AM Stereo – Soon On The Air?
Security Systems to Protect Property
Electronic Gifts to Buy and Build

Build a Computer-vs-You Chess Game

PLUS:
1978
ARTICLE
INDEX

Retailers:
Notice of display-allowance plan is within last three pages.

LR-120Db AM/Stereo FM Receiver
819 Cassette Deck
DL2 Digilogic Control Center
FOR THOSE OF YOU WHO ARE HAVING SECOND THOUGHTS ABOUT YOUR FIRST CB.

Move up to the all-new Cobra 29GTL. It's the third generation of the trucker-proven Cobra 29. And like the 29 and the 29XLR before it, it advances the state of the art.

Transmitter circuitry has been refined and updated to improve performance.

Receiver circuits have been redesigned to include dual FET mixers, a monolithic crystal filter and a ceramic filter to reduce interference and improve reception.

By improving the transmitter circuitry the 29GTL keeps you punching through loud and clear. By incorporating new features for better reception everything you copy comes back loud and clear.

So if you're having second thoughts about your first CB, make your next CB the Cobra 29GTL.

We back it with a guaranteed warranty and a nationwide network of Authorized Service Centers where factory-trained technicians are available to help you with installation, service and advice.

But more important than that, we sell it at a price you won't have second thoughts about.

Cobra

Punches through loud and clear.

Cobra Communications Products
DYNASCAN CORPORATION
6460 W. Cortland St., Chicago, Illinois 60635

Write for color brochure
EXPORTERS: Empire • Plainview, N.Y • CANADA: Atlas Electronics • Ontario
CIRCLE NO. 11 ON FREE INFORMATION CARD

AmericanRadioHistory.Com
NEW TECHNOLOGY

The JS&A Mini Travel Alarm will fit in your briefcase, pocket or purse and is no larger than four quarters.

The new JS&A Chess Computer plays six levels of chess and costs only $99.95.

The Winners

These two products continue to be our best sellers. Can you figure out why?

The two products shown above are our best selling new products. The Chess Computer compares with similar computers selling for up to $400. The JS&A Mini Travel Alarm compares to the $100 Seiko alarm but is smaller and less than half the price.

Is there more to these products than value? Let's take a closer look. The following are descriptions of these two new items with our conclusions at the end.

THE MINI TRAVEL ALARM

It's small. And because it's small, it fits anywhere—in your briefcase or in your pocket.

The new JS&A Mini Travel Alarm measures only 3/8" x 1 ¼" x 2 ½" and has a small easel support on the back. Just set the alarm, and the electronic beep will wake you up. The clock movement is totally solid-state, and a built-in night light lets you view the time in the dark.

But the JS&A Mini Travel Alarm does more. First, it makes a great pocket watch. The small imitation black leatherette carrying case that comes with the unit has a window so you can view the time even when the unit is in its case. Secondly, it tells accurate time—within fifteen seconds accuracy per month. And finally, it's inexpensive—only $29.95 complete with carrying case and two readily-available hearing aid batteries. It makes a perfect gift for everyone on your gift list.

There is also a deluxe version with a built-in timer and dual time zone capability. You can now display one time while keeping the second time in memory.

The Mini Travel Alarm can be ordered by calling our toll-free number below or sending your check for $29.95 for the regular version or $39.95 for the deluxe version. Please add $2.50 postage and handling and Illinois residents add $5 sales tax.

THE JS&A CHESS COMPUTER

It's a chess-playing robot. The new JS&A Chess Computer is not only programmed with the rules of international chess, but it has a brain that thinks for itself.

You enter your move and the computer examines all the probabilities and makes its move. There are six levels of play—from beginner to professional—so the game increases in difficulty as you become more proficient. And you can change levels right in the middle of a game if the robot starts to beat you.

The computer is small, easy to store, and is played with your own board and chess pieces. The JS&A Chess Computer has been programmed to handle all the international chess rules including castling, en passant, and pawn promotion. The entire unit is housed in a handsome case only 4" x 7" x 2 ½" high, weighs 14 ounces and comes with an AC adapter.

One of the major breakthroughs has been its price. The JS&A Chess Computer is available for only $99.95 complete with AC adapter and complete instructions. (Add $2.50 for postage and handling and Illinois residents please add 5% sales tax.) If you play chess, you already own half of the system—your board and chess pieces. With JS&A’s Chess Computer, you’ll own the other half plus a very clever opponent.

OUR CONCLUSIONS

Why are the above two products so successful? Value would seem the most obvious reason. These products easily represent 50% lower prices than popular brand name products. Or is it features? Each product has real advantages over the competition. Or is it simply our 30 day trial period? It’s the most consumer-oriented way to use and experience a product before you buy.

Why do people buy these products from JS&A? Value? Certainly. Features? Yes. But most importantly, we give you the assurance that if you are not satisfied with any JS&A product, you may return it within 30 days for a prompt and courteous refund. There’s no stuffy sales clerk to ask you embarrassing questions, no parking problems, and no long lines. And we will even refund our $2.50 postage and handling charge.

Why not join the space-age revolution with one or both of our most exciting new products. Order any one of our two winners at no obligation, today.

JS&A NATIONAL SALES GROUP

Dept. PE One JS&A Plaza
Northbrook, Ill. 60062 (312) 564-7000
Call TOLL-FREE 800 323-6400
In Illinois Call (312) 564-7000
© JS&A Group, Inc., 1978

DECEMBER 1978
Bearcat® 250 Features:

- 50 Channels/5 banks—Program 50 frequencies from infinite frequency combinations. Designate certain channels for specific types of activity, for example, use bank 1:10 for Police, 11:20 for Fire Service, 21-30 for Drug Enforcement Agencies, etc.

- S-Band Coverage—Includes Low and High VHF bands. UHF and 2 water plus 9 meter antenna bands. With special programming techniques, this unit can monitor additional frequencies not published in factory specifications.

- Self-Destruct—Case of the unit being hit into enemy hands, you can electronically erase up to 65 frequencies in storage memory with only two key strokes.

- Search/Store—"Hands-off" automatic search operation that locates and "remembers" active frequencies.

- Search/Recall—Used in conjunction with search, displays frequencies found in search/store sequence.

- Communications Electronics®—Quality control approval rating of 91%. Our highest quality grade for technologically sophisticated equipment.

- Crystalless—Without ever buying a crystal, you can select from all local frequencies even by simply pushing a few buttons.

- Priority—Samples programmed priority frequency on channel 1 every 2 seconds regardless of other scanner operations—important for professionals who must act quickly.

- Time—Brilliant digital LED clock—will display hours, minutes and seconds. Extremely accurate.

- Count—Frequency "traffic analysis" may be easily recorded to keep track of potentially hostile forces. Automatically counts numbers of transmissions on each channel to determine the most active frequencies.

- Non-Volatile Memory—No batteries required to retain memory, even when scanner is unplugged. MN92 Integrated circuit utilized for memory.

- Scanner/Tape/Audio Output—Top secret cryptographic messages may be received and decoded by connecting the Bearcat 250's audio output jack to a compatible and armed decoding device even if it utilizes the National Bureau of Standards Data Encryption Standard (DES).

- Small Size—The Bearcat 250's small physical size lends itself for easy mounting when needed. With battery power, it is ideal for mobile monitoring applications. When used with a battery power supply and a tape recorder, the Bearcat 250 may be easily configured in the "case for unattended, unobtrusive surveillance.

- Auxiliary—Of/Off control of auxiliary equipment (tape deck, etc.) can be achieved when transmissions occur on programmed channels. Now, low enforcement agents can activate a tape recorder by remote control when a "body mic" transmission is received.

- Speed—Choice of either 15 or 5 channels per second scan speed for closer monitoring of desired frequencies.

- Limit—Sets the upper and lower frequencies of the unit controlled search range.

- Birdie-Lockout—Avoid annoying scanner "lockup" while searching. Scanner will skip over any programmed blank.

- Search Direction—Determines in which direction search will scan for faster return to desired frequencies.

- Direct Channel Access—Move directly to desired channel without stepping through all channels.

- Automatic Squelch—Obsoletes the need to manually select squelch for all local frequencies.

- Patented Track Tuning—Receive frequencies across the scan as the unit slides without skipping.übly, this is automatically adjusted to each frequency monitored.

- Selective Scan Delay—Adds a two-second delay to prevent missing transmissions when "calls" and "answers" are in the same frequency.

- Extended Frequency Coverage—With special programming techniques, the Bearcat 250 can monitor 125-146 MHz and 399-420 MHz in addition to the local frequencies for maximum flexibility.

- Simple Programming—Simply punch in the keyboard the frequencies you wish to monitor.

- Space Age Circuitry—Custom integrated circuits, a Bearcat trademark in scanning radios.

- Rolling Zeros—This Bearcat exclusive tells you which channel your scanner is monitoring.

- UL and FCC Certified—In addition to the "K" rating from Communications Electronics®, the UL and FCC certification assures you of quality design and manufacture.

The Communications Electronics® Bearcat® 250 is an extraordinary scanning radio offering the scanning radio professional and the knowledgeable scanning enthusiast more monitoring capabilities, more frequency versatility, than any other scanning radio available today. It utilizes patented Bearcat integrated circuitry, so there's never a need to purchase a new scanner. Most functions are instantly displayed in bright LED numbers and letters.

All known frequencies and pertinent scan instructions are memorized in an electronic memory, that operates when even the unit is unplugged from wall power, there is no need for batteries.

Not only will the Bearcat 250 capture more scanning action, it will "remember" where and how often it is called on. Now it's easy to identify which frequency is used most often. It will search automatically through a selected frequency range and memorize its search memory up to 64 active frequencies. To determine what frequency is being monitored, enter the search mode, simply push the recall button and they will be displayed one at a time. Press the enter key and any of these frequencies is entered automatically into the scan memory.

Bearcat® 250 Specifications:

Frequency Reception Range

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Range</th>
<th>UHF Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Band</td>
<td>32.5-50 MHz</td>
<td>166-134 MHz</td>
</tr>
<tr>
<td>High Band</td>
<td>440-512 MHz</td>
<td>420-512 MHz</td>
</tr>
</tbody>
</table>

Extended Frequency Range

With special programming techniques the Bearcat 250 will also cover the following frequency range with a reduction in interference:

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>VHF Band</td>
<td>125-156 MHz</td>
</tr>
<tr>
<td>UHF Band</td>
<td>399-420 MHz</td>
</tr>
</tbody>
</table>

Scanner Dimensions

<table>
<thead>
<tr>
<th>Width</th>
<th>Height</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.0 cm</td>
<td>7.2 cm</td>
<td>19.4 cm</td>
</tr>
</tbody>
</table>

Scanner Weight

<table>
<thead>
<tr>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.10 Kilograms</td>
</tr>
</tbody>
</table>

Power Requirements

- Voltage: 9.0 volts AC (AC) or 6.0 volts DC (DC)
- Current: 0.38 amperes (AC) or 2.0 watts (DC)
- Frequency: 50 or 60 hertz

Audio Quality

- S/N ratio: 25 dB @ 1000 Hz
- Harmonic distortion: 0.5% @ 1000 Hz
- Crosstalk: 60 dB (DC) or 80 dB (AC)

Imaging Resolution

- Minimum: 0.1 dB per 10 dB range in all bands
- Maximum: 0.5 dB per 10 dB range in all bands

Connectors

- Antenna: External antenna and speaker. AC & DC Power, Auxiliaries output feature which is delivered at the factory. Audio Output (VHS)
- Telephone: (5) 9-pin parallel output
- Power: 120 volt AC power input

Accessories

- Vehicle mounting bracket and hardware. AC & DC power cords

Order Your Bearcat 250 Today!

Communications Electronics

Box 1002, Ann Arbor, Michigan 48106 U.S.A.

As low as $259.00

in quantities below

The Incredible New Bearcat 250 Scanner, Leading the Way to Real Excitement

The Bearcat 250 has an auxiliary output feature which can be programmed to actuate external devices such as a light, alarm, etc.

One-Year Limited Warranty

With your Bearcat 250, we will send all accessories, a complete set of simple operating instructions and a one-year limited warranty. If service is ever required, simply send your scanner to one of our approved national service centers. When you purchase your scanner from Communications Electronics, you're buying from the world's leader in non-crystal scanners. We've sold more than 250,000 scanners to more than a million customers.

No obligation 31 day trial

Test our Bearcat 250 for 31 days. You must decide to keep it. If you do, you'll own the most sophisticated and technologically advanced scanner in the world. If for no reason you are not completely satisfied, return it in new condition with all accessories in 31 days, for a courteous and prompt refund (less shipping charges).

Advanced yet uncomplicated

Besides all the advanced features that put the Communications Electronics®, Bearcat 250 light years ahead of any other scanning radio, It has the superior engineering and "standard" features that have made Bearcat the greatest selling scanner in America. Bearcat's patented track tuning feature to full band coverage for maximum reception. And a single electronically switched antenna eliminates the need for an additional VHF band antenna. Bearcat's service manual is also available for $15.00 postpaid.

Buy with confidence

The Communications Electronics® Bearcat® 250 is an extraordinary scanning radio. It provides virtually any scanning function imaginable. The only scanner with a complete built-in monitoring monitor could require. The Bearcat 250 lets those who need to know, know more. To get the fastest delivery of your tailored synthesized Bearcat 250, call toll free at 1-800-521-4414, or send your order directly to our Bearcat Scanner Distribution Center. Mail orders to: Communications Electronics, Box 1002, Department PE12, Ann Arbor, Michigan 48106 U.S.A. Send $31.99 plus $5.00 for UPS shipping or $9.90 for UPS shipping (Michigan residents please add 4% sales tax). Foreign orders invited at a slightly higher cost. International customers please read shipping information (in our catalog) before ordering. Further price discounts are available to quantity buyers. Suggested list price is $499.95 but you can get your order directly to our Bearcat Scanner Distribution Center for $279.00, 96 units $269.00, +96 units $259.00, 192 units $259.00, 240 units $259.00, 320 units $259.00, 320 units $259.00, 252 units and up $259.00. Add $15.00 for each scanner ordered for UPS. S&H shipping charge for each scanner, on international shipments, or write for a pro-forma invoice. If you have a Master Charge or Visa card you may call and order toll free 800-521-4414 to place a credit card order. If you are outside the U.S. or in Michigan dial 313-994-4444. All order lines at Communications Electronics® are staffed 24 hours.

Since this Bearcat 250 is one of the few scanners ordered through our Scanner Distribution Center, you must order your Bearcat 250 today at no obligation, to assure prompt delivery.

**Auraprogramming Scanner Distribution Center and CE logos are trademarks of Communications Electronics Bearcat® is a registered trademark. Copyright "1978 Communications Electronics"
Feature Articles

24 DOLBY FM BROADCASTING / Julian Hirsch
59 AM STEREO—SOON ON THE AIR? / Joe DeAngelo
 Five proposals have been made to the FCC. One may be on the air in 1979
74 HOLIDAY SEASON ELECTRONIC GIFTS PE EDITORS WISH THEY'D RECEIVE
94 SHORTWAVE BROADCASTS IN ENGLISH TO NORTH AMERICA,
 NOV. 1978 TO MARCH 1979 / Glenn Hauser

Construction Articles

49 BUILD A COMPUTER-VS-YOU CHESS GAME / Bill Green
 Microprocessor-based game has three player levels.
66 SECURITY FOCUS: TWO ELECTRONIC SYSTEMS
 TO PROTECT YOU AND YOUR PROPERTY
66 AN INFRARED INTRUSION SYSTEM / Hank Olson
69 A PORTABLE ALARM FOR SINGLE ENTRIES / John Hollabaugh

Columns

14 STEREO SCENE / Ralph Hodges
 So You Want to Build . . . A Speaker?
78 SOLID STATE / Lou Garner
 Holiday Projects.
83 HOBBY SCENE Q & A / John McVeigh
84 EXPERIMENTER’S CORNER / Forrest M. Mims
 The 74154 Multiplexer.
90 COMPUTER BITS / Leslie Solomon
 Enhanced Graphics.

Julian Hirsch Audio Reports

32 LAFAYETTE MODEL LR-120Db AM/FM STEREO RECEIVER
38 DUAL MODEL C 819 CASSETTE DECK
42 CROWN MODEL DL2 DIGILOGIC CONTROL CENTER

Departments

4 EDITORIAL / Art Salsberg
 FCC Stamps on R-F Modulators.
6 LETTERS
8 NEW PRODUCTS
93 SOFTWARE SOURCES
98 OPERATION ASSIST
121 ADVERTISERS INDEX
122 NEWS HIGHLIGHTS IN BRIEF
Editorial

FCC STOMPS ON R-F MODULATORS

I felt it was just a matter of time before the FCC turned its attention to the wide-
spread use of r-f modulators for equipment other than video games. It finally did,
advISING that it plans to notify makers of r-f modulators that sales of the devices are
illegal!

The FCC is pointedly talking about adding separate r-f modulators to personal
computers, though the principle could well be carried over to security systems.
Most personal computers are not supplied with r-f modulators and TV antenna iso-
lation switches, as are TV video games. A modulator and computer combined,
however, are considered to be class i TV devices; separately, they do not fall into
this classification. Together, then, they must be approved by the FCC.

One does not require an r-f modulator to obtain video, of course. Simply use a
video monitor or connect the computer directly to the video amplifier circuit of a
conventional TV receiver. The former route is costlier, but you'll get the sharpest
pictures. This is especially important when viewing the small characters generated
by some computer systems. Home-brewing a video input jack on a TV receiver re-
quires circuit modification. It's less expensive than buying a monitor, could be dan-
gerous if modifying a "hot" chassis, and falls short in resolution as compared to a
video monitor since its video bandpass is, at best, 4.2 MHz. Both approaches pro-
vide better video quality than using a vhf oscillator at the antenna terminals of a TV
receiver.

But using an r-f modulator has its advantages: no muss, no fuss. The obvious
objection is that the modulator and/or isolation switch could cause interference to
other equipment, such as your neighbors' TV reception.

There are a host of problems that arise as a result of the FCC's starting a drive
for such Class i devices to be approved by the agency. Firstly, how does one com-
pel present and users of r-f modulators/personal computers to submit the package
to the FCC for type acceptance—especially when the four-figure evaluation charge
is sometimes more than the end user paid for his entire system.

If the personal computer maker were to incorporate an r-f modulator into its
equipment, the same up-front monies would have to be paid. Many of the smaller
manufacturers would find this to be prohibitively high. Moreover, governmental de-
lays in finalizing type acceptance (a not uncommon occurrence, judging from video
game and CB transmitter experiences with the FCC) or notification of failure might
be the kiss of death to a new, promising model; maybe even to the company itself.

Interestingly, there is no prohibition on the sale of r-f modulators in kit form, ac-

According to an FCC spokesman. So though it is illegal to sell these devices separate
from the video source in assembled form, one can still sell a kit version with impunity.

What continues to stress me and others is the lack of foresight on the part of
the FCC. The agency has ignored this problem and similar ones for what seems in-
terminable periods of time when it could have acted with dispatch as soon as it be-
came evident that Class i FCC rules, among others, were being violated.

Just imagine the penalties that would be extracted if private industry operated in
this manner. Ignore illegal use of one's trademark, for example, and it can be lost
forever. That's why Xerox's legal staff jumps on anyone using the name generical-
ly, such as in the incorrect expression, "I'm going to Xerox this page."

I'm surprised, too, that television receiver manufacturers haven't grasped an op-
portunity to meet growing needs of consumers by incorporating video input jacks
and audio output jacks into their better models. I suggested this to a TV manufac-
turer some three years ago. If the company had followed this counsel, it would
have made life easier for computer and audio enthusiasts (hi-fi audio is now avail-
able on network and public broadcast channels) as well as the FCC. It would have
given the manufacturer a leg up on competition, too.

Best Wishes for a Joyful Holiday Season
and a Happy New Year

POPULAR ELECTRONICS
Ohio Scientific has made a major breakthrough in small computer technology which dramatically reduces the cost of personal computers. By use of custom LSI micro circuits, we have managed to put a complete ultra high performance computer and all necessary interfaces, including the keyboard and power supply, on a single printed circuit board. This new computer actually has more features and higher performance than some home or personal computers that are selling today for up to $20,000. It is more powerful than computer systems which cost over $20,000 in the early 1970’s. This new machine can entertain your whole family with spectacular video games and cartoons, made possible by its ultra high resolution graphics and super fast BASIC. It can help you with your personal finances and budget planning, made possible by its decimal arithmetic ability and cassette data storage capabilities. It can assist you in school or industry as an ultra powerful scientific calculator, made possible by its advanced scientific math functions and built-in “immediate” mode which allows complex problem solving without programming! This computer can actually entertain your children while it educates them in topics ranging from naming the Presidents of the United States to tutoring trigonometry all possible by its fast extended BASIC, graphics and data storage ability.

The machine can be economically expanded to assist in your business, remotely control your home, communicate with other computers and perform many other tasks via the broadest line of expansion accessories in the microcomputer industry. This machine is super easy to use because it communicates naturally in BASIC, an English-like programming language. So you can easily instruct it or program it to do whatever you want, but you don’t have to. You don’t because it comes with a complete software library on cassette including programs for each application stated above. Ohio Scientific also offers you hundreds of inexpensive programs on ready-to-run cassettes. Program it yourself or just enjoy it; the choice is yours.

Ohio Scientific offers you this remarkable new computer two ways.

Challenger 1P $349
Fully packaged with power supply. Just plug in a video monitor or TV through an RF converter to be up and running.

Superboard II $279
For electronic buffs. Fully assembled and tested. Requires + 5V. at 3 Amps and a video monitor or TV with RF converter to be up and running.

Standard Features
- Uses the ultra powerful 6502 microprocessor
- 8K Microsoft BASIC-in-ROM
- Full feature BASIC runs faster than currently available personal computers and all 8080-based business computers.
- 4K static RAM on board expandable to 8K
- Full 53-key keyboard with upper/lower case and user programmability
- Kansas City standard audio cassette interface for high reliability
- Full machine code monitor and I/O utilities in ROM
- Direct access video display has 1K of dedicated memory (besides 4K user memory), features upper case, lower case, graphics and gaming characters for an effective screen resolution of up to 256 by 256 points. Normal TV’s with overscan display about 24 rows of 24 characters: without overscan up to 30 X 30 characters.

Extras
- Available expander board features 24K static RAM (additional), dual mini-floppy interface, port adapter for printer and modem and an OSI 48 line expansion interface.
- Assembler/editor and extended machine code monitor available.

Interested in a bigger system? Ohio Scientific offers 15 other models of microcomputer systems ranging from single board units to 74 million byte hard disk systems.

ORDER FORM
Order direct or from your local Ohio Scientific dealer.
☐ I’m interested. Send me information on your: ☐ Personal Computer's ☐ Business Systems
☐ Send me a Superboard II $279 enclosed
☐ Send me a Challenger 1P $349 enclosed
☐ Include 4 more K of RAM (8K Total) $69 more enclosed
Name ____________________________
Address ___
City_________________________State___________Zip_____________________
Payment by: BAC(VISA) Master Charge Money Order
Credit Card Account #: ________________________________
Expires __________ Interbank # (Master Charge) ______________________
TOTAL CHARGED OR ENCLOSED ____________________________
All orders shipped insured UPS unless otherwise requested FOB Aurora, OH

OHIO SCIENTIFIC
America’s Largest Full Line Microcomputer Company
1333 S. Chillicothe Road • Aurora, Ohio 44202 (216) 562-3101

DECEMBER 1978
Design of Digital Systems - six volumes

The contents of digital electronics technology will play an important role in your future. Calculators, digital watches and TV games are already commonplace. Now, microprocessors are generating a whole new range of products. Personal computers will be in widespread use very soon. Your TV, telephone and computer will combine to change your children's education, your job - your entire way of life.

WRITTEN BY EXPERTS

These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction will help you gain an understanding of the advantages of being faster and more thorough than classroom learning. You work at your own pace and respond by answering questions on each new piece of information before proceeding.

After completing these courses you will have broadened your career prospects as well as your understanding of the rapidly changing technological world around you.

The courses are designed much for the professional engineer as for the amateur enthusiast. You'll learn about microprocessors as well as personal computing - to mention all the other aspects of digital electronics design.

ADVANCED COURSE

DESIGN OF DIGITAL SYSTEMS

Design of Digital Systems is written for the engineer and serious hobbyist who wants to learn more about digital electronics. It is a large format volume - each 11" x 8 1/2" are packed with information, diagrams and questions designed to lead you step by step through number systems and Boolean algebra to memories, counters and simple arithmetic control, and finally to a complete understanding of the design and operation of microprocessors and computers.

The contents of Design of Digital Systems include:

Book 1: Octal, hexadecimal and binary number systems; representation of negative numbers; complementary systems; binary multiplication and division.

Book 2: OR and AND functions; logic gates; NOT, exclusive-OR, NAND, NOR and exclusive-NOR functions; multiple input gates; truth tables; DelftPaper's Laws; canonical forms; logic conventions; Karnaugh mapping; three-state and wired logic.

Book 3: Half adders and full adders; subtraction; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems.

Book 4: Flip-flops; shift registers; asynchronous counters; ring, Johnson and exclusive-OR feedback counter; random access memories (RAMs); read-only memories (ROMs).

Book 5: Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; control program structure.

Book 6: Central processing unit (CPU): memory organization; character representation; program storage; address modes; input/output systems; program interrupts; interrupt priorities; programming assembler; executive programs; operating systems and time-sharing.

BASIC COURSE

Here are two inexpensive programmed learning courses designed to keep you up-to-date in digital electronics.

Digital Computer Logic & Electronics

CONTENTS

Digital Computer Logic and Electronics is designed for the beginner. No mathematical knowledge other than simple arithmetic is assumed, though you should have an aptitude for logical thought. It consists of 4 volumes - each 11" x 8 1/2" - and serves as an introduction to the subject of digital electronics.

The contents include Binary, decimal and octal number systems; conversion between number systems; AND, OR, NOR and NAND gates and inverters; Boolean algebra and truth tables; DelftPaper's Laws; Design of logical circuits using NOR gates; RS and JK flip-flops; binary counters, shift registers and halfadders.

NO RISK GUARANTEE

There is absolutely no risk to you. If you're not completely satisfied with your course, simply return it to GFN within 30 days. We'll send you a prompt, full refund, plus return postage.

TAX DEDUCTIBLE

In most cases, the full cost of GFN's courses can be tax-deductible expense.

HOW TO ORDER

To order by credit card, call GFN's toll-free number - (800) 331-1000 - and quote your check or money order (payable to GFN Industries, Inc.) to the book below.

Prices include overseas surface mail postage; Air Mail: additional costs (10 volumes); Caribbean: $100; Europe: $15; Africa, South America: $20, Australia, Asia: $25, or write for exact quote.

Write for educational discounts, quantity discounts and dealer prices.

LOW PRICES - SAVE $5

You ship properly from stock. There are no extras - we pay all shipping costs, even per year sales tax where required. And if you order both courses, you save $5. Order at no obligation today.

Design of Digital Systems: $19.95; 6 volumes.

Digital Computer Logic: $14.95; 4 volumes.

Both courses: 10 volumes: $29.90

Personal Computers & Microprocessing

Here are two inexpensive programmed learning courses designed to keep you up-to-date in digital electronics.

GFN Industries, Inc.
Suite 400-U
987 Seventh Ave.
New York, N.Y. 10019
Call TOLL-FREE (800) 331-1000 (orders only)

SOURCE FOR DUAL OP AMP

The address of the supplier in the U.S. A., of the TBA231 dual op amp (IC1 in my article "Listen to a New World of Sounds with Ultrasonic Detector," July 1978) has been changed to SG-ATES Semiconductor Corp., 79 Massasoit St., Waltham, MA 02154; Tel: 617-891-3710. Note also that the Fairchild μA739 can be used. —Brian Dance.

Source for Dual Op Amp

The address of the supplier in the U.S. A., of the TBA231 dual op amp (IC1 in my article "Listen to a New World of Sounds with Ultrasonic Detector," July 1978) has been changed to SG-ATES Semiconductor Corp., 79 Massasoit St., Waltham, MA 02154; Tel: 617-891-3710. Note also that the Fairchild μA739 can be used. —Brian Dance.

ADD A ZENER DIODE

After building the "Compressor Guard" (June 1978), I encountered a problem. The red LED can draw enough current to prevent the relay from dropping out. The LEDs would change, but the relay would remain energized. I solved the problem by installing an 8.2-volt zener diode (1N756 or similar) in series with LED1. The cathode end of the zener diode goes to the LED2/03 relay junction, while the anode end goes to the anode terminal of LED1. —James P. Donovan, Louisville, KY.

SMOKE DETECTOR SOURCES

In the September 1978 "Solid State" column, you mentioned only Motorola and National as suppliers of ICs for smoke detectors. The largest two IC manufacturers are in fact Siliconix and Supertex. Also, you mentioned ionization chamber detectors but did not mention where the chambers themselves can be purchased. The Amersham Corp. is the largest supplier of radioactive products in the world and the leading supplier of both radiation sources and ionization chambers for smoke detectors. —G. W. Dunbar, Jr., Amersham Corp., Arlington Heights, IL.

HI-FI TV SOUND

The article "Now You Can Enjoy Hi-Fi Television Sound" (September 1978) presents some misconceptions regarding the development of diplexing for television audio. Work on the new diplexing system, which went into service on January 13, 1978 (prior to the Super Bowl), began at the recommendation of a joint TV industry/Bell System committee. Bell Laboratories provided the overall system engineering and Western Electric awarded the contract for the diplexer to Farinon.

Bell System and independent telephone companies installed the diplexers at TV stations. Pools of portable diplexers have been established under the management of the A. T. & T. Long Lines Dept. to be used in the provision of part-time (occasional) service to network and non-network customers. The new method does indeed deliver high-fidelity FM sound and has resulted in substantial cost saving to A. T. & T. Present plans call for offering the second audio channel in the near future, leaving open the option of stereophonic sound for TV. —H. J. Cohlan, A. T. & T.

FILTER DOES THE JOB

I had been trying to eliminate a loud, high-pitched alternator whine coming through my automobile FM tape deck for over a year and a half. I tried every commercial and homebrew filter I could think of without reducing the level at all. Then I built the "Super Audio Filter" featured in your September 1978 issue, and have been listening to whine-free stereo sound ever since. —John D. McCormick, Laurel, MS.

UPGRADE KEYPAD DESIGN

"The Versatile Keypad" (August 1978) was a fine article on keypads. I have a suggestion to add, however. One should consider using a 74C92 IC in the design. This chip decodes the switch matrix without diodes and features internal scanning and debouncing. It can also latch the most recent entry from the pad onto the output lines. The 74C922 is available from many mail-order sources for less than $6.00. A typical setup for this chip is shown in the diagram. —Philip Thompson, Princeton, NJ.
MOST MUSIC IS RECORDED UNDER IDEAL CONDITIONS. UNFORTUNATELY, IT USUALLY ISN'T PLAYED BACK THAT WAY.

Recording studios are designed for perfect sound reproduction. Your living room wasn't. So even if you own the world's best hi fi system, you may not be hearing your music at its fullest potential.

Your rugs may be soaking up the highs. Your high ceilings or blank walls can make every singer sound as if he's singing in an echo chamber. And if your room is stuffed with overstuffed furniture, even live recordings can sound lifeless.

At Pioneer, we've developed a simple, and inexpensive way to avoid redecorating with an audio consultant: the Pioneer SG9500 graphic equalizer.

In brief, the SG9500 plugs into the back of your receiver or amplifier and acts as a massive tone control. It then divides the musical spectrum up into ten different frequency bands, and gives you a separate level control that lets you add or subtract up to ten decibels to each frequency.

So you can cut the exact frequencies that are rattling the windows. Or boost the bass your bookcases are soaking up.

Or simply remix the music to compensate for your own musical tastes, or bad speaker placement.

Of course, if you're not lucky enough to be blessed with components that are all of Pioneer quality, you can also use the SG9500 to overcome deficiencies in the rest of your audio equipment. Like tape hiss in your cassette deck. Or audible rumble in your turntable.

You can hear the difference the SG9500 can make at almost any Pioneer dealer.

Your living room may not have been built like a recording studio.

But with an SG9500, at least it can sound like one.

PIONEER
We bring it back alive.
New Products
Additional information on new products covered in this section is available from the manufacturers. Either circle the item's code number on the Free Information Card or write to the manufacturer at the address given.

SAE Preamp/Amps
SAE's Model 2922 amplifier (a combination of the Model 2900 preamp and the Model 2200 power amp) is rated to deliver 100 watts/channel into 8 ohms at no more than 0.05% THD and features a parametric equalizer for creating virtually any sonic effect. The preamp and amplifier are actually separate sections including a power supply. The only parts in common are the chassis and the power switch. Other features include tape/line equalization for tape recording flexibility, tape/line filters to protect tape recordings, a two-stage phono circuit that is said to eliminate TIM characteristics, and separate bass, treble and midrange controls for each channel. Address: Scientific Audio Electronics, Inc., 701 E. Macy St., Los Angeles, CA 90012.
CIRCLE NO. 92 ON READER SERVICE CARD

Multicore Solder Sampler Kit
A kit of five types of solder, each for a particular application, is available from Multicore Solders. Packaged in feed-out metal dispenser packs, the kit includes solders for stainless steel and jewelry, plumbing, sheet metal and general metal joining, electrical wiring, electronic assemblies and pc boards, and aluminum. The kit is intended to give the user a good idea of the purposes for which the various alloys and flux combinations were formulated. Included with each Sampler Kit is a "Solder User's Guide." $8.95. Address: Multicore Solders, Westbury, NY 11590.
CIRCLE NO. 93 ON READER SERVICE CARD

One-Hand Keyboard
A one-handed keyboard for computers, terminals, displays, and other 128-character ASCII- or ISO-coded devices is available from NewO in both right- and left-hand models. It features snap-action switches, key-pressed signals, and strobe pulses to signal that data is available. The small keyboard is for touch typing and data entry where a free hand is needed. The Writehander™ keyboard can be interfaced with any computer, terminal, printer, or other device that accepts 7-bit code signals and provides the nominal power required. Keys are mounted on a 5" (12.7-cm) diameter hemisphere that conveniently accommodates the human hand. The shape and key locations have been designed so that the fingers and thumb naturally fall on the appropriate switches. There are four models: right-hand, left-hand, large (thumb to little-finger span 8½" or more), and small. Power required is 5 volts at 52 mA dc. Address: NewO Company, 246 Waverly Hays Dr., Palo Alto, CA 94303.
CIRCLE NO. 94 ON READER SERVICE CARD

Pioneer AM/FM Stereo Receiver
The Model SX-880 AM/FM stereo receiver from Pioneer is rated at 80 watts/channel into 8 ohms, over 20 to 20,000 Hz at no more than 0.05% total harmonic distortion.

Portable Dual-Trace Oscilloscope
Ancrona Corp. has announced availability of its new Model TTM 303 dual-trace, triggered-sweep portable oscilloscope with three power modes. The scope has a 15-MHz vertical bandwidth and can be operated from the ac line (90 to 260 volts at 48 to 440 Hz), internal NiCd battery, or external dc (11 to 30 volts) source. It features a 3" (7.7-cm) CRT, 5x magnifier, X-Y operation, and compact size. Overall size is less than 11¾" x 8¾" x 4½" (29.8 x 22.2 x 10.2 cm) and weight is 10 lb (4.5 kg). $895. Address: Ancrona Corp., P.O. Box 2208, Culver City, CA 90230.
CIRCLE NO. 95 ON READER SERVICE CARD

PAL Firesticks
The latest models of the PAL Firestick top-
(Continued on page 10)
Measure resistance to .01Ω at a price that has no resistance at all.

The new B&K-PRECISION Model 2810 may well be the highest resolution 3½-digit DMM available. It is certainly the lowest cost DMM to provide .01Ω resolution. With ohms resolution ten times greater than most DMM's, the 2810 allows you to detect shorted windings in coils, transformers or motors.

You'll also be able to accurately check the low contact resistance of switches, relays, breaker points or connectors. Many poor solder connections or PC board imperfections can also be located.

The 2810 is a full-feature DMM providing selectable high-/low-power ohms, auto-zeroing and 100% overrange reading. Twenty-nine ranges provide maximum readings to 1500 volts DC, 20 amps, and 20 megohms. All ranges are fully overload protected. Typical DC accuracy is 0.5% with resolution to 100µV. And unlike many electronic voltmeters, the 2810 is RFI shielded and can be accurately used in high R-F energy fields.

B&K-PRECISION also has a full complement of optional accessories for the 2810. Accessories include a carrying case, wire tilt stand, AC adapter/charger, high-voltage probe, direct/isolation probe, NiCad batteries and 10-amp current shunt.

At $130.00, the 2810 is a standout value in today's DMM jungle. Don't resist the temptation...contact your local distributor for immediate delivery.
You have your own calculator.
Why not a DMM?

Finally, a digital multimeter that's yours, just like your pocket calculator, and more useful. Only $169.

You pack only 13 ozs. in your pocket or service kit, but size is deceptive. The 8020A has more useful features than any other multimeter available—at any price! Features like 26 ranges and seven functions, including conductance, 2000-count resolution. Hi/lo power ohms.

And it's rugged. The high-impact case protects a minimum number of component parts (47 in all), and they're all readily available from any of the worldwide Fluke service centers. Your 8020A is factory calibrated by NBS traceable equipment. And we guarantee it'll live up to published specs for a full year.

The 8020A is a true field instrument, designed with a highly readable LCD display, and inexpensive 9V transistor battery power for continuous use up to 200 hours. Reliability, quality and value: that's Fluke tradition.

To get your hands on one, call (800) 426-0381*, toll free. We'll tell you the location of the closest Fluke office or distributor for a personal hands-on feel for the best value in DMMs going. Price U.S. only.

*Alaska, Hawaii and Washington residents — please call (206) 774-2481.

The DMM for Home Electronics Experts.

FLUKE

CIRCLE NO. 16 ON FREE INFORMATION CARD

Wrist Static Strap
This new wrist grounding strap to eliminate static discharges that could damage MOS devices is 48" long, with a built-in, encapsulated 270,000 ohm or 1 megohm resistor. The wrist contact section is an adjustable bead chain, with a swivel to prevent tangling and twisting. Address: Controlled Static Co., 9846 Jersey Ave., Santa Fe Springs, CA 90670

Akai Open-Reel Tape Deck
The GX-267D open-reel tape deck from Akai has an ac-servo, direct-drive capstan motor and two reel motors. Tape speed is 3¾ or 7½ ips and the deck can be operated either vertically or horizontally. Function controls are solenoid operated for record/playback in both directions. Other features include the use of GX glass and crystal ferrite heads; dual VU meters; 4-digit tape counter; pause and timer-set recording. (Continued on page 12)
Faster, easier and more economical digital testing. That's what CSC's Logic Probes are all about. And that's what engineers, technicians and hobbyists need, to deal with the increased use and complexity of digital circuits.

Unlike oscilloscopes, meters and other conventional test equipment, CSC probes are logic-state oriented: Just touch the probe to a circuit node and instantly read logic state, detect level transitions, check duty cycles. And store high-speed, low-rep-rate events that even fast scopes miss.

By accurately detecting the state of individual logic elements without removing ICs or cutting copper paths, CSC's circuit-powered, multi-family Logic Probes locate over 95% of circuit problems in minutes instead of hours. And they're easy to use. Simply connect two clip leads across the power supply, touch the probe tip to a node and watch the LEDs.

LP-1 LOGIC PROBE. $44.95

LP-1 has a minimum detectable pulse width of 50 nanoseconds and maximum input frequency of 10 MHz. This 100 K ohm probe is an inexpensive workhorse for any shop, lab or field service tool kit. It detects high-speed pulse trains or one-shot events and stores pulse or level transitions, replacing separate level detectors, pulse detectors, pulse stretchers and pulse memory devices. All, for less than the price of a DVM.

LP-2 LOGIC PROBE. $24.95

LP-2 performs the same basic functions as the LP-1, but for slower-speed circuits and without pulse memory capability. Handling a minimum pulse width of 300 nanoseconds, this 300 K ohm probe is the economical way to test circuits up to 1.5 MHz. It detects pulse trains or single-shot events in TTL, DTL, HTL and CMOS circuits, replacing separate pulse detectors, pulse stretchers and node state analyzers.

