FOR THOSE OF YOU WHO ARE HAVING SECOND THOUGHTS ABOUT YOUR FIRST CB.

Move up to the all-new Cobra 29GTL. It's the third generation of the trucker-proven Cobra 29. And like the 29 and the 29XLR before it, it advances the state of the art.

Transmitter circuitry has been refined and updated to improve performance.

Receiver circuits have been redesigned to include dual FET mixers, a monolithic crystal filter and a ceramic filter to reduce interference and improve reception.

By improving the transmitter circuitry the 29GTL keeps you punching through loud and clear. By incorporating new features for better reception everything you copy comes back loud and clear.

So if you're having second thoughts about your first CB, make your next CB the Cobra 29GTL.

We back it with a guaranteed warranty and a nationwide network of Authorized Service Centers where factory-trained technicians are available to help you with installation, service and advice.

But more important than that, we sell it at a price you won't have second thoughts about.

Cobra

Punches through loud and clear.

Cobra Communications Products
DYNASCAN CORPORATION
6460 W. Cortland St., Chicago, Illinois 60635

Write for color brochure
EXPORTERS: Empire, Plainview, N.Y., CANADA: Atlas Electronics, Ontario

CIRCLE NO. 11 ON FREE INFORMATION CARD
You’re in bed. It’s late at night and you’re watching TV. It’s time to shut off your TV, so you use a remote control device, press a button, and off it goes.

That’s not unusual. But what is about to invade the typical American home will be...

AMERICA WILL NEVER BE THE SAME

Scientists have developed the technology to individually page any light or electrical appliance in your home and command it to go on or off from a device that fits in your pocket.

Remote paging requires no special home installation since it utilizes your existing household wiring system and small inexpensive modules that plug into your wall outlets.

The system is also very inexpensive. It costs only $13.95 per module to control any light, only $14.95 for any appliance, and less than $100 for a complete paging system.

WHAT IT WILL DO

Remote space paging will perform many useful functions that will pay for your modest investment.

Security From your bed, you can turn on all the interior lights, your exterior lights, and sound an alarm to warn your neighbors.

Savings You can turn on your air conditioning system or turn up your heat just before you arrive home. The savings in energy will practically pay for the system itself.

Convenience Wake up in the morning to a hot cup of coffee, the TV, and a car that’s ready to go as you tie space paging in with a computerized timing system.

HERE’S HOW IT WORKS

Space paging is easy to understand. You hold a pager in your hand and press a number. You can control the appliances in your home. You can use your phone to control the appliances any time of the day or night.

The digital signal pages only those wall modules set to the number you keyed. If you page a light, for example, you can also page it to turn on, off, or you can even dim it (just like the dimmer switch you have on your wall). You can page an appliance such as your coffee maker or toaster to turn either on or off. There are up to 16 different electrical devices you can control with your pager.

A PERSONAL SYSTEM

Because it is so easy to use and so inexpensive, you can start with just a few modules and expand later. There are modules that plug into your outlets, and modules that replace your present wall switches. The system can be set for hundreds of different codes, so even if your entire neighborhood has space pagers, you will be able to privately use yours without any interference from your neighbors.

To make space paging work, you need a device to generate the digital code and another device to receive and transfer the signal to your household wiring. There are two systems available to do this—all adding a degree of versatility to the concept.

Direct-Controlled The direct system consists of a control unit at $39.95. The control unit is plugged into the wall and placed by your bed or at any location you select. To open, close, or dim a light, you press the appropriate number and press the function you want to perform.

You also have the option of using the system with a remote ultrasonic pager. You point the pager at the control unit and enter the command. The remote pager lets you move about a room or area and is an optional accessory of the direct system at only $19.95.

Timer-Controlled The timer-controlled unit costs $49.95 and consists of a digital clock and a memory. You can program the exact time you want each light or appliance to turn on or off. You also have a “dynamic living pattern” device which controls the lights randomly and automatically to make it look like you are home while you are away or on vacation. You can now have your TV wake you up, your coffee started, and even your car warmed up in a set sequence every morning. It’s like having your own invisible robot.

TRY THE SYSTEM NOW

We recommend that you purchase a series of modules, wall switches, and the direct system as these components are available right now. A good starter package consists of one plug-in module for a plug-in light at $13.95 (Order Nr. 3011), two modules for appliances at $14.95 each (Order Nr. 3012), one wall switch for $14.95 (Order Nr. 3013), and the control unit for $39.95 (Order Nr. 3010). The total cost for the package is $96.75 complete.

If you wish to order the remote pager, it costs $19.95 (Order Nr. 3014). If you wish to order just the starter package, use Order Nr. 3015. Postage and handling will be $2.50 for each order no matter how many modules or receiving control units you purchase.

When you receive the package, set the plug-in wall modules to specific numbers. Plug in a light. See how you can turn on and off or even dim the light. Connect your outdoor lights to the wall switch.

Then plug your TV and your coffee maker into one of the appliance modules. Plug your control unit into the outlet by your bed. When you’re ready to go to sleep, turn off the outdoor and indoor lights, the TV, and go to sleep.

The next morning, turn on the lights, the TV, and the coffee maker from your bedside. Get dressed, and when you arrive at the kitchen table, sit down to a hot cup of fresh coffee.

Let’s say you’re in the living room and the lights are plugged into the modules and the control unit is in the bedroom. No problem. You can override the system by turning the lights on or off manually at your lamp switch.

After you experience the convenience of space paging, think of how you can expand the system inexpensively, adding modules to more of your lights and to your wall switches so that you can control your remaining exterior and interior lights. Visualize the security that can be yours once you can control all your lighting and electrical appliances from one central location. Then order more wall switches and light and appliance modules. If you want to control your lighting from two locations, order another control unit or order the entire system you want with your first order.

Once you’ve turned your bedroom into a paging command center, there is one more expansion possibility: the timer-controlled system which will be available early in 1979. JS&A customers will be advised first of its availability.

JS&A is America’s largest single source of space-age products. We back the system with a prompt service-by-mail facility, a one year limited warranty and a 30-day trial period. If you’re not completely satisfied, simply return the system for a prompt and courteous refund.

Space paging will bring you freedom, security, convenience, and peace of mind. It will save you steps, time, and money. Finally, right from your bed, you can control your entire home’s electronics—something that only a thousand dollar home computer could have done until the space pager was developed.

To order your space pagers, simply send your check for the correct amount (Illinois residents please add 5% sales tax) or credit card buyers may call our toll-free number below. Please also specify the order numbers.

Let space-age technology turn your house into a home of the future. Order your space pager system at no obligation, today.

Space Pagers

Control your entire home from your pocket with the world's first micro electronic remote space pager.

JS&A NATIONAL SALES GROUP

Dept. PE One JS&A Plaza
Northbrook, Ill. 60062 (312) 564-7000
Call TOLL-FREE 1 800 323-6400
In Illinois Call 312 564-7000
©JS&A Group, Inc., 1978
Color. VP-590 add-on Color Board allows program control of 8 brilliant colors for graphics, color games. Plus 4 selectable background colors. Includes sockets for 2 auxiliary keypads (VP-560). $69*

Sound. VP-595 Simple Sound Board provides 256 tone frequencies. Great for supplementing graphics with sound effects or music. Set tone and duration with easy instructions. $24*

Music. VP-550 Super Sound Board turns your VIP into a music synthesizer. 2 sound channels. Program control of frequency, time and amplitude envelope (voice) independently in each channel. Program directly from sheet music! Sync provision for controlling multiple VIPS, multitrack recording or other synthesizers. $49*

Memory. VP-570 RAM Expansion Board adds 4K bytes of memory. Jumper locates RAM in any 4K block of up to 32K of memory. On-board memory protects switch. $95*

EPROM Programmer. VP-565 EPROM Programmer Board comes complete with software to program, copy and verify 5-volt 2716 EPROMs—comparable to units costing much more than the VP-565 and VIP put together! Programming voltages generated on board. ZIF PROM socket included. $99*

EPROM Interface. VP-560 EPROM Interface Board locates two 5-volt 2716 EPROMs (4K bytes total) anywhere in 32K of memory. VIP RAM can be re-allocated. $34*

Tiny BASIC** VP-700 Expanded Tiny BASIC Board puts this high-level language on your VIP BASIC stored in 4K of ROM. Ready for immediate use—no loading necessary. This expanded BASIC includes the standard Tiny BASIC commands plus 12 additional—including color and sound control!! Requires external ASCII encoded alpha-numeric keyboard. $39*

Auxiliary Keypads. Program your VIP for 2-player interaction games! 16-key keypad VP-580 with cable ($15') connects to sockets provided on VP-590 Color Board or VP-585 Keyboard Interface Card ($10').

ASCII Keyboard.

COSMAC VIP lets you add computer power a board at a time.

With these new easy-to-buy options, the versatile RCA COSMAC VIP (CDP18S711) means even more excitement. More challenges in graphics, games and control functions. For everyone, from youngster to serious hobbyist. And the basic VIC computer system starts at just $249* assembled and ready to operate.

Simple but powerful—not just a toy.

Built around an RCA COSMAC microprocessor, the VIP includes 2K of RAM. ROM monitor. Audio tone with a built-in speaker. Plus 8-bit input and 8-bit output port to interface relays, sensors or other peripherals. It's easy to program and operate. Powerful CHIP-8 interpretive language gets you into programming the first evening. Complete documentation provided.

Take the first step now.
Check your local computer store or electronics parts house. Or contact RCA VIP Marketing, New Holland Avenue, Lancaster, PA 17604. Phone (717) 291-5848.

* Suggested retail price. CDP18S711 does not include video monitor or cassette recorder.
** Available 1st Quarter, 1979.
Feature Articles

43 HOME PROJECTION COLOR TV—THE BIG PICTURE IS HERE / Kris Jensen
A buyer's guide to projection TV receiver systems.

50 HOW ACCURATE ARE FM TUNING METHODS? / Daniel R. VonRecklinghausen
A major cause of distortion in FM tuners and receivers is explored.

68 MICROCOMPUTER ROM BOARD BUYING DIRECTORY / Staff

70 A PERSONAL MICROWAVE COMMUNICATIONS SYSTEM
THE MINI-WAVE, PART 2 / Robert B. Cooper, Jr. & S.K. Richey

Construction Articles

58 BUILD A UNIVERSAL ELECTRONIC TIMER / Michael S. Robbins
Turn on or off an electrical device or a tone.

62 TROUBLESHOOTING ANALYZER FOR AUTOMOTIVE ELECTRIC SYSTEMS / Tony Caristi
Locates problems in battery or charging systems.

65 BUILD A REMOTE ANTENNA SELECTOR SWITCH / Bud Weisberg
Low-cost, reliable switch selects one of six antennas.

Columns

20 STEREO SCENE / Ralph Hodges
A New Tonearm.

76 HOBBY SCENE Q & A / John McVeigh

77 SOLID STATE / Lou Garner
Those Versatile Multis.

81 EXPERIMENTER'S CORNER / Forrest M. Mims

85 DX LISTENING / Glenn Hauser
Fine Arts Shortwave Service.

87 COMPUTER BITS / Hal Chamberlin
Update on Graphics.

Julian Hirsch Audio Reports

24 ADVENT "POWERED ADVENT" SPEAKER SYSTEM

28 SAE TWO STEREO TUNER T3U AND INTEGRATED AMPLIFIER C3A

32 B.I.C. MODEL T-2 CASSETTE DECK

Departments

4 EDITORIAL / Art Salsberg
FCC Power and Challenges.

6 LETTERS

8 OUT OF TUNE

10 NEW PRODUCTS

15 NEW LITERATURE

94 SOFTWARE SOURCES

109 OPERATION ASSIST

110 ELECTRONICS LIBRARY

115 ADVERTISERS INDEX

116 PERSONAL ELECTRONICS NEWS
Editorial

FCC POWER AND CHALLENGES

The pressures of new developments, the economy, and the legislative climate combine to determine what will likely change in some areas of the consumer electronics field. Among the "movers and shakers" is a handful of people that comprise the Federal Communications Commission. What will they do next?

For example, now that Canada established a "No-Code" Amateur Radio license at the end of '78, will the U.S. soon follow in its footsteps? I hope that the FCC will act on this quickly, maintaining the Canadian operating restrictions that promise to motivate such licensees to upgrade with a traditional code exam. Also, what ever happened to the reputed restrictions set by international agreement that Morse Code proficiency is a prerequisite to amateur radio operation on high-frequency bands? Simple. It was never true above 144 MHz!

In truth, the FCC has not been idle the past year. For starters, the agency rewrote its CB rules in "plain English." One's first reaction could well be, "It's about time!" But as it happens, the FCC is the first Federal Government agency to rewrite its rules in this manner. (For a copy of the new rules, send a $1.25 check or money order made out to the Superintendent of Documents to CB Handbook, Consumer Information Center, Department 109F, Pueblo, CO 81009.)

CB radio, which celebrated its 20th anniversary in '78, might eventually be the beneficiary of a recent FCC action—an order to draft a notice of inquiry on carving out additional frequencies for CB in the 900-MHz band. This, of course, will not be finalized for some time to come since public comments are invited which have to be weighed, proposals made, etc. Hams can rejoice, naturally, since the 220-MHz band has been left alone. Canada's new no-code license, in fact, permits "packet radio transmissions"—computer data bursts—on 220.1–220.5 MHz, which are shared with other modes of modulation.

The FCC is also a factor in congressional legislation that seeks to pass a radio frequency interference (RFI) bill that will authorize the FCC to establish minimum standards for reducing r-f interference to audio equipment. Such bills died in committee on adjournment of the 94th Congress. But continued efforts to pass an RFI bill are expected. The Institute of High Fidelity (IHF) expressed concern on this issue, observing that there are no simple solutions to solving the problem, legislators and/or administrators are not qualified to dictate design details unrelated to product performance, and that specific harm to proper functioning of high-fidelity equipment could occur by implementing "easy solutions" to RFI problems as suggested by legislators. (It'll increase the price of audio gear, too.)

On other fronts, the FCC was attacked by the Electronics Industries Association, which disputes its uhf conclusions that a 7-to-10-fold improvement is achievable in land mobile spectrum efficiency with current technology. The agency was on the offense in another arena. FCC Commissioner Tyrone Brown charged that the U.S. Court of Appeals is seeking to be a "super FCC" by making communications policy. He allowed, however, that this is being done by FCC default and by the FCC saying one thing and doing another. The upshot of the latter—consistent statements and actions—creates industry uncertainty among the public, Brown declared. All too true!!

The FCC was formed by the Communications Act of 1934, of course, replacing the Federal Radio Commission. Now it's expected that the Communications Act of 1978 will displace the FCC with a new Communication Regulatory Commission. A first draft of the new Act reduces the agency's functions and the number of Commissioners from seven to five members. It will be most interesting to see what impact this impending change will have on future audio and radio rules.

Art Salberg
Ohio Scientific has made a major breakthrough in small computer technology which dramatically reduces the cost of personal computers. By use of custom LSI microcircuits, we have managed to put a complete ultra high performance computer and all necessary interfaces, including the keyboard and power supply, on a single printed circuit board. This new computer actually has more features and higher performance than some home or personal computers that are selling today for up to $2000. It is more powerful than computer systems which cost over $20,000 in the early 1970’s.

This new machine can entertain your whole family with spectacular video games and cartoons, made possible by its ultra high resolution graphics and super fast BASIC. It can help you with your personal finances and budget planning, made possible by its decimal arithmetic ability and cassette data storage capabilities. It can assist you in school or industry as an ultra powerful scientific calculator, made possible by its advanced scientific math functions and built-in “immediate” mode which allows complex problem solving without programming! This computer can actually entertain your children while it educates them in topics ranging from naming the Presidents of the United States to tutoring trigonometry all possible by its fast extended BASIC, graphics and data storage ability.

The machine can be economically expanded to assist in your business, remotely control your home, communicate with other computers and perform many other tasks via the broadest line of expansion accessories in the microcomputer industry.

This machine is super easy to use because it communicates naturally in BASIC, an English-like programming language. So you can easily instruct it or program it to do whatever you want, but you don’t have to. You don’t because it comes with a complete software library on cassette including programs for each application stated above. Ohio Scientific also offers you hundreds of inexpensive programs on ready-to-run cassettes. Program it yourself or just enjoy it; the choice is yours.

Ohio Scientific offers you this remarkable new computer two ways.

Challenger 1P $349
Fully packaged with power supply. Just plug in a video monitor or TV through an RF converter to be up and running.

Superboard II $279
For electronic buffs. Fully assembled and tested. Requires +5V at 3 Amps and a video monitor or TV with RF converter to be up and running.

Standard Features

- Uses the ultra powerful 6502 microprocessor
- 8K Microsoft BASIC-in-ROM
- Full feature BASIC runs faster than currently available personal computers and all 8080-based business computers
- 4K static RAM on board expandable to 8K
- Full 53-key keyboard with upper/lower case and user programmability
- Kansas City standard audio cassette interface for high reliability
- Full machine code monitor and I/O utilities in ROM
- Direct access video display has 1K of dedicated memory (besides 4K user memory), features upper case, lower case, graphics and gaming characters for an effective screen resolution of up to 256 by 256 points. Normal TV’s with overscan display about 24 rows of 24 characters, without overscan up to 30 X 30 characters.

Extras

- Available expander board features 24K static RAM (additional), dual mini-floppy interface, port adapter for printer and modem and an OSI 48 line expansion interface.
- Assembler/editor and extended machine code monitor available.

ORDER FORM

Order direct or from your local Ohio Scientific dealer.
☐ I am interested. Send me information on your:
 ☐ Personal Computers ☐ Business Systems
 ☐ Send me a Superboard II $279 enclosed
 ☐ Send me a Challenger 1P $349 enclosed
 ☐ Include 4 more K of RAM (8K Total) $69 more enclosed

Name __________________________
Address __
City_________State_________Zip_________

Payment by: BAC(VISA) _____Master Charge _____Money Order _____
Credit Card Account # ____________________________
Expires ________ Interbank #(Master Charge) ____________________________
Ohio Residents add 4% Sales Tax

TOTAL CHARGED OR ENCLOSED
All orders shipped insured UPS unless otherwise requested. FOB Aurora, OH

Ohio Scientific
America’s Largest Full Line Microcomputer Company
1333 S. Chillicothe Road • Aurora, Ohio 44202 (216) 562-3101

January 1979

Interested in a bigger system? Ohio Scientific offers 15 other models of microcomputer systems ranging from single board units to 74 million byte hard disk systems.
MORE ON CAR SOUND

In “How to Get Hi-Fi Sound in Any Auto” (July 1978), it is stated that “Doors are not the very best choice [for mounting speakers] for mechanical and acoustic reasons.” There is another reason—water leakage. Water running down the window glass into the interior of the door may drip onto the paper cone of the speaker and ruin it. Such water leakage is usual and is the reason why car manufacturers put drain holes into the bottom edges of doors. —Sherman A. Baker, Arlington, VA.

NO "FREEBIE"

An incorrect statement was made in the May 1978 Product Test Reports section for the Heathkit Model HW-2036 transceiver. A properly assembled transceiver kit is not aligned free of charge by one’s local Heathkit service center. There is a nominal charge for this service.—James Maher, Oregon, OH.

Sorry, we checked with Heath in Benton Harbor, MI, and had confirmed that there is indeed a nominal charge for aligning the transceiver.—Ed.

IDEAS ON MUSIC MIXING

I enjoyed greatly "A Practical Guide to Multitrack Tape Recording" in the March 1978 issue. Here are some more ideas. Since it is difficult for one person to mix a previously recorded track with new material while supplying that new material (I only have two hands!) this technique might prove helpful. Record the first three instruments one at a time on tracks 1, 2, and 3. (Be sure they are synchronized!) When you are satisfied with these performances and recording levels, etc., mix them down onto track four. Repeat this mix until satisfied before reusing tracks one through three. Note that track four is out of sync with the other tracks.

The next two sources are recorded on tracks one and two in synchronization with track four. Mix these down onto track three and re-record track four onto track one after this mix to keep things synchronized.

The next two sources are recorded on tracks two and four in sync with one and three. We now have seven performances recorded. However, three of them are third-generation recordings (copied twice), two are second generation and only two are first generation. But I believe that, if noise reduction were used throughout the procedure to mini-
An Extraordinary Offer to introduce you to the benefits of Membership in
ELECTRONICS BOOK CLUB

take 4 of these 22 unique
electronics books
(values to $67.80) for only
$1.99 for
ALL
FOUR

with a Trial Membership in the Book Club that guarantees to
save you 25% to 75% on a wide selection of electronics books

Facts About Club Membership

- The 4 introductory books of your choice carry publisher's retail
prices of up to $67.80. They are yours for only $1.99 each, plus
postage/handling, with your Trial Membership.
- You will receive the Club News, describing the current selec-
tions, Alternate, and other books, every 4 weeks (12 a year).
- If you want the Selection as is advertised, it will be sent to you
automatically. If you do not wish to receive the Selection, or if
you wish to order one of the many Alternates offered, you simply
give us instructions on the reply form (and in the envelope) pro-
vided, and return it to the address printed on the form. If, because of
late mail delivery, you do not have 10 days to make a decision
and return your unmarked Selection, you may return it at Club ex-
pense.
- To complete your Trial Membership, you need buy only four
additional monthly Selections or Alternates during the next 12
months. You may cancel your Membership any time after you
purchase these four books.
- All books—including the introductory offer—are fully return-
able within 10 days, if you are not completely satisfied.
- All books are offered at low member prices, plus a small
postage and handling charge.
- Continuing Bonus: If you continue after this Trial Membership,
you will receive a Dividend Certificate for every book you purchase.
Three Certificates plus payment of the nominal sum of $1.99 will
enable you to a valuable Book Dividend of your choice which you
may choose from a list provided by Members.

ELECTRONICS BOOK CLUB
Blue Ridge Summit, Pa. 17214

If you agree to purchase at least 4 of these books, you will receive a
Dividend Certificate for every book you purchase. Three Certificates plus
payment of the nominal sum of $1.99 will enable you to a valuable Book
Dividend of your choice which you may choose from a list provided by
Members.

May we send you your choice of 4 of these practical
time and money-saving books as part of an un-
usual offer of a Trial Membership in Electronics Book Club?

Here are quality hardbound volumes, each espe-
cially designed to help you increase your know-how,
earning power, and enjoyment of electronics. What-
ever your interest in electronics, you'll find Elec-
tronics Book Club offers practical, quality books
that you can put to immediate use and benefit.

This extraordinary offer is intended to prove to
you through your own experience, that these very
real advantages can be yours...that it is possible to
keep up with the literature published in your areas of
interest, and to save substantially while doing so.

As part of your Trial Membership, you need purchase as
few as four books during the coming 12 months. You
would probably buy at least this many anyway, with-
out the substantial savings offered through Club
Membership.

To start your Membership on these attractive
terms, simply fill out and mail the coupon today.
You will receive the 4 books of your choice for 10-day
inspection. YOU NEED SEND NO MONEY. If
you're not delighted, return the books within 10 days
and your Trial Membership will be cancelled without
cost or obligation.
Revolutionary!

Sound-shaping taping mike.

Never before — a single microphone that gives you the versatility of 16 microphones! Four tiny frequency filter switches built into the new Shure 516EQ E-Qualidyne Microphone let you tailor sound for studio effects in virtually any recording situation: flick a switch to add sizzle to vocals . . . flick another switch to highlight the sound of a bass drum. You can even compensate for the acoustic response of a room — right from the microphone! In all, the 516EQ creates 16 different response variations that can add a new, professional sound to every tape you make. Available singly or in pairs for stereo recording. Ask to hear a recorded demonstration at your participating Shure dealer.

Shure Brothers Inc.
222 Hartrey Ave., Evanston, IL 60204

In Canada: A. C. Simmonds & Sons Limited

Manufacturers of high fidelity components, microphones, sound systems and related circuitry.

CIRCLE NO. 49 ON FREE INFORMATION CARD

mize degradation of sound by re-recording, the loss of quality is offset by the gain in concentration when mixing was done for the sake of a better balance of sound.

Using the above procedure, add a new source while mixing (loss of balance again). Then, when two tracks are all that remains, use the method of sound-with-sound as described in your article to get three vocals onto one track leaving the last for solo instrument or voice. —Bill Fox, Columbus, OH.

DATA PROCESSING QUIZ

The answer given for question three of Robert P. Balin's "Data Processing Quiz" (p. 70, September 1978) is incorrect. The question sets the conditions, "You can paint the walls blue or pink, but paint the ceiling white, even if you don't do the walls." However, the logic network given as the answer indicates the paint job is completed under the following conditions: an unpainted ceiling with walls painted pink; an unpainted ceiling with walls painted blue; painted ceiling with walls unpainted, painted blue, painted pink or painted both blue and pink (stripes). A logic network that will indicate a completed paint job (output at logic 1) is shown here. —Tony Banks, Cambridge, MA

Out of Tune

In "A Cassette Control System for Computers" (November 1978): change the two lines numbered 240 and 330 in the Graphic Star Program to read as follows:

240 IF 20+X/B = 47 THEN 310
330 IF 20+(127-X)/B = 47 THEN 410

In "Solid State" (August 1978): Ranges E and F of the Capacitance Meter should have CK equal to 0.01 µF (not 0.001 µF).

In "An Infrared Intrusion System" (December, 1978), in Fig. 1 insert a 20-ohm resistor in series with LED1; in Fig. 2, make C2 22 µF and C5 a 50-V Mylar; in Fig. 3A, T1 center-tap should be yellow; in Fig. 3B the T1 primary should be B/Y instead of B/G; and in Fig. 4, D3 should be a 1N4002.

In the September "Experimenter's Corner," Fig. A of the Project of the Month, the value of current limiting resistor R3 should be 470 ohms, not 470,000 ohms.
the $988 Surprise . . .

If you haven't looked carefully at the Level-II 16K TRS-80, you're in for a big surprise! Level-II BASIC gives TRS-80 advanced features like comprehensive string handling, multi-dimension arrays, multi-letter variable names, named cassette files, full editing, integer arithmetic, single (6-digit) and double (16-digit) precision arithmetic, formatted printing, memory-mapped video (print directly at any of 1024 screen positions), 128x48 video graphics (may be intermixed with text), error trapping, auto line numbering, TRACE, PEEK and POKE . . . to name just a few. Because Level-II is in ROM, TRS-80 powers-up ready to go with the full 16K RAM available for your use. This means TRS-80's memory is equivalent to a 28K RAM-based system.

New for 1979—TRS-80's numeric (calculator) keypad included on every 16K computer, and available as an add-on for present owners.

TRS-80's modular design allows easy expansion. Add up to 48K RAM, Expansion Interface, printers, 1 to 4 Mini-Disks, RS232C, telephone acoustic couplers, Voice Synthesizer, dual cassette recorders, our System Desk and Printer Stand. Surprisingly, these are not promises of things to come, but real products being delivered right now. Software from games to General Ledger are available, with more cassette and disk software being added monthly.

Radio Shack's 58 years of consumer electronics leadership, our 50 regional repair centers (growing to 100 this year), our new Radio Shack computer centers, and our NYSE-listed billion-dollar parent, Tandy Corporation, insure that customer support is always available right where it should be—locally.

So if you haven't seriously looked at TRS-80 yet, ask your local Radio Shack for our new 20-page fact-filled catalog and be prepared for a $988 surprise. Surprising power—features—price—support! Level-II 16K systems include everything pictured, plus the manual. Better to be surprised now . . . before you choose the wrong microcomputer system.

16K Available RAM
12K Level-II BASIC in ROM
Full-Size Typewriter Keyboard
U.L. Listed, Portable
Complete . . . Plug in and Use

NEW!
Numeric Calculator Keypad

Radio Shack®
The biggest name in little computers®
BSR Quanta Direct-Drive Turntable

The Quanta 800 is the top of a series of three new BSR single-play, two-speed turntables whose base cabinets utilize a special sandwich construction of disssimilar materials, plus energy-absorbing, resonance-tuned feet, to absorb noise resonances. The 800 has a quartz-locked, direct-drive servomotor with illuminated digital speed display and digital speed selection and adjustment. The die-cast aluminum platter is covered with an anti-static mat. The semi-automatic turntable's tone arm is an S-shaped, tubular aluminum low-mass type with viscous-damped cueing and automatic return. $230.00. Address: BSR (USA) Ltd., Route 303, Blauvelt, NY 10913.

CIRCLE NO. 92 ON READER SERVICE CARD

Electronic Deadbolt Combination Lock

"Electrolock EL-5" is a combination-plus-key electronic deadbolt lock from Electronic Security Systems. Solid-state electronics control an electromechanically operated 1"-throw deadbolt. Before the lock can be opened using a key, the proper combination must be entered on a 12-key keypad. Up to three combinations of four to seven digits can be programmed. During a power failure only the key is required to retract the deadbolt. The lock is powered by 120 V ac. Available options include weatherproofing, custom-programmed combinations, three-level master keying, and timer-controlled locking. $89.50. Address: Electronic Security Systems, Inc., Box 61403, Sunnyvale, CA 94088.

CIRCLE NO. 93 ON READER SERVICE CARD

Fisher Receiver with Equalizer

The RS2004 is the lead entry among four new Fisher AM/FM-stereo receivers in its RS2000 Studio Standard series. Incorporating five-band graphic equalizers with detented controls in place of the usual tone controls, it also features dual tuning meters, two speaker outputs, tape monitor switch, loudness contour, plus FM-muting and equalizer defeat. In addition, it has an illuminated function indicator, and a rear-panel 25-microsecond Dolby deemphasis switch. Power is rated at 45 watts continuous into 8 ohms from 20 to 20,000 Hz at 0.1% THD or less. FM mono usable sensitivity is 10.3 dBf (1.9 uV). $450.00. Address: Fisher Corp., 21314 Lassen St., Chatsworth, CA 91311.

Sinclair Pocket DMM

Sinclair Radionics' Model PDM35 is a pocket-size digital multimeter designed for measuring ac and dc voltages, dc current, and resistance. LSI circuitry employs Bi-FET technology rather than the more costly A/D converter to keep prices down. The DMM measures dc voltages in four ranges to 1000 volts and ac voltages to 500 volts at an accuracy of 1% full-scale. Resistance is measured in five ranges at an accuracy of 1.5%. The instrument features automat-
SAVE $25.00

Model 8100 Frequency Counter Kit
• Range: 20Hz to 100MHz
• High Sensitivity
• Resolution to 0.1Hz

Now you can forget about price/performance trade-offs when you select a frequency counter. In Sabtronics' Model 8100 kit you get all the characteristics of superior performance at a low, affordable price.

This frequency counter, employing LSI technology, has the performance and input characteristics you demand: guaranteed frequency range of 20Hz to 100MHz (10Hz to 120MHz typical); selectable hi/low impedance; superior sensitivity; selectable resolution and selectable attenuation. Plus an accurate time base with excellent stability.

An 8-digit LED display features gate activity indicator, leading zero suppression and overflow indicator. You would expect to find all these features only on high-priced instruments — or from Sabtronics' advanced digital technology.

BRIEF SPECIFICATIONS:
• Frequency Range: 20Hz to 100MHz guaranteed; (10Hz to 120MHz typical) • Sensitivity: 15mV RMS, 20Hz to 50MHz (10mV typical); 25mV RMS, 50MHz to 100MHz (20mV typical) • Selectable Impedance: 1MΩ/25pF or 50Ω• Attenuation: X1, X10 or X100 • Accuracy: ±1Hz plus time base accuracy • Aging Rate: ±5ppm/yr. • Temperature Stability: ±10ppm, 0°C to 40°C • Resolution: 0.1Hz, 1Hz, 10Hz selectable • Display: 8-digit LED, overflow indicator, gate activity indicator • Overload Protection • Power Requirement: 9–15 VDC @ 330mA

Model 2000, 3½ Digit DMM Kit
• 5 Functions, 28 Ranges
• Basic DCV Accuracy: 0.1% ±1 Digit

The amazing Sabtronics 2000 is the choice of both professionals and hobbyists. It's the only portable/bench DMM that offers so much performance for such an astonishing low price.

You get basic DCV accuracy of 0.1% ±1 digit; 5 functions giving 28 ranges; readings to ±1999 with 100% overrange; overrange indication; input overload protection; automatic polarity; and automatic zeroing.

BRIEF SPECIFICATIONS:
• DC volts in 5 ranges: 100µV to 1kV • AC volts in 5 ranges: 100µV to 1kV • DC current in 6 ranges: 100nA to 2A • AC current in 6 ranges: 100nA to 2A • Resistance: 0.1Ω to 20MΩ in 6 ranges • AC frequency response: 40Hz to 50kHz • Display: 0.36" (9.1mm) 7-segment LED • Input Impedance: 10MΩ • Size: 8”W x 6.5”D x 3”H (203 x 165 x 76mm) • Power requirement: 4.5–6.5 VDC @ 4°C cells (not included).

Special Offer! Save $25.00*
If you order both the frequency counter and DMM kits now, you pay only $144.90 including shipping and handling. You save $25.00 off the combined regular low price of $169.90. Order both kits now. This special offer good for a limited time only.

*Special offer good in USA only.

Making performance affordable.

Sabtronics International Inc. 13426 Floyd Circle Dallas TX 75243

☐ Yes, I want to take advantage of your special $25.00-off offer.*

Please send Model 8100 and Model 2000 kits for only $144.90 total including shipping and handling.

☐ Please send Model 8100 Frequency Counter kit(s) for only $89.95 ea. shipping and handling.

☐ Please send Model 2000 DMM kit(s) for only $89.95 ea. shipping and handling.

☐ Check ☐ Money Order ☐ Charge my Master Charge ☐ Visa ☐ Exp. Dt.

☐ Texas residents add sales tax

☐ Total enclosed $____

☐ Name ________________________________

☐ Address ________________________________

☐ City __________________ State Zip __________

☐ USA only. CANADA: $6.50. FOREIGN: $19.00 AIRMAIL.

JANUARY 1979
Colt AM-SSB Base Station

The new 40-channel Colt "Excalibur SSB" model 1200 CB transceiver base station features single-sideband and AM operation, and digital LED channel display. Front-panel controls include r.f. gain, mic gain, PA gain, and tone. Among control switch provisions are: high-frequency filter, r.f. noise blanker ANL, CB-PA, and SWR-calibrate. There are also two large meters for signal strength and SWR/r.f. indications, headphone jack, and mode lamps on the front panel. Other features include an external speaker jack, a.c.-d.c. operation, and an optional walnut-grain cabinet. The unit can also be mounted in any standard EIA 19" rack. Address: Colt Communications, 5424 W. Touhy Ave., Skokie, IL 60077.

Panasonic Cordless Record Cleaner

The Panasonic BH-651E is a battery-operated, hand-held LP record cleaning device recently unveiled by Panasonic. A rotary brush with 0.05mm bristles made of PVC collects dust from the record surface and deposits it in a built-in dust-box. The brush turns at 3000 rpm. The cleaner operates on two AA batteries (not included). Address: Panasonic, One Panasonic Way, Secaucus, NJ 07094.

Fujitsu Ten In-dash AM-FM-Cassette with Dolby

The Fujitsu Ten GP-7881 in-dash car stereo combines AM and stereo FM reception plus an auto-reverse cassette player with Dolby noise reduction. The AM-FM section has preset push-button selection of five AM and five FM stations, interstation muting, and a built-in noise blanker. The stereo cassette section features locking re-wind and fast-forward. The unit also has separate bass and treble controls, and a four-way fader control to adjust front/back and left/right sound distribution. Tape-section ratings are 0.3% wow and flutter; 48 dB S/N. Power output is rated at 5 watts for each of the four speaker outputs, or 20 watts total, into a 4-ohm load. Current drain is 1.6 amps max. $239.95. Address: Fujitsu Ten, Dept. P, 1135 East Janis St., Carson, CA 90746.

E&L Video Terminal

Used with a TV receiver or optional video monitor, E&L Instruments' Model VTE-1 video terminal electronics system provides a complete ASCII keyboard, reproprogrammable character generator, cursor, and flicker-free refresh. The one-piece molded cabinet is designed to support a CRT monitor at a comfortable viewing angle. Full duplex and local operation are possible with RS-232C and 20-mA current-loop interfaces operating at speeds up to 9600 baud. The standard character set contains 64 uppercase alphanumeric ASCII characters (lower-case optional), and the character generator is user-reprogrammable to provide any user-defined 5 × 7 dot matrix characters. The 128-character ASCII decoder supplied is also user-reprogramma-

Amphenol Mini-Uhf Connectors

Miniature uhf plugs and jacks with five times greater frequency range (to 2.5 GHz) than standard-size connectors have been introduced by Amphenol. The new connectors feature instant-on FPC-type terminations and are designed to replace standard-size connectors used with RG-58/U coaxial cable. About half as large as their conventional counterparts, mini-uhf connectors can easily be used in miniaturized circuits and simplify installation of base-station and mobile amateur radio and CB transceivers. The connectors are rated at a nominal 50 ohms impedance, 1.25:1 typical VSWR, and 350 volts maximum. Prices are $1.10 for the plug and $1.36 for the jack. Address: Bunker Ramo-Amphenol RF Operations, 33 E. Franklin St., Danbury, CT 06810.

Yamaha “Disc Mode” Amplifier

Yamaha’s Model A-1 integrated amplifier has a built-in head amplifier for moving-coil cartridges and is used in a “disc-mode ori-
Brand New

LCD Alarm Chronograph

This spring and summer, our LCD Alarm Chronograph was a runaway best seller. It's sold out in fact. For this reason, we've improved it. Made it bolder and more exciting, with extra convenience features and for less money!

How? By placing one of the largest watch orders in our history... and passing the quantity savings along to you.

Truly Extraordinary

This new LCD Alarm Chronograph is truly extraordinary. It does more and does it better than any other watch. With an impressive, dramatic appearance that reflects its uncommon ability.

Remarkable Value

The only thing about that it's not extravagant is its price. It's actually over $200.00 less than the national-advertised watch that comes closest to its usefulness and accuracy.

Quartz Crystal Time... The LCD Alarm Chronograph gives you accuracy to ± 60 seconds per year. Quartz crystal accuracy that would have been considered sensational per month in earlier micro-electronic watches. And is still not available in models selling for as much as $500.00.

The Electronic Calendar... So you always have exactly the right time on display—the hours, minutes and running seconds, plus the day of the week. Then, at a touch, you can replace the time with the month and date. Or course, the electronic calendar adjusts automatically for the number of days in the month. Then, so you can see when it's dim or you're in the dark, the face lights up.

24 Hour Alarm

Of all the features available in digital watches today, an alarm system like this is the one that's most wanted. And no wonder. It will wake you; remind you of your appointments, phone calls and meetings (or break one up that's been going on too long). It's really important enough all by itself to warrant your getting a new watch.

You can set this alarm for any minute of any hour. Day or night. In all, 1440 positions are available—easily and instantly. Then, unless you change or deactivate it, the alarm will sound for a full minute at the same time every day. With an insistent, though pleasant, beep. When the alarm is set, an A appears on the face. To check the time it'll go off, just touch the alarm button.

The Chronograph System

As to the chronograph, or split-second timer, it's precision is so fine, it borders on the infinitesimal. Imagine, it enables you to time an event for up to an hour to one-hundredth of a second... and beyond that, for a full 24 hours, to the second! On top of which, you can time an event in memory, keeping the regular time of display until you need the chronograph readout. Then, as you'll see in the explanation to the far right, the chronograph measures or stops time, in an extraordinary variety of ways. This exceptional versatility makes the LCD Alarm Chronograph with its highly sophisticated micro-computer chip the ideal instrument for doctors, pilots, motion picture directors, and every executive who wants the ability to command time to stand still.

Only $70

Right now, only the Seiko among nationally advertised brands has all these features. And it regularly sells for $299.95. Well over two hundred dollars more—even though its chronograph is accurate to only a tenth of a second.

This incomparable value (proved after exhaustive quality control tests) is what really impressed us. And we're one of the oldest and largest mail merchandisers in America.

