Analog-to-Digital with Two IC's
Converting Schematics to PC Patterns

Special Focus On Audio

NEW! METAL TAPE NEW! IHF AMPLIFIER STANDARD
NEW! HI-FI TV SOUND PLUS! HOME DISCO PREAMP/MIXER FOR $110

Sony "Class D" Switching Amplifier
Electro-Voice "Series II" Speaker Systems
Panasonic 5-Band Portable Receiver
FOR THOSE OF YOU WHO ARE HAVING SECOND THOUGHTS ABOUT YOUR FIRST CB.

Move up to the all-new Cobra 29GTL. It's the third generation of the trucker-proven Cobra 29. And like the 29 and the 29XLR before it, it advances the state of the art.

Transmitter circuitry has been refined and updated to improve performance.

Receiver circuits have been redesigned to include dual FET mixers, a monolithic crystal filter and a ceramic filter to reduce interference and improve reception.

By improving the transmitter circuitry the 29GTL keeps you punching through loud and clear. By incorporating new features for better reception everything you copy comes back loud and clear.

So if you’re having second thoughts about your first CB, make your next CB the Cobra 29GTL.

We back it with a guaranteed warranty and a nationwide network of Authorized Service Centers where factory-trained technicians are available to help you with installation, service and advice.

But more important than that, we sell it at a price you won’t have second thoughts about.

Punches through loud and clear.

Cobra Communications Products
DYNASCAN CORPORATION
6460 W Cortland St., Chicago, Illinois 60635

Write for color brochure
EXPORTERS: Empire - Plainview, N.Y. - CANADA: Atlas Electronics - Ontario

CIRCLE NO. 1 ON FREE INFORMATION CARD

AmericanRadioHistory.com
Burglar Alarm Breakthrough

A new computerized burglar alarm requires no installation and protects your home or business like a thousand dollar professional system.

It’s a security system computer. You can now protect everything—windows, doors, walls, ceilings and floors with a near fail-safe system so advanced that it doesn’t require installation.

The Midex 55 is a new motion-sensing computer. Switch it on and you place a harmless invisible energy beam through more than 5,000 cubic feet in your home. Whenever this beam detects motion, it sends a signal to the computer which interprets the cause of the motion and triggers an extremely loud alarm.

The system’s alarm is so loud that it can cause pain—loud enough to drive an intruder out of your home before anything is stolen or destroyed and loud enough to alert neighbors to call the police.

The powerful optional blast horns can also be placed outside your home or office to warn your neighbors.

Unlike the complex and expensive commercial alarms that require sensors wired into every door or window, the Midex requires no sensors, nor any alarm's additional equipment other than your stereo speakers or an optional pair of blast horns. Its beam actually penetrates walls to set up an electronic barrier against intrusion.

NO MORE FALSE ALARMS

The Midex is not triggered by noise, sound, temperature or humidity—just motion—and since a computer interprets the nature of the motion, the chances of a false alarm are very remote.

An experienced burglar can disarm an expensive security system or break into a home or office through a wall. Using a Midex system there is no way a burglar can penetrate the protection beam without triggering the loud alarm. Even if the burglar cuts off your power, the four-hour rechargeable battery pack will keep your unit triggered, ready to sense motion and sound an alarm.

DEFENSE AGAINST PEEPING TOMS

By pointing your unit towards the outdoors from your bedroom and installing an outside speaker, light, or alarm, your unit can sense a peeping Tom and frighten him off. Pets are no problem for the Midex. Simply put them in one section of the house and concentrate the beam in another.

When the Midex senses an intruder, it remains silent for 20 seconds. Then it sounds the alarm until the burglar leaves. One minute after the burglar leaves, the alarm shuts off and resets, once again ready to do its job. This shut-off feature, not found on many expensive systems, can also extend its operating time against intrusion.

OTHER THAN YOUR STEREO SPEAKERS

Sensors placed outside your home can also be used to trigger the alarm. As an example, a sensor placed outside a window can alarm you if anyone is peering inside your home.

The Midex security computer looks like a handsome stereo system component and measures only 4"x10½"x 7."

PROFESSIONAL SYSTEM

Midex is portable so it can be placed anywhere in your home. You simply connect it to your stereo speakers or attach the two optional blast horns.

Operating the Midex is as easy as its installation. To arm the unit, you remove a specially coded key. You now have 30 seconds to leave your premises. When you return, you enter and insert your key to disarm the unit. You have 20 seconds to do that. Each key is registered with Midex, and that number is kept in their vault should you ever need a duplicate. Three keys are supplied with each unit.

As an extra security measure, you can leave your unit on at night and place an optional panic button by your bed. But with all its optional features, the Midex system is complete, designed to protect you, your home and property just as it arrives in its well-protected carton.

The Midex 55 system is the latest electronic breakthrough by Sofian Systems, Inc.—a company that specializes in sophisticated professional security systems for banks and high security areas. JS&A first became acquainted with Midex after we were burglarized. At the time we owned an excellent security system, but the burglars went through a wall that could not have been protected by sensors. We then installed over $5,000 worth of the Midex commercial equipment in our warehouse. When Sofian Systems announced their intentions to market their units to consumers, we immediately offered our services.

COMPALED AGAINST OTHERS

In a recent issue of a leading consumer publication, there was a complete article written on the tests given security devices which were purchased in New York. The Midex 55 is not available in New York stores, but had it been compared, it would have been rated tops in space protection and protection against false alarms—two of the top criteria used to evaluate these systems. Don’t be confused. There is no system under $1,000 that provides you with the same protection.

YOU JUDGE THE QUALITY

Will the Midex system ever fail? No product is perfect, but judge for yourself. All components used in the Midex system are of aerospace quality and of such high reliability that they pass the military standard 883 for thermal shock and burn-in. In short, they go through the same rugged tests and controls used on components in manned spacecrafts. Each component is first tested at extreme tolerances and then retested after assembly. The entire system is then put under full electrical loads at 150 degrees Fahrenheit for an entire week. If there is a defect, these tests will cause it to surface.

PEOPLE LIKE THE SYSTEM

Wally Schirra, a scientist and former astronaut, says this about the Midex 55. "I know of no system that is as easy to use and provides such solid protection to the homeowner as the Midex. I would strongly recommend it to anyone. I am more than pleased with my unit." Many people can attest to the quality of this system, but the true test is how it performs in your home or office. That is why we provide a one month trial period. We give you the opportunity to see how fail-safe and easy to operate the Midex system is and how thoroughly it protects you and your loved ones.

Use the Midex for protection while you sleep and to protect your home while you’re away or on vacation. Then after 30 days, if you’re not convinced that the Midex is nearly fail-safe, easy to use, and can provide you with a security system that you can trust, return your unit and we’ll be happy to send you a prompt and courteous refund. There is absolutely no obligation. JS&A has been serving the consumer for over a decade—further assurance that your investment is well protected.

To order your system, simply send your check in the amount of $199.95 (Illinois residents add 5% sales tax) to the address shown below. Credit card buyers may call our toll-free number below. There are no postage and handling charges. By return mail you will receive your system complete with all connections, easy to understand instructions and a one year limited warranty. If you do not have stereo speakers, you may order the optional blast horns at $39.95 each, and we recommend the purchase of two.

With the Midex 55, JS&A brings you: 1) A system built with such high quality that it complies with the same strict government standards used in the space program. 2) A system so advanced that it uses a computer to determine unauthorized entry, and 3) A way to buy the system, in complete confidence, without even being penalized for postage and handling charges if it’s not exactly what you want. We couldn’t provide you with a better opportunity to own a security system than right now.

Space-age technology has produced the ultimate personal security computer. Order your Midex 55 at no obligation, today.

The complete article in this consumer publication, which includes the tests given security devices, are available for $1.00 each, post paid. (Add 80 cents for the first copy.) Your order must be post marked before March 31, 1978.

JUDGE QUALITY BEFORE YOU BUY!
The XSV/3000 is the source of perfection in stereo sound!

Four big features ... all Pickering innovations over the past 20 years ... have made it happen.

1976: Stereohedron® This patented Stylus tip assures super traceAbility™, and its larger bearing radius offers the least record wear and longest stylus life so far achievable.

1975: High Energy Rare Earth Magnet
Another Pickering innovation, enabling complete miniaturization of the stylus assembly and tip mass through utilization of this type of magnet.

1968: Dustamatic® Brush
This Pickering patented invention dynamically stabilizes the cartridge-arm system by damping low frequency resonance. It improves low frequency tracking while playing irregular or warped records. Best of all, it provides record protection by cleaning in front of the stylus.

1959: Record Static Neutralizer
The patented V-Guard Record Static Neutralizer has been a feature of all Pickering cartridges since 1959. It eliminates electrostatic dust attraction at the stylus and discharges record static harmlessly into the grounded playback system.

For further information write to Pickering & Co., Inc., Dept. PE, 101 Sunnyside Blvd., Plainview, N.Y. 11803
Feature Articles

26 AUDIO AMPLIFIER CLASSES / Julian Hirsch
50 HOW TO DESIGN PC BOARD FROM A SCHEMATIC / James Barbarello
80 USE AN INTERFACE PANEL AND END TEST-LEAD CLUTTER / Robert Shaw

Construction Articles

45 BUILD A LOW-COST A/D CONVERTER / William L. Green
Two-chip converter works with any 8-bit computer.
78 A LOW-COST DOT/BAR GENERATOR / James B. Penny
Inexpensive color-TV servicing instrument.

Special Focus on Audio

54 A NEW IHF STANDARD FOR AMPLIFIER MEASUREMENT / Leonard Feldman
61 BUILD A DISCO PREAMP/MIXER / John Roberts
Preamp/mixer project for home discotheque use.
72 NOW YOU CAN ENJOY HI-FI TELEVISION SOUND / Myles H. Marks
System allows networks to send audio and video on one cable.
73 METAL CASSETTE TAPE DUBUTS / Alexander W. Burawa
Fine-metal tape may revolutionize cassette deck design.
74 BUILD A SUPER AUDIO FILTER / Robert R. Fauteker
Multiplier reduces hum in hi-fi equipment by 80 dB.
75 PROTECTION FOR DC-COUPLED SPEAKERS / Jerald M. Cogswell

Columns

22 STEREO SCENE / Ralph Hodges
"Your Show of Shows."
87 SOLID STATE / Lou Garner
Solid (State) Security.
92 EXPERIMENTER'S CORNER / Forrest M. Mims
Analog to Digital Converters, Part 1.
99 HOBBY SCENE Q&A / John McVeigh
106 DX LISTENING / Glenn Hauser
Changes With the Sunspots.
108 COMPUTER BITE / Hal Chamberlin
Computer Arithmetic—Multiply & Divide.
111 AMATEUR RADIO / Karl T. Thurber, Jr.
The Antenna—Getting Out the Signal.

Julian Hirsch Audio Reports

22 SONY MODEL TA-N88 BASIC POWER AMPLIFIER
36 ELECTRO-VOICE INTERFACE: B SERIES II SPEAKER SYSTEM

Electronic Product Test Report

100 PANASONIC RF-2800 5-BAND PORTABLE COMMUNICATION RECEIVER

Departments

4 EDITORIAL / Art Salsberg
6 LETTERS
12 NEW PRODUCTS
18 NEW LITERATURE
110 SOFTWARE SOURCES
THE SOFTWARE RIGHTS DILEMMA

How does one protect intellectual property rights such as computer programs? In many instances, only with hope and prayer!

Since 1972, efforts to patent software have not met with success. In June, 1978, the U.S. Supreme Court ruled that yet another computer program involved in a case it considered could not be patented because its only distinctive feature was the algorithm. (The first Supreme Court software patent denial occurred in 1972, owing to simply an unusual mathematical algorithm—in re Benson and Tabbot: Converting binary coded decimal signals into binary number signals.)

Doubtlessly, there are some computer programs out there that will eventually stand the test of patentability. But, would it really be worth the effort to obtain such a patent given the reluctance of the Patent Office to issue software protection, and the history of denials by the Court of Customs and Patent Appeals right through to the U.S. Supreme Court?

Well, there's an alternative that can be used to protect proprietary rights: the copyright. This is the route suggested by the National Bureau of Standards, which recommended that a copyright for a program's source language should also cover machine-code copies made from it. (For more information, buy the NBS Study, Special Publication 500-17, Copyright in Computer-Readable Works, from the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402. Cost is $4, and ordering number is 003-003-01843-1.)

This second source of protection has a term that's three times that of a patent. Moreover, it's easy to register within the copyright program under the classification of "books." This form of protection, however, is not particularly sound since a unique concept is not a consideration here. Thus, piropies are easier to accomplish. For an IBM, this is no problem. It's staffed to diligently pursue any infringement. In fact, IBM prefers to copyright programs rather than try to patent them, and has even argued amicus curiae against patenting computer programs!

In light of the foregoing problems related to statutory methods of protecting computer programs, what can the small software developer do to inexpensively protect his investment? At the moment, very little. In many instances, however, it's not a severe problem since it really doesn't pay to photocopy some 30 pages of documentation for a $5 or $10 package. Moreover, some software is designed to complement only specific hardware and language variations. In other cases, some positive action is necessary.

Clearly, the new software technology is something that the patent and copyright offices should address without delay. With an estimated $20-billion invested annually in software development, and almost $1-billion in 1977 packaged software sales, we're talking about big bucks that are getting bigger every day. Furthermore, I believe that protecting one's innovative work and investment will provide an incentive for others to advance the technology as well as to continue to write new, useful programs.
Ohio Scientific now offers you the world's most powerful portable personal computer in both BASIC-in-ROM and mini-floppy configurations.

C2-4P Mod 2 Standard Features:

- Minimally equipped with 8K BASIC-in-ROM, 4K RAM, machine code monitor, video display interface, cassette interface and keyboard with upper and lower case characters. (Video monitor and cassette recorder optional extras.)
- The fastest full feature BASIC in the microcomputer industry.
- The C2-4P Mod 2 features the most sophisticated video display in personal computing with 32 rows by 64 columns of upper case, lower case, graphics and gaming characters for an effective screen resolution of 256 by 512 elements.
- The CPU's direct screen access, coupled with its ultra-fast BASIC and high resolution, makes the C2-4P capable of spectacular video animation directly in BASIC.
- The C2-4P features computer “BUS” architecture. It internally utilizes a 4 slot backplane. Two slots are used in the base machine leaving 2 slots open for expansion.
- Comes fully assembled and tested. BASIC and machine code are always accessible immediately after powerup.
- A new high density static RAM board and two economical minifloppy options give the C2-4P tremendous expansion capability without sacrificing portability.

The C2-4P offers the user mainframe performance in a portable package. This performance makes the C2-4P suitable for use in home computing, education, scientific and industrial research and small business applications.

Other small personal computers can satisfy the requirements of the computer novice, but no other personal portable can match the C2-4P in professional and computer enthusiast applications.

Yet the C2-4P and its accessories are priced only slightly above the mass marketed "beginner" or "home" computers.

For more information, contact your local Ohio Scientific dealer or the factory at (216) 562-3101.

SEPTEMBER 1978
ELF II featuring RCA COSMAC microcomputer/mini-computer

$99.95

Get "hands on" experience with a computer for just $99.95. Take, own, it's your own, computer. Here is the board featuring advanced technology and expandable ELF II with low cost add-ons and you get all personal and computer capabilities to solve business, industrial or scientific problems.

Specifications

ELF II features a COSMAC COS/MOS 8-bit microprocessor addressable to 64k bytes with DMA, interrupt, 16 registers, A.U.L, 256 byte RAM, full hex keyboard, 5 slot plug-in expansion bus (twelve connectors), stable crystal clock for timing purposes and a double-sided, plated-through board plus RCA 1861 video IC to display any segment of memory on a video monitor or TV screen.

Expansion Options

- ELF II GIANT BOARD® with cassette I/O, RS 232-C/TTL I/O, hi-fi P-I/O, decoders for 14 separate instructions, and a system monitor/leditor. Turns ELF II into the heart of a full-size system with massive computer power! $39.95.
- 4k Static RAM. Addressable to any 4k byte of 64k. Uses low power 2032 chips. Let's circuit allows original 256 bytes to be used. Fully buffered onboard 36-pin regular $89.95-kit.
- Prototype (Kluge) Board accepts up to 36 I.C.s, including 40, 24, 22, 16, 14 pin. Spare space for onboard regulation. $17.95.
- Gold plated 8-pin connector. $7.50.
- ELF II Full ASCII Keyboard. Upper and lower case. $64.95-kit.
- 5 amp Expansion Power Supply. Powers the entire ELF II (Not required unless adding 4k RAM boards). $53.95.
- ELF II of the above PC boards plug directly into ELF II's expansion bus.

ELF II Tiny Basic

Communicate with ELF II in BASIC! ELF II Tiny BASIC is compatible with either ASCII keyboard and TV screen or standard type/standard video terminal utilizing RS 232-C or null TTL interface. Commands include SAVE and LOAD for storing programs on standard cassettes, a pole prompter to display graphic information and special commands for controlling ELF II I/O devices. Its large memory provides arithmetic -+--*-(26 variables A-Z. Other commands include LET, IF/THEN, INPUT, PRINT, GO TO, GO SUB, RETURN, END, REM, CLEAR, LIST, RUN, PLOT, PEEK, POKE. Comes with maintenance documentation and excellent user's manual that allows even beginners to use ELF II for sophisticated applications. (4k memory required.) $14.95 on cassette tape.

Coming Soon... D-A, A-Converter, Counter, Board, Cabinet, Light Pen. Let's you write or draw anything on a TV screen.

Hobbies! Engineers! Technicians! Students!

Write and run machine language programs at home, display video graphics on your TV set and design microprocessor circuits — the very first night — even if you've never used a computer before!

Learning Breakthrough!

A Short Course On Microprocessor And Computer Programming written for anyone with minimal background needs!

Using advanced computers now as easy as driving a car with an automatic transmission. We will teach you, step by step, instruction by instruction, how to use an RCA COSMAC computer.

Not only does our short course exploit computers, it helps you understand and run programs and solve complex problems requiring a computer. Knowing how a computer works is invaluable.

(1) Spot situations where a computer can assist you in business, industry, personal applications, etc. (2) Select the most economic computer (or microprocessor) and related hardware for your specific needs. (3) Write and run the programs you need, and (4) Keep your computer costs down.

This course was written for ELF II users but it's a blockbuster for every RCA COSMAC user or owner!

Inquiries to: ELF II, box 1729, Okla City, Okla 73105.

PC PATTERN PATENTS

I am writing in response to a letter that appeared in the May 1978 Letters column regarding my "Transfer of PC Patterns" article that appeared in the February 1978 issue. In his letter, Mr. Cannon states that U.S. Patent #3,791,905 covers the process described in my article. He noted further that he did not promote his own version of the process because he "did not have the legal right to do so." After researching it, my patent attorney sees no conflict with my patent application. The results of this are due shortly and I am quite optimistic that I will be granted a patent on this process. —D.G. Fisher, Printed Circuit Products Co., Helena, MT.

LIFE BEGINS AT FORTY

Late last year, I purchased an Elf microcomputer kit and now, at age 44, I am into a whole new hobby. Until I purchased my Elm, I had no knowledge or interest in microprocessors. Since that time, Popular Electronics has been my sole source of information on the 1802 microprocessor. —Richard A. DeForest, Fulton, N.Y.

9-MHZ PIANO NOTE

As a former piano student, I had always been satisfied with a frequency range of from 27.5 to 8720 Hz. Now, in your June 1978 Editorial, you tell me that the range goes all the way up to 9 MHz! —Wilfred J. Cole III, Stockton, CA.

DIAGRAM AND TABLE NOT IN AGREEMENT

While reading "Microprocessor Microcourse, Part 2" (April 1978) on basic digital logic, I realized that the description for a D-type latch/flip-flop does not match Fig. 13 and the truth table. Which is correct? —B. Malik, Tehran, Iran.

The diagram shown in Fig. 13 is correct. However, the Q and Q̅ in the truth table in Fig. 13 were accidentally transposed.

Out of Tune

In the July "Experimenter's Corner," in Fig. 4, the poles of the switches should be connected to the 2k resistors and the logic-1 positions to the positive terminal of the battery.

Popular Electronics
MAY we send you your choice of 3 of these practical, time-and-money-saving books as part of an unusual offer of a Trial Membership in ELECTRONICS BOOK CLUB?

Here are quality hardbound volumes, each especially designed to help you increase your know-how, earning power, and enjoyment of electronics. Whatever your interest in electronics, you'll find ELECTRONICS BOOK CLUB offers practical, quality books that you can put to immediate use and benefit. This extraordinary offer is intended to prove to you through your own experience, that these very real advantages can be yours...that it is possible to keep up with the literature published in your areas of interest, and to save substantially while you do it. As part of your Trial Membership, you need purchase as few as four books during the coming 12 months. You would probably buy at least 40 a year, anyway, without the substantial savings offered through Club Membership.

To start your Membership on these attractive terms, simply fill out and mail the coupon today. You will receive the books of your choice for 10-day inspection. YOU NEED SEND NO MONEY. If you're not delighted, you may return the books within 10 days and your Trial Membership will be cancelled without cost or obligation.

ELECTRONICS BOOK CLUB
Blue Ridge Summit, Pa. 17214

SEPTMBER 1978

3 AN EXTRAORDINARY OFFER TO INTRODUCE YOU TO THE BENEFITS OF MEMBERSHIP IN ELECTRONICS BOOK CLUB

You can save up to 25% to 75% on a wide selection of electronics books through your own experience, as you enjoy monthly selections describing the current Selection Alternatives and other books, every 6 to 8 weeks. This is an offer intended to prove to you that we have the books that you want at a saving to you. So, we would probably buy at least 40 a year, anyway, without the substantial savings offered through Club Membership.

To start your Membership on these attractive terms, simply fill out and mail the coupon today. You will receive the books of your choice for 10-day inspection. YOU NEED SEND NO MONEY. If you're not delighted, you may return the books within 10 days and your Trial Membership will be cancelled without cost or obligation.

ELECTRONICS BOOK CLUB
Blue Ridge Summit, Pa. 17214

CIRCLE NO. 18 ON FREE INFORMATION CARD
NRI training in TV and Audio Servicing keeps up with the state of the art. Now you can learn to service video cassette and disc systems.
Now, in addition to learning color TV and audio systems servicing, you get state-of-the-art lessons in maintaining and repairing video cassette recorders, playbacks and the amazing new video disc players, both mechanical and laser-beam types.

Learn at Home in Your Spare Time

And you learn right at home, at your own convenience, without quitting your job or going to night school. NRI “bite-size” lessons make learning easier... NRI “hands-on” training gives you practical bench experience as you progress. You not only get theory, you actually build and test electronic circuits, a complete audio system, even a color TV.

Build Color TV, 4-Channel Audio

As part of your training in NRI’s Master Course in TV and Audio Servicing, you actually assemble and keep NRI’s exclusive, designed-for-learning 25” diagonal color TV. As you build it, you introduce and correct electronic faults, study circuits to gain a better understanding of what they’re for and how they interface with others.

Likewise, as part of your audio training, you construct a 4-channel stereo amplifier and tuner, complete with cabinet and speakers. You even assemble professional-grade test instruments, so you know what makes them tick, too. Then you use them in your course, keep them for actual TV and audio servicing work.

NRI Includes the Instruments You Need

You start by building a transistorized volt-ohmmeter which you use for basic training in electronic theory. Then you assemble a digital CMOS frequency counter for use with lessons in analog and digital circuitry, FM principles. You also get an integrated circuit TV pattern generator, and an advanced design solid-state 5” trigger-sweep oscilloscope. Use them for learning, then use them for earning.

NRI Training Works... Choice of the Pros

More than 60 years and a million students later, NRI is still first choice in home study schools. A national survey of successful TV repairmen shows that more than half have had home study training, and among them, it’s NRI 3 to 1 over any other school. (Summary of survey on request)

That’s because you can’t beat the training and you can’t beat the value! For hundreds of dollars less than competing schools, NRI gives you both color TV and audio... and now includes training in video cassette and disc systems. Send for our free catalog and see for yourself why NRI works for you.
New Products

Bang & Olufsen
FM Receiver
The Beomaster 2400 is a uniquely styled stereo-FM receiver with remote control, rated at 30 watts per channel continuous power into 4 ohms. The remote control, included, can be used to select any of four preset FM stations, adjust the volume, switch from FM to phono input, and turn the receiver on and off. An illuminated panel on the receiver includes displays that allow control status to be read from across the room, plus touch-sensor controls duplicating the remote-control functions, with the added choice of one more input (tape) and one more FM station. Additional controls for bass, stereo balance, FM-preselect settings and manual tuning are beneath a hinged top cover. Amplifier specifications include less than 0.2% distortion, and S/N better than 65 dB. FM sensitivity ratings are: 19.2 dB (5.0 µV) monophonic usable sensitivity; 50-dB quieting sensitivities of 18.5 dB (4.6 µV) mono and 38.9 dB (48 µV) stereo. FM S/N is 80 dB in mono, 66 dB in stereo. Dimensions are 21/2” H x 241/2” W x 9¾” D (6 x 62 x 25 cm). $395.00.

Microcomputer/TV Receiver Interface
ATV Research's "Micro-Verter" interfaces microcomputers to standard color or monochrome TV receivers. It accepts video input and generates modulated r-f output above uhf channel 14 to avoid image degradation from computer switching harmonics. It's tunable over at least four channels. In most cases, r-f is coupled to a uhf tuner input through a 1-cm stub at the back of the device. The r-f modulator is powered by four self-contained "AA" cells (not supplied) and comes with video cable and r-f output stub coupler. Dimensions are 2.2” x 3.3” x 4.5” (5.5 x 8.5 x 11.5 cm). $35. Address: ATV Research, 13th & Broadway, Dakota City, NB 68731.

Hitachi 3-Head Cassette Deck
Hitachi's Model D 900 is a front-loading, three-head stereo cassette deck with Dolby noise reduction and calibration. Rated wow and flutter of the dual capstan servo drive system is ±0.05%. Frequency response is said to be 30-18,000 Hz ±3 dB with CrO₂ tape. Separate front panel, three-position bias and equalizer switching is provided. Other features include full logics controls, stereo mike and headphone jacks, three-digit tape counter, dual switchable peak/VU meters, L/F line and mike/DIN record controls, and single output control. $495.00.

Work Surface Traction Pad
"Slidestop" is a high traction plastic material which prevents tools and parts from slipping or sliding. Available in rolls, the flexible material is non-sticky, for easy removal of objects placed upon it, yet has sufficient traction to hold objects even when the surface is nearly vertical. Prices range from $22 for an 8” x 2.2-yd. roll to $139 for a 16” wide by 10 yds. Colors include green, red, blue, yellow and white. Address: Kager International, Suite 710, 1180 South Beverly Dr., Los Angeles, CA 90035.

Koss Stereophone
The new Koss K/6ALC Stereophone has a low-angle 2.5” (63 mm) diameter driver in each earcup. Rated sensitivity for 100-dB SPL is 0.14 V rms (1 kHz sine wave). THD is said to be below 1% with 100-dB SPL (1 kHz), and impedance is 90 ohms. A slide-type volume/balance control is provided for each earcup. Earcushions are foam-filled vinyl, and the headband is spongewhissoned nylon with pivoting, self-adjusting yokes. A three-conductor coiled 10-ft cord is supplied. Weight is 14 oz (390 g) less cord $34.95.

Johnson Mobile CB Transceiver
E. F. Johnson's Viking 260 AM mobile CB transceiver features LED numeric channel display with an automatic LED brightness control circuit. Discrete LED's are also used to form a bar-graph S/r-f meter. Interference problems are said to be reduced through the use of twin ceramic selectivity filters, switchable noise-blanker/ANL system. Controls include three-position range switch, delta tune switch, tone, CB/PA switch, and calibrated squelch. The Viking 260's cabinet is covered with leather- textured black vinyl (other colors available). $199.95.

8-Track Tape Amplifier Converter
Shur-Lok's "Star-Trak" converter permits use of any 8-track tape playback system for audio and musical instrument amplification. No wiring is necessary since it inserts into the tape player's cartridge slot. Four...
THE JVC SEPARATES.

Sensitive tuners, plus DC amplifiers that help eliminate sonic backlash.

If you've ever listened to a JVC music system with a separate tuner and amplifier, and thought, "One of these days..."

Well, that day is here. The new JA-S44 DC integrated stereo amplifier, with its exclusive built-in SEA graphic equalizer and dual power meters, provides clean, uncannily-accurate music reproduction with all the power you're ever likely to need.

Our "Tri-DC" design in the JVC JA-S55 and JA-S7 further eliminates distortion-causing capacitors within the DC phone equalizer, DC tone control and DC power amplifier sections, providing frequency response from 5Hz to 0kHz (+0.01 db). And they have dual power supplies—not one for each channel, as in conventional designs—but one for the Class A-operated preamplifier control section, and a second which performs even heavier duty for the Class B-operated DC power amplifier section. This unique design practically eliminates both inter- and intra-channel cross-talk and distortion, or what we call "sonic backlash." The results: increased tonal definition and brilliance, especially with high-level transient signals.

The new JVC JT-V22 A/V FM stereo tuner is a standout in its class. With an FM front end that uses an FET RF amplifier, combined with a 3-gang tuning capacitor, the JT-V22 brings in the most timid FM stations and makes them sound as though they're just around the corner.

Or, if you're in an area where FM stations are a hairline away from each other on the dial, it delivers clear, interference-free reception. Then, to help you make sure you're on target, it has both signal strength and center-channel tuning meters.

Probably the most significant advance in recent FM tuner technology is JVC's Phase Tracking Loop circuitry in our new top model—JT-V77. This advanced circuit provides high signal-to-noise ratio as well as excellent interference rejection and selectivity from multipath effects and adjacent channel interference. It's all in another example of JVC's innovative engineering. But sounds speak louder than words. See and hear these magnificently-designed separates at your JVC dealer soon.

JVC High Fidelity Division, USA
JVC Corp., 58-75 Queens Midtown Expressway, Maspeth, N.Y. 11378.
Canada: JVC Electronics of Canada, Ltd., Ont.
Q. How close can hi-fi get to an authentic musical experience?

A. Slip on new Audio-Technica Stereophones and hear for yourself.

If you want to find out how good the new Audio Technica Stereophones really are, don’t just compare them with other headphones. Put them up against the very finest speaker systems. But don’t just listen to the equipment. Listen to the music. And be ready for a surprise!

Judged on the basis of flatness of response, freedom from distortion, transient response, sensitivity, and independence from room acoustics, these new dynamic and electret condenser models are perceptibly better sounding than speaker systems costing hundreds of dollars more.

And if you think that great performance can only come from heavy, bulky stereophones, get ready for another surprise. Our heaviest model is less than 3¼ ozs. and our lightest is an incredible 4½ ounces light. Comfort that lasts an entire opera if you wish.

For all the facts, send for our catalog. But for the revealing truth about stereophone performance, listen and compare at your nearby Audio-Technica showroom. It will be a great musical experience.

Model ATH-7
Our finest Electret Condenser with LED peak level indicators
$149.95

Model ATH-1
The moving coil dynamic stereo phone that weighs just 4¼ oz.
$28.95

Variable-Power Soldering Station
American Beauty’s V-3600 is a solid-state, continuously variable power unit for any 15- to 60-watt soldering iron. It is said to be capable of delivering zero to 100 percent of line voltage. Other features are a built-in sponge tip cleaner, and a ventilated iron holder. The unit is available with or without soldering iron. Dimensions are 8.5” x 4” x 6” (22 x 10 x 15 cm).

CIRCLE NO. 93 ON FREE INFORMATION CARD

Advent/1 Loudspeaker
The Advent/1 is a two-way “bookshelf” speaker system with 10” acoustic suspension woofer and 1½” ferro-fluid-damped cone tweeter. Minimum recommended input is 15 watts/channel. Dimensions of this
Incredibly inexpensive. EXPERIMENTOR solderless sockets begin at $5.50* ($4.00* for the 40 tie-point quad bus strip). A spool of solder costs more.

Microprocessors and other complex circuits are easy to develop. Each EXPERIMENTOR quad bus gives you four bus lines. By combining quads, 8-, 12- and 16-line address and data buses can be created, simplifying complex data/address circuits.

Infinitely flexible. Circuits can go in any direction, up to any size. All EXPERIMENTOR sockets feature positive interlocking connectors that snap together. Horizontally and/or vertically. And un-snap to change a circuit whenever you wish.

Easy Mounting. Use 4-40 screws from the front or 6-32 self-tapping screws from the rear. Insulated backing lets you mount on any surface.

EXPERIMENTOR 350. $5.50* 46 five-point terminals plus two 20-point bus strips. 0.3" centers; ½ x 3½ x 2".

EXPERIMENTOR 650. $6.25* 46 five-point terminals plus two 20-point bus strips. 0.6" centers; ½ x 3½ x 2¾".

Mix and match. Use large and small chips in the same circuit without problems. There are two sizes of EXPERIMENTOR sockets with 0.3" and 0.6" centers.

Full fan-out. A CSC exclusive. The only solderless breadboard sockets with full fan-out capabilities for microprocessors and other larger (0.6") DIP's.

EXPERIMENTOR QUAD BUS STRIP $4.00* Four 40-point bus strips. ½ x 6 x ¾".

Designated tie-points. Simplify translation from breadboard to PC-boards or wiring tables.

EXPERIMENTOR 600. $10.95* 94 five-point terminals plus two 40-point bus strips. 0.6" centers; ½ x 6 x 2¾".

Accepts all standard components. EXPERIMENTOR sockets conform to an 0.1" grid and are DIP compatible. Also accept IC's, transistors, diodes, LED's, resistors, capacitors, transformers, etc.

Easy hookup. Components push in and pull out instantly. Use #22-30 solid AWG wire for jumpers.

Rugged, dependable construction. Sockets are constructed from abrasion resistant materials and withstand 100°C. Each one features non-corrosive nickel-silver contacts.

EXPERIMENTOR 300. $9.95* 94 five-point terminals plus two 40-point bus strips. 0.3" centers; ⅜ x 6 x 2".

WHAT ARE YOU WAITING FOR?

Discover today how solderless breadboarding can save time and money on every circuit you build. Get acquainted with EXPERIMENTOR™ sockets and how they simplify circuit design, assembly and testing. Eliminate the hassles and component damage of soldering. No special hardware or jumper cables required, either. And the price is so low, it's hard to believe.

"Order today. Call 203-624-3103 (East Coast) or 415-421-8872 (West Coast); 9 a.m.-5 p.m. local time. Major credit cards accepted. Or see your CSC dealer. Prices slightly higher outside USA."

CONTINENTAL SPECIALTIES CORPORATION
70 Fulton Terrace, Box 1942, New Haven, CT 06509 203-624-3103 TWX 710-465-1237
WEST COAST: 351 California St., San Francisco, CA 94104, 415-421-8872 TWX 510-372-7992
GREAT BRITAIN: CSC UK LTD., Spur Road, North Feitham Trading Estate, Feitham, Middlesex, England, 01-890-0782 Int'l Telex: 851-881-3669
CANADA: Len Finkler Ltd., Ontario
CIRCLE NO. 11 ON FREE INFORMATION CARD

SEPTEMBER 1978
1. Your records will last longer. Empire cartridges are designed to track at lower forces. This imposes less weight on the record insuring longer record life.

2. Your records will sound better. Distortion is a mere .0005 at standard groove velocity. Therefore, reproduction is razor sharp with no wavering or fuzziness.

3. More cartridge for your money. We use 4 poles, 4 coils and 3 magnets in our cartridges (more than any other brand).

4. Inspection from head to toe. Every Empire cartridge, regardless of price, is fully inspected both visually and technically. Tests include frequency response, output balance, channel separation and tracking.

5. Diamond control. At Empire we cut, grind, polish and mount the diamonds to our own exacting specifications. We insure total quality of the product from start to finish by buying only the highest quality gems.

For more good reasons to buy an Empire cartridge, write for your free catalogue:

EMPIRE SCIENTIFIC CORP.
Garden City, N.Y. 11530

Mfd. U.S.A.

CIRCLE NO. 18 ON FREE INFORMATION CARD

8-ohm system are 22" H x 13.25" W x 9.25" D (55.9 x 33.7 x 23.5 cm). Two finishes are available: walnut-grain vinyl, $99.95; walnut veneer, $120.

Yaesu Communications Receiver

The FRG-7000 is a new shortwave receiver from Yaesu featuring five-digit numeric frequency display. It offers continuous coverage of 0.25 to 29.9 MHz in five ranges and operates in AM, SSB, and CW modes.

On the front panel are: an hours-minutes-seconds timer with numeric readout, main and fine tuning controls, AM or switch, preselector, tone controls, S-meter, and headphone jack. It includes a built-in speaker and a 2-watt output audio amplifier. Rated AM and SSB/CW sensitivities are 0.7 and 2 µV, respectively, for 10 dB S/N. The 6- and 50-dB selectivity points are ±1.5 and ±4 kHz (SSB/CW), ±3 and ±7 kHz (AM). Drift is said to be less than ±500 Hz during any 30-minute period after warm-up. Dimensions are 4.9" H x 14.2" W x 11.6" D (12.5 x 36 x 29.5 cm).

Phase Linear Power Amplifier

The New Phase Linear Model 400 Series Two amplifier has a rated power output of 210 watts rms/channel into 8 ohms over 20-20,000 Hz with no more than 0.09% THD. It has BI-FET high-loop gain circuitry and electronic energy limiters said to prevent overload damage. Dual peak-reading LED meters and twin input sensitivity controls are mounted on the front panel. $599.95.

Kantronics Portable CW Receiver

The Kantronics 8040-A CW receiver offers coverage of 3.65 to 3.75 and 7.05 to 7.15 MHz for monitoring and code practice. This lightweight unit operates from two 9-volt batteries. Front-panel controls include audio gain and a preselector. It also features vernier dial action. A standard phono jack allows connection of an 8-ohm speaker or monophonic headphone (not supplied). The 8040-A is said to provide readable audio output with a 1 µV input signal; selectivity is rated at ±48 dB at ±500 Hz. Dimensions are 2.9" H x 6.6" W x 6" D (7.4 x 16.8 x 15.2 cm). $59.

M&K Passive Crossover

M&K's LP-1 is a totally passive crossover system which provides separate drive to sub-woofer and mid-range/high-frequency amplifiers for bi-amping. The LP-1 follows the preamplifier in the signal path and is said to have virtually no transmission loss in its passband. Crossover rates are 12 dB/octave from low-pass to high cutoff and 18 dB/octave from high-pass to low cutoff. On the front panel are input, bass and treble controls, and bass and treble level controls. $120.

A fantastic base antenna encounter.

Superb CB performance plus great FM reception. Unreal!

STARDUSTER II outperforms any 5/8 wave omni-directional CB antenna at horizon gain ever designed—but that's only half the story. We also designed it to work simultaneously on 88-108 MHz FM. It receives FM broadcasts right alongside your CB rig so you get superb double duty from one great antenna.

FM reception is vertically polarized for a perfect omni pattern. Tuned traps and phasing coil provide excellent performance across the entire band. And you still get the STARDUSTER's fantastic CB performance—tremendous 5dB gain* with our original full aperture design that punches your signal farther out on the horizon.

Installation? STARDUSTER II's super lightweight and compact—weighs just 5 1/4 pounds.

STARDUSTER II. You've reached the outer limit in base antenna performance.

*FM/FM STEREO GAIN IS UNITY

The antenna specialists co.

AmericanRadioHistory.Com
New Literature

TURNER COMMUNICATION CATALOG
Turner Division of Conrac Corporation has issued a 28-page catalog covering their CB product line. Included are microphones, stainless steel antennas, fiberglass antennas and accessories. Featured is a section on Turner’s new no-solder microphone connector program, “The Turner Connection.” General information and engineering specs are also included. Address: Turner Division Conrac Corp., 716 Oakland Rd., N.E., Cedar Rapids, IA 52402.

SIMPSON INSTRUMENT CATALOG 4700
Simpson Electric Company has available a 60-page catalog listing its line of stock analog and digital panel meters, meter relays, controllers and test instruments. New products include the model 461 digital multimeter and the series 2860 digital panel meters. Address: Simpson Electric Co., 853 Dundee Ave., Elgin, IL 60120.

MOUSER SEMICONDUCTOR CATALOG
An 88-page catalog from Mouser Electronics describes its lines of zener, germanium, and silicon diodes, rectifiers, and TO-18 and TO-92 transistors. Low-, medium-, and high-current triacs, logic triacs, and triacs with internal diacs are also presented. The catalog covers an expanded line of quality IEE LED’s, including sockets. Address: Mouser Electronics, 11511 Woodside Avenue, Lakeside, CA 92040.

HEATH SOLDERING MANUAL

TRANSFORMER BULLETIN

TEXAS TUNER GUIDE
Texas Tuner Service has announced availability of its new list of both new and rebuilt tuners for popular TV sets. Address: Texas Tuner Service, 4210 N.E. 28th St., Fort Worth, TX 76117.

NATIONAL MICROPROCESSOR REFERENCE GUIDE
A reference guide to National Semiconductor’s 8080A microprocessor family of over 60 bus-compatible parts is now available. The booklet gives an overview of National’s 8080A family, describing the basic functions of each component, the pin numbers and signal names and how the components interface to National’s system bus—the Microbus™. A description of the 8080A CPU group, as well as its series of peripheral control, communications, digital input/output, and memory components is included. Address: National Semiconductor Corp., 2900 Semiconductor Dr., Santa Clara, CA 95051.

Circuits happen Faster and Easier with Super-Strip.

As little as $17

Now, whenever you’d like to give a circuit a try, you can build it up nearly as fast as you can dream it up with Super-Strips™, the faster, easier and less expensive solderless breadboards from A P Products. When you build your circuit on a Super-Strip, everything stays as good as new. Once you’re through, you can use everything again and again. Instantly. Put a Super-Strip to work for you. Eight distribution lines handle signal and power, and 128 five-point terminals can handle 9 ICs and then some. It’s a whole lot easier than printing a circuit and a whole lot handier than haywire.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Model Number</th>
<th>Terminal Type</th>
<th>Price Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>923252</td>
<td>SS-2</td>
<td>nickel-silver</td>
<td>$17.00</td>
</tr>
<tr>
<td>923748</td>
<td>SS-1</td>
<td>gold-plated</td>
<td>$24.95</td>
</tr>
</tbody>
</table>

Order from your A P distributor today. Our distributor list is growing daily. For the name of the distributor nearest you call Toll-Free 800-321-9668.

