How To Use Integrated Circuits

Build Intercom
Burglar Alarm

Impossible Circuit Fools Everyone

Build Strain-Gauge Hi-Fi System

Those Darn Things Called Decibels

Build $6.00 IC Amplifier

THE TIME IS 14 HOURS 26 MINUTES Beep!

WWV-CHU
TIME-SIGNAL RECEIVER
COMPARE. You'll find—as have tens of thousands of NRI graduates—that NRI training gives you more value. From the delivery of your first lessons in the remarkable NRI Achievement Kit we send you on enrolling, to "bite size" easily-read texts carefully programmed with custom-designed training kits... NRI can't be beat. Text for text, kit for kit, dollar for dollar—you get an easier, more attractive kit, your best home-study buy is unquestionably NRI. (And NRI training costs you less than one semester's tuition at most colleges.)

Get a Faster Start with NRI's New, Exciting Achievement Kit

The day we receive your enrollment application we mail you your new NRI Achievement Kit. This attractive starter kit is an outstanding, logical way to help you get an easier, faster start in the training of your choice. It is the first of a number of special training aids developed in the NRI laboratories to make your adventure into Electronics exciting, meaningful. What's in it? Your first group of lesson texts; a rich, vinyl desk folder to hold your material; the industry's most complete Radio-TV Electronics Dictionary; valuable reference texts; lesson answer sheets; envelopes; pencils; pen; engineer's ruler; even postage. No other school has anything like it.

Learning Becomes an Absorbing Adventure with NRI Training Kits

Electronics comes alive with NRI training kits. What better way to learn than by doing? NRI pioneered and perfected the "home lab" technique of training at home in spare time. You get your hands on actual parts to build, experiment, explore, discover. NRI invites comparison with training equipment offered by any other school. Begin now this exciting program of practical learning. Whatever your need... whatever your education... there's an NRI instruction plan for you, at low tuition rates. Get all the facts. Fill in and mail the postage-free card today. NATIONAL RADIO INSTITUTE, Electronics Division, Washington, D. C. 20016

Join the thousands who gained success with NRI

"I average $150-$170 a month in spare time fixing radio and TV sets, and plan to start my own full-time business. I wish it were possible to tell every man of the wonderful opportunities." WILLIAM L. KING, Yonkum, Texas.

"I am a Frequency Coordinator for the 11th Naval District. The course I completed was priceless in my work. I was a blue collar worker, now I am a white collar worker." JOHN J. JENKINS, San Diego, Calif.

"I am a Senior Engineering Aid at Litton Systems, in charge of checkout of magnetic recording devices for our computers. Without the help of NRI I would still be working in a factory." DAVID F. CONRAD, Reseda, Calif.
Pick your field of ELECTRONICS

Now NRI offers you 12 ways to train at home in spare time

Any training—if it is to be worth your time and money—must give you the knowledge and the skills you seek, the knowledge and the skills employers want. That’s why NRI puts emphasis on providing a choice of carefully developed training plans in Electronics. NRI now offers you 12 ways to train at home... 12 ways to meet the challenge of today’s job market by training with NRI for a career in Electronics, for part-time earnings, or simply for developing a new, fascinating hobby. The proof of the quality of NRI training plans is in its record of tens of thousands of successful graduates and the reputation NRI holds throughout the Electronics industry. Move ahead now in this exciting, growing field. Select the training plans of most interest to you and mail the postage-free card. NATIONAL RADIO INSTITUTE, Electronics Division, Washington, D. C. 20016.

TELEVISION-RADIO SERVICING
Training from fundamentals to home entertainment equipment. Learn to fix radios, hi-fi and stereo sets, black-and-white and color TV, etc. A profitable field full or part-time.

INDUSTRIAL-MILITARY ELECTRONICS
From basic principles to computers. Comprehensive training teaches fundamentals, then takes you into such modern-day miracles as servos, telemetry, multi-plexing, phase circuitry, others.

COMPLETE COMMUNICATIONS*
Teaches and provides actual practice in operation, service, maintenance of AM, FM, and TV broadcasting stations. Also covers marine, aviation, mobile radio, facsimile, microwave, radar.

FCC LICENSE*
Prepares you for First Class FCC Radiotelephone License exams. You begin with fundamentals, advance to required subjects covering equipment, procedures.

MATH FOR ELECTRONICS
A brief course for engineers and technicians who need a quick review of essential math used in industry, communications, government. Basic arithmetic review, short-cut formulas, modern digital number systems, much more.

BASIC ELECTRONICS
A concise course in Electronic terminology and components. A wealth of useful information to help you better understand the field. For anyone who wants a basic understanding of Radio-TV Electronics.

ELECTRONICS FOR AUTOMATION
Not for beginners, but for men with some knowledge of Electronics who want an understanding of process control, ultrasonics, telemetering and remote control, electromechanical measurements, other subjects.

AVIATION COMMUNICATIONS*
Prepares you to install, maintain, service direction finders, ranges, markers, Loran, Shoran, Radar, landing systems. Earn your FCC License with Radar Endorsement.

MARINE COMMUNICATIONS*
Covers transmitters, direction finders, depth indicators. Radar, Sonar, other equipment on commercial ships, pleasure boats. Prepares for FCC License with Radar Endorsement.

MOBILE COMMUNICATIONS*
Learn to install and maintain mobile transmitters and receivers used by police and fire departments, public utilities, construction firms, taxis, etc. Prepares for FCC License.

ELECTRICAL APPLIANCE REPAIR
Prepares you quickly to repair all types of appliances, including air conditioning, refrigeration, small gasoline engines. An easy, practical course leading to profitable part-time or full-time business of your own.

ELECTRONICS FOR PRINTERS
Designed to teach operation and maintenance of Electronic equipment which controls the latest devices developed for the graphic arts industry. From basic principles to computer circuits, Approved by major manufacturers.

* NOTE: You must pass your FCC License exam (any Communications course) or NRI refunds in full the tuition you have paid.

Over 50 Years of Leadership in Electronics Training

October, 1966
SPECIAL CONSTRUCTION FEATURE

CHARLES CARI NGELLA, W6NJ 41 TIME-SIGNAL-ONLY RECEIVER
Pocket-size unit is permanently tuned to either CHU or WWV

FEATURE ARTICLES

KEN GILMORE 47 CAREERS IN ELECTRONICS
Results of POPULAR ELECTRONICS' survey of the job market

DON LANCASTER 52 INTEGRATED CIRCUITS—WHAT ARE THEY?
Circuits so small you need tweezers to pick them up

DON LANCASTER 57 INTEGRATED CIRCUIT AMPLIFIER YOU CAN BUILD FOR UNDER $6
Work with IC's today and be ready for tomorrow

ROBERT P. BALIN 64 VOLTAGE DIVIDER QUIZ

ART TRAUFFER 65 BUILD HI-FI AMPLIFIER FOR SOLID-STATE PHONO CARTRIDGE
Stereo hi-fi with two transistors

THEODORE M. HANNAH, K3CUI 68 FROM OUT OF THE PAST

LUIS VICENS 70 ZERO-BEATING THE NEWS

LOU DEZETTE, W9SFW 72 THE IMPOSSIBLE CIRCUIT

M ARSHALL LINCOLN 73 BUILD AN 80/40 METER BANDSWITCHING VERTICAL

CARL KOHLER 75 WHAT ARE THESE THINGS CALLED DECIBELS?
What they are, and without math, too

LOU GARNER 79 THE IMPOSSIBLE CIRCUIT MADE POSSIBLE

RYDER WILSON 80 UNPOPULAR ELECTRONIKS

HERB S. BRIER, W9EQG 82 REFLEXOMETER REFLECTIONS

MATT P. SPINELLO, KHC2000 84 SOLID STATE

BILL LEGGE & BOB HILL, W2ARR/3 90 BUILD A STICK-SHIFT ELECTRIC SHAVER

HANK BENNETT, W2PNA 91 AMATEUR RADIO
Thumbnail review of "Duo-Bander 84" $58 transceiver

MATT P. SPINELLO, KHC2000 93 ON THE CITIZENS BAND
The CB Image

BILL LEGGE & BOB HILL, W2ARR/3 94 BROADCASTS FROM AFRICA AND MIDDLE EAST

HANK BENNETT, W2PNA 95 SHORT-WAVE LISTENING
IRC's not valid in some countries

M ARSHALL LINCOLN 96 ENGLISH-LANGUAGE BROADCASTS TO NORTH AMERICA

CHARLES VLAHOS & BYRON G. WELS 97 BUILD A HIP SQUAWK BOX

130 DX PROVINCES AWARDS PRESENTED

DEPARTMENTS

6 LETTERS FROM OUR READERS

14 TIPS & TECHNIQUES

15 READER SERVICE PAGE

22 NEW PRODUCTS

27 ELECTRONICS LIBRARY

28 NEW LITERATURE

30 OPERATION ASSIST

Electronics hobby has "dubious" types, too 80

Can this spider-like IC do YOUR job? 52
DEVRY TECH NOT ONLY TRAINS YOU. BUT HELPS YOU GET STARTED AT NO EXTRA COST IN THE BIG-MONEY FIELD OF ELECTRONICS!

PREPARE AT HOME

Whether you want to prepare for a good-paying new job or for advancement in Electronics with your present employer, DeVry Tech offers specialized educational programs designed to meet your needs. You set up your own HOME LABORATORY and work over 300 construction and test procedures to develop on-the-job type skills. You build a quality Transistorized Meter, a 5-inch Oscilloscope and a special Design Console. DeVry also includes modern "programmed" texts, instructive motion pictures, Consultation Service. Effective? Yes!

RESIDENT SCHOOL

If you prefer you may get all of your training in DeVry's U.S. or Canadian resident schools under the close guidance of friendly, experienced instructors. You work with a wide variety of commercial equipment similar to that actually used in industry as you prepare in our laboratories for a technician's job in Communications, Microwaves, Radio-Television, Automation, Radar, Computers, or other branch of Electronics. DeVry even provides part-time job placement service to those who wish to earn extra money while attending day or evening classes.

PLACEMENT SERVICE

Meet W. E. Bartz, who has helped thousands of DeVry men toward exciting, profitable careers in Electronics. When YOU complete your program, he will help you too. As Placement Manager in touch with business and industry across the nation, Bartz knows the employer demand for DeVry-trained men. He has cooperated in placing our graduates with thousands of firms! Men 18-45, start preparing NOW for this vast opportunity field. Soon you should be ready for DeVry's valuable employment help!

MAIL COUPON TODAY!

No Advanced Education or Previous Technical Experience Needed to Get Started

Your ambition and desire to succeed are more important! DeVry guides you every step of the way toward success.

DeVRY TECHNICAL INSTITUTE
4141 Belmont Avenue, Chicago, Illinois 60641

Accredited Member of National Home Study Council
LET THE BUYER BEWARE!

CAVEAT EMPTOR

The Roman phrase "Caveat Emptor" caution the purchaser to examine the article he is buying, and act on his own judgment, and at his own risk! We print it here as a reminder to you, hopefully a happy owner of a Shure Stereo Dynetic® cartridge, that the superior performance of all Shure cartridges depends upon the Shure Stereo Dynetic Stylus assembly—and alas, there are indeed imitations.

May we caution you that an inferior replacement stylus can audibly detract from and significantly reduce the cartridge's performance, and increase record wear. Obviously, if an imitation Stereo Dynetic stylus is used, we cannot guarantee that the cartridge will perform to published specifications. Accept no substitute.

LOOK FOR THIS WORDING ON THE BACK OF PACKAGE.

THIS DYNETIC STYLUS IS PRECISION MANUFACTURED BY SHURE BROTHERS, INC.

It is your assurance that the stylus you buy will enable your cartridge to perform up to Shure standards... incomparable Shure standards, that is.

INSIST ON

REPLACEMENT STYLUS

SHURE BROTHERS, INC.
222 Hartrey Ave., Evanston, Illinois 60204

CIRCLE NO. 44 ON READER SERVICE PAGE
Where the action is you'll find the hot new . . .

Hallicrafters CB-20 "Reacter"—$99.95!

Yours today—the ruggedest, cleanest, most powerful basic CB transceiver that ever rode the range!

In short—you get performance equal to that of equipment more than double the price.

Quality through craftmanship is the whole idea at Hallicrafters

Export: International Division, Canada; Available through Gould Sales Co.

5th & Kostner Aves., Chicago, Ill. 60624
HAM RADIO EQUIPMENT JAMBOREE

Looking for the amateur radio column in the August, 1966, issue, I found in its place “Amateur Equipment Jamboree: 1966” which informed me how “professional” my amateur station could be in performance and appearance if I used factory-built equipment, or built my station from commercial kits. This sort of article has become typical in the current electronics and amateur radio publications. At one time the radio amateur was a distinguished individual who was envied because of his competence and ingenuity in constructing and operating his own wireless station. But today’s amateur simply writes a check, buys a load of factory-built machinery, strings up an antenna (often factory-built, too), plugs it all in, twists the knobs and pushes the buttons according to the instruction book. He knows, of course, that if anything burns up the rig can be sent back to the factory for repairs; in fact, a service guarantee usually comes with it. Hamming has become a fun-communicating type of operation with few individuals building their own equipment, or even taking an interest in the technical side of radio. Perhaps it is out of monetary interest that the magazines are pushing this commercialism, but the trend has got to be reversed if we are to keep our hobby colorful and interesting.

DONALD CHESTER, K4KXY
Woodlawn, Tenn.

I would like to point out an error made in the “Amateur Equipment Jamboree” concerning the Heathkit SB-300 receiver. It is listed as a Heathkit SB-301.

DON WILLIAMSON, KPM3960
Florence, Ky.

There’s a mistake in the “Radio Amateur Equipment Sampler” on page 73. It says that the Hallicrafters HT-40 is designed to operate on 80-10 meters. It also operates on 6 meters.

JOHN BOHN
Minot, N.D.

Donald, if our children are forced to do everything our parents did, we would still be...
WE GUARANTEE THE claricon®
“RANGEMASTER” CB TRANSCEIVER
TO OUTPERFORM ALL OTHERS
IN ITS CLASS!

The Claricon “RANGEMASTER” by TOKAI is a professional transceiver with every feature necessary to insure dependable long range communication. Dynamic microphone cartridge delivers 100% modulation. Interchangeable plug in crystals permit use of all 23 CB channels. Housed in a rugged drawn metal case. Jacks for earphone and AC adaptor.

1. ADDITIONAL RF AMPLIFIER STAGE FOR CRISP, LONG RANGE RECEPTION
2. SEPARATE MICROPHONE AND SPEAKER FOR TELEPHONE LIKE-OPERATION
3. EXTRA SENSITIVE SUPERHETERODYNE RECEIVER
4. SWITCH CONTROLLED SQUELCH
5. AC BASE STATION AVAILABLE $19.95 each.
6. NO LICENSE REQUIRED

SPECIFICATIONS: 11 Transistors and 1 Diode; Input to final Amp. 100MW; Audio 130MW; IF Frequency, 455 KC; 30db Signal to Noise Ratio; 10db selectivity. Uses 6 Penlites. 8" x 2½" x 3½"; Weight 1½ lbs.

RANGE: MAXIMUM 10 MILES AVERAGE 2-5 MILES

$39.95 each

COMES COMPLETE WITH EARPHONE, BATTERIES AND LEATHER CARRYING CASE.

Money Back Guarantee
The Claricon “Rangemaster” will outperform any Class “D” CB Transceiver in range and clarity. Claricon has authorized its dealers to refund your money within 10 days from the purchase date if you can show that the “Rangemaster” does not perform better than any other 100MW unit.

October, 1966
FULLY EQUIPPED FOR IMMEDIATE OPERATION ON ALL 23 CHANNELS

23-CHANNEL CB
mobile and base station
AM TRANSCEIVER

GREATER RANGE POWER with the exclusive new DYNA-BOOST circuit that intensifies speech signals and extends the signal range.
The new Cobra CAM-88 is rugged, handsome and field proven. Compare it, feature for feature, with other CB equipment and you'll be convinced that the Cobra CAM-88 is by far the best.

Outstanding Features

• Fully-Equipped for Immediate 23-channel Transmit and Receive
• Double Conversion Superheterodyne Receiver
• Transistorized 117V AC/12V DC Power Supply
• Speech Compression with Switch
• Delta-Tune Fine Tuning
• Squelch Control and Standby Switch
• Illuminated Dual-Purpose Meter
• Power-in (Receive)-Power-out (Transmit)
• Modulation Indicator
• Detachable Press-to-talk Microphone
• Convertible to a Public Address Amplifier

Carefully engineered design makes the Cobra completely reliable and easy to operate. Completely self-contained. No additional crystals needed. $21495

LETTERS (Continued from page 6)

listening to Atwater Kents. You can build a station from scratch and strain to get on the air, and there's nothing wrong with that, if that is what you want to do, or you can get on the air as expeditiously as possible, and devote time and energy to things new, different, and better. There's no doubt that a home-brew rig demands of the builder a good deal more aptitude and practical know-how, but is he getting the most out of his energies by punching holes in chassis to make a conventional transmitter or receiver instead of, say, building a moon-bounce capability? Besides, there's nothing to prevent the kit builder or owner of a "store-bought" unit from knowing all about his equipment, and the purpose of each resistor and capacitor. Don, the Heathkit SB-301 is a new model, John, you are right about the Hallicrafters HT-40; it does go up to 6 meters. That's pretty fine and fancy reading of the fine print—and we appreciate it, because this sort of thing helps keep editors on their toes.

HAVANA PROPAGANDA

I truly agree with the letter entitled "Damaging QSL" (July, 1966). Every hobby has its bad points, and being on a propaganda list is not very enjoyable. I, too, have been receiving propaganda from Radio Havana. How about printing a list of the countries that send propaganda to listeners when all the listeners want is a verification of report of reception? In this way, we would know which countries not to write to.

MITCHELL HERBACH
Brooklyn, N.Y.

Please tell your readers to stay away from Radio Havana, Cuba. I have not SWL'ed now for two years, but the communist propaganda rubbish keeps coming. Help!

BILL BRADFORD
Murray, Utah

Okay, Mitch, we'll publish the info as we get it. Bill, wonder what the Radio Havana people would do if you wrote to them and asked them, in a nice way, to take your name off their mailing list.

SWIMMING POOL SPLASH ALARM

I put together the "Swimming Pool Splash Alarm" (July, 1966) and followed the diagram...
SPECIAL OFFER from the famous Gernsback Electronics Book Club, an affiliate of RADIO-ELECTRONICS Magazine. For 10 years the Club has helped men in electronics get ahead and stay ahead in this fast-changing field. See how it can help you...

This Valuable Coupon Brings You the $9.90 Electronics Guide below for only 99c with trial membership in the famous Gernsback Electronics Book Club!

You are invited to accept—at a mere fraction of the original price—an electronics guide that answers every question you've ever had on fixing transistor radios and printed circuits. We make this extraordinary offer to demonstrate just one of the many advantages you will enjoy as a member of the famous Gernsback Electronics Book Club.

Here is a complete, self-training course by expert Leonard Lane. It tells you all you want to know, including specific servicing methods and techniques. You get practical, down-to-earth guidance you can use at once to spot trouble in the audio section, pinpoint speaker and earphone circuit defects, check distortion in the audio amplifier, locate front-end troubles, eliminate printed-circuit board pitfalls, and work more effectively with the signal generator, voltmeter, scope and isolation probe.

Nothing is Left Out. This giant 2-volume guide treats every area—much of it original, unavailable anywhere else in book form. Hundreds of illustrations and schematics practically turn equipment inside out for you to examine. You get practical tips to save shop time, to lessen servicing trial and error, to find and fix any trouble with professional know-how.

SEND NO MONEY NOW mail coupon for free trial

You risk nothing, now or ever, by mailing the coupon above. You will receive these 2 skill-building handbooks for free examination. If not pleased, return books in 10 days and forget the matter. Otherwise, start your membership and discover how the Club will help you build your know-how, boost your income, and get more fun out of electronics!

Learn more, earn more!

Every other month the Club's News Bulletin will tell you about a significant new self-teaching book on color TV or radio servicing, test instruments, transistors, hobby projects, stereo, tape recording, industrial electronics, appliance repair, communications, or on some other area of vital interest to you. Each is a working tool designed to help you learn the subject quickly and easily.

Big cash savings!

As a member, you alone decide whether you want a particular book or not. You get 2 books now for 99c and need take only 4 more within a year. And the Club saves you up to 30% off retail prices on the books you take!

FREE reference service!

What's more, our staff agrees to answer for you personally, any specific electronics question of your own choice. You're entitled to 3 questions for every book purchased—an extraordinary membership benefit!

Mail coupon and enjoy these benefits at once!

* Get two books immediately for 99c.
* Free 10-day examination privilege.
* Continuous cash savings.
* Free reference service.
* Free charts given with many books.
* You alone decide which books you want. Books are always returnable.
* Club books are practical tools.
* Choose only 4 more books in a year.
LEARN Electronics Engineering AT HOME

Today, ELECTRONICS is the fastest growing field, and has the greatest growth potential. You only have to look around you to see this - Radio, Television, Computers, Telemetry, - there are literally thousands of facets to this giant and growing industry. Training is the key to success in this highly technical field - to meet the demands of today and the exciting future of tomorrow. Training is the one big important step between "Wanting To Get Into Electronics" and "Being In Electronics".

To accomplish this, there are two well-known guidelines that you must follow:

"Choose a field that is rapidly expanding with a good future growth potential."

"Prepare yourself for a job in that field by learning everything you can about it."

LETTERS

(Continued from page 8)

and text very closely. The alarm worked on the first two trials and cut out on the third. Transistors Q1 and Q3 were found to be defective and were replaced, but on subsequent tests the same thing happened. Is it possible that the diagram is at fault?

GENE H. ALBRIGHT
New Stanton, Pa.

The "Swimming Pool Splash Alarm" can also be used as a burglar alarm. All you have to do is connect a normally-open microswitch across the probes and place the switch in contact with a door or window.

JIM VARRONE
N. Miami Beach, Fla.

I have found an easier way to make this alarm. By eliminating most of the components and the separate battery, but retaining all of the features and the relay in the original circuit, cost, time, and space can be saved.

WILLIAM A. RUSSO
N. Merrick, N.Y.

Gene, the diagram is correct; diode D1 is supposed to protect the transistors from reverse current surges. Try adding a resistor in series with the relay winding to reduce the amount of current flow. The larger the ohmic value of the resistor, the less current will flow; but don't use a value large enough to interfere with proper relay action. The Potter and Brumfield R55D relay is available with different coil ratings. Did you get the one specified? Jim, your suggestion is a good one—actually, there are a great many variations of and applications for this circuit. Bill, your circuit could work if the conductivity of the water allows enough current flow to energize the relay. Don't sell the transistors short; they do increase circuit sensitivity significantly.

BEWARE OF SILVER SOLDER

We have received a report from the New Mexico Department of Health on a case of cadmium poisoning involving a television station repairman who had been using silver solder with a high cadmium content. Also, two deaths have occurred, one in California,
Reach out into Hy-Gain DUO-BEAM territory.

Biggest "Talk Power" in Citizens Band!

With a powerful Hy-Gain Duo-Beam, your signal reaches out loud and clear into territories miles beyond the range of other antennas. At the same time, in areas you've been working, your signals are stronger and clearer...on both transmit and receive. And, because Duo-Beams are rotatable, you can direct your extra power with pinpoint accuracy in any of the 360 degrees surrounding your station!

3 Models to choose from—pick your "Talk Power"

<table>
<thead>
<tr>
<th>120 watts "Talk Power"</th>
<th>93 watts "Talk Power"</th>
<th>42 watts "Talk Power"</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUO-BEAM 10</td>
<td>DUO-BEAM 6</td>
<td>DUO-BEAM 4</td>
</tr>
<tr>
<td>Model 1110DB $99.95 Net</td>
<td>Model 11606 $69.95 Net</td>
<td>Model 114DB $39.95 Net</td>
</tr>
</tbody>
</table>

Available now from your Hy-Gain Distributor or Dealer

Send for complete descriptive literature—Form No. 13

© Hy-Gain ELECTRONICS CORPORATION
8501 N.E. Highway 6 - Lincoln, Nebraska 68501

CIRCLE NO. 23 ON READER SERVICE PAGE
2 Complete Tube Testers In 1 Instrument

1. RECEIVING TUBE TESTER
2. TV PICTURE TUBE TESTER
SAVE MORE THAN $50!
(compared to buying two separate testers)

$92.95 Net

Precise's New 'GREEN LINE' Model 115

1. RECEIVING TUBE TESTING
Eliminates Obsolescence Problem! A unique 10-circuit switching design allows testing of all the new type tubes that have elements with multiple pin connections—the Model 115 is the first and only obsolete-proof receiving tube tester in the speed-type class. ■ Grid emission test provides a sensitive grid emission and grid check by the use of built-in balanced VTVM circuitry. This all-important feature provides a revealing and significant tube condition test. ■ Basic dynamic cathode emission test is supplemented by a hot cathode shorts and leakage check. ■ Includes all latest type sockets, plus pin straighteners.

2. TV PICTURE TUBE TESTING & REJUVENATION (B&W and COLOR)
The basic picture tube test (for each gun of color picture tubes, and the single gun of B&W tubes) is picture-producing beam current (not total cathode emission which is rarely indicative of picture brightness). The beam current test checks all picture tubes for proportionate screen brightness. The critical central area of the picture tube cathode is checked in addition to the controlling action of the first grid. ■ Rejuvenation of picture tubes is accomplished by a unique capacitor discharge circuit which welds most intermittent elements, and redistributes cathode oxide over the beam-producing central cathode area. Meter directly indicates increase in brightness after each "shot".

GENERAL DATA
Wide visibility, 2% accuracy meter includes separate scales for quality test, grid emission, and picture tube beam current. ■ Complete up-to-date data book supplied. New data constantly available. ■ Size 16" x 9" x 34/". Weight 8 pounds. ■ ACCESSORIES AVAILABLE: Model CTA Color Tube Socket Adapter, $6.50 Net

See the complete "GREEN LINE"—power supplies, scopes, VTVMs, signal generators, tube testers, decade boxes, probes—at your local distributor, or write direct for full information and specs.

LETTERS

(Continued from page 10)

and one in Utah. Not all silver solder contains cadmium. However, the following precautions should be followed: warning labels, which should be on all packages, should be carefully read and followed; the working area should be properly ventilated; and workers should tell their physicians what their jobs are and what types of materials they handle. Occupationally-caused illnesses and diseases can be easily overlooked if physicians do not have this vital information.

U.S. Department of Health, Education, and Welfare
Public Health Service
Washington, D.C. 20201

ELECTRIC DICE GAME—NO DICE

I think it a misnomer to call the device designed by Ken Greenberg (July, 1966) an electronic dice game. The device can perform the function of one twelve-sided die but not of two conventional six-sided dice, for a number of reasons. First, one cannot obtain the number 1 when two dice are tossed in a game. Second, even if you were willing to discard the number 1, the numbers 2 to 12 that the electronic gadget offers the player are equiprobable, which is contrary to the probabilities associated with these numbers on a tossed pair of dice. It is well known, for example, that a 7 has a far greater probability (16%) than a 12 (11%). I think this should be brought to the attention of your readers.

SOLOMON ROSENSTARK
Department of Electrical Engineering
New York University
University Heights, N.Y. 10453

Like the Solomon of old, your words of wisdom are well spoken; but authors and editors, being what they are, take the public license from time to time. At least the electronic "dice" weren't loaded. We agree that equiprobable situations are typical of dice.

SO WHY NOT HERTZ?

I made a list of the "Measurement Units" in the article entitled "Test Measurements Profile" in the April 1966 issue (the same issue in which you announced the change from cycles to hertz), together with the names of some of the devices mentioned. I observed that every one of them is named for some early experimenter in electronics: ampere (Andre Marie Ampere, French physicist); farad (Michael Faraday, English chemist and physicist); gauss (Karl Friedrich Gauss, German mathematician); henry (Joseph Henry, American physicist); maxwell bridge (James Clerk Maxwell, Scottish physicist); ohm (George Simon Ohm, German physicist); volt (Count Alessandro Volta, Italian physicist); watt (James Watt, Scottish inventor); Wheatstone bridge (Sir Charles Wheatstone, English physicist);
The one antenna that does the work of three! Pulls in beautiful color and crystal clear black and white pictures on both UHF and VHF channels... plus the finest stereophonic and monophonic FM sound reproduction.

300-ohm models for normal reception areas from $18.50 to $59.95
75-ohm models for poor reception areas from $42.50 to $72.10

FINCO introduces 75-ohm COLOR VE-LOG ANTENNAS FOR UHF-VHF-FM RECEPTION

Finco's Swept-Element Antenna challenges all competition. Its unique design assures the finest color and black and white TV reception—plus superb FM and FM Stereo tone quality.

300-ohm models for normal reception areas from $16.95 to $54.50
75-ohm models for poor reception areas from $18.55 to $62.80

FREE! ALL FINCO CX-VL, CX-UVF AND UVF ANTENNAS COME WITH A FREE INDOOR SET-MOUNTED TRANSFORMER, VHF-UHF TRANSFORMER SPLITTER OR VHF-UHF SPLITTER.

THE FINNEY COMPANY
34 WEST INTERSTATE STREET, DEPT. PE, BEDFORD, OHIO
Vernier Dial Provides Mechanical Bandspread

If you own one of those inexpensive communications receivers with stations crowded on the dial, you can improve station separation dramatically with a modest investment of about 89 cents, and a few spare moments of your time. All you do is replace your existing fine tuning or bandspread knob with a vernier dial that you can get at most electronic supply houses. If you cannot mount the dial directly on the panel over the control shaft, first mount the dial on a small support panel fabricated from light-gauge aluminum or sheet metal as shown in the drawing. Then secure the panel, with the installed dial, to the bottom of the chassis or cabinet after slipping the vernier dial over the bandspread or fine tuning shaft. You'll be pleasantly surprised by the change in tuning ease.

—Bruce Carlin

Trunk Roller Makes Dial Cord Bracket

Hobbyists and experimenters who design or assemble their own receivers are usually faced with the problem of running the dial cord from the tuning dial through holes to the underside of the chassis and back up again. Keeping the dial cord from rubbing against the sides of the holes usually presents a challenge to the builder. A pulley bracket

(Continued on page 20)

ADC 606

Features and Specifications. Power: 90 watts (IHF) @ 4 ohms; 70 watts (IHF) @ 8 ohms

- Total Harmonic Distortion @ rated output: .5%
- 2 db below rated output: .2%
- Usable Sensitivity: 1.6 uv (IHF)
- Stereo Separation: 35 db @ 400 Hz; 20 db @ 8,000 Hz
- First, true compact size: 17” wide, 5” high, 9” deep
- Side panels eliminate need for separate cabinet
- Large, readable dial
- Complete playback and monitoring facilities
- Musical instrument input
- Automatic Frequency Control (switchable)
- Full independent control for 2 sets of speakers
- Headphone jack
- Each channel separately fused, plus main power fuse
- Automatic stereo switching
- 2-year warranty

Heard about the new $279 receiver with $400 specifications?

This is about the size of it
You can get additional information promptly concerning products advertised or mentioned editorially in this issue.

1

Circle the number on the coupon below which corresponds to the key number at the bottom of the advertisement or is incorporated in the editorial mention that interests you.

2

Mail the coupon to the address indicated below.

3

Please use this address only for Product Service requests.

POPULAR ELECTRONICS
P. O. BOX 8391
PHILADELPHIA, PA. 19101

Please send me additional information about the products whose code numbers I have circled

NAME (Print clearly)

ADDRESS

CITY STATE ZIP CODE

VOID AFTER NOVEMBER 30, 1966
Choose Your Tailor-Made Course in
N.T.S. “PROJECT METHOD” ELECTRONICS

Now! N.T.S. — one of America’s oldest leading home-study and resident technical schools—offers you GREATER CAREER OPPORTUNITIES IN ELECTRONICS.

You can install and maintain electronic circuitry in missiles and rockets ... specialize in microwaves, radar, and sonar.

You can succeed in TV-Radio Communications ... prepare for F.C.C. License, service advanced satellites for industry and defense.

You can service and repair the electronic “brains” of industry — computers, data processing and other automation equipment.

You can become a highly-paid TV-Radio Technician, an electronics field engineer, or succeed in your own sales and service business.

CHOOSE YOUR FIELD — INSURE YOUR FUTURE!

1 ELECTRONICS-TV-RADIO SERVICING AND COMMUNICATIONS
A basic course thoroughly covering fundamentals of electronics, radio, TV servicing and communications.

2 MASTER COURSE IN ELECTRONICS-TV-RADIO, ADVANCED TV AND INDUSTRIAL ELECTRONICS
Qualifies you as a Master Electronics Technician — the Man in Demand.

3 FCC LICENSE COURSE
Preparation for this government license essential for many interesting jobs in radar, radio, television, communications, guided missiles, many others. Upon completion of this course, if you do not pass the FCC exam, your tuition will be refunded in full.

4 RADIO SERVICING (AM-FM-TRANSISTORS)
Train for radio sales and service with dealer or distributor.

5 TELEVISION SERVICING (INCLUDING COLOR)
Covers installation, adjustment, repair and servicing of black and white and color television ... prepares you for your own sales and service business.

6 STEREO, HI-FI AND SOUND SYSTEMS
A growing field. Prepares you to build, install and service modern sound equipment for home or industry.

7 BASIC ELECTRONICS
Gives you the fundamentals you must know to build on for a future Electronics career. Also offers an excellent background for Salesmen, Purchasing Agents, and others in Electronics.

8 ELECTRONICS MATH
Simple, easy-to-follow instructions in the specialized math you need in many electronics jobs.

INDUSTRY WELCOMES N.T.S. STUDENTS AND GRADUATES
N.T.S. HOME TRAINING: QUICK, PRACTICAL WAY TO HIGHER PAY, LIFELONG BENEFITS

N.T.S. "Project Method" Courses can help you get a new and better job — or move up to higher pay in your present one.

N.T.S. "Project Method" home training lessons are shop-tested in the Resident School in Los Angeles. You work on practical job projects, learn to use shop manuals and schematics. Your N.T.S. training is individual. You proceed at your own pace. The Schools' practical methods plus more than 60 years of experience have helped thousands of students all over the world to successful careers.

Most courses include Equipment Kits. There are no Kit Deposits. Everything included in your low tuition.

BENEFIT NOW AND ALL YOUR LIFE WITH N.T.S. HOME TRAINING

The personal guidance you receive during your training can be very helpful to your progress. Many N.T.S. students are able to earn more money within a few months. You can pick and choose your career. Work in industry or go into business for yourself.

Your services will always be in demand wherever you go — and you can pick your spot! N.T.S. Graduate Advisory Service can help you answer technical questions in establishing your own business and in countless other ways after you've completed your training.

CLASSROOM TRAINING
AT LOS ANGELES

If you wish to take your Electronics-TV-Radio training in our famous Resident School in Los Angeles — the oldest and largest School of its kind in the world — write for special Resident School catalog and information, or check coupon.

MAIL REPLY CARD
OR COUPON FOR
FREE BOOK AND
SAMPLE LESSON

In Field of Your Choice

You Enroll by Mail — and Save Money. No Salesmen: This means lower tuition for you. Accredited Member N.H.S.C.

NATIONAL TECHNICAL SCHOOLS
4000 S. Figueroa St., Los Angeles, California 90037

Please Rush FREE ELECTRONICS "OPPORTUNITY BOOK" and SAMPLE LESSON on Course Checked Below:

☐ ELECTRONICS-TV-RADIO Servicing & Communications
☐ Master Course in ELECTRONICS-TV-RADIO
☐ Color TV & Industrial Electronics
☐ FCC LICENSE
☐ RADIO SERVICING (AM-FM-Transistors)
☐ TELEVISION SERVICING (Including Color)
☐ STEREO, HI-FI and SOUND SYSTEMS
☐ BASIC ELECTRONICS ☐ ELECTRONICS MATH
☐ HIGH SCHOOL Department

Name ___________________________ Age ___________________________
Address __________________________ State _______ Zip _____________
☐ Check for Veteran Training under new G.I. BILL.
☐ Check here if interested ONLY in Classroom Training at Los Angeles.

October, 1966
TIPS (Continued from page 14)

fabricated from a small trunk roller and dial cord pulley can be used to simplify the project. Just remove the roller and use the bearing portion of the assembly to support one or more pulleys as shown. The support housing can be mounted on the chassis with machine screws. —Ronald L. Ives

INDIAN BEADS KEEP ‘EM STRAIGHT AS AN ARROW

If you’ve had the occasion to mount a ceramic disc capacitor on a circuit board, you might have wound up soldering the capacitor in an ungainly position, giving your project a “biased” appearance. To insure correct posture of the component, and an overall improvement in the project, slip a small-sized Indian bead onto each lead of the capacitor before soldering it. —Ilia Rosenbaum

FROM PILL BOTTLE CAP TO POSITION INDICATOR

Those seemingly useless pill container caps with a pointer to remind you when it’s time to take your next pill can also be used as shaft position indicators on your electronic projects. To make such an indicator, remove the pointer disc from the lid and drill a %"-diameter hole in the center of the cap. Then slice off the dial portion of the cap, using a sharp knife or razor blade. Slip the dial onto the potentiometer shaft and secure it in place with a nut. Now replace the indicator knob on the dial. —Art Transferr

(Continued on page 100)

Scott’s new one-afternoon tuner kit delivers amazing FET Performance

Now you can get factory-wired performance from a kit that takes only one afternoon to build! Scott’s new LT-112B is the only kit with Field Effect Transistor circuitry*, enabling you to enjoy more stations more clearly. Interstation Muting Control effects complete quiet between FM stations. ... oscilloscope output allows laboratory-precise correction for multipath distortion.

"Scott’s LT-112... is one of the finest FM stereo tuners we have tested and it is easily the best kit-built tuner we have checked... Because of its simple construction and trouble-free nature, it is a logical choice for anyone who wants the finest in FM reception at a most remarkable price." HiFi/Stereo Review.