30 Day Trial

What's more, buying by mail, you can prove all this to your own satisfaction without risking one cent. You have thirty days to put the LCD Alarm Chronograph to the test—to confirm it won't gain or lose five seconds a month, prove the convenience of the alarm, satisfy yourself that the LCD Alarm Chronograph is as useful as it is easy to operate. More, to compare it with any watch at any price, and to send it back for a complete refund if the value is not as great as we say, if it doesn't arouse the admiration and fascination of your friends, win your own pleasure and satisfaction.

Silver-tone or gold plated

So order your LCD Alarm Chronograph today. The price, including shipping, handling, insurance and a handsome gift case is just $70.00 with chrome case and stainless steel bracelet, or $80.00 in gold plated case and bracelet. Your watch comes with a full ONE YEAR Limited Warranty. Remember, too, the printed circuitry eliminates moving parts and normal servicing, and assures you of years of trouble-free performance.

800-325-6400
OPERATOR #19
(Missouri residents call 800-342-6600)
In operation 7 days a week

To order by credit card, call the toll free number above. Send your check to Douglas Dunhill at the address below. (New York and Illinois residents add the appropriate sales tax.)

The Multi-Function Chronograph System

No other instrument, at any price, gives you greater precision than the 0.1 second accuracy of the new LCD Alarm Chronograph, or greater versatility and flexibility in timing an event from a fraction of a second to 24 hours. Only with the micro-electronic revolution could you have a multi-function chronograph, a chronograph that can be put in memory, in a sleek, thin, superbly styled timepiece like this.

#1 Add Time... is the stop watch mode. You'll use it to time everything from a phone call to the length of a meeting. How long your car's been at a parking meter, the time you've been jogging or exercising, even the time it takes a quarterback to set up and throw. With Add Time, you can stop whenever you like, say stop when you're tired of reading the time. Or, you can time a basketball game, and start again when the action begins. Try it the next time you prepare a speech.

#2 Split Time... is the mode you'll use to get the time of each contestant across the finish line, or to get the time for the 1/10 or the 1/100 or any interval. On Split Time, the chronograph is actually stopped and running at the same time, so you can use it to time the figure of a pt stop, for example, and still get the over-all time of the race.

#3 Twin Timing... Most extraordinary of all, you can actually combine these functions, using your chronograph as both a stopwatch and split timer. For example, you could combine timing you print time production. When you start timing, you stop the stop watch mode and start the chronograph, which jumps ahead to the total elapsed time. With an ordinary analog stopwatch, you'd need two sets of hands to do this—and you'd probably have to play more for just a stop watch than for the LCD Alarm Chronograph.

You'll find the chronograph so easy to use, you'll master it in minutes, and in days find innumerable business and personal uses. Take 30 days to prove it to yourself.

Be sure to specify white or gold. You'll have the precise time, absolute control over time, plus ample warning when it's time to do anything. And the pride that comes with wearing a watch that's second to none.

© Douglas Dunhill Inc. 1978

Dept 81-2321
4225 Frontage Road
Oak Forest, Il 60452

AmericanRadioHistory.Com
Considering a Microcomputer?

Be Sure to Check Out the Product Offerings of the World's Largest Full Line Microcomputer Company.

All Ohio Scientific machines come with microcomputing's fastest full feature BASIC-in-ROM or on-Disk for instant use.

Challenger I Series
Economical computer systems that talk in BASIC. Ideal for hobbyists, students, education and the home.

- **Superboard II** — World's first complete system on a board including keyboard, video display, audio cassette, BASIC-in-ROM and up to 8K RAM
- **Challenger IP** — Fully packaged Superboard II with power supply
- **Challenger IP Disk** — Complete mini-floppy system expandable to 32K RAM

Challenger IIP Series
Ultra high performance BUS oriented microcomputers for personal, educational, research and small business use.

- **C2-4P** — The professional portable
- **C2-8P** — The world's most expandable personal machine for business or research applications
- **C2-4P Disk** — The ultimate portable
- **C2-8P Single Disk** — Ideal for education, advanced personal users, etc.
- **C2-8P Dual Disk** — Most cost effective small business system

Challenger II Serial Interface Series
Same great features as Challenger IIP Series for those who have serial terminals: small business, education, industry.

- **C2-0** — Great starter for users with a terminal
- **C2-1** — Great timeshare user accessory; cuts costs by running simple BASIC programs locally
- **C2-8S** — Highly expandable serial machine, can add disks, etc.

Challenger III The Ultimate in Small Computers
The unique three processor system for demanding business, education, research and industrial development applications.

- **C3-S1** — World's most popular 8" floppy based microcomputer
- **C3-OEM** — Single package high volume user version of C3-S1
- **C3-A** — Rack mounted multi-user business system directly expandable to C3-B
- **C3-B** — 74 million byte Winchester disk based system. World's most powerful microcomputer

OHIO SCIENTIFIC also offers you the broadest line of expansion accessories and the largest selection of affordable software!

If you are interested in an Ohio Scientific computer, you can order yours directly from OHIO SCIENTIFIC through our catalog or contact your local dealer or representative to get the details. OHIO SCIENTIFIC offers a wide range of products, from small personal computers to large business systems, to meet the needs of individuals, schools, and businesses alike. Visit our website to learn more about our products, or contact us for more information.

I'm interested in OSI Computers. Send me information on:

- Personal Computers
- Small Business Computers
- Educational Systems
- Industrial Development Systems

I'm enclosing $1.00 for your 64-page small computer buyer's guide.

Name ____________________________
Address ____________________________
City ____________________________ State Zip ____________
Phone ____________________________

OHIO SCIENTIFIC
1333 S. Chillicothe Road
Aurora, Ohio 44202
(216) 562-3101

CIRCLE NO. 51 ON FREE INFORMATION CARD

POPULAR ELECTRONICS
ent operation that couples the phono input almost directly to the output power amplifier. A unique BSC switch overrides all secondary controls and achieves a circuit configuration that is claimed as close to the straight wire with gain concept as is technologically possible. This amplifier also uses a direct-current equalizer to achieve significant improvement in transient response. The equalizer is direct-coupled to a high-gain (41.5 dB) power amplifier whose full-rated output power can be achieved with only a 200-mV output from the preamplifier. Specifications: 70 watts/channel into 8 ohms at 0.02% THD; 20 to 20,000 Hz +/− 0.2 dB frequency response; 230 mV rms moving-magnet, 6 mV rms moving-coil phono overload; more than 70 dB channel separation; 82 to 105 dB S/N. Address: Box 6600, Buena Park, CA 90620.

CIRCLE NO. 100 ON READER SERVICE CARD

Heathkit Computerized Weather Station

Heath's new ID-4001 weather station has digital readouts for indoor and outdoor temperatures, wind speed and direction, barometric pressure and time. As a result of a built-in microprocessor, it can also calculate and display average wind speed and wind chill factor. In addition, a built-in memory allows it to instantly recall the dates and times of maximum and minimum temperatures, barometric pressure, wind gusts, barometric pressure's rate of change per hour, and whether pressure is rising or falling. Wind speed can be read in mph, kph or knots, temperature in Fahrenheit or Celsius, and barometric pressure in inches of mercury or millibars. $369.95, kit; $595.00, assembled. Address: Heath Company, Dept. 350-730, Benlon Harbor, MI 49022.

CIRCLE NO. 90 ON READER SERVICE CARD

New Literature

STURDLITE “IDEA BOOKLET”

Sturdilite has announced availability of its "Idea Booklet" describing its line of modular lab and work stations for electronic, R&D, quality control, technical production and assembly applications. Over a dozen typical installations are shown, and the brochure demonstrates how the Sturdilite "building-block" design concept can simplify planning lab or work station areas. Address: Sturdilite Lab & Work Stations, Angle Steel Div., 323 Acorn St., Dept. 32, Plainwell, MI 49080.

PHILMORE CATALOG SUPPLEMENT

An eight-page catalog supplement (#771) is available from Philmore describing additions to their line of communications, hi-fi, consumer, and OEM products. Among the 47 new items listed are a four-way car speaker system, five-channel disco/broadcast mixer, and all-purpose portable PA amplifier. Address: Philmore Mfg. Co., Inc., 40 Inip Dr., Inwood, NY 11696.

COMPUTER SERVICES DIRECTORY

A new version of "Directory of Computer Based Services" is available from Telenet, listing organizations offering interactive computing and information retrieval services. These include data banks, commercial service bureaus, educational institutions, and other companies, all categorized by application specialty, programming language, and data base offerings. Also listed is information on financial and economic data bases, FCC tariffs for communications common carriers, school guidance, advertising media and market research, energy and pollution, and engineering. Cost is $2.00. Address: Telenet Communications Corp., Publications Dept., 1050 17th St. NW, Washington, DC 20036.

HIGH-VOLTAGE TRANSIENT TIPS

Tech Tips 1-7 from Westinghouse describes an ac switch voltage transient protection circuit. The two-page bulletin includes a schematic of the circuit described. Address: Westinghouse Electric Corp., Semiconductor Div., Youngwood, PA 15697.

SWITCHCRAFT CONNECTOR BULLETIN

Switchcraft's New Product Bulletin No. 328 describes "Silent-Plug." This connector eliminates loudspeaker noises when amplifier cables are connected and disconnected from amplified musical instruments. Also discussed are special features that protect cable and plug from damage associated with transporting and setting up equipment. Address: Switchcraft, Inc., Sales Dept., 5555 N. Elston Ave., Chicago, IL 60630.

NEWMAN COMPUTER CATALOG

Newman Computer Exchange has a new 72-page catalog listing its most popular new and used mini- and microcomputer products. Personal computers, books, accessories, and other computer-related items appear in the micro section of the catalog, while the mini section features mostly DEC and Data General products. Mailing list members receive catalogs twice each year plus supplements and special sale announcements. Address: Newman Computer Exchange, Dept. R48, Box 8610, Ann Arbor, MI 48107.

VIZ TEST INSTRUMENTS

The VIZ 1978 full-line catalog describes over 55 test instruments and accessories, many of them new. Full specifications and technical details are contained in its 44-page publication. Also available is an eight-page short-form catalog listing 36 popular VIZ instruments. Address: Robert Liska, VIZ Test Instruments Group, VIZ Mfg. Co., 335 E. Price St., Philadelphia, PA 19144.

NANMAC THERMOCOUPLE BOOKLET

"Temperature-EMF Tables for Thermocouples" (Booklet No. 9000) is a 20-page publication available free from Nanmac. It contains American National Standards Institute thermocouple calibration tables, designated ANSI MS96.1-1975. Information is presented in Celsius and Fahrenheit format. Also included is information on calibration graphs, wire codes, extension and compensating wire codes, and limits of error. Address: J. Nangian, Nanmac Corp., 9-11 Mayhew St., Framingham Centre, MA 01701.

REI RENTAL CATALOG

The 1978 catalog of electronic instrumentation and equipment available for short-term rental from Rental Electronics, Inc. describes almost 13,000 items, including products from companies such as Brush, Digitec, Fluke, Hewlett-Packard, Honeywell, Intel, Tektronix, etc. Product categories include: amplifiers, analyzers, calibrators, counters, function generators, signal sources, digital meters, oscilloscopes, power supplies, probes, chart recorders, etc. Address: Rental Electronics, Inc., 19347 Londelius St., Northridge, CA 91324.

NATIONAL BI-FET BROCHURE

A 16-page brochure on BI-FETT™ and BI-FET IITM op amps, available from National Semiconductor, is a guide to circuits using these devices, including op amps, sample and holds, analog switches, MUXs and others. Data sheets and selection guides are included. Address: National Semiconductor, 2600 Semiconductor Dr., Santa Clara, CA 95051.
Learn design, installation and maintenance of commercial, amateur or CB communications equipment.

There are more than 25 million CB sets out there, millions more two-way radios, walkie-talkies, and other communications apparatus in use by business, industry, government, police and fire departments, and individuals. That means a lot of service and maintenance jobs... and NRI can train you at home to fill one of these openings.

NRI's Complete Communications Course covers all types of two-way radio equipment... AM and FM transmission and reception, television broadcasting, microwave systems, radar principles, marine electronics, mobile communications, and aircraft electronics. And NRI guarantees you will pass the exam for the commercial FCC Radiotelephone License you need to perform most servicing work, or your tuition will be refunded in full. This money-back agreement is good for six months after completion of your course.

Learn on your own 2-meter, digitally synthesized VHF transceiver.

You'll learn to service all types of communications equipment as you assemble your own VHF transceiver. NRI engineers have designed it, not only as a commercial-quality, high-performance unit, but as a unique "power-on" training tool to give you actual bench experience with the principles needed to service CB, commercial, and amateur equipment.

Then we help you get your FCC Amateur License so you can go on the air.

The complete course includes 48 lessons, 9 special reference texts, and 10 training kits. Included are your own electronics Discovery Lab, antenna applications lab, CMOS digital frequency counter, and an optical transmission system. You'll learn at home, at your own convenience, earning your FCC license and the preparation you need for the communications field of your choice.

Mail the postage-paid card today.

CB specialist course also offered.

If you prefer, you can concentrate on the booming field of CB radio with NRI's special course in CB servicing. You get 37 lessons, 8 reference texts and plenty of hands-on training with your own 40-channel CB, AC power supply, and multi-meter. Also included are 14 coaching units to make it easy to get your commercial Radiotelephone FCC License... required for you to test and service communications equipment.
NRI can train you at home to service TV equipment and audio systems. Choose from five courses that go up to our 48-lesson Master Color TV/Audio Course. With it you get 14 kits for practical bench training and demonstrations, including NRI’s exclusive, designed-for-learning, 25” diagonal solid state color TV, 4-channel audio system complete with speakers, and professional instruments you build and use for learning and earning. It’s proven, effective training that’s helped thousands of pros already. And it’s the best value offered in the field. NRI’s bite-size lessons speed learning, exclusive “Power-On” training makes it real. Send card for free catalog.

Learn computer electronics

NRI trains you at home on a real digital computer. Qualified technicians are urgently needed for careers in the rapidly growing field of computer and digital electronics... and NRI trains you at home on the real thing.

As part of your training, you actually assemble a working digital computer with expanded memory, define and flow chart programs, code your program, store it along with data in the memory bank. It’s just one of the 10 hands-on training kits you receive. You also build and use your own TVOM; experiment with NRI’s exclusive electronics lab. It’s the quickest and best way to learn and start a new career in trouble-shooting digital computers. Send the card today.

NRI instructor/en
Each NRI student is, his own course instructor. He to help you over any rough sp, plain problems, and give you t, vice you need as you progress to your future. And he knows what h, talking about, because he was more than likely involved in the design of your course or some of the NRI equipment you use. NRI instructors are practical, experienced people who really know their field and do their best to pass their knowledge on to you.

You get more for your money from NRI.
NRI employs no salesman, pays no commissions. We pass the savings on to you in reduced tuition, top-quality professional equipment, and reliable testing instruments necessary for a successful career. You can pay hundreds of dollars more at other schools, but you can’t get better training.

Free catalog... No salesman will call.
Get your free catalog and discover why NRI is the leader in home technical training with over a million students, over 60 years experience in helping people build new careers. Mail the card today and get started on your new future. If card has been removed, write to:

NRI SCHOOLS
McGraw Hill Center
for Continuing Education
3939 Wisconsin Avenue
Washington, D.C. 20016

JANUARY 1979
A NEW TONEARM

IN THE PAST, this column has been outspoken about the desirability of controlling—and reducing as much as possible—the tonearm/cartridge resonances that are an inevitable part of playing a record. The major such resonance, of course, results from the total effective mass of the arm and the compliance of the stylus suspension in the cartridge (compliances, actually, because many cartridges exhibit different static compliances for vertical and lateral stylus movements). There are secondary resonances as well. They generally result from nonrigidity of the tonearm structure (nobody knows how to make a perfectly rigid tonearm), so that it behaves as an assemblage of lesser masses rather than as a unitized whole. These resonances frequently turn up in the audio-frequency range, while the fundamental resonant frequency is well below 20 Hz with most tonearm/cartridge combinations.

I have always considered secondary resonances in the audio range to be the lesser of the two evils. When audible (and as a rule they are extremely subtle if the tonearm is at all decent), they introduce colorations that are usually of much less magnitude than similar-sounding colorations contributed by loudspeakers and listening rooms. Therefore, they are psychoacoustically masked out of the sonic picture. But the fundamental arm-cartridge resonance is often a high-amplitude affair that, while being too low in frequency to be audible as a coloration per se, brings about significant arm motion relative to the record surface. The cartridge cantilever is deflected, rapidly changing the effective length of the tonearm and introducing flutter effects in the reproduced sound. Strict tracking geometry is upset and becomes ever-varying. Tracking force oscillates, and mistracking is prone to occur. And the high-amplitude infrasonic frequencies, if passed by the amplification chain, have been demonstrated as capable of producing audible Doppler distortion in loudspeakers.

Tonearm Philosophies. As you might suspect, not everyone agrees with the way I order tonearm priorities. For example, I tend to favor a tonearm with suitably low effective mass, so that the fundamental resonance can be raised sufficiently above the frequency where most warps statistically occur (around 4 Hz, according to studies by Shure Brothers). Of course, secondary resonances are more likely to occur in an arm of very light structure. However, using a suitably inert arm material, keeping the arm shaft as homogenous as possible (for example, no removable head shells, alas), and exercising some care in the design and adjustment of pivots can do much to keep such resonances below the audible threshold.

Another school of thought, especially popular in Japan, espouses an exceptionally sturdy—and therefore rather massy—arm shaft to banish secondary resonances. Fundamental resonances are kept somewhat in check by various damping schemes or by admonitions not to expect the best results unless unwarped records are used. The Japanese have developed sophisticated means of detecting and measuring secondary resonances, and their concern about them has been aroused proportionately. But the unwarped record that works best with a relatively massy arm is still a hard item to find—at least outside of Japan.

The Servo-Assisted Arm. A few years ago, Finnegan and Kluinis of 3M reported on experiments with a tonearm having a built-in linear electric motor—not really much more than a loudspeaker drive assembly—that could be directed by a servomechanism to resist undue vertical "bobbing" of the tonearm caused by record warps. The results seemed promising, and it soon came to light that at least one other U.S. company was engaged in work on a similar design, with intent to introduce it as a consumer product. Very recently, however, Sony in Japan beat everyone to the punch by announcing the development of an "electronic" tonearm somewhat more complex than any of the other proposed designs. There are no immediate plans for export of the arm makes any interest in it purely academic; but the test results achieved so far make the interest considerable.

According to Sony's Satoshi Kusaka, writing in the August, 1978 issue of the Japan Electronics Industries journal, the motion sensors and servo motors in the arm perform several functions. They lift and lower the arm and swing it to and from the record surface, thus providing the essential operation of an automatic turntable. They apply tracking force, skat ing compensation, and static balance. And through servo feedback they introduce electromechanical damping that greatly reduces the fundamental arm-cartridge resonance and other vibrations. With the fundamental arm resonance under control through electronic means, the arm structure can theoretically then be made rigid and massy enough to suppress secondary resonances with no detriment to overall performance.

The complexity of the Sony design takes it a step beyond other proposals of the same fundamental nature. Not only does it have a vertical sensor and motor, assigned the tasks of establishing zero balance, tracking force, and vertical damping. It also has a similar configuration for lateral movement, which applies anti-skating and keeps the arm in lateral balance. The automatic functions—tonearm lift and transit—are easily included side benefits. An optical system at the very base of the arm triggers the end-of-record cycle and also regulates the cueing of the tonearm so that it can accommodate various record diameters.

An obviously essential external unit contains the servo amplifiers and the controls for operating and adjusting the arm. Kasuka's paper gives virtually no details on the nature of the control systems, so it is necessary to speculate. Unlike some of the other electronic-ser-
Only the most sophisticated research and development in this industry could create

Two sources of perfection in stereo sound!

Pickering's patented Dustamatic Brush keeps records free of dust and damps low frequency tonearm resonance.

It takes real effort and skill to become the acknowledged leader in the industry, and even more to stay ahead.

Pictured above are just a few of the advanced electronic devices that Pickering employs in product research and custom-designed development. At left above, the XYY plotter on Pickering's Real Time Analyzer and, at the right above, Pickering's remarkable Scanning Electronic Beam Microscope capable of 160,000 times magnification.

Pickering's engineering department is responsible for creating these two outstanding cartridges that, as one reviewer stated: "The XV-15/625E offers performance per dollar; the XSV/3000 higher absolute performance level."

Both the XSV/3000 with its trademarked Stereohedron Stylus tip for the least record wear and the longest stylus life achievable so far...and the XV-15/625E...represent best buys at their price levels. Audition them today at your Pickering Dealer.

For further information write to Pickering & Co., Inc., Dept. PE, 101 Sunnyside Blvd., Plainview, N.Y. 11803

CIRCLE NO. 42 ON FREE INFORMATION CARD
vo designs, which feed the control systems by means of signals derived from the cartridge through a low-pass (infra-sonic) filter, the Sony arm evidently pays no attention to the cartridge output and instead relies on built-in motion sensors. Sony’s curves, reproduced in Fig. 1, suggest that the motion-sensor outputs are processed by a high-pass filter that restricts their influence to frequencies above about 1 Hz, which is an octave away from the approximately 0.5-Hz rotational rate of an LP record. This makes perfect sense if we want (as we do) the arm to be able to follow the eccentricities of an off-center record freely. What the servo system is supposed to do when confronted with a 45- or 78-rpm record is not indicated.

Other Performance Characteristics. The curves of Fig. 2 show the considerable effectiveness of the Sony arm in reducing the amplitude of the fundamental arm-cartridge resonance. They also show a dramatic reduction in inter-channel crosstalk, which indicates the fallacy of some tonearm manufacturers in believing that arm resonances activated by record warps involve only vertical perturbations. Experience shows that there are significant lateral components of motion involved as well.

Fig. 1 shows measured values of wow and flutter for frequencies up to 10 Hz, with and without the servomechanisms in the arm engaged. You’ll note how much more subject the arm is to frequency-modulation effects without the servo, particularly near the critical region of 4 Hz where record warps are concentrated. I suspect that this is where the greatest benefits of the arm are to be realized. In the region above 5 Hz, which is where the curves of Fig. 1 show the fundamental arm-cartridge resonance to be located, the results are less clear-cut, but they certainly show no significant detriment to performance.

Fig. 3 shows the output of the cartridge with the arm playing an unmodulated record groove, without and with servo regulation. The “without” signal exhibits a sort of envelope suggesting low-frequency modulation of the record noise that serves to increase its peak values. The “with” signal is well controlled by comparison. In similar experiments, I have observed a sort of tonearm “shimmy” that can crop up even without any groove modulation; this shimmy can be audible as a sort of stylus “chatter.”

Finally, Fig. 4, another “without” and “with” display, exhibits the damping provided by the servomechanism. In this case the tonearm has had a 0.5-gram object dropped on its head shell from a height of 10 centimeters. The interpretation of the results is obvious.

How Good an Idea? Evidently it will be some time before the U.S. consumer gets a chance to sample the performance of the Sony arm at first hand, and even then the price (I cannot even quote a projected figure in Japanese Yen) may get the better of his curiosity. The data, as supplied by Sony, definitely seem to be moving in the right direction, and they certainly reveal the possibilities for significant improvement in record-player performance. The conquest of the effective-mass problem seems quite decisive, and it is hard to see how any significant trouble could be encountered unless the fundamental arm-cartridge resonance fell low enough to approach 1 Hz, which is unlikely even with the most compliant of today’s cartridges. In this sense the arm should be truly universal. It is also universal in requiring no complex readjustment when cartridges are changed. Zero-balance, tracking force, and anti-skating are established electronically through the servos. If the new cartridge requires a different tracking force and skating compensation, these are simply dialed in on the control module. The whole business becomes a simple plug-in and a few deft twists.

On the other hand, had Sony chosen to offer its own cartridge—a strain-gauge or photoelectric type, for example—as an option for the arm, new possibilities could have been opened up. These types of cartridge have an output down to dc when stylus deflection exists.

Fig. 2. Damping action of Sony servos significantly reduces amplitude of the fundamental arm-cartridge resonance and the crosstalk.
Monitoring that output would make possible dynamic anti-skating compensation that could adjust to constant drag exerted on the stylus by different record materials and modulation velocities. (At the time of his involvement with radial-tracking tone arms, inventor Jacob Rabinow became convinced that their elegant solution to the skating problem was a great contribution to their audible merit.) Tracking force could be referred directly to stylus-cantilever deflection, which might prove to be a bit more realistic approach than to assume that every sample of a particular cartridge model is identical to its brethren and requires exactly the same tracking force. But let us not quibble here. Sony has chosen to build a completely universal tonearm designed to work with any high-quality cartridge, and this attitude probably serves the interests of the market best.

Now, what I would like to do is pirate the whole assembly containing the vertical sensor mechanism and motor, mount it to a carriage that would enable it to transit along an overhead track, shorten the support shaft so that the lateral sensor and motor could be brought right up underneath the carriage, convert the optical record-size/end sensor mechanism into a system that could control an advance motor, straighten the arm shaft, and... Well, you get the idea. Maybe next year.

The pity of it all is that a miniscule number of people ever gets to work with a record-playing system sophisticated enough to do credit to the disc medium, and therefore the audible improvements possible are just not realized by the majority of sound enthusiasts. Pursuing the ideal speaker is certainly no waste of time, and trying to get a line on the best-sounding amplifier and preamplifier is probably not complete folly. But the program sources available to the average consumer today are grossly imperfect, and although digital techniques suggest an answer, it is not an answer readily at hand. So I recommend you consider looking to improvements on your record-playing system. The improvements will not be easy to effect and in many cases they will not be cheap. But they can be a revelation.

We'll keep you posted.

McIntosh

"A Technological Masterpiece..."

McIntosh has received peerless acclaim from prominent product testing laboratories and outstanding international recognition! You can learn why the "more than a preamplifier" C 32 has been selected for these unique honors.

Send us your name and address and we'll send you the complete product reviews and data on all McIntosh products, copies of the international awards, and a North American FM directory. You will understand why McIntosh product research and development always has the appearance and technological look to the future.

Keep up to date.
Send now...
two amplifiers are in "Powered Advent" speaker system

separate amps for woofer and tweeter plus electronic crossover network

Advent Corporation's "Powered Advent" is a biamplified speaker system that employs the same drivers developed for the company's "New Advent" system. The enclosures for the two systems are approximately the same size. The Powered Advent, however, contains built-in separate power amplifiers for its woofer and tweeter plus an electronic crossover network and elaborate safeguards to protect both amplifiers and drivers against damage.

The cabinet for the system is finished in oiled walnut veneer, with rounded solid walnut edge moldings. Except for a control panel at the top of each enclosure, these speaker systems appear conventionally designed. The cabinet, including a black pedestal base that comes with it, measures 28 3/4"H x 14 1/4"W x 13"D (72.1 x 35.9 x 33 cm) and weighs 66.5 lb (30.2 kg). Each system is supplied with a 30' (9.1-m) cable fitted with phono plugs at both ends. Suggested retail price is $499.50 per system.

General Description. The Powered Advent is a two-way system, as are all Advent speaker systems. Its 10" (25.4-cm) acoustic suspension woofer is driven by an amplifier rated to deliver 80 watts from 20 to 20,000 Hz (it operates up to only about 2000 Hz) with less than 0.1% distortion. Beyond the 1500-Hz crossover frequency, a 1¾" (3.50-cm) dome tweeter takes over. It is driven by a separate identical amplifier which operates from about 1000 to 20,000 Hz. The power transistors for both amplifiers are mounted on the enclosure's metal rear plate, which serves as a heat sink.

The speaker system's input is through a conventional phono jack on the rear panel. Near this jack is a small toggle switch that can be used to switch in and out an internal subsonic filter whose response is down 1 dB at 30 Hz and 24 dB at 5 Hz. A small panel on top of the enclosure contains a number of operating controls, including a pushbutton POWER switch, low- and high-frequency EQUALIZER CIRCUIT controls, and an INPUT SENSITIVITY control.

Equalization controls affect only the frequency extremes and are intended to compensate for room acoustics (and for some program material at high frequencies). The below 100-Hz control provides up to 6 dB of boost at 30 Hz, and its action is confined to a frequency range of less than 100 Hz. The above 3000-Hz control affects only those frequencies beyond 3000 Hz and has a range of ±4 dB at 10,000 Hz. The output SENSITIVITY control can be adjusted from 0.3- volt maximum input for full speaker system output to fully off.

A green LED on the panel comes on when power is switched on, while a red LED flashes when one of the system's internal protective systems has been tripped. The system's input impedance of 100,000 ohms permits the Powered Advent to be driven from any line-level source, such as a preamplifier, tuner, or tape deck.

There are four separate protective circuits in the Powered Advent system. The tweeter is protected by an analog circuit that integrates the energy in the tweeter's frequency range and shuts off the driver if thermal overload is imminent. It does not react to short bursts of high-frequency energy. Thus, it protects the tweeter against voice-coil burnout from lower-level signals of relatively long duration.

Another circuit protects against excessive excursion of the woofer's cone, which could be caused by a failure in the amplifier that places the dc supply voltage across the woofer's voice coil or by certain overload signals (such as dropping the phono pickup onto a record

two-way system has 10-inch woofer and 13/8-inch dome tweeter

with the volume set high) with the subsonic filter bypassed.

A third circuit protects the amplifiers' output transistors. This circuit continu-

Toneburst responses for (left to right) 100, 1000, and 10,000 Hz.
Product Focus

The Powered Advent is one of the few self-powered biamplified speaker systems on the market today. Several advantages have been claimed for this design approach. Some are obvious, such as the elimination of bulky power amplifiers that can at times pose installation problems. Most, however, relate to the interface between amplifier and speaker-system drivers.

It has been claimed that the inductance (or capacitance or resistance or a combination of the three) of ordinary speaker cables leads to a subtle loss of definition or other degradation of sound quality, usually by virtue of its effect on the system’s response in the ultrasonic range. Although the reality of these effects is debatable, there can be no argument that reducing the length of speaker cables or eliminating them entirely can be beneficial. Building the amplifier into the speaker enclosure represents the ultimate in elimination of cable effects.

The impedance of most speaker systems varies widely over the audio-frequency range. Part of this is due to the drivers’ mechanical resonances and part to the reactive crossover network components. As a result, the amplifier is almost never terminated in a load that in any way resembles the ideal resistor load used for laboratory testing of amplifier performance. Some combinations of speaker systems and amplifiers are particularly unfortunate because they lead to distortion and instability. In a biamplified system, however, the crossover components are ahead of the amplifiers. Thus, each amplifier “sees” only the impedance variation of the drivers themselves. Even if these are substantial or unusual, the integrated speaker-system designer used in the Powered Advent. There are certainly many more, but the ones enumerated here are, in our view, the principal “plusses” of this type of product. The most obvious minus in such a system is the cost, although when one compares it to the combined cost of a 200-watt/channel amplifier and a pair of conventional speaker systems of similar performance, such as the New Advents, with due allowance for the more effective protection in the powered version, the cost differential does not seem great.

The amplifier “sees” the crossover design has the opportunity to compensate for them in the overall design of the amplifier and speaker system.

There can be no doubt that the crossover design has a considerable effect on the overall sound of a speaker system, and many people feel that eliminating the usual crossover (by going to a biamplified system) results in a clearer, better-defined sound quality.

Anyone who has had the misfortune to blow out a speaker system or an amplifier by careless or over-enthusiastic use of the volume control, will appreciate the advantage of having foolproof protection in his music system. It is difficult to make an amplifier that is absolutely blowout-proof under any load and drive conditions, and it is impossible to make a speaker system that cannot be damaged by some amplifier. However, if the amplifier and speaker system are designed as an integrated unit, as in the Powered Advent system, their characteristics can be made complementary. In addition, the protective circuits can be integrated with the total design, making burn-outs almost impossible.

The above are some of the advantages of the integrated biamplified design.

Finally, there is thermal protection for the entire amplifier system. This circuit continuously monitors the temperature of the heat sink. Should the temperature increase to too great a degree, the thermal-protection system shuts down the amplifier.

Laboratory Measurements. As is our custom, we measured the semireverberant-field response of the Powered Advent system with its equalizer controls set to their nominally flat 0-dB settings. We then measured the frequency response with the high-frequency equalization control set to its limit of ±4 dB.

The low-frequency response was measured separately with close microphone spacing and the bass equalizer control set first to 0 and then to +6 dB. When we spliced together the two curves, we obtained a frequency response that rose beyond 5000 Hz.

The lowest setting of the high-frequency equalizer control (−4 dB) produced an extremely flat response out to 13,000 Hz, after which the response fell off rapidly. The dispersion of the new tweeter used in the Powered Advent system was outstanding. Our on-axis and 30° off-axis measurements for the tweeter were essentially identical.

The woofer’s response reached its maximum in the range between 60 and 100 Hz. It sloped down gradually at higher frequencies and at the expected 12-dB/octave rate at lower frequencies (in the 0-dB bass equalization condition). The equalizer had a 6-dB maximum effect at 30 Hz, as rated, and had essentially no effect on frequencies beyond 60 Hz. The spiced composite curve revealed a broad dip in the midrange, amounting to about 5 dB between 600 and 1000 Hz. Using the
Manufacturer’s Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power output (cont. both amps. driven, 6-ohm load)</td>
<td>80 W min., 20-20,000 Hz at less than 0.1% THD</td>
</tr>
<tr>
<td>Woofer</td>
<td>80 W min., 20-20,000 Hz at less than 0.1% THD</td>
</tr>
<tr>
<td>Tweeter</td>
<td>60/7000 Hz, 4:1 Less than 0.1% adjustable output</td>
</tr>
<tr>
<td>Intermodulation distortion</td>
<td>-4 dB at 30 Hz -24 dB at 5 Hz</td>
</tr>
<tr>
<td>Input sensitivity</td>
<td>Adjustable from 0.3 V to infinity</td>
</tr>
<tr>
<td>Input impedance</td>
<td>100,000 ohms</td>
</tr>
<tr>
<td>Crossover frequency</td>
<td>± 1 dB at 30 Hz Variable below 100 Hz</td>
</tr>
<tr>
<td>Subsonic filter</td>
<td>-24 dB at 5 Hz Variable above 3000 Hz</td>
</tr>
<tr>
<td>Equalizer controls</td>
<td>± 4 dB at 10,000 Hz.</td>
</tr>
</tbody>
</table>

equalization that yielded flattest overall response (~4 dB at high frequencies and +6 dB at low frequencies), we obtained a very good ±3-dB overall response variation from 26 to 15,000 Hz.

The flattest setting of equalization controls yielded very good +3-dB overall response from 26 to 15,000 Hz

although it showed signs of rising again above 20,000 Hz. The Powered Advent had a uniformly good tone-burst response at any frequency in its operating range. Even in the crossover region, there were no serious modifications of the burst shape. Since an appreciable amount of tone-burst distortion arises in the conventional LC passive crossover networks of speaker systems, it is possible that the active networks used in this system are responsible in part for its tone-burst performance.

In measuring bass distortion of the speaker system, we could not follow our usual practice of driving the system with a constant voltage corresponding to 1 watt into its rated impedance. Instead, we drove it to a sound pressure level (SPL) of 90 dB at a 1-meter distance with a 100-Hz sine wave and maintained that input level as we reduced the frequency. The output of the close-spaced microphone was connected directly to our Hewlett-Packard Model 3580A spectrum analyzer; the levels of all significant harmonics were combined to obtain a THD reading. The second harmonic was predominant, while the total distortion was 1% to 2% from 100 to 50 Hz. Notably, the distortion did not rise sharply at lower frequencies. It was only 5% at 30 Hz, as an example.

Although the sensitivity of the system also cannot be readily compared to that of any conventional speaker system, we discovered that an input of 0.3 volt of random noise in an octave centered at 1000 Hz, with the system’s input control set to 0.3 volt (maximum), produced a very high 112-dB SPL at 1 meter from the grille. Since the sensitivity can be reduced to any lower value, and the 112-dB SPL is exceptionally high for any home speaker system, it would appear that the Powered Advent can be driven adequately from any high-level or line-level signal source.

User Comment. The Powered Advent sounded distinctly “bright” when we used its 0-dB equalizer settings. We soon determined that other settings were preferable in our listening room: ~4 dB for HF and +6 dB for LF settings. This also gave us the flattest measured response and illustrated what a creditable electronic tone-control system the speaker/amplifier has.

To our ears the speakers exhibited a clean, crisp, and very slightly bright character with program material that did not contain much bass. We confirmed that the speaker system can indeed be played at prodigious volume levels without equipment damage or obvious distortion. When pushed too far, the protective circuits momentarily silenced the speakers, accompanied by lighting of front panel red LEDs. The level required to cause this condition was unbearably high in our normal-size room.

From both our listening tests and measurements, the Powered Advent is clearly a very fine system. That is, a combined speaker and power amp system. We would recommend it highly for anyone with a top-quality separate preamp who does not intend to buy a separate power amp (remember, each of these systems contains 160 watts of high-quality amplification). One would therefore reduce space requirements, and gain the attributes of bi-amplification, virtually fail-safe equipment protective systems, and so on.

The only drawback we could find was the minor one that requires plugging the systems into an ac line and switching them on and off separately at the beginning and end of each listening session. Since they draw considerable power (up to 450 watts per speaker/amplifier), Advent does not recommend plugging them into the switched outlets of a preamplifier unless they are rated to handle the 900-watt load.

(Reports continued on page 28)
How to buy a personal computer.

Suddenly everyone is talking about personal computers. Are you ready for one? The best way to find out is to read Apple Computer's "Consumer Guide to Personal Computing." It will answer your unanswered questions and show you how useful and how much fun personal computers can be. And it will help you choose a computer that meets your personal needs.

Who uses personal computers.
Thousand of people have already discovered the Apple computer—businessmen, students, hobbyists. They're using their Apples for financial management, complex problem solving—and just plain fun. You can use your Apple to analyze the stock market, manage your personal finances, control your home environment, and to invent an unlimited number of sound and action video games. That's just the beginning.

What to look for.
Once you've unlocked the power of the personal computer, you'll be using your Apple in ways you never dreamed of. That's when the capabilities of the computer you buy will really count. You don't want to be limited by the availability of pre-programmed cartridges. You'll want a computer, like Apple, that you can also program yourself. You don't want to settle for a black and white display. You'll want a computer, like Apple, that can turn any color TV into a dazzling array of color graphics.* The more you learn about computers, the more your imagination will demand. So you'll want a computer that can grow with you as your skill and experience with computers grows. Apple's the one.

How to get one.
The quickest way is to get a free copy of the Consumer Guide to Personal Computing. Get yours by calling 800/538-9696. Or by writing us. Then visit your local Apple dealer. We'll give you his name and address when you call.

*Apple II plugs into any standard TV using an inexpensive modulator (not included).
popularly priced components from a "high-end" manufacturer: the SAE TWO stereo tuner and integrated amplifier

new audio line is introduced

Scientific Audio Electronics' new "SAE TWO" product line brings the company's products into a more popular price range than its typical "high end" models. Initially, the SAE TWO line consists of an AM/FM-stereo tuner, an integrated amplifier, a receiver, and a cassette deck. All are built in Japan to SAE designs and specifications.

We tested the SAE TWO Models T3U tuner and C3A integrated amplifier, which together form the nucleus of a modestly priced audio system of outstanding quality. Both units are identical in size and style. They're finished in black throughout, with accents of white panel legends and red LED status indicators. The cabinet tops are dimpled to accept feet on the bottom of each unit, allowing them to be stacked if desired.

The SAE TWO units measure 17 1/4" W x 12 3/4" D x 5" H (43.8 x 31.4 x 12.7 cm), excluding the knobs and rear connectors. The amplifier weighs 19 pounds (8.6 kg) and the tuner weighs 12 1/2 pounds (4.9 kg). The suggested retail prices are $325 for the amplifier and $275 for the tuner.

General Description. The Model T3U tuner has a long dial scale that occupies most of the width of the bottom half of the front panel. The dial is calibrated only at 2-MHz intervals. Above the dial are two large meters that indicate relative signal strength and FM center-channel tuning. To the right of the meter is a large TUNING knob, the only knob control on the tuner.