Send for our complete A P catalog, the Faster and Easier Book.
If you want a job that commands respect...

Respect. It's been part of the Marines for over 200 years. It comes from a job well done. And whether that job is leading a squad of 12 Marines, or mastering a complex radar system, we'll make sure you get the skills to do it best. If respect is part of your job requirements, mail the card. Or call 800-423-2600, toll free. In California, 800-252-0241.

Maybe you can be one of us.

It sounds like music

An incredibly solid 30 Hz low end gives you bass response not found in any other speaker of this size. This is clean bass. It isn't phony. There is no "hump" around 80 Hz to give the impression of bass when there really isn't any. What's on your source material is what you're going to hear—accurately.

There is no sacrifice at the high end either. Both front and rear-firing tweeters give you the uniform total acoustic power output that takes you into a "live-music" environment.

When you buy your next pair of speakers, do yourself a favor—audition the Interface.B's. If your criteria is musical accuracy, the Interface.B's are what you'll buy.

Electro-Voice
A Juliecom company
600 Cecil Street
Buchanan, Michigan 49107

box. The drive is a quartz-locked servo-controlled system, and the extremely unobtrusive base/subframe is said to have beneficial effects on resonance problems. A number of other new models of a more conventional bent back up the DQX-500. There is also a new tone-arm, the MA-707, which can be mass-tuned to suit various cartridges.

Kenwood's new turntables numbered two, a direct-drive and a belt-drive model, the former employing Kenwood's resin-concrete base and selling for an attractive $260. Kenwood also showed a new 125-watt-per-channel receiver, the KR-8010, two new cassette decks, and four 2- and 3-way speaker systems.

Getting back to tape, the contributions of Teac for this show were four cassette decks and a replacement for the astonishingly popular A-3340 four-channel multitrack machine, the new A-3440. The foremost of the cassette units, the C-1, has three heads, three motors, solenoid switching, an attractive low-silhouette rack-mountable front-panel, and an instrument-type support bracket for shelf installation. Optional dbx noise-reduction modules are available, as are interchangeable modules to match the deck's electronics to various tape types. Other new decks include three- and two-head models, one with automatic reverse in playback.

JBL announced it will now sell its professional line of monitor loudspeakers through selected hi-fi dealers, and also noted that the popular, recently discontinued L100 consumer loudspeaker will be replaced by the Model 4311, its professional counterpart. The company also introduced a new low-price speaker and an interesting new "state-of-the-art" design, the L220, the first deliberate attempt on JBL's part to align the acoustic centers of the various drivers for synchronized arrival times at the listener's ear. One design objective was to achieve this goal without breaking up the front-panel surface.

Dynaco chose the show as the proper place to unveil its new "non-kit" series, beginning with four models sporting entirely new front-panel styling. There is a preamplifier, the Model 2510, a tuner with a varactor front end, and integrated and power amplifiers, each rated at 100 watts per channel. Proposed price range is from $500 to $800.

Transduction, Anyone? Thorens has integrated moving-coil cartridges with its Isotrack tonearms to create the TMC 63 and TMC 70, plug-in arm-cartridge modules for the newer Thorens turntables. The company has also introduced two receivers, the AT-410 and AT-403, at 50 and 20 watts, respectively. Finally, the company also introduced two speaker systems, called "Sound Walls," about which absolutely no information was available at show time except for a nominal impedance of 4 ohms. Two new turntables, the TD-115C and TD-110C, both incorporating a new suspension system, should be noted.

The Sonus cartridge line has been entirely revamped with models that have evolutionary improvements in new materials and techniques. A top-of-line series of three, the Sonus Golds, are identical except for stylus tip configuration, as are the two Sonus Silvers, which have somewhat lower compliance. Elsewhere in cartridges, ESS has recaptured the Dynavector moving-coil cartridge line and is pressing ahead with it.

The day will surely come when new loudspeaker designs outnumber the people at one of these shows. To touch briefly on some of the highlights: Bozak, newly reorganized, has embarked on the phase/time-corrected approach with the LS-300, a $250 design that sounded quite respectable. Win Burhoe of The Little Speaker Company has come up with yet another new tweeter, a 1-inch design with a compound diaphragm curvature and frequency-response and dispersion characteristics confidently specified up to 25,000 Hz.

Cerwin-Vega has a remarkable looking new truncated-pyramid system that was being demonstrated with a subwoofer—a cabinet containing an 18-inch driver with the center of its cone bolted stationary. Cizek also had a new subwoofer, employing two 10-inch drivers in a sealed cabinet, as did Audioanalyst. I noted two new full-range electrostatic designs, the Acoustat Monitor and the "naked" Dayton-Wright, which not only lacks the gas-filled envelopes of the original but also any vestige of grille cloth or cabinetry. And an Israeli company marketing under the name of Ramko displayed a rather extensive line of mostly ported designs.

If all this has proven too much for you, Bose can simplify your life with the Model 360 compact system (really a pre-packaged, turntable-receiver-speaker ensemble) that will take you back to the days of "buy it, plug it in, and listen." But whatever happens, don't let anyone ruin your day by springing on you the reason for the new GAS tuner's being named Charlie. Tuner = "tuna." Get it?
New Scott amps are loaded with extras.

DC Amplification. Improves reliability, expands frequency response, and reduces THD and IM distortion.

Twin logarithmic Op-Amp meters. Visually monitor the peak average power amplifier output of each channel in both watts and dBW.

Mid-range control. In addition to the treble and bass controls, you can adjust the mid frequencies to add extra presence and richness.

When you consider separates, you want all the extras you can get for your money. And no one gives you more than Scott.

Just take our new 480A integrated amplifier. 85 watts per channel min. RMS, at 8 ohms from 20-20,000 Hz with no more than 0.03% THD.

It's the only amplifier in its price class that gives you two independent phono preamps. Now you can record one phono while listening to the other. Or vice versa.

All our amps boast dozens of other advantages you simply can't find in comparably priced units. Our state-of-the-art circuitry gives you plenty of power with very low distortion. And our features and functions give you full flexibility in producing the sound you like best.

When you move up to separates, move up to Scott. Where all the extras don't cost extra.

At no extra cost.

Scott's unique, gold warranty card. Individualized with your warranty, model and serial numbers, and expiration date. Scott's fully transferable, three-year parts and labor-limited warranty is your assurance of lasting pleasure.

For specifications on our complete line of audio components, contact your nearest Scott dealer, or write H.H. Scott, Inc. Corporate Headquarters, 20-K Commerce Way, Woburn, MA 01801.

In Canada: Paco Electronics, Ltd., Quebec, Canada.

The Name to listen to. Makers of high quality high fidelity equipment since 1947.
Audio Amplifier Classes

SINCE the earliest days of vacuum-tube amplifiers, designers have been trying to increase amplifier efficiency without sacrificing performance quality. The first audio amplifiers used what we refer to as "class-A" operation, and were characterized by good linearity (freedom from distortion) and low efficiency. However, a considerable power input had to be supplied to the tube in order to obtain a relatively small useful output. Most of the power input (typically 75% to 80%) was dissipated as heat from the tube anodes; the result was a large, heavy and costly amplifier with low power output.

From an electrical standpoint, a class-A amplifier stage is one which is biased to conduct current throughout the entire signal waveform cycle. It is never driven to saturation or to cut-off. The next step was to use two tubes in "push-pull," each biased to conduct during one half of the signal cycle. In other words, one tube amplified the positive half-cycles and the other amplified the negative half-cycles. This "class-B" amplifier design is much more efficient than a class-A amplifier since the tubes use little or no plate power while signal levels are low (a class-A amplifier draws the same power from its supply whether or not a signal is present). Under the most favorable conditions, a class-B amplifier can be about 65% efficient.

As a rule, a class-B amplifier has higher distortion than a class-A amplifier. The tube characteristics become nonlinear near the cut-off region, and it is difficult to match the two tubes so that their distortions cancel (as they do in an ideal case). To deal with this problem, they are usually biased to conduct for somewhat more than half a cycle, minimizing the crossover distortion that takes place during the transition of conduction from one tube to the other. This bias condition is known as "class-AB" operation, and results in an operating efficiency intermediate between that of class A and class B.

Although we have used vacuum tubes in these examples, for historical perspective, the operation of transistor amplifiers is fundamentally the same. Practically all of today's high-fidelity power amplifiers use class-AB operation in their output stages. They are designed to run at a fairly cool temperature under low-signal conditions (which is the way home music system amplifiers operate most of the time) and to dissipate more heat from their output devices as the power output is increased. The adoption of the FTC rules on advertised power ratings a few years ago caused consternation among many amplifier manufacturers when it was found that the required one-hour pre-conditioning period in which the amplifier operates at one-third of rated power coincidentally placed a class-AB or class-B stage close to its condition of maximum power dissipation (which is at about 40% of full power). Not all amplifiers could withstand an hour of this treatment without overheating, so there was an industry-wide "beefing up" of output stages and heat dissipating systems that speedily solved the problem.

Among some audio purists, there is a tendency to return to pure class-A amplification, sometimes in combination with novel circuits that attempt to reduce the quiescent dissipation of the amplifier. Fairly high power levels are the norm today, and a class-A amplifier able to deliver more than 100 watts per channel is a formidable unit in regard
to size, weight, and price. The sonic qualities of a fully class-A design are still the subject of some debate, but their physical bulk and heat dissipation are not.

More recently, two "new" amplifier classes appeared on the market in commercial form. Actually, it is debatable whether they should be considered as bona fide "classes" of operation, but both represent efforts to combine a high short-term power capability with the smaller power supply and heat sink of a lower-power amplifier. These are not necessarily incompatible conditions. As we mentioned before, a hi-fi amplifier usually operates at a small fraction of its full capability, and is only called upon to deliver full power peaks for brief, infrequent periods. The Hitachi "Class-G" amplifier and the Soundcraftsmen "Class-H" amplifier are two very different approaches to this problem.

Both of the above are successful, although they work no miracles. By using a second set of output transistors, separately powered, to handle only the high-level portions of a signal waveform, Hitachi has been able to nearly double its long-term power for the brief periods required by a music waveform. However, the key word is "brief," since the higher power can be maintained only for a matter of milliseconds. The Soundcraftsmen circuit increases the power supply voltages to a conventional output transistor configuration as required to accommodate large voltage swings, while keeping the voltage (and power dissipation) relatively low during most of the time when high power is not required. This amplifier can deliver its maximum power for a sustained period of time necessary, but is a relatively large, heavy amplifier.

During the past several years, we have been hearing of the efforts of several manufacturers to develop switching amplifiers, often referred to as "class D." In a class-D amplifier, the output devices are always either fully on or cut-off. Such an amplifier dissipates very little power under low-signal conditions, since at cutoff there is no current flowing in the transistors, and in saturation the voltage drop across the transistor is very small. In an ideal case, there would be no power dissipated in the transistors. But even in practical amplifiers, the dissipation is far less than in any of the linear classes of amplifier operation.

With no input signal, the output of a class-D amplifier is a high-frequency square-wave signal. This serves as a carrier for the program information, which modulates the square-wave signal in any of a number of ways. Some of the possible techniques include pulse-code modulation, pulse-frequency modulation, pulse-position modulation, and pulse-width modulation. The latter is one of the simpler methods. Here, the relative widths of the positive and negative portions of the square-wave carrier are varied in accordance with the instantaneous amplitude and polarity of the audio input signal. Since the carrier frequency is many times higher than the highest modulation frequency, it can be removed at the amplifier output by a low-pass filter, leaving only the amplified signal waveform. This is the method used in the Sony TA-N88 PWM amplifier that is reviewed here this month.

Although output transistor linearity is no longer of any importance in a class-D amplifier, this responsibility has been transferred to the modulating circuit, which controls the pulse width in accordance with the input waveform. Any departure from ideal operation here will have much the same effect as ordinary amplifier nonlinearities in a class-AB amplifier. Also, the ideally high efficiency of a class-D amplifier can only be realized to the extent that its transistors simulate a perfect switch, either full on or off. However, even in practical amplifiers it is possible to achieve impressive reductions in size and weight, as compared to any conventional linear amplifier of similar power ratings.

Apparently, the most severe problem to be overcome in the design of a class-D amplifier is not related to its sound quality or amplifying performance. Containing, as it does, very powerful amplifiers which are continuously driven to their limits by square waves in the range of hundreds of kilohertz, a class-D amplifier must be shielded with extreme care. The carrier waveform has strong harmonics that extend into the hundreds of megahertz, posing a potential interference problem to FM and TV receivers, and the only barrier between this waveform and the speaker output terminals is a low-pass filter. The extensive shielding and filtering that must be applied to all parts of a class-D amplifier give it many of the mechanical properties of a high grade laboratory r-f signal generator. These steps include seamless cast chassis, multiple layers of copper shielding, and extensive filtering of every lead going into or out of the cabinet—signal input, speaker outputs, and ac line input. With these comes a high price, at least in the amplifiers shown so far.

The Sony TA-N88 is the first commercial version of a class-D amplifier to reach us for testing. As our test data show, it is a most impressive device, when one considers its power ratings in relation to its size and weight. Not only is it small and light, but under normal conditions it runs cooler than any conventional amplifier of comparable power ratings.

Although our early sample of the TA-N88 exhibited a slight r-f radiation problem, we have no doubt that this is not typical of a normal production amplifier. We understand that Sony plans to incorporate the class-D amplifier in some future receiver designs (where its size-reducing benefits would be obvious) and this would not be possible if r-f leakage could not be controlled. To us, the degree to which the harmonics of the switching waveform have been suppressed and contained is far more impressive than the small degree to which they have leaked out. Although a substantial price reduction will be required to make the class-D amplifier competitive with conventional linear amplifiers, technology is certain to provide the means for that soon.

(Audio Test Reports begin on page 32.)
"If you’re going to learn electronics, you might as well learn it right!"

"Don’t settle for less. Especially when it comes to career training...because everything else in your life may depend on it. That’s why you ought to pick CIE!"
You've probably seen advertisements from other electronics schools. Maybe you think they're all the same. They're not!

CIE is the largest independent home study school in the world that specializes exclusively in electronics.

Meet the Electronics Specialists.

When you pick an electronics school, you're getting ready to invest some time and money. And your whole future depends on the education you get in return. That's why it makes so much sense to go with number one... with CIE!

There's no such thing as bargain education.

If you talked with some of our graduates, chances are you'd find a lot of them shopped around for their training. Not for the lowest priced but for the best. They pretty much knew what was available when they picked CIE as number one.

We don't promise you the moon. We do promise you a proven way to build valuable career skills. The CIE faculty and staff are dedicated to that. When you graduate, your diploma shows employers you know what you're about. Today, it's pretty hard to put a price on that.

Because we're specialists, we have to stay ahead.

At CIE, we've got a position of leadership to maintain. Here are some of the ways we hang onto it...

Our step-by-step learning includes "hands-on" training.

At CIE, we believe theory is important. And our famous Auto-Programmed® Lessons teach you the principles in logical steps. But professionals need more than theory. That's why some of our courses train you to use tools of the trade like a 5 MHz triggered-sweep, solid-state oscilloscope you build yourself—and use to practice troubleshooting. Or a beauty of a 19-inch diagonal Zenith with solid-state color TV you use to perform actual service operations.

Our specialists offer you personal attention.

Sometimes, you may even have a question about a specific lesson. Fine. Write it down and mail it in. Our experts will answer you promptly in writing. You may even get the specialized knowledge of all the CIE specialists. And the answer you get becomes a part of your permanent reference file. You may find this even better than having a classroom teacher.

Pick the pace that's right for you.

CIE understands people need to learn at their own pace. There's no pressure to keep up... no slow learners hold you back. If you're a beginner, you start with the basics. If you already know some electronics, you move ahead to your own level.

Enjoy the promptness of CIE's "same day" grading cycle.

When we receive your lesson before noon Monday through Saturday, we grade it and mail it back—the same day. You find out quickly how well you're doing!

CIE can prepare you for your FCC License.

For some electronics jobs, you must have your FCC License. For others, employers often consider it a mark in your favor. Either way, it's government-certified proof of your specific knowledge and skills!

More than half of CIE's courses prepare you to pass the government-administered exam. In continuing surveys, nearly 60% of CIE graduates who take the exam return their Licenses!

For professionals only.

CIE training is not for the hobbyist. It's for people who are willing to roll up their sleeves and go to work... to build a career. The work can be hard, sure. But the benefits are worth it.

Send for more details and a FREE school catalog.

Mail the card today. If it's gone, cut out and mail the coupon. You'll get a FREE school catalog plus complete information on independent home study. For your convenience, we'll try to have a CIE representative contact you to answer any questions you may have.

Mail the card or the coupon or write CIE (mentioning name and date of this magazine) at: 1776 East 17th Street, Cleveland, Ohio 44114.

Patterns shown on TV and oscilloscope screens are simulated.

CIE

Cleveland Institute of Electronics, Inc.

1776 East 17th Street, Cleveland, Ohio 44114

Accredited Member National Home Study Council

☐ YES...I want the best of everything! Send me my FREE CIE school catalog—including details about troubleshooting courses—plus my FREE package of home study information.

FE-70

Print Name ____________________________

Address ________________________________

Apt. ________________________________

City ____________________________

State ____________________________

Zip. ____________________________

Age ____________________________

Phone (area code) ____________________________

Check box for G.I. Bill information: ☐ Veteran ☐ Active Duty

MAIL TODAY!
Audio Test Reports

Sony Model TA-N88 Basic Power Amplifier

“Class D” pulse-width-modulated power amplifier delivers 160 watts/channel and is smaller than many preamplifiers.

Sony’s Model TA-N88 basic power amplifier has a 160-watt/channel rating into 8-ohm loads from 20 to 20,000 Hz at no more than 0.5% THD. The novel aspect about this amplifier, however, is not in what it does, but in how it does it. This is a pulse-width-modulated (also called class D) amplifier!

Except for its input stage, it has no conventional linear amplifier circuits. High-speed vertical FET’s (VFET’s) amplify a 500-kHz square-wave signal whose width (duty cycle) varies in proportion to the amplitude of the signal. The switching frequency is removed from the amplifier’s output by a low-pass filter, leaving a greatly amplified audio signal to drive the speaker systems.

The amplifier is powered by a novel switching power supply that operates at a nominal frequency of 20,000 Hz. The space and weight saved in power transformer and filter capacitors at this frequency, compared to a conventional 60-Hz power supply, are considerable. The result is a high-power amplifier that is smaller than many preamplifiers and not much heavier. The Model TA-N88 amplifier measures 18¾”W x 14½”D x 3¾”H (47.9 x 36.2 x 7.9 cm) and weighs 23 lb (10.4 kg). Suggested retail price is $1000.

General Description. The compact size of the amplifier is made possible by the high efficiency of its circuits. The circuits do not require the usual large heat sinks to dissipate heat from the output transistors and power supply components. In fact, there are no visibly identifiable heat sinks internally or externally. The eight vertical FET’s (VFET’s) that make up the output circuit and other heat-producing components are thermally coupled to a rugged die casting that forms a chassis pan and acts as an r-f shield for the amplifier. In the power supply section, a tiny ferrite-core power transformer operates at about 20,000 Hz instead of the usual 60 Hz. This means that correspondingly smaller filter capacitors are needed to filter the ultrasonic ripple from the dc output.

The amplifier’s Pulse-Locked Power Supply (PLPS) is said to reduce the voltage variation to 1% or less. (The variation in power supply voltage in most amplifiers can be as great as 10%) This limits the possibility of hum, enhances transient response, and helps to provide a well-defined bass.

Multiple protection circuits are used throughout the amplifier. Current sensors shut down the input drive to the amplifier in less than 1 µs in the event excessive current is drawn by the output transistors. This is accomplished by a fast-acting FET attenuator in the input stage. The temperature of the output transistors is also monitored. If it becomes excessive or if a significant dc component appears at the speaker output terminals, the amplifier is shut down and the speakers are disconnected by a relay. (This relay also provides a few seconds of delay when the amplifier is initially turned on to prevent transients from reaching the speakers.) A separate thermal protection system shuts down the power supply’s transistors if they become too hot, a condition that can occur only following long periods of operation at full power.

The input and output connectors for the amplifier are located on the sides of the cabinet. Only the socket for the plug-in ac power cord is located on the rear apron. The input connectors are gold plated, and a somewhat unconventional insulated pressure connector makes very positive contact with the stripped ends of the speaker cables.

The amplifier is completely devoid of such adornments as meters, lights, control knobs, and switches that are currently a part of conventional amplifier styling. Its front panel contains only a small rotary POWER switch and a barely visible power-on indicator. Metric hex-head screws discourage casual removal of the side panels and protective covers. We removed the bottom plate, but all we were able to see was a heavy copper shield plate fastened to the cast aluminum chassis with an impressive number of screws. This, of course, is necessary to maintain the r-f shielding integrity of the amplifier.

Laboratory Measurements. Unlike conventional amplifiers, the Model TA-N88 does not dissipate its maximum power at about 40% of its rated output. It runs coolest under no-signal conditions, and its power dissipation rises steadily with increasing output power. When we subjected the amplifier to the FTC preconditioning period of 1 hour at 33% rated power (about 53 watts into 8 ohms), it became quite warm due to its small size and lack of heat sinks. But it was no hotter than most similarly rated power amplifiers of conventional design, with large heat sinks.

The 1000-Hz THD was about 0.01% at 1 watt. It increased smoothly with in-
THD and IM distortion at 8 ohms.

Increasing power to 0.04% at 100 watts, to 0.075% at the rated 160 watts, and to 0.1% at 180 watts. The output waveform clipped at 200 watts/channel. We noticed a small burst of high-frequency signal, apparently at the 500-kHz switching rate, on the peaks of the audio signal when the output exceeded 150 or 160 watts/channel.

A spectrum analyzer examination of low-level distortion was made to check out a detectable amount of r-f leakage from the pulse signals in the power supply and amplifier circuits. We detected components at 23,000 and 46,000 Hz in the speaker outputs. There were doubtlessly higher harmonics above the 50,000-Hz upper limit of the analyzer. Each of the components we saw was about 72 dB below 1 watt.

The IM distortion varied in much the same way as the harmonic distortion over the power range of the amplifier. It was 0.011% at 0.1 watt, 0.115% at 160 watts, and 0.17% at 180 watts. The amplifier was stable with capacitive loads up to 2 µf in parallel with an 8-ohm resistor load. In fact, we found it beneficial to use about 0.22 µf across the speaker outputs to reduce the level of 500-kHz leakage that was present in sufficient amounts to affect our low-level distortion measurements. (The output reading on a wideband voltmeter was 100 mV with no signal input.)

Although the amplifier is rated primarily for use with 8-ohm loads (with 16 ohms a maximum figure), we checked its performance with 4- and 16-ohm loads. The amplifier delivered 138 watts per channel into 16 ohms. When we checked it with 4-ohm loads, the protective circuits shut down the amplifier at 182 watts, before any visible waveform clipping occurred. An input signal level of 0.11 volt drove the amplifier to a 1-watt output. Amplifier noise in the audio band, unweighted, was 160 µV, or 65 dB below 1 watt.

The distortion at rated power was less than 0.04% from 20 to 1000 Hz. It rose to 0.15% at 2000 Hz, 0.24% at 10,000 Hz, and 0.43% at 20,000 Hz. At half and one-tenth power, the distortion curves were similar, but the measured values were lower. The IHF clipping headroom, referred to 160 watts, was 1.0 dB, and the dynamic headroom was 1.83 dB. (The output on a 20-ms burst was 244 watts at the clipping point.) The output with a 1000-Hz square-wave input signal revealed a few cycles of ringing at an ultrasonic frequency, and we observed a 4-µs risetime. The slew rate of the amplifier was 6 V/µs.

The low-level frequency response of the amplifier was flat within +0/- 0.4 dB from 5 to 10,000 Hz. It was -1.6 dB at 20,000 Hz and +1.6 dB at 40,000 Hz.

Performance Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Rating</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power output (8 ohms)</td>
<td>160 watts per channel, 20-20,000 Hz at less than 0.5% THD</td>
<td>Confirmed</td>
</tr>
<tr>
<td>Harmonic distortion</td>
<td>Less than 0.5% at rated output</td>
<td>0.43% (20,000 Hz)</td>
</tr>
<tr>
<td>IM distortion</td>
<td>Less than 0.1% at rated output</td>
<td>0.115%</td>
</tr>
<tr>
<td>Frequency response</td>
<td>5 Hz to 40 kHz, +0.5/-1 dB (8 ohms)</td>
<td>±1.6 dB</td>
</tr>
<tr>
<td>S/N ratio</td>
<td>Noise less than 100 µV (8 ohms, A-weighted)</td>
<td>160 µV unweighted (audio band)</td>
</tr>
<tr>
<td>Damping factor</td>
<td>20 (8 ohms at 1000 Hz)</td>
<td>Not Measured</td>
</tr>
<tr>
<td>Input</td>
<td>1.4 V for rated output 50,000 ohms</td>
<td>0.11 V for 1 watt</td>
</tr>
<tr>
<td>Output</td>
<td>Speakers, 8-16 ohms</td>
<td></td>
</tr>
</tbody>
</table>
Sony's Model TA-N88 is a class-D amplifier that employs pulse width modulation (PWM). Class-D circuits function like switches. They are either fully on or completely cut off. Consequently, there is no wasted energy. The circuits convert relative amplitude into time. The higher the amplitude of a signal, the longer the time during which current flows. This time is called the "pulse width." The output from the Class-D system is a train of square waves of varying widths.

An internal 500-kHz oscillator, common to both channels, develops a carrier that is converted to a square-wave signal by a differential clipping amplifier. It is then converted to a sawtooth waveform by an integrator and summed linearly with the audio input signal. The composite signal is continuously compared to a precision reference voltage in the next stage. The output of the comparator is a square-wave signal whose duty cycle is determined by the instantaneous amplitude and polarity of the input signal's waveform.

After further amplification, the PWM signal drives an output stage that consists of four vertical-FET (VFET) transistors connected in push-pull parallel. The VFET's are driven into saturation and cutoff by the PWM signal. They have a very fast (50-ns) switching time. The 160-volt peak-to-peak output square-wave signal then goes through a low-pass filter that removes the ultrasonic component, leaving the amplified audio signal to drive the speaker systems. Since the passband's flatness directly affects the amplifier's overall frequency response, the filter is designed to have a flat response to 40,000 Hz when terminated in 8 ohms and to have a high rejection at 500 kHz and above.

The amplifier is operated from a high-frequency switching power supply that eliminates the need for a heavy power transformer and huge filter capacitors that are part of every conventional high-power amplifier. The ac line voltage goes directly to a rectifier that supplies a dc output between 110 and 140 volts. After passing through a switching voltage regulator, which maintains a constant 110-volt dc output, it powers a 20-kHz oscillator whose circuit includes a ferrite-core transformer. A winding on this transformer supplies the feedback control voltage to the regulator stage so that the voltage induced into its other secondary windings is maintained constant over a wide range of line-voltage variations. (The transformer and oscillator are capable of supplying far more power than the amplifier circuits ever require, and there is no problem with regulation during changes in load impedance.) The output of the principal secondary winding is rectified by a second rectifier to produce ±80 volts dc for the VFET's. Other windings supply lower voltages to the other stages in the amplifier.

Compared to a conventional 60-Hz power supply, the switching supply in this amplifier is far lighter and smaller. Like the amplifier itself, however, the power supply must be carefully shielded and filtered to prevent harmonics of the 20-kHz switching frequency from leaking out. Because the power supply is a true dc-to-dc converter, it can operate with equal effectiveness from ac line inputs of 90 to 130 volts over a power frequency range from 50 to 400 Hz or a 110-to-140-volt dc supply.

Block diagram of power amplifier showing push-pull parallel VFET's. Analog input is converted to variable-width pulses to drive power output stage, after which low-pass filter removes carrier component.

Power supply accepts ac or dc input and uses switching voltage regulator to drive 20-kHz power oscillator.
These measurements were made with an 8-ohm resistive load. There were additional response "ripples" at higher frequencies, to +3.9 dB at 50,000 Hz and −4.1 dB at 100 kHz.

User Comment. The amplifier was impressively cool in normal operation. In fact, after hours of driving low-efficiency 4-ohm speaker systems to rather high levels, its exterior was almost cool.

The amplifier's sound was as conventional as its circuits are unconventional. We found no peculiarities or distinguishing characteristics in its sound quality, which was clean and free from extraneous noises and obviously backed by considerable power. There were no turn-on or turn-off transients. Since it requires no particular amount of ventilation and does not become hot in use, it could presumably be placed in some location where a conventional amplifier could not be safely operated.

We did discover a weakness in the behavior of our amplifier test sample. It radiated enough energy at harmonics of the switching frequencies to interfere with radio reception under some conditions. The harmonics of the power supply circuitry's frequency produced "birdies" every 23 kHz across the AM broadcast band. And there was enough high-order harmonic output from the amplifier's switching frequency to cause "hash" in the background of many FM signals as well. These effects were audible only when the receiving antenna, an indoor dipole, was within a few feet of the unshielded speaker cables. Locating the tuner and amplifier across the room from the speaker systems so that the cables did not come close to the antenna cured the problem, even though the tuner and amplifier were within a few feet of each other. The noise remained on AM, however.

We have been assured by Sony that this is not typical behavior of the Model TA-N88 amplifier. (Our test model had a very low serial number and was evidently from a pilot production run.)

Some people who have become accustomed to the un measurably low dis-
Electro-Voice Interface: B Series II Speaker System

High-efficiency, vented, floor speaker system uses passive radiator and equalizer for extended bass response.

Electro-Voice's Interface series was among the first commercial speaker systems to be based on the analysis of vented loudspeaker operation published by the Australian A.N. Thiele. Thiele showed how to establish the detailed interrelationships between enclosure volume, port dimensions, low-frequency response, speaker efficiency, and driver parameters. His work effectively dispelled the belief that vented (bass-reflex) enclosures were necessarily an inferior approach to generating clean low-frequency audio.

When the original E-V Interface:A appeared several years ago, it was widely recognized for the fine bass performance it delivered from a very small enclosure, with assistance from an outward equalizer. E-V later added the Interface:B, which was larger and more efficient than the Interface:A. Now, the Interface line has been expanded and improved. It consists of four models designated as the "Series II."

The Interface:B Series II reviewed here is a medium-size floor-standing speaker system that's sold in pairs with a separate, special-purpose equalizer. Compared to the original Interface:B, the Series II's midrange response is flatter, and its deep-bass response is slightly better. It's also somewhat larger. The system's walnut-finished cabinet measures 29½"H x 16"W x 10¼"D (74.3 x 40.6 x 26 cm) and weighs 42 lb (19.1 kg). The suggested retail price of a complete Interface:B Series II stereo speaker system, consisting of two speaker systems and an equalizer, is $675.

General Description. The Series II is basically a two-way speaker system. It contains an 8" (20.3-cm) woofer that crosses over at 1500 Hz to a 2½" (6.35-cm) tweeter. This tweeter radiates through a felt- and plastic-foam acoustic lens to improve its dispersion at high frequencies. A second similar tweeter, this time without the lens, radiates from the rear of the enclosure at frequencies beyond 8000 Hz to augment the output in the highest audible octave.

The Series II is a vented system. To obtain the desired 30-Hz bass response in an enclosure of its compact size, however, would normally require an impossibly large vent. E-V's solution, following Thiele's guidelines, has been to use what the company calls a "vent substitute," or passive radiator, instead of an open port. The passive radiator looks much like a conventional 12" (30.5-cm) driver sans voice coil and magnet, but with a large metal plug in its center to increase its mass. The effective acoustic crossover from the 8" driven woofer to future. It is really remarkable to see and hear how much clean audio power can be delivered by this very compact piece of equipment. The amp can be stowed in small spaces where no other type can. Accordingly, we can visualize a high-power receiver in the near future with a pulse-width-modulation amplifier tucked away into its compact interior. It is obvious, however, that a sizable price reduction will be required for such amplifiers to come into common use, but we are confident that technology will provide an answer to this in due course. Meanwhile, our compliments to Sony's research and development engineers in Shibaura, Tokyo.
Now you can forget about price/performance trade-offs when you select a frequency counter. In Sabtronics' Model 8100 you get features you once expected to pay several hundreds of dollars for. But you pay only our low, low price of $89.95!

Dare to Compare. This frequency counter, using LSI technology, has the performance and input characteristics you demand. Note the specifications: You will see that the frequency range is guaranteed all the way to 100 MHz; and a high or low input impedance allows you to select for high-frequency operation. And you'll see a sensitivity that holds well over the frequency range; convenient selectable gate-time for best resolution; and selectable attenuation; and even an optional pre-scaler. Note the highly accurate time base, and its excellent ageing and temperature characteristics. And a full 8-digit LED display with floating decimal point, leading zero suppression, and overflow indicator.

You would expect to find all these features together only on a much higher-priced instrument. But Sabtronics' advanced digital technology combines with your own skill — you assemble this kit from our easy-to-follow instructions — to make it possible for you to have this fine frequency counter at a fraction of what you would otherwise expect to pay.

Free 10-day trial
Examine the 8100 Frequency Counter Kit for 10 days. If not completely satisfied, return unassembled for full refund of $89.95 purchase price.

Brief Specifications
- Frequency Range: 20 Hz to 100 MHz guaranteed (10 Hz to 120 MHz typical) • Sensitivity: 25 mV RMS, 20 Hz to 70 MHz (20 mV typical); 45 mV RMS, 70 MHz to 120 MHz (30 mV typical) • Selectable Impedance: 1 MΩ at 25 pF, or 50 Ω • Selectable Attenuation: X1, X10, or X100 • Accuracy: ± 1 Hz plus time-base accuracy • Ageing rate: ± 5 ppm/yr • Temperature stability: ± 10 ppm, 0°C to 50°C • Selectable Gate-time: 0.1 sec, 1 sec., or 10 sec. • 8-digit LED display with floating D.P., overflow indication • Input: 9-15 VDC, 350 mA (550 mA with optional prescaler) • Input protection: 150 V RMS, 20 Hz to 10 kHz; 30 V RMS to 2 MHz; and 3 V RMS to 100 MHz • Optional prescaler extends frequency range to 650 MHz. (Available soon)

To: Sabtronics International, Inc.
13426 Floyd Circle, Dallas, TX 75243

Please send me _____ Sabtronics Model 8100 Frequency Counter Kit(s) at $89.95 each $ ___________
Texas Residents add Sales Tax $ ___________
Shipping and handling, $5.00 per unit (USA only)* $ ___________
Payment enclosed ☐ $ ___________
Charge my Master Charge ☐ Visa ☐
Account No. ___________ Exp. Date ___________
Name __________________________
Street __________________________
City __________________________
State __________________ Zip ___________

*Canada $6.50. All other countries $19.00 Airmail.
ANNOUNCING

... A New

CREI Program:

Minicomputer &

Microprocessor

Technology

Including A

Microprocessor

Laboratory

Now you can learn at home
the new technology that is
revolutionizing electronics

Advanced Electronic Career

The microprocessor has ushered in the
age of microtechnology and electronics
will never again be the same. The micro-
processor has made possible the placing
of an entire computer on a silicon chip
one quarter inch square. The microproc-
essor “miracle chip” is in the process of
changing the world. Soon all technical
personnel in electronics will have to un-
derstand and work with the microproc-
essor. It is invading virtually every area
of electronics. And it is profoundly affect-
ing your electronics career.

Brand New
Program

CREI has a brand new program to help
you learn how to work effectively with
this revolutionary electronics develop-
ment. CREI’s new program in Minicom-
puter and Microprocessor Technology is
designed to prepare you for this field by
giving you the education and practical
experience you need.

The program provides solid prepara-
tion in electronics engineering technol-
ogy with a specialization in minicomput-
ers and microprocessors. In addition,
it includes a microprocessor laboratory
which features a fully programmable
microcomputer which utilizes the Mo-
torola 6802 microprocessor chip. This
is an extremely important element of
your program.

Programming
Essential

As you may well know, you must learn
how to program the microprocessor in
order to design, service or troubleshoot
microprocessor electronic systems.
There is only one effective way to learn
this all-important skill of programming,
and that is by actually doing it. CREI’s
new program gives you this opportunity
as you work with the exciting micro-
processor laboratory.

Programming
Is Easy

With CREI’s new program, learning the
skill of programming is simple. Within a
few hours you’ll be programming the
microprocessor and in a short time you’ll
learn how to program it in three lan-
guages: BASIC, assembly and machine
languages. In addition, you will learn
how to interface the microprocessor
with other systems and to test and debug
specialized programs.
Preparation at Home

Wide Choice of Programs
Please note, however, that CREI's new program is only one of 16 state-of-the-art programs in advanced electronic technology offered by CREI. So even if you choose not to specialize in microprocessor technology, CREI has an advanced electronics program to meet your needs.

With CREI, you may choose from any of the following areas of specialization in advanced electronics:

- Microprocessor Technology
- Computer Engineering
- Communications Engineering
- Digital Communications
- Electronic Systems
- Automatic Controls
- Industrial Electronics
- Television Engineering
- Microwave Engineering
- Cable Television
- Radar and Sonar
- Nuclear Instrumentation
- Satellite Communications
- Aeronautical and Navigational
- Solid State Theory
- Nuclear Engineering

Unique Lab Program
An exclusive option available with CREI programs in electronic engineering technology is CREI's unique Electronic Design Laboratory program. It gives you actual experience in designing practical electronic circuits. It also helps you to understand the theories of advanced electronics and gives you extensive experience in such areas as tests and measurements, breadboarding, prototype construction, circuit operation and behavior, characteristics of electronics components and how to apply integrated circuits. Only CREI offers this unique Lab Program.

Practical Engineering
CREI programs give you a practical engineering knowledge of electronics. That is, each part of your training is planned for your "use on the job." By using your training, you reinforce the learning process. And by demonstrating your increased knowledge to your employer, you may qualify for faster career advancement.

Free Book
There isn't room here to give you all of the facts about career opportunities in advanced electronics and how CREI prepares you for them. So we invite you to send for our free catalog. This fully illustrated, 56 page book describes in detail the programs, equipment and services of CREI.

Qualifications
You may be eligible to take a CREI college-level program in electronics if you are a high school graduate (or the true equivalent) and have previous training or experience in electronics. Program arrangements are available depending upon whether you have extensive or minimum experience in electronics.

Send for this FREE Book describing your opportunities and CREI college-level programs in electronics

CREI Home Study Programs in ELECTRONIC ENGINEERING TECHNOLOGY

CREI Introduces Program 680: MINICOMPUTER & MICROPROCESSOR TECHNOLOGY INCLUDING MICROPROCESSOR LABORATORY PROGRAM

McGraw-Hill Continuing Education Center 3939 Wisconsin Avenue Northwest Washington, D.C. 20016
Accredited Member National Home Study Council

GI Bill
CREI programs are approved for training of veterans and servicemen under the G.I. Bill.

Mail card or write describing qualifications to

CREI CAPITOL RADIO ENGINEERING INSTITUTE

McGraw-Hill Continuing Education Center 3939 Wisconsin Avenue Northwest Washington, D.C. 20016

SEPTEMBER 1978
the passive cone is at 42 Hz.

To obtain the desired bass response from this combination of radiators would normally require an enclosure with about twice the volume of that used for the Series II. To circumvent this problem, E-V uses an equalizer that boosts the bass response by 6 dB at 35 Hz and has a gradual and mild high-frequency boost to flatten out the overall response. (Three different high-frequency response curves are selected by a switch on the equalizer's panel.)

The unity-gain equalizer can be connected into the tape-monitoring loop of an amplifier or between the preamplifier and power amplifier. It has a duplicate set of tape-monitor jacks and a switch so that the monitoring function is not lost if the equalizer is inserted in the tape path. The equalizer has negligible noise and distortion and accepts up to a 7-volt input in the midrange without distortion.

Another important function of the equalizer is to sharply reduce the system's response at infrasonic frequencies below 30 Hz, which is the system's designed lower limit. Otherwise, a large-amplitude low-frequency signal, such as might occur if a pickup were dropped onto a record with the volume control turned up, could damage the woofer. (A vented woofer is not loaded by the air in the room at very low frequencies.)

One of the benefits of a vented system is its relatively high efficiency, compared to an acoustic-suspension system. The Series II is claimed to be at least 6 dB more efficient than a comparable acoustic-suspension speaker system, yet it is said to be able to handle the full output of a 200-watt amplifier in the midrange without being damaged. Built into each speaker system is a tweeter "protector" that consists of a bridge rectifier whose output operates a fast-acting relay. When the relay trips, it instantly reduces the drive level to the tweeter. The time constant of the protective circuit has been set to pass transients of less than 10 ms duration, regardless of their amplitude, but to trip at much lower levels on sustained high-frequency signals. When the protector trips, a light comes on at the lower right corner of the grille. Since its effect is only to reduce the high-frequency level rather than interrupt it completely, it has a small audible effect.

The nominal rated impedance of the Interface-B Series II speaker system is 8 ohms. Its minimum rated is 5 ohms.

Laboratory Measurements. We measured the system's frequency response in the semireverberant field of our listening room. We then averaged the response curves from the two drivers to obtain a total response curve. The low-frequency response was measured with close microphone spacing to simulate anechoic chamber conditions. At all times, our pair of speaker systems was driven through the equalizer to allow us to test the performance of the complete system.

With the high-frequency level on the equalizer set to the 0-dB maximum, the overall response was within ±3 dB from 33 to 18,500 Hz, which was remarkably close to E-V's specification. The high-frequency dispersion was excellent, with only about 3 dB difference between the response curves taken on-axis and 30° off-axis at frequencies beyond 10,000 Hz.