LT-112B specifications: Usable sensitivity, 1.8 µV; Cross modulation, 90 dB; Stereo separation, 40 dB; Capture ratio, 2.5 dB; Price, $189.95. *Patents pending

Be the man who’s always first to say: “I’ve got the answer right here.”

START USING THIS REMARKABLE ELECTRONICS SLIDE RULE

SOME DAY EVERYONE in electronics may have a slide rule like this. Till then, the man who uses one will seem like a wizard as he solves reactance and resonance problems in 12 to 20 seconds — without pencil and paper.

This is a professional slide rule in every detail, a full 10” long, made exclusively for Cleveland Institute of Electronics, to our rigid specifications, by Pickett, Inc. It can be used for conventional computation as well as special electronics calculations. All-metal construction assures smooth operation regardless of climate.

Handsome top-grain leather carrying case has heavy-duty plastic liner to protect slide rule; removable belt loop for convenient carrying. “Quick-flip” cover makes it easy to get rule in and out of case.

You also get four full-length AUTO-PROGRAMMED Lessons, which teach you how to use the special electronics scales on the slide rule. These lessons have been carefully designed to meet the same high educational standards as the electronics career courses for which our school is famous. Even if you’ve never used a slide rule before, you’ll soon whiz through the toughest problems with this CIE rule.

Deliberately underpriced. Many men in electronics have told us that this unique slide rule, leather case, and 4-lesson course easily add up to a $50 value. But we have deliberately underpriced it at less than $25. Why? Our reason is simple: we are looking for men in electronics who are ambitious to improve their skills...who know that this will require more training. If we can attract you with the low price of our slide rule and course—and impress you with its quality—you are more likely to consider CIE when you decide you could use more electronics training.

Send for free booklet. See for yourself why this amazing slide rule and course have made such a big hit with busy electronics men everywhere. No obligation, of course—just an opportunity to get in on the best offer ever made to people in electronics. Just mail coupon, or write Cleveland Institute of Electronics, Dept. PE-125, 1776 East 17th St., Cleveland, Ohio 44114.

CIE Cleveland Institute of Electronics
1776 East 17th Street, Cleveland, Ohio 44114

MAIL THIS COUPON FOR FREE BOOKLET

Cleveland Institute of Electronics
1776 East 17th Street, Cleveland, Ohio 44114
Please send me without charge or obligation your booklet describing CIE Electronics Slide Rule and Instruction Course. ALSO FREE if I act at once: a handy pocket-size Electronics Data Guide.

Name (please print)

Address

City State Zip

Accredited Member National Home Study Council
A Leader in Electronics Training...Since 1934

October, 1966
NEW PRODUCTS

Additional information on products covered in this section is available from the manufacturers. Each new product is identified by a code number. To obtain further details on any of them, simply fill in and mail the coupon on page 15.

ELECTRONIC IGNITION SYSTEM

Attention: motorcycle owners. The *Judson "Cycle-Tron"* is a completely integrated electronic ignition system designed specifically for motorcycles. The output of the Cycle-Tron, unlike that of the standard coil ignition system, does not fall off as the speed of the engine increases. Providing positive ignition under all conditions at any speed, the Cycle-Tron enables improved performance, a smoother running engine, and quicker starting. Because there is less wear or erosion on ignition components, fewer tune-ups are required. Installation is simple and can be made on the average motorcycle in less than 30 minutes. The unit carries a 3-year warranty.

Circle No. 75 on Reader Service Page 15

STereo TAPE RECorder KIT

Considerable savings can be realized by a builder of the kit version of the professional Magnecord 1020 four-track stereo tape recorder being offered by the *Heath Company*. Total assembly time is about 25 hours; assembly involves two circuit boards and mechanical mounting of the transport components. Included in the Model AD-16 kit are precut, prestriped, and marked connecting wires and shielded cables.

Walnut cabinet is optional. With the AD-16, you can play back and record "live" from microphone or from auxiliary sources in four-track stereo or mono at either 7½ or 3½ in/s. It also has sound-on-sound, sound-with-sound (mixing), and echo capabilities.

Circle No. 76 on Reader Service Page 15

INSTANT-LOADING CARTRIDGE RECORDER

This three-pound, battery-powered cartridge recorder by *Concord Electronics*, Model F-100, plays or records for a full hour on one snap-in cartridge, then shuts off automatically. The C-60 cartridge, interchangeable with those of most better quality cartridge recorders now on the market, snaps into place instantly. Tape speed is 1½ in/s; frequency response, 60-10,000 hertz. The F-100’s compact size (3" x 5" x 8"), light weight, and rugged construction make it useful for travelers—in automobiles, aircraft, or other moving vehicles. Accessories include a remote control microphone, microphone stand and pouch, two patch cords, and a carrying strap.

Circle No. 77 on Reader Service Page 15

5" WIDE-BAND OSCILLOSCOPE

The Model 315A high-sensitivity 5-MHz 5" oscilloscope announced by *Precise Electronics* is intended for audio and industrial testing as well as for TV servicing (both black-and-white and color). The "Green Line" panel-controls layout makes for increased efficiency and ease of operation on the part of the user. Some of the 315A’s features: vertical response to 5 MHz with 10 mV r.m.s./cm. sensitivity; three-step frequency-compensated vertical attenuator with separate stepless control; two-stage push-pull vertical amplifier plus cathode-follower input; panel-mounted astigmatism control; drift-free positioning control; and fully automatic sync.

Circle No. 78 on Reader Service Page 15

COMMUNICATIONS RECEIVER

Hallcrafters' Model S-210 six-band receiver includes the AM and FM broadcast bands plus the 49-, 21-, 25- and 19-meter short-wave bands. "Spread" tuning (the spreading apart of distant stations electronically) permits the listener to zero in on short-wave stations with local-station ease and precision. On the front panel are band selector/a.f.c., tuning, on-off volume, and tone controls. The metal cabinet is covered in walnut-colored vinyl with wood inlay trim.

Circle No. 79 on Reader Service Page 15

CARBON MICROPHONE

Available both in kit form and as a completed unit, the Dart M-100 carbon mike put out by
Today's electro-technology makes possible near-perfect stereo at moderate manufacturing cost; that's the design concept behind the new EICO "Cortina" all-solid-state stereo components. All are 100% professional, conveniently compact (3½"H, 12"W, 8"D), in an esthetically striking "low silhouette." Yes, you can pay more for high quality stereo. But now there's no need to. The refinements will be marginal and probably inaudible. Each is $89.95 kit, $119.95 wired.

Model 3070 All-Silicon Solid-State 70-Watt Stereo Amplifier: Distortionless, natural sound with unrestricted bass and perfect transient response (no inter-stage or output transformers); complete input, filter and control facilities; failure-proof rugged all-silicon transistor circuitry.

Model 3200 Solid-State FM/MPX Automatic Stereo Tuner: Driftless, noiseless performance; 2.4µV for 30db quieting; RF, IF, MX are pre-wired and pre-tuned on printed circuit boards — you wire only non-critical power supply.

7 New Ways to make Electronics more Fun!

Save up to 50% with EICO Kits and Wired Equipment.

NEW EICO 888 Solid-State Engine Analyzer

Now you can tune-up, troubleshoot and test your own car or boat. Keep your car or boat engine in tip-top shape with this completely portable, self-contained, self-powered universal engine analyzer. Completely tests your total ignition/electrical system. The first time you use it — just to tune for peak performance — it'll have paid for itself. (No tune-up charges, better gas consumption, longer wear) 7 instruments in one, the EICO 888 does all these for 6V and 12V systems; 4, 6 & 8 cylinder engines.

The EICO 888 comes complete with a comprehensive Tune-up and Trouble-Shooting Manual including RPM and Dwell angle for over 40 models of American and Foreign cars. The Model 888 is an outstanding value at $44.95 kit, $59.95 wired.

FREE 1967 CATALOG

EICO Electronic Instrument Co., Inc.
131-01 39th Ave., Flushing, N. Y. 11352

Send me FREE catalog describing the full EICO line of 200 best buys, and name of nearest dealer. I'm interested in:

- test equipment
- stereo/hifi
- automotive electronics

Name:

Address:

City:

State:

Zip:

CIRCLE NO. 16 ON READER SERVICE PAGE
SIGNAL MONITOR

Said to perform with virtually any receiver on the market today, the Heathkit SB-610 signal monitor visually displays both transmitted and received signal waveforms. It displays the actual signal envelopes or trap-ezoid patterns from ham radio transmitters and can be used with any transmitter from 160 to 6 meters. The comprehensive assembly manual includes procedures for displaying signals from 5-watt CB equipment, and also provides the ham or CB'er with characteristic waveforms for signal analysis—including SSB and RTTY.

Circle No. 81 on Reader Service Page 15

ADJUSTABLE WRENCH

A wrench that grips like a pair of pliers has been announced by Neff Enterprises, Inc. Called "GEAR-GRIP," it's available with three different jaw configurations: smooth "V" jaws, straight jaws, and "V" jaws with pipe teeth. The "V" jaw models have a capacity from 5/16" to 1" and the straight jaw model from 0" to 15/16". Plier-like ratchet action is obtained—without removing the tool from the work—by simply relaxing your grip and allowing the jaws to slip around the work quickly to get a new grip.

Circle No. 82 on Reader Service Page 15

SOLID-STATE CB TRANSCEIVER

Crystal socket accessibility and solid-state switching are featured in the "Slimline 675" 10-channel, 5-watt CB transceiver introduced by the Amphenol Corporation. To add trans-

mitter and receiver crystals, you just remove three knobs and two shaft nuts from the front panel controls; the panel is then lifted away, exposing the backs of the crystal sockets and the channel indicator dial. Use of solid-state switching provides protection against accidental "no-load" and "front-end" burnout—there are no contacts to stick, short out, or corrode due to arcing. The receiver is a dual-conversion superhet, equipped with squelch control. Frequency stability is at least ± 0.005% from —20°C to +85°C. Average power output: 3.5 watts. Measuring only 2 1/4" x 6 1/4" x 9", the "Slimline 675" also boasts a built-in public address system.

Circle No. 83 on Reader Service Page 15

TWO-IN-ONE TUBE TESTER

Designed to perform professional-quality tests on receiving tubes and the latest type color and black-and-white TV picture tubes, the Model 115 tube tester being marketed by Precise Electronics offers many features previously found only in much higher priced instruments. It includes VTVM circuits for grid circuit emission and gas tests on receiving tubes, and a unique 10-circuit switching design permits testing of all the new tube types that have elements with multiple pin connections. For TV picture tubes, the Model 115 has facilities for beam-current tests (rather than total cathode emission) and rejuvenation without danger of burnout. Weighing only 8 pounds, the "Green Line" tester is packaged in a rugged portable carrying case.

Circle No. 84 on Reader Service Page 15

STEREO TAPE RECORDER

Lafayette Radio Electronics has introduced the Model RK-815 four-track, three-speed, solid-state portable tape recorder which incorporates a heavy-duty, 5-position selector control (rewind, stop, run, pause, and fast forward). Other features include: four-track stereo/mono record/playback, 5-watt audio output, sound-without sound, sound-on sound, separate tone and volume controls for each channel, a stereo record/playback vu meter, and a 3-digit tape counter with preset button. Frequency response is ± 3 db, 40-15,000 hertz at 7 1/2 in/s; ± 3 db, 40-10,000 hertz at 3 1/2 in/s. The RK-815 is mounted in a textured solid vinyl case.

Circle No. 85 on Reader Service Page 15
Build this famous knight-kit®
Star Roamer® 5-Band Shortwave Receiver Kit

and have the whole wide world at your fingertips!

Think of it!—even if you know nothing at all about electronics—in a few fun-filled evenings you can assemble the Knight-Kit Star Roamer that lets you listen to the four corners of the world!

You visit the famous cities of Europe, Asia, Africa ... get continuous 24-hour-a-day aviation weather-casts ... zero-in on Coast Guard LORAN signals ... get the exact time from station WWV in Washington, D. C. ... listen in on the interesting conversations of Hams, Citizens Banders and Radio Telephoners—AND listen to your favorite programs on the standard AM band, too.

Thousands of folks of all ages have assembled the Star Roamer and have been amazed at how easy it is. All you do is follow crystal-clear, non-technical instructions and extra-large illustrations that show where every part fits ... and almost before you know it you're listening to exciting broadcasts from all over the world!

The Star Roamer covers 200 to 400 kc and 550 kc to 30 mc in 5 bandswitched ranges, and features a reliable superhet circuit ... plus Automatic Volume Control to prevent fading and blasting, illuminated "S" meter for fine tuning, and many other features found only in shortwave receivers that cost many times more.

Complete with all parts, handsome 51/2 x 121/4 x 8" charcoal gray and aluminum case, and easy-to-follow assembly instructions for only.

$39.95

Read the unique money-back guarantee ... exclusive in the industry ... then rush coupon for full details and Special Introductory Offer.

ALLIED RADIO, Knight-Kit., Dept. 3KK
P. O. Box 4398, Chicago, IL 60680

Please rush full details and Special Introductory Offer on the Knight-Kit Star Roamer 5-Band Shortwave Receiver.

Name
Address
City State Zip

BUILD A KNIGHT-KIT IN ACCORDANCE WITH OUR EASY-TO-FOLLOW INSTRUCTIONS. WHEN YOU HAVE COMPLETELY ASSEMBLED THE KIT, YOU MUST BE SATISFIED OR WE WILL RETURN YOUR MONEY, LESS TRANSPORTATION CHARGES, UNDER THE ALLIED GUARANTEE OF SATISFACTION.
When a crack electronics expert is needed fast, you're the guy they call.

Sometimes you feel like a country doctor with sixteen cases of measles in town.

But working on emergencies is nothing new to you.

You're the expert and emergencies are your job.

You're the one guy in the company that can practically field strip a computer and put it back together again. Circuits are so pressed into your brain you can almost hear a short one. They make the TV's you repaired back in high school look like crystal sets.

If it wasn't for the electronic training you got in the Army, you'd still be a tube tester. But the Army opportunity came along and you took it.

A full-dress, eight-hours-a-day, five-days-a-week school that taught you a skill you'll build a career on.

A solid career that can mean sound security all your life.

There's nothing like being an expert. That's what you can be in today's action.
CREATIVE ELECTRONICS FABRICATION
by Owen G. Patrick

How much pride do you take in projects built from plans in POPULAR ELECTRONICS? When you have a project working to your satisfaction, do you show it off? Or is it operative but ugly? Psychologists tell us that a handsome project always "works" better. Using some simple and some not-so-simple construction techniques, Owen G. Patrick designs and "builds" a signal tracer in this book; and when the unit is finished, it's a beauty. Creative Electronics Fabrication tells you how to work with metal chassis, boxes, and cabinets for best results. The information is practical and well presented.

SERVING TRANSISTOR TV
by Robert G. Middleton

Transistorized television receivers are being marketed in an ever-increasing volume, and heretofore little servicing information on transistor TV circuits has been available. Bob Middleton has organized this service guide so that it will be useful for quick reference to a particular section when a particular set of trouble symptoms is encountered. The book is divided into the various receiver sections and subdivided according to symptoms. Most of the possible causes for each symptom are listed, and those troubles frequently encountered are analyzed.

Published by Howard W. Sams & Co., Inc., 4100 W. 62 St., Indianapolis, Ind. 46266. Soft cover. 223 pages. $3.95.

TRANSISTOR CIRCUIT ANALYSIS
AND DESIGN, Second Edition
by Franklin C. Fitchen

Intended as an electronics course for electrical engineering students, this book will also prove useful to the practicing engineer—who will find the analysis and design examples helpful as background for the solution of specific problems. Vast changes in the characteristics of available devices sparked the revision of this text. Also, this edition is larger than its predecessor. Several advanced design techniques are described, and ties between semiconductor physics and device characteristics have been made stronger.

Published by D. Van Nostrand Company, Inc., 120 Alexander St., Princeton, N.J. Hard cover. 412 pages. $8.50.

October, 1966

How you can become an expert in today's action Army.

Your first step should be towards your Army Recruiting Sergeant. He has all the facts on more than 300 courses open to you. You'll get the course you select guaranteed in writing before you enlist. And there's no obligation until you enlist.

Call him today. He's in the phone book listed under U.S. Government.

Meantime, get a colorful, exciting 40-page booklet about Army life and Army opportunities. Simply fill out and mail this coupon. There's no obligation.
NEW LITERATURE

To obtain a copy of any of the catalogs or leaflets described below, simply fill in and mail the coupon on page 15.

Everything in electronics for home, industry, and laboratory is claimed for the contents of Lafayette Radio's 1967 catalog, No. 670. Consisting of 512 pages, it covers stereo hi-fi, CB, and ham gear, test equipment, radios, TV's and accessories, auto accessories, etc. As usual, all major manufacturers are represented, plus Lafayette's own components.

Circle No. 86 on Reader Service Page 15

Regency Electronics has produced a 16-page booklet that explains how the Regency solid-state "Tone Program System" enables firemen to turn out within five seconds after receiving an emergency call. The booklet, which tells how tone alerting works for small, medium, and large emergency units, is offered free to fire chiefs, civil defense directors, fire equipment distributors, and municipal officials.

Circle No. 87 on Reader Service Page 15

"Barry's Green Sheet," a new catalog released by Barry Electronics Corp., covers tubes, semiconductors, transformers, chokes, meters, wire, and test equipment, together with other components and equipment. The catalog is said to be unusual in that it contains many hard-to-find and unique items available at tremendous savings.

Circle No. 88 on Reader Service Page 15

A 12-page, two-color catalog on "G," "M" and other series panel meters—including a 1½" edgewise meter for use where panel space is at a premium—is being offered by the Tripplett Electrical Instrument Company. The "G" Series meters, which come in a variety of sizes and shapes, feature flexibility and interchangeability and are equipped with the Tripplett BAR-RING magnet and one-piece diecast frame.

Circle No. 89 on Reader Service Page 15

All U.S. Signal Corps technical manuals that are available from Quaker Electronics are listed in an 8-page booklet. The manuals are either new or like-new. Also available, and included in the listing, are instruction books and other material pertaining to Signal Corps equipment.

Circle No. 90 on Reader Service Page 15
The ideal base/mobile combination for CB radio

For base stations where 117 V 60 cycle AC current is available...

The Low-Cost
RCA Mark VIII and Mark NINE

- 9 crystal-controlled transmit and receive channels.
- Tunable receiver for reception of 23 C-B channels: dial marked in both channel numbers and frequency.
- Exceptionally good voice reproduction.
- Highly selective superheterodyne receiver with one RF and two IF amplifier stages.
- Electronic switching—no relay noise or chatter.
- Illuminated "working channel" feature.
- Light and compact—only 3½ inches high, weighs only 9 pounds with mike.
- Improved Automatic Noise Limiter.

Plus these EXTRA features in the Mark NINE

- Combination "S" Meter and relative RF Output Meter (indicates the relative strength of incoming signal) and Relative RF Output Meter (indicates relative strength of signal being transmitted).
- Spotting Switch. Permits precise manual tuning of receiver without use of receiver crystals.
- External Speaker Jack. Lets you connect an external speaker to set, so that incoming calls can be heard in remote locations.

Mark VIII: $99.95*
Mark NINE: $114.50*

For mobile units where low power consumption is important...

The all-solid-state
MARK 10

- All silicon transistors assure low power consumption, dependable communications at temperatures from -23° to +130° F.
- Compact, lightweight. Fits easily under dash of any car or truck. Only 3¾" high, 5¾" deep, 8½" wide. Weighs less than 4½ pounds.
- 12 crystal-controlled transmit and receive channels with illuminated channel selector.
- Combination "S" Meter and relative RF Output Meter.
- Operates from 12-volts DC power source (positive or negative ground).
- Crystal-controlled double conversion, superheterodyne receiver provides frequency accuracies greater than 0.004%.
- Separate AGC amplifier eliminates blasting and overloading, minimizes fading.
- Six-stage IF bandpass filter for maximum selectivity without ringing.
- Low-distortion, series-type noise limiter with automatic threshold adjustment.
- Receiver power regulated for maximum stability.
- Acoustically designed cabinet with audio characteristics shaped for maximum intelligibility.
- External speaker jack (de-activates internal speaker).

Mark 10: $189.95*

*Optional distributor resale price.
The Super-Sharp
TRAM TITAN
CITIZENS BAND
BASE STATION

*Multi-function meter reads: "S" units, SWR, and absolute power in watts into built-in dummy load. Measures power through the antenna.

*Super-sharp selectivity with Collins mechanical filter—adjacent channel rejection is 90 db or better. *First class sensitivity. *All 23 transmit channels.

For full details write:
Tram Electronics, Inc.
Dept. No. E-10, Lower Bay Road P.O. Box 187
Winnisquam, N. H. Phone 603-524-0622

All use must conform with Part 95 F.C.C. regulations. Hobby type communications or aimless small talk prohibited.

For information write directly to advertiser.

Pierson KE-93 receiver with "Vipak" unit; tones BC; has 12 tubes. Schematic and operating manual needed. (Carl Graham, 14801 Sunset Ave., Oak Forest, Ill. 60452)

Philco Model 37-650 receiver; tunes BC and s.w. on 3 bands; has 8 tubes. Schematic needed. (Dale Carlow, W. Pembroke P.O., Charlotte, Me.)

Stewart-Warner TRF receiver, ser. 14764, circa 1928; tunes BC: has 5 01A's. Schematic and source for tubes needed. (James Rofer, R. R. 3, Coldwater, Mich.)

Weston Model 661 capacity meter. Operating manual needed. (Edward J. Lananski, 78 Palisade Ave., Bogo-
ta, N. J. 07003)

RCA Model K 80 receiver; tunes BC and 2 s.w. bands; has 7 tubes. Dial face needed. (W. Paul Chamberlain, 2417 Kenwood Rd., Bakersfield, Calif. 93306)

American Bosch Model 610 receiver; tunes 550 to 16,800 kHz on 3 bands; has 6 tubes. Schematic needed. (Benny Bagaso, 859 Commercial Ave., Apt. 1, S. San Francisco, Calif. 94080)

Motorola TV receiver, ser. 2429-57, circa 1948; has 23 tubes and 12" picture tube. Hallicrafters Model E-20R receiver, circa 1942; tunes s.w. on 4 bands; has 9 tubes. Schematics and parts lists needed. American receiver, ser. 25-1863, circa 1939; tunes 550 kHz to 90.5 MHz on 2 bands; has 5 tubes. Schematic, parts list, filter choke, and source for L-49-C tube needed. (Dennie Egan, 210 Highland Oaks Dr., Los Gatos, Calif. 95030)

R.M.E. Model 4350 receiver, circa 1957. Schematic and operating manual needed. (Mike Czuhiejewski, RDF 3, Paw Paw, Mich. 49070)

Capehart 17M3 radio/phonograph, ser. 65778. Schematic needed. (Robert L. Tumpkin, 8036 Brush, Detroit, Mich.)

E. H. Scott SLR-H receiver, ser. 3705; tunes 0.53 to 15.6 MHz on 2 bands; has 11 tubes. (Raymond L. Stone, 2172 Marshall Ave., Napa, Calif. 94558)

Hallicrafters S-106 receiver. Schematic needed. Garod crystal calibrator and monitor; surplus; CQG-60133, circa 1945. Parts list needed. (Kenneth J. Romm, 6650 W. 82 St., Los Angeles, Calif. 90045)

L. W. Electronic Lab, LW-51 transmitter; 6 meters. Schematic, parts list, and tune-up procedure wanted. (William M. McDonald, 19 Sargent St., Lawrence, Mass. 01841)

Silverstone receiver, circa 1944; tunes 550 kHz to 18 MHz on 3 bands; has 8 tubes. Schematic needed. (J. E. Christian, 2623 Shelby, Apt. 136, Dallas, Tex. 75219)

(Continued on page 32)
If You Service Citizens Radio Transceivers...

you should have

AN INTERNATIONAL

C-12B

FREQUENCY METER

Four Instruments In One

The C-12B is more than a frequency standard—it measures power output, measures AM modulation, and is a signal generator...all self contained in one convenient unit.

check these features!

- **Frequency Measurement** — Range 26.965 mc to 27.255 mc. Frequency stability ± .0025% 32°F to 125°F; ± .0015% 50°F to 100°F.
- **Power Measurement** — 0 to 5 watts, accuracy ± ¼ watt.
- **Counter Circuit** — Frequency range 0 to 3 kc. Residual error 100 CPS @ zero beat.
- **AM Modulation Measurement** — Range 0 to 100%. Accuracy 3% @ 400 CPS @ 80% modulation.
- **Signal Generator** — Frequency range 26.965 mc to 27.255 mc. Low output 1 microvolt through special pick-off box furnished with meter. High output 100 microvolts through output jack.
- **Battery Power Required** — 1½ vdc @ 60 ma, 67½ vdc @ 5 ma, 9 vdc.

The C-12B is capable of holding 24 crystals and comes with 23 crystals installed. Everything you need including connecting cable, PK box, dummy load, and batteries.

Cat. No. 620-101 .. $300.00

Manufacturers of precision electronic products for home, industry and aerospace needs.

WRITE FOR COMPLETE CATALOG

INTERNATIONAL

CRYSTAL MFG. CO., INC.
18 NO. LEE OKLA. CITY, OKLA. 73102

CIRCLE NO. 25 ON READER SERVICE PAGE
Look for everything you’ve ever wanted in a CB rig in Courier’s TR-23S. Silicon-transistors throughout bring the size down to 5¾” W x 6¼” D x 1¾” H. Crystals supplied for all 25 channels. Complete with microphone. Illuminated S meter. Illuminated channel selector. PA system. Auxiliary speaker jack. Single-knob tuning. Modulation indicator. DC cord. Exclusive Courier “Safety-Circuit” to protect against mismatched antenna, incorrect polarity, and overload. Plus the biggest guarantee in the business—10 full years!

Yes! I’d like to know all about the $169 Courier TR-23S with the 10-year guarantee.

Name
Address
City County State

CIRCLE NO. 15 ON READER SERVICE PAGE

ASSIST (Continued from page 30)

Atwater-Kent 55C receiver, ser. 4001709. Cabinet and source for parts needed. (Lorne E. Baker, Box 128, Mt. Pearl, Newfoundland, Canada)

Webcor 2030-1A tape recorder, circa 1953; has 5 tubes. Schematic and operating manual needed. (George Downes, Jr., Rt. 1, Magnolia, Ohio 44643)

Garrard R.C. 95/4 record player. Record spindle needed. (Jeffry Blumenfeld, Belmont Dr., Colonial Pk., Monticello, N.Y. 10701)

Rex UC-1 UHF/TV converter, circa 1953. Schematic and tube complement needed. (Russell Cox, Jr., 7405 E. Townerline Rd., Rt. 1, Bridgeport, Mich. 48722)

Western Electric D-153964 receiver, ser. 809, tot 3; has 8 tubes. Schematic needed. (C. Fred Mullins, 3258 Robert Pike, Springfield, Ohio)

VCR7 cathode-ray tube base connections needed. (Jerry Proc. 76 Barnesdale Ave. N., Hamilton, Ontario, Canada)

RBB-2 or RBC-2 receiver, made by RCA, circa 1941: tunes 4 to 27 MHz on 4 bands. Schematic for receiver and power supply (RBA-1 or RBB-1 or RBC-1) needed. (Dick Atkinson, 1679 W. 15 St., Erie, Pa. 16505)

Triumph Model 335 VOM, Navy Dept. Model OCR-1, 1CTU 60143. Schematic needed. (Frank Keegan, 189-10 46 Ave., Flushing, N.Y. 11358)

CRV-46152 DZ-2 aircraft direction finder, ser. 385, made by RCA, 6/30/39. Loop assembly, loop assembly drive, and drawings needed. (Charles Lane, 5201 Roland Ave. Baltimore, Md. 21210)

Solar CE capacitor analyzer, type 1.60. Sonar Model CFC VFO. Operating manuals needed. (Denis Dufour, 148 Clayton Dr., Norco, La. 70079)

Eicor Model 15 tape recorder. Schematic and source for parts needed. (W. F. Goepel, 265 Carol Rd., Stratford, Conn. 06497)

Eldeco SSB-500 linear amplifier, circa 1956; 80 through 10 meters. Operating manual and schematic needed. (John Vanloon, Rt. 3, Lemont, Ill. 60439)

TCS-9 receiver, type COL-46159, made by Collins, ser. 250. Schematic and Information on operation of “Osc. Selector” needed. (Ronnie Schmidt, 2611 Stratford Ct., San Antonio, Tex. 78223)

Harmon-Kardon Model A 250 “Epic” stereo amplifier: 25 watts; has 8 tubes. Schematics and operating manual needed. (Steven Terry, 147 Columbia Heights, Brooklyn, N.Y. 11201)

Atwater Kent Models 9, 10, 12, 19, 20. Schematics needed. (Gerald Grukey, 2001 Greenwood Dr., Richmond, Calif. 94806)

National NC-57 receiver, circa 1950; tunes 500 kHz to 3 MHz on 5 bands; has 9 tubes. First and second i.f. transformers and detector input transformer needed. (RCA Model 9ET2 receiver; tunes BC and sw. from 550 kHz to 18 MHz; 7 tubes. Schematic and speaker needed. (Robert M. Miller, 105 N. Long Dr., Rockingham, N.C. 28079)

Sears “Meteor” Model 6146 TV set, circa 1957; has 12 tubes and 21ATP4A picture tube. All available information wanted. (Philip Hodge, 5628 S. Harper, Chicago, Ill. 60637)

Montgomery Ward 62-151 receiver, series A2, circa 1936; has 11 tubes; tunes 525 kHz to 22.0 MHz on 4 bands. Schematic, parts list, and operating manual needed. (R. J. Gehring, 501½ Humboldt Ave., Wausau, Wis. 54401)

Supreme Model 587 receiver, ser. 201. Wiring diagram needed. (Robert Sauge, Mont Sacré-Coeur, Granby Sleaford, Canada)

Polytronics PC-6 (“Polycom 6”) transceiver, ser. 82A120. Schematic and Instruction manual needed. (Howard H. Halperin, 5712 S. Merriion Ave., Chicago, Ill. 60617)

Radio City Products 662-663 electronic multimeter, circa 1948. Schematic and operating manual needed. (J. Flavin, 8009 W. S1 Terr., Overland Park, Kan.)
Technicians:

Keep learning while you earn.

IBM Customer Engineers learn every day. If you are qualified, you'll receive a training program with full pay. You'll be taught how to install and service IBM data processing equipment.

After that you will be given your own territory to handle. But you'll still keep learning. You will attend classes to keep you up-to-date on the latest in your field. IBM Customer Engineers spend more than a month each year in education programs.

It's a great way to learn a specialty. And you'll be preparing yourself for positions of greater responsibility in the fast-growing field of information handling and control.

If you have 2 years of technical school education (or equivalent experience), are handy with tools and know electronics, we'd like to see you. IBM is an Equal Opportunity Employer.

Please write, outlining your qualifications and interests, to Dept. 783X at any of the locations listed below:

W. S. Bedford, IBM Field Engineering
400 Wyman Street
Waltham, Mass. 02154

D. L. Potts, IBM Field Engineering
425 Park Avenue
New York, New York 10022

C. E. Farnham, IBM Field Engineering
66 Glen Avenue
Glen Rock, New Jersey 07452

D. H. O'Neil, IBM Field Engineering
Seven Penn Center
Philadelphia, Pa. 19103

R. M. Baker, IBM Field Engineering
3833 North Fairfax Drive
Arlington, Virginia 22203

O. J. Agee, IBM Field Engineering
Room 240, 1371 Peachtree St., N.E.
Atlanta, Georgia 30309

F. W. Garvin, IBM Field Engineering
20700 Greenfield Road
Oak Park, Michigan 48237

R. O. Berger, IBM Field Engineering
29 North Wacker Drive
Chicago, Illinois 60690

T. W. Dickey, IBM Field Engineering
6811 West 63rd Street
Shawnee Mission, Kan. 66201

R. L. Norton, IBM Field Engineering
2929 Cedar Springs Road
Dallas, Texas 75219

L. A. McWilliams, IBM Field Engineering
9045 Lincoln Boulevard
Los Angeles, Calif. 90045

C. G. Kruse, IBM Field Engineering
340 Market Street
San Francisco, Calif. 94119

IBM
SOMEONE SHOULD DEVELOP AN EASY WAY
TO LEARN ELECTRONICS AT HOME

RCA INSTITUTES DID!

Here is a whole new approach to learning electronics at home! RCA Institutes, one of the nations' largest schools devoted to electronics, has developed a faster, easier way for you to gain the skills and the knowledge you need for the career of your choice. Here for the first time, is a student-proved, scientifically designed way to learn. If you have had any doubts in the past about home training in electronics—if you have hesitated because you thought you might not be able to keep up—or that electronics was too complicated to learn—here is your answer! Read how RCA Institutes has revolutionized its entire home training ideas!
NEW CAREER PROGRAMS
BEGIN WITH “AUTOTEXT” INSTRUCTION METHOD!

Start to learn the field of your choice immediately!
No previous training or experience in electronics needed!

With this new revolutionized method of home training you pick the career of your choice—and RCA Institutes trains you for it. RCA’s Career Programs assure you that everything you learn will help you go directly to the field that you have chosen! No wasted time learning things you’ll never use on the job! The Career Program you choose is especially designed to get you into that career in the fastest, easiest possible way!

And each Career Program starts with the amazing “AUTOTEXT” Programmed Instruction Method—the new, faster way to learn that’s almost automatic! “AUTOTEXT” helps even those who have had trouble with conventional home training methods in the past. This is the “Space Age” way to learn everything you need to know with the least amount of time and effort.

CHOOSE A CAREER PROGRAM NOW
Your next step may be the job of your choice. Each one of these RCA Institutes Career Programs is a complete unit. It contains the know-how you need to step into a profitable career. Here are the names of the programs and the kinds of jobs they train you for. Which one is for you?

Television Servicing. For a job as TV Technician, Serviceman; Master Antenna Systems Technician; TV Laboratory Technician; Educational TV Technician.

Automatic Controls. For those who want to become Automatic Controls Technicians, or Field Engineers.

Digital Techniques. For a career as a Digital Techniques Electronics Technician; Industrial Electronics Technician; Industrial Laboratory Technician.

Telecommunications. For a job as TV Station Engineer, Mobile Communications Technician, Marine Radio Technician.

Industrial Electronics. For jobs as Industrial Electronics Technicians; Field Engineers; Maintenance Technicians; Industrial Laboratory Technicians.

Nuclear Instrumentation. For those who want careers as Nuclear Instrumentation Electronics Technicians; Industrial Laboratory Technicians; Industrial Electronics Technicians.

SEPARATE COURSES
In addition, in order to meet specific needs, RCA Institutes offers a wide variety of separate courses which may be taken independently of the Career Programs, on all subjects from Electronics Fundamentals to Computer Programming, Complete information will be sent with your other materials.

LIBERAL TUITION PLAN
RCA offers you a unique Liberal Tuition Plan—your most economical way to learn. You pay for lessons only as you order them. No long term contracts. If you wish to stop your training for any reason, you may do so and not owe one cent until you resume the course.

VALUABLE EQUIPMENT
You receive valuable equipment to keep and use on the job—and you never have to take apart one piece to build another. New—Programmed Electronics Breadboard. You now will receive a scientifically programmed electronic breadboard with your study material. This breadboard provides limitless experimentation with basic electrical and electronic circuits involving vacuum tubes and transistors and includes the construction of a working signal generator and superheterodyne AM Receiver.

Bonus From RCA—Multimeter and Oscilloscope Kits. At no additional cost, you will receive with every RCA Institutes Career Program the instruments and kit material you need to build a multimeter and oscilloscope. The inclusion of both these kits is an RCA extra.

CLASSROOM TRAINING ALSO AVAILABLE
RCA Institutes maintains one of the largest schools of its kind in New York City where classroom and laboratory training is available in day or evening sessions. You may be admitted without any previous technical training; preparatory courses are available if you haven’t completed high school. Coeducational classes start four times a year.

FREE PLACEMENT SERVICE
In recent years, 9 out of 10 Resident School students who used the Free Placement Service had their jobs waiting for them when they graduated. And many of these jobs were with top companies in the field—such as IBM, Bell Telephone Labs, General Electric, RCA, and radio and TV stations and other communications systems throughout the world.

SEND ATTACHED POSTAGE PAID CARD FOR COMPLETE INFORMATION, NO OBLIGATION. NO SALESMAN WILL CALL. FREE BOOK INCLUDED, CHECK HOME STUDY OR CLASSROOM TRAINING.

RCA INSTITUTES, Inc., Dept. PE-06
A Service of Radio Corporation of America
350 West 4th St., New York, N.Y. 10014

The Most Trusted Name in Electronics

October, 1966
Amphenol's new 675 goes to pieces in twenty seconds

Amphenol Quality for only $179.95

No, the new Amphenol 675 doesn't fall apart. It's just that we've designed a set that makes crystal changing a snap.

Actually it's three pulls, two spins and a snap. Just pull off the three control knobs on 675's faceplate, spin off two lock washers under the knobs, and snap off the faceplate. Insert crystals in easily accessible front sockets. Reverse faceplate removal steps and you're back on the air.

See it soon at your local Amphenol Distributor. Or write to Amphenol, Box 134, Broadview, Illinois 60153

Other Amphenol 675 Features:
- Completely Solid State—Even T & R Switching
- Build-In Double TVI Traps
- P.A. and External Speaker Provisions
- Illuminated Numbered Channel Indicator
- Compact Size 2¾ x 6¼ x 9

AMPHENOL

October, 1966
A complete line of CB accessories for
all around operating convenience and
improved station performance from...

