Build the Audio "Detective"
MEASURES PHONO CARTRIDGE AND MIKE OUTPUTS

How to Improve Equipment Grounds

Severe-Weather Alert Project
ACTIVATES EMERGENCY WEATHER BROADCASTS

TV Table Tennis II
ADDS SCORING & SOUND

Test Reports
STAX SR-5 ELECTRO-STATIC HEADPHONES
EPICURE MODEL 4 STEREO PREAMPLIFIER
KRIS VICTOR II MOBILE

Here Are The NEW PROGRAMMABLE CALCULATORS!

- SHOPPER'S GUIDE
- HOW THEY WORK
- SAMPLE PROGRAMS
- A KIT YOU CAN BUILD
Experience is the best teacher. You might settle for any CB first time around. Understandably. A lot of people think they're all pretty much alike. But you'll soon discover that, like everything else, there are exceptions.

Ask the pros. America's long distance truckers. These guys talk CB day in and day out. And they demand the best. That's why truckers refer to the Cobra 29 as "The Diesel Mobile."

Listen to Cobra. You'll hear a big difference. Because the Cobra 29 gives you features which assure crystal clear reception. Like switchable noise limiting and blanking, to cut out practically all pulse and ignition interference. Add squelch control and RF gain and you've got exceptional—adjustable—receiver clarity. Even in the heaviest CB traffic. You also get Delta Tuning which makes up for the other guy, because even off-frequency transmitters are pulled in. Perfectly.

Talk to Cobra. And you know you're punching through. One glance at the Cobra 29's over-sized illuminated meter tells you just how much power you're punching out and pulling in. For voice modulation the DynaMike delivers at 100%. Same way with power: The 29 transmits at maximum power levels.

Sooner or later you'll get a Cobra. And you'll get engineering and craftsmanship second to none. Performance that will make your first CB seem obsolete. Reliability and durability that have set standards for the industry. Above all, you'll get power. The power to punch through loud and clear like nothing else. Because when it comes to CB radio, nothing punches through loud and clear like a Cobra.

Cobra
Punches through loud and clear.
Cobra Communications, Products of Dynascan Corp.
1801 W. Belle Plaine, Chicago, Illinois 60613

IF YOUR FIRST CB ISN'T A COBRA YOUR SECOND ONE WILL BE.
AN INTRODUCTION TO STEREO.

At Yamaha, we feel uniquely qualified to introduce you to the joys of true stereo high fidelity sound.

Since 1887, Yamaha has been making some of the finest musical instruments in the world. Pianos, organs, guitars, woodwinds, and brass.

With our musical instruments, we've defined the standard in the production of fine sound. And today, with our line of state-of-the-art stereo components, we're defining the standard of its reproduction.

However, at one time, owning a Yamaha stereo system tended to be a rather expensive proposition. Our "ultimate" system, for example, hailed by the critics for such innovations as Vertical-FET circuitry and beryllium dome speakers, carries a suggested retail price of over $7,000.

But now, Yamaha introduces a selection of new stereo components that let you own a Yamaha audio dealer create a high quality system for a suggested retail price of around $700.

What you're getting is the same performance and design concept of our most expensive system, but without the frills. Also, each component has been specially selected and matched to enhance the performance of the other components.

The Receiver: There's a lot more than power to our new CR-450 stereo receiver.

You'll enjoy brilliant tonality resulting from superb low distortion—0.1% intermodulation and total harmonic distortion. (These figures are amazing, considering most other competitive receivers are typically .5% to 1.0%)

In addition, Yamaha offers a full complement of functional features on the CR-450. Twin meters for precise tuning. High and Low Filters to eliminate noise interference. And two headphone jacks, so you don't have to listen alone. Plus our own exclusive Variable Loudness Control, which gives you full tonal balance—even at low volume levels.

The Turntable: Yamaha's new high-performance YP-450 shares many of the features of our "ultimate" system turntable, the YP-800.

A low mass tonearm, with adjustable height and anti-skating, allows the stylus to track flawlessly at the lightest pressure. And the cue control is viscous damped in both directions to prevent record damage.

A handsome walnut-grained base and a dust cover are standard.

The Speakers: By the careful refinement of proven acoustic and electronic engineering principles, Yamaha's NS-2 rivals the sound quality of many larger, more expensive speakers.

The NS-2's soft dome tweeter and high compliance, foam surrounded woofer (the same design principles featured in our superlative NS-690 speaker) offer excellent high frequency dispersion as well as clean, accurate bass reproduction.

Underneath the NS-2's removable grille cloth, quality construction is evident in the fully finished front cabinet.

The Headphones: Yamaha's patented new Orthodynamic design HP-2 combines the smooth highs of the best electrostatic headphones with the full, rich bass of the best dynamic types.

The HP-2's comfortable, featherlight styling (by Italian designer Mario Bellini) is now on display in the New York Museum of Modern Art.

An Introduction to Stereo. Chances are, when it comes to understanding terms like watts, dB's and signal-to-noise ratios, you're probably a little confused. So we've prepared a booklet that explains the basics of the world of sound. Appropriately enough, it's titled "An Introduction to Stereo."

To get your free copy, just send us the coupon.

Then, once you know the basics, visit your local Yamaha audio dealer. His knowledgeable salesmen and extensive demonstration facilities can save you a great deal of time and money in helping you select a system. And his first-class service will keep you happy.

So talk to your Yamaha audio dealer. His experience and your ears make the perfect introduction to stereo.
Laser Beam Digital Watch

Never press another button, day or night, with America's first digital watch that glows in the dark.

It's ingenious, it's simple and it makes every other digital watch obsolete. Scientists have perfected a digital watch with a self-contained automatic light source—a major scientific breakthrough.

SELF-CONTAINED LIGHT SOURCE

The Laser 220 uses laser beams and advanced display technology in its manufacture. A glass ampoule charged with tritium and phosphor is hermetically sealed by a laser beam. The ampoule is then placed behind the new Sensor CDR (crystal diffusion reflection) display.

The high-contrast CDR display shows the time constantly—in sunlight or normal room light. But, when the room lights dim, the self-contained tritium light source automatically compensates for the absence of light, glows brightly, and illuminates the display.

No matter when you wear your watch—day or night—just a glance will give you the correct time. There's no button to press, no special viewing angle required, and, most important, you don't need two hands to read the time.

Replace the battery yourself by just opening the battery compartment with a penny. Free batteries are provided whenever you need them during the five-year warranty.

WORRY-FREE WATCH

Solid-state watches pose their own problems. They're fragile, they must be pampered, and they require frequent service. Not the Laser 220. Here are just five common solid-state watch problems you can forget about with this advanced space-age timepiece:

1. Forget about batteries The Laser 220 is powered by a single EverReady battery that will actually last years without replace-ment—even if you keep the 220 in complete darkness. In fact, JS&A will supply you with the few batteries you need, free of charge, during the next five years. To change the battery, you simply unscrew the battery compartment at the back with a penny and replace the battery yourself.

2. Forget about water Take a shower or go swimming. The Laser 220 is so water-resistant that it withstands depths of up to 100 feet.

3. Forget about shocks A three-foot drop onto a solid hardwood floor or a sudden jar. Sensor's solid case construction, dual-strata crystal, and cushioned quartz timing circuit make it one of the most rugged solid-state quartz watches ever produced.

4. Forget about service The Laser 220 has an unprecedented five-year parts and labor warranty. Each watch goes through weeks of aging, testing and quality control before assembly and final inspection. Service should never be required. Even the laser-sealed light source should last more than 25 years with normal use. But if it should require service during the five-year warranty period, we will pick up your Sensor, at your door, and send you a loaner watch while yours is repaired—all at our expense.

5. Forget about changing technology The Sensor Laser 220 is so far ahead of every other watch in durability and technology that the watch you buy today, will still be years ahead of all others.

THE ULTIMATE ACHIEVEMENT

Other manufacturers have devised unique ways to produce a watch you can read at a glance. The new $300 LED Pulsar requires a snap of the wrist to turn on the display, but the Pulsar cannot be read in sunlight. The new $400 Longine's Gemini combines both an LED and liquid crystal display. (Press a button at night for the LED display, and view it easily in sunlight with the liquid crystal display.) But you must still press a button to read the time. All these applications of existing technology still fail to produce the ultimate digital watch: one you can read under all light conditions without using two hands. Until the introduction of the Sensor.

PLENTY OF ADVANCED FUNCTIONS

Sensor's five time functions give you everything you really need in a solid-state watch. Your watch displays the hours and minutes constantly, with no button to press. But depress the function button and the month and the date appear. Depress the button again and the seconds appear. To quickly set the time, insert a ball-point pen into the recessed time-control switch on the side. It's just that easy.

Sensor's accuracy is unparalleled. All solid-state digital use a quartz crystal. So does the Sensor. But crystals change frequency from aging and shock. And to reset them, the watch case must be opened and an air tight seal broken which may affect the performance. In the Sensor, the crystal is first aged before it is installed, and secondly, it is actually cushioned in the case to absorb tremendous shock. The quartz crystal can also be adjusted through the battery compart-

ment without opening the case. In short, your watch should be accurate to within 5 seconds per month and maintain that accuracy for years without adjustment and without ever opening the watch case.

STANDING BEHIND A PRODUCT

JS&A is America's largest single source of digital watches and other space-age products. We have selected the Sensor Laser 220 as the most advanced American-made, solid-state piece at ever produced. And we put our company and its full resources behind that selection. JS&A will warranty the Sensor (even the batteries) for five full years. We'll even send you a loaner watch to use while your watch is being repaired should it ever require repair. And Sensor's advanced technology guarantees that your digital watch will be years ahead of any other watch at any price.

Wear the Laser 220 for one full month. If you are not convinced that it is the most rugged, precise, dependable and the finest quality solid-state digital watch in the world, return it for a prompt and courteous refund. We're just that proud of it.

To order your Sensor, credit card buyers may simply call our toll-free number below or mail us a check in the amount indicated below plus $2.50 for postage, insurance and handling. (Illinois residents add 5% sales tax.) We urge you, however, to act promptly and reserve your Laser 220 today.

Stainless steel w/leather strap $129.95
Gold plated w/leather strap $149.95

The new exclusive laser-sealed tritium and phosphor light source is a thin solid-state tube that automatically illuminates the display when the lights dim.

CIRCLE NO. 34 ON FREE INFORMATION CARDS

Would you do this with your solid-state watch? Of course not. Most solid-state watches require care and pampering but not the Sensor. You can dunk it, drop it and abuse it without fear during its unprecedented five-year parts and labor warranty.

AmericanRadioHistory.Com
MAY 1976 VOLUME 9, NUMBER 5

FEATURE ARTICLES
HERE ARE THE NEW PROGRAMMABLE CALCULATORS! Forrest M. Mims 29
Shopper's guide; how they work; and sample programs.
COLLECTING SHORTWAVE FOLK MUSIC .. C. M. Stanbury 39
ELECTRICAL GROUNDS FOR ELECTRONIC EQUIPMENT Hector French 47
Performance of high-frequency equipment depends on good ground techniques.
A NEW AUDIO "ROOM EXPANDER" .. Leslie Solomon 55
Digital Time Delay System produces controllable reverb.

CONSTRUCTION ARTICLES
A SCIENTIFIC PROGRAMMABLE CALCULATOR Martin Meyer 36
BUILD THE AUDIO DETECTIVE ... Ralph Tenny 41
Sensitive instrument for troubleshooting audio circuits.
SEVERE WEATHER WARNING ALERTER ... Robert W. Lloyd 44
Sounds the alarm when a weather alert is broadcast.
A SIMPLE LOGIC PROBE ... Robert Lefferts 60
ADD SCORING AND SOUND EFFECTS TO PONGTRONICS Mitchell Waite & Larry Brown 61
A "JUNK-BOX" 5-VOLT POWER SUPPLY .. R. C. Foss 66

COLUMNS
STEREO SCENE .. Ralph Hodges 18
The World of Sound Contracting.
HOBBY SCENE Q & A ... John McVeigh 26
SOLID STATE .. Lou Garner 78
A Universal Light Emitting Diode. Frequency Measurements.
DX LISTENING .. Glenn Hauser 82
CB SCENE .. Ray Newhall 92
CB for Pleasure Craft.
AMATEUR RADIO ... Herbert S. Brier 94
Emergency Communications and the Amateur.
COMPUTER BITS .. Jerry Ogdin 97
Games for Learning.
EXPERIMENTER'S CORNER .. Forrest M. Mims 101
Pulse Modulation and Phase-Locked Loops

PRODUCT TEST REPORTS
STAX MODEL SR-5 ELECTROSTATIC HEADPHONES 73
EPICURE MODEL FOUR PREAMPLIFIER 74
KRIS VICTOR II AM MOBILE CB TRANSCEIVER 76
B&K PRECISION MODEL 280 DMM ... 77

DEPARTMENTS
EDITORIAL .. Art Salsberg 4
Project Kit Suppliers.
LETTERS .. 6
OUT OF TUNE .. 6
"Build 'Pennywhistle' the Hobbyist's Modem" "How Multiplexed LED Displays Simplify Circuits" "An LED-Readout Audio Power Meter"
NEW PRODUCTS .. 12
NEW LITERATURE .. 16
NEWS HIGHLIGHTS .. 24
ELECTRONICS LIBRARY .. 96
OPERATION ASSIST .. 100

POPULAR ELECTRONICS, May 1976, Volume 9, Number 5. Published monthly at One Park Avenue, New York, NY 10016. One year subscription rate for U.S. $6.98; U.S. Possessions and Canada, $7.98; all other countries, $8.98. Second Class postage paid at New York, NY and at additional mailing offices. Authorized as second class mail by the Post Office Department, Ottawa, Canada and for payment of postage in cash. Subscription service and Forms 3579; P.O. Box 2774, Boulder, CO 80302. POPULAR ELECTRONICS including ELECTRONICS WORLD: Trade Mark Registered, indexed in the Reader's Guide to Periodical Literature. COPYRIGHT © 1976 BY ZIFF-DAVIS PUBLISHING COMPANY. ALL RIGHTS RESERVED.
Ziff-Davis also publishes Boating, Car and Driver, Cycle, Flying, Modern Bride, Popular Photography, Skiing and Stereo Review.

MAY 1976
PROJECT KIT SUPPLIERS

When we publish articles about projects that the reader can build for himself, we often include (in the Parts List) a source from which complete kits or certain important items can be purchased. This is done for the convenience of readers who wish to be able to: (a) make a "one-stop" purchase of parts, (b) obtain devices not easily available, or (c) have a source for the completed printed circuit board.

The supplier of these items may be the experimenter who designed the project and hopes to add a few dollars to the article payment by selling parts out of his garage. On the other hand, he may be a professional whose business is selling electronic kits. Often, an experimenter/author will have a professional package the kit, garnering royalties on any sales. POPULAR ELECTRONICS, of course, does not participate in these sales. However, our editors often arrange for an experimenter/author and a kit supplier to get together, in which case, we act as unpaid go-betweens.

As it happens, the integrity of kit suppliers and the quality of material supplied vary. Some suppliers have provided poor delivery, others deliver with dispatch. Some issue magnificent assembly instructions, others simply throw the parts into a brown paper bag. Most, of course, are somewhere between these extremes. We try to handle things so that as high a level of supplier performance is maintained as is possible.

Since the mail-order business is now subject to some new Federal regulations, communications between seller and buyer should be good from here on. After all, sellers are liable for as much as $10,000 for each day of noncompliance with delivery, according to FTC rules.

Project kit/parts suppliers are carefully told of our requirements. In addition to the FTC's 30-day maximum shipment time (or notice of delay and option to cancel), they must make the kits available to readers for a minimum period of three months from the cover date of the issue in which it appeared, and hold their price for a minimum of 30 days.

One frustrated reader recently complained that he requested a free pc foil pattern last month from a kit supplier, and was told that the patterns were no longer available. Well, the project was published more than a year ago, so we don't believe the supplier was being unreasonable in dropping the free patterns.

If the rules are broken, however, without a valid reason, we will no longer utilize the person or company as a supplier of project kits. But please, readers, we cannot become involved in wrong-part hassles and the like. There are always some understandable fowlups. So one has to be reasonable, allowing for human error, work overload, etc.

Art Salsberg
This scanner doesn't have channel crystals. It has a brain.

The amazing Tennelec MS-2 Memoryscan.

The MS-2 Saves You Money. The control center of this scanner is a digital brain that eliminates the need for channel crystals—ever. When you think of the thousands of authorized channels, each requiring the purchase of a channel crystal (which cost up to $5.00 each), you can visualize the money-saving potential of the MS-2.

Sophisticated Yet Easy To Operate. Truly a product of advanced technology, the MS-2 is highly sophisticated, yet amazingly easy to operate. Using a simple codebook and two front panel buttons, you can program any of the 4,000 low, high and UHF frequencies you want to hear. The MS-2's panel lights provide exclusive visual verification of your selections. The super-selective filter provides crisp, clear reception. And the MS-2 is ready for the future, with a capability of receiving some 16,000 channels.

Take It With You. The MS-2 is mobile. It can go where you go. Simply add the optional bracket and mount it in your car. Your boat. Or keep it with you at home or office.

It's The Best-Seller In Crystal-less Scanners. The Scanner with the digital brain. The amazing Tennelec MS-2.

$339.95

Write Today For Complete Information, Free Literature, and the Name of Your Nearest Dealer.*

☐ Send me full information on the MS-2. Tell me where I can buy it.

Name __

Address __

City____________________State________Zip________

*Tennelec Inc., Commercial Products Div.

601 Turnpike, Oak Ridge, TN 37830

May 1976
MORE ON CB "BUZZ" WORDS

The article on CB "Buzz" words (January 1976) was great. The only thing I would like to pass on is that many truckers are now using channel 19. Their main reason for the change from channel 10 is to avoid interference with emergency channel 9. Donald Pogoda, Lebanon, PA.

A NEW PUBLIC SERVICE BAND?

Do you have any information about the receivers, frequencies, etc., for the Physicians Radio Network? It sounds like an interesting channel to monitor.—Ken Greenberg, Skokie, IL.

It is a confidential radio channel available only to physicians, not the general public.

A BUG IN DEBUGGING SOFTWARE

We found the "Computer Bits" column for September 1975 very interesting, but we found two errors during the course of debugging the software. One possible correction for these errors is:
1. Starting at label WRBST:
 WRBST: MOV B, A (missing)
 CALL WRTIM
 JZ WRFIN
 CALL WRTIM
 JNZ WRBST+1
 (wrong location)

2. Starting at label RDSYN:
 RDSYN: CALL RDCHA
 MOV A, C
 CPI XXSYN
 JZ RDSYN (wrong instruction)
 CALL RDCHA*
 MOV A, C*
 CPI XSTX

With these corrections, the code seems to execute correctly. The instructions marked with an asterisk (*) are superfluous.—John M. Harrison, Northeast Electronics, Concord, NH.

WHERE CAN I BUY ...?

In the November 1975 "Computer Bits" column, Jerry Ogden mentioned the availability of the new 6501 MPU by MOS Technology. I've checked all over for a vendor that handles this chip but had no success in locating one.—Charles Greenwood, Dunedin, FL.

The 6501 is marketed directly by MOS Technology, Inc. (950 Rittenhouse Rd., Norristown, PA 19401) for $20. (You might also be interested in the 6502, which sells for $25.) Descriptive literature is available on request to MOS. Also, for $5 each, you can get the hardware and software manuals that go with these chips.

HELP FOR CANADIAN READERS

The unavailability of many of the newer integrated circuits and components here in Canada is an ongoing problem. I have been fortunate, however, to find a Canadian supplier that has most of the latest devices. The supplier is R.W. McKay, RR#1, Site 21, Box 6, Creston, B.C. V0B 1G0.—A Johnston, Invermere, B.C.

RADIO ASTRONOMY REVISITED

As an amateur astronomer with an interest in radio astronomy, I enjoyed "An Introduction to Radio Astronomy" in the January 1976 issue. I might add that besides being used for noise detection from extraterrestrial objects, the receiver system described can also be used for the detection of meteors entering the earth's atmosphere. Meteors entering the atmosphere burn up and disintegrate, and, as they do, ionize the air around them. It is this ionization that can be detected.—A. Brooks, Ottawa, Ontario, Canada.

In the radio astronomy story in the January 1976 issue, the plans in Fig. 2 seem to indicate that the antenna's overall length is in excess of 30'. Is this correct?—Doug Samuels, Concord, MO.

At 110 MHz, the antenna would be some 31.1' (9.48m) long, as indicated.

MAIL-ORDER HOUSE VS THE FTC

I read with interest the February 1976 "Editorial" titled "Good News for Mail-Order Buyers." I think it's about time the Federal Trade Commission (FTC) put teeth into any and all mail-order regulations.—L.A. McPharlin, South Bend, IN.

Out of Tune

In "Build 'Pennywhistle,' The Hobbyist's Modem," (March 1976) the test frequency given at the center of column 2, page 47, should be 2125 Hz instead of 1170 Hz. The author informs us that the schematic he is supplying shows R80 as 680 kilohms and it should be 6.8 kilohms.

In "How Multiplexed LED Displays Simplify Circuits" (March 1976, p 62), IC2 should be a 74145 (not 74175) and IC2 should be a 7448 (not 7447).

In "An LED-Readout Audio Power Meter" (March 1976, p 35), diodes D1-D4 are shown in Fig. 2 with their polarities reversed. They should also be numbered D3, D1, D2, D4 starting from the top. The polarity of C1 is also shown reversed.

POPULAR ELECTRONICS
To SBE

technology

is not just another word

SBE brings computer-age technology to two-way radio communications in developing the newest, the most advanced, the most exciting personal communications equipment available today.

FORMULA D, for example, is SBE's sophisticated new 23-channel citizens band mobile AM two-way radio. With a single crystal, it offers advanced digital techniques, combined with phase-lock-loop (PLL) circuitry, to synthesize frequencies covering all 23 transmit and receive channels. Tolerances are closer. Stability is better. And performance exceeds the best that crystal-controlled two-way radio could ever provide.

FORMULA D is but the first of a whole new generation of sophisticated, digitally-synthesized personal communications equipment being developed by SBE to keep you ahead in the exciting new advances planned for citizens band communications.

The same creative approach to technology as exemplified by FORMULA D is reflected in other SBE products—a full line of communications equipment that includes citizens band, land mobile, marine and special application.

Discover how you can benefit from SBE's advanced technology.

SBE Better Communications through Creative Technology

For information write: SBE, Inc., 220 Airport Blvd., Watsonville, CA 95076
Almost half of the successful TV servicemen have home study training and with them, it's NRI 2 to 1. It's a fact! Among men actually making their living repairing TV and audio equipment, more have taken training from NRI than any other home study school. More than twice as many!
A national survey*, performed by an independent research organization, showed that the pros named NRI most often as a recommended school and as the first choice by far among those who had taken home study courses from any school. Why? Perhaps NRI's 60-year record with over a million students . . . the solid training and value built into every NRI course . . . and the designed-for-learning equipment originated by NRI provide the answer. But send for your free NRI catalog and decide for yourself.

25" Diagonal Color TV... And 4-channel Quadraphonic Stereo.
As a part of NRI's Master Course in color TV/Audio servicing, you build a 25" diagonal solid state color TV with console cabinet. As you build it, you perform stage-by-stage experiments designed to give you actual bench experience. And you get a Quadraphonic system with 4 speakers. NRI's instruments are a cut above the average, including a transistorized volt ohmmeter, triggered sweep 5" oscilloscope, CMOS digital frequency counter and digital integrated circuit color TV pattern generator. They're top professional quality, designed to give you years of reliable service. You can pay hundreds of dollars more for a similar course and not get a nickel's worth extra in training and equipment.

Widest Choice of Courses and Careers.
NRI doesn't stop with just one course in TV/Audio servicing. You can pick from five different courses (including an advanced color course for practicing technicians) so you can fit your training to your needs and your budget. Or, you can go into Computer Technology, learning on a real, digital computer you build yourself. Communications with your own 500 channel digitally-synthesized VHF transceiver. Aircraft or Marine Electronics. Mobile radio, and more.

Free Catalog... No Salesman Will Call.
Send the postage-paid card for our free color catalog showing details on all NRI electronics courses. Lesson plans, equipment, and career opportunities are fully described. Check card for information on G.I. benefits. No obligation, no salesman will call. Mail today and see for yourself why the pros select NRI two to one!

If card is missing, write,

*NRI SCHOOLS
McGraw-Hill Continuing Education Center
3939 Wisconsin Avenue, Washington, D.C. 20016

MAY 1976
MK II with elliptical stylus for stereo play. Each of these induced-magnet cartridges feature the company's patented construction which is said to permit reduction of mass in the moving system, thus allowing the stylus tip to track the record groove with minimum force (as low as 0.75 g). Prices: $125.00, $100.00, and $75.00, respectively.

KENWOOD PROFESSIONAL PREAMPLIFIER
The Model 700C preamp from Kenwood is designed with a variety of control and switching functions. It is said to handle a dynamic range in excess of 85 dB, referred to its nominal 1-volt output level and has low residual noise (50 µV). Phono cartridge input impedance is selectable (600, 30,000, or 50,000 ohms). Selectable low- and high-frequency filtering, audio muting, and a two-step loudness control are also included. A special "tape-through" circuit allows tape-to-tape dubbing to proceed while the system is simultaneously used to play any other program source.

New Hardware for Learning Digital Electronics

Now there's a new hardware system for teaching yourself digital electronics. It's designed to complement our top selling Bugbook I & II. Bugbooks cover everything from simple gates to shift registers. And now we're offering all of the hardware you'll need to complete the experiments.

You'll get all required "outboards" in kit form, including the power, logic, switch, seven segment readout, clock, LED lamp monitor, and dual pulser outboards. A jumper package and starting IC package. And the E&L SK-50 solderless breadboarding socket. All for only $67.50. If you need Bugbooks I & II, they're an additional $16.95 for the set. All postage and shipping is prepaid anywhere in the continental U.S. Send your check or money order today.

CIRCUIT DESIGN, INC.
Division of E&L Instruments
P.O. Box 24
Shelton, Conn. 06484

Please send me your new hardware package (#IS-4K) learning digital electronics. My $67.50 is enclosed.

Please send me Bugbooks I & II (#IS-SW), $16.95 is enclosed for them.

Name ____________________________
Address ____________________________
City __________________ State ______ Zip ______

Please enclose check or money order. Shipments will be prepaid.

CIRCUIT NO. 93 ON FREE INFORMATION CARD

PAPER-TAPE-READER KIT
A low-cost paper-tape reader (OP-80A), made by Oliver Audio Engineering, reads punched tape as it is pulled through by hand at speeds up to 5000 characters per second. It includes a precision optical sensor array, high-speed data buffers, and required logic; and it will interface with an 8-bit µP I/O port. It can also be connected across a UART to load programs through a TTY port. The OP-80A is said to be able to load 12K extended basic in 30 seconds. Price is $74.50 for the kit, $95.00 assembled.

ROYCE THREE-PIECE CB TRANSCEIVER
The Royce Model 1580 Mod-U-Lar mobile AM CB transceiver consists of a three-piece "system" that includes microphone/channel selector, separate control unit, and remote power pack/electronics package. The mike has Royce's Chan-L-Matic channel selector/reader that allows a driver to change channels without taking his eyes off the road. Not much larger than a king-size pack of cigarettes, the control unit contains the volume and tone controls, PA/CB and hi/lo tone switches, S/f-t meter, and loudspeaker. It connects to the remote power pack (which also contains the rest of the circuitry) via a 9' (3 m) or optional 18' (6 m) cable. Placing the control and power pack units in different locations in a car can serve as a theft deterrent.
Introducing Mocat—The CB radio backed by Motorola's 40 years experience in professional radio communications. Great looks. Great performance. Everything you'd expect from a radio built by Motorola. Yet it comes at a very affordable price.

Designed and engineered in the USA, Mocat is a 100% solid-state Motorola CB radio with the very latest in technological advances, and exciting features.

Motorola CB means reliability. A digital phase lock loop synthesizer assures on-frequency performance on all channels.

Motorola CB means power. All models feature a rugged plug-in mike with built-in amplifier for maximum transmit signal strength.

Motorola CB means good looks. Contemporary styling across the line. Selected models offer easy channel identification with high-intensity LED digital channel readout and dimmer.

Motorola CB also means high performance and attractively styled antennas and accessories.

Motorola CB is the biggest news and greatest value in personal communications today. Mocat from Motorola. Now is the time to own a Motorola CB. For complete details, write us at Motorola, Inc., Dept. CB-700, 1301 East Algonquin Road, Schaumburg, IL 60172.

Motorola
FM SUBCARRIER APPLICATIONS NOTE
EMR Telemetry offers a new 12-page applications note, "Amplitude Adjustment of FM Subcarriers." The note describes factors determining optimum setup of amplitudes of subcarriers in an FM multiplex system. General setup procedure is given with specific information on systems utilizing r-f links, telephone lines, cable transmissions, and tape recorder. Optimization methods and typical system performance guidelines are provided. Address: EMR Telemetry, Weston Instruments, Inc., Box 3041, Sarasota, FL 33578.

SEMICONDUCTOR FUSE ARTICLE
An article explaining considerations governing the selection of semiconductor fuses is available from the Semiconductor Division of International Rectifier Corp. The article, reprinted from Electronic Buyer's News, describes the various parameters used to specify fuses, indicating their relative importance. Copies of the monograph will be sent upon request. Address: Semiconductor Division, International Rectifier Corp., 233 Kansas St., El Segundo, CA 90245.

SMITH CHARTS
Analog Instruments offer a four-page, illustrated brochure of its line of Smith Charts. All forms have normalized impedance (or admittance) coordinates, title block and radial scales. Printed in red ink; green on negative charts. Also included in the catalog are computer-plotters, rubber stamps, mega-rules, vugraphs and laminated charts. Address: Analog Instruments Co., P.O. Box 808, New Providence, NJ 07974.

RFI SUPPRESSION
"Radio Frequency Interference Suppression in Switched-Mode Power Supplies" is the title of a new, 8-page, illustrated report available from the Ferroxcube Corporation. The article discusses the main principles behind the suppression of RFI at the input terminals of switched-mode power supplies. These general principles are applicable to all forms of switched-mode power supplies. Address: Ferroxcube Corporation, Saugerties, NY 12477.

MODULAR CABINET CATALOG
Insta Fab's Mod-U-Line series of modular instrument cabinets are presented in its new catalog. Cabinets are available in plain, rack-mount, multiple, and handle configurations. The products are made of aluminum, but steel units are available on special request. Various colors can also be specified. Also covered are various designs of Mod-U-Box sloping panel cabinets. Prices and available dimensions are listed. Address: Insta Fab, Inc., 425 Queens Lane, San Jose, CA 95112.

JENSEN TOOL CATALOG
"Tools for Electronic Assembly and Precision Mechanics" is a 112-page handbook describing over 2500 items offered by Jensen Tools and Alloys. Section headings include screwdrivers, files, and soldering equipment, along with other tools and accessories used by electronic technicians and engineers. Also, a full-color 16-page section features Jensen tool kits and cases, and a solder section lists tin-lead alloys. Address: Jensen Tools and Alloys, 4117 N. 44th Street, Phoenix, AZ 85018.

POPULAR ELECTRONICS 1975 INDEX
A complete editorial index of the magazine for the year 1975 (Vols. 7 and 8) is available for $1.50 from Popular Electronics Index, Box 2228, Falls Church, VA 22042.

Anatomy of a ¼" tape recorder

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic shut-off</td>
<td>Hysteresis three-motor drive</td>
</tr>
<tr>
<td>Rugged</td>
<td>Electro-magnetic braking prevents tape spillage</td>
</tr>
<tr>
<td>Neoprene head mount</td>
<td>10" NAB reels (or 5" or 7" standard)</td>
</tr>
<tr>
<td>for good alignment</td>
<td>Only seven moving parts</td>
</tr>
<tr>
<td>Heavy, 3/16" plate</td>
<td>One-piece, 4½ pound flywheel-and-capstan</td>
</tr>
<tr>
<td>for good alignment</td>
<td>Computer logic permits any command sequence</td>
</tr>
<tr>
<td>Pressure brush</td>
<td>Removable</td>
</tr>
<tr>
<td>reduces wear, improves contact</td>
<td></td>
</tr>
<tr>
<td>Plug-in electronics</td>
<td>Two channel record/playback capability. (Other models with four, two or one channels; ¼, ½ or full track; playback only. Extra performance options available.)</td>
</tr>
<tr>
<td>Remote record for no-thump recording</td>
<td>Compare all the features of the Crown CX-824 with any other reel-to-reel recorder you may be considering. And then compare the price. Crown represents the real value.</td>
</tr>
</tbody>
</table>

Fast playback coupon
Send directly to Crown for specifications on Crown tape recorders.

When listening becomes an art,

CROWN
Box 1000, Elkhart IN 46514

16
state-of-the-art in metering...

the Johnson solid-state meter.
clearly an improvement.

Meet the Messenger 123SJ—the first CB radio with LED meter readout! Bright, ruby-red LEDs let you read signal strength, transmit power and modulation precisely and at a glance, or use your meter as a "visual call alert" while keeping your eyes on the road. The Johnson LED meter is all solid-state so it's completely reliable, regardless of temperature, dust and humidity. Add the proven performance of built-in electronic speech compression, mechanical "steep skirt" filtering, voice-ta lored audio and plus/minus ground ... and you'll know why it is clearly the most advanced CB radio in its class. $169.95.
THE WORLD OF SOUND CONTRACTING

O NE OF THE fastest growing career areas in electronics today is the field of sound contracting. Public consciousness of the importance of the acoustic specialist has been raised significantly by (for one thing) the spectacular sound systems that have been built for concerts by rock groups. (It seems top bands are always cancelling performances because they're not happy with the available audio system.) Also to be considered are such well-publicized acoustic fiascos as New York's Avery Fisher Hall. Now, as public spaces grow ever bigger and more acoustically complex, people are no longer satisfied with movie-theater sound systems that blur the dialog, airport PA systems that are unintelligible or inaudible, and sports-arena loudspeaker installations that rumble and bark incoherently.

Almost everyone is aware of the brute power that audio technology has lately put into our hands. We can, for example, zap a football stadium with sound levels sufficient to traumatize the first ten rows of the audience. But who, it is asked, has the expertise necessary to apply this power cheaply, efficiently, and with quality results? This is the gap that the better sound contractors are rushing to fill.

Designing For Sound. The knowledgeable contractor today is able to approach his work with a system of mathematics and—finances permitting—a battery of instruments that literally put the task on a scientific basis. His objectives—for a reinforcement installation in an auditorium or church, say—are typically to cover and penetrate the full seating area with sound that is adequately loud (a function of the acoustic power available and the room's characteristics), clear enough for unlabored communication, and natural in its tonal balance and range. The latter is particularly important if the system is to be used for music as well as speech. In addition, it is desirable for the sound the audience hears to be associated with the location of the speaker on stage, not the location of the loudspeaker(s).

Working With Numbers. What is impressive about the professional sound business is that hard numbers are routinely attached to all these audio-system qualities, and the numbers are plugged into equations that predict final performance with remarkable accuracy in most cases. For example, it has been determined empirically that a signal-to-noise ratio of at least 25 dB at mid-frequencies is necessary for unimpaired intelligibility of speech. The noise level in the auditorium must of course be determined by an on-site measurement.

Fig. 1. Unequalized sound system.
However, with the data from this simple measurement and the relevant specifications from the loudspeaker manufacturer, you can travel via slide rule to an excellent estimate of what will happen when the sound system is installed.

First, working on the assumption that most of the auditorium's seating area will lie within the reverberant field (which is, by definition, steady and uniform), the nature of this field can be calculated once the volume of the space and the (estimated) absorption of the materials in it are known. The result leads directly to the reverberation time (RT) of the hall in seconds. (The RT is the amount of time required for a sound to die away to a level of −60 dB in the hall.) With RT and the volume (V) of the space known, they can be used with the Q or "directivity factor" of the loudspeaker (gleaned from the manufacturer's specifications or from your own tests) to compute the "critical distance" or Dc of the speaker. The formula is

\[D_c = 0.03121 \sqrt{\frac{VQ}{RT}} \]

The Dc is the distance from the loudspeaker at which the level of the sound coming directly from it exactly equals the level in the reverberant field. Then, if you know the sensitivity of the loudspeaker and the amplifier power driving it, the inverse square law will tell you what the sound level would be at the critical distance. This is the sound level that will be achieved throughout the uniform reverberant field. If it exceeds the noise level by at least 25 dB, all is well in terms of the acoustic output of the system.

Articulation Loss. Beyond signal-to-noise ratio, there is an additional factor affecting speech intelligibility. It is known as "articulation loss of consonants in speech," and it is usually expressed as a percentage. Believe it or not, articulation loss (AL) is quantifiable (15% is adequate, 10% virtually ideal) and calculable. It relates to the ratio of direct to reverberant sound for any given listener in the auditorium. The general formula is

\[\%AL = 641.81D^2RT^2/QV \]

where D is the distance from loudspeaker to listener. To adjust for a satisfactory AL you can specify or design a loudspeaker with a larger Q, or you can treat the hall to reduce RT.

