Internet Appliance Development Board
Control “everything” in your home from remote locations

Appliances on the Information Highway
Is the electric company helping you save money or spying on you?

Linear ICs in Digital Applications
See what linear devices like op-amps can do in non-linear applications

Kirlian Photography
Making exposures using sheet film and cameras

Also Inside:
• VCR Play and Record Problems
• Experiments with Infrared LEDs
• The BasicX-24 Microcontroller
• Graphics on the Cheap
• Schemes Against Your Business
Free Shipping on Your First Order! Just Mention VIP# PT1
Call for details – Certain restrictions apply
FEATURES

29 INTERNET APPLIANCE DEVELOPMENT BOARD
Take some "free" emWare and Microchip software and integrate it with inexpensive and tricky electronics to build your own development system for controlling appliances in your home from remote locations.
—Fred Eady

41 APPLIANCES ON THE INTERNET
Utilities can now "talk" to appliances through the information superhighway, allowing your utility company to measure demand, forecast load growth, and more. Learn how they do it. —Bill Siuru

45 NON-LINEAR CONFIGURATIONS
Linear integrated circuits do not have to be limited to linear applications; there are a variety of non-linear services that these useful devices can perform. —Joseph J. Carr

51 HIGH-VOLTAGE GENERATION
How to turn low-voltage AC into very high DC voltages. All it takes are a few readily available components and some technical know-how. —Bill Cody

PRODUCT REVIEWS

4 GIZMO®
Portable LCD Photo Album; Wireless Entertainment System; CD Recorder; e-Mall Traveler; Mobile Scanner; In-Dash MiniDisc Receiver; DVD Player; Human/Solar-Powered Radio; New Desktop Computers.

DEPARTMENTS

7 HANDS-ON REPORT
Night Owl Optics Explorer NOX3, a night-vision scope that combines starlight amplification with an infrared illuminator.

PR1 ProService Review—follows page 112. Electronic Service Survival Solutions; Schemes Against Your Business; Define Your Market.

9 COMPUTER BITS
Graphics on the cheap: How to get the graphics you need and how to process them to get the results you want.

13 PROTOTYPE
Spinning Gold into Electronics; Holographic Optical Data Storage; Clues to Astronomical Mysteries; Liquid-Crystal Display Panels.

20 AMAZING SCIENCE
Making exposures with our Kirlian photography equipment using sheet film and cameras.

23 SERVICE CLINIC
Solving the most common VCR play and record mechanical problems with some practical technical help from Sam Goldwasser.

57 Q&A
You've got questions? Michael Covington has the answers.

61 ROBOTICS WORKSHOP
More on the BasicX-24 microcontroller and using it with radio-control servos.

66 TECH MUSINGS
Using transfer functions; lithium polymer batteries; understanding non-linearity; algae hydrogen source; and more.

72 BASIC CIRCUITRY
Experiments with infrared LEDs, transistors, and phototransistors.

AND MORE

2 Editorial
12 New Literature
18 Letters
27 New Gear

77 Poptronics Shopper
Inside The Back Cover:
Advertising Index
Free Information Card

Postmaster: Please send address changes to Poptronics, Subscription Dept., P.O. Box 459, Mount Morris, IL 61054-7629

A stamped self-addressed envelope must accompany all submitted manuscripts and/or artwork or photographs if their return is desired should they be rejected. We disclaim any responsibility for the loss or damage of manuscripts and/or artwork or photographs while in our possession or otherwise.

As a service to readers, Poptronics publishes available plans or information relating to newsworthy products, techniques, and scientific and technological developments. Because of possible variances in the quality and condition of materials and workmanship used by readers, Poptronics disclaims any responsibility for the sale and proper functioning of reader-built projects based upon or from plans or information published in this magazine.

www.americanradiohistory.com
Long-Time Subscriber Makes Good

Where did it all begin? Well, it all started back on a little farm... oh, not that far back.
Actually, it all started back when I decided to get serious about electronics as a hobby.
I had picked up a few "how-to" books and started studying data sheets, but I wanted to
get a better grounding in the subject.
I wanted to subscribe to an electronics magazine.
The two contenders that I decided to choose from were Popular Electronics (back
when it was published by Ziff-Davis) and Radio-Electronics. Although tempted to flip a
coin, I decided on the former of the two. I was just about to send in my subscription card
and payment when I heard that Ziff-Davis was changing the title to Computers &
Electronics. Since I had no money for a computer (we're talking 1981 here, folks. An Apple
II cost well over a thousand dollars—almost two months of my salary!), I sent my check
not to Gernsback Publications.
Flash forward 15 years: The career that I was building in the electronics manufactur-
ing industry had dried up, and the job that I had taken to keep the bills paid wasn't doing
as well as expected. Imagine my surprise when I looked in the help-wanted ads and saw,
"Electronics magazine looking for technical editor. Electronics knowledge a must."
I thought, "What's the worst that could happen?" as I typed up a cover letter, but the
address kept sticking in my mind. Where had I seen it before?
Suddenly, it hit me. Grabbing a recent issue of Electronics Now I verified my suspi-
Sions. I was going to try working for the company whose magazine I had been reading for
over a decade.
Obviously, I got the job.
Now that I've been given the chance to "step up to the batter's box," I'd like to remind
everyone that first and foremost, I'm a reader just like you. Together, we can make sure
that Poptronics, the magazine of the hobbyist, by the hobbyist, and for the hobbyist shall
not perish from the newsstand!
So strap yourselves in and check that your seat backs and tray tables are in their
upright and locked positions—we have quite a ride in store for you!
Now that I've taken care of the old business, let's move onto this month's controver-
sial question. The other day, I was reading an interesting item in a trade journal for the
Internet and computer industry. It seems that an interesting interpretation of copyright
laws is occurring. You would expect that if you buy a book or magazine, you have the right
to sell that item to someone else as long as you don't keep any copies, and that the same
goes for software when the license says that it should be treated "like a book."
Apparently, a large software publisher stopped someone from selling their copy of
the software on eBay citing copyright violations. It seems the person who bought the software
found that it didn't do what they needed, didn't realize until too late that the publisher had
a 30-day return policy, and just wanted to "make it go away." The software company felt
that selling used software is "distributing copyrighted material without permission of the
copyright owner."
Since I haven't verified for myself the facts in this story, I won't mention names, but the
concept is a bit chilling. If I buy a piece of software that doesn't do it for me, am I stuck
with both it and a bad feeling about the company that published it, or should I be allowed
to unload it on someone else that might find it useful? What about magazines? Books?
CDs? Paintings? Old computers with bundled software in them? Where will it stop—when
we can only sell an old car back to the manufacturer if they feel like it?
Let us know how you feel about this.

Joseph Suda
Managing Editor
New Models with Newly Added Features!!

TOUCH DISPLAY MODULE

CTD1047 10.4-inch color TFT

CTD5741 5.7-inch color STN

μTD4141 5.7-inch monochrom

Development Support Tool

For Windows 98/95

$170

New Features

Personalized Color Pallets
You can personalize the tone of the built-in 16-color pallet by setting RGB (brightness) level.

Copying
Areas of the screen can be selected and copied onto other screens.

Expanded Flash Memory

Image Manipulation
Images imported from digital cameras or other sources can be easily bitmapped and registered on screens or keycaps. (The demonstration fish was created with the Development Support Tool.)

Screen-to-Screen Group Move
Screen data can be selected, grouped and moved to other screens.

System Setup Example

<table>
<thead>
<tr>
<th>Specification</th>
<th>μTD4141</th>
<th>CTD5741</th>
<th>CTD1047</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCD</td>
<td>5.7-inch, monochrom</td>
<td>5.7-inch, color STN</td>
<td>10.7-inch, color TFT</td>
</tr>
<tr>
<td>Resolution</td>
<td>320 X 240</td>
<td>320 X 240</td>
<td>640 X 480</td>
</tr>
<tr>
<td>Maximum digits</td>
<td>40 columns X 30 lines</td>
<td>40 columns X 30 lines</td>
<td>80 columns X 60 lines</td>
</tr>
<tr>
<td>Effective display area (mm)</td>
<td>116 X 87</td>
<td>116 X 87</td>
<td>211 X 158</td>
</tr>
<tr>
<td>Key matrix input</td>
<td>10 X 6</td>
<td>10 X 6</td>
<td>13 X 10 (640 X 480)</td>
</tr>
<tr>
<td>Key size (mm)</td>
<td>12 X 14</td>
<td>12 X 14</td>
<td>15 X 15</td>
</tr>
<tr>
<td>Power supply</td>
<td>5V DC 0.8A</td>
<td>5V DC 1A</td>
<td>5V DC 1.2A</td>
</tr>
<tr>
<td>Dimensions (mm)</td>
<td>W189 X D112 X H32</td>
<td>W189 X D112 X H32</td>
<td>W272 X D205 X H43</td>
</tr>
<tr>
<td>Standard price</td>
<td>$635</td>
<td>$845</td>
<td>$1400</td>
</tr>
</tbody>
</table>

Standard prices shown in this table are changed without notice for rate of exchange.

URL = http://www2.dango.ne.jp/onomichi/inh/
E-mail = inh@orange.ocn.ne.jp

INH International Hanbai Co., Ltd
22-30 Kanda-cho, Onomichi, Hiroshima, 722-0016, Japan

June 2000, Poptronics

www.americanradiohistory.com
Portable LCD Photo Album

Keep all your memories and important images with you at all times with an electronic Wallet, a compact portable digital image photo album from VideoChip Technologies. It measures 4 x 5 x 3/4 inches, fits easily into a pocket or purse, and holds up to 200 full-color images on a plug-in Compact Flash or SmartMedia card. The screen is a back-lit 4-inch 24-bit color LCD with 320 x 240 resolution.

To find a specific photo, multiple images are displayed in thumbnail form. The user scrolls through the images and chooses the desired one. Images can be shown in either portrait or landscape formats at the choice of the user. Two slide-show modes can be used to display the stored photos in sequence. The suggested retail price is $349.95.

Wireless Inter-tainment System

It’s called Cybiko—a portable entertainment and communications system that combines instant messaging, interactive gaming, e-mail and personal information manager capabilities in an all-in-one device. Priced between $149 and $179, Cybiko comes in a choice of four translucent colors, has a full QWERTY keyboard with a stylus to compose messages, LCD display, 1-MB memory (expandable to 16 MB), a high-frequency transmitter, and a vibration-alert device. The unit measures 4.8 x 2.8 inches and weighs less than 4 ounces.

Communication range is 150 to 300 feet depending upon the environment—and potentially much farther as multiple devices link and expand the range—creating their own virtual community. Users can set up their own CyPage, a personal profile. Cybiko will then alert users when a friend is within range or allow them to browse the virtual network to connect with everyone in the area. CyLoader allows users to synchronize the device to their PC and send and receive e-mail.

CD Recorder

Yamaha’s first entry into the popular CD-recorder market is the CDR-S1000 ($599). The single-play recorder is said to provide excellent reproduction and duplication.

The CDR-S1000 is equipped with coaxial digital and optical digital inputs and outputs. It also has a line-level analog input/output. The recorder’s other features include analog and digital record-level controls, a headphone jack, headphone-level control, and automatic and manual track marking. With its 24-bit digital-to-analog converter and sampling rate converter, it can accommodate a variety of sampling rate standards. Recordings are finalized at 4X speed.

Combining the convenience of a personal digital assistant (PDA) device and a portable e-mail appliance, the e-Mail Traveler ($149.99) from VTech is a stand-alone, pocket-sized device. It allows you to send and receive e-Mail without having to connect to a PC. With its built-in modem, the e-Mail Traveler can be used anywhere. Information is entered using the included stylus pen and the 13-line × 25-character LCD touch-screen display. For use back home, the unit comes with a docking station with a full-sized keyboard and a printer port.

