A SIMPLE RADIO-CONTROLLED GARAGE DOOR
BUILD THIS NOVICE CW TRANSMITTER
A TWO-TUBE BROADCAST BAND RECEIVER
HOW MAGNETIC TAPE IS MADE
ARCHIVAL STORAGE OF MAGNETIC RECORDINGS
A new advance by University in the 12" field. Full range response from 40 cycles to inaudibility. Employs the "Diffusicone" principle for full-bodied mid-range and the HF-206 Super Tweeter for clean, brilliant highs. Built-in L/C network and "balance" control permit you to adjust tonal quality to your own listening tastes. All-Alnico-5 exclusive University "W" magnet and duraluminum voice coil suspension in woofer section results in deep and highly efficient bass response. 8 ohms impedance, 25 watts power capacity.

The best features of rear horn loading, phase inversion, and direct-radiation are integrated to result in a highly efficient, extended range enclosure capable of unusual power handling capacity and excellent transient response. Ideally suited for the Model 312 or Model 315 Triaxial speakers, or any of the other fine 12" or 15" University speakers. Available in cherry or blond mahogany at no extra cost, or unfinished.

Unexcelled power handling and distortion control, and tuned horn mouth for phase inverstion for increased bass efficiency. The perfect enclosure for the Model 308 Triaxial speaker or Diffusicone-8. Available in cherry or blond mahogany at no extra cost, or in unfinished mahogany. The EN-8 has cut-out for University tweeters for use with 8" woofers or other cones.

No other speaker like it! An 8" 3-way speaker—ideal for hi-fi installations where space is a premium and quality is not to be compromised. Response down to better than 50 cycles, provided by voice coil and diaphragm operated with the exclusive University Alnico-5 "W" magnet. Rich, full-bodied mid-range is achieved through the use of the patented "Diffusicone" section of the unit, crossing over at 1,000 cycles. The high frequency reproducer, a compression driver unit wide angle tweeter which extends to 15,000 cycles, crosses over electrically at 5,000 cycles. Impedance 8 ohms, power capacity 25 watts.

Reproduces the entire range, from 30 cycles to inaudibility with such amazing clarity and presence that the superiority of this unit is readily obvious. Built around the sensational C15W woofer assembly, mid-range is provided by the patented "Diffusicone" device, while the clean and brilliant highs are reproduced by a compression driver unit with wide angle horn through an L/C electrical network crossing over at 5,000 cycles. Impedance 8 ohms, power capacity 50 watts.
BE A RADIO-TELEVISION TECHNICIAN
America's Fast Growing Industry Offers You a Bright Future

I Will Train You at Home in Spare Time for Good Paying Jobs in RADIO-TELEVISION

I Trained These Men
Evelle More is Spare Time
"Four months after enrolling... averaged $10 to $15 a week servicing sets in spare time. Now have full-time business."—William Weide, Braddock, N. Y.

Chief Technician with Large Shop
"In a year I opened my full-time radio shop. NRI training qualified me as Instructor during war. Now Chief Radio and TV Serviceman." - P. G. Bronan, Louisville, Ky

Out Job Is Part Own Business
"I decided to quit my job and do television work full time. I love my work and am doing all right. I'm not just punching a time clock."—Wms. F. Kline, Cincinnati, Ohio

You Practice Broadcasting-Servicing with Kits of Parts I Send
Nothing takes the place of practical experience. That's why NRI training is based on learning by DOING. Your training includes specially developed kits of parts you use to build equipment. It gives you practical experience on circuits common to both Radio and Television. Shown at left is the low power Broadcasting Transmitter you build as part of my Communications Course. Also shown is modern Radio you build as part of my Servicing Course. My free book tells about other equipment you build. Mail coupon. All equipment is yours to keep.

Approved Member, National Home Study Council

I. J. SmitH, President, National Radio Institute, has trained more men for Radio-Television than any other man. Our 40th Year

Extra Money is Spare Time
"Four months after enrolling... averaged $10 to $15 a week servicing sets in spare time. Now have full-time business."—William Weide, Braddock, N. Y.

Chief Technician with Large Shop
"In a year I opened my full-time radio shop. NRI training qualified me as Instructor during war. Now Chief Radio and TV Serviceman." - P. G. Bronan, Louisville, Ky

Out Job Is Part Own Business
"I decided to quit my job and do television work full time. I love my work and am doing all right. I'm not just punching a time clock."—Wms. F. Kline, Cincinnati, Ohio

You Practice Broadcasting-Servicing with Kits of Parts I Send
Nothing takes the place of practical experience. That's why NRI training is based on learning by DOING. Your training includes specially developed kits of parts you use to build equipment. It gives you practical experience on circuits common to both Radio and Television. Shown at left is the low power Broadcasting Transmitter you build as part of my Communications Course. Also shown is modern Radio you build as part of my Servicing Course. My free book tells about other equipment you build. Mail coupon. All equipment is yours to keep.

Approved Member, National Home Study Council

I. J. SmitH, President, National Radio Institute, has trained more men for Radio-Television than any other man. Our 40th Year

America's Fast Growing Industry Offers You
GOOD PAY—BRIGHT FUTURE—SECURITY

Training PLUS opportunity is the perfect combination for job security, advancement. When times are good, the trained man makes the better pay, gets promoted. When jobs are scarce, the trained man enjoys greater security. NRI training can help assure you and your family more of the better things of life.

Start Soon to Make $10, $15 a Week Extra Fixing Sets
An important benefit of my Radio-Television training is that you can start to cash in fast. I start sending you special booklets that show you how to fix sets the day you enroll. Multitenter you build with parts I send helps you discover and correct troubles, helps you make money fixing neighbors' sets in spare time while training. Many NRI students make $10, $15 a week extra this way. My training is practical, complete. You benefit by my 40 years' experience training men at home. My well-illustrated lessons give you basic principles you need, and my skillfully developed kit of parts "brings to life" things you learn from the lessons.

Find Out About This Tested Way to Better Pay—Mail Coupon
Without obligating you in any way, I'll send an actual Lesson to prove that my training is practical, thorough. My 64-page book, "How to be a Success in Radio-Television," shows what my graduates are doing, earning. It gives important facts about your opportunities in Radio-Television, tells about kits I furnish for practical experience. You don't have to leave home or give up your job to take NRI course. You learn at home in your spare time on terms as low as $5 a month. Many of my graduates make more than the total cost of my training in just two weeks. Mail coupon below now to J. E. SMITH, President, National Radio Institute, Dept. ST04, Washington 9, D. C. Our 40th Year.

Good for Both—FREE
The ABC's of SERVICING

Mail me Sample Lesson and 64-page Book, FREE. (No salesman will call. Please write plainly.)

Name
Age
Address
City Zone State

Available to Veterans under G.I. Bills

I certify that I am a veteran of World War II or any subsequent war.

VETS

J. E. Smith, President, Dept. ST04
National Radio Institute, Washington 9, D. C.

Mail me Sample Lesson and 64-page Book, FREE.

Good for Both—FREE
The ABC's of SERVICING

Mail me Sample Lesson and 64-page Book, FREE. (No salesman will call. Please write plainly.)

Name
Age
Address
City Zone State

Available to Veterans under G.I. Bills

I certify that I am a veteran of World War II or any subsequent war.

VETS

J. E. Smith, President, Dept. ST04
National Radio Institute, Washington 9, D. C.

Mail me Sample Lesson and 64-page Book, FREE.

Good for Both—FREE
The ABC's of SERVICING

Mail me Sample Lesson and 64-page Book, FREE. (No salesman will call. Please write plainly.)

Name
Age
Address
City Zone State

Available to Veterans under G.I. Bills

I certify that I am a veteran of World War II or any subsequent war.

VETS

J. E. Smith, President, Dept. ST04
National Radio Institute, Washington 9, D. C.

Mail me Sample Lesson and 64-page Book, FREE.
FEBRUARY 1955
VOL. 2 - NUMBER 2

CONTENTS
A Simple Radio-Controlled Garage Door ............... V. Preston 17
Hi-Fi-Music or Noise .................................. L. E. Johnston 22
How Magnetic Tape is Made ............................ 24
Build This Novice CW Transmitter ..................... R. P. Turner 26
Records Are Better Than Ever ......................... D. Hoefer 30
A Two-Tube Broadcast Band Receiver ................. 33
Mobile Telemetering Unit ............................. 37
How the Cathode-Ray Tube Works ...................... 38
Radio Control Installations ............................ W. Winter 42
A Soldierless Broadcast Crystal Receiver .............. 48
Sensitive Low-Cost Photo Relay ........................ H. Pollack 49
So You Want to be a Ham (Part 5) .................... R. Hertzberg, W2DJJ 53
New Electronics Experimenters Kit ..................... 56
Electronics Shapes Home of the Future ............... 57
Archival Storage of Magnetic Recordings ............. J. A. McRoberts 58
Record Noise ............................................. 60
Disc Review .............................................. B. Whyte 61
R/C Compound Escapements & Servos ................. E. L. Safford, Jr. 62
Carl & Jerry ............................................. J. T. Frye 66
Make Use of Jobbers Catalogues ........................ 69
"Robot" Speeds TV Production .......................... 70
The World at a Twirl .................................... K. R. Boord 72
Build This Photocell Annunciator ..................... L. E. Garner, Jr. 74
Electronic Yardmaster Guides Freight Cars .......... 82
Return of the Prodigal Ham ............................ C. L. Meistoff, W4TFA 88
Identifying Power Transformer Leads .................. 91
What Value Resistance for Best Results ............ 98
On the Air .............................................. 102

DEPARTMENTS
Letters from Our Readers ................................ 10
Tools & Gadgets ...................................... 93
Book Reviews ......................................... 95
R/C Notes ............................................. 96
Tricks of the Trade .................................... 106
After Class .......................................... 114
Standardized Wiring Diagram Symbols ................. 125
Glossary of Terms in This Issue ...................... 126
Abbreviations ......................................... 127
Resistor Color Code .................................... 130
Capacitor Color Code ................................... 130

(Also see page 6)
Train for a Future in

Electricity or Television-Radio

It's the actual shop training at Coyne that makes the difference!

Prepare quickly at Coyne for a career with a future!

Trained men are vitally needed now whether 17 or up to 45. Get a better rating, if drafted—an essential job in industry, if not in a field that offers a real future.

We train you in Chicago

Learn the easier, practical way at Coyne, on real, full size equipment. No advanced education or previous experience needed. You learn better the Coyne way.

Train in the shops of Coyne—where thousands of successful men have trained for over 55 years—Coyne is the largest, oldest, best equipped school of its kind—established in Chicago in 1899.

Finance Plan Enroll now. You may pay most of tuition later. We have a special plan for men of draft age.

Clip coupon now for big new illustrated Coyne book. No obligation; no salesman will call. Get vital facts now!

Mail Coupon Today for Big Free Book

Check whether interested in electricity or television-radio or both.

Fond of Chicago

A Technical Trade Institute chartered not for profit

February, 1955

B. W. Cooke

Prepared for veterans

Electrical School

Founded 1899

Electricity ★ Radio ★ Television ★ Refrigeration ★ Electronics

Mail Coupon

Today for Big Free Book

Check whether interested in electricity or television-radio or both.
ITEMS OF INTEREST

This Month’s Cover .................................................................................. 8
Antenna from Steel Tape ........................................................................ 36
New Low Cost TV Towers Made of Aluminum .................................... 47
Solar Energy Operates Midget Transmitter .......................................... 47
Clothespins Provide Pair of “Extra Hands” .............................................. 48
Aluminum Jaws Protect Work in Vise .................................................... 68
Simple Filter Blocks Interference to TV ............................................... 79
R/C Carts Speed Loading in Warehouse ............................................... 80
Radio and TV Pioneers Meet ................................................................. 80
An Amazing First Radio Receiver ......................................................... 82
The Why of Hi-Fi ................................................................................... 100
Hints on Buying U. S. Equipment Abroad .............................................. 111
Easily Made TV Lamp ............................................................................ 113

NEW PRODUCTS

New Theremin Makes Music Electronically ............................................. 36
(R. A. Moog Co., 51-09 Parsons Blvd., Flushing, N. Y.)
Economical Kit Builds Hi-Fi AM Tuner ............................................... 47
(Approved Electronic Instrument Corp., 928 Broadway, New York 10, N. Y.)
Portable Radio for Loudspeaker or Headphone ................................... 47
(Distributed by R. I. Mandels, Inc., 41 E. 42nd St., New York, N. Y.)
A New Receiver for Radio Control ....................................................... 65
(American Telasco Ltd., Huntington, N. Y.)
A Portable Geiger Counter .................................................................. 65
(Technical Associates, 140 W. Providencia Ave., Burbank, Calif.)

If you are unable to find these listed products locally, write direct to the manufacturers at the addresses given. Also see the monthly review of new items of interest to the electronic hobbyist in “Tools & Gadgets” appearing on pages 93 and 94 of this issue of POPULAR ELECTRONICS.

COMING NEXT MONTH

POPULAR ELECTRONICS

An Automatic Light Switch for the Home ..............................................
A Frequency Meter Monitor for Ham Stations ...................................
Power Supply ....................................................................................... What We Hear
How to Add Extension Speaker ............................................................ Plus More On
High-Fidelity Audio • Kits • Radio Control • Short-Wave Listening •
What’s New • How It Works • How to Make It • How to Use It • Carl & Jerry

IN THIS MONTH’S

RADIO & TELEVISION NEWS

(February)

A Preselector for the SWL “Mobile Meter” of Many Uses
A 60-watt “Ultra-Linear” Amplifier
Radio Licensing and the FCC
A “Universal” Counter
Intermodulation Distortion Tester

EMC EXCLUSIVE

BASIC SERVICE SHOP TEST EQUIPMENT for only $68.55*

You get ALL three of these precision instruments ...in this sensational offer!

<table>
<thead>
<tr>
<th>EMC model 106 VTM</th>
<th>EMC model 500 R.F. Signal Generator</th>
<th>EMC model 208 Tube Tester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price of this individual unit</td>
<td>Price of this individual unit</td>
<td>Price of this individual unit</td>
</tr>
<tr>
<td>Model 106 (wired and tested)</td>
<td>Model 500 (wired and tested)</td>
<td>Model 208 (wired and tested)</td>
</tr>
<tr>
<td>$35.90</td>
<td>$29.75</td>
<td>$24.90</td>
</tr>
<tr>
<td>Model 106 (in kit form)</td>
<td>Model 500 (in kit form)</td>
<td>Picture tube adapter available</td>
</tr>
<tr>
<td>$23.90</td>
<td>$19.75</td>
<td></td>
</tr>
<tr>
<td>Accessory probes available</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HOW TO GET IN ON THIS SENSATIONAL OFFER!

Start your own service shop with professional precision test equipment at solid savings plus the free Picture Tube Adaptor and Instrument Stands given in this special EMC offer.

Go to your favorite local jobber, purchase the above three instruments (Models 106, 500, 208), mail the three enclosed guarantee cards to EMC and receive by return mail your free $0.46 worth of valuable accessories. This is a limited offer so act TODAY!

Write Dept. PE-2 for new complete catalog of precision test equipment TODAY!

EMC ELECTRONIC MEASUREMENTS CORP.
280 LAFAYETTE STREET, NEW YORK 12, N. Y.

*Total price if models 106 and 500 are not purchased in kit form — $60.55
Note these instruments can be purchased individually.
Learn how to protect your invention. The U. S. Patent Laws provide that any new and useful art, machine, article of manufacture, or composition of matter, or any new and useful improvement thereof, may be patented if the act of invention is involved. Therefore, every inventor with a valuable invention should take advantage of the Patent Laws and proceed for patent protection in order to safeguard his rights.

A patent gives the inventor the exclusive right to prevent others from making, using, or selling the invention claimed in the patent for a period of seventeen years.

The Patent Laws were enacted for the benefit of the inventor to give him protection for the features of his invention which are patentable. These features must be properly and concisely set forth and claimed in a formal application for patent, in order to comply with the requirements of the Patent Laws. For that reason, unless the inventor is familiar with patent matters, he should engage a competent registered patent attorney or agent to represent him. We are registered to practice before the U. S. Patent Office and are prepared to serve you in the handling of your patent matters.

A specially prepared booklet entitled "Patent Guide for the Inventor", containing detailed information with respect to patent protection and procedure, together with a "Record of Invention" form will be promptly forwarded to you without obligation upon request.

CLARENCE A. O'BRIEN & HARVEY JACOBSON
Registered Patent Attorneys
59-B DISTRICT NATIONAL BUILDING
WASHINGTON 5, D. C.

February, 1955
NOW you can get a real start on a complete record collection. Yes, you get ALL EIGHT of these great masterpieces—complete to the last note—for only $1.00!

Why We Make This Amazing Offer

We were FORCED to make this "give-away" offer—for only by putting our records in your hand can we demonstrate their wonderful quality and extreme value. Performed by internationally renowned orchestras and artists. Custom-pressed on purest vinyl plastic. Reproduced with a tone fidelity encompassing the entire range of human hearing—50 to 15,000 cycles!

Mail Coupon Now

As a Trial Member of the Musical Masterpiece Society, you are not obligated to ever buy another record from us. You do have the right to try—free of charge—any of the Society's monthly selections you wish. You receive prior notice of these and pay nothing in advance. Those you want are sent to you for FREE trial. After 5 days, the records you decide to keep are billed you at the low Membership Price of only $1.50 per disc (average playing time 40 minutes). You save 2/3 the usual retail price! And, on this sensational demonstration offer, you start your collection with these EIGHT masterpieces for only $1. But production capacity limits our membership rolls; when they are filled this offer must be withdrawn. Avoid disappointment. Rush coupon with a dollar today!

SCHUBERT
Symphony No. 8 ("Unfinished")
Zurich Tonhalle Orch.
Otto Ackermann, Cond.

BEETHOVEN
The Ruins of Athens
(March and Overture)
Netherlands Phil.
Walter Goehr, Cond.

BRAHMS
Academic Festival Overture
Utrecht Symphony
Paul Huppers, Cond.

MOZART
Piano Concerto in E Flat
Artur Babisson, piano
Winterthur Symphony
Otto Ackermann, Cond.

BACH
Toccata and Fugue in D Minor
A. Schreiner; Organ of the Tabernacle, Salt Lake City

WAGNER
Die Meistersinger, Prelude, Act 1
Zurich Tonhalle Orch.
Otto Ackermann, Cond.

DUKAS
Sorcerer's Apprentice
Utrecht Symphony
Paul Huppers, Cond.

MUSSORGSKY
Night on Bald Mountain
Netherlands Phil.
Walter Goehr, Cond.

This Month's Cover

One of the world's most fascinating and worthwhile hobbies is amateur radio. Proof of that statement lies in the fact that "hammering" has captured the imagination of such a diversified group of people throughout the world. The amateur roll-call includes all age groups from 7-year-old first graders to the real "old timers" in both age and radio experience. Clergymen, doctors, lawyers, showfolk, engineers, students, Boy Scouts and Girl Scouts, housewives, businessmen, and lots of folks like you and me are proud holders of coveted FCC "ham" licenses.

With the recently adopted Novice ticket available, almost anyone can qualify for his ham license. No matter how limited the space for a "ham" shack, you can get on the air.

This month's issue carries several articles of particular interest to the ham or would-be ham, including a nostalgic piece "Return of the Prodigal Ham" (page 88), construction details on a compact unit, "Build this CW Transmitter" (page 26) which is suitable as a "first transmitter", and "Going on the Air" which is Part 5 of the current "So You Want to Be a Ham" series (page 53).

The amateur radio hobby can be as elaborate or as simple as you wish, you can operate with powers of less than a watt or can pour hundreds of watts into the ether; your equipment can cost thousands of dollars or can be built for less than 10 bucks! Ednor

(Cover painting by Leo R. Summers)
GET IN ON THE BOOM!

L. C. Lane, B.S., M.A.,
President, Radio-Television Training Association, Executive Director, Pierce School of Radio & Television.

TRAIN FOR A HIGH PAYING JOB AS A TELEVISION TECHNICIAN
NO PREVIOUS EXPERIENCE NEEDED — study AT HOME in your SPARE TIME

Next to the atom and hydrogen bombs, the biggest noise being made today is by the booming radio-television-electronics industry.

Now, while the boom is on in full force, is the time for you to think about how you can share in the high pay and good job security that this ever-expanding field offers to trained technicians.

Just figure it out for yourself, there are more than 400 television broadcasting stations operating right now and hundreds more to be built; more than 30 million sets in the country and sales increasing daily. By 1955 moderately priced color television sets will be on the market and the color stampede will be on.

All these facts mean that good jobs will be looking for good men. You can be one of those men if you take advantage of my training now — the same training that has already prepared hundreds of men for successful careers in the radio-television-electronics field.

No experience necessary! You learn by practicing with professional equipment! I send you. Many of my graduates who now hold down good paying technician jobs started with only grammar school training.

If you have previous Armed Forces or civilian radio experience you can finish your training several months earlier by taking my FM-TV Technician Course. Train at home with kits of parts, plus equipment to build BIG SCREEN TV RECEIVER. ALL FURNISHED AT NO EXTRA COST!

After you finish your home study training in the Radio-FM-TV Technician Course or the FM-TV Technician Course you get two weeks, 50 hours, of intensive Laboratory work on modern electronic equipment at our associate school in New York City, Pierce School of Radio & Television.

THIS EXTRA TRAINING IS YOURS AT NO EXTRA COST WHATSOEVER. My courses are complete without this extra training, however, it is just an added opportunity for review and practice.

LEARN BY DOING. As part of your training, I give you enough equipment to set up your own home laboratory and prepare for a BETTER PAY TV job. You build and keep a professional GIANT SCREEN TV RECEIVER complete with big picture tube (designed and engineered to take any size up to 21-inch) ... also a Super-Hot Radio Receiver, RF Signal Generator, Combination Voltmeter-Ammeter-Ommeter, C-W Telephone Transmitter, Public Address System, AC-DC Power Supply. Everything supplied, including all tubes.

EARN WHILE YOU LEARN. Almost from the very start you can earn extra money while learning by repairing radio-TV sets for friends and neighbors. Many of my students earn up to $25 a week ... pay for their entire training from spare time earnings ... start their own profitable service business.

FREE FCC COACHING COURSE. Qualifies you for Higher Pay! Gives to all my students AT NO EXTRA COST. Helps you qualify for the TOP JOBS in Radio-TV that demand an FCC license! Full training and preparation at home for your FCC license.

Radio Television Training Association
52 EAST 19TH STREET • NEW YORK 3, N. Y.
Licensed by the State of New York • Approved for Veteran Training
you can build
TRANSISTOR radio oscillator and amplifier CIRCUITS

with RAYTHEON CK722 TRANSISTORS

How'd you like to experiment with a circuit that gets its power from the illumination in a room or from the application of wet paper to a dime? Or try experiments with radio, amplifier or oscillator circuits?

You can, using a low cost Raytheon CK722 Transistor and a few standard parts probably available from your own "junk" box. Information on how to build these circuits is yours for the asking. Simply write Department P3. Buy low cost Raytheon CK722 Transistors from your local Raytheon Tube Supplier.

LETTERS FROM OUR READERS

THANK YOU KINDLY, SIR!

"I WANT to say your system of printing the pictorial diagram opposite the schematic has taught me more during the two months of reading Popular Electronics than all the books I have scoured. It is my hope you will continue this practice. . . ."

Morgan P. Daniels, Jr.
Burlingame, Calif.

We sure will!

"I DISCOVERED your new publication while perusing through the supply of assorted periodicals at one of the corner newsstands. I found that about a nine-second flick through its pages was more than a sufficient warranty for purchase at the very unusual meagerness of twenty-five cents. . . ."

A. M. Heosein
Yeadon, Pa.

Thank you, A.M.H.! Letters like this are still pouring into our offices. Welcome to the ever-growing family of readers of Popular Electronics!

TV INFO REQUESTED

"HOW about some information on wave traps for TV interference and how to make TV boosters for both u.h.f. and v.h.f. . . . ?"

Roger J. Pike
Montreal, Quebec

Thanks for the suggestions. We always want to know what our readers would like to see in Popular Electronics. One of our writers has been assigned to work on this very subject, and material on it should be forthcoming in the very near future.

A.C. BUZZERS

"IS THERE any buzzer that operates on 115 volts a.c.? I have tried getting one but can't seem to locate it."

Hal Ronstard
Evanston, Ill.

We've received several queries from readers on this same point. Actually, we never did recommend the use of a 115 volt a.c. buzzer. We have suggested bells which are generally easier to come by. But for the record, there is the Edwards
$40A buzzer which is rated at 120 volts, 5 amps, 6 watts and lists for $19.00. On the other hand, there is the Edwards 720 buzzer designed for only 6 volts a.c. and listing for $1.00. Another point: these items are generally found in greater abundance in electrical supply houses rather than at radio parts jobbers. And, of course, items rated at 120 volts can be used on a.c. lines that supply 110, 115, or 117 volts.

** CHANGE IN RELAY SERIES **

"I WENT around to a local jobber the other day to pick up a Potter & Brumfield plate circuit relay, 5000 ohms LS series. The jobber told me that this company's LS series had been changed to the LB series. I have no reason to doubt the jobber but I thought I'd check with you people on this. Have you heard anything about it?"

Len Stammer
Boston, Mass.

The jobber was right! Potter & Brumfield's LS series has been replaced by their LB series. Readers who are building any units that call for such a relay in the LS series are advised simply to revise LS to read LB.

** CORRECTION ON TUBE TYPE **

"STARTED out to build the pie-case radio described in your December issue (pages 50-51), but ran into trouble with the tube you have down there. Your parts list calls for a type 1S5, and the article itself mentions a type 1S5. But according to the 'RCA Manual,' the 1S5 doesn't resemble the tube shown in your schematic. I'd say the tube you show looks more like a 1T4. Now, should it be a 1S5, and if so, what are the connections for it? Or, can another tube be used?"

Victor Kingsbury
Edmonton, Alberta

We "goofed" on this one, and many alert readers have called the mistake to our attention. Reader Victor Kingsbury is quite correct: the tube used in the actual set described in our article was a type 1T4, and the pin connections shown on our schematic are for the 1T4 and not for the 1S5. The simplest thing to do in building this set would be to substitute "1T4" for "1S5" wherever mention is made of the tube used. Of course, other tube types could also be used, with proper connections. If you have a 1S5, you can use it simply by changing the connections shown in the schematic as follows: pin 3 becomes pin 4; and pin 2 becomes pin 5.

Other tube types that could be used, with
the connections shown in the diagram are the 1T4 and the 1U4. Finally, a type 1U5 could be used, also following the connections shown on the schematic, and ignoring the diode plate element (pin 4) included in the 1U5.

** RESISTOR VS CHOKE IN FILTER **

"IN THE schematic for the phonograph on page 39 of your December issue, the filter in the power supply uses resistors \(R_1\), \(R_2\), and \(R_3\) in series in the high d.c. line. I always thought a choke coil should go in this place. Are resistors used because of the selenium rectifier, or what?"

Al Sanford
Seattle, Wash.

\(R_3\) is the only resistor which might be replaced by a choke coil, but in this case the current drain is low enough so that very little voltage drop will occur even if a fairly high resistance is used. A resistance of sufficiently high value will give just as much reduction in the a.c. ripple as a choke coil—and the resistor is cheaper. \(R_2\) is a current limiting resistor to protect the rectifier. \(R_3\) is a voltage dropping resistor to lower the voltage to the value required by the tube filaments.

** MAGNETIC PHONO PICKUPS **

"I'VE heard a lot about magnetic phono cartridges and how they require preamplification and record equalization in order to sound good. Well, I'm not from Missouri, but I still like to be shown, so I replaced the crystal pickup in my record changer with a magnetic one. I made no other changes. I have my record changer plugged into the 'phono' input on my TV set which is the way I've been playing records up to now. With the magnetic cartridge, the sound is much lower than with the crystal—but by turning up the volume control, I can still hear my records, and somehow, they sound 'cleaner.' Now, does this prove anything about magnetic pickups? I mean, if the volume output of the TV set were stronger, wouldn't the magnetic pickup work without this involvement in preamplifiers, etc?"

Ralph Miller
New London, Conn.

Sorry, but the magnetic pickup does require preamplification and equalization before the ordinary amplifier stage in order to operate correctly. The output of a magnetic pickup is so weak that it takes a lot more than "increasing the volume output" of your TV set to hear it properly. The reason you hear anything at all without using..."
KITS

are acoustically engineered. Assembly and finish are up to you! Precision-cut white pine and birch key together perfectly. Assembled by anyone with only a screwdriver.

... FEATURING:

A KLIPSCH

REBEL enclosure development entails a cavity and slot port, to form a resonant chamber, and a horn coupled to the slot. The slot is loaded by the horn; the proportioning of slot, cavity and horn provide bass response below 100 cycles which corresponds in efficiency to the front-of-cone direct radiator response above this critical 100-cycle point. There are two ways one might consider the function of this horn. One is a bass reflex with a horn acting as a resistive load on the port. System resonances are damped by useful radiation resistance while the horn does not cost anything. It is already formed by the room corner. Again, if a full horn were added below the 100-cycle point bass response would be boomy and unnatural. But, in the Rebel enclosures, the cavity-port combination acts as an acoustic low pass filter. And its design is such that low-end response will compare with response higher in the sound scale.

February, 1955
a preamplifier is that your volume is probably turned all the way up.

We have fooled around with set-ups like this ourselves to determine just what would happen. The "clean" response you seem to be getting is actually due to the fact that it is so limited a response. In the first place, the output of any pickup unit tends to fall off at the high and low ends of the frequency band; in other words, it is strongest or "loudest" in the mid-range of the audio spectrum. A properly equalized preamplifier compensates for this and tends to provide a somewhat uniform response over the entire audio band. Secondly, the amplifier section of your TV set is probably limiting the frequency response of whatever does get to it. The net result is that you won't hear any surface noise or rumble, etc., but you actually aren't hearing much music either, probably no more than a few octaves around the middle of the audio band—and straining your ears at that. So, if you can obtain the proper type preamplifier for your magnetic pickup, the resultant output will be worth the added cost.

** Arms for Record Player

Could you supply some details about the tone-arm to be used on the phono-graph described in the article 'Build Your Own Record Player' on pages 37 through 39 of the December issue?

Charles Linz
New Paltz, N. Y.

Sorry we neglected to include these details in the original article, but thanks for calling our attention to it. There are several usable arms on the market, and if you are not near a parts jobber, a glance through a jobber's catalogue will bring you up to date on this point. Some arms come equipped with a crystal pickup, such as the Shure Model 92H, designed for 78 rpm records. Others come without any cartridge but will accept many standard pickups, such as the Electro-Voice Model 2300. The Astatic Model 8D arm includes a dual-needle cartridge for playing either 78 rpm records or microgroove (45 and 33 rpm) records.

** Soldering Phono Leads

The other evening I dropped in on a friend who was soldering the tiny leads in the tone arm of his phono record player that connect to the pickup cartridge. He was doing this with the cartridge connected to the sleeves that were being soldered to the leads—in other words, applying heat directly to the cartridge. I nearly flipped when I saw this but he calmly ignored my protests, saying that the heat would not affect the cartridge since it was a magnetic, not a crystal, pickup. I argued the point but he laughed at my concern. Now, who was right?

H. T.
Brooklyn, N. Y.

This is a case of both being partly right and both being partly wrong. Actually, without knowing more details on how your friend was going about his task, it would be impossible to say whether his laughter was justified or whether the laugh was unfortunately on him. Generally speaking, the heat from a soldering iron should not affect a magnetic pickup, as it would a crystal unit. However, it is always best to play safe, particularly with units as sensitive and delicate as magnetic pickups. In this case, a good soldering procedure would be: first, remove the slip-on clips from the pickup unit; and second, solder them to the leads using a small soldering iron. If you don't want to bother removing the clips first, it is probably safe to solder them connected to the magnetic pickup, provided you hold the clip with a long-nose pliers inserted between the soldering point and the pickup unit. The metal of the pliers will then tend to dissipate the soldering heat and prevent any possible damage to the pickup. Again, a small soldering iron should be used rather than a heavy one or a gun. And in the case of crystal units, the slip-on clips must be removed prior to soldering, as described on page 67 of the November 1954 issue of Popular Electronics.

END

** ATTENTION **

Hobbyists • Club Members • Study Groups

Subscriptions to Popular Electronics at special bulk rates are available to club members, study groups, employee groups, schools, etc.

For information, write to:

Popular Electronics
366 Madison Ave. New York 17, N. Y.
The data that launched thousands of careers and advanced hundreds of amateurs is yours...

**FREE**

**REVEALS HOW YOU CAN GAIN QUICKER SUCCESS OR TURN YOUR HOBBY INTO A WELL-PAID CAREER IN RADIO . . . TELEVISION . . . ELECTRONICS**

**INTERESTED IN GREATER CAREER SUCCESS?**

You may plod along for years, get a paltry increase occasionally, feel insecure, find your work dull. Then—something happens. Earnings rise. Self-confidence returns. Your job becomes exciting. "Luck" or "Contacts," some may say. But you will know the answer: TRAINING! And it all can start happening for you the moment you fill out the coupon requesting your copy of the free booklet, "Your Future in the New World of Electronics." It reveals how you can gain career success in the booming electronics field. It helps you determine just how you fit in, how you can cash in.

The electronics industries are pleading for well-trained men. The industry is expanding tremendously. Technicians are needed in city after city, coast to coast. And no wonder. By 1960 the electronics industries will do no less that $10,000,000,000 per year, not counting military orders. Today electronics plays a vital role in countless industries and businesses.

Think of the opportunities in television, for example, in the manufacturing, broadcasting and servicing fields alone. There are 33,312,714 TV sets; 411 TV stations in operation; color TV means virtual replacement of or extensive additions to existing sending and receiving facilities. Countless positions need filling—with TRAINED men—with electronics engineering technicians who at some point took time to gain new knowledge to improve their skills. This need is felt all along the long line of businesses in which electronics plays so important a part.

CREI has been one of the country's leading technical institutes since 1927. Over the years, thousands of CREI graduates have been employed in industry here and abroad. During World War II, CREI trained additional thousands for the Armed Forces. Today, many leading firms enroll employees with CREI for company-paid group training. Among them: United Air Lines, Canadian Broadcasting Corporation, Bendix Products Division, All-American Cables and Radio, Inc. Thousands of individual students are now enrolled. CREI home study courses are prepared and administered by recognized authorities in electronics education. You receive personal supervision, study when convenient. There is no finer, more practical way to earn success in the electronics field. Decide now that you want that success. Fill out the coupon below and mail immediately. Your free booklet will be in the return mail, revealing "Your Future in the New World of Electronics."

**WANT TO CHANGE YOUR HOBBY FOR A CAREER?**

Today, thousands of electronics hobbyists have a chance to turn fun into profits. Many are now employed in jobs outside of the electronics industries, doing something they enjoy far less than experimenting, building, transmitting, receiving. They often are working for wages far lower than those received by well-paid electronics engineering technicians. They face job futures not nearly so bright. And many of these men can turn the experience they've gained in hobbies into the job qualifications demanded in the electronics industry. Most need additional training, true. Many have turned to CREI for that training. They have acquired the knowledge needed to qualify as well-paid engineering technicians through CREI home study in their spare time (the same hours once used to hobby for fun), without giving up their old jobs until ready for the new. So, without loss of income, by studying electronics which may already be your "true love," at home and at the pace you set, you too can turn a hobby into a well-paid career with a bright future. You start to accomplish this by filling out the coupon below.