To the left of the meters is a group of control pushbuttons, with red status LEDs above them. They include BLEND (mixing of two channels at high frequencies to reduce hiss on weak stereo signals) and MUTING. On the rear is a hinged ferrite-rod AM antenna.

The FM "front end" has a conventional dual-gate MOSFET r-f amplifier. Bipolar transistors are used in the mixer and local oscillator; active circuits of the AM tuner are contained in a single IC, which provides all the functions from r-f input to the audio output. The FM L/F output goes through two pairs of ceramic filters that are separated by a single transistor stage and then to a multipurpose IC that provides gain, limiting, quadrature detection, and FM interstation muting. Audio output, including multiplexed stereo information, goes to a phase-locked loop multiplex IC, whose outputs are the two stereo channels. After filtering to remove ultrasonic pilot carrier components, the audio goes through discrete component low-level audio amplifiers and through relay contacts to the output jacks. The relay disconnects the tuner's audio outputs the moment any of the selector buttons is pressed and restores the audio a second after the button is released. This prevents any switching transients from reaching the amplifier and speakers.

The front panel of the amplifier has its two output meters in the same position occupied by the tuner's tuning meters, giving the two units a highly unified appearance when they are stacked. Meter scales are calibrated approximately logarithmically from 1 to 50 watts. Like the tuner's meters, their white pointers and legends contrast well with the black meter face and panel, resulting in excellent readability.

To the right of the meters is a large VOLUME knob matching the tuner's TUNING knob in size and placement. One side of the VOLUME knob is flattened and has an engraved index line, and the control is lightly detented in about 40 steps. The other knobs on the amplifier, though smaller than that on the VOLUME control, are similar in shape. To the left of the meters are pushbutton switches that are identical in appearance to those on the tuner. Three are for selecting inputs, while the others are for switching in and out the LOUDNESS compensation and audio MUTING. (The latter provides a nominal 20-dB volume reduction.)

Along the bottom of the panel are a number of other controls. Two three-position toggle switches are assigned to tape-monitoring and dubbing functions for two tape decks that can be connected to the amplifier. The other two-position switches are for stereo/mono MODE switching, FILTER (a low-cut filter, although this is not so indicated on the panel), and TONE DEFEAT. The BASS and...
TREBLE controls are continuous types, detented at their center settings. The SPEAKERS switch connects either or both of two pairs of speaker systems to the amplifier's outputs or silences the speaker systems for headphone listening through a jack near the switch.

On the rear apron are the various input and output phono jacks, plus three ac outlets, one of which is unswitched. The speaker connectors are insulated and spring loaded, with a hole into which the speaker wire is inserted.

The amplifier uses IC op amps for its tone-control amplifiers and phono preamplifier stages. The power amplifier section uses discrete transistors and components. The output stages use plastic cased complementary-symmetry transistors that are clamped to a finned heat sink that occupies the center of the amplifier below the ventilating grille on its top cover. A relay, operated by electronic sensing circuits, disconnects the speakers instantly in the event of a severe overload, short-circuited output, or other malfunction. It also provides a few seconds of turn-on delay.

Performance Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Rating</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model C3A Amplifier:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power (8 ohms 20-20,000 Hz)</td>
<td>50 watts/channel</td>
<td>65 watts/channel (1000 Hz)</td>
</tr>
<tr>
<td>Total harmonic distortion</td>
<td>0.05%</td>
<td>0.01% (1000 Hz)</td>
</tr>
<tr>
<td>IM distortion</td>
<td>0.05%</td>
<td>0.015% (1-65 watts)</td>
</tr>
<tr>
<td>S/N ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phono (A wtd., 100-mV reference)</td>
<td>85 dB</td>
<td>70-75 dB (A wtd., 1-watt out.)</td>
</tr>
<tr>
<td>Aux (A wtd.)</td>
<td>97 dB</td>
<td>70-75 dB (A wtd., 1-watt out.)</td>
</tr>
<tr>
<td>Phono overload</td>
<td>150 mV</td>
<td>160 mV at 1000 Hz</td>
</tr>
<tr>
<td>Sensitivity Phono</td>
<td>2.5 mV</td>
<td>0.31 mV (1-watt output)</td>
</tr>
<tr>
<td>Aux</td>
<td>150 mV</td>
<td>22 mV (1-watt output)</td>
</tr>
<tr>
<td>Frequency response (20-20,000 Hz)</td>
<td>±0.25 dB</td>
<td>Verified</td>
</tr>
<tr>
<td>RIAA equalization accuracy</td>
<td>N/A</td>
<td>20-20,000 Hz ±0.5 dB</td>
</tr>
<tr>
<td>Model T3U Tuner:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM section: 50-dB quieting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mono</td>
<td>14.7 dBf (3 µV)</td>
<td>15 dBf</td>
</tr>
<tr>
<td>Stereo</td>
<td>27.3 dBf (40 µV)</td>
<td>36.3 dBf</td>
</tr>
<tr>
<td>Frequency response</td>
<td>N/A</td>
<td>30-15,000 Hz +0.2/-0.8 dB</td>
</tr>
<tr>
<td>THD Mono</td>
<td>0.1%</td>
<td>0.083%</td>
</tr>
<tr>
<td>THD Stereo</td>
<td>0.2%</td>
<td>0.115%</td>
</tr>
<tr>
<td>Capture ratio</td>
<td>N/A</td>
<td>0.95 dB at 65 dBf</td>
</tr>
<tr>
<td>Separation</td>
<td>40 dB (1000 Hz)</td>
<td>40-46 dB (120-15,000 Hz)</td>
</tr>
<tr>
<td></td>
<td>35 dB (10,000 Hz)</td>
<td>30 dB (30 Hz)</td>
</tr>
<tr>
<td>S/N ratio</td>
<td>N/A</td>
<td>76.5 dB (mono)</td>
</tr>
<tr>
<td>Alternate-channel rejection</td>
<td>N/A</td>
<td>70.5 dB (stereo)</td>
</tr>
<tr>
<td>Image rejection</td>
<td>N/A</td>
<td>50.6 dB</td>
</tr>
<tr>
<td>AM rejection</td>
<td>N/A</td>
<td>85.6 dB</td>
</tr>
<tr>
<td>AM Section</td>
<td>N/A</td>
<td>55 dB at 65 dBf</td>
</tr>
<tr>
<td>Frequency response</td>
<td>N/A</td>
<td>-6 dB at 33 and 2900 Hz</td>
</tr>
</tbody>
</table>

Laboratory Measurements. The SAE T3U tuner had an IHF sensitivity of 14.5 dBf in mono and 17 dBf in stereo. For 50-dB quieting sensitivity—which is the truly important tuner sensitivity rating—was a very good 15 dBf in mono at 2.6% THD. In stereo, the figures were 36.3 dBf at 0.4%. Stereo and muting thresholds were identical at 14.8 dBf. Distortion at a 65-dBf input measured 0.083% in mono and 0.115% in stereo. In mono, distortion reached its minimum at 65 dBf and rose slightly higher at higher inputs. It was typically 0.2% to 0.25% at most signal levels. Stereo distortion, on the other hand, decreased steadily with increasing signal level, reaching a minimum of only 0.1% above 85 dBf. The ultimate S/N, at a 65-dBf input, was a very good 76.5 dB in mono and 70.5 dB in stereo.

The tuner's stereo distortion with L - R modulation, at a 65-dBf input, was 0.45% at 100 Hz, 0.12% at 1000 Hz, and 0.16% at 6000 Hz. The audio output level capture ratio was exceptionally good at 1.12 dB.
el, which is fixed, was 0.86 volt at 100% modulation. Frequency response was +0.2/−0.8 dB from 30 to 15,000 Hz. Channel separation differed in the two channels, but was uniform with frequency. The average of the two readings was between 40 and 46 dB from 120 to 15,000 Hz and a good 30 dB at 30 Hz.

The capture ratio was exceptionally good at 1.12 dB at 45 dB and 0.95 dB at 65 dB. AM rejection was average, measuring 55 dB at 65 dB and 65 dB at 45 dB. (It is unusual for the AM rejection to decrease with increasing signal strength.) Image rejection of 85.6 dB represents good performance. The i-f bandpass of the tuner was highly asymmetrical, however, which made measurement of its alternate-channel selectivity rather difficult. The best average reading we could get of this characteristic was 50.6 dB, an acceptable but not distinguished rating. Adjacent-channel selectivity was 5.5 dB.

Although the tuner's high-frequency response showed no signs of a drop-off from the low-pass filter (it was actually up at 15,000 Hz), the filter was highly effective. The 19-kHz pilot carrier signal in the audio output was −73 dB, referred to 100% modulation. No sign of the 38-kHz component could be detected. There was a small amount of power-line hum in the tuner's output, measuring −62 dB at 60 Hz. The AM-tuner section had a restricted frequency response, down 6 dB at 33 and 2900 Hz.

The SAE C3A amplifier became only moderately warm during its one-hour preconditioning period at one-third rated power, after which its outputs clipped at 68 watts/channel when both channels were driven at 1000 Hz into 8-ohm loads. This corresponds to an IHF clipping headroom rating of 1.33 dB. The IHF dynamic headroom, a measure of the amplifier's short term power capability, was 1.85 dB.

Harmonic distortion at 1000 Hz was 0.007% at most power levels. It rose to 0.01% at 0.1 watt and 65-watts output. Thus, its 65-watts/channel at 0.01% distortion performance was substantially better than its rating of 50 watts/channel with 0.5% distortion. IM distortion was less than 0.015% at most power outputs from 1 to 65 watts, although it rose appreciably at very low powers in the milliwatt range. In contrast, harmonic distortion was nearly constant with power at outputs from rated power to −10 dB. Beginning at a maximum of less than 0.06% at 20 Hz (which includes the approximately 0.02% residual of our signal generator), distortion decreased smoothly to a minimum of 0.002% to 0.004% at about 5000 Hz. It then rose to about 0.025% at 20,000 Hz. To drive the amplifier to a reference power of 1 watt, an AUX input of 22 mV or a PHONO input of 0.31 mV was needed. The weighted S/N was roughly the same through both inputs under IHF standard test conditions, measuring 70 to 70.5 dB referred to 1 watt. The phono input overloaded at 160 mV. Phono input impedance was 50,000 ohms in parallel with 50 pF of capacitance.

The tone controls had conventional curves, with a sliding bass turnover frequency and treble curves hinged at about 1500 Hz. The loudness compensation boosted both low and high frequencies as volume was reduced. The response of the FILTER was down 3 dB at 45 Hz. We could not determine its ultimate slope, which was below our 20-Hz lower measurement limit. The RIAA equalization accuracy was well within ±0.5 dB from 20 to 20,000 Hz and was hardly affected by cartridge inductance. (The output at 20,000 Hz rose less than 0.5 dB when measured through the coil of a cartridge).

User Comment. Our initial impression of the SAE TWO components was highly favorable. They are, to our eyes, quite attractive. The measurements speak for themselves. These components are excellent performers, though not quite up to the stellar standards set by SAE's costlier regular line.

We did not find any operating "bugs" in the SAE TWO tuner and amplifier, and they were as quiet and free from thumps and switching noises as any tuner and amplifier we have used. FM tuning was positive and noisefree. Furthermore, the momentary muting action when an input button was pressed was totally effective in eliminating noise.

There were a few minor criticisms, though. Lack of separate preamplifier outputs and power amplifier inputs in the amplifier would have been a nicety in an otherwise very up-to-date design. Their inclusion would certainly simplify connecting certain signal-processing accessories, including some made by SAE, into the system without sacrificing a tape recorder circuit.

(Continued on page 32)
step up to
antenna specialists
quality...

25th anniversary
our Silver Sale!
makes it easy!

For over a quarter century, buying the very best CB antenna has meant buying Antenna Specialists. From superior materials, like resilient 17-7 PH stainless steel whips—to superior engineering, like the cool running coil in the famous "Big Momma"—these are the finest antennas money can buy. Only now you can buy them for less! Because your Antenna Specialists dealer is offering big 25th Anniversary savings on over a dozen of our newest and most popular models. It's a silver opportunity to move up to the stripes of quality...so see your dealer today!

the antenna specialists co.
a member of The Allen Group Inc.
12435 Euclid Ave. Cleveland, Ohio 44106
Export: 2200 Shames Drive, Westbury, L.I., New York 11590
Canada: A. C. Simmonds & Sons, Ltd.
CIRCLE NO. 6 ON FREE INFORMATION CARD

New "customized" look!
Model M-500 sidetray mount,
top loaded fiber glass whip
with super performance.
The calibration marks on the FM tuning dial are much too limited to permit unambiguous station identification. They appear to be reasonably accurate (though interpolating to 200 kHz accuracy between markings spaced at 2-MHz intervals calls for a combination of skill and luck).

Aside from the foregoing, we must say that the SAE TWO components performed very well. Also, we appreciated that the FM tuner was noncritical in its setting for minimum distortion and maximum channel separation. At most signal levels, the center-channel tuning meter really did show the optimum tuning point for lowest distortion.

Although the Model C3A is not by any means a "super-power" amplifier, it has more than enough power for most installations. We operated the tuner and amplifier stacked, with the tuner on top, and the amplifier hardly became warm, let alone hot. This is a positive benefit of a design that does not seek to cram every possible watt into a small package. The versatility in installation afforded by this combination, plus their strikingly handsome appearance and excellent sound, combine with a surprisingly modest price to make the Models C3A and T3U a fine SAE entry into the medium-cost component market.

two operating speeds are available in the new B. I. C. Model T-2 cassette deck

In the more than ten years since Philips introduced the "Compact Cassette," it has been exclusively a 1 3/4-ips tape format for audio recording and playback. Philips licensing agreements have, until now, prevented any manufacturer from entering the consumer market with cassette machines operating at other than 1 3/4 ips. Philips' purpose has been to maintain full compatibility between all cassette recorders and tapes. Now, however, the situation has changed with the introduction of three new cassette decks from B.I.C. In addition to the usual 1 3/4-ips speed, the "T" series decks can be operated at 3 1/2 ips. Just as with open-reel tape, doubling the tape speed makes possible a substantial improvement in frequency as well as dynamic ranges as well as flutter.

The B.I.C. Model T-2 examined here is a single-motor, two-head, two-speed cassette deck with distinctive styling and unique operating features. Its black panel, with clearly legible white markings, contrasts with a rosewood-finished wooden cabinet. The overall dimensions are 16 3/4" W × 6" H × 9 1/4" D (42.6 × 15.2 × 23.5 cm), while its weight is 12.8 lb (5.8 kg). Suggested retail price is $329.95.

General Description. At first glance, the Model T-2 appears to be quite conventional, though unusually handsome. The front-loading tape transport, with its bottom-hinged door, is at the left of the front panel. Piano-key controls are below it and include a combined STOP/EJECT key. (Initial operation of this key stops the tape motion, and the second opens the cassette compartment.) The tape must be at a stop before the PLAY, FAST FORWARD, or REWIND controls can be operated. The cassette compartment's window is retained by two thumbscrews and can be removed easily for cleaning, demagnetizing, and adjusting the heads.

Just to the right of the cassette compartment is an index counter with a MEMORY button that can be set to stop the tape in REWIND when the counter registers 000. Two large, well-lit meters have black faces with backlit white scale markings and white pointers that are exceptionally easy to read. Above 0 dB, the markings are in red. The meter scales are logarithmic and cover a range from −40 to +5 dB, with the Dolby level calibration (corresponds to a 200 nW/m flux level) at 0 dB.

Below the meters are two large concentric knobs for setting recording levels for the two channels. A single indicator between the meters glows green when the deck is recording and instantly changes to red if the peak level exceeds 0 dB. A small OUTPUT LEVEL knob is located to the right of the meters, while below it is a separate PHONES LEVEL control that affects only headphone outputs.

doubling tape speed improves frequency and dynamic range

The remaining controls form a single row across the bottom of the panel, including a switch for selecting either 1 3/4- or 3 1/4-ips tape speed. The dc motor that drives the transport features tachometer feedback for speed

(Continued on page 38)
Someday all terminals will be smart........

- 128 Functions—software controlled
- 7 x 12 matrix, upper/lower case letters
- 50 to 38,400 baud—selectable
- 82 x 16 or 92 x 22 format—plus graphics
- Printer output port
- "CHERRY" keyboard

CT-82 Intelligent Terminal, assembled and tested. $795.00 ppd in Cont. U.S.

SOUTHWEST TECHNICAL PRODUCTS CORPORATION
219 W. RHAPSODY
SAN ANTONIO, TEXAS 78216
You gotta shop around.

When you do, you'll probably pick CIE. You can't afford to settle for less when it comes to something like electronics training that could affect your whole life.
When you shop around for a bargain, after all, if it's the same brand, better price — why not save money?

Education's different. There's no such thing as "same brand." No two schools are alike. And, once you've made your choice, the training you get stays with you for the rest of your life.

So, shop around for your training. Not for the bargain. For the best. Thorough, professional training to help give you pride and confidence.

* * *

If you talked to some of our graduates, chances are you'd find a lot of them shopped around for their training. They pretty much knew what was available. And they picked CIE as number one.

Why you should shop around yourself.

We hope you'll shop around. Because, frankly, CIE isn't for everyone.

There are other options for the hobbyist. If you're the ambitious type — with serious career goals in electronics — take a close look at what we've planned for you at CIE.

What you should look for first.

Part of what makes electronics so interesting is it's based on scientific discoveries — on ideas! So the first thing to look for is a program that starts with ideas and builds on them!

That's what happens with CIE's Auto-Programmed Lessons. Each lesson takes one or two principles and helps you master them — before you start using them!

How practical is the training?

This is the next big important question. After all, your career will be built on what you can do — and on how well you do it.

Here are ways some of CIE's troubleshooting programs help you get your "hands-on" training...

With CIE's Experimental Electronics Laboratory...

you learn and review the basics — perform dozens of experiments. Plus, you use a 3-in-1 precision Multimeter to learn testing, checking, analyzing!

When you build your own 5 MHz Triggered-Sweep, Solid-State Oscilloscope you take your first real professional step. You use it as a doctor uses an X-ray machine — to "read" waveform patterns... lock them in... study, understand and interpret them!

When you get your Zenith 19-inch Diagonal Solid-State Color TV you apply your new skills to some real-on-the-job-type troubleshooting! You learn to trace signal flow... locate malfunctions... restore perfect operating standards — just as with any sophisticated electronics equipment!

When you work with a completely Solid-State Color Bar Generator — actually a TV signal transmitter — you study up to ten different patterns on your TV screen... explore digital logic circuits... observe the action of a crystal-controlled oscillator!

Of course, CIE offers a more advanced training program, too. But the main point is simply this:

All this training takes effort. But you'll enjoy it. And it's a real plus for a troubleshooting career!

Do you prepare for your FCC License?

Avoid regrets later. Check this out before you enroll in any program.

For some troubleshooting jobs, you must have your FCC License. For others, employers often consider it a mark in your favor. Either way, it's government-certified proof of specific knowledge and skills!

More than half of CIE's courses prepare you for the government-administered FCC License exam. In continuing surveys, nearly 4 out of 5 CIE graduates who take the exam get their Licenses!

Shop around... but send for CIE's free school catalog first!

Mail the card. If it's gone, cut out and mail the coupon. If you prefer to write, mention the name and date of this magazine. We'll send you a copy of CIE's Free school catalog — plus a complete package of independent home study information!

For your convenience, we'll try to have a representative contact you to answer your questions.

Mail the card or coupon — or write: CIE, 1776 East 17th St., Cleveland, OH 44114.
regulation. A RECORD SAFETY switch has three positions, labelled SAFE, READY, and MUTE. This switch operates in addition to the mechanical RECORD switch associated with the transport keys and the recording safety tabs on the cassette, which prevent the RECORD key from being engaged when they are removed. In the SAFE position, the deck will not record or erase, no matter how the other controls are set. In READY, the recorder operates in a conventional manner, under the control of its RECORD and PLAY keys. MUTE is spring-loaded and can be used to blank out unwanted material (such as commercial announcements) while making a recording. Holding it down allows the deck to continuously erase the tape, with no signal being recorded. Releasing it restores normal recording. A DOLBY/MPX switch is also provided. In its bottom position, the Dolby system is off. Setting it to the center position, turns on the Dolby system and a green LED above the switch. In the top position, a multiplex (MPX) filter is inserted in the signal path to prevent an FM tuner’s pilot carrier leakage from influencing the operation of the Dolby system.

Separate switches control bias and equalization. The three BIAS positions are labelled HI, NORM, and LO, while the EQ settings are marked in terms of their time constants (70 and 120 µs). In general, HI bias is for chromium-dioxide or equivalent tapes, while good ferric-oxide tapes will require NORM bias. LO bias is presumably for relatively inexpensive, low-performance tapes.

To the right of the recording level knobs is a pushbutton switch that permits selection of either the LINE or the MIC inputs for recording. (The two cannot be mixed.) Next in line to the right is the PHONES jack.

Laboratory Measurements. The recorder had been factory adjusted for TDK AD and SA tapes (NORM BIAS and 120-µs EQ; HI BIAS and 70-µs EQ). Hence, we used these tapes for all our tests. Insofar as possible, all measurements were made at both tape speeds. Following the information supplied with the recorder, we used HI bias for both tapes at 3 3/4 ips, although the EQ time constants were the same at both speeds.

The line inputs at the rear apron required only 31 mV at 1000 Hz for a 0-dB meter indication. The corresponding maximum playback level was about 1.8 volts. MIC sensitivity was 0.165 mV, and the microphone preamplifier overloaded with a 21-mV input. This indicates the need for caution when recording from microphones, any of which can deliver over 21 mV at reasonably high sound levels. The maximum headphone output was 1.5 volts into 200 ohms, which gave a very comfortable listening level with medium-impedance phones.

The red indicator is most informative display for overload seen

The 1000-Hz playback distortion with a 0-dB recording signal level was well below the specified limits with SA tape and extremely low (0.25% to 0.5%) with AD tape. The reference recording level for AD tape, corresponding to 3% playback distortion, was +5 dB at 1 3/4 ips and +7 dB (well above the meter scales) at 3 3/4 ips. As expected, the SA 70-µs tape saturated at a lower level, +3 dB at 1 3/4 ips and +4 dB at 3 3/4 ips. The red OVERLOAD indicator came on at +1 dB, well before the onset of significant distortion with either tape.

The unweighted S/N, referred to the 3% distortion signal level, was about 48 dB at the lower speed and 51 dB at the higher speed with both tapes. With A weighting, it was 57 to 57.5 dB at 1 3/4 ips. At 3 3/4 ips, the difference between the two tapes was revealed, with AD measuring 61.2 dB and SA 62.4 dB. When we used the Dolby system with CCIR/ARM noise weighting, the S/N performance was very good. It was 64.2 dB with AD tape and 63.6 dB with SA tape, both at 1 3/4 ips. At 3 3/4 ips, S/N was 66.8 dB for AD and 69 dB for SA tape.

The 120-µs playback equalization was measured with a TDK AC-337 test tape. It was flat within ±0.5 dB from 90 to 4000 Hz, and rose to +3.4 dB at 40 Hz and +2.2 dB at 12,500 Hz. The 70-µs response from a Teac 116SP tape was within ±0.5 dB from

Performance Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Rating</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speeds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 3/4 ips (4.75 cm/s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 3/4 ips (9.5 cm/s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70 µs: 1 3/4: 30-18,000 Hz ±3 dB</td>
<td></td>
<td>20-15,500 Hz ±2 dB</td>
</tr>
<tr>
<td>3 3/4:</td>
<td></td>
<td>20-25,000 Hz ±3.5 dB</td>
</tr>
<tr>
<td>120 µs: 1 3/4:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 3/4:</td>
<td></td>
<td>20-15,000 Hz ±1.5 dB</td>
</tr>
<tr>
<td>S/N (A weighted, ref. 3% THD, 70 µs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1%:</td>
<td>54 dB</td>
<td>57.5 dB</td>
</tr>
<tr>
<td>3 3/4:</td>
<td>57 dB</td>
<td>62.4 dB</td>
</tr>
<tr>
<td>1% (Dolby):</td>
<td>62 dB</td>
<td>63.6 dB (CCIR)</td>
</tr>
<tr>
<td>3 3/4 (Dolby):</td>
<td>66 dB</td>
<td>69.0 dB (CCIR)</td>
</tr>
<tr>
<td>Wow and Flutter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1% (wrm):</td>
<td>0.06%</td>
<td>0.06% avg.</td>
</tr>
<tr>
<td>3 3/4 (wrm):</td>
<td>0.04%</td>
<td>0.04% (R/P)</td>
</tr>
<tr>
<td>1% (wpk/DIN):</td>
<td>0.12%</td>
<td>0.10% (R/P)</td>
</tr>
<tr>
<td>3 3/4 (wpk/DIN):</td>
<td>0.10%</td>
<td>0.06% (R/P)</td>
</tr>
<tr>
<td>THD (0 dB, 70 µs): 1%:</td>
<td>1.9%</td>
<td>1.1%</td>
</tr>
<tr>
<td>3 3/4:</td>
<td>1.6%</td>
<td>0.8%</td>
</tr>
<tr>
<td>(0 dB, 120 µs): 1%:</td>
<td>NA</td>
<td>0.56%</td>
</tr>
<tr>
<td>3 3/4:</td>
<td>0.25%</td>
<td></td>
</tr>
<tr>
<td>Fast Forward/Rewind</td>
<td></td>
<td>51 seconds</td>
</tr>
<tr>
<td>Approx. 48 seconds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meter Type</td>
<td>Peak indicating</td>
<td>Confirmed</td>
</tr>
<tr>
<td>Meter Range</td>
<td>-40 to +5 dB</td>
<td>Confirmed</td>
</tr>
<tr>
<td>Output (line)</td>
<td>20 V rms into 10,000 ohms</td>
<td>1.8 V</td>
</tr>
<tr>
<td>Input (line)</td>
<td>200 mV for 0-dB indication</td>
<td>31 mV line</td>
</tr>
<tr>
<td>Microphone Overload</td>
<td>NA</td>
<td>0.165 mV mic.</td>
</tr>
<tr>
<td>Microphone Overload</td>
<td></td>
<td>21 mV</td>
</tr>
</tbody>
</table>
Get the inside story...
on software, hardware, simulations, computer games, robotics, computers and calculators, languages and compilers, custom systems design and scores of applications.

BYTE, the leading magazine in the personal computer field, will keep you aware of fast-paced changes in the ever growing world of microprocessors. You'll find BYTE tutorials invaluable, reports on home computer applications instructive, and the reviews of computer products stimulating.

Tutorial information in BYTE is of interest to both the beginner and experienced computer user. BYTE's editorial content explores the fun of using and applying computers for personal satisfaction in activities from electronic music to electronic mail, from games to pragmatic personal business. In BYTE is found authoritative yet easily read coverage of principles of computer hardware and software design, approaches to novel applications, and essentials of proven interest to personal computer enthusiasts.

Each month serious computer users read BYTE. They're rewarded with timely articles by professionals, computer scientists and competent amateurs. Isn't it time you got the inside story? Subscribe now to BYTE, the Small Systems Journal.

BYTE Subscription Dept. P.O. Box 590 Martinsville, NJ 08836
Please enter my subscription for
☐ One year $15 (12 issues) ☐ Two years $27 ☐ Three years $39
☐ Send group rate information
☐ Check enclosed entitles me to 13 issues for price of 12 (North America only)
☐ Bill Visa ☐ Bill Master Charge ☐ Bill me (North America only)

Card Number___Expiration Date________
Signature___Name (please print)________
Address___
City State/Province/Country Code________________________

Foreign rates (To expedite service, please remit in U.S. Funds)
☐ Canada or Mexico ☐ One year $17.50 ☐ Two years $32 ☐ Three years $46.50
☐ Europe, one year (air delivered) $95
☐ All other countries, one year (surface delivered) $25. Air delivery available on request.

7319
Performance with TDK SA tape was generally similar, although there was a slight response rise at 10,000 Hz and slightly better output at the highest frequencies. The overall response was ±3 dB from 20 to 19,000 Hz. The 0-dB curve intersected the −20-dB curve at 15,500 Hz.

When we measured the record/playback response at 3¾ ips with AD tape, we found a substantial improvement. (Although it was predictable and expected, it was nonetheless highly impressive.) The response was within ±3.5 dB from 20 to 24,400 Hz at −20 dB, and the 0-dB curve was virtually flat up to 13,000 or 14,000 Hz, intersecting the −20-dB curve at 20,000 Hz. With SA tape, the response was fairly similar, and was within ±3.5 dB from 20 to 25,000 Hz at −20 dB. The 0-dB response saturated earlier than that of the AD tape. The curve began to drop at 10,000 Hz, but it intersected the −20-dB curve somewhere above 20,000 Hz.

Dolby tracking was unusually close. The change in frequency response, when the Dolby system was switched in and out, was less than 1 dB up to about 12,000 Hz and less than 2 dB at 15,000 Hz, at recording levels of −20 and −40 dB. The meters indicated exactly 0 dB (the Dolby level) when we played a standard Dolby level calibration cassette. Unlike many low-priced recorders, the meter calibrations here were exceptionally accurate (an input change of "X" dB produced a closely corresponding change in the meter indications). With 0.3-second tone bursts used to check VU-meter ballistics, the Model T-2’s meters indicated the same as with a steady-state signal. On program input, we could see that the meters had a fast rise time, followed by a much slower decay, so that they tended to follow the peak program level.

The 1¾-ips speed drifted slightly, from 0.5% fast at one end of a cassette to 0.15% fast at the other end. (We made no speed measurements at 3¾ ips.) Using a TDK AC-342 flutter test tape, we measured the CCIR (weighted peak) flutter at a very good ±0.1%. The JIS (weighted rms) flutter varied from 0.05% to 0.07% at the two ends of the cassette. In a combined record/playback flutter measurement, the CCIR and JIS flutter readings were respectively ±0.12% and 0.09% at 1¾ ips. At 3¾ ips, they measured ±0.06% and 0.04%. These figures
would do justice to a good open-reel recorder! In fast forward and rewind modes, the transport moved a C-60 cassette from end to end in 51 seconds, which is considerably above average for a cassette deck.

User Comment. The B.I.C. Model T-2 demonstrated superb performance at 3¼ ips. But we were equally impressed by what it did at 1¼ ips! After all, the limitations of the cassette medium begin to decrease rapidly when the speed is doubled. Hence, we were not so surprised by what we measured at 3¼ ips (although the prospect of frequency response, S/N, and flutter levels approaching or matching those of a costly three-head cassette deck is certainly attractive).

Considering the T-2 solely as a conventional 1¼ ips cassette deck, it is one of the better values we have seen in some time. In many ways, it is a “no frills” machine, with a single motor, combination record/playback head, completely mechanical transport controls, and no input mixing capability. On the other hand, it has superb meters, whose dynamic range and response characteristics give the user a much clearer idea of what the program is doing than run-of-the-mill recorder meters. The manner in which the green record indicator instantaneously changes to red at a -1 dB level might seem minute, but surprisingly, the “gimmick,” if you will, is one of the most visible and informative overload indicators we have seen on a tape deck. It simply cannot be ignored or confused with any other indication. Perhaps its only weakness is that it flashes far below the true overload level of AD tape, but it is nearly ideal for use with SA tape.

When we recorded interstation FM tuner hiss at -20 dB on AD tape, the playback was almost indistinguishable from the input signal. (There were minute differences, but one must listen very closely to detect them.) By increasing the speed to 3¼ ips, we could record at meter readings of -2 dB, with the red overload indicator flashing regularly, and hear only about the same small amount of degradation in the high-frequency response. At -10 dB, the reproduction was perfect. In our experience, this is uniquely fine performance for a two-head cassette deck. In practical terms, this means that the Model T-2 is much less likely to compress the high-level peaks and produce a dull or “mushy” sound, especially when recording from a live source, than almost any other comparably priced cassette recorder.

Unfortunately, one must also consider the limitations of a cassette operating at 3¼ ips. Operating times are halved, so that even a C-90 cassette plays out only about 23 minutes on a side. One would think that a C-120 would be an ideal solution to this problem, since it would be the equivalent in recording time of a C-60 operating at 1¼ ips. However, B.I.C. specifically and categorically states that the Model T-2 should not be used with C-120 tapes, both because of their magnetic and physical properties and because the high-speed rewind and fast forward of the transport could damage very thin tapes.

Even if one finds C-90 tapes satisfactory, there is the question of compatibility. At this time, B.I.C. is the only company making a 3¼ ips cassette recorder. This means that tapes made on a B.I.C. machine at 3¼ ips can be played only on a B.I.C. machine, at least for the immediate future. Furthermore, even if other companies go to the higher speed, there is no assurance that they will adhere to the equalization standards chosen by B.I.C. Finally, there is the imminent commercial introduction of metal particle tapes and recorders capable of using them. Although they are expensive—at least for the present—these tapes have the potential of giving much of the performance at 1¼ ips that B.I.C. achieves at 3¼ ips, without sacrificing any playback compatibility with existing cassette decks.

Thus, we prefer to consider the B.I.C. Model T-2 as an especially good cassette recorder, with performance well above the normal for its price range. It also has a higher speed operating mode that may well give it the best cassette performance capability at this moment in time.

Correction: In the report on the Signet Model TK7E stereo phono cartridge, in the November issue, the channel separation at 1 kHz should be 30 dB, as shown in the graph, rather than 20 dB, as given in the Performance Specification chart.

BLANK TAPES

<table>
<thead>
<tr>
<th>BLANK TAPES</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASSETTE TAPES</td>
</tr>
<tr>
<td>KDK E-1000S</td>
</tr>
<tr>
<td>KDK E-2000S</td>
</tr>
<tr>
<td>KDK E-3000S</td>
</tr>
<tr>
<td>KDK E-4000S</td>
</tr>
<tr>
<td>KDK E-5000S</td>
</tr>
<tr>
<td>KDK E-6000S</td>
</tr>
<tr>
<td>KDK E-7000S</td>
</tr>
</tbody>
</table>

REEL-TO-REEL

<table>
<thead>
<tr>
<th>REEL-TO-REEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>KDK E-1000S</td>
</tr>
<tr>
<td>KDK E-2000S</td>
</tr>
<tr>
<td>KDK E-3000S</td>
</tr>
<tr>
<td>KDK E-4000S</td>
</tr>
<tr>
<td>KDK E-5000S</td>
</tr>
<tr>
<td>KDK E-6000S</td>
</tr>
<tr>
<td>KDK E-7000S</td>
</tr>
</tbody>
</table>

CARTRIDGES

<table>
<thead>
<tr>
<th>CARTRIDGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>audio-technica</td>
</tr>
<tr>
<td>AT 173 S4</td>
</tr>
</tbody>
</table>

HEADPHONES

<table>
<thead>
<tr>
<th>HEADPHONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>KISS</td>
</tr>
<tr>
<td>PRO-4X A4</td>
</tr>
</tbody>
</table>

ACCESSORIES

<table>
<thead>
<tr>
<th>ACCESSORIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHURE</td>
</tr>
<tr>
<td>SUP-15</td>
</tr>
</tbody>
</table>

Put Professional Knowledge and a COLLEGE DEGREE in your Electronics Career through HOME STUDY

Earn Your DEGREE

by correspondence, while continuing your present job. No commuting to class. Study at your own pace. Learn from complete and explicit lesson materials, with additional assistance from our home-study instructors. Advance as fast as you wish, but take all the time you need to master each topic. Profit from, and enjoy, the advantages of directed but self-paced home study.

The Grantham electronics degree program begins with basics, leads first to the A.S.E.T. degree, and then to the B.S.E.T. degree. Our free bulletin gives complete details of the program itself, the degrees awarded, the requirements for each degree, and how to enroll. Write for Bulletin E-80.

Grantham College of Engineering
2000 Stoner Avenue
P. O. Box 25992
Los Angeles, CA 90025

Worldwide Career Training thru Home Study
CIRCLE NO. 23 ON FREE INFORMATION CARD
IF YOU'RE NOT DESIGNING WITH A CSC PROTO-BOARD, LOOK AT ALL YOU'RE MISSING.

Utility—Models are available with or without built-in regulated power supplies (fixed or adjustable).

Economy—Eliminate heat and mechanical damage to expensive parts. Save money by re-using components.

Versatility—Use with virtually all types of parts, including resistors, capacitors, transistors, DIPs, TO-5's, LED's, transformers, relays, pots, etc. Most plug in directly, in seconds.

Durability—All Proto-Board models are carefully constructed of premium materials, designed and tested for long, trouble-free service.

Expandability—Proto-Board units can be instantly interconnected for greater capacity.

Visibility—All parts are instantly and easily visible, for quick circuit analysis and diagramming.

Speed—Assemble test and modify circuits as fast as you can push in or pull out a lead. Save hours on every project.

Accessibility—All parts are instantly and easily accessible, for quick signal tracing, circuit modifications, etc.

Variety—A wide variety of models are available with capacities ranging from 630 to 3060 solderless tie-points (6 to 32 14-pin DIP's), to fit every technical and budget requirement.

Whatever type of electronic circuits you work with, you can do more in less time with CSC's solderless Proto-Board systems. As fast and easy as pushing in or pulling out a lead, you can design, test and modify circuits at will. Components plug into rugged 5-point terminals, and jumpers, where needed, are lengths of #22 AWG solid wire. In the same time you took to read this ad, you could be well on your way to assembling a new circuit.

CSC PROTO-BOARD SOLDERLESS BREADBOARDS

<table>
<thead>
<tr>
<th>MODEL NUMBER</th>
<th>NO. OF SOLDERLESS TIE-POINTS</th>
<th>IC CAPACITY (14-PIN DIP'S)</th>
<th>MANUFACT. SUGG. LIST</th>
<th>OTHER FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB-6</td>
<td>630</td>
<td>6</td>
<td>$15.95</td>
<td>Kit—10-minute assembly</td>
</tr>
<tr>
<td>PB-100</td>
<td>760</td>
<td>10</td>
<td>19.95</td>
<td>Kit—with larger capacity</td>
</tr>
<tr>
<td>PB-101</td>
<td>940</td>
<td>10</td>
<td>22.95</td>
<td>8 distribution buses, higher capacity</td>
</tr>
<tr>
<td>PB-102</td>
<td>1240</td>
<td>12</td>
<td>26.95</td>
<td>Large capacity, moderate price</td>
</tr>
<tr>
<td>PB-103</td>
<td>2250</td>
<td>24</td>
<td>44.95</td>
<td>Even larger capacity; only 2.7¢ per tie-point</td>
</tr>
<tr>
<td>PB-104</td>
<td>3060</td>
<td>32</td>
<td>54.95</td>
<td>Largest capacity, lowest price per tie-point</td>
</tr>
<tr>
<td>PB-203</td>
<td>2250</td>
<td>24</td>
<td>75.00</td>
<td>Built-in 1%-regulated 5V, 1A low-ripple power supply</td>
</tr>
<tr>
<td>PB-203A</td>
<td>2250</td>
<td>24</td>
<td>124.95</td>
<td>As above plus separate 1%-amp +15V and −15V internally adjustable regulated power supplies</td>
</tr>
</tbody>
</table>

Order today. Call 203-624-3103 (East Coast) or 415-421-8872 (West Coast), 9 a.m. -5 p.m. local time. Major credit cards accepted. Or see your CSC dealer. Prices slightly higher outside USA.

CONTINENTAL SPECIALTIES CORPORATION

70 Fulton Terrace, Box 1942, New Haven, CT 06509
203-624-3103 TWX 710-465-1227
WEST COAST: 381 California St, San Francisco, CA 94104, 415-421-8872 TWX 910-372-7992
GREAT BRITAIN: CSC UK LTD, Spur Road, North Feltham Trading Estate, Feltham, Middlesex, England, 01-890-0782
Telex: 851-881-3669

© 1978 Continental Specialties Corp. Prices and specifications subject to change without notice.

CIRCLE NO. 14 ON FREE INFORMATION CARD

POPULAR ELECTRONICS
A buyer's guide to projection TV receiver systems

The BIG television picture is bigger than ever now as a result of technological advances in video projection systems. Projection TV is not new, of course. In the late Forties, when TV picture tubes were still rather small, all-in-one TV projection systems were introduced in the hope of displacing direct-view receivers. Low brightness and the development of larger TV CRTs, however, dampened the projection concept for home use.