The concept of AL was worked out empirically by two Dutch researchers who published their conclusions in 1971. From the evidence to date, it seems to be one of the most powerful tools for sound-system design ever developed. In fact, with these two parameters (the AL and the required sound levels) under control, the hardware necessary for successful completion of the job is virtually

(Continued on page 22)

POPULAR ELECTRONICS
The Black Watch kit

At $29.95, it’s
*practical—easily built by anyone in an evening's straightforward assembly.
*complete—right down to strap and batteries.
*guaranteed. A correctly-assembled watch is guaranteed for a year. It works as soon as you put the batteries in. On a built watch we guarantee an accuracy within a second a day—but building it yourself you may be able to adjust the trimmer to achieve an accuracy within a second a week.

The Black Watch by Sinclair is unique. Controlled by a quartz crystal . . . powered by two hearing aid batteries . . . it's also styled in the cool prestige Sinclair fashion: no knobs, no buttons, no flash . . . just touch the front of the case to show hours and minutes and minutes and seconds in bright red LEDs.

The Black Watch kit is unique, too. It's rational—Sinclair have reduced the separate components to just four.

It's simple—anybody who can use a soldering iron can assemble a Black Watch without difficulty. From opening the kit to wearing the watch is a couple of hours' work.

Complete kit
$29.95!

The kit contains
1. printed circuit board
2. unique Sinclair-designed IC
3. encapsulated quartz crystal
4. trimmer
5. capacitor
6. LED display
7. 2-part case with window in position
8. batteries
9. battery-clip
10. black strap (black stainless-steel bracelet optional extra—see order form)
11. full instructions for building and use.

All you provide is a fine soldering iron and a pair of cutters.

Take advantage of this no-risks, money-back offer today!
The Sinclair Black Watch is fully guaranteed. Return your kit within 10 days undamaged and we'll refund the cost of your kit without question.

sinclair
SINCLAIR RADIONICS
375 Park Avenue
New York, N.Y. 10022

Please send me ______ Sinclair Black Watch kit(s) at $29.95 (Plus $2.50 per unit, shipping and handling). Stainless steel band $4.00. Available assembled $49.95.

[] Enclosed is my check for ______

Name ____________________________
Address __________________________
City _____________________________
State ___________ Zip Code __________

Mail to: Sinclair Radionics Inc. PE4, 375 Park Ave., New York, N.Y. 10022
N.Y. Residents add sales tax.
Flexible alternative

The 2700B can bring to your system the clarity & definition you have been looking for. Wayward sounds (booming bass, missing highs, blaring horns, or stifled solos) are all put in their place with the SAE 2700B Half-Octave Equalizer. The flexibility of 20 controls per channel only begins to tell the story. Some facts:

- 0.02% THD & IM
- -100dB S/N Ratio
- Can drive any system
- FREE 5 YEAR Service Contract PLUS, long-throw oil-damped slide pots for better accuracy, precision wound toroid inductors for low distortion & a pink noise generator for system balance. Built with SAE quality, the 2700B is value packed with the capability and performance you need to control your system.

PRICE: $550.00 (suggested list)

worked out for you. There remain only such considerations as the positioning and aiming of the loudspeakers (the rules for which are not difficult to master) and the equalization of the sound system.

Equalization. Most audiophiles are aware of the advantages of room equalization for home high-fidelity systems, as well as the drawbacks. The latter include the fact that, in most listening rooms, you can only equalize for one particular spot in the room. Move the measuring microphone a foot or so away from that spot and the system's response changes drastically. But in a larger space, such as an auditorium, this is not true. In general, if a room is large enough to provide a reverberation time of 1.8 seconds or more, it can support a true reverberant field; and the distinguishing characteristic of a reverberant field is its uniformity. In such a field, a sound system will measure the same no matter where you place the measuring microphone. This means that you can equalize the system and be sure that the entire audience will be getting the benefits. In fact, it is not unusual for a sound contractor to specify uniform level and frequency response within ±1 dB throughout the entire seating section of an auditorium and meet that spec. (Along with reverberant sound, each seat must also receive a certain amount of evenly distributed direct sound to provide intelligibility, but this requirement rarely complicates the equalization process.)

The means of equalization in common use are narrow-band filters spanning one-third octave or even less. (The Altec Acousta-Voicette is the equivalent in home equipment.) The filters may be designed individually for the specific job, or they may be incorporated in a ready-made filter set that covers entire audio range. Aside from adjusting the ultimate frequency response of the sound system (which may be convenient or even necessary, depending on circumstances), the filters play an even more important role in the design of a sound-reinforcement system. They maximize the acoustic output available from the system before feedback occurs.

In any sound system that employs a microphone in the same room as the loudspeakers, acoustic feedback is inevitable. However, in most auditoriums with unbalanced sound systems, feedback begins at certain specific frequencies. Often the system is so ready to “take off” at these frequencies that the overall level you can use in the room is severely limited. But when you bring a filter set into the picture, you can frequently raise the usable level of the system to an astonishing degree. The procedure is as follows. Gradually increase the level of the sound system until feedback begins to occur at a certain set of frequencies. Knock those frequencies back with the appropriate filter. Raise the level further until another feedback mode crops up, and quash that in the same way. After you have proceeded in this fashion through a dozen or more sets of feedback frequencies, you will begin to approach a point where you have either run out of amplifier power or the system is being driven into feedback by many frequencies simultaneously. This is your goal. It is not unusual to obtain a 10-dB or more increase in usable system level from this process (see Figs. 1 and 2 on page 18).

Does equalizing for feedback conflict in any way with equalizing for uniform frequency response in an auditorium? The answer is apparently not; the “growth” of energy in a room at any one narrow band of frequencies corresponds to both an aberration in frequency response and a potential for acoustic feedback, so that response adjustment and feedback control generally lead to the same result from different directions. Assuming the microphone used is “flat,” you can equalize for minimum feedback and also be assured that the frequency response you’re obtaining is essentially flat.

I began this column by inviting you to contemplate the career possibilities in sound contracting, and I hope the above has demonstrated that it is a craft masterable by anyone who is willing to learn the basic rules. Where do you learn the rules? I can only recommend the source of my smattering of knowledge in the subject: Don Davis’ excellent Synergetic Audio Concepts seminar, or “Syn-Aud-Con.”

The Syn-Aud-Con seminars are conducted by Davis and his wife Carolyn in numerous cities throughout the country each year. They last three days—8:00 AM to perhaps 10:00 PM per day—and those days are packed. For a schedule of the seminars and information on registration and charges, write to Syn-Aud-Con, Box 1134, Tustin, CA 92680.
When you've got a Pace CB radio, you've got the world by the ears.

Pace gives you the power to make people listen. With information on the weather ahead. Reporting emergencies... "boiled over radiator at 18th and Grove"... In obtaining information... "just drove into town, where's the cheapest gas?"...

Pace CB 166 is the CB radio with frequency synthesis and digital logic. Utilizing Phase Lock Loop circuitry. Or, more simply stated: Phase Lock Loop generates the proper selected frequency and keeps you on that frequency by utilizing computer technology.

Engineered to give you maximum power. And ask your dealer about the strength of Pace's warranty.

PACE... BEST SELLING CB IN THE WORLD*

((p)) PATHCOM INC. PACE® TWO-WAY RADIO PRODUCTS
24049 S. Frampton Ave., Harbor C'ty, CA. 92710
Available in Canada from Superior Electronics Inc: Export (all other parts of the world) 2260 Shames Dr., Westbury, N.Y. 11590

*Based on Pathcom estimates.
A Talking Calculator
A new calculator with a vocabulary of 24 words enunciates—in clear electronic speech—each key-stroke as it is made, followed by the correct answer. Speech Plus, developed by Telesensory Systems, Inc. (Palo Alto, CA), enables the operator to know immediately if he has made the proper entry, without having to check its 8-digit visual display. The unit has the four basic functions, plus square root, percent, independent memory, and floating decimal point. The 17-oz portable comes with an earphone jack and battery charger. Price is $395.

Device Monitors Operation Time
Scheduling routine calibration checks for sensitive test instruments on the basis of actual usage rather than elapsed calendar time is possible with the Sentinel, a device offered by Compuline, of Norristown, PA. The reminder, about the size of a matchbook, consists of a memory module with associated circuitry and a LED indicator that turns on when calibration is due. Furthermore, the light goes on and stays on as a constant reminder. Replacement is as easy as changing a fuse. Elapsed time of usage can be preset in increments from 20 to 2000 hours ±10 percent. The memory module (a three-element coulometric capsule) operates by electrophating away a specific volume of metal at a rate controlled by the current flowing through it. Though presented for an instrument calibration reminder, why not for an auto oil-change reminder?

A "Neck-Less CRT"
Engineers at the Air Force Systems Command's Avionics Laboratory (AFAL) are considering the use of liquid-crystal displays for cockpit instruments that must be read in strong sunlight. Unlike conventional LCD's, the crystals can be made to vary in several shades of gray so that, when combined in an array, a TV-like picture is obtained. Forty thousand picture elements ("pixels") can be used—10,000 on each of four 1" chips. Power requirements are low. Commercial applications are envisioned on portable electronic equipment and small computer terminals, where eliminating the neck of a CRT would be a real space saver.

The Sound Gallery
A futuristic audio-visual environment—The Sound Gallery—is expected to open at 127 Smith Place in Cambridge, Massachusetts. Billed as an entirely new way to educate the public about sound reproduction, the Gallery consists of two mini-theaters separated by a space-age control room housing a sophisticated computer which controls two presentations. Entitled "The Shiny Vinyl Grand Canyon Tour" and "Speakers and Spaces," these presentations guide the listener/viewer through the world of sound in a new, exciting way, including an ordinary record groove magnified thousands of times until it becomes a "Grand Canyon." On your next trip to the Boston area plan to stop by for a visit.

Brighter Green LED's
Siemens AG of West Germany has developed a new LED with a luminous intensity of 30 mcd at 10 mA, nearly double that of its predecessor. Since the new green diode (LD 57 C) is rated for up to 60 mA, it is said to be the first LED which not only makes itself visible as a light-spot, but can illuminate its surroundings. With this new brightness, it is possible to enclose the LED in a plastic capsule that is not dyed and has no diffusor.

Updated Glossary of Electronic Terms
A pocket-sized, 40-page glossary which lists over 425 commonly used electronic terms and acronyms ranging from "ACC" (Automatic Chrono Control) to "GIGO" (Garbage In, Garbage Out), has just been published by Lavin Associates, Inc., 12 Promontory Dr., Cheshire, Conn. 06410. A handy metric conversion chart has been included. Write the company for prices on quantity orders.

Computer Systems in the 1980's
The future is bright for computer systems in the U.S. in the 1980's, says Dr. Ruth M. Davis, Director of the Institute for Computer Sciences and Technology of the National Bureau of Standards. According to Dr. Davis, the 1980's will see computer networks containing computers and computer modules of all sizes, independent memories, and a large variety of access terminals and automated input devices. She sees a burgeoning market for individual users who want autonomous, dedicated computer systems which can, when needed, be interconnected to larger computer service networks or other individual customers. Predicted for the 1980's are automated reading or "wand" technology, and solid-state mass memory devices, such as CCD's, bubble memories, and read/write laser memories. Arthur D. Little, Inc. predicts that 1980 domestic installations of general-purpose computers will be worth over $60 billion. It's forecast that the sale of associated equipment will grow at a faster rate than that for the computers themselves.

LSI Chip For Singer Sewing Machine
Singer's Athena 2000 sewing machine uses a 40-pin, half-inch-square LSI chip to control all stitch and linear motor movement, including shifting from one pattern to another. The new unit, which replaces more than 8,000 transistors, can make 36,000 basic decisions during one hour's operation. Programmed into the chip are optimum stitch width, length and density. A Hall-Effect sensor is used to locate the needle's position in the machine.
When it comes to microcomputers, Altair from MITS is the leader in the field.

The Altair 8800 is now backed by a complete selection of plug-in compatible boards. Included are a variety of the most advanced memory and interface boards, PROM board, vector interrupt, real time clock, and prototype board.

Altair 8800 peripherals include a revolutionary, low-cost floppy disk system, Teletype™ line printer, and soon-to-be-announced CRT terminal.

Software for the Altair 8800 includes an assembler, text editor, monitor, debugger, BASIC, Extended BASIC, and a Disk Operating System. And this software is not just icing on the cake—it has received industry wide acclaim for its efficiency and revolutionary features.

But MITS hasn't stopped with the Altair 8800. There is also the Altair 680—complete with memory and selectable interface—built around the new 6800 microprocessor chip. And soon-to-be-announced are the Altair 8800a and the Altair 8800b.

MITS doesn't stop with just supplying hardware and software, either. Every Altair owner is automatically a member of the Altair Users Group through which he has access to the substantial Altair software library. Every Altair owner is informed of up-to-date developments via a free subscription to Computer Notes. Every Altair owner is assured that he is dealing with a company that stands firmly behind its products.

After all, we didn't become the leader by messing around. Shouldn't you send for more information or visit one of our Altair dealers?

Altair Coupon
Please send me the following information:
☐ Your latest catalog and price list
☐ Software information package
☐ Please include a list of your dealers

NAME
ADDRESS
CITY STATE & ZIP
SW RECEIVER LINE FILTER

Q. Is there a filter I can make to clear up the interference on my shortwave receiver? Whenever a vacuum cleaner, shaver, or hair dryer is used, the entire dial is filled with "hash."
—Mark Papuga, Park Ridge, IL

A. The line filter shown will help. L1 and L2 are 2-inch windings of 16-gauge enameled wire wound on a half-inch diameter form. C7 through C3 can be anywhere between 0.001- and 0.01-uF, 200-V disc ceramic capacitors (capacitance not critical, but use the same value for all three). Assemble the filter in a metal box and connect it to a good earth ground. Plug the filter into the wall, and connect the receiver line cord to the filter socket. If this doesn’t clear up the interference, try to isolate the appliance generating the noise and install the filter between it and the wall socket. Also, ground the receiver chassis.

RECORD STATIC

Q. Ever notice the crackling at your fingertips when you remove a record from your turntable? What’s this static doing to my system’s performance, and how do I get rid of it?
—Keith Baumbach, Lodi, CA

A. A record can acquire a static charge when it rubs against its liner, when the stylus tracks across it, or when you rub it with a cloth to clean it. While the static in itself will have no effect on the cartridge’s translation of the grooves into an electrical signal, it can (and does!) attract many small dust particles to the record surface. This dust gets in the way of the moving stylus, causing pops and other high-frequency noise. Static is most often a problem in winter, when we heat our homes and thereby lower the relative humidity inside. This inhibits the bleedoff of static, since the moisture which normally does the job isn’t around. Perhaps the easiest way of reducing record static is to wipe the discs with a damp cloth. Also dampen the record mat on the platter. Many commercial record care products also contain anti-static chemicals. Two of the best known are the Watts line and the Discwasher. For an in-depth look at the static problem, see “Mac’s Service Shop,” POPULAR ELECTRONICS, June 1975.

SOLID-STATE VTVM CONVERSION

Q. I would like to replace the 6AL5 and 12AU7 tubes in my Heathkit VTVM with solid-state circuits. Any suggestions?
—E. Lambert, Cocoa Beach, FL

A. Heath has just introduced exactly what you want. Its new IMA-18-1 package consists of two plug-in cans containing FET’s and diodes which fit exactly into the tube sockets. No rewiring is necessary. $16.95.

REMOTE-CONTROL COMMERCIAL CUTOFF

Q. Do you have a simple circuit for a remote-control audio cutoff for TV commercials?
—Thomas C. Robinson, Ft. Wayne, IN

A. This scheme will work. When you want to cut off the sound, shine a flashlight at LDR1 momentarily. The transition between the high and low states (and back again) will cause the flip-flop (FF1) to toggle. When the Q output goes high, Q1 turns on and energizes the relay coil. The relay contacts open the circuit between the speaker and receiver audio output.

When the commercial is over, shine the light on LDR1 for a second. The flip-flop will toggle again, cutting off Q1, in turn de-energizing the coil and completing the audio circuit. Parts are not critical. Select +V and R1 to give a logic-one input to the flip-flop when LDR1 is dark. Almost any photocell, flip-flop (JK), switching transistor, and diode can be used. Select a relay with sufficient dc resistance to keep within the collector current rating of Q1. Mount the photocell in a cardboard tube painted black so that background lighting won’t toggle the flip-flop.

TWO-BATTERY AUTO SYSTEMS

Q. I want to install another battery in my camper to run an inverter and some accessories, but need an isolation circuit to prevent the starter battery from discharging when the engine is off.
—Kevin Ayers, New London, CT

A. After you’ve installed a new alternator and regulator to handle the increased current demand, connect diodes D1 and D2 as shown. They will prevent the batteries from discharging through the alternate circuits. Be sure to choose diodes that can handle the required currents.

INDUCTANCE FORMULA

Q. I need a formula relating the number of turns, spacing, and diameter of a home-wound coil to its inductance.
—David Gardner, Baltimore, MD

A. The inductance of a coil is influenced by many factors, including what type of core it is wound on, its proximity to other inductors, etc. For single-layer, air-core inductors, the following approximation is useful:

\[L = \frac{a^2n^2(9a + 10b)}{2\pi} \]

where L is the inductance in microhennies, a is the coil radius in inches, b is the coil length in inches, and n is the number of turns. The use of ferrite cores will cause this expression to be multiplied by a constant.
mail-order pride...
The new Heathkit Spring Catalog describes over 400 top-value electronic kits you can build for pride and satisfaction that's priceless!

FREE!
HEATHKIT CATALOG
The world's largest selection of quality electronic kits

Learn electronics the easy, effective low-cost way with the Heathkit Continuing Education Series. Four individual learning programs — DC Electronics, AC Electronics, Semiconductor Devices and Digital Techniques provide a detailed overview of modern electronics. Study when you want... without pressure or deadlines. Each program includes text, records and parts for experiments.

Our GB-1201 Programmable Digital Stopwatch keeps you "on time" for races, rallies, trips. 7 functions, 8 digits, resolution to 1/100th of a second, typical accuracy to 0.003%!

The NEW CI-1078 digital electronic Miles-per-Gallon Monitor/Speedometer reads 0-99.9 mpg, 0-99 mph in an orange-amber digital readout. It will help you drive more efficiently, save gas and money too!

Our MI-2901 dual-range Depth Sounder/Fish Spotter helps you locate the big ones from 0-240 ft! An important safety aid too, helps prevent running aground in strange waters.

Read all about them... PLUS over 400 other easy-to-build electronic kits

MAIL COUPON TODAY!

Please send me my FREE Heathkit Catalog.

<table>
<thead>
<tr>
<th>Audio Components</th>
<th>Color TV</th>
<th>Amateur Radio</th>
<th>Marine and Auto Accessories</th>
<th>Test Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heath Company
Dept. 10-17
Benton Harbor, Michigan 49022

MAY 1976
BIG HELP FOR SMALL BUCKS.

Used to be, filling your bench with really good test equipment meant emptying your wallet. Because you had to pay a price for quality and versatility. A high price.

Not anymore. CSC's ingenious new Design Mate™ line of test equipment combines performance high enough for most lab applications with the kind of versatility and economy everyone can afford. Thanks to a number of new design concepts and manufacturing techniques.

Proof? Check the specs and prices, then visit your CSC dealer for a demonstration. Or write for our catalog and distributor list.

CONTINENTAL SPECIALTIES CORPORATION

EASY DOES IT

Design Mate 1 Circuit Designer 790 solderless breadboarding tie-points; adjustable 5-15VDC 1%-regulated supply; 0-15VDC meter. $49.95*

Design Mate 2 Wide-Range Function Generator 1Hz-100KHz sine, square, triangle waves with low distortion, 100mV-10V P-P output. $64.95*

Design Mate 3 Precision R/C Bridge
Fast, easy measurements of resistance (10 ohms-10 meg) and capacitance (10pF-1uF) within 5%-of-dial accuracy. $54.95*
COMBINE a handheld calculator with a fully addressable memory and you have one of the new programmable calculators. What makes the programmable calculator different from others is that the computer-like capabilities provide "learn" and "remember" keyed-in sequences that can be played back on command. This reduces the number of keystrokes required to solve the same problem for different variables. In addition, programmability (with programs written by experts) provides solutions to problems whose complexity would ordinarily be beyond your mathematical training.

As an example of the labor and time saved when solving repetitious problems, let us assume that you must calculate the resonant frequency of an LC circuit for different values of inductance and/or capacitance. The formula \(f_0 = \frac{1}{2\pi\sqrt{LC}} \) would require the following sequence of keystrokes on a scientific calculator: 2, \(\times \), n, [, (, at least one digit mantissa for L, EE, +/-, at least one digit mantissa exponent, \(\times \), at least one digit mantissa for C, EE, +/-, at least one digit mantissa exponent, \(\), \(\sqrt{x} \),] = \(\frac{1}{x} \). This adds up to no less than 20 keystrokes every time you change the value of L or C on an ordinary calculator. Although, initially, you have to key in the same number of keystrokes on a programmable, thereafter you key in only the variables, eliminating at least 11 keystrokes per repetition.

You don't have to be a mathematics genius to use one of these powerful programmable calculators. There are thousands of programs written by specialists to be used if you don't want to develop your own.

Here are some general information about programmable calculators and a brief rundown of the various types.

Methods of Entry. Before getting into what's available, let us review the two methods of keyboard entry used in programmable calculators: algebraic and reverse Polish notation (RPN).

Algebraic notation is the most widespread method of entry. It permits a problem to be entered exactly as it is written on paper. For example, \(2 \times 4 \) would be entered by pressing the keys in the sequence 2, \(\times \), 4, =.
Many scientists and engineers prefer to use RPN, which requires that numerical entries be immediately followed by their operators. Therefore, 2×4 would be entered: 2, ENTER, 4, $. Note that there is no need to press an = key. (There isn't any on an RPN calculator.) Pressing ENTER tells the calculator to total or subtotal immediately after the operator is pressed.

Let us consider a more difficult problem to illustrate the difference between the two methods of entry. If we were to calculate the result of $(4 + 2) \times (7 + 3)$ on an algebraic calculator, the keying sequence would be: (4, +, 2,), \times, (7, +, 3,), =. (We could reduce the number of entry steps by two by eliminating the first set of parentheses.) The keyboard entry sequence for solution of the same problem with an RPN calculator would be: 4, ENTER, 2, +, 7, ENTER, 3, +, \times.

Both methods of entry will yield the correct answer, 60. The algebraic approach appears to be the simpler of the two, if only because it follows the familiar method in which the problem is written. On the other hand, the RPN approach requires fewer keystrokes, which can be an important advantage when writing long programs.

Since RPN requires a learning period, algebraic-entry calculators are initially easier to use. However, once you become accustomed to thinking in RPN, you will often find it a more versatile approach to problem solving.

Types of Programmables. There are some 10 different portable programmable calculators on the market, with more to be announced soon. The programmability of these calculators can be classified as elementary, intermediate, or full, offering the potential buyer a wide choice in selecting the one best for him.

All available programmable calculators store ("learn") keystrokes, but intermediate and fully programmable models provide a variety of editing and decision-making capabilities that greatly add to their power and versatility. Fully programmable machines, in fact, are almost like

PROGRAMMING THE PROGRAMMABLES

Programming a programmable calculator is a relatively simple task, once you familiarize yourself with the correct procedure detailed in the unit's operating manual. You need no prior experience to become a proficient calculator programmer. In a very short time, even a school child can learn to write simple programs and load fairly advanced ones.

You can learn simple programming in an hour or so on any programmable calculator, although fully programmable models offer more of a challenge than intermediate and elementary machines and thus become a continuous learning experience as you develop new techniques, routines, and tricks. Of course, if you don't wish to become a programmer, you can always use programs developed by experts to solve problems of immense complexity. There are thousands of such programs covering almost every subject in which mathematics is used, and more are being added to the list daily.

In this section, we focus on practical hands-on use of the programmable calculator. To do this, we will detail the keying sequence for four programs, three of which are relatively simple mathematic

Fig. 1. Program for determining the volume of a cylinder on the HP-25.

<table>
<thead>
<tr>
<th>Step</th>
<th>Function</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>x^2</td>
<td>Square r</td>
</tr>
<tr>
<td>02</td>
<td>π</td>
<td>Enter π</td>
</tr>
<tr>
<td>03</td>
<td>x</td>
<td>Multiply r^2 times π</td>
</tr>
<tr>
<td>04</td>
<td>x</td>
<td>Multiply h times product of r^2 and π</td>
</tr>
<tr>
<td>05</td>
<td>GTO 00</td>
<td>Return program to initial address and stop</td>
</tr>
</tbody>
</table>

Fig. 2. Routine for incrementing a number

<table>
<thead>
<tr>
<th>Step</th>
<th>Function</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1</td>
<td>Magnitude of incrementation</td>
</tr>
<tr>
<td>02</td>
<td>+</td>
<td>Add to previous magnitude (itself)</td>
</tr>
<tr>
<td>03</td>
<td>PAUSE</td>
<td>Pause to see result (optional)</td>
</tr>
<tr>
<td>04</td>
<td>GTO 01</td>
<td>Do it again</td>
</tr>
</tbody>
</table>

AmericanRadioHistory.Com
ultra-compact computers, since they can use subroutines and read programs from small magnetic cards. (It isn’t necessary to use the programming features. All programmables can be used in the same manner as “ordinary” calculators for one-time-only jobs.)

Elementary programmables memorize or save keystrokes for later number processing, but lack such advanced features as conditional testing and branching. Typical elementary models permit you to store from 10 to 100 (maximum) program steps. After loading a program, you simply key in the appropriate numerical variables, press a RUN key, and the calculator automatically performs the steps in the program to provide the result. This type of calculator permits you to solve a routine equation that must be worked and reworked for different variables. You need enter only the new variables, rather than the entire equation, for each calculation.

The big difference between elementary and intermediate programmable calculators is the branching and conditional-comparison capabilities offered by the latter. Intermediate machines also offer complete editing capabilities. Briefly, here is what all this means to the calculator user:

Unconditional Branching. This feature is used for editing programs and setting up a “loop” within a program to permit a calculation to be worked until specified conditions are met. In the editing mode, you can order the calculator to advance to any desired step in the program memory by pressing a GTO (go to) key, followed by the appropriate address.

Conditional Branching. This powerful feature is what sets intermediate programmables apart from elementary machines. In a typical application, the calculator automatically transfers operation to a specified program address if and only if a logical comparison is true or false (your choice).

Conditional Comparisons. This is a valuable decision-making capability that permits the calculator to automatically branch to a specified step in its program if a logical comparison meets a specified condition. For example, consider the comparison “x = 0.” In a typical intermediate programmable calculator, such as the HP-25, the program continues sequentially if the result of this test is true. If the result is false, the program counter automatically skips the next step and continues on to the second step beyond the comparison test.

There are many applications for conditional comparisons, one of which is automatically incrementing or decrementing variables in a program. For example, assume you need

<table>
<thead>
<tr>
<th>Step</th>
<th>Function</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1</td>
<td>Input 1</td>
</tr>
<tr>
<td>02</td>
<td>+</td>
<td>Add to previous number squared</td>
</tr>
<tr>
<td>03</td>
<td>x²</td>
<td>Square the number</td>
</tr>
<tr>
<td>04</td>
<td>PAUSE</td>
<td>Pause to see result</td>
</tr>
<tr>
<td>05</td>
<td>LST X</td>
<td>Recall last number squared</td>
</tr>
<tr>
<td>06</td>
<td>RCL 1</td>
<td>Recall value for highest number to be squared</td>
</tr>
<tr>
<td>07</td>
<td>x = y</td>
<td>Has program reached value in R1?</td>
</tr>
<tr>
<td>08</td>
<td>GTO 00</td>
<td>If value in R1 is reached, go to 00 and halt</td>
</tr>
<tr>
<td>09</td>
<td>x² y</td>
<td>If not, replace last number squared in display register</td>
</tr>
<tr>
<td>10</td>
<td>GTO 01</td>
<td>Go to step 01 and repeat</td>
</tr>
</tbody>
</table>

Volume of a Cylinder. Suppose you have several cylindrical containers and want to find the volume of each. The applicable formula for computing volume is \(V = \pi r^2 h \) (m³), where \(V \) is the volume, \(h \) is the height of the container, and \(r \) is the radius of the base of the container. The HP-25 lets you enter one and then another number and multiply the two after both have been entered into the calculator. Therefore, a simple way to solve the formula would be to enter \(h \), followed by \(r \) and proceed with the calculation. The programming procedure for this formula is detailed in Fig. 1.

To use the program, load it into your calculator, switch to RUN, enter \(h \) and then \(r \), and press the R/S (run/stop) key twice to start the program. In less than a second, the calculator will display the result and prepare to accept new data.

Counting. Programs for intermediate continued on page 34
to calculate the squares of all integers between 1 and 15. Using the comparison \(x = 0\), we can write a simple program that squares 15, then 14, and so on down to 0, at which point the comparison \(x = 0\) is satisfied and the calculator comes to a halt.

By far the most exciting, and most expensive, handheld calculators on the market are those with full programmability. They have all the capabilities of the intermediate calculators plus flags, subroutines, user-defined keys, and a method of rapidly loading and storing programs.

If you're familiar with computers, you can appreciate the value of being able to do subroutines. A subroutine is actually a separate program stored in the memory along with the main program. When the main program requires the use of the subroutine to calculate an intermediate result or perform some other useful operation, an appropriate instruction is keyed into the program. The instruction is followed by a "label" that identifies the subroutine. The last step of a subroutine is normally "return," which causes the program to resume at the address immediately following the subroutine call. Subroutines can be labelled with the user-defined keys on both of the only two fully programmable calculators currently on the market. These keys can also be reserved for any desired routine or function and used like any other key on the calculator.

Flags are another powerful feature of fully programmable calculators. A flag is a simple "yes" or "no" signal that can be set by the user or by a program. The status of the flag can be used to cause a conditional branch.

What's Available. So far, the three manufacturers that make elementary programmable calculators are: Litronix, Inc. (19000 Homestead Rd., Cupertino, CA 95014); Sinclair Radionics, Inc. (375 Park Ave., New York, NY 10022); and the Novus Division of National Semiconductor (1177 Kern Ave., Sunnyvale, CA 94086). In order of increasing cost, here are the details on the elementary models available:

- **Litronix Model 2290.** ($29.95). This low-cost calculator has a 10-step program memory and data memory, and comes with a one-year unconditional guarantee. It is available in a rechargeable version (Model 2290R) for $39.95.

 The calculator's programming is controlled by three keys that are labelled L (learn), S (stop/execute), and E (execute/enter). Although this calculator's capability is rather limited, it is well suited to solving simple but repetitive problems at a reasonable cost.

- **Sinclair Scientific Programmable.** ($79.95). In addition to such common scientific functions as sin, cos, arctan, log, 10^x, and √x, this RPN calculator offers a 24-step program memory and a fully accessible memory register. Its three major assets are compact size, large easy-to-read green fluorescent display, and a generous program library. The program library consists of 50 cards that contain hundreds of programs ranging from the routine to the sophisticated. Program topics include general arithmetic, geometry, statistics, finance, radiation, propagation, electrostatics, electromagnetics, thermodynamics, and fluid mechanics.

 An awkward feature of this calculator is the assignment of the all-

Fig. 4. Program for the Hi-Lo game is shown below and on opposite page.

<table>
<thead>
<tr>
<th>Step</th>
<th>Function</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>7</td>
<td>Steps 01-15 generate a random number between 0-99 and store the number in RI (the calculator assumes honesty on the part of the game player; there is no provision for detecting unauthorized peeks at the contents of RI)</td>
</tr>
<tr>
<td>02</td>
<td>RCL 0</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>÷</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>FRAC</td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>STO 0</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>INT</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>STO 1</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>ENTER</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>CL X</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>R/S</td>
<td>Input guess</td>
</tr>
<tr>
<td>17</td>
<td>ENTER</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>Steps 18-19: Guess Counter</td>
</tr>
<tr>
<td>19</td>
<td>STO+5</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>ROLL</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>x = y</td>
<td>Is guess correct?</td>
</tr>
<tr>
<td>22</td>
<td>GTO 26</td>
<td>If yes, go to step 26</td>
</tr>
<tr>
<td>23</td>
<td>x < y</td>
<td>If no, is guess too low?</td>
</tr>
<tr>
<td>24</td>
<td>GTO 35</td>
<td>If yes, go to step 35</td>
</tr>
<tr>
<td>25</td>
<td>GTO 40</td>
<td>If no, go to step 40</td>
</tr>
<tr>
<td>26</td>
<td>RCL 2</td>
<td>Signal correct guess ('111111111')</td>
</tr>
<tr>
<td>27</td>
<td>PAUSE</td>
<td>Pause to see correct guess signal</td>
</tr>
<tr>
<td>28</td>
<td>PAUSE</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>RCL 5</td>
<td>Display number of guesses</td>
</tr>
<tr>
<td>30</td>
<td>PAUSE</td>
<td>Pause to see number of guesses</td>
</tr>
<tr>
<td>31</td>
<td>PAUSE</td>
<td></td>
</tr>
</tbody>
</table>
The HP-65 (left) and SR-52 are two fully programmable handheld calculators. Both incorporate a miniature magnetic program card reader.

important ENTER key to an upper-case function. Since a special shift key must be operated before ENTER can be pressed, entry of a number requires two additional keystrokes.

Novus Model 4515. ($79.95). Soon to be marketed as the new National Semiconductor Model 4615, this RPN programmable has a 100-step program memory. It features such important scientific functions as sin, cos, tan, sin⁻¹, cos⁻¹, tan⁻¹, y², eˣ, ln, 1/x, n, Vx, and log, plus a fully addressable data register.

[Note: All Novus programmable calculators include DEL (delete), SKIP, HALT, and START program keys.]

Novus Model 4525. ($99.95). This algebraic-notation programmable is designed specifically for common business and financial calculations. The 100-step built-in program memory is ideal for routine but repetitious calculations of simple interest, compound interest, accumulated savings, terms of mortgages and loans, and many other common business and financial problems.

Novus Model 6035. ($99.95). Like the Model 6025, this calculator is dedicated to a specific type of problem solving. It features algebraic entry, and its statistical capabilities are well suited to a wide range of common problems. The calculator has a 100-step program memory and a fully accessible data register.

• Hewlett-Packard (19310 Prunericde Ave., Cupertino, CA 95014) and Texas Instruments, Inc. (P.O. Box 5012, MS/84, Dallas, TX 75222) market the only three intermediate programmable calculators currently available.

Texas Instruments Model SR-56. ($179.95). This 100-step programmable calculator employs algebraic notation, a three-level algebraic hierarchy, seven pending operations, more than

<table>
<thead>
<tr>
<th>Step</th>
<th>Function</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>CL X</td>
<td>Steps 32-33: Clear Guess Counter</td>
</tr>
<tr>
<td>33</td>
<td>STO 5</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>GTO 01</td>
<td>Prepare for a new game</td>
</tr>
<tr>
<td>35</td>
<td>RCL 3</td>
<td>Guess too low; display 0.07</td>
</tr>
<tr>
<td>36</td>
<td>PAUSE</td>
<td>Pause to display inverted LO</td>
</tr>
<tr>
<td>37</td>
<td>PAUSE</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>RCL 1</td>
<td>Retrieve number to be guessed and return</td>
</tr>
<tr>
<td>39</td>
<td>GTO 14</td>
<td>to step 14</td>
</tr>
<tr>
<td>40</td>
<td>RCL 4</td>
<td>Guess too high; display 14</td>
</tr>
<tr>
<td>41</td>
<td>PAUSE</td>
<td>Pause to display inverted HI</td>
</tr>
<tr>
<td>42</td>
<td>PAUSE</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>RCL 1</td>
<td>Retrieve number to be guessed and return</td>
</tr>
<tr>
<td>44</td>
<td>GTO 14</td>
<td>to step 14</td>
</tr>
</tbody>
</table>

Fig. 5. Standard flowchart symbols (A); and flowchart for the Hi-Lo game. (B).
25 scientific and statistical functions, 10 levels of addressable memory, and nine levels of parentheses. In the programming mode, there are three unconditional and six conditional branches that include four levels of subroutines and two loop control instructions and full editing capability.

Two rather unique features are incorporated in the SR-56. One is an independent test register that permits comparisons with the number in the display at any point in a calculation without interfering with the processing in the progress. The other is a dual-function PAUSE key that allows the display to be on during program execution for 0.5 second or provide for automatic single-step program operation.

Hewlett-Packard Model HP-25. ($195.00). This is the smallest of the handheld programmables on the market. It manages to pack all the common scientific functions, eight conditional comparisons, and a fully editable 49-step program memory into its compact 6-oz (170-g) package. Other features include RPN entry, eight data registers, and a PAUSE key.

Another important feature of the HP-25 is merged key codes. Many of the functions that require several keystrokes are compressed into a single step of program memory, which results in considerable savings in available program memory.

The HP-25 is smallest programmable. Has 59 program steps, 8 conditional comparisons and full editing.

The program will sequence through every number between 1 and 100. After the last square is displayed, the maximum number squared will appear in the display to notify you that the program has been executed.

"Hi-Lo" Game. The three simple programs detailed above illustrate basic programming techniques. Our last program is something fancier—a game that everyone will enjoy playing. To play Hi-Lo, you will need an intermediate or fully programmable calculator. The program in Fig. 4 is written for the HP-25, which means that it will have to be modified to use it in an HP-55, HP-65, SR-56, or SR-52.

