BUILD TOP-QUALITY STEREO PREAMP

POPULAR ELECTRONICS MAY 1969

- HOW TO SORT BARGAIN TRANSISTORS
- "SUSTAIN" FOR ELECTRIC GUITARS
- CAMPER'S 12-TO-117-VOLT POWER INVERTER
- BUILD SLOT CAR WIN DETECTOR
- BIGGER-THAN-LIFE SPEAKER SYSTEM
- AM TUNER USES VARICAPS
- BUILD SCR CHECKER

STEREO PREAMP
(see page 27)
Discover the ease and excitement of learning Electronics with programmed equipment

When you train at home with NRI, you train with your hands as well as your head. You learn the WHY of Electronics, Communications, TV-Radio the NRI pioneering "3-Dimensional" way. NRI training is the result of more than half a century of simplifying, organizing, dramatizing subject matter, and providing personal services unique for a home study school. You get the kind of technical training that gives you priceless confidence as you gain experience equal to many, many months of training on the job.

NRI—The 53 Year Leader in Electronics Training

APPROVED UNDER NEW GI BILL If you served since January 31, 1955, or are in service, check GI line in postage-free card.
Earn $5 or more an hour spare or full time in TV-RADIO SERVICING

Color Television has arrived. Sales are soaring, along with the continuing popularity of other home entertainment equipment like portable radios, tape recorders, hi-fi sets, phonographs and auto radios. TV-Radio servicing is one of your best routes to spare-time earnings, a good paying job or a business of your own. NRI not only trains you quickly and expertly, but also shows you how to get started in Servicing soon after you enroll, earning as you learn. NRI trains you in today's methods of installing and repairing all Electronic equipment for the home—including booming Color TV. You even build, experiment with and keep to enjoy your own solid-state radio and your choice of black-and-white or Color TV receiver. Like thousands of others, you can be earning $5 or more an hour extra in spare time starting soon.

There's money and success awaiting you in BROADCASTING—COMMUNICATIONS

The experience you gain from intensely practical NRI training in Complete Communications equals as much as two years of training on the job. With NRI, you can train for a choice of careers ranging from mobile, marine and aviation radio to TV broadcasting and space communications. You learn how to install, maintain and operate today's remarkable transmitting and receiving equipment by actually doing it. You build and experiment with test equipment, like a VTVM you keep. You build and operate amplifier circuits, transmission line and antenna systems, even build and use a phone-cw transmitter suitable for transmission on the 80-meter amateur band. Whichever of five NRI Communications courses you choose, you prepare for your FCC License exams, and you must pass your FCC exams or NRI refunds your tuition in full.

Move ahead in America's fast growing industry as ELECTRONICS TECHNICIAN

Electronics touches everyone's lives. This vast field of opportunity is open to you with NRI training. Industrial/Military Electronics training—like all NRI courses—prepares you quickly, thoroughly the practical "hands on" way. You build with, and learn to understand the functions of, today's miracle solid-state components like printed circuits, diodes and transistors. You build and experiment with Electronic circuitry used in automation, data processing, ultrasonics, telemetry. Whatever your interest in Electronics, NRI training can fill your needs. Prove to yourself what nearly a million NRI students could tell you . . . that you get more for your money from NRI. Check the postage-free card and mail it today for your FREE NRI Color Catalog. No salesman will call. NATIONAL RADIO INSTITUTE, Electronics Division, Washington, D.C. 20016.

YOU GET MORE FOR YOUR MONEY FROM NRI — Build, test, explore, discover. Everything you see here is included in one NRI course—including Color TV. Other courses equally complete. And you'll be surprised at the low tuition costs. Text for text, kit for kit, dollar for dollar—you get more for your money from NRI.
SPECIAL CONSTRUCTION PROJECT
BUILD THE FET PREAMP
It's real hi-fi and stereo

FEATURE ARTICLES
A HOME FOR OHMS
Handy for component storage
THE K TABLE
Solves coil winding problems
BUILD SLOT-CAR WIN DETECTOR
End Finish-Line Quarrels
THE LATE, LATE, LATE Q-50
BUILD THE SCR TESTER
Weed out faulty units
LOW-COST AC AMMETER
A "BIGGER-THAN-LIFE" SPEAKER SYSTEM
Beef up your bass
TRANSISTOR SORTER
FOR YOUR GUITAR—A COMPRESSION SUSTAINER
Big sound like the professionals
BUILD A POWER INVERTER
117 volts a.c. from your car battery
ENGLISH-LANGUAGE BROADCASTS TO NORTH AMERICA
VARICAPS
Voltage-variable capacitors explained
A VARICAP FRONT END AM TUNER
THE PRODUCT GALLERY
Knight-Kit Model KG-643 Multimeter
EICO Model 3440 "Sound n' Color" Organ
SOLID STATE
AMATEUR RADIO
Short-skip watching
SHORT-WAVE LISTENING
New stations

DEPARTMENTS
LETTERS FROM OUR READERS
NEW LITERATURE
ELECTRONICS LIBRARY
READER SERVICE PAGES
NEW PRODUCTS
These 4 successful men all got started the same way: they sent in a coupon like this

Why don’t you?

Accredited Member, National Home Study Council
If you plan to spend less than $79.50 for a record changer, you’re reading the wrong magazine.

Most of the people who read this magazine know that you can’t get high fidelity sound from a cheap record changer. Or the peace of mind that comes with knowing that your records are being handled with precision and care.

If you spend less than $79.50 (the price of the Dual 1212) you won’t get a changer that will track a high-compliance cartridge at one gram, flawlessly. Or compensate precisely for skating.

Cheaply made record changers tend to be plagued by audible rumble, wow and flutter. (Rumble, wow and flutter of the Dual 1212 easily surpass NAB standards for broadcast turntables.)

And no cheap changer includes a feathertouch cueing system. Or a variable-speed pitch control that lets you “tune” any record over a half-tone range.

So if you want a high fidelity record changer, and you’re willing to spend a few extra dollars to get one, you’ve just read the right ad.

United Audio Products, Inc.
535 Madison Ave.,
New York, N.Y. 10022.
Experimenters
Hobbyists
Servicemen

Whatever your direction, let RCA show you the way

...with RCA's New Linear IC Variety Pack—KD2117
Here's a great way to extend your integrated circuit know-how—Kit KD2117 provides a basic introduction to practical applications of these intriguing devices and an inexpensive way to build useful projects. The pack includes 2 KD2114 transistor arrays; 1 KD2115 audio amplifier; 2 KD2116 transistor arrays. Also, instructions for 12 useful circuits, schematics, parts lists, etc.

...with New Crystal and Zener Diodes
In addition to its quality line of SK replacement transistors, rectifiers, and integrated circuits, RCA now offers 4 zener diodes and 5 crystal diodes!

...with RCA Hobby Circuits News, HCN-3900
This is an exciting new publication loaded with interest for hobbyists and experimenters...published periodically.

...with KD Experimenter's Kits, Manuals, and Publications
Your RCA Distributor can be your one-source headquarters for Experimenter's Kits, Hobby and Experimenter Manuals, Hobby Circuits News, and RCA's Solid-State Replacement Guide, SPG-202G, a cross reference for almost 13,000 solid-state devices that RCA's SK's replace. Available from your RCA Distributor. RCA Electronic Components, Harrison, N.J. 07029
LET THERE BE PEACE

I was certainly surprised to find an article such as C.H. Allen's "The Hatfield Hams and the CB McCosy," but my surprise rapidly turned to disgust finding it in such an outstanding magazine as POPULAR ELECTRONICS (February 1969). The article seems to lack purpose and, in my opinion, was poorly presented. Why anyone wants to picture hams and legitimate CB'ers as hillbillies is beyond my comprehension. Also, how any CB'er could possibly be able to handle emergency traffic when 22 out of the 23 CB channels are being used illegally at any given instant is another enigma that defies an answer.

The time to clean up the 11-meter mess should be now, with some articles advising CB'ers on how to operate in a legitimate manner before the FCC orders all CB activity on the band to come to a halt.

J. Hanley, WN8ZJP
Rochester, Mich.

I became interested in radio communications a few years ago when I received a set of walkie-talkies as a Christmas present. You can imagine how happy I was being able to speak via radio to a friend a few yards away and being able to pick up skip from Colorado. This whetted my appetite, and, with the help of two friends, I took the test and passed my Novice license a year ago at age thirteen. So far I have made many friends over the air; having met only two of them "in the flesh." I have worked many hams who also hold CB licenses, and I respect them all. And in many ways I envy them the two licenses (I plan to get my CB license when I turn 18). This short autobiography is provided to show my active interest in ham and CB radio—and set the stage for throwing in my two-cents worth.

The article "The Hatfield Hams and the CB McCosy" brought out many of the things that are wrong with some hams and CB'ers. Sure, I feel that the FCC should crack down on illegal operations on the CB band—but just because these conditions exist is no reason to blame all CB'ers for them. But if the CB'er can help the police and the community-at-large, by all means let him do so. After all, I'm sure that no ham is so proud that he wouldn't let the CB'er step in after a hurricane has put him off the air.

James H. Pelikan, WN5KKD
Cutler, Calif.

The Hatfields and McCosy were used in the article only to bring home a point—that a
Pump up your mobile installation performance with this

Professional "SPRING" TUNE-UP!

Here's the professional touch to dress up and power up your mobile rig! Famous high-performance, low-noise A/S base loaded design... 17-7PH stainless steel whip (bend it in a full circle, snaps back to perfect vertical)... fine-tuning adjustment built-in. Functional stainless steel shock spring adds a handsome, professional touch. Famous "Quick-Grip"® trunk mount—no holes to drill, cable completely hidden, permanent installation yet removable!

MODEL M-176 "MAGGIE MOBILE"
CB antenna. Suggested resale: $21.95

the antenna specialists co.
Div. of Allen Electric and Equipment Co.
12435 Euclid Ave., Cleveland, Ohio 44106

May, 1969
very real and often serious feud exists between hams and CB'ers. So why not use the best-known example, familiar to all of us, as our analogy?

The CB'er—the one who abides by the rules—has more at stake than the ham does when it comes to cleaning up the 11-meter mess. The mess is right on his front doorstep, giving him a bad name he really doesn't deserve.

One gratifying thing: as your editor sifted through the mailbag, it soon became evident that some of the staunchest supporters of the legitimate CB'ers were hams (as Jim's letter demonstrates). And this isn't the first time that's happened—which just goes to show that inroads are being made to resolve the feud.

CHARACTER-TO-CODE CONVERTER

In reference to Ed Petersen's letter ("Letters From Our Readers," July 1968), I thought I would mention that I built a character-to-code converter that your readers might be interested in reproducing. I built my prototype three years ago for a science fair, but it still works very well. The translator sends code at a clear, crisp 16 words/min. The keyboard is a simple wood-and-switch assembly employing plastic keys. And the "memory" circuit consists of a matrix of 96 inexpensive diodes (I used silicon top hats in my prototype, but signal diodes selling for as low as $1.59 per hundred will work just as well).

For a small fee of fifty cents to cover copying and postage, I will gladly supply any interested reader with complete plans, schematic diagram and parts list. The cost of all the electronic components together should average between $50 and $70, depending on where you buy—but you'll find that your investment is well worth it if you work CW a lot.

STEVEN K. ROBERTS, WN4KSW/WPE4JCC
9908 Old Six Mile Lane
Jeffersontown, Ky. 40299

MANUFACTURER REPLY

While reading through the "Letters From Our Readers" column in the December, 1968, issue, I noticed that one of your readers was asking about an electric shock eliminator. I thought I would pass along the information that the Rucker Electronics "Safety Sentry Fault Circuit Interrupter" is just what Mr. Campbell is looking for. This device has been approved for sale by Underwriters' Laboratories, the Canadian Standards Association, and other leading testing labs.

WILLIAM S. GERRIE
Rucker Electronics
747 Bancroft Way
Berkeley, Calif. 94710

Any reader interested in obtaining information concerning the Rucker Safety Sentry, contact Rucker Electronics direct.
Talk about electronic supermarkets

OVER 800 POPULAR, NEW CALECTRO PRODUCTS
For every household use!

- TEST EQUIPMENT - TOOLS
- EXPERIMENTERS & LAB SUPPLIES
- ELECTRONIC ACCESSORIES
- WIRE - PINCH & TAPE ACCESSORIES
- SPEAKERS & AUDIO ACCESSORIES
- RESISTORS & CONTROLS - CAPACITORS
- METERS - DOGS - RELAYS - TRANSFORMERS
- SWITCHES - LAMPS - WIRE - CABLES
- ANTENNA HARDWARE
- PLUGS - JACKS - BATTERY HOLDERS

Now at each location, hundreds and hundreds of items for everyone...hobbyist, enthusiast, amateur, homeowner, executive, do-it-yourselfer.
See the SELF-SERVICE GC CALECTRO display at your CALECTRO ELECTRONIC SUPERMARKET TODAY!

700 Locations all over the country and Canada
See your electronic parts distributor and SAVE!

Look in the Yellow Pages under "Electronics" and call your Calectro source.

Automatic Timer
On-Off Switch
Convenient remote control unit for any appliance, timer control sets for any interval up to 60 minutes. Beautiful green and white case, extra-long 12 foot cord. installed in seconds. plugs into any wall outlet. Ask for Catalog No. N4-005

Suction cup pickup attaches to outside of phone, brings in conversations loud and clear. Built-in volume control governs loudness. Battery in kit.

Dynamic Microphone with switch
For high fidelity recording of words and music. Built-in on-off switch. Folding desk top stand. Dual plug for most tape recorder inputs. Ask for Catalog No. Q4-186

Impedance: 700 ohms. Sensitivity: -45dB

Telephone Amplifier for Group Listening
Perfect for family calls at home, conference calls at the office, or "hands-free" operation when taking orders or instructions by phone. Suction cup pickup attaches to outside of phone, brings in conversations loud and clear. Built-in volume control governs loudness. Battery in kit.

Ask for Catalog No. H4-103

Impedance: 100 ohm. Sensitivity: -20dB
THE TRUTH about the complete line of Electro-Voice HIGH FIDELITY loudspeakers and electronics.

Over 50 different high fidelity products, including tuners, amplifiers, receivers, speaker systems, and component loudspeakers. Write today.

ELECTRO-VOICE, INC., Dept. 594P
630 Cecil Street, Buchanan, Michigan 49107
Send my FREE product folder on the complete line of Electro-Voice high fidelity components.

Name ________________________________
Address ________________________________
City ______ State ______ Zip ______
CIRCLE NO. 15 ON READER SERVICE PAGE

THE TRUTH about the complete line of Electro-Voice MICROPHONES

Capsule listings of over 85 microphones for recording, communications, sound reinforcement and radio-TV broadcasting. Send today for this helpful product folder.

ELECTRO-VOICE, INC., Dept. 592P
630 Cecil Street, Buchanan, Michigan 49107
Send my free product folder on the complete line of Electro-Voice microphones.

Name ________________________________
Address ________________________________
City ______ State ______ Zip ______
CIRCLE NO. 16 ON READER SERVICE PAGE

TAKE ONE new literature

To obtain a copy of any of the catalogs or leaflets described below, simply fill in and mail the coupon on page 15.

Now available from Sencore, Inc., is a 12-page catalog listing the company's complete line of advanced electronic test equipment for service and industry. The catalog (No. 458) describes five completely new test instruments including a sweep and marker generator, combination oscilloscope/vectorscope, color bar generator, and two transistor/FET in- or out-of-circuit testers. The other instruments described are field effect meters, tube testers, CRT testers, field-strength meter, and a series of special-purpose instruments. Complete performance data and price listings are provided.

Circle No. 75 on Reader Service Page 15

"The Pacer," a new magazine dedicated to the continuing education of the techno-engineering community and to the distribution of knowledge is now available from International Correspondence Schools. Each issue of the new ICS magazine will be devoted to a specific subject in a three-phase format—fundamentals, current applications, and future potentials—by three qualified authorities. "The Pacer" is a bi-monthly publication. It is available for $15/yr at subscription rates, $3 in single copies.

Circle No. 76 on Reader Service Page 15

Three groups of fixed and mobile antennas for monitor radio recently introduced by High-Gain Electronics Corp. are described in a new four-page brochure designated Catalog "D." Listed in the catalog are three mobile and one base antenna for the high band between 130 and 174 MHz, two fixed and one mobile antenna for the low band between 25 and 50 MHz, and three antenna models designed to cover both bands. Models in each group differ mainly in the method of mounting employed. The entire line includes Models MR-1 through MR-9, all of which are factory pre-tuned for optimum performance across all bands specified.

Circle No. 77 on Reader Service Page 15
Is Johnson’s new 23-channel Messenger 123 at $169.95 . . . Legal?

You be the Judge.

Is it unfair competition for Johnson to produce a 23-channel solid state unit with the incomparable Johnson “talk-power” for less money than you had to pay yesterday for a 12-channel unit with crystals?

Is there a law against operating a rig whose specifications are close to theoretical perfection—such as 0.4 microvolt sensitivity . . . and sharply filtered 7 kHz selectivity?

Is it a crime to build in a special speech compression circuit for unsurpassed voice intelligence? Or the famous Johnson high-efficiency noise limiter that virtually wipes out ignition and other extraneous radiated interference?

We think you’ll agree: For sheer value, Messenger 123 is the exception to the rule.

E. F. JOHNSON COMPANY
WASECA, MINNESOTA 56093

May, 1969

CIRCLE NO. 20 ON READER SERVICE PAGE
Get the last word every time.

Get Turner's "+2" series:
+2 base station mike (List Price: $55.00) and M+2/U mobile mike (List Price: $39.50). Up to 50 times the modulation of other mikes. No more fade outs. No more static. (Even at great distances). Both "+2" series microphones use a two-transistor pre-amp and work with all transistor and tube sets. See them at your CB dealer or distributor soon. And get the last word.

TURNER
919-17th Street N.E.,
Cedar Rapids, Iowa 52402
In Canada: Tri-Tel Associates, Ltd.

CIRCLE NO. 55 ON READER SERVICE CARD

POPULAR TUBE & TRANSISTOR SUBSTITUTE GUIDE
If you've ever been confronted with the problem of finding a substitute tube or transistor that is out of production or is available only in a foreign country, you know how welcome a good substitution guide is. Sandwiched between its covers, this book lists some 99% of the tubes and transistors that ever need replacement—along with their substitutes, both foreign and domestic. The book consists of eight sections, equally divided between tubes and transistors. The sections are headed, in numerical order: Popular Receiving Tubes; Industrial and Commercial Tubes; American Substitutes for Foreign Tubes; Tube Circuit and Base Diagrams; Popular Transistors; American Substitutes for Foreign Transistors; General Purpose Transistor Substitutes; and Transistor Base Diagrams and Manufacturer Abbreviations.

Published by Tab Books, Blue Ridge Summit, Pa. 17214, 160 pages. $4.95 leatherette, $2.95 paper cover.

LABORATORY COURSE IN PULSE CIRCUITRY
by Joseph B. Berkley, Sr.

This book especially written to supplement a one-semester sophomore-level course in pulse circuit theory. After a brief presentation of theory, the student is led through a series of experiments requiring observation, comparison, deduction, and conclusions. Then, the results of the experiments are reviewed through a series of questions and by the student's completion of reports which test his perceptiveness in relating experimental results to theory and objectives. In effect, the format of the manual forces the student to make decisions and practice logical deduction—both of which are necessary in actual troubleshooting and laboratory work.

TRANSISTOR AND DIODE LABORATORY COURSE
by Harry E. Stockman

Structured on engineering concepts and facts, this book develops the course material progressively with preparatory explanations, general discussions, and review questions accompanying each experiment. In the first (Continued on page 98)
free information service:
Here’s an easy and convenient way for you to get additional information about products advertised or mentioned editorially (if it has a "Reader Service Number") in this issue. Just follow the directions below...and the material will be sent to you promptly and free of charge.

1. Print or type your name and address on the lines indicated. Circle the number(s) on the coupon below that corresponds to the key number(s) at the bottom of the advertisement or editorial mention(s) that interest you. (Key numbers for advertised products also appear in the Advertisers’ Index.)

2. Cut out the coupon and mail it to the address indicated below.

3. This address is for our product “Free Information Service” only. Editorial inquiries should be directed to POPULAR ELECTRONICS, One Park Avenue, New York 10016; circulation inquiries to Portland Place, Boulder, Colorado 80302.

POPOULAR ELECTRONICS P.O. BOX 8391 PHILADELPHIA, PA. 19101

NAME (Print clearly)__

ADDRESS___

CITY__STATE________ZIP CODE________________________

May, 1969
New Kits For Home And Hobby...

Heathkit GR-58 Solid-State AM/FM Clock Radio

An easy way to get up... choose news & weather on AM or the bright sound of FM music. AFC for easy FM tuning. Use "Auto" position for only radio, or the "Alarm" setting for alarm & radio. The clock-controlled accessory AC socket will even perk coffee for you in the morning. The "Snooze" button turns off the alarm for 10 minutes periods until you move the function switch... lets you wake up gradually. Easy circuit board construction. For an easy way to get up, order yours now. 8 lbs.

Heathkit GR-48 Solid-State AM/FM Table Radio

An ideal table radio for any room in the house. All solid-state circuitry delivers the same excellent sound as the GR-58 above, but without the clock and alarm functions. An Automatic Frequency Control position on the mode switch locks that FM station in and makes tuning easy. Designer-styled avocado green cabinet with matching grille cloth. Fast, simple circuit board construction. 5 lbs.

Heathkit IG-28 Solid-State Color-Bar—Dot Generator

The new Heathkit IG-28 is the most advanced instrument of its type available... at any price. Computer-type integrated circuitry eliminates divider chain adjustments and instability—no flutter, jitter or bounce... ever. Delivers 12 patterns—standard 9x9 dots, cross-hatch, vertical & horizontal lines, color bars & shading bars... plus the exclusive Heath "3 x 3" display of all patterns... plus a clear raster so necessary for purity adjustments. Also features variable front panel tuning for channels 2 through 6, front panel sync output, two front panel convenience outlets, variable positive or negative video output, built-in gun shorting circuits and grid jacks and vectorscope display capability. 8 lbs.

Heathkit SB-500 2-Meter Transverter

The new SB-500 allows owners of Heathkit models SB-101, SB-110A, HW-100 and the SB-301/401 combination to operate on 2-meters without having to buy a complete new rig. It gives complete, reliable SSB & CW facilities from 144 to 148 MHz and features a husky 50 watts output, fast, easy tuning and a 0.2 µV receiver sensitivity. A built-in meter monitors final plate current or relative power. Internal relays eliminate cable changing when switching from LB gear to the SB-500. Step up to “2” now, with the SB-500. 19 lbs.

Heathkit GD-28 8-Track Cartridge Tape Player

The new GD-28 is an ideal addition to any home music system. Plays pre-recorded tapes through any system with a Tape Recorder, Tuner or Auxiliary input. Just push in the 8-track stereo cartridge... it starts and changes tracks automatically... even shows which track is playing. Changes tracks instantly with the front panel switch too. Goes together quickly on one circuit board, and the playing mechanism is preassembled & adjusted. Attractive wood-grained polyurethane cabinet included. Order yours now. 10 lbs.
NEW Deluxe “681” Color TV With Automatic Fine Tuning
The new Heathkit “681” is the most advanced color TV on the market. Compare the GR-681 against any other set available, at any price...there isn’t one that has all of these advanced features...Factory assembled Automatic Fine Tuning on all 83 channels that locks in the best color picture in the industry...Push-button Power Channel selection on VHF...Built-in cable-type remote control for turning on and off and changing VHF channels... Provision for adding Wireless Remote Control at any time...Bridge-type low voltage power supply for superior regulation...plus the self-servicing features standard on all Heathkit color TV's...plus all the features of the GR-295 below. Compare the “681” against the rest...and be convinced. 135 lbs.
GRA-295-4, Mediterranean cabinet shown...............................$119.50*
Other cabinets from $62.95*

Deluxe “295” Color TV...Model GR-295
The GR-295 is packed with performance...a top quality American brand 295 sq. in. color tube with improved phosphors and a boosted B+ supply deliver brighter, livelier color...Automatic degaussing...Exclusive Heath Magna-Shield...Automatic Color Control & AGC for pure, flutter-free pictures under all conditions...preassembled 3-stage IF...Deluxe VHF tuner with "memory" fine tuning...hi-fi sound output...300 & 75 ohm VHF antenna inputs...plus exclusive Heath self-servicing features that can save you hundreds of dollars.
131 lbs.
GRA-295-1, Walnut cabinet shown..$62.95*
Other cabinets from $59.95*

Deluxe “227” Color TV...Model GR-227
Has same high performance & built-in self-servicing features as “295”, except for 227 sq. in. screen. And, like the “295”, it can be installed three ways — in one of the beautiful Heath factory assembled cabinets, your own custom cabinet or in a wall, 114 lbs.
GRA-227-1, Walnut cabinet shown..$59.95*
Other cabinets from $36.95*

Deluxe “180” Color TV...Model GR-180
The “180” features the same remarkable performance and built-in self-servicing facilities as the “295” except for 180 sq. in. viewing area. Feature for feature, the “180” is easily your best buy in color TV. 102 lbs.
GRS-180-5, table model cabinet and cart................................$39.95*
Other cabinets from $24.95*

Now, Wireless Remote Control For Heathkit Color TV's
New Wireless Remote Control turns your Heathkit color TV on & off, changes VHF channels, adjusts volume, color and tint — all by sonic control. Installs on any rectangular tube Heathkit Color TV, even if you built it years ago. Circuit board/wiring harness construction.
Kit GRA-681-6, 7 lbs., for Heathkit GR-681 Color TV's..............$59.95*
Kit GRA-295-6, 9 lbs., for Heathkit GR-295 & GR-25 TV's........$69.95*
Kit GRA-227-6, 9 lbs., for Heathkit GR-227 & GR-180 TV's......$69.95*

NEW FREE 1969 CATALOG!
Now with more kits, more color, fully detailed kits and those along with over 500 kits for stereo/amplifier, color TV, electronic organs, electric guitar & amplifier, amplifiers, radios, marine, educational, CB, home & hobby. Mail coupon or write Heath Company, Benton Harbor, Michigan 49022.

HEATH COMPANY, Dept. 10-5
Benton Harbor, Michigan 49022

Please send model(s): ...
Please send Heathkit Catalog...
Please send Credit Application.
Name
Address
City State Zip

Mail order prices: F.O.B. factory. Prices & specifications subject to change without notice.

Now Wireless TV Remote Control For GR-295, GR-227 & GR-180
$69.95
New Wireless TV Remote Control For GR-681 $59.95

FREE 1969 CATALOG!
Now with more kits, more color, fully detailed kits and those along with over 500 kits for stereo/amplifier, color TV, electronic organs, electric guitar & amplifier, amplifiers, radios, marine, educational, CB, home & hobby. Mail coupon or write Heath Company, Benton Harbor, Michigan 49022.

CIRCLE NO. 18 ON READER SERVICE PAGE

May, 1969
How to get into
One of the hottest money-making fields in electronics today—
servicing two-way radios!