We measured the frequency response of the equalizer separately. It, too, closely matched the published specification. The effective acoustic crossover between the driven woofer and the passive radiator was at 45 Hz. There was a slight bass peak of 2 to 3 dB at 70 Hz. Otherwise, the response was very smooth, and there was close agreement between the bass and midrange/high-frequency curves when they were matched. In particular, we were struck by the flat response of ±1.5 dB from 80 to 10,000 Hz, with no sign of the lower-midrange peak or dip that colors the sound of many speaker systems.

When we drove the speaker system with a constant-amplitude input voltage (at the equalizer input), corresponding to a 1-watt speaker drive in the midrange, the system's distortion was less than 1% between 50 and 100 Hz. The distortion rose slowly to 2% at 40 Hz and 8.5% at 20 Hz. A 10-dB increase in drive level raised the distortion to 1.7% at 100 Hz and to 4.5% at 30 Hz before it rose sharply at lower frequencies. The distortion was measured at the driven cone for frequencies beyond 50 Hz and at the passive cone at frequencies below 40 Hz, where the passive cone contributes most of the output.

The speaker system's impedance, according to our measurements, should be rated at 4 ohms, which was the measured value at 33 Hz and between 150
Performance Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rating</td>
<td>33-18,500 Hz ±3 dB</td>
</tr>
<tr>
<td>30-18,000 Hz ±3 dB</td>
<td></td>
</tr>
<tr>
<td>Total acoustic power output</td>
<td>92.5 dB</td>
</tr>
<tr>
<td>(SPL at 1 meter, 1 W in.)</td>
<td></td>
</tr>
<tr>
<td>Recommended amplifier power</td>
<td>3.6 to 200 watts</td>
</tr>
<tr>
<td>Long-term average power handling capacities</td>
<td></td>
</tr>
<tr>
<td>30–1500 Hz</td>
<td>20 watts</td>
</tr>
<tr>
<td>1500–20,000 Hz</td>
<td>20 watts, to</td>
</tr>
<tr>
<td>Crossover frequencies</td>
<td>5 watts/10 kHz</td>
</tr>
<tr>
<td>Impedance:</td>
<td>42 Hz (acoustic)</td>
</tr>
<tr>
<td>nominal</td>
<td>1500 Hz and 800 Hz</td>
</tr>
<tr>
<td>minimum</td>
<td>(electrical)</td>
</tr>
<tr>
<td>Equalizer</td>
<td></td>
</tr>
<tr>
<td>Midband gain</td>
<td>1.0</td>
</tr>
<tr>
<td>Maximum equalization</td>
<td>6 dB (±3 Hz fixed)</td>
</tr>
<tr>
<td>Maximum input signal</td>
<td>Confirmed</td>
</tr>
<tr>
<td>80–3000 Hz</td>
<td>7 volts</td>
</tr>
<tr>
<td>35–20,000 Hz</td>
<td>3.5 volts</td>
</tr>
<tr>
<td>Noise output (20–20,000 Hz)</td>
<td>–80 dB re 200 mV</td>
</tr>
<tr>
<td>THD (3.5 V rms input)</td>
<td>Less than 0.05%</td>
</tr>
<tr>
<td>20–20,000 Hz</td>
<td>200 watts, unswitched</td>
</tr>
<tr>
<td>Accessory outlet</td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td>2 x 8 x 7 in.</td>
</tr>
</tbody>
</table>

and 200 Hz. The impedance was 12 ohms at the 22-Hz lower-bass resonance, 20 ohms at 58 Hz, and 18 ohms at 2200 Hz. At other frequencies, it was typically 7 to 8 ohms. The system’s toneburst response, although not exceptional, was good throughout. Its efficiency was very high, as claimed: An input of 2.8 volts of random noise in the octave centered at 1000 Hz, corresponding to 1 watt into 8 ohms, produced a 92.5-dB sound pressure level (SPL) at a distance of 1 meter from the grille.

User Comment. Before we measured the response of this speaker system, we spent some time listening to it alone and in comparisons with other good speaker systems we had on hand. Hence, our test results came as no surprise.

This speaker system has a delightfully smooth and transparent sound. Many if not most speaker systems have sufficient coloration in the lower midrange and upper-bass range, between 80 and 200 Hz, to make voices sound unnatural and in general impair the clarity of music reproduced. This one, however, is about as flat throughout this range as any speaker system known to us.

The system’s low bass is clean and powerful, with no trace of artificial heavi
ess. The highs are strong and crisp, without ever being strident or overbearing. E-V points out that the –3-dB equalizer setting would be considered “normal” by many people and probably gives the best overall sound with most high-quality recordings. The 0-dB setting can give startlingly realistic effects with the finest source material, but it can be merciless in revealing any faults in the program itself. Very few speaker systems are capable of delivering the flat response to the highest audible frequencies that the Series II does with its 0-dB setting. It is worth hearing even if it is too much for ordinary listening. Although we drove the Series II to very high levels from a 200-watt amplifier, we never tripped its tweeter protector.

In conclusion, E-V’s interface: B Series II is a speaker system we really enjoyed listening to. The Interface.B, with its equalizer, is certainly worthy of serious consideration for matching to any low-power to medium-high-power amplifier.
YOU CAN OWN A VERSATILE 6800 COMPUTER SYSTEM
FOR AS LITTLE AS $799.50!

MP-68/1 Computer Kit $395.00
CT-64 Terminal Kit (less monitor) $325.00
AC-30 Cassette Interface Kit $ 79.50

You can add a 40-column printer and a professional quality data terminal monitor for only $460.00
PR-40 Printer Kit $250.00
MP-L Interface Kit $ 35.00
CT-VM Data Terminal Monitor $175.00

You can expand to a full-scale personal computer system with dual disk drives for only $1,445.00
MF-68 Dual Disk System Kit $995.00
MP-16 16K Memory (assembled) $450.00

...OR buy the complete system at our special low price of $2,595.00

YOU GET:
» A 20K byte computer
» A true "stand alone" data terminal and monitor
» A 40-column dot matrix printer
» A dual drive 200K byte disk system
» Disk BASIC with file handling

These are the same proven, reliable components used in our industrial and business systems. Why settle for the limitations of a so-called "personal computer" or hobby system?
BUILD A LOW-COST A/D CONVERTER

INTERFACING a digital computer with the “real” world requires some means of converting analog (slowly varying) signals into a digital form that can be used by a computer. The low-cost ($30) analog-to-digital (A/D) converter described here can accept up to four channels of analog data, spanning from 0 to +2 volts dc, and change this information into 31/2 digits of BCD data.

With such a converter, a computer need not be limited to keyboard entry for many game programs. Now, joysticks or potentiometers can be used. And such real-world sensing of variables like voltage, current, temperature, frequency, and chemical concentrations can make your computer a powerful and versatile controller. As a bonus, the A/D converter becomes a powerful test instrument for circuit design and troubleshooting. In this application, up to four channels of voltage, current, and resistance can be monitored with proper input adapters.

Technical Details. The converter produces five conversions per second. It has four input channels and 31/2 digits of BCD data output. It is also TTL compatible in input and output and will work with any 8-bit computer that has a latched output port and a three-state input port. Digit and channel selection is under software control. Since the circuit is all CMOS, very little power is required.

As shown in Fig. 1, the A/D converter employs two IC’s and a handful of passive components. One of the four input switches IC2 to form the input for A/D converter IC1. The analog switches are set by data written out by the latched output port of the computer. Resistors R6 through R9 provide pullup for the analog switch select lines.

A/D converter IC1 is a pulse-modulation type. Its chip contains the conversion circuitry, an addressable digit latch, multiplexer, BCD encoder, and system clock. Conversion control, output digit select, and the output latch are connected to the computer’s output port. Data written to this port controls the data placed on the four output lines of IC1. The four data output lines from IC1 are connected to the computer’s three-state input port’s lower four bits (D0 through D3). The upper four bits (D4 through D7) are grounded.

Trimmer potentiometer R1 determines
(Continued on page 47)

Two-chip, four-channel converter works with any 8-bit computer.

BY W. L. GREEN
Fig. 1. Analog switch IC2 selects the input drive for A/D converter IC1. Up to four inputs can be used.

Fig. 2. Channel-digit select is shown at (A); a 10:1 voltage divider is at (B); a frequency-to-voltage scheme at (C); temperature converter (D); current measurement (E); and joystick input (F).

Fig. 3. Actual-size foil pattern (below) and component layout (above).

PARTS LIST

C1—100-pF disc
C2, C3—0.22-pF, 10-volt Mylar
C4—10-pF, 10-volt electrolytic
IC1—3511 A/D converter (National)
IC2—4066 quad analog switch
R1—5000-ohm, 10-turn trimmer pot.
R2—6800-ohm, 1/4-watt resistor
R3—470-ohm, 1/4-watt resistor
R4, R5—100,000 ohm, 1/4-watt resistor
R6 through R9—1000 ohm, 1/4-watt resistor
Misc. —Printed circuit board; edge connector; multilead ribbon connector; IC sockets (optional); hookup wire; solder; etc.

Note—The following is available from Alpha Electronics, Box 1005, Merritt Island, FL 32952 (tel. 305-453-3534): complete kit of parts, excluding wire and sockets, No. A/D4, for $29.95 plus 3.50 postage and handling. Also available separately: pc board No. PC178 for $9.00 + 1.00 p&h; and IC1, No. 3511, for $15.00 + 1.00 p&h.
TABLE I—8080 ASSEMBLY LISTING
Assembly listing for 8080 (IMSAI). Inputs three most significant digits and writes to front panel.

4000	3E 11	BGN	MVI	A, 11H	Load A with Dig2, Ch1
4002	C0 38 40	CALL	INPUT		
4005	32 35 40	STA	DIG2		
4008	3E 21	MVI	A, 21H	Dig3, Ch1	
400A	C0 38 40	CALL	INPUT		
400D	32 36 40	STA	DIG3		
4010	3E 21	MVI	A, 21H	Dig4, Ch1	
4012	C0 38 40	CALL	INPUT		
4015	32 37 40	STA	DIG4		
4018	3E 00	MVI	A, 00H		
401A	2A 35 40	LHL	DIG2	UG2 L, Dig3 H	
401D	BC	CMP	H	Compare H for 0	
401E	06 00	MVI	B, 00H	Clear B	
4020	C4 4A 40	CNZ	SUB	Gobif H=0	
4023	3A 37 40	LDA	DIG4		
4026	FE 00	CPI	00H		
4028	C0 2A 40	JZ	WRT	If A=0, fall thru	
402C	3E 64	MVI	A, 64H		
402D	80	WRT	ADD	B	
402E	2F	CMA	Invert data		
402F	D3 FF	JMP	BGN	Do again	
4031	C3 00 40	JMP	BGN		
4034	STR	DS	01		
4035	DIG2	DS	01		
4036	DIG3	DS	01		
4037	DIG4	DS	01		
4038	D310	INPUT	OUT	01H	
4040	C0 40 40	INPUT	CALL	DLY	
404C	D1 10	CALL	DLY	Input A/D data	
404F	C9	RET			
4050	11 00 30	DLY	LXI	D, 3000H	
4053	1B	UP	DCY	D	
4054	7A	MOV	A, 0		
4055	B3	ORA	E		
4056	C2 43 40	JMP	NZ	UP	
4059	C9	RET			
405A	C6 0A	SUB	ADI	0AH	
405B	25	DCR	H	H=H-1	
405D	C2 4A 40	NJN	SUB	If H>0, do again	
405F	B5	ADD	L	A=A+H	
5051	47	MOV	B, A	B=A	
4062	C9	RET			
5053	76	HALT			

(Continued from page 45)

TABLE II—6800 OP CODE LISTING
Op code listing for 6800. Inputs four digits from channel 1 and stores data in memory in BCD format.

01	BDN	LOAA	01H	Load digit 1, channel 1 into A
02	BSR	INPUT		
03	STAA	DIG1		
04	LOAA	11H	Store A in memory	
05	BSR	INPUT		
06	STAA	DIG2		
07	LOAA	21H		
08	BSR	INPUT		
09	STAA	DIG3		
10	LOAA	31H		
11	BSR	INPUT		
12	STAA	DIG4		
13	JMP	BGN	Do again	
14	DIG1	RES	01	
15	DIG2	RES	01	
16	DIG3	RES	01	
17	DIG4	RES	01	
18	INPUT	STAA	Insert output port 6800-6800=200-msec delay for A/D settling	
19	BSR	DLY	01H	
20	STAA	Insert output port 1600-800=200-msec delay		
21	RTS			
22	DLY	LOAA	--	
23	UP	LOAD	--	
24	UP	SUBB	01	
25	BGT	UP	do until B=0	
26	SUBA	B		
27	BGT	UP	do until A=0	
28	RTS			

mines the reference voltage used by IC1. The other passive components determine clock frequency, provide signal filtering, and interconnect IC1.

Software. The digit and channel select codes are shown in Fig. 2A. The values shown are in hexadecimal code. To use the table, move down the rows until the proper digit is located. Then move over until the proper channel is located. The hex number at this point is the data to be written to the output port to set up the converter. The strobe that enables the output port (EN) must be active low when connected to the converter. If necessary, an inverter can be wired into the circuit to perform the inversion.

When reading data from the converter, it is necessary to access only the correct input port. Examples of programs written for an 8080, 6800, and 2650 are shown in Tables I through III. The program flow is essentially the same for any 8-bit computer. The digit/channel information is loaded into a register and then the program is stepped to a subroutine (INPUT) and outputs that register to the output port. A 200-msec delay (DLY) subroutine is used to allow the A/D converter to settle. Then the data is read from the input port into a register.

Upon returning from the INPUT subroutine, the BCD digit is stored in memory (DIGX) and is repeated for each digit required before branching back to the
TABLE IV—BASIC SAM GAME

<table>
<thead>
<tr>
<th>ADDRESS</th>
<th>INSTRUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>RESTORE</td>
</tr>
<tr>
<td>0010</td>
<td>READ, R, W, M, P, Z</td>
</tr>
<tr>
<td>0020</td>
<td>DATA O, = 1, 0, 11, 0 REM sets up port 0, channel 1, digit 0</td>
</tr>
<tr>
<td>0100</td>
<td>EXIT10, 0, 33</td>
</tr>
<tr>
<td>0105</td>
<td>X=SIN(1) REM delay for A/D settling</td>
</tr>
<tr>
<td>0110</td>
<td>EXIT10, B REM reads port 0, channel 1, digit 0 into B</td>
</tr>
<tr>
<td>0120</td>
<td>EXIT10, 0, 49</td>
</tr>
<tr>
<td>0125</td>
<td>EXIT10, 0, A</td>
</tr>
<tr>
<td>0130</td>
<td>EXIT10, 0, 34</td>
</tr>
<tr>
<td>0135</td>
<td>X=SIN(1)</td>
</tr>
<tr>
<td>0140</td>
<td>EXIT10, 0, D</td>
</tr>
<tr>
<td>0150</td>
<td>EXIT10, 0, 50</td>
</tr>
<tr>
<td>0155</td>
<td>EXIT10, 0, C</td>
</tr>
<tr>
<td>0160</td>
<td>A=INT(A*10+B)*8+1</td>
</tr>
<tr>
<td>0165</td>
<td>C=(C*10+D)*A</td>
</tr>
<tr>
<td>0170</td>
<td>ERASE REM clears screen</td>
</tr>
<tr>
<td>0175</td>
<td>IF R>17 GOTO 1010</td>
</tr>
<tr>
<td>0200</td>
<td>W=W+1</td>
</tr>
<tr>
<td>0210</td>
<td>IF W>10 W=10</td>
</tr>
<tr>
<td>0220</td>
<td>IF P<0 P=0</td>
</tr>
<tr>
<td>0240</td>
<td>PRINT@15, 0890 PRINT@15, 5 FIRE missiles fired'wv</td>
</tr>
<tr>
<td>0250</td>
<td>PRINT@15, 0880 PRINT@A.0+1'X DESTROYED'</td>
</tr>
<tr>
<td>0260</td>
<td>0850</td>
</tr>
<tr>
<td>0270</td>
<td>0840</td>
</tr>
<tr>
<td>0280</td>
<td>0830</td>
</tr>
<tr>
<td>0290</td>
<td>0820</td>
</tr>
<tr>
<td>0300</td>
<td>0810</td>
</tr>
<tr>
<td>0310</td>
<td>0800</td>
</tr>
<tr>
<td>0320</td>
<td>0790</td>
</tr>
<tr>
<td>0330</td>
<td>0780</td>
</tr>
<tr>
<td>0340</td>
<td>0770</td>
</tr>
<tr>
<td>0350</td>
<td>0760</td>
</tr>
<tr>
<td>0360</td>
<td>0750</td>
</tr>
<tr>
<td>0370</td>
<td>0740</td>
</tr>
<tr>
<td>0380</td>
<td>0730</td>
</tr>
<tr>
<td>0390</td>
<td>0720</td>
</tr>
<tr>
<td>0400</td>
<td>0710</td>
</tr>
<tr>
<td>0410</td>
<td>0700</td>
</tr>
<tr>
<td>0420</td>
<td>0690</td>
</tr>
<tr>
<td>0430</td>
<td>0680</td>
</tr>
<tr>
<td>0440</td>
<td>0670</td>
</tr>
<tr>
<td>0450</td>
<td>0660</td>
</tr>
<tr>
<td>0460</td>
<td>0650</td>
</tr>
<tr>
<td>0470</td>
<td>0640</td>
</tr>
<tr>
<td>0480</td>
<td>0630</td>
</tr>
<tr>
<td>0490</td>
<td>0620</td>
</tr>
<tr>
<td>0500</td>
<td>0610</td>
</tr>
<tr>
<td>0510</td>
<td>0600</td>
</tr>
<tr>
<td>0520</td>
<td>0590</td>
</tr>
<tr>
<td>0530</td>
<td>0580</td>
</tr>
<tr>
<td>0540</td>
<td>0570</td>
</tr>
<tr>
<td>0550</td>
<td>0560</td>
</tr>
<tr>
<td>0560</td>
<td>0550</td>
</tr>
<tr>
<td>0570</td>
<td>0540</td>
</tr>
<tr>
<td>0580</td>
<td>0530</td>
</tr>
<tr>
<td>0590</td>
<td>0520</td>
</tr>
<tr>
<td>0600</td>
<td>0510</td>
</tr>
<tr>
<td>0610</td>
<td>0500</td>
</tr>
<tr>
<td>0620</td>
<td>0490</td>
</tr>
<tr>
<td>0630</td>
<td>0480</td>
</tr>
<tr>
<td>0640</td>
<td>0470</td>
</tr>
<tr>
<td>0650</td>
<td>0460</td>
</tr>
<tr>
<td>0660</td>
<td>0450</td>
</tr>
<tr>
<td>0670</td>
<td>0440</td>
</tr>
<tr>
<td>0680</td>
<td>0430</td>
</tr>
<tr>
<td>0690</td>
<td>0420</td>
</tr>
<tr>
<td>0700</td>
<td>0410</td>
</tr>
<tr>
<td>0710</td>
<td>0400</td>
</tr>
<tr>
<td>0720</td>
<td>0390</td>
</tr>
<tr>
<td>0730</td>
<td>0380</td>
</tr>
<tr>
<td>0740</td>
<td>0370</td>
</tr>
<tr>
<td>0750</td>
<td>0360</td>
</tr>
<tr>
<td>0760</td>
<td>0350</td>
</tr>
<tr>
<td>0770</td>
<td>0340</td>
</tr>
<tr>
<td>0780</td>
<td>0330</td>
</tr>
<tr>
<td>0790</td>
<td>0320</td>
</tr>
<tr>
<td>0800</td>
<td>0310</td>
</tr>
<tr>
<td>0810</td>
<td>0300</td>
</tr>
<tr>
<td>0820</td>
<td>0290</td>
</tr>
<tr>
<td>0830</td>
<td>0280</td>
</tr>
<tr>
<td>0840</td>
<td>0270</td>
</tr>
<tr>
<td>0850</td>
<td>0260</td>
</tr>
<tr>
<td>0860</td>
<td>0250</td>
</tr>
<tr>
<td>0870</td>
<td>0240</td>
</tr>
<tr>
<td>0880</td>
<td>0230</td>
</tr>
<tr>
<td>0890</td>
<td>0220</td>
</tr>
<tr>
<td>0900</td>
<td>0210</td>
</tr>
<tr>
<td>0910</td>
<td>0200</td>
</tr>
<tr>
<td>0920</td>
<td>0190</td>
</tr>
<tr>
<td>0930</td>
<td>0180</td>
</tr>
<tr>
<td>0940</td>
<td>0170</td>
</tr>
<tr>
<td>0950</td>
<td>0160</td>
</tr>
<tr>
<td>0960</td>
<td>0150</td>
</tr>
<tr>
<td>0970</td>
<td>0140</td>
</tr>
<tr>
<td>0980</td>
<td>0130</td>
</tr>
<tr>
<td>0990</td>
<td>0120</td>
</tr>
<tr>
<td>1000</td>
<td>0110</td>
</tr>
<tr>
<td>1010</td>
<td>0100</td>
</tr>
<tr>
<td>1020</td>
<td>0090</td>
</tr>
<tr>
<td>1030</td>
<td>0080</td>
</tr>
<tr>
<td>1040</td>
<td>0070</td>
</tr>
<tr>
<td>1050</td>
<td>0060</td>
</tr>
<tr>
<td>1060</td>
<td>0050</td>
</tr>
<tr>
<td>1070</td>
<td>0040</td>
</tr>
<tr>
<td>1080</td>
<td>0030</td>
</tr>
<tr>
<td>1090</td>
<td>0020</td>
</tr>
<tr>
<td>1100</td>
<td>0010</td>
</tr>
<tr>
<td>1110</td>
<td>0000</td>
</tr>
</tbody>
</table>

This program prints a missile launching site, a factory, an airplane (bomber), and a printout of the airplane's and missile's range and bearing. When FIRE appears at the bottom of the screen, type a number 11 through 101 for the number of missiles you wish to fire. The missiles will fire in sequence. Type 22 to clear the screen and display the missile range and bearing adjustments. You may then adjust the controls to alter these values. After 5 shots, the program will return to FIRE. If you input 1 (CTRL), then carriage-return/line-feed, an arrow will print the track of the missile until it reaches its range, and an X will appear to simulate an explosion. The object is to hit the plane on its fuselage, in which case, X DESTROYED will be printed. You have 10 missiles. If you do not destroy the plane in 10 shots, or if the plane reaches space 50 on the screen before you destroy it, the plane will destroy the factory. The aircraft will progress across the screen at the rate of 4 spaces for each missile fired. However, the plane will move up and down by a random amount (line 0410 controls this).

Note that the FIRE 22 routine does not subtract from the missiles remaining, but you cannot destroy the plane in this routine either. All entries must be followed by CTRL. After each missile is fired, and FIRE is displayed, you can adjust the range and bearing controls to alter the missiles course and range.

The 8080 listing also includes a routine to convert the three most significant digits into hex code and place the result in storage (STR). When programming, allow for the fact that this data has no decimal point.

Some typical input adapters are shown in Fig. 2B through 2F; B, C, and E are conventional, while D illustrates a temperature converter. If you use this or a similar circuit, allow for any voltage offset in this type of converter. Also, keep in mind that only the two least significant digits are required for a temperature reading. This data should be viewed as relative and not absolute. Decisions should be based on exceeding a relative number, rather than a specific number of degrees. For example, if the temperature converter is adjusted for an output of 1.050 volts at 25° C and the voltage decreases by 2.3 mV/C, the program can be written to do something when the temperature is 20° C, or 1.039 volts. The 1.039 volts is related to the temperature but is not actually in degrees.

Figure 2F illustrates a joystick (or two independent potentiometers) for use in game programs.

A BASIC program to play the game SAM is shown in Table IV. Note that the data written to the output port (EXITOUT) is in decimal, rather than in hex. The REM statements should help explain the program. Table V illustrates a 4-channel DVM program, which is also written in BASIC.

Construction. An actual-size etching and drilling guide and a component-installment diagram for the A/D converter are shown in Fig. 3. During assembly, note the polarity of C4 and, if you wish, use sockets for the IC's. Note also that there are provisions on-board for optional inverters (IC's or discrete transistors); these can be Wire Wrapped.

When installing the IC's, observe the usual precautions for handling MOS devices. Since the 5-volt power supply is also used as the reference, make sure it is well regulated and stable. After assembly, adjust R1 for as near to an exact 2.000 volts at pin 16 as possible.

If your system employs an active high strobe, use an inverter. Flat ribbon cable can be used to interconnect the converter to the host computer. If desired, a 16-pin socket can be mounted at one of the extra positions on the board, and, with Wire Wrap, it can be used to make the external connections instead of the edge connector shown.

Testing. After assembling the board
and adjusting $R1$ for the 2-volt reference, load a driver program and check the system for accuracy. If the data appears to be unstable, check the 200-ms delay between the output port strobe and the input port strobe. You may have to vary the values loaded into the DLY routine until the correct delay is obtained. This delay is required only when the channel information is first changed. If only one channel is used, the delay need be used only the first time the channel is selected.

The 6800 program shown is not exact; it is given here as an example of a driver routine for the 6800 CPU. The 8080 program, tested in an 8080-based computer, uses I/O port 10H and a delay (DLY) routine for a 2-MHz system. The CMA and OUT-OFFH instruction invert the data and write it into the front panel. Location 4034 reserves one byte of memory that can be used to store the hex data, if desired. The 2650 program was written for and tested on a Central Data computer. The port used here was OOH, and the DLY routine is for a 1.25-MHz clock.

The A/D converter offers the computer user an inexpensive way for his computer to "communicate" with the analog happenings that dominate our lives. It offers a multitude of ways of sensing and measuring analog data not possible in a simple keyboard-entry system.
MANY GOOD electronic project designs never get built because the usual methods of making printed-circuit boards are just too laborious for one-time projects. In this article, we will describe a design-and-fabrication system that can take much of the time and effort out of making pc boards. Using the procedure outlined here, you can, with a few simple and inexpensive tools, lay out and fabricate a pc board in about the same time it would take you to build a circuit using point-to-point wiring.

Initial Phase. Once you have completed your circuit design, breadboard the circuit and thoroughly check out its operation. Only when you are satisfied with the circuit's operation can you draw up a full working schematic diagram.

To illustrate the etching-and-drilling guide layout procedure, we will use the sample schematic diagram shown in Fig. 1. (This circuit is a different configuration of the Snare Accessory featured in the September 1977 “Cabonga” article; see “How It Works” box for description of circuit operation.) Tape a sheet of tracing paper over your schematic diagram or make a photocopy of the diagram. Then start your layout by drawing the IC’s as they physically appear with their leads pointing toward you. While you can work directly on graph paper, sizing and spacing your layout for the specific components you will be using, you can also use plain blank paper.

The next step is to draw in the other components near the IC’s to which they will be connected. As you draw in each component and complete each interconnection, keep tabs of your progress on
the schematic's tracing paper or the photocopy. Bear in mind that for every connection you must enter a dot. For example, pins 6 and 7 of IC3 and the top of R11 in Fig. 1 must each have a dot indicated (see Fig. 2).

If connecting lines cannot be made without crossing previously drawn lines, try to rearrange the components and/or reroute the lines to eliminate the crossovers. However, if repeated attempts fail to eliminate crossovers, you must use jumpers. You do this by indicating two dots and a line labelled "J" for each jumper you must use. Do not hesitate to use jumpers where necessary; a medium-sized pc board with 10 to 20 jumpers is not uncommon.

While lines between components cannot be interconnected without using jumpers, connecting lines can pass between the dots in the areas that will be occupied by resistors, capacitors, diodes, etc., since the component and the connecting line will be on opposite sides of the board. A good example of this is the -V line that passes between the padds for R4, R5, and D1 in Fig. 2.

The connections between the pc board and external components J1, S1, R13, and R6 are shown originating from dots on the pc guide and terminating at the external components via curved lines. Note, too, that all components on the guide are identified, either by symbol number (IC1, R2, D1, etc.) or by component value (10 µF, 100K, etc.).

In most cases, you will discover that the physical layout of the etching-and-drilling guide closely resembles the lay-out of the schematic diagram's components. You can check this by comparing Fig. 1 with Fig. 2.

At this point, it is best to breadboard your circuit once again, carefully following the layout just drawn. Power the circuit up and again check its operation. In some rare cases, you may have to rearrange component placement and/or reroute conductors to eliminate unwanted effects. For example, in very high gain audio circuits, you want to get the inputs and outputs as far apart from each other as possible to prevent feedback. Also, in vhf and uhf circuits, you want lead lengths and component spacing as short as possible to prevent excessive signal losses and reduce the chances of interactions. This done, you can proceed to the final layout phase.

Fig. 1. Example of circuit for which pc board is to be made. See "How It Works" on next page for circuit details.

Fig. 2. Redraw circuit as it will be laid out physically.

HOW IT WORKS

Transistor Q1 serves as a noise source that generates a constant approximation of a white-noise signal. The signal is coupled through C1 to the input of summing amplifier IC1A.

A positive-going trigger pulse applied to J1 is routed to the base of Q2 where it is inverted and coupled through C3 to pin 2 of one-shot timer IC3. The inverted pulse triggers IC3 to produce a 0.25-second positive-going output pulse that is coupled to the input of IC1A and also quickly charges C6 through R15. Capacitor C6 immediately begins to discharge at an exponential rate determined by the values of R12 and R15 and the setting of DECAY control R13. Diode D1 reverses biases as the potential across C6 decays, thus isolating the output of IC3, which would tend to maintain a full charge on C6. In this manner, a voltage envelope with a very fast attack time and an adjustable exponentially decaying release time is generated and used to control the gain of transconductance amplifier IC2.

The gain of IC2 is set by the level of the voltage envelope and the value of R14. The output of IC2 is a combination of the noise signal and the pulse from IC3 (a drum-stick-strike sound) whose voltage envelope is the control voltage described above. Resistor R5 serves as the load for IC2. Integrated circuit IC1B buffers the signal and D2 clips the negative portion of the IC1B output to produce a realistic sound effect. Potentiometer R6 provides for a variable output level.

(Continued on page 52)
Finalizing the Layout. The final layout of the etching and drilling guide is essentially a redrawing of the rough layout to the exact scale of the components you plan to use. You can do the layout directly on graph paper and use it as a guide for drilling holes and transferring to the pc blank simple circuit designs with an etch-resist pen. For more complex and critical layouts, it is best to tape a sheet of clear Mylar over the graph paper and use pc artwork aids (donuts, IC pad patterns, tapes, etc.) to lay out the guide. This guide can then be used directly to expose positive photoresist treated pc blanks. For the remainder of this article, we will concentrate on the use of the paper guide. Mylar film guides are used in the traditional manner.

As you work up your layout, plot your progress on either the rough layout or a piece of tracing paper taped over the rough layout.

Typical spacing between component lead pad centers and copper foil conductor widths and spacings between foil conductors are detailed in the Table. For components not listed, take the dimensions directly from the actual components you will be using in your project.

When the final layout is completely drawn up, indicate all component locations by schematic designation and orientation. See Fig. 3 for details.

Making the PC Board. Trim and fold your final layout as illustrated in Fig. 4. Then cut the pc blank to the exact size of the folded guide and remove any burrs from the cut edges with a file. Fold the guide over the pc blank with the copper side of the blank directly under the guide. Secure the loose tabs of the guide to the blank side of the pc blank with masking tape (Fig. 5).

Lightly indent the pc blank in the center of every hole location with a sharp-pointed center punch or an awl. Drill a hole at every hole location through both the guide and the board.

When all holes are drilled, carefully remove the guide from the blank and store it away for later reference. Give the pc blank a thorough cleaning with No. 00 steel wool (do not use the type of steel wool that comes saturated with its own soap). Once the blank is cleaned, handle it only by its edges.

The pad-and-conductor pattern on the guide can easily be reproduced on the pc blank with a resist pen because the drilled holes themselves provide a "map" on which to build. In most cases, the resist pattern can be laid down with nothing more than the resist pen, working freehand. If you have a relatively complex pattern that must accommodate many IC's, you can speed the operation with the aid of rub-down pads and fill conductor lines and discrete-compo-
nent pads freehand with the resist pen. As you work, be certain to fill in the areas around the drilled holes with resist to assure that, during etching, excessive copper will not be removed.

When you are finished reproducing the pattern on the pc blank, carefully compare it with your final-layout guide. The two must be identical. If you have made an error, you can correct it by erasing with an ordinary pencil eraser and laying down new resist.

Pour pc etchant (ferric chloride or ammonium persulfate) into a plastic or glass tray to a depth of about 1/4" (6.4 mm). Place the prepared pc blank copper-side down into the tray and slowly agitate the solution by rocking the tray gently. Periodically check your progress with the etching action by carefully lifting one end of the pc blank with a toothpick. When etching is complete, all the copper cladding from the uninked areas will be etched away. At this point, you can remove the pc board from the etchant and thoroughly rinse it under running water. (Discard the used etchant. Don’t try to save it for re-use.)

Now remove the etch-resist ink from the copper pattern remaining on the board. Use scouring powder and steel wool under running water for this. Then pat the board dry with a paper towel.

The only thing remaining now is to install and solder into place the components that go on the board. Use your final-layout guide as a reference to component locations and orientations.

Fig. 5. Cover pc blank with trimmed artwork (A), fold flaps under (B), secure with tape (C).

Our new 8020A digital multimeter puts typical benchtop-type measurement capability in your pocket, your briefcase or your tool kit. And it puts true Fluke value in your hand. At only $169,* the 8020A has features you won’t find on any other multimeter, at any price.

Features like 26 ranges for seven functions, including conductance that measures leakage to 10,000 MΩ. Dependable CMOS LSI single-chip innovation, custom designed for the 8020A. It’s only 13 ozs. of reliable, shock-resistant measurement perfection. All guaranteed for a full year, including specs and its NBS-traceable calibration.

Benchtop performance for $169.* And Fluke’s dedication to after-sale support, with service centers located worldwide for fast, cost-effective support. A priceless combination.

Call (800) 426-0361, toll free. We’ll tell you the location of the closest Fluke office or distributor for a personal feel for the best DMM value around.

*U.S. price.

Command Performance: Demand the Fluke 8020A.
A New IHF Standard for Amplifier Measurement

Latest standard reflects advances in audio technology and understanding of psychoacoustics.

Ampifier specification sheets will soon be more meaningful than ever before, thanks to the new amplifier measurement standard recently approved by the Institute of High Fidelity. Officially entitled "Standard Methods of Measurement for Audio Amplifiers, IHF-A-202 1978," it spells out test conditions and procedures covering each aspect of amplifier performance considered by the Institute to be significant in high-fidelity applications. In all, the standard describes 28 ratings.

For a power amplifier to carry an IHF rating, a few primary specifications must be listed:
- Continuous Average Power Output
- Dynamic Headroom
- Frequency Response
- Sensitivity
- A-Weighted Signal-to-Noise Ratio

A preamplifier specification sheet must include:
- Frequency Response
- Maximum Output Voltage
- Total Harmonic Distortion
- Sensitivity
- A-Weighted Signal-to-Noise Ratio
- Maximum Input Signal
- Input Impedance

Integrated or control amplifier literature should contain the following preferred specifications: Continuous Average Power Output (including the rated bandwidth, load impedance and total harmonic distortion); Dynamic Headroom; Frequency Response; Sensitivity; A-Weighted S/N; Maximum Input Signal; and Input Impedance.

In addition, there are a number of secondary disclosures that can be included at the manufacturer's option. Let's examine the key primary specifications first and then briefly look at some of the secondary disclosures.

Continuous Average Power Output has been included in the new standard to satisfy the Federal Trade Commission's 1974 "Power Rule." It specifies the minimum continuous output power each amplifier channel can deliver into a given load (usually 8 ohms resistive) over a specified bandwidth (usually 20 to 20,000 Hz) with a given total harmonic distortion content (in percent) when all channels are driven simultaneously. Thus, continuous average power output informs the prospective purchaser how much power the amplifier can deliver over the long term.

It is a well-known characteristic of many amplifiers, however, that they can generally provide more output power for brief intervals than they can on a continuous basis. The earlier IHF standard, which had been in use since 1966, provided for two power specifications—continuous power and "IHF Dynamic (or Music) Power, both measured in watts.

The latter was intended to give the purchaser an idea of how much power the amplifier could deliver for brief intervals. To avoid confusion, IHF-A-202 1978 specifies only continuous average power output in watts. A new specification has been developed to describe the amplifier's short-term power capability.

Dynamic Headroom is the name of this new amplifier specification. Rated in dB, dynamic headroom expresses the ratio of an amplifier's power output for short periods of time to its continuous power capability. Accordingly, if an amplifier has a dynamic headroom of 3 dB, it can deliver twice its continuous power rating for brief intervals. The nature of high-fidelity program material—low average levels accompanied by occasional high-level transients—makes this specification of special interest to the audiophile. Here's why.

In a typical home audio system, one watt or less per channel of average, continuous power output is enough to drive the speakers to normal listening levels. Transient peaks of, say, 20 dB will call on the amplifier to briefly supply 100 watts to each speaker. If the amplifier can deliver such power levels, it will not "clip" the transient peaks. Therefore, the speakers will be able to generate a pleasing, full sound. If the amplifier clips the peaks, the sound will lack depth; if
You know what Technics quartz-locked direct drive does for records. Now listen to what it does for cassettes.

Accuracy good enough for even the most demanding professional, that's what Technics quartz-locked direct-drive turntables are all about. And that's why radio stations use them and disc jockeys love them.

Now you can record your records as accurately as a Technics turntable! With the RS-M85, our new quartz-locked direct-drive cassette deck. Not only does it have the kind of transport accuracy that's hard to beat, it has that kind of price, too. The reason for all this accuracy: The performance of Technics direct drive combined with the precision of our quartz oscillator.

The RS-M85's servo-controlled system compensates the motor rotation with the unwavering frequency of the quartz oscillator and instantly applies corrective torque if any speed deviations are detected.

To complement that accuracy, Technics RS-M85 has a Sendust head with a high-frequency response of 18,000 Hz, low distortion and excellent dynamic range.

Since there's nothing ordinary about the RS-M85's performance, there's nothing ordinary about its meters. The RS-M85 features fluorescent Bar-Graph meters. They're completely electronic and therefore highly accurate. Response time is a mere 5µs.

There's also a peak-check mode plus two selectable brightness levels.

To all this sophistication, the RS-M85 adds all this: A separate, coreless DC motor for reel drive. Dolby NR® Full IC logic control in all modes. A low-noise, high-linearity amplifier section. And a 3-position bias/EQ selector with bias fine adjustment.

Also available is Technics RP-070. An optional full function infrared wireless remote control.

FREQ. RESF (CrO2): 20-18,000 Hz. WOW AND FLUTTER: 0.035% WRMS. S/N RATIO (DOLBY): 69 dB. SPEED DEVIATION: No more than 0.3%.

*Dolby is a trademark of Dolby Laboratories, Inc.

Technics Professional Series
CIRCLE NO. 57 ON FREE INFORMATION CARD
clipping is severe, it'll be very distorted.
As an example of the foregoing, let's examine a hypothetical system with a peak output power requirement of 100 watts for undistorted sound reproduction of each channel. There are two ways to get this amount of output power—either purchase an amplifier whose continuous power output is 100 watts/channel, or choose an amplifier with a lower continuous power output rating but with sufficient dynamic headroom to reach 100 watts/channel on peaks. For example, a 50-watt/channel (continuous) amplifier with 3 dB of dynamic headroom will provide the needed 100 watts/channel on a momentary basis.

Both amplifiers will sound equally loud because perceived loudness is a function of average audio output. This is illustrated by the heavily compressed audio tracks of some television and radio commercials. These messages sound louder than normal program material because their average levels are higher. Peaks, however, are the same for both—they must not exceed FCC modulation limits. Depending on its dynamic headroom, the higher-power amplifier might be able to provide even more output on peaks, but in our application this reserve might never be tapped. Also, this amplifier will loaf along most of the time, delivering its rated (continuous) power for only brief intervals of time.

Dynamic headroom is really a function of voltage regulation in the amplifier's power supply. A typical amplifier's supply might consist of a power transformer, a full-wave or bridge rectifier, and two filter capacitors. The supply is designed to deliver a bipolar dc output, \(+V_{CC} \) and \(-V_{CC} \), to a complementary-symmetry amplifier circuit. Charge is delivered to the two filter capacitors at a 120-Hz rate. When the amplifier is first turned on (but before any input signals are applied), the capacitors are charged up to a given voltage.

Under quiescent (no signal) conditions, the rectifier can supply more than enough charge to the capacitors to make up for that drawn by the amplifier circuit. Thus, voltages across the filter capacitors, \(+V_{CC} \) and \(-V_{CC} \), remain constant. (We are assuming that the amplifier is operating in the Class AB or B mode.) However, when the amplifier is driven so that it is providing appreciable amounts of output power, the rectifier is not able to replenish the capacitors' charge as fast as the amplifier is depleting it. Therefore, \(+V_{CC} \) and \(-V_{CC} \) decrease until equilibrium is reestablished.

For example, assume that the quiescent voltages across the capacitors are \(\pm 40 \) volts. This implies that the amplifier will be able to deliver an 80-volt peak-to-peak or 28.3-volt rms sine-wave output, or 100 watts continuous into 8 ohms. Placing a voltmeter across the power supply output, however, shows us that the voltages drop to, say, \(\pm 35 \) volts when the amplifier is being heavily and continuously driven. The amplifier can therefore deliver a 70-volt peak-to-peak or 24.7-volt rms sine-wave output, which corresponds to 76.5 watts continuous into 8 ohms, before it starts to clip the waveform.

If the amplifier under consideration is driven to maximum output by narrow pulses or transient spikes, \(+V_{CC} \) and \(-V_{CC} \) remain at their quiescent values. The low duty cycle of such an input waveform keeps appreciable amounts of charge from being drained from the capacitors. As a result, a full 80-volt peak-to-peak (or 100 watts peak into 8 ohms) output can be obtained without clipping. Because musical waveforms resemble such input signals, 100 watts of output power on musical peaks can also be obtained. Such an amplifier, therefore, has a dynamic headroom of 20 dB (28.3 V/24.7 V), 10 log (100 W/76.5 W), or 1.16 dB.

