HOW TO CUSTOM DESIGN CASES FOR PROJECTS

UPGRADE YOUR OLD STEREO FM TUNER
An easy-to-add phase-locked-loop IC does the trick

FIELD REPORT:
CALIFORNIA HOBBYIST COMPUTER SHOW

TRANSFORMERLESS CIRCUIT DOUBLES DC VOLTS

TEST REPORTS:
- Akai GX-270DSS 4-Channel Tape Recorder
- Speakerlab Model 7 Speaker System Kit
- General Electric AM/SSB CB Mobile Transceiver
- Aries "System 300" Electronic Music Synthesizer Kit

BUILD A ½-OCTAVE "REAL TIME" AUDIO ANALYZER
Introducing the mobile that can move you out of the world of the ordinary and into the world of the serious CB'er. The Cobra 138XLR Single Sideband. Sidebanding puts you in your own private world. A world where there's less congestion. More privacy. More time to talk.

It's all possible because instead of 40 channels you get your choice of 120 channels. Both AM and SSB. And instead of 4 watts of legal power you get 12 watts of legal power. So you get almost double the range of AM.

With the 138XLR Single Sideband there's less background noise and less interference. So there's cleaner, clearer reception. Because like all Cobras, the 138XLR SSB is engineered to punch through loud and clear. Even in crowded metropolitan areas.

And like all Cobras it comes equipped with such standard features as an easy-to-read LED channel indicator. Switchable noise blanking and limiting. An RF/signal strength meter. And Cobra's exclusive DynaMike gain control.

You'll find the 138XLR SSB wherever Cobras are sold. Which is almost everywhere. Because Cobra's got a nationwide network of dealers and Authorized Service Centers offering sales, installation, service and advice. So come on in. And move on up.

Cobra
Punches through loud and clear.
Cobra Communications Products
DYNASCAN CORPORATION
6460 W. Cortland St., Chicago, Illinois 60635

Write for color brochure
EXPORTERS: Empire • Plainview, N. Y. • CANADA: Atlas Electronics • Toronto

CIRCLE NO. 12 ON FREE INFORMATION CARD
A new computerized burglar alarm requires no installation and protects your home or business like a thousand dollar professional system.

It's a security system computer. You can now protect everything—windows, doors, walls, ceilings and floors with a near fail-safe system so advanced that it doesn't require installation.

The Midex 55 is a new motion-sensing computer. Switch it on and you place a harmless invisible energy beam through more than 5,000 cubic feet in your home. Whenever this beam detects motion it sends a signal to the computer which interprets the cause of the motion and triggers an extremely loud alarm.

The system's alarm is so loud that it can cause pain—loud enough to drive an intruder out of your home before anything is stolen or destroyed and loud enough to alert neighbors to call the police.

The powerful optional blast horns can also be placed outside your home or office to warn your neighbors.

Unlike the complex and expensive commercial alarms that require sensors wired into every door or window, the Midex requires no sensors nor any other additional equipment other than your stereo speakers or an optional pair of blast horns. Its beam actually penetrates walls to set up an electronic barrier against intrusion.

NO MORE FALSE ALARMs

The Midex is not triggered by noise or sound, temperature or humidity—just motion, and since a computer interprets the nature of the motion, the chances of a false alarm are very remote.

An experienced burglar can disarm an expensive security system or break into a home or office through a wall. Using a Midex system there is no way a burglar can penetrate the protection beam without triggering the loud alarm. Even if the burglar cuts off your power, the four-hour rechargeable battery pack will keep your unit triggered, ready to sense motion and sound an alarm.

DEFENSE AGAINST PEEPING TOMS

By pointing your unit towards the out- doors from your bedroom and installing an outside speaker, light, or alarm, your unit can sense a peeping tom, and frighten him off. Pets are no problem for the Midex. Simply put them in one section of the house and concentrate the beam in another.

When the Midex senses an intruder, it remains silent for 20 seconds. It then sounds the alarm until the burglar leaves. One minute after the burglar leaves, the alarm shuts off and resets, once again ready to do its job. This shut-off feature, not found on many expensive systems, means that your alarm won't go wasting all night long while you're away. When your neighbors hear it, they'll know positively that there's trouble.

PROFESSIONAL SYSTEM

Midex is portable so it can be placed anywhere in your home. You simply connect it to your stereo speakers or attach the two optional blast horns.

Operating the Midex is as easy as its installation. To arm the unit, you remove a specially coded key. You now have 30 seconds to leave your premises. When you return, you enter and insert your key to disarm the unit. You have 20 seconds to do that. Each key registered with Midex and that number is kept in their vault should you ever need a duplicate. Three keys are supplied with each unit.

As an extra security measure, you can leave your unit on at night and place an optional panic button by your bed. But with all its optional features, the Midex system is complete, designed to protect your home and property just as it arrives in its well-protected carton.

The Midex 55 system is the latest electronic breakthrough by the Midex Corporation—a company that specializes in sophisticated professional security systems for banks and high security areas. JS&A first became acquainted with Midex after we were burglarized. At the time we owned an excellent security system but the burglars went through a wall that could not have been protected by sensors. We then installed over $5,000 worth of the Midex commercial equipment in our warehouse. When Midex announced their intentions to market their units to consumers, we immediately offered our services.

COMPAReD AGAINST OTHERS

In a recent issue of Consumers Report, a leading consumer publication, there was a complete article written on the tests given security devices which were purchased in New York. The Midex 55 is not available in New York stores but had it been compared it would have been rated tops in space protection and protection against false alarms—two of the top criteria used to evaluate these systems. Don't be confused. There is no system under $1,000 that provides you with the same protection as the Midex 55.

YOU JUDGE THE QUALITY

Will the Midex system ever fail? No product is perfect but judge for yourself. All components used in the Midex system are of aerospace quality and of such high reliability that they pass the military standard 883 for thermal shock and burn-in. In short, they go through the same rugged tests and controls used on components in manned space ships.

Each component is first tested at extreme tolerances and then retested after assembly. The entire system is then put under full electrical loads at 150 degreesahrenheit for a full week. If there is a defect, these tests will cause it to surface.

PEOPLE LIKE THE SYSTEM

Wally Schirra, a former astronaut and test pilot, says this about the Midex 55, "I know of no system that is as easy to use and provides such solid protection to the home owner as the Midex. I would strongly recommend it to anyone. I am more than pleased with my unit."

Many more people can attest to the quality of this system but the true test is how it performs in your home or office. That is why we provide a one month trial period. We give you the opportunity to personally see how fail-safe and easy the Midex system is to operate and how thoroughly it protects you and your loved ones.

Use the Midex for protection while you sleep, to protect your home while you're away or on vacation. Then after 30 days, if you're not convinced that the Midex is nearly fail-safe, easy to use, and can provide you with a security system that you can trust, return your unit and we will be happy to send you a prompt and courteous refund. There is absolutely no obligation. JS&A has been serving the consumer for over a decade—further assurance that your investment is well protected.

To order your system, simply send your check in the amount of $199.95 (Illinois residents add 5% sales tax) to the address shown below. Credit card buyers may call our toll-free number below. There are no postage and handling charges. By return mail you will receive your system complete with all connections, easy to understand instructions and one year limited warranty. If you do not have stereo speakers, you may order the optional blast horns at $39.95 each and we recommend the purchase of two.

With the Midex 55, JS&A brings you: 1) A system built with such high quality that it complies with the same strict government standards used in the space program. 2) A system so advanced that it uses a computer to determine unauthorized entry, and 3) A way to buy the system, in complete confidence, without even being penalized for postage and handling charges if it's not exactly what you want. We couldn't provide you with a better opportunity to own a security system than right now.

Space-age technology has produced the ultimate personal security system. Order your Midex 55 security computer at no obligation, today.

JS&A NATIONAL SALES GROUP

Dept. PE One JS&A Plaza
Northbrook, III. 60062 (312) 564-9000
CALL TOLL-FREE: 800 323-6400
In Illinois call (312) 498-6900
©JS&A Group, Inc., 1977
NOW, SCANNING OVER 6000 FREQUENCIES IS AS EASY AS USING A PUSHBUTTON PHONE.

Introducing the incredible new Bearcat 210.

The exciting new Scanner Radio with the space-age, computer control center that brings in every available public service frequency with pushbutton ease.

Bearcat's new 210 is as easy to program as a pushbutton phone. You can select any of the public service bands (all the available local frequencies) simply by pushing buttons.

Simply punch in the frequency numbers on the computer control center keyboard. Hit the Enter button. And you're programmed.

A large, flashing digital readout panel shows you each frequency you've selected.

The Bearcat 210 patented search capacity lets you explore the endless world of every available public frequency out there, too.

Best of all, you're no longer limited to a given band or set of frequencies. The new Bearcat 210 is synthesized. Space-age circuitry lets you forget crystals forever.

Let's look at some Bearcat 210 features and facts.

5 BAND COVERAGE — Includes Low, High, UHF and UHF "T" public service bands, the 2-meter amateur (Ham) band, plus other UHF frequencies.

SCANS 20 CHANNELS PER SECOND — In half a second, the Bearcat 210 scans all 10 channels.

CRYSTAL-LESS — Space-age circuitry with 5 custom designed chips. You never have to buy a crystal.

TRACK-TUNING — Patented track tuning provides full band coverage on every band.

AUTOMATIC LOCK-OUT — Locks out channels and "skips" frequencies not of current interest.

AC/DC — Mobile mounting bracket included.

SELECTIVE SCAN DELAY — Adds a two-second delay to prevent missing transmissions when "calls" and "answers" are on the same frequency.

AUTOMATIC SEARCH — New, patented feature searches out any active local public service frequency automatically. For more police, fire, marine, emergency calls. And much more.

THE NEW BEARCAT 210

THE MOST EXCITING THING THAT'S HAPPENED TO SCANNING SINCE SCANNERS.

Electra Company
300 East County Line Road, South, Cumberland, Indiana 46229
Copyright 1977 Masco Corporation of Indiana
FEATURE ARTICLES
PROS AND CONS OF MULTI-WAY SPEAKER SYSTEMS .. Julian Hirsch 22
FIRST WEST COAST COMPUTER FAIRE .. Tom Munnecke 74
HOW TO CUSTOM DESIGN PLASTIC CASES FOR PROJECTS John Huff 81
ENGLISH-LANGUAGE SHORTWAVE BROADCASTS FOR SEP & OCT. Richard E. Wood 114

CONSTRUCTION ARTICLES
1/2-OCTAVE REAL TIME AUDIO ANALYZER, PART 1 Bob Jones & Richard Marsh 47
Displays system output to permit accurate matching to room acoustics.
BUILD A TRANSFORMERLESS DC-TO-DC VOLTAGE DOUBLER Marlowe J. Buchanan 55
BUILD "CABONGA" PART 2 .. James Barbarello 76

SPECIAL FOCUS: AUDIO
THE BASICS OF BUYING HI-FI COMPONENTS ... William S. Gordon 57
DYNAMIC NOISE REDUCTION SYSTEMS AND EXPANDERS Len Feldman 63
MATCHING TAPES TO RECORDERS ... Martin Meyer 67
IC MULTIPLEX DECODER IMPROVES STEREO FM PERFORMANCE Robert P. Balin 71

COLUMNS
STEREO SCENE .. Ralph Hodges 14
SOLID STATE .. Lou Garner 85
IC Audio Preamplifiers ... Forrest M. Mims 94
EXPERIMENTER'S CORNER .. Forrest M. Mims 94
Laser Diodes.
HOBBY SCENE Q&A ... John McVeigh 96
CB SCENE ... Ivan Berger 103
Better Emergency Services Are NEAR.
COMPUTER BITS ... Hal Chamberlin 110
Update on Microprocessor Developments.
DX LISTENING .. Glen Hauser 112

JULIAN HIRSCH AUDIO REPORTS
AKAI MODEL GX-270D-SS FOUR-CHANNEL TAPE RECORDER 32
SPEAKERLAB MODEL S7 SPEAKER SYSTEM KIT 36

ELECTRONIC PRODUCT TEST REPORTS
GENERAL ELECTRIC MODEL 3-5825 AM/SSB CB TRANSCEIVER 97
ARIES SYSTEM 300 ELECTRONIC MUSIC SYNTHESIZER 98

DEPARTMENTS
EDITORIAL ... Art Salsberg 4
TV Electronic Games Grow Up.
LETTERS .. 6
OUT OF TUNE ... 6
"Digital Capacitance Meter" (April 1977); "RC Circuit Quiz" (July 1977)
NEW PRODUCTS .. 8
NEW LITERATURE ... 11
OPERATION ASSIST .. 118
ELECTRONICS LIBRARY .. 119

POPULAR ELECTRONICS, September 1977, Volume 12, Number 3. Published monthly at One Park Avenue, New York, NY 10016. One year subscription rate for U.S. $12.00; Possessions and Canada, $15.00; all other countries, $18.00 (cash orders only, payable in U.S. currency). Second class postage paid at New York, NY and at additional mailing offices. Authorized as second class mail by the Post Office Department, Ottawa, Canada, and for payment of postage in cash.

POPULAR ELECTRONICS including ELECTRONICS WORLD, Trade Mark Registered, Indexed in the Reader's Guide to Periodical Literature. COPYRIGHT c 1977 BY ZIFF-DAVIS PUBLISHING COMPANY. ALL RIGHTS RESERVED.

Ziff-Davis also publishes Boating, Car and Driver, Cycle, Flying, Modern Bride, Popular Photography, Skiing and Stereo Review.

Material in this publication may not be reproduced in any form without permission. Requests for permission should be directed to Jerry Schneider, Rights and Permissions, Ziff-Davis Publishing Co., One Park Ave., New York, NY 10016.

Editorial correspondence: POPULAR ELECTRONICS, 1 Park Ave., New York, NY 10016. Editorial contributions must be accompanied by return postage and will be handled with reasonable care; however, publisher assumes no responsibility for return or safety of manuscripts, art work, or models.

Forms 3579 and all subscription correspondence: POPULAR ELECTRONICS, Circulation Dept., P.O. Box 2774, Boulder, CO 80302. Please allow at least eight weeks for change of address. Include your old address, enclosing, if possible, an address label from a recent issue.

SEPTEMBER 1977
Editorial

TV ELECTRONIC GAMES GROW UP

The sale of home TV electronic games peaked during the Christmas season of 1976, followed by a severe decline in 1977. Was the estimated 3-million video games sold in '76 just a passing fancy of the American public? Obviously not, since manufacturers are now producing with the expectation that 1977 sales will easily be twice those of 1976. And nonvideo electronic games will certainly make their mark this year, too.

Home TV games did not move as well as anticipated during the first half of '77 for a variety of reasons: (1) Christmas doesn't last all year (though the interest in games should be year-round); (2) reduced selling prices on games disheartened many retailers, who placed them on the back shelves; (3) programmable games are just around the corner. Concerning the latter, there are two companies already marketing them—Fairchild, who can't seem to keep up with consumer demands at $170 a game plus "cartridges," and RCA, just really entering the market with a $150 programmable model.

Dramatic decreases in prices for the older, dedicated video games are anticipated, with prognosticators saying that they will simulate the price dip exhibited by calculators and digital watches. But with the new dedicated games, such as Atari's "Tank" (with sound effects and joy-stick controls) at a suggested retail price of $65, don't expect $9.95 paddleball/hockey sellers to be around just yet.

The future of home video games is extraordinarily bright. And speaking of brightness, I find it amusing that one major TV receiver manufacturer, who also produces a TV electronic game, indicates that its receiver CRT warranty will be voided if electronic games are displayed on it. I've been personally assured by a top executive in the company that they have not seen a single defective CRT with burn spots caused by video electronic games—even with "duds."

The burn-spot question arose last year because some coin-operated units in arcades did display such CRT marring after a considerable period of video-game use. Users of home video games, however, do not play them sufficiently, without shutoff, to cause CRT damage.

It's projected that programmable video games will account for some 20% of unit sales in 1977, rising to 33% by 1980. The omnipresent microprocessor will also be utilized for nonvideo electronic games. Parker Brothers (of "Monopoly" fame) will soon market a nonvideo electronic game based on the old "BattleShips" game, as an example. Another toy maker, Mattel, will offer hand-held missile, auto race and football games with LED score readouts . . . Fidelity Electronics will be presenting an electronic chess game that the user plays against . . . Tryon Inc. will enable you to pit your wits against a microprocessor in the game of backgammon . . . Unisonic has a four-function calculator that can also permit one to play blackjack, even changing the deal when 38 cards are played, a la Vegas rules.

Although the programmable microprocessor games are destined to take over the electronic game market, at least in dollars, the input medium used will not necessarily be the ROM-type cartridges now prevalent. Among other possibilities that may evolve are matchbook-size tape cartridges and magnetic cards. Regarding the latter, kilobyte cards can be produced much as record discs can and, therefore, offer the potential for very low costs. The four-stripe plastic cards now available provide 1024 bytes, enough for most game programs, unless you want a Star-Trek game. Then you'll need a full blown microcomputer system.

Clearly, microprocessors are changing the face of consumer electronic products for increased efficiency and, in the case of games, to add another leisure activity to our lives.
ONLY PIONEER COULD INTRODUCE A QUARTZ PHASE LOCKED LOOP TURNTABLE AND CALL IT A BARGAIN.

Today, there's nothing more accurate than a quartz phase locked loop turntable. It's the kind of turntable they use at radio stations and recording studios. Where people are more interested in getting a great sound than getting a great price.

Well, Pioneer has just introduced the same kind of quartz turntable. Except ours was designed for people who do care about price.

It's called the PL 570. And like the professional quartz turntables you'll find in all those radio stations and recording studios across the country, it features a direct-drive motor that's quieter than ordinary motors.

Plus an electronic strobe circuit that lets you adjust the PL 570 far more accurately than conventional strobes.

And the same kind of quartz phase locked loop technology that automatically corrects the turntable speed to account for things like the weight of the record and even the amount of stylus pressure. So your records can always sound perfect, because they're always spinning perfectly.

But where the average quartz phase locked loop turntable offers you all this accuracy for around $800, our new PL 570 does it for under $400. Which, you'll have to agree, is quite a bargain. (And that's even before you find out that the PL 570 is one of the few fully-automatic quartz-lock turntables available today at any price.)

Of course, if you're looking for something a little less sophisticated than our PL 570, there's still no need to look any further than Pioneer.

In all, we make eight high-quality turntables. And while they may not all offer the same kind of features as our PL 570, you can bank on at least one thing. They all feature the same kind of value.
SAE's goal today, just as it has been for over 12 years, is the design and production of fine audio components; which offer the best value in both sonic performance and quality construction. Our line of amplifiers stand as a testament to that goal.

First, their design — all SAE amplifiers have fully complimentary circuitry. In this unique design approach, not only the output (as in conventional amplifiers), but the drive and input stages are completely complimentary. This ensures low transient and steady-state distortion, plus full stability and fast overload recovery. Combine this with our high slew rate for accurate transient response, feedback gain controls which will not degrade the input signal (2600, 2400L), and monochrome construction with its low weight and high reliability (2200, 2400L).

The result is state-of-the-art performance, but to realize this performance we must have the second part of our goal — production. In order to ensure optimum performance from these unique design concepts, SAE retains total control over the manufacture, selection, and assembly processes. We maintain 40,000 sq. ft. of production area where the latest techniques in metal and circuit board fabrication, component selection and product assembly are employed. The result of these efforts is the line of high quality amplifiers pictured here, each an outstanding value in its power range and each a true SAE component where performance and value come together — that's SAE Power!
An Extraordinary Offer to introduce you to the benefits of Membership in
ELECTRONICS BOOK CLUB

take 3 of these unique electronics books (value to $51.75) for only 99¢ each

with a Trial Membership in the Book Club that guarantees to save you 25% to 75% on a wide selection of electronics books

All two-book sets count as only one of your three Selections.

Facts About Club Membership
- The 3 introductory books of your choice carry publishers retail prices of up to $51.75. These are yours for only 99¢ each plus postage and handling with your Trial Membership.
- You will receive the Club News, describing the current Selection Alternates and other offerings, every 4 weeks (13 times a year).
- If you want the Selection Alternates, you will receive these books at the same 99¢ price, automatically. If you don't wish to receive the Selection Alternates, you can cancel your Trial Membership at any time within 10 days of the mailing of the Club News and receive a full refund of the 99¢ membership fee
- Personal service for your account-no computers used!
- To complete your Trial Membership, you need buy only 10% of the number of selections or alternates during the next 12 months. You may cancel your membership at any time after you purchase these two books!
- All books in this introductory offer are fully returnable after 10 days if you are not completely satisfied.
- All books are available for a low price, plus a small postage and handling charge. Prepaid orders shipped postpaid.
- Continuing Bonus: if you continue after your Trial Membership, you will earn a Dividend Certificate for every book you purchase. These Certificates are redeemable for 10% off your next order.

ELECTRONICS BOOK CLUB
P.O. Box 10
Blue Ridge Summit, Pa. 17214

Please open your Trial Membership in ELECTRONICS BOOK CLUB and send me the 3 books circled below. I understand the cost of the books I have selected is only 99¢ each plus a small shipping charge. If not delighted, I may return the books within 10 days and owe nothing, and have my Trial Membership cancelled. I agree to purchase at least four additional books during the next 12 months, after which I may cancel my membership at any time.

Name____________________ Phone__________
Address_________________ City________________
State___________________ Zip___________

(Circle one for new members only. Foreign and Canada add 10%. PE-97)

SEPTEMBER 1977
MARANTZ STEREO RECEIVERS

Marantz has added three popularly-priced AM/FM receivers to its line. Featuring dual-gate MOSFET front ends, the receivers are equipped with zone-detented tone controls for convenient variation of bass, midrange, and treble frequencies. Other features include Dolby FM de-emphasis (25-4uS), full complementary symmetry direct-coupled amplifier section, phase-locked-loop multiplex demodulator, and quadradrail-ready jack so that a 4-channel decoder can be connected should a standardized 4-channel FM broadcast system be approved by the FCC. The three new models are 2226 (26 watts), 2238 (38 watts), and 2252 (52 watts), all into 8-ohm loads. The 2226 is rated at no more than 0.2% THD with an 8-ohm load; the other two models, 0.1%. All models include separate FM-tuning and signal-strength meters.

CIRCLE NO. 94 ON FREE INFORMATION CARD

HEATH AUDIO OSCILLATOR

Heath's IG-1272 low-distortion oscillator is designed for a variety of audio uses. It provides a low-distortion sine-wave output over a frequency range from less than 5 Hz to 100 kHz. It offers both pushbutton and variable-frequency operation. Output is said to be flat across its entire frequency range. Attenuation accuracy is ±0.2 dB. Hum and noise are rated at 0.01% or less. Includes an ac rms volts meter with a db scale and a level control, plus an interval load (600 ohms) and external load switch. It comes with cable and clip leads as a kit for $129.95, factory assembled (SG-1272), $190.

CIRCLE NO. 90 ON FREE INFORMATION CARD

PANASONIC MOBILE CB TRANSCEIVER

Pansonic's Model RJ-3450 is a two-piece AM 40-channel rig. The CB transceiver is separate from its controls to allow the bulkier section to be hidden away under a seat or, with an optional extender cable, in the car's trunk. The remote-control microphone contains all controls, switches, and displays (LED), as well as the speaker. The RJ-3450 also features a built-in scanner system that can be operated either automatically or manually. It can be set to either V (vacant) or B (busy) to automatically locate an open or a busy channel. In the manual position, channels can be stepped through, up or down, one at a time. Other controls are a squelch control, noise-blanker/ant switch, and a REG/CH-9 switch. $229.95.

CIRCLE NO. 55 ON FREE INFORMATION CARD

EDMUND SCIENTIFIC BURGLAR ALARMS

Two new security alarms are being offered by Edmund Scientific. One is a portable that can

POPULAR ELECTRONICS

MCKAY DYMEK COMMUNICATIONS RECEIVER

McKay Dymek has introduced an all-wave, fully synthesized communications receiver covering the frequency range of 50 kHz to 29.7 MHz. The DR-22 is equipped with switch-selectable 4- or 8-kHz bandwidth ceramic filters. Preceding the ceramic filters are crystal filters at 30 MHz and 10.7 MHz. All AM broadcast, international shortwave, ham radio contacts, and CB channels are tuned in by means of a digital phase-locked-loop tuning system. A large five-digit LED readout indicates the frequency being received, which is selected by four rotary switches and a fine-tuning control with a ±5-kHz tuning range. Standard features include high-impedance audio output for recording, 455-kHz IF output jack, mute control for use with transmitters, front-panel headphone jack, internal speaker and control switch, and external speaker connections. The receiver is housed in a textured black enamel case with teak wood sides and brushed aluminum face. Measures 17.5"W × 16"D × 5.1"H (44.5 × 40.7 × 13.0 cm). $2,900.

CIRCLE NO. 93 ON FREE INFORMATION CARD

BEARCAT PROGRAMMABLE SCANNER

Communications Electronics' new Bearcat 210 five-band programmable "super" synthesized scanning receiver needs no crystals. It gives the user push-button access to more than 16,000 different frequencies in the 32- to-50-, 146- to-174-, and 416- to-512-MHz ranges, which include frequencies on 2 meters and the entire 0.75-meter amateur band. The synthesizer permits one to enter or change any 10 frequencies in seconds. The receiver scans frequencies at a rate of 20 channels per second. A digital input and display allows the operator to see the frequencies selected as well as those being received. Automatic search scanning and lockout are included. Sensitivity is rated at 0.6 uV for 12 dB SINAD on the low and high bands. $319.95.

CIRCLE NO. 91 ON FREE INFORMATION CARD

CONTINENTAL SPECIALTIES SOCKETS

Continental Specialties has two new "Experimental" 300 and 600 solderless broadening sockets, which provide 94 five-point terminals, plus two 40-point bus strips for a total of 550 solderless tie-points. The 600, priced at $10.95, has a 6/10" center channel, making it suitable for microprocessors, clock chips, RAM's, ROM's, and other larger DIP packages. The 300 has a 3/10" center channel that is right for smaller DIP's. Both sockets also accept transistors, LED's, resistors, capacitors, pots and virtually all types of discrete components.

CIRCLE NO. 95 ON FREE INFORMATION CARD

SONY THREE-WAY SPEAKER SYSTEM

Sony's Model SU-3000 speaker system features a "carbocon" cone material that is claimed to provide reproduction that virtually mirrors the original sound. The three-way bass-reflex system is rated to be driven by 20 watts of amplifier power and to handle up to 150 watts over a frequency range of 35 to 20,000 Hz. Crossovers are at 600 and 5500 Hz, while woofer rolloff and tweeter turn-on are at a 12-dB/octave rate. The midrange driver and tweeter are fronted by radial diffusion elements which are said to smooth the frequency response and provide improved dispersion and imaging. Dual-slope level control network and adjustable midrange and tweeter controls permit adjustment to suit the listening room. Size is 341/4"H × 141/4"D × 131/2"W (87 × 36.2 × 34.3 cm) and weight is 59 lb 9 oz (27 kg). $300.

CIRCLE NO. 89 ON FREE INFORMATION CARD
Design of Digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes — each 11-1/2" x 8-1/4" — are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers.

The contents of Design of Digital Systems include:

Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division.

Book 2 OR and AND functions; logic gates; NOT, exclusive-OR, NAND, NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgan's Laws; canonical forms; Karnaugh mapping; three-state and wired logic.

Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems.

Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring, Johnson and exclusive-OR feedback counters; random access memories (RAMs) and read only memories (ROMs).

Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; control program structure.

Book 6 Central processing unit (CPU); memory organization; character representation; program storage; address modes; input/output systems; program interrupts; interrupt priorities; programming; assemblers; computers; executive programs; operating systems and time sharing.

Digital Computer Logic and Electronics is designed for the beginner. No mathematical knowledge other than simple arithmetic is assumed, though the student should have an aptitude for logical thought. It consists of four volumes — each 11-1/2" x 8-1/4" — and serves as an introduction to the subject of digital electronics. Everyone can learn from it — designer, executive, scientist, student, engineer.

Contents include: Binary, octal and decimal number systems; conversion between number systems; AND, OR, NOR and NAND gates and inverters; Boolean algebra and truth tables; De Morgan's Laws; design of logic circuits using NOR gates; RS- and JK flip flops; binary counters, shift registers and half adders.

Digital Computer Logic and Electronics is written for the engineer seeking to learn more about digital electronics. Its six volumes — each 11-1/2" x 8-1/4" — are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers.

The contents of Design of Digital Systems include:

Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division.

Book 2 OR and AND functions; logic gates; NOT, exclusive-OR, NAND, NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgan's Laws; canonical forms; Karnaugh mapping; three-state and wired logic.

Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems.

Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring, Johnson and exclusive-OR feedback counters; random access memories (RAMs) and read only memories (ROMs).

Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; control program structure.

Book 6 Central processing unit (CPU); memory organization; character representation; program storage; address modes; input/output systems; program interrupts; interrupt priorities; programming; assemblers; computers; executive programs; operating systems and time sharing.

Digital Computer Logic and Electronics is designed for the beginner. No mathematical knowledge other than simple arithmetic is assumed, though the student should have an aptitude for logical thought. It consists of four volumes — each 11-1/2" x 8-1/4" — and serves as an introduction to the subject of digital electronics. Everyone can learn from it — designer, executive, scientist, student, engineer.

Contents include: Binary, octal and decimal number systems; conversion between number systems; AND, OR, NOR and NAND gates and inverters; Boolean algebra and truth tables; De Morgan's Laws; design of logic circuits using NOR gates; RS- and JK flip flops; binary counters, shift registers and half adders.

In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show your automobile speed and gas consumption; you could be calling people by entering their name into a telephone which would automatically look up their number and dial it for you.

These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding.

After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you.

The six volumes of Design of Digital Systems cost only: $19.88

And the four volumes of Digital Computer Logic and Electronics cost only: $14.88

But if you buy both courses, the total cost is only: $29.90

a saving of over $5.00

SEVEN-DAY MONEY-BACK GUARANTEE: If you are not satisfied with your Cambridge course, return it within 7 days for a full refund.

To order your books, complete the order form below and send it together with your check or money order to GFN Industries, Inc., 6 Commercial Street, Hicksville, N.Y. 11801.

TO: GFN INDUSTRIES, INC.
6 COMMERCIAL STREET, HICKSVILLE, NY 11801

Please send me:

- Sets of Design of Digital Systems $19.88
- Sets of Digital Computer Logic & Electronics $14.88
- Sets of both courses $29.90
- Sales tax (N.Y. residents)

Shipping and handling $2.50 per set

Enclosed is check/money order (payable to GFN Industries, Inc.)

Total $__________

Name

Address

City/State/Zip

Prices include overseas surface mail postage.

GFN INDUSTRIES, INC.
6 COMMERCIAL STREET, HICKSVILLE, NY 11801

Enclosed is check/money order (payable to GFN Industries, Inc.)

Total $__________

Name

Address

City/State/Zip

Prices include overseas surface mail postage.

GFN INDUSTRIES, INC.
6 COMMERCIAL STREET, HICKSVILLE, NY 11801

Enclosed is check/money order (payable to GFN Industries, Inc.)

Total $__________

Name

Address

City/State/Zip

Prices include overseas surface mail postage.

GFN INDUSTRIES, INC.
6 COMMERCIAL STREET, HICKSVILLE, NY 11801

Enclosed is check/money order (payable to GFN Industries, Inc.)

Total $__________

Name

Address

City/State/Zip

Prices include overseas surface mail postage.

GFN INDUSTRIES, INC.
6 COMMERCIAL STREET, HICKSVILLE, NY 11801

Enclosed is check/money order (payable to GFN Industries, Inc.)

Total $__________

Name

Address

City/State/Zip

Prices include overseas surface mail postage.

GFN INDUSTRIES, INC.
6 COMMERCIAL STREET, HICKSVILLE, NY 11801

Enclosed is check/money order (payable to GFN Industries, Inc.)

Total $__________

Name

Address

City/State/Zip

Prices include overseas surface mail postage.
be carried anywhere, while the other is designed for permanent installation. The latter is useful for cars, trucks, RV’s, boats, and industrial plant protection, while the portable unit is for office and personal security. The portable alarm uses ultrasonics to secure a “protected” area. Each alarm is programmed with its own specific two-digit “off” code. Portable alarm No. 61,119 with 9-volt battery: $79.00. The No. 61,120 12-volt permanent alarm, with lead-in wires: $79.00.

CIRCLE NO. 97 ON FREE INFORMATION CARD

MXR NOISE-REDUCTION ACCESSORY

The MXR Compander is a noise-reduction device that is said to be capable of doubling the dynamic range of most open-reel and cassette tape decks. In operation, it compresses the dynamic range of signals being recorded and then expands them upon playback. The compression/expansion process is claimed to reduce noise and allow quiet passages to be heard while, at the same time, allowing musical peaks to be reproduced without distortion. The Compander is designed to process all frequencies at all levels in a similar manner, thereby eliminating the need for critical level adjustments. A switch is provided to bypass the Compander’s circuitry, and a level match control allows for compensation of level differences between the inputs and outputs of a tape deck. The system is designed for use on three-head decks. Dynamic range is specified as being 100 dB and frequency response at 30 to 20,000 Hz ±1 dB at 0 dBV.

CIRCLE NO. 98 ON FREE INFORMATION CARD

OK WIRE WRAP DISPENSER

The new WD Series Wire Wrap wire dispenser from OK Machine and Tool Corp. features a unique cutting and stripping capability. Wire is drawn out of the dispenser to the required length. Then a built-in plunger cuts the wire free, while a pull on the cut wire through the stripping blade removes the insulation without nicking the wire. The other end of the wire is just as neatly and quickly stripped away. The dispenser comes with a 50’ (15-m) spool of AWG 30 (0.25-mm) industrial-quality Kynar® insulated silver-plated solid copper wire. Insulation is available in blue, white, red, and yellow. The dispenser is reusable when the wire runs out simply by inserting a new spool.

CIRCLE NO. 99 ON FREE INFORMATION CARD

JVC PORTABLE/HOME CASSETTE DECK

JVC America’s Model CD-1636 portable home stereo cassette deck, with its new super ANRS, is said to have reduced tape hiss and expanded dynamic range at high frequencies. A monitor speaker for field use is built-in. The deck is designed to operate for up to 12 hours with D-size batteries, but will also operate from a 120 V ac power source for home use. Features include dual VU meters and battery condition checker, 3-digit tape counter with reset button, automatic tape stop, Sen-Alloy tape head for record/play and ferrite head for erase. Signal-to-noise ratio is rated at 54 dB, improved by 10 dB above 5 kHz with ANRS; wow and flutter, 0.08% rms; THD, 1.2% at 0 VU with standard tape, 1.5% with chrome tape. Frequency response is 45 Hz to 16 kHz ±3dB (chrome). Weight is 10.1 lbs. Measurements are 14"W x 9"D x 3½"H (37 x 24 x 10 cm). $350.

CIRCLE NO. 100 ON FREE INFORMATION CARD

TURNER AM/FM/CB CAMOUFLAGE ANTENNA

A new “camouflage” AM/FM/CB antenna that features a new, easy-to-install design is available from Turner Division of Conrac Corp. The Model SK750 antenna is made to look and function like any other auto antenna, but provide full 40-channel coverage on CB with minimal VSWR. It has a removable 42" (106.7-cm) stainless steel whip and a mounting that adapts to sloping surfaces. The filters in the hermetically sealed watertight housing act as “band separators” to keep the AM/FM and CB signals from mixing. Suggested retail price is $25.00. (The same antenna configuration is also available for CB only as the Model SK755 for $19.95.)

CIRCLE NO. 101 ON FREE INFORMATION CARD

Aircommand 40-channel CB...

From the people who bring you Marantz—the world’s finest stereo systems—comes the Aircommand CB-640—the finest in 40-channel CB. With Aircommand you get over 25 years experience in outstanding 2-way communications products.

Full 6 Watts of audio power. Provides plenty of punch so your speaker cuts through freeway noise. Dual-conversion superheterodyne receiver with dual-cascaded ceramic filters. Together, both features provide the most complete rejection of unwanted signals, assuring you unsurpassed selectivity and sensitivity.

4 big Watts of RF power. Aircommand delivers the maximum power legally allowable to let you belt out the big sound. 100% modulation capability. Even when you talk softly into the mike, your message cuts through loud and clear, thanks to one of the most advanced mike preamp and compressor designs in CB today. With Aircommand, you don’t have to spend an extra $30 to $40 on a “power mike.” You can buy better modulation than Aircommand.

Specially tailored frequency response.

LED 40-channel selection display. Easy-to-read, night or day.

8-LED (light emitting diode) meter display. Provides an easy-to-read display of SWR (standing wave ratio), modulation, and incoming or outgoing signal strength—instantly, accurately.

Special emergency Channel 9 scan with exclusive Aircommand “beep” alert. No matter what channel you’re on, a special Aircommand CB-640 circuit continuously and silently monitors Emergency Channel 9. When someone starts transmitting on Channel 9, a unique “beep” alerts you, so you can tune yourself in and give assistance.

Public address capability. The versatile Aircommand CB-640 public address package lets you (1.) Talk into the CB mike and out an exterior public address speaker. (2.) Attach a tape recorder to the auxiliary jack on the
You never heard it so good!!!

CB-640 rear panel, and boom your tape out through the same external speaker. (3.) Mix your voice from the CB microphone with the program material on the tape recorder. Both voice and tape sound at the same time through the external speaker. (4.) Beam your received signal through the external speaker. Built-in standing wave ratio circuitry. Measures the efficiency of the antenna system for optimum performance. Other outstanding features include: Delta fine tuning control, digital synthesizer with phase-locked loop, automatic noise limiting switch, noise blanking switch, squelch control, RF gain control.

MEMOREX VIDEO TAPE NEWSLETTER

Understanding the video picture is the topic of Vol. 3, No. 1 of SCAN, a 4-page newsletter for video-tape users offered by Memorex. The issue discusses how a video picture is created within a monitor/receiver and gives tips on troubleshooting the video playback system. Address: SCAN, Memorex Corp., PO Box 420, Santa Clara, CA 95052.

NEDA 1977 BATTERY INDEX

The National Electronic Distributors Association (NEDA) offers the 1977 Battery Index. A replacement guide for over 182 battery types, the index uses number suffixes to list batteries according to their group; rechargeable NiCd batteries and various groups of nonrechargeable types. Major manufacturers included are Bright Star Industries, Evreaddy, Mallory, Burgess, Inc., and Ray-O-Vac. Price 50 cents. Address: National Electronic Distributors Association (NEDA), 3525 W. Peterson Ave., Suite 601, Chicago, IL 60659.
Need a 3⅓ digit DPM?

Build your own LED or LCD panel meter and tailor it to fit your system.

- Floating differential inputs.
- Built-in clock.
- Precision auto-zero/auto-polarity circuitry.

No external active components. Only 7 passive components needed for an operating DPM.

Order from Intersil Stocking Distributors.

Put it all together for as little as $24.95*

Intersil’s new single chip 3½-digit 7106 and 7107 A/D converters for LCD or LED displays.

Meet the latest in A/D converters: Intersil's 7106, the first single-chip CMOS A/D for driving LCD displays—including backplane—directly.

And the 7107, first single-chip CMOS A/D for driving instrument-size LED displays directly without buffering.

Each provides parallel seven segment outputs, ideal for DVMs, DPMs and anywhere modern digital displays are needed.

Both new devices provide cost advantages over multi-chip designs, because they require no additional active components. Both have internal reference and clock, and both are CMOS so you get low noise (12 to 15µV) comparable with the finest bipolar devices, and low power (10mW max. @ 10V).

A few more features:

- ±1-count accuracy over the entire ±2000-count range.
- Guaranteed to read Zero for 0 Volts input.
- Provides true polarity at Zero count for precise null detection.
- Differential input from 200mV to 2.000V full scale.

Build a working DPM in ½ hour with these complete evaluation kits.

Test these new parts for yourself with Intersil’s low-cost prototyping kits, complete with A/D converter and LCD display (for the 7106) or LED display (for the 7107). Kits provide all materials, including PC board, for a functioning panel meter. Available from Intersil stocking distributors.

Kit No. ICL7106EV/KIT (LCD), $29.95 complete.
Kit No. ICL7107EV/KIT (LED), $24.95 complete.

SEPTEMBER 1977
The Scanning Aperture. Shortly after my first meeting with Shreve, I brought his work to the attention of Mitchell Cotter, founder and chief executive of Verion Audio and a researcher with a long and varied background in many areas of practical and theoretical audio. As it happened, Cotter was already convinced of these effects’ existence, although he had not fared notably better than others in demonstrating their audibility. He was, however, somewhat surprised by Shreve’s reports on the criticalness of the vertical angle. True, theory seemed to predict this, but theory had not quite been batting 1000 in corresponding to the perceived and/or measurable world of record playing.

What exactly does theory seem to predict? I couldn’t begin to deal with the complexities here, even if they could be pursued profitably in a nonmathematical presentation. But some of the individual effects can be mentioned. Imagine viewing the stylus (a Shibata or other type of “line-contact” CD-4 stylus) from the side as it traces a record groove. If the rake angle is correct, the stylus’ contact line will be parallel with the modulation angle of the groove. If it is not, the upper part of the stylus will either lead or lag the lower part in tracing the groove.

So far the situation seems analogous to tape-head alignment. When the azimuth of a playback head is disturbed, the “scanning aperture” corresponding to its gap becomes effectively wider, and high-frequency response begins to fall off in the same way as it would if the gap were physically wider. However, while the “effective” edge of the stylus is also a scanning aperture, a simple loss of high-frequency response is not the only predictable result of incorrect rake angle. Whether azimuth is right or not, a tape head is always scanning the flat plane of the tape surface. The stylus “sees” a flat plane from a modulated groove only when its rake angle is absolutely on the button. Otherwise it traces—or tries to trace—a curvature that can become rather complex, with the skewed contact line of the stylus doing its best to strike a rough average between the various groove contours it is encountering. Also, groove curvature is a definite factor in stylus indentation of the record material, so that a further ambiguity in tracing is introduced.

At this point, let’s consider the several dimensions in which a stylus moves. Ideally, all its excursions take place within a curved plane—a section of the shell of a sphere that has its center at the sty-

Diagram shows vertical tracking angle and stylus pivot point.
Introducing the Sansui SR-838, a luxurious new direct-drive turntable that performs silently with rare and fine precision. Free from howl and feedback, the SR-838 complements the superior tonal quality and the exciting standards of today's most sophisticated component systems.

The SR-838 Quartz-Servo direct-drive system delivers phono reproduction so accurate it may astonish you. By locking motor speed to the precise control of a highly refined quartz crystal, Sansui engineers have achieved platter speed deviation of less than 0.002%, and unusually low wow and flutter of less than 0.025%.

Sansui engineers have also designed a unique new tonearm for the SR-838. It features a Mass-Concentrated Fulcrum design, with wide-set pivot points, to suppress unwanted front-back/left-right vibrations. Inside the tubular tonearm is a special resin* that prevents resonance. And the entire unit is firmly mounted on a zinc die-cast base for the most stable performance you can find.

The Sansui SR-833 offers all the performance advantages you'd expect from a superior turntable, plus more. Such as fine pitch control, an electronic brake for speed changes, a skating force canceller, and an oil-damped cueing lever. And the newly designed rubber insulating feet provide superior feedback isolation.

To top it all, the SR-838 is a feast for the eyes as well as the ears. All controls are positioned up front for easy access and operation. And the satiny piano lacquer finish glows with the elegance of simplicity.

See the SR-838, at less than $390**, including base and dust cover, at your nearest franchised Sansui dealer. Hear it, and you'll discover that advanced technology and precision design do indeed make a difference. All the difference in the world.

*S: Patent pending **Approximate nationally advertised value. Actual retail price is at the option of individual dealers.
NRI is the only school to train you at home on a real digital computer.

Learn computer design, construction, maintenance and programming techniques on your own programmable digital computer.

Qualified technicians are urgently needed for careers in the exciting new field of digital and computer electronics... and the best way to learn digital logic and operations is now available to you in NRI's Complete Computer Electronics Course.

This exclusive course trains you at home on your own digital computer! This is no beginner's "logic trainer", but a complete programmable digital computer that contains a memory and is fully automatic. You build it yourself and use it to define and flow-chart a program, code your program, store your program and data in the memory bank. Press the start button and the computer solves your problem and displays the result instantly.

The NRI digital computer is one of 10 kits you receive in the NRI Complete Computer Electronics Course. You build and use your own TVOM, and experiment with NRI's exclusive Electronics Lab. You perform hundreds of experiments, building hundreds of circuits, learning organization, operation, trouble-shooting and programming.

New NRI Memory Expansion Kit

The Model 832 NRI Digital Computer now comes with a new Memory Expansion Kit. Installed and checked out in 45 minutes, it doubles the size of the computer's memory, significantly increasing the scope and depth of your knowledge of digital computers and programming. With the large-scale IC's you get the only home training in machine language programming... experience essential to trouble-shooting digital computers.
NRI offers you five TV/Audio Servicing Courses

NRI can train you at home to service Color TV equipment and audio systems. You can choose from 5 courses, starting with a 48-lesson basic course, up to a Master Color TV/Audio Course, complete with designed-for-learning 25" diagonal solid state color TV and a 4-speaker SQ Quadraphonic Audio System. NRI gives you both TV and Audio servicing for hundreds of dollars less than the two courses as offered by another home study school.

All courses are available with low down payment and convenient monthly payments. All courses provide professional tools and "Power-On" equipment along with NRI kits engineered for training. With the Master Course, for instance, you build your own 5" wide-band triggered sweep solid state oscilloscope, digital color TV pattern generator, CMOS digital frequency counter, and NRI electronics Discovery Lab.

NRI’s Complete Communications Course includes your own 400-channel VHF transceiver

NRI’s Complete Communications Course will train you at home for one of the thousands of service and maintenance jobs opening in CB, AM and FM transmission and reception; TV broadcasting; microwave, teletype, radar, mobile, aircraft, and marine electronics. The complete program includes 48 lessons, 9 special reference texts, and 10 training kits. Included are: your own "designed-for-learning" 400-channel VHF transceiver; electronics Discovery Lab"; CMOS digital frequency counter; and more. You also get your all important FCC Radio-telephone License, or you get your money back.