The e-Mail Traveler provides popular electronic-organizer functions, including an address book, a to-do list, a calendar, a memo pad, and games. It measures 5.5 × 3.4 × .86 inches, weighs about six ounces with batteries, and can store up to 400 e-mail messages.

VTech Industries, LLC, 101 East Palatine Road, Wheeling, IL 60090-6500; 888-GO-VTECH; www.vtechworld.com.

High-Tech Mobile Scanner

The BC780XLT ($379.99) from Uniden America Corporation is a mountable radio scanner that is equipped with TrunkTracker III and SmartScanner technologies. TrunkTracker III allows the radio to track Motorola, EDACS, and LTR (Johnson) trunked radio systems. The scanner can detect when a transmission on any of those radio systems changes frequency and then automatically follows the transmission, allowing you to listen to entire conversations on a trunked radio system.

SmartScanner technology downloads local and national frequencies into the channels available in your zip code, through the use of an external modem or a PC. Using software downloaded from Uniden’s Web site, the scanner can dial into a pre-programmed 900 number that identifies and automatically downloads the closest frequencies into channels. The LC780XLT offers 500 channels and an alphanumeric display.

In-Dash MiniDisc Receiver

The Dallas ($569.95) car stereo receiver from Blaupunkt features a MiniDisc (MD) deck mechanism hidden behind a protective, flip-down faceplate. The MD drive system has 10-second anti-shock memory to avoid music skips when traveling on bumpy roads. The Dallas displays the disc name, allows tracks to be programmed for play sequence, and offers random and repeat functions.

The Dallas includes a DigiCeiver AM/FM digital tuner with RDS, a 4 × 40-watts power amplifier, high-voltage pre-amp and subwoofer outputs; and it also has controls for an outboard CD changer. It can be used with Blaupunkt’s CDC A08 10-disc changer or the IDC-A09 in-dash five-disc changer.

The “true-digital” DigiCeiver is the only radio tuner that actually converts radio waves into digital data. That allows it to perform all radio and audio processing—such as Direct Software Control and digital signal processing (DSP)—in the digital domain and to provide exceptionally clear reception. DSP sound management features allow you to modify and fine-tune audio characteristics. The two-band digital parametric equalizer can be used to create a vehicle-equalization curve to correct for standing waves and cavity resonances. The Dallas also has preset curves for rock, jazz, disco, classical, and vocal genres. It offers bass and treble controls, along with a six-level loudness control and a three-level high-cut filter.

Feature-Rich DVD Player

The DVD-N2000 ($499) from Samsung incorporates VM Labs' NUON video-processing technology for enhanced picture quality and increased functionality and interactivity. NUON technology is said to eliminate jitter and jumps during scan and slow modes.

The technology also enables features such as "infinite zoom," which allows up to 20X zoom during playback without distorting the picture. One interactive feature displays around the edge of the screen thumbnail images of adjacent angles. Highlight a thumbnail and view the movie from a different angle (if the software includes such scenes).

NUON adds a new dimension to CD playback with an on-screen spectrum-analyzer display that shows the changing musical content on screen as a visual display of musical energy. The Virtual Light Machine feature lets you choose from several vibrant design themes that NUON paints across the screen in real-time response to the rhythm of the music.

The DVD-N2000 can also play NUON educational and entertainment software that are currently being developed, including video games. Ports are available to accommodate planned NUON peripherals such as joysticks and driving wheels.

Samsung Electronics America, 105 Challenger Road, Ridgefield Park, NJ 07550-0511; 201-229-4000; www.samsungdigital.com.

Human-/Solar-Powered Radio

Freeplay Energy has added to its roster of human-powered devices the Model S360 ($69.95), a portable radio small enough to take anywhere without having to worry about batteries or electricity. Measuring approximately 4 × 8 inches and weighing just over two pounds, the water-resistant S360 can be carried easily when hiking, boating, camping, or just around town. Winding the unit's handle for about 30 seconds will provide up to 45 minutes of play time. The radio's internal power storage system automatically saves all available spring and solar energy, giving 15 hours of play time when fully charged. It also accepts a charge through an AC/DC adapter to provide hours of continuous music.

Freeplay Energy USA Inc., One Ramland Road, Orangeburg, NY 10962; 914-680-2233; www.freeplay.net.

New Desktop Computers

NetVista is IBM's new line of desktop computers, specifically designed and built for fast, high-bandwidth Internet access, easy setup, and simplified use. They feature high-resolution flat-panel screens, include USB (Universal Serial Bus), and offer the choices of 256-bit encryption and wireless LAN capability. The computers are 75% smaller than the typical home or office PC—just 16 × 16 × 10 inches, in a space-saving design. The CD/DVD-ROM and floppy drive tuck neatly away and a unique neck design allows the rapid access keyboard to fit under the monitor to free up desk space. Several different models and a variety of features make it easy for users to select those that they need most.

Every so often, a product crosses the Hands-On Report desk that has the right combination of design, function, and usability, eliciting comments from other staff members like "Cool," "Neat," and, most importantly, "Oh, wow! Can I try it?" Such a product is the subject of this month's report, the Explorer NOCX3 from Night Owl Optics.

While night-vision devices have traditionally been in the realm of the military and law enforcement, older-generation technology has dropped in price enough to become affordable to the average consumer. The Explorer is based on what is called "Generation I" technology. Light (either visible or infrared) is gathered by an objective lens and focused on the front surface of an electronic intensifier tube, or EIT. The front surface is a photocathode screen, where the photons strike elements that release electrons. The electrons are accelerated to the rear of the tube, illuminating a phosphorescent screen much like a television picture tube. An eye-piece lens focuses on the phosphorescent image for viewing.

Generation II technology uses a micro-channel plate for lower image distortion and higher light amplification. Generation III increases tube life by adding a gallium-arsenide layer as well as special protective coatings to the microchannel plate.

That's the good news. The bad news is that Generation II and III units can cost from $1500 to a whopping $10,000—not a price that the average consumer is willing to pay for a special-use toy.

Although the Explorer's technology is interesting, the factory location is sure to raise a few eyebrows. All of Night Owl Optics' products are made in a Russian factory that used to supply night-vision equipment to the Soviet Army. With the collapse of the Soviet Union, the Commonwealth of Independent States are taking their first steps in providing their manufacturing abilities to the world market—the Explorer is just one example. Indeed, the bottom of the Explorer's case sports a sticker that proudly proclaims "Russia" in 1/8-inch letters.

Before we descend to the depths of a debate on world politics, let's take a closer look at the unit itself. The Explorer feels like a slightly oversized tube that's surprisingly comfortable in the hand, much like the current generation of hand-held video recorders. The 2.3 x 3.3 x 7.2-inch monocular weighs in at a pattry 16 oz. The $300 package includes a nylon-cloth-covered carrying case with reinforced sides, a lens cap with pinhole, an instruction manual in five languages (English, French, German, Italian, and Spanish), and an instructional video tape for those that believe that "manuals are for wimps."

The manual and tape are well done and informative. Both warn you of the pitfalls of owning and operating a night-vision device. As much fun as they are to work with, these units are not toys. Handling them roughly or removing the lens cap in bright light can cause problems. At best, the life of the EIT will be shortened; at worst, you'll break it. In either case, treating the unit badly will void the one-year warranty, so handle the Explorer like a high-end camcorder or photographic camera.

But How Well Does It Work? The day after the Explorer arrived at the office, I arrived before the rest of the staff. With the office dark and quiet, I could put the Explorer to the test without disturbing anyone else. The first step was to install the battery. You have to supply your own (the familiar "batteries not included" chant), but Night Owl Optics thoughtfully supplied one with the review unit. A 3-volt lithium battery powers the Explorer, although some other models use a pair of AA batteries. I confidently twisted open the battery door on the rear of the Explorer, grabbed the battery...and immediately noted that there were no indications as to the proper direction to insert the battery!

A quick glance through the manual revealed that while it was clear and concise on operation, care, and troubleshooting of the Explorer, there was not one single picture that showed which end of the battery to drop in first. Never in my career in high technology was I as embarrassed as I was at that moment. After all, how difficult could it be to stick in a battery?

A closer examination of the battery compartment revealed a spring at the bottom of the hole. The cover is a single metal casting with a rectangular protrusion that doubles as both cover latch and battery contact. That contact couldn't possibly touch the negative terminal of the CR123A battery because of the battery's design.

With a deep breath, I inserted the battery negative end first. Closing the cover and pressing one of the control switches lit up one of
the LED indicators on the back of the unit. If the Night Owl Optics people are reading this, it would be a good idea to engrave a great, big "*+*" on the inside of the battery cover! Now that the Explorer was working, it was time for some further, initial tests.

Stepping into the office network room and closing the door left me in a place whose only illumination came from the plethora of LEDs on the computer equipment, power supplies, and network hubs. Pressing the "power" button and looking through the eyepiece was an experience that, to the first-time user, is nothing short of amazing. The view is like a black-and-white television with green phosphors. However, you shouldn't expect the scene to look like the latest Hollywood special effect with crisp, sharp detail. Remember, this is a Generation I device; slight distortions and an overall "grainy" look are normal; distortions are mostly located in the periphery of the viewable area.

The Explorer has a second switch marked "ir led." As amazing as viewing scenes in low-light conditions is, turning on the built-in infrared flashlight is breathtaking. Whereas before I could easily identify the network server's keyboard, I could now easily read every legend printed on the keys. Of course, the IR illuminator is best used in a room or other enclosed area. With a range of about 75 yards, you won't light up distant objects in an open field as well as you might hope.

Environmental Limits. On the subject of open fields, another limitation of the Explorer is its ability to withstand weather exposure. Most of the Night Owl Optics line is "weatherproof," but that means that brief exposure to light rain or high humidity won't harm the unit. Indeed, the manual warns that if humidity condenses on the Explorer, don't use it for at least five hours.

As I write this, it's still early spring, and I'm looking forward to my friend putting his sailboat back in the water so we can try out the Explorer during some evening sailing. Rest assured that I will have a firm grip on the Explorer so that it doesn't end up at the bottom of the bay. If you want to use a night-vision system for activities like night fishing, Night Owl Optics has a 100% waterproof version that floats if you drop it overboard.

Watch What You're Doing. After that first experience with the unit, I put it back in its carrying case and set it aside. The next day, I was showing it to one of the higher-ups and was again embarrassed when the Explorer wouldn't cooperate. Popping out the battery and checking it with a voltmeter showed that the fresh, new 3-volt battery only measured 0.52 volts!

Fortunately, CR123A batteries are no farther away than the closest RadioShack. In fact, they sell a pair of CR123As for about $13. With a new battery in place, the Explorer came back to life.

When I put it away the second time, I carefully watched what I did to confirm my suspicions. Sure enough, it's easy to accidentally press one of the switches without realizing. No wonder I had a dead battery—the Explorer was dutifully flooding the inside of the carrying case with infrared light! The bottom line is to take a quick look at the LED indicators on the back of the Explorer before zipping up the bag, or you'll pay for your haste at $6.50 per incident.

Further Tests. The world of infrared light is an incredible place to explore; seemingly simple things take on a new look when exposed to "invisible" light. At home, I was surprised by the amount of infrared light put out by a red LED power indicator in a set of cheap multimedia speakers. Although a friend's pair of sneakers didn't reflect very much infrared light, the shoeaces shone like neon lights. Even more startling is the fact that the human eye reflects infrared light like a mirror. With the Explorer, everyone can look like they're wearing the special contact lenses worn by actor Gary Lockwood in "Where No Man Has Gone Before," the second Star Trek television pilot filmed back in the mid-1960s.

When operating, the review unit makes a slight buzzing noise that comes from its high-voltage power-supply circuit. Night Owl Optics assures us that's perfectly normal, which is logical for a unit that uses a 3-volt battery and needs thousands of volts to operate.