If an amplifier's power supply is stiffly regulated, either by using massive filter capacitors which can store very large amounts of charge, by the use of zener diodes or IC regulators and pass transistors, or by a combination of both techniques, its output voltages will vary little, if at all, when large demands are placed on it. This amplifier will have a dynamic headroom of 0 dB. This means that no more power is available on peaks of a low-duty-cycle waveform (such as music) than is available on a continuous, steady-state sine-wave basis.

Test Procedure. To make dynamic headroom a meaningful audio specification, the IHF devised a test signal and procedure which approximates what happens to an amplifier when it is driven by music signals. A photograph of the
osilloscope trace produced by the first 60 milliseconds of the test signal is shown in Fig. 1. It comprises 20 cycles of a 1000-Hz sine wave, followed by 480 cycles of a sine wave at the same frequency at −20 dB relative to the high-level tone burst. This waveform is repeated every 500 milliseconds. Musical peaks lasting more than 20 milliseconds (the high-level portion of the test signal period) are rare, and apparently do not occur as often as twice in one second. The test signal, therefore, is more demanding than typical music waveforms, while the rate of repetition makes measurement more convenient. The test procedure is as follows.

A continuous train of 1000-Hz sine waves is applied to the amplifier input, with the output monitored on an oscilloscope. The amplifier’s gain is adjusted so that the rated continuous average power output is delivered to the rated load impedance. Figure 2 shows this output on a scope whose vertical sensitivity is 10 volts/cm. As you can see, the peak-to-peak output voltage is 40 volts, which corresponds to 25 watts into 8 ohms, the rated continuous average power of the amplifier under test.

Next, the test signal shown in Fig. 1 is applied to input jacks of both channels of the amplifier, while the output is carefully monitored on the scope. The test signal’s amplitude is adjusted so that clipping of the high-level portion of the output waveform barely becomes visible (Fig. 3). This portion of the amplified test signal is 6-cm high, so it is 60 volts peak-to-peak across the 8-ohm load.

The amplifier’s dynamic headroom can now be calculated using the expression

\[DH = 20 \log (V2/V1) \]

where \(V2 \) is the peak-to-peak voltage of the high-level portion of the amplified test signal and \(V1 \) is the peak-to-peak voltage of the output sine wave delivered by the amplifier to the rated load when it is producing its rated continuous average output power. \([\text{Alternatively, the rms values of these voltages can be used in place of the peak-to-peak values, or the two respective power levels in watts can be inserted into the familiar } 10 \log (P2/P1) \text{ formula.}]\) In the case of the amplifier under test, the dynamic headroom is 20 log (60/40) or 3.52 dB. In general, dynamic headroom is expected to vary from 0 dB for an amplifier with a very well-regulated supply to 3 dB or so for an amplifier which can deliver twice its rated continuous power on an intermittent basis.

Frequency Response. Under the new standard, this measurement must be performed so that the amplifier is subjected to standard test conditions, which are spelled out in the second section of IHF-A-202 1978. An amplifier’s frequency response can be measured after a 0.5-volt signal has been applied to its input, and its gain control adjusted so that a 1-watt output signal is delivered to the rated load. Previously, this measurement was performed at maximum amplifier gain, the most favorable setting for high-end response in some amplifiers. Also, the frequency response must now be given as \(+X, -Y \) dB referenced to the amplifier’s output at 1000 Hz. Accordingly, an amplifier’s response must appear as, say, \(+0, -2 \) dB from 7 to 70,000 Hz rather than \(\pm 1 \) dB over the same bandwidth. A phono preamplifier’s frequency response will appear as a plus-and-minus equalization error in db referenced to 1000 Hz.

For a preamplifier, input signals must be 0.5 volt for a line (Aux, Tape, Tuner) input, 5 mV for a moving-magnet phono input, and 500 \(\mu \)V for a moving-coil phono input. The preamplifier’s gain control should be adjusted to produce 0.5 volt into the new standard preamplifier load—10,000 ohms in parallel with 1000 pF; and all tone controls, filters, etc., should be defeated or at least set to their nominally flat positions. Standard input terminations should also be used—1000 ohms for line and moving-magnet phono inputs and 100 ohms for moving-coil phono inputs.

Sensitivity. In the past, this specification has been used to relate how much input signal was required to drive a component to its rated output. The new standard defines sensitivity as the input signal required to drive a component to the appropriate reference output (0.5 volt for a preamp, 1 watt for an amplifier) into its standard output termination.

This means that sensitivity figures published in accord with the new standard will be lower than those previously published, giving the impression that the new crop of audio components are much more sensitive. Let’s consider a practical example.

Assume that one 100-W amplifier can be driven to rated continuous average power output by a 1-volt rms input signal, and that another requires the same 1-volt rms input to produce its rated continuous average power output of 10 watts. Under the old system, both amplifiers would have the same sensitivity rating—1.0 volt. However, with the new standard, their sensitivities differ substantially as the following illustrates.

For an amplifier driven by a sine-wave input to deliver 100 watts to an 8-ohm load, it must produce a 28.28-volt rms output waveform. For 10 watts, the output voltage is 8.94 volts rms; for 1 watt, 2.828 volts rms. The 100-watt/channel amplifier has a voltage gain of 28.28. But the 10-watt/channel amplifier’s voltage gain is only 8.94. Therefore, the 100-watt/channel amplifier requires only 0.1 volt rms if it is to produce the reference 1 watt output. The 10-watt/channel amplifier, on the other hand, requires a 0.313-volt rms input to produce the same 1-watt reference output. The two amplifiers’ “new” IHF sensitivities differ by slightly more than a factor of three, and are 0.1 and (about) 0.3, respectively, of their “old” sensitivities.

A-Weighted S/N. Signal-to-noise ratios published under the auspices of the new IHF standard will differ from those determined by other methods for several reasons. In measuring a component’s signal-to-noise ratio, a manufacturer will typically apply an input signal of a given strength (the exact amplitude varies from one manufacturer’s test procedure to the next) and adjust the component’s gain so that it is producing its rated output. Next, the input signal source is replaced with a short circuit, whereupon the output signal’s amplitude is measured. The resulting ratio of the component’s output amplitude when its input is shorted to the rated output is the signal-to-noise ratio.

As straightforward as this procedure seems, there are several variables associated with it that can cause confusion when one manufacturer’s ratings are compared to those of another. One problem area is the amount of input signal used to drive the component to its rated output. Consider, for example, the effect of input signal level on the signal-to-noise ratio of a phono preamplifier. Some manufacturers perform this test with a 2- or 3-millivolt input signal, which
is enough to drive the preamplifier to its rated output with the volume (gain) control at its maximum setting. Others, recognizing that most moving-magnet cartridges produce considerably higher outputs when they track heavily recorded passages, apply 10 mV to the phono input. They then advance the volume control until the preamplifier produces its rated output.

Obviously, applying a greater input signal to the preamplifier means that less gain is required if the preamplifier is to produce its rated output. This results in a greater signal-to-noise ratio because the noise, most of which is generated in the input circuit before the volume control, will be amplified less. Also, referencing a component’s signal-to-noise ratio to its rated output makes comparison to the signal-to-noise ratio of another component misleading unless both have the same rated output or a corrective factor is introduced to put both components on an equal footing.

The new standard attempts to set matters right by dictating that signal-to-noise measurements be performed in accord with the standard test conditions mentioned earlier. Input levels are to be 5 mV for moving-magnet phono inputs, 500 mV for line level inputs, and 500 µV for moving-coil phono inputs. A component’s gain control is to be adjusted so that the appropriate reference output level (0.5 volt for a preamp, 1 watt for an amplifier) is presented to the standard load impedance.

The way in which a component’s inputs are terminated has also complicated matters. Most noise measurements are made with the inputs shorted to ground. However, the impedance seen by the preamp when driven by an actual cartridge is by no means a short circuit. Measurements made when a cartridge is connected to the preamp’s inputs can vary considerably from those obtained when the inputs are shorted.

To approximate the effect of a phono cartridge, the new standard specifies that the network shown in Fig. 4 be connected to each channel’s moving-magnet phono input when noise measurements are performed. Moving-coil inputs are to be terminated with a 100-ohm resistor and line level inputs with a 1000-ohm resistor. Standard output terminations are also to be used.

Another key area in which signal-to-noise specifications published under the new standard differ is in the area of weighting. The philosophy behind weighting is that not all noise signals are equally annoying to the listener. The famous Fletcher-Munson curves clearly indicate that, at low listening levels, the human ear is considerably more sensitive to midrange frequencies than to bass and, to a lesser extent, treble frequencies. Weighting, therefore, is an attempt to take this characteristic of the ear into account when measuring a quantity such as signal-to-noise ratio. The goal is to make specifications more meaningful so far as “real life” audibility is concerned, not to make the “numbers” look better.

Accordingly, the new standard calls for the use of the ANSI “A” weighting curve shown in Fig. 5A. This curve corresponds to the sensitivity of the human ear at a listening level of 40 phons. It peaks at about 2000 Hz and rolls off (at different rates) above and below that frequency. Weighting can be accomplished by inserting a suitable network between the output of the device under test and the measuring instrument.

Shown in Fig. 5B is an RC network which will provide “A” weighting and also match a 600-ohm output impedance to a test instrument (such as a VTMV) with a high input impedance. If a voltmeter is used to measure noise, the greatest reading will be obtained if the bulk of the noise components are at midrange frequencies. Noise consisting mainly of hum at the power-line frequency or its second harmonic and high-frequency hiss will produce lower readings.

Total Harmonic Distortion. The new standard changes the definition of this key specification. It states that the spectrum analyzer, as opposed to the “old reliable” nulling distortion analyzer, is the preferred instrument to be used to measure THD. Total harmonic distortion in percent is determined as follows:

The amplitudes in rms volts of the fundamental frequency and its harmonics appearing at the output of the device under test are to be measured using a spectrum analyzer. Then the amplitudes of the harmonics are squared, added, and the square root of the resulting sum extracted. The square root is divided by the rms amplitude of the fundamental and the quotient multiplied by 100.

The older method of determining THD, namely by taking the reading from a conventional distortion analyzer, was flawed because it included residual noise in the “distortion.” (The output of the conventional analyzer is now defined as total harmonic distortion plus noise, THD + N.) When measuring distortion at low output power levels, it was difficult to satisfy the FTC requirement that rated distortion not be exceeded at any power level from 0.25 watt to the rated continuous power output.

The problem is illustrated in the following practical example. An amplifier was driven to a high output level by a 1000-Hz sine wave so that its output had

Fig. 5. The “A” weighting curve (top) reflects the ear’s sensitivity vs. frequency at listening level of 70 phons. Circuit below provides “A” weighting and matches 60-ohm output to high-impedance instrument.
a THD content of 1%, as indicated on a conventional harmonic distortion analyzer. (The conventional analyzer nulls out the fundamental component of the amplifier output, measuring the amplitude of remaining signal components.) The amplifier's output is shown as the top oscilloscope trace in Fig. 6, and the output of the distortion analyzer as the lower trace. The output signal was then applied to a spectrum analyzer. The 1000-Hz fundamental of the input signal appears at the center of the spectrum analyzer's output (Fig. 7), and the harmonics to the right. The THD of the amplifier output was calculated to be 1% by including the amplitudes of all harmonics which were less than 10 dB below the strongest harmonic (3000 Hz) in the algorithm previously described. Calculated distortion agreed closely with the reading on the conventional distortion analyzer.

Next, the level of the input signal was reduced so that the output of the amplifier was only 0.25 watt. The output was sampled by the distortion analyzer, and a reading of 1% was obtained. Something was obviously wrong!

Applying this low-level output signal to the input of the spectrum analyzer while monitoring amplifier and distortion analyzer outputs on a scope, revealed the reason for the puzzlingly high distortion reading. (The top trace in the scope photo of Fig. 8 is the amplifier output, with vertical sensitivity increased; the lower trace shows the distortion analyzer's output. Fig. 9 displays a CRT trace on a spectrum analyzer.)

The false distortion analyzer reading was actually caused by the low-level noise in the amplifier output, not by harmonic components. At this low power level, the noise produced by the amplifier was -40 dB referenced to the amplified test signal. The THD content, however, is substantially better (about -70 dB). Clearly, the distortion products were masked by noise. For this reason, the new standard defines the conventional distortion analyzer's reading as THD + N.

Input Impedance. As a rule, the output impedance of one audio component is not closely matched to the input impedance of the component it is driving. For example, the output impedance of a preamplifier is usually low, on the order of a few hundred ohms, but the input impedance of a power amplifier is high, commonly tens of kilohms. However, the components are compatible.

The exception to this rule is the junction of the phono preamp and cartridge. Most moving-magnet cartridges perform optimally only when they see a specific preamp input impedance, typically 47,000 ohms resistive shunted by a small amount of capacitance. The exact amount varies from one cartridge to the next, but is usually within the 200- to 500-pF range. If the cartridge is not properly loaded, aberrations in its frequency response will occur.

The new standard takes the critical nature of phono input impedance matching into account by requiring that the input impedance be measured at several

Fig. 6. Amplifier output driven to mild clipping (top) has a THD content of 1% as indicated by a distortion analyzer, whose output is shown at bottom.

Fig. 7. Spectral analysis of the amplifier output shown as top trace in Fig 6.

Fig. 8. When amplifier output is reduced to 0.25 watt (top), output of nulling distortion analyzer (bottom) consists almost entirely of noise.

Fig. 9. Spectral analysis of low-level amplifier output shows that any harmonic distortion products are so low as to be below "grass" of noise floor.
frequencies. If it can be accurately described as a parallel RC circuit, then the R and C values are to be given as the rated input impedance. If the impedance is too complex to be modelled by a simple RC network, it is to be rated as the magnitude of the impedance in ohms at 1000 Hz.

Secondary Disclosures. In addition to primary specifications, the new standard also includes many secondary disclosures any or all of which may be published at the manufacturer’s option. Many of these specifications are similar to those published in earlier standards, so most readers are probably acquainted with at least a few of them. However, several new ones have been developed in response to advances in both amplifier technology and our understanding of psychoacoustics. Let’s look at a few of these new specifications.

Clipping Headroom. Most amplifier manufacturers have been rating continuous average power outputs of their products at THD levels that are undetectable by the human ear. However, it’s useful to know when an amplifier’s power output is exceeded to the point of clipping, which grossly (and audibly) distorts the input signal. That’s what a clipping headroom spec reveals. It is the ratio (expressed in dB) of the continuous average power output at actual clipping to the rated continuous average power output of the amplifier.

Damping Factor. The new standard defines damping factor as the ratio of 8 ohms to the output impedance of the amplifier. Output impedance is to be measured while a standard output current is flowing from the amplifier into the load to simulate typical operating conditions. There are two damping factors which can be published. An amplifier’s wideband damping factor is the minimum damping factor measured over its rated power bandwidth. The amplifier’s low-frequency damping factor is measured at 50 Hz, the resonant frequency of a typical speaker system. Previously, an amplifier’s damping factor was rated at 1000 Hz. The new spec is an improvement because a high damping factor can be more important in the bass region than in the midrange, and an amplifier’s damping factor is not necessarily constant with frequency.

Intermodulation Distortion. Two methods of measuring IM distortion are specified in IHF-A-202 1978. In the old method, low- and high-frequency test signals were applied, and the output sampled. Here, if the amplifier is nonlinear, the high-frequency tone will be modulated to an extent by the low-frequency signal. Products will appear at the sum and difference frequencies. This method is called SMPTE-IM because the Society of Motion Picture and Television Engineers developed it.

Recent investigations, however, indicate that intermodulation of two relatively high-frequency tones may be more audibly significant. Accordingly, the new method, called IHF-IM, employs test signals at two frequencies which are swept across the audio band so that the difference between them remains a constant 1000 Hz. The mean frequency is to be swept from 2500 Hz to the upper limit of the amplifier’s rated power bandwidth.

All IM products up to the fifth order within the 20-to-20,000-Hz band are to be measured and combined using an algorithm similar to that for THD calculations to determine IHF-IM in percent. Measurements can be made at a series of power levels to produce a family of IM distortion vs. frequency curves. Either a spectrum analyzer (the most convenient instrument) or a swept filter and oscilloscope (or voltmeter) can be used to perform IHF-IM measurements.

For those wanting more complete information on the new amplifier standard, Standard Methods of Measurement for Audio Amplifiers, IHF-A-202 1978, is available for $7.50 from the Institute of High Fidelity, 489 Fifth Avenue, New York, NY 10017.

Transient and Slew Specifications. The importance of an amplifier’s ability to respond accurately to short-lived musical transients has been recognized in recent years. Two new specifications which help to rate transient-handling ability are Transient Overload Recovery Time and Slew Factor.

To measure an amplifier’s transient overload recovery time, the test signal shown in Fig. 1 (the same one used in the dynamic headroom test) is applied to its input. The amplitude of the input signal is then adjusted so that the low-level trailing portion is amplified to −10 dB relative to the rated continuous average power output of the amplifier. This means that the high-level, 20-millisecond “burst” portion of the test signal drives the amplifier 10 dB into overload.

The portion of the output signal immediately after the trailing edge is scrutinized on a scope. The time in milliseconds required by the amplifier to recover so that there is no visible distortion on the oscilloscope is measured for each input. The worst-case result (longest recovery period) is the rated transient overload recovery time.

The second transient-related specification is slew factor. This new term should not be confused with the more familiar slew rate, which is the maximum time rate of change in voltage at the output of the amplifier. There are several ways to measure slew rate, but not all of them will yield the same result. For this reason, the new standard speaks in terms of slew factor rather than slew rate.

Slew factor is a ratio which describes the highest frequency (normalized to 20,000 Hz) that can be applied to the input of a component and be presented in amplified form at the output with a THD content of not more than 1 percent. The slew factor is obtained by dividing the highest frequency that satisfies these conditions by 20,000 Hz. The test is performed by applying a 1000-Hz input signal and adjusting its level so that the component delivers its rated output. The input signal is maintained at this level as it is swept upward in frequency. Harmonic distortion measurements are made as outlined earlier.

In Conclusion. The new IHF standard should do much to dispel the ambiguities encountered by prospective purchasers when comparing the specifications of preamplifiers, power amplifiers, and integrated amplifiers that are produced by different manufacturers. Perhaps its greatest accomplishment is to bring printed specifications into closer agreement with what we actually hear, thereby allowing the consumer to make a fully informed buying decision.
Build a Disco Preamp/Mixer

BY JOHN ROBERTS

A typical audio system is not suitable for disco applications. It lacks the mixing, monitoring, and microphone preamps normally found in such facilities. The Disco Mixer presented here is a special-purpose audio preamp/mixer with a number of attractive and unusual features. It has two independent phono preamps employing the new JFET equalization characteristic, two IC-buffered auxiliary inputs, a low-noise microphone preamp, and the traditional preamp’s bass, treble, balance, and volume controls. The Disco Mixer also contains a monitor circuit that can be used for cueing records or listening to one program source while another is driving the system’s power amplifier.

You can build either a preamp/mixer or a preamp only. A kit for the preamp/mixer is $110, while one for the preamp alone is just $70.

The Disco Mixer is designed around six integrated circuits. Thanks to the advent of specialized IC’s, signal processing functions previously performed by dozens of discrete components can now be accomplished by single chips. In some cases, both stereo channels can be handled by one IC.

High-level signals in this project are processed by members of a new family of high-performance op amps that are fabricated by "BIFET" technology. This is a process which allows diffusion of both junction-field-effect and bipolar-junction transistors on the same chip. These op amps exhibit the excellent input characteristics of JFET’s and the highly desirable output characteristics of BJT’s—literally, the best of both worlds. BIFET op amps have higher slew rates and cause less TH and IM distortion than common bipolar IC’s (see Fig. 1).

About the Circuit. A block diagram of the complete mixer/preamp is shown in Fig. 2. Functionally, the Disco Mixer can be considered to be made up of three types of circuits: input-conditioning, high-level processing, and output conditioning. Let’s examine each.

Input conditioning for the line-level auxiliary inputs, which would typically be driven by a tuner or tape deck, consists of simple unity-gain inverting buffers. One of the four buffers included in the preamp is shown in Fig. 3. An RC network at the buffer input acts as a high-pass filter to prevent the passage of a dc level or infrasonic ac signals. One section of a quad BIFET operational amplifier, IC3, presents an inverted version of the input signal to the switching matrix composed of S2 and S4. This buffer displays a relatively high impedance (about 50,000 ohms) to the program source and a very low output impedance to the switching matrix. This avoids loading down the signal source and prevents interaction in the mixing process.

The signal conditioning stage for the microphone input must be able to amplify signals generated by the microphone by 60 dB (1000 V/V) or more. An NE5534N integrated circuit was selected for this task (Fig. 4) because it has a high open-loop voltage gain and a very low input noise voltage. The open-loop gain—the gain of the device in the absence of feedback—must sufficiently exceed the closed-loop gain selected by the proper choice of feedback components if the amplifier is to exhibit gain accuracy and low distortion. (An amplifier’s closed-loop distortion is its open-loop distortion divided by the ratio of open-loop to closed-loop gain.) The microphone preamp’s input noise voltage is of critical importance because this noise signal will be amplified along with the millivolt-level microphone output signal.

With an open-loop gain of 6000 V/V at 10,000 Hz and less than one microvolt of input noise, the NE5534 (IC7) meets the foregoing requirements easily. The noninverting microphone preamp fea-
This has resulted in many phono preamps with very high gain at infrasonic frequencies, a situation which can cause serious problems when warped records are played or acoustic feedback combines with turntable rumble. The phono cartridge, preamplifier, power amplifier and speakers try to reproduce the warp or rumble as if it were a valid audio signal. However, many speakers are not designed and lack the ability to generate such strong, very low frequency output and can be damaged while attempting to do so.

Therefore, a feedback network comprising R3 through R7 and C7, C9 and C10 has been incorporated into the phono preamplifiers (Fig. 5) so that these stages exhibit a frequency response which agrees with the International Electrotechnical Commission's proposed amendment to the RIAA characteristic. The deviation from the RIAA curve is slight and only at the lowest audible frequencies, and the improvement in infrasonic signal attenuation considerably outweighs the almost imperceptible (−3 dB at 20 Hz) low-frequency rolloff.

The LM387AN dual low-noise preamplifier has been chosen for IC1 and IC2 because of its excellent (high) open-loop gain and (low) noise characteristics. That there are two independent, identical amplifiers in one 8-pin DIP helps simplify the pc layout. The phono cartridge drives the noninverting input and is loaded by R2, a 47,000-ohm resistor and C6, a small disc ceramic, glass, polystyrene or silver mica capacitor. The user should consult the manufacturer for the recommended capacitance for his particular cartridge. In most cases, the value will lie between 10 and 300 pF.

Now that all input signals have been amplified to reasonable levels and impedances normalized, mixing can be performed in a straightforward manner. Two four-station interlocked switch arrays (S2 and S4) assign any one of four input signals to two mixer potentiometers, R46 and R47, as shown in Fig. 6. The wipers of these potentiometers are connected to one quarter of IC6, a quad BIFET operational amplifier, which is used as a unity gain inverting summer. This allows the user to mix any two of the four inputs or pan back and forth between the two as a disc jockey at a discotheque would. A third potentiometer, R51, mixes in a portion of the microphone preamp output so that the disc jockey can voice over his mix.

The inverting summer drives both the output conditioning circuitry of the preamplifier and a special monitor circuit which has been designed into the mixer section. This circuit allows the user to listen to other program sources without affecting the main preamplifier output, an especially convenient feature when

Fig. 2. Block diagram of combined preamplifier and mixer showing inputs, outputs, and controls.
C1, C2, C3, C20*, C25—1000-µF, 16-volt electrolytic
C4, C14—220-µF, 35-volt electrolytic
C5*, C21, C22, C26—0.1-µF, 50-volt disc ceramic
C6**—10- to 300-pF (see text)
C7**—22-µF, 16-volt electrolytic
C8**, C11***—4.7-µF, 16-volt electrolytic
C9**—2200-pF, 5% tolerance polystyrene
C10**—2000-pF, 5% tolerance polystyrene
C12**, C13, C17*, C18—1-µF, 16-volt electrolytic
C15—0.1-µF, 10% tolerance Mylar
C16*—0.01-µF, 10% tolerance Mylar
C19**—100-pF disc ceramic
C23, C24—0.01-µF disc ceramic
C27**—10-pF disc ceramic
D1 through D6—1N4001 rectifier
F1—lampere fast-blow fuse
IC1, IC2—LM387AN dual low-noise pre-amp (National Semiconductor)
IC3, IC4, IC6—TL074CN BIFET quad operational amplifier (Texas Instruments)
IC5—LM377N dual 2-watt audio amplifier (National Semiconductor)
IC7—NE5534N low-noise preamplifier (Signetics)
J1**—insulted phon jack
J2**, J5*, J6*, J7*, J8*—phon jack
J3—¾-inch phone jack
J4—¾-inch stereo phone jack
LED1—20-mA light emitting diode

The following are ¼-watt, 5% tolerance carbon-film resistors.

![Fig. 3. Schematic of one of four auxiliary input buffers which employ the new BIFET IC.](image)

![Fig. 4. Microphone preamp features high gain and sensitivity control.](image)

![Fig. 5. One of four phono preamps with IEC equalization. Capacitive coupling is used as in all other inputs.](image)

PARTS LIST

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1*</td>
<td>R13, R40—10 ohms</td>
</tr>
<tr>
<td>R2**</td>
<td>47,000 ohms</td>
</tr>
<tr>
<td>R3**</td>
<td>43,000 ohms</td>
</tr>
<tr>
<td>R4**</td>
<td>360 ohms</td>
</tr>
<tr>
<td>R5**</td>
<td>33,000 ohms</td>
</tr>
<tr>
<td>R6**</td>
<td>390,000 ohms</td>
</tr>
<tr>
<td>R7**</td>
<td>3600 ohms</td>
</tr>
<tr>
<td>R16*, R26*—100 ohms</td>
<td></td>
</tr>
<tr>
<td>R19*</td>
<td>24,000 ohms</td>
</tr>
<tr>
<td>R21*, R22*, R23*—5600 ohms</td>
<td></td>
</tr>
<tr>
<td>R14, R24*, R25*—1800 ohms</td>
<td></td>
</tr>
<tr>
<td>R43</td>
<td>10,000-ohm linear-taper potentiometer</td>
</tr>
<tr>
<td>R44</td>
<td>100,000-ohm linear-taper potentiometer</td>
</tr>
<tr>
<td>R45</td>
<td>Through R48—50,000-ohm dual audio-taper potentiometer</td>
</tr>
<tr>
<td>R49</td>
<td>R50, 50,000-ohm dual linear-taper potentiometer</td>
</tr>
<tr>
<td>R51</td>
<td>50,000-ohm audio-taper potentiometer</td>
</tr>
<tr>
<td>S1, S3</td>
<td>Dpdt pushbutton switch</td>
</tr>
<tr>
<td>S2, S4, S5</td>
<td>Four-station dpdt interlocked pushbutton switch</td>
</tr>
<tr>
<td>T1</td>
<td>24-volt, 100-mA center-tapped transformer (Signal Transformer Co. #241-4-20)</td>
</tr>
</tbody>
</table>

Misc.—Printed circuit boards and standoffs, IC sockets or Molex Soldercons (if desired), shielded cable, LED holder, hookup wire, suitable enclosure, machine hardware, line cord and strain relief, grommet, solder, etc.

Note—The following are available from Phoenix Systems, 735 Springhill Road, Monroe, CT 06468, (203) 261-4904: Complete kit of parts including enclosure for preamp/mixer, No. P-1130-DM, for $110.00; complete kit of parts including enclosure for preamp only, No. P-1130-PA, for $70.00; etched and drilled preamplifier pc board, No. P-1130-BPA, for $7.50; etched and drilled mixer pc board, No. P-1130-BDM, for $7.50; power transformer T1, No. P-1130-T, for $6.00; dpdt pushbutton switch, No. P-1130-SW1 $1.00; four-station dpdt interlocked switch, No. P-1130-SW2, for $4.00; BIFET quad op amp, No. P-1130-C-15074CN, for $3.50; dual low-noise amplifier, No. P-1130-C-LM387AM, for $3.50; dual 2-watt audio amplifier, No. P-1130-C-LM377N, for $3.00; and low-noise, high-gain op amp, No. P-1130-C-NE5534, for $3.00. All integrated circuits are fully tested. Please allow six weeks for delivery. Connecticut residents add 7% sales tax; COD charge $0.85. Handling charge is $1.00 for orders of less than $10.00. No shipping charges within continental U.S.

*—two of each component required for full stereo preamp/mixer
**—four of each component required for full stereo preamp/mixer

SEPTEMBER 1978
Train with NTS for the MicroComputers, digital the first name

The world of electronics is daily becoming more challenging. Technology is growing more specialized, and the importance of digital systems increases every day. Test instruments, home entertainment units and industrial control systems are all going digital. And now, NTS training programs include a wider choice of solid-state and digital equipment than ever before offered in any home study course: Advanced NTS/Heath digital color TV (25" diagonal with optional programming capability), NTS/Heath microcomputer, digital test equipment, digital stereo receiver (70 watts per channel), NTS compu-trainer, plus much more state-of-the-art equipment to make your training exciting and relevant.

The equipment you receive with NTS training programs is selected to provide you with a solid background in electronic systems. Kits and lessons are designed to work together to demonstrate electronic principles and applications. The kit-building not only shows you how electronic hardware functions, but how various circuit designs accomplish different purposes. Your lessons guide you through any number of experiments associated with many projects. This is the Project-Method, and it works. Step-by-step, you learn how and why digital electronics has become a part of our world, and the even bigger role it is sure to play in the future.

Whether you are looking for training in Consumer, Commercial, or Industrial electronics, NTS offers fourteen courses, some basic, many advanced, in several areas of electronics. An all-new full-color NTS catalog shows you what each course covers,
electronics of the future.

systems and more... from in home study.

and every piece of equipment included.
Send for it today, and see for yourself what's really happening in electronics training technology at NTS. Find out how much has changed, and what new directions the field is taking. You'll probably want to be a part of it.
It's free. Just mail the card or coupon. Today.

NO OBLIGATION. NO SALESMAN WILL CALL. APPROVED FOR VETERAN TRAINING.

NATIONAL TECHNICAL SCHOOLS
TECHNICAL-TRADE TRAINING SINCE 1905
Resident and Home-Study Schools
4000 South Figueroa St., Los Angeles, Calif. 90037

NATIONAL TECHNICAL SCHOOLS Dept. 205-098
4000 South Figueroa Street, Los Angeles, California 90037
Please send FREE Color Catalog and Sample Lesson.

☐ Color TV Servicing
☐ B & W TV and Radio Servicing
☐ FCC License Course
☐ Electronic Communications
☐ Electronics Technology
☐ Audio Electronics Servicing
☐ Digital Electronics
☐ MicroComputers/MicroProcessors

Name ____________________________
Address __________________________
Apartment Number ________ Age ________
City ____________________________ State ________ Zip ________
☐ Check if interested in G.I. Bill information.
☐ Check if interested ONLY in classroom training in Los Angeles.
The output of the mixer is applied to the output conditioning section of the preamplifier (Fig. 7). Switch S3 provides tape monitor facilities. Potentiometers R44 and R45 are balance and volume controls, respectively. A BIFET buffer amplifies the signal and presents it to the output stage in which the tone controls are found. Drive signals for the system's power amplifier(s) are available at jacks J7 and J8.

The excellent power supply rejection of the integrated circuits employed in this project eliminates the need for a regulated supply. As shown in Fig. 8, two full-wave rectifiers and filter capacitors furnish the ±15 volts required by the BIFET operational amplifiers and the microphone preamp. The +15-volt line is tapped to power the monitor audio driver. A voltage doubler composed of C3, C4, D5 and D6 develops the +25 volts required by the phono preamps.

Construction. Printed circuit assembly...
bly techniques are strongly recommended. Although it is possible to employ perforated board and point-to-point wiring, the layout of the high-gain stages (phono and microphone preamplifiers) is critical. These circuits are very sensitive to ground loops, hum fields and stray feedback paths. Extensive power supply decoupling is called for because the ICs employed in this project have very high gain-bandwidth products and can break into oscillation very easily.

Suitable etching and drilling and parts placement guides for the preamp and mixer boards are shown in Figs. 9 and 10, respectively. If mixing facilities are not desired, the preamp board can be used on its own as a high-quality stereo preamplifier. You will notice that both the schematic diagrams and the pc guides contain numerous points labelled with letters of the alphabet. These have been included to ease interconnections between the boards, and the boards and the jacks, switches and potentiometers. Most of these connections can be made

(Continued on page 71)
Phono Equalization—Time For a Change?

Record Warps. The gradual but continuing deterioration—on some labels, at least—of record quality has made warped discs the rule rather than the exception. Spectral analysis indicates that the waveforms caused by warps possess significant amounts of energy in the 5-to-10-Hz region even though their fundamentals lie octaves lower at about 0.03 Hz. Ten hertz is below the response of the human ear and that of most audio systems, and playback at moderate sound levels should not and usually does not present any difficulty. Problems can arise, however, when sound levels are increased or signal processing is introduced.

For example, a warp waveform superimposed on an audio signal can cause a tape recorder to saturate the tape, resulting in a very disturbing amplitude modulation and/or distortion. Furthermore, nonlinear signal processors such as noise reduction units can be tricked into interpreting the warp as a valid audio signal during encoding. This by itself is not a problem until an attempt is made to decode the signal and the infrasonic signal has been lost to the tape medium’s limited low-frequency response. The resulting output signal is the audio signal modulated by the infrasonic warp which is no longer present even though it is really required for proper decoding. The infrasonic signal is long gone, but the modulation or distortion it has caused remains.

In straight playback situations, the effects of record warps on signal processors are not encountered but other serious problems can crop up, especially at high listening levels. The power amplifier, if its frequency response extends sufficiently low, cannot discriminate between audible and infrasonic signals and will try to drive the speakers with an amplified version of whatever is applied to its input jacks. The possible deleterious effects of excessive speaker cone excursion and amplifier clipping are well-known and can result in permanent speaker damage and/or objectionable levels of distortion.

The ideal solution to the record warp problem would be an improvement in the manufacture and quality control procedures at the record plant. However, in the design of the Disco Mixer, a more realistic approach has been taken. RC networks have been included in the project’s phono preamplifiers to give a de-emphasis characteristic coinciding with the IEC proposal. The difference in bass response between the existing and proposed standards is so slight (~1 dB at 40 Hz, ~3 dB at 20 Hz) as to be barely audible, and will certainly not render obsolete existing record collections.

Probably the only people who will be upset by the IEC characteristic are those who put more faith in figures that they read rather than in the sounds that they hear. Of course, such people could be satisfied by a phono preamp with switchable equalization. But they should be warned to pay close attention to the setting of the equalization switch. It will be very difficult for them to tell the difference solely on the basis of what they hear—they are listening to a warped record!

RIAA de-emphasis shown in black and IEC amendments in color.

Due to the nature of cutting heads, playback cartridges, and the recording medium itself, a precise amount of pre-emphasis and de-emphasis is introduced in the record/playback process. The pre-emphasis characteristic attenuates low frequencies so that "cutoff" (the excursion of the cutting stylus through the wall of one groove into the wall of the preceding one) is avoided and boosts high frequencies to improve the signal-to-noise ratio. During playback, a mirror image de-emphasis characteristic must be introduced so that a flat overall frequency response is achieved.

Exactly how much pre-emphasis and de-emphasis is used has for many years been determined by the RIAA (Recording Industry Association of America) standard. The standard has been universally accepted—even the state recording labels of Eastern European countries (Melodiya, USSR; Supraphon, Czechoslovakia; Hungaroton, Hungary, etc.) employ it. This world-wide acceptance of one recording standard has resulted in benefits to the recording industry and the consumer.

Recently, however, this unquestioned acceptance has been challenged by a proposal from the International Electrochemical Commission. This group has suggested an amendment to the existing RIAA standard which incorporates two modifications. The proposed changes are slight, as shown in the Figure, but a discussion of them is warranted.

The existing RIAA recording and playback curves have been around so long that they cover a frequency range of only 30 to 15,000 Hz. No one will take issue with the IEC proposal to extrapolate the existing curves to 20,000 Hz. In fact, phono preamp designers have been doing it for years. The amendment will merely give this practice official sanction.

The really controversial part of the IEC proposal deals with the lower end of the equalization characteristic. The Commission is suggesting a low frequency rolloff down 3 dB at 20 Hz and having a -6-dB/octave slope below that frequency. Informally, circuit designers have extrapolated the curve to 20 Hz, but there has been no general consensus as to what should be done below that frequency. It is below 20 Hz that serious difficulties are encountered.
with hookup wire, but two-conductor shielded cable should be used between the phono input jacks and the preamp circuit board. If the preamp-only version of the project is built, install jumper wires between points AA and BB.

If desired, IC sockets or Molex Solder-cons can be used when mounting the integrated circuits. Be sure to observe polarity and pin basing when installing electrolytics and semiconductors. Use good soldering practices.

When circuit board wiring has been completed, mount the boards in a metallic enclosure using machine hardware and spacers. The power transformer should be mounted directly in the enclosure. Those assembling the project using perforated board should take care to keep the power supply away from the high-gain sections of the preamplifier.

Use. The Disco Mixer is straightforward in its use. Patch in the various program sources with suitable lengths of shielded cable and experiment with the different preamp and mixer controls and monitor modes. Then invite your friends over and have a disco party!
Now You Can Enjoy Hi-Fi Television Sound

Diplexed program transmission system allows networks to send audio and video on one cable and offers viewers high-quality sound.

On January 23, 1978, in a concerted effort to reduce operating costs, the three major television networks began to use the "Farinon FV-43 FM Transmission Channel System." This is a diplexed method of transmitting audio and video signals on the same coaxial cable. Previously, audio and video were transmitted separately from the point of origin to local network affiliates via AT&T wire and microwave links. The old system had two serious disadvantages—the high cost of maintaining two separate transmission lines and the low-fidelity sound that was actually delivered. The new method, however, not only saves the networks money but also delivers high-fidelity FM sound to local studios!

Very little (if any) fanfare accompanied the changeover, so most people don't realize the hi-fi capabilities of TV audio. And given the crude audio provisions in many television receivers, most viewers are unaware that the potential for hi-fi is there.

Actually, the frequency response of network audio program material now delivered to local studios is 50 to 15,000 Hz ±0.3 dB (Fig. 1) and its THD content at 1000 Hz and +18 dBm is less than -54 dB. The networks had originally planned to start using the new system a few weeks earlier than they did. However, CBS requested a delay to ensure that the old, proven system would deliver the audio portion of its "Super Bowl" coverage (the most widely watched program of the year) without interruption.

The diplexer passes video components below 5 MHz. There is at least 40 dB of video attenuation at the transmission channel sub-carrier frequencies. The diplexer is carefully designed to minimize video signal degradation. Wideband amplifiers, low-ripple filters, and equalizers provide very good amplitude response. The input and the output of the diplexer are direct-coupled to minimize bounce and variations in low-frequency response. Filtering in the video line at the transmit terminal prevents spurious signals at FM channel sub-carrier frequencies. An identical filter in the video path at the receiving terminals prevents FM channel sub-carriers from entering the video output line.

In the diplexer, the video signal passes through a transient voltage suppression network and an impedance matching network to the input of a differential amplifier. The amplifier output is filtered and equalized to compensate for phase distortion caused by the filter. The equalized signal is then applied to the input of a second differential amplifier which boosts it to standard line level. The output of the FM channel transmitt-
ter is applied to the other input of the second differential amplifier. The baseband signal and the FM channel subcarriers leave the diplexer through either a balanced or unbalanced output.

FM Channel Transmitter and Receiver. In the FM channel transmitter, an applied audio signal is amplified and receives pre-emphasis before it is used to modulate a voltage-controlled oscillator (vco). The frequency-modulated oscillator signal is filtered to suppress oscillator harmonics and reduced in amplitude by a variable attenuator to the desired output level. Frequency stability of the transmitter is obtained by phase-locking the vco to a crystal-controlled reference oscillator.

In an FM receiver, a signal from the diplexer is first applied to an attenuator pad and then to a bandpass filter that selects the appropriate FM channel subcarrier. The receiver circuits following the filter limit and demodulate the subcarrier, add de-emphasis, and amplify the recovered audio program material.

The Future. The FV-43 FM Transmission Channel System opens up a whole new dimension in television receiver design and product appeal. Now television manufacturers can bring the audio sections of their products to a level that matches the technology of their video counterparts. Existing television receivers can be modified for high-fidelity reproduction by tapping the audio at the output of the FM detector and feeding it to an external audio system.

To maintain isolation between the receiver and the audio system, an inter-stage audio transformer or an emitter or voltage follower is needed. If the television is transformerless (chassis tied directly to one side of the ac line), do not connect its chassis to the chassis of the preamplifier or integrated amplifier unless you either use a coupling transformer on the audio line or an isolation transformer on the television's power line.

Interestingly, the FV-43 system incorporates provisions for two audio channels, leaving open the options of stereophonic sound for television, off-line data communications or even computer control. One needn't wait for TV models with hi-fi audio provisions or modify present receivers, however. At least two companies offer separate tuners for TV audio only—Pioneer and Rhoades—which can do the hi-fi trick with no muss or fuss.

BY ALEXANDER W. BURAWA
Features Editor

Metal Cassette Tape Debuts

Fine-metal formulation tape may revolutionize cassette deck design.

EVER since its introduction, magnetic recording tape has used metal oxides in one form or another for the recording material. Now, a new type of recording material made up of fine metal— not metal-oxide—particles is expected to make a tremendous impact in audio and video recording. The new tape is said to produce a level of performance that surpasses that of the best conventional metal-oxide tapes. Although the metal tapes are playback-compatible with current tape decks equipped with 70-µs playback equalization (the CrO² setting), satisfactory recording will require new recording equipment.