LP-3 LOGIC PROBE. $69.95

Our LP-3 has all the features of the LP-1 plus extra high speed. It captures pulses as narrow as 10 nanoseconds, and monitors pulse trains to over 50 MHz. Giving you the essential capabilities of a high-quality memory scope at about 1/100th the cost. LP-3 captures one-shot or low-rep-rate-events all-but-impossible to detect any other way. All without the weight, bulk, inconvenience and power consumption of conventional methods.

Use CSC's highly versatile logic probes for testing, debugging or servicing any type of digital circuit. They give you a lot of information about IC circuit conditions... and help you do more in less time. For less money.

NEED MORE INFORMATION? CALL 203-624-3103 to order, or for the name of your local distributor. Prices slightly higher outside U.S.A.

© 1978, Continental Specialties Corporation . Prices, specifications, subject to change without notice.

Manufacturer's suggested retail.
ord mute controls; and single-direction, auto, or continuous auto-reverse play. Wow and flutter are claimed to be less than 0.06% rms at 7 1/2 ips, with S/N better than 56 dB, distortion less than 0.5% and frequency response 30 to 25,000 Hz ± 3 dB at 7 1/2 ips. Dimensions are: 18.5”H x 17.3”W x 9.8”D (47 x 44 x 25 cm). Weight is 45.5 lb (21 kg). Approximate price is $800. Address: Akai America, Ltd., 2139 E. Del Amo Blvd., Box 6010, Compton, CA 90224.

CIRCLE NO. 98 ON READER SERVICE CARD

Sylvania Cables
For TV Repairs

Sylvania's "Chek-A-Board" extension cable kits enable technicians to service solid-state TV receiver modules without removing the chassis. Designed for use with RCA and Zenith modular TV receivers, the kits contain cables with female connectors for modules on one end and mating chassis connectors on the other end. Using the cables, an operating module can be brought out onto the workbench for testing and repairs. The extension cables feature plated-alloy conductors on heavy-gauge fiberglass printed circuit boards and consist of stranded multilead ribbon cable. Each side of the cable is color-coded differently to assure proper orientation. The cables are 24” (61 cm) long. Address: General Telephone & Electronics Corp., Public Affairs Dept., 1 Stamford Forum, Stamford, CT 06904.

Osawa Tonearm

The Osawa Model AC-300MKII tonearm features a single needle-point support, adjustable oil-damping system, and interchangeable plug-in arm stems to optimize performance for a wide variety of phono cartridges. The arm support system is designed to eliminate resonance effects associated with conventional gimbal, knife-edge, and ball-bearing mountings. A knob atop the arm permits the user to adjust the oil damping system to flatten out the low-frequency resonant peak created by the stylus/tonearm combination. Elimination of the headshell concentrates the arm's mass at the base of the arm to reduce effective mass. It also permits interchanging the standard straight arm stem with a selection of S-shaped, other straight-line, and straight carbon graphite arm stems. An adjustable antiskating control, oil-damped cueing lever, and locking rest-stop are provided. $325 for tonearm, $60 arm stem. Address: Osawa & Co., 521 Fifth Ave., N.Y., N.Y.

CIRCLE NO. 99 ON READER SERVICE CARD

EICO 3-Digit Digital Multimeter

The EICO Model 272 portable digital multimeter has a claimed accuracy of 0.5% on dc volts and 1.0% on all other functions. It measures to 1000 volts dc, 600 volts ac, 1000 mA (1 A) dc and ac, and 1 megohm resistance. Its 0.3” (7.6-mm) LED numeric display flashes when an overrange condition exists and automatically displays polarity on dc. Input impedance is 10 meg-ohms. The DMM is powered by four AA cells (supplied), and a testpoint for checking battery condition is built-in. Dimensions are 6”L x 3.75”W x 3.75”D (15.2 x 9.5 x 9.4 cm). $69.95. Address: EICO Electronic Instrument Co., Inc., 108 New South Rd., Hicksville, NY 11801.

CIRCLE NO. 100 ON READER SERVICE CARD

Suburban Personal Security Alarm

The "Protektor" is the name of a solid-state, battery-powered personal security and safety alarm from Suburban Electronics Co. It is totally self-contained, can be used on doors, medicine cabinets, in vehicles, in the office, and even on luggage, camera bags, handbags, and briefcases. The Protektor can be armed simply by setting a "secret" code on two combination wheels. Then the slightest movement will trigger it to emit a piercing alarm sound. $29.95. Address: Suburban Electronics Co., 1250 W. Dorothy Ln., Dayton, OH 45409.
The priceless gift of learning now has a price: $599. And a name: the Radio Shack TRS-80 Microcomputer. And now, at last, your child has a chance to discover Tomorrow on Christmas morning.

"Tomorrow" is an electronic world, based on computers — and it's already here. In it your child can be a number in a machine, like a robot. Because he or she does not understand either the number or the machine. Or your child can be pleasurably elevated into this brave new world with a gift that has only become affordable in recent months.

Quotes from Fascinated Customers

The Radio Shack personal computer surely ought to be on the gift list of every concerned parent, despite that $599 — though less than a moped — is costlier than an electric train. A father writes to tell us "this investment is one of the most significant in value to our family and to the future education of our child that we have ever seen."

A Californian, aged 12, writes to tell us that he's "too young to go to work for Radio Shack ... but maybe we could work a deal where I could write some programs for you." An educator thanks us for "making possible the tapping of human innovation and creativity on an unprecedented scale.

Advice for Parents Who Care

In your lifetime the possibility of owning or giving a computer — up to now — was unthinkable. A computer? That can teach? Remember? Display on its own screen? Play games? Complete with a standard typewriter keyboard? Unthinkable — up to now.

But now the Tomorrow Machine is not only thinkable but practical, affordable and available at every Radio Shack store and participating dealer. The TRS-80 personal computer system? For the kids? For Christmas? Crazy? Like a fox!

Radio Shack

A Division of Tandy Corporation
Fort Worth, Texas 76102
FROM ALL indications, there are some audio enthusiasts who like to build speakers, though they are in the minority. Let's assume that you are one. What's your motive? Is it: (1) A plan to utilize that expensive table cutting saw you incautiously bought last year? (2) A wish to get more creatively involved with your high-fidelity interest? (3) A desire to assemble a real killer that will make the neighbors wish you had never been born? (4) Part of an interior decorating scheme. (5) An economy measure? (6) An irresistible compulsion to challenge the "state of the art"?

None of the above is really a bad idea; even (6) has its possibilities (rank amateurs have come up with some astonishingly good speaker systems), although they are remote. And it is certainly true that anything you create yourself that actually works is likely to give more satisfaction than a store-bought item. (My last speaker-system design, which provided several years of genuine listening pleasure, was finally sold to a composer living somewhere in the north woods. He immediately altered the crossover network and disconnected the mid-range driver—a move that, much as I loved that loudspeaker, I have to admit was an excellent idea.) But when it comes to sheer practicalities, there are certainly some factors to give one pause.

Take economy, for example. If you start from scratch, you face the problem of acquiring raw drivers and crossover-network components at the quantity-discount prices a mass producer can command—if he doesn't actually make his own drivers and crossovers. And what about enclosures? You will pay rather more than he does for veneered particle board, but it is true that you can beat him out if you construct your cabinets out of concrete (a time-honored and effective technique) or some other material next to impossible for him to ship. In the end, however, he has probably got you.

Then again, you can avoid starting from scratch. Loudspeaker kits are sold by Altec, Audionics, Electro-Voice, Heath, I. M. Fried, JBL, Speakerlab, and no doubt a host of others. A kit is either a set of raw drivers, a crossover network, and comprehensive instructions for building an enclosure, or all of the aforementioned plus a knocked-down enclosure that you put together and finish yourself. Of course, in either case, you abandon the creative role of designer and become instead a loudspeaker assembler. But on the positive side, you cannot go wrong. The instructions you are given—at least in the case of the suppliers listed previously—will infallibly result in a pre-proven design with distinguished performance credentials.

GOING WRONG. Carrying things beyond the kit stage takes us into the land of unpreditable. For example, say you have found some unused space around the house—a dispensable closet or simply the empty area behind the walls—that seems appropriate for a built-in speaker system. Proceeding methodically, you calculate the volume of this space, alter it if necessary, and go about selecting a woofer designed to work into such a volume. (Probably you would be thinking in terms of an air-suspension design, but a ported configuration is also a possibility.) You duly consult the woofer's manufacturer about the type and amount of damping material the space should contain (in most cases you can expect excellent cooperation from the woofer's manufacturer as far as such advice goes; some of the larger manufacturers even keep a staff on hand to answer customer questions), and you throw the whole thing together in a weekend, having chosen a midrange and/or tweeter and the necessary crossover compo-

(Continued on page 20)
The Nashville Production Co. uses Stanton exclusively throughout its two Disc Cutting Studios. Naturally, they are mostly involved with Country Music, but they also get into Pop and Rock.

John Eberle, Studio Manager, states that they use the Stanton Calibrated 681A "for cutting system calibration, including level and frequency response" ... and they use the Calibrated 681 Triple-E in their Disc Cutting operation ... with plans to soon move up to the new Professional Calibration Standard, Stanton's 881S.

Each Stanton 681 series and 881S cartridge, is guaranteed to meet its specifications within exacting limits, and each one boasts the most meaningful warranty ... an individually calibrated test result is packed with each unit.

Whether your usage involves recording, broadcasting, or home entertainment, your choice should be the choice of the Professionals ... the Stanton Calibrated Cartridge.

For further information write to: Stanton Magnetics; Terminal Drive, Plainview, N. Y. 11803
NRI training in TV and Audio Servicing keeps up with the state of the art. Now you can learn to service video cassette and disc systems.
You build color TV, hi-fi, professional instruments.

Now, in addition to learning color TV and audio systems servicing, you get state-of-the-art lessons in maintaining and repairing video cassette recorders, playbacks and the amazing new video disc players, both mechanical and laser-beam types.

Learn at Home in Your Spare Time

And you learn right at home, at your own convenience, without quitting your job or going to night school. NRI “bite-size” lessons make learning easier... NRI “hands-on” training gives you practical bench experience as you progress. You not only get theory, you actually build and test electronic circuits, a complete audio system, even a color TV.

Build Color TV, 4-Channel Audio

As part of your training in NRI’s Master Course in TV and Audio Servicing, you actually assemble and keep NRI’s exclusive, designed-for-learning 25” diagonal color TV. As you build it, you introduce and correct electronic faults, study circuits to gain a better understanding of what they’re for and how they interface with others.

Likewise, as part of your audio training, you construct a 4-channel stereo amplifier and tuner, complete with cabinet and speakers. You even assemble professional-grade test instruments, so you know what makes them tick, too. Then you use them in your course, keep them for actual TV and audio servicing work.

NRI Includes the Instruments You Need

You start by building a transistorized volt-ohm meter which you use for basic training in electronic theory. Then you assemble a digital CMOS frequency counter for use with lessons in analog and digital circuitry, FM principles. You also get an integrated circuit TV pattern generator, and an advanced design solid-state 5” triggered-sweep oscilloscope. Use them for learning, then use them for earning.

NRI Training Works... Choice of the Pros

More than 60 years and a million students later, NRI is still first choice in home study schools. A national survey of successful TV repairmen shows that more than half have had home study training, and among them, it’s NRI 3 to 1 over any other school. (Summary of survey on request.)

That’s because you can’t beat the training and you can’t beat the value! For hundreds of dollars less than competing schools, NRI gives you both color TV and audio... and now includes training in video cassette and disc systems. Send for our free catalog and see for yourself why NRI works for you.

Free Catalog... No Salesman Will Call

Our free 100-page catalog completely describes all the equipment and every lesson. You can choose from five different TV and audio courses. Or explore the opportunities in other NRI home study courses like Computer Technology, CB and Mobile Radio, Aircraft and Marine Radio, or Complete Communications. Send the postage-paid card today and get a head start on the state of the art.

If card has been removed, write to:

NRI-Schools
McGraw Hill Continuing Education Center
3939 Wisconsin Ave.
Washington, D.C. 20016

Lear... at home at your convenience.
ments by similarly methodical means. Great? Well, maybe.

Times have changed since this form of installation was considered the last word in speaker-system sophistication. Panel resonances have been discovered, and some of them have been reported to exceed the output of the actual driver by several decibels—in a conventionally designed and executed speaker-system enclosure! A wall or a closet door is not a speaker enclosure. In most cases it is not nearly as stiff and physically inert as it needs to be for this application. I can recall one pathetic instance of a poor chap trying to make part of the crawl space under his eaves serve as an enclosure. After doing everything he could to keep the wall from "taking off!" at its own particular set of resonance frequencies he finally bought a pair of already-enclosed speaker systems and built them into the crawl-space areas. Evidently he built them in too solidly because the wall still took off in much the same way. The only reasonable solution was to dig the systems out and use them free-standing in the room, just as almost everybody else does.

But this is not necessarily meant as discouragement. There would seem to be some very persuasive advantages to built-in systems of this type. However, there are also unpredictables.

Walking the Wild Side. You can't readily buy a speaker system incorporating something like Electro-Voice's 30-inch woofer designed for the discontinued Patrician II, but according to last report you can still buy the woofer itself. This is about the heaviest artillery available for sound reproduction, and it enjoys considerable popularity in overseas markets as a subwoofer. Sometimes it is installed in the ceiling so that it can use the entire room above as an enclosure.

Since most recordings do not incorporate much information below about 40 Hz (and most music doesn't, either), the capabilities of such an enormous device are not going to be realized very often, except in the reproduction of noise from record warps and faulty disc electroforming. Still, for those who make their own master tapes or listen to material of comparable quality, an almost unlimited low-frequency response has proved useful in recapturing the full sense of the reality of the original event. There are even those who say that it's very essential.

You'll wind up paying many hundreds of dollars to buy the Electro-Voice behemoth (or its 24-inch Hartley counterpart), enclose it, and work out a crossover network that will properly interface it with the rest of your system. It's not a bad idea if you can afford it, and if the most arresting sense of sonic reality is what you're after. But be warned that typical recorded material is going to be a limiting factor, and that anything found below 40 Hz on most records is going to be something you'd probably rather not hear anyway.

As regards other do-it-yourself monster speaker systems, it strikes me that most of them are best left undone. A discotheque in the Roppongi district of Tokyo is about as far as you can go in this direction. Internally it has been plaster-formed in a cave-like shape, and embedded in virtually every available surface is a mid-range or tweeter, usually of the compression type and fitted with a flared horn. It is truly a junkyard of speakers, and it sounds like it.

If you pay over—to be on the conservative side—$300 apiece for a pair of good loudspeakers today, and fit them with an amplifier of suitable (high) power, you are going to be able to generate sound levels you won't be able to stay in the room with, provided you don't live in a cathedral. And the sound will be—or should be—good.

State of the art? There are two ways of designing a state-of-the-art speaker system: listening or measuring. The former has generally been the better up to now, but the latter shows signs of catching up.

Some years ago a friend of mine decided to try this approach; and since he was a not-very-distant neighbor, I had an occasional chance to look in and see how he was going about it. First he bought or otherwise laid hands on just about every driver in existence—surely an investment of several thousands of dollars. Then he started testing these drivers, mostly by setting them up in various configurations and inviting people in to listen, but also by playing them to a microphone and examining the results on an oscilloscope. All of this was immensely time-consuming and requiring of the closest concentration. Occasionally, this chap could be seen carrying a baffled set of LPs, most of them remarkable for their bad sound, to the home of a friend who had just acquired some exotic new speaker he hadn't had a chance to hear. (His deliberate choice of bad-sounding records is interesting in itself. A good record sounds like music, and one tends to listen to it as music and overlook any deficiencies in the reproduced sound. But a really bad record—one that has been over-equalized and/or grotesquely miked and mixed—sounds like a parody of music. Then provided one is sufficiently familiar with the record, it is possible to be very objective about just how accurately that badness is reproduced.)

Ultimately the speaker got built, and today it is generally considered to be among the best sound-reproduction devices that any reasonable amount of money can buy. Could any of us mere mortals hope to duplicate this design feat? I think so, given enough time. My friend's engineering credentials, practical experience, and highly developed intuition for this sort of work surely speeded up the process considerably, but all he really did was listen to his speakers and listen to the opinions of others he played them for. The applied engineering that went into the project could be duplicated by anyone who read the appropriate books and technical journals with an alert mind. However, the basic engineering seems to be a great deal less than the whole story, as is eloquently demonstrated by the great horde of available speakers that do not really give much pleasure to some people but were created by first-rate engineers in first-rate laboratories.

However, this designer had something else going for him as well: a "master plan." He had an idea in mind that had been overlooked or underemphasized by other speaker designers. If you're looking for a similar plan, here are some ideas that are up for grabs.

(1) Speaker systems are not necessarily designed from the bottom up these days. Dealing with the woofer and its enclosure requirements has now become more of a science than an art, and there are numerous computers that will come up with the magic numbers in no time. Matching the low-frequency part of the system to your listening room remains the greatest impediment to optimum results.

(2) As you consider what drivers you're going to use for the midrange and tweeter portions of the system (we'll assume you're aiming for a three-way system, that being somewhat easier to control in the critical midrange area than a two-way), consider dispersion and resonance characteristics of the individual drivers. Unless you have instruments above and beyond those at the disposal of the typical home constructor, you're
More kids wish for Koss stereophones than any other headphone."

Santa Claus
Audio Expert North Pole

Nearly every letter I receive at the North Pole wishes for Koss stereophones."

May all their wishes come true! And, they can. Because they're wishing for the world's most asked for stereophones. Indeed ever since Koss invented the stereophone, Koss has led the way as the innovator and developer of the state of the art in personal and private listening. Today, that leadership continues as strong and vibrant as ever . . . producing a full line of stereophones you truly have to hear to believe.

Fulfilling wishes is never very easy, but the superior quality and diversity of models makes any wish for Koss a pleasure to fulfill."

We believe in Santa Claus. Don't you?

Of course, I read all the test reports, but never have I read such glowing reports as I have on the Koss Pro/4 Triple A. And when I heard them they really brought a twinkle to my eyes.

The world famous Pro/4 Double A was a tough act to follow but the Pro/4 Triple A's extra large voice coil and oversized diaphragm offer an incredibly beautiful, full-bandwidth, dynamic response over the entire frequency range of 10 Hz to 22 kHz.

The Triple A's are so comfortable and seal out ambient noise so well that even I drift off with visions of sugar plums dancing in my head.

The Triple A's special, human-engineered, direct-contoured Pneumalite® ear cushions create a gentle yet perfect seal for flat, low bass response to below audibility as well as sealing out ambient noise. And the unique Koss dual suspension headband makes wearing the Triple A's as much of a pleasure as listening to them.

Dash away, dash away, dash away all!

Dash away to your audio dealer and ask for a live demonstration of the Sound of Koss. Or write, c/o Santa Claus, for our free full-color catalog. We think you'll agree with Santa Claus that when it comes to Koss stereophones and loudspeakers: "hearing is believing."
going to have to rely on guesswork and manufacturer's advice here. But the essential idea is to limit each driver's operating range to frequencies no higher than an octave below the point at which a major diaphragm-breakup mode sets in, and to wavelengths no shorter than those that can be adequately dispersed by the effective radiating area of the driver's diaphragm. According to many experts, strict attention to these rules will result in a "seamless" transition between midrange and tweeter. And, of course, the father you can keep away from the problematic higher frequencies the better.

Also, naturally, you'll have to consider the driver's low-frequency limitations, essentially dictated by its excursion capabilities as translated into acoustic output. (You didn't think this business was going to be easy, did you?)

(3) The simplest possible crossover network is likely to be the best, according to many authorities, because it will keep the acoustic phase angle between drivers relatively smooth in transition. The trouble is that the simplest crossover network will give you a mere 6-dB-per-octave rolloff, which means you'll pay a price in various types of distortion unless you can keep well away from the troublesome higher frequencies mentioned above. Here it becomes necessary to make certain difficult design decisions. The best decision should, in theory, result in the best loudspeaker.

And, oh yes, don't make the mistake of believing that any two drivers of the same make and model will perform identically. They often won't.

(4) Once you have decided on which enclosure principle you're going to use for the woofer, you should be able to get adequate guidance on its construction from the manufacturer. The rest is carpentry. But two factors are critical. The first is to make the box just as stiff and inert as possible. The second is to make it virtually disappear as far as the midrange and tweeter are concerned. Many experts now agree that acoustic diffraction effects are one of the major causes of loudspeaker coloration. You can combat these by eliminating all edges, moldings, and other sharp transitions in the cabinetry, and by generally keeping the whole thing out of the radiation pattern of the higher-frequency drivers.

There are other matters to be considered as well, but their acoustic significance is not so well established. If you can master just the above you'll be off to a very good start. Good luck!
Introducing Electroscan. A quiet CB radio!

We finally built a CB so complete, there’s only one popular feature it doesn’t have.

Radio Hash. You know, the irritating noise you hear every time your squelch is wide open.

Because Motorola’s exclusive VariCom® noise elimination system combines RF and IF gain to selectively reduce noise on the channels. It trims away radio hash for cleaner operation, especially when the squelch is wide open and you’re listening really hard.

The Electroscan’s microprocessor also has the convenient programmable memory which allows you to set, in the sequence you desire, any 10 channels you enjoy listening to everyday.

The Electroscan also offers a scanner which lets you search quickly for either an available, open channel to continue your conversation...or the nearest occupied channel to locate other CB’ers.

Besides these features, Electroscan also offers the Extender® noise blanker and fully variable noise limiter. Plus variable control/dynamic gain microphone that adjusts mic gain over a 20 db range to make your voice sound better.

So stop in today at a Motorola® Dealer and take a look at the Electroscan, the first CB that virtually eliminates radio hash.
The benefits of Dolby FM are rarely as dramatic as those in cassette recording... because the system is so compatible with existing FM practice.

Dolby FM Broadcasting

IT HAS been more than five years since Dolby-B processing was first used in FM-stereo broadcasting. Unlike the case with cassette recording, where Dolby-B noise reduction has been almost universally accepted, relatively few FM stations have opted for the Dolby system, and correspondingly few stereo receivers have the built-in Dolby processors needed to realize its benefits. Although most audio hobbyists have some understanding of the purpose of Dolby-B processing in tape recording and playback, there is still widespread confusion about its role in FM broadcasting. The problem is aggravated by some genuine differences between the two situations.

In the case of tape recorders, the problem is the degradation of signal-to-noise ratio (S/N) in the recording and playback process, resulting from the hiss inherent in the tape medium itself. The Dolby-B system boosts the high frequencies during recording and attenuates them in a complementary manner during playback. The net result is an unchanged frequency response, insofar as the program itself is concerned, with a net reduction of the hiss added during the record/playback process.

The amount of boost and cut (and to some extent, the frequencies affected) are a constantly varying function of signal level. The strong signals are unmodified, and progressively larger amounts of boost and cut are introduced as the level decreases. The total effective noise reduction at high frequencies beyond about 5000 Hz is typically 10 dB in a properly adjusted Dolby-B system. (The Dolby-A system, used in professional recording, is similar in principle but operates over the entire audio range in several frequency bands.) The operating time constants, signal levels, and other circuit operating details are rigorously defined in Dolby patents and licensing agreements, so that a Dolbyized tape made on one recorder can be played back correctly on any other Dolby-equipped machine.

The FM broadcaster faces a somewhat similar, yet different, problem. Noise, of course, is introduced in the transmission/reception process, and in the fringe areas of reception the background hiss can ultimately limit the public's enjoyment of a program. Traditionally, FM broadcasters tend to modulate their transmitters at the highest possible level consistent with distortion and the creation of interference on nearby channels. Since the highest audio frequencies in a program are usually at a much lower level than the middle and low frequencies, the FM transmission is preemphasized, or boosted, at high frequencies with a 75-µs time constant (a 6-dB/octave boost above 2120 Hz).

In an FM receiver, there is a complementary 75-µs deemphasis, rolling off the response of the detected program at 6 dB/octave above 2120 Hz. The reduction in noise, compared to "flat" transmission and reception, is about 11 dB. At the time when these standards were established, there was little problem with excessive high-frequency program material. Today, the situation is different, and the amount of high-frequency energy present in the recorded program material could easily overmodulate a transmitter, causing distortion and interference.

Reducing average program levels by about 5 dB could eliminate much of this problem. However, no FM broadcaster wishes to sound weaker than his competition, and this would also reduce the overall S/N ratio by the same amount. The most common solution is
Scott's new 390R is perhaps the most complete receiver ever made. A professional control center for your entire sound system, the 390R delivers a full 120 watts per channel min. RMS, at 8 ohms from 20-20,000 Hz with no more than 0.03% THD. And it offers more options, features and flexibility than you'll find on most separates.

Compare the Scott 390R with any other receiver on the market today. If you can find one that does more...buy it.

Scott's unique, gold warranty card. Individualized with your warranty, model and serial numbers, and expiration date. Scott's fully transferable, three-year parts and labor-limited warranty is your assurance of lasting pleasure.

"If you're going to learn electronics, you might as well learn it right!"

"Don't settle for less. Especially when it comes to career training...because everything else in your life may depend on it. That's why you ought to pick CIE!"
You've probably seen advertisements from other electronics schools. Maybe you think they're all the same.

They're not!

CIE is the largest independent home study school in the world that specializes exclusively in electronics.

...

Meet the Electronics Specialists.

When you pick an electronics school, you're getting ready to invest some time and money. And your whole future depends on the education you get in return.

That's why it makes so much sense to go with number one... with the specialists... with CIE!

There's no such thing as bargain education.

If you talked with some of our graduates, chances are you'd find a lot of them shopped around for their training. Not for the lowest priced but for the best. They pretty much knew what was available when they picked CIE as number one.

We don't promise you the moon. We do promise you a proven way to build valuable career skills. The CIE faculty and staff are dedicated to that. When you graduate, your diploma shows employers you know what you're about. Today, it's pretty hard to put a price on that.

Because we're specialists, we have to stay ahead.

At CIE, we've got a position of leadership to maintain. Here are some of the ways we hang onto it...

Our step-by-step learning includes "hands-on" training.

At CIE, we believe theory is important. And our famous Auto-Programmed Lessons teach you the principles in logical steps.

But professionals need more than theory. That's why some of our courses train you to use tools of the trade like a 5 MHz triggered-sweep, solid-state oscilloscope you build yourself—and use to practice troubleshooting. Or a beauty of a 19-inch diagonal Zenith solid-state color TV you use to perform actual service operations.

Our specialists offer you personal attention.

Sometimes, you may even have a question about a specific lesson. Fine. Write it down and mail it in. Our experts will answer you promptly in writing. You may even get the specialized knowledge of all the CIE specialists. And the answer you get becomes a part of your permanent reference file. You may find this even better than having a classroom teacher.

Pick the pace that's right for you.

CIE understands people need to learn at their own pace. There's no pressure to keep up... no slow learners hold you back. If you're a beginner, you start with the basics. If you already know some electronics, you move ahead to your own level.

Enjoy the promptness of CIE's "same day" grading cycle.

When we receive your lesson before noon Monday through Saturday, we grade it and mail it back—the same day. You find out quickly how well you're doing!

CIE can prepare you for your FCC License.

For some electronics jobs, you must have your FCC License. For others, employers often consider it a mark in your favor. Either way, it's government-certified proof of your specific knowledge and skills!

More than half of CIE's courses prepare you to pass the government-administered exam. In continuing surveys, nearly 4 out of 5 CIE graduates who take the exam get their Licenses!

For professionals only.

CIE training is not for the hobbyist. It's for people who are willing to roll up their sleeves and go to work... to build a career. The work can be hard, sure. But the benefits are worth it.

Send for more details and a FREE school catalog.

Mail the card today. If it's gone, cut out and mail the coupon. You'll get a FREE school catalog plus complete information on independent home study. For your convenience, we'll try to have a CIE representative contact you to answer any questions you may have.

Mail the card or the coupon or write CIE (mentioning name and date of this magazine) at: 1776 East 17th Street, Cleveland, Ohio 44114.
to use some form of dynamic high-frequency peak limiting to prevent excessive deviation at the high frequencies while retaining a high average modulation level. The "price" exacted by this technique is a loss of natural quality and openness in the received sound. In many cases, this effect is so severe as to destroy the appeal of the program to any truly serious music listener.

It was to this overall problem that Dolby Laboratories addressed itself in its adapting of the Dolby-B system to FM broadcasting. The hardware and its operating characteristics were already developed and in wide use. The major problem that faced Dolby engineers was compatibility with receivers lacking Dolby decoding circuits, which, at the time, was virtually all the FM receivers then in existence!

Cassette tape users have learned that a Dolby tape can be played without decoding, but it will sound undesirably shrill and bright and noisy. Some treble rolloff with tone controls can make such a program listenable, but this is hardly a satisfactory solution for a medium so widely used as FM broadcasting. Although the Dolby system, in principle at least, should be able to replace the fixed preemphasis and deemphasis now in use, it would obviously be impractical to eliminate the preemphasis at the transmitter. Such a program, when heard through an ordinary FM receiver, would sound unacceptably dull and lacking in highs (the response would be down 13.8 dB at 10,000 Hz). Ultimately, Dolby decided that a combination of B-type encoding and a 25-μs preemphasis characteristic at the transmitter would be the most desirable compromise. This would boost the highs above 6360 Hz at 6 dB per octave and greatly reduce the possibility of high-frequency overmodulation. Heard on a conventional receiver with 75-μs deemphasis, the loss of highs resulting from the added high-frequency rolloff in the receiver would be approximately compensated by the added brightness from the Dolby process. The latter is dynamic and differs with signal level. The former is fixed, but it was empirically determined that the combination was satisfactory. In extensive trials, most listeners were not aware of any change in transmission characteristics when listening to such programs on their conventional receivers.

The listener with a Dolby-equipped receiver will also have a 25-μs deemphasis time constant, which is usually selected by the same switch that turns on the Dolby system. Thus, his received program will have the correct "flat" frequency response before it enters the Dolby decoder, whose action is devoted to its principal task of noise reduction. Some receivers have a switch that changes the deemphasis from 75 to 25 μs but require the use of an external Dolby-B decoder. There are also inexpensive accessories that can change the effective deemphasis externally for adapting older receivers to add-on Dolby units.

In the transmission of a Dolbyized signal, the 10-dB S/N improvement of the Dolby-B system is divided approximately equally between noise reduction and an increase in average program level. The change to a 25-μs preemphasis makes it possible to raise the average program level a few decibels or/and to dispense with high-frequency limiting. The dynamic range of a program will be typically increased by about 5 dB at the high-level end, and the noise level in reception will be reduced by about the same amount, for a total improvement of 10 dB.

About 180 stations in the United States are equipped for Dolby-B transmission. Most metropolitan areas, and many rural areas, are served by one or more of these stations. The benefits of Dolby FM, however, are rarely as obvious or dramatic as those of Dolby-B in cassette recording. Ironically, this is because Dolby has been so successful in making the system compatible with existing FM broadcast practice. A Dolbyized broadcast sounds quite conventional on a non-Dolby receiver. Stations rarely, if ever, identify themselves as using Dolby noise reduction. Published FM schedules and programs never mention the existence of Dolby. No tell-tale signal, such as the stereo pilot carrier, is present to switch the receiver's Dolby circuit on or alert the user to the presence of a Dolby transmission. (We understand that Dolby Laboratories has developed such a system that may be put into use in the near future.)

Since the user rarely knows, in the absence of other information, whether a particular signal is Dolbyized, how is he to know when to turn on his receiver's Dolby circuits? The answer, sad to say, is that he cannot know. We have used a number of Dolby-equipped receivers, the most recent being the Lafayette Model LR-120Db, reviewed this month, and have always been disturbed by the difficulty of deciding whether or not a signal requires Dolby decoding. In our area, three stations are listed by Dolby as using their system. Much of the time, we hear little or no change in their programs when changing from 75-μs without Dolby to 25-μs with Dolby reception. Sometimes the sound is slightly softer and less bright with Dolby, as one would expect it to be, and sometimes the hiss level is audibly reduced. Since the relative audibility of these effects is a function of program content, instantaneous program level, and received signal strength, it is really quite difficult or even impossible to predict the audible benefits of Dolby reception. To be sure, in some cases we have heard an improvement in sound almost as dramatic as that achieved by Dolby in a typical cassette deck. Unfortunately, there is no way to predict such a result.

The Lafayette Model LR-120Db fell between the extremes mentioned above. If we oriented the antenna to get a slightly hissy background on one of the local Dolby stations, the improvement in S/N was quite noticeable. On the other hand, with fully limiting signals, there was no change whatever when the Dolby system was used, except the slightly softer quality resulting from its dynamic frequency-response effects.

Dolby does not expect that the Dolby-B system will ever be adopted by a large segment of the U.S. FM broadcast industry. It presupposes a strong concern with sound quality and an audience that shares that concern. Stations that specialize in rock and most popu-
Performance vs Dollars: This DMM is a Winner

Our new, 3½ digit DMM does more, more accurately, for as little as $89.95

The Sabtronics Model 2010 Digital Multimeter gives you 6 functions in 31 ranges. This all-new bench/portable multimeter has been designed to meet all your testing needs with laboratory standard accuracy.

Professional or hobbyist, you’ll find the Model 2010 an invaluable addition to your lab or workshop or for field use. Design features include the use of a precision laser-trimmed resistor network for greater long-term accuracy (basic DCV and Ohms accuracy 0.1%).

Other wanted features: current measurements up to 10 Amps AC or DC, input overload protection to 1200 VDC or RMS on all voltage ranges. Plus, the Model 2010 has a "display hold" feature you can use with "touch-and-hold probes" to hold the reading after removing the probe tip from the test point.

The unique "X10" switch provides a convenient means of selecting the next higher range. And a convenient 3-range diode test capability plus Hi-Low Ohms.

And, of course, with the Model 2010 you have overrange indication, automatic polarity, automatic zeroing, plus a built-in constant-current regulator for charging nickel-cadmium batteries with the AC adaptor/charger.

The large, easy-to-read LED display gives readings to ± 1999 with automatic decimal point.

The Model 2010 comes to you completely assembled and factory tested. Test leads and probes are included. (You furnish "C" cells). Or order optional rechargeable nickel-cadmium battery pack, and/or AC adaptor/charger.

You’d expect to pay much more for a unit of comparable quality, features, and convenience. At Sabtronics, specialists in digital technology, we use only top-quality, state-of-the-art components, such as our laser-trimmed thick-film resistor network, and single-chip LSI logic. The Model 2010 offers you the best value-for-money DMM available today.

Because you buy direct from the manufacturer you get high-quality, professional performance at this special low price.

See for yourself! Call us with your Master Charge or Visa order; or use the coupon to order yours today.

Model 2010 Specifications

- DC Volts: 100 µV to 1 kV in 5 ranges (Basic accuracy 0.1% ± 1 digit)
- AC Volts: 100 µV to 1 kV RMS in 5 ranges (Basic accuracy 0.5% ± 1 digit)
- DC Current: 0.1 µA to 10 A in 6 ranges (Basic accuracy 0.5% ± 1 digit)
- AC Current: 0.1 µA to 10 A in 6 ranges (Basic accuracy 0.5% ± 1 digit)
- Resistance: 0.12 to 20 MΩ in 6 ranges (Basic accuracy 0.1% ± 1 digit)
- Diode Test Current: 0.1 µA, 10 µA, 1 mA, in 3 ranges
- ACV Frequency Response: 40 Hz to 40 kHz (40 Hz to 1 kHz on 1 kV range)
- Input Impedance: 10 MΩ
- Input Overload Protection: 1200 VDC or RMS on all voltage ranges: 250 V (DC or RMS) and fuse-protected on ± and current ranges
- Power Requirement: 4.5 to 6.5 VDC (4 "C" cells)
- Optional nickel-cadmium batteries or AC adaptor/charger
- Display: 0.36" (9.2 mm) 7-segment LED
- Size: 8" x 6.5" x 3" H (203 x 165 x 76 mm)

To: Sabtronics International, 13426 Floyd Circle, Dallas, TX 75243

Model 2010 Multimeter(s) $89.95
AC Adaptor/Charger(s) $6.95
Nickel-Cadmium Battery Packs $14.95
Texas residents add sales tax $3.00
Check enclosed $ Money order □ Master Charge □ Visa □ Account No. □ □ Exp. Date □ □
Name □ □
City State Zip □ □
lar music are not likely to make the investment in Dolby encoding equipment, nor would their listeners appreciate such a move. Clearly, if one lives in an area not served by a Dolby station, or if one has no interest in the programming of such a station, it would be difficult to justify a substantial additional investment for the Dolby circuitry in a receiver. Fortunately, the availability of Dolby-B integrated circuits has made it possible to include this feature without an unreasonable cost penalty, as illustrated by the Model LR-120Db and a number of other receivers recently introduced.

Audio Test Reports

The finest receiver ever to bear the company's name

The Model LR-120Db stands at the top of Lafayette's line of AM/FM stereo receivers and is the finest receiver ever to bear the Lafayette name. It is rated in accordance with FTC regulations to deliver 120 watts/channel into 8 ohms from 20 to 20,000 Hz with no more than 0.09% THD. Among its many features are built-in Dolby noise-reduction FM decoding circuits, triple tone controls with selectable turnover frequencies, adjustable FM muting threshold, and mixing microphone input.

The receiver measures 21"W x 17"D x 7"H (53.3 x 43.2 x 17.8 cm) and weighs 60 lb (27.3 kg). The receiver is catalog priced at $649.99.

General Description. Most of the upper two-thirds of the receiver's front panel is dominated by a glass window behind which are AM and FM tuning scales. Also behind the window are separate center-channel and relative-signal-strength tuning meters and two output power meters calibrated from 0.1 to 120 watts into 8-ohm loads. The dial scales are tilted back slightly for maximum visibility.

To the left of the dial window is a vertical column of small pushbutton switches and a red FM Stereo indicator. One button is used to engage and disengage the Dolby system. The next is for blending the high frequencies to reduce noise on weak stereo signals with no loss in high-frequency response. The next button permits the receiver to be switched between the automatic mono/stereo and mono-only modes. The FM Mute button at the bottom must be out to obtain muting action. Near the FM Mute button is a small rotary control that permits a wide muting threshold range.

To the right of the dial window is another vertical column of pushbutton switches. At the top are the Power levels between 0.01 and 24 watts. Across the bottom of the panel are the main operating controls of the receiver. At the left are a Mic (microphone) jack and a Pull On/Mic Level control. The control is used for varying the gain of the microphone amplifier, which is turned on by pulling out on the control's knob. The next control, the input Selector, has positions for AM, FM, PHONO 1, PHONO 2, and AUX. The two phono positions are for magnetic phono cartridges.

Lever switches for tape monitoring from either of two tape decks are provided for controlling and cross-connecting the decks for dubbing from one deck to the other. To the right of the tape switches are the Balance (detented) and Volume controls.

Three lever switches control the loudness compensation and two filters. There are two switch-selectable loudness compensation modes. In
Someone you know could be counting on a Hewlett-Packard for Christmas.

What a great idea—HP calculators for Christmas.

They're so affordable, you'll want to surprise everyone. A family member. A business acquaintance. And maybe yourself.

Especially with one of our new Series E—five calculators that cover the full range of needs from student to professional:

- The HP-31E—Scientific $60*
- The HP-32E—Advanced Scientific with Statistics. $80*
- The HP-33E—Programmable Scientific. $100*
- The HP-37E—Business Management. $75*
- The HP-38E—Advanced Financial with Programmability. $120*

What's more, you can choose from a large selection of accessories to go with every Hewlett-Packard. (So if someone already owns an HP, surprise them with an accessory.)

For example, a DC Adapter/Recharger that works in a boat or car as well as at home. A Reserve Power Pack that keeps spare batteries fully charged—ready to go any time. And our many Application Packs and Solution books that give solutions to thousands of problems—saving hours of time and trouble.

So check your Christmas list. Then see your nearest Hewlett-Packard dealer. (For the address, call toll-free 800-658-4711 except from Alaska or Hawaii. In Nevada, call 800-992-5710.)
A System with SOCK!

