4 UNIQUE CONSTRUCTION PROJECTS

- Poisoned-Air Detector
- The Torture Box (MINIATURE TEST CHAMBER)
- High-Speed, Adjustable Electronic Fuse
- Single-IC Capacitance Meter

TEST REPORTS

- Lafayette LR-221 Full-Logic SQ AM/FM Receiver
- B&O 3000 Single-Play Automatic Turntable
- Courier Spartan SSB CB Transceiver
- Ballantine 3/24 Digital Multimeter
- Heath 3- or 4-Channel R/C

RADIO CONTROL FOR HOBBYISTS
Discover the ease and excitement of learning Electronics with programmed equipment
NRI Sends you

When you train at home with NRI, you train with your hands as well as your head. You learn the WHY of Electronics, Communications, TV-Radio the NRI pioneering "3-Dimensional" way. NRI training is the result of more than half a century of simplifying, organizing, dramatizing subject matter, and providing personal services unique for a home study school. You get the kind of technical training that gives you priceless confidence as you gain experience equal to many, many months of training on the job.

NRI—The Leader in Electronics Training for more than Fifty Years

APPROVED UNDER NEW GI BILL If you served since January 31, 1955, or are in service, check GI line in postage-free card.
Earn $5 to $7 an hour spare or full time in TV-RADIO SERVICING

Color television sales are soaring. And so is the demand for trained repairmen. If you can service TV sets, portable radios, tape recorders, hi-fi sets, phonographs and auto radios, you'll always be in demand. It's one of your best routes to spare-time earnings, a good paying job or a business of your own. NRI trains you quickly and expertly, showing you how to get started in servicing soon after you enroll, earning as you learn. NRI trains you in today's method of installing and repairing all electronic equipment for the home—including solid-state Color TV. You even build, experiment with and keep to enjoy your own solid-state radio plus your choice of black-and-white or the new 25” diagonal solid state Color TV receiver NRI developed from the chassis up for training. Like thousands of others, you can soon be earning good money in your spare time... the easy NRI way.

There's money and success awaiting you in COMMUNICATIONS MOBILE RADIO & BROADCASTING

NRI training in Complete Communications equals as much as two years of training on the job. With NRI, you can train for a choice of careers ranging from mobile, marine and aviation radio to TV broadcasting and space communications. You learn how to install, maintain and operate today's remarkable transmitting and receiving equipment by actually doing it. You build and experiment with test equipment, like a TVOM you keep. You build and operate amplifier circuits, transmission line and antenna systems, even build and use a phone-cw transmitter suitable for transmission on the 80-meter amateur band. Whatever of these five intensely practical NRI Communications courses you choose, you prepare for your FCC License exams, and you must pass your FCC exams or NRI refunds your tuition in full.

Move ahead in America's fast growing industry as COMPUTER TECHNICALIAN

Ours is rapidly becoming the age of the computer... and NRI can train you to cash in on the opportunities in this field. Only NRI trains you at home on a real computer—not a simple logic trainer, but a complete, stored program digital computer using over 50 integrated circuits. As you build the NRI Computer, you explore all fundamental logic circuits, then how to combine them in a complete, stored program computer. You observe the "heart" of a real computer. You solve typical problems and learn how to locate faults with diagnostic programs. Bite-size texts make studying easier. Prove to yourself what nearly a million NRI students could tell you—that you get more for your money from NRI. Check the card and mail it today for your free NRI Color Catalog. NO SALESMAN WILL CALL. NRI Training, 3939 Wisconsin Ave., Washington, D.C. 20016.

YOU GET MORE FOR YOUR MONEY FROM NRI

NEW NRI 25" DIAGONAL SOLID STATE COLOR TV TOTALLY ENGINEERED FOR TRAINING

NRI Kits and Equipment

Dollar for dollar, you get more value from NRI training kits, because they are designed as educational tools. In the TV-Radio Servicing Course, for instance, the end product is a superb 25" diagonal color TV your whole family will enjoy. The set is designed so that, while building it, you can introduce and correct defects... for trouble-shooting and hands-on experience in circuitry and servicing. The kits include, at no additional cost, a wide-band service type oscilloscope and color cross-hatch generator, and other valuable equipment that will let you start earning money in your spare time making repairs... even before the course is completed.

FEBRUARY 1974
FEATURE ARTICLES

29 HOW TO GET STARTED IN RADIO CONTROL MODELING Fred Marks
46 VHF/UHF SCANNING MONITORS Herb Friedman
A comprehensive buying guide.
52 LIGHT BEAM COMMUNICATIONS Forrest M. Mims
New developments in a rapidly growing field.
70 DESIGN YOUR OWN BASS-REFLEX HI-FI SPEAKER SYSTEMS Part 2. Construction details. David B. Weems
89 SERVICING WITHOUT SERVICE DATA John T. Frye
How to check out an unfamiliar piece of gear.
92 THE SHORTWAVE BROADCAST BANDS—AND WHAT TO FIND ON THEM Richard E. Wood
98 PITCH GENERATORS FOR ELECTRONIC MUSIC Don Lancaster
Part 1. Separate voicing and vco with sample-hold.

CONSTRUCTION STORIES

34 BUILD THE TORTURE BOX Ralph Tenny
Miniature environmental test chamber.
44 SINGLE-IC CAPACITANCE METER Harry Garland and Roger Melen
55 POISONED AIR DETECTOR Herb Cohen
New semiconductor senses dangerous levels.
62 HOW THE 741 OP AMP BECOMES SUPER-OP J. R. Loughlin
An ultra-versible bench instrument.
67 FAST-ACTING RESETTABLE ELECTRONIC FUSE William A. Russo
THE SCENES

10 STEREO SCENE Ralph Hodges
26 HOBBY SCENE
102 SOLID-STATE Lou Garner
106 TEST EQUIPMENT SCENE Les Solomon
109 CB SCENE Len Buckwalter

PRODUCT TEST REPORTS

80 LAFAYETTE MODEL LR-221 4-CHANNEL RECEIVER
82 BANG & OLUFSEN MODEL 3000 TURNTABLE/TONEARM
84 COURIER SPARTAN SSB CB TRANSCEIVER
86 BALLANTINE MODEL 3/24 DIGITAL MULTIMETER
87 BRANSON MODEL B-220 ULTRASONIC CLEANER

DEPARTMENTS

6 EDITORIAL Milton S. Snitzer
8 LETTERS
16 NEWS HIGHLIGHTS
116 NEW LITERATURE
118 NEW PRODUCTS

COMING NEXT MONTH

Build the LED Infrared Light-Beam Communicator
Using Audio Sweep Generator for Testing
A Guide to CMOS Operation
Are Your Speakers in Phase?

Midwestern Office,
The Patti's Group, 4761 West Touhy Ave.,
Lincolnwood, Illinois 60644, 312-679-1109
GERALD E. WOLFE, GEORGE B. MANNION

Western Office
9025 Wilshire Boulevard, Beverly Hills, California 90211
213-273-8030; BROADHAW 2-1361
Western Advertising Manager, BUD DEAN

Japan: Jomos Yagi
Oil Palace Aoyama: 6-25, Minami Aoyama
6 Chome, Minato-Ku, Tokyo 407-1930/6821

Ziff-Davis also publishes Boating, Car and Driver, Cycle,
Flying, Modern Bride, Popular Photography, Skiing, and
Stereo Review.

Forms 3579 and all subscription correspondence should be
addressed to POPULAR ELECTRONICS, Circulation De-
partment, P.O. Box 2774, Boulder, CO 80302. Please allow
at least eight weeks for change of address. Include your
old address, as well as new—enclosing, if possible, an
address label from a recent issue.

Editorial contributions must be accompanied by return
postage and will be handled with reasonable care; how-
ever, publisher assumes no responsibility for return or
safety of art work, photographs, models, or manuscripts.
LOOKING OVER THE ISSUE

Putting together an issue of POPULAR ELECTRONICS is not just a matter of pounding typewriters and yelling for the "copy boy" to rush things to the printer. We always find something of personal or professional interest in each article; and sometimes we go all out on a project, generating so much enthusiasm that editors of our sister publications come around to see what's going on.

That's what happened this month in preparing our cover story—as we assembled and tested the model car and radio control system. There was a lot of excitement around the office and we discovered what a really fascinating hobby it is—and easy to get into. An article in a future issue will dig into the innards of radio control circuits, detailing the various techniques that are used by the hobbyist.

Another article of special interest this month is the story on light beam communications, which lays the groundwork for a subsequent construction article on the first light beam communicator project we've seen that uses a single infrared light-emitting diode as both source and detector. This area of communications is close to our hearts, and we have been in the forefront of publishing articles on it for many years. In 1970, for example, we described a build-it-yourself helium-neon laser voice communications system that was later exhibited at the Smithsonian Institution. We'll have a more refined one to present soon. Watch for it!

Then there's our story on vhf/uhf scanning monitors, a roundup discussion of this exciting hobby. Monitoring the vhf and uhf Public Safety bands is a recent outgrowth of the hobby of shortwave listening. On these bands, you can hear your local police, fire, business radio, tow trucks, taxi operations, computer repair services, newspaper reporters, and continuous weather broadcasts. Since most of these transmissions are intermittent, scanning monitor receivers (which automatically tune from one channel to another, stopping on an active channel) have grown in popularity. The article includes a directory covering more than 70 different models from 15 manufacturers.

And, of course, we have a group of truly unique construction projects—an ultra-sensitive gas/smoke detector with meter readout, a home experimenter's miniature environmental test chamber, a fast-acting resettable electronic fuse, and a single-IC direct-reading capacitance meter, among others.

All-in-all, it adds up to an issue we think you will find interesting to read—stimulating both thought and action.
Another introductory offer to new members of the **ELECTRONICS AND CONTROL ENGINEERS’ BOOK CLUB**

ANY ONE

of these great professional books for only $1.00

VALUES FROM $9.95 to $34.75

Special $1.00 bonus book comes to you with your first club selection

Save time and money by joining the Electronics and Control Engineers’ Book Club

Here is a professional club designed specifically to meet your day-to-day engineering needs by providing practical books in your field on a regular basis at below publisher prices.

How the Club operates: Basic to the Club’s service is its publication, the **Electronics and Control Engineers’ Book Club Bulletin**, which brings you news of books in your field. Sent to members without cost, it announces and describes in detail the Club’s featured book of the month as well as alternate selections which are available at special members’ prices.

When you want to examine the Club’s feature of the month, you do nothing. The book will be mailed to you as a regular part of your Club service. If you prefer one of the alternate selections—or if you want no book at all for that month—you notify the Club by returning the convenient card enclosed with each Bulletin.

As a Club member, you agree only to the purchase of four books over a two-year period. Considering the many books published annually in your field, there will surely be at least four that you would want to own anyway. By joining the Club, you save both money and the trouble of searching for the best books.

MAIL THIS COUPON TODAY

ELECTRONICS AND CONTROL ENGINEERS’ BOOK CLUB
582 Princeton Road, Hightstown, N.J. 08520

Please enroll me as a member of the Electronics and Control Engineers’ Book Club and send me the two books indicated below. I am to receive the bonus for just $1.00, and my first selection at the special Club price shown. These books are to be shipped on approval, and I may return them both without cost or further obligation. If I decide to keep the books, I agree to purchase as few as four books during the next two years at special Club prices (at least 15% below list).

Write Code No. of bonus book here

Write Code No. of first selection here

Name ________________________________
Address ________________________________
City __________________ State __ Zip __

E33237
Yes the circuits used in our power amplifiers and preamp kits are rather unique and unusual. They probably are as good, or better than anything else available too. We don’t however charge you a large premium for the engineering that has gone into these outstanding products. Get a copy of our new catalog and compare prices and specifications.

Where else are you going to buy a 60 watt amplifier kit that has less than 0.01% IM distortion all the way up to full rated RMS output for $75.00? In addition to the unmatched performance you get bronze anodized chassis and cover and even an output level meter on the front panel—like we said “far out”.

GET OUR
NEW 1974 CATALOG
listing this and other unique kits FREE
by simply circling our number on the reader service card.

SOUTHWEST TECHNICAL PRODUCTS CORPORATION DEPT. PE
219 W. Rhapsody, San Antonio, Texas 78216

CIRCLE NO. 29 ON READER SERVICE CARD

ELECTRONIC MUSIC MANUFACTURERS
Your October issue, on page 36, lists the manufacturers of electronic music equipment. The third company listed was CBS Laboratories, 1300 East Valencia, Fullerton, Calif. 92631.

We wish to advise that our company purchased the complete inventory of the CBS system, both as to parts and completed units, approximately one year ago. We are now the sole distributor of these synthesizers and synthesizer parts.

GREGORY KRAMER, Pres.
Electron Farm
2 Ketch St. Suite 201
Marina Del Rey, CA 90291

I wish to add to your list of electronic music manufacturers the name of Chalice Organ Co. which has been producing kit organs and synthesizers since 1970.

Chalice manufactures a large line of very sophisticated organs and synthesizers which use the latest digital multiplexing techniques, along with digital wave shaping. We make instruments which use either full digital tone generation, independent oscillators for tone generation, or frequency division for tone generation.

PAUL J. ISHAM, Pres.
Chalice Organ Co.
P.O. Box 209
Santee, CA 92071

FAIL-SAFE DIGITAL CLOCK
The phase detector circuit shown in my article “Make Your Digital Clock ‘Fail-Safe’” (December 1973 issue) is in error. The correct configuration for the circuit shown in Fig. 4 is shown in the drawing. Sorry, I should have caught the error during proofreading.

CALVIN DILLER
Bluffton, Ohio
SCOPES VS PROBES

I must take exception to Leslie Solomon's statement in the November "Test Equipment Scene" to the effect that a scope is not as reliable as a logic probe. This may be true for inexpensive scopes used by hobbyists and experimenters, but professionals in the field of digital logic realize that a logic probe falls far short of a good quality oscilloscope.

Some logic probes cannot distinguish between an open input to a gate and a high level on that gate. It is virtually impossible with a logic probe to determine whether you have a high dc level or a pulse with a high rep rate. A logic probe will also not reveal illegal OR-tied gates which are usually visible on a scope.

I'm not knocking probes; they have their place. But to say that they are better than a scope is stretching things a little.

GARTH FISHER
Grand Terrace, Calif.

It is true that there are times when a probe is not the best instrument to use. However, Les's discussion was aimed at the hobbyists and experimenters who do not have lab-grade scopes. He was trying to show that, in this case, a logic probe has discrete 1 and 0 switching levels while a scope just displays signals.

FOUR-WAY FLASHER ADDITION

I was quite interested in your brief item on a "Four-Way Flasher" in your December 1973 issue. Here's an additional item of safety.

On older cars whenever the headlights are turned on, the front parking lights are turned off. If one headlight goes out, one side of the front of the car will be unlighted. By adding one more diode as suggested on the schematic, the parking lights will be turned on whenever the light switch is on. The operation of the headlights will remain unchanged.

ROBERT SERGENT
St. Charles, Mo.

FEBRUARY 1974
THE cassette is finally overcoming its tendency to wow, flutter, and (occasionally) snarl itself up in the innards of even the better cassette-deck mechanisms. It's about time. Of the remaining performance problems that face it, I can see only one looming large enough to be of serious concern: distortion caused by tape overload. Many recordists—particularly those who tape live music—are finding that working with cassettes can be a game of blindman's buff with high-frequency distortion that makes easy losers of the unwary. The game is blind because the recording-level meters, your hedge against distortion-producing levels, are not always to be trusted; dB numbers that are “safe” in one situation can lead you astray in another.

While tape overload (magnetic saturation) is the bane of tape recording in all its forms, it is nowhere so prevalent as with the cassette. All the parameters of the cassette medium—thin tape, narrow recorded tracks, very slow tape speed—add up to very little magnetic-oxide material per inch of tape, and very little material per unit of time. To skimp on oxide is to invite magnetic saturation, and this is likely to occur most often at high frequencies, because of the treble boost the recording circuits apply to offset inevitable high-frequency losses and to fight the hiss that is rampant with cassettes. The combination record-playback head of most cassette decks is an additional complication. A head that is ideal for playback is itself prone to overload when recording high-level signals.

Meters That Lie. Assuming you agree to put up with the cassette's limitations, why can't you at least have recording-level meters that do their job (let you know when you're exceeding the capabilities of the medium)? Apparently, the answer is that the development of suitable cassette record-level indicators has lagged behind the progress made by the rest of the technology. Too many of the meters have response characteristics approximating those of VU devices, and while this may sound admirably rigorous and “professional,” this type of meter is not really appropriate for cassette recording.

True VU meters conform to a well-defined standard of ballistic damping. As a result, they respond to the recording signal in a kind of lagging, lingering manner. This is good, because it makes the meters read-able. An undamped meter, responding to every brief spike of the musical waveform, would wiggle, shudder, and overshoot its way across the dial in a blur of movement. However, it's also bad because a VU meter is incapable of registering momentary peaks that might be just long and strong enough to cause audible trouble. This is very much a matter of degree.

At one time the VU meter was admired for its tendency to stolidly ignore a little bit of “blasting,” since the ear is tolerant of very short bursts of distortion, and to distract the recording engineer with split-second overloads that no one would ever hear seemed self-defeating. But mind you, these rules applied only to the finest recording equipment of that time. And even so, a good deal of practical experience was
In Quest of Perfection...

Neil Diamond is an artist who creates scenes with music. So when he decided that state-of-the-art sound systems be used during press premiers to reproduce his original music score for the film JONATHAN LIVINGSTON SEAGULL, realism in terms of spectral balance, spatial character, and lifelike sound-power levels were mandatory requirements.

To reproduce the music he created, Neil Diamond personally selected BOSE 901 Speakers, commenting: "After auditioning what were reputed to be the best high fidelity speakers on the market today, I chose BOSE 901 Speakers because they offer the ultimate in theatre music reproduction." This will come as no surprise to thousands of BOSE 901 owners around the world who believe they have the ultimate in music reproduction in the home.

In our continued quest of audible perfection, we have introduced the new BOSE 901 SERIES II Speakers - a product of over 15 years of research in musical acoustics. We invite you to compare the 901s with any speaker on the market today, regardless of size or price. And judge for yourself if you agree with Neil Diamond's selection and with the rave reviews of the music and equipment critics.

For information on the 901 SERIES II, complimentary copies of the reviews, and a report on the theatre sound system competition, circle your reader service card or write Dept. K1

Original motion picture soundtrack recording available on Columbia records and tapes.

This research is presented in the article "Sound Recording and Reproduction" published in TECHNOLOGY REVIEW (MIT), Vol. 75, No. 7, June '73. Reprints are available from BOSE for fifty cents a copy.
necessary to interpret a VU’s readings accurately and safely in every situation.

With cassettes, and particularly in live recording situations, a VU meter is definitely not the level indicator of preference. The cassette has a hair-trigger readiness to overload not shared by studio recording equipment. Signal peaks of very short duration must be taken into account; they can produce very audible distortion. And large peaks come along frequently in live recording.

When you dub a disc, FM broadcast, or any kind of second-hand program source onto a cassette, you are dealing with material that has been “pre-limited”—all the severe peaks have been chopped off (not audibly, one hopes). This stands to reason when you consider that a full-scale live performance may have a dynamic range well exceeding 80 dB, whereas a disc or tape recording with a 60-dB dynamic range is really pushing the state of the art.

Most cassette decks have been designed with copying chores in mind; and in this application, brief meter excursions up to 0 dB and a little above usually create no problem. But the live cassette recordist quickly finds that, to keep the meter needle from going berserk on fortissimos, he must choose levels that have it resting on its bottom peg, barely moving, for distressingly long periods. And even if he doesn’t succumb to the temptation to inch the level controls up gradually (sheer disaster when a climax takes him by surprise), he may still not be entirely safe if the meters aren’t fast enough.

Meters That Level with you. Of late the recording industry has been taking peak levels very seriously, and many of the newer consoles and mixing desks are festooned with light displays that register and hold peaks, and even “remember,” for later reference, the maximum levels achieved during a recording session. Some of these devices have already begun filtering down to the consumer sphere, where they exist—in a simpler, modified form—in a few recently introduced cassette decks. Among these devices are:

Peak-Reading Indicator Lights. These are warning flashers that supplement the meters (usually more-or-less conventional VU-type level indicators) by flickering on in the presence of sharp, potentially troublesome transients that the meters are too slow to register. Logically enough, LED’s (light-emitting diodes), with their virtually instantaneous response, are becoming rather popular in this application. The levels that trigger these indicators, and the time constants they follow, are discretionary with the manufacturer, who has presumably taken the trouble to find out what types of signal are likeliest to cause audible distortion with his machine.

Peak-reading meters. As noted earlier, an unaided meter fast enough to respond accurately to brief musical transients would have to be so underdamped that it would whip all over the dial in an undecipherable fandango. But if a conventional meter is driven by its own little amplifier, the time constants of the meter’s response to the recording signal can be controlled electrically for whatever result is desired. The combination of a meter and a driving amplifier with a fast attack time and slow release time (the electronics hold onto the transient somewhat longer than it actually lasts) produces a reasonably valid peak-reading indicator. (Fig 1.) One manufacturer’s device of this type gets to within 2 dB of actual value for a signal lasting only 50 milliseconds. (Compare this with a VU meter’s attack time, which is somewhere around 2 to 4 tenths of a second.) Another manufacturer advertises an attack time of 20 microseconds (and release time of 70 milliseconds) for his meters’ amplifiers.

Because of their slow release times, peak-reading meters tend to display a somewhat compressed picture of the actual signal dynamics. This tends to make them fairly readable. At the same time, since they ride along the peaks of the musical waveform, ample indication of excessive levels is given.

Equalized meters. A conventional record-
Energy shortages tell us we have to change our driving style. Now! It doesn’t mean we have to go back to horse and buggy days. But it does mean we have to make every drop of gas give us the most go for our money. Anyone with horse sense knows that a well-tuned car gets better mileage, and in times of fuel shortages, better mileage means a lot.

The Mark Ten B Capacitive Discharge System keeps your car in better tune so it burns less gas. Using Mark Ten B is more than horse sense. It’s the smart move under the hood, helping a nation survive an energy crisis and keeping you on the road. Delta Mark Ten. The best way to go.
ing-level meter reads the "flat" signal as it comes from the inputs of the tape recorder. The signal applied to the tape, however, has received a strong high-frequency boost to offset hiss and treble losses. This means that the tape can easily get into trouble with excessive high-frequency levels that the meters know nothing about. The obvious remedy is to have the meters monitor levels after the recording-equalization stage—in other words, equalized meters. As a rule, this requires separate driving amplifiers for the meters, which may or may not have peak-reading time constants. Also, the meter movements should be able to tolerate substantial amounts of high-frequency energy without burning out.

Fig. 2. In ideal limiting circuit, instead of following high-level signals into overload region (dashed lines), the amplifiers are gain-controlled to permit little or no signal increase above a certain threshold.

Peak limiters. A limiting circuit controls the gain of the recording amplifiers, typically acting only when a preset threshold level (usually a level that produces 1 to 3 percent distortion) is reached. A good limiter just won't let the signal going onto the tape get any stronger than that, no matter what the level at the inputs. (Fig. 2.) All the worrisome transient peaks are thereby simply eliminated.

An audibly unobtrusive limiting circuit has to be designed with a rather fast attack time and a very slow release time—several seconds or so. Otherwise the decaying tails of cymbal crashes and similar abrupt, loud sounds would disconcertingly "bob up" in level. Therefore, any limiter which is working (in many live-recording situations, it will work quite a lot) is going to introduce considerable compression in the recorded signal. And since no limiter found in consumer equipment is likely to be sophisticated enough to be inaudible under every circumstance, there should be a switch to take it out of the circuit when it's not wanted.

But how does the ear react to being deprived of the high-level musical transients we tend to associate with excitement and "realism" in reproduced sound? Up to a point, the ear is forgiving. The action of a limiter will be heard if it is allowed to affect the average levels of the program. But if the recordist chooses levels that result in only the briefest clipping of peaks, the limiter may very well go unnoticed in the final recording.

What Won't Help. All over the recording world, the perils of high-level transients have been a little slow in receiving acknowledgment. In fact, none of the developments that made the cassette a high-fidelity medium have any direct bearing on the tape-overload situation. The B-Type Dolby noise reduction system is a help only because it permits lower recording levels overall while still retaining a good signal-to-noise ratio. Chromium-dioxide tape is somewhat more resistant to overload distortion than iron oxide, but it's clear from the proposed standards for CrO₂ playback equalization that its potential is generally being exploited in another way—to increase the recorded levels of high frequencies and thereby further improve the S/N. This is probably the correct priority to follow for most cassette users. However, it eases the plight of the overload-prone cassette medium hardly at all.

If the new meters, overload indicators, and limiters can't do anything to counter the cassette's real limitations, at least they can give a more complete representation of where the problems are, as well as prevent some of the grosser consequences of overload from taking place.

Of course, the benefits these devices can provide depend entirely on their being used properly. Meters in particular communicate in a language you have to learn pretty thoroughly for best results, and complete mastery in every situation probably won't come until you've had a chance to assess what went wrong with a number of previous recordings. Which is another way of saying that there's no substitute for experience in tape recording, as seasoned recordists are already aware.
"golden anniversary"
Messenger® 250

AN ENTIRELY NEW SLANT
ON CB BASE STATION
PERFORMANCE

From its professional sloping control panel, to its special golden trim cabinetry, you know this is an extraordinary CB radio. But it's when you get it on-the-air that you'll see why Messenger 250 is the new criteria for 23-channel base station performance. Then you'll appreciate its all solid-state chassis—the most powerfully efficient we've yet developed. And its advanced circuitry, including built-in electronic speech compression, "steep skirt" mechanical filter, fully automatic noise limiting and sophisticated automatic gain control. Plus the operational flexibility of the built-in PA function, remote speaker option, and the dual 117 VAC/12 VDC power supply that can keep you on-the-air with battery power if need be. It's quite a radio—but we wouldn't have made it our Golden Anniversary model if it wasn't.

$239.95 suggested price compete with high capacity, ceramic element hand-type microphone.

E. F. Johnson Co.
Waseca, Minnesota 56093

Excellence through half a century of experience.

Circle No. 33 On Reader Service Card
News Highlights

First Quadraphonic Juke Box

Wurlitzer, which brought out the first coin-operated music box in 1896, has now introduced the first quadraphonic juke box. The unit, on which marketing has just begun, will incorporate full-logic SQ™ circuits. The announcement came just weeks after Columbia Records released the first quadraphonic single disc to be distributed in the U.S.—Art Garfunkel’s “All I Know.”

Sony Trading Sells Heathkit in Japan

Sony Trading Corp., a Tokyo subsidiary of Sony Corp., has been named exclusive representative for the Heath Co.’s electronic kits in Japan. Sony will sell a line of Heath stereo, amateur-radio, test-equipment and general products. All will operate on 50 or 60 Hz ac. The equipment sold in Japan will contain translated construction manuals. This marks the first time in Heath’s history that a major foreign corporation has been appointed to sell their products overseas. Heath sells through its own facilities in the U.S., Canada, England and Europe. The company, the world’s largest manufacturer of electronic kits, had sales in 1972 of over $66 million.

Sylvania Acquires RCA Institutes Schools

An agreement has been announced whereby GTE Sylvania Inc. acquires four schools of RCA Institutes. Involved are the schools in Cherry Hill, N.J. and Upper Darby, Pa., as well as the Home Study School and TV Studio School in New York City. The RCA Resident School in New York City is not included in the acquisition. It’s reported that there will be no interruption in any of the courses currently underway at the facilities. (About 10,000 students, American and foreign, are currently enrolled in the schools.)

Troubles With Liquid Crystal Watch Displays

Some buyers of the new digital electronic watches with dynamic scatter liquid crystal displays have experienced difficulties in reading the displays. The watches do have to be tilted at an angle in order to see the display clearly and users must recognize this limitation. There are some other reasons for possible lack of legibility. If the display is not hermetically sealed properly, moisture may get inside and contaminate the liquid display; and if watches are baking in direct sunlight in the jeweler’s window or if direct sunlight is allowed to beat down on the user’s arm while riding in an open car, temperatures may rise to well over 100 degrees F, causing the display to be temporarily transparent. Finally, if the MOS interface circuit is improperly designed so that residual dc offset is not minimized, the display will be degraded.

FTC Revises Proposed Rule on Audio Sound Power Rating

The Federal Trade Commission has revised its proposed rule on what power must be promoted and disclosed by manufacturers of
Put "Dyna-Mike" in your talkpower

Noise Limiter and Noise Blanker to cut down on your own and others' ignition noise and interference

CB/PA switch lets you use audio output to drive a PA horn

Modulation Light shows you're modulating to maximum

Transmit Light shows you're on the air

Extra-large illuminated meter

"Dyna-Mike" Gain Control for maximum modulation to cut through noise

Full audio output you can hear even over road noise

Squelch threshold adjusts to below 1 µV

Big illuminated channel selector

Delta Tune helps you tune in off-frequency signals

RF Gain cuts back strong signals when the skip is in

PLUS...

Positive or negative ground operation, plug-in microphone, output for extension speaker and the quality that COBRA is famous for! Send for more details or see your dealer.

COBRA $29

$180.00

PRODUCT OF DYNASCAN CORPORATION • 1801 W. Belle Flaine • Chicago, Ill. 60613
audio equipment. First, they have deleted the incorrect term “rms power” and have substituted the proper term “average power” or more completely “sine wave continuous average power.” Although rms output voltage is properly used in calculating the output power, this value of power is not an rms power. Second, a new section has been added covering “standard test conditions” under which power measurements are to be made. The section states that the line voltage shall be 117 volts (the IHF specifies 120 volts); the frequency shall be 60 Hz; the amplifier shall be preconditioned by operating it at one-third rated output power for one hour; and rated power and distortion are to be obtained with test signal applied for not less than five minutes at the amplifier’s auxiliary input. It has not yet been decided when the ruling will go into effect.

Color Pictures Recorded on Audio Tape Cassettes

A new cassette picture system that records stereo sound as well as still color pictures for reproduction on a TV set has been demonstrated by Hitachi in Japan. Slide films, opaque cards or still frames of a TV picture can be recorded and reproduced for any length of time over 12 seconds. About 240 still pictures can be recorded on a C-120 tape cassette. The recorder is expected to be available on the market in October. The price has not been announced, though it is said to be less than that of present VTR systems.

Pocket TV from England

A pocket-size black-and-white television set is expected to be introduced by England’s Sinclair Radionics Ltd. around the middle of the year. The receiver may sell for under $100. Distribution in the U.S. is to be by Sinclair Radionics, N.Y.

Automotive Electronics Market Approaches $1 Billion

By 1977 the automotive electronics market is expected to reach nearly $1 billion, climbing from less than $600 million in 1973, according to a study by a West Coast market research company, Creative Strategies, Inc. Entertainment products, primarily radios, form the largest segment of the market at this time, though this segment is not expected to show significant change. The engine control electronics market, consisting of electronic ignition, carburetion and transmission controls, is expected to reach $200 million in 1977. The market for electronic test equipment for cars will probably expand substantially due to more complex engines, emission testing, and the need to test and repair electronic devices.

Heath Introduces New Digital Color TV

Heath has just announced a unique solid-state 25-in. color TV kit that uses digital design techniques to silently change vhf or uhf channels at a touch. What’s more it displays the channel numbers on the screen along with the time digits using an optional digital clock assembly. The silent, all-electronic touch tuning requires no knobs to turn, no humming motors and no mechanical contacts to clean. Channels can be intermixed in any combination. Even the sound is controlled digitally, changing levels in small increments at the touch of a button. Also there is a new fixed-tuned LC filter with an IC i-f amplifier—a first in the TV industry. There are no traps to go out of adjustment either. Although the set uses 19 IC’s, 71 transistors, 20 glass-epoxy circuits boards and 12 cables, the assembly operations are said to be greatly simplified.
MITS Presents
The new 908DM, Desk-Top Calculator.

Full Operation Memory
Memory may be used as:
1. A constant
2. A temporary storage register
3. An accumulator

Indicators:
- True credit balance sign
- Overflow

Features:
- 8 digit readout
- Algebraic mode of entry
- Fixed or floating decimal
- Leading and trailing zero suppression
- Chain and mixed operations
- Plus the option of programmability

*Prices: 908DM
Kit. $129.95 Assembled. $149.95
Size: 8-1/2" x 12" x 3-1/4"

*Programmer
To be used with the MITS 816, 1440, or the new 908DM, desk calculators.
1. Provides 256 programming steps. (With option of expandability to 512 steps.)
2. Stores up to 64 separate programs. Size: 8-1/2" x 12" x 3-1/4"

Instructions:
*Programmer Kit $199.95 Assembled $299.95
*Combination 908DM and Programmer Kit $299.95 Assembled $399.95

Warranty: Kit: 90 days on parts. Assembled: 2 years on parts and labor.

*Prices subject to change without notice. Available from your local Olson Electronics Dealer

MITS
Creative Electronics
6328 Linn, N.E., Albuquerque, New Mexico 87109
505/265-7653 Telex Number 660401

CIRCLE NO. 15 ON READER SERVICE CARD
Born Smart?
The Navy will make it pay off.
If you've got what it takes, the Navy can challenge you with over $17,000 worth of advanced training in electronics or nuclear power.

The New Navy offers high school graduates a challenge with a future. And if you’re qualified to meet the challenge, you can get training and experience that puts you ahead of the pack in the exciting fields of nuclear power or electronics.

These special Navy programs are tough. And besides the technical training, you’ll have your share of the unglamorous chores. Everybody does. But the rewards and your personal satisfaction make it all worthwhile. Learning to operate and maintain the Navy’s sophisticated electronic systems or nuclear power plants will give you skills you can use for a lifetime.

And as a sailor, you’ll see the world while you’re still young. You’ll make new friends. And get higher pay than any sailor in history.

Get all the details from your local Navy Recruiter. Or mail the coupon below. Or call toll-free 800-841-8000 anytime.

Be someone special in the new Navy.

TO: Captain Robert W. Watkins, USN
Navy Opportunity Information Center
P.O. Box 2000, Pelham Manor, N.Y. 10803

Please send more information on: □ Advanced Electronics Program □ Nuclear Power Program □ Other Navy career opportunities.

If you really don’t want to wait, call 800-841-8000 toll-free (24 hours a day, seven days a week). In Georgia, call 800-342-5855. Call collect: In Alaska – 272-9133, in Hawaii – 533-1871.

Name ____________________________ Date of Birth ________
(Please Print)
Address __________________________
City ____________________________ Phone ________
State ________ Zip ________
Kiss that "nothing" job good-bye forever!

We'll show you how to be a "somebody" in the dynamic world of ELECTRONICS.

Send for this FREE sample lesson.

Why stay in a job with a limited future when there are so many opportunities in the big, exciting world of electronics? That's where the action is today. We'll send you a free sample lesson to demonstrate how LaSalle's practical method can train you at home for entry into the field.

Thousands of technicians in demand

Electronics technicians are needed at all levels in TV and radio broadcasting. And in the fascinating new areas of electronic crime detection, electronic factory automation, electronic medicine, and other "world of tomorrow" fields. No wonder there are so many opportunities at all levels for the man who knows electronics. With LaSalle training and subsequent on the job experience, you'll have every chance to move ahead in electronics.