More than 5 million two-way transmitters have skyrocketed
the demand for service men and field, system, and R&D engi-
neers. Topnotch licensed experts can earn $12,000 a year
or more. You can be your own boss, build your own com-
pany. And you don't need a college education to break in.

How would you like to start col-
lecting your share of the big
money being made in electronics today?
To start earning $5 to $7 an hour...
$200 to $300 a week... $10,000 to
$15,000 a year?

Your best bet today, especially if you
don't have a college education, is prob-
ably in the field of two-way radio.

Two-way radio is booming. Today
there are more than five million two-
way transmitters for police cars, fire de-
partment vehicles, taxis, trucks, boats,
planes, etc. and Citizen's Band uses—
and the number is still growing at the rate
of 80,000 new transmitters per month.

This wildfire boom presents a solid
gold opportunity for trained two-way
radio service experts. Many of them are
earning $5,000 to $10,000 a year more
than the average radio-TV repair man.

Why You'll Earn Top Pay
One reason is that the United States
Government doesn't permit anyone to
service two-way radio systems unless he
is licensed by the Federal Communica-
tions Commission. And there simply
aren't enough licensed electronics ex-
erts to go around.

HE'S FLYING HIGH. Before he got his CIE training and FCC License, Ed Dulaney's only professional skill was as a com-
mercial pilot engaged in crop dusting. Today he has his own two-way radio company, with seven full-time employees. "I am
much better off financially, and really enjoy my work," he says. Read here how you can break into this profitable field.
Another reason two-way radio men earn so much more than radio-TV service men is that they are needed more often and more desperately. A home radio or television set may need repair only once every year or two, and there's no real emergency when it does. But a two-way radio user must keep those transmitters operating at all times, and must have their frequency modulation and plate power input checked at regular intervals by licensed personnel to meet FCC requirements.

This means that the available licensed experts can "write their own ticket" when it comes to earnings. Some work by the hour and usually charge at least $5.00 per hour, $7.50 on evenings and Sundays, plus travel expenses. A more common arrangement is to be paid a monthly retainer fee by each customer. Although rates vary widely, this fixed charge might be $20 a month for the base station and $7.50 for each mobile station. A survey showed that one man can easily maintain at least 100 stations, averaging 15 base stations and 5 mobiles. This would add up to at least $12,000 a year.

Be Your Own Boss

There are other advantages too. You can become your own boss—work entirely by yourself or gradually build your own fully staffed service company. Instead of being chained to a workbench, machine, or desk all day, you'll move around, see lots of action, rub shoulders with important police and fire officials and business executives who depend on two-way radio for their daily operations. You may even be tapped for a big job working for one of the two-way radio manufacturers in field service, factory quality control, or laboratory research and development.

How To Get Started

How do you break into the ranks of the big-money earners in two-way radio? This is probably the best way:

1. Without quitting your present job, learn enough about electronics fundamentals to pass the Government FCC Exam and get your Commercial FCC License.
2. Then get a job in a two-way radio service shop and "learn the ropes" of the business.
3. As soon as you've earned a reputation as an expert, there are several ways you can go. You can move out and start signing up and servicing your own customers. You might become a franchised service representative of a big manufacturer and then start getting into two-way radio sales, where one sales contract might net you $5,000. Or you may even be invited to move up into a high-prestige salaried job with one of the major manufacturers either in the plant or out in the field.

The first step—mastering the fundamentals of Electronics in your spare time and getting your FCC License—can be easier than you think.

Cleveland Institute of Electronics has been successfully teaching electronics by mail for over thirty years. Right at home, in your spare time, you learn electronics step by step. Our AUTO-PROGRAMMED® lessons and coaching by expert instructors make everything clear and easy, even for men who thought they were "poor learners." You'll learn not only the fundamentals that apply to all electronics design and servicing, but also the specific procedures for installing, troubleshooting, and maintaining two-way mobile equipment.

Get Your FCC License... or Your Money Back!

By the time you've finished your CIE course, you'll be able to pass the FCC License Exam with ease. Better than nine out of ten CIE-trained men pass the FCC Exam the first time they try, even though two out of three non-CIE men fail. This startling record of achievement makes possible the famous CIE warranty: you'll pass the FCC Exam upon completion of your course or your tuition will be refunded in full.

Ed Dulaney is an outstanding example of the success possible through CIE training. Before he studied with CIE, Dulaney was a crop duster. Today he owns the Dulaney Communications Service, with seven people working for him repairing and manufacturing two-way equipment. Says Dulaney: "I found the CIE training thorough and the lessons easy to understand. No question about it—the CIE course was the best investment I ever made."

Find out more about how to get ahead in all fields of electronics, including two-way radio. Mail the bound-in postpaid reply card for two FREE books, "How To Get A Commercial FCC License" and "How To Succeed In Electronics." If card has been removed, just mail the coupon below.

ENROLL UNDER NEW G.I. BILL

All CIE courses are available under the new G.I. Bill. If you served on active duty since January 31, 1955, OR are in service now, check box on reply card for G.I. Bill information.

Cleveland Institute of Electronics
1776 East 17th Street, Cleveland, Ohio 44114

A Leader in Electronics Training... Since 1934 • Accredited Member National Home Study Council

2 New CIE Career Courses

1. BROADCAST (Radio & TV) ENGINEERING...now includes Video Systems, Monitors, FM Stereo Multiplex, Color Transmitter Operation and CATV.

2. ELECTRONICS ENGINEERING...covers steady-state and transient network theory, solid-state physics and circuitry, pulse techniques, computer logic and mathematics through calculus. A college-level course for men already working in Electronics.

Please send me without cost or obligation:
Your 40-page book "How To Succeed In Electronics" describing the job opportunities in Electronics today, and how your courses can prepare me for them.
Your book on "How To Get A Commercial FCC License."

I am especially interested in:
☐ Electronics Technology ☐ Electronic Communications
☐ Broadcast Engineering ☐ Industrial Electronics
☐ First Class FCC License ☐ Electronics Engineering

Name

(Please Print)

Address

City

State Zip Age

☐ Check here for G.I. Bill information.

CIRCLE NO. 10 ON READER SERVICE PAGE
NEW PRODUCTS

Amateur Radio SSB Transceiver

According to Galaxy Electronics, their Model GT-550 transceiver creates a whole new level of performance standards in amateur radio communications equipment. The five-band transceiver is designed for both fixed-station and mobile use. And although it measures only 11¾" X 12¾" X 6" and weighs only 17 pounds, the GT-550 puts out a powerful 550 watts on SSB, 360 watts on CW. Also available with the GT-550 is a complete line of accessory equipment including a linear amplifier, r.f. console, remote VFO, and speaker console (all shown in photo). Other optional equipment—a.c. power supply, mobile power supply, phone patch, CW filter, VOX accessory, calibrator, mobile mounting bracket, and a floorboard adapter.

Circle No. 80 on Reader Service Page 15

Cartridge-Type Tuners

Three new universal plug-in tuners designed by Stereo Magic Division of Eastern Specialties Corp., fit all 4- and 8-track mobile and home-type stereo tape players, converting the players to FM, FM/AM, or FM stereo receivers. Each "Stereo Magic" tuner is the size of a conventional tape cartridge and is plugged into the tape player in a similar manner. Operation is instantaneous, and reception is said to be strong and clear as a result of using miniature solid-state circuits. The tuners are supplied with antenna connectors and batteries and they range in price from $30 to $50.

Circle No. 81 on Reader Service Page 15

VHF-FM Radiophone

The Model SR-C801S, available from Standard Communications Corp., is the first all-new VHF-FM Radiophone with features that comply with present and projected FCC requirements. The two-way radio provides the full benefits of marine communications in the new 156-162-MHz band. Twelve available channels for complete coverage of the marine band with "capture effect" reception provide interference-free communications. Technical specifications: ±0.0005 frequency stability; 25-watt output power with facility for reduction to 1 watt for close-range communications; mechanical i.f. filter; 156-162-MHz tun-
World's largest selling mobile/base CB rig!

$199.

Courier 23 — the most popular mobile/base CB transceiver ever built! A greater value than ever before, with 100% modulation featuring Courier's exclusive Modulation Sampler® — boosts your talk power electronically! Dollar for dollar, offers more of what you want in CB: 23 crystal-controlled channels, dual conversion, built-in solid-state 12v mobile power supply, illuminated S-RF meter and channel selector, PA system, modulation indicator, full-time Range-expand, adjustable noise limiter, super efficient squelch. Heavy-duty triple-plated chrome cabinet with stainless steel front panel. Just $199 complete with crystals for all 23 channels.

COURIER COMMUNICATIONS, INC.
439 Frelinghuysen Avenue, Newark, N.J. 07114
a Whittaker Company

Yes! I'd like to know all about the Courier 23 — world's largest-selling CB rig!

☐ Send me data on COURIER ROYALE

Name ____________________________ PE-95
Address __________________________
City ____________________ County __________
State ____________________ Zip ________
PRODUCTS (Continued from page 22)

FINDING RANGE: All solid-state construction, including MOSFET r.f. amplifier. The SR-C801S is supplied with a remote speaker and hand-held microphone. In addition, a full line of compatible accessories is available.

Circle No. 82 on Reader Service Page 15

FOUR-BAND PORTABLE RECEIVER

The Model RA-116 solid-state portable receiver available from Olson Electronics, Inc., contains one feature few modern multi-band receivers have—it tunes in the sound-signal-only portion of TV broadcasts on channels 2 through 13. The TV band is divided into two switch-selectable portions—channels 2-6 and channels 7-13. In addition, the RA-116 receiver is equipped to pull in police broadcasts on the 147-174-MHz band and Standard FM on the 88-108-MHz band. The receiver, housed in a leatherette case, comes complete with telescoping antenna and earphone jack. It can be operated on battery or line power.

Circle No. 83 on Reader Service Page 15

REGULATED D.C. POWER SUPPLY

Automatic protection against overloadings is featured in Lafayette Radio Electronics' new lab-type regulated d.c. power supply, stock No. 99-5077. Designed specifically for bench use, the power supply is good for servicing portable and automobile transistor radios and for recharging small batteries. Technical Specifications: 5-13 volts and 12-20 volts dual-range, continuously variable d.c. output; up to 2 amperes output current; less than 5 mV r.m.s. ripple at full load; ±10% regulation; 115 or 230 volts a.c. ±50/60 Hz input requirements. The supply includes two D'Arsonval movements that continuously monitor output voltage and current.

Circle No. 84 on Reader Service Page 15

CUBICAL QUAD ANTENNA FOR CB

"The Big Gun" is a new four-element cubical quad antenna designed by Hy-Gain Electronics Corp., especially for Citizens Band base stations. It is furnished with a three-position switch that allows selection of horizontal or vertical polarity, or a separate omni-directional antenna. Also featured are extended-aperture elements. Technical Specifications: 26.3-dB power multiplication factor; 14.2-dB gain; 18.7-dB front-to-back ratio; 16-dB forward polar selectivity gain; 1:24:1 standing wave ratio at resonance; 52-ohm coax feed; 18-dB vertical-horizontal separation. The Big Gun is provided with a 20'-long by 2"-diameter metal boom that has a wind-survival rating of 90 mi/hr.

Circle No. 85 on Reader Service Page 15

PSYCHEDELIC COLOR ORGAN KIT

Science Workshop's Model LO-103 color organ kit, when assembled and connected to a suitable audio source, converts sound into a continuously changing pattern of vari-colored lights. The "psychedelic" color organ employs three frequency-selective networks, each containing an SCR that drives a specific color or light. Incoming sounds are split into low-, medium-, and high-frequency bands, which trigger the SCRs. The result is a light display that flickers and changes color, at times blending colors, according to the tempo and pitch of the signal. The kit includes only the electronics; power supply and lamps must be obtained separately. However, the instructions provided show the user how to assemble a complete system. Technical Specifications: 300-mV sensitivity; 3000-ohm input impedance; 1-ampere output current per SCR; 16 volts a.c. at 3 amperes input power required for lamps, 11 volts a.c. at 20 mA required for circuit.

Circle No. 86 on Reader Service Page 15

AUTOMOBILE BURGLAR ALARM SYSTEM

The Vehicle Alarm System made by Astro-Dynamics Electronics is a burglar alarm device that protects any car equipped with it from tampering or theft. It is tripped simply by opening a door, the hood, or the trunk of the protected vehicle. Once tripped, it pulsates the horn and headlamps of the car to provide an unmistakable warning signal. And to prevent battery rundown, the alarm system is timed to shut down and reset itself after 3-5 minutes. The all-silicon-transistor system is easy to install in any vehicle, requiring just five connections and using the car's switches as sensors. The system is supplied with a burglar-proof alarm lock switch—featuring some 80,000 different key combinations—wire, terminal connectors, miscellaneous hardware, easy-to-follow instructions, and, best of all, a five-year warranty.

Circle No. 87 on Reader Service Page 15
What a Beauty,
What a Build
And Boy!!!!
What Performance!

"The Perfect 36" is the up-top CB antenna for on-top people, from

C/P Corporation Division, The Shakespeare Co., RFD 3, Columbia, S. C. 29205
the Mod Quad

GETS THE EDGE ON CROWDED CB CHANNELS
Cut through the hash by switching polarization with the Mod Quad from Mosley. When the channels are too noisy in the vertical plane of polarization, flip the switch to horizontal: you can chop off interfering signals as much as 23 db. Then talk and make yourself heard.

You expect a lot from a quad and the Mod Quad's got it: low radiation angle, superior front-to-back ratio, and top gain. With a 14 ft. boom supporting three diamond-shaped elements including a double radiator, it's a lot of antenna for the money.

You be the judge. See for yourself that the Mod Quad is all you want in a base station antenna. Ask for Model MCQ-27VH at your nearest Mosley dealer. Write factory direct for complete brochure.

The Mosley CB Quad family also includes Model MCQ-27, a three-element quad without Polarization Switching, and Model MCQ-VHK, to convert MCQ-27 to MCQ-27VH.

Mosley Electronics Inc.
4610 N. Lindbergh Blvd., Bridgeton, Mo. 63042

CIRCLE NO. 22 ON READER SERVICE PAGE
CONSTRUCTION projects and kits for making high-fidelity audio preamplifiers come in many shapes and sizes. Most of them give very good results but none has the quality of the "FET Preamp" described here. Much of the excellent performance obtainable from this preamp is due to the use of silicon field-effect transistors in the amplifier stages. These transistors operate at impedance levels similar to those in vacuum-tube circuits but they have much lower noise and far less distortion than either tubes or conventional junction transistors.

The sensitivity and output impedance of the FET Preamp are suitable for use with almost any power amplifier and full power output can be obtained from any low-level magnetic-cartridge signal source.

A high-power audio amplifier, specifically designed for use with this preamp, will be described in a forthcoming issue of Popular Electronics.

Six pushbutton switches are used to select the desired input, while there are rocker switches for control of volume-loudness, high- and low-frequency filtering and the 117-volt power supply. A front-panel tape output jack and a microphone input jack are also provided. With the exception of some exotic details, such as phase reversal, every possible useful function has been included in the preamplifier, whose schematic is shown in Fig. 1.

Construction. For a stereo system, two preamplifiers are required. Each is assembled on a printed circuit board whose actual-size foil pattern is shown in Fig. 2. Once the board has been fabricated (or purchased), mount the components as shown in Fig. 3, being careful to ob-
serve the polarities of the electrolytic capacitors and the identifying flats on the semiconductors. When the boards are assembled, put them aside and prepare the chassis.

Although the author used a metal U-shaped chassis 9" × 7" × 2¥/4" (with a suitable wooden cover), any other arrangement can be used. In any case, mount the 12-circuit phono jack assembly (or 12 single phono jacks) on the rear apron of the chassis. Label one set of six jacks “Channel 1” and the other set of six “Channel 2.” Also mount a pair of phono jacks for the outputs on the rear apron, along with two conventional 117-volt power sockets and two through-the-chassis strain reliefs (one for the a.c. line and the other for the d.c. supply to the preamp).

The front of the chassis can be prepared as shown in the photos. On the left side, cut a slot large enough to fit the four rocker switches. Mount the switches on a support such as that shown in Fig. 4 so that the four switches can be operated easily from the front.

PARTS LIST

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C3, C8, C9, C10</td>
<td>0.047-µF capacitor</td>
</tr>
<tr>
<td>C2, C18</td>
<td>30-µF, 6-volt electrolytic capacitor</td>
</tr>
<tr>
<td>C4, C12, C17, C19</td>
<td>2.2-µF, 50-V electrolytic capacitor</td>
</tr>
<tr>
<td>C5</td>
<td>47-µF, 50-V electrolytic capacitor</td>
</tr>
<tr>
<td>C6</td>
<td>15-V electrolytic capacitor</td>
</tr>
<tr>
<td>C7</td>
<td>4700-pF capacitor</td>
</tr>
<tr>
<td>C11</td>
<td>0.1-µF, 12-V capacitor</td>
</tr>
<tr>
<td>C13, C14</td>
<td>3300-pF capacitor</td>
</tr>
<tr>
<td>C15</td>
<td>220-pF capacitor</td>
</tr>
<tr>
<td>C16</td>
<td>0.01-µF, low voltage capacitor</td>
</tr>
<tr>
<td>Q1, Q2, Q3, Q5</td>
<td>Field-effect transistor (Texas Instruments TIS58)</td>
</tr>
<tr>
<td>Q2, Q3, Q5</td>
<td>Transistor (Motorola MPS6566)</td>
</tr>
<tr>
<td>R1, R6, R15, R24</td>
<td>1.5-megohm</td>
</tr>
<tr>
<td>R2, R7, R16, R25</td>
<td>22-megohm</td>
</tr>
<tr>
<td>R3, R8, R17, R21, R22, R23, R26</td>
<td>100,000-ohm</td>
</tr>
<tr>
<td>R4, R9, R13, R27</td>
<td>1000-ohm</td>
</tr>
<tr>
<td>R5, R10, R14, R19, R28</td>
<td>22,000-ohm</td>
</tr>
<tr>
<td>R11</td>
<td>27,000-ohm</td>
</tr>
<tr>
<td>R12</td>
<td>470,000-ohm</td>
</tr>
<tr>
<td>R18</td>
<td>2200-ohm</td>
</tr>
<tr>
<td>R20</td>
<td>10,000-ohm</td>
</tr>
<tr>
<td>R30</td>
<td>10,000-ohm PC trimmer potentiometer</td>
</tr>
<tr>
<td>R32</td>
<td>47,000-ohm</td>
</tr>
</tbody>
</table>

Note—A printed circuit board (#156) is available from Southwest Technical Products Corp., 210 W. Rhapsody, San Antonio, TX 78216 for $2.40, postpaid. A complete kit of parts including punched cabinet for stereo version (#156-C) is available from the same source for $42.50 plus postage for four pounds.

Fig. 1. Four of six semiconductors are low-noise FET amplifiers, and two conventional junction transistors are used as interstage emitter followers.
Cut a long slot at the bottom of the front panel for the six pushbutton switches. The switch assembly is held on by a pair of mounting screws from the bottom of the chassis. Next to the pushbuttons, install a pair of phone jacks (one for the microphone input and one for the tape output). The three variable controls, BASS (R34), TREBLE (R35), and VOLUME (R33) are mounted above the pushbutton switches.

In the photographs, the top rocker switch is labeled STEREO-MONO. In the author's final design, however, this switch was used for LOUDNESS-VOLUME and a s.p.s.t. switch was added to the tandem volume controls for the stereo-mono selection. The selection is made by pulling out the shaft of the volume control. In this discussion, the top rocker switch is the LOUDNESS-VOLUME control, S1. The second rocker switch from the top is the HI cut switch (S2); the third is the LO cut switch (S3); and the bottom one is the main a.c. on-off switch (S5). The chassis com-

Figure 2: Actual-size foil pattern for the preamplifier. A pair of boards would be required for stereo.

Figure 3: After making (or buying) the PC board, install the components as shown here, taking care to observe the polarity of semiconductors and electrolytics.

Figure 4: Details of switch support bracket. Two of these are required, one for each side mounting.

May, 1969
Fig. 5. Wiring of the front and rear panel components. The lettered circles are wired to similar lettered terminals on the boards. The small, individual circuits at the top are the isolated component connections.
Components are wired to the boards as shown in Fig. 5.

Mount capacitors C23 and C24 and resistor R36 between the proper terminals on S1; and mount C21, C22, and R31 on the proper terminals of S2. Connect C20 between S3 and ground. (The components and connections given in this paragraph must be repeated for each channel of a stereo system.)

Resistors R38 and R39 must be connected between the magnetic cartridge input jacks and ground. The values of these resistors should be as recommended by the cartridge manufacturer. Although many values are specified by the various manufacturers, 47,000 ohms is the most common.

Once all chassis components are mounted, connect the various lettered terminals on the PC boards (see Fig. 5) to their respective controls in neat wire bundles. Mount each PC board on four standoffs, one at each corner.

PARTS LIST

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C20</td>
<td>4.7-µF, low-voltage electrolytic capacitor*</td>
</tr>
<tr>
<td>C21, C22, C24</td>
<td>0.001-µF capacitor*</td>
</tr>
<tr>
<td>C23</td>
<td>1500-pF capacitor*</td>
</tr>
<tr>
<td>C25</td>
<td>100-µF, 50-volt electrolytic capacitor</td>
</tr>
<tr>
<td>C26</td>
<td>47,000-ohm, 1/2-watt resistor</td>
</tr>
<tr>
<td>C27</td>
<td>500,000-ohm tapped potentiometer* (tandem)</td>
</tr>
<tr>
<td>C28, C29</td>
<td>500,000-ohm potentiometer* (tandem)</td>
</tr>
<tr>
<td>C30</td>
<td>15,000-ohm, 1/2-watt resistor*</td>
</tr>
<tr>
<td>R33</td>
<td>500,000-ohm tapped potentiometer* (tandem)</td>
</tr>
<tr>
<td>R34, R35</td>
<td>500,000-ohm potentiometer* (tandem)</td>
</tr>
<tr>
<td>R36</td>
<td>15,000-ohm, 1/2-watt resistor*</td>
</tr>
<tr>
<td>R37</td>
<td>500,000-ohm tapped potentiometer* (tandem)</td>
</tr>
<tr>
<td>S1, S2, S3, S5</td>
<td>D.p.d.t. rocker switches</td>
</tr>
<tr>
<td>S4</td>
<td>S.p.s.t. switch (on R33)</td>
</tr>
<tr>
<td>S6</td>
<td>Six button pushbutton switch assembly, each 4 p.d.t.</td>
</tr>
<tr>
<td>S01, S02</td>
<td>Chassis-mounting 117-volt a.c. outlets</td>
</tr>
<tr>
<td>Misc.</td>
<td>Line cord, strain reliefs (2), spacers, mounting hardware, knobs (3), rubber feet (4), wire, solder, etc.</td>
</tr>
</tbody>
</table>

*Two required for stereo version.

PREAMPLIFIER SPECIFICATIONS

- **Frequency response:** 10 Hz to 100 kHz (−1 dB point)
- **Distortion:** THD @1-V output, less than 0.15% from 15 Hz to 50 kHz.
- **Hum and noise:** Phono and mic., −65 dB below full output; other inputs, −70 dB below full output.
- **Sensitivity:** Phono and mic., 2 mV for 1-V output; other inputs, 0.1V for 1-V output.
- **Input impedance:** Phono, 47,000 ohms (see text); other, 500,000 ohms.
- **Input before clipping:** Phono and mic., 0.1V; other inputs, 10 V.
- **Maximum output:** 5V r.m.s.
- **Output impedance:** less than 1000 ohms.
- **Channel separation:** Greater than 40 dB at 1000 Hz.
- **High filter:** 3 dB down at 10 kHz.
- **Low filter:** 3 dB down at 70 Hz.
- **Treble control range:** ±15 dB at 10 kHz.
- **Bass control range:** ±15 dB at 50 Hz.
To reduce the interchannel coupling, a separate voltage-dropping network, R37 and C25, is used for each of the stereo channels.

Pass the 117-volt line cord through its strain relief and connect it to switch S5 and to the power outlets. Line voltage for the power amplifier is taken from one of these outlets; the other can be used for a record player or tape recorder.

D.c. power for the preamplifier should be obtained from a well-filtered 35-volt source. Provisions for this supply are made in the companion power amplifier to be described in a forthcoming issue. If the external power source is higher than 35 volts, resistor R37 must be used to drop the voltage. To determine the value to use for R37, divide the difference between the voltage you have and 35 by 0.006. For example, if the source is 50 volts, the resistance is 50 - 35, or 15, divided by 0.006, or 2500 ohms. You can use the nearest standard resistance value (2200 or 2700 in the example) at ½ watt. Mount R37 with its companion filter capacitor C25 on a multi-lug terminal strip in an open section of the chassis.

Recheck all wiring.

Testing. Connect the two rear-apron output jacks (J3 and J4) to the inputs of the power amplifier, and connect the desired inputs to the two channels of the preamp. Turn on the power to the preamp. (The 117-volt line cord on the power amplifier can be plugged into S01 or S02 and switched on and off with S5 on the preamp.) Check that approxi-
HOW IT WORKS

Input selection is made by a series of pushbuttons, each operating a four-pole, double-throw switch. When a button is "in," the input that the particular button controls is grounded to prevent cross talk from the unused inputs. Pushing "in" any of the four high-level pushbuttons breaks the connection between the first two stages of the preamp and the volume control, and feeds the selected high-level input directly to the volume control. This approach keeps the distortion as low as possible. (In some preamps, the high-level inputs are reduced resistively and all signals are amplified by the complete preamp.) In this preamp, only the microphone and phonograph input are amplified by the first two stages. In the phonograph position, the preamp feedback network is switched in and changes the amplifier curve from essentially flat to the required RIAA curve.

The four FET amplifier stages are similar. A common-source circuit having a large-valued source resistor and positive gate bias results in a consistent and stable amplifier. The first two stages (Q1 and Q2) use the RIAA equalization network needed for magnetic phonograph input. Amplifier Q2 feeds the volume control (R33), which is followed by a FET amplifier (Q3) to provide a low-impedance driving source for the tone controls.

The tone-control circuit (between Q4 and Q5) is a low-distortion Baxendall-type circuit. This feedback type of tone control utilizes the most desirable variable turnover point characteristic. The controls give bass or treble boost or cut when offset from the normally flat center position. The tone control network, including Q5, has unity gain and is followed by emitter follower Q6. The low output impedance permits the use of a reasonably long cable between the preamp and its associated power amplifier with reduced attenuation and noise pickup. The low output impedance also insures that the preamp will be able to drive transistor amplifiers with the lowest input impedance. The most desirable situation in an audio system is to have a low-impedance driving a higher impedance. This is not efficient as far as power transfer is concerned, but it does result in the lowest possible distortion.

The output level is adjusted by a trimmer potentiometer (R30) on each channel to allow balancing without the use of concentric, or clutch-coupled, controls. It also allows exact match for the power amplifier being used.

The high-frequency filter bypasses the highs to ground at the drain of Q3, while the low-frequency filter changes the Q3 source network. The stereo-mono switch is coupled to the volume control which makes it possible to switch to either stereo or mono merely by pulling out the volume control. The loudness compensation switch changes the circuit of the volume control to boost the bass and treble at low volume levels.

mately 35 volts is present at the +35 terminal on each PC board. Using a high-impedance voltmeter, check that the drain voltage at each FET is between 12 and 18 volts. If any wide variation is found, check the circuit for possible errors in component values.