**IF YOU CAN COME TO WASHINGTON . . .**

CREI also offers resident instruction at the same high technical level, day or night, in Washington, D. C. Classes start frequently. If this type of instruction meets your requirements, check the coupon for Residence School catalogue. Qualified resident graduates earn the degree, Associate in Applied Science.

**INFORMATION FOR VETERANS**

If you were discharged after June 27, 1950, let the new GI Bill of Rights help you obtain resident instruction. Check coupon for full information.

MAIL THIS COUPON . . . TODAY!

CAPITOL RADIO ENGINEERING INSTITUTE
Accredited Technical Institute Curricula - Founded in 1927
3224 19th STREET, N.W., DEPT. 122 B, WASHINGTON 10, D. C.

Please send me your course outline and FREE illustrated Booklet "Your Future in the New World of Electronics"... describing opportunities and CREI home study courses in Practical Electronics Engineering.

CHECK □ Practical Radio Engineering
□ Broadcast Radio Engineering (AM, FM, TV)
□ Practical Television Engineering
□ Aeronautical Electronics Engineering
□ TV, FM & Advanced AM Servicing

NAME ____________________________________________

ADDRESS _________________________________________

CITY ______ ZONE ______ STATE ______

CHECK: □ Residence School □ Veteran

February, 1955
How a Capacitor Works

(Continued from December Issue)

Now let’s take the case of coupling capacitors or “blocking” capacitors. Here we have two electric circuits which are usually at different d-c potentials, and we must pass an a-c voltage from one circuit to the other through the capacitor. It is important that there be no passage of d-c through the capacitor as, for example, from the plate circuit of one tube to the grid circuit of another tube, lest the transfer of voltage cause the lower potential circuit to malfunction or become inoperative. This is the case in an audio amplifier when a leaky coupling capacitor causes a positive voltage to appear on the control grid with resultant “mushiness” and distortion.

Going back to the crock in our analogy—if the crock were filled and the spigot shut off, but continued to drip water, we would have the same condition as a “leaky” capacitor. In the case of an electrostatic capacitor, such as a paper, mica, or ceramic, this leakage current is usually a few microamperes. This current varies greatly with temperature in the dielectric material as we will show later in this series. It is not too greatly affected by the voltage applied.

In the case of electrolytic capacitors, the leakage current is of a relatively larger order of magnitude and may be several milliamperes. Here, too, the leakage current varies with temperature. Moreover, it is much more affected by the voltage applied to the capacitor.

Returning to our tea crock, this would mean that the higher the water level, and thus the pressure on the leaky spigot, the greater the leakage.

Once the rated voltage of an electrolytic capacitor is exceeded, the leakage current rises very rapidly causing internal heating. By overvoltageing an electrolytic capacitor it is possible to create a runaway condition, in which the self-heating causes the leakage current to increase to such a point that the very thin dielectric will rupture. In terms of our analogy, this would be the case if the vessel cracked permitting water to run out as fast as it runs in. This corresponds, of course, to a short circuit in the capacitor.

—To be continued—
Open and close your garage door from your auto with the easy-to-build equipment described in this article.

A LMOSt every home-built garage door opener seen by the author has been a mass of cables, pulleys, levers, and special expensive motors. In the unit described in this article, any motor from 1/5 to 1 horsepower can be used with a gear box. A large crank is attached to the gear box and this crank travels in a complete circle. Now, if one end of a long rod is hooked to the top of the garage door, and the other end to the crank on the gear box and the motor is started, the crank will turn and the rod attached to the top of the door will either pull up the door or push it closed. The motor does not have to reverse to close the garage door.

The gear box is no problem because any gear reduction of about 80 to 1 will do a fine job. The author used an army surplus job which was obtained for about $5.00. If you cannot obtain such a gear box inexpensively, you can of course devise a usable system employing pulleys such as are found in hoist systems. The receiver and transmitter described here can of course also be used with commercial electric garage door openers.

Keep in mind that the door should open and close at a moderate speed. After selecting a gear box, have a 7" piece of ¾" pipe (no smaller) welded into the gear box. Thread the other end and attach a ½" "L"; screw a 4-foot length of ¾" pipe into the "L." This is the crank mentioned previously.

After the gear box and arm are assem-
bled, mount the gear box on a piece of 5-ply plywood, 28 inches wide and 36 inches long. Cut a hole in the center of the plywood and bolt the gear box into position. Bolt a 2 x 4 along one end of the plywood, and add another piece of plywood in an upright position to the 2 x 4. This is the base for the motor.

Mount a small pulley (about 1 1/2" diameter) on the motor and about a 10" pulley on the gear-box shaft. Run a loose belt from one pulley to the other, not so loosen that it will come off, but loose enough that it can slip if anything should get in the way of the door’s travel.

If the belt slips after it is assembled and the door has to be rebalanced, be sure that you never remove the balance springs with the door open.

If the garage has stringers or rafters, mount a couple of 2 x 4’s between two of them to support the gear box and the motor. Don’t bolt the unit into position until you cut the long 1” pipe that connects to the top center of the garage-door frame to open and close the door.

To get the approximate length of this rod, turn the gear-box arm to the open position, i.e., pointing away from the garage door, open the door, hold the rod between the door top and the end of the crank, and mark the rod with a pencil. Then close the door and turn the crank to the closed position; again mark the rod. Do this several times until you are sure that the length is correct.

Next, measure the travel of the door in inches. To do this, close the door and mark on the door jamb the position of the top left-hand corner of the door. Now open the door and measure the distance from the door jamb to the same top corner of the door. This is the travel of the door.

One-half of this distance, measured from the center of the crank, is the place where the push rod is bolted onto the crank.

Drill a 1/4" hole in both the push rod and the gear-box crank. Mount the two together using washers and lock nuts. These rods should move freely. The opposite end of the push rod is connected to the top center of the door frame using two bolt-on type screw eyes interlocked to act as a universal.

You are now ready to mount the gear-box assembly and motor. First, close the door and move the crank to the closed position. Next, connect the push rod to the door and to the gear-box crank. Temporarily, nail the gear box and motor assembly in position. Then, operate the large pulley wheel by hand to open and close the door. Do this until all adjustments are made. Finally, bolt down the gear-box and motor.

Now, the unit may be plugged into the outlet and the door will open and close, but you will have to stop the motor; that is, unless you want a flat-top car. To stop the motor automatically, a normally closed “Microswitch” is used. On the regular arm.
Top view of the receiver showing the arrangement of the parts and the two tuning controls.

Bottom view of the receiver chassis shown partially wired to emphasize the parts layout.

Receiver schematic and pictorial diagrams with complete list of parts required.

- **R1**: 3 megohm, 1/4 w. res.
- **R2**: 10 ohm, 2 w. res.
- **R3**: 3500 ohm, 25 w. adjustable res.
- **R4**: 25,000 ohm 2 w. wirewound pot
- **C1**: 2 to 30 μfd, trimmer capacitor
- **C2**: 0.002 μfd, 400 v. capacitor
- **C3**: 0.003 μfd, 400 v. capacitor
- **C4**: 0.01 μfd, 600 v. capacitor
- **C5**: 0.001 μfd, 400 v. capacitor
- **C6**: 0.01 μfd, 25 v. elec. capacitor
- **L1**: 17 t. #24 en., tapped 7 t. from the bottom; wound on 1/2" slug-tuned coil form (National #380 or equiv.)
- **RFC**: 150 mc. r.f. choke (#22 en. closewound on full length of 1 megohm, 1/4 w. res.)
- **RL1**: S.p.d.t. 9000 to 15,000 chm relay (Sigma 4F or equiv.)
- **SR**: Selenium rectifier, 150 ma.
- **S1**: S.p.s.t. switch
- **Vi**: 6S4 tube

---

February, 1955
of the switch, solder an extension arm made of brass or tin. The rotating crank of the gear-box strikes this arm and opens the circuit, shutting off the motor.

To find the proper place to mount the "Microswitch," start the motor so that it begins to open the garage door. Shut it off just before the door has fully opened. The door will coast open. Mount the switch where the crank will hit it and stop the motor so that the door will coast completely open. Do the same for the doorknob. Add a small lever to the top corner of the door which will strike the switch as the door closes.

Radio Equipment

A hard-tube receiver is used because it yields longer life. The life of a gas tube is about 300 hours; that is, if it is not overloaded.

To build the receiver, first lay out and mount the parts on a 3" x 5" chassis. Try to keep the power-supply parts on one end of the chassis and the actual receiver circuit on the other end. Check all wiring at least twice before any voltage is applied.

After the receiver is wired, place a voltmeter across pins 1 and 7 of the 1S4 tube socket. Adjust R1 to 1 volt. If you don't have a meter that will check 1 volt, temporarily connect a 1.5-volt flashlight bulb across tube socket pins 1 and 7. Adjust R1 so the bulb just lights and that's all. Disconnect the bulb before you place the tube in the socket. Turn R4 counter-clockwise (minimum). Place the tube in the socket and readjust R3 to 1.5 volts.

With the tube in the socket, adjust R4 until you hear the plate relay pull in. (It will click.) Then turn the control counter-clockwise just past the point where the relay opens. The receiver is now ready to operate.

C1 and L3 will be adjusted after you complete the transmitter. These receivers are quite stable and, after they are once ad-
justed, they will probably need no other adjustments.

Note that although the transmitter is crystal controlled, it uses no tank coil. This is designed to keep the signal at a minimum. It will still operate the receiver at a distance of about 100 feet or more on the 27,255-mc. Citizens band.

The "B+" voltage needed to operate the transmitter is obtained from the car radio. The easiest way to do this is to remove the audio tube of the car radio from its socket. On older sets this will probably be a 6K6; most newer sets use a 6AQ5 or a 12AQ5. If your set uses a 6K6, insert the lead from the push-button on the transmitter into hole 4 on the socket, counting counterclockwise from the key on the top of the socket. Remove only about ⅛ inch of insulation from the end of the wire before inserting it. Then replace the tube. If the set uses a 6AQ5 or 12AQ5, you will have to use a small lug which will fit onto pin 6 of the tube. You can make such a lug by drilling a small hole for the tube pin in a small rectangular piece of brass or copper. Affix the "B+" lead of the transmitter to this lug. Be certain to use insulating tape on the lug to keep it from shorting to the chassis. Slip the lug on to pin 6 and re-insert the tube into its socket.

The heater of the transmitter tube is on all the time that the key is turned on in the car, since the heater voltage is obtained from the ignition switch. The "B+" is keyed through a push-button on the dash of the car.

To use this transmitter, you will have to write to the Federal Communications Commission, Washington 25, D. C., and ask for Form #505. Fill it out and return it to them. No test is required.

Any auto-radio antenna will do. Be sure that it is well insulated from the frame or body of the car.

Don't install the transmitter in the car until you try it first on the bench with the receiver. Place the units about 6 or 8 feet away from each other, then turn on the receiver and wait for about 30 seconds. Turn on the transmitter and the relay should close. If it does not, rotate C, and the slug in L1 in the receiver until you can close the relay every time you key the "B+" voltage on the transmitter. Now move the transmitter farther away and retune the receiver so that it will operate reliably at a normal car-to-garage distance. That's all there is to it.

End

Motor-gear mechanism and rotating arm. Note the extension on the "Microswitch."

February, 1955
There are many interesting side issues when it comes to high fidelity—do not let your neighbor confuse you.

The other evening, the wife and I dropped over to a friend's house to see the Hi-Fi rig he'd been bragging about for several weeks. And what an outfit it turned out to be; the amplifier was a beauty, the turntable was a dream of precision, and the loudspeaker system darned near took up one whole corner of the room. It looked like a million bucks.

"But wait'll you hear it," my chum said, as he started to fish through a stack of records. "Ah, here's the one I want." And with a flourish, he put it on the machine, gently lowered the tone arm into position, twirled a few dials, and turned to us with a look of pure rapture.

Well, I never heard the likes of it! From reading the label afterward, it seems that this particular disc was first taped on the banks of the Hudson River as The New York Central's Twentieth Century Limited went by on the main line. And talk about fidelity; I almost dove under the sofa, it sounded so real!

As the evening wore on, we heard others too: one of a rusty hinge with a truly superb squeak; another of the call of a bull moose, complete with treble and bass, at Glacier National Park; and finally, some excellent music over pie and coffee. All in all, it was very interesting.

But on the way home, I found out that my good spouse thought differently. "The music was fine," she said, "but those noises were terrible. What in the world was he trying to prove? Sarah's husband, Sam, is the same way; he keeps playing the first few bars of Stravinsky's Firebird Suite over and over again, just to hear the sound of the chime. If that's what Hi-Fi means, you screwbirds can have it, but keep it out of the living room!"

Well, I didn't think much more about it until the next day when some of the boys at the office took up the same chorus. Their ideas about Hi-Fi were equally confused; one thought he had it in his new $19.95 table radio because the instruction book said so, and another agreed with my wife almost verbatim. None of that racket for him.

I did find a soulmate, though, in the new man from across town. "You know," he said, "I've become interested in this thing too. I like music and would like to know more about Hi-Fi, but I'm so confused by guys like your friend, and all the ads in the magazines, that I'm not even sure what it means."

He had a point too, and at the expense of my bread and butter, I kicked the whole problem around in my mind for most of that day. I mentally examined Hi-Fi from all the angles I could think of—the technician's idea of it, the advertising man's approach to it, the salesman's pitch, the artist's view, the stand taken by the record companies, and finally the interest of the buying public. Once this was done, the pieces of the puzzle seemed to fall into place—and the picture made sense.

When you think about it, the interests don't really conflict; they supplement each other. Sound technicians, for example, are basically interested in reproduction as a science. Perhaps they like music or perhaps they don't, but either way, it's a sure bet that they are interested in developing machines that will reproduce it as it was originally played. Their ultimate goal is to bring all of the rich tones and the full depth of a symphonic performance into your living room without change or distortion. It's their job.

The odd noises you hear played in the labs and on experimental sets, the deep rumbles and the high frequency squeaks, are intended to be used for testing only.
The engineer or the home experimenter figures that if he can design a system which will accurately reproduce both of these extremes of tone, then chances are that it will do the job asked of it on the music too. These people aren't "sound-happy"; they're just using the tools of their trade.

However, most of us would rather hear music, and consequently prefer to judge Hi-Fi for the music-handling ability alone. This is our standard: "Fie on the boots and hollers, we want to play Brahms or Benny Goodman." And that's OK too! In fact, most sound engineers who have given the public's confusion about Hi-Fi any thought at all, wish we'd forget about everything else but the music. They're the ones who will play Tchaikovsky for you—even in the lab—and they're the first to tell you to forget the experimental activities and enjoy your favorite records. There should be more of this kind!

The record companies have a pretty mature approach to the problem, but even they tend to add some confusion to the issue. For example, not long ago I wandered into my favorite record shop and the girl behind the counter almost broke her neck waving me over to the Hi-Fi booth in the back. With great to-do, she said, "I've been waiting all week to play this record for you; with your interest in Hi-Fi, you should go for it in a big way." The record, for all this enthusiasm, wasn't the music you'd expect, but the words, Especially Recommended for Hi-Fi Fans, appeared under the title on the record jacket.

As it turned out, I didn't buy the record, but I did give it some thought later. Those words could communicate at least two ideas to the reader. They could say: "Here's a record with some music on it, but more important, just wait till you hear the way it's put there. Come all you Hi-Fi fans, crank up the gain and give a listen to this one."

Or, to give the author and the record company the benefit of the doubt, it could be taken to say: Here's a record of some excellent music—played and recorded in such a way that you folks with Hi-Fi outfits will appreciate it. In fact, that's probably the way it was intended, but, nevertheless, the first confusing impression was too easy to get. Let's hope that this statement gets reworded.

Then, last but not least, come the hucksters—the people who write ads and compose sales talks. To some few of them, and thank God there are only a few, all of this honest confusion is a golden opportunity. It means that they can use the public's acceptance of the Hi-Fi idea and apply it to any old piece of junk that makes noise. These are the characters who label the $19.95 AM table radio a high fidelity model in hopes that the magic words will sell a few of them to an unsuspecting public. These are the confusion mongers who make the most of a good name at the expense of everyone else.

Phooey!

But in the final analysis, all of this boils down to one thought: Hi-Fi should be judged only as it affects the individual judging it. If you are a scientist, you'll probably want to hear the creaks and groans. If your interest is in music, you'll want to hear a good record and compare it to the same performance "in the flesh" or on the old console. Or if you have dual interests, perhaps you'll want to hear both. But in any case, don't let the other fellow's point of view and interests confuse you. Take it as you will use it, and forget the rest.

Hi-Fi is wonderful anyway, regardless of your tastes—mechanics or music. Once you've heard it, you're a goner for sure, and it's only a matter of time until electronics catalogues will take their place on the living room table along with the funny papers.

If you don't believe it, just ask me! I can be found most any time down in the local record store, or down in my basement wiring up the new amplifier kit that just arrived—while listening to the old one at the same time.
How Magnetic Tape is Made

The public's enthusiastic and ready acceptance of tape recording has rather overshadowed the "miraculous" quality of this new medium. We all, more or less, take our tape machines and recording tape for granted.

A lot of time, money, research, and engineering ingenuity goes into each reel of tape you so casually purchase over the counter. As an example of the painstaking care lavished on this product, the manufacturing operation of ORRadio Industries Inc. is pictured on these pages. This firm, which makes the "Irish" brand magnetic tape line, is primarily a tape maker so its operation will be described.

Research and development play an important part in the operations of most electronic firms and the tape industry is no exception. Continuing efforts are made to improve the product and one such operation is the experimental formulation for dispersion in a laboratory scale grinding mill.

When the laboratory has OKed a new formula or procedure, the technique is incorporated in the manufacturing process. Mass production of the magnetic coating lacquer is accomplished by huge grinding mills which are capable of delivering 500 gallons of coating. A slow and continuous grinding results in a uniform dispersion of the iron oxide particles in the lacquer type base. Special wetting agents and highly effective lubricants are incorporated during the grinding process.

The precision coating of the magnetic lacquer on the plastic film is the most delicate operation in the manufacture of magnetic tape. The coating machinery required for this operation is manufactured to watchmaker tolerances. The company's tape is coated to a tolerance of a half of 1/10,000 of an inch since a variation of less than 1/10,000 of an inch in thickness may vary the amplitude of the audio output as much as one decibel.

The next step in the operation is the production of ¼" tapes from coated rolls. This is done by the slitter operator who cuts the 12" coated rolls into ¼" tapes and winds it on 1200 foot reels, the standard 7" reel of the industry.

After the tape is wound on the reels, it is subjected to a thorough audio analysis. Professional recording and test equipment is used for this operation. The tape is tested for frequency response, amplitude variation, signal output, and noise level.

The final step in the manufacturing process before shipment to distributors is the careful visual inspection of the tape. This inspection is made under fluorescent lighting with the operator checking for inconsistencies in the winding and slitting of the tape and for fractures and molding imperfections in the reel.

The next time you casually pop a reel of tape on your recorder, stop just a second and consider the "little miracle" you hold in your hand.

End

Large batches of the magnetic coating lacquer are mixed in 500 gallon mills like this one.

A laboratory technician prepares an experimental formulation in a laboratory grinding mill.
The tape coating operation is extremely critical. It is performed on precision machines.

Producing 1/4" tapes from the large coated rolls is a responsibility of slitter operator.

A thorough audio analysis is made on each production run of the tape made by factory.

The final visual inspection of the tape is made by skilled operators who use fluorescent lighting boxes.

February, 1955
The novice cw transmitter with the crystal and coil for 80 meters plugged in. It is ready to go when the antenna is connected.
Use any conventional 4-pin, 1" dia. form. Winding spacing is measured between lower edge of L1 and upper edge of L2. Before winding the coils, drill holes through form to pass ends of windings. Space holes to allow for width of each winding and distance between windings. Remove enamel for about half an inch from end of wire. Pass wire through proper hole in side of form and corresponding base pin. Solder wire to pin. Wind required number of turns around form, keeping wire taut and leaving no space between turns. Cut off wire, leaving a few inches to work with. Pass end through proper hole in form. Remove enamel from end of wire and pass it through pin in base. Carefully pull wire taut, then solder end of wire to pin. Use coil cement over windings to prevent loosening.

Note that two different coils must be built to cover both the 40 and 80 meter bands.

**this Novice CW Transmitter**

*By RUFUS P. TURNER*

The beginner in ham radio with a novice license should become active as quickly as possible with a low-powered telegraph (cw) transmitter. Operating this rig as often as he can will give valuable on-the-air experience in handling the code and in correct operating procedure. The best way to learn is by doing.

A novice's first transmitter should be both simple and inexpensive. A good idea is to use the lower frequency bands. There, the new operator usually will find more "tag-chewers" and local contacts than on the higher frequency long-distance bands. In the 80-meter band, novice cw operation is permitted between 3700 and 3750 kc. In the 40-meter band, the novice's territory is 7175 to 7200 kc. Crystal control must be used.

The transmitter shown here was made especially for beginners. While it is low-powered, it will give a good account of itself when operated with a good antenna. It does not take up much room, since it is built on an aluminum radio chassis box (Bender Type 145) 7" long, 5" wide, and 3" high.

To reduce expense and to keep hum-producing power equipment off the transmitter chassis, no power supply is built into the transmitter. This allows the experimenter to use any external unit supplying 250 volts d.c. at 50 to 65 ma. and 6.3 volts a.c. or d.c. at 1 amper. Most experimenters keep a small power supply of this type on hand for general use. Such units also can be bought cheaply in surplus. The necessary a.c. and d.c. voltages often can be drawn from the receiver used with the transmitter. For portable use, a 6-volt storage battery can be used in conjunction with 180 to 225 volts of "B" batteries or a vibrator-type 250-volt supply.

**Transmitter Circuit**

The schematic diagram shows the circuit of the transmitter. A 6AQ5 tube (V1) is used in a crystal oscillator circuit. This particular circuit keys quite well.

A shunt-fed plate circuit is employed. That is, the output (tank) circuit, consisting of coil L1 and tuning capacitor C1, is isolated from the d.c. plate voltage of the tube by capacitor C2. This arrangement keeps d.c. voltage off the coil and protects the operator from electric shock. Nevertheless, switch S should be thrown to its "off" position before changing coils, since
the r.f. voltage may burn the fingers quite painfully just the same.

The key is plugged into jack $J_1$. The two "Antenna" binding post terminals are connected to the antenna.

Construction

An 8-pin octal tube socket is mounted on the left end of the chassis to hold the crystal. Socket pins 1 and 4 receive the pins of the crystal holder, while other pins of this socket are used as tie points for resistor $R_1$, capacitors $C_1$ and $C_2$, and leads. A 1½" hole is needed for the crystal socket.

A 7-pin miniature tube socket for $V_1$ is mounted in a 3/8"-diameter hole near the center. At the right-hand end of the chassis, a 4-pin tube socket is mounted in a 1½" hole to hold the plug-in coil.

Directly behind this coil socket is the insulated 2-terminal binding post block for antenna connections. This block assembly is a National Type FWH. The insulating blocks fit into 1½"-diameter holes drilled ¾" apart on centers.

Switch $S_1$, jack $J_4$, and tuning capacitor $C_4$ are mounted, from left to right, without insulation, along the front lip of the chassis. The jack and tuning capacitor require 5/8" mounting holes. The toggle switch ($S_2$) requires a ½" hole. Four insulated binding posts are mounted along the rear lip of the chassis for connections to 6.3 volts and 250 volts.

The two coils are wound on conventional 1"-diameter, 4-pin, phenolic plug-in forms. The accompanying coil table gives instructions for winding these coils. Each consists of a main coil $L_1$ and a coupling coil $L_2$. The ends of $L_1$ are fed into the two large pins of the form and soldered. The ends of $L_2$ are fed into the two small pins and soldered.

For adjusting the transmitter, make a test lamp by forming a 1¼"-diameter loop of insulated hookup wire and soldering its two ends to the terminals of a 6-volt pilot lamp.

Obtain an 80-meter crystal on any frequency between 3700 and 3750 kc, and a 40-meter crystal on any frequency between 7175 and 7200 kc. Several crystals in each frequency range will allow movement "around the band" when interference sets in.

The simplest antenna to use with this transmitter is the center-fed type (cut for 40 or 80 meters) with coaxial or low-impedance ribbon feeder. Antenna dimensions and building instructions may be found in any amateur handbook. Other types of antennas may require a coupling coil and tuning capacitor external to the transmitter.

Operating Instructions

To place the transmitter into operation:
(a) Plug in an 80-meter crystal. (b) Plug in the 80-meter coil. (c) Connect the 6.3 v. and 250 v. power supply. (d) Throw the switch $S_1$ to "on." (e) When the tube has heated, plug the key into jack $J_1$. (f) Hold the loop of the test lamp over the top of the coil. (g) Depress the key; while holding it, adjust tuning capacitor $C_4$ until the lamp lights. Back away with the lamp if it is burning too brightly. (h) Tune capaci-
When wiring the transmitter follow both schematic and pictorial diagrams closely.

When tuning to it with a receiver (minus antenna) or on a c.w. monitor.
To tune up on 40 meters, repeat the entire process with a 40-meter crystal and the 40-meter coil plugged in.
If you do not have any of the power sources mentioned in the early part of this article, you can use this transmitter with a power supply to be described in the next issue of Popular Electronics.
Absence of sound-absorbing materials on stage during this Mercury Records recording session helps achieve richer, more spacious sound on final records.

Magnetic tape is used for the original recording. Improvement in the original is possible, when necessary, by editing and corrective re-recording. Photo shows Ampex machines being used in session directed by Columbia’s Mitch Miller.

Conductor Dimitri Mitropoulos listens critically to playback of his last “take.” Playback speaker system is Altec-Lansing’s “Voice of the Theatre.” Mistakes detected by conductor will be corrected before tape is approved for use in making records.

WHEN the current interest in high fidelity began a few years ago, the record industry seemed indifferent. This was not the first time the hi-fi idea had cropped up, and there seemed little reason to suppose it would outlive previous, similar fads.

(Continued on page 32)
Finally approved, the tape original is re-recorded onto a lacquer disc, here undergoing inspection by Dr. Peter Goldmark and William S. Bachman. These men are responsible for the development of Columbia's microgroove long-playing record.

After visual and aural tests, the lacquer master disc is placed in an electroplating tank whose contents are controlled by chemical analysis. Not too many years ago, the bath was tested by dipping a finger into it and tasting it.

Meanwhile the plastic record material is prepared from a precise combination of ingredients in large heated mixers. It then goes to the rollers shown below which produce "biscuits" of uniform thickness and correct size for records.
8 Printing of labels, jackets, etc. undergoes careful editorial scrutiny. Copy must be grammatically and factually accurate. Color registration must be perfect. Labels are printed on large sheets and then cut to size on this machine.

In fact, the evidence indicated that the public really preferred low fidelity. Record-makers and broadcasters had learned this lesson through years of sad experience.

But when public interest and demand made it apparent that high fidelity was here to stay—and grow—the industry responded with an alacrity and vigor that it had not shown in years. The hi-fi "revolution" is now in full swing. New techniques and quality controls are still being introduced at every stage of record manufacture.

As a result of this stepped-up activity on the part of record manufacturers, the phonograph record of today is a vast improvement over the noisy, fragile, short-playing model of yesteryear. Some of the reasons for this are shown in the accompanying photographs.

9 The metal stampers, labels, and heated "biscuits" come together in the record press, which resembles a huge waffle iron. Hot steam, followed by cold water, is forced through the press to assure correct formation of the plastic discs.

10 Excess plastic after pressing is trimmed off by white-gloved operator. She then stacks discs for final inspection and packing. Spacers are placed on the spindle between the discs so that recorded surfaces will not touch each other.

11 Thousands of dollars' worth of skills have been applied to creating the hi-fi record held here by TV actress Pat Percy. She shows her appreciation of this fact by holding the disc at its edge, never touching the recorded surfaces.
In the "reflex" circuit of this receiver, one tube does the work of two and good loudspeaker volume is produced with two tubes.

OLD-TIMERS remember the reflex circuit fondly. Newcomers probably never heard of it. The reflex receiver was very popular when radio was young and tubes were high-priced, because it allowed one tube to do the work of two.

We get this unusual action by feeding the signal through the tube twice. The first time around, for example, the tube acts as an r.f. amplifier. We can then detect the amplified signal with a crystal and feed the crystal output back around through the same tube which now acts as an audio amplifier. That is exactly what happens in the little set described in this article.

You can hook up this receiver and have fun observing how the reflex circuit works. Aside from its educational value, this set makes a handy little battery-operated tuned r.f. portable. It tunes fairly sharply over the entire broadcast band and will give good volume on all local stations. When using an outside antenna and a good ground, stations 100 miles away have been received well.

**Explanation of the Circuit**

Refer to the schematic diagram, which gives the complete circuit of the reflex receiver.

Two tubes (one 1U4 and one 3S4) and one 1N34 crystal diode detector are used. The 1U4 serves as both r.f. and 1st audio amplifiers. The 3S4 is the audio output amplifier. A 1½-volt "A" battery and a 67½-volt "B" battery supply all power required by the tubes.

The signal coming in from the antenna and ground is tuned in by means of variable capacitor C1 (which is one half of the dual ganged capacitor C1-C7) and the antenna coil, L1. The signal then is fed to the 1U4 control grid. R.f. amplification of the signal takes place in the 1U4. The amplified signal appears at the secondary coil of the r.f. transformer, T1, which is tuned by the second half, C7, of the ganged tuning capacitor.

This amplified signal then is applied to the 1N34 diode detector, CR1, through the blocking capacitor, C4. The detector delivers an audio signal which, after it passes through the filter (R1, R2 and C5), is fed to the 1U4 control grid.

Now, this time the 1U4 acts as an audio amplifier and builds up the audio signal coming out of the detector. The amplified audio signal is taken from the 1U4 through coupling capacitor C6 and the volume control potentiometer, R. It then is fed to the control grid of the 3S4 output amplifier tube which drives the loudspeaker.

Readers who have studied receiver cir-
In the circuit shown in the schematic diagram above, V, acts as both radio-frequency and audio-frequency amplifier. See the text for an explanation of how this is accomplished.

circuits may be puzzled as to how the first stage of this set can operate simultaneously as an r.f. and audio amplifier. The following points should clarify this. The r.f. signal applied to the 1U4 control grid is prevented from going back into the detector stage by the R3-R6-C5 filter. The small capacitor, C5, in the 1U4 output bypasses the circuit for r.f. but not for audio. The primary of T1 thus is grounded for r.f. Resistor R6 serves as the plate load resistance when the 1U4 is acting as an audio amplifier. At this time, the bottom of the T1 primary is "high" (because capacitor C5 has a high impedance at audio frequencies) and audio output can be taken from the junction of R6 and C5.

Editor's Note: The reason reflex receivers are not used as much as they once were is that interaction in the reflex stage, between the r.f. and audio signals, produces undesirable effects. Strong signals may be distorted. Minimum volume may not occur with the volume control at its minimum setting, and may also be accompanied by distortion.

Control grid bias for the 3S4 tube is obtained from resistor R6 which is bypassed by the electrolytic capacitor, C6. The author used a 4-inch PM dynamic speaker with a 3.2-ohm voice coil. The Stancor A-3823 universal output transformer, T2, is connected to supply this particular voice coil. That is, the brown pigtail is connected to the 3S4 plate, red pigtail to screen and "B-plus," blue pigtail unused, and the speaker connected to taps 1 and 3. The reader can use any other speaker he may have on hand. The A-3823 transformer has sufficient taps (and a complete chart of instructions for connecting) to enable matching a particular speaker to the 3S4 tube.

The "on-off" switch, S1, is in the "A-minus" lead. The "B" battery does not have to be switched. The switch is combined with the volume control potentiometer, R6.

**Construction**

The author built his set in an aluminum chassis box, 7" long, 5" wide, and 3" high (Bender 145). This chassis later is slipped into a wooden case along with the loudspeaker and batteries. But you do not have to follow this type of construction. You can build your set directly into a radio cabinet, cigar box, or any other type of enclosure that appeals to you. You can even assemble the parts on a wooden breadboard if you wish.

On top of the chassis, the 1U4 tube is to the front, the 3S4 to the rear. In the left front corner is the adjustment screw of the ferrite-adjusted antenna coil, Ln. The left knob controls the tuning capacitor, and the right knob the combination volume control and "on-off" switch. A card marked off in kilocycles in the broadcast band is placed over the tuning knob when the set is installed in its case.

The under-chassis view shows construction and wiring. The various components can be identified by comparing with the...
You can follow this pictorial diagram in wiring the reflex receiver. Be particularly careful about the connections of the tubes, capacitor C,, r.f. coil Tr, and transformer T2.
After the wiring has been checked as correct, connect the batteries and loudspeaker, and switch the receiver on. Turn the volume control all the way up. If you have a modulated signal generator, set it to 1700 kc. and connect it to the antenna and ground terminals of the receiver. Set the receiver tuning capacitor about ¼ from completely open and adjust the tuning screw in antenna coil \( L_i \) for loudest sound from the speaker. Adjust the trimmer capacitor on the frame of \( C_i \) for further increase in loudness. Use the lowest generator output that you can still hear, since the low signal allows more accurate adjustment.

If you don't have a signal generator, use a broadcast station instead. Do this by connecting an antenna and ground to the receiver. Set the tuning capacitor and volume control as just explained, and adjust the screw of coil \( L_i \) to tune in a station operating on some frequency at the extreme high end of the broadcast band (somewhere between 1500 and 1700 kc.).

After the initial adjustment, the set is operated simply by adjusting the tuning and volume control knobs. Best pickup is afforded by an outside antenna and a good ground (a cold water pipe usually is very good). But the set will operate also with a 5- to 10-foot length of wire inside the house or "on location." The length of wire commonly called an a.c.-d.c. antenna will suffice.

The batteries shown with the receiver are one Burgess Type 2FBP (1 ½ v.) and one Burgess Type XX45 (67 ½ v.).

NEW THEREMIN MAKES MUSIC ELECTRONICALLY

MOVING her hands around the antenna, the young lady at the left is playing music on the Theremin, an electronic musical instrument. The volume and pitch are controlled by hand movements; the performer never touches any buttons or keys. Top unit contains oscillator and control circuits; lower unit is amplifier and loudspeaker. This model is made by the R. A. Moog Company.

ANTENNA FROM STEEL TAPE

A FLEXIBLE steel tape makes a fine adjustable antenna, as shown in the photo at the right. One screw through the center eyelet mounts it. Insulated washers where the screw enters the cabinet will prevent shorts. For high frequency uses, mount the tape with a stand-off insulator.
Housed in a truck trailer, this equipment measures and records performance of test plane 100 miles away.

AERODYNAMISTS can now be furnished with an accurate picture of the vital functions of an airplane under test 100 miles away by means of an electronic telemetry unit housed in a Fruehauf truck trailer.

Now in use at A.V. Roe Canada Limited, manufacturers of jet planes, the new equipment enables ground technicians to observe and record 67 separate items of data while a test flight is in progress.

From the aircraft, the variables to be measured are converted into electrical signals by a special transducer. These signals are transmitted to the ground unit. Among the data thus sent are air and liquid pressures, accelerations, rotary and linear motions, temperatures, and various applied forces.

These signals are received in the trailer by an elaborate FM unit and recorded on high speed recorders. The receiver is actually a pre-tuned 67-channel set. Each channel is fed independently to one of 67 discriminator circuits which will handle only its predetermined signal, ignoring all the others. The output of each discriminator varies with the frequency of the particular signal fed into it, similar to the action in a home FM radio set.

Interior of trailer showing telemetry equipment used for checking performance of airplane in flight.
Fig. 1. The larger of these electrostatic cathode-ray tubes is made of glass and measures 5 inches. The smaller is a 1 inch metal tube.

