROM THE GROUND UP

The EXPLORER ‘85 is a complete computer kit, ready to plug in and use. To order Fax Kit/Display/customer service desk: $75.00 plus $7.50 postage and handling.

EXPLORER '85

The EXPLORER ‘85 is a complete computer kit, ready to plug in and use. To order Fax Kit/Display/customer service desk: $75.00 plus $7.50 postage and handling.

EXPLORER '85 - Text Editor Kit (text only) $15.95

EXPLORER '85 - Calculator Kit $15.95

EXPLORER '85 - Disk Editor Kit $15.95

Order From Text Editor, Calculator, Disk Editor, Fax Kit/Display, or by asking your dealer.

OPTIONS:

1. Order level A kit (one of the two) $79.00 plus $7.50 postage and handling.

2. Order level B kit (one of the two) $79.00 plus $7.50 postage and handling.

3. Order level C kit (one of the two) $79.00 plus $7.50 postage and handling.

4. Order level D kit (one of the two) $79.00 plus $7.50 postage and handling.

5. Order level E kit (one of the two) $79.00 plus $7.50 postage and handling.

6. Order level F kit (one of the two) $79.00 plus $7.50 postage and handling.

7. Order level G kit (one of the two) $79.00 plus $7.50 postage and handling.

8. Order level H kit (one of the two) $79.00 plus $7.50 postage and handling.

9. Order level I kit (one of the two) $79.00 plus $7.50 postage and handling.

10. Order level J kit (one of the two) $79.00 plus $7.50 postage and handling.
Accessories and Software

I SUPPOSE many of you, as I do, keep an eye out for new products that will make your system even more powerful or easier to use. The SK8088 cpu board from SKI Electronics is a good example. This is a $329 dual-mode, 16-bit, S-100 bus, board that plugs directly into your present S-100 system and works in conjunction with your 8-bit cpu card.

The 8-bit processor board acts as the bus controller. However, when 16-bit software is loaded into the computer, control passes to the SK8088. To avoid taking away 8-bit software compatibility, the SK1 board permits switching back to the 8-bit board when necessary. This is a technique of master/slave operation where one motherboard takes arbitration and semiphores (flags) is used to switch cpus masters between cycles.

To take advantage of the full power of the system arrangement permitted on the IEEE 696 (S-100 bus), the board implements the full 24-bit addressing for a 4.7 megabyte address range. It contains a 6-MHz standard version, with an 8-MHz upgrade available. You don't have to worry about getting rid of your 8-bit memory either. The SK8088 works well, but slower, with 8-bit memory. However, it takes two bus cycles for a 16-bit transfer.

If you decide to get this board, be aware that it may not work with all so-called S-100 systems. The problem is in the implementation of the bus. In older versions (Altair, Imsai) the bus is defined a great deal differently than in IEEE 696 conventions. In addition, these older machines have the ground planes and power rails. So be sure you understand what you have before you buy a board.

Using RAM Storage. I recently ran across a company doing something I really considered significant with high-speed RAM—using it for storage. The company, Axlon Inc., offers some very unique memory products, including Ramdisk, which is for the Apple or IBM PC and has 32K0 bytes of 200-ns memory and battery backup. The memory functions like two 35-track floppy-disk drives and is compatible with the necessary operating systems. The company says the price is about the same as a dual floppy drive.

Axlon offers similar products for the Atari, but the memory products are designed to plug into an available cartridge slot. You have the choice of a Ramram to boost your Atari 400 or 800 to 48K or the Ramdisk for just the Atari 800. This gives you 128K of memory that acts as a high-speed disk drive.

If you are interested in communications, Axlon also has a personal communication terminal. Measuring 1 1/8" x 3 1/2" x 6 1/2" and weighing 11 oz., the handheld unit has a tactile keyboard with 43 functional keys to provide 64 upper-case ASCII characters. The display is a 16-character fluorescent indicator and has a 220-character receive memory that permits scrolling. The terminal, called the Hotline, has a "cool" price of $400.

You have probably noticed the increased interest in semiconductor nonrotating memory ("semidisks"). They increase your system operational throughput without impacting its operational aspects. For example, the Magnolia Invisible Disk that I discussed last month is used in my Zenith 89 laboratory system—especially when performing some system development. We load the software into this very high-speed disk and reduce our overall access time. You do have to be careful, however, with some software that expects everything to be on the lowest defined system diskette, rather than the logged-in disk. Also you have to be certain that your power supply is solid, since a power drop-out will cause you to loose valuable data on the semidisk.

The Master Plotter. If you have an extra $1550 and want a sophisticated plotting system, then the HP 7470 is exactly what you are looking for. This unit takes advantage of a new low-cost plotting technique and has a resolution (step size) or 25 μm (1/1000 in.), a repeatability of 100 μm, pen acceleration of 2 Gs, and pen-down and pen-up velocities of 33 and 50 cm/second, respectively. It uses either 8½" or 11" paper.

One of the special features of the plotter is the way it senses, picks and replaces its pens. It is aware at all times of which pen to use, where to find it, and where to return it. It can be programmed to select from either of two pen groups at appropriate moments during a plot. The system automatically caps and uncaps the pens to keep the ink from drying out.

The 7470 uses Hewlett-Packard's micro-grip drive system developed last year for large-format printers. It avoids heavy moving arms and paper transport drums and belts. The tiny pens (pencil thin) are used like the paper in a single pass, with the pen being for diskette.

The microgrip drive consists of two rotating metal grips wheels, which hold each edge of the paper firmly against a hard-rubber pinch wheel. The pens are moved in one direction (x axis) and in the other (y axis). In this way, the inertia is minimized to include only the mass of the drawing medium and the pen. The microgrip drive consists of two rotating metal grips wheels, which hold each edge of the paper firmly against a hard-rubber pinch wheel.

The microscopic points created in the paper by the wheels are used by the plotter for realigning and maintaining registration to ensure repeatability. This is not found on similar plotters.

The plotter uses an MC 6802 microprocessor, has 4K ROM for storing all the plotting programs (including irregular-shape tables) and interfaces either through the HP-IB bus (IEEE-488) or RS-231C, thus making it universal to virtually any microcomputer currently available.

I haven't had time yet to use the plotter extensively, so a report on how well it works will have to wait till later.

Speaking of Software. With an increasing emphasis on computer communications, it is not surprising that software companies are rapidly getting on the communications bandwagon with many products. Many of them we have covered in the past. Recently, though, we came across some interesting packages developed by IE systems, Inc. to permit micros to speak to mainframes. All the software works with standard protocols and greatly upgrades the state of the microcomputer communications art.

One of these packages is the Bisync-80 group—designed to support synchronous communications between CP/M systems and IBM or similar hosts (any system with bisync protocols). Features include a unique configuration module, hardware diagnostics, line trace, error checking, carriage control decoding and flexible EBCDIC/ASCII translation.

Another package, the 80/3780, provides full IBM 2780/3780 emulation on 8080/2080 and Z80/8080-based systems. This software costs $990. Note that you'll only need this package if you plan to op-
erate in the IBM environment as a Remote Job Entry (RJE) terminal. Typically, this implies short-haul (under 20 miles) communication over dedicated metal or fiber-optic lines at speeds of 9600 baud and above.

More practical from the standpoint of the microcomputer user, are asynchronous (character) communications. IE supports 8080/8085, Z80 or 8088/8089 systems with at least 16K of RAM, one floppy CP/M or MSDOS and an asynchronous serial port (Z80-S10, 8251, 8250, 8274, NEC 7201, TMS 5501, or PMMI-103) for $495.

Asynchronous communications is normally established over ordinary phone lines using modems that transfer data at rates of 110 to 1200 bps. Be aware though that, on dedicated short-haul lines, 19.2K baud is possible.

All of the IE’s software is available on diskette preconfigured to your requirements. If you own a host computer such as a VAX, PDP-11 or DEC10 or 20, IE can support your communications needs for these mainframes also at prices from $1940 to $5940.

Interestingly, many of the functions that take place in asynchronous communications can be likened to a disk system.

If you think of your communications setup as being like a diskette, with each device scattered around the tracks (interleaved), you can get an idea of the functions of software that uses polling techniques. Incidentally, this is the technique used in networking software to allocate resources to the network and basically avoid collisions.

Communication Terminals. Because low-cost communication is becoming increasingly important, two companies are offering specialized terminals. Tyme-share, through Equipment Products Mfg., has the Scanset Models 415 at $495 and Model 415 for $649. The first requires an external modem but provides automatic log-in, the second includes a built-in modem, automatic dialer, and automatic log-in.

Both models take up one square foot of desktop space, have a 9’ diagonal screen with 24 lines by 40 or 80 characters, and have limited graphics capability. The terminals were built by the French firm Matra and they use Cermatek modems and filters.

Each terminal has six multi-function keys and permits up to 12 user-defined tasks to be assigned to the programmable keys. The autodial feature allows dialing up to 36 numbers stored in the terminal’s battery-supplied CMOS memory. User menus guide the process and a built-in speaker lets you know the line status. Unfortunately, Matra uses a small keyboard with flat button keys, making the system almost unusable as a true data-entry terminal.

Offering similar capability but with a full-size keyboard and modular approach is the Zenith Data Systems ZT-1 communication terminal. Priced at $695, the ZT-1 is housed in a keyboard with 63 functions—26 alphabetic, 10 numeric, 4 cursor, and special function keys. Like the Scanset, the ZT-1 is Bell-103 compatible. It has a 300-baud modem, plugs into any standard R-11C, 12C, or 13C jack, supports pulse dialing, has NTSC composite video (RS-170 compatible) and provides a serial I/O from 110 to 2400 baud. In addition, it has an 8-bit Centronics parallel port for printer support.

Zenith has gone to a great deal of trouble in the firmware to provide single-key dialing, sign-on, and all the necessary communication functions. The user can change the terminal’s communication parameters, including word size, parity, and stop bits. Numbers can be added to the 26-slot directory.

More Than a Game. Computer games aren’t always games in the truest sense. Two that we recently ran across are Roots/M from Coffeemol (665 Maybell Ave., Palo Alto, CA 94306, Tel. 415-493-2184) for $124.95, and Unit Conversion Master from Mako Data Products (1441-B N. Red Gum, Anchor, CA 92806, Tel. 714-632-8583) for $19.95. Both are written to operate under CP/M and can be used with virtually any terminal.

The Roots-M package is a unique program designed to help you trace your family tree. It comes with an extremely well-written manual with illustrations that not only explains the software but describes genealogy in general.

The software works by using a series of fill-in screens for entering pertinent data—marital and blood relationships, letters, financial records, travel information—anything you can find out about your ancestors. The program uses this data to generate a pedigree chart, and draws relationships between individuals, how families intertwine, and traces all the vital statistics.

Roots/M is one of the best data-base management systems we have seen, and it is very easy to use. The authors have provided numerous well-planned help messages, and tips on finding out who you really are.

The Mako Data Unit conversion Master is primarily designed to work with the Heath H-89 system, and uses its screen attributes to good advantage. What makes this package exciting is that you can enter length, volume, acceleration, mass, etc. in whatever units your original data is given and then determine the correct conversion to the units of any other system (including cgs). Over 18,000 possible conversions are at your fingertips. The package is not really a game, and it strips away uncertainty when dealing with unfamiliar units or unwieldy data.

FOR MORE INFORMATION

For additional information on the products mentioned here, contact the manufacturer directly:

Axton Inc.,
170 N. Wolfe Rd.
Sunnyvale, CA 94086
408-730-0216

Equipment Product Marketing
20705 Vallacy Green Dr.
Cupertino, CA 95014
408-448-8111

Hewlett-Packard Corp.
3000 Hanover St.
Palo Alto, CA 94304
415-857-1501

IE Systems Inc.
Box 359, 98 Main St.
Newmarket, NH 98587
603-659-5891

SKI Electronics
3134 Woods Way
San Jose, CA 95148
408-274-3131

Zenith Data Systems
1000 Milwaukee Ave.
Glenview, IL 60025
312-391-8181

Zenith ZT-1 communication terminal.

The Axton Ramdisk offers 200-ns access and 320K bytes of storage for Apples and IBM PCs.
Computer power, printer speed, hard disk storage – all in one system.
The three elements you need for smooth, rapid data handling are together now in one Heath/Zenith system. For word processing, business and financial applications, or custom programming – this is the performance standard evolving in computer technology. It's what you expect from a strong partner.

All-In-One Computer
The heart of the system is the Heath/Zenith 89 Computer, a complete, stand-alone unit with professional keyboard, smart video terminal and 5¼-inch disk drive. It's easy to use for people having little or no experience – yet it can also run extended languages like BASIC, COBOL, FORTRAN and Pascal.
The 89 comes with 48K bytes RAM, expandable to 64K. It has two Z80 microprocessors, one for computer functions, one for terminal functions. And three serial I/O ports for interface with printers and modems.
The video display features a 12-inch diagonal, high-resolution CRT that's easy on the eyes. It displays up to 2,000 characters at a time, 24 lines (plus 25th status line) by 80 characters, with full cursor control. Also 33 block graphic characters for charts and graphs.
The heavy-duty keyboard follows standard typewriter format for easy operator training. All terminal functions are programmable from keyboard or I/O ports.
The 5¼-inch floppy diskette stores 100K bytes of information and interfaces on line with the Heath/Zenith 67 Hard Disk System.

Winchester Disk System
The 67 Disk System features one hard disk and one 8-inch, soft-sector floppy for total on-line storage of 10,782 megabytes (formatted). That's a huge data base.
The floppy is double-sided, double-density and can also operate in single-sided or single-density modes, compatible with standard IBM 3740 format.
The 67 features write-protect switches for both drives to prevent accidental erasure of information. The average access time of the hard disk drive is 70 milliseconds.

High-speed printer
The Heath/Zenith 25 Printer is a heavy-duty, high-speed, dot matrix printer that gives you sharp, clear printouts. It prints over 150 characters per second with whisper-quiet smoothness.
The entire 95-character ASCII set prints in upper case and lower case with descenders, in a 9 x 9 matrix. Also, 33 block graphic characters let you create graphs and charts. All functions and timing are microprocessor-controlled.
It uses standard edge-punched papers and features a convenient cartridge ribbon for easy, no-mess replacement.
Versatile software and accessories

The Heath/Zenith System offers you a choice of operating systems, including popular CP/M.

There are programs for word processing, business applications, and versatile utility functions. And the Heath User's Group offers a library of over 500 low-cost programs for home, work or play.

For your custom programs, Microsoft languages are available in BASIC (compiler and interpreter), FORTRAN and COBOL. Or learn to write and run your own programs with special self-study programming courses for Assembly, BASIC, Pascal or COBOL.

Free demonstration awaits you at your Heathkit Electronic Center

Pick the store nearest you from the list at right. And stop in today for a demonstration of a Heath/Zenith system. If you can’t get to a store, send for our new, FREE Heath/Zenith Computer Catalog – with the latest, most advanced hardware and software available. Write to Heath Co., Dept. 010-924, Benton Harbor, MI 49022.

Visit Your Heathkit Electronic Center*

where Heath/Zenith Products are displayed, sold and serviced.

PHOENIX, AZ 2727 W Indian School Rd 602-279-6247
TUCSON, AZ 7109 E Broadway 602-885-6773
ANAHEIM, CA 330 E Ball Rd 714-779-4670
CAMPEL, CA 2350 S Bascom Ave 408-377-9209
EL CERRITO, CA 6000 Potrero Ave 415-236-8870
LA MESA, CA 8363 Center Dr 714-461-0110
LOS ANGELES, CA 2309 S Flower St 213-749-0261
POMONA, CA 1555 N Orange Grove Ave 714-623-3543
REDWOOD CITY, CA 2801 Middlefield Rd 415-365-8155
SACRAMENTO, CA 1850 Fulton Ave 916-486-1572
WOODLAND HILLS, CA 21364 Ventura Blvd 818-883-0531
DENVER, CO 5940 W 38th Ave 303-747-0741
AVON, CT 395 W Main St (RT 44) 203-873-2780
FT LAUDERDALE, FL 7173 W Broward Blvd Plantation 305-791-7300
HAIELE, FL 4700 W 16th Ave 303-873-2780
JACKSONVILLE, FL 8265 Arlington Expwy. 954-725-4554
TAMPA, FL 4019 W Hillsborough Ave 813-886-2541
ATLANTA, GA 3685 Roswell Rd 404-252-4341
HOLLIDAY, HI 38-1254 Kahuakumau St., Pearl City 808-497-0029
CHICAGO, IL 3462-66 W Devon Ave 312-883-9202
DOWNERS GROVE, IL 224 Ogles Ave 312-852-1304
INDIANAPOLIS, IN 212 E 62nd St 317-257-4321
MISSION, KS 5960 Lamar Ave 913-362-4466
LOUISVILLE, KY 12401 Shebyville Rd 502-245-7811
KENNER, LA 1900 Veterans Memorial Blvd 504-467-6321
BOSTON, MA 177 E Fojda Rd 508-661-4446
BOSTON, MA 5642 Nicholas Lane 309-391-5400
SEATTLE, WA 242 Andover St. 617-533-9330
WESLESLEY, MA 165 Worcester Ave 617-377-1510
DETROIT, MI 18449 E Eight Mile Rd 313-772-0416
HOPKINS, MN 191 Shady Oak Rd 612-938-6371
ST. PAUL, MN 1654 White Bear Ave 612-778-1211
BRIDGEWON, MD 3794 McKelsey Rd 301-295-1850
OMAHA, NE 9207 Maple Rd 402-391-2071
ASHBURY PARK, NJ 1013 State Hwy 35 732-773-1070
FAIR LAWN, NJ 35-07 Broadway (RT 4) 201-791-8383
AMHERST, NY 3476 Sheridan Dr 716-835-3090
ERICH, L. I. NY 15 Jericho Turnpike 516-291-7000
ROCHESTER, NY 937 Jefferson Rd 716-444-5550
NEW PLAINS, NY 7 Reservoir Rd 914-761-7790
GREENSBORO, NC 4520 C. W. Market St. 919-299-5390
CINCINNATI, OH 10133 Springfield Pike 513-771-8850
CINCINNATI, OH 2800 Chaplin Blvd 216-292-7553
COLUMBUS, OH 2177 Middlefield Pike 614-745-7200
TOLEDO, OH 48 S. Byrne Rd 419-537-1887
OKLAHOMA CITY, OK 215 Northwest Expressway 405-848-7593
FRAZER, PA 630 Lancaster Pike (RT. 30) 717-337-5555
PHILADELPHIA, PA 6318 Roosevelt Blvd. 215-288-0180
PITTSBURGH, PA 3482 Wm. Penn Hwy 412-824-3564
WARWICK, RI 528 Greenwich Ave 401-738-5150
DALLAS, TX 2715 Ross Ave 214-826-4563
FORT WORTH, TX 6025-A Green Oaks Rd. 817-337-8862
HOUSTON, TX 1704 W Loop N 713-331-5263
SAN ANTONIO, TX 7111 Blanco Road 512-341-6870
MIDVALE, UT 58 East 7200 South 801-366-4626
ALEXANDRIA, VA 6201 Richmond Hwy 703-763-5516
VIRGINIA BEACH, VA 1055 Independence Blvd. 804-460-0997
SEATTLE, WA 505 8th Ave. 206-682-2172
TUKWA, WA 1545 53rd Ave. S. 206-246-8538
MILWAUKEE, WI 2715 W. Fond du Lac 414-873-8250

HEATH/ZENITH

Your strong partner

CIRCLE NO. 22 ON FREE INFORMATION CARD

CP-201R1

AmericanRadioHistory.Com
Loran-C
A Marine Long Range Navigation Tool

by Ken Englert

Microprocessor technology lowers prices 20-fold and reduces equipment size. Here's how Loran-C pinpoints locations many hundreds of miles from a coast line, plus an equipment buyer's guide.
Loran-C

IX the serious boating enthusiast's need for accurate navigation when out of sight of a coastline with today's electronics, and you get a minor miracle called Loran-C (Long Range Aid to Navigation). And with equipment prices down from $20,000 to under $1000, you don't have to be a wealthy yachtsman to enjoy its benefits.

What is Loran? Loran is a radio navigation system using land-based transmitters and shipboard receivers to enable anyone within reception range to easily determine his position at any time, in any weather. Loran C (other forms of Loran have been phased out) provides a positioning accuracy of at least one-tenth of a nautical mile. In addition, it offers a "repeatability" (measuring how precisely you can return to a given set of coordinates) that's theoretically accurate to within 50 feet.

Loran transmitter stations now blanket virtually the entire North American coastline, parts of the North Atlantic and Europe (including most of the Mediterranean), the North Pacific, and the Caribbean. Daytime range of a Loran-C transmitter is about 1200 miles, while nighttime coverage extends to an estimated 2000 miles.

Loran's usefulness is not restricted to boating. It can prove invaluable for rescue work in the mountains or desert or for recreation in remote areas—anyplace, in short, that involves the question: "Where am I?"

How Loran-C Works. Loran operates on the basis of a specific amount of time it takes for a radio signal to travel between any two geographical points. Although travelling at the speed of light, radio waves still require a finite and measurable time to traverse the distance between a given transmitter and a receiver. To effect this, the Coast Guard maintains a series of land-based transmitters that broadcast Loran signals (at a frequency of approximately 100 kHz). When picked up by an on-board Loran receiver, these signals can be processed into very precise positional information.

The key to accuracy with Loran-C is precise signal timing. A group or "chain" of Loran transmitters works together in an area and transmits signals that are in exact synchronization. The master station of the group transmits nine pulses. Simultaneously, the secondary stations (there may be two to four secondary stations in any Loran chain) transmit eight pulses at a slight interval after the master signal, with each secondary station transmitting in sequence. The on-board receiver is smart enough to recognize the master and secondary signals and differentiate between them (as well as those Loran signals received from other parts of the world) by unique frequency and pulse characteristics.

The Loran-C receiving unit is broken down into two sections: the actual receiver, whose job it is to pull the signals out of the air and amplify them to a useful level, and the computing section, whose function is to extract the data that tell the user exactly where he is. The computing side very precisely measures the arrival time of each of the received signals (in microseconds) from the master and secondary station transmitters. It is the difference in the arrival times between the master and secondary signals that is used to calculate your position in reference to those transmitters.

This time difference (called TD) corresponds to a hyperbolic line that describes a specific unit of time lying between each station. Different times will correspond to different hyperbolic lines. Each time-difference line can be used by the Loran operator as a navigation line of position (LOP).

Here's how it works: Let's assume a master station at point M and a secondary station at point W, as in Fig. 1. Our on-board receiver picks up both signals and displays a digital readout of the differential time interval of the signals. We take this number—called a TD—and plot a LOP corresponding to that value on a chart with Loran time difference lines overlayed on it. Let's say that our Loran receiver gives us a reading of 13370.0. Although there are many points on our chart that will correspond to the same 13370.0-microsecond time difference, they will all be plotted along one line. This line of position is similar to a line of longitude or latitude. It differs in that it is not perfectly straight, but hyperbolic in shape. Also, it is located somewhere between the two stations and, of course, is restricted to the reception range of the Loran signals.

Now, we still have not pinpointed our exact location. All we have done is place ourselves somewhere along a line on a chart. This is like saying we are somewhere on Main Street. To be precise, we need a cross-street reference. To find it, we measure the time difference between the master station and another secondary station in the same Loran chain. This time-difference reading places us on another line (Fig. 2). Next, we observe where the two LOPs intersect on our chart. If our boat were to move in any direction, the TD readings on the Loran would chronicle our journey at any given moment.

The Loran Signal. A pulse-coded low frequency (LF) signal is used in the Loran-C system. Loran operates between the frequencies of 90 and 110 kHz, with a carrier frequency of 100 kHz. A low-frequency band was chosen to take advan-

![Fig. 1. A line of position (LOP) plotted between two Loran-C stations.](Image)

![Fig. 2. A second reading referred to a third station gives a cross reference.](Image)
Loran-C

Each station in the Loran chain transmits a series of pulses of specific number and duration (a single Loran pulse is shown in Fig. 3). The master and secondary stations in any Loran chain transmit groups of these pulses and form a combined Loran chain signal at a specific GRI (Group Repetition Interval). The master station signal requires 10,000 µs for transmission, while each secondary requires 8000 µs. The master station pulse group is made up of 8 pulses with a 1000-µs spacing between them, followed by a ninth pulse with a 2000-µs spacing from the eighth pulse. Secondary station pulse groups can be recognized by eight pulses spaced 1000 µs apart.

Figure 4 shows a typical Loran GRI made up of one master and three secondary transmitter signals. Notice that the pulses forming the first secondary station signal, designated "X," are not transmitted until the master pulse group has completed its transmission. Similar time delays place the second (Y) and third (Z) secondary signals in their respective positions in the GRI sequence. At that point, the master station begins to re-broadcast its signal and the sequence is repeated. The spacing between the pulse groups varies according to the Loran receiver's location within a given Loran chain.

Figure 5 shows many lines of position formed by plotting points where the TDs of the received signals of M and X are the same. By plotting a series of LOPs between the master and each of its secondaries, we create a grid-like overlay on a chart for the area of interest. This is the actual Loran chart.

How a Loran Receiver Works. Now that we have a good idea of how a Loran system works and what the signal looks like, let's discuss how an on-board receiver recognizes, tracks and processes that signal, using Texas Instrument's TI-9000 as a representative model.

Figure 6 is a block diagram of the TI-9000 receiver. An accompanying flow chart shows the sequence of what is taking place inside the receiver.

The first thing that happens when you switch the set on is that you trigger a system self-check and a processing routine called reset. The reset function has four tasks to perform: (1) checking the ROMs; (2) checking the RAMs; (3) initializing the RAMs for Broadband Search; and (4) waiting for you to enter the GRI for the Loran chain in your area via the receiver's front panel keyboard.

At the end of the initial reset sequence, and before you enter your GRI (an interval of approximately two seconds), the receiver's display will show all "8s," showing it is ready for operation.

After the GRI has been entered, the set immediately goes into Broadband Search and starts to look for signals from the...
Loran-C

Master and secondary stations from your selected GRI. The input into the antenna's preamplifier consists of a 100-kHz r-f pulse train. The r-f power supply board takes the 100-kHz signal, processes it through a narrowband filter, and produces a digital output consisting of r-f Out and Envelope (ENV) Out signals. (As its name implies, the power-supply section of the r-f/Power Supply Board also takes the 11-to-16-V dc input and creates the regulated +5, +15, -15, and +180 V dc output voltages which are required in other parts of the receiver.) The r-f signals are fed to a sampling register on the Processor Board. The Timing and Strobing Board controls the sampling register and serially shifts the output data to the Communications Register Unit (CRU), which is a part of the microprocessor.

The microprocessor then processes the data and identifies the master and secondary signals. (It is mandatory that the master signal be found and used as the starting point.) After the master is isolated, a broadband search identifies the secondary signals. If the secondary signals are not found in the broadband search, the process will be automatically repeated by starting over and looking for the master. This process is called Background Search and is performed automatically if the secondary signals are missed.