Two decades later, the Advent Corporation resurrected the projection-TV concept with a newly developed very-large-screen system that dwarfed present-day TV picture tube viewing areas without noticeable loss of brightness or resolution. Local bars and well-to-do people were among the first buyers in 1973 of the large-screen (7' diagonal), two-piece, Model 1000 color projection

Home Projection Color TV
The Big Picture is Here!
Home Projection TV continued

TV system. A smaller, lower-cost, 5' diagonal screen model is now also being marketed by Advent, competing with some 50 other manufacturers of home projection-TV systems. These companies—including GE, Panasonic, and Quasar—produce a variety of projection-TV models at prices ranging from $400 to more than $3000. Clearly, giant-size color TV for the home has arrived!

Projection-TV systems receive standard off-the-air TV signals, but they differ enormously from the standard 25" (63.5-cm) console receiver. The fundamental difference is that the video image you see is not produced directly on a conventional picture tube. Instead, the image is magnified, projected onto a giant 45" to 120" (diagonal measurement) viewing screen. This projection scheme gives you a movie-house effect right in your living room.

Just how the picture is produced by each of the many projection-TV systems available varies. Physically, these new home-entertainment devices can range from two-piece systems in which the projector hangs from the ceiling to all-in-one compacts that close up into a wall unit when not in use. The optical techniques employed give picture qualities that range from fair to excellent.

In spite of the differences in system design, there are only three main categories in projection-TV schemes: refraction, Schmidt, and light-valve. Each renders a projected image with its own particular tradeoffs.

Refraction Systems. If you hold a magnifying glass up to the face of your TV receiver, you can focus the magnified image on a nearby wall. In doing so, you create a basic refraction, or all-lens, projection-TV system. Light from the picture tube passes through the lens and is bent (refracted) outward to provide the magnification. This is the simplest and most commonly employed technique for projection. There are, however, two types of refraction projectors. The first is the single-tube-system, which uses an "almost" conventional TV receiver as the image source and a separate magnifying lens.

In some single-tube projection systems, the lens is merely bolted directly to the face of the receiver. For others, some type of enclosure is used to house the TV receiver and support the lens. In any event, the results are the same. Light from the image on the TV screen is gathered at the back of the lens, refracted, and sent out the front of the lens. This light is then focused on a reflective screen for viewing some 5' to 8' (1.5 to 2.4 m) away.

Light passing through the lens from the TV receiver is inverted in the refraction process. To correct for this inversion, a minor modification must be made to the TV receiver. Wires on the receiver's yoke are transposed to invert the original picture on the face of the tube. (The yoke is a coil of wire on the neck of the picture tube that causes the electron beam to scan across the face of the tube.) A switch is usually provided to flip the picture back for normal viewing. Once the inverted image in the projection mode passes through the lens, it is inverted so that it appears right-side up for normal viewing on the screen.

Brightness deficiency is a major consideration for many refraction-lens systems. As a result, you must watch the screen in virtual darkness in order to obtain a good picture.

There are two major reasons for the lower light level in refraction systems. The first is the optics themselves. Lenses are nowhere near perfect in efficiency. Not all the light that enters them passes out again. Some of the light is scattered into useless heat energy with-
In the lens. Too, a part of the light spectrum may never get through the lens. Also, the light-gathering efficiency of a lens is determined by the lens’ F rating. Like the F-stops of a camera, the lower the F number of a projection-TV lens, the more light that passes through. The type of lens used in a single-tube projector often accounts for price. Typically, the lower the cost, the higher the F number (and the lower the light level available for imaging on the viewing screen).

The second and by far the greater problem is the TV receiver itself. For each degree of magnification you gain, you pay a price in light loss. If you project a magnified picture twice its normal size, for instance, you may require 10 times the amount of light coming from the picture-tube source to compensate for the loss of brightness on the screen.

Some manufacturers increase drive voltage on the picture tube of a conventional TV receiver in an attempt to achieve a brighter picture. Although this can certainly be done, it can have detrimental effects on picture quality. Since the total picture is brightened, blacks become shades of gray, causing a loss in contrast and, depending on the receiver, image blooming that can render the picture out of focus.

Naturally, there are exceptions to the foregoing. Some projection-TV receivers are specifically designed for projection use. A good example of this is the 13” (33-cm) in-line picture tube in GE’s 45” diagonal Widescreen 1000, which is driven by 32,000 volts.

To combat the problems inherent in single-tube systems, some manufacturers have gone to multiple-tube designs and better optics. The idea here is to substantially increase the available light level without degrading picture quality. These systems employ three projection CRTs (cathode-ray tubes), each of which consists of an electron gun that scans a small phosphor-coated screen. The image produced on the screen is then magnified by a front lens and projected onto the viewing screen. While it is easy to see why three tubes give off more light than one, the reason for a much brighter picture goes far beyond simple light multiplication.

In a normal color picture tube, the total color picture is produced on the face of the screen. To accomplish this, triads of red, green, and blue phosphors must be kept close together to form a particular color. To prevent one gun from exciting all three colors simultaneously, a shadow mask is used. The mask allows only the correct color-generating gun to strike the appropriate phosphor. Though the mask serves its purpose for conventional viewing, it poses a problem for projection-TV applications. It cuts down the energy from the electron guns by as much as 80%. Only 20% of the available energy is converted into usable light.

In a three-tube projection system, each tube produces just one color. The “mixing” occurs on the screen so that no shadow mask is required in the tubes. The result is a picture with four or five times the brightness obtainable from most conventional single-tube systems.

In addition to increased brightness, picture quality is usually enhanced in three-tube systems. Convergence, where the three color dots are exactly mixed to form the desired color, is also less of a problem. In contrast, any misconvergence in a single-tube system is exaggerated by magnifying the total picture. Sharp, clear outlines of images become lost, and in extreme cases multiple different color images can appear superimposed on but slightly offset from each other.

With respect to selling prices, single-tube systems are far the least expensive. If you choose a three-tube system, though, you can expect to pay two to three times the cost of a single-tube system. Sony, however, is attempting to capitalize on both worlds. The newest Sony system is a three-tube, two-lens design. Three 9” (22.9-cm) CRTs produce the picture, but the red and blue images are combined in a diacrylic mirror that transmits all but one color, to be projected through a single lens. This eliminates one-third of the optics required in a multiple-lens system.

Schmidt System. Although the refractive concept appears an obvious beginning for home projection TV, it did not come along until after development of Advent’s “LightGuide” tube. It employed Schmidt optics for a brighter picture. (One of the first demonstrations of a Schmidt projection-TV system was done by RCA in 1939.)

The Schmidt system used consisted of multiple tubes for projection of a video image. Three tubes produce separate red, green, and blue images, which are then converged on the viewing screen. The image is produced by an electron gun that scans the face of a phosphor-coated target screen. The target is specially designed for high illumination levels. Its 5” (12.7-cm) average screen size, operating at 25 to 30 kV, is heavily heat sunked and heat-conductive to prevent burnout. The key to the system, however, is in the optical technique employed.
Home Projection TV continued

A spherical mirror magnifies an image with very good efficiency, but the reflected image is distorted along the edges due to the mirror's shape. A round spot appears comet-shaped when projected onto a screen. The solution to this problem has been used in Schmidt telescopes for years. A corrector lens located in front of the mirror compensates for the optical error to assure a normally magnified image. This combination of reflective and refractive techniques is known as Schmidt optics.

The image produced on the target is reflected from a rear-mounted spherical mirror. It then passes back beyond the target, out of the focal point, through a corrector lens, and onto the remote screen. The result is a picture with a brightness two to three times greater than that obtained with a multiple-tube refraction system.

Because of the $3000 to $6000 price of the Schmidt systems, original home systems were sold mostly to well-to-do customers. As other companies entered the field, the market became more industrially oriented. Since the newest Schmidt systems, from Quasar, Matsushita, and Panasonic, appear to be designed for the home, this picture may be changing again.

Light-Valve System. If money is no object and a big screen TV is what you really want, a light-valve system may be your best choice. In the light-valve system, a high-intensity light source is directed through a thin layer of oil. If the oil is smooth, no picture information exists and the light is diverted away from the projection lens. Above the oil is an electron gun. As the electron beam scans in a conventional manner, it deposits a charge that creates a groove in the oil that is proportional to the video information. The light passing through the oil is then refracted to the projection lens and onto the screen.

The light-valve system is not dependent on the amount of light available from a phosphor screen. Any light source will work, though a xenon lamp is the type usually used. In GE's latest light-valve system, three grooves are created simultaneously, one for each color. With this system, a 20' (6.1-m) wide color picture can be created from as far away as 120' (36.6m).

Given these facts, it is obvious that light-valve projection systems were not designed for the home. Not only are they much too large, but their selling prices start at $50,000.

Screens and Brightness. It is only natural to concentrate on the light-producing aspect of a projection-TV system. In reality, however, the screen on which the picture is imaged plays an equally important role. The total brightness of the picture you see depends on brightness of the original source, size of the projected picture, and gain of the viewing screen.

Conventional matte screens have a gain of one, which is simply used as a base by which other screens are compared. Light directed onto a matte screen is partially absorbed, as well as reflected in all directions. In comparison, beaded and lenticular screens are designed to reflect more light and even concentrate light rays for a brighter picture. While a standard beaded screen has a gain factor of two or three, others, such as Kodak's EktaLite screen, have gains of 10 to 16. The EktaLite screen reportedly returns 10 times more light than a matte-surface screen.

Many projection-TV screens have uniform surface particles that act like tiny lenses. Each "lens" receives and redirects the light toward the center of the viewing area. Often, the screen is bent at the sides to direct more light to the center, toward the viewer.

The higher the gain factor of a screen, the greater the concentration of light and thus the brighter the picture. Unfortunately, a price must be paid for the increased brightness: the viewing angle narrows as brightness increases. Ac-
Accordingly, if you move 20° to 30° left or right from center-screen, you may no longer see a picture. The same holds true in the vertical plane. Most projection-TV systems are designed to direct the light to a seated audience. If you stand up, the picture’s brightness is significantly diminished.

Matching the proper screen to a particular projector is already done for you by the manufacturer of the projection-TV system you choose. If done properly, the screen supplied with a projection-TV system generally offers the best ratio of brightness and viewing angle for that particular system. However, because of all the variables involved, brightness measurements that are often used to rate the system can be very misleading.

Many specifications sheets state brightness as lumens of projected light. This specification may refer to an average “TV” level, or it might be a maximum level without regard to the quality of the projected image. If the latter, it may refer to a picture that exhibits “blooming,” which produces a brighter picture than normal.

Another question is what the specified lumens means in terms of actual picture brightness once the image is reflected from the screen. The reflected brightness may or may not be listed in the specifications. If not, you can convert into foot lamberts of reflected light by dividing the lumens by the screen’s area in square feet and multiplying the result by the screen’s gain. This gives you the amount of light coming from the screen when viewed head-on. (Of course, the picture will be less bright if you view from a position slightly off-center.) Too, there may be “hot spots” in the picture, where a portion of the screen may be brighter than the rest of the screen.

The light levels given in specifications sheets should be used merely as a rough guide. Typically, a single-tube reflection system produces 4 to 10 foot lamberts, while multiple-tube systems yield 20 to 30 foot lamberts and Schmidt systems can range from 40 to 60 foot lamberts of light at the screen. As a point of reference, the projector in a typical movie theater usually generates about 16 foot lamberts of light on the screen with no picture projected. A typical movie averages a tenth of this figure, or 1.6 foot lamberts.

If you are considering buying a projection-TV system, get a demonstration of the system you plan to buy. Better yet, A-B test two or more systems of comparable price against each other. Bear in mind, of course, that the final picture quality will depend on the picture source, the optics, and the type of screen used in the system.

In Your Home. From the outset, projection-TV systems offered good potential for home use. Systems could be built to easily trade off picture quality against cost to meet almost any budget. Naturally, early versions had some physical drawbacks in most home viewing areas. Typical systems consisted of two pieces: a cumbersome TV receiver/projector box and a separate screen. The projector box usually occupied valuable space in the center of the viewing room. As the market developed, however, manufacturers found various means by which to overcome this problem.

The separate two-piece configuration still exists, but the companies that produce them generally put the projector box on casters so that it can be rolled out of the way when the system is not in use. Moreover, the “box” is smaller than earlier versions. Other companies make

Side view of Panasonic model open for use.

JANUARY 1979
ceiling mounts for the projector and screen, which permit the two to be permanently hung overhead and operated by remote control. (Needless to say, be sure your ceiling is 10’ or higher when shopping for one of these systems.) A third approach was to simply let the projector blend in with the room and its furnishings. Here, the projector is disguised as an end or coffee table.

With few exceptions, most of the newest systems are built into a single stand-alone cabinet that contains both projector and screen. In a single-tube system, the receiver lies on its back at the bottom of the cabinet. The picture image passes through a lens/prism box, where it is focused onto a mirror and reflected onto the top-mounted screen. The mirror is generally mounted on a movable “drawer” that opens out 3’ to 4’ (0.9 to 1.2 m) in use and closes into the cabinet when not in use.

The newer multiple-tube and Schmidt systems employ a similar technique to that used in single-tube systems. A variation on this arrangement is used in GE’s “Widescreen” projection system. Here, the originating image comes from projection tubes just below the screen, however. The projected picture is sent to the side of the cabinet in which the system is housed and imaged on a rear-projection screen that makes up much of the front of the cabinet. This keeps the height to a minimum (4’ as opposed to the nearly 6’ for other systems), making the system appear like an oversized conventional TV receiver with a 50” viewing screen.

The Quality Is There. Many projection-TV systems are deluxe items in the manufacturers’ lineups. They have top-of-the-line features throughout. For example, many feature video input jacks; some even include a place to mount a video cassette or disc system in or on the cabinet. Remote control is often standard. Automatic color and brightness circuits adjust the picture for you, and VIR (vertical interval reference) is now being used in some models.

Because of the high-fidelity sound capability of the new video cassette decks and the advancements made in TV broadcast network sound, many manufacturers have improved the audio section of their systems. Some systems have separate hi-fi quality speakers built in or as external systems. Other models

"project" the sound toward the screen, where it is reflected back to make it appear as though the screen itself is the originating source. This latter approach visually and audibly supports the “moving-picture theater” effect.

The video portion of some TV receivers used in projection systems has high sensitivity and selectivity, and very good resolution and contrast ratio. (Panasonic, as an example, claims 320 lines of resolution off the air, 450 lines through the video input, and a 60:1 contrast ratio.) The cost of operating projection TV systems is very reasonable. Power consumption is typically 130 to 170 watts, which is about average for a conventional console color TV receiver.

Projection TV Buying Directory

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Price $</th>
<th>Screen Diag. (in.)</th>
<th>Type</th>
<th>Pieces</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advent Corp.</td>
<td>4495-up</td>
<td>84</td>
<td>Schmidt</td>
<td>2</td>
<td>Conv. & coffee tbl. mod.</td>
</tr>
<tr>
<td></td>
<td>2895-2995</td>
<td>60-72</td>
<td>3-ref</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>American Video</td>
<td>1794-1949</td>
<td>50-80</td>
<td>1-ref</td>
<td>2</td>
<td>Screens opt. $146 to $396</td>
</tr>
<tr>
<td>Amtron Video</td>
<td>1995</td>
<td>51</td>
<td>1-ref</td>
<td>2</td>
<td>Ceiling mt. avail.</td>
</tr>
<tr>
<td>Automazing Corp.</td>
<td>1695-2195</td>
<td>53-80</td>
<td>1-ref</td>
<td>2</td>
<td>Ceiling/floor cabinets</td>
</tr>
<tr>
<td>Avanti Corp.</td>
<td>1495-1995</td>
<td>48</td>
<td>1-ref</td>
<td>2</td>
<td>72" & 96" opt. screens avail.</td>
</tr>
<tr>
<td>Belmont Proj. Sys.</td>
<td>2195-2795</td>
<td>66-84</td>
<td>1-ref</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Century Proj. Sys.</td>
<td>2495</td>
<td>60</td>
<td>1-ref</td>
<td>2</td>
<td>Rear projection</td>
</tr>
<tr>
<td></td>
<td>2995-2800</td>
<td>72-84</td>
<td>1-ref</td>
<td>2</td>
<td>Conv. & overhead</td>
</tr>
<tr>
<td>Cinema IV</td>
<td>1995-2195</td>
<td>50-65</td>
<td>1-ref</td>
<td>2</td>
<td>Overhead projector</td>
</tr>
<tr>
<td></td>
<td>995-1300</td>
<td>60-65</td>
<td>1-ref</td>
<td>2</td>
<td>Floor models</td>
</tr>
<tr>
<td></td>
<td>2195</td>
<td>45</td>
<td>1-ref</td>
<td>1</td>
<td>Floor model</td>
</tr>
<tr>
<td>Cooper Video</td>
<td>2895-3295</td>
<td>68-84</td>
<td>1-ref</td>
<td>2</td>
<td>Ceiling mounted</td>
</tr>
<tr>
<td>Cygnus Video Sys.</td>
<td>1399-1899</td>
<td>50-63</td>
<td>1-ref</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Electrohome Ltd.</td>
<td>3495</td>
<td>84-120</td>
<td>3-ref</td>
<td>2</td>
<td>Canadian Advent version</td>
</tr>
<tr>
<td>Electronic Sys.</td>
<td>2495</td>
<td>84</td>
<td>1-ref</td>
<td>2</td>
<td>Coffee table design</td>
</tr>
<tr>
<td>Extron</td>
<td>995</td>
<td>50</td>
<td>1-ref</td>
<td>2</td>
<td>Excl. TV</td>
</tr>
<tr>
<td></td>
<td>1199</td>
<td>50</td>
<td>1-ref</td>
<td>1</td>
<td>Excl. TV</td>
</tr>
<tr>
<td>Future-Vision</td>
<td>1995</td>
<td>60</td>
<td>1-ref</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1395-2250</td>
<td>60-96</td>
<td>1-ref</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Futurevision</td>
<td>1695-1895</td>
<td>54-66</td>
<td>1-ref</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Gemini Sys.</td>
<td>1595</td>
<td>52</td>
<td>1-ref</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>General Equip.</td>
<td>1995-2895</td>
<td>48-72</td>
<td>1-ref</td>
<td>2</td>
<td>Ceiling system</td>
</tr>
<tr>
<td></td>
<td>995-1595</td>
<td>48-72</td>
<td>1-ref</td>
<td>2</td>
<td>Floor models</td>
</tr>
<tr>
<td>General Electric</td>
<td>2800</td>
<td>45</td>
<td>1-ref</td>
<td>1</td>
<td>Rear projection</td>
</tr>
<tr>
<td>Giant Screen TV</td>
<td>1495-1795</td>
<td>50</td>
<td>1-ref</td>
<td>2</td>
<td>13” or 15” TV</td>
</tr>
<tr>
<td>Global Video Ind.</td>
<td>1995-2295</td>
<td>50</td>
<td>1-ref</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Holophonics</td>
<td>895</td>
<td>72</td>
<td>1-ref</td>
<td>2</td>
<td>Proj/TV mode</td>
</tr>
<tr>
<td>Kalart Video</td>
<td>4820</td>
<td>var</td>
<td>Schmidt</td>
<td>2</td>
<td>B/W only</td>
</tr>
<tr>
<td>Keyser Video Inc.</td>
<td>1495-1595</td>
<td>51-67</td>
<td>1-ref</td>
<td>2</td>
<td>Ceiling or console</td>
</tr>
<tr>
<td>Lin-Video</td>
<td>1095</td>
<td>50</td>
<td>1-ref</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Magnavision</td>
<td>1695-2195</td>
<td>53-80</td>
<td>1-ref</td>
<td>2</td>
<td>Ceiling or floor</td>
</tr>
<tr>
<td>Magna-Vu</td>
<td>499</td>
<td>52</td>
<td>1-ref</td>
<td>2</td>
<td>Kit: screen, lens, cab.</td>
</tr>
<tr>
<td>Miami Flock</td>
<td>425</td>
<td>84</td>
<td>1-ref</td>
<td>2</td>
<td>Kit, excl. TV</td>
</tr>
<tr>
<td>Mitsubishi</td>
<td>3400-4000</td>
<td>72-84</td>
<td>Schmidt</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Selecting a System. Projection-TV systems are not appliances you just "pick up," plug in, and turn on. You must plan your system and make provisions for its installation to take full advantage of its capabilities.

The thing you must keep foremost in mind is that a projection-TV system demands lots of space. Separate two-piece systems require 6' to 8' minimum of clear floor space between projector and screen. Then you must figure another 2' to 3' for the projector and some space behind the projector for viewers. All-in-one systems require about the same amount of space, except that the area required is proportioned differently. You need approximately 20 to 25 square feet of floor space, depending on the system. As a general rule, the closest seating for a viewer should be no nearer than two times the screen's width.

<table>
<thead>
<tr>
<th>M&M Video</th>
<th>700-800</th>
<th>52</th>
<th>1-ref</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muntz</td>
<td>995-1895</td>
<td>50</td>
<td>1-ref</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1395-2195</td>
<td>50-67</td>
<td>1-ref</td>
<td>1</td>
</tr>
<tr>
<td>New Products</td>
<td>1595-2295</td>
<td>53-72</td>
<td>1-ref</td>
<td>2</td>
</tr>
<tr>
<td>Panasonic</td>
<td>4000</td>
<td>60</td>
<td>Schmidt</td>
<td>1</td>
</tr>
<tr>
<td>Pro Audio/Video</td>
<td>1695-1995</td>
<td>50-84</td>
<td>1-ref</td>
<td>2</td>
</tr>
<tr>
<td>Projectapix Ltd.</td>
<td>1495-2790</td>
<td>48</td>
<td>1-ref</td>
<td>2</td>
</tr>
<tr>
<td>Projecta-Vision</td>
<td>1495-2495</td>
<td>53-68</td>
<td>1-ref</td>
<td>2</td>
</tr>
<tr>
<td>Projection Elec. Corp.</td>
<td>795-1695</td>
<td>50-65</td>
<td>1-ref</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1296-1495</td>
<td>50-65</td>
<td>1-ref</td>
<td>1</td>
</tr>
<tr>
<td>Projection Elec. Inc.</td>
<td>1495</td>
<td>52</td>
<td>1-ref</td>
<td>2</td>
</tr>
<tr>
<td>Projection Sys.</td>
<td>5000-6500</td>
<td>90-120</td>
<td>120</td>
<td>Schmidt</td>
</tr>
<tr>
<td></td>
<td>6000</td>
<td>120</td>
<td>Schmidt</td>
<td>1</td>
</tr>
<tr>
<td>Projection TV</td>
<td>1300</td>
<td>52</td>
<td>1-ref</td>
<td>2</td>
</tr>
<tr>
<td>Quasar</td>
<td>4500</td>
<td>60</td>
<td>Schmidt</td>
<td>1</td>
</tr>
<tr>
<td>Sega Entr.</td>
<td>995-2295</td>
<td>44-66</td>
<td>1-ref</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1595-2595</td>
<td>44-50</td>
<td>1-ref</td>
<td>1</td>
</tr>
<tr>
<td>Sony Corp.</td>
<td>2295-3500-4000</td>
<td>40</td>
<td>1-ref</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>50-72</td>
<td>3/2-ref</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Spectra VU</td>
<td>2860-4950</td>
<td>50-100</td>
<td>1-ref</td>
<td>2</td>
</tr>
<tr>
<td>Steck Mfg.</td>
<td>895-1031</td>
<td>52-72</td>
<td>1-ref</td>
<td>2</td>
</tr>
<tr>
<td>Sunynt Co.</td>
<td>2349</td>
<td>54</td>
<td>1-ref</td>
<td>2</td>
</tr>
<tr>
<td>Super Screen TV</td>
<td>1195-3395</td>
<td>52-90</td>
<td>1-ref</td>
<td>2</td>
</tr>
<tr>
<td>Tandom Ent.</td>
<td>1395-1895</td>
<td>53-68</td>
<td>1-ref</td>
<td>2</td>
</tr>
<tr>
<td>Tape Head Co.</td>
<td>600-1100</td>
<td>56</td>
<td>1-ref</td>
<td>2</td>
</tr>
<tr>
<td>Titan</td>
<td>1645</td>
<td>48</td>
<td>1-ref</td>
<td>2</td>
</tr>
<tr>
<td>Theatre Vision</td>
<td>995-up</td>
<td>50</td>
<td>1-ref</td>
<td>1</td>
</tr>
<tr>
<td>Tradiovision</td>
<td>1795-2495</td>
<td>53-100</td>
<td>1-ref</td>
<td>1</td>
</tr>
<tr>
<td>Unique Pro. Sys.</td>
<td>399-499</td>
<td>50-67</td>
<td>1-ref</td>
<td>2</td>
</tr>
<tr>
<td>Video Connection</td>
<td>1395-2995</td>
<td>60</td>
<td>1-ref</td>
<td>2</td>
</tr>
<tr>
<td>Video Industries</td>
<td>1695-1995</td>
<td>52-68</td>
<td>1-ref</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1995</td>
<td>83</td>
<td>1-ref</td>
<td>2</td>
</tr>
<tr>
<td>Videorama</td>
<td>995-1200</td>
<td>48-72</td>
<td>1-ref</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1295-2500</td>
<td>48-72</td>
<td>1-ref</td>
<td>1</td>
</tr>
<tr>
<td>Viewpoint Inc.</td>
<td>599-949</td>
<td>52</td>
<td>1-ref</td>
<td>2</td>
</tr>
<tr>
<td>Voorhies Entr.</td>
<td>999-1599</td>
<td>52-68</td>
<td>1-ref</td>
<td>2</td>
</tr>
<tr>
<td>Worldwide Entr.</td>
<td>1195-2695</td>
<td>52-68</td>
<td>1-ref</td>
<td>2</td>
</tr>
</tbody>
</table>

Another very important consideration is room lighting. Since the screen that accompanies a projection-TV system is specifically designed to reflect any and all light, standard room lighting can easily wash out an otherwise good TV picture if it is not placed properly. Indirect or recessed lighting fixtures usually work well. Table and floor lamps, however, must be carefully placed. It is also a good idea to replace your wall switches with dimmer controls because even the more elaborate systems are best viewed in dimly lighted rooms.

When making a performance buying judgement, be sure to be seated and in the center of the screen viewing area. You'll lose considerable picture brightness if you are standing or located at an angle outside the width of the screen. Moreover, the room should be dimly lighted for best viewing results.

After viewing the projected TV picture in this optimum situation, do your viewing under worst-case conditions—increase room light, move to the side of the screen, etc.

You'll doubtlessly find that the difference between the best optics and just plain good optics isn't really that noticeable under the best viewing conditions unless one is simultaneously comparing the systems. What separates the men from the boys is when conditions aren't optimum. Thus it will be your decision as to whether you wish to save a lot of money as a tradeoff for compelling you and your family to watch projection TV under very good conditions only.

Also, most viewing screens used today are washable. But some earlier projection TV viewing screens were not.

There's also a choice to be made between one and two-piece systems. Bear in mind that one-piece systems take up a lot of room; cabinets are huge. Two-piece systems have their drawbacks, too. Unless ceiling mounted, a "box" has to be moved into the proper projection location. Furthermore, the picture will be obliterated if someone walks in front of the projector.

Interestingly there are some "kit" manufacturers that offer a projection lens and plans for fabricating a cabinet that you can build around a home TV receiver for a few hundred dollars. (Edmund Scientific Co., Barrington, NJ, as an example, offers a 5" f/2.6 projection lens and focusing mount for $267.50.)

Projection TV's future appears to be excellent, given the size limitations of CRT's and the dramatic effect proffered by a large picture.

JANUARY 1979
A major cause of distortion in FM tuners and receivers is explored

Modern FM tuners and receivers often have distortion specifications much lower than 1%. Yet when listening to them, high distortion may be apparent. Of the many possible causes for this—faulty program material, multipath signals, interference, or even faulty receiving equipment—the most probable one is that the receiver has not been precisely tuned to the signal. Usually, slight retuning will eliminate the problem.

The IHF/IEEE standard on testing of FM broadcast receivers specifies that it is accurately tuned when minimum distortion is measured with a weak signal. After tuning, all other measurements are performed. No such tuning verification is possible, however, when listening to broadcasts. It is difficult to attenuate a local signal sufficiently to make it "weak," and it is practically impossible to measure distortion of music.

In the Early Days. "Tuning by ear" has been used to tune more or less accurately ever since FM stations first began to broadcast. The early FM receivers of all-vacuum-tube design required considerable frequency retuning. UnSophisticated listeners thought that the dial pointer was physically slipping.

Many manufacturers tried to combat the drift with a reactance tube circuit (Fig. 1) in which the capacitance of a small grid-plate feedback capacitor caused the plate capacitance to change as the grid voltage was changed by the filtered output of the FM detector. Automatic variation of the plate capacitance then retuned the tuner's local oscillator. This is automatic frequency control (afc), of course. This was an excellent idea when it worked properly. But in practice, a number of faults remained.

The early FM receivers had a warm-up drift of more than 100 kHz, which was almost doubled when a reactance tube was connected. Consequently, the afc pull-in range had to be at least as large as the drift to allow the same local station to be heard day after day. (See Fig. 2) As a result, the tuners could have only moderate-to-poor selectivity in order to provide sufficient detector output while off-tune.

To permit tuning to another signal, the afc circuit must not hold the oscillator frequency constant regardless of tuning setting. There must be a hold-in range to permit tuning to at least the next local station, or 800 kHz or more away from the station previously tuned. This was accomplished by only providing partial tuning correction.

In the early FM receivers with afc, drift correction was the same as the ratio of hold-in range to pull-in range, or about 3 to 1. The effective drift was reduced only to about half that of an uncompensated receiver. Many functions, features, and construction details of these tuner sections are found today in low-cost FM radios. They all include afc, though using a tuning diode. The tuning "feel" is "rubbery." What's more, fairly high distortion is evident owing to difficulty in consistently and reliably aligning a detector for simultaneous zero dc output voltage and minimum distortion with varying signal strengths. Fading of a weak signal can cause such a tuner to tune itself to the nearest local station.

In the mid-1950s the first "high fidelity" FM tuners and receivers became available. Here, good-quality tuners were designed to operate without afc, using temperature compensation of the local oscillator to keep warmup drift to as low as 20 kHz (or 0.02%). This is still a state-of-the-art figure for an FM oscillator without afc!

Additionally, these tuners had meters to permit more accurate tuning than is possible by ear alone. With more careful design, the tuners would, indeed, produce low-distortion audio signals when correctly tuned with a zero-center tuning meter. Such tuners are still produced today. Unfortunately, they are the ones that may distort when not accurately tuned to the exact channel center with the tuning meter. The meter itself contributes to this problem.

Its sensitivity is often designed so that when the tuner is grossly mistuned to a local station, maximum meter indication will be near full-scale or about ±250 kHz. Furthermore, the meter center often has a "good" tuning bandwidth of ±25 kHz to ±35 kHz.

The width of this band is such that tuner distortion can be as much as twice the rated distortion when tuned "accurately" by eye. Accordingly, the local oscillator may drift during warmup without the meter displaying an obvious off-center indication. If initial mistuning and local oscillator drift combine in the same direction, the meter's pointer will naturally move outside the "good" area.

Modern Tuner. Circuits in the latest class of tuners and receivers are designed to correct the foregoing mistuning problems. One of the solutions is afc. Today's top-quality FM tuners and receiver tuner sections have some form of control logic to ensure accurate tuning. With the exception of a few tuners, the actual tuning of the local oscillator is accomplished with the aid of a Varactor diode that is coupled to the tuning capa-
with diode limiters. And to prevent detected audio frequencies and hum from varying the local oscillator’s frequency, the control voltage is filtered with a low-pass filter that has a cutoff frequency of about 0.2 Hz. A higher cutoff frequency would introduce a low-frequency audio phase shift that could degrade low-frequency stereo separation; a lower cutoff frequency would cause slower, more sluggish frequency correction.

One manufacturer, Nakamichi, uses an alternative method to achieve accurate tuning. The company uses a tuning capacitor with a small dc servo motor in its Model 730 to drive the tuning capacitor. However, since such a motor can be positioned only in discrete steps, rather than continuously, a Varactor diode in a low-gain circuit is used to "fill in" between these steps.

Each tuner that has afc circuits must have a way to measure frequency. The resultant dc output from this system is amplified and may be inhibited by control logic before becoming the frequency control voltage. High amplification ensures that the resultant tuned frequency remains as accurate as the measurement of frequency. These are the areas where the designs reveal considerable variation, each of which has its own advantages and disadvantages.

The simplest frequency measuring circuit is the ratio detector (discriminator) that has a nominal 0 volt output at its center frequency. Coincidence detectors, used in such integrated circuits as the ULN 2111 or CA3089 families, also produce a 0 volt output with respect to a reference voltage. This output is then used as reference for the control voltage amplifier. The majority of the new tuners employ this type of measuring circuit in their designs.

The tuning stability of such a tuner with afc is now as stable as the tuning of the detector circuit, ±5 to ±10 kHz, or better by four to one than a well-designed local oscillator in a tuner. The actual improvement in reception is even more since inaccurate manual tuning is also corrected.

FM detectors typically operate at an intermediate frequency (i-f) of 10.7 MHz, which is the beat frequency between the

(Continued on page 56)
Advanced Electronic Career

ANNOUNCING

...A New CREI Program:
Minicomputer &
Microprocessor Technology
Including A Microprocessor Laboratory

Now you can learn at home
the new technology that is revolutionizing electronics

The microprocessor has ushered in the age of microtechnology and electronics will never again be the same. The microprocessor has made possible the placing of an entire computer on a silicon chip one quarter inch square. The microprocessor "miracle chip" is in the process of changing the world. Soon all technical personnel in electronics will have to understand and work with the microprocessor. It is invading virtually every area of electronics. And it is profoundly affecting your electronics career.

Brand New Program
CREI has a brand new program to help you learn how to work effectively with this revolutionary electronics development. CREI's new program in Minicomputer and Microprocessor Technology is designed to prepare you for this field by giving you the education and practical experience you need.

The program provides solid preparation in electronics engineering technology with a specialization in minicomputers and microprocessors. In addition, it includes a microprocessor laboratory which features a fully programmable microcomputer which utilizes the Motorola 6802 microprocessor chip. This is an extremely important element of your program.

Programming Essential
As you may well know, you must learn how to program the microprocessor in order to design, service or troubleshoot microprocessor electronic systems. There is only one effective way to learn this all-important skill of programming, and that is by actually doing it. CREI's new program gives you this opportunity as you work with the exciting microprocessor laboratory.

Programming Is Easy
With CREI's new program, learning the skill of programming is simple. Within a few hours you'll be programming the microprocessor and in a short time you'll learn how to program it in three languages: BASIC, assembly and machine languages. In addition, you will learn how to interface the microprocessor with other systems and to test and debug specialized programs.
Preparation at Home

Wide Choice of Programs
Please note, however, that CREI’s new program is only one of 16 state-of-the-art programs in advanced electronic technology offered by CREI. So even if you choose not to specialize in microprocessor technology, CREI has an advanced electronics program to meet your needs.

With CREI, you may choose from any of the following areas of specialization in advanced electronics:

- Microprocessor Technology
- Computer Engineering
- Communications Engineering
- Digital Communications
- Electronic Systems
- Automatic Controls
- Industrial Electronics
- Television Engineering
- Microwave Engineering
- Cable Television
- Radar and Sonar
- Nuclear Instrumentation
- Satellite Communications
- Aeronautical and Navigational
- Solid State Theory
- Nuclear Engineering

Unique Lab Program
An exclusive option available with CREI programs in electronic engineering technology is CREI’s unique Electronic Design Laboratory program. It gives you actual experience in designing practical electronic circuits. It also helps you to understand the theories of advanced electronics and gives you extensive experience in such areas as tests and measurements, breadboarding, prototype construction, circuit operation and behavior, characteristics of electronics components and how to apply integrated circuits. Only CREI offers this unique Lab Program.

Practical Engineering
CREI programs give you a practical engineering knowledge of electronics. That is, each part of your training is planned for your “use on the job.” By using your training, you reinforce the learning process. And by demonstrating your increased knowledge to your employer, you may qualify for faster career advancement.

Free Book
There isn’t room here to give you all of the facts about career opportunities in advanced electronics and how CREI prepares you for them. So we invite you to send for our free catalog. This fully illustrated, 56 page book describes in detail the programs, equipment and services of CREI.

Qualifications
You may be eligible to take a CREI college-level program in electronics if you are a high school graduate (or the true equivalent) and have previous training or experience in electronics. Program arrangements are available depending upon whether you have extensive or minimum experience in electronics.

Send for this FREE Book describing your opportunities and CREI college-level programs in electronics

Mail card or write describing qualifications to

CREI
CAPITOL RADIO ENGINEERING INSTITUTE

McGraw-Hill Continuing Education Center
3939 Wisconsin Avenue Northwest
Washington, D.C. 20016

Accredited Member National Home Study Council

JANUARY 1979
local oscillator and the received signal. As long as the received signal originates from a broadcast station, its frequency is quite accurate. (No error greater than ±2 kHz is allowed by law in the U.S.) However, a signal that has faded out or is obscured by broad-band interference, such as severe ignition noise, has only the average tuned frequency of the receiver without any correction. Such a condition may cause severe mistuning. Consequently, the control logic circuits prevent use of automatic frequency control with poor signals.

Quartz Tuning. Quartz-crystal control has been used for many years to ensure accurate frequencies and accurate tuning. The simplest crystal-controlled receivers capable of receiving all FM channels, such as Onkyo’s Models T-9 (Fig. 4) and TX-4500, employ an FM detector to alternately measure the actual i-f (near 10.7 MHz) using the normal received signal and then the frequency of a 10.7-MHz crystal oscillator. A 19-kHz switching voltage, derived from the stereo multiplex decoder, drives a synchronous switch between the crystal frequency and the i-f signal to become the reference voltage for the control-signal amplifier and the error voltage, respectively. The corrected i-f signal remains locked to the crystal frequency when AFC is enabled.

FM broadcast stations in North America are assigned to the band between 88 and 108 MHz, with the channel carriers occurring in 200-kHz steps on odd channels between 88.1 and 107.9 MHz. The customary use of a local oscillator tuned 10.7 MHz higher results in frequency steps starting at 108.8 MHz. In Europe, 300-kHz channel separation and differing frequency assignments require that a receiver be capable of being tuned in multiples of 100 kHz. This precisely the concept used in the most sophisticated tuners.

Design differences exist here, too. A simple method is to sample the local oscillator voltage every 10 µs and to use the resultant voltage to correct local oscillator tuning. If the sampling period is accurately derived as a reference frequency from a crystal, the local oscillator will lock in frequency and phase to the nearest harmonic of the reference frequency. Then the receiver will tune in steps equal to the reference frequency. The Mitsubishi Model DA-F20 (Fig. 5) operates in such a fashion, deriving its reference frequency by division from a 10-MHz crystal oscillator, which is also used as a reference frequency for the digital frequency counter that indicates the tuned frequency. This ensures accurate tuning that’s independent of the received frequency.

Fig. 4. System in Onkyo’s Model T-9 uses crystal-controlled to 10.7-MHz oscillator and i-f signals to generate AFC voltage. Frequency differences are amplified by Q802 and used as AFC control signal.

Fig. 5. Output from Mitsubishi’s Model DA-F20 corrects local oscillator frequency and locks its phase to crystal reference pulse.

(Continued from page 51)
More complex is the method by which the local oscillator frequency is divided by a programmable frequency divider. The resultant output is detected by an electronic switch that opens and closes at a frequency determined by a quartz-crystal reference oscillator. Only one local-oscillator frequency will cause a dc tuning voltage to lock the phase and frequency of the oscillator to the programmed harmonic of the reference frequency. This is the principle of a frequency synthesizer. Instead of using the traditional pointer dial to indicate the tuned frequency, these new tuners display the frequency with a direct-read numeric display. Digital circuits control the offset frequency and division ratio, remember the last station tuned, and control the number displayed.