JOHNSON

ANTENNA METER and CB MATCHBOX
Measure and correct high SWR from antenna-transmitter mismatch with two of the most important CB accessories ever offered. The Johnson Antenna Meter reads SWR up to 10:1. Inserts temporarily in feedline with two SO 239 coaxial connectors. The CB Matchbox corrects SWR up to 5:1 to proper match of 1.1:1 or less.

Cat. No. 250-849 Antenna Meter $14.95 NET
Cat. No. 250-49 CB Matchbox $15.95 NET

TONE ALERT SELECTIVE CALLING UNIT
Silence skip, noise and other distractions with the Johnson Tone Alert selective calling unit. Tone Alert silences your receiver until another tone alert station calls you. Red light and tone indicate when you are called. Simple, one-switch operation. For any Messenger (except "350") and most other tube-type CB units.

Cat. No. 250-810 Tone Alert for 6V filaments $59.95 NET
Cat. No. 250-811 Tone Alert for 12V filaments $59.95 NET
Cat. No. 250-819-1 Tone Alert Kit for Messenger I $9.95 NET
Cat. No. 250-819-2 Tone Alert Kit for other manufacturers CB units $7.75 NET
Cat. No. 250-827 Tone Alert for Messenger III and Messenger 100 $69.95 NET

VOLTAGE REGULATOR and IN-CONVERTER
The Voltage Regulator and In-Converter are two of the handiest accessories to be made available to CB operators. Now you can convert any DC power source from 6 volts to 32 volts, regardless of polarity into a usable voltage for transistorized CB radios or other electronic equipment requiring 14 volts or less. The In-Converter converts 6 Volts DC to 12 or 18...12 Volts DC to 24...and inverts polarity from positive to negative or negative to positive. The Voltage regulator converts any DC voltage in the range of 24-32 volts to 13 Volts DC. Compact size—installs anywhere.

Cat. No. 239-120-1 In-Converter $22.95 NET
Cat. No. 239-119-1 Voltage Regulator (Pos. Grd.) $14.95 NET
Cat. No. 239-119-2 Voltage Regulator (Neg. Grd.) $17.95 NET

POWER PACK
Convert any transistorized Johnson Messenger into a full power hand-carried portable unit with the Power Pack. Uses rechargeable nickel-cadmium batteries for long life. Attaches to rear of Messenger. Adds only 2 lbs. to weight and 3" to length. Operates 8 hours or more between charges.

Cat. No. 250-845-1 Power Pack Messenger III $69.95 NET
Cat. No. 250-854-1 Power Pack Messenger 100 $69.95 NET
Cat. No. 250-855-1 Power Pack Messenger 350 $69.95 NET
Cat. No. 250-846-1 Battery Charger for Power Pack $17.95 NET

WRITE TODAY! for complete
literature or see your
JOHNSON Distributor.

The most reliable name in communications
E. F. JOHNSON COMPANY
© 2446 10th Ave. S. W. • Waseca, Minn 56093

CIRCLE NO. 26 ON READER SERVICE PAGE

POPULAR ELECTRONICS
BUILD a portable time-signal receiver and you can tune in on standard time broadcasts from your living room, picnic table, boat, car, or even from a private plane. This miniature receiver is a complete superhet circuit with crystal-controlled local oscillator, prepackaged pretuned i.f. module, and transistorless audio amplifier. A printed circuit board makes it easy to build and only a screwdriver (no test equipment) is needed for alignment!

Standard time signals can be heard in almost every country in the world. In the United States, radio stations of the National Bureau of Standards (all having the call-sign WWV) continuously transmit time signals on a number of frequencies. Besides accurate time-signal information, the transmissions also provide: standard radio frequencies, standard audio frequencies, standard musical pitch, standard time intervals, radio propagation forecasts, and geophysical alerts. This receiver can be used to monitor WWV on a frequency of 10 MHz or 15 MHz.

You can also use the time-signal receiver to tune in CHU, Ottawa, Canada, on a frequency of 7335 kHz, or on 14.670
MHz. The CHU time-signal broadcasts are very popular because of their voice-time announcements each minute. A short tone or "beep" is broadcast each second.

The model of the WWV-CHU receiver shown on the cover (a portable, crystal-controlled, 8-transistor receiver) can be built for a little less than thirty dollars. It has an r.f. amplifier, a mixer, a pre-aligned J. W. Miller i.f. amplifier, and a push-pull Class B audio output. Powered by an ordinary transistor radio battery, the receiver has a low power consumption and battery life is quite good.

The WWV-CHU receiver is portable and can be used anywhere. A telescoping, built-in whip antenna can be extended to 52 inches for increased signal pickup. The audio stage drives a built-in speaker. In a noisy environment, or for private listening, an earphone can be plugged into the jack provided for that purpose. Since the receiver is crystal-controlled, there is no need to tune for the station.

Sensitivity is excellent, being better than one microvolt for a S/N ratio of 10 dB, which compares favorably with the large multi-tube communications receivers. Although the circuit is fairly complex, the receiver is easy to build. There are no coils to be wound since pre-wound, molded r.f. chokes are used. The receiver is even easier to align. The only piece of "equipment" needed for alignment is a screwdriver.

How it Works. The r.f. front end uses several new, low-cost, encapsulated npn silicon transistors. Transistor Q1 is the r.f. amplifier, and transistor Q2 is the mixer. Coils L1 and L2 are prewound iron-core r.f. chokes and are specified as being either 10 µH or 5.6 µH. If 10-µH chokes are used, then CHU on 7335 kHz or WWV on 10 MHz can be tuned. The 5.6-µH chokes will enable the receiver to be tuned to three time-signal stations: WWV on 10 MHz, CHU on 14.670 MHz, or WWV on 15 MHz. Midget trimmer capacitors C2 and C6 tune or resonate the chokes to the respective frequencies. Transistor Q3 is the local oscillator, which is crystal-controlled and "untuned." Fundamental crystals are used in this circuit.

The miniature i.f. module eliminates the need to build a separate i.f. amplifier. Within the module are two transistors, three i.f. 455-kHz transformers, a crystal diode detector stage, and miscellaneous decoupling capacitors.

The volume control is potentiometer R12. There are no transformers in the audio amplifier section so that cost and receiver weight are kept down. The audio preamplifier is Q4, a pnp germanium transistor. Transistors Q5 and Q6 operate push-pull Class B in a complementary-
MOUNTING PINS FOR THE XTAL ARE SALVAGED FROM 7 OR 9 PIN MINIATURE TUBE SOCKET. MAIN BODY OF PINS SHOULD PROTRUDE THRU CIRCUIT BOARD. BEND SOLDER TABS 90° AND SOLDER BACK SIDE OF CIRCUIT BOARD.

4-40 HEX NUTS (4 REQUIRED TO MOUNT CIRCUIT BOARD)

4-40 X 3/8" SCREW (4 REQUIRED TO MOUNT CIRCUIT BOARD)

MOUNTING TRIMMER CAPACITORS, CUT AWAY SHADED PORTION OF SOLDER TAB

MOUNT RESISTORS AND RF COILS VERTICALLY

PRINTED CIRCUIT BOARD

MOUNT ALL CAPACITORS FLUSH TO CIRCUIT BOARD

Before mounting trimmer capacitors, cut away shaded portion of solder tab.

This i.f. amplifier contains two transistors, three i.f. transformers, and crystal diode detector. Be sure to get the J.W. Miller Model 8902-B specified and not the older-style Model 8902 with outboard i.f. transformer.

If you purchase an LMB aluminum box No. 139, you can duplicate construction of the receiver shown on the cover using these dimensions.

October, 1966
This is the schematic diagram of the complete CHU-WWV time-signal receiver. The oscillator is crystal-controlled and the circuit is simply peaked up through adjustment of capacitors C2 and C6. The i.f. amplifier is prepackaged and prealigned, and is also peaked up once the receiver is in operation.

Use the layout of the top side of the printed circuit board shown below to spot the positions for the components in the wiring diagram above. Holes for the loudspeaker apply only if a Quam 2½” PM speaker is installed in the space provided.

Compare photo below with board layout at left. Speaker is now fastened to printed circuit board and the chassis cover with speaker cutout slips over U-shaped back cover seen in this photo.
symmetry configuration. A 100-ohm speaker is fed from the audio output stage through closed-circuit phone jack J1. When headphones are plugged into the phone jack, the speaker is automatically disabled. Any impedance headphone can be used. The audio output stage delivers over 50 milliwatts of power.

Construction. The entire time-signal receiver circuit is constructed on a printed circuit board measuring only 3\(\frac{1}{4}\)" x 2\(\frac{3}{4}\)" in size. A glass epoxy circuit board, etched and drilled, is available from the author (see Parts List).

Component mounting should follow that shown in the photo at left. All resistors are mounted vertically and all capacitors mounted as close to the printed circuit board as possible. Prior to mounting the miniature trimmer capacitors, C2 and C6, cut the soldering tabs as shown on page 43.

Space limitations will not permit the use of a crystal socket on the printed circuit board. Instead, two socket pins salvaged from a 7- or 9-pin tube socket are soldered directly to the board. Once these have been soldered in place, also as shown on page 43, they serve as the "socket" for the crystal.

All of the transistors should be mounted approximately ¼" away from the circuit board. Carefully observe correct placement of the “flat” side of transistors Q1, Q2 and Q3. As usual in soldering transistors, keep the heat applied to the leads to a minimum, but consistent with a good connection.

The connecting leads to the circuit board (from B1, J1, R12 and S1) should be approximately 2" long. These will be cut to the proper length once the circuit board has been installed in the chassis box. The speaker mounts directly on the printed circuit board where the holes are provided—it is installed last. Two 4-40 screws secure the speaker to the printed circuit board.

Prepare the metal box by drilling the holes in the back cover and making the 2" cutout in the front cover (see drawing on p. 43). Cement a 2\(\frac{1}{2}\)" x 2\(\frac{1}{2}\)" piece of perforated sheet aluminum in back of the 2" cutout. Use epoxy cement for this step. If you wish, you can paint the perforated sheet before cementing it in place.
PARTS LIST

R1—9-volt battery
C1, C4, C9—270-pF, 500-volt, dipped silver mica capacitor
C2, C6—3-35 pF, miniature trimmer capacitor (similar to Arco 403)
C3, C8—15-pF, 500-volt, dipped silver mica capacitor
C7, C10, C12—0.02-pF, 75-volt miniature ceramic capacitor (similar to Lafayette 33 R 6906)
C11—3-pF, 500-volt, dipped silver mica capacitor
C13—56-pF, 500-volt, dipped silver mica capacitor
C14, C15—0.001-pF, 75-volt, miniature ceramic capacitor (similar to Lafayette 33 R 6902)
C16, C19—100-pF, 12-volt, miniature printed circuit electrolytic capacitor (similar to Lafayette 99 R 6086)
C17—0.1-pF, 75-volt, miniature ceramic capacitor (similar to Lafayette 33 R 6908)
C18—2.0-pF, 6-volt, miniature printed circuit electrolytic capacitor (similar to Lafayette 99 R 9070)
L1, L2—10.0-pH, miniature iron core r.f. choke (similar to J.W. Miller 9310-36) or 5.6-pH miniature iron core r.f. choke (similar to J.W. Miller 9310-30); to tune 7-10 MHz, use the 10.0-pH chokes, and to tune 13-16 MHz, use the 5.6-pH r.f. chokes*
Q1, Q2—Npn low-cost silicon r.f. transistor (similar to Texas Instruments T1408, Semitronics T-33, etc.)
Q3—Npn low-cost silicon r.f. transistor (similar to Texas Instruments T1409, Semitronics T-33, etc.)
R1, R5, R16—2700-ohm, ½-watt resistor
R2—12,000-ohm, ½-watt resistor
R3, R7—1000-ohm, ½-watt resistor
R4, R8, R13—330-ohm, ½-watt resistor
R6—15,000-ohm, ½-watt resistor
R9, R10—22,000-ohm, ½-watt resistor
R11—2000-ohm, ½-watt resistor
R12—5000-ohm potentiometer with s.p.s.t. switch, ¼"-diameter (similar to Lafayette 32 R 7363)
R14—150,000-ohm, ½-watt resistor
R15—4700-ohm, ½-watt resistor
R17—270-ohm, ½-watt resistor
S1—S.p.s.t. switch (on R12)
SPKR—2 ½"-diameter PM speaker (similar to Qwan 22.1062-100 for exact mounting on printed circuit board)
XTAL—Fundamental frequency crystal, 0.01% tolerance, with HC/6U holder (similar to International Crystal Type EA-5); use 7790.0 kHz to receive CHU on 7335 kHz ($3.30); use 8450.0 kHz to receive WWV on 10.0 MHz ($3.30); use 14,215 kHz to receive CHU on 14,670 kHz ($4.40); use 14,543 kHz to receive WWV on 13,000 kHz ($4.40); any crystal available from International Crystal, 153 N. Lee, Oklahoma City, Okla. 73102 plus postage.

I.F. AMP.—Subminiature, 2-transistor i.f. package (must be J.W. Miller 8902-B)*
1—Printed circuit board (available from author with mounting hardware for $2.50, postpaid)*
1—3½ " x 3" ½" aluminum box (similar to LMB 139)
1—Telescoping antenna: 52" fully extended, 5½" retracted; 8-32 stud at bottom (similar to Lafayette 99 R 3008)
1—Steatite cone insulator (similar to E.F. Johnson 135-501)
Misc.—½" rubber grommet, battery clip, plastic knob for R12, wire, solder, etc.

*To assist in building the WWV-CHU receiver, the author has available a kit of parts containing the printed circuit board, i.f. strip, one crystal (your choice of frequency), and a set of matching r.f. chokes for $13.50, postpaid. Write to Caringella, P.O. Box 327, Upland, Calif. 91786. California residents should add 4% sales tax.

Mount the telescoping whip antenna through a ½" rubber grommet in the hole in the top of the back cover. The bottom of the whip is held by a steatite insulator. The solder lug, provided with the antenna, should be installed between the bottom of the antenna and the top of the insulator. Next, install the volume control, R12, and the phone jack, J1.

The completed circuit board, with speaker installed, is mounted last. If you follow the layout provided in the drawings, the speaker will automatically line up directly behind the 2½" opening when the front cover is installed.

Place a solder lug under the 4-40 nut in the lower left-hand corner of the circuit board. The solder lug will thus serve as the ground point for the negative lead of the battery. Run the battery’s positive lead along the underside of the circuit board and solder the end to switch S1.

Alignment and Operation. The completed receiver can be aligned with an "on the air" signal from WWV or CHU. Since the receiver’s local oscillator is crystal-controlled, there is no need to "hunt" for the station.

Assuming propagation conditions will permit reception of the desired station at the time you select (see box entitled "Time Signal Broadcasts"), simply tune C2 and C6 for maximum station volume or background noise. Also, a slight "tweaking" of the input transformer in the i.f. strip might be necessary. A hole in the top of the i.f. module enclosure allows access to the input transformer tuning slug.

In most cases, the built-in antenna is all that is needed. However, it is possible to improve reception with a "long wire" antenna. An external antenna can be clipped to the top of the whip. The (Continued on page 116)
FEW PEOPLE study electronics just to satisfy their curiosity. They do it to get jobs, establish a career, and fulfill a desire to improve their position in the community.

In the two previous parts of this series of articles, the discussion centered around the training of electronics technicians. The advantages and disadvantages of home study and resident schools were highlighted with particular emphasis placed on the time involved, tuition costs, types of study courses, etc.

But how about the payoff? What kind of job can you get once you've nailed your diploma to the wall? What do the companies who hire electronics technicians think of home-study and resident school graduates? What do they look for in a prospective employee? In other words, what's the best way to prepare yourself for a career in electronics?

To find out, POPULAR ELECTRONICS queried more than 150 manufacturers and service organizations—large and small—about their electronics technician hiring policies. Some 30 percent agreed to answer our questions in detail. And

1 Resident Schools, September, 1965
2 Correspondence Schools, February, 1966

By KEN GILMORE
from these answers, we have a good picture of how technician jobs are being filled.

Jobs for electronics technicians, we found, generally fall into three categories. Broadly speaking, they are: (1) the radio/TV service technician; (2) the broadcast-communications technician; and (3) the industrial engineering technician.

The Radio/TV Service Technician

A lot of guys make a good living these days repairing radios, television sets, hi-fi equipment, public address systems, and other electronic gear. The possibilities here for employment are wide open. Almost every school—home-study or residence—can give you bushels of case histories of graduates who have gone into radio/TV repair work, started their own shops, and are now running modestly prosperous businesses.

Scores of electronics schools can prepare you for such a career. Home-study schools offering this kind of training generally supply you with test equipment that you build from kits as part of your training, then use in your business when you complete the course. Some schools also supply lots of helpful advice about starting your own business.

Home study has a great advantage in preparing you for a job in radio/TV repair work: you can keep your regular job while learning to be a service technician at night. Of course, you can also attend a local residence school that offers night courses. Obviously, the home-study approach allows more flexibility: you move at your own pace. And interruptions—vacations or illness—won't interfere with your study as they would if you were attending regularly scheduled classes.

As for getting a job in a radio/TV shop, it's equally easy for the resident school and home-study graduate. If you're a good man with a soldering iron, voltmeter, and scope, you won't have any trouble getting started. "We hire both home-study and resident school graduates," stated the employment manager of a very large service organization. "Some men go right to work on a direct-hire basis; others go into a training program that we conduct. We take men with varying amounts of education and start them off at whatever level their training qualifies them for."

Radio and TV servicing and repair technicians, like other craftsmen, are in short supply. "When we opened up service outlets some time ago," says the district service manager of a nationally advertised brand of electronic appliances, "it took us months to find enough men to staff them. It's always a struggle to get enough really good men."

Says the owner of a large repair service in Chicago, "I could use two or three good men right now if I could find them. But it's useless to advertise. All the answers are from would-be technicians. I need men with training—men who can walk up to the bench and go to work."

The color TV and CATV explosion has accentuated the demand for radio/TV servicing technicians. Color TV receivers need converging, and the majority of the receivers need good outdoor antennas. Both the home-study and resident schools have tooled up to offer good study courses in color TV.

Broadcast-Communications Technician

The first requirement for getting a job in this field is an FCC license—First Class Radiotelephone for AM, FM, or TV broadcast work; Second Class Radiotelephone for communications equipment servicing. You can get either license after either home-study or residence

DID YOU MISS THE PREVIOUS STORIES?

Readers who missed the earlier stories by Ken Gilmore on electronics training in resident schools and through home-study courses will be able to read them in the Fall Edition of the ELECTRONIC EXPERIMENTER'S HANDBOOK. This Handbook is now on sale at many newsstands—look for it.

48
"WE'VE ALWAYS GOT VACANCIES.... WE CAN NEVER FIND ENOUGH QUALIFIED MEN"

school training. Many schools, in fact, guarantee that you will get a license if you stay with it. If you fail your FCC exam the first time, they'll give you additional instruction—and keep on giving it—until you have the price of admission to a good job: your FCC ticket.

If you choose the home-study route, you can always keep your present job while you study for your ticket. But whichever type of training you elect to undertake, you'll be qualified to apply for a job with a radio or television station or go to work in communications equipment installation and maintenance. "We get so many requests from radio and TV stations," says an executive of one home-study school, "that we can't list them in our monthly newsletter. When a graduate asks what jobs are open, we simply send him a list of those jobs available in his area, or whatever part of the country he wants to work in."

There's plenty of room for communications technicians these days: gas and electric companies, taxi fleets, forestry services, and many other organizations now have cars and trucks outfitted with two-way radio. Some communications technicians are specializing in the repair or maintenance of Citizens Radio Service transceivers—a paying field that didn't even exist eight years ago! And, of course, all airplanes are now radio-equipped and laden with plenty of sophisticated gear.

"We need people for computer repair and installation of communications gear," said one employment manager who regularly hires technicians from all over the country. "We don't expect a new man to know our particular equipment, but if that man has a good background in electronics, we'll hire him and train him to handle our gear." And, added this manager, his company routinely hires both home-study and residence school graduates.

Several large companies that hire technicians to work in communications told Popular Electronics that they hire strictly on the basis of electronics know-how and couldn't care less where the applicants got their training. One Midwest employment manager indicated that he saw very few applications from home-study graduates! And he couldn't figure out why.

Industrial-Engineering Technician

Practically every phase of industry needs electronics technicians desperately. Every big electronics company seeks technicians to work with design engineers, to build and test prototypes of new equipment, to help figure out production-line techniques, to test, calibrate, and troubleshoot equipment, to work as service engineers and keep customers happy with their equipment.

"We've always got vacancies," said one employment manager. "We can never find enough qualified men." Adds an-

Comparative earnings of non-graduate technicians vs. technical institute graduates have been analyzed by the Engineering Manpower Commission of the Engineers Joint Council, Inc. The above graph was prepared from advance information released by the EMC prior to publication of its detailed study on the careers of nearly 35,000 technicians. Not only are starting salaries higher for the graduates, but earning power increases with on-the-job experience.
other employment manager who hires 100 electronics technicians a year: “We always need more skilled technicians, especially those who know something about digital computers and telemetry.” “We have trouble finding people to work on microwave equipment,” says a third one.

If you want one of these jobs as an industrial or engineering technician, you’ll need more training than for either of the above careers. Furthermore, you’ll find that when it comes to landing that job, you’ll be on the inside track if you have some electronics job experience or if you got some training at a residence school. This employment attitude is slowly softening and more and more companies are looking at a man’s ability rather than his method of training.

One employment manager who hires up to 25 school graduates a year as assembly, test, and calibration technicians put it this way: “I’ll hire any graduate if his knowledge and practical ability equals that of other trainees we hire.”

On-the-Job Experience

“We take all training with a grain of salt,” says the personnel manager of an eastern electronics company, “whether it be a technical institute, college, home-study school, or service school. Our real interest is in a man’s experience and in his desire to learn. Frankly,” he adds, “our needs are for specialists in three areas: microwave, radar, and digital techniques. Generally we find that graduates of most schools—residence or home-study—don’t know enough about any of these subjects for our purposes, usually having had only a course or two in each. So we hire them as trainees and offer them the opportunity to pick up enough knowledge on the job to become an associate engineer. For this reason, we look at each technician candidate individually; if a fellow projects a deep interest in electronics and a strong desire to learn, we feel that we can use him in our R&D atmosphere.”

Another employer says he hires home-study graduates as trainees, but admits that some have weaknesses. “They may have theoretical knowledge,” he says, “but lab experience is becoming increasingly important. And that, they generally don’t have.” Consequently, this man adds, the home-study graduate does not generally begin at as high a salary level as the man who had the chance to handle laboratory-type equipment in a residence school.

One West Coast employment manager, doubtful about home-study graduates, gave this reason: “They consistently fail our very tough entrance examinations.” Another employer, who said he rarely hired recent home-study graduates, added that he does hire them as soon as they have had on-the-job experience. “They lack experience in laboratory techniques,” he remarked, “so we seldom hire them right out of school. But if they get some practical experience, then we find them satisfactory.”

Our survey turned up several important points that home-study graduates should consider when looking for a job. The most critical is to try to get your first job with a big company. Practically every major organization hiring between 10 and 100 new electronics technicians per year have special “in-plant” training courses designed to take the graduate with a broad electronics background and make him into a specialist. The smaller companies that hire three to five technicians per year rarely have indoctrination courses. If a small company needs a technician, its officials expect to hire a man capable of going right to work the following morning. The moral is obvious: Don’t let that biggest of the big companies scare you—it’s the best place for a school graduate to start a career.

Need for Highly Trained Technicians

The strange attitude of a few companies toward most home-study graduates, POPULAR ELECTRONICS believes, grows out of three things. First, the emphasis these days is on the very highly trained electronics technician—the man who has
A BASIC ELECTRONICS COURSE WAS NEVER DESIGNED TO TRAIN A MAN TO BE A COMPUTER TECHNICIAN

had essentially the same technical education as a graduate electrical engineer! Such a man is also expected to have had practical experience with computers, servo systems, microwave technology, high-powered transmitters, and other complex, expensive equipment. This is what some graduates get in such outstanding technical schools as RCA Institutes, DeVry Technical Institute, Central Technical Institute, Milwaukee School of Engineering, Capitol Institute of Technology, and others.

A graduate of the best home-study courses offered by Cleveland Institute of Electronics, Capitol Radio Institute, National Radio Institute, National Technical Schools, and others may have covered essentially the same ground in theory. But, obviously, the home-study school cannot ship each student a transmitter, a computer, or any massive equipment to play with.

Second, 10-15 years ago home-study schools concentrated primarily on basic electronics and radio-TV repair. That situation has changed rapidly in the past decade, and the better home-study schools have gone far beyond this old concept. A few manufacturers, nevertheless, still think of "TV Repair" training when they hear the term, "home study." Fortunately, more and more manufacturers are astonished to find that home-study graduates are well versed in many other things besides radio/TV repair.

Third, some home-study students themselves may have the wrong objectives. A man, for example, can sign up for a course in basic electronics. As soon as it is completed, he applies for a job as an engineering technician with a computer manufacturer. He flunks the employment examination. The student is then dissatisfied with the school, which he believes left him down. And the computer company has a nagging feeling that home study is no good. Neither is true; the fact is simply that a basic electronics course was never designed to train a man to be a computer technician.

It Takes Time and Effort

Graduates of two- or three-year residence courses in top-rated schools attend classes for an average of some six hours a day, then spend two to three hours doing homework, with perhaps another session with the books over the weekend. Such students, in other words, spend virtually their entire time for two or three years studying electronics. Altogether, they may devote some 3000 to 4000 hours to becoming highly trained technical experts. By the time they've finished the better schools, they know calculus, Boolean algebra, and solid-state theory. They are thoroughly familiar

(Continued on page 109)

WHAT ARE THE STARTING SALARIES?

Those with the most training get the fattest pay checks. Graduates of three-year courses at top-rated technical institutes or junior colleges, and of the advanced home-study courses, make more money than those with less training. One manufacturer, for example, told us that the general run-of-the-mill graduate technician who qualifies for employment at his plant gets $93-$115 a week as a starting salary. Graduates of the high-level courses generally start at $120-$150 a week. These are graduates with no "on-the-job" experience.

Geographical location has a strong influence on pay checks. Electronics concerns in large cities and in the heavily industrialized regions such as those on the East and West Coasts and in some parts of the Midwest tend to pay more than those in smaller towns and cities. Any talk about specific figures must be general, since variations are wide. Normally, however, technicians working for industrial firms whose payrolls tend toward the low end of the salary scale might get only $80 to $95 a week as beginning pay. Those at the high end of the scale tend to cluster in the $100-$120 range, though some go higher. In communities where pay scales are lowest, of course, living costs also tend to be low.

In general, the same principles apply for radio/TV service technicians. Starting salaries for technicians who have completed a residence or home-study course may range from $75 to $115 a week, depending on the course and where they work. Men who plan to work in communications will normally earn salaries in between those of service technicians and industrial technicians.
THE MAGIC wand of microminiaturization has cast a spell on the electronics industry—a spell that will lead in the next few years to unheard-of new electronic devices and applications. Picture-on-the-wall TV, vehicular anticollision radars, home computer centers, portable electronic calculators smaller than a slide rule, precision controls for home appliances, person-to-person televiewers—these are but a few samples of the vast cornucopia of low-cost, high-reliability, and extremely small size electronic miracles that are to be ours in the very near future.

The components produced by this technology are called integrated circuits—or simply IC's. But just what is an integrated circuit? And why talk about IC's at all? Aren't they so expensive now that only the military can afford them, and so specialized that only computer specialists can use them? Not at all! Integrated circuits have become so cheap, reliable, and easy to use that most engineers consider it unwise to design new "ordinary" circuits with separate parts in applications where IC's can be used.

An Old Concept. Remember the 6SN7 radio tube? There must have been millions of them in use at one time or another. This tube is the octal-based dual triode that helped start the computer industry, served as a tone generator in electronic organs, and starred in the horizontal circuits of countless TV sets. The 6SN7's big advantage over its older counterparts was its two-for-the-price-of-one feature. Now two tubes occupied the space of one, and only one socket was needed. You saved two filament wires, four stripping operations, two solder joints, and lots of space. No longer did you talk of a single tube function, since a system of devices and interconnections in a single compact package was now available. And this is precisely what an integrated circuit is.

The 6SN7 was followed by the smaller 12AU7 and 12BH7, after which came the semiconductor devices with a new set of problems. The devices (transistors and diodes) got smaller and smaller while
There is a bright future for a new technology in molecular electronics that could make possible a new generation of products for industry and home.

What are they?

Monolithic integrated circuits, such as the one shown magnified above, are used in Sperry Rand's new UNIVAC 9000 series data processing systems. They perform the same functions as the large conventional printed circuit boards. One chip is the equivalent of 14 conventional printed circuit boards like the ones shown in the lower area of the photo.

External circuit wiring remained essentially as bulky as ever. However, since the transistor and diode generate little or no heat, the normal requirement for air ventilation was no longer critical. This being the case, the only remaining obstacles to miniaturization were the other circuit components.

The next step in the stride toward miniaturization was the putting together of two transistors in a single six-legged can to form what seemed like a "2N-6SN7" unit. Not only did this procedure simplify the wiring and basing requirements, but it also brought along other definite advantages. Since the two transistors were made side by side on a single slab of silicon perhaps no bigger than 25 mils square, they maintained the same temperature—which provided perfect tracking in critical, wide-temperature-range circuits. Identical geometry made the pair perfectly balanced, and for the first time it was possible to get a truly complementary pnp-npn pair.

Because transistors were able to operate at extremely low power levels, and the power dissipated in load and bias resistors was negligible, substantially

October, 1966
Typically, the manufacturing sequence for a monolithic IC is as follows: (1) Processing starts with a chip of lapped and polished P-type silicon wafer (P-substrate) about 0.010 of an inch thick. (2) An N-type epitaxial layer is grown over the wafer; this is followed by a thin layer of silicon dioxide that is formed by heating in an oxidizing atmosphere. (3) Grooves are etched around the areas to be isolated using normal photo-engraving process. (4) A highly doped P-type impurity is diffused into the grooves down through the epitaxial layer to the substrate. This impurity is covered by a second layer of silicon dioxide formed by heating again. (5) A photo-resist pattern masks those areas that must be etched to form the transistor base area and resistor patterns. (6) A P-type impurity is diffused into the etched areas to (continued on next page)

![Diagram](image)

smaller components could be used. Having gotten this far in the size reduction scheme, the next step could be easily anticipated: how to put resistors, capacitors, and inductors in the same can with the transistors. After all, since there are many identical circuits that are used over and over again with only slight changes, a few standard circuits would allow a wide variety of applications. Therefore, if the designer used lots of transistors and resistors, and built entire systems in small cans, he could eliminate countless interconnections.

Ways To Make IC’s. The resistors were easy to put on a silicon slab. Ni-chrome or nickel can be evaporated in place through a mask to build up the approximate resistance and trimmed to an exact value by abrasion or electron beam cutting. Other possibilities include the use of resistive inks, which can be directly silk-screened or offset-printed into place. Or, as is more popular today, silicon substrate (semiconductor material) itself can be made into resistors. By controlling the doping level, it is possible to obtain a given resistivity from which a desired resistance value can be derived. A reverse bias technique is used to isolate the various resistors, which are made from n-type material.

If all resistors are connected to a positive supply, the pn junctions formed will be reverse-biased, neatly isolating the resistors from the substrate and from each other, since the junctions cannot conduct current under reverse bias conditions. Newer techniques add a thin layer of glass between the substrate and the resistors to minimize the effects of nonlinear stray capacitance in high-frequency IC’s.

Newer transistors like the metal-oxide semiconductor (MOS) variety, and the insulated gate field-effect transistor (IGFET), can be made to exhibit the property of resistance or conductance, depending on the biasing employed. Furthermore, since these transistors do not require any special manufacturing process, they can be formed together with resistors, resulting in higher yields at lower costs.

But the forming of capacitors was a much more difficult task, and IC induc-
grow a new oxide coating. (7) The transistor emitter patterns are etched on the oxide and an N-type impurity is diffused to produce an N-region in the P-material under the etched windows. (8) Successively, every element of the circuit including transistor collectors, diodes, and resistors, is connected by holes etched in the oxide. (9) Contact points are established at every circuit element. The contacts are later brought out to terminals on a case by extremely fine wires. The TO-5 case typifies one of the various forms of packaging in common use. Other types include flat packages of varying dimensions and pin numbers.

Magnified view through eye of needle emphasizes minuteness of tiny welded connections that attach spider-web thin aluminum wire to elements of micro-electronic circuit. (Photo courtesy Cutler-Hammer)

tors were essentially impossible to make. Capacitors had to be built up by metalization of silicon or glass, in repeated layers. But even then they were somewhat leaky, and large values of capacitances required large areas of the integrated substrate. As for inductors, it simply wasn't possible to achieve large "L" values or high Q's.

So the circuit designers backed away a bit and decided instead to redesign their circuits to fit the IC's. This meant the elimination of all inductance, and as much capacitance as possible, from the circuit. For r.f. applications, where tuning or filtering is a must, separate LC units were placed in separate miniature cans and used like r.f. transformers. Wherever possible, all circuits are d.c.-coupled to eliminate practically all capacitors. And although this requires the use of more transistors, there is no extra cost. Adding more transistors in an integrated circuit requires only the making of a few more holes in the series of masks used during manufacture. It costs just as much to make one transistor as it does to make a dozen. And a dozen often occupy less space than the single capacitor they replace in a d.c. circuit. The use of numerous transistors is usually less expensive, anyway, since the capacitor manufacturing steps are eliminated.

This is why integrated circuit schematics always seem so complicated. Extra transistors are used to eliminate any component that would be expensive or hard to include in a tiny space.

Common Types of IC's. Every manufacturer has his own way of putting the many tiny components or circuit functions and interconnections into a single IC. However, since production techniques change so fast, it really isn't important for the IC user to know just what manufacturing steps are in use. But there are several basic IC types that
Similar in appearance to a packaged electronic circuit, this Burroughs' IC package features rugged dependability, making its use in electronic equipment subject to shock and vibration most desirable.

are likely to be around for a while. You should learn to recognize these types. Here are some of them:

Monolithic IC's have all their individual components etched out on a solid silicon chip. Their construction is very rugged, and the manufacturing cost relatively low.

Hybrid IC's consist of a number of interconnected monolithic IC's, discrete transistors, capacitors, and possibly power resistors. The hybrids lend themselves to high power outputs and custom-designed circuitry where the interconnections can be altered to suit a particular requirement. They are usually low-frequency devices and generally quite expensive.

Thin-Film IC's employ an IC technique through which layers consisting of a few atoms of a semiconductor material are evaporated onto a ceramic substrate (the newest designs use sapphire) through a series of masks. This technique permits exceptionally high frequency response and extremely small size. Some low-priced models operate with power in the nanowatt range.

Thick-Film IC's employ an old and cheap method similar to the printed circuit couplants. Resistors are silk-screened or offset printed in place; capacitors are made by overlapping layers of ceramic and metallic material. Ordinary transistors without cases are cemented or ultrasonically welded in place. This type of IC is recognized by its postage-stamp size and shape, and its external protective epoxy dip.

What's Available Now? Today there are thousands of different IC's available.

(Continued on page 106)

LOW-COST INTEGRATED AMPLIFIERS FOR THE EXPERIMENTER

<table>
<thead>
<tr>
<th>CIRCUIT</th>
<th>TYPE</th>
<th>NUMBER</th>
<th>MANUFACTURER</th>
<th>PRICE (Approx.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPERATIONAL AMPLIFIER</td>
<td>Linear</td>
<td>uA702</td>
<td>Fairchild Semiconductor</td>
<td>$14.40</td>
</tr>
<tr>
<td>R.F. OR I.F. AMPLIFIER</td>
<td>Linear</td>
<td>uA703</td>
<td>313 Fairchild Drive</td>
<td>4.50</td>
</tr>
<tr>
<td>COMPARATOR</td>
<td>Linear</td>
<td>uA710</td>
<td>Mountain View, Calif.</td>
<td>7.50</td>
</tr>
<tr>
<td>BUFFER</td>
<td>Digital</td>
<td>uL900</td>
<td></td>
<td>1.63</td>
</tr>
<tr>
<td>DUAL TWO-INPUT GATE</td>
<td>Digital</td>
<td>uL914</td>
<td></td>
<td>1.63</td>
</tr>
<tr>
<td>COUNTING FLIP-FLOP</td>
<td>Digital</td>
<td>uL923</td>
<td></td>
<td>3.95</td>
</tr>
<tr>
<td>LATCHING FLIP-FLOP</td>
<td>Digital</td>
<td>MC352</td>
<td>Motorola Semiconductor</td>
<td>4.55</td>
</tr>
<tr>
<td>DUAL TWO-INPUT GATE</td>
<td>Digital</td>
<td>MC359</td>
<td>Box 955</td>
<td>3.70</td>
</tr>
<tr>
<td>DUAL-COUNTING FLIP-FLOP</td>
<td>Digital</td>
<td>MC390</td>
<td>Phoenix, Ariz.</td>
<td>5.30</td>
</tr>
<tr>
<td>OPERATIONAL AMPLIFIER</td>
<td>Linear</td>
<td>MC1430</td>
<td></td>
<td>18.00</td>
</tr>
<tr>
<td>1-WATT AUDIO AMPLIFIER</td>
<td>Linear</td>
<td>MC1519</td>
<td></td>
<td>70.00</td>
</tr>
<tr>
<td>D.C. AMPLIFIER</td>
<td>Linear</td>
<td>CA3000</td>
<td>RCA Electronic Components</td>
<td>6.80</td>
</tr>
<tr>
<td>VIDEO AMPLIFIER</td>
<td>Linear</td>
<td>CA3001</td>
<td>Harrison, N. J.</td>
<td>6.40</td>
</tr>
<tr>
<td>I.F. AMPLIFIER</td>
<td>Linear</td>
<td>CA3002</td>
<td></td>
<td>4.40</td>
</tr>
<tr>
<td>R.F. AMPLIFIER</td>
<td>Linear</td>
<td>CA3004</td>
<td></td>
<td>4.40</td>
</tr>
<tr>
<td>AUDIO DRIVER</td>
<td>Linear</td>
<td>CA3007</td>
<td></td>
<td>6.80</td>
</tr>
<tr>
<td>OPERATIONAL AMPLIFIER</td>
<td>Linear</td>
<td>CA3010</td>
<td></td>
<td>12.00</td>
</tr>
<tr>
<td>COMPLETE FM I.F. STRIP</td>
<td>Linear</td>
<td>CA3013</td>
<td></td>
<td>2.65</td>
</tr>
<tr>
<td>HEARING-AID AMPLIFIER</td>
<td>Linear</td>
<td>SN1220</td>
<td>Texas Instruments</td>
<td>16.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Box 5012</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dallas, Texas</td>
<td></td>
</tr>
<tr>
<td>HIGH-GAIN AUDIO AMPLIFIER</td>
<td>Linear</td>
<td>WC183</td>
<td>Westinghouse Electronics</td>
<td>10.00</td>
</tr>
<tr>
<td>R.F. AMPLIFIER</td>
<td>Linear</td>
<td>WC1146</td>
<td>Box 7737</td>
<td>10.00</td>
</tr>
</tbody>
</table>

56 POPULAR ELECTRONICS
AN INTEGRATED CIRCUIT AMPLIFIER

you can build for under $6!

