HOW WE LISTEN TO OUTER SPACE

Complete Plans For:
- Talking Box
- RF Power Meter

Pay TV Comes to Canada

Placing Stereo Speakers

BUILD THIS 3-Transistor Miniature Amplifier
See Page 73

SPECIAL: Compatible Stereo Records
How basic scientific ideas develop in the light of expanding knowledge is strikingly illustrated by the development of Bell Laboratories' new "parametric" or "reactance" amplifier.

Over 100 years ago, scientists experimenting with vibrating strings observed that vibrations could be amplified by giving them a push at strategic moments, using properly synchronized tuning forks. This is done in much the same way a child on a swing "pumps" in new energy by shifting his center of gravity in step with his motion.

At the turn of the century, scientists theorized that electrical vibrations, too, could be amplified by synchronously varying the reactance of a capacitor. Later amplifiers were made to work on this principle but none at microwave frequencies.

Then came the middle 50's. Bell Telephone Laboratories scientists, by applying their new transistor technology, developed semiconductor diodes of greatly improved capabilities. They determined theoretically how the electrical capacitance of these new diodes could be utilized to amplify at microwave frequencies. They created a new microwave amplifier with far less "noise" than conventional amplifiers.

The new reactance amplifier has a busy future in the battle with "noise." At present, it is being developed for applications in tropospheric transmission and radar. But it has many other possible applications. It can be used, for instance, in the reception of signals reflected from satellites. It is still another example of the continuing efforts to improve your Bell System communications.
Learn Radio-Television Electronics by Practicing at Home in Your Spare Time

Fast Growing Field Offers You Good Pay, Success, Bright Future

N.R.I. TRAINED THESE MEN FOR SUCCESS

"I was repairing Radios by 10th lesson. Now have good TV job." M. R. LINDEMUTH, Fort Wayne, Ind.

"I had a successful Radio repair shop. Now I'm Engineer for WHPE." V.W. WORKMAN, High Point, N.C.

"There are a number of NRI graduates here. I can thank NRI for this job." JACK WAGNER, Lexington, N. C.

VETERANS Approved Under G.I. Bill

SEND FOR BOTH FREE

National Radio Institute
Dept. OPD4 Washington 16, D. C.

Mail me Sample Lesson and 61-Page Catalog FREE. (No salesman will call. Please write plainly.)

Name __________________________ Age __________

Address __

City __________________________ Zone ______ State ______

Accredited Member National Home Study Council

POPULAR ELECTRONICS is published monthly by Ziff-Davis Publishing Company, William B. Ziff, Chairman of the Board (1948-1955), at 484 S. Wabash Ave., Chicago 5, Ill. Second-class postage paid at Chicago, Illinois. Authorized by Post Office Department, Ottawa, Canada, as second-class matter. SUBSCRIPTION RATES: In U.S. and possessions, and Canada $4.00; for American Union Countries $4.50, all other foreign countries, $5.00.
Cover Story
Let's Build the "Tiny Mite"..................Forrest H. Frantz, Sr. 73

Other Construction Projects
Volt/Ammeter Kit.. 49
R.F. Power Meter...Joseph Tartas, W2YKT 52
Black Box Magic..Kenneth Richardson 57
Low-Cost Transistor Tester..............................Martin H. Patrick 68

Audio and High Fidelity
CBS Tape Cartridge (Notes from the Editor)........Oliver Read, W1ETI 8
Inside the Hi-Fi Tape Recorder:
 Bias, Erase and Equalization Circuits............Joseph Marshall 46
A Compatible Stereo Record............................Robert Angus 65
How to Place Stereo Speakers............................John Milder 82

Electronic Features and New Developments
Eavesdropping on Outer Space.........................Ken Gilmore 41
Electronics Adds a New Angle to Angling........Robert P. Hammond 50
Test Instruments—The Signal Generator (Part 3)...G. H. Harrison 62
Transistor Topics...Lou Garner 77
Pay TV's First Battle.......................................John D. Lenk 79
The Language of Vectors (After Class Feature—
 Part 2 of two parts)..................................Saunders Harris 85
Carl & Jerry: Two Tough Customers..................John T. Frye, W9EGV 89

Amateur and SWL
FCC Report: Citizens Band Applications............Robert E. Tall 10
DX'ing on TV..King Schafer 54
Across the Ham Bands: How to Prevent Trouble with the FCC
 Herb S. Brier, W9EGQ 71
Short-Wave Report: QSL Bureaus.....................Hank Bennett, W2PNA 76
On the Citizens Band.....................................Tom Kneitel, 2W1965 88

Departments
Letters from Our Readers................................ 14
POPtronics Bookshelf.....................................22
Tips and Techniques.......................................28
New Products...34

Index to Volume 12 (Jan.-June, 1960)...............124

Cover pictorial by Bruce Aldrich

Copyright © 1960 by ZIFF-DAVIS PUBLISHING COMPANY. All rights reserved.
the tape that cost $9,000,000 to perfect!

Soundcraft Tape with the new **FA-4** formulation. Designed to meet the unlimited challenge of the most exciting new era in recording history!

Only years of research... and the most modern and advanced tape manufacturing facilities in the world... could have perfected this tape! Soundcraft's new **FA-4 FORMULATION** is frequency adjusted to provide the superlative sound reproduction demanded in this exciting era of new discoveries and innovations in tape recording. You'll hear "highs" as never before... the full frequency spectrum for perhaps the very first time!

Insist on Soundcraft Tape with the new **FA-4 FORMULATION** before you run another reel through your recorder... you'll never settle for inferior sound reproduction again!

REEVES **SOUNDCRAFT CORP.**

Great Pasture Rd., Danbury, Conn. • Chicago: 28 E. Jackson Blvd. • Los Angeles: 342 N. LaBrea • Toronto: 700 Weston Rd.

June, 1960
COMING NEXT MONTH

POPULAR ELECTRONICS

- OPERATION RADIO CONTROL
 The fascinating story of how some of our most brilliant engineers design radio-controlled model boats and planes for their own enjoyment

- MAGNETIC AMPLIFIERS
 Recently "rediscovered," magnetic amplifiers now have a new lease on life. Learn how they work and what they're used for

- ONE-TRANSISTOR RECEIVER
 Complete construction plans for building a tiny vest-pocket receiver that makes use of a single transistor for both r.f. and a.f. amplification

- LOW-DOWN ON MICROPHONES
 A quick survey of the advantages and disadvantages of five different types of microphones
One of Today's **BRIGHTEST** Opportunity Fields!

Today's great Electronics field offers you a chance of a lifetime to prepare for highly interesting work and a wonderfully promising future! With so many new developments coming up in Electronics, opportunities for trained men were never brighter. Send coupon for details.

Right in your own home you may now get one of today's most interesting . . . PRACTICAL WAYS to prepare for a good job or your own business in Electronics. No previous technical experience or advanced education are needed! DeVry Tech brings you a unique 3-WAY COMBINATION of texts, home movies and real equipment—the same type of basic equipment as found in our well-equipped Chicago and Toronto Laboratories.

EMPLOYMENT SERVICE

... helps you get started toward a good job, or toward advancement in the company you now work for. FREE to all graduates.

EARN WHILE YOU LEARN

DeVry Tech's practical program helps you to earn EXTRA MONEY in your spare time, servicing Radio and TV sets.

TO PROFITABLE JOB OPPORTUNITIES

See how YOU may get ready for Jobs as:

- TV-Radio Broadcast Technician
- Color Television Specialist
- Radar Operator • Laboratory Technician
- Airline Radio Man • Computer Specialist
- Quality Control Manager

Your Own Sales & Service Shop...PLUS MANY OTHERS

SEND FOR FREE BOOKLET!

"One of North America's Foremost Electronics Training Centers"

Accredited Member of National Home Study Council

DeVRY TECHNICAL INSTITUTE

CHICAGO 41, ILLINOIS

MAIL COUPON TODAY!

DeVRY TECHNICAL INSTITUTE

4141 Belmont Avenue, Chicago 41, III., Dept. PE-6-Q

Please give me your FREE booklet, "Electronics in Space Travel," and tell me how I may prepare to enter one or more branches of Electronics.

Name:
Age:
Street:
Apt.:
City:
Zone:
State:
Apt.:

Canadian residents address DeVry Tech of Canada, Ltd.

626 Rosedale Ave., Toronto 12, Ont.

300 EXPERIMENTS

Build over 300 practical projects from many shipments of Radio-Electronic parts. You build and operate TV-Radio circuits . . . wireless microphone . . . and many other major projects—all designed to provide outstanding practical experience at home.

HOME MOVIES

Thanks to this exclusive home training aid, many important fundamentals quickly become "movie clear." Now you can actually see electrons on the march and other "hidden actions"—a wonderful advantage that is almost like having a teacher at your side.

BUILD YOUR OWN TEST EQUIPMENT

As part of your home laboratory projects, you BUILD and KEEP a fine quality 5-inch COLOR OSCILLOSCOPE and a Jewel Bearing VACUUM TUBE VOLTMETER. You will find this equipment ideal for helping you earn in your spare time while a student—and later when working full time in the field.

BUILD AND KEEP A BIG 21-INCH TV SET

For added practical experience, you can also build and keep this quality 21-inch TV SET that provides TV reception at its finest (DeVry Tech also offers another home training without the TV set).
CBS TAPE CARTRIDGE. It was on this page in our April issue that I mentioned the forthcoming appearance of the CBS tape-cartridge system. At that time I had a strong hunch that CBS might pull a rabbit out of its hat and come up with a significant advance in hi-fi/stereo. Well, the magicians at CBS, led by Peter Goldmark, the inventor of the LP record, have apparently done just that. The new system was demonstrated in New York during the recent I.R.E. show, and it made a profound impression on virtually everyone who heard it.

By any standard of comparison, the quality of the system is exceptional. And when you consider that the system uses tape which is 150 mils wide (about 1/7") moving at the speed of only 1 7/8 ips, it is well-nigh unbelievable. Very good high-frequency response (to 15,000 cps) is achieved through the use of narrow-gap heads and a new tape developed by Minnesota Mining and Manufacturing Co. This tape has smaller magnetizable particles than standard tape, thus permitting higher frequencies to be recorded on it. In addition, its oxide coating does not rub off on the heads.

Other features worthy of note include the tape cartridge itself, which is only 3½" square and contains slightly over an hour's stereo playing time; a third channel recorded down the center of the tape that provides a "delayed" sum signal for optional use with a third amplifier-speaker system to increase the amount of reverberation in the listening room; and provisions for automatic operation whereby five cartridges can be played in sequence without touching the machine.

Production models of the new system are now under development by Zenith, and the first commercial units will probably be available next year. Prices are indefinite as yet, but a pre-recorded one-hour tape cartridge will probably be under $5.95, the average cost of a stereo record.

JAPANESE TV SETS. The long-expected influx of Japanese television receivers into this country is about to begin. Sony has already demonstrated a 13½-lb., battery-powered transistorized portable to be imported in quantity very soon. Unlike the portable announced by Philco last year, the Sony set has a direct-view picture tube, 8" in diagonal measurement. Retail price will be about $250.00.

Perhaps even more interesting is the news that Hitachi is getting ready to produce color TV sets for the American market. Plans aren't certain yet as to whether Hitachi will assemble the units completely or just build the chassis. In any case, lower-priced color sets may be on the way!
Through HOME STUDY or in RESIDENT CLASSES

the Grantham Communications Electronics Course prepares you for your first class commercial

F.C.C. LICENSE

The Grantham home study course teaches you principles of electronics in a simple "easy to grasp" manner. Each new principle is explained first in everyday language and then, after you understand it, is associated with the proper technical language. You learn and remember more, because the emphasis is on understanding rather than memorizing.

This correspondence course is directed toward two major objectives - (1) to teach you a great deal about electronics, and (2) to prepare you to pass all of the F.C.C. examinations required for a first class commercial operator's license. We teach you step by step and have you practice with FCC-type tests which you send to the School for grading and comment. You prepare for your F.C.C. examinations under the watchful direction of an instructor who is especially qualified in this field.

Grantham training is the easy way to learn more quickly - to prepare more thoroughly - for F.C.C. examinations. And your first class license is the quick, easy way to prove to your employer that you are worth more money.

Get details concerning how we can prepare you for your F.C.C. license and how that license can help you advance in electronics. Mail the coupon below to the home office of Grantham School of Electronics in Hollywood, Calif., and our free catalog will be sent to you promptly.

--field of opportunity--

offers interesting and profitable careers in RADIO AND TV BROADCASTING • TWO-WAY RADIO COMMUNICATIONS • RESEARCH AND DEVELOPMENT • RELAY STATION MAINTENANCE • AUTOMATION ELECTRONICS • TECHNICAL WRITING IN ELECTRONICS • INDUSTRIAL ELECTRONICS • ELECTRONIC COMPUTERS • MILITARY ELECTRONICS • INSTRUMENTATION • TELEMETRYING • AERONAUTICAL ELECTRONICS • SPACE ELECTRONICS and many other interesting and profitable fields of the present and future.

To get ahead in electronics, you must have the proper training and your employer must know that you have that training. Your F.C.C. license is a "diploma" in communications electronics granted by the U.S. Government, and it is recognized as such by employers. Grantham School of Electronics specializes in preparing you to earn this diploma.

HERE'S PROOF... that Grantham students prepare for F.C.C. examinations in a minimum of time. Here is a list of a few of our recent graduates, the class of license they got, and how long it took them.

<table>
<thead>
<tr>
<th>Name</th>
<th>Class License</th>
<th>Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edgar T. Phelps</td>
<td>FCC</td>
<td>1</td>
</tr>
<tr>
<td>Wayne Hogg</td>
<td>FCC</td>
<td>1</td>
</tr>
<tr>
<td>Robert Watson</td>
<td>FCC</td>
<td>1</td>
</tr>
<tr>
<td>William H. Patchin</td>
<td>FCC</td>
<td>1</td>
</tr>
<tr>
<td>V. Dean Devine</td>
<td>FCC</td>
<td>1</td>
</tr>
<tr>
<td>Edward T. Wall</td>
<td>FCC</td>
<td>1</td>
</tr>
<tr>
<td>James W. Wranich</td>
<td>FCC</td>
<td>1</td>
</tr>
<tr>
<td>Robert E. Sullivan</td>
<td>FCC</td>
<td>1</td>
</tr>
<tr>
<td>Nelson S. Kibler</td>
<td>FCC</td>
<td>1</td>
</tr>
<tr>
<td>Barry L. Ulrich</td>
<td>FCC</td>
<td>1</td>
</tr>
<tr>
<td>Jerry E. Milligan</td>
<td>FCC</td>
<td>1</td>
</tr>
<tr>
<td>Robert S. Davis</td>
<td>FCC</td>
<td>1</td>
</tr>
</tbody>
</table>

If you are interested in details concerning our training, indicate in the coupon below whether you prefer home study or resident classes, and mail the coupon to the School's home office in Hollywood, California — to the address given in the coupon — for free details.

GRANTHAM SCHOOL OF ELECTRONICS

Hollywood Seattle Kansas City Washington

FIRST CLASS F.C.C. LICENSE IN 12 WEEKS

Grantham resident schools are located in four major cities — Hollywood, Seattle, Kansas City, and Washington, D.C. Regularly scheduled classes in F.C.C. license preparation are offered at all locations. New day classes begin every three months, and new evening classes begin four times a year. The day classes meet 5 days a week and prepare you for a first class F.C.C. license in 12 weeks. The evening classes meet 3 nights a week and prepare you for a first class license in 26 weeks. For more information about the Grantham resident schools, indicate in the coupon the city of your choice and then mail the coupon to the School's home office in Hollywood, Calif. Free details will be mailed to you promptly.

MAIL COUPON FOR FREE DETAILS — NO SALESMAN WILL CALL

June, 1960

(To mail envelope or paste on postal card)

To: GRANTHAM SCHOOL OF ELECTRONICS

1300 N. WESTERN AVE., HOLLYWOOD 27, CALIF.

Gentlemen:

Please send me your free booklet telling how I can get my commercial F.C.C. license quickly. I understand there is no obligation and no salesman will call.

Name __________________________ Age _________

Address __________________________

City __________________________ State _________

I am interested in: [] Home Study [] Kansas City classes

[] Hollywood classes [] Seattle classes [] Washington classes

[] $4.00

AmericanRadioHistory.Com
New Sylvania "Transistor Circuit Handbook for the Hobbyist" gives you 30 performance-tested circuits using low-cost transistors!

Interesting new "gadgets" and useful equipment for every electronic experimenter, "ham" or student. Handbook is divided into four circuit-packed chapters.

1. Test Equipment Circuits
2. High Frequency Circuits
3. Audio Frequency Circuits
4. Utility Circuits

NOW AT YOUR LOCAL SYLVANIA SEMICONDUCTOR DISTRIBUTOR'S. Only 50¢.

Get a copy today!

Sylvania Semiconductor Division, Woburn, Mass.

SYLVANIA Subsidiary of GENERAL TELEPHONE & ELECTRONICS

Citizens Band Applications

WHILE the pot continues to bubble at the Federal Communications Commission on enforcement of the new Citizens Band restrictions, other developments keep popping up.

For one thing, CB'ers can look forward to a new application form being adopted by the Commission, possibly within the next several months. The new form, designed for processing by a method which makes more use of machine stamping than is possible with the present application form, is expected to permit considerable speed-up in handling.

In the present stages of planning, the new form would apply to the Class B, C and D Citizens Radio categories.

Meanwhile, the need for more "understandable" explanations on the present application form is being emphasized by FCC officials. The Commission feels that the licensee should be more specific about what he plans to do with his Citizens Band unit. A survey by the Commission shows that 63% of the Citizens Band applications being returned without action are classed as "defective" because of incomplete statements as to the intended use of the radio units. The FCC explains that the statements do not have to be elaborate, but that it does definitely want to know the intended use.

Another 12% of the applications being returned are classed as defective because the potential Citizens Banders has failed to have his application notarized. In one of his first official duties as new Chairman of the FCC, Frederick W. Ford strongly supported a legislative proposal being studied by the House Interstate & Foreign Commerce Committee that would knock out this re-
Coyne brings you MODERN-QUALITY Television Home Training; training designed to meet Coyne standards at truly lowest cost—you pay for training only—not costly "put together kits." Not an old Radio Course with Television "tacked on." Here is MODERN TELEVISION TRAINING including Radio, UHF and Color TV. No Radio background or previous experience needed. Personal guidance by Coyne Staff. Practical Job Guides to show you how to do actual servicing jobs—make money early in course. Free Lifetime Employment Service to Graduates.
SHURE
professional
tone arm
for any cartridge...stereo or monophonic

new safety
for records. Surface wear is held to absolute minimum through flawless tracking made possible by an ingenious and unprecedented combination of adjustments. Optimum static and dynamic balance, precise height, correct cartridge "overhang," and incredibly accurate stylus force are quickly achieved and easily maintained without guesswork.

new sound
from records. Modern high-compliance, light tracking cartridges (Shure M3D compliance is 4.0 x 10^-6 cm/dyne; 3 gm. tracking) require arm balance of a high order in all planes to deliver all the sound, undistorted. The Shure arm pivots on drag-free precision bearings. Precision adjustments assure optimum suspension and permanent balance, regardless of cartridge characteristics.

new simplicity
in installation and operation. Installs completely from top side of motorboard—without solder. Lock-on heads are instantly interchangeable. Direct-reading stylus force gauge with counterweight assembly permit visual static balance checks at any time.

M232 for 12" records $2995 net
M232 with Shure M7D $53.95 net
M232 with Shure M3D $74.95 net

SHURE BROTHERS, INC.
222 Hartrey Avenue, Evanston, Illinois

requirement. A bill along the same lines was put through the Senate last year.

The FCC told the Congressional Committee that the requirement for notarization imposes an unnecessary burden on the public, and hampers the Commission's processing work. The FCC feels that the U. S. Code already provides for fine or imprisonment if false statements are included on an application form, and the Commission can revoke licenses later if applicants prove to be untruthful.

However, FCC officials caution that the deletion of the notarization requirement will be in the future, and that any Citizens Bander who wants his license from the Commission before the change is completed must have his application notarized in the usual manner.

On a more cheerful note, Citizens Banders interested in organizing specific-purpose CB operations, such as channels for marine, motel, garage, or other types of use, have been given the green light by the FCC.

Most of the original operations along this line have been in the marine field, and in the unofficial establishing of Channel 9 as the "National Calling Frequency." But FCC officials point out that there is "no reason why" CB'ers in a given area cannot agree among themselves to use one or two, or possibly even more, of the CB channels for communications to and from transient motorists seeking information.

A high-ranking FCC official says he feels such cooperative common-channel usage is an "excellent idea," but he adds quickly that the Commission has no plans at the moment to set aside any channels on a nation-wide basis for any of the specific-purpose operations. He emphasizes that it would not be "appropriate" for the FCC to take such a step at the present time. If these unofficial nets do spring up, the FCC will watch them closely and will be guided in part by their effectiveness when the time comes to legislate on the subject of allocating channels for specific-use purposes.

One of the many petitions filed with the Commission since the latest rule revisions looks toward increased power input to the final stage, possibly an increase to 15 or 25 watts. Also, additional authorized types of emission are being considered for FCC-type accepted equipment. In the near future, CB'ers may be able to use single sideband, double sideband and/or FM.

Always say you saw it in—POPULAR ELECTRONICS
MAKE MORE MONEY in TELEVISION
RADIO- ELECTRONICS

TOP PAY...UNLIMITED OPPORTUNITIES
LIFETIME SECURITY CAN BE YOURS!

You are needed in the Television, Radio, and Electronics industry! Trained technicians are in growing demand at excellent pay—in ALL PHASES, including Servicing, Manufacturing, Broadcasting and Communications, Automation, Radar, Government Missile Projects.

NATIONAL SCHOOLS SHOP-METHOD HOME TRAINING, with newly added lessons and equipment, trains you in your spare time at home, for these unlimited opportunities, including many technical jobs leading to supervisory positions.

YOU LEARN BY BUILDING EQUIPMENT WITH KITS AND PARTS WE SEND YOU. Your National Schools course includes thorough Practical training—YOU LEARN BY DOING! We send you standard equipment of professional quality for building various experimental and test units. You advance step by step, perform more than 100 experiments, and you build a complete TV set from the ground up, that is yours to keep! A big, new TV picture tube is included at no extra charge.

EARN AS YOU LEARN. We'll show you how to earn extra money right from the start. Many of our students pay for their course—and more—while studying. So can you!

RESIDENT TRAINING AT LOS ANGELES

If you wish to take your training in our Resident School at Los Angeles, the world's TV capital, start now in our big, modern Shops, Labs and Radio TV Studios. Here you work with latest Electronic equipment—professionally installed. Most complete facilities offered by any school. Expert, friendly instructors. Personal attention. Graduates work on Placement Service. Help in finding home near school—and part time while you learn. Check box in coupon for full information.

MAIL NOW TO
NATIONAL TECHNICAL SCHOOLS, Dept. R2G-60
4000 S. FIGUEROA ST. LOS ANGELES 37, CALIF.

These two FREE books will show you how!

You get all information by mail...You make your own decision...at home! NO SALESMAN WILL CALL

YOU GET...

- 19 Big Kits!- YOURS TO KEEP!
- Friendly Instruction and Guidance
- Job Placement Service
- Unlimited Consultation
- Diploma—Recognized by Industry
- EVERYTHING YOU NEED FOR SUCCESS!

SHOP-METHOD HOME TRAINING COVERS ALL PHASES OF INDUSTRY

1. Television, including Color TV
2. Radio AM & FM
3. Electronics for Guided Missiles
4. Sound Recording and Hi-Fidelity
5. FCC License
6. Automation and Computers
7. Radar & Micro-Waves
8. Broadcasting and Communications

NATIONAL SCHOOLS
Los Angeles 37, Calif.

June, 1960

AmericanRadioHistory.Com
NEW STEREO PREAMP KIT

★ The unique "no distortion" performance initiated by the famous DYNAKIT Pre-amplifier.
★ 7 stereo inputs, DC heaters, built-in power supply, DYNA's exclusive "blend" control.
★ Highest gain, lowest noise, greatest channel separation, and the easiest to use.
★ The ultimate in simplicity — 2 preassembled printed circuit boards cut assembly time to 8 hours.
★ Complete with cover $59.95* net.

NEW STEREO 70 KIT

★ Dual 35 watt super-quality Amplifiers—70 watt continuous monophonic rating—160 watt peak.
★ All critical parts on prefabricated printed circuit assembly reduces wiring time to five hours.
★ Premium quality parts conservatively operated permit one-year guarantee.
★ Uncompromised design for finest performance — usable with all speakers.
★ Only $99.95* net including all parts, instructions, and protective cover.

Available from leading Hi-Fi dealers everywhere. Descriptive brochure available on request.
* Slightly higher in West

DYNAKO, INC.
Dept. FE, 3916 Powelton Ave., Phila. 4, Pa.

Car Radio Conversion

★ I converted a car radio for home use as per Mr. Louis' article in the February issue and am very pleased with the results. In fact, the performance of the converted car radio now rivals that of my expensive table radio.

Incidentally, I installed a ferrite antenna in place of the original antenna and a 12" speaker instead of the smaller car speaker. Many thanks to you and Mr. Louis for the fine article.

JONATHAN SHAPIRO
New York, N. Y.

Bouquets

★ Please allow an "outsider" to the electronics field (I'm a mechanical engineer) to congratulate you on putting out such an interesting, readable magazine. Largely through your efforts, I'm beginning to think I may someday understand the realm of the electron.

Thanks particularly for the insert feature, "Understanding Transistor Circuits," in the August, 1959 issue. I will always cherish this article as being the first real light shed on transistor circuit design for me.

Bouquets also to Lou Garner for his brief analyses of readers' circuits in his Transistor Topics column. They are always clearly written and understandable.

And thanks for remembering that every reader is not an electronic genius.

CHARLES H. DAVIS
Westbury, N. Y.

Foreign Vs. Domestic Watts

★ Recently while I was in a radio shop exchanging yarns with my serviceman friend, I noticed that the British-made speaker he was installing in a cabinet was marked "British rating 15 watts/American rating 30 watts." This seemed to indicate that an American watt is half a British watt, possibly also explaining why so many American amplifiers have advertised outputs of 40, 50, and even 70 watts.

However, I have always understood that wattage was calculated by multiplying the current

Always say you saw it in—POPULAR ELECTRONICS
6 REASONS WHY RCA TRAINING IN ELECTRONICS

1. You get the finest training-at-home under the supervision of the RCA INSTITUTES, experts in technical training for over 50 years. The very name "RCA" means dependability, integrity, and scientific advance.

2. You get comprehensive training in your choice of four complete, up-to-date Courses... from basic electronics theory to Color TV and Automation.

3. You get Theory, Experiment, and Service Practice starting with the very first lesson... a complete training package throughout the course. No special technical background is required.

4. You get prime quality equipment as a regular part of your Course... equipment that you keep and use on the job. You never have to take apart one piece to build another.

5. You get each study group on a pay-as-you-go basis. Should you wish to interrupt your training at any time, you will not owe RCA Institutes a penny more, unless and until you decide to resume the Course.

6. You get top recognition — worldwide. Graduates of RCA Institutes now work for leaders in the electronics field; many have their own businesses. This record is true tribute to the high quality of RCA Institutes training.

RCA INSTITUTES, Inc. Home Study School
A Service of Radio Corporation of America
350 West Fourth Street, New York 14, N. Y.

Please rush me your FREE illustrated 64-page book "Your Career in Electronics," describing your home training programs. No obligation. No salesman will call.

Name Age
Address ..

City Zone State
Korean Vet? Enter discharge date

Canadian—Take advantage of these same RCA courses at no additional cost. No postage, no customs, no delay. Send coupon to:
RCA Victor Company, Ltd., 5001 Cote de Liesse Rd., Montreal 9, Quebec

Send for this 64-page Home Study Catalog FREE!

June, 1960
Letters

(Continued from page 14)

...through a load by the voltage across it. How, then, can a British watt be double an American watt? Or is this discrepancy simply traceable to overenthusiastic advertising copy writers?

J. R. H. Bell
Harvey House, Collegiate Sch.
Wanganui, New Zealand

A watt is still a watt regardless of which side of the ocean it’s measured on. Reader Bell’s confusion lies in the fact that there is not universally accepted method of measuring the power output of an amplifier. Generally speaking, the greater the output, the greater the distortion. This means that an amplifier’s output will vary, depending upon how much harmonic distortion you are willing to allow—0.1%, 1%, 2%, or more. You can also rate the power output at a certain percentage of intermodulation distortion—2% for example. Or you can do your measuring at the point where the output waveform as observed on an oscilloscope begins to clip.

To explain the specific question raised by Mr. Bell, British manufacturers generally rate the power output of their amplifiers at lower distortion levels than do American manufacturers. For example, the Leak “Point One” series of amplifiers and preamplifiers is so named because their output is measured at 0.1% harmonic distortion.

It is fairly obvious, therefore, that any power output claim is virtually meaningless unless the manufacturer also states the distortion level at which the power output was measured. This is the general point of the new IHFM standards for measuring amplifiers: a statement of power output should always be accompanied by the distortion level at which the measurement was made.

Wireless Metronome

I recently completed the wireless metronome described in your January issue. Other readers who plan to build this unit may be interested to know that instead of winding coil LT myself, I used a standard Vari-Loopstick. This arrangement seems to work very well.

Michael Axelrad
Uniontown, Pa.

Young Experimentor

My son George, who is twelve years old and a novice electronic experimenter, performed some modifications on the “Sensitive Diode Transistor Radio” described by Art Trauffer in your January issue. I think these changes will be of interest to your readers.

Instead of the antenna coil recommended by Mr. Trauffer, George used a four-contact antenna coil that he salvaged from an old radio. In addition, he connected the set to an outside antenna by trying various connections on the antenna coil and by attaching the outside antenna alternately to the stator and the rotor of the variable capacitor, George was able to receive short-wave stations as well as broadcast-band stations.

During the week of March 20th to 26th, Radio

(Continued on page 20)
That's right! Audio Devices has cut at least 31% off the price of its premium-quality Audiotape on 1½-mil "Mylar." Now you can enjoy all the advantages of DuPont's fabulous "Mylar" for little more than the cost of ordinary plastic-base tape.

Audiotape on 1½-mil "Mylar" is the finest tape in the Audiotape line. Its tough, durable "Mylar" base and professional-quality oxide make it the perfect tape for schools, recording studios, radio and TV stations, military users—as well as discriminating home recordists.

See your Audiotape dealer as soon as possible. At the new low prices, his stock will move fast. (Similar price reductions have also been made on Master "Low Print-through" Audiotape on 1½-mil "Mylar.")

"Mylar" is DuPont's trademark for its polyester film—the toughest, most durable recording tape base material known to man. "Mylar" cannot dry out or become brittle with age. Radical differences in temperature and humidity have no effect on it. Recording tapes on "Mylar" can't break or stretch in normal use, regardless of temperature or humidity. Most importantly, "Mylar" is a known, tested base material—proven by years of use in telemetry, automation and electronic computing applications. Millions of feet have been recorded by professional and amateur sound recordists, too.
ELECTRONICS BOOK SERVICE will send you your choice of the world's greatest electronics books with a 7-DAY MONEY-BACK GUARANTEE

Here are some of the world's greatest electronics books...chosen carefully by the editors of the Ziff-Davis Electronics Division as among the best in their fields. You'll find top-notch texts and manuals on theory and instruction...important volumes covering every aspect of high fidelity and tape recording...reference books to help you understand such fields as computers, citizens band and electronics experimentation. Each volume is designed to help you get more know-how, greater enjoyment from your electronics specialty—and each is sent to you with this guarantee: If you are not completely satisfied after reading and studying your books for seven full days, return them and you will receive a complete refund, with no questions asked! Here is the perfect way to build the library every man in electronics must have. A perfect way, incidentally, to solve gift problems too. Simply use the coupon below to indicate your choices and to place your order!

THEORY AND INSTRUCTION

2015. BASIC ELECTRONICS by BERNARD GROB. An introductory text on the fundamentals of electricity and electronics for technicians in radio, television and industrial electronics. Exceptionally clear style makes this book ideal for home study. $9.25

2018. ELEMENTS OF RADIO by A. MARCUS & WM. MARCUS. Employing a unique "spiral" method of instruction, this is an excellent one-volume course on the essentials of radio. Over 500 diagrams and drawings. $7.00

2016. ELECTRONICS DICTIONARY by COKE & MARCUS. Definitions of almost 6,500 terms, abbreviations. An essential volume. $6.50

2014. BASIC ELECTRONICS by J. DALLY & R. A. GREENFIELD. Here, in twelve chapters, is a complete general introduction to electronics for technicians who make use of complex electronic equipment in modern laboratories. $9.00

2009. TELEVISION AND FM ANTENNA GUIDE by EDWARD M. NOLL & MATTHEW MANDL. Two antenna experts tell you their secrets of antenna choice and installation for best reception in any area. Loaded with useful tips on improving reception in fringe and difficult areas. $5.25

2004. FM RADIO SERVICING HANDBOOK. A practical guide to frequency modulated VHF radio receivers, their design, construction, alignment and repair; with chapters on adaptors, aerials and hi-fi audio equipment. $5.00

2025. UNDERSTANDING RADIO by WATSON, WELCH & EBY. Here is the perfect volume for those with little or no technical knowledge who wish to know the fundamentals of radio theory and servicing. Complete explanations of 24 major areas of radio. $7.95.

Always say you saw it in—POPULAR ELECTRONICS

2044. HI-FI ANNUAL & AUDIO HANDBOOK (1960 edition—Paper). $1.00

2045. HI-FI DIRECTORY & BUYERS' GUIDE (1960 edition—Paper). $1.00

2047. YOUR CAREER IN ELECTRONICS (1960 edition—Paper). $1.00

2048. ELECTRONICS EXPERIMENTER'S HANDBOOK (1960 edition—Paper). $1.00

2048C—cloth, $1.95

2043. STEREO-HI-FI GUIDE (1960 edition—Paper). $1.00 2043C—cloth, $1.95

2043/59. HI-FI GUIDE & YEARBOOK (1959 edition—Paper). $1.00

AmericanRadioHistory.com
2042. **TECHNIQUES OF MAGNETIC RECORDING** by JOEL TALL. Brings the many aspects of this exciting new field into focus through descriptions of the various recording models, techniques and practical uses in TV, radio, and film. $7.95

2032. **HI-FI GUIDE** by DON HOFELTER. This is the latest and most comprehensive of this author's books on hi-fi fidelity. Here's the whole hi-fi story in simple, everyday language, easily understood by every hi-fi fan. $1.25

2031. **ELEMENTS OF MAGNETIC TAPE RECORDING** by N. M. MATYNE. Here's how to get professional results with tape the way the experts do. Complete nomenclature, basic techniques, how to splice and edit, how to repair and maintain your recording equipment. Illustrated. $7.95

2034. **LOW-COST HI-FI** by DONALD CARL HOFELTER. Hundreds of hints for budget hi-fi will be found in these fourteen chapters with over 200 detailed photographs, drawings and diagrams. $2.50

2033. **HIGH QUALITY SOUND REPRODUCTION** by JAMES MORT. This book is the perfect manual both for the professional engineer and for the amateur interested in the problem of reproducing sound with a high degree of fidelity. Practically the whole sound reproduction field is covered in complete detail. The mathematical sections have been concentrated into an appendix for each chapter. Here's the whole "why" and "how" of sound reproduction. Profusely illustrated. $14.00

2035. **MAGNETIC TAPE RECORDING** by H. G. M. SPARR. From the Principles of Magnetism through Applications of Magnetic Recording, the 14 chapters and two appendices comprising this volume bring you an exhaustive coverage of the field. Covers such applications of recording as TV signal recording, medical and psychological uses, etc., in addition to conventional spheres of music and speech recording. $8.50

2038. **THE PRACTICAL HI-FI HANDBOOK** by CORDON J. KING. A guide to hi-fi sound reproduction for service engineers and amateur enthusiasts. Chapters on amplifiers, loudspeakers, pickups, microphones, record players, disc and recording, and stereoaphones. $6.00

2037. **REPAIRING RECORD CHANGERS** by EUGENE ECKLUND. A practical manual on repair of mechanical elements of record changers, including pickups, needles, record changing actions, motors, drives, and tripping, dropping and shut-off mechanisms. Magnetic recorder repairs also covered. Perfect guide for troubleshooting. $5.95

42. **REVERE TAPE RECORDER GUIDE** by K. S. TYDINGE. $1.95

2039. **RIBBONS OF SOUND** by K. A. BARLEBEN. A perfect introduction to tape recording principles and practices. Paper, $2.50; $8.95 same title in cloth binding. $3.50

2040. **TAPE RECORDERS AND TAPE RECORDINGS**. An ideal sourcebook of information on all aspects of tape recording. Covers all fundamentals necessary to realize full potential of your tape equipment. Paper, $2.95

49. **TAPE RECORDER GUIDE** by MARSHALL. $1.95

49. **YOUR TAPE RECORDER BY MARSHALL.** $4.95

2040. **HI-FI STEREO FOR YOUR HOME by ARTHUR WHITMAN.** $3.50

IMPORTANT NEW BOOKS

2065. ELECTRONIC EXPERIMENTER'S MANUAL by DAVID A. FINDLAY. With a few waaers worth of basic tools and this book to guide you, you can explore the wonderworld of electronics experimentation more completely than ever before. Learn about every component used in experimentation, every tool, its function. 10 big sections, including one of exciting projects you'll build and use. $4.95

2069. COMPUTERS AND HOW THEY WORK by JAMES FANNESTOCK. A fact-filled guidebook to electronic computers. Covers the history of computers and explains the workings of every major computer system ever used. Must reading for career-minded students and electronics pros who want a more complete knowledge of this important field. $4.95

ELECTRONICS BOOK SERVICE

A DIVISION OF ZIFF-DAVIS PUBLISHING COMPANY
434 South Wabash Ave., Dept. ZE660
Chicago 5, Ill.