Our special Motorola Microprocessor Evaluation Kit II Christmas "Package" includes the hardware you need to expand your D2 Kit to full system capabilities! Fully tested and assembled!

Send us your check or money order NOW! We can also bill to your Master Charge or Visa if you include the number and expiration date. Enclose total for entire package or any items desired plus applicable state and local taxes (include an additional $5.00 for shipping and handling). Be sure to include your name and address and print clearly, making checks payable to Motorola Inc.

Mail to:
Motorola Mail Order Sales
P.O. Box 27605, Tempe, AZ 85282.

A System with SOCK!

Our special Motorola Microprocessor Evaluation Kit II Christmas “Package” includes the hardware you need to expand your D2 Kit to full system capabilities! Fully tested and assembled!

Send us your check or money order NOW! We can also bill to your Master Charge or Visa if you include the number and expiration date. Enclose total for entire package or any items desired plus applicable state and local taxes (include an additional $5.00 for shipping and handling). Be sure to include your name and address and print clearly, making checks payable to Motorola Inc.

Mail to:
Motorola Mail Order Sales
P.O. Box 27605, Tempe, AZ 85282.

MOTOROLA
Semiconductor Products Inc.

A System with SOCK!

Our special Motorola Microprocessor Evaluation Kit II Christmas “Package” includes the hardware you need to expand your D2 Kit to full system capabilities! Fully tested and assembled!

Send us your check or money order NOW! We can also bill to your Master Charge or Visa if you include the number and expiration date. Enclose total for entire package or any items desired plus applicable state and local taxes (include an additional $5.00 for shipping and handling). Be sure to include your name and address and print clearly, making checks payable to Motorola Inc.

Mail to:
Motorola Mail Order Sales
P.O. Box 27605, Tempe, AZ 85282.

MOTOROLA
Semiconductor Products Inc.

CIRCLE NO. 20 ON FREE INFORMATION CARD

POPULAR ELECTRONICS
most cartridges, and capacitance was 175 pF.

Frequency response was within +0/-1 dB from 20 to 20,000 Hz through the aux inputs. The RIAA phono response was +0.5/-3.5 dB from 30 to 15,000 Hz, with the decrease at the low-frequency end. It decreased to -5 dB at 20 Hz. The apparent high-frequency equalization changed appreciably when it was measured through the inductance of a phono cartridge, revealing a 2.5-dB increase in output at 20,000 Hz. Most of this change was caused by the 100,000-ohm input resistance, since our measurement is based on the use of a standard 47,000-ohm input termination. Nevertheless one would expect a magnetic phono cartridge to sound slightly bright, since the extreme high-frequency response of most cartridges is enhanced when they are terminated in a higher-than-normal load resistance.

The tone controls could provide an almost infinite variety of response curves. With the 250- and 5000-Hz turnover frequencies, they were able to correct the system's response at frequency extremes with virtually no effect in the midrange. Responses of the filters were approximately as rated, with 6 dB/octave slopes in the bass and 12 dB/octave slopes in the treble. The unit's loudness compensation could be used with better-than-average effectiveness, since the audio MUTE switch could be set to permit the volume control to be operated at a reasonably high setting. This avoids the excessive heaviness that mars the sound of most loudness controls. The power meters, like most such indicators, gave only approximate readings. Typical errors were from 10% to 50%, except at very low outputs, where they were several hundred percent.

Performance of the FM tuner section was generally very good. Our test unit had an apparent misalignment that caused its mono distortion to be several times as high as its stereo distortion, but this was the only respect in which the tuner performance fell short of excellence.

In mono, IHF usable sensitivity was...
A major advance in cassette deck design. The new Sansui SC-5100.

If you're looking for a cassette deck that combines the convenience of the traditional cassette deck with the tonal excellence of an open reel, you needn't look any further. Because the Sansui SC-5100 gives you both. And more.

Here's why. Performance meets the standards of today's most advanced component systems. All musical signals are reproduced clean and without distortion because of the wide frequency response (22-17,000 Hz, chromium), excellent signal-to-noise ratio (67 dB, with Dolby*), and unusually low wow and flutter (0.05%, W/RAS).

The SC-5100 is ultra-convenient to use. Solenoid operation permits controls that easily respond to your lightest touch. And with the electronically-controlled tape transport you get automatic play and repeat. The illuminating memory counter is also automatic.

For added convenience the SC-5100, when used with a timer, will record off your tuner or receiver unattended. Or it will wake you gently in the morning with your favorite music.

The SC-5100 offers all the features you'd expect in a superior cassette deck, such as large VU meters, a peak level indicator, line input, mic-mixing capability, and bias and equalization controls for every tape. We've also added something you didn't expect - Sansui's exclusive Tape Lead-in**. Just touch the control and the tape advances past the leader to the first point suitable for recording. You need never miss or spoil the start of a recording again.

Direct-O-Matic loading is another Sansui exclusive. It makes loading and unloading a snap, gives you access to the tape well for instant insertion and easy cleaning of the heads, and lets you see the direction of the tape and how much is left.

Now you have it, cassette deck convenience with open reel performance. All for less than $500. Hear the new SC-5100 at your franchised Sansui dealer. We think you'll agree you've never heard anything like it.

*Trademark of Dolby Laboratories, Inc.
**Patent pending
*Approximate retail price is set at the option of the individual dealers.

A whole new world of musical pleasure.
12 dBf; stereo sensitivity was set by the switching threshold at 15.5 dBf. The more meaningful 50-dB quieting sensitivity was 15.5 dBf in mono and 35 dBf in stereo. The mono THD + N was 0.4% at a 65 dBf input, though it was necessary to detune the receiver considerably to get the distortion down to this level. In stereo, the distortion was a very low 0.1% with the tuning meter set to its center. The respective unweighted S/N readings were 72.5 and 70 dB.

Stereo frequency response was within +0.6/-0.8 dB from 30 to 15,000 Hz. Even with its flat response at the high end, the pilot carrier component in the receiver's audio was suppressed to an almost unmeasurable 80 dB. And the tuner's hum was a very low 75 dB. Stereo channel separation was in the 50- to 56-dB range between 30 and 1500 Hz. It reduced to 37.5 dB at 15,000 Hz.

The capture ratio of 1.25 dB was slightly better than the rated 1.3 dB. AM rejection was 60 dB at a 45-dBf input and 72 dB at a 65-dBf input (it is rated at 55 dB). The image rejection and alternate-channel selectivity, both rated at 80 dB, were respectively 75.6 and 79.4 dB. Adjacent-channel selectivity was 5.8 dB. The muting threshold was adjustable from a minimum of 26 dBf drop-out and 29 dBf turn-on levels to 44 and 49 dBf, respectively.

The AM tuner section's frequency response was very limited at both high and low frequencies, being down 6 dB at 270 and 3400 Hz.

User Comment. The Model LR-120Db offers a most impressive combination of operating features and

Performance Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Rating</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power output</td>
<td>120 W/ch into 8 ohms, 20–20,000 Hz, less than 0.09% THD</td>
<td></td>
</tr>
<tr>
<td>Hum and noise (A weighting)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phono</td>
<td>Over 70 dB (re 120 W)</td>
<td>73.5 dB (re 1 W)</td>
</tr>
<tr>
<td>Aux.</td>
<td>Over 90 dB</td>
<td>74.2 dB</td>
</tr>
<tr>
<td>Input sensitivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phono</td>
<td>2.5, 5.0, 10 mV</td>
<td>Confirmed</td>
</tr>
<tr>
<td>Aux.</td>
<td>150 mV</td>
<td></td>
</tr>
<tr>
<td>Phono overload</td>
<td>150 mV at 1000 Hz</td>
<td>250 mV (20 kHz, re 1 kHz)</td>
</tr>
<tr>
<td>S/N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mono</td>
<td>10.3 dBf</td>
<td>12.0 dBf</td>
</tr>
<tr>
<td>Stereo</td>
<td>17.2 dBf</td>
<td>15.5 dBf</td>
</tr>
<tr>
<td>50-dB quieting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mono</td>
<td>14.1 dBf</td>
<td>15.5 dBf</td>
</tr>
<tr>
<td>Stereo</td>
<td>36.8 dBf</td>
<td>35 dBf</td>
</tr>
<tr>
<td>S/N at 65 dBf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mono</td>
<td>74 dB</td>
<td>72.5 dB</td>
</tr>
<tr>
<td>Stereo</td>
<td>70 dB</td>
<td>70 dB</td>
</tr>
<tr>
<td>Frequency response (30–15,000 Hz)</td>
<td>+0.5/-1.5 dB</td>
<td>+0.6/-0.8 dB</td>
</tr>
<tr>
<td>Distortion at 65 dBf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mono</td>
<td>0.15%</td>
<td>0.40%</td>
</tr>
<tr>
<td>Stereo</td>
<td>0.30%</td>
<td>0.10%</td>
</tr>
<tr>
<td>Capture ratio at 65 dBf</td>
<td>1.3 dB</td>
<td>1.25 dB</td>
</tr>
<tr>
<td>Image response</td>
<td>-80 dB</td>
<td>-75.6 dB</td>
</tr>
<tr>
<td>AM suppression</td>
<td>-55 dB</td>
<td>-72 dB</td>
</tr>
<tr>
<td>Alt. channel selectivity</td>
<td>80 dB</td>
<td>79.4 dB</td>
</tr>
<tr>
<td>Stereo separation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 Hz</td>
<td>45 dB</td>
<td>56 dB</td>
</tr>
<tr>
<td>1000 Hz</td>
<td>48 dB</td>
<td>51.5 dB</td>
</tr>
<tr>
<td>6000 Hz</td>
<td>42 dB</td>
<td>42 dB</td>
</tr>
<tr>
<td>Subcarrier product ratio</td>
<td>60 dB</td>
<td></td>
</tr>
</tbody>
</table>

Total harmonic distortion at 1 kHz and 60/7000-Hz distortion.

Harmonic distortion at three power levels.

AmericanRadioHistory.Com
electrical performance, especially for a receiver in its price range. Its smooth handling, excellent sound quality, and such niceties as a noiseless, thump-free muting system, dial calibration was exact and tuning was unambiguous made the receiver a pleasure to operate. The FM-Dolby decoder worked well on the stations in our locality that employ the Dolby system.

FM dial calibration was exact on the lower half of the band and within about 100 kHz on the upper half. The tuning was unambiguous, too, for lowest noise and distortion with the meter pointer at its center-channel position. The tone controls were certainly as versatile as anything short of a multi-band equalizer. If the phono sound is too bright (as could happen with some cartridges), it might be desirable to connect a 100,000-ohm resistor across each output of the cartridge to provide a normal 50,000-ohm termination.

Most of our criticisms are minor. Labelling of the pushbutton controls is contrary to normal practice, for example. Whereas pressing a button in commonly produces the indicated result, the converse occurs with the FM MUTE button. Muting is disabled when it is pressed in. Also, the muting threshold is too high at all settings of the variable control.

These minor observations aside, we feel that the Lafayette Model LR-120Db is just about the "most" receiver for the money that we have seen and tested in the current market.

CIRCLE NO. 101 ON FREE INFORMATION CARD

convenient editing functions mark the front-loading Dual Model C 819 cassette deck

accurate recording with foolproof level meters and low flutter

The Dual Model C 819 cassette deck has many of the operating details and performance qualities of the company's higher-priced Model C939. Unlike the Model C939, however, the Model C 819 is a front-loading deck. It has a FADE EDIT function that allows one to edit out unwanted portions of a recorded program while listening to the tape playback.

Other features in the Model C 819 cassette deck include: peak-indicating level meters that monitor the signal levels after the recording equalization; a MEMORY WIND system that stops the tape when the index counter reaches 000 in both fast forward and rewind; microphone inputs that can be mixed with the line inputs; and bias and equalization selectable for ferric-oxide, chromium-dioxide, and ferrichrome tape.

The deck measures 17½"W x 13¼"D x 5 ¾"H (43.5 x 33.7 x 14.9 cm) and weighs 17 ¾ lb (8.1 kg). Its suggested retail price is $430.00.

General Description. The tape transport is located at the left of the front panel. Piano-key-type transport-control levers are below the cassette compartment.

Operating the EJECT key causes the viscous-damped, top-hinged cassette door to swing open slowly to provide access to the cassette tray. When the cassette door is manually closed, a window in it gives a clear view of the cassette inside the well. The other transport controls can be operated in any sequence without having to go to STOP. However the tape must be motionless before the RECORD lever can be engaged.

At the right of the front panel are two level meters whose highly visible scales are calibrated from -20 to +3 dB. The fast-responding peak-indicating meters have a long decay time. Below the meters are two pairs of concentric recording-level controls for the MIC and LINE inputs, the two microphone jacks, and a recessed button labelled FADE EDIT. To use the FADE EDIT button, a plastic door covering it must be raised. With the deck operating in the playback mode, the user presses in and holds the button for as long as he wishes to erase the tape. The FADE EDIT function gradually increases the erase current over a period of 3 to 5 seconds to remove the recorded program smoothly. Releasing the button allows the erase current to decrease gradually to zero over a 3-to-5-second period, giving a smooth transition to the following portion of the program.

When a microphone is plugged into only one of the input jacks, its signal...
What 0.02% THD doesn't tell you about the SE-9060, waveform fidelity will.

THD as low as 0.02% says a lot about any amplifier. But oscilloscope readings show it all. Look at the waveforms. The output waveform of the SE-9060 is virtually a mirror image of the input.

One way Technics achieved this goal was with dual FETs in the differential amplifier. They give the SE-9060 the DC stability necessary for the highest gain in the crucial first stage. While the constant current load and current feedback used in the voltage amplifier keep distortion to a minimum.

And since the SE-9060 is a DC amplifier, each amplifier section and the NFB loop are directly coupled without the use of any capacitors. So the SE-9060 not only has virtually nonexistent phase shift, it also boasts flat frequency response from DC to 100 kHz. And with completely independent power supplies for each channel, Technics eliminated all signs of transient cross-talk distortion.

Compare specifications. And you'll realize there's no comparison.

POWER OUTPUT: 70 watts per channel (stereo), 180 watts (monaural) minimum RMS into 8 ohms from 20 Hz to 20 kHz with no more than 0.02% total harmonic distortion.

POWER BANDWIDTH: 5 Hz-50 kHz, -3 dB.

S/N: 120 dB (IHFA).

HUM & NOISE: 100 µV.

INPUT SENSITIVITY: 1 V/47 kohms.

INTERMODULATION DISTORTION:

- 60 Hz; 7 kHz, 4:1 [0.02%].
- FREQUENCY RESPONSE: DC - 100 kHz, +0 dB, -3 dB.

Technics by Panasonic
Professional Series

Circle No. SE on free information card
The FADE EDIT feature of the Dual Model C 819 is a convenient solution to the problem of "editing" a cassette tape electronically. As often happens when a commercial announcement or other unwanted material is recorded together with a desired program, it is customarily removed by playing the tape up to that point, and placing it into the record mode with no input signal for the duration of the unwanted material. The abrupt cessation of the recorded program, and its equally abrupt return, can introduce a jarring note into the final recording.

Dual's FADE EDIT circuit applies a current to the erase head while the machine is in its playback mode, and does so in a smooth and nonjarring manner. The bias/erase oscillator is normally turned on by mechanical switches when the machine is placed into its recording mode. (A red LED across the dc supply line to the oscillator glows when it is powered to show that a recording is in progress.) In the Model C 819, a Darlington transistor pair, in series with a diode, is connected across the mechanical switch contacts in the oscillator's dc supply circuit. Normally, the gate of the input transistor is returned to ground through a parallel combination of a 22-μF capacitor and a 120,000-ohm resistor. In this condition, the stage is nonconducting and has no effect on the operation of the deck.

When the FADE EDIT button is held in, the input gate is connected to the +24-volt power supply through a parallel combination of 4.7-μF and 220,000 ohms. As the capacitor from gate to ground charges, the transistors begin to conduct and an exponentially increasing positive supply voltage is applied to the erase oscillator. The red LED simultaneously begins to glow faintly, and a gradual erasure of the tape begins.

About five seconds is required for the output of the erase oscillator to reach its maximum amplitude (and the LED its full brightness). Since the tape is being played back while this is happening and the erase head precedes the record/playback head in the tape path, one hears the program smoothly fading away. The time for total erasure depends on the kind of tape being used, but is typically in the range of 3 to 5 seconds.

When the FADE EDIT button is released, the transistors are fully conducting. The charge on the 22-μF capacitor in the gate circuit drains off to ground through the shunting 120,000-ohm resistor and the Darlington stage slowly shuts off. As this happens, the red LED dims, and the original program on the tape begins to emerge from a silent background. Like the erase process, the fade-in takes a few seconds.

Although this technique still calls for careful timing of the portion of the tape to be erased, it is much smoother and more foolproof than the former method of placing the deck into its recording mode. When used carefully, it makes it possible to assemble an edited tape with a professionaly smooth transition from one section to another.

Laboratory Measurements. The user's manual for the cassette deck lists a number of tapes suitable for each of the bias and equalization switch settings. Our test deck had been adjusted by United Audio (the importer) for Maxell UD-XL I for Fe, Scotch Master II for Cr, and BASF Professional III for FeCr. We used the first two and Sony Ferrichrome tapes in our tests. (We did not have BASF Professional III tape.)

The flattest overall record/playback frequency response was obtained with Maxell UD-XL I tape, which produced a variation of only ±0.75 dB from 30 to 15,500 Hz. The low-frequency head contour ripples were relatively small compared to those of most cassette recorders. The response of Scotch Master II tape was not quite as ruler flat, sloping down steadily from 35 to 15,000 Hz. Still, the overall variation, relative to the 1000-Hz level, was a very respectable ±2.5 dB from 20 to 14,500 Hz. The Sony FeCr yielded a flat response of ±1 dB from 33 to 15,000 Hz.

The tracking of the Dolby circuits was virtually perfect, measuring less than 0.5 dB of difference between the response curves made with and without the Dolby system switched in, at any frequency up to 12,000 Hz and at any level from -20 to -40 dB.

The 120-μs playback equalization was measured with a TDK AC-337 test tape. It was within +0.8/-1.7 dB from 40 to 12,500 Hz. The 70-μs equalization (for Cr and FeCr tapes) was measured with a Teac 116SP test tape and was within +0.5/-1 dB from 40 to 10,000 Hz.

A line input of 44 mV was needed for a 0-dB recording level. This produced a maximum playback output level of 0.66 volt with Maxell UD-XL I.

Product Focus

"fade edit" circuit operates smoothly
The Technics ST-9030 tuner.
Purists would feel better if it cost over $1,000.

To some, tuners that offer 0.08% THD, 50 dB stereo separation, a capture ratio of 0.8 dB and waveform fidelity should demand a price tag of over $1,000. But with the ST-9030, his performance can be yours for under $450.

That's quite a feat for a tuner. But then the ST-9030 is quite a tuner. It has two completely independent IF circuits. A narrow band, for ultra-sharp selectivity. And a wide band, for ultra-high separation and ultra-low distortion. It even selects the right band, depending on reception conditions, automatically.

Both bands give you the same extended flat frequency response. Because, unlike conventional tuners, the ST-9030 utilizes an electronic pilot cancel circuit that cuts the pilot signal, without cutting any of the high end. It's ingenious. And a Technics innovation.

The Technics ST-9030 has one of the quietest, most sensitive front ends of any tuner. With an advanced linear frequency 8-ganged tuning capacitor and 3 double-tuned circuits, plus dual gate MOS FETs in the 2-stage RF amplifier and balanced-mixer circuit. What's more, there's a servo tuning circuit that locks into the tuned frequency, regardless of minor fluctuations. The result: Negligible drift distortion and maximum stereo separation.

Technics ST-9030. Compare specifications. Compare prices. And you'll realize there's really no comparison.

THD (stereo) Wide: 0.08% (1kHz). Narrow: 0.3% (1kHz). S/N: 80 dB. FREQUENCY RESPONSE: Wide: 20Hz—18 kHz + 0.1 dB. SELECTIVITY: Wide: 25 dB. Narrow: 90 dB. CAPTURE RATIO: Wide: 0.8 dB. Narrow: 2.0 dB. IF IMAGE and SPURIOUS RESPONSE REJECTIONS (98 mHz: 135 dB. AM EUPRESSION): Wide: 58 dB. STEREO SEPARATION (1 kHz): Wide: 50 dB. Narrow: 40 dB. CARRIER LEAK: Variable: 65 dB (15 kHz). Fixed: 30 dB (17 kHz—38 kHz). SUGGESTED RETAIL PRICE: $449.95*

*Prices recommended prices, but actual retail price will be set by dealers.
0.59 volt with Sony FeCr tapes. The

8080 dB

819 meters were their maximum readings,

devices have meter errors respectively slowly. The meter
second tone burst of to increased 67.4 dB with FeCr. The noise
UD-XL weighting, these figures improved and weighed
0 recording input. was gradually restored when the signal
was 57 mV. reached
The second-harmonic distortion
UD-XL (-352 test tape.)一直都是
TDK-352 test tape.) Over 40 dB, and +3 dB (Sony FeCr). The respective
0-dB playback distortion levels were 0.63%, 2.0%, and 1.6%. The unweighed S/N for the three tapes was 54.5 dB (UD-XL I), 51 dB (Master II), and 53 dB (FeCr). With A weighting, these figures improved to 59, 60.3, and 58 dB. Finally, with the Dolby system in use, and with CCIR/ARM weighting, the S/N was 65.6 dB with UD-XL I, 70 dB with Master II, and 67.4 dB with FeCr. The noise increased by 10.5 dB through the microphone input at maximum gain.

The meters responded accurately to peak signal levels, indicating 100% of the steady-state value on a 0.3-second tone burst and decaying relatively slowly. The meter calibrations were also highly accurate. (Many tape decks have meter errors of a decibel or more at some points, even near their maximum readings, but the C 819 meters were "on the nose.") Calibration of the Dolby level marks (at 0 dB) on the scale was accurate within 1 dB when playing standard Dolby-level tapes. Crosstalk from right to left

channel at 1000 Hz was -54.5 dB (with a TDK AC-352 test tape.)

The tape transport yielded one of the lowest flutter measurements we have yet seen on a cassette deck (and, for that matter, on most open-reel decks). Using the TDK AC-342 flutter test tape, we measured the weighted peak flutter as ±0.06% (CCIR). The wrms flutter (JIS) was only 0.035%. In a combined record/playback measurement, both figures increased by a mere 0.005%. The transport moved a C60 cassette from end to end in 60 seconds in fast forward, and 65 seconds in rewind. The headphone volume, with 200-ohm phones, was excellent.

User Comment. Many of the characteristics of the Dual Model C 819 invite the use of superlative tailgates. In others, it ranks with some of the better cassette decks tested. We were most impressed with the C 819's low flutter and its foolproof level meters. (If the meters do not exceed 0 dB, one can be certain of a clean, undistorted, and uncompensated recording.) When we recorded FM tuner interstation hiss and compared playback to the original, very little difference was found at the highest frequencies, where most cassette decks tend to sound "soft." There were audible differences at the low and middle frequencies, but on the whole the Model C 819 proved to be exceptionally accurate.

Usability of the MEMORY WIND feature in fast forward as well as in rewind is a convenient plus for this machine (most recorders with a similar feature can use it only during rewind). The FADE EDIT system worked perfectly, although it will probably be of interest only to a limited number of recordists. We must caution users of the Model C 819 that the FADE EDIT system functions on any cassette, even one whose recording interlock tabs have been removed. We cannot conclude a review of the Dual Model C 819 without commenting on its unusually clean, uncluttered internal construction. Most circuits are on a single, large board on which are mounted several smaller boards. It presents a highly professional appearance when the top cover is removed, and our tests confirm that its performance fits that image.

<table>
<thead>
<tr>
<th>Performance Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>Signal-to-noise, w/Dolby</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Crown Model DL2
Digilologic Control Center

Crown Model DL2
Digilologic Control Center can interface with 8080-based computer

To call the new Model DL2 Digilogic Control Center from Crown a stereo preamplifier is like calling a perfect diamond a "hunk of carbon." The Model DL2 is actually a "system" that consists of the Digilogic Control Center, separate power-supply module, and outboard phono preamplifier module. The system was designed to have the lowest possible noise and distortion. The rated A-weighted noise is ~94 to ~101 dB at maximum gain, referred to a 2.5-volt output. Distortion of any order is rated at much less than 0.001% at any usable output level.

uses separate phono-cartridge
and power-supply modules

CROWN NO. 100 ON FREE INFORMATION CARD

AmericanRadioHistory.com
"Enormously Efficient."

The computer-optimized Wharfedale E's. Beautifully designed and crafted. For the sophisticated connoisseur of sound.

Unusually efficient (94dB/W/m), the E's are clean and easy-to-listen-to, with notably good transient response. Distortion is inordinately—and inaudibly—low.

"Exceptionally flat..." Response is wide and flat (500-18,000Hz, ±3dB for the E-70), with exceptional bass performance.

That's why audio experts acclaim the E's. Why audiophiles adore them.

The Wharfedale E-70's and E-50's come in matched, hand-finished, walnut-veneer pairs. Audition the E's and our complete line of high-quality loudspeakers at your Wharfedale dealer today.

We know you'll be enormously impressed.

WHARFEDALE

RANK HIFI Inc., 20 Bushes Lane, Elmwood Park, New Jersey 07407 (201) 791-7888

CIRCLE NO 56 ON FREE INFORMATION CARD
outstanding tone and loudness-control versatility

standard iHF input and output terminations and gain settings. Output noise levels were well below our 100-μV minimum measurement capability, which is better than 90 dB below the 2.5-volt rated output of the DL2.

At maximum sensitivity, the preamp required a 53-mV input to generate a reference 0.5-volt output, and the OVERLOAD indicators came on abruptly at 11 volts. At maximum gain, Phono Module A required a 1.7-mV input for a 0.5-volt output. (For our measurements, the Phono Module A's gain was set to the iHF standard of 40 dB at 1000 Hz.) The phono equalization was within ±0.1 dB of the RIAA characteristic from 30 to 15,000 Hz and within ±0.2 dB from 20 to 20,000 hertz.

Measured through the inductance of a typical phono cartridge, there was no change in the phono response, although a high-inductance cartridge did produce a rise of almost 1 dB at 20,000 Hz. The input resistance was 46,000 or 93,000 ohms, depending on the Phono Module A's switch setting. The capacitance could not be measured with our instruments.

The frequency response of the Model DL2 itself was within ±0.1 dB from 10 to 50,000 Hz. It was down 0.2 dB at 5 Hz and 0.5 dB at 90,000 Hz. The filter curves were excellent, with steep slopes that were roughly 10 to 15 dB/octave in the useful portions of their ranges. The Low filter's response was down about 1 dB at 20 Hz. The −3-dB response frequencies of the other settings were 37, 43, and

<table>
<thead>
<tr>
<th>Specification</th>
<th>Rating</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency response</td>
<td>±0.1 dB 10-50,000 Hz</td>
<td>Confirmed</td>
</tr>
<tr>
<td>(10,000 ohm load)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hum & noise (inputs</td>
<td>Max. gain: 101 dB (A-wtd)</td>
<td>Better than</td>
</tr>
<tr>
<td>shorted, 20-20,000 Hz,</td>
<td>Unity gain: 107 dB. "</td>
<td></td>
</tr>
<tr>
<td>below rated output 2.5 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IM distortion (SMPTE)</td>
<td>Less than 0.0003%</td>
<td>0.002%</td>
</tr>
<tr>
<td>at 10 volts or less</td>
<td></td>
<td>(instrument residual)</td>
</tr>
<tr>
<td>THD (20-20,000 Hz): 2.5 V</td>
<td>Less than 0.0008%</td>
<td>Less than 0.01%</td>
</tr>
<tr>
<td>10 V Less than 0.0025%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum gain</td>
<td>20dB ±0.2 dB (100,000 ohms)</td>
<td>Confirmed</td>
</tr>
<tr>
<td>Output</td>
<td>11 V maximum</td>
<td>Confirmed</td>
</tr>
<tr>
<td>2.5 V rated (50 ohm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headphone output</td>
<td>17 V rms (1 ohm source)</td>
<td></td>
</tr>
<tr>
<td>Gain tracking</td>
<td>±0.2 dB over 63.5-dB range</td>
<td></td>
</tr>
<tr>
<td>Audio imaging</td>
<td>50-dB range, tracking</td>
<td>—</td>
</tr>
<tr>
<td>Muting</td>
<td>5-7-s turn-on delay</td>
<td></td>
</tr>
<tr>
<td>Phono Module A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency response</td>
<td>±0.25 dB of RIAA,</td>
<td>±0.2 dB</td>
</tr>
<tr>
<td>20-20,000 Hz</td>
<td>94 dB (A-wtd)</td>
<td>Less than 90 dB</td>
</tr>
<tr>
<td>Hum & noise (shorted)</td>
<td>Less than 0.0005% at 2.5 V</td>
<td>—</td>
</tr>
<tr>
<td>below 10-mV input</td>
<td>Less than 0.002% at 2.5 V</td>
<td>—</td>
</tr>
<tr>
<td>IMD (as MIC amp)</td>
<td>Adjustable 30 to 50 dB</td>
<td>Confirmed</td>
</tr>
<tr>
<td>THD</td>
<td>47,000/100,000 ohms</td>
<td>46,000/93,000 ohms</td>
</tr>
<tr>
<td>Gain</td>
<td>less than 5 pF</td>
<td></td>
</tr>
<tr>
<td>Input impedance</td>
<td>33-330 mV depending on gain</td>
<td>95 mV</td>
</tr>
<tr>
<td>Input overload</td>
<td>100 mV at 40-dB gain</td>
<td></td>
</tr>
<tr>
<td>Output voltage</td>
<td>11 V (600 ohms)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>into 10,000-ohm load</td>
<td></td>
</tr>
</tbody>
</table>

Laboratory Measurements. All our noise and distortion measurements merely reflected the limitations of our test equipment, rather than the performance of the Model DL2. We operated the control center with

The remaining front-panel controls include two pushbutton switches for separately energizing two sets of main outputs. At the far right of the lower portion of the front panel is a pair of stereo headphone jacks that are always live, driven by a separate amplifier stage that can drive any impedance phones (not electrostatic types) to full listening levels.

The many input and output jacks, all clearly labelled, are located on the Model DL2's rear apron. Standard phono jacks are used for the inputs, but the outputs are through ¼" phone jacks. In addition to the normal outputs, there is a pair of inverted-phase outputs for MAIN 2 and a MONO summed output for MAIN 1. A pair of buffered outputs is also provided, taken from a point just after the input selector and not affected by any controls but the LOW FILTER. High-reliability connectors are used for connection to the Power Module and computer or a projected wireless remote control system. These connectors can also be used to slave additional Model DL2s to a "master" Model DL2 to increase the system's input-channel capabilities. When so operated, the "master" level and input controls operate the "slaves" as well.

The Power Module has a momentary-contact POWER pushbutton switch and a LED power indicator. It controls the power to the entire system. On its rear apron are two unswitched and seven switched accessory ac receptacles. Three of the switched receptacles are heavy-duty three-contact types. There are also multi-contact connectors for powering the Model DL2 control center and a Phono Module.

The Phono Module has a pair of phono-jack inputs at one end and a pair of ¼" phone-jack outputs at the other end. Slide switches are provided for changing the input termination from 47,000 to 100,000 ohms and removing the RIAA equalization to permit the module to be used as a microphone preamplifier. Two screwdriver-adjustable controls allow the gain of the phono preamp to be varied separately for each channel.
140 Hz. The high filter’s response was down 3 dB at 4100, 4400, 13,000, and 15,000 Hz.

The tone controls were capable of producing a nearly infinite variety of response curves. We noted that the shape of the curves changed when we switched the frequencies to the X0.5 and X2 conditions. Lower frequencies appeared to have lower Q, which gave a broader response peak or dip at the extreme control settings.

Of course, it is of little importance to the user, who will presumably adjust the controls to obtain a desired sound quality.

The LOUDNESS CONTOUR system had its principal compensation effect below 100 Hz. It was free of the unnatural heaviness that mars the sound of most loudness-compensation systems in current use.

User Comment. We judged the Model DL2 solely on its performance as a home hi-fi system control center, under strictly manual control of all its functions. Everything—electronic and mechanical—operated flawlessly. We feel, however, that some of the system’s features are not of great import in a home music system. The gain display is intriguing, for example, but its usefulness is diluted by the fact that overall gain is also affected by the AUDIO IMAGING and LOUDNESS CONTOUR controls, whose effects do not show up on the displays.

Tape recording enthusiasts will undoubtedly like the AUDIO IMAGING controls. Others might find that it’s less convenient to use for channel reversal and blending than the conventional switch controls.

The overall tape-recording facilities of the Model DL2 are second to none. Too, the filters, tone controls, and loudness compensation were outstanding. The digital gain-stepping feature is fun to use and, with practice, can be manipulated almost as easily as a standard volume-control knob.

We were puzzled to find only one power socket on the control center’s rear apron for a Phono Module. Many serious audiophiles have more than one record player, and it is expected that a deluxe preamplifier such as Crown’s would accept more than one phono input. Indeed, Crown points out that all eight of the Model DL2’s inputs can be used for phono sources if a Phono Module is added for each. Presumably, Crown plans to have some sort of power socket accessory to permit hookup of more than one Phono Module.

We cannot resolve in our minds whether this product was meant for the home-audio or professional-audio market. It is far too costly and versatile for all but a small percentage of home users. Yet, its home-decor appearance would not be entirely in keeping with strictly professional equipment. On the other hand, whatever one’s needs may be,—computer control, staggering control versatility, and the highest possible electrical performance, among them—the Model DL2 Digilogic Control Center is certainly the answer to the need.

CIRCLE NO. 103 ON FREE INFORMATION CARD

The complete control system, as shown here, includes the control center, power-supply module and separate modules for each phono cartridge input.

The best speaker kit isn’t a kit at all!

The best speaker kit is a system designed by Electro-Voice that allows you to choose your own level of performance; from a studio monitor to a modest bookshelf system, from a wide selection of woofers, tweeters, mid-range drivers and crossovers. Then Electro-Voice provides detailed plans on how to construct the enclosures designed specifically for the drivers you chose.

Only Electro-Voice gives you all the options. But, then, Electro-Voice is known for their superb quality speakers—not for kits.

To get your component speaker catalog and construction plans package, just send $1.00 to Electro-Voice Component Speaker Systems, 600 Cecil St., Buchanan, MI 49107.

Electro-Voice

600 Cecil Street, Buchanan, Michigan 49107

Electro-Voice Component Speaker Systems, 600 Cecil St., Buchanan, MI 49107. Please send me E-V component speaker packages.

I have enclosed $1.00 for each package ordered.

Name

Address

City/State/Zip

PE-12-78
The Realistic SCT-30 tells it like it is:

Why 3 heads are better than 2.

Why 2 capstans are better than 1.

Why double Dolby* is better than single.

3 Heads.
Two independent record and play heads eliminate the compromises of one combined r/p head, and the head assembly is integrated to eliminate azimuth error. The result: cleaner sound. The third head lets you monitor your recording an instant after it's made, without interrupting the program. SCT-30 has 3 heads!

2 Capstans.
Dual capstans (instead of the usual 1) reduce wow and flutter to an inaudible 0.06% WRMS or less, and extend the audio frequency response. SCT-30 has dual capstans!

Double Dolby.
You know the single Dolby system cuts noise and adds dynamic range. But let's examine double Dolby. You get Dolby on both record and monitor so you know exactly what your tape will sound like.

You get a decoder for recording superb Dolby FM stereo. And you get simultaneous listening enjoyment of the decoded broadcast on receivers with tape monitoring. The Realistic SCT-30 has double Dolby! About $380.

P.S.–Supertape® Gold.
To go with 3 heads, 2 capstans and double Dolby, you need a cassette tape that will enhance—not degrade—performance. That's why we design and manufacture Supertape Gold in our own Fort Worth factory. Like SCT-30, it's a playmate you can believe in at a price you can afford.

Why Realistic®?
Because Radio Shack has delivered quality audio at sensible prices since 1921, its Realistic tape and recorder line can point to over 5,000,000 customers as living proof of these claims. Add after-sale service that isn't lip service. Add in-house engineering and manufacturing of much of the Realistic line. And add the convenience of neighborhood shopping where you get "sound talk" from a specialist. That's Realistic!

*TM Dolby Laboratories, Inc.

Radio Shack
The nationwide supermarket of sound™.
BUILD A
COMPUTER-vs-YOU
CHESS GAME

Microprocessor-based chess game features three player levels and a unique system of switches under board squares to simplify data input of piece moves

BY BILL GREEN

With the development of microprocessors and their dramatically reduced prices over the years, it is not surprising that the delightful and intriguing game of chess became widely available for computer play. A natural follow-up to chess-game software for microcomputers were dedicated-chip chess games, including "Chess Challenger," "Boris," and "CompuChess," among others. The "Computer Chess" game project presented here is a similar type of game that features some outstanding advantages: moderate cost ($100), battery-power capability for portability, and simplified computer data entry system. (A pressure-switch system under each board square operates like a calculator-type keypad.)

The Computer Chess project is built around a Signetics 2650 microprocessor chip and 2 kilobytes of memory. The chess program is resident in a programmed ROM, and there are three selectable levels of skill.

Your moves are entered by pressing a chesspiece on a conventional playing "board" made up of 64 pressure-sensitive switches, one for each square on a conventional board. Commands, player moves, and computer moves appear in a two-digit seven-segment LED display. It can operate on line power only or both line and battery power.

Software. The software used for the Computer Chess game is a modified form of the Claude Shannon algorithm, published in 1950 as the first practical paper on computer chess. The program is written in three sections, which include entry for command and move, move generation, and move evaluation.

In the entry mode, the playing board can be set up in a standard manner, or each piece can be entered in a special manner to play portions of games (such as mate in two moves, ends of games,
etc.). In the move-generation mode, each piece on the board is moved to all possible legal squares, while the move-evaluation mode calculates the result of each iteration through the possible moves and selects the move with the highest value for entry and display. The computer's opening moves are random.

Hardware. The complete circuit of the Computer Chess game is shown in Figs. 1 through 4. The system's 2650 central-processing-unit (CPU) IC1 performs all chess operations. Its operating program is stored in read-only memory IC2. The playing board and other variables are stored in the random-access-memory system made up of IC3 and IC4, as shown in Fig. 1.

Data on the data bus is latched by IC5 and IC6 (Fig. 2) for display on seven-segment displays DIS1 and DIS2. In addition, IC5 provides a scanned output to the keyboard rows, while IC7 reads data in from the keyboard columns. Integrated circuits IC8 through IC13 shown in Figs. 3 and 4 provide decoding for the memory select and the read/write select for the RAM. A part of IC10 (Fig. 3) is used to generate the power-up reset for the CPU, and a part of IC12 (Fig. 4) generates the system's clock.

With the exception of the memory, CPU and IC12, all ICs in the Computer Chess circuit are low-power devices. Hence the average current drain of the system is about 300 mA.

Construction. The Computer Chess game's circuit is best assembled on two printed-circuit boards. The etching/drilling and components placement guides for the main pc board, which is double-sided with plated-through holes, are shown in Fig. 5. The circuit board for the keyboard is a simple single-sided one as shown in Fig. 6.
Install the eight jumpers on the blank side of the circuit board for the keyboard from end to end, as shown. Use fine bare wire to make the three inside jumpers, for a total of five solder connections per jumper. A minimum amount of solder should be used to make these connections; trim away the excess wire as close as possible to the board. Place a small piece of electrical tape over each solder connection on the foil side.

Connect and solder a 12" (30.5-cm) length of 16-conductor flat ribbon cable (or 16 lengths of insulated hookup wire) to the solder pads on the left side of the keyboard assembly. Feed each conductor to its pad via the blank side of the board.

Divide a 7" x 7" (17.8 x 17.8 cm) sheet of 0.005" (0.13-mm) Mylar or acetate into a grid consisting of 64 (eight horizontal and eight vertical) equal-size squares. Cut a 1/4" (12.7-mm) hole in the center of each square.

Use a 7" x 7" sheet of 0.025" (0.66-mm) conductive elastomer for the common in the keyboard assembly.