The microprocessor is controlled by a stored instruction program built into its ROMs, and by the keyboard instructions it gets from the operator. RAMs are used by the microprocessor for data storage and retrieval. The microprocessor also cues the Timing and Strobing Board in the generation of system-timing pulses.

After processing, the data output is sent to the Display/Control Board, where decoding takes place. The end product—the Loran time-difference reading—is shown on the receiver's front panel digital display.

Using a Loran-C Receiver. Operating a Loran-C set is simple. For an illustration, let's again look at the Texas Instruments Model TI-9000. It features a keyboard for entering data and selecting navigational information. Once you understand it you can enter and recall navigational information effortlessly.

The keyboard consists of 20 keys divided into four functional groups (see Table I).

Increasing Accuracy. Given a choice of more than two TDs (up to four, depending on the Loran chain), the operator can increase his accuracy by selecting those that assure the best possible position determination. Three factors determine TD accuracy: the distance from the transmitting stations, baseline extensions, and TD crossing angles.

The distance from the stations is important because stations more than about 1200 miles away tend to be subject to noise and the possibility of an added time delay from sky-wave interference. (Remember, we are relying on the stability and predictability of ground-wave reception for Loran-C accuracy.)

The baseline for a TD is a straight line connecting the master and the secondary stations. The baseline extension is formed by extending this line beyond.
TABLE I—KEYBOARD LAYOUT
(Texas Instruments Model TI-9000)

Data Entry Keys
- 0-9 Digit Keys
 Enters numbers 0 through 9
- +/− Change Sign Key
 Makes it possible to enter a negative as well as a positive number.
- CLR Clear Key
 Clears or erases numbers in the display.
- ENTR Enter Key
 Instructs unit to enter the number seen on the display into the internal computer's memory.

Primary Operating Keys
- GRI Group Repetition Interval Key
 Allows operator to choose which Loran chain or group of Loran transmitters they wish to receive signals from. A four digit code is used to select the proper stations to "listen" for.
- AUTO Automatic Key
 Provides automatic display of up to 4 selected TDs. (As this model can only display one TD reading at a time, several TDs are displayed sequentially for 5 seconds at a time.)
- TD Time Difference Key
 Can be used to "freeze" a particular time difference reading for continuous display. This key is also used to store and recall selected TDs.

Secondary Function Keys
- MON Monitor Key
 Allows operator to select one of two codes in monitoring Loran transmitting station performance.
 - MON-1—Indicates Signal-to-Noise ratio of the received signal. A reading of 999 is the highest and best. Readings below approximately 670 indicate a poor signal.
 - MON-2—Oscillator offset frequency. The number displayed indicates the number of cycles (out of a million cycles) that the receiver's internal oscillator is off frequency. A number greater than plus or minus 30 indicates your set will have to be adjusted.
- MODE Mode Key
 Displays the 6-stage signal processing sequence of your receiver and aids in acquiring a usable signal.

Special Function Keys
- TRK Allow the operator to override the signal selection process under certain adverse conditions to make an otherwise unusable signal usable.
- ΔTD

Fig. 6. At right is a flow chart showing the sequence of events taking place inside a receiver. A block diagram of the Texas Instruments Model TI-9000 receiver is shown on the opposite page.

both stations. The significance of this line is that the use of TD LOPs on or near the baseline extension will adversely affect your accuracy since a relatively large distance will produce a relatively small change in a displayed TD.

TD crossing angles (formed when two TD LOPs cross on a chart) also affect accuracy. Your reading will be most accurate when the angle is 90°, and less accurate the further you get from 90°.

Selecting a Loran Receiver. Variety is an understatement when describing all the new models of Loran-C receivers available today. Here are some guidelines to help you make an intelligent selection.

For good precision, your Loran should read out in at least six digits. The displays themselves come in several basic types including incandescent, fluorescent, gas discharge, LED, LCD, and even a CRT. That choice is mostly subjective and should be considered with your particular needs in mind.

Since you need two TD readings to determine your position, a Loran that has a dual readout is easiest to use. Less-expensive models employ a single TD readout—alternating readings every couple of seconds. Other single-readout models display the last few digits of two TD readouts (since the first few digits will not change in a given area anyway).
Notch filters are important—the more filters, the better. In Loran, electrical noise interference is your mortal enemy. A notch filter “notches out,” or reduces noise to a manageable level. While all Loran-C systems have internal notch filters, others have the additional flexibility of external units on the control panel. The latter are operator adjustable. The fixed filters are set specifically for the predominant interfering noise frequency in your region. The adjustable filters are to help compensate for noise interference when cruising in other areas. A note of warning when buying a model that features internal or fixed notch filters: Shy away from mail-order or other out-of-the-area purchases, as the notch filters may not have been set for the interfering noise frequencies in your area. This can mean all the difference between having a set you can use and one you can’t. If you are planning long-distance cruising, you should consider getting adjustable front-panel notch filters. The additional external filters complement the noise suppression of the internal filters and give you some control over local noise conditions.

A remote or second station is not usually necessary on most boats, but models are available that will drive a remote display if you have the desire or need.

Direct readout conversion from TDs to latitude and longitude heads the list as the most welcome and useful feat that some top-of-the-line equipment can accomplish. This feature is particularly helpful in fringe areas where Loran lines have not been fully plotted, or if a full set of charts with Loran-C LOP overlays are not on-hand.

Other new tricks that the more sophisticated models can perform include:
- Calculating the speed and course from your last position or waypoint.
- Estimating the time at a given speed to your next waypoint.
- Registering the amount of error (called cross-track error) in distance and direction while traveling between two waypoints.
BUYER'S GUIDE—LORAN-C RECEIVERS

<table>
<thead>
<tr>
<th>Manufacturer and Model</th>
<th>Price ($)</th>
<th>No. of TD (LOP) Displays</th>
<th>Display Type</th>
<th>Lat./Long. readout</th>
<th>No. of waypoints in memory</th>
<th>Ext. notch filt.</th>
<th>Steer R/L ind.</th>
<th>Interfaces with autopilot</th>
<th>Computes navigational data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datamarine</td>
<td>2795</td>
<td>2</td>
<td>Gas discharge</td>
<td>x</td>
<td>8</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Digital Marine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronics</td>
<td>3995</td>
<td>2</td>
<td>LED</td>
<td>x</td>
<td>1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Northstar 6000</td>
<td>5390</td>
<td>2</td>
<td>LCD</td>
<td>x</td>
<td>120</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Northstar 7000*</td>
<td>2995</td>
<td>2</td>
<td>Gas discharge</td>
<td>LED</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Episco C-NAV SX</td>
<td>1795</td>
<td>2</td>
<td>LCD</td>
<td>x</td>
<td>32</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Furuno</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC-200 MK-II</td>
<td>2795</td>
<td>2</td>
<td>LCD</td>
<td>x</td>
<td>10</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Micrologic ML-2000N</td>
<td>1795</td>
<td>2</td>
<td>LCD</td>
<td>x</td>
<td>200</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trimble</td>
<td>1895</td>
<td>2</td>
<td>LCD</td>
<td>x</td>
<td>10</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Simrad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-836</td>
<td>1495</td>
<td>2</td>
<td>LCD</td>
<td>x</td>
<td>10</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>TL-856</td>
<td>2495</td>
<td>2</td>
<td>LCD</td>
<td>x</td>
<td>10</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Sipex 717</td>
<td>2995</td>
<td>2</td>
<td>LCD</td>
<td>x</td>
<td>10</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>SRI Labs CLX-85</td>
<td>1995</td>
<td>2</td>
<td>LCD</td>
<td>x</td>
<td>9</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Texas Instruments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TI-9000A</td>
<td>1295</td>
<td>1</td>
<td>Gas discharge</td>
<td>x</td>
<td>10</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>TI-9000S</td>
<td>1495</td>
<td>1</td>
<td>Gas</td>
<td>x</td>
<td>10</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>TI-9900</td>
<td>2495</td>
<td>2</td>
<td>LCD</td>
<td>x</td>
<td>10</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trimble 5A</td>
<td>2995</td>
<td>1</td>
<td>LCD</td>
<td>x</td>
<td>100</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trimble 50A</td>
<td>3695</td>
<td>1</td>
<td>LCD</td>
<td>x</td>
<td>100</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

* Displays up to 200 plain English messages.
* Latitude/longitude converter optional.
* Latitude/longitude connector w/nav. computer optional.

MANUFACTURERS' ADDRESSES

- **Datamarine International, Inc.**
 53 Portside Dr.
 Pocasset, MA 02559

- **Digital Marine Electronics Corp.**
 (Northstar)
 30 Sudbury Rd.
 Acton, MA 01720

- **Episco Marine**
 411 Providence Highway
 Westwood, MA 02090

- **Furuno USA**
 271 Harbor Way
 So. San Francisco, CA 94080

- **Micrologic**
 20801 Dearborn St.
 Chatsworth, CA 91311

- **Mieco**
 109 Beaver Ct.
 Cockeysville, MD 21030

- **Morrow**
 4740 Ridge Dr. N.E.
 P.O. Box 7078
 Salem, OR 97303

- **Navidyne Corp.**
 11244 Fishing Point Dr.
 Newport News, VA 23606

- **Nautical Electronics Co. (Nelco)**
 7085 Milford Industrial Rd.
 Baltimore, MD 21208

- **Racal Decca**
 P.O. Box G
 #1 Commerces Blvd.
 Palm Coast, FL 32037

- **Ray-Jefferson**
 Main & Cotton Streets
 Philadelphia, PA 19127

- **Raytheon Company**
 676 Island Pond Rd.
 Manchester, NH 03103

- **Seatron Marine**
 4312 Main St.
 Philadelphia, PA 19127

- **Simrad, Inc.**
 2215 N.W. Market St.
 Seattle, WA 98107

- **SiTex**
 St. Petersburg/Clearwater Airport
 P.O. Box 6700
 Clearwater, FL 33758

- **SRI Labs**
 381 McClintock Ln.
 Campbell, CA 95008

- **Texas Instruments**
 P.O. Box 405,
 MS3438
 2501 S. Highway 121
 Lewisville, TX 75067

- **Trimble Navigation**
 1077 Independence Ave.
 Mountain View, CA 94043
Automatic plotting Great Circle waypoints (navigators often prefer a Great Circle route on long trips).

- Automatic sequencing of several different waypoints.
- Keeping an “eye” on your boat when you are anchored and sounding an alarm if your boat drifts from its anchor.
- Keeping time on a precision 24-hour chronometer.
- Indicating elapsed time.

External accessories can extend the usefulness of many Loran receivers, and the list of options seems to be limited only by the imagination. For example, a remote analog steer-right/steer-left meter is available on some models. One company’s remote-course deviation indicator not only indicates whether or not you are on course, but will also trigger an audible signal or light when you get within 0.5 nautical mile of your destination. Data-marine’s small Course Deviation Indicator is designed into a round, waterproof, bulkhead-mounted case that permits use where it may be subjected to sea spray and waves.

One of the most interesting in the list of Loran-C add-ons is a chart recorder. It uses output data from some Loran receivers to drive a plotter that charts a permanent record of where you have been sailing. Its real value becomes obvious when you use it to literally steer your boat down a pre-drawn line on a marine chart. Other manufacturers use a CRT display instead of chart paper to produce an electronic video plotter. Data output from any Loran model can be used to turn your receiver into an electronic First Mate that can issue commands to your auto-pilot.

If the idea of your pilot “talking” to your auto-pilot makes you feel left out, be not jealous, O Brave Mariner. Texas Instruments has an option to lend vocal cords to its Model TI-9900. Using a speech synthesizer, the TI-9930 audibly reports your position periodically, your elapsed time from system turn-on, the speed, range and bearing to your next waypoint, the time to go to next waypoint, cross-track error, the signal-processing status of the Loran, what waypoints have been stored in its memory, and any Loran transmitter problems.

It will also caution you about marginal signal reception, and warn you when prompt action must be taken.

Finally, the Northstar 7000 Loran, from Digital Marine Electronics, sports a real sense of humor in its memory bank. Instead of diplomatically calling to the attention of the operator that he or she has made an error, the 7000 display reads out “Baloney” or “No Way Jose.” You, of course, can make the receiver walk the plank.

Photo at top shows location of controls and indicators on the TI-9000. The diagram below explains the various digital readouts.
Have you ever planned to take a winter vacation or a weekend ski trip and wondered what to do about the wasted heat in your home while it is vacant? Obviously, you cannot shut off your furnace because a freeze might cause your waterpipe to burst. So you set your thermostat to its lowest point, typically 54°F, as any energy-conscious person would. But you still waste energy since water doesn’t freeze until the temperature reaches 32°F. Here’s how to lower your thermostat further, to just above freezing, and perhaps save twice as much on your energy bill as compared to the 54°F setting. (See the Table at the end of this article for comparative savings.)

A True Energy-Saving Thermostat. A new temperature-sensing reed switch is the basis for design of the energy-saving thermostat. It can be reliably preset to a temperature between 35°F and 40°F and requires only the simplest type of support circuitry. Moreover, no calibration whatsoever is needed.

The first step in wiring the energy-
saving thermostat into your heating system is to find out how much current flows through your present thermostat. You can look up this information, but it’s preferable to take measurements.

To measure the current, you will need an ac milliammeter that can read to 1000 mA. Disconnect the two wires from your thermostat and connect the meter’s leads to these wires. Make a note of the current. If it is less than 375 mA, only a spst switch and a temperature-sensing reed switch are required to make a complete energy-saving system.

Now measure the resistance of your thermostat’s heat anticipator. With the wires to the thermostat disconnected, set the thermostat as high as it will go, making sure the contacts close. Connect an ohmmeter across the thermostat’s terminals and make a note of the measured resistance. This resistance we will call R1.

Figure 1A shows how to add an energy-saving thermostat to a furnace that requires less than 375 mA of control current. Be sure to use #18 thermostat wire when making connections. Locate switch S1 near your present thermostat and label it NORMAL when it is closed and ENERGY-SAVING when open. The temperature-sensing reed switch, S2, can be mounted either next to the old thermostat or in an area of the house where freezing could be especially damaging while you’re away.

Most, but not all, oil and gas furnaces use low-voltage (24 V ac) thermostat control systems. Figure A shows a simplified wiring diagram of a typical oil-fired furnace. T1 is a 24-V transformer and TH1 is a low-voltage thermostat with an adjustable heat anticipator (resistance R1). Relay K1 has normally open contacts and a 24-V ac coil. The oil-pump motor and ignition transformer T2 lead to the spark gap. (Numerous safety-related circuits and components of the furnace are not shown.)

The operation of a typical oil-fired furnace is simple. When the temperature of the thermostat drops below its setting, the contacts close and 24 V ac is applied to K1’s coil. With its coil energized, K1 pulls its contacts closed and line voltage is applied to the motor and T2. The motor M1 then starts pumping oil, while T2 steps up the voltage to between 10,000 and 12,000 V. The high voltage from T2’s secondary causes a spark and the oil ignites. Not mentioned are the many safety-related circuits such as flame detector, oil-flow detector, overheat controls, etc.

A grossly oversimplified wiring diagram that is typical of either a gas or oil furnace is shown in Fig. B. Here L1 is either a 24-V relay or control-valve operator. T1 and TH1 are exactly the same as before. (For simplicity, the furnaces’ other electrical parts are not shown.)
The operation of the device is simple. When \(S1 \) is closed, the circuit operates exactly as it did originally—\(S2 \) is bypassed and only thermostat \(TH1 \) controls the valve operator \(LI \). When \(S1 \) is in the ENERGY-SAVING position, \(S2 \) controls \(LI \) because \(TH1 \)'s contacts will always be closed in the temperature range of interest, which is 35° to 40°F.

If you find that more than 375 mA normally flows through your present thermostat, it is best to have \(S2 \) control a relay instead of controlling \(LI \) directly. This insures a long life for \(S2 \). The relay will then control \(LI \). Figure 1B shows a suitable circuit for this.

In addition to relay \(K1 \), Fig. 1B shows optional resistor \(R^* \). This is a 12-W or larger unit whose resistance is equal to that of the thermostat's heat anticipator \(R1 \). \(R^* \) limits \(LI \)'s current to the same value it was originally. \(R^* \) is probably not needed in most systems and its use is optional. To be on the conservative side, however, it is recommended that \(R^* \) be placed in series with \(L1 \).

When connecting \(K1 \) to the furnace's circuit, make sure you use \#18 thermostat wire. Mount \(K1 \) in the same general area as the furnace's other electrical parts. As before, label \(S1 \) NORMAL when closed and ENERGY-SAVING when open. Relay \(K1 \) can be any type having a 24-V ac coil that draws less than 375 mA and has normally open contacts with a 2-A or higher rating.

Now, with \(S1 \) in the NORMAL position, only \(TH1 \) controls \(K1 \). The reason is that \(S2 \)'s contacts are only closed when the temperature approaches freezing—which we assume never happens when \(S1 \) is in the NORMAL position (except for a power outage or furnace failure). With \(S1 \) in the ENERGY-SAVING position, \(TH1 \) is disconnected from the circuit and only \(S2 \) controls \(K1 \). When \(K1 \)'s coil is energized, its contacts are pulled closed. 24 V is applied to \(L1 \) and the furnace starts up.

The wiring diagrams shown in Fig. 1 pertain to 2-wire heating thermostat circuits as well as most newer types of heating/cooling thermostat circuits with 3, 4 or 5 wires. However, if you have a 3-wire, 24-V ac heating thermostat (rare today) that controls less than 375 mA, you can't use either circuit. But, don't despair! You can easily construct an energy-saving thermostat. See Fig. 2. The only significant change from Fig. 1A is that a dpdt switch is used instead of the spst type.

The best place to mount the temperature-sensing reed switch is close to your present thermostat. In addition to economizing on wire, this location will probably save the most energy since it is usually centrally located. Be careful, though! While the furnace will keep the area in the vicinity of the sensor well above freezing, some critical regions, usually located near an outside wall, may fall below freezing on a bitter cold night.

To be on the safe side, locate \(S2 \) in a critical area. A good place would be near a water pipe that has caused trouble in the past. Actually, you can place as many sensors around the house as you like. By doing this, the circuit will continually monitor all areas that can be damaged by freezing. The furnace will go on whenever one sensor gets cold enough. (When wiring additional sensors into the circuit, be sure to connect them in parallel.)
A temperature-sensing reed switch consists of a rhodium-contact reed switch hermetically sealed in glass, two permanent magnets that surround the glass, and a ferrite ring sandwiched between the magnets (Fig. A). The switch depends on the interaction of the magnets and the ferrite for its operation.

The ferrite ring is the temperature-sensing component of the device. It is magnetic below its Curie temperature but non-magnetic above it. The Curie temperature of a ferrite material is the temperature above which the ferrite's ability to conduct flux is severely reduced. To get some idea of how temperature affects the sensor, refer to Fig. B. Here the temperature is below the ferrite's Curie temperature and thus the ferrite is magnetic. Notice how the magnetic flux lines travel easily through the ferrite. Since the ferrite is magnetic, the magnetic field in the area of the contacts is sufficient in strength to keep them closed.

Now assume the sensor is heated so that the ferrite exceeds its Curie temperature (Fig. C). The warmed-up ferrite is now nonmagnetic and its reluctance increases dramatically. Because of its high reluctance, the ferrite cannot easily conduct lines of flux. This results in a reduction in magnetic field strength near the reed switch's contacts. Since the magnetic force holding the contacts closed has now weakened substantially, the contacts open. (Note that since the ferrite is now nonmagnetic, it is eliminated from the drawing.) When the ferrite cools to below its Curie temperature, it becomes magnetic again. The magnetic field increases, so the contacts close once again.

The freeze sensor we are particularly interested in is the TS-5B19 manufactured by Midwest Components, Inc. (Muskegon, MI). It is a temperature-sensing reed switch with ferrite material that has a Curie temperature of approximately 39°F. These sensors come in metal or plastic packages. The metal-packaged sensor can withstand temperatures as high as 400°C (752°F), while the less-expensive plastic-packaged model is limited to use with temperatures below 125°C (257°F).

Though the switches are used primarily as freeze sensors here, the ferrite material can have a wide range of Curie temperatures from -10°C to 250°C.

Characteristics of the TS-5B19. Most factory-run TS-5B19’s have a trip point near 39°F. MCI guarantees that all TS-5B19’s will close their contacts before the temperature drops to 1°C (33.8°F) and will not close before 7°C (44.6°F). Note that all trip points assume falling temperatures. The falling temperature trip point is several degrees higher.

The TS-5B19 series of sensors have contacts rated at 10 W or 12 VA maximum. Maximum voltage is 100 V dc or 120 V ac. The contacts can carry up to 1 A but have only a ½-A "make" rating. The maximum recommended operating temperature is 257°F.

All temperature-sensing reed switches are magnetic in nature. Because of this, some precaution should be taken when locating most kinds, including the freeze sensor. The switches should be kept at least ½" from any iron or steel and at least ¾" from any magnetic-field producing device (i.e., magnet, transformer, motor, solenoid, similar sensors, etc.). It is also recommended that the leads not be cut. However, bending is okay. If these precautions aren't followed, the trip point will be changed.

The sensors are completely water-proof. Additionally, gasoline, motor oil, calcium chloride, or Freon has no effect on them. However, alcohol, strong sulfuric acid, and some other chemicals will destroy plastic-packaged models.

A Freeze-Proof Room. Some people have a small storage building or small room in an unheated garage that is unsuitable for storing items that must be kept from freezing. Also, some utility rooms or even half-baths are left unheated to economize. On a bitter cold night, this can lead to frozen and cracked pipes and other problems. If the area is sufficiently insulated and relatively small, it can be kept freeze-proof quite economically by using a 120-V, U.L. electric heater in conjunction with a control like the one shown in Fig. 3. This control is also suitable for keeping a small greenhouse frost-free.

In Fig. 3, T1 is an inexpensive 6.3-V ac filament transformer typically available from surplus electronics stores. Relay K1 has normally open contacts rated at 5 A and its coil is rated at 6 V, 500 mA ac (or less). Relay K2 can be any 120-V ac power relay that has contacts rated at 15 A or more. Be sure to use #14 U.L. wire in this circuit. This type of circuit, with some modifications (such as replacing K2 with a heavy-
duty relay that has dpst contacts), can be used to control a 240-V ac electric heater.

A Simple, Reliable Frost Alarm. Often, one would simply like to be alerted to the fact that the temperature has dropped close to freezing. A typical application would be a frost alert for a garden. The temperature-sensing reed switch can be placed in the garden to sound an alarm when frost threatens.

The simplicity of the circuit is shown in Fig. 4. In addition to the sensor, a 9-V battery and a solid-state buzzer are all that are required. Switch S1 is optional. Locate the sensor as close as possible to the plants you want to protect. The sensor can simply be set on the ground, if desired.

Another possible use of this circuit is as a freeze detector for unheated basements or in some simple solar hot-water systems. Since current only flows in the circuit when a freeze threatens, battery life should exceed one year.

The table at left shows how much you might expect to save in heating bills by using the methods described here. It depends, of course, on where you live and how far down you set your thermostat.

Triac Motor Control for Warm-Air Systems Reduces Fuel Use and Eliminates Cool Spots

by Anthony Caristi

Does the blower motor of your warm-air heating system have just one speed? If so, your furnace is not operating at optimum efficiency. In a warm-air heating system, the air should move through the heat exchanger of the furnace at a velocity that continuously varies with the temperature of the plenum.

Another shortcoming of your warm-air heating system as it is designed might be that the blower motor shuts off at times. Since a warm-air system has no inertia, you may feel a chill when the blower stops even though the room temperature is high enough to trip the thermostat and turn the burner off. Nowadays, warm-air systems are designed with a "continuous air circulation" feature. This means that the burner cycles on and off frequently, keeping the plenum warm enough to maintain continuous blower operation.

With the expensive and easy-to-build circuit described here, you can add both a variable-speed blower-motor control and continuous air circulation to your warm-air heating system.

Circuit Operation. The heart of the revised blower-motor control is a triac. A triac is a three-electrode semiconductor device that is triggered into conduction in response to a gate signal. The action of a triac is similar to that of a silicon-controlled rectifier (SCR), except that it can conduct current in both directions, as required in an ac circuit. As shown in the schematic (Fig. 1), a signal is applied to the gate of the triac through a thermistor and diac D2. (A diac is a solid-state trigger device that has a breakdown voltage similar to that of a zener diode, except that it works in either direction.)

An RC time constant composed of thermistor TCR1 and capacitor C4 prevents the triac from delivering power to the motor for part of each half cycle of the 117-V ac waveform. When plenum temperature is low, TCR1 has a high resistance. This lengthens the time required for the voltage to increase sufficiently to trigger the triac into conduction through D2. When plenum temperature is high, the triac is triggered into conduction earlier in the cycle, resulting in more power being delivered to the motor and higher operating speed.

A second trigger circuit, composed of R2, C3, and diac D1, is used to ensure that the motor operates at a minimum speed regardless of the temperature (and resistance) of the thermistor. A minimum blower speed is necessary since the furnace cannot operate with a blower turning too slow or not at all.

For heating and cooling systems, an optional switch has been included in the circuit so that the proportional motor control can be overridden during the cooling season. The switch provides sufficient gate signal to the triac to ensure maximum blower-motor speed.

Components R1, C1, C2, and L1 are included in the circuit to smooth the steep wavefronts generated by the triac and help reduce radio-frequency interference, which is inherently produced in switching circuits such as this.

Construction. The circuit can be constructed on a small printed-circuit board measuring about 3" by 3". The only external components are the thermistor and optional switch S1. Figure 2 shows a full-size foil pattern, and Fig. 3 shows the parts layout.

Since this circuit is powered directly from the ac power line, all capacitors
must have at least a 200-V rating. Do not use low-voltage types designed for solid-state circuits.

The blower motor will draw several amperes through the triac during operation, which will result in some power being dissipated in the device. It is recommended that a small heat sink be used to help keep the triac from overheating. A simple heatsink can be constructed by bending a 1" by 3" piece of sheet aluminum into a U shape. Drill a hole through the center of the aluminum and mount the triac and heatsink to the printed circuit board with a #4 machine screw and nut. Use heat sink compound between the mounting tab of the triac and the heat sink for best heat conduction. Be sure to keep the heat sink completely insulated from any metal part of the furnace when installing the pc board.

Inductor L1 can be easily constructed by winding about 15 turns of #20 enamal wire on a wood or plastic 3/8"-diameter form. The inductance of L1 is not critical, but do not use wire of smaller gauge since Lf must be able to carry the full load current of the blower motor without overheating. The same caution applies to the foil pattern which is shown in Fig. 2. Be sure to keep the conductive paths to the triac wide (as illustrated).

The pc board can be mounted inside the furnace where the other electrical controls are located. The schematic diagram and printed-circuit layout are marked with the letters A, B, S, and T, which will help you identify connections to the external parts of the circuit.

Run a pair of wires for the thermistor from the “T” terminals on the pc board up to a convenient place on the plenum where the thermistor can readly sense temperature changes. Drill a small hole in the plenum sheet metal to insert the thermistor so that the air flow will pass over it. Be sure to insulate the thermistor and its connections so that no possible short-circuit to the metal parts of the furnace can occur.