Please send me the books listed below. I understand that if I am not completely satisfied, I may return any or all books within seven days for a full refund.

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>TITLE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL

(If you need additional space to list more books, attach a sheet of paper with additional list.)

My money order or check for the total above, $_____________________, is enclosed.*

☐ Please send me your FREE catalog on electronics books.

Name

Address

City Zone State

*On New York City orders, add 3% sales tax. Sorry—no charges, or C.O.D. orders.

June, 1960
Moscow came in consistently to the degree that 90% of the programs were understandable. George also logged Geneva, Sofia, London, and some Spanish-speaking stations. Selectivity was not good, and the foreign stations did not come in strong until after six in the evening.

George and I think that articles such as Mr. Trauffer's, which leave something to the imagination, are more worthwhile than those that tell the "complete" story. We were certainly amazed at our ability to pick up stations on the other side of the world with a 1 1/2-volt radio you can hide in your hand.

JOSEPH E. FINEGAN
Rumson, N. J.

Metal Locator

If any of your readers have built and used the transistorized metal locator described in the June, 1959 issue, I would appreciate hearing from them. Could it possibly locate an outboard motor in about eight feet of water? Does anyone have any suggestions?

S. GRYWINSKI
Box 266, Fisher Branch
Manitoba, Canada

The metal locator you mention won't operate through eight feet of water, but perhaps one of our readers has made a modification to increase its range. Our suggestion is that you tie the motor to the boat from now on!

Dry Cell Rejuvenator

I have just finished building the dry cell tester and rejuvenator described in your January issue by James E. Murphy. Although I am a novice who doesn't know a milliampe from a watt, the gadget is perking right along charging the little dry cells, and, incidentally, making my nine-year-old daughter very happy.

Would it be possible to extend the usefulness of this device so that it could charge six-volt lantern-type batteries and the 22 1/2-volt batteries used in flash guns?

F. E. BLAINE
Hamburg, N. Y.

We can't give you any tried-and-tested information, but a transformer with a 12- or 14-volt secondary—rather than the 6-volt secondary specified by Mr. Murphy—might do the trick. The problem is in getting enough reverse current flow through the battery. If a second transformer proves to be satisfactory with higher-voltage batteries, some type of a switch will have to be installed to allow the original transformer to be used for rejuvenating 1 1/2-volt batteries.

Always say you saw it in—POPULAR ELECTRONICS
IMPORTANT: For the man who wants to make big money in Radio-Television!

ONLY SPRAYBERRY TRAINING IN
RADIO and TELEVISION

OFFERS YOU ALL OF THESE VITAL NEW ADVANTAGES TO HELP YOU EARN MORE MONEY FROM THE START!

NEW BUSINESS BUILDERS
...through these practical proven plans and ideas we help you make plenty of extra money in spare time while training.

NEW TRAINING EQUIPMENT
... the famous Sprayberry Training kits have been newly engineered by our staff to offer you the latest in Radio-TV Service Techniques!

NEW TRANSISTOR COURSE
... literally millions of new transistor radios are being used. We show you how to make money fixing them!

NEW HIGH FIDELITY
... there's big money to be made installing and servicing Hi-Fi units. Your Sprayberry training now offers you this valuable and profitable preparation!

TRAIN AT HOME—SPARE TIME WITH THESE
25 BIG COMPLETE KITS of PARTS & EQUIPMENT
You learn Radio-TV Servicing the best way... the practical way... testing and assembling these modern kits of equipment.

The field of Radio-Television Servicing is such a fast moving industry that the best jobs and biggest incomes always go first to the man with the most modern, complete and up-to-date training. Thanks to constant revision and improvement... Sprayberry Training helps you earn more from the start... and keeps you earning more in the months and years ahead!

Make no mistake! All radio-television training is not alike. The basic purpose behind Sprayberry Training is to prepare you as rapidly and as surely as possible... to make top money servicing Radio and Television sets and equipment. This is where the big money has been for years... and will continue to be in the years ahead.

It's important for you to know that for over 30 years... Sprayberry Training has been preparing ambitious men for success in this interesting and profitable kind of work. Our school has helped hundreds to qualify for the best jobs... or to get started in profitable businesses of their own. Today our student rolls are the largest in our school's history... because the need and demand for Radio-Television Service Technicians has never been more urgent.

Just $6.00 Starts You Up
To encourage more men to enter Radio-Television at once... to help fill the great need for trained men... we're making it easier than ever before to start training. Just $6.00 enrolls you. This liberal offer is naturally limited. Get the facts now and consider enrollment while these favorable terms are available to you.

KEEP YOUR JOB... while learning
Under the Sprayberry Plan you train entirely at home in spare time. You combine the most modern lessons training with fascinating and invaluable practical work with 25 big kits of parts and equipment that we supply. You get the equivalent of years of shop practice... and you can train as fast or as slowly as you wish. We help you make excellent spare time money while learning... and everything you receive—lessons, books, manuals, equipment—all yours to keep!

This is the Radio-Television industry's most modern and up-to-the-minute training. Sprayberry is the one school that gives you personalized attention and takes a real interest in your progress. Remember... just $6 starts you! Mail the coupon today. Let the facts speak for themselves. Let us send you our new catalog and sample lesson... and prove the kind of opportunity that Sprayberry training can open up for you.

MAIL COUPON—No Salesman Will Call

SPRAYBERRY ACADEMY OF RADIO-TELEVISION
Dept. 105-M, 1512 W. Jarvis Ave., Chicago 26, III.

Please rush all information on your ALL NEW Radio-Television Training Plan. I understand this does not obligate me and that no salesman will call on me. Include New Catalog and Sample Lesson FREE.

NAME

ADDRESS

CITY

STATE

June, 1960 21
"HOW TO TROUBLESHOOT TV SYNC CIRCUITS" by Ira Remer. Published by John F. Rider Publisher, Inc., 116 West 14th St., New York, N. Y. Soft cover. 128 pages. $2.90.

Well organized and clearly written, this volume offers a wealth of information on the why's and wherefore's of sync circuits. The picture-tube photos that illustrate sync-circuit faults are excellent. Fundamentals of the subject are covered in detail, and a section is included which analyzes the various sync troubles encountered in color receivers. Fruitful reading for the television trouble-shooter.

This useful book presents base diagrams for over 1500 tubes in triplicate. Every page is split into three horizontal sections, each showing the base diagram of the same tube. By flipping page segments, the user can have as many as three different tube diagrams in front of him at one time. This arrangement should prove a big timesaver in working on unfamiliar radios or TV receivers.

"SERVICING HI-FI AM-FM TUNERS" published by Howard W. Sams and Co., Inc., 1720 East 38th St., Indianapolis 6, Ind. Soft cover. 160 pages. $2.95.

This is a collection of "PHOTOFACT"...
Why be satisfied with less when:

this College-level program of home study in Electronic Engineering Technology

—can help you achieve new levels of income and success

CREI OFFERS COLLEGE-LEVEL OPPORTUNITY
to the man who wisely realizes that the recognition and rewards in electronics are now going to other men—especially the man with modern advanced education.

WITHIN TWO TO FOUR YEARS, depending on the courses selected and amount of stick-to-itiveness brought to bear, you can complete this program in electronics, which is comparable in technological content to advanced residence courses. You study during hours chosen by you. You have plenty of time to do your best.

THIS ADVANCED PROGRAM IS THE CULMINATION of 33 years of working closely with leading companies and Government agencies in the critical field of electronics, where demand for engineering and technical personnel far exceeds the supply. The courses are presented in easy-to-understand form, and our experienced instructors guide your progress step by step.

YOU QUALIFY FOR CREI if you have a high school diploma or equivalent, and if you have had basic electronic training and practical experience in electronics.

PLEASE WRITE US NOW FOR DETAILED, ILLUSTRATED, 44-PAGE CATALOGUE, which gives complete information on home study program and registration procedure. CREI also offers a Residence School Program, where graduates earn AAS degree. Day and evening classes start at regular intervals. Electronics experience is not required for admittance to the Residence School.

CREI PROFESSIONAL STANDING

U.S. Office of Education lists CREI as "an institution of higher education."

CREI was a co-founder of the National Council of Technical Schools.

CREI was among the first three technical institutes whose curricula were accredited by the Engineers' Council for Professional Development.

More than 20,500 students are enrolled in CREI Home Study and Resident Programs.

America's leading electronics, communications, missiles and space exploration companies and Government agencies recognize CREI. Many of these organizations actually pay the tuition for their employees studying with CREI.

Mail This Coupon Today

CAPITOL RADIO ENGINEERING INSTITUTE
ECPD Accredited Technical Institute Curricula • Founded 1927
Dept. 1206-G, 3224 16th St., N.W., Washington 10, D. C.
Please send me your course outline and FREE 44-Page Book
"Insurance for Your Future in the New World of Electronics"
. . . describing opportunities and CREI home study courses in Advanced Electronic Engineering Technology.

☐ Radar, Servo and Computer Engineering Technology
☐ Electronic Engineering Technology
☐ Communications Engineering Technology
☐ Television Engineering Technology
☐ Aeronautical Electronic Engineering Technology
☐ Automation and Industrial Electronics Engineering Technology

Check field of greatest interest

Name

Age

Street

City

Zone

State

Check: □ Home Study □ Residence School □ Korean Veteran

To obtain fast, immediate service and to avoid delay, it is necessary that the following information be filled in:

Employed by

Type of Present Work

Education:

Years of High School

Other

Electronics Experience

June, 1960

AmericanRadioHistory.Com
What do you need in Battery Power?

ZINC-CARBON? NICKEL-Cadmium? WATER-ACTIVATED? MERCURY?

MORE THAN 5,000 BURGESS BATTERY TYPES

each with the highest measure of uniform dependability! This is why 2 of 3 electronic engineers specify

BURGESS BATTERIES

Here are 5 reasons why Burgess leads in the electronics market.

1. EXCLUSIVE WAFER CELL CONSTRUCTION
 ...offers compactness, long shelf life, exceptional service life. A 30% increase in battery life at no increase in size.

2. TRANSISTOR ACTIVATORS
 Burgess Transistor Activator Batteries are smaller! Yet they deliver 30% more power because of the patented "Wafer-Cell" construction! Activators give compact power, uniform performance, longer shelf life.

3. RESERVE BATTERIES
 High energy output in compact form. Can be stored dry for years! Activated by immersing in water. No spilling or leaking! Wide range of efficient operating temperatures. Designed for your specific applications.

4. MERCURY ACTIVATORS
 Burgess exclusive patents offer sealed-in-steel protection, wide temperature range efficiency, controlled venting, patented inner cell connector, and flat discharge curve.

5. SEALED NICKEL-CADMIUM BATTERIES
 A secondary rechargeable battery system which delivers high energy output from a small package! Hermetically sealed-in-steel cells eliminate annoying maintenance and addition of liquids. Can be recharged many times.

See your local radio serviceman—dealer for more information.

BURGESS BATTERY COMPANY
DIVISION OF SERVEL, INC.
FREEPORT, ILLINOIS
NIAGARA FALLS, CANADA

Bookshelf (Continued from page 22)

folders on AM-FM tuners and receivers produced in 1958-1959. Manufacturers represented are Altec Lansing, Challenger, Chapman, Bogen, Fisher, Grommes, Harman-Kardon, Knight, Madison Fielding, Masco, Newcomb, Pilot, Scott, Sherwood, and Stromberg-Carlson. Information on each model includes a schematic, resistance charts, photos, parts list, dial-stringing guide, etc. A special section covers speaker design and theory. Recommended to the service technician and to the hi-fi fan who likes to keep up to date on circuitry.

"FUNDAMENTALS OF ELECTRONICS" by Matthew Mandl. Published by Prentice-Hall, Inc., 70 Fifth Ave., New York 11, N. Y. 574 pages. $10.60.

Although this book covers some very familiar ground, it should not be considered just another volume on basic electronics. It has been written with unusual care; the author presumably kept the reader in mind at every step. Each new term is explained in such a logical manner that the reader can move on to new concepts without feeling that they are unfamiliar or difficult. Any possible points of confusion are cleared up almost before they can arise. The usual organization pattern for a text on basic electronics is followed—electron theory, magnetism, d.c., a.c., vacuum tubes, transistors, basic circuits, etc. Highly recommended as a text for the beginner and as a good reference book for the more experienced reader.

Brought completely up to the minute, the new edition of this book covers the field of...
Opportunities in Electronics

- Radar
- Guided Missiles
- Broadcasting
- Aeronautical Electronics

- Computers
- Automation
- Industrial Electronics
- Home Electronics

Are you interested in learning how you can have a profitable career in any or all of the above fields?

Find out how modern technical training and a Government License (FCC) can lead to profitable employment in any branch of electronics.

Thousands of interesting well-paid jobs in electronics must be filled. To fill such jobs, you need sound technical training. An FCC license is convincing proof of technical skill. Send for the three Cleveland Institute booklets offered here. They explain how you can prepare for an interesting and profitable career in electronics. Mail the coupon today—no obligation.

Good training doesn't cost—it pays!

Cleveland Institute of Electronics
Desk PE-65 4900 Euclid Ave. Cleveland 3, Ohio

Please send FREE Booklets prepared to help me get ahead in Electronics. I have had training or experience in Electronics as indicated below:

☐ Military ☐ Broadcasting
☐ Radio-TV Servicing ☐ Home Experimenting
☐ Manufacturing ☐ Telephone Company
☐ Amateur Radio ☐ Other

In what kind of work are you now engaged?
In what branch of Electronics are you interested?

Name
Age
Address
City
Zone
State

Desk PE-65

Send for these 3 FREE Booklets
Now you can master

BASIC ELECTRICITY

BASIC ELECTRONICS

The Rider 'picture-book' way

Fabulous illustrated training course now used by U.S. Navy—No Other Books Like Them!

A Complete Idea on Every Page

Here's how this easy, illustrated course works: every page covers one complete idea! There's at least one big illustration on that same page to explain it! What's more, an imaginary instructor stands figuratively at your elbow, doing "demonstrations" that make it even easier for you to understand. Then, at the end of every section, you'll find review pages that highlight the important topics you've just covered. You build a thorough, step-by-step knowledge at your own pace—as fast as you yourself want to go! Sponsored by the Navy to turn out trained technicians in record time, this modern course presents Basic Electricity and Basic Electronics in a simple way that everyone can grasp—regardless of previous education!

10 Complete Volumes

BASIC ELECTRICITY—Volumes 1 and 2 cover DC components and circuits; Volumes 3 and 4 cover AC components and circuits; Volume 5 covers AC and DC motors and machinery.

BASIC ELECTRONICS—Volume 1 covers Diodes and Power Supplies; Volumes 2 and 3 cover Amplifiers and Oscillators; Volumes 4 and 5 cover Transmitters and Receivers.

Home Study Without Correspondence

This course is so different, so complete—there's no need for the usual letter writing, question and answer correspondence! Learn at home—at your own pace!

10 Day Examination—Money Back Guarantee

Send today for these exciting new training courses—you risk nothing! When you receive the volumes, examine them in your own home for 10 full days. If, at the end of that time, you're not completely satisfied, simply return the books to us and we'll gladly refund your full purchase price! Total cost for either 5-volume course is only $100.00! In Canada, prices approximately 5% higher.

BASIC ELECTRICITY $169.50; 5-vols. soft covers, $10.00; $169.11, all 5 vols. in one cloth binding, $115.50.

BASIC ELECTRONICS $175.00; 5-vols. soft cover, $10.00; $175.11, all 5 vols. in one cloth binding, $115.50.

JUST PUBLISHED

VOLUME 6 BASIC ELECTRONICS by Van Valkenburgh, Nooger & Neville Inc. We are pleased to announce the publication of Volume 6, BASIC ELECTRONICS by Van Valkenburgh, Nooger & Neville. Volume 6 is a companion volume to the present five-volume course on Basic Electronics by the above authors. It is intended to enable you to expand into the areas of semiconductors, transistors and frequency modulation after the content of the first five volumes has been completed. Volume 6 utilizes the same famous "picture-book" technique used in the present highly successful five-volume course.

The original five-volume course in BASIC ELECTRONICS is available as heretofore as five individual volumes in paper covers and as all five volumes in one cloth binding. Vol. 6 $170.00 paper cover, $2.90; $170.65, cloth $3.60.

at electronics parts jobbers or bookstores, or order direct:

DEPT. PE-6

John F. Rider Publisher Inc. 116 West 14th Street, New York 11, N. Y. Canadian prices same as U.S. add city & state taxes. All prices subject to revision.

Bookshelf (Continued from page 24)

meters—how they work and how to use them—in admirable fashion. The text is complete, and, as the greatest amount of space is devoted to the design of meters, the reader should obtain a solid grounding in this subject. Recommended as an excellent study and reference work.

Probably a great many Popular Electronics readers cut their FM eyeteeth on the earlier editions of this book. Those that did will remember that Mr. Kiver deals with his subject clearly and thoroughly. In this expanded and up-to-date edition, the basics of FM theory, analyses of circuits, alignment, and the fundamentals of FM transmitters are covered in detail. Although the treatment is not as simplified as the title might lead one to expect, this book provides an excellent introduction to FM for anyone who wants a thorough grounding in FM theory and operation.

Miscellaneous Literature

A new commercial sound catalog for use by architects, engineers, sound men, and consumers has been issued by Electro-Voice, Inc., Buchanan, Mich. Recommendations for public address, home recording, communications and other applications for microphones and loudspeakers are included. Ask for your copy of "Commercial Sound Catalogue No. 132."

Radio amateurs will be interested in the new "Rider Global Time Conversion Simplifier." This 17" x 22" color chart tells you the time anywhere in the world at a glance. It is available from John F. Rider Publisher, Inc., 116 West 14th St., New York, N. Y., for $1.00.

Always say you saw it in—POPULAR ELECTRONICS
Now available at electronics parts stores, hi-fi salons, and record shops!

Stereo-Monophonic Test Record
Specially packaged at only $1.59
($1.78 in Canada)

As a man who is seriously interested in hi-fi, you will certainly want to take advantage of this new and important test record, now on sale at electronics parts stores, hi-fi salons, and record shops. It will enable you to know your system inside-out. As a result, your listening enjoyment will be even greater than ever before.

This Stereo-Monophonic Test Record is the most complete test record of its kind—containing the widest range of essential check-points ever incorporated into one test disc! And, best of all, you need no expensive test equipment when you use this record! Just listen and get the thorough results you want—all checks can be made by ear!

This special test record brings you an extraordinary 2-way value. First, it guides you in evaluating the quality of reproduction your equipment now produces. Second, it specifies the adjustments necessary to get the best recorded sound you have ever heard! This is easily the best value of the year for everyone who owns a hi-fi system—either monophonic or stereo!

NOW ON SALE EXCLUSIVELY AT ELECTRONICS PARTS STORES, HI-FI SALONS AND RECORD SHOPS!

You can be sure this Stereo-Monophonic test record comes as close to perfection as is humanly possible, because the editors of ELECTRONICS WORLD — leading technical magazine in the field of electronics—have poured their accumulated know-how into this record. Purchase your record today! (If you find your dealer does not yet have a supply available, ask him to order them for you.)

SPECIAL NOTE TO DEALERS: for information on ordering your supply of records, contact Ziff-Davis Publishing Company, Direct Sales Division, One Park Avenue, New York 16, N. Y.
Hear these authentic recordings of dramatic events from "The Amazing World of Short Wave Listening"
narrated by Alex Dreier, Radio-TV "Man on the Go"
- President's voice from outer space!
- Actual capture of a desperate criminal!
- Radio amateur at Little America!
- Ships at sea... aircraft in action!

S-38E receiver $59.95
3 short wave bands plus standard broadcast. Built-in speaker, headset output.

MAIL COUPON TODAY!
hallicrafters
DEPT. 36 CHICAGO 11, ILL.

Gentlemen: Please rush by return mail my recording, "The Amazing World of Short Wave Listening." I enclose 25c.
NAME
ADDRESS
CITY STATE

SAVE YOUR RECORDER MOTOR
If you frequently use your tape recorder's audio section as a utility amplifier, you can cut wear on the motor by installing an S.P.S.T. switch in series with one of the motor power leads. Most recorders are vented adequately enough to cool the enclosure without the help of the motor's fan. If your recorder does appear to heat up with the motor off, turn it on occasionally.—John A. Comstock, Wellsboro, Pa.

ROUND-JAWED ALLIGATOR CLIPS
Alligator clips have a habit of slipping off phono plugs, dial lamp bases, or other round objects. Bending the jaws of a clip will enable them to get a firmer grip on such objects. Use a pair of long-nose pliers and carefully bend each jaw as shown. Re-

Always say you saw it in—POPULAR ELECTRONICS
The Progressive Radio "Edu-Kit" is the largest educational kit in the world and is universally accepted as the standard in the field of electronics training. The "Edu-Kit" teaches you to build Radio & Electronics by learning by doing. You will construct, learn schematics, study theory, practice troubleshooting—all in a closely integrated program that has given outstanding results in keeping people in the field today.

You begin by examining the various radio parts of the "Edu-Kit." You then learn the function theory and wiring of these parts, then you build a simple radio. With this first set you will enjoy listening to regular broadcast stations, learn theory, practice building and transmitting. Thereafter you build more advanced radios, learn more advanced theory and wiring up to the modern high-fidelity stereo receiver. You will find yourself constructing more advanced multi-tube radios, circuit making and working like a professional. Included in this course are six radio Receiver, Transmitter, Code Oscillator, Signal Injector, Repair Course - all with "Edu-Kit" circuits. All "Edu-Kits" are tested in "Edo-World" laboratories, but genuine radio circuits, constructed by means of professional wiring and "Edu-Kit" equipment, are often taught as "Printed Circuits." These circuits operate on your regular AC or DC house current.

THE "Edu-KIT" IS COMPLETE

You will receive all parts and instructions necessary to build 16 different radio and electronics circuits, each guaranteed to operate. Our Kits contain tubes, tube sockets, variable, electrolytic, mica, ceramic and paper dielectric condensers, resistors, wire, strips, coils, hardware, tubing, punched metal cages, instruction manuals, hookup wire, solder, etc. In addition, you receive Printed Circuit materials, including Printed Circuit 150 Teachers Guide, 150 Student Assignment Books, 150 Professional electric soldering iron, and a self-powered Dynamic Radio and Electronics Textbook. The "Edu-Kit" also includes Code Instructions and the Progressive Code Oscillator. In addition to FCC-type Questions and Answers for Radio Amateurs, License examination, the "Edu-Kit" contains a Signal Injector, a High Fidelity Guide and a Quiz Book. You receive Membership in the Progressive Radio Consultants Service Certificate of Membership and Privileges. You receive all parts, tools, instructions, etc. Everything is yours to keep.

PRINTED CIRCUITRY

At no increase in price, the "Edu-Kit" now includes Printed Circuits. You build a Printed Circuit Signal Injector, a unique servicing instrument that can detect many Radio and TV troubles. This revolutionary new technique of radio construction is now becoming popular in commercial radio and TV sets.

Printed Circuit is a special foiled chassis on which has been deposited a conducting material which takes the place of wiring. The various parts are merely plugged in and soldered to terminals. Printed Circuitry is the basis of modern Electronic. A knowledge of this subject is necessary today for anyone interested in Electronics.
Tips (Continued from page 28)

inforce the bends with a small pool of solder on the outside of the jaw directly over the bend. The thumb tab on the clip can also be bent upward a bit to allow the jaws to open wider.—Art Trauffer, Council Bluffs, Iowa.

CLIP-ON SOLDERING-IRON HOLDER

An old tin-can lid can serve as a handy clip-on soldering-iron holder. Bend the lid into the shape shown—a "V" with ears—and clip it over the edge of the chassis by bending one ear down. This holder is especially useful when you are working on the underside of a set.—James Clifford, Detroit, Mich.

REPAIR "RABBIT-EARS" ANTENNAS

A telescoping "rabbit-ears" antenna often becomes worn after much use, with poor electrical contact between sections. You can tighten the loose sections and eliminate resistive contact between them by simply extending the ears and tinning about a half-inch of the lower portion of each section with a very thin layer of solder.—Charles Lang, San Francisco, Calif.

AMPLIFY YOUR WATCH TICKS

You can "play" the ticks of a watch or alarm clock over your hi-fi set by placing your crystal phono pickup on top of the watch as shown and turning the amplifier gain control full on. How does it work? The ticking of the watch vibrates the generating mechanism in the pickup; the loudness of the reproduced ticks depends on the sensitivity of your pickup, the gain of your amplifier, and the efficiency of your speaker. Better results can be obtained with the
YOU be the judge of knight-kit® value

FREE examination privilege

More and more people are finding out how easy it is to build exciting Knight-Kits, how satisfying they are to own, and how much they save. If you haven’t yet enjoyed the experience and fun of building and owning a Knight-Kit, we invite you to take advantage of our free examination offer. Order any Knight-Kit. Examine it on arrival. Inspect the quality of the components, the circuitry, the easy-assembly manual. We’re so confident you’ll want the kit, we can make this offer: If you’re not completely satisfied, just return the kit for full refund.

Order a Knight-Kit now. Know the thrill of the most satisfying building-your-own experience in electronics.

easiest to build... satisfying to own... money-saving

ONLY $2 DOWN on orders up to $50; $5 down on orders up to $200...

see scores of other knight-kits

HI-FI KITS
Stereo Preamplifier
60-W Stereo Amplifier
Monaural Amplifiers
Hi-Fi Tuners
Speaker Systems
and others

HOBBIEST KITS
"Space-Spanner" Radio
"Ranger" Radios
Transistor Radios
2-Way Intercom
Electronic Lab Kits
and many others

INSTRUMENT KITS
Lab AC VTM
VOM’s
5" Scopes
Tube Checkers
Signal Tracer
Audio Generator
Sweep Generator
plus many others

AMATEUR KITS
50-Watt Transmitter
Self-Powered VFO
100 kc Crystal Calibrator
Code Practice Oscillator
Grid Dip Oscillator

ALLIED RADIO

ALLIED RADIO, Dept. 23-F
100 N. Western Ave., Chicago 89, Ill.
□ Send FREE Catalog featuring Knight-Kits.

Name
Address
City, Zone State

AmericanRadioHistory.Com
Tips

(Continued from page 30)

pickup on the back of the watch. Caution: don’t try this experiment with magnetic
pickups since their internal magnets may detrimentally affect small watches.—Carl Dunant, Council Bluffs, Iowa.

INTERMITTENT TUBES

Battery radios or three-way portables that go dead may be suffering from oscillator-tube voltages that are either too low because of weak batteries or too high because of aging tubes. Some sets will operate for a time after a brief rest and then go dead again. The obvious remedy is a set of fresh batteries, even though the old ones still meet the demands of the other tubes.

Other sets that have been playing at reduced volume with relatively weak batteries will not operate at all with fresh batteries. In this case, the trouble may be a breakdown of aging elements in the oscillator tubes under the higher voltages from the new batteries. The remedy, of course, is to replace the faulty tubes—usually a 1A7-GT or a 1R5.—Lt. Col. Eugene F. Coriell, Wright Patterson A.F.B., Ohio.

TIPS WANTED

Are you aware that POPULAR ELECTRONICS is very much interested in receiving your Tips and Techniques hints? If you know of any shop or circuit short-cut or innovation, tell us about it and you may receive up to ten dollars for your trouble. Just send us a short typewritten description plus a sharp photograph or circuit drawing. Unused items will be returned only if they are accompanied by a stamped, self-addressed envelope. Why keep your pet ideas to yourself? Let everyone else in on them.
NEW! MADE IN U.S.A.

LAFAYETTE HE-15 CITIZENS BAND 11 METER SUPERHETERODYNE TRANSCEIVER

Not Superregenerative but SUPERHET

- Planetary Vernier Tuning: Controls include 3 position function switch (transmit, receive, plus transmit with spring return) and automatic noise limiting switch.
- High Output Crystal Microphone: 2 position push to talk slide switch; especially designed for sustained transmit operation with a minimum of background noise.
- Adapts for Use Anywhere: Modern compact styling. Brackets are supplied for easy mounting of unit in auto, truck or boat. Addition of 6 or 12 volt power supply (separately supplied) adapts transceiver for mobile operation. Only 4½"O x 6"H x 4"W.
- Anyone Can Operate: No examination or technical knowledge required—Any citizen 18 years or older is eligible for a license. Simply fill out FCC application supplied with HE-15 Transceiver.

HE-15 Factory Wired and Tested: Less antenna) 5.00 Down Net 64.50

Whip Antenna Net 3.95

Power Supply For 12 Volts Net 11.95

Power Supply For 6 Volts Net 11.95

NEW! LAFAYETTE TELESCOPIC CITIZENS BAND WHIP ANTENNA 3.95

- Chrome Plated
- Telescopes from 16½" to 40" Mounts Vertically or Right Angle

An outstanding antenna value. This high quality three section telescoping antenna is designed for attachment directly to your citizens band transceiver. Ideal for point to point service over short distances. Molded base loading coil has a threaded stud with a PL-259 plug—connector for vertical or right angle mounting. Shpg wt: HE-19 Net 3.95

NEW! LAFAYETTE RADIO FIELD INDICATOR 7.95

A Must For All Ham and Citizens Band

- Provides a Continuous Indication of Transmitter Output
- Rugged 200ua Meter Movement with Variable Sensitivity Control
- Requires no Electricity, Batteries or Transmitter Connection

Measures the RF field generated by any marine, mobile or fixed transmitter. Rear phone jack accepts earphones. Antenna extends from 3½" to 10¾". Bottom plate magnet allows mounting on any metal surface. Measures 3½"W x 2½"H x 2"D (less antenna). Shpg wt., 2 lbs.

LAFAYETTE "Tiny" 6-Transistor Radio

Sensational Performance In a Small Package

- 6 Transistors Plus a Germanium Diode
- Superheterodyne Circuit
- Vest Pocket Size—Only 4½"H x 2½"W x 1¼"D
- Built In Earphone Jack
- For Private Listening
- Trouble-Free Printed Circuit
- Built-In Ferrite Bar Antenna
- Economical—Uses Only 0.5 Volts Battery

ONLY 19.95

Complete with battery, carrying case and earphone. Shpg wt. 2 lbs.

FS-206 "Tiny" 6-Transistor Radio Net 19.95

Use in the Home

Boating — Ship to Shore

On the Form

Business — Trucking

FREE 308 Giant Size Pages

PLEASE RUSH ITEMS CHECKED

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HE-15 Citizens Band Transceiver</td>
<td>Net 64.50</td>
</tr>
<tr>
<td>TM-14 Radio Field Indicator</td>
<td>Net 7.95</td>
</tr>
<tr>
<td>FS-206 "Tiny" 6 Transistor Radio</td>
<td>Net 19.95</td>
</tr>
<tr>
<td>HE-19 Whip Antenna</td>
<td>Net 3.95</td>
</tr>
</tbody>
</table>

Enclosed Find $ Please include postage to cover shipping

FREE 308 Giant Size Pages

Name.

Address.

City Zone .State

LAFAYETTE RADIO • P.O. BOX 222, Jamaica 33, N.Y. • Dept. 1F-6

June, 1960
Experts agree that repeated playings will soon deteriorate the total quality of a disc recording. Yet, fifteen, fifty, five hundred playings from now, you can still enjoy the same sweet, clean highs, the same rich velvety lows that you cherished in your recordings today with a TELECTRO SERIES 900 STEREO TAPE DECK

Telectro's low, low price ... as low as $89.95 ... makes tape recording your most economical as well as your most satisfactory program source. Yet, in spite of its low price, a Telectro tape deck offers the quality and versatility demanded by the finest monaural and stereophonic high fidelity systems.

CHECK THESE TOP QUALITY FEATURES
4-track head for all stereo and monaural tapes • Interchangeable head assemblies • Stereo and monaural record/playback • Unique pushbutton controls • 3 speed versatility: 7½ ips, 3¾ ips, and the extra convenience of ultra-long-play 1½ ips • Solenoid-operated automatic shutoff • Digital tape counter • Rotary speed selector for easy speed choice • Unique brake design permits easy reel rotation • Fast wind—fast rewind, with no spillage or breakage • Pushbutton interlocks fulfill professional requirements.

Make your high fidelity system complete with a TELECTRO Stereo Tape Deck

A smart-looking "S" meter, the Model ME-63, is calibrated in microvolts ("S" units from 1-10 and 1-5) and in decibels from S-9 to 30 db. It is housed in a 4" x 2½" x 2½" gold box with a 1¼" meter and zero-adjust control. The ME-63 can be used with any receiver that has an a.v.c. circuit. Price, $5.88. (Olson Radio Corp., 260 South Forge St., Akron, Ohio.)

CADDY TUBE TESTER
A compact tube caddy with a built-in tube tester is being manufactured by Mercury Electronics Corp., 77 Searing Ave., Mineola, N. Y. The Model 102-C can carry a stock of 125 tubes; has a drawer for tools test leads, etc.; and tests over 700 tube types. Its 21 sockets are made of phosphor bronze, its panel of etched aluminum. Price, $74.50.

REMOTE TV TUNER
Essentially a TV set without sweep circuits and picture tube, the Tech-Master Always say you saw it in—POPULAR ELECTRONICS
CONVERT YOUR CAR RADIO FOR SHORT WAVE RECEPTION WITH...

MOBILETTE

INTERNATIONAL'S ALL TRANSISTOR, CRYSTAL CONTROLLED CONVERTER

Now, in a matter of minutes, your standard broadcast car radio becomes a short wave receiver . . . bringing in stations from coast-to-coast as well as the four corners of the globe.

Designed by International for AMATEURS, CITIZEN LICENSEES, SHORT WAVE LISTENERS, HOBBYIST.

Available in SEVEN frequency ranges covering the Amateur bands, 75 through 10 meters, the Citizens band, and WWV National Bureau of Standards Time Broadcasts.

Three simple steps to install. (1) Remove antenna lead from car radio and plug into input of Mobilette. (2) Plug jumper wire from Mobilette into antenna connection of car radio. (3) Plug power connector into cigarette lighter socket. It's that easy!

Works on either 6 or 12 volts without change. Miniature size.

International Mobilettes cover these short wave bands.

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>630 — 105</td>
<td>75 meters (Amateur)</td>
</tr>
<tr>
<td>630 — 104</td>
<td>40 meters (Amateur)</td>
</tr>
<tr>
<td>630 — 106</td>
<td>10 MC (WWV Time Broadcasts)</td>
</tr>
<tr>
<td>630 — 103</td>
<td>20 meters (Amateur)</td>
</tr>
<tr>
<td>630 — 102</td>
<td>15 meters (Amateur)</td>
</tr>
<tr>
<td>630 — 101</td>
<td>11 meters (Citizens)</td>
</tr>
<tr>
<td>630 — 100</td>
<td>10 meters (Amateur)</td>
</tr>
</tbody>
</table>

Available soon for 6 and 2 meters at slightly higher price.

Complete, ready to plug in and operate . . . only $19.95

Order direct from International. Terms F. O. B. Okla. City. Include postage. Shipping Weight 2 lbs.

INTERNATIONAL CRYSTAL MFG. CO., INC.
18 NORTH LEE — OKLA. CITY, OKLA.

June, 1960
The Taming Of The Shrill

Shakespeare tamed the shrew. Sonotone tames shrill noises - turntable rumbles!

With monophonic cartridges, distorting vertical vibrations may pass unnoticed. But in stereo, vertical rumblings can sound like elephants doing the cha-cha.

That's why Sonotone's model "8TA" stereo ceramic cartridge has an exclusive suppressor that reduces turntable rumble to an absolute minimum for highest fidelity. You'll hear the difference when you get a Sonotone!

Price $14.50 ... others from $5.45 to $29.50 (including mounting bracket).