Depress the appropriate input pushbutton and operate the VOLUME, BASS, and TREBLE controls as desired. If you want loudness compensation instead of linear volume action, operate the LOUDNESS-VOLUME rocker switch.

Place the system in MONO (by operating the volume control shaft) and adjust R30 in each channel to get the same output from each. This is the only balance adjustment that needs to be made.

If there is excessive hum in the system, the preamplifier may be too near a power transformer or a.c. motor. Proper orientation reduces interference.
A Home For Ohms

A PLACE FOR EVERYTHING AND EVERYTHING IN ITS PLACE

UNLIKE most other electronic components, the physical size of a resistor does not vary from value to value of resistance in a given power rating. This "sameness" can cause you to waste a great deal of time if you have to locate a specific resistance value in a well-stocked but haphazardly arranged spare parts supply. Ideally each value of resistance should have its own bin—not an easy thing to arrange if space is limited, but the rack shown in the photo is perfect for compact, easy-access storage of resistors and other small parts.

Called a "Home for Ohms" because of its obvious value for resistor storage, the facility consists of 75 individual bins (actually pill containers) and a perforated rack. At most, the rack, with all bins in place, occupies only about 80 square inches of space and can accommodate 1200 or more resistors.

The pill containers used for the bins should measure about 3½" long by ⅛" diameter. The best source of supply for the pill containers is your local drug store. If you can't get them, however, try substituting stoppered test tubes.

The rack is made of two 10" × 8" sheets of ⅛" aluminum, pine spacers,
To maintain maximum strength, stagger the holes in the aluminum sheets as illustrated in this drawing.

BY GARY VAN DYK

The K Table

HAVE YOU ever been confronted by "the coil problem"? That's when a circuit design calls for a single-layer coil consisting of so many turns of such-and-such wire evenly spaced over a coil form of specific length and diameter and you don't have a form with the correct diameter. You may have other sizes but how can you determine the proper number of turns for a different diameter? The thing to do is use the "K Table" described here.

The K Table is a set of constants relating the length, diameter, and number of turns of a coil to its inductance. There is nothing magic about the table, it is

DERIVATION OF EQUATION

\[
L = \frac{0.2n^2a^2}{3a + 9b} \\
L(3a + 9b) = (0.2a^2)n^2 \\
\left(\frac{3a + 9b}{0.2a^2}\right)L = n^2 \\
n = \sqrt{(3a + 9b)/0.2a^2} \times \sqrt{L} \\
n = K \sqrt{L} \\
a = \text{coil diameter (inches)} \\
b = \text{coil length (inches)} \\
n = \text{number of turns} \\
L = \text{inductance (microhenries)}
\]
10 Reasons why RCA Home Training is your best investment for a rewarding career in electronics:

Performing transistor experiments on programmed breadboard—using oscilloscope
Construction of Multimeter.

Temperature experiment with transistors.

Construction of Oscilloscope.

May, 1969
merely a simplification of the standard equation for the inductance of a single-layer coil.

The equation is

\[L = \frac{(0.2n^2a^2)}{(3a + 9b)} \]

where \(a \) is the diameter of the coil from wire center to wire center, \(b \) is its length, \(n \) is the number of turns, and \(L \) is the inductance in microhenries. (The spacing between the turns is not a critical factor but it must be uniform.) Solving the equation for \(n \),

\[n = \sqrt{\frac{(3a + 9b)}{0.2a^2 \times \sqrt{L}}} \]

If we call the first radical term on the right side of the equation \(K \), then

\[n = K \sqrt{L} \]

Also

\[L = n^2/K^2 \]

And for two coils of the same inductance,

\[n_1/n_2 = K_1/K_2 \]

Now \(K \) can be calculated for a number of values of \(a \) and \(b \) with the results shown in the table. The use of the table greatly reduces the amount of math required to solve almost any inductance problem.

Examples of Use. To illustrate the use of the \(K \) Table, assume that you want to determine the inductance of a coil 1" long with a diameter of \(3/4" \) and containing 10 turns of wire evenly spaced. Therefore, \(a = 3/4 \), \(b = 1 \), and \(n = 10 \). Using the table, we find that \(K = 10 \). The inductance is

\[L = n^2K^2 = 100/100 = 1 \text{ \mu H} \]

As another example, assume that the circuit calls for a coil having 10 turns on a form \(1/2" \) long with a diameter of \(1/4" \). Unfortunately, all you have is a form with a \(3/8" \) diameter (of sufficient length to accommodate the coil). To determine how you can use this form, first find the \(K \) of the original coil from the table. For \(a = 3/4 \) and \(b = 1/2 \), \(K = 20.4939 \) (or 20.5). Call this \(K_1 \). For the new coil \((a = 3/8 \) and \(b = 1/2 \)) the table shows that \(K = 14.1421 \) (14.14). Call this \(K_2 \). Now the number of turns for the new coil \(n_2 \) can be found from

\[n_2 = n_1 \left(\frac{K_1}{K_2} \right) = 10 \left(\frac{14.14}{20.5} \right) = 6.9 \text{ turns} \]

This answer can be checked by calculating the inductance for each coil to be sure they are the same. In this case, \(L = 0.238 \).
VISUAL determination of the winner in a close, fast slot-car race is almost impossible—the usual result is a heated discussion between the two participants. What you need is a photo-electric "Win Detector" that will end all the arguments by detecting the winner even if the two cars are separated by only 1/32 of an inch. You can build one from an integrated circuit (IC) and two fast-acting photo pickups mounted at the finish line.

The Win Detector uses its own battery and works in normal room lighting—the winner is indicated by a glowing lamp. Because only a single switch controls the operation, the Win Detector can be used by small fry easily and safely.
Fig. 1. The IC contains two independent circuits whose external components are arranged so that, when one of the two circuits operates, the other is automatically deactivated. This insures that only one track is winner.

PARTS LIST

B1—13.5-volt battery (Burgess XV0 or similar)
C1,C2—5-µF, 15-volt electrolytic capacitor
D1,D2—1N754 zener diode
D3,D4—1N5059 diode
D12—14-volt lamp (#330) with suitable holder
IC1—Integrated circuit (RCA CA-3018 or KD 2114)
PC1,PC2—Photoresistor (Clairex CL903A or similar)
R1—100,000-ohm potentiometer
R2—25,000-ohm printed-circuit potentiometer
(R3,R4—10,000-ohm, %4-watt resistor
R5,R6—220-ohm, %4-watt resistor
S1—S.p.s.t. slide switch
SCR1,SCR2—Silicon controlled rectifier (Texas Instruments TIC-46)
Misc.—Plastic case 4" x 2¾" x 1 9/16" (Harry Davies #220); 1/16" aluminum panel 3¾" x 2¾"; length of three-conductor cable; ¾" fiber spacers (2); battery connector; ¼" diameter fiber tucks 7/16" long (2) and wood block for photo pickups; knob; mounting hardware; etc.

Construction. The circuit for the Win Detector is shown in Fig. 1. Most of the components are mounted on the printed circuit board whose foil pattern is shown in Fig. 2. Figure 3 shows how the components are located. Observe the polarities on diodes and capacitors. To install the IC, make a "spider" formation of its leads, bending them about ¼" below the case so that they go out radially. Then about ¾" out from the case bend them down again so that they fit in the holes of the circuit board. Note that leads 2 and 10 of IC1 are not used and that a mounting hole is provided for pin 2 to keep the IC properly located. Lead 10 can be cut short at the case. The tab on the IC is located at lead 12 and the other leads are numbered clockwise from there looking at the case from the bottom.

After forming the leads of the IC into a spider, insert it on the board, making sure that the orientation is correct. Also be sure that the SCR's are properly oriented. Connections to the panel-mounted components are also shown in Fig. 3.

The Win Detector can be mounted in any type of chassis. Parts placement and circuit layout are not critical. If you want to duplicate the author's prototype, make the metal front plate according to the diagram in Fig. 4. It can be fabricated from a piece of ⅛" aluminum. Conventional dry transfer lettering can be used to make an attractive panel. Mount S1, R1, II, and I2 on the metal panel and wire them to the circuit board.
allowing enough wire to mount the board about ¾" below the panel. Cut a small hole in the side of the plastic box to accommodate the three leads to the photo pickups. The three-conductor cable between the chassis and the photo-pickup assembly can be any reasonable length.

Attach the circuit board to the front panel using a pair of ¾" insulated (fiber) spacers and appropriate hardware. The battery should fit inside the plastic case between the board and one long wall of the case.

The design of the photo-pickup assembly is contingent on the physical layout of the track you are using. If your finish line can be made to be at a raised portion of the track, you can use the layout shown in Fig. 5. In this case, the only two dimensions not given in the diagram are the width of the overall wooden block and the center-to-center distance between the two ¼" holes. The block should be cut to fit snugly under and between the track edges at the finish line and the ¼" holes should be spaced so that they are directly under the centers of the lanes. Press fit the photo pickups into the fiber tubes; then fit the fiber tubes into the ¼" holes in the wooden block.

Connect the three leads from the electronic assembly to the photo pickups as shown in Fig. 1 and Fig. 3. Solder and insulate these leads to prevent accidental loosening or shorting. The photo-pickup assembly can be attached to the track now. A three-terminal disconnect plug may be used between the detector and pickups to permit the track to be
disconnected from the detector for storage.

For the more common plastic tracks, drill ¼"-diameter holes adjacent to each track pin slot so that the car must pass over the hole to block the ambient light. Mount the two photo pickups, one at each track, and secure them in place with cement. Wire the pickups to the electronic assembly as described above.

Operation. With the slot-car track in position, be sure that the photo-pickup assembly is in unobstructed light. Place the RESET switch, S1, in the ON position and set GAIN control R1 to its maximum. One of the lights should come on. With R1 at maximum, flip S1 between the OFF and ON positions, simultaneously adjusting R2 (through the hole in the cover) until one light or the

![Diagram](image1)

Fig. 4. Although any mechanical layout can be used, you can duplicate the author's front panel with these details.

Lengths of opaque tape are used to narrow the field of view of the two cells for more accuracy.

POPULAR ELECTRONICS
other comes on when $S1$ is on. It is possible to balance the system so accurately that both lights come on. Back off on $R1$ until operation of $S1$ does not cause either light to come on.

Test the system by passing your hand across the photo pickups in one direction (causing one light to come on). Then reset the system and pass your hand over the block in the other direction to turn the other light on. You may have to adjust the setting of the GAIN control for best operation. Once a light comes on, it will remain on regardless of any other pass of the hand (or slot car) until the RESET switch is operated.

If you are using undersized slot cars or if you want faster triggering, reduce the values of capacitors $C1$ and $C2$. —[3]—

HOW IT WORKS

The electronic portion of the Win Detector is essentially two balanced amplifiers (within one IC) with photo pickups as sensors and indicator lights driven by SCR's. Photo pickups $PC1$ and $PC2$ are connected to the bases of the two input transistors of $IC1$ through zener diodes $D1$ and $D2$. The pickups are connected to battery $B1$ through the balancing potentiometer $R2$ and the gain potentiometer $R1$. The balance control adjusts for lighting changes and circuit differences.

In operation, $R1$ is adjusted (after the circuit is balanced) so that the potential at either zener is just slightly below its firing level. A reduction in the amount of light reaching either pickup causes an increase in its resistance and raises the potential on the zener diode to which it is connected. This causes the zener to break down and provide a signal at the input to the IC.

The outputs of the IC (pins 1 and 4) are connected as emitter followers with $R3$ and $R4$ as their loads. The voltages at pins 1 and 4 are normally zero. When either amplifier has an input from its photo pickup, its output fires the associated SCR and turns on the indicator light. The IC outputs are connected to the SCR's through current-limiting resistors $R5$ and $R6$ and blocking diodes $D3$ and $D4$.

Note that the positive supply for each half of the IC is taken from the junction of each lamp and its associated SCR and not the battery. These points are normally positive when the lamps are off, but the potential drops to zero when the SCR conducts. In this way, when either lamp turns on, the power to the opposite channel is cut off so that it cannot be energized. Therefore, the first channel to operate shuts down the other one, providing a definite indication of the winner.

Capacitors $C1$ and $C2$ are transient filters which assure turn off of the SCR's when the RESET switch is operated.

After photocells are wired together, they are friction fitted into the two holes drilled into a wooden block. The slot accommodates 3 wires.
It's a birthday gift from your sister.
What in the world will you do with pajamas!

There's nothing wrong with your receiver.
Everyone has gone to bed.

Oh, don't apologize for keeping me on, Fred.
It's time I was getting up anyhow.

It must be after five.
I don't see a light in Fred's radio shack.
PLAN TO RE-USE AN SCR?
YOU'LL WANT TO CHECK IT OUT FIRST

Silicon controlled rectifiers (SCR's) are becoming very popular with the electronics experimenter. However, there is one major drawback. Once you have a couple of used SCR's lying around, how do you test them? Conventional transistor testers can't do the job, and there are no low-cost SCR testers on the market.

For about $12, you can make an excellent SCR tester that will tell you whether or not a particular SCR is good or not. (Since SCR's fail catastrophically, there is no such thing as testing them for "weakness" or degradation.) This tester will also tell you how much gate current is required to fire an SCR and how much anode current is required to hold it in conduction once it has fired. Knowing whether or not an SCR is good, and having values for its minimum gate triggering current and minimum anode holding current, you are ready to put it to use.

You can't determine the SCR's maximum current rating since, in doing so, you might very easily ruin it. Maximum current and voltage ratings can be found in the manufacturer's literature.

Construction. The author built his version in a $6\frac{1}{4}'' \times 3\frac{3}{4}'' \times 1\frac{3}{4}''$ plastic

May, 1969
case, while the various controls, switches, meter and pilot light assembly are mounted and wired point-to-point on the metal front cover. The front-view photograph shows the panel layout used, although any other arrangement will do. The three SCR connectors (C, G, and A) are brought out through three small holes using lengths of insulated wire terminated in small insulated alligator clips. Make a small knot in each wire, just inside the cover, to act as a strain relief. Because of the many different lead configurations that are used on SCR's, a socket is not prescribed.

Take care when drilling the transformer mounting holes in the plastic case since the plastic chips very easily. Countersink the two holes on the outside of the case and mount the transformer with flat-head screws so that the finished unit can be used in either a vertical or horizontal position. Note that a three-pole, three-position switch is used for S2, but a four-pole switch is called for in the Parts List. The connectors on the spare pole are used to mount the resistors.

Operation. Place S2 in the TEST position, rotate GATE CURRENT control R2 full counterclockwise, and set HOLD
The entire tester can be mounted on the front panel of the chassis selected. Connections to the external SCR are made via three color-coded insulated test leads.

CURRENT control R1 full clockwise. Connect the C lead to the cathode of the SCR, the G lead to the gate, and the A lead to the anode. Turn on the power to the tester. Depress the PUSH TO TEST switch, S3, and slowly rotate the GATE CURRENT control clockwise until lamp II comes on. When you release the PUSH TO TEST button, the lamp should go off. If the lamp does not light, or if it remains lit at all times, the SCR is defective.

To determine the SCR's minimum gate firing current, place S2 in the GATE position. Set the GATE CURRENT control full counterclockwise and the HOLD CURRENT control full clockwise. Depress the PUSH TO TEST button and slowly rotate the GATE CURRENT control clockwise until the lamp comes on. The correct gate current can be read on the meter just before the lamp comes on. The current will drop back when the SCR fires and the lamp lights. In the circuit shown, the meter indicates 10 milliamperes full scale. If you miss the meter reading when doing this test, place S2 in the TEST position and then return it to the GATE position, and repeat the test.

The third test measures the SCR's minimum anode holding current. Place S2 in the HOLD position, GATE CURRENT control full counterclockwise, and the HOLD CURRENT control full clockwise. Depress the PUSH TO TEST switch and advance the GATE CURRENT control slowly until the lamp lights. Release the PUSH TO TEST switch and slowly rotate the HOLD CURRENT control counterclockwise until the meter indication drops to zero. The current reading just before the current drops is the correct holding current for the SCR. This current can be checked by advancing the HOLD CURRENT control full clockwise. Then if the meter returns to full scale, the holding current has not been reached. If the meter still indicates zero, the test is valid. Maximum on the meter scale for this test is 100 milliamperes.

PARTS TALK

ANY SIGN OF A REPRIEVE FROM THE GOVERNOR?
YOU SEE all sorts of meters and indicating instruments in ham shacks and electronics experimenters' workshops, but you very seldom see an a.c. ammeter. Obviously, lots of people could put one to good use—the trouble is, they are too expensive.

A reasonably good a.c. ammeter sells for about $12 and, in most cases, at least two of them are required in order to make a broad range of measurements. This is because the commonly used a.c. instrument works on the moving vane principle and the low end of the scale is severely compressed. On most 0-5-ampere a.c. ammeters, indications below 1 ampere are next to useless. So, in addition to a 5-ampere meter, you have to have a 1-ampere instrument to cover the full range adequately.

You can build yourself a good, wide-range ammeter very inexpensively, if you take advantage of some government surplus items that are widely available. Part of every "command set" used in airplanes at one time was an "Antenna Current Indicator" (military nomenclature: BC-442). The current meter used in this device has a nonlinear scale and is more sensitive at the low end of the scale than at the high end. This prevents crowding at the low end of the scale—a feature not found in conventional a.c. indicating instruments.

The BC-442 comes with a built-in thermocouple about the size of a small domino. When the thermocouple is heated (in any way), it generates a small d.c. current at its output. An input to the thermocouple of half a volt generates enough current to deflect the companion d.c. meter to full scale—about 5 milli-amperes. When operating together, the thermocouple and d.c. meter are reasonably accurate over a wide range of frequencies and essentially linear over a large part of the meter scale.

To extend the meter range to 4.5 amperes, a meter shunt of 0.1375 ohm is required. This resistance can be fabri-
Fig. 1. Though primarily used as TV lead in, twin lead can be used to make a high-quality, low-value resistor (0.1375 ohm).

The shunt can be rolled up and mounted at one end of the case. This makes for a non-inductive resistor that can be used at frequencies far above 60 Hz.

Fig. 2. Circuit operation is simple. Current passing through the thermocouple heats the dissimilar metal junction producing a small current which is indicated on the meter. The low-value shunt resistor (R1) bypasses most of the heavy current.

PARTS LIST

- **F1**—5-ampere fuse (not slow-blow)
- **M1**—5-mA meter from BC-442
- **R1**—0.1375-ohm precision resistor (see text)
- **S1**—S.p.s.t. switch 3-ampere rating
- **SO1**—Conventional a.c. outlet
- **TC1**—Thermocouple from BC-442 (0.75-A r.l.)
- **Misc.**—Mounting cabinet, fuse holder, line cord with attached plug.
cated at a meter shop at high cost or you can use a series-parallel arrangement of 10 one-ohm precision resistors—also at a high cost. A cheaper way is to use a length of ordinary TV twin lead of Copperweld fabrication. The two conductors are well insulated and the wattage developed at maximum current is easily handled. Best of all, a "precision" resistor can be made using only a ruler. Instructions for making the shunt are given in Fig. 1. Follow the measurements carefully. It is recommended that you make up the shunt and solder it to its connector lugs at some distance from the thermocouple since the thermocouple calibration can be affected by soldering heat. When the shunt is finished, coil it into a small circular form and secure it with plastic insulating tape. The coiled-up shunt can be mounted on the rear of the meter case using a bolt and some scrap plastic to support it. Since this homebrew resistor is noninductive, the completed instrument can be used at frequencies much higher than 60 Hz.

Wire the shunt, the thermocouple and the meter as shown in Fig. 2. Note that, for safety's sake, a fuse and a shorting switch have been added to the circuit.

METER CALIBRATION TABLE

<table>
<thead>
<tr>
<th>METER SCALE</th>
<th>AMPERES</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>1.0</td>
<td>0.75</td>
</tr>
<tr>
<td>1.5</td>
<td>0.90</td>
</tr>
<tr>
<td>2.0</td>
<td>1.00</td>
</tr>
<tr>
<td>3.0</td>
<td>1.25</td>
</tr>
<tr>
<td>4.0</td>
<td>1.50</td>
</tr>
<tr>
<td>5.0</td>
<td>1.80</td>
</tr>
<tr>
<td>6.0</td>
<td>2.20</td>
</tr>
<tr>
<td>7.0</td>
<td>2.50</td>
</tr>
<tr>
<td>8.0</td>
<td>3.00</td>
</tr>
<tr>
<td>9.0</td>
<td>3.70</td>
</tr>
<tr>
<td>10.0</td>
<td>4.50</td>
</tr>
</tbody>
</table>

Any 5-ampere fuse can be used as long as it is not a "slow-blow" type. The shorting switch shorts out the meter when first trying an unknown load. Once the device has been built, recalibrate the meter face to the values shown in the table.

Depending on where you buy the BC-442, the total cost of the meter will run about $3. At a nominal 117 volts, the meter will measure loads varying from 60 to 540 watts. If desired, and if you are using only the normal 117-volt power line, you can calibrate the meter in watts instead of amperes.

BASIC ELECTRONIC INSTRUMENTATION

A three-week course in electronic instrumentation will be given from July 19 to August 9, 1969, at Polytechnic Institute of Brooklyn. Supported in part by the National Science Foundation, the course is open to anyone with a basic understanding of college physics. The text is "Electronics for Scientists" by Malmstadt, Enke and Toren. Lecture, laboratory, and discussion topics include: basic electrical measurements, power supplies, solid-state amplification elements, oscillators, servo-controlled devices, operational amplifiers, analog simulation, and electronic digital systems. Tuition is $500. Contact Prof. Kenneth Jolls, Office of Special Programs, Polytechnic Institute of Brooklyn, 333 Jay St., Brooklyn, N.Y. 11201.
A "BIGGER-THAN-LIFE" SPEAKER SYSTEM

BY DAVID B. WEEMS

REALLY "BIG" SOUND FROM A MODEST-SIZE ENCLOSURE

SPEAKER SYSTEM BASS response is generally equated with enclosure size; the greater the enclosure volume, the better the bass. The "Bigger-Than-Life Speaker System," however, is a medium-size enclosure that succeeds in providing big, natural-sounding bass. To be more specific, the system's 6000-cu in. volume is tuned to provide the sound normally expected of a system with an 8000-cu in. volume.

If you find this hard to believe, try the following experiment. Test the system resonance of a sealed-enclosure speaker system in a bare box and test it again after filling it with acoustical padding. You will find that the resonant frequency is lower in the latter case by as much as 10 Hz—or more.

To understand how this is possible, it is necessary to study the physics of sound propagation. Sound is produced in air as a series of "waves" which consist of an area of compression followed by an area of rarefaction or partial vacuum. Compressing air causes an increase in temperature (a fact familiar to anyone who has ever pumped up a tire). Conversely, a reduction of air pressure results in a temperature drop. A sound wave, therefore, is composed of a continuous train of compressions and rare-
We pack your electronics course with kits to make your training fast. You’ll enjoy every minute of it.

Your NTS success package

Choose a career in electronics: Computers, Color TV Servicing, Automation, Communications. Whatever the field, NTS has a complete home-study package to get you to the top faster. 10 thorough training courses. Each includes everything to give you the working knowledge required of successful technicians.

NTS Project-Method Training is the practical way to learn electronics. It’s a proven combination of lessons and the best professional kit equipment available. NTS provides the biggest selection of kits ever offered in home-study... all at no extra cost. You’ll construct these exciting kits to fully understand electronic circuits, components, and concepts. Our Project-Method lets you build skills by putting theory into practice... by working with your hands, as well as your head.

The NTS “learn and practice” approach makes training at home really easy. All it takes is a few hours a week... whether you're starting from scratch or in advanced courses. This is the all-inclusive success package that put thousands of men into the best paying jobs... or into their own business. If “just a living” isn’t good enough for you, now is the time to get something better going for you!
ELECTRONICS

This is the future. And it's happening now. The number of computers will increase many times in the next few years.

Exclusive new Compu-Trainer®

NTS offers a solid grounding in computer operation, wiring, data processing and programming. One of the 10 important kits included is our exclusive Compu-Trainer®. It's a fully operational computer logic trainer—loaded with integrated circuits—the first ever offered in home study. It introduces you quickly to how, what, when and why of computers... from theory to practical servicing techniques. This unit is capable of performing 50,000 operations per second. And it's sent at no extra cost.

NTS COLOR TV SERVICING

This is a broad, easily understood program designed to make you a complete home-entertainment service technician. Included, at no extra cost, is a 25" color TV that has more features than any set on the market. You also learn all about stereo, hi-fi, multiplex systems, and become a specialist in Color TV Servicing. Kits also include AM-SW radio, solid-state radio, vacuum tube volt meter, electronic tube tester.

NTS AUTOMATION/INDUSTRIAL ELECTRONICS

You're trained in the "push-button" electronics that keep industry going and growing... from relay type controls to highly advanced systems essential to production. You receive 16 kits including a 5" wide band oscilloscope, and the new NTS electronics lab: a fascinating NTS exclusive experimental laboratory. A complete workshop which makes you familiar with solid-state, miniature, and integrated circuits.

NTS ELECTRONIC COMMUNICATIONS

The use of 2-way radio systems in private and commercial applications is skyrocketing. NTS prepares you for the big-money opportunities in the field of transmitting and receiving equipment. Your tuition will be refunded in full if you cannot pass the FCC exam for a 1st Class Commercial Radio-Telephone License within six months after successfully completing this course. You build valuable kits including Amateur-Phone 6 Meter VHF Transceiver, solid-state Radio, and a Vacuum Tube Voltmeter.

CLASSROOM TRAINING AT LOS ANGELES

You can take classroom training at Los Angeles in sunny Southern California. NTS occupies a city block with over a million dollars in facilities devoted exclusively to technical training. Check box in coupon.

NATIONAL TECHNICAL SCHOOLS

World-Wide Training Since 1905

4000 South Figueroa Street

Los Angeles, Calif. 90037, U.S.A.

APPROVED FOR VETERANS

Accredited Member: National Association of Trade and Technical Schools, National Home Study Council.

TODAY, MAIL COUPON FOR FREE COLOR CATALOG AND SAMPLE LESSON.

NTS GUIDE ELECTRONICS

Name

Address

City State Zip

Check if interested in Veteran Training under new G.I. Bill

Check if interested ONLY in Classroom Training at Los Angeles. Dept. 205-59

May, 1969
factions at slightly different temperatures.

Heat flows from a high- to a low-temperature area. But in the case of sound waves within the range of 20 to 20,000 Hz in air, the wavelength is too long and thermal conductivity of the air too small for heat transfer to take place. Hence, the waves are said to be adiabatic (constant heat) rather than isothermal (constant temperature).

Now, when the speaker enclosure is stuffed with acoustical padding, an interesting change takes place. The stuffing absorbs and gives up heat, which changes the operation of the air from adiabatic to isothermal. And when sound is isothermally propagated in air, its velocity decreases. Because the wavelength of sound is directly proportional to its velocity, reducing one also reduces the other. Or, looking at the situation from the standpoint of a loudspeaker in a box, the reduction in wavelength means that the enclosure is "larger" by comparison to wavelength.