CB Specialist Course also available

NRI also offers a 37-lesson course in CB Servicing with your own CB Transceiver, AC power supply, and multimeter. Also included are 8 reference texts and 14 coaching units to make it easy to get your Commercial Radiotelephone FCC License.

You pay less for NRI training and you get more for your money. NRI employs no salesmen, pays no commissions. We pass the savings on to you in reduced tuition and extras in the way of professional equipment, testing instruments, etc. You can pay more, but you can’t get better training.

More than one million students have enrolled with NRI in 62 years. Mail the insert card and discover for yourself why NRI is the recognized leader in home training. Do it today and get started on that new career. No salesman will call.

If card is missing write: NRI SCHOOLS McGraw-Hill Continuing Education Center 3939 Wisconsin Avenue Washington, D.C. 20016

SEPTEMBER 1977
lus's pivot point. Also ideally, the shell is almost infinitely thin. However, especially in the case of a line-contact stylus, an error in rake angle "thickens" the shell, with resulting phase-time ambiguities. Such errors are inevitable; even vertical stylus excursions produce them. But at what point, if any, do they become audibly detrimental? And what is their effect when they combine with other errors in tracing geometry?

The Listening Approach. Since the means (the Shreve/Rabco arm) seemed to be at hand, we decided to let theory rest for the time being and work toward empirical findings with listening tests. The Rabco SL-8/SL-8E arm, as you may be aware, is (or was; it is no longer made) a radial-tracking mechanism. The arm carriage transits on an aluminum track that has vertical screws at either end to facilitate height and level adjustments. Thus the stylus rake angle can be varied minutely and repeatably even while a record is playing, without doing any great violence to other parameters of cartridge alignment (we invariably found ourselves working with a range of rake angles spanning considerably less than a degree of difference). This, plus its other refinements, made the arm a viable experimental tool in our judgment.

Once we (Dr. Shreve, Mitchell Cotter, and I, for the most part) had confirmed that we could hear these seemingly small differences and could agree on what the "right" sound was, we evolved individually for the most part, but with close agreement later on) a number of working hypotheses.

(1) The optimum vertical adjustment should not be the same for every record. Variables such as different record-cutter geometries, different cutting practices, and even different record thicknesses would logically prevent this.

(2) A warped record should make the optimum vertical adjustment less easy to achieve, if it could be achieved at all.

(3) Adjusting the carriage track of the arm so that it is not quite parallel with the record surface should result in a change of vertical angle over the record side, and therefore a change in the "sound." (It would also result in slight changes of other alignment parameters; the big questions concerned which changes, if any, would be most audible.)

(4) A true line-contact CD-4 stylus should be quite critical to adjust; and once properly adjusted, it might conceivably yield performance superior to that of a "conventional" stylus.

(5) A change in stylus force should change the rake angle, and hence the "sound."

After about a year of listening, our general observations are as follows.

(1) The optimum vertical angle is not the same for every record. With the records we have sampled we've encountered a range of "optima" spanning a mere 25 minutes (!) of arc. However, some records audibly perform quite badly when used with a different record's optimum setting, although they may sound very good when individually compensated for.

(2) Warped records are not as difficult to adjust for as anticipated. An attempt at explaining this must await further work. It is true that we've not been extraordinarily successful in obtaining warped and unwarped copies of the same record. It almost appears that a given release is either unwarped or warped, although the warps are usually not the same. We have not attempted to deliberately warp any records.

(3) Making the carriage track nonparallel to the record surface alters the sound over a record side in an identifiable way. Deliberately misaligning the effective length of the radial arm to create a similar change in lateral tracking-angle error over the record side does not seem to alter the sound as recognizably. But this test lacks a certain amount of rigor.

(4) CD-4 stylus are typically easier to set at optimum vertical angle; the "optimum" is much less ambiguous. When so set, they consistently (audibly) outperform comparable cartridge models fitted with spherical or "conventional" bi-radial stylus tips.

(5) Altering the vertical stylus force seems to produce the expected change in "sound." In fact, in some cases small changes in stylus force have seemed to be as effective as small changes in vertical angle in achieving the most listenable results. (In all cases the stylus-force changes have been very small, and always well within the recommended tracking-force range of the cartridge's manufacturer. Measurement of the force, with one exceptional instance, has always been consistently repeatable with the Shreve arm and a tracking-force gauge of high reliability and resolution [within 1/10 gram].)

And What Is the Sound? While we agree when the vertical adjustment is correct to our ears, we do not always use the same language to describe what we hear when it is not to our liking. High frequencies are affected most profoundly, to the point where sharp sibilance on voice recordings can be reduced to almost no sibilance. There is a noticeable change in the quality of whatever noise is present on the record, so that it becomes subjectively smoother, less obtrusive, and less troubled by what subjectively seems to be a periodic modulation effect. Whatever stereo perspective is present on the record seems dramatically enhanced, with sharper and stabler positioning of sound sources both left to right and forward to back (although we think we have occasionally discovered "faults" in the stereo perspective of some recordings as a result of optimum adjustment).

The Unanswered Questions. The vertical cutting angle adopted in making a record is established at the discretion of the mastering engineer. A fairly common practice is to use a special test record as a vertical reference while the cutting head is set up. However, we have heard of instances in which the cutter's vertical angle has been slightly modified to achieve a smoother or quieter cut.

The variations in vertical angle from record to record we have found are probably small enough to be accounted for by differences in test records, or even differences in set-up procedures when the same test record is used. However, the precise roles that these and other factors play in the vertical-angle situation are far from clear to us at present.

Several other questions remain. One concerns the matter of deformations in the ideally flat surface of the record, and what part they could or should play in properly defining the correct vertical angle. Another question asks whether there is (as would seem logical) an optimum relationship between rake angle, vertical tracking angle, and stylus force, since the first two would certainly change with an alteration of the third, but not necessarily in the same direction with respect to an optimum adjustment.

Perhaps the ultimate question is whether a significant number of commercially available arms and record players (as opposed to the custom-built and carefully adjusted equipment in our hands) can reveal the effects of these minute variations in alignment. Thanks to Mr. Cotter's efforts, the first tentative answer to this question seems to be moving toward a qualified "yes." And thus it appears certain that you'll have heard far from the last of this matter when you lay down this magazine. ☺
THE INTEGRATED DC AMPLIFIER HAS ARRIVED.

Gone is phase distortion. Gone is time-delay distortion.

The Kenwood KA-9100 integrated DC amplifier is here. Its response is flat down to 0 Hz. It has three power supplies. The Total Harmonic Distortion is 0.03% over the full frequency range of 20-20k Hz. The Signal-to-Noise ratio is 83 dB at 2.5 mV. It has the best phono sensitivity (0.8 mV) of any integrated amplifier. For better heat dissipation, the KA-9100 has large heat sinks on either side.

It is an amplifier so advanced even the pre-amp has its own power supply. It is the next generation Kenwood. The unit all others will be measured against. Just as they were when we pioneered dual power supplies.

The KA-9100 integrated DC amplifier. With 90 watts per channel, minimum RMS, at 8 ohms from 20 to 20,000 Hz with no more than 0.03% Total Harmonic Distortion.

And, as if all that wasn't enough, it costs less than $500.

KENWOOD

15777 S. Broadway, Gardena, CA 90248 • 72-02 Fifty-First Avenue, Woodside, NY 11377

*Supplied estimated price. Actual prices are established by Kenwood dealers.
IT HAS long been recognized that a single loudspeaker cone cannot properly reproduce the full audible frequency range. Nevertheless, a single speaker is still widely used, as in TV receivers, automobile radios, and low-priced home radios and record players for that impossible task. Here, a degree of effectiveness is made possible only by a reduction in quality standards, which would not be acceptable in a high-fidelity system.

The examples mentioned above cannot be called “hi-fi” by any stretch of the imagination, although sometimes, against all reason, that claim is made for them. Even a minimum quality component speaker system uses at least two drivers to cover the audio range, and more expensive ones divide the audible spectrum into three or even four bands. It is thus quite natural to assume that more separate frequency bands in a speaker system result in better quality.

The foregoing assumption may be natural, but it is not necessarily correct. In fact, in the absence of other information, there is no reason to conclude that a three-way system is better than a two-way system or even as good. To see why this is so, let us consider the reasons for dividing up the reproduction task among several drivers.

To generate appreciable amounts of acoustic power at low frequencies, a large volume of air must be moved by the speaker cone. This can be done by using a large cone area with a relatively small excursion, or a smaller cone with a large excursion. Both methods are capable of good results, but the popular acoustic suspension speakers are based on the latter approach. To get a reasonably flat, smooth bass response, it is not sufficient simply to use the largest possible speaker diameter, or to increase the size of the enclosure. These two factors, together with a host of other speaker parameters, are interrelated. Once a certain performance standard has been decided upon, neither can be changed without a corresponding change in the other. The value of a proper bass speaker design is demonstrated by the many small speakers, with woofers only 6 to 8 inches in diameter, whose bass response extends to 40 Hz or even lower.

A larger cone diameter gives the designer several possible options for improved performance. The lower limit of the speaker’s response could be extended (perhaps together with reduced distortion), or its efficiency could be increased. Since nothing in this world is truly free, what disadvantages might result from such a change?

A woofer cone can deliver its calculated flat response only in the limited frequency range within which it moves as a piston. At higher frequencies, where the speaker diameter becomes an appreciable fraction of the acoustic wavelength, the response becomes irregular, as well as increasingly directional. The massive cone, which is advantageous for a woofer, becomes a liability at higher frequencies. Here, low moving mass is necessary to allow the cone to reverse direction hundreds or even thousands of times each second. Therefore, whatever the size of the woofer, above some selected frequency the signal energy must be diverted from it to another speaker more suitable for that range. The choice of a “crossover” frequency is not entirely arbitrary since it must take into account the high-frequency aberrations in the woofer’s response, and the low-frequency limitations of the smaller speaker. A “tweeter,” as the high-frequency driver is usually called, is much smaller in diameter than the woofer, and has a much lighter cone and voice coil structure. The low mass allows it to respond more rapidly to high-frequency signals, while its smaller diameter gives the sound a wide polar dispersion instead of “beaming” it forward, as happens when the cone diameter is comparable to the wavelength of the sound. At very high frequencies, even an ordinary tweeter cone may be too large to give the desired response, necessitating a second crossover to a still smaller speaker. This is known as a “three-way” system, in contrast to the simple “two-way” system comprised of a woofer and a single high-frequency driver.

Here are some considerations on the relationship between the size of the several drivers and the choice of crossover frequencies. In a typical small speaker system, with a woofer 8 inches or less in diameter, it is feasible to cross over to the tweeter as high as 2000 Hz, or even higher in some cases. At that frequency, a specially designed dome or small cone tweeter is used instead of merely a miniature version of the woofer. With a cone diameter of 1 to 1½ inches such a speaker can give satisfactory results up to 15,000 Hz or even beyond. While it is possible (and sometimes done) to cross over to a third “super tweeter” at a very high frequency, such as 7,000 to 10,000 Hz, the benefits would be negligible. The high-frequency dispersion

PROS AND CONS OF MULTI-WAY SPEAKER SYSTEMS

Julian Hirsch
Audio Reports
MAGAZINES AT DISCOUNT!
You SAVE up to 50%

Here's your chance for a real bargain bonanza on your favorite magazines. You may select as many as five of these titles at the special introductory rates shown below—up to 50% off! To order, indicate the magazines you want by inserting their code numbers in the boxes on the attached order card. Or write to: MAGAZINES AT DISCOUNT, A Division of Ziff-Davis Publishing Co., P.O. Box 2703, Boulder, Colorado 80322.

CODE NOS.
(01) BOATING You pay only $7.97
Reg. Rate: 12 Issues for $12.00
(02) CAR CLASSICS You pay only $6.98
Reg. Rate: 12 Issues for $10.00
(03) CAR & DRIVER You pay only $4.99
Reg. Rate: 12 Issues for $9.98
(04) CYCLE You pay only $4.99
Reg. Rate: 12 Issues for $9.98
(05) FOUR WHEELER You pay only $5.49
Reg. Rate: 12 Issues for $9.50
(06) MECHANIX ILLUSTRATED You pay only $5.96
Reg. Rate: 12 Issues for $9.97
(07) BOATING You pay only $12.00
Reg. Rate: 25 Issues for $20.00
(08) POPULAR ELECTRONICS You pay only $6.99
Reg. Rate: 12 Issues for $10.00
(09) POPULAR PHOTOGRAPHY You pay only $4.99
Reg. Rate: 12 Issues for $9.98
(10) POPULAR SCIENCE You pay only $5.97
Reg. Rate: 18 Issues for $11.91
(11) PSYCHOLOGY TODAY You pay only $6.97
Reg. Rate: 26 Issues for $16.00
(12) ROLLING STONE You pay only $8.00
Reg. Rate: 7 Issues for $8.75
(13) STEPEEO REVIEW You pay only $3.99
Reg. Rate: 12 Issues for $7.98
(14) TIME You pay only $12.50
Reg. Rate: 5 Issues for $25.00
(15) TV GUIDE You pay only $8.35
Reg. Rate: 32 Issues

Lowest Available Sub. Rate for 32 Issues

AmericanRadioHistory.Com
might be improved by using a second, smaller tweeter, but the effect is likely to be rather subtle.

Suppose that a larger woofer, 10 or 12 inches in diameter, is used. Such a speaker cannot function optimally much above 1000 Hz, and the crossover to the next driver usually takes place between 500 and 1000 Hz. At that frequency, a small dome tweeter cannot be used either because its light voice coil could easily be burned out by the concentration of program energy in the midrange. Furthermore, the large cone excursions needed would be impractical for such a driver.

To cover this frequency, a larger version of the dome tweeter is sometimes used (this can be expensive). But more frequently, the midrange driver is a conventionally appearing cone unit that’s about 3 to 5 inches in diameter. This can handle the midrange power, but its useful upper frequency limit is perhaps several thousand hertz. For full-range reproduction, there is a second crossover to a true tweeter, usually in the 3000-to-5000-Hz range. From this we can see that a speaker based on large low-frequency drivers or designed for use at high volume levels has to have three drivers do what can be done fairly well at lower levels by a smaller two-way system.

Sometimes we encounter four-way systems, although this is a refinement limited to fairly exotic and expensive speakers. Usually, a very small super-tweeter is added to a more conventional three-way system, with a crossover at 10,000 Hz or even higher. Alternatively, the fourth driver can be added at the low-frequency end, crossing over from the woofer to an upper-bass or lower mid-range driver in the 100-to-300-Hz region. The upper-bass speaker is normally a small woofer that measures about 8 inches in diameter. Together with the higher frequency drivers, it acts as the woofer of a three-way system.

If a super tweeter is used, especially at frequencies near the limits of human hearing, its benefits may be marginal. Little program material has much content in that range, except for noise. Thus, the principal benefit of a super tweeter may be an airier quality due to improved dispersion.

The rationale for using a very low woofer crossover frequency is that the large woofer cone excursions at low frequencies tend to modulate higher frequencies in the program band handled by the woofer. Even if the speaker is perfectly linear, high frequencies radiated by a cone simultaneously handling low frequencies will be frequency-modulated (the Doppler effect). This produces a modulation distortion very much like that resulting from woofer nonlinearity. By restricting the woofer to a narrow frequency range, the likelihood of such intermodulation is reduced. Of course, this places an added burden on the next higher frequency driver, which often carries the bulk of the audible program content and must do so with a minimum of distortion.

We have seen how the number of crossovers in a speaker system is determined by the limitations of its individual drivers, the cabinet size, and the degree of

Great Jumpers are here!

State of the art

flat cable connector assemblies . . .

at affordable prices.

Great Jumpers come to you fully pre-assembled and fully pre-tested. Cable strain reliefs are integral to the molded-on connectors. And we've designed in complete line-by-line probeability with probe access ports behind each contact.

Our connectors are industry standard; two parallel rows of contacts, spaced every .1".

Great Jumpers come in five popular cable widths: 20, 26, 34, 40 and 50 lines wide, and in lengths ranging from 6" to 36".

Available now at the distributor near you who carries the A P Products Faster and Easier Line.

Our distributor list is growing daily. For the name of the distributor nearest you call Toll-Free 800-321-9668.

Send for our complete A P catalog, the Faster and Easier Book.

Faster and easier is what we're all about.

AP PRODUCTS INCORPORATED

Box 110 • 72 Corwin Drive Painesville, OH 44077 (216) 354-2101 TWX: 810-425-2250
Powerful in computing muscle, yet small in physical size, the Altair® 680b offers many special features at an affordable price. Based on the 6800 microprocessor, the 680b comes with 1K of static RAM, Serial I/O port, PROM monitor and provisions for 1K of PROM as standard components. It's good thinking, when you're interested in making a modest investment on a highly reliable computer, to consider the Altair 680b.

Our PROM monitor eliminates the necessity for toggling front panel switches to load bootstraps or manipulate memory contents. Only a terminal and programming language are required for complete system operation. With Altair System software—Altair 680 BASIC, assembler and text editor—you may begin problem solving immediately with ease.

By adding the 680b-MB Expander card, many options are currently available:

* 16K Static Memory Board—Increase your system memory with 16K bytes of fast access (215 ns), low power (5 watts per board) static RAM. 680 BASIC and assembler/text editor are included free with purchase.

* Process Control Interface—A PC card that uses optically isolated inputs and relay outputs that transmit sensory information to and control signals from the computer. A diverse world of control applications is opened up with the Altair 680b-PCI.

* Universal Input/Output Board—If your I/O needs exceed the serial port already on the main board, augment your I/O channels with the 680b-U1/O. By implementing the optional serial port and two parallel ports, you can simultaneously interface to four terminals.

* New Addition—Kansas City Audio Cassette Interface—Use the 680b-KCACR to interface your Altair 680b with an audio cassette recorder for inexpensive mass storage of programming languages, programs and data.

Available in either full front panel or turnkey models, the Altair 680b presents many computing capabilities at a low cost—without skimping on performance. See it today at your local Altair Computer Center or contact the factory for further details.

Good Thinking.
At CIE, you get electronics career training from specialists.

If you're interested in learning how to fix air conditioners, service cars or install heating systems—talk to some other school. But if you're serious about electronics, come to CIE—The Electronics Specialists.

Special Projects Director
Cleveland Institute of Electronics
My father always told me that there were certain advantages to putting all your eggs in one basket. "John," he said, "learn to do one important thing better than anyone else, and you'll always be in demand."

I believe he was right. Today is the age of specialization. And I think that's a very good thing.

Consider doctors. You wouldn't expect your family doctor to perform open heart surgery or your dentist to set a broken bone, either. Would you?

For these things, you'd want a specialist. And you'd trust him. Because you'd know if he weren't any good, he'd be out of business.

Why trust your education and career future to anything less than a specialist?

You shouldn't. And you certainly don't have to.

FACT: CIE is the largest independent home study school in the world that specializes exclusively in electronics.

We have to be good at it because we put all our eggs in one basket: electronics. If we hadn't done a good job, we'd have closed our doors long ago.

Specialists aren't for everyone.

I'll tell it to you straight. If you think electronics would make a nice hobby, check with other schools.

But if you think you have the cool -- and want the training it takes -- to make sure that a sound blackout during a prime time TV show will be corrected in seconds -- then answer this ad. You'll probably find CIE has a course that's just right for you!

At CIE, we combine theory and practice. You learn the best of both.

Learning electronics is a lot more than memorizing a laundry list of facts about circuits and transistors. Electronics is interesting because it's based on some fairly recent scientific discoveries. It's built on ideas. So, look for a program that starts with ideas -- and builds on them.

That's what happens with CIE's Auto-Programmed® Lessons. Each lesson uses world-famous "programmed learning" methods to teach you important principles. You explore them, master them completely -- before you start to apply them!

But beyond theory, some of our courses come fully equipped with the electronics gear to actually let you perform hundreds of checking, testing and analyzing projects.

In fact, depending on the course you take, you'll do most of the basic things professionals do every day -- things like servicing a beauty of a Zenith color TV set... or studying a variety of screen display patterns with the help of a color bar generator.

Plus there's a professional quality oscilloscope you build and use to "see" and "read" the characteristic waveform patterns of electronic equipment.

You work with experienced specialists.

When you send us a completed lesson, you can be sure it will be reviewed and graded by a trained electronics instructor, backed by a team of technical specialists. If you need specialized help, you get it fast... in writing from the faculty specialists best qualified to handle your question.

People who have known us a long time, think of us as the "FCC License School."

We don't mind. We have a fine record of preparing people to take... and pass... the government-administered FCC License exams. In fact, in continuing surveys nearly 6 out of 5 of our graduates who take the exams get their Licenses. You may already know that an FCC License is needed for some careers in electronics -- and it can be a valuable credential anytime.

Find out more! Mail this card for your FREE CATALOG today!

If the card is gone, cut out and mail the coupon.

I'll send you a copy of CIE's FREE school catalog, along with a complete package of independent home study information.

For your convenience, I'll try to arrange for a CIE representative to contact you to answer any questions you may have.

Remember, if you are serious about learning electronics... or building upon your present skills, your best bet is to go with the electronics specialists -- CIE. Mail the card or coupon today or write CIE (and mention the name and date of this magazine), 1776 East 17th Street, Cleveland, Ohio 44114.

CIE

Cleveland Institute of Electronics, Inc.

1776 East 17th Street, Cleveland, Ohio 44114

Accredited Member National Home Study Council

☐ YES... John, I want to learn from the specialists in electronics -- CIE.

Send me my FREE CIE school catalog -- including details about troubleshooting courses -- plus my FREE package of home study information.

PE-42

Print Name _______________________________ Apt.

Address __

City ___________________________ State ____________ Zip.

Age ___________________________ Phone (area code) ___________________________

Check box for G.I. Bill Information: ☐ Veteran ☐ Active Duty

Mail today!
subjective refinement that is desired. (It is difficult, if not impossible, to actually measure the benefits of some multi-way speaker systems, especially in view of the aberrations introduced by any crossover network, let alone a four-way network.)

Having made side-by-side comparisons between two- and three-way systems based on similar drivers and cabinet dimensions, we can attest to the added openness imparted by a good three-way design. It is a fairly subtle effect, however, and might not be detectable without such a comparison. On the other hand, we have often been impressed by the similarity in sound quality between some good, small two-way speaker systems and vastly larger (and more expensive) three- or four-way systems. There is not much mystery to this effect, since it means that the speakers involved have been designed to deliver a uniform energy response with better than average dispersion. Their similarity is clearly evident in the measured frequency response. Consequently, it is not surprising that they sound very much alike in their basic octave-to-octave balance and freedom from coloration. The low-frequency limitations of the small speakers are usually evident only below 50 Hz or so, where most programs have little energy.

The Speakerlab 7 speaker reviewed here is a three-way system, and from its use of two full-size (10- and 12-inch) woofers it is easy to understand why a three-way design was necessary. The first crossover at 700 Hz was dictated by the high-frequency limitations of the woofers, and a rather large horn driver was needed in the midrange to operate down to that frequency. A horn of this size cannot do a good job at the highest audio frequencies, making it necessary to cross over to a second smaller horn at 500 Hz. A speaker with the efficiency and power handling ability of this one could not have been made with a simple two-way configuration or in a smaller cabinet.

AKAI MODEL GX-270D-SS FOUR-CHANNEL TAPE RECORDER

Synchronous recording function permits multitrack taping.

Paradoxically, at a time when interest in quadraphonics is not especially strong, a number of open-reel tape recorders on the market feature 4-channel capabilities. The indication here is that home recordists are using these decks to build up multitrack recordings in a manner similar to that used by professional recording studios, rather than for recording and listening to 4-channel tapes.

Aki's Model GX-270D-SS 4-channel open-reel tape recorder is in this category, having the synchronous recording capability that makes it possible to obtain multitrack recordings. Its "Quadra Sync" recording system can be used in both the 2- and 4-channel modes. The deck also features a direct-driven capstan, 7½- and 3¼-ips (19.1 and 9.5 cm/s) speeds, and a bidirectional playback feature for stereo operation. The transport is solenoid controlled.

The recorder measures 18.3"H x 17.3"W x 7.5"D (46.5 x 44 x 19.5 cm) and weighs 39.2 lb (17.8 kg). Its nationally advertised value is $875.

General Description. An ac servo motor is used to directly drive the capstan of the recorder, eliminating the belts and pulleys usually found in tape drives. Pushbutton switches are used to select the operating speed and simultaneously switch in the appropriate equalization characteristic. The hubs can accommodate tape reels up to 7" (17.8 cm) in diameter. Each hub is driven by its own eddy-current motor.

The bidirectional playback mechanism can be initiated either automatically by conducting foil on the tape's leader or manually by pressing a switch. The main transport functions are controlled by six pushbutton switches, through solenoid actuators. They include normal and fast speeds in both directions, STOP, and REC interlock functions. A "flying start" recording can be made from play by simultaneously holding down the normal play button and pressing the REC button. A separate PAUSE button stops the tape without disengaging the recording function.

A small PITCH CONTROL knob to the left of the tape heads can be used to adjust the tape speeds over a nominal ± 5% range. It has a detented center position, which gives the nominally correct tape speed. This control operates when the transport is in both the record and the playback modes. So, it can be used to correct the pitch of a reference track when making a Quadra Sync recording. Below the PITCH CONTROL are the POWER switch and two TAPE SELECTOR buttons (for low-noise and wide-range tapes) and the speed selector buttons.

There are five pushbuttons in the Quadra Sync system. Four are for individual channel selection and the fifth allows you to select either the 2- or the 4-channel mode of operation.

Four VU meters light according to the mode selected. In the 2-channel mode, only the channels 1 and 3 meters light, while in the 4-channel mode, all four meters light. A red light above each meter glows when that channel is in the recording mode. This gives a very clear indication of the operation of the Quadra Sync system, since pressing any of the system's buttons disables the erase and record function for that channel, simultaneously extinguishing the corresponding red light.

The settings of the concentric playback level controls do not affect the meter readings. A MONITOR switch con-
President. Better than CB really has to be.

Nobody needs a 134 MPH sports car to get to work and back. And you probably don't need a CB as good as a President. But maybe...just maybe...you want one.

You want 40 channels. You want all the little extras like variable mike gain, delta tune, LED channel readout and ANL.

Every single President CB—not just one in twenty—is thoroughly tested to make sure it works perfectly before it leaves the factory.

And every single President incorporates high technology like IC chips and our new compression circuit for superior talk power.

Maybe we've gone too far with the simple CB. But maybe...just maybe...you won't settle for anything less.

President
Engineered to be the very best.
President Electronics, Inc.
16691 Hale Avenue Irvine, CA 92714 (714) 554-7335
In Canada: Lectron Radio Sales Ltd., Ontario
nnects either the input signal or the play-
back amplifier output to the line output
terminals. Four separate ¼" (6.4-mm)
phone jacks are provided for the micro-
phones, which should be medium
impedance (600-ohm) dynamic types.
There are also two stereo phone jacks
for monitoring the front and rear chan-
nels. For best results, the phones should
have an 8-ohm impedance. Below each
VU meter is a concentric pair of record-
ing level controls for that meter’s chan-
nel (one each for the mic and line inputs,
which can be mixed).

On the rear of the recorder are the
four pairs of line inputs and outputs and
a socket for an optional remote control
accessory.

The specifications of the Model
GX-270D-SS are consistent with the re-
quirements for a high-quality home tape
recorder. Based on the use of Scotch
211 or an Akai tape, they include: fre-
cuency response to 21,000 Hz at 7½ ips
and to 15,000 Hz at 3½ ips; with wow
and flutter less than 0.07% and 0.1% at
the two speeds; less than 1% distortion
at 1000 Hz and 0 VU; and better than 54
dB S/N ratio, referred to a +6-VU re-
cording level.

Laboratory Measurements. The
record/playback frequency response of
the tape deck was measured with sev-
eral types of tape, using the “wide range”
selector position, to determine which
best matched the factory settings of the
recorder. Although the differences were
not large, we found that Memorex Quan-
tum gave the best results; it was subse-
quently used for the remainder of the
tests. Akai SRT-F and Scotch 212 were
quite similar to it in performance, while
TDK Audia and Maxell UD35-7 had a
rising high-end response.

The 7½-ips frequency response was
±2 dB from 20 to 24,500 Hz at a 20-dB
recording level and was virtually the
same at 0 dB. There was no sign of tape
saturation at 0 dB with any of the tapes
used. The 3½-ips response was within
±2.5 dB from 30 to 18,500 Hz, and tape
saturation rolled off the 0-dB output
above 7000 Hz.

The playback frequency response,
measured with Ampex test tapes, was
within ±1.5 dB from 50 to 15,000 Hz at
7½ ips. It was ±1.5 dB from 50 to 7500
Hz at 3½ ips. Both results represent the
frequency limits of the tapes.

A line input of 75 mV or a microphone
input of 0.28 mV was necessary for a
0-dB recording level. The playback level
from a 0-dB recording was 0.89 volt with
the Memorex tape. (It varies somewhat
with the tape used.) The playback distor-
tion at 0 dB at either speed was 0.38%
to 0.40%, which is well below the rated
value. The reference 3% distortion was
reached at a recording input of +10 dB.

The unweighted S/N ratio, referred to
the 3% distortion level, was 59 dB at
both speeds. With IEC “A” weighting,
it was 65.5 dB. With CCIR/ARM weight-
ing, the S/N was 61 dB at 3½ ips and 64
dB at 7½ ips. The noise level through
the microphone inputs was only 3.5 dB
higher than through the line inputs.

The flutter of the GX-270-SS was a
very low 0.04% at both speeds, which
is probably the result of using a direct-
drive capstan motor. The pitch con-
trol had a range of -4.6% to -4.8% at
3½ ips, and from +5.5% to -4.1% at
7½ ips. In fast forward and rewind, an
1800’ (550-m) reel of tape was handled
in 100 seconds. The meters responded
more slowly than real VU meters, in-
dicating 80% of steady state on 0.3-
second tone bursts. The headphone vol-
ume was not adjustable and was quite
low with 200-ohm phones but fairly good
with 8-ohm phones.

User Comment. The operation of the
recorder was simple and straightforward,
for both conventional operation and for
making “Quadra Sync” recordings. The
solenoids, which operated with audible “clunks,” had a logic sys-
tem that enabled the buttons to be oper-
ated in any sequence without going
through stop. Pressing a normal speed
button while the tape was in fast motion
(or going in the opposite direction)
brought the tape to a smooth, swift stop,
after which it paused for a few seconds
before resuming play.

On the machine tested, we did not find
any effect on the sound when we oper-
ated the TAPE SELECTOR buttons. Nei-
ther the frequency response, nor the dis-
tortion, nor the noise level were affected
by this control in any way that we could
hear or measure. Also, although the
head cover carries the inscription “Auto
Reverse,” this feature is not mentioned
in the instruction manual, nor are there
any instructions given on how to install
the conductive tape for automatic rever-
sal. A couple of pieces of foil are includ-
ed with the recorder, with a cryptic state-
mant that they should be installed on
either the dull side or the shiny side of
the tape. We tried both, and the system
operated properly with the foil on either
side of the tape. Even if the autoreverse
feature is not used, it is still very conven-
tient to be able to play the second pair of

[Graphs of Record/playback response using Memorex Quantum tape at 7½ and 3½ ips.]

[Graphs of Playback frequency response of the recorder using Ampex test tapes.]

34
You’ve got a secret

with

the

amazing

Realistic

One

Hander

You've got a secret with the amazing Realistic One-Hander. How's a CB bandit going to take your CB if he doesn't even know you've got one? That's the secret of the One-Hander. Since all controls you need are in the palm-sized handset, you can mount the tiny transceiver case permanently out of sight — in the glovebox, under dash or seat, even in the trunk using a special extension cable. When you leave your vehicle, unplug the handset and lock it up or take it with you. The One-Hander is safer and easier to use while driving — no reaching and fumbling around to make adjustments. Built-in noise blanker and limiter chop out ignition-type noise. Two ceramic filters and push-pull audio circuitry. Improved auto-modulation for FULL talk power, always. With mounting bracket, cables for 12 VDC positive or negative ground. Thieves hate the Realistic One-Hander. But you'll love it. Just 169.95* at your nearby Radio Shack.

FREE! New '78 Catalog

Come in for your copy and see what's really new in electronics. 164 pages, 100 in full color. 2000 exclusive items.

Available Sept. 5th

SEPTEMBER 1977

SOLD ONLY WHERE YOU SEE THIS SIGN:

Radio Shack

A TANDY COMPANY • FORT WORTH, TEXAS 76107
OVER 5000 LOCATIONS IN NINE COUNTRIES

*Retail Prices May Vary at Individual Stores and Dealers
tracks at the touch of a button, without interchanging the reels.

At 7½ ips, the sound quality of the recorder leaves little to be desired. When we recorded interstation hiss from an FM tuner, we could hear only a minute brightening of the playback in comparison to the incoming signal. This was consistent with the measured frequency response of the recorder. But at 3¾ ips, the brightness was quite noticeable, even without an A-B comparison.

This deck will appeal most to the serious amateur recordist who wants to try his hand at multi-track-sync recording. It is a versatile machine, equally at home with recording and playing back 2- and 4-channel tapes or with creating one's own "professional"-style recordings. We were impressed by the manner in which it surpassed every one of its published specifications, usually by a wide margin.

SPEAKERLAB MODEL S7 SPEAKER SYSTEM KIT

Assemble-it-yourself, three-way speaker system employs four drivers.

The Model S7 three-way speaker system is one of the six speaker kit models from Speakerlab. This second from the top-of-the-line kit features an air-suspension system to achieve good bass response in a relatively small enclosure. (Top of the line has a folded-corner-horn design.)

As with all speaker systems kits from Speakerlab, the Model S7's enclosure box is supplied already assembled, requiring only the application of an oil finish (materials supplied) to complete the "wood work." The various elements in the kit—drivers, crossover network, fiberglass insulation, etc.—are mechanically mounted and interconnected.

The Model S7's transducer complement consists of a horn tweeter, horn midrange driver, 12" (30.5-cm) cone-type woofer, and 10" (25.4-cm) cone-type woofer. Crossover frequencies are nominally at 700 and 5000 Hz, and L pads are provided for adjusting the midrange driver and tweeter balance. Zen- ers protect the tweeter.

Speakerlab recommends that an amplifier rated at a minimum of 15 to 25 watts/channel be used to drive the Model S7 speaker systems. Maximum guaranteed safe power for the speaker systems is 150 watts rms/channel. Nominal impedance is 4 ohms.

The front and back of the speaker system's walnut-veneer enclosure are made of ¾" (19.1-mm) thick particle board, while the remainder of the box has an additional layer of ¾" plywood added to its thickness. The enclosure measures 29"H x 18"W x 15½"D (73.7 x 45.7 x 38.4 cm). The assembled speaker system weighs 85 lb (38.6 kg). Price is $279 per speaker system kit.

Kit Assembly. The Speakerlab kit contained everything required to assemble, wire, and finish the speaker system except scissors, stapler, caulkig gun, and sandpaper. (The last item is used to gently sand the edges of the box and any rough spots.) A cartridge of silicone rubber adhesive, supplied with the kit, is used instead of screws for driver and subassembly mounting.

The prewired crossover network/input terminal/L pad assembly mounts first over its cutout in the cabinet via a bead of silicone adhesive. Next, the fiberglass wool sheets are cut with scissors to rough sizes and then stapled to all internal walls of the speaker cabinet except the front panel. Once this is done, short lengths of Velcro fastener tape are stapled to the front panel at all four corners.

The front board on which the drivers mount fastens to the cabinet via a thick bead of silicone rubber adhesive between it and the enclosure's particle board liner. A 2" x 2" (5.1 x 5.1 cm) brace is then white glued between the inside rear wall and the rear wall of the front panel between the woofer cutouts to add rigidity and to reduce the possibility of mechanical resonances in the bass range. Finishing nails driven through both walls into the ends of the brace keep the brace from moving while the glue is setting.

Heavy-gauge wires with push-on terminals connect to the drivers from the crossover/L-pad assembly. The drivers then mount in their respective cutouts with the aid of beads of silicone rubber adhesive. No screws are used to hold the drivers in place. The silicone adhe-

Tone-burst response for (left to right) 100, 1000, and 7000 Hz.
SWTPC announces first dual minifloppy kit under $1,000

Now SWTPC offers complete best-buy computer system with $995 dual minifloppy, $500 video terminal/monitor, $395 4K computer.

$995 MF-68 Dual Minifloppy
You need dual drives to get full benefits from a minifloppy. So we waited to offer a floppy until we could give you a dependable dual system at the right price. The MF-68 is a complete top-quality minifloppy for your SWTPC Computer. The kit has controller, chassis, cover, power supply, cables, assembly instructions, two highly reliable Shugart drives, and a diskette with the Floppy Disk Operating System (F DOS) and disk BASIC. (A floppy is no better than its operating system, and the MF-68 has one of the best available.) An optional $850 MF-6X kit expands the system to four drives.

$500 Terminal/Monitor
The CT-64 terminal kit offers these premium features: 64-character lines, upper/lower case letters, switchable control character printing, word highlighting, full cursor control, 110-1200 Baud serial interface, and many others. Separately the CT-64 is $325, the 12 MHz CT-VM monitor $175.

$395 4K 6800 Computer
The SWTPC 6800 comes complete with 4K memory, serial interface, power supply, famous Motorola MIKBUG® mini-operating system in read-only memory (ROM), and the most complete documentation with any computer kit. Our growing software library includes 4K and 8K BASIC (cassettes $4.95 and $9.95, paper tape $10.00 and $20.00). Extra memory, $100/4K or $250/8K.

Other SWTPC peripherals include $250 PR-40 Alphanumeric Line Printer (40 characters/line, 5 x 7 dot matrix, 75 line/minute speed, compatible with our 6800 computer and MITS/IMSAI); $79.50 AC-30 Cassette Interface System (writes/reads Kansas City standard tapes, controls two recorders, usable with other computers); and other peripherals now and to come.

Enclosed is:
___________________________ $1,990 for the full system shown above
(MF-68 Minifloppy, CT-64 Terminal with CT-VM Monitor)
___________________________ $995 for the Dual Minifloppy
___________________________ $325 for the CT-64 Terminal
___________________________ $175 for the CT-VM Monitor
___________________________ $395 for the 4K 6800 Computer

___________________________ $250 for the PR-40 Line Printer
___________________________ $79.50 for AC-30 Cassette Interface
___________________________ Additional 4K memory boards at $100
___________________________ Additional 8K memory boards at $250
Or BAC # ___________________ Exp. Date
Or MC # ___________________ Exp. Date

Name ________________________ Address ________________________
City ________________________ State ________________________ Zip

Southwest Technical Products Corp.
219 W. Rhapsody, San Antonio, Texas 78216
London: Southwest Technical Products Co., Ltd.
Tokyo: Southwest Technical Products Corp./Japan
Should your career in electronics go beyond TV repair?

There is no doubt television repair can be an interesting and profitable career field. TV repair, however, is only one of the many career areas in the fast growing field of electronics.

As an indication of how career areas compare, the consumer area of electronics (of which TV is a part) makes up less than one-fourth of all electronic equipment manufactured today. Nearly twice as much equipment is manufactured for the communications and industrial fields. Still another area larger than consumer electronics is the government area. That is the uses of electronics in such areas as research and development, the space program, and others.

Just as television is only one part of the consumer field, these other fields of electronics are made up of many career areas. For example, there are computer electronics, microwave and satellite communications, cable television, even the broadcast systems that bring programs to home television sets.

As you may realize, career opportunities in these other areas of electronics are mostly for advanced technical personnel. To qualify for these higher level positions, you need college-level training in electronics. Of course, while it takes extra preparation to qualify for these career areas, the rewards are greater both in the interesting nature of the work and in higher pay. Furthermore, there is a growing demand for personnel in these areas.

Unlike most other home study schools, CREI programs are devoted exclusively to preparing you for careers in advanced electronics. All of CREI programs are college level. And CREI gives you both theory and practical experience in advanced electronics.

Unique Design Lab

A unique feature of CREI training is its Electronic Design Laboratory Program, which trains you to actually design circuits. It also helps you understand the theories of advanced electronics and gives you extensive practical experience in such areas as tests and measurements, breadboarding, prototype construction, circuit operation and behavior, characteristics of electronic components and how to apply integrated circuits.

CREI prepares you at home for broader and more advanced opportunities in electronics—plus offers you special arrangements for engineering degrees.
Only CREI offers this unique Lab Program. It is a complete college lab and, we believe, better than you will find in most colleges. The “Lab” is one of the factors that makes CREI training interesting and effective. And the professional equipment in this program becomes yours to keep and use throughout your professional career after you complete the training.

Engineering Degree
CREI offers you special arrangements for earning credit for engineering degrees at certain colleges and universities as part of your home study training program. An important advantage in these arrangements is that you can continue your full time job while “going to college” with CREI. This also means you can apply your CREI training in your work and get practical experience to qualify for career advancement.

Wide Choice of Programs
CREI gives you a choice of specialization in 14 areas of electronics. You can select exactly the area of electronics best for your career field. You can specialize in such areas as computer electronics, communications engineering, microwave, CATV, television (broadcast) engineering and many other areas of modern electronics.

FREE Book
In the brief space here, there isn’t room to give you all of the facts about CREI college-level, home study programs in electronics. So we invite you to send for our free catalog (if you are qualified to take a CREI program). The catalog has over 80, fully illustrated pages describing your opportunities in advanced electronics and the details of CREI home study programs.

Qualifications
You may be eligible to take a CREI college-level program in electronics if you are a high school graduate (or the true equivalent) and have previous training or experience in electronics. Program arrangements are available depending upon whether you have extensive or minimum experience in electronics.

Send for this FREE Book describing your opportunities and CREI college-level programs in electronics

Mail card or write describing qualifications to

CREI
CAPITOL
RADIO
ENGINEERING
INSTITUTE

McGraw-Hill Continuing Education Center
3939 Wisconsin Avenue Northwest
Washington, D.C. 20016

Accredited Member National Home Study Council

GI Bill
CREI programs are approved for training of veterans and servicemen under the G.I. Bill.
Using a caulking gun, a bead of silicone rubber adhesive is applied around the opening in the enclosure for mounting the electronic assembly.

Cabinet is lined with fiberglass and front panel attached, the latter again secured by adhesive.

The prewired assembly, holding the crossover network, input terminal, and L pads is pressed into the adhesive.

Crossover network leads are pulled through the driver openings. Note supporting wood brace.

A choice of two different ways of finishing the grille assembly is possible with the materials supplied in the kit. One is a plain flat grille that merely requires the grille cloth to be stretched over and stapled to a ready-made frame. The other is to make the grille assembly three dimensional. To do this, four pieces of wood are glued together to form a frame that is then glued to the ready-made frame. After rounding the edges of the frame, the grille cloth is stretched over the whole and stapled into place. In either case, Velcro strips are fastened to the frame at the inside rear corners to hold the grille assembly in place.

We allowed four hours for the cemented pieces to set before using the speaker system, which was lying on a floor so that the full weight of the drivers bore down on the silicone adhesive cement/gaskets. We tested the speaker systems beforehand, though, propping them up just enough to permit us to connect cables from our amplifier to them and to permit us to adjust the balance controls.

Once the cements had set and we were satisfied with the operation of the speaker systems, we used No. 150 dry sandpaper to smooth all exterior surfaces of the cabinets. Then we proceeded to pour small amounts of the oil supplied with the kit on one side after another, rubbing it in lightly with No. 400 wet-paper sandpaper. Excess oil was wiped off with a paper towel. Then we allowed the wood to soak up the oil and dry for about two hours. For the finishing touch, we installed the grille assembly, and the system was ready to go to work.

Laboratory Measurements. The middle and high-frequency response of the speaker system was measured in the reverberant field of our room at a distance of 12' to 15' (3.7 to 4.6 m) from the drivers and with the midrange and tweeter level controls set to maximum. To eliminate room interactions at low frequencies, the woofer response was measured separately, with the microphone placed in the plane of the mounting board. Since the system has two dif-
Incredibly inexpensive. EXPERIMENTOR solderless sockets begin at $5.50* ($4.00* for the 40 tie-point quad bus strip). A spool of solder costs more.

Mix and match. Use large and small chips in the same circuit without problems. There are two sizes of EXPERIMENTOR sockets with 3/10th and 6/10th centers.

Full fan-out. A CSC exclusive. The only solderless breadboard sockets with full fan-out capabilities for microprocessors and other larger (0.6") DIPs.

Microprocessors and other complex circuits are easy to develop. EXPERIMENTOR quad bus strips give you 4, 8 or 16 buses to simplify your breadboards.

Infinitely flexible. Circuits can go in any direction, up to any size. All EXPERIMENTOR sockets feature positive interlocking connectors that snap together horizontally and/or vertically. And un-snap to change a circuit whenever you wish.

Easy Mounting. Use 4-40 screws from the front or 6-32 self-tapping screws, from the rear. Insulated backing lets you mount on any surface.

Experimentor 350. $5.50* 46 five-point terminals plus two 20-point bus strips. 0.3" centers; % x 3½ x 2".

Experimentor 650. $6.25* 46 five-point terminals plus two 20-point bus strips. 0.6" centers; % x 3½ x 2¼".

WHAT ARE YOU WAITING FOR?

Discover today how solderless breadboarding can save time and money on every circuit you build. Get acquainted with EXPERIMENTORTM sockets and how they simplify circuit design, assembly and testing. Eliminate the hassles and component damage of soldering. No special hardware or jumper cables required, either. And the price is so low, it's hard to believe.

See your CSC dealer today. Or call 203-624-3103 (East Coast) or 415-421-8872 (West Coast) for the name of your local stocking distributor and a full-line catalog.