SIMPLE PROJECT OPENS DOOR TO NEW MICROCIRCUITS

Here's the "bargain basement" integrated circuit (IC) amplifier that hobbyists and experimenters have been waiting for. Ideally suited for use as a phonograph or dynamic microphone preamplifier, as a boost amplifier in a receiver i.f. or r.f. stage, as well as in practically all applications employing low-level signals, the complete IC amplifier can be built for under $6.00. The IC, packaged in a TO-5 case, contains the equivalent of six 2N918 transistors and seven resistors, and provides a voltage gain of 40, a current gain of 120, and a power gain of nearly 5000.

Frequency response is essentially flat from 20 Hz to 30 MHz, and distortion is negligible at outputs of up to 0.7 volt peak-to-peak. Clipping occurs at output levels of 1 volt peak-to-peak and over. When assembled with the external components itemized in the Parts List, the IC amplifier has an input impedance of 3300 ohms, and an output impedance of approximately 25 ohms.

How It Works. The integrated circuit amplifier (Fig. 1) consists of two separate transistor differential amplifiers (they respond to the difference between...
two voltages or currents), each coupled to an emitter follower stage. The output of the first emitter follower is applied to the base of the second differential amplifier input transistor through coupling capacitor C2.

Capacitor C1 couples the input from J1 to the base of the first amplifier which is biased through R1. Resistor R2 applies bias to the base of the second differential amplifier input transistor. The IC amplifier output is applied to J2 through C3.

Base bias for the second transistor of each amplifier pair is applied directly from a 1½-volt tap on the 6-volt supply battery. The full supply voltage is applied to the circuit through S1.

Important: The values of capacitors C1, C2, and C3 determine the frequency response of the circuit. For low-frequency response (about 20 hertz) only, 100-µF capacitors are used; for frequencies above 100 kHz, 0.02-µF disc capacitors are used instead of the 100-µF units. For a full frequency coverage (20 hertz to 30 MHz), parallel the two capacitor values.

Fig. 1. Packaged in a standard TO-5 container, the integrated circuit, shown in the gray area, consists of two differential amplifiers coupled externally by C2, and powered by B1 through B4.

Fig. 2. The complete IC, including the battery supply, can be mounted on a small (3” × 5”) aluminum plate, drilled and bent to form a chassis support.
Construction. The circuit is easily assembled on an improvised aluminum plate laid out and drilled as shown in Fig. 2. The IC socket used by the author is made up of 10 teflon press-fit standoff terminals inserted into appropriately sized holes drilled in the plate. Then the leads from the IC case are fanned out and each soldered to a standoff.

However, it is suggested that the builder follow a much easier and efficient procedure. A single Sealectro press-fit socket (see Parts List) can be press-fitted in a 1/2" hole drilled in the plate instead of bothering with the 10 small holes.

The four 1/8"-diameter holes in the upper portion of the plate mount the two penlight battery holders that are either riveted or screwed to the plate. Slide switch S1 is mounted on 1/2"-long spacers threaded at both ends for #6 screws, through the two 1/4"-diameter holes. The three unidentified holes in the vicinity of the IC socket accommodate press-fit standoffs that serve as tie points for component leads. The input and output jacks are mounted on the raised front panel as shown in Fig. 3.

All circuit components should be mounted and wired in place before installing the IC package; but do not (Continued on page 108)
“Get more education or get out of electronics...that's my advice.”
Ask any man who really knows the electronics industry. Opportunities are few for men without advanced technical education. If you stay on that level, you'll never make much money. And you'll be among the first to go in a layoff.

But, if you supplement your experience with more education in electronics, you can become a specialist. You'll enjoy good income and excellent security. You won't have to worry about automation or advances in technology putting you out of a job.

How can you get the additional education you must have to protect your future—and the future of those who depend on you? Going back to school isn't easy for a man with a job and family obligations.

CREI Home Study Programs offer you a practical way to get more education without going back to school. You study at home, at your own pace, on your own schedule. And you study with the assurance that what you learn can be applied on the job immediately to make you worth more money to your employer.

You're eligible for a CREI Program if you work in electronics and have a high school education. Our FREE book gives complete information. Airmail postpaid card for your copy. If card is detached, use coupon below or write: CREI, Dept. 1220-D, 3224 Sixteenth Street, N.W., Washington, D.C. 20010.

The Capitol Radio Engineering Institute
Dept. 1220-D. 3224 Sixteenth Street, N.W., Washington, D.C. 20010

Please send me FREE book describing CREI Programs. I am employed in electronics and have a high school education.

NAME_________________________AGE_________
ADDRESS__
CITY_________________________STATE_________ZIP CODE________
EMPLOYED BY________________________
TYPE OF PRESENT WORK____________________□ GI BILL

I am interested in □ Electronic Engineering Technology,
□ Space Electronics □ Nuclear Engineering Technology
□ NEW! Industrial Electronics for Automation
□ NEW! Computer Systems Technology
To bat 1000 with this quiz, all you need to know is Ohm's law. Can you determine between which set of terminals (A-H) on the schematic diagram a voltmeter must be connected to read the individual voltages listed below? Some of these voltages can be obtained at more than one set of terminals. Extra space is allotted for your answer where multiple combinations exist. HINT: Start out by letting terminal A or B serve as your reference point.

(Answers appear on page 111)

![Schematic Diagram]

<table>
<thead>
<tr>
<th>VOLTS</th>
<th>TERMINALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

(Answers appear on page 111)
THE NEW PIEZORESISTIVE semiconductor strain-gauge phono cartridges open up a whole new field of endeavor for hi-fi enthusiasts, experimenters, hobbyists, and record player manufacturers. These cartridges work like variable resistors. Unlike ceramic and magnetic cartridges, they do not generate any voltage. They do utilize a varying resistance characteristic to modulate an external d.c. voltage in step with stylus motion. The small voltage needed can be obtained directly from an amplifier
power supply, or from a separate battery.

Interest in these piezoresistive phono cartridges is running high at the present time because of their compatibility with transistor applications. They have several good inherent characteristics: they closely match the inputs of transistorized audio amplifiers; they effectively deliver more power to the amplifier and reduce the number of stages of amplification; frequency response is from d.c. to more than 30,000 hertz; and there are no coils to pick up a.c. hum.

A two-transistor amplifier especially designed for use with one of these cartridges is shown in Fig. 1 and discussed in the following paragraphs.

How Amplifier Works. A stereo cartridge, equipped with a double sapphire flip-over stylus, is coupled to a pair of stereo headphones through a basic stereo amplifier.

The two-channel amplifier is beautiful in its simplicity. It has only four resistors, two capacitors, and two transistors, as shown in Fig. 1. Resistors \(R_3 \) and \(R_4 \) set up bias for \(Q_1 \) and \(Q_2 \), respectively. Capacitors \(C_1 \) and \(C_2 \) serve as signal couplers and d.c. blockers. A 1½-volt flashlight battery (D cell) is used to operate the transistors.

Voltage from a lantern-type battery (6 volts) is divided equally and oppositely across each element in the stereo cartridge. Any d.c. voltage source on the order of 6 to 18 volts can be used for this purpose. The higher the voltage, the greater the volume. However, comfortable listening levels are obtained with a 6-volt source.

Resistors \(R_1 \) and \(R_2 \) form voltage dividers with their respective cartridge elements and are hooked up in such a way as to have a negative-going voltage in one channel and a positive-going voltage in the other channel when both cartridge elements are moved in the same direction. Vertical stylus motion (up or down) causes both elements to move in the same direction. Lateral motion moves one element up and the other element down.

This phase-inverting technique is used to obtain an out-of-phase signal for vertical stylus motion and an in-phase signal for lateral motion, to conform to

![Diagram](image.png)

PARTS LIST

- \(C_1, C_2 - 20\mu\text{F}, 25\text{-volt electrolytic capacitor} \)
- \(J_1, J_2 - \text{Phono jack (RCA type, single-hole mounting)} \)
- \(J_3 - \text{Three-circuit phone jack (should match headset plug)} \)
- \(Q_1, Q_2 - 2N217 \text{ transistor} \)
- \(R_1, R_2, R_3, R_4 - 2200\text{-ohm, } \frac{1}{2}\text{-watt resistor} \)
- \(S_1 - \text{D.p.s.i. toggle switch} \)
- \(1 - \text{Solid-state stereo cartridge (similar to Sonotone 431)} \)
- \(1 - \text{Stereo headphone set (similar to Jensen 115-2)} \)
- \(\text{Misc.} - 1\frac{1}{2}\text{-volt "D" cell battery and holder, 6-volt lantern battery, 5-lug terminal strip, } \frac{3}{8}\text{-" wood stock for cabinet (see text), } \frac{5}{8}\text{-" Formica or composition board, } 10,000\text{-ohm miniature potentiometer (optional), hardware, etc.} \)

Fig. 1. Strain gauge cartridge acts like a variable resistance and modulates 6-volt d.c. source to drive simple stereo amplifier in step with stylus motion. Text explains stereo phase manipulation.
Fig. 2. Mount all parts except the batteries on the back of the front piece of the cabinet. There is enough room to permit installation of an optional volume control. Observe polarity of capacitors.

Fig. 3. A wood screw (under the "D" cell) is used to hold down the "D"-cell holder and one end of the metal strap. Countersink the other end of the strap and fasten it to the back of the cabinet.

Construction. The same simplicity apparent in the electronic circuitry is passed on to the construction, as shown in Fig. 2. Parts placement is not critical, and if it is desired to install the optional volume control, use a miniature unit and mount it on the panel between J3 and S1. Dress the other components away from the control to prevent short circuits.

A 5" x 3½" x ½" Formica or composition board panel can be used. Resistors R3 and R4, and transistor Q1 and Q2 are mounted on a five-lug terminal strip. You can heat-sink the transistor leads with a pair of long-nose pliers to prevent damage to the transistors while soldering. Observe polarity when installing C1 and C2.

The optimum value of R3 and R4 may vary a little from transistor to transistor, but normally is satisfactory as shown. If you wish to obtain maximum fidelity, you can try to vary the bias a bit by changing the value of these resistors.

Figure 3 shows how the batteries are mounted inside the 5½" x 5" x 3½" wood cabinet. Cabinet type and material used for construction is not critical, but size depends upon the size of the batteries you use. The lantern battery is held in place by a sheet metal strap, and the D cell fits into a regular holder. Non-skid rubber or felt pads can be cemented to bottom of cabinet.
This view shows only a small part of the broadcast receiver collection assembled by Ralph Barnett, W9UIA, 3434 E. Oakwood, Decatur, Ill.. 62521. Among these early receivers and loudspeakers are 21 different Atwater Kent models. Altogether, the collection consists of about 150 sets made before 1926.

The Antique Wireless Association's Historical Museum in Holcomb, N.Y., even contains a "store." Displayed at right are products found in radio stores 40 years ago. Many of the items are new and in original cartons.

One of the finest wireless museums in North America has been built by Jack Gray, W8JDV, 500 W. Church St., Mason, Ohio 45040. This section of the museum, being viewed by Bruce Kelley, W2ICE, and Linc Cundall, W2QY, shows part of a Crosley receiver collection.
OUT OF THE PAST

WIRELESS MUSEUMS
PRESERVE THE EARLY DAYS
OF RADIO

By THEODORE M. HANNAH, K3CUI

In 1922, this was the last word in high-powered ham stations. In 1966, it is one of the stations owned by the Antique Wireless Association, several of which operate under the call W2AN. Shown here is George Batterson, W2GB.

Authentic to the last detail is the working restoration (above) of a Western Union telegraph office as seen 80 years ago. It is part of the unique National Telegraph Office assembled by E. Stuart Davis, W2ZH, 1149 Weber St., Union, N.J. 07083.

PRESERVING the spirit and the substance of early wire and wireless communications history is the hobby of a growing number of collector-historians. Some 400 of them are members of the Antique Wireless Association, an ARRL affiliate formed in 1953. (If you would like more information on the AWA, write to Bruce Kelley, W2ICE, Main Street, Holcomb, N.Y. 14469.)

The museums shown here are all privately owned, and in most cases they are in the owners' homes. Although most collectors welcome visitors, courtesy requires that you call or write for an appointment. Entering a wireless museum is truly taking a step into the past, into the rich history of the wonderful world of communications.
GIANT MAGNET—What is believed to be the world's largest superconducting magnet, shown on display at Avco Everett Research Laboratory, produces 40,000 gauss over a 5' x 12" field region. Weighing 15,675 pounds, the giant magnet stands 10' high, and stores 5,000,000 joules of energy. Designed for use in a magnetohydrodynamic (MHD) power generator, the saddle-shaped magnet was made possible by a recently developed (by Avco) "stabilized" composite superconductor.

FASE WON'T PHASE COMPUTER—To prevent computer confusion about the relationship of words in a sentence, a new form of English has been devised by Dr. Lee E. McMahon (below) of Bell Telephone Laboratories. Called FASE (for Fundamentally Analyzable Simplified English), it is indistinguishable from ordinary English by a reader, but can be uniquely resolved into parts of speech by a computer.
WWV RELOCATES—Construction is nearly completed on the new WWV transmitter building and control center at Fort Collins, Colo., from which the NBS standards broadcast station is scheduled to transmit beginning in December. Photo shows standby antenna fed by 3½" coax line.

CUTTING RED TAPE—Knox College (Ill.) senior Ingrid Bletzner (right) views playback of Ampex video tape recording of her teaching some 40 first grade pupils during a student teaching assignment. Video tape was then sent to prospective employer—and Miss Bletzner got the job.

TINY TV CAMERA—The vidicon tube has been eliminated in a 6" x 4" x 3½" TV camera designed for NASA by Westinghouse for use in the U.S. space program. Requiring 4 watts of power, the camera uses a solid-state device in the form of a phototransistor mosaic sensor (left) for light-sensing and image conversion.

DATEX DATA—A data communications system that transmits 1200 words a minute is now operating between GT&E International's New York headquarters and its Swiss subsidiary in Geneva. Called "Datex," it replaced a "telex" system which had a maximum speed of only 66 wpm.
THE
"IMPOSSIBLE" CIRCUIT

BAFFLE THE BOSS...
CONFUSE YOUR CHUMS...
JOLT THE NEXTDOOR GENIUS...
TEASE YOUR TEACHER...
NAG THE NEIGHBORS...

By LUIS VICENS

YOU CAN do all of these things—and more—just by challenging your technically inclined friends to solve The Case of the Impossible Circuit. Pictured below, the circuit is really a very simple affair. It consists of two boxes, A and B, each of which contains a lamp and a switch. There is a single power line lead to each box and a single connecting lead between the two boxes. Whenever a.c. power is applied and switch A is thrown ON, lamp B lights. When switch B is thrown ON, lamp A lights. When both switches are ON, both lamps light—and when both switches are OFF, both lamps are dark.

Question: What is the circuitry in each box?

Clues: Neither box contains amplifiers, transformers, oscillators, nor relays. The circuits are essentially identical in both boxes. The lamps are standard, identical, ordinary household incandescent bulbs. The power source is a standard 117 volts a.c. But, most important—the circuit is a practical one which can be easily duplicated at home, either for demonstration purposes or as part of a science fair project.

If you can't figure it out—or you think you have a solution and want to check it—turn to page 79.
BUILD AN
80/40 Meter
BANDSWITCHING
VERTICAL

OR . . . HOW I DECIDED TO
CHANGE BANDS FROM INSIDE THE SHACK

By LOU DEZETTEL, W9SFW

If CB has nothing else to its credit, it has stimulated the manufacture of vertical antennas. Although many hams preferred vertical antennas in the pre-CB days, it has only been within the past six or seven years that a variety of modestly priced ham-band vertical antennas have been marketed.

Some vertical antennas are designed for switchless operation on 80 or 40, and the higher bands, while others are short verticals (18') with a loading coil at the base. The latter are much cheaper, but necessitate manual band changing—a gruesome task in the cold, wet, or heat.

Use the Feed Line. The problem of band changing can be resolved by placing a s.p.s.t. relay adjacent to the loading coil and controlling the relay action from the ham shack. When the relay contact is open, the loading coil tap for 80-meter operation is in use. When the contact closes, additional turns on the coil are shorted out and the antenna resonates in the 40-meter band.

The beauty of this arrangement is that it is possible to control the relay using

The author used an inverted plastic refrigerator dish to “weatherproof” the relay. The heavy black lead is the 80-meter tap and the other lead is the 40-meter tap. Relay shorts out coil when it closes.
All parts needed to operate the antenna relay from the ham shack are mounted in a small metal box. Note in the diagram how the small chokes keep the r.f. out of the relay circuit. See text for elbow details.

the coaxial feed line—there are no extra wires or cables to be installed. The coax can be made to carry low-voltage d.c. from the shack to the relay while the r.f. is isolated by r.f. chokes. The wiring diagram is shown above.

You may find it advantageous to adapt parts from your junk box for this circuit. The author found a 1500-ohm plate circuit relay and used a small audio transformer (wired backwards) for dropping 117 volts a.c. down to 40 volts. The current drain is about 14 mA and the voltage drop about 20 volts. This jury-built arrangement works, but parts that can be purchased are spelled out in the diagram.

There's nothing difficult about building the power supply, but some care must be exercised in attaching the d.c. to the coax. The preferred method is to use a coax "L" connector. Mount the connector firmly in a vise and cut a 45° slice out of the right-angle bend. Solder a short stub of #12 wire to the exposed inner conductor and clip the power supply output to the stub as shown in the photo.

Getting Good Results. If your experience with a vertical antenna is minimal, bear in mind that results will only be as good as the ground under the antenna—not the physical ground, but the electrical ground. A shortened vertical antenna cut for a quarter-wave is really a half-wave antenna turned on end. One-quarter wavelength extends above ground and the other quarter is in the ground itself.

If the antenna coupling network in your transmitter has an r.f. choke or other direct connection to ground, the setup shown here should not be used—to prevent shorting out the d.c. voltage to the relay. You can run a length of bell wire or other single conductor to the relay and use the shield on the coaxial transmission line as a return. Of course, you can simply run a length of two-conductor line cord to the relay and eliminate the tricky wiring.
HERE'S HOW TO USE THEM WITHOUT RESORTING TO MATHEMATICS

By MARSHALL LINCOLN

DID YOU EVER wonder about the strange language you must learn before you can understand these things called decibels? Some of the electronics measurements given in decibels sure look peculiar, don't they?

For instance, how about the spec sheet on a mike that says it has an output of −55 dB? Now, what kind of output is that? If it's minus, it must be less than no output at all! Yet you could connect the mike up to a 10-watt amplifier and rattle the windows with it.

So just what are decibels, anyhow? What use are they to the experimenter, hobbyist or engineer? Can they be measured like volts, amperes, and watts?

The answer to the latter question is a simple yes. Volts (and amperes) are specific units of measurements, but they often represent different things and convey different meanings; the significance of 1 volt of d.c. is not the same as the significance of 1 volt of a.c. Neither is 1 volt of a.c. peak the same as 1 volt of a.c. average, or 1 volt of a.c. r.m.s. Beginning to sound complicated? It isn't really, especially if you have worked with these figures, even for only a little while. Actually, working with dB's is not much more complicated than working with volts and amperes; decibels do have their own body of meanings, but they are essentially dimensionless units.
To convert an a.c. voltage reading on a VOM or VTVM to dB, find the vertical line that coincides with the reading, follow it up to the point where it touches the diagonal line representing the appropriate zero reference level, and read across to the number of dB's. For example, if you are measuring across a 600-ohm impedance and your reading is 20 volts, the chart shows it to be about 28 dB.

Log Scale Confusion. In an effort to figure out why so many people have trouble understanding the significance of decibels (as units of power measurement), the one thing that stands out is that the progression of one decibel after another follows a log scale while most units of measurements follow a linear scale. Even watts (as units of power which are a function of the square law) have a linear characteristic—the power level of 12 watts is twice as large as 6 watts and four times as large as 3 watts. This is easy for most people to understand. But when 12 dB is twice as large as 9 dB, four times as large as 6 dB, eight times as large as 3 dB, 16 times as large as 0 dB, 32 times as large as -3 dB (following a log scale), that's when the trouble begins.

It doesn't take much to see that for every 3 dB increase, there is a doubling of the power level, and for every 3 dB
decrease, there is a halving of the power level. From this you could conclude that the decibel system follows some kind of geometric progression; and if your analytical thinking cap is really sharp, you will see that in the above example each 3 dB represents a ratio of one power level to another, on the order of 2 to 1.

Don't go away; that's only part of the story. You now know that 12 dB is twice as large as 9 dB, but how large is 9 dB? You really don't know, at least not yet. What you have so far is a relative measurement, not a specific one.

Specific Measurements. When decibel measurements are made with respect to a specific standard or reference point, they do have specific meanings, and they can be used just like an absolute measurement to enable you to compare equipment, and to solve audio, r.f., and other electronic problems.

For example, when the gain of an audio amplifier is specified in decibels, the number of dB indicates the output power is a certain number of times greater (or less) than the input power, or it could mean that the output power is a certain specific amount relative to a standard reference level of power. The minus sign (−55 dB) in the microphone specification, for instance, means that this level is below that of the standard measurement unit which is used as a reference. This specification doesn't mean the mike is defective, but it does represent a definite level and is in the form of an absolute measurement which the experimenter, technician, or engineer can understand.

Decibels Vs. Watts. A basic understanding of decibels is a mighty handy measuring stick. With it you can compare audio power levels in speaker systems, gain of audio or r.f. amplifiers, performance of antennas, strength of radio signals, and the loss in audio and r.f. transmission lines—just to name a few applications.

Wait a minute, you might say, what's wrong with using watts as a measure of power and as a basis for comparison of signals and equipment? Nothing really—it can be done, but not without a lot of meaningless confusion.

FOR MATHEMATICIANS ONLY

If you like to work with formulas, and if logarithms are no mystery to you, here are the formulas that were used to develop the tables and graphs and to trigger some of the comments in this article:

\[dB = 10 \log \frac{P_2}{P_1} \]

where \(dB \) = decibels, \(P_2 \) = power output in watts, and \(P_1 \) = power input in watts.

\[dB = 20 \log \frac{E_2}{E_1} \]

where \(E_2 \) = signal voltage output, and \(E_1 \) = signal voltage input. The use of 20 times the log instead of 10 times the log when working with voltage and current is due to the fact that power is equal to \(E^2/Z \), or \(I^2Z \), which makes the "long form" of the formula for power ratio look like:

FOR VOLTAGE

\[dB = 10 \log \frac{(E_2)^2}{(E_1)^2} + 10 \log \frac{Z_1}{Z_2} \]

FOR CURRENT

\[dB = 10 \log \frac{(I_2)^2}{(I_1)^2} + 10 \log \frac{Z_2}{Z_1} \]

where \(Z_2 \) = output impedance, \(Z_1 \) = input impedance, \(I_2 \) = current output, and \(I_1 \) = current input.

Since the log of a squared number is double the log of the same number not squared, it is sufficient to show the formula as 20 log \(E_2/E_1 \) or 20 log \(I_2/I_1 \), if the input and output impedance is the same. The +10 log of \(Z_1/Z_2 \) is simply the correction factor that must be added if voltage measurements are made across different impedances. When \(Z_1 \) and \(Z_2 \) are equal, their ratio is 1; the log of 1 is 0; 10 times 0 is 0; therefore, no correction is needed for measurements across equal impedances. (Notice that for current measurements \(Z_1 \) and \(Z_2 \) are reversed.)

The above formulas for voltage and current are valid only if output and input measurements are made across the same impedance, unless a correction factor is used.

If you are using a meter calibrated to 0 \(\text{dB} = 1 \text{ mW in 600 ohms} \) and measuring power levels across different impedances, you can find the correction factor in dB and add it to your readings by using the following formula:

\[dB = 10 \log \frac{600}{Z} \]

For a meter calibrated to 0 \(\text{dB} = 6 \text{ mW in 500 ohms} \), use:

\[dB = 10 \log \frac{500}{Z} \]
For example, consider a change in a certain amplifier’s output from 1 watt to 2 watts, and a change in another amplifier’s output from 10 watts to 11 watts. In both amplifiers the change was only 1 watt, yet in the first case the change represented a doubling of power, and in the latter case an increase of only 10%. So you can see that even with watts you must relate your measurements, know their significance, and be able to develop a ratio, or a percentile, or what have you.

<table>
<thead>
<tr>
<th>VOLTMETER SCALE FACTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 dB = 1 mW in 600 ohms</td>
</tr>
<tr>
<td>0 dB = 6 mW in 500 ohms</td>
</tr>
<tr>
<td>Scale (volts)</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>500</td>
</tr>
<tr>
<td>1500</td>
</tr>
</tbody>
</table>

Table 1. For meters equipped with a dB calibrated dial, simply add the number of dB to your reading, according to the a.c.-volt scale you are using and the zero reference level of the calibrations.

When decibels are used, they have a unique way of representing a ratio or relationship of one power level to another. When it is said that every 3 dB increase represents a doubling of power, just that is meant, whether you are going from 3 dB to 6 dB, or from 100 dB to 103 dB.

Decibels Minus Math. The basic unit for measuring power ratio is the bel (B), named for Alexander Graham Bell, inventor of the telephone and a pioneer in audio research. The bel is too large for most electronic measurements, so the decibel (dB), which is equal to 1/10 bel, is generally used. Decibels can be derived by comparing different quantities of power, or voltage, or current.

Decibel calculations with formulas require the use of logarithms, which are an obstacle to many people, and while it's a small hurdle which can be easily overcome, there is an easier way to work with decibels—without formulas. You can use a graphic method and you can work with meters, oscilloscopes, etc.

Essentially, the meters function as a.c. voltmeters and many of them are calibrated in dB to enable you to make measurements directly, and to eliminate the paper and pencil work.

These absolute types of measurements are made possible through the establishment of certain standards for measuring power levels. These standards set forth a "reference level" (zero dB level), and if you work within the framework of the standards you will have done much to eliminate confusion and double-talk. The standards make it possible to express a single dB figure above or below the reference level, and have it make sense. This is what is done in the case of microphones, speakers, S-meters, tape recorders, etc.

The most common "zero dB reference level" used today, particularly in audio work is 1 milliwatt dissipated in a 600-ohm load at 1000 Hz. Remember, this zero dB level is not a zero output level. Any power level above this zero dB level is designated in positive dB, and any power below it is referred to in negative dB.

Another reference level sometimes encountered is 6 milliwatts in a 500-ohm load, and occasionally other standards are used.

Standards come and go, and zero dB reference levels have been changing accordingly. The dBm is now in vogue and is the most commonly used reference level. It's another way of saying 1 mW in 600 ohms.

The volume unit (vu), a favorite of the audio and telephone industries, is also based on the same reference level as the dBm, except that vu's are used to represent complex waveforms as encountered in voice and music, while dBm's are used in making measurements of simple sine waves. Since vu's represent average levels in a waveform, it is taboo to work with dBm when you should be working with vu and vice versa.

Meter Calibration and dB Readings. The way to tell for sure how your meter is calibrated is to notice what point on the a.c. voltage scale corresponds to zero on the dB scale. If it's 0.775 volt, the meter is calibrated using 1 mW in 600 ohms. If the zero dB point on the
THE "IMPOSSIBLE" CIRCUIT MADE POSSIBLE

ARE YOU STUMPED by the "Impossible" Circuit on page 72? If so, don't be despondent—this seemingly innocent circuit has stumped even the best electronics engineers.

The "trick" in solving the circuit is to think simple. Obviously it is not a complicated design using multiple switches, tuned circuits, tunnel diodes, crossbar networks, filters, interlocked gate circuits, or similar techniques.

How "Impossible" Circuit Works. The circuit uses four standard diodes in addition to the lamps and switches. Circuit operation is possible because (A) diodes are unidirectional devices, permitting current flow only in one direction, and (B) an a.c. power source is used.

If both switches are open, the only current path is through diode D_1, lamp I_1, lamp I_2 and diode D_4. But diodes D_1 and D_4 are connected "back to back" and each blocks current flow on alternate half-cycles. As a result, when the switches are both OFF, little current flows and the two lamps remain dark.

Suppose that switch S_1 on box A is closed. Diodes D_2 and D_4 are now connected in a series—aiding configuration on either side of I_2. On alternate half-cycles current can flow through S_1, D_2, I_2, and D_4, and the lamp lights. Lamp I_1 remains dark because current flow through it is still blocked by D_1.

Similarly, if switch S_1 is open and switch S_2 is closed, diodes D_1 and D_3 are in series, and current can flow through D_1, I_1, D_3, and S_2 on alternate half-cycles. Lamp I_1 lights, and lamp I_2 remains dark, for current flow through it is blocked by D_4.

When both switches are closed, both lamps light, but each only on alternate half-cycles of the applied a.c. voltage. However, the thermal lag of the incandescent filaments and persistence of vision combine to produce what appears to be a steady glow, so both lamps seem to be on simultaneously.

Assembling the Circuit. A demonstration model of the "Impossible" circuit can be assembled in a single evening. Neither layout nor lead dress is critical, nor—for that matter—are the component parts. Either standard (Edison) base or candelabra lamp bulbs can be used. The lamps are familiar 117-volt incandescent types, rated at from 7 to 60 watts—take your pick! The switches can be toggle, slide, push-button or rotary s.p.s.t. switches, while the diodes (D_1 through D_4) may be anything with a 200-PIV (or higher) voltage rating and a 1-ampere (or more) current rating.

The boxes should be of transparent plastic and mounted on a sturdy base, with the external wiring clearly visible. Use an insulating material for the base, such as wood, Masonite, or clear plastic, to avoid the suspicion of a "ground return." The subminiature diodes (International Rectifier Type 804) can be concealed in short lengths of tight-fitting spaghetti tubing.

With all wiring apparently visible, the circuit becomes—as the King of Siam would say—a real puzzlement!
UNPOPULAR
ELECTRONIKS
A SALUTE TO THE
FAILURES IN
EXPERIMENTAL ELECTRONICS
By CARL KOHLER

It's a proven theory that into every pastime a little bane must crawl—and the fine old field of electronics is no exception. Populated for the most part by brilliant, inventive people, the electronics hobby has also known its dismal share of dubious types. The otherwise respectable history of electronics is spotted by militantly neurotic individuals whose various obsessions have added nothing to ham radio, SWL'ing, CB'ing, etc. Shown here is a small handful of nuts whose collective quasi-creativity certainly classifies them as "Electroniks." This clumsily minted term aptly describes these bohemians who have vainly wielded screwdriver and soldering gun with a breathtaking lack of success.

HYRAM VON KRUUNK labored over his concept of an automatic turntable featuring a specially designed tone arm. The design permitted the stylus to move from corner to corner as Hyram played his vast collection of square Wayne King, square Guy Lombardo, and square Lawrence Welk platters.

SEAN GONNN intrepidly ignored the Reciprocity Theory and succeeded in developing his distinctive "Gonnn Boomerang Signal" which—upon being transmitted—instantaneously returned and thoroughly deactivated its own R/C transceiver.

LOTHAR SYM"H-SYMTH shrewdly framed his copper-clad laminated etched circuit boards and profitably sold them as electronics abstractions—mainly because all of the circuits were inoperative. No one told Lothar that the copper background is etched off, not the connecting strips.
MARIO SILVERGOLD tackled the formidable task of composing a rather stirring essay on Plasmonics and Hydronics without once mentioning water. This was not a trivial accomplishment since the entire manuscript was in layman’s Sanskrit.

EUSTACE ROONK diligently studied Laser Beam theory for many years for the sole purpose of perpetrating a practical joke. His energyless “Roonk Lazier Beam” always fell short of the mark.

NOAH TERWILLIGER ingeniously designed and constructed an electronically controlled instrument that produced graphic sketches of wiring schematics from tonal patterns. However, all of the sketches morbidly tended to induce disastrous feedback.

MORDECAI GHEE, a CB malcontent, sat patiently for more than 33 hours waiting to “break” channel 9. When the opportunity arose, this unfrocked eavesdropper had forgotten what he wanted to say.
THEMAYBE more ways to skin a cat, but there are almost as many ways to build a "Reflexometer." In the March, 1966, POPULAR ELECTRONICS, on page 47, there is a pretty young lady testing her skill at the game of "Reflex." The idea is to avoid "flinching" while trying to respond to a situation faster than the competition. Whether it's the reaction to the roll of a pair of dice or the winner of a slot-car race, the Reflexometer tells who or what responded first; second best, no matter how tricky, sneaky, or cheaty, just doesn't get paid off.

The original gadget was equipped with four-pole, double-throw relays. Since it was published, many readers have sent in versions of their own to let us know how they can do it better, easier, and much cheaper; how to add bells and buzzers; and even how to eliminate the relays altogether. Most of the ideas received looked like they would work satisfactorily; some circuits were more complex and some were quite simple.

In the “Letters from Our Readers” column, June, 1966, we agreed to present in a future issue the best or most unusual modifications, for which cash prizes would be offered. Well, here are the best three entries. Seven cash awards were sent out because five readers sent in the same suggestion.

Simpler Relays. The identical modification was submitted by Rex R. Rickly of Columbus, Ohio; Carl Stanislawski of Adelphi, Md.; John Pobanz of Athens, Ohio; Donald O. Wurst of Wright Patterson Air Force Base, Ohio; and F. I. Shoaf of Clemmons, N.C. Their circuit contains d.p.d.t. relays in place of the 4-p.d.t. relays in the original circuit. The first person who presses the button causes his relay to energize. This throws the relay contacts into their alternate position. The upper pair of contacts disarms all other opponents' switches, and the lower contacts hold the relay closed since the holding circuit is completed to ground. The circuit is reset for another round with S5. (See diagram below).

Five readers used d.p.d.t. relays to do the same job as the 4-p.d.t. units in the original “Reflexometer.” The first relay to respond disables all responders (S1 to S4) and remains “locked” until S5 is reset to start another round of fun.
Silicon Controlled Rectifiers. Joseph Kish, Jr., of Massillon, Ohio, used silicon controlled rectifiers (SCR's) to replace the relays. The first SCR to fire lights up its respective lamp and energizes the relay, which in turn disables all other responders in the circuit.

No Relays. John T. Hunt, Pittsburgh, Pa., came up with a relay-less circuit, and went one better. This circuit can tell you who came in first, second, third, etc. All three lights go on for the first responder, two for the second, one for the third, and none for the fourth. Switches are not momentary-make types.
EVERY solid-state circuit, no matter how efficient, requires a power supply of some kind. Without question, the most popular power source is the dry battery, since it furnishes a fixed d.c. which can be divided down with dropping resistors or raised to any desired level by adding more batteries in series. Alternating current can also be used to provide the necessary d.c. operating power, once it is stepped down with a transformer, then rectified and filtered. The only drawback here is that such an arrangement is not truly portable. Of course, portability could be achieved if we used an a.c. battery as the primary source instead of the a.c. power line. What . . . you never heard of an a.c. battery?

The truth is that such a battery has been little more than a dream. In fact, back in the good old days, apprentice electronic technicians were often sent on fools' errands to the supply room to pick up a.c. batteries, much in the same spirit that apprentice machinists were sent to the tool crib for left-handed monkey wrenches. While left-handed monkey wrenches are still as rare as hens' teeth, a.c. batteries may be commercially available within a couple of years!

Engineers of the U.S. Army Electronics Command (Fort Monmouth, N.J.) have developed a battery that is the closest thing yet to an "a.c. battery." About the size of two standard flashlight cells, the unit delivers a pulsating current with its own characteristic waveform and frequency. Prototypes having a peak voltage of 0.8 volt and peak currents of nearly 400 mA have been produced.

Although these units generate power at only 15 Hz, Army engineers hope to develop future models with frequencies of up to 50 Hz. According to a report released by the U.S. Department of Commerce, the batteries use platinized platinum anodes and lead-lead dioxide cathodes, with the electrolyte consisting of formaldehyde dissolved in sulphuric acid.

Another interesting development in the battery field has been announced by the Olin Mathieson Chemical Corp. (460 Park Ave., New York, N.Y. 10022) . . . a battery with a self-contained detector that indicates its condition. Carrying the Winchester brand, it consists of a 1½-volt D-size cell equipped with a built-in "Sight-Test" top. The detector is a litmus indicator with a clear plastic overlay. As long as the indicator remains blue, the cell is in good condition. The blueness gradually fades as the cell becomes weak, eventually changing to pink when the cell becomes unserviceable.

Reader's Circuit. Would you believe that a complete audio power amplifier could be made up of only three transistors and no other components? How about an amplifier with three transistors, one resistor and one capacitor? You're not buying that either? Then look at the circuit illustrated in Fig. 1. Switch S1, input jack J1, and gain control R1, are optional; and the loudspeaker (SPKR) and power supply B1 are accessories . . . hence the amplifier proper consists only of C1, R2 and the three transistors—Q1, Q2 and Q3.