If this should happen, the pc board or its components could be destroyed. Do not cover the head of the thermistor with insulation, since this will tend to make the component less sensitive to the changing temperature of the plenum.

Checkout and Adjustment. Before applying power to the furnace, check all connections to make sure the wiring is correct. To set the minimum blower speed, temporarily turn on the furnace by manually adjusting the plenum temperature switch or connecting a jumper across the switch to complete the circuit. (This must be done while the plenum is cool. If necessary, run the blower with the gas or oil burner off until the plenum is cool to the touch.) Then adjust R2 for the minimum desired blower speed.

Now reset the plenum switch back to its original position (which should be somewhere between 90° and 110° F), or remove the temporary jumper. Set the room thermostat so that it calls for...
heat. Now, as the furnace heats up and the blower comes on, the blower speed will automatically increase as the plenum temperature rises. Conversely, when the thermostat shuts the burner off, the blower speed will decrease as the plenum cools.

Ideally, the blower will continue to operate at minimum speed until the thermostat turns the burner on again. This continuous air circulation will greatly enhance the comfort level of your home, and will help you conserve heating fuel too.

Power Meter Keeps Tabs of How Much Electricity an Appliance Uses

by Cass Lewart

WITH electrical and electronic products abounding in homes and electric power costs so high, it would be interesting and valuable to know how much power each one consumes. The inexpensive power meter described here enables you to accurately determine ac electric consumption for appliances rated between 15 and 1100 watts. It can also be used for diagnostic work when repairing appliances.

Circuit Operation. The current in the appliance under test passes through resistors R1 and R5, R6 and R7, or R1 through R5, depending on which of three ranges is selected. A voltage drop of up to 2 V ac across the resistors operates panel meter M1. (The meter has a built-in rectifier.) Two zener diodes, D1 and D2, and resistors R8 and R9 protect the meter from overload. Optional fuses F1 and F2 further protect the circuit components from overloads.

The meter is calibrated directly in watts, assuming 117 V on the power line and a basically resistive load. If the appliance being tested consists of a motor with a light inductive load, divide the readings by 1.1. To obtain current in amperes, divide the reading by 117.

Construction. The unit can fit comfortably in a 5" x 3" x 6" plastic cabinet. (Do not use a metal cabinet for safety reasons.) Cut a 1 3/8" round hole in the front of the cabinet for the panel meter, using the template provided with the meter. (An easy way to cut this hole is with a nibbler tool.) Then cut another hole in the front for switch S1 and three holes in the back of the cabinet for sockets S01, S02, and ac power cable. Put a rubber grommet into the hole to protect the cable insulation. Then install two tie-down terminal strips. Keep all resistors away from cabinet walls as the resistors may get hot.

The next step is to pry off the front cover of the panel meter and replace the dial. Remove the two Phillips screws and dial, being careful not to damage the pointer. Cut the new dial from Fig. 1 and glue it over the old dial. Then reassemble the panel meter. Wire the resistors and zener diodes as shown in Fig. 2.

Setup and Use. Plug the Power Meter into an outlet. There should not be any reading. If you know the approximate power rating (wattage) of the appliance you are going to test, plug it in the appropriate socket, S01 or S02. If you don’t know the approximate power rating of the appliance, always start with S01 (250-1100 W).

If you get a low (or no) reading, plug the appliance into S02 (60-250 W). If you still get a low (or no) reading, depress S1 for the most sensitive range (15-60 W). Failure to follow these instructions can result in damage to the Power Meter.

After you take the reading, remove the Power Meter from the circuit and plug the appliance directly into the outlet. Remember, the range of the meter is approximately 15 to 1100 W. It should not be used with appliances such as air conditioners, large electric stoves, or dryers that draw more than the maximum current.

Estimating Electricity Cost. You can estimate how much it costs to run a particular appliance like a tube-type color TV set by using the following...
Home Energy Saving

PARTS LIST

- D1, D2—4-V zener diode
- F1—5-A fuse (optional)
- F2—15-A fuse (optional)
- M1—VU meter (Caltech D1-930 or equivalent; see text)
- R1, R5, R6, R7—0.5-ohm, 10-W resistor
- R2, R3, R4—10-ohm, 1/2-W resistor
- R8, R9—270-ohm, 1/2-W resistor
- R10—150-ohm, 1/2-W resistor
- S1—Spt normally closed, pushbutton switch, 3-A rating or better
- SO1, SO2—117-V jack
- Misc.—Hardware, plastic cabinet, wire and solder, etc.

How to Use Solar Energy to Recharge Your Batteries

by Ed Karns

The prices of photovoltaic cells, commonly called solar cells, are dropping to the point where experimenters can start exploring solar-power applications.

Since solar cells generate power only when illuminated, they are popularly used to charge batteries. Such solar-powered battery chargers are easy to make. You can get started quickly in this energy-related area with the four simple designs presented here. Although some of the designs illustrated were developed for use with radio-controlled model airplanes, they can be used for many other solar chargers.

Basic Power. The circuit shown in Fig. 1 was used to charge a nominal 9.6-volt battery to power a radio-controlled (RC) transmitter. The "rule-of-thumb" is that the number of solar cells to use is equal to the required battery voltage divided by 0.4. (The typical voltage that most solar cells generate in sunlight is 0.45 V, with 0.4 chosen here to provide a design cushion.) The current requirement of the cells should be sufficient to charge the battery. Thus, in this application, 24 cells were used (9.6/0.4).

When the voltage across the solar array shown is greater than the battery voltage, diode D1 is forward-biased, allowing current to flow to the battery. However, if the battery voltage is higher than that of the solar array (due to a passing cloud, etc.), diode D1 is reverse-biased and acts as an open switch to protect the array. Since the voltage drop across D1 is 0.7 V (typical for a silicon diode), it is less than 10% of the total voltage and its effect can be ignored.

The current capacity of a solar array is determined by the required load current, the amount of time the load is used, and the length of time the array is exposed to light.

Since a solar cell delivers its maximum power in bright sunlight, the effects of cloudy or hazy days must be compensated for. Since the charging rate for the battery used in Fig. 1 was about 90 mA, the solar array was designed to deliver more current to account for the dark intervals. This is why the author elected to use 150-mA solar cells.

Depending on the brightness of the sunlight, the solar array can deliver 12 or more volts (at reduced current). Since a NiCd battery "likes" to be charged to at least 1.35 V per cell, and there are eight cells in the 9.6-volt battery used, the total voltage applied to the battery should be limited to 10.8 volts (1.35 x 8). Zener diode D3 was selected to keep the supplied voltage to 11 volts (the closest zener to 10.8 volts). The voltage drop across silicon diode D1 is the same as that across D2, so that the voltage drop across D3 is equal to the maximum voltage across the battery. Since the load may not always be plugged into the solar array, zener D3 should be capable of dissipating all the array power without destructing. This is why a 5-watt zener is used in this 1-watt circuit.

The circuit shown in Fig. 2 was designed so that the array could be mounted inside the wings of an RC airplane, with a "transparent" covering.
To maintain cell voltage control, an mA load the airplane.

In this particular application, the load (receiver and servos) was about 50 mA when the servos are idle (about 80% of the time), reaching about 300 mA when two or three servos are operating. We estimated an average drain of about 120 mA from the battery. When this amount is added to the losses due to the "transparent" array covering (estimated at 20 mA), and the misorientation of the arrays with the sun (estimated at 20 mA), the total becomes about 160 mA. Since there is always the possibility of extensive cloud cover, coupled with the fact that we do not like to crash an expensive RC plane due to lack of control, we elected to overspecify the solar array by 100%, with the closest cells having a 300-mA capacity.

Note that blocking diode D1's voltage drop of 0.7 volt is almost 20% of the 4.8-volt battery voltage and must be compensated for in the voltage portion of the array. Since 4.8 volts requires 12 solar cells (4.8/0.4), to compensate for the D1 drop, 14 cells (5.6 volts) were used, seven on each side. Note that the array voltage can exceed 7 volts depending on light level and loading. Zener diode D5 coupled with diodes D2, D3, and D4 limit the array voltage to a maximum of 6.4 V (4.3 + 0.7 + 0.7 + 0.7). When the D1 drop is accounted for, 5.7 V reaches the battery. LED1, connected across the three silicon diodes, is optional, and indicates when the arrays are delivering their rated power. The voltage drop across D2, D3, and D4 (all silicon diodes) is 2.1 V, enough to operate the LED.

Regulated Power. The circuit in Fig. 3 shows the ability of a low-power (50-mA cells) solar charger to do a large job. The load was a digital meter having a 750-mA current requirement. Since the device is used only about once every other day (at most), and then for less than five minutes, the 50-mA solar array is adequate.

Note the absence of a zener diode. The battery is allowed to float up to about 14.5 V since the load is protected by 5-volt regulator ICl. Always include a blocking diode (like D1) to prevent discharge when the solar cells are in the dark. The charger is placed on the workbench close to a window, and receives about two hours of sunlight per day, about four days per week in winter.

The solar cells were laminated directly to the metal case of the instrument and the cell arrays were made using an oven-soldering technique (described later). Care should be taken with the smaller cell arrays as they are quite fragile until after the supporting plastic resin has hardened. This setup has been in operation for quite a while without resorting to a line-powered charger.

The circuit shown in Fig. 4 uses 600-mA solar cells and was designed for a small (28-foot) sailboat that spends its winter moored in the bay and thus requires marker lights. This charger provides enough power to operate the lights and a small electrical bilge pump. The boat goes for weeks before the auxiliary engine is required to fully charge the battery.

Diode D1 and fuse F1 prevent the destruction of LED1 and the solar array in the event of accidental polarity reversal (as in the case of "jump-starting" the engine or other odd circumstances). When all is correct, LED1 will glow steadily, going out only when the battery is under a heavy load or in the event of a short in the boat's electrical system.

The solar cells should be laminated to marine plywood, making the charger corrosion-resistant and quite strong mechanically. Scratches are repaired by painting on a little plastic resin. Extra solar cells (36, instead of 30 or 32) are used because the charger was intended to be mounted flat on the cabin roof instead of tilted up into the sun, to insure sufficient output even on partly cloudy days and in the winter. No maintenance is required except periodically washing off the salt deposits and adding distilled water to the battery. PS1 is a weatherproof switch that applies power to the marker lamps L1 and L2 when it gets dark.

An excellent trickle charger for automotive 12-V batteries can be made by using 150-mA solar cells with a voltage-regulator circuit such as that shown in Fig. 4. The entire solar array can be made into a square about 8" on a side and about 3/4" thick, using 3/8" plywood, #16 (or heavier) leads, and large alligator clips (paint the positive one...
Acquiring Solar Cells. A great many mail-order houses have solar cells in their catalogs. Some of these cells are factory-fresh, others are edge cuts left over when square cells are cut from round silicon wafers, and still others are rejects that do not deliver 100% of their rated power. Real bargains are available, but it is a good idea to always test every cell. A 100-W light bulb, placed 6 to 8 inches above a cell, should generate 0.45 to 0.52 V and at least 25% of the cell's rated current.

Unless you intend to provide a solid mount for your cell arrays, try to avoid cells that are mechanically weak. Also, stick to blue/gray cells, as these have an anti-reflective coating and will generate power even when the sun is close to the horizon (high incidence angle).

Examine the grid pattern on the sensitive surface of the cells, and look for a lot of small grid lines that radiate out from a common point or common bus. The less efficient cells have only three or four thick grid lines.

Avoid cells without a solder plate. Broken solar cells can be repaired, but it requires patience and a steady hand.

Construction Hints. Solar cells are manufactured in high-temperature ovens, so they are not bothered by soldering-iron temperatures. Use irons of 25 to 60 W, and don't press down on the delicate cells. Soldering on the back (positive contact) is usually only a matter of applying enough heat to make a shiny solder puddle, not a dull, gray blob. Solder time is usually about 10 seconds, although reheating is no problem.

Soldering on the grid pattern of the active side (negative contact) can present some difficulties. Try to avoid reheating a grid line more than two or three times as the exotic metals in the grid can flow into the solder and away from the cell. Perform all soldering operations on a piece of white paper as the hot cells can pick up dirt that might not come off after cooling.

Some solar cells lend themselves nicely to the oven soldering technique. The 50-, 100-, and 150-mA cells are ideal for this. Deposit a small drop of solder at the point of contact on the back side, and a small solder trail on the main grid line on the front. Arrange a group of 6, 8, or 10 cells in the bottom of a Pyrex cake dish so they overlap at the points of contact. Then put the dish in a household kitchen oven (not a microwave), set at 500 to 550°F, and allow it to “bake” for about 20 minutes.

The solder will reflow and make a very good electrical and mechanical connection. Let the dish and solar array cool down before removal from the oven in case the solder is still liquid. If the cell array sticks to the dish, use a little alcohol or acetone to dissolve the
Home Energy Saving

![Circuit Diagram]

Fig. 3. Using a low-power solar charger on a digital meter having a 750-mA current requirement. The device is seldom used so the 50-mA output is adequate.

PARTS LIST (Fig. 3)

- B1—12-V rechargeable battery
- C1—10-µF, 25-V electrolytic
- C2—1-µF, 10-V electrolytic
- C3—0.1-µF, disc capacitor
- D1—IN4001 diode (or similar)
- IC1—7805 5-V regulator
- S1—Spst switch
- SC1-SC30—50-mA, edge-cut solar cell

Note: A complete kit of parts, including solar cells, diodes, capacitors, etc., is available (No. 050-12) for $37.50. Also available separately is the 50-mA solar cell (No. 050-1) at $1.10 each. See Fig. 1 for ordering information.

![Circuit Diagram]

Fig. 4. Solar charger for a small sailboat.

PARTS LIST (Fig. 4)

- B1—12-V deep-cycle marine battery
- D1-D5—IN4005 diode (or similar)
- D6—12-V, 50-W zener diode (ECG5254 or similar)
- F1,F2—1.5 to 3-A fuse
- LED1—20-mA red light emitting diode
- PS1—Weatherproof photo switch for 12-V system
- S1—Spst switch
- SC1-SC36—600-mA solar cells

Note: A complete kit of parts, including solar cells, diode, LED, etc., is available (No. 600-12M) at $385. Also available separately is the 600-mA solar cell (No. 600-1) at $10.60 each. See Fig. 1 for ordering information.

Fig. 5. Test circuit can be used with groups of five to 500 cells and outputs of 10 mA to 1 A.

PARTS LIST (Fig. 5)

- D1-D4—IN4001 diode (or similar)
- LED1—20-mA red light emitting diode

robin. This method eliminates a lot of step-by-step wiring and is often used by solar-charger manufacturers.

Testing Solar Arrays. The test circuit shown in Fig. 5 can be used with groups of five to 500 cells, and current outputs of 10 mA to 1 A. LED1 will glow when any group of five or more cells are positioned 6" to 8" from a 100-W light bulb. The diodes bypass everything over about 2.1 V so LED1 is properly biased. The solar cell arrays are inherently short-circuit protected, so the only limiting factor is the ability of the diodes to pass current. For cell arrays with outputs up to 3 A, use IN1056 or IN1226 diodes, or similar.

Mounting Solar Cells. Cells should be positioned by laminating the groups of tested cells to anything relatively rigid, such as 3/8" plywood or 3/64" aluminum sheet. Give the surface a couple of thick coats of clear plastic resin (clear fiberglass resin is available at hobby, boat, or auto-body shops), and allow to set.

Then add a third coat. While it is still wet, fit the assembled and tested solar cell array in place. Finally, paint on three or more coats of plastic resin to completely encapsulate the cells, hook-up wire, diodes, and LED. This makes the entire package corrosion-resistant. If you are mounting onto metal, the plastic will insulate the cells.

There are many companies that make available silicon photovoltaic cells for solar-power use, including Radio Shack and Edmund Scientific (Barrington, NJ). Also, the parts list includes a supply source for parts used in the projects presented here.
Don't miss this exceptional, money-saving opportunity!

The Computer Book Club offers you all the latest titles on hardware, software, theory, and applications, PLUS ready-to-run tapes and disks!

Select 5 fact-filled books for only $2.95 (total value up to $99.75)

...and get Computerist’s Handy Manual FREE!

7 very good reasons to try The Computer Book Club

Blue Ridge Summit, PA 17214

- Reduced Member Prices. Save up to 75% on books sure to increase your know-how.
- Satisfaction Guaranteed. All books returnable within 10 days without obligation.
- Club News Bulletins. All about current selections—mains, alternates, extras—plus bonus offers. Comes 13 times a year with dozens of up-to-the-minute titles you can pick from.
- "Automatic Order." Do nothing, and the Main selection will be shipped automatically! But... if you want an Alternate—or no books at all—we'll follow the instructions you give on the reply form provided with every News Bulletin.
- Continuing Benefits. Get a Dividend Certificate with every book purchased after fulfilling membership obligation, and qualify for discounts on many other volumes.
- Extra Bonuses. Take advantage of added-value promotions, plus special discounts on software, games, and more.
- Exceptional Quality. All books are first-rate publisher's editions, filled with up-to-the-minute info.

FREE When you join...

List $3.50

The Computer Book Club
Blue Ridge Summit, PA 17214

Please accept my membership in The Computer Book Club and send the 5 volumes circled below, plus a free copy of "Computerist's Handy Manual". I understand the cost of the books selected is $2.95 (plus shipping/handling). If not satisfied, I may return the books within ten days without obligation and have my membership cancelled. I agree to purchase 4 or more books at reduced Club prices during the next 12 months, and may resign any time thereafter.

List $11.95

334 336 338 984 1000 1050 1088 1141 1160 1183 1205 1251 1276 1277 1332 1391 1396 1397 1406

Name ___________________________ Phone ________

Address _________________________

City _____________________________ State ________ Zip ________

(Valid for new members only. Foreign and Canada add 10%. Orders outside U.S. or Canada must be prepaid with international money orders in U.S. dollars.) This order subject to acceptance by The Computer Book Club. PECC-492

AUGUST 1982

CIRCLE NO. 44 ON FREE INFORMATION CARD

59
A 16-BIT MATH PACKAGE FOR ELF COMPUTERS

Software provides all basic mathematic functions and operations on a minimum 1802-cpu configuration

BY R.S. FITZGERALD

While there are many cassette-based programs for the Elf microcomputer based on the 1802 cpu, there are few that run on its minimum configuration of 256 bytes. This article describes a 16-bit mathematics package that will indeed operate in a minimum system. The package includes operators and functions for addition, subtraction, multiplication, division, negation, and absolute values. All of these are implemented in a package using only 134 bytes.

Since this package, which we call "MATH 16," depends upon the use of the stack operations, it would be best to review them before discussing operation of the package. The stack is a variable-sized data-storage area that can be located in any convenient memory area. It is addressed by a pointer called the stack pointer (SP). The stack grows in size as the SP moves upward (lower memory addresses), much like a stack of dishes in a spring-loaded dish compartment. Also like a stack of dishes, it shrinks as the bytes are removed. Stack operations are defined in "Stack Operations—A Review," accompanying this article.

The object code representation of "MATH 16" appears in Table I. The program is assembled starting at location 70 hex. This allows room for 5 operands on the stack in a 256-byte Elf (probably more than you’ll ever need), and ample space for some type of monitor in low memory. Of course, if your Elf (or any other 1802-based microcomputer has more than 256 bytes of memory, "MATH 16" can be moved around to suit your needs. If you intend to do this, remember to modify the addresses in your calling routines and the jump addresses within "MATH 16."

The stack can exist anywhere in memory that is convenient, the only restriction being that the stack pointer (Rx) must be R2. All of the subroutines leave Rx pointing at the next available byte on the stack. Thus, the value in the stack pointer will be one less than the address of the most-significant byte of the number on the top-of-stack (TOS). Each of the functions is terminated with a SEP Rx instruction to return to the calling routine. If your driver routine uses some other register than R2 as the program counter, these SEP instructions must be changed to reflect this.

Table II lists the entry point addresses for the various "MATH 16" subroutines. The functions are executed by performing a subroutine call to the address corre-

<table>
<thead>
<tr>
<th>TABLE I—MATH 16 MACHINE-LANGUAGE PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>A0</td>
</tr>
<tr>
<td>B0</td>
</tr>
<tr>
<td>C0</td>
</tr>
<tr>
<td>D0</td>
</tr>
<tr>
<td>E0</td>
</tr>
<tr>
<td>F0</td>
</tr>
</tbody>
</table>
STACK OPERATION—A REVIEW

Shown here are some pictorial representations of various stack operations such as PUSH, POP, and all of the operations performed by "MATH 16." Each box on the stacks in the drawing represents one data item or two bytes. Remember that the stack pointer is left pointing at the next available byte on the stack. For reference purposes, here are the terms involved.

<table>
<thead>
<tr>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIFO</td>
<td>The computer analogy to a pile of dishes. The last item (plate) to be placed on the stack (pile) will be the first one removed, hence the name Last In First Out Stack. Most often, the LIFO is omitted.</td>
</tr>
<tr>
<td>TOS</td>
<td>An acronym for Top Of Stack. This name refers to the data item that has been most recently placed on the stack.</td>
</tr>
<tr>
<td>NOS</td>
<td>An acronym for Next On Stack. This refers to the second data item on the stack.</td>
</tr>
<tr>
<td>Stack Pointer</td>
<td>The register that is used as a pointer to reference data items on the stack. Denoted RX in the 1802.</td>
</tr>
<tr>
<td>PUSH</td>
<td>To PUSH an item on the stack means to add another item to the stack and adjust the stack pointer so that it is pointing at the next available byte. A PUSH causes the stack to "grow" toward address 0000. STXD (73) is used in the 1802 to push data. The opposite of PUSH. The IRX (60), LDXA (72) instruction sequence is used to implement this function.</td>
</tr>
<tr>
<td>POP</td>
<td>The value at TOS is removed from the stack. Denoted SP in the 1802.</td>
</tr>
</tbody>
</table>

Table III:

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>STACK BEFORE</th>
<th>STACK AFTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUSH A</td>
<td>SP</td>
<td>SP TOS A</td>
</tr>
<tr>
<td>POP</td>
<td>SP TOS A</td>
<td>SP</td>
</tr>
<tr>
<td>ABS</td>
<td>SP TOS A</td>
<td>SP ABS (A)</td>
</tr>
<tr>
<td>NEG</td>
<td>SP TOS A</td>
<td>SP -A</td>
</tr>
<tr>
<td>ADD</td>
<td>SP TOS A</td>
<td>SP A</td>
</tr>
<tr>
<td>SUB</td>
<td>SP TOS A</td>
<td>SP TOS B +A</td>
</tr>
<tr>
<td>MUL</td>
<td>SP TOS A</td>
<td>SP A * B (HIGH)</td>
</tr>
<tr>
<td>DIV</td>
<td>SP TOS A</td>
<td>SP 2 * rem</td>
</tr>
</tbody>
</table>

At this point, it will be instructive to refer again to "Stack Operations—A Review." The illustrations show what happens when the various arithmetic operations are performed. As you can see, some of the functions operate on only one number (ABS, and NEG), while others operate on two numbers. Both types will be discussed.

The one-operand functions take their operand from TOS, perform the selected operation on that number, and return the result to TOS. With these functions, the stack neither grows nor shrinks.

The function NEG replaces TOS with the negative of itself. As an example, 0001 becomes FFFF (−1 in two’s complement notation). ABS will return the absolute value of TOS. If the TOS contains FFFE (−2) before the call to ABS is made, the value after ABS has been called will be 0002.

The two-operand functions take both of their operands from the stack and return the result to the old NOS. The stack pointer is then adjusted so that the old next on-stack (NOS) becomes the new TOS (that is, the stack shrinks by 2 bytes). Care must be taken if some intermediate result on the stack needs to be saved for a later operation since the stack pointer is modified and NOS is overwritten by the new TOS. A good place to save these intermediate results is in RC because it is not modified by any of the "MATH 16" operations. Actually, the only registers that “MATH 16” deals with are: R3, Rn, R4, RD, RE, and RF.

As the name implies, ADD will sum TOS and NOS. As with all of the two-operand functions, the stack pointer will end up pointing two bytes higher than when it started out (SP = SP + 2).

The function SUB will subtract TOS from NOS. If you are really short on memory space, the SUB routine can be deleted. This same function can be achieved by a call to NEG, then ADD. This saves 11 bytes.

The subroutine MUL computes the product of the unigned numbers at TOS and NOS. The fact that unsigned numbers are used means that a result of FFFF does not indicate a result of −1 as might be expected. Rather, it indicates a result of 65535.

As with the multiply subroutine, DIV operates on unsigned numbers. In this case, the operand at NOS is divided by the operand at TOS. Since all of the subroutines operate on integers, no fractions can be obtained with DIV. The division routine does not check for division by zero. This condition must be avoided for DIV to produce meaningful results.

(Continued on page 66)
EQUIPMENT AND TRAINING
NO OTHER SCHOOL CAN MATCH.

NTS HOME TRAINING INVITES YOU TO EXPLORE MICROCOMPUTERS, DIGITAL SYSTEMS AND MORE, WITH STATE-OF-THE-ART EQUIPMENT YOU ASSEMBLE AND KEEP.

Without question, microcomputers are the state of the art in electronics. And NTS is the only home study school that offers you training for this booming field with a choice of 3 production-model micro computers.

We'll explain the principles of troubleshooting and testing your microcomputer and, best of all, we'll show you how to program it to do what you want.

You'll use a digital multimeter, a digital logic probe and other sophisticated testing gear to learn how to localize problems and solve them.

We believe that training on production-model equipment, rather than home-made learning devices, makes home study more exciting and relevant. That's why you'll find such gear in most of NTS's electronic programs.

For instance, to learn Color TV Servicing you'll build and keep the 25" (diagonal) NTS/HEATH digital color TV.

In Communications Electronics you'll be able to assemble and keep your own NTS/HEATH 2-meter FM transceiver, plus test equipment.

But no matter which program you choose, NTS's Project Method of instruction helps you quickly acquire practical know-how.

Send for the full color catalog in the electronics area of your choice - discover all the advantages of home study with NTS!

NTS also offers courses in Auto Mechanics, Air Conditioning and Home Appliances. Check card for more information.
1. The NTS/Rockwell AIM 65 Dedicated Microcomputer is a single board unit featuring on-board printer and display—4K RAM (expandable). Application Functions: Central processor—Controller/Monitor—Development System.

2. The NTS/SYM-1 Microcomputer 6502 Based CPU—4K bytes ROM (expandable)—1K RAM (expandable). 51 active I/O lines for versatile interlacing: disk drives, ASCII key boards, cassette tape, etc.

3. The NTS/Heath HN-89A Microcomputer features floppy disk storage, "smart" video terminal, two Z80 microprocessors, with 32K RAM Memory, expandable to 64K on board.