After loading the program, the calculator uses a short routine to select a number at random between 0 and 99. You try to guess the number. If your guess is too high or too low, the display reads "Hi" or "Lo" when inverted. You should be able to logically guess the correct number in four to six tries.

To play the game, load the program into your calculator and switch to RUN. Then load the data registers with the following:

R0 Any decimal fraction
R1 (used by the calculator)
R2 1111111111
R3 07
R4 14
R5 (used by the calculator)

Note that any remaining registers are not used. After you load the registers, press the R/S key to initiate the game. As soon as "0.00" is displayed, key in your first guess and press the R/S key again. Continue guessing until the display flashes all 1's and the number of guesses you took to hit on the correct number. The calculator then selects a new number to start a new game.

"Mapping" Programs. If you're new to programming, the Hi-Lo game will probably appear totally confusing at first. An easy way to understand the program is to follow it through on a flowchart, a simple "map" that shows the logical flow of the program. The symbols most commonly used on a flowchart are shown in Fig. 5A and the flowchart for the Hi-Lo game in Fig. 5B, shown on the preceding page.

You'll find flowcharts very handy in developing programs of your own. The Hi-Lo program is not optimized; you might want to modify the flowchart to see if you can write the same program with fewer steps.
are not loaded with program steps, they can be used as additional storage registers. This gives the calculator up to 49 data registers when used in a nonprogram mode. (The extra registers are 70 through 99.)

Other significant features of the SR-52 include 10 conditional tests and two levels of subroutines. Another powerful capability is indirect addressing, a sophisticated feature that permits enormous creativity and versatility in programming. For example, an indirect instruction specifies one of the 20 addressable data registers and the program interprets the number in the register as a new program address rather than as data. This may seem a little confusing and even redundant, since there is a much more straightforward way to transfer a program to a new address. However, because the contents of the memory register can easily be modified, a program can dynamically adapt itself to a problem by modifying its own instructions. A logical result of this capability is so-called "artificial intelligence," a cybernetic approach to problem solving and recreational applications.

Incidentally, Texas Instruments' Model PC-100 desktop printer ($295.00) is specifically designed for use with both the SR-56 and SR-52 programmable calculators to supply hard-copy data printouts of instructions and results without halting program execution. The printer uses a 2.5" (6.35-cm) wide thermal tape that allows 20 characters per line. Each character is formed from a 5 x 7 dot matrix. The printer is fully controllable from the calculator keyboard or card program.

Hewlett-Packard Model HP-65. ($795.00) Introduced about two years ago, this calculator is still a highly sophisticated machine. Some of its pioneering features (motor-driven card reader, magnetic program cards, user-defined keys, program storage slot, etc.) are imitated in TI's SR-52 calculator. As with all H-P calculators, the HP-65 features RPN formatting. It has a 100-step program memory, five user-defined keys, and seven conditional tests.

In many ways, the HP-65 and SR-52 are direct competitors and invite comparisons. There is, obviously, a big difference in prices. (Bear in mind that all prices stated in this article are manufacturers' suggested list. Many dealers offer discounts on all types of calculators, including programmables. You can get a better feel for actual market prices by looking through the ads in your local newspaper.)

In some ways, the SR-52 is a more powerful calculator than the HP-65, but a more subtle and equally important advantage of the latter is the availability of extensive software (program library). In addition to selling hundreds of prerecorded program cards packaged in various Application Paks, H-P publishes a listing of thousands of user-contributed programs in its "Catalog of Contributed Programs." The impressive programmability of the SR-52 will no doubt stimulate development of extensive software backing.

Making a Choice. The only practical advice to follow when considering buying a programmable calculator is to speak to people who own programmables to get their personal-use reactions and visit a dealer to make your own hands-on comparisons. Almost certainly, once you decide on the level of programmability you need, such things as methods of entry, the "feel" of the keys, and display legibility will play important roles in your selection.

As a rough guide, get only as much calculator as you currently need. All calculator prices are dropping, and new models are being added. If you buy a programmable calculator now and "use it up" in six months or a year, you'll find a wider range of prices and models from which to choose when upgrading.

An excellent way to keep up with developments in programmable calculators is to join the HP-65 Users Club. Originally organized for HP-65 owners, the club's monthly newsletter, "HP-65 Notes," contains lots of information on other programmables. For a brochure that describes the club, send a self-addressed stamped business-size envelope (plus a separate $1 stamp to cover the cost of printing) to Richard J. Nelson, Editor, HP-65 Notes, 2514 W. Camden Pl., Santa Ana, CA 92704. Include an additional $1 stamp for a sample copy of the HP-65 Notes newsletter.

Books are another good source of information on calculators. Four recent ones you might want to get are: Electronic Calculators by H. Edward Roberts (Howard W. Sams & Co., Inc.); Scientific Analysis of the Pocket Calculator by Jon M. Smith (John Wiley & Sons); Calculator Dictionary and Users Guide by Charles J. Sippl (Matrix Publishers); and Advanced Applications for Pocket Calculators by Jack Gilbert (Tab Books).

Finally, don't overlook the manufacturers of calculators for in-depth material on the calculators in their respective lines.
NOW YOU CAN BUILD

A Scientific Programmable Calculator

A low-cost kit with 72-step storage capacity.

BY MARTIN MEYER

WITH the introduction of programmability, a powerful new dimension has been added to handheld calculators. Now you can build a full scientific, 72-step programmable calculator at low cost.

The programmable calculator presented here features algebraic entry with as many as five levels of parentheses and 10 levels of memory; a 12-digit display (eight-digit mantissa, two-digit exponent, and separate minus-sign displays for mantissa and exponent); a full range of arithmetic and scientific functions; and low-battery indicator. These are supplemented by eight programming functions and storage capacity for 72 steps in the programming section. Power for the calculator is supplied by a 9-volt battery or ac adapter.

More Details. When used as a basic problem solver, without employing the programming section, the calculator operates like most other scientific calculators, except that it is more flexible for complex problem solving as a result of its nested parentheses and 10-level memory register. Single-key commands are provided for such transcendental functions as sin, cos, tan, sin⁻¹, cos⁻¹, tan⁻¹, common and natural logs and anti-logs, and y². Convenience functions include 1/x, x², √x, degrees/radians select, factor reversal, n, and change sign (+/−). For maximum flexibility, six keys are assigned to the addressable memory section.

The programming keys include: RS (run/stop), GO TO, SKP (skip), SST (single step), and BST (back step). A separate slide switch provides the run/clear/load (RN/C/LD) functions. All together, these functions provide a very powerful and versatile programming instruction set.

The GO TO key permits direct branching in a program, while the SKP key provides a branch on minus. Hence, programs can make decisions and cause changes in the program sequence. This is a form of conditional branching that is very useful for complex programs where decisions must be made to select a program that leads to the final result.

About the Circuit. Although the actual circuit for the calculator is extremely complex, the schematic diagram, as shown here, is relatively simple. Most of the complexity is contained inside three LSI chips. Calculator array IC1 contains all the circuits for the arithmetic and scientific functions, while the 10-level memory register is in IC3. Key memory array IC2 provides the programming.

Integrated circuits IC4 and IC5 are buffer/drivers for the display-enable lines from IC1. The segment-enable outputs from IC1 and IC2 go directly to the segments in the display.

The keyboard consists of a 40-key matrix and slide switches for power on/off, degrees/radians (o/r) select, and RN/C/LD select. Ten of the keys in the array are assigned two functions, the second function under the command of a special F (shift) key. For example, the primary function of the SIN key is to provide the sine of a number. By pressing F first, the arcsin (sin⁻¹) function is provided instead.

There is a choice of three display formats. When no special commands are given, the decimal is fully floating. Scientific notation is obtained by pressing the EE (enter exponent) key. Finally, the decimal location can be fixed in the display by pressing PS (decimal point select) and then the numeral key that corresponds to the desired number of decimal places.

The 10-level memory register is accessed by operating the STO or RCL keys, (depending on whether you want to store a number in memory or recall it) and the numeral key that corresponds to the desired memory location. Memory locations can be accessed in any desired order. For extra versatility, the memory system is backed up by Mn+, Mn−, Mn×, and Mn− keys.

Operation. As mentioned earlier, the basic calculator can be operated in much the same manner as most other scientific calculators. However, the best way to describe the operation of the programming feature is to give
PARTS LIST

B1—9-volt battery
DISI—Miniature seven-segment LED display
IC1—7529-216 calculator array
IC2—7543-001 key memory array
IC3—7544 memory buffer array
IC4, IC5—75492 digit driver
J1—Miniature phone jack for 9-volt dc battery eliminator (optional)

R1—22,000-ohm miniature trimmer potentiometer
R2 through R9—100-ohm, 1/4-watt, 10% resistor
Misc.—Keyboard with power, mode, and D/R switches; calculator case with display filter; printed circuit board; hardware; solder; etc.

Note: The following are available from Netronics Research & Development Ltd., Rte. 6, Bethel Meadows, Bethel, CT 06801: complete kit of parts, including calculator case, soft vinyl carrying case, assembly and operating instructions, at $65.00 plus $1.50 postage; optional battery eliminator for ac operation at $4.95; printed circuit board at $6.00; LED display assembly at $19.50; keyboard assembly at $15.00. Connecticut residents, please add state tax.

MAY 1976

*Schematic diagram of the calculator shows how the five IC's are connected to the keyboard and 7-segment displays.
example, remove the HALT from line 00—perform the following sequence.
First, switch to RN and press GO TO. Switch back to C and press SST. Switch to RN and press GO TO 13. Then switch to R/S and press R/S to put a HALT in line 13. Finally, switch to C and press SST twice to remove the GO TO numbers.

More conditional branching statements can be obtained by using the SKIP function. SKIP is defined as x < 0 (negative), where x (and y) is the variable being tested. The following example sequence illustrates the basic SKIP function:

```
   Key   Line
R/S (enter data) 22
LOG           23
SKP           24
GO TO         25
4             26
0             27
SIN           28
TAN           29
```

If the result at line 23 is a positive number, the next statement (GO TO 40) will be executed. If the result at line 23 is negative, the program will skip the GO TO 40 statement (lines 25, 26, and 27) and execute the following statement (SIN) next and thereafter continue the program in sequence.

In the following program, using the SKIP function, the program will solve the equation x – 3 =. After each solution, the value of x will be decremented by 1 until x becomes less than 3, at which time the result of x – 3 = will be negative. An incrementing counter counts the number of times the equation is solved to the point where the result is negative (x < 3). When the negative result is obtained, the SKIP function branches to display the number of times the equation was solved and then stops.

```
   Enter  Line  Enter  Line
R/S (enter a) 00 4  19
STO          01  x  20
0            02 RCL  21
R/S (enter b) 03  o  22
STO          04  x  23
1            05 RCL  24
R/S (enter c) 06 2  25
STO          07  )j  26
2            08  )j  27
RCL          09  v  28
1            10  ÷  29
+/           11  2  30
+            12  x  31
['          13  RCL  32
RCL          14 0  33
1            15  =  34
F, x²        16  GOTO 35
-            17 0  36
['          18 0  37
```

As written, the program will solve for x₁. To make it solve for x₂, you must change line 12 to a −. Using the above program for a = 1, b = 2, and c = 3, x₁ will be −1 and x₂ will be 2. You can verify these results by plugging them into the quadratic equation. In both cases, the answer will be 0.

The one way to become proficient at using a programmable calculator is to practice. Practice entering and executing programs and practice writing your own programs. In just a short time, you will find that using this calculator is as simple as using a non-programmable calculator.

As each keystroke is entered during loading, the line number will increment one step. If you wish to see the actual key codes and line numbers, the entire program should first be entered and then return the program to line 00 after the last entry and single step through the program with the SST key with the slide switch in the L0 position. Note that the HALT character at the beginning of the program allows data (in this case, the value of u) to be entered.

To execute the program, set the slide switch to RN and press SKP (or GO TO 00). Enter the value of u and then press R/S twice. The calculator will automatically step through the program and display the solution.

If you wish to alter the program—for
A fascinating and rewarding hobby for SWL's.

BY C. M. STANBURY, II

The high-frequency broadcast bands are literally alive with music of every nationality. Aside from just listening to broadcasts of the music, a fascinating hobby is to make tape recordings of it, forming a collection for future listening pleasure and study of various trends in how folk music develops. While the reception on most shortwave receivers is not exactly high-fidelity, it is acceptable for the simple rhythms and harmonic structures of folk music. All you need to know is which stations and frequencies are best and have the patience to wait for a signal free of interference. Then you add a tape recorder and start your collection.

Folk music on shortwave is particularly interesting because you will hear two types. One includes pure, more-or-less traditional melodies indigenous to the country or area from which you are receiving them (such as music dating back to the Incas from stations in western South America). The other is that same music altered by recent cultural changes (such as the Latin American rock featured by the Venezuelan station, Radio Juventud, on 4.900 MHz). The cultural changes are similar to those that have produced folk rock and modern country and western from pure American folk music.

Equipment. One thing you should have if you want to make a collection of folk music is a phone jack on your shortwave receiver so that your tape recorder can be connected directly to the receiver. It is possible, of course, to record by placing a microphone in front of the receiver's speaker, but this adds ambient noise. If your shortwave receiver's phone jack automatically cuts off the receiver's speaker, the recorder should have its own monitoring facilities so that you can determine when a desired selection is finished or if the signal quality has dropped below an acceptable level.

Above is souvenir pennant from Radio Clarin. The station features every kind of Latin American music and is easily heard throughout daylight hours on 11.700 MHz.
There are two qualities of receivers that are of major importance. One is good image rejection. There is nothing so frustrating as finding a wanted signal on a clear frequency, only to have reception spoiled by interference produced within the receiver itself. For example, during the period around noon, Radio Iran often has traditional Persian music, with a strong, clear signal on 15.084 MHz. This is just below the 19-meter band and is thus usually free of interference (QRM). But if your receiver has poor image rejection, it may pick up radioteletype or other noise from 15.994 MHz.

Second, as most of your taping will be done within the interference-clogged SWBC bands themselves, the more selective your receiver, the better. As a general rule, two signals of equal strength, separated in frequency by 5 kHz, should not interfere with each other.

The Stations. To list every station which might conceivably broadcast a recordable selection of interest would require at least a small book. However, you'll probably be particularly interested in relays of home services which, for one reason or another, put strong signals into North America. This simplifies the task of listing stations.

However, it may just be a matter of time until all home-service relays from less-developed countries are forced off the major high-frequency bands by more powerful international relay networks. This makes a regional or "tropical," band such as 60 meters very important. Here, Radio Senegal is on 4.890 and Abidjan on 4.940 MHz, and sometimes, in the late afternoon, they put good signals into eastern North America. Another 60-meter African opening occurs periodically between 2200 and 0100 EST (1900-2200 PST). However, by this time of day, a myriad of Latin American stations will also have appeared on the band. Other promising African tropical-band outlets, as well as a few home service relays on the international bands, are listed in Table I.

In the second major tropical area, Latin America, every nation in Central and South America has its own particular variety of music. Unlike African music, however, almost all Latin American music was drastically altered many years ago by highly sophisticated European influences—mostly Spanish. You can hear and record this for yourself by tuning in Radio Clarin (Santo Domingo, Dominican Republic) during daylight hours on 11.700 MHz. Here again, we have a home service relay on an international band—or at least at the edge of a busy global band. Radio Clarin, which also can be received with strong, all-night signals on 4.850 MHz, often features music from every part of the Americas.

There is one part of the Americas where a good deal of pre-Columbian music remains intact. This includes the strip of the Andes that runs from Ecuador through Peru and into Bolivia. Surprisingly, one of the clearest signals, on occasion, is that of Radio Zaracay (Ecuador) on 3.390 MHz, in the 90-meter tropical band. The well-known missionary station HCJB also features some of this music on its various Spanish-language frequencies (such as 11.890 MHz).

Finally, to conclude this brief survey, we turn to Asia where one of the most interesting transmissions is Sri Lanka Broadcasting Corporation's All Asia Service on 11.800 MHz. It features the traditional music of the Indian subcontinent—with sitars, ragas, etc.—which influenced the Beatles and other rock groups in the 1960's. Sri Lanka is best heard before noon EST. Stations providing other music of the Far East, Near East, and Arab states of North Africa are listed in Table I.

International Rock. We have noted the influence of South Asian music on modern rock. In that case, the process was strictly one way, but there are other instances where rock has had a considerable influence on folk music.

The easiest way to hear this is by tuning to stations in Latin America, such as Radio Juventud. Peruvian stations, in particular, should be carefully monitored to find this mix of folk and rock. See Table II. Interestingly, Simon and Garfunkle's "El Condor Passe" ("I'd Rather Be a Hammer Than a Nail") was Peruvian inspired.

In Africa, local radio has played indigenous melodies alongside rock for many years, especially in such relatively sophisticated west Africa cities as Dakar (Senegal) and Lago (Nigeria). So, the stage is set in Africa for the emergence of a new "folk-rock" mixture.

Table I—Folk-Music Stations

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Station</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.390</td>
<td>Radio Zaracay (Ecuador)</td>
<td></td>
</tr>
<tr>
<td>4.890</td>
<td>Radio Senegal</td>
<td></td>
</tr>
<tr>
<td>4.910</td>
<td>Conakry, Republic of Guinea</td>
<td></td>
</tr>
<tr>
<td>4.920</td>
<td>Radio Pogresi (Honduras)</td>
<td>Good for Latin American rock.</td>
</tr>
<tr>
<td>4.940</td>
<td>Abidjan, Ivory Coast</td>
<td></td>
</tr>
<tr>
<td>4.990</td>
<td>Nigeria Broadcasting Corp.</td>
<td></td>
</tr>
<tr>
<td>5.041</td>
<td>Radio Bissau (Guinea-Bissau)</td>
<td></td>
</tr>
<tr>
<td>5.047</td>
<td>Lome, Togo</td>
<td></td>
</tr>
<tr>
<td>6.195</td>
<td>Nigerian Broadcasting Corp. (Local station at Sokoto)</td>
<td></td>
</tr>
<tr>
<td>6.205</td>
<td>Radio Nova International (Tentative Italian ID. Might instead operate from African waters.)</td>
<td></td>
</tr>
<tr>
<td>6.250</td>
<td>Radio Malabo (Equatorial Guinea)</td>
<td></td>
</tr>
<tr>
<td>9.022</td>
<td>Radio Iran</td>
<td></td>
</tr>
<tr>
<td>9.510</td>
<td>Radio Barquisimeto (Venezuela)</td>
<td></td>
</tr>
<tr>
<td>11.700</td>
<td>Radio Clarin (Dominican Rep.) (Plays all types of Latin American music.)</td>
<td></td>
</tr>
<tr>
<td>11.800</td>
<td>Sri Lanka Broadcasting Corp.</td>
<td></td>
</tr>
<tr>
<td>11.895</td>
<td>HCJB (Ecuador)</td>
<td></td>
</tr>
<tr>
<td>11.895</td>
<td>Radio Senegal</td>
<td></td>
</tr>
<tr>
<td>11.920</td>
<td>Abidjan, Ivory Coast</td>
<td></td>
</tr>
<tr>
<td>12.005</td>
<td>U.A.R. Broadcasting Service</td>
<td></td>
</tr>
<tr>
<td>15.084</td>
<td>Radio Iran</td>
<td></td>
</tr>
<tr>
<td>15.190</td>
<td>Brazzaville, Congo</td>
<td></td>
</tr>
<tr>
<td>15.245</td>
<td>La Voix du Zaire (Also reported irregularly on 15.350.)</td>
<td></td>
</tr>
</tbody>
</table>

Table II—Peru: Folk and International Rock Music Stations

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Station</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.240</td>
<td>Radio America</td>
<td></td>
</tr>
<tr>
<td>4.780</td>
<td>Radio Tingo Maria</td>
<td></td>
</tr>
<tr>
<td>4.780</td>
<td>Radio Atlantida</td>
<td></td>
</tr>
<tr>
<td>4.815</td>
<td>Radio Sameren</td>
<td></td>
</tr>
<tr>
<td>4.840</td>
<td>Radio Andahuaylas</td>
<td></td>
</tr>
<tr>
<td>4.845</td>
<td>Radio Suana</td>
<td></td>
</tr>
<tr>
<td>4.925</td>
<td>Radio Tropical</td>
<td></td>
</tr>
<tr>
<td>4.965</td>
<td>Radio Andina</td>
<td></td>
</tr>
<tr>
<td>5.010</td>
<td>Radio Eco</td>
<td></td>
</tr>
<tr>
<td>6.045</td>
<td>Radio Santa Rosa</td>
<td></td>
</tr>
<tr>
<td>6.115</td>
<td>Radio Union</td>
<td></td>
</tr>
<tr>
<td>9.532</td>
<td>Radio Nacional</td>
<td></td>
</tr>
<tr>
<td>9.562</td>
<td>Radio Nacional</td>
<td></td>
</tr>
</tbody>
</table>

All stations normally heard only at night. More interference east of the Mississippi than in western U.S.
BUILD THE AUDIO DETECTIVE

Here's a sensitive troubleshooting meter for phono cartridges, microphones, and PA systems

BY RALPH TENNY

The Audio Detective is a sensitive ac voltmeter which will prove to be especially useful in troubleshooting an audio system. On its lowest range (5 mV), it can be used to test microphones and many phono cartridges. It will also measure potentials up to 5 volts (50 volts, if a simple modification is made). The response of the meter is flat within 5% from 15 Hz to 20 kHz.

The instrument is battery-powered (1 mA current drain) and is conveniently small for portable use. A phono plug is used for the input and input resistance is 100,000 ohms.

Circuit Operation. The circuit made up of transistor Q1, R19, C7, and D8 is a regulated power supply which provides 14 volts for IC1 (Fig. 1). Due to the presence of C7, the supply turns on slowly to prevent capacitor charging currents on C2, C3, and C4 from damaging the meter. Diode D7 protects the circuit from an accidental reversal of battery polarity.

The network consisting of R1, R2, and R3 sets the quiescent operating level of 7 volts at the output of IC1A. The dc interstage coupling through R4, R7, and R10 maintains this voltage at the outputs of the three following stages. The high input impedance of the noninverting (+) input of IC1A prevents loading of the input attenuator. Diodes D5 and D6, in conjunction with R18, are used to protect IC1 from excessively high input voltages, which might damage it.

Sections B and C of IC1 amplify the audio signal from section A with stage gains determined by the ratios of R5 to R6 and R8 to R9. Capacitors C2 and C3 couple the ac currents to the common bus so that the ac output of each stage swings about the 7-volt dc operating level.

Section D of IC1 is a precision rectifier and meter driver. The parallel combination of R11 and R13 establishes the gain of the stage. Varying the value of R13 calibrates the meter so that the meter current is 50 microamperes (full scale) when 5 mV is applied to the (+) input of IC1A. Resistor R12 and the combination of C5 and C6 shunt R11 at the higher audio frequencies to adjust the frequency response near 20 kHz.

Construction. Circuit layout is not critical so perforated board and mounting clips or a printed circuit board can be used. It is advisable to use a socket for IC1 to avoid possible heat damage during soldering.

Because of the low signal levels required by the measuring circuit, a single common bus is used. Tie all the circuit ground points to this bus and connect the bus to the case at only one point—preferably at the ground lug of J1. If J1 is mounted on a metal panel, make no other connections to the metal portion.

Whatever the layout and case, the checkout of the circuit will be easier if one section is wired and tested before going to the next. Start with section D of the IC and the meter circuit. Since charging currents in C2, C3, and C4 will cause current surges in the meter, the operating voltage must be applied slowly to avoid any possibility of meter damage. The test circuit shown in Fig. 2A is used to do this. The dc operating power can be a battery or power supply between 12 and 15 volts dc. Be sure the potentiometer is at the zero position before turning on the power. The signal generator should be capable of delivering a low-distortion, 1-kHz sine wave which can be set to zero output.

When wiring this first section, connect R10 temporarily to point A of the test circuit. Turn on the power and slowly adjust the test circuit potentiometer to bring the voltage to between 12 and 15. As the voltage is increased, the meter action will be erratic and move upscale. When the power is fully on, the meter should settle back to zero.

Turn up the audio generator connected to the test circuit. As the generator output is increased, the meter will reach full scale when the generator is delivering 0.3 volts rms. Once this section is working properly, reduce the test circuit voltage and audio generator output to zero and remove the connection to R10.
PARTS LIST

B1, B2—9-volt battery
C1—0.1-µF, 50-V ceramic capacitor
C2, C3—100-µF, 25-V electrolytic capacitor
C4—22-µF, 25-V electrolytic capacitor
C5—100-pF capacitor
C6—47-pF capacitor (see text)

C7—47-µF, 25-V electrolytic capacitor
C8—225-µF, 25-V electrolytic capacitor
D1 to D7—IN4148 diode
D8—15-V zener diode (HEP Z0225)
IC1—Integrated circuit (National LM324)
J1—Standard phono jack (RCA)
M1—9-50-µA meter (Calextron DI-910 or similar)
Q1—2N5449 or T1598 transistor
Following resistors are 1/4-W:

R1, R2—47,000 ohms
R3—1.2 megohms
R4, R7, R10—1000 ohms
R5, R8, R18—10,000 ohms
R6, R9—1500 ohms
R11, R12—5600 ohms
R13, R19—(see text)
R14—91,000 ohms (see test)
R15—9100 ohms (see test)
R16—910 ohms (see test)
R17—100 ohms (see test)
S1 to S5—Spdt switch
Mac—Suitable chassis (Calextron H4-722), battery holder, mounting hardware, etc.

Fig. 1. The first three op amps in IC1 form a sensitive ac amplifier and the fourth drives the meter.

Now wire up the rest of the circuit (sections, A, B, and C of IC1). Perform the above test again and note that the inputs to sections A and B are 5 mV rms for a full-scale meter indication.

Assemble the power supply portion, using 150,000 ohms for R19. The time constant for R19 and C7 determines how fast the operating power comes up. Select the value of R19 so that the circuit comes into full operation without violently "pegging" the meter. On the prototype, the meter settled back to zero about seven seconds after power was turned on.

Complete the assembly, wiring up the input attenuator. The resistors used in the attenuator can be conventional 5% types or they can be selected with a resistance bridge to be as close to the stated values as possible. The more accurate the resistor value, the better the meter readings.

Turn on the power and apply an audio signal of about 5 mV rms at 1 kHz to J1 to get a full-scale reading on the meter. When the next higher scale is switched in, the meter should indicate about 1/10 of full scale. Bring the meter to full scale by adjusting the audio source. Switch to the next higher scale (0.5 V) and note that the meter goes down to 1/10 of full scale. Repeat the adjustment and check the next range.

Either a laboratory calibration standard or a dc-coupled scope can be used for final calibration and frequency-response checking. If a scope is used, start with the calibration. Use a new flashlight battery (1.55 volts). Set the scope to 0.2 volts per division, and connect the battery to the scope vertical input. Adjust the scope vertical gain until the trace is 7½ divisions from its zero position. If

Fig. 2. (A) Test circuit for stage-by-stage checkout. (B) A source of 0.005-volt rms.
(C) Measuring speaker impedance.
(D) How to check filters.

View of interior of the Audio Detective as assembled in the author's prototype.
the scope has a different vertical range, use a range that produces a nearly full-scale deflection.

Carefully select the two resistance values shown in Fig. 2B and apply 1.414 volts peak-to-peak at 1 kHz as shown. Connect the 0.005-volt rms output of this voltage divider to J1 of the Audio Detective, with the attenuator set for 0.005 V.

Select a value for R13 that will give a full-scale meter indication. Keeping the output of the audio generator at this constant level, reduce the frequency until the meter indicates 0.0047 volt. The generator frequency should be lower than 20 Hz. If a slower roll-off is desired, increase the value of C1. In this way, it is possible to bring the flat response down to 10 Hz. If a lower frequency is required, it is necessary to increase the values of C2, C3, C4, and C7, and lower the value of R19.

With the output of the audio generator held at 1.414 V peak-to-peak, increase the generator frequency to 20 kHz. If the meter indicates too low a value, the high-frequency response must be adjusted. This is done by adding more capacitance across C6. Be careful not to add too much compensation, which will result in a "hump" near the 20-kHz point.

Like all ac voltmeters, the Audio Detective will respond to almost any waveform. However, it is calibrated for a sine wave and other waveforms will produce erroneous meter readings. For example, a 9-volt peak-to-peak sine wave will read 3.2 V on the Audio Detective. A 9-volt square wave would show up as 5 volts. However, as long as the waveform remains the same, relative measurements of nonsinusoidal waveforms can be made.

Uses. The Audio Detective can be used to troubleshoot a PA system. Plug the microphone to be used into J1 (with the correct adapter) and speak into the mike. A dynamic mike should have an output of about 1 mV, and a condenser (electret) mike should generate between 4 and 5 mV. The Audio Detective can then be connected to the mixer output to test that stage. The procedure is continued through the audio system to the speaker outputs. The signal level will get progressively higher. At the speaker outputs, five volts on an eight-ohm line indicates just over three watts.

To determine the gain of an amplifier, use the Audio Detective to measure the input and output voltages. The gain is simply the output voltage divided by the input.

To test the frequency response of a tape recorder, apply a 1-kHz tone to the recorder’s auxiliary input and select a level that gives a comfortable playback volume with the volume control set at midrange. Record several different frequencies at this same level. Terminate the external speaker output with an 8-ohm resistor and monitor the voltage generated across the resistor at each frequency. (For component tape decks, monitor the line output unterminated.) Plot the output voltage as a function of frequency.

To determine speaker impedance, use the circuit shown in Fig. 2C. Select E_in so that 0.5 volt is generated across the 8-ohm resistor. Switch to the speaker and measure E_out. The speaker impedance at that frequency is (Z_ωout/0.5) x 8. For example, if Z_ωout is 0.45 volt, the speaker impedance is (0.45/0.5) x 8 or 7.2 ohms.

You can check the frequency response of a filter by using the circuit in Fig. 2D. Holding the input constant, vary the frequency and plot E_out as a function of frequency. Figure 2D also shows typical response curves for both series and parallel resonant circuits.

Modifications. The schematic in Fig. 1 shows the input attenuator spanning four ranges from 0.005 to 5 volts. If you want to extend the upper limit, use the attenuator shown in Fig. 3. Two versions are shown—one using five slide switches and one using a rotary switch. Either will extend the range to 50 volts.
TORNADOES, hurricanes, and other severe weather disturbances often strike in the middle of the night or at times when most people are not normally listening to the radio or watching TV. Consequently, they receive no advance warning and are unaware of the impending danger.

Residents of areas where disturbances often occur have taken to listening to transmissions from the National Weather Service stations operating on 162.40 or 162.55 MHz in most parts of the country. The receivers used for this purpose generally range from low-cost battery-powered units to vhf/FM scanners. There are also some expensive receivers with special circuitry to alert police stations, etc., to a forthcoming severe-weather announcement by the NWS. The under-$15 circuit described here will enable you to duplicate the special alert provisions of the costlier NWS receivers. It decodes the 1050-Hz warning tone used for the alert (when it occurs) and automatically activates the normally quiet receiver. This puts your low-cost unit in the same class as the professional weather warning systems.

Circuit Operation. The circuit (Fig. 1) is essentially a controller for relay K1, whose normally open contacts are between the receiver audio output transformer (secondary) and the loudspeaker. Thus the speaker is normally disconnected and resistor R1 provides a substitute load. Capacitor C1 is used to isolate diodes D1 and D2, which provide signal clipping to prevent overdrive of IC1. Capacitor C2 isolates the diode clip-
Per from IC1, since any dc component at the input to IC1 could cause false decoding.

Trimmer potentiometer R2, in conjunction with C5, determines the decoding frequency (1050 Hz) while C6 determines the bandwidth and C7 sets the decoder timing. When not decoding, the output of IC1 (pin 8) is high. When IC1 receives a tone within its locking range, the output drops low. This output is applied to one input of a gate in IC3. The output is also coupled through C8 to trigger IC2, a 555 timer.

The timer is required because false alarms can be produced by random receiver noise or voice announcements which occasionally are at 1050 Hz. Since the signals producing false alarms are usually of short duration, but the real alert tone is transmitted for at least 15 seconds, some form of timing circuit is needed.

The output of IC1 is connected to pins 2 and 4 of IC2. When a pulse appears, IC2 resets and starts its timing cycle. Resistor R5 and capacitor C10 set the length of the cycle (about 10 seconds). When IC2 times out, its output (pin 3) goes low and is applied to the input of IC3. When (and only when) the two inputs of IC3 are both low, its output goes high.

As long as the 1050-Hz tone is not present at the input of IC1, the circuit idles, with SCRT not conducting and the relay deenergized. When the 1050-Hz signal is received from NWS, the output of IC1 goes low and IC2 starts timing. At the end of the timing cycle, the output of IC3 goes high and SCRT starts to conduct through the relay coil. Then the loudspeaker is connected to the receiver's audio output and the weather bulletin is heard. Diode D4 reduces the back emf generated across the coil and D5 prevents damage due to application of reverse power supply. Pushbutton switch S1 is used to reset the decoder and turn off the speaker.

Construction. Parts placement is not critical and the circuit can be assembled on perforated board or a pc board. Sockets for the IC's are suggested. Do not install the IC's before reading the following instructions on tuning. Any enclosure of suitable size can be used.

The circuit operates from a 6-12-volt dc supply. In the nondecoding state, the current requirement is about 12 mA at 6 V. If your receiver power supply is in this voltage range, uses a negative ground, and can tolerate the current drain, you can power the alarm circuit from this source. If you have a battery-operated receiver, build a low-power dc supply between 6 and 12 volts.

If you have a transformer-operated, tube-type receiver, consider picking off the 6.3-volt filament supply (if one side is grounded) and using a silicon rectifier diode and a filter capacitor (about 1000 µF).

Testing. Start with the IC's out and the circuit not connected to the receiver.

Install IC1 in its socket and connect a dc voltmeter between pin 8 and ground (positive side to pin 8). Turn on the dc power and note that the voltmeter indicates close to the supply voltage. Connect an audio signal generator ground to the circuit ground and the hot side to the TRANS terminal on TS1. With the relay deenergized, you should now have a signal on the input of IC1.

Set the signal generator as close as possible to 1050 Hz. Adjust R2 until the voltmeter reading drops to near zero, indicating that IC1 is decoding. Remove the signal generator, and the voltmeter should go back to the supply voltage reading. Perform this step several times to make sure that IC1 is operating with each application of 1050 Hz. Turn off the audio generator and the dc power.

Remove IC1 from its socket and install IC2 in its socket. Connect the dc voltmeter between pin 3 of IC2 and ground. Turn on the dc power. Connect a jumper to circuit ground and touch the other end to pin 2 of IC2. Note that the voltmeter reading is the supply voltage. After about 10 seconds, the voltmeter should drop back to near zero, indicating that IC2 has

Parts List

- **IC3**—4001 CMOS
- **R1**—10-ohm, 5-W resistor
- **R2**—20,000-ohm resistor
- **R3**—22,000-ohm, 1/2-W resistor
- **R4**—470-ohm, 1-W resistor
- **R5**—330,000-ohm, 1/2-W resistor
- **R6**—22-ohm, 1-W resistor
- **R7**—27,000-ohm, 1/2-W resistor
- **S1**—Normally closed pushbutton switch
- **TS1**—Three-conductor terminal strip
- **Misc.**—Suitable enclosure, power supply (see text), mounting hardware, IC sockets, etc.

Fig. 1. When IC1 receives the alert and IC2 times out, the SCR turns on the speaker.

MAY 1976
timed out. If the timing is too short, increase the value of R5. Conversely, if it is too long, reduce the value of R5. Check the timing cycle several times to make sure it is in a range of 7 to 14 seconds. Turn off the power supply and remove the jumper.

Remove IC2 from its socket, and install IC3 in its socket. Connect one end of a jumper to circuit ground and the other end to pins 1 and 2 of IC3 simultaneously. Relay K1 should close and lock in. Remove the jumper, depress S1, and note that the relay opens. Repeat this operation, ending with the relay closed. Remove the jumper, and connect it between the supply and either pin 1 or 2 of IC3. Depress S1 and note that the relay opens and remains open after the switch is released. Remove the jumper and the dc supply. Once all tests have been made, install all of the IC’s. Apply the dc supply and put the 1050-Hz signal from the audio generator on the input. After IC2 has timed out, the relay should close. Remove the signal input, depress S1, and the relay should open and remain open. The circuit is now ready for installation.

Installation. Connections to the weather receiver will vary depending on the receiver. Some typical connections are shown in Fig. 2. Note that a 1:1 8-ohm transformer is used for isolation in case the chassis of the receiver is used as the positive side of the supply (especially if you use the receiver power supply for the alerting circuit). The isolation transformer is also used in case the circuit is OTL.

If the receiver is used for other than weather reception, install a switch across the SPKR and TRANS terminals on TS1. Then be sure the switch is open to use the alerting circuit.

Operation. Turn on the weather radio. Tune it to your local NWS station and allow it to warm up so that it doesn’t drift (assuming it doesn’t have afo). Depress S1 and you are ready to receive an alert warning. Since the speaker is now silent, you can turn up the volume to make sure that, if the alarm comes during the night, the sound will be sufficient to awaken you.

If you leave the receiver and the alerting circuit on 24 hours a day, it will be triggered between 10 and 11 a.m. each weekday when the NWS test signal is transmitted.