Through the proper application of enclosure design and selection of stuffing material, the "Bigger-Than-Life Speaker System" performs as though it is actually bigger than it really is.

Overall System. Now that the general principle has been described, the next step, obviously, is to apply it to a specific speaker enclosure. This is exactly what has been done in the Bigger-Than-Life Speaker System described here. The dimensions of the system enclosure are modest—a mere 6000 cu in. However, the system is designed around a high-quality three-way speaker and employs a 3" × 6" port (see Fig. 1) that tunes the fully stuffed enclosure to a 45-Hz resonance. (A port of this size would normally require an enclosure volume of about 8000 cu in. to be correctly tuned to the same frequency.)

In this speaker system, the port is tuned to a higher frequency than the speaker's free-air resonance to insure that the system will provide good performance in the 45- to 125-Hz range.

BILL OF MATERIALS

1—Olson Electronics Model S-971 Deluxe three-way speaker

3 pkgs.—Olson Electronics No. HF-17 acoustical Fiberglass

2—26 1/4" × 14 3/4" pieces of 3/4" plywood for enclosure sides (see text)

1—20" × 14 3/4" piece of 3/4" plywood for enclosure top (see text)

1—18 1/2" × 14 3/4" piece of 3/4" plywood for enclosure bottom

2—25 1/4" × 18 1/2" pieces of 3/4" plywood for enclosure rear and speaker mounting board

4—11 3/4" pieces of 3/4" x 3/4" pine for corner glue blocks

4—18 1/2" pieces of 3/4" x 3/4" pine for cleats

4—23 1/4" pieces of 3/4" x 3/4" pine for cleats

Misc.—#8 × 1 1/4" flathead wood screws (7 doz);
#12 × 1" panhead screws (4); 4" furniture legs (4); grille cloth; expanded aluminum (optional); decorative trim; glue; zip cord; solder; etc.

Available from Olson Electronics, 260 S. Forge St., Akron, Ohio 44308.
Fig. 3. Attach all cleats and glue blocks; glue and screw together top, bottom, and sides of enclosure.

[As was pointed out in the “Tune Up Your Bass Reflex” article (July 1968), many experts recommend tuning a bass reflex enclosure to a frequency above that of the speaker when the speaker’s resonance is very low. Thus, the chance of “weak” bass is avoided by the simple expedient of enlarging the port.]

If this enclosure performs as though it were one-third larger than it really is, something has to give—in this case it’s efficiency. After all, you can’t get something for nothing. The loss in efficiency is due to the fact that a stuffed enclosure absorbs more power than a conventional bass reflex enclosure of larger volume. However, if space is a problem, you will most likely be happy to make the trade.

Construction. Assembling the system after all of the parts have been cut to the sizes illustrated in Fig. 1 and specified in the Bill of Materials is fairly simple. In effect, you just put together a box, install a speaker, and drop in the proper amount of stuffing.

The walls of the enclosure are \(\frac{3}{4} \)"-thick plywood, joined together with glue and screws through the corner blocks. The top edges of the sides, and the edges of the top that mate with the sides, should be miter cut to 45° angles. If you do not have the equipment for making miter cuts, you can employ butt-joint construction. However, make absolutely certain that whichever method you use you maintain the same inner dimensions shown in the illustration.

Begin construction by attaching cleats to the bottom and cleats and glue blocks to the sides of the enclosure as shown in Fig. 2. Then join the top and one side together (Fig. 3) with glue and screws, driving the screws through the corner block and into the top plate. Glue and screw the other side in place.

Invert the assembly, coat mating surfaces with glue, and attach the bottom. Note that the bottom butts against the inner walls of the sides. It can be secured in place with nails driven through the bottom into the cleats, followed by screws for greater strength. The nails will hold the parts in place while the screws are being installed.

Apply a coat or two of flat black paint to the outer surface of the speaker mounting board and the edges of the enclosure.

Fig. 4. After enclosure is assembled, attach furniture legs to bottom and install speaker as shown.
speaker and port cutouts. Then install the speaker mounting board in the enclosure with glue and screws. Affix a set of 4" furniture legs to the bottom of the enclosure as shown in Fig. 4. Then tack your choice of grille cloth and trim in place, and sand, stain and varnish the enclosure.

If you decide to use large-pattern expanded aluminum to set off the grille cloth, plan space for it behind the front trim. An easy method of accommodating the expanded aluminum is to employ picture-frame molding with a ½" rear groove. The groove is just the right depth for the job.

Now, for a striking appearance, you might want to paint the molding flat black and use a brightly colored grille cloth. Decorator burlap is attractive—and inexpensive. When installing the grille cloth, stretch it slightly before tacking it in place.

Use a thick, "hard-set" cement (such as liquid solder) to secure the expanded aluminum to the picture-frame molding. Then attach the grille assembly to the front of the enclosure with finishing nails and cement or with ornamental screws.

Set the enclosure flat on its front, install the speaker with panhead screws, and solder a length of zip cord to the speaker terminals. Now, fold each of the packages of fiberglass stuffing into three equal layers. Cut a hole through the center of all three layers of one package of fiberglass, pass the zip cord and control through the hole, and lay the fiberglass flat over the speaker in the enclosure. Do the same with the remaining two packages of fiberglass. There is no need to tack the fiberglass in place; it is stiff enough to stand unsupported when the rear wall is screwed down.

Do not substitute any other brand of fiberglass fill unless you are prepared to perform tests to determine exactly how much of the substitute to use. The reason is that fiberglass is available in various densities, and each density requires more or less fill. Also, remember that three packages of the fiberglass fill specified in the Bill of Materials must be used inside each enclosure.

Finally, mount the control and bring out the speaker leads through holes drilled through the rear wall of the enclosure. Then fill in the hole through which the speaker wire exits with cement to maintain an air-tight enclosure, and fasten it down with screws.

That's it! Connect the speaker system to your amplifier, and you're ready to enjoy room-filling sound.
Transistor Sorter

ARE THEY AUDIO, LOW R.F., OR VHF?
FIND OUT WITH THIS SIMPLE TESTER
BY RAYMOND F. ARTHUR

Many electronics hobbyists have accumulated signal transistors from bargain packs, surplus computer boards, and other sources. The problem is that most such transistors lack "2N" identification markings, and in the cases where user production numbers are provided, the problem is only compounded. Sure, almost any transistor tester will show whether an unknown transistor is npn or pnp and provide gain data. But how do you find out if it's suitable for audio or r.f. applications?

Well, if you own or can get your hands on a grid-dip oscillator, you can sort your transistors into application categories (audio, i.f., h.f., etc.). This type of sorting is possible because the shunting action of the base-to-collector capacitance of the pn junction causes transistor gain to drop off as frequency is increased. Relating this phenomenon to application sorting, the lower the junction capacitance (less pronounced dropoff in gain with increasing frequency), the higher the frequency at which the transistor can be operated.

In addition to a grid-dip oscillator, you will need a parallel-resonant tank circuit (L1 and C1 in Fig. 1) to sort transistors according to application. With the alligator clips open-circuited, L1 and C1 should resonate at a frequency of about 30 MHz. Any added capacitance (connected between the clips) lowers the resonant frequency of the tank circuit and causes a correspondingly lower dip point on the GDO.

The L1-C1 tank circuit, when properly assembled, should be self-supporting as shown in photo. For L1, use a 16-turn length of Barker and Williamson #3015 "Miniductor" (1" coil diameter, 16 turns/in. of #21 wire). Unwrap one turn from each end of the coil, leaving 14 complete turns and ending up with two 2" leads oriented perpendicular to the axis of the coil.

Slip the unwrapped leads through the solder lugs of trimmer capacitor C1 and...
solder into place 1½" from the coil. Then solder a miniature alligator clip to one of the coil leads. Clip off the excess length of the other coil lead at C1, and solder C2 and R1 to C1; make sure the leads of C2 and R1 are clipped short. Finally, solder another alligator clip to the unconnected sides of R1 and C2.

In use, the tank circuit should be placed in a small plastic box to permit easy alignment of the axes of L1 and the coil of the GDO. With the alligator clips open-circuited and positioned where they can accept the leads of a transistor, gently adjust C1 for a dip at 30 MHz. Shorting the alligator clips together should shift the dip to 3 MHz.

Connect the base and collector leads of the transistor to be tested to the alligator clips; it doesn't matter which lead goes to which clip. Now, avoiding over-coupling between the tank circuit and GDO, determine the frequency at which the GDO pointer dips.

Refer to the graph provided in Fig. 2 for measured capacitance or transistor type. This graph indicates a general trend of very low capacitance for UHF transistors to higher capacitance for audio transistors. It is not practical to indicate precise regions for various transistor types on the graph because of overlaps and other factors that might affect the high-frequency operation of transistors.

Although collector capacitance plays an important part in setting the upper frequency limit of transistors, other factors such as current gain, base resistance, and overall power gain are also important. If current gain is known and two transistors show about the same output capacitance, but have widely differing gains (say 30 and 300), the lower gain transistor should be rated downward in frequency capability.

The graph of Fig. 2 is intended for use with low-power transistors—not power transistors. With a few exceptions, all transistors you check will produce a dip on the GDO. Failure to obtain a dip may indicate a very leaky transistor, an unusually low collector-to-base breakdown voltage, or unusually low Q of the junction capacitance.

Considering its simplicity and low cost, the GDO method of sorting transistors affords the experimenter and hobbyist with a simple and useful means of judging the relative frequency capabilities of small unidentified transistors.
For Your Guitar...

MAKE MUSIC LIKE THE GREATEST

Having trouble competing with the top guitarists and bassists? The chances are your instrument doesn't have the lazy, sustained sound that is mandatory these days. Fuzztone doesn't always help since it is unsuitable for chording and, quite often, the distortion it produces on a solo isn't wanted.

How do the stars do it? For one thing, they use plenty of volume; but volume is expensive (even counting only the ruptured speakers and eardrums). A much better way to get all the sound you want is to build a compression sustainer.

The sustainer brings up the level of the soft, low-level passages; the softer you play, the more it amplifies. All the little instrument nuances feed into the amplifier at the same volume as the loudest chords you play. Because of the compressing action, when a note starts to decay, the amplification goes up. This characteristic is what produces sustain.

Best of all, the unit is physically small, self-powered, and can be built for around $20 if you don't have a suitable compressor or for less than $5 for extra parts if you do.

The compressor the author used was originally featured in the February 1968 issue of POPULAR ELECTRONICS in the article “Add Comply to Your Tape Recorder.” Of all the compressors the author tried, the Comply unit is the most practical in terms of size, noise figure, and smooth compressing action. But a few modifications must be made before it can be used for a musical instrument.

It is doubtful that you would require compression all the time (although, after using this device for a while, you may) so a means must be included for switching it in and out. A foot-switch is preferable. The packaging must be exceptionally sturdy, not only to survive the
The author built his version in a metal box, strong enough to take foot-switch punishment. You can build the sustainer in a lighter weight box and use a smaller, stronger box to house the foot-switch.

Construction. Packaging the compressor can be accomplished in one of two ways. The first is to mount the entire subsystem in a very strong metal box with the footswitch (S2) on the top and the other controls and input-output jacks on either the sides or ends. Since this scheme requires an exceptionally strong metal box, you may prefer the second method. In this approach, the compressor is built in a conventional aluminum or sheet metal enclosure and the footswitch is mounted in a small, strong metal box that can take the punishment. A cable is then used to connect the footswitch to the electronics package.

Assemble the compressor as described in the previous article (see Parts List). Mount the input jack (J1), the input level control (R1 with attached power on-

(Continued on page 100)
ALTHOUGH most of us live in a 117-volt 60-Hz world, there are many—campers, boat owners, long-distance truck drivers, and trailer dwellers, for example—whose only source of power is 12 volts d.c. One of the biggest drawbacks in the use of low-voltage d.c. power is the cost of appliances and equipment which operate on such power. Equipment that uses 117 volts a.c. is much lower in cost and more readily available.

With the Power Inverter described here, you can change your world from d.c. to a.c. and, if you like, shave in your car using an ordinary electric shaver.

The Power Inverter, whose schematic is shown in Fig. 1, takes 12-volt d.c. from a battery and delivers approximately 117 volts at nearly 60 Hz. (Actual voltage and frequency depend on the load.) Its 100-watt load capability can handle most common appliances.

Construction. Although almost any reasonably strong case can be used (transformer T2 weighs slightly more than 6 pounds), the author used a 6" × 5" metal enclosure, with four rubber feet on the bottom.

If you want to duplicate this unit, use the photo above as a guide for the front panel. The pilot light is used to indicate when the inverter is running, and is optional. The two power-input binding posts are also optional—a pair of heavy leads capable of carrying 10 or 11 amperes from the battery to the inverter could be used (14 gauge minimum recommended). The holes immediately above the two power outlets (S01 and S02) are for the use of devices with three-prong plugs.

One transistor is mounted on each side of the U-shaped case. Use a shoulder insulator and a solder lug at one collector (case) terminal on each transistor and make sure that the base and emitter holes provide plenty of clearance. Each transistor must be insulated from the metal case by a mica washer, with silicone grease on both sides. Mount the various components and install the two transformers with the heavier T2 on the bottom of the chassis and T1 on the top. Wire the inverter in accordance with Fig. 1. The wires going to the transistor emitters and collectors should be at least 18 gauge and should be flexible since they go to a demountable portion of the case. Clip the transistor base and emitter leads to about ¼". In soldering to the transistor leads use a heat sink (such as long-nose pliers) to keep the body of the transistor from overheating and being severely damaged.
Fig. 1. A basic low-frequency (approximately 60 Hz), 100-watt power oscillator. The inverter also has dual power position to save drain on the battery.

PARTS LIST

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP1, BP2</td>
<td>5-way binding post (optional, see text)</td>
</tr>
<tr>
<td>C1</td>
<td>0.3-µF, 400-volt capacitor</td>
</tr>
<tr>
<td>F1</td>
<td>15-ampere fuse and fuselholder</td>
</tr>
<tr>
<td>117-Vac lamp</td>
<td>(optional)</td>
</tr>
<tr>
<td>Q1, Q2</td>
<td>2N3612 transistor</td>
</tr>
<tr>
<td>R1</td>
<td>7.5-ohm, 5-watt resistor</td>
</tr>
<tr>
<td>R2</td>
<td>150-ohms, 2-watt resistor</td>
</tr>
<tr>
<td>R3</td>
<td>100,000-ohm, ½-watt resistor (optional)</td>
</tr>
<tr>
<td>S1</td>
<td>D.p.d.t. 10-ampere switch</td>
</tr>
<tr>
<td>S2</td>
<td>S.p.d.t. switch</td>
</tr>
<tr>
<td>SO1, SO2</td>
<td>117-volt power receptacle, chassis mounting</td>
</tr>
</tbody>
</table>

Available from Allied Electronics, 100 N. Western Ave., Chicago, Ill. 60650, part number S4F2333, §10.24.

Check-out. If the inverter is to operate properly (oscillate), the two transformers must be phased. To do this, apply 12 volts d.c. from a 10- to 11-ampere source, making sure the polarity is correct; and connect an incandescent lamp of 60 watts or so (be sure it is switched on) to either SO1 or SO2. Place S2 in the START position and turn on S1. If the lamp does not light immediately, turn the power off. Reverse the connections of T1 to the bases of the transistors and try again. The lamp should come on. Place S2 on RUN to obtain full output. If the lamp still does not come on, check fuse F1 and then the rest of the circuit for faulty operation.

HOW IT WORKS

The operation of the power-oscillator inverter depends on T2, a conventional power transformer with many taps and a tendency to oscillate near line frequency (60Hz) when connected in the circuit. Transformer T1 is a filament transformer used to provide feedback for the two-transistor oscillator. The oscillator starting network is made up of resistors R1 and R2. Capacitor C1 absorbs the damaging high-energy spikes which can occur at the transistor collectors under light or no-load conditions.

The taps on the secondary of T2 (and the switching between them) are used in two different ways. The first use is to improve the efficiency of the circuit. If a filamentary load (conventional lamp) is used, the starting network has to be much heavier than is necessary to drive a pure resistive load of the same wattage. This would normally produce an attendant increase in constant power loss. A filament has a much lower resistance when cold than when hot (measured cold resistance of a 100-watt bulb is about 10 ohms—calculated hot resistance is about 137 ohms). With S2 in the START position, a heavy load is reflected back to the primary of T2 as a much lighter load, giving the inverter a chance to start. Once these types of loads have started, S2 is switched to RUN for normal operation. In this way, S2 permits the use of a much lighter starting network than would be possible if the taps on T2 were not available.

The taps on T2 and the switching provided by S2 also provide a means of reducing the drain on the battery. With S2 on START, the drain on the battery is low and any lamp connected to the load receives lower current than when the switch is on RUN. Thus, any lamp used with the inverter can be considered to be a "two-way" type and can be operated on "low" when battery conservation is important.
Although output waveform is far from being a sine wave, it is useful for a number of applications.

components or poor solder connections. The fuse protects only the vehicle's battery system because transistors short out much faster than the fuse can blow. Therefore, you can't count on the fuse to protect the transistors if you overload the inverter.

There are a few precautions that must be observed to avoid damaging the inverter. First, always provide adequate wiring to the inverter input (capable of carrying 11 amperes). Second, never turn on the inverter without a load connected to it. Third, always make sure that the switch on the load is on and avoid a moderate overload. The inverter can take a very heavy overload such as a short

(Continued on page 97)

Interior of author's prototype. Any method of construction can be used as long as you remember that T2 weighs six pounds, therefore should be mounted on the bottom. Locate R1 and R2 so that they are air cooled.
ENGLISH-LANGUAGE BROADCASTS TO NORTH AMERICA
FOR THE MONTH OF MAY

Prepared by ROGER LEGGE

<table>
<thead>
<tr>
<th>TIME—EDT</th>
<th>TO EASTERN AND CENTRAL NORTH AMERICA</th>
<th>FREQUENCIES (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00 a.m.</td>
<td>Stockholm, Sweden</td>
<td>15.315</td>
</tr>
<tr>
<td>7:15 a.m.</td>
<td>Melbourne, Australia</td>
<td>9.58, 11.71</td>
</tr>
<tr>
<td>7:45 a.m.</td>
<td>Copenhagen, Denmark</td>
<td>15.165</td>
</tr>
<tr>
<td>8:15 a.m.</td>
<td>Montreal, Canada</td>
<td>9.625, 11.72</td>
</tr>
<tr>
<td>7:00 p.m.</td>
<td>Montreal, Canada</td>
<td>9.625, 15.19, 17.72</td>
</tr>
<tr>
<td>8:00 p.m.</td>
<td>London, England</td>
<td>6.11, 9.58, 11.78, 15.14</td>
</tr>
<tr>
<td></td>
<td>Moscow, U.S.S.R.</td>
<td>11.87, 11.96, 15.15</td>
</tr>
<tr>
<td></td>
<td>Peking, China</td>
<td>15.06, 17.673, 17.855</td>
</tr>
<tr>
<td></td>
<td>Sofia, Bulgaria</td>
<td>9.70</td>
</tr>
<tr>
<td>8:30 p.m.</td>
<td>Budapest, Hungary</td>
<td>9.833, 11.91, 15.16</td>
</tr>
<tr>
<td></td>
<td>Johannesburg, South Africa</td>
<td>6.075, 9.705, 11.875</td>
</tr>
<tr>
<td></td>
<td>Stockholm, Sweden</td>
<td>11.805</td>
</tr>
<tr>
<td>8:50 p.m.</td>
<td>Brussels, Belgium</td>
<td>6.125, 9.615</td>
</tr>
<tr>
<td></td>
<td>Vatican City</td>
<td>9.695, 11.785, 15.285</td>
</tr>
<tr>
<td>9:00 p.m.</td>
<td>Berlin, Germany</td>
<td>11.89, 15.17</td>
</tr>
<tr>
<td></td>
<td>Havana, Cuba</td>
<td>9.525</td>
</tr>
<tr>
<td></td>
<td>Melbourne, Australia</td>
<td>15.32, 17.84</td>
</tr>
<tr>
<td></td>
<td>Prague, Czechoslovakia</td>
<td>7.345, 9.63, 11.99, 15.36</td>
</tr>
<tr>
<td></td>
<td>Rome, Italy</td>
<td>11.81, 15.41</td>
</tr>
<tr>
<td>9:30 p.m.</td>
<td>Berne, Switzerland</td>
<td>6.12, 9.535, 11.715</td>
</tr>
<tr>
<td></td>
<td>Bucharest, Rumania</td>
<td>11.885, 11.94, 15.25</td>
</tr>
<tr>
<td></td>
<td>Cologne, Germany</td>
<td>6.185, 9.735, 11.945</td>
</tr>
<tr>
<td></td>
<td>Hilversum, Holland (via Bonaire)</td>
<td>9.59, 11.73</td>
</tr>
<tr>
<td>9:45 p.m.</td>
<td>Copenhagen, Denmark</td>
<td>9.52</td>
</tr>
<tr>
<td>10:00 p.m.</td>
<td>Cairo, Egypt</td>
<td>9.475</td>
</tr>
<tr>
<td></td>
<td>Lisbon, Portugal</td>
<td>6.025, 9.68, 11.935</td>
</tr>
<tr>
<td></td>
<td>Moscow, U.S.S.R.</td>
<td>9.70, 11.735, 15.15</td>
</tr>
<tr>
<td></td>
<td>Peking, China</td>
<td>15.06, 17.713</td>
</tr>
<tr>
<td></td>
<td>Quito, Ecuador</td>
<td>9.745, 11.765, 15.115</td>
</tr>
<tr>
<td>10:30 p.m.</td>
<td>Beirut, Lebanon</td>
<td>15.28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME—PDT</th>
<th>TO WESTERN NORTH AMERICA</th>
<th>FREQUENCIES (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 a.m.</td>
<td>Tokyo, Japan</td>
<td>9.505</td>
</tr>
<tr>
<td>9:00 a.m.</td>
<td>Stockholm, Sweden</td>
<td>15.31</td>
</tr>
<tr>
<td>7:00 p.m.</td>
<td>Melbourne, Australia</td>
<td>15.32, 17.84, 21.74</td>
</tr>
<tr>
<td></td>
<td>Tokyo, Japan</td>
<td>15.235, 17.825, 21.64</td>
</tr>
<tr>
<td>7:30 p.m.</td>
<td>Bonaire, Neth. Antilles</td>
<td>9.695</td>
</tr>
<tr>
<td></td>
<td>Johannesburg, South Africa</td>
<td>6.075, 9.705, 11.875</td>
</tr>
<tr>
<td>8:00 p.m.</td>
<td>London, England</td>
<td>9.58, 11.78, 15.26</td>
</tr>
<tr>
<td></td>
<td>Madrid, Spain</td>
<td>6.13, 9.76, 11.815</td>
</tr>
<tr>
<td></td>
<td>Moscow, U.S.S.R.</td>
<td>9.70, 11.735, 15.15</td>
</tr>
<tr>
<td></td>
<td>Peking, China</td>
<td>15.095, 17.675, 17.795</td>
</tr>
<tr>
<td></td>
<td>Seoul, Korea</td>
<td>15.43</td>
</tr>
<tr>
<td></td>
<td>Taipei, Taiwan</td>
<td>15.125, 15.345, 17.89</td>
</tr>
<tr>
<td>8:20 p.m.</td>
<td>Yerevan, USSR (via Khabarovsk)</td>
<td>15.18, 17.775, 17.88</td>
</tr>
<tr>
<td>8:30 p.m.</td>
<td>Berlin, Germany</td>
<td>9.73, 11.97, 15.19</td>
</tr>
<tr>
<td></td>
<td>Prague, Czechoslovakia</td>
<td>7.345, 9.63, 11.99, 15.36</td>
</tr>
<tr>
<td></td>
<td>Stockholm, Sweden</td>
<td>11.705</td>
</tr>
<tr>
<td></td>
<td>Tirana, Albania</td>
<td>6.21, 7.30</td>
</tr>
<tr>
<td>9:00 p.m.</td>
<td>Havana, Cuba</td>
<td>9.525</td>
</tr>
<tr>
<td></td>
<td>Lisbon, Portugal</td>
<td>6.025, 9.68, 11.935</td>
</tr>
<tr>
<td></td>
<td>Moscow, USSR (via Khabarovsk)</td>
<td>15.18, 17.775, 17.88</td>
</tr>
<tr>
<td></td>
<td>Peking, China</td>
<td>15.095, 17.675, 17.795</td>
</tr>
<tr>
<td></td>
<td>Sofia, Bulgaria</td>
<td>9.70</td>
</tr>
<tr>
<td>9:30 p.m.</td>
<td>Bucharest, Rumania</td>
<td>11.885, 11.94, 15.25</td>
</tr>
<tr>
<td></td>
<td>Budapest, Hungary</td>
<td>9.833, 11.91, 15.16</td>
</tr>
<tr>
<td></td>
<td>Kiev, USSR (Mon., Thu., Sat.)</td>
<td>11.90, 15.21</td>
</tr>
<tr>
<td>9:45 p.m.</td>
<td>Berne, Switzerland</td>
<td>6.12, 9.72, 11.715</td>
</tr>
<tr>
<td></td>
<td>Cologne, Germany</td>
<td>6.145, 9.545, 11.945</td>
</tr>
<tr>
<td>10:00 p.m.</td>
<td>Havana, Cuba</td>
<td>9.525, 11.76</td>
</tr>
<tr>
<td></td>
<td>Quito, Ecuador</td>
<td>11.765</td>
</tr>
<tr>
<td></td>
<td>Tokyo, Japan</td>
<td>17.785</td>
</tr>
<tr>
<td>11:00 p.m.</td>
<td>Moscow, USSR (via Khabarovsk)</td>
<td>15.18, 17.775, 17.88</td>
</tr>
<tr>
<td>11:30 p.m.</td>
<td>Havana, Cuba</td>
<td>11.93</td>
</tr>
</tbody>
</table>
SOME OF the most significant and important devices in the history of electronics have been developed in the past few years. One of these devices is the voltage-variable capacitance diode; also referred to as the "varicap" or "varactor" diode.

The varicap (to settle on one convenient name) is the solid-state equivalent of the conventional tuning (variable) capacitor commonly used in radio receivers. In the consumer market, the varicap is found in the tuning circuits of r.f. receiver sections, in a.f.c. circuits, and as frequency multipliers. (Several of the top-quality FM receiver manufacturers are employing varicap tuning, usually providing multi-station pushbutton tuning, and at least one varicap TV tuner is available.)

A varicap-potentiometer tuning circuit has several important advantages. It is more compact, lighter in weight, and more rugged than the conventional tuning capacitor. In addition, fabrication of the varicap is less critical (to provide a predetermined capacitance range) than the capacitor.

The varicap is actually a semiconductor diode. But it differs from the ordinary diode in that it is specifically designed to function as a capacitor under the right conditions. To see how this is accomplished, a brief review of capacitor fundamentals and p-n junction semiconductor physics is in order.