NATIONAL TECHNICAL SCHOOLS
Technical Trade Training Since 1905
Resident and Home-Study Schools
4000 S. Figueroa St., Los Angeles, Calif. 90037

Please rush FREE color catalog on course checked below
- MicroComputers/MicroProcessors
- Communications Electronics
- Digital Electronics
- Industrial Technology
- Auto Mechanics
- Air Conditioning
- Home Appliances
- Color TV Servicing

Name ___________________ Age ______
Address ____________________
Apt. ___________ City ___________
State ___________ Zip ___________

☐ Check if interested in G.I. information.
☐ Check if interested ONLY in classroom training in Los Angeles.
math package

TABLE II—ARITHMETIC FUNCTION ENTRY POINTS

<table>
<thead>
<tr>
<th>Name</th>
<th>Function</th>
<th>Call Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUB</td>
<td>Subtraction</td>
<td>70</td>
</tr>
<tr>
<td>ADD</td>
<td>Addition</td>
<td>7B</td>
</tr>
<tr>
<td>MUL</td>
<td>Multiplication</td>
<td>98</td>
</tr>
<tr>
<td>DIV</td>
<td>Division</td>
<td>C3</td>
</tr>
<tr>
<td>ABS</td>
<td>Absolute Value</td>
<td>86</td>
</tr>
<tr>
<td>NEG</td>
<td>Negation</td>
<td>8D</td>
</tr>
</tbody>
</table>

TABLE III—CALLING PROCEDURE

<table>
<thead>
<tr>
<th>Address</th>
<th>Contents</th>
<th>Mnemonic</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>F898</td>
<td>LDI A(MUL)</td>
<td>.SET UP SUBROUTINE</td>
</tr>
<tr>
<td>N+2</td>
<td>A4</td>
<td>PLO R4</td>
<td>.PROGRAM COUNTER</td>
</tr>
<tr>
<td>N+3</td>
<td>D4</td>
<td>SEP R4</td>
<td>.CALL MULTIPLY FUNCTION</td>
</tr>
</tbody>
</table>

It is interesting to note that the multiply and divide subroutines have some nice features which have not yet been mentioned. The multiply routine actually performs a 32-bit multiplication, but the stack pointer is adjusted, upon exit, to point at the least-significant 16 bits of the product. If you desire a 32-bit product, simply decrement the stack pointer twice by including two DEC R2 instructions in your driver routine after the call to MUL.

The divide subroutine, on the other hand, only operates on 16-bit numbers. However, if the stack pointer is decremented by 2 after the division operation, the number on the TOS is two times the remainder of the previous division. The true remainder can be obtained either by shifting this number right one bit or by pushing a word of 0002 on the stack and calling the divide subroutine again.

Applied Example. The program segment in Table IV shows how to multiply two numbers using “MATH 16.” Note that the least-significant byte of a 16-bit number is stored at address x, while the most-significant byte is stored at address x−1. This convention is used throughout.

After this routine is executed, the new TOS will contain 2710, which is 10000 in decimal notation.

“MATH 16” does have some limitations, such as error checking and integer-only arithmetic. But it can still provide one with a powerful tool for the 1802 system.

SOFTWARE AVAILABILITY

The following are available from the Softek Co., Box 4232, Santa Fe, NM 87501: A documented source listing of “MATH 16” plus several sample applications of the package for $2.50 (item MATH 16S), and a quick-reference guide for the 1802 cpu’s instructions and respective opcodes for $1 (item 1802C).

TABLE IV—MULTIPLICATION PROGRAM

<table>
<thead>
<tr>
<th>Address</th>
<th>Contents</th>
<th>Mnemonic</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>F8E8</td>
<td>LDI E8</td>
<td>.PUSH THE</td>
</tr>
<tr>
<td>N+2</td>
<td>73</td>
<td>STXD</td>
<td>.DECIMAL NUMBER</td>
</tr>
<tr>
<td>N+3</td>
<td>F803</td>
<td>LDI 0B</td>
<td>.1000 ONTO</td>
</tr>
<tr>
<td>N+5</td>
<td>73</td>
<td>STXD</td>
<td>.THE STACK</td>
</tr>
<tr>
<td>N+6</td>
<td>F80A</td>
<td>LDI 0A</td>
<td>.PUSH THE</td>
</tr>
<tr>
<td>N+8</td>
<td>73</td>
<td>STXD</td>
<td>.DECIMAL NUMBER</td>
</tr>
<tr>
<td>N+9</td>
<td>F800</td>
<td>LDI 00</td>
<td>.10 ONTO</td>
</tr>
<tr>
<td>N+11</td>
<td>73</td>
<td>STXD</td>
<td>.THE STACK</td>
</tr>
<tr>
<td>N+12</td>
<td>F898</td>
<td>LDI A(MUL)</td>
<td>.SET R4 EQUAL TO</td>
</tr>
<tr>
<td>N+14</td>
<td>A4</td>
<td>PLO R4</td>
<td>.MUL ENTRY POINT</td>
</tr>
<tr>
<td>N+15</td>
<td>D4</td>
<td>SEP R4</td>
<td>.CALL MULTIPLY</td>
</tr>
<tr>
<td>N+16</td>
<td>00</td>
<td>IDL</td>
<td>.HALT</td>
</tr>
</tbody>
</table>
IN Part 1 of this article, we discussed how EPROMs can be put to good use in expanding your digital design work. We then presented a circuit that can be used as an interface with a small computer such as the TRS-80 to program EPROMs. We are ready to proceed now with constructing the circuit.

Construction. The EPROM Programmer is designed so that all components except for the ac power supply are mounted on a double-sided printed circuit board as shown in Fig. 7. The four lines from the transformer secondary (color-coded blue, yellow, red, and green) are soldered to the corresponding points on the printed circuit board marked B, Y, R, and G. Connection to the computer is done through a 40-pin card-edge connector that is compatible with the expansion bus of the TRS-80 CPU or Expansion Interface unit. All components are mounted on the bottom side of the board—except the zero insertion force EPROM socket, the personality module socket, and the indicator LEDs. These parts mount on top of the board. The printed circuit can be neatly mounted in a 7" by 6" by 3" aluminum enclosure using 1/4-inch spacers and allowing the topside components to protrude through the top panel. Access to the board’s edge connector is made through a notch in the rear panel.

With all components soldered in place, switchable voltage regulators IC7 and IC8 should be adjusted (R8 and R12) to develop 25.5 V and 5.0 V, respectively, before connecting the EPROM Programmer to the computer. The personality module socket is a convenient test point for the constant—5-V (pin 1) and 12-V (pin 4) supplies as well as for the switchable 5-V (pin 2) and 25.5-V (pin 3) supplies. The constant 5-V supply can be measured at pin 24 of the EPROM socket.

To use the EPROM Programmer with computers other than the TRS-80 Model I, a simple adapter card can be designed to interconnect the appropriate data, address, and control lines. Since ribbon cables terminated by identical connectors have the property of interchanging the lines top to bottom (but not right to left), care must be used to see that the routing is correct. In some applications, additional logic may be necessary to meet the I/O requirements of the host computer. If so, 5 V can be made available at the card edge to power external logic by simply inserting a jumper at point “J” on the printed circuit. Of course, this jumper should not be connected for use with the TRS-80.

Software. To accommodate up to 4K by 8-bit EPROMs, two 4K-byte buffers should be reserved in the TRS-80 memory. The first is a listing buffer which is used by the List, Verify, Copy, and Erase verification routines to store data read in from an EPROM. The second is a programming buffer which contains data to be programmed into an EPROM. While the same memory space could be used for each task at different times, it is easiest to use separate buffers.

The software driver for the EPROM Programmer could be written in BASIC where the port-addressed I/O is handled by INP and OUT statements. Using a BASIC program for such a large task would require a large amount of memory and would operate slowly because of interpreter overhead. A better approach is to write the driver in assembly language. (The software driver written by the authors easily fits into 4K bytes of memory space.) See the Parts List in Part 1 of this article for information on ordering the software.

Sequential EPROM addresses are generated in software simply by incrementing a 12-bit counter and output-
Fig. 7. Foil patterns for the double-sided pc board are shown on opposite page, while component layout is above and at right.

Photo shows internal layout of the author's prototype.

ting the low-order eight-bits to the 8255A's port A while the remaining high-order four-bits determine whether the port C bits (PC0-PC3) are set or reset. Address pointers to the corresponding buffer locations in the computer memory can be determined by adding the buffer starting address to the counter value. Table II shows the appropriate control bytes which must be sent to the 8255A's control port to set or reset the various lines of port C. Also shown in Table II are the control bytes which configure the 8255A for Read or Program modes.

Table III shows how to program and read data for a single location of a 2716 EPROM using Z80 assembly language. (The CPU I/O port addresses and control bytes used are those listed in Tables
TABLE III—PROGRAM AND READ SEQUENCE

PROGRAMMING SEQUENCE
Assuming that EPROM address 537H contains FF program it to D E 8 H
LD A, 82H ; control byte for PROGRAM mode
OUT (OFBH), A ; output it to 8255 CONTROL port
Set EPROM address 537H:
LD A, 537H ; output 8 LSbs of EPROM address
OUT (OFBH), A ; to 8255 Port A
Set 4 MSbs of address by setting proper 8255 I/O lines
(PCD-PC3)
In this example 4 MSbs = 0101 (5 from EPROM address)
LD A, 01H ; set EPROM address A8
OUT (OFBH), A ; by setting 8255 I/O line PC0
LD A, 02H ; reset EPROM address A9
OUT (OFBH), A ; by resetting 8255 I/O line PC1
LD A, 05H ; set EPROM address A10
OUT (OFBH), A ; by setting 8255 I/O line PC2
LD A, 06H ; reset EPROM address A11
OUT (OFBH), A ; by resetting 8255 I/O line PC3
Switch relay into PROGRAM mode
LD A, 0DH ; reset 8255 I/O line PC4 to
OUT (OFBH), A ; switch relay to PROGRAM mode
Enable EPROM programming
LD A, 09H ; set 8255 I/O line PC5 to
OUT (OFBH), A ; turn on switchable 25.5V
Output byte (e.g., E9H) of programming data to EPROM
LD A, DE9H ; data output to 8255 Port B
OUT (OFBH), A
Apply 5V programming pulse of 50 msec duration
LD A, 0BH ; set 8255 I/O line PC6 to
OUT (OFBH), A ; turn on switchable 5V
Enter 50 msec delay loop (not shown here) and turn off
programming pulse after loop falls thru
LD A, 0AH ; reset 8255 I/O line PC7 to
OUT (OFBH), A ; turn off switchable 5V
Disable EPROM programming mode
LD A, 0BH ; reset 8255 I/O line PC6 to
OUT (OFBH), A ; turn off switchable 25.5V
Switch relay to READ mode
LD A, 09H ; set 8255 I/O line PC4 to
OUT (OFBH), A ; return relay to READ mode
READ SEQUENCE
Set up 8255 for READ operation
LD A, 80H ; control byte for READ mode
OUT (OFBH), A ; output it to 8255 CONTROL port
Set EPROM address as shown above
Read data from that EPROM address into register A:
IN A, (OF9H) ; read data from 8255 Port B

I and 11) This example shows exactly how the 8255A is configured for Read and Program operations and how to specify a particular EPROM address.

In the Program mode the relay and switchable voltage regulators are activated by the software. The programming pulse is held on for the required programming time using a software delay loop. The programming sequence for other EPROM types is similar (except for the delay loop period) And in some cases, the 5-V and 25.5-V switchable supplies exchange roles as sources for the programming enable signal and the programming pulse.

With the hardware assembly complete and the software driver written, check-out of the EPROM Programmer can proceed by first loading the programming buffer with data destined to reside in the EPROM. Often this data will be a binary file generated by an assembler, where care has been used to assure that the origin address corresponds to the starting address of the programming buffer. A more direct, although laborious, loading method is to type data from the keyboard into programming buffer locations using system software such as the TRS-80 TBUG (cassette systems) or DEBUG (disk systems).

Next, verify that the EPROM is completely erased (check that every bit location is initially in the 1 state), and then program the contents of the programming buffer into the EPROM. The programmed EPROM can be verified against the original programming buffer contents. If no errors are found, your EPROM Programmer is checked out and ready for its next programming assignment.
The Triplett Model 7000 Universal Counter is a microprocessor-based 5-Hz to 80-MHz autoranging counter having six-digit resolution. It also has two accumulating-type functions—EVENTS, which can total to one-billion at rates to 80 MHz, and TIMER, which can display elapsed time in hours, minutes, and seconds for 100 hours with up to 100 µs resolution. A built-in TEST function verifies proper operation.

Provisions are made for full external control. The six functions—HZ, AUTO FREQ, PERIOD, EVENTS, TIMER, and TEST—are selected by a single rotary switch while LED annunciators indicate the function. Suggested retail is $300.

General Description. The “heart” of the instrument is a 2650A 8-bit NMOS microprocessor that receives its operating instructions from a 2616 2K by 8 static MOS ROM, with temporary data stored within a 6810 128 by 8 MOS static RAM.

Other than the function selector rotary switch, the front panel contains the POWER on/off switch, an ATTENUATOR switch that can select either X1 or X10 attenuation of the selected input signal, a BNC INPUT connector, and a RESET switch that sets the display to zero when using the TIMER or EVENTS function. This latter control has no effect on other functions.

The display consists of six digits of 0.43"-high, red, seven-segment LEDs, and three red LED function annunciators. These annunciators include Hz/ms, and for the AUTO FREQ and PERIOD functions to indicate that the display is Hz or milliseconds respectively; the K/µ annunciator (also used in AUTO FREQ and PERIOD functions), indicating that the display is kHz or microseconds respectively; and the M/n annunciator that, when used in the AUTO FREQ mode, indicates that the display is in MHz, and when in the PERIOD mode, indicates that the display is in nanoseconds. The M/n annunciator is also used as an overflow indicator in the Hz mode (indicating that the frequency is higher than 1 MHz). When operating in the EVENTS mode, the M indicator shows that the total number of events accumulated is the displayed number multiplied by one-million.

The counter’s rear apron supports the external INPUT that requires a contact closure to ground or a TTL logical zero to stop the count accumulation in the EVENTS or TIMER modes, and does not affect the other functions. A time-base INT/EXT selector switch on the apron allows either the internal time base or an external 10-MHz time base to be employed. If used, the external time base is coupled via a BNC connector.

Physically, the instrument is 8 1/2" W by 9 9/16" D by 3 7/16" H, and weighs 4 1/2 pounds. Four rubber feet make the Model 7000 skidproof when resting on a flat bench, and a variable-position tilt stand/carrying handle enables position-
ing the display as required. A small pair of rubber feet are used to skidproof the counter when it is used in the tilted position. Complete electrical specifications are shown in the Table.

Comments. The Triplett Model 7000 Universal Counter was checked by the Instrumentation Measurement Laboratories of Lockheed Electronics Corporation (Plainfield, NJ) against standards traceable to the National Bureau of Standards. After the tests, Lockheed issued a certificate that the model 7000 met or exceeded its published specification in all respects—in fact, it did better than advertised.

In the three weeks that we had the opportunity to use the Model 7000, we found it to be very handy. Besides being an excellent 80-MHz frequency counter with good readability and accuracy, it was very much like the Hz function because it allowed us to make accurate measurements to 1 MHz with a resolution of 1 Hz. The frequency is displayed as a whole number with leading-zero blanking. Overrange is indicated by the M annunciator (red LED) glowing. In the AUTO FREQ mode, the range is from 5 Hz to 80 MHz, with the six most significant figures and automatically positioned decimal point displayed. The units of measurement (kiloherz or megahertz) are indicated by the appropriate LED annunciators. In this mode, the display updates ranges from 200 ms to 1.1 seconds (dependent on the input frequency.)

The PERIOD mode is used to make very accurate measurements (it is a reciprocal) with the range from 12.5 ns (80 MHz) to 200 ms (5 Hz). The resolution is 1 part/million. Again, the units of measurement are indicated by appropriate LED annunciators.

We really had no use for the EVENTS mode. However, if you do have a need for this function, the Model 7000 can "count" to 999,999,000 events. When less than a million events are registered, leading zeros are blanked. A front-panel RESET pushbutton allows resetting to zero.

The TIMER mode was used to confirm the operation, and in several cases, enabled us to accurately recalibrate several mechanical, clockwork, and electronic timer circuits. Its range is from 100 μs to 100 hours, so most timers can be directly calibrated and checked. The rear-apron gate control enabled us to check out TTL timers. (The manual spells out how this can be done.) In the TIMER mode, the display uses the six digits for hours, minutes, seconds, and fractional seconds with automatically positioned colons and decimal point.

We have used many frequency counters over the years, and the Model 7000 rates very high on our list. This is an excellent general-purpose instrument that will find wide favor with the hobbyist, technician, or engineer. With its broad range of uses, it would be a great addition to any test bench.

—Les Solomon

CIRCLE NO. 104 ON FREE INFORMATION CARD

MANUFACTURER'S SPECIFICATIONS

<table>
<thead>
<tr>
<th>Characteristics of the Six Counter Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hz Position:</td>
</tr>
<tr>
<td>Range: 5 Hz to 80 MHz</td>
</tr>
<tr>
<td>Accuracy: ± time base accuracy</td>
</tr>
<tr>
<td>±1 count</td>
</tr>
<tr>
<td>Resolution: 1 Hz</td>
</tr>
<tr>
<td>Gate Time: 1 second</td>
</tr>
<tr>
<td>Displays: Frequency displayed as a whole number with leading zero blanking</td>
</tr>
<tr>
<td>Overrange: M annunciator glows when input exceeds 1 MHz</td>
</tr>
<tr>
<td>AUTO FREQ Position:</td>
</tr>
<tr>
<td>Range: 5 Hz to 80 MHz</td>
</tr>
<tr>
<td>Accuracy: ± time base accuracy</td>
</tr>
<tr>
<td>±1 LSD ± trigger error</td>
</tr>
<tr>
<td>Resolution: to 1 ppm</td>
</tr>
<tr>
<td>Gate Time: 1 second</td>
</tr>
<tr>
<td>Displays: Six most significant digits, automatically positioned decimal point; units of measurement automatically annihilated</td>
</tr>
<tr>
<td>Display Update: 200 ms to 1.1 s dependent on input frequency</td>
</tr>
</tbody>
</table>

| **PERIOD Position:** |
| Range: 12.5 ns to 200 ms (5 Hz to 80 MHz) |
| Accuracy: ± time base accuracy |
| ±1 LSD ± trigger error |
| Resolution: to 1 ppm |
| Gate Time: periods less than 1 μs |
| Time: periods greater than 1 μs are averaged, with the averaged number sufficient for a gate time of 0.1 to 1 second. Internal frequency counted is 10 MHz. |
| Displays: Six most significant digits with automatically positioned decimal point; units automatically annihilated |
| Display Update: 200 ms to 1.1 s dependent on period |
| No Input: series of dashes are displayed |

| **EVENTS Position:** |
| Range: 5 Hz to 80 MHz |
| Capacity: 0 to 999,999 megaevents |
| Reset: front-panel RESET pushbutton, rear-panel connector |
| Display: less than one-million events—whole number with leading zero blanking; greater than one-million events—six most-significant digits with automatically positioned decimal point. M annunciator indicates a multiplier of one million (X,000,000). Overrange (greater than one billion events) is shown by series of dashes. |
| Gate Control: rear-panel connector with TTL or contact closure compatibility |

| **TIMERS Position:** |
| Range: 100 μs to 100 h (99:59:59) |
| Accuracy: ± time base accuracy ±1 LSD |
| Reset: front-panel RESET pushbutton, rear-panel connector |
| Display: Six most-significant digits indicating hours, minutes, seconds, and fractional seconds in floating format with automatically positioned colons and decimal point. Overflow is displayed as a dashed line. |
| Gate Control: rear-panel connector with TTL or contact closure compatibility |

| **TEST Position:** |
| Microcomputer board circuitry is tested to give the operator assurance that the control and display sections of the counter are functioning properly. |

| **Internal Time-Base Characteristics** |
| Type: crystal oscillator |
| Frequency: 10 MHz |
| Solatability: ±0.1 ppm (±1 Hz) |
| Line-Voltage Stability: less than ±1 ppm |
| ±10% line-voltage variation |
| Temperature Stability: less than ±1 ppm |
| ±0.001% from 0°C to 40°C ambient |
| Maximum Aging Rate: ±1 ppm/year (±1 ppm/month) |
| External Input: TTL level 50-ohm, 2.5-V peak-to-peak, switch selectable |
| TCXO Option |
| Frequency: 10 MHz |
| Temperature Stability: less than ±1 ppm |
| ±0.001% from 0°C to 40°C ambient |
| Maximum Aging Rate: ±1 ppm/year (±1 ppm/month) |
| Warm-Up Time: none |
| External Output: 10 MHz, TTL level from TCXO available at rear-panel BNC |

| **Display Characteristics** |
| Visual: six digits (high-efficiency LED) |
| 0.43" high, with decimal points and colors; three LED annunciators |
| Test: exercises the electronics and displays to verify correct operation (one of six counter functions) |

| **General** |
| Power: 105 to 130 V or 210 to 260 V, 50-60 Hz |
| Fuse: 1/4 A 3AG slio-bio for 120-V operation; 1/8 A 3AG slio-bio for 240-V operation |
| Power Cord: detachable three-wire handle |
| Handle: variable position and tilt lead assemblies: coax cable, BNC at one end, alligator clips at the other, 36 in. long |
By Leslie Solomon
Technical Director

Hardware

TRS-80 Graphics Option (26-4104) organizes the Model II display into 640 horizontal by 240 vertical pixels. Graphics BASIC adds eleven new commands to program lines, arcs, circles, and ellipses, "paint" selected screen areas, rotate, animate, store, and retrieve screen graphics. Since it adds an additional 32K character of independent memory, graphics can overlay text in the video memory. Automatic text reversal is provided when needed. $499. Address: Radio Shack Computer Centers and stores.

Sinclair Expansion. Designed for the ZX80/ZX81/MicroAce, the Expansion Board is a "motherboard" that provides four 44-pin card connectors, room for Wire Wrap, gold-plated "fingers", voltage regulator for 5-volts at 3 amperes, while the ZX 16K RAM responds to its presence via RAM CS signals. Eight chips are needed, five for buffers, and three for decoding to determine direction of bi-directional data bus buffers. The board connects to the Sinclair via gold-plated fingers. Bare board is $33 (California residents please add $1.95 tax). Kit is $60 less voltage regulator. Address: Computer Continuum, 301 16th Ave., San Francisco, CA 94118 (Tel: 415-752-6294).

Cable Helper. The Match-Box Programmable Computer Cable System is a two-component cable system that can be used to fulfill up to 10,000 cable needs. Component A is a connector with a one-foot section of cable and Match Box attached, while Component B has a complementary Match Box that can be attached to a cable 100 feet long. The composite is programmed by moving pins within the Match Box to the correct sockets. For example, you can mate an RS232 with a 6-pin connector, or whatever. Depending on the number of conductors in the cable, prices range from $19 to $53. Address: ICO-Rally Corp., 2578 East Bayshore Rd., Palo Alto, CA 94303 (Tel: 415-856-9900).

Software Switching. The ASCI switch allows software controllable switching between any two peripherals using a single computer port, or allows two computers to share the same peripheral by software switching. 128 user-selectable ASCII codes can be used and the switch is controlled from DTE or DCE without the need for a null modem. Model A10
Acoustic Modem. The Phone Link Acoustic Modem is a low profile 300-baud instrument that operates in both the answer and originate mode. It interfaces to the host computer via a conventional RS-232 port. LEDs are provided for receive/send data, power on, carrier detect, and self test. Address: U.S. Robotics Inc., 203 N. Wabash, Suite 1718, Chicago, IL 60601 (Tel: 312-346-5650).

IBM PC Hard Disks. The SCS Mini-Mega offers 5 and 10 megabyte configurations on a 5 1/4" disk subsystem with an optional one-megabyte 5 1/4" floppy for backup. The SCS Babrina Series is a removable Winchester that offers ten megabytes on an 8" removable Winchester cartridge along with a fixed disk capacity from 10 to 40 megabytes. CP/M-86 is used. Address: Sante Clara Systems, 560 Division St., Campbell, CA 95008 (Tel: 408-374-6972).

Software

School Utility. The Grading Systems Program accommodates a variety of different grade calculations for schools and colleges to maintain grade and credit information. It allows preparation of report cards, file folder labels, synoptic records, grade labels, class rosters, and honor rolls. It comes with a light pen for easy entry by para-professionals. Requires an Apple II with 48K, single disk drive, and 80-column printer. $299.95. Address: Chas. Mann and Associates, Microcomputer Div., 55722 Santa Fe Trail, Yucca Valley, CA 92284 (Tel: 714-365-9718).

Apple Display. Apple Flasher locates and displays Apple hi-res graphic files from DOS 3.3 disks, as pictures in about 1.5 seconds each. Display modes include single-key selection of any file on disk, continuous scan of all files on disk with new picture on screen each 1.5 seconds, carousel projector simulation to display screens from one or two drives with instant access to both next and previous.

PARALLEL, TTL INPUT I/O "SELECTRIC" TYPEWRITER / PRINTER

The manufacturer put 'em into storage to deprive us now... they're FINALLY AVAILABLE! Removed from working systems; these fantastic machines have built-in driver and decoder circuits and take TTL level 8-bit character plus 4-bit function input signals. Easily driven by micro computers. Use as a typewriter (with add'l repeater circuitry) or as a 5.5 R/S TTL printer or both. Requires 115, 60Hz 115V ac... write motor, 5 VDC for TTL and 24 VDC for solenoids. "Table Top" style case. Each "Selectric" I/O machine is complete and operational condition! Includes schematics, data, case, plated finish (ribbon type element not included).

New Type Element: $21.00
I/O Selectric $399.00

POWER-LINE FILTERS

Model LF2

These filters protect any sensitive electronic equipment from power line transient damage and radio frequency interference. Both models offer surge suppression for power line "spikes". RF interference is suppressed using both inductive and capacitive components. Ideal for computers, test equipment, or TV.

Model LF2

These filters offer speeds of over 233 lines per minute, fully formed characters, parallel input, "CENTRONICS" I/O option, available from 60c.

We Offer New & Used FLOPPY DRIVES, DISK DRIVES, PRINTERS, A MORE AT BARGAIN PRICES! Write or Call for Our Latest Flyer NOW!!

R.L. DRAKE COMPANY

540 Richard Street, Miamius, Ohio 45342
INSTITUTIONAL AND DEALER INQUIRIES INVITED

1-800-543-5612
In Ohio, or for information, call:
1-513-866-2421

AmericanRadioHistory.Com
Apple Graphics. The GPS (graphics processing system) for the Apple computer creates, manipulates, and edits graphics similar to a word processor with text. It features a grid that allows work to be done to scale, and dimensions altered in proportion. It has six primary colors which can be mixed, two zoom features, 2D rotation to 360°, text capabilities, overlaps which can be printed in different colors and graphics editing capability. It will work with paddles, joysticks, graphics tablets, and light pens. It will also access a 16K RAM card and is compatible with hi-res graphics. $99.95 for professional, and $59.95 for standard version. Address: Stoneware, Inc., 50 Belvedere St., San Francisco, CA 94901 (Tel: 415-454-6500).