Next, lay out an 8 x 8 square chessboard on a 7" x 7" sheet of white contact paper, making each square 3/4" x 3/4" (19.1 x 19.1 mm). Starting with the lower left square, paint each alternate square with red paint. When the paint is completely dry, label each square. Starting at the upper left square and moving to the right, label the squares from 00 to 07. The next row down is labelled from 10 to 17 and so on until the last row is labelled 70 to 77. Computer commands are labelled on the squares as follows: square 40—S, E, and 1; square 44—F and 2; square 42—D and 3; and square 43—L.

Place the Mylar separator sheet over the board, positioning it so that the holes are centered over the foil contacts. Over this, place the elastomer and then the contact paper, the latter with square 00 at the upper left. Then cover the contact paper with a sheet of matte-finished Mylar and temporarily set the keyboard assembly aside.

On the component side of the main pc board, install suitable sockets at each IC location. Sockets are optional but highly recommended for MOS devices IC1 through IC4.

Install the resistors and capacitors in their respective locations on the board. Be sure when you install C2 that you observe the proper polarity.

Connect lengths of black- and red-insulated stranded hookup wire to the — and + pads, respectively. Connect two 3" (7.6-cm) lengths of insulated wire to the pads for S1, located near pin 1 of IC1. Connect and solder the free ends of these wires to S1.

Insert the 16 wires from the keyboard into their respective pads on the main circuit board assembly and solder them into place.

Connect the free end of the red stranded wire to S2. Then connect another length of red stranded wire between S2 and the positive (+) end of the battery holder. If nickel-cadmium cells are used, select an appropriate charger and mount the charging connector. (The battery consists of four C-size cells in series.)

When installing ICs, observe the usual handling procedures for MOS devices (IC1, IC2, IC3, and IC4). Make certain that pin 1 of each IC is aligned with the 1 on the pc board.

Place the keyboard on a flat surface and turn on the power. An A8 should appear in the display. Then press S on square 40; an S should replace the 8 in digit 1 of the display. (Standard seven-segment displays are used for DIS1 and DIS2, so the S will look like a 5.) Press L on square 43; AL should now appear in the display. Now press 1, 2, or 3 (40, 41, or 42 respectively) to select the level of play; the display should read A1, A2, or A3. Finally press S1 and hold it until the A in digit 2 of the display turns to an 8. Release S1. The board is now set up for playing in the normal manner.

Here's an example of what might transpire as a player and the computer develop their pieces, and it will serve as a final check of your completed project. Press the chesspiece located on square 63 (queen's pawn, white); the display should read 63. After a momentary pause, the 6 should change to an 8. The display should thus read 83. When this occurs, move the pawn two squares to square 43 and press down; the display should now read 43. Briefly press S1. The display should blank and then flash random characters until the computer has made its move. The computer's move is displayed with the "from" and "to" square numbers alternately flashing. You then follow the computer's decision by physically moving the selected piece on the "from" square to the "to" square, without pressing down on the chesspiece.

Note that when playing levels 2 or 3, several seconds may elapse before the display blanks after pressing and releasing S1. The random-character flashes will also continue for a greater period of time than on level 1 before the computer displays its move. Naturally, the highest level (3) takes the longest time.

After the computer has displayed its...
move, press and hold S1 until an 8 appears in digit 2. This turns the upcoming board move back to you. You can then enter your new move, and continue the game as previously described.

Operation. The computer portion of the Computer Chess game has certain commands built into it. They're accessed as follows. Command “S” on square 40 operates only after power up; it sets up the board for standard play.

Command “L” on square 43 lets you set the level of play. Pressing this square causes an “L” to appear in digit 1, as previously described. The desired level of play can then be selected by pressing the appropriate square. Level 1 on square 40 is for beginners and for one to develop a game quickly. Level 2 on square 41 is for intermediate play and may take between 10 seconds and more than a minute for the computer to come back with its move. Level 3 on square 42 is for more advanced players. Here, the computer’s move may take as long as several minutes if the board is complex.

Pressing Command “E” on square 40 permits a player to enter a piece should
one wish to do so. This causes an "E" to appear in digit 1. Once the "E" appears, you press the square on which the piece you wish to enter would be in a standard setup and then press the square on which you wish to place the piece. The selected piece is displayed in the same format as in the find-piece mode, which follows.

Command "F" on square 41 finds a piece in the event you wish to check the accuracy of a piece's earlier placement on a square. You press this square until an "F" appears in digit 1 and then press the square you wish to examine. The piece on the latter square will be identified in the display. If the piece is black, a lower-case "b" appears in digit 1, as an example. If white, nothing will appear. (A complete list of the special symbols in the Computer Chess game is given in the Chesspiece Identification Table.)

Pressing Command "D" on square 42 enables you to delete a piece. Press this square and a lower-case "d" appears in digit 1. Press the square for the piece you wish to delete, and the type of chesspiece and its color are displayed.

A variety of changes can also be made during play. These include changing the level of skill, deletion of a piece, entering a piece, finding a piece. To perform any of these changes once pieces have been developed, you must interrupt play and enter the command mode. There are two ways to enter this mode. If the computer's move is flashing, briefly press S1 when the "to" square number is displayed. (If the display is flashing 14 to 34, press S1 briefly when 34 appears.) If this is done properly, an A should appear in digit 2, which indicates that the computer is in the command mode. Now you can make your change, following which, you press and hold S1 until an 8 appears in the display. You can now resume play.

The second way of entering the command mode is on your own move, either when an 8 is displayed or by pressing S1 until an 8 appears to avoid the trickier first method. Now you must make a false move from and to any two empty squares and then press S1. This will cause a lower-case "u" to appear in both digits of the display, after which the second digit will automatically change to an "A." Thus, "Au" will be shown in the display. (Each "u" is made up of segments b, f, and g in the display.) This places the computer in the command mode. Again, after making your change, press and hold S1 to obtain an 8 in the display, and resume play.

If you enter a move from an unoccupied square the display will flash "uu" after you press S1. Digit two will then display an "A." You can now use the command keys to locate, enter, or delete a piece or change the level of play. Press S1 until an 8 appears in digit two and reenter your move. If you should make a move and want to change it, press and hold S1 until an 8 appears in digit 2 and reenter your move.
If power is switched off to clear for a new game, wait about five seconds before switching the power back on to allow the reset capacitor to discharge.

The computer will castle whenever it can do so legally if there is no better move available. It moves the rook internally but does not, however, display the move. Instead, it indicates the king's move in the display.

You can castle in two steps. To do so, when it is your turn to move, enter the command mode and delete the rook you wish to use. Then reenter the rook on its new square. Press S1 to obtain an8 in the display. Then move the king in the normal fashion, as your move. Bear in mind that the computer will accept an illegal move on your part but will not itself make an illegal move. If the computer places you in check,"--" will appear in the display between the "from" and "to" square displays. If you checkmate the computer, the display will give you the number of moves made in the game.

If you are able to promote one of your pawns, you must delete it from the board and reenter the new piece before moving it to the next rank. You can select the highest piece captured by the computer but not higher. (You cannot have more than one queen, two rooks, two knights, and two bishops on the board at any one time. If you select a captured bishop, make sure that it is the correct one for the color of the square onto which it is to be placed.)

The desired piece is entered on the square from which the pawn was deleted in the following manner. Press first the square on which the piece to which the pawn is to be promoted was located at the beginning of the game and then the square from which the pawn was deleted. (This will not affect a piece on the square first pressed when the game is resumed.) The symbol of the piece (see table of piece symbols at left) to which the pawn is to be promoted will appear in the display.

If the computer moves one of its own pawns into your back rank, and its queen has been captured, it will automatically promote the pawn to a queen. If its queen has not been captured, you must promote the pawn to its (computer's) next highest available piece, in the same manner as promoting your own piece.

The Computer Chess game does not automatically perform the rarely used en passant. To perform such a pawn capture, you must enter the command mode and make the proper moves.

CHESSPIECE IDENTIFICATION TABLE

<table>
<thead>
<tr>
<th>KING</th>
<th>QUEEN</th>
<th>BISHOP/BLACK</th>
<th>KNIGHT</th>
<th>ROOK</th>
<th>PAWN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 7. Photo shows prototype unit disassembled. Keyboard fits in grooves over batteries. Battery charger plug is in rear panel.

Final Assembly. After checking out the system, mount it in an enclosure like that shown in Fig. 7. The electronics pc assembly can be covered by a ¼ (3.2-mm) sheet of red acrylic plastic to allow the red seven-segment LED display to be seen. Switches S2 (power) and S1 (go) also mount on this acrylic panel. Secure the battery holder to the bottom plate under the keyboard assembly. Then drill a hole in the rear panel to accept the selected battery charger's plug, and mount its jack at this location.

Check the nickel-cadmium cells (C or sub-C size) you plan to use to determine their maximum charging rate. Just about any wall-type calculator charger capable of delivering 6 to 12 volts dc can be used. Measure the output voltage from the charger and, using the maximum charge rate for the NiCd cells, calculate the value of the required resistor. You can determine the resistor's value by dividing the measured output voltage from the charger (minus about 10% to be on the safe side) by the maximum charge rate current specified on the cells.

If you prefer to have the Computer Chess game powered from the ac line only, simply substitute a well-regulated 5-volt dc supply capable of delivering a minimum of 100 mA.

In Conclusion. The Computer Chess game is an excellent chess-learning tool for the beginner and a challenge for those who already know how to play chess but need an opponent.
AM-BROADCAST stations are about to undergo a massive change. During the summer of 1979, assuming the FCC comes to a final decision by then, many AM stations in your area will begin broadcasting in stereo.

AM stereo is not new. In 1925, WPAY (New Haven, CT) made the first wireless stereo transmissions by broadcasting from two separate AM transmitters on two different frequencies. In the mid-1950s, a small number of stations expressed renewed interest in AM stereo by experimenting with AM and FM simulcasting. Historically, then, two separate receivers were needed to obtain stereo audio. With the new systems proposed to the FCC and detailed here, a single AM-stereo transmitter and a single AM-stereo receiver are needed. The transmitted AM-stereo signal is also mono-compatible.

The Contenders. There are five AM-stereo system designs presently before the FCC, proposed by Belar Laboratories, Harris Corp., Kahn Communications, Magnavox, and Motorola. Each system has its own unique method for generating stereo signals.

The Belar system amplitude modulates the carrier with L + R information and frequency modulates the carrier with L – R information, using 320-Hz frequency deviation and 400-μs preemphasis. The Harris system employs quadrature modulation with a reduced L – R component, which is equivalent to L and R modulation of two carriers separated in phase by 30°. The Khan system uses independent-sideband (ISB) modulation to force the modulated envelope to carry L and R information. Magnavox’s system utilizes simple L + R amplitude modulation with L – R phase modulation of the carrier with 57° phase deviation. Finally, Motorola’s system, like the Harris system, employs quadrature modulation, but it predistorts the entire signal, not just the L + R sidebands, to force the modulated envelope to carry the L + R information.

Each of the proposed AM-stereo systems is compatible with the mono receivers currently in use. Compatibility with present-day mono envelope detectors and good stereo performance have been the major hurdle for the proponents of AM stereo. The challenge has been met with some success.

Some common features and methods appear in each of the proposed AM-stereo systems. All process the audio...
through a matrix for transmission and reception. Each system’s stereo generator (similar to those used in FM) combines the two audio channels to give L + R and also subtracts them to obtain L – R signals. The stereo information is transmitted as L + R and L – R information. The AM-stereo receivers then demodulate the carrier and derive the L + R and L – R signals. Once again, the signals are passed through an audio matrix to obtain independent left- and right-channel signals.

Except for the Belar system, all of the proposed AM-stereo systems incorporate a low-frequency stereo-identification tone. The frequency of the tone varies from system to system. Magnavox uses a 5-Hz tone, while the other systems’ tones are in the range of 15 to 25 Hz. The tone is placed on the L – R channel signal and is designed to turn on a stereo indicator in the receiver and possibly to activate an automatic stereo/mono switching system. The ID tone could also be used to carry low-speed digital data, such as station identifications, which could appear on a numeric display in the receiver.

To preserve audio separation, each system employs time-delay networks in the L + R or/and L – R paths. A finite time delay exists between the r-f section and the modulator section of a standard broadcast transmitter. A delay network establishes the correct time relationship between the transmitted L + R and L – R signals for channel separation.

System Details. So far, we have enumerated only the similarities between the various competing AM-stereo systems. Now let us look at the individual systems in brief detail.

Belar (AM/FM). This system uses AM/FM techniques for modulation. The L + R audio component is applied to the modulator stage of the transmitter and amplitude modulates an FM carrier (Fig. 1A). This allows current mono receivers to detect L + R audio and makes the Belar system mono-compatible.

To generate the stereo part of the signal, the L – R information from an audio matrix is applied to a 400-μs preemphasis network and a time-delay network that, in turn, frequency modulates the carrier. Peak deviation of the carrier is ± 320 Hz. The FM carrier is then amplitude modulated.

Reception of the Belar signal is perhaps the easiest for the five systems. The i-f output of the receiver (Fig. 1B) is split into two paths. One path goes to an envelope detector that recovers L + R information and the other goes to a hard limiter that strips away all AM components. The limited i-f signal then passes through a frequency discriminator that recovers L – R information. The L – R audio must then be deemphasized to cancel out the preemphasis applied at the transmitter. The detected L + R and L – R audio components are then applied to an audio matrix, where discrete left- and right-channel signals are obtained.

Magnavox (AM/PM). Somewhat similar to that of Belar, in this system, the L + R information amplitude modulates the carrier and the L – R information phase modulates the carrier (Fig. 2A). The phase variation of the carrier is held to a peak of 57°. The FM carrier is then amplitude modulated.

Reception of the AM/PM signal is illustrated in Fig. 2B. The i-f signal is split into two paths, one of which goes to an envelope detector to recover the L + R information and the other goes to a limiter to eliminate AM components. A phase detector is then used to recover the L – R audio. The recovered L + R and L – R signals are combined in an audio matrix to yield independent left- and right-channel stereo signals.

Kahn (ISB). In this independent-sideband (ISB) modulation system, the left-channel information appears on the lower sideband and the right-channel information appears on the upper sideband. This system predistorts the entire signal to force the envelope to carry L + R signals for mono compatibility.

As shown in Fig. 3A, the left and right audio channels are applied to a matrix.
The L + R signal goes to a −45° phase-shift network and is applied to the audio inputs of a standard transmitter. The L − R information passes through a +45° phase-shift network. At this point, the L + R and L − R signals are 90° out-of-phase with each other. The L − R component feeds a summation network and controls an agc circuit. A variable time-delay network is inserted in the output of the summation amplifier to equalize the delays between the L − R and L + R signal paths.

The output of an oscillator that operates at a submultiple of the standard broadcast transmitter’s frequency is applied to a phase modulator. The L − R audio signal from the time-delay network is then applied. The PM signal is brought up to the carrier frequency by a frequency multiplier. The PM carrier is then routed to the transmitter.

Kahn discovered that a further improvement in channel separation was possible by adding a second-harmonic phase-modulated component. Independent left and right audio signals are routed through differential phase networks with zero relative phase. The second-harmonic component is obtained from constant-amplitude frequency doublers, the outputs of which are applied to a difference network, followed by a level squarer.

The level squarer is essentially an agc amplifier whose gain is controlled by a sample of the L − R signal. The agc amplifier supplies the proper amount of second-harmonic component to optimize separation. When the audio signals are equal and in-phase, the L − R component is zero and correspondingly reduces the agc’s gain to zero. (This would be the case with mono audio.) Where both channels are present and in-phase but not equal, the agc amplifier’s gain is only partially reduced.

Kahn developed the ISB system with the objective that two ordinary mono AM receivers could be used to receive stereo. One receiver could be used to tune the lower sideband for the left channel and the other to tune the upper sideband for the right channel. Single AM receivers would need only be tuned on-carrier for mono L + R reception.

The ISB signal can also be recovered with a single receiver. Kahn has outlined various ways in which this can be accomplished. One reception scheme incorporates independent i-f stages. Another scheme employs a single i-f section, as shown in Fig. 3B.

Kahn Communications developed one of the first AM-stereo systems. Leon Kahl petitioned the FCC for adoption of AM stereo as early as 1959. Since then, he has field tested his AM-stereo on WFBR (Baltimore, MD) and XETRA (Tijuana, Mexico).

Motorola (C-QUAM). Motorola has developed yet another technique for transmitting and receiving AM stereo. Its C-QUAM (Compatible Quadrature Modulation) system is perhaps the most convenient means for transmitting two signals on one carrier. Quadrature modulation is perhaps best known for its application to color television, where two separate color signals are transmitted on a redundant single subcarrier.

To best understand the C-QUAM system, let us first look at an AM-stereo system that uses basic quadrature modulation. This basic discussion on quadrature modulation also applies to the Harris AM-stereo system, which uses modified quadrature modulation.

A system for transmitting two signals in quadrature is shown in Fig. 4A. Here, two separate transmitters are fed from a single carrier oscillator, with the phase of one carrier leading the other by 90°. One AM transmitter is modulated with left- and the other with right-channel information. The respective outputs are combined and broadcast by a common antenna. The use of two independent transmitters for generation of quadrature modulation is not necessary for practical applications. At the receiver (Fig. 4B), each carrier is detected to derive the left and right audio channels.

AM-stereo quadrature modulation presents a problem in compatibility with
today's envelope detectors. An envelope detector is a nonlinear device that generates distortion when the quadrature signal contains a significant amount of stereo information. The signal recovered from the mono envelope detector is not the linear sum of L and R and it can also contain a significant amount of distortion (28% maximum). The C-QUAM system attempts to overcome this problem.

In the proposed C-Quam AM-stereo generator (Fig. 5A), the left and right channels are applied to the familiar audio matrix. One carrier is amplitude modulated with L + R audio and another carrier is phase shifted by 90° and amplitude modulated by L - R audio.

The L + R and L - R sidebands from the balanced modulators are combined with the carrier in a summing amplifier. The output of this amplifier is limited to remove AM components. The resultant phase-modulated carrier signal is used in place of the transmitter's crystal oscillator. The L + R information from the matrix is applied to a time-delay network and then to the transmitter.

The C-QUAM system overcomes the mono envelope-detector distortion problems associated with conventional quadrature modulation. The C-QUAM system inherently generates distortion products when it amplitude modulates the PM carrier. These distortion products cancel quadrature distortion in an envelope detector if they are received in the same relative phase and amplitude relationships. This design philosophy has two shortcomings. First, it places critical phase and amplitude requirements on the receiver's i-f section. Secondly, the generated distortion products that cancel the mono envelope detector's distortion appear in the stereo receiver. These distortion terms must be

Fig. 4. Basic Quadrature Modulation

- **Fig. 5. Motorola (C-QUAM)**
corrected, for which processing circuits are required in every C-QUAM receiver.

The C-QUAM AM-stereo signal can be received by using synchronous detectors, as shown in Fig. 5B. The receiver's i-f is applied to a carrier level modulator and an amplitude limiter. A voltage-controlled oscillator (vco) is locked in-phase with the i-f carrier. The outputs of the vco and limiter provide input signals for the phase-detector circuit. The phase detector and the necessary low-pass filter keep the vco locked in phase quadrature with the i-f carrier signal.

The vco's output is shifted 90° to provide a signal that is in-phase with the receiver's i-f signal. The phase-shifted vco signal is used with a signal from the amplitude limiter to feed the phase detector, which, in turn, drives the carrier level modulator. The carrier level modulator is simply a multiplier that converts the C-QUAM i-f signal to a quadrature i-f signal. The left and right signals can be recovered by synchronous detectors. The synchronous detectors (balanced modulators) are supplied with the quadrature i-f signal and i-f carrier generated by the vco and shifted by ±45°.

The left and right outputs of the balanced modulators can be routed to the audio amplifiers. To recover the stereo identification signal, sample left and right signals are matrixed together. The matrixed L - R signal feeds a 25-Hz tone detector. The stereo ID tone then turns on a stereo indicator in the receiver and would possibly operate a stereo/mono switch in the input to the audio amplifiers.

Harris (CPM). The Harris Compatible Phase Multiplex (CPM) system is a linear-additive quadrature modulation scheme. The CPM system amplitude modulates two carrier signals separated in phase by 30°. The left-channel signal amplitude modulates a carrier that lags the transmitted resultant by 15°, and the right-channel signal modulates a carrier that leads by 15°. These two signals are linearly combined (added) to form the CPM signal. This makes Harris' the only proposed linear system.

One method of generating the CPM signal is illustrated in Fig. 6A. An audio matrix produces L + R and reduced L - R components. A low-level, low-frequency stereo ID tone is inserted in the L - R component in a summation amplifier. The 20-to-25-Hz tone is used only for AM stereo signaling purposes. The tone is not heard in mono receivers because it is in the L - R channel only. It will not be heard with stereo receivers because it appears out-of-phase on the two channels and cancels out in the listening environment. Hence, little or no filtering is required in stereo receivers.

The L - R component is applied to a balanced modulator along with a +90° phase-shifted carrier. The L + R information is also applied to a balanced modulator along with a normal carrier. The outputs are summed with the proper amount of carrier to produce the CPM signal. The low-level CPM signal could be transmitted as if it were followed by a linear amplifier. However, the interface requirements with current AM transmitter prohibits this.

To interface with current AM transmitters, the CPM signal is separated into envelope and phase-modulated components. An envelope detector derives L + R information from the CPM signal that is applied to the audio input of the transmitter. The CPM signal is also processed through a hard limiter to remove the AM component and yields a PM carrier signal that is used in place of the crystal oscillator in the transmitter.

The reduction in gain in the L - R quadrature channel is the key to providing compatibility with mono receivers and envelope detectors. When the CPM stereo signal is received on a mono receiver using an envelope detector, some distortion (typically 0.5%) results due to the presence of quadrature sidebands. If the L - R quadrature component were not reduced in transmission, the distortion would be about 11%.

Stereo receivers for the Harris CPM system will use synchronous detectors, rather than envelope detectors, to obviate any distortion in the stereo and mono modes. Such a stereo receiver is detailed in Fig. 6B, which illustrates one of the several ways to recover the CPM signal. Unlike the case for the four other receivers, the CPM receiver does not require the more costly front ends with equal amplitude and phase characteristics to receive low-distortion stereo.

The receiver's i-f signal is first applied to a synchronous detector. The detector serves two purposes. First, it works as a phase detector for the phase-locked loop made up of the loop filter and vco. The vco is locked to the i-f and oscillates 90° out-of-phase with the incoming i-f signal. Secondly, the balanced modulator directly demodulates the quadrature L - R part of the signal. The vco's output signal is shifted 90° and used to demodulate the in-phase L + R component of the signal. Low-pass filters remove all carrier frequency components from the output of the detectors. The L + R and L - R signals are combined in a simple audio matrix to recover independent left and right channels. Amplitude equalization of the reduced L - R component also occurs in the matrix.

The stereo ID tone can easily be re-
covered. An L – R sample is applied to a 20-to-25-Hz detector, which turns on the stereo indicator and can activate a stereo/mono mode switch.

Now and the Future. The five AM-stereo systems described here have all been field tested. Each system has its own advantages and disadvantages. In its technical evaluation, the FCC will consider a number of performance factors. Paramount among these will be the amount of increase in occupied channel bandwidth, monaural and stereo receiver distortion under skywave, selective fading, narrow bandwidth, and mistuning conditions; and stereo separation, frequency response, and noise under various receiving conditions.

Other conditions that are certain to come under the FCC’s scrutiny include: amount of reduction in mono service area; system implementation into current and future AM receiver designs; and the use of a stereo pilot for indicator lights and/or stereo/mono switching.

System comparison charts and graphs are given in Figs. 7 and 8. Final adoption and approval of an AM-stereo system based on these and other criteria could occur as early as the spring of 1979.

While the five contenders have been active in designing, testing, and promoting their systems, receiver manufacturers have not been idle. Several receiver manufacturers, including Pioneer and Sansui, have already recommended to the FCC adoption of the Harris AM-stereo system because of its technical advantages. Most receiver manufacturers, however, are taking few chances and have breadboarded most of the competing systems. The major semiconductor manufacturers are also gearing up for this new market by designing single-chip AM-stereo detector ICs.

AM stereo will do more than just bring to the public a new two-channel sound medium. It will also usher in higher quality of sound than was heretofore generally available with AM, and greater realism through two-dimensional sound reproduction. The new receivers may have a virtually flat audio response out to 10,000 Hz, compared with current AM receivers whose response is often down 20 dB at 5000 Hz.

The automotive market presents the greatest potential for AM-stereo receivers since AM signals now cover areas where FM does not penetrate.

Receiver manufacturers plan to have AM-stereo receivers on the market two to three months after final FCC approval. AM-stereo receiver marketing estimates go as high as $20-billion to supplement the 425-million mono AM receivers already in use today.

The FCC’s decision to adopt AM stereo will undoubtedly have an enormous impact on the radio-listening public. The repercussions are expected to be similar to those at the time the FCC approved color television.
Electronics IQ QUIZ

Lamp circuits A and B are electrically identical. Can you determine which lamp in circuit B corresponds with lamp number 5 in circuit A?

The lengths of the bars (A-E) represent the resistance values of a group of resistors. If resistors B and D are combined in parallel, which bar would represent the resistance of the combination?

Which diode circuit (A-D) does not belong in this group?

Can you determine the magnitude of current G leaving the circuit junction?

Which of these resistor combinations (A-D) does not belong in this group?

If sketch A is the foil side of a pc board, which sketch, B or C, is the reverse, or component, side?

What reading is indicated on this kilowatt-hour meter?

Match the electronic component symbols (1-3) with their corresponding mechanical analogies (A-C).

Which electronic component does not belong in this group?

If the first five rows of lamps (A-D) use the binary code (a lighted lamp is a 1) to indicate the numbers in a mathematical series, what number should row E indicate?

(Answers on page 100)
SECURITY FOCUS:
TWO ELECTRONIC SYSTEMS TO PROTECT YOU AND YOUR PROPERTY
AN INFRARED INTRUSION SYSTEM

Modulated invisible light beam...a protection range up to 50 feet

THE INTRUSION system described here uses an invisible infrared-beam design. When aimed across a doorway, window, or other area under surveillance, it is like having an invisible trip wire attached to an alarm system. To prevent intruders from using another infrared light source in an attempt to "fool" the alarm, the system uses a 700-Hz modulation of the invisible surveillance beam. The operating range can be as much as 50' (15.2 m) between transmitter and receiver.

Circuit Operation. The infrared transmitter shown in Fig. 1 employs a conventional 555 timer. (IC1) to control Q1, the LED driver, at a frequency of about 700 Hz. Since the waveform is adjusted to be nearly square, the average LED current is about 50 mA. (The LED is on about 0.7 ms and off about 0.7 ms.)

BY HANK OLSON
The receiver shown in Fig. 2 employs quad operational amplifier IC1, section A of which is used as a high-input-impedance noninverting ×31 voltage-gain amplifier. Phototransistor Q1 is coupled through C1 to the noninverting (+) input of IC1A. Stage IC1B is used as an active bandpass filter whose center frequency is at 700 Hz. This filter has a voltage gain of 10 and a Q of 10 and is tunable to a degree by TUNING control R7 so that its operating frequency can be matched to the frequency of the transmitted signal.

The amplified and filtered signal goes to ×100 amplifier IC1C to produce additional gain. Diode detector D1 and its associated time-constant components convert the 700-Hz ac signal to a dc voltage to drive Schmitt trigger IC1D. The trip level of IC1D can be adjusted via TRIP LEVEL control R19 between +5.5 and almost +12 volts. When the dc voltage at TP2 exceeds the voltage at TP1, the output of IC1D at pin 8 is near zero. When the dc voltage at TP2 is less than the preset voltage at TP1, IC1D's output is almost +12 volts, at which point, Q2 conducts and energizes K1.

Since IC1 operates with a 12-volt power supply (rather than its normally rated ±6-volt supply), IC2 is used to generate V/2 (6 volts) at a low impedance. Note that the output of IC2 is always half the supply voltage, even if that voltage changes slightly. It also supplies V/2 potential at low impedance, without consuming the large amounts of current that would be the case with a resistive voltage divider.

The +5-volt power supply for the transmitter is shown in two versions in Fig. 3. The ac-only version in A employs a simple rectifier/filter and a common three-terminal voltage regulator. The +12-volt ac supply for the receiver is shown in Fig. 4A.

Parts B of Figs. 3 and 4 illustrate an ac plus standby battery supply that automatically switches the transmitter/receiver from line to battery power if the power line should fail or be cut. In the switchover circuits, a simple emitter-follower regulator uses the standby battery.

Fig. 1. Timer drives Q1 to turn on LED in simple transmitter.

Fig. 2. When the dc voltage at TP2 of IC1D goes low, Q2 conducts to energize K1.

TRANSMITTER PARTS LIST

- C1—0.082-µF disc
- IC1—555 timer
- LED1—Discrete infrared light-emitting diode (Monsanto M120C or ME60 or Motorola HEP P2002)
- Q1—2N3641 transistor
- R1—2400-ohm, 0.5%, 1/2-watt resistor
- R2—11,000-ohm, 10%, 1/2-watt resistor
- Misc.—Suitable box (LMB 140 or similar); lens; brass tubing; etc.
- Note: Four lenses are available for $5.00 ppd from Hank Olson, P.O. Box 339, Menlo Park, CA 94025.

RECEIVER PARTS LIST

- C1—0.01-µF disc
- C2, C7—0.022-µF disc
- C3, C4—0.068-µF disc
- C5—1-µF, 15-V electrolytic
- C6—10-µF, 15-V electrolytic
- D1—1N4454 diode
- D2—1N4001 rectifier diode
- IC1—LM324 quad op-amp
- IC2—741 op-amp
- K1—12-volt, 250-ohm relay
- Q1—VVT-1013 (Vactec), MRD450 (Motorola), or HEPP0003 (Motorola) phototransistor
- Q2—2N3643 or HEP-S30015 transistor
- R1, R2, R17—10,000 ohms
- R3, R11, R14—100,000 ohms
- R4—1-megohm
- R5—330 ohms
- R6—150 ohms
- R8, R9—68,000 ohms
- R10, R12—1000 ohms
- R13—100 ohms
- R15, R18—51,000 ohms
- R16—5.1 megohms
- R20—8200 ohms
- R7—50-ohm potentiometer
- R19—10,000-ohm potentiometer
- R21, R22—10,000-ohm, 1% resistor
- Misc.—Sockets for ICs; lens; telescoping tubing; suitable box (Bud AC-429 or similar).
as a voltage reference, which consumes very little current, while the main current is passed through the emitter-follower from collector to emitter. When the ac line fails, the base-emitter junction of the emitter-follower acts as a diode to conduct the required current from the battery to the circuit. In the Fig. 3B power supply for the transmitter, a 5-volt regulator is used after the emitter-follower because of the voltage/frequency sensitivity of the 555 timer. Fuse F2 and diode D1 are included in the base circuit to protect against inadvertent battery-polarity reversal.

By adding a resistor between the base and collector of the emitter-follower, a float charge can be used by the rechargeable standby battery. The battery manufacturer’s charging specifications can be met by varying the voltage of the transformer and the value of the resistor between the collector and base.

Construction. The transmitter and receiver can be assembled as desired on perforated board or small printed-circuit boards of your own design. Mount LED1 in the transmitter where it can be “beamed” through a lens hole cut into the wall of the box in which the transmitter is housed. Similarly mount Q1 in the receiver’s box so that its sensitive surface “looks” through a lens hole. Details for the lens system to use in both the transmitter and the receiver are shown in Fig. 5. Position a small piece of Kodak Wratten #87 filter between the lens and the phototransistor in the receiver to exclude visible light.

Setting Up. Connect a triggered-sweep oscilloscope or a frequency counter to pin 3 of capacitor IC1 in the transmitter. With power applied to the circuit, the measured frequency should be very close to 700 Hz. If it is not, slightly alter the value of capacitor C1 by adding a low-value capacitor either in shunt or in series with C1.

Remove the lenses from the system and aim the LED in the transmitter at the phototransistor in the receiver, spacing the two about a foot apart. Connect a high-impedance multimeter (VTVM, DMM, etc.) to TP2 in the receiver (Fig. 2) and adjust potentiometer R7 for a maximum reading on the meter. Connect the

TRANSMITTER POWER SUPPLY PARTS LIST

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP1, BP2</td>
<td>Five-way binding post</td>
</tr>
<tr>
<td>C1</td>
<td>0.01-µF, 1-kV disc</td>
</tr>
<tr>
<td>C2</td>
<td>2000-µF, 15-V electrolytic</td>
</tr>
<tr>
<td>C3</td>
<td>0.22-µF</td>
</tr>
<tr>
<td>C4</td>
<td>10-µF, 10-volt tantalum</td>
</tr>
<tr>
<td>D1, D2, D3</td>
<td>1N4002 rectifier diode</td>
</tr>
<tr>
<td>F1, F2</td>
<td>1-ampere fuse and holder</td>
</tr>
<tr>
<td>IC1</td>
<td>7805 5-volt regulator</td>
</tr>
<tr>
<td>Q1</td>
<td>HEP S5000 (Motorola) or D4OD2 (GE) transistor</td>
</tr>
<tr>
<td>R1</td>
<td>1-ohm, 10%, ½-watt resistor</td>
</tr>
<tr>
<td>S1</td>
<td>Sps switch</td>
</tr>
<tr>
<td>S2</td>
<td>Dps switch</td>
</tr>
<tr>
<td>T1</td>
<td>Triad No. F90X transformer</td>
</tr>
</tbody>
</table>

Fig. 3. Ac-only version of power supply is shown at (A). Circuit (B) has provision for standby battery operation.
of the receiver and, with the meter connected to TP2, adjust the aiming and lens extension of each unit to maximize the meter reading. Any level at TP2 that is in excess of 6.2 volts set up via R19 should cause K1 to open. You can check this by interrupting the beam with your hand and listening for the click of

RECEIVER POWER SUPPLY PARTS LIST

BPI, BP2—Five way binding post
C1—0.01-µF, 1-kV disc
C2—1000-µF, 25-volt electrolytic
C3—0.22-µF
C4—10-µF, 15-volt tantalum
D1, D2, D3—1N4002 rectifier diode
F1—1/2-ampere fuse and holder

IC1—7812 12-volt regulator
Q1—HEP S5000 (Motorola) or D40D2 (GE) transistor
R1—1-ohm, 10%, 1/2-watt resistor
S1—Spst switch
S2—Dpdt switch
T1—Triad No. F9O transformer

Fig. 4. Ac power supply (A) and battery standby circuit (B).

Fig. 5. How to construct the lens systems for receiver and transmitter units.

A PORTABLE ALARM FOR SINGLE ENTRIES

Small, battery-operated alarm is sounded by intruder’s contact with doorknob.

Silence is a primary requirement of a successful burglary. There are many intrusion alarms on the market to break this silence. The one described here is a special-purpose device—a portable door alarm that’s especially useful for apartment dwellers or persons who travel and thus stay frequently at motels or hotels.

The alarm is designed to be hung on the inside doorknob of the entry door. It is tripped by anyone touching the knob or inserting a key. The alarm will sound off even if the would-be intruder wears rubber gloves. Once it cannot be disabled until a button is pressed.

The advantages of this portable alarm are:

1. Portability
2. Operates on the ac power line
3. Triggered by insertion of doorknob or key
4. Low cost

BY JOHN HOLLABAUGH

December 1978
Parts List

- A1 - 1.5-volt buzzer
- B1 - Two 1.5-volt cells in series
- C1 - 50-pF disc
- C2 - 6-µF, 15-volt electrolytic
- D1 - Any germanium diode
- L1 - See text
- Q1 - 2N5949 or similar FET
- Q2 - Low-power npn germanium transistor
- R1 - 150,000-ohm, 1/4-watt, 10% resistor
- R2 - 10,000-ohm, 1/4-watt, 10% resistor
- R3 - 5600-ohm, 1/4-watt, 10% resistor
- R4 - 500-ohm trimmer potentiometer
- SCR1 - 2N877 or similar 0.5-ampere silicon controlled rectifier
- S1 - Spst switch
- S2 - Normally closed pushbutton switch
- Misc - Small plastic case; heavy bare copper wire (for hook); machine hardware; hookup wire; solder; etc.

Output of Hartley oscillator (Q1) keeps SCR1 from firing until the impedance at R1/C1 is changed by contact with hook and oscillations cease.

Circuit Operation. As shown in the schematic diagram, the alarm's circuit consists of a Hartley oscillator made up of Q1, L1, R1, and C1. The output of the oscillator is generated across the secondary of L1 and is rectified by D1. The rectified signal is then used to forward bias Q2 so that the transistor's collector-emitter voltage is almost zero. This bias voltage is applied to the gate of SCR1, which, because the gate voltage is very close to the anode voltage, prevents the SCR from firing.

The C1/R1 junction and gate of Q1 represent a high r-f impedance that can easily be changed by the contact of any r-f-absorbing object, such as the human hand. The sensitivity of this reaction is controlled by R4, which is connected across the feedback winding of L1.

When the r-f oscillator is loaded by contact with the "hook" (a short metallic connector to the high-impedance junction), the oscillations cease and remove the positive voltage applied to the base of Q2. When this occurs, Q2's collector goes positive. This voltage is applied to the gate of SCR1 to trigger the SCR into conduction. Current now flows through alarm A1, reset switch S2, and SCR1. Because SCR1 is powered from a dc source, it will continue to conduct until the reset switch is operated to momentarily break the conduction path and turn off SCR1.

Construction. The alarm's circuit can be built on any small perforated board or a printed-circuit board of your own design. Be sure, however, to observe good r-f wiring practice, keeping lead lengths as short as possible. (Almost any AM-broadcast-band transistor-radio coil that has a low-impedance secondary winding can be used for L1.)

The small board, alarm, power and reset switches, and two 1.5-volt cells can be installed in a small plastic box. The hook can be made from a length of heavy bare copper wire, fed through a hole in the box and soldered to the R1/C1/Q1-gate junction.

Checkout. Place the case in a position so that the wire hook is vertical and away from all metal objects. With the power turned on, touch the hook with your hand. This should cause the alarm to sound. When you press the reset switch (with your hand away from the hook), the alarm should cease sounding. Adjust potentiometer R4 for the desired tripping sensitivity.

The alarm should be used with metal doorknobs on wooden doors. (All-metal doors may present too much of a load for the alarm's pickup.)
NEW! VF-2031 Hand-Held Two-Meter Transceiver. 8-channel simplex with + or - 600 kHz offsets giving you a total of 24 transmit and 8 receive channels with only 8 crystals.

NEW! ID-4001 Weather Computer. The first computerized instrument to combine all these important weather instrument functions. Displays time, wind direction and magnitude, indoor/outdoor temperature, barometric pressure, even wind chill factor. Computer memory provides useful storage and recall of data.

NEW! Rack-Mount Stereo Components. A powerful and sophisticated stereo amplifier and an LED output indicator are two new products designed for stylish rack-mounting! Both offer the power, features and value Heathkit hi-fi-equipment is famous for! More to come!

NEW! Digital Readout Car Clock with Trip Timer. Versatile clock/timer shows time in hours and minutes, 24-hour timer that reads to nearest second. Bright, easy-to-read display; low-power circuit that doesn't drain battery.

NEW! Deluxe Dual-Trace Oscilloscope. Low-priced scope features extra-bright traces, selectable triggering, 7-position variable time base, DC to 5 MHz bandwidth.

NEW! RECHARGEABLE Portable Light. Fluorescent light serves as a handy and rugged portable light for outdoor uses. Rechargeable battery power supply for years of dependable, money-saving use!

Over 40 new and unique electronic products in this colorful new catalog plus nearly 400 others—all in easy-to-build, money-saving kit form. Read about all the exciting gifts you can give, OR GET!

This NEW Heathkit Catalog is yours FREE!

OVER 40 NEW PRODUCTS—SEND FOR YOUR COPY NOW!

OR, you can redeem this coupon at your nearest Heathkit Electronic Center where Heathkit products are displayed, sold and serviced. Check the white pages of your phone book for the store nearest you. If coupon is missing, write

Heath Company, Dept. 010-480
Benton Harbor, Michigan 49022
WHAT would you like to receive as Christmas gifts from among the multitudinous electronics products on the market? Posing this question to seven editors and the publisher of POPULAR ELECTRONICS was very revealing.