FREE "Stereo Simplified" booklet - tells you how stereo operates. Write to:

Sonotone
Electronic Applications Division, Dept. C3-60
ELMSFORD, NEW YORK

products (Continued from page 34)

Model 23A remote-control tuner can be used with any standard TV receiver. It has an r.f. stage, three i.f. stages, two audio stages, a built-in speaker, and an output for a tape recorder or hi-fi set. The video output of the Model 23A "Duo-Master" is fed into the video detector stage of the TV set by a coaxial cable up to 60 feet in length. Price, $79.50. (Tech-Master Corp., 75 Front St., Brooklyn 1, N. Y.)

TRANSISTORIZED CONVERTERS

Two "Transipower" transistorized d.c.-to-d.c. converters are being offered by Cornell-Dubilier Electric Corp., South Plainfield, N. J. The Model 12TP12 is a transmitter power supply which converts 12 volts d.c. to 500 volts d.c. at 240 ma. (120 watts) or to 500 volts d.c. at 150 ma. and 250 volts d.c. at 100 ma. The Model 12TP3 is a receiver power supply which converts 12 volts d.c. to 300 volts d.c. at 100 ma. (30 watts) or to 300 volts d.c. at 70 ma. and 150 volts d.c. at 60 ma. Both units are miniaturized and light in weight. Prices: Model 12TP12, $60.00; Model 12TP3, $45.00.

TRANSISTOR INVERTER

The Arkay Model 2-120W transistor inverter converts 12 volts d.c. into 117 volts a.c. A two-transistor unit with a power capacity of 125 watts, it weighs 5½ pounds and measures approximately 10" x 4" x 5";

Always say you saw it in - POPULAR ELECTRONICS
MAGNETIC AMPLIFIERS CARRY THE LOAD!

Because magnetic amplifiers use no tubes and thus have virtually unlimited current capacity, they are utilized wherever demands are the most critical: jet bombers, atomic submarines, and industry. You can find out exactly what magnetic amplifiers are...what they do...how they work...in this special feature in July Popular Electronics!

YOU’LL ALSO ENJOY THESE INFORMATIVE JULY POPULAR ELECTRONICS FEATURES:

- **HI-FI MICROPHONES**
 Want to know how to choose the hi-fi mike for your needs...how to use it to best advantage...learn all about pick-up patterns? July Popular Electronics brings you the first of a two-part series that gives you a complete rundown on hi-fi microphones.

- **BUILD A ONE-TRANSISTOR VEST-POCKET RADIO!**
 Just one evening of work and you have yourself a personal receiver that provides amazingly good reception—without external antenna. Very simple to build...and it costs under $10.00.

- **DX’ING DOWN BELOW**
 There are some rare DX’ing delicacies down below—below the broadcast band, that is! You can find many interesting stations on longwave that start at frequencies as low as 15,000 cycles. This article tells you where to find them...how to receive them...what kind of receiver you need.

These features are typical of the coverage you’ll enjoy month after month in Popular Electronics...world’s leading electronic hobbyist magazine. Take advantage of the present low subscription rates to bring Popular Electronics to your door every month. Subscribe now!
price, $35.95 wired, $29.95 in kit form. (Arkay International, Inc., 88-06 Van Wyck Expressway, Jamaica, N. Y.)

THIN PANEL METER

The Parker panel meter with printed-circuit movement has been announced by Interlab, Inc., 437 Fifth Ave., New York 16, N. Y. The entire meter is contained in a housing only ½” thick and the mounting screws do double-duty as electrical connectors. According to the manufacturer, an electrical overload of 1000% for one second will not disturb the accuracy of the meter.

SUPER TWEETER

Response within ± 2 db to 40,000 cps is possible with the "Sphericon" Model T-202 tweeter produced by University Loudspeakers, Inc., 80 S. Kensico Ave., White Plains, N. Y. A domed phenolic diaphragm is acoustically loaded by a conoidal ring to give a 120° dispersion pattern in all directions.

Highly efficient, the tweeter comes complete with built-in 3000-cps crossover network, volume control, and 36” cable. Power-handling capacity is 30 watts of integrated material; nominal impedance is 8 ohms. Size: 4½” in diameter, 4” deep. Price, $24.94.

Build the Best CITIZENS BAND TRANSCEIVER...

Highly reliable, exemplary electronic, mechanical, industrial design. Powerful 5-watt (as defined by FCC) crystal-controlled transmitter & extremely sensitive, selective superhet receiver with RF stage & noise limiter. Built-in speaker, detachable ceramic mike. Pre-set & sealed crystal oscillator circuit elements. To change channels, just change crystals - no adjustments needed. Built-in variable "pil network matches most popular antennas. Portable whip & roof antennas available. No exams or special skill needed. Any citizen 18 years or older may obtain station license by submitting FCC form, supplied free by EICO.

Build the Best & TRANSISTOR RADIO RA-6

Kit $29.95 Wired $49.95
Includes FET, less 9V battery

Build the Best Ham Gear

New Code Practice Oscillator #706
Kit $3.95 Wired $12.95
Rugged battery-operated transistor oscillator circuit, built-in speaker. Front panel has flashing light, phone jack, pitch control (500-2000 cps), external key terminals, "tempo" key. Panel switch selects Tone, Light, or both Tone & Light. 6½” h, 3¾” w, 2¾” d.

90-WATT CW TRANSMITTER# #720

Kit $79.95 Wired $119.95
U.S. Patent No. 3,184,775
"Top quality" - ELECTRONIC KITS GUIDE. Ideal for veteran or novice. 90W CW, 65W external plate modulation. 80 through 10 meters.

HIGH-LEVEL UNIVERSAL MODULATOR-DRIVER #730

Kit $49.95 Wired $79.95
Cover E5 $4.50
Delivers 90W undistorted audio. Modulates transmitters having RF inputs up to 100W. Unique over-modulation indicator.

GRID DIP METER #710

Kit $29.95 Wired $49.95
Includes complete set of coils for full band coverage. Continuous coverage 400 kc to 250 mc. 500 ua meter.

Always say you saw it in—POPULAR ELECTRONICS
GUARANTEED 70% OFF on BRAND NEW TUBES

You can rely on Rad-Tel's speedy one day service!

Not Used — Not Pulled Out of Old Sets • Each Tube Individually and Attractively Boxed!

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>04A1</td>
<td>.79</td>
<td>4B65</td>
</tr>
<tr>
<td>1AX2</td>
<td>.62</td>
<td>4B68</td>
</tr>
<tr>
<td>1B3G</td>
<td>.79</td>
<td>5AX4</td>
</tr>
<tr>
<td>1D4S</td>
<td>.54</td>
<td>6A67</td>
</tr>
<tr>
<td>1J3</td>
<td>.73</td>
<td>6A87</td>
</tr>
<tr>
<td>1K3</td>
<td>.73</td>
<td>4B68</td>
</tr>
<tr>
<td>1L6</td>
<td>1.05</td>
<td>4B67</td>
</tr>
<tr>
<td>1L6A</td>
<td>.89</td>
<td>4A86</td>
</tr>
<tr>
<td>1L6B</td>
<td>.79</td>
<td>4B65</td>
</tr>
<tr>
<td>1L6N</td>
<td>.54</td>
<td>5A65</td>
</tr>
<tr>
<td>1R5</td>
<td>.62</td>
<td>4A66</td>
</tr>
<tr>
<td>1R5B</td>
<td>.60</td>
<td>4B66</td>
</tr>
<tr>
<td>1T4</td>
<td>.58</td>
<td>4T65</td>
</tr>
<tr>
<td>1U4</td>
<td>.57</td>
<td>5A85</td>
</tr>
<tr>
<td>1U5</td>
<td>.50</td>
<td>5A86</td>
</tr>
<tr>
<td>1X2B</td>
<td>.82</td>
<td>5A65</td>
</tr>
<tr>
<td>2AF4</td>
<td>.96</td>
<td>5A65</td>
</tr>
<tr>
<td>2BN4</td>
<td>.60</td>
<td>5B67A</td>
</tr>
<tr>
<td>2CV5</td>
<td>.71</td>
<td>5B67</td>
</tr>
<tr>
<td>30K6</td>
<td>.90</td>
<td>5B66</td>
</tr>
<tr>
<td>30U6</td>
<td>.76</td>
<td>6B46</td>
</tr>
<tr>
<td>3BS5</td>
<td>.81</td>
<td>6B66</td>
</tr>
<tr>
<td>3BS6</td>
<td>.56</td>
<td>5V66</td>
</tr>
<tr>
<td>3BS7</td>
<td>.55</td>
<td>5B65</td>
</tr>
<tr>
<td>3CB6</td>
<td>.55</td>
<td>5B65</td>
</tr>
<tr>
<td>3SC6</td>
<td>.54</td>
<td>5B64</td>
</tr>
<tr>
<td>3SE6</td>
<td>.50</td>
<td>5A64</td>
</tr>
<tr>
<td>3CF6</td>
<td>.70</td>
<td>6A65</td>
</tr>
<tr>
<td>3DT6</td>
<td>.50</td>
<td>6A65</td>
</tr>
<tr>
<td>3DS5</td>
<td>.80</td>
<td>6A65</td>
</tr>
<tr>
<td>3S5</td>
<td>.61</td>
<td>6A65</td>
</tr>
<tr>
<td>3S6</td>
<td>.56</td>
<td>6A86</td>
</tr>
<tr>
<td>4A86</td>
<td>.54</td>
<td>6A85</td>
</tr>
</tbody>
</table>

Please print plainly.

Name...
Address...
City...

SEND FOR FREE TROUBLE SHOOTER GUIDE AND NEW TUBE & PARTS CATALOG.

RAD-TEL TUBE CO.

55 Chambers St.
Newark 5, N. J.

June, 1960

AmericanRadioHistory.com
Listen to the EICO Hour, WABC-FM, N.Y. 95.5 MC, Mon.-Fri., 7:15-8 PM, & Sat. 11-12 PM.

the experts say
your BEST BUY is EICO...

...in STEREO and MONO HI-FI

STEREO Dual Amplifier-Preamplifier HF81
Kit $69.95.
Wired $109.95.
"Excellent" — SATURDAY REVIEW. HI-FI MUSIC AT HOME.

STEREO Dual Preamplifier HF85
Kit $39.95.
Wired $64.95.
"Extreme flexibility . . . a bargain" — HI-FI REVIEW

STEREO Dual Power Amplifiers: New 100W HF89:
Kit $99.50
Wired $139.50
Wired $114.95.

70W HF87: Kit $74.95.
Wired $77.95.

28W HF86: Kit $43.95. Wired $47.95.

NEW! STEREO
Automatic Change/Player 1007 (7 ml diamond, 3 ml sapphire dual stylus) $59.75 incl. FET.

Mono Power Amplifiers (60, 50, 30, 22, 14-Watt; use 2 for Stereo)
from Kit $23.50.
Wired $41.50.

Mono Integrated Amplifiers: (50, 30, 20, 12-Watt; use 2 for Stereo) from Kit $34.95.
Wired $57.95.

NEW! STEREO
Automatic Change/Player 1007 (7 ml diamond, 3 ml sapphire dual stylus) $59.75 incl. FET.

AM Tuner HFT94
Wired $25.95.
Incl. Cover & F.E.T.

FM Tuner HFT90
Kit $39.95.
Wired $59.95.

NEW! STREREO
Automatic Change/Player 1007 (7 ml diamond, 3 ml sapphire dual stylus) $59.75 incl. FET.

MONO POWER AMPLIFIER HF81
Kit $39.95.
Wired $64.95.

"Excellent" — SATURDAY REVIEW. HI-FI MUSIC AT HOME.

STEREO Power Amplifiers: New 100W HF89:
Kit $99.50
Wired $139.50
Wired $114.95.

70W HF87: Kit $74.95.
Wired $77.95.

28W HF86: Kit $43.95. Wired $47.95.

NEW! STEREO
Automatic Change/Player 1007 (7 ml diamond, 3 ml sapphire dual stylus) $59.75 incl. FET.

Stereo Power Amplifiers: New 100W HF89:
Kit $99.50
Wired $139.50
Wired $114.95.

70W HF87: Kit $74.95.
Wired $77.95.

28W HF86: Kit $43.95. Wired $47.95.

NEW! STEREO
Automatic Change/Player 1007 (7 ml diamond, 3 ml sapphire dual stylus) $59.75 incl. FET.

STEREO Power Amplifiers: New 100W HF89:
Kit $99.50
Wired $139.50
Wired $114.95.

70W HF87: Kit $74.95.
Wired $77.95.

28W HF86: Kit $43.95. Wired $47.95.

NEW! STEREO
Automatic Change/Player 1007 (7 ml diamond, 3 ml sapphire dual stylus) $59.75 incl. FET.

Amazon Tuner HFT94
Wired $25.95.
Incl. Cover & F.E.T.

FM Tuner HFT90
Kit $39.95.
Wired $59.95.

NEW! STEREO
Automatic Change/Player 1007 (7 ml diamond, 3 ml sapphire dual stylus) $59.75 incl. FET.

EICO, 3300 N. Blvd., L.I.C. 1, N.Y. PE-6
Show me HOW TO SAVE 50% on 10 models of top-quality: HI-FI TEST INSTRUMENTS □ "HAM" GEAR. □ Send FREE Stereo HI-FI Guide. □ Send FREE Short Course for Novice License. □ Send FREE Catalog & name of neighborhood EICO dealer.

Name..
Address...
City Zone State................................

IN STOCK! Compare, take them home — right "off the shelf" — from 2000 neighborhood dealers. Over 2 MILLION EICO instruments in use throughout the world.

See Page 38 for the BEST BUYS in CITIZENS TRANSCEIVERS, "HAM" GEAR and TRANSISTOR RADIOS.

Always say you saw it in — POPULAR ELECTRONICS.

© 1960 ELECTRONIC INSTRUMENT CO., INC., 3300 N. BLVD., L.I.C., N.Y.
THE YEAR was 1931. The place: an abandoned farm near Holmdel, New Jersey. A brilliant young scientist from Bell Laboratories—Karl Jansky—had been assigned the job of tracking down mysterious noises that were interfering with radio communications. Suddenly, he picked up a disturbance he had never heard before: something between a whoosh, a crackle, and a frying sound. The next night the noise was there again, and the next night, and the next—always from the same direction.

Several months later, as Jansky sat reviewing his carefully kept records, an astonishing fact...
Karl Jansky, pioneer radio astronomer, is shown here with the rotating antenna he used in the early 1930's when he discovered that radio waves from outer space could be received on earth. Jansky's work was done at the Bell Telephone Labs in Holmdel, N. J.

Aerial view of the Mills Cross radio telescope near Sidney, Australia. Each arm of the antenna is one-third of a mile in length. The antenna's great size enables it to be used in the study of wavelengths longer than those that can be picked up by a conventional parabolic antenna.

The twin 90' antennas at the California Institute of Technology provide the highest resolution of any radio telescope now in operation or under construction. Within two months after the pair was first put to work, they established the locations of nine radio stars outside the Milky Way, thereby exceeding the total of all the extra-galactic radio sources previously identified.
June, 1960

The primary reflector of radio telescope at the Pulkovo Observatory in Russia looks more like a board fence than a scientific instrument. Each panel is about 4' by 10' and can be adjusted individually. The 425' multi-paneled reflector directs all energy it receives into a much smaller secondary reflector located 200' away at the focus of the primary reflector.

The largest fully steerable radio telescope in the world, the Jodrell Bank installation in England, has a reflector bowl 250' in diameter. Although the telescope is used extensively in tracking man-made satellites, its main job is to receive and record radio waves that originate in outer space at distances up to a billion light-years away. The giant installation was designed by the radio astronomy department of Manchester University.

struck him. The strange noise had appeared exactly four minutes earlier every night. Quickly checking an astronomy textbook, he felt a wild excitement as his hunch was confirmed: because of the earth's rotation, the stars rise four minutes earlier every night. The weird sound was coming from outer space!

Karl Jansky's discoveries were reported in a scientific paper, but his fellow engineers failed to see their significance. Jansky's boss told him to continue his studies on regular static; reluctantly, he did so. He died a few years later, before the world began to appreciate the importance of his work.

But Jansky's discoveries had fascinated a young engineer who was living in Wheaton, Ill. In his spare time, Grote Reber built a 30' dish antenna and began to search the heavens. He made the first radio map of the sky, isolating the now well-known "hot spots"—sources of strong radio signals from outer space. Before anyone else became interested in Reber's research, however, along came World War II, bringing with it rapid advances in the entire field of electronics—among them, radar.

In February, 1942, while the English were waiting apprehensively for a German attack, British radar was suddenly jammed by a blast of hissing, cracking noise. The British, certain that the Germans had found a way to disable their radar, prepared for the attack they thought was coming. It never came. Later, physicist J. Stanley Hey determined that the noise had come not from across the channel, but from across the universe! Similar experiences were reported by other radar operators around the world.

After the war, the first radio telescopes began sprouting here and there. These early telescopes were made from radar sets because radar was the most sensitive equipment available, and besides, surplus radar could be had for a song. As demand grew for better and more powerful equipment, a new branch of electronics began to evolve—radio astronomy!

The Edge of Space. Until the radio telescope came along, astronomers could only look at stars within range of optical telescopes. The rest were hidden by interstellar dust clouds. But radio telescopes can hear signals from behind this dust. Thus, radio astronomy has revealed whole systems of previously undiscovered stars. In addition, radio telescopes have allowed men to probe space over seven billion light-years away—more than three times as far as the most powerful optical telescope can "see." Bigger radio telescopes now under construction will extend the range to perhaps 40 billion light-years, to the very edge of space!

These new instruments should allow scientists to settle a long-standing argument about the beginning of the universe. Did it—as backers of the so-called "steady-state" theory hold—have no beginning, but always exist as it is now? Or is the "expanding-universe" theory correct? Supporters of the latter view believe that all matter was once a single, vast, super-dense
Under construction at the National Radio Astronomy Observatory in Green Bank, W. Va., is this 140' precision telescope. The surface of the reflector will be more than one-third of an acre in area and is designed to be accurate within a quarter of an inch. When completed, the 210'-high instrument should be the most highly accurate radio telescope in the world.
This giant radio telescope is being built for the U. S. Naval Research Laboratory in Sugar Grove, W. Va. The huge reflector will be 600' wide, twice the length of a football field. The entire 20,000-ton installation will rotate on rollers which ride circular tracks on the ground, allowing the dish to be aimed at any point in the sky above the horizon.

Over three football fields across, this 1000'-wide antenna is being built into a natural bowl of coral limestone in Puerto Rico for use by Cornell University’s Radio-physics and Space Research Center. One of its first tasks will be to study the undersurface of the planet Jupiter.

body. But, eons ago, something caused it to explode. The present planets and galaxies speeding through space, they say, are the result of that explosion.

Which theory is right? The radio telescope may uncover valuable clues. If, for example, the galaxies farthest out seem bunched more closely together than those nearest the center, then the universe is probably expanding. The reasoning goes like this. Since it takes billions of years for light from the edge of the universe to reach us, galaxies at the outer edge will be seen not as they are today, but as they were several billion years ago. On the other hand, should radio telescopes show that galaxies are distributed fairly evenly throughout space, this would be strong evidence that the steady-state theory is correct.

Life On Other Planets. Radio telescopes are also being used to search for intelligent life on distant planets, in a quest known as Project Ozma. It began on April 11th when two young scientists, Dr. Frank Drake and William Walton of the National Radio Astronomy Observatory in Green Bank, W. Va., pointed the 85' dish antenna shown on page 41 at two nearby stars—Tau Ceti and Epsilon Eridani—and listened for patterns of artificial signals mixed in with the natural noise.

Dr. Drake—at 29 one of the world’s leading radio astronomers—feels the chances are good that eventually we will “tune in” to life in outer space. We know that at least some—probably many—stars have habitable planets similar to ours. The odds are overwhelming that life developed on some of them just as it did on earth. Some of these beings have probably progressed as far or further than we have, and should be capable of sending radio signals.

Are we close enough to pick up these transmissions? It’s pretty much a matter of what size radio telescopes we use. Dr. Drake calculates that the 85’ antenna he is now using should be able to pick up artificial signals from as far away as 10 or 12 light-years. A 600’ antenna—such as the one now being built about 30 miles away from Dr. Drake’s present instrument—should be able to detect signals that originate 100 light-years away. Within that range are 10,000 stars, and astronomers think the odds are good that there are technically advanced civilizations on some of them.

Ironically, if and when we do hear signals from outer planets, we will probably not know it for months. An incoming signal would be so weak that it would be lost in background noise (it took computers almost a year to confirm our radar contact with Venus in 1958). Eventually, however, high-speed computers which analyze all signals received will isolate any transmission that cannot be accounted for by natural background noise.

Could we break the language barrier between us and an alien civilization? Scientists working on the problem think so. They theorize that races seeking radio contact in space would transmit pulses coded by some
RECORDING signals on magnetic tape necessitates some specialized, but important, electronic circuits. Bias current for the record and erase heads must be generated by an oscillator circuit. Equalization for both record and playback must be provided by other circuits. Still other circuits are required to amplify input signals until they are of sufficient amplitude to drive the record head.

Bias Current. One of the keys to successful magnetic recording is bias current. "Bias," here, has an entirely different meaning than its usual one with amplifiers. In tape-recorder terminology, bias refers to high-frequency oscillations which are fed to the recording head along with the input signal. The bias current decreases distortion and increases signal output. Interestingly enough, experts don't agree on how bias works—but it does. It is perhaps most convenient to imagine that the bias "shakes up" the magnetic fields on the tape, making it easier for them to be modulated.

Frequency stability of the bias oscillator isn't critical, but its frequency should be at least four times the highest signal frequency to be recorded to avoid beat notes.

Thus, most bias oscillators operate at from 40 to 100 kc. Typical oscillator circuits include the single-ended Colpitts, the Hartley, the tuned plate, and the push-pull Colpitts circuit.

Because any harmonic distortion generated by the oscillator will cause noise to be transferred to the tape, the push-pull design (which cancels out the even-order harmonics) is found in the better recorders, such as the Ampex 910 (Fig. 1). Ampex even goes so far as to include a control to balance the currents through the oscillator tubes, thus minimizing harmonic distortion. This control is called "Noise Balance."
For simplicity and economy, some recorders have a single tube operating as oscillator in the record mode and audio output in playback. The Teletronic 320 employs a 6AQ5 for audio output during playback; switching an LC network into the grid circuit enables the same tube to function as an oscillator during record.

A push-pull audio output stage is even simpler to convert. It will function as a push-pull oscillator stage if the control grids of the output tubes are switched to small capacitors which terminate at the plates of the opposite tubes. The output transformer serves as the tank. This arrangement is used in the Teletronic 300.

Erase Current. As we have seen, bias is a high-frequency alternating current. When recorded or magnetized tape is brought through the field created by an alternating current and then is slowly removed from the field, it will be demagnetized. This is how the erase head works. It produces a fluctuating magnetic field which demagnetizes, or erases, the tape.

Although the same oscillator usually supplies current for both bias and erase, the two functions require different amounts of current, with the erase head demanding roughly 20 times more than the playback head. The amount of bias for the record head is rather critical because a compromise between distortion, high-frequency response, and output (or signal-to-noise ratio) must be made. Increased bias reduces distortion and boosts signal output, but it causes the frequency response at the high end to drop off. In general, the best compromise for the bias is a level 2 db below the point that gives maximum output at 1000 cps.

Some recorders provide a small variable capacitor in series with the bias oscillator and the record head for adjusting the amount of bias. More commonly, a fixed capacitor is employed to adjust the bias to the desired current value.

Coupling the record and erase heads to the bias oscillator is a little tricky because they require different amounts of current, and, in addition, the oscillator circuit should not be loaded down by the heads. Usually a transformer is included in the frequency-determining tank to isolate the heads from the oscillator and to provide good impedance matching.

The circuit used in the Bell recorders has the record head fed from the secondary of the transformer, while the erase head is coupled directly to the oscillator through a capacitor. In the Pentron recorders, the erase and record heads are fed by different taps on the output transformer. Ampex couples the record head to the oscillator by means of a variable capacitor in series with the capacitor feeding the erase head.

Record Equalization. As pointed out in a previous article in this series, an unequal-

June, 1960
ized tape recording produces a response that rises at a 6-db-per-octave slope until it reaches a maximum at some frequency between 2500 and 10,000 cycles, depending on the head and the speed of the tape. Above this upper frequency, there is a downward slope due to losses in the head. Figure 2 gives the unequalized recording curves of a high-quality head operating at 15 and 7½ ips. Obviously, to obtain a flat response, we need to flatten out these curves as much as possible in the recording process.

The extreme high end should be boosted at least enough to make up for the recording losses. Unfortunately, it is not easy to do this because the high-frequency roll-off is greater than 6 db per octave. To compensate for such a sharp roll-off, some fairly elaborate networks are required. In the Ampex 900 series, a tuned circuit in the cathode of the tube that drives the record head peaks the high-frequency response to make up for the roll-off. In the Concertone, a feedback loop is run from the recording head to an early stage; because the inductance of the head is included in the feedback loop, a sharp boost is possible.

In home-type recorders, such expensive and elaborate measures are not justified. Simple RC networks, in either interstage coupling or feedback networks, are used to obtain partial compensation of the high-end roll-off during recording. If the recorder is used at two or more speeds, the compensation has to be changed also. Usually extra treble boost is switched in at the lower speeds.

It will be noted from the curve of Fig. 2 that the response at 30 cycles is fully 30 db below the response at 1000 cycles. Since a 30-db boost in playback would raise serious hum problems, it is desirable to provide a little low-bass boost in the recording process to simplify the problem of playback equalization. Thus, for best overall performance, the equalized recording curve should look something like the Ampex 7½-ips curve in Fig. 3, where we have a boost at both ends. The more elaborate recorders provide boost at both the high and low ends, but, to minimize hum troubles, home-type machines usually do not include low-end boost.

Playback Equalization. Frequency response equalization for playback is obtained in the same way as record equalization.

(Continued on page 116)
Since the day that car manufacturers began to do away with ammeters, many car owners have had only a single red warning light to tell them what's going on in the car's electrical system. The warning light goes on when the battery is putting out more current than the generator is pumping into it. But the light doesn't indicate rate of discharge—a 30-amp or a 1-amp discharge results in the same glowing red light. What's more, the light gives virtually no indication of the battery's condition.

The Knight 83 Y 711 ammeter-voltmeter kit supplies the missing ammeter and gives you a matching voltmeter to boot. You can see the actual rate of charge or discharge on the ammeter, and the voltmeter gives you a rough indication of the condition of your battery. The ammeter scale ranges over 30-0-30 amperes and the voltmeter scale from 9 to 15 volts.

Both meters are mounted side-by-side on a chrome-plated, rubber-trimmed panel. Installation of the "twin" meters is simplified by universal under-the-dash mounting brackets and solderless terminals.

This ammeter-voltmeter will work with any 12-volt electrical system, car or boat, with either positive or negative grounds. Wiring diagrams supplied show how to connect the unit to systems of either ground polarity. The kit is available from Allied Radio Corporation (100 N. Western Ave., Chicago 80, Ill.) for $10.75.

Illuminated meters show battery charge-discharge current and voltage at a glance.

Wiring diagrams provided make kit easy to install. Meter panel mounts under dash.
Electronics Adds a New Angle to Angling

Portable pulsing system stuns fish,

This summer some unusual fishermen will be drifting down country streams in the vicinity of Seattle, Washington. To the uninformed, they'll appear to be fitted out only with dip nets; yet they'll bring in up to 1200 fish in an hour. The secret of their angling success will be a piece of electronic gear that gives nearby fish a jolt of electricity, causing them to surface near the waiting nets.

Invented at the U. S. Fish and Wildlife Service, this amazing gadget is used by scientists to collect samples of fish in streams where nets and other fishing implements are impractical. Its results are enough to put any fisherman into ecstasy. On a recent field trip, quarter-mile drifts down a stream were made, and 50 to 60 fish were pulled in on each drift.

Electronic fishing is not a new idea, but this is the first truly portable system that has been devised. It consists of a 230-volt gasoline-powered generator, a transistorized square-wave pulsing unit, and two electrodes. The positive electrode is an expanded grid about 15'' x 24'' mounted at the end of a pole. The bottom of the fishing boat, which is aluminum, serves as the negative electrode.

Stunning Effect. Fish are not killed by this device, but merely stunned. The pulsing unit radiates high-voltage d.c. pulses into the water, setting up a charged field.
then brings them to the surface

By ROBERT P. HAMMOND

Portable pulsing system developed by the U. S. Fish and Wildlife Service is powered by a 230-volt gasoline generator. Unit employs transistorized circuitry and is less than 2' wide.

that extends about 12 feet from each electrode. Fish coming into this field are captured by the "electrotaxic effect" and herded toward the positive electrode. As they approach the electrode, the increased intensity of the current stuns them and they turn on their sides and float to the surface. Then they are scooped up in nets.

The electrotaxic effect is one of the most interesting features of the operation. It is present only when d.c. current is used, and the reaction of the fish is involuntary. For reasons still unknown, a fish immediately faces the positive electrode when it enters the charged field. Each time the electric pulse is sent, the fish twitches, then swims inexorably toward the positive electrode. Scientists believe this to be strictly a muscular reaction. Fish that have had their heads removed behave exactly the same as live fish, twitching and moving straight toward the positive electrode.

Researchers have found that different

(Continued on page 103)
ALTHOUGH many amateurs use an ordinary light bulb to "measure" r.f. power output, this is a hit-and-miss method at best. A 150-watt bulb operating at "half-brilliancy" doesn't necessarily indicate 75 watts output—the bulb's impedance doesn't match the transmitter output impedance.

A Standard Minibox serves as chassis for power meter. For best results, use a single insulated tie-point and ground lug when wiring, as shown in pictorial diagram.

and "half-brilliancy" is little more than a crude guess. The only accurate method of measuring r.f. power output is to use a calibrated r.f. power meter.

Here's a two-in-one unit that's both an r.f. power meter and a dummy load in one compact aluminum case. It's capable of handling 40 watts continuously and up to 100 watts for very short intervals. It can also be used to test a transmitter's low-pass harmonic filter.

This little unit has an effective input impedance of about 50 ohms to match the ou-
Power Meter

dummy load in your ham shack

By JOSEPH TARTAS, W2YKT

The impedance of most transmitters. It operates on frequencies up to 200 mc. with a voltage-standing-wave-ratio (VSWR) of only 2:1 on the upper limit. Using standard components, you can build it for $20 or less, depending on the meter used.

Construction. The 3" x 4" x 5" Minibox which serves as a cabinet also acts as a heat sink for load resistor R1. Drill the mounting holes for input jack J1 and potentiometer R3 at one end of the box; you'll need a hole for the meter on the opposite end. Switch S1 mounts on top.

Load resistor R1 consists of twenty 1000-ohm, 2-watt, 5% composition resistors soldered in parallel to a pair of brass or copper plates as shown in the pictorial detail. Cut the two load-resistor plates at the same time from two copper or brass sheets. Each plate should be 2½" square; the thickness isn't important. When the plates are cut, mark one for drilling, clamp them together, and drill both at the same time. This will insure alignment of holes and make assembly easier. Cut off the corners of the back plate to allow access to the nuts on the mounting screws.

To assemble the load resistor, pass a lead from each 1000-ohm resistor through a hole in the front plate, bending over each lead (Continued on page 104)

Setting of potentiometer R3 controls full-scale reading of 100-watt range. No control is provided for 10-watt range, but a potentiometer can replace resistor R5.

Metal plates for load resistor R1 should be clamped together and drilled at the same time to insure proper alignment of holes.
June and July are the peak months for long-distance TV reception. Here's what you should know to get started in this exciting hobby.

DX'ing on TV

By KING SCHAFER

This June and July, a scattered group of enthusiasts will be watching television screens all over the country. But they won't be viewing regular video programs. Instead, their entire efforts will be directed towards picking up TV stations that are hundreds, even thousands, of miles away!

Long-distance television reception (TV DX) is an exciting hobby where the unexpected often happens. A DX'er in Ohio, for example, may come across anything from a Cuban beer commercial to a Texas weather report—all while waiting for an "ID" (station identification). The peak months for this unusual activity—June and July—are just beginning, so a good time for any prospective DX'er to get started is now!

Reflecting the Signal. As you probably know, TV signals tend to go out into space unless they are reflected back to earth. Various types of atmospheric "reflectors" exist at different times of the year. In the early summer, for instance, a section of the ionosphere called the "E-layer" is ionized by the sun. The areas of ionization act as a reflector of sorts to bend the television signals back to earth.

Reception by "E-skip" (DX slang for "E-layer" reflections) is confined chiefly to the low-band v.h.f. channels (2 through 6). The average distance covered is about 1200...
miles, but DX’ers have noted stations as far away as 6000 miles and as close as 450 miles via “E-skip.” Reception beyond 2000 miles is probably the result of signals bouncing back and forth between the “E-layer” and the earth’s surface.

Many outstanding examples of “E-skip” reception are on record, among them the July 1957 logging by Robert Seybold in Dunkirk, N. Y., of KENI-TV in Anchorage, Alaska, and KFAR-TV in Fairbanks, Alaska. The time duration of the “E-skip” sessions is anywhere from five minutes to several hours.

“Trops.” As summer and the “E-layer” begin to fade away, the depressing thought may arise that all those beautiful visions of far-away test patterns will likewise disappear. Not at all, for with early autumn comes what DX’ers call the “Trops” season, named after a lower section of the ionosphere called the “troposphere.”

As large weather fronts of high- and low-pressure areas move rapidly across the land, ducts or paths are formed which force television signals down to lower levels. This condition is usually first noticed when stations about 70 miles away begin to increase in signal strength. Later, the reception range may extend a good 300 to 600 miles, or even

June, 1960
1000 miles plus in some areas. As opposed to “E-skip,” however, it’s the high-band v.h.f. channels (7 through 13) that are affected most by “Trops.”

Even channels 14-83 on the u.h.f. band produce some amazing results during September and October. Again, the time duration may be several hours, or a scant half hour, with varying degrees of picture quality. A “Trops” record that still stands was set five years ago by DX’er Barney Rauch of Peoria, Ill., when he logged high-band stations from both coasts.

Meteors and Sunspots. With the collapse of the “Trops” season in late October, and the approach of the “lag” period, diligent DX’ers are still not downhearted. Their attentions are merely shifted to a highly elusive form of DX referred to as “MS,” the abbreviation for “meteor scatter.”

As meteors from outer space enter the earth’s dense atmosphere, friction is created which causes them to burn up. Ionization results from this burning action, but it lasts only for a second or two. The ionized areas reflect television signals back to earth, but only in ratio to the duration of ionization. This “on-off” ionization produces the odd effect of “light-switch” reception, where a picture may “burst” in and then out again at the bat of an eye! During peak meteor activity, however, the overlapping effects of numerous meteor burn-ups greatly extend the length of time a signal can be received.

The low-band channels are the ones to watch for “MS,” as high-band receptions are rare. Actually “MS” is only one aspect of the scatter-propagation mode, but DX’ers use it as a general term to cover all burst-type observations. Distances covered by “MS” have ranged all the way from 70 miles to a strapping 3000 miles! DX’er Bill Nieman of Buffalo, N. Y., almost hit the 3000-mile mark when KNXT (Channel 2) in Los Angeles, Calif., flashed on his screen in the spring of 1959.

The most complex and exacting form of TV DX, usually attempted only by experts, is “F2” reception. This refers to the “F2” layer of the ionosphere. Anything observed by “F2” is outstanding because the “F2” layer is activated only intermittently by sunspots. Reception from the “F2” layer is possible from 2000 to 15,000 miles away!

Sad to say, however, there are some difficulties that prevent many U. S. DX’ers from making an “F2” pickup. First, most of the stations from 2000 to 15,000 miles distant are in Europe. Because these stations employ different technical standards than ours, it is necessary to convert receivers to satisfy the differences—a highly involved ordeal. Secondly, with 2000 miles the minimum pickup possible with “F2” reception, the received signal is consequently very weak and exceedingly difficult to tune in.

Receiving Equipment. The average person might think that the equipment needed to pull in far-off TV stations would be based around 200’ towers and ultra-expensive receivers. Few DX’ers are equipped in this costly fashion, however.

The most important piece of equipment is the television receiver itself. No matter how extensive your antenna installation may be, a receiver that is not operating at top efficiency will severely limit your chances of making any worthwhile DX. It is of prime importance, therefore, to see to it that your TV set is in the best condition

(Continued on page 102)
WHAT makes this black box talk? It's a safe bet that guests at your next party will be stumped. Close inspection makes it obvious that the box is empty. Yet it tells fortunes, brings back voices from the past, and asks questions that reveal rare insight and intelligence.

There's some trickery involved, of course. The black box is actually part of a huge air-core transformer. The transformer's "primary" is a large coil of wire hidden under the carpet in the room where your guests are seated. Its "secondary" is a coil of wire hidden in the base of the black box itself.

You'll need an accomplice to make it work, but he needn't be a ventriloquist—the black box is entirely electronic in operation. Unknown to your guests, your accomplice is seated in an adjoining room...
with a pair of amplifiers: a "talk" amplifier and a "listen" amplifier. A microphone concealed near your guests brings him their questions through the "listen" amplifier; his answers are returned through a second microphone plugged into the "talk" amplifier. A radio could serve as one of the amplifiers, if convenient.