One issue that might confuse and disappoint people has to do with the infrared aspect of the Explorer's capabilities. Infrared light is the portion of spectrum that we can't see. As you go further down the electromagnetic spectrum, you come to the thermal portion. The Explorer can't do thermal imaging. Don't confuse infrared with heat—the frequencies are too far apart.

Extending the Play Value. The NOX3 supports two accessories from Night Owl Optics. You can add a Lens Doubler to the standard 3.1X lens, boosting the magnification level to 5X. Additionally, a camera adapter is also available. If you have a 35mm or other photographic camera with a removable lens, simply replace the camera lens with a T-Mount adapter. Hook that adapter to the Explorer's camera adapter and you're ready to take pictures through the Explorer's "eye." Unfortunately, the camera adapter can't be used with camcorders. Both accessories retail for $50.

The Explorer, incidentally, is just one in a series of night-vision systems in various price ranges and capabilities. Several types of monoculars are available with different levels of weight, magnification, and features. There are also two types of binoculars and even a full-featured hands-free head-mounted system—perfect for those that take their night-vision hobby seriously!

The Explorer is one of those high-tech toys that, while you can't think of a reason to own one, you want it anyway. Once you start experimenting with it, you'll find yourself exploring the world around you in ways you never imagined. You spend half your life in the dark—why do that at night as well?

For more information, contact Night Owl Optics, 307 Seventh Ave., New York, NY 10001; 212-229-0297; www.nightowl optics.com; or circled 80 on the Free Information Card.
Graphics On The Cheap

Most of these columns have taken a similar approach. I like to talk about products you might find interesting, but in the context of solving a particular problem or accomplishing a specific project. For this column, I'm going to deviate a bit from that format and talk about several different products in a common context. Next time, its back to the project-oriented approach.

If you've been reading this column for a while, you know that I'm pretty involved with graphics. In a sense, that's kind of ironic, as I have absolutely no artistic ability whatsoever. I tend to think visually, but in the process of putting what I see in my mind's eye down onto paper, something usually gets a bit jumbled. Back in the days when I was running a magazine, the Art Director and the rest of the staff used to look forward to our monthly art meetings, since I generally had an idea of what I wanted for each article's art. They would pass around my hand-drawn roughs as sort of an impromptu inkblot test. It's a good thing that I had a fairly thick skin, so comments on my hand-drawn sketches like "It looks like Samurai Butterflies with swords" and "No, it's a pair of pigs doing the Samba" didn't really bother me much.

They did hasten, however, my adoption of graphics software, especially large collections of clip art. These made it easy for me to quickly put together roughs that didn't look like the Ninja Turtles at a car wash. Art meetings, however, were never quite as much fun after that.

What I love about the technology that's evolved in the years since then is that it's become ever easier for me to get closer to what I can see in my mind's eye. I suppose that it's the difference between an artist and technician. A photographic artist, for example, composes in the camera. A technician, such as myself, shoots as many images as he can and composes in the darkroom or, more recently, on the computer using an image-editing application.

Not only has the technology become more accessible and easier to use, it's also become a lot more affordable. For example, many of the projects we've covered in previous columns have used a scanner at some point. You don't, however, need to spend a fortune to buy a scanner. In fact, I routinely notice scanners on sale for less than $75 in the ads in the Sunday papers. Last week, while shopping at a nearby Costco/Priceco store, I walked past an Agfa SnapScan 1212U scanner that was selling for $68.

WHAT YOU PAY FOR IS WHAT YOU GET

Starting to play with graphics doesn't mean that you need a huge budget. It really depends on exactly what you want to accomplish. For example, most of the photos I take for this column are snapped using a megapixel digital camera that I may have in my office for review. If you are interested in digital photography, perhaps to enhance a Web site that you're building, you can get by with spending a lot less money on a digital camera. For this type of application, you don't need the 1600 × 1200 pixel resolution that a 2+ megapixel camera offers. A more modest 640 × 480 resolution will be fine in many cases.

That's where the Photo Easy Deluxe, from IXLA comes in. IXLA is an Australian company that has a major presence here in the US, and it has built a great reputation for its digital photography software over the last several years. Photo Easy Deluxe is basically a collection of the vendor's best image-oriented software, with a moderately good digital camera included in the package. What I find amazing about the package is that it's priced at about $100. With a mail-in rebate offer, however, it was recently on special at CompUSA for $50. That price was for the software and the camera!

The software in the package alone is easily worth the 50 bucks. It provides
good basic image editing and effects and includes a "fun" selection that lets you apply effects, like stretching someone's nose, to your photo. There's even a button on the excellent IXLA interface that lets you e-mail a photo to a friend. Other programs included make it easy to add fancy frames to your photos and create projects such as cards and "magazine" covers. You can use the camera included in the package or any other source of images, such as stock or clip art or a scanner.

The Digital SuperPro 640 camera that's included in the package is pretty basic, but while it doesn't allow you to use removable media memory cards, the 2MB of RAM built into the camera lets it store up to 30 images. Unlike many of the other inexpensive cameras I've seen, the IXLA camera has a flash, so you can take photos indoors. It even includes a USB cable to make downloading a lot faster and easier than with those cameras that use a serial connection.

To be honest, a camera such as IXLA's and other similar 640 x 480 models is not going to let you make 5 x 7 prints. There's just not enough data in the image to blow it up that much. A package such as the Photo Easy Deluxe, however, is a terrific and affordable way to get your feet wet.

A LOT FOR THE MONEY

Costing a little bit more, Pablo Internet Edition, from KB Gear Interactive, is another terrific graphic device. Its list price of $99 goes down to $79 with the $20 mail-in rebate coupon.

Pablo is a large surface graphic drawing tablet. Unlike some of the tablets more oriented to the graphic artist or professional, Pablo's drawing pen is not wireless; it's attached by a small cable that plugs into a jack on the right side.

In just about every other way, however, Pablo holds its own very well against much more expensive tablets. It is pressure sensitive, providing up to 256 levels, with those drawing applications, including CorelDRAW!, that support this feature. The drawing surface measures a large 8 x 6 inches. And there's a handy tracing flap for klutzers like me. Lift up the transparent plastic flap, slip in an image, and it's easy to trace an image. SmartTrace, which smooths out the jerkiness that's natural when you're trying to follow a line, makes the traced images look a lot better.

What really knocks me out about Pablo, however, is the software that comes bundled with it. For starters, there's a copy of Adobe Photoshop 5 LE, one of the most powerful (and widely used) image editing packages on the market. This edition has been whittled down a bit from the full package, but that only makes it easier for a novice to learn and use. The other packages, as you surmise from the "Internet Edition" ragline, are Web-oriented. Also from Adobe is a copy of PageMill 3.0, which makes it easy to create Web sites. A copy of Totally Hip's WebPainter, a utility for creating animations for a Web site, is the third package in the bundle.

VENDOR INFORMATION

IXLA USA Inc.
17 Jansen St.
Danbury, CT 06810
203-730-8805
www.ixla.com

KB Gear Interactive
1414 Washington Avenue S.
Eden Prairie, MN 55344
612-941-1905
www.kbgear.com

Xircom, Inc.
2300 Corporate Center Dr.
Thousand Oaks, CA 91320
805-376-9300
http://portstation.Xircom.com

Unlike a digital camera, a graphics tablet like Pablo isn't universally interesting. And, of course, the better you are at drawing and illustrating, the more it will merit your interest and consideration. If you can use it, though, it certainly meets my standard for a budget graphics value. As with the IXLA camera, Pablo can be connected via a serial port or simply be plugged into a USB port.

By the way, if you look closely at one of the photos that accompany this (Continued on page 56)
ARE YOU A PROFESSIONAL OR JUST TINKERING?

Practical Electronics for Inventors
Paul Scherz
0-07-059078-2 • $35.95 • Pub. Date: 2000

Programming and Customizing the HC11 Microcontroller
Thomas R. Fox
0-07-134406-0 • $39.95 • Pub. Date: 2000

TAB Electronics
Guide to Understanding Electricity & Electronics
Second Edition
G. Randy Slone
0-07-135057-9 • $24.95 • Pub. Date: June 2000

PIC Microcontroller Project Book
John Iovine
0-07-135479-4 • $29.95 • Pub. Date: 2000

Auto Audio
Choosing, Installing, and Maintaining Car Stereo Systems
Second Edition
Andrew Yoder
0-07-134689-9 • $29.95 • Pub. Date: 2000

Great Sound Stereo Speaker Manual with Projects
Second Edition
David B. Weems and G. R. Koonce
0-07-134688-1 • $29.95 • Pub. Date: 2000

CHOOSE FROM McGRAW-HILL’S FINEST LINE-UP OF ELECTRONICS GUIDES

To preview content for each book featured in this ad along with our entire electronic hobbyist list, please visit:
http://www.amazon.com/mcgraw-hill

amazon.com

A Division of The McGraw-Hill Companies

CIRCLE 142 ON FREE INFORMATION CARD
Nikola Tesla: Guided Weapons & Computer Technology
edited by Leland L. Anderson
Twenty-First Century Books
P.O. Box 2001
Breckenridge, CO 80424
Tel: 970-453-9293
Web: www.tfcbks.com
Nikola Tesla has often been called the greatest independent inventor. What set Tesla apart was the breadth and variety of his accomplishments. This work details the genesis of Tesla's AND logic-gate patents and describes the early efforts to design a practical remote-control guided weapon—his "telautomaton."

In the third book of the Tesla Presents Series, the author shows how the concept of the AND gate emerged from Tesla's work on remote-control devices. Reprinted are the two patents from 1903, demonstrating the methods and means of the invention.

Howard W. Sams Guide to Digital Cameras
by Michael Murie
Prentice Publishing
Howard W. Sams & Company
2647 Waterfront Parkway, East Drive
Indianapolis, IN 46214-2041
Tel: 800-428-7267
Web: www.bwsams.com
$39.95
How cameras work, software applications, managing and editing images, printing and uploading to a Web page—this comprehensive volume covers all aspects of the digital camera world. The author also discusses webcams and digital conferencing and how to make your images "move."

The included CD-ROM contains sample images and software, as well as a comprehensive table of the latest digital cameras, comparing features and specifications. Together, the book and CD-ROM answer readers' questions about digital cameras, enabling them to use the cameras to their fullest potential.

The Unofficial Guide to IRC
by Alex Charalambidis
No Starch Press
555 DeHaro St., Suite 250
San Francisco, CA 94107
Tel: 800-420-7240 or 415-863-9900
Web: www.nostarch.com
$24.95
In 1998, The LEGO Group introduced the MINDSTORMS Robotic Invention System, which makes it possible to affordably build and program robots for fun. This hands-on guide shows you how to use alternative programming environments like Not Quite C (NQC), pbFORTH, and legOS to develop powerful (Continued on page 26)
Spinning Gold Into Electronics

Two University of Texas at Austin chemical engineers have achieved a scientific breakthrough in the production of far smaller silicon wires. Dr. Brian Korgel, 31, and Dr. Keith Johnston, 44, professors in the chemical engineering department, have produced silicon “nanowires” using tiny particles of gold suspended under pressure in a compressed fluid at a high temperature. Silicon wires that are this extremely small will be needed in the construction of the computers of the future and for optoelectronic devices, such as lasers, computer screens, and other flat panel displays.

Korgel and Johnston are members of the multi-disciplinary Texas Materials Institute that conducts research in metals, semiconductors, ceramics, polymers, and composites. Their research in nanotechnology was recently published in the journal Science. Nanotechnology refers to the manipulation of materials on an atomic or molecular scale to construct highly miniaturized mechanical devices. Nanoscience recently was declared a national research and budgetary priority by President Clinton.

The Limits of Miniaturization

There are one million nanometers in a millimeter. Current research is focusing on production of computer components that are 100 nanometers long. “We have made components that are four nanometers long, so we are 25 times smaller,” Korgel said.