When a severe weather alert is broadcast, it is repeated every 10 minutes until the alert is over. This means the alarm will sound each time until you shut down the system.
ELECTRICAL GROUNDS FOR ELECTRONIC EQUIPMENT

Your high-frequency gear will work better when you use good grounding techniques.

By Hector French

Establishing a good low-resistance earth ground can solve many of the problems commonly encountered with high-frequency (particularly radio communication) equipment. For example, proper grounding can solve the problems of low sensitivity (assuming the equipment has a high sensitivity to begin with), harmonic generation, cross-modulation effects, and detection of unwanted signals.

As a general rule, an all-metal cold-water plumbing system is often the best access you have to a true, low-resistance earth ground in any given location. (Don’t count on the “ground” conductor in a three-wire electrical system as being at earth ground. As often as not, the “ground” conductor is really nothing more than the “common” bus for the system.)

In this article, we will discuss how to make a good electrical/mechanical connection to an existing and accessible earth ground, the procedure to use to establish a good earth ground where a cold-water pipe isn’t available, and how to deal with the problems you might encounter.

Making Ground Connections. Many earth-ground systems are poor due to the connections made to them. Unless a ground connection is made electrically (and mechanically) sound, it can exhibit resistance, capacitance, and rectification, as illustrated in Fig. 1. This kind of ground often is the result of a dirty connection, whose characteristics change with time, temperature, and humidity. The rectifier is the result of dirt or rust that weren’t cleaned away before the connection was made.

The rectifier is almost certain to be the cause of trouble. It can be the cause of harmonics, cross-modulation effects, and detection of unwanted signals. A typical example of such a problem is on a stereo FM tuner where interference occurs between two different local stations. If the interfering station appears at several locations on the dial, the ground rectifier is likely generating harmonics. If the interference is an all-the-time problem across the entire dial, the rectifier could be detecting the local signal and passing it directly into the tuner’s or receiver’s audio section.

The cure for a poor connection to ground is relatively simple. First, make certain that the tie point is clean (down to bare metal). Scrub away any dirt and grease, and use emery cloth or steel wool to remove rust or other oxides. Completely dry the cleaned area.

If you’re lucky enough to have copper cold-water plumbing and have a high-wattage soldering iron or gun, you can wrap a length of wire mesh (a length of shield from a coaxial cable, for example) around the connection and solder it into place. Completely “wet” the mesh and tie point with solder to assure an electrically and

Fig. 1. Equivalent circuit of a poor ground connection, which can cause numerous problems.
mechanically sound joint. (It would help if you could shut off the water in the pipe and drain it to remove the heat-sinking action of the water and make soldering easier. Also, do not attempt to make your connection near a soldered joint in the plumbing; make it at least 12" away from any joints to prevent the possibility of water leaks when the water is again turned on.) After soldering the joint and connecting the grounding lead from the equipment to the mesh, coat the mesh and both joints with silicone seal or, better still, silicone rubber to weatherproof them.

If your plumbing is other than copper pipe, like galvanized iron, the best way of making the connection is with the aid of a grounding clamp or a pipe strap with slots in it that are turned in at the edges to bite into the connecting point. Again, start with a clean, dry connection point. Slip on the clamp or strap and tighten it enough to assure good electrical and mechanical contact. Connect the grounding lead from the equipment to the clamp or strap, and weatherproof the connection.

"Perfect" Ground Problem.

There is one situation where even a "perfect" ground can be a source of trouble. This is when your high-frequency gear is an odd number of quarter wavelengths away from earth ground. In this case, the odd number of quarter wavelengths produces a transformer action that results in a high impedance to ground. If you suspect that this might be your problem, try making your ground connection at a different place or using a different length of wire between equipment and ground connection.

You might have to do some experimenting to eliminate the "odd-number" problem, but it will be worth it if you clear up the difficulty. Just remember that the total path between equipment and earth ground is the length of the wire plus the length of the pipe between access point and true ground, as shown in Fig. 2.

Where No Access Exists. If you must operate your equipment in an area where no cold-water pipe provides an access to earth ground, you'll have to make access. The simple way to do this is to drive one or more 6' or 8' (1.83 or 2.44 m) metal rods or pipes into the ground and make your connection to it or them. One rod may not be enough; in which case, you might have to drive three or four rods into the ground 1 or 2 meters apart and tie them together with heavy-duty wire. One or several short lengths of rod or pipe driven into the ground will usually do the job. If not, the reason is that the actual soil resistance varies from one location to another. The following list gives "typical" resistance figures for various types of soil, based on 1 ohm as the resistance of sea water: Rich soil, plains 300 ohms Hills, forest 750 ohms Rocky, dry and sandy 2500 ohms Industrial area 5000 ohms

Where poor soil conditions exist, you'll have to try a different approach for obtaining a low-resistance earth ground. A lot of work will be involved, but it will be worth it if you can solve all or most of your grounding problems. The trick here is to bury a few square feet of copper sheet or galvanized sheet metal to which are attached one or more lengths of grounding rod or pipe. As a general rule of thumb, the deeper you bury the metal and/or the larger the area of the metal, the better will be the ground. But be practical. Try for a minimum depth of more than 1 meter (39.7") and a minimum area of about 0.37 sq. m (24" square) for the sheet metal. Before lowering the sheet metal into the hole, line the bottom of the hole with a mixture of charcoal and rock salt to a depth of about 15.2 cm (6"). Water down the charcoal/salt mixture. Then attach the rod or rods to the sheet metal and lower this into the hole, followed by a layer of the charcoal/salt mixture. Water the mixture. Then fill the hole with soil, tamping it down solidly. Water down the soil, but don't turn it to mud, to help in settling and assure good conductivity. (See Fig. 3 for details.) After making your ground connection to the rod or rods, water down the area periodically to prevent it from drying out and maintain good low-resistance earth ground contact.

Finishing Steps. Once you have a good connecting point for access to a low-resistance earth ground, you must give some consideration to the equipment itself and the area in which the equipment is to be operated. The first thing you should do, therefore, is set up the electrical environment.

If your equipment is on a metal table, ground the table. For a wood table, run a ground wire around the top or tack a metal screen to the bottom surface of the table top and connect the screen to ground. If you're operating your equipment in an area that's carpeted, a good practice is to put some insulating screening under the carpet and ground it. Then connect the exposed metal part of each light fixture to ground through a separate grounding wire. Don't hook all fixtures up in series and run a single wire to ground. (Grounding lighting fixtures is a pretty good cure for fluorescent-light interference.) Finally, ground the frames of all electric motors that might be close enough to cause interference. Again, run a separate grounding wire to each motor.

The simplest way to ground your equipment is usually the best. If various pieces of equipment are physically close to each other, a single length of wire fastened to each of their chassis and to the grounding point will do.

Our closing advice is this: Once you have everything working properly, periodically check your grounding system to make sure that its integrity is intact. This way, you'll be sure you get the most from your ground for many years to come.

Fig. 3. Details of how to make a good earth ground by burying a metal plate several feet down.
Everything you need to know about CB is in this new book by Radio Shack

ALL ABOUT
CB TWO-WAY RADIO

A layman's plain talk guide to the equipment, rules, and benefits of low-cost citizens' band two-way radio for business, family and personal use.

Our just-published 116-page CB pocket-size book is available now at Radio Shack stores at a "give-away" price of just 25¢, prior to its listing in our catalog at $1.25. If you're into CB 2-way radio or getting in (as who isn't!) you'll want this book to avoid costly errors.

Edited by the folks who started our famous Realistic® CB line in 1959, it's authoritative, very easy to read, and tells all about CB for business, family and personal use. *Get your $1-off copy—bring this coupon to any nearby participating Radio Shack store or dealer TODAY!*

9 Plain-Talk Chapters:
- Personal Two-Way Communications
- Taking the Mystery Out of CB
- Parts of the System
- How Far You Can Expect to Talk
- Equipment Selection
- Installation
- FCC Regulations
- CB Tomorrow
- Detailed Glossary
 — Plus —
- 10-Codes
- CB Slang
- FCC Field Offices
- Over 100 Pictures

AmericanRadioHistory.Com
If you can't go to college for your career in electronics — read this!

CREI brings college-level training to you with eight educational advantages, including special arrangements for engineering degrees.

The best way to qualify for top positions and top pay in electronics is obviously with college-level training. The person with such training usually steps more quickly into an engineering level position and is paid considerably more than the average technician who has been on the job several years.

A regular college engineering program, however, means several years of full-time resident training — and it often means waiting several years before you can even start your career. This, of course, is difficult if you must work full time to support yourself and your family.

If your career in electronics is limited without college-level training, take a look at the advantages a CREI home study program can offer you.

1. Convenient Training
 CREI brings the college to you. Through the convenience of home study, you receive exactly the same level of training you will find in any college or university offering programs in electronic engineering technology. With CREI, however, you can "go to college" whenever you have spare time at home or on the job.

2. Specialized Programs
 With CREI, you enjoy the advantage of specialized training. That is, your program will include only those courses directly applicable to your career in electronics. We omit such courses as English, social studies and other subjects, which are usually required in resident schools. Therefore, with CREI, you move ahead faster to the more interesting and useful part of your training.

3. Practical Engineering
 CREI programs give you a practical engineering knowledge of electronics. That is, each part of your training is planned for your "use on the job." By using your training, you reinforce the learning process. And by demonstrating your increased knowledge to your employer, you may qualify for faster career advancement.

4. Engineering Degrees
 CREI offers you a number of special arrangements for earning engineering degrees at recognized colleges and universities. You can earn college credit while you are taking your CREI program or apply later, whatever is best for your career plans.
5. Unique Laboratory
Only CREI offers you the unique Electronic Design Laboratory Program. This complete college laboratory makes learning advanced electronics easier and it gives you extensive practical experience in many areas of engineering, including design of electronic circuits. No other school offers this unique program. It is a better "Lab" than we have found in many colleges. And the professional equipment included in the program becomes yours to keep and use throughout your professional career.

6. Wide Program Choice
CREI gives you a choice of specialization in 14 areas of electronics. You can select exactly the area of electronics best for your career field. You can specialize in such areas as computer electronics, communications engineering, microwave, CATV, television (broadcast) engineering and many other areas of modern electronics.

7. Prepared by Experts
Experts in industry and technical organizations of government develop CREI programs. Each part of your training is developed by a recognized expert in that area of electronics. That means you get the most up-to-date and practical instruction for your career.

8. Industry Recognition
That CREI training is recognized by industry and government is evident from the fact CREI provides training to advanced technical personnel in over 1,700 technical organizations. Many subsidize the training of their employees with CREI. If there is any question about the advantages of CREI training for you, ask your employer or any engineer to evaluate the outline of a CREI program for you.

Other Advantages
Of course, there are many other advantages to CREI training. For example, throughout your training, CREI's staff gives you personal instruction for each step of your program. And in many industrial areas, both in the U.S. and abroad, CREI Field Service Representatives provide a number of important personal services for your training and your career.

FREE Book
There isn't room here to give you all of the facts about career opportunities in advanced electronics and how CREI prepares you for them. So we invite you to send for our free catalog (if you are qualified). This fully illustrated, 80 page catalog describes in detail the programs, equipment and services of CREI.

Qualifications
You may be eligible to take a CREI college-level program in electronics if you are a high school graduate (or the true equivalent) and have previous training or experience in electronics. Program arrangements are available depending upon whether you have extensive or minimum experience in electronics.

Send for this FREE Book describing your opportunities and CREI college-level programs in electronics

Mail card or write describing qualifications to

CREI CAPITOL RADIO ENGINEERING INSTITUTE
McGraw-Hill Continuing Education Center
3939 Wisconsin Avenue Northwest
Washington, D.C. 20016
Accredited Member National Home Study Council

GI Bill
CREI programs are approved for training of veterans and servicemen under the G.I. Bill.
IT ADDS UP-

MP-A processor card. A complete microcomputer system on a single card. It features the "Motorola" MC6800 processor. The powerful memory orientated processor that is rapidly becoming the standard of comparison in the industry. Also on this board is the MCM6830L7 \textregistered{} Mikbug ROM, MC6810 RAM and the MC14411 baud rate generator. The crystal controlled master clock oscillator and tri-state data bus drivers complete the board. Everything works from a single 5.0 Volt supply.

MP-A.......................... $145.00

MP-M main memory card. This circuit board contains two blocks of 2,048 words of memory. Each part has its own supply regulator and can operate independently of the other half. The memory chips are the proven reliable 2102 static type. They are capable of cycling fast enough to allow full speed operation of the processor at all times. No waiting for refresh cycles and no problems with "flakey" memories. Only a single 5.0 Volt supply required.

MP-M...................... $125.00

Chassis, mother board and power supply. Anodized cabinet with perforated cover for cool operation. Ten amp power supply will power fully expanded system of up to six memory cards and eight interface cards.

MP-B—Mother Board:.... $40.00
MP-F—Chassis:............ $30.00
MP-P—Power Supply:...... $35.00

TO A GREAT COMPUTER SYSTEM

MP-C serial control interface. This programmable interface may be used to connect the computer to either a video terminal or TTY current loop system. Directly compatible with either system. No hardware changes.

MP-C....................... $40.00

$395.00

□ Enclosed is $395 for my SwTPC Computer Kit □ Send Data
□ or BAC .. #
□ or MC ... Ex Date

NAME

ADDRESS

CITY STATE ZIP

Southwest Technical Products Corp., Box 32040, San Antonio, Texas 78284

Mikbug\textregistered{} is a registered trademark of Motorola Inc.
A New Audio
"ROOM EXPANDER"

Digital Time Delay System produces controllable reverb.

BY LESLIE SOLOMON, Technical Editor

THE AUDIO world has generally been thought of as purely analog—about as far removed from digital electronics as one could get. There have been some attempts to produce digital power amplifiers; but, so far, digital circuitry has made no inroads on actual signal generation and reproduction. (The use of digital peripheral equipment such as level meters, timers, or counters is not actually part of the generation or reproduction of the audio signal.)

Things may be changing, however, with the advent of a new approach to reverberation called a "Digital Time Delay System" (also referred to as an acoustic room expander) introduced by Audio Pulse Div. of Hybrid Systems (Bedford Research Park, Crosby Dr., Bedford, MA).

In real acoustic space, the various reflected sounds arrive at the ear later than the primary (direct) sounds, and the larger the concert hall, the later the reflected sounds arrive. Obviously, this concept has been considered before. Former approaches to reverb have ranged from the use of mechanical springs to charge-coupled electronic devices. (Commercial time delays as used in recording studios are far too expensive for home use at present. The Audio Pulse Digital Time Delay System is $585.)

Digital Techniques. The technique used in the space expander involves the equivalent of 150,000 transistors (in IC form). The operation is accomplished by encoding each channel of a stereo pair into digital form (a series of pulses) and depositing the pulses in a shift register. The latter can be thought of as a long hollow tube in which different colored balls (representing the 1's and 0's of the digital logic) can be inserted in serial fashion. If the differently colored balls are inserted in a particular pattern, they will come out the far end of the tube in exactly the same order. The length of the tube determines the amount of time (delay) required for the balls to go from input to output. In the electronic shift register, a set of voltage levels represents the predetermined 1's and 0's, and a clock pulse steps them along. The number of "cells" in the register then determines the time required for the digital pulses to pass through the register.

The technique used is not pulse-code modulation, in which a group of pulses represent the instantaneous amplitude of the input signal. (This requires 10 to 12 pulses per group to reproduce wide-range musical signals.) Instead, the space expander uses "delta modulation" in a circuit that generates a continuous series of pulses whose rate reflects the moment-to-moment changes in the audio input level. This is an efficient method of encoding because only about half as many pulses are required per second.

A single time-delay system can accurately simulate only one reflected sound, or a single echo. To provide the ambiance created by the many reflected sounds in a concert hall and avoid the single echo effect, the space expander uses a cross-channel recycling loop technique. Each side of the stereo pair is not only delayed but recycled back to the opposite side at a reduced level that corresponds to the normal attenuation of a sound wave reflected and re-reflected. Consequently, the composite right and left audio output signals contain dozens of delayed signals decaying exponen-
PIONEER HAS DEVELOPED A RECEIVER EVEN THE COMPETITION WILL ADMIT IS THE BEST.

One look at the new Pioneer SX-1250, and even the most partisan engineers at Marantz, Kenwood, Sansui or any other receiver company will have to face the facts.

There isn't another stereo receiver in the world today that comes close to it. And there isn't likely to be one for some time to come.

In effect, these makers of high-performance receivers have already conceded the superiority of the SX-1250. Just by publishing the specifications of their own top models.

As the chart shows, when our best is compared with their best there's no comparison.

To begin with, the SX-1250 is at least 28% more powerful than any other receiver ever made. Its power output is rated at 160 watts per channel minimum RMS at 8 ohms from 20 to 20,000 Hz, with no more than 0.1% total harmonic distortion.

And, for critical listening, no amount of power is too much. You need all you can buy.

To maintain this huge power output, the SX-1250 has a power supply section unlike any other receivers, with a large toroidal-core transformer and four giant 22,000-microfarad electrolytic capacitors.

But power isn't the only area in which the SX-1250 excels. The preamplifier circuit has an unheard-of phono overload level of half a volt (500 mV). This means that no magnetic cartridge in the world can drive the preamp to the point where it sounds strained or hard. And the equalization for the RIAA recording curve is accurate within ±0.2 dB. A figure unsurpassed by the costliest separate preamplifiers.

Turn the tuning knob of the SX-1250, and you'll know at once that the AM/FM tuner section is also special. The tuning mechanism feels astonishingly smooth, precise and solid.

FM reception is loud and clear even on weak FM stations because the tuner combines extremely high sensitivity with highly effective rejection of spurious signals.

Of course, the Pioneer SX-1250 carries a price tag commensurate with its position at the top. But if you seek perfection you won't mind paying the price.

If, on the other hand, you'd mind, look into the new Pioneer SX-1050 or SX-950. They're rated at 120 and 85 watts, respectively, per channel (under the same conditions as the SX-1250) and their design is very similar. In the case of the SX-1050, virtually identical.

That means you don't just come to Pioneer for the world's best.

You also come to us for the next best.

For informational purposes only, the SX-1250 is priced under $900. The actual resale price will be set by the individual Pioneer dealer at his option.

Anyone can hear the difference.

U.S. Pioneer Electronics Corp., 75 Oxford Drive, Moonachie, New Jersey 07074.
<table>
<thead>
<tr>
<th>Feature</th>
<th>Pioneer SX-1250</th>
<th>Marantz 2225</th>
<th>Kenwood FR-9430</th>
<th>Sansui 5090</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Min RMS</td>
<td>160W + 160W 20Hz</td>
<td>125W + 125W 20Hz</td>
<td>120W + 120W 20Hz</td>
<td>110W + 110W 20Hz</td>
</tr>
<tr>
<td>Total Harmonic Distortion</td>
<td>0.1%</td>
<td>0.15%</td>
<td>0.1%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Phono Overload Level</td>
<td>200 mV</td>
<td>100 mV</td>
<td>200 mV</td>
<td>200 mV</td>
</tr>
<tr>
<td>Input Phono/Aux/Mic</td>
<td>2/1/2</td>
<td>2/1½/2½/2½/3½</td>
<td>2/2½/2½/3½</td>
<td>2/2½/2½/3½</td>
</tr>
<tr>
<td>Tape Mon/Dual</td>
<td>2/yes</td>
<td>2/yes</td>
<td>2/yes</td>
<td>2/yes</td>
</tr>
<tr>
<td>Tone</td>
<td>Twin Tone</td>
<td>Bass/Mid-Treble</td>
<td>Bass/Mid-Treble</td>
<td>Bass/Mid-Treble</td>
</tr>
<tr>
<td>Tone Defeat</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Speakers</td>
<td>A.B.C</td>
<td>A.B.C</td>
<td>A.B.C</td>
<td>A.B.C</td>
</tr>
<tr>
<td>FM Sensitivity (400 kHz)</td>
<td>1.5 µV</td>
<td>1.5 µV</td>
<td>1.7 µV</td>
<td>1.7 µV</td>
</tr>
<tr>
<td>Selectivity</td>
<td>60 dB</td>
<td>80 dB</td>
<td>60 dB</td>
<td>85 dB</td>
</tr>
<tr>
<td>Capacity Ratio</td>
<td>1.0 dB</td>
<td>1.25 dB</td>
<td>1.3 dB</td>
<td>1.5 dB</td>
</tr>
</tbody>
</table>
A SIMPLE LOGIC PROBE

This circuit was inspired by R.M. Stitt's "Build a Direct Reading Logic Probe" in the September 1975 issue of Popular Electronics. Although the seven-segment display technique used in that article was intriguing, I found that it could lead to some problems. For example, if a signal is oscillating between about 0.5 and 3 volts, at a frequency of, say, 100 Hz, the signal would appear to be low, high, and a pulse—all at the same time! Either the digit ‘8’ would be displayed 15 volts and draws less than 12 mA. Its op amp input circuit has high input impedance and low capacitance.

Further, three LED's display high, low and pulse levels and the approximate duty cycle (indicated by relative brightness). The possible states displayed range from all three LED's lit (a square wave with about a 50% duty cycle and high and low levels above and below V/2 and V/7, respectively) to only the pulse LED glowing. This indicates a train of narrow, positive- or negative-going pulses riding on a level somewhere between the lower and upper switching thresholds, or some other oscillation with amplitudes between these two levels.

Voltage follower IC1A, one fourth of an LM324 quad op amp, isolates the probe from the rest of the circuit and passes the input signal to the low length of PVC tubing. Either pc or perforated board techniques can be used. LED size and color is left to the individual. Choose a distinctive color combination—possibly red for LOW, green for HIGH, and yellow for PULSE. After a few days of use, you'll probably agree that a versatile logic probe is very handy to have around.

Few parts combined to provide a versatile logic state indicator.

BY ROBERT LEFFERTS

PARTS LIST

C1, C2—1-uF, 25-volt tantalum capacitor
C3—1000-pF disc capacitor
IC1—LM324 quad op amp
IC2—555 timer
LED1-LED3—20-mA light emitting diodes

Q1-Q3—2N5485, HEP F0021 field effect transistors
R1—4.7-megohm, 1/4-W, 5% resistor
R2—1.5-megohm, 1/4-W, 5% resistor
R3—100,000-ohm, 1/4-W, 5% resistor
R4—68,000-ohm, 1/4-W, 5% resistor
R5—33,000-ohm, 1/4-W, 5% resistor
R6—51,000-ohm, 1/4-W, 10% resistor
R7—1-megohm, 1/4-W, 10% resistor
R8—51,000-ohm, 1/4-W, 10% resistor
Misc.—Probe tip, case, pc or perforated board, solder, hookup wire, etc.

or, if the monostable overrode the high and low displays, a “P” would appear. However, there would be no relative indication of duty cycle.

The probe presented here not only solves this problem, but is also useful with CMOS logic levels, as well as 555 and other timer outputs. It will operate on supply voltages ranging from 5 to
ADD SCORING AND SOUND EFFECTS TO LAST MONTH'S

This novel, low-cost circuit will provide greater interest to your TV table-tennis game.

To add interest to your Pongtronics TV game (described here last month), you will want to build this optional assembly which provides sound effects and displays the score. It also serves the ball from the loser's side of the game court, with the speed of the serve determined by the ball speed control on the main circuit board.

Scoring is displayed as two horizontal bars, one for each player, positioned just below the bottom court boundary. Two digital memories store the point information, while a simple D/A (digital-to-analog) converter generates the length-of-bar information. Every time the ball is missed, the loser's score bar lengthens in fixed increments. The game is over when a loser accumulates 12 misses. When the loser's bar extends completely across the playing court and the game ends, his paddle automatically disappears from the screen. (By using a bar-graph scoring approach instead of an on-screen numeric readout for the scoring, an expensive character generator is eliminated.)

The sound effects are generated by using ball-paddle and ball-wall coincidence signals to trigger an audio oscillator that emits a bongo-drum-like "bonk" tone. If a paddle misses the ball and the latter goes off-screen, another audio oscillator emits a horn-like "braap" sound. These sounds can be tailored to suit individual tastes by juggling the component values in simple RC networks.

Theory of Operation. Figure 1 is a block diagram of the sound/scoring system. The scoring circuit is initiated by depressing the start/serve switch on the main game board. This resets two four-bit binary counters which are right and left memories to zero and launches the ball.

The voltage that corresponds to the horizontal position of the ball is picked up from the main game board and fed to the right- and left-miss comparators. When the ball misses either paddle, the ball-position voltage exceeds the comparator's reference voltage, forcing the comparator to change state. This generates a count pulse that goes into the appropriate point memory.

The outputs of the point memories are summed in resistor-network D/A converters that produce an analog current proportional to the state of the counter at any given moment.

A seven-stage circuit counts the number of horizontal scan lines from the bottom of the lower court wall to produce the scoring bars at the bottom of the TV screen. After detecting the seventh scan line, the counter operates an analog switch, or transmission gate. In one state, the analog switch passes the left score information to a current-controlled comparator referenced to the horizontal ramp from the main game board. The switch remains in this mode for eight scan lines, at which point, the scan-line counter turns it off. The length of the score bar is proportional to the current from the D/A network, which in turn is determined by the count stored in the memory.
Eight more horizontal scan lines are counted to generate a space. Then the scan-line counter toggles the analog switch so that the right score data is introduced into the comparator. This score is also displayed in the following eight lines. Every 16.6 ms, or every vertical frame, the counter that controls the location of the scoring bar is reset, and the operation repeats.

When a score bar reaches a 12 count, the associated bar will have stretched across the screen. A gate then opens to blank out the losing paddle and lock up the serve gate, thus signalling the end of the game. To begin a new game, the SERVE/START button in the main circuit is pressed to repeat the cycle.

The hit and bounce "bonk" sound is produced by gating a 300-Hz oscillator for 8 to 10 ms. The miss "braap" sound
is produced by gating a separate 100-Hz oscillator for 300 ms.

How It Works. The complete circuit of the optional sound/scoring subassembly is shown in Fig. 2. Transistor Q4 and integrated circuit IC14A make up a normally on comparator whose reference voltage is determined by the values of resistors R66 and R67. Positive feedback to speed up switching time is provided by R70. Transistor Q5 and integrated circuit IC13B make up another normally on comparator, with R66, R67, and R68 determining the reference voltage. The inputs of both comparators receive the voltage that corresponds to the horizontal position of the ball from terminal SG on the main circuit board.

When the ball goes off-screen to the left, Q4 cuts off and IC14A pulses IC14B. This is turn toggles and deposits a count in score counter IC18B. When the ball goes off-screen to the right, Q5 and IC13B toggle left score counter IC18A.

When either comparator switches state, the output signal causes miss gate IC13A to change state. A slight delay, the result of R73/C36, is introduced into the signal applied to IC13C, which controls the serve gate on the main board. Hence, a miss with either paddle automatically initiates a new serve as well as stores a count in the proper counter.

Resistors R74 through R77 in the IC18B circuit convert the stored digital data into an analog current for the right signal. A similar function is served by R78 through R81 in the IC18A circuit as the left score keeper.

Used as an electronic switch to alternately multiplex the two bar scores on the TV receiver's screen, IC15 is a dual CMOS transmission gate with an internal inverter. The switch is toggled back and forth by an output from horizontal scan-line counter IC16. For example, when one portion of IC15 closes, the current from the right score resistor network is fed through R82 to the base of Q6. Simultaneously, the other portion of the digital switch is open, disconnecting the left score information. The Q6/IC14C circuit forms a programmable comparator that mixes the resistor network current with the horizontal ramp determined by the current from Q6 in conjunction with the settings of R66 and R90. The settings of these trimmer potentiometers determine the length of each score increment by establishing the 0 starting and 12 ending points. NAND gate IC17A inverts the video score signal and, in turn, is enabled at the proper time by the horizontal scan line counter (IC16).

In the sound section, C39 and R91 differentiate the "miss" pulse and trigger monostable multivibrator IC19A/IC17D, which turns on the "miss" audio oscillator (IC19B/IC20B) for about 300 ms. The circuit generates the 100-Hz "braap" tone. The pin-5 input of IC20B goes to the "start" circuit to keep the "miss" oscillator off when the START button is pressed.

![Fig. 2. Schematic is shown here and on opposite page. Scoring circuit consists of a D/A converter for each side, alternately switched into the Q6/IC14C comparator to generate bars. Sound circuit is two audio oscillators and a common audio amplifier.](image)
WIRING TABLE

The following interconnections are to be made from one point on the sound/score board to another point on the same board:

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>19</td>
<td>SPKR</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>20</td>
<td>SPKR</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>21</td>
<td>B2+</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>22</td>
<td>B2-</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All interconnections between the main game board and sound/score board are to be made from pads with letter legends on the one to the same lettered legends on the other. For example: SG to SG, HS to HS, etc.

The following list identifies the functions at each lettered pad:

- **SG**: Ball horizontal position
- **HS**: Horizontal sync
- **ST**: Bottom wall of court
- **H**: Paddle and wall "hit"
- **WB**: Wall bounce
- **SW**: Start gate
- **V**: +5.5-volt bus
- **G**: Ground bus
- **SS**: Serve gate
- **SR**: Right-paddle control
- **SL**: Left-paddle control
- **SV**: Score video
- **HR**: Horizontal ramp

Hit and wall-bounce signals come from pads H and WB on the main board to toggle monostable pulse stretcher circuit IC20A/IC19D. When this circuit triggers on, C43 and R96 generate a pulse that turns on "hit-and-bounce" oscillator IC19C/IC20C for about 10 ms. This oscillator produces the brief "bonk" sound. The pin-13 input of IC20C goes to the output of miss gate IC13A to disable this tone generator when the ball is off-screen. Resistors R99 and R100 sum the two audio signals for delivery to audio output transistor Q7. The output circuit is powered by its own separate...
9-volt battery (B2), with C45 and R101 providing decoupling.

Constructions. The sound/scoring assembly is designed to mount directly over the main game board with \(\frac{3}{4} \) (1.9-cm) spacers to provide separation. Shown in Fig. 3 are the actual-size etching and drilling guide and component placement diagram. Whether you make your own pc board or buy one from the source given in the Parts List, you’ll have to enlarge the indicated holes to provide screw-driver access to the main-board controls.

Once the components are installed on the board, refer to the Wiring Table to interconnect the sound/scoring board and the rest of the circuit. Don’t forget to remove the appropriate links on the main board when making the interconnections. Refer to last month’s issue for details.

Checkout and Alignment. The following presupposes that your basic Pongtronics project is operating properly. When you turn on the power, the court should appear as usual, but you should also see the two scoring bars near the bottom of the screen. If necessary, move the bottom boundary of the court up on the screen to allow room for the scoring bars.

Play the Pong game for deliberate misses on one side of the court. Listen for the distinctive “bonk” when the ball hits the paddle and court walls and the “braap” when the other paddle misses and the ball goes off-screen. At the same time you hear the “braap,” the appropriate scoring bar should lengthen and continue to lengthen for each miss. Finally, make sure that the ball serves automatically to the winner of the last point.

Reset for a new game. The scoring bars should immediately drop to their minimum lengths at the left side of the screen. Now, adjust zero-set control R90 until the two bars just barely show. Play the game, making all hits with one paddle and all misses with the other, for a count of 12. Each miss will lengthen that paddle’s scoring bar one increment. At the end of 12 misses, the bar will be at its maximum length, and the losing paddle will disappear from the screen. Without resetting for another game, adjust 12-set control R86 until the score bar just touches the right side of the screen. This completes the checkout and alignment procedure.

EXAMPLES

<table>
<thead>
<tr>
<th>TTL IC’s</th>
<th>FREE NE 555 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>7400</td>
<td>[Timer]</td>
</tr>
<tr>
<td>7490</td>
<td>Give us your name & address. We will send you an NE555V & our catalogue with 1,000’s of the best deals you have seen.</td>
</tr>
<tr>
<td>74105</td>
<td>Video Game Kits, Hobby Kits, TTL-LINEAR</td>
</tr>
<tr>
<td>1N753</td>
<td>C-MOS-MEMORY IC’s, Hardware, Switches, Resistors, & many more.</td>
</tr>
<tr>
<td>1N7414</td>
<td>POTENTIOMETER ASSORTMENT</td>
</tr>
<tr>
<td>1N4001</td>
<td>10 (each different) for 1.00</td>
</tr>
<tr>
<td>C-MOS</td>
<td>RESISTORS 1/4 Watt 5% 100/1.95</td>
</tr>
<tr>
<td>4001</td>
<td>JADE Co.</td>
</tr>
<tr>
<td>4560</td>
<td>P.O. Box 4246 - Torrance, Ca. 90510 Phone 213-320-1250</td>
</tr>
<tr>
<td>4518</td>
<td>Telephone 213-320-1250</td>
</tr>
<tr>
<td>1001</td>
<td>1.00</td>
</tr>
</tbody>
</table>

EXAMPLES

<table>
<thead>
<tr>
<th>MEMORY IC’s</th>
<th>FREE NE 555 V [Timer]</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1101A</td>
<td>Give us your name & address. We will send you an NE555V & our catalogue with 1,000’s of the best deals you have seen.</td>
</tr>
<tr>
<td>P2102A</td>
<td>Video Game Kits, Hobby Kits, TTL-LINEAR</td>
</tr>
<tr>
<td>N8223B</td>
<td>C-MOS-MEMORY IC’s, Hardware, Switches, Resistors, & many more.</td>
</tr>
<tr>
<td>74L10</td>
<td>POTENTIOMETER ASSORTMENT</td>
</tr>
<tr>
<td>74L30</td>
<td>10 (each different) for 1.00</td>
</tr>
<tr>
<td>74L66</td>
<td>RESISTORS 1/4 Watt 5% 100/1.95</td>
</tr>
<tr>
<td>2N2222A</td>
<td>JADE Co.</td>
</tr>
<tr>
<td>2N2222</td>
<td>P.O. Box 4246 - Torrance, Ca. 90510 Phone 213-320-1250</td>
</tr>
<tr>
<td>2N386</td>
<td>Telephone 213-320-1250</td>
</tr>
<tr>
<td>2N4402</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Send For FREE Catalog!
handic USA inc.
14550 N.W. 60th Ave., Kennedy Bldg., Miami Lakes, Fl. 33166 (305) 558-1522
In Canada: Scotcomm Radio Inc., Chomeday, Laval, Quebec

Circle No. 29 on FREE Information Card
A "JUNK-BOX"
5-VOLT POWER SUPPLY

Discrete circuit made from spare parts gives IC-regulator performance.

When a breadboard project calls for a regulated 5-volt supply, most experimenters instinctively reach for a 109-type IC. But suppose you’re fresh out of 109’s? The circuit described here can be built from junk-box parts, offers 0.15-volt stability, 5-mV noise and ripple, automatic current limiting, and an overload indicating light!

No transistor type numbers are shown in the schematic diagram, as almost any will do. The npn series-pass transistor, Q1, is a power type with a rated BVCEO of 15 volts, and a minimum current gain of about 30 at 1 A. If the power device you have on hand has a gain a bit lower than 30, R3 can be reduced to compensate. Enough heat sink should be provided to dissipate 7 or 8 watts under worst-case overload conditions. As shown, the collector is the positive output rail. A piece of aluminum bolted to the + terminal will do nicely. If you want to use an npn power transistor, invert the entire circuit into its complementary form. Thus the transistor’s case is conveniently grounded, and the chassis can be used for heat sinking. It’s even possible to use a germanium transistor if R2 is lowered to about 22 ohms to allow for the lower VBE.

The other two transistors are general-purpose, small-signal silicon devices. Similarly, resistors are not critical. A two-watt wirewound component should be used for R1. A length of resistive wire wrapped on the body of a higher-value resistor can form R1. Resistor R3 should be a carbon half-watt component.

About the circuit. The LED is used as a reference voltage source with an output of about 2 V. (The forward voltage drop of most GaAsP yellow, green, or orange LED’s will vary from 2.0 to 2.2 volts. Select one with a Vr close to 2.0 V.) Feedback action sets the base of Q3 to about one VBE below the reference voltage on its emitter. So, R5, the 1000-ohm trimmer potentiometer, will generally be set about ¾ of the way “down” for a 5-volt output. Since the VBE of Q3 and the turn-on voltage of the LED usually have similar temperature coefficients, this simple reference-comparator combination works surprisingly well.

The collector provides base current for Q2. This transistor’s collector resistor, R3, together with R1 and R2, limit the maximum (overload) current of Q1. As more output is demanded, Q3 and, in turn, Q2 turn increasingly “on,” grounding the bottom of R3. This action sets up a voltage divider, R2 and R3, limiting base drive to Q1.

A variable resistor in series with R3 can be inserted to set lower current limits. This is especially desirable when the supply is feeding easily damaged, low-power devices. Maximum current output of the series pass transistor is set by R1 and R2, and R3 limits the base current into it. Thus, there is current-limiting action.

Because Q3 and the reference LED are fed from the stable side of the supply, the circuit gives excellent rejection of ripple and input variations. If R4 is excluded, complete current shut-off will occur when the supply is short circuited. Although this is very desirable in protecting the load, it also means that the circuit will not self-start! At the specified value, R4 bleeds enough current into the error amplifier (Q3) to allow start-up against a 5-ohm load. If desired, a normally open pushbutton switch can be placed in series with R4 to get the best of both configurations.

The LED also acts as a pilot light—it will extinguish when the power supply is shut down by overload trip-out.