The concealed "primary" coil of wire is connected to the output of the "talk" amplifier. The "secondary" coil in the black box picks up the signal from the "primary" and feeds it to a tiny, one-transistor amplifier and subminiature speaker (also hidden in the box), thus allowing your accomplice's voice to emanate from the apparently empty box.

Construction. Make the black box from \(\frac{1}{4}\)" plywood. It should measure from 12" to 14" on a side, and from 6" to 8" high.

Transistor amplifier for black box is built on disc cut from plastic or Masonite sheet and attached to larger sheet. (See pictorial above and exploded view at right.) "Screw-switch" S1 (detail above) is optional; batteries can be wired permanently into circuit.
The box is open on one end and sealed with a false bottom about 1" from the opposite end (see exploded view above). Perforate about 1 sq. in. of the false bottom in its exact center—the holes will act as a speaker grille. The entire inside of the box can be lined with felt or other cloth to conceal the grille holes and to give the box an "empty" look.

Inserted in the false-bottom cavity is a
"sandwich" made of two 3/16" plastic or Masonite sheets separated by a 11 1/2" x 11 1/2" (for a 14" x 14" box) square of 3/4" plywood with rounded corners. Cut the inside plastic sheet the same size as the false bottom; the outside sheet is the true bottom and is cut to fit the bottom of the box. Cut a 5"-diameter hole in the center of the inside sheet and in the plywood.

After assembling the plastic and plywood sandwich, wind pickup coil L1—about 700 turns of No. 30 to 34 enameled wire—around the inside of the sandwich on the 3/4" plywood. To facilitate winding, mount the sandwich in a homemade jig so it can be turned like a wheel as this "secondary" coil is wound.

The one-transistor amplifier and speaker are mounted on the plastic or Masonite disc cut from the inner sheet of the sandwich. Reduce the disc diameter by about 1/2" so it will fit in the false-bottom cavity.

A "screw-switch" (SI) can be made for the amplifier as shown in the pictorial detail. Simply bend two thin strips of aluminum and mount them about 1/4" apart; then bend them until they are 3/32" apart. Drill a hole in the disc between the strips and in the corresponding place in the true bottom. Threading a machine screw through this
hole and screwing it flush with the true bottom shorts the strips and closes the switch.

If desired, the switch can be eliminated and battery BI wired directly to the amplifier. No-signal current drain is about 2 ma., so the battery will last for some time before replacement is necessary.

Using the Black Box. The "primary" coil to be hidden under the carpet is made up of several turns of No. 20 to 30 wire. Experiment with the coil diameter and the number of turns for best results.

Place the "primary" coil under the edge of the carpet. If your demonstration room has wall-to-wall carpeting, or if the coil proves to be too bulky under the carpet, wind it on the baseboard or ceiling molding instead.

Then disconnect the speaker voice coil from your accomplice's "talk" amplifier and connect the secondary of its output transformer to the "primary" coil. Ordinary lamp cord is ideal for use as interconnecting wire.

Connect the concealed "listen" microphone to the "listen" amplifier, or use a wireless mike if you wish. Your accomplice can listen with headphones or through the loudspeaker of the "listen" amplifier if its level is not too high.

To bring back voices from the past, simply have your accomplice play a suitable phonograph record through the "talk" amplifier at the appropriate time.

PARTS LIST

BI—3-volt battery (two penlight cells in series)
CI—0.1-µf., 50-volt capacitor
LI—Pickup coil, 2000 feet of #20 to 34 enameled wire (see text)
Q1—CK721 transistor (or equivalent)
R1—47,000-ohm, ½-watt resistor
SI—S.p.s.t. "on-off" switch (see text)
T1—Miniature output transformer; 2000-ohm primary, 11-ohm secondary (Argonne AR-114 or equivalent)
Spkr.—Subminiature loudspeaker (Telex 9155 "Mini-Mike" or equivalent)
1—Length of #20 to 30 covered wire (see text)
2—⅛" plastic or Masonite sheets (see text)
Misc.—⅝" and ¾" plywood, felt, hardware, etc.

June, 1960
To become better acquainted with the versatile r.f. signal generator, let's put it to work as a trouble-shooter. That five-tube a.c.-d.c. receiver that's been gathering dust in the closet ever since it went on the blink back in 1953 should make a good test subject.

Take the receiver out of its case, plug it in, and turn on the switch. You guessed it: nothing happens! Since the set isn't going to fix itself, let's begin our trouble-shooting by checking first the filaments, then the B+ voltage. (See Popular Electronics, March, 1959, p. 69, for details on this part of the procedure.)

When the set still refuses to produce so much as a squeak even with all the tubes lit and the B+ normal, the time has come to put the signal generator into action. We'll trouble-shoot by working "backwards" through the set, starting with the speaker stage and ending with the antenna.

First, clip the generator's ground lead to the receiver chassis and connect the generator's A. F. Out to the grid of the audio output tube (Fig. 1, point A). With the receiver volume at maximum, turn the generator's a.f. output control up slowly. If a 400-cps tone can be heard in the speaker, the audio output stage and speaker are working properly.

Next, move the test lead to the grid of the first audio tube (point B). If no sound comes from the speaker, the trouble must lie between points B and A. Either the circuit of V3 isn't working, or coupling capacitor C1 is open. To eliminate one suspect, connect the signal generator output to the plate circuit (point C). If there is still no sound from the speaker, C1 must be causing the trouble. Let's replace it with a new one.

Success! When the signal generator is connected to either point C or B, sound comes out of the speaker. (Note: even with a defective coupling capacitor, a very weak signal will probably be heard with the signal generator connected as above, due to stray capacitances. Under normal conditions, however, the signal from the speaker should be at about the same level regardless of which side of the capacitor is connected to the generator.)
Perhaps the radio will play with the new capacitor in the circuit. Disconnect the signal generator entirely and try to tune in a station. If the speaker remains silent, something else is wrong.

Set the generator to the receiver's intermediate frequency—probably 455 or 456 kc. Turn the signal generator's modulation selector to Internal and connect the test lead from the R.F. Out terminal to the grid of the i.f. tube (point D). Slowly turn up the output level. If nothing happens, the trouble must lie between points D and B.

Let's narrow down the possibilities. Move the probe to the plate circuit of V2 (point E)—still no sound. Next, touch it to the output of the i.f. transformer (point F). Now a signal comes out of the speaker. Obviously, the difficulty is between points E and F, which means that i.f. transformer T2 is probably at fault. A quick ohmmeter check will show if its secondary is open. Let's assume that it is.

When the transformer has been replaced, the receiver will have low sensitivity because the new transformer isn't aligned properly. Align it (see May 1960 issue, p. 83). Assuming there's nothing else wrong, the receiver should now operate perfectly. Here's one set that will be doing more than gather dust for a while!

Frequency Response. The signal generator can do more than help put an ailing receiver on the road to recovery. It can also show how efficiently a receiver or tuner is operating. For example, how does the performance of that AM tuner you just added to your hi-fi setup match the rest of the system? Your signal generator—in connection with other test instruments—can tell you.

To measure frequency response, hook up the instruments as shown in Fig. 2. Connect the audio oscillator's output to the Ext. Mod. terminals of the signal generator; then connect the output of the generator to the tuner's antenna terminals. Set the audio oscillator frequency to 400 cps and adjust its output to give approximately 30% modulation. (The signal generator instruction book should contain adjustment details.) Set the controls on the signal generator and the tuner to the same frequency—around 1000 kc—and adjust the output levels to give a moderate indication on the output meter.

![Fig. 1. Trouble-shooting a typical a.c.-d.c. receiver is easy with a signal generator. Injecting generator output at points A through F quickly isolates faulty components.](image)

Jot down the output meter reading at 400 cps. Now tune the oscillator to 300 cps. (Note: Measure the output of the oscillator at point A in Fig. 2, and adjust if necessary.) Write down the 300-cps reading. Adjust to 200, 150, 100, 90, 80, 70, 60, 50, 40, 30, and 20 cps, and note each reading.

Now tune back to 400 cps, and start in the other direction. Following the same procedure, take output readings at 500, 600, 700, 800, 900, 1000, 1500, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10,000, 15,000 and 20,000 cps. Plot the values recorded on graph paper and you will have the tuner's frequency-response curve (see Fig. 3).

Checking Sensitivity. The instruction book that came with your hi-fi tuner or ham receiver probably gives sensitivity...
Now set the signal generator and the receiver carefully to the same frequency. Open the receiver's volume control to its loudest position. Adjust the signal generator's output level until the meter reads the output voltage specified in the instruction manual; then note the output level of the signal generator. The amount of signal required to give a predetermined output is the sensitivity of the tuner expressed in microvolts. A typical tuner may require 100 µv. to produce a specified output—such as 1.0 volt. More sensitive tuners might require only 4 or 5 µv. or even less.

Complete receivers are rated as requiring so many µv. to produce a certain output power. If you do not have a meter which reads output power, you can use the formula \(E = \sqrt{PR} \) to figure out what voltage reading on the output meter will give the desired power. For example, if your load is a 16-ohm voice coil or load resistor and the receiver's instruction manual specifies that sensitivity should be measured with 1.0 watt of output power, the formula would work out as follows: \(E = \sqrt{1 \times 16} = \sqrt{16} = 4 \) volts.

Measuring Selectivity. As many receivers and some hi-fi tuners have variable selectivity, the receiver instruction book may give selectivity ratings in such terms as “bandwidth at 10 times down is 18 kc.” To understand what this means, consider a typical tuner that produces a one-volt output when 5 µv. are applied to its input at a frequency of 1000 kc. But when the signal generator is tuned 9 kc. to either side of 100 kc., the output drops to 0.1 volt. In other words, with the receiver remaining tuned to 1000 kc., the output at 1009 and 991 kc. (a spread of 18 kc.) is one-tenth as much as it was at 1000 kc., or “10 times down at 18 kc.” (see Fig. 5).

To measure selectivity, use the setup shown in Fig. 4(A). Tune the signal generator and receiver very carefully to a frequency about mid-band (1000 kc. or so on the broadcast band). With the signal generator's attenuator set at “X1,” adjust the fine control and receiver gain to some convenient reading—say 1.0 volt—on the output meter. Be sure the signal generator output is as low as possible to avoid overloading the receiver.

Turn the attenuator to “X10” and slowly raise the frequency of the signal generator until the output meter again reads

(Continued on page 98)
ONE of the most hotly debated subjects among record manufacturers today is a new type of stereo record which its proponents claim is completely compatible. That is, it can be played on either stereophonic or standard monophonic equipment without fear of undue damage to the record grooves.

Design Records, a small company in comparison to the giants in the field, is the force behind this new system. The Design people feel that disappointing record sales are largely traceable to the public's confusion about being offered two different types of records—mono and stereo. If a single compatible record could serve both markets, they maintain, such confusion would be eliminated.

The question of compatibility, it must be remembered, was one reason why the Westrex 45-45 stereo cutting system was adopted in the first place. It featured a V-shaped groove containing a sound channel on each wall. As a needle bumped up and down and from side to side, it picked up parts of each signal—in the lateral plane, the sum of the two channels, and in the vertical, their difference. When a record was played on monophonic equipment, it was argued, the cartridge would pick up only the lateral or sum signal.

Most early stereo disc manufacturers played up the compatibility feature in their advertising, saying that the records would play equally well on monophonic or stereo equipment. Gradually it developed that stereo cartridges would track more satisfactorily if the stylus tip were smaller than the 1-mil tip used for monophonic records. It also became evident that mono cartridges had a tendency to plow right through the groove's vertical modulation, destroying the stereo effect after repeated playings. Soon the experts warned that the compatibility of stereo only went one way—that stereo equipment could be used to play mono
Comparing the grooves of a standard Westrex stereo record with grooves of Design's compatible record (opposite page) shows the compatible record to have less vertical modulation, thereby more closely approximating a monophonic cut.

records. If, on the other hand, you played your stereo records on mono equipment, you were taking their lives in your hands.

Cutting Techniques. The secret of the new compatible record is that there is some "tampering" with the stereo signals before they're fed into the cutter. Instead of producing a sum and difference on the record by cutting the two sound channels at an angle, the new process does the adding and subtracting at a point before the signals reach the cutter. This results in a vertical-lateral cut, with the sum signal engraved laterally and the difference signal contained in the vertical modulation. In playback, a standard stereo cartridge adds and subtracts the vertical-lateral information and recreates the two stereo channels.

In addition to manipulating the two channels before they reach the cutter, the system also reduces the bass response in the vertical component—the "difference" channel—so the dips and rises in the groove will be less sharp.

According to Sidney Feldman of Master- tone Recording Studios, one of the men who has experimented with the new process, the effects of attenuating the bass are less noticeable if you work with sum and difference channels than if you tamper with the left and right channels separately. The result is a record without steep hills and deep valleys, in which the needle rides along in relative serenity.

Engineers such as Feldman and John Mosely, who was formerly head engineer at Audio Fidelity Records, explain that it's the vertical modulation that tends to make the regular stereo record non-compatible. Mono cartridges tend to level the hills and valleys, wiping out the "difference" channel. By reducing their amplitude, the engineers reasoned, it should also be possible to reduce vertical wear, and, incidentally, make the records easier to stamp out on pressing machines.

To evaluate the process, the following Design compatible discs were tested: "Porgy and Bess," "Ray Eberle Sings," "Flower Drum Song," and "Ray Bohr at the Radio City Music Hall Organ." In addition, Design supplied mono and conventional 45-45 stereo copies of "Flower Drum Song" for comparison purposes. Equipment used in evaluating the records consisted of a Glaser-Steers GS-77 record changer, a Fairchild SM-1 stereo cartridge (tracking at 3.5 grams) and a General Electric VR-II mono cartridge (tracking at six grams). All listening tests were made with Koss earphones to minimize external distractions.

Test Results. In subjective listening tests, it was discovered that "Flower Drum Song" in Design's compatible version was virtually indistinguishable from the company's regular stereo version. Design's stereo, however, has some peculiarities which most other manufacturers have avoided. On neither the conventional stereo disc nor on the compatible record was there enough bass to tell what sort of low-frequency reproduction the new disc was capable of. Both records featured extreme separation, with a vocalist relegated entirely to one speaker, and the bulk of the orchestra to the other.

When the compatible stereo disc was played monophonically, the reproduction was, if anything, superior to the mono pressing. Both soloist and orchestra emerged more clearly, and there was no audible distortion (except for the weak bass, which appeared on both records).

The next question concerned wear. The GS-77 changer was set up so it would go through its changing cycle every 3½ minutes. Then, the entire last track of a Design compatible stereo record was played over and over again for an eight-hour period with the VR-II mono cartridge. At the
plays with a compatible or a mono record. After 140 plays, both the compatible stereo and the mono discs still reproduced the range from 100 cycles to about 9000 cycles fairly clean.

Evaluation. Does the compatible record work? The answer is yes—at least in the case of these records. Is there a sacrifice in quality? Again, with these records, there is none. Both 45-45 stereo records and compatible stereo versions were checked against master tapes, a test which revealed no more loss of quality than does any disc-to-master-tape comparison. What the test did demonstrate was the superiority of tape over disc.

The bass on compatible discs apparently loses its directionality. When asked about this, Don Plunkett, the president of Fairchild Recording Equipment Company, said, "There is serious doubt today regarding the contribution of the lowest frequencies—particularly frequencies below 200 cps—to the spatial feeling so important for stereo reproduction. The reduced separation (at the lower frequencies), caused by reducing the vertical component, permits a higher lateral bass level for the same groove space. Thus, when the record is played back with both a stereo cartridge and a mono cartridge, it will produce bass response superior to that possible if full separation had been maintained down to the lowest frequencies."

Objections to the new process have been both loud and heated. One of the leading critics has been Sidney Frey, whose Audio Fidelity label produced the first commercial stereo record. "The customer pays hard-earned bucks for that bass," says Frey. "To deprive him of it would be a crime." In answer, the Design people state that compromises are constantly made in recording-making, and that the new record is no more of a compromise than is the RIAA recording curve. Even if, theoretically, there is a slight loss of bass in the compatible method, the supporters of the process say, the record is still quite acceptable psychologically.

Design's compatible stereo records are now on the market. At this writing, however, no other company has indicated that it plans to use the compatible process. It seems logical to assume that if the new technique is practicable, the other manufacturers in the field will gradually switch over to compatible records. If the system is truly an advance, the consumer will reap the benefits.

June, 1960
LOW COST Transistor Tester

Direct-reading device checks both p-n-p and n-p-n transistors for leakage and comparative beta

By MARTIN H. PATRICK

TRANSISTOR leakage and comparative beta can be checked in one operation with this direct-reading beta comparator. "Creepers" and "leakers" show up quickly, and the problem of matching transistors in push-pull circuits becomes extremely simple. Leakage current can be read immediately by plugging either an n-p-n or p-n-p low-power transistor into the proper socket. Pressing a button shows the beta value on the meter.

This little device makes use of the fact that many manufacturers recommend transistor emitter-to-collector leakage be no more than 0.125 ma. Most transistors with no more than this amount of static leakage will draw about 10 µa., emitter-to-base, when supplied by a 1½-volt source through a 127,000-ohm resistance. With this unit, it's a simple matter to read the comparative beta directly from a milliammeter scale.

Construction. The tester is housed in an ordinary metal filing box, 4" x 3" x 5", with all parts except R5 mounted on a wooden baseboard which fits snugly into the top of the box (see pictorial). Attach the meter, face up, to the left side of the baseboard; then mount the sockets on the right.

Resistor pairs R1-R3 and R2-R4 should be selected so that their values are identical; the parts list recommends ±5% tolerances, but ±1% resistors would be even better. Mount the dry cells on the bottom of the baseboard, or, if space doesn't permit, fasten them to the bottom of the filing box; if you prefer not to solder directly to the batteries, obtain a two-cell battery holder.

Make the special shorting plug by soldering a small piece of metal to a "U"-shaped length of wire. Two small holes can be drilled in the base to hold the shorting plug when it's not in use, or a third transistor socket can be used as a holder. It's best to wire the sockets before fastening them to the baseboard; note that the collector of one socket is connected to the emitter of the other. Although you can manage without it, spaghetti on the base leads of both tran-
Special switches used in model for S1 and S2 were made from the contact points of an old relay, but standard miniature push-button switches can be used instead.
sistor sockets is the surest way of preventing accidental shorts when plugging in and unplugging transistors.

Using the Tester. Adjust the meter to read full scale before using the comparator. To do this, insert the “U”-shaped shorting plug across the emitter and collector terminals on either socket, and adjust R5. Once the meter is set, it need be checked only periodically.

Simply insert the transistor under test into the n-p-n or p-n-p socket, depending on the type of transistor. The meter will indicate the leakage. If it is above 0.125 ma., in all probability it exceeds that recommended by the manufacturer. If you’re not certain, check the manufacturer’s specification sheets or a transistor manual.

If the transistor has low leakage, press the appropriate push-button switch and note the meter reading. Mentally move the decimal point two places to the right to determine the comparative beta. For example, a milliammeter reading of 0.34 is equal to a beta of 34, a reading of 0.23 is equal to a beta of 23, and so on.

To arrive at a more accurate comparative beta reading, subtract the leakage from the final reading. For example, if the leakage is 0.10 and the final reading is 0.45, subtracting the leakage from the final reading and moving the decimal point two places to the right gives a comparative beta of 35.

Transistors showing creeping or drift should be questioned, since a good transistor will give the same reading consistently no matter how often the switch is opened or closed.
How to Prevent Trouble with the FCC

One of ham radio’s proudest traditions is its ability to police itself. If one ham violates an amateur regulation, intentionally or not, other hams immediately call the violation to his attention, and the matter is ordinarily settled without official action by the FCC. A perfect example of how this system works occurred only recently.

A Novice friend of mine got up early one Sunday to make a few contacts on 80 meters. He called CQ and raised Rex, W8PCY, Grandville, Mich. Rex gave him an RST599 report.

"You have a very fine signal," said Rex. "The only trouble is that I am listening to you on 7440 kc., the second harmonic of 3720 kc., the frequency you think you are on. You better close down and find out what the trouble is before you get a discrepancy report from the FCC."

Of course, my friend immediately left the air. Later in the day, with the aid of another ham, he discovered that his transmitter was actually tuned to the second harmonic of his crystal frequency. This is easily done with the multi-band output tank circuits incorporated in most low-power ham transmitters, especially when they feed a makeshift antenna.

When Rex’s QSL card arrived, it was accompanied by a letter. In it Rex said that he often worked 80-meter Novices with his receiver tuned to their second harmonics and his transmitter on 80 meters. He keeps them out of trouble with the FCC.

Monitoring Harmonics. If other experienced hams would follow W8PCY’s example, it would go a long way towards solv-
ing a most difficult Novice problem. The only equipment you need for this kind of monitoring is your transmitter and a receiver capable of tuning the harmonic "shadows" of the 80- and 40-meter ham bands.

Actually, it is frequently easier to hear the harmonics than the fundamental signals. This is due to the longer "skip" and lower interference on the harmonic frequencies. For example, I often hear strong harmonics of east-coast 40-meter hams between 14,350 and 14,600 kc. when it is difficult to copy their fundamental signals because of the heavy interference from closer stations.

As soon as you tell the average Novice that he is radiating a harmonic, he will install an antenna coupler such as that described on page 133 of December, 1959, POPULAR ELECTRONICS, and a harmonic filter as described on page 93 last month. And don't be too smug about Novice harmonics. A little listening between 7500 and 8000 kc. (the harmonic "shadow" of the 80-meter band) will quickly convince you that General Class hams have their harmonic problems too.

Honest Reports. Less serious than out-of-band radiation, but more annoying to other hams, are the substandard signals put out by a small percentage of all operators. On c.w., such signals are rough and unsteady, chirpy and full of clicks. On phone, they spatter and they drift. They have hum and frequency modulation. Phone or c.w., they occupy more than their fair share of our crowded bands. Consequently, they cause unnecessary interference to the majority of hams, who take pride in emitting clean, sharp signals.

Did you ever stop to think that you may be partly responsible for keeping such signals on the air? How? By following the common practice of giving better reports than their signals deserve to the stations you work.

When was the last time you gave anyone less than T9 on c.w.? Didn't you give a T8 report to that DX station with a signal like a rhinoceros with the colic, for fear he wouldn't send you a QSL card if you gave him an honest tone report? His own mother wouldn't have given him better than T2, and do you add "C" for chirp or "K" for clicks after your RST reports when warranted? On phone, do you give reports like, "Your signals are 30 db over nine," and ig-

Two young Novices, Richard Foster, KN9SBV, of Oxford, Ind. (left), and Dudley Cahn, KN8QEX, Kalamazoo, Mich. (below), both use Heath transmitters. Richard keys a DX-20, and Dudley a DX-40.

more excessive broadness, hum, distortion, or other signal defects?

How can you blame a ham with a poor signal for believing that his signal is perfectly okay when the great majority of his reports confirm it? Do you believe the reports you receive? Admittedly, you may feel a little mean when you give an unflattering report to a ham whose signal leaves something to be desired, but what is the value of a dishonest report?

Role of the FCC. Don't get the idea that I recommend cruising up and down the ham bands like a policeman on a motorcycle looking for things to complain about in other hams' signals. Leave that to the ARRL "Official Observers" and to the FCC (Continued on page 108)
LET'S BUILD the

"TINY MITE"

By FORREST H. FRANTZ, Sr.

Footsteps on a carpet come through loud and clear

with a peewee amplifier no bigger than a postage stamp

WANT an amplifier that’s smaller than a postage stamp? Here are construction details for the “Tiny Mite,” one of the tiniest three-transistor amplifiers you’ll be able to build for some time to come. The reason? Parts are getting smaller all the time, but those available to experimenters at reasonable prices won’t get much smaller than the parts in this amplifier.

The “Tiny Mite” is so compact that it has considerable novelty value. For one thing, you can use it to show your friends just what miniaturization in electronic components really means. You’ll also find it handy for surveillance and “eavesdropping” purposes, since it’s easy to conceal. An earphone extension cord is all you’ll need to listen to conversations at remote locations.

All in all, the “fun” possibilities of this unusually small amplifier are extremely large! Time and money expenditures are pretty much in line with the size of the unit—you can wire the entire amplifier in less than two hours, using parts that should

June, 1960

AmericanRadioHistory.Com
cost you less than $10. For operation, you'll need a microphone and an earphone, but these are components you may already have on hand.

Construction. One of the secrets of the amplifier's size is the construction technique employed. Parts are cemented to a thin plastic strip, then connected to one another by their pigtail leads.

Mount and wire all components as shown in the pictorial diagram, leaving room for have to be unsoldered later when the amplifier is installed in its box. Use clip leads to connect a 50,000-ohm potentiometer into the circuit as R_4. Adjust the potentiometer for best tone with reasonable volume, then disconnect it and measure its resistance on an ohmmeter. Cement and connect the nearest value fixed carbon resistor into the circuit as R_4.

If you want to include a volume control, the Lafayette VC-43 or another 10,000-ohm resistor R_4 so that it can be mounted later. Keep all leads as short as possible. Be sure to use a heat sink when soldering transistor leads; gripping each lead with a pair of long-nose pliers will prevent soldering-iron heat from damaging the transistor. You'll need a tiny soldering iron for this tiny unit — a soldering pencil is ideal if you happen to have one handy.

The value of R_4 should be determined experimentally; it will probably fall between 10,000 and 50,000 ohms. To find the best value, connect the microphone, capacitor C_1, earphone and battery B_1 to the amplifier as shown in the pictorial. A temporary soldering job will do, since these parts will potentiometer can be used. The compact VC-43 incorporates a switch that will serve to control battery power; refer to the schematic diagram for circuit details.

The amplifier circuit is now ready for mounting in a small box. In the model, a Walsco plastic hardware box was used—such boxes, full of hardware, are available from local parts distributors for about 33 cents each.

Drill a hole in the box to mount the earphone plug. Mount the amplifier circuit, earphone circuit, battery, microphone, and capacitor C_1 in the box, using cement to hold loose parts in place. Wire all parts together and solder. Now slide the box cover

PARTS LIST

- **B1**—1½-volt battery (RCA VS074 penlight cell, Mallory RM-625RT bearing-aid cell, or equivalent)
- **C1, C2**—1.0-µF, 4-volt electrolytic capacitor (Lafayette P6-1 or equivalent)
- **J1**—Earphone jack
- **Q1**—2N207A or equivalent
- **R1**—5600-ohm resistor
- **R2**—3300-ohm resistor
- **R3**—2700-ohm resistor
- **R4**—10,000- to 50,000-ohm selected resistor (see text)
- **R5**—10,000-ohm potentiometer with switch S_1 (Lafayette VC-43 or equivalent—see text)
- **S1**—S.p.t.t. switch (on R5)
- **Mic.**—1/4" x 1/4" miniature magnetic microphone (Shure MC-30 or equivalent)
- **1**—Plastic box (see text)

* A low-noise type 2N207A can be substituted for Q1 if desired
in place and scratch an outline of the microphone on the cover. Remove the cover, cut out the scratched section, then slide the cover back in place.

Operation. Plugging in the earphone connects the power supply and energizes the circuit. Current drain on this miniature unit is extremely low: the model draws less than 2.0 ma. Either a 1.5-volt penlight cell or a miniature hearing-aid cell such as the Mallory RM-625RT will power the amplifier nicely. The penlight cell will furnish power continuously for several weeks, the physically smaller hearing-aid cell for five days or more.

While this is one of the smallest amplifiers ever, it's also a "Tiny Mite" of the first order. In fact, the gain of the unit is so great that you'll be able to hear someone walking on a rug. If you're looking for a practical application, you might try using it as a hearing aid. But bear in mind that it isn't compensated for individual hearing characteristics—hearing-aid sales agencies usually sell standard amplifiers but choose earphones with characteristics to meet individual needs.

HOW IT WORKS

Three 2N207 transistors are employed in an amplifier circuit that is direct-coupled to eliminate capacitors and/or transformers between transistors. Direct coupling permits use of lower operating voltages, with a resulting reduction in the input-stage noise figure.

Resistors R1 and R4 furnish base bias for transistor Q1. Resistor R4 is connected to the collector of output transistor Q3 to provide d.c. feedback to Q1 and thus insure good temperature stability for all three transistors. Resistor R2 serves as collector load for Q1 and base bias resistor for Q2. R3 performs the same functions for Q2 and Q3. Capacitor C1 isolates the d.c. base bias for Q1 from the microphone circuit; C2 bypasses audio that would otherwise be fed from Q3 to Q1.

Diagram

Amplifier, microphone, battery, and earphone jack are mounted in a plastic hardware box. Miniaturization can be carried still further through the use of ultraminiature resistors.
QSL BUREAUS

WHEN listening on the amateur frequencies, especially the higher bands where DX is prevalent, you will often hear a state-side station tell a foreign amateur to “QSL via ARRL.” Likewise, you may hear an amateur from the United Kingdom request that his card be sent through the “RSGB.” What are the ARRL and the RSGB? And why should cards be sent through those channels rather than to home addresses?

The ARRL is the American Radio Relay League and the RSGB is the Radio Society of Great Britain. These two organizations are the largest clubs devoted basically to the amateur operator. They sponsor their own “QSL Bureaus” whereby incoming QSL cards can be received through a central receiving point. For example, there is one ARRL QSL Bureau for each call area.

Imagine a ham trying to give his home address on the air to another operator in Afghanistan, New Zealand, or Peru. Errors would probably result. Instead, he simply asks that his card be sent “via ARRL,” and the operator on the foreign end has merely to check his Call Book for the address of the proper QSL Bureau.

Hams and SWL’s send a supply of No. 10 stamped, self-addressed envelopes to the QSL Bureau in their particular call area. When cards come in for them, they are usually filed in one of these envelopes until a certain number of cards are received; then the envelope is forwarded. Few cards are lost in the mails when they are channeled through the QSL Bureaus.

Unfortunately, large-scale QSL Bureaus exclusively for SWL’s who want to receive cards from hams do not exist. Usually, a ham will send in a batch of QSL cards to an ARRL QSL Bureau destined for SWL’s.

(Continued on page 117)
In a test instrument intended for field or portable applications, the primary advantages of transistorized over tube circuitry are ruggedness, lower weight, and almost minute power requirements. Less obvious, but no less important, are the transistor's other characteristics: smaller physical size, lack of an extended "warm-up" time, and the fact that it develops a negligible amount of internal heat.

This last item is particularly important in test instruments, for excessive heat can lead to a gradual deterioration of capacitors and other components, and it can cause changes in calibration as well. When you use vacuum-tube-operated equipment, for example, it is customary to allow several minutes "warm-up" to permit temperatures and circuit performance to stabilize.

These advantages have resulted in a growing trend towards transistorized test instruments. In some cases, manufacturers have simply "transistorized" older models. In others, the transistor has made possible the development of completely new types of test gear.

A few years back, transistorized circuits were adopted by the smaller and newer test instrument manufacturers. Recently, the Cubic Corporation of San Diego, Calif., which started operations in 1951, introduced an extended line of transistorized instruments, some intended for bench as well as field use. Included in this line are pulse generators, waveform generators, and curve tracers. Another relatively new firm, Universal Transistor Products Corporation, New York, N. Y., has specialized in developing instruments for atomic work, such as transistorized Geiger counters, dosimeters, and so on.

Today, more and more "old-line" firms are introducing transistorized test instruments, including such respected names as Hewlett-Packard, General Radio, and Boonton Radio. DuMont is producing a tran-

Test instruments are becoming more and more transistorized. Cubic Corporation's pulse generator and Universal Transistor Products' Geiger counter (top photo) are examples of this trend.
sistorized r.f. frequency meter. The Narda Microwave Corporation produces a transistorized VSWR amplifier-meter. Tektronix has developed a fully transistorized (except for the CRT) cathode-ray oscilloscope. And Motorola has announced a fully transistorized a.c. voltmeter.

Nor is this trend towards transistorized circuitry confined solely to U. S. manufacturers. Firms in Japan, England, Germany, France, and Switzerland are discovering the advantages of transistorized designs. One of the recent developments overseas is a six-transistor colorimeter by Pyror S. A. of Switzerland. If the trend continues, the day may come when most test instruments are transistorized. And that day may be sooner than we think!

Readers’ Circuits. The overwhelming majority of small transistorized receiver circuits specify magnetic earphones. Not so the circuit submitted by reader Tom Rehm, KN9PIQ, 2947 N. Farwell Ave., Milwaukee 11, Wis. His circuit (Fig. 1) permits the use of one of the low-cost crystal earsets now offered by major parts distributors.

Referring to the schematic, L_1 is a Superex Type VL Vari-Loopstick and C_1 a 365-μF. tuning capacitor. Diode D_1 is a type 1N65; Q_1 and Q_2 are G.E. Type 2N107 transistors. Either paper or ceramic capacitors can be used for C_2 and C_3; values from 0.02 to 0.1 μF at a working voltage of 25 volts or higher should be suitable. Resistors R_1 and R_2 are 10,000-ohm, $\frac{1}{2}$-watt units. Operating power is furnished by a pair of penlight cells, B_1 and B_2, controlled by a s.p.s.t. toggle or slide switch, S_1.

In operation, r.f. signals picked up by the antenna (Ant.) are selected by tuned circuit L_1-C_1 and detected by diode D_1. The resulting audio signal is coupled to a two-stage resistance-coupled amplifier, Q_1-Q_2, using $p-n-p$ transistors in the common-emitter arrangement. Resistor R_1 serves as Q_1's collector load, while R_2 in parallel with the high-impedance crystal earset acts as Q_2's output load. Capacitor C_3 serves as a bypass, while C_3 provides interstage coupling. Separate batteries are provided for each stage to minimize coupling through the power supply.

Note that Tom operates his transistors without externally applied base bias, relying on their small internal leakage currents to establish optimum operation.

Build the set on either a Bakelite board or a conventional chassis. Mount the chassis in a plastic or wooden case. After assembly, adjust L_1's core for 1600-kc. signals with C_1 set at minimum capacity. You may find it worthwhile to experiment with higher supply voltages in some cases—try a 3.0-volt (two penlight cells in series) or a 6.0-volt supply. Tom suggests a 32" whip antenna for reception of strong local stations.

The circuit in Fig. 2 should be of interest to audiophiles and recording enthusiasts. Submitted by Darrel Newell (Beltrami, Minn.), the unit is a transistorized audio mixer. He suggests its use for mixing signals from a phonograph and a microphone to simulate broadcast studio operation.

Jacks J_1, J_2, and J_3 should be chosen to match your other audio gear. Potentiometers R_1 and R_2 are 500,000-ohm carbon units, R_5 a 2.2-megohm resistor, and R_6 a 22,000-ohm resistor; all fixed resistors are $\frac{1}{2}$-watt size. Transistor Q_1 is a Raytheon Type CK722. Operating power is supplied by a 1.5-volt size "D" flashlight cell, controlled by a s.p.s.t. toggle or slide switch S_1.

In operation, Q_1 serves as a single-stage common-emitter amplifier. Input signals are applied through J_1 and J_2, appearing (Continued on page 100)
The first major battle of “Pay” vs. “Free” TV started at 7 p.m., Friday, February 26, 1960. Coins began dropping into boxes attached to TV sets in Toronto’s suburban community of Etobicoke. Subscription television for Canada was on the road.

Contrary to popular opinion, the Canadians were not paying for something they could previously have had free. For one dollar, subscribers could use their TV sets to watch one of two motion pictures currently being shown in Toronto’s neighborhood theaters: 20th Century-Fox’s “Journey to the Center of the Earth” and Warner’s “The Nun’s Story.” These films—which will probably not appear on free TV for at least 10 years—were repeated on following days at the same charge. Alternately, a subscriber could pay a dollar for a live telecast of a hockey game between the Toronto “Maple Leafs” and the New York “Rangers” from Madison Square Garden in New York.

Three Channels Added. Three different programs are simultaneously delivered to the TV receiver by means of a compact attachment mounted on or near the set. The subscriber has his choice of which

By John D. Lenk

June, 1960
program—if any—he wishes to see. The system does not require the approval of governmental broadcasting agencies because the programs are transmitted by wire and thus do not take up valuable frequency space.

After the subscriber pays an initial five-dollar installation charge, it's strictly a pay-as-you-see proposition. There is no monthly service charge or "minimum." Prices for programs vary from "free" to $2.00. Shown during the first month of operation were such films as "North by Northwest," "Room at the Top," "Gigi," and "Cash McCall."

Being wired for the toll system is a residential area which includes 13,000 homes. As of March 1, some 1000 hookups had been completed, and another 3000 subscribers were waiting for the installation crews. By July, a total of 5000 subscribers is expected to be watching first-run movies, sports events, and stage plays in the comfort of their living rooms.