Frequency synthesizers have been used for several years, as exemplified by the H.H. Scott Model 433 and the later Heath Model AR-15 tuners. (See Fig.6.) Synthesizer tuner designs are possible today with substantially reduced circuit complexity. Digital frequency displays are standard with all synthesizer-type tuners, of course.

Essential to the success of all forms of automatic frequency control is the use of control logic. The early FM tuners had no control logic; the afc was active all the time. This caused marginal performance at times.

Afc in Modern Tuners. New tuners that have afc circuits employ large amounts of feedback to correct tuning-error signals. All these tuners also have logic circuits that control tuner operation. All tuners with frequency synthesizer circuits or digital tuning mutes the audio output until the tuning system has locked onto the tuned frequency. Only then are the other tuner circuits allowed to function, such as detecting the presence of a mono or stereo signal or the absence of noise. After this, the tuner unmutes and functions normally unless it is programmed to examine the next tuned frequency step.

All other tuners and receivers with afc circuits operate during manual tuning with the afc circuit disabled. To enable the afc circuit, the control logic circuit must detect the presence of a signal that is strong enough to cause unmuting if the muting switch were turned on. Also, the control logic circuit must detect if the signal is tuned sufficiently well (say, ±50 kHｚ or better) so that only minor frequency correction is needed.

If these conditions are satisfied for a second or so, the afc control voltage is generally applied to a Varactor diode. This logic system permits tuning to a signal with as much finger-tip feel as tuning a receiver without afc. An indicator usually tells when the afc circuit operates.

Manually tuning off-signal while the afc circuit attempts to hold onto the signal was the major cause for the old complaint of "rubbery" tuning. The new breed of tuners and receivers has overcome this problem as well.

Though afc control voltage is applied slowly, it's removed relatively fast (in about 0.02 second) when the tuning error exceeds ±50 kHz or less by discharging all afc filter capacitors. Since the afc control has a long time constant of about one second and manual detuning to the 50-kHz limit usually takes much less time, the automatic frequency control can be temporarily disabled by just retuning the tuner.

To further simplify tuning, some tuners, such as Dynaco's Model FM-5, permit switching off the afc. Other tuners, such as those made by Onkyo, detect whenever the tuning knob is touched by measuring hum pickup or the change in oscillation voltage of a medium-freqency oscillator connected to the tuning knob. Here, afc is disabled whenever the tuning knob is touched.

Have afc and the new logic circuits solved all the tuning problems and are frequency synthesizers the ultimate answer? No. There are tuning problems still remaining. One is how to solve the tuning problem automatically when there is strong interference adjacent to the desired signal. Here the manual solution is to mistune for minimum audible annoyance. Another problem is how to stay tuned to a weak signal that might fade out, while a strong local signal is near in frequency.

A third problem is how to make Varactor tuners (used in synthesizers) as high in selectivity, overload handling capability, noise figure, and residual noise as other tuners that utilize conventional components.

Perhaps more important is the need to make the new tuner designs less complex so that if trouble does occur, it can be easily determined and corrected.

The new afc circuits used to help the listener tune accurately to a signal have their counterpart in multiplex demodulator circuits, since FM-stereo reception requires locking the 38-kHz stereo demodulator in frequency and phase to the 19-kHz pilot signal broadcast by the radio station.
BUILD A
UNIVERSAL ELECTRONIC TIMER

By Michael S. Robbins

Timing is becoming increasingly more important around the home, in the workshop, and in the lab. For example, we routinely time such diverse things as cooking, watering the lawn, long-distance telephone calls, photographic film processing, etc. Hence, there is an increasing need for an accurate timer to help us. The "Universal Electronic Timer" described here was designed to fill virtually any timing need.

The basic function of the Universal Electronic Timer is to turn on and off an electrical or electrically operated device or to generate a tone for a predetermined period of time at regular programmed intervals. An interval-selection switch gives you a choice of 0.5, 1, 5, 10, 30, or 60 seconds; 5, 10, 30, or 60 minutes; or 12 or 24 hours. The "on" time can be adjusted over a 10-ms to 10-second range and can be expanded to more than 30 minutes by a simple change in component values. The "thing" that gets turned on or off can be external to the timer (as mentioned above) or it can be the self-contained tone generator. The latter is a gated 1000-Hz oscillator driving a speaker. If the gate control is short enough, the output will be a sharp "tick." By setting the interval switch to 1 second and the period control to 0.01 second, one tick per second will be generated. A one-second beep every 10 minutes, with the indicator displaying the minutes, can be obtained with an interval setting of 10 minutes and a period control of 1 second.

This timer project is built around a 5309 six-digit clock chip that features both seven-segment and BCD outputs. The feature that distinguishes the 5309 from the 5311 through 5314 chips is a reset function that sets all digits to zero. (The 5315 will work, but it has a different pin configuration.)

The seven-segment and BCD outputs of the 5309 IC are multiplexed. Digit-enable outputs indicate which digit is present at the outputs at any instant. By sensing the desired digit-enable output, the internal multiplex oscillator can be stopped while the desired digit is present. Hence, the IC can be made to output only one of its six digits.

The 5309 IC can directly drive a common-cathode LED display to indicate the state of the seven-segment outputs.

About the Circuit. Transistor Q1 in Fig. 1 controls clock chip IC1's multiplex oscillator. Switch S1B is used to select the digit at which the oscillator stops.

Since a zero will appear in the units-seconds digit only once every 10 seconds and in the tens-seconds digit only once every minute, the circuit must be speeded up. By connecting the slow-set input of the 5309 to ground through S1A, the clock chip operates 60 times its normal speed. Thus, instead of the tens-seconds zero appearing once a minute, it now appears once a second.

The zero is detected by testing the states of segments f and g in the display. The only digit for which the f segment is on and the g segment is off is the zero. Hence, each time the zero occurs, the voltage at the collector of Q2 drops. This generates a negative-going pulse that toggles one-shot multivibrator IC2, which generates a signal whose duration is determined by the values chosen for C5, R3, and R5. The values specified

Time any event occurring in a 24 hour period in seconds, minutes or hours. Includes audible alert and automatic on/off.
in the schematic diagram and Parts List will produce a range of from approximately 10 ms to 10 seconds. If you require a longer period, you can increase the value of C5. For example, a 100-µF capacitor will yield a range from 100 ms to 100 seconds. If a 10-M ohm potentiometer is used for R5, the range becomes 100 ms to 18 minutes. If a 10-megohm resistor is connected in series with the 10-megohm potentiometer, the range will be from 18 to 36 minutes.

The output of IC2 is used to drive an external relay and tone generator IC3. Any 12-volt dc relay whose coil resistance is at least 120 ohms can be used. If a visual output is desired, connect a LED in series with a 240-ohm resistor to this point.

To increase the frequency of the 1000-Hz audio tone generated by IC3, decrease the value of R18. You can decrease the frequency by increasing the value of R18.

Fig. 1. A conventional digital clock chip forms a 0.5-s to 24-h timer. Gated tone generator creates desired "beep." Timer also activates relay for external control.

PARTS LIST

R3, R6 thru R12, R17—1000 ohms
R4—330,000 ohms
R18—47,000 ohms
R19—10 ohms minimum (select for desired volume)
R5—1-megohm audio-taper potentiometer with switch
S1—Two-pole, six-position nonshorting rotary switch
S2, S3, S4—Normally-open spst pushbutton switch
S5—Spdt slide switch
S6—Spdt switch (part of R5)
SPKR—45-ohm loudspeaker
T1—12.6-volt, 500-ma power transformer

Misc.—Two-screw terminal strip or barrier block; four-screw terminal strip or barrier block; Molex Soldercons® (for DIS1); sockets for ICs (for substitute Soldercons); suitable enclosure; ½" (1.27-cm) threaded spacers (4); red acrylic filter; control knobs (2); dry-transfer lettering kit; machine hardware; hookup wire; solder; etc.

Note: The following items are available from Carling Electronics, Inc., P.O. Box 727, Upland, CA 91786. Complete kit of parts, including cabinet, No. UET-1K, for $34.95 plus $2.00 shipping and handling; etched and drilled pc board No. UET-IPC for $6.95 postpaid in USA. California residents, please add 6% sales tax.

January 1979
Construction. The timer circuit is best assembled on a printed-circuit board. The actual-size etching-and-drilling guide and separate components-placement diagram for the pc board are shown in Fig. 2.

Before you proceed to wire the pc board, place it foil side up on a hard, flat surface. Slip a strip of five Molex Soldercons® onto the pins on each side of DIS1. (Do not remove the connecting strips of metal on the Soldercons until directed to do so.) Lower the display onto the pc board, guiding the pins of the Soldercons into the appropriate holes on the board. Because of the hard surface under the board, the pins will not go in as far as they might otherwise. Do not try to push them in all the way. Simply solder them to their respective traces on the board, using only as much heat and solder as necessary to assure a good electrical and mechanical connection in each case. Leave the display in place and cover its top surface with a piece of masking tape.

Fig. 2. Actual-size etching and drilling guide for printed circuit board is shown at top. Component placement diagram is directly above.

Fig. 4. An optoisolator can be used to interconnect two timers for extremely long timing durations.

Flip over the pc board and install the resistors, capacitors, diodes, and transistors. Refer to the components-placement diagram in Fig. 2 for proper component location and orientation. Install sockets in the locations for the integrated circuits. Then install IC2 and IC3 in their sockets. Do not install IC1 until last and, when you do so, be sure to practice safe handling procedures for MOS devices. (This clock chip is a PMOS device that can be damaged by static fields if it is not handled properly.) Flip over the board assembly and carefully flex the connecting strips on the display's Soldercons until they break away. Three or four flexes will generally do the trick. Temporarily set the board assembly aside.

Next, referring to Fig. 3 and the lead
photo, machine the top half of the enclosure in which the project is to be housed. (If you plan to build the power supply into the project, select a large enough enclosure to accommodate it without interference to the other elements in the circuit.) Drill the holes for the various switches, control, and circuit board standoffs; cut a window for the display; and make a pair of slots (or drill 1/4 holes) for the screw-type terminal strips or barrier blocks. Use a dry-transfer lettering kit to label the various switches, control, and terminal strip points, as shown in the lead photo. Then mount each item, except the circuit board assembly, in its respective location.

Solder an 8" (20.3-cm) length of hook-up wire to pads A through U on the circuit board assembly. Flip over the board and peel away the tape from the display. Then mount the circuit board assembly, with DIS1 centered in the window in the top half of the box, with threaded spacers and machine hardware. If you wish to protect the display and enhance its contrast for easier reading, cement a piece of red acrylic plastic over the window on the inside of the box before mounting the circuit board assembly on its spacers.

Drill a series of 1/4" holes in the bottom half of the enclosure to perforate it for the loudspeaker. Then mount the speaker, with a protective screen between it and the enclosure wall. Refer back to Fig. 1 and interconnect the circuit board assembly with the control, switches, terminal strips, and speaker, using the wires connected to holes A through U on the board. Trim the wires as necessary as you connect them. Finally, arrange the wires neatly and lace them together and assemble the case.

Using the Timer. RESET pushbutton switch S2 or the RESET input on the four-lug terminal strip returns the interval timer and display to zero. The display remains at zero as long as the RESET switch is closed or the RESET input is grounded. Releasing either initiates the timing cycle. If you desire remote operation of the reset feature, you can use the optoisolator circuit shown in Fig. 4.

The SLOW SET and FAST SET pushbuttons are used to preset the interval timer. The SLOW SET button is not operational in the two shortest interval positions of S1 (1 second and 10 seconds).

The divide-by-two switch (S5 in Fig. 1 but not labelled in Fig. 3) effectively cuts all of the timing intervals that are selected by S1 in half.
THE AUTOMOTIVE industry has taken advantage of the latest techniques in modern electronics technology. As a result, many of the components in late-model automobiles have become more difficult to diagnose when trouble occurs. An example of this is in the automotive battery and charging system, where the old-style battery, dc generator, and electro-mechanical voltage regulator have given way to the sealed battery, alternator, and solid-state voltage regulator. These new components are superior to the ones they replaced, but they also require more sophisticated test procedures to analyze and isolate faults.

It seems only natural that electronics technology should provide the means to check these components. The automotive battery and charging system monitor described in this article, provides such a check. It can be constructed at low cost, yet gives the accuracy and dependability suitable for a professional as well as an amateur. The monitor uses four LED’s to provide an indication if a fault arises and also indicates possible sources of trouble. This feature will eliminate unnecessary replacement of properly operating components.

Circuit Operation. The analysis of an automotive battery and charging system can be accomplished by monitoring the battery voltage under several operational conditions, then comparing the measured value to a known standard.
A properly operating battery and charging system will have a battery terminal voltage of about 12.6 volts when the engine has been turned off for some time, and between 13.5 and 15.0 volts when the engine is running and the battery is being charged.

If the battery voltage is below 11.5 volts with the engine not running, the battery is either in a very low state of charge or has a damaged cell. If the battery voltage is less than 12.7 volts with the engine running, the charging system is inoperative. If the voltage is less than 13.4 volts, then there is insufficient charging; if there is more than 15.1 volts across the battery terminals, overcharging is occurring.

The circuit shown in Fig. 1 constantly monitors the battery voltage, while LED displays indicate any improper electrical condition. The basic reference voltage for the monitor is formed by IC1 which is an adjustable voltage regulator that is set to a precise 8-volt output.

This voltage reference is fed to four precision voltage-divider networks (R5/R6, R10/R11, R13/R14 and R17/R18) that provide levels of 5.75, 7.55, 6.35 and 6.7 volts respectively, to individual sections of IC2. By feeding half the battery voltage to the noninverting input, the corresponding voltages then become 11.5, 15.1, 12.7 and 13.4 volts.

In IC2A, C and D, the precision reference voltage is fed to the inverting input (-) of the comparator, while half the system's battery voltage (via divider R1, R2) is coupled to the noninverting (+) input. As long as the voltage at the noninverting input is greater than the voltage applied to the inverting input, the output of the comparator is high. The associated LED is thus extinguished, indicating that the system is normal for that particular voltage level.

Should the battery voltage drop below the reference level, the comparator output drops to zero, causing the associated LED to indicate a malfunction.

Note that IC2B has its input terminals reversed; that is, the reference voltage is applied to the noninverting input while the battery voltage is applied to the inverting input. This causes its associated LED to glow if the battery voltage exceeds the reference level. This condition is also caused by a fault in the charging system. Diode D2 is connected between the output of IC2C and the inverting input of IC2D to prevent LED3 from lighting if LED2 is glowing. This not only prevents the two indicators from lighting at the same time, but also provides a positive indication of a particular type of fault in the charging system.

Diode D1 is connected in series with the positive input lead to protect the circuit against damage caused by an accidental reversal of the input leads.

Construction. The circuit can be assembled on a small PC board such as that shown in Fig. 2. Observe the polarities of the two diodes and two polarized capacitors. A 14-pin socket can be used for IC2. Pin 1 of IC2 can be identified by a small dot or mark on the plastic case.

The four LEDs can be mounted where they are easily observed, and then connected to their respective pads on the PC board. Each LED must be clearly identified as to indicated fault.

A long length of insulated wire can be connected between the monitor positive input and the battery positive terminal. The monitor's negative input may be connected to a chassis ground.

Test and adjustment. A 0- to 16-volt DC power supply and an accurate DC voltmeter are used to test the monitor.

Observing the correct polarity, connect the two monitor input leads to the power supply, and set the power supply for a 12-volt output.

Connect the voltmeter positive lead to IC1 pin 3, and the negative lead to ground. Adjust R3 until the voltmeter indicates precisely 8 volts.

Connect the voltmeter across the

PARTS LIST

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C2</td>
<td>10 μF, 15-volt electrolytic capacitor</td>
</tr>
<tr>
<td>D1</td>
<td>1N2069 or similar</td>
</tr>
<tr>
<td>D2</td>
<td>1N4148 or similar</td>
</tr>
<tr>
<td>IC1</td>
<td>µA 78G adjustable regulator (Fairchild)</td>
</tr>
<tr>
<td>IC2</td>
<td>LM339 quad comparator</td>
</tr>
</tbody>
</table>

Notes:

- LED1 through LED4 — Red LED
- R1, R2, R4 — 1000-ohm, 1% resistor
- R3 — 1000-ohm potentiometer, PC mount
- R5 — 39,200-ohm, 1% resistor
- R6, R11, R14, R18 — 100,000-ohm, 1% resistor
- R7, R9, R15, R19 — 10,000-ohm, 10% resistor
- R8, R12, R16, R20 — 1000-ohm, 10% resistor
- R10 — 5900-ohm, 1% resistor
- R13 — 25,500-ohm, 1% resistor
- R17 — 19,600-ohm, 1% resistor
- Misc. — Suitable enclosure, interconnecting leads, optional spot switch, mounting hardware, etc.

Note: The following are available from: A. Caristi, 69 White Pond Rd., Waldwick, NJ 07463; etched and drilled PC board at $2.50; a set of 11 precision resistors at $2.50.

Fig. 1. Comparator monitors voltage difference between reference 8V line and battery input. One LED glows to indicate possible fault.
power supply, then reduce the supply down to 11 volts. Both LED1 (Low Battery) and LED2 (Not Charging) indicators should be glowing. The other two LED’s should be dark.

Slowly increase the power supply voltage until LED1 is extinguished. This should occur between 11.4 and 11.6 volts. As the power supply output is increased, note that LED2 should extinguish between 12.6 and 12.8 volts, and LED3 (Defective Diode or Stator) should light when LED2 goes out.

As the power supply output is further increased, LED3 should go out when the voltage is between 13.3 and 13.5 volts. LED4 (Overcharge) should glow when the supply voltage exceeds 15.1 volts. Do not raise the power supply output above 16 volts!

If any of the LEDs do not operate properly, check the 8-volt line, then make sure that the correct precision resistors are used at the proper comparator inputs.

Using the Monitor. The following steps should be performed in sequence when checking an automotive battery and charging system. Connect the monitor to the vehicle's battery terminals, being sure to observe correct polarity for each terminal.

An spst switch can be connected between the monitor positive input lead and the battery so that the monitor can be disabled when not in use. Make sure that the alternator drive belt has the proper tension.

Before the engine is started, the Not Charging (LED2) or Defective Diode or Stator (LED3) will be lighted since the battery is not yet being charged. If the Low Battery (LED1) glows, the battery voltage is less than 11.5 volts. This can be caused by a state of deep discharge or a faulty cell. If this LED is glowing, investigate the battery before proceeding.

When the engine is started and everything is normal, all the LEDs should be dark. If there is an electrical malfunction, then one of the LEDs will glow.

If the Not Charging LED glows, the terminal voltage of the battery is less than 12.7. Thus, the alternator is not delivering any current to the battery. This can be caused by an open regulator circuit or open alternator field.

If the Defective Diode or Stator LED glows, the terminal voltage of the battery is less than 13.4 volts. This can be caused by a shorted diode or stator in the alternator, or an improperly adjusted regulator.

If the Overcharging LED glows, the terminal voltage of the battery is greater than 15.1 volts. This can be caused by a shorted or misadjusted regulator.

If no LEDs glow with the engine running, load the alternator by turning on the headlights’ high beams, the air conditioner, the high-speed blower, the high-speed windshield wipers and the radio. Then moderately race the engine. All LEDs should be extinguished.

If the Defective Diode or Stator LED is now lighted, but was extinguished with no load on the alternator, the most likely cause of the problem is an open diode in the alternator.

This low-cost, easy-to-use automotive instrument can save the builder many dollars of repair costs, making it a worthwhile investment in parts and labor.
BY BUD WEISBERG, K2YOF

BUILD A
REMOTE ANTENNA SELECTOR SWITCH

Low-cost, reliable switch permits selecting from among six antennas

Erecting multiple antenna systems offers the communications buff increased operating flexibility and frequency coverage. Unfortunately, it can also add appreciably to station cost and complexity—especially when the antennas require separate feedlines. Presented here is an alternative to a large investment in coaxial cable—a low-cost, remotely controlled coaxial switch.

The Remote Antenna Selector Switch enables the user to quickly select one of six antennas. Equally important, it provides a silent, reliable indication of the selection without any need for relay-holding current or the imposition of dc or rf control signals on the feedline. The project can be assembled from inexpen-

![Diagram of the Remote Antenna Selector Switch](image)

PARTS LIST

- C1—1000-μF, 50-volt computer grade electrolytic
- C2—0.01-μF ceramic disc
- D1—1N4003 rectifier
- F1—3-ampere fast-blow fuse
- I1—110-volt neon pilot light assembly
- K1 through K7—SO-239 coaxial connector
- R1—12-position rotary stepping solenoid with 24-to-28-volt dc coil (Ledex Series 5 or equivalent)
- M1—0-to-1mA meter movement

The following are 1/2-watt, 5% tolerance carbon composition fixed resistors:
- R1—78,000 ohms
- R2—33,000 ohms
- R3—23,000 ohms
- R4—17,000 ohms
- R5—13,000 ohms
- R6—10,500 ohms
- R7—2500-ohm wirewound potentiometer
- R8—68-ohm, 1-watt, 10% tolerance fixed carbon composition resistor
- R9—100-ohm, 1/2-watt, 10% tolerance fixed carbon composition resistor
- RECT1—100-PIV, 4-ampere modular bridge rectifier
- S1—5-ampere spst switch
- S2—5-ampere, normally-open, momentary contact pushbutton switch
- S3—11-position, 1-pole ceramic rotary switch (Centralab No. 2503 or equivalent)
- S4—14-position, 1-pole phenolic switch wafer (Centralab No. JD or wafer from No. 1403 switch)
- T1—24-to-28-volt ac, 2-ampere transformer (Radio Shack No. 273-1512 or equivalent)

Misc.—Suitable enclosures, 4" × 4" × 2" (10.2 × 10.2 × 5.1 cm) aluminum utility box, coaxial cable and PL-259 connectors, 1/4" (6.4-mm) flexible shaft coupling, 2- or 3-conductor cable, machine and self-tapping hardware, silicone cement, PVC tape, No. 14 copper wire, solder, etc.

Note—Surplus stepping solenoids are available from several sources, including Poly Paks, Box 942, South Lynnfield, MA 01940 (Cat. No. 92CU3493) and Fair Radio Sales, 1016 East Eureka, Lima, OH 45802 (Cat. No. MX167869G1).
sive surplus and junk-box parts and gives a level of performance rivalling that of commercial products costing much more.

About the Circuit. A schematic diagram of the Remote Antenna Selector Switch appears in Fig. 1. Upon the application of line power, electrolytic capacitor C1 draws charge from stepdown transformer T1 through bridge rectifier RECT1 and resistor R1. When momentary pushbutton S2 is depressed, C1 discharges via the coil of K1, a 12-position rotary stepping solenoid. Eleven-position rotary switches S3 and S4 are driven by the shaft of K1, so the switches advance one position when the solenoid is energized.

In this project, only alternate switch contacts are employed. The solenoid must therefore be stepped twice to advance the switches to the next position. Wafer S3 performs the antenna switching function. The other wafer, S4, is part of the indicator circuit, as are fixed resistors R1 through R6, potentiometer R7, and milliammeter M1. As K1 rotates the switch shafts, the effective series resistance between the negative side of M1 and ground varies. This causes the meter movement to deflect and indicate the antenna selection on a modified meter scale. If the solenoid is stepped only once, the meter will read off, indicating that S2 must be closed once more to advance the mechanism to the next antenna position.

Construction. The Remote Antenna Selector Switch comprises two units, the switch proper, shown in Fig. 2, and the power supply which appears in Fig. 3. Also shown in Fig. 2 is the position indicating meter, which can be built into an enclosure with the power supply or mounted on a separate panel.

The power supply is relatively simple and is most easily constructed using point-to-point wiring techniques. A barrier terminal strip such as that mounted on the prototype power supply's chassis will facilitate interconnections with the power line, switches and solenoid. Due to the amount of charge it must hold, capacitor C1 must be a high-grade component such as a computer-grade electrolytic. Similarly, the pushbutton switch employed as S2 must be able to handle the substantial current flowing when C1 discharges through K1.

The meter scale will have to be relabelled. The zero line should be labelled the OFF position, the full-scale mark labelled position 6, and the remaining five numerals spaced equally between these two extremes. A more or less sensitive meter movement can be used, but in the former case larger values will be required for R1 through R6 and in the latter case smaller values. Non-standard resistor values can be obtained by combining standard ones in series or parallel.

The remote unit shown in Fig. 2 consists of a solenoid driving two rotary switches. In the author's prototype, the solenoid is a Ledex Series 5 type with a 1-7/8-inch (4.8-cm) diameter case. It is available from most industrial suppliers. Surplus solenoids can be obtained from several sources, two of which are given.
at the end of the parts list of Fig. 1.

Solenoid K1 and phenolic switch wafer S4 are mounted in the center of the utility box's top cover using four 2½-inch (5.7-cm) tapped metal standoffs, as shown in Fig. 2. Ceramic wafer switch S3 is mounted inside the utility box and its shaft is coupled to that of the solenoid by an all-metal flexible coupling with dual setscrews on each hub. (These are required to withstand the high torque generated by the solenoid.)

Because the solenoid provides positive indexing, the detent and stop on S3 must be carefully broken off to reduce drag and allow continuous rotation. Also, alternate contacts on the switch's ceramic wafer should be removed by very gentle prying or filing to leave six contacts plus the wiper contact.

The wiring of this switch is shown in Fig. 4. To minimize impedance mismatch, two low-inductance rings are mounted on opposite sides of the ceramic wafer. Form two 2½" (6.4-cm) inner diameter rings from 8" (30.3-cm) lengths of soft-drawn copper wire and hammer the rings flat. Again adjust the inner diameter to 2½", and trim away the excess at the overlap. Butt joints and solder the rings closed.

Partially hidden in Fig. 4, the front ring is soldered to the lug of S3's wiper and to a short length of tinned No. 14 copper wire. The other end of this wire should be soldered to the inner conductor pin of J1, the feedline SO-239 coaxial jack. The rear copper ring is soldered to lugs held in place by the switch assembly screws. A ½-inch (6.4-mm) insulated spacer should be placed under each of these solder lugs to position the two rings about 7/16 inch (11.1 mm) apart. This might require the substitution of longer screws for those used by the switch manufacturer.

The inner conductor pins of the remaining SO-239 jacks (J2 through J7) can now be connected to the appropriate contact lugs of S3 via short lengths of tinned No. 14 copper wire. Install a solder lug at each jack location, securing it to the aluminum utility box with one of the four pairs of screws and nuts holding each jack in place. Next, connect one end of a short length of tinned No. 14 copper wire to the solder lug at J1. Solder the other end of the wire to the rear copper ring. Repeat this procedure for the remaining jacks (J2 through J7).

Note that the switch shown in Fig. 4 has a metallic ring which shorts out all unselected switch contacts. The author's original intention was to utilize this ring to ground all unselected antennas. This idea was discarded, however, because of the possibility of flashover during transmissions at medium amateur power levels (several hundred watts). In CB, ORP amateur, and SWL applications, however, there is no danger of flashover. Accordingly, those readers whose use of the antenna switch falls into one of the three categories mentioned might want to incorporate this feature for lightning protection. Those who want to do so should not procure the switch type specified in the parts list because it lacks a shorting ring. Rather, they should obtain a switch having such a ring.

Before tightening the shaft coupling's setscrews, make sure that the wiper of S3 is properly aligned with that of S4. Each wiper should be touching the corresponding contact on each switch waf er. A drop of Loctite or nail polish on each screw head and nut will keep the mechanical assembly of the Remote Antenna Selector Switch secure.

Adjustment. Interconnect the power supply and switch units with a length of two- or three-conductor cable. The cable should have the same length as that required to run from the remote switch unit to the power supply in the finished installation. It can, in fact, be the same cable. Note that the circuit shown in Fig. 1 employs the braid of the coaxial feedline as a return path for the solenoid and position indicator circuits. This allows the use of a two-conductor control cable. If a separate return path is preferred, a three-conductor control cable must be used. For cable lengths up to 50 feet, No. 20 conductors can be used. Longer control cable lengths necessitate the use of No. 18 or 16 conductors.

Close power switch S1 and wait a few seconds so that C1 can acquire a full charge. Then momentarily close S2. The solenoid should step and advance one position. Note, however, that S2 must be closed again to advance the switch to the next antenna position. With the component values specified in the schematic and parts list, you should be able to step K1 once every two seconds or so. If a faster stepping rate is desired, reduce the value of R8.

Adjust potentiometer R7 so that +10 volts appears between its wiper and ground. The meter will then correctly indicate the position of the antenna position switch. If K1 is stepped only once, the meter will read off, indicating that the switch is between antenna positions.

Installation and Use. The location of the remote switch unit depends on the particular application. If directly exposed to the elements, the remote unit should be housed in a plastic enclosure of a suitable size. All joints, holes and screw heads should be treated with silicone cement to weatherproof the assembly. Coaxial connectors soldered to the antenna and main downlead cables should be thoroughly taped with PVC tape and/or liberally treated with silicone cement because these PL-259 plugs are not weatherproof. Failure to do this will result in premature deterioration of the coaxial feedlines.

As mentioned earlier, the Remote Antenna Selector Switch does not ground unselected antennas. Therefore, it is advisable to insert lightning arrestors in the main downlead and the switch-to-antenna feedlines of any antennas which are not by virtue of their construction at dc ground.

This project was designed to provide reliable remote antenna selection without introducing a significant impedance "bump" and consequent standing wave ratio on the coaxial line running to the radio shack. If switch S3 and the coaxial jacks have been wired as suggested in this article, the switch can be used through vhf with good results. Remember that the solenoid must be stepped twice to advance the switch to the next antenna position. (Even if you forget, the meter will remind you by displaying an off indication.) During idle periods (the bulk of the time), the supply unit can be used to power other intermittent control projects formed around inexpensive surplus or industrial 24-volt relays and stepping solenoids.
Microcomputer ROM Board Buying Directory

<table>
<thead>
<tr>
<th>Make & Model</th>
<th>Power required (mA):</th>
<th>PROM cap.</th>
<th>PROM type</th>
<th>Car Program</th>
<th>Firmware</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOR S 100 BUS:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Computer Prods.</td>
<td>+5V</td>
<td>+15V</td>
<td>-15V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 8KK</td>
<td>24 (b)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>8K</td>
<td>2708</td>
</tr>
<tr>
<td>60 (k)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90 (w)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Byte</td>
<td>100</td>
<td>X</td>
<td>X</td>
<td>4K</td>
<td>1702A</td>
<td></td>
</tr>
<tr>
<td>4K PROM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROM Boost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CGRS Microtech</td>
<td>60 (k)</td>
<td></td>
<td></td>
<td>16K</td>
<td>2708</td>
<td>no</td>
</tr>
<tr>
<td>16K ROM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computerware, Inc.</td>
<td>125 (w)</td>
<td></td>
<td></td>
<td>16K</td>
<td>2708</td>
<td>no</td>
</tr>
<tr>
<td>EPROM Board</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cremonico</td>
<td>145 (k)</td>
<td>500</td>
<td>8K</td>
<td>2708</td>
<td>yes</td>
<td>programmer</td>
</tr>
<tr>
<td>Bytewriter</td>
<td>245 (w)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16PR</td>
<td>145 (k)</td>
<td>400</td>
<td>800</td>
<td>500</td>
<td>16K</td>
<td>2708</td>
</tr>
<tr>
<td>32KSS</td>
<td>155 (k)</td>
<td>2.1A</td>
<td></td>
<td></td>
<td>32K</td>
<td>2716</td>
</tr>
<tr>
<td>255 (w)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.C. Hayes</td>
<td>163 (w)</td>
<td></td>
<td></td>
<td>8K</td>
<td>2708</td>
<td>no</td>
</tr>
<tr>
<td>80-708</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epix</td>
<td>85 (k)</td>
<td></td>
<td></td>
<td>16K</td>
<td>2708</td>
<td>no</td>
</tr>
<tr>
<td>16KPR</td>
<td>110 (w)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMSAI</td>
<td>165 (k)</td>
<td></td>
<td></td>
<td>4K</td>
<td>1702A</td>
<td></td>
</tr>
<tr>
<td>PROM 4-512</td>
<td>247 (w)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROM 4-4</td>
<td>369 (k)</td>
<td></td>
<td></td>
<td>4K</td>
<td>1702A</td>
<td></td>
</tr>
<tr>
<td>579 (w)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ithaca Audio</td>
<td>25 (b)</td>
<td>320</td>
<td>750</td>
<td>500</td>
<td>15K</td>
<td>2708</td>
</tr>
<tr>
<td>EP16K</td>
<td>320</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPPRO6</td>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jade Computer</td>
<td>100 (k)</td>
<td>1A</td>
<td>8K</td>
<td>2708</td>
<td>no</td>
<td>S90</td>
</tr>
<tr>
<td>MR8</td>
<td>121 (w)</td>
<td></td>
<td></td>
<td>mon.</td>
<td>no</td>
<td>S90</td>
</tr>
<tr>
<td>MR16T</td>
<td>100 (k)</td>
<td>1A</td>
<td>16K</td>
<td>2716</td>
<td>no</td>
<td>mon.</td>
</tr>
<tr>
<td>GJ RN</td>
<td>121 (w)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MG 8/16</td>
<td>105 (k)</td>
<td>1A</td>
<td>4 to 32K*</td>
<td></td>
<td></td>
<td>no</td>
</tr>
<tr>
<td>PROM SETTER</td>
<td>30 (b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 (k)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210 (k)</td>
<td>1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>375 (w)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mountain Hardware</td>
<td>164 (k)</td>
<td>500</td>
<td>7.5K</td>
<td>AMI-6834</td>
<td>yes</td>
<td>monitor</td>
</tr>
<tr>
<td>ProROM</td>
<td>214 (w)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective Design</td>
<td>200 (k)</td>
<td></td>
<td></td>
<td>16K</td>
<td>2716/2708</td>
<td>yes</td>
</tr>
<tr>
<td>Databank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective Technology</td>
<td>149 (k)</td>
<td></td>
<td></td>
<td>8K</td>
<td>2708</td>
<td>no</td>
</tr>
<tr>
<td>GPM</td>
<td>180 (w)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processor Tech.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS-K-OX</td>
<td>167 (k)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>8K</td>
<td>2708</td>
</tr>
<tr>
<td>PS-W-OX</td>
<td>220 (w)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS-W-4X</td>
<td>257 (w)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>8K</td>
<td>2708</td>
</tr>
<tr>
<td>PS-W-8X</td>
<td>296 (w)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>8K</td>
<td>2708</td>
</tr>
<tr>
<td>PS-K-8X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS-W-8X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS-W-8X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS-W-8X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS-W-8X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS-W-8X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS-W-8X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processor Tech.</td>
<td>149 (k)</td>
<td></td>
<td></td>
<td>8K</td>
<td>2708</td>
<td>no</td>
</tr>
<tr>
<td>GPM</td>
<td>180 (w)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table above provides a summary of various microcomputer ROM boards and their specifications. The columns include Make & Model, Power required (mA), PROM cap., PROM type, Car Program, Firmware, and Remarks.
<table>
<thead>
<tr>
<th>Make & Model</th>
<th>Price ($)</th>
<th>Power required (mA)</th>
<th>PROM cap.</th>
<th>PROM type</th>
<th>Can Program</th>
<th>Firmware</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPM-SOL</td>
<td>99 (k)</td>
<td>+8V: 2KRO 123 (w)</td>
<td>10K</td>
<td>208</td>
<td>no</td>
<td>none</td>
<td>Same, less RAM and firmware.</td>
</tr>
<tr>
<td>2KRO</td>
<td>65 (k)</td>
<td>+12V: 600</td>
<td></td>
<td>2K</td>
<td>1702</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-16V: 350</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid State Music</td>
<td>65 (k)</td>
<td>+8V: 250</td>
<td>4K</td>
<td>1702</td>
<td>no</td>
<td></td>
<td>Switch-selectable address and wait (0-4) cycles.</td>
</tr>
<tr>
<td>MB-3</td>
<td>92 (k)</td>
<td>+12V: 10 10</td>
<td>18K</td>
<td>208</td>
<td>no</td>
<td></td>
<td>Similar, but 08 wait states, power-on vector jump, allows disabling any 1K block for RAM address overlay.</td>
</tr>
<tr>
<td>MB-8A</td>
<td>80 (k)</td>
<td>-12V: 65 (k)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Can intermix RAM or PROM in 256-byte increments; jump on reset or power-up.</td>
</tr>
<tr>
<td>MB-9</td>
<td>80 (k)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Szelgip</td>
<td>117 (k)</td>
<td>+8V: 600</td>
<td>64K</td>
<td>any</td>
<td>no</td>
<td></td>
<td>For any 24-pin PROM; also has 1K RAM, parallel I/O.</td>
</tr>
<tr>
<td>N R R</td>
<td>116 (w)</td>
<td>+12V: 100 200 200</td>
<td>64K</td>
<td>24-pin</td>
<td>same</td>
<td>yes</td>
<td>Similar, but can program.</td>
</tr>
<tr>
<td>PRO1! Setter</td>
<td>216 (k)</td>
<td>-12V: 125 (k)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teletek</td>
<td>385 (w)</td>
<td></td>
<td>3-12</td>
<td>27*</td>
<td>yes</td>
<td>2K mon.</td>
<td></td>
</tr>
<tr>
<td>System Central Interface</td>
<td>X</td>
<td>+12V: X X X</td>
<td>125 125 125</td>
<td>2716</td>
<td>no</td>
<td></td>
<td>*For 2708, 2716, 2732; has 256 bytes RAM, I/O, reset-jump</td>
</tr>
<tr>
<td>Vector Graphics</td>
<td>129 (w)</td>
<td>X</td>
<td>2K</td>
<td>1702A</td>
<td>no</td>
<td>S75*</td>
<td></td>
</tr>
<tr>
<td>PR1</td>
<td>175 (w)</td>
<td></td>
<td>12K</td>
<td>2708</td>
<td>no</td>
<td>S75*</td>
<td></td>
</tr>
<tr>
<td>PR2</td>
<td>175 (w)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*Includes 1K RAM; 1K monitor extra; jump-on-reset; MWRITE.</td>
</tr>
<tr>
<td>PR2</td>
<td>175 (w)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*As above, but addressable in two 8K blocks; 3K unused space allows RAM overlay.</td>
</tr>
<tr>
<td>PR2</td>
<td>175 (w)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wameco</td>
<td>30 (b)</td>
<td>+8V: 2KRO 300 (k)</td>
<td>4K</td>
<td>1702</td>
<td>no</td>
<td>no</td>
<td>Phantom disable.</td>
</tr>
<tr>
<td>EPM-1</td>
<td>200 (k)</td>
<td>+12V: 230 125</td>
<td></td>
<td>208</td>
<td>no</td>
<td>no</td>
<td>Phantom disable & bank sel.</td>
</tr>
<tr>
<td>EPM-7</td>
<td>55 (w)</td>
<td>-12V: 1225 (w)</td>
<td></td>
<td></td>
<td></td>
<td>no</td>
<td>2708 version.</td>
</tr>
<tr>
<td>Western Data Systems</td>
<td>296 (k)</td>
<td>X</td>
<td>2A 125 125 8K</td>
<td>2716</td>
<td>no</td>
<td>yes*</td>
<td></td>
</tr>
<tr>
<td>PRO/EX 1</td>
<td>296 (k)</td>
<td>X</td>
<td>2A 125 125 8K</td>
<td>2716</td>
<td>no</td>
<td>yes*</td>
<td></td>
</tr>
<tr>
<td>Xybek</td>
<td>259 (w)</td>
<td></td>
<td>2K</td>
<td>1702</td>
<td>yes</td>
<td>opt.*</td>
<td>*1.8K EPROM, 256 bytes RAM, programming firmware S22, external program socket $17.</td>
</tr>
<tr>
<td>Proammer 1</td>
<td>370 (w)</td>
<td></td>
<td>31K</td>
<td>2708</td>
<td>yes</td>
<td>opt.*</td>
<td>*Similar, but firmware S32, zero-insertion force ext. socket $19; 1K RAM, 30K PROM.</td>
</tr>
<tr>
<td>Smoke Signal</td>
<td>145 (k)</td>
<td>X</td>
<td>2K 125 125 8K</td>
<td>2716</td>
<td>no</td>
<td>yes*</td>
<td></td>
</tr>
<tr>
<td>SOS Technical</td>
<td>145 (k)</td>
<td>X</td>
<td>2K 125 125 8K</td>
<td>2716</td>
<td>no</td>
<td>yes*</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1) b= bare board, k= kit, w= wired. Prices usually do not include PROMs.
2) In ampers where indicated by "&", Power consumption may vary with number of PROMs.
3) See "Remarks" column.