He explained that the electronics industry is reaching the limits of miniaturization and “five to 10 years from now, the way we make computer chips will not be able to be scaled down anymore.” There has been a steady decrease in computer component size because, in general, smaller means faster and more convenient.

“They have no idea how they are going to be making the next generation of devices 10 years from now. That’s what we’re working on,” Korgel added.

Gold Quantum Dots

Korgel and Johnston are using methods that could lead to development of other new materials with exciting new properties. They produce their nanowires by heating silicon atoms connected to organic molecules until the silicon atoms come loose and form free silicon atoms. This is done in the presence of small clusters of gold atoms referred to as nanocrystals or quantum dots. The quantum dots in this research consist of 100 to 200 atoms of gold.

“The gold quantum dots are the seeds that start the growth of silicon nanowires,” Johnston explained.

The silicon atoms don’t remain free for long, either congregating together or dissolving within the gold quantum dots. “Fortunately for us, the silicon prefers to dissolve into the gold nanocrystals,” said Korgel.

When the silicon dissolves inside the gold particles and the silicon concentration inside the gold becomes great enough, the gold ejects the silicon in the form of a wire. Molecules called “capping ligands” can be attached chemically to the gold quantum dots during their formation to keep them uniform in size. Being able to produce a uniform size is a crucial factor when the goal is the mass production of components.

“Ligands extend like hairs on the outside of the particles to keep from sticking together,” Johnston said. “We’re starting with uniform gold particles that produce silicon wires with basically the same size.”
Supercritical Fluids

The researchers' new method of making nanowires is revolutionary in its use of supercritical fluids—fluids that are put under high pressure and high temperatures, in this case 5000 pounds per square inch and 500 degrees Celsius. "We have used supercritical fluids to control chemical reactions for the last 15 years, but never for the nanoscale materials," Johnston said.

Korgel added: "At that temperature we would expect the molecules to form a gas, but the pressure squeezes the molecules back into a fluid. Although the fluid is not a liquid in the sense that we think of liquids, it is, in fact, a supercritical fluid. These supercritical fluids have a variety of very interesting properties in their own right, and we are starting to exploit this unique medium to make new materials that cannot be made in any other way."

The properties, or behavior, of the nanowires are affected by quantum rules that only apply in the nanoworld. Learning to manipulate materials in the microscopic world could open the door to discoveries of what are, in effect, entirely new materials.

"When we make things as small as this, it affects the material properties so that silicon no longer really behaves like silicon," Korgel said. For example, silicon normally does not emit light. But in the nanoworld, silicon can emit light. Thus, it can be used in the construction of extremely high resolution light-emitting devices, such as computer monitors and TV screens.

"Instead of mining the Earth for a material with the appropriate material properties, we can just tune the size of the quantum dot to engineer materials with the desired properties," he added.

Future Possibilities

In the future, nanowires may be used as connectors for quantum dots according to Johnston. "As nanoparticles (quantum dots) are used as optoelectronic devices, nanowires will be a natural way to connect them. As quantum dot technology advances, nanowires will be very useful."

Changing the supercritical fluid's pressure affects how the layers of silicon in the nanowires are arranged, dramatically changing their optical properties and, the researchers hope, changing the way electrons move along the wires. The goal is to channel electrons in one direction using nanowires.

Researchers now are testing what happens when prototype devices are created out of such small materials, by putting electrodes at both ends of the nanowires to "plug" them in and make little circuits.

"We are now trying to make a field-effect transistor, a type of electronic device, using these nanowires as a conduit for electrons," Korgel said. "It hasn't been done before, so we want to see if it will work. We're trying to take these new materials and actually make prototype devices."

The research was funded by the National Science Foundation and the U.S. Department of Energy as well as a DuPont Young Professor Award of $75,000 to Korgel for a three-year period. Recently Korgel received a National Science Foundation Early Career Development (CAREER) Award of $200,000 for four years. He was given these awards to study silicon nanostructures and electronic devices constructed from these materials, as well as to improve education in chemical engineering materials and materials sciences.

Johnston and Korgel are also collaborating on nanoscale research in a new National Science Foundation Science and Technology Center in environmentally responsible solvents and engineering.

Holographic Optical Data Storage

Video cassettes have become a fixture in millions of American homes. In the not too distant future, video tapes will probably be replaced by Digital Video Discs (DVDs)—thin plastic platters the size of a CD-ROM. What will come next? Research currently being conducted at Southern Illinois University Carbondale may hold the key.

"Our aim is to make smaller, higher capacity storage devices that are writable," stated Mohammed Sayeh, electrical engineering associate professor, who is researching holographic optical data storage. "Using a complex system of lasers and photosensitive materials, it is possible to store thousands of pages on a small disk. The goal is to put the information contained on 20 DVDs on one disk the size of a quarter."

Sayeh uses high-powered lasers in an attempt to store up to 100 gigabytes of information on a substance known as lithium niobate, a crystal that possesses a combination of properties suitable for holographic memory storage. By contrast, a standard CD-ROM, which is an optical storage device, holds about 640 megabytes of data.

The high-powered laser in Sayeh's lab is a water-cooled device about four feet long. It projects images through a series of lenses and mirrors laid out in a maze-like pattern that allows the laser beam to be repositioned as it sends pages of information to the crystal.

So far, Sayeh has been able to fit 50 percent of a typical movie on one disk. "Our biggest obstacle right now is getting the information written to the disk to 'stick,'" he said. Right now, reading the data after it is stored on the crystal partially erases the information, and writing new information to the crystal also may erase previously stored data. Sayeh believes it may take ten more years of research to overcome the problem.

Researchers need to clear those hurdles before holographic storage of digital data could be marketed to consumers. But some day the technology may be used in home-entertainment systems or for writable storage units in personal computers.
Clues to Astronomical Mysteries

In an inconspicuous, flat-roofed building, a machine that creates temperatures rivaling those of the sun is helping physicists examine up-close what happens to iron in black holes and neutron stars. Tests are being conducted by researchers from the Department of Energy's Livermore and Sandia National Laboratories on Sandia's Z machine—the most powerful X-ray generator on Earth. These tests should help astronomers who are trying to interpret images from the billion-dollar Chandra X-ray observatory now orbiting Earth. (Also benefitting will be the two-billion-dollar X-ray orbiting observatories expected to be launched by Europe and Japan next year.)

The results will further our understanding of black holes and neutron stars, and of the evolution and eventual expiration of the universe, predicts Livermore physicist Mark Foord, one of the leaders of the joint Sandia-Livermore project. The methods developed here also can be used in weapons physics, says Sandia project collaborator and physicist Jim Bailey.

Iron is of interest to astronomers because it is among the most complicated of the elements that are widespread in the universe, and, therefore, among the hardest to understand. Several explanations are possible for the effects it creates on images taken by the Chandra-orbiting telescope.

Like Bees to Honey

Bees gathering nectar and pollen and taking it back to the hive may one day help protect the lives and limbs of people if a landmine-detection demonstration at Sandia National Laboratories is successful. Sandia chemists are working with entomologists at the University of Montana to see if foraging bees can reliably and inexpensively detect buried landmines, which could safely return hundreds of thousand of acres back to productive use. The work is funded by the Defense Advanced Research Project Agency's (DARPA) Controlled Biological Systems Program.

The project builds on three decades of explosives-detection work at Sandia and 25 years of biosystems research at the University of Montana, Missoula. Jerry Bromenshenk and his colleagues at the university have shown that as bees forage for nectar and pollen, they attract particles of dust, soil, and pollen to their fuzzy, statically charged bodies and bring samples back to the hive. All landmines leak small amounts of explosives into nearby soil or water.

Studies are being conducted to see if plants rooted in TNT-tainted soil will uptake the residues into their roots, stems, and flowers, and even incorporate them into their pollens. If plants that readily accumulated the TNT could be identified, a suspected minefield could be seeded with those plants (by air) to maximize the bees' chances of finding the mines. One goal of ongoing tests at Montana is to determine which explosives bees can smell and then train them to seek those chemicals.

The problem for astronomers, who can now watch titanic energies that are transforming elements on a scale never before seen, is that many fine points of the process can only be guessed at. Creating an actual neutron star or black hole on Earth so scientists could understand distant reactions is impossible since there would be no more Earth.

Because "neutron stars and black holes emanate X-rays similar in effect to those emanated by Z, we realized we have a chance to test astrophysical theoretical models that have never been tested experimentally," says Foord.

According to Bailey, "We're looking with spectroscopic eyes at the atomic physics of ionized iron so that these can be compared with theoretical calculations. Astrophysicists will have to consider what implications our figures have for their models." The results will be compared with astrophysical calculations embedded in computer codes of how neutron stars affect iron.

The experiments proceed by placing square centimeters of iron, a few hundred angstroms thick, close to the Z-pinch at the heart of Z. (A Z-pinch achieves its output by generating a powerful magnetic field that collides ions at an appreciable fraction of the speed of light.) This exposes the metal to temperatures of more than one million degrees for a few billions of a second, ionizing it.

A Sandia instrument that takes seven images temporally and a Livermore instrument that takes one image in time and two images spatially will help determine the effects of the intense X-ray pulse from Z on iron samples in terms of spectrum, temperature, density, and ionization.

"It appears that we were successful at producing highly ionized iron and were able to obtain an accurate measurement of the radiation produced from the Z-pinch. We hope to do follow-up experiments and then return again in the summer to explore different regimes," Foord said.
Liquid-Crystal-Display Panels

Philips Flat Display Systems (FDS), one of the world's largest suppliers of active-matrix liquid-crystal displays (AMLCDs), announced it has entered into a co-development agreement with Hana Microdisplay Technologies, Inc. (HMTT) to manufacture liquid-crystal-on-silicon (LCoS) panels. Under the agreement terms, Philips FDS and HMTT will collaborate on the manufacture of LCoS panels at HMTT's 18,000-square-foot advanced LCoS manufacturing facility in Ohio.

LCoS is a breakthrough projection display technology targeted for use in large-scale consumer and business applications, including desktop monitors, multimedia projectors, and large-screen TVs. Philips FDS and several other leading display manufacturers are looking at ways to commercialize this technology as it potentially offers tremendous advantages in terms of picture quality, resolution, and cost. LCoS as a technology, however, is still facing several challenges, before it gains acceptance as a mainstream display technology.

Breaking the Bonds

While attempting to "photograph" the chemical reactions of an important enzyme of the nervous system, an international team of scientists found that the "flash" they were using—a high-intensity X-ray beam—was systematically destroying their target. The resulting "movie" of molecular images is the first-ever direct observation of how proteins break apart when exposed to high-energy X-rays.

"The observation was stunning," said collaborator Joel Sussman, a visiting biologist at the U.S. Department of Energy's Brookhaven National Laboratory, where some of this research took place. Stunning, because scientists previously believed radiation damage was nonspecific or random. But the Brookhaven work and studies with other enzymes elsewhere confirm that the X-rays selectively break particular chemical bonds.

"It looks like we are seeing 'weak points' in protein structures that are particularly sensitive to ionizing radiation," says Sussman, now affiliated with the Weizmann Institute of Science in Israel. Certain disulfide bonds, which often bridge protein chains, and carboxyl acids, such as those found at an enzyme's "active site"—where reactions take place—seem particularly vulnerable. Understanding these weak links may lead to improved methods of preventing high-dose radiation damage.

Organisms are constantly exposed to radiation, mainly from natural sources, such as sunlight and cosmic rays, as well as man-made sources such as diagnostic X-rays. Knowing the specific damage caused by radiation is an important diagnostic tool for developing a method to protect against radiation damage. The Weizmann team and European collaborators, together with Brookhaven scientists, plan to examine the anti-radiation potential of various substances that might be used to offer general or emergency protection.