Viewer's Choice. When the subscriber turns on his set, he hears a recording announce the programs being offered and the prices of each. A price window on the attachment also indicates the charge for each program. Assume that Channel A is offering a current motion picture, Channel B is featuring a live stage play, and Channel C has a sporting event. If the subscriber elects to watch the sports event, he tunes the program selector on the attachment to Channel C. When he does this, the price of the program immediately appears in the price window.

After coins are inserted in the coin slot, the attachment feeds the program into the set on an unused channel (because Channels 5 and 6 are not allocated in the same community, one of these channels is always open). Upon receipt of the coins, a magnetic tape recorder in the attachment makes a record of the "transaction." The tape is collected every month or two along with the cash.

Lack of correct change is no problem. The subscriber simply puts in more money than is indicated on the price window. He can then apply the overpayment to a future program. Or, if desired, a refund will be made at collection time.

Should the subscriber decide that nothing is worth paying for that particular night, he simply turns a knob, restoring his normal TV service—without charge, of course. Incidentally, throughout the day, subscribers receive a free bonus in the form of virtually continuous hi-fi background music.

Initial reactions of subscribers to the toll system were enthusiastic. Especially praised was the picture quality of the televised movies. The direct-wire system eliminates any picture defects caused by poor reception—"snow," "ghosts," etc. In addition, because the motion pictures are televised from 35-mm. prints, the larger film size—in comparison with the 16-mm. movie prints now standard on commercial

External and internal views of the Telemeter attachment. It connects to the antenna terminals of a TV set.
TV—results in better detail, improved tonal gradation, and generally superior image quality.

Backed by Paramount. Trans-Canada Telemeter, a company backed by Paramount Pictures, is running the Canadian operation. Paramount has invested over ten million dollars in a parent organization, International Telemeter, since 1951 and has more than one million tied up in the Toronto installation. As far as the companies involved are concerned, the installation is not an experiment; it is for keeps.

The basic philosophy behind the Toronto project is to recapture lost movie audiences and to develop new ones. There is considerable evidence that many people do not go to the movies because it is too much trouble; hiring a baby sitter, driving to the theater, parking the car, driving home—all are factors that tend to reduce the movie audience. Telemeter figures that if the people won’t go to the movies, it will take the movies to them.

The economics of the operation are rather interesting. The per-home cost of an installation runs Telemeter about $100. Studies that compare this expense with the per-seat cost of a movie theater indicate that a pay-TV installation is far cheaper. The annual income from a pay-TV installation is also calculated to be more than that from a single theater seat.

(Continued on page 126)
Putting the speakers along one of the shorter walls of the listening room is a common and usually successful arrangement.

"Listening corner" placement cannot be recommended because stereo's directionality and overall perspective are lost.

How to place

Many stereo systems don't sound right simply because the speakers are placed incorrectly.

Here's how to set up your stereo speakers for full effectiveness

When stereo is at its best, it can break down the invisible barrier between the listener and the performer, bringing the Modern Jazz Quartet or the New York Philharmonic into your living room. But despite the tremendous improvement of stereo records and tapes, many stereo systems fall far short of their sonic potential.

For example, a friend of mine recently invited me over to hear his spanking-new stereo system. One of the speakers was located near the floor in the living room; the other was about twenty feet away, on top of a cabinet in the dining room. Although the equipment was some of the finest available, a good table-model radio would have sounded better. With the speakers located as they were, the system was capable of producing neither good stereo nor good sound of any kind.

Perhaps the most important reason for the disappointing performance of some stereo systems is that their owners seem to have no firm idea of how stereo should sound. As long as a cymbal clash comes from one side of a room and the blare of a trumpet from the other, many listeners assume that the full potential of stereo is being delivered. If you are one of those who think directionality is the key to stereo's realism, go to a concert and hear what "real" music sounds like. The purpose of stereo is to duplicate—not exaggerate—an original unity of sound.

Although the ultimate enjoyment of stereo depends on the listener's knowledge of how it should sound (so he can adjust the various controls accordingly), the basic techniques for achieving good stereo sound are not complicated. By paying attention to a few simple rules for the care, feeding,
Placing one speaker near and one far can provide good coverage, but arrival-time differences garble acoustic phasing.

Corner placement provides fair coverage and good bass, but it can create standing waves and excessive channel separation.

Stereo Speakers

By JOHN MILDEN

and placement of stereo speakers, you can figuratively invite a jazz combo or symphony orchestra into your living room.

Phasing Problems. The "care and feeding" of stereo speakers involves getting and keeping them in phase with each other. When speakers are correctly phased, the resulting sound seems to come from the space between them, rather than from one or the other. Out-of-phase systems produce sound with a rough or uncertain quality—and an exaggerated directionality that has no relation to the sonic characteristics of a live performance. In addition, out-of-phase stereo usually seems to jump back and forth at random between the two speaker systems.

Putting two speakers in phase initially is usually an easy job—a matter of connecting both pairs of speaker leads so that the cones of both speakers will move back and forth in unison. Many speaker systems have coded terminals that facilitate proper phasing, and others can be put in phase by means of a short listening test with a monophonic source—the sound should seem to originate between the two speakers. A special test record devised by Electronics World provides an easy way to check speaker phasing.

After the speakers are initially phased, it's necessary to keep them in phase. This is not as obvious as it may seem. In the long chain of events between the recording session and the playback in your living room, there are many chances for the two stereo channels to move out of phase with each other. Most amplifier manufacturers provide a phasing switch to cope with this possibility. If your amplifier doesn't have a phasing switch, you can install a double-pole, double-throw switch on one speaker

June, 1960

83
to reverse the connection of the wires. In any case, it's always a good idea to try flipping the phasing switch when things don't seem to sound right.

Reversed Channels. In addition to problems of phase reversal, it's also possible for the two stereo channels to become reversed. This makes the right-channel material come out of the left speaker and vice versa. Although this situation isn't as common as phase-reversal, manufacturers of stereo amplifiers supply a channel-reverse switch to take care of it.

Listening to either reversed-channel or out-of-phase stereo material can be a strange experience, but a combination of both can produce a really zany sound. Musical instruments seem to jump back and forth between speakers, and strange reverberations fill your living room. While the overall sound is definitely unlike anything you've ever heard on a monophonic system, don't mistake it for true stereo. On first listening, you might actually like this spectacularly strange kind of sound. After a few hours, however, you'll be much happier if you straighten out the stereo with the phase- and channel-reversal switches.

Speaker Placement. Deciding where to place the stereo speakers for maximum effectiveness is complicated because the recording industry has not standardized stereo recording techniques, particularly with regard to microphone placement. The engineer's understandable willingness to experiment with microphone placement should prompt you to experiment with speaker placement. In practice, this does not mean that you should put your speakers on hand trucks and shift them around the living room to accommodate different kinds of recording, but it does indicate that installing stereo speakers permanently—particularly in walls—is not a good idea because a decision on recording standards could obsolete a custom installation.

Experimenting for a few hours with speaker placement will pay big dividends in listening pleasure. Probably within the first few minutes, you will discover that really significant changes in sound quality can result from moving one speaker even a few inches. In the case of “bookshelf” speaker systems, a change from horizontal to vertical positioning will usually produce a very audible difference, and moving the speaker from a bookshelf or mantelpiece to an on-the-floor location will often provide a startling change.

(Continued on page 106)
Ken was deep in the innards of a transmitter when Larry entered his attic ham shack. He put down his still-smoking soldering gun and greeted his friend.

"Hi, Larry. What brings you to the inner sanctum this Saturday morn?"

"My! For an electronic genius you're pretty forgetful," Larry replied with a grin. "Remember our last discussion on vectors? I'm back to have a go at them again . . . by invitation, of course."

Ken laughed. "I do remember the invitation, believe it or not, and I'm chock full of vectors just waiting for you. Pull up a chair while I untangle this mess of wires. Where were we when the last session ended?"

"Well, you had finally gotten it through my thick skull that vectors were lines that had direction and length, and that both their direction and length meant something electrically. In the cases we discussed, the direction of the vector indicated the phase angle of the voltage or current; the length of the vector showed the strength of the voltage or current. Then we drew some curves that showed leading and lagging currents and also the vector diagrams for each curve." Larry stopped for breath.

"I don't mind telling you, Ken," he went on, "that it was a darned sight more interesting than I thought it would be. As a matter of fact, I think I learned a lot in our last session. Now I'm anxious to see how you apply all this vector stuff to actual circuits."

"I'm glad you're interested in the serious study of electronics, Larry. That's the only way you're going to keep up with all the new theories being worked out by engineers."

"Today, for a start," Ken said, "we'll look at the way circuit elements affect the voltage and current relationships in an electronic circuit. Then we'll express what we learn in terms of vectors. Can you, by chance, rattle off the elements of a circuit in your gay, inimitable manner?"

Larry hesitated for a moment. "When you say circuit elements, do you mean things like coils, capacitors, and resistors?" he asked.

"That's the answer . . . almost," Ken replied. "The electrical elements in any circuit are resistance, inductance, and capacitance. They are put into the circuit by means of resistors, coils, and capacitors."

"At least I was close," said Larry.

"Well, let's get down to work with vectors, then. First we'll see what happens to the voltage and current curves of a circuit consisting of a resistance only, plus an a.c. power source." Ken took a pencil and some paper from the work table and made a rapid sketch.
Larry had watched Ken closely as he drew. Finally he blurted out, "I get it, Ken. When there's a pure resistance in the circuit, the voltage and current rise and fall together and there's no phase angle between them. That's why you said a while ago that circuit elements were important. How about letting me draw the vector diagram for this set of curves?"

He took the paper and pencil from Ken and in a moment the diagram was drawn. He passed the sketch back across the table. "How's that, professor?" he asked.

"Swell, Larry. Now, are you sure you understand why you drew the two vectors on one line? Are they really one vector or two?"

"Hey, now, Ken! Don't ask embarrassing questions. But I can answer the first one . . . I think. The two vectors are drawn on the same line because there's no phase angle between them. And they're two separate vectors, all right. I think one is longer than the other because you showed the voltage curve to be higher than the current curve on your drawing . . ."

"Actually, you do understand, Larry," Ken said. "But you're not sure of yourself. While the two vectors you drew—one for the current and one for the voltage—look like one line, in reality they are two lines, one lying on top of the other. It's like the hands of a clock at noon. The two hands seem to be one at first glance, with the minute hand extending beyond the hour hand."

Larry got the point, so Ken went on. "With regard to the length of each vector, you are the one who sets up the scale for that. It becomes nothing more than a matter of convenience—your drawing has to be easy to work with and not too large or too small. For example, if you're dealing with voltages on the order of 100 volts, it would be murder to let an inch equal a volt. But if you let one inch equal 50 volts, a 100-volt vector would be two inches long and your vector diagram would be in reasonable scale."

Larry nodded. "The way you explain it, Ken, I can set up two scales, one for amperes and one for volts. They don't really have anything to do with each other. Right?"

"You're on the beam, Larry," Ken said. "Now let's look into another case where there is pure capacitance in the circuit."

KEN made another drawing and said, "Here's the circuit and the curves involved. Let's see what you can do about translating this into a vector diagram."

This time Larry was a little slower on the uptake. He studied the curves Ken had drawn and scratched his head in puzzlement.

"What's the matter, friend—stuck?" Ken asked. "Here, let me give you a little hint. Study the two curves and figure out which one started first—that's the one that's leading. Then show them that way on your diagram and show the amount of lead in degrees."

"I see it now!" Larry shouted. "This isn't tough at all." He began to draw and talk at the same time. "The curves you drew show that the current starts to flow first. When it reaches the 90° point, the voltage starts to build up. It should look like this in vector form."

POPULAR ELECTRONICS
"That's 100% correct," said Ken. "You show the current leading the voltage by 90°. That happens in every circuit where there's pure capacitance. See how the use of a vector diagram brings this point out? That's why it's so important to be able to read them, and why they're used so often in engineering texts.

"Let me ask you this question, though, just to see how bright you really are. What's going on in the circuit that causes the voltage to lead the current? See if the diagram can give you any clue."

Larry's jolly look rapidly dissolved into chagrin. "I don't even know what you're talking about, Ken."

"Sure you do, Larry. You're just not thinking along the right lines. Let me ask you this: what sort of a voltage is there across the capacitor before the a.c. input is fed to the circuit?"

"None," Larry promptly replied, perking up a little.

"Right. Now, what's the first thing that happens when the a.c. is applied?"

"Well, I guess the current starts to flow," Larry answered.

"You guess! Current sure does flow. And what is current? Electrons, right? And where do these electrons flow to? And what..."

"Whoa there, mighty mentor!" exclaimed Larry. "I've got it. The picture is as clear as a wide-screen vectorscope. The current, or rather the electrons, must flow and pile up on the capacitor plates before a voltage can be built up across the capacitor. That's why the current leads the voltage in this case."

Larry looked proud and continued explaining. "Then, when enough electrons have piled up so that the voltage across the capacitor equals the applied voltage, no more current flows and the current curve drops down to zero."

He flipped through the papers to Ken's diagram of the curves for the capacitor circuit. "Here," he said, pointing to the 180° spot on the base line. "This is the point where the capacitor is fully charged to the potential of the applied voltage and the current stops flowing."

"Nice going, Larry," Ken replied. "I think you have got it. With the explaining you just did, the next step in vector analysis should be a cinch for you."

Once again Ken took pencil in hand. "This time we'll see what goes on in a circuit that has pure inductance. Then we'll finish up in a blaze of glory with a circuit that combines all three elements."

Ken then drew the curves for the voltage and current flow through a circuit that contained a pure inductance.

"Without getting long-winded about it, Larry, I'll tell you that the inductive circuit acts directly opposite to that of the pure capacitance," Ken said. "The reason for this goes back to the basic laws of magnetism."

"Could you give me a brief explanation?" Larry asked. "Not that I don't know what's what. I just want to see if you do." He ducked as Ken threatened him with a friendly poke.

"Okay, Larry. Here goes. When a current flows through a coil, a magnetic field is built up around the coil. Now, as this current varies—as it has to in an a.c. circuit—the magnetic field also varies and cuts across the coil. When it does this, it introduces a voltage in the circuit that acts to oppose the change in the current. This opposing voltage reaches its maximum value at the same time the current is at a minimum. For this reason it is said to lead the current by 90°. Was the explaining okay, wise guy?"

"Yes, sir, you did very well. I'll see that a good mark is entered for you," snickered (Continued on page 112)
ONE of the newest rigs out, the Lafayette HE-15 transceiver shown in the photo below, marks a major breakthrough in the CB price-vs.-quality war.

On the “quality” side of the ledger, the HE-15 features a tunable superhet receiver with vernier tuning across all CB channels, an on/off noise limiter switch, r.f. stages in the transmitter and receiver, and five transmit channels. Now, without looking in your Lafayette catalog, take a guess at the price.

If you said $64.50, you’re right, but you probably peeked because the HE-15 has all the features of sets going for more than a hundred dollars.

Forty members of the Bronx-Westchester CB Association (New York) are becoming part of the Disaster Patrol Division of the Mt. Vernon, N. Y., Civil Defense organization. The Disaster Patrol Chief gave CB a field test in which club members supplied automobiles and CB equipment for 25 patrol cadets. The idea was to check reliability of CB coverage over wide areas, give the cadets training in reporting to the control, and check the coordination of teams acting under orders from a mobile control center.

Some thirty automobiles with CB rigs will now be made available to the Disaster Patrol as a result of the affiliation with the club. Anybody else hooked up with Civil Defense yet?

If you’re thinking about modifying your license, Richie Seidenberg has some interesting news for you. Richie, 2W2933, filed for some additional mobile units and received his license back with the call “2W4887” typed on top. When he asked the FCC about it, they told him that modified licenses receive new calls because it’s easier for their records. The old calls are cancelled. Furthermore, Richie was told that when his present 2W4887 license expires in five years a third call will probably replace the second one on his new license.

Several months ago, you may remember, we told you not to assume that any “0.005” crystal would automatically place you “on frequency,” because a crystal will only function properly when operating within the circuit for which it was designed. Texas Crystals recently announced that guaranteed-accurate CB crystals can now be delivered for any unit made. Be sure to specify the make and model number of your rig when ordering.

The “Five-Watt Wizards” club, which we discussed in the March column, has had a fantastic number of requests for membership information. Applications have been received from as far away as Hawaii.

As a result of the increasing interest in this club, its members have now decided to solicit membership actively from CB’ers throughout the nation. If you want to belong to a national organization for the advancement of CB, drop a card to “The Five-Watt Wizards,” 137-27A 68th Drive, Kew Garden Hills 67, N. Y.
Carl and Jerry
Two Tough Customers

YOU MIGHT HAVE expected to find Carl and Jerry outside on such a wonderful, warm June evening. But they were perched on the workbench of their basement laboratory instead, looking questioningly across at their respective fathers seated side by side on a leather-covered couch.

"No doubt you boys are wondering why we called this conference," Mr. Bishop, Jerry's father, began; "so let me say right off that you can quit looking so serious and guilty. You're not in any trouble—at least none that we've caught you in."

"That's right," Mr. Anderson agreed with a smile. "To end the suspense, boys... we've decided it's time you two had a car."

"Yippe-e-e-e!!" Carl shouted as he bounded off the bench and began skipping around the lab. Jerry, who seldom permitted himself to waste any energy, stayed put; but the big grin wreathing his round face showed that he shared his chum's feelings.

"We think you should know how and why we reached this decision," Mr. Bishop continued as Carl settled back on the bench. "Both of us have kept sharp eyes on you as you took drivers' training in school, as you passed your drivers' tests and got your licenses, and as you herded the family buses around these past few weeks. You still have a lot to learn about handling and maintaining a car, but we think you'll learn much faster in a car for which you're solely responsible."

"I might add that your mothers don't agree," Mr. Anderson said with a wry smile; "and you should keep in mind that your old dad's have stuck their collective necks way out for you on this one. If you get hurt or hurt anyone else with your car, not only will we be the two sorriest fathers in town, but we're going to hear 'I told you so' for the rest of our lives."

"Along that line," Mr. Bishop went on, "we can't have you buying a worn-out, dangerous junker. But a good, sound used car still costs a sizable chunk of cash. Now that we're preparing to send you two characters through college, neither family has much money to spare—at least not enough to put out the whole cost of a good car."

"That's why we decided to split the expense and buy you two a partnership car," Mr. Anderson chimed in. "We know this arrangement wouldn't work in many cases, but we think you two are an exception. You practically live together, anyway; so we have a hunch you won't mind sharing a car."

"We'd rather!" Carl and Jerry chorused. "Fine," Mr. Bishop said happily. "Then here's the dope: we looked around quite a bit and decided a careful shopper can get a good, safe used car for around six hundred dollars. A careless shopper can get an awful stinging for twice that amount. At any rate, we're each putting three hundred dollars into a car-buying fund. You boys are to shop around until you're sure you've found the car you want costing six hundred dollars or less. Then we'll go down and buy

June, 1960
it for you. The choice will be solely yours. We're hoping you'll take your time, use good judgment, and get a real bargain; but if you buy a lemon, there'll be no one to blame but yourselves."

FOR A LITTLE WHILE no one spoke. Then Jerry said hoarsely, "Dad, and Mr. Anderson, I want you to know I really appreciate what you're doing. I know you're taking a chance on us, and I'm sure going to try and deserve your confidence."

"Me, too," Carl added; "and maybe we can set your mind at ease on one point. Jer and I have talked it over, and we've decided teen-age drivers fall roughly into three groups. The Hot-Rodders are the fellows who try to squeeze every bit of speed and acceleration possible out of a car. They're interested in what we hams would call the automobile's maximum peak power output. A few of them fail to use good judgment about where and when they try out their souped-up 'irons,' and they bring the bad name of reckless drivers to the whole group, which really isn't fair."

"Then there are the Show-Offs," Jerry continued. "These fellows are more concerned with the car's appearance than with its snap or top speed. They are the ones who go in for customizing the body, lowering the silhouette, dual-exhausts, chrome trim, etc. They want their car to be noticed, and sometimes they try to attract attention by childish actions like squealing the tires, using straight pipes, unnecessary blowing of special horns, and so on."

"Finally," Carl concluded, "there are the Mechs. These are the boys who pride themselves on keeping their automobiles in tip-top mechanical condition and treating them with respect. Their cars are spic and span, but they put no money into chrome gadgets, dummy radio antennas, or other things that don't contribute to the car's performance. They would as soon kick a dog as abuse their car's mechanism with jack-rabbit starts or tire-screeching stops. They know just as much about what makes a car tick as do the Hot-Rodders, but they're interested in the car's overall, long-time performance instead of its short-burst peak performance. They are just as proud of their cars as are the Show-Offs, but their satisfaction comes from a motor that purrs as smoothly and quietly as a kitten, a body that is tight and free from squeaks and rattles, and a smooth driving technique that wrings the maximum mileage out of every drop of oil or gasoline. Jer and I have decided that, as future engineers, we belong with the Mechs."

"Well," Mr. Anderson said casually, trying hard not to reveal how pleased he was with what he had just heard. "I know a pair of future Mechs who had better be scampering off to bed so they can get up bright and early tomorrow morning and start car-hunting. Come along, son; let's go home."

LATE AFTERNOON three days later found Carl and Jerry, rather dispirited, standing in front of Sam's Used Car Sales.

"Well, we may as well go in," Carl said. "This is the very last dealer in town."

"I suppose so," Jerry agreed; "but would you have believed it was so hard to buy a car? In the last three days I've been under more cars than a cross-walk, and we haven't found a thing we want at our price."

At this point a short, fat little man wearing a broad-brimmed Stetson hat and puffing at a thin, crooked cigar sauntered out of the office of the car lot. "If you young punks are thinking of trying to sell me some hub caps you've stolen, you can forget it," he said with a scowl as he flipped the ashes from his cigar with a little finger.

"We don't want to sell you anything, mister," Carl said politely. "We want to buy a car."

"Not from me you don't," the little man asserted. "I've been through that jazz. You want to give me about a bill and a half for a clunker that will run fast enough and hold together just long enough to splash you all over the landscape. Go buy your suicide weapon elsewhere. Plenty of guys will take your money."

POPULAR ELECTRONICS
“Now, hold on,” Jerry said indignantly. “We’re not looking for a car to hot-rod. We want a good, sound, safe used car at a reasonable price. We’re more interested in how long it will run than in how fast it will go.”

Sam cocked his cigar up at a jaunty angle and looked shrewdly at the two boys. “So maybe I went off half-cocked,” he said gruffly, “but your pitch is new to me. How much dough you got?” he demanded.

Carl and Jerry exchanged glances. Then Jerry flung caution to the winds and gulped, “Exactly six hundred dollars. Our dads are putting it up.”

“How come your folks don’t do the shopping?”

“They think if we’ve got sense enough to drive a car we ought to have sense enough to buy one.”

“Hm-m-m, that’s an interesting theory most folks prefer to apply in reverse,” Sam said with a broad grin that crinkled his eyes almost closed. “Come along and I’ll show you something.”

The boys followed the waddling little man until he stopped in front of a very clean-looking 1954 model four-door sedan of a popular make. “Now, there,” Sam said proudly, “is a real cream-puff if I ever saw one. The guy who owned it had one of those little foreign cars that took almost all the short-trip driving. At least three-fourths of the miles on that speedometer were put on during vacations and other long trips. The rest of the time that car sat in the garage. I’ve been holding it for my wife’s kid brother, but when he found out that the six-cylinder motor only develops 115 horsepower, he lost interest. That bird-brain thinks anything under a couple of hundred horsepower is only for running tinker-toys.”

Carl and Jerry had been eagerly going over the car while Sam was talking. He watched them examine the brake and clutch pedals of the straight-stick job for wear. He saw them look at the mileage and date on the door-edge lube sticker and compare this with the 32,000 odd miles on the speedometer. With difficulty he concealed a grin as they solemnly ran all the door windows up and down, opened and closed all four doors, and examined the paint on the door edges for evidence of a repaint job. Then they methodically checked the tread on all four tires and carefully examined the frame for any signs that it had been heated and straightened after an accident. Finally they raised the hood and took out the dipstick. The oil was clean and of a viscosity that checked with the #20 shown on the lube sticker.

“Don’t you want to hear it run?” Sam asked curiously. “That’s the first thing a teen-ager usually does: start the motor and wind it up before the oil has a chance to circulate. We call this ‘tightening the bearings’.”

Sam wedged himself under the wheel and started the motor. The starter turned slowly, but once started the motor hummed smoothly.

“What’s that little clicking sound?” Carl asked.

“Tappets of the overhead valves,” Sam explained as he shut off the motor and got out of the car. “They always make a little noise. But say: I’ve got to close up now and meander on home. We’re having company tonight, and the little woman will flatten me if I’m late. You boys come back tomorrow and finish looking the car over. I won’t be surprised if we do business. I like the way you two go at things.”

Reluctantly the boys closed the hood and took off for home, excitedly planning further checks.

When Sam unlocked the door of his office the next morning, Carl and Jerry were right on his heels. He had to do some book work, but he gave the boys the keys to the car and suggested they take it for a trial drive. When he walked out of the office an hour later, the boys were back and had the front end of the car jacked up. Jerry was wearing a pair of earphones plugged into a small black box. He was pressing a little rod sticking out of this box against an exposed front axle as he slowly turned the wheel.

“I think there’s a bad bearing in this
wheel," Jerry announced. "I can hear it grinding through this contact mike working into the transistor amplifier. I don't hear it on the other wheel."

"We'll soon find out," Sam said indulgently as he pulled a crescent wrench and a pair of pliers from his hip pocket and started taking off the wheel. "I was a garage mechanic for many years," he explained, "but they kept making cars lower and lower, and I kept getting thicker and thicker. Finally, even with lowering blocks on my creeper, I couldn't slide under 'em any more; so I stopped doctoring them and started selling them. Well! I'll be darned! This bearing is a little rough. We'll put in a new one."

"And how about relining the brakes?" Carl asked. "Those bands are almost down to the iron."

"Okay," Sam groaned; "but you boys are going to have me on the street with a tin cup and pencils. Don't forget I'm letting you steal this sweet little buggy for only six bills."

Jerry got into the car and hit the starter. The motor revolved very slowly but did not start.

"Don't tell me I'm going to have to throw in a new battery!" Sam groaned.

Carl picked up the volt-ohmmeter that had been placed for safe-keeping in the rear seat and connected it across the battery terminals as Jerry twisted the starting key again.

"It's not the battery," Carl announced. "The voltage only drops to 5.5 volts with the starter load."

"Better the battery than the starter," Sam said, as he nervously took out one of his crooked little cigars and lit it.

"I've hooked the meter between the grounded battery terminal and the starter case. Hit the starter again," Carl instructed Jerry. "Hold it!" he exclaimed as soon as the starter began its sluggish turning. "That's it. There's a volt or so drop right there. Must be a poor ground connection on the battery cable. Can I borrow that wrench a minute?"

"Be my guest," Sam replied, holding out the tool.

Carl's lanky frame slid easily under the car, and he did some high-powered grunting and wrench-tugging. "Now try her," he called. The starter whirred rapidly, and the motor started instantly.

A pleased smile spread over Sam's face.

"Boys," he said impulsively, "I've taken a shine to you; so let's quit horsing around. I like to see a good car go to someone who appreciates and takes care of it. You two have convinced me you will do just that. I'll stake my reputation as a mechanic—of which I'm pretty proud—that this car will give years of satisfaction. It's a real bargain at six bills just as it stands, but I'll put in the new bearing and the brakes and check it all over. You can have it at eight tonight if you want it. What do you say to that?"

Carl and Jerry looked at each other and then said in chorus, "We'll take it!"

IT SEEMED to the boys that eight o'clock would never come, but finally they and their fathers started on foot for Sam's place. Their pride-and-joy, freshly washed and polished, was ready and waiting right in front of the office. They looked it over lovingly as their fathers went into the office with Sam to conclude the deal. As the men came out, Carl flipped a quarter into the air and Jerry called out, "Heads!"

"Tails it is," Carl revealed, and he slid behind the wheel while Jerry got in beside him.

"Pilot to co-pilot," Carl called in a singsong voice, "ready for take-off?"

"Blast off," Jerry instructed.

The car rolled smoothly out into the street, and as Sam watched the gleaming tail lights disappear around a corner, he took off his big hat and held it against his chest as he looked up into the star-studded June sky:

"Boss," he said reverently, "there goes my good deed for the day, and I feel real good about it. But if it's not too much to ask, could you maybe send me a few tire-kicking, door-slamming suckers now just to sort of even things up?"
Announcing

The most Complete
Guide to Hi-Fi and Stereo
Ever Published!

STEREO • HI-FI GUIDE 1960

In this compact, handy reference, you'll find the answers to nearly any question on hi-fi, plus details and data on trends, components, speakers, stereo, audio theory. Prepared by the Editors of POPULAR ELECTRONICS, the 1960 STEREO • HI-FI GUIDE is easy to understand—complete with diagrams, illustrations, and clear explanations.

Here's what you'll find in the five big sections of the 1960 STEREO • HI-FI GUIDE:

I. YEARBOOK
- Trends and New Products
- Multiplex—an analysis and forecast

II. INSIDE THE COMPONENTS
- Detailed analysis of preamps, stereo preamps, power amps, tuners, turntables, and stereo cartridges

III. SPEAKERS AND ACOUSTICS
- Inside the HiFi Loudspeakers and Enclosure
- Electrostatic and Cone Type Speakers
- Does Shrinking Size Mean Shrinking Sound?
- Between Speaker and Ear
- Custom-Built Equipment Enclosure

IV. STEREO
- Stereo Standards
- What You Should Know Before Buying Stereo
- Stereo Simplexing Simplified
- Stereo Tape is Back to Stay
- Balancing Your Stereo System
- Stereo Cartridge Directory
- Stereo Records—Fad or Fulfillment?

V. AUDIO THEORY AND APPLICATION
- Maintaining and Testing Your HiFi
- Harmonic Distortion
- Filter and Crossover Networks

DON'T DELAY—NOW ON SALE at your favorite newsstand or Electronic Parts Store, or order by coupon today. Only $1.00.

Ziff-Davis Publishing Company
Department PE-680
434 S. Wabash Avenue,
Chicago 5, Illinois

Please send me a copy of the 1960 STEREO • HI-FI GUIDE. I enclose $1.00, the cost of the GUIDE, plus 10¢ to cover mailing and handling charges. (Foreign $1.25, plus 25¢ handling charges.)

Name__________________________
Address________________________
City____________________Zone____State__________
HI-FI RATED 25/25 WATT STEREO AMPLIFIER-PREAMPLIFIER KIT
A complete 25/25 watt stereo power and control center (50 watts mono) . . . 5 switch-selected inputs for each channel . . . new mixed center speaker output . . . stereo reverse and balance controls . . . special channel separation control . . . separate tone controls for each channel with ganged volume controls . . . all of these deluxe features in a single, compact and handsomely styled unit! Five inputs for each 25 watt channel are provided: stereo channel for magnetic phono cartridge (RIAA equalized); tape head input; three high level auxiliary inputs for tuners, TV, etc. There is also an input for monophonic magnetic phono cartridge, so switched that monophonic records can be played through either or both amplifiers. The automatically mixed center speaker output lets you fill in the "hole-in-the-middle" found in some stereo recordings, or add extra monophonic speakers in other locations. Nearly all of the components are mounted on three circuit boards, simplifying assembly and minimizing possibility of wiring errors. 30 lbs.

New Heathkit Stereo Hi-Fi Components . . .

plus Exciting New Kits for the Ham, Technician,
Boating Fan and Hobbyist

MANUAL STEREO RECORD PLAYER KIT
Made by famous Garrard of England, the AD-10 is a compact 4-speed player designed to provide trouble-free performance with low rumble, flutter and wow figures. "Plug-in" cartridge feature. Rubber matted heavy turntable is shock-mounted, and idler wheels retract when turned off to prevent flat spots. Powered by a line-filtered, four-pole induction motor at 16, 33 1/3, 45 and 78 rpm. Supplied with Sonotone STA4-SD ceramic stereo turn-over cartridge with .7 mil diamond and 3 mil sapphire styli. Mechanism and vinyl covered mounting base preassembled, arm pre-wired; just attach audio and power cables, install cartridge and mount on base. With 12" record on table, requires approximately 15" W. x 13" D. x 6" H. Color styled in cocoa brown and beige. 10 lbs.
ECONOMY STEREO PREAMPLIFIER KIT

Although these two new Heathkit models are designed as companion pieces, either one can be used with your present stereo system. The preamplifier (AA-20) features 1 inputs in each stereo channel and gives you a choice of 6 functions. It will accommodate a magnetic phonograph (RIAA equalized), a crystal or ceramic phonograph, and two auxiliary sources (AM-FM tuners, TV, tape recorders, etc.) and is completely self-powered. The six-position function selector switch gives you instant selection of “Amplifier A” or “Amplifier B” for single channel monophonic; “Monophonic A” or “Monophonic B” for dual channel monophonic using both amplifiers and either preamplifier; “Stereo” and “Stereo Reverse”. 8 lbs.

HI-FI RATED 14/14 WATT BASIC STEREO AMPLIFIER KIT

Two 14-watt high fidelity amplifiers, one for each stereo channel, are packaged in the single, compact, handsomely styled amplifier (AA-30). Suitable for use with any stereo preamplifier or with a pair of monophonic preamplifiers, it features individual amplifier gain controls and speaker phase reversal switch. Output terminals accommodate 4, 8 and 16 ohm speakers. 21 lbs.

HI-FI RATED 14/14 WATT STEREO AMPLIFIER KIT

A tremendous dollar value in the medium power class, this top-quality stereo amplifier-preamplifier combination delivers full 14 watts per stereo channel (28 watts monophonic) to drive your stereo system with ease, while versatile controls give you fingertip command of its every function. In addition to “stereo” and “stereo reverse” functions, the SA-2 provides for complete monophonic operation. Inputs on each stereo channel accommodate “magnetic phono” (RIAA equalized), “crystal phono”, “tuner” and high level auxiliary input for tape recorder, TV, etc. Other features include a speaker phase-reversal switch, clutched volume controls, ganged tone controls, filament balance controls, and two AC outlets to accommodate accessory equipment. Handsomely styled in black with inlaid gold design. 23 lbs.

UTILITY RATED 3/3 WATT STEREO AMPLIFIER KIT

Your least expensive route to stereo, the SA-3 delivers 3 watts per stereo channel (6 watts monophonic), adequate for average living-room listening. The high level preamplifier has two separate inputs for each channel and is designed for use with ceramic or crystal cartridge record players, tuners, tape recorders, etc. Featured are ganged bass and treble tone controls, clutched volume controls, channel reversing switch, speaker phase reversal switch and mono-stereo function selector switch. Attractively styled with satin-black cabinet. 13 lbs.

MIXED LOWS STEREO CROSSOVER NETWORK KIT

The AN-10 makes it possible for you to convert to stereo or improve your present stereo system by using just one bass “woofer”; saves buying a second bass speaker, permits using more economical “wing” speakers, improves the bass response of any stereo system. Delivers the non-directional bass frequencies of both channels below 250 cps to a single woofer and passes the higher frequency stereo channels to a pair of wing speakers. Rated at 25 watts per channel. Matches 8 or 16 ohm woofers, 8 ohm high frequency speakers, or Heathkit SS-1-2-3 speaker systems. 10 lbs.

TURN PAGE FOR MORE HIGH QUALITY DO-IT-YOURSELF KITS
HEATHKIT® GIVES YOU MORE IN THESE TEN WAYS:

1. Building a Heathkit is easy—Check-by-step instruction manuals make it virtually impossible for you to fail.
2. Building a Heathkit is quick—No complicated, technical jargon for you to decipher: at most, a Heathkit takes only a few evenings to assemble.
3. Building a Heathkit is economical—Mass production and purchasing economics are passed directly along to you, our customers.
4. Building a Heathkit is educational—As you build, you learn ... more about electronics, more about the component units and when and where to add them.
5. Building a Heathkit is fun—Nothing quite equals the sense of achievement you receive when you successfully complete a Heathkit unit and "tune-in" for the first time.
6. Your Heathkit is Guaranteed—Every Heathkit unit is guaranteed to meet advertised performance specifications ... or your money will be cheerfully refunded.
7. Your Heathkit is available on Convenient Credit—Our time payment plan makes it possible for you to order now ... pay later.
8. Your Heathkit is Tops in Quality—The very finest in electronic equipment comes to you in kit form from the Heath Company.
9. Heathkit Dealers can Serve you Locally—Carefully selected Heathkit representatives are available in most localities.
10. Heathkit Service is Customer Service—Our staff of technical experts is always ready to answer your questions or help you if you have any difficulty.