ZX81 Utility. The Cassette I/O for ZX81 is a set of utility programs to selectively read or write strings and arrays to a cassette from the ZX81. The routines occupy approximately 500 bytes and require at least a 2K RAM. $20. A memory modification to increase ZX81 memory to 2K bytes is also available for $20. Address: Componics, Box 10358, San Jose, CA 95157.

Crosswords. The Crossword Puzzle Maker for the Apple II uses hi-res graphics and automatically connects words, prints hard copy, is menu driven, stores 40 puzzles, and is very easy to use. Words can be inserted in multiple directions, the program will interconnect them (or save them if they cannot fit for the moment). Clues can be inserted as desired. Creates puzzles to 20 x 20 boxes. Requires Apple II, 48K, DOS 3.3 and can use any of 24 available printers for hard copy. $40.95. Address: BBS Computerware, 1589 Fraser Drive, Sunnyvale, CA 94087 (Tel: 408-738-3416).

IBM Word Processor. WORD-11 for the IBM Personal Computer accepts lines of text interspersed with lines of format control and information and formats the text into a document. It also contains file/merge, auto insertion of date and user-specified constants, repeat printing compatibility with all DOS commands, and can send control characters to the printer. Requires IBM DOS, single disk drive. Address: Micro Architect Inc., 96 Dothan St., Arlington, MA 02174 (Tel: 617-643-4713).

Adventure Game. Available for the Heath/Zenith, Osborne, and other CP/M machines, this expanded version of the original adventure game explores the dangers, seeks the treasures, and solves the puzzles of the Colossal Cave. It is written in machine language and is enhanced. $19.95 plus $2 shipping ($3 for 8° diskette). Address: Software Toolworks, 14478 Glorieta Drive, Sherman Oaks, CA 91423 (Tel: 213-986-4885).

Program Generator. Pearl III for CP/M and the Zenith Z89 and Z90 creates an application program in CBASIC with custom menus, data verified by type and length, custom reports, computation, sort, printing, display, and the ability to post journal files to a master file. It is menu driven, and the output can be modified at the source code level. Comes on both 4½" and 8° diskettes. $650. Address: Zenith Data Systems, 1000 Milwaukee Ave., Glenview, IL 60025 (Tel: 312-391-8181).

XZ81 Games. A number of games for the Sinclair ZX80/ZX81 including Super Invasion, Wallbusters, Cyborg Wars, Chess, Trek, etc., a Sinclair ZX81 BASIC Course, plus a number of programming and machine language guides are now available. Address: Softsync, Inc., POB 460, Murray Hill Stn, New York, NY 10156 (Tel: 212-685-2080).
OPTOELECTRONICS and electronics are traditional terms for those areas of electronics that involve the emission and detection of light. Recently, the term photonics has emerged. Just as electronics is derived from electron, photonics is derived from photon.

Photonics actually had its origin in the final quarter of the last century with the invention in 1873 of the selenium light detector. By 1880, Alexander Graham Bell and Sumner Tainter had used selenium cells of their own design and construction to become the first people to send their voices over a modulated beam of light. In 1907, the light-emitting properties of silicon carbide were discovered by Captain H.J. Round.

Optocouplers and optoisolators made by mounting an LED chip and photodetector within a common package have been available for nearly twenty years. In the early 1960's, Texas Instruments introduced an optically coupled amplifier consisting of an LED mounted atop a silicon chip that included an integrated photodiode and amplifier.

Photonics today has received enormous stimulus from advances in optical-fiber communications, video-data storage and retrieval, and the prospect of computers that depend on photons rather than electrons for their operation. These and other applications for photonics have generated considerable interest in the fabrication of miniature photonic circuits on semiconductor chips.

Though integrated photonic circuits are in an early stage of development when compared to integrated electronic circuits, several important advances have been made in new and exotic semiconductor light sources and detectors, thin film waveguides and optical components, and various kinds of light-wave switches and deflectors. The ultimate goal of photonic researchers is to combine devices such as these to provide circuits that process photons much like conventional circuits process electrons. In this column we'll refer to such circuits as photonic integrated circuits or simply PICs.

Light Sources for Photonic IC's. Various kinds of miniature modules containing an LED or diode laser together with appropriate drive circuitry have been available for more than a decade. Like optocouplers, they are hybrid photonic circuits wherein the light source and the driver chip are attached separately to a common substrate.

Several kinds of laser and LED chips with on-chip driver circuits have been developed in recent years. However, monolithic integration of a source and its drive circuits on the same chip is not nearly so far along as the development of chips that contain both detectors and amplifiers.

Probably the most important PIC light sources are injection lasers that do not re-
solid-state developments

quire the two end mirrors of conventional lasers. Normally the end mirrors are produced by cleaving the semiconductor from which the laser is made along its crystalline planes to produce perfectly flat and parallel reflecting facets. This procedure is not always possible when attempting to integrate a laser onto a chip along with other components.

One solution is a laser whose junction region curves back toward one side of the chip to form a semi-circle. Cleaving a single side of the chip allows each end of the curved junction to share the same reflector. Although some light can be extracted from the central portion of this strange laser, most exits through the single end mirror and is unavailable for use inside the chip.

A better solution is to eliminate the end mirrors entirely and obtain the optical feedback necessary to sustain laser action by means of periodic grooves transverse to the plane of the junction. The corrugated grooves are formed by chemical etching or ion milling prior to the deposition of the crystal layers that complete the laser. At this stage, the laser chip resembles a microscopic old-fashioned washboard when viewed from above.

This light emitter, which is shown in Fig. 1, is called a distributed feedback (DFB) laser. In operation, each groove reflects back along the plane of the junction a small portion of the light emitted in the junction region. A large number of grooves assures sufficient feedback to sustain laser action.

A modification of the DFB laser is the distributed Bragg reflector (DBR) laser, also shown in Fig. 1. In this laser the corrugations are at either end of the central portion of the chip. Like the DFB laser, the DBR laser provides a very narrow spectral output and a structure that can be monolithically integrated onto the same substrate as other components and microscopic waveguides.
solid-state developments

A remarkable example of the integration of multiple DFB lasers onto the same substrate is the six-laser multiplexer PIC shown in Fig. 2. Developed by scientists at Hitachi Laboratories in Japan, this PIC pairs six lasers with six waveguides that merge into a common exit port for coupling into an optical fiber. All lasers and their matching waveguides are formed from gallium arsenide (GaAs) and gallium aluminum arsenide (GaAlAs) layers deposited over a common GaAs substrate.

The frequency of the lightwaves emitted by a DFB laser is a function of the distance between grooves in the corrugations along the junction region. Therefore, by altering slightly the dimensions between the corrugations of the individual lasers, it was possible for the Hitachi scientists to precisely tune the lasers to six separate wavelengths between about 891 and 905 nanometers.

Other kinds of multiple wavelength sources suitable for PIC’s have also been developed. Bell Labs, for example, has emitted a multi-layered chip that simultaneously emits from its four stacked junctions radiation at 828, 853, 879 and 903 nanometers. Unlike the Hitachi laser multiplexer PIC, all the junctions in the Bell Labs device are driven by the same signal. A more complex chip design, however, should permit the individual junctions to be driven independently of one another.

Photonic Light-Detection Circuits. Since silicon can be used to detect light (from about 350 to 1000 nanometers) and to make electronic circuits, single-chip monolithic photonic receivers are well developed. Figure 3, for example, shows a low-cost light-wave receiver that includes an on-chip detector, preamplifier, Schmitt trigger and output buffer. Figure 4 shows a sophisticated light receiver employing hybrid construction.

Since silicon is a very inefficient material for light-emitting diodes, it is not possible to integrate effective light sources and sensors on a silicon substrate. However, materials like GaAs, GaAlAs, indium phosphide (InP) and indium gallium arsenide phosphide (InGaAsP) can be formed into diodes that both emit and detect light. Furthermore, conventional electronic circuits can be integrated upon such semiconductors together with emitters and detectors.

Figure 5 is a dual-junction detector made from InP and InGaAsP that can simultaneously detect radiation at two separate wavelengths. Also shown in Fig. 5 is a pair of spectral response curves for this diode showing peaks at 1.08 and 1.17 micrometers.

The diode in Fig. 5, which was developed at Bell Labs, can be used to detect two data channels being simultaneously transmitted through an optical fiber at two wavelengths. Similar diodes having multiple junctions or miniature diffraction grating filters that resemble the corrugations in DFB and DBR lasers may allow three or more wavelengths to be detected simultaneously.

Dual-Function Lasers and Detectors. A decade ago comparatively few scientists and engineers recognized that a single semiconductor junction could double as an efficient light source and detector. In a formal review prompted by...
solid-state developments

an invention suggestion I had submitted in 1973, scientists and patent attorneys at Bell Labs concluded such devices “usually cannot be designed” and it is “extremely unlikely that systems consideration would permit a single device to operate as both source and detector.”

Several years ago Bell Labs took another look at this technology, reversed its earlier conclusions and began applying it in experimental photonic systems. They have since made remarkable progress in developing dual-function photonic devices.

One example is the single-chip laser and detector in Fig. 6. The most unique aspect of this device is the chemically etched groove that physically separates the upper portion of the chip into two separate regions.

The etching process causes the walls of the groove to be very smooth and flat. Since the external faces of the chip are cleaved, each side has the potential ability to operate as a laser. Bell Labs has instead used one side as a laser and the other as a detector that monitors the output from the grooved face of the laser.

Another example is a 4-layer LED that functions as a single-chip optical repeater or regenerator. A weak incoming pulse of light switches on the LED and causes it to emit a much stronger pulse. Though Bell Labs scientists devised and patented a 4-layer diode for this application, standard 4-layer LEDs made by Sharp Corporation of Japan since 1974 will also operate as optical repeaters.

Other Photonic Devices. The eventual integration of sources, detectors, waveguides and electronic circuits onto single chips will require micro-miniature optical components. Already, several laboratories have made two-dimensional lenses and prisms in the form of specially shaped layers and films deposited on a substrate using integrated circuit technology. These tiny optical components can readily focus and bend ultra-thin beams of light.

Also required will be optical switches, shutters, modulators, polarizers, and other devices and components that can modify or switch an existing beam of light or deflect it from one fiber to another. Many experimental devices capable of performing these functions have already been developed. Some use piezoelectric materials to deflect beams of light. Surface acoustic waves on a piezoelectric substrate can even act as a tunable diffraction grating that selectively reflects and hence filters, incoming wavelengths.

NEW 23K PERSONAL COMPUTER $239

SPECIAL FACTORY SALE PRICE!!
You get this NEW APF IM-1 full size, extra featured computer:
Includes a powerful 6800 motorola microprocessor, 14 thousand bytes ROM with a simplified LEVEL II BASIC built in, 9 thousand bytes user RAM, Color, Sound, Full 53 professional keyboard, two 10 key numericpads, two controllers, high speed built in cassette that operates at 1200 baud, loads and reads 4 times faster than other computers, has built in speaker with volume control, microphone jack, and 3 digit counter, high resolution graphics 256 x 192 (LIKE APPLE). Text display is 16 lines, 32 characters. It has 8 colors. Will accept TAPE-DISK OR PLUG IN CARTRIDGES. Includes owners manual and BASIC language book. 90 days parts and labor warranty, UL listed, FCC approved. All this in a beautiful black and white CONSOLE CASE. Weighs 20 pounds, list price $599.95.

15 DAY FREE TRIAL. Return within 15 days complete and undamaged for refund of purchase price.

DON'T MISS THIS FANTASTIC SALE!! Phone 312-382-5244 to order and get delivery in 7 days, or send a certified check, money order or personal check to: Protecto Enterprises, Box 550, Barrington, Ill. 60010. WE HONOR VISA AND MASTERCARD, ship C.O.D. Add $15.00 for shipping, handling and insurance. Illinois residents add 6% tax.

CIRCLE NO. 39 ON FREE INFORMATION CARD

FREE McIntosh STEREO CATALOG and FM DIRECTORY

Get all the newest and latest information on the new McIntosh stereo equipment in the McIntosh catalog, in addition you will receive an FM station directory that covers all of North America.

SEND TODAY!

McIntosh Laboratory, Inc.
East Side Station P.O. Box 96
Binghamton, N.Y. 13904-0096

If you are in a hurry for your catalog please send the coupon to McIntosh. For non rush service send the Reader Service Card to the magazine.

CIRCLE NO. 29 ON FREE INFORMATION CARD
Experimenting with Piezoelectric Devices

Part 2. Piezo-Alerters and Crystal Oscillators

We experimented with piezoelectric spark generators, microphones, and filters in Part 1 of this two-part series on piezoelectric devices. This month, we'll discuss using piezoelectric alerters and quartz-crystal oscillators.

Piezoelectric Alerters. Crystal microphones and speakers are designed to operate across a wide band of audio frequencies. Piezoelectric alerters, however, are generally designed to operate at a fixed or relatively narrow audio-frequency band. They are true solid-state sound sources.

As far as I know, the first commercial piezo-alerter was the Mallory Sonalert®. Sonalerts are available in various kinds of housings having a range of audio outputs. Most include self-contained drive circuitry.

I first purchased a Sonalert in 1966 and a few years later used it to measure the velocity of a model rocket in flight. The Sonalert, a Model SC628 emitting a tone of 2.9 kHz, was installed in the base of a model rocket. The rocket’s engines were installed in pods attached to its center tube. The sound from the Sonalert was tape recorded from the ground during the rocket’s flight. By measuring the doppler shift, it was possible to determine the rocket’s velocity.

Alerters Construction and Operation. Thanks to their miniature size, low current consumption, and penetrating sound, piezoelectric alerters are commonly used in digital watches, clocks, smoke alarms, pagers, appliances, calculators and games. A typical alerter is a metal disc from 25 to 40 mm in diameter upon which is bonded a smaller disc of piezoceramic material. A conductive film is deposited over the ceramic layer, and electrodes are attached to it and the metal disc.

Often alerter discs include a feedback electrode made by isolating a small section of the metal film on the back of the piezoceramic material. The feedback electrode, which is shown in Fig. 1, simplifies the design of driver circuits and stabilizes the alerter’s oscillation frequency. Piezo-alerter discs can be purchased alone or installed in plastic holders complete with connection leads. Versions with self-contained driver circuits much like the Mallory Sonalert are now available from several companies.

It is essential to properly mount an alerter disk for maximum sound output. If the vibrating portion of the disk is cemented or otherwise attached to a mount, severe attenuation of the device’s sound output will occur.

Figure 2 shows three acceptable ways to mount an alerter disc. The center mount permits the outer rim of the disc to vibrate, while the edge mount permits the entire disc to vibrate. Both of these methods permit the disc to vibrate across a range of audio frequencies.

The nodal mount, also shown in Fig. 2, is best for a very loud, single-frequency tone. The node of a piezo-alerter disc is a concentric ring around the center of the disc at which vibration at a fixed frequency is at a minimum (or even non-existent). Ideally, the diameter of the nodal ring is 0.55 times the diameter of the metal disc. The actual diameter, however, varies from the predicted value due to the presence of the piezoceramic disc and nonuniformities in the metal disc.

One way to find the actual location of the nodal ring is to sprinkle fine sand or powder on a piezo-alerter disc being driven at a desired frequency by a suitable oscillator. The powder particles will gradually bounce into the nodal region and form a thin, circular ring around the center of the disc.

Piezo-Alerter Driver Circuits. A piezo-alerter can be driven directly by a variable-frequency signal generator. Even alerters having nodal-mounted discs can be operated across the audio spectrum, although edge- and center-mounted discs work best across a wide band of audio frequencies.

Figure 3 shows a simple, single-transistor driver for a piezoalerter having a feedback terminal such as the model PKM11-6A0 from Murata Corporation of America (1148 Franklin Rd., SE, Marietta, GA 30067). This alerter is also available from Radio Shack (catalog number 273-064).

The PKM11-6A0 can be operated over a specified range of 3 to 15 V (mine works down to 1 V) and has a current consumption over this range of 2 to 12 mA. Its output sound-pressure level ranges from more than 80 dB at 3 V to more than 90 dB at 15 V. Its resonant frequency is within 700 Hz of 6.5 kHz. It has an operating temperature range of −20° to +60°C and weighs only 1.5 grams.

A test version of the circuit in Fig. 3 drove the alerter at a frequency of 6772 Hz when Vcc was 3 V. This frequency is controlled by the dimensions of the feedback tap on the alerter disc and not the components of the oscillator. For example, changing R1 over a range of 100 to 330 kilohms altered the shape of the waveform but not the frequency. The frequency is nearly independent of changes in Vcc.

Figure 4 shows a simple, single-chip, CMOS oscillator suitable for driving a piezo-alerter. This circuit is adapted from one in a Gulton Industries application note. Notice how the 4049

Fig. 1. Piezoelectric alerter elements.

Fig. 2. Three mounting arrangements for piezoelectric alerter elements.

Fig. 3. Piezoelectric alerter driver circuit.
Popular Electronics

Incredible as it may seem, Popular Electronics launched the microcomputer industry. Back in 1975, we published plans for building the world's finest microcomputer based on the 8080 cpu. These plans generated incredible excitement—and started the world thinking about personal computing.

Popular Electronics always helps its readers experience the advances of the future—today. We do it with clearly written, in-depth articles explaining an innovation. Plans for building useful, low-cost projects incorporating the new technology. And reviews of mass-produced equipment when manufacturers finally catch on. Whether it's audio, video, computers, telephones, lasers or something that's just been invented, Popular Electronics will help you have fun with the newest, the most sophisticated, the most innovative electronics technology around.

Helpful buying guides

Popular Electronics compares and contrasts electronics gear in handy buyer's guide articles. We discuss features and options, what to look for, and how to get the best value on the market. Recent buyer's guide articles have covered computer printers, cordless home telephones, video cassette recorders, high-tech audio cassette, video disc players, sophisticated telephones, projection televisions, pocket "beepers," video cameras and oscilloscopes.

World-famous test reports

In every Popular Electronics issue you'll find our famous in-depth test reports. We take a new electronics product, test it, and analyze the results. Recently we've tested computers (Apple, ATT, Atari, Hewlett-Packard, IBM, Netronics, Ohio Scientific,

Radio Shack, Sinclair, Xerox), software (dBASE II, audio equipment (Bang & Olufsen, Crown, dbx, Hitachi, JBL, Mitsubishi, Optronics, Sansui, Yamaha), and video (GE, Hitachi, Pioneer, Panasonic, Quasar, RCA, Sharp, Sony, Technicolor, Toshiba, Zenith).

Innovative construction projects

If you're a do-it-yourselfer, you'll love the construction projects in Popular Electronics. Not only have we brought the world the 8080 microcomputer, but also projects for building the first low-cost modem. The first computer keyboard integrated with the computer (SOL). The first low-cost voice synthesizer. The first low-cost logic analyzer. A low-cost 8080-based microcomputer (ELF). An 8082-based EPROM programmer. An automatic line voltage regulator...

As you can see, our construction projects, while not terribly difficult, will keep you at the forefront of technological development—without your spending much money. And in the future, we'll be bringing you construction projects to help you get more from your computer, including ways to interface your microcomputer with new advances in radio, telephones and video.

Get the leader in the field—at up to 33% off!

Popular Electronics is the world's most widely read electronics magazine. Now you can subscribe at big savings—up to 33% off! At our New Subscriber rates, a one-year subscription is only $12.97. Take advantage of this offer—complete and return the coupon or postage-paid reply card today!

Popular Electronics P.O. Box 2774, Boulder, Colorado 80322

☐ YES! Send me one year (12 issues) of Popular Electronics for $12.97—1 save 19%
☐ I prefer two years for $22.97—1 save 28%
☐ Make that three years for $31.97—1 save 33%

Savings based on full one year subscription price of $15.97 8H 260

Mr./Mrs./Ms. ________________________________ (please print full name)
Address __ Apt. ______
City __________________ State ______ Zip ______

CHECK ONE: ☐ Payment enclosed. ☐ Bill me later.
Offer valid in U.S. and possessions only.
gates are connected in parallel to permit higher drive current. The circuit in Fig. 4 has the advantage of having an adjustable frequency. A breadboard version I built operated over a range of about 185 Hz to 7 kHz. The frequency change, however, was not gradual but occurred in steps. When the piezo-alerter reached its resonant frequency of around 7 kHz, changing R2's resistance had no effect.

The circuit in Fig. 5 will drive piezo-alerters with and without feedback terminals at a variable frequency. Unlike the circuit in Fig. 4, this circuit provides a gradual, nonstepped output tone. A slow pock . . . pock . . . pock sequence can be produced by using a 0.47-μF capacitor for C1.

The operation of a piezo-alerter’s feedback electrode can be graphically demonstrated by connecting the anode of a red LED to the blue lead of the alerter in Fig. 5. Connect the LED's cathode to ground. The output from the blue lead easily exceeds a few volts, more than enough to forward-bias the LED and cause it to emit a dim glow. Keep in mind that there is no electrical connection between the feedback electrode and the main electrode on the piezoelectric ceramic disk. The voltage at the feedback terminal is true piezoelectricity. It is generated in response to the pressure wave that appears in the piezoelectric ceramic disk. (The pressure wave is generated in response to the drive signal.) The LED demonstration shows how a piezoelectric device can function as a solid-state transformer or isolator.

Using an Alerter as a Filter. Figure 6 shows how to demonstrate the use of a piezo-alerter as a ceramic filter. The model PKM11-6A0 exhibited frequency-response peaks at 2.3 kHz, 7.0 kHz, 18 kHz, 27 kHz and 45 kHz. While a scope is helpful, it’s possible to monitor the filter’s operation by simply listening to the change in amplitude of the filter’s sound output as the signal generator’s frequency is varied. Of course this method only works at audio frequencies. Incidentally, I attempted to measure the delay introduced by

We're going to make a lot of fussy people very happy.

Epson.

A lot of nitpickers have tried to find a fault on the new Epson MX Series printers. And failed.

First they looked at our print quality—which is excellent—and our character fonts, which is 66 different type styles, including italics, a handy subscript and superscript, international character symbols, and one-pass underscore.

Then they checked out our GRAFTRAX-PLUS graphics, which gives them ultra-high resolution, bit image graphics, and the other MX Series features, like programmable form length, horizontal tab and right margin; true backspace; and a bidirectional, logic seeking, disposable print head.

They looked at the choice, which includes the MX-80, the MX-80 F/T with both friction and tractor paper feed, and the 136-column MX-100. And the reliability rate, which is over 98%.

Finally, they looked at the price. And they smiled.

The Epson MX Series. You might say it was made for fussy people.

By fussy people.
the piezoelectric ceramic with the help of a dual-trace 100-
MHz oscilloscope. The speed of sound in the ceramic is around
5000 m/s according to Reference Data for Radio Engineers
(ITT, Howard W. Sams & Co., 1975, p. 4-44). Since the gap be-
tween the main and feedback electrodes on the piezo-alerter
disc is 0.5 mm, the expected delay is 100 nanoseconds.

Though the driver circuit for the test, the 555 oscillator in
Fig. 5, provided clean leading- and trailing-pulse edges, the sig-
nal elicited from the feedback terminal had too much ringing
for an accurate measurement of the delay. While I think I mon-
tored a 100-ns delay. I cannot be certain due to the sloppy ap-
pearance of the feedback pulse. Perhaps you will have better
results.

Other Alerter Ideas. The very narrow audio spectrum pro-
duced by piezo-alarmers makes them ideal for use in experiments
with sound. With the help of a microphone and an oscilloscope,
you can easily demonstrate constructive and destructive inter-
ference of sound waves. Try pointing the microphone at the
alerter while moving the microphone back and forth. Or point
both the alerter and the microphone at a flat metal or plastic
panel which you can move back and forth. The proper arrange-
ment will reveal a periodic amplitude fluctuation in the re-
ceived signal, which you can view on the scope.

Note that, in an enclosed room, the sound of an alerter can
vary dramatically in intensity. This is a result of the way the sin-
gle-frequency acoustical waves from the alerter form complex
interference patterns. Negative interference causes the forma-
tion of dead spots where the sound is virtually imperceptible.
Constructive interference forms regions where the sound is un-
comfortably shrill.

Sounds from radios, televisions, phonographs and people
span a wide range of audio frequencies. Therefore, the effects of
interference are not nearly as noticeable.

The effects of the acoustical interference caused by the pure
tone emitted by an alerter may or may not be desirable. It is cer-
tainly attention getting to walk by an alerter and notice the
changes in sound intensity. But it can also be confusing, particu-
larly if you are trying to find the source of the sound in an en-
closed room having many flat, hard reflecting surfaces! The re-
sultant interference problems can be avoided by using multiple
or swept tone alarers.

If you enjoy experimenting, try using a piezo-alerter as a mi-
crophone. You'll find that alarers with nodal mounting func-
tion as frequency selective sound detectors. Also, try adding a
tube or reflector to an alerter to form a directional sound
source. You can try operation at resonant ultrasonic frequen-
cies. You can even develop various kinds of sonic radar circuits
or try operating an alerter under water.

Alerter Precautions. Data sheets for piezo-alarmers note that
mechanical shock can cause them to generate high-voltage
spikes that can damage their drive circuit and perhaps other as-
associated circuits. This problem can be alleviated by installing
an appropriately rated protection diode directly across the
alerter.

Another precaution concerns the placement of an alerter on a
circuit board. Be sure to mount the alerter on a rigid, fixed por-
tion of the board. If the alerter is mounted on a cantilevered
portion of a circuit board, it may set up vibrations in the board,
substantially reducing its sound output.

Finally, a precaution I've not seen in the data sheets concerns
the shrill sound which can be produced by some alarers. I've
found that the sound can easily produce a piercing headache.
While experimenting with the circuits described above, I event-
tually resorted to covering the aperture of the alerter with clay or
tape to muffle the sound output.

Quartz-Crystal Oscillators. The final piezoelectric device we
will consider is the quartz-crystal oscillator. Precision-cut wa-
ers of quartz are used to make piezoelectric resonators having
exceptional frequency stability. Figure 7 shows an ultra-simple,
crystal-controlled, unijunction-transistor oscillator that uses
only four components. The quartz crystal replaces a capacitor
normally used in this circuit. The oscillation frequency can be
tuned from about 50 kHz to exactly 1 MHz when the crystal has
a resonant frequency of 1 MHz. Tuning is accomplished by al-
tering the resistance of R1

If you monitor the output of the oscillator in Fig. 7 with an
oscilloscope, you will notice that the oscillation frequency
shifts range from jump to jump. This is a result of the crystal's
oscillating at various harmonics of its 1-MHz resonant
frequency. Near 1 MHz, the oscillator quickly locks onto the
crystal's resonant frequency.

The quartz crystal has proved useful for understanding the operation
of a simple quartz-crystal controlled oscillator. It can also be
used to supply a marker frequency to calibrate oscilloscopes,
signal generators, and shortwave receivers.