One of the first of the new metal tapes to come on the consumer audio market is 3M Company's Scotch brand "Metafine" in the popular cassette format. (Other tape manufacturers are sure to market their own versions soon.) At a recent press conference, a Metafine audio cassette was recorded, erased, and played back on a tape deck that was specially modified to accommodate its characteristics. The cassette delivered a maximum output 5 to 10 dB greater than typical chrome tapes and 3 to 7 dB greater than Scotch Master II tape. This means that maximum output is at least double that of other tapes, depending upon the frequency selected.

Lower distortion, additional high-frequency response, improved S/N, and increased maximum output are among the benefits it is claimed one will realize with metal tapes.

Exact increases in performance will depend upon the selection of benefits manufacturers build into future tape recorders, of course.

Metal tape is said to permit higher performance characteristics at present tape speeds and packing densities. Accordingly, it also opens the way for dramatic changes in speed, format, and component size without sacrificing performance capabilities.

Technical Details. The level and frequency distribution of the new metal tapes are similar to those for CrO² tapes. A 70-µs equalization was selected to minimize noise, while new metal-tape recorders will utilize Sendust heads because they do not saturate as easily as other types of heads. Because of its

Fig. 1. Maximum output levels as function of bias.

Fig. 2. Maximum modulation and harmonic distortion levels.

SEPTEMBER 1978
high-density recording capability, it has been suggested that a 15/16-ips recording speed is possible, providing better sound quality than is obtainable at today's 3 3/4 ips!

The characteristics of metal-tape audio cassettes are best realized at a recording bias significantly different from those of present recorders, which is one of the reasons new equipment is necessary for recording. Another is that a stronger erase current is required.

One has only to look at the specifications in the table for various tapes to see the superiority of metal tapes.

TAPE SPECIFICATION COMPARISONS

<table>
<thead>
<tr>
<th>Type</th>
<th>Retentivity (gauss)</th>
<th>Remanence (lines/1/4 in.)</th>
<th>Coercivity (oersted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical Chrome</td>
<td>1400</td>
<td>0.43</td>
<td>550</td>
</tr>
<tr>
<td>Scotch "Master II"</td>
<td>1500</td>
<td>0.60</td>
<td>550</td>
</tr>
<tr>
<td>Scotch "Metafine"</td>
<td>3400</td>
<td>0.80</td>
<td>1000</td>
</tr>
</tbody>
</table>

The curves in Fig. 1 show comparative output levels for Scotch Metafine and a top CrO2 audio tape. The maximum output level at saturation at 12,500 Hz is 7 dB greater for Metafine at the optimum bias for each tape. Figure 2 illustrates comparative modulation and harmonic-distortion levels for the same tapes. The maximum modulation level (3% third-order harmonic distortion at 333 Hz) is up to 9 dB greater for Metafine tape.

The Agenda. 3M Company (and undoubtedly other manufacturers) plans to introduce a cassette deck to accommodate the new metal tape for both playback and recording. It is the Model TCD 340 AM three-motor/three-head cassette deck from Tandberg. And $1300 is the suggested retail price. Other recorder manufacturers will likely follow and may already be offering for sale metal-tape recorders by the time you read this.

BY ROBERT R. FAULKNER

Build a Super Audio Filter

Capacitance multiplier reduces hum in hi-fi equipment by 80 dB.

Although most dc power supplies have a very low hum level, there are many applications that require as pure a dc as possible. Among these are high-gain preamplifiers, and phono amplifiers, as well as instrumentation amplifiers and many types of digital circuits.

The obvious answer to a slight amount of hum (ripple) in a dc power supply is to add more filter capacitance. However, there is an easier and better way—add the "Super Filter" described in this article.

The circuit shown in Fig. 1 is a simple ripple filter, sometimes called capacitance multiplier. It can reduce hum level by a factor of 250:1. For example, if the ripple is 250 mV peak-to-peak, the use of this filter will reduce the hum to 1 mV or less. Obviously, the better the power supply is filtered, the smoother the output when using Super Filter.

Ripple voltage should not exceed 3 volts peak-to-peak and the new filter will handle up to 35 volts at 2 amperes, without a heat sink. Insertion loss is about 1.1 volt.

Construction

The circuit can be built using the full-size foil pattern shown in Fig. 2, along with the component installation. When completed, the small pc board can be mounted within a small shielded metal enclosure whose case is connected to chassis ground.

Use

Connect the filter to the dc output of the power supply, observing the correct polarity. Connect an ac voltmeter, or an oscilloscope, to the output of Q2.
Protection for DC-Coupled Speakers

Direct coupling of the output stages of an audio amplifier has its advantages, but speaker system protection should be provided.

Direct-coupled output stages are commonly found in contemporary audio amplifiers. Although there are definite advantages associated with dc coupling, there is also a danger—a collector-to-emitter short in an output transistor will impress the full power-supply voltage across the speaker terminals.

Under such conditions, a speaker's voice coil will quickly burn out. The project presented here can save your speakers from destruction by removing the risk of damage.
ac power from the amplifier if a dc level appears across the speaker outputs.

Technical Details. The relatively simple circuit of the speaker protector is shown schematically in the diagram. Output signals from the amplifier are coupled to the protector by $R1$ and $R2$. A symmetrical audio (ac) signal will not cause $C1$ or $C2$ to accumulate any steady-state, unbalanced charge. However, a positive dc level will cause $C1$ to charge to a given voltage. A negative dc level will similarly cause $C2$ to acquire a charge. Diodes $D1$ and $D2$ protect the electrolytic capacitors from reverse-polarity voltages.

An unbalanced charge results in a positive or negative voltage across the series connection of $C1$ and $C2$. This voltage is applied to the noninverting input of $IC1$ via $R3$. The amplified voltage appearing at the output of the op amp triggers thyristor $Q1$, which conducts and energizes the coil of relay $K1$. The relay then interrupts the flow of current from the ac power source to the amplifier. A LED is also included to act as a visual indication that the circuit has been activated. Diode $D3$ protects the LED from inductive spikes generated as the relay is activated.

The author has selected a triac as the device controlling relay current for two reasons. First, the latching characteristic of the thyristor keeps the relay coil energized even after power has been removed from the amplifier. To reset the circuit, current flow from the +12-volt source to the triac must be interrupted.

Secondly, although the device need only conduct in one direction (implying the suitability of an SCR), it must be able to latch on when triggered by either a positive or negative pulse of gate current. This the SCR cannot do, but is a fundamental property of the triac. That's why this application, which involves a power amplifier having a bipolar power supply, dictates the use of a triac.

Construction. The project can be assembled using printed circuit, point-to-point, or Wire-Wrap techniques. Use appropriate sockets for the op amp and relay. The project board and a suitable power supply should be mounted in a suitable enclosure, taking care to avoid shock hazards. A barrier strip or push-button terminals can be mounted on the enclosure to simplify connections to the speaker outputs of the power amplifier.

You will note that $C1$ and $C2$ are specified in the parts list as tantalum capacitors. This was done to avoid the wide tolerances ($\pm 50\%$, $\pm 100\%$) of common aluminum electrolytic components which could disturb the symmetry of the input circuit. Tantalum capacitors are typically rated at $\pm 20\%$ or better, but you might have a hard time finding components with the specified capacitance. This can be easily overcome by paralleling smaller values, say, two 47-μF capacitors. However, it is not critical to have 100-μF of capacitance. Smaller values will work well, but will reduce the time constant of the RC input network.

Checkout and Use. After you have finished building the speaker protector, examine it for cold solder joints, incorrect wiring, and semiconductors and electrolytic capacitors with reversed polarity. Then plug an incandescent lamp into socket $SO1$ and apply power to the circuit. The lamp will glow. Using two flashlight batteries in series, apply 3 volts dc across either the left or right channel protector inputs. After three to five seconds, the relay will be energized, a click will be heard, and the lamp will darken. The glowing LED will also indicate that the triac has been triggered.

Next, disconnect the speaker protector from its power supply, remove the batteries from the input and discharge $C1$ and $C2$. Reverse the polarity of the batteries, connect them to the same input as before, and apply power to the protector circuit. After a short delay, the same sequence of events will occur as described earlier. Repeat this test procedure for the other channel's input.

You have now verified proper circuit behavior, and the speaker protector is ready for use. Remove the test lamp's power plug from $SO1$ and replace it with that from your audio amplifier. Interconnect the amplifier's output speakers and the input barrier strip of the speaker protector with lengths of zipcord. Be sure to observe proper phasing. Do not attempt to test the circuit while the speakers are connected because flashlight batteries cannot deliver their rated voltage into such a low impedance.

76

PARTS LIST

<table>
<thead>
<tr>
<th>PARTS LIST</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C2—100-μF, 35-volt tantalum capacitor</td>
<td>(see text)</td>
</tr>
<tr>
<td>D1, D2, D3—IN914 silicon diode</td>
<td></td>
</tr>
<tr>
<td>IC1—741CV operational amplifier</td>
<td></td>
</tr>
<tr>
<td>K1—12-volt dc relay, 10-ampere contacts, 600 ohms max, coil resistance (Radio Shack 275-208 or equivalent)</td>
<td></td>
</tr>
<tr>
<td>LED1—20-mA light emitting diode</td>
<td></td>
</tr>
<tr>
<td>Q1—SK3506 (RCA) triac or equivalent</td>
<td></td>
</tr>
<tr>
<td>The following are 14-watt, 10% tolerance carbon-composition resistors:</td>
<td></td>
</tr>
</tbody>
</table>

- $R1, R2$: 470,000 ohms
- $R3$: 1000 ohms
- $R5$: 47,000 ohms
- $R6$: 270 ohms
- $R7$: 680 ohms
- $SO1$: 117-V ac power socket
- Misc.—Printed circuit or perforated board, ±12-volt regulated power source, suitable enclosure, barrier strip, IC socket, relay socket (included with K1), line cord, strain relief, hookup wire, hardware, etc.
The difference between these cassette decks isn't sound.

The Nakamichi 1000II: $1,650

The Pioneer CT-F1000: $600

There's hardly an audio enthusiast alive who doesn't admire the Nakamichi 1000II. But at $1,650, admiring it is about all most people can do.

That's why Pioneer created the new CT-F1000. A cassette deck that offers all the features and performance of the Nakamichi 1000II, but costs almost $1,000 less.

(We realize this is hard to believe, but be patient. The facts bear us out.)

It's a fact that the $600 Pioneer CT-F1000 and the $1,650 Nakamichi 1000II are both honest three headed cassette decks that let you monitor right off the tape as you record.

Both feature separate Dolby systems for the playback and recording heads. So when you're recording with the Dolby on, you can monitor the same way.

And both are filled with all the remarkable features you'd expect to find on cassette decks of this caliber: there's everything from jam-proof solenoid logic controls, to multilevel filters for making cleaner FM recordings, to memories that automatically let you go back to a particular spot on the tape.

The comparison holds up equally well when it comes to performance.

The CT-F1000 and the Nakamichi 1000II both have total harmonic distortion levels of less than 1.5%.

Both have all but conquered the problem of wow and flutter. (An identical 0.03% for each deck.)

And both have signal-to-noise ratios that are so similar only sophisticated laboratory equipment can tell them apart.

If the incredible value of the CT-F1000 still sounds a bit hard to believe, we suggest you go hear it for yourself at any Pioneer dealer.

Our viewpoint is simple: if you can't hear the difference, why pay the difference?

PIONEER

We bring it back alive.

*Manufacturer's suggested retail price. Handles optional at extra cost.

CIRCLE NO. 81 ON FREE INFORMATION CARD

AmericanRadioHistory.Com
A DOT/BAR video signal generator is an essential piece of test equipment for the setup and convergence of a color-TV receiver or monitor. The generator can also be used to adjust horizontal and vertical linearity of monochrome receivers and monitors.

The circuit (Fig. 1) shown here can be built for about $15, and is small enough to be permanently installed in a color TV cabinet. It can also be housed in a small case (including a 9-volt battery) for portable use. Since the output is video, some form of FCC-approved r-f modulator is required if you wish to inject the signal into the antenna of a TV receiver.

Circuit Operation. Oscillator IC1 is preset to 251,752 Hz (16 times the horizontal scanning rate) by the setting of potentiometer R1. When a 555 is operated with D17 as shown, the data sheet formulas for frequency are not valid, and the frequency of oscillations becomes more dependent on the supply voltage. The output of IC1 (pin 3), drives 12-stage counter IC2 to generate the other frequencies required to create the composite video output signal. Various IC2 outputs are diode OR'd to produce the proper pulse widths.

Horizontal and vertical video components are combined in NOR gate IC3A, while the horizontal and vertical sync components are mixed in IC3B. Output transistors Q1 and Q2, arranged as an AND gate, combine video and sync into composite video and provide sufficient drive for a 75-ohm output load.

With S1 in its center (off) position, the video display will be white dots on a black background. The other positions of S1 yield horizontal or vertical white bars on a black field. These are the output signals most commonly used for static and dynamic convergence of color receivers. They can also be used to set linearity of monochrome receivers.

The values of R9 and R10 determine the base currents of Q1 or Q2, and their connections to IC3 determine positive or negative video. Resistor R11 determines the blanking (black) level of the display. Resistor R12 determines the peak-to-peak output voltage level, while R13 determines the output impedance.

When powered by 9 volts, the values shown for R9 through R13 provide a nominal one volt peak-to-peak composite video with negative-going sync into a 75-ohm load.

If R9 is disconnected, the unit becomes a sync generator. Increasing the value of R3 (returning R1) will increase the width of the bars or dots. Eliminating D9 will increase the height of the bars or dots.

Construction. The circuit can be assembled using any type of wiring technique; the foil pattern shown in Fig. 2 may be used. This illustration also shows component installation.

With the generator powered and S1 in

Build this essential instrument for setup and convergence of color TV for $15.

PARTS LIST

- C1 — 100-pF, disc ceramic
- C2 — 0.1-µF, disc ceramic
- C3 — 220-µF, 35-volt electrolytic (optional)
- D1 through D17 — 1N914 silicon diodes
- IC1 — 555 timer
- IC2 — CD4040, 12-stage ripple counter (CMOS)
- IC3 — CD4001, quad 2-input NOR gate (CMOS)
- Q1, Q2 — 2N5449 npn silicon transistor
- The following resistors are 1/4-watt, 10%:
 - R2 — 10,000 ohms
 - R3, R13 — 75 ohms
 - R4, R11 — 2200 ohms
 - R5, R6, R7 — 100,000 ohms
 - R8 — 27,000 ohms
 - R9, R10 — 1000 ohms
 - R12 — 470 ohms
- R1 — 10,000-ohm trimmer potentiometer
- S1 — 5dp, center-off switch
- Misc. — battery holder, suitable enclosure, interconnect cable, mounting hardware, etc.

Note — A complete kit of parts including drilled pc board, is available for $14.95 plus $1.50 p & H within the continental US from ABCOR Inc., Box 58216, Houston, TX 77058. Texas residents, please add 5% sales tax. The r-f modulator is available from ARCOR, or M & R Enterprises, PO Box 1011, Sunnyvale, CA 94088 for $24.95 with 60-dB isolation switch and cables. Modulator only is $14.95.

POPULAR ELECTRONICS
Fig. 2. Actual-size foil pattern and component installation for the generator. The two large end bars are used for mounting, and are not required for operation.

Fig. 1. Sync and video information are decoded from IC2. Output is video, not r-f.

the center position, connect the generator to the video input of the receiver to be checked, and turn on the power. Adjust R1 until the sync locks and a stable pattern appears on the screen.

With the manual provided by the color-TV receiver manufacturer or other source, the generator can now be used for convergence. In a monochrome system, the bars or dots can be used in conjunction with the linearity controls to set up the screen for proper proportions.

Two video outputs are provided: One (out 1) is dc coupled to the output stage, while the other (out 2) is dc isolated from the output stage. Use either one, depending on the type of input required. If the video stage will not tolerate a dc offset, then use output 2. If the video stage has capacitor input, use output 1.
ONE OF THE biggest problems when working with two or more pieces of test equipment at the same time is the messy tangle of test leads that often results. Because most test leads look alike, it is easy to lose track of which set goes to a given instrument. One practical way to avoid this mess and confusion is to use a "patch panel." What makes this scheme practical is the fact that most test instruments have unbalanced inputs and/or outputs.

The secret to making a reliable patch panel is to employ good grounding and shielding practices. A properly fabricated patch panel will accommodate audio signal levels as low as −70 dB at 1 megohm impedance, provided all outputs are spaced at least 1" (25.4mm) away from the low-level inputs. For higher levels, between −60 and +45 dB, no special precautions are required, even at high impedances. The only time safety becomes a factor is when signal levels approach 100 volts. And the patch panel can easily handle signal frequencies up to about 500 kHz.

Putting It Together. The prototype patch panel, shown in the photo, was built on a front-panel plate taken from a sturdy steel instrument enclosure. At the center of the panel is a large solderless socket that greatly simplifies hook-ups to instruments and has the added advantage of providing a breadboarding medium for inserting all types of networks between instruments and equipment under test. The solderless socket selected for the prototype was the largest one available. It has 64 sets of five parallel-connected solderless plug-in holes on each side of a center slot, plus a number of parallel-connected "buses" running down each side of the main socket. Of course, smaller sockets can be used in less elaborate setups.

The best way to mount the solderless socket is to orient it vertically on the panel's plate. The bottom of the socket is fully insulated. So there is no need to use spacers; just bolt it directly to the plate. Label one side of the panel inputs, and label the other side outputs.

Now, determine which items of test equipment you have to go to the patch panel, keeping in mind the upper frequency limit of 500 kHz. Such equipment might include: VOM's; VTVM's, TVM's, or DMM's; audio signal generators; low-frequency oscilloscopes; sweep generators; intermodulation and total-harmonic distortion meters; power meters; low-voltage power supplies; etc. Account for every input and output (if any) for each instrument. (Don't forget the Z-axis input for the oscilloscope.) Once you know how many input and output tie points you need, drill holes for mounting standard push-in solderless terminal pins in the panel. Use a 0.136" (3.454-mm) drill for the holes. Push the pins into the holes until they are solidly seated against the panel. The insulating plastic around the pins will swell to form a tight mechanical fit. Mount some BNC and phono-jack connectors along the bottom of the panel, with the "hot" lead of each connector going to a separate press-in terminal. Then use a good-quality dry-transfer lettering kit to label all input and output points on the panel.

The test instruments are connected to the solderless pins from the back of the patch panel via high-quality slender coaxial cable that is properly terminated at the instrument ends. The shields of the cable go to a common ground bus, while the hot conductors go to the appropriate press-in pins. Plan to have all multimeter test-lead points "floating." You can use the BNC and phono-jack connectors for the cables going to and coming from the equipment being serviced and for test equipment not otherwise terminated on the patch panel.

Using the Patch Panel. Because all the front panel terminations are solderless, you will need a supply of short lengths of No. 22 or No. 24 solid insulated hook-up wire for making the various interconnections between solderless pins and the socket. Strip about 1/4" to 1/8" (6.35 to 9.53 mm) of insulation from each end of the wires.

Mount the patch panel on your workbench in a location where it will be conveniently accessible under all working conditions. Place the device or equipment to be tested on the bench and connect its inputs and outputs to the BNC and/or phono-jack connectors, or simply plug them into the holes in the large socket. Then, using lengths of prepared hookup wire, it becomes very simple to interconnect the test instruments as needed. Because each row of connectors on the socket has five parallel-connected tie points, you can couple to the equipment being tested up to four instruments to the inputs and four more to the outputs without having to jumper to another set of terminals.

The solderless socket is designed to accommodate the leads of low-wattage resistors, most capacitors, transistors, diodes, and the pins of IC's. The solderless socket and connector pins (from E&L, Continental Specialties, or AP Products), and the other connectors, are available at most electronic parts stores or in hobby electronics catalogs. ◊
Now! In the space of an ordinary clock radio...

The Desk Top Executive Entertainment Center

5" TV・AM Radio・FM Radio・Digital Clock・Alarm Clock
Perfect For Your Office...The Kitchen, Bedroom, Den or Dorm.

Extraordinary, isn’t it? What common sense and good design can do! So, the Executive Entertainment Center, without one radically new feature, is the first and only desk top television set with an AM/FM radio and digital alarm clock.

A triumvirate of usefulness. A master-piece of convenience. In just 15 inches of desk space, Yes, it is only 15” wide by 12” deep by 7” high. The ultimate in miniaturized electronic office technology.

Really Good Features

The TV is exceptionally sharp and clear. A high definition, resolution on the 5" black and white screen surpasses the reception on even the best bigger set. The AM/FM radio, with precision slide rule tuning and an oversize, wide-range dynamic speaker, delivers the kind of sound you’d expect from a console. The digital clock features a constant, bright red LED readout, with large, easy-to-read numbers. And the 24-hour alarm system does everything but talk to you.

It will turn the TV or radio off and on automatically, so you don’t have to worry about missing a favorite program, the news, weather, traffic reports, stock market prices. You can also use the alarm as an appointment reminder—for meetings or phone calls or to notify you when it’s time to leave. Of course, you can shut the alarm off completely or have it ring again in five minutes.

Additional Highlights

The television comes complete with UHF and VHF antennas for perfect reception on every station in virtually every area. Circuitry is solid state, for years of trouble-free reliability.

The Digital Clock can be used to control all functions of the Center. It operates on the 60 cycles generated by 110 current, so it will maintain absolutely flawless accuracy for years and years. If you’ve been thinking of getting an electric clock for your office, this is the one you should have.

AM/FM Radio provides the greatest variety of information and entertainment. And is an ideal way to minimize distracting office noises. FM particularly, lets you choose the music you like best, and the music that’s most appropriate for what you’re doing, whether it’s classical, nostalgic, soft rock or today’s sound.

Earphone is included so you can listen to the TV or radio in private without disturbing anyone near you. Handsomely styled in black and white to fit in unobtrusively with any decor. FCC approved. Operates on AC current.

15-Day No-Risk Trial so you can send for the Executive Entertainment Center confident you must be absolutely delighted and completely satisfied or you can return it to us for a full refund.

Full One Year Limited Warranty on parts and labor. A good indication of the solid state reliability, the years and years of trouble-free performance you’ll enjoy.

Improve Your Efficiency and Productivity

Now, tucked neatly in a corner of your desk... without costing a fortune, without cluttering your office with a TV stand, without your having to look half way across the office to a crowded bookcase shelf... the Executive Entertainment Center will end your isolation from the rest of the world, and your dependence on limited information from the telephone. You’ll use it to get the weather, sports results, important interviews, your favorite programs (especially when you have to work late). More, it will make the long day at your desk as pleasant as possible. It’ll give you the break you need to ease your frustration, the respite from business that erases your tension, improves your efficiency and productivity.

An Extra Set For Your House

Of course, the Executive Entertainment Center is the ideal combination for many places besides your office. After all, it takes up only about the same space as a clock radio, so it’ll fit right in with your way of life: in the kitchen, out of the way on a counter. (The kids will love it, too, and they can watch without disturbing the rest of the family.) In the bedroom, so you don’t have to fight over which program to watch, know the set will go off automatically, wake you with the alarm or the radio or TV. In the den, it’s a natural. And the set you always wished to have while you’re shaving. In addition, it’s the perfect gift for a student living in a dormitory (especially if it’s going to be taken home on vacations!).

The Executive Entertainment Center is only $199.95 plus $3.99 for shipping and handling (Illinois residents please add 5% sales tax).

To order, simply send your check to DOUGLAS DUNHILL, INC., Dept. 79-2303, 4225 Frontage Rd., Oak Forest, IL 60452.

CREDIT CARD BUYERS may call our toll-free number

800-325-6400 OPERATOR #03

(Missouri residents call 800-342-6600)

DOUGLAS DUNHILL INC.
AFFORDABLE QUALITY

Dept. 79-2303
4225 Frontage Rd. • Oak Forest, IL 60452
World's biggest and best source of top-quality electronic kits! Look at what's new in our new just-off-the-press catalog!

NEW

ASX-1383

High-Fidelity Speaker System

Easily one of the finest speaker systems in its price range! Linear Phase design uses stepped speaker components and a 1st order crossover so all frequencies reach your ears at the same time; for a hi-fi improvement you can really HEAR. A special edge-free cabinet and acoustically "invisible" grill cloth provide outstanding dispersion and accurate stereo imaging. Great looks too. Brazilian Rosewood cabinet adds a look of elegance to any decor.

NEW

CS-2048

Automatic Cruise Control

Set your desired cruise speed, press the button and that's it — the CS-2048 maintains your car's speed on level roads, up and down hills, around curves, anywhere, automatically. Perfect for long-distance driving. A touch of the brake pedal returns the car to pedal control instantly — an important safety feature. Fits most domestic cars, vans and trucks with open drivethrashes.

NEW

GD-1114

FM Wireless Intercom

Simply plug into AC outlets and use for reliable two-way communications between units on the same AC power line. Has phase-locked loop solid-state circuitry for clean, clear transmission and reception; automatic squelch for quiet operation.

NEW

IT-7410

Logic Probe

Provides performance levels equal to units costing much more. Shows TRUE logic levels at high frequencies, has TWO indicator lights for unambiguous readings. Ideal for quick testing of any TTL or CMOS digital circuits.

NEW

OC-1401

Aircraft Navigation Computer

The world's FIRST hand-held navigation computer with true, on-board computer power — provides complete air-port-to-airport flight management for up to 9 flight legs. Computes magnetic heading, true air speed, ground speed, true course, ETA to destination, clock time to check point and destination. A built-in clock/timer and three on-board microprocessors allow real time display which counts down to check point or destination. There's even a fuel warning indicator. It's the only navigation computer with complete pre-flight, in-flight and navigation functions. Another Heath EXCLUSIVE!

HEATHKIT ELECTRONIC CENTERS

PROVIDE SALES AND SERVICE

ARIZONA — Phoenix, 2727 W. Indian School Rd. (602) 279-6247.

CALIFORNIA — Anaheim, 332 E. Ball Rd. (714) 776-9400; El Cajon, 6000 Potrero Ave. (619) 296-8870; Los Angeles, 2399 S. Flower St. (213) 749-0910; Pomona, 1555 Orange Grove Ave. N. (714) 623-3542; Redwood City, 2001 Millerdfield Rd. (415) 365-8155; Sacramento, 1600 Fulton Ave. (916) 486-1375; San Diego (La Mesa), 3863 Center Dr. (714) 486-0100; San Jose (Campbell), 2250 S. Basilcom Ave. (408) 377-8620; Woodland Hills, 22501 Ventura Blvd. (213) 885-0513.

COLORADO — Denver, 5940 W. 38th Ave. (303) 422-3408.

CONNECTICUT — Hartford (Avon), 395 W. Main St. (203) 678-0330.

FLORIDA — Miami (Hialeah), 4705 W. 16th Ave. (305) 823-2280; Tampa, 4019 West Hillsborough Ave. (813) 896-2541.

GEORGIA — Atlanta, 5285 Roswell Rd. (404) 252-4341.

ILLINOIS — Chicago, 3462-66 W. Devon Ave. (312) 583-3920; Chicago (Downers Grove), 224 Ogden Ave. (312) 852-1304.

INDIANA — Indianapolis, 2112 E. 26th St. (317) 257-4321.

KANSAS — Kansas City (Mission), 5962 Lamar Ave. (913) 362-4460.

KENTUCKY — Louisville, 13401 Shelbyville Rd. (502) 245-7811.

LOUISIANA — New Orleans (Kenner), 1900 Veterans Memorial Hwy. (504) 724-6321.

MARYLAND — Baltimore, 1713 E. Joppa Rd. (301) 661-4446; Rockville, 5542 Nicholson Lane (202) 881-5420.

MASSACHUSETTS — Boston (Peabody), 242 Andover St. (617) 537-9230; Boston (Wellesley), 165 Worcester Ave. (Rte. 9 just west of Rte. 128) (617) 227-1510.

MICHIGAN — Dearborn, 1864 W. Eight Mile Rd. (313) 335-6482; Detroit, 18149 W. Eight Mile Rd. (313) 772-0416.

MINNESOTA — Minneapolis (Hopkins), 101 Shady Oak Rd. (612) 938-6371.

MISSOURI — St. Louis (Bridgeport), 3738 McKelvey Rd. (314) 291-1180.

NEBRASKA — Omaha, 3007 Maple St. (402) 391-2071.

NEW JERSEY — Fair Lawn, 35-07 Broadway (Rte. 4) (201) 791-6355; Green, 1010 State Hwy. 25 (201) 757-1231.

NEW YORK — Buffalo (Amherst), 3476 Sheridan Dr. (716) 855-3080; Elma, Long Island, 15 Janitco Turnpike (516) 334-8181; Rochester, 239 Jefferson Rd. (716) 444-5470; White Plains (North White Plains), 7 Reserve Rd. (914) 761-7660.

*Units of Schlumberger Products Corporation.
If quality...value...and the pride of craftsmanship turn you on, get your NEW HEATHKIT CATALOG!

COAST-TO-COAST

OHIO — Cincinnati (Woodlawn), 10133 Springfield Pike (513) 771-6902; Cleveland, 5441 Pearl Rd. (216) 886-1350; Columbus, 2500 Morse Rd. (614) 475-7200; Toledo, 48 S. Byrne Rd. (419) 537-1887.

 PENNSYLVANIA — Philadelphia, 6318 Roosevelt Blvd. (215) 269-0180; Franny (Chester Co.), 630 Lancaster Pike (302) (215) 647-5555; Pittsburgh, 3482 Wm. Penn Hwy. (412) 824-3564.

 RHODE ISLAND — Providence (Warwick), 558 Greenwich Ave. (401) 738-5150.

 TEXAS — Dallas, 2715 Ross Ave. (214) 826-4053; Houston, 3705 Westheimer (713) 623-2090; San Antonio, 7111 Blanco Rd. (512) 541-9876.

 VIRGINIA — Alexandria, 6201 Richmond Hwy. (703) 765-5515; Norfolk (Virginia Beach), 1055 Independence Blvd. (757) 486-0997.

 WASHINGTON — Seattle, 505 8th Ave. North (206) 685-2172.

 WISCONSIN — Milwaukee, 5215 W. Fond du Lac (414) 673-8350.

NOTE: This FREE Catalog Coupon can also be redeemed at any of the Heathkit Electronic Centers* nationwide. (See list at left)
We've had our ears on you. Listening to your CB base station wants and needs, and delivering the power and performance features to fill them.

Like Midland's new 78-999 Single-Sideband base station, the top of the Number 1-selling CB line in America. In terms of advanced technology, this is HomeBase.

NUMBER 1 FEATURES.
All-channel Single-Sideband and AM operation. Separate meters for modulation, SWR/power and signal strength.
Mike gain and RF gain controls. ANL, noise blanker and high frequency filter controls.
An antenna switch to make use of either of two antennas if you wish.
Still, it's just one of many Midland Power HomeBases. For instance, there's one with a unique variable noise blanker. Even a basic AM Midland designed to be your economical first HomeBase.
SERIOUS CB.
And Midland base-station accessories and options are engineered to deliver all the Midland Power performance you pay for, with the same kind of innovation that's kept us Number 1 all these years.
Midland HomeBase CB.
Take it from C. W. McCall, America's Number 1 CBer: "You can't get mightier, more advanced ears for your house."

See your Midland CB dealer now. And while you're there, ask about the new Midland Mobile Audio AM/FM car stereo line, with MicroPrecision™ Tuning.

Midland Home Base CB Run with Number 1.

AmericanRadioHistory.Com
SOLID (STATE) SECURITY

CHANCES are we’ll never know who invented the first security alarm system. We know, of course, that trained animals have been used as living intruder alarms, and early cave dwellers doubtless sprinkled dry twigs or other objects at the openings of their dwellings to alert the occupants to possible entry by a potential enemy. Time moves on, however, and life styles, situations and technologies change.

Our dwellings today, unlike the ancient caves, often have multiple entrances (front and rear doors, windows, and maybe a basement or garage door), all of which should be protected. There are other dangers as well. Our modern homes are literally crammed with inflammable goods. As a result, danger from fire in some areas may be much greater than that from burglars or other intruders. The fire danger is so great, in fact, that some localities have enacted laws requiring the installation of adequate fire or smoke alarms in all new buildings, including private homes.

Fortunately, the assembly and/or installation of burglar and fire alarm systems are well within the capabilities of most electronics hobbyists. Where there are no local laws requiring such equipment, a carefully chosen and properly installed system can bring peace of mind and a sense of security to the home owner and may even save a loved one’s life. Here, a system may be assembled either from “scratch” or using a kit. Optionally, a commercially manufactured system may be installed. On the other hand, if local ordinances mandate the use of protective equipment, such as smoke alarms, it may be necessary to use only specially approved factory-built units in the installation.

The basic circuit for an inexpensive, but quite reliable, solid-state combination fire and burglar alarm system is given in Fig. 1. Easily assembled in two or three evenings using non-critical, readily available components, the system is designed to serve as a fire alarm at all times and as a combination fire and burglar alarm during the night. It is fail safe in that it provides protection even during power line failures, and will sound an alarm if there is an “open” anywhere in the alarm sensor line, as by an intruder cutting or breaking a wire. Once the alarm is activated, it will continue sounding until the battery (B1) is discharged, unless deliberately switched off or reset using a key or hidden switch.

Referring to the schematic diagram, the fuse, switch (S1), neon pilot light assembly transformer (T1), bridge rectifier (RECT1), and current-limiting resistor (R1) form a simple line-operated trickle charger for rechargeable battery (B1). The latter serves as the main power source for the system. The alarm system itself includes a key-operated spst power/reset switch (S2), a separate (optional) pilot lamp circuit (R2/LED1), an audible alarm, such as a horn, buzzer or bell (LOAD), a silicon controlled rectifier (SCR), a gate current-limiting resistor (R3), a spst pushbutton Panic or Test switch (S3), a spdt Night/Day switch (S4), a group of series-connected NC magnetic switches, and a group of series-connected NC thermostatic switches or fusible links. The magnetic switches are used to protect access openings to the guarded area, such as doors and windows or, in the cases of apartments and offices, even larger air conditioner or ventilator registers. The temperature sensitive devices are installed in heat “wells” (areas where heat is likely to accumulate, such as at the top of stair wells) and in fire-prone areas, such as kitchens and furnace rooms.

In operation, the SCR normally is in a nonconducting or high-impedance state, for its gate current source, R3, is effectively shorted to its cathode through the closed sensor circuit, comprising switch S3 and the NC magnetic and temperature sensitive switches. Switch S4 shorts out the magnetic switches during the day, permitting access to the protected area while maintaining normal operation of the fire alarm system. If an open occurs anywhere in the sensor line, as by depressing S3, cutting or breaking the interconnecting wire, or opening either the magnetic (S4 in the night position) or temperature sensitive switches, gate current will be supplied to the SCR through R3, causing this device to “fire.” In the conducting state, it supplies current to the alarm device (horn, buzzer, bell, etc.) serving as its load. Thereafter, the SCR will continue to conduct, even if the sensor line continuity is restored, until B1 is discharged or until the system is reset by opening the key operated power/reset switch, S2.

Component values are not specified in the schematic diagram because they are not critical and depend on the builder’s choice of major devices. As a general rule, however, the trickle charger circuit will be designed to match the characteristics of the power supply battery, B1, which may be a 3-to-12-volt nickel-cadmium or a conventional lead-acid storage battery, depending on the power requirements of the alarm device serving as the SRC’s load. Similarly, R2’s value will depend on the supply voltage and the LED’s maximum current rating. In most applications, the SCR will be a low-voltage, sensitive-gate type, with a current rating adequate to handle the load device used.

If the alarm device is an “interrupter”-type electromechani-
The page contains a list of products and advertisements. Here is a structured representation of the text:

Socket Sale

Wire Wrap Sockets
- 14 Pin Wire Wrap: 30 cents per 27400
- 16 Pin Wire Wrap: 32 cents per 29350

Edge Card Connectors

- 44 Pin ST Edge Card Connector: 1.75 each, 150c/10
- 100 Pin ST Edge Card Connector: 3.50 each, 300c/10
- 100 Pin WW Edge Card Connector: 3.50 each, 300c/10

All Connectors Include Gold.

Solderless Breadboards

SK 10

Inclu ding:
- Over 100 pieces of precut wire in assorted lengths — free!
- Choose 1 color: Red, Black, Blue, Yellow, Green, White, Orange, or Assortment.

Ordering Information
- Orders under $25 add 35c, and $2
- All others, shipped FOB in U.S. via UPS
- For Blue Label (Air) or 1st Class, add $1
- We accept Visa & Master Charge
- Mail orders shipped same day

Inquiries Invited

If the SCR’s gate current is increased to the maximum value specified for the type of device used. Switch S3 is a NC momentary-contact pushbutton type and may be located either on the main control panel as a: switch or remotely, as by the household’s bed, as a panic switch, permitting the alarm to be activated...
Now everyone can afford to own a digital multimeter

A digital multimeter used to mean an expensive, bulky piece of equipment.

The Sinclair PDM35 changes that. It's got all the functions and features you want in a digital multimeter, yet they're neatly packaged in a rugged but light pocket-size case, ready to go anywhere.

The Sinclair PDM35 gives you all the benefits of an ordinary digital multimeter — quick clear readings, high accuracy and resolution, high input impedance. Yet at $59.95 it costs less than you'd expect to pay for an analog meter!

The Sinclair PDM35 is tailor-made for anyone who needs to make rapid measurements. Development engineers, field service engineers, lab technicians, computer specialists, radio and electronic hobbyists will find it ideal.

With its rugged construction and battery operation, the PDM35 is perfectly suited for hard work in the field, while its angled display and optional AC power facility make it just as useful on the bench.

What you get with a PDM35

3½ digit resolution.
Sharp, bright, easily read LED display, reading to ±1.999.
Automatic polarity selection.
Resolution of 1 mV and 0.1 nA (0.0001 µA).
Direct reading of semiconductor forward voltages at 5 different currents. Resistance measured up to 20 MΩ. 1% of reading accuracy.

Operation from replaceable battery or AC adapter.
Industry standard 10 MΩ input impedance.

Compare it with an analog meter!

The PDM35's 1% of reading compares with 3% of full scale for a comparable analog meter. That makes it around 5 times more accurate on average.

The PDM35 will resolve 1 mV against around 10 mV for a comparable analog meter — and resolution on current is over 1000 times greater.

The PDM35's DC input impedance of 10 MΩ is 50 times higher than a 20 kΩ/volt analog meter on the 10 V range.

The PDM35 gives precise digital readings. So there's no need to interpret ambiguous scales, no parallax errors. There's no need to reverse leads for negative readings. There's no delicate meter movement to damage. And you can resolve current as low as 0.1 nA and measure transistor and diode junctions over 5 decades of current.

Technical specifications

DC Volts (4 ranges)
- Range: 1 mV to 1000 V.
- Accuracy of reading: 1.0% ± 1 count.
- Note: 10 MO input impedance.

AC Volts (40 Hz-5 kHz)
- Range: 1 V to 500 V.
- Accuracy of reading: 1.0% ± 2 counts.

DC Current (6 ranges)
- Range: 1 nA to 200 mA.
- Accuracy of reading: 1.0% ± 1 count.
- Note: Max. resolution 0.1 nA.

Resistance (5 ranges)
- Range: 1 Ω to 20MΩ.
- Accuracy of reading: 1.5% ± 1 count.
- Also provides 5 junction-test ranges.

Dimensions: 6 in. x 3 in. x 1½ in.
Weight: 6½ oz.
Power supply: 9 V battery or Sinclair AC adapter.

Options: AC adapter for 117 V 60 Hz power.

The Sinclair credentials

Sinclair have pioneered a whole range of electronic world-firsts — from programmable pocket calculators to miniature TVs. The PDM35 embodies six years' experience in digital multimeter design, in which time Sinclair have become one of the world's largest producers.

Tried, tested ready to go!

The Sinclair PDM35 comes to you fully built, tested calibrated and guaranteed. It comes complete with leads and test prods, operating instructions and a carrying wallet.

And getting it wouldn't be easier. Just fill in the coupon, enclose a cheque/MO for the correct amount (usual 10-day money-back undertaking, of course), and send it to us.

We'll mail your PDM35 by return!

For Instant Service, CALL TOLL
FREE: 1-800-528-6050, EXT. 1052.
Ariz. Res. Call Collect 602-955-9710 or send coupon:

Starshine Group.

Dept. 470, 924 Anacapa Street, Santa Barbara, Calif. 93101

Please promptly send Sinclair PDM35 Digital Multimeter(s) @ $59.95 (plus $3 shipping and insurance) each. If you have the option of returning it within 7 days of receipt for an immediate refund.

- Also Send AC Adaptor(s) @ $4.95 ea.
- Also Send Deluxe Padded Carrying Case @ $4.95 ea.
- Also Send 60 V probe @ $29.95
- Charge to The Credit Card Checked Below:
 - BankAmericard/Visa
 - American Express
 - Carte Blanche
 - Diners Club

Exp. Date

Name

Address

City/State/Zip

Signature
must be exercised to minimize pin-to-pin and board leakage currents near the input terminal (pin 1). If a PC board is used, a guard ring should be etched around pin 1 and the ionization input terminal (pad), connected to pin 2. The customary precautions required when working with MOS devices should be observed during the installation and wiring of the IC’s and MOSFET (if used). In the case of the MC14462, this device is protected by a shorting bar between pins 1 and 2 which should be broken only after the wiring is completed and checked. In addition, Motorola suggests that a 0.001-µF ca-

![Diagram](image)

Fig. 2. Ionization-chamber smoke detector circuits featuring Motorola devices: (A) with separate MOSFET preamp, and (B) with on-chip preamp.

pacitor be connected between \(V_{DD} \) and ground near the IC to bypass transients that may be generated in the power source connection leads by peak currents in the horn driver loop.

Although primarily designed for operation on 9- to 14-volt battery supplies, National’s LM1801 smoke detector IC features an on-chip zener voltage regulator which, combined with its rugged construction, permits operation on ac power line sources. It includes the customary low-battery detector alarm and, in addition, offers an output stage capable of furnishing currents of up to several hundred mA. This eliminates the need for an external power amplifier to drive typical low-volt-
age 85-dB horns. The versatile LM1801 may be used in either the ionization-chamber or photoelectric type of smoke alarm. Both types of circuits are illustrated in Fig. 3.