No previous experience is necessary for LaSalle electronics training. Experienced instructors teach you basic principles, then lead you step-by-step to practical applications. You learn to build your own electronic equipment. Emphasis is on modern techniques. And, if you choose the communication field, LaSalle will prepare you to pass the FCC first class radio-telephone operator license exam.

LaSalle has enrolled more than 2,000,000 men and women in its many career programs. It gives you a great feeling of confidence to know that your training is in the hands of a leader in home study.

Send for FREE lesson and booklets

Get with it today! You owe it to yourself to find out how LaSalle can prepare you for a future in electronics. Mail the attached card for free sample lesson and also free booklets shown on facing page. No postage stamp needed. There's no obligation. If card is missing, write to: LaSalle, 417 South Dearborn Street, Chicago, Illinois 60605.

LA SALLE EXTENSION UNIVERSITY
A Correspondence Institution • 417 S. Dearborn Street, Dept. 50-067, Chicago, Illinois 60605
Here's where it's all happening...and you can make it happen to you.

COMMUNICATIONS — Growing field includes servicing radio, television, CATV, mobile or aircraft broadcast equipment, public address, industrial and crime control systems.

AUTOMATION — More and more manufacturing processes are controlled by electronic systems—from food processing to toolmaking. Technicians are needed to inspect, maintain and repair equipment.

INSTRUMENTATION — Well-paid jobs servicing sophisticated electronic devices used in hospitals, laboratories, space centers, computer installations, many other fields.

MAIL ATTACHED CARD, NO OBLIGATION
CIRCLE NO. 20 ON READER SERVICE CARD
Rectifier Bridge Leads

Q. I bought a package of semiconductors, and among the unmarked ones, is a device that appears to be a rectifier bridge, but it has no markings on it. How can I identify which lead is which?

A. Using the high-resistance range of your ohmmeter, check all combinations of the four leads until you find a pair that has infinite resistance. This is the ac input.

(We are assuming that all four diodes are good.) The other two leads are then the dc output. If you know the polarity of your ohmmeter (red usually positive), you can easily determine which is the positive output. That is, when the positive lead is on the upper ac input, there will be conduction through the upper right diode, making this the cathode or positive end.

Does "Instant On" Wear Out Tubes?

Q. I have a TV receiver with an "instant on" feature. Do the tubes "wear out" faster since they always have a slight heater current flowing, and should I disconnect the receiver from the power (when not using it) to save the tubes?

A. Tests have shown that tube life is not shortened by continuous application of heater current. In fact, there is more damage done when turning a tube set on and off due to heater thermal shock. Some manufacturers even claim a longer tube life with "instant on" due to constant heater temperature.

Why Won't a Diode Work?

Q. I have an old crystal-detector radio that used a "cat's whisker" and a piece of galena. Recently, I lost the galena so I decided to replace it with a modern diode. Although the receiver still works, all I can get are the very strong stations. When I had the galena crystal, I received quite a number of stations. The circuit is still the same. What is going on?

A. Although a modern diode can run rings around the old galena-cat's whisker combination in most cases, this is one area where the old way is better. The galena-cat's whisker diode started to conduct at almost zero voltage, while the germanium diode starts its conduction at about 200 mV and silicon types start at about half a volt. So you see why you are getting only the strong stations. If you are building a crystal set, germanium diodes are recommended.

What Is DIN?

Q. I keep seeing the word (or letters) DIN on more and more audio equipment. What does it mean?

A. DIN stands for Deutsche Industrie Normenausschus, a West German institute which sets certain industrial standards. The largest contact we have with them is in the audio field, where various plugs and sockets having DIN geometry and connections are used.

Have a problem or question on circuitry, components, parts availability, etc.? Send it to the Hobby Scene Editor, POPULAR ELECTRONICS, One Park Ave., New York, NY 10016. Though all letters can't be answered individually, those with wide interest will be published.
Radio Shack Is Electronic Parts Paradise!
We're "The Parts Place"
For magazine projects & Do-it-Yourself experiments!

12-Volt Power Converter. Converts 120 VAC to 12 VDC. Use to charge 12-volt batteries or as a battery eliminator when servicing 12 VDC equipment. Output: 12V at 1.75 amps continuous, 5 amps surge. Blow-out protected. 18.95

6 to 12 VDC Inverter. Converts 6-VDC input to 12-VDC output. Dual inputs — 6V neg. & 12V pos. grd. Output: 12V neg. grd. at 3 amps. Solid state, fuse protected. Ideal for use in VW's, dune buggies, etc. 18.95

Etchant Solution. Removes copper from PC boards without damage to the board. Safe, easy to use. A "must" for hobbyists, builders & experimenters. 16 fluid oz. 16.95

Auto Siren Alarm Kit. For 24-hour protection against would-be car thieves or vandals. Shriek alarm sounds if hood, trunk or doors are tampered with. 6 switches, 2 keys, lock, wire/hardware included. For 12-volt DC neg. ground. 21.95

Hook-Up Wire. Five 100' coils in assorted colors. Sizes #18 thru #22. Solid & stranded types. 3.69

Transistor Substitution Guide. Indispensable for technicians. Lists up to 15,000 types, foreign & domestic. Also has biasing diagrams, polarities, etc. 1.00

SPST Magnet Contact Switches. Rated 0.5 A at 125 VAC. 1.99

Mini" Size Filament Transformers. From 6.3V to 24V. 300 mA DC rated. Low as 1.29

Aluminum "Mini" Boxes. Lightweight, sturdy. Many sizes available. Low as 1.19

FREE 1974 CATALOG
AT 2000 RADIO SHACKS OR BY MAIL
180-Pages — Full Color! Hi-Fi, CB, Kits, Recorders, Antennas, Parts, More!

Name (print) ___________________________ Apt. # ________
Street _________________________________
City __________________ State ______ ZIP ______
MAIL TO: Radio Shack, P.O. Box 1052, Fort Worth, Texas 76107

CIRCLE NO. 27 ON READER SERVICE CARD

FEBRUARY 1974
For the world of STEREO— Xv-15/1200E

Designed for use with all stereo and four-channel derived compatible systems.

"PRECISION" is the one word that best characterizes the extraordinary quality of the new Pickering XV-15/1200E cartridge. We sincerely feel that the 1200E is the furthest advance achievable today—and perhaps in the foreseeable future—in stereo cartridge design and performance. Its exceptional ability to pick up all the material recorded at the lightest possible tracking forces make it totally unique and superior.

And all of Pickering's exhaustive testing shows that the 1200E is superior in the flatness of its frequency response and channel separation in comparison to competitive cartridges.

<table>
<thead>
<tr>
<th>SPECIFICATIONS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Response: 10 Hz to 30 kHz</td>
</tr>
<tr>
<td>Channel Separation: Nominal 35 dB</td>
</tr>
<tr>
<td>Tracking Force: ¼ gram, + ½ gram, –¼ gram, Nominal Output: 4.4 mV</td>
</tr>
<tr>
<td>Stylus Tip: 0.0002" x 0.0007"</td>
</tr>
</tbody>
</table>

For the world of DISCRETE 4-CHANNEL—UV-15/2400-Q

Designed and engineered specifically for playback of discrete recordings.

The discrete 4-channel system requires a completely new cartridge that could not only faithfully reproduce the 20 Hz to 20 kHz AM signals, but also the 30 kHz FM modulated signals. The result is the Pickering UV-15/2400-Q. It consists of a completely redesigned cartridge and a new high performance stylus assembly, the Quadrahedral™, specially developed for this application. The UV-15/2400-Q performs in a superior manner by every test, and is capable of satisfying all technical and aesthetic requirements for playback of both discrete and stereo disks. Moreover, its stylus is designed to reduce record wear.

<table>
<thead>
<tr>
<th>SPECIFICATIONS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Response: 10-50,000 Hz</td>
</tr>
<tr>
<td>Channel Separation: 35 dB</td>
</tr>
<tr>
<td>Tracking Force: 1-3 grams</td>
</tr>
<tr>
<td>Output: 3.6 mV ± 2 dB</td>
</tr>
<tr>
<td>Stylus: Quadrahedral</td>
</tr>
</tbody>
</table>

Notes: 1. Recommended by manufacturer for optimum performance. 2. When the cartridge is terminated in the recommended load of 100k ohms and 100 pF. 3. Output with reference to 5.5 cm/sec record velocity.

The right Pickering cartridge for your equipment is the best cartridge money can buy.

For further information write Pickering & Co., Inc., Dept. E, 101 Sunnyside Boulevard, Plainview, New York 11803

CIRCLE NO. 25 ON READER SERVICE CARD
IT IS almost impossible to convey the full excitement of radio control (R/C) modeling to anyone who has never been at the controls. While some of the glamour and excitement of the hobby are almost certain to rub off on the “audience” at a modeling meet, the ultimate thrill is reserved for the hobbyist at the transmitter controls as he maneuvers his model airplane, racing car, or boat over an intricate course.

Operating a model by radio control is similar to—yet vastly different from—operating a full-size vehicle. The major difference, of course, is that the model under your control is always at a distance from you. Even so, you can almost feel the G forces acting on it.

R/C modeling is one hobby that lets you exercise maximum creativity, manual dexterity, and competitive spirit. And you will learn a great deal about electronics, mechanics, and physics while having fun.

How It Started. Radio control for modelers dates back to the 1930’s. By today’s standards, the electronic gear that the pioneers of the hobby used was primitive and massive. Back then, you needed a ham license to operate R/C equipment, which

Three bands of frequencies have been allotted for use by hobbyists in radio control. Flag colors designate channel being used.

Three bands of frequencies have been allotted for use by hobbyists in radio control. Flag colors designate channel being used.
TO PRESENT a full report on R/C modeling, the staff of POPULAR ELECTRONICS built and tested its own car and control system. We used kits made by the Heath Company, which included a Model GDA-1057-1 3-channel transmitter, Model GDA-1057-2 receiver, Model GDA-405-3 receiver battery, and two Model GDA-405-44 miniature servos. (These items have a special system price of $150, though, if purchased separately, the total cost would be $170.) For future use, we added an optional Model GDA-1057-4 fourth channel ($20) and two more miniature servos ($25 each).

To use with our radio control system, we decided on a model racing car, which is probably the easiest thing to control and can be operated under less favorable circumstances than a boat or a plane. We used the now discontinued Heath "Spectre" racing car in which we installed a locally obtained $25 glow-plug engine.

The R/C System. The transmitter is basically a three-channel digital-proportional unit that supplies 500 milliwatts to the input of the power amplifier. A joy stick controls the encoding for channels 1 and 2 (left and right turning on channel 1 with nothing on channel 2, or, for a model plane, elevator and rudder), both of which are equipped with secondary trim-pot tabs. The channel-3 control (throttle) is a similar trim-pot tab located on the right side of the transmitter case, which is the size of a walkie-talkie. The stick is spring-loaded on both channels so that it returns to its center (neutral) position. The throttle control stays where it is set. When converting to a four-channel system for model planes, the control for channel 4 (rudder, with channel 2 becoming aileron) goes on top of the stick.

The only other external control is the power switch located on top of the case near the telescoping whip antenna. The switch is equipped with a lock-off tab that slips into place to prevent accidental turn-on. The state of the battery charge is indicated by a small meter on the front of the case just above the stick assembly.

The transmitter (and receiver) operates on one frequency, which can be any one of 17 in the 27-, 50-, and 72-MHz bands. We chose our transmitter to operate on 26.995 MHz.

The receiver measures 2 1/4" by 1 1/8" by 1 5/8" and weighs 2.5 oz, exclusive of the battery pack. Its i-f is 453 kHz, while its sensitivity is 5 microvolts or better. Operating from its 4.8-volt nickel-cadmium battery pack while driving two miniature servos, the current drain is roughly 6 mA, providing four hours of service from a full charge. Three ceramic filters are used in the i-f section.

Each of the miniature servos measures 2 1/2" by 1 5/8" by 1 1/4" and weighs 1.75 oz. They will accept a pulse 1 to 2 ms wide at 4 volts peak-to-peak. Thrust is 4 lb, minimum; travel time is 0.6 second; linear output travel is 1/2" end to end; and rotary output travel is 90°. The mechanical outputs include one rotary arm, one wheel, and two linear racks.

Assembling the transmitter was a limited the number of hobbyists to a relative few.

In 1952, the FCC established the Citizens Radio Service, permitting almost anyone who wanted one to obtain a radio operator's (CB) license. No code or written test was required for the new license, and many people who did not feel it was worth it to study code and theory for ham licensing exams clamored for the new CB license. Some wanted it for voice communication; prospective R/C hobbyists wanted it to get into modeling.

With the opening of the Citizens Band, R/C modeling started to grow. By 1958, in fact, there were as many as 50 modelers who met at flying fields or boat sites.

During this period, the equipment remained relatively unchanged. Furthermore,
3-OR 4-CHANNEL DIGITAL-PROPO R/C SYSTEM

straightforward job, simplified by the fact that the transmitter section comes fully assembled and pre-aligned to the frequency specified. Assembly time was about nine hours.

The receiver and servos employ very small PC boards, the former containing two closely packed assemblies that require careful component mounting and lead soldering. In neither case was assembly particularly difficult, and the servos went together quickly because most of the electronic functions are performed by a single IC in each. Assembly time for the receiver (including installation of fourth-channel option) was about 5½ hours, while only 1½ hours are required for each of the servos. (Note: the battery charger was assembled with the transmitter. It simultaneously charges the nickel-cadmium batteries for both the transmitter and receiver.)

How It Performed. The combination of Heath car, engine and R/C system proved to be an excellent choice for us. After tuning the system for the proper responses at maximum range, we were ready for our first run. We found an immediate snag; the new battery we had bought the day before must have stood too long on the shelf because it would not start the engine. But once it was replaced by a fresh unit, the engine turned over with a roar and spewed out billows of bluish smoke (normal for a glow-plug engine).

At first we operated the controls timidly. For example, we opened the throttle just enough for the racing car to move at about a normal walking pace while controlling left-right steering in a slalom-like pattern. A few minutes of this, and we were ready for more speed. But owing to our lead fist, we advanced the throttle to almost wide open. There was an immediate increase in decibels as the engine wound out and the car almost flew away from us. Just a touch on the steering was enough to send it spinning out. Then when we attempted to throttle down and apply the brake a second snag appeared: the car slowed too gradually for proper operation. An inspection revealed that the brake had torn loose from its lever.

The next weekend, after soldering the brake back onto its lever, the car and R/C system performed flawlessly. Another mishap occurred when we forgot to lubricate the axle between runs; the axle seized in its bushings. Fortunately, after it cooled and was lubricated, we found that no permanent damage was done. We now remember to obey the lubrication caution noted in the Heath manual.

Owing to the car's mass, low center of gravity, and fast steering response, the Spectre stayed glued to the racing course at speed. Getting used to the light touch required on the steering at speed and to switch perspectives as the car is coming toward us took only about a half hour. Now that we have many hours of operation behind us, we feel confident enough to entertain the idea of entering some races.

all modelers had to share primarily 27.255 MHz, a frequency also used by voice-communicating CB’ers, taxicabs, and traffic departments for controlling signal lights. The modeler’s maximum transmitter power was limited to an input of 5 watts, but other services on the same frequency were permitted up to several hundred watts.

Through the efforts of the Academy of Model Aeronautics (AMA), the national association of model aviation, hobbyists were permitted, commencing September 11, 1958, to operate on five new Class C frequencies: 26.995, 27.045, 27.095, 27.145, and 27.195 MHz. The new frequencies and the development of more selective receivers bought interference problems to a temporary halt.

Operating on the new frequencies offered
a greater advantage. Selectivity made the new receivers immune to transmitters on other frequencies. Hence, as many as six models could be controlled simultaneously. At large meets, flight lines actually formed for each frequency.

Meanwhile, the introduction of the transistor in the mid-1950's gave a tremendous boost to R/C modeling. Small and lightweight, the transistor considerably reduced the demands placed on battery supplies in both transmitters and receivers, which in turn, reduced the size and weight of the batteries themselves. As transistors replaced tubes, R/C equipment became miniaturized to the point where transmitters were, for the first time, small enough to be hand-held. And transistor circuits proved to be much more reliable than tube-circuit counterparts.

An Era of Change. By 1963, interference had again become a serious problem to R/C modelers. Class D CB'ers had crowded the airwaves, and there were now more modelers than there was spectrum space to meet their needs. It was common at many flying fields for a strong signal from a passing mobile CB rig to completely disrupt operations.

An organized effort, begun in 1963 and led by officers of the AMA, culminated in 1966 with the FCC's approving five new frequencies for R/C operation: 72.08, 72.24, 72.40, 72.96, and 75.64 MHz. In 1971, 72.16 and 72.32 MHz were added to the list.

The present frequencies on which R/C modeling is permitted are shown in the frequency spectrum diagram. Six frequencies are available in the 27-MHz CB band, seven in the 72-76-MHz band (four for model aircraft use only), and seven in the 50-54-MHz 6-meter ham band. If all available frequencies were in simultaneous use at a given site, as many as 20 models could be active.

On the 27-MHz band, excluding 27.255 MHz, a maximum of 3 watts input to the final amplifier in the transmitter is permitted, and crystals must be ground to a 0.01 percent tolerance. On 27.255 MHz, 3 to 5 watts input, also 30 watts, is permitted, provided that the crystal is ground to a tolerance of 0.005 percent. The 27.255-MHz frequency, however, is seldom used by modelers because of the severity of the interference often encountered.

A 3-watt input for R/C transmitters is rather high. For practical purposes, a 1-watt input would be typical, while 0.5 watt is quite acceptable. Some transmitters are rated at 100 mW or less input. They require no station license, but are subject to the same tolerance and modulation requirements of the higher-powered transmitters.

Requirements for Operating R/C. Operating R/C equipment is a privilege granted the operator by the citizens of this country in that (a) one must properly share the radio spectrum and (b) be familiar with and observe the applicable regulations. Transmitters rated at over 100 mW may be operated only by those who have secured an FCC license. Any citizen of the U.S. who is 12 years of age or older can qualify for this non-ham station license.

To obtain a license for the non-ham bands,
you must familiarize yourself with Volume VI, Part 95 of the FCC Rules and Regulations (obtainable from: Superintendent of Documents, Government Printing Office, Washington, DC 20402 for $1.25) pertaining to the Citizens Radio Service. Then fill out FCC Form 505 (get it from: Federal Communications Commission, Washington, DC 20544) and mail it with a check or money order for $20 to: Federal Communications Commission, Gettysburg, PA 17325. The $20 fee covers station licensing for five years. The station license covers all transmitters listed by you on Form 505 and bears your call letters.

The ham license required for R/C operation on 50 to 54 MHz offers the advantage of being able to become active in other ham communications. You must pass a 5-wpm code test and a simple written test. Try to get your technician ticket at the outset. A novice ticket is good for only two years, after which you must pass the technician test to remain a ham.

Summing Up. Many hobby shops stock everything you need for R/C modeling. Your investment for electronic gear can be as low as $50 for the most basic single-channel pulse-type system to several hundred dollars for the most sophisticated multi-channel digital-proportional system. For more information about R/C gear, you might write to the companies listed in the accompanying table.

We are planning additional coverage of various R/C systems and how they work in a future issue. Watch for it.

FEBRUARY 1974 33
TEST BENCH

BUILD THE

TORTURE BOX

MINIATURE ENVIRONMENTAL TEST CHAMBER CAN BE SET FROM 14°F TO 158°F WITH 1-DEGREE ACCURACY
BY RALPH TENNY

WE ALL know how strict the temperature tolerance specifications are on components and systems for military and space applications; but do we ever stop to think whether the projects we build in our workshops will operate satisfactorily "in the field"? A fire detector, for example, that works fine in the controlled conditions of the workshop can go haywire in an attic in the summer when the temperature can reach 140°F. A metal locator may operate quite differently in the coolness of the forest in the fall and in the heat of summer on the beach.

Maybe it's time to take the guesswork out of building for unusual temperature ranges and install your own temperature test chamber, simply by building the Torture Box described here. It can be used to test circuits at temperatures from below -10°C (14°F) to +70°C (158°F). Of course, this range is probably more than you will need since it exceeds the range of many commercial components.

The Torture Box is a low-cost project that provides a change of pace for experimenters. The electronic circuits are fairly simple, but the project uses a combination of materials and techniques that is a little different. The basic box is an ordinary molded plastic picnic-type cooler. All sub-assemblies in the Torture Box are fastened to thin pieces of plywood or wall-panel
material, which are fastened to the plastic using either white furniture glue or aliphatic (fatty, acrylic) resin. Do not use an aromatic glue or cement!

The operating range of the Torture Box can be extended, but temperatures higher than 80°C (176°F) should not be attempted since they may soften the plastic. A large quantity of dry ice will lower the temperature below -28°C (-18°F), but the non-linearity of the control thermistor may hamper control below about -10°C.

Construction. Select a picnic cooler of sufficient internal volume. The one shown in the photos of the prototype is 12" by 9" by 12" and has an internal volume of about 700 cu in.

The assembly of the small mechanical units that are attached to the chamber is described in the following paragraphs. Plan the location of these units in your particular cooler so that the weight distribution will not cause the finished chamber to tip. (Remember that the basic cooler is very light compared to the weight of the mechanical subassemblies.) As shown in the photos, the cooler was placed on its wide side, and four small pieces of a similar plastic were glued to the bottom to serve as feet. Use a sharp instrument to make the required openings and holes. Keep the hot soldering iron away from the plastic. The cover should be tight fitting. If necessary, some type of locking device can be used.

Fan Motor. Any small motor is suitable. In the prototype, a shaded-pole motor/fan combination originally intended for elec-

Fig. 1. Thermistor TH1 senses the heat radiated by power resistors R10 and R11.

PARTS LIST

<table>
<thead>
<tr>
<th>F1</th>
<th>1-ampere fuse and holder</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td>Open-circuit jack (Calectro F2-842) or neon lamp (Radio Shack 272-1105)</td>
</tr>
<tr>
<td>Q1</td>
<td>2N5449 transistor</td>
</tr>
<tr>
<td>Q2</td>
<td>2N5448 transistor</td>
</tr>
<tr>
<td>R1, R8, R12</td>
<td>1000-ohm, 1/4-watt resistor</td>
</tr>
<tr>
<td>R2</td>
<td>22,000-ohm, 1/4-watt resistor</td>
</tr>
<tr>
<td>R3</td>
<td>50,000-ohm potentiometer</td>
</tr>
<tr>
<td>R4</td>
<td>51,000-ohm, 1/4-watt resistor</td>
</tr>
<tr>
<td>R5</td>
<td>680-ohm, 1/4-watt resistor</td>
</tr>
<tr>
<td>R6</td>
<td>330-ohm, 1/4-watt resistor</td>
</tr>
<tr>
<td>R7</td>
<td>560-ohm, 1/4-watt resistor</td>
</tr>
<tr>
<td>R9</td>
<td>330,000-ohm, 1/4-watt resistor</td>
</tr>
<tr>
<td>R10, R11</td>
<td>150-ohm, 50-watt resistor (Dale RH-50 or similar, with heat-sink mounting)</td>
</tr>
<tr>
<td>RECT1</td>
<td>50-volt, 2-ampere rectifier (Radio Shack 276-1151)</td>
</tr>
<tr>
<td>SI, S2</td>
<td>Spst slide or toggle switch</td>
</tr>
<tr>
<td>T1</td>
<td>Transformer—12.6-VCT, 0.1-A secondary (Calectro DI-750)</td>
</tr>
<tr>
<td>TH1</td>
<td>Thermistor (Gulton 35TF1, Fenwal KA35J3, YSI44007)</td>
</tr>
<tr>
<td>TRIAC</td>
<td>RCA 40529</td>
</tr>
<tr>
<td>Misc.</td>
<td>Small shaded-pole motor and fan (see text), plastic container, white glue, 1/4" x 1/4" pine stock, 4" brass tube, sheet metal, wire screen, thermometer, perf board, mounting clips, sockets, control dial (Radio Shack 274-605), five-way binding posts, plywood, mounting hardware, etc.</td>
</tr>
</tbody>
</table>
tronic chassis ventilation was used. After drilling a hole for the motor shaft in the cooler wall, bend a mounting bracket or \(\frac{1}{8} \)" aluminum to secure the motor to the wooden mounting plate. Extend the motor shaft (using tubing) so that the fan will be located about \(\frac{3}{8} \)" inside the cooler. Attach the motor mounting to the cooler as shown in Fig. 2.

Control Circuit. The control circuit is mounted in a suitable chassis, the bottom plate of which is affixed to the cooler on the side opposite the fan as shown in the photo in Fig. 3.

With the exception of the thermistor (TH1), the triac, T1, R10, R11, and potentiometer R3, the circuit can be assembled on a small perf board, which is mounted in the upper portion of the control chassis. Potentiometer R3 is mounted on the front panel and provided with a vernier dial drive.

The thermistor is connected to the end of a length of twisted-pair wire which is fed through a narrow tube 3" or 4" long. The tube is then inserted through the Styrofoam so that the thermistor is located within the box and the twisted pair can be connected to the perf board. The triac is mounted on a small heat sink isolated from the metal chassis. Range switch S2 and power monitor connector J1 are mounted on the front panel. The transformer is mounted on the outside of the control chassis.

Power resistors R10 and R11 are mounted on a three-piece heat radiator whose configuration is shown in Fig. 4. The radiator consists of three pieces of thin brass sheet at least 2" wide and 4" long. Use heat-sink grease between the pieces of the radiator and between each power resistor and heat sink.

When the electronic assembly is complete, temporarily disconnect the triac and connect a 10-volt dc voltmeter between points A and B of Fig. 1. With R3 set to a low resistance, no dc voltage should be indicated between the test points. As the resistance of R3 is increased, a 10-volt signal will appear. Make a check for both positions of range switch S2 and note that the dc voltage appears at a much higher resistance on R3 when S2 is in the low range. If everything is OK, disconnect the unit from the power line and replace the triac.

Air Baffle. The baffle covers the fan and directs the air to the rear and thus counter-clockwise around the interior of the chamber. The layout is shown in Fig. 5. The baffle is made of thin metal stock but you should make a pattern using a piece of paper first to get the proper size and configuration. The baffle will be fixed to the side wall and bottom of the box using \(\frac{3}{8} \)" square pine blocks. Once the shape has been determined, cut the metal stock and install.

Ice Basket. The basket is an open-topped cube, about 3" on each edge, made of wire screen. Four \(\frac{3}{4} \)" round dowels are glued to the corners with epoxy and the dowels are used to secure the basket to a plywood or plastic plate which is secured to the base of the chamber as shown in Fig. 6. When the basket is in place, cut a small hatch directly over it as shown in Fig. 7. Note that the hatch is cut with sloping sides so that the cover cannot drop into the cooler. Any small handle can be used on the cover.

Input Terminal Block. A minimum of ten 5-way color-coded binding posts should be provided for input, output, and power supply connections to the equipment being tested. The terminals are affixed to a piece of plywood as shown in Fig. 2, with their leads protruding through the cover of the cooler.

Internal Circuit Board. As shown in Fig. 8, the internal terminal block is made from a \(\frac{1}{2} \)" by 6" glass-epoxy laminated board mounted in a frame of \(\frac{3}{4} \)" pine strips so that the board is far enough from the cover to be well within the chamber. Make sure that the wooden frame is waterproofed with varnish. The various input binding posts can be connected to color-coded perf-board pins on one edge of the board. Various combinations of sockets and perf-board pins can be attached to the board for testing different types of circuits.

Note also, in Fig. 8, that a conventional laboratory-type immersion thermometer is inserted through the cover to check the internal temperature. The thermometer must have an appropriate temperature range so that it can be read from the outside of the chamber.

Test and Calibration. Recheck the mechanical assembly of all cooler-mounted components, making sure that all elements are firmly secured and that all glued joints are hard and dry. Recheck all the wiring in accordance with Fig. 1. Keep in mind that power-line ac is present on some leads and be very careful to avoid the possibility of an electrical shock.

Set the vernier dial on R3 to 10 and slip
HOW IT WORKS

The environmental chamber creates hot or cold temperatures by balancing a heater against the cooling effect of dry ice. A fan continuously circulates the air in the chamber, while a thermistor-controlled regulator circuit (Fig. 1) adjusts the temperature to the desired value, which is set on a dial. Transistors Q1 and Q2 form a complementary Schmitt trigger which normally has about 1.5 volts of lag (hysteresis). Since the trigger is powered by full-wave rectified dc with no filtering, the circuit voltage sweeps from zero through about 17 volts at a rate of 120 times per second. This varying power reduces the hysteresis to a few millivolts and thus provides control to ±1 degree.

If the thermistor resistance is below the set point (temperature dial setting), both Q1 and Q2 are cut off and R7 keeps the triac cut off. As the chamber cools, the thermistor resistance increases until Q1 starts to turn on. Shortly after that Q2 turns on and feedback through R6 increases the turn-on signal for Q1, causing the triac to snap full on. A pulse of current through R8 turns on the triac until the end of that half cycle of ac power. As the power passes through zero, the triac turns off and the cycle starts again.

If the thermistor resistance is greatly out of balance, the triac will be turned on early in each cycle; a small unbalance will delay the triac turn-on until late in the cycle. Consequently, heating power (triac current in R10 and R11) is applied in proportion to the difference between the actual temperature measured by the thermistor and the temperature set by the control dial.

Range switch S2 and potentiometer R4 extend the control range to low temperatures, without losing the resolution on R3. Consequently, the set point resolution approaches 1°F per division on the specified control dial.

the shaft of R3 until the in-circuit resistance is about 3000 ohms. Set the range switch to high and set the control dial to zero. Connect a 150-volt ac meter to J1 and, with a thermometer inserted into the chamber, turn on the power. The fan should start to run and the voltmeter should indicate zero.

Advance the temperature control dial toward 10 until the voltmeter indicates upscale and note the dial indication. Advance the control toward the next major dial graduation and wait until the voltmeter shows that the heater power is cycling on and off every four or five minutes. Record the dial indication and the thermometer temperature. Continue this process until the control dial has reached 10 or the temperature reaches 70°C (158°F). Slip the shaft on R3 until the 10 on the temperature control dial causes the temperature to stabilize at 70°C.

Set the range switch to low and the temperature dial to 5. Put approximately 3 cu. in. of dry ice into the ice basket (through the small hatch on the top) and operate the system until the voltmeter shows that the heater circuit is cycling. Note the temperature and try new settings until the dial setting for 0°C (32°F) is found. At this point, the operation has been checked and the end points of the operating range have been found and calibrated. You can now fill in a calibration chart by recording temperatures at other major dial settings on both ranges. Here is a typical calibration chart.

<table>
<thead>
<tr>
<th>Control Dial Settings (Major Div.)</th>
<th>Temperature (°F) (S2 Position) (Low) (High)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 7 43</td>
</tr>
<tr>
<td>1</td>
<td>1 10 49</td>
</tr>
<tr>
<td>2</td>
<td>2 13 55</td>
</tr>
<tr>
<td>3</td>
<td>3 18 60</td>
</tr>
<tr>
<td>4</td>
<td>4 21 66</td>
</tr>
<tr>
<td>5</td>
<td>5 24 74</td>
</tr>
<tr>
<td>6</td>
<td>6 29 86</td>
</tr>
<tr>
<td>7</td>
<td>7 32 94</td>
</tr>
<tr>
<td>8</td>
<td>8 38 108</td>
</tr>
<tr>
<td>9</td>
<td>9 — 129</td>
</tr>
<tr>
<td>10</td>
<td>10 — 161</td>
</tr>
</tbody>
</table>

One-half pound of dry ice (usually available from ice cream stores) is sufficient for most tests. Do not handle dry ice with the bare hands as severe frostbite can result. A wide-mouth thermos bottle can be used to store dry ice for as long as 8 hours, but do not close the lid tightly. Long-term storage of dry ice is essentially not possible for the home experimenter, but between 25% and 50% of a given amount will remain after 24 hours if stored in a good thermos. To break dry ice into chunks, wrap it in a heavy cloth and pound with a hammer.

The power monitor jack (J1) can be replaced with a neon lamp if desired since, once the monitor is calibrated, there is no further need for the jack—unless recalibration becomes necessary.

Using the Chamber. To test a circuit, you can assemble the circuit on the chamber's internal perf board or attach a finished board to the internal board mounts. Connect the power leads, inputs, and outputs to the cover.
binding posts and check for normal operation of the circuit with the chamber at room temperature.

Then supply power to the chamber, set the desired elevated temperature and see how your circuit works. If it passes this test, cool the chamber, checking circuit operation along the way. If the circuit doesn’t pass the temperature test or (more commonly) if its operation drifts with temperature, the circuit must be temperature-compensated to limit drift to allowable levels. This means selecting components whose temperature coefficients compensate for temperature change or adding components that drift in the opposite direction.

The term “temperature coefficient” simply means how much a component will change in value with changes in temperature. This is usually expressed as % per °C. For example, a fixed resistor of 1000 ohms having 0.1%/°C temperature coefficient will change 1 ohm for each 1°C change in temperature. A +0.1%/°C coefficient indicates that the resistor will increase 1 ohm for each 1°C change in temperature. If the 1000 ohms is measured at 25°C, the resistor will measure 1050 ohms at 75°C and 975 ohms at 0°C.

There are capacitors with either positive or negative temperature coefficients. Most thermistors are resistors with negative temperature coefficients, though some companies also make thermistors with positive temperature coefficients. Also, silicon or germanium diodes can be added to a circuit to compensate for temperature drifts in transistors of the same material.

As an example of temperature compensation, consider the circuit in Fig. 9A, where Q1 is a current source feeding a load, Rx. Resistors R1 and R2 set the reference level, while R3 determines the amount of current flowing through the load. As the circuit elements heat up, the current through Q1 will start to increase, thus increasing the load current. One way of compensating for this increase is shown in Fig. 9B, where a diode has been added in series with R1. If Q1 is a silicon type, the diode must also be silicon. The modified circuit acts exactly the same as before except that the reference voltage is now the voltage across R1 and D1. Resistor R2 helps to control the current through the diode, but has less effect than it did in Fig. 9A.

To make a complete and proper compensation of load current with temperature, it is now necessary to vary R2 and R3 to get the desired current level and good stability with changes in temperature. You will see this method of temperature compensation used in many commercial units.
The all-new digital design

It offers you these important advances in technology, quality, and performance:

Programmable Channel Selection through digital up-down counter with computer-like programming board.

100% Solid-State Design - the picture is the only tube-type device.

Silent All Electronic Tuning with new combination UHF/VHF Varactor Tuner located inside the chassis - competitively shielded.

Touch Tuning at front panel (or remote) - touch to change channels up or down - hold in to sweep all channels.

Eleven-Function Touch-Tune Remote Control for the Heathkit GR-2000...79.95*

This all solid-state ultrasonic system utilizes 13 integrated circuits, 28 transistors to give you wireless armchair control of on and off, volume, VHF/UHF channel selection, up or down color intensity, and tint. Plus, a touch of the volume button automatically recalls the digital readout to the screen. Kit includes receiver for in-chassis mounting and handheld transmitter. Operates from 20 feet away from set.

Kit GRA-2000-6, 4 lbs.79.95*

Optional Digital Clock for your GR-2000

In just a couple hours' time you can build the GRA-2000-1 Digital Clock Accessory. Everything mounts on one small board that plugs into the readout board in the GR-2000 service drawer. That's all there is to it. Clock circuit board has slow, fast and hold pushbuttons for setting time, jumper wire for selecting 12 or 24-hour format. You set your on-screen display for hours and minutes, or hours, minutes, and seconds using the programming circuitry on the channel readout board. Order with your GR-2000, or add it on later, if you prefer.