Construction. The builder has as much flexibility in choosing construction techniques as he has in selecting semiconductors. Perforated or printed circuit board can be used. The project can be installed in any suitable enclosure. The only adjustment that must be made is the setting of R5. Adjust it so that the output is 5 volts. Once the setting has been determined, fixed resistors can be substituted for both sides of the potentiometer for stability.

PARTS LIST

- C1—6800-μF, 15-V electrolytic capacitor
- C2—1000-μF, 15-V electrolytic capacitor
- D1, D2—HEP RO808 rectifier or equivalent
- LED1—See text
- Q1—Pnp power transistor. (See text.)
- Q2, Q3—General-purpose silicon transistors
- The following fixed resistors can be 5 or 10% tolerance.
 - R1—0.5-ohm resistor. (See text.)
 - R2—47-ohm, 1/2-W resistor
- R3—100-ohm, 1/2-W resistor
- R4—3300-ohm, 1/2-W resistor
- R5—1000-ohm, linear-taper potentiometer
- R6—680-ohm, 1/2-W resistor
- S1—SPst switch
- T1—12.6-volt, 3-A center-tapped transformer (Radio Shack 273-1511 or equivalent)
- Misc.—Perforated or printed circuit board, machine hardware, hookup wire, binding posts, solder, line cord, suitable enclosure, etc.

By R. C. Foss
NOW YOU CAN BUILD
AN INCREDIBLY SMALL
ELECTRONIC CALCULATOR...
...at an incredibly small price.

Sinclair's Do-It-Yourself
Electronic Calculator Kit:
Build your own Cambridge
in less than three hours.
All parts are supplied—
all you need is a soldering
iron and a pair of cutters.
Complete step-by-step
instructions are included
and our Service Department
will help you with any
questions that come up.

The Sinclair Cambridge Electronic Calculator is a model of tidy engineering. It weighs in at a slight 3½ ounces. Measures a mere 4½" x 2" x ¾". And holds its own against heavier competition. You see, we not only make it small. We make it better—with a flexible constant that functions during mixed calculations. And accuracy that extends beyond the 8-digit display. Which means that very large, or very small, intermediate results do not affect final answers. Today you expect certain features in a pocket calculator—8 digits, a four-function constant, algebraic logic—and yet it's exceptional to find them all in one machine. Particularly one as handy as the Sinclair Cambridge.

ONE-YEAR GUARANTEE
All parts are tested before ship-
ment and we'll replace, FREE OF
CHARGE, any defective part in any
correctly assembled calculator for a
full year from date of purchase
(labor not included).

AVAILABLE ASSEMBLED TOO
The Sinclair Cambridge is available
in completely assembled form if you
prefer. The SPECIAL LOW PRICE
is only $24.95 — fully guaranteed.
Defective calculators will be repaired
or replaced within one year from date
of purchase, FREE-OF-CHARGE
(batteries not included).

MAY 1976

Learning with CIE is
Electronics no picnic.

It takes work. And a few sacrifices. But it's worth it!

The minute you start your CIE course you'll see why CIE is different than other home-study schools.

Because as a CIE student you'll get the kind of electronics training that prepares you for a career, not just a job. We'll give you a meaningful, well-rounded foundation in electronics theory and practice. And with our special Auto-Programmed lessons, we'll make sure you grasp the key theories and methods of modern Electronics. No "fun and games" frills. No time-wasting, superficial lesson material. No "snap" exams.

We'll challenge your thinking.

We have to. Because after you graduate, employers will expect you to really know how to analyze and troubleshoot virtually all kinds of electronics equipment. Some employers of electronics personnel have told us that our graduates have what it takes.

That's why we're so thorough. We've got a 40-year reputation to uphold and we're going to keep it by giving our students the best independent home-study training we can.

Sure, some of our weaker students drop out. (Learning Electronics with CIE is no free ride.) But you can bet on this...the ones who do make it are ready! Ready to go out and make it in the rewarding world of Electronics. And that's the reason you want to learn, isn't it?

You have attractive job opportunities.

There have already been many exciting developments and breakthroughs in Electronics and some people might assume there will be no new frontiers...no new worlds to conquer. Not so.

Electronics is still growing. In nearly every one of the new and exciting fields of the Seventies you'll find electronics skills and knowledge in demand. Computers and data processing. Air traffic control. Medical technology. Pollution control. Broadcasting and communications.

Importance of an FCC License

If you want to work in commercial broadcasting...television or AM or FM broadcasting...as a broadcast engineer, federal law requires you to have a First Class Radiotelephone License. Or if you plan to operate or to maintain mobile two-way communications systems, microwave relay stations or radar and signaling devices, a Second Class FCC License is required.

But even if you aren't planning a career which involves radio transmission of any kind, an FCC "ticket" is valuable to have as Government certification of certain technical skills. It's a job credential recognized by some employers as evidence that you know your stuff.

A good way to prepare for your FCC License exam is to take one of the CIE career courses which include FCC License preparation. We are confident you can successfully earn your license, if you're willing to put forth an effort, because the vast majority of CIE students have. In fact, based on continuing surveys, close to 9 out of 10 CIE graduates have passed their FCC exams!

So if you are serious about getting ahead in Electronics...if you are willing to put in the extra work...get in touch with us.

We have many career courses for you to select from. If you already have some electronics training, you may want to skip our beginner-level courses and enroll in an intermediate program. Or, if you're really hot, there's a tough, college-level course called "Electronics Engineering" that can make you even better.

Send today for FREE school catalog

Send today for our FREE school catalog and complete package of independent home-study career information. For your convenience, we will try to have a representative call to assist in course selection. Mail reply card or coupon to CIE...or write: Cleveland Institute of Electronics, Inc., 1776 East 17th Street, Cleveland, Ohio 44114.

Do it TODAY.

G.I. Bill Benefits

All CIE career courses are approved for educational benefits under the G.I. Bill. If you are a Veteran or in service now, check box for G.I. Bill information.

CIE Cleveland Institute of Electronics, Inc.

1776 East 17th Street, Cleveland, Ohio 44114

Accredited Member National Home Study Council

Yes, I want your FREE school catalog and career information package today.

I am especially interested in:

- Electronics Technology
- FCC License Preparation
- Color TV Maintenance
- Mobile Communications
- Industrial Electronics
- Electronics Engineering
- Other

Print Name ____________________________

Address ____________________________

City ____________________________

State Zip Age

Check box for G.I. Bill information. Veteran On Active Duty

MAY 1976
The new BA 5000 Power Amplifier from Sansui

The most dramatic component in Sansui's new "DEFINITION" Series, the BA 5000 solid-state power amplifier is capable of 300 watts RMS per channel into 8 ohms, both channels driven, from 20 to 20,000 Hz, with no more than 0.1% harmonic distortion in the stereo mode. What's more, the BA 5000 can be strapped for mono operation to deliver 600 watts RMS under the same conditions.

A true monster amplifier.

But that's not all. Unlike other solid-state amplifiers, the BA 5000 has a huge, laboratory-quality output transformer, enabling it to deliver rated power into 2, 4 or 8 ohms plus 25 volt line output in stereo and 4, 8 or 16 ohms plus 70 volt line output in mono. A rating of 600 watts into a 4 ohm distortion, 20 to 20,000 Hz, is simply unprecedented in transistor equipment.

The "DEFINITION" series also includes the BA 3000, our Junior Monster, and the CA 3000 a very high quality, low distortion preamplifier.

For professionals, sophisticated audiophiles and monster lovers everywhere. See it and touch it if you wish at your nearest Sansui franchised dealer or write for complete literature.
ABOUT THIS MONTH'S HI-FI REPORTS

Electrostatic headphones, like loudspeakers of similar design, have long been recognized as accurate, wide-range devices. Their acceptance has been limited by the fact that most electrostatic headphones have been relatively bulky, heavy, and expensive, compared to dynamic phones. The Stax SR-5 electrostatic phones ("ear speakers," as Stax calls them) have eliminated at least two of these objections by virtue of their very light, comfortable construction. This has entailed no sacrifice of audio quality. The price is moderate, too.

The deluxe Model Four preamplifier from Epicure offers just about every performance feature one expects in a top-quality control center. The state-of-the-art performance of the Model Four is combined with an unconventional, yet extremely simple and logical, control layout.

—Julian D. Hirsch

STAX MODEL SR-5 ELECTROSTATIC HEADPHONES

Light weight, high performance.

The Japanese-made Stax electrostatic headphones, distributed here by American Audiopart, have received high marks for sound quality. In the middle of the Stax line is the Model SR-5 "ear speaker," a very light, comfortable-to-wear headset that weighs only about 14 oz (390 g). For wearing comfort, the earcups are fitted with soft, fluid-filled cushions that completely surround the ear.

The phones are designed to be used with their companion Model SRD-6 adaptor, which contains a polarizing power supply and a step-up transformer in a 7 3/4" x 3 7/8" x 2 1/2" (19.4 x 9 x 6.6 cm) box that weighs 2 lb 11 oz (1.2 kg). Lacking a power switch and consuming only about 0.1 watt from the power line, this adaptor can be safely and economically left powered all the time.

The adaptor connects to the speaker output terminals of an amplifier or receiver. It has outputs for both the Model SR-5 headphones and the speakers it replaces. The phones connect into the adaptor's front panel via a plug at the end of a 71/2' (2.3-m) cord. A switch on the front panel of the adaptor has positions for routing the output from the amplifier to the phones or the speaker systems.

The published specifications for the headphones and adaptor are listed separately. As a result it is a bit difficult to interpret the signal drive and distortion figures for the phones/adaptor system. However, the input to the adaptor is rated at 8 watts maximum continuous power at 1000 Hz, with momentary peaks to 30 watts. The maximum sound-pressure level (SPL) from the phones is listed at 110 dB, while the rated frequency range (no tolerance stated) is 30 to 25,000 Hz.

The distributor recommends that the phones be used with only the finest tube or transistor amplifiers for best results. Also, the user is cautioned against using the phones with amplifier output power levels substantially greater than 15 watts.

The Model SR-5 electrostatic headphones and Model SRD-6 adaptor come as a single package for $130.

Laboratory Measurements. Just as the measured frequency response of a loudspeaker is strongly influenced by the surrounding environment, the "response" of a headphone is a critical function of the coupler, or "artificial ear," on which it is mounted. There are usually severe irregularities in the measured response of a phone, even with a standard coupler, in the mid- and high-frequency ranges when the internal dimensions of the air cavity approach the wavelength of the sound. However, since couplers are more or less standardized, it is relatively easy to compare headphone responses measured in the same way.

We use a slightly modified ANSI coupler for our headphone measurements. The Model SR-5 phones were measured with a coupler of the type specified by the manufacture. The response is shown in the figure.
driven with a constant 2.8 volts through the Model SRD-6 adapter, corresponding to 1 watt into an 8-ohm load. The frequency response was extremely flat from 70 to 600 Hz. There were moderate irregularities at higher frequencies and a low-frequency drop of about 7 dB before changing to a flat response between 40 and 20 Hz. Overall, the response was ±6 dB from 45 to 20,000 Hz, a rather good performance for headphones measured in this manner.

The average midrange SPL was 102 dB at 1 watt, from which we can see that the rated 110 dB maximum could be developed with an input of just greater than 6 watts. This is consistent with the 8-watt rating of the system. Into the input of the adaptor, the impedance was about 30 ohms through the midrange and dropped off to 15 ohms at 20 Hz and to 8 ohms at 20,000 hertz.

The acoustic output harmonic distortion from the phones was very low, especially when compared with the finest loudspeaker systems. At 1000 Hz and with a 1-watt drive signal, the THD was 0.25% and principally third harmonic. At 10 watts, it actually decreased to 0.19% and was evenly divided between second and third harmonics. At 50 Hz, the distortion was higher—1.6% at 1 watt and 12.75% at 10 watts. The latter figure probably reflects the excessive diaphragm excursion needed to develop a large output at 50 Hz. This condition would almost certainly not be encountered under normal listening conditions.

At high frequencies, the measured THD varied somewhat with frequency. This is because of the response irregularities. It was between 0.23% and 1.45% in the range between 5000 and 10,000 Hz at a 1-watt input drive.

User Comment. Just as with a speaker system, a headphone is best judged by listening to it. However, an A-B comparison is difficult to make with phones, primarily because only one set can be worn at a time. Also, no comparison with a "live" reference program is possible. However, we did compare the Stax phones to a high-quality electrostatic phone and a number of excellent dynamic phones while using a sufficient variety of program material to draw some definite conclusions about sound quality. We were immediately impressed by the exceptional comfort of the Stax while listening. Unlike most electrostatric phones, which tend to be heavy and bulky, these were like true featherweights. Even though cushions entirely surround the ears, they do not exert a tight pressure seal, nor do they entirely exclude outside sounds. In this respect, they would seem to be midway between tightly sealed and so-called "open-air" phones.

The sound quality is unequivocally excellent. Even at high listening levels, the phones retain their clarity and transparency. The drop in low-frequency response revealed by our coupler measurements may or may not exist in normal listening situations. Of course, below 50 Hz, sounds are as much sensed by the rest of the body as they are heard, which is an effect no headphones can duplicate. On the other hand, the subjective sound of the Stax phones appeared to be both wider and smoother than that of some of the finest speaker systems.

The only rival to the Stax phones with respect to sound quality were the other electrostatic phones to which we compared them. The sound of the Stax phones was distinctly more "open" and at least the equal of the other phones in clarity and definition. The Stax phones were so much more comfortable to wear that there was little contest between them and the other phones.

We would not hesitate to recommend the Model SR-5 phones to anyone who wants to hear in minute detail what is really on his records and tapes. Be forewarned, however, that these phones are merciless in exposing distortion and noise in the program. We therefore agree wholeheartedly with the distributor's recommendation to use these phones with only the finest high-quality equipment.

Epicure Model Four Preamplifier

Solid construction, high performance, and control flexibility.

The Epicure Model Four presents a striking and unusual appearance for a hi-fi preamplifier. Its panel and case are satin black, and the edges of the panel are accented with vertical walnut strips. All controls on the front panel are either slide-type potentiometers or pushbutton switches.

The preamplifier measures 18¾"W x 9½"D x 5½"H (46.4 x 24.1 x 14 cm) and weighs 9 lb (4.1 kg). Price is $450. A 19"W (48.3 cm) rack mount kit is available.

General Description. The vertical sliders for the preamp's bass and treble controls, each consisting of a pair of controls, are located on the left side of the front panel. Their center positions, labelled FLAT, are lightly but positively detented. On the right side of the panel are the two VOLUME and channel-balancing controls.
All other front-panel controls are pushbutton switches that are arranged in functional groups. The filters and tone controls grouping includes switches for the 50- and 7500-Hz low- and high-cut filters that have characteristic 12-dB/octave slopes. The tone control circuits can be completely switched out of the system by pressing in the bypass button. Alternatively, the turnover frequencies and maximum boost/cut can be altered by a button marked 9 dB/18 dB.

Below the first group of buttons are the four tape recorder controls, also pushbutton switches. Two tape decks can be connected to and controlled from the preamp. The playback from each deck can be monitored by pushing in the corresponding tape monitor button. In addition, the playback from either deck can be dubbed onto the tape on the other deck with the tape copy buttons, simultaneously permitting the user to monitor from either deck.

The program source buttons (to the right of the tape control buttons) are for selecting inputs from tape 1, tape 2, phono 1, phono 2, aux, or tuner. These are followed by the power switch. (The "Epicure" logo on the front panel lights up when power is applied.) The last group of switches are the program mode selectors, offering a choice of stereo, reverse stereo, mono (L+R), and either L or R input appearing in both channels.

In addition to the various input and output jacks, there are four small control knobs for adjusting the phono sensitivity for each phono-input channel over a range of about 7 dB on the preamp's rear apron. These controls allow the playback levels from two different cartridges to be matched and permit balancing out any level differences between the two channels of each cartridge. Two of six accessory outlets on the rear are switched.

The published specifications for the preamp are quite comprehensive, in general reflecting state-of-the-art performance. The frequency response is stated at 0.25 dB from 20 to 20,000 Hz through the phono and from 10 to 100,000 Hz through the high-level inputs. Phase shifts at 20,000 Hz are 2° through the low-level and 5° through the high-level inputs, and the A-weighted noise level is stated at better than 100 dB below a 10-mV phono input or a 1-Volt high-level input.

Although the rated output is 2.5 volts, the maximum available output is greater than 5 volts. The phono-input overload is rated at 150 mV, while total harmonic distortion (THD) is rated at 0.05% or less in the audio range up to a 2.5-volt output. Even the input capacitance is specified—37 pF for the phono and 47 pF for the high-level input sections.

A time-delay relay allows 2.5 seconds pause for the power amplifier to stabilize before the preamplifier's outputs are activated.

Laboratory Measurements. As might be expected from the published specifications, measuring the performance of the preamp taxed the capabilities of our most advanced test instruments. At a 2.5-volt output, the THD was 0.03% at 20 Hz, 0.016% at 1000 Hz, and 0.042% at 20,000 Hz. However, our THD measurements include noise and hum that, low as they are, become comparable to the extremely low harmonic component levels and affect the meter readings. In addition, at 20 Hz, the residual distortion of our test generator is 0.02%, so that most of the measured distortion was present in the input signal.

With the aid of a Hewlett-Packard Model 3580A spectrum analyzer, we determined that the actual distortion present at 20 and 1000 Hz was the residual of the signal generator at 0.02% and 0.0025%, respectively. The high-frequency distortion, measured at 15,000 Hz so that the third harmonic could be included in the 50,000-Hz range of the spectrum analyzer, was 0.25%. The output clipped at 8 volts, but even at 7 volts output, the distortion did not increase beyond the points at the 2.5-volt output level, except at 20,000 Hz. At 7 volts output, the intermodulation (IM) distortion was about 0.006% to 0.007% between 1 and 2.5 volts output. It was a mere 0.02% at 7 volts. At low outputs, it increased slightly to 0.09% at 80 mV.

At maximum gain, a 0.1-volt high-level input produced a reference 1-volt output. The wideband noise measurement, which included some r-f pickup from local broadcast stations, was 64.5 dB below 1 volt. With A weighting, the noise output was below our minimum measurement threshold of 100 µV, or better than 80 dB below 1 volt. Measurements through the phono inputs were identical to the high-level S/N measurements. The spectrum analyzer showed the power-line hum through the phono inputs (loaded by a magnetic cartridge) to be 65 dB below 1 volt. At minimum gain, the hum was 84 dB below 1 volt.

The phono sensitivity for a 1-volt output was between 0.65 mV and 1.5 mV, depending on the settings of the phono-sensitivity controls. The corresponding overload inputs were 85 and 190 mV. The measured crosstalk between channels was 70 dB down at 1000 Hz.

The frequency response, as rated, was flat to within ±0.25 dB from 20 to 20,000 Hz through the high-level and phono inputs. The phono equalization was virtually unaffected by cartridge inductance, with less than 1 dB of change up to 17,000 Hz. Through the high-level inputs, the frequency response was flat to the 5-Hz lower limit of our signal generator, down 1 dB at 58,000 Hz, and down 3 dB at 110,000 Hz. The slew rate of the preamp, rated at 4.8 volts/µs, was approximately 5 V/µs, making transient IM distortion an unlikely possibility.

Depending on the settings of the tone controls, the turnover frequencies could be varied from about 40 to 350 Hz in the bass range and from 1500 to 3000 Hz in the treble range. The filters had 3-dB down response frequencies of 65 and 6500 Hz.

User Comment. Listening tests are generally inconclusive where an elec-
tronic component with the nearly ideal performance of the Model Four preamplifier is concerned. Normally, since one cannot expect to hear any coloration from a virtually distortionless component, any qualities that appear to be audible can be traced to external causes. With this in mind, we connected the preamp to Epicure's matching Model One power amplifier and listened to both phono and FM tuner programs.

During our tests, we sensed a clarity and crispness that made even FM programs sound better through the Epicure components. However, realizing that the results of our laboratory tests might have colored our reactions to the Epicure system, we carefully compared it to several other high-quality systems. While we couldn't state with certainty that the Model Four sounded better or even different from other high-quality preamps, we are certain that we have never heard a preamp that sounded better or quieter (excluding preamps with special built-in noise-reduction circuits).

Besides being a superb performer, the Model Four is also built to rugged commercial standards. To this end, it uses a toroid-wound power transformer to minimize external hum fields, and it has three separately regulated power supplies.

Considering its quality of construction, performance, and control flexibility, the Epicure Model Four preamplifier is a genuine bargain for anyone who wants the finest performance.

Kris Victor II AM Mobile CB Transceiver

LED channel display and fine performance.

The frustrating problem of not being able to see what channel you're on because of tiny numbers on a crowded selector dial has been solved in the Kris Victor II mobile AM CB transceiver. This 23-channel, crystal-synthesized rig features an easy-to-read ¾" (9.5-mm) high LED display for easy readability up close, at a distance, and just about any angle off axis when mounted under the dash. In addition, large green and red lights signal when you are on receive and transmit, respectively.

Among the transceiver's more-or-less standard features are: volume control, variable squelch, PA operation, external-speaker jacks, illuminated S meter, switchable automatic noise limiter (anl), 13.8-volt dc nominal power requirement, reverse-polarity protection, supply line filter, and detachable push-to-talk dynamic microphone.

The transceiver measures 8½"D x 7½"W x 2½"H (21.6 x 19.4 x 7.0 cm). It comes complete with mobile mounting hardware for $229.95. (The transceiver is also available without LED display as the Victor for $199.95.)

The Receiver. The double-conversion receiver's first i-f is 8.006 to 7.966 MHz, obtained by heterodyning the incoming signal with one of six crystal-controlled signals from the synthesizer in the 34.971-to-35.221-MHz range. The 455-kHz second i-f is produced by mixing the first i-f with one of four crystals in the 8.461-to-8.421-MHz range.

The digital numeric channel display is driven by IC decoder/drivers that are programmed by the channel selector switch. The display consists of two decades, one each for the units and tens channels.

Bipolar transistors are used in the diode-protected r-f amplifier and mixers. The r-f amplifier employs only one tuned circuit, which (together with the bipolar design) yields a 40-dB image rejection that isn't quite as high as usual but is nevertheless adequate. Sensitivity was up to standard, measuring 0.5 µV for 10 dB (S + N)/N with 100% modulation at 1000 Hz. I-f signal rejection was a good 80 dB, while other unwanted spurious-signal rejection in the area around the CB range was 40 to 60 dB.

A mechanical filter at the i-f input is backed by an interstage ceramic filter to provide selectivity. Adjacent-channel rejection was 70 dB, at which point desensitization began.

The anl is a series-gate configuration. The amplified agc system was unusually uniform in the low-microvolt region. It maintained the audio output to within 1 dB with a 20-dB r-f input change at 1 to 10 µV. The output variation was 9 dB for a 60-dB input change at 10 to 10,000 µV. A 300-µV input signal was needed to register S9 on the meter.

The squelch threshold range was 0.5 to 30 µV. The output power from the class-B push-pull audio amplifier, using a 1000-Hz test signal, was nominally 1 watt with 10% THD into 4 or 8 ohms on both receive and PA. Overall audio response, including the i-f passband, was nominally 500 to 3000 Hz at the -6 dB down points.

The Transmitter. The carrier for the transmitter section is generated by mixing the appropriate synthesizer crystal frequency in the 34.9-MHz range with one of four crystal signals in the 8.006-to-7.966-MHz range. Spurious-response filtering circuits follow the mixer. The output of the mixer then goes to the usual three-stage r-f section that includes an r-f output power amplifier with its matching and filtering network and antenna switching relay. The modulation scheme is conventional, using the receiver section's audio system.

The r-f carrier output power measured 3.75 watts when we powered the transceiver from a 13.8-volt dc source. A 3.5% THD figure was measured with 100% sine-wave modulation using a 1000-Hz test signal. Because there is no automatic modulation control, raising the audio input about 6 dB above the level required for full modulation introduced clipping of both the negative and the positive peaks and a 13% THD figure. However, under normal voice operating conditions, splatter was held to nominally 50 dB down. The 6-dB audio response was 600 to 6000 Hz. The r-f frequency tolerance on any channel was within 0.002% at 80°F (27°C) ambient.

The reverse-polarity protection setup in this transceiver is rather unconventional. A diode is used in series with the supply line. It is polarized so that conduction is in the proper direction. Reverse connection simply doesn't permit current to flow through to the transceiver. With other protective methods that use a shunt-connected diode, you have the inconvenience of having to replace a blown fuse whenever the wrong-polarity...
hookups are made to the power source.

User Comment. The speaker is mounted on the left side of the transceiver's case where it faces the driver of the vehicle for better intelligibility during reception. The numeric channel display is an especially nice touch. Unfortunately, the S meter is small and can be difficult to read (as in most units of this type).

The ANIL was extremely effective, attenuating impulse noise of 50 to 60 dB above 1 µV down to virtually zero in the presence of a 0.5-µV signal. This, coupled with other fine performance figures, convenience features, and clean styling, makes the Kris Victor II an attractive transceiver to own.

B&K PRECISION MODEL 280 DMM
Under-$100, portable digital multimeter.

The Model 280 digital multimeter from B&K Precision has the size, shape and functions of a traditional analog VOM. Only the fact that the display is numeric tells the user that this is indeed a modern DMM.

The Model 280 is priced at $99.95, which makes it an attractive alternative to the ordinary VOM. It has a full complement of functions and ranges and can be operated from batteries for maximum flexibility and convenience. And the DMM is equally at home on a test bench or out in the field. Its rugged, high-impact Cycolac* case will take a lot of abuse while protecting the circuitry from damage.

The case measures 8¼"H x 4¼"W x 2"D (16.2 x 11.1 x 5.1 cm). The DMM itself weighs 2 lb (about 1 kg).

General Description. The DMM is designed to measure ac and dc voltage, ac and dc current, and resistance. Its ½" (7.94-mm) high seven-segment LED display consists of three full decades of readout and polarity indicator. Both polarity and zeroing are automatic. In all, there are 22 function/range combinations.

The DMM measures dc voltage to 1, 10, 100, and 1000 volts on its four ranges, with typical accuracy of ±1% full-scale. Input resistance is specified at 10 megohms for minimum circuit loading. The input circuit is protected to 1000 volts dc and ac rms.

The ranges, input resistance (impedance), and protection specifications for the ac voltage function are the same as for the dc voltage function. Accuracy is stated at ±2% (except on the highest range, where it is ±2.5%), and frequency response is 50 to 200 Hz.

Four ranges are also available for each of the ac and dc current functions. They provide a test range of from 1 mA to 1 amperes full-scale, with a resolution of 1 µA. The input circuits are protected with fuses and diodes. The voltage drop during testing is on the order of 100 to 300 mV, while the ac frequency range is 50 to 200 Hz.

The resistance function has six ranges: 100, 1K, 10K, 100K, 1M, and 10M full-scale. Alternate ranges are either high (1-volt) or low (0.1-volt) power, as indicated by the legends H and L in a cutout area at the lower left of the range switch. The high-power ranges are for conventional resistance measurements. The low-power ranges are for taking measurements in circuits that contain semiconductors. (The 0.1-volt test potential is too low to cause the junctions of semiconductors to bias on.) The test currents are: 1 mA on the 100 and 1K ranges, 100 µA on the 10K and 100K ranges, and 1 nA on the 1M and 10M ranges. The circuit is fully protected against accidental connections. Accuracy is typically ±2%, except on the highest range, where it is ±2.5%.

The decimal point is automatically positioned in the display when the range switch is moved from one position to another. Should the input exceed the measuring range to which the instrument is switched, all three LED displays will flash on and off to indicate an overrange condition. If a dc input is properly polarized with respect to the color-coded input jacks (red for "hot" or +, black for common or -), a + sign is implied in the display. A reversed-polarity input will cause a - sign to be displayed to the left of the numerals in the display.

Power for the DMM can be supplied by four C-size carbon-zinc, alkaline, or nickel-cadmium cells. (The basic price of the Model 280 does not include batteries. A set of four optional rechargeable NiCd cells is available for $20.00.) The DMM can also be powered from the ac line by using an optional ($8.00) battery eliminator/charger.

User Comment. The most important test of a meter is to determine how accurately it performs the measurements for which it is designed. Hence, we ran our usual accuracy tests, using highly accurate voltage and current sources and 0.1% precision tolerance resistors. In all respects, the Model 280 DMM was well within the published specifications.

The next thing to look for is convenience of use. Since there are only two controls (the range and function switches) and only one pair of input jacks, the Model 280 is about as convenient to use as any conventional DMM.

The cost has been kept down by eliminating an extra position on the function switch for battery testing. Instead, the user simply touches the tip of the red test probe to a small area of bare metal, accessible through a small hole on the right side of the case, to complete the battery-test circuit.

Our one negative observation while using the DMM is relatively minor. The design of the case precludes setting the instrument upright on the service bench. This minor inconvenience can be solved with the use of the optional No. MS-28 ($3.00) wire tilt stand.

There are two more optional accessories for the Model 280 DMM. One is the No. PR-21 isolation/direct probe ($10.00) that prevents capacitive loading when measuring a dc level in r-f circuits. The other is the No. LC-28 carrying case ($6.00) that protects the DMM and has compartments for the test leads and ac adapter/battery charger.

The Model 280 represents a good investment for the technician or hobbyist looking for relatively good accuracy, wide testing flexibility, and portability in a DMM.
A UNIVERSAL LIGHT EMITTING DIODE

If you think of light emitting diodes (LED's) only as indicators, a new breed introduced by the National Semiconductor Corporation (2900 Semiconductor Drive, Santa Clara, CA 95051) may change your mind. Unlike standard LED's, which are useful only in dc circuits and require current limiting, the new type NSL4944 can be used with dc or ac, will operate over a wide range of voltages without external limiting devices, and can be the principal active device in a variety of interesting and useful projects. Compared to an incandescent lamp, the new LED might well boast, "anything you can do, I can do better."

Represented symbolically as a constant current source in series with a light emitting diode, Fig. 1A, the NSL4944 comprises an integrated circuit chip and a GaAsP high-intensity red LED in a single plastic package. The IC includes (Fig. 1B) a pnp pass transistor, a voltage reference network, a voltage comparator, and a series current reference resistor. Since most of the regulating circuit is not in series with the LED, the complete device requires only about 300 mV more than a standard red LED. Further, because all of the current is through the pnp transistor's emitter, the device can serve as a medium level rectifier and a constant current source in addition to its role as a lamp.

Physically, the NSL4944 is no larger than conventional LED's and, with only two leads, can be interchanged with these in most applications. Its cathode lead is identified by a flat area on the circular base. Equipped with a diffused lens, the device can be panel mounted by means of a standard two-piece plastic adaptor or can be installed directly on circuit boards for wrapped or soldered connections. It can be mounted vertically, or horizontally, as shown in Fig. 1C. The rated operating and storage temperature range is −55 to 100° C, but with linear derating of 0.125 V/° C above 25° C.

The new device has an operating voltage range of (approximately) 2.0 to 18.0 volts and also can withstand reverse voltages up to 18.0 V. The light output remains essentially constant at (typically) 0.8 mcd from about 3 volts to maximum rated voltage. With a power dissipation rating of 300 mW at 25° C, the forward current varies from 12 to about 14 mA over the full voltage range. The device will operate at reduced intensity with sources of 1.6 to 1.9 volts capable of furnishing at least 8 mA, and can be switched on and off by any circuit capable of supplying 10 to 20 mA and a voltage swing of at least 1 volt. Typically, an applied voltage of 1.3 volts will result in little or no light output, while an increase to 2.3 volts will develop 70% to 90% of full light intensity.

National Semiconductor's specification sheet for the NSL4944 and a 4-page application note AN-153 suggest a number of practical circuits for the device.

![Fig. 1. (A) Schematic symbol for NSL4944. (B) Internal circuit. (C) Mounting methods.](image)

Fig. 1. (A) Schematic symbol for NSL4944. (B) Internal circuit. (C) Mounting methods.

![Fig. 2. NSL4944 applications: Low (A) and high (B) logic indicator; on ac (C) and dc (D) sources.](image)

As a simple indicator, for example, the unit is ideal for applications ranging from digital logic designs to conventional pilot lamps. When driven by standard TTL devices, the NSL4944 can serve as a low or high status indicator, as suggested in Figs. 2A and 2B, respectively. The unit's ability to operate on ac as well as dc sources allows it to be used as a pilot lamp when powered by the low-voltage filament winding of a standard power transformer, as shown in Fig. 2C. When operated on ac, the unit's actual light intensity is halved, but the output level is more than adequate for most applications. The NSL4944 can also be used on unfiltered and unregulated dc sources, either alone or in conjunction with other components, such as switches, relays, or other solid-state devices (Fig. 2D).
Another broad range of applications for the NSL4944 is when it is used as a constant current source. With a 15-volt dc supply, for example, it can furnish a controlled current for six or seven series-connected conventional LED's, (Fig. 3A). Shorting any number of the LED's in the string with switches, relay contacts, or other means will not affect the remainder, nor the NSL4944. Such an arrangement might be used, typically, to indicate relay, switch, or circuit-breaker closures. The device's constant current characteristic also is useful for operating a zener diode in voltage regulator circuits (Fig. 3B). If used in the collector circuit of an emitter follower preamp or line driver, as in Fig. 3C, the device will limit the output transistor's total current without affecting signal voltage swing, thus protecting the stage against damage due to line, cable or load shorts. Another application is shown in Fig. 3D. Here, the NSL4944 serves as an active load for a lamp driver circuit, increasing Q1's useful voltage gain, but still permitting nearly full base bias on Q2. Substituting an LM195 for Q2 and adding a 4.7-kilohm series base resistor will allow this circuit to handle 12-volt lamps rated at 1 ampere.

Several useful, easy-to-build projects featuring the NSL4944 are illustrated in Fig. 4. They include an ultrasmall "HI-LO" logic probe for TTL circuits, a time delay relay, and a small trickle charger for batteries (from 1.5 to 6 volts). The logic probe uses a pair of series-connected devices and is intended for use on standard 5-volt dc sources. The upper LED lights when the circuit test point is low, the lower LED when the TTL level is high. With a time delay of approximately six seconds, the relay circuit requires only two additional components, a large electrolytic capacitor and a sensitive high-impedance electromagnet-ic relay. The NSL4944's constant-current feature limits the timing variation to about 3% over a supply voltage range of 14 to 18 volts (much less than the variations due to temperature and capacitor tolerances). Finally, the simple trickle charger utilizes all three of the NSL4944's unique characteristics—as an indicator, a rectifier, and a constant

![Fig. 3. Current source for LED's (A) and zeners (B). Load for line driver (C) and Schmitt lamp driver (D).](image-url)
current source. Supplying a trickle charging current of 10 mA or more, the design requires only one additional electrical component—a small step-down transformer.

The circuit applications we've examined, although representative, are but a fraction of those possible with the versatile NSL4944. In addition, National Semiconductor suggests that the device can be used as a shorted SCR indicator in low-voltage circuits, a constant-current load for precision amplifiers, a reverse-voltage monitor for power supplies, a current limiter, and a regulated current source for voltage dividers or transducers, such as thermostats.

Right On! Although the bicentennial year has not yet run even half its course, a number of the predictions made in last January's column have materialized. At the Consumer Electronics Show in Chicago, Texas Instruments, Inc. (P.O. Box 5012, Mail Station 84, Dallas, TX 75222) introduced a line of electronic digital watches at suggested retail prices starting at $19.95, thus fulfilling my prediction of digital electronic watches retailing for less than $25.00. The watches TI-501 and TI-502, feature a five-function electronic module in black, brown, beige or white polysulfone cases (the impact-, heat- and abrasion-resistant material used in the visors of the Apollo Astronauts). A metal-cased version offered in chrome and gold tone, the TI-401, lists at prices starting at $29.95.

Another major manufacturer, Fairchild's Consumer Products Group (4001 Miranda Ave., Palo Alto, CA 94303) also has introduced a line of low-cost digital LED watches. Fairchild's new line Timeband™ features all metal cases with either gold or chromium finish, single-button five-function operation, and list prices starting at $29.95.

Another prediction, a substantial drop in the prices of microprocessors and memory IC's, has been fulfilled not only by substantial price cuts in older models but by the introduction of new devices at lower prices. Already within the budget limits of many hobbyists and experimenters, microprocessor and memory IC prices probably will drop even further before year's end.

Reader's Circuit. With potential applications as a digital logic clock, electronic metronome, wide-range test oscillator, harmonic generator, relay pulser, time marker generator, scope sweep oscillator, and frequency divider, the astable pulse oscillator circuit in Fig. 5 requires only two transistors, yet provides nine octaves of frequency coverage with a single control. Easily duplicated at home, the design was submitted by Peter Lefferts (1640 Decker Ave., San Martin, CA 95046).

Timing capacitor C1 is charged slowly by the dc source, B1, through voltage-divider R1-R2 until Q1 is forward-biased and starts conducting. When this occurs, a forward base bias is applied to Q2 through Q1's split collector load R3-R4. As Q2 starts conducting, a pulse is developed across its collector load, R6, which, coupled back to Q1's base through capacitor C2 and series resistor R5, drives Q1 to a heavily conducting state, rapidly discharging C1. Then the cycle starts over. In essence, Q1 and Q2 form a high gain amplifier with C2 providing positive feedback. Diode D1 reduces feedback capacitor C2's recovery time, while potentiometer R8 establishes Q1's base bias level and thus the point at which timing capacitor C1 charges before feedback and capacitor discharge is initiated. The lower Q1's initial base bias, the higher the circuit's repetition rate. Potentiometer R8, therefore, serves as the circuit's frequency control. Circuit power is supplied by dc source B1, controlled by a spst power switch, S1.