How the Cathode-Ray Tube Works

Fig. 2. Construction details of an electrostatic type cathode-ray tube.
TO MANY, the cathode-ray tube is symbolic of the entire television industry. There is little question that if it were not for this tube, the industrial giant of modern television could never have come into being. However, while it is true that a cathode-ray tube is used in every TV receiver and that thousands of others are used in TV broadcast stations, its use is not limited to this field alone. These tubes are used in radar, in medical electronic apparatus, in test equipment, in atomic research, in industrial electronic equipment, in fact, in all phases of present-day industry and science. To understand the operation of the cathode-ray tube, then, is to be in a better position to understand the entire field of modern industrial technology.

Fundamentally, the cathode-ray tube (or CRT) is nothing more than a special type of indicating device. Just as a loudspeaker converts electrical signals into sound vibrations, and a meter changes electrical energy into the mechanical movement of a needle pointer, the CRT is an instrument used to change electrical signals into patterns of light.

Cathode-ray tubes are made in numerous sizes and shapes and for many special purposes. However, most cathode-ray tubes can generally be divided into two broad classes—"electrostatic" tubes and "electromagnetic" tubes. This classification is based on the means used for deflecting (moving) the electron beam which "paints" the light pattern on a fluorescent screen. Each class of tube has certain advantages as well as certain limitations, and these advantages and limitations have resulted in each type of tube being used in specific applications.

Electrostatic tubes use an electrostatic field for controlling the electron beam. This field is built up between a pair of electrodes called "deflection plates" by the application of moderate a.c. and d.c. voltages. Electrostatic tubes are generally made in small sizes, with screens from one inch to about ten inches in diameter. They have a good frequency response and are widely used in cathode-ray oscilloscopes, medical electronic equipment, industrial equipment, and in some types of radar work.

Electromagnetic tubes use a magnetic field for controlling the stream of electrons. Two pairs of coils are used for building up this magnetic field. The coils are external to the tube proper and are generally mounted in a single assembly called a "deflection yoke." Electromagnetic tubes are made with screen sizes from five inches to thirty inches in diameter. Although they have a comparatively narrow frequency response, these tubes do permit the formation of large size, sharply focused, bright images and are used in tremendous quantities in television receivers and as indicators in radar systems. Virtually all
modern TV receivers employ electromagnetic tubes.

Since most people find it easier to understand the operation of the electrostatic cathode-ray tube, we shall discuss this type first. Once a clear understanding of the electrostatic tube has been acquired, the electromagnetic tube is easy to master. The basic construction of an electrostatic CRT is shown in simplified form in Fig. 2.

An a.c. voltage is applied to the filament of the tube, heating it to a bright glowing red. The filament, in turn, heats the cathode which is placed close to it. The cathode is covered with materials which "boil out" electrons when heated, and these electrons gather in a cloud close to the cathode.

A high positive voltage is placed on the accelerator anode and this voltage attracts the negatively charged electrons, causing them to move in a stream toward the front of the tube. The electron stream passes through a narrow hole in a cylindrical shaped electrode called the grid. Although not shaped like a conventional grid, it is given this name after the grid in an amplifier type vacuum tube because it serves the same function . . . it controls the number of electrons which can pass through.

The electron stream next passes through a group of two or three cylindrical electrodes which have different d.c. voltages applied to them. The accelerating anode may be one of this group. The d.c. voltages applied as well as the shape and size of these electrodes set up an electrostatic field which narrows the electron stream and focuses it into a sharp beam. Because of this action, one of the electrodes may be termed the focusing anode.

Next, the sharply focused electron beam passes through a pair of flat electrodes arranged in a horizontal plane with respect to the tube. If a d.c. voltage is applied to these plates, the electron beam will be attracted toward the more positive plate and repelled from the negative plate, bending either up or down, depending on how the d.c. voltage is applied. If an a.c. voltage is applied, the beam will move up and down alternately. Since the beam moves in a vertical direction, these electrodes are called the vertical deflection plates. The horizontal deflection plates are a similar pair of electrodes, but arranged at right angles to the vertical plates, and serve to move the beam either to the left or right.

After passing through the deflection plates, the electron beam goes on to strike the front of the tube, which has been covered with chemicals which glow when struck by the electrons. This action is termed "fluorescence" and, therefore, the film of chemicals on the face of the CRT is called a fluorescent screen. The choice of chemicals used in making the fluorescent screen determines the color of the glow and how long the glow continues after the electron beam strikes the screen. This latter characteristic is called the persistence of the screen.

Most of the cathode-ray tubes used in oscilloscopes have a medium persistence green screen. Zinc orthosilicate is frequently used for such screens. Television receivers generally employ a medium persistence white screen. Various mixtures may be used to produce a white screen, including a combination of zinc sulphide and zinc beryllium silicate. For high speed photography, a CRT using a short persistence blue screen is desirable. Such screens may be made from calcium tungstate.

Since the purpose of a cathode-ray tube is to obtain a pattern of light on a screen, the fluorescent screen is often considered one of the most important parts of the tube. This is shown by the fact that a tube's size is given in terms of its screen diameter. A "seven inch tube" has a screen with a diameter of approximately seven inches.

In a cathode-ray tube, the assembly of electrodes which produces the stream of electrons, not including the deflection plates, is called the "electron gun." The electron gun of a typical CRT is shown in Fig. 3.
An electromagnetic CRT is somewhat simpler in construction than an electrostatic tube since it does not have deflection plates. However, it still has an electron gun assembly, although the focusing anodes may be missing. The beam of electrons sent out by the electron gun is deflected by a magnetic field set up, in turn, by two pairs of curved coils mounted around the neck of the tube close to the bulge of the "funnel." See Fig. 4. The coil assembly, or deflection yoke, of a typical television receiver is shown in Fig. 5. Note how the two sets of coils are mounted at right angles to each other.

Electromagnetic cathode-ray tubes which do not have focusing electrodes in their electron gun assembly employ an external magnet to produce a magnetic focusing field. Such magnets may be either electromagnets or permanent magnets, or a combination of both. Thus, electromagnetic tubes may be subdivided into two smaller classes; those employing electrostatic focusing and magnetic deflection and those employing both magnetic focusing and magnetic deflection.

The shape of the light pattern formed on the screen of a CRT depends on the type of electrical signals applied to the deflection elements (whether coils or electrostatic plates). If steady d.c. voltages are applied, a dot will appear on the screen, with its exact position determined by the relative sizes of the applied deflection voltages. If a.c. signals are applied, a line or pattern will be formed, with its shape and size determined by the electrical waveforms and amplitudes of the a.c. signals. In a television receiver, the light pattern forms a raster made up of a series of horizontal lines.

Varying the voltage applied to the grid electrode in the electron gun assembly will change the number of electrons that can pass through and strike the screen and hence the instantaneous brightness of the glow. In a television receiver, the video signal is applied to the grid-cathode circuit of the CRT and changes the evenly glowing raster into a pattern of light and dark segments which, in turn, makes up the picture.

The vast majority of present day cathode-ray tubes employ a single electron gun assembly and a single set of deflection elements. However, tubes have been made with a number of electron guns, including some of the tubes designed for color television. Cathode-ray tubes have also been made with several complete electron guns plus deflection elements. Such tubes are virtually several independent cathode-ray tubes with a single screen. One such tube is shown in Fig. 6.

Special purpose cathode-ray tubes, color television picture tubes, TV camera tubes, and other types of cathode-ray tubes will be discussed in other issues of POPULAR ELECTRONICS.

Fig. 6. This industrial multi-gun cathode-ray tube has five electron gun and deflection assemblies.
ONE of the oddities of the radio control hobby is the persistent underestimation, even by some manufacturers, of the problems of installing the airborne equipment. Most directions stop with a wiring diagram and the "dope" on tuning. It is no wonder then that the beginner's first R/C installation is a rat's nest of wires, or that the radiomamp's first model often is torn up by loose batteries and catapulting equipment on the first really hard landing.

A shipshape installation is accessible, removable, facilitates proper functioning of the radio, protects the equipment, and, just as important, protects the airplane from the equipment in a crack-up. If these requirements are not met, the best radio in the world is rendered unreliable.

If this sounds like making a mountain out of a molehill, consider the unnecessary damage that happens to a relay when the receiver bangs around inside a cabin. The heavy coil may deform the frame, causing delicate pivots to bind. This will result in skipping and sticking, eventually causing a bad crack-up or a fly-away. This is just one of the ways a poor installation endangers the equipment.

Let's take the requirements in the order given. First is accessibility. This, like Sergeant Friday, covers a lot of territory. Just because the frequency trimmer can be reached with a tuning wand doesn't mean that the receiver is accessible. A slug tuner which requires tightening of a lock nut so that vibration will not cause detuning, isn't accessible when the lock nut is under the receiver chassis! Or, you may want to reach the relay to clean a contact, or to adjust spring tension, or reset a contact. Battery voltages often must be read on the field, or batteries may have to be replaced, or the escapement or servo checked. Anything that requires observation or adjustment should be readily accessible.

Equipment should be removable. Maintenance alone requires that all principal parts of the radio system be removable, that is, battery packs, receiver, and actuator. Exhaust smoke from the engine and dust on the field penetrate cabins, eventually causing leakages of capacitors, etc. It certainly is worthwhile to keep the receiver chassis clean. Soldered joints need regular inspection—components may have been pushed out of place, perhaps to the point of shorting out. Tubes may be loose,
a burr might have developed on the revolving arm of the escapement, or the armature of a servo motor may require cleaning. The radio model is, after all, a real aircraft and, like a real aircraft, requires periodic checks. It is not uncommon for an active hobbyist to log a hundred or more flights a year. If the equipment is not inspected regularly, the model will become a casualty before that many flights can be racked up.

How well the receiver does its job depends on the neatness of the installation and the provision included against the ill effects of engine vibration upon the relay. The beginner tends to place batteries, receiver, and escapement wherever convenient, then to run wires, like as not through space, point to point. Wires can be grouped or cabled. Those wires that connect the switch, potentiometer, jack, sockets, and other stationary components that remain in the plane, regardless of the removability of the receiver, batteries, or actuators, should be fastened to the structure, led along the corners between walls and floor, or by bulkheads (crosswise partitions) and walls.

The stationary wiring can be constricted into a very small area by a compact arrangement of the permanently installed fixtures. By using miniature socket-type plugs, the receiver can be provided with a plug-in cable, and the battery pack with another. Either or both can be removed by slipping out the plug. Standardize your receiver cable connections to make receivers interchangeable between ships. One big advantage of this practice is that friends can cooperate by sharing receivers when necessary, provided the hook-ups are standard. On the five-pin plug the following connections are suggested: pin 1, "A+"; pin 2, "B+"; pin 3, common minus; pins 4 and 5, relay.

Damping of vibration is accomplished by a variety of shock mounting systems, the two most common ones being a rubber-bond suspension of the receiver in a horizontal position, or the placement of the receiver upon a block of foam rubber, either vertically or horizontally. If vertically mounted, the receiver has an infinitely greater immunity to crack-up damage. Indeed, it is possible to destroy the airplane without detuning the receiver or even knocking the relay out of adjustment, when vertical mounting is used. Heavier and
larger receivers sometimes rest upon two blocks of sponge, one at either end, or at either side, as the case may be. The rubber is faced with 1/16-inch thick plywood (using rubber cement) and the chassis ends or mounting lugs are attached to the plywood with small wood screws.

Good shock absorption is essential to good relay operation. The writer has seen cases where a 10,000-ohm sensitive relay considered shock proof would not pull in when mounted firmly on wood with a powerful engine shaking the airplane. Contact pressures may not be sufficient to hold a rudder in one position as the plane shudders out of a dive. Probably the manufacturers themselves don’t know what happens to a relay armature during repeated signaling in the presence of a severe harmonic vibration, as only modelers seem to create it. If a good installation is able to employ the means of damping vibration to provide crash protection as well, you are ahead of the game.

Last, but not least, is the protection of the airplane from loose equipment. This means that all heavy objects, notably the batteries and the receiver, should not be permitted to gather momentum before coming to rest against a bulkhead. Batteries should always rest snugly against a bulkhead. This bulkhead should be strengthened across the grain with cross members or plywood to prevent splitting. Its ends, or joints with the floor or walls, should be butted against forward movement that would tear out the joints. Batteries should not be fastened down upon flooring, and never held loosely in place. A vertically-mounted receiver that rests against a firm bulkhead, with appropriate strengthening against splitting and movement, causes little or no structural damage and is itself unhurt by hard knocks.

Horizontally-mounted receivers which depend on rubber-bands from the four corners of the chassis may, on a short stop, penetrate a ply bulkhead with well imagined results to electronic equipment. A tether cord attached to the chassis and anchored behind the chassis to some strong point, prevents the receiver from traveling too far, although the back travel, like recoil of a gun, should be similarly damped for safety. Even though the horizontal mounting may hold in a crash, it is likely that the Sigma 4F-type relay will be deformed. Tubes will pop out, and everything that isn’t tied down, like chokes, quench coils, and capacitors, will move out of position.

Escapements and pushrods take special handling to prevent crash damage. Escapments that simply are cemented against a balsa partition will tumble into the cabin when the plane bangs onto its nose. A pushrod may take off like a javelin, pulling loose the linkage assembly and the rudder.

With such considerations in mind we can tackle the four typical installations given in the illustrations. First is the old fashioned rubber-band mounted receiver, accessible in this case by means of two large access doors in the sides of the ship. A is the plywood bulkhead; B is a thick sheet-balsa floor or a thin plywood floor. The batteries are stacked against the bulkhead or laid flat on the floor with their front edges flush against the bulkhead. The switches, potentiometer, jack, etc., line up along the lower edge of the cabin on the left side, facing a right handed launcher. (This is more or less standard, so the arrangement of accessories, switches, etc., will not be detailed in subsequent examples.)

The receiver is suspended by rubber-
One method for mounting a receiver horizontally is shown here. Batteries and the socket for receiver cable are well forward.

R/C model plane with the receiver mounted horizontally. The batteries are in the nose, mounted on a piece of plywood and inserted through the floor for easy accessibility.

bands (two light bands to each corner stretched to about one-third their limit). C is a tether cord attached to the rear wing hold-down dowel, D. F is a small chassis mounting two sockets, one to accept the battery cable lead, the other the receiver cable. Note the structural cross members, G, that reinforce bulkhead A. The section forward of this reinforcement is double skinned on each side, with the inner, thicker skin—3/16 or ½-inch thick sheet balsa, butting against bulkhead A.

A popular mounting method is to have both receiver and batteries vertical. This provides excellent accessibility to the radio from the open top of the cabin, and to the battery pack from the removable top of the nose section. A is a ¼-inch sheet-balsa bulkhead; B is either a ½-inch plywood or a ¼-inch sheet-balsa bulkhead, whose grain runs across ship. Note that the impact of the batteries is against this bulkhead; that of the receiver, partly snubbed by foam rubber, is transmitted through A. The impact of the snug fitting batteries is transmitted to the key bulkhead B. Switches, potentiometer, and jack line up as before, well out of the way should the receiver swing from side to side. C is a foam rubber block, against which the receiver is anchored by small rubber bands. The tension of the bands is just enough to prevent the receiver from hanging loosely or swinging back and forth on landing. The battery cable D comes through bulkhead A, and plugs into a socket on chassis E. The receiver cable plugs into a similar socket. Note that the escapement is fully accessible.

The beauty of the torque rod linkage to the rudder is that the linkage cannot damage the escapement in a crack-up, where-
as the pushrod type transmits a blow to the escapement assembly. Pushrods and bellcranks also put a dead weight on the escapement, which can be a handicap when the nose is down. Pushrods usually require heavier rubber drive for safety and this in turn makes escapement and performance more critical.

A variation of the vertical-type mounting is also shown. Here, a plywood floor A extends between bulkheads C and D. Observe that the floor continues forward of bulkhead B, so that the battery weight can be carried far enough toward the nose for correct balancing. Battery boxes bolt directly to the floor, and are accessible by means of a large bottom hatch. The Acme Products Company makes sturdy battery boxes for all popular battery combinations including hearing aid "B" batteries. If desired, a large "B" battery may be dropped into place between bulkheads B and D, with D then requiring the usual forward structural support. Escapements, switches, etc., are mounted as before. The large plywood floor is ideal for anchoring the heavier motor-driven servo-type actuators.

Still another arrangement having very special advantages is the removable box method. This box contains the batteries, receiver, and even the servo or escapement. By detaching the linkage from the actuator, the box can be lifted from the plane without disconnecting a wire. Moreover, it can be dropped into another plane. It is unnecessary to have an actuator in every plane with this set-up. The batteries are packed in a forward compartment in the box; the actuator is mounted at the rear, but in such a manner that it does not snag the adjacent bulkhead when the box is lifted out. Switches, potentiometer, jack, etc., have to be on the bottom of the box, and are reached through holes in the bottom of the ship when the box is in place. In fact, the toggle switch handle extends from the bottom. Usually more confined than a wide open cabin, the box requires that some receivers be beam mounted, that is, placed upon two blocks of foam rubber at either end, or along the sides.

It is not intended that these examples be followed to the exclusion of the reader's own ideas. Rather, it is hoped that this resume of a few of the better kinds of installations will assist the newcomer in the successful operation of his new plane.

It would be well to draw upon these comments in sketching in any installation upon the plan that comes with your airplane kit—before cementing a piece of wood. Few kits detail installations, merely saying, put the batteries here, etc. Nor are they always wise in the location of some items such as an escapement. The average modeler is a great individualist, especially in radio control. So don't be afraid to "gild the lily."
ECONOMICAL KIT BUILDS HI-FI AM TUNER

RECOMMENDED as one of the initial units for a binaural or hi-fi installation is the new V-5 AM tuner being sold in kit form directly from the manufacturer, Approved Electronic Instrument Corporation, 928 Broadway, N. Y. 10, N. Y.

Features of the unit are: self-contained a.c. power supply; tuning range, 530-1650 kc.; sensitivity, 5 microvolts; iron core tuned coils; tuned r.f. stage; and 3 section variable capacitor. Dimensions are 9¾" x 5" x 5¾".

The complete kit of parts including tubes and pictorial and schematic diagrams is priced at $24.50.

NEW LOW COST TV TOWERS MADE OF ALUMINUM

NEW economies in cost per unit as well as building costs are being realized with the new aluminum TV antenna tower being erected in the photo. Made by Alprodoco, Inc., Mineral Wells, Texas, the light weight tower is assembled from six-foot sections and raised with another section of aluminum tower acting as a boom. Five men did the job in one day. Similar towers have been installed in many areas.

SOLAR ENERGY OPERATES MIDGET TRANSMITTER

SOLAR energy is used to power this midget experimental transmitter built by Edward Keonjian, General Electric engineer at Syracuse, N. Y.

Self-powered and about the size of a package of cigarettes, the unit uses transistors instead of vacuum tubes, and selenium solar energy converters instead of batteries. When light rays strike the selenium, enough electrical energy is delivered to the transistors to operate the midget experimental transmitter.

The transmitter currently has a range of about 100 feet which could be improved, Keonjian says, by adding more selenium units, or by using germanium or silicon instead.

PORTABLE RADIO FOR LOUDSPEAKER OR HEADPHONE

NOVEL feature of the new Rimenco 415A portable radio, shown at the left, is a single earphone which plugs into a socket and cuts out the loudspeaker when operating on batteries. Reversing the plug permits earphone and loudspeaker to be used simultaneously. In a.c./d.c. operation, the loudspeaker operates regardless of the phone plug position. The set is extremely compact, weighing only 3 lbs., 11 oz. The Rimenco 420A, shown at the right, is an all battery portable smaller than the 415A. It features a unique switching arrangement which permits the set to operate at reduced power drain while the batteries are new. As they age, a flick of the switch increases the set’s gain. Distributed by R. I. Mendels, Inc., of N. Y., they are made by Matsushita, Japan.

February, 1955
A Solderless B.C. Crystal Receiver

This crystal broadcast receiver, although available in kit form, can be built from readily-available parts in virtually less time than it takes to read about it. Its most outstanding features are, of course, its simplicity and low cost. Its selectivity and sensitivity are obviously not as good as in other more elaborate crystal-type receivers.

The tuning coil mounts on the wooden base by means of two nails, driven from the underside of the base, and some airplane glue. The base should be grooved out to conform to the contour of the coil.

After winding the coil, as specified in the parts list, it will be necessary to remove the enamel over that portion of the wire on which the slider rests. A simple method of doing this would be to move the slider back and forth across the coil to wear a path through the enamel insulation.

As can be seen in the illustrations, the crystal supplied with the kit is a "cats-whisker" type. This is available from the company as a separate item. You can, however, use a standard IN34 crystal diode in its place.

Connect the various components as shown in the schematic diagram. After completion, simply connect an antenna, ground, and a pair of earphones—and the set is ready for operation. The antenna and ground should be the best available in order to provide maximum sensitivity. The headphones should be of the high-impedance type, preferably 2000 ohms or higher.

Tuning is accomplished by moving the slider across the coil.

For those who prefer to work from a kit of parts, the receiver is available as the "Peppy Pal" from Radi-Ore Labs, 38 Oneida St., Lynn, Mass. The kit, which retails for $1.50, contains all necessary components (earphones not included) and instructions. A photograph and diagram, if required, are available for an additional 30 cents. All prices apply to continental U.S.

CLOTHESPINS PROVIDE PAIR OF "EXTRA HANDS"

The couple of "extra hands" so often needed to hold a critical piece of work can be approximated by a couple of pairs of clothespins bolted back-to-back, as shown in the photograph. They can be made rigid, or be devised to bend in any direction. Any slender upright rod—wood or metal—can act as a support. Here, a wooden dowel has been inserted into a flat base. Further rigidity could be obtained by screwing the base itself onto the workbench. Note how the improvised "fingers" hold the delicate work while the technician's two hands are occupied.

E.R.
THE brief flare of an ordinary kitchen match at a distance of five feet triggers this sensitive little light-operated relay with startling decisiveness. Its response to small changes in light intensity, coupled with versatility, compactness, and low cost, is attained by a rather novel circuit design.

The arrangement has quite a few attractive features: (a) No transformers or high wattage resistors are needed. Hence a tiny 3½"x4½"x2" chassis may be used. (b) Besides the phototube, only one vacuum tube is required—a 117L7GT, operating directly from the a.c. lines. (c) Either a gas-filled or a vacuum type of phototube may be utilized. Direct interchangeability without alteration of circuit wiring or pin connections is made possible by incorporating a voltage divider which permits only half the line voltage to be applied to the electrodes of the phototube. This adaptability for phototube substitution provides a wide range of sensitivities to varying light values. (d) Either positive action (increased light actuates controlled device) or negative action (decreased light actuates controlled device) is obtainable by moving a single external wire from one binding post to another at the rear of the chassis.

Positive action is desirable for garage door operators, floodlight actuators, automatic house lighting controls, etc. Burglar alarms, door annunciators, safety devices on machines and other similar applications are best handled by negative action which occurs when a beam of light is interrupted.

Construction

After the chassis has been drilled and punched, mount the octal sockets so that the keyways are facing toward each other. The sensitivity control, $R_2$, and the binding posts or rear terminal block should be secured to the chassis next. If binding posts like those on the model are used, their mounting holes should be drilled at least ¾ inch in diameter, to make it easy to insulate them from the chassis.
Schematic wiring diagram of the light-actuated relay. Two methods of connecting the relay to the controlled equipment are diagrammed on the opposite page.

Bottom view of chassis showing placement of major parts.

- **R₁**: 30,000 ohm, 1/2 w. res.
- **R₂**: 100,000 ohm pot, linear taper
- **R₃**: 250,000 ohm, 1/2 w. res.
- **R₄**: 1 megohm, 1/2 w. res.
- **R₅**: 250,000 ohm, 1/2 w. res.
- **C₁, C₂**: 8 µfd., 450 v. elec. capacitors (not dual capacitor with common terminal)
- **RL₁**: 5000 ohm plate circuit relay, s.p.d.t. (Potter and Brumfield Type LBS)
- **V₁**: Either 925 vacuum type or 1P40 gas-filled type phototube, depending on sensitivity requirements

Miscellaneous parts: One aluminum chassis, 3 1/4"x4 1/2"x2", ICA Type 29077; two octal tube sockets; one knob with pointer; three binding posts, supplied with shoulder washers to permit positive insulation from chassis; line cord and plug; machine screws and nuts, wire, and solder.

Bottom view of chassis showing placement of major parts.

Pictorial wiring diagram. Some terminals on the V₂ socket are used as wiring tie-points.
Begin the wiring by joining pins #1, #2, and #5 of the 117L7GT tube socket (right-hand socket in the photograph showing the bottom view of the chassis) by means of short lengths of uninsulated wire. Next, connect pin #7 to pin #8 of the same socket with bare wire. The remainder of the wiring may be handled as the builder sees fit, provided that he bears two precautions in mind: uninsulated leads are not to touch the chassis; and the polarities of the two electrolytic capacitors are to be carefully observed. Mention is also made of fact that lugs #2, #5, and #6 on the phototube socket are used as tie-points.

After the construction is complete, check your work visually to spot obvious errors or short circuits, if any. Using an ohmmeter or other continuity checker, make certain that all three binding posts are completely insulated from the chassis and that no short circuit exists between the prongs of the a.c. line cord.

**Choice of Phototube**

If you don't have a stock of phototubes—and how many people do?—you will want to purchase either a 925 or a 1P40. The one you buy depends upon the intensity of light to be used for control purposes and the light differential anticipated during the control cycle.

The 925 is a vacuum type; it is octal based and light sensitive on the concave side of the big cathode. (See drawing). The 1P40 is identical in all respects save one: it is filled with an inert gas which adds measurably to its sensitivity.

Use the 925 when you expect to have an intense source of light available. The 925 is a safe tube as it is not affected by short exposures to even very bright light.

If a low-intensity source is to be used, however, the 1P40 can be counted upon to provide the additional sensitivity necessary for reliable relay operation. It does have a weakness, though, which makes it somewhat more precarious to use. Exposure to intense light—even for a brief period of time—may deactivate its sensitive cathode surface or seriously change its characteristics.

**Testing and Adjustment**

Insert the 117L7GT in the proper socket, but leave out the phototube temporarily. Rotate the sensitivity control fully clockwise, then apply power. Allow about 30 seconds for warm-up.

Now, as the sensitivity control is slowly backed off in a counter-clockwise direction, a point should be found where the relay clicks in. Moving the control back and forth past this point should cause the relay to pull in and drop out with positive action. With this condition established, darken the room or cover the phototube with a small cardboard carton and insert it into the remaining octal socket. Adjust the sensitivity control to the point where the relay

---

*The completed photo relay: binding posts shown are connected to the circuit which is to be controlled.*

**Proper orientation of phototube is with concave side of its cathode toward light source.**
just fails to pull in. This is the setting for maximum sensitivity. Incidence and interruption of light falling on the sensitive cathode surface should now cause relay operation.

Trouble-shooting

Assuming that the wiring is correct and that the values of the components are not in error, there is very little else that can go wrong.

If the relay fails to pull in at all, with or without the phototube in its socket, measure the voltage between the plate and cathode (pins #3 and #8) of the 117L7GT with an a.c. voltmeter when the sensitivity control is fully clockwise. A reading of 75 volts or higher indicates that the relay is all right; in this case, the tube (beam power section) is probably defective. Should relay operation be normal for movements of the sensitivity control but not for changes of light intensity, the phototube should be suspected if an a.c. voltmeter reading shows from 40 to 50 volts between pins #4 and #8.

Another type of trouble that may develop, especially with the gas-filled phototube, is positive latch-in of the relay with any light intensity or no light at all, and at any setting of the sensitivity control. If this occurs, the trouble lies in the phototube; it may be improperly "gassed," a defect which sometimes occurs in manufacture and which causes high gas currents even under dark conditions.

Look for extraneous light reaching the photo-cathode if operation is erratic. In some applications it will be necessary to provide the phototube with a little light-proof box having a window about one inch square directly in line with the cathode. It will be found that such a light shade improves sensitivity as well as stability.

Positive or Negative Action

The model was wired so that the center binding post, #2, was connected to the armature contact of the relay. This binding post is the "common" one on which the control wire remains for either positive or negative action.

When the photo relay is to be used as an annunciator, for example, an interruption of the light beam across the doorway should cause a chime or bell to operate. This is negative action involving the use of binding posts #1 and #2 as shown in the sketch.

An application in which positive action is required as, for instance, where the headlights of your car activate the photo relay as you drive into your doorway to turn on floodlights, binding posts #2 and #3 are used. This is also shown in the sketch.

Principle of Operation

The rectifier section of the 117L7GT is used in "backward" connection; that is, it is hooked up in a manner such as to provide negative voltages across the sensitivity control. This is used as bias potential, adjustable by means of Rs.

The first adjustment sets the bias just below the pull-in plate current. When light impinges upon the photo-cathode, a tiny current flows up through part of Rs, through Rn, and to the upper leg of the a.c. line through the phototube and Rs. The voltage drop across Rs is applied as a positive voltage to the control grid of the 117L7GT, cancelling enough of the bias to increase the plate current beyond the pull-in current of the relay.

Resistors Rs and Rn comprise a "50-50" voltage divider that never permits more than half the line voltage to appear across the phototube, keeping the potentials well within the rating of the gas filled 1P40. C1, maintains the bias constant during the half-cycles of the a.c. line voltage when the rectifier section is non-conducting, while C2 prevents relay chatter.

The use of the rectifier to provide bias has two very important advantages, both of which contribute to improved sensitivity and stability: (a) Line voltage fluctuations do not tend to trigger the relay because both plate voltage and screen voltage rise in a positive direction while the bias voltage goes in a negative direction and vice versa. (b) Since there is no cathode resistor used for bias, degeneration is completely eliminated making much better sensitivity possible with the same circuit components.

END
Part 5. Choosing your transmitting equipment—both kits and assembled units can be had in a wide range of prices.

After you've taken the ham license examination, and while you're waiting for your ticket to come through the mail from Washington, you will start to think seriously for the first time about a short-wave transmitter. "Seriously" is the right word because the price range of sending equipment is quite wide.

You can easily find something to suit your pocketbook and your tastes. Some transmitters are sold only in kit form, some only as factory-assembled jobs, and others in both forms. If you decide on a kit, you will have a lot of fun putting the components together, you will learn something about transmitter design and construction, and you will save as much as $80. In the way of tools you need only a pair of pliers, a screwdriver, a couple of socket wrenches, a soldering iron, and about a yard of rosin-core solder. You can assemble and wire a small transmitter in about three evenings. One of the larger kits may keep you quite busy for a week.

"Isn't a transmitter rather complicated for a beginner?" Every new ham seems to ask this question. The answer definitely is "No." The diagrams and instructions included with the kits are clear and explicit, and if you follow them step by step, you can hardly go wrong. Transmitters are much easier than receivers, not only to assemble but also to put into operating order. With an inexpensive little crystal plugged into the oscillator stage, you can tune up all the succeeding stages of even a big transmitter in a few minutes. To line up

So You Want To Be A Ham
GOING ON THE AIR
By ROBERT HERTZBERG, W2DJJ

February, 1955
the numerous circuits of a receiver, you need service-type test equipment that can cost as much as the receiver itself and for which you will have no further need after you've done the job.

Ready-made transmitters are, of course, a great convenience. Many hams prefer them because of their impressive appearance and because they are ready to go on the air as soon as connections to them are made for power, antenna, and key or microphone. It's a real thrill to unpack a new transmitter at 2:00 some afternoon and work your first station at 2:30!

The regulations of the Federal Communications Commission limit ham stations to a maximum of 1,000 watts input to the plate circuit of the final amplifier stage. A full one-kilowatt rig makes a very, very large signal on the amateur bands. Relatively few hams are able to take advantage of this generous allowance, simply because the power wiring in ordinary homes is not nearly heavy enough to feed the complete transmitter. As a general rule, a transmitter draws about four times as much power from the a.c. line as the nominal power rating of the final amplifier stage alone. On a common 115-volt line, a power demand of four kilowatts, at a reasonable power factor, means a line current of about 50 amperes. Individual circuits in a home are usually fused for 15 amperes and the main fuse is rarely more than 30 amperes. To operate a "full gallon," as hams often refer to a one-kilowatt transmitter, you need a special power circuit, preferably at 230 volts to minimize the line current and hence the size of the required service wires.

Transmitters rated at 400 to 500 watts are about as big as you can run safely in a home or apartment without burning up the place. A typical unit rated by the manufacturer at 435 watts input draws 12 1/2 amperes at 115 volts from the line. This is about as much of a load as is taken by a standard electric iron. Although 500 watts is only half of the FCC allowance, it is still considered "high power" in ham circles. The majority of hams run much less—10 to 25 watts at first, and 100 to 150 watts after they acquire some operating experience.

As you might expect, the price of a transmitter is pretty much in proportion to its power. To give an idea as to what can be bought for specific sums of money, the following is a review of representative transmitters of the popular and generally available makes:

Heathkit Model AT-1: A kit job, with all parts down to the last nut and washer included, this transmitter is ideal for the new ham. It is intended primarily for c.w. work and does not include modulation equipment for voice transmission. However, a separate modulator can be added any time, a connector plug being provided for the purpose. The power rating is 25 to 30 watts. Plug-in crystals or a separate variable frequency oscillator can be used for frequency setting. Bandswitching is provided, and the user has the choice of the popular 10, 11, 15, 20, 40 and 80 meter bands. Three tubes are used: a 6AG7 oscillator-multiplier; a 6L6 amplifier-doubler; and a 5U4G rectifier. Grid and plate circuits are metered. The finished transmitter is housed in an attractive metal cabinet measuring 8 x 13 x 7 inches. Kit price, $29.50, tubes included.

Heathkit Variable Frequency Oscillator VF-1: This is an accessory for the Model AT-1 transmitter, and like it, is sold only in kit form. It uses a 6AU6 oscillator tube and an OA2 voltage regulator, and obtains its heater and plate power from a take-off socket on the AT-1. It can readily be adapted to drive any low-power transmitter that now uses crystal control. Kit price, $19.50, tubes included.

Viking "Ranger" Transmitter-Exciter: Used by itself, the Ranger is a self-contained 75 watt c.w. or 65 watt phone transmitter, with 100% AM modulation and pinetwork antenna load matching from 50 to 500 ohms. With suitable antennas, it operates in the 10, 11, 15, 20, 40, 80 and 160 meter bands, with either crystal control or from its built-in variable frequency oscillator. Complete shielding and filtering eliminate any tendency to cause interference in nearby television receivers. All controls and adjustments are conveniently located on the front panel. Bandswitching, frequency shifting, and all other circuit tuning can be accomplished in minutes.
If the owner of a Ranger gets bitten by the high-power bug, he can use the unit as an exciter for a full one-kilowatt amplifier stage.

The Ranger is available in kit form at $179.50, less tubes, crystal, key and mike, and completely assembled and wired at $258.50. The kit is designed for easy assembly. Wiring harness, punched chassis, all parts and hardware, step-by-step instructions, pictorial diagrams and operating instructions are included. The completed transmitter is very compact, measuring only 15 x 11 x 9 inches.

Globe Scout Model 40A: This is a general-purpose 50 watt c.w., 40 watt phone bandswitching transmitter, working on 10 through 160 meters. It is intended to fill the need for a compact unit in the low-power field for either fixed station or mobile use. The unit contains six tubes, including rectifier. It is crystal controlled, or can be driven by any external variable frequency oscillator (v.f.o.). Built-in antenna tuner permits use of any standard type antenna. For mobile use, a suitable dynamotor or vibrator power supply is connected through an auxiliary socket. Dimensions are 8 x 16 x 8 inches. In kit form, $89.95; factory wired, $99.95.