CONTINENTAL SPECIALTIES CORPORATION
44 Kendall Street, Box 1942, New Haven, CT 06503
203-624-3103 TWX 710-465-1277
West Coast 351 California St, San Francisco, CA 94104
415-421-8872 TWX 910-372-7992
- MEXICO: ELCOPO, S.A., Mexico City 5-23-30-04
- CANADA: Len Funkler Ltd., Ontario

SEE US AT WESCON SHOW BOOTH #1114, 1116 & 1118.
ferently sized woofers, separate measurements were made on each.

The reverberant frequency response was very good. Also, the woofer response was smooth and flat, without a glitch in the upper part of its range. When the two curves were spliced together, the response was within ±3 dB from 35 to 6000 Hz and rose at higher frequencies. Of course, the shape of the high-frequency curve would vary considerably with different settings of the level controls.

The reasons for using two different woofers are not obvious, since the measured frequency response from each was the same, although the larger cone delivered about 2 dB more output. The output of the woofer reached a maximum between 60 and 80 Hz, falling at a rate of 24 dB/octave below 60 Hz and at about 6 dB/octave above 80 Hz.

The rated impedance of the speaker system is 4 ohms, a fact that was confirmed by our tests. It measured 4 ohms at 2 Hz and in the 100-Hz region, with a bass resonance rise to 15 ohms at 50 Hz. The impedance was in the 10-to-12-ohm range at all frequencies above a few hundred hertz.

User Comment. For most of our listening tests, the speaker systems were on tilt stands supplied by Speakerlab. This raised the cabinets about 8" (20.3 cm) above floor level and tilted them back to provide better coverage for the typical seated listener.

In our live-versus-recorded test, the Speakerlab S7 was highly accurate in the upper midrange and at high frequencies. We observed some added warmth in the lower midrange. It did not show up on the response curve, however, and may have been associated with the room's characteristics.

The S7's 4-ohm speaker impedance gives one a sense of higher speaker efficiency as compared to equivalent 8-ohm speakers since it draws more power at a given volume-control setting. Note, however, that one cannot safely use two sets of speaker systems when using 4-ohm ones, even if the remotes are 8-ohm types, as most amplifiers will not be able to handle it. For obtaining maximum power from one set of speakers, however, the 4-ohm types are ideal.

All in all, this is a very fine speaker system. We found it to be equally suited to all kinds of music. Since its balance must be set by ear, the end result naturally depends on the builder's ability to set up both balance controls properly. (Instructions are provided with the kit.)

Assembling this kit was an interesting job. The instruction manual was clearly written and illustrated, and most informative. It took us about two hours to complete each speaker system, excluding waiting time for glue drying. Not having any screws to which to secure the speaker elements eliminated the possibility of damaging the cone by mistakenly moving the driver above it owing to the always surprising heavy weight of the element. But, even if this or any other damage is done, the manufacturer will send a new part, no questions asked. And if you happen to be the unhappiest person around and cannot complete the kit, Speakerlab will finish it for you at no charge (customer pays freight). If you should need help with the kit, there's a toll-free number where you can obtain fast, free assistance.

For those who want to make their own enclosures, speakers and the crossover can be purchased separately for $191 each channel.

For more information, write Speakerlab, 5500 35th Ave., N.E., Seattle, WA 98105.

The mid frequency horn driver is prepared for enclosure mounting.

Completed system without grille.

By using four pieces of wood glued together to form a box that is then glued to the regular frame, a three-dimensional look for grille is obtained.

RAISED GRILLE

Use masking tape to hold parts in place while glue dries.
Why you should buy a digital multimeter from the leader in digital multimeters.

If you're shopping for your first multimeter, or moving up to digital from analog, there are a few things you should know.

First, look at more than price. You'll find, for instance, that the new Fluke 8020A DMM offers features you won't find on other DMMs at any price. And it's only $169.*

Second, quality pays. Fluke is recognized as the leading maker of multimeters (among other things) with a 30-year heritage of quality, excellence and value that pays off for you in the 8020A.

Third, don't under-buy. You may think that a precision 3½-digit digital multimeter is too much instrument for you right now. But considering our rapidly changing technology, you're going to need digital yesterday.

If you're just beginning, go digital.

Why not analog? Because the 8020A has 0.25% dc accuracy, and that's ten times better than most analog meters.

Also, the 8020A's digital performance means things like 26 ranges and seven functions. And the tougher your home projects get, the more you need the 8020A's full-range versatility and accuracy. The 8020A has it; analog meters don't.

If you're a pro.

You already know Fluke. And you probably own a benchtop-model multimeter.

Now consider the 8020A: smaller in size, but just as big in capability. Like 2000-count resolution and high-low power ohms. Autozero and autopolarity. And the 8020A is MOV-protected to 6000V against hidden transients, and has overload protection to 300V ac.

Nanosiemens?

Beginner or pro, you'll find the meter you now have can't measure nanosiemens. So what? With the 8020A conductance function, you can measure the equivalent of 10,000 megohms in nanosiemens. Like capacitor, circuit board and insulation leakage. And, you can check transistor gain with a simple, homemade adapter. Only with the 8020A, a 13-oz. heavyweight that goes where you go, with confidence.

What price to pay.

$169.*

Of course, you can pay more. Or less. In fact, you could pay almost as much for equally compact but more simplistic meters, and get far less versatility. And, the 8020A gives you the 'plus' of custom CMOS LSI chip design, and a minimum number of parts (47 in all). All parts and service available at more than 100 Fluke service centers, worldwide. Guaranteed, for a full year.

Rugged. Reliable. Inexpensive to own and to operate; a simple 9V battery assures continuous use for up to 200 hours.

Where to buy.

Call (800) 426-0361 toll free. Give us your chargecard number and we'll ship one to you the same day. Or, we'll tell you the location of the closest Fluke office or distributor for a personal hands-on feel for the best DMM value going.

* U.S. price only

Fluke 8020A DMM for Home Electronics Experts: $169
You're looking at the world's best-designed tonearm.

This is a Dual tonearm. It can make a big difference in the way your records sound. And how long they last.

The four-point gyroscopic gimbal is widely acknowledged to be the finest suspension system for a tonearm. It positions the tonearm precisely where the vertical and horizontal axes intersect. The arm remains perfectly balanced in all planes of movement.

Further, the straight-line tubular design achieves the shortest distance between pivot and stylus. That's basic geometry. Curving the tonearm adds mass, decreases rigidity and makes the arm prone to lateral imbalance.

The vernier counterbalance permits you to balance the tonearm with micrometer-like precision. Tracking force is applied so that the stylus remains perpendicular to the record, even if the chassis is not level.

All this serves to establish and maintain the correct cartridge-to-groove relationship. So the stylus can trace the rapidly changing undulations of the groove walls freely, precisely and with the lowest practical force. In short, flawless tracking.

Despite the advantages of the gimbal-mounted tonearm, you won't find many around. But now, you will find one on every Dual turntable. Even our lowest-priced model, the new, fully automatic 1237.

It's one more example of Dual's total commitment to engineering excellence.

For the life of your records
United Audio, 120 So. Columbus Ave., Mt. Vernon, NY 10552

Less than $135. Other Dualists $400. Actual resale prices are determined individually by and at the sole discretion of authorized Dual dealers.
1/2-Octave Real Time Audio Analyzer

BY BOB JONES AND RICHARD MARSH

Used with a mike and oscilloscope, it displays system output to permit accurate matching to room acoustics.

PART 1

It's common knowledge that an equalizer can shape a sound system's frequency response. But adjusting multiple equalizer bands for flat audio response in a room is a challenge. This project, an audio Real Time Analyzer, provides a solution to the problem. It generates a graphic representation of the system's output with sufficient detail (20 half-octave bands) to allow quick, accurate matching to room acoustics when used with a calibrated microphone and a dc-coupled oscilloscope.

Furthermore, the RTA can be used to check the frequency response of such components as preamps, power amplifiers, etc. The RTA can also function as a sound pressure meter, as a noise analyzer (energy per frequency band), and as an aid in the design of speaker systems and crossovers.

A block diagram of the RTA is shown in Fig. 1. Input signals are selected by S1 from MIC or AUX sources. Microphone signals are boosted to line level by a preamp with a gain of 200. A buffer amplifier then passes the MIC or AUX signal to twenty half-octave active bandpass filters. Each filter passes only that portion of the input signal within its passband. These filtered ac components are then rectified by diodes (one for each filter) and smoothed by RC combinations. The resulting dc levels, proportional to the amount of energy within each passband, are scanned sequentially by a 24-channel multiplexer. Finally, the multiplexed signal is buffered and presented at the RTA output.

At this point, dc levels can be applied to the vertical amplifier of the oscilloscope. Variations in vertical deflection from one band to the next will linearly reflect differences between dc levels, and hence between the energies contained in the filter passbands. However, in audio work, voltage variations are usually expressed in decibels. A logarithmic converter has therefore been incorporated into the RTA, allowing direct readout of signal levels in dB from the CRT trace. The multiplexing and display functions of the RTA are carried on so quickly that all bands are shown simultaneously or in "real time."

Circuit Details. The input stage of the Analyzer is shown schematically in Fig. 2. A balanced differential amplifier, IC1, allows the use of long lines and low-impedance microphones due to its good common mode rejection characteristics. This amplifier has a voltage gain of 200, determined by R2 and R4, and boosts microphone input signals to line level. External frequency compensation for the op amp is provided by R6 and C1. Capacitor C2 prevents any dc level at the output of IC1 from reaching microphone level control R7.

Signals from either the microphone preamp or a source connected to the AUX input are selected by S1 and applied to buffer amplifier IC2. Frequency compensation is provided by C3. The low-impedance output of IC2 drives the parallel inputs of the half-octave filters. Each active filter employs one IC (IC3...
through IC22) in a Wein-bridge circuit, as shown in Fig. 3. The parallel legs of the filters are formed by R35 through R54 and C5 through C24, and the series legs by R55 through R74 and C25 through C44. The values of these components are chosen according to the formula for the center frequency of the filter passband:

\[f_c = \frac{1}{2\pi RC} \]

Note that each RC pair (series and parallel) has the same time constant. Potentiometers R15 through R34 control filter gain and Q. When properly adjusted, the bandwidth of each filter is exactly one-half octave. With filter center frequencies spaced one-half octave apart, the skirts of the filter response curves will cross over 12 to 18 dB down. This is satisfactory for most audio work.

To achieve the value of Q necessary for narrow bandwidth, the resistors and capacitors in the series and parallel legs of each filter must have close tolerances. Resistors should have tolerances no greater than 1%, and capacitors no greater than 3%. Band-to-band variations in filter gain can be trimmed by level adjust potentiometers R75 through R94. Each filter output is rectified and filtered into a proportional dc voltage by D1 through D20, C85 through C104, R95 through R114 and R115 through R134. A long time constant is employed in the RC filter to average low-frequency components and reduce display bounce.

The digitally controlled multiplex system requires a reference time base or clock. In this project, IC23, a free-running 555 IC timer, generates the necessary clock pulses (Fig. 4). Duty cycle and frequency are determined by R135, R136, and C105. Too high a frequency causes excessive display bounce with a varying input such as random noise. Too low a clock frequency results in display flicker which is hard on the eyes. A clock rate of 2000 Hz was chosen to avoid both undesirable effects.

Clock pulses are applied to IC24, a 7490 decade counter wired to count from 0 to 7, then reset to 0 on the eighth clock pulse. Therefore, a total of eight different output states on three data lines (20, 21, 22) are available. These outputs allow selection of any one of eight FET gates in a 3705 PMOS IC multiplexer. All required decoding circuitry is on the 3705 chip. Of course, twenty channels are needed, not just eight. This is why IC26 and IC27 (7490 and 9301, respectively) are employed. The multiplex circuit is shown in Fig. 5. Each 3705 (three required for 24-channel capacity) has an enable line (E). This allows sequential multiplexer activation.

Decade counter IC26 (7490) is wired to count from 0 to 2, and then reset to 0 on the next pulse from IC25F. For the first seven clock pulses (refer to timing diagram Fig. 6), IC26 has a 0 output. This is decoded by IC27, a 9301 BCD-to-decimal decoder, as a select line one (MPX1 Select) command. Accordingly, multiplexer IC28 is activated. The rectified outputs of the first eight filters are

PARTS LIST

- IC1, IC106, IC118 through IC165—0.01 µF, 50-V disc ceramic capacitor
- IC2, IC4—15 µF, 10-V tantalum capacitor
- IC3, IC45 through IC64—20 µF, 5%, 500-V silver mica capacitor
- IC5 through IC44—See text and Table I. Close tolerances are essential.
- IC65 through IC104—1-µF, 50-V 1 ceramic capacitor
- IC105—1.5 µF, 50-V ceramic capacitor
- IC107—500 µF, 50-V electrolytic capacitor
- IC108, IC109—50 µF, 50-V electrolytic capacitor
- IC110, IC111—10-µF, 20-V tantalum capacitor
- IC112—50-µF, 10-V tantalum capacitor
- IC113 through IC117—See Part II
- D1 through D20—1N4448 switching diode
- D21 through D24—1N4003, HEP ROX05 or equivalent
- R1—1-ampere slow-blow 3A fuse
- IC1—LM725CH operational amplifier
- IC2, IC3 through IC22—LM3011AH operational amplifier
- IC23—NE555 timer
- IC24, IC26—SN7490 decade counter
- IC25—SN7444 hex inverter
- IC27—9301 (Fairchild, or equiv.) BCD-to-decimal decoder
- IC28 through IC30—AM3705D (National Semiconductor, or equiv.) PMOS eight-channel multiplexer
- IC31—LM741CH operational amplifier
- IC32—MC7815CP or HEP C6114P—+15-volt voltage regulator
- IC33—MC7805 or HEP C6110P—+5-volt voltage regulator
- IC34—MC7915CP or HEP C6123P—-15-volt voltage regulator
- J1—Microphone connector (Cannon XLR-3-13 or equivalent)
- J2 through J4—BNC connector
- LED1—20-mA LED (TL132 or equivalent)

The following resistors are 1/4-watt, 1% tolerance, metal-film components.
- R1 through R3—1000 ohms
- R4, R5—200,000 ohms
- R35 through R74—See text and Table I. The following resistors are 1/4-watt, 5% tolerance carbon components.
- R6—47 ohms
- R9, R12, R14, R95 through R114, R138—10,000 ohms
- R10, R11—100,000 ohms
- R13—5000 ohms
- R115 through R134—3.3 Megohms
- R135—330 ohms
- R136—560 ohms
- R137—20,000 ohms
- R139—300 ohms
- R7—10,000-ohm, single-turn Cermet potentiometer
- R8—100,000-ohm, single-turn Cermet potentiometer
- R15 through R34—50,000-ohm, 20-turn, Helipan Cermet potentiometer (Beckman 66X or equivalent)*
- R75 through R94—100,000-ohm, single-turn miniature Cermet trimmer potentiometer (Beckman 91W or equivalent)*
- S1—Dpdt miniature toggle switch
- S2—Spmt miniature toggle switch
- T1—Triad F91-X universal transformer or equivalent 40-volt center-tapped transformer.

Misc.:—IC sockets or Molex Soldercuts, printed circuit boards, heat sinks, line cord, fuseholder, pc board spacers, suitable enclosure, knobs, coaxial cable, hookup wire, machine and self-taping hardware, solder, etc.

Note: The following is available from Southwest Technical Products Corp: 219 W. Rhapsody, San Antonio, TX 78216: set of three etched and drilled pc boards for $19.00

*Available through distributors such as Allied Radio or Newark Electronics.

**Consult a National Semiconductor local distributor or sales representative.
Fig. 2. Input stage includes a balanced differential amplifier, IC1, and buffer, IC2.

Fig. 3. Wein-bridge active band-pass filter, typical of twenty half-octave filters.

Fig. 4. Digital circuits generate multiplex control and scope trigger signals.
scanned and sequentially passed to output buffer amplifier IC31, a 741 op amp with a voltage gain of two. On the eighth clock pulse, IC24 will revert to a 0 output, IC26 will increment to 1, causing MPX2 Select to go high and activating IC29. Thus, the outputs of filters 9 through 16 are scanned and passed to IC31. On the sixteenth clock pulse, IC24 causes IC26 to increment to 2, and IC27 issues an MPX3 Select command which enables IC30. Accordingly, the rectified outputs of filters 17 through 20 are scanned and passed to the buffer. At clock pulses 21 and 22, a ground (0 volt) is sent to the scope for base line reference. At clock pulses 23 and 24, IC30 sends +5 volts (boosted by IC31 to 10 volts) to the scope for maximum level reference. (Input signal levels should be adjusted to fall within these extremes.) At clock pulse 24, IC24 and IC26 reset themselves to zero, MPX1 Select again goes high and the process is repeated. Also, a positive-going transition at clock pulse 24 is used for scope triggering.

The power supply for the Analyzer is shown schematically in Fig. 7. Transformer T1 (40 V CT) and diodes D21 through D24 form a bridge rectifier. Ca-

Fig. 5. The three 3705 multiplexer IC’s are enabled sequentially.

Fig. 6. The timing diagram below shows the clock waveform (top) and the events that occur at various clock pulses.
Fig. 7. Schematic of power supply circuit shows bridge rectifier and voltage regulators.

TABLE I—FILTER VALUES

<table>
<thead>
<tr>
<th>Filter</th>
<th>Center Frequency fC (Hz)</th>
<th>Resistors (ohms)</th>
<th>Capacitors (μF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.4</td>
<td>R35, R55—68,100</td>
<td>C5, C25—0.1</td>
</tr>
<tr>
<td>2</td>
<td>31.5</td>
<td>R36, R35—75,000</td>
<td>C6, C26—0.068</td>
</tr>
<tr>
<td>3</td>
<td>45</td>
<td>R37, R57—51,100</td>
<td>C7, C27—0.068</td>
</tr>
<tr>
<td>4</td>
<td>63</td>
<td>R38, R58—33,300</td>
<td>C9, C29—0.047</td>
</tr>
<tr>
<td>5</td>
<td>90</td>
<td>R39, R59—33,300</td>
<td>C9, C29—0.047</td>
</tr>
<tr>
<td>6</td>
<td>125</td>
<td>R40, R60—26,100</td>
<td>C10, C30—0.047</td>
</tr>
<tr>
<td>7</td>
<td>180</td>
<td>R41, R61—26,100</td>
<td>C11, C31—0.033</td>
</tr>
<tr>
<td>8</td>
<td>250</td>
<td>R42, R62—28,700</td>
<td>C12, C32—0.022</td>
</tr>
<tr>
<td>9</td>
<td>355</td>
<td>R43, R63—46,400</td>
<td>C13, C33—0.01</td>
</tr>
<tr>
<td>10</td>
<td>500</td>
<td>R44, R64—31,600</td>
<td>C14, C34—0.01</td>
</tr>
<tr>
<td>11</td>
<td>710</td>
<td>R45, R65—31,600</td>
<td>C15, C35—0.0068</td>
</tr>
<tr>
<td>12</td>
<td>1000</td>
<td>R46, R66—23,700</td>
<td>C16, C36—0.0068</td>
</tr>
<tr>
<td>13</td>
<td>1400</td>
<td>R47, R67—23,700</td>
<td>C17, C37—0.0047</td>
</tr>
<tr>
<td>14</td>
<td>2000</td>
<td>R48, R68—23,700</td>
<td>C18, C38—0.0033</td>
</tr>
<tr>
<td>15</td>
<td>2800</td>
<td>R49, R69—28,100</td>
<td>C19, C39—0.0022</td>
</tr>
<tr>
<td>16</td>
<td>4000</td>
<td>R50, R70—38,300</td>
<td>C20, C40—0.001</td>
</tr>
<tr>
<td>17</td>
<td>5600</td>
<td>R51, R71—28,700</td>
<td>C21, C41—0.001</td>
</tr>
<tr>
<td>18</td>
<td>8000</td>
<td>R52, R72—42,200</td>
<td>C22, C42—470pF</td>
</tr>
<tr>
<td>19</td>
<td>11200</td>
<td>R53, R73—31,600</td>
<td>C23, C43—470pF</td>
</tr>
<tr>
<td>20</td>
<td>16000</td>
<td>R54, R74—28,700</td>
<td>C24, C44—360pF</td>
</tr>
</tbody>
</table>

Capacitors C107, C108, and C109 provide input ripple filtering to IC voltage regulators IC32, IC33, and IC34. Capacitors C110, C111, and C112 provide output filtering. Resistor R139 limits current to LED1, the front panel power indicator.

Construction. The RTA is most easily assembled on three printed circuit boards (four if the optional log converter is desired). Etching and drilling and component placement guides for the Digital and Power Supply Board, Filter Board 1, and Filter Board 2 are shown in Figs. 8, 9, and 10, respectively. (See Table I for RC values for each filter.)

Mount all components on the pc boards using the minimum heat and solder required for good connections. Pay close attention to the polarity and basing of electrolytic (aluminum and tantalum) capacitors, diodes, transistors, and integrated circuits. The use of IC sockets or

Fig. 8A. Parts placement guide for digital and power supply board. See next page for etching and drilling.
Fig. 8B. Etching and drilling guide for digital and power supply board.

Molex Soldercons for all IC's is recommended. All signal lines to and from the boards should be shielded (small-diameter coax is ideal). The power transformer should be mounted as far away from the boards as possible to minimize hum.

This transformer (T1) is a "universal" transformer, and not all of its color-coded leads are used. Cut short any unused...
Fig. 9A. Use this pc board for Figs. 9B and 10 on next page.

leads and cover the ends with heat-shrink tubing. Also, be sure to use heat sinks on the voltage-regulator IC’s.

In the authors’ prototype, the pc boards (except the log converter) were stacked to conserve space. If you want to stack the boards, be sure to leave sufficient clearance for easy access to the LEVEL ADJUST and Q ADJUST potentiom-
etters. These controls should be mounted on the filter boards so that all adjustment screws point toward power supply pads and away from input pads.

The prototype was enclosed in a 15" x 10" x 5" (38.1 x 25.4 x 12.7 cm) metal cabinet. Switches S1 and S2, LEVEL controls R7 and R8, jacks J1 through J5, and LED1 were mounted on the front panel. The fuseholder and line cord strain relief were mounted on the rear. Part II of this article will describe an optional log converter for direct readout of the scope trace in dB. Calibration and RTA use will also be covered.

Fig. 9B. Parts placement for filter board #1. See Fig. 9A on previous page for etching and drilling.

Fig. 10. Parts placement for filter board #2. See Fig. 9A for etching and drilling.
BUILD A TRANSFORMERLESS DC-TO-DC VOLTAGE DOUBLER

High-efficiency, high-current solid-state circuit doubles the input dc level.

BY MARLOWE J. BUCHANAN

FOR MANY years, the only reasonable nonmechanical means of generating high dc potentials from low voltages in the medium-to-high-power range has been the oscillator-driven transformer. This type of converter has two major drawbacks—the average experimenter may not have the knowledge or the materials to design and build his own transformer/converters, and the power consumption is relatively high, making the converters inefficient at currents much below their ratings.

The capacitive voltage doubler described here is superior to normal converters in many applications. For example, it can be used to extend the range of a low-voltage power supply or to run a medium-power audio system in a vehicle. Capable of very high efficiencies, the converter can easily be adapted to the voltage and power needed.

Circuit Operation. Basically, the circuit shown in Fig. 1 acts as a set of high-speed electronic switches that alternate-charge C3 and C4 to the supply voltage and then connect the capacitors in series with the supply and load. The output load in effect "sees" the sum of the voltages across C3 and C4 and the supply voltage. Since C3 and C4 are driven 180° out-of-phase, this is a true full-wave voltage doubler.

Transistors Q7 and Q8 and their associated components form a multivibrator that has an operating frequency of roughly 6000 Hz with a 12-volt dc input supply. This oscillator produces two square waves that are 180° out-of-phase with each other and are used to drive Q5, Q6, Q9, and Q10. Resistors R1 through R4 are selected to limit base current to 3 mA. Drive transistor pairs Q5/Q9 and Q6/Q10 produce equal and opposite square waves that have extremely fast rise and fall times and are capable of sinking or sourcing a minimum of 100 mA to the output transistor pairs (Q1/Q2 and Q3/Q4).

When Q7 conducts, Q2, Q3, Q5, and Q10 are driven into saturation. Capacitor C3 charges through Q2 and D3, while C4 discharges through Q3, D2 and

![Fig. 1. The boosted dc output voltage is the sum of input dc plus charge on C3 and C4. The two capacitors are oppositely charged by multivibrator.]

PARTS LIST

- **C1**: 100-µF, 25-V electrolytic capacitor
- **C2**: 500-µF, 50-V electrolytic capacitor
- **C3**: 1000-µF, 50-V electrolytic capacitor
- **C5, C6**: 0.0015 µF, 50-V capacitor
- **D1** through **D4**: 50-V, 6-A rectifier diode (or bridge)
- **L1**: 100-µH, 4-A, 0.1-ohm dc resistance (or less) choke
- **Q1, Q3**: 2N6374 or similar transistor
- **Q2, Q4**: 2N5956 or similar transistor
- **Q5, Q6**: 2N3053 or similar transistor
- **Q7, Q8**: 2N2222 or similar transistor
- **Q9, Q10**: 2N4037 or similar transistor
- **R1** through **R4**: For input of 6 volts, omit; for 9 V, use 1000 ohms; for 12 V, use 330 ohms; for 15 V, use 180 ohms; for 18 V, use 120 ohms; for 21 V, use 100 ohms; for 24 V, use 82 ohms.
- **R5, R6**: 1800 ohms
- **R7, R8**: 100,000 ohms
- **Misc.**: 10-watt heat sink, suitable enclosure, heavy-gauge wire, mounting hardware, etc.
Empire's Blueprint For Better Listening

No matter what system you own, a new Empire phono cartridge is certain to improve its performance.

The advantages of Empire are threefold.

One, your records will last longer. Unlike other magnetic cartridges, Empire's moving iron design allows our diamond stylus to float free of its magnets and coils. This imposes much less weight on the record surface and insures longer record life.

Two, you get better separation. The small, hollow iron armature we use allows for a tighter fit in its positioning among the poles. So, even the most minute movement is accurately reproduced to give you the space and depth of the original recording.

Three, Empire uses 4 poles, 4 coils, and 3 magnets (more than any other cartridge) for better balance and hum rejection.

The end result is great listening. Audition one for yourself or write for our free brochure, "How To Get The Most Out Of Your Records." After you compare our performance specifications we think you'll agree that, for the money, you can't do better than Empire.

EMPIRE
Already your system sounds better.
Empire Scientific Corp.
Garden City, New York 11530

CIRCLE NO. 25 ON FREE INFORMATION CARD

the output load. When Q8 conducts, the process reverses itself, with C3 discharging through the output load, Q1, and D1, while C4 charges through Q4 and D4. Capacitor C1 helps prevent high-frequency pulses from entering the supply, while L1 and C2 filter the output.

Construction. Since circuit operation is not critical, any convenient means of construction can be used to build the converter. However, for maximum efficiency and minimum ripple, the following should be observed:

Keep all leads, especially those to the output devices, as short as possible. Even the minor inductance of long wires can cause ripple in the output at the high switching frequency used in this voltage converter.

Use 12- or 14-gauge wire for power lines and making connections to output transistors Q1/Q2 and Q3/Q4. If you elect to assemble the circuit on a printed circuit board, use at least 1/4" (6.4-mm) wide copper traces to interconnect the output devices. These measures will eliminate resistive voltage losses.

Connect C1 as close as possible to the emitter leads of Q5/Q6 and Q9/Q10 to minimize ripple feedback into the voltage source.

No heat sinking is required for outputs up to 1 ampere. At higher currents, Q1 to Q4 must be on a heat sink that has a thermal resistance of 5°C/watt.

Use. The major loss of efficiency in a capacitive voltage doubler is the inherent voltage drop across the diodes and output transistors. Hence, it is not possible to exactly double the supply voltage, the difference being 1.4 volts with no load to 4.8 volts with a 3-ampere load. Since these losses are a fixed function of the output current, overall efficiency will increase dramatically with higher operating potentials, as shown in Fig. 2. Efficiencies in excess of 98% at several hundred watts can be achieved by a capacitive voltage doubler adapted for 100 volts input. These doublers also have very low ripple, typically less than 200 mV at a 3-ampere output.

The other loss of efficiency is the power consumed by the multivibrator and drive transistors. This is generally less than 150 mW at a 12-volt dc input, which accounts for the circuit's ability to achieve high efficiencies over 98% of its operating range. This sharply contrasts with the much lower efficiencies obtainable with transformer-based converters.

If the circuit shown in Fig. 1 does not satisfy your needs, there are a number of adaptations you may wish to try. For example, higher currents or potentials can be handled by substituting appropriately rated devices and slightly altering the multivibrator. Higher efficiencies can be obtained by substituting germanium power transistors for Q1 through Q4 and replacing the rectifiers with four suitable germanium power rectifiers (transistors with the base tied to the collector or emitter). For currents less than 100 mA, Q1 through Q4 can be omitted; C2, C3, C4 need be rated at only 50 µF; and the rectifier diodes (D1 through D4) can be rated at 1 ampere each.

A voltage tripler can be made by adding two 1000-µF capacitors and another bridge rectifier between ground and the com mon emitters of the output transistors. However, triplers work at lower efficiencies and with considerably reduced output current capability.

It is possible to use the output of one doubler as the input voltage source for another doubler. Two doublers connected in this manner provide about 36 volts output from a 12-volt battery.

Fig. 2. With 12-volt power source, the efficiency remains above 80% even with full load. The higher the input voltage, the higher the efficiency.
You can run down to your neighborhood appliance store, hand the clerk around $99.95, and come away with a "home music system" that will deliver music received via AM or FM broadcasting and probably play records as well. Or, you can go to your favorite furniture shop and spend a few hundred dollars or more for a console cabinet containing unspecified electronic elements that will do the same thing. Finally, you can shop for individual audio components, spending anywhere from a few hundred dollars to many thousands of dollars and, again, end up with a home music system that reproduces radio broadcasts, records, and even tape recordings. These three divergent approaches to home music reproduction have some things in common—but they are also poles apart in terms of the kind of sound you will hear.

Crammed inside the $99.95 compact system and the one-piece console are circuits which pick up radio signals and translate them back to audio signals, circuits which amplify the minute signals picked up by a self-contained record player with its tonearm and cartridge, and even a pair of loudspeakers which translate all these signals back to audible sound. Audio electronics can be further broken down into the "tuner" or radio section, the "preamplifier" or control section, and the "power-amplifier" section which activates the loudspeakers. Even a tiny portable transistORIZED radio contains all these elements, but you would hardly classify the sound you hear from such a portable as "high fidelity."

In order for a loudspeaker (or, a pair of loudspeakers in the case of stereo or four loudspeakers for quadraphonic sound) to reproduce music, its cone or diaphragm must vibrate, for sound is nothing more than rapid compressions or expansions of the air around us. When the air vibrates rapidly, we hear a high-pitched tone. Slower vibrations of air impinge upon our hearing mechanism to create the hearing sensation of a low-pitched note—or one of low frequency. But, whenever a pair of loudspeakers is mounted in the same cabinet as the delicate record-playing tonearm and pickup, the fairly violent vibrations of that speaker (needed to re-
produce sound) are also transmitted via the cabinet structure to the tone-arm and pickup, the fairly violent vibrations of that speaker (needed to reproduce sound) are also transmitted via the cabinet structure to the tone arm and its phono pickup stylus. If you try to turn up the volume to life-like levels, the vibrations generated by the speaker system can initiate a "vicious circle." They are re-amplified by the record player, reproduced as greater and greater vibrations from the speakers and so on, until the entire system takes off in an annoying "howl" which is called, "acoustic feedback."

Interestingly, most all-in-one systems do not exhibit this phenomenon. The reason they don't is because the electronics built into such systems is generally restricted in its ability to reproduce all musical tones in their proper relative intensity. Since low-frequency tones (bass) involve more intense vibrations, the ability of the electronics of such systems to reproduce these tones is often severely restricted. In other words, you don't hear all the music contained in the actual record!

The first requisite of a true high-fidelity system is that it reproduce all musical tones faithfully. So it's imperative that loudspeakers are separated from the rest of the system—a condition easily achieved with separate components. Faithfulness of musical reproduction also means that sounds must not contain more tones than were present in the original program. In high-fidelity terms, that means low or negligible distortion. Distortion, broadly defined, includes any extraneous sounds such as harmonically related tones, electrically generated hum, or random noise or hiss. In short, the reproduced music should be an exact replica of the original performance as contained in the record or other program source. The minimal electronics, poor-quality record players, and undersized, unbaffled loudspeakers contained in most all-in-one radio-phonographs and "compacts" are simply incapable of this kind of reproduction.

Building-block Flexibility. There are other distinct advantages in the component approach to high-fidelity sound. Over the brief history of high fidelity we have witnessed a progression from monophonic sound (in which all music is reproduced in one-dimensional form from a single loudspeaker), to two-dimensional stereophonic sound (in which two speakers are used to give the listener an added sense of spatial realism), to 4-channel or, quadrrophonic sound (in which the listener gains true concert-hall ambience reproduced from four properly positioned loudspeakers). Owners of "compacts" or consoles found their equipment hopelessly obsoleted as each of these advances gained acceptance. Owners of quality component systems, on the other hand, were able to update and add to their basic systems without any loss of their original investment.

Clearly, this building-block approach to good sound makes sense economically. As a further example, suppose that your primary interest is in a good record-playing system. You might elect to purchase a system consisting of a good amplifier, a pair of speakers, and a separate turntable or record-playing system at the outset. Then, if taste and budget dictate, you can add a stereo FM/AM tuner at a later date, connecting it in seconds to the system you already enjoy. You might also wish to upgrade one component in a system while retaining the others, which is easily achievable with an audio component system. Finally, you might even want to add tape recording and playback facilities to your expanding system by purchasing a tape deck of the open-reel, cassette, or cartridge variety. All of these added program sources will utilize the basic amplifier electronics and speaker systems purchased initially. You may even want sound in other listening rooms (a bedroom, or a den). This can be provided by the addition of another pair of speakers which can be connected to most high-fidelity component amplifiers or receivers and switched in by means of suitable front-panel controls. Moreover, one can add an equalizer, noise-reduction system, or other accessory component to an audio component system in order to obtain more realistic sound.

Electronic Options. There are three basic approaches to assembling the electronics of a hi-fi system. The most popular of these involves the purchase of a component called a receiver. This single unit will contain all the circuitry needed to pick up AM, FM, and stereo-FM radio signals, the necessary preamplifier and control circuits whereby program sources are selected and adjusted for proper listening, and the power amplifier section needed to drive the loudspeaker system.

In the early days of hi-fi, all-in-one receivers were rather limited in their ability to deliver sufficient power to the loudspeakers. Today, you will find all-in-one receivers which boast power-output ratings higher than 100 watts per channel. Because all of the electronics is combined on a single chassis, the receiver represents the most economical approach to a hi-fi component system. A common power supply, a single front panel, a single cabinet enclosure and other parts-in-common result in savings that cannot be obtained from wholly separate components.

Nevertheless, a visit to your hi-fi dealer will reveal an array of separate amplifiers as well. So-called integrated amplifiers combine two of the three previously referred to electronic sections—the preamplifier-control portion and the power-amplifier section. We already mentioned a possible reason for choosing this option. You may want to forego FM and AM radio at the outset and concentrate on good record reproduction (or possibly tape). A tuner can always be purchased later and will interconnect easily with any integrated amplifier, even if your purchase is made many years from now. Furthermore, you will often find that an integrated amplifier has additional control refinements and perhaps more signal input facilities than an all-in-one receiver—another possible reason for its selection as the basic component of a system. You may also
be able to purchase a more powerful integrated amplifier for the same amount of money that would be required for a more moderately powered complete receiver unit.

A third option, offering perhaps the greatest flexibility of all (and generally the most costly), is to purchase a separate tuner, a separate preamplifier-control unit, and a separate basic power amplifier. This arrangement is not nearly as popular as the other two, and usually represents the choice of those audio enthusiasts who demand the ultimate in flexibility, superior performance specifications (lowest distortion and very-high-power-output capability), and other operating features not found either in complete receivers or integrated amplifiers.

Irrespective of which of these three types of component systems you choose to assemble, you'll want to familiarize yourself with the more important technical performance specifications listed in manufacturers' advertising brochures. Tuner, preamplifier, and amplifier specifications mean the same thing whether they are used to describe those individual sections in a complete receiver, an integrated amplifier, a separate tuner, a separate preamplifier-control unit, or a basic power amplifier.

What about 4-channel sound? Multiple-channel sound is certainly not new. As early as the 1930's, moviegoers thrilled to the multi-channel Walt Disney production of "Fantasia," in which listeners were surrounded by music reproduced over as many as six separate speaker systems. For many years, recording studios have used multiple tape tracks to record individual instrumentalists and vocalists under optimum studio conditions. These tape "tracks" were then "mixed down" to two-channel "stereophonic" final products in the form of stereo records. Only in 1970 did 4-channel sound reach the home music listener—first as 4-channel tapes and later in a variety of disc formats.

Musically, there are two distinct approaches to 4-channel sound. The "classical" approach involves the reproduction of the ambience of the concert hall itself. Any concert goer will readily admit that much of the sound he or she hears at a live concert is reflected from the walls and ceiling of the hall itself, rather than from the performers on stage. It is this ambient quality which distinguishes the live performance from its recorded and reproduced equivalent in a home listening room of restricted dimensions. By recording two additional channels, using microphones at the rear of the concert hall and reproducing these channels over similarly positioned speakers behind the listener, it is possible to create a sense of vast space in the home listening environment which is not achieveable with conventional two-channel reproduction systems.

Given the extra pair of channels, it is also possible to assign different instruments or soloists to specific channels so that the listener finds himself in the center of the "performance" when playing back recordings. This alternate recording approach to quadraphonic sound is particularly effective when applied to modern pop and rock music, affording the listener a sense of involvement not otherwise attainable.

Recording four channels on tape is relatively simple. Both 8-track cartridges and open-reel tapes have multitrack capability. Cassettes do not.

In the case of phonograph records, there are two basic systems. One called "matrixing," is a process of combining or encoding the four original program channels into two complex audio programs. These two "encoded" channels can then be applied to the record groove much like a stereo program. Suitable decoder circuits, often built into a four-channel amplifier or receiver, "decode" the two channels into four separate signals approximating those which were recorded at the beginning of the process.

The two most popular matrix techniques currently in use in the United States are the SQ system, developed by CBS and the QS system developed by Sansui. Both are capable of excellent 4-channel reproduction and each can be further enhanced by the addition of circuits called "4-channel logic" which increase apparent separation between channels. In addition to matrix records, there are also so-called discrete or CD-4 records which actually contain four separate programs in the single record groove. Because of the very high frequencies contained in these CD-4 discs (developed jointly by RCA and the Japan Victor Company of Japan), a new cartridge or phono pickup is required. Moreover, a turntable used for playing CD-4 records should have low-capacitance phono cables for best results.

A 4-channel home music system is necessarily more costly than a stereo system of equal power and performance capabilities. Any 4-channel system requires four separate loudspeakers as well as four amplifiers (the latter often combined in one unit).

Before deciding whether to buy 2- or 4-channel equipment, listen to each type of system in a properly equipped demonstration room at your audio dealer. Bear in mind that, whether you elect to buy 4-channel or stereo, the important criteria of low distortion, good frequency response, and adequate power output apply to each type of system. If your budget is limited, you might be better off starting with a good stereo component system rather than settling for an inferior quadrophonic system. Separately available decoders, demodulators, and extra amplifiers and speakers can be added to any existing stereo sound system at any time in the future.

Hi-Fi Shopping Tips. Shopping for a hi-fi component system can be fun—or it can be a frustrating experience. There are four general sources of supply. (1) You can visit an audio specialist dealer who sells nothing but high-fidelity component equipment. (2) You can shop in a branch of one of the many electronic-supply stores that sell other specialized electronic equipment in addition to hi-fi, but generally have listening rooms set aside for hi-fi component selection. (3) You can order components from a variety of mail-order or catalogue houses (some of whom also have retail stores in many cities), or (4) you can visit a "discount" establishment which has a variety of merchandise available in sealed factory cartons but provides no facilities for equipment auditioning. Your choice of supplier will generally depend upon how much (or how little) personalized service you require.

The first two categories of retail establishments generally offer the most service. If you are starting from "scratch," it is essential that you be able to listen to the components you plan to buy. As a matter of fact, the first components you should select are your loudspeakers, since there is the greatest variation in sound amongst the hundreds of speaker models currently available. Zeroing in on the loudspeakers that sound best to you also puts you in a better position to decide on how powerful an amplifier or receiver you will need, since some speakers require far more power than others to deliver a given loudness level.

Generally, the well-equipped audio dealer who offers auditioning facilities and technically trained sales personnel will offer less of a discount than the "mail order" or "warehouse" type of retailer, since his overhead costs are higher. In return for the somewhat higher price you pay, you will obtain the aforementioned advantages that may or may not be important to you.
Dynamic Noise Reduction Systems and Expanders

BY WILLIAM S. GORDON

The quest for noise reduction in high-fidelity equipment has challenged audio engineers for decades. As far back as 1947, H. H. Scott introduced a "Dynaural Noise Suppressor," to deal with the noise problem; and the Dolby noise-reduction system (professional version) was demonstrated in the mid-sixties. The age of noise suppression was really ushered in for serious audiophiles, however, when the Dolby NR system was incorporated into cassette decks in the late sixties.

Since then, a great deal has been done to make noise reduction a realistically inexpensive and practical means of obtaining the maximum enjoyment out of hi-fi equipment. In this article, we will examine a host of noise-reducing systems that have come onto the consumer market and describe how the different schemes work.

Two Categories. Noise-reduction systems can be grouped into two categories: Those that rely on preprocessed (encoded) signals and those that operate on "raw" (unprocessed) signals. Examples of the first category are the Dolby A and B systems, JVC's Automatic Noise Reduction System (ANRS), and the dbx system. In the latter category are Phase Linear's "Autocorrelator," Philips' Dynamic Noise Limiter (DNL), and Burwen's noise-reduction system.

The devices that encode the signal before recording or transmission first pass the signal through an encoder and then through a decoder. In essence, these "two-pass" systems are noise-preventive devices because they do nothing to remove noise already in the program but attempt to prevent it from creeping in between the encoder and decoder. The unencoded "single-pass" systems attempt to remove noise already in the program.

Two-pass processors generally employ complementary signal compressors and expanders, called companders. During processing, the dynamic range of the signal is compressed so that a two-fold increase in the input signal causes less than a two-fold increase in the output. The actual input/output characteristic depends on the compression ratio used. For example, a 3:2 ratio causes a 2-dB output increase for every 3-dB increase in the level of the input signal. This means that a 60-dB dynamic range can be compressed into an output signal with only a 40-dB range.

Compression is important because the dynamic range of many program sources exceeds the range of modern state-of-the-art hi-fi equipment, especially tape recorders and FM tuners. A symphony orchestra can have an 80-dB dynamic range, but a recorder might have a range of only 55 or 60 dB. By using a 2:1 compression ratio, the entire 80-dB orchestra range can be compressed down to 40 dB, which is well within the average recorder's capabilities to handle.

The signal-to-noise ratio (S/N) can give you an idea of the capabilities of a piece of equipment. The maximum level a device can handle is determined by the point at which distortion reaches an unacceptable level (generally 3% THD in consumer equipment and 1% in professional equipment). The minimum level that can be handled is determined by the "noise floor." Signals that are lower in level than the residual noise of the equipment are lost in the hiss and hash at the noise floor.

With sufficient compression, a wide dynamic range program can be squeezed into the limited range available in a tape recorder. This assures that the program peaks will not be too high to handle, while keeping the minimal signals above the noise floor.

A compressed signal must be expanded to restore its original dynamic range. An expander is the mirror image of a compressor. In it, a two-fold increase in program level at the input results in a greater than two-fold increase in the expander's output signal. To restore the original dynamics of the signal in the above example, a 2:3 expansion ratio would be used. Hence, the 40-dB compressed signal would be expanded back up to its original 60-dB dynamic range. This opens up the top of the range and simultaneously pushes down the noise floor. The net effect appears as a reduction in the residual noise, so
the system qualifies as a "noise-reduction" system.

How Companders Work. Compensors and expanders are basically amplifiers whose gain is varied by a voltage. (Such a device is known as a voltage-controlled amplifier, or vca.) They also include detectors that measure the signal level and produce the voltage that controls the gain of the amplifiers.

The time constants of the detector circuits must be chosen very carefully. If they are too short, the detector responds very rapidly and follows the low-frequency signals. The vca's gain "chases" the low-frequency signals, increasing distortion and modulating the rest of the signal with a low-frequency tone. A very long time constant causes the detector to respond very slowly to the average signal level. Sudden transients get through before the gain of the vca can be reduced. The transient will not be compressed and will cause the system to overload. Since the transient is detected, the signal for the vca to reduce its gain will be delayed. Then, an audibly discrete inter-

\[\text{Dolby encoding characteristics show output level changes in deibels versus frequency over entire 20-to-20,000-Hz range.} \]

...val later, the vca's gain reduces where no reduction is required and a "dropout" will be heard in the program.

Another audible flaw in wideband, widerange compensors is "breathing." When the input signal disappears or is greatly reduced in level, the gain of the compressor increases and boosts the level of any noise present in the signal. When the music level increases, the level of the noise decreases, and when the music level decreases, the noise floor comes up. As the system operates under these conditions, it sounds like it is "breathing." Note that this is not noise introduced by the recorder between the compressor and expander (which is reduced by expander action) but noise in the signal prior to compression.

Enter the Dolby System. The Dolby noise-reduction system was originally designed to combat the problems inherent in companders. The professional Dolby A system divides the frequency spectrum into four bands, each of which is processed separately. This was done so that an increase in midband energy would not reduce the level of the lows and highs. Where there might be a lot of midband energy but little high-frequency content, the processor reduces the midband level to avoid overloading the recorder. At the same time, it keeps the gain at the high end up so that the highs are not pushed down near the noise floor. This is important because psychoacoustic tests reveal that low-frequency signals do not mask high-frequency noise, nor do high-frequency signals mask low-frequency noise. (Masking psychoacoustically makes one less aware of noise when a strong signal is present than when it is absent. Masking of noise is effective only in the frequency range of the signal; hence, Dolby's use of the four-band approach to the problem.)