In Fig. 3A, the battery-operated design employs a standard ionization chamber in conjunction with an NF5301 JFET preamp. Alarm threshold sensitivity is adjustable by means of 5-megohm potentiometer \(R_4 \). Other features include provisions for a manual test (via an NO momentary-contact spst pushbutton switch) and for interconnecting two or more alarms so that all will sound if any one is activated. For the latter mode of operation, a single pair of wires is used in parallel with all 10 IC pins and ground. The low-battery “beep” alarm will sound only on the individual units, however. The low-battery alarm level is set by the ratio of \(R_1 \) and \(R_2 \) so that the voltage at pin 12 is equal to the oscillator trip voltage when the battery voltage nears its low limit. With the resistor values specified in the diagram, the alarm will sound when the battery voltage drops to approximately 8.2 volts.

In contrast, the photoelectric alarm circuit shown in Fig. 3B does not require a “low-battery warning” because it is designed for operation on a standard 120-V ac power line. Here, smoke is detected as a decrease in the light transmission between the NSL5020 LED light source and the CL904 photoresistor. Alarm threshold sensitivity is controlled by a 1-megohm potentiometer \(R_7 \). This circuit also features a high-power 120-V ac horn, controlled by an external 2N5064 SCR which, in turn, is activated by the IC when it switches to an alarm mode. In addition to detecting smoke, the circuit will sound an alarm in the event of an LED failure. Finally, it can be adapted for use as an intrusion alarm by placing the LED light source and photoresistor on the opposite sides of the window, door,

or other access opening requiring protection. Depending on the distance(s) involved, it may be necessary, in some cases, to add a lens system direct and focus the LED’s radiation on the photo detector. Once installed and adjusted, the system will respond with an alarm when the light beam is broken by an intruder.

Reader’s Circuit. Dale McClintock (c/o Heil Sound, Ltd., Marissa, IL 62257) was one of a number of readers responding to our discussion of solid-state motor controls in last June’s column. Dale has been seeking—without much success—a solid-state design to replace the inefficient rheostats used for controlling miniature electric racing cars. The circuits he has tried have failed to provide the realistic action achieved with pot controls, yet he feels there must be “a better way.”

The problem is not as simple as it may appear at first glance, for there are three important factors to consider: (1) maximum speed, (2) acceleration, and (3) braking. Unless the design chosen takes these three factors into account, the results are likely to be disappointing. First, consider the max-

imum speed possible with a given design. If a rheostat is used, it will provide full source voltage across the motor when turned to zero resistance. A series transistor used as a control element cannot apply full source voltage to its load, even at saturation currents, due to the inherent voltage drop across the transistor itself. This may be small, perhaps only a fraction of a volt, but is enough to limit the maximum motor speed. Acceleration is another problem which, interestingly, can be
solved more easily with solid-state designs than with a conventional rheostat. The third and final problem, braking, is achieved with rheostat design by providing an electrical load (essentially, a short circuit) across the motor when source power is removed. Here, the dc motor acts as a loaded generator and provides the desired braking action. A similar technique can be used with solid-state circuits.

A circuit which should satisfy Dale's requirements (and those of other model racing car enthusiasts) is illustrated in Fig. 4. In the circuit, Q1 is a high-gain npn Darlington transistor and should have a maximum current capability of (at least) 10 to 15 amperes. Speed control R1 will range in value from a few hundred to a few thousand ohms, depending on the transistor's gain. Series resistor R2 is chosen to limit Q1's maximum base current to the value recommended by the transistor manufacturer. Shunt capacitor C1 is a relatively large electrolytic, perhaps as high as 500 to 2000 μF, but its actual value will depend on R2's value; that is, the larger R2, the smaller the capacitor's value. Control switch S1A/S1B is a ganged dual dpst switch wired so that one section closes when the second opens, and vice-versa. Finally, the power supply, B1, is chosen to provide a higher voltage than normally is specified for the motor used and thus compensate for the voltage drop across Q1 at saturation. Generally, adding a single cell to a battery supply will be adequate (i.e., using a 14-volt source instead of a 12.6-volt source) for most applications.

In operation, closing S1A opens S1B and the motor current, hence speed, will depend on R1's adjustment. If R1 is turned up (toward the positive battery terminal), C1 will act as a momentarily short to Q1's base, providing a momentary "boost" in current. This, in a fashion, is analogous to the action of the accelerator pump in an automobile's carburetor. When S1A is opened, S1B closes, shorting the motor terminals and providing the desired braking action.

Device/Product News. You can add life to your pilot lights by using a flashing LED introduced recently by Litonix, Inc. (19000 Homestead Road, VALLCO Park, Cupertino, CA 95014). Identified as type FLR-4403, the new device comprises a gallium-arsenide-phosphide LED and integral IC chip in a single T1-14 package. The IC flashes the LED on and off at approximately three times per second. Directly compatible with standard TTL and CMOS circuits, the FRL-4403 lists for less than a dollar each in unit quantities.

RCA's Solid State Division (Box 3200, Somerville, NJ 08876) has announced a new family of high-voltage npn silicon power transistors. Designated the "SwitchMax" series, the initial offering includes eight devices, types 2N6671 through 2N6678. Of these, types 2N6671-3 are rated for a saturation current of 5 A, types 2N6674-5 for 10 A, and types 2N6676-8 for 15 A. The devices have VCE ratings of 450 to 650 volts, and are particularly suited to such applications as off-line power supplies, inverter/converter circuits, and pulse-width-modulated regulators. The new transistors are supplied in standard JEDEC TO-24MA (TO-3) metal packages.

Motorola Semiconductor Products, Inc. (P.O. Box 20912, Phoenix, AZ 85036) is offering a new automotive temperature-range, single-supply, dual op amp. Featuring a low current drain over a wide voltage range, the LM2904, basically similar to the LM158 series, is ideal for automotive and other battery operated systems where available voltages range from 3.0 to 26 and temperatures from -40° C to +85° C are encountered. In many such systems, the most solid ground reference is also the negative battery terminal, making the LM2904's common-mode input range especially useful in simplifying external biasing. Depending on suffix designation, the LM2904 is available in a metal TO-100 can (H), 8-pin ceramic DIP (J), or 8-pin plastic DIP (N).
NEW EICO 480
TRIGGERED SWEEP
10 MHz SCOPE

100% Solid State • Includes 1:1 Probe

More Professional scope performance for your money! DC to 10 MHz bandwidth, AC and DC coupling, 11 position calibrated attenuator, 10 mV/cm sensitivity, pushbutton operation. Outstanding features: Built-in TV Sync Separator; Digitally controlled trigger circuits; reference baseline display; calibrated 21 step sweep speed; Fully regulated power supply; Custom Bazel for standard camera mounting. Assembled $425.00

FREE '78 EICO CATALOG
Check reader service card or send 50¢ for first class mail. See your local EICO Dealer or call (516) 681-9300, 9:00 a.m.-5:00 p.m., EST. Major credit cards accepted. EICO-108 New South Rd., Hicksville, N.Y. 11801

CIRCLE NO. 14 ON FREE INFORMATION CARD

Thousands of Communications Electronics customers
OWN A BEARCAT® SCANNER.
But since we've introduced the Bearcat® 250 crystalless
15,600 frequency, 50 channel synthesized scanner, our specifications have been improved:

Sensitivity
0.4 microvolts for 12dB SINAD on VHF bands, UHF band slightly less

Selectivity
Better than 60dB @ ±25 kHz

Audio Output
At least 2.0 Watts rms

Audio Quality
The BC-250 audio is more noise-free and suffers less distortion than comparable models by a margin of 10dB or more.

Image Rejection
The BC-250 rejects image frequencies by at least 8dB better in all bands than comparable models.

This month, we've got a special price on the Bearcat® 250. Now, you can own this fantastic professional monitor for only $319.00. That's a savings of over $80.00.

To start Bearcating, Master Charge and Visa card holders may call and order toll free 800-521-4414. Outside the U.S. and Michigan dial 313-994-4441. To order by mail, send $319.00 plus $5.00 for U.S. U.P.S. shipping. Foreign orders invited at slightly higher cost. Mail your orders or requests for a free catalog completely describing all Bearcat® scanners to Communications Electronics, Box 1002, Dept. CEM, Ann Arbor, Michigan 48106 U.S.A.

Bearcat® is a registered trademark of Masco Corporation of Indiana

POPULAR ELECTRONICS

92

10 JULY and August we examined some of the basic characteristics of digital-to-analog (D/A) converters. Now we're going to devote equal time to analog-to-digital (A/D) converters.

Both D/A and A/D converters play key roles in such applications as digital multimeters, solid-state data loggers, speech synthesizers, digital communications devices, motor speed controllers and many others. In all these applications the converter interfaces the analog world of continuously variable information and signals such as temperature, voltage, velocity, force and light intensity with the two-state binary operation of digital circuits.

We've already seen how a simple D/A converter can convert a four-bit binary code into a voltage to vary the brightness of a lamp or the speed of a motor, generate waveforms, etc. An A/D converter performs the mirror image task of transforming a variable signal like the voltage from a pressure transducer into the binary format that a digital circuit can process. Probably the best-known application for the A/D converter is the digital multimeter, but such converters can be found in other applications working with a variety of digital circuits.

The digital circuit associated with the A/D converter can be as simple as a RAM and a counter that together store a series of analog measurements for later retrieval (a data logger). Alternatively, it might be a sophisticated flat-screen, solid-state oscilloscope that uses an array of hundreds of LED's in place of a bulky cathode ray tube. It could just as well be a microcomputer programmed to monitor and make decisions about various analog signals, trends or events.

Fig. 1. Block diagram of parallel or flash A/D converter.

Fig. 2. Schematic diagram showing how a voltage divider works.

Types of A/D Converters. Converting an analog signal into digital form is not as easy as converting a set of binary digits into an analog voltage. Nevertheless, several ingenious methods of achieving A/D conversion have been
"INDUSTRIAL" WIRE-WRAPPING TOOL

MODEL BW928

$49.95

BATTERIES NOT INCLUDED
BIT & SLEEVE NOT INCLUDED

BATTERY OPERATED
(2) Standard "C" Ni Cad Batteries (not included)

INTERCHANGEABLE BITS & SLEEVES
(not included)

REVERSIBLE ROTATION
For unwrapping, reverse batteries

BACKFORCE OPTIONAL
Model BW928-BF $52.95

POSITIVE INDEXING

LEIGHT WEIGHT
*LEXAN™ Housing

*LEXAN™ GENERAL ELECTRIC

OK MACHINE & TOOL CORPORATION
3455 Conner St., Bronx, N.Y. 10475 • (212) 994-6600 • TELEX 125091

CIRCLE NO. 40 ON FREE INFORMATION CARD
fact: the IV does more... much more!

Era IV begins! The new Shure V15 Type IV phonograph cartridge is an altogether new phonograph system that exceeds previous performance levels by a significant degree — not merely in one parameter but in totality. The Type IV offers:

- Demonstrably improved trackability across the entire audible spectrum.
- Dynamically stabilized tracking overcomes record-warp caused problems, such as fluctuating tracking force, varying tracking angle; and wow.
- Electrostatic neutralization of the record surface minimizes clicks and pops due to static discharge, electrostatic attraction of the cartridge to the record, and attraction of dust to the record.
- An effective dust and lint removal system.
- A Hyperelliptical stylus tip configuration dramatically reduces both harmonic and intermodulation distortion.
- Ultra-flat response — individually tested.

V15 Type IV

Stereo Dynetic® Phono Cartridge

For complete details on this remarkable new cartridge write for the V15 Type IV Product Brochure (ask for AL569) and read the exciting facts on the V15 IV for yourself.

Shure Brothers Inc.
222 Hartrey Ave., Evanston, IL 60204

In Canada:
A. C. Simmons & Sons Limited
Manufacturers of high fidelity components, microphones, sound systems, and related circuitry.

Fig. 4. A NAND gate decoder converts 4-element bargraph output into 1-of-4 moving dot readout.

developed. One of the simplest of these employs a D/A converter and a counter. The counter is initially cleared so that all its outputs are at logic zero. A clock increments the counter, and each successive count is converted into an analog voltage by the D/A converter and applied to an op amp comparator along with the incoming analog signal. When the two analog signals are equal, the comparator changes states and inhibits the clock. The binary word stored in the counter is the digital equivalent of the analog input signal.

Although this method of conversion is simple, it’s very slow. The time for a conversion can range from no clock period (0 volts in) to 2^N clock periods where N is the counter’s capacity in bits. Thus, an 8-bit counter would require between 0 and 256 clock periods for a single data conversion.

Fig. 5. An A/D converter with binary output is made by adding a 2-bit encoder as shown here.
A method called successive approximation can reduce the conversion time to only \(N \) clock periods. Briefly, this method employs a D/A converter connected to a “successive approximation” register that stores a binary number equivalent to half the full-scale output of the converter. Both the output from the converter and the incoming analog signal are fed into a comparator. If the D/A converter’s output is less than the input signal, the most significant bit (MSB) in the data register remains high. The next most significant bit goes high when the next clock pulse arrives. The updated output from the D/A converter is then compared with the input signal. If it is greater than the input, the second-most significant bit goes low and the thirdmost significant bit goes high.

The conversion process continues bit by bit until the least significant bit (LSB) is reached. The data register then contains the binary word that corresponds to the analog input.

Another popular method of A/D conversion is called dual-slope conversion. Like the two previous methods, dual-slope conversion requires a clock and various control circuits. In other words, it’s both complicated and slow.

The fastest A/D converter is also the simplest. It’s called the parallel or flash converter, and is made from a voltage divider connected to a series of comparators and an encoder. Figure 1 shows how the components in a flash converter are organized. As you can see, the flash converter doesn’t require a clock. Data conversion takes place as fast as the comparators can change state and the encoder encode.

Commercial flash converters are very expensive because converting an analog signal into an \(N \)-bit word requires \(2^N \) comparators. This means that an 8-bit output word requires 256 comparators!

Fortunately for us experimenters, low-resolution (anything less than 4 bits) A/D flash converters are easy to design and build. Therefore, the remainder of this installment of “Experimenter’s Corner” will be devoted to the step-by-step design and assembly of the various sections of a flash converter. As you’ll soon realize, there are many applications for both the completed converter and the various stages that make it up.

The Voltage Divider. The first stage of a flash A/D converter is a standard voltage divider. In case you’re relatively new to electronics, voltage dividers are more common than you might think. An

fact:

a stylus tip does not a cartridge make. so why all the fuss?

The stylus tip is only part of the complex stylus and cartridge structure, and performs a single function — it positions the entire stylus assembly so that all groove undulations are traced without damaging the record. The production of a top-quality tip calls for exquisite micro-craftsmanship, precision polishing, unwavering uniformity, and exact orientation. (However, important as it is, an exotic diamond stylus tip configuration simply isn’t a cure-all for what might ail an otherwise deficient cartridge, regardless of high-flying claims you may have heard or read.)

Here are the basic criteria a top-quality stylus tip must meet:

<table>
<thead>
<tr>
<th>IT MUST FIT THE MODULATED GROOVE</th>
<th>IT MUST NOT “BOTTOM” IN THE GROOVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES (MODULATED GROOVE)</td>
<td>YES</td>
</tr>
<tr>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>

If the tip is shaped so it’s oversized at its contact points, it can rise out of the modulated groove (the arrows indicate modulation of one groove wall) and “crest” at the record surface, causing extreme distortion and noise.

A slightly-undersized or too-pointed stylus tip may ride the groove bottom, lose contact with the groove walls, mistrack, and generate high noise levels.

IT MUST BE CORRECTLY ORIENTED

Skewed or rotated orientation introduces distortion.

IT MUST BE A GENUINE SHURE STYLUS

For unwavering uniformity, look for the name “Shure” on the grip.

Please send for our “Scientific Study of Competitive Styli” booklet (AL548) explaining the important specifications all Shure styli are required to meet.

SHURE®

High Fidelity Cartridges & Replacement Styli

Shure Brothers Inc., 222 Hartrey Avenue, Evanston, IL 60204. In Canada: A. C. Simmonds & Sons Limited Manufacturers of high fidelity components, microphones, sound systems and related circuitry.

CIRCLE NO 66 ON FREE INFORMATION CARD
That already says a lot about you. That you’re fascinated by the diversity of electronics.

Everything from microcomputers to audio, from construction projects to ham radio. Who knows what area of electronics will catch your interest next? That’s why you read P.E. To keep in touch with all that’s new and best in the many worlds of consumer electronics.

Comparators and a Bargraph Readout. A comparator is an op amp designed to provide very high gain. The result is a stage whose output rapidly changes state when the voltage at one input exceeds the second input.

Figure 3 shows how to connect the four comparators in an LM339 quad comparator to a slightly modified version of the voltage divider of Fig. 2. The modification consists of substituting a 100,000-ohm or higher potentiometer for the uppermost fixed resistor to permit the range of voltages available from the points in the divider to be adjusted. The output of each comparator is connected to an LED, and the result is a bargraph or thermometer-style readout.

Since the inputs of each comparator are connected to both the incoming analog voltage and the resistor junctions in the divider, the comparators switch on one after another in succession, from the lowest to the highest, as the incoming voltage is increased. The circuit can be easily adjusted to light up successive LED’s in increments of as little as one millivolt per LED if the potentiometer has a resistance of several megohms. If you calibrate the circuit with a known input voltage you can use it for a voltmeter.

The circuit can also be used as both a resistance indicator and timer. In the resistance mode, the potentiometer can be adjusted to indicate up to 10 megohms per LED. To use the circuit as a timer, connect a capacitor directly across the input leads. Depending on the value of the capacitor, the LED’s will turn on in succession at intervals ranging from less than a second to a few minutes.

You can even use the circuit as a light meter by connecting a cadmium-sulfide photocell across the inputs. Because the readout is luminescent you can use the meter in very dim light—but you’ll have to optically isolate the photocell from the display to prevent false readings.

Moving Dot Readout. A bargraph
readout is preferred for some applications, but for others only a single LED need glow at any one instant. I've not discovered a preferred name for this kind of readout, but moving dot display seems as good as any.

Figure 4 shows how to make a NAND gate decoder to convert the 4-element bargraph output into a 1-of-4 moving dot readout. Study the decoder to see how it works. In particular, notice how the outputs of the top three gates are coupled down to the inputs of the lower gates.

The circuit shown in Fig. 4 can be used in most if not all applications of the bargraph readout. It's even possible to keep the bargraph readout by adding a four-pole switch to connect either the bargraph or the moving dot display to the circuit.

Completing the A/D Converter.

The transformation of the moving dot readout into an A/D converter with a binary output is completed by adding a 2-bit encoder comprising two previously unused 7400 NAND gates in the moving dot display's decoder (Fig. 5). Notice the two inverters at the output of the encoder. These inverters could be eliminated by using AND gates for the encoder, but the 7404 hex inverter is more readily available than the 7408 quad AND gate. Besides, the two NAND gates were already available.

If you've built the circuits described so far, you're probably wondering where the price line on Schober Organ Kits, despite rampant inflation and almost daily cost increases.

Now we must give in and—like everyone else—raise our prices. The increase will be about 15% on everything we offer. Prices will go up on Thursday, November 16th, 1978.

But You Don't Have to Pay Those Increased Prices—If You Order by November 15th!

We are printing this special ad to tell you about the price increase in advance—far enough in advance to let you order before the prices go up.

Announcing a price rise before it happens is highly unconventional—but we think it's only fair. Basic Schober Organ Kits cost $650 to $2950, depending on model. Fifteen percent of that is important money. We think you should have the chance to save it. If you don't have the Schober Literature Package, or if your price list predated February 1, 1977, write or call us for the latest data. The Reader Service Card may take too long to reach us.) Send $1 if you'd like our 12" demo record. Read the information carefully. Decide which of the five Schober Organ models you prefer.

Then, as long as your order is postmarked before midnight, Wednesday, November 15th, you need pay only the prices which have been in effect since February 1, 1977. Schober musical and technical quality is an industry byword. Schober's tradition of support and assistance to customers sets a standard that has never been surpassed. If ever the Schober Organ Kit idea has intrigued you, now, before November 15th, is the time to order your kits and begin your own Schober Organ—one of the world's fine musical instruments, the ultimate musical fun machine!
BACK-AND-FORTH
SEQUENTIAL FLASHER

This is the first in a planned series of monthly additions to the “Experiment-
er’s Corner”—the “Project of the Month.” Many different projects of an experimental nature, using a variety of circuits and construction methods, will be described in future issues.

This first project was suggested by reader Al Rieke of Santa Isabel, Puerto Rico. Al writes that he's familiar with circuits that sequentially flash each LED in a row in one direction only. But he's not been able to find a back-and-forth sequential flasher in his ten-year collection of back issues of POPULAR ELECTRONICS.

The circuit that should solve Al’s problem is shown in Fig. A. A 555 timer connected as an astable multivibrator supplies clock pulses to a 74193 4-bit (0000-1111) up/down counter through a pair of gates in a 7400. The output from the counter is fed into a 74154 decoder that lights one of 16 LED’s.

The inputs of an RS flip-flop (or latch) made from the remaining two gates in the 7400 are connected to the 0 (0000) and 15 (1111) outputs of the decoder. This provides electronic limits that switch the counter between its up and down modes, as it reaches its upper (1111) and lower (0000) limits. The actual switching is accomplished by steering the clock signal to either the up or down input through the first two gates according to the status of the latch’s outputs.

Front and back views of a Wire-Wrapped prototype version of the circuit are shown in the photos. The prototype was assembled on a 4 x 8.5-cm rectangle of perforated board with copper solder pads and bus strips (Radio Shack 276-152 or similar cut to size).

Note how R1, R2 and C1 (a miniature tantalum capacitor) are inserted in the unused portion of the 555’s socket. Not having a 24-pin, Wire-Wrap socket handy, I wrapped wires directly to the pins of the 74154 without any problems. The anodes of the LED’s were soldered to a common bus strip. All other connections were made with wrapped wire.

You can change the speed of the moving dot display by substituting a 1-megohm potentiometer for R1. Mount the LED’s in various configurations for special effects. When arranged vertically, the column of LED’s becomes a “bouncing ball” display. When arranged horizontally, it can be called a “Ping-Pong” or “pendulum” display. For a more realistic pendulum effect, mount the LED’s in an arc.

An interesting way to simulate the swing of a real pendulum is to replace R1 with a high dark resistance cadmium sulfide photocell and place the cell near the center of the display. The room lights should be dimmed.

The resistance of the cell is decreased by the presence of light, and this increases the clock speed. Therefore the moving dot will speed up as it passes by the cell and slow down at either end of its “swing.”

The photocell can also be used to simulate a bouncing ball. (Can you figure out how to do it?) Both applications provide interesting experiments in mechanical simulation and optoelectronic feedback, so try them after you assemble the circuit.

Photos of the front and back of the prototype project show how Wire-Wrapped connections were used. It was assembled on perforated board with copper solder pads and bus strips.

Note: The Project of the Month is planned as a regular feature of the Experimentor’s Corner. This “Back-and-Fourth Sequential Flasher” circuit is the first.

Fig. A. Schematic of the flasher circuit. A 555 is used as a multivibrator to supply clock pulses to a counter.
Q. I purchased a light dimmer and mounted it in a light switch box in the wall. The dimmer creates a buzz and static in any AM radio in the house that is turned on at the same time as the dimmer. Varying the brightness control has no effect on the interference. Using a transistor radio as a signal sniffer, I found that the noise is loudest near the switch box, and is also loud when I follow the wiring in the wall up to the bulb. The dimmer doesn't cause any interference to my FM radio. What can I do to remedy this situation?—Duane Anderson, Leeds, ND.

A. I have discussed the problem of light dimmer RFI in previous columns, but recently a batch of letters on this subject has been received. So, it seems appropriate to deal with it again. The information that follows and the schematics are abstracted from the RCA Transistor, Thyristor, and Diode Manual.

The fast switching action of triacs connected to resistive loads causes the current through them to rise to a certain level in a very brief time interval. Triacs typically transit from the high to the low impedance state within one or two microseconds. This rapid switching generates a current step function (an almost instantaneous jump from zero) which is largely composed of high-frequency harmonics. The amplitude of these harmonics varies inversely with frequency.

In phase-control applications such as light dimming, this current step is produced each half cycle of the line voltage. Because the triac switches on and off many times each second, a noise pulse is generated which can affect amplitude-sensitive devices such as AM radios. The amplitude of the VHF harmonics is so small that they generally do not interfere with television reception or with FM radios, which have the additional advantage of having a limiter stage. Limiting gives the FM receiver a higher degree of immunity to impulse noise signals.

There are two basic types of RFI associated with triac switching. One, radiated RFI, consists of the high-frequency energy radiated by the triac-equipped appliance. In most cases, this radiated RFI is insignificant unless the radio is located very close to the source of radiation.

Of more significance is conducted RFI, which is carried along the power line and affects equipment connected to it. Because the current waveform contains high-frequency energies, a simple choke placed in series with the line will increase the current's rise time and reduce the amplitude of the higher-order harmonics. To be effective, however, the choke must be quite large.

A more effective filter, one that has been found to be adequate in most light dimming applications, is shown at A. An alternative design is shown at B. The inductors attenuate the harmonics and reduce the noise interference to a low level. The capacitor bypasses the harmonics so that they are not passed to any external circuits connected to the power line. At C, a triac control circuit is shown which includes an RFI suppression network for the purpose of minimizing high-frequency interference. The values indicated are typical of those used in lamp dimmer circuits. The two-terminal semiconductor is a bilateral trigger diode, and the triac is usually chosen to handle a given load demand, say, 600 watts or 6 amperes. In all these circuits, bypass capacitors should be rated at 1000 volts minimum and approved for power-line bypass applications.

Have a problem or question on circuitry, components, parts availability, etc.? Send it to the Hobby Scene Editor, POPULAR ELECTRONICS, One Park Ave., New York, N.Y. 10016. Though all letters can't be answered individually, those with wide interest will be published.
Product Test Reports

PANASONIC MODEL RF-2800 5-BAND RECEIVER

Low-cost, multi-band portable has digital LED frequency readout on shortwave.

The SOLID-STATE portable Model RF-2800 receiver from Panasonic provides continuous coverage of the 3.2-to-30-MHz shortwave bands and also covers the standard AM and FM broadcast bands. SW coverage is in five selectable bands.

The RF-2800’s LED numeric frequency display, for the SW bands only, provides accurate tuning to any given frequency in the receiver’s range and affords exact remeasurability to any SW station. This eliminates the hit-or-miss tuning usual with non-digital dials.

The receiver also offers a choice of two i-f bandwidth positions on the AM bands only; treble and bass controls; calibration setup; variable bfo with product detector for CW and SSB; two-speed tuning; AFC on/off on FM; r-f and audio gain controls; built-in ferrite-core for the AM broadcast band and telescoping whip for the other bands; provision for an external antenna; built-in speaker with jacks for external speaker (or earphone); multiplex-FM reception, and recording outputs; operation from 117 volts ac or six "D" cells (supplied); panel light switch; signal strength and battery-condition meter; and carrying handle.

The receiver measures nominally 14¼"x10½"x4½"D (37.5 x 25.4 x 11.3 cm) and weighs 8.6 lb (3.9 kg) with batteries installed. Price is $250.

General Description. Double conversion to 2 MHz and 455 kHz is used for the AM SW bands. Single conversion to 455 kHz is employed for the standard AM broadcast band and to 10.7 MHz on the FM broadcast band. AM selectivity is obtained with multituned i-f circuits and a ceramic filter that is switched in and out according to the desired selectivity. Ceramic filters are switched in for FM.

Separate FET-type r-f input amplifiers are provided for the AM and FM bands to ensure good signal-handling capabilities. An IC-type balanced mixer for the signal is used on the AM bands to minimize spurious responses. Incorporated here is the local heterodyning oscillator that is tuned simultaneously with the r-f input circuits. The r-f output circuit (mixer input) is not similarly gang-tuned, which results in some degradation in image rejection. A transistor oscillator and mixer are used for FM, with the circuits simultaneously tuned.

The remainder of the lineup is conventional, with AM detector, audio amplifiers (without noise limiter), AGC, BFO (with product detector), FM detector (with limiters), de-emphasis amplifiers, AFC circuit, etc. When the BFO is switched on, the product detector is automatically engaged on CW and SSB.

The digitally generated numeric display is obtained from a divide-by-16 counter with a 5-MHz time base.

The receiver is housed in an all-black case, including the control panel, which has high-contrast white lettering. The frequency display is behind a two-part window. A drum dial with scales calibrated for the FM and AM broadcast bands as well as scales for the three SW sections are at the left behind the window. (Calibrations for the SW sections are only approximate and located just at strategic points.) To the right of the drum dial is a five-decade LED display.

The exact frequency for only the SW bands appears in the LED display. The frequency is displayed to the nearest 1000 Hz. A switch permits the display to be turned off to conserve battery power once the desired frequency is tuned in. This switch also has a spring-return position to permit momentary frequency checks after the display has been switched off.

Slow-speed tuning is recommended on the SW bands. This is accomplished by pulling out on the large spinner-type TUNING knob. Another large control knob is used on the VOLUME control, presumably to readily distinguish it from the other less frequently used controls.

The meter operates in the reverse direction from that usually encountered. Pointer deflection is minimum at the right index of the meter scale and maximum at the left index. Calibrations are in linear units from 0 through 10. The telescoping whip antenna can be oriented vertically or horizontally.

When the receiver is initially set to one of the SW bands, the frequency display must be calibrated against a signal of known frequency, such as WWV or ChU. This is done by adjusting the SW CAL control while tuning the signal until the display coincides with the known frequency. Best accuracy is obtained by simultaneously observing the meter for maximum signal strength while tuning, using the narrow-bandwidth mode. If the meter’s pointer swings fully upscale, the r-f gain can be reduced to yield a more precise setting. Since the signal may register quite broadly, the display might vary by 2 or 3 kHz. However this is close enough for all practical tuning purposes.

CW and SSB signals are copied by switching on the BFO and varying it for the desired pitch or sideband. (The BFO Pitch control is labelled for the LSB and USB directions.) More precise frequency calibration is obtained with the BFO tuned for zero beat.

When the receiver is operated in the FM mode, the BANDWIDTH switch is used only to switch in and out automatic frequency control (AFC on the switch). The bandwidth in the FM mode does not change.

Laboratory Measurements. Sensitivity for 10 dB (S + N)/N (30% modulation at 1000 Hz and in the wideband
You SAVE up to 50%

Here's your chance for a real bargain bonanza on your favorite magazines. You may select as many as five of these titles at the special introductory rates shown — up to 50% off! To order, indicate the magazines you want by inserting their code numbers in the boxes on the attached order card. Or write to: MAGAZINES AT DISCOUNT, A Division of Ziff-Davis Publishing Co., P.O. Box 601, Broomall, Pennsylvania 19008.
mode on the low SW band (SW1) was 2 \(\mu \)V at 3.2 MHz and 1.3 \(\mu \)V at 8 MHz. On SW2, it was 2 \(\mu \)V at 8 MHz and 1 \(\mu \)V at 16 MHz, while on SW3, it was 1.4 \(\mu \)V at 16 MHz and 2 \(\mu \)V at 30 MHz. CW and SSB sensitivity were about 6 dB better in all cases.

Image rejection at 6, 12, and 24 MHz was 25, 20, and 20 dB, respectively. Variations in sensitivity and image rejection occur at other frequencies, due to changes in gain and circuit tuning.

FM sensitivity measured 1.5 \(\mu \)V for 15 dB of noise quieting, and image rejection (from the high-side signal) was 40 dB, measured at 108 MHz.

The overall AM response, including that resulting from the i-f selectivity, was 120 to 1800 Hz at the 6-dB down points in the wideband mode and 110 to 1500 Hz in the narrow-band mode. These tests were made with the bass control set to maximum and the treble control set to minimum.

The maximum sine-wave audio output measured about 1.5 watts at less than 10% THD with a 1000-Hz test signal into 8 ohms. Because the performance of the AGC system varied according to frequency, we did not perform our usual test. However, our listening test indicated that the performance was relatively flat over a wide range.

User Comment. We found the stability and calibration to conform with the published specifications (+1 kHz for each 30-minute period after warmup). The stability was good for holding SSB signals without frequent retuning.

The product detector did not function as a true product detector on SSB; it allowed AM to be reproduced as well as SSB. This resulted in some SSB audio distortion, particularly at the lower audio frequencies. Even so, we were able to satisfactorily "read" SSB signals by properly setting the BFO and using the narrow bandwidth mode.

During tuning on the FM band, the AFC snapshoted in quite positively as the signal was approached. Due to the excellent stability of this receiver, we generally found it unnecessary to engage the AFC to hold the signal on frequency. (The r-f gain control does not function on FM.)

As can be noted from our lab measurements, the AM audio response extends slightly into the low frequencies, resulting in a tendency toward bassy sounding reception at times. Nevertheless, SW reception was somewhat more intelligible than we have usually experienced. Standard AM broadcast quality was also good. Switching in the narrow bandwidth selectivity made no practical improvement in minimizing interference, its effectiveness being mostly in reducing heterodyning beat notes. FM reception quality was excellent, given speaker and amplifier limitations.

The unusual features and performance capability of this 5-band receiver make it stand out among other portables. Basic SW reception, even with the built-in whip antenna, was comparable to that obtained with some communications receivers that cost appreciably more. Of course, the Model RF-2800 does not include some sophisticated SW receiver features such as a noise limiter or blanker, variable AVC, antenna trimmer, etc. But its portability and modest price preclude such provisions.

Accordingly, if one wants an all-band portable and has a serious interest in receiving international shortwave broadcasts, the Panasonic RF-2800 is certainly a most impressive value. The 5-digit LED frequency display, in particular, takes the hassle out of tuning.
CHANGES WITH THE SUNSPOTS

As the sunspot count rapidly climbs, the high-frequency bands become increasingly efficient for international shortwave broadcasting, while lower bands become less and less efficient. So stations are all moving from 6 up to 21 MHz, right? Wrong! Some are, but far from all. Thus we can observe which countries are on the ball, and which are stuck in a frequency rut.

Except during the increasingly frequent blackouts, you can tune across the 21-MHz band any time during the North American morning and hear a multitude of signals, mostly from Europe. But with the exception of France on 21,645 kHz, not one of those transmissions is intended to be received in North America! Instead, transmissions are directed to Asia, the Middle East, or Africa. As a result, the band is getting more crowded and the jamming level is rising. This is a shame, but inevitable. Still, there is room for a few more stations to use the band, bearing toward North America. Why aren’t they using it?

There is a hard-to-break tradition of not using the 21-MHz band for Europe-to-North America—though the VOA has long used it over the reciprocal path. A rather small number of European countries trying to reach North America in our mornings feel safer using the crowded and propagationally inferior 15- and 17-MHz bands.

It is a fact that channels on the 21-MHz band not beamed to North America often provide better reception here than channels from the same station on lower bands, which are beamed here. Switzerland and the BBC are good examples.

One often-heard excuse for avoiding the 21-MHz band is that there aren’t enough receivers which can be tuned this high. If this were ever true, it is definitely less so now. And it’s certainly difficult to believe that receivers with 21-MHz bands are more widespread in Africa, the Middle East, and Asia (for which Europeans used 21 MHz even during the solar cycle trough) than they are in North America.

Another factor that overseas stations tend to overlook is that during the summer, thunderstorms in North America keep a high noise level on all the bands below 15 MHz. So even if a lower band were propagationally ideal, there would still be a higher noise level to cope with than on a higher band.

Favoring the 21-MHz band has other advantages: it is currently 300 kH/z wide, while 17 MHz is only 200 kHz wide. Signals at 21 MHz penetrate steel-frame buildings significantly better than 15- and 17-MHz signals. Both transmitting and receiving antennas are smaller, more efficient and less expensive at higher frequencies. There have been times when the only shortwave station I could receive well enough to listen to on an insensitive portable in my office was the BBC on 21,710 kHz, off the back of their beam in the opposite direction!

Maximum usable frequency (MUF) charts, as a rule, show higher frequencies over north-south paths than over east-west paths, partly because of the lack of auroral absorption. A 25-MHz MUF is not unusual between the USA and Argentina, for instance. Yet, is any broadcasting done on the 21-MHz band between these two areas, let alone on 25 MHz? No, none at all! Moreover, it is a well-known fact that frequencies near the MUF are best from the standpoint of signal strength and minimum fading. Nevertheless, Argentina sticks to its perennial, but heavily interfered 11,710 kHz for its 2300 broadcast in English. However, they could use lower power, and get much better results at the same time on 21 MHz.

South American stations are really scarce on the 17- and 21-MHz bands. (Colombia has registered 25,750 kHz, but never uses it.) There were none at all on 21 MHz, until HCJB activated 21,480 this summer (for Europe, not North America); and on 17 MHz, only HCJB, the Voice of Chile, and one Brazilian, Radio Cultura, Sao Paulo. The latter does quite well with only one kilowatt when 17,815 is free of interference. Many more South American stations could use the 17- and 21-MHz bands to great advantage.

A similar situation exists in our evenings. Countries such as Belgium, Austria and Germany stick to the noisy and interference-laden 6- and 9-MHz bands for North American broadcasts. Others, such as Italy, Hungary, Sweden, Finland, and Switzerland quickly realized the superior potential of the 15-MHz band, which now is ideal, though just a year ago it was at the upper fringe of reception possibility.

Future Plans. Austrian Radio should be thinking about the present—using the 15-MHz band to North America in our evenings and the 21-MHz band in the mornings. Instead, they are planning to modify their antennas and build a coupling unit so that two 100-kW transmitters can be combined on one frequency. The Voice of America is looking into building a new relay station in Botswana to improve its coverage in southern Africa.

Scheduling Problems. Our twice-yearly daylight time shift causes problems for DX listeners. Since it is an artificial measure, not a single overseas station changes its broadcast scheduling to compensate. As a result, everything seems to be an hour later during half the year, by the local clock, while transmissions remain at the same time by GMT. Just when trans-Atlantic conditions improved to allow reliable Europe-to-North America paths in our afternoons, Radio Nederland dropped its 2130 GMT broadcast to North America as of this summer, converting it into a daily Dutch service for Surinam. Of course, even in the EDT zone, 2130 GMT (5:30 p.m.) is a bit early for some people. However, now the first broadcast for us does not begin until 0230 GMT, or 10:30 p.m. EDT. This is too late for many listeners.

I sent Radio Nederland an urgent proposal that an additional English broadcast be scheduled at 2300 or 0030 GMT (7:30 or 8:30 p.m. EDT). If this were done via Bonaire, it would probably mean bumping a Spanish or Dutch broadcast. However, transmitters in Holland itself are normally silent after 2320 GMT so if they were left on the air an hour longer, we could easily have another English broadcast in the early eve.

By Glenn Hauser
ning, on the 15- or 11-MHz bands. But the 2130 transmission was dropped because Radio Nederland’s only English-speaking announcers on duty at that hour are Africans, whose accent is unsuitable for American ears.

Listening Tips. One DW program not to be missed by those thirsting for the light side of the news is Larry Wayne’s “Germany This Week” each Saturday evening. Radio Australia has begun a similar show, “The Week Here and There,” Saturdays at 10:40 p.m. (EDT).

Switzerland has been using 21,585 kHz for South America from 1530 to 2245 GMT, also providing excellent reception in eastern North America, including English at 1815-1845; and at 2205-2215, Esperanto on Mondays, Thursdays and Saturdays, with Romansh on Tuesdays and Fridays. Esperantists can hear another weekly ten-minute program from Radio Portugal during the last portion of Sunday evening broadcasts.

Uganda is the latest country to start a service to the USA. Idi Amin has had a 250-kW transmitter for several years, but only last May began to use it to improve his image over here. Tests were run on 15,325 kHz between 0300 and 0400; and 1800-1900 GMT.

Another station which surprised us with an English mailbag program is Radio Republik Indonesia, Sorong, West Irian, Saturdays at 1230-1300 GMT on 3364 and 4875 kHz.

BBC has been testing from its newest shortwave relay site, Masirah Island, off the Arabian peninsula. Since more than one station is customarily used on a single frequency don’t assume you have heard Masirah without further evidence. The summer schedule was: on 7250 kHz at 1545-2030 GMT; 11,780 at 0545-0815; 11,910 at 1330-1645; 11,955 at 0200-0430; and 15,310 at 0845-1515. Both English and South Asian languages are used, effective August 1.

English Language Broadcasts. You were expecting, maybe, the English Language Broadcasts schedule, which normally appears in the September issue? We decided to publish them one month later than previously, in the October, December, April and June issues, so that the information contained can be more up-to-date. This DX Listening column will appear in most other issues, including some schedule changes.

Change Radio RSA at 2100-2150 to 17.78 and 15.155 from 9.585 and 11.80; and at 2230-2320 to 15.155 and 11.80 from 5.98 and 9.65.

Change Radio Sweden at 0030-0100 to 9.59 from 11.905; and at 0230-0300 to 11.705 from 11.80.

This year should see fewer shifts to lower frequencies for fall and winter than in previous years. Although there will be the same amount of darkness to traverse, the increasing sunspot count should keep higher bands open during the night.
In our July column, the simpler multiple precision arithmetic operations were described. This month, we will discuss multiple precision multiplication and division. These two operations, which are invariably absent even in single precision form on 8-bit processors, make the difference between simple number shuffling and really sophisticated computing.

Unlike addition, subtraction, and the other operations described earlier, multiplication and division are iterative in nature. Although both could be done by successive addition and subtraction respectively, a very slow routine would be the result. For example, 16-bit by 16-bit multiplication could require over 30,000 iterations with straight successive addition and take well over a second even on a fast microprocessor. Much faster methods using addition/subtraction along with shifting can cut the same operation down to 16 somewhat more complex iterations requiring about 850 microseconds total. However, even this is too slow for some applications, so hardware multiplication/division boards, or newer 16-bit microprocessors with multiply and divide instructions built-in, become very attractive.