Globe Champion: This is a compact two-unit 150 watt transmitter for c.w. and voice which stands only 19 1/2 inches high in a strong steel cabinet. It uses 17 tubes and two meters and operates in bands from 10 to 80 meters. In kit form, $329.50; factory wired, $349.50. The two units are also sold individually, so you can start with the r.f. section, work on c.w., and then add the modulator later when you have the money. C.W. transmitter only, kit form, $165; factory wired, $175. Modulator only, kit form, $159; wired, $169.

Globe King: This is classified as a “me-
New Electronics Experimenters Kit

Without using solder or tools, your youngster can build fourteen real circuits with this Kit.

A NEW and different approach to learning electronics is embodied in the unique kit shown above. While it will serve for any beginner regardless of age, it is especially recommended for your son or other beginner who is interested in learning this subject.

Without the need for soldering or the use of any tools, and with the aid of special templates, a child can construct fourteen different circuits, from a simple crystal receiver to a one-tube radio receiver. Of special interest is a code practice transmitter that can be built. This unit sends signals that can actually be picked up, if desired, by any nearby receiver, such as the one in your living room.

Complete in every respect, the kit contains all necessary parts including the batteries that are used as power, a vacuum tube, crystal, headset, antenna and ground wires, connecting leads, and even a code sending key and base.

All connections are made by patented "Jiffy" clips which are simple, easy, and foolproof in operation and eliminate the need for soldering or using any tool. The "Jiffy" method of circuit hook-up is used in electronics courses in many high schools and colleges and has been found to be practical and simple for circuit building.

The templates are especially valuable to youngsters for their educational function. For each circuit that the kit can build there is a separate template showing the point to point connections between components. This not only facilitates the actual construction, but teaches the builder something of the electronic theory behind the circuit. After he has built a circuit with the aid of the template, the youngster can then try to construct the circuit without the template, following only a conventional schematic. The instruction sheets that are included in the kit show the symbol, picture, part number, and name of each part in the kit.

This is not a "dead-end" kit that becomes useless when all its fourteen circuits have been built. Rather, additional parts may be added to expand the kit's usefulness so that it will function in ever widening areas of electronics. The kit is designated as Model T-100 and may be purchased for $14.95 direct from the manufacturer, Science Electronics, Inc., 485 Main St., Cambridge, Mass. A free sample "Jiffy" connector as well as descriptive literature are available on request to the manufacturer.

END
Electronics Shapes Home of the Future

The increasingly important role played by electronics in our daily lives is indicated by the household items shown here. Presented by the National Broadcasting Company during its "World of the Future" telecast of the Home Show, these electronic devices are not science-fiction fantasies, but actual possibilities, which are now or will be marketed to the public. End

"Chef Phillip" demonstrates Raytheon's new "Radarange." It roasts a turkey in an hour, broils steaks in three and a half minutes, cooks corn and bakes potatoes in a few seconds. Home models are expected early this spring.

Hugh Downs shows actress Arlene Francis and artist Jack Coggin a mock-up of a new compact television set being developed by General Electric. The screen is light enough in weight to be hung on the wall. The set eliminates the bulk of the picture tube and its electronic gun. Transistors will replace conventional tubes. Color sets designed along these lines will probably be available in ten years.

Being marketed now is the pocket radio held by Mr. Coggin. Made by RCA, it utilizes transistors.

Microphone and loudspeaker connected to the base of this telephone enable you to answer it from a distance without lifting the receiver. Developed by Bell Telephone Laboratories, it is the first remote telephone on the market.
LONG TERM archival storage of magnetic records should differ from temporary storage of the same medium. In addition to the physical conditions of storage, archival recordings should be recorded somewhat differently from those intended for short period storage. Engineering data, legal matters, and Junior's first immortal words (to his parents) might be the subject matter of long term storage—over a year from our point of view. Dictation to be transcribed within a few days, capers at a party for the absent guest, and radio or TV sound programs for the husband who was working at the time are examples of short term or temporary storage.

Before considering the physical conditions of storage such as humidity, temperature, and exposure to magnetic fields, the echo effect common to both tape and wire records should be discussed.

Perhaps you have rubbed a screwdriver against a magnet and have learned that it too becomes a magnet. Or perhaps you put the screwdriver in a leather tool pouch with a TV ion trap against the pouch and found a few days later that the screwdriver had become magnetized. Actual contact is not required for one magnet to magnetize another. The amount of magnetism induced in the screwdriver depends on several primary factors such as: Magnetic intensity, the magnetomotive force in the ion trap in this example; Distance, where the path is broken by an air or other nonmagnetic gap; and Time, time in proximity to the source of magnetomotive force.

A magnetic record behaves similarly to the simple example of the screwdriver and the ion trap. First, the process of recording produces a magnetic field on the record. This magnetic field varies with the sound which is recorded. Second, each individual turn on a reel of recorded tape is near other turns. Its predecessor and the turn following it are separated by the thickness of the plastic base—a small distance. Furthermore, turns of tape several thicknesses away are still near magnetically speaking. The tape will remain wound on the reel for a period of time which is relatively long in archival storage.

A strong magnetic impression on the tape or wire may cause other unwanted magnetizations of nearby turns with the passage of time. Such "secondary" magnetizations are called "echo effects." As many as seven distinct echoes have been noted from a strong initial magnetization in a year.

Several things can be done to minimize echo effects. Firstly, we can record at a lower level to reduce the magnetic intensity of the recording—the lower the level the better. A simple procedure is to set up the recorder with the tape stopped, bring the microphone near the source of sound to be recorded until the peaks enter the overload range of the meter or indicator, and then move the microphone back—away—to three times the distance. By so doing, the playback volume will have to be advanced, but far less echo effect will be observed. Now, rewind the tape or wire loosely. If possible, rewind by hand on another reel. This increases the separation between adjacent turns of the tape and greatly reduces the magnetic effect of one turn upon its preceding and succeeding neighbors. In this rewinding procedure, a separator may be used, such as a blank tape or leader tape. Rewinding the tape each year will also reduce the echo effect.

Effects of Temperature and Humidity

Both high temperature and high humidity have their adverse effects on long term storage over a period of time. Such "secondary" magnetizations are called "echo effects." As many as seven distinct echoes have been noted from a strong initial magnetization in a year.

Several things can be done to minimize echo effects. Firstly, we can record at a lower level to reduce the magnetic intensity of the recording—the lower the level the better. A simple procedure is to set up the recorder with the tape stopped, bring the microphone near the source of sound to be recorded until the peaks enter the overload range of the meter or indicator, and then move the microphone back—away—to three times the distance. By so doing, the playback volume will have to be advanced, but far less echo effect will be observed. Now, rewind the tape or wire loosely. If possible, rewind by hand on another reel. This increases the separation between adjacent turns of the tape and greatly reduces the magnetic effect of one turn upon its preceding and succeeding neighbors. In this rewinding procedure, a separator may be used, such as a blank tape or leader tape. Rewinding the tape each year will also reduce the echo effect.

Effects of Temperature and Humidity

Both high temperature and high humidity have their adverse effects on long term storage.
Archival Storage of Magnetic Recordings

tape recordings and wire records. It is easy to see how these agents cause corrosion of wire. Older wire made of iron can rust, although most recording wire is stainless or plated to be rust resistant. Tape base may be a good place for fungus growths to settle down and reproduce themselves, thereby damaging the plastic base of the tape and loosening the magnetic coating. Moisture may also cause the adjacent turns of the tape to stick together so firmly that the tape will break. At temperatures over about 85°F, the tape may lose its limpness—it has a special lubricant which helps it keep limp to conform to the contour of the heads. It will become somewhat brittle, adding to the possibility both of breaking and flaking off of the magnetic coating. About 50 per-cent relative humidity is the best moisture content in air at a maximum of 60 to 65 degrees Fahrenheit. Even lower temperatures and humidities are satisfactory.

Storage Containers

Archival records should be stored in cans similar to those used for motion picture film. The diameter of the tape with its reel will fit snugly in such a can, but will leave space in the depth (photo). This space can be used for some form of desiccating agent such as ordinary blotting paper cut in half. Several of these blotting sheets should be dried out in a vented oven to permit water vapor to escape and have been allowed to cool in the oven. These cool sheets are cut in half and placed on top of the reel of tape. While silica gel is a better desiccant, it has the bad feature of shaking out of the bags and making some parts of the tape too dry, thereby impairing its limpness. Blotting paper or any other unfinished paper stock will do as well. The cover is put on as soon as the paper is placed over the tape on its reel and is sealed with surgical adhesive tape or black electrician’s tape.

Storage in such containers minimizes the possibility of exposure of the record to stray magnetic fields. The metal container acts as a shield. Nevertheless, the tins should not be stored on or near electric power lines or other wiring which might generate a relatively powerful magnetic field. Even a weak magnetic field may cause deleterious effects over a long time interval such as several years. Some film storage companies will provide storage facilities for such containers. Most safe deposit companies will store them in their vaults at a fee which is less than the charges for a safe deposit box. This space is called “silver storage” in some banks. Most safe deposit vaults are cool with low relative humidity. However, the container should not come into contact with a power line or even an extension cord.

Recapitulation

1. Record at the minimum level consistent with a desired reproduction of the weakest sound passages. Loud passages will become partially demagnetized with time, but very little change will occur in the weaker intensities of the record. The playback may be made on a machine equipped with an expansion control in order to correct the relatively greater loss of high intensities, and a tone control for some minor pitch changes with time.

2. Store in reels which have been rewound by hand, preferably with a blank spacer tape in between.

3. Dry the container and the film with paper—dry paper—as the desiccating agent. The metal cans may be dried in an oven also if necessary. Cool the paper (cans too) prior to placing the tape and its reel in the container. If the tape is moist, seal up as described for a couple of days, open, remove paper, reinsert dry paper and reseal the can. If very wet, the process may be repeated as often as required until the tape is perfectly dry.

4. Seal the lid to the can proper with a good grade of relatively waterproof tape.

5. Store at 50 to 75 degrees Fahrenheit, away from magnetic fields. Rewind every year or two if possible.

February, 1955
RECORD NOISE

WHEN a person attends a “live” concert, music is heard at its purest and best. Outside of the occasional cough or sneeze or the rustling of a program there is no background noise which distracts attention from the music. When one is listening to the “concert-hall-at-home”—a good Hi-Fi system, one is all too unhappily aware of any number of noises which intrude upon the music. These include rumble and hum from the system itself and noise generated by the recording. While most Hi-Fi fans eventually get rid of the hum and rumble problem, it does take time—and usually money. Your musical enjoyment can be greatly enhanced at little expense by the elimination of record noises. This can best be accomplished by careful selection of the records you buy, how you play your records, and how you care for and store the records.

There are two main causes of noise on the modern long play record. One is the accumulation of static charges which are heard as “popping” and “crackling” sounds superimposed on the music. The other is a cyclic “scratch” and “hiss” and other noises caused by physical deformities of the record. The very first corrective measure you can apply to these problems is in the selection of the records you purchase. Examine the records most carefully for nicks and scratches. Vinylite is such a soft material that it is almost impossible to get a record which is entirely free of all blemishes. Fortunately, unless the nick or scratch is deep enough to cause a “furrow,” it will not be heard. Test the suspected scratch by gently running the tip of one of your fingernails across the scratch in the direction of record travel. If you can “feel” the scratch with your nail, it will surely cause a big “click” or “pop.” Look particularly for what appear to be tiny humps or bubbles in the record surface. Even with the light 5-6 grams pressure of your pick-up, the stylus will eventually break through these bubbles and cause a huge “pop.” Do not accept records which are full of fingermarks. They may not mean a thing, but chances are more than likely that the record was demonstrated a number of times in the listening booth of the store. The styli in the playback equipment of the average store are usually osmium or at best, sapphire—both of which are usually worn to a chisel edge, and which will literally gouge the music from the record groove. If it is at all possible, do not listen to the recording you select at the record store. Most good record stores will allow you to take the record home with you to be played on your own system and return for credit or exchange if you find it defective.

Check the record for warpage and for an eccentric or off-center spindle hole. These off-center records will cause any sustained tones, such as are found in piano, organ and violin music, to “wow” or waver in pitch. The off-center record is a really big problem today and you must be constantly on guard for it.

Observe your pick-up arm on the record while it is being played. A “swinger,” as they are called in the trade, will cause your arm to waver to and fro in a lateral motion across the disc. Hiss and static charges can best be taken care of by the use of anti-static preparations and devices now on the market. Most commonly used are liquids which are wiped or sprayed on the disc. Most of these work fairly well, but be careful to use the material sparingly and wipe off any excess. Too much of these liquids applied too often can result in the grooves of the disc becoming “gummy” with subsequent reduction of the high frequency response. There is a concentrated liquid known as “K-33,” which is a very efficient record cleaner and anti-static agent. The (Continued on page 112)
THIS month we will continue with the survey of high fidelity recordings of works that should be in everyone's basic library. You will recall that the records are chosen on the basis of sound quality. I do not mean to patronize anyone when I say that an appreciation of performance can only come with musical maturity. If the recording I list is concomitantly a good or a "best" performance, I will so state. After all, not everyone can have the discrimination of the musically trained person, but nearly everyone can tell the difference between a good or a bad sounding recording. As with the previous column, works will be chosen from three major musical eras—the classical, the romantic and the modern.

Perhaps the most cheerful and melodic of all Beethoven symphonies is the Sixth, the Pastoral. It is also one of the few Beethoven works to which a "program" has been ascribed. If you have been fortunate enough to have seen Walt Disney's Fantasia, you may recall the almost perfect graphic example of Greek mythological figures cavorting in the fields and forests of the luscious countryside and scurrying for cover when the storm breaks. When the storm is over, the unicorns, winged horses, and other fabulous creatures reappear, and all is peaceful and serene again. There are currently sixteen recorded versions of this symphony. Of this number, six can truly be described as Hi-Fi in quality. Erich Kleiber's reading on London LL 916 is, in my opinion, the best sounding of the six. Exceptionally smooth strings, very "live, breathy" woodwinds, and clean percussion are combined with just the right amount of hall reverberance for maximum "presence." Mr. Kleiber's performance is also first rate. Between Steinberg on Capitol P 8159, Beecham on Columbia ML 4828, Scherchen on Westminster 5108, and Von Karajan on Angel 35080, there is little to choose. All are good sounding recordings, with Steinberg's a shade better than the others in sound and with Von Karajan giving the best performance. Lastly we have the redoubtable Toscanini on Victor LM 1755. While his recording barely qualifies as Hi-Fi, it is by all odds the best performance. Of course the final judge is your ear. Listen to all six of these recordings if you can. You can purchase any of them and feel certain that you are getting a modern, good-sounding recording.

One of the best known of all symphonic works is Tchaikovsky's Nutcracker Suite. This too, was depicted in Disney's Fantasia, making the work familiar to countless thousands of people. Hardly a day goes by that this suite is not played somewhere in the world. And no wonder, for this is music with a universal appeal. Full of gay lilting melodies and brightly orchestrated dances, the various sections like the "Waltz of the Flowers" and "Dance of the Sugar-plum Fairies," are as well known to most people as the "pop" ballads of the day. Because of its wide audience, the work has been the subject of many recordings. No less than twenty-three versions exist, some of which are real "clunkers"! Five of the twenty-three can be considered Hi-Fi recordings. The best sound and incidentally the best performance is Stokowski's version on Victor LM 46. There are a great many trickly little effects in the Nutcracker Suite, which are important to the over-all quality of the sound. Absolute clarity must be obtained from the triangles and celeste, from the high flute and piccolo passages, and the Piccolo of the strings. Stokowski has demanded and received this kind of recording from his engineers. Throughout, this recording is very clean and free of "fuzziness" in the strings which mars several otherwise good recordings. The other recordings, while all good enough to be Hi-Fi, have faults here and there which keep them out of the top spot. In order of quality they are: Fatsouli on London LM 9130; Ormandy on Columbia ML 4729; Von Karajan on Angel 35004; and Desormiere on Capitol P 8140. One other recording should be mentioned. You may have noted that this work is listed as the Nutcracker Suite. This is because the music is actually taken from a complete ballet called the Nutcracker. This ballet contains all of the music in the suite and much more that is interesting and very colorful. Dorati and the Minneapolis Symphony have recorded the complete ballet on Mercury OL-2-101. This is a fabulous recording with the sections of the suite sounding even better than the Stokowski. Super wide frequency response and dynamic range in this recording, with tremendous bass drum and tympani sounds, combining with stunning cymbal crashes. Really Super-Fi, this one, and if you can afford the 2-12" LP's the work occupies, this is it. A superb "show-off" recording, that will tax the capacities of any system.

(Continued on page 124)
The more advanced the radio-control hobbyist becomes, the more functions he seeks to control on his model airplane, boat, or racing car. To effect multiple control operations, complicated escapements have been designed. Some of these will be explained in this article.

The escapement illustrated in Fig. 1 was created in order to obtain direct control over two physical functions using a single-channel type receiver. In model aircraft, for example, it is used to control both rudder and elevator. One particular advantage of this unit is that it only deflects the control surfaces in the "on" signal positions and returns both to neutral in the "off" signal positions. This is a safety feature of considerable merit.

Notice that this escapement consists of two two-finger escapement arms and catch-

Fig. 1. A type 2 compound escapement in which one standard two-finger escapement is used to actuate two separate control loops via a cam.
points located on a single plate with a cam mounted between them. The cam has a small pin extension C. In the drawing, a small spring is shown holding catchpoints 2 and 3 firmly against the cam wheel causing 1 and 4 to rise up and intercept fingers A and D. This is the starting neutral position.

If now, a signal is sent causing the standard two-finger escapement to move finger F to position 6, the cam is caused to rotate 90 degrees counterclockwise pushing catchpoint 2 forward causing catchpoint 1 to move down, releasing A. As A rotates clockwise, finger B is intercepted by catchpoint 2 and held. Loop N is deflected to the left.

Now assume that the signal ceases. The arm on the standard escapement rotates another 90 degrees until G is intercepted by 5. Through loop L, the cam is rotated another 90 degrees, allowing catchpoint 2 to be pulled back by the spring and forcing 1 up to intercept B. Loop N is again at neutral.

Another "on" signal causes the cam to push catchpoint 3 forward to intercept E, deflecting loop M to the right. An "off" signal sends the cam back to the starting point, leaving E held firmly by 4 and loop M again at neutral.

Tracing the action through a second revolution of the cam will show that first loop N is deflected to the right, then brought to neutral, then loop M is deflected to the left, and brought back to neutral. It has taken two complete revolutions of the cam to go through the complete cycle of operation for both loops.

Although it is necessary to go through the complete cycle in order to effect any one desired control and return to the original starting position, this is not necessarily a disadvantage if the operation is done fast enough. Other surfaces may move, but will not be held in a deflected position long enough to affect the steering.

Another multiple escapement, this one sold by ECCO, is illustrated in Fig. 2. The back cover has been removed in order to reveal the special working parts. It, too, allows control over two physical functions. It is a single, self-contained unit requiring but a single rubber band for power.

The movement of the two output shafts is obtained through the use of the two specially shaped cams, the two "Y" yokes, and two sets of "four-fingers" which engage the armature catchpoints. The two catchpoints are offset from each other so that only one set of fingers contacts the "on" catchpoint, the second set contacting the "off." This is illustrated in Fig. 3.

If the cam of Fig. 2 were to rotate 90 degrees clockwise because of rotation of the yokes, the protrusion of the cam would force the left half of the "Y" yoke to the left. At the same time the indented portion of the cam is moved opposite the right half of the yoke, allowing motion to the left. Another quarter revolution returns the "Y" to neutral. The third quarter rotation moves the "Y" right, and the final 90 degrees returns the "Y" to neutral and the cam to its original starting position. This action has taken place in four steps.

Since there are two sets of "four-fingers," mounted as illustrated in Fig. 3, there are actually eight catch positions instead of just four. Thus, with the proper placement of the two cams, the signal sequence is as shown in Table I.

Notice that the deflection of the yokes occur only in the "on" signal positions. This again is a fail-safe feature.

**Servos**

First, to remove any mystery that might be connected with the word servo, this
word comes from the Latin and means slave. Since slaves were once used to do the hard physical work, the word in modern electronic parlance has come to mean the unit which furnishes physical power in a control system; in particular, motors. The De Bolt 2PN "Multi-Servo" shown in Fig. 4 is an electric motor with associated reduction gears, switches, and anti-coast device. It can be used in the same manner that the standard two-finger escapement is used to move control surfaces. The designation 2PN indicates its operation. This stands for "two positions—one neutral."

Examination of Fig. 4 will reveal the small brass terminal on the face of the fiber disc to which the linkage to the control surface is fastened. Notice also the two brass switches mounted below and behind the output disc, and the small fiber pins on the inside of the fiber disc which open the switches at the proper time.

Comparing this unit to escapements highlights the following:
1. No rubber bands are required.
2. Servos are small and lightweight (2 ounces).
3. They have fast response and are reliable.
4. They require conservative battery power (2 pen cells or their equivalent).
5. They are failure-safe in case of receiver failure.
6. They consume no power in any control or neutral position.
7. They are rugged and compact.
8. They have a simple and definite control sequence. The sequence is easy to remember and transmit using a standard pushbutton, it is "off" for neutral; "on" for left; and "on-off-on" for right.

Fig. 5 shows a typical wiring setup for a servo. Notice the fiber disc and the fiber shafts labeled N, R, and L. In the position shown, neutral, shaft N is depressing switch 2, opening its connection to D. The shaft does not open switch I since this switch is located lower than switch 2 and shaft N is placed nearer the center of the disc than L or R.

Let's trace through a signal sequence to see the operation. First an "on" signal is transmitted. The armature of the receiver relay F is pulled down to make contact with G. This lets power flow from the battery through the relay to B of switch 1. B is making contact with A, so the power goes through this switch to one side of the motor. The second motor lead is permanently fastened to the battery, so the motor runs, turning the fiber disc in a
clockwise direction until shaft $R$ opens switch 1, breaking the circuit and causing the motor to stop. As the fiber disc rotates, it moves loop $Z$ to the right, giving down elevator. As long as the signal is sent, the loop will remain deflected, but since the circuit to the motor is open, the servo consumes no power.

Now the signal ceases. The receiver relay armature moves from $G$ to $E$. Power now flows through switch 2 to the motor, causing it to run again. It runs until shaft $N$ opens switch 2, opening the circuit. Loop $Z$ is back to neutral.

To get up elevator, the sequence is “on-off-on,” holding the second “on” as long as this control position is desired. It is important that the sequence be sent at a medium rate and not too fast. The first “on” causes the motor to run as before, but instead of stopping, the “off” signal comes and routes power through switch 2 while switch 1 is being opened up by the shaft $R$. The second “on” comes as $L$ approaches switch 1, and since this signal is held, the motor stops running when $L$ opens switch 1. The loop $Z$ will now be right, giving up elevator. When the signal stops, the motor again returns the loop to neutral. While the illustrated action has concerned the elevator, it should be mentioned that it works as well for rudders or steering wheels.

### A PORTABLE GEIGER COUNTER

**DESIGNED** for uranium prospecting is this new portable, battery-operated Geiger counter. It features rugged construction, two sensitivity ranges, built-in loudspeaker, supersensitive lightweight probe, and a large count meter that can be read at arm's length. The unit measures 10” x 4½” x 5½”. Known as Model F-6, it is made by Technical Associates, 140 West Providence Avenue, Burbank, California and retails for $159.50.

### A NEW RECEIVER FOR RADIO CONTROL

**NAMED** the “Telecommander 951B,” this new subminiature R/C receiver utilizes a 3Q4 tube in a permeability tuned circuit. The built-in 6-pin plug accommodates all external connections. A 6-pin socket is supplied. This set uses the same circuit as Model 951A, but includes the P-100 relay. The set is ready to install and operate and is fully guaranteed by the manufacturer. It weighs 3 oz. Priced at $21.95, it is available from hobby dealers or from American Telasco Ltd., Huntington, N. Y., the American distributor for the manufacturer, ECC (Telecommander) Ltd.
By JOHN T. FRYE

CARL & JERRY

TWO DETECTORS

A T JERRY'S INVITATION, Carl had accompanied him to Carter's Feed Store on their way home from school. Not until they were inside the store did the long and rangy Carl learn that his chubby companion had a reason behind his invitation: he wanted help in carrying home some of his recording equipment that was at the store. Jerry thanked Mr. Carter profusely for something—Carl could not make out exactly for what—and the two boys started home. By some chance Carl found himself carrying the tape recorder that weighed a good thirty pounds, while Jerry padded along carrying a timer clock whose weight could be measured in ounces.

"You know," Carl ruminated aloud, "I used to wonder why you didn't take up with a good strong packhorse for a chum instead of me; but then I realized you would have to feed a horse!"

"Let's not be bitter!" Jerry said as he delicately steadied the clock on top of his flat-top crewcut with the right forefinger while, with his left hand on his hip, he minced along with the exaggerated prance of a baton twirler beside the trudging Carl. "You are a victim of what might be called muscle oblige, which is French for, 'Them as has muscles have gotta use 'em.'"

"That's so nice to know," Carl observed sarcastically. "Why did you have this recording junk down at the feedstore, anyway?"

"I wanted to make a recording of rats squealing, and that store has got the rats. I nailed a piece of meat to the floor just under the microphone and set this timer clock to cut the recorder on for fifteen minutes around midnight. I figured that by that time the rats would be having a real ball and I ought to get some dandy squealing."

"And why," Carl patiently pursued, "did you want a recording of rats squealing?"

"For the new party game tape I'm working out called Horror Story Sound Effects. On this tape will be several sound effect strips, each one representing the sounds that might have been heard in an important scene from a well-known horror story. At a party this tape will be played in the darkness and the guests will try to guess the title of the story represented by each sound effect. As an example, I rasp a mason's trowel across a brick a few times, rattle a chain, and give a muffled crazy laugh with the microphone shut up in my clothes closet. That represents the scene where Fortunato is being walled up in The Cask of Amontillado, by Poe."

"Hey, that's keen," Carl applauded.

"For The Pit and the Pendulum, I want to use the sound effect for the story's climax where the swinging crescent of sharp steel is just about to cut into the victim while the rats are squealing and fighting as they gnaw at his food-smeared bonds. Swishing a wood lath back and forth in front of the microphone takes care of the sound of the swinging knife, but nothing sounds like a rat squealing but a rat himself."

"Well," Carl observed as they reached the basement entrance of Jerry's laboratory, "We'll soon know what we've got on the tape."

In a few minutes the recorder was set up and the boys were listening intently to the faint rustling sounds coming from the speaker. At first, these were the only sounds heard, but after a few minutes the rats apparently became accustomed to the slight noise made by the running recorder and returned to their feast. As they did so, their fighting and squealing rose to a crescendo which was all Jerry could want. He reached over to switch off the recorder, but just as he did so a sound came from the speaker that stopped his hand in mid-air. It was a man's gruff voice, faint and muffled, but clearly understandable:

"You're late. How come?"
"The job took longer than I expected," a younger man's voice replied. "She took an awful lot of choking before she finally died and I had to drag her into the garage."

"No one saw or heard you, did they? Those Hollywood types get a lot of attention."

"I'm sure they didn't. Now I've got another problem. The boss says I've got to get rid of the body right away. How about your helping me dump it tomorrow night?"

"Okay. Do you think we ought to cut it up first to make identification impossible?"

"That won't be necessary. We can just throw the body on your flatbed truck and spread a canvas over it and then drive to that old abandoned stone quarry west of town. Once it's at the bottom of that, no one is ever going to find it."

"All right, I'll be over at your place with the truck about twelve-thirty tomorrow night; then we can—"

At this point the slapping of a freed end announced that the short tape had passed through the machine.

"Holy cow!" Carl breathed softly, "What a time to run out of tape! We've been listening to a couple of murderers."

"And the victim must have been a pretty Hollywood starlet," Jerry said, his staring round eyes matching his round face. "That microphone was hanging just below a window that opens out into an alley. Those killers must have been standing just outside that window."

"Well, what are we waiting on?" Carl demanded as he jumped to his feet. "Let's take this recording down to the police."

"Hold on," Jerry admonished. "Don't forget that since the police found we were behind that starling-searing business, we are not exactly the fair-haired boys with them. If we take this down there now, they will think we cooked the whole thing up ourselves."

"Surely you're not going to just sit there and let those crooks get away with choking that pretty little starlet to death, are you?" Carl demanded as he paced impatiently up and down the laboratory.

"No, but we've got to go at this calmly," Jerry announced as he assumed his favorite position on the couch with his head pillowed on his clasped hands. "After all, the crime has already been committed, so we can't stop it from happening. What we want to do is make sure the murderers are punished, right?"

"I guess so."

"We know they are going to try and dispose of the body tonight shortly after midnight; and we are both familiar with the quarry where this is to take place. All we have to do is let them try to carry out their plan and then arrange for the police to catch them right in the act."

"And just how, if I may be so bold as to ask, are we going to manage this little thing?"

"Suppose tonight we ride our bicycles out to the west edge of town and take along a couple of those two-meter walkie-talkies our radio club built up for Civilian Defense work. One of us can station himself at the stone quarry, and the other can stay close to that all-night drugstore at the edge of town. That means we'll only be about a mile apart and can communicate with each other easily. Then when you—I mean when the person at the quarry sees the truck turning into the quarry gate he can flash the word to the fellow at the drugstore. This fellow can then telephone the police to send a squad car to the stone quarry. After the squad car has arrived and caught the cold-blooded killers right in the act of disposing of the body, we can come forward and modestly admit we were the detectives—I mean the detectives—who engineered the whole clever affair. Any questions?"

"Just one," Carl said slowly as he glowered suspiciously down at the reclining figure of his chum. "Who stands watch at the quarry?"

"Why, Carl," Jerry said with round-eyed elaborate carelessness, "I hadn't even thought about that, but I'd better take the job. Of course, since I'm short-legged and a little inclined to be pleasingly plump, I couldn't run very fast if something went wrong, and the men would be sure to catch me and send me down to the bottom of the quarry too, but that's all the more reason why I wouldn't want my best friend to take any chances, even though he is the fastest sprinter our high school has ever had. After all—"

"All right, all right!" Carl interrupted. "I'll go to the quarry; but don't think you suckered me into it. It's just that I'd as soon be scared to death as talked..."
It's going to duck back under the bridge, and if you hear the truck pass over, get ready to make that phone call muy pronto. It's getting closer; now it's slowing down—his voice trailed off at this point, but he kept the transmit switch held down, and Jerry could distinctly hear the hollow rumble as a heavy vehicle passed over the wooden bridge.

"It's them," Carl said in a hoarse whisper with a reckless disregard for his English. "Make that call and ride out here as fast as your fat little legs will carry you. I may need help."

Waiting to hear no more, Jerry tossed the transceiver into the basket of his bicycle and slipped into the phone booth of the drugstore. He dialed the already-memorized police number and tucked his chin down so as to make his voice come from his chest, rendering it—he hoped—deeper and more mature. As soon as a man's voice answered, he carefully intoned: "Listen carefully. Two murderers are disposing of the body of a victim at this very moment at the old stone quarry a mile west of town. If you send a squad car immediately, you can catch them in the act."

Then, without waiting for an answer, he quietly hung up the receiver and slid out of the drugstore. Now, ordinarily Jerry had an almost pathological aversion to exercise in any form, but let it be said to his credit that this once he did not spare the horse power as he pedaled swiftly down the road toward his friend in danger. The night was dark, and he kept his

(Continued on page 122)

**Aluminum Jaws Protect Work in Vise**

Small metal brackets and other parts may get nicked and scratched when clamped in a vise. Avoid such damage by borrowing a trick from professional machinists and provide a set of smooth-face, soft metal jaws for the vise. You can make them in a few minutes, using the new "Do-It-Yourself" aluminum available at hardware stores. Get an extruded angle 1" x 1" x 1/8". Cut and bend it as shown in the sketch. Make up two pieces and slip them over the vise as shown in the photograph. Small and relatively delicate parts may now be held in the vise without fear of damage.

L. E. G.
ANYONE who has ever yearned for a piece of electronic equipment that is more technically advanced than, say, an ordinary lamp cord socket, knows that such items as switches, resistors, relays, and often tubes cannot be found at local hardware stores or at the neighborhood service shop. The source for parts and components—such as you would need to build many of the devices described in this magazine—is generally a large supplier who sells to the amateur and professional technician alike. This supplier is known in the industry as a “parts jobber.” The link between manufacturers and the public, a jobber may carry everything from a $1000 sound system to round-head screws.

Knowing what the jobber has means knowing what you can get. For this reason, the jobber’s catalogue is of tremendous service to anyone seriously contemplating the purchase of parts, whether it be to stock his own repair shop or to build a device for his own amusement.

A brief run-down on what is contained in a typical catalogue, published by one of the larger jobbers, will give you an idea of how you can benefit by owning and consulting it.

The catalogue contains many pages that list parts, components, tools, instruments, kits, and even technical books available for purchase. Descriptions of these items include both general and technical specifications as well as illustrations. In addition, many include recommendations for specific use and special applications. Simply thumbing through the catalogue is an education, since it provides you with technical and commercial insight into these items, gives you a broad picture of the parts field, and helps you plan toward your own needs.

In addition, the catalogue contains mail order instructions and provides forms for convenient ordering through the mail. This is of particular value to those living in rural areas which may be inconveniently located when it comes to direct, over-the-counter purchase of parts. The catalogue also describes the special services that a jobber will provide on request, such as advice on particular problems. Finally, the catalogue contains two indexes—one on the products and one on the manufacturers.

These catalogues are revised and reissued every year. Getting them successively enables you to compare new models with previous models, check up on changes and improvements in various parts, compare prices and other trends that affect the radio-TV industry as a whole and that, to an extent, reflect the overall state of the nation’s economy. Moreover, once you are on a jobber’s mailing list to receive his catalogue, the chances are you will receive all subsequent “mailers” he may send out—many of which contain valuable up-to-the-minute information.

Some jobbers are specialists in one field of electronics. Their catalogues, in addition to all the material just described, generally include additional information on the subjects related to the special parts they sell. This is especially true of audio and hi-fi equipment houses which usually furnish a brief “course” on hi-fi in such catalogues.

Perhaps the sweetest thing about it is that these catalogues are usually free. They are mailed, with no questions asked, to anyone requesting them. For a listing of parts jobbers who offer such catalogues, may we suggest consulting the various advertisements in this and other issues of Popular Electronics.
This printed circuit section represents approximately 50 per-cent of the complete chassis and is produced by automatic machines. Result is lower cost TV set.

Large drawing of circuit layout is photographed with huge camera that reduces it to actual size negative. "Picture" is then printed on aluminized plastic sheet.

Printed circuits are inspected and retouched wherever needed. Large boards are then cut and punched with holes to receive parts and wiring.
REVOLUTIONARY high speed robot machines that automatically assemble printed circuits for almost half of a television chassis in a matter of seconds are now used by the Admiral Corporation of Chicago. Admiral predicts that the highly mechanized TV production line eventually will have the same effect on the electronics industry that Henry Ford's moving chassis assembly line methods had on the automotive industry over 40 years ago.

The printed "Robot" chassis assembled by automation has made possible for the first time a TV set utilizing a giant aluminized 21-inch, 90-degree tube with a 270-square inch picture and a full 18-tube vertical chassis for only $149.95. End

Printed circuit boards receive electrical components from automatic assembly machine shown below. Affectionately named "Robot I," equipment is 30 feet long.