The Dolby system employs the processor only on low-level signals, which are boosted above the noise floor, while high-level signals emerge unchanged. The lower the level of the signal, the greater the boost. Hence, the processor is used only when signal levels approach the noise floor. The action of the system is less noticeable to the listener and overcomes the objections of previous full-range companders.

The final improvement in the Dolby system is that the attack time of the compressor is variable. If the signal level increases dramatically, the attack time is very fast to minimize the time the system is overloaded. For less severe increases in level, the attack automatically slows down to minimize low-frequency distortion and modulation of the music by low-frequency tones.

Having become the standard of the professional recording industry, the Dolby A system was later simplified and became the Dolby B system familiar to consumer products. The B system reduces cost by processing signals in only the band where high-frequency hiss resides. To make it more effective, the processor's upper frequency cutoff is made to automatically vary with signal level. As the level drops, the system processes a larger bite of the upper-frequency band. Since hiss is the major source of audible noise in hi-fi tape recording, the system is quite effective.

Since only low-level signals are processed by the Dolby A and B system and in the consumer B version only a portion of the audible band is processed, there is a limit to how much noise reduction can be achieved. In the case of the B system, this is approximately 10 dB. And since the processor does not operate over the entire dynamic range of the...
signal, the signal must be standardized and matched for the decoder to properly track the encoder. Hence, the reference level, the so-called “Dolby Level,” must be maintained to calibrate the chain.

It is the signal itself that “tells” the decoder where and how much expansion to use. If the level into the decoder is too low, the expansion will begin at too high a level. This will upset the original balance of the program. Similarly, if the input to the decoder is too high, expansion will not occur soon enough.

JVC followed Dolby’s lead with its ANRS device, which functions in a manner quite similar to the operation of the Dolby B system. In fact, Dolby B tapes can be decoded by the ANRS circuit with quite good results.

The dbx System. The foremost competitor of the Dolby system is the noise reduction system developed by dbx Inc. This is a “classical” compander in that it operates over the entire dynamic range of the music. However, it has improvements over previous companders that make its action virtually inaudible.

The dbx system is a linear 2:1 compander that compresses the 80-dB dynamic range of the symphony orchestra down to a mere 40 dB. On the decoding end, the 40-dB range is expanded back up to 80 dB, pushing down the noise that was introduced by the tape-recording process to an inaudible level.

Since the dbx system operates linearly over the full dynamic range, matching of signal levels is not particularly important. Any 1-dB rise in input results in a 2-dB rise at the output of the expander. There is no “threshold” below which the system operates as there is in the Dolby B system. (Note, however, that any irregularities in recorder frequency response or any amplitude perturbations, such as dropsouts, that are introduced will be magnified by a ratio of 2:1.)

One way dbx avoids the problems of classical companders is that it employs an rms detector to drive the vca, rather than the usual peak or average detector used by previous companders. The rms detector measures the power of the signal and is unaffected by the phase distortion introduced in the tape process. Peak or averaging detectors, on the other hand, are affected by phase shifts.

Another solution is the use of variable attack times that quickly respond to large changes in level and slowly respond to small changes. Both attack and release times vary with the signal level and are optimized to simulate the time response of the human ear.

The final solution is the use of high-frequency preemphasis before compression with complementary de-emphasis after expansion. This helps to reduce the effect of breathing by a factor of 12 dB.

The S/N improvement of the dbx system is in the range of 40 dB, which contrasts sharply with the 10-dB improvement provided by the Dolby B system. Although the Dolby system has a huge head start in the recording industry, there may soon come a time when the system developed by dbx will replace it as the standard one in use.

Single-Pass Systems. So far, our commentary has focused on two-pass systems designed to reduce noise only during the recording (or transmitting) process. Such systems do not reduce the noise already in the program. A great deal of work has been done to remove the noise already in the program, and the result is the single-pass system.

Two of these new systems are the Philips DNL and Burwen DNF that are both dynamic low-pass filters. The Philips system was developed specifically to reduce noise in unencoded cassette recordings. (It is not widely available in the U.S.) The Burwen system is more flexible and can be used for tapes and discs. Both systems consist of low-pass filters whose cutoff frequencies are automatically controlled by the program level. When there is a lot of high-frequency program energy, the filter “opens up” to let it through. Then when the high-frequency program energy is small, the cutoff frequency of the filter shifts downward to cut out the highs and the hiss. In essence, if there is enough high-frequency program energy to mask the hiss, the bandwidth of the DNF opens up to 30,000 Hz. But if the highs are missing and, hence, are unavailable to mask the hiss, the bandwidth narrows. In the absence of any signal, the Burwen DNF system starts to roll off above 500 hertz.

The constants of the detector circuit that senses the program level are critical. The filter must open up rapidly to let a transient through and should close down rapidly to prevent a burst of noise from following a brief transient or record tick. However, too fast a response tends to be audible. Consequently, the attack and release times are made variable according to the magnitude of the signal change. Depending on the program material and the control settings, the newest Burwen system provides from 5 to 14 dB of noise reduction. Since it is a single-pass system, it operates on any program source.

The Phase Linear “Autocorrelator” is more complex than the dynamic noise filters. It actually attempts to distinguish between music and noise by electronic means. Noise is typically random in nature and contains many frequency components that are not related to each other, which makes it incoherent or uncorrelated. Music, on the other hand, contains mathematically related tones and is coherent, with a high correlation factor. The Autocorrelator consists of bandpass filters and a circuit that analyzes the signal for its degree of correlation. If it determines that the signal is music, it passes it through and those filters that correspond to the harmonics of the signal are activated to pass the overtone structure. If the signal is determined to be noise, the filters close down. It is obvious that this is a more sophisticated approach to noise elimination than the dynamic noise filter.

Another sophisticated type of noise-reducing device is SAE’s Model 5000 pop and click filter. The premise used here is that clicks and pops are characterized by a rapid rise and decay, while music should exhibit a more gradual decay. Once a click or pop has been detected, that section of the program is gated out and the previous program section recalled and inserted in its place. Since the click or pop is very short in duration (on the order of 1 ms), this substitution goes undetected by the ear.

Most of the time, the Model 5000 remains completely passive. A threshold control establishes the sensitivity of the detection circuit. This is necessary because different records may exhibit slightly different characteristics.

Conclusion. So far, noise-reduction systems have provided some impressive results. The effort to develop better systems is still going strong, but what the future has in store is difficult to predict. As things now stand, the most dramatic steps have been taken to reduce noise. Most of what is left is the refinement of the systems we now have and the addition of a few more decibels of noise reduction.

One or more of the noise-reducing devices we have mentioned certainly has a place in every high-quality hi-fi system. In fact, we can expect to see these devices incorporated into higher-quality hi-fi amplifiers and receivers in the future, just as all high-fidelity cassette decks now have noise-reduction systems built into them.
WHETHER you own a new open-reel tape deck or a super-performing stereo cassette deck, you’ll have to decide which type of tape to use to get the best possible performance. If cassette-styles are what you need, you can buy a 60-minute (C-60) cassette tape for as little as 99¢ or you can spend up to $5.00 for the same amount of recording time. In the case of open-reel tapes, an 1800-ft (550-m) reel may cost less than $6.00 or you may spend more than twice that amount for the same tape length. Which kind of tape you buy will depend on the type of recording you intend to do and the kind of tape deck you own.

For open-reel tape, selection involves physical considerations almost as much as electrical performance or fidelity. Broadly speaking, the two basic “grades” of tape are “standard and “high-energy,” each of which requires a different bias setting on your machine. Lower priced standard tapes often have more residual noise and somewhat poorer frequency response than “premium” tapes, though they may be suitable for noncritical recording applications.

Generally, 1-mil-thick tape, with its 1800-ft capacity on a 7-in. (17.8-cm) reel, offers the best compromise between tape storage bulk and playback quality. Almost all open-reel tapes use ferric-oxide particle coatings even though there are still some differences between the products of different manufacturers. Mechanical differences in reel construction and accuracy of tape splitting and dimensions and uniformity of coatings account for the wide differences in prices.

In contrast to open-reel tape recording, the quality of recording obtained with a cassette deck is more critically dependent on the compatibility (or lack of it) between the tape and the machine with which it is used. A growing number of tape-deck manufacturers make specific recommendations of tapes that work best with their products. However, even these suggestions require an understanding of the kind of recording to be made and the nature of different tape formulations.

Correct Bias. A high-frequency bias signal must be added to the program signal to be recorded to reduce the distortion normally caused by the nonlinear transfer characteristic of magnetic tape. However, not all tape formulations require the same amount of bias for best results. Normally, ferric-oxide coated tapes require less bias than do chromium-dioxide (CrO₂) tapes. Several new formulations that combine ferric-oxide particles with other elements such as cobalt (in a single-compound layer) also require the high bias settings of CrO₂.

In cassette tape testing, most manufacturers determine the correct reference bias for a given tape by recording a fairly high frequency (usually around 6300 Hz) onto the tape while observing playback output as bias is gradually increased. At some bias setting, the output reaches a peak, after which a further increase causes the output level to drop off. The reference bias for the tape is set at the point where the output level has dropped off by about 2.5 dB beyond peak. Usually, a standard reference tape is tested in this way, and its optimum bias point is identified as the “0 dB” reference bias. Then, the tape under investigation is compared with the 0-dB reference bias specified in dB.

In Fig. 1 are shown the results of this test when performed on a well-known, low-noise, ferric-oxide tape. The optimum bias has been established at a −1-dB setting, relative to the standard 0-dB bias point. In Fig. 2, the same test was performed on a CrO₂ cassette; and the optimum point for bias was +2 dB (with reference to the standard 0-dB bias point of the reference tape). This means that the CrO₂ tape requires a bias setting that is 3 dB higher than that for the low-noise, ferric-oxide sample.

For any practical tape, the bias strength that results in the highest output at middle and low frequencies is greater than the ideal for high frequencies. Conversely, if the bias is adjusted to favor the highs, the middle and low frequencies suffer in terms of realizable output. Whatever bias point is selected, some degradation of signal-to-noise (S/N) ratio and overload distortion will occur in some part of the audio frequency spectrum. While increased bias tends to reduce distortion, no one setting can guarantee overall distortion reduction by the maximum amount at all frequencies. Thus, bias settings are always a compromise, and the best tape permits the most favorable compromise.

To demonstrate the effect of overbiasing and underbiasing, we recorded a continuously sweeping series of frequencies (20 to 20,000 Hz) on a strip of ferric-oxide tape at a fairly high recording level. The results are shown in Figs. 3 (underbiasing) and 4 (overbiasing). Note in Fig. 3 that high-frequency re-
response obtained in the underbiased condition is excellent. In fact, there is even a slight rise in response above 10,000 Hz before the response rolls off in the 20,000-Hz region. In Fig. 4, however, the response begins to fall off gradually above 1000 or 2000 Hz and really takes a giant dip beyond 10,000 Hz. Each vertical division in the photo equals 10 dB of amplitude.

From the results shown in Figs. 3 and 4, one might conclude that the best performance from any tape is obtained with underbiasing. However, the curves do not reveal what happens to harmonic distortion if a given tape’s bias is set too low. In Fig. 5, the spectrum analyzer was used once more to examine the distortion and noise components of a reproduced 1000-Hz signal, as recorded on the underbiased deck. The large spike at the center represents the desired fundamental output (1000 Hz), while the spikes to the right, notably at 3000 and 5000 Hz, are components of third- and fifth-harmonic distortion. The third-harmonic component is only about 33 dB below the fundamental or about 2.2% of the signal content. The random spikes represent residual tape noise as reproduced during playback of the 1000-Hz recorded signal.

Figure 6 shows what happens to a 1000-Hz signal in the overbias condition that resulted in the frequency response of Fig. 4. The third-harmonic distortion component has gone down to about 44 dB below the fundamental. This corresponds to distortion of about 0.6% but there is little if any evidence of fifth-harmonic contribution, and the general random noise content is much lower.

Equalization. Once the proper bias for a given tape has been selected, it is still possible to tailor the frequency-response capabilities of that tape by a process called equalization. Up to a certain frequency, if a recording is made on magnetic tape, the playback system “reads” that signal with a rising amplitude characteristic as the frequencies are increased. Since we want a “flat” frequency response, a rolloff in response is built into the playback electronics so that the net response, hopefully, will be flat.

Playback equalization in a tape deck is generally standardized and fixed to obtain reasonably flat playback results from any tape recorded on one tape deck and played back on another.

Recording equalization, however, is variable and is designed to match the particular tape you use and generally involves a specific amount of treble “boost” added to the record electronics to compensate for the high-frequency rolloff that occurs above a given high frequency. As with bias, record equalization is often adjustable by means of a switch on the deck’s control panel. Most equalization switches have only two or three positions that generally approximate the right playback conditions for many of the tapes on the market.

In recent years, manufacturers of cassette tape have tried to make tapes that give best results when used with the most commonly available equalization settings of most machines. The two most popular settings of equalization are 70 and 120 µs, the figures representing the time constant provided by the resistor-capacitor combination that gives the required 6-dB/octave response slope. The 120-µs equalization setting begins to boost high frequencies during recording at a lower turnover point than does the 70-µs setting that has been standardized for CrO₂ tapes and some of the more exotic ferric-cobalt tapes.

Let us see what happens to the response if the wrong setting is used for a given tape during the recording process. For one series of tests, a ferric-cobalt tape requiring the 70-µs equalization was used. After adjusting the bias for optimum, the proper equalization switch position was set and a frequency response check was run. The result (the lower trace in Fig. 7) shows a good, flat response curve, similar to that shown in Fig. 3, but with somewhat greater rolloff at the high end because of the correctly adjusted bias. Without altering the bias setting, the run was repeated with the 120-µs equalization setting. The result is the upper trace in Fig. 7. Overboosting during recording resulted in an overemphasized rising high-end response during playback.

Next, a low-noise ferric-oxide tape was used. It normally requires the 120-µs equalization characteristic. With this equalization and the correct bias setting, we obtained the upper trace in Fig. 8. The response is nice and flat to well beyond 15,000 Hz. In a second sweep, the equalization switch was set to 70 µs, and, as can be seen in the lower trace, the response during playback rolled off severely, starting at about 2000 Hz.

Characteristics. Here are details on other key specifications.

Sensitivity of a given tape is the decibel difference between the output and input levels when an input 20 dB below the reference level (0 dB) is recorded on a tape. If the recorder used for this test has been biased properly, equalized flat and input/output adjusted to be equal for a standard reference tape (a German DIN standard, known as Bezugsband 4.75/3.81 tape is often used as the standard), the data obtained is the sensitivity of the tape under test relative to the reference tape. For cassette tapes, 333- and 12,500-Hz tones are used for sensitivity tests. Typical results obtained for standard and high-output tapes are plotted against bias settings in Fig. 9. As can be seen at the “optimum bias” inter-
Fig. 3. Too low a bias may improve a tape’s high-end response but degrade other performance characteristics.

Fig. 4. Overbiasing causes high-frequency roll-off in tape playback as shown here.

Fig. 5. Under-biased tape sample reproduces 1-kHz signal with high third-order harmonic distortion.

Fig. 6. Increased bias lowers third-order harmonic distortion content for this 1-kHz recorded test signal.

Fig. 7. Upper trace, with rising high-end response during playback occurs when sweep frequencies are recorded onto tape requiring CrO₂ equalization with switch set to “standard” position. Lower sweep was plotted using correct setting.

Fig. 8. When CrO₂ equalization setting is used with standard ferric-oxide tape, response at high end has severe rolloff (lower trace). Upper trace shows response obtained with correctly set equalization switch for this tape.
section, the high-output tape is more sensitive than the standard tape by nearly 2 dB at middle frequencies and by 6 dB at 12,500 Hz. This means that the higher-output tape affords a few extra decibels of dynamic range above the noise threshold.

Maximum modulation level is the recorded output level of a given tape that exhibits 3% third-order harmonic distortion. It is sometimes plotted as a function of bias level. In Fig. 10, are plotted the maximum output levels of two different tapes that have widely differing maximum output-level characteristics. The frequency used for maximum output level in cassettes is usually 333 or 1000 Hz. Some tape manufacturers also specify maximum output at a high frequency; in the case of cassette tapes, a 12,500-Hz signal is usually used for these tests.

Biased tape noise is also often specified by tape makers. This is the level of residual tape noise (referred to a specific reference level) when it has been recorded with bias signal only and with the bias signal weighted or modified by the use of a standard noise-weighting network. The biased tape-noise level for the two tapes tested in connection with maximum output level is also shown in Fig. 10. The difference between the noise level and the maximum modulation constitutes the maximum dynamic range of each tape.

Tape Is Different. As we have seen, tape cannot be looked upon in the same way that we consider other program sources in high fidelity, such as phonograph discs or FM signals. All discs are recorded with the same equalization and, therefore, only one fixed setting of playback equalization (RIAA) is required in preamplifier circuits. There are, of course, differences in disc quality that result from the use of different grades of vinyl from which discs are pressed. However, these differences are minor when compared with the differences that exist among the many grades of cassette tapes available.

Radio FM signals also employ a form of equalization known as “preemphasis,” which has long been standardized in this country. Hence, all tuners provide correct deemphasis for FM reception, and difference in program quality depends on signal strength and the overall quality of a tuner or receiver.

In our discussion of the electrical properties of cassette tapes, we haven’t stressed mechanical properties. These include: accuracy of tolerances maintained in the cassette housing (which can affect smoothness of tape travel); uniformity of magnetic coating and smoothness of the coated surface (both of which, if poor, can cause droplets or momentary lapses of reproduced sound); tensile strength of the plastic base material itself (poor tensile strength can lead to tearing or stretching after repeated use); friction-reducing techniques used to insure smooth, uniform tape motion within the cassette housing; etc.

All of these qualities, in some measure, determine the price of a cassette and its usefulness for recording applications. Obviously, if all you want to record are baby’s first words or a business conference, response to beyond 15,000 Hz is of little importance. (Though mechanical reliability of the cassette itself may be of as great importance as if you were recording a once-in-a-lifetime live concert over FM.) On the other hand, if you want the finest results from your cassette deck (or even from your open-reel machine), it pays to research the question of which tape is best for you. It is important to choose the brand and type whose formulation in relation to the switch setting available on your tape deck has the right “compromises” for your needs.
Today's state-of-the-art audio components yield levels of performance unattainable a few years ago. However, most of us can't update our sound systems as frequently as technological advances are made. This project—an add-on phase-locked-loop multiplex decoder—will allow the user to improve the stereo FM demodulation of an existing receiver or tuner for about $25. Only a few hours of assembly and alignment time is required. The PLL decoder will not only improve channel separation and lower distortion levels, but will also select deemphasis time constants for standard and Dolby-FM broadcasts.

About the Circuit. The heart of the PLL multiplex demodulator is the LM1800A, an IC manufactured by National Semiconductor. A block diagram of the LM1800A is shown in Fig. 1. The phase-locked loop comprises a voltage controlled oscillator (vco), frequency dividers, phase detectors, low-pass filtering and an error amplifier. Also included are a voltage regulator allowing operation from 12-to-24-volt supplies, automatic stereo monaural switching, and use of a stereo indicator lamp.

In the absence of an input signal, no error signal is generated and the vco oscillates at a frequency designated as f0. When a composite FM signal is applied to the input, the loop phase detector generates an error signal which is filtered and amplified. This amplified error voltage shifts the oscillating frequency of the vco to exactly 76 kHz. Filtering performed at the phase detector and error amplifier prevents modulation of the vco by the input signal.

The vco input frequency is divided by two, resulting in a 38-kHz carrier used in the synchronous demodulation of the composite signal. Passing the 38-kHz signal simultaneously through a pair of -2 counters produces two 19-kHz signals which are applied to the IC's two phase detectors. If the 19-kHz pilot signal drops below the level at which a satisfactory stereo signal can be recovered, an electronic switch causes the IC to produce a monaural output.

The schematic diagram of the complete multiplex detector is shown in Fig. 2. Input signals are capacitively coupled by C5 to level control R5. Capacitor C4 passes the composite FM input to the base of Q1, which amplifies it to a level

Phase-locked-loop circuit upgrades older stereo tuners and receivers.

By Martin Meyer
Fig. 1. Block diagram of the LM1800A PLL multiplex demodulator. It includes a voltage controlled oscillator, frequency dividers, phase detectors, low-pass filtering and error amplifier.
PARTS LIST

C1, C3 through C7, C11—10-µF, 25-volt tantalum capacitors
C2, C9, C12—220-pF disc ceramic or silver mica capacitor
ClO—440-pF disc ceramic or silver mica capacitor (can be two 220-pF capacitors in parallel)
C13—0.05-µF disc ceramic capacitor
C14—0.002-µF disc ceramic capacitor
C15, C21—0.47-µF Mylar capacitor
C16, C18—0.0008-µF, ±10% Mylar capacitor
C17, C19—0.015-µF, ±10% Mylar capacitor
C20—0.22-µF Mylar capacitor
C22—330-pF disc ceramic or silver mica capacitor
R1—12-V, 35-mA pilot light
IC1—LM1800A PLL multiplex decoder
IC2—747 dual operational amplifier
J1 through J4—RCA phono jacks
Q1—2N5232 npn silicon transistor

The following are linear-taper, pc trimmer potentiometers:
R1—50,000 ohms
R5—200,000 ohms
R16—10,000 ohms

The following are 10% tolerance, 14-watt carbon-composition fixed resistors:
R2—470,000 ohms
R3, R14—33,000 ohms
R4—1-Megohm
R6—1000 ohms
R7—See text.
R8 through R11—33,000 ohms
R12, R13—3900 ohms
R15—22,000 ohms
S1—Dial slide or toggle switch
Misc.—Printed circuit board, suitable enclosure, hookup wire, shielded cable, pilot light jewel, hardware, solder, etc.

Note—The following are available from Ne-tronics Research and Development, Ltd., 333 Litchfield Road, New Milford, CT 06776: complete kit including all components, pc board, screened enclosure, less audio cables, $24.95; complete kit as above but less screened enclosure, $19.95. U.S. residents add $1.50 postage and handling; Canadians add $3.00. For receiver connection info, send schematic, SAS envelope and $1 (free if purchasing kit). Connecticut residents add 7% sales tax.

Construction. Printed circuit guides for the project are shown in Fig. 3. Mount all components on the board, paying close attention to pin basing and polarities of semiconductors and electrolytic capacitors. Power can be tapped from any +12- to +24-volt dc source. The tuner’s i-f stage or existing multiplex decoder is usually powered by a +15- to +20-volt supply which can be utilized for this purpose. Select the value of R7 in kilohms according to the equation:

\[R7 = \frac{(V_{\text{supply}} - 12)}{55} \]

A one-watt carbon composition resistor will have adequate heat dissipation capability for this application.

The tuning lamp used in the author's prototype (and supplied with the kit) draws 35 mA at 12 volts. If you substitute another incandescent lamp or a LED and current limiting resistor, modify the equation for the value of R7. Replace the 55 mA in the denominator with the sum of 20 mA (the current required by the PLL and active filters) and the

TABLE I

LM1800A SPECIFICATIONS

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stereo Separation - 100 Hz</td>
<td>40 dB</td>
</tr>
<tr>
<td>1000 Hz</td>
<td>45 dB</td>
</tr>
<tr>
<td>10,000 Hz</td>
<td>45 dB</td>
</tr>
</tbody>
</table>

SCA Rejection: 50 dB

Total Harmonic Distortion: 0.2%

Ultrasonic Frequency Rejection: 45 dB
The current required by the indicator. For example, if a LED and resistor drawing 20 mA are used, the denominator would be 40 mA.

The project can be mounted in the tuner cabinet or housed in a separate enclosure. If it is placed in the tuner cabinet, mount S1 on the rear panel of the tuner and connect it to the PCB board via low-capacitance shielded cable such as RG-59-U. The same type of cable should also be used to conduct the composite FM signal from the detector output to the input of the multiplex decoder.

If your tuner or receiver has a "composite FM" or "FM detector" output jack, the required signal is available there. If not, you will have to locate the FM detector and tap the signal at that point. The partial schematic of a typical FM receiver is shown in Fig. 4. The composite signal is obtained by disconnecting the existing multiplex decoder and tapping the signal at point A.

The left and right audio outputs are available at jacks J3 and J4. If you are using the project in place of the multiplex decoder in a tuner, you can either use these jacks in place of those in the tuner, assuming the decoder is mounted externally. If it is mounted internally, you can disconnect the outputs of the existing multiplex decoder from the output jacks on the tuner's rear panel and connect the outputs of the decoder's active filters.

Similarly, if you have a receiver and are mounting the project in an external enclosure, you can connect the decoder's outputs to the tape monitor circuit. Mounting the decoder inside the receiver cabinet suggests an internal connection. Remove the output leads at the ex-
isting multiplex decoder running to the appropriate lugs on the receiver’s MODE switch. Then connect them to the decoder’s active filter outputs.

Alignment. When properly aligned, the project will provide performance as outlined in Table I—assuming no degradation in the tuner’s i-f and FM detector. Two typical receivers were used with the PLL decoder. Results are shown in Table II. The alignment procedure about to be described requires no test instruments, but will yield good results. The author was able to improve the stereo separation only 2 dB when instrument ‘alignment was performed with an expensive FM stereo generator.

Rotate potentiometers R1 and R16 to the midpoint of wiper travel, and R5 for maximum signal drive at the base of Q1. Turn on your receiver and tune in a station broadcasting in stereo. Indicator 11 should glow. If not, adjust R16 until it does. Then turn R16 fully clockwise. If 11 still glows, adjust R5 until the indicator just goes out. Slowly rotate R16 counterclockwise until the lamp begins to glow. Note the position of the control. (It may be necessary to adjust R5 slightly.)

Next, turn R16 fully counterclockwise, adjusting R5 again if necessary to extinguish the lamp. Slowly rotate R16 clockwise until the lamp glows, noting the position of the control. Set R16 midway between the two positions noted. Adjust R5 until the lamp goes dark, then slowly turn it until the lamp just starts to glow. Advance the wiper of R5 another 10°. This will properly tailor the input level to decoder IC1.

Potentiometer R1 is included in the circuit for adjustment if test equipment or a cooperative FM broadcast engineer is available. Since all stations must conduct tests and certify the quality of their signals once a year, you can easily check out adjustments. Call several local stations and ask when they will perform the tests. If it is late at night, the engineer might turn off a channel for 30 seconds or so. While only one channel is being transmitted, adjust R1 for maximum separation at any mid-band frequency. Note, however, the setting of R1 will not have a critical effect on the performance of the decoder and can simply be left midway between the two adjustment extremes.

Table II—Receiver Modification Results

<table>
<thead>
<tr>
<th></th>
<th>Sony STR-6060FW</th>
<th>Harman Kardon SR900</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>After</td>
<td>Before</td>
</tr>
<tr>
<td>Stereo Separation—100Hz:</td>
<td>20 dB</td>
<td>32 dB</td>
</tr>
<tr>
<td>1000 Hz:</td>
<td>28 dB</td>
<td>42 dB</td>
</tr>
<tr>
<td>10,000 Hz:</td>
<td>18 dB</td>
<td>30 dB</td>
</tr>
<tr>
<td>Total Harmonic Distortion (1000 Hz):</td>
<td>0.5%</td>
<td>0.3%</td>
</tr>
</tbody>
</table>

Quiz of Audio Basics

BY ROBERT P. BALIN

1. Which of these audio waveforms indicates the use of tremolo and which is vibrato?

![Waveform A](image1) ![Waveform B](image2)

2. If the vertical frequency used to produce these Lissajous patterns is 1000 Hz, which has a horizontal frequency of 1200 Hz and which is 1250 Hz?

![Lissajous Patterns](image3)

3. With this crossover network, which speaker is the woofer and which the tweeter?

![Crossover Network](image4)

SEPTEMBER 1977
4. Of these 300-ohm attenuator pads, which produces a 6-dB signal voltage loss and which a 12-dB loss?

5. Which of these square-wave audio test signals indicates low-frequency attenuation and which high-frequency?

6. Which tape-head condition produces an azimuth error and which a zenith error?

7. In this phono-amplifier tone control circuit, which pot is for treble and which for bass?

8. Which audio test signal has been affected by intermodulation and which by overmodulation?

9. Which scope pattern indicates that two audio sine waves are in phase and which that they are 90° out of phase?

10. Which speaker baffle is known as a resonant column and which as an air coupler?
Print Your Heart Out.

With help from the Digital Group, naturally.

Now, that small computer system you own or have been considering for personal or business use suddenly becomes a lot more usable— with the addition of a full-size impact printer from the Digital Group. A printer designed for small computers that need big output (like yours).

With the Digital Group printer, you can print your heart out... and it won't cost an arm and a leg. The Digital Group printer is available for less than $500. That's right— $500.

Just look at these specifications:
- Fast—120 characters per second
- 96 characters per line
- 12 characters per inch horizontal
- 6 lines per inch
- Makes up to 4 copies simultaneously
- Character set and pitch variable under software control—double width characters, etc.
- 5 x 7 character matrix
- Ribbon has built-in re-inkers for a life of 10,000,000 characters
- Paper can be either a standard 8½-inch roll, fanfold or cut page
- Interfaces to 8-bit parallel ports

There are lots of capabilities and outstanding features of the Digital Group printer... and (as always) the best news is our price. Kit prices start as low as $495 for the printer and interface card. It simply can't be beat.

Find out all the facts about the Digital Group printer now. Just fill in the coupon below or give us a call for the details. We think you'll find a place for our printer in your system ... and in your heart.

P.O. Box 6528
Denver, Colorado 80206
(303) 777-7133

Quick. I want to print my heart out.
Send me all the details on your full-size impact printer.

Name ________________________________
Address ________________________________
City/State/Zip ________________________________

Please print.
SAN FRANCISCO was the setting last April for the First West Coast Computer Faire, which may become the Woodstock of the personal computing movement. Almost 13,000 people attended the 165 exhibits, 107 lectures, 17 home-brew demonstrations and two banquets.

The crowd was as kaleidoscopic as one would expect in San Francisco. Among them were a blind man seeking braille production equipment and voice synthesizers; Berkeley pamphleteers warning of government restrictions against home computers; artists looking for a new medium for artistic expression; and a father looking for aids for his deaf child.

Banquet speakers told of the coming revolution in home computing. Ted Nelson predicted that the “cybecrud” coming out of the large computers would be counteracted by the masses of personal computers. What used to be a topic for science fiction writers has come true, with the help of MPU’s.

There were 37 conference sessions, covering everything from “Tutorials for the Computer Novice” to “Heretical Proposals.” Commercial exhibitors had on display all their latest products, including electronic music synthesizers, speech synthesizers, and a father looking for aids for his deaf child.

1 Prototype of Commodore’s PET 2001, an “appliance-type” computer based on the 6502 MPU. Computer provides built-in BASIC, a graphics or character-oriented CRT, cassette storage, and 4k of RAM in a factory-assembled unit.

2 A portion of the exhibit hall, where 165 vendors displayed their wares to 12,750 people. The crowd and the size of the exhibition made it almost impossible to see all of the interesting computers on display.

3 Dr. Franz Frederick, Lafayette, Indiana, shows his “turtle” to Michael Rubinstein. Built in three weeks from surplus parts, it is controlled by a homebrew 6800 system to draw pictures while moving about the floor.
A new class of computers emerged at the Faire—the so-called appliance computer. Meant to be purchased much as one would buy a television receiver or stereo tuner, these computers are complete systems that require no assembly. Apple Computers, Inc., showed the Apple II, a 10-lb (4.5-kg) microcomputer with keyboard, color-TV and audio cassette interfaces, game paddle, and BASIC built-in for $1300. Commodore International had a working prototype of its PET 2001 computer, which has a CRT, keyboard, cassette drive, IEEE 488 interface, and built-in BASIC; price goal is the $500-$600 range. Commodore sees the personal computing market as a merger of the electronic games and calculator markets and expects the same dramatic decline in prices as more of the semiconductor manufacturers join in the competition.

There was a general air of amazement at both the number and sophistication of the products offered by the vendors. Since the January, 1975 POPULAR ELECTRONICS article introducing the Altair 8800 microcomputer, a dozen new companies have emerged to offer Altair-compatible mainframes; memory boards have increased 16 times in capacity; an array of compatible peripherals is being offered; and a whole new generation of computers has emerged. And all those people came to San Francisco to see it happen.

Angela and Joanna Prelesnik, of Santa Clara, react to the PET's showing of their lunar landing module's crash on the moon. MOS Technology 6502 architect Chuck Peddie is shown looking on at left.

Dennis Wong, from Mountain View, shows his computer-based payroll system for small businesses. System consists of a Processor Tech. SQL microcomputer, a North Star Floppy Disk, and Memorex printer, all for less than $3000.

Rich Gold's "Mr. Computer" is based on a KIM-1 and 200-byte program. Its coded messages (via LED displays in its mouth) are interpreted by Rich in storybook form. He plans to add video graphics and electronic music output.
LAST MONTH, we described the circuitry and construction of the Cabonga electronic percussion synthesizer. Now here are four accessories—the Snare Drum Adapter, the Auto Trigger, the Sound Modifier, and the Combiner/Power Pack. Methods of interconnecting them with each other and the Cabonga will be shown. The result of these patches will be a flexible and expandable percussion synthesizer system.

The Cabonga has two jacks which, until now, you have not used. They are marked EXTERNAL TRIGGER and EXTERNAL POWER. The EXTERNAL TRIGGER jack will be used with the Auto Trigger and the Snare. The EXTERNAL POWER jack will accept ±9 volts from the Combiner/Power Pack. Actually, all Cabonga system components could be powered by 9-volt batteries. Cost, however, makes this an unattractive proposition in a multi-component system.

The Combiner/Power Pack will not only provide ±9 volts dc (if 117 volts ac is available), but also includes a unity-gain active mixer. This mixer will sum up to five input signals and present them at a low-impedance output. In practice, all Cabonga components will operate with supplies ranging from ±8 to ±15 volts dc. Accordingly, the Combiner/Power Pack does not include such features as voltage regulation, foldback current limiting, etc. If you’re a purist, you can add them; but you will probably not be able to hear any difference.

The schematic of the Combiner/Power Pack is shown in Fig. 6. A full-wave bridge composed of D1 through D4 rectifies ac from T1, a 12.6-volt, 1.2-ampere center-tapped transformer. Pulsating dc produced by the bridge is filtered by electrolytic capacitors C1 and C2. The ±9-volt output of the power supply is routed to jacks J1 through J6 and to IC1, the unity-gain summing amplifier.

Etching and drilling and parts-placement guides are shown in Fig. 7. Be sure to observe polarities and pin basing of semiconductors and electrolytic capacitors. The Combiner/Power Pack should be housed in an enclosure measuring about 9½” x 4” x 2½” (23.5 x 10.2 x 6.4 cm). The top and bottom of each wall should be rabbeded to provide a ¾” (9.5-mm) deep x ¼” (6.4-cm)

COMBINER/POWER PACK PARTS LIST

- C1, C2—2200-µF, 16-V electrolytic capacitor
- D1 through D4—1N4001 silicon diode
- F1—1/2-ampere fuse
- I1—120-V ac neon pilot lamp assembly (Radio Shack 272-703 or equivalent)
- IC1—µA741CV operational amplifier
- J1 through J6—Miniature phone jack
- J7 through J12—Standard phone jack
- R1 through R6-10,000-ohm, 1/4-watt, 10% carbon composition resistor
- S1—SPST switch
- T1—12.6-V, 1.2-A transformer
- Misc.—Printed circuit board, ac line cord, etc. See photo p. 80 for kit prices.

BILL OF MATERIALS

1—Piece 1/32” aluminum 8¾” x 2-15/16”
1—Piece 1/16” phenolic stock 1¾” x 1¼”
2—Pieces 3/4” pine or plywood 9½” x 2½”
2—Pieces 3/8” pine or plywood 3-1/16” x 2½”
1—Piece 3/8” plywood 8-7/16” x 3”
1—Piece 1/8” rubber matting 8-7/16” x 3”
1—Piece black vinyl 28” x 5”
10—No. 4 x 1/4” sheet metal screws
1—36” grommet
Misc.—Contact cement, etc.
“shelf” on which to mount the top and bottom plates. This will enable the plates to be flush with the top and bottom of the walls. Round all top and bottom edges of the walls with sandpaper.

Form a top plate from an 8¾" x 2-15/16", (21.3- x 7.5-cm) piece of 1/32" (0.8-mm) aluminum stock. Holes should be drilled for the mixer input and output and power output jacks, for the line cord, power switch and pilot light. The power output jacks, as well as the external power jacks on the Cabonga components, must be isolated from the aluminum top plates. This is because the “ground” portions of the jacks are at −9 volts. Isolation can be ensured by drilling the holes for the jacks with 7/16" (1.1-cm) bits. The jacks should be mounted on a 1¼" x 1¼" (4.4- x 3.2-cm) piece of 1/16" (1.6-mm) phenolic.

An 8-7/16" x 3" (21.4- x 7.6-cm) piece of ¼" (6.4-mm) plywood forms the bottom plate. If you wish, you can fashion a sheet of ribbed rubber runner to the outer surface of the bottom plate with contact cement. The runner will provide an antiskid surface for the Combiner/Power Pack. The case can be covered with a 28" x 5" (71.1- x 12.7-cm) piece of black vinyl. Secure the vinyl to the case with contact cement by wrapping it around the perimeter. At each corner, slit the vinyl and trim it as necessary. Carefully fold the vinyl over the top and bottom edges and into the rabbets.

Wire the jacks, switch, etc., according to the schematic diagram. When all connections have been made, secure T1 and the pc board to the bottom plate, and the top and bottom plates to the case. Make one patch cord from a convenient length of shielded audio cable, terminating its ends with miniature phone plugs and prepare one patch cord terminated with standard phone plugs for each Cabonga. Also make one terminated with miniature phone plugs and one terminated with subminiature phone plugs for each Auto Trigger or Snare.

To test the Combiner/Power Pack, plug one power patch cord (terminated with miniature phone plugs) into a power output jack. Then connect the line cord to a wall socket and close S1. Indicator I1 should glow. Attach the negative probe of a voltmeter to the barrel of the miniature phone plug, and the positive probe to the plug tip. The meter should read 17 to 20 volts dc. If you read only half of this voltage or zero volts, turn off the Combiner/Power Pack and disassemble the enclosure. Check your wiring for shorts. When the reading is correct, attach the negative probe to the aluminum top plate and the positive probe to the plug tip. A reading of 8.5 to 10 volts dc should be obtained.

Turn off the power by opening S1. Then remove the patch cord from the power plug. As the plug barrel comes out of the jack, it momentarily touches both terminals of the jack and shorts them together. The Combiner/Power Pack’s supply can take a direct short for a second or two without damage to its components. As a rule, however, you should turn off the power before making any power patch cord changes.

Connect a Cabonga to the power supply and mixer circuits to verify that both are functioning correctly. Successively try each power and mixer input jack to be sure they are correctly wired.

The Modifier. Most often, the damped sinusoidal output of the Cabonga is the signal you will use. But there will be times when a certain amount of clipping is needed. For example, the peaks of the Cabonga output should be clipped somewhat to get a “crisp” sound like that of a bongo. This also produces a better sounding tom-tom.

The schematic diagram of the Modifier is shown in Fig. 8. The circuit is simply a 100-ohm potentiometer. It presents a variable load of from 0 to 100 ohms to the output stage of the Cabonga. As the load resistance decreases below the value required for “crispness,” various sound effects can be obtained. Although the load resistance as seen by the Cabonga varies, the Combiner/Power Pack input sees a constant 100-ohm signal voltage source.

The Modifier, as well as the Auto Trig-
The Auto Trigger. Before we discuss the Auto Trigger, let's review how the Cabonga has been triggered until now. When the head is struck, switch S1 closes and applies a pulse to the active filter, resulting in a damped sinusoidal output. The amplitude of the trigger pulse determines the amplitude of the output signal. Jack J1 (EXTERNAL TRIGGER) is connected in parallel with S1 so that an external pulse source can cause the generation of a percussive output.

The Auto Trigger is such a pulse source. It produces a variable level (0 to 9 volts), variable-frequency (0.5-to-400-Hz) square waves. Its circuit, shown schematically in Fig. 9, is not complicated. Only seven components are used. Operational amplifier IC1A, one half of a 5558 dual op amp IC, is used as a comparator. The other half, IC1B, is used as an integrator. When the comparator output changes states, a pulse is generated. This pulse is integrated by IC1B into a ramp whose slope depends on the amount of signal current supplied to the integrator, and thus on the values of R3 and R4. When the output of the integrator reaches one-half of the supply voltage, the comparator changes states again. The process then repeats itself.

Resistors R3 and R4, and capacitor C1 determine the frequency of oscillation. It can be varied over a wide range by adjusting TEMPO control R3. The upper limit of oscillation is governed by R4. Square waves appear at the output of IC1A and are coupled to J3 by LEVEL control R5. Power is derived from the Combiner/Power Pack and coupled to J1 or J2. An extra power jack is provided for patching to other accessories.

Etching and drilling and parts placement guides for a suitable schematic are shown in Fig. 10. Be sure to observe the polarity of C1 and the pin basting of IC1 when mounting them on the board. Construct an enclosure and top plate to the dimensions and style previously described. Note that jacks J1 and J2 must be isolated from the aluminum top plate, which is at ground potential.

Connect a power patch cord between the Combiner/Power Pack and J1 or J2 of the Auto Trigger. Then connect a patch cord terminated with subminiature phone plugs between the Cabonga's EXTERNAL TRIGGER jack (J1) and the Auto Trigger output (J3). Turn the Auto Trigger's TEMPO and LEVEL controls fully clockwise. Then close the Combiner/Power Pack's power switch and monitor the mixer output. You will hear an output signal about once every two seconds. As the TEMPO control is rotated, the trigger rate will increase. Rotating the LEVEL control will vary the output signal's volume from minimum to maximum.

The Snare Drum Adapter. The snare sound is the most difficult to synthesize because a snare drum produces three different sounds simultaneously. As the drumstick strikes the top head, the sharp sound of the strike is heard. At the same time the sound of the drum itself (actually a medium-size tom-tom) is produced. The bottom head also vibrates and causes the snare wires touching it to move.

We can synthesize this complex sound by combining three different components: a high-level, short-duration pulse; an exponentially damped sine wave; and filtered noise. The damped sinusoid is already available at the Cabonga output. We can therefore use the Cabonga to trigger an accessory that would produce the other two components and mix them all together to produce a synthesized snare.

That is exactly what the Snare Drum...
Adapter does. It is shown schematically in Fig. 11. Noise generator Q1 produces a continuous signal that approximates white noise. Capacitor C2 couples this noise to the base of Q2.

When a voltage spike is applied to the Snare's EXTERNAL TRIGGER jack (J1), it charges C1. Such a spike is available when the Cabonga's trigger switch closes as the head is struck. Depending on the values of R1 and R2, the voltage across R3 decays exponentially with a time constant equal to the product of C1 and (R1 + R2). A portion of this voltage envelope (determined by the setting of R3) is also applied to the base of Q2 via R4. The voltage envelope causes Q2 to conduct and pass the noise signal.

Transistor Q2's output is filtered and capacitively coupled by C3 to a high-gain amplifier. At the input to op amp IC1, the signal comprises a high-level spike and a very low-level noise component. Amplifying the signal by a factor of 47 (determined by the ratio R8/R7) produces a useful effect. The initial spike, whose amplitude is already approaching the positive supply voltage, is relatively unaltered while the noise component is amplified and equalized in level with the spike.

However, the high gain has an undesirable side effect—it greatly accentuates the internal noise of the inexpensive op amp. To eliminate this noise, D1 is placed in series with the op amp output. The diode will not pass signals below 0.7 volt, so the unwanted noise, which would sound like a low-level hiss, is eliminated but the desired signal is allowed to pass. In the process, we get a bonus—the noise is made to sound more realistic by clipping off its bottom half. Resistors R10 and R11 combine the Cabonga and Snare waveforms into a single output, available at output jack J2. Potentiometer R9 serves as a LEVEL control for the snare signal.

Etching and drilling and component placement guides are shown in Fig. 12. Mount the components on the board, observing polarities and pin bashing of the semiconductors and electrolytic capacitors. Construct an enclosure and top plate to the dimensions and style previously described. Note that jacks J4 and J5 must be isolated from the aluminum top plate, which is at ground potential. Trimmer potentiometer R3 is installed on the pc board. The other potentiometers are mounted on the top plate.

Patch external power to J4 or J5, and run patch cords from the Cabonga output and external trigger jacks to J3 and J1, respectively. Interconnect the Snare.
output (J2) to the Combiner/Power Pack’s mixer input. Place the thumbwheel of R3 at the midpoint of its rotation. While striking the Cabonga drum head, adjust the setting of R3 in either direction until you obtain the most pleasing sound. As you strike the head, you will hear the sound of the strike, the tom and the noise simultaneously. The relative loudness of the strike sound as compared to the noise is governed by R3, so you might have to make a compromise adjustment of the trimmer potentiometer. Adjust the output level to obtain a balanced snare sound.

Use the circuit shown in the Fig. 13 to trigger the Snare. It will result in a fair approximation of a cymbal. Then trigger the Snare with the Auto Trigger. For a different effect, prepare a patch cord from a single piece of stranded hookup wire. Solder the hookup wire to the tips of two subminiature phone plugs. Connect the patch cord to the Auto Trigger output and the Snare EXTERNAL TRIGGER input. Turn both Snare controls to maximum. By adjusting the Auto Trigger TEMPO and LEVEL controls, you can create such effects as the sound produced by a biplane.

Using the Cabonga System. The Cabonga and its accessories form an expandable synthesizer system. As with any electronic musical instrument, the best way to realize its full potential is to experiment. Here are some hints. It is always best to turn off the power before making any patch cord changes. As previously mentioned, this prevents inadvertent damage to the power supply diodes. It’s the only restriction on use of the system that should be observed. Let your imagination dictate system configurations and patches.