This simple, but interesting, circuit was submitted by reader Scott Marovich (2407 S. Rose St., Kalamazoo, Mich.), who writes that he has assembled several successful versions using an almost random selection of components, supply voltages, and speaker impedances. He writes, further, that he has achieved multi-watt operation with reason-

![Fig. 1. Audio amplifier featuring input transistor Q1 direct-coupled to Darlington pair Q2-Q3. Overall gain is product of the betas of the transistors.](image)
able fidelity and acceptable bass response. (Wonder if he means milliwatts?)

Surprisingly enough, Scott's circuit is a familiar one to design engineers. It is seldom used in commercial equipment, however, because of its relatively low efficiency (which it shares with all Class A amplifiers), critical bias adjustment, and sensitivity to temperature changes. But, for general use in the home and experimental applications in the lab, this amplifier is hard to beat so far as economy, versatility, and simplicity are concerned.

An input signal at J1 appears across R1, the gain setting. Part of this signal, depending on R1's setting, is applied to Q1's base-emitter circuit through capacitor C1. Transistor Q1 is direct-coupled to Q2 and Q3, driving the loudspeaker's voice coil which acts as a low-impedance load. Circuit power is furnished by B1 through switch S1.

Performance can vary considerably from one such amplifier to another, depending on the characteristics of the transistors used. With direct coupling employed throughout, Q1's base bias, established by series resistor R2, determines the operating conditions for the entire amplifier. Thus, the adjustment of R2 can be quite critical. Furthermore, any variation in Q1's base current, such as that produced by temperature changes, can affect overall circuit operation.

Transistor Q1 is a general-purpose npn type similar to the 2N170. Transistor Q2 is a low-signal pnp type such as a CK722 or 2N109. The output transistor, Q3, is a medium-to-high power pnp type equivalent to the 2N256, 2N301, or 2N441. Jack J1 is a conventional phono type, and S1 is any old s.p.s.t. toggle or slide switch. Potentiometers R1 and R2 are standard units.

The speaker is a PM type; use any size from 4" to 10", and any impedance from 4 to 16 ohms. The power supply, too, is not critical, and the rating of B1 can vary from as little as 3 volts to as much as 18 volts ... but it should be capable of supplying several hundred milliamperes. Finally, the coupling capacitor, C1, may be any value from 20 to 50 μF, with any voltage rating from 15 to 25 volts.

The only transistor that requires a heat sink is Q3. This can be the metal chassis (if one is used), or a fair-sized commercial heat sink if the unit is assembled on a perforated phenolic board or printed circuit board. Be sure to keep input leads short and direct, and allow a wide separation between input and output circuits.

Once the wiring is completed and checked, the speaker and battery can be connected. With an audio signal applied to J1, turn on the amplifier and adjust gain control R1 to its mid-position. Then adjust R2 for the best compromise between maximum gain and low distortion. Depending on the signal source, R1 may require readjustment to prevent overload. If high-gain transistors are used in the circuit, it may be necessary to connect a 1- or 2-megohm resistor in series with R2 (or to replace this unit with a 5-megohm control) to obtain a satisfactory bias setting.

Manufacturer's Circuit. Featuring RCA's new low-cost, sensitive-gate "Triac," the circuit illustrated in Fig. 2 permits the easy control of lamps and a.c. household appliances. Unlike the familiar SCR, which is a unidirectional device and, therefore, conducts only on alternate half cycles, the Triac is a bi-directional switch and thus permits the full-range control of circuit current. The lamp dimming circuit shown can handle currents of up to 2.5 amperes, r.m.s., and peak surges as high as 18 amperes.

Average current through the lamp is controlled by the conduction period of the Triac (TA). In operation, the Triac is switched from a nonconducting high-resistance state to a conducting state by the application of a trigger signal to its gate (G) electrode. This switching signal is obtained from a phase-shift network, R1-C1, and coupled through an RC integrator R2-C2, and a neon bulb (NE-1), to TA's gate. The Triac's average conduction period, then, depends on the phase relationship between the line voltage and its gate signal.

The dimmer can be easily duplicated, since the circuit uses standard parts. Potentiometer R1 is a standard radio pot, R2 a half-watt resistor. Capacitor C1 is a 200-volt tubular paper type and C2 can be either a ceramic or paper capacitor. The neon bulb is a type NE-83. Triac TA currently carries RCA type number TA2893, but this designation may be changed at a later date to a standard EIA number.

(Continued on page 119)
In today's electronics boom, the demand for men with technical education is far greater than the supply of graduate engineers. Thousands of real engineering jobs are being filled by men without engineering degrees—provided they are thoroughly trained in basic electronic theory and modern application. The pay is good, the future is bright…and the training can now be acquired at home—on your own time.

How to become a "Non-Degree Engineer"
The electronics boom has created a new breed of professional man—the non-degree engineer. Depending on the branch of electronics he's in, he may "ride herd" over a flock of computers, run a powerful TV transmitter, supervise a service or maintenance department, or work side by side with distinguished scientists on a new discovery.

But you do need to know more than soldering connections, testing circuits and replacing components. You need to really know the fundamentals of electronics.

How can you pick up this necessary knowledge? Many of today's non-degree engineers learned their electronics at home. In fact, some authorities feel that a home study course is the best way. Popular Electronics said:

"By its very nature, home study develops your ability to analyze and extract information as well as to strengthen your sense of responsibility and initiative."

Cleveland Method Makes It Easy

If you decide to advance your career through home study, it's best to pick a school that specializes in the home study method. Electronics is complicated enough without trying to learn it from texts and lessons that were designed for the classroom instead of the home.

The Cleveland Institute concentrates on home study exclusively. Over the last 30 years it has developed techniques that make learning at home easy, even if you once had trouble studying. Your instructor gives the lessons and questions you in his undivided personal attention—it's like being the only student in his "class." He not only grades your work, he analyzes it. And he mails back his corrections and comments the same day he gets your lessons, so you read his notations while everything is still fresh in your mind.

Students who have taken other courses often comment on how much more they learn from CIE. Says Mark E. Newland of Santa Maria, Calif.:

"Of all different correspondence courses I've taken, CIE's was the best prepared, most interesting, and easiest to understand. I passed my first Class FCC exam after completing my course, and have increased my earnings by $120 a month."

Always Up-to-Date

Because of rapid developments in electronics, CIE courses are constantly being revised. This year's courses include up-to-the-minute lessons in Microminiaturization, Laser Theory and Application, Suppressed Carrier Modulation, Single Sideband Techniques, Logical Troubleshooting, Boolean Algebra, Pulse Theory, Timebase Generators...and many more.

CIE Assures You an FCC License

The Cleveland method of training is so successful that better than 9 out of 10 CIE men who take the FCC exam pass it—and on their first try. This is despite the fact that, among non-CIE men, 2 out of every 3 who take the exam fail! That's why CIE can promise in writing to refund your tuition in full if you complete one of its FCC courses and fail to pass the licensing exam.

This Book Can Help You

Thousands who are advancing their electronics careers started by reading our famous book, "How To Succeed In Electronics." It tells of many non-degree engineering jobs and other electronics careers open to men with the proper training. And it tells which courses of study best prepare you for the work you want.

If you would like to cash in on the electronics boom, let us send you this 40-page book free.

Just fill out and mail the attached card. Or, if the card is missing, write to:

CIE
Cleveland Institute of Electronics
1776 E. 17th St., Dept. PE-45
Cleveland, Ohio 44114
Accredited Member National Home Study Council

VETERANS

If you had active duty in any branch of the Armed Forces after January 31, 1955, you may be entitled to Government-paid tuition for any CIE course.
In order to make electric shavers "universal" and capable of operating on both a.c. and d.c., there has to be a design compromise in the motor. Most electric shavers will cut faster and smoother if operated from d.c., or even pulsating d.c. But occasionally you may want to slow the electric razor down, and this gadget was built so that "High" and "Regular" speed control could be provided.

Mounting and wiring of the components is obvious from the photographs. A d.p.d.t. slide switch was used so that the extra terminals could be employed as tie points to support some of the wiring. Diode D1 can be any silicon rectifier diode with a rating of 400 volts PIV and 750 mA. Don't ground any of the wires intentionally or accidentally to the metal box.

To use the shaving aid, simply plug it into a convenient outlet, set the slide switch to "High" or "Regular" speed, plug in your shaver, and you're in business. For maximum convenience—if your shaver is only used in the bathroom—replace plug P1 with a short length of zip cord and a suitable a.c. cap, and mount the box on the wall.

—Ryder Wilson

You can house this handy electric shaver adapter in a small metal box using an Amphenol 61-M-1 a.c. plug at P1 and a chassis receptacle at socket S01. Float all of the wiring, and make certain that none of the components accidentally shorts to the box.
CONSIDERING the number of amateurs who operate exclusively on the 75- and 40-meter phone bands, it was inevitable that some manufacturer would eventually come up with an SSB transceiver for these bands. The one who did it first is World Radio Laboratories, Inc. (3415 West Broadway, Council Bluffs, Iowa), and the transceiver is the WRL “Duo-Bander 84.”

The announced intention of WRL in designing the new unit was to give 75- and 40-meter operators the most mileage for the least money in a ready-to-operate SSB transceiver. To achieve this aim, the 9-tube, 7-transistor, 4-diode circuit has been divested of all unnecessary frills; but, after observing the Duo-Bander in operation at two separate locations, your Amateur Radio Editor can report that nothing essential to good performance has been omitted.

The balanced modulator and crystal-lattice filter produce a clean lower sideband signal with excellent suppression of carrier and unwanted sidebands. Both the transmit and receive modes are VFO-controlled. When the “Duo-Bander 84” is used with either its companion 117-volt a.c. power supply or 12-volt d.c. supply, power input is 300 watts, PEP, on both 75 and 40 meters. (A light-duty, 260-watt a.c. power supply is also available.)

Selectivity on receiving is 2.7 kHz, and sensitivity—rated at 1 µV—is more than sufficient to give full output from the built-in loudspeaker for any signal above the noise level on either band. And the unit’s a.g.c. system works equally well on transmit and receive modes.

At its price of $159.95, plus $79.95 for the deluxe a.c. power supply or $49.95 for the economy power supply, and $89.95 for the 12-volt mobile power supply, this transceiver should satisfy the amateur on a limited budget who wants a good, basic, 75- and 40-meter SSB transceiver either for fixed-station or mobile work.

Walter Stein, WA5IYK, trustee for station W5TAC located at the Dallas Home and Hospital for Jewish Aged in Texas, is shown demonstrating the station to four residents of the home. The equipment consists of a Galaxy V, 300-watt, CW/SSB transceiver, remote VFO, and deluxe control console. We are sending WA5IYK a one-year subscription (for the pleasure of the residents) for submitting the winner for October in our Amateur Station of the Month photo contest. To enter the contest, send us a clear photo of your station with you at the controls, and some details on your ham career and the equipment you use. Entries go to: Amateur Radio Contest, c/o Herb S. Brier, Box 678, Gary, Indiana 46401.
If you're looking for a handy guide to foreign postal rates, DX country prefixes, great circle bearings, time differentials, etc., you can't afford to be without the new W9IOP "Second Op." This is the fourth revision of the popular rotary slide rule. Also listed on the "Second Op" are the QSL bureaus around the world, WAZ zone designations, continent location, and spaces for maintaining a country QSO and QSL record. Sold by many radio parts jobbers, the updated "Second Op" can also be ordered directly from W9IOP, Electro-Voice, Inc., Buchanan, Mich. Price: $1.00.

Amateur Radio Hall of Fame. An International Amateur Hall of Fame is being organized to provide permanent recognition of individual contributions made by hams around the world to the advancement of amateur radio. Each year five amateurs will be honored by having their names and call letters inscribed on a plaque to be displayed on the premises of the International Amateur Radio Club in Geneva, Switzerland. Each will receive a replica of the plaque.

The five amateurs will be selected by a board of judges internationally known to the amateur fraternity from nominations made by fellow amateurs from all parts of the world. Nominations are called for in the following fields of activity: advancements in electronic techniques and equipment; traffic and DX activity; achievements in exotic phases of amateur radio (moon-bounce, space probes, etc.); emergency and disaster communications; and the development of amateur radio. A nominee may be any man or woman holding a radio amateur's license issued by a recognized authority in a member country of the International Telecommunications Union.

Is there anyone that you would like to nominate? Amateurs everywhere are invited to join in honoring those hams who have made significant contributions to the art in their respective fields by submitting their names and call letters, and a brief outline of their accomplishments to Dorothy Strauber, K2MGE, Secretary, International Amateur Radio Hall of Fame, 12 Elm St., Lynbrook, N.Y. 11563, by December 31, 1966. The Hallicrafters Company will provide the plaques and donate advertising space for the International Amateur Hall of Fame as a public service.

Third-Party Messages. In one of the club papers we saw recently, the editor was moaning the fact that club members were unwilling to make phone patches for some missionaries in central Africa. The trouble with his concern was that third-party messages via amateur radio are illegal between the United States and the country involved.

The latest FCC list of countries with which U.S. amateurs may exchange unimportant third-party traffic includes: Bolivia (CP); Brazil (PY); Canada (VE, VO); Chile (CE); Colombia (HK); Costa Rica (Continued on page 122).

"Ty" Conboy, WN7DOX, St. Helens, Oregon (above), will probably be signing WA7DOX by the time this is in print. If you need an Oregon contact, try Ty—preferably on Sunday. At left is the transistorized bicycle mobile of Brad Good, WB6LUC, Long Beach, Calif. Brad made several contacts while in motion before the "station" was demolished in an accident; he does NOT recommend that anyone duplicate his experiment. You'll find more information on both of these hams in "News and Views" on page 123.
A NATIONAL wire service has presented a lopsided view of the CB service. Newspapers across the nation have erroneously informed readers that the current state of the CB service can be compared to a city of 800,000 population with only 23 party lines for all of its telephone calls! This is certainly not the type of information to encourage the potential CB'er to put Citizens Band Radio to work for his communication needs. It is unfortunate that the originator of the story was not aware that there is no comparison between 800,000 telephone calls on 23 party lines in one city and 800,000 CB calls on 23 channels spread across more than 3000 miles of the United States.

Does a bad press establish the CB image? Do the statistical actions of the rule-breakers constitute the image for all licensees? Or are we all a little responsible through lack of interest in the areas that can help or hurt us the most? The CB club newspapers should stand as the vehicles to promote the proper use of the CB service, as well as to inform all readers of the commendable actions taken by individuals or groups of CB'ers in local activities, for public service or in emergencies. Many club news bulletins do an excellent job in these areas; most do not!

Who's responsible for the CB image? All 800,000 licensees are! News media will pick up the negative side of a CB story if it's large enough. That sells newspapers. And there's no denying that we have an overabundance of problems on the Citizens Band. If, however, CB clubs, rescue teams, and individuals are quick to report worthwhile CB radio activities on a local basis, time might paint a brighter picture for the uninformed reader of local and national news sheets.

Area newspapers, radio and TV studios are not as apt to pick up a story on your latest coffee "clutch" or board meeting as they are to cover an item pertaining to flagrant misuse of the band, overcrowded conditions during evening hours, or the issuance of a fine from the FCC to a local CB user. The news media might, however, be interested in knowing that a local CB group is working with civil defense, police, and other (Continued on page 124)
BROADCASTS FROM AFRICA AND MIDDLE EAST

Prepared by BILL LEGGE and BOB HILL, W1ARR/3

Many countries throughout the world do not transmit broadcasts specifically intended for reception in North America. However, these countries can often be heard in North America if a listener knows on what frequency and at what time to listen. Although some of the broadcasts come through surprisingly well, they are in general more difficult to hear and identify than broadcasts beamed to North America. The following listing gives some of the best times and frequencies for listeners to tune in countries in Africa and the Middle East that do not have special broadcasts to this area.

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>CITY</th>
<th>AFRICA TIME—GMT</th>
<th>FREQUENCIES (MHz)</th>
<th>LANGUAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALGERIA</td>
<td>Algiers</td>
<td>2200-2230</td>
<td>6.175</td>
<td>English</td>
</tr>
<tr>
<td>ANGOLA</td>
<td>Dundo</td>
<td>1800-1930</td>
<td>11.687</td>
<td>Portuguese</td>
</tr>
<tr>
<td>ASCENSION ISLAND</td>
<td>(BBC Relay)</td>
<td>1700-2000</td>
<td>15.350</td>
<td>English</td>
</tr>
<tr>
<td>CAMEROON</td>
<td>Yaounde</td>
<td>0430-0600</td>
<td>4.972</td>
<td>French</td>
</tr>
<tr>
<td>CANARY ISLANDS</td>
<td>Tenerife</td>
<td>2300-0400</td>
<td>11.800</td>
<td>Spanish</td>
</tr>
<tr>
<td>CONGO REP. (DEM.)</td>
<td>Kinshasa</td>
<td>0400-0600</td>
<td>4.880</td>
<td>French</td>
</tr>
<tr>
<td>CONGO REP. DAHOMEY</td>
<td>Brazzaville..</td>
<td>1900-2000</td>
<td>15.190</td>
<td>English</td>
</tr>
<tr>
<td>ETHIOPIA</td>
<td>Addis Ababa (ETLF)</td>
<td>1330-1345</td>
<td>15.410</td>
<td>English</td>
</tr>
<tr>
<td>GABON</td>
<td>Libreville</td>
<td>0500-0630</td>
<td>4.777</td>
<td>French</td>
</tr>
<tr>
<td>GHANA</td>
<td>Accra</td>
<td>2045-2215</td>
<td>9.545</td>
<td>English</td>
</tr>
<tr>
<td>GUINEA</td>
<td>Conakry</td>
<td>2100-2300</td>
<td>9.650</td>
<td>French</td>
</tr>
<tr>
<td>IVORY COAST</td>
<td>Abidjan</td>
<td>2100-2400</td>
<td>6.015</td>
<td>French</td>
</tr>
<tr>
<td>LIBERIA</td>
<td>Monrovia (ELWA)</td>
<td>2115-2145</td>
<td>15.155</td>
<td>English</td>
</tr>
<tr>
<td>MALAGASY REPUBLIC</td>
<td>Tananarive</td>
<td>1600-1700</td>
<td>15.265</td>
<td>Fr. & Eng.</td>
</tr>
<tr>
<td>MALI</td>
<td>Bamako</td>
<td>0600-0700</td>
<td>4.835</td>
<td>French</td>
</tr>
<tr>
<td>MAURITANIA</td>
<td>Nouakchott</td>
<td>0630-0730</td>
<td>3.222</td>
<td>French</td>
</tr>
<tr>
<td>MAURITIUS</td>
<td>Forest Side</td>
<td>0400-0415</td>
<td>9.710</td>
<td>English</td>
</tr>
<tr>
<td>MOROCCO</td>
<td>Rabat</td>
<td>2000-2230</td>
<td>11.735</td>
<td>Arabic</td>
</tr>
<tr>
<td>MOZAMBIQUE</td>
<td>Lourenco Marques</td>
<td>0400-0600</td>
<td>4.833</td>
<td>English</td>
</tr>
<tr>
<td>NIGERIA</td>
<td>Lagos</td>
<td>0430-0600</td>
<td>4.990</td>
<td>English</td>
</tr>
<tr>
<td>PORT. GUINEA</td>
<td>Bissau</td>
<td>2200-2400</td>
<td>5.042</td>
<td>Portuguese</td>
</tr>
<tr>
<td>RWANDA</td>
<td>Kigali (DW)</td>
<td>2000-2300</td>
<td>15.380</td>
<td>German</td>
</tr>
<tr>
<td>SENEGAL</td>
<td>Dakar</td>
<td>0600-0700</td>
<td>4.890</td>
<td>French</td>
</tr>
<tr>
<td>SIERRA LEONE</td>
<td>Freetown</td>
<td>0600-0730</td>
<td>3.316</td>
<td>English</td>
</tr>
<tr>
<td>SOMALI REP.</td>
<td>Mogadiscio</td>
<td>0315-0330</td>
<td>6.095</td>
<td>English</td>
</tr>
<tr>
<td>SPANISH GUINEA</td>
<td>Sta. Isabel</td>
<td>2100-2300</td>
<td>6.250</td>
<td>Spanish</td>
</tr>
<tr>
<td>SUDAN</td>
<td>Omdurman</td>
<td>0400-0500</td>
<td>4.992</td>
<td>Arabic</td>
</tr>
<tr>
<td>TANZANIA</td>
<td>Dar-es-Salaam</td>
<td>0315-0400</td>
<td>5.050</td>
<td>Kiswahili</td>
</tr>
<tr>
<td>TOGO</td>
<td>Lome</td>
<td>2100-2115</td>
<td>5.047</td>
<td>English</td>
</tr>
<tr>
<td>TUNISIA</td>
<td>Tunis</td>
<td>0500-0600</td>
<td>6.195</td>
<td>Arabic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>CITY</th>
<th>MIDDLE EAST TIME—GMT</th>
<th>FREQUENCIES (MHz)</th>
<th>LANGUAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRAN</td>
<td>Teheran</td>
<td>0130-0300</td>
<td>7.065</td>
<td>Persian</td>
</tr>
<tr>
<td>IRAQ</td>
<td>Baghdad</td>
<td>2100-2140</td>
<td>6.095</td>
<td>English</td>
</tr>
<tr>
<td>ISRAEL</td>
<td>Tel Aviv</td>
<td>2015-2045</td>
<td>9.009</td>
<td>English</td>
</tr>
<tr>
<td>JORDAN</td>
<td>Amman</td>
<td>2000-2200</td>
<td>9.530</td>
<td>Arabic</td>
</tr>
<tr>
<td>KUWAIT</td>
<td>Kuwait</td>
<td>0225-0330</td>
<td>4.967</td>
<td>Arabic</td>
</tr>
<tr>
<td>SAUDI ARABIA</td>
<td>Riyadh</td>
<td>2000-2200</td>
<td>9.720</td>
<td>Arabic</td>
</tr>
<tr>
<td>TURKEY</td>
<td>Ankara</td>
<td>2200-2300</td>
<td>15.160</td>
<td>English</td>
</tr>
</tbody>
</table>
USE OF International Reply Coupons (IRC's) is generally considered to be the easiest method of sending return postage to a foreign country when writing for a verification. In the U.S., you can purchase IRC's at most post offices for 15 cents each (be sure to have them postmarked in the left-hand circle), simply attach one to your report, and send it on its merry way. The station in the foreign country can then cash the IRC in at its post office for sufficient postage to cover a reply to you by surface mail and for the minimum weight limit. (If you want a reply by airmail, you'd better enclose two, three, or more IRC's, especially to the most distant countries.)

Not all countries, however, will accept IRC's. An item in an overseas publication listed Peru as being one such country, and a subsequent reference to the U.S. Postal Manual has revealed that IRC's will not be accepted in any of the following areas: Bulgaria, Congo (formerly Leopoldville—now Kinshasa), Peru, Pitcairn Island, Saudi Arabia, Somali, Sweden, Soviet Union, Yemen, and Yugoslavia.

Some of the countries listed above will verify your reports without return postage; others will not. In lieu of IRC's, we suggest that you consider the use of mint stamps of the foreign countries involved. For the face value of the stamps, plus a small fee for the service, you can obtain mint (unused) stamps for virtually all of these countries. They can be purchased from any of the many dealers who specialize in this service. Most Sunday newspapers that carry a stamp column also have listings of stamp dealers.

News Items. Radio DX'ing Worldwide (Station WNYW) reports that the American transmitting station, WBOU, Bound Brook, N.J., has been dropped from the Voice of America broadcast lists. The station was last used for regular VOA service in March, and has since been used for special United Nations transmissions. Now these duties have been assumed by other VOA transmitters in Bethany, Ohio, and Greenville, N.C.

Another news item from WNYW states that feminine voices are now being featured over the New York City area’s FM air-

(Continued on page 126)

COME ON, BROADCASTERS—LET'S GET WITH IT!

There's no great secret to international short-wave broadcasting. You put a signal on the air on the right frequency at the right time of day and a foreign audience is supposed to hear it. But some international broadcasters seemingly ignore the listening habits of the people they're trying to reach.

When Radio Ghana completed installation of its 250-kW transmitters last year, transmissions to North America were scheduled for 2000-2100 GMT on 9760 kHz, and for 0330-0430 GMT on 6110 kHz. The 2000 GMT broadcast reaches eastern North America at 3 p.m., a time when most people interested in short-wave broadcasts are away from home during the week, and likely to be otherwise occupied on weekend afternoons. The night broadcast is from 10:30 to 11:30 p.m., EST, too late for most East Coast listeners, although suitable for the West Coast.

Another example of poor scheduling is Radio Sweden’s morning broadcast at 1400 GMT, or 9 a.m. EST, another time when most listeners are not at home. Radio Sweden advises that a new transmission schedule is being worked out, so it is hoped that this month the broadcasts will be moved to 1230 GMT (7:30 a.m., EST), preferably on 15,195 kHz.

Argentina transmits in English to eastern North America from 0300 to 0400 GMT, to western North America from 0600 to 0700 GMT, and to Great Britain from 2300 to 2400 GMT. These late-hour broadcasts stem from the fact that the station has only one high-power transmitter and broadcasts a solid hour of programming to each area. Why not transmit for 30 minutes to permit scheduling of the broadcasts at more convenient or listenable times?

What’s the purpose of beating the ether to death with powerful broadcast signals if chances are that the greatest part of your audience is either in bed or at work? Come on, broadcasters—let’s get with it!

—ROGER LEGGE
ENGLISH-LANGUAGE BROADCASTS TO NORTH AMERICA
FOR THE MONTH OF OCTOBER

Prepared by ROBERT LEGGE

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>TO EASTERN AND CENTRAL NORTH AMERICA</th>
<th>MORNING BROADCASTS</th>
<th>EVENING BROADCASTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CITY</td>
<td>TIME-EST</td>
<td>TIME-GMT</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>Melbourne</td>
<td>7:15-8:15 a.m.</td>
<td>1215-1315</td>
</tr>
<tr>
<td>CANADA</td>
<td>Montreal</td>
<td>7:15-8:15 a.m.</td>
<td>1215-1315</td>
</tr>
<tr>
<td>DENMARK</td>
<td>Copenhagen</td>
<td>7:30-8 a.m.</td>
<td>1230-1300</td>
</tr>
<tr>
<td>FINLAND</td>
<td>Helsinki</td>
<td>7:15-7:45 a.m.</td>
<td>1215-1245</td>
</tr>
<tr>
<td>GREAT BRITAIN</td>
<td>London</td>
<td>9:30-11:30 a.m.</td>
<td>1430-1630</td>
</tr>
<tr>
<td>SWEDEN</td>
<td>Stockholm</td>
<td>9-9:30 a.m.</td>
<td>1400-1430</td>
</tr>
<tr>
<td>ALBANIA</td>
<td>Tirana</td>
<td>7-7:30 p.m.</td>
<td>0000-0030</td>
</tr>
<tr>
<td>BULGARIA</td>
<td>Sofia</td>
<td>7-8 p.m.</td>
<td>0000-0100</td>
</tr>
<tr>
<td>CHINA</td>
<td>Peking</td>
<td>8-10 p.m.</td>
<td>0100-0300</td>
</tr>
<tr>
<td>CUBA</td>
<td>Havana</td>
<td>8-11 p.m.</td>
<td>0100-0400</td>
</tr>
<tr>
<td>CZECHOSLOVAKIA</td>
<td>Prague</td>
<td>8-9 p.m.</td>
<td>0100-0200</td>
</tr>
<tr>
<td>ECUADOR</td>
<td>Quito (HCJB)</td>
<td>9-11:30 p.m.</td>
<td>0200-0430</td>
</tr>
<tr>
<td>EGYPT</td>
<td>Cairo</td>
<td>8:30-10 p.m.</td>
<td>0130-0300</td>
</tr>
<tr>
<td>GERMANY</td>
<td>Berlin</td>
<td>8-9 p.m.</td>
<td>0100-0200</td>
</tr>
<tr>
<td>GREAT BRITAIN</td>
<td>London</td>
<td>4:15-10:30 p.m.</td>
<td>2115-0330</td>
</tr>
<tr>
<td>HUNGARY</td>
<td>Budapest</td>
<td>8:30-9:30 p.m.</td>
<td>0130-0230</td>
</tr>
<tr>
<td>ITALY</td>
<td>Rome</td>
<td>8-8:20 p.m.</td>
<td>0100-0120</td>
</tr>
<tr>
<td>JAPAN</td>
<td>Tokyo</td>
<td>6:45-7:45 p.m.</td>
<td>2345-0045</td>
</tr>
<tr>
<td>LEBANON</td>
<td>Beirut</td>
<td>9:30-10 p.m.</td>
<td>0230-0300</td>
</tr>
<tr>
<td>NETHERLANDS</td>
<td>Hilversum</td>
<td>8:30-9:30 p.m.</td>
<td>0130-0230</td>
</tr>
<tr>
<td>PORTUGAL</td>
<td>Lisbon</td>
<td>9:45 p.m.</td>
<td>0200-0245</td>
</tr>
<tr>
<td>ROMANIA</td>
<td>Bucharest</td>
<td>8:30-9:30 p.m.</td>
<td>0130-0230</td>
</tr>
<tr>
<td>SOUTH AFRICA</td>
<td>Johannesburg</td>
<td>7:30-8:30 p.m.</td>
<td>0030-0130</td>
</tr>
<tr>
<td>SPAIN</td>
<td>Madrid</td>
<td>8-9:30 p.m.</td>
<td>0100-0230</td>
</tr>
<tr>
<td>SWEDEN</td>
<td>Stockholm</td>
<td>8:15-9:45 p.m.</td>
<td>0115-0245</td>
</tr>
<tr>
<td>SWITZERLAND</td>
<td>Berne</td>
<td>8-15:9:15 p.m.</td>
<td>0115-0215</td>
</tr>
<tr>
<td>U.S.S.R.</td>
<td>Kiev</td>
<td>7:30-8 p.m.</td>
<td>0030-0100</td>
</tr>
<tr>
<td></td>
<td>(Mon., Thurs., Fri.)</td>
<td>(Tues., Fri., Sat.)</td>
<td>5:5-30 p.m.</td>
</tr>
<tr>
<td></td>
<td>and hourly to</td>
<td></td>
<td>2200-2230</td>
</tr>
<tr>
<td></td>
<td>12:1 a.m.</td>
<td></td>
<td>0500-0600</td>
</tr>
<tr>
<td>VATICAN</td>
<td>Vatican</td>
<td>7-7:40 p.m.</td>
<td>0050-0110</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>TO WESTERN NORTH AMERICA</th>
<th>TIME-PST</th>
<th>TIME-GMT</th>
<th>FREQUENCIES (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARGENTINA</td>
<td>Buenos Aires</td>
<td>10-11 p.m.</td>
<td>0600-0700</td>
<td>9.69</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>Melbourne</td>
<td>5-7 p.m.</td>
<td>0100-0300</td>
<td>15.22, 17.84</td>
</tr>
<tr>
<td>BULGARIA</td>
<td>Sofia</td>
<td>8-8:30 p.m.</td>
<td>0400-0430</td>
<td>9.70</td>
</tr>
<tr>
<td>CHINA</td>
<td>Peking</td>
<td>7-9 p.m.</td>
<td>0300-0500</td>
<td>9.457, 11.82, 15.095</td>
</tr>
<tr>
<td>CZECHOSLOVAKIA</td>
<td>Prague</td>
<td>6:50-7:50 p.m.</td>
<td>0250-0350</td>
<td>11.86, 15.345</td>
</tr>
<tr>
<td>GERMANY</td>
<td>Berlin</td>
<td>7:45-8:15 p.m.</td>
<td>0345-0415</td>
<td>5.93, 7.115, 7.345</td>
</tr>
<tr>
<td>HUNGARY</td>
<td>Budapest</td>
<td>7-8 p.m.</td>
<td>0300-0400</td>
<td>6.16, 9.73</td>
</tr>
<tr>
<td>JAPAN</td>
<td>Tokyo</td>
<td>6-7 p.m.</td>
<td>0200-0300</td>
<td>6.145, 9.735</td>
</tr>
<tr>
<td>KOREA</td>
<td>Seoul</td>
<td>7-7:30 p.m.</td>
<td>0300-0330</td>
<td>6.235, 9.833</td>
</tr>
<tr>
<td>PORTUGAL</td>
<td>Lisbon</td>
<td>8-8:45 p.m.</td>
<td>0400-0445</td>
<td>15.125</td>
</tr>
<tr>
<td>SOUTH AFRICA</td>
<td>Johannesburg</td>
<td>6:30-7:30 p.m.</td>
<td>0230-0330</td>
<td>6.025, 6.185</td>
</tr>
<tr>
<td>SWEDEN</td>
<td>Stockholm</td>
<td>7:15-7:45 p.m.</td>
<td>0315-0345</td>
<td>9.525, 11.90</td>
</tr>
<tr>
<td>SWITZERLAND</td>
<td>Berne</td>
<td>8-15-9:15 p.m.</td>
<td>0415-0515</td>
<td>9.705</td>
</tr>
<tr>
<td>U.S.S.R.</td>
<td>Moscow</td>
<td>7-10:30 p.m.</td>
<td>0300-0750</td>
<td>6.12, 9.535</td>
</tr>
</tbody>
</table>

96 POPULAR ELECTRONICS
AN INTERCOM that just sits there doing nothing for 90 percent of the time is like a night watchman on the alert for a burglar or a fire but who fails to notice a water leak in the basement that can cause thousands of dollars' worth of damage. Unlike the watchman, however, an intercom can be modified to sound an alert in the event of almost any type of emergency, and it never sleeps.

Because most modern intercoms, especially the transistor types, draw so little current, they cost practically nothing to operate and can be left on all the time; and, since most of them contain suitable electronic circuits, it is possible and desirable to have them perform other duties. As a matter of fact, some commercially available intercoms come equipped with built-in alarm functions.

Burglar, fire, and moisture alarm functions can be incorporated into most intercoms with very little effort. All you need do is install a capacitor to set up a feedback loop and a phone jack to accommodate a simple alarm-type switch. The switch, when activated, will set up a loud howl in your intercom.

How It Works. Fortunately, in intercoms, as in all good audio amplifiers, great pains are taken to suppress or eliminate all extraneous noises, especially those resulting from feedback. The trick is to obtain a feedback howl in an emergency, yet prevent any undesirable noise while the intercom is functioning as an intercom.

BUILD A HIP SQUAWK BOX
INTERCOM DOUBLES AS A BURGLAR AND FIRE ALARM

By CHARLES VLAKOS AND BYRON G. WELS
As shown in the schematic, which is that of the Heathkit GD-51A transistor intercom, a regenerative feedback loop is set up when a portion of the signal from the collector of transistor X4 is fed back to the base of transistor X3 through a closed alarm switch plugged into the jack. When the alarm switch is open, or the plug is not in the jack, the intercom functions in a normal manner.

In order for the intercom to function as an alarm, the talk-listen switch must be in the listen position. Only the master unit in which the feedback loop is installed will act as the alarm, and nothing else in the intercom system is disturbed.

Almost any intercom can be modified in like manner, including the tube types. Also, you can try various sizes of capacitors to obtain more or less feedback as needed.

The Alarm Switch. Any simple device that will act as a short when it is activated and an open when it is in its passive state will serve as the alarm switch. A microswitch mounted on the sash a few inches above the lower casingment of a window makes an effective burglar alarm switch. The window can be lifted to allow ventilation; open it further, and the intercom lets out a loud howl.

Klixon fire alarm buttons can be placed near stoves, heaters, or any appliance which could cause a fire. A rise in temperature will close the thermostatic switch in the alarm button, and sound an alarm. (Note: There are different types of fire alarm buttons available.)

(Continued on page 109)
Get this $65 RCA color TV course FREE!

That's right! RCA Institutes famous Home Study Color TV Servicing Course FREE, when you buy ANY ONE of the instruments shown here. Buy all four...get four courses. Enroll all your technicians while you equip your shop with the instruments you'll need for color TV servicing anyway.

Here's how it works: Simply buy one, or all, of the four instruments shown, the WR-64B, WR-69A, WR-99A, or WO-91B—ALL essential color TV test instruments—from your Authorized RCA Test Equipment Distributor between now and November 15, 1966. Fill out your warranty registration card and attach the white identification label on the carton. Send them to RCA, Test Equipment Headquarters, Bldg. 17-2, Harrison, New Jersey. We will send you the enrollment form and a binder containing the first two lessons. When you complete the lessons and forward them to RCA Institutes for grading, the next lessons will be supplied to you directly from RCA Institutes, all without charge to you.

But do it now. This offer is good only for equipment purchased between September 1, and November 15, 1966. To allow for postal delay, we will honor cards received up until December 1, 1966. Here's your chance to equip your shop for color servicing while we train your people for FREE!

Electronic Components and Devices, Harrison, N.J.
ASMSEMBLE YOUR OWN
ALL-TRANSISTOR
Schober
ELECTRONIC ORGAN

This is the new, all-transistor Schober Consolette II...the most luxurious "home-size" organ available today. Full 61-note manuals, 17 pedals, 22 stops and coupler, 3 pitch registers, and authentic theatre voicing leave little to be desired. Comparable to ready-built organs selling from $1800 to $2500.

The pride and satisfaction of building one of these most pipe-like of electronic organs can now be yours...starting for as low as $550. The Schober Spinet, only 38 inches wide, fits into the smallest living room. The all-new, all-transistor Schober Recital Model actually sounds like a fine pipe organ; its 32 voices, 6 couplers, 5 pitch registers delight professional musicians...making learning easy for beginners.

AND YOU SAVE 50% OR MORE BECAUSE YOU'RE BUYING DIRECTLY FROM THE MANUFACTURER AND PAYING ONLY FOR THE PARTS, NOT COSTLY LABOR.