The findings of X-ray-induced damage will also have implications for the use of X-ray techniques to decipher molecular structures. In X-ray crystallography, scientists bombard crystalline samples of proteins with high-intensity X-rays and, by analyzing how the rays diffract or bend, they work backwards to decipher the protein's molecular structure. This common technique is an important research topic at Brookhaven's National Synchrotron Light Source (NSLS), where some of the research was carried out. (See Proceedings of the National Academy of Science, January 18, 2000.)

Scientists typically perform these experiments at very cold (cryogenic) temperatures to minimize the damage caused by X-rays. But the current research, conducted at cryogenic temperatures, shows that these techniques do not completely prevent the introduction of inadvertent changes into experimental samples. It is well known in science that the mere act of observation may change what you are trying to do observe. The current findings may lead to changes in procedure to minimize this effect.

The initial experiments were conducted at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France, using acetylcholinesterase taken from the Torpedo fish. The work at Brookhaven used the same enzyme from humans and fruit flies. Additional experiments on a different enzyme, lysozyme, from hen egg white, were performed at the ESRF.

May the Source Be With You

Don't let the dark forces of ignorance defeat you. Right in the galaxy you can tap into the source—the free Consumer Information Catalog. It lists free and low-cost federal publications on a variety of important topics.

www.americanradiohistory.com
CD ROM based resources for learning and designing

The internationally renowned series of CD ROMs from Matrix Multimedia has been designed to both improve your circuit design skills and to also provide you with sets of tools to actually help you design the circuits themselves.

Electronic Circuits and Components provides an introduction to the principles and application of the most common types of electronic components and how they are used to form complete circuits. Sections on the disc include: fundamental electronic theory, active components, passive components, analogue circuits and digital circuits.

The Parts Gallery has been designed to overcome the problem of component and symbol recognition. The CD will help students to recognize common electronic components and their corresponding symbols in circuit diagrams. Quizzes are included.

Digital Electronics details the principles and practice of digital electronics, including logic gates, combinational and sequential logic circuits, clocks, counters, shift registers, and displays. The CD ROM also provides an introduction to microprocessor based systems.

Analog Electronics is a complete learning resource for this most difficult subject. The CD ROM includes the usual wealth of virtual laboratories as well as an electronic circuit simulator with over 50 pre-designed analog circuits which gives you the ultimate learning tool. The CD provides comprehensive coverage of analog fundamentals, transistor circuit design, op-amps, filters, oscillators, and other analog systems.

Electronic Projects is just that: a series of ten projects for students to build with all support information. The CD is designed to provide a set of projects which will complement students’ work on the other 3 CDs in the Electronics Education Series. Each project on the CD is supplied with schematic diagrams, circuit and PCB layout files, component lists and comprehensive circuit explanations.

PICtutor and C for PICmicro microcontrollers both contain complete sets of tutorials for programming the PICmicro series of microcontrollers in assembly language and C respectively. Both CD ROMs contain programs that allow you to convert your code into hex and then download it into a PIC16F84. The accompanying development board provides an unrivaled platform for learning about PIC microcontrollers and for further development work.

Digital Works is a highly interactive scalable digital logic simulator designed to allow electronics and computer science students to build complex digital logic circuits incorporating circuit macros, 4000 and 74 series logic.

CADPACK includes software for schematic capture, circuit simulation, and PCB design and is capable of producing industrial quality schematics and circuit board layouts. CADPACK includes unique circuit design and animation/simulation that will help your students understand the basic operation of many circuits.

Analog Filters is a complete course in filter design and synthesis and contains expert systems to assist in designing active and passive filters.

Shareware/demo CD ROM with more than 20 programs $4.99 refundable with any purchase.

Order Form

Please circle the products you would like to buy on the table below and calculate the total cost, fill in the rest of the order form and send it to us. Please allow 6 weeks delivery.

<table>
<thead>
<tr>
<th>Product</th>
<th>Student</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic Circuits & Comps.</td>
<td>$50</td>
<td>$99</td>
</tr>
<tr>
<td>Digital Electronics</td>
<td>$50</td>
<td>$99</td>
</tr>
<tr>
<td>Analog Electronics</td>
<td>$50</td>
<td>$99</td>
</tr>
<tr>
<td>Electronic Projects</td>
<td>$75</td>
<td>$119</td>
</tr>
<tr>
<td>PICtutor</td>
<td>$179</td>
<td>$350</td>
</tr>
<tr>
<td>C for PICmicros</td>
<td>$179</td>
<td>$350</td>
</tr>
<tr>
<td>Digital Works</td>
<td>$50</td>
<td>$99</td>
</tr>
<tr>
<td>CADPACK</td>
<td>$75</td>
<td>$119</td>
</tr>
<tr>
<td>Analog Filters</td>
<td>$75</td>
<td>$119</td>
</tr>
<tr>
<td>Postage: USA</td>
<td>$50</td>
<td>$0</td>
</tr>
<tr>
<td>Postage: Canada</td>
<td>$5</td>
<td>$0</td>
</tr>
</tbody>
</table>

Order online NOW from: www.gernsback.com/poptronics

Phone your order to us on: 631 293 3000

Order Form:

Name: ___________________________ Phone: ___________________________
Address: _________________________ Zip: ___
Card Type: ________________
Card number: ________________
I have enclosed my check for $: _______ Signature: _______________________
Please charge my credit card for $: _______

Expiration date: ____________

CL02

www.americanradiohistory.com
Missing Figure

There seems to be a problem with the "Comm Links" column in the November 1999 issue of Popular Electronics. I followed the article down to the bottom of page 50 and then got lost. The article jumps to page 87, and something goes awry with the text. I've reread it several times and I think what happened is that the "L2" in the second paragraph on page 87 should be "L1" and "L1" in the next paragraph should be "L2."

In the last paragraph, a capacitor is mentioned out of nowhere. In addition, there is no mention as to where it should be connected.

I suspect that something got lost in the editing.
VINCENT S. W. DYMEEK
Clifton, NJ

[You're right, but for the wrong reason. The text is fine; it's the figure that's wrong. The correct Fig. 4 is published below. (See Fig. 1.) What was published was a detail insert to illustrate the turns ratio for L1. We're sorry for the confusion that this caused.—Editor]

Further Input on Balanced-Line Converters

In the article "Test Equipment for Audio Technicians: Balanced-Line Converter" (Electronics Now, December 1999), the author mentioned that it is hard to find panel-mount versions of J3 and J4 (Panel-mount male XLR jacks). I believe that both RadioShack and MCM Electronics, another excellent supplier of electronics parts who is one of your advertisers, carry the panel-mount XLR connectors.

Thank you for publishing such a great magazine.
TERRY HARRIS
via e-mail

[Thanks for the suggestion. Sometimes you ignore the most convenient source because it's right under your nose.—Editor]

Interested readers of Gary McClellan's article "Balanced-Line Converter" may wish to refer to the January 1991 issue of The Audio Amateur (now Audio-Electron). Emo Barbely's article "Balanced Audio Amplifiers" is quite thorough.

Also, Analog Devices makes a dedicated Balanced Line Driver chip SSM-2142 and a -6dB Differential Line receiver chip specifically for this application. By the way, coupling capacitors would be desirable to prevent DC voltages from getting to the input of an amplifier.
CALVIN L. TAYLOR
Chehalis, WA

New Uses for CD Cases

In regard to the article "Component Notebooks" by Peter Reinjtse (Electronics Now, December 1999), I would like to add a comment. If you take out the insert of a CD case that holds the CD in place, there is a 5/8-inch depth there that could be used to store items. Of course, there is an opening that will have to be filled or else the tab from the insert that goes there could be cut off and glued in.

And if you have a notebook pocket for 5 1/2-inch floppies, then that could hold the converted CD case. When I lived in Indiana, I made a few trips to the Dayton Computerfest, and I acquired some notebooks that came with slip-in covers that were for paper that is 5 1/2 to 6 1/2 inches wide by 8 1/2 inches high. Last summer when we moved here from Indiana I used the notebooks and cases to move some electronic parts that I put into ziplock baggies.

However, the idea by Mr. Reinjtse is a valid one that I will use and improve on.
DONALD S. LAMBERT
Forsyth, IL

Illuminating Comments . . .

I believe there are some mistakes and errors of facts in the article "Freeze Motion with the Laser Scope" (Electronics Now, December 1999).

The statement "The basic unit of light is the candela, which is equal to one lumen per steradian (a unit of solid angle)" is misleading because the candela is actually defined as "the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 540 × 1012 hertz and that has
a radiant intensity in that direction of 1/683 watt per steradian." The lumen is a derived unit and defined as the flux in a steradian from a source of which the intensity is one candela.

Figure 1 is improperly drawn in some ways. The foot-candle is defined as the illumination produced when light from a point source of 1 candle falls normally on a surface at a distance of 1 foot. The flame from a candle is not just a point source. In addition, most of the light from the pictured light source does not fall normally on the flat surface. The diagram might better illustrate the concept by showing an area that is part of the surface of a sphere to overcome such difficulties.

In the next to last paragraph of the "Light" Talk section, the output of the laser is calculated incorrectly. One lumen is equivalent to 1.46 mW at 555 nm. The photopic luminous efficiency at 670 nm is 0.032, so about 31.25 times the power at 555 nm is needed to produce one lumen rather than the 0.3 mW per lumen as stated. This suggests that a 5 mW laser would produce only about 0.11 lumens. However, there are a number of dubious assumptions being made when applying this calculation to a laser. These include the assumption that the laser and the LED have the same spectral spread function and that the human eye responds the same to coherent light as it does to incoherent light of approximately the same intensity.

The last paragraph of the "Light" Talk section contains the statement "Also, a wavelength of 620 nm appears to be about three times as bright to the eye as an equally intense 670 nm wavelength." The intensity ratio suggested cannot be computed using intensity measured in lumens because that is a photometric term that already accounts for the luminous efficiency of the human eye at different wavelengths.

The output of lasers and LEDs are normally not uniform over the area their luminous flux falls upon. This was not considered when comparing the output from the two devices falling on equal areas.

Intense light can cause a bleaching effect as the cones of the eye become saturated, and this affects the apparent brightness.

In spite of the apparent errors, I enjoyed the article and look forward to more from the same author. I am a longtime subscriber and think that overall the magazine is excellent.

PETER BAUM
Onset, MA

. . . and an Enlightened Reply

Thank you for your "illuminating" comments regarding my article. I'm happy that you enjoyed it.

As I stated in the article, my limited resources did not allow me to make an accurate mathematical comparison between the LED and laser diode. Your information appears to be accurate, but, of course, I have no way to verify it. However, you seem to be well-versed in the field, and I do appreciate your input.

I totally agree with your comments concerning Fig. 1, which illustrates the derivation of the foot-candle. Unfortunately, I didn't submit that drawing with the article. Using a spherical section would be correct.

However, the main purpose of my ill-conceived math was to show that the specified LED was indeed brighter to the human eye than a typical 5mW red (670 nm) laser diode. Once each beam was expanded (using negative lenses) to a similar angle (20°) of coverage, there was absolutely no doubt which was the brighter of the two devices.

One point I failed to mention in my article was the main reason for choosing the LED over the laser: the LED runs without damage at forward currents of fifty-times normal, while producing an almost fifty-times normal light output, at duty cycles as high as 10%. The laser spec-sheet I had on hand stated that the ABSOLUTE MAXIMUM POWER RATING of the 50 mW/670 nm laser diode is only 6 mW at a maximum duty cycle of 50%, with a maximum pulse duration of one microsecond.

Thus, I didn't even attempt to run the laser diode at a forward current of one ampere, at a 10% duty cycle, with a pulse duration of 500 microseconds. I couldn't see the point in risking an expensive device. However, the LED just coasted right along at these levels, far outshining the laser with its restrictions.