In its simplest form, a conventional fixed capacitor consists of two conductive plates separated by an insulator (dielectric) as shown in Fig. 1. When a d.c. voltage is applied to the plates, current flows until the capacitor charges up to the applied voltage level. A change in the amplitude, or a reversal of the polarity, of the applied voltage does not affect the value of the capacitor.

To change the value of a capacitor, you must change the area of the plates, the distance between the plates (dielectric thickness), or the dielectric material. For example, as illustrated in Fig. 2,
doubling the dielectric thickness reduces the value by half, and reducing the dielectric thickness by half doubles the capacitance value. A ganged tuning capacitor employs the change-of-plate-area technique; physical rotation of the shaft meshes and unmeshes the plates, thereby increasing and decreasing capacitance. (Changing the dielectric material is generally not considered as a practical means of varying capacitance value because of the obvious problems involved.)

The varicap accomplishes capacitance changes through a system of variable reverse biasing instead of through a physical change. This phenomenon is directly related to the physics of the p-n junction in semiconductors.

All materials are classified as conductors, semiconductors, or insulators according to the quantity of "free" electrons available in them. (An electron that can easily be freed from its atom or molecule through the application of a voltage is termed a "free" electron. Obviously, these free electrons must be in the outermost, or valence, rings where they are least tightly bound.)

Consequently, for a good conductor there are a great many free electrons available. (Copper, for example, has one free electron for every 13 atoms.) A good insulator may have only one free electron for several billion atoms or molecules. The semiconductor has an intermediate number of free electrons, more than an insulator but less than a conductor.

Semiconductor materials like germanium and silicon are basically poor conductors because of their lack of a large quantity of free electrons. However, during the manufacture of a p-n junction, small measured amounts of impurity elements can be added to the semiconductor crystal by a process known as "doping" to form positive (p-type) and negative (n-type) materials. (The impurities introduce mobile electric charges into the semiconductor crystal to step up conductivity. The doping also adds an equal number of stationary charges, fixed by the immovability of atoms in the crystal.)

Now consider a 9-volt reverse bias applied to the p-n junction illustrated in the drawing at left in Fig. 3. Current flows as the mobile charges become rearranged, with the positive and negative mobile charges both moving toward the junction. At the junction, the opposite-polarity charges pair up and neutralize each other (all within specific zones on both sides of the junction) leaving a depletion region of fixed charges.

Recall now that an insulator (dielectric) lacks movable charges, just as does the depletion region. The depletion region thus acts as the dielectric of the diode capacitor.
It is this set of conditions that provides the p-n junction with a capacitive effect.

With 1.5 volts of reverse bias on the junction as shown at right in Fig. 3, a smaller number of fixed charges need be uncovered in the depletion region to build up the bucking barrier voltage of 1.5 volts. As a result, the region width is narrower than if the reverse bias were 9 volts. The narrower depletion region corresponds to a thinner dielectric and a higher capacitance value (similar to Fig. 2 where dielectric thickness was reduced by half to double capacitance). It is now obvious that reverse-bias voltage can be varied from a high to a low amplitude to cause corresponding changes in junction capacitance.

With no bias voltage applied to the junction, some of the movable positive and negative charges nearest the junction manage to attract each other to produce an even narrower depletion region. This results in a built-in barrier voltage of about 0.25 volts for germanium and 0.6 volts for silicon diodes.

Next, those portions of the p and n materials outside the depletion region still have both movable and fixed charges. These portions have the ability to conduct but also have some resistance. This resistance is shown as R_s in Fig. 3. What distinguishes the varicap from other types of diodes is that R_s is maintained as low as possible to reduce losses in the "capacitor."

Because all semiconductor devices include at least one p-n junction, all also exhibit some degree of voltage-variable capacitance. The group includes all bipolar transistors, FET's, all semiconductor diodes, and SCR's and other solid-state switching devices. Junction capacitance which hampers high-frequency operation in many semiconductor devices can be put to good use in voltage-variable capacitance diode applications.

On the following pages you will find a practical hobby application of the varicap. The project is a one-transistor super-regenerative AM broadcast band tuner, using the varicap as the tuning capacitor in conjunction with a potentiometer.
“Get more education or get out of electronics...that’s my advice.”

NEW!
Expanded coverage of solid state electronics including integrated circuits!
Ask any man who really knows the electronics industry.
Opportunities are few for men without advanced technical education. If you stay on that level, you’ll never make much money. And you’ll be among the first to go in a layoff.

But, if you supplement your experience with more education in electronics, you can become a specialist. You’ll enjoy good income and excellent security. You won’t have to worry about automation or advances in technology putting you out of a job.

How can you get the additional education you must have to protect your future—and the future of those who depend on you? Going back to school isn’t easy for a man with a job and family obligations.

CREI Home Study Programs offer you a practical way to get more education without going back to school. You study at home, at your own pace, on your own schedule. And you study with the assurance that what you learn can be applied on the job immediately to make you worth more money to your employer.

You’re eligible for a CREI Program if you work in electronics and have a high school education. Our FREE book gives complete information. Mail postpaid card for your copy. If card is detached, use coupon below or write: CREI, Dept. 1205H, 3224 Sixteenth Street, N.W., Washington, D.C. 20010.
A Varicap Front End AM Tuner

BY A.A. MANGIERI

The regenerative AM broadcast band tuner described here employs a varicap diode in place of the common ganged capacitor. Tuning, as mentioned earlier, is accomplished by adjusting a potentiometer.

Although only one tuned circuit is used, regeneration is sufficient to provide remarkable sensitivity and selectivity. A simple 3' long test-lead "antenna" will suffice for reception of most local stations. The author tried a 20' long antenna and obtained excellent results, pulling in a station known to be some 1400 miles distant.

The tuner (shown schematically in Fig. 1) consists of a single tuned regenerative amplifier/detector arrangement. Varicap diode D1 is connected in parallel with L1 with C1 serving as a d.c. blocking device for L1. Batteries B1 and B2 provide the reverse-bias source for D1, while potentiometer R1—the tuning control—facilitates continuously variable bias. Also, resistor R3 in the wiper circuit of R1 prevents the r.f. signal voltage from shorting out through the bias supply.

Transistors Q1 and Q2 are connected in a complementary arrangement to sim-
ulate a single very-high-gain transistor. And to maintain the required high Q in the L1 circuit, the base of Q1 is connected to the low-impedance tap on L1.

Feedback winding L2 serves as a regeneration link that feeds back some of the amplified signal voltage to L1 for reamplification. The amount of feedback, or regeneration, is controlled by potentiometer R2.

Construction. During construction of the tuner, neither component placement nor orientation is critical. The breadboard arrangement shown in Fig. 2 is provided only as a guide. You can make the project more compact—small enough to fit into a shirt pocket—if you desire.

A word of advice: before installing R1 and R2 in the circuit, use an ohmmeter to check these pots while slowly rotating the shafts from stop to stop several times. If there are any abrupt resistance changes or indications of erratic operation, try a new pot. Potentiometer R1 must have an audio taper, but it can have a value anywhere between 50,000 ohms and 2 megohms.

Then, when installing the R1 control, connect the left terminal to ground and the right terminal to the negative lead of B2 (pot viewed with shaft pointing toward you). Now, connect R2 into the circuit so that resistance increases with a clockwise rotation of the shaft. It is a good idea to use an ohmmeter to double check for proper shaft rotation.

Close-wind L2 centered over L1, winding clockwise (as viewed from the end of the coil opposite the slug screw). Start winding from the lug end of L1. Then connect the starter lead to J4 and the other lead to the transistor collectors.

Any of various types of germanium r.f. amplifier transistors will perform well for Q1 and Q2. Do NOT use nonlinear converter/mixer transistors. If you have specification sheets for your transistors or a transistor beta tester, select transistors with betas between 40 and 100. If you use a very-high-gain transistor—say one with a beta of 200—pair it with a low-gain unit.

Connect the cathode (banded end) of D1 directly to ground; the other lead to the junction of C1 and R3. (If you have some surplus high-current, low-leakage silicon power diodes, you might want to try substituting one of these for the varicap. Many such rectifiers will perform satisfactorily, though with a lesser tuning range, if the r.f. losses and d.c. leakage are sufficiently low. Diodes in the greater-than-five-ampere range may even possess sufficient junction capacitance to cover the entire AM broadcast band with the coil specified.)

Alignment. Tuning and adjustment of the tuner will have to be by trial and error. However, once accomplished, the tuner should provide stable performance over a considerable length of time.

First, back out the coil slug about ¾”, connect an antenna and earth ground to J1 and J2, and connect a pair of headphones to J3 and J4. Set R2 fully counterclockwise, and close S1. Now, slowly rock R1 back and forth while advancing R2 clockwise until you hear a whistle or beat note. Tune in a station. Then back off R2 to eliminate the whistle while re-adjusting R1 to bring in the station clearly and at maximum volume.

If you are unable to hear a station, or if you hear a loud distorted audio tone, you may have to experiment with the values of R4 and R5 to compensate for transistor gain and leakage current variations. Then, when you obtain the proper results, connect a d.c. milliammeter in series with the headphone lead at J3 and observe the indication; it should lie between 1 and 2.5 mA when R2 is fully counterclockwise.

(Continued on page 96)
GENERAL-PURPOSE MULTIMETER KIT
(Knight-Kit Model KG-645)

While the vacuum-tube voltmeter is generally thought to be the best test instrument for in-shop use, few people will deny that the general-purpose volt-ohm-milliammeter (VOM) is best for all-around use. The VOM is independent of line power; its compact, lightweight construction makes it ideal for portability; and it provides all of the most needed functions for troubleshooting and testing. As a result of these features, the VOM has retained its popularity even in the face of the stiff competition of the transistor VOM, the newest member of the low-cost meter family.

The Knight-Kit Model KG-645 VOM follows in the same tradition that has made the multimeter an almost indispensable item in the shop and in the field. It features voltage measuring capabilities over a range of 0-5000 volts in both the a.c. and d.c. functions. Additionally, it is capable of measuring a.c. and d.c. current from 0 to 1 ampere, resistance between 0 and 100,000 ohms, and decibels covering a range of -20 to +65 dB. Voltage measuring sensitivity is 1000 ohms/volt.

Assembly time for the KG-645 multimeter kit should average about four hours for the beginner, considerably less for the experienced kit builder. The various precision components used in the instrument are, logically, wired to or between the function and range switches as shown in the interior view photo on the opposite page.

A rugged Bakelite case, equipped with a sturdy plastic handle, is used to house the VOM circuitry. The kit is also supplied with a pair of test leads and an operating instructions booklet—all for only $19.95.

Although the KG-645 VOM is essentially a very good starter instrument, its convenience features can easily make it the first choice in appliance and vacuum-tube circuit troubleshooting and repair. It will certainly come in handy when you have to troubleshoot or repair electrical/electronic gear where no source of line power is available.

Circle No. 89 on Reader Service Page 15

"Sound n' Color" ORGAN
(EICO Cortina Model 3440)

The most modern hi-fi systems have "total concept" reproduction, harmoniously blending acoustic reproduction with a visual accompaniment. Any hi-fi system (or AM/FM receiver) can provide total concept hi-fi with the simple addition of an electronic color organ. The color organ converts audio signals into a pattern of light that changes in color and intensity in much the same way that a loudspeaker reproduces every beat, tone, pitch, and intensity change in the music. The result is a ballet in light accompanying a symphony in sound.

Until fairly recently, the cost of a commercially available color organ was quite high. Now, however, several low-cost ones have become available—notably, the EICO Cortina Model 3440 "Sound n' Color" audio color organ selling for $49.95 in kit form and $79.95 factory assembled. The 3440 is a three-channel color organ, splitting the audio spectrum into three ranges through the use of frequency-selective circuits. The low end of the spectrum is assigned the color blue, while red and green are on the mid- and high-frequency ranges, respectively.

The "Sound n' Color" organ is designed with a high-impedance input that connects directly to the output of a hi-fi amplifier without affecting the sound coming from the speaker system. Three controls are provided: one is an on/off switch and sensitivity control, while the other two are intensity controls.

The entire system of lamps and electronics in the 3440 is housed in an attractive Danish walnut enclosure. The front is a special multi-lens plastic panel that diffuses the colored light.

In building the kit version of the 3440, your reviewer found that it went together easily in less than four hours—thanks to a well-illustrated and well-written instruction manual. In addition, the chassis/reflector assembly is large enough to provide the builder with plenty of space so that tricky manipulations in tight corners and burnt insulation are avoided.

Circle No. 88 on Reader Service Page 15
Built in an attractive cabinet (above), the Cortina color organ features a multi-lens front that is specifically designed to display the colored light as star and snow-flake-like patterns. Inside (photo at right), a large, roomy chassis accommodates all components, including three high-intensity lamps at center and control bracket at far right. Directly behind the chassis is a wall-to-wall aluminum reflector that accommodates six additional colored pilot-type lamps and sockets.

Rugged plastic case, flexible carrying handle, and large, easy-to-read meter provide the newest Knight-Kit VOM with the look of a professional field instrument. As shown in photo directly above, all components conveniently mount directly to three controls and jacks. A pair of diodes, connected across meter lugs, provide overload protection.
ARE YOU ready for this? The electric shaver shown in Fig. 1 is transistorized! Besides the shaver motor, it contains a pair of transistors, three diodes, 6 resistors, 2 capacitors, a neon lamp, and a high-frequency cup-core transformer. It is Shick's Solid-State Electric Shaver and the electronic components are more than window dressing or an advertising gimmick. They take the place of a bulky, heavy, and relatively expensive step-down transformer.

As shown in the schematic in Fig. 2, the circuit has a line-operated d.c. power supply, a 25-kHz common-emitter d.c./d.c. converter, a pair of long-life rechargeable nickel cadmium cells (B1), and an efficient permanent-magnet d.c. motor (M). Requiring approximately 2 amperes at 2.5 volts, the motor can be driven by B1 alone for cordless applications or primarily by the transistorized converter when a.c. line power is available. The converter is also used to recharge B1.

When the instrument is connected to a line receptacle, 117-volt a.c. power applied through series limiting resistor R1 is rectified by silicon diode D1 and filtered by electrolytic capacitor C1 to deliver a relatively high d.c. voltage which, in turn, is supplied through current-limiting resistor R3 to a 25-kHz push-pull squarewave oscillator, Q1-Q2. Transistor base bias is established by voltage-divider R5-R6, bypassed by C2, while a multi-winding transformer (T1) provides the feedback needed for oscillation and reduces voltage. The lower voltage is rectified by fast-recovery diodes D2 and D3 and used to charge the built-in battery. All the transformer windings are on the same ferrite cup core, with the step-down windings shown separately in Fig. 2 simply to clarify the diagram. A conventional neon pilot lamp assembly, 11 and R2, is used to indicate when line power is applied to the circuit.

There are three basic modes of operation. With a.c. power applied, but the shaver off (S1A open), B1 is trickle charged by the d.c./d.c. converter. When the shaver is turned on, S1B shunts R4 across current-limiting resistor R3, thus increasing the converter's output power and permitting it to handle the major portion of the motor load. For cordless operation, B1 alone furnishes motor power.

In practice, the complete d.c./d.c. converter circuit, including input resistors R3 and R4 as well as rectifier diodes D2 and D3, is encapsulated in epoxy as a self-contained module (Fig. 3) having a volume of less than half a cubic inch and weighing only 0.6 ounces. This represents a size and weight reduction of about ten to one compared to the transformer type of 60-Hz power adaptors used in earlier cordless shavers.

The instrument's mechanical design is also ingenious. Instead of a separate case, a sliding outer sleeve mechanically actuates folding covers which protect the critical shaving head and, at the same time, operates switch S1. It is impossible, then, to leave the unit "on" with its covers closed.

Reader's Circuit. The FM wireless microphone circuit illustrated in Fig. 4 is a modified version of the "TV Sound Transmitter" described here in June 1968. The new circuit, submitted by Gary P. Golio (15 Ogden Place West, Dobbs Ferry, NY 10522), has a range of approximately 50 feet when used with a short antenna and a typical FM broadcast-band receiver.

As in the original design, the circuit is essentially a Hartley oscillator with the feed-
back needed to start and maintain oscillation supplied by tapped coil L_1, tuned by C_1. Q_1's base bias is applied through R_I, while C_2 serves both as a d.c. blocking and r.f. coupling capacitor. Modulation is introduced in the emitter circuit by means of a series carbon microphone. Operating power is furnished by B_1, controlled by S_I.

Although we haven't checked the circuit personally, we rather suspect that its output signal is amplitude as well as frequency-modulated. The former is provided by changes in emitter current, the latter by changes in Q_1's interelectrode capacitance corresponding to the current changes.

Except for hand-wound coil L_1, standard components are used in the project. A conventional carbon microphone cartridge is satisfactory.

Gary writes that L_1 can be wound with either #28 or #30 enamelled wire. It consists of 36 turns, close wound and center-tapped, on a hollow $\frac{1}{4}$-inch diameter tube. He used a familiar impregnated paper form, but good quality polystyrene or other low-loss plastic tubing should serve as well.

Neither layout nor lead dress should be critical, but, for optimum results, good high-frequency wiring practice should be followed, with all signal-carrying leads kept short and direct. Point-to-point, perf-board, or etched-circuit construction techniques may be used, as preferred, with the completed project housed in a small plastic case.

In operation, the instrument's output frequency should be adjusted (by C_I) so that its signal is picked up at a "dead" spot on the receiver's dial (that is, where there are no local broadcast stations).

Manufacturer's Circuit. Although it requires less than a half-dozen components, the line-operated, light-controlled circuit illustrated in Fig. 5 can handle resistive loads as high as 720 watts (6 amperes). It is one of a score of related circuits featuring solid-state photosensitive devices described in *RCA Photocells*, booklet No. CSS-800A, published by the Radio Corporation of America, Electronic Components and Devices, Harrison, NJ 07029. It is available through
most RCA component distributors at a nominal price of thirty-five cents.

The basic control device is a high-voltage silicon triac (Q1) having an integral trigger element. Either of two basic sensor configurations may be used. With the arrangement shown in (a) the circuit is energized only when light falls on the photocell; on (b) only when the photocell is dark. The configuration used in a specific project depends on the intended application. For example, circuit (a) might be used to control production machinery when a light beam is reflected from a passing object, while circuit (b) could be used to operate a door opener when a light beam is broken.

Referring first to circuit (a), photocell PC1 and resistor R1 form a voltage-divider supplying charge capacitor C1. With PC1 dark, the peak voltage developed across C1 is inadequate to trigger the triac's gate electrode into conduction. Light falling on the photocell reduces its resistance. This permits a higher peak voltage to be developed across C1, triggers the triac, and energizes the load.

The second circuit, (b), operates similarly except that the roles of the photocell and fixed resistor are reversed. Here, the voltage across C1 is kept below Q1's trigger value by the photocell's low resistance when it is illuminated. When PC1 is dark, however, its resistance increases appreciably, changing the voltage division with respect to R2 and developing sufficient peak voltage across C1 to trigger Q1 into conduction.

Conventional parts and devices are used in the circuit. The load may be a lamp, a.c. solenoid, small motor, heavy-duty relay, or virtually any similar a.c. operated device, as long as maximum ratings are observed.

Neither parts arrangement nor wiring dress are critical in the basic control or in either sensor configuration. However, since the a.c. line is connected directly into the control circuit, all components should be insulated from the chassis on which the circuit is mounted or the case in which it is housed. If this simple precaution is followed, any conventional construction technique may be used. The triac should be heat-sinked if operated at near maximum ratings or under high ambient temperature conditions.

As in most instruments operated by photocells, careful installation is essential for optimum performance. A focused, rather than a broad, control light source is preferred, while a suitable shade should be used on the photocell to exclude extraneous or ambient light and prevent false triggering.

New Publications. Motorola Semiconductor Products, Inc. has announced the publication of a new 264-page manual, the Semiconductor Power Circuits Handbook. Prepared especially for users of power devices, the book covers some 150 new circuits which have been specially designed, constructed and evaluated in the company's applications test laboratories. The handbook is divided into six chapters: (1) motor speed controls, (2) inverters and converters, (3) regulator, (4) static switches, (5) audio and servo amplifiers, and (6) miscellaneous thyristor and transistor switch applications. Well worth the low price of only $2.00 per copy, the book may be ordered direct from Motorola, Inc., Box 20924, Phoenix, AZ 85036.

A new Zener Diode Handbook has been published by International Rectifier's Semi-

(Continued on page 99)
ANNUAL 6-METER SHORT-SKIP WATCH IS ON

Many times during the next four months, the 6-meter band will suddenly erupt from its normal calm with an avalanche of unbelievably strong signals from distances up to 1000 miles and greater suddenly filling the band. The eruption may last a few minutes or a few hours before subsiding as suddenly as it began; or the distant signals may ebb and flow unpredictably, from this direction and that, before finally fading out.

Omitting the whys and the wherefores, small patches of the E layer of the ionosphere (about 6 miles high) sporadically and mysteriously become so heavily ionized that 6-meter sky-wave signals that normally go through the ionosphere and into outer space are reflected back to the earth. Sporadic-E or "short-skip" propagation can occur at any time, but in North America it occurs most often from May through August at any hour of the day or night; although there is a slight peak in the forenoon hours.

Each year, 6-meter operators with simple equipment end the short-skip season with 20 to 30 states in their log books. And old timers watch for the first short-skip opening of the season like fishermen waiting for the spring salmon run. They know that the big trick in taking advantage of the openings is to be on the air at the right time. Not only do they listen a lot when the band seems dead, they also call "CQ" every five or 10 minutes when they are around the ham

AMATEUR STATION OF THE MONTH

With all those QSL cards, Gary Dage, WN8ZCC, 8078 Lochdale, Dearborn Heights, Mich. 48127, makes working DX look so easy. His first day on the air, he worked all continents! After a year, he has 132 countries and 37 DX zones worked. A Johnson Viking Challenger transmitter, Hammarlund HQ-129X receiver, Telrex TC-99D rotary beam and 40-meter dipole do the work. WN8ZCC gets a 1-year subscription to POPULAR ELECTRONICS for winning this month's Amateur Station Photo Contest. You can enter by sending a clear photograph (preferably black and white) of you at the controls of your station and some details of your radio career to: Amateur Photo Contest, c/o Herb S. Brier, POPULAR ELECTRONICS, P.O. Box 678, Gary, Ind. 64601.

May, 1969
shack so that an opening will not pass unnoticed.

Incidentally, sporadic-E propagation effects are not limited to the 6-meter band, nor are they greeted with universal acclaim. Low channel (2-6) TV station operators in particular get more pain than pleasure from it because distant TV stations sharing the same channel tear up each other's pictures during "short-skip" openings. On the other hand, in many areas of the world—especially near the equator where sporadic-E propagation is an almost daily, year-round phenomenon—many TV viewers see practically all their TV programs from stations hundreds of miles away via sporadic-E propagation.

In the little time that his career as a medical specialist leaves him to get on the air, Sigurd Meng, DL2HI, Munich, Germany, likes to chase DX. The unit on top of the Drake T-4B transmitter is a homemade SWR bridge. A Drake R-4A and Shure microphone round out this neat appearing station.

A Helpful Whirly-Bird. The problem facing members of the RAF Amateur Radio Club, Cape Gata, Akrotiri, Cyprus, was how to get their new Mosley TA-33 rotary beam on top of its tower. "If we just had a helicopter," someone said wistfully. Without quite knowing how it happened, ZC4TK was delegated to ask the base Flight Commander, "May we borrow a helicopter for a few minutes?" Unexpectedly, he said "Yes!"

The TA-33 beam was assembled on the ground. As the 'copter hovered overhead, Roley, ZC4RB, attached its dangling winch hook to the beam, getting a dust bath from the whirling chopper blades in the process. The machine lifted the beam up and over the top of the tower to which ZC4TK had lashed himself. He guided the beam into position as the pilot deftly lowered it to the tower. Then ZC4TK detached the "sky hook," and the helicopter flew off less than five minutes after the beam was first lifted off the ground. (From RSGB Radio Communication.)

Lightning Power. James W. Voorhes, W8EGR/WB8BYX described in the Detroit Amateur Radio Association's DARA Bulletin what happened when lightning struck his station. The a.c. distribution transformer was knocked off a utility pole and lightning shredded the pole supporting the end of his rhombic antenna. Fifteen hundred feet of copper-clad steel wire in the antenna disappeared.

All antennas had been disconnected from the equipment and grounded; as a result, none of the r.f. sections of the gear was damaged. However, all power supplies that remained plugged into the a.c. power line were either damaged or destroyed, unless both sides of the power cords were fused. In this event, the only damage was blown fuses. Incidentally, all a.c. outlet sockets in the house were damaged—some blown completely out of the walls—and contacts of the control relays in the air conditioner, washing machine, and similar household appliances were welded together.

Bumper stickers bearing this legend are appearing on cars in the Sarasota/Bradenton, Florida area. Stickers are supplied by the liquor dealer who's suing "Grid" Gridley, W4GJO for $1,000,000 in "nuisance" damages. Besides stickers, newspaper advertisements have been published denouncing the activities and equipment used by radio amateurs. Lawsuit, now in a civil court, may be set over to a Federal court by the time this appears in print. Next-door neighbor for several years, the plaintiff apparently became interested in DX'ing color TV and refused to have his preamp-receiver TVI proofed.

Jim's story shows again the tremendous power in a lightning stroke. It also emphasizes the importance of disconnecting and grounding the antenna and pulling the power plug of a piece of amateur equipment when you leave for an extended time or when an electrical storm threatens. It is a simple insurance against damage.

CW Forever? Code buffs should have read Ron Schneiderman's report in Electronic (Continued on page 91)
Several new broadcasting stations are either under construction or being contemplated. With a few exceptions (as noted), most of these are for medium-wave service.

A 16-million dollar contract has been awarded to an American firm for furnishing and installing a transmitter and receiving site near Kavala, Greece, to be used by the Voice of America for broadcasts to Africa, Central Europe and the Middle East. Target date is set for late 1971.

In Vietnam, a multi-million dollar project is planned for construction of a nationwide radio network. Outlets are listed for Saigon, Da Nang, Qui Nhon, and Nha Trang. These stations will be built by the U. S. Agency for International Development (AID) and are subject to confirmation by the present Administration.

If not already in operation, a new station will go on the air shortly from Tinang, Philippines. This is a 250-kW transmitter to be operated by VOA and beamed to all of S.E. Asia, Red China and points deep within central and eastern Russia. The Far East Broadcasting Co., Manila, also plans a new 100-kW transmitter to be placed in service in mid-1969.

France plans a new high-power station for broadcasts to the Americas from somewhere in the Antilles. This is a result of the joining of forces of the External Service of ORTF and the Office de Cooperation Radio-phonique.

According to a French magazine article, there will be new transmitters installed in Tahiti and other South Pacific islands. One unit of 25 kW is to be set up on 730 kHz; transmitters of 25 kW and 4 kW are to be placed in service in the tropical bands. No dates or other details have been given.

Other planned new stations include:

- **Malaysia**—three units of 50 kW each, for use in Johore Bahru.
- **India**—Medium-wave transmitters of 1000 kW each in Calcutta and Rajkot; four other units of 100 kW each to be located in other towns.
- **Belgium**—A new 50-kW short-wave transmitter at Brussels.