Make & Model:| Price ($) | Power required (mA) | PROM cap. | PROM type | Can Program | Firmware | Remarks |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FOR SS 50 BUS:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gimix</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RKP</td>
<td>90 (w)</td>
<td>+8V: X</td>
<td>8K</td>
<td>2708</td>
<td>no</td>
<td>yes</td>
<td>PROMs can be inserted & removed from programming sockets with power on. can program 4 at once.</td>
</tr>
<tr>
<td>4KPM</td>
<td>198 (w)</td>
<td>+12V: X</td>
<td>4K</td>
<td>2708</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Midewt Sci.</td>
<td>95 (k)*</td>
<td>-12V: X X X</td>
<td>8K</td>
<td>2708</td>
<td>no</td>
<td></td>
<td>*Sockets, $15 extra.</td>
</tr>
<tr>
<td>EPF B</td>
<td>95 (k)*</td>
<td>+12V: X X</td>
<td>4K*</td>
<td>1702A</td>
<td>yes</td>
<td></td>
<td>*Sockets, $25 extra. 4K includes 256 bytes RAM.</td>
</tr>
<tr>
<td>PHR 68</td>
<td>95 (k)*</td>
<td>-12V: X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOS Technical</td>
<td>145 (k)</td>
<td>X</td>
<td>2K 125 125 8K</td>
<td>2716</td>
<td>no</td>
<td>yes*</td>
<td></td>
</tr>
<tr>
<td>MCM6830</td>
<td>145 (k)</td>
<td>X</td>
<td>2K</td>
<td>2716</td>
<td>8K</td>
<td>yes</td>
<td>Interfaces to POP I EPROM programmer, Oliver paper tape reader.</td>
</tr>
</tbody>
</table>
Antennas and Range. Microwave Associates' Gunnplexers are shipped equipped with UG-39/U waveguide flanges and must be used with antennas having compatible flanges. The company offers several antennas that will function well with its Gunnplexer units.

The least expensive antenna available is a small horn with 17 dB of gain and a half-power beamwidth of approximately 30 degrees. A small (2-foot or 0.6-m) parabolic dish can be used if more gain is desired. The Microwave Associates Model MA-86555 dish has 32 dB of gain, a 4-degree half-power beamwidth, and mounts on a 2-inch (5.1-cm) pipe. Even more gain can be achieved by installing the Model MA-86556 antenna. This 4-foot (1.2-m) dish has 38 dB of gain and a 2-degree half-power beamwidth. It mounts to a 2-inch (5.1-cm) pipe. Ordering information for these antennas can be found in Part 1 of this article.

Exactly which antenna is right for your installation depends on the desired communications range. Antenna gain must be used to overcome path loss, which increases with frequency. At 10.250 GHz, signal loss over the first mile (1.6 km) is 116.8 dB. That's very high, but when the path is doubled to 2 miles (3.2 km), path loss increases "only" 6 dB to 122.8 dB. Each time the path is doubled again, say, from 2 to 4 miles (3.2 to 6.4 km), the signal drops another 6 dB. Obviously, getting a signal to travel the first mile (1.6 km) while retaining a usable signal level is the biggest hurdle. Once that distance is achieved, extending the range should be relatively easy.

Every calculation of microwave communications range includes one immutable assumption and several variable factors. The fixed assumption is that the path extends over the line of sight. That is, if a powerful enough pair of binoculars were available, the receiving antenna could be seen by an observer at the transmitting antenna. No obstructions by hills, buildings, or plants are permitted.

In the real world, microwaves will penetrate objects to varying degrees and over short paths (0.5 to 1 mile or 0.8 to 1.6 km) intervening objects can be tolerated if necessary. The authors have used Mini-Wave gear to communicate through one to several walls with good results. Quality of the link depends upon the composition of the intervening structures. (Wood doesn't attenuate microwaves too severely; solid steel blocks them completely!)

The reflective properties of solid objects can be employed to advantage in situations where a line-of-sight path cannot be obtained. For example, if both ends of a proposed microwave link can "see" a metal water tower but no direct line of sight exists between them, communications might well be established by aiming both antennas at the tower. Metallic objects such as the water tower (Continued on page 74)
what's really NEW in electronics?

It's all in this latest
HEATHKIT CATALOG
and it's FREE

Have you seen a real computerized, digital home weather station... or a precision electronic scale for your bathroom... or advanced educational programs that let you learn electronics or automotive maintenance at home... or a totally broadbanded amateur radio transceiver... or the world's only programmable color TV with fully automatic antenna rotor? If you haven't, send for a free Heathkit Catalog.

You'll see nearly 400 unique electronic products — the latest technology, the newest features, the best values. The kinds of quality products Heath Company has been offering for some 60 years! It's fascinating reading. But the excitement doesn't stop there.

Send for your FREE Catalog Today!

These sophisticated products are easy to build kits. Illustrated step-by-step instructions guide you and detailed explanations help you learn how the product works from the inside out. It's fun, easy and educational.

So send for your free catalog today. It's the best way we know to find out what's new in electronics and have fun doing it!

HEATH
Schlumberger

Heath Company, Dept. 010-492
Benton Harbor, Michigan 49022

Please send me my FREE Heathkit Catalog.
I am not currently receiving catalogs.

Name ________________________________
Address ________________________________
City __________ State __________
CL-578 Zip __________
in this hypothetical situation usually reflect microwave energy very efficiently. In some instances, a large building or mountain will reflect enough signal to make communications possible.

Other factors that govern range are transmitter output power, the method of modulation employed, receiver sensitivity and noise figure, path loss, the required signal-to-noise ratio, etc. In FM systems such as the Mini-Wave communications link, range is affected by the "FM improvement factor," which is the advantage gained by more fully modulating the carrier (increasing the frequency deviation and modulation index), the "FM threshold," the point at which limiting improves intelligibility, the design and operating characteristics of the limiter and discriminator, and other factors too complex for adequate treatment here.

The curves in Fig. 11 show the line-of-sight ranges for Mini-Wave transmitters and receivers employing 17-dB horns (A), 32-dB parabolic dishes (B), and 38-dB dishes (C), plotted against signal-to-noise ratio. Intermediate ranges will result if different antennas are used at the transmitter and receiver. If the goal of flawless video reception is established, an S/N ratio of 48 dB is required.

These range plots show what a powerful tool antenna gain is! In the Mini-Wave system, transmitter output power is fixed at a nominal value of 20 milliwatts. Receiver noise figure, discriminator and limiter characteristics and the transmitter modulation index are established by circuit design and component parameters. Accordingly, increasing antenna gain is the simplest and most effective way to increase range.

The dramatic increase in signal-to-noise ratio that can be obtained by replacing the stock 17-dB horns supplied by Microwave Associates in its MA-87141-1 package is illustrated by both Fig. 11 and the following example. Assume that 17-dB horn antennas are used at each end of a 2.5-mile (4.0-km) path and that the baseband signal at the receiver's video output has an (unacceptable) signal-to-noise ratio of 20 dB. If one of the horns is replaced with a 2-foot (0.6-m) parabolic dish, system gain increases 15 dB. Thus, the video signal-to-noise ratio becomes 35 dB.

The quality of the received picture can be further improved by replacing the other horn antenna with a 2-foot (0.6-m) dish. Adding the second dish increases the signal-to-noise ratio at the receiver output by an additional 15 dB to an excellent 50 dB, 2 dB above the requirement for flawless video reception. Employing 4-foot (1.2-m) dishes at both ends of a Mini-Wave System makes possible excellent video reception over 13-mile (20.8-km) paths, very good picture quality at 32 miles (51.2 km), and usable video reception over distances greater than 64 miles (102.4 km)—assuming that the terrain permits such long line-of-sight paths!

A final word about the range plots shown in Fig. 11. They were derived without any allowance for a fade margin. Commercial microwave links are designed to provide more signal at the receiving antenna than is necessary for proper reception. This extra margin of signal strength is included in the link to compensate for equipment aging, increases in path loss which can occur during heavy rain, etc. Typical commercial systems made by Bell Telephone and others provide the receiver with 40 dB more signal than is needed under optimum conditions.

Such a margin adds considerably to the cost of a communications system. Commercial users are willing to pay the price for high reliability. Otherwise, their ability to forward information (and to collect revenue for the service) would be dependent on the exact amount of atmospheric attenuation at any given instant, as well as other factors beyond their control.

Those employing Mini-Wave equipment can usually tolerate brief signal outages during extremely heavy rainstorms. They therefore do not have to invest the large sums required for substantial fade margins. However, if a particular Mini-Wave application calls for a fade margin, it can be obtained simply by installing an antenna with more gain than is needed for clear reception. For example, if a horn providing satisfactory results is replaced with a 4-foot (1.2-m) dish, a fade margin of 21 dB or more will be obtained—at a cost of $265.

Set-up. Place the transmitter and receiver relatively close together, say, 50 to 100 yards (47.7 to 95.4 m) apart. Connect a video source to the transmitter input jack and a video monitor to the receiver's output jack. If the audio circuits have been built, connect a high-impedance signal source to the transmitter's audio input jack and a pair of headphones or an external audio amplifier to the demodulator's output jack. Optically align the antennas and apply power to both units.

If the Gunnplexers have been ordered for compatible transmit and receive frequencies and the Varactor bias levels have been set at +4 volts, contact should be established almost instantaneously. Next, place receiver switch S1 in the AFC on position if you have not already done so, and adjust the transmitter's video level control (R50) for optimum picture quality if it was not set earlier with the aid of an oscilloscope. Similarly, audio level control R7 should be adjusted for best-sounding audio if it was not previously adjusted for the proper ±25-kHz subcarrier deviation.

After you have gained some experience operating the Mini-Wave system over short distances, you can begin to extend the signal path. If horn antennas are employed, aiming them becomes relatively noncritical as the path length increases because the antennas have −3-dB beamwidths of approximately 30 degrees. Parabolic dishes, however, are extremely directional and demand very precise positioning—a change in antenna alignment of only a few degrees will mean the difference between no signal at all and perfect video reception!

The following procedure is recommended for the installation of parabolic dish antennas. If possible, establish communications over the path with horn antennas. Picture quality need not be good, but the presence of a video signal (even one that is just detectable) will simplify matters greatly. Next, replace the horn on the receiving Gunnplexer with a 2-foot (0.6-m) or larger parabolic dish antenna. Leave the transmitting horn fixed and adjust the position of the receiving dish for optimum reception. Then, if necessary, replace the transmitting horn with a parabolic antenna and...
A Band Plan for the 10.0-to-10.5-GHz Amateur Allocation

This plan has been developed so that the 10-GHz amateur band can accommodate the largest possible number of simultaneous, interference-free video (or video plus audio subcarrier) transmissions in a given area. Placing the receiver's Gunn local oscillator 45 MHz above the transmitter frequency and taking advantage of antenna polarization and quieting characteristics results in 33 one-way channels. For two-way communications, receiver and transmitter are reversed, generating 33 reply channels.

The “national calling frequency” for general use is channel B4. 10.2 GHz transmit and 10.245 GHz receive. Note that channel C5’s transmit frequency coincides with the receive frequency of the national calling channel. This has been done deliberately to allow frequency netting and calibration of equipment against a local CW (A) beacon operating on channel C5.

<table>
<thead>
<tr>
<th>Channel group</th>
<th>A (horizontal)</th>
<th>B (horizontal)</th>
<th>C (vertical)</th>
<th>D (vertical)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T</td>
<td>R</td>
<td>T</td>
<td>R</td>
</tr>
<tr>
<td>9</td>
<td>10.450</td>
<td>10.495</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Antenna polarization is given in parentheses.

Satisfying the requirements for a Technician Class amateur license is relatively easy. Moreover, Technicians have extensive operating privileges on vhf, uhf, and other microwave bands, and can access repeaters and orbital satellites carrying transponders.

Two microwave allocations are available to persons not holding valid amateur radio licenses. The 10.5-to-10.55-GHz allocation is a “developmental” band for which the Commission grants “Experimental” licenses. Just above this, from 10.55 to 10.68 GHz, is a “mobile” band for which “Research” licenses are granted. At last check, less than 50 Research licenses had been granted in the United States for operations on the mobile band. Gunnplexers for these bands are available on special order from Microwave Associates.

The Research license is intended primarily for persons developing communications "projects," while the Experimental license is granted to facilitate the development of new equipment which might ultimately be placed on the communications market. If you are interested in simply placing the Mini-Wave system as described in this article on the air for microwave experimentation, the Experimental license is appropriate. Those wishing to expand on this concept and create new microwave communications systems are suitable candidates for a Research license. Both licenses are granted and licensees’ operations regulated pursuant to Part 5 of the FCC’s Rules and Regulations, which governs Experimental Radio Services (Other Than Broadcast).

To obtain either license, write to the nearest field office at the FCC, requesting Form 442. Upon receipt of this form, fill it out and return it to the Commission’s office in Washington, D.C. The form requires that you submit details of the system you propose to construct, its intended application, and how and where you will use it. Both licenses have terms of one year and are renewable.

Safety and RFI Considerations.

The negative effects of microwave radiation upon living tissue are well documented.aim it for best picture quality on the receiving monitor. A radio or land-line voice link will make this task easier.

Never move or attempt to align both antennas simultaneously! Always leave the transmitting antenna undisturbed (pointed in the direction you believe it should be) while aligning the receiving antenna. Conversely, when adjusting the transmitting antenna leave the receiving horn or dish fixed in position. Both the extreme directionality of parabolic dishes and the relatively abrupt quieting characteristics of the FM i-f make antenna alignment very critical, but the increase in range and improvement in picture quality make the task well worth the effort.

Licensing Your Gunnplexer System.

If you are a Technician or higher class radio amateur, your ticket authorizes you to operate Gunnplexers on the 10.0-to-10.5-GHz amateur band. The author has drawn up a band plan for the 10.0-to-10.5-GHz allocation so that as many amateurs as possible can place Mini-Wave systems on this 500-MHz wide band. (See box above for information on band plan.)

Readers who are not licensed amateurs can either obtain a ham ticket or apply to the FCC for authorization to operate Gunnplexers on nearby frequency allocations.

Fig. 11. Range plot for horn (A), 2-foot parabolic (B) and 4-foot parabolic (C) dish antennas when used with the Mini-Wave microwave communications system.
mented, with the eyes being especially vulnerable. Exactly what level of intensity is hazardous to human beings has been and continues to be the subject of a worldwide debate. The Federal government’s Occupational Safety and Health Administration (OSHA) has set a safety limit of 1 milliwatt per square centimeter (1 mW/cm²).

Microwave Associates Gunnplexers are low-power devices, having a nominal power output of 20 mW. However, the microwave radiation is concentrated in a relatively small area. The power density at the open (antenna) end of the waveguide is approximately 6.2 mW/cm², considerably greater than OSHA’s maximum permissible value. Fortunately, r-f power density decreases dramatically with distance, and the intensity of microwave radiation is at safe levels 6 inches (15.2 cm) from the mouth of the waveguide.

To adhere to the most conservative radiation exposure limits, no one should place himself directly in front of the horn (or parabolic dish) antenna for a distance of several feet. Never look into the open end of a Gunnplexer while it is oscillating or place any portion of your body inside the waveguide, horn, or dish antenna. If you follow these simple rules, you can operate your Mini-Wave system in complete safety.

The 10.0-to-10.5-GHz amateur band and the 10.55-to-10.68-GHz “mobile” band are on either side of the 10.525-GHz frequency commonly used by “X-band” police radar. This frequency is actually inside the 10.5-to-10.55-GHz “developmental” band. During hundreds of hours of operating car Mini-Wave system, the authors have never suffered interference from the low-power police radar transmitters.

On several occasions, however, our 10.25-GHz transmitters have driven police radar receivers and motorists’ X-band radar detectors “absolutely nuts.” We therefore offer these words of advice—operating a Gunnplexer near X-band police radar units is unwise. The police radar receiver will experience interference at a far greater distance (several miles) than that at which a motorist’s radar detector will be triggered by the police radar transmitter.

In Conclusion. We have presented here the first low-cost, compact microwave audio/video communications link project. The world of microwaves is waiting for you, and the Mini-Wave system will enable you to explore it.
THOSE VERSATILE MULTIS

Generally, the simpler a semiconductor device, the greater its versatility—that is, the more circuits in which it can be used. Transistors and diodes, for instance, are the most versatile of all devices, and are used in virtually all types of circuits. As increasingly complex devices such as ICs are considered, however, versatility drops most rapidly and diodes, for instance, are the most specialized of all semiconductor devices. As ICs are used in more and more devices, the versatility—that is, the number of potential applications—increases. But there are exceptions: the multifunction ICs, devices designed specifically for maximum versatility. TI's SN76477 complex sound generator, is one example. The ubiquitous 555 timer is another and there are more, including Intersil's (10900 N. Tantau Ave., Cupertino, CA 95014) powerful 8038 waveform generator and National Semiconductor's (2900 Semiconductor Drive, Santa Clara, CA 95051) intriguing LH0094 multifunction converter.

Functionally, the 8038 comprises two externally adjustable constant-current sources, a pair of comparators, a flip-flop, buffer amplifiers, and a sine converter, as shown in Fig. 1A. A monolithic IC assembled in a standard 14-pin DIP, the device is capable of producing sine, square, triangular, sawtooth and pulse waveforms over a frequency range from less than 0.001 Hz to more than 1.0 MHz. The output frequency is independent of the supply voltage and generally depends only on the values chosen for the external resistive and capacitive timing components. If desired, however, the 8038's output can be either frequency modulated or swept over a wide range simply by applying a control voltage to its appropriate terminals (Fig 1B). Quite stable, the unit has a maximum rated frequency drift of only 50 ppm/°C. Its other features include low distortion (typically, 1.0% or less), good linearity (0.1% or better), a variable duty cycle from 2% to 98%, and the capability of driving TTL devices. Adaptable to a variety of power supplies, the 8038 may be operated on either single-ended or dual dc power sources from 10 to 30 V or from ±5 to ±15 V, at less than 20 mA.

In operation, the IC's nominal output frequency depends upon the values of the two external current-source (or timing) resistors connecting pins 4 and 5 to \(+V_{CC} \) as well as upon the value of the timing capacitor between pin 10 and \(-V_{CC} \) (or circuit ground). The symmetry of the waveforms varies with the duty cycle and this depends upon the relative values of the two timing resistors. Three different configurations for the timing resistors are given in Fig. 2. Of these, the arrangement shown in Fig. 2A is the most versatile, permitting the greatest degree of operator control over both the frequency and waveform symmetry through the two timing potentiometers \(R_A \) and \(R_B \). A 50% duty cycle, delivering symmetrical waveforms, is achieved when \(R_A \) equals \(R_B \).

Fig. 1. Intersil's 8038 waveform generator: (A) functional block diagram; (B) pin connections.
used on the chip is designed to modify a triangular wave into a sine form and requires a symmetrical input for proper shaping action.

While the output signal waveform symmetry with respect to time depends on the ratio of the two timing resistors (R_A and R_B), the symmetry with respect to ground depends on the type of power source used. If a single-ended power supply is used, the average levels of the triangular and sine-wave outputs will be one-half the supply voltage, with the square wave alternating between $+V_{CC}$ and ground. The square-wave output is not committed, however, and requires an external load resistor. If desired, this resistor may be returned to a different dc source. In computer or control applications, for example, the square-wave output load could be returned to a +5-V dc source even though the 8038 is operated on a 15-V dc supply. Here, the output level would be compatible with TTL devices, permitting the square wave to be used as a clock signal for logic circuits. On the other hand, if a dual or split power supply is used, all signal waveforms will vary symmetrically on either side of circuit ground (or 0 V).

The 8038 can be used as a basic signal or clock source in timers, signal generators, alarm systems, audio sweepers, computer circuits, control networks, musical instruments, tone generators, and special-purpose test instruments. Two units may be cascaded, with one serving as a sweep signal source for the second, or the IC may be used in combination with other special-purpose devices, such as TI's SN76477 complex sound generator. A small sampling of the scores of possible application circuits for the 8038 is given in Figure 4. Abstracted from Intersil's 8-page data brochure for the device, these circuits feature standard components and may be duplicated quite easily in the home laboratory or workshop for experimental tests or incorporation into more complex equipment designs. Neither layout nor lead dress is critical but good wiring practice should be followed.

Referring, first, to Fig. 4A, the 8038 is controlled by a FET switch to form a simple tone-burst generator. Timing capacitor C is effectively shorted to ground by the 2N4392 FET as long as the FET's gate is held positive or near ground potential, thus preventing oscillation. The circuit is strobed on by applying a negative pulse to the FET's gate through a 1N914 isolation diode. A second diode, connected to output terminal 9, ensures oscillator start-up on the same slope each time it is switched on.

The second circuit, Fig. 4B, is a wide-range audio oscillator covering from 20 Hz to 20 kHz without band switching. This 1000:1 range is achieved by applying a variable dc control voltage to the IC's FM sweep input terminal (B) while holding the voltage across timing resistors R_A and R_B at a relatively low level. A 1N457 series diode drops V_{CC} and the voltage applied to the timing resistors through the Duty Cycle (or symmetry) potentiometer to several millivolts below the maximum voltage available from the 10,000-ohm frequency control. A large trimmer (15 megohms) connected to pin 5 helps minimize duty-cycle variations with frequency, while a 100-kilohm potentiometer connected to pin 12 as a distortion control serves to optimize the sine-output waveform.

In contrast to Intersil's 8038, which is essentially a signal source, National Semiconductor's LH0094 multifunction converter is a versatile signal processor. With analog inputs, the

Fig. 2. Timing resistor connections for the 8038 as explained in text.

Fig. 3. Typical waveforms with (A) 50% and (B) 80% duty cycles.
Fig. 4. Typical 8038 circuits; (A) tone-burst generator; (B) audio oscillator.

device can be used for precision multiplication and division, for squaring and extracting square roots, for generating trigonometric functions, as an exponentiator, and as a logarithmic amplifier. Depending on the auxiliary circuits used, the IC can be employed in compressors, expanders, analog computers, alarm systems, sensor translators, controls, measuring instruments, and test equipment.

Functionally, the LH0094 comprises circuits for determining the logarithmic ratio of two input voltages, multiplying this by a known constant (m), summing the result with the logarithmic equivalent of a third input voltage, and determining the antilog of the final value, as shown in Fig. 5A. In a broad sense, the device is the electrical equivalent of a sliderule. Assembled in a 16-pin metal DIP, the LH0094 includes two uncommitted precision resistors, R_A and R_B, which may be used for setting the multiplying factor (m) to either 0.5 or 2.0 (Fig. 5B). Operating typical input impedances of 100,000 ohms, the IC will accept input levels up to 10.0 volts, and can be operated from dual dc sources from ±5.0 to ±22.0 volts. Its output impedance is approximately 1 ohm and, with an average output load of 10,000 ohms, it can supply an output signal swing of 12.0 volts max. when operated on a standard ±15 V dc supply. In ac applications, the device offers a 3-dB bandwidth of 10 kHz.

Typical application circuits for the LH0094, abstracted from National Semiconductor's 10-page data brochure for the device, are illustrated in Fig. 6. Precision multiplier and divider circuits are shown in Figs. 6A and 6B, respectively. In both designs, optional clamp diode $D1$ should be included for those applications in which the inputs may be either "open" or subject to negative voltages.

Referring, first, to Fig. 6A, this circuit develops an output voltage, V_O, equal to the product of input voltages V_Y and V_Z divided by 10, and offers a typical accuracy of 0.02% when properly adjusted. Here, a precise 10-volt reference level is applied to the V_X terminal (pin 13). Prior to use, an accurate 10-volt level is applied to the V_Y and V_Z terminals and trimmer $R2$ is adjusted until the output is precisely 10,000 V.

In the divider circuit, Fig. 6B, output voltage V_O is equal to 10 times the result of input voltage V_Z divided by input V_X. Again, a precise 10-volt reference level is required, but applied, in this case, to the V_Y terminal (pin 2) through trimmer $R2$ and to the A_3 terminal (pin 16) through $R1$. With a typical accuracy of 0.05%, the divider requires multiple adjustments.

Fig. 5. National's LH0094 multifunction converter: (A) functional block diagram; (B) pin connections.

Fig. 6. Precision multiplier (A) and divider (B) circuit.
prior to use. First, with the 10-V reference applied to \(V_y \), 0.1 volt is applied to \(V_x \) and \(V_z \) and \(R_3 \) is adjusted until \(E_o \) is exactly 10,000 V. Second, 10 volts is applied to all inputs and \(R_2 \) is adjusted until \(E_o \) is 10,000 V. The entire procedure is then repeated at least once.

Reader's Circuit. Guy Isabel (1725 Henri-Bourassa East Blvd., Apt. 25, Montreal, Quebec, H2C 1J5, Can.) has sent us another of his simple, but interesting, circuits. Guy writes that each time one of his circuits is featured, he receives a flood of correspondence from other experimenters and hobbyists, and that this has resulted in his establishing a number of “pen pals” with whom to exchange ideas and circuits. Dubbed a TV Commercial Killer, Guy’s latest circuit, shown in Fig. 7, is another application for the 555 IC. Easily duplicated in a single evening, Guy’s design is essentially a simple touch-plate controlled time-delay relay. When connected to a TV set, the control permits the viewer to shut off the sound for adjustable periods up to more than thirty seconds simply by lightly touching a small control plate. At the end of the preset period, sound is restored automatically.

Referring to the schematic diagram, the 555 is wired as a monostable multivibrator. In operation, the circuit’s timing cycle is initiated by a random voltage pulse applied to pin 2 when the control plate (TP) is touched by the operator’s finger. Afterwards, the circuit is insensitive to further control pulses until its operating cycle is completed. The duration of the timing cycle is directly proportional to the time required to charge \(C_1 \) through \(R_1 \) and hence is dependent on \(R_1 \)’s adjustment. With the component values specified in the diagram, the maximum period is somewhat over a half minute. During the timing cycle, pin 3 is high, supplying a base bias to npn transistor \(Q_1 \) through series current limiting resistor \(R_2 \), and causing the transistor to conduct, closing relay \(K_1 \). A dpdt type, \(K_1 \) switches the TV set’s audio output terminals, from the loudspeaker voice-coil leads to an 8.2-ohm load resistor \(R_3 \), thus silencing the set. At the end of the timed period, pin 3 goes low, \(K_1 \) drops out, and the TV set’s loudspeaker is reconnected, restoring normal operation.

Guy has used standard, readily available components in his circuit design. Transistor \(Q_1 \) is type 2N2222, although other general-purpose npn transistors should work as well. A conventional 1-megohm potentiometer is used for \(R_1 \), \(R_2 \) is a half-watt resistor, and \(R_3 \) a 2-watt unit. Capacitors \(C_1 \) and \(C_4 \) are 16-volt electrolytics, while \(C_2 \) and \(C_3 \) may be low-voltage ceramics, paper tubulars, or plastic film types. Relay \(K_1 \) is a dpdt type with a 12-V 50-ma dc coil (Radio Shack #275-206 Calec8 electrolyc D1-974, or equivalent). Finally, the touch plate (TP) is simply a small metal plate of a few square inches.

Neither layout nor lead dress is critical and the project can be assembled using the builder’s choice of wiring techniques. All dc polarities must be observed, of course, and care must be taken not to overheat the semiconductor devices when soldering.

The final installation is quite simple. With the TV set’s power off, the loudspeaker leads are disconnected and these, together with the audio output leads, are connected to appropriate terminals on \(K_1 \). Next, time delay trimmer \(R_1 \) is adjusted for an optimum interval long enough to cover most TV commercial messages. Guy set his unit for 28 seconds.
Experimenter's Corner

ANALOG COMPUTER CIRCUITS, PART 1

If you're like most readers of this column, you prefer to have us describe digital circuits. Considering how the microprocessor revolution is making a major impact in virtually every area of electronics, that's to be expected. All the excitement about digital technology, however, has left a less glamorous but very valuable technology virtually ignored by experimenters and engineers alike. The technology to which I refer is analog computation.

If you think analog computers are a relic of the past, think again. Recent developments have made possible sophisticated analog computer ICs with unprecedented accuracy. One of these new circuits, billed as the first single-chip analog computer is the Analog Devices AD534 precision multiplier-divider. Available for about the same price as many microprocessors, the AD534 can perform all the MDSSR functions (multiplication, division, squaring and square rooting) with ease and in real time. There are no elaborate software requirements and the AD534 will perform any of these operations while the input information is changing at up to 1 MHz.

At the conclusion of the second installment of this two-part series on analog computer circuits, we'll take a closer look at the AD534 and see how it's used to perform each of the MDSSR functions. Meanwhile, we're going to cover the basics of analog computing by experimenting with a potpourri of homebrew analog computer circuits.

After you've read this and next month's columns I think you'll agree that analog computer circuits can perform many tasks much more efficiently and for less money than microprocessors. Let's begin with a little background information that will help you better understand some of the key differences between analog and digital circuits.

Fig. 2. Simple multiplier made from potentiometers.

Analog vs Digital. Most readers of this column already know the essential difference between analog and digital integrated circuits. Analog ICs, such as amplifiers, oscillators and timers, process or produce signals whose amplitudes are continuously variable over a given range. Digital ICs, on the other hand, process or produce signals which occupy either a low or high state.

An amazing number of applications use either digital or analog circuits. Lately, of course, the trend has been toward digital almost exclusively. In some ways, however, this trend (or is it a fad?) is clearly unfortunate. Consider the digital voltmeter (DVM). The unprecedented accuracy of a three- or four-digit DVM is ideal for making measurements of fixed voltages. But have you ever tried to monitor a slowly changing voltage with a DVM? If not, good luck! The stream of constantly changing numbers is almost impossible to read and makes little sense. An old-fashioned panel meter with an analog readout (pointer and scale) offers a much better solution to this common problem.

When it comes to computers, digital technology has the advantage in accuracy, programmability and computing power. Analog computers, however, are ideal for simulating a real world system such as a structure, machine, dam, aircraft or missile. Simply rotating a few control knobs enables the computer's operator to observe the effect of changes on the system as they take place (in real time). Contrast this simple procedure with the elaborate software manipulation required to vary conditions in a digital computer's program.

Adding with Resistors. A simple analog adding calculator can be made from a pair of linear potentiometers equipped with pointer knobs and scales and an ohmmeter. For best results, compromise with digital technology and use a digital multimeter. The circuit for the adder is shown in Fig. 1.

The total resistance of two resistors in series is the sum of their individual resistances. If the potentiometers in Fig. 1 each have a resistance of 1000 ohms, the adder will add any two numbers of up to 1000 and produce any total up to 2000. The accuracy of the adder is controlled by the accuracy of the ohmmeter, the linearity of the potentiometers and the accuracy of the scales. Thanks to the high accuracy of the DMM, the error introduced by the ohmmeter can be very small. With this concession to digital technology, the potentiometers and their calibration scales become the major sources of error.

Assuming perfectly linear potentiometers are not available (a reasonable assumption), the adder can be custom calibrated with the help of the DMM. This is done by connecting the DMM to a pot and marking its scale with a fine index line at each 100-ohm interval. The index lines are then labeled 0, 100, 200, 300, . . . 1000 and the space between index lines is further subdivided into smaller increments.

Depending upon the care exercised in calibrating the adder (a large-diameter

(Continued on page 83)
PHOTOTRANSISTOR RECEIVER MODULE

It's easy to squeeze miniaturized LED transistors and phototransistor receivers into 16-pin DIP modules with the help of 8-pin MINIDIP ICs. Figure A is a photo of an infrared transmitter and receiver assembled in this fashion. This project this month is a phototransistor receiver in a DIP module. Next month, we'll build a companion transmitter module.

Figure B is a circuit diagram for the receiver. In operation, photons impinging upon the phototransistor cause a small photocurrent to flow. This signal is passed by C1 to the 741 op amp which has a gain (determined by R2 and R3) of 1000. The amplified signal appears at pin 6 of the 741 where it can be coupled to another circuit or used to energize a small relay or drive a small speaker.

Figure C is a photo of the interior of the receiver module, and Fig. D shows the assembly details. Begin assembly by installing all the resistors in the bottom of the module header and inserting their leads deep in each pin slot. Next, install C1 and solder it and the resistors in place. Avoid using too much solder.

Next, clip off the base lead of the phototransistor and install it on the module header as shown in the figures. Make sure the collector and emitter leads are properly oriented before soldering them in place.

Place the pins of the IC adjacent to or inside the slots in the appropriate module header pins. Make sure they don't protrude too far or the module cover will not fit. Carefully solder the pins in place. Then remove excess solder from the outside edges of the header pins with a file. Finally, drill a 3/16-inch (4.8-mm) hole in the module cover directly over the location of the phototransistor and snap the cover in place.

Test the module by inserting it in a solderless breadboard and applying power from two 9-volt batteries via jumper leads. A small speaker or earphone connected to the receiver output through a 1000-ohm series resistor will emit a loud buzzing sound when the phototransistor is pointed toward a fluorescent lamp. If you use an earphone instead of a speaker, use caution when conducting this test! The sound from the earphone can be uncomfortably loud. It's best to hold the phone near rather than inserting it in your ear until you've had some experience with the receiver.

After the module is working properly, try listening to the pulsating tone from multiplexed LED displays in digital watches, clocks, and calculators with the receiver. You will also be able to "hear" lightning, vibrating car headlights, flickering candle flames and other modulated light sources. Finally, you will be able to use the receiver to detect the signal from the LED transmitter to be described next month.
MULTIPLYING WITH RESISTORS. Figure 2 shows a resistive circuit that multiplies. The circuit consists of two potentiometers and a DVM or conventional voltmeter. Potentiometer R_1 forms a voltage divider across the 10-volt power supply and R_2 forms a voltage divider across R_1's wiper and ground.

Can you figure out how the circuit multiplies? It's easy if you ignore the resistance of the two pots and consider only the positions of their wipers. Assume, for example, R_1 has a scale with eleven equally spaced lines marked 0 through 10. Also assume R_2 has a similar scale marked 0 through 1 in increments of 0.1. When R_1's shaft is rotated to its midpoint, its dial points to the 5 on its scale. This means the voltage at R_1's wiper is 5 volts. If R_2 is rotated to its midpoint or 0.5, the incoming voltage is again divided in half. The resulting voltage at R_2's slider is 2.5 volts, the product of the two potentiometer settings ($5 \times 0.5 = 2.5$).

IMPROVING THE ACCURACY OF RESISTOR CALCULATORS. The adder and multiplier circuits we've been experimenting with can be made much more accurate by using 'ten-turn dial' potentiometers. These pots are fairly expensive when new but can sometimes be purchased used or surplus from mail-order parts suppliers. They have a built-in turns indicator usually marked from 0 to 100 and can increase the accuracy of a simple resistor calculator significantly.

OP AMPS ADD VERSATILITY. The simple resistor calculators we've experimented with are ideal for simple applications where input information is programmed by hand or, perhaps, by a mechanical device. Many applications, however, require that the information enter the calculator in the form of a raw voltage.

Typically, a transducer is used to convert information such as windspeed, the rate of fluid flow through a pipe, temperature, weight or some other variable information into a representative voltage. This voltage may then be mathematically combined with the voltage from one or more other transducers to produce an output voltage.

The operational amplifier permits resistor calculators to process raw voltages without requiring the intervention of a human operator. The remainder of this and the next column will describe several op amp analog computer circuits.

OP AMP FUNDAMENTALS. Figure 3 illustrates the most important principle of the op amp—the output voltage (V_{OUT}) of an op amp equals the product of its feedback resistance (R_F) and the incoming voltage (V_{IN}) divided by the input resistance (R_{IN}). Algebraically, this is expressed as $V_{OUT} = -R_F \cdot V_{IN} / R_{IN}$. This simple relationship or transfer function means an op amp can both multiply and divide. If R_{IN} is 1 ohm, then the op amp will multiply the input voltage times the feedback resistance. Likewise, if the input voltage is a fixed 1 volt, the op amp will divide the feedback resistance by the input resistance.

Note that a negative sign appears in the transfer function. This is so because input signals are applied to the inverting input of the op amp, which causes output signals to be the opposite polarity with respect to the input signals. If R_F equals R_{IN} and a +1-volt dc level is applied between R_{IN} and ground, the output of the op amp will be −1 volt—the same magnitude (absolute value), but the opposite polarity. Keep this change of sign in mind when experimenting with this and the following circuits in this two-part series, all of whose op amps are employed in the inverting mode.
You can easily demonstrate op amp multiplication and division with a common op amp such as the 741, several potentiometers and a digital voltmeter. Figure 4 shows the 741 pin connections and how to connect the pots to the 741.

The op amp's offset voltage will introduce a small error in the output voltage. Figure 4 also shows how to connect a 10,000-ohm pot to the 741 to alleviate this problem. Adjust the pot so that the 741 output is exactly zero when pin 2 is grounded.

As you've probably noticed, these methods of using an op amp to multiply and divide still require at least one potentiometer adjustment to perform a calculation. There's a clever way to use op amp to multiply and divide _without_ having to make manuel potentiometer adjustments, and we'll examine it in detail in the second installment of this series. Meanwhile, let's look at ways to add and subtract using op amps that _don't_ require potentiometer adjustments.

Adding with an Op Amp. Figure 5 shows an op amp adder that will accept two input voltages, add them and deliver the sum as an output voltage. _Summing amplifier_ is the technical name for this circuit. Because the feedback resistor (R_F) has the same resistance as R_1 and R_2, the voltage gain of the op amp is 1. This means the op amp has unity gain and doesn't alter the result of an addition. Changing the resistance of R_F or both R_1 and R_2 will cause the circuit to both add and multiply.

Resistor R_3 helps reduce errors caused by the op amp's input bias current. In non-critical applications it can be eliminated, in which case pin 2 is connected directly to ground. If you use R_3, its value should be equal to the reciprocal of the sum of the reciprocals of R_1 and R_2. In other words, $R_3 = 1/((1/RI + 1/R2) = R1R2/(R1 + R2)$.

For a quick demonstration of how the adder works, connect the positive terminals of a few flashlight cells to the inputs. Connect the negative terminals of the cells to the adder's ground. If the cells each have identical voltages of 1.5 volts, the adder's output will be --3.0 volts.

For the best results, use 1-percent tolerance resistors for R_1, R_2 and R_F. If you don't have, can't find or can't afford 1-percent resistors, use a DMM to select three resistors having values as closely matched as possible.

You can use a summing amplifier to add more than two voltages simply by connecting additional resistors to the noninverting input. The new resistors should equal the input resistors and R_3 should be adjusted according to $R_3 = 1/(1/R1 + 1/R2 + 1/R3 + . . . + 1/RI)$.

Averaging with an Op Amp. A summing amplifier can also average two incoming voltages. All that's necessary is to make the ratio R_F/RI equal to the reciprocal of the number of input voltages. For example, to convert the adder circuit of Fig. 5 to an averager, leave the values of $R1$ and $R2$ undisturbed but change R_F to 50,000 ohms. This causes the ratio of RF/RI (1/2) to equal the reciprocal of the number of inputs (2).

If you want to average more than two voltages, add additional input resistors and adjust the values of R_F and R_3 accordingly. The average of five incoming voltages is their sum divided by 5. Therefore, the reciprocal of RF/RI should be 5. Because the resistance of RI is fixed at 100,000 ohms, the resistance of R_F should be 20,000 ohms.