SKIP CAMPISI

Smarten the "Dummy Load"

I found the article "Precision Dummy Load" by Gary McClellan (Electronics Now, November 1999) quite interesting. As I do some work with musical instrument equipment and semi-pro and pro sound equipment, I have also found it necessary to make the most of my test equipment. Many items are not available, hard to find, and are usually much more expensive than the cost of the their parts.

The idea of using a fan to cool the dummy load is good. Since these fans are rather quiet, I think I'll add a pilot light to show when the fan is on. Also, if you don't already have a 12-volt fan, it is simpler to buy a 115-volt AC fan. They cost a little more, but that is offset by eliminating the power transformer and the bridge rectifier.

The resistors specified by the author are readily available at RadioShack. However, most RadioShack stores will not have 16 of them in stock and will have to order them. Also, high-power non-inductive dummy load resistors are stocked by at least two of your regular advertisers (Parts Express and MCM Electronics) at prices much lower than those given for Vishay/Dale resistors. Both suppliers stock both 4-ohm and 8-ohm resistors at three power ratings: 50-, 100- and 150-watts, and at 200 watts at Parts Express. The lowest cost per watt, at both suppliers, is for the 100-watt resistors.

Using four of the 100-watt resistors in series-parallel connection will give a 400-watt dummy load at a cost for the resistors of just under $50. This is twice the price of the 20-watt resistors, but there is a saving in insulated posts or tie points, and a considerable saving in construction time. The series-parallel connection, as mentioned by Mr. McClellan, does not become an open circuit if one resistor fails. Most high-power solid-state amplifiers produce their highest power into a 4-ohm load. Therefore, it might be desirable to build a dummy load using 4-ohm resistors.

The author did not mention that J3 and J4 should be mounted ⅛-inches apart. The easiest way to do this is to use dual 5-way binding posts with integral banana jacks. These are available at most electronics parts suppliers (RadioShack stock number is 274-758). This connector is used for the speaker cables on high power pro sound amplifiers and speakers, and some musical instrument equipment. The connectors used on the speaker cables are spade lugs (for permanent installations) or dual banana plugs (for equipment on the road). The dual banana plugs are also widely available (RadioShack stock number is 274-717). The connector used on most lower-power sound equipment, and most musical instrument amplifiers and speakers, is a mono ¼-inch phone jack. One of these on the dummy load would allow the amplifier to be tested with the output cable normally used with it.

BILL STILES, CET
Hillsboro, MO
Kirlian Photography, Part Deux

Last month ended with descriptions of the various sheet films available. We will continue in this column by showing you, in detail, how to make exposures—in effect, how to take Kirlian photographs.

Making Exposures Using Sheet Film

What you are photographing determines whether the object involved should be grounded.

WARNING!: Whenever you photograph a living subject (person, animal or pet), under no circumstances should they be grounded or touch ground during exposure. Being in contact with a ground will lead to a nasty shock. Further, anyone with a heart condition or pacemaker should consult with their primary care physician before photographing or allowing themselves to be photographed using this Kirlian device.

When photographing an inanimate object such as a coin, keys, leaf, etc., connect a ground to the object. Grounding the object produces a stronger corona discharge. You can use a natural ground by connecting a wire to an earth ground, such as a cold-water pipe or you can use a circuit ground by connecting a wire from the positive terminals of the discharge capacitor. That junction includes the opposite side of T1's secondary winding (see Fig. 2 of the Amazing Science column in the May 2000 issue of Poptronics).

Figure 1 shows the arrangement for making an exposure. In some cases you might place a flat sheet of glass (or plastic) on top of the object to make the object lay flat on the film and discharge plate.

Whether you're working with black and white or color film, place the film emulsion side up on the discharge plate. Place the object you are photographing on top of the film. If the object is inanimate, connect a ground wire to it. Flick switch S1 about 10-20 times. Each time the switch is flicked you should see a discharge between the object and the discharge plate. This is what is being recorded on the film. Proper exposure is determined by trial and error—making adjustments according to the previous result. More switch flicks for greater exposure, fewer to reduce the exposure.

To reduce the expense and speed the process, try using black-and-white sheet film to determine the proper exposure and then switch to a color sheet film for the final shoot. Black-and-white ortho film offers the advantages of being able to be used with a red safe light and is easily developed.

If you would like to use a standard 35mm camera or video camera to record Kirlian pictures, you will need to construct a transparent electrode. The 35mm camera should be a single lens reflex (SLR) type with one or two close-up (macro) lenses. In addition, the camera must have a Bulb (B) setting among its shutter speed settings. The B setting keeps the shutter open for as long as the shutter release is held down.

Photographers usually use a cable release connected to the shutter to make B exposures. Most cable releases can be set to keep the shutter open after being pressed. The cable has a release mechanism the photographer hits to release the cable and allow the shutter to close after the exposure is completed.

Making a Transparent Electrode

A transparent electrode is easily crafted from a piece of glass or plastic that has a transparent conductive coating (typically tin oxide) on one side (see
the sidebar for details). The transparency of these electrodes needs to be 90-percent or better. The conductive tin-oxide coating is delicate. The high voltages involved in Kirlian photography can easily vaporize the coating. To keep this from happening you must be careful while making your electrode. First, if a good electrical connection is not made between the tin oxide coating and the HV conductor, the high voltage will spark between the high-voltage conductor and tin oxide coating, vaporizing the coating in the process. This renders the electrode useless. Second, a single-point connection doesn’t work because this also initiates vaporization of the tin oxide coating starting from the single point connection and continuing vaporizing the tin oxide until the HV source can no longer spark (jump) across the distance. So soldering a wire directly to the tin oxide will not work.

The solution is to make a ring electrode that contacts the tin oxide on all of its sides (large surface area electrode). I use a conductive silver epoxy to secure the ring electrode to the tin oxide glass electrode.

To make a small 4- × 5-inch transparent electrode, purchase 4 × 5 inch tin-oxide glass. When you receive the glass, it will be difficult to tell visually which side of the glass has the conductive tin oxide coating. To determine the coating side you need an ohmmeter. Any inexpensive VOM (Volt-Ohmmeter) or DVM (Digital Voltmeter) will handle this task. Set the VOM or DVM to OHMS on maximum resistance. Bring both probes in contact with one side of the transparent electrode material. The side with the conductive coating will deflect the meter as shown in Fig. 2.

Make the ring electrode from a thin conductive material. My ring electrode is made from single-sided copper clad board that is only .031 thick. You can easily cut this material with a scissors. You may substitute the ring electrode material I used with something comparable, like a thin copper (or steel, tin) sheet (or thick aluminum foil, etc).

The outside dimension of the ring electrode is cut to the same size as the tin oxide glass, with a tab running off on one end as shown in Fig. 3. Next, cut away the inside of the ring electrode material, leaving a ½-inch border. This makes a rectangular ring electrode.

Before securing the ring electrode to the tin-oxide glass, clean the ring electrode thoroughly so you have a good surface for the silver epoxy. Mix the silver epoxy according to directions and apply it completely around the copper side of the board. Next, place the tin-oxide glass, conductive side facing the copper-clad side of the ring electrode, on top of the ring electrode. Place a book or flat object onto the assembly to hold it tight and together while the epoxy cures.

One peculiarity of the silver epoxy is that it needs a gentle heat treatment to become conductive and form a good bond. To do this, use an incandescent table lamp. Keep the lamp approximately 6- to 9-inches away from the assembly for about an hour. Test the completed assembly with an ohmmeter before proceeding. Touch the tab of the ring electrode with one probe and touch the tin oxide coating with the other. You should show good conductivity (low resistance).

Since the conductive coating of the tin-oxide glass is delicate, we need to protect it. Purchase a sheet of transparent plastic approximately 0.005 thick. Cut the plastic sheet to the size of the transparent electrode. Lay the plastic on top of the con-
Using the Transparent Electrode

The transparent electrode may be used with a variety of Kirlian devices if it has an external high-voltage lead that you can use to connect the transparent electrode. We take the high voltage using an alligator clip wire connected to the wire or copper electrode of the Kirlian device at one end and connecting the other end to the tab of the transparent electrode.

Typically, the camera is located on the opposite side of the working surface. Because the electrode is transparent, you can shoot through the electrode as if it were an ordinary pane of glass. As an example, here is the procedure to shoot a leaf. In this example, the leaf is at ground potential and the transparent electrode is at the high-voltage potential. Make the set up in a room that can be made relatively light tight. The leaf is placed on a black non-reflecting, nonconductive surface. This improves background contrast. The transparent electrode is placed over the leaf. The thin plastic sheet is placed over the electrode is placed on the leaf. The leaf is connected to ground by using an alligator clip wire as in Fig. 5.

The camera is positioned over the assembly. The view through the camera should only show the object under the transparent electrode. This is done with a close-up (macro) lens, with a +4 adapter or a reversing ring. The camera must be manually focused onto the object. If an auto-focus camera is being used, set it to manual operation. Open the aperture (f-stop) of the camera as wide as possible (2.0 or 2.4). Set the shutter to B (bulb) to make long timed exposures. When it's set to B, the shutter remains open as long as pressure is kept on the release button. Using a shutter-release cable attached to the camera will make taking pictures much easier. You can use any type of color film in the camera. I strongly advise using the fastest film available, either ISO 1000 or ISO 1600.

Manually focus the camera on the object with the room lights on. After the camera is focused, turn off all the room lights. Use a flashlight with a deep red filter to navigate around the room. When you are by the camera, turn off the flashlight and open the shutter of the camera using the cable release. Now pulse the switch on the manual Kirlian Device. Hit the switch 50 to 100 times to build up a strong image onto the film. Next, release the shutter using the cable release. Turn on the room lights and set up your next picture.

One hint I'd like to pass along. Start each roll of film with a few conventional pictures. This allows the photo-lab to align the frames properly on the machine. Tell the photo-lab to print deep red pictures. They may interpret the glowing outlines and corona discharges as picture errors and not print them.

Making Kirlian Videos

The technique just described for still photos may also be used to film real-time Kirlian video. However, the manual Kirlian device is too weak to shoot video. If there is genuine interest in pursuing different aspects of Kirlian photography, we can return to this topic with a more powerful automatic device that would be suitable for video. Let me know if you are interested.

That wraps up this column. I look forward to bringing you more Amazing Science in the next issue of Poptronics.
This month we take the next step into VCR repair. We are going to cover basic functional problems. We assume for this section that the VCR behaves normally until you try to play a prerecorded tape or try to make a new recording.

Here is a quick list of the most common mechanical problems that you may run into. They aren’t in any special order, but those toward the top of the list are the most likely to occur:

- Needs cleaning.
- Dirty or deteriorated rubber belts and/or idler tires.
- Idler clutch too weak or too strong because of wear.
- Selected parts need lubrication.
- Worn brake pad or engagement problems.
- Broken or misadjusted back-tension band.
- Dry or worn capstan motor bearing.
- Gear timing incorrect due to forcing of mechanism or gear damage.
- Other broken parts.

Now that we know the basic problem areas to check first, let’s look at some specific complaints and their possible solutions.

VCR Refuses to Record

If efforts to record (directly or via the timer) are totally ignored or cause the cassette to be ejected, then the record protect tab on the cassette may be broken off or the record protect sense switch in the VCR may be dirty or defective. This switch sits just under the cassette slot (on front loaders). Locate it by referencing the tab position on the loaded cassette. It can easily be tested with an ohmmeter—if you can get to it.

To confirm, short out or disconnect (which you will need to do depends on the design of your VCR) the appropriate wires (maybe there is a connector—this could have bad contacts as well) and see if the VCR is more cooperative.

VCR Aborts Play or Record During Startup or Shortly Thereafter

This is a problem with the process called tape loading—pulling the tape loop out of the cassette and wrapping it around the spinning video drum, engaging the capstan and pinch roller and reel rotation. Check all the belts, both above and below the deck. Belts can appear to be firm; but if they do not return immediately to their relaxed length when you stretch them 25%, they will need to be replaced.