The circuit can be assembled using any standard construction method, provided good wiring practice is observed. Transistors Q1 and Q2 are types 2N1304 and 2N1372, respectively, while D1 is type 1N34A. Except for the 10-kilohm potentiometer, R8, the resistors can be either 1/4 or 1/2 watt. Capacitors C1 and C2 are low-voltage ceramic, paper or plastic film units. Power switch S1 can be any spst type. The circuit will operate with dc sources of 5 to 25 volts, but a 12-volt dc source is optimum.

Although designed primarily as a pulse generator, other waveforms may be obtained at various points in the circuit, including the D1-C2-R5 junction and at Q1's collector. A sawtooth signal suitable for use as a linear scope sweep is
available across C_1. For frequency-divider, sweep-generator, and time-marker applications, synchronization pulses can be applied to Q_1's base through a small coupling capacitor. The circuit's frequency range can be shifted by using other values for C_1 and C_2. With values of 100 μF for C_1 and 3 μF for C_2, the circuit will operate down to approximately 1/20 Hz. Lower values than those given in Fig. 5 will permit operation at ultrasonic frequencies, but it may be necessary to reduce resistor values to 1/10 of those listed, except for R_3, which should not be less than 100 ohms.

Device/Product News. In addition to its versatile NSL4944 universal LED, the National Semiconductor Corporation has introduced a number of new devices of interest, including a family of four Tri-State octal buffer IC’s. The buffers, types DM81LS95, DM81LS96, DM81LS97 and DM81LS98, offer typical power consumptions of under 80 mW and propagation delays of less than 14 ns. Each device provides eight 2-input buffers in a single package, with one of the two inputs to each buffer used as a control line to gate the output into a high-impedance state and the other to pass data into the buffer. Types DM81LS95 and 97 present true data at their outputs, while the DM81LS96 and 98 invert the data. In the DM81LS95 and 96, all eight Tri-State enable lines are common, with access gained through a two-input NOR gate. In the DM81LS97 and 98, four of the eight buffers are enabled by one common line, the other four through another common line.

A TTL-compatible NMOS digital frequency synthesizer for use in CB, marine and avionics transceivers as well as digital TV tuners has been announced by Nitron, a division of the McDonnell Douglas Corporation (10420 Bubb Road, Cupertino, CA 95014). The new IC, type NC6400, requires only a reference oscillator, a VCO, an appropriate data input and an optional prescaling counter to form a complete digital frequency synthesizer system. The device is internally programmable to provide up to 80 channels with different transmit and receive frequencies available for each. The frequency desired is called up by keying the appropriate channel number into either a 3×4 matrix keyboard or by presenting it in BCD code on a four-line data bus. Decoded seven segment (or 4-line BCD) outputs are provided to display the number of the channel called up, plus three additional outputs which can be programmed to indicate illegal channel entry, emergency channel, or similar information.

Fig. 5. Reader’s pulse generator circuit.

One reason Antenna Specialists’ CB antennas are the world’s most popular is that they take all the punishment your rig dishes out and still deliver top performance. Like our model MR315 dual “Minnie-Momma” truck antenna. Its rugged T-handle clamp grips like a vise through wind, vibration and shock . . . but releases in seconds when switching rigs. Re-tuning with the new static ball tuning tip means no whip trimming. And the pressure-molded loading coil and 17-7PH stainless steel whip form a weatherproof unit that sheds water like a rubber duck. You need an antenna that can make it in a tough business. We’ve been making antennas for tough customers for over 20 years.

The antenna specialists co.

A member of The Allen Group Inc.

12435 Euclid Ave., Cleveland, Ohio 44104

Export: 2200 Parma Drive, Westbury, L.I., N.Y. 11590

Canada: A. C. Simmonds & Sons, Ltd.

© 1976 by The Antenna Specialists Co.
DX Listening

By Glenn Hauser

FREQUENCY MEASUREMENT

The search for frequency accuracy on a shortwave receiver involves a number of steps. First, you find the right meter band—perhaps a bit offset from where it should be on the receiver dial. Then you reach the stage where it's important to separate frequencies to the nearest 5 kHz—the standard spacing of SW stations. Once you're deeply involved in DX listening, you're concerned with "splitting" frequencies down to 1 kHz, or even a fraction of 1 kHz. Even direct frequency readout are not precise enough for this.

Building or buying a frequency counter is the best—but not the only—solution. Operating a frequency meter requires laboriously constructed calibration charts. Crystal calibrators give markers at 10, 25 or 100 kHz intervals; the circuit is simple and plans are frequently published. But there are other, devious ways to measure frequencies with equipment you may already have!

Let's begin with the big steps and refine them as we go. It could be that your receiver is so poorly calibrated that you're not sure which MHz is which—especially toward the top end of the dial. Any two receivers will interact with each other, and we can put this seeming liability to good use.

Any old AM radio will do—even a portable. We assume the intermediate frequency is 455 kHz. If not, the principle still applies, but the figures will be different. Place the AM radio near your DX receiver, and tune the AM radio to 545 kHz. This means it is oscillating (and radiating) at 545 + 455 kHz = 1000 kHz. You can tell when it's exactly on 545 by zero-beating. It against a 1000-kHz station on the DX receiver. Now, use the AM radio as a '1000-kHz calibrator' on up the dial every 1000 kHz (1 MHz). Or, go even higher in 2-MHz steps by tuning to 1545 kHz for 2000 kHz oscillation. Check the accuracy of your setting against WWV. Once you're satisfied, mark in the true MHz steps on the dial for future reference.

Now, say you're hearing a SW station whose frequency you wish to determine. If you know your way around the AM dial, and there's a station on almost every channel (especially at night), start at the top end of the AM dial and work downward till a beat first crosses the SW signal. Tune back and forth carefully till it's zero-beat. Now read off the AM frequency as accurately as possible, add 455, and multiply by an integer. One of the products (which one should be obvious) will give you the SW frequency—not with great precision, but perhaps more exactly than you could have determined it otherwise.

Depending on the stability of the AM radio, the "calibration carrier" it produces can also serve as a BFO to demodulate CW or SSB signals. If you have a second SW receiver, you can get a more stable but much stronger beat (perhaps too strong) by tuning 455 kHz away from the BFO frequency. This same principle of beating one receiver against another applies in many other combinations. For instance, before detent uhf tuning was available, one could easily tell TV channel 82 from 83 by beating an FM receiver against TV!

You can also turn the annoying "double-image" to an advantage. These occur 910 kHz above or below the true frequency in single-conversion receivers. Say you're hearing a ham station just between Spain and Switzerland's images on the 14-MHz band. You know the true frequencies are 15130 and 15140 kHz—so the ham must be 910 kHz lower, or at about 14225 kHz.

A conventional way to measure frequencies is to construct a calibration chart using known stations. By graphing the known frequencies on one axis against dial readings on the other, you can interpolate and extrapolate where other frequencies should appear. Most tuners are not linear. If your receiver is general-coverage, but with bandspread calibrated only on the ham bands, you can adapt it to broadcast bands by assigning different values to the bandspread's interval markers.

At a much more precise level, if you know the frequency of one station, and another is heterodyning it (producing an audible tone—usually less than 5000 Hz), you can easily compute the frequency of the off-channel station by measuring the tone on a musical instrument, such as a piano, guitar or pitch pipe. Be sure you're on the right octave and interpolate if necessary on the accompanying table. The separation between the two frequencies is exactly the same as the pitch of the audio tone they produce. This method is known as inferential frequency measurement by heterodyne analysis. Certain risks and limitations apply; the reference station must be one known to stay very close to its nominal frequency. Sometimes the two are so close that it is hard to tell which station is on which side.

Musical Notes and Corresponding Heterodyne Frequencies

<table>
<thead>
<tr>
<th>Note</th>
<th>A</th>
<th>B♭</th>
<th>C</th>
<th>D♭</th>
<th>E♭</th>
<th>F</th>
<th>G♭</th>
<th>A♭</th>
<th>B</th>
<th>C′</th>
</tr>
</thead>
<tbody>
<tr>
<td>kHz</td>
<td>.100</td>
<td>.117</td>
<td>.123</td>
<td>.131</td>
<td>.139</td>
<td>.147</td>
<td>.156</td>
<td>.165</td>
<td>.175</td>
<td>.185</td>
</tr>
<tr>
<td>1000</td>
<td>.22</td>
<td>.23</td>
<td>.25</td>
<td>.26</td>
<td>.28</td>
<td>.29</td>
<td>.31</td>
<td>.33</td>
<td>.35</td>
<td>.37</td>
</tr>
<tr>
<td>2000</td>
<td>.44</td>
<td>.47</td>
<td>.49</td>
<td>.52</td>
<td>.55</td>
<td>.59</td>
<td>.62</td>
<td>.66</td>
<td>.70</td>
<td>.74</td>
</tr>
<tr>
<td>3000</td>
<td>.88</td>
<td>.93</td>
<td>.99</td>
<td>1.05</td>
<td>1.11</td>
<td>1.17</td>
<td>1.24</td>
<td>1.32</td>
<td>1.40</td>
<td>1.48</td>
</tr>
<tr>
<td>4000</td>
<td>1.76</td>
<td>1.86</td>
<td>1.98</td>
<td>2.09</td>
<td>2.22</td>
<td>2.35</td>
<td>2.49</td>
<td>2.64</td>
<td>2.79</td>
<td>2.96</td>
</tr>
<tr>
<td>5000</td>
<td>3.52</td>
<td>3.73</td>
<td>3.95</td>
<td>4.19</td>
<td>4.43</td>
<td>4.70</td>
<td>4.98</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Frequencies are in kHz; based on standard tempered scale wherein A above middle C equals 440 Hz. Notes other than A are not precise, but rounded. The third digit in the first octave explains the rounding in higher octaves.

AngelaHauserRadioHistory.com
Now to the most precise level—subaudible heterodynes (SAH), produced when two signals mix within 15 Hz of each other. Unless they are on exactly the same frequency, the difference causes the S-meter to oscillate at regular intervals. Sometimes you can hear this regular “swish” but not the audio pitch involved. The SAH is strongest when two signals are of equal strength. Sometimes there is too much propagational fading overriding the effects of the SAH. With a stopwatch, or one eye on the clock and the other on the S-meter, count the number of fluctuations in a one-minute period, and then divide by 60. This gives you the number of cycles per second (Hz) of separation between the two signals.

One application of this is in determining which of two audibly heterodyning signals is ‘on’ frequency. It is extremely improbable that two signals will happen to land within “SAH range” of each other if both are drifting off their nominal frequency. So if there’s a noticeable SAH (even without bothering to measure it or identify the sources), it’s a very good bet that the SAH-ridden station is ‘on’ frequency and can be a reliable reference when measuring an audible heterodyne as described previously.

When dealing with such problems, you soon notice that some signals vary in frequency—some so rapidly that instead of a clean heterodyne tone, you hear an oscillating frequency. Others vary significantly over a period of hours or days. On mediumwave, some stations are slightly off-frequency and are so steady that, with the aid of precise frequencies published by the European Broadcasting Union, North American DX listeners can make a very reliable guess at what two stations they are receiving on a European “split” channel—simply by determining the SAH between them, even with little or no audio detected.

The exact frequency of a station is one of its most distinctive characteristics. Some “splits” are so well-established and steady that once you pin them down, no further recognition is necessary. When reporting to DX bulletins or to a station for QSL, the more precisely you can specify the frequency, the better for the station and other listeners.

Video Signals Heterodyne Too.
Figure 1 shows two channel 13 signals within 1 kHz of each other. Since one of the stations was nearby and its exact frequency known, the other DX station could be identified, since no others were operating on the same “offset” in the area affected by the unusual propagation.

Sporadic E is the intense skip phenomenon (usually in the summer) that bounces CB, PSB, TV and FM signals all over the continent. Seldom does it reach much above the FM band (108 MHz), but on very rare occasions, it can hit the high vhf TV band of channels 7 to 13 (174-216 MHz). Figures 1 to 4 show the results of sporadic E I saw last summer in Oklahoma. It’s too much to expect such rare openings to peak during ID times, but I was able to identify the stations based on circumstantial evidence (local programming, offset interference, etc.).

A careful watch on the hightband channels during intense sporadic E openings this summer might reward you with such rare DX’ing.

Fig. 1. WJCT, ch 7, Jacksonville.

Fig. 2. WFLA, ch 8, Tampa.

Fig. 3. WTVT, ch 13, Tampa. Interference with KETA, Okla. City.

Fig. 4. WJHG, ch 7, Panama City.

The complete Computer System that requires just a keyboard and TV monitor for use.

The MICRO-ALTAIR is:

The hardware — video terminal interface board, CPU/RAM/ RAM sound, backplane, power supply and cabinet.

The software — video driver debugger, operating kernel supplied on ROM.

The personal computer system — expandable, no loose ends — a complete and powerful tool.

THE SOLUTION BOX FROM POLYMORPHIC SYSTEMS.

Applications include smart terminals, data acquisition systems, games, accounting, input end for a larger computer — anywhere a little processing is required.

COMPLETE SYSTEM (EXCEPT FOR MONITOR AND ASCII KEYBOARDS) $755.00 KIT. DELIVERY 60 DAYS — SERIAL I/O AND CASSETTE OPTIONS AVAILABLE.

Go to your local computer store and compare

Video Terminal Features — characters are stored in on-board memory. Entire screen may be read or written in 20 milliseconds. Software includes a text-browsing system with scrolling and insert and delete by character or line.

VTI/32 32 character line $160 00 basic $250 00 assembled

VTI/64 64 character line $185 00 basic $290 00 assembled

VTI/DK System kit for VT1 basic $1 15 00

Delivery — 30 days

Analog interfaces — 1 or 2 channels of analog output with 10 bits of resolution (0-10V or 0-2V with bipolar option). 8 bits of filtered digital output and 8 analog comparators for software controlled A/D Conversions.

Add $10 00 for analog output.

VTI/DK 1 analog output $195 00 basic $225 00 assembled

VTI/DK 2 analog outputs $195 00 basic $275 00 assembled

VTI/DK kit for VT1 basic $1 15 00

Delivery — 30 days

All prices and specifications subject to change without notice. Prices are USA only. Call for reorders and 5% sales tax. Add 5% shipping, handling, and insurance.

POLYMORPHIC SYSTEMS

1725 Kipling, Grafton, CA 90240

Call for the ALTAIR delivery within 30 days

Circle No. 49 on Free Information Card
CB mobile antennas

OFFERS:
- Quality construction
- Long range
- Mounting versatility

This is the Avanti Racer 27 mobile antenna. A first quality instrument, it is one of the most popular antennas in the entire CB field. That's because experienced CBers appreciate the benefits of a good, dependable long-range antenna that offers quiet performance.

The Racer 27 is readily adaptable to a wide variety of mounting assemblies:
- a fold-over mount for campers and vans
- a no-hole trunk mount (no drilling into your car)
- a mirror bracket mount for trucks
- a dual assembly for increased performance on all vehicles

Avanti makes the famous MOONRAKER CB BASE ANTENNA

The Racer 27 is Avanti Model AV-327. Suggested retail $23.95

This is only one of many Avanti antennas for car, boat or home. Send today for FREE full-color catalog.
<table>
<thead>
<tr>
<th>Time</th>
<th>City, Country</th>
<th>Frequency (MHz)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00-9:15 p.m.</td>
<td>London, England</td>
<td>G 9.685</td>
<td></td>
</tr>
<tr>
<td>9:00-9:20 p.m.</td>
<td>Vatican City</td>
<td>F 9.70</td>
<td></td>
</tr>
<tr>
<td>9:00-9:45 p.m.</td>
<td>Rome, Italy</td>
<td>G 9.685, 9.695</td>
<td></td>
</tr>
<tr>
<td>9:00-9:55 p.m.</td>
<td>Berlin, GDR. Rep.</td>
<td>F 9.73</td>
<td></td>
</tr>
<tr>
<td>9:00-10:00 p.m.</td>
<td>Madrid, Spain</td>
<td>G 6.065, 11.78</td>
<td>(via Ascension)</td>
</tr>
<tr>
<td>10:00-10:00 p.m.</td>
<td>Peking, China</td>
<td>G 7.12, 7.98</td>
<td></td>
</tr>
<tr>
<td>10:00-10:30 p.m.</td>
<td>Prague, Czechoslovakia</td>
<td>G 5.35, 7.45</td>
<td></td>
</tr>
<tr>
<td>9:30-9:55 p.m.</td>
<td>Montreal, Canada</td>
<td>G 6.00, 6.455</td>
<td></td>
</tr>
<tr>
<td>9:30-9:55 p.m.</td>
<td>Moscow, U.S.S.R.</td>
<td>G 5.90, 7.10</td>
<td></td>
</tr>
<tr>
<td>9:30-10:25 p.m.</td>
<td>Tirana, Albania</td>
<td>G 5.89, 5.97</td>
<td></td>
</tr>
<tr>
<td>9:45-10:15 p.m.</td>
<td>Bucharest, Romania</td>
<td>G 5.965, 6.125</td>
<td></td>
</tr>
<tr>
<td>10:00-11:00 p.m.</td>
<td>Berne, Switzerland</td>
<td>G 6.00, 6.115</td>
<td></td>
</tr>
<tr>
<td>10:00-11:00 p.m.</td>
<td>Budapest, Hungary</td>
<td>G 5.965, 5.985</td>
<td></td>
</tr>
<tr>
<td>11:00-11:30 p.m.</td>
<td>Lisbon, Portugal</td>
<td>G 6.00, 6.115</td>
<td></td>
</tr>
<tr>
<td>10:00-11:00 p.m.</td>
<td>Oslo, Norway</td>
<td>G 5.965, 9.645</td>
<td></td>
</tr>
<tr>
<td>10:00-11:00 p.m.</td>
<td>Warsaw, Poland</td>
<td>G 6.00, 9.655</td>
<td></td>
</tr>
<tr>
<td>10:00-11:00 p.m.</td>
<td>Madrid, Spain</td>
<td>G 5.90, 9.655</td>
<td></td>
</tr>
<tr>
<td>10:00-11:00 p.m.</td>
<td>Peking, China</td>
<td>G 5.90, 7.33</td>
<td></td>
</tr>
<tr>
<td>10:00-11:00 p.m.</td>
<td>Moscow, U.S.S.R.</td>
<td>G 5.90, 6.35</td>
<td></td>
</tr>
<tr>
<td>10:00-11:00 p.m.</td>
<td>Hilversum, Holland</td>
<td>G 5.90, 6.35</td>
<td></td>
</tr>
<tr>
<td>11:00-11:30 p.m.</td>
<td>Cairo, Egypt</td>
<td>G 5.94</td>
<td></td>
</tr>
<tr>
<td>11:00-11:30 p.m.</td>
<td>Beirut, Lebanon</td>
<td>G 5.90, 6.35</td>
<td></td>
</tr>
<tr>
<td>11:00-11:30 p.m.</td>
<td>Lisbon, Portugal</td>
<td>G 5.90, 6.35</td>
<td></td>
</tr>
<tr>
<td>11:00-11:30 p.m.</td>
<td>Tirana, Albania</td>
<td>G 5.90, 6.35</td>
<td></td>
</tr>
<tr>
<td>11:00-11:30 p.m.</td>
<td>Budapest, Hungary</td>
<td>G 5.90, 6.35</td>
<td></td>
</tr>
<tr>
<td>11:00-11:35 p.m.</td>
<td>Kiev, U.S.S.R.</td>
<td>G 7.15, 9.61</td>
<td></td>
</tr>
<tr>
<td>11:00-11:45 p.m.</td>
<td>Warsaw, Poland</td>
<td>G 6.00, 6.115</td>
<td></td>
</tr>
<tr>
<td>11:00-11:55 p.m.</td>
<td>Madrid, Spain</td>
<td>G 5.90, 7.10</td>
<td></td>
</tr>
<tr>
<td>11:00-11:55 p.m.</td>
<td>Peking, China</td>
<td>G 5.90, 6.35</td>
<td></td>
</tr>
<tr>
<td>11:00-12 midnight</td>
<td>Buenos Aires, Argentina</td>
<td>G 5.90, 6.35</td>
<td></td>
</tr>
<tr>
<td>11:30-11:55 p.m.</td>
<td>Prague, Czechoslovakia</td>
<td>G 5.93, 7.345</td>
<td></td>
</tr>
<tr>
<td>11:30-11:55 p.m.</td>
<td>Moscow, U.S.S.R.</td>
<td>G 5.90, 7.10</td>
<td></td>
</tr>
<tr>
<td>11:30-12:00 a.m.</td>
<td>Tirana, Albania</td>
<td>G 6.20, 7.30</td>
<td></td>
</tr>
<tr>
<td>11:30-12:30 a.m.</td>
<td>Vienna, Austria</td>
<td>G 6.155</td>
<td></td>
</tr>
<tr>
<td>11:30-12:30 a.m.</td>
<td>London, England</td>
<td>G 6.055, 7.30</td>
<td></td>
</tr>
<tr>
<td>11:30-12:30 a.m.</td>
<td>Havana, Cuba</td>
<td>G 6.065, 7.30</td>
<td></td>
</tr>
<tr>
<td>11:30-12:30 a.m.</td>
<td>Budapest, Hungary</td>
<td>G 6.00, 6.115</td>
<td></td>
</tr>
<tr>
<td>11:30-12:30 a.m.</td>
<td>Jerusalem, Israel</td>
<td>G 5.90, 7.342</td>
<td></td>
</tr>
<tr>
<td>12 midnight</td>
<td>Bucharest, Romania</td>
<td>G 5.99, 5.97</td>
<td></td>
</tr>
<tr>
<td>12 midnight</td>
<td>Sofia, Bulgaria</td>
<td>G 5.90, 7.10</td>
<td></td>
</tr>
<tr>
<td>12 midnight</td>
<td>Moscow, U.S.S.R.</td>
<td>G 5.90, 7.10</td>
<td></td>
</tr>
<tr>
<td>12 midnight</td>
<td>Montreal, Canada</td>
<td>G 6.135, 9.655</td>
<td></td>
</tr>
<tr>
<td>12:00-1:00 a.m.</td>
<td>* London, England</td>
<td>G 6.00, 5.98</td>
<td></td>
</tr>
<tr>
<td>12:00-1:00 a.m.</td>
<td>Havana, Cuba</td>
<td>G 6.00, 6.90</td>
<td></td>
</tr>
<tr>
<td>1:00-2:00 a.m.</td>
<td>* Kuwait, Kuwait</td>
<td>G 6.135, 9.655</td>
<td></td>
</tr>
<tr>
<td>1:00-4:00 a.m.</td>
<td>* London, England</td>
<td>G 6.00, 5.98</td>
<td></td>
</tr>
<tr>
<td>1:00-4:00 a.m.</td>
<td>Montreal, Canada</td>
<td>G 6.135, 9.655</td>
<td></td>
</tr>
<tr>
<td>12 midnight</td>
<td>* London, England</td>
<td>G 6.00, 5.98</td>
<td></td>
</tr>
</tbody>
</table>

Free your Altair... with a single I/O card that could very well meet all the input/output needs of your 8800 system.

This One's On Us! Get a full 8080 implementation of 8K FOCAL (Digital Equip. Corp.), including the game of Lunar Lander, now at your Processor Technology dealer. Object tape available for the copying charge only; source listing complimentary with a minimum purchase.

Write Us. For details on our other compatible 8800 plug-in modules.

Processor Technology
6200-H Hollis Street Emeryville, CA 94608

AmericanRadioHistory.Com
As an NTS student you'll acquire the know-how that comes with first-hand training on NTS professional equipment. **Equipment you'll build and keep.** Our courses include equipment like the NTS/Heath Digital GR-2000 Solid State color TV with first-ever features like silent varactor diode tuning; digital channel selection, (with optional digital clock), and big 315 sq. in. ultra-rectangular screen.

Also pictured above are other units — 5" solid state oscilloscope, vector monitor scope, solid-state stereo AM-FM receiver with twin speakers, digital multimeter, and more. It's the kind of better equipment that gets you better equipped for the electronics industry.

This electronic gear is not only designed for training; it's field-type — like you'll meet on the job, or when you're making service calls. And with NTS easy-to-read, profusely illustrated lessons you learn the theory behind these tools of the trade.

Choose from 12 NTS courses covering a wide range of fields in electronics, each complete with equipment, lessons, and manuals to make your training more practical and interesting.

Compare our training; compare our lower tuition. We employ no salesmen, pay no commissions. You receive all home-study information by mail only. All Kits, lessons, and experiments are described in full color. Most liberal refund policy and cancella-
and the equipment be equipped.

COMPARE OUR KITS AND LESSONS. COMPARE OUR TUITION.

TUBE & TRANSISTOR TESTER
HIGH FIDELITY SPEAKERS
LE
dX:
4:
r
<<,
le
SPEAKERS
AM/FM/SW PORTABLE SOLID-STATE RECEIVER
FET-VOM
5" OSCILLOSCOPE
DIGITAL MULTIMETER
SOLID-STATE 2-METER FM TRANSCIEVER & POWER SUPPLY
SOLID-STATE STEREO AM/FM/MULTIPLEX RECEIVER
VECTOR MONITOR SCOPE
SIGNAL GENERATOR
COLOR BAR/DOT GENERATOR

NO OBLIGATION. NO SALESMAN WILL CALL
APPROVED FOR VETERAN TRAINING
Get facts on new 2-year extension

NATIONAL TECHNICAL SCHOOLS
TECHNICAL-TRADE TRAINING SINCE 1905
Resident and Home-Study Schools
4000 So. Figueroa St., Los Angeles, Calif. 90037

MAY 1976

AmericanRadioHistory.Com
A Major Advance...

MULTIPLE RESTRIKE IGNITION

*EFFICIENT ENGINE PERFORMANCE
*REDUCED MAINTENANCE EXPENSE
*1 YEAR GUARANTEE OF PRODUCTS

For those who need maximum firing potential, Labtronics offers the Multiple Restrike Ignition. The system produces a high energy repetitive spark on every power stroke which insures the greatest statistical chance for proper ignition. Dependable system triggering from breakerpoints, magnetic pick-ups, or the extremely accurate "13A-xx" infrared triggering unit. Order your system and enjoy the economy and peak performance of an efficient engine.

LABTRONICS, INCORPORATED

MULTIPLE RESTRIKE SYSTEM
<table>
<thead>
<tr>
<th>Model</th>
<th>Programmable Duration</th>
<th>$79.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model VI-B</td>
<td>Fixed Burst Duration</td>
<td>$59.95</td>
</tr>
<tr>
<td>Model VI-C</td>
<td>Complete Optical System</td>
<td>$59.95</td>
</tr>
</tbody>
</table>

HIGH ENERGY SYSTEM: Single Strike

TRIGGERING UNITS

13A-xx Optical Trigger Unit $24.95
61298 Magnetic Amplifier $4.95

CIRCLE NO. 37 ON FREE INFORMATION CARD

SAVE!

MONEY - TIME - FREIGHT

QUALITY STEREO EQUIPMENT AT LOWEST PRICES.

YOUR REQUEST FOR QUOTATION RETURNED SAME DAY.

FACTORY SEALED CARTONS—GUARANTEED AND INSURED.

SAVE ON BRAND NAMES LIKE:

A.D.C. KHL
A.R. SHURE
DYNACO KOSS
SONY FISHER

PIONEER

AND MORE THAN 50 OTHERS

BUY THE MODERN WAY

BY MAIL—FROM

ILLINOIS AUDIO

Department 217S
12 East Delaware
Chicago, Illinois 60611
312-664-0020

90 CIRCLE NO. 31 ON FREE INFORMATION CARD

TO WESTERN NORTH AMERICA

<table>
<thead>
<tr>
<th>TIME PDT</th>
<th>TIME GMT</th>
<th>STATION</th>
<th>QUAL*</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:00-4:15 a.m.</td>
<td>1100.1115</td>
<td>Tokyo, Japan</td>
<td>G 5.99</td>
</tr>
<tr>
<td>4:00-7:00 a.m.</td>
<td>1100.1400</td>
<td>**VOA, Washington, U.S.A.</td>
<td>G 5.99, 9.73</td>
</tr>
<tr>
<td>5:00-5:15 a.m.</td>
<td>1200.1215</td>
<td>Tokyo, Japan</td>
<td>P 5.99</td>
</tr>
<tr>
<td>5:00-6:30 a.m.</td>
<td>1200.1330</td>
<td>London, England</td>
<td>G 5.99 (via Sackville)(opens 1300 Sun.)</td>
</tr>
<tr>
<td>5:15-9:30 a.m.</td>
<td>1215.1630</td>
<td>HCJB, Quito, Ecuador</td>
<td>G 11.745</td>
</tr>
<tr>
<td>6:00-8:15 a.m.</td>
<td>1300.1315</td>
<td>Tokyo, Japan</td>
<td>P 5.99</td>
</tr>
<tr>
<td>6:30-8:00 a.m.</td>
<td>1330.1500</td>
<td>**Dehi, India</td>
<td>F 9.74, 11.75, 15.31 (via Telbrus)</td>
</tr>
<tr>
<td>6:30-9:15 a.m.</td>
<td>1330.1815</td>
<td>**London, England</td>
<td>G 9.005</td>
</tr>
<tr>
<td>7:00-7:30 a.m.</td>
<td>1400.1430</td>
<td>Tokyo, Japan</td>
<td>G 11.74 (via Talata)</td>
</tr>
<tr>
<td>7:00-8:20 a.m.</td>
<td>1400.1520</td>
<td>**Hilversum, Holland</td>
<td>F 9.585 (Closes 1555 Sun.)</td>
</tr>
<tr>
<td>7:00-9:55 a.m.</td>
<td>1400.1655</td>
<td>Manila, Philippines</td>
<td>G 9.005</td>
</tr>
<tr>
<td>8:00-8:15 a.m.</td>
<td>1500.1515</td>
<td>Tokyo, Japan</td>
<td>G 17.84 (via Ascension)</td>
</tr>
<tr>
<td>8:00-9:15 a.m.</td>
<td>1600.1615</td>
<td>London, England</td>
<td>G 9.005</td>
</tr>
<tr>
<td>9:00-9:30 a.m.</td>
<td>1600.1630</td>
<td>Oslo, Norway</td>
<td>G 17.99 (via Ascension)</td>
</tr>
<tr>
<td>9:45-9:51 a.m.</td>
<td>1645.1651</td>
<td>Hilversum, Holland</td>
<td>G 11.82, 15.19 (via Bonaire, Mon.-Fri.)</td>
</tr>
<tr>
<td>10:00-10:15 a.m.</td>
<td>1700.1715</td>
<td>Tokyo, Japan</td>
<td>G 9.005</td>
</tr>
<tr>
<td>10:00-11:30 a.m.</td>
<td>1730</td>
<td>London, England</td>
<td>G 15.355 (via Sackville)</td>
</tr>
<tr>
<td>10:45 a.m.-2 p.m.</td>
<td>1745.2115</td>
<td>**London, England</td>
<td>G 11.825, 15.17 (ext. Sun.)</td>
</tr>
<tr>
<td>11:00-11:55 a.m.</td>
<td>1800.1815</td>
<td>Tokyo, Japan</td>
<td>G 15.105</td>
</tr>
<tr>
<td>12 noon-12:30 p.m.</td>
<td>1900.1907</td>
<td>**Papert, Tahiti</td>
<td>G 15.105</td>
</tr>
<tr>
<td>12 noon-12:45 p.m.</td>
<td>1900.1915</td>
<td>**London, England</td>
<td>G 15.105</td>
</tr>
<tr>
<td>1:00-1:15 p.m.</td>
<td>2000.2015</td>
<td>Tokyo, Japan</td>
<td>G 15.105</td>
</tr>
<tr>
<td>1:00-1:55 p.m.</td>
<td>2000.2055</td>
<td>Tokyo, Japan</td>
<td>G 15.105</td>
</tr>
<tr>
<td>1:00-2:20 p.m.</td>
<td>2000.2120</td>
<td>**Hilversum, Holland</td>
<td>G 11.735 (via Talata)</td>
</tr>
<tr>
<td>2:00-2:15 p.m.</td>
<td>2100.2115</td>
<td>Tokyo, Japan</td>
<td>G 15.25 (via Ascension)</td>
</tr>
<tr>
<td>2:15-4:00 p.m.</td>
<td>2115.2300</td>
<td>London, England</td>
<td>G 15.105</td>
</tr>
<tr>
<td>3:00-3:15 p.m.</td>
<td>2200.2215</td>
<td>Tokyo, Japan</td>
<td>G 17.82, 17.895, 21.61</td>
</tr>
<tr>
<td>3:00-3:50 p.m.</td>
<td>2200.2000</td>
<td>**VOA, Washington, U.S.A.</td>
<td>G 5.98, 9.585, 9.695, 11.90</td>
</tr>
<tr>
<td>3:30-4:20 p.m.</td>
<td>2230.2220</td>
<td>Tokyo, Japan</td>
<td>G 15.105</td>
</tr>
<tr>
<td>4:00-5:30 p.m.</td>
<td>2300.2330</td>
<td>Tokyo, Japan</td>
<td>G 6.175, 9.51 (via Sackville), 9.585, 15.26 (via Ascension)</td>
</tr>
<tr>
<td>5:30-6:00 p.m.</td>
<td>2300.0115</td>
<td>Tokyo, Japan</td>
<td>G 12.05, 12.05, 15.21, 15.245, 17.72, 17.76, 17.90 (via Soviet Far East)</td>
</tr>
<tr>
<td>6:00-8:00 p.m.</td>
<td>0100.0100</td>
<td>Tokyo, Japan</td>
<td>G 6.085 (Mon.-Fri.)</td>
</tr>
<tr>
<td>6:00-9:00 p.m.</td>
<td>0100.0300</td>
<td>Moscow, U.S.S.R.</td>
<td>G 15.105</td>
</tr>
<tr>
<td>6:30-7:30 p.m.</td>
<td>0130.0230</td>
<td>Tokyo, Japan</td>
<td>G 11.71, 15.205</td>
</tr>
<tr>
<td>7:00-7:15 p.m.</td>
<td>0200.0215</td>
<td>Tokyo, Japan</td>
<td>G 9.56, 11.915</td>
</tr>
<tr>
<td>7:00-7:55 p.m.</td>
<td>0200.0255</td>
<td>Peking, China</td>
<td>G 6.175 (via Sackville), 9.515 (via Greenview), 9.585 (via Ascension)</td>
</tr>
<tr>
<td>7:00-8:50 p.m.</td>
<td>0200.0350</td>
<td>Tokyo, Japan</td>
<td>G 15.105</td>
</tr>
<tr>
<td>7:30-8:00 p.m.</td>
<td>0230.0300</td>
<td>Stockholm, Sweden</td>
<td>G 12.00, 12.05, 15.21, 15.245, 17.72, 17.76, 17.90 (via Soviet Far East)</td>
</tr>
<tr>
<td>8:00-9:00 p.m.</td>
<td>0300.0315</td>
<td>Tokyo, Japan</td>
<td>G 15.32, 17.795</td>
</tr>
<tr>
<td>8:00-9:30 p.m.</td>
<td>0300.0330</td>
<td>Peking, China</td>
<td>G 6.085, 9.50, 11.915 (includes Eskimo)</td>
</tr>
<tr>
<td>8:00-8:45 p.m.</td>
<td>0300.0345</td>
<td>Madrid, Spain</td>
<td>G 15.195, 15.39, 17.725, 17.825</td>
</tr>
<tr>
<td>8:00-8:55 p.m.</td>
<td>0300.0355</td>
<td>**Johannburg, S. Africa</td>
<td>G 15.105</td>
</tr>
<tr>
<td>8:00-9:55 p.m.</td>
<td>0300.0425</td>
<td>**Johannburg, S. Africa</td>
<td>G 11.675, 15.06, 17.855</td>
</tr>
<tr>
<td>8:00-9:35 p.m.</td>
<td>0300.0435</td>
<td>**San Jose, Costa Rica</td>
<td>G 11.86, 15.125, 17.72, 17.89</td>
</tr>
<tr>
<td>8:22-9:28 p.m.</td>
<td>0322.0328</td>
<td>Erevan, U.S.S.R.</td>
<td>G 9.065</td>
</tr>
<tr>
<td>8:30-9:00 p.m.</td>
<td>0330.0400</td>
<td>Moscow, U.S.S.R.</td>
<td>G 12.05, 15.21, 15.245, 17.72, 17.76 (via Soviet Far East)</td>
</tr>
</tbody>
</table>

FREQUENCIES, MHz

6.02, 9.505, 11.96, 12.05, 15.21, 15.245, 17.72, 17.76 (via Soviet Far East) | 5.99 |

POPULAR ELECTRONICS
IMSAI announces a unique 4K RAM board for just $139.

Nobody has a 4K RAM board that gives you so much for your money. It's fully compatible with the Altair 8800.

Through the front panel or under software control, you can write protect or unprotect any 1K group of RAM's. Also under software control you can check the status of any 4K RAM board in 1K blocks to determine whether it's protected or not. The board has LED's that clearly show you the memory protect status of each 1K block and which block is active. And there's a circuit provided that will let you prevent the loss of data in the memory if there's a power failure. This low power board has a guaranteed 450 ns cycle time—no wait cycle required. There's nothing like the IMSAI 4K RAM board around.