At a site as yet unnamed, the BBC will install a new high-powered station to serve as a relay point to cover the Persian Gulf and south and central Asia.

The National Radio Club reports that a new station in Colombia, callsign and lo-
lication not determined at press time, is being heard well in the U. S. on 1040 kHz but we haven't logged it as yet. One source lists the identity as R. Tropical.

Suriname—Stichting Radio Omroep Suriname, Paramaribo, is now on the airwaves on 725 kHz. This 50-kW station is being very widely reported in N.A. evenings (your local time) with signal strength exceeding that of many of the much nearer broadcast stations.

Charles McCormick. The DX world has lost another of its well-known men. Charles McCormick, Jr., of Baltimore, Md., passed away very unexpectedly. He was Editor of the Utilities column of the Newark News Radio Club and was well-known for his knowledge of virtually all phases of Utility stations. His successor will be Robert French, WPE8FGH, Bellaire, Ohio.

CURRENT STATION REPORTS

The following is a resume of current reports. At time of compilation all reports were as accurate as possible, but stations change frequency and/or schedule with little or no advance notice. All times shown are Greenwich Mean Time (GMT) and the 24-hour system is used. Reports should be sent to Short-Wave Listening, P. O. Box 333, Cherry Hill, N. J. 08034, in time to reach Your Short-Wave Editor by the fifth of each month; be sure to include your WPE identification and the make and model number of your receiver.

Albania—R. Tirana, currently varying from 9498 to 9506 kHz, was logged in English from 0137-0154 s/off with talks and news, and at 0705 in Portuguese. R. Peking (supposedly operating via Tirana's xmtr) is now on 7070 kHz at 0105 with English news; good but fuzzy.

Austria—The "A" and "B" schedules from Vienna have been combined; four xmtrs of 100 kW each are now on the air for a total of 74 hours daily. News in German and English is planned as are separate programs for Europe and overseas points. The station also plans German language courses in English, French, Spanish, Arabic, Russian, and Czech. Latest loggings include 17.775 kHz at 1359 and 6155 and 9770 kHz at 0200.

Below are new channels in use by Brussels are 9550 kHz at 2115 in language with multi-lingual annmt's but no English and at 2210 with the English "Belgium Speaking" program, and on 11,945 kHz to N.A. from 2315 s/on with ID's in French and Dutch. Also heard well is the 9615-kHz outlet at 2205-2215 to N.A.

Bolivia—CP105, R. Ibarar, Beni, listed for 4885 kHz, is operating currently on 4958 kHz with 500 watts at time of 0100. This one is very weak. CP88, R. Amboro, Santa Cruz, has moved up to 4912 kHz with Spanish to 0400 closing. This one suffers badly from QRM from a Brazilian station.

Brazil—R. Marajova, Belem, has opened a new channel in the 60-meter band, heard irregularly around 0000 and asking for reports. The frequency varies from 4955 to 4980 kHz. Beware of another Brazilian on 4985 kHz, R. Estudion de Jatatu, Jatui, is a new outlet that opened last year in the 120-meter band on 2465 kHz. It was logged weakly at 0200 closing with Portuguese and the usual L.A. Jargon. R. Nacional, Brasilia, noted on 15,445 kHz with a clear ID at 0300.

Bulgaria—Sofia noted in English with news starting at 2130 on 9635 kHz, a new channel.

China—R. Peking is good in Korean at 1130 to past 1205 with excellent signals on 5975 kHz.

Colombia—Seemingly new HJSF, R. Guatapuri, Valledupar. 4916 kHz, is noted but not regularly, from 0225 with ID and 0400-0450 s/off with music and anmt's. Other Colombians reported this month include HJJKJ, R. Cadena Nacional, 6160 kHz at 0445-0510 with news in Spanish at 0500-0507; HJWT, R. Nacional, 6180 kHz at 0400; HJDH, R. Colosal, 4945 kHz at 0500; HJAP, R. Santa Fe, 4965 kHz at 0430; HJQ, R. Nacional, 4955 kHz at 0200. All are located in Bogota except NJDH, Neiva.

Cuba—At press time, Havana had English scheduled for the Americas at 2050-2150 oN 17,750 and 15,285 kHz, 0100-0450 on 9525 kHz, 0100-0600 on 15-285 kHz, 0330-0600 on 11,760 kHz and 0630-0800 on 11,930 kHz.

Ecuador—A previously unidentified station has been identified by a Swedish source as Emitora Litz y Vida, Loja, 4812 kHz. It is heard early mornings. La Voz del Rio Cariizal, Calcuta, 3570 kHz, was picked up at 0110 with music; a clear ID was noted at 0113. Belag again heard regularly is HCXZ1, Redoditsfunora Nacional del Ecuador, Quito, on 4940 kHz with cultural programs and in Spanish to past 0330.

Egypt—A new frequency for Cairo is 11,710 kHz, heard with Arabic music at 2343-2350. Other recent tunings include 9475 kHz at 0200-0230 and 12,006 kHz at 2145-2255 with English to Europe.

El Salvador—YSV, La Voz de Comercio, Santa Ana, now has a short-wave outlet on 9576 kHz as noted on 1310 with many commercials and a religious program in Spanish.

Ethiopia—New channels in use by ETLF, Addis Ababa, include 11,730 kHz at 0327 with music and in French to Madagascar; 11,910 kHz at 1930 with English news and talks to 0212 close, and 15,270 kHz at 1515 with music and from 1516 with a language religious program.

Germany—[East]—R. Berlin International was heard on 9570 kHz at 0659 with IS and an abrupt s/off at 0700.

Gilbert And Ellice Islands—Tarawa, 4912.5 kHz, was found at 0700 s/on with an anthem, news in language, music at 0706, some ads, more music and anmt's to 0723. Three chimes were rung at 0730, then South-Sea music.

(Continued on page 88)
Our new Cobra 98 is the best Cobra you can buy. It may be the best CB you can buy, period.

Consider all the different brands of CB transceivers. If you want the best, you pay more. But do you have to go as high as the $350-$400 transceiver? This is where the Cobra 98 fits—it sells for $240. It's top-of-the-line new. And it bites like a Cobra. With a combination of new features nobody else has quite been able to put together.

Like the illuminated 3-in-1 master meter: An accurate SWR scale for reading power out of your cable/antenna. An "S" scale for received signal strength. And a third scale for power output.

There's also a new pre-amplifier that increases the strength of incoming voice signals.

And Cobra's exclusive Dyna-Boost circuit controls voice modulation to get maximum talking power.

It sounds as if the Cobra 98 may be the best CB you can buy—either base or mobile. Ask your distributor for the "snake" or write us for detailed information.

B&K Division of Dynascan Corporation
1801 W. Belle Plaine • Chicago, Illinois 60613
Where electronic innovation is a way of life.

LOOK! A NEW ELECTRONICS SLIDE RULE
WITH COMPLETE INSTRUCTION COURSE

Professional 10" all-metal Electronics Slide Rule. Designed specifically for technicians, engineers, students, hobbyists. Has special scales not found on any other rule. Enables you to solve electronics problems quickly, accurately. Made to our rigid specs by Pickett, Inc. Slide Rule plus four lesson AUTO-PROGRAMMED Instruction Course with grading service, and top-grain leather carrying case... a $50 value for less than $20! Send coupon for FREE booklet. Cleveland Institute of Electronics, Dept. PE-156, 1776 E. 17th St., Cleveland, Ohio 44114.

SEND COUPON FOR FREE BOOKLET

Cleveland Institute of Electronics
1776 E. 17th St., Dept. PE-156,
Cleveland, Ohio 44114

Please send FREE Electronics Slide Rule Booklet. SPECIAL BONUS: Mail coupon promptly and get FREE Pocket Electronics Data Guide, too! ELECTRONICS SLIDE RULE

GET THIS FREE!

NAME
(Please Print)

ADDRESS

CITY

STATE

ZIP

A leader in Electronics Training... since 1934

CIRCLE NO. 9 ON READER SERVICE PAGE

SHORT-WAVE LISTENING
(Continued from page 86)

Holland—Hilversum is noted on 17,730 kHz at 1753 in Dutch to Africa and Europe; music followed.

Indie—All India Radio, Delhi, observed on 5535 kHz with IS at 1315, then into language but with an amount of programs in English at 1225.

Israel—A Canadian ham operator, VE3MR, Toronto, has been pushing for English xmsn's to N.A. in his contacts with 4X4DX, an Israeli ham. As a result, Kol Israel has begun experimental xmsn's to N.A. on 9009 kHz at 0400-0415 with a rhombic antenna beamed on New York City. Program content is mainly news and comment. Reports are urgently requested (please show times in your own local time zone) and send them to Box 1082, Jerusalem.

Japan—R. Japan, Tokyo, is on 15,445 kHz (repl 15,135 kHz) at 2345-0045 to East Coast N.A. with news, talks, commentaries and some music.

Kenya—V. of Kenya, Nairobi, again audible on 4915 kHz from 0310-0325 with native music, a soft African language, and commercials.

Korea (North)—R. Pyongyang has been found on 15,408 kHz with s/on in English and following with

Glenn Brinks, WPE2QBM, Granite Springs, N.Y., has an impressive layout of equipment, including a National NC-400, a Hammarlund HQ-145, a Heath FM tuner, a 1947 Zenith Radiorgan, a 21" TV and a General Electric medium-wave tuner. He is currently hunting a source of technical manuals for the NC-400 receiver and his Sylvania SG 30/ up oscilloscope.

Spanish programming at 0100; news is given to 0120, then music. Another outlet, on 15,518 kHz, was heard once with English news at 0201 but with heavy QRM from Dacca (Pakistan).

Kuwait—R. Kuwait is evidently not observing their listed 1730 s/off on 11,920 kHz for many listeners report hearing them until past 1800 in English. News is given at 1615.

Malaysia—V. of Malaysia, Kuala Lumpur, 15,280 kHz, was noted well in the Indonesian service at 1200-1220. The BBC relay station on 9580 kHz was pulled in at 1736 with a religious program and a very strong signal.

Nepal—Many recent checks indicate the station on 11,570 kHz to be Kathmandu. Noted from 0220 s/off with programming similar to that of All India Radio, the IS consists of a piano and other as yet
unidentified instruments and possibly a gong. News in language is given at 0250 and in English at 0300, then back into language with native music at 0310.

Netherlands Antilles—Trans World Radio, Bonaire, was found on 9730 kHz at 0929 with IS, then Spanish music and news with some religious music. The medium-wave outlet on 800 kHz was much stronger, even on the extreme West Coast.

Nicaragua—A very late tuning on 5935 kHz shows up with RadioNacional de Nicaragua Managua America Central at 2445 t/in with old pop music.

SHORT-WAVE ABBREVIATIONS

Announcement (B.B.C.)—British Broadcasting Corp.; R.C.A.—Radio Corporation of America; IS—Interval Signal; KHz—Kilohertz; kW—Kilowatts; L.A.—Latin America; N.A.—North America.

DRM—Interference; R—Radio; rep.—Repeating; s/off—Sion-off; s/on—Sion-on; u—in Tun—In; V—Voice; VOA—Voice of America; wmt—in—Transmitter; wmt—Transmitter.

Nigeria—V. of Nigeria, Lagos, has this schedule: 0600-0630 English on 7275, 15,365 and 21,455 kHz; 1350-1430 French and 21,455 kHz; 1430-1530 Hausa and 1930-2030 French on 7275, 9690, 11,770 and 15.365 kHz: 1530-1700 English on 7275, 9690. 15,365 and 21,455 kHz; 1700-1800 Arabic on 7275, 15,365, and 21,455 kHz; and 1890-1930 English on 7275, 11,770, 15,365, and 21.455 kHz.

Pakistan—Karachi was heard on 11,965 kHz ending English at 1516; this is another new frequency.

Peru—Silent for several months, OAX5Q, R. Anguay, Abancay, is again active on 4997 kHz to listener request music and Spanish amnt’s until past 0300.

Portugal—Emissora Nacional, Lisbon, is now on a new frequency of 21.735 kHz where it is heard at 1900-2115 and 1615-1630 dual with 21,700 kHz. The 11,935 kHz outlet is usually good around 0400 with a press round-up. R. Ribatejo, Santarem, is being heard in eastern N.A. around 1100 on medium-wave channel 1322 kHz. The schedule is 0900-2000 in Portuguese, the power is 500 watts, and correct reports will be verified promptly by Jamie Valerie Santos, owner, who stated that all equipment in the station is home-made.

Qatar—Qatar B/C Service, P. O. Box 1414, Doha, is verifying by letter only after making detailed checks of the reception reports. Reports may be sent to Taker Shihabi, Director. Additional tentative loggings have been made at 1330-1415 fade with typically Arabic programming on 9570 kHz. Their power is reported to be 100 kW with a non-directional antenna.

Rwanda—Deutsche Welle relay, Kigali, 11,795 kHz, has language to N.A. with mostly uninterrupted band music at 0220-0240 and jazz to 0245: news items are given to 0255 followed by an anthem and s/off.

Sweden—R. Sweden, Stockholm, has an English mailbag at 1905 on 11,865 kHz.

Syria—Damascus can occasionally be heard on 9555 kHz around 2030 in Arabic; signals at best are only fair to good.

Tunisia—Tunis, 5985 kHz, was logged at 0630-0700 with Arabic vocals, dual to 15,215 kHz.

Vatican City—Two more new frequencies are in use by Vatican Radio: 6145 kHz at 0047-0105 in English to N.A. with religious talks, and 5915 kHz at 2327-2343 in Spanish to Central America with similar programming.

Venezuela—Two new stations to report from this country include R. Carora, Carora, 5018 kHz, from 2340 with music and ID’s and R. Occidente, location

May, 1969
Have your own Radio Station!

Learn

AMATEUR

RADIO

AT HOME IN YOUR SPARE TIME

Get your Amateur Radio license and "go on the air." NRI, leader in Electronics home training for more than 50 years, offers a choice of training plans leading to required FCC licenses, ranging from Basic Amateur Radio for the beginner to Advanced Amateur Radio for the ham who already has a license and wants to move up.

HAM RADIO EQUIPMENT INCLUDED

NATIONAL RADIO INSTITUTE
Washington, D.C. 20016

MAIL COUPON TODAY

NATIONAL RADIO INSTITUTE
Washington, D.C. 20016

Please send me information on Amateur Radio training.

Name__________________________Age_________

Address__________________________City__________________________State__________________________Zip_________

ACCRREDITED MEMBER NATIONAL HOME STUDY COUNCIL

SHORT-WAVE CONTRIBUTORS

Wayne Rosenfield (WPEI'HIV), Springfield, Mass.
Tim Blidodeau (WPEK'LI), Kennebunk, Maine
Paul Curran (WPEI'HIV), East Boston, Mass.
Jim Kennewick (WPEE'LOL), New Canaan, Conn.
Kim Stinson (WPEE'KBD), Forest City, N. Y.
Darryl Stanford (WPE2'KJD), New York, N. Y.
Bernie Lansing (WPE2'PBA), Rochester, N. Y.
Carl Lecker (WPE2'PEI), Ethport, N. Y.
John Banta (WPE2'HU), Bay Shore, N. Y.
Robert Arnold (WPE2'POR), Canasota, N. Y.
Martin Shulman (WPE2'RED), Stone Valley, N. Y.
Harold Ort, Jr. (WPE2'OHO), Gloversville, N. Y.

Ori Siegel (WPE3'IHX), Toronto, Ont.
Jack Graham (WPE3'OVT), New Milford, N. J.
Lloyd Zeidner (WPE3'QRC), Bayside, N. Y.
Dr. Charles Schwartzbard (WPE3'PTA), Clifton, N. J.
Jim Ohrauma (WPE3'RHJ), Monroeville, Pa.
Scott Moeller (WPEH'SE), Villanova, Pa.
Peter Roneika (WPE3'HMV), Rosmont, Pa.
Jan Epstein (WPE3'HT), Drexel Hill, Pa.
Jan Ferguson (WPE3'PC), Coral Cayes, Fla.
Grady Ferguson (WPE4'ABC), Charlotte, N. C.
Bruce Tindall (WPE4'OLO), Chapel Hill, N. C.
Steve Rubenstein (WPE4'HIV), Chattanooga, Tenn.
Bill White (WPE4'IVR), Union, S. C.
David Potter (WPE4'XAO), Key West, Fla.
Bob Penno (WPE4'XJ), Atlanta, Ga.
Leslie Reeves (WPE4'KJQ), Calhoun, Ga.
David Veronicka (WPE4'BB), Durham, N. C.
Donald Holden (WPE4'BI), Stillwater, Minn.
David King (WPE4'EJ), Monroe, La.
Charles Bennett (WPE5'FSS), Sumrall, Miss.
Bill Flynn (WPE5'AF), Mountain View, Calif.
Jim Young (WPE5'EBJ), Wrightwood, Calif.
Wallace Glawich (WPE6'EFPX), Eureka, Calif.
Jeff Utter (WPE6'HD), Forest City, Calif.
Craig Anderson (WPE6'HII), Pasadena, Calif.
L. E. Kuney (WPE6'AD), Detroit, Mich.
Jonathan Tara (WPE6'BK), Detroit, Mich.
James Fravel (WPE6'KCP), Canton, Ohio.
Gerry Dexter (WPE6'HDB), Lake Geneva, Wis.
Richard Pisteke (WPE6'HOJ), Chicago, Ill.
Andrew Pappas (WPE9'OJ), Chicago, Ill.
Fred Lynch (WPE9'HD), Girard, Ill.
A. R. Nishlake (WPE9'KAI), Vincennes, Ind.
John Beavcr (WPE9'AE), Pueblo, Colo.
Jim Randles (WPE9'CWK), Cunningham, Kan.
David Schmidt, Jr. (WPE9'PHV), St. Joseph, Mo.
Jerry McMahen (WPE8'PS), Cedar Rapids, Iowa.
Jack Perolio (PY2'PET), Sao Paulo, Brazil
Anhin Aliviville-de Chen (VE2'PEIV), Quebec, Que.
Bernard Macaure (PY1'PET), Edmonton, Alta.
Vithak Weinbaum (4X5'PET), Tel-Aviv, Israel
Charles Albertson, Scottsdale, Ariz.
Lou Alteh, Rahway, N. J.
Larry Ayers, Quincy, Ill.
Bruce Brandl, Stevens Point, Wis.
Edward Colby, Lynn, Mass.
Alan Herbach, Oak Park, Ill.
George Houbieh, Calumet City, Ill.
Daniel Kosko, Maple Heights, Ohio.
Randy Lucht, St. Cloud, Minn.
David Miller, Albany, N. Y.
D. M. Rees-Thomas, Blair, Ont.
Martin Rosenthal, Toronto, Ont.
Reid Rowlett, Greensboro, N. C.

Richie Scalco, Wheaton, Md.
David Stamm, Richmond, Ind.
Gary Steele, Benton Harbor, Mich.
Ivan Waufle, St. Johnsville, N. Y.
Radio New York Worldwide, New York, N. Y.
Sweden Calling DX'ers Bulletin, Stockholm, Sweden

not yet determined, on 3225 kHz from 0112-0200 a.m.,

Unidentified—Numerous stations are being noted in the 10-meter band, all of them in Russian except as noted. If anyone can come up with any definite information on these, we'd appreciate hearing it. They are being heard on 30,280 kHz at 0032; 29,520 kHz at 0042; 28,780 kHz at 0025 with musical tone and music; 28,495 kHz at 0021; 28,490 kHz at 2355 with music and at 0102 with talk; 28,380 kHz in Spanish at 0018; 28,350 kHz at 2353; 28,290 kHz at 0017 with singing; 28,250 kHz at 0038; and 28,280 kHz at 2350 with an unidentified ID, a musical tone at 0100 and into Russian programming.

SHORT-WAVE CONTRIBUTORS

Wayne Rosenfield (WPEI'HIV), Springfield, Mass.
Tim Blidodeau (WPEK'LI), Kennebunk, Maine
Paul Curran (WPEI'HIV), East Boston, Mass.
Jim Kennewick (WPEE'LOL), New Canaan, Conn.
Kim Stinson (WPEE'KBD), Forest City, N. Y.
Darryl Stanford (WPE2'KJD), New York, N. Y.
Bernie Lansing (WPE2'PBA), Rochester, N. Y.
Carl Lecker (WPE2'PEI), Ethport, N. Y.
John Banta (WPE2'HU), Bay Shore, N. Y.
Robert Arnold (WPE2'POR), Canasota, N. Y.
Martin Shulman (WPE2'RED), Stone Valley, N. Y.
Harold Ort, Jr. (WPE2'OHO), Gloversville, N. Y.

Ori Siegel (WPE3'IHX), Toronto, Ont.
Jack Graham (WPE3'OVT), New Milford, N. J.
Lloyd Zeidner (WPE3'QRC), Bayside, N. Y.
Dr. Charles Schwartzbard (WPE3'PTA), Clifton, N. J.
Jim Ohrauma (WPE3'RHJ), Monroeville, Pa.
Scott Moeller (WPEH'SE), Villanova, Pa.
Peter Roneika (WPE3'HMV), Rosmont, Pa.
Jan Epstein (WPE3'HT), Drexel Hill, Pa.
Jan Ferguson (WPE3'PC), Coral Cayes, Fla.
Grady Ferguson (WPE4'ABC), Charlotte, N. C.
Bruce Tindall (WPE4'OLO), Chapel Hill, N. C.
Steve Rubenstein (WPE4'HIV), Chattanooga, Tenn.
Bill White (WPE4'IVR), Union, S. C.
David Potter (WPE4'XAO), Key West, Fla.
Bob Penno (WPE4'XJ), Atlanta, Ga.
Leslie Reeves (WPE4'KJQ), Calhoun, Ga.
David Veronicka (WPE4'BB), Durham, N. C.
Donald Holden (WPE4'BI), Stillwater, Minn.
David King (WPE4'EJ), Monroe, La.
Charles Bennett (WPE5'FSS), Sumrall, Miss.
Bill Flynn (WPE5'AF), Mountain View, Calif.
Jim Young (WPE5'EBJ), Wrightwood, Calif.
Wallace Glawich (WPE6'EFPX), Eureka, Calif.
Jeff Utter (WPE6'HD), Forest City, Calif.
Craig Anderson (WPE6'HII), Pasadena, Calif.
L. E. Kuney (WPE6'AD), Detroit, Mich.
Jonathan Tara (WPE6'BK), Detroit, Mich.
James Fravel (WPE6'KCP), Canton, Ohio.
Gerry Dexter (WPE6'HDB), Lake Geneva, Wis.
Richard Pisteke (WPE6'HOJ), Chicago, Ill.
Andrew Pappas (WPE9'OJ), Chicago, Ill.
Fred Lynch (WPE9'HD), Girard, Ill.
A. R. Nishlake (WPE9'KAI), Vincennes, Ind.
John Beavcr (WPE9'AE), Pueblo, Colo.
Jim Randles (WPE9'CWK), Cunningham, Kan.
David Schmidt, Jr. (WPE9'PHV), St. Joseph, Mo.
Jerry McMahen (WPE8'PS), Cedar Rapids, Iowa.
Jack Perolio (PY2'PET), Sao Paulo, Brazil
Anhin Aliviville-de Chen (VE2'PEIV), Quebec, Que.
Bernard Macaure (PY1'PET), Edmonton, Alta.
Vithak Weinbaum (4X5'PET), Tel-Aviv, Israel
Charles Albertson, Scottsdale, Ariz.
Lou Alteh, Rahway, N. J.
Larry Ayers, Quincy, Ill.
Bruce Brandl, Stevens Point, Wis.
Edward Colby, Lynn, Mass.
Alan Herbach, Oak Park, Ill.
George Houbieh, Calumet City, Ill.
Daniel Kosko, Maple Heights, Ohio.
Randy Lucht, St. Cloud, Minn.
David Miller, Albany, N. Y.
D. M. Rees-Thomas, Blair, Ont.
Martin Rosenthal, Toronto, Ont.
Reid Rowlett, Greensboro, N. C.

Richie Scalco, Wheaton, Md.
David Stamm, Richmond, Ind.
Gary Steele, Benton Harbor, Mich.
Ivan Waufle, St. Johnsville, N. Y.
Radio New York Worldwide, New York, N. Y.
Sweden Calling DX'ers Bulletin, Stockholm, Sweden
AMATEUR RADIO
(Continued from page 84)

News that CW is the final back-up communications system for the up-coming U.S. landing on the moon. Each control position of the Lunar Module, which will actually land on the moon, is equipped with a 512-kHz CW transmitter complete with its own little antenna and a "25-word per minute key."

Mountain Rescue. Newspapers and radio/TV programs frequently tell of dramatic search and rescue operations for persons lost or injured in rugged mountain terrain after skiing accidents, storms, plane crashes, etc. Writing in the Denver Amateur Radio Club, Inc. Round Table, Walt Hane, W4HXC, reports that these rescue missions are usually performed by organized mountain rescue units. Of course, radio communication is mandatory for the success of the missions. Walt says that Amateur Radio became an integral part of a Colorado mountain rescue in 1968. Single sideband on 3990 kHz is used for communication between rescue groups in the field and headquarters in Denver. With an average of 15 mountain rescue missions a year, there are plenty of opportunities for interested Colorado amateurs to become a part of such operations.

Using a National NCX-3 transceiver and Knight-Kit T-150 transmitter, Roger Hehr, WA3JYM, Reading, Pa. got a Novice in April '68, Advanced in July.

WB6RBR Not Guilty! In our January column, we had a note that the FCC had suspended the amateur license of Michael S. Ingram, WB6RBR, San Diego, Calif. We are happy to report that, in a further hearing requested by Mr. Ingram (Docket No. 183/4) May, 1969
the Commission found the charges against him groundless and terminated the proceedings. Our congratulations to WB6RBR on his vindication, and our sincere regrets that we did not receive the Federal Communications Commission Memorandum and Order terminating Docket No. 18304 earlier.

Navy Radio for Amateurs. On Armed Services Day, May 17, Navy Radio, Washington, D. C. will mark its 44th year of broadcasts to amateurs. Hams are invited to man the guest operator positions at Communications Station Headquarters, Cheltenham, Md. All equipment is furnished, although personal “bugs,” keyers and headphones are allowed. If you can’t join the activities in person, contact NSS during the crossband tests or listen for a message from the Secretary of Defense. A certificate is awarded to those submitting a perfect copy of the CW/RTTY broadcast. Navy Radio will monitor the following frequencies: RTTY—3.620, 7.080, 14.100, 21.055; CW—3.700, 7.150, 14.150, 21.100; SSB—3.966(LSB), 7.285 (LSB), 14.300(USB), 21.375(USB).

NEWS AND VIEWS

Dr. med. Sigurd Meng, DL2HI, 8 Munchen 90, Candidstrasse 18/VI, Germany, operates 80 through 10 meters with a Drake T-4X transmitter and R-4B receiver. He runs 200 watts feeding a “W3DZZ” (trapezoidal) dipole on 80 and 40 meters and a Mosley tri-band vertical on 10, 15, and 20 meters. Living on the 6th floor of a 96-family apartment building,

Joe Rutledge, WB4ESE, Lewisburg, Tenn., may be figuring out how to get the last three QSL cards he needs for a Worked All States certificate. He uses a Drake TR-4 transceiver feeding two dipoles and a vertical antenna—not all at once, of course.