TEN-TRANSISTOR "MOHICAN" GENERAL COVERAGE RECEIVER KIT (GC-1)

An excellent portable or fixed station receiver. Many firsts in receiver design, ten transistor circuit, flashlight battery power supply and new ceramic IF transfilters. The amazing miniature transfilters used in the GC-1 replace transformer, inductive and capacitive elements used in conventional circuits for shaping bandpass; offer superior time and temperature stability, never need alignment, provide excellent selectivity. Telescoping 54" whip antenna, tuning meter, flywheel tuning and large slide-rule dial also featured. Covers 550 kc to 30 mc in five bands. Electrical bandspread on five additional bands cover amateur frequencies from 80 through 10 meters. Operates up to 400 hours on 8 standard size "C" batteries. Sensitivity: 10 uv, broadcast band; 2 uv, amateur bands, for 10 db signal-to-noise ratio. Selectivity: 3 kc wide at 6 db down. Measures 6½" x 12" x 10". 20 lbs.

HEATHKIT XP-2 Plug-in power supply for 110 VAC operation of GC-1. 2 lbs. $9.95

6-TRANSISTOR PORTABLE RADIO KIT

(XR-2 Series)

Unsurpassed quality and styling are combined in these handsome sets to provide you with superb and dependable portable entertainment wherever you are—wherever you go! Choose the gleaming, two-tone molded plastic model or the handsome simulated leather-and-plastic combination—both feature a gracefully curved grille in smart beige plastic. The XR-2P complements the handsome grille with a mocha colored ease of high-impact plastic, while the XR-2L encases the beige grille in suntan color Sur-U-Lon simulated leather. Vernier tuning control gives you smooth, precise station selection. Six Texas Instrument transistors are used for quality performance and long life; a large 4" x 6" PM speaker with heavy magnet provides "big set" richness of tone. Ready to play after simple assembly—transformers prealigned. Six flashligh batteries used for power (500—1,000 hrs.) (Batteries not included).

Order Direct by Mail or
Always say you saw it in—POPULAR ELECTRONICS
ORDERING INSTRUCTIONS
Fill out the order blank below, giving us your name and address in the space provided at right. Include charges for parcel post according to weights shown; Express orders are shipped delivery charges collect. All prices F.O.B. Benton Harbor, Mich. A 20% deposit is required on all C.O.D. orders. Prices subject to change without notice. Dealers and export prices slightly higher.

<table>
<thead>
<tr>
<th>QUAN.</th>
<th>ITEM</th>
<th>MODEL NO.</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NEW 100 KC CRYSTAL CALIBRATOR KIT (HD-20)

This versatile ham aid provides marker frequencies every 100 kc between 100 kc and 54 mc. Use to align all types of communications equipment. Features transistor circuit dependability, battery power portability, and crystal control accuracy. .005% crystal supplied. 1 lb.

MUTUAL CONDUCTANCE TUBE TESTER (TT-1)

The impressive list of its features make this tube tester a fine value. Tests Gm (amplifiers) from 0-24,000 micromhos, Emission, Leakage, Grid current (1/4 microampere sensitivity), Voltage regulators (built-in variable DC power supply). Low power Thyratron and Eye tubes. Features 300, 450, and 600 ma constant current heater supplies, life test, Hybrid tube test, built-in switch operated calibration circuit. Large easy-to-read meter, and constant tension free-rolling roll chart mechanism. Individual selector switches allow testing any tube type, regardless of basepin connections, protecting against obsolescence. Assembly simplified by 7 wiring harnesses and transformer terminal board. Assembly skill of technician or higher recommended, time 40 hours average. Black leatherette case with white trim, nylon feet, removable top. 27 lbs.

EDUCATIONAL KIT (EK-1)

Teaches, as you build, the basic "yardsticks" of electronics—opens up fascinating areas of study for youngsters and adults alike. The combination kit and text-workbook gives you a practical demonstration of the principles of voltage, current and resistance; the theory and construction of direct current series and parallel circuits, voltmeter, ammeter and ohmmeter circuits and the application of ohms law to these circuits. The completed meter is used to verify ohms law and the maximum power transfer theorem, one of the most important theorems in electronics. The finished kit, a practical voltmeter-ohmmilliammeter, may be used in a variety of applications. Procedures for checking home appliances and automobile circuits included with the kit. The EK-1 will serve as a prerequisite to following Heathkit Educational kits. Get started NOW in this new and exciting series of "learn-by-doing" educational kits. 4 lbs.

NEW! One switch operation

"HYBRID" PHONE PATCH KIT (HD-19)

Transfer calls from ham rig to telephone by flipping a single switch! Allows voice control (VOX) or manual operation. VU meter monitors output to 600 ohm line and serves as null depth indicator. Separate receiver and transmitter gain controls. Provides better than 30 db isolation between receive and transmit circuits. All leads filtered to minimize RF feedback. Matches receivers with 3 to 16 ohms impedance. 4 lbs.

See Your Heathkit® Dealer

June, 1960

The convenience of Local Heathkit Sales and Service costs but a few dollars more.
Test Instruments

(Continued from page 64)

1.0 volt. Write down the signal generator frequency. Turn the output control to "X100" and raise the frequency once more. If the signal generator has an "X1000" position, increase the frequency still more until the meter again reads 1.0 volt.

Reduce the output control to "X10" again and tune the signal generator to slightly below the receiver frequency until the meter reads 1.0 volt. Raise the output to "X100" and "X1000," each time tuning lower until the 1.0-volt reading is obtained, and noting the frequency. Selectivity curves can then be plotted as shown in Fig. 5. Incidentally, you can expect selectivity to vary somewhat with frequency, with the lower end of the band tending to be more sharply selective than the upper end.

Examine the typical selectivity curves in aging, dust, corrosion, and vibration. A regular program of preventive maintenance will assure accurate readings and long service from your generator.

Defective tubes, shorted capacitors, open resistors, and other simple difficulties can be checked and corrected by conventional means. Screws should be tightened from time to time, if necessary.

Signal generators also need occasional frequency calibration. Fortunately, local broadcast stations make good frequency standards. To calibrate a generator, tune in a local station, and set the dial of the signal generator near the same frequency. Place the signal generator's "hot" lead near the receiver antenna and you'll probably hear a high-pitched whistle from the radio speaker. Tune the signal generator so that the frequency of the whistle gets lower and lower. Eventually you'll find a spot where the whistle stops completely—tuning the signal generator in either direction from this spot will cause the whistle to start again. This is known as the "zero beat" point—the point at which the signal generator and radio station are tuned to exactly the same frequency.

You can check high-frequency bands on the signal generator by zero-beating with short-wave and FM stations. If the signal generator dial doesn't read the same as the broadcast-station frequency, adjust the oscillator trimmer until it reads accurately. On signal generators which do not have oscillator trimmers, you may be able to adjust the dial pointer until it indicates the proper frequency. If neither of the adjustments is available, make a calibration chart to show the amount of error on the various bands. It's a good idea to check each band in several places to see if the error is about the same throughout.

One final tip: most signal generator bands overlap slightly. For example, if Band 1 tunes from 100 to 290 kc., Band 2 will probably begin at 280 kc. Since tuning errors are more likely to occur at the high end of any band, use the low-end reading wherever possible.

There are many "tricks" connected with the use of individual generators—no two models are exactly alike, or have precisely similar characteristics. As you become increasingly familiar with your generator, you'll find more and more ways in which it can be helpful in solving your particular problems.

Fig. 5. Selectivity curves of receiver measured with setup in Fig. 4(A). Chart shows receiver 100 times down at 28 kc.

98
LEKTRON SHOPPERS SAVE...SAVE...
DURING OUR GIANT, ANNUAL
PENNYSALE!

10 of LEKTRON'S Best-Sellers - Get the Extra PAK For 1¢

- Panel Light Bulbs 20 for $1
- Carbon Resistors 60 for $1
- Lucite Boxes 10 for $1
- Transistor IFs 3 for $1
- Plugs & Receptacles 60 for $1
- $15 Geiger Counter Tube 1 for $1
- 60 Ceramic Condensers 60 for $1
- Tubular Condensers 50 for $1
- Germanium Diodes 12 for $1
- Tube Sockets 30 for $1

FREE

PICK ANY
$1.00 PAK
FREE with
any $10 order

Your choice of any Poly Pak® (including double packs) FREE from $1.00 listings.

ORDER BY BLACK-TYPE HEADLINES . . . PICK FREE $1 ITEMS FROM BELOW

THIS OFFER IS GOOD UNTIL JULY 15, 1960

2 HI-O LOOPSTICKS For 26cm/fm variables broadcast band. $1

3 AC-DC SELENIUMS Beckwith 110V/110, 10A. Strong adhesive; $5-val. $1

ELECTRON MAGNIFIER W/On/off switch, & built for precision checking. $1

8 NEON GLO LAMPS Type NS-16 fits in socket. $1

8 RCA PLUG/W/SET JACK SETS Matched pairs. For tuners, amps, receivers. $1

125 HALF WATTERS Carbon resistors. 30 values. 15½ to $1

100-150 KILO OHM SETS Potentiometers. 105 use to 100,000 ohms. $1

$30 RELAY SURPRISE Popular relay assortment. Guar., satisfaction. $1

$250 MIL RECTIFIERS Assorted values. Some $3-$6 ea. $1

GIANT SUN BATTERY Type D, no. A1501 in surplus & lite built projects. $1

TRANSISTOR DISCS 150-ES4, 150-ES6, 40 mils thick. $1

7 TRANSISTOR SOCKETS For all transistors & subassemblies. $1

4 OUTPUT TRANS'FRS & bases. Some $3.50 each. $1

6 SLIDE SWITCHES Pugge action. For 115 VAC/DC. Incl. SPDT, DPST. $1

2 SAPPHIRE NEEDLES 5000 plays. All speed. $1

100 SOLDERING IRON 115 VAC/DC. Incl. Spdt, Dpdt. $1

FREE GIANT BARGAIN CATALOG WRITE FOR YOURS!

HOW TO ORDER Minimum Orders—$2

- Avg. wt. 1 lb. per Poly Pak
- Each Poly Pak guaranteed

EXCLUSIVE LEKTRON SALE RADIO-TV PARTS BY the POUND!!!

Reg.

ONE POUND Precision Resistors...$65 per pound
ONE POUND Disc Condensers...$45 per pound
ONE POUND Ceramic Condensers.$100

* QUANTITIES: 500-1000 PCS. SATISFACTION GUARANTEED.

LEKTRON
135 EVERETT AVE.
CHELSEA 50, MASS.

June, 1960

AmericanRadioHistory.Com
Transistor Topics
(Continued from page 78)

across individual "fader" controls R1 and R2. Resistors R3 and R4 isolate the input signals. Base bias current is supplied through R5, while R6 serves as Q1's collector load. The amplified output signal is supplied through J3.

If you decide to duplicate Darrel's circuit, you'll find it worthwhile to assemble the audio mixer in a small aluminum cabinet to minimize external hum pickup. Use shielded leads for all inter-equipment connections. Note that Darrel has omitted coupling capacitors in order to keep the circuit simple and the cost low; these are needed only if the instrument is used with equipment not having built-in d.c. isolation. Where needed, use 0.1- to 0.5-uf, 200- to 600-volt units (C1, C2, C3) for coupling between the equipment and jacks J1, J2, and J3. Proper load resistors (R7, R8) for the phono or mike cartridges used should also be connected as shown.

Help Wanted! Here are several requests from readers looking for special circuits. If you can help, write directly to the reader.

Ray Henning, Box 1244, Cal Poly, San Luis Obispo, Calif., is looking for an intercom circuit suitable for use in light airplanes.

W. J. Locke, 124 Dillon St., Houston 17, Texas, wants a fully transistorized, low-cost "walkie talkie" circuit with an operating range of approximately one mile.

Richard S. Swain, 13557 Douglas St., Yucaipa, Calif., needs a good circuit for a transistorized recording amplifier.

T. F. X. Carroll, 287 Avenue C, New York 9, N. Y., would like a compact semiconductor power supply suitable for use with a BC611.

Product News. General Motors Research Laboratories (Warren, Mich.) has developed a cadmium sulphide transistor. Although still experimental, this transistor has been used in oscillators, multivibrators, amplifiers, and radiation detectors. It has photosensitive as well as conventional transistor characteristics and thus is suitable for many special-purpose applications.

General Electric (Liverpool, N. Y.) is now producing sample quantities of a gallium arsenide tunnel diode. According to G.E., these new units have performance characteristics somewhat superior to those of the more familiar germanium tunnel diode.
diode, although upper frequency limits are a bit lower.

A Swiss firm has developed—a transistorized pneumatic hammer! In operation, a free-running multivibrator operates the hammer by controlling solenoid valves. A potentiometer permits continuous adjustment of operating frequency up to 17 cps. These hammers, incidentally, are not of the high-power variety for tearing up city streets, but miniature units for use in the watch-making industry!

RCA (Somerville, N. J.) has announced a new semiconductor device designed to improve the sound quality of transistor radios while extending potential battery life. Basically a "compensating diode," the device is used in transistor amplifier circuits to compensate for changes in operating characteristics due to temperature variations.

The Lansdale Tube Company (Division of Philco) has announced price reductions for many of its transistors. These cuts range from 15% to 35% on 19 different types, reflecting higher demand and production improvements.

Minneapolis-Honeywell too, has issued a new rate schedule indicating lower prices for several transistors. Cuts range up to 20% for Types 2N538 and 2N538A, both high-quality power transistors designed for general-purpose use in amplifiers, power converters, switching circuits, and voltage regulators.

From International Rectifier Corporation (El Segundo, Calif.) comes news of a Zener diode handbook. Price is $2.00 per copy, and it is available either by mail order or through local distributors.

That does it for now. Looking at the calendar, I see that vacation time is upon us . . . have fun!

Lou

June 1960
DX'ing on TV

(Continued from page 56)

possible. Here are the main considerations:

- The more a television receiver is used, the more its efficiency decreases. If possible, a second set should be used for program viewing, and the DX set employed for hobby purposes only.
- Heat is the set's prime enemy. Always keep it away from heaters and in an area of free air circulation. For best ventilation, the back of the set should be left off (unless small children or pets are about).
- Dust is the side-kick of heat. The chassis should be cleaned by hand or with a blower every three months. Caution: discharge the high-voltage section before cleaning the set.
- Tuner contacts should be inspected and cleaned at least once a year. Constant channel-switching in DX operation makes this necessary.
- All tubes should be tested every four months. Any tube found to be operating at less than 60% of maximum should be replaced.
- High-gain r.f. tubes such as the 6BZ8 and the 6922 are available to soup up the set's front-end performance. Good results can be obtained with them, but you should consult data on their application to your set's circuit before installing them.
- Realignment of the set is usually not necessary. If you feel that the set would profit from realignment, however, have it done only by a highly skilled technician who has considerable alignment experience.

It should be mentioned that some receivers are more successful at DX'ing than others. A model with a high-gain cascode tuner, three or four i.f. stages, and wired circuitry is highly desirable. The Zenith line is popular among TV DX'ers, as are the Du Mont and Andrea receivers.

Snagging the Signal. Almost any roof-mounted antenna can be employed for TV DX'ing, but the higher the gain and the more directional the antenna, the better it is for DX'ing. For v.h.f., a large percentage of DX'ers find that the Channel 2-13 Yagi is tops in all-around performance. Cut-to-channel Yagis do provide higher signal pickup for given channels, but installing several of these on one roof or tower is highly impractical (especially when one considers that couplers and switches can attenuate the signals). Stacking any antenna will provide higher gain, but increasing the height is easier and better.

No matter what type your antenna, use a good grade lead-in such as the popular v.h.f./u.h.f. foam variety. It's also wise to take your antenna down once a year for a thorough cleaning and check-up.

Another important aid to TV DX'ing is a good rotator. Since most antennas deliver the best signal when "pointed" directly toward the sending station, the advantage of 360° coverage is obvious. And for critical u.h.f.- DX, a rotator is a must.

A good signal booster can be used in every DX rig. Boosters come in two general types: the antenna-top and the set-top model. Both can pep up weak signals, but the antenna-top unit has the edge because incoming signals are amplified before transfer to the lead-in. Although the set-top unit amplifies noise collected in the lead-in process, most DX'ers use it because of its lower cost. Various models are available, and any receiver can be equipped with a set-top booster in a matter of minutes.

The cheapest "booster-like" device is a 7" x 4" sheet of metal foil. You wrap the foil on the lead-in about three feet from the receiver's input terminals, tune to a weak high-band or u.h.f. station, and slide the foil about six inches in each direction until the best picture is obtained. When changing channels, the adjustment is repeated. This impedance-matching technique is helpful to FM DX'ers also.

Why TV DX? There are two questions the layman usually asks a TV DX'er. First: why do you do it? Second: what proof is there you've actually seen the stations you claim to have seen?

The second question is not so hard to answer. Proof of reception is established by a photograph, by a "veri" (verification) card or letter from the station, or even by a tape recording of the station's "ID."

The first question is tougher. Why people sit for hours in front of a TV set, switching from one blank channel to another is beyond me. But they do. And I do. And chances are, once you get started, you will, too!

Readers who would like further information about TV DX'ing should write to the American Ionospheric Propagation Association, c/o Art Collins, 68 Amber St., Buffalo, N. Y. This TV DX club publishes a monthly bulletin with reports and data of interest to serious DX'ers.
New Angle to Angling
(Continued from page 51)

pulsing rates affect fish of various sizes differently. Pulse rates of from 45 to 50 pulses per second are most effective on fish from 4" to 7" long and rates from 85 to 90 pulses per second work best with larger fish. A compromise rate of 50 pulses per second is adequate for most operations, however.

By the way, don't start getting any ideas about building your own electronic fishing system. Electronic fishing by other than scientists is illegal on most waterways in the United States.

Foreign Experiments. Europeans have done considerable work in developing commercially practical electronic fishing gear. Dr. Konrad O. Kreutz, a German, has been especially active in this field. In one of his early experiments, he adapted a German minesweeper for the purpose, using a 60' span between electrodes. More recently, the efficiency of his system has been increased sufficiently to pay development costs.

Dr. Kreutz also experimented with an electrical fish hook. A fish would be shocked and knocked unconscious when it bit the hook, and the fisherman could then pull in a dead weight rather than a fighting fish. This device was designed with the tuna industry in mind because the average tuna weighs more than 100 pounds and fights the line with great vigor. It has never had wide application, however.

The Russians, too, have experimented with electronic fishing gear, combining it with a giant vacuum cleaner that sucks the fish into the boat when they come near the positive electrode. As an added touch for night fighting, the Russians suspend lights over the vacuum pump inlet.

A similar system that operates in salt water has recently been announced by a West German electronics company, International Electronics Laboratories of Hamburg. Because of salt water's high conductivity, it was thought that electronic fishing in sea water would not be practical. However, tests indicate that this new system is quite satisfactory for sea-water applications. A 3'-wide flexible tube with an electric light to attract the fish is lowered into the water. As the fish approach the lower end of the tube, they are drawn up it toward the positive electrode at the upper

June, 1960

prepare for your career in

ELECTRONICS ELECTRICAL ENGINEERING RADIO-TV COMPUTERS

AT MSOE, you can equip yourself for a career in many exciting, growing fields: MISSILES • RADAR • AVIONICS AUTOMATION • RESEARCH DEVELOPMENT • ELECTRICAL POWER • ROCKETRY

When you graduate from the Milwaukee School of Engineering, you are prepared for a dynamic career as an Electrical Engineer or Engineering Technician. Under a faculty of specialists, you gain a sound technical education in modern, completely equipped laboratories and classrooms. As a result, MSOE graduates are in great demand and highly accepted by industries nationally.

At MSOE, you will meet men from all walks of life and all parts of the country — some fresh out of high school or prep school, others in their twenties — veterans and non-veterans.

You can start school in any one of four quarters and begin specializing immediately. Engineering technicians graduate in 2 years with an Associate in Applied Science degree. For a Bachelor of Science degree in Engineering, you attend 4 years. A 3-month preparatory course also is available.

FREE CAREER BOOKLET! If you're interested in any phase of electronics, radio or television, be sure to look into the programs of study offered by the Milwaukee School of Engineering. Just mail the coupon.

MILWAUKEE SCHOOL OF ENGINEERING
Dept. PE 660 1025 N. Milwaukee St.
Milwaukee, Wisconsin

Please send FREE Career Booklet. I'm interested in

□ Electronics □ Electrical Power □ Television
□ Mechanical Engineering □ Radio □ Computers
□ Electrical Engineering □ Industrial Electronics

Please print

Name..Age..................

Address..

City..Zone............State..........

□ I'm eligible for veterans education benefits MS-125
end of the tube. Then the vacuum pump sucks the fish out of the water. This system is said to take in as many fish in eight minutes as a trawler does in a day.

Scientific Applications. The U.S. Fish and Wildlife Service has used its electronic fishing gear to study make-up of the fish population in various inland streams and rivers. A study done on the Yakima River in Washington has revealed that scrap fish outnumber the commercially important salmon 90 to 1. This means that there is terrific competition for the available food and habitat area. And while the study suggests that the river can be made more productive by reducing the number of scrap fish, cautious fishery scientists are slow to move. They feel that they might upset some “biological balance” which might be present and are waiting until they can complete more extensive investigations.

So if you should see some men paddling about in an aluminum boat and stirring around in the water with an electrode, don’t think that they are chefs busily engaged in mass-producing fish chowder. More likely they’re fishery biologists collecting a few specimens.

R.F. Power Meter

(Continued from page 53)

as close to the plate as possible. Stand the plate on edge and insert the remaining leads in the back plate, bending over only the leads of the “corner” resistors. Squeeze the plates gently against the resistors and solder the leads from the “corner” resistors to each plate. Finally, solder the remaining leads and clip them off next to the plates. File down any leads that prevent the assembly from being mounted flush against the rear of the box.

Calibration. Since meter M1 is calibrated in microamperes, it must be recalibrated to read in watts. To do this, switch S1 to the 100-watt range, and connect electric light bulbs to J1 as shown on the calibration schematic. Start with any combination of light bulbs totaling 400 watts—for example, two 150-watt bulbs and one 100-watt bulb; then decrease the wattage of the lamps to 300, 200, 150, 75, and 40 watts. The three higher wattage combinations should be left connected only momentarily. In each case, measure the voltage across R1.

Using 117 volts a.c. in the calibration
setup, calculate the power for a given meter reading as follows:

Power \(= \frac{\text{Voltage}^2 \text{ (across } R1)}{50} \)

This formula is valid only if the voltage scale on the VTVM is calibrated in r.m.s. Use extreme caution when calibrating, since one side of the 117-volt line is connected directly to the power meter case.

The full-scale reading on the 100-watt range can be changed to read approximately 20% higher or lower by adjusting pot. R3. The 10-watt range need not be calibrated and should read 10 watts full-scale with the values of \(R_4 \) and \(R_5 \) shown. If desired, the 100,000-ohm resistor used for \(R_5 \) can be changed to a 2-watt potentiometer of the same value. This would allow you to vary the full-scale reading with switch \(S1 \) in its "10-watt" position.

Operation. To operate the unit as a power meter, connect \(J1 \) to the output jack of the transmitter under test. Set the range switch to the 100-watt position to start. If the meter reads 10 watts or less, you can safely switch \(S1 \) to the 10-watt range for a more accurate reading.

To test a transmitter's low-pass harmonic filter, connect \(J1 \) to the output of the filter with the transmitter output connected to the filter input. Record the wattage at the filter output jack. Next, remove the filter and connect \(J1 \) directly to the transmitter output. A much higher reading without the filter indicates that the filter elements need readjustment or that the transmitter has a high harmonic output.

As a dummy load, the r.f. power meter can be operated continuously at 40 watts or less. Higher transmitter outputs should be applied only momentarily to prevent damage to load resistor \(R1 \).

HOW IT WORKS

The r.f. power meter determines the power output of a transmitter by measuring the voltage across fixed load resistor \(R1 \), which is connected to the transmitter output. Meter \(M1 \) is calibrated in watts according to Ohm's law.

In operation, diodes \(D1 \) and \(D2 \) rectify the r.f. voltage across \(R1 \). The rectified voltage appears across resistors \(R2 \), \(R3 \), and meter \(M1 \) in the 100-watt range, and across resistors \(R4 \), \(R5 \), and meter \(M1 \) in the 10-watt range. In each range (selected by \(S1 \)), a current flows through the meter in proportion to the rectified voltage present.

Two bypass capacitors \(C_1 \) and \(C_2 \) are used to maintain the linearity of the meter. At self-resonance, each capacitor becomes ineffective as a bypass device. But since the two capacitors are self-resonant at different frequencies, one always functions as an r.f. bypass.

COMPLETE SERVICE TRAINING

...written so you can understand it!

Fix any TV or Radio Ever Made

EASIER-BETTER-FASTER!

No complicated theory or mathematics! These famous Ghirardi books get right down to brass tacks in showing you how to handle all types of A.M., F.M., and TV service work by approved professional methods. Almost 1500 pages and over 800 clear illustrations show how to handle every phase of troubleshooting and servicing. Each book is co-authored by A. A. Ghirardi whose manuals have helped train more servicemen than any other books or courses of their kind!

1—Radio and Television Receiver TROUBLESHOOTING AND REPAIR

A complete guide to profitable professional methods. For the beginner, it is a comprehensive training course. For the experienced serviceman, it is a quick way to "brush up" on specific jobs, to develop improved techniques or to find fast answers to puzzling service problems. Includes invaluable "step-by-step" troubleshooting charts that show what to look for and where. 829 pages, 417 illustrations, price $7.50 separately.

2—Radio and Television Receiver CIRCUITRY AND OPERATION

This 689-page volume is the ideal guide for servicemen who realize it pays to know what really makes modern radio-TV receivers "tick" and why. Gives a complete understanding of basic circuits and circuit variations; how to recognize them at a glance; how to eliminate guesswork and useless testing in servicing them. 417 illus. Price $12.50 separately.

Special low price... you save $1.25

If broken into lessons and sent to you as "a course," you'd regard these two great books as a bargain at $7.50 each. Under this new offer, you buy both books for only $13.00... you save $1.25! Get the most out of your investment by paying in easy installments... while you use them! No lessons to wait for. You learn fast—and right!

STUDY 10 DAYS FREE!

Send books below for 14-day FREE EXAMINATION. In 10 days I will either return your money promptly (plus postage) or return books postpaid and owe you nothing.

- Radio & TV Receiver TROUBLESHOOTING & REPAIR (Price $7.50 separately)
- Radio & TV CIRCUITRY & OPERATION (Price $6.75)

Check here for MONEY-SAVING COMBINATION OFFER: Save $1.25. Send both of above big books at special price of only $13.75 for the two. (Regular price $14.25—you save $1.25). Payable in 10 easy payments of 51 cents each after 10 days if you decide to keep books and 83 a month for 3 months until the total of $13.75 has been paid.

SAVED! Send cash with order and we pay postage. Same return privilege with money promptly refunded.

Name _________________________________

Address _________________________________

City, Zone, State _________________________________

Outside U.S.A.—$5.00 for TROUBLESHOOTING & REPAIR; $7.25 for CIRCUITRY & OPERATION $14.00 for both. Cash only, but money refunded if you return books in 10 days.
How to Place Stereo Speakers
(Continued from page 84)

In any room it's necessary to strike a balance between the best stereo illusion and the most comfortable overall sound. The optimum positions for each purpose sometimes don't coincide. The best listening coverage for stereo is usually attained when the speakers are positioned along one of the shorter walls of a room. Corner placement generally provides the best bass response, but the space separating two corner speakers will often be too extreme for effective stereo.

After you outgrow a possible mania for ping-pong effects, your main consideration will be listening ease. In your first hour of experimenting, you will find that certain locations produce reflections and concentrations of sound (standing waves) which amplify one particular frequency range tremendously. At almost any point in the frequency scale, standing waves make for extreme listening fatigue, and at very low frequencies they produce a general feeling of uneasiness which is hard to pinpoint at first. Square rooms are usually the worst offenders in standing-wave production, particularly when speakers are positioned in corners.

Because of the variations in recording techniques, there are no rigid rules about how far the speakers should be spaced apart, although today's stereo speakers are usually not placed as far apart as in the earliest days of stereo. The ideal, of course, is to duplicate the original separation of the microphones used in recording. This is an elusive goal at the moment, still waiting for the last word from the recording engineer. In general, though, a bottom limit of three to four feet of speaker separation is necessary even in the smallest listening room to allow sorting out the separate impressions which give stereo its impact.

As you test speaker locations in your living room, the problem of speaker phasing reappears in another form. This time the consideration is acoustical—rather than electrical—phasing. For maximum stereo effect, the sound from both speakers should reach your ears at precisely the same instant. This means that both speakers should be approximately the same distance from your listening position. While it's not always possible to be exact in placing speakers for this purpose, putting one
significantly closer than the other to your favorite listening spot will partially destroy one of the most carefully calculated aspects of stereo sound.

The Decor Conflict. While you have considerable choice in the positioning of speakers, a few things are (or should be) taboo for the true stereophile. Almost all of them are related to room decor. Many wives, encouraged by pictures in home furnishing magazines, are adept at placing stereo speakers to score a decorative triumph. Unfortunately, sound values are usually lost in the esthetic shuffle.

A favorite decorative gambit is the placing of speakers in a "listening corner" at right angles to each other. While speakers can often be placed facing slightly toward or away from each other, the ninety-degree placement usually means misery for the stereophile. Carefully planned phase relationships disappear and the perspective which stereo offers—both in directionality and depth—is largely lost. Less serious but even more common is the installation of bookshelf speaker systems at staggered distances from the floor. The alert stereophile should be prepared to cope with his wife's decorative instinct and keep it within bounds.

Interior decorators are to be regarded with particular caution—some will stop at nothing in their efforts to "harmonize" decor and stereo. One of the more outrageous concepts involves the use of a circular rug to match the "round" sound of stereo.

Also to be avoided is the intrusion of a piece of furniture directly between you and either of the speakers. If high frequencies are obstructed and muffled by a well-stuffed sofa inherited from Aunt Minnie, much of the impact of stereo will disappear. Highs are responsible for supplying most of the subtle details in the make-up of musical instruments, and their absence leaves you listening to unsatisfactory reproduction.

Finally, it's worthwhile to remember that stereo was intended to supply the depth and perspective you feel at a live performance, rather than a super-directionality of sound which you seldom notice at a concert. If you concentrate too much on hearing the drums from the left and the trumpets from the right, you may wind up with out-of-phase or otherwise inferior sound which is a long way from the realism that stereo, at its best, can offer.

June, 1960
Across the Ham Bands

(Continued from page 72)

monitoring stations. Instead, try to give true reports to the stations you work to the best of your ability and equipment. And if anybody disputes their accuracy, don't waste your time in fruitless argument. Simply admit the possibility that you might be wrong.

In turn, if you receive an unflattering report, don't argue with the ham who gives it to you. If your signal is bad, why be the only one on the band not to know it? When you know it, you can do something about it. A local ham called a short time ago to tell me that he had just received an official FCC discrepancy report. Although his carrier frequency was 2.1 kc. inside the 20-meter phone band, he was cited because his sidebands extended 2 kc. into the c.w. band. The FCC does monitor the ham bands.

News and Views

You've heard about "cooking on the front burner." Well, Nick, W9YOP, Springfield, Ill., beats that. His wife cooks on that burner and the rest of the burners on her electric stove, but she listens to Nick on the front burner. That's the one he comes out of "loud and clear" when he's on the air. Can anybody explain it? . . . Arnaldo Coro, Jr., CO2DL, 62 #3310 Marianna, Cuba, works 50.1 and 50.4 mc., running 15 watts to a 6146 feeding a five-element beam. He and CO2's MW, 2X, XZ, RR, GZ, and QV would like to arrange skeds with U.S. for meter hams for propagation research. Arnaldo is interested in working 40-meter Novices, but he needs a 40-meter Novice crystal, which is not obtainable in Cuba—currency restrictions. . . . Joe Burch, KN3JLS, 556 Continental Rd., Hatboro, Pa., started his ham career with an old Stromberg-Carlson receiver, minus BFO. After chalking up a record of two contacts, he decided to give his Heathkit DX-20 transmitter a little help and got a Hallicrafters S-85 receiver and a Heathkit QF-1 Q-multiplier. His antenna is a Wondom, fed through balun coils. With this combination, he has 18 states worked, 16 confirmed. Joe will help prospective hams get their licenses.

Larry McKay, K5RRG, P.O. Box 98, Madison, Miss., uses a Heathkit DX-40 to feed 10- and 40-meter dipoles, both 40' high, and receives with a Hammarlund HQ-110C. He has worked 50 states and 18 countries, but moans because he cannot pry a QSL card out of Hawaii. His country total is 18. Check with Larry if you need a Mississippi card. Forty-meter c.w. and 10-meter phone are his favorites. . . . Larry Aldrich, KN3HJQ, RD #3, Corry, Pa., worked 40 and 80 meters, using a Globe Scout 680-A transmitter. Its r.f. leaps into space from a 125" "long-wire" antenna, and his signal trapper is a converted "surplus" ARC-5. In fact,
he must have two of them to work both 80 and 40. In four months on the air, his total is 101 contacts. . . . Donald E. Lampkin, WY2HMB, 187—29 Mangin Ave., St. Albans 12, L. I., N. Y., passed his Technician exam in December and plans to take his General exam this summer. He uses a home-built 6L6 transmitter running 25 watts and receives with a Hallicrafters S-40A receiver. . . . Don Lewis, KN4MQT, 1860 Audubon Dr., N. E., Atlanta 6, Ga., also sticks to home-built transmitters. His 40-meter rig runs 35 to 40 watts, and he has a 25-wattter for 15 meters. He receives on a Hallicrafters S-38B. Don’s record is 19 states, 14 confirmed, but he works under a dire handicap: if his school grades drop to “C,” he goes off the air until they come back up again.

Dave Grant, WL7DEM, P.O. Box 190, Nome, Alaska, has heard many Novices miss choice DX stations calling them because they don’t tune off their own frequencies. Being only 150 miles from UA0 (Russia), Dave rates as pretty good DX for most other U.S. hams himself—really “far out,” in fact. In eight months, he has worked 12 states, plus Russia, Midway, Guam, Okinawa, Japan, and New Zealand. . . . Richard Stewart, Jr., K3ITH, 2504 Prescott Rd., Haverton, Pa., uses his 40-meter dipole antenna on all bands from 10 to 80 meters, feeding it with a DX-20. He uses a separate antenna for his Hallicrafters S-38E receiver. QSO’s with 26 states prove that he gets out. Dick is president of the Haverton Junior High Radio Club and a member of the Rag Chewer’s Club Gordon Pastor, KN8RMN (17), 3090 Hillier Rd., Barberton, Ohio, likes 15 and 40 meters. In three months, he has worked 10 countries on five continents. A three-element 15-meter beam, 45’ high, helps his DX-40 do the job, and an RME DB-22A preselector assists his old Hallicrafters SX-28 receiver. Gordie grinds his own crystals for the transmitter. Between 15 and 40 meters, he has worked 45 states.

Don Wright, VE6AAM, 4707 Coronation Dr., and Brian Credico, VE6EX, 1928 29 St., S.W., both in Calgary, Alberta, Canada, make a joint report. Don prefers 15-meter c.w. but drops down to 80 meters occasionally. His EICO transmitter feeds a five-element G42U beam. He has two receivers—a Hallicrafters SX-99 and a Hammarlund HQ-100. He has worked all states but needs cards from New Mexico and Montana. DX: 38 countries, 18 confirmed. Brian, VE6EX, needs Utah, Vermont, and South Dakota. He has 23 countries, 13 confirmed. His transmitter is “home-brew,” running 45 watts on phone and 80 watts on c.w. Twenty meters is his favorite phone band, but he works a lot of c.w. on 15, 20, and 40 meters. Brian has a three-element 20-meter beam, a “ground plane,” and a 40-meter dipole. His receiver is a Hammarlund HQ-110. Both boys work as many Novices as they can and QSL 100% on receipt of cards.

Until next month, when I hope to have your letter, picture, and suggestions, 73,

Herb, W9BGQ

"More than Citizens’ Radio"...

a complete, fully engineered "industrial-type" transceiver!

Viking Messenger

Anyone can operate—license issued by the FCC on request

- Complete 23 channel Citizens’ Band coverage—choose 1 of any 5 channels by the flip of a switch.
- Maximum legal power—excellent range—meets all FCC requirements.
- Excellent receiver sensitivity and selectivity—full fidelity voice reproduction.

"More than just 2-way Citizens’ Radio equipment"—the Viking "Messenger" will deliver the finest performance of any equipment available in the field. Designed throughout for 10 watt power level—limited to 3 watts for Citizens’ Radio. Easy to install anywhere in your home, business location, car, truck or boat . . . offers many unique features found only on more expensive communications systems. Built-in Squelch, Autopilot Volume Control, and Automatic Noise Limiter. Compact, modern styling—only 5½” high, 7½” wide, and 11½” deep. Complete with tubes, push-to-talk microphone, and crystals for one channel.

Available from authorized Johnson Electronic or Marine Distributors. Installation and service coast-to-coast at all General Electric Communications Service Stations.

FREE Color Brochure

E. F. JOHNSON COMPANY

125 Second Ave. S. W. • Westco, Minnesota
• Please rush me your full color brochure describing the Viking "Messenger" Citizens’ Transceiver.