Dealers inquiries invited.

At Last A New Amazingly Simple

HIGH FREQUENCY

(1HZ-30MHz) COUNTER

BUILD FROM EASY-TO-FOLLOW
"PLANS WITH CIRCUIT BOARDS"

PROFESSIONAL FEATURES

Frequency measurements from 1 cycle to 30 MHz. 5 digit display with 8 digit readout capabilities. Large very bright gaseous discharge "Nixie" tubes with .63 in. high numerals. Temperature compensated master crystal-controlled oscillator. Guiding time base relations: 1, 10, 100 m/sec. and 1 sec. Calibration test point for verifying accuracy of counter. Plug-in sockets used for both discrete units and integrated circuits to facilitate servicing and eliminate aging characteristics.

The concepts used in the design encompass the ultimate scientific knowledge and contemporary "state of the art expertise." Performance is based on the most rigid specifications of stability and counting reliability with meticulous attention to the finest details. It is enhanced by extreme simplicity of integrated electronic circuits design plus a very easy-to-make mechanical assembly. We supply complete Schematics and Full Size Assembly Drawings with Critical Dimensions, Bill of Materials, Photographs and Circuit Boards.

SEND ONLY $37.00 PPD
20% DEPOSIT ON C.O.D.

SINCLAIR LABORATORIES
500 Carolina St.
Bellingham, Wash. 98225
303.8828
or
1030 Hamilton, Suite 4
Vancouver, B.C. V8V 2S1

IMSAI

IMSAI Associates, Inc.
1922 Republic Ave.
San Leandro, CA 94577
(415) 483-2093

Order Your IMSAI 4K RAM Board For Only S139. Use BankAmericard, Master Charge, personal check or money order.

[Blank]

Send 4K RAM boards today.
Charge to my credit card
BAC No.
MC No.

[Blank]

Signature.
Name.
Address.
City/State/Zip.
CB FOR PLEASURE CRAFT

ANY boating enthusiasts have found that their craft mix as well with two-way radios as vodka does with vermouth! Informal polls indicate that CB is extremely popular with pleasure-craft owners.

Why CB and not vhf marine radio? Why not both? There are no stock answers to these questions. The conclusion each skipper reaches depends on his individual needs as a yachtsman, the type of boat he owns, and the area in which he sails. There are many advantages and drawbacks to each type of service, judged by the nautical community's standards. This month we'll discuss a few of these, based on our monitoring of Coast Guard and pleasure-craft communications on Long Island Sound, the body of water between New York's Long Island and New England.

The vhf Marine Radio Service has been carefully planned for nearly twenty years by the FCC and the Coast Guard. It's intended to provide the best possible service for a majority of vessels plying federally controlled waterways. The switch-over to vhf/FM from the old 2-MHz AM service was scheduled over an extended period to minimize financial losses to boat owners already equipped with MF marine radios. (Time runs out for the MF service on January 1, 1977.)

Accordingly, the Coast Guard is now firmly committed to vhf for all operations within a land limit of 20-miles. A great number of repeater stations have been installed at remote locations.

When vhf marine was being planned in the late 1950's (about the same time that Class D was authorized), there was no way that government officials could anticipate the tremendous growth in both small boating and the use of the Citizens Band. Also, it had not yet occurred to the small-craft owner that he could one day use an inexpensive, battery-powered radio to contact someone at home or call for help. As CB evolved, a de facto marine communications system was established, lacking one important ingredient—direct Coast Guard participation.

Coast Guard CB Policies. An independent study was conducted for the Coast Guard in 1968, more recently reviewed to determine if its findings were still valid. This study acknowledged the value of CB to the small-craft segment of the marine community, but concluded that CB was not an adequate or reliable substitute for the official Marine Radio Service. The conclusion was reinforced by the widespread rules violations on the Citizens Band, as well as the FCC's apparent inability to curtail them.

In 1968, the Coast Guard estimated that, for a minimal CB monitoring capability, it would require $1.5 million to set up and an additional $1.1 million annually to maintain and man. Budgetary considerations made this prohibitive, and the decision to proceed at full steam on the completion of vhf facilities was made. Also, recommendations were made that the Coast Guard rely primarily on organized CB "interface" facilities (such as REACT, REST Marine, etc.) to fill the gap in marine safety communications represented by boating CB groups.

Coast Guard Policy effective April 1975 states:

"...The Coast Guard does not encourage the establishment of CB Marine nets or interface organizations. However where nets or interface organizations of this type already exist, Coast Guard is aware that information can be extracted from them to aid in our safety mission."

Officially, the Coast Guard Auxiliary follows policy outlined by the Coast Guard, but unofficially many auxiliary vessels monitor the CB channels and often utilize it for their own administrative purposes. In addition, many local Marine Police units use CB extensively. These organizations deal primarily with local yachtsmen, weekend fishermen, and the small-craft public which represent the majority of marine CB users. Consequently, CB is a basic communications medium for local public safety officials, and they generally cooperate fully with CB safety teams.

All of this means that there are many people, both official and unofficial, who are listening for your MAYDAY call on the Citizens Band. (In many areas, Channel 13 is used for this purpose.)

Which Service is Best? The advantages and disadvantages of vhf marine and Citizens Band radio for pleasure craft are listed in the Table. The primary reasons many mariners have selected CB appear to be its lower cost, ready availability, and multifunction applications. Regarding the latter, Class-D transceivers can be pulled from the boat at dockside and plugged into the car for use on the way home and during the week. Hand-held CB units can be carried along for the Sunday afternoon sailing race, or car-

COMPARISON OF TWO SYSTEMS

VHF/FM

Advantages
- Excellent readability on "line-of-sight" range.
- Quiet, noise-free, no skip.
- Direct contact with Coast Guard.
- Public correspondence (telephone).
- High communications reliability.
- Monitored by Coast Guard.
- Weather broadcasts.

Disadvantages
- Relatively high initial cost.
- No personal ship-to-shore (direct).
- Many small craft not equipped.
- Major "gaps" in Coast Guard coverage.

CB

Advantages
- Relatively low cost.
- Phone patches permitted.
- Highly versatile.
- Many craft equipped.

Disadvantages
- No "telephone" channel.
- No direct Coast Guard communication.
- No guaranteed monitor coverage.
- Range fluctuates.
- No channel designated for marine.
- Little radio discipline.
ried by a shore party to communicate back to their boat at its mooring. A part-time fisherman can ask his wife at home when dinner will be ready through a phone patch.

But on vhf, these calls can only be made through the telephone company, which will charge upwards of $1.50 even for a local call. Privately owned shore stations are not permitted in the Marine Radio Service, except at yacht basins and commercial marine facilities.

The Coast Guard has extended the range of its coastal facilities to well beyond 20 miles by locating antennas atop high towers, and by installing automatic repeater stations in remote areas. However, there are still large portions of inland waterways which are not covered. In these areas, yachtsmen invariably resort to CB as the most useful service.

Comparative Range. The effective communications ranges offered by the two services are very similar, except that vhf's range is much more reliable. At these frequencies, communications are limited to the radio "horizon, which varies very much dependent on antenna height.

Recently, the FCC authorized CB'ers to raise nondirectional antennas up to 60 feet above the ground. This means that CB'ers will be able to contact boats at a distance of 20 miles or more across the water. But in this band, workable range is primarily governed by noise and interference from other stations. On quiet days, the useful range can extend well beyond the horizon, but under "worst-case" conditions, communications will be limited to five miles or less from the base station.

The maximum legal power that a CB transmitter can deliver to its antenna is 4 watts. The figure will always be somewhat lower, due to feedline losses and impedance mismatches. Every loss should be minimized to achieve as much radiated power as possible. A highly efficient antenna is essential to any effective communications system.

On the other hand, the FCC permits a maximum of 25 watts of r-f power in a vhf marine installation, but antennas are not as "efficient" at these frequencies. Without delving into theory, for a given field strength, a half-wavelength antenna—say, a coaxial vertical—would extract only one-sixth of the signal that a half-wavelength CB antenna would. So things balance out in the long run.

Vhf signals are frequency modulated. In layman's language, this means that the frequency of the transmitted signal varies in response to the modulating voice signal. At the other end, the receiver will "track" the stronger of two signals received simultaneously. Practically speaking, the weaker signal is entirely over-ridden without any annoying heterodynes! This behavior is known as the FM "capture effect."

FUN AND PRIDE BUILDING YOUR OWN ELECTRONIC "ALPHAKITS", AND SAVE BIG DOLLARS

RALLY

Digital Stopwatch Kit

$39.95

+ $2.00 PHN NICS & CHARGER $10.00 ADDITIONAL

DMM - 2 Auto-Zero Polarity 2½ Digit Multimeter Kit

$49.95

+ $2.95 PHN LESS TEST LEADS & BATTERIES

DC Volts 1% 3V - 300V

OHMS 1% 3K - 3 meg.

DCI 5% 3ma - 300 ma

Battery operated: 4 - AA Cells

If you want a microcomputer with all of these standard features...

- 8080 MPU (The one with growing software support)
- 1024 Byte ROM (With maximum capacity of 4K bytes)
- 1024 Byte RAM (With maximum capacity of 2K bytes)
- TTY Serial I/O
- EIA Serial I/O
- 3 parallel I/O's
- ASCII/Beaudot terminal compatibility with TTY machines or video units
- Monitor having load, dump, display, insert and go functions
- Complete with card connectors
- Completely factory assembled and tested—no kit
- Optional accessories: Keyboard/video display, audio cassette modem
- Interface, power supply, ROM programmer and attractive cabinet...plus more options to follow. The HAL MCEM-8080. $375

...then let us send you our card.

HAL Communications Corp. has been a leader in digital communications for over half a decade. The MCEM-8080 microcomputer shows just how far this leadership has taken us...and how far it can take you in your applications. That's why we'd like to send you our card—one PC board that we feel is the best-valued, most complete microcomputer you can buy. For details on the MCEM-8080, write today. We'll also include comprehensive information on the HAL DS-3000 KSR microprocessor-based terminal, the terminal that gives you multi-code compatibility, flexibility for future changes, editing, and a convenient, large video display format.

HAL Communications Corp.
Box 365, 807 E. Green Street, Urbana, Illinois 61801
Telephone (217) 367-7373

MAY 1976
EMERGENCY COMMUNICATIONS AND THE AMATEUR

Radio amateurs are justifiably proud of their record of supplying emergency communications during and after disasters of many types. Furthermore, this record is one reason valuable frequencies in the radio spectrum are allocated to radio amateurs. Most disasters disrupt normal communications; so in the first critical hours after disaster strikes, amateur radio provides one of the only means to get rescue operations started. Later, when normal communication channels start to be restored, they are pre-empted for official messages. Then, individual health and welfare messages—such as, I am worried. Are you all right? House damaged. We are safe.—begin to flow in and out of the disaster area via amateur radio.

If a sudden disaster struck your community tomorrow morning, leaving it without electrical power or communications to the outside world, how long would it take you to put a signal on the air and start handling emergency messages? Whom in the community would you tell about your services? Would you feel confident that you and your station could handle a constant stream of messages in and out of the area until relieved? Maybe not tomorrow, but before the end of the year, many amateurs will really face similar questions.

Logically, the first step in preparing for a possible communications emergency is to join the Amateur Radio Emergency Corps (AREC). If you do not know how to get in touch with your local Emergency Coordinator (EC), write to your Section Emergency Coordinator or Section Communications Manager at the addresses that appear each month in “QST” or to the American Radio Relay League, Inc., Newington, Conn. 06111, for AREC registration forms and the name and address of your local EC. He should have liaison with local government offices and other organizations who need communications in emergency conditions and plans for supplying them when necessary. The EC can also tell you about local Radio Amateur Communication Emergency Services (RACES) and Military Affiliate Radio Service (MARS) groups who are also geared to provide message handling and emergency communications in time of need.

Emergency Power. Ideally, every amateur should have facilities for operating his station independently of the commercial power lines. A portable, gasoline or propane-gas generator capable of powering the radio equipment and a few lights is best. A modern transceiver/exciter that can operate from the commercial power lines or 12 volts, dc, can also do the job when the power lines go dead, as long as the storage batteries hold out. A mobile station can be quickly converted to a portable, emergency-powered station by parking the vehicle near a point where communications are needed, and erecting a portable antenna between two trees or other supports and connecting it to the transceiver in place of the mobile whip. (The mobile antenna will work, of course, but the portable antenna will give much better results.) Construction details for an efficient 80/40-meter portable antenna were published in the “Amateur Radio” column in the October, 1975, issue of Popular Electronics. Many amateurs who travel extensively in trailers or campers carry portable antennas and erect them as soon as they arrive at a campsite. They throw iron bolts tied to light lines over conveniently located tree limbs to pull up the heavier lines that support the antenna.

Traffic Nets and Emergency Messages. Any radio amateur worthy of the name is willing to handle emergency messages when he can. However, if message handling is not his regular cup of tea, he immediately finds that sending and receiving messages exactly as written under the stress of emergency conditions is much more demanding than casual ragchewing or DX chasing. Really, the only way to get proficient at handling messages is by practice. Fortunately, it is easy to get the practice. There are traffic nets in all 50 states on the amateur phone and CW bands up to at least 148 MHz that are part of the National Traffic System (NTS). You will hear many nets on the 80- and 75-meter bands between 4:00 and 8:00 p.m. local time. They are also plentiful on other bands and at various hours of the day and night.

A typical traffic net opens with the Net Control Station calling “QST the XY net, which meets regularly on this frequency to handle traffic. This is a directed net.” The NCS then calls the roll of regular net members and lists the number of messages they report. Next, he stands by for latecomers and newcomers. He then instructs the stations that reported traffic to send their messages to designated stations for delivery or relay to their destinations. Liaison stations bring messages from other nets and pick up traffic for them. After all the formal traffic is passed, the NCS dispatches informal messages between net members and finally closes the net. The better the net, the more disciplined it is while there is traffic to be passed, but it changes quickly to an informal group of friendly people after net business is completed. Listen to a few net sessions to learn the ropes. Then call the NCS when he stands by for newcomers, if it seems like a net that you would like to join and make a contribution. After reporting to the net regularly a
few times, you will be automatically added to the roll call.

The booklet Operating an Amateur Radio Station, published by the American Radio Relay League, Inc., as well as the ARRL Radio Amateur's Handbook and the back pages of the ARRL logbook contain information about writing and handling messages. And the ARRL Net Directory, available on request accompanied by a large return envelope with two units of first class postage, is the most complete list of amateur nets available. Incidentally, not all the nets listed are traffic nets. Some of them are ragchewers nets, missionary nets, bible-reading nets, country-hunters nets, etc.; but they all become emergency nets when the chips are down.

Self training is obviously an important part of traffic net operation; but the rewards from handling and delivering messages are as great as other amateurs get from working new states or countries. Admittedly, many of the messages handled are not of world-shaking importance; but how would you rate the messages handled by the daily “Eye-Bank Net?” Since 1962, it has arranged for the transfer of over 7500 human eye corneas from the eye-bank centers to the people needing them.

Field Day. June 26 and 27 are the dates of the 1976 Field Day. From Saturday afternoon until Sunday evening, over 10,000 amateurs will set up approximately 1100, emergency-powered amateur stations under field conditions and contact each other. Some groups will number over 100 members and will operate 10 to 20 separate stations simultaneously. Others will operate one, two, or three stations; still others will be one-man shows. Big or small, and whether they make thousands of contacts or only a dozen, they will be preparing for a future disaster that all hope never comes. Write for your Field Day log and “dupe” sheets from ARRL, Newington, Conn. 06111. Don’t forget the stamped return envelope. Start making plans. Incidentally, CW contacts will earn bonus points again this year.

If you are the vhf type, mark down June 12-13 for the ARRL spring vhf contest. Score sheets from the usual source. You do not have to leave home for this one; however, some contestants will climb the highest mountain to improve their scores.

MAY 1976 95

Sphere Offers You A Real Computer!

A REAL COMPUTER IS:

1. A SYSTEM: One that begins at the beginning with an attractive chassis to put everything in and consists of:
 A. CPU—To give the greatest computing power for the lowest cost ever. Motorola 6800 Microprocessor. The most advanced microprocessor available today.
 B. PROM—The Computer Operating Program turns on instantly.
 C. 4K RAM...For storage and operating capacity for many programs.
 D. REAL TIME CLOCK...To program and monitor events outside and inside the computer.
 E. CRT—To display in human language on video everything going on inside the computer. ($12 character total in 16 lines by 22 characters.)
 F. KEYBOARD—So you can talk to your Computer as fast as you can type. (72 keys of alpha-numeric style typewriter keyboard.)

2. AND A REAL COMPUTER ALLOWS YOU TO: Record and mixual programs and data with inexpensive audio cassette recorder.

3. A REAL COMPUTER ALLOWS YOU TO: Add more memory so you can do more processing and have more storage space.

4. A REAL COMPUTER ENDS UP BY ALLOWING YOU TO: Remember huge quantities of information, and then print it out on paper when you need reports, records, checks, P.O.'s, invoices, etc., etc., etc.

THAT'S A COMPUTER!!!

Please Contact One Of Our Distributors—
Computer Way—Huntington Beach, California
Bargain Electronics—Los Angeles, California
Comput-O-Mat Systems—Rye, New York
The Computer Workshop, Inc.—Montgomery County, Maryland
Computer Mart Corporated—Boson, Massachusetts
The Computer Mart of New York—New York City, New York
Communicaciones S.A.—San Jose, Costa Rica
Computer Country—Denver, Colorado

Circle No. 82 on Free Information Card

DELIVERY: 60-90 DAYS
Electronics Library

ENCYCLOPEDIA OF ELECTRONIC CIRCUITS
by Leo Sands and Donald MacKenroth
Many different representative circuits are illustrated and analyzed, including a-f and r-f amplifiers, audio control circuits, biasing, control, and coupling circuits, frequency converters and multipliers, instrumentation and logic circuits, modulators and demodulators, power supplies, signal processors, and signal generators. Tube, transistor, and IC configurations are covered. Capsule descriptions for each entry appear in paragraph form. Published by Parker Publishing Co., West Nyack, NY 10994. 288 pages, hard cover.

SEMICONDUCTOR FUNDAMENTALS
by R.F. Coughlin & F.F. Driscoll
As the title implies, this is a very basic book designed primarily for the beginning student in technical schools, junior colleges, or high schools. The authors have written under the assumption that all this material is new to the student and have treated each topic in depth. The text material is progressive, with the first eight chapters laying the groundwork for actual work with semiconductor devices as covered by later chapters. Diagrams, charts, and sketches are used lavishly as are examples, summaries, and self-check problems. For the reader with a tenuous grasp on semiconductor theory, this book should help strengthen his understanding. Published by Prentice-Hall, Inc., Englewood Cliffs, NJ 07632. 308 pages. $14.95 hard cover.

REFERENCE DATA FOR RADIO ENGINEERS,
Sixth Edition
The new edition of this engineer's "bible" has been completely updated, revised, and enlarged to encompass material on the latest techniques in electrical and electronic engineering. Much of the material is too new to be found in many reference libraries. Subject areas that have been given major additions and/or revisions include: semiconductors and transistors, micro-miniature electronics, digital computers, electroacoustics, optical communications, navigation, transistor circuits, radio noise & interference, quantum electronics, optoelectronics, and filters. The material is broken up into 48 in-depth chapters and includes hundreds of charts, nomographs, diagrams, curves, tables, and illustrations. Published by Howard W. Sams & Co., Inc., 4300 W. 62 St., Indianapolis, IN 46206. Hard cover. More than 1300 pages. $30.00.

Planning to move?
Let us know 8 weeks in advance so that you won't miss a single issue of PSYCHOLOGY TODAY. Attach old label where indicated and print new address in space provided. Also include your mailing label whenever you write concerning your subscription. It helps us serve you promptly.
Write to: P.O. Box 2990, Boulder, CO 80302, giving the following information:

☐ Change address only.
☐ Enter new subscription.
☐ Extend subscription. ☐ Pay for new subscription.
☐ Bill me later.

AFFIX LABEL

If you have no label handy, print OLD ADDRESS HERE. Add $1 postage per year; Add $1 for Canada; $2 for all other countries outside the U.S.

AmericanRadioHistory.Com
GAMES FOR LEARNING

LEARNING to program isn't difficult, but it does take experience. One of the biggest headaches in learning how to program is sample problem selection. Most text books illustrate problems that are either too simple, too complex, or too far afield for good learning experience.

We don't believe that the experience in converting traditional games to computer form is very enlightening. Some of the worst examples of coding are to be seen in some published game programs, often because they have been written by novices. One should wait to write programs like blackjack, poker, NIM and tic-tac-toe until he has more experience. The programming games I'm talking about are "games" for writing programs.

Reading Programs. Authors learn to write by reading good works. Composers who haven't heard good music can't compose very well. Programmers think that all they need to do is read the reference manual and they'll have everything they need. Well, it isn't so. You should read programs, too. The best way to glean experience from somebody else's hours of labor is to read their codes. Unfortunately, you'll have to read an awful lot before you can decide which is good and which is bad. Ideally, you should only read the good stuff.

The best way to attack a program reading exercise is to get a pad and pencil, and the program listing. Then start breaking the program into small "modules." You can usually discern a pattern of subroutines. Find all the instructions that refer to subroutines, and then locate all of the subroutines. Determine what each subroutine does and jot it down, you can make up a table of subroutine names, their intended functions and necessary data conditions for proper execution. After all the subroutines are defined, you can trace through the main program.

Sometimes you will run into a stone wall. If you can't figure out how something works, go back to the reference manual for the computer and work it through in detail. Manually, act like the computer, recording the register contents on paper so you can be certain you're following the operation in detail. Eventually, you'll discover how it works, and you'll have learned a new programming technique.

Steps in Programming. Programming is a mental activity. You have to think about it before you approach the computer. You should work out your understanding of the problem, and reduce it to some kind of written description. If you want to write a program that will help check out the new terminal you've just attached to your computer, your stated goal might be:

Level 1: Write the letter "A" out to the terminal indefinitely.
Now, in successive stages, break this instruction into more detailed steps until you arrive at a point where you think you can write code. In this simple example, you might write:

b. Send the register out to the terminal.
c. Go back to step a.

Now, translate these statements into a detailed form that takes cognizance of your particular computer and its environment:

b. CALL the TYPE subroutine.
c. JUMP back to step a.

Finally, you can write this in code for your particular computer. Novice programmers try to do all these steps in their heads; semi-experienced programmers start writing at Level 3. But, experienced programmers always try to start at Level 2, where their thinking processes are not limited by the idiosyncracies of the computer.

The IMSAI 8080.
A commercial yet personally affordable computer.

If you thought you could never afford a computer at home, think again. The IMSAI 8080 is built for rugged industrial performance. Yet its prices are competitive with Altair's hobbyist kit. Fully assembled, the 8080 is $931. Unassembled, it's $599.

The IMSAI 8080 is made for commercial users, and it looks it. Inside and out. The cabinet is attractive, heavy gauge aluminum. The heavy duty lucite front panel has an extra 8 program controlled LED's. It plugs directly into the Mother Board without a wire harness. And rugged commercial grade paddle switches are backed up by reliable debouncing circuits.

The system is optionally expandable to a substantial system with 22 slots in a single printed circuit board. And the durable card cage is made of commercial-grade anodized aluminum.

The IMSAI 8080 power supply produces a true 20 amp current, enough to power a full system. You can expand to a powerful system with 64K of software protectable memory plus an intelligent floppy disk controller. You can add an audio tape cassette input device, a printer plus a video terminal and a teletype. And these peripherals will function with an 8-level priority interrupt system. BASIC software is available in 4K, 8K and 12K.

Get a complete illustrated brochure describing the IMSAI 8080, options, peripherals, software, prices and specifications. Send one dollar to cover handling to IMSAI 8080.

From the same technology that developed the HYPERCUBE Computer architecture and Intelligent Disk systems.

Dealer inquiries invited.

IMS Associates, Inc.
1922 Republic Avenue
San Leandro, CA 94577
(415) 483-2093
THE BOOK

Thousands of copies of our innovative book on microprocessors, published in 1974, were purchased by engineers and designers around the world... for $75 each. Now Microcomputer Design—revised, expanded, and reprinted in paperback—is available for $25! Over 400 pages on quality white text paper, including:

- 8080 circuits, theory of operation
- Vectored interrupts, for all 8-bit CPUs
- Efficient bus structure design
- Interfacing to timers, A/D converters, keyboards, digits, and other I/O
- Plus much more!

Full schematics and circuit descriptions are provided for the 8080-based central processing unit of the MIKE 3 microcomputer, in the modular micro series from Martin Research. Used as a textbook in many college courses, MICROCOMPUTER DESIGN is also a popular book with advanced home computer hobbyists.

THE SILVER BOX!

What’s in the silver box? It depends on your application. Based on our modular micro computer series, the versatile industrial control package is currently being used as a time accounting machine; an industrial batching controller; and a multi-home security system—among others.

We know that many Popular Electronics readers have potential microcomputer applications in mind, in their own business environments. Yet few corporations can support a full-scale in-house microcomputer development program. If this problem sounds familiar, look into the silver box from Martin Research! Prompt quotes on specialized control systems.

(Editor’s Note: Someone once told us of a two-step program that will zero all memory except for addresses 0 and 1 on an Altair-8800. We have tried it and it works. After turning the main power on, resetting and stopping the computer, and before loading any bootstrap or the BASIC tape, deposit 063 (INX SP) at address zero, followed by Deposit Next 307 (RSTO). Re-examine address zero (063), then hit RUN. Allow the machine to run until the address LED’s settle down, then hit STOP. Re-examine address zero and 1. There should be only one data LED on at each address, all other addresses should be dark. You may have to repeat the 063-307 program again. If you need to clear the two addresses, simply Deposit zero in each.)

Once you have a clear, albeit informal, description of what you want the computer to do (Level 3), you can code it in assembly language or actual binary (or octal or hex), depending upon what form you feel most comfortable with. At long last, your program will be in memory and ready for execution.

It is not uncommon to spend ¾ of your time planning before you write your code.

Programming “Games.” The easiest kind of “game,” and one that programmers engage in all the time, is to write some specific program in a small number of instructions, regardless of execution time. Pick some function—say, editing a number from BCD to proper money notation with commas, decimal point and dollar sign. Or, try to write a program that will move any contiguous group of bytes to anywhere else in memory. Note that these programs have three important features: they are relatively small, easy to understand, and potentially useful to you in the future.

Now, write the program any way you can and demonstrate that it works. Here comes the challenge. Write it again, but this time set a goal of reducing the size of the program by some specific number of bytes. Also, set a time limit so you don’t go on forever. If you have written a program of about 100 instructions or bytes of memory, you can set the goal of reducing the number of bytes by 10 per cent within two hours. With your goal—and the original program—in hand, go back to the programming reference manual for your computer and try to find some unique set of instructions that will help you write the program smaller and smaller. Stop only after you’ve achieved your goal or the time limit has passed. Then, test and debug your program again to be certain that it works.

If you have a programming pal, the educational experience can be improved even more. All experienced programmers have witnessed somebody demolish their well-polished code with a clever trick. Usually, you can do it right back! It is not uncommon for a small subroutine to be cut to a fourth of its original size by two people working back and forth in this challenging fashion. You’ll certainly learn a lot about programming this way.

Next, write the same program, but make it your goal to write a program that executes faster than the smallest program you’ve written. You’ll find that you generally can’t optimize both size and execution time simultaneously, so your faster program may be larger than your smallest program. Again, challenge another programmer to beat your time—you may be surprised at the results. But, you can then go back and beat his time—and he’ll be surprised.

From this set of exercises, you’ll quickly learn that a program that works may not be enough. You may also have to rewrite and rewrite to make it fit within the resources you have available. You will also learn more about the computer and its instructions and how to exploit them. Finally, you should probably learn that no program is "best". Some programs are shorter than others, some are faster, and some offer more features or fewer restrictions.

After you’ve finished your programs, don’t discard them. No matter how trivial the program may seem, keep it on hand for the day when you need it again. Get a strong three-ring notebook and file all your programs there. If you can’t think up a good classification scheme, store them away in chronological order. You’ll be amazed at how frequently you go back to crib something from earlier work.

Another challenging program is one that will completely clear all of storage to zero. This program must not only zero out all bytes of storage, but it must also destroy itself completely. On many computers, it can’t be done (so far as anybody knows, anyway). However, you should see just how few bytes you have to leave in memory;
like golf, the goal is to minimize the score.

This is a particularly nasty programming problem. Since the program wipes itself out of memory, you have to put it back into memory every time you use it. That is a nuisance, and so there is a definite incentive to do the program right the first time. Experienced competent programmers spend a lot of time "desk checking" their programs. They read and re-read the program until they're absolutely certain that it is completely correct. Only then do they submit the program to the computer. It is better than putting just any old program in memory to see if it'll work. This self-clearing program will show you just how important that desk-checking is, because if you don't do it right, you'll have to put the program back into memory time and time again.

By the way, it isn't considered fair to put the program in read-only memory and then clear only the read-write memory—the program must be in read-write storage, too. Send me your examples in source code form for your computer, and we'll publish the best ones for each popular model in a forthcoming issue.

More Hobbyist Clubs.

Florida
South Florida Computer Group (305) 752-8395, (305) 271-2805
Illinois
Cache, Bill Precht, P.O. Box 36, Vernon Hills, IL 60061
Chicago Area Computer Hobbyists' Exchange (312) 520-1671
Louisiana
Emile Alline, 1119 Penn Ave., Slidell, LA 70458, (504) 641-2360
Massachusetts
The Alcove Computer Club, (617) 664-4271
Minnesota
Cliff Tanner, 121 Avenue C, Cloquet, MN 55720, (218) 879-4581
Mississippi
Gulfport Computer Group (601) 896-7193
New Jersey
New York
Ithaca Computer Group (607) 272-2339
New York City Micro Hobbyists Group, Robert Schwartz, 376 Riverside Dr., Apt. 1E, New York, NY 10024
Texas
Computer Hobbyist Group of North Texas, Bill Fuller, 2377 Dalworth 157, Grand Prairie, TX 75050
NASA/JSC Club, Marlowe D. Cassetti, 1011 Devon Port Lane, Seabrook, TX 77585
Washington
Steve Herber, 2362 Franklin East, No. 402, Seattle, WA 98102
Wisconsin
Don Stevens, P.O. Box 159, Sheboygan Falls, WI 53085

MAY 1975
The Amplifier Tester:

Only one name in headphones—STAX—can transduce musical depth to actually tell you which amplifiers are "thin" sounding (some are very expensive) and which amplifiers are "musical" in their sound definition.

STAX—a courageous small company dedicated to ultimate high-fidelity. STAX Electrostatic Headphones: so definitive they are known as the "Amplifier Testers". Ask for them where the best audio products are tested first—then sold.

Exclusively distributed in the USA, with integrity, by American Audiport Inc. 909 University Avenue, Columbia, Missouri 65201

American Audiport Inc. 909 University Ave., Columbia, Mo. 65201

CIRCLE NO. 72 ON FREE INFORMATION CARD

Operation Assist

If you need information on outdated or rare equipment—a schematic, parts list, etc.—another reader might be able to assist. Simply send a postcard to Operation Assist. Popular Electronics, 7 Park Ave., New York, NY 10016. For those who can help readers, please respond directly to them. They'll appreciate it. (Only those items regarding equipment not available from normal sources are published.)

National Model NC-173 general coverage receiver. Schematic and/or service instructions. Don Biley, Box 1511, Inuvik, N.W.T., Canada XOE OT0.

Emerson Model 1232 8" portable TV. Need source for deflection yolk. Kim Gracia, 5617 Gifford Ave., Cleveland, OH 44114.

Philco Model 48-360 tube-type AM portable receiver. Need schematic and parts supplier. James Buice, 4313 Ledgewood, Fort Worth, TX 76109.

RCA No. 155 cathode ray oscillograph. Schematic and/or parts list. C. Dalland, 37 Brook Dr., Dover, NJ 07901.

 Heathkit Model V.F.-1 VFO. Need calibration directions and schematic. Pat Deane, 684 Orchid Dr., So. Holland, IL 60473.

Silver "Vomax" Model 900 VOM. Meter replacement needed. Calvin Long, South & Carroll, Frederick, MD 21701.

National Model NC-173 SW receiver. Schematic and/or service information needed. Kerry Moore, 309-51st St., Des Moines, IA 50312.

Interelectronics Coronation 100 or 400 40-watt broadcast amplifier. Schematic and/or operating manual needed. Mike Cirrino, 47-72 J, Ahumanu Loop, Kaneohe, HI 96744.

Philco Model 71 series cathedral-type radio. Need schematic and tube source. Andrew Mondore, 19 Pleas ant Ridge Dr., Loudonville, NY 12211.

McMurdo Silver Model 908 signal generator. Schematic needed. Frank Walker, 630 Elm St., Dixon, CA 95620.

Triplet Model 1210-A tube tester. Need source of tube testing chart and/or operation manual. Dwight Canup, 902 S. Goliad, Rockwall, TX 75087.

Subminiature tube 5676 (AK 568X). Need source. E.S. Spainhour, Jr., Route 2, Box 1148, Summerfield, NC 27358.

Superior Instruments Model 73 industrial analyzer. Wiring diagram and schematic. Gary Lorenz, 11081 S. Eberhart Rd., Clare, MI 48617.

PULSE MODULATION & PHASE-LOCKED LOOPS

EXPERIMENTERS have tinkered with many different types of amplitude modulated (AM) optical communicators for many years. Although pulse modulation (PM) techniques offer many advantages over AM systems, such as good noise rejection, increased security, and immunity to fading, not many amateur PM communicators have been built.

But things are changing. Thanks to the versatile phase-locked loop (PLL), you can now experiment with a true PM communications system without building overly complex circuits. The specific designs presented here are for infrared communications, but they can be easily adapted to visible light, wire, or radio links.

Inside the PLL. If you read Herb Cohen's excellent tutorial on PLL's in the February 1975 issue of PE ("How Phase-Locked Loops Work"), you'll recall that the loop automatically locks onto and tracks a signal even though its frequency changes. The PLL does all this with the help of its phase comparator and a voltage-controlled oscillator (VCO). Specifically, the phase comparator compares the frequency of an input signal with that of the VCO and produces an error voltage directly proportional to the difference between the two. (For simplicity, we'll assume an intimate relationship between frequency and phase.)

This error voltage serves two purposes. As you can see in the loop's block diagram (Fig.1), the error voltage is fed back to the VCO and changes its frequency to match that of the input signal. This feedback enables the PLL to lock onto and track the signal. The error voltage is also a demodulated FM output since it varies directly with a shift in the input signal's frequency. Simply stated, the error voltage from the phase comparator permits the PLL to lock onto a carrier frequency, to track it continually over a given range, and filter out any superimposed information signal.

The transmitter is fairly straightforward. A unijunction transistor (UJT) relaxation oscillator, composed of C2, Q2, R5 and R6, intensity (amplitude) modulates a LED at a constant subcarrier frequency until an input signal is applied to Q1 via C1 and the attenuator R1 and R2. Transistor Q1 acts as a variable resistor which alters Q2's oscillation frequency when an input signal is applied.

The UJT applies a train of 1-microsecond pulses to the LED at a subcarrier frequency of about 10 kHz. (In this system, the subcarrier modulates the infrared carrier. When a 10-volt power supply is used, each pulse has an amplitude of about 150 mA. Average current drain depends on the modulation rate and ranges from 10 to 20 mA.

For best results, a preamplifier should be used with the transmitter. I happened to have a Calecro modular 1-watt unit (J4-590) and used it, but many other modules will work just as well. Refer to the instructions supplied with the module for interconnection information. If the amplifier has a low-impedance output (most do), use an audio output transformer as an impedance matcher. For example, if the amplifier output is 8 ohms, connect the 8-ohm secondary of the transformer to this output and the primary (a few thousand ohms) to the input of the modulator. The circuit will work without the transformer, but not as well.

It's wise to use a GaAsSi LED because GaAs LED's compensated with silicon are much more efficient than ordinary GaAs devices. I used a GE type SSL-55C LED due to its high efficiency (about 6 mW of 940-nanometer

Fig. 1. Block diagram of PLL.

Fig. 2. PFM transmitter circuit.

Fig. 3. PLL receiver circuit.
7A AYLESBURY ROAD OTTOMONIUM, MD. 21093

MACHINE LANGUAGE PROGRAMMING FOR THE "8008"
AND SIMILAR MICROCOMPUTERS

READ IT FOR 15 DAYS!
MONEY-BACK GUARANTEE

- Detailed presentation of "8008" codes
- Flow Charts • Mapping
- Floating-point Package
- Basic programs: loops, counters, masks
- Multiple-precision arithmetic
- Debugging • Organizing Tables
- Editing/Assembling • Math operations
- I/O, Real-Time Programming
- Maximizing memories • And lots more

19.95
ppd.

Here's the detailed, basic manual you need to develop today's machine language programs.
170 pages. Illustrated. Easy-to-read, understand. Most techniques applicable to other microcomputers, e.g. 8080, etc. Floating-point arithmetic package is worth the price alone.

Order today! Read the manual for 15 days. If not completely satisfied, return it salable condition, for full refund.