It's easy to assemble a Schober Organ. No special skills or experience needed. No technical or musical knowledge either. Everything you need is furnished, including the know-how. You supply only simple hand tools and the time.

You can buy the organ section by section...so you needn't spend the whole amount at once.

You can begin playing in an hour, even if you've never played before—with the ingenious Pointer System, available from Schober.

Thousands of men and women—teen-agers, too—have already assembled Schober Organs. We're proud to say that many who could afford to buy any organ have chosen Schober because they preferred it musically.

Send for our free 1966 Schober Catalog, describing in detail the exciting Schober Organs and optional accessories; it includes a free 7-inch "sampler" record so you can hear before you buy.

THE Schober Organ CORPORATION
43 West 61st Street, New York, N. Y. 10023
Also available in Canada, Australia, Hong Kong, Mexico, Puerto Rico, and the United Kingdom

THE SCHOBER ORGAN CORP., DEPT. PE-21
43 West 61st Street, New York, N. Y. 10023

☐ Please send me FREE 1966 Schober Catalog and FREE 7-inch "sampler" record.
☐ Enclosed find $2.00 for 10-inch quality LP record of Schober Organ music. ($2.00 refunded with purchase of first kit.)

Name
Address
City State Zip No.

CIRCLE NO. 42 ON READER SERVICE PAGE

TIPS (Continued from page 20)

MAGNETIC "FISHING" ROD
RETRIEVES SMALL OBJECTS

Screws, washers, nuts, and other small objects that accidentally fall into your wired chassis or along the inner walls of an electronic equipment cabinet can easily be retrieved with a simple "fishing" rod made by gluing a small bar magnet to one end of a steel measuring tape. If the object is nonmagnetizable, wrap a bit of masking tape—sticky side out—around the magnet. The flexibility and slimness of the steel tape enables the magnet to be positioned in extremely close quarters to pick up the fallen object.

—Glen F. Stillwell

EYE SCREWS SUPPORT
BREADBOARD COMPONENTS

When breadboarding, use an assortment of ordinary eye screws of the type available in 5 & 10 and hardware stores to mount your potentiometers, switches, phone jacks, binding posts, etc., as shown in the accompanying photo. Determine, by trial, the right size eye screw for the component being mounted. If necessary, open up the screw eye a bit with a pair of pliers. Then, after planning your layout, insert the screw far enough into the breadboard to support the component that is being mounted.

—Art Trauffer

TAPE RECORDER
(Liquidation Stock)

$8.99

Liquidation of our special purchase of tape recorders complete with remote 21/4" speaker microphone, on-off switch with play and record positions and remote battery case. Comes with standard 1/4" magnetic tape. A $20 value. Use for messages, rig with invisible thread as detector device, hides anywhere. Conceal in toy animal and let it make outrageous remarks to your guests. 1000 fun and practical uses. To order: Send check, cash or M.O. for post-paid shipment. $1.00 deposit for C.O.D. 10-day money back guarantee.

MISSION LIQUIDATORS
Dept. A, P.O. Box 4187 San Fernando, Calif. 91242

100 POPULAR ELECTRONICS
NEW! LAFAYETTE HB-525
Solid State 2-Way Radio

OBSELETES ALL 23 CHANNEL CB TRANSCEIVERS!

All 25 Channels Crystal Controlled

- Size: 2 3/4" by 6 1/4"
- 25 Channel Crystal Control
- 19 Transistors, 7 Diodes, Thermistor
- Dual Conversion Receiver for Extra Selectivity and Sensitivity
- Full 5-Watt Input
- Range Boost™ Circuitry for Added Power
- 3-Position Delta Tune—Provides Accurate Fine Tuning
- Mechanical 455KC Filter for Superior Selectivity
- Variable Squelch plus Series Gate Automatic Noise Limiting
- Public Address System (with external speaker)
- 12-Volt DC Operation (pos. or neg. ground) 6-Volt DC (with optional DC Power Supply)
- Pi-Network for Optimum RF Output

149.95

FREE
Over 500 Pages

1967 CATALOG NO. 670
Featuring Everything in Electronics for
- HOME - INDUSTRY - LABORATORY
from the “World's Hi-Fi & Electronics Center”

LAFAYETTE Radio ELECTRONICS
Dept. 1J-6, P.O. Box 10
Syosset, L.I., N.Y. 11791

☐ Send me the FREE 1967 LAFAYETTE Catalog 670 1J-6

Name __________________________
Address __________________________
City __________________________ State ____________ Zip ________

CIRCLE NO. 30 ON READER SERVICE PAGE
BUILD YOUR OWN
LIGHT-OPERATED SWITCH

In and Around the House
For Dozens of Applications

Light up the night with RCA SCR Experimenter's Kits. These kits, containing a full complement of active components, rectifiers, transistors, a silicon controlled-rectifier, and a photocell, plus other readily available passive components and hardware enable you to build a light-operated switch for garage, yard or path, or even a sign that can be activated by auto lights. RCA Experimenter's Kits offer considerable flexibility in the number and kind of control circuits you as a hobbyist can build. With just three RCA kits, you can build any of 14 different circuits with hundreds of applications. Easy-to-follow directions for all 14 circuits are given in RCA Experimenter's Manual, KM-70.

Your RCA Semiconductor Distributor has Basic and Add-On Kits as well as the RCA Experimenter's Manual on display. See him about the solid-state circuit you have in mind. Do it today!

AVAILABLE FROM YOUR RCA SEMICONDUCTOR DISTRIBUTOR

RCA Electronic Components and Devices, Harrison, N.J.

The Most Trusted Name in Electronics

CIRCLE NO. 40 ON READER SERVICE PAGE

Back Issues Available

Use this coupon to order back issues of POPULAR ELECTRONICS

We have a limited supply of back issues that can be ordered on a first-come, first-served basis. Just fill in the coupon below, enclose your remittance in the amount of 50¢ each and mail.

Get Your First Class Commercial
F.C.C. LICENSE
and your
A.S.E.E. DEGREE

Move up. Take advantage of the good pay and security now offered by an electronics career. Grantham can train you quickly, in resident classes or by correspondence.

We offer the following courses—all of which are approved under the new G.I. Bill. Select the course you are interested in, and write or phone for free details.

☐ Electronics Engineering Technology (resident course, which leads to the A.S.E.E. degree)
☐ Basic Electronics Engineering Technology (correspondence course, which covers the first ½ of the EET course listed above, and credit for which can be applied toward the A.S.E.E. degree)
☐ Communications Electronics (resident course which leads to the FCC first class license and trains you to be a communications technician)
☐ F.C.C. License Course (correspondence course, which leads to the FCC first class license)
☐ Radio & Television Servicing (resident course, which trains you to be a service technician)

For complete information without obligation, write or telephone the School at any of the addresses listed below, and indicate the course you are interested in.

Dept. 63-P

Grantham School of Electronics
1505 N. Western Ave., Hollywood, Cal. 90027
Phone: (213) 469-7878
408 Marion Street, Seattle, Wash. 98104
Phone: (206) 622-7227
818-18th St., NW, Washington, D.C. 20006
Phone: (202) 395-7460

CIRCLE NO. 59 ON READER SERVICE PAGE
and Wien bridge (Wilhelm Wien, German physicist). So why not: hertz (Heinrich Rudolph Hertz, German physicist)?

William G. O'Barr
South Laguna, Calif.

William, we have been giving some thought to volts and watts and such, too, and we recently made the decision to change our abbreviation style to A for ampere, F for farad, H for henry, V for volt, and W for watt.

"PANIC BUTTON" STILL CREATES PANIC

My friend and I built the "Don't Panic . . . Push the Button" alarm (January, 1966), and on the last day of school we set it down on the floor between two of the tables in the lunchroom and plugged it in. (We also installed a dummy plug as described in one of your reader's letters.) Then, telling the students at the tables not to touch the button, we went to get our food. Sure enough, just as I was putting ketchup on my hamburger, I heard the wail of the siren rising over the din of the lunchroom. Minutes later, our assistant principal rushed in, and, not knowing what the thing was, carried it out of the tables in the lunchroom. Later we found it in the trash can, but unfortunately, in many pieces. All the wires had been torn off the siren module with such devasting vigor that we have been unable to get the thing working again.

Dave Bloch
Detroit, Mich.

I built the "Panic Button" and it worked very well on most people, but a few turned over the box and discovered the hidden switch. I believe I have solved that problem. I just installed the parts from the "Tickle Stick" (February, 1966). I did it by covering a wooden box with thin metal, leaving a thin uncovered strip down the middle. Then I hooked up the works to the 60-second delay switch and watched the fun.

Dave Clark
Livingston, N.J.

CONNUBIAL COMPUTER

I have been a subscriber to Popular Electronics almost from the beginning of publication, and I do not remember seeing in the magazine any article of lower quality than "The Connubially-Oriented Computer" (July, 1966). The editorial staff must be completely bankrupt! I hope its inclusion was a

October, 1966
case of careless judgment, rather than an indication of degenerating taste on the part of the editors. If the latter proves true, I will probably cancel my subscription.

RICHARD W. PRICE
Barker, N.Y.

Can you please explain to me how the "luscious and outrageously constructed Redhead" on page 54 turned into a "Brunette Doll" on page 97? Inconsistencies like this can ruin a romance. I know!

ARNOLD GERSHON
New York, N.Y.

I just read the story of Otto Tronix, and I think it was very cleverly done, using electronics as the backbone. I found it extremely entertaining, especially the well-twisted ending. Let's have more of these stories.

BRIAN LO
Vancouver 16, B.C.
Canada

Richard, the last we heard, the two computers were chasing after the Redhead, and we aren't likely to see them again, so don't cancel your subscription. Arnold, your letter sounds as if you had a bad experience; well, that's what happens when you can't get the story straight—there are TWO "dolls" in this article. Brian, maybe you can catch up with the computers.

NIGHTTIME TV MYSTERY

Soon after my television set is turned on at night, some form of interference completely blanks out both picture and sound. It cannot be the TV set as I have had the same problem with as many as four other sets. Neither is it the antenna, as I have tried a variety of antennas. It is quite maddening to watch U.N.C.L.E. Headquarters under siege and then come under siege myself just at the most interesting part of the story. Is there anything that could possibly be done about this? Do you have a filter that could be attached to eliminate this unwelcome T.H.R.U.S.H. agent?

KEVIN FITZGERALD
Dorchester, Mass.

Sorry, we don't have any T.H.R.U.S.H. filters, Kevin, but you can try a line-voltage regulator. Trouble at night, and not in the daytime, is usually an indication of low-line voltage.
YOUR POSTMASTER SUGGESTS:
ALWAYS INCLUDE YOUR (ZIP CODE) NUMBER IN YOUR RETURN ADDRESS

POPULAR ELECTRONICS SUBSCRIBER SERVICE

Please include an address label when writing about your subscription to help us serve you promptly. Write to: Portland Place, Boulder, Colo. 80302

Change of Address:
Please let us know you are moving at least 4 weeks in advance. Affix magazine address label in space to the right and print new address below. If you have a question about your subscription, attach address label to your letter.

To Subscribe:
Check boxes below.

☐ New ☐ Renewal
☐ 5 years $20
☐ 3 years $13
☐ 1 year $5

Specify
☐ Payment enclosed — You get 1 extra issue per year FREE!
☐ Bill me later.

name please print

affix label

If you have no label handy, print OLD address here.

city

name

city

address

state zip-code

October, 1966

There's GOOD NEWS Today!

PRICES REDUCED
on the famous
MARK TEN SCR
IGNITION SYSTEM

Factory Assembled

ONLY $44.95 ppd.

OR IN
EASY-TO-ASSEMBLE
DELTAKIT

ONLY $29.95 pdd.

Here's why DELTA offers you these unparalleled savings!

You read it in the June 1965 issue of this magazine: “First SCR Ignition System in mass production.” Now Delta — the ORIGINAL manufacturer and the largest — offers this price reduction due to high production levels. Thousands have purchased and installed our remarkable automotive system. We at Delta can now pass along our lowered manufacturing costs to you — with extra savings in addition to the Excise Tax reduction effective January 1st! Save on gas. Increase the life of your points and plugs. Dramatically improve your car’s acceleration and general performance. Buy the ORIGINAL, and for less! ORDER TODAY!

DELTA PRODUCTS, INC.
P.O. Box 1147PE + Grand Junction, Colo. 81501

Enclosed is $ Ship prepaid. ☐ Ship C.O.D.

Please send: ☐ Mark Ten (Assembled) @ $44.95
☐ Mark Ten (Delta Kit) @ $29.95

SPECIFY — ☐ Positive ☐ Negative ☐ 6 or ☐ 12 Volt
☐ Ground Ground

Car Year. Make

Name

Address

City, State Zip

CIRCLE NO. 57 ON READER SERVICE PAGE
INTEGRATED CIRCUITS
(Continued from page 56)

Some are experimenter units that are priced at less than a dollar each when purchased in large quantities. Others are of the expensive variety, limited to a few critical applications.

The table on page 56 lists some of the lower-priced integrated circuits that can be purchased from distributors as off-the-shelf items; data sheets are available from the manufacturers represented. Digital IC's are of the flip-flop switching variety used in computer or counting circuits, while linear IC's are used as r.f. and a.f. amplifiers.

None of the IC's listed is as expensive as the corresponding parts would be if purchased separately, not counting the extra assembly time and reduced reliability that discrete parts provide. Furthermore, with discrete parts it is impossible to obtain the temperature tracking inherent in integrated circuits.

In The Cards For Tomorrow. The trend is plain to see—more, smaller, and better integrated circuits at lower costs. The experts call for a 10:1 price cut in IC's in the next fifteen years. So the time to obtain a working familiarity with these circuits is—now!

Even more exciting is today's development of IC's using some astounding new electronic techniques that will become important factors in the manufacture of tomorrow's distributor components. The MOS-type transistors have essentially infinite input impedance and zero switching time, but are built with half the steps necessary for a conventional transistor and in a tiny fraction of its size.

The Gunn effect and the Read effect are new techniques through which the avalanching semiconductors directly generate substantial microwave power. Microwave IC's are already in the works, as are switching mode amplifiers—produced through the use of a "why didn't they think of it before?" technique by which a 40-watt amplifier is put in a TO-5 case with no heat sink required, and no heat problems either.

There is also a totally molecular approach by which entire functional blocks are built up on a molecular scale. Then there's a resonant gate transistor—a spanking-new device with a built-in tuning fork that gives you high-Q, stable resonant circuits—from audio to microwave—in extremely cramped quarters. And the list goes on.

Today's laboratories are turning out tomorrow's IC's. Will you be ready for them when they arrive?

Ceramic flat pack is used when maximum miniaturization is required. It occupies less than half the space of a TO-5 transistor package. This configuration sometimes replaces as many as 50 components.
YOU CAN STAKE YOUR LIFE ON POLYTRONICS PERFORMANCE

THE ONLY 2-WAY RADIO TO CLIMB MOUNT EVEREST AND SURVIVE

And you can find a Polytronics engineered transceiver to fit your needs and budget... equipment you can stake your life on as Willie Unsoeld did when he scaled the peak of Mt. Everest on May 22, 1963.

In addition to the sets pictured, there is the POLY-COMACT, the world's smallest eleven-channel all solid state CB Transceiver; the POLY-COMM 23 offering 23-channel “Spectramatic tuning” for instant operation on any citizens band channel; the amazing POLY-COMM 30 with 23 CB channels and 7 extra “in between” part 15 channels (100mw).

Before you buy, make sure that you have seen the best... send in the coupon below for descriptive literature and dealer information.

POLYTRONICS LABORATORIES, INC.
A Subsidiary of Vitro Corporation of America
900 Burlington Ave., Silver Spring, Md.

Please send me full details on:
☐ CITIZENS RADIO ☐ BUSINESS/INDUSTRIAL EQUIPMENT
☐ RADIO EQUIPMENT and information about the nearest POLYTRONICS dealer.

Name: __
Address: ___
City: _______ State: _______ Zip: __________

Dealer Inquiries Invited

CIRCLE NO. 60 ON READER SERVICE PAGE
Air

Even your Hi Fi Components need it to survive.

You can minimize thermal drift and lengthen the life of Hi Fi sets, FM stereo receivers, communications and other equipment with this low noise fan. The Hi Fi Boxer was designed by engineers who have produced airmover designs for computers, broadcasting equipment, and the Minuteman Missile.

For more detailed information write the address listed below.
To obtain the Hi Fi Boxer see your local dealer or send a check* or money order for $14.85 to:
Hi Fi Boxer, New Hampshire Division,
IMC Magnetics Corp., Route 16B
Rochester, New Hampshire

*Allow 10 days for personal checks to clear.

CIRCLE NO. 24 ON READER SERVICE PAGE

New sound column

High Fidelity Speaker System

Looks beautiful, sounds excitingly different! Sound column design uses scientific focusing principle to add extra projection to high tones, re-create music with startling fidelity. Ideal for stereo. 33"h x 10"w x 4"d. 4 Jensen speakers — 2 specially-designed high compliance woofers, 2 direct radiator tweeters. 50 to 17,000 cps. Cabinet of genuine walnut with oiled finish... designed to hang on the wall like a picture.

The Astra

SAVE

Stereo pair only $89.95
$49.95 each audiophile net

Argos PRODUCTS COMPANY

Write for free catalog showing Argos systems for every purpose
Dept. C 600 S. Sycamore St., Genoa, Ill. 60135
CIRCLE NO. 4 ON READER SERVICE PAGE

INTEGRATED CIRCUIT AMPLIFIER
(Continued from page 59)

This type of press-fit socket, put out by Sealectro, can be used to simplify your project. With it you simply plug in your IC as you would a transistor.

solder the leads to the IC socket until the case is in place. When wiring this unit in the circuit, observe that the locating tab on the IC is directly over pin 1. Viewed from the top of the case, the pins are numbered counterclockwise. Also, observe that pins 2, 7, and 10 are tied together and returned to a terminal on S1.

Operating Hints. Distortion will result if too large a signal is applied to the amplifier input. For applications not requiring a wide bandpass, a step-up transformer can be used to couple the output of the first differential amplifier to the input of the second amplifier, replacing capacitor C2. However, some amount of experimentation is required to select the right transformer, since poor matching of the stages can transform your amplifier into a blocking oscillator due to the sensitivity of emitter followers to inductive loads.

For additional gain, two or more IC packages can be cascaded together. But care must be taken to keep the signal at a level low enough so that clipping will not take place.

The values of R1 and R2 have been chosen for best overall performance and circuit stability. But where it is desirable to change the amplifier input and output impedances, the value of these resistors can be raised to as high as 22,000 ohms with only a slight loss in gain and stability. One advantage of this change is that smaller values are required for C1 through C3 for any given frequency response.
able; those that are open when they are cold, and those that are open when they are hot. Some have different temperature ratings.)

One way to eliminate a wet headache is to place an aspirin tablet between a couple of thumb tacks mounted on a spring-action clothespin, and hang the contraption outside your window. In case of rain, the aspirin tablet will dissolve, the clothespin will close, and the alarm will sound. One tack is fastened to each jaw of the clothespin, and a length of wire is attached to each tack. A clothespin-type antenna connector is ideal for this purpose, but you will have to bend the metal ends towards the center until they touch each other when the pin is closed.

Greater area coverage can be obtained by connecting several alarm switches in parallel. Also, it is possible to create a more sophisticated alarm system by having several alarm stations, each switching in different values of capacitance to obtain a unique sound for a specific location or type of emergency. But you would have to have a good musical ear to identify the different sounds. —[8]

CAREERS IN ELECTRONICS

(Continued from page 51)

with what goes on in a computer, have a speaking acquaintance with PPM, micro-electronics, radar pulse and Doppler techniques, SSB, etc.

The man who takes a 250-hour course at home may have had excellent training—as far as it goes. But it simply can’t cover the same ground as a resident course that takes ten times as much time and effort. And the fellow who thinks he can spend a few spare-time hours for a year or so and come out as a high-level technician is due for an unhappy awakening.

The home-study schools aren’t trying to fool any one. Look over the catalogs and you can tell quickly which courses

October, 1966
they've designed to train men to be industrial technicians. The home-study schools offer high-powered courses that will prepare a man to work as a test or calibration technician, or as a junior technician who can look forward to a bright future and to continuing advancement as he becomes ever more expert. (Incidentally, he's likely to find the home-study schools the best place to constantly upgrade his training, once he's on the job.)

One of the easiest ways to pick the courses that will be most valuable is simply to see how long the school estimates it will take you to complete the course. Capitol Radio Engineering Institute's programs in Electronic Engineering Technology, for example, are certainly among the most advanced offered through the mails. These courses will take the average student studying some three hours a day about three years to complete. That means he'll spend upwards of 2000 hours on the course. And CREI's courses aren't meant for rank beginners. The school requires that students must already be working in electronics, with some basic knowledge in the field and the opportunity to apply their new knowledge working on actual equipment as they advance. In other words, the amount of time a student spends on such a course begins to approach the amount of time he'd put in if he attended one of the regular engineering technology institutes. Obviously, when a man finishes such a course, he'll have something valuable to offer an employer.

How Much Education Do You Want?

If you want to be an industrial electronics technician and plan to get your training at home, here are a few hints: Compare the school catalogs—not for fancy presentation, but for hard facts about subject matter and course objectives—a communications technician is not an industrial technician. See how long the course lasts—how many hours you'll be putting in. Be realistic and don't expect things of a study course that it was never designed to produce. A good course in basic electronics or radio/TV repair may be worth every cent it costs and more, but it is not in-

GET THE HOT ONES

...the Turner +2 with volume control

...and a FREE Florentine Lighter

To introduce you to the +2 (the first microphone with a fingertip volume control), Turner is offering a FREE bonus — a beautiful Florentine lighter with each +2 sold! The lighter is the windproof type, decorated by the intricate carvings made famous by ancient Florentine silversmiths; and the microphone is the one-of-a-kind unit that is drawing acclaim all over the country.

The +2 is a transistorized base station microphone with a tailored frequency response of 300-3,500 cps; it features touch-to-talk or lock on/off switching, and works with all transistor or tube sets. And more important, the +2 lets your present transceiver perform like it was NEW again — provides up to 50 times the output level you now have, with just the turn of a dial! List price, $49.50.

See your CB dealer or parts jobber soon. Get your new +2 and ask about the free Florentine lighter.
tended to train engineering technicians.

To put it another way, if you want to work in industry, think in terms of how much education you’re going to get—whether you hope to get it at home or in a residence school. Then, with a sound education, no matter where you get it, you’ll qualify when you apply for a job with a firm that has up-to-date attitudes.

As one employment manager for a computer firm put it, “We don’t expect a student to learn everything he’ll need at school. But we do look for students who have a sound background, and who have growth potential far beyond their present capabilities. When we find a man like that, we hire him. And we don’t care where he went to school.”

QUIZ ANSWERS

(Quiz appears on page 64)

Since the total circuit resistance is 5 ohms, by Ohm’s law the total current is 6 amperes (I = E/I = 30/5 = 6). Thus, the current through each branch is 2 ohms, and the drop across each resistor is as shown in the schematic diagram. The voltage readings, and the test points across which they are taken are listed below.

<table>
<thead>
<tr>
<th>VOLTS</th>
<th>TERMINALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>EH</td>
</tr>
<tr>
<td>2</td>
<td>FB</td>
</tr>
<tr>
<td>4</td>
<td>AG, DE, HD, GC</td>
</tr>
<tr>
<td>6</td>
<td>CD</td>
</tr>
<tr>
<td>8</td>
<td>AC</td>
</tr>
<tr>
<td>10</td>
<td>CE, CH, EF, GD, HF</td>
</tr>
<tr>
<td>12</td>
<td>EB, HB</td>
</tr>
<tr>
<td>14</td>
<td>AD, DF, GE, GH</td>
</tr>
<tr>
<td>16</td>
<td>DB</td>
</tr>
<tr>
<td>18</td>
<td>AE, AH</td>
</tr>
<tr>
<td>20</td>
<td>CF</td>
</tr>
<tr>
<td>22</td>
<td>CB</td>
</tr>
<tr>
<td>24</td>
<td>GF</td>
</tr>
<tr>
<td>26</td>
<td>GB</td>
</tr>
<tr>
<td>28</td>
<td>AF</td>
</tr>
<tr>
<td>30</td>
<td>AB</td>
</tr>
</tbody>
</table>

Please send further information on Citi-Fone SS, 99, II.

MULTI-ELMAC CO.
21470 Coolidge Oak Park, Michigan 48237
What’s New With Heath These Days?

Harmony-by-Heathkit Electric Guitars & Heathkit Guitar Amplifier

NEW Heathkit Transistor Guitar Amplifier
60 watts peak power; two channels — one for accompaniment, accordion, organ, or mike, — the other for special effects... with both variable reverb and tremolo; 2 inputs each channel; two foot switches for reverb & tremolo; 2 inputs each channel; 2 foot switches for reverb & tremolo; line bypass reversing switch for hum reduction; one easy-to-build circuit board with 13 transistors, 6 diodes; 28" W. x 9" D. x 19" H. leather-textured black vinyl cabinet of ¾" stock; 120 v. or 240 v. AC operation; extruded aluminum front panel. 44 lbs.

American Made Harmony-By-Heathkit Guitars
All guitars include instruction book, tuning record, pick, connecting cord, deluxe red leather cushioned neck strap and chipboard carrying case. All wood parts assembled and factory finished — you just mount metal parts, pickups & controls in pre-drilled holes and install strings.

Deluxe Guitar... 3 Pickups... Hollow Body
Double-cutaway for easy fingering of 16 frets; ultra-slim fingerboard — 24½" scale; ultra-slim “uniform feel” neck with adjustable Torque-Lok reinforcing rod; 3 pickups with individually adjustable pole-pieces under each string for emphasis and balance; 3 silent switches select 7 pickup combinations; 6 controls for pickup tone and volume; professional Bigsby vibrato tail-piece; curly maple arched body — 2" rim — shaded cherry red. 17 lbs.

Silhouette Solid-Body Guitar... 2 Pickups
Modified double cutaway leaves 15 frets clear of body; ultra-slim fingerboard — 24½" scale; ultra-slim neck for “uniform feel”; Torque-Lok adjustable reinforcing rod; 2 pickups with individually adjustable pole-pieces under each string; 4 controls for tone and volume; Harmony type “W” vibrato tail-piece; hardwood solid body, 1½" rim, shaded cherry red. 13 lbs.

“Rocket” Guitar... 2 Pickups... Hollow Body
Single cutaway style; ultra-slim fingerboard; ultra-slim neck, steel rod reinforced; 2 pickups with individually adjustable pole-pieces for each string; silent switch selects 3 combinations of pickups; 4 controls for tone and volume; Harmony type “W” vibrato tailpiece; laminated maple arched body, 2" rim; shaded cherry red. 17 lbs.

NEW 12" Transistor Portable TV — First Kit With Integrated Circuit

Unusually sensitive performance. Plays anywhere... runs on household 117 v. AC, any 12 v. battery, or optional rechargeable battery pack ($39.95); receives all channels; new integrated sound circuit replaces 39 components; preassembled, prealigned tuners; high gain IF strip; Gated AGC for steady, jitter-free pictures; front-panel mounted speaker; assemblies in only 10 hours. Rugged high impact plastic cabinet measures a compact 11½" H x 15¾" W x 9¾" D. 23 lbs.

Kit GR-104
$119.95
Available Late October

POPULAR ELECTRONICS
New Kits You Can Build

NEW Heathkit® /Magnecord® 1020 4-Track Stereo Recorder Kit

Save $170 by doing the easy assembly yourself. Features solid-state circuitry; 4-track stereo or mono playback and record at 7½ & 3½ ips; sound-on-sound, sound-with-sound and echo capabilities; 3 separate motors; solenoid operation; die-cast top-plate, flywheel and capstan shaft housing; all push-button controls; automatic shut-off; plus a host of other professional features. 45 lbs. Optional walnut base $19.95, adapter ring $4.75

NEW Deluxe SB-301 Amateur Band Receiver Kit

Complete coverage of 80 thru 10 meters with all crystals furnished, plus 15 to 15.5 MHz coverage for WWV; full RTTY reception capability; built-in switch-selected ANL; front-panel switching for control of 6 and 2 meter plug-in converters; crystal-controlled front-end for same rate tuning on all bands; 1 kHz dial calibrations — 100 kHz per dial revolution; plus the same styling and features of the famous Heathkit SB-300 Receiver. 23 lbs.

2-Watt Walkie-Talkie

Assembled GRS-65A $99.95

NEW Portable Phonograph Kit

Kit GD-16 $39.95

HEATH COMPANY, Dept. 10-10
Benton Harbor, Michigan 49022

Please send FREE 1967 Heathkit Catalog.

Name ____________________________
Address ____________________________
City __________________ State ______ Zip ______

Prices & specifications subject to change without notice. CL-258
TIRE OF HUNTING FOR "NEEDLES" IN HAYSTACKS?

FIND THE PRECISE AUDIO ACCESSORY YOU NEED FAST!

- Jacks
- Plugs
- Adaptors
- Couplers
- Extension Jacks
- Speaker Controls
- "Mini-Mix"—mixers, etc.

Look for the SWITCHCRAFT®

AUDIO ACCESSORY SELF-SERVICE CENTER

At last! All the confusion and "wait" gone. Fail-Safe quality. Packages factory sealed, precisely labeled by name, type, mating part, price. Guaranteed.

Send for Complete Catalog:

SWITCHCRAFT, INCORPORATED

5563 No. Elston Ave., Chicago, Illinois 60630

CIRCLE NO. 56 ON READER SERVICE PAGE

TIME-SIGNAL RECEIVER

(Continued from page 46)

author found that indoor reception could be improved by placing the receiver's antenna close to a telephone or an electrical fixture.

If you find it hard to decide which "band" of frequencies is best suited to your location, you can monitor each frequency for a period of time with a communications receiver. The optimum frequencies and listening time can be determined quickly in this manner.

To change frequencies in the receiver, simply plug in the appropriate crystal, and tune C2 and C6. Remember, you can cover two time-signal stations with the 10-µH coils, and three stations with the 5.6-µH coils.

TIME SIGNAL BROADCASTS

CHU Reception of CHU on 7.335 MHz is possible along most of the eastern seaboard (north of South Carolina) at any time between 0400-1100 and 1400-0100 EST. On the frequency of 14.670 MHz, CHU is heard throughout the remainder of the eastern seaboard and as far west as Denver, Colo., from 0800 to 2100 CST. CHU on 14.670 MHz is also audible along the West Coast in the early evenings.

WWV Pending the move of WWV from Maryland to Colorado, it is difficult to accurately predict reception on either 10.0 or 15.0 MHz. However, it is believed that the 10.0-MHz broadcast will be audible with good signal strength throughout most of North America from 0800 to 2200 EST. At the present time, West Coast users should tune to 10.0 MHz or 15.0 MHz for the transmission of WWVH, Maui, Hawaii.

It will be necessary to choose the "listening" frequency best suited to your needs and to your geographical location. Reception 100% of the time, day and night, is not possible on one frequency only (unless, of course, you live close to the transmitters). Some frequencies are better at night, others during the day.

Complete information on the technical services provided by the NBS standard time stations can be found in "Standard Frequency and Time Services of the National Bureau of Standards, Miscellaneous Publication 236," which is available from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402, for 15 cents. Complete technical information on CHU is contained in a leaflet entitled "Time Service Bulletin B-16." available from the Department of Mines and Technical Surveys, Dominion Observatory, Ottawa, Canada, at no charge.
DECIBELS
(Continued from page 78)

scale is opposite 1.732 volts on the a.c. scale, then the meter is calibrated using 6 mW in 500 ohms as the reference level.

Just as different a.c. voltmeter ranges require different scale markings or multipliers, so do the different ranges affect the dB readings. However, for dB readings you simply add a fixed number of dB to the direct readings, depending upon which range you are using. For example, if the signal is strong enough to throw the meter off scale, you should switch to a higher a.c.-volts range, and add the number of dB to the dB scale reading as shown in Table 1, which appears on page 78.

Suppose your meter reads +4.5 dB and the range switch is set to the 150-volt range (where 0 dB = 1 mW in 600 ohms). The true dB reading would be +4.5 plus 40, or +44.5 dB, if measured across a 600-ohm impedance.

If the indicated reading is below 0 dB, remember that this is a negative quantity and must be added algebraically to get the true reading. For example: if the indicated reading is -3.5 dB, and the function switch is set to the 500-volt range, the true reading is -3.5 + 50 or +46.5 dB.

Making dB Measurements. Even if your VOM does not have a dB scale, you still can obtain dB measurements. Just make a.c. voltage measurements across a 600-ohm impedance, or 500-ohm impedance, depending upon which reference you want to use, and use the "Volts to Decibels" graph to find the dB value.

But, what if you can't measure across a 600-ohm or 500-ohm impedance in the circuit you want to measure? For instance, can you measure dB across an 8-ohm load, such as a speaker? Yes, you can. First measure the a.c. voltage across the impedance you are dealing with, and apply it to the same graph to obtain an "unadjusted" dB value. If your meter has a dB scale, you can read the meter instead of the chart to obtain this unadjusted dB value.

To save you the fuss of using a for-
The NEW leader in all solid state design presents the most complete line of high quality all silicon transistor Citizen Band 2-way radios

PACE

2 watt hand held PACE MATE — $119
6-Channel mobile PACE I — $129
12-Channel mobile PACE II — $169
12-Channel mobile with S-meter PACE II-S — $179
23-Channel complete PLUS-23 — $199
Prestige base or mobile PACE 5000 — $250
Prestige portable PACE VPH — $384

Write for literature and the name of your nearest Pace dealer.

COMMUNICATIONS CORP.
24049 FRAMPTON AVE., HARBOR CITY, CALIF. 90710
PHONE: (213) 325-8444

CIRCLE NO. 35 ON READER SERVICE PAGE

mula to find the correction factor to adjust your reading, just add the number of dB as shown in Table 2. If, for example, you measure the signal across an 8-ohm speaker voice coil, you must add 18.8 dB to the “unadjusted” dB reading (if your meter is calibrated to 0 dB = 1 mW in 600 ohms) to obtain a true reading.

When making dB measurements, be sure you are measuring the signal only—don’t allow your meter to be influenced by other voltages, such as bias and B+ voltage. Most VOM’s with dB scales have a separate test-lead jack or function-switch position which puts a capacitor in series with one of the test leads to block d.c. voltage. If your meter doesn’t have a capacitor connected in this manner, you should insert one between one test lead and the measuring point. A 0.1-µF tubular, 600-WVDC capacitor is ample for most conditions.

When measuring low-level high-impedance circuits, such as the input grid of a tube, even a high-resistance VOM can impose enough of a load on the circuit to produce “false” readings. In such cases, a VTVM should be used. Its high-input resistance is not likely to appreciably load most circuits.

Many VTVM’s have a dB scale which is used in the same way as the dB scale on a VOM. If your VTVM does not have a dB scale, use the a.c. volt scale, refer to the graphs, and forget about the formulas.

<table>
<thead>
<tr>
<th>IMPEDANCE CORRECTION FACTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 dB = 1 mW in 600 ohms</td>
</tr>
<tr>
<td>Impedance (ohms)</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>600</td>
</tr>
<tr>
<td>500</td>
</tr>
<tr>
<td>300</td>
</tr>
<tr>
<td>250</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>3.2</td>
</tr>
</tbody>
</table>

Table 2. If for some reason you cannot make dB measurements across a reference impedance, you can still use your meter. Simply add the appropriate correction factor. You can drop the fractional part of a dB and work to the nearest whole number.

COMMUNICATIONS CORP.
24049 FRAMPTON AVE., HARBOR CITY, CALIF. 90710
PHONE: (213) 325-8444

CIRCLE NO. 35 ON READER SERVICE PAGE

POPULAR ELECTRONICS
The Triac comes in a TO-5 case, and the other components are small enough to fit on a 1" x 2" circuit board which can then be placed in a standard electrical box beneath the outlet. With care, the complete circuit could be assembled in a lamp base or even in a lamp socket.

New Developments. Several new items can be reported this month:
- **Industry's first plastic-encapsulated power transistor for audio applications** has been announced by Texas Instruments, Inc. (Dallas, Tex.). Designated as Type TIP24, the new transistor is an epitaxial planar silicon device designed for Class B operation with up to 20 watts r.m.s. power. The TIP24's collector is in electrical contact with a special mounting tab, as shown in Fig. 3. This permits the unit to be mounted on a heat sink or chassis by means of a single hole, and with one sheet-metal screw.
- **Motorola Semiconductor Products (Phoenix, Ariz.) has introduced a line of four digital-type integrated circuits as part of its expanding HEP line.** To guide experimenters in the use of these new devices, Motorola has also published an interesting 100-page "Integrated Circuit Projects" manual. Selling for one dollar, the book describes a number of IC projects, including a binary computer, square-wave generator, and an electronic organ.
- **Meanwhile, back at the research labs, IBM has discovered a negative-resistance effect in metal-oxide-semiconductor (MOS) junctions which may lead to a simple, in-

Don't blame the TV set for poor color reception...

Good TV reception starts on the roof. If the signal delivered to the TV set isn't good to begin with, there's nothing any TV set can do about it. The moral: start at the top with the best. That's Color Ranger UHF/VHF/FM log periodic antennas by Blonder-Tongue.

There's a Color Ranger for any location from deep fringe to prime signal area, and they all offer flat response for top reception on all channels, a broad, flat bandpass for top color reception; exceptional front-to-back ratio to eliminate ghosting, and precise impedance match to insure maximum signal transfer to the set to prevent reflected signals in the cable.

Color Rangers have construction features found on no other antenna: double-boom construction; extra thick elements reinforced with 6" tubing; spring-loaded knife-edge contact points which maintain permanent electrical contact; strain-relief lugs for 300-ohm twinlead connections with a choice of 75-ohm coax or 300-ohm twinlead connection.