Sigurd looks down on his antennas and most of Munich. Being a specialist in pulmonary diseases, he does not have too much time to get on the air but still loves amateur radio as much as he did when he first started in 1924 when he was 14. Although not a certificate collector, Sigurd likes to chase DX and work different U.S. counties. Eighty
The RCA WO-33A Super-Portable 3-Inch Oscilloscope helps solve virtually any electronics servicing problem, inside or outside the shop. Its combination of exceptionally low cost and high performance have already made it popular as a monitoring and trouble shooting 'scope in black and white and color TV broadcasting studios, and in professional service. And why not? Here's a 3-inch 'scope that meets your requirements for gain, bandwidth, transient response, accuracy, versatility, and portability. AND IT'S ONLY $139.00.* Also available in an easy to assemble kit, WO-33A (K).

The RCA WO-91C 5-inch Dual Band Oscilloscope is a reliable, heavy-duty, precision 'scope in use in thousands of installations from classrooms to TV distribution systems...from service benches to broadcast stations. You probably can't find a better value. Applications include waveform analysis, peak-to-peak voltage measurement, square-wave testing, and observation of circuit characteristics. A front-panel switch gives you an easy choice of wide-band or narrow-band (high sensitivity) operation. It's easily portable, AND IT'S ONLY $269.00.* The WO-91C-V1 is available for 240V operation, no increase in price.

*Optional Distributor resale price. Prices may be slightly higher in Alaska, Hawaii, and the West.

Write for a catalog with complete descriptions and specifications for all RCA test equipment: RCA Electronic Components, Commercial Engineering, Department No. E133W, Harrison, N. J. 07029

LOOK TO RCA FOR INSTRUMENTS TO TEST/MESASURE/VIEW/MONITOR GENERATE

CIRCLE NO. 31 ON READER SERVICE PAGE
per cent of his work is on CW, the rest on SSB, although he would work more SSB, if English-speaking stations—especially "W"s—didn't say their call letters so rapidly... John Thier, WNJZJ, RD #2, Dallas, Pa., 18612, invites anyone interested in a new Novice traffic net on 7185 kHz to write to him for details... Forrest L. Fox, WANKRA, Allens-ville, Ky. 42204, works 80 and 40 meters. Norm did not mention his antenna, but his in-the-shack equipment includes a Heathkit DX-60 transmitter, a Heathkit HR-10B receiver and dipole antenna. Thirty-seven states worked and 31 confirmed indicate that he is doing things right.

Fred Reeser, WAOWPE, 4344 N. Mozart, Chicago, Ill. 60618, is an enthusiastic graduate of the Chicago Area Radio Club's code and theory classes. The club meets twice a month in Room 202, Horner Park Fieldhouse, California and Montrose Ave., Chicago. Fred is a member of the QRP (low-power) club and of the Rag Chewsers' Club. His Knight-Kit T-50 transmitter, Heathkit HR-10B receiver and dipole antenna have worked 17 states...

Noel Schnell, WN4LCV, 1081 Stage Ave., Memphis, Tenn., received his Novice license the end of September and passed the General class test in early January but was still waiting for the new ticket when we spoke. Noel receives on a Hallicrafters SX-140 and transmits on a Heathkit DX-60 running 75 watts. He has worked 30 states on 40 and 15 meters...

Rob Hummel, WN3XYT, 101 East Oak Hill Ave. Joplin, Mo., works the four Novice bands. A Globe-Chief 90A transmitter, a Halli-crafters SX-43 receiver, and dipole antennas cover the lower frequencies; a Heathkit HW-30, modified for CW operation covers the 140-147-MHz region. At first, Rob didn't get out so well but after putting new coaxial feed lines on his antennas, he began getting his share of S8 and S9 reports...

Eric Smith, K3YWJ, reporting from KAT7C, Box 7422, APO, San Francisco, Calif. 96502, says KAT7C near Fukuoaka City, Kyushu, Japan, has been active for a year. Equipment at the station includes a Yaesu Musen FTDX-100 transceiver, FLDX-2000, linear amplifier, and FTV-650, 6-meter transverter, and a FTDX-400. More familiar names include a Hallicrafters HT-37 transmitter, SX-111 receiver, Heathkit "Warrior" amplifier, SB-101 transceiver, and SB-200 amplifier, and a Hy-Gain TH-3 tri-band beam 70 feet high. KAT7C has worked all 50 states, 90 countries, and 36 of the 40 DX "zones." The boys frequently look for Novices on 21,215 kHz and are always on the lookout for "W" QSO's on all bands... In W1BP's 160-meter DX Bulletin, Australian shortwave listener, George Allen reports missing the call letters of weak DX stations who send too slowly, because static or fading takes out letters or parts of letters... Timothy, WN2GTO, (son) and Clint, WN2GTS, (father) Vandagriff, 88 Boxwood Drive, Rochester, N.Y. 14617, got their licenses at the same time last July. They operate the 80, 40, and 15-meter Novice bands with a Heathkit DX-60B transmitter and an HR-10B receiver in conjunction with a home-constructed "trap" dipole, 45 feet high. Clint has 30 states and three countries confirmed; Tim has 39 states and five countries confirmed. They plan to take their General exams this summer; both have 20-WPM code-proficiency certificates, so the code test should be no problem.

David K. Riggsbee, WNYAS, Route 3, Plymouth, Ill., started out with a Globe Chief 90 transmitter and a "surplus" ABC/5 "Command" receiver. He now uses a Hallicrafters SX-110 receiver. Antennas are 80 and 15-meter dipoles, and Dave has a Rag Chewsers Club certificate and cards from 30 states on the shack wall... Steve Bryant, W2NDF, Star Route, Central Bridge, N.Y. 12095, has worked 20 states on 80 meters feeding his B & W 5100 transmitter into a dipole antenna 10 feet high. He uses a different antenna on 40 meters; he has worked a total of 57 states. An old Hammarlund HQ-120 and an ancient Hallicrafters "Super Skyraider" do the receiving...

Thrill your amateur friends—let them read about you in "News and Views." Write us a letter and include a sharp picture (preferably black and white) if possible. We also appreciate being added to or kept on your club paper mailing list. Address: Herb S. Brier, W9EGQ, Amateur Radio Editor, POPULAR ELECTRONICS, P. O. Box 678, Gary, Ind., 46401.

Leon (W8PJH) and Eileen (SV5S) Stuber are pictured on the U.S. Steel Company's Great Lakes ore ship "Widener." Leon, a Chief Marine Engineer, operates mobile on the lake each summer using a Heathkit SB-300 receiver, and SB-400 transmitter.

NEW / CB TRANSCEIVER SOLID STATE PRE-AMP

- Improves CB Base Station Performance
- Works on tube or transistor equipment
- No Modification to CB unit
- On-the-air sign automatically lights when transmitting

Model PCB with built-in power supply, transfer relay, connecting cables, wired and tested... $59.95

Write for free literature

AMEMCO / DIVISION OF AEROTRON, INCORPORATED
P. O. BOX 6527 • RALEIGH, NORTH CAROLINA 27608

CIRCLE NO. 1 ON READER SERVICE PAGE
Boy, do they. Stuff like HetroSync® Circuitry that substantially reduces spurious frequencies.

A Pearce-Simpson exclusive.

Our dual conversion superhet receiver that pulls in signals where others fade. Nuvisor front end that gives you a very fine signal to noise ratio. The result: the biggest ears in the industry.

Automatic speech clipping by high level saturation limiting. Big, easy to read dual function S Meter and RF Output Meter. Illuminated channel selector. Modulation indicator. Transistorized AC/DC power supply. Not to mention complete hand wired circuitry.

But what really frosts them is how we put all of these goodies into a compact, 23-channel beauty like the Guardian—including crystals, microphone, power cords and mounting cradle—and beat the daylights out of their prices:

Guardian 23 (which is both a mobile and base unit) with palm microphone, $269.90. Guardian 23B (base station with built-in preamp), $264.90. With Super Mod ceramic desk microphone, $279.90.

Write us and we'll send you a spec sheet on the whole line. Pearce-Simpson Inc., P.O.Box 800, Biscayne Annex, Miami Fla.33152. Dept. PE-569

Our competitors hate our guts.

Pearce-Simpson

A Division of GLADDING

May, 1969
In the event that the meter reading is greater than 2.5 mA, interchange Q1 and Q2 and/or adjust the value of R4 to bring it into line. However, if the problem still persists—even when R4 is short circuit—ed—one or both of the transistors is leaking too much current and must be replaced.

Conversely, if the meter reading is too low, try increasing the value of R5 or decreasing the value of R4, or both. Then, when the reading is within the 1 to 2.5 mA range, check tuning and regeneration as described above. If you still cannot tune in a station, or separate one station from another, reverse the connections of and/or add more turns to L2. If all else fails, you can assume that the Q1-Q2 combination has insufficient gain, and one or both must be replaced.

After proper operation is obtained, for smoothest control or regeneration, reduce the number of turns on L2, one at a time, enough to produce the beat note or whistle on all stations before R2 is advanced to its maximum clockwise position.

Operation. The tuner will cover about half of the AM broadcast band since the capacitance range of the varicap diode is rather limited. However, you can tune L1 to cover the portion of the band you desire. If you find that very strong signals “swamp” the tuner, simply reduce the value of C3 to 100 or 50 pF.

Finally, if the tuner tends to either “motorboat” or “plop” into or out of critical regeneration, try shifting the operating current as described earlier and reduce the number of turns on L2.

For speaker operation, the tuner will have to be converted to a receiver. The easiest way to accomplish this is to connect the output to any one of the various low-cost audio amplifier modules available. To do this, disconnect the headphones and replace them with a 3000 to 6000-ohm, ½-watt resistor. The signal can then be tapped from J4 via a d.c. blocking capacitor and ground.
POWER INVERTER
(Continued from page 67).

because it simply won’t oscillate. A moderate overload permits the transistors to switch but the operation is in their linear region resulting in excessive heat generation and subsequent destruction.

For non-permanent use in a car, trailer, or truck, use a length of at least #14 wire and a cigarette lighter plug for the power input. For semi-permanent use, substitute a pair of heavy-duty crocodile clips for the lighter plug. In this case, connection can be made directly to the battery. In both cases, observe the polarity!

If the inverter produces “hash” on the vehicle’s power system and interferes with radio operation, connect a 250- to 500-μF, 25-volt electrolytic capacitor across the inverter input terminals. Be sure to get the polarities correct on the capacitor.

Finally, remember that the inverter is not a substitute for the commercial 117-volt supply under all circumstances. For example, the voltage output is peak output, not r.m.s. Peak voltage of the commercial 117-volt line is about 161 volts. Hence, if you are using a device containing a peak rectifier, you can expect some reduced performance.

The output voltage is a function of the applied load as shown in Fig. 2. The frequency of the output varies with load as shown in Fig. 3. Bear this in mind when using devices whose operation depends on power-line frequency (synchronous motors, for example).

GENERAL MOTORS TAKES OVER REACT

National sponsorship of REACT—the CB emergency corps—has been assumed by the GM Research Laboratories. At the latest estimate, REACT comprised 1300 teams and 40,000 individual members. GMRL reportedly will expand the operation.

REACT has generally been accepted as the one “good thing” about CB. Started by the Hallicrafters Company, REACT has been instrumental in assisting proper authorities with a wide variety of local emergencies.

REACT offices are now at 205 West Wacker Drive, Chicago, Illinois 60606.
LEARN

ELECTRONICS

COYNE ELECTRONICS INSTITUTE

Electronics Engineering Technology—Degree (2 Yrs.)
. Electrical-Electronics Technician—Diploma (40 Wks.)
. TV-Radio-Electronics Technician—Diploma (48 Wks.)
. Complete Electronics Technician—Diploma (88 Wks.)
. Practical Electrical Maintenance—Diploma (32 Wks.)
. Practical Refrigeration Air Conditioning
. Appliance Repair—Diploma (24 Wks.)

Special finance plans. Graduate employment service.

MAIL COUPON FOR FREE BOOK

Coyne Electronics Institute Dept. 59-C2
1501 W. Congress Pkwy., Chicago, Ill. 60607
Send information in checked below

HOME TRAINING in TV, Radio and Color TV
RESIDENT SCHOOL COURSES in Electronics, Electricity, Engineering Technology, Television, Refrigeration, and Air Conditioning...

Name...........................Age...........
Address............................
City...............................State......
Zip...............................

APPROVED FOR VETERANS
 Accredited Member: National Association of Trade and Technical Schools.

CIRCLE NO. 13 ON READER SERVICE PAGE

UNUSUAL BARGAINS

"See" Your Music in Dazzling Action with Dramatic Breakthrough in Audio-Vision Enjoyment

Actually see beautiful musical selections translated into fantastic patterns of colored light—each individual note creating its own pattern, twirling, radiating shape patterns as it dances and prances, whirling and spinning in perfect time with the music.

Order at once.

NEW! PROJECTION KALEIDOSCOPE

Infinity of brilliant color patterns is what it is all about. Scopically designed interchangeable 9" and 11" wheel, 3 post lens and Edmund Projector make it all possible. Easily operated, Large screen image at short projection distance perfect for home use. (Light above, parties, dances, etc. instant or near proy.)

Stock No. 71,121AV..............$94.50 Postpaid

NEW! LONG-WAVE BLACK LIGHT FIXTURE

Stock No. 70,564aV

Stock No. 60,124AV (Replacement Bulb)..............$3.25 Pp'd

Order by Stock No.—Check or M.O.—Money-Back Guaranteed

EDMUND SCIENTIFIC CO., 300 EDISCORP BLDG., BARRINGTON, II., 60010

CIRCLE NO. 14 ON READER SERVICE PAGE

LIBRARY

(Continued from page 14)

half of the book, experiments provide a basic groundwork in transistor technology, covering such areas as: plotting characteristic curves; measuring parameters of the three basic transistor configurations; and analyzing the audio-amplifier, phase-splitter, and output stages. Then the remaining experiments deal with relatively intricate transistor networks, such as the theory and operation of multivibrators and the concept of parametric action.

Published by Hayden Book Co., Inc., 116 West 14 St., New York, N.Y. 10011. Soft cover. 188 pages. $3.95

MOST-OFTEN-NEEDED 1969 TELEVISION SERVICING INFORMATION Volume TV-28

compiled by M. N. Beiteman

Aside from a good knowledge of troubleshooting procedures and the proper test equipment, one of the most valuable assets a TV serviceman can have is a ready reference source of all current TV chassis and schematics. This book, a veritable encyclopedia of current servicing information on all top-name-brand monochrome TV receivers, fills the bill admirably. In addition to providing schematic diagrams, the manual is lavishly illustrated with photographs and printed circuit board illustrations that help the reader to locate quickly any part or chassis in any TV receiver presented. Also provided are: by-the-number disassembly, adjustment, and alignment instructions; lists of test equipment needed; and the proper oscilloscope waveshapes that should be observed.

Published by Supreme Publications, 1760 Balsam Rd., Highland Park, Ill. 191 pages. Soft cover. $4

KNOW YOUR TUBE AND TRANSISTOR TESTERS

by Robert G. Middleton

Tube and transistor testers are as important to modern troubleshooting as are the VTVM and multimeter. It is essential, therefore, that the serviceman who has to rely on these instruments know their proper usage, their capabilities, and—above all—their limitations. This book has been written to provide a complete non-mathematical course or review of the essentials of these testers. The first chapter, for example, is devoted to "Tube and Transistor Testing Requirements." From here, the book proceeds to describe the various types of transistor testers available—including the use of the oscilloscope as a curve tracer. The final two chapters are devoted to tube tester types. A number of review questions are given at the end of each chapter.

Published by Howard W. Sams & Co., Inc., 1300 West 69 St., Indianapolis, Ind. 46206. Soft cover. 148 pages. $3.50

POPULAR ELECTRONICS
SOLID STATE
(Continued from page 82)

conductor Division. Fully illustrated with
schematics, graphs and tables, the 74-page
book covers semiconductor theory and re-
verse breakdown phenomena, dynamic re-
sistance, temperature-compensated zeners,
thermal considerations, a.c. and d.c. appli-
cations, audio and r.f. applications, and
circuit protection. A special chapter is devoted
to computer and instrumentation applica-
tions. The handbook, HB-20B, is priced at
$3.00 per copy and may be purchased
through franchised distributors or ordered
from International Rectifier, 233 Kansas St.,
El Segundo, CA 90245.

3-8270, recently published by GE's Mini-
ture Lamp Department (Nela Park, Cleve-
dland, OH 44112), is one of the best we've
seen, for the explanations are given in plain
language without resort to abstruse mathema-
tical expressions. Other chapters are de-
voted to such practical topics as lamp char-
acteristics, opto-electronics, and circuit
applications. An excellent glossary, a short
bibliography, and a table of commercial
crystals are included in this 60-
page manual. The booklet is $2.00 per copy.

New Devices. A number of semiconductor
manufacturers offer transistors in "family
groups"—that is, a series of closely related
devices with almost identical general spe-
cifications and maximum ratings, but dif-
ferent gain values. Knowing this, many
hobbyists and experimenters attempt to im-
prove the performance of magazine or home-
developed projects by substituting high-gain
devices for corresponding low-gain units.
Theoretically, such a move could increase
the sensitivity of a receiver or result in high-
er gain in an amplifier. In practice, however,
the experimenter is often disappointed with
the final results. There may be little, if any,
increase in sensitivity, or in an audio cir-
cuit, the output signal may be distorted.

Although the substitution of high-gain de-
vices may be practicable in some projects,
it seldom can be accomplished simply by
substituting one transistor for another.

First, the unit's base bias must be read-
justed for optimum performance. Otherwise,
the high-gain unit may be biased to near
saturation, causing distortion, clipping, etc.

Second, some readjustment of load val-
ues may be necessary, for circuit imped-
ances can change when different transistors
are used. Here, any effective increase in
gain may be more than offset by circuit
losses due to inter-stage impedance mis-
match.

Third, the succeeding circuits must be
capable of handling signals of increased
amplitude. A power amplifier with a maxi-
mum output of 5 watts will not deliver
more power just because high-gain transis-
tors are used in its preamp stages.

Fourth, the increased gain, if achieved,
must be sufficient to cause a noticeable
change in the characteristics of the equip-
ment. A modest increase in gain in an au-
dio amplifier, for example, may be difficult
to identify due to the logarithmic response
characteristics of the human ear.

In general, then, it is best to use speci-
cified components in home-assembled pro-
jects. If substitutions are made, the builder
must be prepared to readjust bias and load
values to achieve optimum performance—
with the net result, quite often, no better
than the original design.

That's it for this month, except this—if
you're a Technical Writer or Editor attend-
ing the 16th International Technical Com-
munications Conference to be held at Mar-
ricot Twin Bridges, May 14-17, in Wash-
ington, D.C., drop by the Press Room and
say "Hi!" Yours truly will be hanging his
hat there—at least part of the time.—Lou
COMPRESSION SUSTAINER
(Continued from page 64)

off switch S1), the output level control (R9), and the output jack (J2) on the
selected cabinet. (All of these controls and jacks are called out in the February
1968 article.) Mount the footswitch either on top of the circuit box or in its
own box.

Some people may find that the compressor brings the bass level up too high.
In this case, add the bass-cut control circuit shown in Fig. 2. This simple filter
may be used either in the compressor electronics package or at the guitar.

Operation. Set the footswitch so that
the compressor is not in the circuit. With
the guitar (or other electronic instru-
ment) attached to the compressor input,
strike a chord and note the approximate
level of the volume peaks. Hit the foot-
switch to introduce the compressor, and
adjust R1 approximately one-quarter turn
clockwise (volume up). Then adjust the
output control (R9) until the level of the
music peaks is slightly higher than the
level previously noted when the compres-
sor was out of the circuit.

When using the compressor, you will
notice instrument sounds that were bare-
ly audible before. If the thump sound at
the attack of a note is disturbing, simply
lower the gain with R1. If you set R1
at slightly more than halfway, you may
get spurious feedback because of the high
system gain.

The compressor may be used in con-
junction with any guitar accessory, such
as wa-wa or fuzz. In both cases, the ef-
fict is magnified, and you must practice
using the compressor to learn how to get
the most from it. Also, the guitar volume
control has a decreased effect since, as
you turn it down, the compressor ampli-
fies more. Because of this, the guitar
volume control can be used as a vernier
for the compression.

The modified compressor has been used
by a number of well-known rhythm
groups with great success and should
provide the user with a "new sound" for
his guitar.

COOPERATE WITH THE
ZIP CODE PROGRAM
OF THE POST OFFICE
DEPARTMENT. USE ZIP
CODE IN ALL ADDRESSES

POPULAR ELECTRONICS
V.T.I. training leads to success as technicians, field engi-
neers, specialists in communications, guided missiles, com-
puters, radar, automation. Basic & advanced courses. Elec-
tronic Engineering Technology and Electronic Technology
curricula both available. Associate degree in 29 months. B.S.
Degree B.S., approved. Start February, September.
Browm campus. High school graduate or equivalent. Catalog.
VALPARAISO TECHNICAL INSTITUTE
DEPARTMENT PE, VALPARAISO, INDIANA 46383
COMMERCIAL RATE: For firms or individuals offering commercial products or services. $1.15 per word (including name and address). Minimum order $11.50. Payment must accompany copy except when ads are placed by accredited advertising agencies. Frequency discount: 5% for 6 to 12 months; 10% for 12 months paid in advance.

READER RATE: For individuals with a personal item to buy or sell, 70c per word (including name and address). No Minimum! Payment must accompany copy.

FOR SALE

FREE! Giant bargain catalog on transistors, diodes, rectifiers, SCR's, zeners, parts. Poly Paks, P.O. Box 942, Lynnfield, Mass. 09140.

BUG DETECTOR: WILL DETECT AND LOCATE SURREPTITIOUS TRANSMITTING DEVICES IN CONFERENCE ROOMS, HOME AND OFFICES, ETC. WRITE FOR DETAILS. WJS ELECTRONICS, 737 NORTH SEWARD, HOLLYWOOD, CALIF. 90038.

LOWEST Prices Electronic Parts. Confidential Catalog Free. KNAPP, 3174 8th Ave. S.W., Largo, Fla. 33540.

EUROPEAN and Japanese bargains catalogs. $1 each. Dee, 10639E Riverside, North Hollywood, Calif. 91602.

MUSIC LOVERS, CONTINUOUS, UNINTERRUPTED BACKGROUND MUSIC FROM YOUR FM RADIO, USING NEW INEXPENSIVE ADAPT.-OR. FREE LITERATURE. ELECTRONICS, 11500-Z NW 7TH AVE., MIAMI, FLORIDA 33168.

Radio-T.V. Tubes—33¢ each. Send for free catalog. Cornell, 4213 University, San Diego, Calif. 92105.

WHOLESALE COMPONENTS: Manufacturers and distributors only. Request free catalog on business letterhead. WESCOM, Box 2536, El Cajon, California 92021.

CONVERT any television to sensitive, big-screen oscilloscope. Only minor changes required. No electronic experience necessary. Illustrated plans, $2.00. Retco-A33, Box 10563, Houston, Texas 77018.

BUILD TV CAMERA IN SINGLE EVENING using solid-state encapsulated modules. Previous TV knowledge unnecessary. Ideal for students, experimenters, etc. Economical! Exciting details FREE. Also request catalog describing other camera kits. plans, etc. ATV RESEARCH, 1301 Broadway, Dakota City, Nebr. 68731.

INVESTIGATORS, LATEST ELECTRONIC AIDS. FREE LITERATURE. CLIFTON, 11500-L NW 7th Ave., MIAMI, FLORIDA 33168.

GENERAL INFORMATION: First word in all ads set in bold caps at no extra charge. Additional words may be set in bold caps at 10c extra per word. All copy subject to publisher's approval. Closing Date: 1st of the 2nd preceding month (for example, March issue closes January 1st). Send order and remittance to: Hal Gymes, POPULAR ELECTRONICS, One Park Avenue, New York, New York 10016.

DIAGRAMS—Radios $1.50, Television $3.00. Give make and model. Diagram Service, Box 1153PE, Manchester, Conn. 06042.

GARRARD Record Changers, Hi-Fi Components, Cartridges, Needles, Tape, TV Parts, Schematics. Write for Unbelievable Prices. Gregg Electronics, P.O. Box 184, Glen Head, N.Y. 11545.

FREE ELECTRONICS PARTS FLYER. Large catalog $1.00 deposit. BIGELOW ELECTRONICS, BUFFTON, OHIO 45817.

HOBBYISTS, EXPERIMENTERS, amateur scientists, students . . . Construction Plans—All-terrain TV Camera, Radar, Bi-Directional, Space Alert, Long Range Radar, two-way Radio, Indoor Receiver, TV Transmitter, etc. Send for free catalog. 25¢. Microtronics, 11500-L NW 7TH AVE., MIAMI, FLORIDA 33168.

COMMERCIAL RATE: For firms or individuals offering commercial products or services. $1.15 per word (including name and address). Minimum order $11.50. Payment must accompany copy except when ads are placed by accredited advertising agencies. Frequency discount: 5% for 6 to 12 months; 10% for 12 months paid in advance.

READER RATE: For individuals with a personal item to buy or sell, 70c per word (including name and address). No Minimum! Payment must accompany copy.
SURVEILLANCE EQUIPMENT: complete component and building information, not just diagrams, including the LISTENING LAMP. Only $4.00. George's Electronics, Box 217, Roosevelt, L.I., New York 11575.

PSYCHEDELIC catalog, Posters, lighting etc. Send 25¢ for handling to Hole In The Wall, 6055PE Lankershim, North Hollywood, Calif. 91606.

CLOSEOUTS! Distributor's Entire Electronic Inventory. Send 25¢ for lists. KESCO, Box 6-E, Mount Union, Penna. 17066.

CONVERT any television to sensitive big-screen oscilloscope. Minor changes require no electronic experience. SECRET automatic telephone recorder. Illustrated plans $1.95 each. Both for $2.65.

DON'T THROW YOUR OLD CARTRIDGE AWAY. Send us $50.00 and any old used cartridge and we will ship you via air Prepaid anywhere any one of the following Top Stereo Cartridges: Shure V-15 Type II, Empire 999VE, ADC 10EMK 11, Stanton 681EE. Write for lowest quotations all stereo components. DEFA ELECTRONICS, 2207 Broadway, New York, N.Y. 10024.

WANTED

CASH PAID! Unused tubes, electronic equipment, Barry, 512 Broadway, NYC 10012.

TUBES

RECEIVING & INDUSTRIAL TUBES, TRANSISTORS. All Brands-Biggest Discounts. Technicians, Hobbyists, Experimenters-Request FREE Giant Catalog and SAVE! ZALYTRON, 469 Jericho Turnpike, Mineola, N.Y. 11501.

TUBE Headquarters of World! Send 10¢ for Catalog (tubes, electronic equipment) Barry, 512 Broadway, N.Y.C. 10012.

RADIO & T.V. Tubes—35¢ each. Send for free list. Cornell, 4213 University, San Diego, Calif. 92105.