SCELBI COMPUTER CONSULTING INC.
1322 Rear Boston Post Rd., Milford, CT 06460

FREE catalog
over 2000
unique tools, handy kits, precision instruments, technical supplies.

Our 23rd year of service to the World's finest craftsmen and technicians.

A carefully selected and tested assortment of unique, hard-to-find tools, clever gadgets, precision instruments, bargain kits. One-stop shopping for the technician, craftsman, hobbyist, lab specialist, production supervisor. Many tools and measuring instruments available nowhere else. One of the most unusual and complete tool catalogs anywhere. Get your copy of the NC FLASHER today.

National Camera
2000 West Union Ave., Dept. G6A
Englewood, Colorado 80110
(303) 729-2293

STEREODISCOUNTERS
7A AYLESBURY ROAD OTTOMONIUM, MD. 21093

[301] 252-6680

Circle No. 63 on free Information Card

Rapid starting, elimination of CD Update Detroit. Electronic ignition now enables you to fill wrong, but other infrared types will also work. Check the ads in the "Electronics Marketplace" for sources.

The receiver circuit uses an inexpensive 565 PLL IC available from most parts dealers. A silicon solar cell (selenium devices won't work), driving a modularized preamp—again, a Calco type J4-590—detects the infrared carrier. The preamp output drives the PLL, which demodulates the subcarrier's information. Although the solar cell can be connected directly to the PLL input, using a preamp yields much better results.

Construction and Adjustment. Assemble the transmitter and receiver on separate perforated boards or on opposite sides (left and right) of an IC breadboard. It will probably be inconvenient to mount the amplifier modules directly on the boards. If so, use short lengths of hookup wire for interconnections. Aim the LED at the solar cell. Then adjust the transmitter's R1 until a tone is heard in the receiver's earphone. You'll notice that the tone comes in at a high frequency, gradually falls to a low pitch, and then rises again as you adjust R1. The optimum point is when the tone is at the lowest possible pitch.

After the transmitter is adjusted, test the system by speaking into a microphone. You can use a standard tape recorder (dynamic) microphone with most amplifier modules. If reception is noisy, readjust R1 while speaking into the mike. If this fails to correct the problem, reduce the receiver's preamp gain or shield part of the solar cell with masking tape. Incidentally, for these tests you can eliminate the transmitter preamp by using a transistor radio as a signal source. Just connect the audio output of the radio directly across the input of the modulator (between C1 and ground).

Range. With suitable optics and lots of practice, this PFM infrared communications system will have a range up to 100 meters or even more. I've obtained ranges greater than a kilometer with a similar homebrew set-up. Try Edmund Scientific (300 Edscorp Bldg., Barrington, NJ 08007) for suitable lenses and reflectors. And see Light Beam Communications (F.M. Mims III, Howard W. Sams & Co., 1975) for more information on optical communications.
IC BONANZA

Send for our new catalog, Volume III.

Send for Free Catalog

Minimum order $5.00. Data sheet prices 25 each.
Inquiries for larger quantities.

Texas Instruments, Inc., 6424 West Tidwell Road, Houston, Texas 77015.

American Radio History, Inc.

Send for Free Catalog

Minimum order $5.00. Data sheet prices 25 each.
Inquiries for larger quantities.

Texas Instruments, Inc., 6424 West Tidwell Road, Houston, Texas 77015.

American Radio History, Inc.

Send for Free Catalog

Minimum order $5.00. Data sheet prices 25 each.
Inquiries for larger quantities.

Texas Instruments, Inc., 6424 West Tidwell Road, Houston, Texas 77015.

American Radio History, Inc.

Send for Free Catalog

Minimum order $5.00. Data sheet prices 25 each.
Inquiries for larger quantities.

Texas Instruments, Inc., 6424 West Tidwell Road, Houston, Texas 77015.

American Radio History, Inc.

Send for Free Catalog

Minimum order $5.00. Data sheet prices 25 each.
Inquiries for larger quantities.

Texas Instruments, Inc., 6424 West Tidwell Road, Houston, Texas 77015.

American Radio History, Inc.

Send for Free Catalog

Minimum order $5.00. Data sheet prices 25 each.
Inquiries for larger quantities.

Texas Instruments, Inc., 6424 West Tidwell Road, Houston, Texas 77015.

American Radio History, Inc.

Send for Free Catalog

Minimum order $5.00. Data sheet prices 25 each.
Inquiries for larger quantities.

Texas Instruments, Inc., 6424 West Tidwell Road, Houston, Texas 77015.

American Radio History, Inc.
SOFTWARE! SOFTWARE!
VIBRATO SYSTEM for musical instruments. Completely electronic design, no rotating speakers! Construction plans available including modifications for special effects.

Send cheque or M.O for $12.95 to R. Dahlby, Box 219, Laval-des-Rapides, Quebec, Canada, U.S. Inquiries.

SOFTWARE SOFTWARE!
VIBRATO SYSTEM for musical instruments. Completely electronic design, no rotating speakers! Construction plans available including modifications for special effects.

Send cheque or M.O for $12.95 to R. Dahlby, Box 219, Laval-des-Rapides, Quebec, Canada, U.S. Inquiries.

SOFTWARE SOFTWARE!
VIBRATO SYSTEM for musical instruments. Completely electronic design, no rotating speakers! Construction plans available including modifications for special effects.

Send cheque or M.O for $12.95 to R. Dahlby, Box 219, Laval-des-Rapides, Quebec, Canada, U.S. Inquiries.

SOFTWARE SOFTWARE!
VIBRATO SYSTEM for musical instruments. Completely electronic design, no rotating speakers! Construction plans available including modifications for special effects.

Send cheque or M.O for $12.95 to R. Dahlby, Box 219, Laval-des-Rapides, Quebec, Canada, U.S. Inquiries.

SOFTWARE SOFTWARE!
VIBRATO SYSTEM for musical instruments. Completely electronic design, no rotating speakers! Construction plans available including modifications for special effects.

Send cheque or M.O for $12.95 to R. Dahlby, Box 219, Laval-des-Rapides, Quebec, Canada, U.S. Inquiries.

SOFTWARE SOFTWARE!
VIBRATO SYSTEM for musical instruments. Completely electronic design, no rotating speakers! Construction plans available including modifications for special effects.

Send cheque or M.O for $12.95 to R. Dahlby, Box 219, Laval-des-Rapides, Quebec, Canada, U.S. Inquiries.

SOFTWARE SOFTWARE!
VIBRATO SYSTEM for musical instruments. Completely electronic design, no rotating speakers! Construction plans available including modifications for special effects.

Send cheque or M.O for $12.95 to R. Dahlby, Box 219, Laval-des-Rapides, Quebec, Canada, U.S. Inquiries.

SOFTWARE SOFTWARE!
VIBRATO SYSTEM for musical instruments. Completely electronic design, no rotating speakers! Construction plans available including modifications for special effects.

Send cheque or M.O for $12.95 to R. Dahlby, Box 219, Laval-des-Rapides, Quebec, Canada, U.S. Inquiries.

SOFTWARE SOFTWARE!
VIBRATO SYSTEM for musical instruments. Completely electronic design, no rotating speakers! Construction plans available including modifications for special effects.

Send cheque or M.O for $12.95 to R. Dahlby, Box 219, Laval-des-Rapides, Quebec, Canada, U.S. Inquiries.
S. D. SALES CO. P. O. BOX 28810 DALLAS, TEXAS 75228

ALARM CLOCK KIT SIX DIGIT LED

Thousands of hobbyists have bought and built our original clock kit and were completely satisfied. But we have received many requests for an alarm clock kit with the same value and quality that you have come to expect from S.D. So, here it is!

THE KIT INCLUDES:

1. Mostek 50252 Alarm Clock Chip
2. Hewlett Packard .30 in. common cathode readouts.
3. NPN Driver Transistors
4. Etched and Drilled P.C. Board set
5. Step Down Transformer
6. Switches for time set
7. Slide Switches for alarm set and enable
8. Filter Cap
9. IN4002 Rectifiers
10. IN914 Diode
11. .01 Disc Cap
12. Resistors
13. Speaker for alarm
14. LED lamp for PM indicator.

$16.50
(COMPLETE KIT)

Why pay MORE MONEY for our competitor's clock that has LESS DIGITS that are SMALLER in size?

Please take note that we use only first run parts in our kits and include ALL the necessary parts. Not like some of our competitors who use retested readouts and chips or who may not even include switches in their kits.

60 Hz. Crystal Time Base
FOR DIGITAL CLOCKS

$5.95
S. D. SALES EXCLUSIVE!

The kit that you have been waiting for is here NOW, and at an unbelievable price! Thanks to S.D. Sales you can turn that digital clock of yours into a superbly accurate, DC operated, time piece.

KIT FEATURES :

A. 60 Hz output with accuracy comparable to a digital watch.
B. Directly interfaces with all MOS clock chips.
C. Super low power consumption (1.5 Ma typ.)
D. Uses latest MOS 17 stage divider IC.
E. Eliminates forever the problem of AC line glitches.
F. Perfect for cars, boats, campers, or even for portable clocks at ham field days.
G. Small size, can be used in existing enclosures.

Kit includes crystal, divider IC, P.C. Board plus all other necessary parts and specs.

21021 K RAM's - 8 for $12.95
New units - We bought a load on a super deal, hence this fantastic price.
Units tested for 500NS Speed.

INTEL 1702A 2K ERASABLE PROM'S $6.95
We tell it like it is. We could have said these were factory new, but here is the straight scoop. We bought a load of new computer gear that contained a quantity of 1702A's in sockets. We carefully removed the parts, verified their quality, and are offering them on one heck of a deal. First come, first served. Satisfaction guaranteed.

MV-50 TYPE LED's
by LITRONIX
Factory Prime
$10 for $1

3 DIGIT LED ARRAY - 75c
by LITRONIX
D.33MMB 3 MADE-TO-ORDER READOUTS IN one package. These are factory prime, not retested rejects as sold by others. Compare this price 75c for $2.

SALE ON CUT LEAD SEMICONDUCTORS

Leads were cut for PCB insertion. Still very usable.

1N914/1N4148 1 Amp 100 PIV $100/2
1N4002 1 Amp 100 PIV $40/1
1N4745A 16V 1W Emitter FET $29/51
EN2222 NPN Transistor $25/1
EN2907 PNP Transistor $25/1
2N3804 NPN Driver Xstr. $25/1
2N3992 GE Pre-amp Xstr. $25/1
2N3992 GE Pre-amp Xstr. $25/1
C103Y SCR. 800MA. 60V. $10/1

SLIDE SWITCH ASSORTMENT

Our best seller. Includes miniature and standard sizes, single and multiposition units. All new, first quality, name brand switches. Try one package and you'll reorder more. Special 12 for $1 (Asgortment)

DISC CAP ASSORTMENT

PC leads. At least 10 different values, includes .01, .05, plus other standard values.
50 FOR $1

UPRIGHT ELECTROLYTIC CAPS

47 mfd 35V $10/1 $10 for $1
68 mfd 25V $5/1 $5 for $1
100 mfd 16V $10/1 $10 for $1
1000 mfd 25V $10/1 $10 for $1

1000 MFD FILTER CAPS

Rated 36 VDC. Up-to-date style with P.C. leads. Most popular value for hobbyists. Compare us to $1.50 each from franchise type electronic parts stores. S.D. Special 5 for $1

FAIRCHILD BIG LED READOUTS

A big, 50 inch tall, high character. New in either common anode or common cathode. Take your pick. Super low current drain, only 5 MA per segment type.

SPECIAL 5 for $1
FND - 510 Common Anode $1 for $1
FND - 503 Common Cathode $1.50 ea. 6 for $7.50

DUAL 741C (555) OP AMPS

Mini dip. New house numbered units
by RAYTHEON
4 FOR $1

FET'S BY TEXAS INSTRUMENTS - SPECIAL 5 for $1
4179-70 out with an internal house number. TO-92 plastic case. N. Channel, Junction type FET

We do not sell junk. Money back guarantee on every item. No C.O.D. Texas Res. add 5% tax. Postage rates went up 30%. Please add 5% of your total order to help cover shipping.

S. D. SALES CO.
P. O. BOX 28810 DALLAS, TEXAS 75228

CIRCLE NO. 55 ON FREE INFORMATION CARD

MAY 1976

109
AT LAST!

4 & 6 DIGIT PC BOARDS

PC Board for 4 digit display MAN series or SL707 $1.75
PC Board for 6 digit display MAN series or SL707 $2.25
PC Board for 4 digit display FN903 $2.25
PC Board for 6 digit display FN903 $2.80
PC Board for 4 digit display DL747 $1.25
PC Board for 6 digit display DL747 $1.25
PC Board for 4 digit display DL727 $2.25
PC Board for 6 digit display DL727 $2.25
PC Board for 4 digit display FN70 $1.75
All PC Display Boards are multiplexed for adding additional digits.

THE KING OF ALTAL

INTRODUCING:

FATIMA

FOUR DIGIT TEMPERATURE KIT

FATIMA, the first in a series of timer kits sharing nodes to interface with THE KING.

FATIMA - FEATURES:

$49.95

1) 4 digit temperature display
2) Fahrenheit or Centigrade
3) Temperature 10 sec. display, time 20 sec. display
4) Complete C-Mos application
5) Kit uses 7002 4-digit counter

Kit includes all components, PC board and instructions for interfacing with THE KING 4-digit alarm clock.

For 25mA readouts use a digital display FND70.

CSC

100 $19.95 (Complete Kit)

To order 2 weeks for delivery.

We now offer a full line of Contitional Specialties (PDC boards, Chips, Monitors, etc.)

DISPLAY SPECIAL

$1.30

FULLY multiplexed, common cathode. Goldplated. Ideal for 6 digit clock.

FREE

9 Volt Battery with $10 or more purchase

THE KING $23.50

HIGH VOLTAGE DRIVE TRANSISTORS

To order 2 weeks for delivery.

FREE

9 Volt Battery with $10 or more purchase

THE KING - FEATURES:

1) 6 digit, 12 hr. 60 cycle or 24 hr. 50 cycle alarm clock
2) Time sharing capability for display of additional information
3) Built-in alarm generator and automatic output for intensity control of LEDs
4) Single 12V supply and a minimum of interface components
5) AM and AM automatic power failure indications
6) 10 minute snooze
7) Complete data and construction manual enclosed.

THE KING, by Altal, to you, a special offer.

Power Supply Kit: 5 Volt Amp. Reg. Line regulation 0.005

Maximum Load regulation 50mV

Kit includes Components, PC board, Transformer, and Case.

From Altal to you, a special offer.

Power Supply Kit: 5 Volt Amp. Reg. Line regulation 0.005

Maximum Load regulation 50mV

Kit includes Components, PC board, Transformer, and Case.

THE KING $23.50

HIGH VOLTAGE DRIVE TRANSISTORS

To order 2 weeks for delivery.

FREE

9 Volt Battery with $10 or more purchase

THE KING - FEATURES:

1) 6 digit, 12 hr. 60 cycle or 24 hr. 50 cycle alarm clock
2) Time sharing capability for display of additional information
3) Built-in alarm generator and automatic output for intensity control of LEDs
4) Single 12V supply and a minimum of interface components
5) AM and AM automatic power failure indications
6) 10 minute snooze
7) Complete data and construction manual enclosed.

THE KING, by Altal, to you, a special offer.

Power Supply Kit: 5 Volt Amp. Reg. Line regulation 0.005

Maximum Load regulation 50mV

Kit includes Components, PC board, Transformer, and Case.
IT'S ABOUT TIME

4-DIGIT ALARM CLOCK

KIT NO. 1

$13.95

(With PC Board)

FEATURES

* Direct drive display output
* Current control regulation on chip
* Low power brightness control on chip
* RF eliminating slowness of circuit
* Slope radio feature
* 24 Hour " Snooze" alarm
* Independent digit setting
* Non-multiplexed output circuitry

12 VAC CT 1/2 amp transformer for Kit No. 1...
...

$2.00

KIT NO. 2

Complete kit with components, PC Board, transformer, wood grain case, and filter for display window. Includes 25 in. readouts...

$25.50

KIT NO. 3

Complete kit with components, PC Board, transformer, wood grain case, and filter for display window. Includes 5 in. readouts...

1999 V. A. basic with polarity indication, together with Kit K12 and 4 digit display board, you have a DVM with a M o m input impedance, and if properly adjusted, 1% accuracy. Includes components & PC 8d.

KIT 017 $13.50

SCIENTIFIC KITS

4-DIGIT DECADE COUNTER KIT

KIT 012

One chip 4 digit decade counter kit, with both 7 segment and BCD outputs.

1. Chip features internal oscillator for scanning speed.
2. Overflow and count extend output.
3. Transfer, reset, count, blanking and true complement control inputs.
4. PC Boards can be cascaded 8-12-16, etc. digits.
5. Kit includes counter chip, drive circuit for 4 cathode type displays and PC Board. (For rework kit board see FND70-FND503-MAN74)

$19.95

$15.75

$13.75

CIRCLE NO. 6 ON FREE INFORMATION CARD

FORUM H. ROBERTS ESTABLISH contact with fellow motorists 4'x8' window cards state "CB—your moniker channel (your number)". Send number and $1.50 for 2 cards. Satisfaction guaranteed. Strasburg, DE 17579. 10851aclesley, Santa Ana, CA. 92705.

HEXADECIMAL Calculator, $23.50. Octal Calculator $14.95. Literature free. Radiocraft Precision, Box 13861-510; Atlanta, Georgia 30324.

DIGITAL multimeter, frequency counter, time modules and mainframe—assembled. Low Cost!—Free Brochure. Farelly Research Corporation, P.O. Box 386, Elizabeth, Penna. 15037.

BASIC TELEPHONE WRITING. Unique report gives complete details. $3.50 postpaid. Queens Village Telephone Supply, Box 29002-L, Queens Village, NY 11429.

POWERFUL M6800 ASSEMBLER! Details $1.00 (refundable). M. Kop, Cincinnati, OH 45219.

THOMAS A. EDISON—Check drawn on the Edison Botanic Research Corporation, signed by Edison as President. Authenticity Guaranteed. $45. Darvick Autographs Inc., Midwood P.O. Box 102, Brooklyn, N.Y. 11213.

TV-GAMES, construction plans. Pong series — 5 game set $5.00, big 12 game set $12.00. Jaws-2 and Space Race — both games for $8.00. Pinball 1 & 2 — both for $8.00. Full description and specs — $1.00. ADVANCED ELECTRONICS, P.O. Box 1128, Cupertino, Calif. 95014.

MAY 1976

CIRCLE NO. 51 ON FREE INFORMATION CARD

FORUM H. ROBERTS ESTABLISH contact with fellow motorists 4'x8' window cards state "CB—your moniker channel (your number)". Send number and $1.50 for 2 cards. Satisfaction guaranteed. Strasburg, DE 17579. 10851aclesley, Santa Ana, CA. 92705.

HEXADECIMAL Calculator, $23.50. Octal Calculator $14.95. Literature free. Radiocraft Precision, Box 13861-510; Atlanta, Georgia 30324.

DIGITAL multimeter, frequency counter, time modules and mainframe—assembled. Low Cost!—Free Brochure. Farelly Research Corporation, P.O. Box 386, Elizabeth, Penna. 15037.

BASIC TELEPHONE WRITING. Unique report gives complete details. $3.50 postpaid. Queens Village Telephone Supply, Box 29002-L, Queens Village, NY 11429.

POWERFUL M6800 ASSEMBLER! Details $1.00 (refundable). M. Kop, Cincinnati, OH 45219.

THOMAS A. EDISON—Check drawn on the Edison Botanic Research Corporation, signed by Edison as President. Authenticity Guaranteed. $45. Darvick Autographs Inc., Midwood P.O. Box 102, Brooklyn, N.Y. 11213.

TV-GAMES, construction plans. Pong series — 5 game set $5.00, big 12 game set $12.00. Jaws-2 and Space Race — both games for $8.00. Pinball 1 & 2 — both for $8.00. Full description and specs — $1.00. ADVANCED ELECTRONICS, P.O. Box 1128, Cupertino, Calif. 95014.

MAY 1976

CIRCLE NO. 51 ON FREE INFORMATION CARD

ICT Update Master

1976 integrated circuit data manual with free quarterly updates. Complete IC data from all manufacturers devices 14,000 cross references. Everything you need to select IC's in one hardbound manual. $30.00 complete with Update service.

Money Back Guaranteed. If not satisfied within first week.

IC Update Master

1976 integrated circuit data manual with free quarterly updates. Complete IC data from all manufacturers devices 14,000 cross references. Everything you need to select IC's in one hardbound manual. $30.00 complete with Update service.

Money Back Guaranteed. If not satisfied within first week.

Digital Clock Kit $12.95

6 digit large LED readout. Add $1.50 for transformer and $3.00 for PC board. A tremendous value!
FREE CATALOG. Bargain Prices, Electronic Components, and Equiments. C. Box 28241 Cure Clement, Montreal, HX1K8 Canada. U. S. Inquiries.

SAVE CASH. Stop troublesome service calls. New Miracle Tuner Kit cleans standard coil television tuners automatically. Many sold for $12.50. Send $4.99 to Tuner Kit. P.O. Box 1477, Burbank, Calif. 91505. Money Back Guarantee.

ACOUSTICAL COUPLERS & HARD WIRE MODEMS

MISC. UNTESTED
20 00
PERINIL HARDWARE ORIGINATE & RECEIVE
35 00
LOGIC I - ORIGINATE WIRPRINTS...
35 00
$2.00 handling and shipping charge, Texas residents add 6.5% sales tax. We have other tested modems—write or call.

RONDUNE COMPANY
1224 Security Drive • Dallas, Texas 75247
(214) 630-4621 • TWX 910-861-4865

INSULATED, Solderless Terminals, Flat Spade Tongue, Tinned Copper. For No. 18/24 Wire. No. 8 Stud. 100 Pieces $4.00. postpaid. Fasening Products Box 151, Chaileyton, PA 19012.

600 MHZ Frequency Counter. 8 Digi LED Readout. Crystal Timebase, complete Kit including cabinet $219.95. DAVIS ELECTRONICS, 63 Sheridan Dr., Tonawanda, N.Y. 14101. (716) 874-5484.

BURGAL ALARMS

DIALING UNIT
This Dailing Unit is for use with a simple tape recorder to automatically make telephone calls for emergency or other use. The Unit includes both programmer and dialer, so all you need is a simple tape recorder to complete the system.
$29.95
SIGHT & SOUND SYSTEMS Model 672 Ph., 816 483-4612 fuse jitterfree
5619 St. John Avenue (Dept. K) Kansas City, Mo. 64123

PLANS AND KITS

AMAZING ELECTRONIC PRODUCTS

5 AMP 1000 Volt rectifiers 10 cents. 1N34 Coda 10 cents. 2N3819 35 cents. 2N9084 $1.50. Zeners, IC's, Studs, Bridges. 2N2222 10 cents. $5.00 minimum. Free Catalog. Send stamp, Alaska, Box 1351. Lynbrook, N.Y. 11563.

SURPRISE! SURPRISE! SURPRISE! Free Catalog! WE SELL THE MOST UNUSUAL CONSTRUCTION PLANS USING NUMERICAL READOUTS! Digital Print Capacitance Meter, VOM, Frequency Counter, Oral Thermometer, Automobile Speedometer, Tachometer, Sockets, Tenor. Also CD, Band Graphic Equalizer, LED Volume Indicator, Human Pulse Tachometer, TV Video Ping-Pong Game. PLAN SETS are $3.49 each or ALL eleven for only $19.98 Armed Forces Postpaid! GREEN BANK SCIENTIFIC, Box 100T, Green Bank, West Virginia 24944.

PRINTED circuits directly from magazine articles in three hours. Data ER-4 kit, only $26.95. California and New Jersey residents includes sales tax. Complete details from Data, P.O. Box 36, Guttenberg, N.J. 07093.

COLOR BAR GENERATOR KIT $39.95, plans $7.50. Information 75 cents. Huntington Electronics, Box 2009-P, Huntington, Conn. 06448.
Microprocessor Components

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>8080</td>
<td>8-bit CPU</td>
<td>$24.95</td>
</tr>
<tr>
<td>8088</td>
<td>8-bit CPU</td>
<td>$29.95</td>
</tr>
<tr>
<td>8089</td>
<td>8-bit CPU</td>
<td>$34.95</td>
</tr>
<tr>
<td>8085</td>
<td>8-bit CPU</td>
<td>$24.95</td>
</tr>
<tr>
<td>8086</td>
<td>8-bit CPU</td>
<td>$29.95</td>
</tr>
<tr>
<td>8087</td>
<td>8-bit CPU</td>
<td>$34.95</td>
</tr>
<tr>
<td>8080A</td>
<td>8-bit CPU</td>
<td>$39.95</td>
</tr>
</tbody>
</table>

Clock Cases

- Clock bases with 0.1 W, 0.6 W, 0.8 W, 1.0 W, and 1.5 W in white, black, gold, and blue.
- Specials: 1/16" Vector Board $2.95

Joysticks

- These joysticks feature four 102K potentiometers, that may vary in sensitivity, to control the direction of the game. Dimensions: 1 1/4" x 1 1/4" for game use.

Specials

- FLUX 1061: $7.95
- MOS LSI Devices: $9.95
- JE7000 Clock: $17.95
- JE803 Probe: $19.95
- Digital Clock Kit: $29.95

AUTOTEL Warning Lights

- Includes a complete AUTOTEL kit with all components, including the case and a 12 VDC source. Warning light, $9.95 Per Kit.
MUSICAL INSTRUMENTS

UP TO 60% DISCOUNT. Name brand instruments catalog. Freepoint Music, 114 N. Mahan St., W. Babylon, NY 11704

30% to 50% DISCOUNT! Any Model: Guitar, Amp, Drums. Free Catalog! Warehouse PE-5, Box 11449, Ft. Worth, TX 76109

GOVERNMENT SURPLUS

JEPPS, TRUCKS. Typically From $52.40. Automobiles, Boats, Motorcycles, Airplanes, Oscilloscopes, Tools. Clothes, Shoes, Camping, Photographing, Electronics Equipment. 200,000 Bids Bargains Nationwide Direct From Government. Low as 2 cents on Dollar! Surplus Catalog and Sales Directory $1.50 (refundable 1st order). National Surplus Center, 240 Eastcas-PEL, Joliet, Ill. 60432

EDDIE'S BARGAIN BONANZA

PRODUCTS

SURPLUS TUBES

ALL guaranteed for
ANY 3 for $1.25

Aquired from U.S. Defense or contemplated from equipment (new and used). These are laboratory tested and guaranteed for one full year. Most are of such standard makes as RCA, GE, etc. (BP017) 4L69 167 6CM7 445C (BP018) 6FQ7 6J96 6E5 6H6 400W 6L6 350W 6L6G7 6L6GA 475 (BP019) 6J96 6L6 5534 400W 6L6 350W 6L6G7 6L6GA 475 (BP020) 6J96 6L6 5534 400W 6L6 350W 6L6G7 6L6GA 475

COPPER BONANZA

Music. Capacitors, from .0001 to 240W RMS. Quality for upright, popular devices. In EA. Arrived of ear. Most are 600v, .1, most 600v, 600v, 600v, 600v. Names of compo-

TO

10 MINIATURE

RESISTORS

INDUSTRIAL QUALITY

LED'S

12 for $1.05

(1614) TAPE RECORDER SPARE PARTS KIT $2.95 Parts for recording most tape recorders: caps, motors, pilot lamp, jack, and MUCH MORE.

(1617) 10 MINIATURE POTENTIOMETERS $1.00

(1618) 2 MISC. METERS $1.00

(1619) 60 DISC CAPACITORS $1.00. Ass't from 2000 to 1, most 600v. 600v, 600v, 600v, 600v.

PRO SPORTS ACTION FILMS

WANTED

TREASURE FINDERS

FOR THE MUSIC BUFF

SGS-ATES MONOLITHIC RHETHYM GENERATORS

Designed specifically for electronic organs and other musical instrument designs. Constructed on a single chip, supplied in 24-pin DIP package.

Low power dissipation: 300 mW - Drives 8 sound generators (instruments) - Mask programmable reset counts: 24-32 - Dead beat output - External reset - Open drain outputs - Standard music content available - Detailed 25pg. applications book, only $5.95

M252BAA

15 programmable rhythms (not available in combination) $15.00

M253BAA

12 programmable rhythms (also available in combination) $19.50

ABSOLUTE MAXIMUM RATINGS

VGG + - Source supply voltage - 20 to 0.3 V)

Io Input voltage Io - 20 to 0.3

Ou Output current - 20 mA

TSG Storage temp. -65 to 150°C

Top Operating temp. 0 to 70°C

*With respect to Vgg pin voltage

16-Pin Socket...S...28 24-Pin Socket...S...60 16-page data sheet for both devices only $.50

IF IT ISN'T INDUSTRIAL QUALITY OR BETTER, WE WON'T SELL IT TO YOU.

SEND CHECK OR MONEY ORDER TO:

ANCHOR CORP.

P.O. BOX 2208P

CULVER CITY, CALIF. 90230

(213) 641-4064

CIRCLE NO. 8 ON FREE INFORMATION CARD

POPULAR ELECTRONICS
LIVE IN THE WORLD OF TOMORROW... TODAY!

And our FREE 164 PAGE CATALOG is packed with exciting and unusual values in electronic, hobby and science items — plus 4,500 finds for fun, study or profit... for every member of the family.

A BETTER LIFE STARTS HERE

WORLD'S SMALLEST ELECTRONIC CALCULATOR!

Small but mighty! 8-digit, 4-function electronic calculator does everything big ones do — even has automatic % key... for only $19.95. Take it anywhere. Fits in your pocket — to size of cigarette pack. 3½ oz. dynamo features floating decimal, constant key, lead zero depression, more! Includes plug-in rechargeable Ni-Cad battery pack. 2 x 3½ x ⅜" with plenty of room for most fingers. Another Edmund first with advanced technology.

Stock No. 1945AV .. $19.95 Pdp.

SUPER POWER FOR ANY AM RADIO

New antenna assist turns a tiny transistor into a tiger, has pulled in stations up to 1,000 miles away! Just set beside radio (no wires, clips, grounding) and fine-tune Select-A-Tenna's dial to same frequency — "gangbusters!" Great for clearing weak signals in radio depressed areas, off-shore islands, crowded frequency stations. Solid state — uses no electricity. Batteries, tubes.

Stock No. 72.095AV .. $15.95 Pdp.

ULTRA SELECT-A-TENNA

No. 72,147AV ('OVER 1000 MI.) .. $22.95 Pdp.

KNOW YOUR ALPHA FROM THETA!

For greater relaxation, concentration, monitor your Alpha/Theta brainwaves with audible or visible signal on Biocline II. Has 3 feedback modes, outputs to monitor logic signal, filter set, feedback, broad sensitivity control; other professional feats of $200-up units. Easily operated 4-lb. portable has total brainwave monitoring capability! Req. 2 9V tr. batteries.

No. 1668 (½x 5½x 4½") .. $149.95 Pdp.

LOW COST STARTERS' UNIT (PORTABLE)

No. 71,809 AV (4½x 2½x 4½") .. $55.00 Pdp.

SEE MUSIC IN PULSATING COLOR

New 3-Channel Color Organ adds to music listening pleasure, lets you modulate 3 independent strings of colored lights with intensity of your music to create an audio-light show. They flash, vary in brightness related to music's rhythm, pitch, volume — pulsating lighting performance to music! Fully assembled & priced half that of others, the Edmund Sound To Light Control is a terrific value. Plug in, turn on!

No. 42,309AV (ASSEMBLED) .. $17.95 Pdp.

No. 42,326AV (UNASSEMBLED) .. $13.95 Pdp.

MAIL COUPON FOR GIANT FREE CATALOG!

164 PAGES • MORE THAN 4500 UNUSUAL BARGAINS

EDMUND SCIENTIFIC CO.

200 Edscorp Building, Barrington, N.J. 08007

Please rush Free Giant Catalog "AV".

COMPLETE & MAIL WITH CHECK OR M.O.

EDMUND SCIENTIFIC CO.

300 Edscorp Building, Barrington, N.J. 08007

How Many Stock No. Description (800) 547-3486 Price Each Total

PLEASE SEND GIANT FREE CATALOG "AV"

Charge my BankAmericard

Charge my Master Charge*

Interbank No.

My Card No.

Card Expiration Date

Name

Address

City State Zip

Add Service and Handling Charge $1.00

You must be satisfied or return any purchase in 30 days for full refund.

*Minimum $15.00

Signature

TOTAL

EDMUND SCIENTIFIC CO.

200 Edscorp Building, Barrington, N.J. 08007

Please rush Free Giant Catalog "AV".

COMPLETE & MAIL WITH CHECK OR M.O.

EDMUND SCIENTIFIC CO.

300 Edscorp Building, Barrington, N.J. 08007

How Many Stock No. Description (800) 547-3486 Price Each Total

PLEASE SEND GIANT FREE CATALOG "AV"

Charge my BankAmericard

Charge my Master Charge*

Interbank No.

My Card No.

Card Expiration Date

Name

Address

City State Zip

Add Service and Handling Charge $1.00

You must be satisfied or return any purchase in 30 days for full refund.

*Minimum $15.00

Signature

TOTAL

We’re #1—and the critics totally agree!

HIRSCH-HAUCK LABS... Stereo Review

"The Pickering XUV/4500-Q is obviously one of the best phono cartridges presently available. There are few stereo cartridges that can outperform it in any of its individual characteristics, and we know of none that could be said to be a better stereo/CD-4 pick-up."

B. V. PISHA... Audio Magazine

"The Pickering XUV/4500-Q ranks among the top cartridges for stereo, SQ, QS and CD-4. The sonic clarity is exceptionally good, with superb transient and applause response, and good definition, particularly in the low bass region."

"To sum up, we can recommend the Pickering XUV/4500-Q cartridge without reservations, based upon our laboratory and listening tests."

MAURICE HOLTHAM... Canadian Stereo Guide

"In fact the reproduction of all material... stereo, CD-4 and matrix... was absolutely superb. Good recordings were reproduced with outstanding fidelity and clarity, and tracking was secure at one gram with even the most heavily modulated bands. Solo instruments and voice were rendered with exciting realism; large orchestral and choral works came through in all their magnificence."

Hi-Fi Stereo Buyers Guide

"In both stereo and CD-4 one of the most outstanding under any program conditions. Sound so clean and crisp it almost hurts."

"This pickup is a perfect example of why measurements cannot truly express the sound quality from a transducer; though the measurements are good, the sound quality was rated by the entire listening panel as superb."

The specifications of the XUV/4500-Q are so exciting that we hope you will write to Pickering and Company, Inc., Dept. PE-101, Sunnyside Blvd., Plainview, New York 11803 for further information.

"for those who can hear the difference"

Before you buy your next turntable, consider why you want a new one.

In letters and warranty cards from new Dual users, we find that some had owned manual turntables and came to prefer the convenience and safety of automatic start and stop. Others also wanted to be able to play records in uninterrupted sequence. And yet considered reasons that modesty makes us hesitate to quote: I wanted the best! or "Everyone recommends Dual!"

Whatever your reason may be for wanting a new turntable, consider your purchase carefully. Your record collection probably represents a bigger investment than all your other components combined. And your turntable is the only component that handles your records.

Although the overall appearance and feel of a turntable’s controls can tell you something about its quality, appearances can be deceptive. For example, curved tonearms may appear interesting, but their unnecessary mass and increased resonance can only detract from the quality of music reproduction. All Dual tonearms follow a straight line from pivot to cartridge holder for maximum rigidity and lowest mass.

Some tonearms apply stylus pressure by unbalancing the tonearm. This results in tracking which is adversely affected by record warp and tonearm level. In every Dual, stylus pressure is applied around the vertical pivot via a long coiled spring. This maintains tonearm balance throughout play, and tracking is unaffected even if the turntable is tilted substantially.

Other Dual features and refinements include: cueing damped in both directions to prevent bounce; pitch control; anti-skating separately calibrated for all three stylus types. Anc: internally: motor rotors and drive pulleys individually machine and tested with precision instruments to ensure perfect concentricity.

All the above contribute importantly to quality performance.

Now, while you should never compromise with quality, convenience is a matter of choice. Which is why Dual quality comes in a variety of models: semi-automatic, single-play; fully-automatic, single-play; single-play/multi-play. Seven models in all as described below.

Dual 1225. Fully automatic, single-play/multi-play. Viscous-damped cue-control; pitch-control. 16% platter. Less than $225; less base.

Dual 1226. With cast platter, rotating single-play spindle. Less than $275.

Dual 1228. With gimbaled tonearms, synchronous motor, illuminated strobe, variable tracking angle. Less than $325.

Dual 1249. Fully automatic single-play/multi-play. Belt drive. 12" dynamically-balanced platter. Less than $280; less base. Full-size belt-drive models include: Dual 510 semi-automatic. Less than $200; Dual 610, fully automatic. Less than $230. (Dual 560, with base and cover. Less than $270.)

Dual CS701. Fully automatic, single-play: C.C. brushless, electronic direct drive motor; tuned anti-resonance filters. Less than $400; including base and cover.

United Audio Products. 120 So. Columbus Ave., Mt. Vernon, N.Y. 10553

Exclusive U.S. Distribution Agency for Dual

CIRCLE NO. 43 FREE INFORMATION CARD