Like many readers, they own an exceptionally large number of electronics products due to their affinity for all things electronic. So the products they'd like to receive as gifts, whether purchased by a loved one or bestowed upon one's self, were very selective. It was largely influenced by what they already owned, their present activities, and what they would like to get into in the broad field of electronics.

The only condition set down for this informal survey was that their choices be made on the basis of likely monies available to be spent rather than a selection of "dream" products beyond their financial reach. Two choices were permitted for each of the following electronics products categories: Communications, audio, computers, test instruments, miscellaneous (costly), miscellaneous (inexpensive). Duplicated selections are not noted here.

How do your choices compare? To help you drop some pointed, innocent hints to, say, your wife, we've included a sample "What I'd Like As A Gift" form that you can cut out and place in a location that can be seen by your target donor.
Yamaha T-2 AM-Stereo FM Tuner

Marantz "Car-420" In-Dash AM-Stereo FM-Cassette-Clock

PLUS OTHER SELECTIONS:
- TEAC A-3340S 4-Channel Open-Reel Tape Deck
- Dual 1246 Automatic Turntable
- Nakamichi 600 II Cassette Deck
- ESS AMT Monitor Speaker Systems
- H.H. Scott 460A Integrated Amplifier
- Marantz 2130 AM-Stereo FM Tuner
- Pioneer Electronics KPH-9000 In-Dash Car AM-Stereo FM-Cassette
- Lafayette "Pip-Speak" Mini Speaker Systems
- Pioneer RT-707 Open-Reel Tape Deck

DECEMBER 1978
CHRISTMAS 1978 ELECTRONICS HOPE CHEST

Audio:

Communications:

Computer:

Test Instruments:

Others:

Stocking Fillers:

By: [Signed with a prayer]
ME 802A Digital Multimeter

Fluke 802A Digital Multimeter

Continental Specialties "Design Mate 4" Pulse Generator

PLUS OTHER SELECTIONS:
- Hewlett-Packard HP-1740A Dual-Trace Oscilloscope
- Phillips PM3214 Dual-Trace Oscilloscope
- Sabtronics 2090 Digital Multimeter
- Optoelectronics OPTO-8000-1 Frequency Counter
- Heath IM-5248 Audio THD Analyzer
- Heath IM-5239 Audio IM Analyzer
- NVE IE-10A Portable Octave Analyzer

JVC HR-3600 Vidstar Video Cassette Recorder with slow-motion and stop

PLUS OTHER SELECTIONS:
- RCA "SelectaVision 400" Video Cassette Recorder
- Sony Betamax Video Cassette Recorder
- Advent Projection TV
- Heath IM-5248 Audio THD Analyzer
- Heath IM-5239 Audio IM Analyzer
- NVE IE-10A Portable Octave Analyzer

General Electric "Widescreen 1000" Projection TV Receiver

Pioneer TVX-9500 TV Sound Tuner

PLUS OTHER SELECTIONS:
- Panavise Vise with PC-Board Adaptor
- Xcelite "99" Tool Set
- Nye-Viking Speed-E Telegraph Key
- Radio Shack TAD-13 Automatic Telephone Answering System
- Weller Solder Gun
- 1979 Radio Amateur's Handbook
- 1979 World Radio Handbook
- Reference Data For Radio Engineers book
- Ungar "Controlled Solder Station"

OK Machine & Tool Manual Wire Wrapper

Wahl "Iso-Tip" Cordless Solder Iron

Panavise Vise with PC-Board Adaptor

Xcelite "99" Tool Set

Nye-Viking Speed-E Telegraph Key

Radio Shack TAD-13 Automatic Telephone Answering System

Weller Solder Gun

1979 Radio Amateur's Handbook

1979 World Radio Handbook

Reference Data For Radio Engineers book

Ungar "Controlled Solder Station"
HOLIDAY PROJECTS

WITHOUT question, the most precious gifts are those with a personal touch. For example, hand-crafted bookends express one's feelings much better than a mass-produced set from a department store. With this thought in mind, last December's column was devoted to simple circuits suitable for hobbyist gift projects. The reaction was surprisingly positive in the form of reader correspondence and phone calls. Such an enthusiastic response demands an encore. So for this Holiday Season, another visit to our treasure trove of useful circuits!

A relatively new device from Texas Instruments, Inc. (Box 5012, Dallas, TX 75222) offers some exciting possibilities for simple gift projects. Identified as the type TL489C Analog Level Detector, the inexpensive IC consists of five comparators and output drivers along with a reference voltage network in a single 8-pin plastic miniDIP.

Referring to the block diagram and function table given in Figs. 1A and 1B, respectively, the TL489C accepts a positive analog dc input signal at terminal A (pin 8) and switches open collector outputs Q1 through Q5 (pins 2 to 6) from high to low levels in steps with an increasing input voltage. Initially, all outputs are high (i.e., switch open). When the input voltage increases to a nominal level of 200 mV, Q1 switches to low (that is, on or conducting).

Afterwards, Q2 switches low when the input is raised to 400 mV, Q1 remaining low. Next, Q3 switches low when the input is raised to 600 mV, and so on, until all five outputs are low with an input of 1000 mV (or 1 volt). The input level can be increased up to a maximum of 8.0 volts without damage, but there will be no further change in the outputs. If the input voltage is lowered, however, the reverse action will take place. Here, Q5 returns to a high state when the input voltage drops to approximately 800 mV. This is followed similarly by Q4, Q3, Q2, and Q1, as the input voltage is decreased to near zero. Each output can withstand up to 18 volts, sinking up to 40 mA, and is thus capable of driving LEDs, low-power incandescent lamps, sensitive relays, Sonalert alarms, and power transistors as well as all standard logic families (TTL, CMOS, etc.). The device has an (analog) input impedance of approximately 100,000 ohms, and is suitable for operation on dc sources of from 10 to 18 volts.

The TL489C is especially designed to detect and indicate analog voltage levels. It may be combined with suitable sensors or controls and, where appropriate, other circuit elements such as power transistors, op amps, logic gates, or transducers in a wide variety of industrial, scientific, consumer, and automotive applications. It also can be used in simple measuring instruments, automatic controls, timers, games, and alarms. The only real limits to its range of practical applications are the imagination and skill of the circuit designer. Among the scores of potential gift projects for the TL489C are such items as soil moisture indicators for amateur gardeners; temperature range indicators; controls and alarms for tropical fish fanciers, budding chemists, chefs, or serious photographers; simple battery or continuity testers for home handypersons and mechanics; visual and audible action toys for the younger set; family games; and simple light organs for audio enthusiasts and musicians. Basic application circuits for the TL489C are shown in Figs. 2 and 3.

Depending on the source of the dc analog voltage, either of the circuits illustrated in Fig. 2 can be used as a coarse indicator of temperature, moisture, battery voltage, audio signal level, continuity (resistance), or control potentiometer position. Referring, first to Fig. 2A, the TL489C is used to drive standard incandescent lamps. Shunt "keep alive" resistors are connected to ground from each output (Q1 to Q5) to maintain small currents through each lamp while "off," thus avoiding Figure 1. Block diagram (A) and function table (B) of Texas Instruments' TL489C.
100
451
15
DECEMBER

Fig. 2. TL489C level indicators: with incandescent lamps (A); with LEDs (B).

the high inrush currents which occur when voltages are first applied to cold lamp filaments. The resistance values required will depend on the source voltage and on the characteristics of the lamps used.

Owing to the device's high input impedance, an input bypass capacitor may be needed in some applications to prevent false operation by noise signals. As indicated, the value of the bypass range may vary from as little as 0.001 \(\mu \)F to as much as 10 \(\mu \)F. In the second circuit, Fig. 2B, LED output indicators are used, each with a suitable series resistor to limit its maximum current to safe limits, depending on the source voltage. If desired, different types (and colors) of LEDs may be used for each output, with the corresponding series resistor value adjusted accordingly. The second circuit has another interesting feature. Note that Q1's output is returned to the analog input through a simple RC network. This arrangement causes LED L1 to flash periodically when the input level at point P is below 200 mV.

Either circuit can be used as a temperature indicator by connecting an appropriate thermistor (serving as a sensor) between the analog input terminal of the input potentiometer and a positive dc source voltage. The potentiometer is then used to adjust the resulting instrument to cover the desired range within the limits established by the thermistor's characteristics. As the temperature increases above the minimum preset value, one or more lamps will be turned on.

If a soil moisture indicator is preferred—a nice gift for the amateur gardener—the analog input terminal should be connected to a spike probe, with a second probe connected to a positive dc source through a series current limiting resistor. For consistent test results, the two probes should be mounted in a rigid holder to maintain a fixed separation between them. In use, the spike probe assembly is simply pressed into the soil to be checked. One or more of the lamps will light, depending on the soil's conductivity (relative moisture content). Since soil conductivity will vary with its mineral content (dissolved salts) as well as with moisture, the potentiometer should be used to adjust the unit's overall sensitivity for local conditions.

Replace the moisture tester's fixed probe assembly with flexible lead probes and you have a dandy continuity tester for the home handyperson or weekend mechanic. If you prefer a simple battery tester as a gift, simply connect a known good cell between the analog input terminal (positive) of either circuit and ground, adjusting the potentiometer until the first lamp lights. If a standard 1.5-volt cell is used for this calibration procedure, a 3-volt battery (if good) will light two lamps; 4.5 volts, three lamps; 6 volts, four; and, finally, 7.5 volts or more, all five. For your gift, you may prefer to replace the adjustable potentiometer with a fixed resistor voltage divider, providing extra terminals for checking batteries up to, say, 24 volts or more.

A simple, exciting and delightful toy for the younger set may be created using the same basic circuits. Assemble the circuit in a medium-size cabinet or case and provide a large control knob for the potentiometer. Add a battery power supply and spst on-off switch. Use different colored lamps in each position, replacing at least one with a Sonalert. Decorate with suitable decals or painted designs and give each item an appropriate label. One lamp, for example, might be marked ROCKET FUEL, another NUCLEAR REACTOR, another SENSORS, another RED ALERT, and so on, with, perhaps, ATTACK ALARM for the Sonalert device, MASTER CONTROL for the potentiometer knob, and MAIN GENERATORS for the power switch. If desired, two or more circuits could be assembled in a single cabinet, with a combination of slide and rotary potentiometers for the "controls." Sparked by their own imagination, most youngsters could spend many happy hours playing "space wars" or other games with such a toy. But make sure you have an ample supply of replacement batteries!

Additional TL489C application circuits suitable for gift projects are illustrated in Fig. 3. The first, Fig. 3A, employs standard logic to develop an output control voltage for an alarm or other purposes if the analog input voltage either drops below or exceeds preestablished limits. Here, only three of the device's five outputs are used. Outputs Q1 and Q3 are low and output Q5 is high (that is, LEDs L1 and L2 are on, L3 is off) as long as the analog input voltage is at its nominal center value but below its maximum limit.

If the input voltage drops a little, but is still above its minimum value, L2 may turn off, but L1 will remain on and there will be no alarm signal for the on gate. Similarly, if the input voltage goes above its nominal center value, but remains below its maximum limit, both L1 and L2 will remain on and L3 off with, again, no alarm output from the OR gate. If the analog input voltage drops below its minimum limit, however, Q1 and Q3 will go high and L1 and L2 will turn off. With Q1 high, though, the OR gate's output will go high to provide the required alarm control signal. On the other hand, if the input voltage exceeds the maximum limit, Q1, Q3 and Q5 all will go low, all three LEDs will be on, and the low at Q5, applied to the OR gate input through an inverter, will cause the OR gate's
output to go high. Again, this will develop a signal to activate the alarm.

Depending on the type of sensor used to develop the analog input voltage, this circuit can be used in burglar and fire alarm systems; in level alarms for water, fuel, or other tanks; in over/under range temperature alarms, in humidity control alarms; in hydraulic or air pressure alarms; or, for that matter, in any system requiring that an alarm or other action be initiated whenever a physical or ambient condition exceeds a predetermined value range. It may be used in such household projects as temperature alarms for hair dryers, soldering irons, photographic chemical baths, or tropical fish tanks, in humidity alarms for basements or home greenhouses, in

"low-level" warning alarms for household fuel or water tanks, or even in "too dry" alarms for lawns or indoor plants, as well as in dozens of other useful gift projects.

Using a dpst relay instead of digital logic, the circuit shown in Fig. 3B differs from the one just examined. It is basically an electronic limit switch, acting either to switch on or shut off an electrical, electromagnetic, or electromechanical device whenever the analog input voltage is outside the preset, (but adjustable) limits. With the arrangement shown, the circuit responds to temperature changes, switching the blower fan on when the thermistor sensor temperature reaches a given level and off when that temperature drops below a second level. For other applications, the blower fan might be replaced by a pump, heater, lamp, horn, solenoid valve, or other device, and the thermistor by a photo-resistive cell, varistor, humidity detector, semiconductor pressure transducer, or other sensor, depending on the response characteristics needed.

In operation, switch S1 selects the temperature at which the blower fan is turned on, while S2 sets the temperature at which it is switched off. Initially, of course, the relay is open, the blower fan off, and all Q outputs are "high." As the thermistor temperature rises, the analog input voltage increases and Q1, Q2 and Q3 go "low" in successive order. With the switch positions shown, current can flow through the relay coil and isolation diode when Q3 goes low. The relay closes, switching the blower fan on. As the thermistor cools, Q3 will go "high," but relay current continues to flow through the second set of contacts and Q2, which is still "low," and the relay is held closed. Only after the thermistor has cooled enough for Q2 to go "high" does the relay drop out, switching off the blower fan and re-establishing the initial conditions.

The difference between the "turn on" and "turn off" temperatures is the hysteresis of the circuit. In terms of the analog input voltage, this can be as little as 10 mV when S1 and S2 are both set to the same "Q" output, to as much as 1000 mV (or 1.0 V) when S1 is set to Q5 and S2 to Q1. The input potentiometer determines the circuit's overall sensitivity and, therefore, the actual temperature at which initial operation occurs, regardless of the switch positions (within the limits established by the thermistor characteristics, naturally). Where other types of input sensors are used, hysteresis limits may represent two different pressures, liquid levels, humidity conditions, light intensities, line voltages, sound levels, wind speeds, weights, or other parameters rather than temperature.

Timers make excellent off-beat gifts. They are good to have in many types of games (chess, for example) and, in addition, can be used by housewives, photographers, and amateur
Fig. 4. Two easy-to-make timer circuits:
(A) using five-transistor IC array;
(B) timer can be used to switch ac loads.

chefs, as well as teenagers who overuse the family telephone. Two easy-to-duplicate timer circuits are illustrated in Fig. 4. Both were abstracted from among the dozens of practical circuits described in Circuit Ideas for RCA Linear ICs, publication Number 2M1206, a 20-page, booklet issued by RCA's Solid State Division (Box 3200, Somerville, NJ 08876).

Referring, first, to Fig. 4A, all the active solid-state devices required for this simple 10-second timer are contained in a single CA-3096 five-transistor array. Assembled in a 16-pin plastic DIP, the CA-3096 contains three npn and two pnp silicon transistors. Two of the npn transistor elements, Q1 and Q2, are interconnected to form a bistable switch while the third, Q3, serves as a driver for the lamp load. One of the pnp transistors, Q5, is diode-connected and used in the base bias network for the remaining pnp type, Q4. In operation, the 5-µF capacitor is charged slowly through Q4 at a rate determined by the bias potentiometer setting until there is sufficient voltage to trip the bistable switch, Q1-Q2. At this point, Q2 is switched to a high-impedance state and a positive base bias is applied to Q3, permitting collector current to flow through the lamp load, indicating the end of the timed interval.

There is no provision in the original design for resetting this timer circuit except by switching the source power off. If this feature is needed, however, it can be added quite easily by connecting a normally open, momentary-contact, spst push-button switch across the timing capacitor. Depressing and releasing the switch will discharge the capacitor and restart the timing interval. Other modifications may be made for special applications, at the builder's option. If a longer or shorter timing interval is needed, for example, other values can be used for the timing capacitor; a lower value (less than 5 µF) would require

We have immediate openings for people with technical training and one or more years of experience in the maintenance and repair of electronic equipment. These positions require travel ranging from a few days to several months at a time. Duties will involve using your technical knowledge and the latest test equipment to troubleshoot, diagnose and repair a broad range of sophisticated PABX and central telephone office equipment.

We offer excellent starting salaries and company benefits. If qualified, please send complete resume including salary history to Tom Edminson, ITT Business Communications Division 2000 S. Wolf Rd., Des Plaines, Illinois 60018.

ITT Business Communications Division
An Equal Opportunity Employer, M/F

NOW...
Add-on Mini-Disc for the TRS-80

Dual and triple drives also available.

only $399.00
from PERCOM

Requires 16K RAM, Level II BASIC and Expansion Interface.

CIRCLE NO. 65 ON FREE INFORMATION CARD
duce the timed interval, a larger value will increase it. For control applications, the lamp load could be replaced by a suitable sensitive relay or, for alarms, by a low-voltage buzzer.

Where wider range and greater versatility are needed, as in a general purpose household timer, the circuit shown in Fig. 4B may be used. Somewhat more complex and hence more expensive to duplicate than the simpler design, this circuit features step-selectable maximum ranges of from three minutes to four hours and is capable of switching (ac) line operated loads. Here, a type CA3094A programmable power switch/amplifier serves as the active device, supplying a gate control signal to a standard Triac. In operation, depressing spst push-button switch S1 charges timing capacitor C1 from the dc source through R5. The voltage across C1 (E1) is applied to the amplifier's noninverting (+) input and is compared to reference voltage (E2), applied to the inverting (−) input through an isolation diode by control R6.

As long as E1 is greater than E2, the amplifier supplies a positive gate voltage to the Triac, holding the device in a conducting or on state and permitting current flow through the load. Capacitor C1 will slowly discharge through the amplifier's input impedance at a rate determined by the amplifier's input bias. This, in turn, is established by bias control resistors R1 through R4. Once C1 has discharged to the point where E2 exceeds E1, there is no longer a positive gate voltage applied to the Triac. Consequently, this device switches off. The total time during which the Triac supplies current to the load, then, depends on E2's initial value. This, in turn, reflects R5's adjustment and the input bias established by bias resistors (R1 to R4) selected by TIME RANGE SELECTOR switch S2. Depending on the type of Triac used, the circuit is capable of switching either 120- or 240-V ac loads.

RCA suggests values of 0.51 megohm for R1, 5.1 megohms for R2, 22 megohms for R3, and 44 megohms for R4 to provide maximum timing periods for each range of 3 minutes, 30 minutes, 2 hours, and 4 hours, respectively. Voltage divider resistors R5 and R7 should be 2700-ohm, ½-watt types, gate-current limiting resistor R8 a 1500-ohm, ½-watt unit, and timing control R6 a standard 50,000-ohm potentiometer with a linear taper. A type T2302B Triac is recommended for controlling 120-V ac loads; a type T2302D for 240-V applications. The 30-V dc source required for timer circuit operation may be obtained either from batteries or a well-filtered line-operated power supply.

On the other hand, if you’re not turned on by timers and are seeking an inexpensive “stocking stuffer” gift for a friend whose interest, as yours, is electronics, you might consider giving the person one of the versatile ICs described in recent columns: perhaps the SN76477 complex sound generator described last October, an 8038 waveform generator or LH0094 multifunction converter, or TL489C analog level detector.

Should you decide on ICs as gifts, be sure to include data sheets and, if available, application notes on the device(s), together with tear sheets of any magazine articles you have featuring the units. If the device is one you’ve used in projects, you might also include a sketch of your favorite circuit application to add an extra personal touch to your gift.

If you don’t feel that you or the recipient of your gift are sufficiently adept at building a project, see the article on page 74 for items the PE editors think would make good gifts.

Unique, New SONIC Sentry from Delta Blows the Horn on Vehicle Burglary and Intrusion...

...and robbers are their most important conspirators...

Opportunity, Anonymity, and Concealment. A silent, vigilant sentinel, the Sonic Sentry literally blows the horn on any intrusion into the field of harmless, invisible ultrasonic protection that is cast throughout the interior of the vehicle.

Anyone who has a 12-volt vehicle with a horn or other noisemaker, and a hard exterior surface can enjoy Sonic Sentry security. And because it’s manufactured by Delta Products, you know it’s backed by an established firm with an industry-wide reputation for product integrity and superior service.

Sonic Sentry is meticulously engineered to incorporate the best in ultrasonics with built-in safeguards against false alarm. In addition:

1. Installation is easy, involving only three simple wire connections.
2. There are no holes to drill for installation.
3. Sonic Sentry is keyless and includes entry/exit delay, and automatic one minute alarm timer.
4. It protects the interior of any van, camper, mobile home or trailer, as well as automobiles, trucks, etc.
5. Sonic Sentry is the only vehicle ultrasonic designed by a professional electronics company with extensive experience in the field of ultrasonics.

DELTA PRODUCTS, INC.

P.O. Box 1147 One Delta Way, Dept. PE Grand Junction, Colorado 81501
(303) 242-9000

Please send complete information about the Sonic Sentry, together with facts on Delta’s line of dynamite automotive, motorcycle and security products to:

Please send...Sonic Sentry(ies)

$59.95 plus $1.00 postage

☐ Check enclosed.

Charge my: [] Master Charge [] VISA

Credit Card # ____________________________

Expiration Date: ____________________________

Name: __________________________________

Address: __________________________________

City: __________________ State: ______ Zip: ______

POPULAR ELECTRONICS

82 CIRCLE NO. 14 ON FREE INFORMATION CARD
HOW TO FIND PIV

Q. I recently bought a batch of surplus diodes, most of them unmarked. How can I determine the PIV of each component without destroying it in the process?—John F. Eldredge, Nashville, TN.

A. The V-I characteristic of a silicon diode is shown in the diagram at A. When the diode is forward biased by a voltage equal to V_F, the diode turns on and conducts heavily. Under reverse bias conditions, current through the diode remains infinitesimal—on the order of nanoamperes—until the breakdown voltage V_{BD} is reached. At that point, the diode "avalanches" into conduction and will destroy itself unless the current through it is limited by an external factor. A silicon diode is rated by a peak inverse voltage (PIV) that specifies the reverse voltage that the diode can withstand without avalanching. Diodes intended for power rectifier applications generally have a PIV rating of greater than 50 volts. Some are rated as high as 1000 volts or more. Silicon switching and signal diodes usually have smaller PIV ratings—on the order of 35 volts or so.

The PIV of a silicon diode can be determined nondestructively by using the circuit shown at B. The variable voltage source supplies a controlled reverse bias across the diode. As the TEST button is pressed and the supply voltage is increased, the milliammeter and voltmeter should be monitored. At a certain output voltage, the voltage across the diode will no longer continue to rise and the milliammeter will begin to indicate some current through the diode. The voltage as read on the voltmeter is the V_{BD} of the diode. Use the diode under test only in an application in which it will not be subjected to this voltage. Also, leave a safety margin so that the diode will not be operating near the breakdown point.

The variable power supply shown in the schematic should have a peak output somewhat greater than the expected PIV of the diodes. In the case of power rectifiers, this can be as high as 1000 volts. If you want to test such reverse voltages, EMPLOY CAUTION! Never connect a diode to binding posts BP1 and BP2 while depressing S1. Take care when wiring the circuit.

If a variable voltage supply with an adequate range of adjustment is not available, you can use a fixed supply and a potentiometer. Connect the poten-
tiometer across the supply with the wiper to the 2.2-megohm resistor. A potentiometer with a maximum resistance of 50,000 ohms or more will be suitable. Determine the power rating of the potentiometer using the equation $P = \frac{V^2}{R}$ where R is its resistance and V is the maximum output voltage of the supply. Again, take care if you are using an HV supply. Employ only a pushbutton switch or spring-loaded toggle switch (normally open) for S1 that is rated to withstand the peak output of the supply.

DETERMINING COAX LOSSES

Q. I am planning to install a master television antenna system in my home. One problem—I can't find out how to determine coaxial cable attenuation. Is there a formula to determine attenuation per 100 feet (30.5 m) of RG-59/U cable, or any other type of coax?—Charles H. Lake, Jr., Independence, MO.

A. Transmission lines can be described by so-called distributed constants: R, L, C, G, θ, and γ. The resistance of the conductors in ohms per foot or meter; L, inductance per unit length; C, the conductivity of the insulating dielectric in ohms per unit length; G, the capacitance between the conductors in microfarads per unit length. Each type of line has its own propagation constant γ equal to: $(R + jL)(G + jC)$. The propagation constant is also expressed as $\gamma = \alpha + j\beta$, where α is an attenuation factor in nepers per unit length (one nper is 0.115 decibels) and β is a phase factor in radians per unit length. We can find γ in the form of $\frac{1}{2}(\frac{V_{PIV}}{R} + j\frac{V_{PIV}}{G})$ and β as $\alpha\omega C$ where ω is the angular frequency in radians/second. Thus, if we know the four distributed constants, we can determine the attenuation and phase-shift factors of the line.

However, measuring the distributed constants requires test equipment that most of us don't have. Fortunately, the results of such measurements are readily available. On page 24-41 of Reference Data for Radio Engineers (published by Howard W. Sams & Co.) a comprehensive plot of attenuation of various types of cables in dB per 100' is shown. A similar graph appears on page 93 of The ARRL Antenna Book (published by the American Radio Relay League). The graphs are valid for cable in good condition, cable that has not deteriorated from the effects of the environment. If you don't have either of these books, you'll probably find a copy in any engineering school's library.

Cable losses can be determined empirically in the following manner. Terminate one end of the cable with a carbon resistor whose resistance equals the characteristic impedance of cable. Then, connect a signal generator whose source impedance equals the characteristic impedance of the line to the other end. Adjust the generator so that it produces a convenient output level as measured on an oscilloscope or r-f voltmeter at the frequency of interest.

The vertical bandwidth of the oscilloscope or the response of the voltmeter must be such that the instrument is calibrated at the frequency of measurement. Also, the instrument must be coupled to the line so that it disturbs the conditions on it as little as possible.

Measure the signal voltage at the output of the signal generator and that at the matched termination. The attenuation exhibited by the transmission can then be determined using the formula:

$$A \text{ (dB)} = 20 \log \left(\frac{V_{IN}}{V_{OUT}} \right)$$

Have a problem or question on circuitry, components, parts availability, etc? Send it to the Hobby Scene Editor, POPULAR ELECTRONICS, One Park Ave., New York, N.Y. 10016. Though all letters can't be answered individually, those with wide interest will be published.
A MULTIPLEXER, as you'll recall from last month's column, has a set of address inputs that selects one of several data inputs. The logic level at the selected input is then routed to the chip's single output pin. A demultiplexer, as you might expect, performs the opposite function. A set of address inputs selects one of several outputs. The binary status of a single input is then steered to the selected output.

Figure 1 will help you visualize the essential difference between a multiplexer (MUX) and a demultiplexer (DEMUX).

Simple 1-of-2 Demultiplexer. Figure 2 shows a simple single-input DEMUX with two outputs and one output select (address) line. The circuit is called a 1-of-2 DEMUX since the logic state of the single input is steered to one of the two outputs at any given time according to the status of the output select line. The output select line serves the same function as the data select input of a MUX. The logic level at the output select line is called an *address* because each possible output select logic state, in this case 0 and 1, selects one and only one output.

Referring to Fig. 2, assume the data input is low (logic 0). When the address at the output select line is logic 0, NAND gate A is selected and the logic 0 at the data input appears at the A output. The B output remains at logic 1. When the output select address is logic 1, NAND gate B is selected and the logic 0 at the data input is steered to the B output. Next, assume the data input is logic 1. The outputs of both NAND gates will be high no matter which is selected by the output select address.

Try proving this explanation for yourself by following all possible input and address combinations through the circuit. If you need help, Fig. 2 also shows the truth tables for the 1-of-2 DEMUX as well as those of the gates and inverters of which it is composed.

Using Demultiplexers as Decoders. By definition, a logic decoder con-
verts a binary input into some other number system, often octal, decimal or hexadecimal. A demultiplexer can be easily transformed into a decoder by placing its data input at the low state. This will cause the output selected by the input address to be low while all other outputs are high. If the DEMUX has four address lines and sixteen outputs, applying a sequential binary count (0000, 0001, 0010 ... 1111) to the address lines will cause the respective outputs to sequentially drop to logic 0 one at a time.

For a better understanding of how a DEMUX can be used as a decoder, mentally assign the data input in Fig. 2 to ground (low). Then label outputs A and B with the digits (not bits) 0 and 1. If the outputs are connected to LEDs, the 0 digit LED will glow when the address, which has now become the binary input, is logic 0 and the 1 digit LED will glow when the binary input is logic 1. Demultiplexers have many applications when used as decoders.

Advanced Demultiplexers. You can easily breadboard a working version of the 1-of-2 DEMUX in Fig. 2. This circuit, however, has relatively limited utility. Fortunately, a number of more versatile demultiplexers are readily available. These include the 74139, 74155 and 74156 dual 1-of-4 and the 74154 1-of-16 demultiplexers. CMOS demultiplexers are also available.

The 74154 Demultiplexer/Decoder. Figure 3 is the pin outline of the 74154 DEMUX. This chip has four address inputs and sixteen outputs. Two data inputs, G1 and G2, are provided. When both data inputs are at logic 0, the circuit functions as a binary-to-hexadecimal, or, as it is also known, a 4-line-to-16-line decoder. Demultiplexing is performed when one input is kept at logic 0.

Fig. 3. Pin outline of the 74154 demultiplexer.

HOME COMPUTERS! VIDEO GAMES!

Read *BYTE*, the leading magazine in the personal computer field, and learn how to construct and/or program your own low-cost computer. Enjoy scores of video display games: Ping Pong, Blackjack Space War - be captain of the Enterprise and try to out-maneuver the Klingon battle-cruiser!

Home computers are now practical and affordable. Low-cost peripherals mean more hardware and software, more applications! *BYTE* brings it all to you with monthly issues packed with lively articles by professionals and serious amateurs.

All 6 to 8 weeks for processing. *BYTE* Subscription Dept. 800-250-5485

FOR FREE

- Your's FREE.

32-pages of test instruments—from the latest digital multimeters to the famous EICO scopes. Security systems, Automotive and hobbyist products. Kits and assembled, EICO quality, EICO value. For FREE catalog, check reader service card or send 75$ for first class mail.

BY THE SMALLS SYSTEM JOURNAL

BYTE Publications, Inc 1978

BY THE SMALLS SYSTEM JOURNAL

BYTE Publications, Inc 1978
PROJECT OF THE MONTH

ADDING RAM TO A HEX KEYPAD ENCODER

The last Project of the Month described a hexadecimal keypad encoder designed around a 74150 1-of-16 multiplexer. That encoder can be used to load 4-bit nibbles onto a 4-bit microcomputer bus and to write data into a 4-bit RAM such as the 7449. The 7449 TTL chip was the subject of the December 1977 and January 1978 installments of Experimenter’s Corner.

As this month’s project, we will add a 7449 to the keyboard encoder. This results in a circuit with many applications, particularly if a clock and counter is included to enable the data stored in the RAM to be read out a nibble at a time at an adjustable rate. The circuit can be used as is to store hex numbers such as microprocessor instructions and data, or it can be used as a simple controller.

As a controller, the circuit can be connected to a D/A converter such as the one described in the August 1978 installment of Experimenter’s Corner to generate programmable waveforms or even brief, 16-note electronic tunes. The D/A converter will also permit the speed of a motor or the brightness of a lamp to be controlled.

The schematic diagram shows a RAM plus clock and counter you can add to the keyboard encoder described last month. If you duplicated the prototype, there should be just enough space on the circuit board for the additional circuitry.

Operation of the RAM and its associated circuits is as follows. The 74173 data storage register in the keyboard encoder is connected directly to the inputs of the 7449 RAM. When S1 is in the LOAD position, the RAM deposits the nibble stored in the 74173 into the RAM location corresponding to the address selected by the 74193.

Normally, the data loading process is begun at RAM address 0000 by opening normally closed pushbutton S2. To load the first nibble into the RAM, S3 is toggled to its DEPOSIT position and then back to READY. This delivers a single, bounce-free pulse to the 74193 counter and advances the counter to the next address (0001). The nibble in the 74173 is then safely loaded in RAM location 0000. Incidentally, the bounce-free operation of S3 is provided by an RS flip-flop made from one half of a 7400 quad NAND gate.

The RAM is now ready to receive a second nibble. If the same nibble is to be loaded in the second RAM slot as was in the first, S3 is toggled again. Otherwise, a new key on the hex keyboard is pressed and S3 toggled to deposit the new nibble at RAM address 0001 and increment the counter to address 0010.

This data loading process continues until all sixteen address slots in the 7449 are occupied. After the final nibble is selected, however, the DEPOSIT switch is not toggled. Rather, S1 is switched to READY. This preserves the data in address 1111 and prevents the nibble in address 0000 from being inadvertently overwritten by the data in address 1111.

When S1 is switched from LOAD to READY, clock pulses from the 555 are delivered to the 74193 and the circuit automatically flashes out the data stored in the RAM a nibble at a time at a rate determined by trimmer R1.

The 7404 hex inverter between the 7449 and the LEDs connected to the RAM outputs is required to invert the RAM’s data back to its original form. This is so because the RAM stores the complement of data at its input. (You can eliminate the 7404 if you reverse the hex numbering sequence on the keyboard switches.)

The photograph shows the prototype hex keyboard encoder plus data storage circuit. As you can see, there’s just enough room for all the components on the circuit board.

Be sure you have made no wiring errors before connecting a 5-volt supply to the completed circuit. Then press pushbutton S2 to reset the counter. All the address LEDs should turn on to indicate 0000.

Test the circuit by loading each RAM address with its hex counterpart (press 0 for address 0000, 1 for 0001, etc.). Remember to toggle S3 to deposit each keyboard entry except the final one. After the final entry, switch S2 from LOAD to READY and watch the address and RAM LED readouts. They should flash an identical 0000-1111 sequence as the counter cycles the RAM through each of its storage slots. Adjust R1 to obtain a reasonably slow clock rate if necessary.

You can manually single-step the RAM through each of its addresses by using two separate switches for S1. The switch at pin 5 of the 74193 is toggled to LOAD while the switch at pin 3 of the 7449 is left at READY. Switch S3 is then toggled to advance the RAM to successive addresses.

After the data loader is running properly, consider connecting the RAM outputs to a D/A converter and using the circuit as a controller. You will find that the data storage hex keyboard will do many things a microprocessor does but with less trouble.

You can also connect the RAM outputs to the address inputs of a 74154 decoder whose outputs are connected to LEDs, relays or tone generators. This will provide a very versatile control capability.
ic 0 and the other used as a data input. When the single data input is at logic 0, the output selected by the address is at logic 0 and all other outputs are at logic 1. When the data input is at logic 1, all outputs, including the selected one, are logic 1.

Operation of the 74154 is more easily understood by referring to Fig. 4. This figure reveals the 74154 DEMUX to be a mirror image of the 74150 MUX which was the subject of last month's Experience Corner.

A Demonstration Demultiplexer. Figure 5 is a circuit you can make to demonstrate the operation of the 74154 as a DEMUX. The circuit has no practical applications as shown, but they can be implemented by replacing the data input and/or address switches with logic signals from other circuits.

Binary-to-Hexadecimal Decoder. A somewhat more practical application for the 74154 is shown in Fig. 6. Both inputs of the 74154 are at logic 0 (grounded) to exploit the decoder capabilities of the chip. In operation, a 4-bit nibble at the address inputs is decoded by the 74154. One of the sixteen outputs from the 74154 then goes low while all the others stay high. The LED connected to the low output glows to indicate the de-
coded number. Although the circuit is a binary-to-hexadecimal decoder, it can convert a 4-bit binary number into its counterpart in any other number system by properly labeling the output LEDs.

Digital Sequencer. Figure 7 shows a circuit which has numerous applications, a digital sequencer. In operation, the 555 clock delivers a train of pulses to the input of a 74193 4-bit counter. The counter outputs are applied to the address inputs of a 74154, and its 16 outputs are sequentially strobed from high to low.

In this circuit, the 74154 is operated as a 4-line-to-16-line decoder, but it can also be used as a DEMUX by disconnecting one of the two data input lines (pins 18 and 19) from ground and strobing it with a logic 0 signal when an output is desired. In either case, the outputs of the 74154 can be used to drive LEDs, relays, transistors or SCRs. They can also be connected to other logic circuits or even other DEMUX chips to provide expanded decoding capability.

If the 555 clock is calibrated to emit pulses at known intervals, the sequencer can be used as a simple clock. Applications include darkroom timing when the clock operates at 1 Hz and timing phone calls when the clock emits one pulse per minute.

Adjust the clock so that it generates a pulse every 0.05 seconds (50 milliseconds) to use the circuit as a reaction tester. Connect an SPST toggle switch and a normally closed pushbutton switch in series between pin 3 of the 555 and pin 2 of the 74193. Have a friend close the toggle switch after a random interval to start the test. As soon as the first LED glows, press the pushbutton to stop the clock. The number of the lit LED indicates your reaction time.

How can you calibrate the circuit to indicate 50 milliseconds per LED? One way is to use an oscilloscope with a calibrated horizontal timebase. Alternatively, use a digital stopwatch and adjust R1 until the first LED glows once each 0.8 seconds when the counter is running. Each LED will then indicate 1/16th of 0.8 second or 50 milliseconds.

Programmable Sequencer. The 74193 counter has a very useful pin designated CLEAR. Normally this pin is held low by connecting it to ground. If CLEAR goes high, the counter immediately resets or clears to 0000.

This feature makes possible a programmable digital sequencer. Suppose you want to sequence through only the first ten of the sixteen outputs of the 74154. Simply connect the eleventh output to the CLEAR pin of the 74193 through an inverter. As soon as the eleventh output is high, the counter will reset.

![Fig. 7. A 1-of-16 sequencer circuit.](image-url)
enth output goes low, the CLEAR input of the 74193 goes high and resets the counter. The cycle then begins anew at address 0000.

Reader Letters. I would like to thank those of you who have written expressing interest in this column. Your comments and suggestions are often taken into consideration when topics for future columns are selected. If you would like to suggest a topic for the future installment or comment upon a past one, I would appreciate hearing from you. Address your card or letter to Experimenter's Corner in care of POPULAR ELECTRONICS. Unfortunately the volume of correspondence received far exceeds the time available for composing replies. I will, however, attempt to provide a brief response to readers who include a stamped, self-addressed envelope.

Some readers have requested schematic diagrams for various circuits they wish to build. If the requested circuit appears to have the potential of wide reader appeal, I will consider developing it for inclusion in a future installment of Experimenters Corner. Otherwise, time does not permit custom circuit design for individual readers.

Thanks also to the dozen or so readers who caught the major error in Figure 4 of the July 1978 Experimenters Corner. As shown, the spdt input switches will cause a dead short across the 9-volt battery when they are placed in the 0 position. The error can be remedied by connecting the center pole of each switch to the four input resistors. Also, the straight line plotted on the graph in Figure 5 should be a stepped function.

On a related subject, I want to reply to a letter from Allan P. Saadus that appeared in the August 1978 issue of POPULAR ELECTRONICS. His letter described a way to simplify the pseudo-random number generator described in the January 1978 installment of this column.

While Allan's circuit will work, it is no longer a pseudo-random number generator. Instead, it is merely a sequential number generator or, in other words, a RAM used as a counter. The same function can be achieved with a clock and counter without the RAM.

Allan suggests that eliminating one of the clock plus counter circuits will reduce the parts count. As the text explained, however, the additional clock plus counter provides the very rapid sequence of numbers from which one is randomly selected each time the RAM is advanced to a new address.

Q. Where should you start in your search for better sound?

A. At the beginning. With a new Audio-Technica Dual Magnet stereo phono cartridge.

Our AT12XE, for instance. Tracking smoothly at 1 to 1.3/4 grams, depending on your record player. Delivers smooth, peak-free response from 15 Hz to 28,000 Hz (better than most speakers available). With a minimum 24 dB of honest stereo separation at important mid frequencies, and 18 dB minimum separation even at the standard high-frequency 10 kHz test point. At just $65 suggested list price, it's an outstanding value in these days of inflated prices.