When all components have been mounted on printed circuit board, the underside is dipped in molten lead solder as in photo at right. This connects crimped ends of leads to copper pattern of printed circuit.

Final assembly on printed circuit layout is done by hand. Increased output has enabled firm to hire additional employees.

February, 1955
THE WORLD AT A TWIRL
By K. R. BOORD

ANY short-wave listeners (SWL's) believe in the old saying, "The proof of the pudding is in the eating!" Hence, they collect verifications. Why? Some SWL's have a desire to feel that they have a small, active part in the general business of short-wave broadcasting. Some listeners try for verifications from different countries regardless of distance. To verify all continents (VAC) is a common goal. Others attempt to verify all zones which is quite an achievement! Still others go after a high percentage of extremely distant stations. And some DX-ers try to verify only low-powered transmitters.

Sending reception reports to stations heard and obtaining verification (QSL) cards from them to confirm their reception are considered by many SWL's as the most interesting parts of the DX hobby.

Some stations confirm by QSL card, others by QSL letter. A few organizations such as the British Broadcasting Corporation (BBC), which has its own monitoring service throughout the world, do not verify at all.

In reporting to short-wave stations, it is well to remember that the broadcasters want to know how well their transmissions are received in your locality, under what conditions, and what effect they have on you—the listener. Therefore, make every report complete, clear, yet concise. Use a personal, friendly touch! Cover at least 15 minutes of any broadcast—preferably more—for each frequency you wish verified. Reception details over a period of several days—that is, five or six 15 minute periods on different days rather than an hour or so at one time—are of greatest value to a broadcaster because this proves whether or not it was "freak" reception.

* For further detailed tips, consult the International Short-Wave Department of RADIO & TELEVISION NEWS—K. R. B.

(NOTE: Unless otherwise stated, all time herein is expressed in Greenwich Mean Time—GMT—subtract 6 hours for EST, 7 for CST, 8 for MST, 9 for PST. This is on a 24-hour clock basis in which midnight is 2400-0000, 1 a.m. is 0100, 10 a.m. is 1000, and noon is 1200; for example; instead of starting again at 1 p.m., as the 12-hour system does, the 24-hour system continues to increase the number of each hour until 2359 (11:59 p.m.) is reached, thus 1 p.m. is 1300, 5 p.m. is 1700, 10 p.m. is 2200.)

With regards to the terms "wavelength" and "frequency", wavelength is measured in meters. For every wavelength there is a corresponding frequency which is the number of complete waves, or cycles, sent out by a transmitter every second. A "kilocycle" is 1000 cycles, a "megacycle" is 1,000,000 cycles. As a SWL you will be concerned primarily with megacycles (mc.). To convert megacycles to meters (m.) divide the frequency in megacycles into 300. For example, 6 mc. divided into 300 gives you 0.00 m. (wavelength) and, conversely, 59 m. (wavelength) divided into 300 gives you 0.06 mc. (frequency).

Give the date and report in Greenwich Mean Time (GMT) on a 24-hour clock basis (see footnote on use of GMT). List the frequency on which the station was heard, give the signal strength, state the interference (QRM and/or CWQRM—that is, code QRM)—from other stations and the source if you know it, QRM (static, giving the type), QSB (fading, if any), and give local weather conditions at the time.

This reporting system is generally used for signal strength and intelligibility; Signal Strength—S1—barely audible; S2—very weak; S3—weak; S4—fair; S5—fairly good; S6—good; S7—moderately strong; S8—strong; S9—very strong. Intelligibility (or Readability)—R1—unreadable; R2—poor; R3—fair; R4—good; R5—excellent.

You may wish to describe briefly the equipment used to hear the signal—whether it was "home" or communications receiver, the type of circuit, the number of tubes, trade name and model number, and other equipment used such as a preselector, antenna, and ground system. Another good idea followed by many SWL's is to add a brief comparative reception report on some other station in the area of the broadcaster to which you are reporting.

Uppermost, give data that will be of use to the station and its engineers, which will "prove" when checked against the station's log that you actually heard the station. Tell whether you hear the station regularly or if this was a "one-time" catch. Then definitely but politely (never demandingly), ask that the accuracy of your report be checked, and if found correct, that it be confirmed by a "verification of reception." Some stations which are "long" on "acknowledging" reports are extremely "short" on "verifying" them.

1000 kilocycles or 1000,000 cycles as a SWL you will be concerned primarily with megacycles (mc.). To convert megacycles to meters (m.) divide the frequency in megacycles into 300. For example, 6 mc. divided into 300 gives you 0.00 m. (wavelength) and, conversely, 59 m. (wavelength) divided into 300 gives you 0.06 mc. (frequency).
Write legibly (use a typewriter if you have one) in the "working" language of the station if you can do a good job. Otherwise, use English which is rapidly becoming the universal language. If possible, reports to Latin American countries should be in Spanish.

Never "fake" a report!
You can get QRA's (addresses) of stations from World Radio Handbook, radio magazines, club bulletins, through correspondence, by listening to DX sessions from radio stations which carry them, and over-the-air. Many stations ask for reports and give their QRA's during regular transmissions. The 1955 edition of World Radio Handbook should now be available for $2, postpaid, directly from Gilfer Associates, Box 239, Grand Central Station, New York 17, New York. Often, you can "make up" a satisfactory QRA from the call letters, name of station, slogan or motto, city, state or province (if any), country, and continent. I have had good results in "making up" station QRA's in this fashion —but only as a last resort.
Many stations which are government-operated will verify without return postage being sent to them. It is the best policy, however, to send along an International Reply Coupon (IRC) unless you are certain the station does not require one. An IRC costs 13 cents at your post office and is "good" for one unit of return first-class surface postage from any country which is a member of the Universal Postal Union. Your post office stamp clerk can tell you what countries do or do not accept IRC's. Do not send U.S. stamps.
Write the station's address and your return address carefully (better print these) on both your report and the envelope. Usually, it's a good idea to send the letter in care of the Chief Engineer of the station. Be sure to use the correct postage which you can learn from your post office stamp clerk.
Next month I'll have some more information for you on this matter of collecting verifications—such as giving the station ample time to reply before you send a "tracer" or second report. Now, for this month's tips (GMT).

For Beginners

Australia—For VLI6, 6.090, Sydney, N.S.W., try around 1100 when should have English news. West Coast listeners will find 11.810 has replaced 15.200 for the 0155-0415 session beamed to that area by Radio Australia.

Azores—Ponta Delgada, 4.865, now runs 2000-2100, 2115-0000; all-Portuguese.

Belgium—Try 6.085 now for ORU in English to North America 0100-0300 close-down; is relayed by OTC, 9.655, Leopoldville, Belgian Congo.

Bulgaria—Radio Sofia lists English for North America now as 0030-0130 (Sunday 0100-0130) over 6.070, 9.700, and 0400-0430 over 6.070 only; English for Europe (heard in the U.S.) at 2030-2100, 2145-2215 on 7.271A.

Chile—Santiago has been noted with its Spanish sessions on measured 12.152 around 0300 and later.

Czechoslovakia—Prague now uses 7.255-AV for English to North America 0030-0100.

England—B.B.C. is scheduled to North America (Canada, USA) 1140-1300, 15.360 (Tuesday only); 1145-1300, 11.930 (Tuesday only); 1500-1715, 15.360; 1800-1915, 11.930 (Monday to Friday); 1915-2045, 9.825 (Monday to Friday); 2015-2215, 9.825; 2115-2215, 6.110. (Continued on page 120)
This photoelectric butler can be built at home for fifteen or twenty dollars and will announce visitors automatically.

By
LOUIS E. GARNER, JR.

Build this Photocell

A PHOTOCELL annunciator is used in a doorway or other opening to signal whenever an individual enters or leaves. As a person passes through the doorway, his body interrupts a beam of light. This, in turn, actuates a relay, closing an electrical circuit and sounding a bell, buzzer, or chimes.

Comparatively few parts are needed for the assembly of the photocell annunciator. All the components are standard and should be available at your local electronic parts supply house.

You will have little or no difficulty in duplicating the assembly shown. Not only should you enjoy building the device, but you may be able to pick up spare time work installing similar units in offices and stores.

Construction Hints

The complete instrument consists of three separate assemblies—the photocell control box containing the phototube and its associated electronic circuitry, the light source, and a signaling device. You need only assemble the control box and the light source.

Only two tubes are employed in the control box circuit, a type 921 phototube and a
Annunciator

Annunciator type 2D21 thyatron. Only one adjustment is provided, and this is non-critical.

Assembling the Control Box: Refer to the schematic and pictorial wiring diagrams and the above and below chassis photos. Since layout is not critical, you need not follow exactly the arrangement shown. However, you will find it advisable to keep the circuit as compact as is practicable.

The small aluminum chassis may be bent from a piece of scrap sheet metal or cut down from a larger commercial chassis. Use small machine screws and hex nuts for mounting the parts. In order to conserve space in the model, the chassis was made quite narrow and one lip of the filament transformer was bent down and fastened to the side of the chassis.

Use the schematic and pictorial wiring diagrams as guides when wiring your chassis. Be sure to observe the polarity of the connections to the electrolytic capacitor, \( C_p \).

After the chassis wiring has been completed and checked for accuracy, the tubes may be installed and the unit mounted in its case. A standard 3" x 4" x 5" "Minibox" is used for the housing.

The relay connections are brought out to a 5-position screw-type terminal strip, mounted on the case with small "L" brackets. Leads from the filament transformer, \( T_i \), are also brought to this strip, so that 6.3 volts will be easily available for operating the light source and the signaling device.

If the instrument is to be used only at a distance of six to eight feet from the light source, no special lens is required in front of the phototube. Simply punch a 1" diameter hole at the proper point in the case to permit light to strike the phototube easily.

On the other hand, if the separation between the light source and the control box is as much as twelve to fifteen feet, install a small "bull's-eye" lens over the opening in the case to concentrate light on the phototube. The lens can be obtained from an old flashlight and may be attached to the case with a small metal ring and sheet metal screws.

Assembling the Light Source: Continuous duty commercial light sources are available. However, these are fairly expensive. You can assemble a light source suitable for home and limited commercial use as shown.

February, 1955

An installation partially completed. The wire from the control box to the light source must still be run up over the door.

This method of installation requires less wire between control box and light source, yet covers the entrance more fully.
Two methods of connecting the signaling device to the control box: (A) for 6.3 v.a.c. operation, (B) using a separate power source.

The schematic wiring diagram for the phototube control box shows that the circuit is relatively simple. See the parts list below.

Using a hacksaw, cut the front reflector section from an inexpensive flashlight. Solder the flashlight’s rear cap to the back of the cut-off reflector section to make a closed housing. Replace the flashlight bulb with one of similar construction, but having a 6-volt filament.

A small aluminum bracket is made up for the assembly. This mounting bracket should be designed so the light source may be moved slightly in either direction, to permit centering the light beam on the phototube after installation.

**Installation**

In general, the light source will be mounted on one side of a doorway and the phototube control box assembly will be mounted on the opposite side. A flat metal strip may be used as a mounting bracket for the control box.

The mounting height is not too critical, and, for most purposes, a height of from 18 to 30 inches is satisfactory. If the assembly is mounted too low, however, a person may easily step over the beam of light and enter the door unannounced. If mounted too high, a child may miss the light beam, or a short person may duck under it.

Use a rule to measure the mounting height of both the control box and the light source, to insure that the light beam will be approximately centered on the phototube.

The lead between the control box and the light source can be run around the door frame and fastened in place with insulated staples to complete the installation.
Examine these photos carefully for hints on placing parts and arranging wiring in the control box. Most major components are shown in the view at left. Above is the other side of the chassis, with most of the small parts. The completed control box is at the right.

Pictorial wiring diagram of the annunciator. Note particularly polarities of V1 and C2.
If the location at which the unit is installed has a high average light level, a small hood should be placed over the control box to prevent the operation of the instrument on extraneous light.

In operation, the relay remains open as long as light strikes the phototube. When the light is interrupted by a person breaking the light beam, the relay closes, supplying power to the signaling device.

As long as the power requirement of the bell, chimes, or other signaling device used is not too high, the circuit arrangement shown in diagram (A) may be employed. Power for the signaling device is obtained from the filament transformer.

If preferred, an external power source, such as batteries or a "bell transformer," may be used. In this case, the relay is used as a simple switch and the connections are as shown in diagram (B). A s.p.s.t. push-button switch may be connected in parallel with the relay contacts, if desired, and the bell or chimes may then be operated either by pushing a button or by breaking the beam of light. The connections to this switch are shown dotted in diagram (B).

You may encounter installations where it is desirable to have both the control box and the light source on the same side of the door frame. In such a case, the arrangement shown on page 75 may be employed. The two units are mounted at a slight angle and a small flat mirror mounted across from them in such a position that the light beam is reflected back to the phototube.

This scheme offers some advantages over the "straight across" installation. If the two units are mounted a reasonable distance apart vertically, the light beam will enclose a fair area of the doorway, reducing the possibility of someone getting through the door without breaking the beam.

Adjustment: There is only one adjustment in the phototube circuit, $R_s$. This control is adjusted after installation. The setting is not critical.

Simply set the control about midway in its rotation. Next, passing your hand between the control box and the light source to break the beam, adjust $R_s$ for best operation.

Applications

The photocell annunciator may be used in a professional office to announce the entry of a client. It may be used at the entrance to a "one-man" store or shop to announce the entry of customers.

Another commercial application is to count the number of persons entering or leaving a specific area. This may be accomplished by connecting an electromagnetic counter (such as the Mercury Type MEA-N5-6A) in place of the bell or chimes.

In addition to its commercial uses, the instrument may be used in the home. For example, it may be used at the entry to a recreation room to flash lights or to start a record player. For continuous action, the standard relay used in the model and specified in the parts list should be replaced by a "latching" type relay.

The assembly may be used as an "electric eye" burglar alarm. An intruder who breaks the beam of light will sound an alarm. A latching type relay should be used so the alarm bell will sound continuously once energized.

Equipment can be turned off when the light beam is broken, by using terminals 1 and 2 of the output terminal strip.

How It Works

A detailed explanation of the functioning of the control box circuit will now be given. To follow it, refer to the diagram.
With light on the phototube, $V_i$, during one half of each a.c. cycle, when the upper side of the line is positive, electrons will flow from the lower side of the line, through $R_s$, part of $R_a$, $V_i$, $R_n$, and $R_s$, to the upper side of the line. At the same time, $C_i$ will be charged, with the terminal nearest to the anode of $V_i$ and the grid of $V_s$ being negative. During the other half of the cycle, $C_i$ will discharge through $R_n$, but since the time constant, $RC$, of this circuit is almost .01 second, $C_i$ will not discharge completely. The voltage across $C_i$ will act as negative grid bias for $V_s$. During the same half of each a.c. cycle, the a.c. voltage, applied through the coil of $R_L$, will make the plate of $V_s$ negative, so no plate current will flow.

During the other half of each cycle, when the lower side of the line is positive, electrons will flow from the upper side of the a.c. line through $R_s$, $R_a$, and $R_s$, to the other side of the line. The voltage across $R_s$ will be applied almost instantaneously through $C_s$ to $R_s$. The voltage across $R_a$ will be opposite in polarity to that across $C_s$, reducing the negative bias on $V_s$. At the same time, voltage applied to the plate circuit of $V_s$ through the coil of $R_L$ will make the plate of $V_s$ positive with respect to the cathode. However, $R_a$ normally will be adjusted so that the negative bias produced by electron flow through the phototube will be sufficient to keep $V_s$ cut off during both halves of the cycle.

Now, if the light is removed from $V_i$, $C_i$ will discharge, removing the negative bias from $V_s$. Electrons will flow through $V_s$ and through the coil of $R_L$ on one half of each cycle, energizing $R_L$ and connecting terminals 1 and 3 of the output terminal strip.

---

**Simple Filter Blocks Interference to TV**

INTERFERENCE to television receivers from such sources as nearby transmitters, diathermy machines, industrial equipment, etc. can be reduced with the aid of a simple and inexpensive high-pass filter designed by American Electronics Company, N. Y. 59, N. Y.

Since these noises occur below 45 megacycles, the filter is designed to prevent passage of signals below that frequency but to pass readily signals above that frequency. All of the television channels are on frequencies above 45 megacycles, the lowest one, Channel 2, being from 54 to 60 megacycles.

Named the “Ameco High Pass Filter, Model HP-45” the device can be purchased, or built from parts that are easily obtained from the manufacturer or elsewhere. The schematic and parts list are shown here. The parts are so few and light in weight that merely soldering them through the eyelets on the phenolic board will hold them in place.

To use, bend down the metal ground strap so that it is perpendicular to the phenolic mounting board. Then connect it directly to the chassis of the TV set either by soldering or by a self-tapping screw. Next, break the twin lead-in wire from the antenna into the set. Make this break as close to the TV chassis as possible. Connect one pair of filter leads to the antenna side of the lead-ins. Connect the other pair of filter leads to the other side of the lead-ins going into the set. END
R/C CARTS SPEED LOADING IN WAREHOUSE

ORDER FILLING time is being reduced substantially by use of remote radio-controlled tow trucks at the wholesale grocery warehouse of Super Valu Stores, Inc., in Minneapolis, Minnesota.

Order fillers carry on their belts a ten ounce radio transmitter no larger than a tobacco tin. Signals from the transmitter activate a receiver in the truck and electric power from batteries is then supplied to the truck's drive motor. Each truck pulls a train of merchandise carts.

Called “Radox,” the unit is made by the Barret-Cravens Company of Chicago. Each transmitter has a different operating frequency so that it will activate only the truck to which it belongs. The transmitter’s range is about 50 feet.

Previously, an order filler loaded the cart, walked forward to the tow truck, mounted it, drove to the next rack, dismounted, walked back, loaded up, and then repeated the entire operation. With the new radio-control unit, he simply loads and presses a button on the transmitter hooked to his belt. The truck will then move forward, to the left, or to the right, as required. . . . HENRY C. SUTER

RADIO AND TV PIONEERS MEET

RADIO and television scientists, members of the “De Forest Pioneers,” gathered recently at historic Fraunces Tavern in New York City to honor Dr. Lee De Forest (left) for his development of the radio vacuum tube. Dr. De Forest’s invention, in 1905, of the triode tube brought radio out of its infancy. His introduction of the third element (control grid) into the vacuum tube made possible for the first time the use of the tube as an amplifier. Oscillators and other applications followed.

With Dr. De Forest is Dr. Allen B. Du Mont who pioneered the development of the cathode-ray picture tube and its use in television. Dr. Du Mont, who worked with Dr. De Forest 25 years ago, surprised the radio inventor by showing him one of the first audion tubes made by Dr. De Forest, a tube which was thought to have been lost many years ago.

80
HOT as the new veeDXer

THE ALL CHANNEL (vhf) ANTENNA THAT BEATS 'EM ALL

This revolutionary antenna, an 18 element composite yagi, is the most powerful of any all channel VHF antenna commercially produced. NOW you can receive picture perfect reception on all VHF channels comparable to a single channel 10 element yagi. When all others have failed, install a super power VEE-D-Xer for the finest reception.

HIGHEST GAIN

VEE-D-X

ANTENNA ROTATOR

Team together the new VEE-D-X Rotator with the new VEE-D-Xer antenna for matchless reception of ALL VHF channels on the air, in all directions NOW and in the future.

WRITE TODAY for information on the VEE-D-Xer and the new VEE-D-X Rotator.

LaPointe ELECTRONICS INC.
ROCKVILLE, CONN.

Please send me specification sheets on:

☐ Vee-D-Xer  ☐ Rotator

NAME

ADDRESS

CITY  ZONE  STATE

February, 1955
Automatic switching and speed control provided by electronic brain will reduce freight losses.

The first full-time application of automatic switching and car retarding in any railroad freight classification yard has been demonstrated by the Union Pacific Railroad at its retarder yard in North Platte, Nebraska.

Called the "electronic yardmaster," the system is expected virtually to eliminate impact damage to boxcar lading resulting from human error. Last year, American railroads paid over $110,000,000 in freight loss and damage claims, much of which resulted from existing practices in train make-up yards. The new system is expected to reduce substantially this figure, with corresponding savings and better service resulting for industry and the public.

A long string of freight cars is pushed over the hump of the huge classification yard. As a car is uncoupled and starts its descent along the incline to one of the many classification tracks in the yard, its rolling characteristics are electrically determined and transmitted to an electronic brain. The distance the car has to roll to couple with another car standing on the classification track is also computed and fed to the brain by an electronic device similar to the range-
finding equipment used on big guns during World War II.

The entrance speed of the car into the retainer yard, and its speed through the retarding zone, are measured by a radar speed meter, similar to the mechanism used by police departments to apprehend speeding motorists.

Furnished with this information, the system determines at what speed the rolling car must be retarded and released to reach its coupling point at a safe switching speed. The system then automatically controls the car’s speed by means of electro-pneumatic braking devices located on the tracks.

As the classification tracks fill up with coupled cars, the system “remembers” and calculates the shortened distance each newly arrived car must travel. The system’s “memory” can retain instructions for as many as 120 cars.

The control tower operator simply pushes buttons to select the proper classification tracks for the cars prior to their entrance into the yard.

The system was developed jointly by the railroad and Reeves Instrument Corp., a subsidiary of Claude Neon, Inc., N. Y. End

February, 1955
Build YOUR OWN
HEATHKITS
INTERESTING—EDUCATIONAL

Heathkits are fun to build with the simplified easy-to-follow Construction Manual furnished with every kit. Only basic tools are required, such as soldering iron, long-nosed pliers, diagonal cutting pliers, and screwdriver. All metal parts are furnished including tubes. Knowledge of electronics, circuits, etc., not required to successfully build Heathkits.

New PRINTED CIRCUIT VACUUM TUBE VOLTMETER KIT

The VTVM is the standard basic voltage measuring instrument for radio and TV servicemen, engineers, laboratory technicians, experimenters, and hobbyists. Because of its extremely high input resistance (11 megohms) the loading effect on the circuit being measured is virtually negligible. The entire instrument is easy to build from a complete kit, with a detailed step-by-step Construction Manual. Featured in this instrument is an easy-to-wire foolproof printed circuit board which cuts assembly time in half.

CIRCUIT AND RANGES: Full wave AC input rectifier permits 7 peak-to-peak voltage ranges with upper limits of 4000 volts peak-to-peak. Just the ticket for you TV servicemen. Seven voltage ranges, 1.5, 5, 15, 50, 150, and 1500 volts DC and AC RMS. Pk-to-pk ranges 4, 14, 40, 140, 400, 1400, and 4000 volts. Ohmmeter ranges X1, X10, X100, X1000, X10K, X100K, X1 meg. Additional features are a db scale, center scale zero position, and a polarity reversal switch.

IMPORTANT DESIGN FEATURES: Transformer operated—1% precision resistors—6AL5 and 12AU7 tubes—selenium power rectifier—individual AC and DC calibrations smoother improved zero adjust control action—new panel design and color—new placement of pilot light—new positive center battery mounting—new knobs—test leads included. Easily the best buy in kit instruments.

Heathkit HANDITESTER KIT

The Heathkit Model M-1 Handitester readily fulfills all requirements for a compact, portable volt-ohm-milliammeter. Its small size permits the instrument to be tucked into your coat pocket, tool box or glove compartment of your car. Always the "handitester" for those simple repair jobs. Packed with every desirable feature required in an instrument of this type. AC or DC voltage ranges, full scale 10, 30, 100, 300, and 1200 volts. Ohmmeter ranges 0-300 ohms and 0-3000 ohms; DC milliammeter ranges 6-10 milliamperes and 0-100 milliamperes. Uses 400 microampere meter—1% precision resistors—housing aid type ohms adjust control—high quality Bradley rectifier. Test leads are included.

HEATH COMPANY
BENTON HARBOR 10, MICHIGAN
HEATHKIT

NEW PRINTED CIRCUIT

HEATHKIT 3" OSCILLOSCOPE KIT

$29.50 Shpg. Wt. 15 lbs.

Model OL-1

USE: This brand new Utility Scope was designed especially for servicemen and radio amateurs, and is adaptable for use in all general Scope applications. Permits for modulation monitoring, etc. Use it to tackle alignment or adjustment problems. Equally valuable in ham shack or for outside servicing.

DESCRIPTION: Front panel controls of the Model OL-1 are "beech tested" for ease of operation and convenience. Sharp focusing 3" CRT. Printed circuit for ease of assembly and constant performance. Assembly time cut in half! High quality electronic components used. Sensitive hor. and vert. amplifiers with broad freq. response; cathode follower for isolation. Push-pull hor. and vert. output to deflection plates. 10...60 cycle, or ext. sync. Sweep freq. range 10...100,000 cycles. Direct connection to deflection plates. Provision for 2 axis input. Uses 3GP1 CRT, 4-12AX7 hor. and vert. amplifiers, 1-XA7 sweep gen., 1-XA4 LV rect., and 1-1V2 HY rect. The Heathkit Model OL-1 is a real standout value at only $39.50, and is another example of the famous Heathkit combination; quality plus economy.

Heathkit SIGNAL GENERATOR KIT

USE: This instrument is "serviceman engineered" to fill the requirement for a reliable basic service instrument at moderate cost. Frequency coverage extends in five bands from 100 Kc to 110 Mc on fundamentals, and dual is calibrated to 220 Mc for harmonics. Pre-wound and pre-aligned coils make calibration unnecessary for service applications.

DESCRIPTION: The Heathkit Model SG-8 Signal Generator provides a stable modulated or unmodulated RF output of at least 100,000 microvolts which can be controlled by both a continuously variable and a fixed step attenuator. Internal modulation is at 400 cycles, or can be externally modulated. AF output of 2-3 volts is also available for audio testing. Uses dual purpose 12AX7 as Colpitts RF oscillator and cathode follower for stable, isolated, low impedance output, and type 6C4 tube for 400 cycle oscillator. Operation of the SG-8 is well within the frequency limits normally required for service work. Modern styling features high definition white letters on charcoal gray panel with re-designed control knobs. Modern professional appearance and Heathkit engineering know-how combine to place this instrument in the "best buy" category. Only $19.50 complete.

Heathkit IMPEDANCE METER KIT

MODEL AM-1

$14.50 Shpg. Wt. 2 lbs.

The Model AM-1 Antenna Impedance Meter makes an ideal companion unit for the GD-1B Grid Dip Meter or a valuable instrument in its own right. Perfect for checking antenna and receiver impedance and matching for optimum system operation. Uses on transmission lines, half-wave, folded dipole, or beam antennas. Will double as monitor or relative field strength meter. Covers freq. range of 0...150 Mc and impedance range of 0...600 ohms. Uses 106 microammeter and special calibrated potentiometer. A real buy at only $14.50 complete.

Heathkit GRID DIP METER KIT

MODEL GD-1B

$19.50 Shpg. Wt. 4 lbs.

Amateurs and servicemen have proven the value of this grid dip meter many times over. Indispensable for locating parasitics, neutralizing, and aligning filters and traps in TV or Radio and for interference problems. The Model GD-1B covers from 2 Mc to 250 Mc with 5 pre-wound coils. Featuring a sensitive 500 microammeter and phasemeter, the GD-1B uses a 6AF4 or 6T4 tube. An essential tool for the ham or serviceman.

ACCESSORIES: Low freq. coverage to 355 KC with two extra coils and calibration curve. Set No. 341A for GD-1B and set No. 311 for GD-1A. Shipping weight 1 lb. Only $12.95.

February, 1955
Here is the new Heathkit VFO you have been waiting for. The perfect companion to the Heathkit Model AT-1 Transmitter. It has sufficient output to drive any multi-stage transmitter of modern design. A terrific combination of outstanding features at a low kit price. Good mechanical and electrical design insures operating stability. Cables are wound on heavy duty ceramic forms, using Litz or double cellulose wire coated with polysarcene cement. Variable capacitor is of differential type construction, especially designed for maximum bandspread and features ceramic insulation and double bearings. This kit is furnished with a carefully precalibrated dial which provides smooth tuning over two feet of calibrated dial scale. Smooth acting vernier reduction drive insures easy tuning and zero beating. Power requirements 6.3 volts AC at 45 amperes and 250 volts DC at 15 mills. Just plug it into the power receptacle provided on the rear of the AT-1 Transmitter Kit. The VFO coaxial output cable terminates in plastic plug to fit standard 1/2" crystal holder. Construction is simple and wiring is easy.

**Heathkit AMATEUR TRANSMITTER KIT**

**MODEL AT-1**

*Ship Wt.* 16 lbs.

Here is a major Heathkit addition to the Ham radio field, the AT-1 Transmitter Kit, incorporating many desirable design features at the lowest possible dollar-per-watts price. Panel mounted crystal socket, stand-by switch, key click filter, A. C. line filtering, good shielding, etc. VFO or crystal excitation—up to 35 watts input. Built-in power supply provides 425 volts at 100 MA. Amazingly low kit price includes all circuit components, tubes, cabinet, punched chassis, and detailed step-by-step construction manual.

**Heathkit COMMUNICATIONS RECEIVER KIT**

**MODEL AR-2**

*Ship Wt.* 12 lbs.

Here is an outstanding amplifier value. This economically priced amplifier is capable of performance usually associated only with far more expensive units. Can be nicely used as the heart of an inexpensive high quality home music system. Features inputs for tuner and phono (Model A-7C accommodates a microphone by using an additional preamplifier stage). Separate bass and treble boost and cut tone controls for just the degree of tonal balance you want. The entire kit can be built in a few pleasant hours for years of enjoyment.


Model A-7C incorporates a preamplifier stage with special compensated network to provide necessary gain for operation with variable reluctance cartridge or microphone. $37.50

HEATH COMPANY • BENTON HARBOR, MICH.

MAIL YOUR ORDER TODAY TO THE
HEATH COMPANY
BENTON HARBOR 10,
MICHIGAN

ORDER BLANK

From

SHIP VIA

□ Parcel Post
□ Express
□ Freight
□ Best Way

QUANTITY

ITEM

MODEL NO.

PRICE

(PLEASE PRINT)

On Express orders do not include transportation charges—
they will be collected by the express agency at time of delivery.

On Parcel Post orders

enclose postage for weight shown.

ENCLOSED FUND ( )

check ( ) money order for

Please ship C.O.D. ( ) postage enclosed for

pounds.

ORDERS FROM CANADA and APOs

must include full remittance.

February, 1955
RETURN OF THE

By CHARLES L. MEISTROFF, W4TFA

An amateur who left the field some time ago tells of the early days and of his recent return to hamming.

YEAH, the old bug bit again, and this time it did a right good job; got me unexpectedly and really stuck. I doubt if even penicillin would have been of any use. Being away from ham radio for over twenty-six years and then coming back was really an experience. I had nothing to do that cool September afternoon except to enjoy the beginning of Indian summer and get some of that fresh ozone . . . to escape from the four walls of that nice hotel room.

I had just turned the corner near the hotel . . . the newsstand seemed to spring out of the ground and wave a profusion of multi-colored magazines at me . . . what I saw gave me a jolt . . . I mean a kw. jolt. "CQ," "QST," RADIO & TELEVISION News, good gosh, were they still being published? Where have I been for all these past years? Then it happened as fast as lightning; I don't even remember doing it . . . out came some change, those radio gazettes were under my arm.

That night before turning in early, so I thought, I would give these old friends a once over. What a revelation that was! Man alive . . . what a new world! I thought I was reading something from Mars; ARC-5's, RG8-U, BC-223's, GP-7, radar, publications, p.a. jammers; the names of some of the tubes sounded and ran like chemical formulas, some of the tubes looked like spark-plugs for a space ship. I was lost. It was like having a Model T Ford twenty-five years ago and not having a car in the meantime, then going out to buy one of the modern-day streamliners. One would think you had to have a course in jet-training to get your driver's license. I know now how Rip van Winkle felt after that twenty-year sleep in the Catskills. And what had happened to two hundred meters? I was really confused. I was in a new world, old faces done over and more attractive with a new look and better working qualities. Everything seemed to be loaded with electronic vitamins. I almost expected the rosin core solder to have sulfa in it. Nothing fly-by-night, according to the ads—one had a very good choice of anything—better than the old days when you either had to make your own or else!

Gosh, I had quit dabbling in ham radio, or what might have been called that, about 1922. World War I put a temporary stop altogether to tinkering which began about 1912; much had been discovered, enlightenment followed experimentation and brought to use in the intervening years a new and shiny aspect of the old ether-wave theory, and to its primitive equipment, a brand new brilliance that was a Buck Rogers glow!

The war surplus in the aftermath of World War I was full of good bargains, if you could get your hands on them. The Western Electric VT 1 and VT 2, the J and E tubes of those early days were prized detector and amplifier or transmitter tubes. One article that I still remember was the old Crocker-Wheeler wind-driven motor generator, looking like a five-inch shell and fastened under the wings of the flying crates of those days. It was driven by an eight- or ten-inch propeller and gave three sets of voltages. I think one was 300 volts for plate, another, 6-12 for filaments, and another, 25 volts grid bias. A two-element tube acted as ballast tube or automatic rheostat, as it was called then, to keep the voltages to specifications. These were usually mounted on a 1 x 8 board and coupled with rubber hose to about a one-third or half horsepower motor and the whole usually suspended from the cellar beams. Re-
suited were excellent as long as the hose coupling lasted!

I had a flashback to the old days—rotary and stationary spark gaps, zinc electrode tips, the old saw-tooth type too, and the one with the rotating single disc, what an improvement that was! Poulsen arcs, over-size keys with dime-sized contacts that on the break would spark enough to knock the cold out of your nose and shake the nails out of your shoes. No one thought there was anything better than tuning through dead-end losses, pencil mark grid-leaks, eraser end verniers! No one bothered to figure out how capacitors measured in capacity, just so they had plates and came in varied sizes and shapes. Sometimes they used castor or mineral oil as a dielectric and were then put in a hard rubber case—remember the beauties that Murdock used to turn out? Remember the nice three-one Acme audio amplifier transformers? Those beautiful honeycomb coil mountings that deForest gave us? The double-filament audion tubes that were mounted on the outside of the panel until Moorhead gave us the socket base? And mounting anything on a metal panel—man, you were called crazy. You grounded everything by doing that; that was nonsense. More came when Armstrong appeared on the scene with his tickler-feedback circuit. And then they started putting in more than four elements in the tubes—what next?

The receivers of those days were something to behold. That catalogue (The Electro-Importing Company) was a connoisseur's bible. Listed and shown in the collection were the masterpieces of the day. I raved and revelled in the Nauen receiver. How I wished I could afford one—all I could manage was an open primary with three sliders and small tap-off secondary pulled by hand. The usual deluxe receiver of those days was a squarish looking box with a side panel housing the so-called primary varied by means of a set of switches and taps from the coil, that ran single and multiple turns. The secondary was tube-winding with a similar single switch of multiple taps and slid on a set of rods inside the primary to provide tight or loose-couplings. When the variocouplers came out—what an improvement—no donkey engine was needed to couple or uncouple. The more switches and taps the better, we thought, since all tuning was done on a dead end loss anyway, and not by inductance being cut in or out. Who cared about the capacitive effects between turns? That was a negligible factor anyway and all guesswork to begin with. It was still experimental and probing into the mysteries of a.c. and its effects. Impedance, reactance, reluctance—these things were still items that had to be transposed into something—they had to be brought out into the open, pondered over, comprehended, and then transformed to what would make common sense and basic formulas. Guesswork was gradually eliminated, and a mathematical basis for the common laws and their applications was gradually evolved. The most part was hit or miss, then try again. Who ever heard of antennas cut to frequency? But it did not take long once the first obstacles were hurdled and the road opened for others to follow—success of resonant radiators were shown to be productive of results that not even the most skeptical ham or researcher could disregard. Remember that the greater part of all this was done by hams and carried on without personal compensation although a few companies were doing their own research. They departed little by little from the generally accepted idea of stringing up some wire and letting it go at that—once they overthrew that old theory, then things really began to happen. Don't think so? Look at your TV antennas today, not to mention the ten-, twenty-, and now they are coming with a forty-meter compensated beam—a new kind of a shorty, so the rumors say.