NAME
ADDRESS
CITY
STATE

WRITE TODAY

Manufacturers of the world’s most widely used personal communications transmitters

June, 1960
Eavesdropping on Outer Space

(Continued from page 45)

logical system to represent natural physical constants, such as the speed of light. Our computers would make quick work of breaking a code based on such logical concepts.

But deciphering signals is just one problem to be encountered in this, man's strangest adventure in communications. Even if signals come from the nearest stars, the distances involved are so great that it would take almost 20 years to answer a single question. If, as is more likely, life is found at a distance of 50 light-years, it would take 100 years to get our first answer.

Elaborate Installations. The equipment now being used in radio astronomy would seem like a dream-true to Karl Jansky. Today's receivers can detect signals millions of times weaker than could his home-built rig. Masers and other super-sensitive devices are actually capable of hearing signals that are a millionth of a millionth of a watt!

Ingenious devices isolate, identify, and measure minute signals completely buried in the cacophony of squeals, crackles, and wails that fill the ether. Where yesterday's radio astronomer listened on a headset, or watched a moving pen scratch a wavy line on a graph, today's scientist sits in his office figuring out new exercises for his giant telescope to run through.

The telescope itself, meanwhile, peers into its assigned sector of the heavens, translates what it sees into digital form, and feeds the result into an electronic brain for analysis and evaluation. Like the Venus radar contact mentioned earlier, today's received signals are far too complex for a human operator to recognize, let alone analyze. So computers have moved in to do the job.

Certainly the most eye-catching feature of any modern radio telescope is its antenna. It may take any one of a weird variety of forms. The University of Ohio telescope, for example, looks like a giant upside-down rake with each 12' tooth wrapped in a steel coil. Near Sydney, Australia, there is a space ear in the form of a giant cross with arms a third of a mile long. A Russian instrument at the University of Leningrad looks like a huge board fence, with each board individually adjustable.

Today's largest radio telescope is at Jod-
rrell Bank, not far from Manchester, England. It is a giant dish, 250' in diameter, as tall as a 30-story building. It is tilted by battleship gun turrets and mounted on locomotive wheels riding a circular track.

Future Telescopes. The world's most impressive telescope—and the largest scientific instrument ever built—will be the U. S. Navy's 600' dish telescope already under construction at Green Bank, W. Va. This mammoth space ear will tower 66 stories. Its giant dish will be as big as Yankee Stadium, yet the entire seven acres of its aluminum-mesh reflecting surface will be accurate to within a fraction of an inch. Since thermal contraction and expansion—and distortion caused by wind pressure and gravity—would normally stretch the reflector out of shape by several inches, engineers have worked out a scheme to keep the surface absolutely true at all times. They've arranged this by dividing the face into a number of small sections and installing individual servo motors on each one. In the finished dish, each section will adjust automatically for the slightest misalignment.

Bigger and more powerful radioscopes are coming. Not long after the 600' antenna goes into operation in 1962, Cornell University's 1000' giant in Puerto Rico is expected to be ready for action. This monster will not be steerable—its huge bowl will be hollowed out of a mountain valley. But its great range will push back the frontier of space still further.

Even this huge reflector will suffer from limitations that no earthbound telescope can overcome, however. Radio noise created by the decay of radioactive substances in the earth's crust has long been a source of trouble. Unavoidable, too, is the interference generated by the layer of ionized gas that covers our planet several hundred miles above its surface.

But radio astronomers think they already have the answer: a telescope in space! Not only would such a telescope get away from the earth's noise, but it would also be free from gravity, wind, and changing temperatures. When will such an instrument be built? Not for a long time, surely. But when it is, it will be another valuable tool in man's never-ending quest for knowledge of outer space—a quest that began with Karl Jansky's startling discoveries less than 30 years ago.
The Language of Vectors

(Continued from page 87)

Larry. "Now let me draw the vector diagram for an inductive circuit." Larry made a rapid sketch.

![Vector Diagram]

“That's it," said Ken approvingly. “Now let's get serious, Larry, and put all the things we've discussed together in one piece. I'm going to draw a very simple circuit that has all three elements—resistance, inductance, and capacitance. Then I'll draw the complete set of curves for the circuit. When you see it, I think you'll really understand why vectors are important. Remember, what I'm drawing is just about as simple a situation as you can find in an electronics circuit.”

“Wow!” Larry smacked his hand loudly against his forehead and stood up. “That does it, pal. You said it would be a simple circuit. I'm leaving. See you around.”

“Steady, old boy," said Ken with a laugh. “This is the test that will separate the man vectors from the boy vectors. Actually, all you have to do is plot each curve as its own vector on a set of coordinate axes. Draw the coordinates, take the curves one at a time, and see how you make out.”

Note to the reader: This can be your test as well as Larry's. Before you read on, why not try and draw the vector diagram for always say you saw it in—POPULAR ELECTRONICS
We'd like to send you these important new books for a 7-DAY FREE TRIAL EXAMINATION

CITIZENS RADIO Leo G. Sands

Here is the first complete book on Citizens Radio Operation. Ever since the initial use of 2-way radiotelephone by police departments, this field has been growing in importance and application. Now, with more than a million vehicles equipped for its use, Citizens Radio is a major phase of the electronics field. This important new volume covers every aspect of the field—its history, rules, and everything about how it works—in seven big chapters with one hundred major sections. You'll learn exactly what Citizens Radio is; its applications, what equipment you need, the full story on receiver circuits and transmitters, antennas, installation, and maintenance, full FCC rulings, how to apply for licenses, etc. Many illustrations. $4.95

COMPUTERS AND HOW THEY WORK by James Fahnestock

Here is a fact-filled exciting guidebook to the wonderworld of electronic computers, with more than 120 illustrations and easy-to-follow tables in 10 big chapters. Step by step, you'll see and understand the workings of every type of computer ever used. This important new book illustrates the basic principles of computers in methods that require no knowledge of electronics. You'll learn all about computer memories, flip-flops and the binary counting system. You'll learn the mathematical language of computers where 1 + 1 = 10. Other chapters show you how computers use tubes and transistors to make complex logical decisions in thousandths of a second. COMPUTERS AND HOW THEY WORK is must reading for career minded students and for electronics pros who want a more complete knowledge of this field. $4.95

THE ELECTRONIC EXPERIMENTER'S MANUAL by David A. Findlay

With a few dollars worth of basic tools, and this book to guide you, you can explore the magic of electronics experimentation more completely than ever before. In a few short hours, you'll start your first project. You'll learn about every component used in experimentation, every tool, its function and why it is used. There are 10 big sections, each covering a specific phase of construction. There's a giant section of projects you can build, test equipment you'll construct and use in your future work. THE ELECTRONIC EXPERIMENTER'S MANUAL will give you the professional know-how you must have no matter what phase of electronics is your specialty. $4.95

USE THIS CERTIFICATE FOR 7 DAY FREE EXAMINATION

ELECTRONICS BOOK SERVICE • A Division of the Ziff-Davis Publishing Co. 424 S. Wabash Ave., Chicago 5, Ill.

Please send me __________ copies of CITIZENS RADIO and bill me at only $4.95 a copy plus a few cents postage.
Please send me __________ copies of COMPUTERS AND HOW THEY WORK, and bill me at only $4.95 a copy plus a few cents postage.
Please send me __________ copies of THE ELECTRONIC EXPERIMENTER'S MANUAL, and bill me at only $4.95 a copy plus a few cents postage.

If I don't agree that this is one of the best electronics investments I've ever made, I may return the book(s) within seven days and get a full refund.

$ __________ enclosed. (SAVE MONEY! Enclose payment with your order and we'll pay the postage.)

Name ________________________________
Address ______________________________
City __________________ State ___________
Zip Code _____________________________

June, 1960
These curves yourself? Remember Ken’s advice: take the curves one at a time and set up a vector for each one. If one vector falls on top of another, that’s okay—just think each curve out for itself.

Larry began to draw with some hesitation. “First I’ll draw the vector for the current because it’s the same for the whole series circuit,” he said. “Then I’ll draw the vector for the voltage across the resistor. Say . . . these two are in phase with each other, so they would come out on the same line . . . like so. How’s this, Ken?”

“That’s the way to use the old noggin, Larry. Now you have two more curves to consider, the voltage across the inductance and the voltage across the capacitance—which leads which, and by how much. Draw that in and there’s your vector diagram.”

With sudden inspiration, Larry began to pencil in the two additional vectors. “First off,” he said as he drew, “the voltage across the inductance is at a maximum point when the current curve is at zero. That means it leads the current by 90°, so I’ll show it this way.”

“Good boy,” said Ken enthusiastically. “Now finish it off.”

“Lemme see, now,” murmured Larry. “The only vector left to put in is one to represent the voltage across the capacitor. From what I know, and from the looks of the curve, that voltage is 90° behind the current, so its vector would fit in here.” Larry drew in this final vector. “Double-checking against your curves, Ken, I can see that the capacitor voltage is at a minimum at the points where the current curve

CODE

I have been teaching Code for forty years and I know that before you can read Code you must first learn the Code alphabet according to SOUND. Daddash is not A. The SOUND resulting from daddash is A. Regardless of discouraging experience to the contrary learning Code is extremely easy and fascinating. It does not have to be third degree punishment. My automatic transmitter is really automatic. In a matter of seconds you select just a few letters, an entire lesson, any number of lessons or entire record of seven lessons engraved in copper and your selection will be automatically transmitted over and over with no stopping or changing anything. Let me send you the full story.

R. G. Miller, TELEPLEX COMPANY
739 Kazmer Court
Modesto, California

MASTER ELECTRONICS

Intensive, high-level training at this recognized public college prepares you for a successful career in electronics. Fine equipment—experienced instructors—small classes—personal attention—all college advantages provide excellent learning opportunities. Associate in Applied Science Degree in 10 months. Engineering options. Low tuition and living costs. College housing for single and married students. Established 1923. Free catalog. Write TRINIDAD STATE JUNIOR COLLEGE Trinidad Dept. PE-6 Colorado

Always say you saw it in—POPULAR ELECTRONICS
crosses the base line of the coordinate axis. That means I must be right when I show this vector lagging behind the current vector by 90°."

He passed his complete drawing across to Ken.

"That's it, Larry. The diagram is right and you've done a fine job. Now, if you'll look at the mess of curves that represent the same circuit as the vector diagram you just drew, I'll bet you can see why engineers like to work with vectors."

"Boy, do I ever get the point, Ken! The vector diagram sure does simplify things . . . once you understand what it means. I really want to thank you for teaching me all about using vectors."

"Wait one sec, chum. Did I read you right? Do you think you know all about vectors?" When Larry nodded, Ken started to laugh.

"All I've done, Larry, is show you the ABC's of the subject. Remember this: vector algebra takes up a full college course and gets pretty deep. If you remember what we did discuss, though, you'll be able to understand enough about vectors to follow most discussions you come across in technical books and articles.

"If I were you I'd get a text on the mathematics of electronics — Mathematics for Electicrians and Radiomen, by Nelson M. Cooke, is a good one. Study the sections on vectors in it and you'll be surprised how much you can learn in a short time. All you need is high-school math, and you'll be on your way."

"Speaking of being on your way," Ken added, "it's time for me to close up shop here."

"Thanks loads, Ken," said Larry. "I really appreciate the help. From now on vectors will hold no fears for me, and I'm sure going to dig into them a little deeper as you suggested."

June, 1960

GLOBE ELECTRONICS

3-Channel, 2-Way Radio CB-100
Citizens Broadcaster

GIVES YOU

"LISTENABILITY"

With the HALLICRAFTERS S-38E

Net: $59.95
$600 Down
$500 Per Mo.

Excellent receiver for world wide short wave reception covering standard broadcast band 540-1650kc, three short wave bands 1600kc-32mc, and intermediate frequency 455kc. Two section tuning gang with electrical bandspread. Oscillator for code reception. Easy-to-read side rule dial. Built-in 5" speaker. Four tubes plus rectifier. Size 12½"x7"x9¼".

We Stock the Complete Line of Gear from GLOBE ELECTRONICS and THE HALLICRAFTERS COMPANY

WORLD RADIO LABORATORIES

3415 W. BROADWAY • PHONE 32 B-1851
COUNCIL BLUFFS, IOWA

Send □ Late Reconditioned Eqpt. Lists and Complete Information on the:
□ CB-100 2-Way Radio □ S-38E

NAME:
ADDRESS:
CITY & STATE:

115
Send

POPULAR ELECTRONICS

Every Month

(name)

dead

city

zone state

☐ 3 years for $10
Check one: ☐ 2 years for $7
☐ 1 year for $4

☐ Payment Enclosed ☐ Bill Me

In the U. S., its possessions and Canada. Foreign rates: Pan American Union countries, add 50 per year; all other foreign countries, add $1 per year.

Mail to: POPULAR ELECTRONICS
Dept. PE-680, 434 S. Wabash Ave., Chicago 5, Ill.

TV PICTURE TUBES
AT LOWEST PRICES

10BP4 $ 2.95 16WP4 $12.00 17FP4 $17.00 21EP4 $13.50
12LP4 8.50 16PT4 9.95 19AP4 16.00 21FP4 14.50
14BP/CP4 9.95 17VP4 12.50 20CP4 13.50 21WP4 14.00
16BP4 12.00 17BP4 9.95 20HP4 14.50 21FP4 14.50
16EP4 12.75 17CP4 17.00 21AP4 22.10 21FP4 14.50
16CP4 14.50 17FP4 17.60 21ALP4 15.75 24CP4 23.50
17BP4 9.95 17HP4 12.50 21AMP4 15.75 24DP4 24.50
18LP4 10.95 17LP4 11.00 21ATP4 15.75 27EP4 39.95
16RP4 9.95 17Q4 9.95 21AUP4 15.75 27RP4 39.95

1 YEAR WARRANTY

Aluminized tubes $3.00 for 21"; $5.00 for 24" and 27" additional. Prices include the return of an acceptable similar tube under vacuum. These tubes are manufactured from reprocessed used glass bulbs. All materials including the electron gun are brand new.

ALL PRICES FOR CHICAGO, ILLINOIS. Re spotlight required, when old tube is not returned, refundable at time of return. Each TV preamp is a multipurpose amplifier. Old tubes must be returned prepaid. These shipped fail express. We ship to the Continental U.-S.A. preempt only.

WRITE FOR COMPLETE LIST

PICTURE TUBE OUTLET—
2922 MILWAUKEE AVE., CHICAGO 18, ILLINOIS
Dickens 2-0248

Inside the Tape Recorder

(Continued from page 48)

tion. The most common equalizer uses a feedback loop from the output of the second triode to the cathode of the first. A combination of resistors and capacitors in the feedback loop achieves the equalization.

Commercial tapes will provide a flat response if equalized with an NAB equalizer, the curve of which is given in Fig. 4. This curve was originally worked out for 15-ips tapes, but Ampex has modified it by adding more treble boost in the recording curve to make it effective at 7½ ips. All commercial 7½-ips tapes are recorded to produce a flat response to 10,000 cycles or more when played back with NAB equalization.

Although there is no official standard for 3¾-ips tapes, Ampex has developed an equalization which is similar to the NAB curve except that the turnover is 2 octaves lower—at around 800 cycles. The recording curve requires a boost of about 14 db at 7500 cps and a low-end boost similar to that of the 7½-ips standard. At the moment, the Ampex curve appears to be the one most widely used for 3¾-ips tapes.

Recording Amplifiers. Recorders must have preamplifiers to amplify the weak input of a microphone and amplifiers to drive the recording head. The preamps generally follow usual hi-fi circuitry, although one or two professional types use the cascode arrangement for the input stage of the microphone preamp in order to assure the best signal-to-noise ratio. To attain a noise figure of 55 db or better, noise and hum must be minimized; therefore, in the highest-quality recorders, d.c. heater supplies and low-noise resistors are employed.

While the simpler home-type recorders often make one amplifier do double duty in playback and in record, the more elaborate recorders have separate record and playback amplifiers. By using the playback amplifier in conjunction with a separate playback head, it is possible to monitor the tape as it is recorded.

Naturally, the more elaborate and costly the unit, the better it will be able to approximate ideal performance. Home-type recorders, although they are modestly priced in comparison to professional machines, generally are good values. They are far superior to their ancestors and deliver very acceptable performance.
as well as for other hams. The ARRL Bureau then forwards the SWL cards to those who have provided a self-addressed, stamped envelope, or they send them to a local SWL club, such as the Newark News Radio Club. Most SWL clubs also forward QSL's, but only to their members. When they receive cards for SWL's who are not members, they classify them as "undeliverable" after a reasonable attempt to locate the addressees.

One of the large SWL clubs reports that many QSL cards are being received from hams addressed only to WPE call signs. Naturally, the SWL club must, in turn, contact POP'tronics to obtain the addresses before the cards can be forwarded. Should the recipient not be a member of the club, the club is under no obligation to forward the cards to him.

Of course, you have a much better chance of receiving the QSL if you include your name and address as well as your WPE call when you request a card. (There is no reason why you should not do so since QRM on postcards is quite low.) If you wish, you can also include return postage, and the ham can send your QSL direct to you. Check with your postmaster for information on International Reply Coupons so you will not have to enclose currency.

For the time being, your Short-Wave Editor is willing to assume the duties of a QSL Bureau for "undeliverable" SWL's, but only for clubs and not for individuals. Clubs wishing to use this service should send me...

The listening post of Donald House, WPE3KA, Lancaster, Pa. His equipment includes a Zenith Trans-Oceanic portable, a Hallicrafters S-38E, and a broadcast-band receiver. Don has collected 70 cards from amateurs, with six countries confirmed.

June, 1960
a list of club members and their WPE calls. Operators of SWL club QSL Bureaus may then send undeliverable cards (only those bearing a WPE call sign) directly to me, and I'll do my best to forward them. Individuals are specifically requested not to ask for addresses of call-sign holders.

At a later date we hope it may be possible to organize a full-scale WPE QSL Bureau. However, it takes a lot of hard work to get such a bureau organized, and continuous effort to maintain it in good order. It is pretty much of a thankless job. On the other hand, it might be an interesting project for those who handle it. Only time will tell. In any case, you can rest assured that the SWL QSL Bureau is coming—now that the SWL is being recognized more and more, and now that we have our own call signs.

Current Station Reports
The following is a compilation of current reports. All times shown are Eastern Standard and the 24-hour system is used. At time of compilation all reports are as correct as possible; stations often change schedule and/or frequency with little or no advance notice. Please send all reports to P. O. Box 254, Hadonfield, N. J., in time to reach Your Editor by the eighth of each month.

Afghanistan—Kabul is noted on 7903 kc., dual to (but not heard on) 4750 kc., with an Eng. xmns from 1050 to 1059 and from 1415 to 1430 s/off with pop and classical recordings. (WPE3NF, WPE8BGF)

Algeria—Algeria Renaissance (Voice of Free Algeria) is heard on 8220A kc. with Arabic chanting at 0045-0100 followed by talks in French; Arabic music resumed at 0111. (WPE3AGZ)

Brazil—ZYT996, Sao Paulo, 17,710 kc., has been heard well at 1940-2100 with music and Portuguese chants. (WPE4HBC)

Bulgaria—Sofia is heard well on 9700 kc. with Eng. to N.A. at 2000-2030 and 2300-2330. A mailbag program is given on Thursdays and Sundays and a DX program on the first Friday of each month. Other Eng. xmns are noted at 1430-1500 and 1635-1705 (the latter is dual to 7760 and 7255 kc.) to the United Kingdom. A daily concert is scheduled at 1835-1900 on 9700 kc. to N.A. and England. A new outlet on 11,850 kc. is heard at 1800 in Spanish and at 1930-2000 on 9700 kc. (Voice of America, SWL Bureaus)

Chile—CE1515, R. Corporacion de Santiago, Santiago, is noted with a strong signal on 15,150 kc. from 2130 with programs of American and L.A. music. (WPE3HF)

HI-FI RECORDING TAPE

FREQ. RESPONSE 30-15 KC. 10 DAY MONEY BACK GUARANTEE

<table>
<thead>
<tr>
<th>1200' Acetate, each</th>
<th>$1.29</th>
<th>$1.17</th>
<th>$0.99</th>
</tr>
</thead>
<tbody>
<tr>
<td>1800' Acetate, each</td>
<td>1.79</td>
<td>1.59</td>
<td>1.45</td>
</tr>
<tr>
<td>2400' Mylar, each</td>
<td>2.09</td>
<td>1.99</td>
<td>1.85</td>
</tr>
<tr>
<td>3200' Mylar, each</td>
<td>2.99</td>
<td>2.79</td>
<td>2.65</td>
</tr>
</tbody>
</table>

Any unopened permitted for quantity discount. Add postage 15¢ per spool—25¢ or over 100.

In Stock—Hi-Fi upper edge France—A. R. Bell, Bogen, Nac, Norcon, Fillmore, all brands. Rubber, Carved, Har.

⚠️ Limited stock of 1930-2000
⚠️ University of Missouri
⚠️ Whirlwindale, Wollenseck & many, many other components & tape Reelers.
⚠️ Send for low, low return mail quotation. "We Guarantee to Save You Money." Wholesale catalog free.

Hi Fidelity CENTER

1799P 1st Ave. New York 28, N. Y.

For the true hi-fi enthusiast who wants a "custom" accessory for his high fidelity system...

Decor designed by Mosley electronic specialists... neat, convenient and efficient!

See the complete line of American Made Mosley speaker switches, attenuator plates and speaker wall outlets.

Literature is yours for the asking... write today!

Mosley

Bridgeton, Missouri

Always say you saw it in—POPULAR ELECTRONICS
England—The European Service of the BBC has German at 2345-0015 on 3952.5 kc. and English-by-radio at 0000-0015 on 3975 kc. Both channels carry a program in Czecho-Slovakian at 0015. (WPE2ACO)

Finland—OI4X4, Pori, 15,190 kc., is heard very well at 0630-0800 with programing in Finnish, pop and classical music. A DX program is aired on Saturdays at 0630-0700. A xmsn in Swedish/Finnish to Europe is noted at 1100-1330, dual to 17,800 and 6120 kc. At 1100-1120 on alternate Fridays, there is an Eng. DX session. A new Eng. program is planned for 15,190 and 17,800 kc. at 1730-1800 on Mondays only. (WPE1BM, WPE2ACO, WPE2BMO, WPE8HF)

Gabon Republic—R. Gabon, Libreville, has moved from 5025 to 4774 kc. and is quite strong until 1600 s/off (Saturdays to 1700). (WPE3NF)

Germany (East Zone)—R. Berlin International, 11,765 kc., has an Eng. test program at 1130-1200 to the Middle East and another Eng. program at 1230-1300. The new Arabic Service is heard at 2305-2335. (WPE8MS, WPE9AWO, WPE9KM)

Ghana—Accra, 3366 and 4915 kc., has Home June, 1960

New Stations

The Voice of America will shortly begin construction on two mammoth transmitting sites and a receiving station around an 18-mile triangle near East Greenville, N. C. With a total power of nearly 5 megawatts, there will be six 500-kw. units, six 250-kw. transmitters, and 10 lesser-powered stations. The antennas involved will include nearly 100 curtain, rhombic, and log periodic types with 400 towers ranging from 50' to 375' high. Several presently scattered VOA installations will be concentrated at this new site. (WPE8AC, DG)

A new short-wave station is to be constructed at Forney, Texas, and will operate somewhere between 15,100 and 15,450 kc. with a power of 50,000 watts. The owners, Global Broadcasting Co., plan broadcasts in Spanish and English beamed to Peru, Ecuador, Colombia, Venezuela, British Guiana, Surinam, and parts of Brazil and Bolivia. No call letters have yet been assigned. (WPE5AC)

From Monaco you can expect to pick up the signals of Trans World Radio, a new 100,000-watt transmitter of the Voice of Tangier. Complete information on this station, regarding frequencies and schedules, is unavailable at the moment and it is possible that this is only a medium-wave station. (AS)

Mr. I. C. Griggs, Chief Engineer of the Sierra Leone Broadcasting Service, writes that they are hoping to increase the power of their short-wave outlet to 10,000 watts and may, in addition, operate on a different frequency during daylight hours. The new outlet is not expected to be in operation until after 1960. (WPE8MS)
news at 0100, "Radio Newsreel" (from the BBC) at 0115, Eng. language lessons to 0340, and recorded music to 0300. The IS is Arabic drumbeats. (WPE1AAC, WPE1KW, WPE2TA, WPE3HP, WPE4JP, WPE5MS)

Gibraltar & Ellice Islands—R. Tarawa, VSZ10, 6050 kc., has been tuned at 0230-0300 with music and talks in native language, and an Eng. ID. (WPE8BGF)

Guatemala—R. Nacional de Quetzaltenango, 6118 kc., is noted from 0039 to 0102 s/off with news and ID in Spanish. Sunday is the best day. (WPE3DS)

India—Eng. broadcasts from Delhi are as follows: 2330-2340 to E. Africa on 21,824 and 17,810 kc.; 0450-1100 to E. Africa on 17,840 and 15,225 kc., 1930-1950 to Burma on 11,885 and 15,290 kc.; 2130-2145 to S.E. Asia on 17,830 kc.; 0830-0930 to S.E. Asia on 21,605 and 17,705 kc.; 0500-0600 to Australia and New Zealand on 17,795 and 21,690 kc.; 0600-0600 to N.E. Asia on 21,615, 17,705, and 15,205 kc.; 1445-1545 to Europe and England on 11,710 and 9765 kc.; and 1455-1545 to W. Africa on 17,790 and 15,105 kc. (WPE1CE, WPE8MS)

Iraq—The Eng. xmsn from Baghdad was recently rescheduled to 1600-1630 on 6030 kc. (WPE1AGM, WPE1BY)

Israel—The Voice of Zion, Jerusalem, 9009 kc., is beamed to W. Africa at 1615-1645 in Eng., and to 1715 in French. Other xmsns are broadcast at 1530-1600 in Eng., and at 1400-1500 in French, both beamed West. A dual output on 9727 kc. is not announced but carries Eng. at 1545-1600. (WPE1AGM, WPE1ANK, WPE4KB, WPE8MS, WPE9AGB, WPE9KM)

Japan—Tokyo has replaced 6025 kc. with 17,825 kc. to N.A. and Hawaii. (WPE6EZ)

Liberia—ELWA, Monrovia, is good on 21.-515 kc. at 2015-2152 on Tuesdays only in Eng., and on 11,960 kc. at 0030 to past 0115 with Eng. until 0100. A new output on 11,825 kc. has been noted at 0030 beamed to West and Central Africa; French from 0100. (WPE9KM, WPE0EW, WPE0VU)

Monrovia's 4770-kc. output is heard very well during their late afternoon xmsn with the signal peaking around 1630; Eng. religious programing. (WPE2FT)

Luxembourg—R. Luxembourg carries German religious services at 0000-0300 on 6990 kc. (WPE5AG)

Malaya—The BBC Far Eastern Station, Singapore, 11,955 kc., is tuned at 0433-0445 with pop music followed by the General Overseas Service sports results, and at 1125-1141 with classical music and commentary. (VE7PE1R, RD)

Netherlands New Guinea—Rong (Radio Omroep Nieuw Guinea) Bosnek, Biak, 6072 kc., is fair on this new output at 0724 with choral music and annts in Dutch. (WPE3NF)

New Guinea—VLT6, Port Moresby, 6130 kc., is noted with dance music at 0315 and ID at 0330. This station has only 2000 watts power. (WPE0VB)

Nigeria—Lagos is noted on 4990 kc. with Eng. news at 1600. After a native language period, English at 1634 with recordings. (WPE1AGM)

The Kaduna output on 3326 kc. has Eng. Always say you saw it in—POPULAR ELECTRONICS
ELECTRONIC KITS 1960 DIRECTORY

500 ELECTRONIC KITS

WHAT THEY ARE!
WHAT THEY COST!
WHAT THEY DO!
Yours in the brand new 1960 ELECTRONIC KITS DIRECTORY — over 160 pages — listing over 500 kits of all kinds. Each listing gives you manufacturers, specifications, prices, everything you need to know about kits!

You'll find such informative features as:

• GIANT KIT BUILDERS GUIDE
Gives you the latest improvements, and innovations in kits...helps you select the right kit...identifies parts for you, too!

• COMPLETE SURVEY AND DIRECTORY OF:
Kits for HI-FI — make your own amplifiers, preamps, speakers, turntables, stereo control units, and tone arms.
Kits for COMMUNICATIONS — Rundowns on kits for oscilloscopes, tube testers, power supplies, transmitters, receivers, transceivers. Kits for EDUCATION — Coverage of radio kits and many other special projects.

NOW ON SALE AT YOUR FAVORITE NEWSSTAND OR ELECTRONIC PARTS STORE ONLY $1.00

Don't miss 1960 ELECTRONIC KITS DIRECTORY. Now on sale at newsstands, electronic parts stores and hi-fi salons! Buy your copy today, or order by using the handy coupon at right. Only $1.00.

June, 1960
news at 0030 with a BBC news relay at 0100. (WPE8MS)

Portugal—Lisbon is noted in Eng. on 17,885 kc. at 1215-1300 (news at 1245) to S. Africa and at 0845-0930 on 21,495 and 17,880 kc. to India, Pakistan, and the Persian Gulf area. Their usually excellent musical programs and all-Portuguese anmts can be heard at 1300-2300

2000-0100 (weekdays) on 4826 and 7285 kc.; 0500-1030 (Sundays from 0600) on 11,882 and 7285 kc.; 1030-1300 on 7285 and 3955 kc.; and 1300-1400 on 7285, 4826, and 3955 kc. African “B” Service: 0600-1300 on 4826 kc. English and Commercial Service: 2300-0000 (daily), 0900-1500 (Monday through Friday) and 1000-1500 (Sundays) on 4911 and 6018 kc.; 0000-0230 on 6018 and 7220 kc., and 0230-0700 (Sundays from 0100) on 6018 and 9505 kc. Reports go to Federal Broadcasting Service of Rhodesia & Nyasaland, Engineering Division, P. O. Box R. W. 15, Ridge way, Lusaka, Northern Rhodesia. (WPE2BXD)

Senegal—R. Senegal, Dakar, 4893 kc., has Eng. news (relay from Brazzaville) at 1730 and returns with French at 1738. (WPE3NF)

Sierra Leone—Freetown has local news in Eng. at 0145 on 3316 kc., local news

SHORT-WAVE CONTRIBUTORS

Stanley Schwartz (WPE4AAC), Bridgeport, Conn.
James Silk (WPE1AGM), Madison, Conn.
Dave Swank (WPE4IN), Meriden, Conn.
Anson Boice (WPE1BD), New Britain, Conn.
Jerry Berg (WPE1BJ), West Hartford, Conn.
Alan Roth (WPE1BY), Bridgeport, Conn.
David Gerns (WPE1CR), Concord, Mass.
Johnny Chane (WPE1RW), Winchester, Mass.
Paul Buer (WPE2ACO), Harrison, N. Y.
Thomas Jaworski (WPE2BT), Brooklyn, N. Y.
Jim Treeling (WPE2BMO), Orange, N. J.
Peter Collins (WPE2BN), Elmhurst, N. Y.
Edward Cooperman (WPE2CD), Wantagh, N. Y.

SHORT-WAVE ABBREVIATIONS

A—Approximately
annmt—Announcement
BBC—British B/C Coop.
Eng—English
ID—Identification
15—Interval signal
annmt—Announcement

at 0150, and a BBC relay of news at 0200. (WPE1AAC, WPE8MS)

Tahiti—R. Tahiti, Papeete, 6135 kc., has French news at 0100 and is noted with a good signal until 0230/close. Programming consists largely of French recordings and anmts. (WPE1AAC, WPE9BV)

Tanganyika—Dar-es-Salaam has been noted on a new frequency, 4785 kc., from 1300 to 1415 s/off with the “Second Program.” (R)

Thailand—HSK, Bangkok, 15,385 kc., has Eng. at 2315-0015. (WPE1BY)

Tunisia—R. Tunis has been found on 6105 kc., from 1530 with Arabic charts, talks, and news; s/off at 1902. ID is Huna Tunis. (WPE3NF)

Another outlet on 9630 kc. has been heard fairly well in Arabic at 1300-1400 and also around 0000. (WPE1BY)

United Arab Republic—Cairo is scheduled as follows: 0130-0200 on 7050 and 11,670 kc. with dictation news; 1200-1400 on 17,690 kc. to W. Africa with Eng. news at 1300; 1015-1215 and 1245-1350 to E. Africa on 17,815 kc., 1400-1730 on 11,980 kc. with French news at 1402, German news at 1515, Italian news at 1602, and Eng. news at 1645 (European beam); 0000-1830 on 9585 kc. in the Home Service. Dual to 9585 kc. is 15,390 kc. at 0000-0200, 0400-0600 (Fridays), 0930-1200 (except Fridays), 0945-1200 (Fridays), and 1200-1830. (R. Cairo Engineering Staff, WPE1BD, WPE1BY, WPE2CD, WPE3ABD, WPE3DN, WPE8EAB, SH, BS)

(Host's Note: Despite a personal letter from R. Cairo, several of our Monitors have positively found Cairo on 12,030 kc. rather than 11,980 kc. during the scheduled English period.)

Windward Islands—Grenada has been relaying cricket games to the United Kingdom on 21,860 kc. from 1130 onwards and has been noted as late as 1545. (WPE2ACO, WPE3XX, WPE7CB, BB)

POPULAR ELECTRONICS

ONE CENT SALE

Buy One! All Our Regular Low Price And Get The Second For Only 1¢ More

CITIZENS BAND TRANSMITTER (32 5C) and unit complete with crystal $14.99 each, two for $15.00
CITIZENS BAND RECEIVER complete with dual VHF knobs, 25 channel deal, includes $200.00 worth of materials $29.99, two for $30.00
AMATEUR BAND TRANSCIEVER (44-148 MHz) channel deal: dual VHF knobs, $38.50 for walkie-talkie radio $89.95 ea., two for $110.00

SIGNAL BOOSTER $27.00 each. Hit car 2200/4400 watts. Complete with dual VHF knobs and crystal. $41.99 ea., two for $45.00.

LIMITED QUANTITY—NO LITERATURE OR CATALOG

Rams in full. Includes sufficient postage. No C.O.D.'s.

VANGUARD ELECTRONICS LABS

Box 12-441, Mail Box, California

WALKIE TALKIE RADIO SENDING SET

Your Own Pocket Size Radio Station
Talk to anyone or to your radio without wires or hookups of any kind! Makes a delightful Xmas gift. No power is required. You can use it as a radio of your choice. This is a real winner. Send $25.00 today for your unit. Free shipping. Now on sale for $25.00. Order now! Order now! Order now!

WESTERN RADIO, Dept. TEL-6, Kearney, Nebraska

RADIO PARTS STORES & HI-FI SALONS

Hundreds of dealers across the nation by selling POPULAR ELECTRONICS each month to their customers. Are you one of them? POPULAR ELECTRONICS helps build store traffic . keeps customers coming back month after month for the merchandise you sell—and, best of all, you can earn a neat profit on each copy sold—No Risk Involved.

So get all the details on selling POPULAR ELECTRONICS, the world’s largest selling electronics hobbyist magazine. Or, order your copies now. Just use the handy coupon.

For all Amatuer Transmitters, Guaranteed for 100 Watts Power. For praising or Link Direct Feed Light, Next, Weatherproof

Complete as shown total length 90 ft. with 87 ft. of 72 ohm balanced feedline. Hi-freq wound isolators and optional automatic frequency changing coaxial trans. (5 ft. 1.5 ft. long). Top performance to 200 feet. Excellent for all VHF and 10 and 15 meter bands and amateur transmitters. For NOTICE and THE GREAT MACABRE—NO EXTRA TUNERS OR GADGETS NEEDED! Incl. 2 printed page appendix with jumper. Rearrange frequencies to suit your needs. NO HAYDRE HOUSE APPEARANCES! Easy Installation: 10000-20,000-20,000 meter bands. Complete.

$12.45

514.09 each, 40-20-15-10 meter hands.

5 walkie-talkie RFI.

516.95

RISK radio vacuum tubes, interference amplifier. lmerores

519.95

PARTS Interference amplifier. Complete for $10.00.

520.00

TRONIX for all kinds of Amateur Pieces and more.

521.00

32x1 306x1 78x1

522.00

GEL The Second For Only 1.95 Astatie 400-D

523.00

Telephone 99.99 ea.. Complete...

524.00

22x1 307x1 79x1

525.00

10 oz.

526.00

10 oz.

527.00

10 oz.

528.00

10 oz.

529.00

10 oz.

530.00

10 oz.

531.00

10 oz.

532.00

10 oz.

533.00

10 oz.

534.00

10 oz.

535.00

10 oz.

536.00

10 oz.

537.00

10 oz.

538.00

10 oz.

539.00

10 oz.

540.00

10 oz.

541.00

10 oz.

542.00

10 oz.

543.00

10 oz.

544.00

10 oz.

545.00

10 oz.

546.00

10 oz.

547.00

10 oz.