Subtracting with an Op Amp. The final analog computer circuit we will look at this month is the subtractor or _difference amplifier_ shown in Fig. 6. This circuit is based upon the ability of an op amp to amplify the difference between the two voltages applied to its two inputs. If the ratio of RF to the circuit's input resistors is 1, the circuit has unity gain and will produce the arithmetic difference of two input voltages.

The output voltage of the difference amplifier equals $V2 - V1$. The circuit works for both positive and negative inputs and outputs. Thus, if $V1$ is +5 volts and $V2$ is +10 volts, the output will be +5 volts. Of course, the output cannot exceed the power supply voltage.

Fig. 5. Op amp summer.

Fig. 6. Op amp subtraction.

Going Further. Be sure to experiment with both the resistor and op amp analog computer circuits described in this month's column. If you have a DMM, a dual-polarity power supply and a handful of 1-percent resistors, so much the better. With the help of a solderless breadboard you'll be able to change circuit parameters with ease and to try different op amps. Finally, you'll be well prepared to experiment with the sophisticated logarithmic amplifier circuits we'll explore in Part 2.

Popular Electronics
Our pressure pad is locked into a special four-sided retainer to maintain perfect tape-to-head contact.

Our slip sheet is made of a substance that's so slippery, even glue can't stick to it.

Our leader not only keeps you from making recording errors, it also keeps your tape heads clean.

Our Delrin guide rollers make sure our tape stays perfectly aligned with your tape heads.

Our cassette is held together by steel screws to assure precise alignment and even distribution of pressure on all sides of the cassette.

Our tape window is welded in to keep dust out.

Our recording tape is considered by most audiophiles to be the world's finest tape.

Our cassette is held to our hub by a special clamping pin that makes slipping impossible.

Our standard cassette shell is finished to higher tolerances than industry standards.

There's more to the world's best tape than the world's best tape.

Our reputation for making the world's best tape is due in part to making the world's best cassettes. In fact, we put more thought and more work into our cassettes than most manufacturers put into their tape.

We do all this, because at Maxell we believe in a simple philosophy. To get great sound out of a cassette takes a lot more than just putting great tape into it.

maxell

Maxell Corporation of America, 60 Oxford Drive, Mahwah, N.J. 07073. CIRCLE NO. 73 ON FREE INFORMATION CARD

AmericanRadioHistory.Com
Hobby Scene

By John McVeigh

Have a problem or question on circuitry, components, parts availability, etc? Send it to the Hobby Scene Editor, POPULAR ELECTRONICS, One Park Ave., New York, N.Y. 10016. Though all letters can't be answered individually, those with wide interest will be published.

NO-LICENSE
LOW-FREQUENCY BANDS

Q. I've heard that it is legal to run up to 1 watt on the 160- to 190-kHz band. I've seen schematics for receiving equipment for these frequencies, but have found no information relating to transmitters and antennas. Help!—Fabian Lanzy, Redford, MI.

A. Experimenters are permitted to operate unlicensed transmitters in the low-frequency region between 10 and 1600 kHz. Operations on the 160- to 190-kHz band are limited by FCC regulations to a power level of one watt and antenna length is restricted to 15 meters. See FCC Rules and Regulations, Volume II, Part 15, entitled Radio Frequency Devices. Despite these rather severe limitations, DX contacts between stations as much as several hundred miles from each other have been reported. A beacon in New Mexico is regularly monitored in Los Angeles, 700 miles away. Interestingly, there are no restrictions on operating modes—AM, FM, CW, etc. are all permitted.

For more information, I suggest that you procure a copy of the Low and Medium Frequency Scrapbook by Ken Cornell, W2IMB. This 110-page publication contains a wealth of schematics and construction details for receiving and transmitting equipment, as well as antennas. Excerpts from relevant FCC regulations, information on the design and winding of low-frequency coils, and data on the conversion of low-cost military surplus gear are also included. The book, which costs $6.95, is available from some electronics retailers, as well as from the Ham Radio Communications Bookstore (catalog No. HR-LF), Greenville, NH, 03048. Also available is an Addendum 77/78 designed to complement the scrapbook ($3.95, catalog HR-LFA).

BATTERY CHARGER = POWER SUPPLY?

Q. I have a 4-ampere automotive battery charger. Is there any way I can use it as a base power supply for my mobile CB transceiver?—Wayne Gilbert, Westminster, CO.

A. I have seen battery chargers which I think are of the same type that you have. They consist simply of a transformer, bridge rectifier, and perhaps a limiting resistor. The dc output is not filtered. Rather, it is a full-wave rectified pulsating waveform. At the peaks of the waveform, its voltage is greater than that across the battery, and charging current pulses flow into the battery.

Such a charger can be used with the circuit shown in the figure to power a CB transceiver, auto tape player, etc. The 1-µF capacitors should be solid tantalum components rated at 25 volts or more. The 0.1-µF capacitor should be a disc ceramic type. Heat sink the pass transistor using a mica washer and silicone thermal compound. When the charger is used to power the regulator circuit and transceiver, the current limiting resistor in the charger's resistor and a multi-pole switch used to select the charge or power-supply functions. This switch would bypass the limiting resistor, connect the rectifier to the filter capacitors (simultaneously disconnecting the charger output leads from the charger circuit) and apply voltage to the power supply output terminals.

Figure:

[Diagram of a power supply circuit with the following components:

- Transformer labeled T1
- Bridge rectifier labeled B1
- Capacitors C1, C2, C3, C4
- Resistors R1, R2
- Transistor T1
- Diodes D1, D2, D3, D4
- Inductor L1
- Filters F1, F2
- Voltmeter V1
- Ammeter A1
- Switch S1
- Power supply output labeled OUT
- Ground terminal labeled GND.

MAIL THIS COUPON AND WE'LL SEND YOU THE BEST SPEAKER CATALOG YOU EVER READ!

No kidding. Speakerlab's catalog took longer to write than some of our competitors have been in business. In fact, we created an industry by 'building great kits so you can afford great speakers." Our catalog is an invaluable manual of speaker function and design. And, it will introduce you to the finest speaker kits made anywhere...with the strongest money-back guarantee. Find out for yourself...FREE! FREE. That is. Mail the coupon now.

Speakerlab
Dept. I-PF, 750 N. Northlake Way
Seattle, WA 98103

86

AmericanRadioHistory.Com
The other—and by far preferable method of interface—is direct video to a broadband closed-circuit TV monitor. With this method, r-f modulation/demodulation distortions and the potential for external interference are bypassed. Video frequency response to 10 MHz and beyond is routine, producing sharp edges and consistent brightness to video characters and lines. Broadband monitors are expensive, however, with monochrome units costing from $150 to $300 and color starting at about $500.

Monitors usually have such features as excellent voltage regulation, improved sweep linearity, sharper CRT focus, and dc restoration. When shopping for a used surplus monitor, be sure that the model accepts composite video input, since some require separate horizontal, vertical, and video drive signals at TTL logic levels.

A TV receiver can also be converted to a monitor by a knowledgeable hardware person. Although a vast improvement over r-f modulation, the display is not as “clean” as with a true monitor. Usually, an isolation transformer must be added, which increases expense.

Many of the newer computers include a color-display capability. To realize the potential advantages of color, direct video into a color monitor is required. Even so, the display appearance is likely to be visibly worse than that of a monochrome display. Signal degradation is the result of NTSC encoding of the color signal necessary for composite color video. The blues and greens are limited to 1.5 MHz, while red is good only up to 500 kHz. The consequence is that 16 to 20 characters (about 100 dots) is the limit of usable color resolution. Also, unless the monitor is carefully converged, the edges of characters in corners of the screen may be a rainbow of colors, even when color is not being used. The best color systems utilize direct red-green-blue input. Generally, this is only available on a computer system with an integral CRT.

Graphic Generator Techniques. Almost every system or board that does so offers graphics capability in a different way. The wide variety of approaches used is a result of four difficult problems faced by graphics interface designers.

The first is memory usage, since the image on the screen must be encoded into bytes stored in memory. The second is the amount of graphic detail or resolution that it is possible to display. The third is flexibility, or the variety of image types (Continued on page 92)
Train with NTS for the MicroComputers, digital the first name

MicroComputers

The world of electronics is daily becoming more challenging. Technology is growing more specialized, and the importance of digital systems increases every day. Test instruments, home entertainment units and industrial control systems are all going digital. And now, NTS training programs include a wider choice of solid-state and digital equipment than ever before offered in any home study course:

Advanced NTS/Heath digital color TV (25” diagonal with optional programming capability), NTS/Heath microcomputer, digital test equipment, digital stereo receiver (70 watts per channel), NTS compu-trainer, plus much more state-of-the-art equipment to make your training exciting and relevant.

The equipment you receive with NTS training programs is selected to provide you with a solid background in electronic systems. Kits and lessons are designed to work together to demonstrate electronic principles and applications. The kit-building not only shows you how electronic hardware functions, but how various circuit designs accomplish different purposes. Your lessons guide you through any number of experiments associated with many projects. This is the Project-Method, and it works. Step-by-step, you learn how and why digital electronics has become a part of our world, and the even bigger role it is sure to play in the future.

Whether you are looking for training in Consumer, Commercial, or Industrial electronics, NTS offers fourteen courses, some basic, many advanced, in several areas of electronics. An all-new full-color NTS catalog shows you what each course covers,
electronics of the future.
systems and more...from in home study.

and every piece of equipment included.
Send for it today, and see for yourself what's really happening in electronics training technology at NTS. Find out how much has changed, and what new directions the field is taking. You'll probably want to be a part of it.
It's free. Just mail the card or coupon. Today.

NO OBLIGATION. NO SALESMAN WILL CALL. APPROVED FOR VETERAN TRAINING.

NATIONAL TECHNICAL SCHOOLS
TECHNICAL-TRADE TRAINING SINCE 1905
Resident and Home-Study Schools
4000 South Figueroa St., Los Angeles, Calif. 90037
that can be displayed. And the fourth is compatibility with character generators so that nongraphics applications are simplified.

These are conflicting requirements. For example, a high-resolution flexible display will require considerable memory to store the image. On the other hand, maintaining compatibility with character generators minimizes memory usage but limits resolution and flexibility.

In most cases, designers have opted for compatibility with character-oriented displays. Such a display divides the screen into rows and columns of character cells. The PET computer for example, uses 25 rows of 40 characters per row for a total of 1000 character cells. Each cell, in turn, is divided into pixels or dots; the PET uses 8 rows of 8 dots per row. The characters that make up the display are therefore displayed centered in the character cells and are, in turn, composed of the dots. Each byte of display in the PET memory corresponds to a character cell. Hence, 1000 bytes (1 KB) of memory are used for the display.

Graphic images can be formed from a special graphics character set used in addition to the normal ASCII character set. Shapes such as horizontal, vertical, diagonal, and curved lines are provided and can be pieced together to form crude line drawings. Special symbols, such as hearts, clubs, spades, etc., are also included for a total of 64 graphics characters. Add the 64-character upper-case ASCII subset and a bit for inverse video (black-on-white) and all 256 possible character codes are used up.

Such a display is very adept at putting on-screen gameboards, simple line drawings, and, of course, text. On the other hand, mathematical curve plotting resolution is no better than the typical character plot with "*" for points. Although one may be able to hand-fit a curve with the line segments and other shapes available, there is no software support available to do this. Moving images can also be programmed, but the movement is quite choppy since it must be in character cell increments.

A related technique employs a programmable character generator, such as one made by Objective Design for S-100 bus compatible display interface boards. Essentially, the usual ROM character generator is replaced by a small RAM that can be written into to provide a changeable character set. In the Sorcerer from Exidy, for example, the character to be displayed can be determined by software. Thus, it is now possible for a user to tailor the graphic character set to match the application. If the application is line drawing, the RAM can be filled with a greater variety of line segments and curves. If it is chess, chesspiece symbols can be written. Whatever graphic set is chosen, it must be used for the entire display. Even with the added flexibility, the limitations of this scheme are basically the same as with the fixed-graphic character set.

Another variation attempts to increase the screen resolution for random-dot graphics such as required for curve plotting. Radio Shack's Model TRS-80 display, for example, uses 16 rows of 64 character cells per row with a character cell being 12 rows of 8 dots each. For graphics, each character cell is divided into a two-wide by three-high array of blocks or pixels and any possible on/off combination of the six blocks can be specified. In the graphics mode, therefore, the screen becomes an array of 48 rows of 128 blocks per row and any conceivable combination of blocks can be on and off. While the resolution for line drawing and game boards is inferior to the graphic character generator approach, arbitrary curves are displayed with about twice as much resolution. Display memory in the TRS-80 is only 7 bits wide and comprises 1024 bytes. Normal ASCII characters take up 64 of the codes, while the other 64 codes are used to specify the 64 possible combi-
nations of graphic blocks in a character cell.

Bit-Mapped Displays. An entirely different approach to graphics ignores character generators altogether and simply divides the screen up into a very large number of individual dots, with one bit of display memory for each dot. Such displays are called pixel or bit-mapped displays to distinguish them from character displays. If a sufficient number of dots are provided, this is by far the most flexible graphic display technique because there are no restrictions on image type or placement.

When using the proper software, even text can be displayed with complete freedom as to character shape, size, and placement. This makes possible bold headlines, tilted italics, subscript and superscript for math and chemical equations, and proportionally spaced text for clean right-margin justification. Their main disadvantage is that a large amount of memory is needed for a high resolution display. Upwards of 8K bytes is not uncommon.

The Apple II computer, for example, has a black-and-white pixel display mode with 192 rows of 240 dots per row, which is sufficient resolution for well detailed drawings, graphs, and charts. The 126 by 96 level, which can display 7 colors at two intensity levels and black, is less useful for curve plotting but is capable of beautiful computer art.

Users of KIM-1s can use the Visible Memory (see photo), which provides a 320-wide by 200-high dot matrix as well as 8K of refresh memory, all on one board. Owners of S-100 bus micros can utilize a new graphics interface from Vector Graphics that provides a 256 by 240 image in black and white or a 128 by 120 image with 16 levels of gray. The latter mode is useful for half-tone picture processing and display in applications such as amateur slow-scan TV.

Software support is important in any graphics application, particularly if only BASIC is used. Although the user can perform any graphic operation by POKEing data into memory, BASIC is likely to be very slow in manipulating the large amount of data required. Radio Shack, on the other hand, provides BASIC statements for setting and reassembling any graphic cell given its X and Y coordinates. The Apple provides statements for setting the coordinates of endpoints and will automatically and rapidly draw the straight line connecting them.

Stop reading about computers and get your hands on one! With ELF II and your own Short Course on Microprocessor Computer Programming you can learn to program a computer in almost no time at all. That's because Nikon has developed a special Short Course on Microprocessor And Computer Programming in non-technical terms. It tells you how to hook up, use and program almost any one of the RCA COSAMC 1802's capabilities so you'll understand everything ELF II is doing to do it for you.

All 91 commands that an 1802 can execute are explained to you, step-by-step. The text, written by Nikon's Tom Pitman, is a tremendous advance over other programing books in print.

Keyed specifically to the ELF II, it's loaded with "hands-on" illustrations. When you're finished, ELF II and the 1802 will no longer hold any mysteries to you.

In fact, not only will you be able to use a personal computer creatively, you'll also be able to read magazines dismissively. BYTE...INTERFACE AGE...POPULAR ELECTRONICS and PERSONAL COMPUTING understand the need.

If you work with large computers, ELF II and our Short Course will become a breeze.

A Dynamite Package For Just $90.95

With ELF II, you learn to use machine language—the fundamental language of all computers. Higher level languages such as BASIC are built on top of machine language. You can always get the full benefit of your computer only if you know what your own computer is doing at every moment of time.

With ELF II, you can actually become a programmer. You're never reduced to being a mere keypunch operator, working blindly with your program. You are able to write your program in machine language and then translate it to a high level language. This lets you work with a "living" version of your program, which means that you can actually see what is happening as the program is being run. You can watch every change that takes place as the program runs. You can even alter the program while it is running and see the results immediately. This is the most direct way of understanding what a computer is doing. It is also the fastest way of writing programs.

You'll be able to write simple programs in just a few hours. And you'll be able to write complex programs in a matter of days. This is the best way of learning to use a computer.

ELF II features RCA COSAMC 1802, 2 kilobyte memory, full color graphics, alphanumeric displays, and a complete set of accessories. It's available for just $99.95 plus $2.95 p&h.

FITTING TO YOUR COMPUTER

You can use ELF II with almost any computer. It is especially designed to fit your Apple II computer, but you can use ELF II with any other computer you have.

In fact, there are no restrictions on which computer you can use ELF II with. The only restriction is that you must have a computer with a disk drive. You can use ELF II with any computer you have, even if it is not a microcomputer.

ELF II is designed to fit your Apple II computer. You can use ELF II with other computers, but you must have a disk drive.

ELF II features RCA COSAMC 1802, 2 kilobyte memory, full color graphics, alphanumeric displays, and a complete set of accessories. It's available for just $99.95 plus $2.95 p&h.

FITTING TO YOUR COMPUTER

You can use ELF II with almost any computer. It is especially designed to fit your Apple II computer, but you can use ELF II with any other computer you have.

In fact, there are no restrictions on which computer you can use ELF II with. The only restriction is that you must have a computer with a disk drive. You can use ELF II with any computer you have, even if it is not a microcomputer.

ELF II is designed to fit your Apple II computer. You can use ELF II with other computers, but you must have a disk drive.
Incredible! but True
Precut wire is Cheaper than cutting your own!

Fast - Reliable - Economical
No more cutting & stripping by hand
Good, clean, uniform strip
Cheaper than using bulk wire

WIRE KITS
$34.95
HOBBY WRAP
Model BW 630
with FREE WIRE KIT
It's like getting it for $2800

We also have:
PRECUT WIRE BY SIZE
WIRE WRAP SOCKETS
WIRE WRAP TOOLS
INTERCONNECT CABLES
PROTOTYPING BOARDS
SOLDERLESS BREADBOARDS
AND MORE!

Catalog available on request.

Software Sources

8080 Debugging and File Management Software. Two programs for S-100 bus, 8080 or Z80 systems are among the first offerings of PRS, the Program of the Month Corp. Microfile, a Data File Management System, and DDS-II, a Dynamic Debugging System, are both available on CUTS, Tarbell or TDL cassette, for $50 each. Through computer stores, or from PRS, 257 Central Park West, New York, NY 10024.

Poly Disk Mailing-List Program. Written in Disk BASIC for a PolyMorphic B810 or 8813. Mailing List is also available in hard-copy, adaptable to other computers.

Operations include Add, Delete, Search, Sorted List, Modify and Sequential Printout; remark fields up to 64 characters long can be used for sorting and retrieval. Default printing formats, for up to 5 labels across a page, with optional remark-field printing and ZIP-code positioning, are also under user control. On diskette or as hard-copy, $40. Software Industries, 902 Pinecrest, Richardson, TX 75080.

Sol, Apple, TRS-80 and SWTPC Programs from GRT. GRT has expanded its tape offerings from sound recordings to program cassettes for the Sol, Apple 2, TRS-80 and SWTPC 6800. Several programs are available. "Dollars and Sense" includes checkbook programming with facilities to recall checks by grouping, such as car payments. "Best Choice," on the same tape, includes a decision matrix which helps evaluate decisions according to the user's options and preferences. The "Circuit" tape includes diet, longevity and biohythym programs. "Beat the House" includes four game programs—blackjack, craps, roulette and slots—machine. $15 per tape, including 20-to-20 page manual. Sold through computer stores; information from GRT Music Tapes, 1286 Lawrence Station Rd., Sunnyvale, CA 94086.
Microprocessors

CPU's

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Stock level</th>
<th>Part No.</th>
<th>Stock level</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>9300</td>
<td>8900A</td>
<td>26</td>
<td>3-95 5.50</td>
<td>18800 8-95 7.95</td>
</tr>
</tbody>
</table>

Interface Support Circuits

<table>
<thead>
<tr>
<th>Stock level</th>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>13000</td>
<td>8212</td>
<td>1.98</td>
</tr>
<tr>
<td>700</td>
<td>8214</td>
<td>3-95 3.95</td>
</tr>
<tr>
<td>800</td>
<td>8216</td>
<td>1.98</td>
</tr>
<tr>
<td>1100</td>
<td>8224</td>
<td>2.75</td>
</tr>
<tr>
<td>600</td>
<td>8226</td>
<td>1.98</td>
</tr>
<tr>
<td>1600</td>
<td>8228</td>
<td>4.75</td>
</tr>
<tr>
<td>1800</td>
<td>8238</td>
<td>4.75</td>
</tr>
<tr>
<td>2800</td>
<td>8251</td>
<td>8-95 4.95</td>
</tr>
<tr>
<td>400</td>
<td>8253</td>
<td>14.95</td>
</tr>
<tr>
<td>1600</td>
<td>8255</td>
<td>5.95</td>
</tr>
<tr>
<td>600</td>
<td>8257</td>
<td>9.95</td>
</tr>
<tr>
<td>250</td>
<td>8259</td>
<td>14.95</td>
</tr>
</tbody>
</table>

RAM's

MOS Static RAM's

<table>
<thead>
<tr>
<th>Stock level</th>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>23600</td>
<td>2114</td>
<td>7.50</td>
</tr>
<tr>
<td>88000</td>
<td>2102LFPCC</td>
<td>1.19</td>
</tr>
</tbody>
</table>

Dynamic RAM's

<table>
<thead>
<tr>
<th>Stock level</th>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>4K 4060</td>
<td>3.95</td>
</tr>
<tr>
<td>23000</td>
<td>4K 4027</td>
<td>2.95</td>
</tr>
<tr>
<td>48000</td>
<td>16K 416-3</td>
<td>9.95</td>
</tr>
<tr>
<td>18200</td>
<td>16K 416-5</td>
<td>7.95</td>
</tr>
</tbody>
</table>

UART's

<table>
<thead>
<tr>
<th>Stock level</th>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>38000</td>
<td>AY5-1013A</td>
<td>4.95</td>
</tr>
<tr>
<td>6000</td>
<td>AY3-1015</td>
<td>5.95</td>
</tr>
</tbody>
</table>

1K CMOS RAM

<table>
<thead>
<tr>
<th>Stock level</th>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>18800</td>
<td>5101</td>
<td>4.95</td>
</tr>
</tbody>
</table>

Linear I.C.'s

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM334N</td>
<td>49</td>
</tr>
<tr>
<td>LM339N</td>
<td>49</td>
</tr>
<tr>
<td>LM555N</td>
<td>29</td>
</tr>
<tr>
<td>LM556N</td>
<td>14</td>
</tr>
<tr>
<td>LM7432CH</td>
<td>.34</td>
</tr>
<tr>
<td>LM7433CH</td>
<td>.39</td>
</tr>
<tr>
<td>LM7442CH</td>
<td>.38</td>
</tr>
<tr>
<td>LM7445CH</td>
<td>.24</td>
</tr>
<tr>
<td>LM7447CH</td>
<td>.95</td>
</tr>
</tbody>
</table>

General Instrument

<table>
<thead>
<tr>
<th>1.5 AMP Single Phase</th>
<th>Stock level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stock No.</td>
<td>Part No.</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>1.9 Million</td>
<td>114001</td>
</tr>
<tr>
<td>8 Million</td>
<td>114002</td>
</tr>
<tr>
<td>2.5 Million</td>
<td>114003</td>
</tr>
<tr>
<td>4 Million</td>
<td>114004</td>
</tr>
<tr>
<td>6 Million</td>
<td>114005</td>
</tr>
<tr>
<td>2.9 Million</td>
<td>114007</td>
</tr>
</tbody>
</table>

New Products

- JANUARY 1979
- Toastright
- Brand new
- Just released
- 1979 IC master
- 2500 pages
- Complete integrated circuit data selector
- Master guide to the latest I.C.'s including microprocessors and consumer circuits
- Free Quarterly Updates $39.95

Electronics Market Place

- Dual in-line sockets
- Plug-in GSSCOT for IC packages
- High reliability gas tight joint
- Reel-to-reel qualification to MIL-STD-883
- Compact low profile design
- No need to solder to PCB board
- Flammability rating V-2 or new
APPLE II SERIAL I/O INTERFACE *

Part no. 2
Baud rate is continuously adjustable from 0 to 30,000. Plugs into any peripheral connector. Low current drain. RS-232 input and output. On board switch selectable 5 to 8 data bits. 1 or 2 stop bits. parity or no parity either odd or even. Jumper selectable address. SOFTWARE input and output. On board switch selectable. Cost on board $18.00; with parts — $42.00, assembled and tested — $62.00.

MODEM *

Part no. 109
- Type 103 • Full or half duplex • Works up to 300 baud • Originale or Answer. • No coils, only low cost components. • TTL input and output-signal. • Connect 8 ohm speaker and crystal microphone directly to board. • Uses XR FSK demodulator. • Requires +5 volts. • Board $7.60, with parts $27.50.

DC POWER SUPPLY *

Part no. 6065
- Board supplies a regulated +5 volts at 3 amps, +12, -12, and -5 volts at 1 amp. • Power required is 8 volts AC at 3 amps, and 24 volts AC C.T. at 1.5 amps. • Board only $12.50, with parts excluding transformers $42.50.

TAPE INTERFACE *

Part no. 111
- Play and record Kansas City Standard tapes. • Converts a low cost tape recorder to a digital recorder. • Works up to 1200 baud. • Digital in and out are TTL-signal. • Output of board connects to mic. of recorder. • Earphone of recorder connects to input on board. • No coils. • Requires +5 volts, low power drain. • Board $7.60, with parts $27.50.

T.V. TYPEWRITER

Part no. 106
- Stand alone TVT • 32 char./line, 16 lines, modifications for 64 char./line included. • Parallel ASCII (TTL) input. • Video output on board memory. • On board switch selectable address. • Software input and output. • On board switch selectable. • Cost on board $18.00; with parts $42.00, assembled and tested — $62.00.

8K STATIC RAM

Part no. 300
- 8K Altair bus memory. • Uses 2102 Static memory chips. • Memory chips $2102. • Gold contacts. • Wait states. • On board regulator. • -100 bus compatible. • Vector generator. • TTL buffered. • Board only $27.50; with parts $160.00.

8K STATIC RAM

Part no. 300
- 8K Altair bus memory. • Uses 2102 Static memory chips. • Memory chips $2102. • Gold contacts. • Wait states. • On board regulator. • -100 bus compatible. • Vector generator. • TTL buffered. • Board only $27.50; with parts $160.00.

RF MODULATOR *

Part no. 107
- Converts video to AM modulated RF. Channels 2 or 3. • Power required is 12 volts AC C.T., or +5 volts DC. • Board $7.60, with parts $13.50.

RS 232/TTY *

Part no. 606
- Converts RS-232 to 20mA current loop, and 20mA current loop to RS-232. • Two separate circuits. • Requires +12 and -12 volts. • Board only $4.50, with parts $7.00.

USART & BAUD RATE GENERATOR *

Part no. 101
- Converts serial to parallel and parallel to serial. • Low cost on board baud rate generator. • Baud rates 110, 150, 200, 300, 600, 1200, and 2400. • Low power drain +5 volts and -12 volts required. • TTL compatible. • All characters contain a start bit. 5 to 8 data bits, 1 or 2 stop bits, and either odd or even parity. • All connections go to a 28 pin gold plated edge connector. • Board only $12.00, with parts $35.00, with connector add $3.00.

RS 232/TTL *

Part no. 232
- Converts TTL to RS-232, and converts RS-232 to TTL. • Two separate circuits. • Requires +12 and +12 volts. • All connections go to a 10 pin gold plated edge connector. • Board only $4.50; with parts $7.00 with connector add $2.00.

ELECTRONIC SYSTEMS

Dept. PE, P.O. Box 21638, San Jose, CA. USA 95151

To Order:

Mention part number and description. For parts kits add “A” to part number. In USA, shipping paid for orders accompanied by check, money order, or Master Charge. Bank Americard, or VISA number expiration date and signature. Shipping charges added to C.O.D. orders. California residents add 6.5% for tax. Outside USA add 10% for air mail postage, no C.O.D.’s. Checks and money orders must be payable in US dollars. Parts kits include sockets for all IC’s, components, and circuit board. Documentation is included with all products. All items are in stock, and will be shipped the day order is received via first class mail. Prices are in US dollars. No open accounts. To eliminate tariff! In Canada boxes are marked “Computer Parts.” Dealer inquiries invited.

24 Hour Order Line: (408) 226-4064

CIRCLE NO. 19 ON FREE INFORMATION CARD

AmericanRadioHistory.com
Radio Shack: No. 1 Parts Place
Low Prices and New Items Every Day!

Top-quality devices, fully functional, carefully inspected. Guaranteed to meet all specifications, both electrically and mechanically. All are made by well-known American manufacturers, and all have to pass manufacturer’s quality control procedures. These are not rejects, not knockoffs, not seconds. In fact, there are none better on the market! Always count on Radio Shack for the finest quality electronic parts!

TTL and CMOS Logic ICs

<table>
<thead>
<tr>
<th>Type</th>
<th>Cat. No.</th>
<th>ONLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>7403</td>
<td>271-1804</td>
<td>354</td>
</tr>
<tr>
<td>7404</td>
<td>271-1805</td>
<td>394</td>
</tr>
<tr>
<td>7405</td>
<td>271-1806</td>
<td>374</td>
</tr>
<tr>
<td>7407</td>
<td>271-1807</td>
<td>374</td>
</tr>
<tr>
<td>7409</td>
<td>271-1809</td>
<td>394</td>
</tr>
<tr>
<td>7410</td>
<td>271-1810</td>
<td>374</td>
</tr>
<tr>
<td>7411</td>
<td>271-1811</td>
<td>374</td>
</tr>
<tr>
<td>7412</td>
<td>271-1812</td>
<td>374</td>
</tr>
<tr>
<td>7414</td>
<td>271-1814</td>
<td>374</td>
</tr>
<tr>
<td>7415</td>
<td>271-1815</td>
<td>374</td>
</tr>
<tr>
<td>7416</td>
<td>271-1816</td>
<td>964</td>
</tr>
<tr>
<td>7417</td>
<td>271-1817</td>
<td>1.99</td>
</tr>
<tr>
<td>7418</td>
<td>271-1818</td>
<td>584</td>
</tr>
<tr>
<td>7419</td>
<td>271-1819</td>
<td>1.19</td>
</tr>
<tr>
<td>7420</td>
<td>271-1820</td>
<td>1.19</td>
</tr>
<tr>
<td>7422</td>
<td>271-1822</td>
<td>1.19</td>
</tr>
<tr>
<td>7423</td>
<td>271-1823</td>
<td>1.99</td>
</tr>
<tr>
<td>7424</td>
<td>271-1824</td>
<td>1.19</td>
</tr>
<tr>
<td>7425</td>
<td>271-1825</td>
<td>1.99</td>
</tr>
<tr>
<td>7426</td>
<td>271-1826</td>
<td>1.99</td>
</tr>
<tr>
<td>7427</td>
<td>271-1827</td>
<td>1.99</td>
</tr>
<tr>
<td>7428</td>
<td>271-1828</td>
<td>1.99</td>
</tr>
<tr>
<td>7429</td>
<td>271-1829</td>
<td>1.99</td>
</tr>
<tr>
<td>7430</td>
<td>271-1830</td>
<td>1.99</td>
</tr>
<tr>
<td>7431</td>
<td>271-1831</td>
<td>1.99</td>
</tr>
<tr>
<td>7432</td>
<td>271-1832</td>
<td>1.99</td>
</tr>
<tr>
<td>7440</td>
<td>271-1840</td>
<td>1.99</td>
</tr>
<tr>
<td>7441</td>
<td>271-1841</td>
<td>994</td>
</tr>
<tr>
<td>7445</td>
<td>271-1845</td>
<td>354</td>
</tr>
<tr>
<td>7453</td>
<td>271-1853</td>
<td>1.19</td>
</tr>
<tr>
<td>7454</td>
<td>271-1854</td>
<td>1.19</td>
</tr>
<tr>
<td>7456</td>
<td>271-1856</td>
<td>1.19</td>
</tr>
<tr>
<td>7457</td>
<td>271-1857</td>
<td>1.19</td>
</tr>
<tr>
<td>7458</td>
<td>271-1858</td>
<td>1.19</td>
</tr>
<tr>
<td>7459</td>
<td>271-1859</td>
<td>1.19</td>
</tr>
<tr>
<td>7462</td>
<td>271-1862</td>
<td>1.19</td>
</tr>
<tr>
<td>7463</td>
<td>271-1863</td>
<td>1.19</td>
</tr>
<tr>
<td>7464</td>
<td>271-1864</td>
<td>1.19</td>
</tr>
<tr>
<td>7467</td>
<td>271-1867</td>
<td>1.19</td>
</tr>
<tr>
<td>7468</td>
<td>271-1868</td>
<td>1.19</td>
</tr>
<tr>
<td>7469</td>
<td>271-1869</td>
<td>1.19</td>
</tr>
<tr>
<td>7470</td>
<td>271-1870</td>
<td>1.19</td>
</tr>
<tr>
<td>7471</td>
<td>271-1871</td>
<td>1.19</td>
</tr>
<tr>
<td>7472</td>
<td>271-1872</td>
<td>1.19</td>
</tr>
<tr>
<td>7473</td>
<td>271-1873</td>
<td>1.19</td>
</tr>
<tr>
<td>7474</td>
<td>271-1874</td>
<td>1.19</td>
</tr>
<tr>
<td>7475</td>
<td>271-1875</td>
<td>1.19</td>
</tr>
<tr>
<td>7476</td>
<td>271-1876</td>
<td>1.19</td>
</tr>
</tbody>
</table>

8080A Microprocessor

The heart of a low-cost microcomputer 2-use cycle time. Includes 10 page data sheet and full specs. 276-2310 Reg. 3.29 Sale 1.95

RAM Memory ICs

Under 450 s Access Time 2102 1024 x 1 Array. Low-cost static memory chip. 16-pin DIP. Buy 8 and save! 276-2551 2.49 Ea. or 8/4.59

2114L 1024 x 4 Array. High-density static RAM. 16-pin DIP. NMOS design. 276-2504 12.95

WHY WAIT FOR MAIL ORDER DELIVERY?
IN STOCK NOW AT OUR STORE NEAR YOU!

Prices may vary at individual stores and dealers.
Electronic Home

7400 TTL

Electronic Timer

A high-speed, high-voltage electronic timer that is used in many applications requiring a precise time delay. It can be used in various circuits to control the timing of events. The timer is designed to provide accurate timing over a wide range of conditions.

Technical Specifications

- Operating voltage: 5V
- Frequency range: 1 Hz to 10 MHz
- Duty cycle: 50%
- Timing accuracy: ±100 ppm

DISCRETE Leds

- Red LED: XC4010X
- Green LED: XR4011
- Yellow LED: XR4012
- White LED: XR4013

DISPLAY Leds

- 7-Segment LED: XR7445
- 8-Digit LED: XR7446
- 4-Digit LED: XR7447

TELEPHONE/KEYBOARD CHIPS

- Microchip: Z84C00

Miscellaneous

- Security Timer
- TV Game Chip and Crystal

TV GAME CHIP AND CRYSTAL

- AX-8000-1 with 2.5 MHz Crystal & Crystal

Includes score display, 8 games and select units, on 7.95/set

COLLECTIBLE TOYS

- Microchip: Z84C00

SMALL SOLDERLESS BASES

- 20-40 pin bases available

PRICES

- $1.99
- $2.99
- $3.99

MAIL ORDER ELECTRONICS

1011 HOWARD AVENUE, SAN CARLOS, CA 94070
Advertised Prices Good Thru January
Function Generator Kit

- Provides 3 basic waveforms: sine, triangle & square wave
- Frequency range from 1 Hz to 100 kHz
- Output amplitude from 0 volts to over 6 volts (peak to peak)
- Uses 12V supply or a 8V split supply
- Includes chip, P.C. board components and instructions.

JE2206B $19.95

Digital Stopwatch Kit

- Use Internal 7205 Chip
- Pallet for truly sized board
- P.C. Board
- LCD display (red), 59.99 sec. with auto reset
- Quarts crystal controlled
- Three stopwatches in one, single event, split (cumulative) and timer (sequential timing)
- Uses 3 penlite batteries
- Size: 4.5 x 2.15 x .90

JE900 $39.95

4-Digit Clock Kit

- Bright 35/2" red display
- Sequential flashing colon
- 12 or 24 hour operation
- Extruded aluminum case (black)
- Pressure switches for hours, minutes and hold modes
- Includes all components, case and wall transformer
- Size: 3-1/4" x 1-1/4" x 1-1/4"

JE730 $14.95

6-Digit Clock Kit

- Bright 300 nt. common cathode display
- Uses MM3314 clock chip
- Switches for hours, minutes and hold functions
- Hours easily viewable to 20 feet
- Simulated walnut case
- 115 VAC operation
- 12 or 24 hour operation
- Includes all components, case and wall transformer
- Size: 6-3/4" x 3-1/8" x 1-3/4"

JE701 $19.95

Jumbo 6-Digit Clock Kit

- Four 630" h. and two 300" h. common anode displays
- Uses MM3314 clock chip
- Switches for hours, minutes and hold functions
- Hours easily viewable to 30 feet
- Simulated walnut case
- 115 VAC operation
- 12 or 24 hour operation
- Includes all components, case and wall transformer
- Size: 6-3/4" x 3-1/8" x 1-3/4"

JE747 $29.95

Jameco Electronics

Regulated Power Supply

- Uses Line 360K
- Heat sink provided
- P.C. board construction
- Provides a solid 1 amp DC 5V
- Includes components, case and instructions
- Sizes: 3-1/4" x 5" x 2" high

JE200 $14.95

The Incredible

"Pennywhistle 103"

$139.95

Kit Only

The Pennywhistle 103 is a unique arrangement of parts and tone taps which will provide excellent notes for the air whistle and a distinctive tone for the mouth whistle. It is made for beginners and intermediate players. It is fully assembled and is a delight to play. For beginning students who have never played a pennywhistle before, this is a great instrument to use.

Jameco Electronics

Regulated Power Supply

- Uses Line 360K
- Heat sink provided
- P.C. board construction
- Provides a solid 1 amp DC 5V
- Includes components, case and instructions
- Sizes: 3-1/4" x 5" x 2" high

JE200 $14.95

The Incredible

"Pennywhistle 103"

$139.95

Kit Only

The Pennywhistle 103 is a unique arrangement of parts and tone taps which will provide excellent notes for the air whistle and a distinctive tone for the mouth whistle. It is made for beginners and intermediate players. It is fully assembled and is a delight to play. For beginning students who have never played a pennywhistle before, this is a great instrument to use.

Jameco Electronics

Regulated Power Supply

- Uses Line 360K
- Heat sink provided
- P.C. board construction
- Provides a solid 1 amp DC 5V
- Includes components, case and instructions
- Sizes: 3-1/4" x 5" x 2" high

JE200 $14.95

The Incredible

"Pennywhistle 103"

$139.95

Kit Only

The Pennywhistle 103 is a unique arrangement of parts and tone taps which will provide excellent notes for the air whistle and a distinctive tone for the mouth whistle. It is made for beginners and intermediate players. It is fully assembled and is a delight to play. For beginning students who have never played a pennywhistle before, this is a great instrument to use.

Jameco Electronics

Regulated Power Supply

- Uses Line 360K
- Heat sink provided
- P.C. board construction
- Provides a solid 1 amp DC 5V
- Includes components, case and instructions
- Sizes: 3-1/4" x 5" x 2" high

JE200 $14.95

The Incredible

"Pennywhistle 103"

$139.95

Kit Only

The Pennywhistle 103 is a unique arrangement of parts and tone taps which will provide excellent notes for the air whistle and a distinctive tone for the mouth whistle. It is made for beginners and intermediate players. It is fully assembled and is a delight to play. For beginning students who have never played a pennywhistle before, this is a great instrument to use.