Figure 8 shows a valuable crystal-controlled, clock-pulse
generator. The circuit is designed around Intersil's ICM7209, a
CMOS general-purpose timer chip. The crystal can be any qu-
artz crystal having a resonant frequency of 10 kHz to 10
MHz. The circuit consumes only about 11 mA when powered
by a 5-V supply and requires only four external components.Ο

Drake's New Digital Multimeter with Advanced Auto Ranging Features.

Simple and easy to operate. The Drake DM2350 Digital Multimeter automatically
measures your selected functions in up to 5 ranges, at the touch of a button.
Drake's Digital Multimeter will not overload circuits and DC accuracy is 0.8% of
reading ± 0.2% of full scale. A continuity test sounds a signal when circuit
resistance is less than 20 ohms. The liquid crystal display and three step
protection feature with auto-zeroing, polarity indication and over-range
warning signal make it ideal for servicemen or hobbyists.

The Drake Digital Multimeter is sold complete with batteries (battery life is
greater than 300 hrs.), probes, 20 amp current shunt, spare fuse, and soft
carring case for only $95.95.

Add $2.50 shipping and handling per order. Send check with order and
provide street address for UPS shipment. Ohio residents add Sales Tax.

R. L. Drake COMPANY
540 Richard Street, Miamisburg, Ohio 45342

Credit Card buyers may call toll free
1-800-543-0612

(Ohio residents call 1-513-866-2421)
One of the more common methods of showing data in graph form on a video monitor is by extending bars from a predetermined base line to a plotted data point.

Let’s take a close look at how such a bar-graph routine can be incorporated in a program. We will give programs for the TRS-80 and the Apple II, but they can be modified to run with almost any BASIC in a machine having memory-mapped video or a terminal having cursor control.

To modify these programs, compare the functions of each portion of the program which are defined in the REM statements with similar functions found in your BASIC. For example, consider a bar-graph program that “draws” a bar graph from left to right on the screen (Table I). Throughout this program, the REM statements will explain what is taking place.

Horizontal bar graph drawn with program in Table I.

Table I—Program for Horizontal Graph

<table>
<thead>
<tr>
<th>TRS-80</th>
<th></th>
<th>APPLE II</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10 REM CLEAR THE SCREEN</td>
<td>180 FOR AS = 15680 TO</td>
<td>50 REM ADD THE FOUR DATA POINTS</td>
<td></td>
</tr>
<tr>
<td>20 CLE</td>
<td>190 POKE AS, 191</td>
<td>60 F = A + B + C + D</td>
<td></td>
</tr>
<tr>
<td>30 REM ASK FOR FOUR DATA POINTS</td>
<td>200 NEXT AS</td>
<td>70 REM DETERMINE THE DECIMAL</td>
<td></td>
</tr>
<tr>
<td>40 INPUT "FOUR VALUES": A, B, C, D</td>
<td>210 FOR BS = 15080 TO</td>
<td>EACH DATA POINT IS OF THE</td>
<td></td>
</tr>
<tr>
<td>41 REM CLEAR THE SCREEN</td>
<td>220 POKE BS, 191</td>
<td>TOTAL.</td>
<td></td>
</tr>
<tr>
<td>42 CLE</td>
<td>230 NEXT BS</td>
<td>80 AA = A/F</td>
<td></td>
</tr>
<tr>
<td>50 REM DETERMINE THE FOUR DATA POINTS</td>
<td>240 FOR CS = 15936 TO</td>
<td>90 BB = B/F</td>
<td></td>
</tr>
<tr>
<td>60 F = A + B + C + D</td>
<td>250 POKE CS, 191</td>
<td>100 CC = C/F</td>
<td></td>
</tr>
<tr>
<td>70 REM DETERMINE THE DECIMAL</td>
<td>260 NEXT CS</td>
<td>110 DD = D/F</td>
<td></td>
</tr>
<tr>
<td>EACH DATA POINT IS OF THE TOTAL.</td>
<td>270 FOR DS = 16064 TO</td>
<td>120 REM DETERMINE THE ROUNDED</td>
<td></td>
</tr>
<tr>
<td>80 AA = A/F</td>
<td>280 POKE DS, 191</td>
<td>OFF PORTION OF THE BAR GRAPH</td>
<td></td>
</tr>
<tr>
<td>90 BB = B/F</td>
<td>290 NEXT DS</td>
<td>TO BE DISPLAYED. THE NUMBER 30</td>
<td></td>
</tr>
<tr>
<td>100 CC = C/F</td>
<td></td>
<td></td>
<td>REPRESENTS THE VALUE OF 100%</td>
</tr>
<tr>
<td>110 DD = D/F</td>
<td></td>
<td></td>
<td>OF THE BAR GRAPH</td>
</tr>
<tr>
<td>120 REM DETERMINE THE ROUNDED</td>
<td>300 REM THE NEXT STATEMENT PRE-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFF PORTION OF THE BAR GRAPH</td>
<td>VENTS THE COMPUTER FROM DIS-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TO BE DISPLAYED. THE NUMBER IN</td>
<td>PLAYING THE WORD 'READY':</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THE BRACKETS REPRESENTS THE POKE</td>
<td>310 GOTO 310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POSITIONS OF THE DISPLAY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCREEN.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130 AW% = AA * (15742 - 15680)</td>
<td>310 GOTO 310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>140 BW% = BB * (15780 - 15728)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150 CW% = CC * (15998 - 15936)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160 DW% = DD * (16126 - 16064)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170 REM THE FOLLOWING DRAWS THE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAR GRAPH THAT WILL START AT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THE FIRST POKE POSITION AND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STOP AT THE FIRST POKE POSI-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TION PLUS THE PERCENTAGE VAL-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE OF THE DATA POINT.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180 FOR AS = 15680 TO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(15680 + AW%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190 POKE AS, 191</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 NEXT AS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210 FOR BS = 15080 TO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(15080 + BW%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220 POKE BS, 191</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230 NEXT BS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240 FOR CS = 15936 TO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(15936 + CW%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250 POKE CS, 191</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>260 NEXT CS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>270 FOR DS = 16064 TO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(16064 + DW%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>280 POKE DS, 191</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>290 NEXT DS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300 REM THE NEXT STATEMENT PRE-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VENTS THE COMPUTER FROM DIS-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLAYING THE WORD ‘READY’.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ing place at that particular point in the program. To get things started, the computer will request that you input four values representing the data points to be plotted. Once the last piece of data is keyed in, the video display will "draw" four bar graphs, each bar representing one piece of data.

You can easily expand the number of data points as required. However, before you begin to make any modifications, you should understand the programming approach.

The program starts by causing the computer to set aside a certain area on the screen for each bar graph. This is done without knowing the values of the data points. The computer "assumes" that the amount of space set aside is equal to a bar graph of maximum amplitude (100%).

When the final input data point is entered, the computer adds the values of the data points, with the numeric sum of all data points becoming the "100%" value. This establishes what percentage each data point represents of the total.

Finally, the computer illuminates that portion of the bar graph which represents the percentage the data point is of the total. The computer is able to represent all the data in a neatly prepared bar graph since the program operates on a percentage basis and not directly with the actual value of each data point.

The second program (Table II) example is very similar, except that the bar graphs are "drawn" from bottom to top, rather than from left to right on the screen. (Table II). As before, the program calls for four data points.

These bar-graph programs can be used as a subroutine (with appropriate line-number changes) in your own software. For example, the results of an analysis can be displayed in several ways, such as in a table or a bar graph. The routines illustrated in this column use data points input from the main program and display them as a bar graph.

Table II—Program for Vertical Graph

<table>
<thead>
<tr>
<th>TRS-80</th>
<th>ADC no.</th>
<th>ADVERTISER</th>
<th>PAGE no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2</td>
<td>Aaron Gavin</td>
<td>89</td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>All Electronics Corp.</td>
<td>78</td>
</tr>
<tr>
<td>30</td>
<td>4</td>
<td>AP Products</td>
<td>86</td>
</tr>
<tr>
<td>40</td>
<td>5</td>
<td>Army National Guard</td>
<td>2</td>
</tr>
<tr>
<td>50</td>
<td>6</td>
<td>Artec Electronics</td>
<td>76</td>
</tr>
<tr>
<td>60</td>
<td>7</td>
<td>Audio-Technica U.S., Inc.</td>
<td>89</td>
</tr>
<tr>
<td>70</td>
<td>8</td>
<td>C & D Electronics</td>
<td>88</td>
</tr>
<tr>
<td>80</td>
<td>9</td>
<td>Chaney Electronics</td>
<td>96</td>
</tr>
<tr>
<td>90</td>
<td>10</td>
<td>Classified Advertising</td>
<td>96,100-105</td>
</tr>
<tr>
<td>100</td>
<td>11</td>
<td>Cleveland Institute of Electronics, Inc.</td>
<td>26-29</td>
</tr>
<tr>
<td>110</td>
<td>12</td>
<td>Communications Electronics</td>
<td>9</td>
</tr>
<tr>
<td>120</td>
<td>13</td>
<td>Compuserve</td>
<td>2</td>
</tr>
<tr>
<td>130</td>
<td>14</td>
<td>Computers, Peripherals, Unlimited</td>
<td>74</td>
</tr>
<tr>
<td>140</td>
<td>15</td>
<td>Digi-Com</td>
<td>88</td>
</tr>
<tr>
<td>150</td>
<td>16</td>
<td>Digi-Key Corp.</td>
<td>91</td>
</tr>
<tr>
<td>160</td>
<td>17</td>
<td>Discovers</td>
<td>4</td>
</tr>
<tr>
<td>170</td>
<td>18</td>
<td>R.L. Drake</td>
<td>74,83</td>
</tr>
<tr>
<td>180</td>
<td>19</td>
<td>Electronic Specialists</td>
<td>32</td>
</tr>
<tr>
<td>190</td>
<td>20</td>
<td>Epson America</td>
<td>82</td>
</tr>
<tr>
<td>200</td>
<td>21</td>
<td>Firestick</td>
<td>89</td>
</tr>
<tr>
<td>210</td>
<td>22</td>
<td>Focus</td>
<td>73</td>
</tr>
<tr>
<td>220</td>
<td>23</td>
<td>Gladstone Electronics</td>
<td>89</td>
</tr>
<tr>
<td>230</td>
<td>24</td>
<td>Global Specialties</td>
<td>66</td>
</tr>
<tr>
<td>240</td>
<td>25</td>
<td>Grantham College of Engineering</td>
<td>47</td>
</tr>
<tr>
<td>250</td>
<td>26</td>
<td>Guardian Electronics</td>
<td>11</td>
</tr>
<tr>
<td>260</td>
<td>27</td>
<td>Heath Co.</td>
<td>36-39</td>
</tr>
<tr>
<td>270</td>
<td>28</td>
<td>IBM</td>
<td>8</td>
</tr>
<tr>
<td>280</td>
<td>29</td>
<td>Illinois Audio</td>
<td>47</td>
</tr>
<tr>
<td>290</td>
<td>30</td>
<td>Jameco Electronics</td>
<td>94,95</td>
</tr>
<tr>
<td>300</td>
<td>31</td>
<td>JDR Microdevices</td>
<td>92-93</td>
</tr>
<tr>
<td>310</td>
<td>32</td>
<td>J & R Music World</td>
<td>77</td>
</tr>
<tr>
<td>320</td>
<td>33</td>
<td>McIntosh Laboratory, Inc.</td>
<td>79</td>
</tr>
<tr>
<td>330</td>
<td>34</td>
<td>MFJ Enterprises</td>
<td>88</td>
</tr>
<tr>
<td>340</td>
<td>35</td>
<td>Maxell Corp. of America</td>
<td>3</td>
</tr>
<tr>
<td>350</td>
<td>36</td>
<td>Menotech</td>
<td>7</td>
</tr>
<tr>
<td>360</td>
<td>37</td>
<td>Micro Management Systems</td>
<td>88</td>
</tr>
<tr>
<td>370</td>
<td>38</td>
<td>National Institute of Technology</td>
<td>12</td>
</tr>
<tr>
<td>380</td>
<td>39</td>
<td>National Technical Schools</td>
<td>62-65</td>
</tr>
<tr>
<td>390</td>
<td>40</td>
<td>Netronics, R & D Ltd.</td>
<td>33,75</td>
</tr>
<tr>
<td>400</td>
<td>41</td>
<td>Nippon Electric Co., Ltd.</td>
<td>79</td>
</tr>
<tr>
<td>410</td>
<td>42</td>
<td>NRI Schools</td>
<td>16-19</td>
</tr>
<tr>
<td>420</td>
<td>43</td>
<td>OK Machine & Tool Corp</td>
<td>23</td>
</tr>
<tr>
<td>430</td>
<td>44</td>
<td>PAIA Electronics, Inc.</td>
<td>73</td>
</tr>
<tr>
<td>440</td>
<td>45</td>
<td>Personal Computer Systems</td>
<td>70</td>
</tr>
<tr>
<td>450</td>
<td>46</td>
<td>Protecco Enterprises</td>
<td>32,79</td>
</tr>
<tr>
<td>460</td>
<td>47</td>
<td>Quest Electronics</td>
<td>96</td>
</tr>
<tr>
<td>470</td>
<td>48</td>
<td>Radio Shack</td>
<td>99</td>
</tr>
<tr>
<td>480</td>
<td>49</td>
<td>Shure Brothers, Inc.</td>
<td>77</td>
</tr>
<tr>
<td>490</td>
<td>50</td>
<td>Simple Simon Kits</td>
<td>87</td>
</tr>
<tr>
<td>500</td>
<td>51</td>
<td>Sinclair Research</td>
<td>4,5,25</td>
</tr>
<tr>
<td>510</td>
<td>52</td>
<td>Tab Books</td>
<td>59</td>
</tr>
<tr>
<td>520</td>
<td>53</td>
<td>TAMS, Inc.</td>
<td>73</td>
</tr>
<tr>
<td>530</td>
<td>54</td>
<td>TDK</td>
<td>32</td>
</tr>
<tr>
<td>540</td>
<td>55</td>
<td>Tektronix</td>
<td>1</td>
</tr>
<tr>
<td>550</td>
<td>56</td>
<td>Texas Instruments, Inc.</td>
<td>13</td>
</tr>
</tbody>
</table>

ADVERTISERS INDEX

RS no.

1 Aaron Gavin
2 All Electronics Corp.
3 AP Products
4 Army National Guard
5 Artec Electronics
6 Audio-Technica U.S., Inc.
7 C & D Electronics
8 Chaney Electronics
9 Classified Advertising
10 Cleveland Institute of Electronics, Inc.
11 Communications Electronics
12 Compuserve
13 Computers, Peripherals, Unlimited
14 Digi-Com
15 Digi-Key Corp.
16 Discovers
17 R.L. Drake
18 Electronic Specialists
19 Epson America
20 Firestick
21 Focus
22 Gladstone Electronics
23 Global Specialties
24 Grantham College of Engineering
25 Guardian Electronics
26 Heath Co.
27 IBM
28 Illinois Audio
29 Jameco Electronics
30 JDR Microdevices
31 J & R Music World
32 McIntosh Laboratory, Inc.
33 MFJ Enterprises
34 Maxell Corp. of America
35 Menotech
36 Micro Management Systems
37 National Institute of Technology
38 National Technical Schools
39 Netronics, R & D Ltd.
40 Nippon Electric Co., Ltd.
41 NRI Schools
42 OK Machine & Tool Corp
43 PAIA Electronics, Inc.
44 Personal Computer Systems
45 Protecco Enterprises
46 Quest Electronics
47 Radio Shack
48 Shure Brothers, Inc.
49 Simple Simon Kits
50 Sinclair Research
51 Tab Books
52 TAMS, Inc.
53 TDK
54 Tektronix
55 Texas Instruments, Inc.

ADVERTISERS INDEX

Page no.

89
78
86
2
76
89
88
96,100-105
26-29
9
2
74
88
91
4
74,83
32
82
89
73
89
66
47
94,95
92-93
77
79
88
3
7
88
12
62-65
33,75
79
16-19
23
73
70
32,79
96
99
77
87
4,5,25
59
73
32
1
13
Monsanto Model 114A frequency counter. Need schematic and service manual. Robert D. Bottlinger, 623 Belvedere St., Carlisle, PA 17013.

Broadmoor Model 1464 AM/FM stereo receiver. Need schematic or service manual. David Zirpoli, 45 George St., Green Island, NY 12183.

Hallicrafters Model TW1000A receiver. Need schematic and knobs. C.C. Hutchison, 11303 Featherstar, Houston, TX 77067.

National Radio Institute Model 600 color TV receiver. Need convergence circuit board EC-19 and parts L601, 602, 603 and T601. N. Sierra, 217 E. 84th St., Los Angeles, CA 90033.

RCA Institute, Inc. 3" oscilloscope. Need schematic and operating manual. A.B. Cervon, 1045 Stone St., Rahway, NJ 07065.

Knight Star Roamer receiver kit. Need manual, schematic and any other information. Rob Sobokviak, 2219 N. Meadowbrook Dr., Plainfield, IL 60544.

Hallicrafters Model CRX-1 receiver. Need schematic and operating manual. Robert Couter, Box 60, Ellsworth, PA 15531.

Eico Model 221 VTVM and Western Electric Model KS-16610 amplifier. Need schematics, owner's manuals and operating instructions. Mike Melton, 3504 Pageant Dr., Sacramento, CA 95826.

Barrington AM/FM portable radio. Need dial cord stringing instructions. Bend Electronics, Box Q, Limon, CO 80828.

Hallicrafters Model S108 receiver. Need dial glass. Walter J. Mitchell, 201-5ive Cities Dr., SP. 41, Pismo Beach, CA 93449.

Sanken Model SI-1050G hybrid audio amp chip. Need schematic, pin-out and power derating chart. Mark Tarbell, 906 S. Lantana Ave., Brea, CA 92621.

Mercury Model 400 VCM capacity meter. Need schematic. Sam Schatz, 2233 E. Catalina 12, Santa Ana, CA 92701.

Sorcoc Model IQ 120 terminal with 100051 logic board and 100032-5 keyboard. Need schematics and service manual. Larry J. Kopiasti, 4545 Walnut, Omaha, NE 68116.

Conar Model 255 5" oscilloscope. Need schematic, parts list and any other information available. Clifford Mafeed, 331 Penny St., McKeesport, PA 15132.

Hammarlund Model H3-180A vhf, 160-2 meter receiver and Johnson Viking ultraamplifier linear. Need manuals, schematics, alignment data and any other literature available.
Switch to Bambi™

Electronically

Bambi Electronic Video Switch... makes switching of your VCR/VTR, Pay TV Decoders, Cable TV, Video Discs, Video Games, Closed Circuit TV, Antennae and Microcomputer as easy as pushing buttons.

The Bambi Electronic Video Switch is an electronic switching network which can accept up to six different sources of video signals and provide flexibility of directing the inputs to any one of the all or three outputs.

Now you can eliminate ... the drudgery of disconnecting and reconnecting your video equipment each time you use it ... the tangled mass of cables which are impossible to trace ... not being able to use more than one function at a time.

Bambi lets you enjoy using your video equipment the way it should be ... electronically and on line at the push of a button.

Model

BEVS-1 Mixed

$129.95

7+11 SWD PARTS KITS

SWD-1 VIDEO CONVERTER KIT

The SWD-1 Video Converter Kit is utilized on cable TV systems to remove the KHz's signal from a distorted video (channel 3 or 4) and also pass thru the normal unconditional detected audio signal. Rocker switch selects operating mode to remove Kit's distortion from the video or pass all other channel signals normally. Simple to assemble — uses thru 30 minutes. Pre-run, input/output channel 3. Impedance 75 ohms. 117VAC.

SWD-1 Video Converter Kit $69.95

7+11 PWD PARTS KITS

NEW

SIMPLE SIMON VIDEO STABILIZER

SIMPLE SIMON VIDEO STABILIZER

Simple Simon Video Stabilizer, Model VS-125, eliminates the vertical flutter and jitter from "cavity guard" video tapes when playing through large screen projectors or on an aerial VTR. To use, just replace the lock control for a stable picture. Once the control is set, the tape will play all day through without further adjustments. Includes 12V power supply.

VS-125 Video Stabilizer $64.95

SIMPLE SIMON VIDEO SWITCHING BOX

The Affordable Video Control Center

Excellent in isolation and no loss system. Simple Simon VS-300 Video Switching Box makes you bring a variety of video components together for easy viewing/debugging. Also you gain the ability to record one channel while viewing another. Unit includes two F-type quick connector wired cables.

VS-300 Video Switching Box $19.95

SIMPLE SIMON ELECTRONIC KITS, Inc.

3871 S. Valley View, Suite 12, Dept. P, Las Vegas, NV 89103

In Nevada Call 702-871-2892

1-800-782-3716

Outside Nevada Call

Sent with
card: $34.95

With VISA and Mastercard Accepted

Available by Mail Order Only

Send Check or Money Order, Minimum Order $16.95. Add 10% Shipping and Handling on orders under $50.00. Orders over $40.00, add 5%. Minimum Shipping and Handling $2.00. Call $1.00 — VISA and Mastercard Acceptable — *Check orders will be held 30 days before shipping.

MITSUMI

VARACTOR

UHF TUNER

Model UES-A56F

$34.95

Freq: Range UHF70 - 880MHz

Antenna Input 75 ohms

Channels 14-21 Coupled Channel 3

SWD-1 PARTS

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1015-3 SWD Varactor UHF Tuner, Model UES-A56F</td>
<td>$34.95</td>
</tr>
<tr>
<td>2</td>
<td>C61-3 SWD Fixed Circuit 3 (0.001 to 100)</td>
<td>16.95</td>
</tr>
<tr>
<td>3</td>
<td>157-3 SWD P.C.B. Potentiometer, 1-10k to 1-1k and 1-10k ohms, 7 pieces</td>
<td>3.95</td>
</tr>
<tr>
<td>4</td>
<td>6563-3 SWD Resistor Kit, 1% Watt, 5% Carbon Film, 32 pieces</td>
<td>4.95</td>
</tr>
<tr>
<td>5</td>
<td>151-5 SWD Power Transformer, PRI-117VAC, SEC-24VAC, 175W</td>
<td>6.95</td>
</tr>
<tr>
<td>6</td>
<td>352-3 SWD Fuse Panel Mount Resistors and Knobs, 1-10K and 1-54K DC/AC Switch</td>
<td>4.95</td>
</tr>
<tr>
<td>7</td>
<td>352-3 SWD 13SR-PW0 Varactor Ceramic Trim Capacitor Kit, 5-65µfd, 6 pieces, 5.95</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>14-3 SWD Ceramic Disk Capacitor Kit, 5-65µfd, 6 pieces, 5.95</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>303-3 SWD Ceramic Disk Capacitor Kit, 50 V, 5-65µfd, 33 pieces</td>
<td>7.95</td>
</tr>
<tr>
<td>10</td>
<td>303-3 SWD Varistor Ceramic Trim Capacitor Kit, 50-65µfd, 6 pieces, 5.95</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>14-3 SWD 14-83 SWD Ceramic Disk Capacitor Kit, 50 V, 5-65µfd, 33 pieces, 7.95</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>14-3 SWD 29-83 SWD Ceramic Disk Capacitor Kit, 50 V, 5-65µfd, 33 pieces, 7.95</td>
<td></td>
</tr>
</tbody>
</table>

INTRODUCING OUR 7+11 PWD PARTS KITS

SWD-1 VIDEO CONVERTER KIT

The SWD-1 Video Converter Kit is utilized on cable TV systems to remove the KHz's signal from a distorted video (channel 3 or 4) and also pass thru the normal unconditional detected audio signal. Rocker switch selects operating mode to remove Kit's distortion from the video or pass all other channel signals normally. Simple to assemble — uses thru 30 minutes. Pre-run, input/output channel 3. Impedance 75 ohms. 117VAC.

SWD-1 Video Converter Kit $69.95

VTR ACCESSORIES

SIMPLE SIMON VIDEO STABILIZER

SIMPLE SIMON VIDEO STABILIZER

Simple Simon Video Stabilizer, Model VS-125, eliminates the vertical flutter and jitter from "cavity guard" video tapes when playing through large screen projectors or on an aerial VTR. To use, just replace the lock control for a stable picture. Once the control is set, the tape will play all day through without further adjustments. Includes 12V power supply.

VS-125 Video Stabilizer $64.95

SIMPLE SIMON VIDEO SWITCHING BOX

The Affordable Video Control Center

Excellent in isolation and no loss system. Simple Simon VS-300 Video Switching Box makes you bring a variety of video components together for easy viewing/debugging. Also you gain the ability to record one channel while viewing another. Unit includes two F-type quick connector wired cables.

VS-300 Video Switching Box $19.95

SIMPLE SIMON ELECTRONIC KITS, Inc.

3871 S. Valley View, Suite 12, Dept. P, Las Vegas, NV 89103

In Nevada Call 702-871-2892

1-800-782-3716

Outside Nevada Call

Send Check or Money Order, Minimum Order $16.95. Add 10% Shipping and Handling on orders under $50.00. Orders over $40.00, add 5%. Minimum Shipping and Handling $2.00. Call $1.00 — VISA and Mastercard Accepted — *Check orders will be held 30 days before shipping.

UHF ANTENNAS and ACCESSORIES

MDS-AMATEUR-EVT 32 ELEMENT YAGI ANTENNA

$19.95

- NOT A KIT
- 1.9-2.5 GHZ
- 38 1/2" LENGTH
- 22 dB AVERAGE GAIN
- DIE CAST WATERPROOF HOUSING WITH 45°/" X 25° AREA FOR ELECTRONICS
- COMMERCIAL GRADE
- INCLUDES MOUNTING HARDWARE

MAE-1 32 Element Yagi Antenna $19.95

ZYXX

VHF-UHF WIDEBAND ANTENNA AMPLIFIER MODEL ALL

- 50 MHZ - 900 MHZ
- 12 dB GAIN @ 0.5 dB

A Revolutionary New ONE-CHANNEL HYBRID IC Broadband Amplifier

This unit is not available anywhere else in the world. One unit serves many purposes and is available in a kit for construction, ideal for outdoor applications with 1/2 to 10 MHz inputs. Amplifier includes complete power supply. Easy assembled in 25 minutes. No caps, coils, resistors, etc., to tune or adjust.

ALL-1 Complete Kit with power supply $24.95

ALL-1 Wired and Tested with power supply $24.95

Our New STVA 14.5 GAIN, 14 ELEMENT CORNER REFLECTOR YAGI ANTENNA

STVA-1 14.5 GAIN, 14 ELEMENT CORNER REFLECTOR YAGI ANTENNA 14-5/8" 75 ohm, Chas 50-80 $16.95

STVA-2 14.5/8" 75 ohm, Chas 44-52 $16.95

STVA-3 14-5/8" 75 ohm, Chas 44-52 $16.95

RG-58/U 75 ohm Low Loss Coax Cable $3.95

F-58 Coaxial Connectors $0.39

MT-1 Special UF 75-300 ohm Matching Transformer, ea. $1.65
operation assist

able. Donald R. Fonville, 1025 Valleydale Dr., Burlington, NC 27215.

Acrossound Model 120 stereo ultralinear amplifier. Need original owners manual. Steven Bender, Box 28360, Queens Village, NY 11426.