Kit GRA-2000-1, Digital Clock Accessory, 1 lb.29.95*

New Deluxe Black (Negative) Matrix Picture Tube - fully illuminated color dots with black background matrix for greater brightness and contrast - now, etched, face plate reduces glare.

New Vertical Sweep Design gives better picture interlace, improved picture detail, complementary power trons eliminate output transformers for better linearity.

True Digital Design Dot Generator makes picture convergence easier and more precise.

Twelve Wiring Harnesses - prefabricated, connectors installed, pre-strippped, ready to solder - this TV is easier to build.
Three years ago, in response to your requests, we set out to design a truly unique color TV. We have used digital design techniques unusual to TV technology. The result is spectacular.

The 100%, solid-state GR-2000 25V color TV— It silently selects channels with digital-logic accuracy—it displays the channel digits on the screen. The digital channel numbers remain on the screen—it uses a fixed filter IF that never needs alignment—it uses more integrated circuitry than any other set. Yet the kit-building process is now easier than ever.

Silent, All-Electronic Touch-Tuning—no knobs to turn, no noisy tumblers, no humming motors and no mechanical contacts to clean. Now you just touch a button on the front panel or optional remote control transmitter and the new programmable Digital Counter silently sweeps up or down through any 16 preselected stations. Releasing the button puts you in the channel of your choice.

You program up to 16 channels into the Touch-Tune System located in the convenient slide-out service drawer. You can program any channels in any sequence, interspersing UHF with VHF, even programming the same channel to appear more than once if you like. After you have programmed a channel-selection sequence, Automatic Fine Tuning keeps picture and color consistent from station to station. The UHF/VHF Varactor Tuner is positioned inside the chassis, away from the control panel. This helps keep the picture free of spurious signals that find their way into front-mounted tuners.

The channel number is seen on the screen—The Heath-designed One-Electron Digital Channel Readout on the adout has bright white numerals that are easy to see—from across the room, from any viewing angle. Each time you change channels, using the Touch-Tune button either on the set or on the remote control, illuminated digits (adjustable brightness) identify the UHF and VHF stations as you cycle through the channels. After stopping at a desired program, the readout remains on for as long as you want, up to 1½ minutes, or stays on all the time—the choice is yours. You pre-program the Digital Channel Readout to your requirements with a computer-like programing board located in the service drawer. When the readout is timed to shut off after a few moments, it can always be recalled by changing channels or by tapping the volume “down” button. What's more, you position the readout anywhere you want it on the 25V screen and adjust its brightness for optimum contrast with the overall picture. The digital readout generator uses a custom designed MOS large scale integrated circuit containing the equivalent of over 2000 transistors, plus diodes, and resistors.

The new Heath Digital Electronic Channel Readout completely eliminates the confusion often found with mechanical tuning devices—especially when trying to find an elusive UHF station. And it makes across-the-room remote control tuning easier than ever.

We even changed the way you adjust the sound—With the GR-2000 a touch of either of two buttons automatically raises or lowers the sound in a series of small steps. Just hold the button down until the sound level is right where you want it. This also controls the volume of the Hi-Fi Sound Output (to your separate amplifier) so you can control it with your remote transmitter.

Build-in an optional Electronic Clock with Digital On-screen Readout—true digital circuitry gives you the time in four-digit, six-digit, 12-hour or 24-hour format. A programming board in the slide-out service drawer lets you set your clock to display time the way you want to see it. The on-screen display appears directly below the channel numeral in same-size 1½ digits. And when you add the clock option, it becomes an integral part of the channel display, responding to the same commands. It can be positioned anywhere on the screen, with the channel digits, remains on for the same pre-set length of time, or stays on constantly. For setting the time, Hold, Fast and Slow pushbuttons are located in the service drawer. And once set, the electronic clock continues to run even when the set is off, unless the set's Master Switch has been turned off. In normal operation, whenever the set is turned on and the on-screen display is activated, the time is right to the second.

A Heath-designed IF Filter sets this TV apart from all others—you wanted truly superior color reception, particularly in urban areas where multiple transmitters are located or where multi-channel cable broadcast is available. So we designed a fixed LC-type filter with an IC IF amplifier...a "first" in the television industry, and you can have it now with the Heathkit GR-2000. This unique circuitry produces an ideally shaped bandwidth that greatly reduces adjacent-channel interference. And, this totally new approach to IF design gives the GR-2000 another equally important plus—a consistently excellent color picture, year after year with no need for periodic instrument alignment. The GR-2000 IF system eliminates the high critical traps that go out of adjustment because of normal component value changes through aging. In short, the Heathkit GR-2000 will maintain its best picture longer than any set with ordinary IF design.

Add Total Touch-Tune Remote Control—It's an all solid-state ultrasonic system that lets you select UHF/VHF channels, control volume, color tint and intensity, and on off. And you do so from as far as 20 feet from the set. The channel selector and volume buttons on the remote also may be used to return the channel and clock readouts to the picture screen whenever you wish.

The easiest-to-build color TV we've ever offered—We said 100% solid-state. And for the GR-2000 that means 19 integrated circuits (33 including the remote and clock). 71 transistors, all of which mount in sockets; 20 glass-epoxy circuit boards; and 12 cables. Impressing? Perhaps, but actual assembly operations for this kit have been greatly simplified. The GR-2000 has few point-to-point connections, more ICs, more modular circuit boards, more prefabricated wiring harnesses and cables, and fewer chassis-mounted parts to make it easier to build.

Here's what all those solid-state components do for you to produce truly exceptional color entertainment. To start off, there is DC controlled contrast for less picture interference. An IC color amplifier for truer colors. An IC color oscillator and automatic phase control for more precise and reliable tints. An IC automatic gain control for improved sensitivity, stability and immunity. Improved picture interface for remarkable image definition and crispness. A new solid-state high voltage rectifier. Short-circuit-proof IC regulators eliminate component damage through accidental shorts. Dual VHF antenna inputs, 300 ohm bncm for your twin-lead antenna, true 75-ohm for proper cable TV and cable hook-up. Exclusive Heath Magna-Shield Chassis to keep stray magnetic fields from interfering with picture quality.

New, latest-design picture tube—a deluxe Black (Negative) Matrix 25V picture tube now with fully illuminated dots with black "surround" and new, etched, face plate...it all adds up to brighter, more vivid pictures with reduced glare and reflections and greater contrast.

New exclusive Heath self-service features—no other manufacturer offers them to you at any price. Built-in service facilities such as a new digital-design true dot generator, purity and convergence adjustments; test meter; new vertical and horizontal centering circuits; new Top-Bottom-Sides cushioning corrections; new "Service" circuit board puts everything in an easy-to-find place.

We set out to design the most advanced and unique color TV available today...we believe the performance of the set will speak for itself. The new digital-design Heathkit GR-2000...it will change your mind about color TV.

Kit GR-2000, 147 lbs. $649.95*

Four new cabinet designs from $139.95*, see catalog.

Send for FREE Heathkit catalog.

HEATHKIT ELECTRONICS CENTERS
Units of Schlumberger Products Corporation
ARIZ.: Phoenix, CALIF.: Anaheim, El Cerrito, Los Angeles, Pomona, Redwood City, San Diego (La Mesa), Woodland Hills; COLO.: Denver; CONN.: Hartford (Avon); FLA.: Miami (Hialeah), Tampa; G.A.: Atlanta; ILL.: Chicago, Downers Grove; IND.: Indianapolis; KANSAS CITY, Kansas City (Mission); KY.: Louisville; LA.: New Orleans (Kenner); MD.: Baltimore, Rockville; MASS.: Boston (Wellesley); MICH.: Detroit, W. MICH.: Grand Rapids (Holland); MO.: St. Louis; N.E.B.: Omaha; N.J.: Fair Lawn, N.Y.: Buffalo (Amherst), New York City, Jersey City; GON.: Los Angeles, Pomona, Beverly Hills, S.C.: Greenville; S.D.: Sioux Falls; TENN.: Memphis; WIS.: Milwaukee; WASH.: Seattle, Bellevue, Spokane, Pullman.

HEATH COMPANY, Dept. 10-2
Benston Harbor, Michigan 49022

Please send FREE Heathkit Catalog

Please send model(s)

Enclosed is $ plus shipping.

Name

Address

City Zip

STATE POSTAL CODE

* Mail order prices; F.O.B. factory,

CIRCLE NO. 5 ON READER SERVICE CARD

HEALTH

FEBRUARY 1974

43

AmericanRadioHistory.Com
Single-IC Capacitance Meter

MEASURES FROM 100 pF TO 1 uF ON A LINEAR METER SCALE

How It Works. Most of the circuit (Fig. 1) is contained on a single IC, a CMOS quad NOR gate whose extremely low power requirement ensures long battery life.

Gates IC1A and IC1B are connected to form an astable multivibrator whose frequency of operation is determined by the value of C1 and a resistor selected by S1A. This signal is coupled through C2 to trigger IC1C and IC1D, wired as a monostable pulse generator whose output pulse duration is determined by the value of the unknown capacitance (Cx) connected between J1 and J2 and the resistance value selected by S1B. If the selected resistor value is accurately known, the output pulse duration is then determined by the unknown capacitor.

In the prototype meter shown in the photo, the output pulse duration is measured by the circuit shown in Fig. 2A, where the readout is on a milliammeter. In this circuit, Q1 is used as a saturating switch while R8 is used to calibrate the meter. Since the meter indicates dc current flowing through Q1, and since the amount of dc current is directly related to the pulse duration, the meter can be calibrated directly in capacitance. Capacitor C4 is used to integrate the dc pulses appearing across the meter; it thus removes the ac component.

Construction

How It Works. Most of the circuit (Fig. 1) is contained on a single IC, a CMOS quad NOR gate whose extremely low power requirement ensures long battery life.

Gates IC1A and IC1B are connected to form an astable multivibrator whose frequency of operation is determined by the value of C1 and a resistor selected by S1A. This signal is coupled through C2 to trigger IC1C and IC1D, wired as a monostable pulse generator whose output pulse duration is determined by the value of the unknown capacitance (Cx) connected between J1 and J2 and the resistance value selected by S1B. If the selected resistor value is accurately known, the output pulse duration is then determined by the unknown capacitor.

In the prototype meter shown in the photo, the output pulse duration is measured by the circuit shown in Fig. 2A, where the readout is on a milliammeter. In this circuit, Q1 is used as a saturating switch while R8 is used to calibrate the meter. Since the meter indicates dc current flowing through Q1, and since the amount of dc current is directly related to the pulse duration, the meter can be calibrated directly in capacitance. Capacitor C4 is used to integrate the dc pulses appearing across the meter; it thus removes the ac component.
The circuit in Fig. 2B is used when an external digital voltmeter or VTVM (1-volt dc range) is used as the readout instead of M1. In this circuit, R11 and R12 operate as a voltage divider while C5 filters out the ac component.

Fig. 2. (A) is used when you desire built-in metering, and (B) for external metering.

PARTS LIST

- **B1**—8.4-volt or 9-volt battery
- **C1**—0.0033-µF capacitor
- **C2**—500-pF capacitor
- **C3, C5**—1-µF capacitor
- **C4**—2000-µF electrolytic capacitor
- **D1, D2**—IN914 silicon diode
- **IC1**—CD4001 CMOS quad NOR gate
- **J1, J2**—5-way binding posts
- **Q1**—2N3565 transistor
- **R1**—0.1-mA, dc meter
- **R11**—100,000-ohm, 1/4-watt, 5% resistor
- **R2**—100,000-ohm, 1/4-watt, 5% resistor
- **R3**—100,000-ohm, 1/4-watt, 5% resistor

Construction. The circuit can be assembled on a piece of perf board, using a socket for IC1. Switch S1, the two binding posts and the meter (if used) are mounted on the front panel of the selected chassis. The battery is mounted in a holder on the perf board.

Calibration. Connect a known value of capacitance (5% or better tolerance) between J1 and J2. Place the range multiplier switch, S1, in the appropriate position and adjust R8 until the meter indicates the correct capacitance. If you are using the external metering device, set it to its 1-volt dc range and adjust R12 for the correct indication. The calibration on one range suffices for all other ranges.

The accuracy of the instrument is limited by the accuracy of resistors R1, R2, R3, R5, and R6. Although 5% tolerance is adequate in most cases, you can use more precise resistors or trim each range individually with small potentiometers. If you decide to trim each range separately, use a separate precision capacitor for each range. Trim R1 before trimming R5.
VHF/UHF
SCANNING
MONITORS

A COMPREHENSIVE
BUYING GUIDE

WIDE VARIETY OF MODELS
FOR LISTENING TO POLICE, FIRE, AND WEATHER

BY HERB FRIEDMAN

BACK in the not too distant past, outside of the people directly involved in emergency services (fire, police, smoke jumpers, etc.), there were few eavesdroppers on the Public Safety frequencies—those parts of the radio spectrum from 30 to 50 MHz (low band) and 152 to 174 MHz (high band). But when SWL’s and the general public discovered they could listen in on private radiotelephone calls, hear weather reports, and monitor the G-men on a stake-out, police-fire radios (vhf monitors as they are more commonly termed) became the hottest thing in consumer electronics since CB.

Since we have just about run out of available frequencies, many other services have been crowded into what were the old police-fire bands; the crowding became so bad, in fact, that it was necessary to open up another Public Safety band—the so-called uhf band between 450 and 470 MHz. Today, the three Public Safety bands still have the old police and firefighters, plus air rescue, marine ship-to-shore, police walkie-talkie, common-carrier, regional weather forecasts, back-country search and rescue, and just about any other safety service imaginable.

The fact is that some of the most interesting radio “programs” can be found on the Public Safety frequencies rather than on the broadcast band. No news report or fictional radio or TV show can truly duplicate the high adventure of actually listening to police track a thief through your local shopping center, or to your local Coast Guard crew handling a marine disaster.

VHF/UHF SCANNING MONITORS

<table>
<thead>
<tr>
<th>Manufacturers and model</th>
<th>Price ($)</th>
<th>No. of Channels</th>
<th>Bands</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electra</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JR-1H; JR-1U</td>
<td>80</td>
<td>2</td>
<td>Hi, VHF, UHF</td>
<td>Has AM, BCB radio, portable</td>
</tr>
<tr>
<td>Bearcat III</td>
<td>140-160</td>
<td>8</td>
<td>Any 2 of 3</td>
<td>R-f plug-in modules select bands</td>
</tr>
<tr>
<td>Heath</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GR-110</td>
<td>120</td>
<td>8</td>
<td>Hi, VHF</td>
<td>Digital channel readout, kit</td>
</tr>
<tr>
<td>Hy-Gain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>618</td>
<td>130</td>
<td>10</td>
<td>Any 1 of 3</td>
<td>R-f plug-in module selects band</td>
</tr>
<tr>
<td>625, 626</td>
<td>150</td>
<td>4</td>
<td>Hi, VHF, UHF</td>
<td>Pocket size</td>
</tr>
<tr>
<td>E. F. Johnson</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duo-Scan</td>
<td>170</td>
<td>8</td>
<td>Lo, Hi, VHF</td>
<td>Dual conversion, mobile or base</td>
</tr>
<tr>
<td>High-Band, UHF</td>
<td>180</td>
<td>8</td>
<td>Hi, VHF, UHF</td>
<td>Same as Duo-Scan</td>
</tr>
<tr>
<td>Mono-Scan</td>
<td>140-160</td>
<td>8</td>
<td>Hi, VHF, UHF</td>
<td>Two separate models</td>
</tr>
<tr>
<td>Lafayette</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitorscan-8</td>
<td>100</td>
<td>8</td>
<td>Hi, VHF</td>
<td>Dual conversion</td>
</tr>
<tr>
<td>Portascan-4</td>
<td>100</td>
<td>4</td>
<td>Hi, VHF</td>
<td>Pocket size, 150-160 MHz or 160-170 MHz</td>
</tr>
<tr>
<td>Midland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-906</td>
<td>120</td>
<td>4</td>
<td>Hi, VHF</td>
<td>Pocket size 4 ch, 152-159 MHz</td>
</tr>
<tr>
<td>13-912-914</td>
<td>100; 125</td>
<td>4</td>
<td>Hi, VHF, UHF</td>
<td>Portable</td>
</tr>
<tr>
<td>13-930-934</td>
<td>200</td>
<td>8</td>
<td>Lo, Hi, VHF, Hi, VHF, UHF</td>
<td>Mobile mounting bracket</td>
</tr>
<tr>
<td>13-940-944</td>
<td>220</td>
<td>8</td>
<td>Lo, Hi, VHF, Hi, VHF, UHF</td>
<td>Larger version of 930</td>
</tr>
<tr>
<td>13-950</td>
<td>280</td>
<td>8</td>
<td>Lo, Hi, VHF, UHF</td>
<td>Memory, 5 meter, adj. scan rate</td>
</tr>
<tr>
<td>Pace</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scan 108L; H: U</td>
<td>140</td>
<td>8</td>
<td>Lo, VHF, Hi, VHF, UHF</td>
<td>Built-in or remote speaker and antenna</td>
</tr>
<tr>
<td>Scan 208</td>
<td>170</td>
<td>8</td>
<td>Hi, VHF</td>
<td>Same as 108 with 2 bands</td>
</tr>
<tr>
<td>Scan 212</td>
<td>180</td>
<td>8</td>
<td>Hi, VHF, UHF</td>
<td>Base or mobile with bracket</td>
</tr>
<tr>
<td>Scan 308</td>
<td>200</td>
<td>8</td>
<td>Hi, VHF, UHF</td>
<td>30-39, 152-164, 450-465 MHz</td>
</tr>
<tr>
<td>Scan 10-4H; 4U</td>
<td>90-100</td>
<td>4</td>
<td>Hi, VHF, UHF</td>
<td>154-162 and 454-462 MHz</td>
</tr>
<tr>
<td>Pearce-Simpson</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheyenne-8</td>
<td>150</td>
<td>8</td>
<td>Hi, VHF</td>
<td>Dual conversion, one priority channel</td>
</tr>
<tr>
<td>Cherokee-8+ 8</td>
<td>180</td>
<td>8</td>
<td>Lo, Hi, VHF</td>
<td>Dual conversion, one priority channel</td>
</tr>
<tr>
<td>Gladding HiSkans</td>
<td>115</td>
<td>8</td>
<td>Hi, VHF</td>
<td>144-175 MHz, dual conversion</td>
</tr>
<tr>
<td>Comanche-16</td>
<td>200</td>
<td>16</td>
<td>Lo, Hi, VHF</td>
<td>Scans 16 high and 8 low channels</td>
</tr>
<tr>
<td>Radio Shack</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRO-7A</td>
<td>120</td>
<td>8</td>
<td>Hi, VHF</td>
<td>148-174 MHz, base or mobile</td>
</tr>
<tr>
<td>PRO-77+7</td>
<td>150-120</td>
<td>8</td>
<td>Hi, VHF, Hi, VHF</td>
<td>30-50 and 148-174 MHz, base or mobile</td>
</tr>
<tr>
<td>PRO-88</td>
<td>200</td>
<td>8</td>
<td>Hi, VHF, UHF</td>
<td>Base or mobile with bracket</td>
</tr>
<tr>
<td>Pocket-Scan</td>
<td>100</td>
<td>4</td>
<td>Hi, VHF</td>
<td>Pocket size, built-in speaker and antenna</td>
</tr>
</tbody>
</table>

Enter the Scanner. With so much going on at more or less the same time, and spread out through three distinct frequency bands, how can the average listener keep track of everything at once? The solution is the use of a special monitor receiver known as a scanner.

A scanner is a crystal-controlled receiver with an automatic sweep trigger that activates each frequency in turn, or only those with crystals specifically selected (punched up) for monitoring at that time. It takes but milliseconds for the scanner to sweep from one crystal frequency to the next; if four frequencies are selected, the sweep will scan all four and then start over. As soon as a signal appears on a selected crystal frequency, the sweep locks to the signal and keeps the receiver tuned to that frequency as long as the signal remains on the air. As soon as the signal goes off, the sweep resumes its automatic check of each crystal frequency.

In a typical scanner receiver, the front end consists of a relatively broadband r-f amplifier, a crystal-controlled oscillator and a mixer. The crystals are switched into the oscillator circuit by diodes controlled either by a ramp or sawtooth waveform, or an electronic counter. It doesn’t matter how the crystals are switched as long as the sweeping is fast. The mixer’s output is generally...
fed into a low-frequency i-f amplifier (for selectivity), an FM detector, and finally the audio amplifier. An audio squelch—to eliminate interstation and atmospheric noises—is always provided in scanners. This is mostly because the sweep is stopped by an audio signal, and if the squelch isn’t set, the background noise will usually prevent sweep operation and the receiver will remain locked to one particular frequency.

To backtrack a little, since the r-f amplifier can be tuned to only part of each Public Safety band, for maximum sensitivity, the particular frequencies of interest must fall within the manufacturer’s specified band. This is usually quite broad. However, it is not possible to monitor one station at, say, 152 MHz and another at 174 MHz. That is too broad a band for maximum sensitivity at both ends. As a rule, most, if not all, scanner manufacturers peak the receiver for the specific frequency bandwidth needed. The typical scanner has from four to eight or more frequencies for a single band. The crystal sockets are easily accessible to the user so crystals can be added or changed almost at will. The front panel has an indicator lamp or digital display device for each crystal and a selector switch. The switch determines which crystals are activated and the indicators show that these frequencies are being scanned; the indicators

FOR PUBLIC SAFETY BANDS

<table>
<thead>
<tr>
<th>Regency</th>
<th>ACT-E-8H/U; 8H/L</th>
<th>159</th>
<th>8</th>
<th>Hi vhf; uhf; hi, lo vhf</th>
<th>Base station, speaker & antenna jacks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACT-E-8H/8L</td>
<td>139</td>
<td>8</td>
<td>Hi vhf; lo vhf</td>
<td>Single bands, base station</td>
</tr>
<tr>
<td></td>
<td>ACT-E-16H/L; 16H/L</td>
<td>219</td>
<td>16</td>
<td>Lo, hi vhf, uhf; hi, lo vhf</td>
<td>Two antennas, plus jacks</td>
</tr>
<tr>
<td></td>
<td>ACT-R-8H/8L</td>
<td>139</td>
<td>8</td>
<td>Hi vhf; lo vhf</td>
<td>Base or mobile w/ mounting bracket</td>
</tr>
<tr>
<td></td>
<td>ACT-R-8H/L</td>
<td>159</td>
<td>8</td>
<td>Lo, hi vhf</td>
<td>Base or mobile w/ mounting bracket</td>
</tr>
<tr>
<td></td>
<td>ACT-R-10H/L; U</td>
<td>169</td>
<td>10</td>
<td>Lo, hi vhf, uhf</td>
<td>Base or mobile w/ mounting bracket</td>
</tr>
</tbody>
</table>

Robyn

<table>
<thead>
<tr>
<th>Hi-Bander</th>
<th>140</th>
<th>8</th>
<th>Hi vhf</th>
<th>Includes 2-meter ham band</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 FM</td>
<td>180</td>
<td>16</td>
<td>Hi vhf, uhf</td>
<td>Scans 8 channels in either or both bands</td>
</tr>
<tr>
<td>HLR-8/8</td>
<td>180</td>
<td>16</td>
<td>Lo, hi vhf</td>
<td>Dual scan speeds, covers ham bands</td>
</tr>
<tr>
<td>1000 Porta-Scan</td>
<td>110</td>
<td>4</td>
<td>Lo, hi vhf</td>
<td>Mobile, scans four vhf frequencies</td>
</tr>
</tbody>
</table>

SBE (Sentinel Series)

<table>
<thead>
<tr>
<th>15M</th>
<th>170</th>
<th>8</th>
<th>Lo, hi vhf</th>
<th>Coverage 6 MHz on low, 8 MHz on high</th>
</tr>
</thead>
<tbody>
<tr>
<td>25M</td>
<td>150</td>
<td>8</td>
<td>Hi vhf</td>
<td>Coverage 8 MHz</td>
</tr>
<tr>
<td>35M</td>
<td>150</td>
<td>8</td>
<td>Lo vhf</td>
<td>Coverage 6 MHz</td>
</tr>
<tr>
<td>55M</td>
<td>150</td>
<td>8</td>
<td>Uhf</td>
<td>Coverage 10 MHz</td>
</tr>
<tr>
<td>65M</td>
<td>190</td>
<td>8</td>
<td>Hi vhf, uhf</td>
<td>Coverage 8 MHz on vhf, 10 MHz on uhf</td>
</tr>
<tr>
<td>75M</td>
<td>150</td>
<td>8</td>
<td>Hi vhf</td>
<td>Marine channels</td>
</tr>
</tbody>
</table>

Sonar

FR-104	140	6	Lo vhf	Similar model for hi vhf, base or mobile
FR-2512-2513	170	24	Lo vhf, hi vhf	Dual conversion
FR-2516-2517	160	10	Lo vhf; hi vhf	Can be set for priority channel
FR-2525	180	10	Uhf	Mounting bracket, antenna included
FR-2526-2528	190	10	Lo, hi vhf, uhf; lo, hi vhf	Mounting bracket, antenna included

Teaberry

| Crimefighter | 199 | 8 | Lo, hi vhf, uhf | Program card instead of crystals |
| T-Scan | 129 | 4 | Hi vhf | Pocket size |

Tennelec

Tennetrac II	180	12	Lo, hi vhf, uhf	Mobile or base station
Tennetrac III	200	16	Lo, hi vhf, uhf	Variable scan rate
Tennetrac IV	220	16	Lo, hi vhf, uhf	Local/distance switch, wood cabinet
Tennetrac V	250	16	Lo, hi vhf, uhf	Variable scan rate
TN-150-450	120	4	Hi vhf, uhf	Pocket size, earphone jack

AN IMPORTANT WORD ABOUT PRICES: Most prices exclude crystals, which are usually about $5 each. Although we have made every effort to obtain current prices for all products listed, because of the dollar devaluation, the lifting of certain price controls, etc., all prices are subject to some adjustment. The prices listed are the latest that manufacturers and/or importers were able to supply before press time—and are subject to change.

FEBRUARY 1974
Note: A few states have antiquated laws prohibiting the installation of monitors in vehicles. Also, the FCC prohibits private use of information heard, but not directed to, the listener.

Monitor receivers are available for mobile operation (12 V dc), base (117 V ac), or both. As a rule, most monitors are provided with only a coaxial jack or terminals for an external antenna. Some models, however, in addition to the antenna connection, also have a built-in telescopic antenna which delivers good performance for local signals. (A distance of 25 miles is considered local for a vhf base station.)

Some of the more expensive models have an r-f gain control, and external speaker output, a mobile mounting bracket, or possibly a line-level audio output jack for a tape recorder.
Multi-Band Scanners. When the stations to be monitored are on two or more bands, it is possible to cover all frequencies with a multi-band scanner. This is basically the usual scanner with two or three separate and independent front ends, each with its separate antenna input and/or individual built-in telescopic antennas. Each front end feeds into the i-f amplifier, and each is assigned part of the total number of crystal channels; or the front ends might share the total available channels.

In a two-band scanner with specific channels, the low-band front end might have, say, channels 1 through 4, while the high-band tuner has channels 5 through 8. In such an arrangement, there is usually an extra front-panel control with a designation such as LOW/HIGH/BOTH. Thus either the low, the high, or both bands could be scanned.

When a receiver has shared channels either a low- or high-band crystal can be installed in any socket. For example, channel 1 might be set up for low band, while 2, 3, 4, and 5 are high band, 6 is low band, 7 high band and 8 low band. The scanner will skip from channel to channel in order, regardless of how the crystals are arranged. The advantage of shared channels is that there is no fixed limit to the number of channels assigned to each band. All channels can be used for a single band if the need arises.

With activity increasing on the uhf band, more and more monitors are being equipped for both the high vhf and the uhf, or for all three bands: low vhf, high vhf, and uhf. Where there are two front ends for high vhf and uhf, there are usually two independent antenna inputs. When the receiver has three front ends to cover all three bands, the low- and high-band tuners will often share an antenna.

If a multi-band receiver includes uhf, several channels are generally reserved only for the uhf band, though new crystal switching circuits now allow shared crystal sockets to be used even for uhf reception. This convenience is probably reflected in a slightly higher initial cost.

If most of the action in a locality is on the low- and high-vhf bands, but expansion to uhf is desired, it is possible to obtain a monitor receiver with plug-in front ends. The plug-in arrangement, with prewired connectors, can be applied to any arrangement of the three bands.

Special Scanners. As the value of scanning techniques is realized by potential users, the conveniences of automatic scanning are being applied in unusual, but worthwhile, ways. A recent addition to the list of monitor radios is a portable AM broadcast radio with two vhf crystal-controlled Public Safety frequencies. In typical operation, the portable radio can be used as an ordinary two-channel scanner or a broadcast radio with vhf override. While tuned to the AM radio, the receiver silently scans the Public Safety channels. As soon as a signal appears on the vhf monitor, the AM radio is muted and only the vhf signal is heard. When the signal goes off, AM reception is restored.

An application of the scanner/override facility presently talked about but not yet available in production models is the combination of a channel-9 CB receiver with a vhf scanner for use by REACT and CB emergency teams. With such a receiver, the REACT team could keep tabs on the CB emergency channel as well as the local Public Safety frequencies.

Speaking of CB, one more-or-less standard CB transceiver has two independent channel selectors, each covering all 23 CB channels. The user selects two channels he wants to monitor; say channel 9 and local emergency channel 11. The scanner sweeps the two channels and locks onto the one that becomes active, simultaneously locking the transmitter to the received channel. When the received channel goes off, the receiver resumes scanning, just as with a Public Safety monitor.

While CB is a long way from eavesdropping on the Public Safety services, it is nevertheless true that many CBers are actively involved in emergency teams and services. Several CB transceivers presently come equipped with built-in low- or high-band monitors. These monitors are tunable, with one or two crystal-controlled channels. Logically, just as soon as there is sufficient interest, full Public Safety scanners will be built into some CB transceivers.

Frequency scanning is a very convenient, almost instantaneous way of monitoring several channels simultaneously. With modern solid-state techniques, the necessary electronic hardware causes almost no (or very little) increase in cost compared to tunable receivers. A scanner should therefore be a first choice when you’re ready to listen to the Public Safety bands.

FEBRUARY 1974
New developments promise bright future for optical communications

Communicating by the use of a light beam has been around since before recorded history when men signaled one another with fires, lanterns, and mirrors. More recently, in 1880, Alexander Graham Bell and Sumner Tainter transmitted high-quality voice and tones over a beam of reflected sunlight scores of years before radio was used for the same purpose.

Bell's "Photophone" consisted of a transmitter containing a flexible mirror. A beam of sunlight was modulated by projecting sound waves against the mirror. In the receiver to which the beam was "transmitted" were a selenium detector, a telephone receiver, and a battery. The transmitter's condensing and projecting lenses and the receiver's parabolic reflector yielded a range of several hundred meters.

In 1901, a German scientist sent intelligible voice signals a distance of 1 km by modulating the carbon arc of a searchlight. And during World War II, American amateur radio operators experimented with a variety of moderately long-range light-beam communicators.

Although some researchers predicted a possible role for modulated visible and invisible (infrared) light beams in communications of the future, most research ceased after the war until about 12 years ago when the introduction of gallium-arsenide light-emitting diodes sparked a revival. In early 1963, scientists at the Massachusetts Institute of Technology transmitted voice and TV signals some 30
miles using a LED and a photomultiplier receiver.

The laser, developed a few years before the MIT demonstration, was, as predicted, an excellent candidate for light-beam communication. With its development, optical communication began to emerge as a realistic alternative to communicating by wire.

Recent Developments. Ordinary non-coherent light sources emit radiation into a wide, uncollimated beam. Cumbersome optical arrangements are required to project the light into the narrow beam required for long-range light-beam communication. Most lasers, on the other hand, emit radiation in a relatively narrow beam. More significantly, the coherence of the laser beam permits an external optical system to collect most or all of the light and collimate it into a very narrow beam. And the ultra-pure spectral output of some lasers permits incredibly high modulation rates.

Four recent developments have brought widespread light-beam communication closer to reality than ever before: new low-loss optical fibers, semiconductor lasers that permit very high pulse-modulation rates, a solid-state laser pumped by an array of LED'S, and ultrasensitive photodetectors. Practical LED’s have been available for a decade. They are ideally suited to transmitting multi-megabit data over medium-range atmospheric and fiber-optic links. For faster and more efficient communication, semiconductor lasers would be a better choice. But until 1970, they could not be operated continuously at room temperature. However, the degradation mechanism has recently become better understood, and

Don’t miss next month’s construction project article for building an LED Infrared Light-Beam Communicator.

February 1974
reasonably long-life CW diode lasers have been developed.

Bell Labs recently announced a miniature YAG (yttrium aluminum garnet) laser that is pumped by a single LED. This laser is ideally suited for communication since it can be directly modulated by varying the current through the LED. It is much smaller and more efficient than conventional YAG lasers.

The development of ultrasensitive avalanche photodetectors with less than 1 nW (10^-6 W) sensitivity means that long-range optical communication is now possible. Conventional semiconductor photodetectors operate with a carrier multiplication process that yields large internal gain. By biasing the detector just below breakdown, a low-power optical signal triggers avalanche and a large signal output.

Fiber Optics. Perhaps the most important development of optical communications is the new class of low-loss optical fibers. Practical non-atmospheric light-beam communication would probably not be feasible without these new fibers. AT&T long ago ruled out atmospheric links for telephone service due to the adverse nature of weather on atmospheric transmissions.

Until recently, the best available optical fibers had losses of about 1 dB/meter—far too high for more than short-range links. Now, researchers in Japan and the U.S. have succeeded in making glass fibers of such purity that losses have been reduced to only a few decibels per thousand meters.

A fiber with a loss of 5 dB/km will attenuate only 50 percent of an optical signal's power in 2000 ft—significantly less than conventional wire system losses. This means that repeaters can be placed farther apart in an optical system. One proposed fiber optic system using a 5-dB fiber, for example, would require repeaters every 8 miles, while conventional wire systems require 5-mile intervals.

Low-loss fibers mean that a ½-in. cable of hair-thin glass fibers can carry the same volume of communications as thousands of conventional telephone cables, with existing technology. The glass cables, much smaller than metal ones, could be threaded through the spaces in existing conduits.

Since there is no radiating electromagnetic field around an optical fiber, crosstalk can be completely eliminated with a light-tight sheathing. Glass fibers are much smaller and have greater information capacity—not to mention greater strength—than hard wire systems. Although present costs for high-quality fibers are high, they are expected to drop sharply when the fibers are mass produced.

The major drawbacks of optical fibers include the need to develop efficient manufacturing techniques, the fact that electrical power cannot be transmitted through the fiber, and the need for new installation and repair techniques.

Operational Systems. In recent years, practical light-beam communication systems have made an appearance. American Laser Systems has developed a 15-20-mile-range hand-held laser communicator, the SLACOM (stabilized laser communicator), that uses a 2-watt peak semiconductor laser and operates for 5 to 7 hours on its self-contained batteries. Portable laser diode communicators have also been built by IBM, RCA, Holobeam, and others—most of them patterned after early systems developed by RCA.