Another complication is that the result of, say, a 16-by-16-bit multiplication will very likely require more than 16 bits to represent. In fact, the product of two 16-bit integers can require as many as 32 bits. Division conversely always forms a quotient that will fit in half as many bits as the dividend and the divisor is restricted to half the length of the dividend. Thus a double precision (16-bit) multiply routine would take two 2-byte factors and produce a 4-byte product.

A division routine would accept a 4-byte dividend and 2-byte divisor and generate a 2-byte quotient and possibly a 2-byte remainder. Often 4-byte addition, subtraction, etc. is needed in a double precision package to facilitate handling 4-byte intermediate results without losing accuracy.

Multiplication. The shift and add multiplication algorithm to be described is the fastest for software implementation on a microprocessor. For simplicity and generality, the routine is designed to multiply unsigned numbers. The more usual signed operands and result are handled by correcting the unsigned product.

The multiply routine uses two pseudo registers in memory. MPCD is two bytes long and holds the multiplicand. PROD must be 4 bytes long as discussed earlier. Before multiplication, the least significant two bytes of PROD hold the multiplier and the most significant two bytes are normally zero. If desired, a 2-byte number can be placed there and it will be automatically added to the product with no extra execution time required. After multiplication, PROD contains the 4-byte product; MPCD is unchanged.

The actual multiplication proceeds much like a decimal multiplication on paper. Each digit of the multiplier multiplies the entire multiplicand creating a series of partial products which are staggered left and added up to give the full product. For binary numbers however, each partial product is either zero for a zero multiplier bit or equal to the multiplicand for a one multiplier bit. Also, it is more efficient to add the partial products into a running total as they are formed. Bit-by-bit examination of the multiplier and staggered positioning of the partial products as they are added are both handled by quadruple shifting PROD alone.

A register diagram and a flowchart of the multiply routine are shown in Figs. 1 and 2. Sixteen full iterations are required to form the product, while a seventeenth iteration performs a final shift to position it properly. Each iteration starts with a right shift of all 4 bytes of PROD. This action simultaneously shifts the current sum of partial products right and puts the next multiplier bit to be examined into the carry flag where it is easily tested. After testing for completion, the carry...
flag (which holds the current multiplier bit) is tested. If it is a zero, the iteration is complete. If it is a one, then the multiplier is double-precision added to the upper 2 bytes of PROD. Quad-precision addition of partial products is not needed which is one reason for the efficiency of this algorithm.

It is possible however for this addition to overflow. Fortunately, the overflow bit is retained in the carry flag and it will be shifted into the most significant bit of PROD during the next iteration. As the multiplication progresses, the multiplier is pushed off the right end of PROD while the product expands. There is never any interference between the two.

The correction needed for signed operands is actually quite simple. First, the numbers are multiplied together as-is with the above unsigned multiply subroutine. After multiplication, the sign bit of each factor is tested. If a factor is negative, the other factor is double-precision subtracted from the upper half of the product. The final result is a properly signed product. If signed fractional numbers were being multiplied, it is necessary to shift the product left one position after correction. The signed fractional result then is the leftmost two bytes of PROD.

Division. Division (Figs. 3 and 4) is the exact reverse of multiplication. Again, an unsigned algorithm will be used with correction applied for signed operands. For clarity, a different set of pseudo registers will be used but in practice they would occupy the same memory locations as those for multiply. DVND is 4 bytes long and holds the quad precision dividend. DVSR is two bytes and holds the divisor.

After division, the quotient is in the low two bytes of DVND and the remainder is in the high two bytes.

A division iteration starts by subtracting the divisor from the high two bytes of the dividend and saving the difference. An underflow, evidenced by the carry flag being off after the subtraction, prevents updating of the upper divisor and a zero quotient bit to be recorded. If there was no underflow, the subtraction result is copied into the upper divisor and a quotient bit of one is produced. Following this the entire dividend is shifted left and the quotient bit, which is contained in the carry flag, is shifted in on the right. Only zeroes are ever shifted out at the left. As the division progresses, the divi-

EXAMPLES OF MULTIPLY AND DIVIDE SUBROUTINES

<table>
<thead>
<tr>
<th>No.</th>
<th>16 x 16 UNSIGNED MULTIPLY SUBROUTINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>ENTER WITH UNSIGNED MULTIPLIER IN PROD+2 AND PROD+3</td>
</tr>
<tr>
<td>3</td>
<td>ENTER WITH UNSIGNED MULTIPLICAND IN MPH AND MPCC+1</td>
</tr>
<tr>
<td>4</td>
<td>RETURN WITH 16 BIT UNSIGNED PRODUCT IN PROD (HIGH) THROUGH PROD+3 (LOW)</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>16 x 16 UNSIGNED MULTIPLY SUBROUTINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>ENTER WITH UNSIGNED MULTIPLIER IN PROD+2 AND PROD+3</td>
</tr>
<tr>
<td>3</td>
<td>ENTER WITH UNSIGNED MULTIPLICAND IN MPH AND MPCC+1</td>
</tr>
<tr>
<td>4</td>
<td>RETURN WITH 16 BIT UNSIGNED PRODUCT IN PROD (HIGH) THROUGH PROD+3 (LOW)</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Fig. 4. Divide flowchart.
den is progressively eaten away as it shifts left and the quotient grows as additional bits are shifted in on the right. When complete, the quotient fills the right half of DVND and the remainder occupies the left half. As before there is no interference between the two numbers sharing DVND.

The most straightforward way of dividing signed operands is to compute their absolute values and record their signs. After dividing what are now signed positive numbers, the proper sign of the result is determined by applying the rules of algebra. Actually this amounts to nothing more than exclusive-OR'ing the sign bits of the original operands together to get the sign of the result. If this indicates that the quotient should be negative, then it is negated. When dividing signed fractions, it is necessary to shift the quotient right one position before doing the sign correction. Also, the fractional dividend is placed in the upper 2 bytes of the dividend and the lower 2 bytes are zeroed.

Unlike multiplication, it is possible for division to overflow. To avoid overflow, the upper two bytes of the dividend must be smaller than the divisor. This is easy to test for in the division routine itself and is often included.
THE ANTENNA: GETTING OUT THE SIGNAL

OBTAINING the best station equipment is pointless if the signal isn't radiated properly. Fortunately, getting the signal out of the rig and into the air is not difficult at all, unless one lives under particularly restrictive conditions such as in a trailer park or an apartment where outside antennas are frowned upon or flatly prohibited. Assuming that you are not limited in this way, you would do well to stick with either a basic half-wave dipole antenna designed for single-band operation on your favorite band, a "trap" dipole for multiband work, or a multiband vertical.

Simple Dipoles. The proper dimensions for a half-wave dipole can be easily calculated or found in the ARRL Radio Amateur Handbook or the ARRL Antenna Book, so we won't repeat them here. What bears repeating is that the antenna should be mounted at least as high and in the clear as possible, free of bends, and fed with good quality 75-ohm coax. At hf, RG-59/U is perfectly capable of handling more than 250 watts of power with very moderate line loss, even at 10 meters. Within the Novice subbands, a properly 'pruned' dipole (adjusted using an SWR bridge or directional wattmeter) should easily take power from the transmitter's pi output network without the aid of an antenna tuner.

Multi-band operation is possible by paralleling individual dipoles cut for the desired bands. The shorter dipoles can be suspended from the lowest-frequency (longest) one. You can use 4-wire rotator cable, cutting the longest conductors for the 80-meter band and cutting back the others to the proper length for resonant operation on the higher bands. All four wires are then joined on each side at the center point. The four dipoles will thus be fed with a single transmission line. This system generally works well, as the nonresonant dipoles are "not there" electrically speaking. However, one should be prepared to have to carefully prune dipole lengths after the antenna has been installed to get a low SWR because there is some electrical interaction between the dipoles. An antenna coupler is recommended for use with this antenna for two reasons: the antenna easily radiates unwanted harmonics of the fundamental frequency (which can lead to FCC citations known as "Pink Slips") and it is sometimes difficult to load up the transmitter on all bands. Commercially available trap dipoles generally work well unless they are physically very short for the lowest band in use (usually 80 meters). Unless operations are restricted to relatively narrow frequency ranges, trap dipoles require an antenna coupler for good transmitter loading.

Verticals. The multiband vertical working against a good ground/radial system is an excellent radiator, and is well suited for DX chasing. It is very practical when space is at a premium, especially when the length of a 40- or 80-meter dipole would preclude its erection on a small city or suburban lot. All that's needed is vertical space and some room for radial wires, which can be fairly short if necessary. Hy-Gain, Mosley, and Gotham all make excellent verticals. They are generally mounted at ground level, using one or more long ground rods to get a low-resistance earth return in conjunction with four to a dozen or more buried radials. The radials may not be necessary in all cases. You may find the ground rod alone will provide good results, especially in areas with high ground conductivity, although theory dictates the installation of as many radials as possible to prevent the waste of r-f energy through ground losses. As in the case of the dipole, the vertical should be mounted in as clear an area as possible, away from TV antennas, power and telephone lines, and other signal obstacles. It should also be fenced-in or otherwise blocked off to prevent children from coming into contact with the antenna and suffering r-f burns. The Hy-Gain 18AVT, fed with 50-ohm coax, is a favorite among Novices and is well-known for excellent performance on 80 through 10 meters and its sturdy construction. The advanced Novice interested in chasing DX might consider Gotham's relatively inexpensive ($60) three-band (10/15/20 meters) quad which should work very well on 15 and 10 meters and come in handy once the license is upgraded.

Those able to erect full-size, single-band dipoles and verticals should certainly do so. Although there are literally hundreds of various hf antenna designs described in the amateur literature—more than enough to thoroughly confuse the beginner—the newcomer is best advised to "keep it simple." Zepps, random wires, rhombics and other exotics have their places, but lead to poor results when tried by the beginner, usually due to problems associated with matching and transmitter loading. The apartment dweller may have to experiment with loops, random wires and indoor dipoles, and should study the literature thoroughly before trying to pump power into a haywire antenna. He might even want to consider a window-mounted mobile antenna and loading coil arrangement if antenna space is a severe problem. I have found many interesting and novel antenna designs for "problem cases" in the paperback, Ham Antenna Construction Projects by J. A. Stanley, available from Howard W. Sams and Co. This little gem has some good ideas, particularly on "invisible" and restricted space antennas. The ARRL Antenna Book and the 73 Magazine series of antenna publications also provide some very good ideas for difficult antenna installations.

Matching and Coupling. After the station has been set up and the antenna erected, the beginner sometimes finds that he just can't make any contacts. Most often the problem lies in matching the pi-network output circuit of the transmitter or transceiver to the antenna. If
impedances are mismatched, there will be an inefficient transfer of power from the transmitter to the antenna. Adjusting feed-line lengths can sometimes make loading easier, but contrary to a popular misconception, nothing can be done at the transmitter, including lengthening or shortening the feed line, to reduce a high SWR (standing wave ratio) on the transmission line. If a high SWR is indicated, one must go to the antenna to find the cause.

When multi-band trap dipoles or verticals are used, the SWR can often be brought down to reasonable levels, say, less than 3:1, but no lower. This is especially true at the band edges, and results in an inability to load the transmitter to full power. This problem can usually be alleviated by using a coax-to-coax antenna coupler such as the R. L. Drake Models MN-4 and MN-2000 which are designed to accommodate moderate mismatches and allow the transmitter to see the ideal 50 ohms into which it can deliver its full rated power. The MN-4 is popular among Novices as it allows either straight-through or coupler operation at the flick of a switch, has a built-in SWR bridge and wattmeter, and permits selection of one of several antennas or a dummy load used in tuning up the transmitter. Price class is about $120 for the MN-4. Although that might seem expensive, an antenna tuner provides operating flexibility and can help prolong the lives of final amplifier tubes, too!
AMERICA'S #1 VALUE LEADER
STEREO CORPORATION OF AMERICA

WE'RE THE BEST!! AND WE'LL PROVE IT!

Our prices are the lowest! Check with us before you buy any stereo equipment. Give us the opportunity to beat the best deal you've been able to find. We're not rated #1 for nothing.

WRITE OR CALL FOR OUR CURRENT STEREO PRICE FLYER!!

- We discount over 60 major brands!
- We're one of the oldest audio mail-order houses in the U.S.A.
- Largest inventory/lowest prices!

We get the best deals from the manufacturers, you get the best deals from us.

WRITE US NOW FOR THE LOWEST PRICE QUOTE!

SHOP BY PHONE:
(212) 253-8878
9-5 Mon. thru Sat.
N.Y. time
Master Charge
BankAmericard

EXCLUSIVE!
Night Owl Order Line!
(212) 253-8911
9-5 Mon. thru Sat.
Thurs. only!
Orders/Quotes Only!

STEREO CORPORATION OF AMERICA
360 V. 360 V.
76102
Tandy Corporation
One Tandy Center, Dept. AY,
Fort Worth, Texas 76102
A Division of Tandy Corporation

THE TELEPHONE BOOTH
One Tandy Center, Dept. AY,
Fort Worth, Texas 76102

Telephone
Galore
Free Catalog

Have decorating fun with this amazing array of phones you can really own. Styles and colors to match your every mood. Elegant only $24 K gold-plate, polished wood, nostalgic 20's 'n 30's styles, contemporary acrylic 'n chrome and frankly functional . . . from $17.95 to $2,500. All government FCC approved, ready for existing jack. Answering machines, dialers and telephone accessories, too. Write today for 16 page, full color catalog. FREE.

CIRCLE NO. 58 ON FREE INFORMATION CARD

The result:
ORGANTUA
from BIA

FORGET ABOUT THIN-SOUNDING
COMBO ORGANS; ORGANTUA HAS:
THREE INDIVIDUAL RANKS (EACH WITH 5 POSITION OCTAVE SELECT SWITCHES) FOR A RICH, THICK SOUND.
ORGANTUA REPRESENTS THE FIRST MAJOR ADVANCE IN COMBO ORGANS IN 10 YEARS, SEND FOR OUR INSTRUCTION MANUAL IT TELLS THE FULL STORY.
no.6780 - ORGANTUA KIT - $279.95
Shipped freight collect!!

ALSO AVAILABLE CUSTOM ASSEMBLED

() I'm convinced - Send Organtua Kit ($279.95 enclosed)
() Send Organtua Instruction Manual ($15 refundable with kit purchase)
() Send FREE Catalog name:
Aadress:
City: State: Zip:

BIA
DEPT.9 P 1020 W. WILSHIRE
OKLAHOMA CITY, OK 73116

CIRCLE NO. 43 ON FREE INFORMATION CARD

113

AMAZING EARADIO
THIS IS PROBABLY THE WORLD'S SMALLEST
RADIO. IT WEIGHS ONLY 1/2 OUNCE AND IS
HORN BEHIND THE EAR, CONTAINS AN IC AND
SEVERAL DISCRETE DEVICES TO GIVE IT
A Power of 1/1600 WATT. THE RADIO OPERATES
FROM A BATTERY OF 1.5V FROM 1.04 Mhz.
A SIMPLE ASSEMBLY KIT INCLUDES PRE-ASSEMBLED
CIRCUIT BOARD, CAPACITOR, FLASHER, REFLECTOR,
SWITCH AND MOUNTING INSTRUCTIONS. IT
IS A GOOD UPGRADE TO YOUR RADIO ON SEVERAL STATIONS IN
METROPOLITAN AREAS. DOESN'T REQUIRE ANY ANTENNA.
IT PROVIDES A POWERFUL SIGNAL FOR YOUR RADIO.

14.04Mhz
1600 mf
GROUND
METROPOLITAN AREAS. DOESN'T REQUIRE
DESIGN OPERATING
SEVERAL
WORN

Heathkit's inexpensive CANTenna
allows tuneup off the air.

yet, directional wattmeters. Some even have built-in dummy loads. For the adventurous Novice, Apollo Products of Vaughnsville, OH make a wide-range tuner kit, the Model 2500X-2 "Trans Systems Tuner," which has met with good acceptance. A number of tuner designs suitable for home brewing can be found in ham literature. A standard and basic design is Lew McCoy's "Ultimate Transmatch" described in the ARRL Radio Amateur's Handbook.

A directional wattmeter or SWR bridge is a must when using an antenna coupler to insure that it is properly adjusted. In using a coupler, one should keep in mind that its basic purpose is to facilitate the transfer of power from the transmitter or transceiver to the feedline and antenna, and should not be expected to compensate for a poor antenna. Some wide-range antenna tuner manufacturers boast that their products will enable you to "load a bedspring." However, that ability does not guarantee good signal reports!

Another item that belongs in every ham shack is a good dummy load. The load makes it possible for you to tune the transmitter for a 50-ohm load without putting a signal on the air and possibly causing interference to other hams. After the transmitter has been tuned for maximum output power, the transmatch can be adjusted for a perfect match between the rig and feedline. All transmatch adjustments should be made with the transmitter's r-f level control backed down as far as possible. Only after these adjustments have been made should the transmitter's r-f output be brought to maximum again.

to match practically any type of load—balanced line, coax, or random wires and the like. Murch Electronics, Dentron, and Nye Viking all make very competitive multi-purpose tuners, some of which can handle well over 2 kW and feature built-in SWR bridges or, better
SEE ECORAM IN PERSON AT A STORE NEAR YOU.

We want to be your memory supplier: and that means offering a superior product at the lowest possible price.

These static memory kits deliver outstanding performance at prices even the dynamics can't match. What others consider “extras” we consider necessities, such as buffering on all lines, reliable DMA, sockets, gold-plated card fingers... and all the other signs of quality that make up an Econoram.

More good news: Our memory kits (except Econoram II) are now “Unkits”. All sockets and bypass caps are pre-soldered into place, turning an otherwise tedious assembly job into, in a pleasurable evening project.

24K ECORAM VII™ $445

A dense and flexible S-100 board that draws less than 2000 mA. Configured as two 8K and 2 4K blocks with independent addressing and protection. Use with or without phantom lines. Add $40 for assembled/tested.

16K ECORAM IV™ $279

Ideal for S-100 bus system builders who need a big chunk of memory that draws less than 2000 mA. Manual write protect for 4K blocks; add $10 with or without phantom line. Add $35 for assembled/tested.

8K ECORAM II™ $135

Just try to find a more cost-effective S-100 package! Better yet, get 3 kits (24K of memory) for only $375. Add $20 per board for assembled/tested.

GODBOUT

BIL GODBOUT ELECTRONICS

BOX 2355, OAKLAND, CALIFORNIA 94601

TERMS: Please allow up to 5% for shipping; excess refunded. Add $1 handling for orders under $10. Cal res add tax. COD OK with street address for UPS. For VISA (Mastercharge™) orders ($15 min) call our 24 hr. order desk at (415) 562-0636. Prices good through cover month of magazine.
Huge Discounts!

HOBBY WORLD ELECTRONICS

Savings up to 70% on major brand IC parts and computer kits. For complete IC listings write for our catalog.

NEW ADDRESS

NEW PHONE

19355 Business Center Dr. #65
Northridge CA 91324

TELEPHONE ORDERS:

Inside Calif: 213-886-9200
Outside Calif: 800-423-5387

NEW 1978 IC MASTER

- Over 40,000 IC's listed.
- Updated every 90 days.
- Over 2,000 pages.

Retail Value

Your Price

$55.00

$39.99

Check catalogue for more listings on linears, voltage regulators, resistor books, IC sockets and more.

YOUR COMPLETE SATISFACTION IS OUR GUARANTEE

Send your complete catalog quickly. Please send me the following items I have listed below:

Qty. Stock No. Price

Postage/Handling $1.50

Your complete satisfaction is our guarantee.
NEW! BULB-ENERGY SAVER

- ENERGY SAVER: Used with proper equipment, it can save up to 15% on energy costs.
- 120V-MP: Designed for use with standard 120V circuits.
- Brighter than standard incandescent:
 - 120V-MP: Brighter than standard incandescent, lasts longer.
 - Energy savings: Up to 15%.

Crystals

- 10/16 MHz
- 16/25 MHz
- 25/35 MHz
- 30/40 MHz

Special discount for orders of 10 or more

Digital Stopwatch

- Waterproof: Ideal for outdoor activities.
- 1/100th of a second accuracy.
- Large display for easy reading.

The Sinclair PDM-35
A personal digital multimeter for only $59.95

- 3 1/2 digit LED display
- 14 function tests
- Automatic power-off

3/8 Drive Ball Head Wrenches

- 1/4" drive
- 1/2" drive
- 3/8" drive
- Available in 3 length sizes

TRIMPOTS

- Single-Turn - 1/2 Watt
- Square - Top Adjust 3/8" Size

Connectors

- 32 Pin Subminiature

MOLEX CONNECTOR PINS

- M-530-1
- M-530-5
- M-530-10
- M-530-20

INSTRUMENT/CLOCK CASE

- Complete with bezel:
 - 3 3/4" x 5 3/4" x 3" H (3 1/2"
- $3.49

SPECIAL DISCOUNTS

- Orders of 10 or more
- Free shipping over $50
- 10% off entire order

MAIL ORDER ELECTRONICS - WORLDWIDE

- 1521 HOWARD AVENUE
- SAN JOSE, CA 95120
- Advertised Prices Good Through September

CIRCLE NO. 31 ON FREE INFORMATION CARD
Jumbo LED Car Clock Kit
 FEATURES
 A. Bowmar Jumbo, 5 inch LED array
 B. MOSTER — 5020 — Super clock chip
 C. On-board vibration crystal time base
 D. 12 or 24 hour Real Time format
 E. Perfect for cars, trucks, etc.
 F. PC board and all parts (less case) inc.
 Alarm option — $1.50
 AC XFRER — $1.50
 $16.95

6 DIGIT ALARM CLOCK KIT
 Features: Litonix dual 1/2" displays, Mostek 50250 super clock chip, single I.C. segment driver, SCR digit drivers. Kit includes all necessary parts (except case). Xfmr optional. Eliminate the hassle.
 AQ XFRER — $1.50 Case $3.50
 $12.95

7400 TTL DIGITAL CIRCUITS
 CD4015
 CD4009
 CD4002
 741542
 741526
 74L509
 741505
 7410
 7413112
 7415109
 743151
 7415139
 7451381
 9104 35 LM
 508
 81
 8251
 5400
 21L02-25oN5
 541
 800V
 200V
 8251...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
 81...
 85...
APPLE II SERIAL I/O INTERFACE

Part no. 2
Baud rate is continuously adjustable from 0 to 30,000. Includes plug-in peripheral connector. Low current drain. RS-232 input and output. On-board switch selectable to 5 to 8 data bits, 1 or 2 stop bits, and parity, or none or odd or even. jumper selectable address. SOFTWARE Input and output routines from monitor or BASIC to teletype or other serial printer. Program for using Apple II for a video or an intelligent terminal. Also can output in correspondence code to interface with some selectrics. Board only $12.50; with parts $27.50 excluding transformers.

MODEM

Part no. 109
• Type 103 Full or half duplex. Works up to 300 baud Originating or answering. No coils, only low cost components. TTL input and output serial. Connects 8 ohm speaker and crystal directly to board. Uses XR FSK demodulator. Requires +5 volts. Board $7.60, with parts $27.50.

DC POWER SUPPLY

Part no. 6085
• Board supplies regulated +5 volts at 3 amps. +12, -12, and -5 volts at 1 amp. Power required is 8 volts AC at 3 amps, and 24 volts AC C T at 1.5 amps. Board only $12.50, with parts excluding transformers $42.50.

TIDMA *

Part no. 112
• Tape Interface Direct Memory Access. Record and play programs without bootstrap loader (no prom) has FSK encoder/decoder for direct connections to low cost recorder at 1200 baud rate, and direct connections for inputs and outputs to a digital recorder at any baud rate. S-100 bus compatible. Board only $35.00, with parts $110.00.

T.V. TYPEWRITER

Part no. 106
• Stand alone TVT. 32 char./line, 16 lines. Special modifications for 64 char./line included. Parallel ASCII (TTL) input. Video output 1K on board memory. Output for computer controls. Curser. Auto scroll. Non-destructive curser. Curser inputs: up, down, left, right, home, EOL. Scroll up, down. Requires +5 volts at 1.5 amps, and -12 volts at 30 mA. All 7400 series TTL chips. Char. gen. 2513. Upper case only. Board only $39.00, with parts $145.00.

UART & BAUD RATE GENERATOR

Part no. 101
• Converts serial to parallel and parallel to serial. Low cost on board baud rate generator. Baud rates 110, 150, 300, 600, 1200, and 2400. Low power drain. +5 volts and -12 volts required. TTL compatible. All characters contain a start bit, 5 to 8 data bits, 1 or 2 stop bits, and either odd or even parity. All connections go to a 44 pin gold plated edge connector. Board only $12.00, with parts $35.00, with connector add $3.00.

8K STATIC RAM

Part no. 300

RF MODULATOR *

Part no. 107
• Converts video to AM modulated RF. Channels 2 or 3. So powerful almost no tuning is required. On board regulated power supply makes this extremely stable. Rated very highly in Doctor Dobbs' Journal. Recommended by Apple. Power required is 12 volts AC C.T., or +5 volts DC. Board $7.60, with parts $13.50.

RS 232/TTY INTERFACE

Part no. 600
• Converts RS-232 to 20mA current loop, and 20mA current loop to RS-232. Two separate circuits. Requires +12 and -12 volts. Board only $4.50, with parts $7.00.

RS 232/TTL INTERFACE

Part no. 232
• Converts TTL to RS-232, and converts RS-232 to TTL. Two separate circuits. Requires +12 and -12 volts. All connections go to a 10 pin gold plated edge connector. Board only $4.50, with parts $7.00 with connector add $2.00.

ELECTRONIC SYSTEMS

To Order:

Mention part number and description. For parts kits add "A" to part number. In USA, shipping paid for orders accompanied by check, money order, or Master Charge, BankAmericard, or VISA number, expiration date and signature. Shipping charges added to C.O.D. orders. California residents add 6.5% for tax. Outside USA add 10% for air mail postage, no C.O.D.'s. Checks and money orders must be payable in US dollars. Parts kits include sockets for all ICs, connectors, and circuit board. Documentation is included with all products. All items are in stock, and will be shipped the day order is received via first class mail. Prices are in US dollars. No open accounts. To eliminate tariff in Canada boxes are marked "Computer Parts." Dealer inquiries invited. * Circuits designed by John Bell.
The "NIBBLER"
A MICROCOMPUTER AT A MicroPRICE!

FEATU RES:
- Assembled and Tested, yet only $149.95
- Standard 4.5" by 6.5" card with 72 pin edge connector pattern
- All IC's are socketed for easy maintenance
- Memory expandable to 28K
- 110 Baud Serial I/O
- It Speaks Basic Beautifully
- 4K NIBL Basic in ROM and 2K of RAM
- Easily Interfaced with CRT or Teletype

CATALOG NUMBER NIB1-ND $149.95
SOFTWARE/HARDWARE MANUAL MAN-ND $5.00

See Our Catalog For More!
B&K PRECISION'S NEW 3½ DIGIT DMM
B&K-PRECISION's new Model 2800 portable DMM uniquely features a 3-1/2 digit display, auto-ranging and 100% overrange reading for only $599.95. Basic DMM accuracy is 1%. Twenty-two ranges read up to 1000 volts DC or AC, 1000 mA and 15 megohms. All ranges are well protected against overloads. Even if you should accidentally apply +4000V DC to the 2800 while switched to an ohms range, no instrument damage will result. All DC and AC voltage ranges are protected up to 11000V and AC, 1000mA. The current ranges receive the double protection of diodes and a wire fuse. Model 2800 $599.95

LEARN MICROCOMPUTERS

A USE A POWER SOURCE FOR FASTER AND MORE ACCURATE PROTOTYPING OF ALL TYPES OF ELECTRONIC CIRCUITS

CHECK THESE IMPORTANT FEATURES

- 1000 voltages, signals to +5 volt...-5 volt, and hold up to 10 hr. both 20%.
- Waterproof, insensitive to drops of 5000 B&K-PRECISION's 2203 DMM is sensitive to drops of 2000 B&K-PRECISION's 3003 DMM.
- All current/measurements are monitored and recorded in the 2203.
- Output power supply is OR 5V is available up to 10 hr.
- Output power supply is OR 7V is available up to 10 hr.
- POWER 803 $34.95

THREE OUTPUT POWER SUPPLY: 5VAC output all: 10VDC, 15VDC, 20VDC, and 30VDC all: 10VDC, 15VDC, 20VDC, and 30VDC output. Line and load resistors are 1% for all outputs. 12VDC is output. METER is built up to 15VDC output. Input fx accuracy is $10 up to 0.001%. 12VDC is output. Input fx accuracy is $10 up to 0.001%. 12VDC is output. Input fx accuracy is $10 up to 0.001%. 12VDC is output. Input fx accuracy is $10 up to 0.001%

NEW FROM FLUKE MODEL 8020a THE DMM FOR THE PROFESSIONAL

- 2000 Hour Battery Life
- 20 Range for Full Scale Reading
- 2000 Count Resolution
- High Quality Channels
- Adjustable Auto and Manual
- Autozero
- MOVD protected to 6000V (Z-Ar. & B-Ar. & C-Ar.)
- Tolerance adjustable
- Adjustable AD DUTTE Test
- Conduction Check
- Check leakage resistance to 100,000 mohms
- Size: 8.5 L x 4.5 W x 1.8 H
- Weight: 1.3 oz.

ONLY $169.00

FLOAINTING POINT MATH SOFTWARE

In a 2308B version of the 2308B EPROF. The FPFS is designed to complement floating point math algorithms and computer programs in the IBM series. The software is supplied with 5000mD to 6000mD memory space. Instructions on use are included with the order. Order Part Number: 79105.

$50

VISIT ONE OF OUR STORES TODAY

CIRCLE NO. 15 FOR FREE INFORMATION CARD

AmericanRadioHistory.com
PLACE ORDERS TOLL FREE: 800/262-1710 inside California 800/421-5809 all other states

MICROPROCESSORS

<table>
<thead>
<tr>
<th>CPU</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>16.95</td>
</tr>
<tr>
<td>20</td>
<td>20.00</td>
</tr>
<tr>
<td>280</td>
<td>25.00</td>
</tr>
<tr>
<td>280 A</td>
<td>19.05</td>
</tr>
<tr>
<td>450</td>
<td>24.95</td>
</tr>
<tr>
<td>4010</td>
<td>7.00</td>
</tr>
<tr>
<td>502</td>
<td>10.95</td>
</tr>
<tr>
<td>800</td>
<td>17.95</td>
</tr>
<tr>
<td>2022</td>
<td>20.50</td>
</tr>
<tr>
<td>2025</td>
<td>7.25</td>
</tr>
<tr>
<td>2026</td>
<td>3.95</td>
</tr>
<tr>
<td>2027</td>
<td>7.95</td>
</tr>
<tr>
<td>2028</td>
<td>7.25</td>
</tr>
<tr>
<td>2025</td>
<td>8.75</td>
</tr>
<tr>
<td>2027</td>
<td>11.00</td>
</tr>
<tr>
<td>2028</td>
<td>15.00</td>
</tr>
<tr>
<td>2027</td>
<td>11.25</td>
</tr>
<tr>
<td>2028</td>
<td>16.00</td>
</tr>
<tr>
<td>2026</td>
<td>14.50</td>
</tr>
<tr>
<td>2871</td>
<td>28.75</td>
</tr>
<tr>
<td>2868</td>
<td>8.25</td>
</tr>
<tr>
<td>2868</td>
<td>2.00</td>
</tr>
</tbody>
</table>

CHARACTER GEN.

<table>
<thead>
<tr>
<th>Font</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2513 U/L</td>
<td>6.75</td>
</tr>
<tr>
<td>713 (LV)</td>
<td>9.95</td>
</tr>
<tr>
<td>713 (LV)</td>
<td>10.95</td>
</tr>
<tr>
<td>5517 A</td>
<td>1.25</td>
</tr>
<tr>
<td>5517 A</td>
<td>13.25</td>
</tr>
</tbody>
</table>

DYNAMIC RAMS

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>416 D (200ns)</td>
<td>20.00</td>
</tr>
<tr>
<td>416 E (200ns)</td>
<td>20.00</td>
</tr>
<tr>
<td>2104/4096</td>
<td>4.00</td>
</tr>
<tr>
<td>2106/4096</td>
<td>3.95</td>
</tr>
<tr>
<td>TMS5607</td>
<td>4.00</td>
</tr>
<tr>
<td>TMS450</td>
<td>4.50</td>
</tr>
<tr>
<td>TMS4560</td>
<td>4.50</td>
</tr>
<tr>
<td>4096</td>
<td>4.00</td>
</tr>
<tr>
<td>55270</td>
<td>4.50</td>
</tr>
</tbody>
</table>

STATIC RAMS

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>64</td>
</tr>
<tr>
<td>2102 (45)</td>
<td>1.50</td>
</tr>
<tr>
<td>4095 (ns)</td>
<td>1.18</td>
</tr>
<tr>
<td>2102 (250ns)</td>
<td>1.50</td>
</tr>
<tr>
<td>2102</td>
<td>1.75</td>
</tr>
<tr>
<td>2101</td>
<td>2.25</td>
</tr>
<tr>
<td>2102</td>
<td>3.25</td>
</tr>
<tr>
<td>2112</td>
<td>3.75</td>
</tr>
<tr>
<td>2114</td>
<td>4.25</td>
</tr>
<tr>
<td>2114 (300ns)</td>
<td>10.00</td>
</tr>
<tr>
<td>2112</td>
<td>11.00</td>
</tr>
<tr>
<td>2113</td>
<td>11.75</td>
</tr>
<tr>
<td>2114</td>
<td>12.25</td>
</tr>
<tr>
<td>2114</td>
<td>12.75</td>
</tr>
<tr>
<td>2114</td>
<td>13.25</td>
</tr>
<tr>
<td>TMS454</td>
<td>8.50</td>
</tr>
<tr>
<td>TMS454</td>
<td>8.50</td>
</tr>
<tr>
<td>TMS454</td>
<td>8.50</td>
</tr>
<tr>
<td>TMS454</td>
<td>8.50</td>
</tr>
<tr>
<td>TMS445</td>
<td>8.20</td>
</tr>
<tr>
<td>TMS445</td>
<td>7.40</td>
</tr>
<tr>
<td>TMS445</td>
<td>7.20</td>
</tr>
</tbody>
</table>

CONNECTORS

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB-25P</td>
<td>$2.25</td>
</tr>
<tr>
<td>DB-25S</td>
<td>$3.25</td>
</tr>
<tr>
<td>COVER</td>
<td>$1.50</td>
</tr>
<tr>
<td>44 Pin</td>
<td>$1.95</td>
</tr>
<tr>
<td>44 Pin</td>
<td>$2.50</td>
</tr>
<tr>
<td>86 Pin</td>
<td>$5.00</td>
</tr>
<tr>
<td>86 Pin</td>
<td>$5.00</td>
</tr>
<tr>
<td>100 Pin</td>
<td>$5.00</td>
</tr>
<tr>
<td>100 Pin</td>
<td>$5.30</td>
</tr>
<tr>
<td>100 Pin</td>
<td>$4.25</td>
</tr>
</tbody>
</table>

COMPUTER MAINFRAME

Includes:
- Power Supply +8V at 18amps
- 16V at 2 amps
- Mother Board - 12 slots with connectors, Assembled & Tested
- Has Whisper Quiet Fan & AC Line Filter
- Cabinet size: 19"H x 16"W x 22"D

COMPUTER RAM BOARD

- By S.D. Computer Products
- On board refresh is provided with no wait states or cycle stealing required. +5VDC
- +5VDC 80MA DC. +5VDC 80MA A.
- +5VDC 30 MA DC.

EXPANDABLE 32K uses 4115

<table>
<thead>
<tr>
<th>Kit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>16K Kit</td>
<td>$240.00</td>
</tr>
<tr>
<td>32K Kit</td>
<td>$400.00</td>
</tr>
</tbody>
</table>

EXPANDABLE 64K uses 4116

<table>
<thead>
<tr>
<th>Kit</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>16K Kit</td>
<td>$250.00</td>
</tr>
<tr>
<td>48K Kit</td>
<td>$765.00</td>
</tr>
</tbody>
</table>

JAIDE 16 K DYNAMIC KIT

- Uses 3096 (300ns)
- $200.00
- 32K Kit $475.00
- 64K Kit $875.00

JAIDE Z80 Kit

- With PROVISIONS for ON BOARD 2708 and POWER ON JUMP

JAIDE VIDEO INTERFACE KIT

- Kit $99.95
- Assembled & Tested $139.95

- S-100 Bus compatible
- 16 or 64 Characters per line - 16 lines
- Parallel & composite video
- On board low-power
- Powerful software included for cursor, home, EOL, Scroll Graphics/Character Upper case, lower case and Greek
- Black-on-white & White-on-black

JAIDE PARALLEL/SERIAL INTERFACE KIT

- Kit $124.95
- Assembled & Tested $154.95

- S-100
- Serial interfaces with RS232 inter-interfaces or ! Kansas City cassette interface
- Serial interfaces are crystal controlled
- Selectable baud rates.
- Card 2 interfaces up to 1200 baud. Card parallel port.

JADE Computer Products

4901 W. Rosecrans
Hawthorne, Calif. 90250

Freight Charge $2.00 less than 10-lbs.

NEW CATALOG NOW AVAILABLE
Radio Shack: No. 1 Parts Place
Low Prices and New Items Everyday!

Top-quality devices, fully functional, carefully inspected. Guaranteed to meet all specifications, both electrically and mechanically. All are made by well-known American manufacturers, and all have to pass manufacturer's quality control procedures. These are not rejects, not bailouts, not seconds. In fact, there are none better on the market! Always count on Radio Shack for the finest quality electronic parts!

Digital IC Logic Probe

NEW

Multi-Logic Family Compatibility from 5-15VDC
Detects one-shot, low-repetition-rate narrow pulses, ordinary square waves, combined level detector, pulse detector and pulse stretcher. Non-symmetrically stable, duty cycles of less than 30% light or LED over 75% light high LED input impedance 300K ohms. Overload and reverse polarity protected. With 30 cables.

22-300 24.95

Wire Wrapping Accessories

IC Socket Wrapping Tool. Stops and wraps 10-gauge wire. 276-297 2.95

16-Pin Wire Wrapping Set. 276-192 2.79

20-Pin Wire Wrapping Set. 276-194 2.31

DIP Header. 16 pins. 276-195 3.79

50 Snap-Off Headers. 276-597 1.95

SD White 30 ga. Kynar wire. 276-592 1.95

SD Bus 30 ga. Kynar Wire. 276-560 1.95

Metal Project Cabinets

NEW

Slope Front. Sloping top panel — ideal for lab projects. 1% to 22x7x9.5 276-265 6.99

Project Cabinet. 20 ga. steel cover with 16 ga. aluminum chassis. 27x7x9.5 276-268 5.99

31x7x9.5 276-269 7.99

Low-Cost Power Transformers

- Primaries Designed to Operate from 120VAC, 60 Hz
- Solder Lugs for Easy Wiring or PC Board Mounting

Solder Lug Volt Current Cat No. Each
6.3 1.2A 273-050 2.49
6.3 300 mA 273-139 1.99
12 300 mA 273-139 1.99
24 300 mA 273-138 1.99
24 1.2A 273-138 2.89
12 6 CT 1.2A 273-135 2.89

Ideal for SV (using CT) or 12V solid-state rectifiers

Radio Shack Reference Books

Digital Integrated Circuits. Complete specs. AC test circuits, waveforms. 62-1370 3.95

Voltage Regulator Handbook. 62-1371 2.95

Linear Integrated Circuits. Covers op-amps, voltage regulators, more. 62-1372 3.95

Linear Applications, Fully Indexed and Cross-Referenced. 62-1373 2.95

Linear Applications, Vol. 2. The latest data sheets, applications. 62-1374 2.95

CMOS Integrated Circuits. Covers 74C series. CD4000 with data specs. 62-1375 3.95

Memory Data Book. 62-1376 3.95

Intel Memory Design Handbook. Companion to Data Catalog, below. 62-1379 3.95

Data Catalog. 978 pages of complete specs on most Intel standard devices. 62-1379 4.95

WHY WAIT FOR MAIL ORDER DELIVERY?
IN STOCK NOW AT OUR STORE NEAR YOU!

Prices may vary at individual stores and dealers

AmericanRadioHistory.com
NEW 1978 CATALOGUE

Our new and expanded comprehensive 1978 catalogue (144 pages) listing complete descriptions, illustrations and monolithic pricing over on 10,000 items is available on request.

- Subject to prior sale
- Prices valid only till October 15th, 1978
- Standard 1978 catalogue prices on the above devices will once again take effect October 15th, 1978

Dual In-line Sockets

- Finest Quality Sockets Available Anywhere
 - Plug-in Socket for IC Packages with Leads
 - High Reliability Gas Tight Joint for "Good as Gold" Performance
 - Compact Low Profile Design
 - No Wicking When Soldered to PC Board
 - Flammability Rating: UL 94V-0

BRAND NEW 1978 IC MASTER

Complete Integrated circuit data selector. New 1978 edition (200 pages) is twice as big as last year. Master guide to the latest I.C.s including microprocessors and consumer circuits.

Free quarterly updates.

$24.95

Lowest price available

P.O. BOX 1035 FRAMINGHAM, MASSACHUSETTS 01701

Over-the-counter sales,
12 Mercier Rd., Natick, Mass. 01760
Behind Zayres on Rte. 9
Telephone Orders & Enquiries (617) 879-0077

IN CANADA 3 LOCATIONS

- Active Electronic Sales Corp.
- Tel: (514) 735-6425
- 400 Guifford Rd.,
 Montrose, Ont.
 Tel: (416) 675-3311
- Baxter Centre
 1650 Baxter Road
 Ottawa, Ontario
 Tel: (613) 820-9471

SUMMER MADNESS SALE

CONTINUES at...

Active Electronic Sales Corp.