Cabonga accessories are shown here and below. Following are available from JAL Assoc., Box 107, Easttown, NJ 07724: Combiner/P-P pc board at $3.50, complete kit, $27; Snare pc board, $3.50, complete kit, $16.95; Auto Trig. pc board, $1.50, complete kit, $12.95; Modifier complete kit, $7.50. All postpaid. NJ residents add 5% sales tax.

A three-head system is shown in Fig. 14. (You may prefer a fivehead system.) Cabonga 1 is set up as a snare, Cabonga 2 as a tom-tom and Cabonga 3 as an automated bass drum, resulting in an electronic drum set. Set the Modifier control to give a crisp tom-tom sound.

The Controller and Power Pak is necessary to connect all the other units together.

As mentioned in Part I of this article, the Cabongas can be interconnected via their EXTERNAL TRIGGER jacks. Tune two Cabongas an octave apart and interconnect them. You will note that the sound produced is much fuller than that from just one. Another possibility using four Cabongas is as follows. Tune two (A and B) as a Conga set and two (C and D) as a pair of Bongos. Interconnect A to C and B to D. When you play either the Congas or Bongos, you’ll hear both pairs simultaneously.

The Auto Trigger can be used in many different ways. Adjust its output frequency for about 2 Hz and use it to trigger the Cabonga. Briskly rotating the Cabonga PITCH control back and forth will produce an effect reminiscent of the “musical percolator” that appeared in television coffee commercials.

By increasing the tempo and rotating the PITCH control from minimum to maximum, you’ll hear a sound effect common to science fiction movies. If the tempo is set just right, you will hear an “echo” as the bubbling sound increases in pitch. Stepping up the tempo even more causes the sound to become a continuous oscillation. The Cabonga then acts like a variable bandpass filter (waa waa), and the PITCH control functions as the bandpass frequency selector. You can also trigger the Snare with the Auto Trigger to create such sounds as that from a locomotive, breathing, and others which are difficult to describe!

On the more practical side, you can use a number of Cabongas and Modifiers to make a fairly realistic steel drum set. The Modifier, as previously mentioned, is most useful when synthesizing a Bongo or tom-tom.

Those are some ideas to get you started. As you experiment more and more, you will probably create sounds that no one else has even thought of!
Your electronic projects deserve to be housed in attractive and reasonably priced "custom designed" cases. As a modern hobbyist, you don't have to make do with utility boxes that do not complement your projects. Instead, you can design your own inexpensive and attractive plastic cases, thanks to the ready availability of acrylic plastic sheets and tubes.

Acrylic plastic is easier to work with than wood—and with the same tools used in woodworking. It can be cut, filed, sanded, glued, and even bent to permanently conform to a desired shape. Available under such brand names as Plexiglas, Lucite, and Safe-t Vue, it comes in crystal clear, color-tinted transparent, translucent, and opaque sheets in 1/16", 1/8", and 1/4" (1.6, 3.2, and 6.4 mm) thicknesses.

This article describes how to work with acrylic plastic to custom design and fabricate cases for your electronic projects. To illustrate the step-by-step procedure to use, we also include a digital Kar Klok project to assemble (see box). The Kar Klok is built around National Semiconductor's new MA1003 clock module, a printed circuit assembly containing a four-digit 0.3" (7.6-mm) high fluorescent display, time base, clock chip, and all necessary driving circuitry.

Working With Acrylic. Just about any brand of acrylic plastic can be used by the electronics hobbyist because all have the same basic physical properties. However, some types of acrylic are easier to work with than are others. Most acrylic pieces made by the cast method can be cemented together with a solvent that actually dissolves the mating surfaces and forms a monolithic weld joint in minutes. More difficult to work with are the acrylics made by a continuous conveyor-belt process, which require a thickened type of cement (airplane dope) that takes an hour or more to set. Needless to say, cast acrylic, such as Plexiglas G, is your best first choice. Ask for Plexiglas G (or similar cast-type acrylic) at your local hardware or hobby/craft store.

Acrylic sheets come with a special protective paper on both surfaces to prevent scratches. This paper makes an ex-
cellent surface for marking cutting lines and the centers of holes to be drilled.

The plastic can be cut with a saw or a special scribing tool. You can use a jig-saw, hacksaw, coping saw, or saber saw for cutting. However, scribing is easier if all you have to do is cut straight lines. Curved lines and circles still require cutting with a saw.

The fabrication details for the Kar Klok (see box) case are shown in Fig. 1. Mark all necessary lines and hole centers on the protective paper on the acrylic sheet.

The scribing tool, which sells for about $2.00 wherever the plastic is sold, looks like a miniature harpoon. In use, the sharp point of the tool is guided along the cut line with moderate downward pressure, using a straight edge, as shown in Fig. 2. Once the line is scribed, the plastic is placed over the edge of a table, scribed line up and in direct alignment with the edge of the table, and struck sharply on the side overhanging the table. The snapping action yields a very straight, clean edge. The snapped edges must then be lightly smoothed with fine sandpaper before being cemented. Edges that are not to be cemented can be buffed to a crystal sheen with a drill-mounted muslin wheel and a special buffing compound (about $3.00 for wheel and compound) or with fine steel wool and soap and water.

Cutting holes is done with ordinary drill bits, as shown in Fig. 3. It is important to note that during the drilling operation, the sheet of plastic must be firmly held or clamped to a piece of wood to prevent it from riding up the bit and cracking. Square and rectangular slots can be made by drilling a small hole and cutting with a coping saw.

Since the Kar Klok case pictured in the lead photo and dimensioned in Fig. 1 is triangular in shape, it is necessary to bend the acrylic plastic sheet to conform to this shape. The trick to making accurate bends is to use a bending jig and heat only those portions of the plastic that are to be bent. Do not heat the entire surface of the plastic.

Acrylic plastic bends at about 300° F (about 150° C). It bends best if the protective paper is peeled off before the heat is applied. You can heat the plastic along the bend line in several ways, the easiest of which is to use the specially made strip heater element that sells for about $8.00 from the same dealers who handle the plastic. This heater element requires a simple wood strip that keeps it about ¼" (6.4 mm) away from the plastic. Detailed instructions come with the element.

Fig. 2. The acrylic scribing tool, obtainable wherever the plastic is sold, looks like a small harpoon and is used to scribe a line, following a straight edge, where the plastic is to be broken.

Fig. 3 Acrylic is easily drilled by holding the plastic firmly to a wooden base. Here, holes are being drilled for pushbutton switches. Square and rectangular slots can be made by drilling a hole and cutting with a coping saw.

Fig. 4. Acrylic bends at about 300° F. Here strips of wood faced with cloth for protection, are placed on both sides of bend mark and heat is applied by a 1000-watt hair dryer.

Fig. 5. Heat for bending can also be obtained from a 500-watt photoflood bulb. Fig. 6. Once the plastic has been heated, it can be bent using a jig as shown here. Note that the actual crossection of the case has been drawn on the bottom of the jig. Jig corners are 4-inch nails.

Fig. 7. Acrylic solvent cement is easily applied and dries in minutes. Here one end of the clock case is being glued to the main frame.

Fig. 8. If preferred, an acrylic cylinder can be used for the body of the clock with square end pieces as shown here.
Another bending technique is to place the plastic sheet on a flat surface, place a \(\frac{1}{4} \)" thick strip of wood on both sides of the bend line (face the strips with soft cloth or cotton to prevent them from scratching the plastic), and use a blow-type hair dryer to heat along the line. Details are shown in Fig. 4. The hair dryer must be rated at a minimum of 1000 watts. How well it heats the plastic depends on the chemistry of the particular sheet of acrylic you use. Do not hold the dryer too close to the plastic or the air flow will be restricted and the heat fuse will blow.

Still another approach that works for heating the plastic is to use a 500-watt photoflood lamp. Again, use wood strips to frame the bend line. Hold the plastic about 10" (25.4 cm) away from the lamp as shown in Fig. 5.

Once the plastic has been heated, it can be bent to shape using a bending jig as shown in Fig. 6. Note here that, to get the angles correct during bending, the actual-size crosssection of the body of the clock case is drawn on the base of the jig. A 4" (10.2-cm) long nail is then driven into the indicated corners of the drawing and the plastic is aligned with the drawing and gently bent around the nails. When the bending operation is complete, there will be a small open slot where the ends of the plastic sheet do not quite meet. This slot is used for running the wires between the vehicle’s electrical system and the clock module, without drilling holes.

Next, cut the triangular end pieces for the case from the same plastic sheet from which the case body was cut, using Fig. 1 as a guide. After sanding the edges smooth and buffing them, cement one side piece to the case body as shown in Fig. 7. Slip the clock module into the case. Then fasten down the pushbutton switches in their appropriate holes and route the electrical-system hookup wires through the slot in the body of the case. Cement the other side piece to the case.

Decide where in your vehicle you want to mount the Kar Klok and cement Velcro strips to the bottom edges of the case end pieces with the solvent cement and to the dashboard with a silicone adhesive. Finally, route the wires coming from the clock module into your vehicle’s electrical system (see box for hookup details). The use of Velcro strips to mount the clock allows you to remove the clock and put it out of sight to reduce the possibility of theft.

A Simpler Case. Perhaps you do not
ABOUT THE CLOCK

As shown in the schematic diagram, the Kar Klok is a very simple project to put together. It is built around National Semiconductor's new MA1003 clock module that requires the addition of only three momentary-action pushbutton switches and five wires to be connected into the vehicle's electrical system.

With the Kar Klok wired as shown, the display will be on continuously as long as the vehicle in which it is installed is running. The clock remains powered even with the ignition turned off, but power is removed from the display to conserve battery power. However, even with the ignition off, the time can be displayed on demand simply by pressing switch S3.

Switches S1 and S2 provide the means for setting the hours and minutes for the correct time. These switches are activated only when the ignition is on. With the ignition turned off, the time-setting switches are disabled.

Basically, only three connections need to be made from the vehicle's electrical system to the clock module. Constant dc power from the positive battery terminal, with the ignition on and off, is made to pad 3 on the module, while the negative side of the battery, or chassis ground, goes to pad 6. The ignition-controlled display on/off connection goes from the other side of the ignition switch to pad 1.

Optionally, you can add brightness control to the display by connecting a lead from the headlight switch to pad 4 on the module. Now, when the headlights are turned on, the brightness of the display is reduced by two thirds, which reduces glare under nighttime driving conditions. Additionally, if your car is equipped with a dashboard-light level control (rheostat), a final wire from the wiper lug of the control to pad 2 on the module allows you to control the brightness of the display from full to about one-third brightness. No connections need be made from the vehicle's electrical system to pads 2 and 4 on the module for the clock to operate.

The green vacuum fluorescent display consists of four 0.3" (7.6-mm) digits with a colon between the minutes and hours. The green display allows the use of blue, green, or yellow filters.

The clock module itself is protected against automotive voltage transients and reversals. It is designed to keep time with supply potentials of nominally 12 volts down to approximately 9 volts dc. The clock draws 5 mA when operated with the vehicle's ignition off.

For wiring between the clock module and the vehicle's electrical system, it is best to use 20-gauge stranded hookup wire. You can use 22- or 24-gauge stranded hookup wire between the switches and module. (A kit of parts, including the MA-1003 clock module, three pushbutton switches, and triangular case described elsewhere in this article, is available for $26.95 from: Digi-Key, Box 677, Thief River Falls, MN 56701. Please ask for the Kar Klok kit. Minnesota residents, please add state sales tax.)

wish to go to the bother of bending a sheet of acrylic plastic to make a case for your Kar Klok. In this event, you can substitute an acrylic cylinder for the body of the clock and use square end pieces (see Fig. 8). Select tubing with a 1/4" (44.5-mm) inner diameter and 5/8" (3.2-mm) wall thickness and cut it to 7 1/2" (8 cm) in length. The end pieces should form squares that measure 2 1/2" (57.2 mm) on each side from 1/2" or 1/4" thick acrylic plastic sheet.

Acrylic tubing for craft work is usually crystal clear. However, if you prefer a transparent tint, solvent-based dyes that simply brush onto the plastic are available. You can use the crystal clear tubing as is with crystal clear or color tinted end pieces to better show off the Kar Klok's "innards."

To locate the holes for the three pushbutton switches, slip the module into the acrylic tube and note and mark where the holes should be drilled. When you drill the holes for the switches, drill a fourth hole of the same diameter for the wires that connect to the vehicle's electrical system to exit the case. Then drill a line of 1/4" holes at the top and bottom of the case, spacing them about 1/4" (9.5 cm) apart to allow air to cool the clock module when it is installed in the case.

Cement one end piece to the cylindrical body. Slip the clock assembly into the case, fasten down the switches in their appropriate locations, and route the electrical-system hookup wires through the hole drilled for them. Then cement the other end piece to the case. Finally, use Velcro strips to mount the Kar Klok to your dashboard and connect the wires to your car's electrical system as shown in the box.

In Closing. The world of acrylic plastic provides the electronics hobbyist with a practical and inexpensive means for custom designing and fabricating cases for his projects. In this article, we have detailed the basic techniques for working with acrylic plastics. With a little practice and by exercising some imagination, you can be making custom cases for all your projects in short order. For example, you might substitute wood for the end panels of your case or use a wood base with a brushed aluminum pedestal on which to mount an acrylic-cased project. The combinations of materials and styles are almost limitless.

The Kar Klok project presented here is a practical automotive accessory that is particularly suitable for exercising your imagination in designing custom plastic cases.
IC AUDIO PREAMPLIFIERS

SEMICONDUCTOR devices have been used in audio amplifiers ever since the transistor first became a practical commercial product. In fact, to a large degree it was the continuing search for improved and more efficient audio amplifiers and switches which led to the invention of the transistor by scientists of the Bell Telephone Laboratories in the late 1940's. The first consumer application of transistors was as audio amplifiers in hearing aids, followed shortly thereafter by their use in the audio sections of AM radio receivers and as preamplifiers for vacuum tube operated audio systems. As time passed, the mass production of junction transistors for the hearing aid industry resulted in a surplus of units which didn't meet the critical requirements of hearing aid designs but which, nonetheless, were excellent amplifiers. These devices were made available to the retail market through local distributors as moderately priced "experimenter's transistors," opening a whole new field for the experimenter and hobbyist.

Originating back in the heady days of vacuum-tube amplifiers, the preamplifier often was an afterthought—that is, an extra retrofitted circuit used to boost relatively weak signals prior to processing by a conventional amplifier. Sometimes the preamp, as it came to be known, was incorporated as part of an external signal source, such as a condenser microphone or magnetic phono pickup. In other cases, the preamp was an add-on circuit mounted directly on the main amplifier chassis and using the same power source. In still other cases, it was a separate piece of self-contained equipment with an integral supply as well as input and output jacks. In those early days, the preamp generally was a single- or dual-stage circuit designed to furnish some frequency compensation as well as modest gain. It seldom was equipped with gain or tone controls, however, for these were found in the main amplifier assembly.

Today's preamp designs range from simple single-purpose configurations to complex circuits with nearly as many controls as an oscilloscope. Depending on equipment performance requirements, the preamp may be used only as a buffer or isolation amplifier. More often, it serves to provide additional gain and impedance matching as well as frequency compensation, equalization, and control. While early solid-state audio preamps usually employed from one to four discrete transistors, current designs commonly feature one or more integrated circuits. General-purpose operational amplifiers are perhaps the most widely used devices as preamps, with FET-input types increasingly popular among design engineers because of their high input impedance characteristics.

Typical IC audio preamp designs are illustrated in Figs. 1 through 4. Abstracted from manufacturers' data sheets, application notes and similar published literature, these circuits all feature standard devices and commercial components and, therefore, are suitable for a variety of experimenter and hobbyist projects. Generally, layout and lead dress are not overly critical as long as good wiring practice is observed. This permits the circuits to be assembled using standard construction techniques, including pc or perf boards, solderless wirewrap, or conventional point-to-point wiring. In general, too, dc circuit power may be obtained either from batteries or well filtered and regulated ac line operated power supplies, at the builder's option. Since the required assembly and wiring time is but a few man-hours for most of the circuits, the designs are excellent for weekend projects.

Selected from data sheets published by the Signetics Corporation (811 East Arques Ave., Sunnyvale, CA 94086), the four simple audio preamp circuits shown in Fig. 1 are based on the NE542 dual low-noise preamp IC. However, the general designs may be used with a variety of amplifier IC's having similar electrical characteristics, including the LM381, LM381A, and LM387, with few, if any, changes in component values. Of course, pin connections vary with different IC's and an adjustment in dc supply voltages may be required for some types to achieve optimum performance. Of the four IC's in-

![Fig. 1. Audio preamp circuits: (A) tape playback; (B) RIAA phono; (C) NAB tape preamp; (D) mizer.](image)

![Fig. 2. This Bazandall tone control circuit uses a BIMOS unit.](image)
dicated, types NE542 and LM387 are supplied in 8-pin Mini-DIP's, while types LM381 and LM381A are furnished in standard 14-pin DIP's. All contain dual amplifiers, permitting a single device to be used for two-channel (stereo) systems.

A typical magnetic tape playback preamp circuit is illustrated in Fig. 1A. Requiring relatively few components, the circuit will deliver 0.5 V rms output when driven with an 800-µV input signal (nominally, at 1 kHz) by the pickup coil. A modified preamp design providing RIAA equalization for use with standard magnetic phono cartridges is given in Fig. 1B. Intended primarily for broadcast equipment applications, a two-pole fast turn-on NAB tape preamp circuit is shown in Fig. 1C. Finally, a multiple input audio mixer circuit with independent gain controls is illustrated in Fig. 1D. All four preamp circuits are designed for operation on conventional single-ended dc power supplies.

Featuring a BiMOS device, the Baxandall tone-control circuit shown in Fig. 2 is one of a number of suggested applications described in a 20-page data brochure (File No. 957) published by RCA (Solid State Division, Box 3200, Somerville, NJ 08876) for the CA3140 op amp family. As described in April's column, the CA3140 is a dual-technology unit which combines a high-impedance MOSFET input stage with a bipolar output amplifier in a single op amp. The CA3140 devices are furnished in standard 8-lead TO-5 type metal cases. Using linear potentiometers, the Baxandall circuit, according to RCA, can furnish up to ±15 dB bass and treble boost or cut at 100 Hz and 10 kHz, respectively, while providing a full peak-to-peak output of up to 25 V to at least 20 kHz. The amplifier's output is only -3 dB down at 70 kHz from its 1-kHz reference level. With the controls set for a flat frequency response, the circuit offers unity (0 dB) gain. As shown, the circuit is intended for operation on a single-ended dc power supply. It can be modified easily for operation on a dual ±15-V dc source, however, simply by removing the offset bias network and returning pin 3 (+input) to circuit ground while connecting pin 4, bypassed to ground with a 0.1-µF capacitor, to the negative supply terminal rather than to ground; all other circuit connections remain unchanged.

In contrast to the multiple input mixer described earlier (Fig. 1D), the audio distribution amplifier circuit illustrated in Fig. 3 features multiple isolated outputs. It can be used effectively in electronic musical instruments for special effects as well as in PA, music distribution, and intercom systems requiring multiple drives for several power amplifiers to achieve high output levels. It also can be used in light organs, audio control, and test instrument designs. Abstracted from 20-page Bulletin CB-248, published by Texas Instruments, Inc. (P. O. Box 5012, Dallas, TX 75222), the distribution amplifier employs a type TL084 quad operational amplifier. A member of TI's BI-FET family, the TL084 comprises four identical JFET input op amps in a single 14-pin DIP. The device can be operated on dc supply voltages of up to ±18 V, with each amplifier section offering an input impedance of 106 megohms, a unity gain bandwidth of 3 MHz, a slew rate of 12V/μs, internal compensation, and continuous integral output short-circuit protection. Individual amplifier pin connections are not identified in the schematic diagram because the amplifier sections are interchangeable and the final selection can be made best by the equipment designer to achieve optimum layout and lead.
dress. In all cases, however, dc power supply connections are to pins 4 (+) and 11 (-).

Another TI BIPFET circuit is given in Fig. 4—an audio preamp complete with gain as well as bass and treble tone controls. Intended for general purpose applications, the preamp can provide more than adequate drive for standard power amplifier designs. The circuit features the TL080, a single JFET input op amp which is offered in both 8-pin MiniDIP and TO-99-L style packages. Except for requiring external compensation (10-pF capacitors), the TL080’s electrical characteristics are essentially similar to those of the individual amplifiers in the TL084, discussed earlier. The device’s pin assignments are the same as those of such standard op amps as the LM301A, LM308, and µA748.

Fig. 5. Square-wave oscillator circuit can deliver signals from 1 Hz to 1 MHz as value of feedback capacitor is varied.

Right On! In last January’s annual “predictions” column, you may recall, I predicted a further breakthrough in the pricing of digital electronic watches . . . that commercially available watches would be offered in the “ten-dollar range.” Ah so! Texas Instruments, Inc., which originally broke the twenty-five dollar price barrier for digital watches, per an even earlier prediction, has done it again! In a recent press release, TI announced a reduction in the suggested retail list price of its model 503 sports/youth watches from $19.95 to a low $9.95!

Reader’s Circuits. If the bulging mail bag is any indication, many of our readers have been quite busy devising and testing new circuits.

While on the subject of mail—a personal word to those of you who may have written and not received answers to your letters and postcards. The volume of mail generated by a magazine with a readership of 400,000 is simply too much for one guy to acknowledge personally. However, be assured that all letters are read and given full consideration. If you don’t receive an answer to your inquiries promptly (or even at all), it isn’t due to a lack of interest. It’s simply because we don’t have time. But please, please keep us posted about your interests and keep sending those interesting circuits.

We have a twenty-year old French-Canadian reader, Guy Isabel (1725, Henri-Bourassa East Blvd., Apt. 25, Montreal, Quebec, H2C 1J8, Canada), to thank for the simple and inexpensive square-wave oscillator circuit illustrated in Fig. 5. It is capable of delivering signals at frequencies ranging from 1 Hz to 1 MHz as the feedback capacitor’s value, C1, is varied from 300 µF to 300 pF. The circuit may be used as a “clock” in digital applications, as a simple square-wave generator for test instruments, or as a basic tone source for alarms and electronic musical instruments.

The duty cycle is approximately 50% and is independent of the feedback capacitor’s value. The three active devices making up the oscillator, IC1, IC2, and IC3, are three sections of a standard type 7405 TTL open-collector hex inverter. Pull-up resistor R1 is a half-watt unit, while capacitor C1 may be a ceramic, plastic-film, paper or electrolytic type, depending on...
As an NTS student you'll acquire the know-how that comes with first-hand training on NTS professional equipment. **Equipment you'll build and keep.** Our courses include equipment like the **NTS/Heath GR-2001 computerized color TV (25” diagonal)** with varactor diode tuning and digital read-out channel selection; (optional programming capability and digital clock avail.).

Also pictured above are other units — 5” solid state oscilloscope, vector monitor scope, solid-state stereo AM-FM receiver with twin speakers, digital multimeter, and more. It’s the kind of better equipment that gets you better equipped for the electronics industry.

This electronic gear is not only designed for training; it’s field-type — like you’ll meet on the job, or when you’re making service calls. And with NTS easy-to-read, profusely illustrated lessons you learn the theory behind these tools of the trade.

Choose from 12 NTS courses covering a wide range of fields in electronics, each complete with equipment, lessons, and manuals to make your training more practical and interesting.

Compare our training; compare our lower tuition. We employ no salesmen, pay no commissions. You receive all home-study information by mail only. All Kits, lessons, and experiments are described in full color. Most liberal refund policy and cancella-
tion privileges spelled out. Make your own comparisons, your own decision. Mail card today, or clip coupon if card is missing.

NO OBLIGATION. NO SALESMAN WILL CALL

APPROVED FOR VETERAN TRAINING
Get facts on new 2-year extension

NATIONAL TECHNICAL SCHOOLS
TECHNICAL-TRADE TRAINING SINCE 1905
Resident and Home-Study Schools
4000 So. Figueroa St., Los Angeles, Calif. 90037

<table>
<thead>
<tr>
<th>NATIONAL TECHNICAL SCHOOLS</th>
<th>Dept 205-097</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000 South Figueroa St., Los Angeles, Calif. 90037</td>
<td></td>
</tr>
<tr>
<td>Please send FREE Color Catalog and Sample Lesson</td>
<td></td>
</tr>
<tr>
<td>NO OBLIGATION. NO SALESMAN WILL CALL</td>
<td></td>
</tr>
</tbody>
</table>

- Color TV Servicing
- B & W TV and Radio Servicing
- Electronic Communications
- FCC License Course
- Electronics Technology
- Computer Electronics
- Basic Electronics
- Audio Electronics Servicing

NAME
ADDRESS
CITY
STATE
Please fill in Zip Code for fast service
☑ Check if interested in G.I. Bill information
☐ Check if interested ONLY in classroom training in Los Angeles

SEPTEMBER 1977
Fig. 6. This dc low-voltage monitoring circuit uses a standard op amp IC as a voltage comparator and to drive the LED output indicator.

value. With neither parts placement nor wiring arrangement critical, the circuit can be assembled in a small metal or plastic case with an integral dc power source as a self-contained instrument or incorporated as part of a more complex piece of equipment, at the individual builder's option.

Ted Reiter (1442 Brook Drive, Titusville, FL 32780), a frequent contributor to these pages, suggests that his dc low-voltage monitoring circuit might be of value to other experimenters and hobbyists. Ted's circuit, Fig. 6, uses a standard op amp, IC1, as a voltage comparator and output indicator driver. In operation, a portion of the monitored voltage, determined by R1's adjustment, is compared to a fixed voltage obtained from a zener reference network, R2-D1, by IC1. As long as the monitored voltage remains at or above its present monitor point (determined by R1's setting), the output indicator, LED1, remains dark. If the voltage drops below this level, however, the indicator is activated.

The circuit can be set to operate within millivolts of a chosen setpoint level. Standard components are used in the design: IC1 is a type 741 op amp, R1 a conventional potentiometer, R2 and R3 one-quarter or one-half watt resistors, D1 a 3.3-volt zener, and LED1 a familiar red LED. A 12-volt dc power supply is suitable for monitoring input voltages of up to 12 volts, but a 15-volt power supply should be used for higher levels (up to 13.8 V). Since the circuit is essentially a dc amplifier, neither layout nor lead dress are critical.

Seeking a simple combination clock and single-pulse signal source for his digital experiments, Charles D. Baker (1141-18 Minto Ave., Kenora P9N 3K1, Ontario, Canada), devised the circuit in Fig. 7. Intended for operation on a standard TTL 5-volt dc source, the instrument can be used as a conventional clock, a two-phase clock, or a manually operated single-pulse generator.

The instrument's single active device is a standard TTL hex inverter, IC1. Three of the inverter sections are coupled together as a ring oscillator, with feedback capacitor C1 determining the frequency of operation (or clock rate). Shunt resistor R2 biases one inverter section into its active region to insure oscillation. Two of the sections are interconnected as a modified one-shot, delivering a negative-going output pulse, while the remaining section serves as a conventional inverter/buffer to deliver positive-going pulses.

The instrument's mode of operation is determined by function switch S1. When S1 is in its PULSE position, output pulses are delivered each time pushbutton switch S2 is depressed, discharging C2 through R4, and delivering a step signal through series isolating resistor R1. Between pulses, C2 is recharged through R5. When S1 is in its clock position, the ring oscillator drives the one-shot through R1, and a continuous series of positive- and negative-going pulses is developed at a rate determined by C1's value.

Readily available components are used in the circuit. The hex inverter is a standard 7404. Capacitor C1's value and type are determined by the clock rate needed; and C2 is a
100-µF, 6-volt electrolytic. Function switch S1 is a spdt toggle, slide, or lever switch, while S2 is a spst, momentary contact, NO pushbutton switch.

At the builder’s option, the instrument may be housed in a small metal box, a plastic case, or in a probe body. If assembled in a box or case where there is ample space, the builder may wish to include several different values for C1, selectable by means of a multi-position rotary switch, to provide a choice of clock rates. Typical values may range from a fraction of 1 µF up to as high as several thousand µF. According to Charles, the ring oscillator can be operated at rates from 1 Hz to 1 MHz, depending on C1's value.

Device/Product News. A new series of high-voltage, high-current, silicon npn transistors, types RCA9113, RCA9113A, and RCA9113B, has been announced by RCA's Solid State Division (Box 3200, Somerville, NJ 08876). Designed for use in off-line switch-mode power supplies, inverters, converters, pulse-width-modulated regulators, and motor controls, the new transistors feature high-voltage capability, fast switching speeds, and low saturation voltages, together with high SOA ratings for both forward- and reverse-bias conditions. With a peak collector current rating of 22 A and a maximum power dissipation of 175 W (at 25°C), the new transistors are supplied in standard TO-3 packages.

Motorola Semiconductor Products, Inc. (Box 20912, Phoenix, AZ 85036) has announced some new devices of potential interest to hobbyists and experimenters, including an extremely stable 2.5-V reference source and a monolithic automotive electronic ignition control IC.

Designed for critical instrumentation and D-A converter applications, the new voltage-reference source, type MC1403/1503, features a maximum output voltage variation of only 1% (±25 mV) and a typical temperature coefficient of 10 ppm/°C. It also features a line regulation of 3 mV (max) at input voltages from 4.5 to 15 V or 4.5 mV (max) from 15 to 40 V, together with a load regulation of 10 mV (max) at output currents from 1 to 11 mA.

Intended for circuits utilizing a flux-averaging sensor instead of conventional ignition "points" and condensers, the ignition control IC, type MC3333, is designed to drive a Darlington power transistor which supplies the current required by a high-energy ignition coil. Housed in a 14-pin DIP, the MC-3333 can operate at battery voltages from 4 to 24 volts.

Fairchild's Optoelectronics Division (4001 Miranda Ave., Palo Alto, CA 94303) has plunged into the hobbyist market with the introduction of a series of electronic construction kits. Designated as Solid State Technology Kits™, the new line includes an alarm clock-calendar (Model 0100), a wall clock (Model 0101), and an automotive digital clock. All of the kits feature LED displays. Future products planned for the line include additional clocks, a DVM and a frequency counter.

Meanwhile, another Fairchild division (Components Group, 464 Ellis Street, Mountain View, CA 94042) has announced a new 2-A monolithic voltage regulator designed primarily for use in power supplies for home-base CB radio equipment. The new device, type µA78CB, features a fixed output voltage of 13.8 volts, internal thermal overload protection, short-circuit limiting, a peak current capability of better than 4 A, and an output voltage tolerance of 5% over the 0° to 125°C temperature range. Available in both TO-3 and TO-220 packages, the new regulator can dissipate up to 20 watts.

STAY TURNED ON with your low power friends from CIS

Autoranging DMM $ 99.95
Frequency Counter $119.95
Logic Probe $ 34.95

Liquid crystal displays, plus CMOS designed testers offer you long life from a single 9 volt battery.

AUTORANGER™ DMM. Fast responding 3.5 digit liquid crystal display with full automatic operation. Autoranging up to 1000 volts and 2000 KΩ. Automatic zeroing. Automatic polarity sensing. Protected to 600 vdc. 10 Meg input resolution 1 mv. Accuracy DCV 0.5% reading - 1 digit. All for $99.95.

30 MHZ FREQUENCY COUNTER. Liquid crystal 6 digit display allows 8 digit resolution when switching the range to an overflow condition. 200 mv rms sensitivity and input of 10 KΩ minimum. RCA phone connection $119.95.

PROBIT™ LOGIC PROBE. Tests TTL/CMOS pulses-down to 35 nS and frequencies up to 40 MHz. Uses 7 segment LED display — "1" "L" dot" for pulses. Flexible, detachable tip plus "Micro-Hooks" for power. Includes pocket carrying case. $34.95.

FREE 15 DAY TRIAL. Be convinced or get your money back. Full 90 day warranty. Each tester shipped complete with battery, schematic, assembly drawing, parts lists.

For More Convenience, Call Now With Your Order TOLL FREE: 1-800-527-4634 (Texas Residents 1-214-234-4173)
LASER DIODES

In October the semiconductor laser diode will celebrate its fifteenth birthday! Even in this era of complex integrated circuits, the laser diode remains one of the most remarkable electronic components yet invented.

In some ways the laser diode closely resembles its first cousin, the light emitting diode (LED). For example, both diodes produce infrared or visible light when electrons recombine with holes at a forward-biased pn junction.

The electrons are excited to a higher than normal energy level, enabling them to cross the potential barrier formed by the junction. When they fall into holes after crossing the junction, they give up their excess energy in the form of radiated heat and light. The better the diode is, the more light than heat it produces.

This method of light generation, is called spontaneous emission, as it’s pretty much a random process. Electrons and holes recombine whenever the opportunity presents itself, and the result is a chaotic jumble of light waves. Fortunately, the relatively constant energy levels the electrons can occupy before crossing the junction limits the energy each electron can absorb. This restricts the radiated light to a reasonably narrow band of wavelengths (100–150 nanometers). Light is emitted at a much faster rate (within a few tens of nanoseconds) than that from most other sources. That’s why LED’s and laser diodes are ideal for detection, ranging, and communications applications.

The laser diode is nothing more than a carefully made LED with an ultra-flat junction and two tiny mirrors. The mirrors face one another and produce the internal feedback which leads to stimulated emission of radiation, the process responsible for laser action. Stimulated emission occurs naturally when a light photon emitted by an excited electron strikes a second excited electron and forces it to recombine with a hole. The result is two photons having almost identical frequency and traveling in perfect phase with one another. As you can see, stimulated emission is a type of amplification. Normally it occurs only rarely, but the two feedback mirrors of a laser cause stimulated photons to be reflected back and forth within the laser material and the result is a cascade of oscillating photons—or laser light.

Most laser diodes are made by producing precise, sandwich-like junctions in wafers of gallium arsenide (GaAs) or other efficient light-producing semiconductors. The wafers are then cleaved into thin bars, which are sawed into individual laser chips several mils on a side (about the size of the dot on this letter “i”). The cleaving process gives each chip two perfectly parallel facets which serve as the mirrors. Individual chips are usually installed in a protective package with a plastic (OK) or glass (much better) window and a miniature, built-in heat sink (Fig. 1).

Driving Laser Diodes. Both LED’s and laser diodes will produce recombination radiation when driven at very low levels of forward current. Lasers, however, will not lase until the forward current exceeds a level called the threshold (Jth). Above Jth, the optical power from the laser increases linearly with current. Many lasers will emit several watts or more when pulsed with 10- or 20-ampere pulses.

You may have read about the new generation of laser diodes which can be operated continuously without having to be cooled to the temperature of liquid nitrogen. Primarily designed for high-bandwidth communications through glass fibers, these lasers are a delight to use, but are temperature-sensitive and limited to several milliwatts of output power. They are not yet available at hobbyist prices.

Single heterostructure (SH) lasers, the kind you can buy at bargain prices from some of the suppliers who advertise in Popular Electronics, have a Jth of 5-10 amperes. Apply this much current to a SH laser diode and the chip will literally explode! The only safe way to drive an SH laser without cooling it with liquid nitrogen is to use current pulses no more than 200 nanoseconds wide.

The avalanche transistor circuit shown in Fig. 2 offers an excellent way to generate high-current pulses only 50-75 nano-seconds wide. Different transistors avalanche at different voltages, so you’ll have to select a specific transistor for your particular laser. Briefly, you should NOT connect a laser to the circuit until you have selected and verified the operation of Q1. Remember—laser diodes don’t like too much...
drive current! A good rule of thumb is to limit the maximum current to 2.5–3 times the threshold current. Both values are usually supplied with the laser.

Select Q1 by connecting a short copper wire in place of the laser and a fast oscilloscope (at least 15 MHz) across current monitor R4. This resistor must be of carbon composition, not wire-wound. Use ten 10-ohm carbon resistors in parallel if you can't find a suitable 1-ohm component. Keep all leads in the current discharge path (Q1, C1, R4, and the LASER) as short as possible. The height of the pulses on the scope screen in volts will equal their peak current in amperes. Many, but not all, transistors will oscillate in this circuit. You should have good results with most common npn silicon switching transistors such as 2N914, 2N2222, 2N3643, 2N4400, 2N5188, HEP50, etc.

After the driver circuit is working and Q1 is selected and in the circuit, you can install the laser. Pay attention to its polarity! Don't expect a spectacular red beam. Although the beam is truly impressive to see, it's invisible. To verify its presence, you'll need a photodetector sensitive to the 900-nanometer infrared radiation. Silicon photodiodes driving fast amplifiers work best. Phototransistors and silicon solar cells are marginal detectors because they have very slow response times. Phototransistors simply will not work.

To see the beam you'll need an infra-red image converter such as a snooperscope or silicon vidicon TV camera. The cheapest way to see the beam is to order a plastic, phosphor-coated infrared viewing card from Kodak Special Products Sales, Rochester, NY 14650. The viewing card costs about $30—but that's a bargain compared to the cost of an image converter.

With the help of an image converter or viewing card you can quickly squeeze the 20- x 40-degree beam from the laser into a pencil-thin beam as narrow as that emitted by the popular helium-neon laser. All you need is a convex f/1 lens. A good source for lenses and other optics is the Edmund Scientific Co., Edscorp Bldg., Barrington, NJ 08007.

Safety Considerations. Fortunately, the beam emitted by most laser diodes is reasonably safe because of its low average power. Nevertheless, as with any bright light source, you should avoid viewing the beam directly. You should also avoid pointing the beam at other persons or toward reflective surfaces.

The Affordable Programmable

Never Before A Fully Programmable Calculator Available To The Scientific Community At Such A Low Cost!

by Mail Order

$59.95

CALL TOLL FREE

800-621-8318

24 HOURS – 7 DAYS

SUMMARY of SPECIFICATIONS

- **12 DIGIT RED L.E.D. DISPLAY** entries or results in 3 modes, scientific, fixed point or engineering
- **PROGRAMMABLE**: F2 keystroke program storage
- **TRIG FUNCTIONS**: Calculated in radians or degrees or grads
- **HYPERBOLIC**: sinh, cosh, tanh, arsinh, arcosh, artanh, and cotanh. Calculates in radians, degrees or gradians. Enter x = 0 to 360 (0 to 2π) or multiples of 360 (2π).
- **LOG**: Natural Log (ln x), Exponential (e^x), Antilog (10^x). Algebraic functions include: x^y, 1/x, % Powers: (y^x), (1/y).
- **FUNCTIONS** of 1–10, X.
- **LINEAR REGRESSION/TRENDS**: SLOPE AND INTERCEPT
- **STATISTICAL**: 3, 5, weighted averages, standard deviation, variances, permutations, combinations.

WHY A PROGRAMMABLE?

The Commodore PR-100 Programmable Calculator introduces a new, innovative dimension in highly sophisticated, versatile, and easy to program Solving. It decentralizes and personalizes the decision-making power of the computer, bringing to you what was never before available in a programmable calculator with such features, yet at an amazingly affordable price.

Method of Entry: The Commodore PR-100 is designed for "Think and Touch" operation utilizing an alphanumeric mode of entry. You can enter equations which have up to 4 levels of parentheses. Add to these the features of the memory registers and you can work the most complicated mathematical, scientific, engineering, business, statistical and combinatorial functions. Furthermore, you can also perform unit conversions metric to English and English to metric.

Keyboard: The keyboard consists of 40 keys and 2 switches. 35 keys are for number and function entry. 10 of these keys are dual function (shifted keys).

SPECIFIED FUNCTIONS:
Most of these may be useful. Found on large scale computer systems are now finally available to you on the ultimate hand-held programmable calculator: iterative and recursive problem solving techniques; loop, conditional and unconditional branching.

ADVANTAGES OF THIS PROGRAMMABLE:
Consider for a moment the advantages of the Commodore PR-100. In terms of increased productivity you can now achieve the capability of: optimizing mathematical and scientific models; making trend and risk analyses; projecting and forecasting economic trends; performing complex statistical reductions; automating time-consuming "number-crunching.

The PR-100 is also a pre-programmed calculator that can achieve a multitude of functions: Basic +, -, x, y, and = functions, clear entry or the entire calculation. Hyperbolic functions include: sinh, cosh, tanh, arc sinh, arc cosh, and arc tanh. Trigonometric functions include: sin, cos, tan, arcsin x, arccos x, and arctan x. Calculations are done in radians, degrees or gradians. Enter x = 0 to 360 (0 to 2π) or multiples of 360 (2π).

NO LANGUAGE TO LEARN

Truly this programmable calculator is a powerful personal scientific and mathematical computing resource. And you don't need to know programming to make it work for you. There is no special language to learn. The entry system is so easy you will probably find it more convenient to use that you can even apply it quickly to your own personal problem-solving techniques and style.

Special Functions of the PR-100:

- **HALT** – The program will halt and allow you to read or store data.
- **SLEEP** – Allows temporary suspension of a program and saves RAM information.
- **STOP** – Allows execution of a program to another.
- **CLEAR** – Allows clearing of RAM.
- **ADD** – Adds two numbers together.
- **SUB** – Subtracts two numbers.
- **MULT** – Multiplies two numbers together.
- **DIV** – Divides one number by another.
- **FRAC** – Computes the fractional part.
- **INT** – Computes the integer part.
- **MR** – Memory register.
- **MC** – Memory clear.
- **MEM** – Memory register.
- **M+** – Adds to memory register.
- **M-** – Subtracts from memory register.
- **M*10** – Multiplies memory register by 10.
- **M/10** – Divides memory register by 10.
- **Mx** – Multiplies memory register by x.
- **M/2** – Divides memory register by 2.
- **MR** – Memory register.
- **M** – Memory register.
- **M+** – Adds to memory register.
- **M-** – Subtracts from memory register.
- **M*10** – Multiplies memory register by 10.
- **M/10** – Divides memory register by 10.
- **Mx** – Multiplies memory register by x.
- **M/2** – Divides memory register by 2.
- **MR** – Memory register.
- **M** – Memory register.
- **M+** – Adds to memory register.
- **M-** – Subtracts from memory register.
- **M*10** – Multiplies memory register by 10.
- **M/10** – Divides memory register by 10.
- **Mx** – Multiplies memory register by x.
- **M/2** – Divides memory register by 2.

SUMMARY of SPECIFICATIONS

- **PERCENTAGE CALCULATION** – add or subtraction divided by 100.
- **AND CHANGE SIGN KEY**
- **STORE**
- **8 DEGREES/DEGREES MINUTE SECONDS CONVERSION**
- **Radian/degree Conversion**
- **Polynomial Conversion**
- **8 METRIC CONVERSIONS**
- **SPHERICAL/CARTESIAN CONVERSIONS**

The Commodore PR (Personal Resource) 100 – Allows You To Personally Program According To Your Own Problem-Solving Needs!
MULTIPLEXED LED DISPLAYS

Q. In the Solid State Column on p. 73 of the August 1976 issue, I saw the schematic for a stopwatch with a 6-digit display. Each segment's like digits (a through g) are connected in parallel, but none of the common cathodes of each display is grounded. Can you explain how the circuit works?—Santiago M. Quijano U., Bogota, Columbia.

A. This is an example of a multiplexed display (see diagram). When a particular SEGMENT ENABLE switch is closed, the anodes of all like segment diodes—say, segment a in digits 1 and 2, represented as 1a and 2a—are connected through a current-limiting resistor to the positive supply. However, unless the DIGIT ENABLE switches are closed, the cathodes are left floating above ground and no current can flow through the diodes. Thus the LED segments remain dark.

Now, if DIGIT ENABLE switch 1 is closed but switch 2 left open and SEGMENT ENABLE switches a through f are closed, digit 1 will form a “0.” Opening DIGIT ENABLE switch 1, closing switch 2 and closing SEGMENT ENABLE switch g will cause digit 1 to go dark and cause digit 2 to form an “8.” If this process is repeated very quickly, the two digits will appear to form “08” without any display flicker.

This is the basic principle of operation in a multiplexed LED display. Gates and counters take the place of the mechanical switches, with their outputs either sourcing or blocking (segment enable outputs) current or sinking or blocking (digit enable outputs) current. A high-speed clock provides the necessary time reference. A large-scale integration chip (LSI) such as the Intersil IC7M205 contains all multiplex circuitry “on board.” That’s why the common cathodes are not shown grounded in the stopwatch schematic. The major advantage of multiplexed over direct-drive LED displays is reduced current demand—an important consideration in battery-powered equipment.

CAR CLOCK POWER SUPPLY

Q. I plan to build a digital clock/timer using a clock chip and a crystal-controlled time base. Do you have a circuit to reduce the car’s 12-volt power source to +5-V dc with adequate regulation for the IC’s?—Tom Ritch, Austin, TX.

A. You can use an LM309K IC regulator to step the 12 volts down to 5 volts regulated, as shown in the figure. Be sure to adequately heat sink the IC. Capacitors are used on both sides of the regulator to keep noise off the line, thus improving the stability of the regulator.

RESISTOR QUIZ

I would like to thank all the readers who have written in response to the Resistor Quiz in the July issue. Although some wrote suggesting answers such as 0 ohm, ¼ ohm, ½ ohm, and ¾ ohm, most arrived at the correct answer of ¼ ohm. As you will recall, the problem involved finding the effective resistance between points A and B in the infinite matrix of 1-ohm resistors. Of those who reported the correct answer, some used a “shotgun” approach by having a computer solve the problem for a very large but finite matrix. Others suggested the following, elegant solution.

Connect a one-ampere current source between node A and infinity so that 1 ampere flows into node A. By symmetry, the current will split into four ¼-ampere components, each of which will flow through one of the four resistors. Then remove the current source and connect it between node B and infinity so that 1 ampere flows from node B. Again, the symmetry of the lattice dictates that ¼ ampere will flow into node B from each of the four resistors connected to it.