A number of moderate-range intracity atmospheric links using LED's and diode lasers are already in commercial operation in the U.S. The Telebeam Corp., for example, uses an LED system to transmit closed-circuit pay TV to several New York City hotels. The system puts out 20 mW and has a half-mile range.

Looking Ahead. The technology needed to implement practical widespread optical communication has virtually arrived. Whether or not light beams and glass fibers will replace or supplement conventional telephone lines depends on the cost and crowding conditions of the already overworked existing communication channels.

AT&T sees an important future for light-beam communication. If their Picturephone® is accepted by the public, AT&T will be forced to use optical transmission systems because this service requires about 100 times the transmission capacity needed for a single telephone channel. If only 1 percent of AT&T subscribers request Picturephone, present system capacity would have to be doubled.

Meanwhile, short-to-medium-range atmospheric and optical fiber links are ideal for interoffice and intracity communication. All in all, light-beam communication has a very bright future indeed.
LOW-COST SENSOR
SOUNDS AN ALARM
WITH AS LITTLE AS
50 PARTS PER MILLION
OF MOST TOXIC GASES

IF YOU live in a large industrial area, the air you breathe may contain varying amounts of carbon monoxide, hydrocarbons, soot, smoke, cooking gas, and many other potentially dangerous contaminants. These toxic elements may be odorless; most of them are combustible, and some are dangerously explosive.

Even a home in the “clean” suburbs could contain excessive amounts of cooking gas, cleaning chemicals, paint fumes, carbon monoxide seepage from garages, or potentially dangerous smoke. In a closed camper or boat, you can get carbon monoxide or gasoline fume leakage due to faulty engine exhaust and chassis or deck leakage.

What do you do about all this? You can’t do much unless you know it is there. Thanks to a simple new gas detector semiconductor you can now find out whether the contaminants in your air are dangerous or not. The semiconductor is used in construction of a low-cost (about $25) sensor system that can detect a considerable number of potentially dangerous gases at levels of less than fifty parts per million—well below the government safety standards for industrial hygiene. When the detector senses a sufficient amount of gas, a buzzer sounds off, or, if a relay is added, an external alarm can be powered.

How It Works. The actual detector (DET) is an n-type semiconductor of tin dioxide, heated by a platinum wire. (Fig. 1.) In the presence of a gas, the difference in electron energy levels between the molecules of gas and the semiconductor causes electrons to move from the gas to the semiconductor, decreasing its bulk resistance. For example, with a propane gas level of only 1000 parts per million, the sensor resistance will decrease to 5% of its resistance in clean air.

The semiconductor’s internal heater operates at 1.5 volts and 500 mA ac supplied by half of the secondary of T1 through dropping resistor R1. Resistor R2 is the output load for the detector and is connected in series with meter M1, which is used as a readout for sensor current—hence gas presence. Diode D3 provides a constant 0.5-volt offset to allow the transistor amplifier to work at low levels of sensor current. Potentiometer R3 determines the alarm amplifier’s operating point.

When a gas is present, the voltage across R2 increases (meter indicating up scale), and, depending on the setting of R3, transistor Q1 turns on. Transistor Q2, which was in saturation while Q1 was off, comes out of saturation causing its collector to go positive. This turns on the gate of SCR1 causing current to flow through the alarm buzzer (or the external circuit connected to terminal strip TS1).

The SCR is isolated from the amplifier power supply by rectifier D2. This gives the SCR a source of half-wave ac which allows it to turn off at the next zero crossing after the gas level drops and the transistors return to their normal operating states. An optional LED and associated 470-ohm ser-
ics resistor can be connected across the buzzer for visual indication.

Construction. Other than the detector (DET), T1, M1, and the buzzer and TS1, the circuit can be assembled on a piece of perf board, using the meter terminals as the mounting. Almost any chassis can be used as long as it will hold the transformer and buzzer and has a front panel large enough to accommodate the meter and R3 and the socket for the detector.

A conventional 7-pin vacuum tube socket can be used to mount the detector. The socket should be attached to the exterior of the front panel. Note that the detector has a small circle stamped on its side between pins 1 and 2.

Operation. Before applying power, set R3 to its minimum position to keep the alarm from sounding off immediately. Apply power and note that the meter needle rises to full scale and remains there for some time. This large sensor current is due to the "burning off" of impurities collected on the detector's surface while it was not in use. In cases of severe contamination, it may take quite a while for the sensor to clean itself, during which time, the meter indication will gradually drop to some minimum value. Once the meter has dropped to its minimum, advance R3 (sensitivity control) until the buzzer starts to sound off. Back R3 off slightly until the buzzer stops and mark this point on the knob scale. This will be your local "normal." If the air is very clean, the buzzer may not sound, even at full sensitivity.

The unit is now ready for testing. You can blow cigarette smoke at the sensor or open a bottle of ammonia, perfume, etc., and blow the fumes toward the detector. The meter should suddenly jump upscale, and the buzzer should sound off.

For relative measurements, such as hunting for gas leaks, the buzzer can be silenced by rotating R3 to its minimum with the meter indications used for probing for maximum gas concentrations.
Helps you get it together... with a score of build-it-yourself projects.

You can count on Electronic Experimenter's Handbook. It's by the editors of Popular Electronics including Electronics World. With features and articles and complete lab-tested instructions that guarantee successful hours and months of mind-absorbing projects for fun and practicality.

Be sure you don’t miss the all-new 1974 Spring Edition scheduled to go on sale nationally Mar. 19, 1974.

YOU CAN RESERVE YOUR COPY NOW AT THE SPECIAL MONEY-SAVING PRE-PUBLICATION PRICE OF ONLY $1.00, POSTPAID.

This offer is being made to readers of POPULAR ELECTRONICS Magazine only. Regular price is $1.25; mail order price $1.60. You can reserve your copy now at this special pre-publication price of only $1 by completing the Reservation Form and returning it promptly along with your remittance. The 1974 Spring ELECTRONIC EXPERIMENTER'S HANDBOOK will be mailed to you on or before publication date from first-off-the-press copies.

PRE-PUBLICATION RESERVATION FORM

ZIFF-DAVIS SERVICE DIVISION • DEPT. EEH
595 BROADWAY • NEW YORK, N.Y. 10012

Enclosed is $____ Please reserve ________ copies of the 1974 Spring ELECTRONIC EXPERIMENTER'S HANDBOOK at the special pre-publication price of only $1.00 per copy, postpaid, to be mailed to me from first-off-the-press copies on or before March 19, 1974.

Print Name__
Address__
City___
State________________________________Zip___________

PLEASE ENCLOSE PAYMENT WITH ORDER.

PE-274
CREI—the only home-study college-level training

and now
program which gives you in electronic circuit design

only CREI offers you a complete college-level Electronic Design Laboratory to speed your learning

Electronic circuit design—source of all new development in the application of electronics to new products and services. Without this skill, we would be unable to monitor the heartbeat of men in space. Without it, the computer revolution would never have occurred. And we would have yet to see our first TV show. Yet, only CREI teaches electronic circuit design at home.

ELECTRONIC CIRCUIT DESIGN

A key skill which paces our nation's progress in countless fields—from pollution control to satellite tracking to modern medicine to exploring the ocean's depths. And beyond. A skill which you must have to move to the top in advanced electronics.

CREI programs open up new worlds of opportunity for you.

In addition to electronic circuit design, CREI provides you with a full advanced electronics education in any of thirteen fields of specialization you choose. Communications, computers, space operations, television, nuclear power, industrial electronics—to mention just a few of the career fields for which CREI training is qualifying. With such preparation, you will have the background for a career which can take you to the frontiers of the nation's most exciting new developments. And around the world.

This free book can change your life. Send for it.

If you are a high-school graduate (or equivalent) and have previous training or experience in electronics, then you are qualified to enroll in a CREI program to move you ahead in advanced electronics.

Send now for our full-color, eighty page book on careers in advanced electronics. In it, you will find full facts on the exciting kinds of work which CREI programs open up to you. And full facts on the comprehensive courses of instruction, the strong personal help, and the professional laboratory equipment which CREI makes available to you. All at a surprisingly low tuition cost.

And when you have it, talk with your employer about it. Tell him you're considering enrolling with CREI. He'll undoubtedly be happy to know you are planning to increase your value to him. And he may offer to pay all or part of your tuition cost. Hundreds of employers and government agencies do. Large and small. Including some of the giants in electronics. If they are willing to pay for CREI training for their employees, you know it must be good.

Send for Advanced Electronics today. You'll be glad you did.

CREI Dept. E1202E
3939 Wisconsin Avenue
Washington, D.C. 20016

Rush me your FREE book describing my opportunities in advanced electronics. I am a high school graduate.

Name ___________________________ Age ______________
Address ____________________________
City __________________ State ______ ZIP ______

If you have previous training in electronics, check here □
Employed by ______
Type of Present Work __________________________
Veterans and servicemen, check here for G. I. Bill Information □

CAPITOL ENGINEERING INSTITUTE
WASHINGTON, D.C. 20016
ONE of the heroes of the electronics world today is the 741 operational amplifier. It is sort of like a jack-of-all-trades in the number of applications to which it is put. Of course, the op amp itself has certain limits, but the addition of outboard components increases its usefulness—as in the Super-Op described here. This instrument can be a valuable addition to any experimenter’s work bench.

What can Super-Op do? It can be an adjustable, well-regulated positive/negative 20-volt power supply; a battery charger or eliminator (1-ampere output); a general-purpose ac or dc amplifier; a hi-fi audio amplifier; a servo amplifier; a chart recorder drive; etc. It also has built-in dc offset nulling, variable gain, and overload protection. The circuit retains all of the characteristics of the 741, such as frequency response, dc thermal drift, etc.

Construction. Any type of construction can be used, though a PC board using the foil pattern in Fig. 3 simplifies the wiring. The board is mounted directly on the meter terminals.

On the front panel are the BNC connector, J1; its associated ground jack, J2; output connector, J3; its ground connector, J4; the \(\pm \text{PWR} \) control, R32; the power on/off switch; metering switch S3; power-on indicator LED1; \(-V\) (or \(-E_0\)) indicator LED2; the meter; and switches S1 and S2.

Note: The Superman “S” symbol is a trademark of National Periodical Publications Inc., used with their permission.
Resistors R15, R16 and R17 are attached to J3 and J4.

The frame of the chassis supports the transformer, T1; capacitors C1 and C2; the four rectifier diodes; the two fuses in their holders; and Q6 and Q7, with their respective heat sinks.

If you are using a metal chassis, mount the power transformer so that its core is in good thermal contact with the chassis, using transistor thermal grease between the two. This keeps the transformer temperature down. The use of venting holes on the chassis bottom and sides and rubber feet on the bottom will allow cooling air to pass through the unit. When mounting the PC board, allow room for air to circulate around it.

The output transistors are mounted on heat sinks, one on each side of the chassis. The heat sinks should be mounted on short standoffs to allow air to pass on both sides of the sinks. If large venting holes are made in the bottom and sides of the chassis, they can be covered with snap-in grilles.

Checkout. The first thing to do is determine the values of R23 and R24. While monitoring the emitter voltage of Q1, connect a 10,000-ohm potentiometer in the circuit where R24 goes. Carefully adjust the potentiometer until +20 volts is indicated. To avoid damaging the op amps, do not allow this voltage to go above 22 volts. Once the correct voltage is obtained, measure the value of the potentiometer and install a fixed resistor of comparable value. Do the same for R23 in the circuit of Q2, except that this time the voltage is -20.

With S1 in the first (BAL) position and the GAIN VERNIER (R29) fully clockwise, try the various positions of GAIN switch S2 and adjust the BAL control (R30) until the meter indicates zero.

With the FUNCTION switch in the second position (AC) and a signal applied to J1 and J2, the instrument will act as an amplifier with a gain of 10, 100, or 1000, depending on the setting of S2. Similar gains will exist with the FUNCTION switch in the third position (DC).

To use the Super-Op as a positive or negative power supply, place S1 in the fourth position (PWM), S2 on 10, and S3 on E (voltage). The output voltage is determined by the setting of the ±PWM control (R23). The -V light (LED2) should come on as the output passes through zero from positive to negative. An output of about -0.2 volt will turn on the lamp. The output regulation should be better

HOW IT WORKS

As shown in Fig 1, IC1 (a 741) is connected as a non-inverting amplifier. Switched feedback resistors (R2, R3, or R4, selected by S2) allow control of the voltage gain. Input potentiometer R29 provides front-panel gain adjustment. With an input signal applied to J1, switch S1B can select either ac or dc input. (With ac input, C1 is in the circuit.) In the ac mode, C3 is lifted off ground, and C2 is connected through S1A. This produces a gain of one in the op-amp circuit and minimizes dc errors.

Input protection is provided by D1 and D2, while R30 is used to balance the dc of the op amp. The latter is necessary to set the output to zero in the dc mode. This control is critical when using high values of dc gain since any small offset is amplified by the remainder of the circuit.

The large output is provided by IC2 and transistors Q4 through Q7. The actual output transistors (Q6 and Q7) are generously overrated to ensure that the output overload fuse F1 will always open before the transistors can be damaged.

Output current to J3 is monitored by IC3. The voltage output of this op amp is proportional to the current flowing through R12 and can be either ac or dc depending on the mode of operation.

Switch S3 selects either the output of IC3 or the actual output voltage at J3. One or the other is applied to the meter driver, IC4, which is connected so that the same polarity is applied to the meter whether the input is ac or dc. To avoid confusion in measuring dc outputs, lamp driver Q3, which responds only to negative dc, causes a front-panel lamp to come on when negative voltages or currents are being indicated.

A pair of voltage regulators (Q1 and Q2) are also included. Constant current is applied to the base of each transistor by a FET connected as a constant-current diode. The voltage at each regulator base is determined by either R23 or R24, which are selected to provide the desired output voltage. Capacitors C17 and C18 prevent oscillation in the regulator stages.

A well-regulated and temperature-stable positive or negative reference voltage is provided by zener diodes D12 and D13 and is used by R32 to select any value of either voltage. This voltage is used in the power mode when Super-Op is functioning as a regulated power supply.

The main power supply is shown in Fig. 2. Note that R7 and R9 of Fig. 1 are also shown in Fig. 2.
than 1% for load currents from zero to about 1 ampere.

With S3 on e, use an accurate voltmeter to monitor the voltage between J3 and J4. Adjust R17 to bring the indication of M1 to its correct value. The approximate value for R17 is 6000 ohms.

With S3 on i, use an accurate ammeter in series with a load that draws about 1 ampere. Adjust R31 to get similar readings between M1 and the external ammeter.

The common-mode rejection of IC3 can be adjusted to zero as follows. Set S3 in the i position and put an input of 100 Hz on the Super-Op, without a load. Connect a scope to monitor the output of IC3. Using a high-megohm resistor, shunt either R13 or R14 (but not both) until the scope
Fig. 1. The output of the basic op amp (IC1) is amplified by IC2 and Q4-Q7 to deliver 1 ampere. (Main circuit on opposite page.) The circuits above provide regulated voltages for the op amp.

PARTS LIST

- **C1**—0.1 µF, 50-volt disc capacitor
- **C2**—40 µF, 25-volt, non-polarized capacitor
- **C3, C14**—1 µF, 25-volt, capacitor
- **C4, C6, C12, C15, C16**—10 µF, 50-volt electrolytic capacitor
- **C5, C7, C10, C11, C17, C18**—0.01 µF, 50-volt ceramic capacitor
- **C8, C9**—100 µF, 50-volt ceramic capacitor
- **R1**—100 kΩ, 1% resistor
- **R2**—10 kΩ, 1% resistor
- **R3**—100 kΩ, 1% resistor
- **R4**—1 meg Ω, 1% resistor
- **R5, R6, R8**—10 kΩ, 1% resistor
- **R7, R9**—10 kΩ, 1% resistor
- **R10, R14**—47 kΩ, 1% resistor
- **R11, R13**—30 kΩ, 1% resistor
- **R12**—0.1 µF, 1% resistor
- **R15**—82,500 ohm, 1% resistor
- **R16, R25, R26**—100 kΩ resistor
- **R17**—See text
- **R18**—5300 ohm, 1% resistor
- **R19, R20**—33 kΩ resistor
- **R21**—2200 ohm resistor
- **R22**—1.8-megohm resistor
- **R23, R24**—See text
- **R27, R28**—47 ohm resistor
- **R29**—1 megohm potentiometer
- **R30**—10,000 ohm potentiometer
- **R31**—1000 ohm potentiometer
- **R32**—10,000 ohm, 10-turn potentiometer
- **S2**—1-pole, 3-position rotary switch
- **S3**—Spdt slide or toggle switch
- **Misc.**—Suitable chassis, heat sinks (2), mounting hardware, knobs, etc.

Fig. 2. Power supply is a full-wave rectifier. R7 and R9 are also shown in Fig. 1.

PARTS LIST

- **C1, C2**—2000 µF, 50-volt electrolytic capacitor
- **D1, D4**—1 A, 100 V silicon rectifier
- **F1**—1 A fuse and holder
- **S1**—Spdt slide or toggle switch
- **T1**—50 volt, CT, 1 A transformer (Stancor P8197 or similar)
- **R1**—2200 ohm, ½ watt resistor
- **LED1, LED2**—Any light-emitting diode
indicates a zero output. Once this resistor value is determined, it can be connected in its appropriate place on the board.

If the panel meter voltage indication changes significantly as the output current goes from zero to maximum, a ground loop may be present. In this case, the output jack ground and the circuit-board common ground should be connected to the power supply ground through separate leads. If there is a slight residual hum voltage when the amplifier is at maximum gain, it may be due to magnetic induction from the power transformer.
FAST-ACTING RESETTABLE ELECTRONIC FUSE

PROVIDES ADJUSTABLE (1 TO 5 A) CIRCUIT-BREAKER ACTION

BY WILLIAM A. RUSSO

FOR THE protection of your own life and limb and that of your equipment, electronic apparatus should be protected by fuses or circuit breakers in their ac line inputs. But all too often, searching for the correct fuse and holder to use with a project and wiring them into place are chores that are dispensed with. While you can get away with doing things this way most of the time, sooner or later a puff of smoke or a nasty shock or burn are going to make you wish that you had taken the proper precautions in the first place.

The Electronic Fuse described here is designed to act as an adjustable temporary circuit breaker for projects undergoing tests or for any line-powered device rated at up to 600 watts while it is being tested or serviced at your workbench. Operating currents of from 1 to 5 amperes (in 1-A steps) can be selected. Detection of even a small overload results in fast (less than 0.5 second) interruption of both lines feeding the load. Then, instead of replacing a blown fuse, you simply flip a switch to restore normal power — after remedying the overload problem, of course.

Theory of Operation. Referring to the schematic diagram (Fig. 1), load current flowing through R1 and, depending upon the setting of S2, R2 induces a voltage drop that is sensed at the gate of the triac Q1 through the appropriate gate resistance (R3-R11). When sufficient gate current flows to turn on Q1, the triac energizes K1 and indicator II. The contacts of K1 are wired in a latching arrangement, while at the same time isolating the load when the relay is energized. Interrupting power by opening S1 resets the circuit.

Pushbutton switch S3 and resistor R11
reduce the sensitivity of the sensing circuits to the turn-on transients of reactive or incandescent lamp loads. Potentiometers R4 through R8 are used for calibration.

Construction. Shown in Fig. 2 are the foil pattern and component placement diagram to be used when making the PC board and mounting components on it. Once the board is wired as shown (substitute heavy-duty perforated board if you wish), 1-in. spacers permit the board to be safely mounted on the underside of the chassis box's top. Mount the board in place before making any external connections to it.

Next, mount and wire S2 and S3, followed by K1 and the remaining components, into the system. Use 18-gauge insulated wire for all leads carrying load current. When routing the power cord through a hole drilled in the chassis box, it is best to use a standard force-fit strain relief to hold it in place. However, lacking a standard strain relief, you can tie a figure-eight knot in the

\[
\text{\textbf{PARTS LIST}}
\]

- F1—6-ampere fuse
- K1—117-volt ac relay with 5-ampere dpdt contacts
- PL1—Neon pilot lamp assembly
- Q1—Triac (RCA 40529)
- R1,R2—1-ohm, 10-watt power resistor
- R3—47-ohm, ½-watt resistor
- R4,R5—1500-ohm vertical-mounting trimmer potentiometer
- R6,R7—3000-ohm vertical-mounting trimmer potentiometer
- R8—5000-ohm vertical-mounting trimmer potentiometer
- R9—1500-ohm, ½-watt resistor
- R10—1800-ohm, ½-watt resistor
- R11—12,000-ohm, ½-watt resistor
- S1—10-ampere dpst toggle switch
- S2—2-pole, 5-position non-shorting rotary switch (Mallory 173C or equivalent)
- S3—Spst normally closed miniature push-button switch
- S01—3-conductor chassis-mounting ac receptacle
- Misc.—Chassis-mounting fuse holder for F1; three-conductor ac line cord with plug; 6¼-in. by 5¾-in. by 2¼-in. Bakelite (or metal) chassis box with cover; hookup wire; solder; etc.

*Pots are Mallory Type MTC-1 or equivalent.

Fig. 1. In the fast-acting electronic fuse circuit, a triac is used to actuate the relay to cut off the power.
Fig. 2. A foil pattern that can be used for the electronic fuse is shown above, while the diagram at the right shows component layout.

cord after routing it through a hole with a rubber grommet.

Align and drill five ¼-in. holes through the side of the chassis box to provide direct-in-line access to the adjustment slots of R4-R8 when the Electronic Fuse is fully assembled. Before finalizing the project, check to make certain that K1's armature operates freely when the chassis box is assembled. Then, use an ohmmeter and visual inspection techniques to make absolutely certain that no current-carrying portion of the circuit touches chassis ground. The only grounded items in the circuit should be the green (neutral) wire of the power cord and round contact of SO1. Sometimes this socket contact has a green-tinted screw for easy identification.

Calibration and Use. For calibration, you will need the following loads:

<table>
<thead>
<tr>
<th>S2 SETTING (A)</th>
<th>OUTPUT LOAD (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>150</td>
</tr>
<tr>
<td>2</td>
<td>275</td>
</tr>
<tr>
<td>3</td>
<td>375</td>
</tr>
<tr>
<td>4</td>
<td>500</td>
</tr>
<tr>
<td>5</td>
<td>650</td>
</tr>
</tbody>
</table>

Incandescent lamps connected in parallel can be used in conjunction with S3. For heavier loads, heating coils (hair dryer, toaster, etc.) are ideal. You will also need an insulated screwdriver to adjust R4-R8.

(Note: If you lack an insulated driver, you can slip over the shank of an ordinary metal driver a length of insulated tubing. Alternatively, you can drill the holes oversize and line them with rubber grommets.)

To calibrate each range, set S2 to the proper position and plug into SO1 the required load. Set the appropriate calibration pot to its maximum resistance setting and turn on the Fuse, using S3 as necessary during turn-on. If K1 pulls in, check all settings and repeat the turn-on procedure.

With the load operating, slowly adjust the pot with the insulated screwdriver until the relay just pulls in. Turn off the project and repeat the above procedure for each setting of S2.

Now, with the Fuse plugged into an ac outlet, plug the device to be protected into SO1 and set the range switch for the proper fuse current. Turn on the Fuse, then the load. If the Fuse trips, reset it by turning off the power and then on again. Restart the system by momentarily pressing S3 while switching on the Fuse with the load turned on. If the Fuse's relay trips again, check the setting of S2 to verify whether or not it is switched to the correct current range, or look for a malfunctioning load. It should be noted that, if the load is incandescent lamps, it may require three or four starting attempts.

FEBRUARY 1974

AmericanRadioHistory.Com
In Part One of this article theoretical considerations in the design of bass reflex speaker systems were discussed in detail. In this second part, our discussion focuses on the practical construction details concerned with the reflex enclosure.

Construction Details. All speaker enclosures should be made from good-quality lumber and should be securely joined along all abutting edges. This is particularly important with such large enclosures as the floor-standing reflex. Large unsupported panels, such as the rear wall, should be braced with 1" X 2" or larger lumber that is glued and screwed on edge to the inside of the panel.

If a single brace is used on a panel, it should run along the panel's longer dimension (or diagonally) to divide the panel into two narrow strips that are more rigid than two square pieces. Opposing panels that are equal in size should theoretically be braced differently to stagger their resonances, but this is only for the purist. The speaker mounting board will always be braced differently from the rear panel owing to the speakers mounted on it.

Edges of the enclosure should be fitted together by means of internal glue blocks and screws. The back panel should be screwed down with a rubber-tape or caulking-compound gasket to eliminate leaks. The more carefully put together, the better the system will operate as a true reflex, and the more accurate and predictable will be the tuning.

Simple Vented Enclosures. The classic bass reflex is a speaker box with a simple hole in the baffle. There is no tunnel behind the port. There are more variables and more design steps to the bass reflex than to the closed box system, but the procedure is similar. If the Cms/Cmb ratio is used, first measure the suspension compliance of the speaker (see "Closed Box Speaker System Design," Part 1, June 1973). Then choose a box compliance to yield the desired ratio.

Here is an example. Tests show that a 12-in. speaker has a 50-Hz free-air resonance and a 0.7 \(\times 10^{-6} \) cm/dyne suspension compliance. If the Cms/Cmb ratio is to be 1.4, a box compliance of 0.5 \(\times 10^{-6} \) cm/dyne would be chosen, obtained from:

\[
(0.7 \times 10^{-6})/1.4
\]

From the box compliance chart in Fig. 1, locate the line for 0.5 \(\times 10^{-6} \) and follow it up to the diagonal line for 12-in. speakers. From the junction of the lines, move to the left of the chart to find the optimum box volume: 6 cu ft.

Now refer to Fig. 2 to locate the curve for 50 Hz and follow it to where it crosses the 6 cu ft line on the vertical scale. Where the 50-Hz and 6 cu ft lines cross, the port area is 30 sq in., as shown along the bottom of the graph. It should be noted that Fig. 2 shows the values of port area for a rectangular port with a length-to-width
(aspect) ratio of 4:1, the shape usually found in large reflex boxes. If the port can be made square or round (1:1 aspect ratio), the area can be increased by about 33 percent. If possible, the aspect ratio should not be greater than 4. Long narrow slits add resistance to the vent; they should be avoided unless they are an integral part of a special design.

If the required port area is found to be very small—say 5 sq in.—it should be enlarged and a tunnel should be installed behind it.

Simplified Method. The builder with no test equipment can estimate the proper enclosure size for his speaker. From Fig. 2, he can choose a volume that will permit a port area of 30-100 percent of the speaker’s effective cone area as follows:

<table>
<thead>
<tr>
<th>NOMINAL SPKR DIA.</th>
<th>PORT AREA RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 in.</td>
<td>9-28 sq in.</td>
</tr>
<tr>
<td>10 in.</td>
<td>15-50 sq in.</td>
</tr>
<tr>
<td>12 in.</td>
<td>24-78 sq in.</td>
</tr>
<tr>
<td>15 in.</td>
<td>40-133 sq in.</td>
</tr>
</tbody>
</table>

For example, for an 8-in. speaker with a 70-Hz cone resonance, Fig. 2 shows that the largest volume, for a 28-sq-in. vent, is 3 cu ft. The smallest recommended volume, for a 9-sq-in. vent, is 1.8 cu ft. Because 70 Hz is a relatively high resonant frequency by today’s standards, an enclosure volume at the upper end of the scale would be chosen to provide satisfactory bass response. If the resonant frequency were much lower, more latitude could be used in choosing an enclosure volume. For low-resonance speakers, the 30-percent-minimum rule can be violated, but the absolute minimum of 5 sq in. must be observed.

If possible, the vent should be located on the speaker board, about 3 or 4 in. from the speaker. The distance between vent and speaker can be greater than 4 in. but not less than 3 in. Where there is no room on the speaker board, the vent can be located on another board.

Tuning Reflex Enclosures. Perfect tuning is not required to obtain good results in a bass reflex system. The proper use of design charts will generally yield satisfactory performance, but the listener with test equipment will likely want to verify tuning accuracy. Most published instructions suggest adjusting the area of the vent until the two impedance peaks are equal in amplitude and equally spaced from the tuned frequency. These instructions are valid only if certain precautions are observed.
First, the specification that the peaks be equally spaced is correct only if the curves are graphed on the proper logarithmic scale. And the equal-amplitude requirement assumes the availability of accurate test equipment and little or no acoustical damping at either peak. The last requirement is subject to several variables, such as damping material and the type of lumber used in the box. Even without damping material, the wood walls of a speaker box will, by vibration, absorb a significant amount of energy at low frequencies. In a typical enclosure with 3 in. of damping material on the walls, the box will absorb about half as much energy as the damping material at 40 Hz; at 80 Hz, the damping material will absorb many times as much energy as does the box. These differences in energy absorption can upset tuning procedures, particularly if the damping material is changed during tuning.

The easiest way to avoid these problems is to note the free-air resonance on the audio generator; then tune the enclosure for a minimum impedance at that frequency. Note that this method does not require an impedance curve, an accurately calibrated signal generator, or even knowledge of the exact tuning frequency.

To tune a reflex, the port should be made somewhat larger than the correct value as indicated on a design chart. Then a movable panel can be clamped across part of the port and adjusted until the trough of the impedance curve occurs at the same frequency as the free-air resonance of the speaker. While tuning, care should be taken to prevent rattles that can produce confusing results. If clamps are used to hold the panel, they should be very tight and their handles should be taped to prevent vibration. Air leaks also destroy tuning accuracy. So precautions to insure a sealed enclosure, except for the port, are advised.

Some manufacturers, notably JBL and Altec, do not recommend tuning the enclosure to the free-air resonance, f_r, of the speaker. They contend that optimum low-frequency response can be obtained only by extensive testing of a particular speaker/enclosure combination. These manufacturers furnish detailed cabinet plans that should be followed when using their loudspeakers. Unless such information is available, the enclosure should be tuned to the speaker's free-air resonance.

Damping Material

All speaker systems must be adequately damped to prevent the reflection of midrange and high frequencies within the cabinet and through the woofer's cone or port. The damping material should cover all walls except the speaker board. The proper thickness depends on the material's absorption characteristics and density, but 1-3 in. is typical. Fiberglass or rock wool batting are common damping materials.

In cases of excessive boom, home builders can often attempt to cure the problem with damping material. This step usually fails because most damping materials are not effective at low frequencies, particularly when they are applied to the box walls. But stuffing the enclosure can change the tuning volume by "expansion." The apparent increase in volume occurs because the stuffing decreases the velocity of sound by changing the operation of the enclosed air from adiabatic to isothermal. Stuffing

Fig. 2. Design chart to be employed for bass reflex enclosures with the simpler vents.
can also lower system Q, reducing the amplitude of the upper resonance while the volume expansion lowers its frequency. Care must be used to prevent overdamping and excessive bass loss, although slight overdamping can be compensated for by bass boost in the driving amplifier.

Sometimes damping material is put across the vent. This lowers the ability of the vent to damp the speaker and reduces efficiency, defeating two purposes of the ported enclosure. A better method of system damping is to staple a sheet of damping material over the back of the speaker itself. Damping material behind the speaker damps both the speaker and the enclosure without interfering with vent operation.

Ducted-Port Reflex Enclosures. There has always been a demand for small speaker systems, even when the sound from small systems was frequently bad. The advent of stereophonic sound (and, more recently, quadraphonics) put increasing pressure on manufacturers to decrease the sizes of their enclosures. One result of this pressure was the compact closed box. But with it came a new kind of reflex—new to the trade, although the principle had been known for many years. This was the reflex with a duct behind the port.

Any increase in the thickness of a vent, either by using a thicker baffle or by a duct, increases the mass of vibrating air. Vibrating against the compliance of the trapped air in the box, this greater air mass lowers the resonant frequency of the system. A small enclosure can be tuned to a lower frequency with a duct than with a simple vent of the same area. A small box with a duct can have the same vent area as a large box without a duct tuned to the same frequency.

This does not mean that the small ducted enclosure will provide the same performance as the larger box. Important system characteristics, such as bass cutoff frequency, are determined by other factors like the C_{ms}/C_{mh} ratio that is independent of the method of tuning. This fact is sometimes overlooked by enthusiastic experimenters and advertising men who claim that their small enclosures are the equal of much larger ones. It is true only if the volume of the smaller enclosure is about optimum for the specific speaker used in it.
Although modern loudspeakers require larger optimum-volume enclosures than past speakers did, they can be used with satisfactory results in smaller cabinets. This is due to their low resonances, a by-product of high compliance. It is especially true if the low resonance is obtained by increased cone mass, rather than by higher compliance alone. Small boxes raise the bass cutoff frequency above that of large enclosures. But if the speaker's free-air resonance is low enough, the combination will yield acceptable bass response. Thus, the development of low-resonance speakers not only made possible the modern compact closed-box system, but also the compact ducted-port reflex.

The same factors that determine the design of a simple vented enclosure apply to the ducted-port box. The inerterance of a duct varies directly with its length and inversely with the cross-sectional area. So, to lower the tuning frequency, either the duct must be lengthened or its cross-sectional area must be reduced.

A duct must be used if tuning charts indicate a simple vent of less than about 5 sq in. Any enclosure that requires a vent of less than about one-third the effective cone area of the speaker is a candidate for a duct. Small vents produce increased air velocity through them, which can increase distortion and even add the spurious sound of rushing air. They can also add resistance that wastes energy and makes the enclosure operate like a leaky box instead of a tuned system.

For small vents, a cardboard tube or a plywood duct of square cross-section can be used. Heavy cardboard mailing tubes, when used, require that the hole in the baffle be cut to match the outside diameter of the tube. An extra advantage of the cardboard tube is the ease with which the system can be tuned. With other types of ducts it is necessary to remove the back panel to make changes in duct length.

If a cardboard tube is used, it is possible to permanently assemble the speaker system, except for the grille cloth, and then tune the enclosure. The duct hole must be carefully pre-cut to allow a snug fit when the tube is pressed into it. The audio generator and ac voltmeter are then connected to the speaker system as shown in Figure 3, and different lengths of tube are tried until the impedance trough occurs at the speaker's free-air resonance. The tube can protrude outside the box while testing because tuning is hardly affected by its position.

When the correct length of tube is prepared, glue it flush with the outside of...
the speaker board. All that remains to be done is to attach the grille cloth to the front of the cabinet.

Holes cut for square ducts should match the inside dimensions of the duct. The duct can then be glued and screwed to the front panel. Note that the effective duct length in this case will include the length of the duct and the thickness of the front panel.

No matter what kind of duct is used, a free space of at least 1½ in. must be provided between its rear edge and the back wall of the enclosure. This will place a limit on the permissible duct length, which—together with the volume and desired tuning frequency—determines a useful cross-sectional area and length of duct for a given enclosure.

The effective length of any duct is slightly greater than the length of the tube itself due to the tendency of the air outside the end of the tube to vibrate with the moving air in the tube. This phenomenon would have to be accounted for if a formula were used to find the correct duct length for an enclosure. But when using design charts, this factor can be neglected; the correction has already been made by the chart maker.