THOUSANDS and thousands of types of electronic parts, tubes, transistors, instruments, etc. Send for Free Catalog. Arcturus Electronics Corp., MPE, 502-22nd St., Union City, N.J. 07087.

TUBES—lowest prices in the world. Hard to get British, German, Foreign and American obsolete and present day special purpose transmitting tubes. Send for giant tube and parts catalog. United Radio Co., Dept. Y-56 Ferry Street, Newark, N.J. 07105.

TAPE AND RECORDERS

Hi-Fi Components. Tape Recorders, at guaranteed "We Will Not Be Undersold" prices. 15-day money-back guarantee. Two-year warranty. No Catalog. Quotations Free. HiFidelity Center, 239 (P) East 149th Street, New York 10451.

BEFORE Renting Stereo Tapes try us. Postpaid both ways—no deposit—delivery Service—Service—Satisfaction—you have. We're fattened in the past, your initial order will prove this is no idle boast. Free Catalog. Gold Coast Tape Library, Box 2262, Palm Village Station, Hialeah, Fla. 33012.

RENT 4-Track open reel tapes—al1 major labels—$3.00 different—free brochure. Stereo-Party, 55 St. James Drive, Santa Rosa, CA 95401.

TAPE RECORDER SALE! Brand new nationally advertised brands, $10.00 above cost. Amazing discounts on stereo components. Arky Electronics, 1028-C Commonwealth Avenue, Boston, Mass. 02215.

TAPEMATES makes available to you ALL 4-TRACK STEREO TAPE—ALL LABELS—postpaid to your door—at tremendous savings. For free brochure write: TAPEMATES, 5727 W. Jefferson Blvd., Los Angeles, California 90016.

STEREO TAPES, Save 30% and up; no membership or fees required; postpaid anywhere U.S.A. Free 70-page catalog. We discount batteries, recorders, tape/accessories. Beware of slugs, ‘'not underset'' as the discount information you supply our compet- i"
SUE fire way of getting out of Debt. Send $1.50 to B & G Enterprises, 815 Tamarack Ave., Carlsbad, Calif. 92008.

INSTRUCTION

LEARN While Asleep. Hypnotize with your recorder, phonograph. Astonishing details, sensational catalog free! Sleep-learning Association, Box 24-ZD, Olympia, Wash. 98501.

FCC First Class License in six weeks—nation's highest success rate—approved for Veterans Training. Write Elkins Institute, 2603B Inwood Road, Dallas, Texas 75235.

R.E.I.'s famous (5) week course for the First Class Radio Telephone License is the shortest, most effective course in the nation. Over 96% of R.E.I. graduates pass F.C.C. exams for 1st class license. Total tuition $360.00. Job placement free. Write for brochure. Radio Engineering Incorporated Schools, 1336 Main Street, Sarasota, Florida 33577—or 3123 Giltham Road, Kansas City, Missouri 64109—or 809 Caroline Street, Fredericksburg, Virginia 22401—or 625 E. Colorado Street, Blendale, California 91205.

SHIP RADIO OFFICER TRAINING—SHIPS have been held up awaiting needed personnel, train now at Long Beach, the home of the Queen Mary. Radio officers earn to $1800.00 monthly. Write for free information. Western Technical School, 5459 Atlantic Ave., Long Beach, Calif. 90805, Desk B. Approved for veterans.

FCC FIRST CLASS LICENSE THROUGH TAPE RECORDED LESSONS. Our seventeenth year teaching FCC license courses. Radio License Training, 1060 Duncan Beach, Manhattan Beach, Calif. 90266.

BECOME PROFICIENT with the electronic components color code the copyrighted Memo-Max Method. $1.00. INNOVATION, 1612 N. Rick-ettes, Sherman, Texas 75090.

HIGH PAY—begin career in computer field with self-study course used by IBM programmers. No math background necessary. Set of eight books plus proficiency exam $18.50 postpaid. Computer Education, 60 East 42nd, New York, N.Y. 10017.

RADIO OFFICER TRAINING-SHIPS. Over 95% of 35-yr old class radio officers hold shipboard positions. Send today: Pioneer Invention Service, Dept. 35, 150 Broadway, New York, N.Y. 10038.

INVENTIONS! Our FREE EXPERT ANALYSIS of your invention can save valuable time, help you realize full sale value. Strictly confidential. FREE INVENTION CERTIFICATE. Write today: Pioneer Invention Service, Dept. 35, 150 Broadway, New York, N.Y. 10038.

FREE "Directory of 500 Corporations Seeking New Products." For information regarding development, sale, licensing of your patented/ unpatented invention. Write: Raymond Lee Organization, 230-GR Park Avenue, New York City 10017.

LEARN CODE! Sail the seven seas! Become a ham! Beginner to 15 wpm, complete. Two hour 3½ips tape $5.49. LP's $8.95. Rand Laboratories, Winthrop, Maine 04364.

DEGREE in Electronics Engineering earned mostly by correspondence. Free brochure, Dept. 9-G, Grantham School of Engineering, 1505 N. Western Ave., Hollywood, California 90027.

INVENTIONS WANTED

INVENTORS. We will develop, help sell your idea or invention, patented or unpatented. Our national manufacturer clients are urgently seeking new items for outright cash sale or royalties. Financial assistance available. 10 years proven performances. For free information, write Dept. 41, Wall Street Invention Brokerage, 79 Wall Street, New York, N.Y. 10005.

INVENTORS! OUR FREE Expert ANALYSIS of your invention can save valuable time, help you realize full sale value. Strictly confidential. FREE INVENTION CERTIFICATE. Write today: Pioneer Invention Service, Dept. 35, 150 Broadway, New York, N.Y. 10038.

INVENTORS! Sell your invention for cash or royalties! Our client manufacturers eagerly seek new items. Patented. Unpatented. Financial assistance if needed. 25 years proven performances. For free information, write Dept. 20, Gilbert Adams, Invention Broker, 50 Wall St., New York, N.Y. 10005.

FREE "Directory of 500 Corporations Seeking New Products." For information regarding development, sale, licensing of your patented/ unpatented invention. Write: Raymond Lee Organization, 230-GR Park Avenue, New York City 10017.

CLASSIFIED ADVERTISING ORDER FORM

Please refer to heading on first page of this section for complete data concerning terms, frequency discounts, closing dates, etc.

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35

Words \(@ 70p \) (Reader Rate) \(@ 1.15 \) (Commercial Rate) \(\) \(= \) \(\)$

Insert times Total Enclosed $ ___

NAME

ADDRESS

CITY STATE ZIP

Signature.

WORD COUNT: Include name and address, Name of city (Des Moines) or of state (New York) counts as one word each. Zip Code numbers not counted. (Publisher reserves right to omit Zip Code if space does not permit.) Count each abbreviation, initial, single figure or group of figures or letters as a word. Symbols such as $1.00, COD, PO, AC, etc., count as one word. Hyphenated words count as two words.

May, 1969

103
GOVERNMENT SURPLUS

GOVERNMENT Surplus How and Where to Buy in Your Area. Send $1.00 to: Surplus Information Service, Box 932, Washington, D.C. 20036.

BOOKS

FREE catalog 950 aviation/electronic/space books. Aero Publishers, 329PE Aviation Road, Fallbrook, California 92028.

UNUSUAL Books! Catalog free! International, Box 7798 (PE), Atlanta, Georgia 30309.

FREE CATALOG. BOOKS FOR ADULTS. CATALOG, 2217 LACKLAND, ST. LOUIS, MISSOURI 63114.

AMAZING self help books. Write Lynn, Box 1573, Waco, Texas 76703.

MAGAZINES

BACK DATE MAGAZINES! Send needs. Midtown, Box 917-PE, Maywood, N.J. 07607.

MAGNETS

MAGNETS. All types. Special—20 disc magnets, or 2 stick magnets, or 10 small bar magnets, or 8 assorted magnets, $1.00 Maryland Magnet Company, 5412-H Gist, Baltimore, Maryland 21215.

AUTHORS’ SERVICES

AUTHORS! Learn how to have your book published, promoted, distributed. FREE booklet "ZD,' Vantage, 120 West 31 St., New York 10001.

MUSIC

PLAY ORGAN EASILY. AMAZING METHOD. FREE INFORMATION. KEGLEY, 1016-PE KELLY, JOLEIT, ILLINOIS 60435.

HYPNOTISM

FREE Hypnotism, Self-Hypnosis, Sleep Learning Catalog! Drawer H400, Ruidoso, New Mexico 88345.

"MALE-FEMALE HYPNOTISM" EXPOSED, EXPLAINED! "SECRET METHOD"—THEY NEVER KNOW! $2. RUSHED. GUARANTEED! ISABELLA HALL, SILVER SPRINGS, FLORIDA 32668.

HYPNOTIC sleep learning recordings produce fabulous results. Details Free. AAR Foundation, Box 70216 Henry Clay Station, Lexington, Ky. 40502.

HYPNOTIZE SUCCESSFULLY! "By Telephone"—"Instantaneous"—"One Word"—"Against Will" methods exposed! 10" Hypnodisk. "Secret Nerve Pressure Technique"—They never know! $2.00 RETURNS ABSOLUTELY GUARANTEED! Fowler, Box 5396, Woodbury, N.J. 08096.

REAL ESTATE

FREE... New SUMMER CATALOG! Describes and pictures hundreds of farms, ranches, town and country homes, businesses coast to coast! Specify type property and location preferred. Zip code, please. UNITED FARM AGENCY, 612-EP West 47th St., Kansas City, Mo. 64112.

PHOTOGRAPHY—FILM, EQUIPMENT, SERVICES

MEDICAL Film—Adults Only—"Childbirth"—1 reel 8mm $7.50—16mm $14.95. International-E, Greenvale, L.I., New York 11548.

RECORDS

SPECIAL INTEREST RECORDS AVAILABLE, PRODUCED BY THE EDITORS OF THE WORLD'S LEADING SPECIAL INTEREST MAGAZINES. SEND FOR FREE CATALOG, RECORD CATALOG-PE ZIFF-DAVIS PUBLISHING COMPANY, ONE PARK AVENUE, NEW YORK, N.Y. 10016. 1965 RECORDS from your tapes. Write Concert Recording, Lynnwood, California 90262.

FREE 40 PAGE CATALOG offers hundreds of recordings of rare Renaissance, Baroque and Classical music. Some records priced at low as $1.00 each! All late recordings in stereo only. MHS RECORDS, Box 932-PE, New York, New York 10023.

PRINTING

THERMOGRAPHED business cards, $3.49—1,000, free samples. Gables—405A Clifton, Gainsboro, Pa. 15116.

FREE LITERATURE: Address labels, business cards, printing, Rubber Stamps. JORDAN'S, 552 West O'Connor, Lima, Ohio 45801.

1000 GUMMED address labels $1.00. Newman, 684D Queen S.W., Atlanta, Georgia 30310.

SUMMER CAMPS

BUSINESS OPPORTUNITIES

FREE CATALOGS: Repair air conditioning, refrigeration. Tools, supplies, full instructions. Dooslin, 2016 Canton, Dallas, Texas 75201.

PIANO TUNING learned quickly at home. Tremendous field! Musical knowledge unnecessary. GI Approved. Free Information. Empire School, Miami, Florida 33145.

POPULAR ELECTRONICS
FREE Book ’990 Successful little-known Businesses.’ Work home, Plymouth 345Y, Brooklyn, N.Y. 11218.

ELECTROPLATING Equipment and supplies. All types for home workshops and industrial. Send $2.00 (refundable) for equipment guide formulas, operating data, catalog. HBS Equipment Division 90, 3543 East 16th, Los Angeles, California 90023.

I MADE $40,000.00 Year by Mailorder! Helped others make money! Start with $10.00—Free Proof, Torrey, Box 318-N, Ypsilanti, Michigan 48197.

$200.00 DAILY In Your Mailbox! Your opportunity to do what mail-order experts do. Free details. Associates, Box 136-J, Holland, Michigan 49442.

OPERATE a business of your own from home. Everything furnished. Royce, Box 204-J, Dolton, Illinois 60419.

MAILORDER . . . Operate cash-in-advance business! Details, Methods, 1411-F.D., Lafayette, Pennsylvania 19444.

RAISE hard to get colored Canaries, Budgies, Exciting profitable hobby or business. Big profits. We furnish everything. Details free. Glenmere Aviaries, Box 417, Grahamsville, New York 12740.

EMPLOYMENT OPPORTUNITIES

BOOMING AUSTRALIA wants You—Good jobs. Adventure, Forms and Australian Handbook (1969) describing Australian assisted passage, passport-visa, advantages, opportunities $1.00, Buckeye, Box 10327-F. Fairborn, Ohio 45324.

PLASTICS

CASTOLITE Liquid Plastic pours like water and hardens like glass without heat. Clear, colors, Embed real flowers, butterflies, photos, coins, Also new molding formulas for perfect reproductions, Illustrated booklet shows HOW. Send 25¢—Dept. 9C5E, CASTOLITE, Woodstock, Ill. 60098.

SHORTWAVE LISTENING

MOVIE FILMS

LATEST CATALOG featuring Exciting SPORTS ACTION. B/SUPER 8, COLOR. SPORTLITE FILMS-PE, Box 500, Speedway, Indiana 46224.

MISCELLANEOUS

WINEMAKERS: Free illustrated catalog of yeasts, equipment. Samples, Box 7205, Minneapolis, Minn. 55412.

STOP BURGLARS THE EASY WAY!! Affix authentic “Protected by Electronic Sentry Alarm” Decals to auto windows, door & windows of home, retail stores, vending machines, etc. Whether you have an alarm or not,—thieves stay away! Only $1.00 each set of two. J. Ross, 80-34 Kent St., Jamaica, N.Y. 11432, Dept. PE.

Decorative and sturdy cases constructed of reinforced fiberglass—covered in rich leatherette to keep your records and tapes from getting damaged. Available in choice of five decorator colors. Record and Tape Cases lend themselves handsomely to the decor of any room. Padded back (in your color choice) is gold foiled in an exclusive design. Sides in standard black leatherette to keep them looking new after constant use. Extra with each case ordered you will receive, free of charge, a specially designed cataloging form with pressure sensitive backing for affixing to side of case. Enables you to list the records to help you locate your albums. Cases are available in three sizes for 7", 10" and 12" records. Center divider separates records for easy accessibility, holds an average of 20 records in their original jackets. Tape case holds 6 tapes in original boxes.

Ziff-Davis Pub. Co. • Dept. 5D • 1 Park Ave. • N.Y., N.Y. 10016

My remittance in the amount of

Quantity

My remittance in the amount of

Name

Address

City State Zip

PAYMENT MUST BE ENCLOSED WITH ORDER

EMPLOYMENT Resumes. Get a better job & earn more! Send only $2.00 for expert, complete Resume Writing Instructions. J. Ross, 80-34 Kent St., Jamaica, N.Y. 11432, Dept. PE.

BILLS paid without borrowing—Nobody refused up to $10,000.00. Bad credit no problem, not a Loan Company. Write for free application. INTERNATIONAL ACCEPTANCE, Dept. 50-A, Central Ave., Phx., Arizona 85012; 2511 E. 46th Street, Indianapolis, Ind., 46205; 711 14th St., N.W., Washington, D.C. 20005; 507 Carondelet St., New Orleans, La. 70130.

INSTANT PROTECTION AGAINST MUGGERS, VICIOUS ANIMALS! Effective as Mace but legal to carry. Nationally advertised. Guaranteed effective. Aerosol $2.00. Three assorted $5.00, J. Ross, 80-34 Kent Street, Jamaica, New York 11432, Dept. PE.

STAMMER — Stutter — No more. (Dr. Young.) Write Gaucho, Box 9309-EB, Chicago 60690.

MAIL ORDER OPPORTUNITIES WAITING FOR YOU!

 Classified Advertisers find more outlets for their product and service advertising in Ziff-Davis Eletronics Publications than in any other media. Whether in a monthly publication: POPULAR ELECTRONICS, ELECTRONICS WORLD, STEREO REVIEW, or in ELECTRONIC EXPERIMENTER’S HANDBOOKS, Classified Advertising is responded to regularly by an affluent audience of active electronics enthusiasts. Prove to yourself the effectiveness of Classified Advertising in Ziff-Davis Electronics Publications. Write today for information, assistance or sample copies to:

Hal Cymes, Classified Advertising Manager
Ziff-Davis Publishing Company
One Park Avenue, New York, N.Y. 10016

May, 1969
6 Vital Components
For Knowledge...For Profit...For Sheer Electronics Enjoyment!

1969—WINTER $1.25
 ELECTRONIC EXPERIMENTER'S HANDBOOK
148 pages of the most fascinating and challenging construction projects for the electronics hobbyists. All with complete schematics, illustrations, parts list, and easy-to-follow instructions that guarantee you perfect finished products.

1968—SPRING $1.25
 ELECTRONIC EXPERIMENTER'S HANDBOOK
Another big package containing over 30 of the most challenging, fun-to-build electronics projects ever! Be sure to order this one today!

1969 STEREO/Hi-Fi DIRECTORY $1.25
 Giant 180 page buyer's guide listing more than 1,600 individual Stereo/Hi-Fi components by 176 manufacturers. Nine independent complete with specs, photos, prices—the works!

1969 TAPE RECORDER ANNUAL $1.35
Over 130 pages covering every aspect of tape recording. Complete buyer's guide to the brands and models on the market. Expert tips on equipment—making better tapes—editing—copying—everything you want and need to know about tape recording.

1969 COMMUNICATIONS HANDBOOK $1.35
148 fact packed pages for the CB, SWL or HAM. Equipment buyer's guide—photos—tables—charts—getting a license—everything to make this the world's most complete guide to communications.

1969 ELECTRONICS INSTALLATION & SERVICING HANDBOOK $1.35
Covers all 8 areas of consumer electronics servicing—all the tricks of the trade in one complete guide. The industry's "how-to" book for installing and servicing consumer electronics equipment.

ZIFF-DAVIS SERVICE DIVISION • Dept. W
595 Broadway, New York, N.Y. 10012
Please send me the annals! I've checked below:
☐ 1969 Electronic Experimenter's Handbook—Winter
☐ 1968 Electronic Experimenter's Handbook—Spring
☐ 1969 Stereo/Hi-Fi Directory
☐ 1969 Tape Recorder Annual
☐ 1969 Communications Handbook
☐ 1969 Electronics Installation & Servicing Handbook
I am enclosing $ __________________. My remittance includes an additional 25¢ per copy for shipping and handling (Outside U.S.A. all magazines are $2.00 per copy, postpaid.)

print name ____________________________
address _______________________________
city ____________________________ state
zip ________________
PAYMENT MUST BE ENCLOSED WITH ORDER

POPULAR ELECTRONICS
MAY 1969
ADVERTISERS INDEX

READER SERVICE NO. ADVERTISER PAGE NO.
1 AMECO, Division of Aeratron, Inc. 94
2 American Engraving, Inc. 90
3 Antenna Specialists Co., The 9
4 Argos Products Company 88
5 B & K 87
6 Bell & Howell Schools 5
7 Burnstein-Applebee Co. 92
8 C/P Corporation 25
9 CREI, Home Study Division, McGraw-Hill Book Company 72, 73, 74, 75
10 Career Academy 89
11 Career Institute of Electronics 88
12 Cleveland Institute of Electronics 18, 19, 20, 21
13 Cleveland Institute of Electronics 96
14 Courier Communications Inc. 23
15 Coyne Electronics Institute 98
16 Edmund Scientific Co. 98
17 ECO Electronic Instrument Co., Inc. .. FOURTH COVER
18 Electronics Institute 16, 17
19 Electro-Voice Inc. 12
20 Electro-Voice, Inc., Greene Division 11
21 Ferranti Electric Co., Drafting Division 8
22 Ferranti Electric Co., Drafting Division 8
23 Fisk Radio Company 10
24 Fisk Radio Company 10
25 Ford Motor Co., Inc., Poughkeepsie 7
26 Ford Motor Co., Inc., Poughkeepsie 7
27 Foredian Products, Inc. 94
28 Foredian Products, Inc. 94
29 FTI Products Co. 94
30 FTI Products Co. 94
31 G & H Mfg. Co. 94
32 G & H Mfg. Co. 94
33 Galvin Company, Inc. 94
34 Galvin Company, Inc. 94
35 General Telephone & Electronics Co. .. 94
36 General Telephone & Electronics Co. .. 94
37 General Telephone & Electronics Co. .. 94
38 General Telephone & Electronics Co. .. 94
39 General Telephone & Electronics Co. .. 94
40 General Telephone & Electronics Co. .. 94
41 General Telephone & Electronics Co. .. 94
42 General Telephone & Electronics Co. .. 94
43 General Telephone & Electronics Co. .. 94
44 General Telephone & Electronics Co. .. 94
45 General Telephone & Electronics Co. .. 94
46 General Telephone & Electronics Co. .. 94
47 General Telephone & Electronics Co. .. 94
48 General Telephone & Electronics Co. .. 94
49 General Telephone & Electronics Co. .. 94
50 General Telephone & Electronics Co. .. 94
51 General Telephone & Electronics Co. .. 94
52 General Telephone & Electronics Co. .. 94
53 General Telephone & Electronics Co. .. 94
54 General Telephone & Electronics Co. .. 94
55 General Telephone & Electronics Co. .. 94
56 General Telephone & Electronics Co. .. 94
57 General Telephone & Electronics Co. .. 94
58 General Telephone & Electronics Co. .. 94
59 General Telephone & Electronics Co. .. 94
60 General Telephone & Electronics Co. .. 94
61 General Telephone & Electronics Co. .. 94
62 General Telephone & Electronics Co. .. 94
63 General Telephone & Electronics Co. .. 94
64 General Telephone & Electronics Co. .. 94
65 General Telephone & Electronics Co. .. 94
66 General Telephone & Electronics Co. .. 94
67 General Telephone & Electronics Co. .. 94
68 General Telephone & Electronics Co. .. 94
69 General Telephone & Electronics Co. .. 94
70 General Telephone & Electronics Co. .. 94
71 General Telephone & Electronics Co. .. 94
72 General Telephone & Electronics Co. .. 94
73 General Telephone & Electronics Co. .. 94
74 General Telephone & Electronics Co. .. 94
75 General Telephone & Electronics Co. .. 94
76 General Telephone & Electronics Co. .. 94
77 General Telephone & Electronics Co. .. 94
78 General Telephone & Electronics Co. .. 94
79 General Telephone & Electronics Co. .. 94
80 General Telephone & Electronics Co. .. 94
81 General Telephone & Electronics Co. .. 94
82 General Telephone & Electronics Co. .. 94
83 General Telephone & Electronics Co. .. 94
84 General Telephone & Electronics Co. .. 94
85 General Telephone & Electronics Co. .. 94
86 General Telephone & Electronics Co. .. 94
87 General Telephone & Electronics Co. .. 94
88 General Telephone & Electronics Co. .. 94
89 General Telephone & Electronics Co. .. 94
90 General Telephone & Electronics Co. .. 94
91 General Telephone & Electronics Co. .. 94
92 General Telephone & Electronics Co. .. 94
93 General Telephone & Electronics Co. .. 94
94 General Telephone & Electronics Co. .. 94
95 General Telephone & Electronics Co. .. 94
96 General Telephone & Electronics Co. .. 94
97 General Telephone & Electronics Co. .. 94
98 General Telephone & Electronics Co. .. 94
99 General Telephone & Electronics Co. .. 94
100 General Telephone & Electronics Co. .. 94

CLASSIFIED ADVERTISING 101, 102, 103, 104, 105

Printed in the U.S.A.

106

POPULAR ELECTRONICS
All new from every angle
...RCA HI-LITE

You end all doubts and confusion when you specify RCA HI-LITE. Then you can be certain that here is the all-new replacement picture tube from the leader in Color TV. All-new glass...gun...the works.

OEM QUALITY from every angle: the same tubes that go into original equipment sets, incorporating the latest technology of the world's most experienced color picture tube manufacturer. Everything about them exudes know-how, confidence, leadership.

If you've set your sights on quality, then look to RCA HI-LITE for your replacement tube needs. Available in the broadest line of types in the industry from your Authorized RCA Distributor.

RCA Electronic Components, Harrison, N. J.
EICO Makes It Possible
Uncompromising engineering—for value does it!
You save up to 50% with Eico Kits and Wired Equipment.

Cortina Stereo
THE VERDICT IS IN. High fidelity authorities agree:
Cortina's engineering excellence, 100% capability, and compact dramatic aesthetics add up to Total Stereo Performance at lowest cost.
A Silicon Solid-State 70-Watt Stereo Amplifier for $99.95 kit, $139.95 wired, including cabinet. Cortina 3070
A Solid-State FM Stereo Tuner for $99.95 kit, $139.95 wired, including cabinet. Cortina 3200.
A 70-Watt Solid-State FM Stereo Receiver for $169.95 kit, $259.95 wired, including cabinet. Cortina 3570.
NEW Silicon Solid State 150-Watt Stereo Amplifier designed for audio perfectionists. Less than 0.1% harmonic distortion, IM distortion. Less than 0.6% at full output. Controls and input and output jacks for every audio source. $149.95 kit, $225.00 wired including cabinet. Cortina 3150.
NEW 70-Watt Solid State AM/FM Stereo Receiver for $189.95 kit, $279.95 wired including cabinet. Cortina 3770.

Eicocraft
The newest excitement in kits.
100% solid-state and professional. Fun to build and use. Expandable, interconnectable. Great as "jiffy" projects and as introductions to electronics. No technical experience needed. Finest parts, pre-drilled etched printed circuit boards, step-by-step instructions.

Color n' Sound
Add a new dimension to your music system. Introducing the first inexpensive solid-state electronic system which provides true synchronization of color with sound. Watch the music you love spring to life as a vibrant, ever shifting interplay of colors. Simply connect to speaker leads of your Hi-Fi system (or radio). Kit can be assembled in several hours — no technical knowledge or experience necessary. Kit $49.95, Wired $79.95.

Automotive
EICO 888—Car/Boat Engine Analyzer. For all 6V/12V systems; 4, 6, 8-cyl. engines. Now you can keep your car or boat engine in tip-top shape with this solid-state, portable, self-powered universal engine analyzer. Completely tests your total ignition/electrical system. Complete with a Tune-up & Trouble-shooting Manual. Model 888; $49.95 kit, $69.95 wired.

Test Equipment
100 best buys to choose from.
"The Professionals" laboratory precision at lowest cost.
Model 460 Wideband Direct-Coupled 5" Oscilloscope, DC-4.5mc for color and B&W TV service and lab use. Push-pull DC vertical amp., bal. or unbal. input. Automatic sync limiter and amp. $99.95 kit, $149.95 wired.
Model 232 Peak-to-Peak VTVM. A must for color or B&W TV and industrial use. 7 non-skip ranges on all 4 functions. With exclusive Uni- Probe. $34.95 kit, $49.95 wired.

FREE 1969 CATALOG
EICO Electronic Instrument Co., Inc.,
283 Malta Street, Brooklyn, N.Y. 11207
Send me FREE catalog describing the full EICO line of 200 best buys, and name of nearest dealer.
Name__________________________
Address_______________________
City___________________________
State_________________________
Zip___________________________

CIRCLE NO. 11 ON READER SERVICE PAGE