Even the old ether-wave theory had been

(Continued on page 104)
An Amazing Receiver
By Edmund H. Marriner

ONE of the most remarkable radio receiving sets constructed during World War II was made by Lt. Herb Dixon, ZL2BO, while a prisoner of war at Shampshupo, Argyle Street prison camp, Hong Kong. He wanted to build a short-wave receiver to pick up BBC broadcasts. To accomplish this almost impossible Herculean task, Herb started collecting parts. The first real supply came from an old Austin car which provided wire, bolts, nuts, and metal parts.

As the receiver progressed it was kept hidden in a false garden bed of mint. Filter capacitors were made painstakingly from tinfoil taken from cigarette packages, cut to shape, impregnated with candle grease and sealed in small kerosene cans. The supply of cigarettes being limited, it took seven months of combined effort of the camp to fill the filter requirements.

The headphones took shape from cheese and sugar cans. These, together with the power transformer and filter choke, were finished in four months and were hidden away to await the rest of the parts. Construction of the radio was finally started on a copper sterilizing tank for the chassis. The resistors required were made from pencil leads of various lengths. The tuning capacitor was made from sheet metal slipped on a four inch nail and fastened to a dial made from mechanical auto horn parts. In all this time, no one had been able to get any vacuum tubes. There were some tubes in the prison hospital, but how to obtain them was a problem. As a last resort, one of the prisoners went to the hospital and demanded to have his appendix removed. On the day he was released from the hospital he managed to hide the tubes under the bandages.

Toward the end of 1943 the receiver was completed. The men sealed it in a kerosene can which had a false top tray containing cooked rice.

For about three months BBC came in loud and clear on 9.5 megacycles. To keep the receiver dried out it was placed on top of the bake ovens in a flour bin for some hours. The Japs discovered it when a guard accidentally knocked over the bin.

The receiver was kept by the Japanese as a museum piece and no one knows just whatever became of it. The boys down under hope some day a clue will turn up which will give a finale for this remarkable receiver—constructed from junk in a Japanese Prison Camp.
Identifying Power Transformer Leads

Don’t discard usable transformers just because you have lost the specification sheet. Identify the terminals this easy way.

The average home electronics lab has at least one and often several power transformers with unknown connections and characteristics. If the transformer is provided with leads, you’ll find that the following color code generally applies: primary (black leads); high-voltage secondary (red leads); high-voltage center-tap (red-yellow lead); rectifier filament winding (yellow leads); amplifier tubes filament winding (green leads). But if only numbered terminals are provided, you’ll need another technique to identify the connections.

Here’s a method you can use with any small power transformer designed for normal line operation.

First, identify the terminals to each winding and note the resistance reading obtained. Use an ohmmeter for this job, as shown in Fig. 1. Connect one lead of the ohmmeter to one terminal and use the other lead to touch the remaining terminals until a reading is obtained. These terminals are for one winding.

Ignoring the terminals that have been identified, repeat this test with the remaining terminals until all windings are identified and resistance values marked down.

The high voltage secondary winding will
Fig. 3. How an a.c. voltmeter is used for final identification of transformer windings.

have the highest resistance, as shown in Fig. 2A. This value may be as high as several hundred ohms in some cases. The primary winding will have an intermediate value of resistance, generally between 5 and 25 ohms. The filament windings will have low resistance, frequently less than one ohm.

Next, connect a 100 watt or 200 watt lamp bulb in series with a switch and the “primary” winding of the transformer. Using a test cord, connect to the power line as shown in Fig. 2B.

If you have chosen the right pair of terminals as the “primary,” and the transformer is in good condition, the lamp will light, but with less than full brilliance. If the lamp lights to full brilliancy, the wrong pair of terminals has been chosen or the transformer itself has a shorted winding.

Using an a.c. voltmeter, make preliminary voltage tests across each winding, including the primary. The ratio of these readings will give you a further clue as to the windings. The high-voltage secondary winding should give a higher voltage reading than the primary, while the filament terminals should give a very low voltage reading.

Finally, connect the test cord directly to the primary terminals and use the a.c. voltmeter to check each secondary winding, as shown in Fig. 3. This last test will positively identify the windings and also indicate their approximate voltage ratings. Actual voltage ratings, under load, will be somewhat less than the “no load” readings taken in the last step.

THE FIRST TRANSISTORIZED 20-WATT AUDIO AMPLIFIER

PICTURED at the left is the first transistorized 20-watt linear audio amplifier, as developed experimentally by engineers at General Electric’s Electronics Laboratory in Syracuse. The amplifier, operating from dry cell batteries, was demonstrated with a record playing system and a 25-watt speaker to prove its linearity over the entire power range.

The power transistors used in the circuit are plug-in units. The amplifier includes two 6 watt, three 2 watt, and four 1/10th watt experimental transistors. One 45 volt, one 1½ volt, and one 7½ volt batteries are used to power the unit. The preamplifier for the G-E variable reluctance cartridge in the record player was also completely transistorized.
R/C SERVO ACTUATORS

In addition to their model 2PN servo for single control models, The de Bolt Model Engineering Co. of Williamsville, N. Y. has announced two new models for multi-control actuator use. Model 3P is a three position actuator without an automatic neutral; model 3PN has two positions with an automatic neutral, plus a second servo circuit added. With a combination of the two models, the R/C enthusiast can enjoy the power to actuate his controls as well as the advantage of a second control such as for three engine speeds. The radio required may be the same he has been using for single control operation with no changes needed to use it for multi-control operation. Model 3P is priced at $19.95; model 3PN at $14.95. Additional information is available from the manufacturer.

FOOLPROOF TAPE THREADER

The task of threading a recording tape on a blank reel is greatly simplified by the use of a new simple tape threader, manufactured by The Flaham Company, 7517 Pelham Drive, Cleveland 29, Ohio. This sturdy metal device holds the tape to the reel for the first few turns to get the winding started. Then, it can either be slipped off or left in position to serve as a reel...

February, 1955
terminal installations

VERSATILE HAND TOOL

The usefulness of the already versatile "8-in-1 Buck Nycapper" has been increased by a recent design change which now enables it to install solderless terminals. In addition, it still performs its original functions as an all-purpose tool for the cutting, stripping and twisting of solid or stranded wire and the installing of the nylon-insulated Buck "Nycaps" on pigtail splices.

The new design change enables the tool's 3-way crimping action to be used on wire terminations to make for easy, positive terminal installations of very high mechanical and electrical strength. Controlled de-

formation of the wire, without reduction of the cross-sectional area, is uniformly achieved. The improved "Nycapper" is available through electrical distributors throughout the U.S.A. and Canada. For more information write to Mr. Charles F. Walker, Buck Electrical Manufacturing Co., P.O. Box 147-220, Roselle, N. J.

NEW TAPERED REAMER

A new, "super-hard" tapered reamer has been placed on the market by Vaco Products Co., 317 E. Ontario St., Chicago 11. Useful for metal, wood, plastic, or any hard or semi-hard material, the new tool will enlarge undersize holes from ¼" up to a maximum of ¾" diameter. In radio and TV work it is especially recommended for aligning or enlarging oil-center holes, protecting drills, etc. It can also deburr sawed or cut pipe ends. It is available with handle attached for $2.50. The reamer only, priced at $1.75, is also sold for use with the many Vaco screw driver, nut

driver, Allen, or other interchangeable kits.

For further information, write to the manufacturer.

TEST TV—RADIO TUBES

Yourself with UNATEST S1. Own your own tube tester for less than the cost of one service call. Buy your tubes at discount! SAVES MONEY the first time it's used. Mahogany case—110 volt AC Tests all popular size tubes. Simple to operate—Fully guaranteed. ORDER TODAY! ONLY $5.00—Post Paid. Send Cash, Check or M.O. Dept. PE-52

BAUMBACH ENG. CO. 40147 Haliburst San Fernando, Calif.

THAT PROFESSIONAL LOOK!

PERFORATED AND PAINTED CHASSIS

• Give that "Build Your Own" electronic project eye appeal! We can furnish perforated and painted chassis and cabinets for projects featured in all issues of Popular Electronics. Write today for what you need.

HOUSEHOLD HANDIES

2307 Main Street Santa Monica, Calif.

BUILD YOUR OWN AMATEUR TRANSMITTER

... FROM THIS EASY-TO-ASSEMBLE KIT!

Start your hobby off right with this professional CW transmitter kit. The Viking "Adventurer" operates 50 watts input on the 80, 40, 20, 15 and 11-10 meter amateur bands, and with a simple antenna packs enough power for world-wide radio contacts. No antenna tuner needed—crystal-controlled oscillator—powerful 807 transmitting type output tube. Easy to build and safe to operate—kit furnished complete with built-in power supply, tubes, cabinet, wiring instructions and antenna suggestions. Cat. No. 240-181-1 Viking "Adventurer" Kit, less crystal and key

$54.95

Amateur Net

For more information on the Viking "Adventurer" or Johnson's complete line of keys and practice sets see your favorite distributor or write to:

E. F. JOHNSON COMPANY • 301 2ND STREET • WASECA, MINNESOTA

POPULAR ELECTRONICS

This book opens with a discussion of basic electrical principles and continues with a section on testing instruments. Included are instructions for building a simple series test lamp. Another portion deals with tools and wiring.

Appliances are divided into two main groups: those which operate on the heating element principle, such as toasters, and irons, hotplates; and those which operate from an electrically powered motor such as vacuum cleaners, mixers, washing machines, electric clocks, and razors.

Included is a discussion of the fluorescent lamp which the author considers more of an electronic device, introducing new terms to describe the movement of electrons through a gaseous rather than a metallic conductor. The book concludes with a section on the refinishing of surfaces.

"THE BOYS' FIRST BOOK OF RADIO AND ELECTRONICS" by Alfred Morgan. Published by Charles Scribner's Sons, N. Y. 229 pages. Price, $2.75.

While making an excellent gift to some deserving and interested youngster, this book is actually a very worthy discussion of radio and electronics that could be read by people of all ages who do not have a technical background or engineering training, but who do want to learn.

In view of the modern world's increasing dependence on, and interest in, things electronic, a book such as this should appeal to all. Even for a non-technical person simply to enjoy good music in his home these days, a minimum understanding is essential of at least such things as the difference between a.c. and d.c. or the functions of an amplifier and a loudspeaker. These, and many more topics, are discussed clearly in layman's language.

The actual building of the small sets described in the book is by no means beyond the scope of a youngster, but then, neither should it be beneath the interest of the adult hobbyist. This factor, plus the amount of solid theory included in the book, should make this volume much like the proverbial electric train set: you buy it ostensibly for your children, but wind up enjoying it yourself.

COYNE offers
LOW COST
TELEVISION
RADiO - ELECTRONICS
Training in
Spare Time AT HOME

The future is YOURS in TV-RADIO!
A fabulous field—good pay—fascinating work—
a prosperous future! Good jobs, or independence
in your own business!

Mail Coupon for
Free Details
including information about easy
Payment Plan.
No obligation, no
salesman will call.

COYNE ELECTRICAL SCHOOL
Television Home Training Div.
500 S. Paulina St., Chicago 12, Ill.,
Dept. 25-TR7
Send Free Picture Folder and details on Tele-
vision Home Training. This does not obligate
me and no salesman will call.

Name
Address
City
State

COYNE ELECTRICAL SCHOOL
A TECHNICAL TRADE INSTITUTE OPERATED
NOT FOR PROFIT
500 S. Paulina St., Dept. 25-TR7. Chicago 12
February, 1955
INSTANTLY ISOLATE
TV TROUBLE
Save Time And Money with
THE NEW TV DYNATRACER!

- No Additional Equipment Needed.
- Swiftly Traces Signals Voltages.
- Pinpoints Defective Components.
- Amazingly Simple to Operate.
  YES, a low cost test instrument that
  locates TV troubles without extra
  equipment. Tracks TV signals in
  Video, AFC, Sound, Sync, Horizontal
  or Vertical sweep circuits. TROUBLE
  PINPOINTED IN STAGE OR COM-
  PONENT. TV DYNATRACER also
  traces voltages (50/500 V AC/DC)—
  detects leaky, open or shorted con-
  densors, resistors, coils, transformers.
- Technician-Amateur-Home Hobbyist.
  The new TV DYNATRACER is a budget
  priced necessity. Take advantage of
  our 10 day MONEY BACK GUARAN-
  TEE now! Prompt orders receive
  helpful accessory to all test work.

Century ELECTRONICS CO.
Dept. 604 211-04 99th Ave., Queens Village 29, N. Y.

REPEAT SALE BY POPULAR DEMAND

WORLD-FAMOUS
HI-FI
3-SPEED
AUTOMATIC
PHONO
3 SPEAKERS

DeLuxe 3-speed automatic record
player with speaker cross over
network for true high-fidelity. 4
tube amplifier scientifically de-
signed to reproduce from 20 to
20,000 cycles. Automatic shutoff
for amplifier when last record
has played. Beautiful mahog-
any cabinet with luxurious
woven grill. Dimensions:
17½" x 15½" x 11". Weight
30 lbs.

Write Dept. PE-2 for FREE catalog.

STEVE-EL Electronics Corp.
61 Reade St. New York 7, N. Y.

RADIO-CONTROL model aircraft enthusi-
asts in the Southwest will have the op-
portunity on February 20th of competing in
an Academy of Model Aeronautics (AMA)
sanctioned regional meet in Phoenix, Ariz-
ona. This is a Class AAA event, including
radio control. For further information, con-
tact Quentin T. Webster, C.D., 521 E. Cam-
elback Road, Phoenix, Arizona.

MODELERS in the Monrovia-Pomona
area in California are being paged for
the formation of a model aircraft club—
R/C or otherwise. If interested, contact
Bruce Staller, at 2533 Kimball Avenue,
Pomona, California, or Tom Hume, at the Model Mart in Pomona.

WE WOULD like to pass on to our readers
some of the very interesting and im-
portant information we obtained recently in
talking to Mr. Gil Rose, radio-control spe-
cialist of Polk's Model Craft Hobbies, the
large New York City hobby center. In a
general discussion of trends on the North-
east coast, Gil mentioned that single-chan-
nel equipment seemed to be the most pop-
ular; multi-channel jobs are rising steadily,
but their price seems to be their major
deterrent. Multiple control is most often
obtained by the use of DeBolt actuators or
Bonner escapements used with the single-
channel radio gear. (Have you seen the
Safford articles on these escapements in
this and last month’s issues?)

Servos are on the steady increase accord-
ing to Gil—the most popular being the
Fenner type which yields 2 control opera-
tions from one servo via proportional con-
tral.

An interesting general observation is that
of all of the R/C gear in use, 75 percent
goes into model aircraft. Of the rest, R/C
boats are fast catching on. The price range
for typical factory assembled equipment
varies from $50.00 to $206.00. This is for
radio gear alone, including the actuator.
According to Gil, proportional control can
be added to any single-channel existing
equipment for $25.00, without in any way
altering the basic equipment.

As to the items which seem to have the
greatest sale and popularity in the North-
east, Gil was quick to mention the E. D.
Aristrof single-channel transmitter and gas-
tube superregenerative receiver which, complete with a one-arm self-neutralizing escapement, sells for $57.50, less batteries and ready for installation. Other popular items are Babcock multi-channel equipment and McNabb.

From his vantage point, Mr. Rose was quick to point out that the use of printed circuitry was advancing. E.D. was the first to use such circuitry in their Aristrol transmitter, but it has caught on widely. Its advantages, of course, are more trouble-free operation and easier serviceability. Gil thinks the R/C hobbyist is in for quite a few surprises in the way of new equipment ideas very shortly. All advances, he emphasized, are made with the view toward bringing down the price and increasing the reliability. In this connection, he mentioned the great strides made in the application of miniaturization to R/C receivers. "It is interesting to note," he said, "how the development of R/C equipment for the hobbyist parallels the progress made by the field of electronics in general as applied to industrial equipment." Can this be one of the reasons why the R/C hobby is so popular with electronic engineers who see the chance of applying the latest techniques in electronics for their own recreation and enjoyment?

Gil finished with a very sincere warning to beginners and novices in radio control. He put it this way—"You get just exactly what you pay for when you buy radio-controlled gear." Surplus kits in general are not assembled with the attention to quality control that is one of the principal stocks in trade of the reliable finished-product manufacturer. After you have put in a lot of time building a plane, it's a disheartening experience to have it crack up because of unreliable radio equipment.

One of the toughest jobs faced by the hobby-shop operator who sells R/C equipment is the discouraging of beginners and novices who want to start with multi-channel jobs before they are ready for it. In every case, Gil tries to start a man off with simple single-channel equipment so that he can obtain enough practice in radio control to graduate to more complicated stuff. He also emphasized the importance of bench-testing the equipment before installing it in the model craft. (This is something we have been emphasizing in most of our R/C articles. Hope you have been taking it to heart.)

An excellent hint from Gil was his suggestion that for bench testing you do not use the lightweight, compact batteries you plan to use in the craft. Use the largest batteries available giving the voltages you require. They are more economical and last longer for bench testing.

February, 1955
What Value Resistance for Best Results

You're experimenting with a small transmitter or an amplifier or some other piece of electronic equipment, and you want to determine the value of a grid resistor, let us say, for best possible results. You can solder in and unsolder half a dozen different resistors, which is the usual method, but if you do you'll probably say to yourself, "This is a nuisance."

You are repairing a receiver with a burned-out resistor. The original is so badly charred that you can't tell what value it was and you don't have the service data. There is nothing to do but use "trial and error," together with your knowledge of electronics. Again, after trying several loose resistors, one after another, you’ll probably be talking to yourself, asking: "Isn't there a better way to do this?" There is.

What should you have is a resistance substitution box like the one pictured here. It will take you about an hour and a half to assemble it, and it will save you five times that amount of time the first week you use it. It's such a great convenience in experimental work of all kinds that many people build two, three, and even more units, so that they can adjust the resistance values in several portions of a circuit all at the same time.

The "box" itself is a neat little molded plastic case measuring 6 x 3 x 2 inches, with an aluminum cover panel. The latter holds two rotary switches, one slide switch, and two binding posts. Inside, soldered directly to the terminals of the rotary switches, are 36 separate 1-watt, 10% rating resistors, in the standard values from 15 ohms through 10 megohms. The "low" series runs as follows: 15, 22, 33, 47, 68, 100, 150, 220, 330, 470, 680, 1000, 1500, 2200, 3300, 4700, 6800, and 10,000. The "high" series: 15,000, 22,000, 33,000, 47,000, 68,000, 100,000, 150,000, 220,000, 330,000, 470,000, 680,000, 1 megohm, 1.5 megohms, 2.2 megohms, 3.3 megohms, 4.7 megohms, 6.8 megohms, and 10 megohms. Either group is quickly connected to the binding posts by the center slide switch.

Assembly and wiring of the parts from the Heathkit are extremely simple. The main part of the job is identifying the resistors from their color markings and lining them up in order on the switch lugs. This is an excellent project for a beginner because it can readily be completed in one sitting and is ready for immediate use.

Caution: Don't use it where the 1-watt power rating would be exceeded or in high-frequency circuits where the wiring capacity would affect operation.

End
Resistor leads are cut short and soldered directly to switch lugs. Upper leads are left at original length at this stage. Binding posts, slide switch, and one nest of resistors on its switch are mounted on panel in background.

Inside of completed unit. Upper leads of resistors have been bent short around edge of "S" ring and soldered into place. See article for details.

Completed substitution box in actual use to determine the best value for a replacement resistor in a receiver. Slide switch is down in the "Lo" position. The lower switch knob is being turned to put different resistors into circuit. February, 1955
THE WHY OF HI-FI

By L. E. Johnston

IT'S A rare man these days who hasn't heard of HI-FI! The press is full of it; magazine ads claim that most things electronic that make noise have it; and now even the man on the street is kicking it around.

You can find the requirements of a good HI-FI system at almost every turn, and there are suggestions galore on any newspaper for assembling an outfit of your own. Ideas vary, of course, and so do prices of components—from a few bucks for kits to several hundred for ready-built rigs for the carriage trade. It can be very confusing at times.

And far be it from me to get involved in this somewhat over-crowded field of reporting; the technical aspects of the subject have had coverage enough without my two cents' worth. But there are still a great many people who, after reading all the other articles and pamphlets, are wondering just why in the name of Pete the HI-FI bug waited this long to bite. They are curious to know if it could be possible that we had tin ears until a few years ago. They wonder why the old console sounded so good for so long, when the experts say now that it should be stripped for parts.

Well, there's an answer and it's fairly obvious, too, after a little study. Think back for a minute and trace the history of music from the days of primitive man till now. Immediately, one curious fact comes to light: all musical performances in history up to this very century were done "in the flesh." Salome danced to music played in the same tent, and Ulysses, tied to the mast, heard the song of the Sirens as his ship swept near their rocks. In all cases, an audience listening to a performance had to be within hearing distance to get in on the act at all.

Then, all of a sudden with the twentieth century, Alexander Graham Bell, Lee De-Forest, and Tom Edison put words and music on wax and out over the air. The reproduction and transmission of sound was accomplished. The immediate effect on the public was awe and wonder, and also the unconscious formation of two standards—one for judging sound quality in the flesh and one for judging it over the wire or off the record. People still insisted that music heard in the concert hall be flawless, but the same performance coming over the old battery radio or from the old wind-up Victrola was OK—all because they were still somewhat impressed with the mechanics of the thing.
And as time passed, most of us continued to accept these two standards as normal without even realizing it. Quality improved, of course, right under our very noses, until by the beginning of World War II, radio and recorded music bore a reasonable resemblance to the original performance. At least it was still acceptable to most of us under the dual standard by which we continued to judge it. The record and equipment people naturally tailored their products to our tastes, and who can blame them.

But there's always a "breed of cats" who hang around development laboratories and in ham shacks who aren't satisfied with just anything; they always want something better. These early electronics engineers knew of the two standards too, and set about to correct the situation by improving the "fidelity," or "faith to the original" of sound as it came from the loudspeaker of the day. And in this process, they named their goal "high fidelity" or Hi-Fi as we know it today.

The war interrupted this work, but also helped it along in some respects. FM radio was extensively used as wartime VHF by the armed forces. In fact, many of the techniques and much of the know-how that led to Hi-Fi came from research done on military projects.

Then after the war, it seemed that all at once we had the microgroove record, the magnetic pickup, the Williamson amplifier circuit, and a variety of high fidelity loudspeakers. For the first time in history, everything needed to assemble an inexpensive radio and record player that reproduced sound almost as it was played was available to the experimenter. This was the beginning of Hi-Fi as we see it today, and the craze-like acceptance it is currently enjoying.

One listen convinced most of us of our past folly. Five minutes of music on a Hi-Fi outfit melted our two standards into one, and we knew that nothing else would ever do. We saw for the first time the quality and realism we had been missing without even being aware of it. We hadn't been kidding ourselves; we were just ignorant of the facts; we were the blind who saw light for the first time.

And now this wonderful realism is available to all. You can assemble a system yourself from a selection which is so large it almost makes you dizzy to look through a catalog. Your ultimate choice of equipment will probably depend on your pocketbook and advice of friends, but no matter which units you choose, it's a sure bet that you'll enjoy music as you never have before. And you will find that you won't be alone, either.

---

A GIFT . . . to Hi-Fi Enthusiasts

LIMITED, DE LUXE EDITION

The Hi-Fi Library, Volume 1, is now available to you as a gift from MUSIC at HOME Magazine. This is a very limited edition, and when the present supply is gone, the wealth of information on records, tape, FM, and hi-fi equipment and installations which it contains will not be available from any other source.

YOUR GIFT: A $12 VALUE

This veritable hi-fi encyclopedia is equivalent to 4 ordinary books of 200 pages, selling at $3.00 each! But no books on hi-fi are so elaborately illustrated, so beautifully printed, or are written by such an array of authorities on music and equipment! Yet it is available to you as a GIFT! Here are the details:

The Hi-Fi Library, Vol. 1, a handsome addition to your book shelves, is comprised of the first six issues of MUSIC at HOME, shipped to you in a dust-proof, double case, lettered and decorated in gold. It measures 9 by 12 by \( \frac{3}{4} \) ins. On the outer case is a complete index of articles and authors, enabling you to locate information on any subject instantly!

This idea, originated by Milton Sleeper, is far superior to any binder, because the sturdy double case is more attractive in appearance, keeps the contents in perfect condition, excludes dust and dampness.

HOW TO GET THIS GIFT

Next year, you'll be lucky if you can buy a copy of Vol. 1 for $10.00. Right now, if you enter a 3-year subscription to MUSIC at HOME, costing only $6.00, you will receive a copy of the Hi-Fi Library, Volume 1, as a gift, sent to you prepaid!

But you must send your order while Volume 1 is still available. Don't wait, because this offer will expire when the present limited supply is gone.

MAIL THIS COUPON TODAY!

MILTON B. SLEEPER, Publisher
207-F East 37th Street, New York 16, N.Y.
Enclosed is my remittance for $6.00. Please send me: 1. Gift copy of the Hi-Fi Library, Vol. 1, de luxe edition. 2. MUSIC at HOME Magazine for 3 years (18 issues). If I am not completely satisfied you will refund my money.

Name..................................................................................
Address................................................................................

Add $3.00 for foreign delivery.

February, 1955
Operating practices of the 250-watter differ from those used by large network outfits.

The continued success of a 250-watt station with no network affiliation may seem paradoxical in these days of nationwide networks and broadcasters who command powers up to 50,000 watts, particularly when the small station is virtually in the backyard of several of its giant neighbors. Yet there are hundreds of such small outfits throughout the U.S.A., who not only hold their audiences but are making good money doing it.

Managing and operating procedures are unique with these stations. In the case of WHLI, Hempstead, Long Island, for example, station heads cannot depend too heavily on national advertising for a source of income. This limitation, however, is turned to advantage, for it forces the station to explore the needs and utilize the resources of its own community. Both listeners and advertisers in the area benefit from a kind of immediacy of service and programming which they could not possibly enjoy at the hands of the more powerful, but more removed, large stations.

One of the things WHLI does is to share its antenna tower with the local police transmitting antenna. In addition, the police transmitter is housed in the station's own transmitter shack. Thus the two most prominent broadcasting systems in the region work side by side and the chance of
Control technician stands by for cue from studio announcer. Programs are monitored in control room. Tape consoles (not shown) can record programs as well as furnish program material. Stylus in tone arm on turntable is changed after 5000 plays (about once a month).

any problem of interference is minimized. The antenna tower itself was erected on the edge of a large, unused tract of flat land, far enough removed from bodies of water to avoid signal dissipation. The station has established cordial relations with local "ham" operators and practically no interference problems ever arise from that source.

The station uses only trained specialists for specific jobs—no technician ever does any announcing. Similarly, announcers are regarded strictly as "air-voices." They do not even select music for broadcasting; this task is in the hands of a musical director. This policy makes for very professional sounding programs.

Coverage of local news and of conditions especially important to local residents is a prominent item on this station's agenda. National events are reported and when possible, from the standpoint of the station's community. In addition to United Press teletype service, the station has its own news staff and a battery of tape recorders to be rushed to any scene for on-the-spot coverage. A music library of over 50,000 transcriptions caters to the tastes of every type of listener. And since many Long Islanders are vitally concerned about railroad, weather, flying, sailing, and fishing information for their livelihoods, the station provides them with this material regularly.

Realizing its importance to the local community, the station has provisions for staying on the air through almost any situation with an emergency studio and power generator at the transmitter site. During the recent hurricanes, this 25 kilowatt gasoline-driven generator kept the station on the air.

In normal operation, programs originate in the regular studios located in station headquarters about a mile from the transmitters.

Small but effective, these stations are a vital part of the American scene, since apparently those who live in out-of-the-way places depend more on their local radio than the big city dwellers depend on their stations.

It's more than 50,000 records and transcriptions make WHLI's music library one of the largest in the East. Here, music director Roger Wayne selects an album for broadcast.

WHLI newsmen prepare one of the station's eighteen newscasts broadcast daily. Portable tape recorders are often used for on-the-spot coverage. Station vice-president and chief engineer Frank Knaack drives around with one in his car, always ready for news to happen.
Prodigal Ham

(Continued from page 89)

exploded and with it all the old holdback basics were overthrown and discarded—with all ties to this cumbersome past severed and the background of old wives tales that stood for radio perceptions done away with, nothing could hold back the men who created the forward sweeping tide of advance and who could do more than just see to the limit of the horizon.

All this flashed across a newly opened mind that had been dormant to everything except the immediate daily needs and left the grand old hobby in mothballs. I grabbed at the newest surplus and started in again. The conversion was a good training sequence—it did not matter to me whether the darned thing would work or not—familiarity with old materials, tools, and handicrafts laid aside years ago had to be revived—old ham gear, secondhand commercial stuff, home-brew oddities, all helped to get back in stride again. It did not take long before the code difficulties were really manifest in a mind that had to cope with daily bread and butter, and the routine passing aggravations in living to contend with left one quite worn at the end of the day and in no condition to bang his head against the wall with code practice. The ice could not be broken that easily. WLAW, however, provided what first friendly help could not donate or make available to me. The exams were taken, but that code—the examiners were the swellest bunch, the most sympathetic fellows one could ever hope to meet and know—but passing that exam was up to me. You could feel their disappointment, as well as my own, in not passing. That 13 wpm was a personal problem and only I could get it. Then the door opened in a most unexpected manner—the Novice Class was made available and passing that and the Technician Class gave me what I had always needed, actual practice on the air in code to build up speed and get the actual feel of hamming. The most painful thing was not failing to pass the code test, but to read in the papers of little Joe Glutz Jr., seven-and-half-years-old, of Crotch Hollow, passing his General Class and then, when asked what he thought of the exam, saying with a toothless smile, "Aw, it was nuttin—it was easy."

It made me feel like a . . . Finally, the constant plugging on the air got me my General Class ticket. Some men take to liquor, some to other men's wives, some to the hounds, and others to the parimutuels, but the ham—he is in a world by himself. He did not take to radio—it took him. It is not a vice in which money is thrown.

---

**SUPER POCKET RADIO**

Smaller than many hearing aids. Powerful, portable and can be assembled by anyone in one hour. Uses two inexpensive cells that fit within case. Owners report 1,500 mile reception. No antenna or ground required for local use. Complete kit of hearing-aid parts only $3.99. Batteries extra at $1.45. Use any regular headphone with Micro or tiny hearing-aid earset, shown in photo, available from us at low cost. Micro is guaranteed to please or return in 10 days for full refund.

SEND ONLY $1.00
BALANCE C.O.D.

TRANSI-MITE RADIO LAB
MANTEO (3) NO. CAR.

**IT'S NEW! IT'S FREE!**

1955 Walter Ashe Catalog of Radio, Electronics and TV

The Treasure Chest of Values!
Features all the leading brands of Communication Equipment, Test Instruments, Build-It-Yourself Kits, Hi-fi, Sound and Recording Equipment, Radio, Electronics and TV Parts and Supplies for every conceivable need—in stock—ready for immediate delivery.
A "must" for experimenters, amateurs, servicemen, engineers, builders and "hi-fiers."

Send for your FREE Copy

THE TREASURE CHEST OF VALUES!

1955

MAIL COUPON TODAY!

WALTER ASHE RADIO CO.
1125 Pine St., St. Louis 1, Mo.

□ Rush FREE Copy of New 1955 Catalog.

Name ________________________________
Address ________________________________
City ______________________ Zone State ______________________

POPULAR ELECTRONICS
down a rat hole as in the old days—a money spending time-killer that took your dough on a load of junk to give you a tinkering hobby—all that has changed. I found instead that it had grown to a deadly serious business—the business of national welfare, defense, and big business.

Ham activities of today not only present a field for radio investors or a dump into which to throw and dispose of old electrical odds and ends, but provide the entire country with a tremendous reservoir of trained communication maintenance men, operators, radar technicians, and electronic seedlings that could be grown into scientific signal and intelligence fighters for the country. It takes time to train men to 15 WPM C. W., or as high-speed troubleshooters on equipment. Here was a backlog of readily available reserves who could spring to attack or defense, either civilian or military; the same voluntary scientific leaders who in their younger days had given the world the basic principles of TV, the whip antenna, radar, v.h.f. and u.h.f. They were spread all over the country in a network that was alert to respond to any emergency; local, statewide, or national, through all efforts, combined, net or groups, and individual. The integration of ham activity in the MARS system is proof of this cooperation. CD is another bit of evidence. The voluntary ex-

perimentation for constant improvement and betterment of equipment and efficiency—the insatiable curiosity of the ham with the only compensation being personal satisfaction (in many cases the basic ideas were never patented but left to public domain), showing the self-sacrificing attitude of the ham—have not changed in these times.

Let us consider those who pioneered the trouble-shooting for TVI and the curbing of interference. That is something which cannot be forgotten and the never-ending strive for perfection is still being carried on by the ham. It is he who makes the first step in that direction—no one else.

It is the only hobby in which there is no knife in the back of the other fellow for personal aggrandizement and gain; no exploitation or profit goals. It brings to a common stratum all walks of life, all human endeavor and the various professions and callings that earn a ham his daily bread—all are attracted by the one interest—ham radio. I am glad that I made it after such a long self-imposed exile, providing myself with a mental port in the daily storm, a retreat from the tensions of the day and above all a medium in which to meet and hold new friends in a common bond for mutual communion, not only nationally but universally. Let’s hope, with God’s help, to keep it that way.
DRILL CUSHION

SO THAT you won't mar your work while drilling by letting the drill chuck hit the surface, slip a rubber grommet over the drill bit before you start. Then if the hole breaks through suddenly, the edges will not be scratched by the rapidly descending chuck.

ADAPTER INSULATES MICROPHONE

HERE is a simple adapter (costing less than 50 cents to make) which will isolate a microphone from a metal floor stand or table stand, thus reducing danger of shock. It is possible to receive shocks by touching two metal mike stands at the same time which are at different "ground" potentials or by touching a grounded mike stand while working around "hot" circuits.

As shown in the photo, simply remove the cable-protecting springs from a female cable connector and a male cable connector, and slip a 2½" length of ½" diameter fiber rod into the connectors and tighten the set-screws. The female connector fits the top of the stand, and the male connector fits into the socket on the bottom of the mike. If you are afraid that the spring on the mike's cable connector might make contact with the stand when the cable is moved around, you can cover the spring with rubber tape or tubing, or else use a longer length of fiber rod in the adapter so the spring can't reach the stand.

CHEAP STAND-OFF INSULATORS

THOSE empty cellulose pill containers make good low-loss stand-off insulators for indoor use. These insulators fasten to the wall with one screw, and the wire can be attached or removed by simply removing the cap on the container.

The photo shows a pill container holding a 300-ohm ribbon twin-lead to an inside wall.

Remove the cap of the container and saw off about ⅜" from the open end of the container. This removes most of the reduced-diameter end of the container so the cap will fit tightly. Now saw or file two slots (opposite each other) in the end of the container for the wire to slip into. The insulator is completed by drilling a ⅜" or ⅝" mounting hole in the center of the bottom of the container. As shown in the photo, mount the container using a ⅜"-long wood screw with washer, then slip the wire into the slots on the end of the container, and push the cap on tight. Don't use these outdoors as the rain will seep in the slots. Use a fine-toothed narrow blade hacksaw for cutting the slots.