With the cover off, observe the behavior when you hit PLAY. (You may need to put a piece of cardboard over the cassette to block external light from interfering with the start/end tape sensors.) Assuming this is a basic VCR (no instant start features), you should see the following series of events occur:

- The video head drum begins to spin.
- The roller guides move smoothly on the tracks, the tape winds around the drum, and stops snugly pressed against the ‘V-Stopper’ at the end of the tracks.
- The pinch roller moves into position and presses the tape against the capstan.
- The tape begins to move and is wound up by the takeup reel.
- The picture and sound appear on the TV.

With a rapid or quick start (or it may be called something else) transport, the tape moves to a half-loaded position when the cassette is inserted. This is at an intermediate position partially pulled out of the cassette but not wrapped...
around the drum. On VCRs with a real-time counter and/or index search capabilities, the tape will be in contact with the control head.

With an instant start transport, the tape will fully load around the spinning drum when the cassette is inserted, but the capstan will not engage and no tension will be applied to the tape until you press PLAY or REC. (After about 5 minutes, the drum will stop, and it may unload to the half loaded or unloaded position.)

Note that for VCRs with a real-time counter and/or index search capabilities, the tape must be in contact with the control head (but not the video heads) for all relevant modes. These VCRs (which include many modern units) must therefore pull the tape at least partly out of the cassette.

In all cases, the completion of the sequence results in approximately the same mechanical configuration during PLAY. See the sidebar on this page for possible causes of VCR shutdown.

We will be discussing sensors in much more detail, including the mode switch, in an upcoming "Service Clinic".

VCR Aborts Play or Record at Random Times or Near End of Tape

In this case, the VCR starts to play or record but, say, an hour later, it shuts down for no good reason—at least not as a result of a command you thought you issued. Make sure the tape is not the problem—try another one. There may be spots on the tape where the oxide has come off resulting in pinhole (or larger) areas which are activating the end-sensors. Confirm that you are using the proper play or record modes—not OTR (One Time Record) or other timed play or record modes that will likely operate in increments of 15 minutes depending on how many times you press the button. In addition, on certain VCRs, if the program timer is enabled with a program setting that has its stop time occur while you are using the VCR—even if the record operation has been aborted by pressing the stop button—the VCR will shut down.

If play or record aborts at the same location on only certain tapes, there could be pinholes in the tape oxide coating allowing light to pass through and confuse the sensors. This happens mostly with Ti60 or old well-worn tapes. If you can locate the problem area, you can try indelible ink on the NON-oxide side of the tape but DO NOT use adhesive tape or glue. Otherwise, discard the tape or live with its behavior. Finally, make sure you are not using any insert editing modes that require a previously laid down control track and would abort once blank tape was reached. Once all the obvious problems and cockpit errors have been eliminated, some mechanical problem may still be likely, even though the VCR does not abort immediately. A worn idler tire, worn or defective idler clutch, bad belt, or improperly adjusted back tension are all possibilities.

If the operation starts properly (as indicated by a changing picture on the TV in play or from a visual inspection with the cover off) but the tape counter does not change value and then the unit shuts down, a reel-rotation sensor problem is likely.

VCR Eats Tapes or Leaves Tape Loop Hanging Out After Eject

The most common cause of both these problems is a dirty/worn idler tire preventing the takeup reel from turning.

If dirty, worn, dried out, glazed, cracked, or otherwise deteriorated, it will slip and cause the takeup reel (in play mode) to stop turning at some point. Hopefully, the microcomputer senses this and tries to wind the tape back into the cassette. You guessed it; this requires the idler tire so you end up with a mess of tape inside the machine. When you go to eject, you may get the cassette with a tape loop hanging out. If you are careful, you may be able to extract the tape without crinkling it too much, but that is a real pain.

POSSIBLE CAUSES OF VCR SHUTDOWN

- **Everything occurs normally**, picture and sound appear for a few seconds, but then the VCR unloads the tape, ejects the cassette, goes intoREW mode, stops, or shuts off. There are two common causes of this problem:
 - The takeup reel does not turn and tape spills into the machine. This is sensed by the microcontroller, which aborts RECORD or PLAY and attempts to save your valuable cassette. The most likely cause is an old or dirty idler tire. As a test, turn the idler tire inside-out. The fresh surface will now work well enough to confirm this diagnosis and will continue working long enough for your replacement idler tire to arrive.
 - The tape guides are getting hung up and not fully loading the tape—either as a result of an obstruction or dried-up grease or a slipping tape-loading belt (often accompanied by a spine-tingling squeal). Parts may have broken or fallen off of the roller-guide assemblies, preventing them from fully engaging the I-Stopper. A similar fault may prevent the capstan from fully engaging against the tape and pinch roller. A toy, candy, or a plastic bit of a cassette shell may be jamming something.

- **The mode switch sensor is dirty or defective** and confusing the poor microcomputer as to the position of the loading mechanism. In this case, the loading process may stop halfway, pause, and then unload as in either of the preceding possibilities; or it may do almost anything.

- **Some other condition**, such as the end-of-tape sensor thinking that you are at the end of the tape, is aborting the tape-loading process. This might be indicated by a sudden reversal and shutdown rather than a pause (usually accompanied by the sound of a motor whirring) at some point attempting to complete part of the cycle. For problems with RECORD in particular, the record protect tab switch may be dirty or worn resulting in random aborts.

- **Electronic problems** like bad grounds or other bad connections are also possible. Some models (a number of JVC manufactured VCRs, for example) provide ground integrity via screws through the main circuit board. Should these loosen, erratic behavior may result. Tighten the screws.

- **A defective microcontroller** or other logic could also be at fault, but this is less likely than any of the preceding.
badly but don’t just pull—it will break or be hopeless damaged. You will need to remove the top cover and carefully lift the tape loop out of the machine and wind it back into the cassette. If there is any significant crinkling or a partial break in the tape, discard the cassette. If it is priceless and irreplaceable, see the section a bit further on about recovering damaged or broken tapes. DO NOT try to use it or just return it to the video store without informing them of what happened—it is unfair to the next renter. A badly crinkled or partially broken tape can destroy expensive video heads.

Other causes include a stuck half loading arm (found in many Sony models and caused by a gummed up mechanism or lack of lubrication) or other mechanical problems.

Recovering Damaged or Broken Tapes

So you just pulled your favorite tape from the VCR, and there are two tape ends dangling from it. Or, perhaps, your VCR has just munched on that tape and a section is now seriously crinkled. Maybe you haven’t been following the recommendations on preventive maintenance; maybe your VCR was just hungry. In any case, what to do? The recording is, of course, irreplaceable. Despite this, I recommend that you discard it. An imperfect splice or seriously crinkled section of tape can shatter your video heads—probably the most expensive single part in a VCR. If it is something you really treasure, then what I would do is the following. Note: If you have never seen the inside of a video cassette, try the following procedure on a couple you really don’t care about first so that if you mess it up, there is no great loss. CAUTION: The tape itself is really thin and easily crinkled. Be very gentle when handling it and avoid touching the oxide (dull side) if at all possible. Now, here’s what to do:

- **Locate a garbage cassette and disassemble it.** Throw away the tape but save everything else including the reels. See Disassembling a VHS Cassette, below.
- **Construct two cassettes** from the combined collection of parts you now have. Cut out any sections of tape that got mangled. Cassette 1 has the first section of tape (before the break) and uses one empty reel from the garbage cassette for the supply reel. Rewind this to the beginning. Cassette 2 has the second section of tape (after the break) and uses the other empty reel from the garbage cassette for the takeup reel. Use the little plastic plugs that came from the garbage tape reels or some adhesive tape to connect the tape to the reels.
- **If the break is at one end,** you can just reconnect the bulk of the tape to the reel and dispose of the original leader. Just don’t rewind or fast-forward all the way to the end as the automatic end sensor will not work (for the particular end that has been repaired). What will happen is that instead of the sensor stoppingREW or FF (as appropriate), the tape will run to the end and the VCR will then shut down when it discovers that the tape isn’t moving. This can put additional stress on mechanical parts and/or rip the tape from the reel. Serious damage to the VCR isn’t really that likely.
- **Copy to a good cassette.**
- **Dispose of the original(s) or clearly mark “DO NOT USE”** with a detailed explanation.

The idea is to never have a splice in a VHS cassette. (Even a seriously crinkled tape such as might result from a tape-eating incident can damage the heads.) It is possible to splice safely, but, as noted, it can be quite costly if you don’t get it quite right.

Disassembling a VHS Cassette

These instructions should show you how to get inside a cassette for the purpose of reattaching a leader that pulled off of one of the reels or to transfer its contents or a portion thereof to another shell or vice-versa.

- **Peel off the label on the side or carefully slice down its centerline with a knife or razor blade.** This is necessary to allow the cassette halves to be separated.
- **Place the cassette upside-down and remove the five (5) Phillips head screws and set aside.**
- **While holding the cassette together, place it label side up on a clean surface.**
- **Gently remove the top** (along with the hinged door) to reveal the interior. At this point, you should see something that looks like Fig. 1.

When you reassemble the cassette, be careful and do not crush the tape under the hinged door—depress the unlock button on the side and lift it clear if needed.

TROUBLESHOOTING TESTS

- **If the capstan or its circuits are at fault,** the tape tension on the supply side of the capstan will be normal. This is relatively loose if gently pressed sideways or released by moving the back tension arm to the right. The picture will remain synced on the TV (though there may be noise bars that result from incorrect tracking).
- **Where a dry or worn capstan bearing is to blame,** there may be an associated mechanical groaning or grinding sound as well. Stop the VCR and immediately check to see if the capstan turns freely and smoothly. Cleaning and lubrication will help. Whether this is a permanent cure will depend on the severity of the damage.
- **A magnetic sensor that is mounted too close to the perimeter of the capstan motor rotor can also rub as the rotor expands.** As above, there will likely be noise—maybe a tick-tick sound with one tick per rotation of the capstan before it stops completely. Adjust the position of the sensor. It’s hard to say from here how far away it can be; but, as a start, you should be able to slip a piece of letter paper between the sensor and the rotor without it rubbing at any position of the rotor.
- **If the capstan is belt driven** (most nowadays are direct drive DC motors), a worn or flabby belt could be the cause. If there is a belt, check and see if it is successfully turning the capstan and check to see if the capstan itself is hard to turn—which would point to a bearing problem. Inspect the belts and replace it if necessary. In the meantime, clean the belts and pulleys which should result in some improvement and confirmation of the cause of the problem.
- **If, on the other hand,** it is a supply reel brake that hasn’t released, excessive backlash, or something binding; the tension will be very high, causing the head drum to slow down and stop in extreme cases. Sync will be lost as this happens. You will have to determine what is preventing the tape from being fed properly. There **could be a broken part,** a problem with the supply reel or some other bearing, or something else like a defective brake release solenoid or its driver.
Tape Slows or Stops (As Though in Pause or Slow Mode) While Playing

What this means is that the tape continues to show a picture, but it appears as if it's struggling to pull the tape through the machine—which is basically what is happening. Once the picture freezes, it will probably abort because of the lack of reel motion. With some VCRs, this may also result in periodic slowing or pausing. Many Sony models are particularly prone to this failure. Service parts suppliers like MCM Electronics often have bearing kits, so you don't have to replace the entire expensive capstan motor.

There can be a variety of causes for this behavior, but the most likely is related to a dry or worn capstan bearing or a defective capstan drive/servo circuit. The capstan rotation almost entirely determines tape movement during play and special effects modes. Only if for some reason the supply reel cannot rotate at all could the capstan attempt to pull the tape across the video head drum unsuccessfully.

If you can catch the VCR in the act, then there are several tests that can be performed easily to localize the cause. See the sidebar on the previous page for these tests.