For UHF there's the 11-element log periodic U-Ranger. Slip quickly and easily on any VHF Color Ranger, makes your VHF Color Ranger an all-channel antenna... and with only a single downlead! No additional couplers to buy! If you go for FM-Stereo, get acquainted with the Stereo Rangers for unbelievably brilliant high-fidelity FM-Stereo reception. Color Ranger and Stereo Ranger antennas are just two more reasons for you to go all-channel from antenna to TV set with color-approved and certified-for-stereo Blonder-Tongue TV/FM products. Write for free catalogs #52 and #88. Blonder-Tongue Laboratories, Inc., 9 Alling Street, Newark, N.J.

![Fig. 3. Produced by Texas Instruments, Inc., this plastic encapsulated power transistor can handle up to 20 watts r.m.s. of audio frequency power.](image)
Plan and build your speaker system of tomorrow today!

The P.S.E. Way

University's PSE — Planned Speaker Expansion is a master blueprint for better stereo speaker systems. See your University Dealer today, or write for your FREE PSE Technigrams.

University Sound
A Division of CTV Lens Altec, Inc.

Name __________________________
Address _________________________
City ____________________________
State __________ Zip _____________

CIRCLE NO. 52 ON READER SERVICE PAGE

AM/FM VHF RECEIVERS
POLICE • FIRE • AIRCRAFT
AMATEUR • GENERAL COVERAGE

The new 364B is a completely self contained highly sensitive receiver offering the user continuous AM/FM coverage from 20 to 54 and 88 to 174 MC in eight bands. Features: superhet circuitry, full vision calibrated dial with vernier drive, speaker, power transformer, ready to use for 110/120 V AC.

$49.95

348A Transistorized tuneable converter for use with car, home or portable radio. Ranges: 30-50, 115-130, 150-162 MC. Bat. incl. Same but crystal controlled for 12 V car use. (345A) $29.95. Economy tuneable model (315T) same ranges $18.95.

$34.95

361C AUDIO EQUALIZER

$44.95

Variable equalizer necessary for professional quality recording or playback. Ideal for use between mixer and tape recorder or tape to tape, etc. Write for details or send $2.00 for LP demonstration record. Covers tape and disc recording techniques. Refunded with purchase.

Order direct or write for information

KUHN ELECTRONICS
20 GLENWOOD • CINCINNATI 17, OHIO

CIRCLE NO. 29 ON READER SERVICE PAGE

expensive process for manufacturing tunnel diodes. In another area, IBM has developed a device which might be used for tuning monolithic integrated circuits... a sort of "tuning fork" consisting of a cantilevered silicon chip that vibrates at its given resonant frequency.

Transitips. In the last paragraph of his letter containing this month's featured circuit, reader Scott Marovich asked for tips on determining the amount of feedback needed by an oscillator circuit. Here are a few:

Theoretically, the feedback needed in a given circuit can be determined mathematically by taking into account the Q of the tuned circuits used, transistor gain, estimated circuit losses, coupling coefficients (if inductive feedback is used), and similar factors. In general, the feedback needed approximates the transistor's output signal level divided by stage gain.

In practice, however, the actual technique used by most engineers is a combination of intuition, measurement, calculations, testing, and empirical values. In other words, it is an "educated guess" followed by experiments and readjustments.

The feedback signal level is important if optimum circuit operation is to be achieved. If too little feedback is used, the circuit will not oscillate at all. If a critical amount is employed, the circuit may be unstable, either shifting frequency or dropping in and out of oscillation. If too much feedback is used, the circuit may again be unstable or may deliver a distorted output signal containing unwanted harmonics. Finally, if the feedback is excessively high, the oscillator may "block" at a rate determined by the circuit's RC time constant. With optimum feedback, the oscillator will be fairly stable, and deliver a clean, harmonic-free signal.

Three standard oscillator circuit configurations are illustrated in Fig. 4. They are (A) tickler feedback, (B) Hartley, and (C) Colpitts, using pnp transistors in common-emitter configurations. Tuning capacitors have been omitted to simplify the explanations, except where they are essential to circuit operation. However, npn transistors can be used in any of the circuits if battery polarities are reversed. Also, modified forms of the circuits can be used in common-base and emitter-follower configurations if desired. With suitable component values, all three circuits can be used at frequencies ranging from audio through UHF, and at input power levels in the microwatt or multi-watt range.

Looking at the tickler feedback circuit in Fig 4(A), coil $L1$ serves as $Q1$'s collector load. In practice, this coil is generally...
tuned by a shunt capacitor. Coil \(L_2\), inductively coupled to \(L_1\), provides an in-phase feedback signal to \(Q_1\)'s base through capacitor \(C_1\). Base bias is furnished through \(R_1\).

The level of the feedback signal is determined primarily by the turns ratio of \(L_1\) and \(L_2\), as well as by the degree of coupling. In practice, the turns ratio used is proportional to \(Q_1\)'s gain, its base input impedance vs. collector output impedance, and circuit losses. The \(L_1\):\(L_2\) turns ratio used with average transistors varies from 10:1 to 20:1. In heavily loaded power oscillator circuits, or in circuits where low-gain transistors are used, the turns ratio can be as low as 2:1. In high-gain, low-loss, lightly loaded circuits, on the other hand, ratios as high as 50:1 or 100:1 can be employed.

The Hartley oscillator in Fig. 4(B) is generally similar to the tickler feedback circuit, except that feedback is provided by an autotransformer or tapped coil \(L_1\) rather than by a two-winding transformer. As before, the feedback signal is coupled to \(Q_1\)'s base through capacitor \(C_1\), while base bias is supplied through \(R_1\). Here, the point at which the ground (or emitter) tap is made is based on the same factors which determined the \(L_1\):\(L_2\) ratio in the previous circuit. In typical oscillators of this type, the tap can be from 5% to 10% of the total number of turns, counting from the base end of the coil. In special cases, the tap can range from 50% of the turns to 1%.

In contrast to the Hartley circuit, which features a tapped inductor, the Colpitts os-
Circulator uses a tapped capacitor to furnish feedback. In Fig. 4(C), feedback is provided by series capacitors C_a to C_b with $L/1's$ tuning determined by their combined value (always less than the smallest capacitor in the series circuit). The actual ratios used for C_a and C_b range from 1:10 to 1:20 in practical circuits, but may drop to as low as 1:1 or go as high as 1:100 in critical designs. In a typical circuit, for example, C_a may have a value of 500 pF and C_b about 10,000 pF (or 0.01 μF).

As a general rule, tickler feedback and Hartley-type oscillators are preferred where the circuit must cover a band of frequencies, as in receivers and signal generators, while the Colpitts circuit is used in fixed tuned applications, as in code practice oscillators, transmitters and signal calibrators.

That concludes our Solid State story for this month, fellows . . . until next month, may your transistors all have high beta's and low leakage!

—Lou

AMATEUR RADIO

(Continued from page 92)

(TI); Cuba (CM, CO); Dominican Republic (HI); Ecuador (HC); El Salvador (YS); Greenland (stations whose call letters begin with XP); Haiti (HH); Honduras (HR); Israel (4X); Liberia (EL); Mexico (XE); Nicaragua (YN); Panama (HP); Paraguay (2P); Peru (OA); Venezuela (VY); and all U.S. territories—without restriction.

Running patches or handling messages with countries not on this list is no way to score points for our side, but doing so with countries on the list is excellent public relations work.

NEWS AND VIEWS

Frederico “Fred” Po, DUIFP, 77 Mayon St., Quezon City, Philippines, built the “High Performance Transmitter” described in our January, 1962, column with the hope that he could work locals with it. The “locals” turned out to be all over the Philippines, Australia, India, Japan, Korea, Malaysia, Okinawa, and the 5th, 6th, and 7th U.S. call areas—not too bad for a $18 running 20 watts feeding a 40-meter dipole on 40 meters! Fred works into the United States best between 0800 and 1400 GMT . . . Ron Azark, WNPRHU, 8483 S. Hermitage St., Chicago, Ill., works the three low-frequency Novice bands with a Knight-Kit T-60 transmitter and two receivers. One receiver is a Lafayette HE-40, and the other is a “home-brew” unit which covers 10 through 160 meters. When not hamming, Ron is usually SWL’ing; he thinks that Generals are missing a good bet by not using 160 meters more for local contacts. If all goes according to plan, Ron will be a General when you read this and may be practicing what he preaches . . . Patrick Devlin, WASBPS, president of the Tulsa

POPULAR ELECTRONICS
Repeater Organization, reports that they operate an "open" 2-meter repeater station on top of a 30-story building in the center of Tulsa. Talk-in frequency is 146.94 MHz; talk-out frequency is 146.34 MHz. The primary receiver is located on a water tower eight miles from the transmitter, and secondary receivers are being installed 20 and 35 miles away. Transmitter power is 330 watts, and all functions of the repeater are controlled via leased telephone lines and a 448-MHz radio link. Reputed to be the most sophisticated amateur repeater station in the United States. WA5LVT covers northeastern Oklahoma, southeastern Kansas, and adjacent parts of Arkansas and Missouri. It has also been heard with a "full-quieting signal" in Baltimore.

Ever since he earned his General Class license at the age of 12 back in 1961, John Yurek, K3PGP, of Tofford Harrison City Rd., R.D. 26, Irwin, Pa., has been setting higher goals in amateur radio for himself—and reaching them. His latest achievement was to win first place in a Pennsylvania Junior Academy contest for an oral presentation of his success in bouncing his 432-MHz signals off the moon and back to the earth. John's next goal is to span the half-million-mile round-trip journey to the moon on 2300 MHz. On the lower frequencies, K3PGP's Heathkit SX-100 transmitter and SB-10 SSB receiver, have worked all states and many countries in all continents. An FCC certificate indicates that John likes to rag-chew, too—probably about his coin collection. Brad Good, WB6LUC, 4420 Charlemagne, Long Beach, Calif., installed the "Camper's Special" transmitter described in the August, 1965, issue on his bicycle and worked several stations, including a W7, on 3718 kHz CW. Then, Brad connected a carbon microphone in series with the battery lead to the output transistor and almost got himself killed. He was talking to WB6KCX when he had an accident which demolished the bicycle and his receiver and left him bleeding from a deep gash in the chin and with a broken finger. Although he could not hear replies, Brad sent out a call for help, to which WB6KCX and WB6GFDD responded. After this experience, Brad feels that "bicycle mobile" is entirely too dangerous to be recommended...

Dave T. Motooka, WH6GBC, 3812 Pali Ave., Honolulu, Hawaii, runs 70 watts to a home-brew transmitter feeding a Hy-Gain 14-AVQ vertical antenna on 40 meters; he receives on a venerable Hammarlund HQ-129A. Dave has worked Japan and American Samoa and has cards from 12 of the 13 states he has worked. With 2000 miles to go to the nearest one, Dave feels he may have a slight handicap in working all states, but he already has managed to work Georgia, North Carolina, and other states east of the Mississippi River.

Gary Thomas, WN1FFJ, 1973 East St., Pittsfield, Mass., keeps his home-built 25-watt transmitter and converted ARC-5 war-surplus receiver on 80 meters (the only amateur band the truck will tune, incidentally). He has QSL cards from nine of the 13 states he has worked, but he didn't mention whether any of the Canadians he has worked have come through with cards...

Phil Flick, W9PBY, 1851 Church St., Wauwatosa, Wis., works AM and CW on all bands between 80 and 10 meters, and AM on two meters. A Johnson "Ranger" transmitter handles the lower bands and a Gonset G-63 does the receiving. A Heathkit "Tweeter" and a converter ahead of the G-63 take care of 2 meters. Phil likes to collect certificates and just rag-chew—preferably on CW. Terry "Ty" Conboy, WN7DOX, 1670 Tuscaloosa St., St. Helens, Oregon, has managed to get an 80-meter inverted-V antenna, a 15-meter "long wire," and a 15-meter vertical on a 100' x 65' lot. Supplementing the antennas with an EICO 723 transmitter and a Hammarlund HQ-170A receiver, Ty had Japan and 40 states worked when he passed his General examination. Ty will sked you—preferably on Oct. 15, 1966.
NEW
“tray biens”
most versatile of all nutdriver sets

Handy “Tray Bien” sets lie flat or sit up on a bench, hang securely on a wall, pack neatly in a tool caddy.

Lightweight, durable, molded plastic trays feature fold-away stands, wall mounting holes, and a snap lock arrangement that holds tools firmly, yet permits easy removal.

Professional quality Xcelite nutdrivers have color coded, shockproof, breakproof, plastic (UL) handles; precision fit, case-hardened sockets.

Holds tools securely

No. 127TB “Tray Bien” set — 7 solid shaft nutdrivers (⅜” thru ⅝” hex openings)
No. 137TB “Tray Bien” set — 5 solid shaft nutdrivers (⅜” thru ⅝” hex openings) and 2 hollow shaft nutdrivers (⅝” and ¾” hex openings)
No. 147TB “Tray Bien” set — 7 hollow shaft nutdrivers (¼” thru ⅝” hex openings)

XCELITE INC. • 20 BANK ST., ORCHARD PARK, N. Y. 14127
Send Bulletin N666 on “Tray Bien” Nutdriver Sets.

CIRCLE NO. 54 ON READER SERVICE PAGE

ON THE CITIZENS BAND
(Continued from page 93)

a

authorities to help when and where needed with communications, first aid, and other types of assistance. There’s an even better chance that they would do a story involving an emergency where CB radio lent a helping hand, regardless of whether the assist involved a lone CB’er in his car, or an entire network involving the city, county, or state.

Follow these guidelines the next time your group has an item you feel would be of interest to area and national readers and viewers:

(1) Carefully, with necessary detail, type the story on one side of as many pages as needed, double-spaced. Be factual, but not wordy. Be sure to identify the source of the material, the writer, and where he may be contacted for further information. (If the story originates from a club that publishes its own newspaper, the same printing process can be used for the story.) Be sure to identify the item as a “Press Release” or “News Release.”

(2) Send copies of the story to all radio stations within reception range of your area. Send copies, with a good, clear glossy

Sunday—if you need Oregon or a Rag Chewer’s Club certificate.

Let’s see your “News and Views” in next month’s column. Pictures and club bulletins are welcome. Send them to: Herb S. Brier, W9EGQ, Amateur Radio Editor, POPULAR ELECTRONICS, P.O. Box 678, Gary, Ind. 46401.

73, Herb, W9EGQ

“Us CB operators would rather fight than switch channels.”
The latest in CB gear was displayed by local dealers during the Rock River Valley CB Club's second annual jamboree in the Rockford, Ill., Armory.

photograph pertaining to the story, if possible, to all newspapers in your city or town; an 8" x 10" print is usually preferred, but a 4" x 5" size is acceptable in some instances. And send copies to all TV stations covering the vicinity. Television stations can also use polaroid prints (in addition to 8" x 10" photos) by shooting them on "live" TV cameras. Most TV stations are also equipped with 35-mm. projection equipment to show black and white or color transparencies.

(3) If the story is of the utmost urgency, (in the case of an emergency assist), telephone the local news media as soon as possible. They will take your story by landline and then rewrite prior to air or press time.

(4) Finally, take the same story in its original form, or in the form of a reprint from the newspaper, plus photo if possible, and forward it to Matt P. Spiaello, CB Editor, Popular Electronics, One Park Avenue, New York, N. Y. 10016. Newspapers and TV studios will usually cooperate by supplying you with a print and permission to reprint. We'll spread the same story to our half-million readers to help promote the CBI (Citizens Band Image) to those who should know that "there are two sides to every story."

Successful Jamboree. The Rock River Valley CB Club, of Rockford, Ill., advises that attendance at its second annual hoopla last summer was nearly double that in 1965. An estimated 9000 to 10,000 passed through Rockford Armory doors during the one-day event. The jam featured a long list of entertainment, nearly a hundred prizes, and excellent displays by local and area dealers. Club membership is currently 220.

1966 OTCB CLUB ROSTER

The following are recently organized CB clubs or groups reporting to "On the Citizens Band" for the first time:

Lake Charles, Louisiana—Pelican CB Club. Attached to REACT, this club assists in all community emergencies. Membership: 18. Officers: Alvin O. Chambers, KMR8245, president; David Sweet, KMR8814, vice president; Mrs. Botte Chambers, secretary; J. E. Clark, KMR1952, treasurer; Edmond Vital, KKR3902, secretary/treasurer; Essie May Vital, business manager; and Wilfred Mathew, KKR3877, assistant business manager.

Bronx, New York—North East Bronx REACT. Club monitors REACT official calling channel 9, plus channel 21. Six mobiles have been appointed to various parts of the city to serve the Bronx, Manhattan, and Westchester. Current membership: 12. Club coordinators: Tom Gregor, KMD4148, and Dave Nager, KOD0761.

Port Townsend, Washington—Jefferson County CB Club. Also registered with REACT, this group monitors channel 9 on a 24-hour basis, and keeps in contact with police and sheriff departments, both monitoring CB radio. They are also associated with CD activities and search and rescue. Membership: 42. Current officers: Coot Raine, KLKD619, president; Willie Stratton, KLD2246, vice president; Maxine Doubek, KLD2589, secretary; and John Doubek, KLD2589, treasurer.

I'll CB'ing you!

—Matt, KHC8060

BE ON THE ALERT! with SONAR FM MONITOR RECEIVER

Monitor the calls and know the facts as it happens.

NOW—8 Super Deluxe FM communication receivers to meet your particular needs for home, office or car. Powerful and dependable. Engineered for rugged service under all operating conditions. Featuring High frequency oscillator, temperature compensated for stability, RF amplifier for maximum sensitivity, illuminated dial, safety rated components and ALL Aluminum construction plus many other outstanding features. Operates on 110 VAC. Includes power cord, mounting bracket, etc.

SONAR RADIO CORPORATION, 73 Worthing Ave., Bklyn. 7, N.Y. Please send complete information FRIG/102 Monitor Receiver.

CIRCLE NO. 46 ON READER SERVICE PAGE

October, 1966
ways—thought to be a first for this area. According to this item, WNEW-FM has five girl broadcasters who are on the air, live, 14 hours daily, seven days a week.

The North American Short-Wave Association has decided to restrict club activities to the short-wave broadcasting band. Here-tofore, the NASWA had considered reporting on BCB, utility stations, TV & FM, plus short-wave DX. Don Jensen and Ron Luyster will share the duties of collecting DX information. You can get more details on the NASWA by writing to William Eddings, 1503 Fifth Ave., Apartment A2, Altoona, Pa. 16602.

A new pirate station has been noted by West Coast listeners. Operating on about 5675 kHz, or “55 meters” as stated by the station, it has been heard around 0500-0530 with American rock-and-roll records. The identification is The Voice of the Purple Pumpkin, and the station urges its listeners to “protect your country from the Communist conspiracy, support the Vietnam Day Committee and the John Birch Society.” As is generally the case with American bootleg stations, its broadcasters will probably continue to have their fun and believe that they cannot be located. Then the FCC will knock at the door!

CURRENT STATION REPORTS

The following is a resume of current reports. At time of compilation all reports are as accurate as possible, but stations may change frequency and/or schedule with little or no advance notice. All times shown are Greenwich Mean Time (GMT) and the 24-hour system is used. Reports should be sent to SHORT-WAVE LISTENING, P.O. Box 333, Cherry Hill, N.J. 08034, in time to reach your Short-Wave Editor by the fifth of each month; be sure to include your WPE Monitor Registration and the make and model number of your receiver. We regret that we are unable to use all of the reports received each month, due to space limitations, but we are grateful to all contributors.

Andorra—R. des Vallees, La Vieja, is definitely operating; it was noted erratically on 6305 kHz. A recent QSL gave no schedule or other program information.

Ascension Island—R. Sweden reports that the BBC relay installation here is expected to be in operation and that monitors should check 15,350 kHz after 1800. An item received at deadline time indicates that the station may already be on the air; it was noted at 1645 in Somalia to W. Africa although no positive ID was given.

Austria—Osterreichischer Rundfunk, Vienna, was logged on 17,875 kHz at 0558-0630 with German music and ID’s in German, English, and French to the Middle East and India.

POPULAR ELECTRONICS
Buchenwald—The BBC relay, Francistown, is now scheduled weekdays at 0400-0800 and 0845-2045 and on Sundays at 0400-2045 on 602 and 926 kHz, with 50 kW power: daily at 0400-0515 and 1700-2045 on 4845 kHz; weekdays at 0530-0800 and 0945-1645 and on Sundays at 0530-1645 on 7295 kHz. A station was noted on 7295 kHz at 0505 with an ID for the BBC World Service but the signal is far too strong for listening in non-target areas.

Brazil—A new station, tentatively identified as R. Tripe, Trinidad, has been found on 4958 kHz until 0200/00; there is a world news bulletin in Spanish at 0045. R. Union, unlisted and possibly new, has been heard on 6305 kHz at 0130-0200 with Latin American programs, no advertising.

Bolivia—A new station, tentatively identified as R. Tripe, Trinidad, has been found on 4958 kHz until 0200/00; there is a world news bulletin in Spanish at 0045. R. Union, unlisted and possibly new, has been heard on 6305 kHz at 0130-0200 with Latin American programs, no advertising.

Brazil—Seldom-heard R. Nacional, Brasilia, was found on 15,445 kHz at 2321 with native music. R. Rio, also listed for this channel, apparently is inactive. R. Jornal do Comercio, Recife, has moved up from 11,825 to 11,838 kHz, dual to 9505 kHz, and was heard around 2128-2135. Also look for R. Sao Carlos on 2420 kHz evenings (local time) with music, including some Eng. selections.

Brunei—R. Brunei, 4865 kHz, is noted at 1023-1045 with Eng. pop tunes and anmts in an Oriental language, possibly Chinese. Time pips and anmts are given at 1045.

Congo—What is possibly R. Bakwanga is being heard around 0430 with native African music and a soft African dialect. Listed for 7295 kHz, it was logged on 7298 kHz.

Dominican Republic—Though listed as inactive, HIBE, R. Mut, Santo Domingo, is being noted from 0115 to 0400 in Spanish with Latin American vocals and some Eng. records. S/off is reported to be 0500. Tune for it on 4940 kHz.

Ecuador—Station HCJB, Quito, has been found on 15,325 kHz at 2000 s/off in German and at 0357 s/off on 6040 kHz. Station HCGB, Esmeraldas, was noted from 0337 with Latin American vocals and some "teen" music to 0400/00 on 2495 kHz; different sources list it as "Estacion de la Alegria" and "Radio Nacional Espejo." Station HCOBS, R. Ondas Azules, Cuenca, listed for 5025 kHz, is currently on 5023 kHz, which represents a move from the former 5105-kHz spot; the best time to hear it is 0230 and later.

Egypt—A new frequency for Cairo is 8580 kHz; the station can be heard in Eng. at 0130, but there are others on the channel, so you may have to dig for it.

Ethiopia—Station ETLP, Addis Ababa, has been caught on 15,400 kHz at 1625 s/off, following a program in native language but with closing anmts in English.

Ghana—This is the latest program schedule from Accra: to N.A. and the Caribbean on 6110 kHz at 0330-0430 and 11,800 kHz, dual to 9760 kHz at 1930-2130; to Ethiopia, Sudan, Somalia, India, Pakistan, China, Japan and the Far East on 6105 kHz at 0230-0530, 9545 kHz at 0430-0530, 15,280 kHz at 1830-1900, and 17,910 kHz at 1330-1430; to S. Africa, Central Africa, and Australia on 9760 kHz at 0430-0530, 0600-0630, and 1430-1530; to W. Africa on 3240 kHz at 0530-0730 and 2000-2230, and on 6130 kHz at 1400-1945; to Europe on 9545 kHz.
Silence
IS
Golden

(In Mobile Installations)
Only the Squires-Sanders Noise Silencer eliminates noise caused by ignition, power lines, etc. Only two transceivers have this exclusive feature—the Squires-Sanders "23'er" with full 23-channel capability (all crystals supplied) at $235 and the "S5S" 5-channel model at $185. Other features include an ultra-sensitive receiver and a powerful, long-range transmitter (special high efficiency RF output amplifier clipped and filtered audio, 100% modulation). 12 VDC power supply. Squires-Sanders Inc., Millington, N. J. 07946.

Squires-Sanders

SQUares - Sanders

CIRCLE NO. 47 ON READER SERVICE PAGE

WE DON'T CLAIM OUR ELECTRONIC IGNITION SYSTEM IS BEST...

OUR CUSTOMERS DO!
WRITE TODAY FOR FREE LITERATURE
JUDSON RESEARCH AND MANUFACTURING CORP., CONSHOHOCKEN, PA. U.S.A.

CIRCLE NO. 27 ON READER SERVICE PAGE

at 0630-0730 and 2030-2230; to E. Africa on 6070 kHz at 0230-0330, on 15,285 kHz at 1630-1730, and on 21,730 kHz at 1430-1530.

Greece—Here's a list of active local Greek stations which differs from the latest WR7H listing: Larissa, 5954 kHz; Tripoli, 6003 kHz; Mytilini, 6240 kHz; Karpesium, 6500 kHz; Chios, 6850 kHz; Sidirokastro, 7000 kHz; Serrai, 7032 kHz; Janina, 7099 kHz; and Kozani, 7948 kHz.

Guam—DX’ers have a good opportunity to verify this country via KUK25, an RCA utility station. On 15,475 kHz, it operates Saturdays, Sundays, and some weekdays from 1800 to as late as 1400, relaying telephone calls from servicemen. Listen for its beeper tone, sent out at 3-second intervals. This station verifies willingly, and no return post-age is required. Reports go to 86 Broad Street, New York, N. Y., c/o RCA Communications, Inc.; mark them to the attention of C. N. Macpherson, Plant Opns., Eng.

Honduras—Station HRN, La Voz de Honduras, Tegucigalpa, is still on 5875 kHz and readable after 0000 in Spanish. Station HKHR, La Voz de Occidente, Santa Rosa de Copan, has been tuned at 0030 with commercials in Spanish and Latin American pop tunes on 5980 kHz.

Hungary—R. Budapest suffers intense BBC QRM on 9766 kHz at 0430 when news is presented in English.

India—All Indian Radio, Delhi, now has four General Overseas Service Eng. xmsns. Frequencies listed on the new schedule were given in meter bands only: at 2245-0115 to E., S.E., N.E. Asia, including Japan on 25, 31, 41, 49, and 75 meters; at 1000-1100 to China, Korea, Japan, Australia, and New Zealand on 16, 19, and 25 meters; at 1350-1500 to S. E. Asia on 19 and 25 meters; and at 1745-2230 to the United Kingdom and W. Europe (and to E. Africa to 1945. N. & W. Africa from 1945 to 2045, and Australia and New Zealand from 2045) on the 25-, 31-, and 41-meter bands.

Netherlands—The tentative schedule for R. Nederland for the period from November 6, 1966, to March 5, 1967, to N. A. is as follows: 0130-0400 on 8590 kHz (via Bonaire); 1600-1830 on 11,730 and 15,425 kHz; 1845-2030 on 15,115 kHz; 1930-2100 on 11,730 kHz; 2000-2200 on 6085 and 9590 kHz; and 2030-2100 on 9715 kHz.

Religious services for Dutch ships on the North Sea are broadcast from the Dutch hospital/church ship "De Hoop" on 2316 kHz, 500 watts, on Sundays at 0930-1030 and 1745-1830, Wednesdays at 1800-1900. Reports go to Damrak 95, Amsterdam.

Pakistan—Karaechi was noted on 17,741 kHz, but weak, at 0355 in Urdu or a similar language: the ID, which was given in the same language at 0400, began a rapid fade. The dual outlet on 11,885 kHz was not readable.

Forty countries logged, 30 verified, is the record of Stephen Toder, WPE2NYR, of Kingston, N.Y. Steve's receiver is a Knight-Kit "Star Roamer."
SHORT-WAVE CONTRIBUTORS

Roger Canire (WPFW), Manchester, N. H., William Graham (WPFW), Binghamton, N. Y., Kenneth Coyne (WPFW), Long Beach, N. Y., C. X. Combee (WPFW), Trenton, N. J., Bill Hafner (WPFW), West Islip, N. Y., Glenn Hollenbeck (WPFW), Wildwood Crest, N. J., Don Jeweler (WPFW), Takoma Park, Md., Dan Henderson (WPFW), Laurel, Md., David Jones (WPFW), Albany, Ga., Mike Prince (WPFW), Absecon, N. C., Danny Jamison (WPFW), Richmond, Va., Walter Fair, Jr. (WPFW), Houston, Texas, Eric Sands (WPFW), New Orleans, La., Mac Wood (WPFW), Piedmont, Calif., Trev Chess (WPFW), Fresno, Calif., Robert Eddy (WPFW), Newport, Ohio, Robert French (WPFW), Bellaire, Ohio, William Carothers (WPFW), Columbus, Ohio, Herbert Mucke, Jr. (WPFW), Columbus, Ohio, Mark Stein (WPFW), Detroit, Mich., A. K. Nihal (WPFW), Vincennes, Ind., John Beaver, Jr. (WPFW), Pueblo, Colo., John Orwen (WPFW), Beavercreek, Ohio, Dave Carbon (WPFW), St. Louis, Mo., Jack Perob (WPFW), Milwaukee, Wis., Dave Alpert, Morton Grove, Ill., Roger Dooley, Buffalo, N. Y., Bob Hill, Middletown, D. C., Roy Landmarks, Jr., Cranbrook, B. C., Canada, Bernie Lang, Rochester, N. Y., Edward Ramus, Queens Village, N. Y., Robert Smith, Jr., U. S. Embassy, Saigon, Vietnam, George Stradtman, Jr., Bloomfield, Pa., DXing Worldwide, New York, N. Y., Sweden Calling DXers, Stockholm, Sweden.

Peru—Station OAX-61, R. Universidad de Arequipa, is now on 6245 kHz and can be noted at times with lengthy classical music; peak listening time is around 0130 and later.

Philippines—The Far East Broadcasting Corp., Manila, has been monitored on a new frequency of 11.890 kHz, dual to DZRH 11.855 kHz, in Russian to the Soviet Union with religious talks and music.

Portuguese Guinea—Bissau is thought to be the station noted leaving the air at 2350 with a Portuguese speaker after "A Portuguesa"; if so, this is a move back to 5042.5 kHz from the previously used 5017 kHz.

South Africa—South Africa is operating on a new and has a daily frequency, 5890 kHz, as logged at 0610/2, with an Eng. newscast being given just before that time. A new DX program has been introduced for Europe on Fridays in Eng. at 2345 on 9925 and 7270 kHz.

Sweden—R. Gundermann was noted twice with a move in frequency to 4950 kHz, and with s/on at 0400.

Switzerland—R. Switzerland, Berne, has Spanish to Central America on 5695 kHz from 0300 s/on, and Arabic to the Middle East on 17830 kHz, from 1645 to 1715 with news, talks, and music.

USSR—R. Moscow was observed using 11.570 kHz for the Home Service in Russian at 2238, but the station switched to the N. A. Service at 2200. A station announcing as R. Kiev has been noted on 11.850 kHz on Fridays at 0455 with a mailbag program.

Vatican City—Vatican Radio was noted on 15.285 kHz from 2300 in Portuguese and on 15.135 kHz to 1752 with Eng. to Africa.

Vietnam (South)—We have received the following schedule for R. Vietnam through the courtesy of the U. S. Embassy in that country: Channel A 9620, 6165, and 4877 kHz, is beamed north into Vietnam; (this schedule is printed in Vietnamese, and our best translation shows that Channel A operates 24 hours daily—Ed.). Channel B 7245 kHz is beamed north-south; operates at 2200-0200, 0330-0700, and 0900-1600 with Eng. dictation-speed news daily except at 1530-1600. Channel C 9755 kHz, is beamed to Cambodia, at 2158-0000, 0400-0500, and 1015-1300 (Eng. lessons at 2230-2300, 2330-

Thinking of college and a space age career?

Learn how you can prepare for a dynamic career as an electrical or mechanical engineering technician or engineer in such exciting, growing fields as avionics, missiles, reliability control, fluid mechanics, data processing, metallurgy, microelectronics, and advanced aerospace research.

MSOE offers resident study programs leading to these degrees in engineering technology and engineering:
2 years — Associate in Applied Science
4 years — Bachelor of Science

Also get facts about scholarships and financial aids, job placement and other student services, plus photographs of MSOE technical laboratories and student activities. Courses approved for veteran training. For your copy, just mail the coupon — no obligation.

MSOE
Milwaukee, Wisconsin 53201

Milwaukee School of Engineering
Dept. PE-1066, 1025 N. Milwaukee Street
Milwaukee, Wisconsin 53201

Please send the "Your Career" booklet.
I'm interested in
☐ Electrical fields ☐ Mechanical fields

Name: ___________________________ Age: __________
Address: __________________________ State: ___________ ZIP: __________
City: ____________________________ State: ___________ ZIP: __________

CIRCLE NO. 32 ON READER SERVICE PAGE

October, 1966
DX PROVINCES AWARDS PRESENTED

To be eligible for one of the DX Provinces Awards designed for WPE Monitor Certificate holders, you must have verified stations (any frequency or service) in 6, 8, 10, or 12 Canadian provinces. (For these awards, the Yukon Territory and the Northwest Territories are considered as provinces.) The following DXers have qualified for and received awards in the categories indicated.

TWELVE PROVINCES VERIFIED
Frank Diehl (WPE2GUJ), Buffalo, N. Y.

TEN PROVINCES VERIFIED
Ziba Knapp (WPE6EOG), South San Gabriel, Calif.
Conrad Durocher (WPE1ASP), Framingham, Mass.
Thomas Schijevsky (WPE9HJO), Chicago, Ill.
William Chapman (WPE1DRZ), Middletown, Conn.
John Reasoner (WPE0CUL), Bowling Green, Ky.
James Eudaily, Jr. (WPE4GLQ), Millers Creek, N. C.
James Neff (WPE2RS), Springfield, N. Y.
Ron Kusmack (VE4PE4U), Winnipeg, Manitoba, Canada.
Jack Winther (WPE6BJD), Moraga, Calif.
Edward Fellows (WPE7BLN), Seattle, Wash.
Jack Lane (WPE9EVU), Lafayette, Ind.

EIGHT PROVINCES VERIFIED
Pete Sils (WPE0EXA), Cedar Falls, Iowa.
William Gardiner (WPE2DLX), Perry, Fla.
Jan Stetson (WPE2NSQ), Albion, N. Y.
John Schnaidt (WPE6CDU), Shafter, Calif.
Paul Kilroy (WPE3FOB), Washington, D. C.
Jerry McMahan (WPE0DSS), Cedar Rapids, Iowa.
David Kaplan (WPE1FU), Hartford, Conn.
Charles Dobkins, Jr. (WPE8BEV), Detroit, Mich.
Peter Bartlett (WPE1FSX), Marshfield Hills, Mass.
David Johnson (WPE0ELO), Denver, Colo.
Robert Crowell (WPE4HKO), Fort Walton Beach, Fla.
Le Roy Ackerman (WPE7BXS), Phoenix, Ariz.
Kenneth Coyne (WPE2LSI), Long Beach, N. Y.
Arthur Peterson (WPE6FMV), San Pablo, Calif.
Tim Kerfoot (V3PE0TH), Toronto, Ont., Canada.
William Rodgers (WPE0EX), Florissant, Mo.
George Hemingway (WPE1DYC), Taftville, Conn.
Edward Smith (WPE7AVQ), Covarllis, Ore.
James McFadden (WPE2OKV), Pleasantville, N. J.
Jack Forbing (WPE3AMH), Fort Wayne, Ind.
Roger Camire, Jr. (WPE1GEK), Manchester, N. H.
Stephen Schmidt (WPE2IXG), Webster, N. Y.
Charles Matterer (WPE6DGA), San Leandro, Calif.
Michael Fletcher (WPE4DOP), Marietta, Ga.
Ernest Wessolowski (WPE0AHV), Omaha, Neb.

SIX PROVINCES VERIFIED
Thomas Blossom (WPE9FHQ), Fort Wayne, Ind.
Frank Haipin (WPE2GRC), Queens Village, N. Y.
Daryl Salmon (WPE7E1BC), Burnaby, British Co-
lumbia, Canada.
Pat Laird (VE5PE5F), Swift Current, Saskatchewan, Canada.
Dwain Davis (WPE1GJO), Cranston, R. I.
James Mason (VE3PE2FB), Kingston, Ont., Canada.
Mike Doherty (VE3PE2FJ), Willowdale, Ont., Canada.