The superposition theorem allows us to sum the resulting currents from both configurations. Accordingly, the current through the resistor connected directly between A and B is ¼ + ¼ or ½ ampere. By Ohm’s law, the voltage across the resistor, E_{AB}, is ½ ampere times 1 ohm, or ½ volt. Ohm’s law also tells us that the effective resistance between A and B is E_{AB} divided by I_T, the total current in the matrix. In this case, I_T is one ampere. Thus, R_{AB}, the effective resistance between A and B, is ½ volt divided by 1 ampere, or ½ ohm.

AmericanRadioHistory.Com
GENERAL ELECTRIC MODEL 3-5825
AM/SSB CB TRANSCEIVER

Features high average modulation and good noise suppression.

GENERAL ELECTRIC's Model 3-5825 AM/SSB transceiver is designed to provide total communication capability on the Citizens Band. It operates on all 40 channels and employs a digital frequency synthesis system and the now customary seven-segment LED channel display. Special features to be found in this transceiver include internal burn-out circuit protection, an antenna-failure indicator (AWI), and a quick-release mobile-mounting setup.

The transceiver also has the following complement of controls and features: RF gain, squelch, clarifier, and volume controls; illuminated S/r-f meter; switchable anl/noise blanker; AM/LSB/USB mode selector; transmitter-on LED and modulation peak indicator; automatic level control (aic) and automatic modulation control (amc); HI/LO TONE switch; detachable dynamic microphone; PA operation; jacks for external speakers; bottom-facing speaker; operation from a 12-volt dc negative- or positive-ground power system; reverse-polarity protection; line filter; and electronic switching and voltage regulation.

The transceiver measures 10 5/8"D x 7 1/8"W x 2 1/2"H (27 x 19.1 x 6.4 cm). $329.95.

Technical Details. On SSB, the receiver employs single conversion to a 10,695-kHz i-f and uses a crystal filter for selectivity and sideband selection. Three 10,695-kHz i-f stages, two of which are direct coupled, precede the SSB product detector, while carrier injection is provided by a 10,695-kHz crystal oscillator (bfo). A second conversion to 455 kHz is employed for AM, which uses a ceramic filter for selectivity. A diode-protected transistor stage precedes the first mixer. The second mixer, used for AM, is of the balanced-diode type. Three 455-kHz i-f stages precede the AM diode envelope detector and agc, following which is the anl that can be switched in and out simultaneously with the noise blanker. The latter employs an r-f amplifier, detector, and pulse amplifier that cause the output of the first mixer to be interrupted (gated) by the noise pulses.

The audio section, including the power-output amplifier, is incorporated into a single integrated circuit. The squelch system is a three-stage amplified system that is activated by the agc.

A phase-locked-loop (PLL) scheme is used for frequency control. It contains the usual 10,240-kHz crystal oscillator, from which the standard reference is derived. This oscillator is also used for the second conversion to 455 kHz for AM reception.

The voltage-controlled oscillator (vco) at the first mixer functions at a frequency 10,695 kHz higher than the CB signal. Its comparison signal is obtained through a down mixer and a 10,052.5-kHz crystal oscillator and dividing setup that is controlled by the channel selector switch. This signal is applied to an IC phase comparator, along with the standard reference. The LED display consists of the usual decoder/driver circuitry.

On transmit in the AM mode, a 10,695-kHz crystal signal from the bfo is difference-mixed with the vco signal to provide the on-channel carrier. The mixer is followed by a two-stage r-f preamplifier, driver, and final power amplifier. The latter two stages are collector-modulated as usual from the audio section in the receiver, which contains automatic modulation control (amc). A multi-section output network provides impedance matching to 50-ohm loads and attenuation of harmonics.

An Antenna Warning Indicator (AWI) comes on if a short or open circuit or other malfunction in the antenna system causes a high SWR to be detected by a sensing element in the transmitter. This indicator immediately apprises the user of a problem. It functions only on AM. If the malfunction is not noticed immediately, the manual states that built-in circuit protection will permit the transmitter to be operated for up to five minutes before damage occurs.

The usual type of SSB transmitting system is used in this transceiver. It consists of a balanced modulator and crystal sideband filter, followed by the transmitter mixer, where the signal is combined with the 10,695-kHz crystal signal for USB use. This crystal signal is shifted to 10,692 kHz, along with a +3000-Hz change in the vco to set up the initial signal at the proper side of the filter for LSB use.

Laboratory Tests. The receiver's sensitivity measured 0.8 μV for 10 dB (S + N)/N with 30% modulation at 1000 Hz on AM with a nominal 0.5-μV signal at 6 dB (S + N)/N. In either case, it produced a maximum sine-wave audio output of 3.25 watts at less than 2% THD with a 1000-Hz test signal into 8 ohms. SSB sensitivity was nominally 0.18 and 0.1 μV for 10 and 6 dB S/N.

Operating from the standard test source of 13.8 volts dc, the transmitter carrier output on AM was 3.75 watts. Up to 100% modulation was possible, and at microphone levels 25 dB more than needed for 50% modulation, the THD with a 1000-Hz signal was less than 2% (10% with a 400-Hz signal). Adjacent-channel splatter with 1000-Hz or voice signals was at least 60 dB down and no overmodulation was observed. The 6-dB audio response was 500 to 2400
The r-f power output on SSB was 9 watts PEP using test tones and 12.75 watts PEP during voice operation. The unwanted-sideband and carrier suppression were 55 dB on USB and 60 dB on LSB. The audio response was 300 to 2800 on LSB and 380 to 3100 Hz on USB. Third-order distortion products were 29 dB below two test tones (35 dB below PEP) at 10 watts PEP, while at 12 watts PEP, they were 23 dB below test tones (29 dB below PEP). Above 10 watts PEP, some flattopping was noted, accounting for the deterioration we observed at 12 watts PEP.

The range of the squelch threshold was 0.5 to 550 µV. The agc held the audio output level to within 8 dB on AM and 13 dB on SSB with an r-f input change of 20 dB at 1 to 10 µV. It held to 15-db on AM and 20 dB on SSB with an 80 dB change at 1 to 10,000 µV. The S meter registered S9 with a nominal 50-µV input signal.

Image rejection was 65 dB (primary) and 60 dB (secondary). I-f and other unwanted spurious-signal rejection measured greater than 80 and 60 dB, respectively. AM adjacent-channel rejection and desensitization was 58 dB minimum. Unwanted sideband suppression was at least 60 dB at 1000 Hz. The 6-dB audio response was 575 to 1600 Hz on AM and 600 to 2000 Hz on SSB (the clarifier control works only on SSB receive), with the upper end extending 300 to 400 Hz higher with the tone control set to hi.

User Comments. As our measurements indicate, receiver sensitivity, selectivity, and unwanted-signal responses, plus the use of the r-f gain control, provided good reception under adverse conditions. The AM/SSB combination enhanced receiving performance, with our lab tests showing that the original S/N versus sensitivity was maintained in the presence of impulse noise 100 dB above 1 µV/MHz bandwidth. Vehicle tests were also excellent.

We obtained good quality and high audio output power even with weak r-f signal levels. Use of the tone control let us set up the sound to suit our own taste. In this respect, the hi tone position provided us with the best intelligibility. On the other hand, the lo position helped to minimize noise.

The transmitter performed nicely, providing high average modulation levels without overmodulation or adverse splatter. The excellent unwanted-sideband suppression on SSB made dual-channel operation (simultaneous use of one frequency with two separate conversations, one on LSB and the other on USB) possible without interference between the two.

The transceiver is enclosed in a well-shielded case. The rotary controls are clearly identified and convenient to use. The mode and channel selector knobs have grip bars for easy operation. We particularly like the mode switch setup at the top of the panel, with the center position for AM and the LSB and USB positions to the left and right.

Another nicety is that the clarifier control has ±1 to ±5 calibration points, with a detent at the center position. This makes for quick retuning.

The edgewater meter is somewhat easier to read than is usually the case. Miniature toggles are used for switching some functions, such as the tone control (which has fixed hi and lo settings).

Aside from good overall performance and convenient handling, the transceiver offers the mobile user the advantages of SSB for enhanced CB communication. Of course, the inclusion of AM operation allows the user to communicate where the "other" station is not equipped for SSB.

ARIES SYSTEM 300 ELECTRONIC MUSIC SYNTHESIZER

Has five-octave keyboard and 12 functional modules.

General Description. At the heart of the System 300 synthesizer is the AR-317 voltage-controlled oscillator (vco) module. It produces and simultaneously provides four waveforms at amplitudes of 10 volts peak-to-peak. The ±5-volt sine, sawtooth, and triangle waves are centered on a 0-volt reference, while the variable-width pulse output oscillates between 0 and 10 volts.

Exponential circuitry provides 1-volt/octave (1/12-volt/semitone) control over a very wide range. Two potentiometers and a RANGE switch permit manual control from 0.03 to 30 Hz and from 16 to 16,000 Hz. External control voltages can determine the output frequency over a 0.002-to-50,000-Hz range. Four control inputs, one with a level control, are provided. The control inputs are summed so that each +1-volt input doubles and each -1-volt input halves the output frequency. Inputs are also provided for pulse-width modulation and frequency syncing with an external square-wave or pulse generator.

The basic waveform produced by this
module is the triangle. Its frequency is determined by an exponential current source varied by the control inputs. The source provides charging current for timing capacitors selected by the range switch. A loop composed of two operational transconductance amplifiers, a complementary pair of bipolar transistors, and a JFET generate the triangle waveform.

The triangle wave is buffered and presented at the appropriate output jack. It also drives an open-loop op amp and a waveform converter circuit, which results in variable-width (5% to 95%) pulse and sinusoidal outputs. The sawtooth is generated by a separate loop driven by a secondary output of the exponential current source. This sawtooth circuit is pulse synchronized to the main oscillator loop.

The AR-312 envelope generator produces a 0-to-10-volt signal that is normally used as a control input for a vca or voltage-controlled filter (vcf). The attack, decay, sustain, and release controls shape the output waveform. When a positive gate signal is applied to the input, the envelope generator can accept trigger pulses. Upon receipt of a trigger pulse, the generator's output increases exponentially from 0 to 10 volts, at a rate determined by the setting of the attack control. The attack time is variable from 2 ms to 4 s. A level detector conducts when the output reaches 10 volts, causing the main timing capacitor to discharge at a rate determined by the setting of the decay control. The output voltage decays exponentially until it equals a threshold selected by the sustain control and remains at this level until the gate signal is removed. When this occurs, the output exponentially decays to 0 volt at a rate determined by the setting of the release control.

Four outputs (wired in parallel) and two gate and trigger inputs are provided. Pressing a manual gate switch activates and triggers the envelope generator. When the button is released, the output signal decays to ground. This module also includes a four-jack, front-panel patch point.

Dynamic control of an audio signal is performed by the AR-316 vca, which is designed around a CA3080 operational transconductance amplifier. One of two op amps sums four control inputs (one with an attenuator); the other serves as an output gain stage. Setting the mode switch to lin causes the vca's gain to be determined by the ratio (control voltage)/10. In the exp position, the gain is determined by the formula gain (dB) = 10(V - 10), where V is the control voltage in volts. This allows a 10-dB/volt control.

Four audio inputs, two of which are connected by level controls, can be applied and summed by the CA3080. An initial gain control acts as a front-panel master gain control. Depending on its setting and the magnitude of the control inputs, the gain will vary from -100 to 0 dB. The vca can handle audio inputs up to ±10 volts peak and control inputs up to +10 volts maximum.

Control over the tonal characteristics of synthesizer waveforms (and those of other electrical musical instruments) is furnished by the AR-327 multimode vcf. Audio input signals are summed by an op amp mixer and passed through one or more active filters. Control inputs are mixed by another op amp, whose output drives an exponential generator module. The module controls op amps that set the frequency response of the active filters. Low-pass, high-pass, band-pass, and peak/notch outputs are available simultaneously. (The notch or peak mode switch is switch selectable.) Response is 12

Listen to what the world is saying...

THE YAESU FRG-7 MARK II...

ACCLAIMED THE FINEST ALL-BAND RECEIVER IN ITS PRICE CLASS...AND MORE!

Professional critics have been loud in their acclaim for the YAESU FRG-7 solid state synthesized 500 kHz to 29.9 MHz all band receiver. Triple-conversion, the AC, 12V DC, or flashlight battery operated receiver provides exceptional sensitivity, dial accuracy and rock-like stability of reception. Mate it with the YAESU QTR-24 world time clock and you'll know the exact time, night or day anywhere! Try it at your YAESU dealer or write for full information...NOW! (UL approved)

YAESU

The radio.

Yaesu Electronics Corp., 15954 Downey Ave., Paramount, CA 90723 (213) 633-4007

Yaesu Electronics Corp., Eastern Service Ctr., 613 Redna Ter., Cincinnati, OH 45215
dB/octave, and Q is adjustable from 0.5 to 512 by means of a RESONANCE control. One audio and one control input are connected to front-panel attenuators.

Exponential control, an important VCO feature, is also provided. The cut-off frequency of the filter increases one octave for each +1-volt increase of the control input and decreases one octave for each -1-volt increase. A FREQ control, together with any control inputs, determines the cutoff frequency over a 16- to 16,000-Hz range.

Three modules contain independent circuits that perform separate functions. The AR-324 module has two low-frequency oscillator's (fio's) that simultaneously provide ±5-volt triangle, 0-to-10-volt sawtooth, and 0-to-10-volt square-wave outputs over a frequency range of 0.3 to 30 Hz. The oscillators can be synchronized to an external pulse or square-wave generator by means of a SYNC input. As in the VCO, the sawtooth is generated independently. Differentiated pulses from the square-wave circuit control the discharge of the capacitor across which the sawtooth is developed. Thus, the sawtooth is synchronized to the other waveforms.

The lag circuit in this module is essentially a low-pass filter. A potentiometer determines the time constant (1 ms to 1 s) of an RC circuit. The output of the lag circuit is buffered by a unity-gain voltage follower. Also included in the module is a variable-gain inverter. Inputs are coupled to a standard op-amp inverter through a variable attenuator. The maximum voltage gain is -1. Both the lag and inverter can handle peak signals of ±10 volts.

The second multifunction module is the AR-318 sample-and-hold/clock/noise generator. When a positive-going pulse is applied to the trigger input of the sample-and-hold circuit, a FET switch turns on and allows a capacitor to charge up to half the instantaneous signal voltage. (The input is passed through a 2:1 attenuator.) The switch then turns off to prevent the capacitor from further charging or discharging.

A FET op amp output buffer multiplies the capacitor voltage by two and presents it at the sample-and-hold output. When a positive signal of at least 2 volts is applied to the GATE input, the FET switch is kept on continuously. In this "track-and-hold" mode, the input follows the output exactly. If the gate signal is removed, the output remains at the instantaneous signal voltage at the time of removal. The circuit can also be activated by a MANUAL TRIGGER switch.

The clock is a voltage-controlled, low-frequency oscillator with 0-to-10-volt sawtooth, square-wave, and trigger (narrow pulse) outputs. The frequency range is 0.3 to 30 Hz. Inputs are provided for frequency modulation and syncing to an external pulse or square-wave source. A switch allows either the clock or an external source to provide trigger and gate signals for the sample-and-hold circuit.

The third function of this module is to provide three noise signals. White noise is developed by amplifying and filtering the output voltage from a reverse-biased transistor junction. Pink noise is obtained by passing the white noise through a -3-dB/octave low-pass active filter. The pink noise is rectified, filtered, and amplified to create a slowly varying random waveform. The random and pink-noise outputs are 4 volts rms, with equal energy per cycle between 0.4 and 7 Hz and equal energy per octave between 16 and 16,000 Hz, respectively. The 7-volt rms white-noise signal has equal energy per cycle between 16 and 16,000 Hz.

The AR-315 module contains a balanced modulator and two general-purpose attenuators. The balanced modulator has X and Y inputs. Signals applied to these inputs are fed to a four-quadrant multiplier IC whose output drives an op amp in the differential mode. When the circuit is properly trimmed, the output voltage is X*Y/10, where X and Y are the input signal levels in volts. If either or both inputs is zero, the output is zero. The levels can be independently controlled for each input. The two attenuators in the module can be used at any point in a synthesizer patch.

Signal summing is performed by the AR-323 dual mixer. Each mixer has four inputs, two of which have polarity selection switches and level controls. This allows both addition and subtraction of audio signals, envelopes, etc. Outputs are provided for the A and B mixer separately, as well as combined A + B and A - B. These allow the module to be used as a single eight-input mixer. Six op amps are used for signal summing and inverting. Maximum signal levels are ±10 volts.

The voltages required by the various modules in the system (+5, +15, -15 volts) are supplied by the AR-322 power supply module. IC voltage regulators, large heat sinks, and electrolytic capacitors are used in the module. The three current-limited (1-ampere) output voltages are available at three parallel-wired octal sockets.

The AR-326 output and power control module switches ac from the line to the power supply and contains two independent audio output amplifiers. The amplifiers are each mounted on separate pc cards and consist of an op amp driver and a complementary pair of transistors operating in class AB. The output signals are routed to a headphone jack and two output phono jacks. The module can drive headphones, high-impedance (40 ohms or more) speakers, or power amplifiers. Two four-jack patch points are provided as are jacks at which +10 and -10 volts are available. The power supply's ac line switch and pilot light are mounted on the front panel of the AR-326 module.

All of the modules described so far mount in the AR-310 cabinet. Eleven modules (all but the power supply) have front panels and all of these except the output power and control module plug into 22-pin edge connectors, which bus power from the power supply module.

Patching can be accomplished in one of two ways. First, patch cords terminating with miniature phone plugs can be inserted into front-panel jacks. This allows the user to make hundreds of different patch combinations according to his own ideas of how the synthesizer should be used. Alternatively, all inputs and outputs at the edge connectors can be hard-wire patched, or limited-patch switching can be developed via the edge connectors.

Also included in the System 300 are the AR-311 keyboard, AR-313 keyboard interface, and AR-320 keyboard case. The preassembled keyboard has 60 precision resistors that form a voltage divider. One set of gold-plated key contacts connects a specific tap on the voltage divider to the keyboard voice bus. The voltage on this bus depends on the specific key depressed. The lowest key produces 0 volt and the highest, five octaves away, produces 5 volts. Each ascending key produces an 83.3-mV increase over the key to the left, resulting in 1 volt/octave voicing.

The keyboard voice voltage tracks the lowest key depressed. However, another "auxiliary voice" voltage is developed when two keys are pressed simultaneously. The magnitude of this voltage depends on the keyboard interval created by the two keys. A second set of gold-plated contacts is used to generate gate and trigger signals.

The AR-313 keyboard interface produces four output signals. The GATE signal is at +10 volts and remains on as long as any key is held down. The TRIG-
GER output is a ±10-volt, 1-ms pulse that appears each time a key is pressed. The VOICE output is a dc voltage that is proportional to the lowest key held down. It remains at its last level after the key is released.

When the interface is properly tuned and trimmed, the lowest key (C) produces a 0-volt "voice" signal. The C# key produces 63.3 mV, etc. Hence, each octave adds one volt, which raises the output frequency of the vco by one octave. The "aux voice" output appears only when more than one key is pressed at the same time. Its voltage is proportional to the interval between the highest and lowest keys depressed. When one or no key is depressed, this output is 0 volt.

The interface's TUNING control adds or subtracts voltage from the voice output over a 1.5-octave range. It has no effect at or near its center position. Glide or slur from one key to the next is provided by the portamento circuit. The PORTAMENTO control determines the glide time that is essentially independent of the keyboard interval in the NORMAL mode. In the LINEAR mode, the glide takes longer for larger intervals. Placing

the PORTAMENTO switch in the OFF position disables the circuit.

The AUX TRIM and VOICE TRIM are front-panel screwdriver-type controls that are used to set the output intervals to 1 volt/octave. After initial adjustment, they need not be disturbed.

Assembling the Kit. This is a fairly complex kit to assemble. Actually, it is a collection of mini-kits. Each of the modules can be assembled and tested independently. After completing the power supply module, we put together the synthesizer cabinet from precut lumber. Then we installed the power supply and edge connectors to be ready for each of the other modules.

Next, we assembled the keyboard, keyboard interface, and keyboard case. The keyboard case comes precut and drilled, and the keyboard itself is preassembled. The interface circuitry is housed on two printed circuit boards. The interface boards (as well as those in the other modules) are not silk screened with component locations, but assembly was not difficult because larger-than-life parts placement diagrams were provided with the instructions.
With two exceptions, each Aries module worked perfectly the first time it was powered. One was due to a wiring error. The other was a result of a marginal circuit's design given tolerance of parts. Trouble was experienced with the dual Ifo's. Correct waveforms were obtained at the square and triangle wave outputs, but a +10-volt level appeared in place of the sawtooth outputs. Aries was contacted for advice by telephone. Following a few suggestions from Jim Bastable (now one of the Aries partners), the beginnings of a sawtooth appeared.

Further experimentation on our and Aries' parts resulted in a solution to the problem, which involved a few changes in component values. Aries has modified the circuit in line with our results, and informed us that although previous module purchasers had not contacted them about the sawtooth, they would all be informed of the change.

We performed the various circuit adjustments with the aid of a multimeter, frequency counter, and oscilloscope. These instruments are not absolutely necessary for making the adjustments, but they do make them easier to perform and yield accurate results. Easy-to-follow trim instructions are provided with each module.

The last part of assembly was to finish the wood that makes up the two cases. This is an option left to the builder's tastes, but it is well worth the effort, since it results in an instrument that looks as good as it sounds. Two coats of stain and then two coats of polyurethane were applied to all exterior surfaces of the keyboard and synthesizer cabinets.

Total assembly time for the System 300 was about 95 hours, not including the three hours or so required for trimming adjustments. We noted during assembly that all components supplied were of high quality. In many cases, components with tolerances closer than specified in the parts lists were supplied.

User Comment. Modern electronic music synthesizers fall into two categories, performance types and studio types. The performance synthesizer is polyphonic, computerized, and looks like and is played in a manner similar to an electronic organ. The studio synthesizer, on the other hand, is usually monophonic or has two- or three-note chord capabilities. Most studio synthesizers are made up of combinations of different modules that are designed to be interconnected as required by jacks and patch cords. With this type of instrument, the musician has a more deliber-
BETTER EMERGENCY SERVICES ARE NEAR

THE ODDS on someone’s hearing when you call for help on Channel 9 are going up. The government is raising them. And you can help.

The government’s goal is to knit together law-enforcement officials, medical and emergency services, automobile clubs and such volunteer CB monitoring groups as REACT and ALERT into a network which will put every CB-equipped car in the country within reach of fast emergency assistance. To implement that goal, a new program has been set up that’s called National Emergency Aid Radio, or NEAR.

Independent efforts at coordinating CB with emergency services have been going on successfully for years, of course. REACT and the other monitor groups, for example, have teams to listen to Channel 9 in systematic shifts, so that there is always someone there to hear and relay calls for help. Several states have equipped their highway patrol cars with CB. Some Smokeys have even equipped their official vehicles at their own expense.

The results have been impressive. Where the police are equipped to hear them, CB’ers now often report to Smokey, telling him of reckless drivers, accidents, traffic jams, hazardous conditions and other emergencies. Such experiences doubtless helped the Department of Transportation’s National Highway Traffic Safety Administration (NHTSA) to recognize CB radio communication as “the only existing method convenient to the public at large by which the motorist can enter the response system from his vehicle,” and to set up NEAR.

The program will be federally funded, but must be implemented by the individual states. That leaves it up to each state to decide how it will allocate its NEAR funds: to buy CB equipment for local police and emergency services, to set up public information programs, to train CB monitors in emergency reporting procedures, and to pay the costs of administering NEAR. States may even elect not to participate at all.

Those states which do participate will be assigned easily-recognized call signs for use in legally communicating with other CB operators. These callsigns will consist of the letter “K,” the state’s two-letter abbreviation, and the number 0911—“KNY-0911” for New York, for instance, or “KCA-0911” for California. (Since each state government is a single licensee, all its CB units share a single callsign.)

No money is allocated for direct use by volunteer monitors. However, there are ways that they can benefit indirectly. Local or state governments can set aside space in government facilities for volunteers’ use, and may even provide equipment there. But the equipment will remain the government’s, not the volunteers’. NEAR funds can also cover expenses directly related to monitoring activities, such as long-distance telephone calls made in response to emergencies.

Where groups like REACT will benefit directly is in closer contact between government and volunteers. We understand that each state must collaborate with volunteer monitors (and with other volunteer groups, such as Civil Defense) in setting up a NEAR Advisory Council and a NEAR plan. Without such collaboration, the state won’t qualify for Federal NEAR funds.

The volunteer monitor groups must meet several criteria, though. For instance, they must be primarily devoted to emergency communications monitor-
Before you buy stereo headphones, get some good advice.

Theirs:

Julian S. Martin
HI-FI STEREO BUYERS' GUIDE, March-April, 1976

"Superb from every viewpoint. An outstanding achievement in headphone design. One of the most comfortable."

The Len Feldman Lab Report
TAPE DECK QUARTERLY, Winter, 1975

"Response of these phones extends uniformly from 20 Hz to over 22,000 Hz with no more than ±2dB variation over this entire range...this is nothing short of incredible."

New Equipment Reports
HIGH FIDELITY, January, 1976

"The sound quality the AT-706 presents [to you] is exceptional: very wide range and smooth...Within this excellent operating range the sound is exceedingly clean and open...an extremely fine stereo headset."

If you asked the critics they'd tell you to listen critically to a variety of products before you buy. We agree. Because the more carefully you listen, the more you'll be impressed by the sound of Audio-Technica.

AT-706
Electret Condenser
Stereo Headset $129.95
Our finest Personal Transducer

audio-technica.

INNOVATION • PRECISION • INTEGRITY
AUDIO-TECHNICA U.S., INC., Dept. 107P, 33 Shiawassee Avenue, Fairlawn, Ohio 44313
Available in Canada from Superior Electronics, Inc.

ing, have demonstrated their capabilities and earned community support, and have state or national affiliations.

Independent monitoring will still be encouraged. NEAR funds spent on public information and education will probably result in more and more CB users' learning what Channel 9 is for and how to use it. This part of the program has already borne some fruit. It's a handy, common-sense book called the Citizens Band Monitor Guide. Some of its hints and reminders struck are especially worth noting.

Four C's. The book stresses the four “C's”: an effective NEAR monitor should be Calm, Courteous, Correct and Concise. The book gives some specific tips on how to accomplish this:

1. "The monitor must remain the link between the need and the help until that help arrives. That includes getting and relaying further information from the caller, and relaying or giving advice on life-saving or other emergency procedures that the caller may be able to handle in the meantime.

2. "Keep in mind that most calls for help come from a place of stress. The caller may be excited, shaken, alarmed, frantic and even hostile. Your job is to remain calm and instill calm and confidence in your caller. . . . However, you should not tell him to 'calm down'. This will only make him think you don’t appreciate the seriousness of the situation."

3. The Guide gives two pages of suggestions on how to deal with such common and uncommon emergencies as aircraft accidents, fires, lost children, stalled cars and tornados. For each of 25 such incidents, it suggests what information a monitor should elicit from the caller, which government services should be alerted, and what special instructions should be relayed back to the caller. (Oddly, I noticed no sign of another common-sense suggestion: that the phone numbers of all these services should be kept at the monitoring station.)

4. 10-codes are listed in large type, for easy reading. But the Guide also points out that "You should never use 10-codes with parties who would not understand them," though "you should be able to understand them, nevertheless."

5. Get the information in a regular sequence. You can’t ask everything at once, and you have to ask important things first." The book suggests one possible such sequence: first ask the nature of the problem, then the caller’s
location and phone number (if applicable), then the specific location of the incident, the caller's name, and more details of the incident itself.

- "Explain why it will take time to check for information, and that you will call back. A party waiting on a 'dead phone' may become irritable and uncooperative."

- To simplify evaluation of the NEAR program's effectiveness, a monitor logbook designed for input to a computer will be made available. This will be for use only by Monitor Base Stations designated by State CB NEAR Programs. Data to be filled in includes the time delay between occurrence of the incident and notification, nature of the incident, type of response agency notified, and the time the action was completed, as well as identification of the calling source and the monitor unit.

- Monitors should be able to identify an emergency's location even when the caller is a stranger to the area. The Guide suggests that monitors equip themselves with road, street and topographical maps and guides.

- Monitors should use words and phrases that are easy to transmit and understand, should avoid local jargon which callers en route through the area might misunderstand, and should speak slowly and clearly.

- For clarity, it's wise to learn the International Phonetic Alphabet (Alpha, Bravo, Charlie, Delta, etc.), but not to overuse it. If reception is clear and the name is common, it's enough to relay it as 'S-M-I-T-H', Smith. "You don't have to slow it down to "Sierra, Mike, India, Tango, Hotel."

A NEAR monitor log has been designed, too, that's divided into sections: (1) identification, (2) incident, (3) location, (4) notification source, (5) action taken. The latter's time is to be expressed in 24-hour clock time. The forms can be produced locally for distribution to monitors. Interestingly, forms can be used for input to a computer so that information can be readily extracted. Number codes are used throughout, even for the type of emergency.

If you'd like to read the whole Citizens Band Monitor Guide, it's available for 80g a copy ($1.00 minimum on mail orders) from the Superintendent of Documents, U. S. Government Printing Office, Washington, DC 20402. Order Stock No. 050-003-00235-6.

You can also find out who's working on NEAR in your state by contacting REACT, 111 E. Wacker Dr., Chicago, IL 60601.

FREE McIntosh CATALOG and FM DIRECTORY

Get all the newest and latest information on the new McIntosh Solid State equipment in the McIntosh catalog. In addition you will receive an FM station directory that covers all of North America.

MX 113

FM/FM STEREO - AM TUNER AND PREAMPLIFIER

SEND TODAY!

If you are in a hurry for your catalog please send the coupon to McIntosh. For non rush service send the Reader Service Card to the magazine.

Isn't it time you had your own personal computer?

Read BYTE, the leading consumer publication covering the fantastic new field of personal computer applications. Today, large scale integration has made it possible for the individual to enjoy the unique benefits of a general purpose computing system. Now, an entire micro industry markets microcomputer related items, products that range from computer system kits to peripherals, software and literature on the subject. But where should you go for all the details about your personal involvement in computer technology?

Read BYTE, the Small Systems Journal devoted exclusively to microcomputer systems. Every issue a monthly compendium of lively articles by professionals, computer scientists, and serious amateurs.

Fill in subscription coupon today, or phone your request directly – call 617/666-4329 and ask for your subscription. Read your first copy of BYTE, if it's everything you expected, honor our invoice. If it isn't, write 'CANCEL' across invoice and mail it back. You won't be billed and the first issue is yours.

BYTE

The Small Systems Journal

Read BYTE, the leading consumer publication covering the fantastic new field of personal computer applications. Today, large scale integration has made it possible for the individual to enjoy the unique benefits of a general purpose computing system. Now, an entire micro industry markets microcomputer related items, products that range from computer system kits to peripherals, software and literature on the subject. But where should you go for all the details about your personal involvement in computer technology?

Read BYTE, the Small Systems Journal devoted exclusively to microcomputer systems. Every issue a monthly compendium of lively articles by professionals, computer scientists, and serious amateurs.

Fill in subscription coupon today, or phone your request directly – call 617/666-4329 and ask for your subscription. Read your first copy of BYTE, if it's everything you expected, honor our invoice. If it isn't, write 'CANCEL' across invoice and mail it back. You won't be billed and the first issue is yours.

FREE McIntosh CATALOG and FM DIRECTORY

Get all the newest and latest information on the new McIntosh Solid State equipment in the McIntosh catalog. In addition you will receive an FM station directory that covers all of North America.

MX 113

FM/FM STEREO - AM TUNER AND PREAMPLIFIER

SEND TODAY!

If you are in a hurry for your catalog please send the coupon to McIntosh. For non rush service send the Reader Service Card to the magazine.

Is n't it time you had your own personal computer?

Read BYTE, the leading consumer publication covering the fantastic new field of personal computer applications. Today, large scale integration has made it possible for the individual to enjoy the unique benefits of a general purpose computing system. Now, an entire micro industry markets microcomputer related items, products that range from computer system kits to peripherals, software and literature on the subject. But where should you go for all the details about your personal involvement in computer technology?

Read BYTE, the Small Systems Journal devoted exclusively to microcomputer systems. Every issue a monthly compendium of lively articles by professionals, computer scientists, and serious amateurs.

Fill in subscription coupon today, or phone your request directly – call 617/666-4329 and ask for your subscription. Read your first copy of BYTE, if it's everything you expected, honor our invoice. If it isn't, write 'CANCEL' across invoice and mail it back. You won't be billed and the first issue is yours.
HEATHKIT MAIL ORDER CATALOG 81

HEATHKIT MAIL ORDER CATALOG 81

Heath-recommended electronic products

New Kit Products for FALL

C-1977 Heath Company
See Index on page 2

Video Recorder, page 98

Telephone Answerer, page 79

Electronic Chess Game, page 77

Indoor Greenhouse, page 78

Active Audio Processor, page 39

Low-Priced Oscilloscope, page 88

FET Multimeter, page 63

Electronic Digital Scale, page 104

POPULAR ELECTRONICS
The NEW Heathkit catalog introducing our complete line of personal computers and many more, exciting, fun-to-build electronic kits

NEW! H8 8-Bit Digital Computer
This 8-bit computer, based on the famous 8080A microprocessor features a Heathkit exclusive "intelligent" front panel with octal data entry and control, 9-digit readout, a built-in bootstrap for one-button program loading, and a heavy-duty power supply with enough capacity for plenty of memory and I/O interfaces. It's easier and faster to use than most other personal computers and it's priced low enough for any budget.

NEW! H10 Paper Tape Reader/Punch
Complete mass-storage peripheral using low-cost paper tape. Features a solid-state recorder with stepper motor drive, totally independent punch and reader modes and a copy mode for fast, easy tape duplication. Reads at 50 characters per second, punches at 10 characters per second. For use with Heathkit computers and most others.

Other Heathkit computer products include a cassette recorder/player, for mass storage, teletypewriter, self-instructional programming courses, a complete library of the latest computer books, plus software, memory expansion cards, I/O cards and lots more — everything you need to make Heath your personal computing headquarters!

NEW! Kit products for fall
An exciting selection of new kits includes an active audio processor to give your present hi-fi system better sound quality, a new medium-power stereo FM-AM receiver, an electronic digital scale that shows you weight in big, bright digits, and new test instruments including a low-priced precision oscilloscope and an easy-to-use FET multimeter.

NEW! Heath-recommended electronic products
These unique new products are recommended by Heath because of their excellent quality and outstanding value. The Sony Betamax videotape recording system using exclusive ultra-compact 2-hour Sony cartridges; an electronic greenhouse with automatic temperature and humidity controls; a microcomputer based electronic chess game; and a sophisticated multi-cartridge microprocessor-based video game. All are high quality, fully assembled, tested and priced low to give you the kind of value you expect from Heath.

PLUS nearly 400 other superb, easy-to-build, money-saving products. You'll find a complete line of digital electronic clocks and weather instruments, plus useful and unique items for your car, home or office. There are many more exciting products to read about too! Home convenience items like a practical freezer alarm, a touch-control light switch, intercoms and a unique programmable doorbell. Automotive instruments and accessories, marine equipment, model aircraft Radio Control gear, security systems and more. Plus our world-famous Amateur Radio equipment and test and service instruments.

These are among the nearly 400 quality, fun-to-build kits described in this new Heathkit catalog. Kits for every interest. All with the world-famous Heathkit assembly manual — a step-by-step instruction guide that makes kitbuilding easy and leaves nothing to chance. And all backed by our "We won't let you fail" promise. Find out about the satisfaction, savings and FUN of kitbuilding.

Send for your FREE copy today!

Heath Company, Dept. 010-330
Benton Harbor, Michigan 49022

Please send me my FREE Heathkit Catalog.
I am not on your mailing list.

Name: ________________________________
Address: _________________________________
City: ____________________ State: __________
Zip: ________________________________

CL-637
UPDATE ON MICROPROCESSOR DEVELOPMENTS

OVER THE past year, there has been a flood of new microprocessor IC’s and related peripheral IC’s coming on the market. Many have been rumored in the past but are now finally available. These new IC’s are important to casual as well as advanced computer hobbyists because they will show up shortly in new hobbyist-oriented equipment offerings.

One obvious overall trend in microprocessor IC’s has been toward true single-chip central processing units or even complete computers. With today’s CPU chips, one merely adds memory, address decoding, and bus buffering to have a complete, expandable computer. The newest “computers on a chip” have the CPU, erasable read-only memory, read-write memory, and a couple of input-output ports all in one IC! Although these are not as easily expanded, they are ideal for use in terminals or intelligent game machines.

Another trend is toward I/O systems on a single chip. The TMS5501 IC from Texas Instruments, for example, combines a complete UART with baud-rate generator for serial I/O, a parallel input port, a parallel output port, 5 (count them) interval timers, and a vectored interrupt system into one IC! Another example is the MCS6530 from MOS Technology (now part of Commodore) and Syntek. This IC offers 1k bytes of read-only memory, 64 bytes of read-write memory, two bidirectional (programmable for input or output) parallel ports, and a very versatile interval timer. As a matter of fact, two of these are used in the KIM-1 to hold the monitor and provide its extensive I/O capabilities.

Complete peripheral controllers are also appearing in chip form. Most notable is the fact that no fewer than three different floppy-disk controller IC’s are now available. Most of them are flexible enough to handle the disk formats in common use by hobbyists as well as the commercial systems, many significant improvements in the family have become available in the last year. Improved versions of the original 8080 that run at higher speeds are now available. The fastest is the 8080A-1 which can run at a clock speed of 3.125 MHz or over 60% faster than the standard 8080. Of course these higher speeds require faster memory to be of any benefit but many of the newer memory boards run fast enough.

To most people however, the most significant development is of course the Z-80. This microprocessor chip was introduced by Zilog, a spinoff company from Intel, the originators of the 8080. The Z-80 is fast; selected versions run at 4-MHz which is twice as fast as the 8080. Additionally, some instructions require fewer clock cycles to execute than the 8080 equivalents. The main attraction of the Z-80 for hobbyists however has been its extended instruction set. Besides all of the 8080 instructions, the Z-80 has many new ones. The most impressive class is the block search and move instructions. A single instruction, after the proper parameters have been loaded into registers, can perform a function that normally requires an entire subroutine. Besides the obvious savings in memory space, the block instructions execute much faster than the subroutine would. Other improvements are indexed addressing modes which simplify some types of programming and a duplicate set of registers which eliminates the need to save registers during interrupt.

One of the newest developments from Intel is designated the “MCS-85” family. Central to this family of chips is the 8085 microprocessor. This chip essentially combines the CPU, clock generator, and system bus controller functions onto one IC. In addition, 4 individually maskable vectored interrupts are included right on the CPU chip thus solving a problem with the original 8080. One of the most significant improvements is relaxed bus timing specifications. At equivalent throughput speeds, the 8085 allows memory access to stretch out as long as 1025 ns whereas the 8080 allows only 570 ns thus requiring a memory almost twice as fast. Even when the 8085 is sped up 50% to 3 MHz, the 575 ns allowed for memory access is longer than an 8080 at normal speed thus allowing a faster system without faster memory. Even with all of these improvements, the 8085 will execute all 8080 programs without changes.

Other 8-Bit Processors. Of course

Size of microprocessors grows in proportion to sophistication of internal logic. Left to right, an 8008, 8080, and the latest 16-bit micro, a 9900 IC.
the other microprocessor manufacturers have not twiddled their thumbs over the past year. Motorola has just announced faster versions of its popular 6800. The MC68A00 runs 50% faster at 1.5 MHz and the MC68B00 runs fully twice as fast at 2 MHz. Likewise, the 6502 microprocessor from MOS Technology is available in higher speed versions. The A suffix part is twice as fast at 2 MHz, the B suffix runs at 3 MHz, and the "dash C" part smokes at 4 MHz. Remember when comparing clock speeds that the above chips generally accomplish about as much in one clock cycle as an 8080-type chip does in three clock cycles.

National Semiconductor's SC/IMD microprocessor has also been improved. It is now an n-channel MOS chip which means easier interfacing and a single 5-volt power supply. Additionally the speed has been doubled to 4 MHz (which is divided by 4 internally). Even with these improvements, its price remains the same.

The F-8 microprocessor originated by Fairchild normally requires at least two chips to make a complete CPU. However Mostek has recently announced a single chip F-8 that combines memory, an interval timer, and I/O ports all on the same chip.

16-Bit Microprocessors. To many people the ultimate hobby computer simply must have a full 16-bit minicomputer style instruction set. Accordingly, recent developments in 16-bit microprocessors are of great interest. A significant trend with the 16-bitters has been to try to get it all on one chip even if it means a larger IC package as shown in the photo.

The PACE was the first single-chip 16-bit microprocessor to be introduced. Although National Semiconductor has not made any significant improvements in the chip itself, the price has improved considerably. From an initial figure of nearly $200 (in 100 quantity), the price has recently fallen to only $20.

Speaking of price reductions, the CP1600 processor by General Instruments has been recently repriced at $8! The architecture is somewhat strange but the price is hard to beat and it is a 16-bit device.

Another 16-bit processor which has been rumored for awhile is now available. It is the 9900 from Texas Instruments. This IC is unique in many respects. Most striking is the 64-pin package which looks more like a small printed circuit board with leads than a ceramic IC. The instruction set in many ways resembles that of a DEC PDP-11, a very popular minicomputer. An interesting design innovation is that the "registers" are not in the CPU but are in regular read-write memory. Another feature is the inclusion of real multiply and divide instructions which take only about 20 microseconds to execute. The standard 9900 requires a 16-bit wide memory but a "soon-to-be-introduced" version (the 9980) can work with an 8-bit data bus and memory while retaining the same extensive 16-bit instruction set. This means that CPU boards using the 9980 might be compatible with the S-100 bus structure. The 9980 will also be packaged in a more conventional 40-lead package.

Bipolar Bit Slices. While not really microprocessor chips, the bipolar bit slices are building blocks that can be used to design custom computers and instruction sets with much less effort and far fewer parts than would be required with standard logic. Since they are made with high-speed Schottky transistors rather than MOS transistors, the speed of a system constructed with bipolar slices is much greater. Major innovations in this area are sharply lower prices and the availability of 4-bit wide units along with a host of support chips. Of significance to the hobbyist is the fact that a couple of hobbyist manufacturers are readying CPU boards made with the bit slices. These will be compatible with the S-100 bus and immediately provide the user with a vastly superior CPU while still using the rest of the existing system. Since the bit slices are microprogrammed, it is possible that a standard feature would be an emulation mode in which the instruction set of a popular microprocessor such as the 8080 would be recognized as well as the improved instruction set offered with the new CPU.

Bipolar bit slices will probably also show up in specialized floating-point arithmetic units. The purpose of these is to execute the arithmetic operations needed by BASIC language systems much faster than typical software routines do.

If the past is any indication, new microprocessor developments will continue to be made at an ever accelerating pace.

Correction. In last month's column, the price of the Heathkit H9 CRT terminal was given as $350. It should have been $530.
Put Professional Knowledge and a COLLEGE DEGREE in your Electronics Career through HOME STUDY

Earn Your DEGREE by correspondence, while continuing your present job. No commuting to class. Study at your own pace. Learn from complete and explicit lesson materials, with additional assistance from our home-study instructors. Advance as fast as you wish, but take all the time you need to master each topic. Profit from, and enjoy, the advantages of directed but self-paced home study.

The Grantham electronics degree program begins with basics, leads first to the A.S.E.T. degree, and then to the B.S.E.E. degree. Our free bulletin gives complete details of the program itself, the degrees awarded, the requirements for each degree, and how to enroll. Write for Bulletin E-77.

Grantham College of Engineering
2000 Stoner Avenue
P. O. Box 25992
Los Angeles, CA 90025

Worldwide Career Training thru Home Study

KIT TOOL

Build a high-quality, multi-element stereo speaker with this and a staple gun and save up to 50% over the cost of ready-built speakers. No cabinetry. No soldering. Just affordable quality with a few hours work. Send for our free 48-page catalog-manual if you think you could handle it.

I can handle it. PE-E
Send me my free 48-page catalog-manual.

NAME
ADDRESS
CITY STATE ZIP

DX Listening

By Glenn Hauser

PUBLICATIONS

AN AMAZING amount of excellent printed material relating to international radio is available, once you know how to get it. Most of it you would never find, no matter how long you looked, even in the largest libraries. It's produced by enthusiastic individuals, with expertise in their specialties, even though they are nonprofessionals. Here's a selection of such publications, and how to get them.

Review of International Broadcasting is a monthly magazine in which listeners exchange views on programming. It fills the vacuum left by most DX clubs, which emphasize picking up stations, rather than listening to their programming—which, after all, is the reason stations broadcast. Sample, 50¢ or 12 issues for $6.00 from Glenn Hauser, WUOT, University of Tennessee, 245 C&E Bldg., Knoxville, TN 37916.

Down Under DX Survey, a quarterly, mimeographed bulletin, concentrates on Asian stations, with extensive band surveys, special reports, etc. Only active contributors may join the group, but anyone may order individual issues, for 6 IRC's (International Reply Coupons) from Down Under DX Circle, 7 Donald Road, Burwood, Victoria, Australia 3125.

Far Eastern DX Review is a similar bulletin compiled by four Japanese experts (in English), but is monthly and Xeroxed. Samples are 8 IRC's or $2. A year by air is $20, or by surface mail, $15, from Japanese Association of DXers, Box 1766 Tokyo Central, Tokyo 100-91, Japan.

Russian Reporting Guide is a separate JADX publication, available for 4 IRC's from the address above. Claims to be "the most detailed guide for reporting in Russian and for understanding domestic services in the USSR."

USSR High-Frequency Broadcast Newsletter provides otherwise hard-to-get schedules of Soviet transmissions based on monitoring: including educated guesses on the transmitter sites actually used, contradicting official informa-
tion from the USSR itself. Sample for SASE, or 12 issues of the approximately monthly publication for only $3, from Roger Legge, Box 232, McLean, VA 22101.