To use James F. Novak's charts in Fig. 4, the largest possible duct should be selected to tune an enclosure to a speaker. For a speaker with a resonance of 62 Hz that will be used in a 3000-cu-in. box, a 3-in. length of 4¾-in. duct is correct as shown. But for a speaker with a free-air resonance of 30 Hz that is to be used in a 2-cu-ft box (about 3500 cu in.), even a 10-in. long duct is far too short. For this speaker and box combination, it is necessary to go to the next smaller, 3-in., duct where an 8-in. length will properly tune the box to the speaker.

The duct can be made to any convenient shape if test equipment is used to assure proper tuning. But if the tuning charts are used without further testing, it is imperative that the cross-sectional shape of the duct be either round or square.

Some experimenters and speaker engineers advocate the use of damping material in the duct to improve transient response and smooth the impedance curve of the speaker. This is a controversial practice because, like simple resistive vents, it decreases cone damping in the octave above resonance and reduces efficiency. It does eliminate the possibility of midrange radiation from the port, but it is rarely necessary for that purpose. The naturally high reactance of the port to midrange and high frequencies, plus the judicious use of damping material inside the box, will usually take care of unwanted reflections through the port. Duct stuffing is useful only when accompanied by adequate testing to achieve a specific design goal. It should not be used indiscriminately.

FEBRUARY 1974
learn by doing!

Perform more than 200 exciting experiments with CIE’s fascinating ELECTRONICS LABORATORY PROGRAM!

Put theory... into practice
You get your own 161-piece electronics laboratory...
with authentic electronic components used by industry!

You learn how to construct circuits and connect them with a soldering iron, which is part of your CIE laboratory equipment! This "hands on" experience is extremely valuable in applying what you learn.

Testing and troubleshooting are an important part of your learning experience. Included in your laboratory is a precision "multimeter" to diagnose electrical and electronic troubles quickly and accurately.

Modern space-age components like this IC (integrated circuit) are professional quality and can be used again and again in many of your projects. Lesson by lesson, piece by piece your knowledge grows!

Prepare now for a high income career in Electronics...the Science of the Seventies.

Electronic miracles are changing today's world with breathtaking speed.

And with this growth in electronics technology has come a brand new need...a demand for thousands of electronics technicians, trained in theory and practice to build the products, operate them and service them during the Seventies.

Don't just wait for something to "happen" in your present job. Get ready now for a career you'll really enjoy with a good income and plenty of opportunity for advancement.

Experience with experiments is your best teacher

"Hands on" experience helps to reinforce basic theory. When you learn by doing, you discover the "how" as well as the "why." You'll find out for yourself the right way as well as the wrong way to use electronic components. How to construct your own circuits, to discover trouble spots and learn how to fix them. And with CIE's special Auto-Programmed Lessons, you learn faster and easier than you'd believe possible.

CIE's fascinating course, Electronics Technology with Laboratory, teaches you Electronics by making it work before your eyes. And you do it yourself, with your own hands.

Importance of FCC License and our Money-Back Warranty

Many important jobs require an FCC License and you must pass a Government licensing exam to get one.

But, a recent survey of 787 CIE graduates reveals that better than 9 out of 10 CIE grads passed the FCC License exam.

That's why we can offer this famous Money-Back Warranty: when you complete our Laboratory Course, which provides FCC License preparation, you'll be able to pass your FCC exam or be entitled to a full refund of all tuition paid. This warranty is valid during the completion time allowed for your course.

You get your FCC License — or your money back!

You'll have high paying job opportunities

Electronics is still young and growing. In nearly every one of the new exciting fields of the Seventies you find electronics skills and knowledge are in demand. Computers and data processing. Air traffic control. Medical technology. Pollution control. Broadcasting and communications. With a CIE Diploma and an FCC License you can choose the career field you want... work for a big corporation, a small company or even go into business for yourself.

Here's how two outstanding CIE students carved out new careers:

After his CIE training, Edward J. Dulaney, President of D & A Manufacturing, Inc., Scottsbluff, Nebraska, moved from TV repairman to lab technician to radio station chief engineer to manufacturer of electronic equipment with annual sales of more than $500,000. Ed Dulaney says, "While studying with CIE, I learned the electronics theories that made my present business possible."

Marvin Hutchens, Woodbridge, Virginia, says: "I was surprised at the relevancy of the CIE course to actual working conditions. I'm now servicing two-way radio systems in the Greater Washington area. My earnings have increased $3,000. I bought a new home for my family and I feel more financially secure than ever before."

Send now for 2 FREE BOOKS

Mail the reply card or coupon for our school catalog plus a special book on how to get your FCC License. For your convenience, we will try to have a representative call. If coupon is missing, write: Cleveland Institute of Electronics, Inc., 1776 E. 17th St., Cleveland, Ohio 44114. Do it now!

CIE Cleveland Institute of Electronics, Inc.
1776 East 17th Street, Cleveland, Ohio 44114
Accredited Member National Home Study Council

Please send me your two FREE books:
1. Your illustrated school catalog, "Succeed in Electronics."

I am especially interested in: ☐ Electronics Technology ☐ Industrial Electronics
☐ Electronic Communications ☐ First Class FCC License
☐ Broadcast Engineering ☐ Electronics Engineering

Name ____________________________ Age ______
Address __________________________
City ___________ State ___________ Zip ___________
☐ Veterans and Servicemen: Check here for G.I. Bill information. PE-55

FEBRUARY 1974

CIRCLE NO. 6 ON READER SERVICE CARD
THE FULL directional effect of an SQ™ record can be heard only when the disc is played through a decoder that can sense the dominant direction at any instant and shift the relative channel gains to enhance the inherently limited front-to-rear directivity of the SQ system. The so-called “full-logic” (or wave-matching) system can yield the most effective separation in all directions with SQ discs. It is quite complex and, therefore, expensive. Until recently, the only 4-channel receiver to incorporate full-logic SQ decoding was the Lafayette Radio Electronics Model LR-4000. This receiver has now been joined by the lower cost ($360) Model LR-221.

The LR-221's FM tuner section boasts performance specifications that are typical of many receivers in its price range—notably, 2.2 µV IHF sensitivity, 0.25% distortion, 65 dB S/N ratio, 35 dB midrange stereo separation, and 40 dB alternate-channel selectivity. The 4-channel amplifier section is rated at 26 watts/channel into 4 ohms with one channel driven, while the THD at 1000 Hz is specified as less than 1 percent at full rated power and less than 0.125 percent at 1 watt output.

On the rear of the receiver are a Hi/Lo sensitivity switch for the magnetic phono inputs and two 4-channel aux inputs. Two sets of speakers can be connected and driven simultaneously or singly. The outputs for the remote speakers are phono jacks, while screw-type terminals are used for the main speakers. AM and FM antenna terminals (with provision for using the line cord as an FM antenna), a pivoted ferrite-rod AM antenna, an FM DET OUT jack for use with a future discrete 4-channel FM broadcasting system, and a single unswitched ac outlet are also on the rear apron. The tape recording and playback circuits, brought out through jacks on the rear of the receiver, are suitable for both 2- and 4-channel tape decks.

The front panel contains the tuning dial, tuning meter, an FM STEREO light, 2-channel TAPE OUT and separate front and rear headphone jacks, and all remaining controls and switches. The input selector has positions for AUX 1 and AUX 2, PHONO, AM, FM, and FM high-frequency blending (to reduce noise on weak signals). The FUNCTION SWITCH has positions for 2 CH (pairs both left and both right channels), COMPOSER A and COMPOSER B (matrices for decoding RM discs and synthesizing the rear channels.
from 2-channel programs), **SQ FULL LOGIC, DISCRETE** (for external tape source or a CD-4 demodulator), and **REVERSE**. The latter operates with discrete sources, reversing the left/right and front/rear positions to effectively turn the 4-channel array through 180°.

![Graph showing harmonic distortion against frequency](image)

The bass and treble tone controls are concentric potentiometers, as is the L-R balance control for the front and rear channels. The master volume control is also concentric, slip clutched to permit adjusting the front-to-rear balance as well as overall volume. Pushbutton switches are used for TAPE MON, STEREO/MONO, LOUDNESS, HI FIL, and FM MUTE switching.

Laboratory Tests. With all four channels driven simultaneously at 1000 Hz into 8-ohm loads, the outputs clipped at 12.9 watts/channel. Driving only two channels increased the clipping output to 16 watts/channel. With 4-ohm loads and 16-ohm loads, the figures were 16 watts/channel and 11.4 watts/channel respectively.

The 1000-Hz THD was below 0.25 percent from 0.1 to 16 watts, and was typically between 0.1 and 0.15 percent. The IM distortion was almost constant (0.4-0.6 percent) over the full range of power outputs from 10 mW to 12 watts. Using 12 watts as a reference full-power level, the THD at all power outputs from 1.2 to 12 watts was between 0.07 and 0.15 percent at frequencies from 65 Hz to more than 1000 Hz. The distortion increased with increasing frequency, to 0.5 percent at 10,000 Hz and 0.75 percent at 20,000 Hz. As with many receivers, the LR-221 had a limited low-frequency power capability so that its THD reached 0.25 percent at 20 Hz with a 1.2-watt output, at 30 Hz with 6 watts, and at 55 Hz with 12 watts output.

The tone control characteristics were good, with the bass inflection point sliding upward from 100 Hz to 500 Hz as the control was moved from center, and the treble slope hinged at about 2000 Hz. The m filter had a gradual 6-dB/octave slope, with the -3-dB point at 2700 Hz. The loudness compensation boosted both lows and highs moderately, and the RIAA phono equalization was within ±0.5 dB from 70 Hz to 15,000 Hz (down less than 2 dB at 30 Hz).

The amplifiers could be driven to 10 watts output by a 180-mV aux input or a 1.65-mV hi phono input or a 3.75-mV lo phono input. The corresponding phono overload levels were 22 mV and 50 mV. The former is too low for most cartridges; we recommend using the lo setting to avoid
The characteristics of the tonearm, phono cartridge, and turntable have been carefully matched for optimum performance, something not so easy to accomplish when assembling a record player from its component parts.

General Description. The 11%-in. non-ferrous platter in the system is relatively light. It rests on a smaller internal turntable that is belt-driven by a 2750-rpm motor. The operating speed is adjustable over a nominal 6-percent range by a thumbwheel control located under the edge of the base. The tonearm mounting is rigidly coupled to the turntable system, and both are floated
from the motorboard on very compliant springs. The 4-Hz or so system resonance is low enough to avoid acoustic feedback problems but high enough to prevent undue susceptibility to jarring.

After the tonearm is balanced by an adjustable counterweight, the desired tracking force is set by a small knob on the pivot housing. The force calibrations cover a range of from 0 to 3 grams in 0.5-gram increments (B&O recommends a 1.2-gram force for their SP12A cartridge). Antiskating is applied by a non-adjustable system within the arm's pivot structure.

The cartridge supplied is identical in structure to the SP12 which B&O sells for installation in other tonearms. However, it is designed to simply plug into the end of the Model 3000's tonearm. It has a replaceable, polished, 0.2 \times 0.7-mil elliptical diamond stylus.

The system has a uniquely simple control setup. A single LIFT button is concentric with the speed-select switch. The latter is used for selecting the standard turntable speed/arm index combination. When the selector is set for 10- or 12-in. discs, a touch of the button starts the turntable at 33\% rpm, moves the arm over the leading groove, and gently lowers the arm to the disc's surface. The same thing happens in the 7-in. position except that the operating speed is 45 rpm. At the end of play, the arm returns to its rest position, safely supported clear of the motorboard (there is no rest post), and the motor shuts off.

At any time during play, pressing the LIFT button raises the pickup and shuts off the motor. A second push of the button starts the motor again and lowers the pick-up with no tendency for the arm to drift laterally.

There is also a MANUAL selector setting that merely turns on the motor. The arm must be manually indexed (although its vertical motion is controlled by the LIFT button, and the automatic shut-off feature remains in effect at the end of play). Discs that do not fit the standard size/speed scheme, such as a 7-in. record designed to operate at 33\% rpm, must be played using manual arm indexing.

The turntable platter has a retractable 45-rpm spindle built into its hub. A ring of stroboscopic markings on the platter facilitates easy initial speed adjustment.

The Model 3000 record player system, measures 17\% in. by 13 in. by 4\% in. and weighs 20 pounds. It retails for $265.

Laboratory Measurements. On our test bench, wow and flutter tested out, respectively, at 0.05 and 0.04 percent on both speeds. Unweighted rumble was a very low -45 dB in the lateral plane and -38.5 dB when vertical rumble components were included. With RLL weighting, the rumble was -54.5 dB, typical of today's turntables. Speed was adjustable over a range of from +7.3 to -1.7 percent, relative to the correct speed.

Tonearm tracking error was very low, less than 0.25\% in. of radius from 3 to 6 in. It increased to a still good 0.6\% in. reading at a 2.5-in. radius. Balancing the arm according to instructions, we measured a tracking force slightly higher than the dial calibration indicated—by about 0.2 gram at a 1-gram setting. This small error is in a "safe" direction. But for maximum accuracy, an external pressure gauge could be used to check the force. Once set correctly at 1 gram, the dial error was less than 10 percent at any setting.

The cartridge had an output of 4.5 mV at 3.54 cm/s. Its frequency response was within \pm 2 dB from 500 Hz to 20,000 Hz (the constant-velocity range of the CBS STR100 test record), and channel separation was 20 to 25 dB or more over most of the audible frequency range, decreasing to 10 to 15 dB beyond 15,000 Hz.

The 1000-Hz square wave of the CBS STR-111 disc was reproduced with a single overshoot. We evaluated the "trackability" with the Shure TTR-103 disc which has special test signals for testing cartridge performance at high, middle, and low-middle frequencies. Although the numerical results could be used only to compare this cartridge with others tested in exactly the same man-
ner, our studies showed that it has extremely good tracking capability—quite comparable, in fact, to what we have measured on the best cartridges previously tested.

User Comment. The Model 3000 player system is certainly one of the simplest players to operate with its control limited essentially to pushing a single button. Operation was smooth and flawless, with no undesirable characteristics.

The SP12A cartridge proved to be a superb performer. The most severe tracking tests to which we could subject it revealed that the SP12A cartridge could match the best we have yet tested for "trackability." It would be safe to assume that any distortion heard when playing a disc with this unit would be in the record grooves.

The mass of the tonearm, which is somewhat lower than that of a typical general-purpose tonearm, enables the pickup to track severely warped discs that had proved previously to be unplayable with conventional arms. Since no antiskating adjustment was available, we could not judge its accuracy. But indications were that it was inoperative or too low on the test unit. Even without this aid to tracking, the Model 3000 system was able to outperform many players with full antiskating correction.

All in all, this is one of the most attractive and better performing record players we have seen. It is an excellent value, especially when one considers that it is a ready-to-play unit that requires only plugging into an amplifier and power line to put it into immediate service.

COURIER SPARTAN SSB CB TRANSCEIVER

The Courier Spartan SSB is a single-sideband CB transceiver with provisions for AM operation. It is a mobile, 23-channel solid-state rig that has most of the features incorporated in a combined AM/SSB unit.

A clarifier control allows the user to put both the receiver and the transmitter right on frequency when operating SSB. There are an adjustable squelch for AM and SSB, a noise blanker that can be switched in or out, jacks for external receiving and for speaker hookup to the built-in PA system, and an r-f S/relative transmitter output power meter. Operation is from a nominal 13.8-volt dc, negative-ground only source. The microphone supplied is a push-to-talk dynamic noise-canceling type.

Several of the functions are selected by miniature toggle switches, while others employ conventional rotary switches. The meter movement is an edgewise-mounting type. The rig measures 9½ in. by 7½ in. by 2 ¾ in. and weighs 6 pounds.
The Spartan SSB transceiver is list priced at $830, including microphone and mobile mounting hardware.

The Receiver. The receiver section employs a front end that is common to both SSB and AM. It provides an excellent sensitivity figure of 0.1 µV for 10 dB (S + N) / N on SSB and 0.25 µV on AM with 30 percent modulation at 1000 Hz.

Many transceivers of this type use an r-f gain control to minimize overload by strong local signals, but the Spartan SSB has a **local/distance** switch; in the local position, it drops front-end gain by about 20 dB and reduces sensitivity to 1.5 µV and 3 µV on SSB and AM, respectively.

The 7.8-MHz i-f goes directly to the SSB section where USB or LSB selection is obtained with a 2.1-kHz bandpass crystal-lattice filter. The overall a-f response at the 6-dB points is 600-2700 Hz. Unwanted-sideband rejection with this setup was better than 70 dB at 1000 Hz.

Dual conversion is used on AM, with the 7.8-MHz i-f converted to 455 kHz. A ceramic filter in the i-f section provides a minimum of 30 dB of adjacent-channel rejection. The overall response of the a-f section was 550 to 2150 Hz, resulting in easily understood voice quality.

The receiver's image rejection was 80 dB. Other spurious signals were down a minimum of 60 dB.

A four-diode product detector is used for SSB, and dual diodes function as an envelope detector for AM. The a-f amplifying and output setup is switched between detectors and for PA operation. It was capable of producing more output than is usually the case, measuring 4.8 watts with a good sine wave distorted only 2.9 percent (1000 Hz into 8 ohms) and 6 watts with slight clipping and 4 percent distortion.

Individual age systems are used for AM and SSB, with 14-dB a-f output change occurring with an 80-dB (1-10,000 µV) r-f input change. The S meter was somewhat conservative, requiring a 300-µV signal to produce an S9 reading. The squelch had a threshold sensitivity of 0.1-500 µV on SSB and 0.4-3000 µV with AM.

The noise blanker operates on AM and SSB. When used, a series-gate a-f noise limiter is simultaneously switched into the AM section. In either mode, the overall attenuation of impulse-noise peaks amounted to 20 dB. The system was quite effective

Now Available!

The Popular Electronics INDEX

PUBLISHED FOR THE FIRST TIME

NOW...you can find the information you want quickly and easily in these detailed and complete Indexes, each covering a full year of POPULAR ELECTRONICS Magazines (12 issues).

Hundreds of subjects, titles, and brand names arranged for clear, fast reference. An ideal companion to your magazine collection - and essential for the audiophile, gadgeteer, ham, and service technician.

Both the 1972 and 1973 Indexes have been prepared in cooperation with the Editors of POPULAR ELECTRONICS Including ELECTRONICS WORLD. Indexes for both 1972 and 1973 are available at only $1.00 per copy, post-paid. Each Index covers a full year of 12 issues.

Order your copies of these valuable and informative Indexes now!

INDEX

Box 2228, Falls Church, Virginia, 22042

Enclosed please find $______ for the following Indexes at $1.00 each, postpaid: PE-274

______ copies --- 1972 Index

______ copies --- 1973 Index

Print Name: ____________________

Address: ______________________

City____________ State ______ Zip_____

Please enclose full payment with order. Make checks payable to INDEX.
The Transmitter. A frequency synthesizer with 14 crystals provides a nominal 19-MHz output at a four-diode balanced mixer and provides the heterodyning signal for the receiver mixer. It also goes to an IC transmitter mixer where it is combined with a 7.8-MHz SSB signal that is generated in the usual manner with a balanced modulator and the crystal filter. This produces the on-channel signal that is amplified by two stages and drives the r-f power amplifier which contains the customary output-matching and filtering network. For AM, the on-channel carrier is produced by mixing the synthesizer's output and a 7.8-MHz signal. The power amplifier and driver are collector-modulated by the receiver's a-f system. A "power controller" holds the AM input voltage down at the r-f stages for operation within the legal power limit. Automatic level control is provided for SSB. On AM, automatic modulation control takes over.

Operating from a 13.8-volt dc source, the transmitter's PEP output on SSB was almost 12 watts (rated 8 watts). The third-order distortion products at the automatic level control threshold were 26 dB below maximum output. Carrier suppression was 55 dB, and unwanted-sideband suppression was the same as on receive.

With AM, the carrier output was 3.75 watts. A full 100-percent modulation was attainable with a good waveform exhibiting only 2 percent distortion (with 1000 Hz) at the onset of complete modulation. With 6 dB of clipping, the distortion rose to 10 percent.

At the center position of the clarifier control, the frequency of any channel was within 100 Hz. The clarifier range was nominally ±500 Hz.

The transceiver is designed for use only in negative-ground systems. Reverse-polarity protection is furnished by a diode that conducts and places a virtual short circuit across the supply line when the polarity is incorrect, blowing the line fuse. A filter in the supply line minimizes transient spikes and ignition-noise pulses.

BALLANTINE MODEL 3/24 DIGITAL MULTIMETER

UNTIL fairly recently, some of the finest test equipment available for high-level scientific study and research and development was made by companies whose names were unknown to the majority of the people involved in electronics. Recently, however, a few of these companies have been producing test gear within the price range reachable by technicians, experimenters, and radio/TV-service shops.

One of the top-flight test instrument manufacturers that has established an impressive reputation in engineering circles is Ballantine Laboratories, Inc. This company is currently making its debut into the low-cost test equipment market with the introduction of their Model 3/24 digital multimeter that retails for only $195—this from a company whose wares in the past were priced nearer the thousands than the hundreds of dollars.

General Description. The Model 3/24 gets its designation from the fact that it is a three-function, 24-range instrument. It is designed to measure dc voltages to 1, 10, 100, and 1000 V full-scale with an accuracy of 0.5 percent or better. The same four ranges are available for measuring ac voltages to 1 percent accuracy. (On the 1- and 10-V ac ranges, the frequency response is 40 to 20,000 Hz, while on the 100- and 1000-V ac ranges, it is 40 to 1000 Hz.) Input resistance on dc V is 10 megohms, and on ac V the input impedance is 10 meg-ohms shunted by 75 pF.

Five direct current ranges are provided,
going out to 100 μA, 1 mA, 10 mA, 100 mA, and 1 A full-scale with an accuracy of 0.5 percent plus one digit. The voltage drop is approximately 1 volt. There are also five similar ac ranges, all with an accuracy of 1.5 percent plus two digits, approximately a 1-V drop, essentially infinite common-mode rejection (on battery operation), and a frequency response of 40 to 2000 Hz.

Six resistance ranges round out the instrument’s functions, covering decade steps from 100 ohms to 10 megohms full-scale. Accuracy is 1 percent plus one digit. The test current is 10 mA on the 100-ohm range, decreasing in decade steps to 0.1 μA on the 10-megohm range.

Among the other features to be found are automatic zero setting, automatic polarity indication, and a LED display BRIGHTNESS control that can be used to adjust the display to any brightness level within the instrument’s range. Two front-panel controls are provided for selecting the function and range. The readout system is a cluster of 3½ LED displays. All displayed indications are made at a 3/sec- ond rate, producing an almost instantaneous updating of the measured parameter’s value. In the event of an overrange, the most significant digit flashes on and off.

A front-panel zero control permits the user to compensate for the resistance of the test leads when making very low resistance tests. The only other control on the front panel is the power ON/OFF switch.

Evaluation Comments. We were pleasantly surprised when we first unpacked the 7-in. by 5-in. by 2½-in. instrument. It weighed only 2 pounds with its single 9-volt battery installed. (The battery, it should be noted, is said to supply 300 hours of life when the instrument is put into normal use.) The carrying handle that comes affixed to the case of the DMM also doubles as a tilt stand for bench use.

Checking the DMM against our laboratory-standard dc voltage supply and our “standard” set of close-tolerance precision resistors revealed that the instrument functioned well within its published specifications, which was no surprise. Its small size and ac-line-independence made the DMM very useful on our workbench where it could be placed just about anywhere—even inside large TV receiver chassis. In field-service use, the instrument performed flawlessly.

We feel that the Model 3/24 DMM from Ballantine is an excellent buy. It is hoped that other OEM companies will follow this one into the consumer area.

BRANSON MODEL B-220 ULTRASONIC CLEANER

Sometimes we run into things that don’t appear to fit any “electronic” category. But after using them for a while, we wonder how we ever got along without them. Just such a situation existed when we were handling a Branson ultrasonic cleaner to test. Frankly, we have to admit that we didn’t have the faintest idea what to do with the thing (aside from cleaning jewelry, of course). The more we used it, the more use we could see for the cleaner, especially in electronics work.

The Branson ultrasonic cleaners come in nine models that range in tank capacity from the 1-pint Model B-2 (855) to the 8-gallon Model B-92 (8750). Looking for a convenient size for electronics applications, we decided to test the 3-quart (9" x 5" x 4" tank dimensions) Model B-220. This unit retails for $115, which puts it into an attractive price range for repair shops that have to contend with component and assembly cleaning jobs.

How It Works. The theory behind ultrasonic cleaning is relatively simple. A high-power ultrasonic generator drives one or more transducers that couple the high-frequency energy into the liquid in the tank. Since the liquid (detergent solution or industrial solvent) does not heat up and the tank is made from stainless steel,
almost any type of cleaner can be used.

The object to be cleaned is immersed in the solution in the tank. After power is turned on, the 50-60-kHz sound waves cause the solvent in the tank to undergo cavitation wherein millions of tiny bubbles form and collapse. The result is a "scrubbing" action on the immersed parts wherever the liquid contacts them. The cleaning action also goes around corners, into deep crevasses, and can even pass through some barriers. Hence, the insides of the immersed objects are cleaned simultaneously with their outsides.

Although the bulk of the cleaning jobs can be accomplished with warm water and a little household detergent, other types of additives—such as ammonia and bleach—or solvents (kerosene, commercial cleaning fluids, degreasers, etc.) can be used. Selection of the cleaner to use depends on the job to be done.

By the Numbers. We had a crack at cleaning some noisy potentiometers and a couple of well-used, over-lubricated television tuners. The ultrasonic energy developed by the unit blasted them clean. We say "blasted" because the puffs of cloudy material leaving the items in the tank looked like they were blasted out. We noted afterward that because the cleaner does such a thorough job, cleaned switches or tuners require relubrication.

Because we build many projects, we used the ultrasonic cleaner to scrub the copper foil of PC boards. Soldering is no longer a problem, and items such as capacitors and resistors turn out so clean that no doubt is left as to their values by color code or number imprint. Knobs, especially those with grease-collecting knurled perimeters, really come clean.

Having used the ultrasonic cleaner for several weeks, we now find ourselves cleaning things electronic and non-electronic several times a day.

Circle No. 69 on Reader Service Card

ERRATUM

In last month’s Product Test Reports, the price of the EL Instruments Model DD1-K Digi-Designer was incorrectly listed as $50. It should have been $59.95.
MAC'S SERVICE SHOP

Servicing Without Service Data

By John T. Frye, W9EGV, KHD4167

"I don't think that's so smart," Mac said. "Any time you see a service going begging because it has disagreeable features, you're staring an opportunity right in the face. Garbage collectors, plumbers, and undertakers have found this out, and they seldom die broke. The trick is to find ways to nullify the unattractive qualities of the work for you personally while these same qualities scare off your competition."

"Sounds good," Barney said dubiously, "but how are you going to take the blank, blank headaches out of servicing without service data?"

"By using your knowledge and experience to work out a diagnostic procedure that keeps unnecessary moves to a minimum, makes maximum use of generalized service data, and employs different techniques than the ones used with service data; then stick to that procedure religiously."

Check the Easy Things First. "Take that business about keeping unnecessary procedures to a minimum. Nothing is more frustrating than to remove a hard-to-get-out chassis for a lot of fruitless voltage testing only to discover the trouble was a broken antenna lead you could have repaired in a minute. Always check easily repaired possibilities first. Battery voltage and current drawn should be checked routinely, even if the customer says the battery is brand new. It could have grown old on the shelf, or the set could have a high current drain that exhausts the battery quickly. The milliammeter can be inserted in a snap-connector battery lead easily by removing one snap and using the meter leads to restore the connection. In case individual cells in series furnish the current, use a special jig made up of a couple of pieces of brass shim stock cemented to opposite sides of a piece of thin fish paper. When this is inserted between the cord connector of one of the batteries..."
and its contact, milliammeter leads touched to the two pieces of shim stock will read the total current being consumed. Your experience will serve as a guide to normal current for the number of transistors used.

"Carefully look over the chassis with a pair of magnifying glasses for loose connections, broken wires or charred resistors. Look especially for dangling fine wires going to the antenna. These leads are often broken by the customer in changing batteries or in attempts at do-it-yourself servicing. With the volume full on, try gently moving resistors, capacitors and i-f cans, with an insulating diddle-stick. Be sure to wiggle the tuning capacitor. Quite often one of its solder connections to the board is broken when the radio is dropped or by rough handling of the tuning knob on direct-drive tuning capacitors. Gently flex the printed circuit board itself, especially along the edges. What you're hoping for, of course, is a sudden restoration of normal functioning, indicating a broken or loose connection has been temporarily corrected."

"If you can't find anything wrong that way, do you take the chassis out and do voltage checks on the back side?"

Signal Injection and Signal Tracing. "Not yet. The next thing to try is signal injection and/or signal tracing. With the proper equipment, even voltage checks can be made from the top of the PC board. Just listening for a click when the set is switched on will tell you if the output transistor is drawing collector current and if the output transformer and speaker voice coil are O.K. If you hear the click, they are; if not, something is wrong with one of these components. Another crude signal-injection test is to touch the 'hot' or center lead of the volume control with the volume full on. If this produces a quite noticeable hum, you know a signal can pass from the volume control clear through the audio amplifier.

"But it is usually better to use signal generators for injection and a signal tracer to pick off the signal at various points 'downwind' from where you put the test signal in. Look at this diagram I've drawn. If you know the audio amplifier is working, you can start right in by putting an r-f signal into the antenna and picking it off at the detector diode or as far forward as you need to go to pick up the signal. You can zero in on the defective component that is losing the signal from two directions."

"Yeah, but it's pretty tricky trying to work a signal-injection or signal-tracing probe into the proper points on top of the board without shorting out a couple of leads and possibly blowing a transistor," Barney pointed out.

"Not if you make up some special probes just for that purpose," Mac replied. "I solder two-inch lengths of fairly stiff, small diameter wire to pinjacks or banana jacks that will slip over the end of a test probe. The wire is covered with a piece of spaghetti tubing so that only about \(\frac{3}{4} \) inch of the end of the wire is exposed, and the spaghetti is cemented to the wire. The wire can be bent into any shape so that the end can reach in under a transistor case to contact a particular lead without fear of short circuits. These special extensions will slip over the probe tips of our VOM, VTVM, signal tracer, or signal generator. When not needed, they are quickly removed.

Diagram:

- **FOR SIGNAL INJECTION**
 - MOVE PROBE TO THE LEFT
 - **R-F/I-F SIG GEN**
 - **A-F SIG GEN**
 - **ANT.**
 - **R-F AMP**
 - **MIXER OSC**
 - **I-F AMPS**
 - **DETECTOR**
 - **A-F AMPS**
 - **SPKR**

- **FOR SIGNAL TRACING**
 - MOVE PROBE TO THE RIGHT
 - **SIGNAL TRACER**

(Note: In both cases, observe where signal disappears)
“Once the loss of signal is cornered in a small portion of the circuit, you fall back on your technical knowledge and your generalized service data to pinpoint the bad component. By ‘generalized service data,’ I refer to such things as transistor and cross-reference manuals put out by many transistor manufacturers. The transistor and semiconductor manuals put out by RCA, General Electric, and Motorola and others contain not only characteristics of the devices they sell but also a wealth of theory, applications, and typical circuits of radios, TV receivers, CB transceivers, hi-fi amplifiers, mixers, and so on. By comparing the voltages you find in the circuit you suspect with typical voltages shown in the manual, you can quickly decide if everything is kosher. If a signal is present at the input of a transistor and its voltages are all within tolerance, but the signal is not present at the output, it doesn’t take a whiz-kid to decide the transistor is very likely defective. A transistor tester can confirm this.

“I want to stress the value of such books as Sylvania’s ECG Replacement Guide and Catalog, GE’s Entertainment Semiconductor Almanac, Radio Shack’s Transistor Substitution Guide, and Motorola’s IEPE Semiconductor Cross-Reference Guide and Catalog. These contain the manufacturers’ substitutes for both domestic and foreign transistors, together with characteristics of the recommended substitute and installation hints. One of these books is the first thing I reach for when I suspect a transistor because it will tell me what voltages I can expect on that transistor, and, if need be, what easily available substitute to use. Also helpful are such catalogs as those from Lafayette Radio, Radio Shack and Calectro.

“If you’ve gotta change a component or repair a broken connection, you still have to remove the chassis board,” Barney said.

“Not necessarily. In the case of a broken solder connection on a tuning capacitor lug, you can often apply heat to the top of the lug at the point where it goes down through the board and melt the solder on the other side of the board. In cases where the board is very difficult to remove because of the tuning mechanism or attachment to other components fastened to the case, I’ve even changed soldered-in transistors from the top of the board. I snip off the transistor leads with miniature diagonal cutters about an eighth inch or so above the top of the board, bend these over so they can’t fall on through, and solder the leads of the replacement transistor to these stubs with a miniature iron. You have to decide whether it will be quicker to remove the board or improvise a repair from the top.”

Other Suggestions. “Here are some other helpful things I’ve learned: don’t try transistor replacement—especially if they’re soldered in—as a form of first aid. Neither should you blindly assume the fault can’t be in a transistor. Three times in the last month I’ve encountered open collectors in Japanese line-operated output transistors. In two instances the owners were hard of hearing, and in the other case children were permitted to play with the radio. Probably operating these receivers at high volume for long periods of time overheated the output transistors in spite of their being heat-sunked. I used recommended U.S. replacements, and none of the sets has bounced yet.

“Another help is to keep a card file by make and model number on these data-less receivers. List the symptoms, the service procedure by which the difficulty was found, and how it was repaired. In my file I also put such things as a short article on reading code markings on Japanese resistors, capacitors, and inductors that appeared in the November, 1973, QST.

“But the thing that will really determine whether or not you succeed at this kind of servicing will be your attitude. If you’re convinced servicing can’t be done without diagrams and voltage data and pictures with callouts, and if you’re going to waste your time whimpering about how difficult data-less servicing is and cursing the manufacturer, you’d better not tackle it. On the other hand, if you consider this kind of servicing a challenge to your technical ability and if you’re willing to invest some low-return time in working out a procedure that best suits you and your instruments, you’ll end up making money. On top of that, don’t be at all surprised if you suddenly discover you’ve become a much more confident and competent service technician when working on sets for which you do have data because of what you’ve learned from taking on those non-pedigreed devices others are turning away. After all, any lubber can make a landfill when he has detailed charts, depth-sounders, loran, radar, and radio communication to lead him by the hand; but it takes an experienced and shrewd navigator to make port by dead reckoning!”