Audio-Technica cartridges have been widely-acclaimed for their great sound, and for good reason. Our unique, patented Dual Magnet construction provides a separate magnetic system for each stereo channel. A concept that insures excellent stereo separation, while lowering magnet mass. And the AT12XE features a tiny 0.3 x 0.7-mil nude-mounted elliptical diamond stylus on a thin-wall cantilever to further reduce moving mass where it counts. Each cartridge is individually assembled and tested to meet or exceed our rigid performance standards. As a result, the AT12XE is one of the great bargains of modern technology ...and a significant head start toward more beautiful sound.

Listen carefully at your Audio-Technica dealer's today.

audio technica. INNOVATION | PRECISION | INTEGRITY

Audio-Technica U.S., Inc., Dept. 28: P.O. Box 33 Shaiwawee Avenue, Fairlawn, Ohio 44333

In Canada: Superior Electronics, Inc.

CIRCLE NO. 7 ON FREE INFORMATION CARD

DECEMBER 1978
ENHANCED GRAPHICS

Not too long ago, when video plug-in boards for computers came along, someone discovered that novel and interesting graphics could be created using non-alphanumeric control symbols that are present in some character generators. A classic example is the VDM-1 playing Target or TREK80.

There have been many other video displays since then, each using its own special control characters for graphics. Finally, along came a computer (PET) that had a set of dedicated graphic symbols available at the user’s fingertips.

So far, however, these forms of graphics have been limited to the symbols that the chip or computer manufacturer decided to include.

Recently, Exidy Inc. (969 Maude Ave., Sunnyvale, CA 94086) introduced its Sorcerer computer ($895), which features up to 128 user-defined graphic symbols as well as 128 upper- and lower-case ASCII characters, and 64 Pet-like graphic symbols. This 64-character by 30-line display system also uses the ubiquitous S-100 bus, and has a unique set of one-stroke BASIC commands where certain keys produce BASIC instructions (FOR, NEXT, REM, STOP, etc.) for one keystroke.

The feature of the computer that intrigued us was the user-defined graphic symbols. Such an approach allows us to use certain symbols currently not available: a tilde, an umlaut, special math and APL symbols, italics and even script! It can also be used to create certain foreign-language symbols for Arabic, Hebrew, Greek, or other languages not written in “English” symbols. We can even create strange logos, swirls, whirls or stripes for special displays. In fact, we can create any symbol we desire.

Exidy provides two approaches to the creation of special symbols. In one mode, each special character is stored in eight successive memory locations between FE00 and FFFF (where the number key symbols are stored).

To create a symbol, an 8 × 8 graph is used in conjunction with a pencil to darken the blocks not required for that symbol. Each row of 8 blocks is coded as a hex digit with a dark space being a “0” and a white space a “1”. Each row is then ENTERED via the monitor at the desired key address. Now, when you hit that key, the symbol appears.

The second approach uses an ingenious BASIC program that, when RUN, displays an 8 × 8 array of boxes on the screen with the cursor in the top left-hand box. After selecting the number key in which you wish the character to appear, the cursor-positioning keys are used, with a graphics key depressed, to insert a white box at the desired location to form the wanted character. The space bar is used to erase any unwanted square. After RETURN is hit, the program then POKES around in the memory to insert the 1’s and 0’s needed to form the special symbol.

With a little practice, one can create italics, script, or any symbol desired.

Double Disk. If you use one of the small (5½") diskettes, then you should know that there is a relatively easy way to double the storage area of the diskette. Square-1 (514 18th Ave., Menlo Park, CA 94025; Tel: 415-325-4209) is making available its Flippy Disk kit for $9.95. It contains a hand punch, a metal template, a pencil and a set of instructions on how to use the other side of your present diskettes. This kit will work with any diskette whose “other side” is coated and burnished (shining surface). We had occasion to try this kit with some of our diskettes and found the procedure easy to follow, and very satisfying as we wound up with double our disk space. We did have one disk that did not have the required second surface.

S-50 Parallel Interface. Available from F&D Associates (1210 Todd Rd., New Plymouth, OH 45654), the VPI-1 Versatile Parallel Interface is a 4-port I/O board for the S-50 bus. This board can support two MC6820 PIA, two
MC6522, or one of each to give a total of 40 I/O lines, 36 of which can be input or output, and four that are input only. These lines are arranged in four groups with 8 I/O lines, one I/O handshake, and one input handshake. The lines go to selected drivers and buffers that can drive up to 300 mA at up to 80 volts. Discrete transistors, SCR's, or triac's may be used. Space is provided for clamping and transient-suppression diodes. With the 6522 you also get two programmable timers that can be used for a variety of functions. The VPI-1 can replace two SWTP MP-L boards in most applications. The bare boards are $32.50 each plus $2.50 shipping/handling. Documentation only is $5 pp. Ohio residents please add 4% sales tax.

EPROM Erasing. A couple of new ultraviolet lamp EPROM erasers are available from Spectronics Corp. (956 Brush Hollow Rd., P.O. Box 483, Westbury, NY 11590; Tel: 516-333-8480). The Model PE-14 ($59.50) will support up to six EPROM chips at a time and will erase them in as little as 14 minutes. The UV lamp fits into a special shielded reflector and is kept at a constant distance from the EPROM's. A safety interlock prevents the unit from operating when the tray is not fully inserted. A conductive foam pad holds the chips in place. The PE-24, at $104.50 is similar to the PE-14 but holds up to nine EPROM's and can erase them in less than 12 minutes. A 60-minute timer is also included for automatic shutdown.

Music Boards. One of the original computer music system manufacturers, Newtech Computer Systems, Inc. (230 Clinton St., Brooklyn, NY 11201; Tel: 212-625-6220) recently announced its Plus Americana music software that works with either its S-100 bus Model-6, or its SWTP-compatible Model-68 plug-in boards. These boards are available for $59.95 (assembled and tested) at your local computer store. Supplied on an MD-1NS diskette for the North Star system or an MD-1SW disk for the SWTP system ($19.95 each), the programs feature a dozen pre-recorded melodies, including five having two voices. The diskettes also feature Jukebox, a BASIC program that allows choice of any of the musical selections. Although the two music boards come with their own small speakers, we recommend that the audio output be fed to a conventional audio system to take advantage of the improved sound.

DECEMBER 1978

HOBBIESTS! ENGINEERS! TECHNICAL STUDENTS! STUDENTS!

Write and run machine language programs at home, display video graphics on your TV set and design microprocessor circuits—the very first night—even if you’ve never used a computer before!

ELF featured in COSMOS computer $99.95

DELF-ELF COSMIC mini-computers

as FORTRAN and BASIC must be translated into machine language before a computer can use it. ELF II builds a solid foundation in computers so you’ll really know what you’re doing, no matter how complicated things get.

Video output also makes ELF II unique among computer systems. Using a low price, drop-in video adapter card, ELF II can output graphics on your TV set. By programming ELF II you can design a computer game, graphic displays and other video games.

No additional hardware is required to connect ELF II to your TV’s video input. If you prefer to connect ELF II to your antenna terminals, instead, you can use a low cost R-F modulator (to order, see coupon below).

ELF II’s 5-card expansion bus (connectors not included) allows you to expand ELF II as your needs for power grows. If you’re an engineer or hobbyist, you can also use ELF II as a controller (alarm, lock, the incinerator, phone dialer, or for countless other applications).

ELF II Explodes Into Glass

Thanks to a development by RCA and Netronics, ELF II add-ons are among the most advanced anywhere. Plug in the GIRARD BOARD and you have record and play back programs, edit and debug programs, communicate with remote devices and make the happen in the outside world. Add Kibble Board to get ELF II to solve simple problems in a more complex alarm system or controlling aPrin press. Add a 144 board and you can write longer programs, store more information and solve more sophisticated problems.

ELF II can be made into a real生意 system, industrial, scientific and personal finance applications. No other small computer anywhere near ELF II’s low price is backed by such an extensive add-on program.

ELF-BUGS Monitor is an extremely recent break-through that lets you debug programs with lightening speed because it's the only program that everyone who reads computer systems and write longer programs, store more information and solve more sophisticated problems.

To order ELF II simply fill out the ordering form on page 9, add $5.70 for postage and handling, and mail it to ELF II, Netronics, P.O. Box 12345, New Milford, CT 06776. If you write longer programs, store more information and solve more sophisticated problems.

I'm writing this letter too late to get your ELF II and ELF-BUGS Monitor is an extremely recent break-through that lets you debug programs with lightening speed because it's the only program that everyone who reads computer systems and write longer programs, store more information and solve more sophisticated problems.

To order ELF II simply fill out the ordering form on page 9, add $5.70 for postage and handling, and mail it to ELF II, Netronics, P.O. Box 12345, New Milford, CT 06776. If you write longer programs, store more information and solve more sophisticated problems.

I'm writing this letter too late to get your ELF II and ELF-BUGS Monitor is an extremely recent break-through that lets you debug programs with lightening speed because it's the only program that everyone who reads computer systems and write longer programs, store more information and solve more sophisticated problems.

To order ELF II simply fill out the ordering form on page 9, add $5.70 for postage and handling, and mail it to ELF II, Netronics, P.O. Box 12345, New Milford, CT 06776. If you write longer programs, store more information and solve more sophisticated problems.

I'm writing this letter too late to get your ELF II and ELF-BUGS Monitor is an extremely recent break-through that lets you debug programs with lightening speed because it's the only program that everyone who reads computer systems and write longer programs, store more information and solve more sophisticated problems.

To order ELF II simply fill out the ordering form on page 9, add $5.70 for postage and handling, and mail it to ELF II, Netronics, P.O. Box 12345, New Milford, CT 06776. If you write longer programs, store more information and solve more sophisticated problems.

I'm writing this letter too late to get your ELF II and ELF-BUGS Monitor is an extremely recent break-through that lets you debug programs with lightening speed because it's the only program that everyone who reads computer systems and write longer programs, store more information and solve more sophisticated problems.

To order ELF II simply fill out the ordering form on page 9, add $5.70 for postage and handling, and mail it to ELF II, Netronics, P.O. Box 12345, New Milford, CT 06776. If you write longer programs, store more information and solve more sophisticated problems.

I'm writing this letter too late to get your ELF II and ELF-BUGS Monitor is an extremely recent break-through that lets you debug programs with lightening speed because it's the only program that everyone who reads computer systems and write longer programs, store more information and solve more sophisticated problems.

To order ELF II simply fill out the ordering form on page 9, add $5.70 for postage and handling, and mail it to ELF II, Netronics, P.O. Box 12345, New Milford, CT 06776. If you write longer programs, store more information and solve more sophisticated problems.

I'm writing this letter too late to get your ELF II and ELF-BUGS Monitor is an extremely recent break-through that lets you debug programs with lightening speed because it's the only program that everyone who reads computer systems and write longer programs, store more information and solve more sophisticated problems.

To order ELF II simply fill out the ordering form on page 9, add $5.70 for postage and handling, and mail it to ELF II, Netronics, P.O. Box 12345, New Milford, CT 06776. If you write longer programs, store more information and solve more sophisticated problems.

I'm writing this letter too late to get your ELF II and ELF-BUGS Monitor is an extremely recent break-through that lets you debug programs with lightening speed because it's the only program that everyone who reads computer systems and write longer programs, store more information and solve more sophisticated problems.

To order ELF II simply fill out the ordering form on page 9, add $5.70 for postage and handling, and mail it to ELF II, Netronics, P.O. Box 12345, New Milford, CT 06776. If you write longer programs, store more information and solve more sophisticated problems.

I'm writing this letter too late to get your ELF II and ELF-BUGS Monitor is an extremely recent break-through that lets you debug programs with lightening speed because it's the only program that everyone who reads computer systems and write longer programs, store more information and solve more sophisticated problems.

To order ELF II simply fill out the ordering form on page 9, add $5.70 for postage and handling, and mail it to ELF II, Netronics, P.O. Box 12345, New Milford, CT 06776. If you write longer programs, store more information and solve more sophisticated problems.

I'm writing this letter too late to get your ELF II and ELF-BUGS Monitor is an extremely recent break-through that lets you debug programs with lightening speed because it's the only program that everyone who reads computer systems and write longer programs, store more information and solve more sophisticated problems.

To order ELF II simply fill out the ordering form on page 9, add $5.70 for postage and handling, and mail it to ELF II, Netronics, P.O. Box 12345, New Milford, CT 06776. If you write longer programs, store more information and solve more sophisticated problems.
CREATIVE COMPUTING magazine is Number 1 in hardware, software and system evaluations. In-depth, thorough evaluations give you the facts before you buy. Creative Computing was the first to review these now popular systems: Radio Shack TRS-80, Exidy Sorcerer, VideoBrain, Heath H-8, Bally Basic, OSI Challenger, and many others. More important, we also review peripherals and software from independents as well as manufacturers.

CREATIVE COMPUTING has long been Number 1 in applications and software for micros, minis, and timesharing systems for homes, schools and small businesses. Loads of applications every issue: text editing, graphics, communications, artificial intelligence, simulations, data base and file systems, music synthesis, analog control. Complete programs with sample runs. Programming techniques: sort algorithms, file structures, shuffling, etc. Coverage of electronic and video games and other related consumer electronics products, too.

Just getting started? Then turn to our technology tutorials, learning activities, short programs, and problem solving pages. No-nonsense book reviews, too. Even some fiction and foolishness.

Subscriptions: 1 year $15, 3 years $40. Foreign, add $9/year surface postage, $26/year air. Order and payment to: Creative Computing, Attn: Pamela, P.O. Box 789-M, Morristown, NJ 07960. Visa and Master Charge acceptable by mail or phone; call 800-631-8112 9 am to 5 pm EST (in NJ call 201-540-0445).

CREATIVE COMPUTING also publishes books, games, art prints, and T-shirts for the computer enthusiast. The most popular book of computer games in the world, Basic Computer Games is a Creative Computing book — only $8.50 postpaid.

And now, Creative Computing also produces and markets software for personal computers on tape cassette and floppy disk.

If your dealer does not carry the full line of Creative Computing products, write "catalog" on your order and we'd be happy to send you one free.

creative computing

P. O. Box 789-M, Morristown, NJ 07960

CIRCLE NO. 13 ON FREE INFORMATION CARD
SOFTWARE SOURCES

8080 Timesharing System. TEMPOS (Timed Environment Multi-Partitioned Operating System) is a newly upgraded time-sharing system for 8080-based computers. The system permits the simultaneous execution of several different jobs or processes at once, including simultaneous batch and interactive use, and foreground/background processing. The package includes: OPUS/ TBO, a high-level language with features of BASIC, FORTRAN and ALGOL; TEXTED, a character-oriented text editor for use with OPUS/TWO, assembly language, or ASCII text; and utilities for assembly, file handling, file listing and a linking loader. Basic hardware requirements are an 8080 processor, 48k of RAM addressed from location 0, vectored interrupts, a real-time clock, and at least one "system console" I/O terminal. Driver software is supplied for MITS and iCOM floppy-disc drives, for MITS and IMSAI I/O boards, and for MITS and IMSAI vectored interrupt/real-time clocks. Support documentation provides for insertion of drivers or other hardware. TEMPOS is available on either MITS (hard-sectored) or iCOM (IBM 3740-type) diskette, for $78. A User's Manual is $20. Administrative Systems Inc., 222 Milwaukee, Suite 102, Denver, CO 80206.

6502 DOS Software. KVOS is a minia- ture operating system for use with 6502 sys- tems using the TIM monitor ROM, with the S.D. Sales "Versafloppy" or the CGRS Floppy I/O: it can be used with CGRS S-100/6502 systems or with other 6502 sys- tems via the CGRS S-100 adapter card. Two versions are available: KVOS1T, which adds file-name disk commands to the TIM monitor, is available as one 2708 ROM and a diskette, at $40. KVOS2T, with the addition of a disassembler and dynamic program tracing, is supplied on two 2708s plus diskette, at $65. CGRS Microtech, Box 368, Southhampton, PA 18966.

Z80 APL Interpreter. APL is now available for Z80 based systems using Digital Group or CP/M operating systems. The APL/ Z80 interpreter includes nearly all primitive APL functions and operators. Primitives not present can be implemented as defined APL functions, according to the system's developer. Purchasers must sign and return an end user software license and nondisclosure agreement permitting use on one computer system only. $300. Vanguard Systems Corp., 6812 San Pedro, San Antonio, TX 78216

DECEMBER 1978
Many important articles covering a variety of interests in the broad field of electronics are published in POPULAR ELECTRONICS. Reprints of selected articles and test reports are now available in the event that you missed some you would like to have for reference or study purposes—or for projects you wish to build. Reprints are only $1 each, 75¢ for those marked with asterisk; $1.50 for those noted. Minimum order is $3.

SPECIAL ARTICLES

Audio
40854 How The New FTC Hi-Fi Rules Affect You
40858 How To Evaluate Tape Recording Specs
40856 A New Standard For FM Tuner Measurements
40964 Build The Hi-Fi-TV Audio Miter
41097 Upgrading Your Old Stereo FM Tuner System & Expanders
41098 Build An Audio Comparator
41100 How FM Tuners Work, Part II

Computer
40960 How To Select A Microcomputer
40961 Ir s & Outs Of Computers For Beginners
40966 Introducing Speak & Spell---The First! Hobbyist Vocal Interface For A Computer---$1.50
COSMAC "ELF" SERIES
40857 Low Cost Experimenter's Microcomputer
40898 Experimentor's Microcomputer/With Hardware Improvements & More Programming Details
40895 Microcomputer/How To Expand Memory, Plus More Programs
40870 Build The Pixie Graphic Display

Communications
40862 CB Specifications Made Easy
40863* How To Choose CB Base Station Antennas
40965 Build Morse-A-Link, $1.50
41102 Choosing A Mobile CB Antenna

Other
40987 How To Design Your Own Power Supplies
40988 The Care & Feeding Of NiCd Batteries
40989 Build A Gas & Fume Detector
40963* Six CMOS Circuits For Experimenters
40967 Programming Calculators For Fun and Games---$1.50
40968* Zap New Life Into Dead NiCd Batteries
41103 How To Design TTL Digital Systems
41104 Build An Auto ranging Digital Capacitance Meter LEARNING ELECTRONIC THEORY WITH CALCULATORS SERIES
40964 Basic Equations and OHM's Law
40965 Reactance, Time Constants And AC Calculations
40866 RC Coupling, Basic Amplifier Calculations, and RLC Relationship

*REPRINTS ARE $1 EACH; 75¢ FOR THOSE MARKED WITH ASTERISK; $1.50 FOR THOSE NOTED. MINIMUM ORDER $3.00.

POeRULAR ELECTRONICS REPRINTS, Dept. 128 1, NO. Box 278, Pratt BLank, Brooklyn, New York 11205

Please send the reprints listed below:

<table>
<thead>
<tr>
<th>Reprint #</th>
<th>Quan.</th>
<th>Reprint #</th>
<th>Quan.</th>
</tr>
</thead>
</table>

NUMBER OF REPRINTS ORDERED:
$1.50
$1.50

TOTAL ENCLODED $3.00
(ORDER MUST BE MINIMUM OF $3.00)

Print Name:
Address:
City:
State:

* Residents of CA, CO, DC, FL, IL, MI, MO, NY, STATE, and VT add applicable sales tax. Outside U.S.A. add $2.00 per order.

AmericanRadioHistory.com
<table>
<thead>
<tr>
<th>Time</th>
<th>Station Info</th>
<th>Frequency (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00-12:30 p.m.</td>
<td>KGEI, Vancouver</td>
<td>1530</td>
</tr>
<tr>
<td>12:30-12:40 p.m.</td>
<td>VOA</td>
<td>15225</td>
</tr>
<tr>
<td>12:40-12:50 p.m.</td>
<td>BBC</td>
<td>15210</td>
</tr>
<tr>
<td>12:50-13:00 p.m.</td>
<td>KGEI, Vancouver</td>
<td>15225</td>
</tr>
<tr>
<td>13:00-13:10 p.m.</td>
<td>VOA</td>
<td>15210</td>
</tr>
<tr>
<td>13:25-13:35 p.m.</td>
<td>R. Norway</td>
<td>15170</td>
</tr>
<tr>
<td>13:35-13:45 p.m.</td>
<td>R. Morocco</td>
<td>15120</td>
</tr>
<tr>
<td>13:45-13:55 p.m.</td>
<td>BBC</td>
<td>15105</td>
</tr>
<tr>
<td>13:55-14:00 p.m.</td>
<td>R. Morocco</td>
<td>15050</td>
</tr>
<tr>
<td>14:00-14:10 p.m.</td>
<td>KGEI, Vancouver</td>
<td>15050</td>
</tr>
<tr>
<td>14:10-14:20 p.m.</td>
<td>VOA</td>
<td>15050</td>
</tr>
<tr>
<td>14:20-14:30 p.m.</td>
<td>KGEI, Vancouver</td>
<td>15050</td>
</tr>
<tr>
<td>14:30-14:40 p.m.</td>
<td>VOA</td>
<td>15050</td>
</tr>
<tr>
<td>14:40-14:50 p.m.</td>
<td>KGEI, Vancouver</td>
<td>15050</td>
</tr>
<tr>
<td>14:50-15:00 p.m.</td>
<td>VOA</td>
<td>15050</td>
</tr>
<tr>
<td>15:00-15:10 p.m.</td>
<td>KGEI, Vancouver</td>
<td>15050</td>
</tr>
<tr>
<td>15:10-15:20 p.m.</td>
<td>VOA</td>
<td>15050</td>
</tr>
<tr>
<td>15:20-15:30 p.m.</td>
<td>KGEI, Vancouver</td>
<td>15050</td>
</tr>
<tr>
<td>15:30-15:40 p.m.</td>
<td>VOA</td>
<td>15050</td>
</tr>
<tr>
<td>15:40-15:50 p.m.</td>
<td>KGEI, Vancouver</td>
<td>15050</td>
</tr>
<tr>
<td>15:50-16:00 p.m.</td>
<td>VOA</td>
<td>15050</td>
</tr>
<tr>
<td>16:00-16:10 p.m.</td>
<td>KGEI, Vancouver</td>
<td>15050</td>
</tr>
<tr>
<td>16:10-16:20 p.m.</td>
<td>VOA</td>
<td>15050</td>
</tr>
<tr>
<td>16:20-16:30 p.m.</td>
<td>KGEI, Vancouver</td>
<td>15050</td>
</tr>
<tr>
<td>16:30-16:40 p.m.</td>
<td>VOA</td>
<td>15050</td>
</tr>
<tr>
<td>16:40-16:50 p.m.</td>
<td>KGEI, Vancouver</td>
<td>15050</td>
</tr>
<tr>
<td>16:50-17:00 p.m.</td>
<td>VOA</td>
<td>15050</td>
</tr>
<tr>
<td>17:00-17:10 p.m.</td>
<td>KGEI, Vancouver</td>
<td>15050</td>
</tr>
<tr>
<td>17:10-17:20 p.m.</td>
<td>VOA</td>
<td>15050</td>
</tr>
<tr>
<td>17:20-17:30 p.m.</td>
<td>KGEI, Vancouver</td>
<td>15050</td>
</tr>
<tr>
<td>17:30-17:40 p.m.</td>
<td>VOA</td>
<td>15050</td>
</tr>
<tr>
<td>17:40-17:50 p.m.</td>
<td>KGEI, Vancouver</td>
<td>15050</td>
</tr>
<tr>
<td>17:50-18:00 p.m.</td>
<td>VOA</td>
<td>15050</td>
</tr>
<tr>
<td>18:00-18:10 p.m.</td>
<td>KGEI, Vancouver</td>
<td>15050</td>
</tr>
<tr>
<td>18:10-18:20 p.m.</td>
<td>VOA</td>
<td>15050</td>
</tr>
<tr>
<td>18:20-18:30 p.m.</td>
<td>KGEI, Vancouver</td>
<td>15050</td>
</tr>
<tr>
<td>18:30-18:40 p.m.</td>
<td>VOA</td>
<td>15050</td>
</tr>
<tr>
<td>18:40-18:50 p.m.</td>
<td>KGEI, Vancouver</td>
<td>15050</td>
</tr>
<tr>
<td>18:50-19:00 p.m.</td>
<td>VOA</td>
<td>15050</td>
</tr>
<tr>
<td>19:00-19:10 p.m.</td>
<td>KGEI, Vancouver</td>
<td>15050</td>
</tr>
<tr>
<td>19:10-19:20 p.m.</td>
<td>VOA</td>
<td>15050</td>
</tr>
<tr>
<td>19:20-19:30 p.m.</td>
<td>KGEI, Vancouver</td>
<td>15050</td>
</tr>
<tr>
<td>19:30-19:40 p.m.</td>
<td>VOA</td>
<td>15050</td>
</tr>
<tr>
<td>19:40-19:50 p.m.</td>
<td>KGEI, Vancouver</td>
<td>15050</td>
</tr>
<tr>
<td>19:50-20:00 p.m.</td>
<td>VOA</td>
<td>15050</td>
</tr>
<tr>
<td>20:00-20:10 p.m.</td>
<td>KGEI, Vancouver</td>
<td>15050</td>
</tr>
<tr>
<td>20:10-20:20 p.m.</td>
<td>VOA</td>
<td>15050</td>
</tr>
<tr>
<td>20:20-20:30 p.m.</td>
<td>KGEI, Vancouver</td>
<td>15050</td>
</tr>
<tr>
<td>20:30-20:40 p.m.</td>
<td>VOA</td>
<td>15050</td>
</tr>
<tr>
<td>20:40-20:50 p.m.</td>
<td>KGEI, Vancouver</td>
<td>15050</td>
</tr>
<tr>
<td>20:50-21:00 p.m.</td>
<td>VOA</td>
<td>15050</td>
</tr>
<tr>
<td>21:00-21:10 p.m.</td>
<td>KGEI, Vancouver</td>
<td>15050</td>
</tr>
<tr>
<td>21:10-21:20 p.m.</td>
<td>VOA</td>
<td>15050</td>
</tr>
<tr>
<td>21:20-21:30 p.m.</td>
<td>KGEI, Vancouver</td>
<td>15050</td>
</tr>
<tr>
<td>21:30-21:40 p.m.</td>
<td>VOA</td>
<td>15050</td>
</tr>
<tr>
<td>21:40-21:50 p.m.</td>
<td>KGEI, Vancouver</td>
<td>15050</td>
</tr>
<tr>
<td>21:50-22:00 p.m.</td>
<td>VOA</td>
<td>15050</td>
</tr>
<tr>
<td>22:00-22:10 p.m.</td>
<td>KGEI, Vancouver</td>
<td>15050</td>
</tr>
<tr>
<td>22:10-22:20 p.m.</td>
<td>VOA</td>
<td>15050</td>
</tr>
<tr>
<td>22:20-22:30 p.m.</td>
<td>KGEI, Vancouver</td>
<td>15050</td>
</tr>
<tr>
<td>22:30-22:40 p.m.</td>
<td>VOA</td>
<td>15050</td>
</tr>
<tr>
<td>22:40-22:50 p.m.</td>
<td>KGEI, Vancouver</td>
<td>15050</td>
</tr>
<tr>
<td>22:50-23:00 p.m.</td>
<td>VOA</td>
<td>15050</td>
</tr>
</tbody>
</table>

About your subscription: Your subscription to *Popular Electronics* is maintained on one of the world’s most modern, efficient computer systems, and if you’re like 99% of our subscribers, you’ll never have any reason to complain about your subscription service. We have found that when complaints do arise, the majority of them occur because people have written their names or addresses differently at different times. For example, if your subscription were listed under “William Jones, Cedar Lane, Middletown, Arizona,” and you were to renew it as “Bill Jones, Cedar Lane, Middletown, Arizona,” our computer would think that two separate subscriptions were involved, and it would start sending you two copies of *Popular Electronics* each month. Other examples of combinations of names that would confuse the computer would include: John Henry Smith and Henry Smith, and Mrs. Joseph Jones and Mary Jones. Minor differences in addresses can also lead to difficulties. For example, to the computer, 100 Second St. is not the same as 100 2nd St. So, please, when you write us about your subscription, be sure to enclose the mailing label from the cover of the magazine—or else copy your name and address exactly as they appear on the mailing label. This will greatly reduce any chance of error, and we will be able to service your request much more quickly.
TEST REPORTS

AUDIO
40871 ADC Acutac 4000 Record Player
40872 XKR Stereo Graphic Equalizer
40873 Nakamichi Model 500 Stereo Cassette Deck
40874 Pickering Model XV-16/252 Stereo Phono Cartridge
40875 Pioneer Model CT-F6022 Stereo Cassette Deck
40886 Stanton Model 681EE Stereo Phono Cartridge
40887 Teac Model PC-10 Portable Stereo Cassette Deck
40889 Thorens Model TD-126C Record Player
40891 Akai Model GX-7070-SS Four-Channel Tapi Recorder
40916 Speakerlab Model SR7 Speaker System Kit
40927 Dual Model 2125 Automatic Turntable
40932 Burker Model DNF 1201A Noise Reducer System
41105 Yamaha Model CR 2030 AM/Stereo FM Receiver
41106 Optonica Model RT-3535 Stereo Cassette Deck
41107 dix Model 128 Dynamic Range Enhancer
41108 Garrard Model GT25 Automatic Record Player
41110 Samson Model APU-701 Noise-Reduction System
41116 Sherwood Micro/CTU 100 FM Tuner
41117 Sony Model PS-XS Turntable
41112 JVC Model P-2000 Stereo Preampifier
41113 Daquast Model DQ-1W-Low-Bass Module

COMMUNICATIONS
40980 JVC Model P-3030 Stereo Preamplifier
40981 Speakerlab Model S7 Speaker System
40984 Kenwood Model TS-820A Amateur Radio Transceiver
40985 Kirs Model XL-60 40-Ch. AM/CB Mobile Transceiver
40986 President Model "Washington" 40-Ch. AM/SB CB Base Station
40989 Yatsu Model MFRG 7 AM/SB Communications Receiver
40991 General Electric Model 5-1925 AM/SB CB Transceiver
40994 Realistic Model TRC-449 Mobile AM/SB CB Transceiver
41114 Ten-Tercenti/21 Ham Transceiver

TEST INSTRUMEN
40928 B&K Precision Model 206 Digital Multimeter
40930 B&K Precision Model 1715 Dual-Trace Scope
40934 Ballantine Model 101BA Dual-Trace Scope
40938 Fluke Model 102-A Digital Multimeter
40939 Hewlett-Packard Model 280 Digital Multimeter
40933 Sencore Model DVM-32 Digital Multimeter
40934 Sencore Model TF-70 Portable Transistor Tester
40935 Trippier Model 60 Analog Multimeter
41115 B&K Precision Model 1820 Universal Frequency Counter

*REPRINTS ARE $1 EACH; 75¢ FOR THOSE MARKED WITH ASTERISK; MINIMUM ORDER $3.00.

POPULAR ELECTRONICS REPRINTS, Dept. C1280
P.O. Box 278, Pratt Station
Brooklyn, New York 11209

Please send the reprints listed below:

[Reprints are listed with their corresponding codes and captions.]

NUMBER OF REPRINTS ORDERED:
000.00

TOTAL ENCLOSED $ (MINIMUM ORDER $3.00)

Print Name: ________________________________
Address: ________________________________
City: ________________________________
State: ________________________________
Zip: ________________________________

1. Reprints are of CA, CO, DC, FL, IL, MI, MO, NY STATE, and VT add applicable sales tax. Outside U.S.A. add $2.00 per order.

MINIMUM ORDER $3.00

AMERICAN RADIO HISTORY
372-4745

96
Radio Schedule

<table>
<thead>
<tr>
<th>Time</th>
<th>Frequency</th>
<th>Station</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00-11:00 p.m.</td>
<td>0350-0420</td>
<td>UBC, Uganda</td>
<td>Canada</td>
</tr>
<tr>
<td>10:00-11:00 p.m.</td>
<td>0390-0400</td>
<td>R. Moscow</td>
<td>Russia</td>
</tr>
<tr>
<td>10:00-11:00 p.m.</td>
<td>0330-0426</td>
<td>R. RSA</td>
<td>Armenia</td>
</tr>
<tr>
<td>10:25-10:30 p.m.</td>
<td>0255-0300</td>
<td>V. of Armenia</td>
<td></td>
</tr>
<tr>
<td>10:30-10:55 p.m.</td>
<td>0330-0355</td>
<td>R. Tirana</td>
<td></td>
</tr>
<tr>
<td>10:30-10:55 p.m.</td>
<td>0330-0395</td>
<td>Austrian Radio</td>
<td></td>
</tr>
<tr>
<td>10:30-11:00 p.m.</td>
<td>0330-0400</td>
<td>R. Australia</td>
<td></td>
</tr>
<tr>
<td>10:30-11:15 p.m.</td>
<td>0330-0415</td>
<td>R. Berlin International</td>
<td></td>
</tr>
<tr>
<td>10:30-11:45 p.m.</td>
<td>0330-0445</td>
<td>BBC</td>
<td></td>
</tr>
<tr>
<td>10:30-11:50 p.m.</td>
<td>0330-0450</td>
<td>R. Habana Cuba</td>
<td>Cuba</td>
</tr>
<tr>
<td>10:30-12:00 p.m.</td>
<td>0330-0500</td>
<td>AFRTS-Washington</td>
<td></td>
</tr>
<tr>
<td>10:30-12:00 p.m.</td>
<td>0330-0500</td>
<td>R. Habana Cuba</td>
<td>Cuba</td>
</tr>
<tr>
<td>10:30-12:00 p.m.</td>
<td>0330-0730</td>
<td>R. Moscow</td>
<td>Russia</td>
</tr>
<tr>
<td>11:00-11:15 p.m.</td>
<td>0400-0415</td>
<td>R. Japan</td>
<td></td>
</tr>
<tr>
<td>11:00-11:15 p.m.</td>
<td>0400-0415</td>
<td>R. Budapest</td>
<td></td>
</tr>
<tr>
<td>11:00-11:30 p.m.</td>
<td>0400-0430</td>
<td>R. Bucharest</td>
<td></td>
</tr>
<tr>
<td>11:00-11:30 p.m.</td>
<td>0400-0430</td>
<td>V. of Chile</td>
<td></td>
</tr>
<tr>
<td>11:00-11:30 p.m.</td>
<td>0402-0430</td>
<td>R. Canada International</td>
<td></td>
</tr>
<tr>
<td>11:00-11:30 p.m.</td>
<td>0402-0430</td>
<td>R. Norway</td>
<td></td>
</tr>
<tr>
<td>11:00-11:30 p.m.</td>
<td>0402-0430</td>
<td>R. Portugal</td>
<td></td>
</tr>
<tr>
<td>11:00-11:45 p.m.</td>
<td>0402-0455</td>
<td>R. Peking</td>
<td></td>
</tr>
<tr>
<td>11:00-12:00 p.m.</td>
<td>0402-0500</td>
<td>R. Australia</td>
<td></td>
</tr>
<tr>
<td>11:10-11:55 p.m.</td>
<td>0430-0485</td>
<td>Austrian R</td>
<td></td>
</tr>
<tr>
<td>11:10-12:00 p.m.</td>
<td>0430-0500</td>
<td>Swiss R. International</td>
<td></td>
</tr>
<tr>
<td>11:10-12:00 p.m.</td>
<td>0430-0500</td>
<td>V. of Germany</td>
<td></td>
</tr>
<tr>
<td>11:55-12:45 a.m.</td>
<td>0445-0455</td>
<td>BBC</td>
<td></td>
</tr>
<tr>
<td>12:00-12:15 a.m.</td>
<td>0500-0515</td>
<td>Israel R.</td>
<td></td>
</tr>
<tr>
<td>12:00-12:15 a.m.</td>
<td>0500-0515</td>
<td>R. Japan</td>
<td></td>
</tr>
<tr>
<td>12:00-12:30 a.m.</td>
<td>0500-0530</td>
<td>R. Portugal</td>
<td></td>
</tr>
<tr>
<td>12:00-12:30 a.m.</td>
<td>0500-0530</td>
<td>AFRTS, Washington</td>
<td></td>
</tr>
<tr>
<td>12:00-12:30 a.m.</td>
<td>0500-0530</td>
<td>R. Australia</td>
<td></td>
</tr>
<tr>
<td>12:02-12:00 p.m.</td>
<td>0500-0670</td>
<td>HCJB, Ecuador</td>
<td></td>
</tr>
<tr>
<td>12:02-12:00 p.m.</td>
<td>0500-0670</td>
<td>Spanish Foreign R.</td>
<td></td>
</tr>
<tr>
<td>12:02-12:00 p.m.</td>
<td>0530-0550</td>
<td>V. of Germany</td>
<td></td>
</tr>
<tr>
<td>12:30-1:00 p.m.</td>
<td>0530-0600</td>
<td>V. of Chile</td>
<td></td>
</tr>
<tr>
<td>12:30-1:00 p.m.</td>
<td>0530-0625</td>
<td>R. Nederland</td>
<td></td>
</tr>
<tr>
<td>12:30-1:00 p.m.</td>
<td>0545-0600</td>
<td>UN Radio</td>
<td></td>
</tr>
<tr>
<td>12:45-2:30 p.m.</td>
<td>0650-0730</td>
<td>BBC</td>
<td></td>
</tr>
<tr>
<td>12:55-3:35 p.m.</td>
<td>0655-0835</td>
<td>V. of Nigeria</td>
<td></td>
</tr>
<tr>
<td>1:00-1:15 p.m.</td>
<td>0650-0615</td>
<td>R. Japan</td>
<td></td>
</tr>
<tr>
<td>1:00-1:30 p.m.</td>
<td>0650-0630</td>
<td>R. Norway</td>
<td></td>
</tr>
<tr>
<td>1:00-2:00 p.m.</td>
<td>0650-0700</td>
<td>RAE, Argentina</td>
<td></td>
</tr>
<tr>
<td>1:00-2:00 p.m.</td>
<td>0650-0700</td>
<td>AFRTS-Washington</td>
<td></td>
</tr>
<tr>
<td>1:00-2:00 p.m.</td>
<td>0650-0700</td>
<td>R. Japan</td>
<td></td>
</tr>
<tr>
<td>1:00-4:15 p.m.</td>
<td>0650-0915</td>
<td>R. Australia</td>
<td></td>
</tr>
<tr>
<td>1:00-4:15 p.m.</td>
<td>0650-0915</td>
<td>R. Canada International</td>
<td></td>
</tr>
<tr>
<td>1:15-4:30 p.m.</td>
<td>0615-0630</td>
<td>R. Canada International</td>
<td></td>
</tr>
<tr>
<td>1:25-3:55 a.m.</td>
<td>0625-0855</td>
<td>V. of Malaysia</td>
<td></td>
</tr>
<tr>
<td>1:30-2:00 a.m.</td>
<td>0630-0700</td>
<td>R. Korea</td>
<td></td>
</tr>
<tr>
<td>1:30-3:00 a.m.</td>
<td>0630-0800</td>
<td>R. Habana Cuba</td>
<td></td>
</tr>
<tr>
<td>1:30-3:00 a.m.</td>
<td>0645-0670</td>
<td>R. Canada International</td>
<td></td>
</tr>
<tr>
<td>1:45-2:00 a.m.</td>
<td>0645-0700</td>
<td>R. Canada International</td>
<td></td>
</tr>
<tr>
<td>2:00-2:15 a.m.</td>
<td>0630-0715</td>
<td>R. Japan</td>
<td></td>
</tr>
<tr>
<td>2:00-4:00 a.m.</td>
<td>0700-0900</td>
<td>R. Australia</td>
<td></td>
</tr>
<tr>
<td>2:00-4:00 a.m.</td>
<td>0700-0900</td>
<td>AFRTS-Washington</td>
<td></td>
</tr>
<tr>
<td>2:07-2:15 a.m.</td>
<td>0715-0745</td>
<td>UN Radio</td>
<td></td>
</tr>
<tr>
<td>2:15-2:45 a.m.</td>
<td>0730-0745</td>
<td>UN Radio</td>
<td></td>
</tr>
<tr>
<td>2:30-3:25 a.m.</td>
<td>0730-0825</td>
<td>R. Nederland</td>
<td></td>
</tr>
<tr>
<td>2:30-4:00 a.m.</td>
<td>0730-0900</td>
<td>BBC</td>
<td></td>
</tr>
<tr>
<td>3:00-3:15 a.m.</td>
<td>0800-0815</td>
<td>R. Japan</td>
<td></td>
</tr>
<tr>
<td>3:00-3:45 a.m.</td>
<td>0800-0825</td>
<td>R. Nederland</td>
<td></td>
</tr>
</tbody>
</table>

Explanatory Notes

1. Times in first column are EST. For AST, add 1 hour. CST, subtract 1 hour. MST, subtract 2 hours. PST, subtract 3 hours. Days of week are in GMT.
2. Quality: A—strong signal and very reliable reception. B—regular reception. C—occasional reception under favorable conditions. D—rarely audible. These ratings are for locations in the central USA. European and African stations are in general, more reliably received in eastern North America. Asian and Pacific stations are more reliably received in western North America. North American stations are received well except in areas far to the transmitter site.
3. The information in this listing is correct as of press time. However, frequencies and schedules are constantly changing. Listen to "DX Digest" at 1800, 1900 to 2000, 2000, 0100, 0200, 0300, 0400 on Sunday and 1900 Wednesday to Africa on R. Canada International for late changes.
4. R.—Radio; V.—Voice

YOU'RE READING POPULAR ELECTRONICS.