World Broadcasting Information is a weekly compilation of schedules, and monitored developments in broadcasting, by and for professionals, but available to individual subscribers. Costs vary around $60 per year, but a free sample is offered from: Organiser, News & Publications, BBC Monitoring Service, Caversham Park, Reading, England.

DX Information Service Catalog is free from Radio Nederland, Box 222, Hilversum, Holland. Lists free technical courses, antenna booklets, etc.

Mail-a-Prop is a two-page fortnightly summary of propagation condition predictions, compiled by George Jacobs, primarily for amateurs, but also can be applied by listeners to other bands. Sample and rates from Mail-a-Prop, Box 86, Northport, NY 11768.

SPEEDX Utility Guide attempts to do for nonbroadcast listening what the World Radio-TV Handbook does for broadcasting. This year's edition is $6.95 from SPEEDX, Box E, Elsinore, CA 92330.

Listen to the World on Shortwave—Ask Me! Red and white vinyl bumper stickers are also available from SPEEDX, at 50¢ each.

Handler Enterprises, P.O. Drawer CC, Northfield, IL 60093, offers a free catalog of its reasonably priced station lists, primarily of military and government utility stations, difficult to obtain elsewhere.

GILFER Associates provides a number of books about aspects of DX listening, and a line of equipment. Ask for catalog. GILFER, Box 239, Park Ridge, NJ 07656.

National Radio Club provides extensive reprints of technical and nontechnical articles dealing with mediumwave reception and gear; for a list, send an SASE to NRC Publications Center, Box 401, Gales Ferry, CT 06335.

Worldwide TV-FM DX Association

SEPTEMBER 1977
Comings & Goings. South Africa’s Radio Five, the successor to Mozambique’s “LM Radio”, planned to come up in August via two new 100-kW shortwave transmitters, probably using 31 or 41m in the daytime, and 75m at night. Meanwhile, the international service, Radio RSA is overhauling its four 250-kW transmitters and replacing them with three 500-kW senders.

Radio Voice of the Gospel, a Lutheran station in Ethiopia, was nationalized in March, and renamed Radio Voice of Revolutionary Ethiopia. The latest schedule we have shows the only frequencies in use to be 6015 and 7180 kHz, opening at 1300 GMT in Somalia, when they should be audible in western North America via long path, but not during the English program at 1630.

Both Vatican Radio in Italy for the Catholics, and HCJB in Ecuador for the Evangelical Protestants, are installing 500-kW transmitters and gigantic rotatable antennas to improve their outreach.

Australia is planning a new domestic shortwave service for its Northern Territory, transmitted both from Darwin, and from Adelaide, South Australia. Also, $63 million (Australian) has been appropriated to modernize Radio Australia overseas transmitters in Victoria, and further expansion on the west coast is also being considered including between Australia and overseas.

Radio Nacional Brasilia abruptly suspended its international service in mid-June, citing technical reasons. The reasons were really political, however. The Brazilian government couldn’t wait until next year when RNB is slated to get five 300-kW transmitters.
new transmitters. It decided instead to take RNB off the air so its one transmitter could be used for domestic broadcasts into Amazonia—where foreign broadcasts have been dominating the airwaves. No date of return was given, and there was a note of sadness in announcer John Morris’s voice. We’ll certainly miss this friendly, soft-line station.

But another friendly Latin American station made a comeback in June—Radio Clarin, from the Dominican Republic. They’ve had power supply problems for their 50-kW transmitter on 11700 kHz. Rudy Espinal, host of the English program at 2330 GMT, on his first day back on the air, intimated that the time would be changed, or there would be an additional broadcast at a more convenient hour for Europe.

BBC’s Far Eastern Station is moving from Malaysia across the Straits to Singapore. As the move is in phases, for a time BBC will be broadcasting from both countries, and not telling us which frequency is from which.

WYFR is also moving, from Massachusetts to Florida, near Lake Okeechobee, where there’s more room for expansion; they too will be broadcasting from both locations until the move is complete.

ENGLISH-LANGUAGE SHORTWAVE BROADCASTS FOR SEPT. & OCT.

by Richard E. Wood

<table>
<thead>
<tr>
<th>TIME-EOT</th>
<th>TIME-GMT</th>
<th>STATION</th>
<th>DUAL*</th>
<th>FREQUENCIES, MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:28 a.m. 8:00 p.m.</td>
<td>10:28-2400</td>
<td>Montreal, Canada (Northern Service)</td>
<td>G</td>
<td>9.525, 11.772 (includes French, etc.)</td>
</tr>
<tr>
<td>7:00-7:25 a.m.</td>
<td>1100-1125</td>
<td>VQA Washington, USA</td>
<td>F</td>
<td>9.5, 11.985</td>
</tr>
<tr>
<td>7:00-7:9 a.m.</td>
<td>1100-1300</td>
<td>Jerusalem, Israel</td>
<td>G</td>
<td>9.915, 15.325 (via Antigua)</td>
</tr>
<tr>
<td>7:00-10:00 a.m.</td>
<td>1100-1400</td>
<td>Kingston, Jamaica</td>
<td>G</td>
<td>11.655, 15.23, 15.415, 17.795, 17.815</td>
</tr>
<tr>
<td>8:00-8:30 a.m.</td>
<td>1200-1230</td>
<td>Kuala Lumpur, Malaysia</td>
<td>F</td>
<td>11.035</td>
</tr>
<tr>
<td>8:00-8:55 a.m.</td>
<td>1200-1255</td>
<td>Kampala, Uganda</td>
<td>G</td>
<td>9.506, 11.81, 15.15</td>
</tr>
<tr>
<td>8:10-9:30 a.m.</td>
<td>1210-1230</td>
<td>Asheville, North Carolina</td>
<td>P</td>
<td>15.235, 17.825</td>
</tr>
<tr>
<td>8:30-9:30 a.m.</td>
<td>1230-1300</td>
<td>Stockholm, Sweden</td>
<td>G</td>
<td>11.745</td>
</tr>
<tr>
<td>8:30-9:20 a.m.</td>
<td>1230-1230</td>
<td>Sangatte, France</td>
<td>F</td>
<td>15.305</td>
</tr>
<tr>
<td>8:30-11:30 a.m.</td>
<td>1230-1630</td>
<td>HCMV, Quito, Ecuador</td>
<td>G</td>
<td>11.745, 15.115</td>
</tr>
<tr>
<td>9:00-9:25 a.m.</td>
<td>1300-1325</td>
<td>Buenos Aires, Argentina</td>
<td>G</td>
<td>15.105</td>
</tr>
<tr>
<td>9:00-9:30 a.m.</td>
<td>1300-1330</td>
<td>London, England</td>
<td>G</td>
<td>5.95 (via Sackville), 6.195 (via Antigua), 11.775 (via Antigua; Sat., Sun. from 1200)</td>
</tr>
<tr>
<td>9:15-9:45 a.m.</td>
<td>1315-1345</td>
<td>Berne, Switzerland</td>
<td>G</td>
<td>15.14</td>
</tr>
<tr>
<td>10:00-10:15 a.m.</td>
<td>1400-1415</td>
<td>Montreal, Canada</td>
<td>G</td>
<td>15.29, 17.78</td>
</tr>
<tr>
<td>10:00-10:30 a.m.</td>
<td>1400-1430</td>
<td>Stockholm, Sweden</td>
<td>G</td>
<td>15.305</td>
</tr>
<tr>
<td>11:00 a.m.-12 noon</td>
<td>1500-1600</td>
<td>London, England</td>
<td>F</td>
<td>17.84 (via Ascension), 19.58 (via Sackville, Sat., Sun.)</td>
</tr>
<tr>
<td>11:15-11:30 a.m.</td>
<td>1515-1530</td>
<td>Athens, Greece</td>
<td>G</td>
<td>11.73, 15.345, 17.83</td>
</tr>
<tr>
<td>12 noon-12:15 p.m.</td>
<td>1600-1615</td>
<td>London, England</td>
<td>G</td>
<td>9.58 (via Sackville)</td>
</tr>
<tr>
<td>12 noon-12:30 p.m.</td>
<td>1600-1630</td>
<td>Oslo, Norway</td>
<td>F</td>
<td>17.84 (via Ascension)</td>
</tr>
<tr>
<td>12 noon-12:30 p.m.</td>
<td>1604-1654</td>
<td>Paris, France</td>
<td>F</td>
<td>15.175 (Sat.)</td>
</tr>
<tr>
<td>12:45-12:50 p.m.</td>
<td>1645-1700</td>
<td>Hilversum, Holland</td>
<td>G</td>
<td>15.30, 15.425, 17.772, 17.785 (from Sept. 24 - 1704-1756)</td>
</tr>
<tr>
<td>1:00-1:00 p.m.</td>
<td>1700-2000</td>
<td>Kuwait, Kuwait</td>
<td>G</td>
<td>9.58 (via Sackville, Sat., Sun. 1745)</td>
</tr>
<tr>
<td>2:00-2:50 p.m.</td>
<td>1800-1830</td>
<td>Montreal, Canada</td>
<td>G</td>
<td>15.15, 17.775, (alt. 17.815, Mon-Fri., via Bonner)</td>
</tr>
<tr>
<td>2:30-2:50 p.m.</td>
<td>1830-1850</td>
<td>Kampala, Uganda</td>
<td>G</td>
<td>15.325, 17.82</td>
</tr>
<tr>
<td>3:00-3:30 p.m.</td>
<td>1900-1930</td>
<td>Abidjan, Ivory Coast</td>
<td>F</td>
<td>9.555, 12.085 (earlier)</td>
</tr>
<tr>
<td>3:30-4:00 p.m.</td>
<td>1930-2000</td>
<td>Jeddah, Saudi Arabia</td>
<td>G</td>
<td>15.36, 17.82</td>
</tr>
<tr>
<td>3:30-4:00 p.m.</td>
<td>1930-2000</td>
<td>Montreal, Canada</td>
<td>F</td>
<td>15.32 (via Teletón)</td>
</tr>
<tr>
<td>4:00-4:30 p.m.</td>
<td>2000-2030</td>
<td>Tehran, Iran</td>
<td>G</td>
<td>11.865, 15.325, 17.795</td>
</tr>
<tr>
<td>4:30-5:00 p.m.</td>
<td>2030-2100</td>
<td>Jerusalem, Israel</td>
<td>F</td>
<td>9.475</td>
</tr>
<tr>
<td>4:30-5:00 p.m.</td>
<td>2000-2100</td>
<td>Accra, Ghana</td>
<td>G</td>
<td>7.4125, 9.63, 9.815</td>
</tr>
<tr>
<td>4:30-5:00 p.m.</td>
<td>2000-2100</td>
<td>Hilversum, Holland</td>
<td>F</td>
<td>9.185 (regular)</td>
</tr>
<tr>
<td>4:30-5:00 p.m.</td>
<td>2030-2100</td>
<td>Montreal, Canada</td>
<td>G</td>
<td>11.335 (via Teletón)</td>
</tr>
<tr>
<td>4:40-5:55 p.m.</td>
<td>2050-2150</td>
<td>Havana, Cuba</td>
<td>G</td>
<td>11.655, 15.325, 17.795</td>
</tr>
<tr>
<td>5:00-5:50 p.m.</td>
<td>2100-2250</td>
<td>Johannesburg, S. Africa</td>
<td>F</td>
<td>5.98, 7.27, 9.585</td>
</tr>
<tr>
<td>5:15-6:00 p.m.</td>
<td>2115-2200</td>
<td>London, England</td>
<td>G</td>
<td>5.50, 11.78</td>
</tr>
</tbody>
</table>
NEW EICO 270
3½ DIGIT DMK METER
ONLY $995

Introductory Offer - FREE AC ADAPTOR

The first and only lab accuracy portable DMK Kit featuring MOS/LSI IC economy and reliability. Measures DC/AC Volts, Kilohms, DC/AC milliamperes in 21 ranges. Polarity indicators and overload protection are provided, and 0.5 inch LED displays give easiest-to-read digital readout to 1999. Its 2.6% features a basic 0.5% DC accuracy, 10 Meg-ohm input impedance, low voltage drop in all current ranges and automatically-flashing overrange indicator. Assembled $199.50

FREE '78 EICO CATALOG
Check reader service card or send 75¢ for first class mail. See your local EICO Dealer or call (212) 272-1134. 9:00 a.m.-5:00 p.m. EST. Major credit cards accepted.

FREE catalog of over 2000 small tools, measuring instruments, and supplies

American Radio History Online
www.americanradiohistory.com

Includes
Functional
T It Stand!

American Radio History
www.americanradiohistory.com

CIRCLE NO. 7 ON FREE INFORMATION CARD
ELF II

Price: $99.95

Description:
Write and run machine language programs at home plus design circuits using a microprocessor!

8700 COMPUTER/CONTROLLER KIT

Price: $194.95

Description:
microprocessor/ minicomputer

8700 COMPUTER/CONTROLLER KIT

- **Programs:** 6 levels, 122...125 (203) 354-9375
- **Components:** 9-P 1020, 5.6 IDEAL, 9-P 1020, 5.6 IDEAL, 9-P 1020, 5.6 IDEAL
- **Power Supply:** RCA 5-P 1020, 5.6 IDEAL
- **Microprocessors:** Various manufacturers, 8-bit, 4-bit, and 16-bit
- **Microcontroller:** Various brands, including Intel, Motorola, and others
- **Memory:** Various types, including RAM and ROM
- **Operating System:** Various, including MS-DOS, UNIX, and others

Microcomputer System

- **Microprocessor:** Various, including Intel, Motorola, and others
- **Memory:** Various types, including RAM and ROM
- **Operating System:** Various, including MS-DOS, UNIX, and others

ELF II

- **Microprocessor:** Various, including Intel, Motorola, and others
- **Memory:** Various types, including RAM and ROM
- **Operating System:** Various, including MS-DOS, UNIX, and others

TO WESTERN NORTH AMERICA

<table>
<thead>
<tr>
<th>Time EDT</th>
<th>Time GMT</th>
<th>Station</th>
<th>Call Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>2100-2200</td>
<td>2230-2320</td>
<td>HCJB, Quito, Ecuador</td>
<td>6.195</td>
</tr>
<tr>
<td>12:00-12:50</td>
<td>13:00-13:50</td>
<td>HCJB, Quito, Ecuador</td>
<td>6.195</td>
</tr>
<tr>
<td>15:00-15:50</td>
<td>16:00-16:50</td>
<td>HCJB, Quito, Ecuador</td>
<td>6.195</td>
</tr>
<tr>
<td>18:00-18:50</td>
<td>19:00-19:50</td>
<td>HCJB, Quito, Ecuador</td>
<td>6.195</td>
</tr>
<tr>
<td>21:00-21:50</td>
<td>22:00-22:50</td>
<td>HCJB, Quito, Ecuador</td>
<td>6.195</td>
</tr>
</tbody>
</table>

FREQUENCIES, MHz

<table>
<thead>
<tr>
<th>Region</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>America</td>
<td>9.60, 9.635</td>
</tr>
<tr>
<td>Europe</td>
<td>9.685, 9.735</td>
</tr>
<tr>
<td>Africa</td>
<td>6.155, 7.305</td>
</tr>
</tbody>
</table>

CELEBRITIES

- **The Ideal Low Cost Solution to Implementing Those Wild Computer Based Control Systems You've Been Dreaming Of!**
- **PAIA Software** currently available or under development includes: Music synthesizer interface; Home applications package including multi-zone fire/ burglar alarm, real time clock, energy saving heat/air conditioning control, computer generated "door-bell"; Model railroad controller and more.

COMPUTER/ CONTROLLER KIT

- **Price:** $194.95 (requires US $ 3.00 postage)
- **Shipments:** Direct from PAIA (add $3.00 postage)

COMPUTER/ CONTROLLER KIT

- **Price:** $194.95 (requires US $ 3.00 postage)
- **Shipments:** Direct from PAIA (add $3.00 postage)

ORDER TODAY

- **Address:** NETRONICS LTD., Dept. PE97
- **Phone:** (203) 354-9377
- **Location:** 233 LaGuardia Road, New Milford, CT 06776

NOTE

- You want to run programs at home and have enclosed $99.95 plus $3 for ELF II kit. Featured in POPULAR ELECTRONICS. Included: Machine language programs plus the new Pixie chip that you can display video graphics on your TV screen. Designed for engineers, students, and hobbyists who need training in computer programming and microprocessor circuit techniques. RCA 1800, COSMAC COS/MOS 8-bit microprocessor addressable to 64K bytes, 256 RAM, full hex keyboard, two hex display output crystals, and timing clock for applications and applications and double-sided plated-through PCB. Requires 6.3 VAC transformer. Optional 5 card expansion bus (less connectors) for memory expansion, cassette I/O, A to D, and A to D converters. PROM and a host of other I/O's. Manual includes instructions for assembly, testing, programming, video graphics, and games plus how to receive ELF Users Club bulletins.

NAME

- **ADDRESS**
- **CITY, STATE, ZIP**
- **Send me information on your other kits!**

ELF II

- **Price:** $99.95

SEND TODAY

- **NETRONICS LTD., Dept. PE97**
- **Phone:** (203) 354-9377
- **Address:** 233 LaGuardia Road, New Milford, CT 06776

SEPTEMBER 1977
Use Quick-Wedge to fasten leads, wire in panelights, connect test equipment, install components

They do all that ordinary screwdrivers do. PLUS they hold the screw.

Quick-Wedge Screw-holding Screwdrivers
Unconditionally guaranteed. Buy a Set Today
See your dealer or write to: Kedman Company, P.O. Box 25667, Salt Lake City, Utah 84125

You can build a better organ than you can buy!
A magnificent Schober Electronic Organ

What a marvelous way to put your special talents to work! With our Schober Electronic Organ Kits and your skill, you can build yourself some very special satisfaction, and a lifetime of great music.

Schober Organs are literally far superior to comparably-priced "ready-made" units. You could actually pay twice as much and get no better organ — and miss the fun of assembling it yourself. A PC board at a time, component by component, you'll assemble your own "king of instruments." And when you're done, you'll wish there was more to do. And there is! For then, Schober will help you learn to play, even if you've never played a note before!

Schober Organ Kits range from $650 to $2850, and you can purchase in sections to spread costs out — or have two-year time payments. Just send the coupon for the fascinating Schober color catalog (or enclose $1 for a record that lets you hear as well as see Schober quality.)

For information call: (201) 874-0110

American Radio History
Operation Assist

If you need information on outdated or rare equipment—a schematic, parts list, etc.—another reader might be able to assist. Simply send a postcard to Operation Assist. Popular Electronics, 1 Pain Ave., New York, NY 10016. For those who can help readers, please respond directly to them. They'll appreciate it. (Only those items regarding equipment not available from normal sources are published.)

United States Radio and TV Corp., “Neutodyne” electric receiver (chassis 41—circa 1920’s). Schematic diagram and parts list. John C. Whybrew, Box 367, Upland, IN 46985.

Heathkit Model 05 oscilloscope, Need service manual or any repair information. Andy Foremiak, Box 224, North Tonawanda, NY 14120.

Zenith combination AM, FM100, FM45 and 78 record player (chassis #R231). Schematics and parts list or service manual. Dennis Main, Rl 6, Box 218, Munroe, IN 47302.

Paco Model S-50 push-pull oscilloscope. Schematics and/or parts source. G. Derman, Rl 3 Box 164, Grapeland, TX 75844.

Waterman Model S-14-B oscilloscope, Manual or schematic. Xam Mark 2TA solid-state stereo amplifier. Output transistor number(s) or schematic. John Schmitt, Jr., 16 Carlson Parkway, Cedar Grove, NJ 07009.

Weston Model 802 VU meter. Need source to match replacement in Dumont 137-P mixer. Ron Adams, 2303 Dulcina Rd., Greensboro, NC 27407.

Bradford Model 51847 multiband portable radio. Schematic and/or service manual. Rex Faulkner, 2977 Estelle Dr., Smyrna, GA 30080.

RCA Model WO-56A oscilloscope and Dumont Type 304A oscilloscope. Schematic and/or service calibration data. Mr. James A. Fitchingham, Rte. 1 Box 380-A, Peizer, SC 29669.

Philco Model 39-7 radio/phono combination console. Any available information. Don Sherr, 509 Hannes St., Silver Spring, MD 20901.

Bogen Model CB-100 PA amplifier. Schematic, parts list or service manual. Brian Burke, 5737 S. Maryland, Chicago, IL 60637.

Hammarlund Model HQ-100 receiver. Schematic, alignment information or any available data. Jeff Kientz, 15 E. Forest Columbia, MO 65201.

Grundig Model 8034-3435 (chassis #2) stereo record player. Schematic diagram needed. M.A.H. Siddiqi, 2121 N. Western Ave., Chicago, IL 60647.

Treat yourself to a new direct reading DVM today.

DVM35
Pocket Portable
Analog Replacement
3-digit, 1% DCV
Battery or AC
Only $134

DVM36
Labor Accurate
Pocket Portable
3½ digit, 5% DCV
Battery or AC
Only $158

DVM32
Bench & Field Master
3½ digit, 5% DCV
Battery or AC
Only $198

DVM38
“Prime” Standard at
Your Fingertips
3½ digit, 1% DCV
Auto-Ranging
Only $348

A COMPLETE LINE OF DVMs TO FILL YOUR EVERY NEED OR WANT.

You can be sure more times in more circuits, under more adverse conditions, with greater versatility, accuracy, and meter protection than any other digital multimeters on the market today; and for less money, too. 10 Day Free Trial: Try any of these famous DVMs for 10 days. If the DVMs in use don’t prove exactly what we say, return them to your Sencore FLPD Distributor.

Want more information? We would like to tell you all about the Sencore DVMs by sending you a 24-page Sencore News, a six-page brochure, and the name of your nearest Sencore Distributor today . . . simply write or circle reader’s service number.

3200 Sencore Drive, Sioux Falls, SD 57107

AmericanRadioHistory.Com
110 CMOS DIGITAL IC PROJECTS
by R.M. Marston

If the schematics and typeface look a little different, it's because this book was first published in England. After a short introduction to COSMOS, the 110 projects are divided into six chapters of increasing complexity: 15 inverter, gate and logic circuits, 25 multivibrators, 10 dc lamp control, 25 relay switching, 25 sound generator and alarm, and 15 counting and dividing circuits. Nearly every circuit uses the RCA CD4001 quad 2-input NOR gate (same as Motorola MC14001); though the CD4013 dual D-type flip-flop (Motorola MC14013) is used a couple of times.

Published by Hayden Book Co., 50 Essex St., Rochelle Park, NJ 07662. 114 pages. $4.95 soft cover.

ARRL HAM RADIO OPERATING GUIDE
by the ARRL Headquarters Staff

This operating manual introduces the reader to the many different operating practices and interests within the hobby of amateur radio. It contains ten chapters, entitled: Getting Started; Message Handling—Fun with a Purpose; Contests—a Sure Way to Sharpen Skills; The Basic Intrigue of DX; Logging + QSLing—Awards; Repeaters—All the Ins and Outs; The Flea-Power Challenge; Communicating Visually; Vhf/uhf—Searching for New Horizons; Oscar—the New Frontier. Included are tips on operating frequencies, propagation conditions on each band, power levels, and a helpful appendix.

Published by the American Radio Relay League, 225 Main Street, Newington, CT 06111. 128 pages (81/4" x 11"). $4.00 in the USA and possessions, $4.50 elsewhere (soft cover).

LIGHT-BEAM COMMUNICATIONS
by Forrest Mims, Ill

The use of light beams to convey information is covered in this book. The history of the science is traced from primitive signal fires to sophisticated laser-beam communications links. Modern systems are covered by analysis of modulators, transmitters, detectors, transmission lines (fibre optics and waveguides), carrier sources, receivers, and "antennas." Atmospheric absorption is also discussed. The final chapter highlights experimental and operational systems developed since 1960.

Published by Howard W. Sams & Co., 4300 W. 62nd St., Indianapolis, IN 46206. 160 pages. $4.95 soft cover.

REVOLUTIONARY!
Sound-shaping taping mike.

Never before—a single microphone that gives you the versatility of 16 microphones! Four tiny frequency filter switches built into the new Shure 516EQ E-Quality Microphone let you tailor sound for studio effects in virtually any recording situation: flick a switch to add sizzle to vocals...flick another switch to highlight the sound of a bass drum. You can even compensate for the acoustic response of a room—right from the microphone! In all, the 516EQ creates 16 different response variations that can add a new, professional sound to every tape you make. Available singly or in pairs for stereo recording. Ask to hear a recorded demonstration at your participating Shure dealer.

Shure Brothers Inc.
222 Hartrey Ave., Evanston, IL 60204

Manufacturers of high fidelity components, microphones, sound systems and related circuitry.

CIRCLE NO. 89 ON FREE INFORMATION CARD
regular classified: commercial rate: For firms or individuals offering commercial products or services, $2.25 per word. Minimum order $33.75. expand-ad classified rate: $3.35 per word. Minimum order $50.25. Frequency discount: 5% for 6 months; 10% for 12 months paid in advance. reader rate: For individuals with a personal item to buy or sell, $1.35 per word. No minimum! display classified: by line (2-1/4" wide). $260.00. 2" by 1 column, $520.00. 3" by 1 column, $780.00. Advertiser to supply film positives. For frequency rates, please inquire.

General information: Payment must accompany copy except when ads are placed by accredited advertising agencies. First word in all ads set in caps. All ads subject to editors approval. All advertisers purchasing Photo Service Boxes in their addresses must supply publisher with permanent address and telephone number before ad can be run. Advertisements will not be published unless copies are on file. All advertisers promoting non-commercial products or services must include a brief description of communications. Ads are not acknowledged. They will appear in first issue to go to press after closing date. Closing date: 1st of the 2nd month preceding cover date (for example, March issue closes January 1st. Send order and remittance to popular electronics, One Park Avenue, New York, New York 10016. Attention: Hal Cymes.

For sale:
Free! Bargain catalog—IC's, LED's, readouts, fiber optics, calculators parts & kits, semiconductors, parts. Pol Pak, Box 892PE, Lynnfield, Mass. 01940.

Government and industrial surplus receivers, transmitters, snooperoscopes, electronic parts, Picture Catalog. 25 cents. MSHM, Nanaim, Mass. 01908.

Lowest Electronic Parts. Confidential Catalog Free. KNAPP, 3174 Ave. S.W., Largo, Fla. 33540.

Electronic parts, semiconductors, kits, free flyer. Large catalog $1.00 deposit. BIEGELEB, Bluffton, Ohio 44817.

Meters—Surplus, new, used, panel or portable. Send for list. Marchetti, Box 5577, Riverside, Calif. 92507.

Police/fire scanners, large stock scanner crystals, antennas. Also CBS. Harvey Park Radio, Box 19224, Denver, Colo. 80219.

Wholesale c.b., scanners, antennas, catalog 25 cents. Crystals, Special cut, $4.95, Monitor $3.95. Send make, model, frequency. G. Enterprises, Box 4651, Cleffield, Ohio 44817.

Computer hobbyists—classified advertising newsletter. $3.75/year. Free sample. OnLine. 2465 Santa Cruz Hwy., Los Gatos, Calif. 95030.

Build your own speakers and save up to 50%.

Speakerlab Dept. FE-5 5503 35th N. Seattle, Washington 98108.

Our new comprehensive 1977 Fall catalogue, listing complete descriptions, illustrations and special monolithic pricing on over 10,000 items, is now available on request.

<table>
<thead>
<tr>
<th>ELECTROLYTIC CAPACITORS</th>
<th>CARBON RESISTORS</th>
<th>MISC CIRCUITS</th>
<th>POSITIVE VOLTAGE REGULATORS</th>
<th>MOBILE CIRCUITS</th>
<th>JAPANESE CIRCUITS</th>
<th>POWER SUPPLY</th>
<th>IC's ON THE MOVE</th>
<th>MICROPROCESSOR CHIPS</th>
<th>HOBBY ELECTRONICS</th>
<th>PHOENIX PATH/PATCH BOARD</th>
<th>POPULAR JIC ELECTRONICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2uF 50V</td>
</tr>
<tr>
<td>Res 100 Ohm</td>
</tr>
<tr>
<td>Res 100 Ohm</td>
</tr>
<tr>
<td>Res 100 Ohm</td>
</tr>
<tr>
<td>Res 100 Ohm</td>
</tr>
<tr>
<td>Res 100 Ohm</td>
</tr>
<tr>
<td>Res 100 Ohm</td>
</tr>
<tr>
<td>Res 100 Ohm</td>
</tr>
<tr>
<td>Res 100 Ohm</td>
</tr>
<tr>
<td>Res 100 Ohm</td>
</tr>
<tr>
<td>Res 100 Ohm</td>
</tr>
<tr>
<td>Res 100 Ohm</td>
</tr>
<tr>
<td>Res 100 Ohm</td>
</tr>
<tr>
<td>Res 100 Ohm</td>
</tr>
<tr>
<td>Res 100 Ohm</td>
</tr>
<tr>
<td>Res 100 Ohm</td>
</tr>
<tr>
<td>Res 100 Ohm</td>
</tr>
<tr>
<td>Res 100 Ohm</td>
</tr>
<tr>
<td>Res 100 Ohm</td>
</tr>
<tr>
<td>Res 100 Ohm</td>
</tr>
<tr>
<td>Res 100 Ohm</td>
</tr>
<tr>
<td>Res 100 Ohm</td>
</tr>
<tr>
<td>Res 100 Ohm</td>
</tr>
<tr>
<td>Res 100 Ohm</td>
</tr>
<tr>
<td>Res 100 Ohm</td>
</tr>
</tbody>
</table>
ANYONE CAN SOLDER WITH KESTER

DO-IT-YOURSELFERS!

Let Kester solder aid you in your home repairs or hobbies. A radio, TV, model train, jewelry, plumbing, etc. Save money — repair it yourself. Send self-addressed stamped envelope to Kester for a FREE Copy of "Soldering Simplified!"

KESTER SOLDER / 4201 Wrightwood Ave. Chicago, Ill. 60639

BUILD AND SAVE TELEPHONES, TELEVISION, DETECTIVE, BROADCAST Electronics. We sell construction plans with an Engineering Service, Speakerphones, Answering Machines, Carphones, Phonevision, Dialers, Color TV Converters, VTR, Games, 250 TV Camera, Electron Microscope, Special Effects Generator, Time Base Corrector, Chroma Key, Engineering Courses in Telephone, Integrated Circuits, Electronic PLUs MUCH MORE. NEW Super Hobby Catalog PLUS year's subscription to Electronic News Letter, $1.00. Don Britton Enterprisers, 6503 Elysium Blvd., Los Angeles, Calif. 90046

CB RADIOS, monitors, crystals, CD ignitions, Southland, Box 3951-B, Baytown, Texas 77520

MODULAR SYNTHESIZERS THAT REALLY PERFORM

Write to:

ARIES MUSIC INC. P.O. BOX 3065 SALEM, MA 01970

PROFESSIONAL UNSCRAMBLERS — several models that fit any scanner. Free information. Capi Electronics, 87373 Winthrop, St. Louis, MO 63114

UNSCRAMBLE CODED MESSAGES from Police, Fire and Medical Channels. Same day service. Satisfaction guaranteed. Don Nobles Electronics, Inc., P. O. Box 266B, Hot Springs, Arkansas 71901. (01) 623-5027

ANYTHING ELECTRONIC we've got it! Catalog $1.00. Razoo, Box 1224, Cupertino, Calif.

WORLD'S SMALLEST, MOST POWERFUL WEAPON we've got it! Catalog $1.00. Free catalog. American Radiohistory.com, P.O. Box 3065, Newton, Massachusetts 02158, 617-968-0530.

WEATHER MAP RECORDERS: Copy Satellite Photographs, National-Local Weather Maps. Learn How! $1.00. Atlantic Sales, 3730 Nautilus Ave., Brooklyn, N.Y. 11224. Tel: (212) 372-0349

FREE CATALOG of Electronics parts, kits, semi's, specifications, including: DiamondBack, Box 1649, Spring Valley, Ill. 61322.

120 VOLTS 3000 WATTS from your alternator. Simple plans $3.00. Stierke, Box 15532, Long Beach, Calif. 90815

TELEPHONES, Wide Selection. Phone cords, plugs, jacks, etc., including modular. Free catalog. Flemco Sales, 20272 37th Ave., N.E., Seat- tile, WA 98155.

AUDIO EXPERIMENTERS, Serious Music Synthesizer Stuff: literature, kits, components, circuits and more. Send SASE for FREE INFO. CFR Associates, POB F, Newton, NH 03858

UNSCRAMBLER SPECIAL SALE: Our famous Code-Breaker works with all scanners and tunes all scramble frequencies only $29.95. COD's (01) 234-0530. Mail orders to: KRYSTAL KITS, BOX 445, BENTONVILLE, AR 72712.
Memorex computer boards with IC's, diodes, transistor, etc. 5 Boards containing 100 - 200 IC's ONLY $4.25

UNSCRAMBLER KIT for all Scanners
• Tunes easily
• Full instructions included
• Easy to install
• 3/8" x 3/8" x 1/2"
Only $19.95

VARIABLE POWER SUPPLY KIT NO. 1
• Continuously variable from 5V to 20V
• Excellent regulation up to 500 milliamp
• 4400 Mfd of filtering
• Drilled fiberglass PC Board
• One hour assembly
• Kit includes all components
• Case Included
ONLY $10.95

VARIABLE POWER SUPPLY KIT NO. 2
Same as above but with 1 amp output, also with case.
ONLY $13.95

BATTERY CLIPS
Standard 9V battery clips with 4 1/2" inned leads. 25/$1.00

TRANSISTOR DIODES

MK 5005
4 digit counter/latch decoder; 7 segment output only. 24 pin dip with spec.
$8.00 EACH

RESISTORS
Over 50,000,000 in stock
330 ohm 27K ohm
2.2K ohm 27K ohm
10K ohm 1M ohm
1K ohm 39K ohm
2.2K ohm 43K ohm
3.3K ohm 47K ohm
5K ohm 100K ohm
10K ohm 220K ohm
20K ohm 330K ohm

READOUTS
FND70. 4".C.C. .59
FND800.8".C.C. 1.69
MAN 8.3".CA Yellow .89
LT767 .7".C.C. 4 digit 3.95

Ni-Cad Batteries 4 Brand New Size "AA"
Ni-Cads ONLY $4.50

PC BOARDS
4 chip PCB for 7805 or 807 .50
6 chip PCB for 7808 or 808 .50
1 chip PCB for DL707 or 728 .20
4 chip PCB for DL728 or 728 .20
6 chip PCB for DL728 or 728 .30
4 chip PCB for ML707 or 728 .20
4 chip PCB for LS707 or 728 .20

NOTE: ALL PC Boards are multiplexed for adding additional digits.

60 Hz L(e)(s)K Crystal Time Base Kit - Kit enables a MOS clock circuit to operate from a DC power source. Ideal for car, camper, van, boat, etc. 60Hz output with an accuracy of .005% (typ.) Low power consumption 2.5 ma (typ.). Small size will fit most any enclosure. Single MOS IC oscillator/divider chip 5-15 volts DC operation.
ONLY $5.95
2 for $10.00

NOW! For the Dallas Area Residents.
Come Visit Our Retail Store.
3717 Lincoln Court, Garland, Texas
Tues. - Fri. 10 AM to 6 PM
Sat. 10 AM to 3 PM
CLOSED MONDAY
Still the Biggest, Brightest, "Bestest" .5" LED, 6 DIGIT AC/DC ALARM CLOCK KIT & ELAPSED TIMER $19.95 Complete

- PC Board Drilled & Silk Screened (Includes Xtal Time Base Circuitry)
- 5316 National Clock Chip & Fairchild Displays
- Includes EVERY part required for clock and all options except Cabinet and Crystal Time Base components, if desired, see below.
- Brightness Control:
 - Front panel, on every mode
 - 24 Hour Alarm / snooze
 - 60 Min. Elapsed Timer
- Field Tests over 1 Yr.
- Most Important — Complete Instructions, schematics, Pictorials, layouts — everything for trouble free assembly.

OPTIONS — XTAL Time Base Components — $2.95 when purchased w/clock Wood Clock Cabinet (A) — $4.00

CLOCK CHIPS
- MM5314
- MM5316
- MM5387 (Par. # 5316)
- MM5375
- C7001
- C7010
- IC SOCKETS
 - 8, 14, 16, 18 pin: 5 for $1.00
 - 24 pin & 28 pin: 3 for $1.00
 - 40 pin: 2 for $1.00

TRANSFORMERS
- MM5314
- MM5316
- MM5387 (Par. # 5316)
- MM5375
- C7001
- C7010
- IC SOCKETS
- NI4002: 1000 volts, 50 for $4.00
- IN314 or IN4148: 20 for $1.00

DIODES
- IN4000/IN4007: 1 Amp 600 volt

LED's
- 600 Volt — 10 Amps
- USES — Motor Controller, Dimmers, Any Variable AC Voltage Application

Voltage Regulators
- Positive-To 220 Pkg: $1.00 7925
- Negative-To 220 Pkg: 7912

5KA
- 7816: 1.00 7916
- 7812: 1.00 7912
- 7805: 1.00 7905
- 7814: 1.00 7914
- 7824: 1.00 LM309

Transistors
- 2N2222A
- 2N3904 PNP: 8 for $1.00
- 2N3906 PNP: 8 for $1.00
- 2N3907 NPN: 10 for $0.50
- 2N4104 NPN: 10 for $0.50

7 SEG LED DISPLAYS
- .32" Type 707 / MAK-1 14 pin Dip

MA1003 MOBILE CLOCK MODULE
- National $21.95

Florescent displays give Color Choice
(Red, Blue, Green or Yellow) when used w/corresponding Color Filter
Includes: Module, Switches, Fitter & Specs

60 HZ. CRYSTAL TIME BASE KIT $4.95

Use with Digital Clocks for 12VDC or Portable Operation
KIT INCLUDES:
- PC Board,
- 5369 Divider Chip
- Crystal for 1.00
- 100 for 9.00
- All Other Parts

Complete Instructions

6 DIGIT LED STOP-WATCH KIT $29.95 complete

6 Digit Display
- Dual Range DIGITAL Voltmeter Kit $39.95 Complete
- 0 to ±2 Volts DC — 0 to ±2 Volts DC
- Features latest Technology DVM chip set
- Non Critical Comp.
- High Noise Rejection
- Accuracy to within .001
- Contains — P.C. Boards, 4 large 50 Fairchild Readouts, Display Drivers, Op-Amps, Inverter, all electronic components, Switches, Pots, Complete Instructions and Specs; & DVM Chip Set.
- Requirements: Power Supply ±5V, ±15V and 15V.

WINDING MACHINE KIT
- Complete Instruc-
- Dual Range DIGITAL Voltmeter Kit $39.95 Complete
- 0 to ±2 Volts DC
- Features latest Technology DVM chip set
- Non Critical Comp.
- High Noise Rejection
- Accuracy to within .001
- Contains — P.C. Boards, 4 large 50 Fairchild Readouts, Display Drivers, Op-Amps, Inverter, all electronic components, Switches, Pots, Complete Instructions and Specs; & DVM Chip Set.
- Requirements: Power Supply ±5V, ±15V and 15V.
- OPTIONS — Set/Pressure Resistors for Increasing Voltage Range up to 200 Volts — $2.95

NOTE — Complete Specs, Schem. etc., for Multi-Meter

6 DIGIT LED MOBILE CLOCK KIT & ELAPSED TIMER
- 6 Digits
- 12 or 24 Hour
- Quartz Crystal Controlled
- 12 Volt DC or AC Operation

$275 Complete

- Size 4" x 1/4" x 4"/2
- Rugged High Impact ABS
- Battery Back Up Capabilities
- Recessed Front Switches

OPTION — AC Adapter $2.50

THE BIG ONE
- .8" LED Alarm Clock Kit
- simple construction

Big Digits — $17.95 Complete

Includes:
- Power Supply, Speaker, IC Socket
- Board, Clock Chip, Switches
- Fairchild 8" Display Module, Resistors, Capacitors, Complete Instructions

Features:
- Hrs. & Min. Switch
- 12 Hr. / 24 Hr. Alarm
- 10 Min. Snooze
- AM/FM Indicators
- Sleep Output

OPTION — Wood Clock Cabinet (B) — $4.00 w/purchase of clock

THE SUPER COMPACT
- $13.95 Complete

Includes:
- All Parts; P.C. Board
- Power Supply Case
- Colors: Black, Silver, or Gold
- Size: 7.5" x 1 1/8" x 1 3/4" Material: Extruded Alum.

OPTION — Temperature Ind. Front Panel — $3.00

Features:
- 4-Line x 5 LED Displays
- 12/24 hour Format

BankAmericard-Master Charge Minimum $10.00 on Charge Call Your Order In For Immediate Shipment 201-755-0590 Effective after Sept. 11th

Terms & Conditions: Orders must incl. CK. No CQD's • Add $1.00 handling for orders under $25.00 • Outside Cont. USA and total Postage - 10% Air Mail • N.J. resid. add 5% Tax

HRS.: Mon. thru Friday: 9:00 A.M. to 6:00 P.M.
Tues. & Thursday: 7:00 P.M. to 10:00 P.M.

The biggest, brightest, "bestest" 6 DIGIT AC/DC ALARM CLOCK KIT & ELAPSED TIMER $19.95 Complete

- Displays Hrs. & Min. — Switch to Min. & Sec. on Command
- SM/PM Indication
- Field Tested for 6 Months

The kit will include a 5316 National Clock Chip, 4 Fluorescent Display tubes, all electronic components, switches, controls & complete instructions, specs, etc. for clock and all optional Features. Other parts required or if desired are as follows:

- PC Board, Drilled — $3.00
- Xformer for AC power — $1.00
- Speaker Alarm Kit — $2.00
- Plexiglas Case (Kit) — $2.00 w/purchase of clock

HOBB-Y-TRONIX, INC.
351 Rahway Road, Edison, N.J. 08817
Phone: 201-755-0590 — Phone effective 9/12/77

CIRCLE NO. 31 ON FREE INFORMATION CARD
Frequency Counter $79.95 KIT

You've requested it, and now it's here! The CT-50 Frequency Counter Kit has more features than counters selling for twice the price. Measuring frequency is now as easy as pushing a button, the CT-50 will automatically place the decimal point in all modes, giving you quick, reliable readings. Want to use the CT-50 mobile? No problem, it runs equally well from 10 VDC as it does on 110 VAC. How is the super accuracy? The CT-50 uses the popular TV color burst freq. of 3.57954 MHz for its reference. Tap off a color TV with our adapter and get ultra accuracy — 0.01 ppm! The CT-50 offers professional quality at the unheard of price of $79.95. Order yours today!

CT-50, 60Hz Counter Kit $79.95
CT-50WT, 60Hz counter, wired and tested $159.95
CT-600, 600 Hz prescaler option for CT-50, add $29.95

VIDEO TERMINAL KIT $149.95 KIT

A compact 3 x 10 inch PC card that requires only an ASCII key board and a TV to become a complete electronic terminal to connection to your microprocessor or terminal processor. Its many features are simple BNC supply, crystal controlled sync. output levels to BNC BNC, 2 pages of 32 characters by 16 lines, read and from memory, complete and negative memory, cursor control and page control, parity error display, and control, power-off switch, basic character ASCII display, block type display character insertion, and page deletion. It is equipped with the control used for making memory changes, forward space, line feeds, reverse line feed, home returns, cursor. Clear page clear end of line and clear page, all of which can be made with one 2.5 volts from the memory. The card requires 526 volts at 200 ma and outputs standard TCM compatible output levels. The terminal is self-contained, includes a level transducer (TH206), and a level transducer adapter (CD16) to use with a TV, or a level transducer adapter to use with a VCR. The kit includes everything needed to complete the terminal except for the TV and the power supply.

SIX DIGIT 12/24 HR CLOCK KIT $279.95

Want a clock that looks good enough to put in your living room? Forget the computer’s junkyard and try one of our six digit clock kits. Uses 2 J.D. digital clock ICs, clear, blue, and brown. The kit includes everything needed to complete the clock except for the clock ICs and a power supply. Two to three hour delivery time. Clocks: silver, blue, brown, and black (price includes delivery)...

LINEAR REGS TRANSISTORS

Satisfaction guarantee. See site for full details. All orders subject to $5.00 minimum. No sales to Alaska, Hawaii, or foreign countries.

B&B & does it again! New speakers and enclosures, includes 8” woofers, 4” tweeters, enclosures (214) complete grill cloth, crossover networks, insulation, hardware and instructions. A complete & power supply. This system sells for $198, but today we can afford quality sound! Quantity Limited. Sh.Vt.Wts.LB. 219.95. Use 12.50 a kit for $49.95, with & without. For $15.00 a kit for $39.95, with & without. For $15.00 a kit for $39.95.

COLOR TV CHASSIS

We have found some 2,000 damaged TV chassis, all the same type that we have been selling them last few months, all outdoor use. They have cracked PC boards, bent frames, etc. The parts alone are worth 5 times as much as our low prices. All units are sold "AS IS," all sales are final. 13" & 15" include tuners.

SIREN KIT 25-951 25-952

We have come up with some 2,000 damaged TV chasses, all the same type that we have been selling them last few months, all outdoor use. They have cracked PC boards, bent frames, etc. The parts alone are worth 5 times as much as our low prices. All units are sold "AS IS," all sales are final. 13" & 15" include tuners.

SIREN KIT 25-951 25-952

We have come up with some 2,000 damaged TV chasses, all the same type that we have been selling them last few months, all outdoor use. They have cracked PC boards, bent frames, etc. The parts alone are worth 5 times as much as our low prices. All units are sold "AS IS," all sales are final. 13" & 15" include tuners.

SIREN KIT 25-951 25-952

We have come up with some 2,000 damaged TV chasses, all the same type that we have been selling them last few months, all outdoor use. They have cracked PC boards, bent frames, etc. The parts alone are worth 5 times as much as our low prices. All units are sold "AS IS," all sales are final. 13" & 15" include tuners.