CHECK TV LEAD-IN FOR BREAKS

WHEN a TV receiver seems weak and sound does not come in as usual, it is a good idea to check the antenna lead-in which goes from the terminals on the back of the set to the front end tuner.

Where clamps are used along the side of the lead-in for the antenna, simply remove them and insert a new one. This will correct all radio and TV tuning troubles related to antenna leads.
the chassis to hold the twin lead, be suspicious of breaks and try removing lead-in from clamp and twisting to make temporary contact.

In the case shown there was a complete open in one wire of the lead-in under the clamp.

**AIDS FOR SMALL RADIOS**

Small table radios are easier to carry if you fasten a plastic drawer pull to the top of the cabinet, as shown in the photo. These plastic drawer pulls are available in various colors, and are sold in dime and hardware stores. When mounting the handle, shorten the two mounting screws by sawing them off to a length of about 1/2", because the plastic radio cabinet is considerably thinner than the wood on the drawers for which the handles were intended.

Small table radios which use only one i.f. transformer, and no loop antenna, are always equipped with a length of antenna wire which must be stretched out to pull in out-of-town stations. It's a pleasure to reel, and unreel, the antenna wire if you mount two pan lid knobs onto the back panel of the radio, as shown in the photo. These plastic pan lid handles are also available in various colors and cost a few cents each. You may want to saw off part of the shank on the knobs so they won't stand out so far, but don't saw off too much or there won't be any hole and threads left for the mounting screw. Of course, you can always drill an undersize hole in the knob and use a

February, 1955

---

**BUILD 15 RADIOS AT HOME**

With the New Improved 1955 Progressive Radio "EDU-KIT" NOW INCLUDES

HIGH FIDELITY, SIGNAL TRACER, CODE OSCILLATOR

- Attractively Gift Packed
- Free Soldering Iron
- Absolutely No Knowledge of Radio Necessary
- No Additional Parts Needed
- Excellent Background For Television
- 10-Day Money-Back Guarantee
- School Inquiries Invited
- Sold in 75 Countries

**WHAT THE PROGRESSIVE RADIO "EDU-KIT" OFFERS YOU**

The "Edu-Kit" offers you a Home Radio Technician Course at a rock-bottom price. You will learn how to identify Radio Symbols and Diagrams; how to build radios, using regular radio schematics; how to wire and solder in a professional manner. You will learn how to operate Receivers, Transmitters, and Audio Amplifiers. You will learn how to service and trouble-shoot radios. You can code. You will receive training for F.C.C. license. In brief, you will receive a practical basic education in Radio, worth many times the small price you pay.

**THE KIT FOR EVERYONE**

It is not necessary that you have even the slightest background in science or radio. The "Edu-Kit" is used by young and old, by radio schools and clubs; by Armed Forces personnel and Veterans for training and rehabilitation. No instructor is required. Instructions are complete, simple and clear. You cannot make a mistake.

**PROGRESSIVE TEACHING METHOD**

The "Edu-Kit" uses the principle of "Learn by Doing". Therefore you will build radios, perform jobs, and conduct experiments, to illustrate the principles which you learn. You begin by learning the function and theory of each of the radio parts. Then you build a simple radio. Gradually, in a progressive manner, you will find yourself constructing more advanced multi-tube radio sets, and doing work like a professional Radio Technician. The "Edu-Kit" Instruction Books are exceedingly clear in their explanations, illustrations and diagrams. These sets operate on 115-125 V. AC/DC, or 210-250 V. AC/DC available.

**The Progressive Radio "EDU-KIT" is Complete**

You will receive every part necessary to build fifteen different radio sets. Our kits contain tubes, tube sockets, chassis, variable condensers, electrolytic condensers, micro condensers, paper condensers, resistors, line cords, selenium rectifiers, tie strips, coils, harness wire, tubes, etc. Instruction Manuals and job instructions are included, as well as an Electronic and Radio Tester. Complete, easy-to-follow instructions are provided. All parts are guaranteed, brand new, carefully selected and matched. In addition, the "Edu-Kit" now contains lessons for servicing with the Progressive Signal Trainer, High Fidelity, F.C.C. instructions, quizzes. The "Edu-Kit" is a complete radio course down to the smallest detail.

**TROUBLE-SHOOTING LESSONS**

Trouble-shooting and servicing are included. You will be taught to recognize and repair troubles. You will build and learn to operate a professional Signal Trainer. You receive an Electrical and Radio Tester, and learn to use it for radio repairs. While you are learning in this practical way, you will be able to do many a repair job for your neighbors and friends and charge fees which will far exceed the cost of the "Edu-Kit". Our Consultation Service will help you with any technical problems which you may have.

**FREE EXTRAS**


**PURCHASE "EDU-KITS" INC.**

492 Union Ave., Brooklyn 11, N.Y.

MAIL TODAY - ORDER SHIPPED SAME DAY RECEIVED

10-Day Money-Back Guarantee. INCLUDE ALL FREE EXTRAS.

RUSH ME the Following—Include all Free Extrad:

☐ "EDU-KIT" Postpaid. I enclose full payment of $19.95.
☐ "EDU-KIT" COD—I will pay $10.95 plus postpaid.

Outside USA: 210-250 V. AC/DC Adapter. Extra $5.00.
More details on "EDU-KIT" Fee—No Obligation.
FREE Radio-TV Servicing Literature, No Obligation.

NAME __________________________

ADDRESS _______________________

PROGRESSIVE "EDU-KITS" INC.
492 Union Ave., Brooklyn 11, N.Y.
**ELECTRONIC SUPPLIES**

**For Experimenters - Service - Industry**

Glen Useful Items sold on satisfaction.

- **Guaranteed basis: WHOLESALE OR RETAIL**
- **Microphone (pulse tap stamp size) exclusively scrambled.**
- Thousands of applications. FM antenna. Make, box. Worth over $8.00.
- **Guaranteed.**

**ELECTRONIC COMPONENTS**

**DIPLOMATIC UNIT**

- Contains resistors, capacitors, relays, tubes, sockets. Five units. 10.00-15.00.
- Spares, leads, instruction sheet. TO ORDER OUT REMAINING ITEMS.

Price: $8.00

Price includes:
- 10 Resistors: 100 ohms, 1/2 watt: 10 ea. for $2.00
- Same chassis loose tubes, leads, and relay... 3 for $1.00
- **Brand new** leads and relay...
- **3" Round Westinghouse, 5"-6" Min. D.C.**
- **25 G. SE. 50-100 AMP. DC, Iron, Yoke.**
- **82 G. G.E. 0-1 AMP. DC. Iron Tube.**
- **Miniature 500-2000 Interlock.**

Price: $3.99

- **Miniature (0.5 in. DC.**)
- **WESTON 506, 0.500.**

Price: $3.00

- **Retractable Phone Cord**

Price: $1.25 ea. 3 for $4.00

- **Germanium & Silicon Diodes**

Price: $2.25 ea. 5 for $10.00

- **Brand new** and factory tested and guaranteed.

Price: $1.00 ea.

- **10" 22 General Purpose.**

Price: $5.00 ea. 5 for $2.75

- **TELEGRAPH TYPE INDIVIDUAL CORPS**

Price: $3.00 ea. 5 for $2.75

Price: $3.00 ea. 5 for $2.75

- **All Hardware Included**

Price: $4.00 ea. 5 for $2.75

**SPECIAL PRICES ON T.V. ANTENNAS**

- **Db1 Lazy X**

Price: $5.95

- **UHF-VHF**

Price: $18.95

- **Skymaster**

Price: $19.95

- **300 ohm leadin—100 ft.**

Price: $2.98

**ROTORS**

- **US3—Alliance**

Price: $29.95

- **TR4—Radiant**

Price: $32.50

**Write for Finko Antenna Prices**

**Heavy Duty 1/4 In. O.D. Towers**

**Vinyl Aluminum Finish**

**Self Supporting to 50 ft.**

<table>
<thead>
<tr>
<th>Section</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 ft.</td>
<td>$11.95</td>
</tr>
<tr>
<td>15 ft.</td>
<td>$11.95</td>
</tr>
<tr>
<td>Adjustable house brace</td>
<td>4.95</td>
</tr>
<tr>
<td>10 ft. heavy top pipe</td>
<td>3.98</td>
</tr>
</tbody>
</table>

Price includes:

- **All Hardware**

Price: $1.95 ea. 5 for $2.75

**LEADS TO PHONE-TIP-JACKS**

**INEXPENSIVE PANEL BUSHINGS**

**INEXPENSIVE panel bushings for switch and volume control extension shafts may be obtained by breaking up defective potentiometers and old rotary switches.**

A pair of diagonal side cutters may be used to bend back the mounting lugs for removing the cover plate. The bakelite or fiber body of the control may be broken by applying pressure in a vise.

**M-Tap**

**TUBE CENTERING ADAPTERS**

**SMALL centering adapters for seven and nine pin miniature tubes are available at radio and TV stores. The adapter consists of a metal centering pin mounted in a thin insulated plastic or bakelite wafier with the proper number of holes. When slipped on the miniature tube, it is an easy matter to insert the pin in the socket opening and rotate the entire assembly of the adapter and tube until it lines up with the proper socket openings. The adapters mainly on the tubes but are economical to replace.**

**POPULAR ELECTRONICS**

- **自 tapping tinners' screw, or you can drill all the way through the knob and use a machine screw and nut.**

- **tubing centering adapters**

- **In experimental** and test work, it is often necessary to connect wire leads to phone-tip-jacks. These wire leads with phone-tips on their ends may not be readily available. To make it easy to connect any wire lead to any phone-tip-jack, make up several "tip-ports" as shown in the illustration. Using these tip-ports, you can quickly connect any wire lead to the binding post, and then plug the tip-port into the phone-tip-jack, as shown. To make these tip-ports, solder the threaded shanks on binding posts into the sleeves of phone-tips. Binding posts with non-removable tops (left post in photo)
have the threaded shanks permanently attached, so all you have to do is push the threaded shank into the phone-tip and solder the two together securely. The older type binding posts (right post in photo) use removable machine screws, so you will have to clip off the heads of the screws before you can insert the screws into the phone-tips. Or you can enlarge the hole in the bottom of the post and solder the sleeve of the phone-tip into the enlarged hole, as in the right post in the photo.

**DIAGRAM AIDS CHECKING TUBES**

MINIATURE tubes have their prongs so close, and positions are so varied that it is next to impossible, particularly for the man working only part time on receivers, to remember all types.

A small tube guide as shown takes but little space but will save you considerable time and trouble.

**CABLE SPEEDS EXPERIMENTS**

COLOR coded cables with from three to nine conductors enclosed in a plastic covering speed up temporary connections when making various hook-ups. (Continued on page 110)

---

**SAVE HOURS OF WORK**

quickly make round, square, key and "D" openings with Greenlee Radio Chassis Punches

In 1 1/2 minutes or less you can make as smooth, accurate hole in metal, bakelite or hard rubber with a Greenlee Punch. Easy to operate . . . simply turn with an ordinary wrench. Wide range of sizes. Write for details. Greenlee Tool Co., 2382 Columbia Ave., Rockford, Ill.

---

**OWN a Business**

If employed, start part time. Alert dealers can gross $60 hourly profit on own service plus $3 on LACI service. Clean, quiet, moth-proof rugs & upholstery on location. No shop needed. Services nationally advertised. Repeat customers. Easy to learn. We locally train and assist you. Quickly established. Easy terms. Send today for FREE booklet. No obligation.

DURACLEAN CO., 5-242 Duraclean Bldg., Deerfield, Ill.

---

**Get into - PLASTIC LAMINATING AT HOME!**

Get ORDERS and CASH from your mailman—do work in SPARE TIME at home—or expand into FULL TIME business. Send coupon for Free facts about the newest and most fascinating of all home operated businesses. The first time a simplified machine brings the fabulous profits of Plastic Sealing and Plastic Laminating within the reach of the small operator. Anyone can learn to operate the machine with a few minutes practice—then with our Magic Mail Plan can get mail orders pouring in daily with cash in every envelope. No canvassing—no selling. We even supply the circulars you mail to bring back cash and orders.

Don't waste a minute. Rush your name. We'll send you FREE and postpaid, pictures, prices, details, and all the facts you need to start. Mail coupon or send name on postcard. No charge.

WARNER ELECTRIC CO., 1512 Jarvis Av., Dept. L-16-B Chicago 26, Ill.

---

**MAGIC MAIL PLAN!**

Make $20 to $30 a Day by...

WARMER ELECTRIC CO., 1512 Jarvis Av. Dept. L-16-B, Chicago 26, Ill.

At no cost to me, please rush complete details postage prepaid. I am under no obligation.

Name:__________________________
Address:________________________
City:____________________________
Zone:___________________________
State: _________________________

February, 1955

---

Get Thousands of Beautiful Art Creations

Costume Jewelry - Cigarette Boxes - Trays - Candlesticks - Coasters - Lamp Bases - Bookends...ALL IN SPARKLING COLORED PLASTIC

Make $25.00 profit per hour of operation.
Edlie for TOP VALUES

JUST

Newest & Best "Fix-It-Yourself" Aid

OUT!

Edlie’s E-Z TV REPAIR GUIDE

The only Fix-It-Yourself guide made expressly for YOUR TV set! Now you can save costly TV repairs with this new, simplified method which includes all necessary data for just YOUR set. No confusing, unimportant information applicable to hundreds of different makes. Simplifies detection of faulty tubes in your TV receiver quickly and accurately.

It’s a terrific idea!—It’s a terrific guide! Order today and have your set back in perfect condition at once. Be sure to send us make and model of your TV set when ordering.

5-Tube AG/DC Superhet Radio Kit

Kit: Includes all top quality components required to construct this latest design, high-sensitivity superhet, AC/DC superhetod收音机 broadcast receiver. Complete with black rolling basket cabinet (exclusive wire & solder).

Kit of 5 tubes: 12AT6, 12AR6, 12BE6, 35W4 & 5085...$3.25 less tubes...$7.95

6-Tube Radio Kit

Kit: A great value in a low-priced radio kit designed for high-sensitivity circuits. Easily constructed circuits. Complete with chassis, all parts, hardware, PM speaker (except wire & solder).

Kit of 6 tubes: 25L6, 25Z6, 6AG7, 6BQ7 & 6SR7 (2) ........ $6.95

Write today for FREE Catalog. All orders, shipped F.O.B. New York City, prices subject to change without notice. Include 20c deposit with C.O.D.'s.

EDLIE ELECTRONICS
154 Greenwich St. Dl. 9-3143 New York 6, N. Y.

DELUXE POCKET RADIO

Owners report up to 1600 miles reception. New 1955 electronic tube model covers 540-1600 KC. No antennas required for local reception. Assemble kit easily in 1 hour. Batteries, all parts, fit in case. Low price of kit includes tube. (Set, for factory wired, $8.95). Long life batteries $1.15 per set. Radio headphone $1.69. High imp. hearing aid $4.95 on use your headphone. All parts FULLY GUARANTEED.

WESTERN RADIO CO., Box 1526, Sacramento 14, Calif.

Inventors

Send today for our instructive booklet, “Patent Protection for Inventors” outlining preliminary steps to take toward patent protection, also for convenient “Evidence of Invention” form.

VICTOR J. EVANS & CO.
139-B MERLIN BUILDING, WASHINGTON 6, D.C.

EYE GLASSES by MAIL As low as $1.99

WRITE for FREE CATALOG with 14 LENS SAMPLE CARD
Thousands of Customers

QUALITY READING-MAGNIFYING OR BIFOCAL GLASSES FOR FAR AND NEAR
ADVANCE SPECTACLE COMPANY, Inc., 537 S. Dearborn St., Dept. PULL Chicago 5, Illinois

The cable shown has open end terminals attached which will fit under screws, but a cable may be used with bare wire ends.

Cable of this type is listed in catalogues for speaker and telephone wiring and is usually number 18 or 22 gauge.

TV CHASSIS CLEANER

A FLEXIBLE brush, having mop strands on a fairly long handle, works well in removing dust from a TV chassis.

Make sure the line plug to the receiver has been pulled for some time before dusting and go easy around the tubes—particularly the picture tube.

Such a brush works best when chassis has been pulled for repairs.

FILE LOOSENS SCREWS

THE three sided handle end, or shaft, of a small file, which is designed to be driven into a wood handle, may be used in an emergency to loosen Phillips type screws if the proper screw driver is not available.

Do not exert too much torque on this emergency tool.

END
HINTS ON BUYING U.S. EQUIPMENT ABROAD

EXPERIMENTERS and builders abroad can purchase parts and components from U.S. suppliers with comparative ease, according to Mr. George Zarrin of the Harvey Radio Co., Inc., N.Y.

Canadian customers can be shipped material by Railway Express or by parcel post. Those choosing Railway Express can have their packages sent collect for express charges. Otherwise, the cost of postage should be determined beforehand by the purchaser and sent together with the purchase order and net price.

Packages to Central America and the Caribbean area can be sent by mail or by air express directly from the U.S. supplier. Certain large or bulky items are best sent by ocean freight, in which case the supplier turns over the shipment to a local forwarding agent. The cost of overseas packing and the agent's fee are then met by the customer.

Countries in these areas present no problems regarding the usual customs declaration and various documents, etc. These and similar problems may come up on shipments to countries further away from the U.S., such as some South American countries and those not in the Western hemisphere.

Requirements vary from nation to nation, and the overseas purchaser should check his own government's regulations. For instance, in some countries, if the shipment exceeds a specified amount of dollars, or if the items are semi-strategic, such as radio receivers or transmitters, licenses are required of both buyer and seller. The buyer applies for an import license at his own governmental agency. This license is sent with the purchase order. The U.S. supplier, in turn, must get his own export license before he can make shipment. Getting the licenses, while a matter of form, may take as long as three weeks. Aside from this time delay, however, they are readily available.

When shipping overseas, the American supplier will not, as a rule, determine beforehand the shipping charges. Most likely, he will send the item f.o.b. If export packing is required, it usually involves an additional charge of about five percent. Naturally whatever costs the shipment incurs beyond the f.o.b. point must be paid by the purchaser when claiming his package.

Beyond this, states Mr. Zarrin, it is impossible to generalize. Each nation has its own rules, some of them filling volumes. When in doubt, check with your government.

END
Novice CW Transmitter Kit
(As described in this issue.)

Available at NEWARK only 14.44

Here is the economical way for the novice to start his “ham practice”. All of the components described in the article are included in the Kit; less wire, solder and hardware.

62F990 80 Meter Band ........................................... Net each $14.44
62F991 40 Meter Band ........................................... Net each $14.44
A613 J8 Key, sold only with above ......................... Net 79c

See Newark's New Catalog for individual components in above kit.

SEE THE LATEST IN Electronics EQUIPMENT

NEWARK ELECTRIC COMPANY

Send for Newark's 1955 Catalog

Select the fast, easy, dependable way from the New Electronics Reference Book — full of the latest gleanes and largest selections of High Fidelity, Radio, TV, Amateur and Electronics equipment.

LEARN ELECTRICAL APPLIANCE START YOUR Repairing & Installation OWN BUSINESS

Revolutionary NEW TRAINING METHOD, trains you AT HOME in just a few short weeks! You receive big "ON-THE-JOB" home training kits, test equipment, audio instructions and practical service training lessons. You learn how to Service, Repair and Install all types of ELECTRICAL Appliances and Equipment. How to build and operate your own business, etc.

You EARN As You Learn

You charge on basis of $3.00 to $5.00 per hour for spare time work. Write now for your Free Book, full details about this amazing opportunity for you in modern Electric Servicing.

ADVANCE TRAINING 5944 NORTH NEWARK AVENUE
Dept. 752, CHICAGO 31, ILL.

RECORD NOISE
(Continued from page 60)

use of this material will add greatly to the quiet operation and life of your recordings. A solution is made from the concentrate and placed in a pan big enough to accommodate a 12" LP. The record to be cleaned is totally immersed in the solution and the pan rocked from side to side for a few seconds to “swish” the liquid over the record surface. This is done on both sides of the record and then it is drained and wiped free of excess with a soft viscose sponge which has been wrung-out in the solution. Unfortunately the labels of some record companies do not have color-fast dyes, and they run rather badly. Painting the label with a thin clear nail polish and allowing it to dry will effectively waterproof your discs. This is a somewhat cumbersome process, but I have found that the record grooves are almost microscopically clean and it is well worth the bother.

There are various record brushes on the market, designed to clean the record continually while the disc is revolving. Except for the very expensive units which use sable hairs, I would caution that these brushes may do more harm than good. A much more effective way of continuous anti-static protection is in the use of radio-active materials. One such device, a very tiny affair, clips to the end of your pick-up arm. As the record revolves the air above the record surface is “ionized,” thus dis-charging the accumulated static.

There are some records that will have a high hiss level, no matter how you try to correct them. I think you will find this to be true, in most cases, with the cheaper records on the market. A pure vinylite disc has a very low inherent hiss level. To save money, the manufacturers of the cheaper discs add various “filler” compounds to the vinylite and it is these “fillers” that cause the higher hiss. This is of course, not universally true, but a persistently high hiss in a disc is due nine times out of ten to the use of “filler.”

There are a few other things, seemingly quite trivial, which help to keep your records quiet. After playing a record, don’t leave it on the changer or turntable. Dust settling on the surface can undo all your work of cleaning. Always replace the disc in its jacket. When doing this, compress the record jacket so that it “bulges” wide open. This will avoid the possibility of sharp cardboard edges’ scratching the record surfaces. It is also good practice to examine the interior of the record jacket. If you find it dusty (and many are), blow
out the dust as well as you can. I know one conscientious soul, who uses a tire pump for this task! In handling records, do so only by the edges—fingerprints are greasy and will pick up dust and grit. When storing records, never lay them flat because they will surely warp. Instead, store upright in an appropriate cabinet.

One final note—you are wasting your time with all the foregoing procedures, if you are playing your records with anything other than a diamond stylus. It is the poorest of economy to use substitute materials. Osmium or other "precious metal" styli will show appreciable wear in as little as nine hours use. The best sapphire will be dangerous to use after 25-30 hours. Contrast this with a good diamond stylus, which in a well designed arm is good up to 1000 hours! Remember this above all—there jest ain't no sech animule as a "permanent" stylus. Even diamonds wear out and it is a prudent person who examines his diamond every 100 hours for signs of deterioration. Any variance, such as a "flat" worn on the normally smooth round point, should be cause for rejection. End

---

EASILY MADE TV LAMP

A scrap of wood, a piece of wallpaper left over from the last time you papered the room, and a quart-size glass fruit jar are all you need to build this TV lamp.

Use a good grade of heatproof glue to attach the paper to the jar. Do not use a bulb larger than 25 watts as the heat may be excessive. Besides, a 25-watt bulb will furnish enough light to serve the lamp's purpose.

To make the base, cut three discs of 1" thick wood in diameters of 4½", 6", and 7½" each. Cut a 3" hole in the center of the two smaller discs for mounting the lamp socket. Base may then be finished to match the other woods in the room.

Variations on the base design are, of course, possible, but remember to drill that hole for the lamp cord! B.C.V
HEAT is one of the results of current flow. In some cases, the heat is desirable: soldering irons, hotplates, electric toasters, etc. In other cases, the heat may be undesirable, but it is always present where there is a flow of current. If the heat developed in a circuit becomes excessive, the components may be damaged.

The ability of a resistor to dissipate heat depends upon its physical size. In general, the greater the surface area, the greater the amount of heat which can be dissipated. It is for this reason that resistors are manufactured in a variety of physical sizes. A 100 ohm resistor, for example, may be as large as a baseball bat or so small that several hundred may be held in the palm of the hand. The practical difference is that the smaller resistor will overheat or burn up if the current exceeds a few milliamperes, while the larger resistor can carry many amperes of current without damage.

In specifying the value of a resistor, it is therefore necessary to indicate not only the number of ohms but also the wattage rating. The wattage rating determines the amount of heat the resistor can dissipate without damage.

The wattage dissipated in a resistor can be determined by multiplying the voltage by the current. As a formula, this is written: \( P = EI \).

Example:
How much wattage is dissipated in a resistor if the voltage across the resistor is 200 volts and the current through it is 6 ma.?
Answer:
\[
P = EI \\
P = 200 \times 0.006 \\
P = 1.2 \text{ watts}
\]

The wattage dissipated in a resistor may also be calculated if the current and resistance are known.

Example:
How much wattage is dissipated in a 4 ohm resistor carrying 3 amperes of current?
Answer:
\[
P = IR \\
P = 4 \times 3 \\
P = 12 \\
P = 36 \text{ watts}
\]

Still another formula is available for calculating wattage when the voltage and resistance are known. This is accomplished by squaring the voltage (multiplying by itself) and then dividing by the resistance. As a formula, this is written: \( P = \frac{E^2}{R} \).

Example:
How much wattage is dissipated in a 10 \( \Omega \) (ohm) resistor connected across a 12 volt battery?
Answer:
\[
P = \frac{E^2}{R} = \frac{12^2}{10} = \frac{144}{10} = 14.4 \text{ watts}
\]

It is considered good practice to use a resistor whose wattage rating is greater than the calculated wattage. This provides a safety margin and also permits equipment to operate at lower temperatures. Most designers and technicians prefer to use resistors whose wattage ratings are at least twice the calculated wattage.

When a resistor of the required wattage rating is not available, it is sometimes convenient to split the wattage by using two or more resistors whose total value is equal to that of the required resistor. As shown in Fig. A, a 5000 \( \Omega \) resistor connected to a 100 volt source will draw 20 ma. of current. The wattage dissipated in this resistor will therefore be:

\[
P = EI \\
P = 100 \times 0.020 \\
P = 2 \text{ watts}
\]

If a resistor capable of dissipating this amount of wattage is not available, two 10,000 \( \Omega \) resistors connected in parallel may be used. This arrangement is shown in Fig. B. The total resistance is still 5000 \( \Omega \), and the combination will still draw 20 ma. from a 100 volt source. However, the 20 ma. will now divide so that only 10 ma.
flow through each resistor. The wattage dissipated in each resistor is therefore:

\[ P = \frac{E^2}{R} = \frac{100^2}{10000} = \frac{10000}{10000} = 1 \text{ watt} \]

The resistors in Fig. B can therefore have wattage ratings half as great as the resistor in Fig. A.

Fig. C shows another arrangement in which each resistor can have a wattage rating half as great as the resistor in Fig. A. Here, two 2500 Ω resistors are connected in series. The total resistance is still 5000 Ω, and the combination still draws 20 ma. from a 100 volt source. However, each resistor will dissipate:

\[ P = IR = 0.02 \times 2500 = 1 \text{ watt} \]

**Quiz**

1. The heater of a tube is rated 6.3 volts, 0.3 amperes. How much wattage is dissipated in the heater?
   - (a) 21 watts; (b) 1.98 watts; (c) 0.567 watts

2. A 110 volt soldering iron has a resistance of 121 Ω. The rating of the soldering iron is:
   - (a) 100 watts; (b) 133 watts; (c) 150 watts

3. How much wattage is dissipated in a 12 Ω resistor carrying 0.5 amperes of current?
   - (a) 6 watts; (b) 72 watts; (c) 3 watts

4. If the value of current flow through a resistor is doubled, the wattage dissipated in the resistor will be:
   - (a) the same; (b) twice as great; (c) four times as great

5. How many watts will be dissipated in a resistor which draws 5 ma. from a 600 volt supply?
   - (a) 3 watts; (b) 120 watts; (c) 1.5 watts

Answers to the quiz are given on page 128. A score of 5 correct is excellent, 4 correct is good, and 3 or less correct is poor.

**MULTIVIBRATORS**

Progress in electronics has brought with it a gradual change in the fundamental definition of a multivibrator. The television technician recognizes this circuit only as a free-running oscillator which yields the sawtooth waveforms needed in the scanning circuits of the TV receiver. But he is going to have to be more specific in the future because the term multivibrator has become generic in recent years and now includes three basic and very definite types.

The free-running square wave oscillator is now generally known as an astable multivibrator, the frequency of which is determined roughly by its circuit constants and which may be accurately controlled by external synchronization pulses. The circuit is arranged so that neither of the two triodes reaches a stable state but the conduction-cutoff cycle passes from one to the other in alternation.

In the far-flung networks of world-wide

---

**Electrical Appliance Repairs MADE EASY**

New Repair Manual Covers EVERY Repair on ALL Home Appliances

No repair too is too tough with the help of this big new guide. TELLS AND SHOWS how to service ALL home appliances like new-or MARE MONEY with a home repair shop of your own. FULL Deatureed Time.


FREE 10-DAY EXAMINATION. Coupon will bring you Electric Appliance Service Company. Send coupon. Servicing and Repair Guides.

Fix it yourself! Replace Old, Battered TV Wire with New KLEER-VISION

Now you can change that snowed-out picture and improve the sound by replacing your television transmission wire with KLEER-VISION wire.

**KLEER-VISION**

**TV TRANSMISSION WIRE IS NOW AVAILABLE FOR YOU IN 100 FOOT COILS**

This is the highest quality TV transmission wire ever produced. Time-tested, area-tested, result-tested. Quick as a flash you'll see the transformation in your present TV reception when you install the new KLEER-VISION transmission wire—and you save plenty by doing it yourself $2.99 for a 100 ft. coil

On sale at all leading hardware stores or by mail. Ask for MULTIVISION TV TRANS-MISSION WIRE. A. McGRAW-HILL BOOK CO., Inc., Dept. PE-2, 327 West 43rd St., New York 36, N. Y.

Should your local dealer not stock it, send your order to Box No. 101, 366 Madison Ave., New York 17, N. Y.
communications systems, another type of multivibrator plays an extremely important role: the bistable type. In this arrangement, the usual plate-to-grid feedback capacitors are replaced by resistors. When the component values are carefully chosen, this circuit becomes stable with one triode conducting and the other cut off. Upon the arrival of a triggering pulse, an almost instantaneous reversal of circuit conditions occurs: the triode which was conducting before the advent of the pulse suddenly drops to cut off while the tube that was formerly non-conducting begins to conduct. This new state is just as stable as the first. A second pulse may then be applied to restore the circuit to its original stable condition. The bistable multivibrator is also called a binary frequency divider, an Eccles-Jordan trigger circuit, and a locking circuit.

Another variant is the mono-stable multivibrator or flip-flop circuit. In this arrangement, there is only one stable state in which one of the two triodes conducts and the other is cut off. A triggering pulse of the correct magnitude and polarity can produce a circuit reversal, but this new condition is not stable and, after the pulse has passed, the tubes revert to their original state of their own accord. This variation is found in certain multiplex communications transmitters where the mono-stable action is essential. A bistable multivibrator may be converted into the mono-stable type by substituting a capacitor of the proper value for one of the feedback resistors and applying a fixed bias to one of the grids. “One-Shot” Multivibrator is another name for the mono-stable multivibrator.

**TECHNICAL QUIZ**

**RESISTORS** $R_1$, $R_2$, and $R_3$ are connected as shown in the diagram. Each resistor has a value of 3 ohms. If the battery voltage is 3 volts, what will be the total current drain, as indicated by the ammeter, when switch $S_i$ is closed? The answer is given on page 128.

**ULTRASONICS AND SUPERSONICS**

Although these words were at one time synonymous, they are now clearly differentiated in scientific literature.
EPUT stands for Events Per Unit Time. An EPUT meter is a versatile and accurate instrument for counting the number of events or occurrences which take place in a given length of time provided that these events can be translated into electrical pulses.

One important application of an EPUT meter lies in the measurement of the average frequency of an oscillator which is required by the nature of the circuit in which it appears to vary over a period of time. In this case, the "events" being measured are the recurring voltage cycles of oscillation.

The accompanying figure is a block diagram of one particular EPUT meter. Pulses corresponding to the events, occurring at an unknown rate, are amplified and properly shaped by the input circuit. These pulses are then passed through the electronic gate to the bank of five deci-
HERSHEL'S "KIT" SPECIALS

ALL-PURPOSE FIL. TRANSFORMER
For Model Trains, Welding, Transmitters, etc.
PRI. 117 v. 60 cyc. 50c.
6.4 V. 20A
5.5 V. 25A
5 V. 2A
2.5 V. 1.575A

$495

MYSTERY PACKAGE ELECTRONIC PARTS
The Surprise of Your Life
25 pounds of worth $50.00
BRAND NEW Our Price
USABLE O.G.T.
$495

SURPLUS

KIT 1. HARDWARE
Over 1,000 pieces, 2/5 lb.
5 V. 20A TV HARDWARE.

$149

KIT 2. CERAMICOS
100 ASSORTED, Range from 600 micro to 60,000 micro.

$350

KIT 3. VOLUME CONTROLS
25 ASSORTED, 6 ohm to 3 meg., 50 m.w. with.

$475

KIT 6. R.F. CHOKE
25 ASSORTED.

$198

KIT 5. TOGGLE & SLIDE SWITCH
25 ASSORTED, Range, 5 ohm to 25 ohm.

$495

KIT 7. PAPER & CAN CONDENSERS
25 ASSORTED, Range from .1 to 100.000, 50, 500, 1000, 3000, 10,000, 25,000.

$350

HERSHEL RADIO CO.
5245 Grand River, Detroit 8, Mich.
All Prices F.O.B. Detroit

Terms: Cash with order or 20% DOWN.—Balance will be mailed C.O.D.

SPECIAL PURCHASE!

Brand NEW RCA TV CAMERAS

Just Received $19750

100's of Used Models Sold at $225 up! Rig up your own TV watching for swim pools and other uses-plus plus training, etc. 1846 iconoscope, 6-stage video amplifier and clipper. Write for complete tech. data. Price will vary. Without schematics and conversion

$7.95

MOTIOAST SWITH BZ-7807—New

$1.50 24A COAX. CABLE

$4.50

MINIATURE LINE MATCHING TRANSFORMER, $1 plus 25¢ postage. For blocking oscillators on TV Knees

$7.95

24 V TRANSFORMER & RECTIFIER COMB., hour 24V.

$19.95

DC power supply of 110 V AC primary. 24 V secondary and

Send check with order and 20% DOWN—Balance will be mailed C.O.D.

$2.95

3 or 4 amps.

$3.95

New 100'S FOR 75c.

$3.95

313 MAKES A 400 MC

RADIOPHONE when converted

$3.95

Send check with order (no COD's, please) Prices FOB White.

Harjo Sales Co.
Dept. PEG, 4100 BURBANK BLVD., BURBANK, CALIF.
Phone Victoria 9-3411—Get FREE CATALOG
dept.

CATHODE FOLLOWERS

Is IT true that the gain of a cathode follower stage is always less than one? If so, why is a cathode follower so often used in the vertical amplifier of an oscilloscope?

Yes; in this circuit (which has the output taken from the cathode rather than from the plate), the ratio between the output and input signal voltages (the voltage gain) always is less than one. However, the ratios between output and input signal currents and between output and input signal powers usually are very high. A cathode follower may operate on a very low power input signal and deliver a high power signal output. Consequently, the input impedance is said to be very high and the output impedance, very low.

It is for this reason that the cathode follower often is used as the first stage of the vertical amplifier in an oscilloscope. Because of its high input impedance, it draws practically no current from the circuit under test (the circuit to which the oscilloscope probe is connected) and therefore does not distort the waveform. This feature is of such importance that it more than compensates for the voltage gain of less than one.

END
Going on the Air  
(Continued from page 55)

effect and the greater the increase in effective radiated power. Beam antennas are mechanical rather than electrical problems and require rigid, well-supported masts or towers. One picture shows a ten-element 2-meter beam, consisting of two five-element sections.