That says a lot about you. That you're fascinated by the diversity of electronics.

Everything from microcomputers to audio, from construction projects to ham radio. Who knows what area of electronics will catch your interest next? That's why you read P.E. To keep in touch with all that's new and best in the many worlds of consumer electronics.

Popular Electronics

World's largest-selling electronics magazine
Operation Assist

If you need information on out-of-print or rare equipment—a schematic, parts list, etc.—another reader might be able to assist. Simply send a postcard to Operation Assist! POPULAR ELECTRONICS, 1 Park Ave. New York, NY 10016. For those who can help readers, please respond directly to them. They’ll appreciate it. (Only those items regarding equipment not available from normal sources are published.)

Concertone 737 tape recorder. Schematic or voltage chart. Clarence Lundy, Space 6, 1251 E. Lugonia Ave., Redlands, CA 92373.

Telequipment type 043 oscilloscope. Serial #72182. Aiwa TP-1001 tape recorder. Any available equipment. Mike Bodner, 4073 Millstream Dr., Munrysville, PA 15668.

Action Labs CB transceiver type TCV-271-3. Schematic or any available information. Danny Degraft, 20 Birch St., Everett, MA 02149.

Knight KG-690 signal tracer. Schematic, operating manual. Richard Roggenvogel, 5569 Dunsbury Dr., San Jose, CA 95113.

Dumont Labs type 32A1 oscilloscope. Schematic. Dennis Smith, 15922 Bowers Dr., Tocoma, CA 92920.

Source Industries, Inc. electrophotograph 201 dual channel strip chart recorder. Schematic and instruction manual. P. Kalich, Box 244, El Dorado, AK 71730.

Kenwood model 1100. Schematic and user’s manual. Greg Wright 3318 Emerald Isle Dr., Glendale, CA 91206.

Triumph model 800 oscilloscope. Schematics or any infor- mation. R. Rockwell, 2 Forreisk Dr., Burlington, MA 01803.

Knight kit model KG 988A stereo receiver. Schematic and parts list. Ken Bryant, 97 Williamsburg Dr., Monroe, CT 06468.

Heathkit oscilloscope model OL-1. Schematic. Robert Ugone, Route 1, Almena, KS 67629.

Signal Corp. tube tester I-77-B with adapter TTA-2B. Needed updated tube charts. J. Gilies, 1420 Sansui Dr., Fairborn, OH 45324.

Crosley model 1318 (T 316). Schematic needed. Jerry Ling- er, RR 1, Box 537, Buchanan, MI 49107.

National high frequency receiver type NC-200. Owners/ operation manual, schematic parts list and any other infor- mation. George Patchan, 3333 Slade Ct., Falls Church, VA 22042.

Heathkit HW-2021 2-meter transceiver. Schematic diagram and parts list. Mark Canavan, 163 Thoms Cr., New Market, Ontario, Canada, L3Y 4C9.

COSMAC VIP

$249 gets the entire family into creating video games, graphics and control functions. For starters.

COSMAC VIP, the completely assembled, ready-to-operate RCA Video Interface Processor, opens up a whole new world of computer excitement. New challenges in graphics, games and control functions. Yet it’s just $249.00.

Easy to buy. And easy to program, thanks to its unique, easy-to-use interpretive language. You get a complete how-to-book including programs for 20 games: fun, challenging, and ready to load and record on your cassette.

Simple but powerful.

Built around an RCA COSMAC microprocessor, the VIP is a complete computer system that can grow with you. It has 2K of RAM, expandable on-board to 4K. Plus a ROM monitor, audio tone output to a built-in speaker, power supply, and 8-bit input and output ports for control of relays, sensors, or other peripherals.

Soon RCA will offer options for color graphics and 256 tone sound generation. An optional auxiliary keyboard will open up an exciting world of two-player games.

Take the first step now.

Check your local computer store or electronics distributor for the VIP. Or contact RCA VIP Marketing, New Holland Avenue, Lancaster, PA 17604. Phone (717) 291-5848.

* Suggested retail price. Does not include video monitor or cassette recorder.

The fun way into computers.
TTL LOW POWER SCHOTTKY PLASTIC DUAL-IN-LINE I.C.

<table>
<thead>
<tr>
<th>Part No</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74L500 15</td>
<td>74L517 23</td>
</tr>
<tr>
<td>74L501 15</td>
<td>74L514 23</td>
</tr>
<tr>
<td>74L502 15</td>
<td>74L515 19</td>
</tr>
<tr>
<td>74L503 15</td>
<td>74L516 19</td>
</tr>
<tr>
<td>74L504 15</td>
<td>74L517 19</td>
</tr>
<tr>
<td>74L505 15</td>
<td>74L518 19</td>
</tr>
<tr>
<td>74L506 15</td>
<td>74L519 19</td>
</tr>
<tr>
<td>74L507 15</td>
<td>74L520 19</td>
</tr>
<tr>
<td>74L508 15</td>
<td>74L521 19</td>
</tr>
<tr>
<td>74L509 15</td>
<td>74L522 19</td>
</tr>
<tr>
<td>74L510 15</td>
<td>74L523 19</td>
</tr>
<tr>
<td>74L511 15</td>
<td>74L524 19</td>
</tr>
<tr>
<td>74L512 15</td>
<td>74L525 19</td>
</tr>
<tr>
<td>74L513 15</td>
<td>74L526 19</td>
</tr>
<tr>
<td>74L514 15</td>
<td>74L527 19</td>
</tr>
<tr>
<td>74L515 15</td>
<td>74L528 19</td>
</tr>
<tr>
<td>74L516 15</td>
<td>74L529 19</td>
</tr>
<tr>
<td>74L517 15</td>
<td>74L530 19</td>
</tr>
<tr>
<td>74L518 15</td>
<td>74L531 19</td>
</tr>
<tr>
<td>74L519 15</td>
<td>74L532 19</td>
</tr>
<tr>
<td>74L520 15</td>
<td>74L533 19</td>
</tr>
<tr>
<td>74L521 15</td>
<td>74L534 19</td>
</tr>
<tr>
<td>74L522 15</td>
<td>74L535 19</td>
</tr>
<tr>
<td>74L523 15</td>
<td>74L536 19</td>
</tr>
<tr>
<td>74L524 15</td>
<td>74L537 19</td>
</tr>
<tr>
<td>74L525 15</td>
<td>74L538 19</td>
</tr>
<tr>
<td>74L526 15</td>
<td>74L539 19</td>
</tr>
<tr>
<td>74L527 15</td>
<td>74L540 19</td>
</tr>
<tr>
<td>74L528 15</td>
<td>74L541 19</td>
</tr>
<tr>
<td>74L529 15</td>
<td>74L542 19</td>
</tr>
<tr>
<td>74L530 15</td>
<td>74L543 19</td>
</tr>
<tr>
<td>74L531 15</td>
<td>74L544 19</td>
</tr>
<tr>
<td>74L532 15</td>
<td>74L545 19</td>
</tr>
<tr>
<td>74L533 15</td>
<td>74L546 19</td>
</tr>
<tr>
<td>74L534 15</td>
<td>74L547 19</td>
</tr>
<tr>
<td>74L535 15</td>
<td>74L548 19</td>
</tr>
<tr>
<td>74L536 15</td>
<td>74L549 19</td>
</tr>
<tr>
<td>74L537 15</td>
<td>74L550 19</td>
</tr>
<tr>
<td>74L538 15</td>
<td>74L551 19</td>
</tr>
<tr>
<td>74L539 15</td>
<td>74L552 19</td>
</tr>
<tr>
<td>74L540 15</td>
<td>74L553 19</td>
</tr>
</tbody>
</table>

MOSS Static RAM'S

<table>
<thead>
<tr>
<th>Stock level</th>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4K (1K x 4) 450NS</td>
<td>21110</td>
<td>3.95</td>
</tr>
<tr>
<td>2900NS</td>
<td>AY5-1013A</td>
<td>4.95</td>
</tr>
<tr>
<td>14000</td>
<td>AY3-1015B</td>
<td>5.95</td>
</tr>
<tr>
<td>9200</td>
<td>5101</td>
<td>4.95</td>
</tr>
</tbody>
</table>

MOSS Dynamic RAM'S

<table>
<thead>
<tr>
<th>Stock level</th>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4K 4060</td>
<td>27550</td>
<td>11.95</td>
</tr>
<tr>
<td>1K CMOS RAM</td>
<td>4400</td>
<td>4.95</td>
</tr>
</tbody>
</table>

MICROPROCESSOR CHIPS

<table>
<thead>
<tr>
<th>Stock level</th>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978 IC MASTER</td>
<td>Stock level</td>
<td>Price</td>
</tr>
<tr>
<td>14000</td>
<td>8 PIN</td>
<td>.11</td>
</tr>
<tr>
<td>345000</td>
<td>14 PIN</td>
<td>.12</td>
</tr>
<tr>
<td>156000</td>
<td>16 PIN</td>
<td>.15</td>
</tr>
<tr>
<td>33000</td>
<td>18 PIN</td>
<td>.19</td>
</tr>
<tr>
<td>18000</td>
<td>22 PIN</td>
<td>.27</td>
</tr>
<tr>
<td>84000</td>
<td>24 PIN</td>
<td>.28</td>
</tr>
<tr>
<td>25000</td>
<td>28 PIN</td>
<td>.36</td>
</tr>
<tr>
<td>46000</td>
<td>40 PIN</td>
<td>.48</td>
</tr>
</tbody>
</table>

Linear I.C.'s

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM324N</td>
<td>49</td>
</tr>
<tr>
<td>LM339N</td>
<td>49</td>
</tr>
<tr>
<td>LM294N-8</td>
<td>59</td>
</tr>
<tr>
<td>LM556N-14</td>
<td>59</td>
</tr>
<tr>
<td>LM7320C</td>
<td>39</td>
</tr>
<tr>
<td>LM7320CH</td>
<td>39</td>
</tr>
<tr>
<td>LM7414CH</td>
<td>37</td>
</tr>
<tr>
<td>LM1458N-8</td>
<td>39</td>
</tr>
</tbody>
</table>

General Instrument 1 Amp Recisters (100y)

<table>
<thead>
<tr>
<th>Stock level</th>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7 Million</td>
<td>1N4001</td>
<td>50</td>
</tr>
<tr>
<td>5 Million</td>
<td>1N4002</td>
<td>50</td>
</tr>
<tr>
<td>9 Million</td>
<td>1N4003</td>
<td>50</td>
</tr>
<tr>
<td>5 Million</td>
<td>1N4004</td>
<td>50</td>
</tr>
<tr>
<td>9 Million</td>
<td>1N4005</td>
<td>50</td>
</tr>
<tr>
<td>1 Million</td>
<td>1N4006</td>
<td>50</td>
</tr>
<tr>
<td>1 Million</td>
<td>1N4007</td>
<td>50</td>
</tr>
</tbody>
</table>

Switching Diodes

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N1941</td>
<td>100</td>
</tr>
<tr>
<td>1N1448</td>
<td>100</td>
</tr>
</tbody>
</table>

Zilog

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>280-CPU</td>
<td>49.00</td>
</tr>
<tr>
<td>280A-CPU</td>
<td>49.00</td>
</tr>
<tr>
<td>280-CPU</td>
<td>49.00</td>
</tr>
</tbody>
</table>

CONTACTS

<table>
<thead>
<tr>
<th>Stock level</th>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>14000</td>
<td>8 PIN</td>
<td>.11</td>
</tr>
<tr>
<td>345000</td>
<td>14 PIN</td>
<td>.12</td>
</tr>
<tr>
<td>156000</td>
<td>16 PIN</td>
<td>.15</td>
</tr>
<tr>
<td>33000</td>
<td>18 PIN</td>
<td>.19</td>
</tr>
<tr>
<td>18000</td>
<td>22 PIN</td>
<td>.27</td>
</tr>
<tr>
<td>84000</td>
<td>24 PIN</td>
<td>.28</td>
</tr>
<tr>
<td>25000</td>
<td>28 PIN</td>
<td>.36</td>
</tr>
<tr>
<td>46000</td>
<td>40 PIN</td>
<td>.48</td>
</tr>
</tbody>
</table>

All new major manufacturer production material offered. Largest variety of device types available anywhere.
Vigilite

Electronic Home Security

A microprocessor-based keyring-size light control that fits into a favorite purse or pocket. Battery operated and brightly lights a path up to 32 feet long; runs up to 200 hours on one battery. Enforces a "5 second" on and "5 second" off sequence, to deter potential offenders.

Under other apparent-mechanical threats, Vigilite can scramble the lighting sequence to simulate a real intruder opening the door to the home. As a result, these new Intrusion LLCs are an effective way to signal the intruder's presence and put them on notice.

The Vigilite is also available with a receiver to indicate the alarm via sound of a bell, buzzer, or siren. This receiver can be placed anywhere in the home for added security.

Technical Specifications

1. Electronic apparatus - CMOS. 2. Comes in either key-ring or body-worn version.

Part Number VGL-1

$39.95 ea.

Discrete Leds

DISCRETE Leds

<table>
<thead>
<tr>
<th>TYPE</th>
<th>POLARITY</th>
<th>nT</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>XJ206R</td>
<td>Red</td>
<td>5/100</td>
<td>$2.59</td>
</tr>
<tr>
<td>XJ286R</td>
<td>Yellow</td>
<td>5/100</td>
<td>$2.59</td>
</tr>
<tr>
<td>XJ287R</td>
<td>Blue</td>
<td>5/100</td>
<td>$2.59</td>
</tr>
<tr>
<td>XJ289R</td>
<td>Green</td>
<td>5/100</td>
<td>$2.59</td>
</tr>
<tr>
<td>XJ322R</td>
<td>Pink</td>
<td>5/100</td>
<td>$2.59</td>
</tr>
<tr>
<td>XJ325R</td>
<td>Gold</td>
<td>5/100</td>
<td>$2.59</td>
</tr>
<tr>
<td>XJ326R</td>
<td>Silver</td>
<td>5/100</td>
<td>$2.59</td>
</tr>
</tbody>
</table>

Display Leds

DISPLAY Leds

<table>
<thead>
<tr>
<th>TYPE</th>
<th>POLARITY</th>
<th>nT</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>XJ206</td>
<td>Red</td>
<td>5/100</td>
<td>$2.59</td>
</tr>
<tr>
<td>XJ286</td>
<td>Yellow</td>
<td>5/100</td>
<td>$2.59</td>
</tr>
<tr>
<td>XJ287</td>
<td>Blue</td>
<td>5/100</td>
<td>$2.59</td>
</tr>
<tr>
<td>XJ289</td>
<td>Green</td>
<td>5/100</td>
<td>$2.59</td>
</tr>
<tr>
<td>XJ322</td>
<td>Pink</td>
<td>5/100</td>
<td>$2.59</td>
</tr>
<tr>
<td>XJ325</td>
<td>Gold</td>
<td>5/100</td>
<td>$2.59</td>
</tr>
<tr>
<td>XJ326</td>
<td>Silver</td>
<td>5/100</td>
<td>$2.59</td>
</tr>
</tbody>
</table>

RCA Linear

CALCULATOR CHIPS/DRIVES

<table>
<thead>
<tr>
<th>TYPE</th>
<th>SOCKET</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>XA061</td>
<td>5x6</td>
<td>$1.75</td>
</tr>
<tr>
<td>XA062</td>
<td>7x8</td>
<td>$1.75</td>
</tr>
</tbody>
</table>

1/4 Watt Resistor Assortments - 5%

<table>
<thead>
<tr>
<th>ASST.</th>
<th>VALUE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10k, 15k, 20k, 25k, 30k, 33k, 40k, 47k, 50k, 68k, 75k, 100k, 150k, 220k, 330k, 470k, 1M, 2.2M, 4.7M, 10M, 22M, 47M, 100M, 220M, 470M</td>
<td>$7.15</td>
</tr>
<tr>
<td>2</td>
<td>10k, 15k, 20k, 25k, 30k, 33k, 40k, 47k, 50k, 68k, 75k, 100k, 150k, 220k, 330k, 470k, 1M, 2.2M, 4.7M, 10M, 22M, 47M, 100M, 220M, 470M</td>
<td>$7.15</td>
</tr>
<tr>
<td>3</td>
<td>10k, 15k, 20k, 25k, 30k, 33k, 40k, 47k, 50k, 68k, 75k, 100k, 150k, 220k, 330k, 470k, 1M, 2.2M, 4.7M, 10M, 22M, 47M, 100M, 220M, 470M</td>
<td>$7.15</td>
</tr>
<tr>
<td>4</td>
<td>10k, 15k, 20k, 25k, 30k, 33k, 40k, 47k, 50k, 68k, 75k, 100k, 150k, 220k, 330k, 470k, 1M, 2.2M, 4.7M, 10M, 22M, 47M, 100M, 220M, 470M</td>
<td>$7.15</td>
</tr>
<tr>
<td>5</td>
<td>10k, 15k, 20k, 25k, 30k, 33k, 40k, 47k, 50k, 68k, 75k, 100k, 150k, 220k, 330k, 470k, 1M, 2.2M, 4.7M, 10M, 22M, 47M, 100M, 220M, 470M</td>
<td>$7.15</td>
</tr>
<tr>
<td>6</td>
<td>10k, 15k, 20k, 25k, 30k, 33k, 40k, 47k, 50k, 68k, 75k, 100k, 150k, 220k, 330k, 470k, 1M, 2.2M, 4.7M, 10M, 22M, 47M, 100M, 220M, 470M</td>
<td>$7.15</td>
</tr>
<tr>
<td>7</td>
<td>10k, 15k, 20k, 25k, 30k, 33k, 40k, 47k, 50k, 68k, 75k, 100k, 150k, 220k, 330k, 470k, 1M, 2.2M, 4.7M, 10M, 22M, 47M, 100M, 220M, 470M</td>
<td>$7.15</td>
</tr>
<tr>
<td>8</td>
<td>10k, 15k, 20k, 25k, 30k, 33k, 40k, 47k, 50k, 68k, 75k, 100k, 150k, 220k, 330k, 470k, 1M, 2.2M, 4.7M, 10M, 22M, 47M, 100M, 220M, 470M</td>
<td>$7.15</td>
</tr>
</tbody>
</table>

CAN INCLUDES RESISTOR ASSORTMENTS - 1-7 (500 PCS.) $9.95 ea.

$5.00 Minimum Order - U.S. Funds Only
Spot Shoppers - 25%
California Residents Add 6% Sales Tax
1976 Catalog Available—Send 30¢ stamp

WAVEFORM CHIPS

PHOTO ORDERS WELCOME

MAIL ORDER ELECTRONICS - WORLDWIDE
1521 HUNXARD AVENUE, SAN CARLOS, CALIF. 94070
Advertised Prices Good Thru December

102

AmericanRadioHistory.com
Je2206B $19.95

4-Digit Clock Kit

Use Intersil 7205 Chip

- Bright 35/8" red display
- Sequenational flushing colon
- 12 or 24 hour operation
- Extruded aluminum case (black)
- Pressure switches for hours, minutes and hold modes
- Includes all components and wall transformer
- Size: 3" x 1-3/4" x 1-1/4"

Je200 $39.95

Digital Stopwatch Kit

- Uses Intersil 7205 Chip
- Plated thru double-sided P.C. Board
- LED display (red)
- Times to 59 min. 59 sec. with sec. readout
- Quartz crystal controlled
- Three stopwatches in one: single event, cumulative (tally) and (sequence)
- Uses 3 penolt batteries
- Size: 6 x 2 x 1-1/2" x 90"
Top-quality devices, fully functional, carefully inspected. Guaranteed to meet all specifications, both electrically and mechanically. All are made by well-known American manufacturers, and all have to pass manufacturer's quality control procedures. These are not rejects, no failures, no seconds. In fact, there are none better on the market! Always count on Radio Shack for the finest line of electronic parts!

Linear ICs
By National Semiconductor and Motorola—first quality

<table>
<thead>
<tr>
<th>Type</th>
<th>Cat. No.</th>
<th>ONLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>321CN</td>
<td>276-1013</td>
<td>0.49</td>
</tr>
<tr>
<td>324N</td>
<td>276-1111</td>
<td>1.49</td>
</tr>
<tr>
<td>394N</td>
<td>276-1112</td>
<td>1.49</td>
</tr>
<tr>
<td>366CN</td>
<td>276-1213</td>
<td>0.99</td>
</tr>
<tr>
<td>366CN</td>
<td>276-1321</td>
<td>1.39</td>
</tr>
<tr>
<td>556CN</td>
<td>276-1224</td>
<td>1.59</td>
</tr>
<tr>
<td>556CN</td>
<td>276-1221</td>
<td>1.59</td>
</tr>
<tr>
<td>556CN</td>
<td>276-1311</td>
<td>1.59</td>
</tr>
<tr>
<td>556CN</td>
<td>276-1214</td>
<td>1.59</td>
</tr>
<tr>
<td>7404</td>
<td>276-1215</td>
<td>2.99</td>
</tr>
<tr>
<td>7405N</td>
<td>086-0010</td>
<td>4.99</td>
</tr>
<tr>
<td>7405N</td>
<td>086-0110</td>
<td>4.99</td>
</tr>
<tr>
<td>7405N</td>
<td>086-0015</td>
<td>4.99</td>
</tr>
<tr>
<td>7405N</td>
<td>086-0115</td>
<td>4.99</td>
</tr>
<tr>
<td>7410</td>
<td>276-1156</td>
<td>1.39</td>
</tr>
<tr>
<td>7411</td>
<td>276-1155</td>
<td>1.39</td>
</tr>
<tr>
<td>7412</td>
<td>276-1256</td>
<td>1.39</td>
</tr>
<tr>
<td>7412</td>
<td>276-1255</td>
<td>1.39</td>
</tr>
<tr>
<td>7413</td>
<td>276-1154</td>
<td>1.39</td>
</tr>
<tr>
<td>7413</td>
<td>276-1153</td>
<td>1.39</td>
</tr>
<tr>
<td>7414</td>
<td>276-1253</td>
<td>1.39</td>
</tr>
<tr>
<td>7414</td>
<td>276-1254</td>
<td>1.39</td>
</tr>
<tr>
<td>7415</td>
<td>276-1252</td>
<td>1.39</td>
</tr>
<tr>
<td>7415</td>
<td>276-1251</td>
<td>1.39</td>
</tr>
<tr>
<td>7416</td>
<td>276-1250</td>
<td>1.39</td>
</tr>
<tr>
<td>7416</td>
<td>276-1249</td>
<td>1.39</td>
</tr>
<tr>
<td>7417</td>
<td>276-1248</td>
<td>1.39</td>
</tr>
<tr>
<td>7417</td>
<td>276-1247</td>
<td>1.39</td>
</tr>
<tr>
<td>7418</td>
<td>276-1246</td>
<td>1.39</td>
</tr>
<tr>
<td>7419</td>
<td>276-1245</td>
<td>1.39</td>
</tr>
</tbody>
</table>

Hand-Held 6-Digit Frequency Counter

- Counts from 100 Hz to 45 MHz
- kHz and MHz Decimals

A high quality "pocket" counter with accuracy of ±3ppm at 25°C or less than 30 Hz at 10 MHz! Overload-protected 1-hand input: Sensitivity, 30 mV up to 30 MHz. Lead-zero blanking. Just 3.4x4. With mini-rod antenna, leads, case, instructions. Requires 9V alkaline battery. 22-351 - 99.99

NEW IC Breadboard Sockets

Modular boards snap together and feature standard 0.3" center. Accepts 22 through 30-gauge solid hookup wire.

- 550 connections in 2 bus strips of 40 tie points each with 47 rows of 5 connected tie points. 24x34. 276-176-174 - 9.99
- 270 connections in 2 bus strips of 40 tie points each with 23 rows of 5 connected tie points. 24x34. 276-176-175 - 5.99
- Mini-Socket, 22 rows of 5 tie points each, plus 2 bus strips with connections each. 24x11x1. 276-176 - 3.95

Wire Wrapping Accessories

IC Socket Wrapping Tool. Strips and wraps 24-gauge wire. 276-176-176 - 2.99

NEW 3-Amp 4PDT Relay

With Clear Protective Cover

Switch up to four different circuits! Contacts 3 Amps at 125VAC. 120VDC @ 600mA. Ideal for automation equipment, battery chargers, etc.

Radio Shack Reference Books

Digital Integrated Circuits. Complete spec. CD/DVD with data sheets. 62-1370 - 3.95
Voltage Regulator Handbook. 62-1371 - 2.95
Linear Integrated Circuits. Covers op amps, voltage regulators, more. 62-1372 - 3.95
Linear Applications, Fully indexed and cross-referenced. 62-1373 - 2.95
Linear Applications, Vol. 2. The latest integrated circuits. 62-1374 - 2.95
CMOS Integrated Circuits. Covers 74C series. CD/DVD with data sheets. 62-1375 Reg. 3.95 - Sale 2.29
Memory Data Book. 62-378 Reg. 3.95 - Sale 2.29
Intel Memory Design Handbook. Companion to Data Catalog, below. 62-1378 - 3.95
Intel Data Catalog. 928 pages of complete specs on most Intel standard devices. 62-1379 - 4.95

Epoxy-Glass Plug-In PC Boards

For 22-pin connectors. 4x44", 2" grid, 3 styles available.
Standard. 276-155 - 4.49
Digital. 276-156 - 4.49
Op-Amp. 276-157 - 4.49
22-Pin Dual Connector. 276-1551 - 2.99

Paddle Switches

NEW
Rated 6 Amps at 125VAC

Mounts in 1/4" round hole—no need to cut square opening. SPST Black 276-541 - 1.99
SPDT Red. 276-542 - 1.99
DPDT Black 276-543 - 2.19

Lighted DPDT Pushbutton Switch

NEW

Push-on/push-off switch rated 4A at 12VDC. Button glows red "on" position. Mounts in 1/4" hole. U.I. listed 276-675 - 4.69

8-Rocker DIP Switch

Standard. 100x300-DIP

Designed for easy change of preset logic states in digital circuits. Fits 16-pin IC socket or mounts on PC board. 275-1301 - 1.99

Prices vary at individual stores and dealers.

WHY WAIT FOR MAIL ORDER DELIVERY?
IN STOCK NOW AT OUR STORE NEAR YOU!

AmericanRadioHistory.com
DIGITAL CAPACITANCE METER KIT

Features:
- 8-Digit Capacitance Measurement
- Battery-Powered, Portable Design
- Easy to Use for Capacitance Testing

Specifications:
- Range: 0.1 pF to 10 nF
- Accuracy: ±1% of reading + 2 digits
- Frequency: 1 MHz
- Batteries: 9V or 1.5V alkaline

Order by Cat. No.: 5430

LOWEST PRICES ON MOST PRODUCTS!

POLY PAKs® DISCOUNT ALLEY

WE'RE PUTTING "GREENBACKS" IN YOUR POCKET!

10% OFF

That's right! Take 10% discount off any item, plus FREE shipping, on discount. POLY PAKs DISCOUNT ALLEY continues to offer the big savings and discounts available anywhere!
DIODES/ZENERS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N914</td>
<td>100v 10mA</td>
<td>.05</td>
</tr>
<tr>
<td>1N4005</td>
<td>100v 1A</td>
<td>.08</td>
</tr>
<tr>
<td>1N4007</td>
<td>600v 1A</td>
<td>.15</td>
</tr>
<tr>
<td>1N414B</td>
<td>75v 10mA</td>
<td>.05</td>
</tr>
<tr>
<td>1N4733</td>
<td>5.1v 1 W Zener</td>
<td>.25</td>
</tr>
<tr>
<td>1N753A</td>
<td>6.2v 500 mW Zener</td>
<td>.25</td>
</tr>
<tr>
<td>1N758A</td>
<td>12v</td>
<td>.25</td>
</tr>
<tr>
<td>1N758A</td>
<td>15v</td>
<td>.25</td>
</tr>
<tr>
<td>1N5243</td>
<td>13v</td>
<td>.25</td>
</tr>
<tr>
<td>1N5244B</td>
<td>14v</td>
<td>.25</td>
</tr>
<tr>
<td>1N5245B</td>
<td>15v</td>
<td>.25</td>
</tr>
</tbody>
</table>

SOCKETS/BRIDGES

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-pin</td>
<td>pcb .20</td>
<td>.35</td>
</tr>
<tr>
<td>14-pin</td>
<td>pcb .20</td>
<td>.40</td>
</tr>
<tr>
<td>16-pin</td>
<td>pcb .20</td>
<td>.40</td>
</tr>
<tr>
<td>18-pin</td>
<td>pcb .25</td>
<td>.75</td>
</tr>
<tr>
<td>22-pin</td>
<td>pcb .35</td>
<td>.95</td>
</tr>
<tr>
<td>24-pin</td>
<td>pcb .35</td>
<td>.95</td>
</tr>
<tr>
<td>28-pin</td>
<td>pcb .45</td>
<td>1.25</td>
</tr>
<tr>
<td>40-pin</td>
<td>pcb .50</td>
<td>1.25</td>
</tr>
</tbody>
</table>

TRANSISTORS, LEDS, etc.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N2222</td>
<td>NPN (2N2222 Plastic)</td>
<td>.15</td>
</tr>
<tr>
<td>2N2807</td>
<td>NPN</td>
<td>.15</td>
</tr>
<tr>
<td>2N3906</td>
<td>PNP (Plastic - Unmarked)</td>
<td>.10</td>
</tr>
<tr>
<td>2N3904</td>
<td>NPN (Plastic - Unmarked)</td>
<td>.10</td>
</tr>
<tr>
<td>2N3934</td>
<td>NPN</td>
<td>.35</td>
</tr>
<tr>
<td>2N3055</td>
<td>15A 60v</td>
<td>.50</td>
</tr>
<tr>
<td>TIP125</td>
<td>PNP Darlington</td>
<td>.95</td>
</tr>
</tbody>
</table>

C04 MOS

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>.35</td>
</tr>
<tr>
<td>.35</td>
</tr>
<tr>
<td>.20</td>
</tr>
<tr>
<td>.20</td>
</tr>
</tbody>
</table>

INTEGRATED CIRCUITS UNLIMITED

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000</td>
<td>15</td>
<td>.15</td>
</tr>
<tr>
<td>4001</td>
<td>15</td>
<td>.15</td>
</tr>
<tr>
<td>4002</td>
<td>.20</td>
<td>.20</td>
</tr>
<tr>
<td>4003</td>
<td>.35</td>
<td>.35</td>
</tr>
<tr>
<td>4004</td>
<td>9.95</td>
<td></td>
</tr>
<tr>
<td>4005</td>
<td>12</td>
<td>.25</td>
</tr>
<tr>
<td>4009</td>
<td>.35</td>
<td>.35</td>
</tr>
<tr>
<td>4010</td>
<td>.35</td>
<td>.35</td>
</tr>
<tr>
<td>4011</td>
<td>.20</td>
<td>.20</td>
</tr>
<tr>
<td>4012</td>
<td>.20</td>
<td>.20</td>
</tr>
<tr>
<td>4013</td>
<td>.40</td>
<td>.40</td>
</tr>
<tr>
<td>4014</td>
<td>.75</td>
<td>.75</td>
</tr>
<tr>
<td>4015</td>
<td>.75</td>
<td>.75</td>
</tr>
<tr>
<td>4016</td>
<td>.35</td>
<td>.35</td>
</tr>
<tr>
<td>4017</td>
<td>.75</td>
<td>.75</td>
</tr>
<tr>
<td>4018</td>
<td>.75</td>
<td>.75</td>
</tr>
<tr>
<td>4019</td>
<td>.35</td>
<td>.35</td>
</tr>
<tr>
<td>4020</td>
<td>.85</td>
<td>.85</td>
</tr>
<tr>
<td>4021</td>
<td>.75</td>
<td>.75</td>
</tr>
<tr>
<td>4022</td>
<td>.75</td>
<td>.75</td>
</tr>
<tr>
<td>4023</td>
<td>.20</td>
<td>.20</td>
</tr>
<tr>
<td>4024</td>
<td>.75</td>
<td>.75</td>
</tr>
<tr>
<td>4025</td>
<td>.20</td>
<td>.20</td>
</tr>
<tr>
<td>4026</td>
<td>1.95</td>
<td>.95</td>
</tr>
<tr>
<td>4027</td>
<td>.35</td>
<td>.35</td>
</tr>
<tr>
<td>4028</td>
<td>.75</td>
<td>.75</td>
</tr>
<tr>
<td>4029</td>
<td>.35</td>
<td>.35</td>
</tr>
<tr>
<td>4030</td>
<td>.35</td>
<td>.35</td>
</tr>
<tr>
<td>4032</td>
<td>.15</td>
<td>.15</td>
</tr>
<tr>
<td>4034</td>
<td>.25</td>
<td>.25</td>
</tr>
<tr>
<td>4035</td>
<td>.75</td>
<td>.75</td>
</tr>
<tr>
<td>4036</td>
<td>.75</td>
<td>.75</td>
</tr>
<tr>
<td>4040</td>
<td>.75</td>
<td>.75</td>
</tr>
<tr>
<td>4041</td>
<td>.69</td>
<td>.69</td>
</tr>
<tr>
<td>4042</td>
<td>.15</td>
<td>.15</td>
</tr>
<tr>
<td>4043</td>
<td>.50</td>
<td>.50</td>
</tr>
<tr>
<td>4044</td>
<td>.65</td>
<td>.65</td>
</tr>
<tr>
<td>4046</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>4049</td>
<td>.45</td>
<td>.45</td>
</tr>
<tr>
<td>4050</td>
<td>.45</td>
<td>.45</td>
</tr>
<tr>
<td>4056</td>
<td>.55</td>
<td>.55</td>
</tr>
</tbody>
</table>

9000 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>9301</td>
<td>85</td>
<td>1.10</td>
</tr>
<tr>
<td>9309</td>
<td>85</td>
<td>1.10</td>
</tr>
<tr>
<td>9322</td>
<td>85</td>
<td>1.10</td>
</tr>
<tr>
<td>9315</td>
<td>85</td>
<td>1.10</td>
</tr>
</tbody>
</table>

MICRO'S, RAMS, CPU'S, E-PROMS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>74S188</td>
<td>3.00</td>
<td>8.95</td>
</tr>
<tr>
<td>1702A</td>
<td>4.50</td>
<td>3.25</td>
</tr>
<tr>
<td>MMS314</td>
<td>3.00</td>
<td>6.50</td>
</tr>
<tr>
<td>MMS316</td>
<td>3.50</td>
<td>6.50</td>
</tr>
<tr>
<td>2125L1</td>
<td>1.75</td>
<td>1.50</td>
</tr>
<tr>
<td>2114</td>
<td>9.50</td>
<td>1.50</td>
</tr>
<tr>
<td>TR16082</td>
<td>3.95</td>
<td>2.00</td>
</tr>
<tr>
<td>TMS444</td>
<td>10.00</td>
<td>4.95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>8080</td>
<td>8.95</td>
<td>8.95</td>
</tr>
<tr>
<td>8122</td>
<td>8.95</td>
<td>8.95</td>
</tr>
</tbody>
</table>

MAIN DISCOUNTS

Total Order Deduct

$35 - $99 | 10%
$100 - $299 | 15%
$301 - $1000 | 20%

SPECIAL DISCOUNTS

Orders shipped prepaid

Open accounts invited

COD orders accepted

Liquidations at OEM Quantities California Residents add 6% Sales Tax

All IC's Prime/Guaranteed. All orders shipped same day received.

24 Hour Toll Free Phone 1-800-854-2211

American Express / BankAmericard / Visa / MasterCharge
APPLE II SERIAL I/O INTERFACE *

Part no. 2
Baud rate is continuously adjustable from 0 to 30,000. Plug into any peripheral connector. Low current drain. RS-232 input and output. On board switch selectable 5 to 8 data bits, 1 or 2 stop bits, and parity or no parity either odd or even. Jumper selectable address. SOFTWARE: Input and output routine from monitor or BASIC to teletype or other serial printer. Program for using an Apple II for a video or an intelligent terminal. Also can output in correspondence code to interface with some selectrics. Board only $15.00; with parts $42.00; assembled and tested — $62.00.

MODEM *

Part no. 109
- Type 103
- Full or half duplex
- Works up to 300 baud
- Originate or Answer
- No coils, only low cost components
- TTL input and output serial
- Connect 8 ohm speaker and crystal mic. directly to board
- Uses XR FSK demodulator
- Requires +5 volts
- Board $7.60; with parts $27.50.

DC POWER SUPPLY *

Part no. 6085
- Board supplies a regulated +5 volts at 3 amps, +12, -12, and -5 volts at 1 amp
- Power required is 8 watts AC at 3 amps, and 24 watts AC.C.T. at 1.5 amps
- Board only $12.50; with parts excluding transformers $42.50.

TAPE INTERFACE *

Part no. 111
- Play and record Kansas City Standard tapes
- Converts a low cost tape recorder to a digital recorder
- Works up to 1200 baud
- Digital in and out are TTL serial
- Output of board connects to mic in of recorder
- Earphone of recorder connects to input on board
- No coils
- Requires +5 volts, low power drain
- Board $7.60; with parts $27.50.

T.V. TYPEWRITER

Part no. 106
- Stand alone TVT
- 32 char/line, 16 line modifications for 64 char/line included
- Parallel ASCII (TTY) input
- Video output
- 1K on board memory
- Converter controlled cursor
- Auto scroll
- Non-destructive cursor
- Cursor inputs: up, down, left, right, home, EOL, EOG, Scroll up, down
- Requires +5 volts at 1.5 amps, and -12 volts at 30 mA
- All 7400, TTL chips
- Char. gen 2513
- Upper case only
- Board only $39.00; with parts $145.00.

8K STATIC RAM

Part no. 300
- 8K Altair bus memory
- Uses 2102 Static memory chips
- Memory protect
- Gold contacts
- Wait states
- On board regulator
- S-100 bus compatible
- Vector input option
- TRI state buffered
- Board only $27.50; with parts $160.00.

RF MODULATOR *

Part no. 107
- Converts video to AM modulated RF. Channels 2 or 3
- Powerful almost no tuning is required. On board regulated power supply makes this extremely stable. Rated very highly in Doctor Dobbs Journal. Recommended by Apple
- Power required is 12 volts ACC.C.T., or +5 volts DC
- Board $7.60; with parts $13.50.

RS 232/TTY * INTERFACE

Part no. 600
- Converts RS-232 to 20mA current loop, and 20mA current loop to RS-232
- Two separate circuits
- Requires +12 and -12 volts
- Board only $4.50; with parts $7.00.

RS 232/TTL * INTERFACE

Part no. 232
- Converts TTL to RS-232, and converts RS-232 to TTL
- Two separate circuits
- Requires -12 and +12 volts
- All connections go to an 10 pin gold plated edge connector
- Board only $4.50; with parts $7.00 with connector add $2.00.