Tom Layde (WPE9HWS), Milwaukee, Wis.
Walter Pratt (WPE1FHE), Shrewsbury, Mass.
James Smedley (WPE3BSB), Sykesville, Md.
Richard Lauhead (WPE6BDX), Elwood, Nebr.
Lothar Koenig (WPE2NTB), Brooklyn, N. Y.
Paul Potosky (WPE8ASF), Pickford, Mich.
Victor Lipinski (WPE4HTV), Alexandria, Va.
John Martorana (WPE3FPS), Bridgeville, Pa.
Ray Salvo (WPE6DEM), Hayward, Calif.
Clarence Hagerman (WPE2NRU), Delaware, N. J.
John Creamer (WPE20CT), Syracuse, N. Y.
Jack Page, Jr. (WPE5DXH), Pontotoc, Miss.
Bruce Reynolds (WPE0EUK), Warrensburg, Mo.
Allan Jones (VE3PE2AM), Islington, Ont., Canada.
Lawrence Bennett (WPE2NBU), Forest Hills, N. Y.
Tom Kelly (WPE2MRB), Norristown, Pa.
Neil Hauser (WPE2LQQ), Lake Success, N. Y.
H. Zimberg (VE4PEQ), Winnipeg, Man., Canada.
Roger Burket (WPE3EKS), Altoona, Pa.
Leo Baco (WPE5CLR), Bernard, Texas.
David Miller (WPE2MNS), Medina, N. Y.
Aldridge Salisbury (WPE4HLD), Falls Church, Va.
Bob Du Buisson (WPE1GGL), Longmeadow, Mass.
Ronald Whiffen (WPE2NFX), Richmond Hill, N. Y.
Michael Plihick (WPE2JDF), Woodside, N. Y.
Irwin Tatelman (WPE9HIF), Chicago, Ill.
John Draut (WPE2JVI), Bronx, N. Y.
Michael Hayden (WPE7QOL), Washington, Wash.
Stuart Miller (WPE1GMI), Marblehead, Mass.
Alvan Fisher (WPE1GHE), Newton, Mass.
Elliott Straus (WPE2NNO), West Orange, N. J.
Edward Bassett (WPE9EHP), Toledo, Ill.
Harold Allen (WPE2PE1JM), Arvida, Que., Canada.
Robert Chrysler (VE6PE6K), Edmonton, Alta., Canada.
James Myers (V3PE2EJ), Val Caron, Ont., Canada.
John Zaharek (WPE1GUM), Torrington, Conn.
Robin Martin (WPE2EHG), Glen Head, N. Y.
Don Hollingsworth (VE6PE7B), Edmonton, Alta., Canada.
Lyt. Lunsford (WPE3GKG), Baltimore, Md.
Ralph Vatalaro, Jr. (WPE1GQP), Somerville, Mass.
Mike Jeffrey (WPE7CLK), Wenatchee, Wash.
Salvatore Trapasso (WPE1EQI), South Peabody, Mass.
Paul Slater (WPE1FRJ), Medford, Mass.
Ron Hopkins (VE7E7PT), Trail, B. C., Canada.
Drew Kalman (WPE8BLL), Dearborn, Mich.
William Via (WPE3FH), Baltimore, Md.
Robert Wilson (VE3PE2GA), Ottawa, Ont., Canada.
Donald Lee (WPE3EVB), Lebanon, Pa.
Richard Cooper (WPE1GHI), Wayland, Mass.
Robert Braunwart III (WPE7CJO), Moses Lake, Wash.
Viktor Decyk (WPE1FCD), Colrain, Mass.
Park Barton (WPE4INA), Troy, Ala.
Robert Johnston (VE3PE1X), Oshawa, Ont., Canada.
ELECTRONICS MARKET PLACE

COMMERCIAL RATE: For firms or individuals offering commercial products or services. $1.00 per word (including name and address). Minimum order $10.00. Payment must accompany copy except when ads are placed by accredited advertising agencies. Frequency discount: 5% for 6 months; 10% for 12 months paid in advance.

READER RATE: For individuals with a personal item to buy or sell, 60¢ per word (including name and address). No Minimum! Payment must accompany copy.

FOR SALE

FREE! Giant bargain catalog on transistors, diodes, rectifiers, SCR's, zeners, parts. Poly Paks, P.O. Box 942, Lynnfield, Mass.

MESHNA'S TRANSISTORIZED CONVERTER KIT $5.00. Two models converts car radio to receive 30-50 mc or 100-200 mc (one mc tuning). Meshna, North Reading, Mass. 01864.

"SPECIAL WPE-SWL-CB-QSL cards, 3 colors, $2.50 per 100—Free Samples, Garth, Jutland, New Jersey.

WEBBER LAB'S Police—Fire Transistorized Converter kit 20-50mc, & 100-200mc. (1 mc. spread) $5.00 each. 26-200mc. on broadcast band using any type radio, crystal controlled $23.00 wired pp. tunable-crystal controlled $11.00 kit. 72 Cottage Street, Lynn, Mass.

JAPAN & Hong Kong Electronics Directory, Products, components, supplies. 50 firms—just $1.00. Ippano Kaisha Ltd., Box 6626, Spokane, Washington 99207.

TRANSTOR-Miniature Electronic Parts. Send for free Catalog. Electronic Control Design Company, P. O. Box 1432K, Plainfield, N.J.

INVESTIGATORS, FREE BROCHURE, LATEST SUBMINIATURE ELECTRONIC SURVEILLANCE EQUIPMENT, ACE ELECTRONICS, 11500-LNW 7TH AVE., MIAMI, FLA. 33168.

TELEPHONE VOICE SWITCH: (LS-500). ACTUATES AUTOMATICALLY AND UNATTENDED ANY TAPE OR WIRE RECORDER. PICTORIAL INSTALLATION INSTRUCTIONS INCLUDED, $23.75. POST PAID USA, WJS ELECTRONICS, 737 NORTH SEWARD, HOLLYWOOD, CALIF. 90038.

INVESTIGATORS: KEEP IN STEP WITH ADVANCEMENTS IN THE ART OF ELECTRONICS FOR THE PROFESSIONAL. SEND $1.00 FOR EQUIPMENT BROCHURE. WJS ELECTRONICS, 737 NORTH SEWARD, HOLLYWOOD, CALIF. 90038.

GENERAL INFORMATION: First word in all ads set in bold caps at no extra charge. Additional words may be set in bold caps at 10¢ extra per word. All copy subject to publisher's approval. Closing Date: 1st of the 2nd preceding month (for example, March issue closes January 1st). Send order and remittance to: Hal Cymes, POPULAR ELECTRONICS, One Park Avenue, New York, New York 10016.

BUG DETECTOR: WILL DETECT AND LOCATE SURREPTITIOUS TRANSMITTING DEVICES IN CONFERENCE ROOMS, HOME AND OFFICES, ETC. WRITE FOR DETAILS. WJS ELECTRONICS, 737 NORTH SEWARD, HOLLYWOOD, CALIF. 90038.

DIAGRAMS—SENT AIRMAIL—TELEVISION $3.00. Radio 1919-1965 $2.00, GIVE MODEL. DIAGRAMS, BOX 55, WILLIAMSPORT, PA. 17704.

ELECTRONIC "CRACKAJKAYS," relays, transistors, photocells, etc. Guaranteed prizes. $1.00 ppd. DART ELECTRONICS, Box 214, Jericho, N.Y.

R.F. CONVERTERS. World's largest selection. Also CCTV cameras, transmitters, etc. Lowest factory prices. Catalog $1g. Vanguard 196-23 Jamaica Ave., Hollis, N.Y. 11423.

INVESTIGATORS—DETECTIVES—INDUSTRIAL SECURITY OFFICERS: New 1966 line of Electronic Surveillance Devices. Incorporating most advanced miniature design. Greater range; lower battery drain; unique sophisticated circuitry; extremely durable. HIGH QUALITY PROFESSIONAL EQUIPMENT AT ROCK BOTTOM PRICES. Foolproof wireless units are extremely SIMPLE TO USE! YOU DO NOT have to be an engineer to get PROFESSIONAL results with THIS equipment. TROL 1966 models ready NOW! Take advantage of Special Introductory Offer. Don't delay! For FREE details write TROL ELECTRONICS, 31 West 8th Street, New York, N.Y.

TRANSISTORIZED Products Importers catalog. $1.00. Intercontinental, CPO 1717, Tokyo, Japan.

RADIO — T.V. Tubes—33¢ each. Send for free catalog. Cornell, 4213 University, San Diego, Calif. 92105.

ORIENTAL Electronics Directory. 200 Japanese—Hong Kong Manufacturing Exporters. All products. $2, Dee, Box 211, Beverly Hills, Calif. 90213.

CIRCUIT Boards, Parts for “Poptronics” projects. Free catalog. DEMCO, Box 16297, San Antonio, Texas 78216.

GIANT TESLA-FORTY-INCH SPARKS! Complete plans $5.00. Details, color photo, 50¢. Huntington Electronics, Inc., Dept. A, Box 9 Huntington Station, Shelton, Conn. 06484.

SOLID STATE CONVERTERS. 50-54 mc input, 14-18 mc output. Crystal controlled, 2.5 db noise figure. Wired and tested, $25 ppd. SYNTETLEX, 39 Lucille, Dumont, N.J. 07628.

FELLOW EXPERIMENTERS! Am retiring—have 50 year accumulation, give me a hand. Send stamped envelope for list. ELCO, Box 35, Donora, Pa. 15033.

SEE YOURSELF ON TV! Closed-circuit TV CAMERA KITS for experimenters, industry, schools. Wide selection of tube and transistor models. $18.95 up. EASY-TO-FOLLOW PLANS included FREE with each kit or available separately ($3 to $5)—refundable with later order. CHECK OUR UNBELIEVABLE PRICES. Informative catalog 10¢. ATV RESEARCH, Box 396P, So. Sioux City, Neb. 68776.
CLASSIFIED ADVERTISING ORDER FORM

Please refer to heading on first page of this section for complete data concerning terms, frequency discounts, closing dates, etc.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |
|----|----|----|----|----|----|----|----|----|-----|
| 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |

Words

@ $1.00 (Commercial Rate)

Insert time(s)

Total Enclosed

NAME

ADDRESS

CITY ZONE STATE

Signature

WORD COUNT: Include name and address. Name of city (Des Moines) or of state (New York) counts as one word each. Zone or Zip Code numbers not counted. Publisher reserves right to omit Zip Code if space does not permit. Count each abbreviation, initial, single figure or group of figures or letters as a word. Symbols such as $5.00, CO, PO, AC, etc., count as one word. Hyphenated words count as two words.
SURPRISE electronics equipment $5.00. $10.00 package. Tang. Box 162, Framingham Center, Mass. 01701.

DIAGRAMS, service information, Radio $1.00, Television $2.00. TC001; 1760 Main St. Boston 16, Massachusetts.

TELEPHONE RECORDER-ACTUATOR (TWL-007) SOLID STATE MODULE AUTOMATICALLY TURNS TAPE RECORDER OR AMPLIFIER ON WHEN TELEPHONE IN USE. CONNECTED ANYWHERE ON LINE. SIMPLE INSTALLATION INSTRUCTIONS INCLUDED. PREPAID $18.65. TWILIGHT ELECTRONICS, BOX 11595, ST. LOUIS, MO. 63105.

10 DISTANCE Crystal set plans—25¢; 20 different—50¢. Includes Transistor experiments, catalog. Laboratories, 12041-L Sheridan, Garden Grove, Calif. 92640.

CHANGE B/W TV to novel color, $2.98. State size screen. Delecto Electronics, 4725 45th NE, Seattle, Wash. 98105.

COMPUTER MODULES FOR HOME EXPERIMENTERS, M-C MODELS, 43-17 54th STREET, WOODSIDE, NEW YORK 11377.

NEW supersensitive transistor instrument detects buried gold, silver, coins. Kits, assembled models. $19.95 up. Free catalog. Relco-A33, Box 10563, Houston 18, Texas.

CONVERT any television to sensitive, big-screen oscilloscope. Only minor changes required. No electronic experience necessary. Illustrated plans, $2.00. Relco-A33, Box 10563, Houston 18, Texas.

INVESTIGATORS, ELECTRO*IC SURVEILLANCE DEVICES, SEND $1.00 FOR BROCHURE. BUGTRONICS, POST OFFICE BOX 2056, MONTCLAIR, CALIFORNIA 91763.

DIAGRAMS with voltages, layouts, troubleshooting information. RADIO $1.00. TELEVISION, etc. $2.50. Add 50¢ for AIR MAIL. Send make, model; Healy Enterprises, 2436 Delafield, Houston, Texas 77023.

ELECTRONIC SURVEILLANCE DEVICES, detectives, hobbyists. SNOOPER FM wireless microphone $44.50. TAIL- ABEEP, bumper beeper $99.50. TELELAG phone transmitter $49.50. Other guaranteed high quality items in our catalog. Fudalla Associates, 1134 Avenue Road, Toronto 12, Ontario, Canada.

SHORTWAVE LISTENING

SWL GUIDE, English programs listed by the hour. REVISED EDITION, $2.00. SWL Guide, 218 Gifford, Syracuse 2, N. Y.

HAM EQUIPMENT

CBers, HAMS, SWL’s! 3-30 MC Preselector kit. $18.98. CB booster Kits, Novice transceiver kit. $29.95. Free catalog. HOLSTROM, Box 8640-E, Sacramento, Calif.

HIGH FIDELITY

“LOW, Low quotes: all components and recorders. HiFi, Roslyn 9, Penna.”

Hi-Fi Components, Tape Recorders, at guaranteed “We Will Not Be Undersold” prices. 15-day money-back guar- antee. Two-year warranty. No Catalog. Quotations Free. Hi-Fidelity Center, 239 (P) East 149th Street, New York 10451.

FREE! Send for money saving stereo catalog #P10E and lowest quotations on your individual component, tape recorder, or system requirements. Electronic Values, Inc., 200 W. 20th St., New York, N.Y. 10011.

WANTED

PLANS AND KITS

BUILD A CB-DIODETERP. Transistorized electronic computer–typewriter for Morse teaching or keying your rig with mini patchboard. For schematic, parts list and technical dope send $2 to Computertronics Engineering, Box 6606 Metropolitan Station, Los Angeles 90058.

BUILD your own Custom professional stereo tape transport. Up to 8 tracks 3" to 14" reels easy, fun, rewarding, ideal school project. Literature 25¢. Detailed plans $7.50. Curtronics, 4006 Thornton, Annandale, Virginia 22003.

ALLWAVE RADIO KIT. Tube, transistor included $5.00. Headset $2.50. Ekeradio, Box 131, Temple City, Calif.

SPECIAL INTRODUCTORY OFFER

15 EPOXY RECTIFIERS WITH EVERY $5.00 PURCHASE. MANY OVER 600 PIV. NO SHORTS OR OPENS

FETS' "N" CHANNEL TYPE SIMILAR TO C-610 USED AS AMP, SWITCH, CHOPPER—VERY HIGH INPUT Z $1.25 EACH

SILICON POWER RECTIFIERS

<table>
<thead>
<tr>
<th>PRV</th>
<th>3A</th>
<th>20A</th>
</tr>
</thead>
<tbody>
<tr>
<td>.30</td>
<td>.05</td>
<td>.20</td>
</tr>
<tr>
<td>100</td>
<td>.10</td>
<td>.40</td>
</tr>
<tr>
<td>200</td>
<td>.20</td>
<td>.60</td>
</tr>
<tr>
<td>400</td>
<td>.25</td>
<td>.80</td>
</tr>
<tr>
<td>600</td>
<td>.35</td>
<td>1.20</td>
</tr>
<tr>
<td>800</td>
<td>.45</td>
<td>1.50</td>
</tr>
<tr>
<td>1000</td>
<td>.65</td>
<td></td>
</tr>
</tbody>
</table>

SA INSUL BASE

<table>
<thead>
<tr>
<th>PRV</th>
<th>3A</th>
<th>20A</th>
</tr>
</thead>
<tbody>
<tr>
<td>.30</td>
<td>.05</td>
<td>.20</td>
</tr>
<tr>
<td>100</td>
<td>.10</td>
<td>.40</td>
</tr>
<tr>
<td>200</td>
<td>.20</td>
<td>.60</td>
</tr>
<tr>
<td>400</td>
<td>.25</td>
<td>.80</td>
</tr>
<tr>
<td>600</td>
<td>.35</td>
<td>1.20</td>
</tr>
<tr>
<td>800</td>
<td>.40</td>
<td>1.50</td>
</tr>
<tr>
<td>1000</td>
<td>.50</td>
<td></td>
</tr>
</tbody>
</table>

TOP HAT EPOXIS 790 MA

<table>
<thead>
<tr>
<th>PRV</th>
<th>3A</th>
<th>20A</th>
</tr>
</thead>
<tbody>
<tr>
<td>.30</td>
<td>.05</td>
<td>.20</td>
</tr>
<tr>
<td>100</td>
<td>.10</td>
<td>.40</td>
</tr>
<tr>
<td>200</td>
<td>.20</td>
<td>.60</td>
</tr>
<tr>
<td>400</td>
<td>.25</td>
<td>.80</td>
</tr>
<tr>
<td>600</td>
<td>.30</td>
<td>1.00</td>
</tr>
<tr>
<td>800</td>
<td>.35</td>
<td>1.25</td>
</tr>
<tr>
<td>1000</td>
<td>.50</td>
<td></td>
</tr>
</tbody>
</table>

C-LAT SILICONE

A) Sim to 2N1640 Bidirectional Transis- tors. 60$-5 silicon unit in which the collector and emitter are interchangeable. $4.00 each

B) Sim, to 2N728. A high frequency TO-18 (NPN) unit extending to the UHF range. $5/100.

C) Sim, to 2N2885 (nnp) and TMT 8035 (npn) microtransistors 75 ma power at high fre. Both units, $1.00

D) Sim, to 2N1668 or high voltage 2N2640 silicon unit, usable for stages & transistor driver circuits. $2/100.

E) Glass diodes color coded $1/20/$1.00 6/30/$1.00

FREE CATALOG (to be available soon)

CIRCLE NO. 45 ON READER SERVICE PAGE

October, 1966
TUBES

TUBE Headquarters of World! Send 10¢ for Catalog (tubes, electronic equipment) Barry, 512 Broadway, N.Y.C. 10012.

RADIO & TV Tubes—33¢ each. Send for free list. Cornell, 4213 University, San Diego, Calif. 92105.

TUBES, FREE LIST. Gamma, 140 West 26th, Hamilton, Ont.

SEND FOR wholesale radio tube catalog. Lowest prices, many more bargain items. CeCo, 120 West 18th Street, New York, N.Y. 10011.

EQUIPMENT

MOVIE FILMS

ORDER NOW—'66 INDY 500; 8mm COLOR . . . Most incredible in 50 years of Speedway History, $12.95 ppd (Super 8mm $13.95). Other INSTRUCTIONAL/COLOR ACTION SPORTS FILMS—8/16mm. Catalog Available. Write: SPORTLITE FILMS-PE, 20 North Wacker Drive, Chicago, Illinois 60606.

TAPE AND RECORDERS

BEFORE Renting Stereo Tapes try us. Postpaid both ways — no deposit—immediate delivery. Quality—Dependability —Service—Satisfaction—prevail here. If you've been dissatisfied in the past, your initial order will prove this is no idle boast. Free Catalog. Gold Coast Tape Library, Box 2262, Palm Village Station, Hialeah, Fla. 33012.

RENT 4-TRACK STEREO TAPES—Dependable service our keynote—ALL MAJOR LABELS—FREE CATALOG (48 States)—TRIMOR Company, P.O. Box 748, Flushing, N.Y. 11352.

STEREO TAPES. Save up to 60% (no membership fees, postpaid anywhere U.S.A.). Free 60 page catalog. We discount batteries, recorders, tape accessories. Beware of slogans "not undersold," as the discount information you supply our competitor is usually reported to the factory. SAXITONE, 1776 Columbia Road, Washington, D.C.

TAPE-MATES now offers ALL TAPES—ALL LABELS at TREMENDOUS SAVINGS plus FREE Tape-Mates membership. For FREE brochure write TAPE-MATES, 5280-PE W. Pico Blvd., Los Angeles 90019.

TAPE RECORDER SALE. Brand new, latest models, $10.00 above cost. Artay Sales, 1028-C Commonwealth Ave., Boston, Mass. 02215.

RENT Stereo Tapes—over 2,500 different—all major labels—free brochure. Stereo—Parti, 1616-PE Terrace Way, Santa Rosa, California.

TAPE RECORDERS, Hi-Fi, components, Sleep Learning Equipment. tapes. Unusual Values Free Catalog. Dresser, 1523PE, Jericho Turnpike, New Hyde Park 11, N.Y.

REPAIRS AND SERVICES

TV Tuners rebuilt and aligned per manufacturers specification. Only $9.50. Any make UHF or VHF. We ship COD. Ninety day written guarantee. Ship complete with tubes or write for free mailing kit and dealer brochure. JW Electronics, Box 51C, Bloomington, Indiana.

INSTRUCTION

LEARN While Asleep, hypnotize with your recorder, phonograph. Astonishing details, sensational catalog free! Sleep-Learning Association, Box 24-ZD, Olympia, Wash.

FCC License in 6 weeks. First Class Radio telephone. Results Guaranteed. Elkins Radio School, 2603B Inwood, Dallas, Texas.

REI First Class Radio Telephone License in (5) weeks Guaranteed. Tuition $295.00. Job placement free. Radio Engineering Institute, 1336 Main Street, Sarasota, Fla.

BEGINNERS code. 5:30 pm at 33 1/2. Guided sending. Three 12" records, $6.85. Page Electronics Institute, 1158 W. 54 St., Los Angeles 90037.

F.C.C. LICENSE (first class) in seven weeks. Resident classes or correspondence. Grantham, 1505 N. Western, Hollywood, California 90027.

HIGHLY—effective home study review for FCC commercial phone exams. Free literature! Cook's School of Electronics. P.O. Box 10634, Jackson, Miss. 39209.

BOOKLETS: Chinese writing manuals for beginners. Kern, 9932 Mason Ave., Chatsworth, Calif 91311.

"HOW TO MAKE MONEY WITH SIMPLE CARTOONS"—Everyone who likes to draw should have this book; FREE. Send name, zip code. Cartoonists' Exchange, 21310 Pleasant Hill, Ohio 45359.

BUILD YOUR OWN TEST EQUIPMENT AND A STEREO AM-FM RADIO. Practical Home Study Courses in Electronics in Theory, Practice and Servicing with Complete kits and tools included in price. Write for free booklet with no obligation to: INESCO, INTERCONTINENTAL ELECTRONICS SCHOOL, DEPT. 16A, 9100 St. Lawrence Blvd., Montreal 11, Quebec, Canada.

FCC LICENSE THROUGH TAPE RECORDED INSTRUCTION. Bob Johnson Audio-Visual Training, 1060D Duncan, Manhattan Beach, Calif. 90266.

DRAFTING (Electronic, Mechanical, Architectural, Art). Home Courses $25.00. Send $2.00 first lesson. Prior, Inc, 23-09 169 Street, Whitestone 57, N.Y.

IF YOU CAN READ "YOU CAN LEARN ELECTRONICS ON YOUR OWN." Simplest TV home study course. No previous knowledge needed. Money back guarantee. Write for descriptive literature. N. Siegel, 328 Surrey Drive, New Rochelle, New York 10804.

COINS

POPULAR ELECTRONICS
INVENTIONS WANTED

INVENTIONS—IDEAS developed: CASH/ROYALTY SALES. Member: United States Chamber of Commerce. Raymond Lee, 130-G West 42nd, New York City 10036.

INVENTORS! Sell your invention for cash or royalties! Our client manufacturers eagerly seek new items. Patented. Unpatented. Financial assistance if needed. 25 years proven performance. For free information, write Dept. 20, Gilbert Adams, Invention Broker, 80 Wall St., New York 5, N.Y.

INVENTORS! Don't sell your invention, patented or unpatented, until you receive our offer. Eagle Development Company, Dept. P, 79 Wall Street, N.Y. 5, N.Y.

INVENTORS! Outright cash sale or royalties for your inventions. Patented. Unpatented. Active demand from our national manufacturer clients. Financial assistance available. 10 years proven performance. For free information, write Dept. 41, Wall Street Invention Brokerage, 79 Wall Street, New York 5, N.Y.

INVENTIONS WANTED; Patented, unpatented. Extensive manufacturers' lists. Free details. Pioneer Invention Service, Dept. 79; 150 Broadway, New York, N.Y. 10038.

GOVERNMENT SURPLUS

"GOVERNMENT SELLS"—Surplus Electronics; Oscilloscopes; Transceivers; Test Equipment; Radar; Walkie-Talkies; Boats; Jeeps; Aircraft; Misc.—Send For—"U.S. Depot Directory—Procedure"—$1.00—Service, Box 425 (ZE), Nanuet, N.Y.

GOVERNMENT Surplus. Complete Sales Directory $1.00. Surplus Publications, Box 45781E, Los Angeles 45, Calif.

JEEPS Typically From $53.90 . . . Trucks From $78.40 . . . Boats, Typewriters, Airplanes, Electronics Equipment, Photographic Equipment, used. 100,000 Bargains Direct From Government. Complete Sales Directory and Surplus Catalog $1.00 (Deductible First $10.00 Order). Surplus Service, Box 820-J, Holland, Mich. 49424.

BOOKS

FREE Catalog Aviation/Electronics/Space books. Aero Publishers, 329PE Aviation Road, Fallbrook, Calif, 92028.

AUTHORS' SERVICES

AUTHORS! Learn how to have your book published, promoted, distributed. FREE booklet "ZQ," Vantage, 120 West 31 St., New York 1.

WANTED WRITERS! Short stories, articles, books, plays, poetry. Will help place, sell your work. Write today, free! particular! Literary Agent Mead, Dept. C45, 915 Broadway, New York 10, N.Y.

DON'T BUY TUBES!!

RADIO or T.V.-XMITTING or SPECIAL-PURPOSE TYPES

UNTIL YOU GET OUR PRICE LIST GUARANTEED TO BE THE LOWEST PRICES IN THE U.S.A. OVER 5000 TYPES—ALL 100% GUARANTEED BRAND NEW

"WE'RE NEVER UNDERSOLD"

SEND POST CARD FOR T.V. OR SPECIAL PURPOSE PRICE LIST

ESTABLISHED 1920

UNITED RADIO CO. 56 FERRY ST., P.O. BOX 1000 NEWARK, N.J. 07101

CIRCLE NO. 51 ON READER SERVICE PAGE

MUSIC

POEMS wanted for new songs. Nashville Music Institute, Box 532-E, Nashville, Tennessee.

SONGS, POEMS WANTED! For publishing, recording at our expense! Ted Rosen, 17-PE Longwood Road, Quincy, Mass.

MUSICAL INSTRUMENTS

REAL ESTATE

FREE Fall-Holidays CATALOG! Big 180 pages! Selected Best thruout the U.S. Thousands of properties described, pictured—Land, Farms, Homes, Businesses—Waterfront, Recreation, Retirement. 66 Years' service, 490 Offices, 36 states Coast to Coast. Mailed FREE from the World's Largest! STROUT REALTY, 50-ZD, East 42nd St., N.Y., N.Y. 10017.

FREE!!! 168-page FALL-WINTER catalog! Over 2,100 PICTURES! Farms, Ranches, Homes, Businesses, Vacations and Retirement properties in 29 states coast to coast! UNITED FARM AGENCY, 612-EP West 47th St., Kansas City, Mo. 64112.

HELP WANTED

RUBBER STAMPS

PHOTOGRAPHY—FILM, EQUIPMENT, SERVICES

MEDICAL Film—Adults Only—“Childbirth”—1 reel 8mm $7.50—16mm $14.95. International-E, Greenvale, L.I., New York.

EDUCATIONAL OPPORTUNITIES

LEARN While Asleep. Remarkable, Scientific, 92% Effective. Details Free. ASR Foundation, Box 7021, Dept. e.g., Lexington, Kentucky.

DO-IT-YOURSELF

SAVE! Build Transistorized Treasure Finder. Details Free. Dei Research, Box 436A, Centerville, Georgia 31093.

PERSONALS

INVESTIGATORS, FREE BROCHURE, LATEST SUBMINIATURE ELECTRONIC SURVEILLANCE EQUIPMENT. ACE ELECTRONICS, 11500-K NW 7th AVE., MIAMI, FLA. 33168.

BILL PROBLEMS? Poor credit no trouble. Not a loan company. Send for free application. Automatic Acceptance, 307PE, Pocasset Ave., Providence, R.I.

BUSINESS OPPORTUNITIES

VENDING Machines—No Selling. Operate a route of coin machines and earn amazing profits. 32-page catalog free. Parkway Machine Corporation, 715PE Ensor Street, Baltimore 2, Md.

ELECTROPLATING Equipment and supplies. All types for home workshops and industrial. Send $1.00 (refundable) for equipment guide formulas, operating data, catalog. HBS Equipment Division 90, 3543 East 16th, Los Angeles, California. 90023.

I MADE $40,000.00 Year by Mailorder! Helped others make money! Start with $10.00—Free Proof. Torrey, Box 63556-N, Oklahoma City, Oklahoma 73106.

PIANO Tuning learned quickly at home. Tremendous field! Musical knowledge unnecessary. Information free. Empire School of Piano Tuning, Dept. PE, Box 327, Spanaway Station, Miami, Florida 33145. (Founded 1935.)

IT'S FUN to sell by Mailorder! Free catalogue. Methods, 1406-FD, Lafayette Hill, Pa. 19444.

FREE $125 MACHINE HELPS EARN AS YOU LEARN Locksmmithing! Professional's key machine sent you as part of course. Earn 90% on keys for cars, homes and offices while learning this needed, high-pay craft. All tools and supplies sent you with working lessons. Write for FREE BOOK—no obligation. BELSAW INSTITUTE, 2179 Field Bldg., Kansas City, Mo. 64111.

EARN $240.00 a Month at home, spare time, doing only two $5.00 Invisible Mending jobs a day. Big money paid for service that makes cuts, tears disappear from fabrics. Steady demand. Details free. Fabricon, 1572 Howard, Chicago 26, Ill.

FREE CATALOGS. Repair air conditioning, refrigeration. Tools, supplies, full instructions. Doolico, 2016 Canton, Dallas, Texas 75201.

FREE! 110 BRITISH Empire Stamps (worth over $2.50 at standard catalog prices) when you send only 10¢ for mailing costs! Get this big, valuable collection—from Antarctica, to Zambia! Spectacular issues picturing Conquest of Ice Continent, Papuan Cannibal, Flying Dragon of Wales; plus many others from Tanganyika, Sharjah, Dubai, South Georgia, Christmas Island, etc. A Sensational offer to introduce you to World's Most Rewarding Hobby. 110 genuine, all-different stamps plus Special FREE Bonus—a Complete Set of England's 42 Kings and Queens. Also, selections of attractive and unusual stamps from our Stamps-on-Approval Service for Free Examination. You may return selections without buying and can cancel service any time. Plus FREE "How to Recognize Rare Stamps" booklet, and Big Illustrated Collectors' Catalog! Send 10¢ to: Kenmore, Milford QR-58, New Hamp. 03055.

EMPLOYMENT INFORMATION

CAPE KENNEDY area and overseas. Sample resumes, Application forms. Information $2.00. Interocen, Dept. E10, Box 1883, Cocoa, Florida 32922.

CIVIL Service jobs. Free details. Alena, 1513 64th Street, Brooklyn, New York 11219.

EMPLOYMENT Resumes. Get a better job & earn more! Send only $2.00 for expert, complete Resume Writing Instructions. J. Ross, 80-34 Kent St., Jamaica 32, N.Y., Dept. PE.

FOREIGN and USA job opportunities available now. Construction, all trades. Earnings to $2,000.00 monthly. Paid overtime, travel, bonuses. Write: Universal Employment, Woodbridge, Connecticut 06525.

STAMPS

FREE! 110 BRITISH Empire Stamps (worth over $2.50 at standard catalog prices) when you send only 10¢ for mailing costs! Get this big, valuable collection—from Antarctica, to Zambia! Spectacular issues picturing Conquest of Ice Continent, Papuan Cannibal, Flying Dragon of Wales; plus many others from Tanganyika, Sharjah, Dubai, South Georgia, Christmas Island, etc. A Sensational offer to introduce you to World's Most Rewarding Hobby. 110 genuine, all-different stamps plus Special FREE Bonus—a Complete Set of England's 42 Kings and Queens. Also, selections of attractive and unusual stamps from our Stamps-on-Approval Service for Free Examination. You may return selections without buying and can cancel service any time. Plus FREE "How to Recognize Rare Stamps" booklet, and Big Illustrated Collectors' Catalog! Send 10¢ to: Kenmore, Milford QR-58, New Hamp. 03055.

EMPLOYMENT OPPORTUNITIES

ELECTRONIC INSTRUCTOR—For advanced, high level technical program in key hole E. E. or related degree plus work experience in field of electronics, teaching background desirable but not absolutely essential. Forward resume. L. K. Jonas, Texas A&M University, Box 236 F. E., College Station, Texas.
PERMANENT PROTECTION!

POPULAR ELECTRONICS

Deluxe Magazine Files that hold a full year's copies!

Designed to keep your periodicals orderly and easy to refer to. These durable files guard against soiling, tearing, wear or misplacement of issues. They look, feel like leather and are washable! 23kt. gold lettering and exquisite 2-color binding make them highly-decorative additions to your bookshelves.

Shipped POSTPAID! FULLY GUARANTEED!

Only $3.50 each—3 for $10, 6 for $19!

Jesse Jones Box Corp., Box 5120, Dept. PE
Philadelphia 41, Pa.

Enclosed is $ Please send me __________ Popular Electronics Magazine Files in the colors checked below:

☐ Black backing/maroon sides
☐ Maroon backing/black sides

NAME_________________________

ADDRESS_________________________

CITY_________STATE_________ZIP CODE_________

Orders outside U.S.A. please add $1 additional for each file ordered.

——— (Payment must accompany order) ————

HYPNOTISM

HYPNOTIZE UNNOTICED! PATENTED new hand device makes you a Hypnotist first day or refund! Hypnotist's Handbook included! $2.00 Hypnosis Foundation, Box 487, La Mesa 9, California.

FREE Hypnotism, Self-Hypnosis, Sleep Learning Catalog! Drawer H400, Ruidoso, New Mexico 88345.

MISCELLANEOUS

WINEMAKERS: Free illustrated catalog of yeasts, equipment. Semplex, Box 7208, Minneapolis, Minn. 55412.

BEERS, PEACH BRANDY, WINES—Strongest Formulas, $2.25. (complete brew supplies hydrometers catalog 10p)—Research Enterprises, 29-D Samoset, Woburn, Mass.

BEER, ALE, WINES! Powerful Methods! Secrets! Illustrated Booklet, $2.25. (supplies catalog 10p). Interstate Products, Box 1-VF3, Pelham, New Hampshire.

STAMMER—Stutter—No More. (Dr. Young.) Write: Gaucho, Box 9309-E8, Chicago 90.

CLASSIFIED ADVERTISING 131, 132, 133, 134, 135, 136, 137

October, 1966
NEW 1967 ALLIED CATALOG
See everything new in electronics .. featured first at Allied, the world’s largest electronics headquarters!

New! for the audiophile...
Knight-Kit® Deluxe Stereo FM-AM Tuner. Easy-to-build solid-state design.

New! for the ham operator...
Knight-Kit® 6-Meter Amateur Transceiver with universal solid-state power supply.

New! for the serviceman...
Knight-Kit® Portable Solid-State Color/Bar Pattern Generator. A top value!

New! for the CB user...
KNIGHT® 2-Way Radio. Compact solid-state design at amazingly low cost!

New! for everyone...
Ampex 6200HVR Home Video-tape Recorder. Make video-tapes at home!

New! for the TV and FM owner...
Antenna and Rotor Systems for color and black-and-white TV ... FM, too!

FREE! Send for new 1967 ALLIED Catalog
ALLIED RADIO, Dept. 3K
P.O. Box 4398, Chicago, Ill. 60680

☐ Send FREE 1967 Allied Catalog

Name

PLEASE PRINT

Address

City State Zip

Plus hundreds more new and exclusive items, and scores of special Allied values!

NO MONEY DOWN! 24 MONTHS TO PAY!
Enjoy the things you want now, while you take 24 months to pay for them on the convenient, easy-on-the-budget Allied Credit Fund Plan.

ALLIED Radio
P.O. Box 4398, Dept. 3K
Chicago, Illinois 60680

Printed in U.S.A.

138 POPULAR ELECTRONICS
MAIL CARD NOW!

FREE

NEW 1967 ALLIED CATALOG

514 Pages of top savings on the best in electronics for everyone...

- Famous Knight-Kits
- Tape Recorders & Tape
- CB 2-Way Gear
- Walkie-talkies
- FM-AM & AM Radios
- Short-Wave Radios
- Portable TV
- Phonographs
- Amateur Gear
- Intercoms & P.A.
- Automotive Electronics
- Test Instruments
- TV Antennas & Tubes
- Power Tools, Hardware
- Tubes, Transistors
- Parts, Batteries, Books

ALLIED ELECTRONICS
FOR EVERYONE 1967
OUR 46TH YEAR
CATALOG 750
INDEX PAGE 103

Including the COMPLETE knight-kit CATALOG

ALLIED RADIO
WORLD'S LARGEST ELECTRONICS HEADQUARTERS

CIRCLE NO. 1 ON READER SERVICE PAGE
The E-V SEVEN was born in the eerie silence of an anechoic chamber — the world's largest devoted to high fidelity design. This vast sound absorbing room let E-V engineers get right down to basic engineering. Nothing disturbed their silence — or their concentration on the subtle differences that distinguish a great speaker.

After months of experimentation, the E-V SEVEN met every design objective. Then expert listeners were invited to judge the sound — again and again — until engineers and critics were fully satisfied with E-V SEVEN performance.

But superb sound, once established, can easily slip away in the routine of mass production. We don't let it. A completely equipped anechoic chamber — right on the production line — measures every speaker against perfection. And it's ruthless. All this may seem rather elaborate for a $66.50 compact system...and it is. You can hear the difference!

Any fine component amplifier can display the E-V SEVEN at its best, but the new E-V 1144 stereo amplifier is uniquely suited to the purpose. Like the E-V SEVEN, the E-V 1144 is compact, handsome, and modest in cost (just $124.50).

We threw tradition to the winds when we built the E-V 1144. Tossed out "old-hat" ideas about size and weight. Put 50 watts of stereo power in an attractive walnut-paneled cabinet no taller than a coffee cup. It's easier when you can start from scratch — yet have years of experience in miniature solid-state electronics behind you. The young tigers in the E-V lab took it on as a personal challenge — and solved it beautifully.

So plug in any stereo phono, tape recorder, or matching E-V stereo tuner. Connect a pair of E-V SEVENS. Then turn up the volume of your E-V 1144. Natural sound? Absolutely. And that's what high fidelity is all about!

Window-shop through our complete high fidelity catalog for the answer to your high fidelity needs. It's free.

Big sound. A natural for these compact E-V SEVENS. All you need is a very good amplifier...

like this one. The new E-V 1144.

CIRCLE NO. 14 ON READER SERVICE PAGE