John DeVine, 127 Los Angeles Ave., Stratford, CT 06497.

Pioneer Model SX-600T AM/FM stereo receiver. Need schematic, parts list and layout. Torsten Isacsson, 65 Delbrook Ct., Oakfll, MO 63366.

John P. Coleman, Box 174, Albany, GA 31702.

Micronta Model 22-012 tube tester. Need schematic. R.A. Balcerzak, 3153 So. 26th St. Milwaukee, WI 53215.

Currier Smith Model 10479-GO1-001 telephone answerer.
Need schematic and service literature. Frank B. McCollison, 72 Antwerp St., Brighton, MA 02135.

Clarion Model JC-20 1C6 radio. Need 23 channel transceiver.
Cicil F. Allen, 978 Bluebonnet Dr. Sunnyvale, CA 94086.

Supreme Model S99 set tester. Need schematic, operations manual, tube list and any other information. Erick Gulbrandsen, 1500 Woodland Terrace, Lake Oswego, OR 97034.

Collins Model 9390 receiver. Need technical manual L1.175.
P. Spano, 20 Dickinson Rd., Darton, CT 06820.

Hallicrafters Model S-38 receiver. Need instruction and
A Tunable Notch Filter

SOMETIMES signals within a narrow frequency range interfere with the operation of an electronic circuit. The best known of these interfering signals are 50 Hz line noise. Shortwave radio listeners often find that a broadcast they are attempting to monitor is partially masked by an annoying tone.

Figure 1 shows a passive filter that can be tuned to reject or block a narrow band of audio frequencies. Such a circuit is called a band-rejection filter, band-stop filter, or notch filter. The particular filter in Fig. 1 is called a bridged differentiator tunable notch filter. It is easier to adjust than the better known twin-tee (or twin-T) notch filter.

The filter in Fig. 1 uniformly attenuates frequencies outside its band-stop region by about 4.1 dB (i.e., about 48% of a non-band-stop frequency is blocked). This loss can be virtually eliminated by following the filter with an op amp to form an active notch filter as shown in Fig. 2. This circuit has a uniform attenuation outside its stop band of only 0.4 dB (i.e., about 95% attenuation).

I measured this attenuation with the help of a signal generator, oscilloscope, and a breadboard version of the active filter. When potentiometer R1, R2 was adjusted so that R1 = R2 = 50 kilohms, then the notch frequency was 1431 Hz. The signal from the filter at points outside the stop band had an amplitude of 2.75 V. At the bottom of the notch the signal's amplitude was 0.15 V. This represents an attenuation of 0.15/2.75 or 94.5%.

Many engineers prefer to express such relationships in terms of decibels. In this case, the attenuation in decibels is 20log(Vout/Vin). Therefore, the attenuation is 20log(0.055) or -25.27 decibels.

Figure 3 is a plot of the frequency response of the circuit in Fig. 2 when it has been adjusted for a stop-band centered at 1431 Hz. Note that the slope of the notch is much sharper on the low-frequency side. Also note that the amplitude axis of the graph has a linear scale. Often such frequency-response curves are plotted on a logarithmic scale.

The notch frequency of the circuit in Fig. 2 can be easily tuned across much of the audio spectrum. According to various texts about filters (e.g., H. Berlin's "The Design of Active Filters," E&L Instruments, 1977), the notch frequency is given by

\[\text{F}_{\text{Notch}} = \frac{1}{2\pi CV} \sqrt{3R1R2} \]

However, inserting the values for the circuit in Fig. 2 when \(R1 = R2 = 50 \) kilohms gives a predicted notch frequency of 1838 Hz. Recall from above that the actual notch frequency I measured was 1431 Hz.

Similarly, when \(R1 = 10 \) kilohms and \(R2 = 90 \) kilohms, the equation predicts a notch frequency of 3063 Hz. However, I measured an actual notch frequency of 2334 Hz.

These discrepancies are likely due to tolerance variations in all three capacitors, and \(R3 \) in the test circuit. For optimum results, \(C1, C2 \) and \(C3 \) should have exactly equal values. Likewise, the resistance of \(R3 \) should be exactly six times the resistance of \(R1 + R2 \).

The attenuation at higher frequencies is not as sharp. At 10 kHz, for example, the amplitude at the notch frequency was 13.4 dB below the out-of-notch frequencies.

Incidentally, I connected the circuit in Fig. 2 between my shortwave receiver and an external power amplifier in an effort to tune out annoying interference tones. If the frequency of the interfering tone was steady, the filter did indeed greatly reduce its amplitude. I also found that the filter is ideal for attenuating the shrill tone from a piezoelectric alerter being operated in a room monitored by an intercom. This permits the intercom to be comfortably monitored without the annoyance of the alerter's tone.
Static RAMs

<table>
<thead>
<tr>
<th>Type</th>
<th>Speed</th>
<th>Capacity</th>
<th>Qty</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMS4044-4</td>
<td>2.5 MHz</td>
<td>4096 x 1</td>
<td></td>
<td>$11.25</td>
</tr>
<tr>
<td>TMS4044-3</td>
<td>2.5 MHz</td>
<td>4096 x 1</td>
<td></td>
<td>$11.25</td>
</tr>
<tr>
<td>TMS4044-2</td>
<td>4.0 MHz</td>
<td>4096 x 1</td>
<td></td>
<td>$17.95</td>
</tr>
<tr>
<td>MK418</td>
<td>5.0 MHz</td>
<td>1024 x 4</td>
<td></td>
<td>$17.95</td>
</tr>
<tr>
<td>TMS201</td>
<td></td>
<td>2048 x 8</td>
<td></td>
<td>$22.25</td>
</tr>
<tr>
<td>HM6116-4</td>
<td></td>
<td>2048 x 8</td>
<td></td>
<td>$22.25</td>
</tr>
<tr>
<td>HM6116-3</td>
<td></td>
<td>2048 x 8</td>
<td></td>
<td>$22.25</td>
</tr>
<tr>
<td>HM6116-2</td>
<td></td>
<td>2048 x 8</td>
<td></td>
<td>$22.25</td>
</tr>
<tr>
<td>HM6116LP-4</td>
<td></td>
<td>2048 x 8</td>
<td></td>
<td>$22.25</td>
</tr>
<tr>
<td>HM6116LP-2</td>
<td></td>
<td>2048 x 8</td>
<td></td>
<td>$22.25</td>
</tr>
</tbody>
</table>

Dynamic RAMs

<table>
<thead>
<tr>
<th>Type</th>
<th>Speed</th>
<th>Capacity</th>
<th>Qty</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMS4027</td>
<td></td>
<td>4096 x 1</td>
<td></td>
<td>$11.25</td>
</tr>
<tr>
<td>MK4108</td>
<td></td>
<td>192 x 1</td>
<td></td>
<td>$11.25</td>
</tr>
<tr>
<td>Z80A-DMA</td>
<td></td>
<td>192 x 1</td>
<td></td>
<td>$11.25</td>
</tr>
<tr>
<td>Z80A-DMA</td>
<td></td>
<td>192 x 1</td>
<td></td>
<td>$11.25</td>
</tr>
<tr>
<td>Z80A-DMA</td>
<td></td>
<td>192 x 1</td>
<td></td>
<td>$11.25</td>
</tr>
<tr>
<td>Z80A-DMA</td>
<td></td>
<td>192 x 1</td>
<td></td>
<td>$11.25</td>
</tr>
<tr>
<td>Z80A-DMA</td>
<td></td>
<td>192 x 1</td>
<td></td>
<td>$11.25</td>
</tr>
<tr>
<td>Z80A-DMA</td>
<td></td>
<td>192 x 1</td>
<td></td>
<td>$11.25</td>
</tr>
</tbody>
</table>

EPROMs

<table>
<thead>
<tr>
<th>Type</th>
<th>Qty</th>
<th>Speed</th>
<th>Capacity</th>
<th>Qty</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1702</td>
<td>1</td>
<td>256 x 8</td>
<td>(1st)</td>
<td></td>
<td>$4.50</td>
</tr>
<tr>
<td>2708</td>
<td>1</td>
<td>1024 x 8</td>
<td>(256)</td>
<td></td>
<td>$3.75</td>
</tr>
<tr>
<td>2758</td>
<td>1</td>
<td>1024 x 8</td>
<td>(256)</td>
<td></td>
<td>$3.75</td>
</tr>
<tr>
<td>TMS2516</td>
<td>1</td>
<td>2048 x 8</td>
<td>(512)</td>
<td></td>
<td>$4.95</td>
</tr>
<tr>
<td>2716</td>
<td>1</td>
<td>2048 x 8</td>
<td>(512)</td>
<td></td>
<td>$4.95</td>
</tr>
<tr>
<td>2716-1</td>
<td>1</td>
<td>2048 x 8</td>
<td>(512)</td>
<td></td>
<td>$4.95</td>
</tr>
<tr>
<td>TMS2516</td>
<td>1</td>
<td>2048 x 8</td>
<td>(512)</td>
<td></td>
<td>$4.95</td>
</tr>
<tr>
<td>TMS2532</td>
<td>1</td>
<td>2048 x 8</td>
<td>(512)</td>
<td></td>
<td>$4.95</td>
</tr>
<tr>
<td>TMS2532</td>
<td>1</td>
<td>2048 x 8</td>
<td>(512)</td>
<td></td>
<td>$4.95</td>
</tr>
<tr>
<td>TMS2532</td>
<td>1</td>
<td>2048 x 8</td>
<td>(512)</td>
<td></td>
<td>$4.95</td>
</tr>
</tbody>
</table>

August Specials

<table>
<thead>
<tr>
<th>Type</th>
<th>Qty</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-4001NL</td>
<td></td>
<td>$199.95</td>
</tr>
<tr>
<td>1771</td>
<td></td>
<td>$20.95</td>
</tr>
<tr>
<td>1791</td>
<td></td>
<td>$29.95</td>
</tr>
<tr>
<td>1791</td>
<td></td>
<td>$29.95</td>
</tr>
<tr>
<td>1793</td>
<td></td>
<td>$38.95</td>
</tr>
</tbody>
</table>

ORDER TOLL FREE

800-538-5000

(1-800-538-5000)

(800-662-6279)**

(California Residents)

IF YOU CAN FIND A PRICE LOWER ELSEWHERE, LET US KNOW AND WE WILL BEAT THEIR PRICE.

<table>
<thead>
<tr>
<th>Option</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer invented—virtually no back orders.</td>
<td>$199.95</td>
</tr>
<tr>
<td>Guaranteed lowest prices!</td>
<td>$199.95</td>
</tr>
<tr>
<td>Fast service—most orders shipped within 24 hours!</td>
<td>$199.95</td>
</tr>
</tbody>
</table>

HOURS: Mon. - Fri. 9, 9 to 5, Sat. 11 to 3

VISIT OUR RETAIL STORE!

TERMS: For shipping include $2.00 for UPS Ground, $3.00 for UPS Blue Label Air. $10.00 minimum order. Bay Area residents add 6% sales tax. California residents and 6% sales tax. We reserve the right to limit quantities and substitute manufacturer. Prices subject to change without notice. Send SASE for complete list.
MICROPROCESSOR COMPONENTS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Function</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7411N/K7</td>
<td>Binary Counter/Divider</td>
<td>0.50</td>
</tr>
<tr>
<td>7412N/K7</td>
<td>Shift Register</td>
<td>0.75</td>
</tr>
<tr>
<td>7413N/K7</td>
<td>Universal Sequential Logic</td>
<td>0.75</td>
</tr>
<tr>
<td>7414N/K7</td>
<td>Quad 2-to-1 Data Select</td>
<td>0.95</td>
</tr>
<tr>
<td>7415N/K7</td>
<td>Quad 2-to-1 Data Select</td>
<td>0.95</td>
</tr>
<tr>
<td>7416N/K7</td>
<td>Quad 2-to-1 Data Select</td>
<td>0.95</td>
</tr>
</tbody>
</table>

STATIC RAMS

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2112</td>
<td>0.25</td>
</tr>
<tr>
<td>2123</td>
<td>0.35</td>
</tr>
<tr>
<td>2145</td>
<td>0.45</td>
</tr>
<tr>
<td>2153</td>
<td>0.55</td>
</tr>
</tbody>
</table>

DYNAMIC RAMS

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2174A</td>
<td>0.50</td>
</tr>
<tr>
<td>2176A</td>
<td>0.60</td>
</tr>
<tr>
<td>2177A</td>
<td>0.70</td>
</tr>
</tbody>
</table>

PROMS

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7408</td>
<td>0.30</td>
</tr>
<tr>
<td>7410</td>
<td>0.40</td>
</tr>
<tr>
<td>7412</td>
<td>0.50</td>
</tr>
</tbody>
</table>

EPROMS

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2708</td>
<td>1.00</td>
</tr>
</tbody>
</table>

EPROMs

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>27C08</td>
<td>1.00</td>
</tr>
<tr>
<td>27C16</td>
<td>1.50</td>
</tr>
</tbody>
</table>

ROMs

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74H08</td>
<td>0.25</td>
</tr>
<tr>
<td>74H16</td>
<td>0.35</td>
</tr>
<tr>
<td>74L16</td>
<td>0.45</td>
</tr>
</tbody>
</table>

DATA ACQUISITION

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LS181</td>
<td>0.35</td>
</tr>
<tr>
<td>74LS182</td>
<td>0.45</td>
</tr>
<tr>
<td>74LS183</td>
<td>0.55</td>
</tr>
</tbody>
</table>

SPECIAL FUNCTION

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LS273</td>
<td>0.35</td>
</tr>
<tr>
<td>74LS274</td>
<td>0.45</td>
</tr>
<tr>
<td>74LS275</td>
<td>0.55</td>
</tr>
</tbody>
</table>

TELEPHONE/KEYBOARD CHIPS

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LS362</td>
<td>0.35</td>
</tr>
<tr>
<td>74LS363</td>
<td>0.45</td>
</tr>
<tr>
<td>74LS364</td>
<td>0.55</td>
</tr>
</tbody>
</table>

IC SOCKETS

LOW PROFILE (TIN) SOCKETS

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 pin</td>
<td>0.12</td>
</tr>
<tr>
<td>10 pin</td>
<td>0.15</td>
</tr>
<tr>
<td>14 pin</td>
<td>0.25</td>
</tr>
</tbody>
</table>

SOLDERTAIL STANDARD (TIN)

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 pin</td>
<td>0.25</td>
</tr>
<tr>
<td>10 pin</td>
<td>0.30</td>
</tr>
<tr>
<td>14 pin</td>
<td>0.40</td>
</tr>
</tbody>
</table>

SOLDERTAIL (GOLD) STANDARD

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 pin</td>
<td>0.45</td>
</tr>
<tr>
<td>10 pin</td>
<td>0.55</td>
</tr>
<tr>
<td>14 pin</td>
<td>0.70</td>
</tr>
</tbody>
</table>

WIRE WRAP SOCKETS (GOLD) LEVEL #2

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 pin WW</td>
<td>0.55</td>
</tr>
<tr>
<td>10 pin WW</td>
<td>0.65</td>
</tr>
<tr>
<td>14 pin WW</td>
<td>0.80</td>
</tr>
</tbody>
</table>

CAPACITOR CORNER

50 VOLT CERAMIC DISC CAPACITORS

<table>
<thead>
<tr>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1uf</td>
<td>0.07</td>
</tr>
<tr>
<td>4.7uf</td>
<td>0.09</td>
</tr>
<tr>
<td>10uf</td>
<td>0.12</td>
</tr>
</tbody>
</table>

100 VOLT MYLAR FILM CAPACITORS

<table>
<thead>
<tr>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1uf</td>
<td>0.08</td>
</tr>
<tr>
<td>4.7uf</td>
<td>0.10</td>
</tr>
<tr>
<td>10uf</td>
<td>0.13</td>
</tr>
</tbody>
</table>

50% DIPPED TANTALUMS (Solid Capacitors)

<table>
<thead>
<tr>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1uf</td>
<td>0.06</td>
</tr>
<tr>
<td>4.7uf</td>
<td>0.08</td>
</tr>
<tr>
<td>10uf</td>
<td>0.11</td>
</tr>
</tbody>
</table>

METAL ALUMINUM ELECTRIC CAPACITORS

<table>
<thead>
<tr>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1uf</td>
<td>0.05</td>
</tr>
<tr>
<td>4.7uf</td>
<td>0.07</td>
</tr>
<tr>
<td>10uf</td>
<td>0.09</td>
</tr>
</tbody>
</table>

SHIPMENT IN 24 HOURS

6:00AM to 6:00PM (PST)

Call: (415) 592-8097

NEW JAMECO CATALOG

1355 Shoreway Road, Belmont, CA 94002

PHONE ORDERS WELCOME — (415) 592-8097
KEYBOARDS — POWER SUPPLIES

JE60 Hexadecimal Encoder Kit

Full 8-bit Latched Output

- **19-K KEYBOARD**
 - The JE60 Encoder Keyboard is a two character, two digit product produced from sequential key entries to allow direct programming to 8 or more hexadecimal or binary memory locations. Two optional lines are provided for use in an application requiring a character display, and each of the encoder sections can be used to enter a key entry feature. Full 8-bit output is available for use in a microcomputer. Includes two 5.7" x 3.5" UHV-3 displays.
 - Price: $99.95 (as shown above)

JE600 DC/HE—(After assembly as pictured)

- Price: $99.95

JE600 Kit

- 16-key Hexadecimal Keyboard, PC Board & Components (no case)
- Price: $59.95

JE61 Kit

- 16-key Keyboard, PC Board & Components (no case)
- Price: $59.95

JE62 Kit

- 16-key Keyboard, PC Board & Components (no case)
- Price: $49.95

JE610 ASCII Encoded Keyboard Kit

- The JE610 ASCII Keyboard Kit can be extended into any 100 character keyboard. For an air or spacecraft, it is a unique character selective (960) keyboard, includes 3, 7, 12, 16, 20, 24, 30, 40, 50 and 60 characters. Includes two 5.7" x 3.5" UHV-3 displays.
- Price: $124.95

JE610 DTE-AK

- Price: $49.95

JE610 DTE-HK

- Price: $49.95

NEO-25 KEY CALCULATOR KIT

- Enables both brain and everything pictured. Two each 4x6 speakers and "deep" 7x7" buttons. All cables and leads for hook-up. Includes all instructions for Manual for use in an automobile.
- Price: $29.95

JUSTRIGHTS

- Price: $99.95

POWER SUPPLIES

POWER SUPPLY — 52VDC — 1 AMP REGULATED

- Price: $29.95

POWER SUPPLY — 52VDC — 1 AMP REGULATED

- Price: $29.95

JUMPER AND CABLE ASSEMBLIES

STANDARD DIP JUMPERS

- Price: $29.95

STANDARD DB25 SERIES CABLES

- Price: $29.95

SHIPPING IN 24 HOURS

6:00AM to 6:00PM (PST)

Call: (415) 592-8097

FREE 1982 JAMECO CATALOG

Send copy to your Federal Express Office for your FREE 1982 JAMECO CATALOG Prices Subject to Change

NEW 1982 CATALOG

1355 SHOREWAY ROAD, BELMONT, CA 94002

PHONE ORDERS WELCOME — (415) 592-8097
AUGUST 1982

Start Your Back-to-School Project at The Shack®
No Minimum Order! No Waiting! Low Prices!

Ready-to-Use TV RF Module
Only
9.95
• Works With Any Television Set
• Requires Minimum Support Circuitry

UM1285-8. This completely assembled TV RF modulator is ideal for use with computers, video games, VCRs, projects such as video enhancers, adapters and satellite receivers. Accepts color or b&w video, line-level sound. Selectable output, VHF channels 3 or 4. Unique design reduces line-jitter and on-screen bar patterns. PC board mountable. 3 to 6VDC. With data pin-out, suggested circuit. Why pay more? 277-221

IF Amp, FM, Video & PLL ICs
Low As
169
Simplify & Improve Your Designs!

Many applications for these versatile IC's! Check out the included specs and you'll probably discover some new uses!

MC1330 Video Detector. Used in many solid-state TV circuits. Replaces 3rd IF, detector, video and AFC buffers. High linearity. Outputs: Wideband video (to 8 MHz), AFT, narrow-band reverse video, 10-24VDC. 8-pin DIP 276-1757...

MC1350 Universal IF Amp With AGC. For radio and TV circuits. Usable from DC to beyond 60 MHz. Typical gain at 45 MHz: 50 db. AGC range: 60 db typical. 12VDC. 8-pin, 276-1758...

MC1355CA3065 FM Detector. IF amp, limiter, FM detector, electronic volume attenuator and audio driver in a 14-pin DIP. Use as TV replacement or in homebrew receivers (100 kHz to 5 MHz IF). Just the thing for converting CBs and communications receivers to receive NBFM 100-24VDC 276-1759...

LM565 PLL. For FM SCA (background music) and RTTY decoders, modems. Infrared communicators, frequency synthesizers and more. 14-pin, 276-1720...

Computer-Project PC Boards
Radio Shack Exclusive!

Highest Quality Dual-Sided Glass
Great for peripheral and format conversion circuits. Fit card edge connectors, sockets and headers—check Shack's wide selection.

Connectors Contact Points Size Cat. No. Each
40 position 1520 4½ x 5½ 276-163 4.95
50 position 2898 5½ x 8½ 276-164 4.95
40 position 1520 4½ x 5½ 276-165 9.95
50 position 2898 5½ x 8½ 276-166 9.95

D-Submini 25 Connectors

Solder Type

Can be chassis-mounted. Optional hood allows use of non-ribbon type multiconductor cables when less than 25 conductors are required.

A Male. 276-1547...
B Female. 276-1548...
C Hood. 276-1549...

Whip Antenna

299

Universal replacement with 5 sections, extends from 7½" to 30½". Mounting flange. Red plastic tip for safety.

SPST Toggle Switch

With LED indicator

299

Great for dashboards and projects. LED glows when on. "Rate 5A 12VDC use only. 1/8" mounting hole 276-580...

Engineer's Notebook II

By Forrest Mims III

128-Page "Idea Book" Of Practical IC Circuits And Data

Revised to include more circuits, tips and data. Easy-to-read "graph paper" format. Useful for beginners and "pros" alike! 276-5062...

CHARGE SYSTEM ANALYZER

19.95

LEDs indicate condition of battery, regulator, alternator. Plugs into lighter socket. 22-1635...

Knobs For 1/4" Shafts

Reg. 1.69
Now Low As 79¢

129

RF Chokes

NEW LOW PRICE!

Now Low As 79¢

10 µH. 1.5 amps. (Was 89¢ in 1982 Catalog)...
100 µH. 2.0 amps. (Was 81.9¢ in 1982 Catalog)...

ICs

Price

Typical Applications

MC1308 5-99

2.5 to 5 MHz IF frequencies. For use with receivers, homebrew or as a homemade oscillator.

MC1356 5-99

DC to 5 MHz IF frequencies. For use with homebrew or as a homemade oscillator.

MC1350 5-99

Universal IF Amp With AGC. For radio and TV circuits. Usable from DC to beyond 60 MHz. Typical gain at 45 MHz: 50 db. AGC range: 60 db typical. 12VDC. 8-pin...

MC1355CA3065 5-99

FM Detector. IF amp, limiter, FM detector, electronic volume attenuator and audio driver in a 14-pin DIP. Use as TV replacement or in homebrew receivers (100 kHz to 5 MHz IF). Just the thing for converting CBs and communications receivers to receive NBFM 100-24VDC...

LM565 PLL. For FM SCA (background music) and RTTY decoders, modems. Infrared communicators, frequency synthesizers and more. 14-pin...

Our Best-Ever Analog Multimeter

4995

• Big 5-1/2 Inch Color-Coded Scale
• Built-in "Beep" Continuity Tester
• Fused and Overload Protected

"Pro" features and durability at a rock-bottom price! 21 ranges, 30,000 ohms-per-volt DC sensitivity, easy access to battery and fuse compartment. Timesaving audible continuity test. Measures to 1000 volts AC and DC in 12 ranges. DC current to 10 amps in five ranges. Resistance to 10 meg in four ranges and dB in five ranges. With manual, probes. Requires 9V and "C" batteries...

Trimmer Capacitors

159
Pkg. of 2

High "Q"—300 or More!

5-60 pF. PC mountable, with mini screwdriver slot adjustment. For IF and low-level RF peakig. 272-1340...

SPST DIP Switch

149
Pkg. of 2

Fits 8-Pin DIP Socket
4-Position

Perfect for on-board low-current switching.

275-1304...

120-Volt Neons

79°
Pkg. of 2

High brightness NE-2's premixed to dropping resistors for 120-volt AC/DC use.

272-1100...

High-Power Noise Filter

Dual "brute-force" L-C sections greatly reduce automobile ignitor/alternator noise in CBs

Boosters, tape players. 10 amps

270-041...

17.95

Autosound Faders And Selector

A

It's Fix-Up Time!

Tape/Radio Selector...

270-045...

2.99

B

Selector With Stereo Fader...

7.04...

5.99

C

High-Power Fader. Handles 50 watts...

270-048...

6.99

Charging System Analyzer

595

LEDs indicate condition of battery, regulator, alternator. Plugs into lighter socket...

22-1035...

9.95

AmericanRadioHistory.Com
UNIPROM

THE VERSATILE EPROM HANDLING SYSTEM

• Reads programs 2706, 2718, 2708, 2516, 2716 (single supply), 2732, 2712, INTEL'S 2732A, and the 2712 (INTEL/NEC) with no personality modules required. All power is derived from the 5-10 V bus, all signals are 5-10 V compatible. Port mapping occupies NO memory space.

• An on-board wait-state generator allows use with bus clock rates exceeding 6 MHz, with no loss in performance.

• All software is 8008/8085/8086 compatible and is fully C00 and CP/N compatible. Software includes "menu" command, "interpreter" (read/write and disk I/O commands and functions usually found only in 'moistets' and 'debuggers'.

UNIPROM features a 4 bit, with extensive documentation, including source listings — $195.00.

UNIPROM disk-based software with source on disk and listing with 5.25" or 8" C00s or CP/N, or NORTSTAR 5.25" CP/M) — $38.00.

Call for UNIPROM availability and pricing. 310-222-3839.

CIRCLE NO. 119 ON FREE INFORMATION CARD

YORK 10
BASF-DPS
WORLD STANDARD TAPE

MONEY BACK GUARANTEE

"We monitored the output to the computer and found absolutely no dropouts throughout the tape..." Stace Papadopolous, Beaver, OR

Call: 213-718-1430

CIRCLE NO. 120 ON FREE INFORMATION CARD

PERSONAL COMPUTERS

HARDWARE

PERIPHERALS

ATARI 400 ...355
ATARI 800 ...675
T1 99 4/1...360
VIC 20 ...255

SOFTWARE

HUNDREDS OF DIFFERENT KINDS

MAJOR MANUFACTURERS

TERMS

CASH, CHECK, OR MONEY ORDER.
NO C.O.D.'S. TENN. RESIDENTS ADD 6% TAX. NO CHARGE FOR SHIPPING IN THE CONTINENTAL U.S.