FEBRUARY 1974
THE SHORTWAVE BROADCAST BANDS

120 meters—Tropical Band—2300-2500 kHz
Best reception: Evening to Central America; only few stations active. Frequencies in kHz; times in GMT.
2390 Guatemala, La Voz de Atitlan, to 0345 sign-off; Spanish, Indian languages
2390 Mexico, Radio Huayacocotla, to 0300

90 meters—Tropical Band—3200-3400 kHz
Best reception: Throughout hours of darkness to Latin America; your local dusk to Africa and Brazil; around local midnight, to Africa; before and just after dawn, to Asia, Pacific, and Central America. 3200 China, Fukien Front Station People’s Liberation Army; dawn
3277 Kashmir (India), Srinagar, Kashmir, Urdu, some English; dawn
3300 Burundi, Bujumbura, 0400 French and African languages

75 meters—International Band (not assigned in Americas)—3900-4000 kHz
Best reception: Europe, Africa late afternoon until after midnight; Pacific midnight to dawn; Ecuador before dawn; Asia around dawn
3910 Japan, Far East Network (U.S. Forces) pops and news, dawn
3925 Japan, Nihon Shortwave Broadcasting,

60 meters—Tropical Band—4750-5060 kHz
Best reception: All hours of darkness, to Latin America; afternoon and around midnight, to Africa; midnight to dawn, to Pacific; late night to after dawn, to Asia; a few European stations active, times as for Africa
4820 Honduras, La Voz Evangelica, Tegucigalpa, evenings and mornings, some English
4820 Gambia, Bathurst, 0630 sign-off; 2300 sign-off on East Coast; English
4845 Bolivia, Radio Fides, La Paz, early evening, 2300-0100; Catholic religious
4877 South Vietnam, VTVN Saigon, Vietnamese

49 meters—International Band—5950-6200 kHz
5955 Guatemala, TGN, missionary station, sermons often in English evenings
5995 Vatican City, Vatican Radio, English to N. America daily 0100-0115
6025 Portugal, Radio Portugal, English 0200-0245, 0345-0430 daily
6040 United Arab Emirates, Saut-as-Sahil, Dubai, rarely 1300-1400
6065 Spain, RNE Madrid, English to N. A. 0100-0145, 0200-0245, 0300-0345
6070 Canada, CFRX, Toronto, 1 kW, daytime to Northeast, night everywhere
6085 Canada, CBC relay of Deutsche Welle, sign-off; Spanish, Indian languages
2446 Reunion, ORTF St.-Denis, rare at 0230 sign-on in French on East Coast of United States
2500 U.S.A., WWV Fort Collins, time and frequency signals, during darkness

50 meters—Shortwave Band—60-62 kHz
Best reception: Europe, Africa night to early morning; Atlantic Coasts of the Americas night to early morning; Asia night; to Africa; before and after dawn, to Asia; around dawn
5000 United Kingdom, BBC, English at night; French and Spanish by day
5030 France, RTF, daytime French and English

20 meters—Shortwave Band—20-22 kHz
Best reception: Europe, Africa night to early morning; Atlantic Coasts of the Americas night to early morning; Asia night; to Africa; before and after dawn, to Asia; around dawn
2000 United Kingdom, BBC, English at night; French and Spanish by day
2030 France, RTF, daytime French and English

15 meters—Shortwave Band—15-17 kHz
Best reception: Europe, Africa night to early morning; Atlantic Coasts of the Americas night to early morning; Asia night; to Africa; before and after dawn, to Asia; around dawn
1500 United Kingdom, BBC, English at night; French and Spanish by day
1530 France, RTF, daytime French and English

10 meters—Shortwave Band—10-11 kHz
Best reception: Europe, Africa night to early morning; Atlantic Coasts of the Americas night to early morning; Asia night; to Africa; before and after dawn, to Asia; around dawn
1000 United Kingdom, BBC, English at night; French and Spanish by day
1030 France, RTF, daytime French and English

5 meters—Shortwave Band—5-6 kHz
Best reception: Europe, Africa night to early morning; Atlantic Coasts of the Americas night to early morning; Asia night; to Africa; before and after dawn, to Asia; around dawn
5000 United Kingdom, BBC, English at night; French and Spanish by day
5030 France, RTF, daytime French and English

2.5 meters—Shortwave Band—2.5-3 kHz
Best reception: Europe, Africa night to early morning; Atlantic Coasts of the Americas night to early morning; Asia night; to Africa; before and after dawn, to Asia; around dawn
2500 United Kingdom, BBC, English at night; French and Spanish by day
2530 France, RTF, daytime French and English
AND WHAT TO FIND ON THEM

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Location details</th>
</tr>
</thead>
<tbody>
<tr>
<td>41 meters</td>
<td>International Band (not assigned in Americas) — 7100-7300 kHz</td>
</tr>
<tr>
<td>7130</td>
<td>Great Britain, BBC to Atlantic Islands</td>
</tr>
<tr>
<td>2115</td>
<td>21525</td>
</tr>
<tr>
<td>7265</td>
<td>West Germany, Südwestfunk, Baden-Baden, nighttime under good conditions</td>
</tr>
<tr>
<td>31 meters</td>
<td>International Band — 9500-9775 kHz</td>
</tr>
<tr>
<td>9505</td>
<td>Japan, Radio Japan, English news on hour 0600-1400</td>
</tr>
<tr>
<td>9510</td>
<td>Ascension Island, BBC relay, English to N. A. 0200-0330</td>
</tr>
<tr>
<td>9515</td>
<td>Turkey, Radio Ankara, Turkish sign-on 0330</td>
</tr>
<tr>
<td>9535</td>
<td>Switzerland, SBC, English to N. A. 0145-0215, 0430-0500</td>
</tr>
<tr>
<td>9560</td>
<td>Ecuador, HCJB, Quito, missionary station, English to N. A. 0100-0600</td>
</tr>
<tr>
<td>9570</td>
<td>Nigeria, Radio Kaduna, Koran chants, English, Hausa, sign-on 0430</td>
</tr>
<tr>
<td>9570</td>
<td>Qatar, Radio Qatar, Doha, sign-on 0230, Arabic, rare catch</td>
</tr>
<tr>
<td>25 meters</td>
<td>International Band — 11700-11975 kHz</td>
</tr>
<tr>
<td>11705</td>
<td>Israel, IBA, English news 0500-0515, parallel above, same time</td>
</tr>
<tr>
<td>11710</td>
<td>New Caledonia, ORTF, French 0600-1200</td>
</tr>
<tr>
<td>11775</td>
<td>Spain, RNE Madrid, Spanish to Latin</td>
</tr>
<tr>
<td>19 meters</td>
<td>International Band — 15100-15450 kHz</td>
</tr>
<tr>
<td>15105</td>
<td>Japan, Radio Japan, English news on hour daytimes and early evening</td>
</tr>
<tr>
<td>15110</td>
<td>New Zealand, NZBC, mostly home service, evenings</td>
</tr>
<tr>
<td>15170</td>
<td>Tahiti, ORTF, Papeete, English lesson 0230, Tahitian 0300-0500, French to 0800</td>
</tr>
<tr>
<td>15245</td>
<td>Zaire, Kinshasa, 24-hour operation,</td>
</tr>
<tr>
<td>16 meters</td>
<td>International Band — 17700-17900 kHz</td>
</tr>
<tr>
<td>17720</td>
<td>Taiwan, Voice of Free China, English to N. A. 0200-0350, also 17780, 17890 kHz</td>
</tr>
<tr>
<td>17770</td>
<td>New Zealand, NZBC, English, evenings / / 15110 kHz</td>
</tr>
<tr>
<td>17810</td>
<td>Malagasy Rep., Radio Nederland re-</td>
</tr>
<tr>
<td>13 meters</td>
<td>International Band — 21450-21750 kHz</td>
</tr>
<tr>
<td>21525</td>
<td>South Africa, Radio RSA, African service in English, mornings</td>
</tr>
<tr>
<td>21605</td>
<td>Finland, FBC, 1 kW, 1400-1830 to Latin America, English 1400-1430, 1800-1830</td>
</tr>
<tr>
<td>11 meters</td>
<td>International Band — 25600-26100 kHz</td>
</tr>
<tr>
<td>25730</td>
<td>Norway, Radio Norway, 1100-1230, 1300-1430, 1500-1630, English Sundays</td>
</tr>
<tr>
<td></td>
<td>25790 South Africa, Radio RSA, English</td>
</tr>
</tbody>
</table>

BY RICHARD E. WOOD

FEBRUARY 1974

93
Train at home on NTS equipment like this:

NTS Audio Electronics Servicing
Know tweeters, woofers and baffles—sound distortion, amplification and control—public address and music systems. Kits you build and keep include Heath 60-watt stereo receiver, twin speakers, Volt-Ohmmeter, digital meter, in-circuit transistor tester, solid-state pocket radio.

NTS color and b&w tv servicing
Build the largest and most advanced solid-state color TV. A 315 sq. in. ultra-rectangular matrix picture tube, Varactor Diode Tuner, Electronic Character Generator and more. Or build B&W TV with cabinet. Both TV's feature "instant on" Automatic Fine Tuning, solid-state design, and more. Other kits you build and keep: Solid-State Pocket Radio, Troubleshooter, AM/SW Radio, Volt-Ohmmeter, Color Bar/Dot Generator, Electronic Tube and Transistor Tester, TV Vector Monitor Scope and 5-inch Oscilloscope. Send card or coupon for all new color catalog and full details today.

Project Method Training — "heart" of the NTS system.
NTS Project Method Training is a better way to learn electronics. With easy-to-follow lessons, comprehensive kit manuals, large fold-out charts and more, you'll build advanced equipment while you learn electronics' principles and applications. You'll learn how components work, why they work, what to do when they don't work. In short, you'll use your mind and your hands to develop ability and confidence. This is why the NTS Project Method is such an invaluable part of your program.

NTS Electronic Communications
Earn your FCC First-Class Radio-Telephone License. Prepare for the test by building your own amateur phone 2-Meter FM Transceiver. NTS gives you the exact skills the FCC requires. Other kits you build and keep: fully transistorized Volt-Ohmmeter and regulated power supply.

NTS gives you confidence-building extras!
- Job Getting Manual
- Advice On Starting A Business
- Answers To On-The-Job Questions
- Illustrated Electronics Dictionary
- Mechanics & Science Bulletins

NATIONAL TECHNICAL SCHOOLS
Technical Trade Training Since 1905
Resident & Home Study Schools
4000 SOUTH FIGUEROA ST., LOS ANGELES, CA. 90037
Feel at home on jobs like these:

NTS builds your confidence with more solid training in Solid-State

NTS Training on professional solid-state equipment prepares you for many careers — in consumer, commercial and industrial fields. If television is your chosen field, you could join a first class TV repair center, start a shop of your own, or specialize in industrial applications of television such as security system installation. And other electronic fields are continuing to grow, revolutionizing industry and communications, even reshaping our own lives. Opportunities are opening in home entertainment areas, commercial audio systems, mobile communications, computer servicing, industrial controls and many other service technician areas. Yes, this is truly "The Age of Electronics." Your NTS training and the equipment you receive prepare you for these exciting careers wherever electronic technicians are needed. Start now! Build your confidence along with new skills in electronics. You may start earning extra money even before you graduate! Check your course on the card or coupon and mail today! No obligation. No salesman will call.

Master Technician: Communications Electronics

Master Technician: Industrial Electronics

Master Technician: Home Entertainment Electronics

Master Technician: Computer Electronics

Approved for Veteran Training

Classroom training at Los Angeles
You can take classroom training at Los Angeles in sunny Southern California. NTS occupies a city block with over a million dollars in facilities devoted exclusively to technical training. Check box in coupon.

Please rush Free Color NTS Guide To Careers In Electronics and Sample Lessons, plus information on course checked below. No obligation. No salesman will call.

National Technical Schools
Technical-Trade Training Since 1905
Resident & Home Study Schools
4000 So. Figueroa St.
Los Angeles, Ca. 90037

NTS guide to careers in Electronics

- Master Course in Color TV Servicing
- Color TV Servicing (For Qualified Technicians)
- Master Course in B&W TV & Radio Servicing
- Master Course in Electronic Communications
- Practical Radio Servicing
- FCC License Course
- Master Course in Electronics Technology
- Automation & Industrial Electronics
- Computer Electronics
- Basic Electronics
- Audio Electronics Servicing
- Audio Technology for Qualified Technicians

NAME ______________ AGE ______________
ADDRESS ______________________________
CITY ______________________________
STATE ______________ ZIP ______________

FEBRUARY 1974

[Check if interested in Veteran Training under new G.I. bill.]

[Check if interested ONLY in Classroom Training at Los Angeles.]
LAST MONTH ("Electronic Music Pitch Standards") we discussed the frequencies wanted and stability needed in designing a useful electronic music pitch generator. In most cases, the equally tempered scale would be used, usually based on twelve notes per octave with each successive note 1.0595 (the twelfth root of 2) times higher in frequency than its neighbor below. To accompany some conventional musical instruments, it would probably be necessary to set the absolute pitch of A4 to 440.0 hertz. The overall stability should be within three cents of the desired pitch—one cent or better, if possible. (One-cent frequency stability is about 0.06% or 600 parts per million.)

The problem now is to determine what hardware should be used to generate all these notes; and the first thing to decide is whether or not more than one note at a time is needed. When working in a studio, with an elaborate tape recording setup, or when teaching or learning musical theory, the flexibility of the monophonic or single-note systems can be a tremendous advantage. This is particularly true when it comes to envelope generation and special effects involving the interaction with time of pitch, timbre, and envelope. When playing along with other instruments, single notes might not be too bad—particularly if the voicing is unique or is a stunning imitation of some classical instrument.

About half of the single instruments generate only one tone at a time (trumpets, clarinets, trombones, etc), while the remainder (organs, pianos, guitars, violins, etc.) can and do generate more than one (or overlapping) notes at a time. The kicker here is that we rarely listen to just one single-voiced instrument. For instance, have you heard any good bassoon solos lately?

At this stage of the music game, the single-voiced monophonic circuits offer flexibility and low cost but are pretty much limited to the tape studio or to use with
other instrument ensembles. If the electronic music synthesizer is to stand by itself or be used in live concerts, then polyphonic, or multiple voicing is very desirable—almost essential.

(An instrument with both polyphonic and monophonic capabilities is an interesting possibility, but more on that later.)

Another decision to be made is whether or not rock-stable notes are always needed. For many voices of medium pitch, the addition of vibrato or frequency modulation adds an interesting and potentially realistic quality to the tone. On the other hand, vibrato sounds very phony on notes of lower pitch, particularly in imitating organ pipes. (Vibrato can be introduced after the pitch is generated by phase-modulation or analog-delay effects.)

By rocking the pitch around a little, we can tune to match other instruments and achieve special effects such as the waa-waa of a Hawaiian guitar. To really move the notes around (as on a slide trombone), a portamento or glide capability is necessary.

Probably the best compromise is a stable reference system that can easily be adjusted in frequency, but which will readily return to absolute pitch on command. From a usage standpoint, either no pitch adjustments, one main adjustment, or a circuit that is exceptionally stable is wanted. One other reason for changing pitch is for transposition—playing in a different key.

With these basic needs in mind, we will consider four popular ways of generating pitch electronically: separate voicing; vco (voltage-controlled oscillator) and sample hold; digital divider; and phase locked loop tracker. The first two are covered in this article; the last two next month.

Separate Voicing. In this type of pitch generation, an individual oscillator is used for each and every note and power is applied to only one oscillator at a time (Fig. 1); or a separate keyer is used for each note (Fig. 2). The first method has the advantages of using only dc voltage through the keyboard and the elimination of crosstalk since all the unused notes are off. Its disadvantages are that it is limited to very simple attack-sustain-decay shaping and it requires exceptionally good frequency-vs-supply-voltage performance during the rise and fall times.

Tuning is obviously difficult since one adjustment is needed for each oscillator. Free-running astable relaxation oscillators have traditionally been far too unstable for this sort of thing. So large inductors and Mylar capacitors were normally used in Hartley or Colpitts oscillators, with amplitudes held low enough that the active devices didn’t cause serious problems. Typically, capacitor bridging was used for coarse tuning with a potentiometer for final adjustment.

With today’s latest IC’s, such as the In tersil 8038, it is possible to design a relaxation oscillator with a stability of 50 parts per million—eleven times better than needed—and it produces vibrato easily. This eliminates the need for the inductor and

![Fig. 1. Keying each oscillator individually is simple and eliminates crosstalk problems, but limits envelope characteristics.](image1)

![Fig. 2. Separate keying offers more flexible envelope control but adds complexity.](image2)
greatly eases tuning, but it still leaves a complex and expensive tone generation method. The one place where separate voicing really shines is in faithful duplication of organ pipe ranks, particularly tibias, where a nearly perfect analog of the traditional pipe organ can be obtained with enough care. For any other system, the large number of parts and difficulty of tuning make the newer methods more attractive. Also, this approach is obviously polyphonic, and portamento is not easily introduced.

The VCO and Sample-Hold. The voltage-controlled oscillator (vco) pitch-generation technique is the one most often used today in “Moog-style” synthesizers. It is monophonic by itself, but there are tricks that can be played with the keyboard to get a two-note capability with a second vco and moderate additional complexity.

Figure 3 shows the vco technique. A vco produces a specified pitch in exchange for a fixed input voltage.

If a linear vco is used, the frequency output is linearly related to the input voltage, and the control or input voltage gets rather cramped at the low end where all the low notes have to be close together. This takes odd-half precision or paralleled resistors of different values. It also severely restricts the stability and linearity of the vco.

A much better, but slightly more complicated, method is shown in Fig. 4. Here a logarithmic converter is used in front of the vco. A log converter exactly matches the ear’s response capability, so a linear input can be used to generate the notes properly spread apart. For instance, a one-volt-per-octave system can be used, so that note C3 might require 3 volts, C4 would need 4 volts, and so on. This means a linear increase of \(\frac{1}{12} \) volt for each successive note on the scale.

The log converter then automatically spaces out the notes to get the right frequency separation. One popular type of log converter places a pn junction in the feedback loop of an op amp. The junction has the required logarithmic characteristic. Usually, a pair of matched transistors is used, with the second transistor handling offset and temperature problems.

With the log converter, it is still necessary to have precision resistors on the keyboard, but they are all identical. Usually, the keyboard is driven by a constant-current source, and a selected number of series-connected resistors is shorted. The remaining voltage drop then equals the voltage needed for the note. This voltage is properly changed to a new voltage by the log converter; and the new voltage is converted to a frequency by the vco.

The basic vco method is low in cost, but it is single-voiced and extreme stability is needed for the keyboard controller, the log converter, and the vco. Pitch is easily changed by changing the current through the keyboard or the scale factor of the vco; and any number of notes per octave can be readily handled on a one-at-a-time basis.

One problem common to the vco and a number of the other single-voiced methods is the need for a memory of some sort. Whenever we release the key, we often would like the note to continue on and die out gradually. With the vco and log converter, releasing the key takes away the information (the input voltage) of what note is to be played. To overcome this, a sample-hold or analog storage system is added as shown in Fig. 4.

Pressing any key immediately changes the sample-hold to a new note. After the key is released, the sample-hold remembers what the note was until the decay cycle is complete and a new note is generated. In this way, the decay cycle of the envelope shaping can continue beyond key release.

One simple sample-hold circuit is a reed relay and a capacitor looking into a voltage follower. The relay is closed for sampling and the capacitor then holds this value.

Fig. 3. Basic vco circuit provides output frequency for precise input voltage. Resistors must be precision and incrementally related to the twelfth root of two.

100 POPULAR ELECTRONICS
Other methods use an operational amplifier with a FET switch; or a CMOS analog multiplexer (such as the RCA CD4016) can be used directly.

The basic principle of most of the analog sample-hold circuits is to charge a capacitor rapidly when the key is pressed and then use the capacitor to hold the voltage as an analog memory after release. For the charge to be held without significant droop, a very high-quality capacitor and an absolute minimum of circuit loading are needed.

Glides and portamento effects are simply done by charging the capacitor somewhat more slowly. In this way, the notes glide from one to another in a trombone style rather than changing suddenly.

The major advantages of the vco system are the ease with which one can make glides, change pitch, introduce vibrato and waa-waa, or change the number of notes per octave. This approach can be used very inexpensively with the latest available components, but very careful attention to stability and accuracy is needed.

For instance, with a one-volt-per-octave control voltage, a voltage error, droop, offset, or crosstalk of only 2.5 millivolts will cause an objectionable pitch error. Extremely careful design is needed to get a good vco/log converter/sample-hold system going. On the other hand, this is certainly the simplest way to put together a low-cost system on an experimental basis. The results will be disappointing to a serious musician, however, if careful control and good design are not used.

Note-to-note tuning is inherent in the selection of the precision resistors on the keyboard, while overall instrument tuning is controlled by a single reference voltage or current and the stability of the rest of the circuits.

Using two vco's will provide two-note capability and more vco's can be added as needed. The problem that immediately comes up is, "Which vco goes with which note?" The answer is to use very brief sample-hold intervals and properly assign each key being pressed to the right vco. One possible way of doing this is with a scanning keyboard where each key being pressed is sampled in either digital or analog form; and priority logic then assigns the right vco to a selected key. This adds considerably to the cost and complexity of the system.

At present, the vco/log converter/sample-hold pitch generation approach is the most popular in commercial synthesizer products. This is, however, probably only a temporary stopping place along the way to total digital pitch generation systems. Voltage-controlled pitch generation systems will probably go the way of most other analog systems, but right now vco methods are attractive and offer a lot in the way of simplicity and low-cost performance.

Next month, we will discuss digital dividers and phase locked loop methods of tone generation.
If you're serious about electronics, whether as a ham, hi-fi enthusiast, R/C specialist, gadgeteer, experimenter, or student, you can look to the future with optimism and excitement. Comparatively recent changes in electronics manufacturing and marketing should, one day, permit the average hobbyist to tackle projects which, in the past, would have required a workbench full of components and a healthy wallet.

The situation is interesting not only for its potential effect on the hobbyist, but because it has resulted from an amazing change in the attitudes of a number of major manufacturers.

For years, consumer electronic product designers were considered as more or less the "black sheep" of the electronics engineering fraternity. Engineers working in such exotic fields as military electronics, aerospace, computers, industrial controls, medical electronics, instrument design, and communications felt that the consumer products field was less challenging and, therefore, tended to look down their sophisticated noses at their fellow engineers stuck with the (to them) unrewarding job of designing mass-produced products for the general public. Consumer product designers often were conspicuous by their absence at technical meetings and conventions, and exhibitors at technical shows paid them little attention.

There was, perhaps, a modicum of justification for the prevailing attitude. Faced with short lead times, consumer product designers could not afford the luxury of detailed and exhaustive mathematical analysis of their designs, nor of extensive precision tests of their prototypes. They couldn't afford to use expensive state-of-the-art devices in their circuits. Low production cost, consistent with acceptable performance, was the design criterion. Many circuit designs became standardized, with relatively few changes, except in detail, from year to year.

Consumer product design engineers frequently were paid lower salaries than their counterparts in more exotic fields and there were fewer positions available. A medium-size factory producing several different products by the tens of thousands and employing hundreds of assembly workers might require only two or three design engineers. A firm manufacturing high-price military or communications electronic equipment, on the other hand, might have an engineer for every two or three production workers.

The advent of solid-state technology, the introduction of MSI and LSI devices suitable for consumer applications, and the public acceptance of high technology products, such as pocket calculators, digital electronic watches, and sophisticated TV and radio receivers have all combined to change the traditional attitude towards the consumer product design engineer. In fact, today such specialists are well on their way to becoming the "darlings" of industry.

Manufacturers who once looked upon the consumer field with disdain are now undergoing an agonizing reappraisal of their policies. Semiconductor manufacturers who once scorned the idea of assembling complete equipment are now entering the battle for the consumer market.

Fairchild's Semiconductor Components group (464 Ellis Street, MS 19-115, Moun-

Consumer Products Engineering
rain, View, CA 94042), for example, in a continuing bid for the automotive market, has recently announced a special pressure transducer designed specifically for automotive applications. This new thick-film, solid-state device for cars contains a single crystal diffused silicon strain gauge with a zero-pressure reference chamber, two linear operational amplifiers for temperature compensation, offset adjustment and scale factor control, and a single-chip voltage regulator. When connected to a pressure source, such as the intake manifold of an automobile engine, the module provides an accurate analog voltage output that is linearly proportional to the input. This signal voltage can serve as a control for electronic fuel injection, ignition advance and similar systems.

Looking ahead, we foresee a continued expansion of the high-technology consumer products market. As lucrative military and government contracts dwindle, as the advanced computer market becomes saturated, and as industry becomes fully automated, the really big electronics market will be the consumer.

All of this bodes well for the experimenter, for as sophisticated MSI and LSI devices are developed for the mass consumer market, they will filter gradually into the hands of local distributors, becoming available at reasonable prices to the average hobbyist.

Circuit Potpourri. Although relatively simple, the LED circuits illustrated in Fig.

Fig. 1. Circuit (A), top, is LED line-voltage indicator; (B), bottom, is a pulser.

Fig. 2. Circuit (A), above, is a frequency indicator; (B), right, is function generator.
1 can be used in a variety of experimenter and hobbyist projects. Both were abstracted from Motorola's Application Note AN-570, an 8-page brochure entitled “Introduction to Light Emitting Diodes.”

The line-voltage indicator circuit shown in Fig. 1A can be used wherever a long-life, low-power ac pilot lamp is needed, as in amplifiers, transmitters, appliances, receivers, recorders, or power supplies. In operation, the capacitor's reactance limits the LED current, with the result that real power consumption is virtually nil.

Featuring a unijunction transistor as a relaxation oscillator, the pulser circuit shown in Fig. 1B operates at a repetition rate of approximately 30 Hz with a pulse width of 1.5 μs. An infrared LED is specified, but other types may be substituted for the MLED 60. The circuit's output can be used as a light source for pulsed-beam burglar alarm systems and in similar applications.

Suitable for use in a number of instrument designs, the circuits shown in Fig. 2 are representative of the dozens of schematics described in an integrated circuit applications manual published by the Signetics Corporation (811 East Arques Ave., Sunnyvale, CA 94086).

Designed to monitor a single frequency tone, such as a control or test signal, the simple frequency indicator circuit illustrated in Fig. 2A utilizes a pair of type 567 tone decoder IC's in conjunction with a general-purpose pnp transistor and three low-power incandescent lamps (or LED's). In operation, the tone decoders' RC values (R1C1 and R1'C1' are selected to set one unit 6% above the desired sensing frequency and the other 6% below the desired frequency. If the applied signal is within 13% of the desired frequency, either unit 1 or unit 2 will deliver an output, activating its lamp. If both units are on, the incoming signal is within 1% of the desired frequency.

The basic function generator, Fig. 2B, employs a type SE/NE 566 voltage-controlled oscillator IC to supply square and triangular signals. The triangle signal, in turn, is shaped into a sinusoidal waveform with less than 2% distortion by using the nonlinear transfer characteristics of a 2N3820 p-channel JFET. The JFET's input is provided by a 531 operational amplifier, serving as a buffer, and a complementary driver.

Device/Product News. Five new optical couplers/isolators with Darlington output transistors have been introduced by Motorola Semiconductor Products, Inc. (P.O. Box 20924, Phoenix, AZ 85036). Intended for applications where relatively high speeds (to 30 kHz) and high collector currents are required, the new series, types 4N29 through 4N33, has isolation voltages as high as 2500 volts and collector currents of up to 50 mA (for 10 mA input). The new devices are suitable for use in a variety of experimenter projects, including solid-state relays, alarm systems, remote controls, and equipment interfacing.

Several new devices which should be of particular interest to the serious hobbyist

Fig. 3. Block diagram of RCA's new CD4046A COS/MOS micropower phase-locked loop IC device.
have been announced by RCA's Solid State Division (Route 202, Somerville, NJ 08876), including a COS/MOS micropowered phase locked loop (PLL) IC, an inexpensive uhf oscillator transistor, a pair of medium-power transistors, and a COS/MOS dual complementary pair plus inverter IC.

Designated type CD4046A, RCA's new PLL consists of a low-power, linear voltage-controlled oscillator (vco) and two different phase comparators having a common signal-input amplifier and a common comparator input, as illustrated in Fig. 3. A 5.2-volt zener diode also is provided for supply regulation if necessary. Featuring very low power consumption (70 μW), an operating frequency range up to 1.2 MHz, a wide supply voltage range (5 to 15 volts), and low frequency drift together with high vco linearity, the new device can be used for such applications as FM modulation and demodulation, frequency synthesis and multiplication, frequency discrimination, tone decoding, data synchronization and voltage-to-frequency conversion. It is offered in a 16-lead DIP.

RCA is soon coming out with a COS/MOS dual complementary pair plus inverter IC, which is functionally similar to the CD4007A, but operates on lower voltages (down to 1.1V). Available in a 14-lead DIP, it is recommended for breadboard designs of battery-powered watches, clocks, fuse timers, timing circuits, and oscillators with supplies of from 1.1 to 6 volts. The device is ideal for projects operated on a single-cell battery.

A new monolithic counter/timer capable of generating precise ultra-long time delays with an external RC setting has been introduced by Exar Integrated Systems, Inc. (750 Palomar, Sunnyvale, CA 94086). Identified as the XR-2240, the device comprises an analog time base oscillator with a programmable 8-bit counter on the same chip. It can be used to generate programmable time delays from microseconds up to 5 days with an accuracy of 0.5% and a temperature stability of 40 ppm/°C. Two XR-2240 timers can be cascaded to generate programmable time delays of up to 3 years.

Litronix, Inc. (19000 Homestead Road, Cupertino, CA 95014) is now offering a new, inexpensive 0.6" high LED digit display, the Data-Lit 747. According to Litronix, the new device can be read clearly at distances of up to 20 feet.
SEVERAL readers have asked what features they should look for in buying a particular piece of test equipment. Of course, I can't recommend specific products; but I would suggest that readers watch the Product Test Reports that appear every month in this magazine. They contain lots of information about the newest gear that we have seen and tested.

To get down to specifics on one item, let's consider a few things you should be aware of in choosing an oscilloscope—whether it is your first one or a replacement for an older model.

Low-Cost and Expensive Models. Prices of scopes vary over a wide range. Sometimes there is as much as $100 difference between a low-cost model and an expensive one. However, keep in mind that, in many cases, the more expensive scope can prove to be cheaper in the long run since it may serve you longer, give you more accurate and repeatable results, and be much more versatile than the low-cost instrument. If you spread the price difference out over the years that you own the scope and consider the decent results you will be getting all that time, the difference may turn out to be only a few dollars per year. There are as many people who use the same good scope for 10 years or so as there are those who go through two or three low-cost units in the same period—without having the benefit of good results over the years.

Remember that, like a good speaker (that doesn't add its own "color" to the reproduced audio), a scope must be as "transparent" as possible, not adding its own distortions to the displayed waveform. Since scope "honesty" seems to be a function of its price, get the best you can afford.

I do not mean to denigrate low-cost, ac-coupled audio scopes. With their limited bandwidth, poor rise times, and touchy free-running and hard-to-sync traces, they make excellent "first" scopes, and can be useful in non-critical applications. However, they leave a lot to be desired, especially when dealing with modern, high-speed circuits. If you are a beginner, remember that it will not be long before you advance to this type of circuit. If you are a long-time scope user, you will understand the problems involved with limited-bandwidth, free-running scopes.

AC and DC Coupling. The specifications for the vertical amplifier are of prime importance in determining what will be displayed. There are two major types: ac and dc coupled. (Usually the dc versions have ac-coupling provisions for the occasions when it might be needed.)

An ac-coupled scope responds only to an ac signal and the trace will do strange things when dc is applied (due to coupling capacitor charging). This ac response effectively removes all the dc component and one result is a "tilt" that distorts any waveform having flat tops or bottoms. Obviously, if you do any digital logic work, or square-wave testing, the ac-coupled scope is out.

Incidentally, the amount of tilt depends on the value of the coupling capacitor. Although some scopes use very large values to bring their ac response down to 2 to 5...
Hz, they are still ac coupled. Also, don't get the idea that all you have to do is remove the input capacitor to get a dc scope. It won't work because there are also coupling capacitors within the amplifier and removing them can change all biases drastically enough to prevent scope operation. A dc amplifier is designed as a dc amplifier, not as an ac amplifier without coupling capacitors.

On the other hand, a dc-coupled scope will respond from zero (dc) up, so that it produces square waves properly. Besides this, such a scope will also display an ac waveform superimposed on a dc component and the scope displays the actual signal present. This is nice to know when you are working on dc systems, as you are simultaneously looking at both the ac signal and the dc component, which may be the bias for the following stage. This also means that a dc scope (properly calibrated vertically) can act as a pretty good dc voltmeter with high input impedance. So you get this important function free.

Dc coupling, unfortunately, costs money because more transistors and associated components are used to create the balanced circuits needed to reduce drift (slow movement of the display across the CRT screen).

Of course, dc coupling in both horizontal and vertical amplifiers allows accurate phase-shift measurements. In most cases, the horizontal amplifier does not have the wide bandwidth of the vertical section because it is seldom used for very high frequencies.

Bandwidth and Transient Response. The wider the vertical amplifier bandwidth, the better. So-called "narrow-band" scopes usually just span the audio range, while "broadband" units go out to several MHz. The need to measure steep wave fronts determines just what bandwidth is required. For example, the upper frequency limit should be at least 10 times higher than the fundamental frequency of the basic square-topped waveform if you want true reproduction. (Remember those high-frequency harmonics.) Keep in mind that this applies not only to square waves, but also to such things as sync pulses in TV equipment and tone bursts in audio systems. These signals have high repetition rates and steep leading and trailing edges, and you must be able to see these features as they actually exist before you can do any serious troubleshooting. You must also be sure that any distortion you see does not originate in your test equipment or you can waste many hours of searching for a nonexistent fault. A scope that goes from dc out to a few MHz will suffice for most work.

As you start working on more advanced projects or more sophisticated commercial equipment (especially digital circuits), transient response is more and more important. Transient response determines just how fast the CRT beam (hence vertical amplifier) will deflect when following a steep waveform. Most better scopes include rise time in their specifications.

If you are thinking of adding a front-end signal booster to your scope, remember that the transient response of a number of series-connected circuits is the square root of the sum of the squares of the individual responses. For example, an amplifier having a rise time of 3 µs feeding a scope with a rise time of 4 µs has an overall rise time of 5 µs. So rise time is sacrificed (slowed down) in exchange for gain.

Rise time and bandwidth are closely related. The product of the two should produce a value of between 0.33 and 0.35 for best displayed results. Values greater than 0.35 will produce a "ringing" on steep transients, thus distorting the reproduced waveform. Ideally, the rise time should be
FREE 1974 LAFAYETTE CATALOG 740
Ready Now!

Your Complete Electronics Buying Guide
- Stereo/Hi-Fi Components
- CB Transceivers & Walkie-talkies
- PA Systems
- Tools & Test Equipment
- Police/Fire Monitor Receivers
- Antennas
- Photography Equipment
- Ham Gear
- Books, Parts, and More!

LAFAYETTE
Radio Electronics
P.O. Box 10, Dept. 35024
Syosset, L.I., N.Y. 11791

NAME
ADDRESS
CITY
STATE ZIP

CIRCLE NO. 15 ON READER SERVICE CARD

ABOUT YOUR SUBSCRIPTION

Your subscription to POPULAR ELECTRONICS is maintained on one of the world's most modern, efficient computer systems, and if you're like 99% of our subscribers, you'll never have any reason to complain about your subscription service.

We have found that when complaints do arise, the majority of them occur because people have written their names or addresses differently at different times. For example, if your subscription were listed under "William Jones, Cedar Lane, Middletown, Arizona," and you were to renew it as "Bill Jones, Cedar Lane, Middletown, Arizona," our computer would think that two separate subscriptions were involved, and it would start sending you two copies of POPULAR ELECTRONICS each month. Other examples of combinations of names that would confuse the computer would include: John Henry Smith and Henry Smith; and Mrs. Joseph Jones and Mary Jones. Minor differences in addresses can also lead to difficulties. For example, to the computer, 100 Second St. is not the same as 100 2nd St.