Jameco Electronics

Regulated Power Supply

- Uses Line 360K
- Heat sink provided
- P.C. board construction
- Provides a solid 1 amp DC 5V
- Includes components, case and instructions
- Sizes: 3-1/4" x 5" x 2" high

JE200 $14.95

The Incredible

"Pennywhistle 103"

$139.95

Kit Only

The Pennywhistle 103 is a unique arrangement of parts and tone taps which will provide excellent notes for the air whistle and a distinctive tone for the mouth whistle. It is made for beginners and intermediate players. It is fully assembled and is a delight to play. For beginning students who have never played a pennywhistle before, this is a great instrument to use.

Jameco Electronics

Regulated Power Supply

- Uses Line 360K
- Heat sink provided
- P.C. board construction
- Provides a solid 1 amp DC 5V
- Includes components, case and instructions
- Sizes: 3-1/4" x 5" x 2" high

JE200 $14.95

The Incredible

"Pennywhistle 103"

$139.95

Kit Only

The Pennywhistle 103 is a unique arrangement of parts and tone taps which will provide excellent notes for the air whistle and a distinctive tone for the mouth whistle. It is made for beginners and intermediate players. It is fully assembled and is a delight to play. For beginning students who have never played a pennywhistle before, this is a great instrument to use.
QUEST Cosmic Super Elf Computer $106.95

Compare features before you decide to buy any other computer. There is no other computer on the market today that has all the desirable benefits of the Super Elf for so little money. The Super Elf is a small single board computer that does many big things. It is an excellent computer for training and for learning programming with its machine language and yet is easily expanded with additional memory. Tiny Basic, Ascii Keyboards, video character generation, etc.

The Super Elf includes a ROM monitor for program loading and debugging. We have added the SINGLE STEP for program debugging which is not included in others at the same price. With SINGLE STEP you can see the microprocessor chip operating with the unique Quest address and data bus displays before, during and after executing instructions. Also, CPU mode and instruction cycle are shown on several LED indicator lamps.

An RCA 1861 video graphics chip allows you to connect to your own TV with an inexpensive video modulator to do graphics and games. There is a speaker system included for writing your own music or using many music programs already written. The speaker amplifier may also be used to drive relays for control purposes.

Super Expansion Board with Cassette Interface $89.95

This is truly an astounding value! This board has been designed to allow you to decide how you want it optioned. The Super Expansion Board comes with 4K of low power RAM fully addressable anywhere in 64K, with built-in memory protection and a cassette interface. Provision have been made for all other options on the same board, such as悲伤 Memory, hard-wired cabinet alongside the Super Elf. This board includes slots for up to 6K of EPROM (2708, 2716, 2718 or TI 2716) and is fully supported ($150 value) EPROM can be used for the monitor and Tiny Basic other purposes.

A 1K Super ROM Monitor $19.95 is available as an on board option in 2708 EPROM which has been nicely optioned and constructed for today’s microprocessor editing and error checking multi-file cassette read/write software, (readable cassette file) another exclusive from Quest. It includes register save and readout, video graphics driver with blinking cursor and block move capability. The Super Monitor is written with subroutines allowing users to take advantage of monitor functions simply by calling them up. Improvements and revisions are easily done with the monitor. If you have the Super Expansion Board Monitor the monitor is up and running at the push of a button.

Other on board options include Parallel Input and Output Ports with full handshake. They allow easy connection of an ASCII keyboard to the 8K Stk Current Loop for teletype or other device are on board and if you need more memory there are two 51000 bytes of static RAM or video boards. A Godbout 8K RAM board is available for $127.95. Parallel I/O Ports with 8K 2524 or 2520 has a 50 pin connector set with ribbon cable available at $120.00 for easy connection between the Super Elf and the Super Expansion Board.

The Power Supply for the Super Expansion Board is a amp supply with +ve = 18v +ve = 10v +ve = 5v Regulated voltages are +5v & +12v $29.95. Deluxe version includes the case at $39.95.

Auto Clock Kit $15.95

RCA Cosmic VIP Kit $29.90

Video computer with games and graphics.

Not a Cheap Clock Kit $14.95

Includes everything except case. 7 PC boards. 6-5/6 LED Displays. 5140 clock chip, transformer, all components and full instructions. Green and orange displays also available. Same kit w/80 displays. Red only.

60 Hz Crystal Time Base Kit $4.40

Converts digital clocks from AC line frequency to crystal time base. Outstanding accuracy. Kit includes: PC boards, MM5369, crystal, resistors, capacitors and trimmer.

TERMS: $5.00 min. order. U.S. Funds. Calif. residents add 6% tax. BankAmericard and Master Charge accepted. Shipping charges will be added on charge cards.

Digital Temperature Meter Kit

Indoor and outdoor. Switches back and forth. Beautiful, 30 LED readouts. Nothing like it available. Needs no additional parts for complete, full operation. Will measure $100 to +200' in tenths of a degree or liquid. Very accurate. $39.95

Beautiful hardwood case w/bracket. $11.75

NiCad Battery Charger Kit

Gives a charged cell that won’t hold a charge and then charges them up, all in one kit w/full parts and instructions. $7.25

PROM Eraser

Ultra small, easy handling. $49.95

Clock Calendar Kit $23.95

C07010 direct drive clock display module and time on 8 LEDS with AM-PM indicator. Alarm/timer feature includes buzzer. Complete with parts, supply power and instructions, less case.

1978 IC Update Manual

Sinclair 3½ Digit Multimeter

Batt/AC, DCv, 1mA and 1kA resistance. Sensitivity to 20 meg, 1% accuracy. Small, portable, completely assembled in case $19.95

Stopwatch Kit

$26.95

Full six digit battery operated. 2-15 sec. 3.7-20MHz crystal accuracy. Times to 59 min, .59 sec, .59 ms. Times and, splits and Taylor. 7205 chip, all components minus case. Full instructions.

S-100 Computer Boards

Bk 8K Static RAM $21.00

16K Static RAM $28.00

24K Static RAM $35.00

256K RAM $45.00

16K Dynamic RAM $45.00

Bk/16K EPROM KIT (less PROMS) $49.95

Video Interface

$69.95

INTEGRATED CIRCUITS

Integrated Circuits

AmericanRadioHistory.Com

P.O. Box 4430C Santa Clara, CA 95054

For all orders (408) 988-1640

2322 Walsh Ave.
FAIRCHILD RED LED LAMPS

#FLY507. Medium Size. Clear Lens. RED EMISSING. These are not restated off-spec units as sold by some of our competition. These are factory prime. first quality, new units.

10 FOR $119
50 FOR $495

"WE BOUGHT 250,000 PCS."

COMPUTER KITS

We stock our own line of top-quality computer kits.
8K STATIC RAM (S-100) — $129
16K STATIC RAM (S-100) — $295
16K EPROM (2708) BOARD (S-100) — $59.95
16K STATIC RAM (SWTPC 6800 SS-50) BOARD — $295

ADDITIONAL DATA ON ANY KIT AVAILABLE ON REQUEST.

16K DYNAMIC RAM CHIP

16K X 1 Bits. 16 Pin Package. Same as Mostek 4114. 250 NS access. 410 NS cycle time. Our best price yet! for this state of the art RAM. 32K and 64K RAM boards using this chip are readily available. WE ARE GUARANTEEING devices by a major mfg.

VERY LIMITED STOCK!

$14.95 each
8 FOR $89.95

FAIRCHILD PNP "SUPER TRANSISTOR"

2N4482 — TO 90 Micro-sec Pulsh Drive, High Current. VCEO 40-42 V, Beta to 155 at 15 MA, FT 150 MSZ. A super

RE-UP - UP VERSION of the 2N3905.

8 FOR $8

FET SALE!

2N3905 New N Channel, Junction FET

BVD600-30V DS-15 MA Typ

1500 UNITS $5.00 TO Pass.

Case Mfg. by Telecyn

6 FOR $1

DISC CAPACITORS

1/2 MFD 16V. P.C. leads. Most popular value! By Sprague.

20 FOR $1.00

TIP-30 POWER TRANSISTOR

Prime new. TO-202 Case

PNP silicon VCEO-40-1A 1AMP

FT -3 MZ. 30 WATT.

3 FOR $1

SPECIAL SURPLUS SPECIAL

COMPUTER CAPACITOR

By GE. 36.000 MFD 15VDC

Small Size. 4L. 15 inches

SUPER DEAL! $2.95 Each

3 FOR $8

EXPERIMENTER'S CRYSTAL

262. 14 KHZ. This frequency is 2 to the 18th power. Easily divided down to any power of 2, and even to 17. New by CTS-Knight. A $5 value.

$1.25 each

SOURCE OF GEOFILL, INC.

VOLTAGE SUPPRESSORS

By Midwest. #7670105. Silicon Varactors. These units grab voltage transients, spikes, surges, etc. For use on AC or DC in the range of 12 to 28 Volts. Small Size. 5 inch disc. With radial leads. For use across transformer secondaries, relays, etc. More rugged and reliable than silicon diodes. Rated at 30 WATT-SEC. $25. WATT CONT. Perfect source on AC operated clock instruments.

SPECIAL PURCHASE: 3 FOR $1

RCA MICRO-POWER O AMP.

4CA490BT Metal Can. Uses 1OPAMPS is required to be operated. But the CA490 is designed to operate from 7.5 to 15 Volts. For battery use. Standby power in low as 700 nW. High Gain. 30 DB range. Rca Open Loop Gain. Requires only one capacitor for compensation. See RCA Linear Data Book for more details. Similar to National LM12. Original cost about $1.29 each

75c EACH 3 FOR $2

SN6477 Complex Sound Generator

$3.50

This is a programmable sound effect generator capable of producing a wide variety of sounds from high to low frequency. Using this chip & a small number of inexpensive parts, a variety of projects may be built. Price $3.50 each

$1.00

TL500 Analog Processor

$8.50

The TL500 contains all the active analog elements for an automatic zeroing and automatic polarity. It is a 13-bit dual-slope A/D converter that has true differential inputs. It requires 3 caps. & 2 resistors with no special matching or tolerances. It is designed for use with the TL502. Spec sheet $1.25

TL502 Digital Panel Meter L.D.

$5.50

This is a 4-digit Digital Panel Meter L.D. that is designed to interface with the TL500 analog processor. It provides base drive for external PNP digit & segment drivers providing direct interface with 7-segment display. Spec sheet $1.25

LD130 A/D Converter

$5.50

Single-sentence, reference output, zero auto and zero auto polarity. It is designed for use with Digital Voltmeters, Panel Meters, Digital Thermometers, Microprocessor Interfaces to Analog Signals, & General Instrumentation. 34-pg. Spec & Application notes $2.50

MM5865 Programmable Stopwatch

$7.50

7-function Universal Timer and Stopwatch. Start/stop with elapsed time, start/stop cumulative event time, split, sequential total elapsed time, rally clock, tone control, up and down count. It uses 32.8 KHz crystal or external clock. Spec sheet & 10-page Application notes $1.50

32.8 KHz Crystal

$4.00

Minimum order $5.00 USD currency. Check or money order only. Add 5% to cover shipping and handling charge. Calif. residents and 5% sales tax. Santa Clara County residents add 8.5% sales tax.

AmericanRadioHistory.Com
<table>
<thead>
<tr>
<th>Code</th>
<th>Model</th>
<th>Voltage</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7400</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7445</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7401</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7402</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7430</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7405</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7446</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7410</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7420</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7413</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7414</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7415</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7416</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7417</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7418</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7419</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7420</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7421</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7422</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7423</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7424</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7425</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7426</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7427</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7428</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7429</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7430</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7431</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7432</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7433</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7434</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7435</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7436</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7437</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7438</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7439</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7440</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7441</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7442</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7443</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7444</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7445</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7446</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7447</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7448</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7449</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7450</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7451</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7452</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7453</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7454</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7455</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7456</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7457</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7458</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
<tr>
<td>7459</td>
<td>74xx</td>
<td>10.00</td>
<td>S27.95</td>
</tr>
</tbody>
</table>

PRIME TTL & CMOS AT LOWEST PRICES

<table>
<thead>
<tr>
<th>Prime TTL</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7400</td>
<td>S27.95</td>
</tr>
<tr>
<td>7445</td>
<td>S27.95</td>
</tr>
<tr>
<td>7401</td>
<td>S27.95</td>
</tr>
<tr>
<td>7402</td>
<td>S27.95</td>
</tr>
<tr>
<td>7430</td>
<td>S27.95</td>
</tr>
<tr>
<td>7405</td>
<td>S27.95</td>
</tr>
<tr>
<td>7446</td>
<td>S27.95</td>
</tr>
<tr>
<td>7410</td>
<td>S27.95</td>
</tr>
<tr>
<td>7420</td>
<td>S27.95</td>
</tr>
<tr>
<td>7413</td>
<td>S27.95</td>
</tr>
<tr>
<td>7414</td>
<td>S27.95</td>
</tr>
<tr>
<td>7415</td>
<td>S27.95</td>
</tr>
<tr>
<td>7416</td>
<td>S27.95</td>
</tr>
<tr>
<td>7417</td>
<td>S27.95</td>
</tr>
<tr>
<td>7418</td>
<td>S27.95</td>
</tr>
<tr>
<td>7419</td>
<td>S27.95</td>
</tr>
<tr>
<td>7420</td>
<td>S27.95</td>
</tr>
<tr>
<td>7421</td>
<td>S27.95</td>
</tr>
<tr>
<td>7422</td>
<td>S27.95</td>
</tr>
<tr>
<td>7423</td>
<td>S27.95</td>
</tr>
<tr>
<td>7424</td>
<td>S27.95</td>
</tr>
<tr>
<td>7425</td>
<td>S27.95</td>
</tr>
<tr>
<td>7426</td>
<td>S27.95</td>
</tr>
<tr>
<td>7427</td>
<td>S27.95</td>
</tr>
<tr>
<td>7428</td>
<td>S27.95</td>
</tr>
<tr>
<td>7429</td>
<td>S27.95</td>
</tr>
<tr>
<td>7430</td>
<td>S27.95</td>
</tr>
<tr>
<td>7431</td>
<td>S27.95</td>
</tr>
<tr>
<td>7432</td>
<td>S27.95</td>
</tr>
<tr>
<td>7433</td>
<td>S27.95</td>
</tr>
<tr>
<td>7434</td>
<td>S27.95</td>
</tr>
<tr>
<td>7435</td>
<td>S27.95</td>
</tr>
<tr>
<td>7436</td>
<td>S27.95</td>
</tr>
<tr>
<td>7437</td>
<td>S27.95</td>
</tr>
<tr>
<td>7438</td>
<td>S27.95</td>
</tr>
<tr>
<td>7439</td>
<td>S27.95</td>
</tr>
<tr>
<td>7440</td>
<td>S27.95</td>
</tr>
<tr>
<td>7441</td>
<td>S27.95</td>
</tr>
<tr>
<td>7442</td>
<td>S27.95</td>
</tr>
<tr>
<td>7443</td>
<td>S27.95</td>
</tr>
<tr>
<td>7444</td>
<td>S27.95</td>
</tr>
<tr>
<td>7445</td>
<td>S27.95</td>
</tr>
<tr>
<td>7446</td>
<td>S27.95</td>
</tr>
<tr>
<td>7447</td>
<td>S27.95</td>
</tr>
<tr>
<td>7448</td>
<td>S27.95</td>
</tr>
<tr>
<td>7449</td>
<td>S27.95</td>
</tr>
<tr>
<td>7450</td>
<td>S27.95</td>
</tr>
<tr>
<td>7451</td>
<td>S27.95</td>
</tr>
<tr>
<td>7452</td>
<td>S27.95</td>
</tr>
<tr>
<td>7453</td>
<td>S27.95</td>
</tr>
<tr>
<td>7454</td>
<td>S27.95</td>
</tr>
<tr>
<td>7455</td>
<td>S27.95</td>
</tr>
<tr>
<td>7456</td>
<td>S27.95</td>
</tr>
<tr>
<td>7457</td>
<td>S27.95</td>
</tr>
<tr>
<td>7458</td>
<td>S27.95</td>
</tr>
<tr>
<td>7459</td>
<td>S27.95</td>
</tr>
</tbody>
</table>
Volume Controls 49c
Reg. 59c
VC-274

8-TRACK Recording Tape 49c
Reg. 99¢
TA-907

500-Fl. Hookup Wire Kit 399c
Reg. 49c
WW-579

AC BATTERY ADAPTOR 5.99
Reg. 6.99
BA-159

COMPACT TRUMPET 444
Reg. 6.99
SS-453

PLANNING TO MOVE?

Let us know 6 weeks in advance so that you won't miss a single issue of POPULAR ELECTRONICS.

Attach old label where indicated and print new address in space provided. Also include your mailing label whenever you write concerning your subscription. It helps us serve you promptly.

Write to: P.O. Box 2774, Boulder, CO 80322 giving the following information:

□ Change address only
□ Extend my subscription
□ Enter new subscription

ENTER NEW SUBSCRIPTION
□ 1 year $13.00
□ Payment enclosed (1 extra BONUS issue)
□ Bill me later

Name please print
Address
City
State 2 Zip

NEW ADDRESS HERE 0382

Attach ELECTRONICS.

For 24 Hour PHONE Service Call (216)535-1800

NAME
ADDRESS
CITY
STATE
ZIP

Oly. Stk.
Description
Price Ea.
Total

Tax
Postage
Total

OLSON ELECTRONICS

AmericanRadioHistory.com

Knight model 83Y125-J VTVM. Schematic and manual. P. Young, 164761 White Pines, Bensenville, IL 60166.

Morrow model MBF-5 serial #1-1458 communication receiver. Schematic and service manual. Alex Kink, 419-50th Ave., Bellevue, IL 60164.
Electronics Library

THE HOME COMPUTER REVOLUTION

by Ted Nelson

This book concerns itself with the "why" of home computing and provides interesting insight to many facets of this infant industry. The beginning computer hobbyist and those casually interested will find much information on the development and applications of home computers. Likewise, there are many fresh ideas and interesting facts within its pages which will fascinate established computer hobbyists.

Distributed by The Distributors, 702 South Michigan, South Bend, IN 46618. 224 pages. $2.00 soft cover.

UNDERSTANDING AMATEUR RADIO

by Jay Rusgrove, Doug DeMaaw and George Grammer

The American Radio Relay League has published a totally revised edition of the venerable book Understanding Amateur Radio. Advances in the state of the art are reflected in the new edition, which is in a larger (8½ x 10½ in.) and more graphic format. After presenting some electronic fundamentals, the book explores semiconductors and vacuum tubes, CW and phone transmitters, receivers, antennas and feeders, the workbench and test bench, building receivers, antennas for your receiver, building transmitters, transmitting accessories, the power supplies, making measurements, antennas and masts, and setting up a station.

Published by the American Radio Relay League, 225 Main Street, Newtoning, CT 06111. 223 pages. $5.00 (soft cover) in the U.S., $5.50 elsewhere.

MICROPROCESSOR INTERFACING TECHNIQUES

by Austin Les ea and Rodnay Zaks

This work describes the techniques and components used for interfacing a microprocessor-based CPU to all major peripherals. Following an introductory discussion of basic concepts, techniques, and bus systems, assembly of the CPU is covered for four popular microprocessors. A chapter on basic I/O systems precedes the essential part of the text. Chapter IV. It is here that the authors relate how to interface the microprocessor-based CPU to a keyboard, LED indicators, teletype writer, paper-tape reader, cassette-tape recorder, floppy disk, and CRT display.

Published by SYBEX Incorporated, 216 Shattuck Ave., Berkeley, CA 94704. 348 pages. $9.95 soft cover.

10. Extent and nature of circulation

A. Total No. Copies
Printed (Net Press Run) 507,200 511,499

B. Paid Circulation
1. Sales through Dealers and Carriers, Street Vendors and Counter Sales 85,271 81,200
2. Mail Subscriptions 332,370 331,100

C. Total Paid Circulation
(Sum of 1081 and 1082) 417,641 412,300

D. Free Distribution
by Mail, Carrier or Other Means, Samples, Complimentary, and Other Free Copies 10,984 10,152

E. Total Distribution
(Sum of C and D) 428,625 422,452

F. Copies not distributed
1. Office Use, Left Over, Unaccounted, Spilled After Printing 2,912 5,138
2. Returns from News Agents 75,663 83,909

G. Total (Sum of E, F1 and 2—should equal net press run shown in A) 507,200 511,499

11. I certify that the statements made by me above are correct and complete.

WILLIAM L. PHILLIPS, Assistant Treasurer

12. For Completion by Publishers Mailing at the Regular Rates: (Section 132.121, Postal Service Manual)

39 U. S. C. 3626 provides in pertinent part: "No person who would have been entitled to mail matter under former section 4359 of this title shall mail such matter at the rates provided under this subsection unless he files annually with the Postal Service a written request for permission to mail matter at such rates."

In accordance with the provisions of this statute, I hereby request permission to mail the publication named in item 1 at the phased postage rates presently authorized by 39 U. S. C. 3626.

WILLIAM L. PHILLIPS, Assistant Treasurer
FREE! Bargain Catalog—I.C.'s, LED's, readouts, fiber optics, calculators parts & kits, semiconductors, parts. Poly Packs, Box 942PE, Lynnhurst, Mass. 01940.

LOWEST PRICE! Electronic Parts. Confidential Catalog Free. KNAPP, 4750 96th St N. St. Petersburg, FL 33708.

ELECTRONIC PARTS, semiconductors, kits. FREE FLYER. Large catalog $1.00 deposit. BIGELOW ELECTRONICS, KNAPP, 4750 Meshna, Nahant, Mass. 01908.

FREE! Bargain Classified Advertising, POPULAR ELECTRONICS, published which advertise clearly printed. Payment must accompany copy except when ads are to be billed on credit card—American Express, Diners Club, Master Charge, VISA (supply expiration date) — or when ads are placed by accredited advertising agencies. First word in all ads set in caps. All copy subject to publisher's approval. All advertisers using Post Office Boxes in their addresses MUST supply publisher with permanent address and telephone number before ad can be run. Advertisements will not be published which advertise or promote the use of devices for the surreptitious interception of communications. Ads are not acknowledged. They will appear in first issue to go to press after closing date. Closing Date: 1st of the 2nd month preceding cover date (for example, March issue closes January 1st). Send order and remittance to Classified Advertising, POPULAR ELECTRONICS, 10 Park Avenue, New York, N.Y. 10016. For inquiries, contact Gladys Mathieu at (212) 725-3626.

FOR SALE

FREE! Bargain Catalog—I.C.'s, LED's, readouts, fiber optics, calculators parts & kits, semiconductors, parts. Poly Packs, Box 942PE, Lynnhurst, Mass. 01940.

LOWEST PRICE! Electronic Parts. Confidential Catalog Free. KNAPP, 4750 96th St N. St. Petersburg, FL 33708.

ELECTRONIC PARTS, semiconductors, kits. FREE FLYER. Large catalog $1.00 deposit. BIGELOW ELECTRONICS, KNAPP, 4750 Meshna, Nahant, Mass. 01908.

FREE! Bargain Classified Advertising, POPULAR ELECTRONICS, published which advertise clearly printed. Payment must accompany copy except when ads are to be billed on credit card—American Express, Diners Club, Master Charge, VISA (supply expiration date) — or when ads are placed by accredited advertising agencies. First word in all ads set in caps. All copy subject to publisher's approval. All advertisers using Post Office Boxes in their addresses MUST supply publisher with permanent address and telephone number before ad can be run. Advertisements will not be published which advertise or promote the use of devices for the surreptitious interception of communications. Ads are not acknowledged. They will appear in first issue to go to press after closing date. Closing Date: 1st of the 2nd month preceding cover date (for example, March issue closes January 1st). Send order and remittance to Classified Advertising, POPULAR ELECTRONICS, 10 Park Avenue, New York, N.Y. 10016. For inquiries, contact Gladys Mathieu at (212) 725-3626.

THE BEST CB ANTENNA
SEND FOR FREE [PAL] FULL LINE CATALOG AND DECAL

POLICE/FIRE SCANNERS, crystals, antennas, CB's, Radar Detectors. HRP. Box 19224, Denver, Co 80219.

TEST EQUIPMENT CATALOG listed using Telextron, HP and GR equipment at bargain prices, PTI, Box 8699, White Bear Lake, MN 55110. Price $1.00 refundable with first order.

CB RADIOS, VHF-UHF Scanners, Crystal, Antenna, Radios Detectors. Wholesale. Southland, Box 359, Baytown, TX 77520.

PRINTED CIRCUIT boards from stock or artwork. Afford-able prices, free details, DANOCHINS INC., Box 261, West-land, MI 48185.

NEW, ADJUSTABLE, THREE OUTPUT, REGULATED POWER SUPPLY plus 900 parts worth over $400.00 in complete CARTRIDGE television receiver equipment assembly. Documentation included. Perfect for MICROPROCESSOR and all electronic applications. $16.95 plus $.50 S&H. Master Charge, VISA. Free brochure. Madison Electronics, 369, Madison, Alabama 35758. SATISFACTION GUARANTEED. 205-637-6658, Res.

BARGAINS GALORE! Buy-sell-trade classifieds in "Electronics Trader" only 10¢ per word! Send $2.00 for next four issues. Box 13033, Sun Valley, CA 91352.

ELECTRONICS EQUIPMENT HOTLINE is a classified adver-tising newsletter for professional, industrial, and surplus electronic equipment. Subscriptions $5/year, ads 50¢ word, P.O. Box 4789, Dept. PE, Panorama City, CA 91412.

YOUR DIGITAL MULTIMETER can read resistance values in the milliohm range. Send $2.95 to G. Peterson, RDI, Box 8G, Slate Hill, N.Y. 10973 for schematic and instructions.

CARBON FILM RESISTORS 1/4W, 1/2W sanken, precision matched. Quality Surplus Electronic Components, 1147E, San Diego, CA 92129. We sell a wide variety of precision high quality carbon resistors. Satisfaction guaranteed. Send order and remittance to: Integrated Suppl., Box 683, McMinnville, OR 97128.

BUILD THE ARTISAN ELECTRONIC ORGAN ... The 20th century successor to the classic pipe organ. Kits feature mod-ular construction, with logic controlled stops and RAM Pre-Set Memory System, be an art-sans. Write for our free brochure. AOK Manufacturing Inc., Box 445, Kenmore, WA 98028.
BUILD YOUR OWN SYMPHONY OF SOUND!

Its fun and easy—takes just minutes a day! Complete kits for organs, pianos, strings, rhythms, amplifiers, synthesizers. Also lots for hobbyist, combined. 144-page catalog $2.00

Wuersi

Wuersi Electronics, Inc.

Dept. 2D, 1720 Hampstead Road

Lancaster, PA 17601

CB/HAM HIGH GAIN ANTENNAS. Modulation boosting VOX-COMPRESSOR. Portable 300MHz COUNTER with memory! Plans $3.00 ea. $7.50/all. Many others, catalog with order. PANAXIS, Box 130-A1, Paradise, CA 95969.

TV-OSCILLOSCOPE CONVERTER externally adapts TV into audio frequency oscilloscope. Info. $1.00, Plans $5.00, with P.O. $12.00. Evolutionics, Box 855-G, San Rafael, CA 94901

PROJECTION TV... Convert your TV to 7 Foot picture. Results equal to $2,500 projector. Total cost less than $20.00. PLANS & LENS $16.00. Illustrated info. FREE: Macromac., Washington Crossing, PA 19877.

LASER PLANS — Send for $8.00; Weading — Burning Laser $9.00; Giant Catalog — $2.00. Bookstores, Box 1015, Claremont, CA 91711.

PLANS FOR SIMPLE, inexpensive, reliable temperature control for soldering irons. $2.00. GDH Enterprises, Box 353, Somerville, Indiana, 47863.

PLANS TO BUILD an Accurate Low Cost Digital Capacitance Meter. Send $1.00 to D.C.M., P.O. Box 1002, Yorba Linda, CA 92686.

ALARMS

QUALITY BURGLAR-FIRE ALARM EQUIPMENT at discount prices. Free Catalog! Staffens, Box 624K, Cranford, N.J. 07016

Burglar Fire Smoke Alarm Catalog

• Billions of dollars lost annually due to lack of protective warning alarms.

FREE CATALOG Shows you how to protect your home, business and person. Wholesale prices. Do-it-yourself. Free engineering service.

Burdez Security Co.

Box 82802 PE-019 Lincoln, Ne. 68501

TELEPHONES & PARTS

OKAM PHONE CENTER. All types of telephones — keyed, modular and decorator. Catalog $1.00 (refundable). Box 38, Beavestown, ID 62618.

CORDLESS TELEPHONES: Operate 300 ft. from base. Factory rechecked, schematics included for personal maintenance. Originally $399.50 — now $149.95. Check, M.O. or Credit Card. Telephone Marketers, P.O. Box 216, Brookfield, WI 53005.

MUSICAL INSTRUMENTS

UP TO 80% DISCOUNT. Name brand instruments catalog. Freeport Music, 114 Q, Mahan St., W. Babylon, N.Y. 11704.

HIGHLIDEALITY

DIAMONO NEEDLES and Stereo Cartridges at Discount prices for Shure, Pickering, Stanton, Empire, Grado and AOC. Send for free catalog. LYLE CARTRIDGES, Dept. P, Box 69, Kensington Station, Brooklyn, New York 11218. For Fast Service call Toll Free 800-221-0906.

SpeakerKit, Lambda Series

Charles Graham reports in American Record Guide, "The Model 5 (speaker) is probably the best sounding and best value for money unit available today, provided you assemble it yourself!" Send 25¢ for details.

Speakerkit, Box 1299, Menomonee, WI 53051

MICROCOMPUTERS

"HOW TO PROFIT FROM YOUR PERSONAL COMPUTER," 37.95, $50 postage. Ohio Scientific's Challenger IP microcomputer, $349. PET Printer, $425; software; books. Free literature. ELKHART COMPUTER Co., 29934 Riviera Ln., Elkhart, IN 46514.

MEMORY EXPANSION KITS for TRS-80 or Apple Computers. All necessary instructions and jumper supplied for TRS-80. $89 for 8K-26K Hobby Grade, or $119 for 8K-16K Computer Grade @200s. Mastercharge, Visa. Microcomputerworld, P.O. Box 242, San Dimas 91773. (213) 238-2661.

WANTED

WANTED! CB DEALERS AND DISTRIBUTORS

PAL Antenna Corp.

2414 EAST ADAMS — PHOENIX, ARIZONA 85024

TUBES

RADIO & T.V. Tubes—36 cents each. Send for free catalog. Cornell, 4213 University, San Diego, Calif. 92105.

RADIO AND TV TUBES 1938 to 1979 $1.00 ea. PRELLER TV, Augusta, AR 72008. (501) 347-2281.

TRANSFORMERS, Capacitors, Connectors, Tubes, etc. Send for lists. Science Traders, P.O. Box 71, City Island, NY 10464.

GOVERNMENT SURPLUS

JEEPS—$59.50 — CARS—$33.50 — $200.00 ITEMS—GOVERNMENT SURPLUS—Most comprehensive directory available tells how, where to buy — YOUR AREA — $2.00 — MONEYBACK GUARANTEE — Government Information Services, Department GE-45, Box 99249, San Francisco, California 94109 (435 California).

JANUARY 1979
SPECIAL: LM317 adjustable (+) regulator, $2.25 (ltd qty).

TR-80 CONVERSION KIT: $109, 3/$320.

Please note our kit is guaranteed for 1 yr. includes DIP shunts, and uses 250 ns chips for 4 MHz operation. Upgrades TRS-80 to 16K, or populates Memory Expansion Module — our novice level instructions show you how. Also suitable for APPLE memory expansion.

HEATH H8 COMPATIBLE 12K X 8 MEMORY BOARD: $200

Emoram H8* is fully static, and comes with sockets and bypass caps pre-soldered in place for easy assembly. Assembled/tested: $270.

THE ECONORAM FAMILY

The ECONORAM™ family of static memory offers high performance at low cost. All boards are static, low power/high speed, fully buffered, and backed with 1 year limited warranty. Available in 3 forms: unkit (sockets, bypass caps soldered in place), assembled/tested, or qualified under our Certified System Component high-reliability program (200 hr. burn-in, 4 MHz operation over full temp range, exchange if failure occurs within 1 year of invoice date). Send for our flyer for additional information on these fine memories, or better yet, visit your local computer store.

Name: Buss
Unkit Assm CSC

8K Econoram II* $100 $139 $159 N/A
16K Econoram IV* $100 $279 $314 $414
24K Econoram VII* $100 $445 $485 $805
32K Econoram X* $100 $509 $649 $788
32K Econoram XI* SBC N/A N/A $1050
32K Econoram IX* Dig. $650 N/A N/A Group

Send for our flyer!!

THE NEW HOBBY WORLD CATALOG

Your source for factory prime, professional quality equipment. Computers, add-on boards, IC's, sockets, resistors, supplies, tools, test equipment, books, and more. Shop your buy list at Hobby World. You'll find what you want, and at a solid savings. For example, look at this month's specials:

THE NEW ELENCO 3 1/2 DIGIT SOLID STATE MULTIMETER

The ultimate performance: measures resistance to .01 ohms, voltage to 100 micro-volts, current to one micro-amp. Assembled and tested, with 2-Year warranty. Lists at $99.95. **HOBBY WORLD PRICE ONLY $74.95!**

16K MEMORY ADD-ON FOR APPLE OR TRS-80

HOBBY WORLD PRICE IS ONLY $98.00 (specify when ordering)

WAHL ISOT-TIP CORDLESS SOLDERING IRON

Includes nicad batteries and wall plug transformer. Lists at $19.95, **BUT HOBBY WORLD HAS IT FOR $14.95!**

Send me a free catalog!

Hobby World
19355 Business Center Dr #6
Northridge CA 91324

TELEPHONE ORDERS
Inside Cal 213 866 9200
Outside Cal 800 423 5387

NAME

ADDRESS

CITY STATE
Videotaping Movies and Slides
Converting slides or motion-picture film to video cassettes is now as easy as taking them to a local Fotomat film-processing store. Fotomat will record them on your video cassette (or sell you a blank cassette, if needed), and return them a week later. Exposure and color errors (if not too extreme) are automatically corrected; and, for an extra dollar, Fotomat will remove blank sections from movie frames. Prices range from $3.50 for the first 50 feet of movie film down to 50¢ per reel when five or more are transferred. Slide transfer prices range from $3.00 for the first three minutes down to 15 cents for each minute after the 10th. Slides fade in and out at intervals of 5, 10 or 15 seconds.

First U. S. Digital Recording
The first commercial, classical music disc recorded in the U. S. by digital processing has been released on the "Telarc" label, distributed by Audio-Technica U.S., Inc. The disc, retailing at $14.95, features the Cleveland Symphonic Winds, conducted by Frederick Fennell, with music by Holst, Handel, and Bach. A Soundstream digital tape recorder was used in the process, which is said to virtually eliminate distortion and other problems common to conventional tape recordings. The music signal is converted into binary computer pulse codes rather than analog magnetic waveforms. No compressors, equalizers or limiters were used in recording music signals on a master disc.

Cadillac's Trip Computer
The Trip Computer, manufactured by General Motors and available on 1979 Cadillac Sevilles, is a pre-programmed system which computes and displays operational information in three areas on the instrument panel. The first is a digital speedometer above the steering wheel. Second, a fuel gauge gives the amount of gas available in the tank. Finally, a command control center offers a variety of information by depressing of a console button: actual instantaneous fuel economy, average-fuel economy for trip, average car speed, total elapsed trip time, driving range on remaining gasoline, miles to go to a pre-determined destination, estimated time of arrival, time of day, engine rpm, engine temperature, and system voltage. The link between all the various analog quantities and the digital microprocessor is a National Semiconductor 16-channel, 8-bit-ADC 0816 analog-to-digital converter. You don't have to buy a '79 Seville, however, to enjoy automotive computer benefits. Add-on systems, such as the Prince "on-board computer," will provide any car with this facility.

Japanese TV Gets Multiplex Sound
Japan's Radio Regulatory Council for the Posts & Telecommunications Ministry has approved a plan to authorize TV stations to start multiplex sound broadcasting. This will allow Japanese TV viewers to watch foreign movies in either original-language or Japanese-dubbed versions, or musical programs in stereo. In the future, TV receivers are expected to be built to include receivers for multiplex broadcasting. The receivers will also be available separately; adapters would be attached to TV receivers with multiplex terminals or to stereo systems, which could then be used on TV receivers without multiplex terminals. It's reported, too, that the government eventually plans to approve a facsimile broadcast service over the multiplex sound system.

FCC Fee Over-$20 Inquiry
The Federal Communications Commission has begun an inquiry on the refund of fees collected between August 1, 1970 and January 1, 1977, and on alternatives for future fee schedules (Gen. Docket No. 78-316). However, this action deals only with fees in amounts greater than $20 and therefore does not deal with fees paid by citizens band (CB) licensees. The Commission emphasized that action on fees under $20, including those for CB, would be taken in the near future. It asked that CBers not make inquiries at this time concerning fees.

Monthly NY Computer Flea Show
A Computer Flea Show and Market is now available to computer hobby enthusiasts in the New York area. It is scheduled for the third Sunday of every month at the Doral Inn (Lexington Ave. and 49th St.) and is intended for the experienced hobbyist as well as the new owner of a personal computer. Exhibitors are expected to include computer manufacturers and computer stores and sellers of used equipment. It is hoped that vendors of software will also be on hand to run their programs. Admission is $1 and hours are 11 a.m. to 5 p.m. For more information, contact Robert Schwartz, 375 Riverside Dr., New York, NY 10025.
SAE TWO by SAE

Styled to reflect professional elegance.
Engineered for maximum performance.

A new experience from SAE, called SAE TWO. These competitively priced components incorporate the same kind of advanced circuit design which has made SAE's high end line one of the most respected in audio.

The R3C AM/FM Stereo Receiver delivers a vigorous 30 Watts* RMS per channel. Separate, easy-to-read signal strength and center tuning meters ensure precise FM reception. Price - $335.00†

The T3U AM/FM Stereo Tuner's linear scale simplifies accurate station tuning and its steep quieting requires only 37.3 dBf (40 microvolts) for 50 dB signal-to-noise in stereo. Linear Phase filters result in excellent separation of 45 dB at 1kHz. Price - $275.00†

The C3A Integrated Amplifier delivers a cool clean 50 Watts* RMS per channel. Maximum tape flexibility is assured by provisions for two tape recorders with full tape dubbing capabilities. Price - $325.00†

The C3D Cassette Deck features a full-logic electronic tape control system for the protection of your valued tapes. A DC-servo motor keeps wow and flutter below 0.06%. And for optimum tape performance full Bias-EQ selection and Dolby NR circuitry are provided. Price - $400.00†

For more information and an informative brochure write:

Scientific Audio Electronics, Inc.
P.O. Box 50271 Terminal Annex, Los Angeles, CA 90060

For more information and an informative brochure write:

*These ratings are at 8 Ohms per FTC regulations.
Total Harmonic Distortion - for R3C - 0.09%, for C3A - 0.05%

*Nationally Advertised Value, actual retail prices are established by SAE Dealers.
Performance that’s easy to handle.

The Motorola® System 500 Remote CB. The first full-featured Remote that’s easy to handle. It’s designed to feel natural. To operate effortlessly. With about as much thought as you give to shifting gears.

But what good is a Remote that fits your hand, if it doesn’t fit your needs? The Motorola System 500 Remote features a 2-speed channel selector. A local/distance switch that reduces interference and background noise. A channel 9 emergency switch that puts you in touch with help instantly when you need it.

You also get the CB features you’ve come to expect from Motorola. Like a phase lock-loop synthesizer. Power mic. Phosphorescent control labels for easy identification. Hot-last channel memory. L.E.D. channel readout. And an optional relay which interrupts radio audio as CB messages are received.

As easy as it is to handle and operate, this CB is tough to steal. The transceiver chassis is compact—easily hidden away in the trunk, under the seat, or mounted on the firewall.

The complete, uncomplicated Motorola System 500 Remote. Because when you’re driving, you’ve got enough to handle.

To find the dealer nearest you, write: Market Relations Manager, Motorola, Inc., Automotive Products Division, 1299 East Algonquin Road, Schaumburg, Illinois 60196. Motorola is a registered trademark of Motorola Inc.