SIREN KIT 25-951 25-952

We have come up with some 2,000 damaged TV chasses, all the same type that we have been selling them last few months, all outdoor use. They have cracked PC boards, bent frames, etc. The parts alone are worth 5 times as much as our low prices. All units are sold "AS IS," all sales are final. 13" & 15" include tuners.

SIREN KIT 25-951 25-952

We have come up with some 2,000 damaged TV chasses, all the same type that we have been selling them last few months, all outdoor use. They have cracked PC boards, bent frames, etc. The parts alone are worth 5 times as much as our low prices. All units are sold "AS IS," all sales are final. 13" & 15" include tuners.

SIREN KIT 25-951 25-952

We have come up with some 2,000 damaged TV chasses, all the same type that we have been selling them last few months, all outdoor use. They have cracked PC boards, bent frames, etc. The parts alone are worth 5 times as much as our low prices. All units are sold "AS IS," all sales are final. 13" & 15" include tuners.

SIREN KIT 25-951 25-952

We have come up with some 2,000 damaged TV chasses, all the same type that we have been selling them last few months, all outdoor use. They have cracked PC boards, bent frames, etc. The parts alone are worth 5 times as much as our low prices. All units are sold "AS IS," all sales are final. 13" & 15" include tuners.

SIREN KIT 25-951 25-952

We have come up with some 2,000 damaged TV chasses, all the same type that we have been selling them last few months, all outdoor use. They have cracked PC boards, bent frames, etc. The parts alone are worth 5 times as much as our low prices. All units are sold "AS IS," all sales are final. 13" & 15" include tuners.

SIREN KIT 25-951 25-952

We have come up with some 2,000 damaged TV chasses, all the same type that we have been selling them last few months, all outdoor use. They have cracked PC boards, bent frames, etc. The parts alone are worth 5 times as much as our low prices. All units are sold "AS IS," all sales are final. 13" & 15" include tuners.

SIREN KIT 25-951 25-952

We have come up with some 2,000 damaged TV chasses, all the same type that we have been selling them last few months, all outdoor use. They have cracked PC boards, bent frames, etc. The parts alone are worth 5 times as much as our low prices. All units are sold "AS IS," all sales are final. 13" & 15" include tuners.
THE WHOLE WORKS $89.95

4K LOW POWER RAM BOARD KIT

Asmall Altair 8080 plug in compatible. Uses low power static 21L02-1 500 ns. RAM's. Fully buffered, drastically reduced power consumption, on board regulated, all sockets and pins included. Premium quality plated through PC Board.

NEW! DESIGN CONSOLE KIT - $89.95

S.D.'s Sales announces the inexpensive way to buy the wire wrap jungle. Our latest kit gives you 124 solderless quick connect terminals, enough for eight 16 pin IC's and provides 50 x 8 common bus matrix. Has regulated +5VDC and +/-15VDC, all at 1 AMP Voltage regulation better then 1%.

Also includes a pulse generator variable from 10Hz to 50mHz and 01 sec. to 100 nano seconds. Generator output is +5V. In kit form only and includes all parts, sockets, front panel measures 7 1/4" x 9 1/2", and hardware, case not available.

CAR/BOAT KIT New Item! $34.95

Music to your Ears!

Limited Quantity! $9.95 kit

MUSICAL HORN $9.95 kit

MUSICAL HORN Kit for car, boat, or home. Plays any tune from Mozart to Led Zeppelin. Change tunes in seconds, complete solid state electronics. Standard or custom tones available at $39.95 each (you supply us with the sheet music - we supply electronics for your favorite tune). One song supplied with original order. Standard tones available: DIXIE - EYES OF TEXAS - ON WISCONSIN - YANKEE DOODLE DANDY - NOTRE DAME FIGHT SONG - PINK PANTHER SONG - ANGELS WALKING - NEVER ON SUNDAY - BRIDGE OVER RIVER GILI CANDY MAN.

HOME KIT $26.90

HOME KIT includes speaker which operates from your door bell. When door bell is pushed your favorite tune is played. Car boot kit DOES NOT include speaker. Uses standard Bohm PM speaker. Allows 6 weeks delivery on both kits.

6 DIGIT ALARM CLOCK $10.00

6 DIGIT ALARM CLOCK KIT $10.00

MOS 6 DIGIT UP/DOWN COUNTER $9.95

MOS 6 DIGIT UP/DOWN COUNTER Kit $9.95

MOS 6 DIGIT UP/DOWN COUNTER for 40 Pin DIP. Everything you ever wanted in a counter chip. Features: Direct LED segment drive, single power supply (5VDC TYPE), 6 decade up/down, presetable counter, separate presettable decade register with compare outputs, BCD and seven segment outputs, internal scan oscillator, CMOS compatible, leading zero blanking. 1MHZ count input frequency. $12.95 Exclusive! $12.95

TERMS: Money Back Guarantee!

NO COD'S. TEXAS RESIDENTS ADD 5% OF ORDER FOR POSTAGE & HANDLING. ORDERS UNDER $10.00 ADD 75c. FOREIGN ORDERS - U.S. FUNDS ONLY!

CALL IN YOUR BANK AMERICAN OR MASTER CHARGE ORDER IN ON OUR CONTINENTAL UNITED STATES TOLL FREE WATTS LINE.

1-800-527-3460

Texas Residents Call Collect:

214/271-0022

Orders over $15. - Choose ONE. FREE MERCHANDISE!

SEPTEMBER 1977
ADD 24K OF MEMORY TO YOUR COMPUTER -- $450

Now you can buy 3 of our popular 8K ECONOMAS!“ Choice for IBM. Features: All static design (eliminates dynamic timing hassles); 16-state outputs; configured in two separate, independent 8K blocks with individual protect for each block; test wite states (6 NC); 15-state output, implemented on board; provides vector interrupt if write attempted on protected block. Fully buffered. True low power.

ICK-24 Three 8K ECONOMAI II lists... $450.00
ICK-008 8K ECONOMAI (kit form)... $348.00
ICK-007 4K ECONOMAI II (kit form)... $188.50
ICK-009 Same but assembled, tested: 1 yr. war... $250.00

FOR MORE DETAILS, COMPONENTS - MUCH MORE...

SEND FOR OUR FLYER

CIRCLE NO. 28 ON FREE INFORMATION CARD

For faster service

USE ZIP CODE on all mail

PROMS PROGRAMMED — New low prices - 13 cents stamp brings information. Or send $1 check for program cards, titles, PROM postage credit. RBH Enterprises, Box 12344, Wichita, KS 67277.

SNOOPERSCOPE, 205 East 17th - COMBO ORGAN 67277.
MIND-ABSORBING PROJECTS FOR EXPERIMENTERS AND HOBBYISTS

CARTRIVISION OWNERS: Sony Color Tuner-Modulator plugs into Cartrivision. Record off channels not viewed. Record without TV on. Play into any TV without interfacing. $250.00 (Specify channel 34)! H.M.V., Inc. Box 12, Langhorne, Pennsylvania 19047.

ALL SOLID STATE DIGITAL OSGILoscope digital memory dual trace. Inv. DC ANH, both operated. 292.5 display pocket-size, complete PLANS, PICTURES, parts list & sources $15. Pictures info $1 SEECOM, Box 1274, Tustin, CA 92683.

FREQUENCY LISTS: Shortwave and VHF-UHF. Military, Aviation, Satellite, Police, more. Sample $2.06. Catalog 50 cents. HANDLER, Box 253, Deerfield, Illinois 60015.

HARDCOPY: Attachment converts most electrical typewrit- ers to microcomputer printout. Free Brochure: Stout Micro-computer, Box 1573, Fremont, CA 49538.

BOOKS AND MAGAZINES

ELECTRONICS DICTIONARY — 688 page industry stan- dard reference filled with 18,000 up-to-date technical defi- nitions and diagrams. Outstanding $6.95 retail value for $4.50 wholesale price (postage included). ANRI, P.O. Box 3727, Torrance, California 90510.

BURLGAR ALARMS

WHY WORRY about leaving car lights on? EASILY INSTALLED ALARM alarms, with pulsing tone. $12.95. CFL Enterprises, P.O. Box 415, Export, PA 15632.

NEW SUPER SENSITIVE HOME/AUTO BURLGAR ALARM SYSTEM

Patented Electronic Perimeter Devices Easily Installed by Almost Anyone.

On guard against burglars by means of loud alarm triggered by break-in attempts. Almost unanny the way it senses danger from unauthorized intruders. Requires NO switches, door cords, shunt locks, for traps or delays. So nearly wireless one small Control with sensors can protect up to 50 GLASS doors, win- dows, doors. Etc. using one single 24 gauge wire. Great opportunity for persons seeking professional protection at low cost. Send $1.00 for Full details.

KING RESEARCH LABS, INC.
312/344-7877
801 South 11th Avenue, Maywood, IL 60153

PROTECTION! Build your own fire/burglar alarm. Complete plans. Send $5.50 to: Triangle, Box 9244, Wichita, KS 67277.

BURLGAR, SMOKE, FIRE ALARM CATALOG

Billions of dollars lost annually due to lack of protective warning alarms.

FREE CATALOG Shows you how to protect your home, business and person. Wholesale prices. Do-it-yourself. Free engineering service.

BURDEX SECURITY CO.
Box 82802
PE-097
Lincoln, Ne. 68501

SEPTEMBER 1977
TERMINAL EXPENDABLES — Model 10.29, 12 additional items. — 100%返送 are included in the kit.

PARATRONICS

Logic Analyzer Kit

- Designed to analyze any type of digital system
- Checks data rates in access to 160,000 words per second
- Tape-less TFL
- Displays logic states up to 8 digits wide
- Signing on and error display on your CRT
- Operates in hexahedral format
- Tests circuits under actual operating conditions
- Easy to assemble — comes with step-by-step construction manual
- Includes 10 eyes on logic analyzer operation

CONTINENTAL SPECIALTIES

- Special-3600 CPU
- 2102 System Control — $27.95
- 2112 8-Bit Input/Output — $4.95
- 2116 Priorly Interrupt Control — $10.95
- 2120 High-Speed, Heart-Authenticator Interface — 15.95
- 2121 Clock Generator/Driver — 10.95

DIGITAL AUTO INSTRUMENTS

Digital Clock Kit — $39.95

- 4-Digit LED Display
- 4x9 V. 12VDC
- All-transistor components available

DIGITAL STOPWATCH

- 4-Digit LED Display
- 4x9 V. 12VDC
- All-transistor components available

JE700 CLOCK

- 4-Digit LED Display
- 4x9 V. 12VDC
- All-transistor components available
Timeband by **Fairchild**

Watches — *Men’s & Ladies*
- Seed State
- Displays four, minute, second, month & day
- Use new 1.2V replacement batteries
- Choose LED or LCD styles
- One year factory warranty

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>75488 White w/Brass</td>
<td>$19.95</td>
<td></td>
</tr>
<tr>
<td>75488 Yellow w/Brass</td>
<td>$27.95</td>
<td></td>
</tr>
<tr>
<td>75488 Black w/Brass</td>
<td>$36.95</td>
<td></td>
</tr>
</tbody>
</table>

DISCRETE LEDS

<table>
<thead>
<tr>
<th>TYPE POLARITY</th>
<th>STIPPLED (C)</th>
<th>3-5MM (C)</th>
<th>7MM (Y)</th>
<th>8MM (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE POLARITY</td>
<td>STIPPLED (C)</td>
<td>3-5MM (C)</td>
<td>7MM (Y)</td>
<td>8MM (Y)</td>
</tr>
</tbody>
</table>

DISPLAY LEDS

<table>
<thead>
<tr>
<th>TYPE POLARITY</th>
<th>STIPPLED (C)</th>
<th>3-5MM (C)</th>
<th>7MM (Y)</th>
<th>8MM (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE POLARITY</td>
<td>STIPPLED (C)</td>
<td>3-5MM (C)</td>
<td>7MM (Y)</td>
<td>8MM (Y)</td>
</tr>
</tbody>
</table>

WIRE WRAP CENTER

HOBBY-WRAP TOOL—BW-630
- Button Operated (Size C)
- Weights ONLY 11 Ounces
- Standard Dip Sockets (0.025 inch)
- Contains built-in 4 mm knife

$34.95

WIRE WRAP KIT — WK-2
- WRAP *STRIP*
- UNWRAP
- Tool for 30 AWG Wire
- Roll of 50 ft. White or Blue 30 AWG Wire
- 10 pc. each 1, 2, 3 & 4 — Weights
- Unwoven wire

$11.95

WIRE WRAP TOOL WSU-30
- WRAP *STRIP*
- UNWRAP
- 25 ft. roll 30 AWG KYNAR wire with awg
- Cuts wire to desired length
- Strips 1 at a time
- Specify — Blue-Yellow-Red

HEAT SINKS

- 260-26 A 105°C Black Copper for TO-5
 - $2.50
- 261-36 HI-Aluminum TO-220 Transistors & Regulators
 - $2.75
- 360-73A Black Anodized Aluminum (for
 - $1.65
- 451-A Black Anodized Aluminum — electroplated
 - $1.60

DIP SWITCHES

- LST-100-4 (8 pin dip) 4 switch unit
 - $17.50 ea.
- LST-100-14 (14 pin dip) 7 switch unit
 - $5.85 ea.

TV GAME CHIP SET — $14.95

- Includes 4-3 ISOC-1 chip and 2.01 MHz crystal
- 2 purchased separately would cost $18.95

ZENERS — DIODES — RECTIFIERS

- 724-01 100W 1920V Diodic Zener
 - $74.95
- 725-02 50W 1920V Diodic Zener
 - $74.95
- 726-03 25W 1920V Diodic Zener
 - $74.95
- 727-04 12.5W 1920V Diodic Zener
 - $74.95

SCR AND FW BRIDGE RECTIFIERS

- 15A23 15 Amp 250V
 - $9.95
- 15A36 15 Amp 300V
 - $9.95
- NEX-4 40 Amp 500V
 - $9.95

TRANSISTORS

- 701-17 100mA 250V PNP 30 Volts
 - $1.95

CAPACITOR

- 50 VOLT CERAMIC
 - 0.01 10 MIL
 - $1.50
 - 0.01 100 MIL
 - $1.50
 - 0.01 1000 MIL
 - $1.50
 - 0.02 10 MIL
 - $1.50
 - 0.02 100 MIL
 - $1.50
 - 0.02 1000 MIL
 - $1.50
 - 0.03 10 MIL
 - $1.50
 - 0.03 100 MIL
 - $1.50
 - 0.03 1000 MIL
 - $1.50
 - 0.05 10 MIL
 - $1.50
 - 0.05 100 MIL
 - $1.50
 - 0.05 1000 MIL
 - $1.50
 - 0.1 10 MIL
 - $1.50
 - 0.1 100 MIL
 - $1.50
 - 0.1 1000 MIL
 - $1.50
 - 0.15 10 MIL
 - $1.50
 - 0.15 100 MIL
 - $1.50
 - 0.15 1000 MIL
 - $1.50
 - 0.2 10 MIL
 - $1.50
 - 0.2 100 MIL
 - $1.50
 - 0.2 1000 MIL
 - $1.50
 - 0.25 10 MIL
 - $1.50
 - 0.25 100 MIL
 - $1.50
 - 0.25 1000 MIL
 - $1.50
 - 0.3 10 MIL
 - $1.50
 - 0.3 100 MIL
 - $1.50
 - 0.3 1000 MIL
 - $1.50
 - 0.5 10 MIL
 - $1.50
 - 0.5 100 MIL
 - $1.50
 - 0.5 1000 MIL
 - $1.50
 - 1 10 MIL
 - $1.50
 - 1 100 MIL
 - $1.50
 - 1 1000 MIL
 - $1.50
 - 2 10 MIL
 - $1.50
 - 2 100 MIL
 - $1.50
 - 2 1000 MIL
 - $1.50
 - 5 10 MIL
 - $1.50
 - 5 100 MIL
 - $1.50
 - 5 1000 MIL
 - $1.50

CREATING YOUR INDIVIDUAL ENTERTAINMENT CENTER

$159.95

CHANNEL F — additional cartridges — $17.95 ea.

- 2561 — Ti-Tac-Toe (Shopping Gallery)
- 2562 — Caesar (Shopping Safety)
- 2563 — Monopoly (Computer Logic)
- 2564 — Tic Tac Toe/Shooting
- 2565 — Blackjack (1 or 2 players)
- 2566 — Roulette (1 or 2 players)
- 2567 — Spacewar (2 players)
- 2568 — Mission (2 players)
- 2569 — Blackjack (2 players)

50 PCS. RESISTOR ASSORTMENTS

- Ass't. 1: 1 kilo in 27 ohm
- Ass't. 2: 1 kilo in 180 ohm
- Ass't. 3: 1 kilo in 270 ohm
- Ass't. 4: 1 kilo in 1800 ohm
- Ass't. 5: 1 kilo in 2700 ohm
- Ass't. 6: 1 kilo in 18000 ohm

Includes Resistor Assortments I-7 (5050 pcs.)

$7.49 ea.
MOVIES FROM: COLUMBIA/PICTURES/WARNER BROS., the greatest films in Super 8, sound or silent, "Lawrence of Arabia", "Summer of 42", all your favorites. Send for your free catalog to Columbia Pictures 8mm Films, Dept. PE, 711 Fifth Avenue, New York, New York 10022.

BUSINESS OPPORTUNITIES

I MADE $40,000.00 Year by Mailorder! Helped others make money! Free Proof. Torrey, Box 318-NY, Ypsilanti, Michigan 48197.

HOW TO MAKE $2,000 WEEKLY at home using other people's money. Guaranteed. Free Details. Richieu, Box 25357, Dept. FB, Houston 77005.

NEW LUXURY Car Without Cost! Free Details! Codex-ZZ, Box 6073, Toledo, Ohio 43614.

FREE CATALOGS, Repair air conditioning, refrigeration, tools, supplies, full instructions. Doolin, 2016 Canton, Dallas, Texas 75201.

MAILORDER MILLIONAIRE helps beginners make $500 weekly. Free report reveals secret plan! Executive (K9), 333 North Michigan, Chicago 60601.

FREE with Secret Law that smashes debts and brings you $500 to $5 Million cash. Free report! Credit 4K9, 333 North Michigan, Chicago 60601.

ATTENTION CLOCK BUILDERS

INVENTIONS WANTED

So if you have an idea for a new product or a way to make an old product better, contact us, "the idea people" We'll develop your idea into a product and negotiate for cash sale or royalty licensing. Write now without cost or obligation for free information. Fees are charged only for contracted services. So send for your FREE "Inventor's Kit"! It has important Marketing Information, a special "Invention Record Form" and a Directory of 1000 Corporations Seeking New Products.

RICHARD M. LEE ORGANIZATION 230 Park Avenue, North, New York, NY 10017
At no cost or obligation, please rush
my FREE "Inventor's Kit No. A-112" to

Name ____________________________
Address ____________________________
City____________________ State____ Zip ______________
Phone No. ____________________________ Area Code__

FREE BA'S 1978 ANNUAL CATALOG! 260 PAGE RADIO, TV, AND ELECTRONIC CATALOG

Your buying guide for everything in electronics...Stereo, Hi-Fi, TV's, Radios, Tape Recorders, CB, Kits, Books, and Electronic parts...

BURSTEIN-APPLEBEE Dept. PE-9 3199 MERCER KANSAS CITY, MO. 64111

NAME ____________________________
ADDRESS ____________________________

CITY ____________________________ STATE ______ ZIP ______________

Circle No. 34 on free Information Card SEptember 1977

The J.M.J. DIGITAL DISPLAY BEZEL FOR APPEARANCE AND PERFORMANCE!

Now you can add a truly professional appearance to your digital projects and improve their performance as well... With the J.M.J. BEZEL, it will vastly improve the readability of the display and put a finishing touch on your front panel. And that's important, for obviously, the display is the most looked-at feature on any piece of digital equipment.

$4.95 EACH
(please order by color)

Filter available in
Red • Yellow • Green • Amber

Universal Size
Handles most requirements

Dealers Inquiries invited

Attention Clock Builders

Adapters for mounting clock modules and clock displays directly to the J.M.J. BEZEL. Assures perfect alignment and simplifies mounting (Please order by Number).

$69 ea.

ADAPTER #1 (Fits the following)
National Liton Texas INST. Bowmar
MA 1001 LT 601 TL 364 Opti-Stick
MA 1002 LT 442 thru
nsb5917 LT 446 TL 372
nsb5921 LT 447
nsb5922

ADAPTER #2 (Fits the following)
National Liton
MA 1010 LT 701
MA 1012
MA 1013

ADAPTER-3 (Universal Mount!) For mounting any PC Board to the J.M.J. BEZEL (Requires two mounting holes in PC Board).

Terms: Minimum Order $4.95
Add 1$00 for postage & handling.
N.J. Residents add 5% sales tax.
Send check or M.O. - No COD's.

Patented Chromafilter® Screen
- Eliminates glare and reflections
- Improves contrast and readability
- Scratch resistant - easily cleaned
- Out-performs circular polarized types
- Available in four colors
Die Cast Metal Frame
- Non-reflective black finish
- Durable - heat resistant
- Integral 6-32 mounting studs
- No exposed hardware
- Mounts in panels up to 3/16" thick
- Includes all hardware and a special template for easy installation.

Free catalogs, repair air conditioning, refrigeration, tools, supplies, full instructions. Doolin, 2016 Canton, Dallas, Texas 75201.

Mailorder Millionaire helps beginners make $500 weekly. Free report reveals secret plan! Executive (K9), 333 North Michigan, Chicago 60601.

Get rich with secret law that smashes debts and brings you $500 to $5 million cash. Free report! Credit 4K9, 333 North Michigan, Chicago 60601.

New Luxury Car without cost! Free details! Codex-ZZ, Box 6073, Toledo, Ohio 43614.

Highly Profitable One-Man Electronic Factory
Investment unnecessary, knowledge not required, sales handled by professionals. Postcard brings facts about this unusual opportunity. Write today! Barta-Div., Box 248, Walnut Creek, CA 94597.

Free bathroom catalog...

Name ____________________________
Address ____________________________
City ____________________________ State ______ ZIP ______________
Phone No. ____________________________ Area Code__

INSTRUCTION

SCORE high on F.C.C. Exams... Over 300 questions and answers. Covers 3rd, 2nd, 1st and even Radar. Third and Second Test, $14.50, First Test Class, $18. All tests, $26.50. R.E.I., Inc., Box 806, Sarasota, Fla. 33577.

UNIVERSITY DEGREES BY MAIL! Bachelors, Masters, Ph.D.'s. Free revealing details. Counseling, Box 317-PED, Tuskin, Calif. 92680.

SELF-STUDY CB RADIO REPAIR COURSE. THERE'S MONEY TO BE MADE REPAIRING CB RADIOS. This easy-to-learn course can prepare you for a career in electronics enabling you to earn as much as $16.00 an hour in your spare time. For more information write: CB RADIO REPAIR COURSE, Dept. PED9, 531 N. Ann Arbor, Oakley, Ohio 73127.

GRANTHAM'S FCC LICENSE STUDY GUIDE — 377 pages, $14.95 with answers-discussions — covering third, first, second and even telephonic examinations. $13.45 postpaid. GSE, P.O. Box 25992, Los Angeles, California 90025.

HIGHLY EFFECTIVE Degree Program in Electronics Engineering. Advance rapidly! Our 3rd Year, free literatures. Cook's Institute, Box 2045, Jackson, Miss. 30929.

GET your Commercial FCC License. New Exams by author of successful published workbooks of FCC Practice Tests. 500 Questions Second Class, $11.95; 200 First Class, $7.95; 100 Radar, $4.95; Postpaid. Save, all three $19.95. Complete mathematical solutions. Free counseling service. Victor Velez, P.O. Box 14, La Verne, Calif. 91750.

RADIO BROADCASTING. Become a DJ-engineer, start your own station, receive free tapes-records. Learn details free. "Broadcasting" , Box 5516-A, Walnout Creek, Cal! 94506.

TAPE AND RECORDERS

RENT 4-Track open reel tapes—free brochure. Stereo Parts, P.O. Box 7, Fulton, Iowa 52628.

GOVERNMENT SURPLUS

JEPPS, TRUCKS, Typically from $52 40... Automobiles, Buses, Motorcycles, Aircraft, Oscilloscopes, Tools, Clothing, Sports, Camping, Photographic, Electronics Equipment... 200,000 Bid Bargains Nationwide Direct from Government. Low as 2 cents on Dollar Surplus Catalog and Sales Directory $1.00 (refundable). National Surplus Center, 240 Eastacass-Pel-Lolian, Illinois 60432.

PERSONALS

MAKE FRIENDS WORLDWIDE through international correspondence. Illustrated brochure free. Hermes-Verlag, Box 11066/U, D-1000 Berlin 11, Germany.

MUSICAL INSTRUMENTS

UP TO 60% DISCOUNT. Name brand instruments catalog. Freeport Music, 114 G. Mahan St., W. Babylon, N.Y. 11704

SEPTEMBER 1977

HOME ENTERTAINMENT FILMS

EVERYBODY LOVES MOVIES! Order these Alfred Hitchcock thrillers specials. "Frenzy" or "Psycho". 200 Super 8 silent $7.95 ea — Super 8-mag sound, $16.95 ea p/p (you save $2.00), Or 400 S-B color-sound "Frenzy" or "The Birds" only $45.95 ea p/p. Or "Psycho" S-B&W sound $35.95 p/p (you save $5.00 per print: incl. postage). Comedy gala Abbott & Costello "In Society" and A&G meet the "Key Stone Kops". Universal Super 8 B&B sound $35.95 ea p/p. Also Marx Brothers in "Monkey Business". Limited Offer. Reserve Right to limit quantity. Send for Columbia catalog, $0.85. Universal 8 catalog, $.75. Sportlife forms, $.35. SPORTLITE, Elect-I-6, 26 N. Wacker Dr., Chicago, IL 60606.

RUBBER STAMPS

NEW LSI TECHNOLOGY

FREQUENCY COUNTER

TAKE ADVANTAGE OF THIS NEW STATE-OF-THE-ART COUNTER FEATURING THE MANY BENEFITS OF LSI CIRCUITRY. THIS NEW TECHNOLOGY APPROACH TO INSTRUMENTATION YIELDS ENHANCED PERFORMANCE, SMALLER PHYSICAL SIZE, DRastically REDUCED POWER CONSUMPTION [PORTABLE BATTERY OPERATION IS NOW PRACTICAL], DEPENDABILITY, EASY ASSEMBLY AND REVOLUTIONARY LOWER PRICING!

FEATURES AND SPECIFICATIONS:

- DISPLAY: 6 RED-LED DIGITS + 1 CHARACTER HEIGHT
- GATE TIMES: 1 SECOND AND 1/10 SECOND
- AUTO DEC. P. PLACEMENT
- PERCENTAGE ERROR MAXIMUM: 0.005%
- FREQUENCY RANGE: 100 KHZ TO 30 MHZ / 65 MHZ TYPICAL
- SENSITIVITY: 10 MV RMS TO 50 MHZ, 20 MV RMS TO 65 MHZ TYP.
- INPUT IMPEDANCE: 1 MEGOHM AND 20 PF
- (DIGITAL PROTECTED INPUT FOR OVER VOLTAGE PROTECTION
- ACCURACY: ± 1 IPPM / ± 0.005% AFTER CALIBRATION TYPICAL
- STABILITY: WITHIN 1 IPPM PER HOUR AFTER WARM UP / ± 0.01% TYP
- IC PACKAGE COUNT: 8 (ALL SOCKETED)
- INTERNAL POWER SUPPLY, 5.0 V DC AT 600 MA.
- Power consumption: 4 WATTS
- INPUT CONNECTOR, BNC TYPE

ORDER BY PHONE OR MAIL COD ORDERS WELCOME

KIT FFC-50C	60 MHZ COUNTER WITH CABINET & P.S.	$119.95
KIT FPL-350	356 MHZ PRESCALER (NOT SHOWN)	29.95
KIT FPL-650	456 MHZ PRESCALER (NOT SHOWN)	29.95
MODEL FFC-50WT	60 MHZ COUNTER WIRED, TESTED & CAL	165.95
MODEL FFC-50/600 WT	860 MHZ COUNTER WIRED, TESTED & CAL	199.95
KIT FFC-50/S COMPLETE WITH PREDRILLED CHASSIS ALL HARDWARE AND STEP-BY-STEP INSTRUCTIONS. WIRED & TESTED UNITS ARE CALIBRATED AND GUARANTEED. PRESCALERS WILL FIT INSIDE COUNTER CABINET.		

TERMS: FOR SHIPPING, HANDLING & INSURANCE TO US & CANADA ADD 5% ALL OTHERS 10%. FLORIDA RES. ADD 4% SALES TAX. COD CHARGE $1.00.

OPODELECTRONICS, INC.

CIRCLE NO. 45 ON FREE INFORMATION CARD 137

AmericanRadioHistory.Com
HYBRID AUDIO POWER AMPLIFIERS
- Multi-purpose linear amplifiers for commercial and industrial applications designed for Hi-Fi, stereo, musical instrument, public address systems and other audio applications.
- Components have mini-computer address B output. The circuit employs flip-chip technology and utilizes high reliability power transistors with excellent load transient and overload recovery strength.

TYPICAL CONNECTIONS
- SI-10SSG with split supply

MICROPROCESSOR CRYSTALS

<table>
<thead>
<tr>
<th>FREQUENCY [MHz]</th>
<th>HOLDER</th>
<th>PART NUMBER</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>HC32</td>
<td>CY1A</td>
<td>$5.55</td>
</tr>
<tr>
<td>2.00</td>
<td>HC32</td>
<td>CY2A</td>
<td>8.75</td>
</tr>
<tr>
<td>3.00</td>
<td>HC32</td>
<td>CY3A</td>
<td>4.80</td>
</tr>
<tr>
<td>4.00</td>
<td>HC32</td>
<td>CY4A</td>
<td>4.80</td>
</tr>
<tr>
<td>4.43</td>
<td>HC32</td>
<td>CY4C</td>
<td>4.80</td>
</tr>
<tr>
<td>5.06</td>
<td>HC32</td>
<td>CY5A</td>
<td>4.80</td>
</tr>
<tr>
<td>5.173</td>
<td>HC32</td>
<td>CY5C</td>
<td>4.80</td>
</tr>
<tr>
<td>6.00</td>
<td>HC32</td>
<td>CY6A</td>
<td>4.80</td>
</tr>
<tr>
<td>10.00</td>
<td>HC32</td>
<td>CY10A</td>
<td>4.35</td>
</tr>
<tr>
<td>14.318</td>
<td>HC32</td>
<td>CY14A</td>
<td>4.35</td>
</tr>
<tr>
<td>15.00</td>
<td>HC32</td>
<td>CY15A</td>
<td>4.35</td>
</tr>
<tr>
<td>18.00</td>
<td>HC32</td>
<td>CY18A</td>
<td>4.35</td>
</tr>
<tr>
<td>20.00</td>
<td>HC32</td>
<td>CY20A</td>
<td>2.70</td>
</tr>
<tr>
<td>23.684</td>
<td>HC32</td>
<td>CY27A</td>
<td>4.35</td>
</tr>
<tr>
<td>27.00</td>
<td>HC32</td>
<td>CY27A</td>
<td>4.35</td>
</tr>
</tbody>
</table>

PRODUCTION SUPPORT CIRCUITS

VR008A	180	AMX1266C	$2.00
VR110A	180	AMX1266C	$2.00
VR111A	180	AMX1266C	$2.00
VR112A	180	AMX1266C	$2.00

DISCONNECT

- **NEW** ANCRONA DISCOUNT POLICY FOR ALL 7406 SERIES TLC's
 - **BUY 2 PER *$** 25 PER *. **DISCOUNT; 30 PER **25 PER *TLC's, 50 PER **50 PER *TLC's, 100 PER **100 PER *TLC's. **BUY 1000 7406S (or 2 T25S) FOR **100 PER **TLC's.

LINEAR ICS

LM4100	10	LM4100	$2.00
LM4120	10	LM4120	$2.00
LM4121	10	LM4121	$2.00
LM4130	10	LM4130	$2.00
LM4140	10	LM4140	$2.00
LM4150	10	LM4150	$2.00

WIRE WRAP KIT

- **$1.08**

MOC3001 CMOS ALARM CIRCUIT

- **$2.50**

SANKEN HYBRID POWER AMP

- **$5.00**

WIRE WRAP WIRE TOOL "W-30"

- **$5.95**

AREA CODE DISCOUNTS

- **CA:** .60
- **CA:** .50
- **CA:** .40
- **CA:** .30
- **CA:** .20
- **CA:** .15

MAIL ORDER ADDRESS: P.O. Box 2208, Culver City, CA 90230. Send check or money order, COD, Master Charge and BankAmericard welcomed. Minimum Order: $10.00. Add $1.00 to cover postage and handling. California residents add 6% sales tax. **TELEPHONE ORDERS:** Call (213) 641-8124. **ANCRONA STORES DO NOT ACCEPT MAIL OR TELEPHONE ORDERS.**

SEPTEMBER 1977

CIRCLE NO. 7 ON FREE INFORMATION CARD

MOTOROLA’S EDUCATOR II MICROCOMPUTER HEP KIT

- Microprosessor M6800 Technology
- Text also used to sell - normally a four page assembly
- Completely assembled with all parts, cabinet and instruction manual
- Or get the fascinating world of Micro Computers for only **$169.95**

EDUCATOR II POWER SUPPLY KIT

- 3 V dc areas
- Designed specifically for Educator II Microcomputer
- Complete Kit - all parts, cabinet and construction manual **$29.95**

NEC 1980 TRUNK BOARD

- $395.00 MICROCOMPUTER SYSTEM
- Single board microcomputer system.
- 16K computer in a single tray form.
- Powerful monitor program in factory programming.
- Easy system operation.
- CMOS RAM for backwards capability.
- Provision for audio cassette tape for expansion.
- System expandability.
- Battery operation capability.
- Inexpensive documentation.

SIGNETICS 800A EMULATOR KIT

- This $109 Emulator Kit allows you to design circuits at your desktop in the same language you prepare your final circuit board layout, includes PNP, NPN, transistor, circuit schematics, etc.

EDUCATION AND LEARNING KIT

- Includes all components, PC board and user's manual (radio and computer are separate). Use this kit to 'learn' various radio and computer skills and most important quality of this kit is it's attraction to the computer and programming machines, many problems.

$185.00

AN2900 EVALUATION AND LEARNING KIT

- An introduction to the computer and microprocessor systems.
- 4K computer in a single tray form.
- Educational version of the AN2900 Microcomputer System.
- As a support with P8 Microprocessor System.
- Computer and program running time.

$289.00

THE KIM 1 MICROCOMPUTER SYSTEM

- 8 bit computer.
- Microprocessor P8.
- System monitor.
- Operating manual.
- Educational version of the AN2900 Microcomputer System.
- As a support with P8 Microprocessor System.
- Computer and program running time.

$479.00

Consumer Electronics

- **$125**
- **$245**
- **$450**
- **$675**

Paradigm

- **$30**
- **$60**
- **$90**
- **$120**
DO-IT-YOURSELF

MODULAR TELEPHONES now display. Sets and components, compatible with Western Electric concept. Catalog 50 cents. Box 11474Y, San Diego, California 92113.

TAPE-SLIDE SYNCHRONIZER, lap-dissolve, multiprojector audiovisual plans $8.50. Free Catalog, Mailers, 18955 Maywood, South Euclidian, OH 44121.

MAKE PROFESSIONAL QUALITY PC boards with silk-screen techniques. Complete information. $4.95 postpaid. TerraTronic Research, Box 5135P, Quincy, Ill. 60160.

DIGITAL THERMOMETER $65.00

General purpose or medical 32°-230°F. Reproducible probe cover .5 accuracy. Complete assembled wacomplete case.

2.5 MHz Frequency Counter Kit

As low as 10 Hz. 6-50 digit with PC board and full instructions. $49.95

30 MHz Frequency Counter Kit

Same type CMOS counters as above plus level controls and dual FEJ inputs. Freescapable to 250 MHz with PC board and full instructions. Fully wired and tested. $56.00

Function Module Card Kit

Converts any frequency counter into 34° digital and square pulse generator from 10 Hz to 100 kHz. Complete kit minus power supply $25.60

Stopwatch Kit $25.95

Full six digit battery operated 3-5 volts. 3.2768 MHz crystal accuracy. Times to 59 minutes, 59 seconds, 99 11/100 sec. Times standard, split and Timer, 2200 chip, all components minus case. Full instructions. White or black plastic case. $5.00

Voltohm Probe

Batt. opn. AC/DC to 125 V, 2 v post, and 1 v post, plus continually. Stainless steel pocket size, comp. asst. $3.95

DIGITAL TEMPERATURE METER

Indoor and outdoor. Automaticlly switches back and forth. Beautiful, 50° LED readout. Nothing like it available. Needs no additional parts for complete full operation. Will measure -100° to +200°F. Air or liquid very accurate. Complete instructions. $36.95

DIGITAL CLOCK No. 295

Complete. Only $16.95. 3/8" dia. display. 2.5" high electronic LED. Battery Operated. As low as 10 Hz. 6-50 digit with PC board and full instructions. $49.95.

HOME ARMOR KIT $18.75

Designed for use with electronic siren module. AC power, battery backup, entry delay exit delay. Instant alarm for right use. NOC circuits. Test and arm indicators. 2 amp switching capability. All parts with complete instructions minus power supply. Electronic siren module kit. $2.75.

Variable Power Supply Kit

6-12 VDC @ 6A bench supply. Less than 1% noise, load regulation. Remote sense capability. Constant voltage/output limit. Can be modified for other voltages. Complete with board and transformers. $19.95

COSMAC ELK KIT

RCA CMOS expandable Microcomputer. New PC board with monitor on PROM included. No hard wiring required. All on board including power supply. Complete of parts with new assembly manual. $109.95

AUTO CLOCK KIT $15.95

DC clock with 4-50 display. Uses National ICs M4010 module with alarm circuit. Copy Crystal time base PC boards and full instruction. $5.95 for a beautiful gray case ready to install. This is the best value available anywhere!

WANTED

MAGNETS

MAGNETS. All types, Specials-20 disc. or 16 bar, or 2 stick or 8 assorted magnets. $1.00. Magnets, Box 192-41 Randallstown, Md. 21133.

DO-IT-YOURSELF

MODULAR TELEPHONES now display. Sets and components, compatible with Western Electric concept. Catalog 50 cents. Box 11474Y, San Diego, California 92113.

TAPE-SLIDE SYNCHRONIZER, lap-dissolve, multiprojector audiovisual plans $8.50. Free Catalog, Mailers, 18955 Maywood, South Euclid, OH 44121.

MAKE PROFESSIONAL QUALITY PC boards with silk-screen techniques. Complete information. $4.95 postpaid. TerraTronic Research, Box 5135P, Quincy, Ill. 60160.

DIGITAL THERMOMETER $65.00

General purpose or medical 32°-230°F. Reproducible probe cover .5 accuracy. Complete assembled wacomplete case.

2.5 MHz Frequency Counter Kit

As low as 10 Hz. 6-50 digit with PC board and full instructions. $49.95

30 MHz Frequency Counter Kit

Same type CMOS counters as above plus level controls and dual FEJ inputs. Freescapable to 250 MHz with PC board and full instructions. Fully wired and tested. $56.00

Function Module Card Kit

Converts any frequency counter into 34° digital and square pulse generator from 10 Hz to 100 kHz. Complete kit minus power supply $25.60

Stopwatch Kit $25.95

Full six digit battery operated 3-5 volts. 3.2768 MHz crystal accuracy. Times to 59 minutes, 59 seconds, 99 11/100 sec. Times standard, split and Timer, 2200 chip, all components minus case. Full instructions. White or black plastic case. $5.00

Voltohm Probe

Batt. opn. AC/DC to 125 V, 2 v post, and 1 v post, plus continually. Stainless steel pocket size, comp. asst. $3.95

DIGITAL TEMPERATURE METER

Indoor and outdoor. Automatically switches back and forth. Beautiful, 50° LED readout. Nothing like it available. Needs no additional parts for complete full operation. Will measure -100° to +200°F. Air or liquid very accurate. Complete instructions. $36.95

DIGITAL CLOCK No. 295

Complete. Only $16.95. 3/8" dia. display. 2.5" high electronic LED. Battery Operated. As low as 10 Hz. 6-50 digit with PC board and full instructions. $49.95.

HOME ARMOR KIT $18.75

Designed for use with electronic siren module. AC power, battery backup, entry delay exit delay. Instant alarm for right use. NOC circuits. Test and arm indicators. 2 amp switching capability. All parts with complete instructions minus power supply. Electronic siren module kit. $2.75.

Variable Power Supply Kit

6-12 VDC @ 6A bench supply. Less than 1% noise, load regulation. Remote sense capability. Constant voltage/output limit. Can be modified for other voltages. Complete with board and transformers. $19.95

COSMAC ELK KIT

RCA CMOS expandable Microcomputer. New PC board with monitor on PROM included. No hard wiring required. All on board including power supply. Complete of parts with new assembly manual. $109.95

AUTO CLOCK KIT $15.95

DC clock with 4-50 display. Uses National ICs M4010 module with alarm circuit. Copy Crystal time base PC boards and full instruction. $5.95 for a beautiful gray case ready to install. This is the best value available anywhere!
NEW
WIDE FIELD TELESCOPE

Astroscan lets you enjoy clear, bright, wide-angle views of stars, moon, comets, etc. Completely portable, this unique 4½", f/4 Newtonian reflector houses top quality optics. Designed for ease of handling and use, Astrosan weighs only 10 lbs. and stands 17" high. What an instrument!

No. 2001 Pd. $149.95

PROFESSIONAL
TIMING ACCURACY

Hand-held electronic digital stopwatch counts up, down, and sounds alarm. Full range 19 hr. 50 min. 59 sec.; bright LED display. Matrix keypad, start/stop reset buttons. Batteries. Size: 2½ x 4½ x 1½"

No. 1692 Pd. $59.95

FREE CATALOG

SEND GIANT 164 Page Catalog packed with over 4,000 unusual bargains.

EDMUND SCIENTIFIC CO.
Dept. AV18, Edscorp Bldg.
Barrington, New Jersey 08007

Send GIANT 164 Page Catalog packed with over 4,000 unusual bargains.

Name
Address
City State Zip

30 DAY GUARANTEE
You must be completely satisfied with any Edmund item or return it within 30 days for a full refund.

Charge My [] Amer. Exp. [] BAC [] MC
Interbank # [] Acct. #
Card # [] Exp. Date
Sig.

CIRCLE NO. 21 ON FREE INFORMATION CARD

EDMUND SCIENTIFIC CO.
Dept. AV17, Edscorp Bldg.
Barrington, N.J. 08007

[] Please send me the following items I have indicated below:

<table>
<thead>
<tr>
<th>Stock No.</th>
<th>Qty</th>
<th>Price</th>
</tr>
</thead>
</table>

Handling $1.00

SILENT 8 RECORDERS

Complete silent 8 recorders at prices you can't beat! For full details write Edscorp Bldg., Barrington, N.J. 08007

[] Silent 8 Recorder...

$19.95 Pd.

NO-FEE 250-hour REPROGRAMMABLE 4-SIDED "MUSIC" TONE-TO-TEXT "MUSIC" REWRITABLE TAPE

Let's all enjoy music! Write now for Edscorp Bldg., Barrington, N.J. 08007

[] 250-hour Rewritable Tape...

$19.95 Pd.

FREE CATALOG

SEND FREE CATALOG for information on over 4,000 unusual bargains. Write today.

EDMUND SCIENTIFIC CO.
Dept. AV18, Edscorp Bldg.
Barrington, New Jersey 08007

FREE CATALOG

Send for your FREE 164 page Edmund Scientific Catalog with over 4500 bargains

FREE CATALOG

Name
Address
City State Zip
The source of perfection in stereo sound...
Pickering's new XSV/3000

The reviewers applaud as never before!

"...we don't see how you can do better at any price."

"The new unit offers the stereo performance of the XUV/4500Q (or perhaps a little better than that) at a lower price. It seems hard to go wrong with such a combination."
CBS Technology Center. High Fidelity. February 1977

"Congratulations to all concerned on a fine contender amongst the world's best stereo pick-ups."
John Borwick. Gramophone. United Kingdom 1977

Pickering's new XSV/3000 is a remarkable development. It possesses a totally new and different design that makes it the precursor of a whole new generation of sophisticated, advanced stereo cartridges.

This has been made possible by technological advances in two areas. First, it has an unusually tiny, samarium cobalt (rare earth) magnet of remarkably high power that permits extremely low mass, and also offers high output. Second, this cartridge features the new Stereoedron™ stylus tip, a Pickering first! This extraordinary shape has a far larger bearing radius, which provides increased contact area in the record groove. This assures gentler treatment of the record groove, longer record life, and also, far longer stylus life.

This cartridge provides remarkably smooth and flat frequency response; its channel separation is exceptional, its transient response possesses superb definition.

Truly, Pickering's XSV/3000 represents a whole new concept of excellence in stereo cartridges... the true Source of perfection in stereo sound.

For further information write to
Pickering & Co., Inc. Dept. PE
101 Sunnyside Blvd., Plainview,
New York 11803

CIRCLE NO. 48 ON FREE INFORMATION CARD

PICKERING & CO., INC. COPYRIGHT 1977
"for those who can hear the difference"
There are millions out there with their ears on waiting to talk to you Pace to Pace. And with a Pace CB two-way radio you’ve got every bit of power the law allows. And features to cut through interference and "bleeders" from other channels. What’s more, it’s assembled with computerized circuitry and it’s 100% solid state, so it’s as trouble-free as a CB can be. It all adds up to your voice getting out there clearer and with less distortion, and the other guy’s voice coming back just as clear.

To learn more, drop into a Pace place near you. The dealer will tell you just how economical and easy-to-install a Pace is. He’ll help you choose the one that’s just right for you, too. Ask him for the world by the ears. He’ll know which CB you’re talking about.

PACE CB/PACE TWO-WAY RADIO PRODUCTS
BY PATHCOM INC., HARBOR CITY, CA 90710