So, please, when you write us about your subscription, be sure to enclose the mailing label from the cover of the magazine—or else copy your name and address exactly as they appear on the mailing label. This will greatly reduce any chance of error, and we will be able to service your request much more quickly.

about % of the rise time expected from the signal to display the waveform with an error of less than 2%.

If you want to determine the bandwidth of your present scope, use the formula

$$ RT = \frac{K}{B} $$

where K is 0.35 and B is the upper -3-dB frequency limit in MHz and RT is the rise time in microseconds. For example, assume you have a 5-MHz scope. The value of RT is then 0.35/5 or 0.07 µs. Multiply this by 5 to get 350 ns, which is the fastest rise time the scope can reproduce with an accuracy of 2%. If 5% is all that is required, then multiply by 3 to get a rise time of 210 ns.

Dual-Channel Scopes. Going toward more advanced projects or servicing, you may find that a single trace is not enough. Then you should consider a dual-channel or dual-trace scope. It may be a luxury, but it can also be worthwhile. Two independent traces, each with its own attenuator, amplifier, and positioning control on a single horizontal sweep can make a big difference between seeing all that is going on between two related signals and just guessing at it.

Most dual-channel scopes also have provisions for "chopped" or "alternate" modes. In the chopped mode, a built-in electronic switch (at about 100 kHz) alternates the single trace between the two independent inputs. This is fine for low-frequency work until you hit the higher sweep speeds, where the switching-frequency square waves become apparent and cause viewing interference. At this point, you can switch to the alternate mode. Here, one of the two inputs is displayed for one complete horizontal sweep; and during the CRT beam retrace time, the other channel is switched in to occupy one full sweep. Because of the high switching speeds (faster horizontal rate) and the persistence of the CRT phosphor, the two signals appear to be displayed simultaneously.

There is one other function usually attached to dual-channel scopes. This is the X-Y position of the dual-channel selector switch. The signal from channel A is displayed on the scope vertical axis, while input B forms the horizontal axis. This is useful for generating Lissajous figures, phase measurements, or any function where one input must be measured with respect to another (instead of against time as represented by the conventional horizontal sweep).
THE NEXT time you tune channel 10, you may hear talk of long-haul rigs, semi's and where to get the best chiliburger in the West. The reason: CB is enjoying a sudden surge in the trucking industry. Not only are the independents snapping up CB, fleet owners aren't far behind. Sales of equipment at truck stops are so good that CB manufacturers are starting to produce special models for the burgeoning market. One item by Antenna Specialists should delight the most grizzled trucker—a whip with its loading coil encased in a beer can.

How do the haulers use CB? They can talk to each other while highballing down the road and ease the boredom of a cross-country trip. (One manufacturer says CB may yet replace the tape deck on the dash.) Also, in an understandable spirit of comradery, truckers warn each other of highway hazards, especially the 4-wheel kind with flashing lights. To win good roadway communications the trend is to install dual antennas, one atop each side-view mirror. The whips are joined by a phasing unit to bulge the signal fore and aft, where other vehicles are most likely to be. Range is about 5 to 10 miles.

Stories about CB’s boon to safety are starting to trickle in. Last winter one trucker rising over the crest of a long, icy hill in Pennsylvania had a remarkable experience. He was unaware that a jackknifed tractor rig blocked the road at the bottom. But he was monitoring channel 10. Warned by a voice on the speaker, he pulled the power, pumped the brakes—and slid to a halt within inches of disaster. He’s convinced it would have ended differently without CB.

Rising to New Heights. After years of grumbling about limited range because of low power and antenna height, CB’ers may soon enjoy official relief. The FCC is seriously considering raising the maximum antenna height to 60 feet. (See last month’s “News Highlights.”) Today’s rule holds the top of an antenna 20 feet above any existing structure. In the new proposal, the antenna may rise to 60 feet above ground level. One important limit, though, is that you’ll probably be prevented from using a “gain” type antenna—one that multiplies power, like a beam.

“What kind of improvement can we expect if the new rule becomes law?”, I asked one antenna authority. He juggled his slide rule and came up with an enlightening figure. Increase height from 20 feet to 60 feet and you about double operating range. That may not sound dramatic, but remember that a widening circle puts your signal into hundreds more square miles. Most of the increase comes from peering over the earth’s curve. CB mainly follows a straight-line path to the horizon and the loftier position enables the signal to “see” farther.

Greater height may also allow the antenna to clear more neighboring obstacles. Our antenna expert cautions that nearby obstructions are not usually critical if the antenna is an omnidirectional model. It’s the beam antennas that are touchy because they’re liable to be dented by adjacent surfaces. The rule-of-thumb: if you’re using

Antennas & Towers
NOW A PROFESSIONAL BURGLAR-FIRE ALARM SYSTEM YOU CAN INSTALL YOURSELF.

ONLY 139.95

Save hundreds of dollars in alarm installation and monthly service charges. The EICO SS-500 "install-it-yourself" burglar-fire alarm system offers you the kind of professional protection you have been looking for, at a price you can afford. The SS-500 has been designed on the EICO "Expandability Concept" that enables you to "add-on" protection to meet your own special needs. Before you purchase any security system, we suggest you read the EICO Security Handbook and see how easy EICO makes it to "Do-it-Yourself."

FREE EICO CATALOG/SPECIAL OFFER!

Security handbook (Reg. 52.95) only 51.50 with this ad. Includes a catalog on EICO Security Systems, Test Instruments, Stereo, Hobby Kits and name of nearest distributor. For catalog only, check reader service card or send 25c for first class mail service.

EICO, 283 Malta Street, Brooklyn, N.Y. 11207

CIRCLE NO. 10 ON READER SERVICE CARD

We Stock What We Catalog

Allied Electronics

ENGINEERING MANUAL & PURCHASING GUIDE

Special Offer! $5.00 VALUE Only $1.00 to readers of Popular Electronics

TECHNICAL INFORMATION: Complete information on all items. Both electrical properties and physical dimensions. ALL ITEMS IN STOCK: Highest percentage of order filling in the country on standard and stock items. A guaranteed shipment program covering thousands of popular and hard-to-get items. NEW FROM COVER TO COVER: The only up to date annual in the electronics field. Allied has a reputation for delivery! Three key locations for immediate delivery. If you see it in our Engineering Manual & Purchasing Guide, it's because we've got it ready for your use! THE MOST WIDELY USED BOOK IN THE COUNTRY!

Enclosed is my $1.00 to cover cost of shipping

Cat. 910-9999-6
Allied Electronics Corporation
2400 W. Washington Blvd., Chicago, Ill. 60612

Name
Address
City State Zip

ALLIED ELECTRONICS
A DIVISION OF TANDY CORPORATION

a multi-element antenna, try to keep it one CB wavelength away from anything else—a distance of about 36 feet.

Tower Power. Let's say the 60-foot antenna rule is granted. Since the range benefits are attractive, there'd probably be a rush on masts, guy wires and longer transmission lines. What's more, the now-forbidden tower should become perfectly legal. And a tower may be the only practical way a low-lying or ranch home may thrust up an antenna all the way. A mast and guy-wire approach may take you 20 feet above the roof, but it's too unwieldy to go much higher. It takes a 40-foot tower planted on

Dual whips that were designed for mounting on the side rear-view mirrors of a truck.

POPULAR ELECTRONICS
the ground to bring a 20-foot antenna to the maximum.

Raising a 40-footer isn’t a major engineering feat. Much of the job is in the preparation if you choose the self-supporting type, with no guy wires splaying across the property to snag kid’s feet. It doesn’t need anchor points in the neighbor’s lot, either. A typical 40-foot aluminum tower needs a hole in the ground 3 feet square and 4 feet deep. After the hole is filled with 1/4 cubic yards of concrete, you level a metal base on its surface. To the base you bolt ten-foot tower sections lying horizontally along the ground. A friend or two can help you “walk” it up, antenna and all.

The cost of this elaborate skyhook is about $200 including the 130-odd pounds of components and several hours of labor. But you could create a mighty CB signal that’ll saturate the countryside and fill in those communication “holes”.

The Plugged-up PL. CB equipment troubles are usually caused by sudden failures; a blown semiconductor, a ruptured mike lead, maybe a shorted capacitor. Silence is immediate. But in talking to one engineer in the field, I learned about a CB weak spot that usually goes unnoticed. It insidiously degrades the signal (on both receive and send) over a long period of time. The culprit is the PL-259; the coaxial connector found on the ends of most CB cables. It may work fine in the shelter of a car or home, but it often proves troublesome just under a base-station antenna. Not only is it difficult to inspect without ladderwork, it wasn’t meant for outdoor service in the first place. An unprotected PL is an invitation to trouble because it’s attacked by moisture, despite your efforts to tighten it.

There are several cures—preferably done when the antenna is on the ground, ready to be installed. Aerosol sprays, available from your local electronic distributor, give the plug a protective plastic coat. Spray after the plug is installed on the socket. A silicone rubber compound in a tube can also form a neat raincoat around a PL’s vulnerable cracks. The final method uses material you might already have—black plastic electrical tape. Wrap overlapping layers around the whole connector, especially near any suspicious joints. These techniques prevent power loss that can creep into a system as little as six months after installation.
NEW FROM BELL & HOWELL SCHOOLS...

THE REVOLUTIONARY 25-INCH DIAGONAL DIGITAL COLOR TV YOU ACTUALLY BUILD YOURSELF!
Build and keep one of today's most advanced color TV's!

It's the perfect spare time project . . . an enjoyable way to learn about the exciting new field of digital electronics!

Digital electronics is a fascinating world to explore! It's a new technology that's changing not only our clocks, wristwatches and pocket calculators, but now, color TV!

By building Bell & Howell's new big-screen digital color TV you not only learn all about this new field, first-hand, but you'll have a remarkable color TV to keep and enjoy for years! And, you'll take special pride in it because you built it yourself!

You get a color TV ahead of its time . . . with revolutionary features like:

Channel numbers that flash on the screen

Wait until the neighbors see that your TV has channel numbers that actually flash on the screen! You can even preset how long you want them to stay on before fading.

Automatic pre-set channel selector

With just the push of a button, your favorite channels come on in the sequence you pre-set. All "dead" channels are skipped over.

Digital clock flashes on the screen

Imagine pushing a button and seeing the correct time on your TV screen! The hours, minutes and seconds appear in clear, easy-to-read digital numbers.

What's more, Bell & Howell's digital color TV has all-electronic tuning, reliable integrated circuitry and a 100% solid-state chassis for a bright, sharp picture with long life and dependability.

"Electro-Lab" is a registered trademark of the Bell & Howell Company.

You don't have to be an electronics expert to build it!

That's one of the beauties of this TV! All you need is a few simple household tools and our step-by-step instructions. You can also take advantage of our toll-free phone-in assistance service throughout the program and in-person "help sessions" held in major cities throughout the year where you can "talk shop" with your instructors and fellow students.

You also build and keep Bell & Howell's exclusive new Electro-Lab electronics training system

Includes building the three professional instruments you'll need to test your TV and other digital equipment. You'll use the digital multimeter (pictured here), solid state "triggered sweep" oscilloscope and design console throughout the course and later, perhaps, in a full or part-time business of your own.

PLUS ... for immediate "hands on" experience right from the start, you'll get a Lab Starter Kit, which will help you understand many of the fundamentals of electronics.

The skills you learn can lead to part-time income or a business of your own

This new digital technology opens up a world of opportunity for people with the right know-how. Let us show you how Bell & Howell Schools' new at-home program can lead to extra income part time. Or, if you're thinking bigger, we even include a complete volume on how to start a TV servicing business of your own!

Mail the postage-free card today for full details, free!

If card has been removed, write:
An Electronics Home Study School
Davy Institute of Technology
Bell & Howell Schools
4141 Belmont, Chicago, Illinois 60641

FEBRUARY 1974
GLADSTONE MAIL-ORDER CATALOG
The latest 64-page, cross-Canada, mail-order sales catalog is now available from Gladstone Electronics. With a special emphasis on high fidelity and kits, the catalog offers the Sinclair line of hi-fi amplifiers and tuner modules, as well as speaker kits by Philips Deforest, Marsland, Radio Speakers of Canada and Goodmans of England. Test equipment, hobbyist/experimenter parts and service components are also included. Address: Gladstone Electronics, 1736 Avenue Road, Toronto, Ontario, Canada, M5M 3Y7.

SIMPSON METER/TEST EQUIPMENT CATALOG
A new, 40-page Catalog 4200 describes the complete line of Simpson test and measurement devices available as standard stock items from electrical/electronic distributors. It lists over 1500 types, styles, sizes and ranges of panel meters, more than 100 meter relays, and a wide variety of general and special-purpose test equipment. New products include reed frequency meters, pyrometers, percent-load meters, load meter relays, digital VOM’s, photo tachometers, illumination level meters, insulation testers and a new general-purpose oscilloscope. The catalog can be obtained free from any Simpson distributor or from: Simpson Electric Co., 853 Dundee Ave., Elgin, IL 60120.

AMPHENOL CONNECTOR CATALOG
An array of connector and socket devices designed for use in hobbyist equipment is described in a full-color pocket-sized catalog published recently by Amphenol. The new 16-page catalog provides details on the company’s microphone, hexagonal and r-f connector families, and on its chassis, dual-in-line, and TO-can socket lines. The catalog also furnishes advice on selecting the proper soldering tool and offers helpful solder usage tips. A complete list of schematic symbols and resistor color codes is included. For a free copy of the “Quality Crafted Component Handbook and Buying Guide” visit an Amphenol general line distributor.

NORTRONICS RECORDER CARE MANUAL
The fifth edition of the company’s popular Recorder Care Manual, which details proper maintenance of tape recording equipment, has been introduced. Designated Form #7310-E, the two-color 32-page illustrated manual includes information on the principles of magnetic recording, magnetic heads, recorder maintenance and a catalog section of the company’s complete line of recorder care products. Also included is a bibliography for readers who want additional information, plus data on the company’s replacement heads for more than 4400 foreign and domestic cassette, 8-track cartridge and reel-to-reel recorders and players. Copies can be obtained without charge from nationwide Nortronics dealers. A complete listing of dealers is available from: Nortronics Co., Inc., Recorder Care Division, 8101 Tenth Ave. North, Minneapolis, MN 55427.

TEN-TEC INSTRUMENT ENCLOSURE BROCHURE
Two new series of instrument enclosures have been added to Ten-Tec’s present product line. Series D enclosures, available in widths between 8” and 14”, are 4¾” high and 10¾” deep. Construction is 0.62” aluminum with molded plastic end panels. Series T, with two-piece aluminum construction, are small enclosures in four basic sizes ranging from 2” x 4” x 4” to 3” x 4” x 6”. Both of the new series are available in two finishes: walnut grain vinyl with

FREE McIntosh CATALOG and FM DIRECTORY

McIntosh Laboratory, Inc.
East Side Station P.O. Box 96
Binghamton, N.Y. 13904
Dept. 16-5.

NAME ____________________________
ADDRESS ____________________________
CITY ______ STATE ______ ZIP ______

SEND TODAY!

Get all the news and latest information on the new McIntosh Solid State equipment in the McIntosh catalog. In addition you will receive an FM station directory that covers all of North America.

MX 113
AM FM/AM FM STEREO TUNER PREAMPLIFIER

CIRCLE NO. 22 ON READER SERVICE CARD

116

AmericanRadioHistory.Com
Egg-shell white panel and black pebble vinyl with gray. A 4-page brochure on the enclosures is available from: Ten-Tec Inc., Highway 411 East, Sevierville, TN 37862.

RCA COS/MOS PRODUCT GUIDE

An up-to-date product guide on a broad line of COS/MOS IC's for low-voltage digital circuit design in industrial, commercial, and military applications is available from RCA. This 8-page designer's aid includes an easy-to-read wall-chart format permitting quick access to logic diagrams, functional diagrams, and applications for 58 COS/MOS types including: gates, flip-flops, latches, multivibrators, shift registers, counters, display counter/decoders/drivers, multiplexers, arithmetic circuits, memories and phase-locked loops. Copies of the guide may be obtained from: RCA Solid State Div., Box 3200, Somerville, NJ 08876.

SANSUI 4-CHANNEL BOOKLETS

Five booklets on 4-channel sound are being made available by Sansui for five specific groups from the novice audiophile to the electronics engineer. For the consumer, "A Non-Technical Guide to QS 4-channel Sound", which will be available to all QS licensees and distributed by dealers, describes the various formats of 4-channel, their advantages, disadvantages and availability of material. Other booklets are slanted toward the audio equipment dealer, the recording engineer, the electronics engineer and the FM broadcaster. For further information contact: Sansui Electronics Corp., 55-11 Queens Blvd., Woodside, NY 11377.

STAR-TRONICS CATALOG FLYER

The latest Catalog from Star-Tronics contains a number of items of interest to the surplus electronics enthusiast. Included are such items as switches, reed switches, keyboards, photo-multiplier tubes, coils, transformers, resistors and relays; also power supplies, semiconductor diodes, meters, knobs, hardware and capacitors. For a copy of the flyer write: Star-Tronics, P.O. Box 17127, Portland, OR 97217.

OLSON ELECTRONICS CATALOG FOR 1974

Hot off the presses is the 1974 catalog (No. 740) from Olson Electronics. Packed into its 244 pages are brand-name listings for hi-fi and communications gear, calculators, and digital wristwatches. Featured specialty items include alarms and security devices, automotive accessories, public address equipment, closed-circuit TV gear, telephones and accessories, etc. Separate listings are given for IC's, vacuum tubes, decimal readouts, resistors, capacitors, transformers, and other components. Tools and test equipment are also listed. Address: Olson Electronics, 260 S. Forge St., Akron, OH 44327.

FREE 32 PAGE EICO CATALOG

For latest catalog on Eico Solid State Test Equipment, Automotive and Hobby Electronics, Barglar-Fire Alarm Systems, Stereo, and name of nearest EICO Distributor, check reader service card or send 25¢ for first class mail service.

EVERYTHING YOU WANTED TO KNOW ABOUT CD IGNITION SYSTEMS BUT DIDN'T KNOW WHOM TO ASK.

Send for FREE Tiger booklet (20 pages) which answers all your questions.

CLIP OUT THIS AD AND SEND TO—

TRI-STAR CORP.

P. O. Box 1727 Dept. E

Grand Junction, Colo. 81501

CIRCLE NO. 31 ON READER SERVICE CARD
New Products

Additional information on new products covered in this section is available from the manufacturers. Either circle the item’s code number on the Reader Service Card inside the back cover or write to the manufacturer at the address given.

HARMAN/KARDON CASSETTE DECK

The HK1000 cassette deck has a S/N of -75 dB (weighted) with Dolby activated, a frequency response of 30 Hz to 16 kHz ±1.5 dB and a 0.15 (weighted) wow and flutter. Functions include a three-position bias switch for standard, low-noise and chromium-dioxide tapes. The deck has a “memory” control that permits the listener to key special selections and play them back without searching for their starting location, a built-in microphone preamp with its own level set controls, and two professional-type VU meters that read peaks to prevent clipping of transients. It has a dc servo-controlled constant speed motor.

Circle No. 70 on Reader Service Card

AIKENWOOD LOGIC PROBE

A new DP-6000 logic probe has been designed to simplify testing of digital systems. The probe not only displays logic states but also functions as a fast-pulse counter. As a high/low discriminator, the probe indicates logic states and identifies faults in IC’s. When switched to the counting mode, it acts as a fast-pulse counter with display. Its self-contained pulse counting circuitry requires no accessories or options to detect multiple clock and trigger pulses, and it can indicate the presence of spurious oscillations. The three-bit counter is reset by a push button. The probe is suitable for any device using 5-volt DTL or TTL integrated circuits.

Circle No. 71 on Reader Service Card

LEE AUTOMOTIVE CIRCUIT TESTER

The new Model E-A automotive circuit tester introduced by Lee Electronic Labs provides a continuity test that may be safely used to check all accessories such as lights, horns and wiring without disconnecting them from the circuit. The tester can be used for locating short circuits. It will not become damaged in the event

NEW SPACE SAVING FORMULA

Save panel space on your next project. Mount the FCB in a ½" hole and you have a fuse holder, pilot light and power switch in one neat package. Connect 3 terminals and you’re in business. Uses 3AG type fast or slow blow fuse. UL listed. Send check or money order for $5.00 each plus 50c shipping and handling to:

ELECTRONIC MEASUREMENTS ■ 405 Essex Road, Neptune, N. J. 07753
of accidental contact with hot battery leads or live wires. The tester can also be used as a handy portable spotlight.

Circle No. 72 on Reader Service Card

AMERICAN TRADING CB TRANSCEIVER

A new Electronic 2000/Contact CB transceiver has just been announced by American Trading Corp. The Model CB-23CH uses a low-noise, double-conversion superhet with a series gate type of noise limiter. Incoming signal strength can be read by means of a combination S-meter/modulation indicator. A local/distance switch is used to allow maximum sensitivity in low noise areas. Power input is rated at 5 watts.

The unit is 6½" wide x 2" high x 7" deep and it weighs about 4 lb. The transceiver is budget-priced.

Circle No. 73 on Reader Service Card

RUSSOUND 3-WAY AUDIO SWITCHER

A new tape recorder selector switch which expands the tape monitor facilities of amplifiers and receivers to accept up to three tape recorders or other line-level audio devices is available from Russound. The TMS-1W connects to the tape monitor inputs and outputs of the amplifier or receiver and allows three recorders to be used simultaneously for recording, copying or editing. It can also be used to interface graphic equalizers, noise reduction units, syn-
Let

p~e6,74swe,o~P

Write to:

address

label whenever

120 POPULAR ELECTRONICS

SBE

AM MOBILE

RADIO

SBE CORTEZ—sweepingly new—brilliantly
designed AM radio

23 channels, no crystals to buy • Full 4 watts
output • Advanced solid state w/FET’s, I-C’s •
Sensitive, double conversion receiver • Panel
metering: Power out/modulation; signal strength
• “Anti-blast” AGC • Dynamic mic. w/plug/coil
cord • Noise limiter with On-Off switch • Big
audio—SW1 • PA/Hailer provision • Operates
12VDC w/positive or negative ground • Compact!

Write for full line
brochure

LINEAR SYSTEMS, INC.
220 Airport Blvd. Watsonville, CA 95076

CIRCLE NO. 21 ON READER SERVICE CARD

theses and other signal processing equipment.
The unit makes it possible to conveniently
switch equipment in and out without the constant
hooking and unhooking of audio cables
usually required.

Circle No. 74 on Reader Service Card

TECH SYSTEMS DIGITAL KEY

The Digital Division of Tech Systems has
introduced the Model 500 digital key. The key
operates when the proper 5-digit code is
punched into the unit; the proper sequence
must be used or the key will not operate. Over
95,000 code combinations are available. The unit
uses the latest IC’s to produce a product that
operates with any voltage from 5 to 30 volts dc.
The entire device fits into a standard 2" x 3"
electrical wall box and is available with either
maintained or momentary relay contacts rated
at 1 amp to provide compatibility with all types
of alarm systems and electric door strikes.

Circle No. 75 on Reader Service Card

LESLIE PLUS 2 SPEAKER SYSTEM

Electro Music/CBS Musical Instruments has
just entered the consumer market with its new
Leslie Plus 2 speaker systems. Consisting of a
pair of 2-way or 3-way speakers with a built-in
pair of 50-watt solid-state power amplifiers, the
system has some unique features that are said
to eliminate standing wave conditions in the
listening room. A mechanical rotor is used with
the low-frequency speaker to disperse the
acoustic energy produced; another mechanical
device which randomly varies the capacitance
in the power amplifier input is used to disperse
the middle and high-frequency energy to
eliminate the standing-wave problem at those
frequencies. The purpose of the overall effect
is to create sound that is rich in ambiance.

Circle No. 76 on Reader Service Card

EDSYN HOT AIR TIP ATTACHMENT

A hot air tip attachment, Part No. H1A120, has
been designed for Edsyn’s Loner soldering in-
strument. With the attachment it is possible to
produce a narrow jet of heated air that can be

Planning to move?

Let us know 6 to 8 weeks in advance so that you
won’t miss a single issue of POPULAR ELECTRONICS
INCLUDING ELECTRONICS WORLD

Attach old label where indicated and print new
address in space provided. Also include your mailing
label whenever you write concerning your subscrip-
tion. It helps us serve you promptly.

Write to: P.O. Box 2774, Boulder, Colo., 80302, giving
the following information.

☐ Change address only.

☐ Extend subscription. ☐ Enter new subscription.

(1) ☐ 5 yrs. $21 (2) ☐ 3 yrs. $15 (3) ☐ 1 year $6
☐ Payment enclosed (1 extra issue per yr. as a BONUS)
☐ Bill me later.

If you have no label handy, print OLD address here.

name please print

city

state zip-code

name please print 0879

address

city state zip

Add’l postage: $1 per year outside U.S., its possessions & Canada
directed at a small area. The hot air can be used to shrink plastic tubing, for fast drying of small wet areas on a PC board, for localized testing of components by fast heating, and for heat shaping of plastics. Routine soldering can also be done at the same time. To use the hot air attachment the technician merely blows into the mouthpiece supplied or connects it into his shop air supply.

Circle No. 77 on Reader Service Card

ASCORE SPEECH PROCESSOR

A new microphone accessory for both mobile and base applications, the Model M-260 speech processor, is being offered by Ascom Electronic Products for amateur, CB, public address and similar communications systems. The unit provides high gain as well as effective speech compression to produce full modulation without distortion. The microphone may be held at arm's length or within ½" of the mouth with no change in mike output. For mobile use, it is necessary only to provide 12 volts dc input to the speech processor and replace the microphone plug with the special plug furnished with the unit. Gain is adjustable to match the transceiver gain, and internal adjustment is set initially to provide a wide range of adjustment for the front panel control.

Circle No. 78 on Reader Service Card

CHRISTIANSEN "MINI-MOUNT" BREADBOARD

A ground plane card with uncommitted gold-plated fingers is the latest feature in the Christiansen Radio, Inc. "Mini-Mount" breadboarding system. The double-sided, solder-coated cards—when used with the Mini-Mount pads—permit rapid assembly of all electronic components. Ready for testing in minutes, the breadboard can be plugged directly into the card cage. Packing density of the components will equal the final circuit. Pressure-sensitive adhesive on the back of the Mini-Mount holds it in place. The mounts are easily moved about or exchanged, yet will remain firmly in place in the finished assembly. Mini-Mounts come in different configurations to fit 14- and 16-pin DIP's, 6-12 pin TO-5 cans, etc.

Circle No. 79 on Reader Service Card

FEBRUARY 1974
FOR SALE

FREE! bargain catalog. Fiber optics, LED's, transistors, diodes, rectifiers. SCR's, triacs, parts. Poly Pak, Box 942, Lynnfield, Mass. 01940.

LOWEST Prices Electronic Parts. Confidential Catalog Free. KNAPP, 3174 8TH Ave. S.W., Largo, Fla. 33540.

ELECTRONIC PARTS, semiconductors, kits. FREE FLYER. Large catalog $1.00 deposit. BIGLOW ELECTRONICS, BUFFTON, Ohio 45817.

RADIO—T.V. Tubes—35 each. Send for free catalog. CORNELL, 4213 University, San Diego, Calif. 92105.

TOUCH TONE ENCODER BOARD

Heavy duty board, made by Automatic Electric Co. Mfrs. of telephone equipment. In original factory cartons. 2X"X3".

STOCK NO.F5151 $9.75 2/18.00

5 GANG PUSH BUTTON SWITCH RELAY CONTROLLED

Unique 5 section push button switch, each button controls a SPDT micro-switch. A 24 volt MAGNACRAFT relay is attached to the assembly in such a manner, that whenever the relay is activated, it locks all the push buttons in the position they were in. Ideal for electronic locks, safe dev ices, and other protective circuits. With data sheet and suggested applications. Mounting centers 3 1/2 STONE NO.F 9814 $2.75 2/5.00

COMPUTER GRADE CAPACITORS

40000 mfd. 10 volts F2026 $1.25 6/7.00
9000 mfd. 50 volts F2350 $2.75 4/10.00
3750 mfd. 75 volts F2116 $1.75 6/9.00
2200 mfd. 100 Volts F2343 $2.50 4/9.00

Include sufficient postage. Excess refunded. Send for new catalog. MINIMUM ORDER $5.00

DELTA ELECTRONICS CO.

BOX 1, LYNN, MASSACHUSETTS 01903

PHONE (617)-388-4705

CIRCLE NO. 8 ON READER SERVICE CARD

CONVERT any television to sensitive, big-screen oscilloscope. Only minor changes required. No electronic experience necessary. Illustrated plans. $2.00. Relco-A33, Box 10565, Houston, Texas 77018.

AMATEUR SCIENTISTS, Electronics Experimenters, Science Fair Students . . . Construction Plans—Complete, including drawings, schematics, parts list with prices and sources . . . Robot Man—Psychedelic shows — Lasers — Emotion/Lie Detector — Touch Tone Dial—Quadrasonic Adapter—Transistorized Ignition—Burglar Alarm—Sound Meter . . . over 60 items. Send 25¢ coin (no stamps) for complete catalog. Technical Writers Group, Box 5994, University Station, Raleigh, N.C. 27607.

METERS—Surplus, new, used, panel or portable. Send for list. Hanchett, Box 5577, Riverside, Calif. 92507.

PYROTECHNICAL chemicals, casings, tools, supplies, fuse, literature. Giant, illustrated catalogue/handbook includes formulas, instructions—50¢, with samples—$1.00. Westech, Box 593, Logan, Utah 84321.

JAPAN HONG KONG DIRECTORY. World products information. $1.00 today. World Trade Inquiries, Hillard, Washington 90507.

SCOPES, meters, test equipment, military and industrial surplus. Write for free "Bargain Bulletins". Lawrence Instruments, P.O. Box 744, Sunbury, Pa. 17801.

TEST EQUIPMENT, Aerospace-Laboratory Grade. Request your needs; will mail appropriate catalogs (we have 24 catalog categories). Only for Engineers, Businesses, Schools and advanced Technicians. Goodheart, Box 1220PE, Beverly Hills, Calif. 90213.

BUILD YOUR OWN SPACE-AGE TV CAMERA

ONLY $199.95! Includes: solid-state camera kit, electronic circuitry, parts, meter, instructions, test equipment, and complete service manual. Comes with full 30-day money-back guarantee, all parts guaranteed for one year. Send $199.95 (payable to Electronics Sales, Inc.) plus $4.50 for surface mail or $10.00 for registered mail. In Canada, add 10¢ postage.

PHONE OR WRITE FOR CATALOG:

ATV Research

1230 BROADWAY

DANBURY, CONN.

FREE Catalog lists resistors, tubes, transistors, rectifiers, condensers, tools, tuners, etc. Hytron Hudson, Dept. PE, 2818 Kennedy Blvd., Union City, N.J. 07087.

POPULAR ELECTRONICS
FEBRUARY 1974

123

INTRODUCTORY OFFER

Led Readout Kit

$4.95 complete

You get:

1-Man-1 Type Led Readout
1-7490 1-7495 1-7447
6 Current Limiting Resistors
2 Spec Sheets

Compare this price!!!

SEMICONDUCTOR GRAB BAGS

We bought over 20 million various semis and IC's direct from the factory. There
are many useless devices, but we can test them all. You can buy untested
and save.

*TL AND LINEAR IC ASSORTMENT

Contains 1-12 IC's (Approx. 200 pcs.) mixed TTL and linear IC's untested. In-
cludes logic gates, flip flops, counter, FM detector, chroma demod IC's, etc.
Marked and unmarked, with some spec sheets.

$3.95

*COMPUTER DIODE GRAB BAG

IN4 and IN4148 type silicon diodes. Many good units. 1-12 IC's (Approx. 1,400
pcs.)

$3.95 untested

*GERMANIUM DIODE ASSORTMENT

1-2 IC's (Approx. 200 pcs.) like IN270 etc. Many usable devices.

$3.95 No test

*TO-5 Linear ICs

709C - 29C
71C - 29C

Star Audio Amps

Two 7-watt amps on one chip. We bought too many to test. Untested but
many usable units. With spec sheets. 3 for $1.00

*Motorola HEP 170 Rectifiers. Rated a full 2/12 amps at 1000V, Miniature
plastic.

4 for $1.00 10 for $2.00

*14 PIN IC SOCKETS

3 for $1.00

Relay Reed. Sub min. size SPST N.O. Coil 500 ohm. Operates at 5 VDC 10 Ma.
Compatible with TTL IC's -

$0.95

Filter Cap Special. Dual section 1000 - 1000 Mfg. at 74 WVC. Small Twist
Lock Type -

$0.95

40 Watt Audio Output pair. Plastic TO-120 Power transistors by GE, PNP and
NPN.

$0.95 pair

SPECIAL OFFER

On every $15.00 order. choose 51.00 worth of free merchandise.

ALTAJ ELECTRONICS

P.O. Box 28592
CALLANS, TEXAS 75926

Terms: Check or Money Order. No COD. Add 10% of order to help cover postagae. Bargain
flyer 105c, free with order.

CIRCLE NO. 1 ON READER SERVICE CARD

DISCOUNT PRICES

B & K, SENCORE, LEADER Test Equipment
RAYTHEON, ICM/MULLARD Tubes

TELEMATIC Test Jigs

Free Catalog

FORDHAM RADIO SUPPLY CO. INC.

558 Morris Ave., Bronx, N.Y. 10451

FREE CATALOG. Parts, circuit boards for POPULAR ELECTRONICS
projects. PAIA Electronics, Box Cl4359, Oklahoma City, OK
73114.

YOU SAVE BIG MONEY! Surplus, Clearouts, Bankruptcy, Inventory,
Deals, Catalog $1 (redeemable). ETCD Electronics, Box 741,

ELECTRONIC Parts wholesale Free Catalog. Dylion Electronics,
P.O. Box 15421, Phoenix, Arizona 85060.

WHOLESALE catalog electronic components—25 cents. National
Electronic Supply, Box 15015, Long Beach, Calif. 90815.

The Soft Touch: ELECTRONIC TOUCH SWITCH by ARM

Completely Solid State - No Moving Parts

100 Watt C.P. - Great For Wall or Lamp Switches

Contains: 5 Transistors, 1 Triac, 3 Diodes

12 Resistors, 4 Capacitors, Face Plate

PC Board, Hardware, Complete Instr.

KIT-7195, Assembly—$9.95 postpaid — Po.

Res. Add 6% Sales Tax — 60 day guarantee

ARM ELECTRONICS, BOX 765, PITTSTON, PA. 18640

BURGLAR-FIRE alarm supplies and information. Free catalog,
Protecto Alarm Sales, Box 357-G, Birch Run, Michigan 48415.

DISCOUNT PRICES

B & K, SENCORE, LEADER Test Equipment
RAYTHEON, ICM/MULLARD Tubes

TELEMATIC Test Jigs

Free Catalog

FORDHAM RADIO SUPPLY CO. INC.

558 Morris Ave., Bronx, N.Y. 10451

FREE CATALOG. Parts, circuit boards for POPULAR ELECTRONICS
projects. PAIA Electronics, Box Cl4359, Oklahoma City, OK
73114.

YOU SAVE BIG MONEY! Surplus, Clearouts, Bankruptcy, Inventory,
Deals, Catalog $1 (redeemable). ETCD Electronics, Box 741,

ELECTRONIC Parts wholesale Free Catalog. Dylion Electronics,
P.O. Box 15421, Phoenix, Arizona 85060.