COMPUTER CONCEPTS
375 BREWER DRIVE
NASHVILLE, TENN. 37211
615-534-1404

SAVE 90%

YES you can save up to 90% on a computer system of your own.

$150.00 buys a 4MHz 280A with 64KB & a real Front Panel

$200.00 buys a Full Function 24x80 CRT with Keyboard

You can have your own computer and be running Fortran, Basic, Pascal, etc. If you get our

FREE BROCHURE

DIGATEK CORPORATION
Suite 7
2723 West Butler Drive
Phoenix AZ 85021

ROLL-YOUR-OWN TECHNOLOGY
AND SAVE A BUNDLE

CIRCLE NO. 125 ON FREE INFORMATION CARD
THE CONNECTION

Connect your IBM Selectric*, IBM Electronic, or Olivetti typewriter to any Microcomputer.

ESCON Products, Inc.
12919 Alcosta Blvd.
San Ramon, Ca. 94583
(415) 820-1256
227-2148

5¼" Floppy Disk Drives

(TAN DON Model TM 100-1 $219.95 ea.
 2 or more — $214.95 ea.)

F D I P o w er Connect or Kit $2.00
Tandon Manual and Schematic $3.00
12" Green Plastic "Zenith Monitor" $119.95
We also stock TM 100-2's. the TM 6005, 6035, and the 6030 Winchester Drives.

CALL NOW - TOLL FREE

800-824-7688 all states except CA.
800-852-7777 for CA residents.

Ask for Operator #93

MC/VISA or C.O.D. with certified check or money order. Kansas residents add 3% sales tax.

— Plus shipping.
For info call: 316-863-9225
316-685-9445

CROSS ASSEMBLERS

WRITTEN IN FORTRAN III

NOW AVAILABLE: two different cross-assemblers for each of the following machines:

IBM 650 652 655 6801 6805 6809 68000 8080185 6502 1802

— Two-pass assembler, forward reference
— Memory-efficient assembler
— Written in 1966 and standard FORTRAN IV
— "Industrial" Microprocessors also feature macros, conditional assembly, relocatable object code

Cross Assembler I (for the IBM MACHINES)

"Industrial" (for the IBM MACHINES)

6809 or 6802 $400.00 $200.00
Other 8-bit $300.00 $150.00
16-bit $500.00 $250.00

Prices include source code on tape in printed form, a manual, shipping (USA), and program support. All programs shipped from stock.

--- SPECIAL ON PREPAID ORDERS: Same-day EXPRESS MAIL shipping, no extra charge, Call today — your program will arrive tomorrow!

Intelligent Devices, Inc.
P.O. Box 163
Sacramento, CA 95818
(208) 488-0112

LEO ELECTRONICS, INC.

8921 S. Sepulveda #208
Los Angeles, CA 90045
(213) 641-3101 (800) 421-2418

VIC 20

NEC PC-8001 Computer
RCA VP-3501 Videotex
Data Terminal
Sotch 744-ORH Box of 10
SS, SD, D-Sec
ADD-ONS: Vx, Microsoft, TKC, Hayes, Epson, Zenith, Mt. Computer, UMI, NEC, Sony, Games

Mail Order: FUTRA COMPANY
P.O. Box 4080-PE, Torrance, CA 90510
(213) 328-8651
(800) 421-5066

TWX 910 349-6211 AGENTRA TRNC

Retail: DMC
20695 S. Western Ave. # 124
Torrance, CA 90501
(213) 328-1760

NEW COMMODORE 64

Sinclair ZX81

Software on cassette.

MULTIFILE Data Storage System. A versatile multi-purposed, stackable storage system for ZX81 computers. The number, size and shape of files are variable. Files may be created under a combination of the ZX81 system and any ZX81 software. An onboard security lock. Output to ZX81 printer is provided. MULTIFILE is supplied on cassettes, with three three-cassette cases for tape storage, and packed in an attractive permanent storage case together with extensive documentation, supporting appendices, and more...

Gladstone

Gladstone Electronics 900 Fairmount Blvd., DURHAM, NH 03824
Telephone Orders 900-999-4862. Please, No COD or C.O.D. customers

RAM

For ATARI

48K RAM BOARD FOR THE 400

- Highest quality available
- Reduces power consumption
- Reduces heat

48K Board (400) $240
32K Board (400/600) $100

Intec Peripherals Corp.
906 E. Highland Ave.
San Bernardino, CA 92404
(714) 881-1533

ATARI, 400, 800 are Trademarks of ATARI, Inc.

A2-1 LOGIC ANALYZER plugs into the APPLE 2 COMPUTER. It has 60 wire-wrap socket probes. 32 input channels are columns of 1's and 0's on Apple screen. 16 user programmable outputs, clock inputs, 11 ground Jends. BASIC, Pascal, and application routines supplied in source form for sample mode, tracer mode, setting outputs. Also user programmable A2-1 card with probe leads, manual, 2 diskettes — $400.00. Send for free information.

Kanal Corporation
Box 539
Johnson City, New York 13790
607-797-9999

MICROPROCESSORS

Z-80A CPUS $5.00

TERMS: Check, Visa, Mastercard. Call for C.O.D. U.S. Funds only. California Residences add 6% Sales Tax.

SHIPPING: Add $2.00 for Ground $5.00 for air.

ALL MAJOR MANUFACTURERS ALL PARTS 100% GUARANTEED

WHY PAY MORE? SAVE MONEY!

LOWEST PRICES ON PARTS!

EPROMS

8510 7.50
8755 7.50
8749 7.50
8738 7.50
8702 7.50
8775 7.50
87550 7.50
8756 7.50

REGULATORS

7805 7.50
7815 7.50
7815 7.50
7815 7.50
7815 7.50
7815 7.50

RAMS

4M 162000 $13.00
4M 135000 $16.00
1M 135000 $16.00

AMERICAN RADIO HISTORIC

AmericanRadioHistory.Com
NOW! 176K TOTAL RAM

For the '89
• 3 MP/M & C Compatible Banks
• "Invisible Disk" CP/M+ Software Included

Only $595.00

MAGNOLIA MICROSYSTEMS

2264 - 15th AVE W • SEATTLE, WA 98119
(206) 285-7266 (800) 426-2841

CP/M® and CP/M+ are registered trademarks of Digital Research, Pacific Grove, CA.

CIRCLE NO. 130 ON FREE INFORMATION CARD

DISKETTES

CASSETTES

Error-Free 51/4-inch Diskettes (MD-5) single-sided, soft sector, single or double density, reinforced hub.

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty 10</th>
<th>Qty 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-10</td>
<td>$7.50</td>
<td>$32.50</td>
</tr>
<tr>
<td>C-20</td>
<td>9.00</td>
<td>39.00</td>
</tr>
<tr>
<td>C-60</td>
<td>11.50</td>
<td>50.00</td>
</tr>
<tr>
<td>C-90</td>
<td>15.00</td>
<td>70.00</td>
</tr>
</tbody>
</table>

UPS SHIPPING INCLUDED in Continental USA
CA Customers add taxes

MICROSETTE

475 Ellis St., Mt. View, CA 94043 (415) 968-1604

CIRCLE NO. 136 ON FREE INFORMATION CARD

SUPER SALE

EPROM's

<table>
<thead>
<tr>
<th>2716</th>
<th>2732</th>
<th>2532</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5V, 450nS)</td>
<td>$3.95</td>
<td>$3.55</td>
</tr>
<tr>
<td>$3.95</td>
<td>$3.55</td>
<td>$3.55</td>
</tr>
<tr>
<td>CALL</td>
<td>CALL</td>
<td>CALL</td>
</tr>
<tr>
<td>2114L-2</td>
<td>2.10</td>
<td>1.70</td>
</tr>
<tr>
<td>6164</td>
<td>1.70</td>
<td>CALL</td>
</tr>
<tr>
<td>(200ns)</td>
<td>7.90</td>
<td>7.49</td>
</tr>
<tr>
<td>CALL</td>
<td>CALL</td>
<td>CALL</td>
</tr>
</tbody>
</table>

Miscellaneous

CPU Z80A $5.29 ea.
CDP-1864ACE (UART) $4.80 ea.
16K RAM Expansion Kit for TRS-80 Mod III $12.95/ea.

SUNTRONICS CO., INC.

2621 CRENSHAW BOULEVARD
HAWTHORNE, CALIFORNIA 90250

IN CALIFORNIA OUTSIDE CALIFORNIA TOLL FREE
(213) 644-1149 1-800-421-5775

CIRCLE NO. 137 ON FREE INFORMATION CARD

TRS-80 COMPUTERS

Model II 64x $2988
Model III 16x $595
Model III 48x 2 Drives RS232 $2099
Color Computer 4K Level I $308
Color Computer 16K Extended Basic $459

EPSON Printers CALL

All printers and accessories in stock.

Discount Prices on full lines of Radio Shack & TCS Custom Computers and Accessories. Call for catalog.

Texas Computer Systems

P.O. Box 1327 Arlington, Texas 76004-1327
TOLL FREE 800-433-5184
Texas Residents 817-274-5625

PAYMENT: Money order, cashier's check or certified check. Prices reflect 3% cash discount. Call for Visa and Mastercard prices.

CIRCLE NO. 138 ON FREE INFORMATION CARD

NEW!!!

8085 SINGLE BOARD COMPUTERS

SRC85

8K 4K ROM EPROM (2516) EPROMs are not supplied.
4K 1 lines-parallel series handshake (4 independent ports)
All CPU control lines are available at the connectors.
This card is useful for the vast majority of control applications.
Price: $149.00 (assembled and tested)

SRC85-2

4K ROM EPROM (2516) EPROMs are not supplied.
11 1 lines-parallel series handshake (3 independent ports)
Some CPU control lines are available at the connectors.
This card is very useful for small control applications.
Price: $179.00 (assembled and tested)
The above boards have a CRYSTAL time base, on-board regulator, 236 bytes of RAM, 1 timer, and a 6 pin LED indicator light. Data and internal bus control lines are not accessible. The boards are supported by complete and extensive manuals. Access connectors are double row pin header style. There are solder masks and legends on top of quality p.c. boards.

CIRCLE NO. 140 ON FREE INFORMATION CARD

NEW COMPUTER MART FORMAT

3" x 2"

PICTURE YOUR AD HERE!

NEXT CLOSING DATE: AUGUST 1

SHOP OWNERS! SELL POPULAR ELECTRONICS

In your shop and make big profits on every copy. We pay all shipping and give you a FREE display rack. Minimum order 8 copies/issue.

FOR DETAILS, CALL COLLECT:
(212) 725-7518

CIRCLE NO. 139 ON FREE INFORMATION CARD
FOR SALE

ELECTRONIC PARTS, semiconductors, kits, FREE FLYER. Large catalog $1.00 deposit. BIGELOW ELECTRONICS, Bluffton, Ohio 45817.

SAVE UP TO 50% on name brand test equipment. Free catalog and price list. Selen Electronics, Box 82, Sasko, Ia. 60077.

BUILD AND SAVE. TV EARTH STATION, DETECTIVE ELECTRONICS. Video Recorders, Color Cameras, advanced Telephone Projects. BROADCAST Electronics. 50 page color catalog of unusual electronic projects AIR MAILED $3.00, with 3 hour audio cassette dramatization of our catalog $5.00. Don Britton Enterprises, PO Drawer G, Waikiki, Hawaii 96815.

POLICE-FIRE SCANNERS, crystals, antennas, CB's, Radar Detectors. HPR, Box 19224, Denver, CO 80219.

PRINTED CIRCUIT supplies, chemicals, tools, artwork, printing solutions. Major credit cards. Catalog $2.00, refundable. CIRCOLEX, Box 196, Mary, NY 14303.

RECONDITIONED TEST EQUIPMENT $1.00 for catalog. WALTER'S TEST EQUIPMENT, 2897 Nickels, San Pablo, CA 94808, (415) 758-1050.

NEW ELECTRONIC PARTS. Continuously stocked. Stamp brings catalog, Daylpor Electronics, 3029 N. Wilshire Ln., Arlington Hts., Ill. 60005.

ELECTRONIC CATALOG. Over 4500 items. Parts, Amps, components. Everything needed by the hobbyist or technician. $2.00 postcard & handling (United States Only), refundable with first $15.00 order. T & M Electronics, 472 East Main St, Patchogue, NY 11772. (516) 289-2520.

BEWARE! SATELLITE TV

Before you buy junk hardware slapped together by some outfit in Spider Breath, Montana, you better learn the technology from someone who knows.

Get Smart, it's vital you read our up-dated $4.00 technical information manual used by the office of Consumer Affairs, Rockwell Int., to minimize complaints. Re-ordered by NASA, Complete, easy to understand, beautifully illustrated. — only $7.55 today.

CALL 24-hrs. C.O.D. Hotline (305) 339-7600

SPACECOAST RESEARCH CORPORATION
P.O. Box 442-A, Altamonte Springs, FL 32701

MICROWAVE TV SYSTEM

by Precision 3-Packed Laboratories
Prebuit and Preamplifiers
Assembled Power Supply
Low-loss Coaxial Cables
One Year Warranty
Completely Built and Tested

DATA SERVICE CO.
3110 Cypress Street
Rossville, MN 55113
612-836-2949

FREE CATALOG 99 cent kits. Parts, Bargains Galore! ALL-KIT, 434 West 4th St., West Isip, New York 11795.

SMALL KIT CATALOG contains test equipment. Phone 415-447-3433. DAGE SCIENTIFIC INSTRUMENTS, Box 1054P, Livemore, CA 94550.

FREE CATALOG 99 cent kits. Parts, Bargains Galore! ALL-KIT, 434 West 4th St., West Isip, New York 11795.

FREE KIT CATALOG contains test equipment. Phone 415-447-3433. DAGE SCIENTIFIC INSTRUMENTS, Box 1054P, Livemore, CA 94550.

FREE FLYER! I.C.'s, resistors, capacitors, jacks, etc., plus GSM music synthesizer/audio IC's, power amp modules, analog delay IC's, computer books, and more. Also plans for analog delay/chaos unit PGS Electronics, P.O. Box 748-A, Terre Haute, IN 47808.
CABLE TV CONVERTERS AND EQUIPMENT
BUY DIRECT & SAVE

40 CHANNEL CONVERTER $38 Regular $69

AMA TEUR MICROWAVE ANTENNA
- Triangular-Parabolic Antenna
- 26 DB Gain
- Advanced Down Converter
- Power Supply Included
- Low-Loss Coaxial Cables
- Complete-Ready to Install
$119 Elsewhere $289
Send $2 for Complete Catalog
Quantity Discount • VISA • COD

VIDEO RESEARCH
PO BOX 19462
LOUISVILLE, KY 40219
For Orders Only 800-626-5533
For Information 502-969-1816

CUSTOM TV SCHEDULES for individual channels: HBO, SHOWTIME, MOVIE CHANNEL. $18.00

1/4 CARBON RESISTORS 2 e. each. Any variety. Quantity discounts. O Electronics, P.O. Box 3034, Camarillo, CA 93011.

NEW, UNCUT MOVIES FREE! Receive up to 60 satellite channels on your home receiver. Sporting events, religious programs, other TV stations and more. Catalog $3. MDS Specialist, Box 67, Gothenburg, NE 69737.

SHORTWAVE LISTENERS! Free catalog. High quality SWL equipment. RADIO WEST, 3417 Purer St.

THE FIRST LOW DISTORTION CAR SPEAKERS.
Good news travels fast and sounds great when it's from Speakerlab—now with new speaker systems handmade for your car and featuring polypropylene woofers, custom crossovers, and more... If you have quality car audio equipment DON'T WASTE MONEY on poor speakers.
Write for our FREE Speaker Catalog.

CABLE TV

10 FREE LED'S
Introductory offer: Ten prime T-1 or T-1-3/4 red LEDs. $0.20 value. Include $1 to help cover postage & handling.

AMAZING ELECTRONIC DICE GAME — LED display, complete kit $12.50 — D R DESIGN. P.O. Box 401382, Garland, Texas 75040.

TEST EQUIPMENT, tools, parts, aids. Free catalogue. Color-technology, P.O. Box 12916, Rochester, NY 14612.

SUBSCRIPTION TELEVISION Microwave Downconverters; UHF Swine waves Using Advanced Circuitry and Technology. External TV connections. Fifty other complete kits available. Send $1.00 for ALL PLANS AND PRICES to: BETA ELECTRONICS, 2081-G, 3rd Street, Riverside, CA 92507.

ACOUSTIC TEST SET for adjusting equalizers; speakers; $49.00. Free three page brochure. HALL ENGINEERING, Dept. 22, P.O. Box 506, Martinsville, NJ 08836.

NEW! EXPERIMENTAL FREQUENCY CONTROL MODULES. Gated Pulse or Sine Wave. Latest design. Plans, kits, factory built. Revealing information, price lists $2.00 refundable. LEE-TRONIX, Box 253, Taylor, MI 48180.

ELECTROMAGNETIC MUSIC SYNTHESIZER. Simple, inexpensive to build. Plans only $4.00. Box 30663, Tucson, AZ 85751.

STOP! DON'T PAY EXTRA! Buy our high-gen 2 to 2.5 GHz Microwave Television Down Converter kit with temperature stabilization and power supply (less transformer) for $12.95. Overseas and parts, only $29.95. GUARANTEED! Send payment to: HOPTRONIX, P.O. Box 401382, Garland, TX 75040.

CIRCUIT BOARDS, make your own, professional resist process $15.95 kit. JESKIN ENTERPRISES, 6400 Sycamore, Coloma, MI 49038.

SATELLITE TELEVISION! Super discount prices! Most equipment lines available. Don't delay-call today! COMMUNICATIONS CONSULTANTS, 501-452-3149.

DISCOVER THE BROOK HOUSE! — The soothing, peaceful sound of this UNDUE SYNTHESIZER. Complete plans are now available. Incredibly refreshing, thoroughly relaxing. MONEY-BACK GUARANTEE! Send $4.95 to: Synthesys, Inc., Box 1943, Amsterdam, NY 12010.

LATEST FORMERLY TOP SECRET circuits for pay TV systems. Education Manual $4.95. Commute, P.O. Box 7200, Costa Mesa, CA 92628.

TRANSFORMERS, 10V-4A $6.95, 15VCT-3A $7.50, 30VCT-1A $8.50, 40VCT-1A $9.50. All primaries 120V. 25W Shipping. CA residents 6% tax. J. Macswain, Box 4697, Downey, CA 90241.

MICROWAVE TV DOWNCONVERTER, assembled and tested $44.95, Kit $29.95, Power Supply Kit $29.95. Detailed instruction manual included. Satisfaction Guaranteed. Check, M.O., COD, XANDI, Box 25647, Dept. 31, Tempe, AZ 85282.

PINBALL MACHINE Electronics Module, includes display, audio output, schematic. $24.95. J-TRONIX, Box 1018, Cape Canaveral, Florida 32920.

UHF CONVERTERS—DELUXE Sine Wave UHF Converter. Sound out of TV like normal with only antenna connection to TV or VCR. Kits $175. 312/367-3455. LSR ENGINEERING, Box 6075, Chicago, IL 60680.

COMPANY EQUIPMENT
SAVE 90% Build Your own Minicomputer. Free Details. Diga-tek, 2723 West Butler Dr., Suite 20C, Phoenix, AZ 85021.

USED COMPUTER TERMINALS: Printers, Modems, Sunlight Electronics Parts. Catalog $1.00. SPECIAL: Daisy Wheel Printers or $40.00. Xerox 820 CPU Board $150.00. RONDURE COMPANY. THE COMPUTER ROOM, 2522-PG, Butler St., Dallas, TX 75225. (214) 630-6621.

APPLESOF ROM SETS — Original Apple parts. 6 ROMs, includes AppleSoft Basic and Autostart Monitor. Converts your Apple II to an Apple II - Brand new, tested, guaranteed, installation instructions, and included UPG included. $89. Electronic value Industrial Inc., P.O. Box 157-P, Morris Plains, NJ 07950. Phone 201-267-1117.

APPLE BUILDERS — Send stamp for your flyer of Apple parts. Keyboards, IC sets, ROMS, connectors, Shugart SA-40 disk drives with Apple modification kits etc. Electronic value Industrial Inc., P.O. Box 157-P, Morris Plains, NJ 07950.

BOND CALCULATIONS for TRS-80 Pocket Computer. Price, yield and interest for most securities. Send $35.00 for program or $2.00 for details to: Downum, 1117 Flanders, Garner, NC 27529.

POWER SUPPLIES for FLOPPY and hard discs, mini and Micro Computers and many others. Extreme isolation Transformer, for ridding your computer of troublesome line noise. Send for free catalog: KENTEK, O. Drawer 1209, San Marco, California 92620. (714) 744-3346.

COMPUTER SOFTWARE
MATH/SCIENCE SOFTWARE for TRS-80, PET, Apple II. Write for free catalogue. MICRO-LEARNINGWARE, Box 2134, N. Maniato, Minnesota 55001. 705-625-2005.

AMATEUR RADIO
CALL US FIRST. For low Ham prices. All major brands. DISCOUNTS, DISCOUNTS!! Prompt Shipping. Medicine Electronics, 1526 McKinney, Houston, TX 77010. Dive time: 1-180-953-0056

C.B. EQUIPMENT
GET MORE CB CHANNELS AND RANGE! Frequency Expanders, speech processors, secret FM converters, how-to-books, plans, modifications. Catalog $2. CB CITY, Box 31500PE, Phoenix, AZ 85046.

BEARCAT Scanners: Sales, Service, Trades (Bearcat only), Save; CRYSTALS; $2.75. RADIOSALES, 3462 Oakland, Oshkosh, WI 54901.

CABLE TV

36 CHANNEL CABLE CONVERTER FOR TV & VTR $29.95 6 or more 24.95 ea.
Call for free catalog 800-523-0721

Spectrum Electronics, 5932 Market St., Philadelphia, PA 19139

PLANS AND KITS
PRINTED CIRCUIT Boards from sketch or artwork. Kit projects. Free details. DANOCHINS Inc., Dept. PZ, Box 261, Westland, MI 48185.

GIANT SCREEN TV projection system converts any television into 7-foot picture. Like $6 in stock $14.95. (Dealers welcome). Bell Video, 4616 Belair Rd., Baltimore, MD 21206.

FM STEREO TRANSMITTER KIT. Range up to 1/2 mile, broadcast quality, 30 db separation, 300 mv audio input sensi-
tivity. Tunes 88-106 MHz. Highest stable, 50 ohm output. Requires +15V. Complete kit only $89. Quality commercial AM TANS-

PROFESSIONAL LIMITER-COMPRESSOR-EXPANDER KITS. Pro specs and features, balanced input, adjustable threshold, slope (1 to 100), attack and release. Models from $79 and up. Rack mounting available. Free Info. STEL-
ATION, 4942, Whitest-205, N. Hollywood, CA 91607.
HANDELD ELECTRONIC GAMES have been forced to become more innovative in order to compete with the proliferation of arcade video games. According to Nick Underhill of Entex Industries, a major manufacturer of handheld games, players are becoming increasingly sophisticated and are now often quicker than the computer. Although the cost for a given level of game complexity has fallen with the cost of the chips that make the game work, the players are demanding more advanced games, which pushes the price back up. Entex's response has been a relatively low-priced system called AdventureVision, whose 6000 pixel dot-matrix display resembles a TV screen, and is said to be able to reproduce any graphics "from space mutants to the Mona Lisa." Players select from among Entex's game cartridges and control the action with a joystick in one- or two-player modes.

A ROBOTICS CENTER is being established at the University of Rhode Island. An outgrowth of a project supported by the National Science Foundation and more than 30 industrial firms, it is intended to be an experiment in university-industry cooperation. A four-year NSF grant to URI of $700,400 will be matched in the first year by contributions from the firms now involved in the project, with other firms expected to join later. The center should be totally supported by industry after four years.

GOLFERs IMPROVE THEIR GAME, according to Mitsubishi Electric, by using Mitsubishi's portable GL-500 base mat. The unit incorporates four sensors and a micro-computer to compute data about how you have hit the ball on the mat. Upon taking a swing, such parameters as head speed, face angle, hitting area, club-head swing, carry, ball driving direction, etc., are digitally displayed—letting you quantify your errors. All clubs, from driver to putter, can be used. The GL-500 is now on sale in Japan, with U.S. sales expected soon, either under the Mitsubishi name, or by OEM agreement. Perhaps the next development we can expect is a robot caddy, or maybe an android golfing partner who will give us tips on the stock market—electronically, of course.

"SMART CARDS", developed by Intematique of France, may soon replace Food Stamps, according to Richard Sprague of the U.S. Dept. of Agriculture. The cards, with microcircuits printed on them, can be interfaced to a central computer via a terminal at the point of purchase, which then records the transaction on the card itself. The Reagan administration is said to be interested in issuing "Smart Cards" to welfare recipients in order to eliminate paperwork and reduce fraud.

CUBAN RADIO INTERFERENCE was again the subject of testimony given before the House Commerce Subcommittee on Telecommunications. John B. Summers, Executive Vice President and General Manager of the National Association of Broadcasters, explained that the Reagan Administration's proposal to broadcast to Cuba on the 1040 AM frequency via Radio Marti might provoke Cuban "counter programming" on the same frequency and power level (500 kW), causing interference to stations throughout the U.S. operating on that channel. An alternative, according to Summers, would be to operate Radio Marti at 1610 or 530 kHz since Cuban AM receivers could pick up the broadcasts readily and no U.S. commercial stations currently operate on those frequencies. Of course, said Summers, the Cubans can interfere with whatever frequencies they choose to simply by turning a dial. That's why a diplomatic solution is said to be imperative.
Give your system some NEC, and watch its performance soar.

NEC's crisp, clear, high-performance JC1202 RGB color monitor, an industry standard. Also available: the JC1201 composite video version. NEC's classic green monitor, (L1201), one of computing's performance legends. Non-glare screen, easy on the eye. And the checkbook.

The impressive new NEC dot matrix printer. Parallel interface, 100 cps, 2K buffer, pin or friction feed. Stunning performance and versatility in the hottest new peripheral of the year.

Peripherals from NEC can make almost any computer system better. Owners of Apple®, Radio Shack®, Atari®, IBM®, and many other personal computers will find their equipment to be compatible with NEC's famous monitors, as well as our highly-featured new PC-8023A dot matrix printer. (Some configurations may require a different interface.) Ask your dealer for a demonstration.

Productivity at your fingertips

NEC

NEC Home Electronics (USA)
Personal Computer Division
1401 Estes Avenue
Elk Grove Village, IL 60007

CIRCLE NO. 35 ON FREE INFORMATION CARD
Protect Your Stereo System and Maintain Its Sound

The D4™ Record Care System
The highly active D4 fluid and unique directionally fibered pad removes harmful microdust and debris that can cause permanent damage to your recordings.

The SC-2™ Stylus Care System
SC-2 fluid with the exclusive nylon fibered brush effectively loosens and wipes away stylus contamination, a major contributor to record wear.

For a free copy of our "Guide To Record Care" write to Discwasher.