SEPTEMBER 1978

CIRCLE NO. 4 ON FREE INFORMATION CARD

TTL HIGH SPEED PLASTIC DUAL-IN-LINE I.C.'s

<table>
<thead>
<tr>
<th>Stock level</th>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>46000</td>
<td>74H00</td>
<td>16</td>
</tr>
<tr>
<td>13000</td>
<td>74H01</td>
<td>16</td>
</tr>
<tr>
<td>11000</td>
<td>74H02</td>
<td>16</td>
</tr>
<tr>
<td>89000</td>
<td>74H03</td>
<td>16</td>
</tr>
<tr>
<td>51000</td>
<td>74H04</td>
<td>17</td>
</tr>
<tr>
<td>9000</td>
<td>74H05</td>
<td>17</td>
</tr>
<tr>
<td>15000</td>
<td>74H08</td>
<td>22</td>
</tr>
<tr>
<td>17000</td>
<td>74H10</td>
<td>16</td>
</tr>
<tr>
<td>4400</td>
<td>74H11</td>
<td>22</td>
</tr>
<tr>
<td>1000</td>
<td>74H12</td>
<td>18</td>
</tr>
</tbody>
</table>

TTL PLASTIC DUAL-IN-LINE I.C.'s

<table>
<thead>
<tr>
<th>Stock level</th>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>36000</td>
<td>7409</td>
<td>09</td>
</tr>
<tr>
<td>22000</td>
<td>7404</td>
<td>09</td>
</tr>
<tr>
<td>6800</td>
<td>7423</td>
<td>07</td>
</tr>
<tr>
<td>32000</td>
<td>7426</td>
<td>12</td>
</tr>
<tr>
<td>43000</td>
<td>7437</td>
<td>09</td>
</tr>
<tr>
<td>57000</td>
<td>7438</td>
<td>09</td>
</tr>
<tr>
<td>22000</td>
<td>7443</td>
<td>15</td>
</tr>
<tr>
<td>38000</td>
<td>7445</td>
<td>19</td>
</tr>
<tr>
<td>23000</td>
<td>7454</td>
<td>07</td>
</tr>
<tr>
<td>32000</td>
<td>7460</td>
<td>07</td>
</tr>
<tr>
<td>41000</td>
<td>7472</td>
<td>12</td>
</tr>
</tbody>
</table>

LOWEST PRICES EVER OFFERED ANYWHERE

UV EPROM

<table>
<thead>
<tr>
<th>Stock level</th>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>11900</td>
<td>2708</td>
<td>$39.84</td>
</tr>
</tbody>
</table>

MOS Static RAM's

<table>
<thead>
<tr>
<th>Stock level</th>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>13500</td>
<td>84600</td>
<td></td>
</tr>
<tr>
<td>2114</td>
<td>1K350NS</td>
<td></td>
</tr>
<tr>
<td>4K 450NS</td>
<td>Price 589.75</td>
<td>Price 1.19</td>
</tr>
</tbody>
</table>

MOS Dynamic RAM's

<table>
<thead>
<tr>
<th>Stock level</th>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7200</td>
<td>2800</td>
<td></td>
</tr>
<tr>
<td>4K 30NS</td>
<td>16K 250NS</td>
<td>Price 395</td>
</tr>
</tbody>
</table>

UART's

<table>
<thead>
<tr>
<th>Stock level</th>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>16000</td>
<td>12300</td>
<td></td>
</tr>
<tr>
<td>AY51013A</td>
<td>AY51015A</td>
<td>Price 4.95</td>
</tr>
</tbody>
</table>

MICROPROCESSOR CHIPS

<table>
<thead>
<tr>
<th>Stock level</th>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7100</td>
<td>8006A</td>
<td>$6.95</td>
</tr>
<tr>
<td>5500</td>
<td>8000</td>
<td>$6.95</td>
</tr>
</tbody>
</table>

Interface Support Circuits

<table>
<thead>
<tr>
<th>Stock level</th>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>8000</td>
<td>8212</td>
<td>1.98</td>
</tr>
<tr>
<td>3500</td>
<td>8214</td>
<td>4.95</td>
</tr>
<tr>
<td>2500</td>
<td>8216</td>
<td>1.98</td>
</tr>
<tr>
<td>3300</td>
<td>8224</td>
<td>2.75</td>
</tr>
<tr>
<td>2400</td>
<td>8226</td>
<td>1.98</td>
</tr>
<tr>
<td>3300</td>
<td>8228</td>
<td>4.75</td>
</tr>
<tr>
<td>1400</td>
<td>8232</td>
<td>4.75</td>
</tr>
<tr>
<td>5700</td>
<td>8251</td>
<td>5.95</td>
</tr>
<tr>
<td>1100</td>
<td>8253</td>
<td>14.95</td>
</tr>
<tr>
<td>2700</td>
<td>8256</td>
<td>5.95</td>
</tr>
<tr>
<td>1000</td>
<td>8257</td>
<td>9.95</td>
</tr>
<tr>
<td>840</td>
<td>8259</td>
<td>14.95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stock level</th>
<th>Part No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4500</td>
<td>6810</td>
<td>3.95</td>
</tr>
<tr>
<td>6000</td>
<td>6820</td>
<td>4.95</td>
</tr>
<tr>
<td>9600</td>
<td>6850</td>
<td>5.95</td>
</tr>
<tr>
<td>1500</td>
<td>6852</td>
<td>5.95</td>
</tr>
</tbody>
</table>

MINIMUM ORDER $10.00

ADD $2.00 TO COVER POSTAGE & HANDLING

Canadian customers add 30% for exchange and handling. All federal and provincial taxes extra.

Foreign customers please remit payment on an international bank draft or a certified postal money order in American dollars.

Active Electronic Sales Corp.

5651 Ferrier St.,
Montréal, Québec,
Tel. (514) 735-6425

AmericanRadioHistory.Com
Just Arrived! Ready To Mail!

BRAND NEW
EDMUND SCIENTIFIC CATALOG

Over 200 New Products - New instruments, new optics, new scientific devices, new tools.

Telescopes - for sports, watching to comet tracking, one stop shopping for buying or building quality telescopes.

Weather - Also hobbies, photography, model making, treasure hunting lapidary and dozens more.

Send coupon today for your value-packed copy.

We'll send your free personal copy of the brand new 164-page Edmund Scientific Catalog just as soon as we receive your name and address. You'll find over 4,000 amazing and unique products available from no other single source. It's our biggest and best catalog in our 37-year history.

EDMUND SCIENTIFIC COMPANY
Dept. AV18, Edscorp Bldg., Barrington, New Jersey 08007

FM-AM Receiver Chassis
- All Are Defective in Some Manner
- Includes Schematic Diagram
- Made for Top Quality Capehart Consoles and Compacts
- Sold As-Is—No Guarantee

60-Minute Blank CASSETTE
- Each Tape 60-Minutes
- Each In Lots of 3 Only!

PUSHBUTTON AM AUTO RADIO
- With Volume and Tone Control
- Mounts In or Under-Dash

100-FT. Speaker CABLE
- Home or Auto Use
- 2-Conductor
- Flexible, Flat Vinyl

Universal AC Adapter
- For Radios, Recorders, Calculators, and More!
- 6-7.5 V @ 300mA

Olson electronics
260 S. Forge St.
Dept. IF Akron, Ohio 44327

NAME __________________
ADDRESS __________________
CITY ________ STATE _____ ZIP ________

Qty. Stk. # Description Price Ea. Total

Tax Postage TOTAL

FREE! Please send me a free subscription to Olson Value Packed Catalog.

CIRCLE NO. 41 ON FREE INFORMATION CARD
New-Tone Electronics

Quality components at fair prices

HIGH FIDELITY SPEAKERS

8 INCH COAXIAL

Combines a high quality 8" woofer and a tweeter into a pre-phased sound reproducer. Built-in crossover network. Excellent choice for a low-cost Hi-Fi system for cars, vans, or in your home. Frequency response is a smooth 80-15,000 Hz. 8 ohm VC. 10 oz. ceramic magnet. 25W rating.

- **NT577** $13.99 plus 40 cents postage

10 INCH WOOFER

The speaker for your "big sound" system. Frequency response is 20-4000 Hz. 8 ohm aluminum VC. powerful 20 oz. ceramic magnet. 100W RMS output. A sealed cabinet is designed for excellent compliance. Handles 50W max. Use with the NT576 for a super system.

- **NT578** $17.99 plus 40 cents postage

50W DOME TWEETER

Here is the super tweeter. A rugged 1" dome tweeter which handles 50W max. Frequency response is 4000-20,000 Hz. 8 ohm VC. 8 oz. ceramic magnet. Can have a brilliance you never imagined.

- **NT575** $8.99

Resistors

- **Standard values**, -5%, first quality, packed 5 of one value
- **4W/5 for $2.25**, 5W-5 for $3.00

Capacitor Special

- **3600 mfd. 40/10v Sprague "Powervac"** $1.89

Relay SPDT 12Vac

- **5A contacts** $NT565 $1.79

Sound Activated Switch

- **Complete, ready to use**: Built in microphone's output triggers a Trac which acts as a switch. Measures only 1" x 3". Requires 3 Volts. **NT527 $1.29**

- **And, the largest inventory of domestic and Japanese transistors and ICs in the United States.**

ALL PARTS GUARANTEED

Write for free catalog

Minimum Order $5. Add $1.50 Postage and Handling. Canada add $2.00. N.J. Residents add 5% Sales Tax

CB, HAM MICROPHONE

- **Noise Cancelling Characteristics**
- **Dynamic Microphone Element**

A terrific push-to-talk dynamic microphone with a tailored 100-5000 Hz frequency range for high intelligibility. The "close talk" requirement is effective in eliminating off-axis noise. Originally made by Atasc for Pace. Complete with 4-wire coiled conductor. Can be used with hundreds of CB and Ham rigs. Output impedance is 400 ohms. Black plastic case with molded hanger. **NT566** $6.89

ALARM HORN . . .

Use anywhere a loud audio signal or buzzer is needed — as an alarm, to signal a "high" in your IC projects, as a timer signal, or as a low cost code practice tone generator. Requires only 3-6 volts dc. 1/2" diaphragm **NT553** $8.89

SPDT Miniature Microswitch . . .

The real thing! **Rated 10A at 125 Vac, 5A at 250 Vac**. Body measures 5/16" x 11/16" x 3/8". Roller leaf actuated.

- **Three for $2.29** **NT584** $8.89

DPDT-Toggle Switch . . .

- **Rated 6 Amps at 125Vac 5/16"** bat handle, 5/16" stem. Gold plated wire terminals. Switch body measures 5/16" x 11/16" x 3/8". Made by Cutler Hammer **NT562** $1.49

4PDT-Toggle Switch . . .

Three position toggle switch with center position "OFF". **Rated 6 Amps at 125Vac 5/16"** bat handle, 5/16" stem. Gold plated wire terminals. Switch body measures 5/16" x 11/16" x 3/8". Made by Cutler Hammer **NT563** $1.99

NYLON HARDWARE . . .

Hard-to-find Nylon screws, nuts and rivets. **NT514 - 50 piece assortment only $1.99**

Socket Extender 14-Pin DIL . . .

Raises sockets 2 1/2" above the chassis. Solder to pc board or plug into an existing socket. Ideal for digital readout devices, IC testing and simplifying layout.

- **Three for $2.39** **NT568** $8.89

Introducing Prime 4000 Series CMOS At Lowest Prices Anywhere

In our continuing effort to offer you all your components' needs, at lowest possible prices this month we are introducing 4000-Series CMOS ICs. Besides this bring one of the most complete selection of these devices, offered anywhere, as usual, we guarantee that there and every other item purchased from us to be of Prime, First-Rate quality with full manufacturers' markings.

VOLUME DISCOUNT SCHEDULE

<table>
<thead>
<tr>
<th>Merchandise Total</th>
<th>Discount</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ 0.00 - $ 9.99</td>
<td>NET</td>
</tr>
<tr>
<td>$ 10.00 - $ 24.99</td>
<td>- LESS 5%</td>
</tr>
<tr>
<td>$ 25.00 - $ 49.99</td>
<td>- LESS 10%</td>
</tr>
<tr>
<td>$ 50.00 - $99.99</td>
<td>- LESS 15%</td>
</tr>
<tr>
<td>$100.00 and up</td>
<td>- LESS 20%</td>
</tr>
</tbody>
</table>

STANDARD SHIPPING CHARGE

- **$ 0.00 - $ 4.99**: add $2.00
- **$ 5.00 - $24.99**: add $1.00
- **$ 25.00 - $99.99**: add $0.50
- **$100.00 and up**: NO CHARGE

SPECIAL SHIPPI NG CHARGES

- **COD**: 1.00 - additional
- **UPS格外**: 1.00 - additional
- **Floor Delivery**: 1.25 - additional

INTERNATIONAL COMPONENTS CORPORATION

P. O. BOX 1837
COLUMBIA, MO 65201
PHONE: (314) 874-1150

ELECTRONICS

Market Place

AmericanRadioHistory.com
Digital Research Corporation
P.O. BOX 401247 A GARLAND, TEXAS 75040 • (214) 271-2461

MORE NEW ITEMS!

JUMBO LED READOUT ARRAY
By Bowman. 5 in.
character common cathode. Designed
for use with multiple-plexed clock chips
4 digits in 1 pack!

$1.95 LIMITED STOCK

MICRO-MINI TOGGLE SWITCH
SPDT. By RAYTHEON.
MADE IN USA WITH HDWR.

99¢ EACH 6 FOR $5

INTEL 2102 RAM SPECIAL
Factory Prime. These parts have been screened to meet LOW
POWER specs. (40 MA. Max. 28 MA. Typical) FAST: 450 NS

8 FOR $7.95 32 FOR $28

FAIRCILD JUMBO READOUTS
.5 inch Char. High Efficiency!
FND-103-Common Cathode
FND-105-Common Anode
YOUR CHOICE 65¢ 10 FOR $5.75

FET SALE!
2N4004. Brand New
N Channel, Junction Fet.
BG/GOV-30V IDSS-15 Ma Typ.
600 uH/OS. TO-18 Plast/c.
Case. Mfg. by Teledyne.
6 FOR $1

DISC CAPACITORS
1 MFD. 16V. P.C.
leads. Most popular value! By Sprague.
20 for $1.00

Motorola PNP Power!
2N4905 TO-3 case. 90W.
VCEO-60. HFE-100 max at 25°. Good mate for the
2N3055. PRIME!
75¢ ea. 4/$2.50

Digital Wave Bridge
4 Amp 200 PIV 69¢ea. 10/5.75

COMPUTER CAPACITOR
By GE. 27.000 MFD 15W VDC.
Small Size 4% x 1 inches. SUPER DEAL! $2.95 Each
3 FOR $8

20 MHz. Dual Trace
100Kohm input probe
On 1-8 Ohm	A 10 µA input probe
1.75 µS rise time

Transistor Tester
$22.00

RCA Color
Model WR 508

ECONOMIC
Color Generator
450-550
$59.95

NATIONAL SEMICONDUCTOR
JUMBO CLOCK MODULE

$6.95

FOR $2 BYS

(AC SHR MIN $1.95)

EXPERIMENTER'S CRYSTAL
260 14kHz. This frequency is 2
to the 18th power. Easily divided
down to any power of 2, and
even to 1Hz, New by CTS-Knight. A 55
value
$1.25 each

COMPARING AT UP TO TWICE
OUR PRICE!

SALE!

MALLORY
POWER SUPPLY CAPACITOR
1500 MFD 16 WDC
3/$1.00 10/$2.95

FACTORY FRESH SMALL SIZE

2N3904 House No.
TO--92. NPN.
VCEO-45.
HFE 100 to 300
10 for $1.00

MPC3401. Pin for
Pin Sub for popular
LM3900.
3/$1.00

TERMs: Add 30¢ postage, we pay balance. Orders under
$15 add 75¢ handling. No C.O.D. We accept Visa, Master-
Charge, and American Express cards. Tex. Res. add 5% Tax.
Foreign orders (except Canada) add 20% P & H. 90 Day
Money Back Guarantee on all items.
SPEAKER KITS
FANTASTIC SENSIBLE SPEAKER KIT
Wiring, knobs, FULL RANGE 3-way speaker systems. Kit includes:
4-1/2" foam edge woofers, 5" middler, 4" super dome tweeters, crossover networks, hardware, and instructions.
PLUS: sculptured foam grills! Qty. L55 order NOW! Cabin size: 2½ x 7x11.
$25.00 [#1530338]
only $99.88/Pair

MOTOROLA® PIEZO-ELECTRIC TWEETERS!
HORN, SUPER-HORN, & DIRECT RADIATORS!
For the ultimate in quality audio levels, available in your choice of sizes. Each horn is hand-tuned by master craftsmen for the best possible sound performance. Made in the USA.

ULTRASONIC
AM/FM STEREO RECEIVER/AMP CHASSIS
Unique military surplus troop movement detection. A motion sensor and battery pack that looks like a rock or a globe! WARNING: Beware of panic attacks if you believe that this device may be a bomb!

SEND ORDERS TO:
B&F ENTERPRISES
Dept. P-9
119 Foster Street
Peabody, MA 01960
(617) 531-5774
WHERE SUPPLIES REINS SUPREME

PRINTED CIRCUIT BOARD
4 1/2" x 1 1/2" SINGLE SIDED EPOXY
4 1/2" x 1 1/2" DIP EDGES
$52.60

7 WATT LD-65 LASER DIODE IR
$39.95

CHARGED COUPLED DEVICES
CCD 32170 10' 10-02072-
CCD 20118 $22.00

VERIPAK PC BOARD
$48.00

Silicon Power Rectifiers

Silicon SDI-AR Cells

Silicon SD1-A Cells

Cryostals $3.24 ea.

Light Activated SCR

Light Activated SCR

Light Activated SCR

Cage 500 DIP Switch

Digital ICs $1.00 ea.

Full Wave Bridges

DIP SOCKETS

TANTULUM CAPACITORS

TTL IC SERIES

DATA Cassettes

TRIACS

SCRs

Terms: C.F.W. California, Mass.
Sent for our catalog use only.
Include postage. Minimum
Orders $25.00, CFR $0.00

AmericanRadioHistory.com
REGULAR CLASSIFIED: COMMERCIAL RATE: For firms or individuals offering commercial products or services, $2.40 per word. Minimum order $36.00. EX-
PAN-AD* CLASSIFIED RATE: $3.60 per word. Minimum order $54.00. Frequency discount: 5% for 6 months; 10% for 12 months paid in advance. PERSONAL RATES: For individuals, no minimum! DISPLAY CLASSIFIED: 1" by 1 column ($2.24" wide), $280.00; 2" by 1 column, $560.00. 3" by 1 column, $840.00. Advertiser to supply film positives. For frequency rates, please inquire. COLOR: Cost avail. for all classified ad styles at earned rate plus additional 25%. Color choice Publisher's option and subject to availability. Publisher reserves right to run ad in black if color not avail. on classified pages. In such cases color charge will be refunded or credited. GENERAL INFORMATION: Ad copy must be typewritten or clearly printed. Payment must accompany copy except when ads are to be paid by accredited advertising agencies. First word in all ads set in caps. All copy subject to publisher's approval. All advertisers using Post Office Boxes in their addresses MUST supply publisher with permanent address and telephone number before ad can be run. Advertisements will not be published which advertise or promote the use of devices for the surreptitious interception of communications. Ads are not acknowledged. They will appear in first issue to go to press after closing date. Closing Date: 1st of the 2nd month preceding cover date (for example, March issue closes January 1st). Send order and remittance to Classified Advertising, POPULAR ELECTRONICS, One Park Avenue, New York, N.Y. 10016. For inquiries, contact Gladys Mathieu at (212) 725-9266.

FOR SALE
FREE! Bargain Catalog—IC's, LED's, readouts, fiber optics, calculators parts & kits, semiconductors, parts, Poly Paks, Box 94234E, Lynnefield, Mass., 01940.

GOVERNMENT and industrial surplus receivers, transmitters, semiconductors, etc. Catalog $2.50. P. O. Box 7612, Chicago, Ill. 60690.

LOWEST PRICES Electronic Parts. Confidential Catalog Free. KNAPP, 4750 96th St. N., St. Petersburg, FL 33708.

ELECTRONIC PARTS, semiconductors, kits. FREE FLYER. Large catalog $1.00 deposit. BIGELOW ELECTRONICS, Buffalo, N.Y. 54817.

TELEPHONE—T.V. Tubes—36 cents each. Send for free catalog. Cornel, 4213 University, San Diego, Calif. 92105.

AMATEUR SCIENTISTS, Electronics Experimenters, Science involves facts and problems. Write for complete catalog, Mail P. O. Box 178, Winnetka, Ill. 60093.

CORNELL, 4213 University, Ithaca, N.Y., Dept. M. Science by mail, accredited degree program. Write: Box 2843, Ithaca, N.Y. 14850.

KNAPP, 4750 96th St. N., St. Petersburg, FL 33708.

EMOTION/Lie Detector

FREE! Transistorized ignition systems. Amapola, 3413 South 12th Street, Phoenix, Ariz. 85017.

FREE! Catalog!! Car-trim parts and accessories. Amapola, 3413 South 12th Street, Phoenix, Ariz. 85017.

FREE! Catalog!! Car-trim parts and accessories. Amapola, 3413 South 12th Street, Phoenix, Ariz. 85017.

FREE! Catalog!! Car-trim parts and accessories. Amapola, 3413 South 12th Street, Phoenix, Ariz. 85017.

FREE! Catalog!! Car-trim parts and accessories. Amapola, 3413 South 12th Street, Phoenix, Ariz. 85017.

FREE! Catalog!! Car-trim parts and accessories. Amapola, 3413 South 12th Street, Phoenix, Ariz. 85017.

FREE! Catalog!! Car-trim parts and accessories. Amapola, 3413 South 12th Street, Phoenix, Ariz. 85017.

FREE! Catalog!! Car-trim parts and accessories. Amapola, 3413 South 12th Street, Phoenix, Ariz. 85017.

FREE! Catalog!! Car-trim parts and accessories. Amapola, 3413 South 12th Street, Phoenix, Ariz. 85017.

FREE! Catalog!! Car-trim parts and accessories. Amapola, 3413 South 12th Street, Phoenix, Ariz. 85017.

FREE! Catalog!! Car-trim parts and accessories. Amapola, 3413 South 12th Street, Phoenix, Ariz. 85017.

FREE! Catalog!! Car-trim parts and accessories. Amapola, 3413 South 12th Street, Phoenix, Ariz. 85017.

FREE! Catalog!! Car-trim parts and accessories. Amapola, 3413 South 12th Street, Phoenix, Ariz. 85017.

FREE! Catalog!! Car-trim parts and accessories. Amapola, 3413 South 12th Street, Phoenix, Ariz. 85017.

FREE! Catalog!! Car-trim parts and accessories. Amapola, 3413 South 12th Street, Phoenix, Ariz. 85017.

FREE! Catalog!! Car-trim parts and accessories. Amapola, 3413 South 12th Street, Phoenix, Ariz. 85017.

FREE! Catalog!! Car-trim parts and accessories. Amapola, 3413 South 12th Street, Phoenix, Ariz. 85017.

FREE! Catalog!! Car-trim parts and accessories. Amapola, 3413 South 12th Street, Phoenix, Ariz. 85017.

FREE! Catalog!! Car-trim parts and accessories. Amapola, 3413 South 12th Street, Phoenix, Ariz. 85017.

FREE! Catalog!! Car-trim parts and accessories. Amapola, 3413 South 12th Street, Phoenix, Ariz. 85017.

FREE! Catalog!! Car-trim parts and accessories. Amapola, 3413 South 12th Street, Phoenix, Ariz. 85017.

FREE! Catalog!! Car-trim parts and accessories. Amapola, 3413 South 12th Street, Phoenix, Ariz. 85017.

FREE! Catalog!! Car-trim parts and accessories. Amapola, 3413 South 12th Street, Phoenix, Ariz. 85017.

FREE! Catalog!! Car-trim parts and accessories. Amapola, 3413 South 12th Street, Phoenix, Ariz. 85017.

FREE! Catalog!! Car-trim parts and accessories. Amapola, 3413 South 12th Street, Phoenix, Ariz. 85017.

FREE! Catalog!! Car-trim parts and accessories. Amapola, 3413 South 12th Street, Phoenix, Ariz. 85017.

FREE! Catalog!! Car-trim parts and accessories. Amapola, 3413 South 12th Street, Phoenix, Ariz. 85017.

FREE! Catalog!! Car-trim parts and accessories. Amapola, 3413 South 12th Street, Phoenix, Ariz. 85017.

FREE! Catalog!! Car-trim parts and accessories. Amapola, 3413 South 12th Street, Phoenix, Ariz. 85017.

FREE! Catalog!! Car-trim parts and accessories. Amapola, 3413 South 12th Street, Phoenix, Ariz. 85017.

FREE! Catalog!! Car-trim parts and accessories. Amapola, 3413 South 12th Street, Phoenix, Ariz. 85017.
POLICE/FIRE SCANNERS, crystals, antennas, CBs, Radar Detectors. HPR, Box 19224, Denver, CO 80219.

ELECTRONIC EQUIPMENT HOTLINE is a new classified advertising newsletter for buying and selling professional, industrial, and surplus electronic equipment. Subscriptions $6/year, ads 50c/word. Prepublication offer: $1.00 off subscriptions and 20% off all ads postmarked before October 1, 1976. SASE Equipment Hotline, PO Box 4788, Panoramic City, CA 91402.

SEND for free C.B. & Hi-Fi catalog, top value prices. Mesa Enterprises, Rt. 4, Box 2736, Tucumcari, New Mexico 88410.

CONNECTORS, UHF, BNC, and audio types. Low Prices, Free Catalog. Coakit, Box 100, Venice, CA 90293.

Amplifier Transformer for above $8.00 Postpaid, 100 Watt Stereo Basic Free Catalog. Coakit, Box 1282-PE, Cincinnati, OH 45202.

SANKEN 50 WATT POWER AMP $22.50 Postpaid, 50 Volt Transistors, 100 Watt Power Amp, Sanken Stereo Basic Amplifier Kit, Complete $99.50. Prairie Sounds, PO Box 982, Champaign, IL 61820.

ELECTROMAGNETIC SPECTRUM CHART. Frequency allocation, bandwidth, TV, CB, microwave, short wave, FM. Champaign, IL 61820.

CROSSTALK TEST EQUIPMENT Tektronix, H.P., Fluke. More. List free. OBC, 5918 Riverside, Columbus, Ohio 43221.

MORSE CODE GENERATOR — produce morse code with a press of a finger. $74.95 wired and tested. Free literature. S.J. Engineering, Box 442, Canton, Mass. 02021.

FREE CATALOG, TOP QUALITY, Import Kits, IC's, Transistors. International Electronics, Box 289, Getzville, NY 14068.

SEEKING ORIGINAL JAPANESE TRANSISTORS for CB, TV, STEREO REPAIR? Request complete list. Compare 1 to 9 price. TYCOM, 209-1255-71, $3.95, TS7799 $3.60, 2SC1036 $2.90, 2SC1676 $2.35, TA7205P $2.90, BS521 $2.90, SG611 $3.95. Fuji-Svea Enterprises, Dept. P, P.O. Box 40285, Canada, Ont. L6V 4G9.

POWERFUL NEGATIVE ION GENERATORS and accessories. (Fascinating Details — $1.00.) Golden Enterprises, Box 1282-PE, Glendale, AZ 85311.

CORVAIR PARTS — 4500 item, giant catalog rushed $2.75. Clark's Corvair Parts, Shelburne, Mass. 01370. 413-625-2022.

CUSTOM ENGRAVED PANELS make your project look great! 30 sq inch sample! Sample plus guide, 50¢. Tag Your Gear! 11/4" x 3" plastic with strap 4 lines 6/7.50, sample 2.25. Pomaski, 1761 Kaiuki, Hilo, Hawaii 96720.

TEST EQUIPMENT CATALOG listing used Tektronix, HP and GR equipment at bargain prices. PTL, Box 8699, White Bear Lake, MN 55110. Price $1.00 refundable with first order.

COSMAC 1802 SOFTWARE Displays, Music, Diagnostics, Timers Listings, Documentation $3.00. Hillesland's, Box 10327, Hilo, Hawaii 96720.

BUILD YOUR OWN SYMPHONY OF SOUND! It's fun and easy—takes just minutes a day! Complete kits for organs, pianos, strings, amplifiers, synthesizers. Also factory assembled. 104-page catalog $2.00.

CB/HAM HIGH GAIN ANTENNAS. Modulation boosting VOX-COMPRESSOR. Portable 300/MHz COUNTER with memory! Plans $3.00 ea. $7.50/all. Many others, catalog with order. PANAXIS, Box 5316-AS, Walnut Creek, CA 94596.

KITS, 500 MHz Frequency Counter $79.95. 650 MHz prescaler, $17.95, Flashing LED, $1.00. SASE, Llectronix, Box 42, Madison Heights, MI 48041.

ELECTRONIC HELP JUST A PHONE CALL AWAY. Will help you design projects, find components, advice. Low rates, first 2 minutes free, 24 hours a day, 7 days a week. BAC, VISA, MASTERCHARGE; Don Britton Enterprises, (808) 399-7488.

PROJECTION TV... Convert your TV to project 7 foot picture. Results equal to $2,500 projector. Total cost less than $200. PLANS & LENSES $16.00. Illustrated information FREE. Macrocom, Washington Crossing, Pennsylvania 18977.

"FUNDAMENTALS" OF ROBOT DESIGN $10.00. Write: Advanced Research Scientific, P.O. Box 19041-R, Detroit, Michigan 48219.

KITS DESIGNED FOR ELECTRONICS STUDENTS, free flyer. Austin Electronics, 1042 El Vago St., La Canada, CA 91011.

TELEPHONES & PARTS

CORDLESS TELEPHONES: Operate 300 ft. from base. Factory rechecked, schematics included for personal maintenance. Originally $399.50 — now $179.00. Check, M.O. or Credit Card. Telephone Marketers, P.O. Box 216, Brookfield, WI 53005.

ALARMS

DON'T PURCHASE alarm equipment before getting our free value packed catalog. Saseco, 5619-C. St. John, Kansas City, MO 64123. (816) 483-4612.

PROFESSIONAL ALARM EQUIPMENT at Below-Wholesale Prices. Catalog $1.00 (Refundable). CAPCO, Drawer 596593, Inovis, Neve, 89445.

Burglar, Fire, Smoke Alarm Catalog

• Billions of dollars lost annually due to lack of protective warning alarms. FREE CATALOG Shows you how to protect your home, business and person. Wholesale prices. Do-it-yourself. Free engineering service. Burdex Security Co., Box 82802 PE-098, Lincoln, Ne. 68501.

MUSICAL INSTRUMENTS

UP TO 60% DISCOUNT. Name brand instruments catalog. Freeport Music, 114 G, Mahan St., W. Babylon, N.Y. 11704.

HIGH FIDELITY

DIAMOND NEEDLES and Stereo Cartridges at Discount prices for Shure, Pickering, Stanton, Empire, Grado and ADC. Send for free catalog. LYLE CARTRIDGES, Dept. P, Box 69, Stanton Station, Brooklyn, New York 11218. For Fast Service call Toll Free 800-221-0906.

MICROCOMPUTERS

POEMS, SONGS WANTED. Songs recorded-published. Radio released, Broadway Music Productions, Box 7438-CM, Sarasota, FL 33570.
TAPE AND RECORDERS
B-TRACK and CASSETTE BELTS — money back guarantee.
Long wearing. Free Catalog — $3 minimum order. PRB Corp., Box 176, Whitehall, Wisconsin 53190. (800) 559-9752 except WI.

TUBE HEAD CLEANER. 8 oz. — $2.30. Includes postage and handling. Write: "Cleaner", Box 176, Whitehall, WI 53190. 800-559-9752 except WI.

RECORDS — TAPES! Discounts to 75%: all labels, no purchase obligations; newsletter; discount dividend certificates; 100% guarantees. Free details. Discount Music Club, 2060 North Main St., Dept. 5-0978, New Rochelle, New York, N.Y. 10801.

PARANOID ABOUT SPECS? Prove or disprove playback performance of cassette or record player with surprising new technique developed by Emory Cook. Test cassette or record. Instructions included. Cost: $3.95. Cook Laboratories, Inc., 375 Ely Avenue, Norwalk, CT 06854.

CASSETTE RECORDER TUNE-UP TIPS. Do-it-yourself! Save! Illustrated guidebook $2.00 postpaid. Rishell's, 2060 Sunset, Santa Monica, CA 90401.

GOVERNMENT SURPLUS

JEEPS—$59.91 — CARS—$33.50 — 200,000 ITEMS — GOVERNMENT SURPLUS — Most COMPREHENSIVE DIRECTORY AVAILABLE tells how, where to buy — YOUR AREA — $2.00 — MONEY BACK GUARANTEE — Government Information Services, Department GE-35, Box 99249, San Francisco, California 94109 (433 California).

PERSONALS
MAKE FRIENDS WORLDWIDE through international correspondence, illustrated brochure free. Hermes Verlag, Box 1106602, D-1000 Berlin 11, Germany.

INSTRUCTION

UNIVERSITY DEGREES BY MAIL! Bachelors, Masters, Ph.D.'s. Free revealing details. Counseling, Box 317-PE09, Tusitin, California 92580.

SELF-STUDY CB RADIO REPAIR COURSE. THERE'S MONEY TO BE MADE REPAIRING CB RADIOS. This easy-to-learn course can prepare you for a career in electronics enabling you to earn as much as $16.00 an hour in your spare time. For more information write: CB RADIO REPAIR COURSE, Dept PE098, 531 N. Ann Arbor, Oklahoma City, Okla. 73127.

LEARN WHILE ASLEEP! HYPONOTIZE! Astonishing details, strange catalog free! Autosuggestion, Box 24-ZD, Olympia, Washington 98507.

GRANTHAM'S FCC LICENSE STUDY GUIDE — 377 pages, 1465 questions with answers/discussions — covering third, second, first radiotelephone examinations. $13.50 postpaid. GSE, P.O. Box 25992, Los Angeles, California 90025.

INTENSIVE 5 week course for Broadcast Engineers. FCC First Class license. Student rooms at the school. Radio Engineering Inc., 61 N. Pineapple Ave., Sarasota, FL 33577 and 2402 Tidewater Trl, Fredericksburg, VA 22401.

FCC License Study Course prepares you to pass examinations for 1st, 2nd, 3rd and tower. Study Guide manual gives examples, problems. Question Answer manual provides hundreds of practice questions. $9.95 each or both manuals $14.95. Postpaid. Oeffinger, Box 1240, Garden Grove, Calif. 92842.

LEARN ELECTRONICS Capulex Course basic d. textbook plus taped instruction. Details send to: Box 4457, Ind., Sta., Salt. Paul 55104.

INVENTIONS WANTED
INVENTORS RECOGNITION...FINANCIAL REWARD...OR CREDIT FOR 'INVENTING IT FIRST' MAY BE YOURS!
If you have an idea for a new product, or a way to make an old product better, contact us. "The idea people" We will develop your idea, introduce it to industry, negotiate for cash sale or royalty licensing.
Write now! No cost or obligation for free information. Fees are charged only for contracted services. So send for your FREE "Inventor's Kit" It has important Marketing Information, a special "Invention Record Form" and a Directory of 1000 Corporations seeking New Products.

RAYMOND LEE ORGANIZATION
230 Park Avenue North, New York, N.Y. 10017

RAYMOND LEE ORGANIZATION (RLO) is the first company to offer patent search services over the telephone in the U.S.

BUSINESS OPPORTUNITIES
I MADE $40,000.00 Year by Mailorder! Helped others make money Free Proof. Torrey, Box 518-NV, Ypsilanti, Michigan 48197.

HIGHLY PROFITABLE ONE-MAN ELECTRONIC FACTORY
Investment unnecessary, knowledge not required, sales handled by professionals. Postcard brings facts about this unusual opportunity. Write today! Barta Dr., Box 246, Walnut Creek, CA 94591.

NEW LUXURY Car Without Cost. Free Details Codex-22, Box 6073, Ohio 43614.

DISTRIBUTORS AND WHOLESALERS OF COMPUTER SUPPLIES: Major supplier of computer-digital cassettes is now offering low price high quality computer-digital cassettes specifically designed for use in laptop computers and small business computers, presently looking for distributors and wholesale outlets for this product line. Contact: Magnetic Information Systems, Inc., 415 Howe Ave., Shelton, CT 06484. Telephone: 203-924-4717.

FANTASTIC! $500.00 WEEKLY easily mailing circulars! Free information! Wayne, Box 644-ZD, Ontario, KS 66067.

MILLIONS in Mail! Free Secrets. Transland-17, Box 6226, Toledo, OH 43614.

EXPORT OPPORTUNITY: DUTCH DISTRIBUTOR SEeks American Companies in electronics and audio field, for marketing their products in Holland. Contact: Raymond Lee Organization, 230 Park Ave., N.Y. 10017.

EARN $1000 MONTHLY — Unique Mailing Plan! No Gimmicks! Guaranteed! Write: L.O.E., Box 2D-60106, Portland, OR 97206.

RENT LEASE TV'S ANYONE CAN! Easy to start and operate. Even from your home. Send $2.00 for basic information. Perry's TV, P.O. Box 1407, Santa Maria, CA 93454.

DO-IT-YOURSELF
MODULAR TELEPHONES now available. Sets and components, compatible with Western Electric 800, Catalog 50 cents. Box 1147W, San Diego, California 92112.

REAL ESTATE

RUBBER STAMPS

REPAIRS AND SERVICES
SERVICEMEN — Cleaners, Lubricants, Adhesives for all electronic repairs. Write for FREE catalog, Projector-Recorder Bell Corp., Box 175, Whitehall, Wl 53190. 800-559-9752 except WI.

PCB DESIGN AND DRAFTING SERVICE. Fast service, low rates. Enertic, P.O. 2436, San Jose, CA 95109.

PRINTED CIRCUIT BOARDS from sketch or Artwork. Kit Projects. Free details, DANDINCITH'S, Inc. Box 261, Westland, MI 48185.

EMPLOYMENT OPPORTUNITIES
ELECTRONICS/AVIONICS EMPLOYMENT OPPORTUNITIES. Excellent positions on jobs now open. Details FREE. Aviation Employment Information Service, Box 240E, Northport, New York 11768.

ELECTRONICS TECHNICIANS. Min. Experience. No Degree. Start as high as $21,000 per yr. or more! Jobs throughout U.S. Details free. Write: T.M., Box 13630, Sacremento, CA 95813.

MAGNETS
MAGNETS. All types. Specials 20-200, or 10 bar, or 2 stick or 8 assmled magnets. $1.00. Magnets, Box 192-H, Randallstown, Maryland 21133.
Select what you want in a record cleaner.

- **Convenience in use and storage.**
 You shouldn't need a separate shelf, elaborate motions or an act of Congress to clean your records. A comfortable, hand-held instrument that works best on a rotating turntable is ideal.

- **Effectiveness against micro-dust.**
 Tiny, invisible dust particles hide in delicate record grooves and can be ground into the vinyl. Only a slanted (directional) fiber using special ultra-small fiber tips can scoop up, rather than rearrange, this micro-dust contamination.

- **Effectiveness against chemical contamination.**
 Fingerprints and vapor-borne oils will deposit into channels of a record groove. Such contamination hides from adhesive rollers and all dry cleaning systems. Only a special fluid plus micro-fibers can safely remove such audible, impacted deposits.

- **Total removal of contamination/fluid.**
 Capillary action—the lifting of fluid by small fiber surface tension—is totally effective. You want to get contamination off the record, along with any fluid traces.

- **Lasting construction.**
 You want quality. A record cleaner can last a lifetime. A plastic wonder can crack into oblivion—or you can purchase the hand-rubbed elegance of mill-ed walnut befitting the rest of your audio system.

- **Ultimate economy.**
 The value of a truly fine record cleaner is justified by the cost of replacing your record collection. Fifteen dollars is a small investment in long-term protection.

- **All of the above.**

DISCWASHER, the Superior Record Cleaner.
See the finer audio dealers for a demonstration.

discwasher, inc. 1407 N. Providence Rd., Columbia, MO 65201
Your tuning band is like everything else in the city. Crowded.

The LR-120DB helps you pick your way through the crowd.

FREE 1979 CATALOG. Lafayette's catalog is all new for 1979! 172 illustrated pages—over half in full color. Features everything Lafayette makes or sells. Write Lafayette Dept. No. PE35099, 111 Jericho Turnpike, Syosset, N.Y. 11791. Allow several weeks for delivery.

A tradition of Dolby Labs Inc.

Adjustable FM muting may be the LR-120DB's biggest exclusive in its price range. But it is by no means the only one. The LR-120DB is the only receiver anywhere near this price level that offers you all of the following features in addition to the adjustable FM muting:

RESERVE POWER. One measure of a fine receiver is pure power. The LR-120DB gives you 120 watts per channel (both channels driven into 8 ohms from 20 Hz to 20,000 Hz.) with no more than 0.09% THD. More power than you'll ever need. The lesser power of lesser receivers can distort the signal just when you're enjoying the music most—but the LR-120DB has the power to capture even the most demanding passages with perfect fidelity...even at the highest listening levels.

BUILT-IN FM DOLBY.* During the critical passages when an oboe or a violin carries a delicate solo, the hissing of the signal can literally destroy the beauty of the sound. Dolby lets you reduce such disruptive sounds to the vanishing point. There is one more significant advantage to the built-in Dolby: money. With more and more top-quality FM stations broadcasting in Dolby,* many receivers now offer a provision for adding Dolby. But try to obtain Dolby's brilliant sound with Dolby's own decoder—at your expense. But the LR-120DB, with Dolby* built-in, lets you enjoy the highs (and escape the hissing) without spending extra for a decoder.

DUAL POWER METERS with adjustable range read-out, one for each channel. There are other receivers which offer this feature—but there are very few in this price range.

FREE under $900! ANYWHERE else for the same power. The LR-120DB costs $599. You can't get adjustable FM muting with so much power anywhere else for under $900.00!