WHOLESALE catalog electronic components—25 cents. National
Electronic Supply, Box 15015, Long Beach, Calif. 90815.

The Soft Touch: ELECTRONIC TOUCH SWITCH by ARM

Completely Solid State - No Moving Parts

100 Watt C.P. - Great For Wall or Lamp Switches

Contains: 5 Transistors, 1 Triac, 3 Diodes

12 Resistors, 4 Capacitors, Face Plate

PC Board, Hardware, Complete Instr.

KIT-7195, Assembly—$9.95 postpaid — Po.

Res. Add 6% Sales Tax — 60 day guarantee

ARM ELECTRONICS, BOX 765, PITTSTON, PA. 18640

BURGLAR-FIRE alarm supplies and information. Free catalog,
Protecto Alarm Sales, Box 357-G, Birch Run, Michigan 48415.

DISCOUNT PRICES

B & K, SENCORE, LEADER Test Equipment
RAYTHEON, ICM/MULLARD Tubes

TELEMATIC Test Jigs

Free Catalog

FORDHAM RADIO SUPPLY CO. INC.

558 Morris Ave., Bronx, N.Y. 10451

FREE CATALOG. Parts, circuit boards for POPULAR ELECTRONICS
projects. PAIA Electronics, Box Cl4359, Oklahoma City, OK
73114.

YOU SAVE BIG MONEY! Surplus, Clearouts, Bankruptcy, Inventory,
Deals, Catalog $1 (redeemable). ETCD Electronics, Box 741,

ELECTRONIC Parts wholesale Free Catalog. Dylion Electronics,
P.O. Box 15421, Phoenix, Arizona 85060.

WHOLESALE catalog electronic components—25 cents. National
Electronic Supply, Box 15015, Long Beach, Calif. 90815.

The Soft Touch: ELECTRONIC TOUCH SWITCH by ARM

Completely Solid State - No Moving Parts

100 Watt C.P. - Great For Wall or Lamp Switches

Contains: 5 Transistors, 1 Triac, 3 Diodes

12 Resistors, 4 Capacitors, Face Plate

PC Board, Hardware, Complete Instr.

KIT-7195, Assembly—$9.95 postpaid — Po.

Res. Add 6% Sales Tax — 60 day guarantee

ARM ELECTRONICS, BOX 765, PITTSTON, PA. 18640

BURGLAR-FIRE alarm supplies and information. Free catalog,
Protecto Alarm Sales, Box 357-G, Birch Run, Michigan 48415.
ELECTRONIC ORGAN KITS, KEYBOARDS and many components. Independent and divider tone generators. All diode keying. I.C. circuitry. Build any type or size organ desired. Supplement your Artisan Organ. 25¢ for catalog. DEVTRONIX ORGAN PRODUCTS, Dept. C, 5872 Amapola Drive, San Jose, Calif. 95129.

DIGITAL and analog computer modules. LED numeric display kits. FREE LITERATURE. Scientific Measurements, 2945 Central, Wilmette, Illinois 60091.

BIOFEEDBACK. Professional instruments: Electroencephalograph, Galvanic Skin Response. B81, 8102-E, Bainbridge, WA. 98110.

FREE! Diodes and catalog. BDJ Electronics, 11 Revere, Tappan, New York 10983.

ANTIQUE and old tubes. Send self-addressed stamped envelope for free list and prices. Arnie Electronics, Livingston, New Jersey 07039.

LEDs, sample pack of 10, includes green and yellow, $3.25, postpaid U.S.A. East Coast Electronics, 50 Scott St., Hamburg, New York 14075.

NUMERICAL readout projects: Plans Catalogue. GBS, Box 100E, Green Bank, West Virginia 24944.

FREE CATALOG. IC's, Puts, Transducers, Thermocouples, Led's, Transistors, Circuit Boards, parts. Chaney's, Box 15431, Lakewood, Colo. 80215.

BURGLAR Alarm System—Do It Yourself—Installed in Minutes. Free literature. Emerad Corporation, P.O. Box 1341, Kokomo, Indiana 46901.

FREE CATALOG—Tremendous electronic bargains. Compukits, Box 4192L, Mountain View, California 94040.

KIT ORGANS, Pipe and Electronic. New and used consoles. Accessories for all bands: Orchestra Bells, "Band Box", Portable Pipes. Send for B. Eby's book on organ building, $3.50 post-paid. NEWPORT ORGANS, 846 Production Place, Newport Beach, CA 92660.

BRAIN WAVE Monitor/ANALYZER. Send $5.00 for professional quality plans including printed circuit layout. AQUATRONICS, P.O. Box 443, Cocoa Beach, Florida 32931.

PROJECT TV image life size! Construction plans: $2.00. Macrovision, Box 14197, San Francisco, CA 94114.

MAGNEPLANARTM Loudspeakers are extremely realistic sounding and they are only 1½" thick. Contact us for information on all models. Magneplan, Inc., Dept. E, 1124-1st Street, White Bear Lake, Mn. 55110.

BUSBEGO??? New locator finds them fast. Write, Clifton, 11500-L N.W. 7th Avenue, Miami, Florida 33168.

KEYBOARDS. Brand New. Full ASCII Decoder in Base, $34.50. Intersil 8038 VCO Function Generator, $5.75. Voltage Regulators 7805, 7812, 7815, 7912 or 7915, $2.50 all ppc. Latest flyer for RC stamp. Tri-Tek, Inc., P. O. Box 14206, Phoenix, Arizona 85063.

CALCULATOR OWNERS: Use your + × ÷ calculator to compute square roots, cube roots, sin(x), cos(x), tan(x), arcsin(x), arccos(x), arctan(x), logarithms, exponentials, and more! Quickly, Exactly, Easily! Send today for the IMPROVED AND EXPANDED EDITION of the first and best calculator manual—now in use throughout the world . . . only $2.00. Unconditional money-back guarantee—and FAST service! Mallmann Optics and Electronics, Dept. 12A, 836 South 113, West Allis, Wisconsin 53214.

PLANS AND KITS

FREE KIT CATALOG

Why does every major College, University, Technical School, Research & Development Center buy from us? Because we have the highest quality and lowest prices. Free Catalog. SWTPC, Box H32040, San Antonio, Tex. 78284.

TESLA COIL—40th SPARKS! Plans! $7.50. Information 75¢. Huntington Electronics, Box 2009-P, Huntington, Conn. 06484.

ACUPUNCTURE Electronic zone detector. Schematic, $2.00. ADZ, Box 2422, San Rafael, Calif. 94901.

REPAIRS AND SERVICES

CONSTRUCTS electronic equipment to customer specifications. Write: EECO, P. O. Box 64622, Baton Rouge, La. 70806.

SPEAKER Repairs Altec, EV, EMI, etc. ALTEC Diaphragm in stock. AST, 281 Church St., New York, N.Y. 10013.

HIGH FIDELITY

DIAMOND NEEDLES and Stereo Cartridges at Discount prices for Shure, Pickering, Stanton, Empire, Grado and ADC. Send for free catalog. All merchandise brand new and factory sealed. LYLE CARTRIDGES, Dept. P, Box 69, Kensington Station, Brooklyn, New York 11218.

SAVE 50%. Build your own speaker systems featuring Norelco, Eminence and CTS. Famous brands from world's largest speaker factories at lowest wholesale prices. Write for 176 page catalog for speakers and electronic accessories. McGee Radio Company, 1901 McGee Street, Kansas City, Missouri 64108.
LITRONIX-OPCOA-MAN "7-SEGMENT" LED Readouts

ALL LED READOUTS — TYPE

<table>
<thead>
<tr>
<th>Character</th>
<th>Color</th>
<th>Size</th>
<th>Display Decimal</th>
<th>Mils</th>
<th>Driver</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAN-1</td>
<td>Red</td>
<td>.27</td>
<td>12 SN7447</td>
<td>2.75</td>
<td>$6.00</td>
<td></td>
</tr>
<tr>
<td>MAN-3</td>
<td>Red</td>
<td>.17</td>
<td>12 SN7447</td>
<td>2.75</td>
<td>$6.00</td>
<td></td>
</tr>
<tr>
<td>MAN-3</td>
<td>Green</td>
<td>.17</td>
<td>12 SN7447</td>
<td>2.75</td>
<td>$6.00</td>
<td></td>
</tr>
<tr>
<td>MAN-4</td>
<td>Red</td>
<td>.27</td>
<td>12 SN7447</td>
<td>2.75</td>
<td>$6.00</td>
<td></td>
</tr>
<tr>
<td>MAN-4</td>
<td>Green</td>
<td>.17</td>
<td>12 SN7447</td>
<td>2.75</td>
<td>$6.00</td>
<td></td>
</tr>
</tbody>
</table>

*Red epoxy case, outers clear. ** Litronix and Opto's pin-for-pin equivalents and electrical specs as MAN-1 or MAN-4. *** LED "dot" missing.

NATIONAL EQUALS ON "DIGITAL CLOCK ON A CHIP"

Mfrs : Description

<table>
<thead>
<tr>
<th>Type</th>
<th>Color</th>
<th>Size</th>
<th>Display Decimal</th>
<th>Mils</th>
<th>Driver</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAN-1</td>
<td>Red</td>
<td>.27</td>
<td>12 SN7447</td>
<td>2.75</td>
<td>$6.00</td>
<td></td>
</tr>
<tr>
<td>MAN-3</td>
<td>Red</td>
<td>.17</td>
<td>12 SN7447</td>
<td>2.75</td>
<td>$6.00</td>
<td></td>
</tr>
<tr>
<td>MAN-3</td>
<td>Green</td>
<td>.17</td>
<td>12 SN7447</td>
<td>2.75</td>
<td>$6.00</td>
<td></td>
</tr>
<tr>
<td>MAN-4</td>
<td>Red</td>
<td>.27</td>
<td>12 SN7447</td>
<td>2.75</td>
<td>$6.00</td>
<td></td>
</tr>
<tr>
<td>MAN-4</td>
<td>Green</td>
<td>.17</td>
<td>12 SN7447</td>
<td>2.75</td>
<td>$6.00</td>
<td></td>
</tr>
</tbody>
</table>

*Red epoxy case, outers clear. ** Litronix and Opto's pin-for-pin equivalents and electrical specs as MAN-1 or MAN-4. *** LED "dot" missing.

LARGEST SELECTION TTL ICs

BRAND NEW LOWEST PRICES

<table>
<thead>
<tr>
<th>Type</th>
<th>Brand</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN7400</td>
<td>$0.30</td>
<td>$0.30</td>
</tr>
<tr>
<td>SN7402</td>
<td>$0.30</td>
<td>$0.30</td>
</tr>
<tr>
<td>SN7403</td>
<td>$0.30</td>
<td>$0.30</td>
</tr>
<tr>
<td>SN7404</td>
<td>$0.30</td>
<td>$0.30</td>
</tr>
<tr>
<td>SN7405</td>
<td>$0.30</td>
<td>$0.30</td>
</tr>
<tr>
<td>SN7406</td>
<td>$0.30</td>
<td>$0.30</td>
</tr>
<tr>
<td>SN7407</td>
<td>$0.30</td>
<td>$0.30</td>
</tr>
<tr>
<td>SN7408</td>
<td>$0.30</td>
<td>$0.30</td>
</tr>
<tr>
<td>SN7410</td>
<td>$0.30</td>
<td>$0.30</td>
</tr>
<tr>
<td>SN7411</td>
<td>$0.30</td>
<td>$0.30</td>
</tr>
<tr>
<td>SN7412</td>
<td>$0.30</td>
<td>$0.30</td>
</tr>
<tr>
<td>SN7413</td>
<td>$0.30</td>
<td>$0.30</td>
</tr>
<tr>
<td>SN7432</td>
<td>$0.30</td>
<td>$0.30</td>
</tr>
<tr>
<td>SN7434</td>
<td>$0.30</td>
<td>$0.30</td>
</tr>
</tbody>
</table>

* Factory Marked

POLY PAKS

- Any 25 and receive a 10% discount.

- Integrated Circuit Sockets

- Heatsinks

- Musi-Con

- NAB

- Stomp box

- Micro Meters

- Hi-Fi 1" Square

- Mini Meters

- Service Card

- Military

- Fuses

- Radios

- Tape transport

- WAVES

- Stereo

- Accessories

- Speakers

- DC eyes

- AC eyes

- Soldering iron

- SPOT ON

- 20% OFF

- Brand New & Guaranteed

- Open to the Public

- Mailing List

- Samples

- Catalog

- P.O. Box 942 E

Lynnfield, Mass. 01940

FEBRUARY 1974

CIRCLE NO. 26 ON READER SERVICE CARD

125
WANTED
QUICKSILVER, Platinum, Silver, Gold, Ores Analyzed, Free Circular, Mercury Terminal, Norwood, Mass. 02062.

ELECTRICAL SUPPLIES AND EQUIPMENT

TUBES
RADIO & T.V. Tubes—36c each. Send for free Catalog, Cornell, 4213 University, San Diego, Calif. 92105.
RECEIVING & INDUSTRIAL TUBES, TRANSISTORS. All Brands—Biggest Discounts. Technicians. Experimenters—Request FREE Giant Catalog and SAVE! ZALYTRON, 469 Jericho Turnpike, Mineola, N.Y. 11501.

TAPE AND RECORDERS
RENT 4-Track open reel tapes—all major labels—3,000 different—free brochure. Stereo-Parti, 55 St. James Drive, Santa Rosa, Ca. 95401.

USED SCOTCH MAGNETIC TAPE
1800 FOOT, 7 INCH REEL, 1 MIL POLYESTER, $1.50. BULK, ERASED (NO BOX). 90c. 10% MINIMUM ORDER 10 REELS. "LIKE NEW" EMPTY 10'/ INCH REEL: FIBERGLASS, 3/8 CENTER HOLE. 50c. ALUMINUM, 3/4 CENTER HOLE, $1.00. BOTH CHEAPER IN LARGER QUANTITIES—ALL PLUS POSTAGE BY WEIGHT & ZONE. (IN- CREDIBLE BARGAINS ON NEW, FAMOUS BRAND TAPES & CASSETTES)
SAXITONE TAPE SALES
1776 Columbia Rd., N.W. Washington, D.C. 20009
1930-1962 Radio Programs. Reels, $1.00 hour! Cassette, $2.00 hour! Send $1.00 for mammoth catalog. AM Treasures, Box 192F, Babylon N.Y. 11702.
SCOTCH TAPES. Discounts! Catalog 10c. Tower, Box 33088, District Heights, Md. 20028.
16,000 OLD RADIO SHOWS on Tape. Latest supplement 50c, catalog $2.00. Hart Enterprises, 1329 George Washington, Richland, WA 99352.

PERSONALS
MAKE FRIENDS WORLDWIDE through international correspondence. Illustrated brochure free. Hermes, Berlin 11, Germany.

MOVIE FILMS
8MM-SUPER 8-16MM MOVIES! Biggest Selection! Lowest Prices! Free Catalog! Cinema Eight, Box PE, Chester, Connecticut 06412.

INSTRUCTION
DEGREE IN ELECTRONICS through correspondence. Free catalog. Grantham, 2000 Stoner Avenue, Los Angeles, California 90025.
INTENSIVE 5 week course for Broadcast Engineers. F.C.C. First Class license. Radio Engineering Incorporated, 52 S. Palm Ave., Sarasota, Florida 33577.
SHORTCUTS To Success! Highly Effective, Profitable Short Courses, (15 Choices), Study At Home. Diploma Awarded, Our 27th Year. Free Literature. C.I.E.E., Box 10634, Jackson, Miss. 39209.

F.C.C. EXAM MANUAL

LOGIC NEWSLETTER ©
SCORE high on F.C.C. Exams . . . Over 300 questions and answers. Covers 3rd, 2nd, 1st and even Radar, Third and Second Test, $14.50; First Class Test, $15.00. All tests, $26.50. R.E.I., Inc, Box 806, Sarasota, Fla. 33577.
LICENSE-AID formula chart. Formulas you should be able to work with before sitting for Second and First class FCC license exams. $7.00 each. License-Aid, Box 1497, Moultrie, Georgia 31786.
FCC First Phone! Pass! 3 Tests Guaranteed, $5.00. Engineer, Drawer 570, Mars, Pa. 16046.

DIGITAL: THEORY, DESIGN, CONSTRUCTION
SPORTS ACTION FILMS

ORDER A COMPLETE SET OF NFL SUPER BOWL Color Films, Standard 8 or Super 8. Start with 1957 & 1968 (Lombardi); then the glory years from 1969 thru 1973—each a separate 200' reel; $15.95 each P.O.D. or $7.95 each B&W. BASEBALL SPECIAL includes '72 World Series and '72 All Star Game (just released) at $14.95 each P.O.D Color, $7.95 each B&W, Standard 8 or Super 8. filmed Collectors' 24-page catalog, 25c, SPORTLITE FILMS, Elect. Dept., Box 500, Speedway, Indiana 46224.

BUSINESS OPPORTUNITIES

I MADE $40,000.00 Year by Mailorder! Helped others make money! Start with $15.00—free Proof. Torrey, Box 318-N, Ypsilanti, Michigan 48197.

FREE CATALOGS. Repair air conditioning, refrigeration, Tools, supplies, full instructions. Doolin, 2016 Canton, Dallas, Texas 75201.

PIANO TUNING LEARNED QUICKLY AT HOME! Tremendous field! Musical knowledge unnecessary. CI approved. Information free. Empire School, Box 327, Miami 33145.

$2000.00 MONTHLY selling information by mail. Ropchan, Box 161A, Saginaw, Oregon 97472.

CIRCLE NO. 2 ON READER SERVICE CARD

BOOKS

FREE catalog aviation/electric/space books. Aero Publishers, 329P Aviation Road, Fallbrook, California 92028.

UNUSUAL BOOKS! 40 for $3.00! Catalog Free! International, Box 7798PE, Atlanta, Georgia 30309.

RUBBER STAMPS

RUBBER address stamps. Free catalog. 45 type styles. Jackson's, Box 443G, Franklin Park, Ill 60131.

HYPNOTISM

SLEEP learning. Hypnotic method. 92% effective, Details free. ASR Foundation, Box 75666E, Fort Lauderdale, Florida 33304.

FREE Hypnosis, Self-Hypnosis, Sleep Learning Catalog! Drawer H400, Ruidoso, New Mexico 88345.

PRINTING

FREE literature, business cards, letterheads, labels, rubber stamps. Geer's, 111 North Drive, Ottawa, Ohio 45875.

HIGHLY PROFITABLE ONE-MAN ELECTRONIC FACTORY

Investment unnecessary, knowledge not required, sales handled by professionals. Postcard brings facts about this unusual opportunity. Write today! Barta,DB, Box 248, Walnut Creek, CA 94597.

START SMALL, highly profitable electronic production in your basement. Investment, knowledge unnecessary. Postcard brings facts. Barta-GF, Box 248, Walnut Creek, California 94597.

YOUR OWN ELECTRONICS BUSINESS. $20.12/year. Detailed Program. $2.00. Limited Time! Page-P1, Box 5146, Clearwater, Fla. 33518.

DO SIMPLE ADDRESSING—Mailing, Receive $12.95 orders. Keep $8.00 profit, Details Free. Quality, Box 9-20, East Rockaway, N.Y. 11518.

IMPORT—MAILORDER opportunity free at our risk and expense for one full year. Earn $15.00 or pay nothing. Details. Northeast Imports, World Trade Division, Box 111PE(2), Fremont, N.H. 03044.

TREASURE FINDERS

FREE—Valuable Treasure Finder catalogs sent by return mail, Find Coins, Rings, Gold, Silver, Metals, Relics. Write today. JETCO, Dept. CPE, Box 26669, El Paso, Texas 79926.

FREE FACT-/CATLOG. World's largest line of metal detectors. Models as low as $49.50 and up. Two year Guarantee. Three factory locations, U.S. and Canada, plus over 1,000 dealers and 35 Service Centers from coast to coast. No finer instruments made at any price. Budget terms. Write: White's Electronics, Inc., Rm# 351, 101 Pleasant Valley Road, Sweet Home, Oregon 97386.

POPULAR ELECTRONICS
FEBRUARY 1974
ADVERTISERS INDEX

READER No. ADVERTISER PAGE NO.
1 Allied Electronics ... 110
2 Allied ... 123
3 Bell & Howell Schools ... 112, 113, 114, 115
4 Bose ... 11
5 Burstein-Applebee ... 19
6 CREE Capitol Radio Engineering Institute ... 58, 59, 60, 61
7 Center for Technical Development Inc., The ... 105
8 Cleveland Institute of Electronics ... 76, 77, 78, 79
9 Cobra, Products of Dynanac Corporation ... 17
10 Delta Electronics Co ... 122
11 Delta Products, Inc ... 13
12 EH Instruments Co ... 119
13 Electromed Scientific Co ... 130
14 Electronics & Control Engineers' Book Club ... 7
15 Gramham School of Engineering ... 8
16 Haul Company ... 40, 41, 42
17 Illinois Audubon ... 121
CLASSIFIED ADVERTISING

READER No. ADVERTISER PAGE NO.
33 Johnson Co., E.F ... 15
19 Lafayette Radio Electronic ... 103
20 LaSalle Extension University ... 22, 23, 24, 25
21 Linear Systems, Inc ... 118
22 McIntosh Laboratory, Inc ... 116
15 MILS ... 18
23 Midwest Hill Wholesalers & Mail Order Division ... 111
24 National Radio Institute ... 94, 95, 96, 97
National Technical Schools ... 110, 111, 117
32 Olson Electronics ... 121
25 Pace Communications ... 88
26 Pickering & Co., Inc ... 13
27 Poly Paks ... 125
28 Radio Shack and Allied Radio Stores ... 27
29 Solid State Sales ... 127
30 Southwest Technical Products Corporation ... 8
31 Synvia Technical School ... 131, 132
32 Technics by Panasonic ... FOURTH COVER
31 Tri-Star Corp ... 117
U.S. Navy ... 20, 21

EMPLOYMENT INFORMATION

EMPLOYMENT OPPORTUNITIES

MISCELLANEOUS

WINEMAKERS: Free illustrated catalog yeasts, equipment, Semplex, Box 12276P, Minneapolis, Minn. 55412.

WIN AT DICE. Free details on scientific method I use while winning 87% of the time. Write Sanders, Dept. B-17, Box 92102, Houston, Texas 77018.

RETAIL DISPLAY PLAN

All magazine retailers in the United States and Canada interested in earning an allowance for the display and sale of a minimum of five publications of the Ziff-Davis Publishing Company, to be paid quarterly on the basis of ten per cent of the cover price of each sold copy, assuming that all terms and conditions of the contract are satisfied, are entitled to do so and are invited to write for full details and copies of the contract to Mr. J. Robert Gallicano, Single Copy Sales Director, Ziff-Davis Publishing Company, One Park Avenue, New York, New York 10016.

FEBRUARY 1974

FAMILY FUN! OUTDOOR ADVENTURE! Find valuable coins and treasure with world famous metal detectors. Free illustrated booklet. Detectron, Dept. PE, Box 243, San Gabriel, Calif. 91778.

TREASURE FINDER locates buried gold, silver, coins, treasures. 5 powerful models. $19.95 up. Instant financing available. Free catalog. Relco, Dept. A-33, Box 10839, Houston, Texas 77018.

MUSICAL INSTRUMENTS

30% DISCOUNT name brand musical instruments. Free Catalog. Freepost Music, 455N, Route 110, Mcville, N.Y. 11746.

30% 4-DISCOUNT. Name Brand Musical Instruments. Free Catalog, Continental Music, Dept. H, P.O. Box 3001, Garden City, New York 11530.

STAMPS

WOW! 110 All Different Germany 10c. Commemoratives, Airmails, High Values, Big Catalog, bargain lists. Also, fine stamps from our approval service, which you may return without purchases and cancel service at any time. Jamestown Stamp, Dept. A24EG, Jamestown, N.Y. 14701.

FREE! Big Bargain Catalog—New Edition listing thousands of bargains including U.S. & B.N.A. stamps, packets, albums, accessories and supplies. Also, fine stamps from our approval service which you may return without purchases and cancel service at any time. Jamestown Stamp, Dept. E24EG, Jamestown, N.Y. 14701.

REAL ESTATE

FREE ... 264-PAGE ... SPRING CATALOG! Describes and pictures hundreds of farms, ranches, town and country homes, businesses coast to coast! Specify type property and location preferred. UNITED FARM AGENCY, 612-EP, West 47th St., Kansas City, Mo. 64112.
LIVE IN THE WORLD OF TOMORROW...TODAY!

A BETTER LIFE STARTS HERE

SUPER GLUE! DROP HOLDS TON
Clear PVA-based adhesive. No mixing. Sets in seconds. Ideal for bonding, Floats boats, holds paper, plasters, rubber, plastic, cloth, wood, etc. Use as assembly, repair, O.E.M. Parts: Mend clothing, bond silicone chips to ceramics. Metal to glass to plastic. The only glue that holds most chemicals (centres cracks others can't). Non-water soluble; non-toxic.

Stock No. 70,570AV 3/2 lbs. $11.50 Ppd.
Stock No. 80,218AV 1/2 lbs. $ 6.50 Ppd.

130 EXPERIMENTS IN OPTICS and photography! Optix® Experiments Kit is a complete optical & photography lab for 130 exciting experiments. Let's you recreate the periscope, telescope, microscope, kaleidoscope! Build a 35-mm reflex camera with interchangeable lens system! Make, develop photographic film! Enjoy the fun and fascination of having your own optics lab. Fully illustrate 112-page manual, $15 x's 11! CLEARLY explains usage of this stimulating kit's 114 precision engineered components. $22.95 Ppd.

MAIL COUPON FOR GIANT FREE CATALOG!

180 PAGES • MORE THAN 4,500 UNUSUAL BARGAINS!

Get our new '74 Catalog. Packed with huge selection of telescopes, microscopes, binoculars, magnets, magnifiers, prisms, photo components, ecology and Unique Lighting items, parts, kits, accessories—many hard-to-get surplus items, 100's of charts, Illustration. For hobbyists, experimenters, schools, industry.

EDMUND SCIENTIFIC CO.
300 Edscorp Building, Barrington, N.J. 08007

Please rush Free Giant Catalog "AV"

Name
Address
City State Zip

COMPLETE & MAIL WITH CHECK OR M.O.

EDMUND SCIENTIFIC CO.

300 Edscorp Building, Barrington, N.J. 08007

How Many Stock No. Description Price Each Total

PLEASE SEND ☐ GIANT FREE CATALOG "AV" MERCHANDISE Total

ADD HANDLING CHARGE: $1.00 ON ORDERS UNDER $5.00; 50C ON ORDERS OVER $5.00.

TOTAL $ I enclose □ check □ money order for $ NAME

ADDRESS

30 DAY MONEY-BACK GUARANTEE

YOU MUST BE SATISFIED ON RETURN OF PURCHASE CHASE IN 30 DAYS FOR FULL REFUND

CIRCLE NO. 13 ON READER SERVICE CARD

150 Printed in U.S.A.

POPULAR ELECTRONICS

AmericanRadioHistory.Com
Why a Sylvania home training program may be your best investment for a rewarding career in electronics.

In the Master TV/Radio Servicing Program, you build and keep the all solid-state black and white TV set, the color TV set, the oscilloscope and multimeter shown.

LEADER IN ELECTRONICS TRAINING

Over the years, Sylvania Resident Schools have trained thousands of students for key positions in electronics. Now, through Sylvania Home Training, you can receive the same high-quality career training at home.

AUTOTEXT TEACHES YOU ELECTRONICS

UTOTEXT, offered exclusively by Sylvania, is the proven step-by-step method of home training that can help you learn electronics quickly and easily.

CASSETTE SYSTEM

This innovative learning-by-hearing approach is a special option that is almost like having an instructor in your own home. On cassette tapes, an instructor guides you through your AUTOTEXT lessons, explaining the material as you read it.

SPECIALIZED ADVANCED TRAINING

With our advanced courses, you can start on a higher level and skip work you know.

PERSONAL SUPERVISION THROUGHOUT

All during your program, your exams are reviewed and your questions are answered by Sylvania instructors who become personally involved in your efforts and help you over any "rough spots" that may develop.

6. HANDS-ON TRAINING

Many programs come with valuable kits to give practical application to your studies. In our Master TV Radio Servicing Program, for example, you actually build and keep an all solid-state black and white TV set, a color TV set, an oscilloscope, and a multimeter.

7. FCC LICENSE TRAINING — MONEY BACK AGREEMENT

Take Sylvania's Communications Career Program — or enter with advanced standing and prepare immediately for your 1st, 2nd, or 3rd class FCC Radio Telephone License examinations. Our money-back agreement assures you of your money back if you take, and fail to pass, the FCC examination taken within 6 months after completing the course.

8. CONVENIENT PAYMENT PLANS

You get a selection of tuition plans. And, there are never any interest charges.

Please rush me Free Illustrated Career CATALOG and more information about Sylvania's CASSETTE SYSTEM. I understand that I am under no obligation and that no salesman will call. I am interested in:

HOME STUDY

- Television & Radio Servicing (including Color TV and CATV lessons)
- Communications (including CATV lessons)
- FCC License Preparation

CLASSROOM TRAINING

- Fundamental Electronics
- Electronics Technology
- Solid State Electronics
- Digital Technology
- Industrial Electronics
- Instrumentation
- Drafting

Send for your FREE CATALOG right now!

Sylvania Technical School
The Sylvania Cassette System
An exciting concept - new in electronics
home training

It's almost like having an instructor in your own home.

This innovative learning-by-hearing approach is designed to get you started more quickly and easily towards an electronics career. The CASSETTE SYSTEM adds an extra dimension to AUTOTEXT, the step-by-step planned instruction which simplifies the mechanics of learning. As you play the cassette tapes, you'll have an instructor guiding you through your AUTOTEXT lessons. Explaining the material as you read it. And now the CASSETTE SYSTEM is available as an optional extra to all students enrolling in basic, fundamental, and career programs.

"HANDS-ON" TRAINING
In addition, you get the all-important "Hands-On" training. You perform experiments and build a number of pieces of electronics test equipment that are yours to keep. In the Master TV/Radio Servicing program you build and keep an all solid-state black & white TV set and a color TV set, oscilloscope and multimeter.

CHOOSE FROM EXCITING CAREERS
Whether your career goal is radio/TV servicing, digital technology, communications or industrial electronics, Sylvania Home Study gets you started towards that career with the training you might have thought was too expensive, too drawn-out, or too hard to learn.

NO SALESMAN WILL CALL
If you want an exciting, rewarding career in electronics, discover which Sylvania course or program is for you. Send the attached card today.

SYLVANIA TECHNICAL SCHOOL

BUSINESS REPLY MAIL
No Postage Stamp Necessary if Mailed in U.S.A.

Postage will be paid by —
Sylvania Technical School
Home Study Division
909 Third Avenue
New York, N.Y. 10022

FOR FREE ILLUSTRATED CAREER CATALOG
and more information about Sylvania's CASSETTE SYSTEM
send postage paid reply card TODAY!
Here's an easy and convenient way for you to get additional information about products advertised or mentioned editorially (if it has a reader service number) in this issue. Just follow the directions below... and the material will be sent to you promptly and free of charge.

1 On the attached postage-free card, print or type your name and address on the lines indicated.

2 Circle the number(s) that corresponds to the key number(s) at the bottom or next to the advertisement or editorial mention that is of interest to you. (Key numbers for advertised products also appear in the Advertisers' Index.)

3 Simply cut out the card and mail. No postage required.

FREE INFORMATION

A COMPLETE SET OF MATCHED STORAGE CASES

Here's the ideal solution to the problem of keeping all your records and tapes stored neatly, safely, conveniently and attractively. A complete set of matched storage cases, designed by the editors of STEREO REVIEW magazine, for your records and all your tapes: cassette, cartridge and 7" reel. Now you can keep them side-by-side on your bookshelf or cabinet, easy to identify and readily available.

These cases are sturdily constructed and covered in a handsome leatherette. The outer case is elegantly embossed in gold and comes in your choice of three popular decorator colors—black, brown and green—so that they lend themselves readily to the decor of any room.

STEREO REVIEW large capacity storage cases are just what you’ve been looking for—they’re the ideal solution to keeping your records and tapes neatly stored for easy use.

(A) 60-unit cassette case. 13½" high x 12½" deep x 5½" wide. $15.95 each; 3 for $45.00.
(B) 30-unit cassette case. 13½" high x 6½" deep x 5½" wide. $11.95 each; 3 for $33.00.
(C) 12-unit 8-track cartridge case. 13½" high x 6½" deep x 4½" wide. $7.95 each; 3 for $22.00.

Units A, B and C have titled compartments to prevent spillage and include pressure sensitive labels for titling.

(D) 6-unit 7" reel case. 8" high x 7½" deep x 5" wide. Holds reels in original boxes. $5.25 each; 3 for $15.00.
(E) 20-unit 12" record case. 13½" high x 12½" deep x 3½" wide. Holds records in original jackets. $5.95 each; 3 for $17.00.

HERE'S HOW TO ORDER

Send your order to Ziff-Davis Publishing Co., Dept. 23, One Park Ave., N.Y., N.Y. 10016. Be sure you identify the type of case ordered and indicate your color choice for the back of the case—black, green or brown (sides in black only). Print your name and address clearly and enclose the amount indicated above for the units being ordered PLUS an additional 50¢ per unit for postage and handling. Outside U.S.A. add $1.00 per unit ordered.

Mail your order, name, address and credit card number. You will be billed for the amount indicated above.
The Technics SA-5400X.
4-amplifier 4-channel
and 4-amplifier 2-channel.

Technics doesn't force you to choose between 2-channel or 4-channel. We give you both in one unit. The SA-5400X.

It's a very impressive 4-channel receiver. Each of its 4 amplifiers delivers 11 watts RMS, 8 Ω, each channel driven. And its full discrete capabilities include jacks for a CD-4 demodulator. Plus jacks for both 4-channel and 2-channel tape sources. And two tape monitor circuits.

There are also two different matrix decoding circuits that can handle all the popular matrix methods.

The SA-5400X is a great 2-channel receiver, too. Because it has Balanced Transformerless (BTL) circuitry. Our special way of strapping the front and rear amplifiers in tandem for 4-amplifier 2-channel. Which more than doubles the power per channel in stereo. Producing 25 watts RMS per channel (each channel driven) at 8 Ω.

The amplifiers all have direct-coupled circuitry which vastly improves their low-frequency performance and power bandwidth. And a special phono-equalizer circuit so you can use virtually any kind of phono cartridge efficiently.

There's also a very potent FM section that boasts sensitivity of 2.0 µv (IHF). With a 4-pole MOS FET and IF amplifiers whose ceramic filters yield 65 dB selectivity.

We knew you'd have a hard time trying to make up your mind about which kind of receiver to buy. So we put both 2-channel and 4-channel in one easy-to-afford unit.

The SA-5400X. The concept is simple. The execution is precise. The performance is outstanding. The name is Technics.

200 PARK AVE., NEW YORK, N.Y. 10017
FOR YOUR NEAREST AUTHORIZED
TECHNICS DEALER, CALL TOLL FREE
800 447-4700. IN ILLINOIS, 800 322-4400.

Technics
by Panasonic