548.00

10 oz.

549.00

10 oz.

550.00

10 oz.

551.00

10 oz.

552.00

10 oz.

553.00

10 oz.

554.00

10 oz.

555.00

10 oz.

556.00

10 oz.

557.00

10 oz.

558.00

10 oz.

559.00

10 oz.

560.00

10 oz.

561.00

10 oz.

562.00

10 oz.

563.00

10 oz.

564.00

10 oz.

565.00

10 oz.

566.00

10 oz.

567.00

10 oz.

568.00

10 oz.

569.00

10 oz.

570.00

10 oz.

571.00

10 oz.

572.00

10 oz.

573.00

10 oz.

574.00

10 oz.

575.00

10 oz.

576.00

10 oz.

577.00

10 oz.

578.00

10 oz.

579.00

10 oz.

580.00

10 oz.

581.00

10 oz.

582.00

10 oz.

583.00

10 oz.

584.00

10 oz.

585.00

10 oz.
INDEX
TO VOLUME 12
Jan.-June, 1960

AMATEUR RADIO AND SWL

Across the Ham Bands (Brier).................... 89 Jan.
Ham Transmitters 89 Jan.
Linear Amplifier (Brier) 79 Feb.
Handling Messages by Ham Radio 97 Apr.
Why Buy Used Ham Equipment? 97 May
How to Prevent Trouble with the FCC 71 June
Antenna, Easy-to-Build Beam (Fahnestock) ... 50 Jan.
Bandspread—DX-20 Delicacies (Kneitel) 98 Jan.
Converter, Six-Meter (Heath Kit) 65 Jan.
Converter, Transistorized DC-to-AC (Maynard) ... 33 May
Dip-Dip on QSK (Fahnestock) 54 June
Grid-Dip Meter, Modulate Your (Winklepleck) .. 89 May
Ham Lingo, Understanding (Walker) 89 May
Harmonic, Case of Elusive (Schausers) 68 May
Harmonics, Suppress Those (Brier) 92 May
Modulator, Hi-Fi Amplifier as (Brier) 120 Jan.
Phone Patch, Acoustic (Fischesser) 58 Mar.
R. F. Power Meter, Build an (Tartas) 52 June
Screen-Modulate the DX-20 (Brier) 121 Feb.
Short-Wave Monitor Registration 113 Jan., 129 Mar.
Short-Wave Report (Bennett) 71 Jan.
89 Feb., 66 Mar., 100 Apr., 86 May, 76 June
Traffic Net 88 Feb.
Inaccurate Reports 100 Apr.
QSL Bureaus 76 June
Signal Booster (Brier) 97 Mar.
Test Signals—WWV, Free Government ... 47 Jan.
(Winter) 85 Feb.
Transceiver (Viking Messenger) 85 Feb.
Transmitter, 6- and 2-Meter (Globe Kit) ... 52 May
Tuner, Single-Sideband (Brier) 98 Apr.
Wave Trap, Broadcast-Band (Garnier) 78 Mar.

CITIZENS BAND RADIO

FCC Report (Tail) 12 May
Rules Changes 12 May
Applications 10 June
On the Citizens Band (Kneitel) ... 116 Jan., 125 Feb., 134 Mar., 80 Apr., 89 June
Transceiver (Viking Messenger) 85 Feb.
Transceiver, Four-Channel (Polychannel) ... 52 May
Transmitters, Round of 100 Mar., 89 June
Transmitter, 11-Meter R/C (Hall) 43 Feb.

CONSTRUCTION PROJECTS

Amplifier, Portable Utility (Vicenca) 83 Mar.
Amplifier, Unusual (Romellinger) 47 Apr.
Antenna, Easy-to-Build Beam (Fahnestock) ... 50 Jan.
Bench Supply of Hi-Amp Variable Transistor (Richardson) 45 Mar.
Black Box Magic (Richardson) 57 June
Construction Tips for the Beginner (Garnier) 70 Mar.
Convert a Car Radio for Home Use (Louis) 51 Feb.
Converter, Transistorized DC-to-AC (Maynard) ... 53 May
Diode-Transistor Radio (Trautier) 73 Jan.
Driver Alarm, Transistorized (Gordon) 98 Mar.
Dry Cell Tester and Rejuvenator (Murphy) ... 61 Jan.
Fence Controller, Transistorized (Winklepleck) .. 50 Apr.
Flasher, Auto Safety (Garnier) 64 May
Frequency Meter (Curtis) 85 Jan.
Grip-Dip Meter, Modulate Your (Winklepleck) .. 89 May
Ham Lingo, Understanding (Walker) 89 May
Harmonics, Suppress Those (Brier) 92 May
House-Sitter, Electronic (Garnier) 73 Feb.
Intercom, Battery-Powered (Garnier) 62 May

Metrone, Wireless (Patrick) 87 Jan.
Modulator, Hi-Fi Amplifier as (Brier) 70 Mar.
Music Box, Electronic (Louis) 63 Mar.
One-Tube Laboratory (Burgess) 41 Jan.
Phone Patch, Acoustic (Fischesser) 67 May
Potentiometers, Unusual Uses of (Richards) 92 Mar.
Power Megaphone (Garnier) 60 May
Power Megaphone—Super Simple (Fort) 80 Jan.
Projects, Six One-Evening (Garnier) 67 Mar.
1: First-Project Receiver 68 Mar.
2: D. C. Control Unit 72 Mar.
3: Combination Checker 74 Mar.
4: Hi-Fi Speaker Crossover 74 Mar.
5: Fuse Saver 76 Mar.
6: Broadband-Scan Wave Trap 78 Mar.
R/C Transmitter, 11-Meter (Hall) 43 Feb.
R. F. Power Meter (Tartas) 52 June
Receiver, Transistorized Pocket (Gordon) ... 67 May
Rectifier Tube Socket, Universal (Moreno) . 66 Jan.
Screen-Modulate the DX-20 (Brier) 121 Feb.
Signal Booster (Brier) 97 Mar.
Signal Injector, Transistorized (Gordon) ... 91 Feb.
Speaker System, 3-Way 77 Feb.
Tesla's Trickery (Richards) 72 May
"Tiny Mite" (Frantz) 73 June
Transistor Tester, Dual-Meter (Shaughnessy) ... 59 Feb.
Transistor Test, Low-Cost (Patrick) 66 June
Tuner, How to Convert Radio to AM (Gordon) 95 Apr.
Tuner, Single-Sideband (Brier) 99 Apr.
Tuning Meter, Microstep to FM Receiver (Gordon) ... 57 June
Wattmeter, Build Your Own (Frantz) 87 Apr.

DEPARTMENTS

Across the Ham Bands (Brier) 89 Jan., 76 Feb., 83 Mar., 97 Apr., 51 May, 71 June
Carl and Jerry (Frye) 104 Jan.
Feb., 106 Mar., 106 Apr., 100 May, 89 June
FCC Report (Tail) 100 Jan., 10 June
Letters from Our Readers 10 Jan., 10 Feb., 12 Mar., 10 Apr., 16 May, 14 June
New Products 30 Jan., 32 Feb., 30 Mar., 32 Apr., 32 May, 34 June
Notes from the Editor (Read) 8 Jan., 8 Feb., 8 Mar., 8 Apr., 8 May
On the Citizens Band (Kneitel) 116 Jan., 125 Feb., 134 Mar., 130 Apr., 76 May, 89 June
POP-trons Bookshelf (Frantz) 72 May
16 Jan., 16 Feb., 18 Mar., 16 Apr., 20 May, 22 June
Short-Wave Report (Bennett) 71 Jan., 88 Feb., 100 Mar., 109 Apr., 84 May, 76 June
Transistor Topics (Garnier) 75 Jan., 69 Feb., 83 Mar., 87 Apr., 79 May, 77 June

FEATURE ARTICLES

Angling, Electronics Adds Angle to (Hammond) 50 June
Bandspread—DX'ing Delicacies (Kneitel) ... 98 Jan.
Bulb, Find Brightest (Balint) 56 Apr.
Capacitor, The (Gilmore) 67 Apr.
Carl and Jerry (Frye) 104 Jan., 106 June
Communications Test (Kneitel)—Key to World Wide TV (Gilmore) 41 Mer.
Computers—Yesterday and Today (Yates) 69 Feb.
Constructions Tips for the Beginner (Garnier) 45 May
Decoders (Atari Class) (Kyle) 83 Apr.
Eavesdropping on Outer Space (Gilmore) 41 June
FCC, Showdown (Kneitel) 72 May
Familiar Forces (Kohler) 82 Jan.
Fideller, Frustrated (Fanei) 55 Feb.
Generator, Experimental Wind (Heath) 63 Mar.
Ham Lingo, Understanding (Walker) 89 Mar.
Harmonic, Case of Elusive (Schausers) 69 Mar.
Maser, Amazing (Bennett) 76 June
Molecular Electronics (Locke) 89 Apr.

AmericanRadioHistory.Com
Short-Circuited Enthusiasm (Kohler & Wil- liams) 90 Mar.

Stereo, Technical (Professional) 66 Feb.
Stabilator Diode (After Class) (Shaughnessy) 69 Jan.
Stereo Record, Compatible (Angus) 65 June
Stereo Speakers, How to Place (Milder) 82 June
Tape Recorder, Inside Hi-Fi (Marshall) 63 Apr.
Tape Transport Mechanisms 56 May
Bias, Erase, and Equalization Circuits 46 June
Tesler’s Trick (Richardson) 72 May
Test Instruments

Audio Generator (Parts 1-3) (Klein) 54 Jan.
Suizer Bridge-T Circuit 83 Feb.
Clippers, Cathode Followers, Metering 86 Mar.
Signal Generator (Parts 1-3) (Harrison) 59 Jan.
What It Is and How It Works 92 Apr.
Aligning AM Receivers 61 May
Trouble-Shooting and Other Uses 62 June
Test Signals—WWV, Free Government (Winter) 47 Jan.

Thermoplastic Rounding and Glueing Wrinkles (Remington) 53 Apr.
300-ohm Line, How to Splice (Comstock) 53 Jan.
300-ohm Line, What Is a (Geiger) 52 Jan.
Tone Arm, Inside Hi-Fi (Marshall) 47 Feb.
Transceivers, Roundup of Citizens Band 100 Mar.
Tubes for Hi-Fi (Milder) 49 May
Turntable, Inside the Hi-Fi (Marshall) 57 Jan.
TV’s Trick Techniques (Zuckerman) 41 May
Part 1 85 May
Part 2 85 June

HI-FI AND AUDIO

Amplifier, Integrated Stereo (Paco Kit) 46 Apr.
Amplifier, Portable Utility (Vicens) 83 Mar.
Amplifier, Unusual (Rometlanger) 47 Apr.
Audio Aids 64 Jan.
Intercom, Battery-Powered (Garner) 62 May
Flies, Fledged (Panch) 53 Feb.
Music Box, Electronic (Louis) 53 Mar.
Power Megaphone, Super Simple (Tort) 74 Jan.
Radio Control, Inside Hi-Fi (Marshall) 55 Mar.
Record Changer, Stereo-Mono (Dual 1006) 60 Apr.
Speaker Crossover, Hi-Fi (Garn) 74 Mar.
Speaker System, How to Build a 3-Way 77 Feb.
Stereo Record, Compatible (Angus) 65 June
Stereo Speakers, How to Place (Milder) 82 June
Tape Recorder, Inside Hi-Fi (Marshall) 63 Apr.
Tape Transport Mechanisms 56 May
Bias, Erase, and Equalization Circuits 46 June
Tone Arm, Inside Hi-Fi (Marshall) 47 Feb.
Tone Arm, Stereo (Empire 98) 76 Feb.
Tone Arm, Stereo (Marshall) 76 Feb.
Tone Arm, Stereo (National) 48 Mar.
Tuner, Convert Radio to AM (Gordon) 95 Apr.
Tuning Meter, Add to FM Receiver (Gordon) 53 Mar.
Turntable, Inside Hi-Fi (Marshall) 57 Jan.
Turntable Tips 84 Jan.

PRODUCT REPORTS

A. C. Supply, Variable (Olson Kit) 86 Apr.
Amplifier, Integrated Stereo (Paco Kit) 46 Apr.
Amplifier, Handy Filament Control (EICO Kit) 78 Jan.
Converter, Six-Meter (Heath Kit) 65 Jan.
Radio Control, Stereo-Mono (United Audio) 87 Jan.
Tape Recorder (Hunt) 48 Mar.
Tone Arm, Stereo (Audio Empire) 76 Feb.
Transceiver (Johnson) 85 Feb.

Transceiver for the 6-Meter Elimination Band (Polytronics) 88 May
Transmitter, 8- and 2-Meter (Globe Kit) 52 May
TV Kit (Knight Kit) 48 June
VOM, Pocket-Size (Knight Kit) 88 Jan.
VTVM, Audio (Arkay Kit) 89 Feb.

TELEVISION

Baby-Sitter, Electronic (Miller) 65 Mar.
Communications Satellites—Key to Worldwide TV (Gilmore) 81 Mar.
June, 1960

DX'ing on TV (Schaefer) 54 June
Pay TV's First Bottle (Lenk) 79 June
300-ohm Line, How to Splice (Comstock) 53 Jan.
300-ohm Line, What Is a (Geiger) 52 Jan.
TV's Trick Techniques (Zuckerman) 41 May

TEST EQUIPMENT

Bench Supply, Half-Amp Variable Transistor (Richardson) 45 Mar.
Checker, Combination (Garner) 72 Mar.
Dry Cell, Recharger and Rejuvenator (Muir) 61 Jan.
Frequency Meter, Direct-Reading (D'Entremont) 85 Jan.
Grid-Dip Meter, Modulate Your (Winklepleck) 89 May
One-Tube Laboratory (Burgess) 41 Jan.
R. F. Power Meter, Build an (Tortas) 52 June
Signal Injector, Transformerized (Gordon) 81 Feb.
Test Instruments

Audio Generator (Parts 1-3) (Klein) 54 Jan.
Suizer Bridge-T Circuit 83 Feb.
Clippers, Cathode Followers, Metering 86 Mar.
Signal Generator (Parts 1-3) (Harrison) 59 Jan.
What It Is and How It Works 92 Apr.
Aligning AM Receivers 81 May
Trouble-Shooting and Other Uses 82 June
Transistor Tester, Dual-Meter (Shaughnessy) 59 Feb.
Transistor Tester, Low-Cost (Patrick) 68 June
Wattmeter, Build Your Own (Frants) 87 Apr.

THEORY

Capacitor, The (Gilmore) 67 Apr.
Capacitors (After Class) (Kyle) 83 Apr.
Record Changer, Inside Hi-Fi (Marshall) 55 Mar.
Stabilator Diode (After Class) (Harrison) 87 May
Tape Recorder, Inside Hi-Fi (Marshall) 63 Apr.
Tape Transport Mechanisms 56 May
Bias, Erase, and Equalization Circuits 46 June
Test Instruments

Audio Generator (Parts 1-3) (Klein) 54 Jan.
Suizer Bridge-T Circuit 83 Feb.
Clippers, Cathode Followers, Metering 86 Mar.
Signal Generator (Parts 1-3) (Harrison) 59 Jan.
What It Is and How It Works 92 Apr.
Aligning AM Receivers 81 May
Trouble-Shooting and Other Uses 82 June
Tone Arm, Inside Hi-Fi (Marshall) 47 Feb.
300-ohm Line, What Is a (Geiger) 52 Jan.
Turntable, Inside Hi-Fi (Marshall) 57 Jan.
Vectors, Language of (After Class) (Harris) 98 May
Part 1 85 May
Part 2 85 June

TRANSISTORS

Amplifier, Portable Utility (Vicens) 83 Mar.
Bench Supply, Half-Amp Variable Transistor (Richardson) 45 Mar.
Black Box Magic (Richardson) 57 June
Converter, DC-to-AC (Maynard) 53 May
Diode-Transistor Radio, Sensitive (Trauffer) 73 Jan.
Driver Alarm (Gordon) 98 Mar.
Fence Controller (Winklepleck) 50 Apr.
Flasher, Auto Safety (Garner) 84 May
Megaphone, Power (Garner) 69 May
Intercomp, Battery-Powered (Garner) 52 May
Metronome, Wireless (Patrick) 87 Jan.
Power Megaphone, Super Simple (Tort) 47 Jan.
Receiver, Pocket (Garn) 47 May
Signal Injector (Gordon) 81 Feb.
‘Tiny Mile,’ Let’s Build the (Frants) 73 June
Transistor Tester, Dual-Meter (Shaughnessy) 59 Feb.
Transistor Tester, Low-Cost (Patrick) 68 June
Transistor Topics (Gordon) 98 Mar.
Part 1 76 June
Part 2 76 June

AmericanRadioHistory.com
Pay TV's First Battle
(Continued from page 81)

Telemeter is aiming for a goal of 40,000 subscribers in the Toronto area. The break-even point is said to be 10,000, a figure that the company hopes to have in the fold before the year is over.

Next Target: the USA. The Canadian installation is only the beginning, according to Telemeter. Since FCC approval is not required for a wire system, the company promises that four or five communities in this country—probably on the East Coast—will be wired for toll TV this year. The densely populated upper-middle-income sections in the suburbs of New York City are the most likely spots.

Negotiations are already being made for programs to supplement motion-picture fare. And in the eventuality that the FCC should okay the use of the airwaves for pay TV, Telemeter has a system ready to go.

No Cheating Possible. One word to the technically minded: you can't beat the system. The Telemeter engineers have stayed awake nights to prevent it. The signal cable is terminated inside the attachment and inside a wall receptacle, both of which are sealed. When the collector picks up your payments, he carefully checks both seals for evidence of tampering.

If you put in a coin and then try to pull it out, the mechanism stops. If you try to switch over to a more expensive program after paying for a cheaper one, you lose both programs. And if you do finally get into the attachment and try to shake out the coins, it will automatically lock from the inside. So if you are entertaining plans for acquiring some pay-TV programs for free, forget them. It's like trying to break into Fort Knox.

Perhaps the most important facet of the Canadian toll-TV installation is that pay TV is here, ready and willing to compete with movies and sponsored TV. Neither the government nor the networks can stop it. Now, it's up to the public—you and me—to decide its fate.

126

Always say you saw it in—POPULAR ELECTRONICS
FOR SALE

15 DISTANCE One-tube plans—25¢, with Transistor experiments. Catalog. Laboratories, 11134 Valota, Redwood City, California.

HAMS, Experimenters: printed circuit boards made to order. Details; Ramsay Engineering, P.O. Box 271 Norwalk, Calif.

SOMETHING for sale? Place a classified ad in this section. Low-cost, fast results. It’s easy.

DIAGRAMS for repairing radios $1.00, Television $2.00. Give make, model. Diagram Service, Box 672-PE, Hartford 1, Conn.

AUTO Radio Distributor Selling, Servicing, Becker Blaupunkt, FM-AM, other European, American Sets. Save 30% + Square Electronics, 150-60 Northern Blvd., Flushing, New York.

GOVERNMENT Sells!! Surplus Electronics; Test equipment; Oscilloscopes; Transceivers; Jeep; Boats; Aircrafts; Misc.—Send for U. S. Dept. Directory & Procedure $1.00—“Government Surplus Sales,” Box 425 PE, Nanuet, N. Y.

FM Tuners, 88-108 megacycles, 4 tubes complete, $12.95. Grutman, 1 E. 167 st., N. Y. 52, N. Y.

WPESWLCB-QSL Cards—Samples 10c—“Brownie” W3CJI, 3110A Lehigh, Allentown, Penna.

RADIO & TV Tubes at Manufacturer’s prices! 100% Guaranteed! Brand New! No re-brands or pulls! United Radio, Box 1000-E, Newark, N. J.

BUY Government Surplus direct. Depot List and Procedure $1.00.—“Surplus” Box 543 Royal Oak, Mich.

CITIZENS Band! Add a Hushuppy noise Suppressor to your Heathkit Transceiver! Squelch Action! Completely Wired, Guaranteed. $4.98. Western Mass. Electronics, Great Barrington, Mass.

SURPLUS Walkie Talkies, Command Sets, VHF-UHF, Tech Manuals, Over 5000 Items, Catalog 10c, Bill Slep Company, Box 178, PE Ellenton, Florida.

MAGAZINES (back issue)—radio, tv, electronic. Landa, Clayton 2-1, Ga.

RECHARGEABLE Batteries, complete. Replaces Burgess 2 U 6 and Eveready 216. Only $4.77. P. O. Box 282, Brigham City, Utah.

WANTED

CASH for used short-wave Ham Receivers, Transmitters and Accessories. Treger, W9TV. 2023 N. Harlem Ave., Chicago 35B, Tuceds 9-6429.

WANT to buy good equipment and accessories? Place a low-cost classified ad in this space.

CYLINDER and old disc phonographs. Edison Conqueror, Ideal, and Oratorio models. Berlirn Gramophones and Zono-o-phones, Columbia cylinder Graphophones, and Coin-operated cylinder Phonos. Want old catalogues and literature on early phonos prior to 1919. Will pay cash or trade late hi-fi components. Popular Electronics, Box 50, 1 Park Ave., New York 16, N. Y.

JUNE, 1960

HIGH-FIDELITY

DISGUSTED with “HI” HI-FI Prices? Unusual discounts on your High Fidelity Requirements. Write Key Electronics, 120 Liberty St., New York 6, N. Y. Cloverdale 8-4288.

KITS. Tapes, Components, Recorders. Special Quotes. Bayla Co., 1470-E Elmer Road, Wantagh, N. Y.

TAPE & RECORDERS

AMPEX, Concertone, Magmecord, Presto, Bogen, Tandberg, Pentron, Sherwood, Rek-O-Kut, Scott, Shure, Dynakit, others. Trades. Boynton Studio, Dept. PE, 10 Pennsylvania Ave., Tuckahoe, N. Y.

RENT Stereo Tapes—over 1,000 different—all major labels—free catalog. Stereo-Party, 811-P Centinela Ave., Inglewood 3, California.

FOUR Stereo component systems to fit every need. Sealed Car- tons, Huge Savings. Hi-Fi, Box 183, Paoli, Pa.

UNUSUAL Values. Hi-Fi components, Tapes, tape recorders, Cata-ogue; package quotations. Budget Hi-Fi: 83-06E Victor Ave., Enfield, N. Y.

MUSIC

SONGPOEMS And Lyrics Wanted! Mail to: Tin Pan Alley, Inc., 1650 Broadway, New York 19, N. Y.

PATENTS

INVENTIONS WANTED

PLASTICS

BUSINESS OPPORTUNITIES

PUBLIC Parts Stores & Hi-Fi Salons. Someone "borrowing" your personal copy of Popular Electronics each month? You ought to be taking advantage of Popular Electronics' convenient re-sale plan. Sell copies in your store ... perform a good service for your customers ... with no risk involved. For details, write: Direct Sales Department, Popular Electronics, One Park Avenue, New York 16, New York.

INSTRUCTION

TRANSISTORIZE your automobile ignition system. Complete plans and instructions: $2.50. Technical Services Institute, 5898-24th Terrace North, St. Petersburg 10, Florida.

EXPERIMENT with nature's electronics! Instructions—Stillwater, Box 337-W, Morris Plains, New Jersey.

LEARN Code. Qualify for Amateur or Commercial License. Free Book. Candler, Dept. PE-6, Box 9226, Denver 20, Colo.

ALGEBRA or Calculus, Easy Lessons, First Four $1. Mathco, 4256-B Mimmon, Cincinnati 17, Ohio.

HIGHLY Effective home study review for FCC commercial phone exams. Free literature. Write Wallace Cook, "Chief Instructor", Cook's School of Electronics, Dept. "C", Box 10634, Jackson 9, Miss.

PASS the 1st, the first time with the help of this brand new study examination. Based on Element 4 of the latest FCC publication, over 280 multiple choice questions are logically arranged for subject study. Formulas, Diagrams and Math the easy way. Send $3.00 to Hilger Enterprises, Box 2798, Dept. A, Long Beach, California.

MAKE Money anywhere in the world! Be a memory Bank! Details free. Research Center, Box D-7192, El Paso 3, Texas.

DIAGRAMS and parts list for, transistorized, broadcast, transceiver; used as transmitter, P. A. system, receiver. No C.O.D. Send $1.25 to—Schematic Service, 145-47 7 Ave., Whitestone 57, N. Y.

WRITE Martin Lincoln, Popular Electronics, 1 Park Avenue, New York 16, N. Y. for information on how to place a classified ad in this section.

REPAIR Instructions, Schematics, Radios, T.V.'s, HiFi's, 99c. Model? "Coop" Box 5938 Kansas City 11, Missouri.

MISCELLANEOUS

MYSTIC Antenna reveals secrets of nature's electronics! Locate hidden springs, water, gas, sewer lines, buried treasure! Works indoors; outdoors. Saves work, money! Easy to use. Fun for experiments! Details free. Stillwater, Box W-337, Morris Plains, New Jersey.

CALLING All Citizens Banders—The 5-Watt Wizards (see our write-up in 1960 CB Call Book) have gone National. Join the club that can help you get the most from CB! Write SWV's, 137-27A 68th Drive, New Gardens Hills 67, N. Y.

WHATEVER your needs, Popular Electronics classified can solve them. Simply place an ad in these columns and watch your results pour in.

SHOPPING GUIDE

A HANDY REFERENCE TO PRODUCTS AND SERVICES NOT NECESSARILY ELECTRONIC, BUT OF WIDE GENERAL INTEREST.

BUSINESS OPPORTUNITIES

VENDING Machines—No Selling. Operate a route of coin machines and earn amazing profits. 32-page catalog free. Parkway Machine Corporation, Dept. 12, 715 Eshor St., Baltimore 2, Md.

BUY direct from factories—Appliances, Cameras, Watches! Free details! Cam Company, 6810 PE—20th Ave., Brooklyn 4, N. Y.

GROW Mushrooms. Cellar, shed and outdoors. Spare, full time, year round. We pay $4.50 lb. dried. We have 29,000 customers. Free Book. Mushrooms, Dept. 334, 2954 Admiral Way, Seattle, Wash.

AUTOMOTIVE

PHOTOGRAPHY—FILM EQUIPMENT, SERVICES

Always say you saw it in—POPULAR ELECTRONICS
How You Can "GET ON THE AIR"—Without An EXAM!

NEW Class "D" Citizens Radio Handbook Answers

ALL Your Questions About: How to use two-way radios for business and pleasure—to talk from car to car, ship to shore, office to mobile unit, between farm buildings, on hunting trips, and dozens of other useful applications.

Mail Coupon TODAY for 7 DAY FREE TRIAL Examination!
EXAMINE ANY OF
THESE TESTERS
BEFORE
YOU
BUY!!

Superior's New Model 76

ALL PURPOSE BRIDGE

IT'S A CONDENSER BRIDGE

IT'S A RESISTANCE BRIDGE

CONSULT BRIDGE SECTION
4 Ranges: 00001 Microfarad to 005 Microfarad; 001 Microfarad to 0.5 Microfarad; 1 Microfarad to 50 Microfarads; 20 Microfarads to 1000 Microfarads. Will also measure the power factor of all condensers from 0.1 to 1000 Microfarads.

RESISTANCE BRIDGE SECTION
2 Ranges: 100 ohms to 50,000 ohms; 10,000 ohms to 5 megohms.

SIGNAL TRACER SECTION
With the use of the R.F. and A.F. Probes included with the Model 76, you can make stage gain measurements, locate signal loss in R.F. and Audio stages, localize faulty stages, locate distortion and hum, etc.

TV ANTENNA TESTER SECTION
Loss of sync, snow and instability are only a few of the faults which may be due to a break in the antenna, so why not check the TV antenna first? Locates a break in any TV antenna and measures the location of the break in feet from the set terminals.

Complete with R.F. and A.F. probes and test leads.

Superior's New Model TV-50A GENOMETER

7 Signal Generators in One!

R.F. SIGNAL GENERATOR: The Model TV-50A Generator provides complete coverage for A.M. and F.M. alignment. Generates Radio Frequencies from 100 Kilocycles to 69 Megacycles on fundamentals and from 60 Megacycles to 180 Megacycles on powerful harmonics.

VARIABLE AUDIO FREQUENCY GENERATOR: In addition to a fixed 400 cycle sine-wave audio, the Model TV-50A Genometer provides a variable 950 cycle to 26,000 cycle peaked wave audio signal.

MARKER GENERATOR: The Model TV-50A includes all the most frequently needed marker points. The following markers are provided: 189 Kc., 282.5 Kc., 455 Kc., 688 Kc., 1068 Kc., 1460 Kc., 1600 Kc., 2000 Kc., 2500 Kc., 3578 Kc., 4.3 Mc., 5 Mc., 10.7 Mc. (5270 Kc. is the color burst frequency).

BAR GENERATOR: The Model TV-50A projects an actual Bar Pattern on any TV Receiver Screen. Patterns will consist of 4 to 16 horizontal bars or 7 to 20 vertical bars.

DOT PATTERN GENERATOR (FOR COLOR TV): Although you will be able to use most of your regular standard equipment for servicing Color TV, the one addition which is a "must" is a Dot Pattern Generator. The Dot Pattern projected on any color TV Receiver tube by the Model TV-50A will enable you to adjust for proper color convergence.

Order merchandise by mail, including deposit or payment in full, then wait and write... wait and write?
Purchase anything on time and sign a lengthy complex contract written in small difficult-to-read type?
Purchase an item by mail or in a retail store then experience frustrating delay and red tape when you applied for a refund?

Obviously prompt shipment and attention to orders is an essential requirement in our business... We ship at our risk!

PRINTED IN U.S.A.
Always say you saw it in—POPULAR ELECTRONICS

DID YOU
E ver?

130
Superior's New

Model 82A

A truly do-it-yourself type

TUBE TESTER

TEST ANY TUBE IN 10 SECONDS FLAT!

1. Turn the filament switch to position specified.
2. Insert it into a number socket as designated on our chart (over 600 types included).
3. Press down the quality button.

THAT'S ALL! Read emission quality direct on good-bad meter scale.

FEATURES:
- Tests over 600 tube types.
- Tests Q24 and other gas-filled tubes.
- Employs new 4" meter with sealed air-damping chamber resulting in accurate vibrationless readings.
- Use of 22 sockets permits testing all popular tube types and prevents possible obsolescence.
- Dual scale meter permits testing of low current tubes. 7 and 9 pin straighteners mounted on panel.
- All sections of multi-element tubes tested simultaneously.
- Ultra-sensitive leakage test circuit will indicate leakage up to 5 microamps.

Production of this Model was delayed a full year pending careful study by Superior's engineering staff of this new method of testing, and thorough testing of every unit. We claim Model 82A will outperform similar looking testers in the market. As proof, we offer to ship it on our examine before you buy policy.

Model 82A comes housed in handsome, portable, Stitched Texon case. Only... $36.50

C.R.T. TESTER

Tests and Rejuvenates ALL PICTURE TUBES

ALL BLACK AND WHITE TUBES
From 50 degree to 110 degree types from 8" to 30" types.
- Model 83 is not simply a rehashed black and white C.R.T. Tester with a color adapter added. Model 83 employs a new, improved circuit designed specifically to test the older type black and white tubes, the newer type black and white tubes and all color picture tubes. Model 83 provides separate filament-operating voltages for the older type of tubes and the newer type of tubes. Model 83 employs a 4" air-damped meter with quality and calibrated scales. Model 83 properly tests the red, green and blue sections of color tubes individually or each section of a color tube contains its own filament, plate, grid and cathode. Model 83 will test tubes which are apparently good but require rejuvenation. Such tubes will provide a picture seemingly good.

ALL COLOR TUBES
Test all picture tubes-in the carton-out of the carton-in the set but lacking in proper definition, contrast and focus. To test for such malfunction, you simply press the red, green and blue sections of color tubes individually or each section of a color tube contains its own filament, plate, grid and cathode. Model 83 supplies all these tests which are apparently good but require rejuvenation. Such tubes will provide a picture seemingly good.

MOSS ELECTRONIC, INC.
Dept. D-749 3849 Tenth Ave., New York 34, N. Y.

Please send me the unit checked on approval. If completely satisfied I will pay on the terms specified with no interest or finance charges added. Otherwise, I will return it after a 10 day trial positively cancelling all further obligation.

☐ Model 76 ... Total Price $26.95 $6.95 within 10 days. Balance $20.00 monthly for 6 months.
☐ Model 78 ... Total Price $26.95 $6.95 within 10 days. Balance $20.00 monthly for 6 months.
☐ Model TV-76A ... Total Price $17.50 $11.50 within 10 days. Balance $6.00 monthly for 6 months.
☐ Model 83 ... Total Price $36.50 $8.50 within 10 days. Balance $28.00 monthly for 6 months.
☐ Model TV-83A ... Total Price $17.50 $11.50 within 10 days. Balance $6.00 monthly for 6 months.
☐ Model 80 ... Total Price $12.50 $7.50 within 10 days. Balance $5.00 monthly for 6 months.

Address
City
Zone
State
All prices net, F.O.B., N.Y.C.

We invite you to try before you buy any of the models described on this page, the preceding page and the following pages. If after a 10 day trial you are completely satisfied and decide to keep the tester, you need send us only the down payment and agree to pay the balance due at the monthly indicated rate.

NO INTEREST OR FINANCE CHARGES ADDED!

If not completely satisfied, you are privileged to return the Tester to us, cancelling any further obligation.

SEE OTHER SIDE

CUT OUT AND MAIL TODAY!
Superior’s New Model 70 UTILITY TESTER®
FOR REPAIRING ALL ELECTRICAL APPLIANCES and AUTOMOBILE CIRCUITS

As an electrical trouble shooter the Model 70:
- Will test Toasters, Irons, Broilers, Heating Pads, Clocks, Fans, Vacuum Cleaners, Refrigerators, Lamps, Fluorescents, Switches, Thermostats, etc.
- Measures A.C. and D.C. Voltages, A.C. and D.C. Current, Resistances, Leaks, etc.
- Will measure current consumption while the appliance under test is in operation.
- Incorporates a sensitive direct-reading resistance range which will test all resistances commonly used in electrical appliances, motors, etc.
- Leakage detecting circuit will indicate continuity from zero ohms to 5 megohms (5,000,000 ohms).

As an Automotive Tester the Model 70 will test:
- Both 6 Volt and 12 Volt Storage Batteries • Generators • Starters • Distributors • Ignition Coils • Regulators • Relays • Circuit Breakers • Cigarette Lighters • Stop Lights • Condensers • Directional Signal Systems • All Lamps and Bulbs • Fuses • A.C. and D.C. Generators • Horns • Also will locate poor grounds, breaks in wiring, poor connections, etc.

INCLUDED FREE
This 64-page book—practically a condensed course in electricity. Learn by doing.
Just read the following partial list of contents: What is electricity? • Simplified version of Ohms Law. What is wattage? • Simplified wattage charts • How to measure voltage, current, resistance and leakage • How to test all electrical appliances and motors using a simplified trouble-shooting technique.
- How to trace trouble in the electrical circuits and parts in automobiles and trucks.

Model 70 comes complete with 64 page book and test leads $15.85

SPECIAL INK INCLUDED!作

Model 80 ALLMETER
20,000 OHMS PER VOLT ALLMETEI
THE ONLY 20,000 OHMS PER VOLT V.O.M. SELLING FOR LESS THAN $50 WHICH PROVIDES ALL THE FOLLOWING FEATURES:

SPECIAL INK INCLUDED!

SPECIFICATIONS:
- 6 INCH FULL-VIEW METER provides large easy-to-read calibrations. No second-guessing when you use Model 80.
- MIRRORED SCALE permits fine accurate measurements where fractional readings are important.
- CAPACITY RANGES permit you to accurately measure all condensers from 0.0005 MFD to 20 MFD in addition to the standard volt, current, resistance and decibel ranges.
- HANDSOME SADDLE-STITCHED CARRYING CASE included with Model 80 Allmeter at no extra charge enables you to use this fine instrument on outside calls as well as on the bench in your shop.

Model 80 Allmeter comes complete with operating instructions, test leads and portable carrying case.

$42.50

TRY FOR 10 DAYS BEFORE you buy then if satisfied, pay in easy, interest free, monthly payments. See coupon inside.

We invite you to try before you buy any of the models described on this and the preceding pages. If after a 10 day trial you are completely satisfied and decide to keep the Tester, you need send us only the down payment and agree to pay the balance due at the monthly indicated rate. (See other side for time payment schedule details.)

NO INTEREST OR FINANCE CHARGES ADDED!

If not completely satisfied, you are privileged to return the Tester to us, cancelling any further obligation.

SEE OTHER SIDE

FIRST CLASS
Permit No. 61430
New York, N. Y.
Via AIR MAIL

BUSINESS REPLY CARD
No Postage Stamp Necessary if Mailed in the U. S.

POSTAGE WILL BE PAID BY—MOSS ELECTRONIC, INC.
3849 TENTH AVENUE
NEW YORK 34, N. Y.

CHARGES ADDED!

Cut out and mail today!