Trade name list: For your guidance in obtaining further information about amateur transmitting equipment, the following is a list of the manufacturers' names and addresses:


Viking: E. F. Johnson Co., Waseca, Minn.


Hallcrafters: Hallcrafters Company, Chicago 24, Ill.

Collins: Collins Radio Co., Cedar Rapids, Iowa.

Millen: James Millen, 150 Exchange St., Malden, Mass.

Gonset: Gonset Co., 801 S. Main St., Burbank, Calif.

Most of the transmitters mentioned in this article, as well as others, probably can be obtained from your local distributor. If there is no distributor in your vicinity, write to any one of the mail order houses.

---

R/C MODELS for  
BEGINNER AND EXPERT

FOR BEGINNERS:  
48" SPAN

LIVE WIRE "TRAINER"  
WORLDS MOST POPULAR R/C MODEL

A quickly built model of medium size, stable, rugged and simple to fly. Features a removable R/C PREFAB. unit.  
KIT $6.95

MULTI-SERVOS  
POWERFUL-DEPENDABLE  
MOTOR DRIVEN R/C ACTUATORS

Ample power to move any model control. Great power, small size, high efficiency - one for every purpose.

Positive-Flow  
FUEL TANK  
Gives perfect fuel flow under all flight attitudes, upright or inverted. The tank with the internal swirl.  
$14.95  

FOR ADVANCED FLYING:

65" SPAN  
LIVE WIRE "CRUISER"  
FOR THE ULTIMATE IN R/C FLYING

A big, high performance, realistic model capable of carrying the heaviest of equipment with ease. Has elevators and a removable R/C unit.  
KIT $14.95

eBOLT MODEL ENGINEERING CO.  
BOX 73  
WILLIAMSVILLE, N. Y.

EASY! BUILD your own Professional Electronic Instruments with EICO KITS! SAVE 50%

- Complete easy-to-follow instructions
- Fully guaranteed

KIT $44.95  WIRED $79.95

KIT $25.95  WIRED $59.95

KIT $12.95  WIRED $14.95

KIT $29.95  WIRED $39.95

Write now for FREE catalog describing 38 EICO KITS

February, 1955
The World at a Twirl

(Continued from page 73)

Fr. West Africa—Radio Dakar, 11.896A, should now be using a new 25 kw. transmitter; should be good level in French around 2100-2300 closedown.

Haiti—"Glimpses of Haiti" is the title of the English session on Sunday only from 4VC, Radio Commerce, 9.485, Port-au-Prince, at 2200-2230; announces the 49-m. outlet (6.091A) as in parallel.


India—Try for All India Radio on 11.620 in English 1330-1445 (news 1335).

Italy—Rome now announces 9.570 parallel 6.010 for English to North America starting 0015.

Ivory Coast—By careful tuning, you may be able to pick up Radio Abidjan, 4.945, in French around 2100-2130 when closes with "La Marsaillaise."

New Caledonia—Radio Noumea, 6.035, opens in French 0700, is good level on West Coast; is also heard in eastern U.S., probably best around 0500-0930.

Spain—Madrid's "wandering" transmitter is now back near 9.369, with English 2015-2045, 2300-2345A, and 0300A-0350A.

Roumania—Bucharest now uses 6.210A for English to North America 0300-0330, 0430-0500.

Surinam—Tune measured 5.758 around 2300-2400 for PZ15, Paramaribo, in Dutch.

Sweden—West Coasters should find Radio Sweden, 9.355, at good level at 1600 with English news.

For Experienced SWL'S

Angola—Radio Angola, 11.862, Luanda, has interval signal of steady native drum beats, clock striking sequence, and "A Portuguesa" preceding actual sign-on at 1830. Heard in Indiana; runs to 2130 or later.

Canary Islands—EA8AB, 7.510A, Tenerife, has been heard at weak level in Delaware around 2020 with Spanish musical program; has CWQRM.

Ceylon—Radio Ceylon, 9.520, is heard in western U.S. to 1730 closedown.

China—Radio Peking is heard on West Coast on 15.060AV, 15.100, 11.330, 11.650, and 9.665 (best) with fair to good signals in Asiatic languages around 2230-0130; usually reaches peak by 0000. Is again using 11.960 for English news 0300.

Cyprus—Tune 11.720 around 1645 for ZM7, Limassol, in Arabic.

Dutch New Guinea—Radio Hollandia is
now using 3.390, opens around 0930 or 1000, according to New Zealand’s SWL’s.

Ethiopia—Radio Addis Ababa, 15.342A, is reported heard in both eastern and western U.S. irregularly around 1700 to 1930 closedown; some English.

Indo-China—Radio France-Asie, Saigon, is noted on West Coast on 9.755A with English newscast 1400-1415, fair signal.

Indonesia (USI)—Try YDF2, 11.875, Djakarta, for English news (then beamed on Europe) at 1900; heard in eastern U.S. Lebanon—When this was compiled, Radio Beirut, 8.036A, had been logged in Delaware around 2015 to 2130 closedown (with anthem).

Liberia—ELBC, 6.025A, Monrovia, has been heard in eastern U.S. around 2245 in English to closedown with anthem at 2346A; at times has QRM from Hilversum, Holland, and from Radio Moscow.

North Borneo—Radio Sabah, Jesselton, is scheduled on 7.237, 250 watts, around 0400-0530; a new 5-7.5 kw. transmitter will be installed in March or April with tests scheduled to begin in June or July; frequencies allocated besides the present one include 5.980, 6.090, 7.180, 7.240, 9.660, 9.740.

Pakistan—Try 7.010 for Radio Pakistan, Karachi, at 2015 when has English news.

Philippines—DZRH, 11.955, may be heard some days on West Coast with English news 2300.

Sao Tome—CR5CC, 4.807, is heard in western U.S. around 2000 to sign-off with “A Portuguesa” at 2058A.

South Korea—HIKB, 7.935, Seoul, is heard on West Coast around 1200 in Korean language.

Last-Minute Flashes

Radio Sweden has discontinued its weekly DX session “for budget reasons,” 4VEH measured 6.242, Cap Haitien, Haiti, has been noted testing in English around 2250; asked for reports. A new station in Honduras has been heard testing in English on 6.085 (announced 6.090) around 0700 and again around 1200; requested reports to HRNQ, Box 393, Tegucigalpa, Honduras.

“Voice of America” verifies reception of all VOA transmitters (either in continental U.S. or at overseas relay points) from new QRA of United States Information Agency, IBS/FN, 330 Independence Ave., S.W., Washington, D.C. The Tokyo commercial transmitters, JOZ2, 6.055, and JOZ, 3.925, now have an “Economic Program” in English 0750-0800; heard on West Coast.*

May much seasonal DX be yours as you “twirl to tune the world!”

(Continued next month)
The performance of a speaker, like a violin, largely depends upon the cabinet. The Ultra-Fidelity Karlson is completely NEW and has amazed thousands at every audio show. "A new standard of performance," "unbelievable," "HI-FI" Manual. Send today for information on this exciting new scientific discovery.

Available in kit or finished form for $65 to $117.60. If not yet available from your Hi-Fi dealer, order direct.

KARLSON ASSOCIATES, INC.
DEPT. M
1483 Coney Island Ave., Brooklyn 30, N. Y.

Carl & Jerry
(Continued from page 68)

bicycle light turned off. This made it very difficult to tell exactly where he was, especially since his eyes were still not completely accustomed to the darkness. Just as he was thinking that he must be nearing the quarry, there was a sudden piercing sound. His bicycle rose beneath him like a bucking bronco, and he sailed over the handlebars to make a perfect three-point landing on his knees and nose in the frozen gravel of the roadway.

Before he could gather his scattered senses, Carl was dragging him by an elbow toward the deep ditch at the side of the road and hissing into his ear, "Get down here in the ditch before they see us. I crawled up a few yards to wait for you, but you came along so fast I didn't have time to flag you down. I was afraid to call out, so I just grabbed up a stick and ran it through your front spokes. That stopped you!"

"Oh fine!" Jerry muttered as he tenderly felt his scraped nose. "Here I am rushing to help you, and you try to murder me."

"Quit griping," Carl hissed. "With all that natural padding you've got, a little bump isn't going to do any damage. Let's get back under the bridge until the squad car comes."

They had barely reached this sanctuary before they heard the wailing of a siren, and a few seconds later the flashing red light of a squad car rapidly approached down the road. With a great screeching of brakes and showering of gravel the car slowed down and turned abruptly across the bridge. The boys immediately popped out of their hiding place to see a truck and two men standing in the glare of the squad-car spotlights.

"All right, you two; don't move!" one of the officers commanded as he stepped from the car with a drawn gun. "What are you up to?"

"Why we were just getting ready to dump a body—" one of the men began. "Ha! So you admit it," the officer said menacingly. "Mack, you cover me while I examine the body."

With his gun still drawn, the policeman stepped forward cautiously, taking care not to come between the gun of his fellow officer and the two men, and jerked the canvas from the object on the truck. The two boys had stolen out of the ditch and were standing right at the rear fender of the squad car. The simultaneous gasp they gave as the canvas slipped to the ground so unnerved the policeman standing beside...
the car that he tried to point his gun in all four directions at the same time and came very close to shooting a hole in the squad car itself.

"It's a car body!" the boys said in chorus.

"And what did you think it was?" demanded one of the men in the spotlight.

"Hey, where did you kids come from? Did one of you call us?" the officer near the car demanded.

"Ye-yes, I did," Jerry quavered. Then he told the whole story of the tape recording. Before he finished the two men with the truck were slapping each other on the back and laughing so hard they could scarcely stand up. Finally the younger one wiped his eyes and started to explain: "I do some dirt track racing. Jack here, who works at a machine shop from 4 p.m. until midnight, helps me fix up my cars. I often talk with him after he eats a midnight snack at the restaurant right across the alley from the feedstore. Last night I was telling him about a beat-up racecar I had bought in a neighboring town and had managed to drive home. The heap was in such sad shape that I had to keep choking the motor to make it run. It finally died completely right in front of the house and I had to tow it into my garage. We weren't going to use the old body and my wife said I had to get rid of it. I call my wife 'The Boss'-just kidding, of course."

"We're both married; we understand," one of the policemen said.

"In this race business, every driver likes to keep the other drivers guessing about a new rod he intends to use. That's why we didn't want anyone to see the car we were rebuilding. Leaving the old body lying around would be a giveaway, so we were going to drop it into the quarry."

"What was that about 'the Hollywood type attracting a lot of attention,'" Carl asked.

"The jalop had a Hollywood muffer on it that made a lot of noise when you ginned the motor," Jack explained promptly.

The older policeman studied the dejected faces of the two boys for a few seconds and then said kindly, "Don't take it so hard, fellows. Even without hearing that tape, I can imagine how convincing it must have sounded. And if it had been a serious affair, you did a good job of detecting."

Jerry looked up with a sudden expression of resolution. "From now on," he announced, "'detection' is going to be just a radio term as far as I am concerned."

"I'm with you," Carl said fervently as he started toward his bicycle.

February, 1955
Disc Review
(Continued from page 61)

Rachmaninoff’s Piano Concerto No. 2 is one of the most popular piano works ever written. Even Tin Pan Alley knows this and you may have heard one of the themes from the work as the pop ballad, “Full Moon and Empty Arms.” That the work has survived this assault is high tribute to its intrinsic worth. As might be expected, there are more than a few recordings of this concerto. In all there are twelve, six of which are worthy of being called Hi-Fi. One of the newest recordings, that of Geza Anda on Angel 35093, sounds the best and Mr. Anda’s performance is just about tops, too. In any piano recording, you must listen for such things as “wow” or wavering of pitch. The piano is a fixed pitch instrument so any speed variation in the tape recorder that made the master, the recording or cutting lathe that made the disc, or your turntable will show up very quickly. In a good piano recording, the tone must not be harsh or ring, but be smooth and liquid. Hammer action of the keys should not be heard. A poor recording will exhibit distortion in high level chordal passages. The piano, along with the organ is the most difficult of all instruments to record, and it is a tribute to the Angel disc, that the sound of Mr. Anda’s piano has been so faithfully captured. Some of the other recordings are more spectacularly Hi-Fi than the Angel disc, but carry with them some of the penalties mentioned previously. In order of choice we have Katchen on London LL384, Farnadi on Westminster 5193, Kapell on Victor LM1097, and DeGroot on Epic 3009. Kapell gives the best performance among these and Westminster the best sound. It would be unkind not to mention the fact that you can hear Rachmaninoff himself on Victor LCT 1014. If you can appreciate performance, there is none better, but be forewarned. This sound is typical of the period in which it was recorded—restricted range, tubby bass, dull, dead-sounding. Victor has tried to help matters a little by adding some reverb, but you know instantly you are listening to an old recording. One more word about piano recordings. By their nature they have differing effects on certain pickup cartridges. If with the cartridge you are using, the sound seems distorted, or is subject to a peculiar “ringing” overtone, try changing to another cartridge. The amazing thing is that sometimes the cheaper cartridges sound better than more expensive units, although generally speaking the better quality units are very reliable. If you can afford it, buy the cartridge with the greatest compliance in the stylus. Since piano music is largely transients, it will sound best through such a unit. Next month . . . organ and violin concertos, among other forms of music, will be reviewed.

AUDIO FANS!
Keep up with the latest record releases on all labels by reading Bert Whyte’s monthly “Certified Record Review” in our sister publication, RADIO & TELEVISION NEWS. Available at all newsstands!
GLOSSARY

a.f.c.—Automatic frequency control: (1) control of the frequency of the local oscillator in a superheterodyne to keep the receiver in tune with a desired station; (2) control of the frequency of the horizontal oscillator in a television receiver to keep the horizontal deflection in step with the horizontal deflection at the television studio and thus to keep the picture steady horizontally.

a.g.c.—Automatic gain control, control of the amplification of an amplifier so that its output is approximately constant in spite of variations in the input signal; especially such control in television receivers to reduce variations in picture contrast produced by variations in r.f. signal strength.

a.v.c.—Automatic volume control (a.g.c. used in radio receivers to reduce variations in sound volume produced by variations in r.f. signal strength).

choke—An inductance used especially to present a high impedance to a wide range of frequencies. Filter chokes are used in rectifier-type power supplies to remove from the d.c. output hum components equal to the power line frequency and its harmonics; audio-frequency chokes are used in audio amplifiers and radio-frequency chokes are used in r.f. and i.f. amplifiers, to present a high impedance to a vacuum tube or to block unwanted signals.

crystal—1. Rectifying crystal, one which passes electric current more easily in one direction than in the other and thus can be used to change alternating current to pulsating direct current; made of such materials as germanium, silicon, copper oxide, gallium, and carbonium. 2. Piezo-electric crystal, one which transforms mechanical energy to electrical and vice versa. Such crystals, made of Rochelle salt or barium titanate, are used in microphones and phonograph pickups. When cut to a certain size and shape, a piezo-electric crystal, usually made of quartz, can be used as a resonant circuit, to control the frequency of an oscillator or as a frequency-selective filter.

decibel—A measure of the ratio between two power levels or of a power level with respect to a designated reference level. Basically, the number of decibels is ten times the logarithm of a power ratio. One decibel is approximately the smallest difference in sound power which can be detected by the average human ear.

db of feedback—The number of decibels by which inverse feedback in an amplifier reduces its over-all gain and distortion.

detector—A circuit used to recover an audio or video signal from a modulated radio signal.

electrolytic capacitor—A type of capacitor in which the dielectric or insulator is a thin film of oxide deposited on one aluminum or tantalum plate and an electrolyte is used between the insulator and the other plate. This type of capacitor provides a larger capacitance in a given volume than any other type. However, except for special a.c. electrolytics, this type can be used only in circuits where voltage of constant polarity is applied to it.

elevator—Control surface of an aircraft which regulates its pitch attitude (level, climbing, or diving).

feedback—Returning part of the output of an amplifier stage to the input of the same or a previous stage. Negative or inverse (cut-of-phase) feedback decreases the gain and distortion of the amplifier; positive (in-phase) feedback increases gain and distortion and may produce oscillation.

frequency response—The relative ability of an amplifier, loudspeaker, or other device to respond to different frequencies.

glow plug—A type of internal-combustion engine used in models, in which starting is assisted by a filament in the combustion chamber, which is energized by an external battery.

harmonic distortion—Distortion consisting of addition to the signal of components whose frequencies are multiples (harmonics) of the original signal frequency. It is produced by an amplifier or other device which is nonlinear (does not give the same ratio of output to input for all input amplitudes).

heterodyne—A different frequency (beat) produced by combining two frequencies.

hole—Absence of an electron normally present in an atom; a positive charge. The action of some transistors often is explained by referring to movement of holes or positive charges, rather than movement in the opposite direction of electrons or negative charges.

microammeter—A meter for the measurement of current flow, which is calibrated in microamperes, or millionths of an amperes.

milliamperem—One-thousandth of an amperem.

modulated—Varied in amplitude, frequency, or some other quality. Radio-frequency signals are modulated in order to carry signals of lower frequency, such as sound or picture signals.

multitester—A meter which is a combination of a voltmeter, an ohmmeter, and (often) an ammeter.

octal—Designation of one of the standard types of tube base or the socket to fit it. The base has eight equally spaced pins and a centrally located boss, which is made of insulating material and has a key to prevent improper insertion of the tube in the socket. The local tube base is similar, except that its pins are smaller in diameter and the central boss is of metal and has a groove which fits a one-turn spring in the socket, to hold the tube.

oscillator—A vacuum-tube or transistor circuit or other device which produces an alternating-current power output without mechanical rotation.

plate dissipation—The part of the power applied to the plate circuit of a vacuum tube which does not appear as signal output, but is dissipated as heat in the plate of the tube.

push-pull—An arrangement of two vacuum tubes in an amplifier so that the input signal is applied in opposite phases to the two tubes and the signal outputs are combined in phase. This arrangement reduces even-harmonic distortion.

POPULAR ELECTRONICS
regeneration—Positive feedback in detectors and amplifiers. Increases gain and distortion and may produce oscillation.

saturate—To reach the maximum possible value of some quantity, such as magnetization in the core of an inductor or electron flow in a vacuum tube from cathode to plate.

servo-motor—A special electric, hydraulic, or other type of motor used in control apparatus to convert a small movement into one of greater amplitude or greater force.

signal generator—A test instrument providing electrical power substantially similar in amplitude, frequency, and other qualities, to signals found in electronic equipment.

signal tracer—A test instrument for detecting the presence of a signal in electronic equipment and, with some signal tracers, measuring its amplitude, frequency, or other qualities.

superheterodyne—A receiver in which all incoming radio-frequency signals are mixed with the output of an oscillator to produce a heterodyne or beat frequency. The oscillator frequency is variable so that the beat produced with any desired signal can be adjusted to a certain frequency. The beat-frequency signal is fed to a fixed-frequency (intermediate-frequency) amplifier, where greater and more uniform gain and selectivity can be obtained than at the original radio frequency.

superregenerative—A type of regenerative detector in which the tendency to oscillation is controlled by a quenching voltage of ultrasonic frequency which periodically allows the gain to increase, then reduces it. The quenching voltage can be produced by the detector tube itself or by a separate oscillator. This type of detector has great sensitivity, but poor selectivity.

tone control—1. In a radio receiver or an audio amplifier, means provided to change the relative response to audio signals of different frequencies; effects which can be produced are treble boost or attenuation and bass boost or attenuation. 2. In radio control of models, a system wherein the radio signal is modulated by audio tones and control is achieved by keying the modulating tones on and off, instead of keying the r.f. carrier.

v.i.w.m.—Vacuum-tube voltmeter, a voltmeter using one or more vacuum tubes to increase the sensitivity of the basic meter movement, so that measurements can be made in a circuit without drawing much current and without disturbing very much the normal operating conditions of the circuit. May also be a combination voltmeter, ohmmeter, and ammeter. END

**ABBREVIATIONS**

a.c.—alternating current
a.f.—audio frequency
a.f.c.—automatic frequency control
a.g.c.—automatic gain control
AM—amplitude modulation
AMP—ampere
ARRL—American Radio Relay League
A.V.C.—automatic volume control
B.C.I.—interference with broadcast reception
B.F.O.—beat frequency oscillator
c.p.s.—cycles per second
c.t.—center-tapped
C.W.—continuous wave
d.B.—decibel
d.B.m.—decibels above one milliwatt
d.c.—direct current
d.c.c.—double cotton covered (wire)
d.p.d.t.—double-pole, double-throw
d.p.s.t.—double-pole, single-throw
D.X.—distance
elec.—electrolytic
F.C.C.—Federal Communications Commission
F.M.—frequency modulation
FREQ.—frequency
G.M.T.—Greenwich Mean Time
h.f.—high frequency (of sound reproduction)
h.v.—high voltage
I.F.—intermediate frequency
K—kilo (one thousand)
K.C.—kilocycle
M— mega (one million)
M.A.—milliamphere
M.C.—megacycle
M.E.G.—megohm
M.U.—microphone, microfarad
M.V.—millivolt
M.O.P.A.—master oscillator, power amplifier
M.U.—amplification factor
µF.—microfarad
µH.—microhenry
µM.—microvolt
µW.—microwatt
µV.—micronewton
u.w.—unit
w.—watt
w.p.m.—words per minute
X.M.T.—transmitter
The Model 70 UTILITY TESTER
FOR REPAIRING ALL ELECTRICAL APPLIANCES
MOTORS - AUTOMOBILES - TV TUBES
As an electrical trouble shooter the Model 70:
• Measures A.C. and D.C. Voltages, A.C. and
  D.C. Current, Resistance, Leakage, etc.
• Will measure current consumption while the
  apparatus under test is in operation.
• Includes potentiometer for sensitive direct-
  reading resistance range which will measure all resistances
  commonly used in electrical appliances, motors, etc.
• Leakage detecting circuit will indicate continu-
  uity of zero ohms to 5 megohms (3,000,000 ohms).
• Will test boosters, Irons, Transformers, Heating
  Fuses, Carbon, Vacuum Cleaners, Re-
  frigerators, Lamps, Fluorescents, Fans,
  Switches, Thermostats, etc.
• Will test all TV tubes for open ele-
  ments, inter-element shorts, burned
  out tubes, etc.

As an Automotive Tester the Model 70 will test:
• Both 6 Volt and 12 Volt Storage Batteries
  • Generators, Starters, Distributors
  • Ignition Coils, Rectifiers, Relays, Circuit Breakers
  • Cigarette Lighters, Step Lights, Condensers
  • Directional Signal System
  • All Lamps and Bulbs, Fuses, Heating Systems.

PHONE SHIPPED ON APPROVAL - NO MONEY WITH ORDER - NO C.O.D.

Try it for 10 days before paying. If not completely satisfied return it to us, less a small handling charge for the first 3 months. No interest or finance charge.

MCGG ELECTRONIC DIST. CO., Dept. D-95
3846 Tenth Ave., New York 14, N. Y.

CORONA RADIO KITS
EASY TO BUILD - EDUCATIONAL - EXCELLENT RECEPTION
BROADCAST SUPERHET KIT $14.75
ROCKET 115K - Latest Simple
Bond Superhet Circuit for Ulti-
mate in Sensitivity and Recep-
tional Quality. Kit includes all necessary parts, punched chas-
ele, attractive bakelite mahogany cabinet, built-in loop antenna.
Iron core 1", Big Alinco V mpr.; tubes: 12SK7, 12AX7, 12AU7, 5056, Automatic vol. control, beam power out-
put. Complete kit, 1 ampere, 60a. per month.

CORONA RADIO & TV CO
370 Broadway New York 13, N.Y.

INDEX OF ADVERTISERS

ADVERTISER PAGE NO.
Ace Radio 122
Advance Spectacle Co. 110
Advance Training 112
Allied Radio Corp. 12
American School 120
Ashe Radio Co., Walter 154
Bourne Eng. Co. 94
Burmester-Applebee Co. 96
Business Information Corp. 124
Cabinet 13
Capital Radio Engineering Institute 15
Century Electronics Co. 100
Clarence A. O'Brien & Harvey Jacobson 7
Condor Radio 97
Corona Radio 128
Coyne Electrical School 5, 95, 105
de Bolt Model Engineering Co. 119
Desco Mfg. Co. 129
Duraclean 109
Edlile Electronics 110
Electro Kit 122
Electronic Instrument Co., Inc., Elco. 119
Electronic Measurement Corporation 6
Evans, Victor J. 110
Finney Company, The 111
Gernsback Publications 113
Grantham School of Electronics 124
Greenlee Tool Co. 109
Gyro Electronics 120
Hallcrafters 4th COVER
Harrington Sales Co. 118
Health Company 84, 85, 86, 87
Herril Radio Corp. 118
Household Appliances 94
Instructograph Co. 124
Johnson, E. F. 94
Karlsson Associates, Inc. 112
Klier Vision Sales Co. 115
Lafayette Radio 90
LaPointe Electric Co. 81
McGraw Hill Book Co., Inc. 115
Miller Gustave 124
Mine Electronic Distributing Co. 128
Musical Masterpiece Society 8
National Radio Institute 5
National Schools 3rd COVER
Newark Electric Co. 112
Progressive "Edu-Kits," Inc. 107
Radio-Television Training Association 9
Raytheon Manufacturing Co. 10, 11
Rex Radio Supply 108
Rexville TV Supply 108
Rinehart & Co., Inc. 123
SLEEPER, MILTON B. Publisher 101
Smith, Johnson & Co. 20
Soundtronics Lab 120
Sprague Products Co. 16
Stevel-EI Electronics Corp. 100
Superex Electronics Corp. 116
Teltron Electric Company 117
Trans-Mite Radio Lab. 104
United Catalog Publishers, Inc. 120
University Loudspeakers 2nd COVER
Utilities Engineering Institute 128
Valparaiso Technical Institute 124
Video Electronics Co. 121
Vissile Co. 122
Walter Electric 109
Wayne School, Inc. 122
Western Radio Corp. 110
World Radio Laboratories 93

ELECTRICAL POWER QUIZ
(Answers to quiz on page 115)
1. b 2. a 3. c 4. c 5. a

TECHNICAL QUIZ
(Answer to quiz on page 116)
The resistors are actually connected in parallel. This can be easily noted by redrawning the diagram in a more conventional manner. The current drain with switch S1 closed will be 3 amperes.
FOR SALE

RADIO Diagrams $1.00; Television $2.00. Give make, model. Diagram Service, 672-PE, Hartford 1, Conn.

15 TESTED One-tube circuits 25c, including ‘Radio-Builder,’ catalog. Laboratories, 328-L Fuller, Redwood City, California.


FIFTEEN assorted—Resistors, Condensers, Knobs, 30c. Trobwire, 312 West 75th, Chicago 21.


GEIGER Counter kits—Save dollars, buy them in kit form. Include radioactive sample. Send for free literature. Geiger Counters, Station A, Box 111, Dept. EF, Hartford 6, Conn.


INCREDIBLE! One tube radio receives television, FM broadcast, CAP and amateurs. Special tube and diagram only $2.00. Wired assembly $2.00. Springfield Enterprises, Box 54-E2, Springfield Gardens 13, New York.


DIAGRAMS: Professional Model Timers, Counters, Intercoms, Organs, etc. $1.00 each. Last free. Parks, 106 S. E. 57th, Portland 15, Oregon.

INSTRUCTION

HIGH School—no Classes. Study at home. Spare time. Diploma awarded. Write for Free Catalog HET-4, Wayne School, 2227 Sheffield, Chicago 14, Ill.


BUSINESS OPPORTUNITIES


TELEVISION Jobs—Names and addresses of companies to contact. $1.00. Fitzgerald, Dept. A-22, 3008 West Wellington Avenue, Chicago 18, Illinois.

INVENTIONS WANTED


MISCELLANEOUS

DETECTIVES—Experience unnecessary. Detective Particulars free. Write, Wargner, 125 W. 86th, N. Y.

BUILD, and play your own electronic organ. Jim Kirk, WEDEG, 1552 Church Street, San Francisco 14, Calif.


RADIO Television Service Forms Samples. Jones, 1210 Dudley, Utica, N. Y.


FREE Condenser and Resistor Code Charts. Largest stock of parts and tubes in West. We can save you money. K & L Radio Parts Co., 1406 Venice Blvd., Los Angeles 6, Calif.

TUBES—TV, Radio. Transmitting, special purpose types—Bought, Sold, Exchanged. Send details to B. N. Genisler W2LNI, 136 Liberty St., New York 6, N. Y.

TOP Dollar Paid for Art-13’s, dynamos, parts racks and all other components. Write: Harjo Sales Co., 4109 Burbank Blvd., Burbank, Calif.

PHOTO CREDITS

Page 24, 25, 26, OR Radio Industries, Inc.
37. Middle Right, General Electric Co.
47. Top Left, Agaparco, Inc.
67. Bottom, National Broadcasting Company
70. Top Left, American Electronics Co.
79. Bottom, Allen B. Du Mont Labs., Inc.
82. Bottom, Union Pacific Railroad Co. & Reeves Instrument Corp.
92. Bottom, General Electric Co.

TESTS LIVE OR DEAD CIRCUITS UP TO 600 VOLTS!

NEW broader CIRCUITRACER—thousands in use—by Auto-Lite, Bendix, General Electric, electricians, servicemen. For all electrical, Hi-Fi, radio-TV, automotive, aircraft, marine, space short. Tests tube filaments: plates, screens; vibrators, output voltages. Ind. AC or DC. Ind. through 20 megohms res. Tests your wiring before you apply.

February, 1955

February, 1955
The ohmic value of a resistor can be determined by means of the color code. There are two standard methods of indicating this value.

In Fig. A, the body (A) and end (B) indicate the first and second digits of the value while the dot (C) indicates the multiplier to be used. The tolerance of the unit is indicated by the end color (D). For example, if the body (A) is green the number is 5; if the end (B) is grey the second number is 8. If the dot (C) is red the multiplier is 100 or two zeros should be added. The resistor is then a 5800 ohm unit. If the end (D) has no color, the tolerance is ±20%.

In Fig. B, the first two stripes indicate the first two digits; the third stripe the multiplier; the fourth stripe the tolerance. Thus, if stripe (A) is green, (B) is grey, (C) is red, and (D) is silver, the resistor is a 5800 ohm ±10% unit.

Capacitance is given in µfd.
Colors have same values as on resistors, except as indicated in tables. Colors (A) and (B) are for first two digits; (C) is for multiplier, (D) is for tolerance. (E) and (F) give voltage rating in hundreds of volts; (E) is used only for ratings less than 1000 volts, (E) and (F) for first two digits of ratings 1000 volts or more. Values of colors for (E) and (F) are same as in resistance values. (G) is class of characteristic of capacitor, (H), (I), and (J) give temperature coefficient. (G), (H), (I), and (J) are not listed in the tables, since this information is seldom needed by the average home builder.
ADVANCE! Raise your earning power—learn RADIO-TELEVISION-ELECTRONICS by SHOP-METHOD HOME TRAINING

GOOD JOBS AWAIT THE TRAINED RADIO-TV TECHNICIAN
There is a place for you in the great Radio-Television-Electronics industry where you are trained at National Schools will train you at home!

Trained technicians are in growing demand at good pay—in manufacturing, broadcasting, television, communications, radar, research laboratories, home Radio-TV service, and other branches of the field. National Schools Master Shop-Method Home Training, with newly added lessons and equipment, trains you in your spare time, right in your own home, for these fascinating opportunities.

OUR METHOD IS PROVED BY THE SUCCESS OF NATIONAL SCHOOLS TRAINED MEN, ALL OVER THE WORLD, SINCE 1905.

EARN WHILE YOU LEARN
Many National students pay for all or part of their training with spare time earnings. We'll show you how you can do the same! Early in your training, you receive "Spare-time Work" Lessons which will enable you to earn extra money servicing neighbors' and friends' Radio and Television receivers, appliances, etc.

National Schools Training is All-Embracing
National Schools prepares you for your choice of many job opportunities. Thousands of home, portables, auto radios, and television sets, are being sold daily—more than ever before. Television is sweeping the country, too. Co-axial cables are now bringing Television to more cities, towns, and farms every day! National Schools' complete training program qualifies you in all fields. Read this partial list of opportunities for trained technicians:

- Business of Your Own + Broadcasting
- Radio Manufacturing, Sales, Service + Telecasting
- Television Manufacturing, Sales, Service
- Laboratories: Installation, Maintenance of Electronic Equipment
- Electrolysis, Coil Systems
- Garages: Auto Radio Sales, Service
- Sound Systems and Telephone Companies, Engineering Firms
- Theatre Sound Systems, Police Radio
- And scores of other good jobs in many related fields.

TELEVISION TRAINING
You get a complete series of up-to-the-minute lessons covering all phases of repairing, servicing and construction. The same lesson texts used by resident students in our modern and complete Television broadcast studios, laboratories and classrooms!

FREE! RADIO-TV BOOK AND SAMPLE LESSON!
Send today for National Schools' new, illustrated Book of Opportunity in Radio-Television-Electronics, and an actual Sample Lesson. No cost—no obligation. Use the coupon now—we'll answer by return airmail.

LEARN BY DOING
You receive and keep all the modern equipment shown above, including tubes and valuable, professional quality Multimeter, No extra charges.

APPROVED FOR VETERANS AND NON-VETERANS
Check coupon below

NATIONAL SCHOOLS
LOS ANGELES 37, CALIFORNIA — ESTABLISHED 1903

GET FACTS FASTEST! MAIL TO OFFICE NEAREST YOU!

NAME
ADDRESS
CITY
STATE
ZIP

MAIL IN ENVELOPE OR POST ON POSTCARD

NATIONAL SCHOOLS, Dept. 82G-25
4000 S. Figueroa Street or 333 West Polk Street
Los Angeles 37, Calif. or Chicago 7, III.

Send free Radio-TV Electronics book and free sample lesson. No obligation, no salesman will call.

VETERANS: Give Date of Discharge
Again, Two New Leaders Bear a Famous Brand*

We're proud of our name and the twenty years of electronic leadership it represents. Our brand new communications line is in keeping with the high standards we have always maintained. Hallicrafters respects the recognition it has achieved by never compromising quality for price or sacrificing craftsmanship for mass production. These new models are the ultimate in precision-built communications equipment.

W. J. Hallicrafters
B. Hallicrafters, Jr.

This new receiver reflects the dependable performance of 500,000 Hallicrafters radios with basically this chassis now in the field. Covers Broadcast Band 540-1650 kc plus three short-wave bands from 1650 kc-32 Mc. Electrical bandspread operates over large, easy-to-read dial. Headphone tip jacks on rear and built-in PM speaker. Oscillator for reception of code signals.

Gray steel cabinet with silver frame trim 12½" x 7" x 7½". Shipping weight 13 lbs. Four tubes plus rectifier. 105/125 V. 50/60 cycle AC/DC $49.95

These two new Civil Patrol receivers replacing the popular S-81 and S-82 are over ten times as sensitive, have greater increased audio power output, and include an extremely reliable built-in relay squelch system. This type of squelch system completely disables the entire audio system so that not a murmur is heard from the speaker until a signal is received making the unit perfect for monitoring of police, fire, taxi, mobile-telephone, forestry, civil defense. The S-94 covers from 30-50 Mc and the S-95 from 150-173 Mc. Built-in speaker and provisions for headphones. Gray steel cabinet with silver trim panel and red pointer. 12½” x 7” x 7½”. Shipping weight approximately 12½ lbs. Eight tubes plus rectifier. 105/125 V. 50/60 cycle AC/DC $59.95

Model S-94 (S-95)

*hallicrafters