ELECTRONIC SYSTEMS

To Order:

Part number and description. For parts kits add "A" to part number. In USA, shipping paid for orders accompanied by check, money order, or Master Charge. BankAmericard, or VISA number, expiration date and signature. Shipping charges added to C.O.D. orders. California residents add 6.5% for tax. Outside USA add 10% for air mail postage, no C.O.D.s. Checks, Money orders must be payable in US dollars. Parts kits include sockets for all i.C. components, and circuit board. Documentation is included with all products. All items are in stock, and will be shipped the day order is received via first class mail. Prices are in US dollars. No open accounts. To eliminate tariff in Canada boxes are marked “Computer Parts.” Dealer inquiries invited.

AmericanRadioHistory.com
QUEST Cosmac Super Elf Computer $106.95

Compare features before you decide to buy any other computer. There is no other computer on the market that has all the desirable features of the Super Elf for so little money. The Super Elf is a small single board computer that does many big things. It is an excellent computer for learning and for training with its programming language and yet it is easily expanded with additional memory. Tiny BASIC, ASCII Keyboards, video character generation, etc.

The Super Elf Includes a ROM monitor for pre-programmed, ready-to-use instruction with single step for program debugging which is not included in others at the same price. With single step you can see the microprocessor chip operating with the unique Quest address and data bus displays, before, during and after executing instructions. Also, CPU mode and instruction cycle are shown on several LED indicators.

An RCA 1801 video graphics chip allows you to connect to your own TV with an inexpensive video modulator to do graphics and games. There is a speaker system included for writing your own music or using many music programs already written. The speaker amplifier may also be used to drive relays for control purposes.

A 24 key信用卡 keyboard includes 16 BASIC keys plus; quit, reset, run, stop, memory protect.

Super Expansion Board with

This is truly an astounding value! This board has been designed to allow you to decide how you want it configured. The Super Expansion Board comes with 4K of low power RAM fully addressable anywhere in 64K, with built-in memory protection and a cassette interface. Provision have been made for all other options on the same board and it fits neatly into the hardwood cabinet along with the Super Elf. The board includes sockets for up to 6K of EPRROM (2708, 2758, 2716F or 2726F) fully protected ($92.00 value) EPRROM can be used for the monitor and Tiny Basic or other purposes.

A RJ Super ROM Monitor $59.95 is available as an on board option in 2708 EPRROM which has been preprogrammed with a program loader/editor and error checking. Nine line cassette read/write software, (retractable cassette file) another exclusive from Quest. It includes register save and readout, video graphic driver, blinking cursor and block move capability. The Super Monitor is written with subroutines allowing users to take advantage of monitor functions.

Auto Clock Kit $15.95

DC powered National MA-1012 display unit with alarm option. Includes light dimmer, crystal timebase PC boards. Fully regulated componentized. Add $3.90 for beautiful dark gray case. Best value anywhere.

RCA Cosmac VIP Kit $229.00

Video computer with games and graphics.

Not a Cheap Clock Kit $14.95

Includes everything except clock---2 PC boards. 6-30V LED displays. $314 clock chip, transformer, all components and full instructions. Green and orange displays also available. Kit w/66 displays, Red only.

60 Hz Crystal Time Base Kit $4.40

Converts digital clocks from AC line frequency to crystal time base. Outstanding accuracy. Kit includes PC board, Manual, radio, crystals, capacitors and trimmer.

TERMS: $5.50 min. order. U.S. Funds. Cali residents add 6% tax. BankAmericard and Master Charge accepted. Shipping charges will be added on charge cards.

Digital Temperature Meter Kit

NiCad Battery Charger/Fixer Kit

Opens shorted cells that won't hold a charge and charges them all in one kit w/all parts and instructions. $7.25.

Promus Eraser

Ultraviolet assembled $49.95.

Clock Calendar Kit

$23.95.

Clock Kit CVT15 direct drive clock displays date and time on 6" LEDs with ADM-PM indicator. Alarm/minute feature includes buzzer. Complete with all parts, power supply and instructions. less case.

Same day shipment. First line parts only. Factory tested. Guaranteed money back. Quality IC's and other components at factory prices.

INTEGRATED CIRCUITS

QUEST CATALOG, include 28¢ stamp.
THE ECONORAM FAMILY OF MEMORIES... they're static, they're cost-effective, they work.

Now most Econorams are available as "unkits" (buckets, bypass caps pre-soldered in place for easy assembly) or assembled and qualified under the Certified System Components program. CSC boards are burned in for 200 hours, tested, serial numbered, and guaranteed to run at 4 MHz over the full temperature range (no charge if failure occurs within 1 year invoice date).

All Econorams handle DMAs and feature full buffer, static design, low power/high speed operation, and specialty features too numerous to mention here along with a 1 year limited warranty. For more information, request our free flyer.

12K ECONORAM VI: Brings Econoram quality to the Heath H8 bus. Unkit $235, SPECIAL — 2 unkits $395, assembled/tested $270.

ALL OF THE ABOVE ARE AVAILABLE FROM STOCK. Coming soon: 32K boards for the S-100 buses, the IntelNational 8010 and 8020 machines, and the Digital Group... plus an S-100 dual USB/1 I/O board and our new family of S-100 Power Supplies for price and availability, or better yet, visit your local computer store as they should have information by the time this appears in print.

TR80 MEMORY EXPANSION $159

Our Conversion Kit contains all parts (and detailed instructions) necessary to upgrade a 4K TRS-80 mainframe to 16K, or populate the Memory Expansion Module. Also works with APPLES. Only $159 (9kits/950) and we back up our parts in a 1 year warranty.

12 V 8A POWER SUPPLY KIT $44.50

Handles 12A with 50% duty cycle. Ideal for powering mobile equipment in the home. Crowbar overvoltage protection, feedback current limiting, adjustable output 11-14V, custom wound heavy-duty transformer, RF suppression, baby assembly (all parts except x-fm/filtier capacitors mount on circuit board). Case not included. With full assembly instructions.

MA1003 CLOCK MODULE $16.50

Add 3 time-setting switches, 12V DC, and you're up and running. Ideal for car, van, or other mobile applications thanks to xial-controlled timebase. Large (0.3") blue-green fluorescents readouts. Includes custom options for car applications (automatic dimming when headlights are turned on, etc.). Whether you need a clock yourself or want to present someone with a fine gift, this is an excellent choice. With applications data. 2540.

FREE FLYER: Our 40-page flyer lists bargain after bargain. Send us your name and address, we'll take care of the rest.

CIRCLE NO. 17 ON FREE INFORMATION CARD
FORDHAM
505 Leeward Dr. Farmingdale, N. Y. 11735
CIRCLE NO. 18 ON FREE INFORMATION CARD

FORDHAM
New Tone Electronics
Quality components at fair prices

HIGH FIDELITY SPEAKERS

8 INCH COAXIAL
Combines a high quality 8" woofer and a tweeter into a pre-phased sound reproducer. Built-in cross-over network. Excellent choice for a low cost Hi-Fi system for auto, vans, or in your home. Frequency response is a smooth 35Hz - 15,000 Hz. 8 ohm VC. 5 oz. ceramic ring magnet. 25W raising.

NT577 $13.99 plus 40 cents postage

10-INCH WOOFER
The speaker for your "big sound" system. Frequency response is 20,000 Hz. 8 ohm aluminum VC, powerful 20 oz. ceramic ring magnet and a rubberized corned-edge suspension for excellent compliance. Handles 50W max. Use with the NT576 for a super system. NT578 $17.99 plus 40 cents postage

50W DOME TWEETER
Here is the super tweeter. A rugged 10 cm (4") dome tweeter which handles 50W max. Frequency response is 4000 to 20,000 Hz. 8 ohm VC. 8 oz. ceramic magnet. Your system can have a brilliance you never imagined!

NT576 $18.99

Resistors Standard values, ±5%, first quality. Packed 5 of one value. NW $5 for $1.25 NW $5 for $1.50

Capacitor Special 3600 mF, 40Vdc Supragram "Powerlytic" $1.89

Relay SPDT, 12Vdc 5A contacts NT565 $1.79

Sound Activated Switch Complete, ready to use. Built-in microphone's output triggers a True which acts as a switch. Measures only 1" x 3" Requires 3Vdc: NT527 $1.29

And, the largest inventory of domestic and Japanese transistors and ICs in the United States.

ALL PARTS GUARANTEED WRITE FOR FREE CATALOG
Minimum Order $5. Add $1.50 Postage and Handling. Canada add $2.00. N.J. Residents add 5% Sales Tax.

New Tone Electronics
PO BOX 1738
Bloomfield, N.J. 07003

Digital Auto Security System
3-Way Protection For Your Entire Car or Van

- Proximity Triggered Theft Protection - for valuables, CB or Ham equipment.
- Voltage Triggered Entry Protection - for doors and trunk.
- Mechanically Triggered Entry Protection - for under-hood parts.
- Activated by Personal 4-Digit Code.
- Uses Your Auto Horn As An Alarm, Or Add A Siren.

Forget about anything you might have heard about other anti-theft systems. The OCULAR 2® total security system, adds a new dimension to automobile security — Proximity Detection. Even if the would-be thief could enter your car without triggering the voltage sensing circuit (not likely) — just approaching the protected area will sound your alarm instantly. He does not have to touch anything! Attention is the one thing the "rip-off" artist doesn't want.

And, there's more protection. Raising the hood sounds the alarm. Any change in voltage (dome or trunk light on, starting the car) sounds the alarm. If the cable connecting the units in the passenger compartment is cut, the OCULAR 2 turns itself on and sounds the alarm.

Your personal 4-digit code activates and deactivates the whole system. Just enter your code through the attractive push-button "Code Lok" keyboard when you leave your car and the system is activated. When you return, there's enough time to enter your code to deactivate the system before the alarm sounds.

Installation is easy and requires only simple tools. Complete with all hardware, instructions and your personal code. For 12-volt, negative-ground electrical systems only.

Sorry, but at this price, we must limit each order to only two systems per customer.

Was $49.95, now $29.95
Let us know 8 weeks in advance so that you won't miss a single issue of POPULAR ELECTRONICS.

ATTACH OLD LABEL when ordering new address in space provided. Also include your mailing label whenever you write concerning your subscription. It helps us serve you promptly.

Write to: P.O. Box 2774, Boulder, CO 80302

TRIM POT PACKAGE $11.95

LED DISPLAY SPECIALS

For Mounts in Plastics, Metal, Wood, Paper, Linen.

GALLIUM PHOSPHIDE LED'S

Low As 59c

CERAMIC CAPACITOR ASSORTMENT - 50V

CERAMIC CAPACITOR PACKAGE $7.95

electrically, rapidly, due to lack of space.

TRIMOT PACKAGE $11.95

For Mounts in Plastics, Metal, Wood, Paper, Linen.

LEAD FREE CAPACITORS

Reg. 79c.

GALLIUM PHOSPHIDE LED'S

Low As 59c

CERAMIC CAPACITOR ASSORTMENT - 50V

CERAMIC CAPACITOR PACKAGE $7.95

electrically, rapidly, due to lack of space.

TRIMOT PACKAGE $11.95

For Mounts in Plastics, Metal, Wood, Paper, Linen.

LEAD FREE CAPACITORS

Reg. 79c.

GALLIUM PHOSPHIDE LED'S

Low As 59c

CERAMIC CAPACITOR ASSORTMENT - 50V

CERAMIC CAPACITOR PACKAGE $7.95

electrically, rapidly, due to lack of space.

TRIMOT PACKAGE $11.95

For Mounts in Plastics, Metal, Wood, Paper, Linen.

LEAD FREE CAPACITORS

Reg. 79c.

GALLIUM PHOSPHIDE LED'S

Low As 59c

CERAMIC CAPACITOR ASSORTMENT - 50V

CERAMIC CAPACITOR PACKAGE $7.95

electrically, rapidly, due to lack of space.

TRIMOT PACKAGE $11.95

For Mounts in Plastics, Metal, Wood, Paper, Linen.

LEAD FREE CAPACITORS

Reg. 79c.

GALLIUM PHOSPHIDE LED'S

Low As 59c

CERAMIC CAPACITOR ASSORTMENT - 50V

CERAMIC CAPACITOR PACKAGE $7.95

electrically, rapidly, due to lack of space.

TRIMOT PACKAGE $11.95

For Mounts in Plastics, Metal, Wood, Paper, Linen.

LEAD FREE CAPACITORS

Reg. 79c.

GALLIUM PHOSPHIDE LED'S

Low As 59c

CERAMIC CAPACITOR ASSORTMENT - 50V

CERAMIC CAPACITOR PACKAGE $7.95

electrically, rapidly, due to lack of space.
NEW-TONE ELECTRONICS INTERNATIONAL

A Division of New-Tone Electronics

NEW-TONE ELECTRONICS INTERNATIONAL

AND YOU CAN ORDER TOLL FREE 800-631-1250

Check the prices in this list. Dealers send for our complete volume discount price list.

Specializing in Japanese Semiconductors, with
the LARGEST INVENTORY AND LOWEST PRICES ANYWHERE

For a low quote, send a list of your needs and, if possible, desired prices. No quantity is too small.

Minimum order $5.00 US currency. Check or money order only. Add 5% to cover shipping and handling charges. Calif. residents add 6% sales tax. Santa Clara County residents add 0.5% sales tax.

CIRCLE NO. 23 ON FREE INFORMATION CARD
FREE! Bargain Catalog—IC’s, LED’s, readouts, fiber optics, calculators parts & kits, semiconductors, parts. Poly Paka, Box 942PE, Lynnfield, Mass. 01940.

LOWEST Prices Electronic Parts. Confidential Catalog Free. KNAPP, 4750 N 96th St N, St. Petersburg, FL 33708.

ELECTRONIC PARTS, semiconductors, kits. FREE LAYER. Large egg. $1.00 deposit. BIGELOW ELECTRONICS, Buffalo, NY 08517.

RADIO—T.V. Tubes—36 cents each. Send for free catalog. Cornell, 4213 University, San Diego, Cali. 92105.

AEGIScientists, Electronics Experimenters, Science Fair Students... Construction plans... Complete, including drawings, schematics, parts list with prices sources... Robot Man—Psychadelic shows—Lasers—Emotion/Line Detector—Touch Tone Dial—Quadrupolar Adaptable—Transistorized Ignition—Burglar Alarm—Sound Meter... over 60 items, Send 50 cents coin (no stamps) for complete catalog. Technical Writers Group, Box 5949, University Station, Raleigh, N.C. 27607.

SOUND SYNTHESISER KITS—Surf $14.95, Wind $14.95, Wind Chimes $19.95. Musical accessories, many more. Catalog free. PAIA Electronics, Box J14359, Oklahoma City, OK 73144.

HEAR POLICE & FIRE Dispatchers! Catalog shows exclusive confidential channels, scanners. Send postage stamp. Communications, Box 56-PE, Comback, N.Y. 11727.

UNSCRAMBLED Fits any scanner or monitor easily adjusts to all scrambled frequencies. Only 4" square $29.95. $9.95, fully guaranteed. Dealer inquiries welcomed PDO Electronics, Box 841, North Little Rock, Arkansas 72115.

TELETYPE EQUIPMENT for sale to beginners and experienced computer enthusiast. Teletype machines, parts, supplies. Catalogue $1.00 to: ATLANTIC SALES, 3730 Nautilus Ave., Brooklyn, NY 11224. Tel: (212) 372-6088.

WHOLESALE C.B., Scanners, Antennas Catalog 25 cents. Crystal Special cut. $4.95, Motion $3.95. Send make, model, frequency, G. Enterprises, Box 461P, Clearfield, UT 84015.

NAME BRAND TEST EQUIPMENT at discount prices. 72 page catalogue free. Write: Dept. PE, North American Electronics, 1468 West 25th Street, Cleveland, OH 44113.

REGULAR CLASSIFIED: COMMERCIAL RATE: For firms or individuals offering commercial products or services, $2.50 per word. Minimum order $37.50. EX-PAND-AD* CLASSIFIED RATE: $3.75 per word. Minimum order $56.25. Frequency discount: 5% for 6 months; 10% for 12 months paid in advance. PERSONAL RATE: For individuals with a personal item to buy or sell, $1.50 per word. No minimum! DISPLAY CLASSIFIED: 1" by 1 column (2-1/4" wide), $30.00 by 1 column, $600.00. 3" by 1 column, $900.00. Advertiser to supply film positive. For frequency rates, please inquire. Color: Color available, for all classified ads: rules at earned rate plus additional 25%. Color choice Publisher’s option and subject to availability. Publisher reserves right to run ad in black if color not available on classified pages. In such cases color charge will be refunded or credited. GENERAL INFORMATION: Ad copy must be typewritten or clearly printed. Payment must accompany copy except when ads are to be billed on credit cards — American Express, Dinners Club, Master Charge, VISA — or when ads are placed by accredited advertising agencies. First word in all ads set in caps. All copy subject to publisher’s approval. All advertisers using Post Office Boxes in their addresses must supply publisher with permanent address and telephone number before ran can be run. Advertisements will not be published which advertise or promote the use of devices for the surreptitious interception of communications. Ads are not acknowledged. They will appear in first issue to go to press after closing date. Closing Date: 1st of the 2nd month preceding cover date (for example, March issue closes January 1st). Send order and remittance to Classified Advertising, POPULAR ELECTRONICS, One Park Avenue, New York, N.Y. 10016. For inquiries, contact Gladys Matheiu at (212) 755-3926.

SPEAKER INFORMATION KIT
Get 70 pages of speaker facts, specs, construction tips plus into our row of speakers, cross-overs and a line of 9 quality hi-fi speaker system kits. We’ll send you our full-color catalog: plus How to Hook Up Your System, an exhaustive step-by-step treatise on hi-fi system installation, and our Speaker Operating Manual. Check full of facts on how to get the most from any speaker system. Iss. Free. Even if you don’t buy a speaker we want you to have the facts. That’s how we got to be the world’s largest manufacturer of speakers kits.

Send to:
Speakerlab, Dept. PE-Y
735 N. Northfield Road
Seattle, WA 98103

PLASTIC BAGS. All sizes. Buy in small quantities. Free Catalog. SAKET, 6151-D Colbath, Van Nuys, Ca 91401.

NAME BRAND Test Equipment. Up to 50% discount. Free catalog, Sales Electronics, Box 82, Skokie, Illinois 60076.

SURPLUS COMPONENTS, Communication and test equipment. Illustrated catalog 25 cents. E. Fich, P.O. Box 249, Aurora, Illinois 60505.

TELEPHONES UNLIMITED, Equipment Supplies, All types, Regular, Keyed, Modular. Catalog 50 cents. Box 1147E, San Diego, California 92112.

UNSCRAMBLED KIT. Tunes all scramble frequencies, may be built in most scanners. 2-3/4 x 2-1/4 X 1/2. $19.95. Factory built Code Breaker. $29.95. Free Catalog. KRYSTAL KITS, Box 445, Bentonville, Ark. 72712. (501) 279-3340.

FOR SALE
TO: THE UNRESTABLES...

SURPLUS ELECTRONICS
ATTENTION HOBBYISTS — SEND FOR YOUR FREE CATALOG Great buys in tape drives, keyboards, power supplies, and transformers. We also have heat sinks, steel cabinets, I/O terminals, video disc players, various test equipment, and lots of component, fans, wire, cable. Write now to Worldwide Electronics Nashua, N.H. 03060.

SPEAKER OPERATING MANUAL...

SURPLUS ELECTRONICS

ATTENTION HOBBYISTS — SEND FOR YOUR FREE CATALOG Great buys in tape drives, keyboards, power supplies, and transformers. We also have heat sinks, steel cabinets, I/O terminals, video disc players, various test equipment, and lots of component, fans, wire, cable. Write now to Worldwide Electronics Nashua, N.H. 03060.

SPEAKER OPERATING MANUAL

SURPLUS ELECTRONICS

ATTENTION HOBBYISTS — SEND FOR YOUR FREE CATALOG Great buys in tape drives, keyboards, power supplies, and transformers. We also have heat sinks, steel cabinets, I/O terminals, video disc players, various test equipment, and lots of component, fans, wire, cable. Write now to Worldwide Electronics Nashua, N.H. 03060.

SPEAKER OPERATING MANUAL

SURPLUS ELECTRONICS

ATTENTION HOBBYISTS — SEND FOR YOUR FREE CATALOG Great buys in tape drives, keyboards, power supplies, and transformers. We also have heat sinks, steel cabinets, I/O terminals, video disc players, various test equipment, and lots of component, fans, wire, cable. Write now to Worldwide Electronics Nashua, N.H. 03060.

SPEAKER OPERATING MANUAL

SURPLUS ELECTRONICS

ATTENTION HOBBYISTS — SEND FOR YOUR FREE CATALOG Great buys in tape drives, keyboards, power supplies, and transformers. We also have heat sinks, steel cabinets, I/O terminals, video disc players, various test equipment, and lots of component, fans, wire, cable. Write now to Worldwide Electronics Nashua, N.H. 03060.
FREE ELECTRICITY! FREE HEAT! 24 Plans. Collection, storage, sun-wind energy. $1.95 complete guaranteed! Solare, Concord, Mt. Kisco, 914.1172.

BARGAINS GALORE! Buy-sell classifieds in "Electronics Trader" only 10c word! Send $2.00 for next four issues. Box 1333, Sun Valley, CA 91352.

CARTIVISION Color TV TRS have two with OEM service manual and extra's package $450.00. Complete. Jim Hansen, 1005 Leflein Rd. N.E., Grand Rapids, MI 49508. (616) 949-5932.

TRANSISTORS FOR C-B-R Repair. IC's and dodes TV audio repairs 2SC765A — $2.40, 2SC1306 — $2.95, 2SC1307 — $3.95. PLL-LOG-7 — $7.50, AN209 — $5.50, STK459 — $8.95. Many more. FREE Catalog and transistor. B & D Enterprises, Box 32, Mt. Jewett, PA 16740.

AMAZING ELECTRONIC PRODUCTS

Laser SUPER POWERED, RIFLE, POSTER, POCKET, SEE IN DARK. PRO-BUILT, UNBUILT, FACTORY PRICE. STANDARDS IN DESIGN! ENERGY PRODUCING, SCIENTIFIC DETECTION, ELECTRIFYING, CHEMICAL, LIGHT, VACUUM, DETERMINATION etc. MORE! ALL NEW PLUGS INTO PARTS SERVICE

INFORMATION unlimited

CATALOG SI
Dept. EB, Box 71A, Anchorage, AK 99003

FREE TELEPHONE SUPPLY CATALOG. Most standard style telephones, cords, plugs, jacks, accessories, including modular. FLEMCO, 20272 37th Ave. N.E., Seattle, WA 98155.

ALARMS

QUALITY BURGLAR-FIRE ALARM EQUIPMENT at discount prices. Free Catalog! Steffen's, Box 624K, Cranford, N.J. 07016.

Burglar - Fire - Smoke Alarm Catalog

• Billions of dollars lost annually due to lack of proper warning alarms.

FREE CATALOG Shows you how to protect your home, business and person. Wholesale prices. Do-it-yourself. Free engineering service.

Bardex Security Cote.

Box 82802 PE-128 Lincoln, Ne. 68501

SONAR BREAKTHROUGH

Convert your Polaroid SX-70 Sonar camera to picture-taking burglar alarm at low cost. Use also for automatic photography and remote control shots. Detailed plans and instructions, $10.00.

Bv-Mor Industries

Box 1232, Reeds, CA 93535.

MUSICAL INSTRUMENTS

UP TO 60% DISCOUNT. Name brand instruments catalog. Freeport Music, 114 G, Mahan St., W. Babylon, N.Y. 11704.

HIGH FIDELITY

DIAMOND NEEDLES and Stereo Cartridges at Discount prices for Shure, Pickering, Stanton, Empire, Grado and ADC. Send for free catalog, LYLE CARTRIDGES, Dept. P, Box 69, Kensington Station, Brooklyn, New York 11218. For Fast Service call Toll Free 800-221-0906.

Lambda Series II by SpeakerKit, Ltd.

Wanted!

WANTED! CB DEALERS AND DISTRIBUTORS

PAL Antenna Corp.

2614 EAST ADAMS - PHOENIX, ARIZONA 85034

TUBES

RAVISI AND T.V. Tubes—36 cents each. Send for free Catalog. Cornell, 4213 University, San Diego, Calif. 92105.

TUBES 262 U4, no minimum order necessary. Also have obsolete. Free list. Conenol, Box 1333, Sun Valley, CA 91352.

TAPE AND RECORDERS

RECORDS — TAPEIS! Discounts to 72%; all labels, no purchase obligations; newsletter; discount distribution certificates; 100% guarantees. Free details. Discount Music Club, 650 Main St., Dept. 5-1276, New Rochelle, N.Y. 10801.

GOVERNMENT SURPLUS

JEEPS—$59.30! — CARG—$33.50! — 200,000 ITEMS! — GOVERNMENT SURPLUS — Most COMPREHENSIVE DIRECTORY AVAILABLE tells how to buy — YOUR AREA — $2.00 — MONEYBACK GUARANTEE — Government Information Services, Department DE-49, Box 99249, San Francisco, California 94109 (433 California).

PERSONALS

MAKE FRIENDS WORLDWIDE through international correspondence, illustrated brochure free. Hermes-Verlag, Box 110660/Z, D-1000 Berlin 11, Germany.

INSTRUCTION

SCORE high on F.C.C. Exams. . . . Over 300 questions and answers. Covers 3rd, 2nd, 1st and even Radar. Third and Second Test, $14.50; First Class Test, $15.00.

First Class license. Student rooms 110660/Z, D-1000

MAKE FRIENDS WORLDWIDE through international correspondence, illustrated brochure free. Hermes-Verlag, Box 110660/Z, D-1000 Berlin 11, Germany.

INSTRUCTION

SCORE high on F.C.C. Exams . . . Over 300 questions and answers. Covers 3rd, 2nd, 1st and even Radar. Third and Second Test, $14.50; First Class Test, $15.00. All tests, $26.50. R.E.I., Box 806, Sarasota, Fla. 33577.

UNIVERSITY DEGREES BY MAIL! Bachelors, Masters, Ph.D.’s. Free revealing details. Counseling, Box 317-Pe012, Tustin, California 92680.

GRANTHAM’S FCC LICENSE STUDY GUIDE — 377 pages, 1465 questions with answers/discussions — covering third, second and first adioexamination. $13.50 postpaid. GSE, P.O. Box 25992, Los Angeles, California 90025.

EXTENSIVE 5 week course for Broadcast Engineers. FCC First Class license. Student rooms at the school. Radio Engi- neering Inc., 61 N. Pineapple Ave., Sarasota, Fla. 33577 and 2402 Tidewater Trail, Fredericksburg, VA 22401.

LEARN ELECTRONIC DRAFTING: PCB design. Complete course $10.00. VANDERLAAN, 610-2 Turnabout Lane, Co- lumbia MD 21044.

PASS FCC 1st, 2nd, and 3rd License Examinations using course prepared by noted author-teacher. Workbook has example problems with complete solutions. Question-Answer Manual provides hundreds of practice questions. $9.95 each or both Manuals $14.95 Postpaid. Includes Coun- seling. Geffinger, Box 1240, Garden Grove, CA 92642.

UNIQUE CB repair course requires no electronic knowledge or expensive equipment. Guaranteed results. CB City-P, 6241 Glade, Suite L-303, Woodlands Hills, CA 91367.

INVENTIONS WANTED

"THE INVENTOR’S CATALOG" $1.00 Computer Evaluations — Patentability — marketing — taxes — etc.!! Advanced Research, P.O. Box 19041, Detroit, Michigan 48219.

IDEAS, INVENTIONS, New Products needed by innovative manufacturers. Marketing assistance available to individuals, tinkers, universities, companies with feasible concepts. Write for Kit-Pe, IML, 701 Smithfield, Pittsburgh, PA 15222.

BUSINESS OPPORTUNITIES

I MADE $40,000.00 Year by Mailorder! Helped others make money! Free Prof. Toney, Box 318-NY, Ypsilanti, Michigan 48197.

FREE CATALOGS. Repair, air conditioning, refrigeration. Tools, supplies, full instructions. Doolin, 2016 Canton, Dallas, Texas 75201.

RUBBER STAMPS

REAL ESTATE

BIG . . . FREE . . . CATALOGS! Over 2,500 top values coast to coast!! UNITED FARM AGENCY, 612-E, West 47th, Kansas City, MO 64112.

BOOKS AND MAGAZINES

HOW DOES THE OPERATOR KNOW your telephone number without you telling her? Ten digit, state of the art, call tracing systems and Teloc operation detailed in depth. Gov- ernment and C.C.I.T. tell publications all that. For comprehen- sive listing send s.a.s.e. and $2.00. Tell It, Box 503, Westbrook, CT 06498.

INTERFERENCE HANDBOOKS! TELEVISION INTERFERENCE — 27 specific problems discussed in detail. Traps, al- lerting devices, charts and interference data. $5.95. AUDIO REC- TIFICATION: Dealing with RFI in AM-FM-PHONO-AUDIO equipment. Trouble-shooting charts, filters. $5.95. P.O. Box 13862, Savannah, GA 31406.

HYPNOTISM

FREE Hypnotism. Self-Hypnosis. Sleep Learning Catalog! Drawer H400, Ruidoso, New Mexico 88345.

MOVIE FILMS

WHOLE MOVIES AT HALF PRICE. Three terrific classic comedies starring Laurel and Hardy, W.C. Fields or Buster Keaton on sale now. Outstanding values. Upcoming fun. Send $1.00 for information and sixty-eight page Film Catalog listing comedies, westerns, dramas, horror and others. (Or send $1 for Video Catalog with more than 140 titles.) Write: Blackhawk Films, Dept. 85, 2803 Davenport, Iowa 52229.

CHRISTMAS SALE — S-8 3/4 Color & B/W Universal & Columbia 400+ Features: Bye Bye Birds (Ann-Margaret); Thoroughly Modern Millie (Julie Andrews); Machine Gun Mc- Cain (Parker Flick); Bryan’s Song (Winner of 5 Emmy’s); Centur- ians (George C. Scott); Anderson Tapes (Sean Connery) — all in S-8 Eastman Color. Indicate in order of preference, $1.95 ea postpaid — $23.85 in bulk — Mr. Smith Goes To Town: Re- quiring for a Heavyweight (Anthony Quinn); On The Waterfront (Marlon Brando); Breakout (Charles Bronson), $39.95 ea Postcard, Operation Top Ship - The Detective (Fiona Sinatra); Poseidon Adventure (Gene Hackman) — special, $29.95 ea + $1.00 shipping — all $20- S-8 Snd Color Snd. Invisible Man (Claude Raines); The South (Allied Hitchcock) — 200- S-8 Snd Snd, $19.95 ea + $1.00 shipping. Universal 64-pg catalog $1.00 ($2.00 foreign); Sportlite Classics; Universal — Columbia order form, $0.35. SPORTLITE FILMS, Elmsford, R.I. 02157, Box 124, Chicago, IL 60605.

MECHANICALY INCLINED INDIVIDUALS — WANTED

ELECTRONIC DEVELOPMENT LAB Box 131535S, Pinellas Park, FL 33785

EARN $1,000 MONTHLY salary, home work, "Guarant- ed." Free details. Write: UNICORN, ZD12,1140 Chelton, Colorado Springs, CO 80910.

$3000 MONTHLY. Start immediately. Stuff envelopes at home. Information, send self-addressed stamped envelope. Village, Box 508-ZD, West Covina, Ca 91706.

YOUR OWN manufacturing business FREE. We supply all equipment and know how. Free details. Write: Mason, Room MC-376-HP, 1512 Jarvis, Chicago, IL 60626.

DO-IT-YOURSELF

MODULAR TELEPHONES now available. Sets and compo- nents supplied with written extensive Electronic Catalog 50 cents. Box 1147W, San Diego, California 92112.

AMERICAN RADIO HISTORY

AMERICAN RADIO HISTORY

AMERICAN RADIO HISTORY

AmericanRadioHistory.com
THE NEW HOBBY WORLD CATALOG

Your source for factory prime, professional quality equipment. Computers, add-on boards, IC's, sockets, resistors, supplies, tools, test equipment, books, and more. Shop your buy list at Hobby World. You'll find what you want, and at a solid savings. For example, look at this month's specials:

THE NEW ELENCO 3½ DIGIT SOLID STATE MULTIMETER

The ultimate in performance: measures resistance to 0.1 ohms, voltage to 100 microvolts, current to one microamp. Assembled and tested, with 2-year warranty. Lists at $99.95, **HOBBY WORLD PRICE ONLY $74.95**

16K MEMORY ADD-ON FOR APPLE OR TRS-80

HOBBY WORLD PRICE IS ONLY $98.00 (Specify when ordering)

WALH ISO-TIP CORDLESS SOLDERING IRON

Includes ni-cad batteries and wall plug transformer. Lists at $199.5, **BUT HOBBY WORLD HAS IT FOR $149.5!**

SEND ME A FREE CATALOG!

Name
Address
City State

FREE! EDMUND SCIENTIFIC

D.E.M. COMPONENTS LABRADOR MIRRORS LASERS

164 PAGE CATALOG

• Over 4,000 unusual bargains for science and industry.
• In-stock supplies for engineers, experimenters, research labs, hobbyists, etc.
• Order direct and save—buy with complete confidence... every item carries the famous Edmund 30-day money-back guarantee.
• Simply mail this coupon for the newest Edmund catalog.

RUSH LATEST FREE EDMUND CATALOG

EDMUND SCIENTIFIC CO. Dept. AV24 Edsclorp Building
Barrington, N.J. 08007

Name
Address
City State Zip
Computer Aids Disc Mastering
According to CBS Records, its New DISComputer™ record mastering system promises louder, longer-playing records. The device uses a computer to pre-read tape being mastered 0.167 second before the cutter, and to signal the lathe to adjust the excursion of the cutting stylus to accommodate as much audible sound as possible. By allowing the lathe to anticipate signals to come, it is said to add up to 5 minutes of music per side to LP’s and to increase recorded levels by as much as 2 to 5 dB. The computer, which is programmed for use with Scollay or Neumann lathes, also uses its memory to compare the preview-head signal to previously cut grooves. This allows DISComputer™ to take into account such subtleties as the average level on the disc, and to prevent groove echo by “remembering” never to closely space loud and quiet grooves. A company spokesman says 10 percent of all CBS Records produced in 1978 were mastered using the $250,000 DISComputer™.

Talking Clock
The TCE-124 “Talking Clock” from Omicron Electronics, Putnam, CT, automatically delivers 12- or 24-hour time announcements in “a distinctive male voice,” in English, German, or Arabic. Designed to be used with voice- or device-activated recorders, the TCE-124 automatically inserts its announcements on the tape at the completion of each message or data recording. The voice is generated by solid-state electronics, and there are no tapes or discs to wear. Other features of the clock include a LED display and monitor speaker, MSI/LSI circuitry, one watt, 8-ohm audio output and compact size.

Pendant Saves Lives
Microlert Systems, Burbank, CA, has developed a new wireless communicating device for emergency medical attention called “Microlert.” The matchbook-size, dual-contact pendant is actually a 1-ounce transmitter. It will signal its receiver (located up to 300 ft away) to make telephone calls, giving the type and location of the emergency. When the dual-contacts are squeezed, a radio signal sets off the alarm. The system can make five or more preprogrammed, pretaped telephone calls. Although “Microlert” was developed for medical emergency purposes, it is suitable for use in a home or business to signal a robbery or any other emergency.

Acupuncture with Laser Beam
Acupuncture (a fairly ancient art) and lasers (rather new) are combined in the new “akupLas” therapy unit from Germany’s Messerschmitt-Bolkow-Blohm. The helium-neon laser’s beam has a wavelength of 632 nm, to which the skin is fairly transparent. This allows the 1-mm diameter, 2-mW beam to penetrate to a depth of 3 to 10 mm, depending on the type of skin. A fiber-optic tube guides the beam from the laser to the therapist’s hand-piece, which can be placed directly to the skin.

VTR Interference Problems
If you have recently bought a video tape recorder and are using it with a TV receiver that is more than, say, a year old, you may be having VTR interference problems. This is generally experienced as a 1-inch to 1½-inch, 45°-flutter at the top of the screen. While television manufacturers say that modifications have been made to the design of their receivers in recent months to avoid such interference, some are being compelled to modify older sets to accommodate a VTR. It has been explained that the difficulty stems from anti-flutter circuits built into older TV receivers to filter the maximum amount of external interference. As a result, the circuits do not lock on to the TV signal quickly. With a VTR, however, immediate locking in of the signal is required. Some compromise in the anti-flutter circuitry is thus required for video tape machines.

ASCII for Ham RTTY
In a move to allow Ham radio operators to operate more sophisticated amateur communications rigs, the FCC has proposed to allow them to use ASCII code for radio teletype transmissions. In the past, only Morse and five-unit Baudot codes have been permitted in amateur radio operation. The move would allow Hams to use a variety of computer terminals for transmissions.

More Efficient Solar Cell
A prototype solar cell which converts a record 28.5% of sunlight to electricity has been developed by Varian Associates, Inc., under a Department of Energy contract administered by Sandia Laboratories. The highest efficiency previously reported was 23% for an AIGaAs cell. The new system uses two different solar cells—an AIGaAs cell and a silicon one—to absorb a wider range of solar wavelengths. A special filter reflects low-energy, long-wavelength rays to the silicon cell while permitting higher-energy, shorter-wavelength rays to pass through to the AIGaAs cell. In the prototype, various optical losses reduce the overall system efficiency to about 25%, but it is hoped that this can be raised to 30% by stacking the cells and eliminating the filter.

Computer Chess in Canada
The classic struggle between man and machine was continued over the chess board at the 100th anniversary of the Canadian National Exhibition in Toronto last September. The occasion was the UNCOMMANN (UNiversal COMPUTER MAN) Chess Event, sponsored by WINTARIO and Control Data Corp., under the auspices of the Ontario Chess Association. The public was able to try its skill against Commodore’s Pet personal computers, programmed to play chess at eight different levels of expertise. During the event, a match was played between International Master David Levy and CHESS 4.7, a computer program developed by David Slate and Peter Atkins of Northwestern U. The program was run on Control Data’s CYBER 176, in Minneapolis, and connected by phone lines to a terminal in Toronto.
You heard it was coming.

You heard right!

(Make sure your Santa hears about it.)

The Prince On-Board Computer. You've read about digital computers being available soon from Detroit. Now the first universal driver-operated automotive computer is available! It's a revolutionary electronic brain that's unquestionably going to be the ULTIMATE OPTION for '79.

What it will do for you. The Prince On-Board Computer provides more than two dozen different kinds of information at the touch of a button.

The On-Board Computer measures only 10.5" x 2.8" x 1.7" and mounts easily in any vehicle.

Data such as vehicle location (10/20 to CBers), Miles-to-go on a trip, Estimated time of arrival, Miles per gallon and cost-per-mile. Plus five memories to store mileage points with unique audio alarm reminders — and more!

Test drive one today. Your new car dealer can arrange for a test ride in a Prince On-Board Computer-equipped car today. Or you can contact your local A.R.A. distributor* for more information. And if you're not in the market for a '79 right now, the POBC can be installed on your present car, van or truck.

Prince on-board computer

Manufactured by Prince Corporation, Holland, Michigan. Prince and On-Board are trademarks of Prince Corporation. Patents pending.
The Pile Driver: It's Just No Match for the Heil Driver

Since the turn of the century, "Pile Driver" speakers have laboriously "pushed" the sound out. This can result in a blurring and clipping of notes. Dr. Oscar Heil has done it differently.

The Heil Air Motion Transformer is the heart of Lafayette's new Criterion Series 3000 speakers. The Heil Driver is simplicity itself. It has just one moving part. Rather than "push" the air out, it "shoots" it out.

No blurring or clipping of notes. No ragged top ends. No rounding off of the initial "attack." Every note is clear.

FREE 1979 CATALOG. Lafayette's catalog is all new for 1979! 172 illustrated pages - half in full color. Features our complete line... everything Lafayette makes or sells. Write Lafayette Dept. PE35128111 Jericho Turnpike, Syosset, N.Y. 11791.