Video Head Drum Stops or Slows During Play or Record

Check whether the back tension on the tape is applying so much pressure to the drum that it is slowing it down. Back tension should be just enough to keep the tape in good contact with the drum. If it is too tight, then the back tension you feel may be worn or adjusted too high. There is a lever just as the tape exits the cassette—push it to the right to reduce tension. Someone may have attempted to repair a broken back-tension band and reduced its length—I got a VCR for repair once where this was done.

If it is not the back tension, check free rotation of the drum when it stops—I bet it turns as freely as always. Could be a part in the motor driver that is faulty and failing when hot. However, the bearing could be worn or dry which would require disassembly and lubrication or replacement of the lower cylinder (assuming that this is where the drum bearings are located).

Wrapup

That's it for now. Next time we will go onto general control system problems like my VCR totally ignores me! Until then, check out my Web site: www.repairfaq.org. I welcome comments (via e-mail only please) of all types and will reply promptly to requests for information. See you next time!

NEW LITERATURE
(continued from page 12)

software for your robots. (In the "Robotics Workshop" column in our April issue, Gordon McComb discussed this subject, specifically using NQC to program LEGO MINDSTORMS.)

The book includes plans for five construction projects; and it gives mechanical tips, as well as strategies for making the robots move. Software tips are also provided, such as using subsumption architecture and ways to have one input read more than one sensor.

Newnes Windows 98 Pocket Book
by Ian Sinclair
Newnes, Butterworth-Heinemann
225 Wildwood Ave.
Woburn, MA 01801
Tel: 800-366-2665 or 781-904-2500
Web: www.bb.com
$29.95

This handy guide offers an introduction to Windows 98, covering all aspects of the operating system, accessories, and utilities. The use of DOS from Windows is explained, along with the diagnostic and error-correcting tools of Windows 98 and methods of using them.

Ideal for a wide range of readers, the book provides simple how-to instructions and hints for those who want to get more out of their computers.

Electronic Troubleshooting, Second Edition
by Dan Tomal and Neil Widmer
McGraw-Hill
1221 Avenue of the Americas
New York, NY 10020
Tel: 800-2MCGRAW
Web: www.books.mcgraw-hill.com
$34.95

A comprehensive introduction to electronics and an indispensable hands-on repair guide, this book covers the practical side of electronics from basic problem solving through repair of sophisticated medical instruments. Thorough and grounded in fundamentals, it has been updated to cover the latest troubleshooting methods, electrical and electronic devices, and the field of digital technology.

The text provides explanations of all testing equipment, valuable tricks of the trade, and useful problem-solving techniques. Numerous illustrations, tables, charts, and graphs help readers understand the material.

The Forrest Mims Circuit Scrapbook, Vol. I
by Forrest M. Mims, III
LLH Technology Publishing
3578 Old Rail Road
Eagle Rock, VA 24085
Tel: 800-247-6533 or 540-567-2000
Web: www.LLH-Publishing.com

This collection of the author's classic circuits from Popular Electronics is a book that readers will refer to often as they experiment with electronics. Using commonly available components, Mims explains how to build and experiment with circuits, including analog computers, color organs, and frequency/voltage and voltage/frequency converters. In addition, there are interval timers, LED oscilloscopes, and light wave communicators, among others.

Each circuit is accompanied by a hand-drawn schematic, detailed theory of operation, and construction hints.
Speech Recognition Kit

DESIGNED TO EASILY ENABLE hands-free speech-recognition, the VoiceDirect 364 Speech Recognition Kit voice activates all types of ordinary consumer electronics, like set-top boxes, micro-waves, cars, remote controls, garage-door openers, alarm clocks, telephones, lights, Internet appliances, and others.

VoiceDirect 364 features continuous listening technology that allows a device to be switched on or off with just the sound of one key word or short phrase. It then employs speaker-dependent (user-trained) speech-recognition technology to recognize up to 60 words or phrases (15 as a stand-alone module) lasting up to 2.5 seconds each. Prompts are available in English or German, although the technology works in any language. It can also be configured to use three continuous listening key words or phrases, each with up to five speaker-dependent sub-commands.

It is designed for consumer telephony products and cost-sensitive consumer electronic applications and is software compatible with the original VoiceDirect kit. The latest generation offers improved recognition accuracy and noise immunity and faster response times. The VoiceDirect 364 works in an easy-to-use standalone pin-configurable mode, but also supports slave mode operation for increased programmability and features.

The VoiceDirect Kit comes complete with the assembled module, a microphone element, speaker, (4) micro-switches, passive component selection to configure the module, and a quick setup guide. All that's needed for setup is a soldering iron, solder, a 4.5 to 3.25V/100mA power source, multimeter, hookup wire, 0.1-inch headers, and a 3- by 3-inch prototyping board.

The VoiceDirect 364 Speech Recognition Kit retails for $49.95 and is available through several leading distributors, such as Jameco Electronics and JDR Microdevices.

SENSORY, INC.
521 East Weddell Drive
Sunnyvale, CA 94089-2164
Tel: 408-774-9000
Web: www.SensoryInc.com

Stand-Alone Cable Tester

LIGHTWEIGHT AND PORTABLE, the Model 204 PC Cable Tester is a battery/AC-powered cable tester that can be used for testing just about any cable or harness in under a second. Its flexibility makes it ideal for use by PC and cable manufacturers, system integrators, airlines, and repair facilities.

The Model 204 can be used for testing most popular PC data and network cables, such as printer; monitor; modem; mouse extension; game BNC coax; and RJ45, 1394, and USB cables. It displays opens, shorts, crosswires, miswire, continuity of wires, and pin configuration. In seconds, the unit provides a bright LED display of a complete pin out of any cable attached to one of its cable hubs.

Weighing only 1.75 pounds and measuring 9fl by 1fl by 6 inches, the Model 204 PC Cable Tester is priced at $169.

B&K PRECISION CORP.
1031 Segovia Circle
Placentia, CA 92870-7137
Tel: 714-237-9220
Web: www.bkprecision.com

Test Accessory Kit

IDEALLY SUITED FOR TEST ENVIRONMENTS in plant maintenance; and for electrical, HVAC, automobile, and field repair; the Test Companion Kit features different combinations of DMM test accessories for use with Keithley's most popular meters. The shoulder pack carrying case that can be easily attached to a tool belt is designed so the test accessories can be stored with the meter in multiple zippered and Velcro-enclosed compartments.

The carrying case contains a wide range of accessories, including two sets
Mini

ensure

assists

Seeker

and mounting.

(12

satellite

assembly, users plug, aim,

TV

Block)

tures an

system designed for portability.

is

(5

LOW

Portable

Tel:

Pomona,

1500

POMONA ELECTRONICS

Keithley Meters

Grabber

of

a

one -piece

Plus package includes

Plus antenna, the Digital Satellite

Direct

Broadcast Satellite (DBS)-

TV

viewing. The antenna requires no

assembly; users plug, aim, play, and enjoy

satellite TV programming anywhere.

The portable SatCom PASSPort

Mini Plus package includes the compact

(12 by 16 inches) SatCom PASSPort

Mini Plus antenna, the Digital Satellite

Seeker, a carrying case, a compass, and

all necessary components for connection

and mounting. The Digital Satellite

Seeker is a pocket-sized meter that

assists with satellite antenna setup to

ensure that proper aim is established

quickly. Users simply observe an LCD
display that measures satellite signal

strength.

The portable SatCom PASSPort

Mini Plus package (model MP-1001-

PKG) has a suggested retail price of

$349.99.

SATCOM ELECTRONICS, INC.

13400-B Danielson St.

Pomona, CA 92064

Tel: 858-486-6600

Web: www.satcomweb.com

Digital Tachometer Counter

THE DIGITAL TACHOMETER COUNTER,

Model 461501, provides RPM (rev/min)

and RPS (rev/sec) photo tachometer

measurements, plus a counter mode for

counting units on a production line. An

optional contact tachometer adapter

allows for linear surface measurements

in RPM, m/s, f/min, and yard/min. The

non-contact tachometer measurements

range from 10 to 99,999 RPM, with

0.1% basic accuracy; while contact mea-

surements range from 10 to 29,999

RPM, with 0.04% basic accuracy.

Measurements and counts are dis-

played on a dual 5-digit LCD. Other

features include Max/Min/Average

functions, Hold, and Auto Off. The

built-in RS-232 interface, Windows

95/98 compatible software, and the seri-

al cable allow for data acquisition and

display from a PC.

The Model 461501, which measures

6.5 by 2.5 by 1.5 inches, comes complete

with four AA batteries, reflective tape,

software, serial cable and case; and it has

a suggested list price of $249.

EXTECH INSTRUMENTS CORP.

285 Bear Hill Road

Waltham, MA 02451

Tel: 781-890-7440

Web: www.extech.com

Current Level Indicator

AN EASY AND LOW-COST WAY TO

monitor electrical current flow, the

CR250 Current Level Indicator contains

a toroidal-wound current transformer

attached to a high efficiency LED. The

custom-set indicator, capable of operat-

ing in 50- or 60-Hz systems, glows when

the current flowing is above the set point

and turns off when the current is below

the set point.

The Current Level Indicator easily

slips over current-carrying wires or

cables and requires no splices or electri-

cal connections. The indicator will

accept up to one size #8 AWG wire

through its center opening.

The CR250 has a retail price of

$20.90.

CR MAGNETICS, INC.

544 Axminster Drive

Fenton, MO 63026

Tel: 314-343-8518

Web: www.crmagnetics.com

(Continued on page PS-7)
Web browsers and the Internet are an everyday way of life for most of us. Have you ever thought about what kind of power lies within your seemingly simple Web browser? Visualize this: How would you like to turn off a light in your garage, or flip a switch to activate one of your homemade gadgets, directly from your favorite Web browser? Would being able to remotely monitor things like temperature, humidity or even the light level in an area of your home, using your Web browser interest you? Ever wonder if someone entered your room or a sensitive storage bin without your permission? Wouldn’t it be nice to check for that illegal entry from your laptop in a hotel room or from the office? Well, how about an inexpensive and simple project that does all of the above and more? I see you nodding “YES!” but you’re asking “How inexpensive?” Is FREE close enough for you? The software for this Web browser remote control is free for the downloading. In the text that follows, I will show you how to take “free” emWare and Microchip software and integrate it with some inexpensive and tricky electronics to form the basis for a personal Internet appliance.

The Internet Appliance Development Board. Thanks to the folks at emWare, the technology to remotely monitor and control electronic devices over the Internet is available without charge to the public. If you’re thinking that you have to have direct access to the Internet to use emWare, that’s not necessarily true. While some are truly “on the Internet,” most of us simply use the Internet. By “use the Internet,” I mean that we can access various sites and resources on the Internet with Web browsers, email clients, and other specialty software through an Internet Service Provider. If you are “on the Internet,” you actually have an IP address that stands in conjunction with a server that supplies those downloadable resources to users. The emWare software is designed for use by those that are on the Internet, but can be adapted to work for those that simply use the Internet. How is that done? Simple: in addition to being a very powerful Web-based control and moni-
Windows 98, the emWare software, Microchip’s MPLAB package, an electronic device to control or monitor, and a PC with a parallel port and a couple of standard serial ports. In this article, I’m going to show you how to build your own Internet Appliance Development Board and take advantage of the remote control and monitoring capabilities of the emWare package.

What is emWare and EMIT Technology? EMIT is short for Embedded Micro Internetworking Technology. While you are reading this text, I suggest you do the following:

- Download the FREE emWare, EMIT SDK, and Visual Café Trial packages from www.emWare.com
- Download the latest release of the MPLAB package from www.microchip.com
- Download the latest version of Netscape Navigator

The code and documentation you get from emWare and Microchip will be very detailed. So, I won’t get too deeply into that here for space considerations. The idea is to convey how to interface the emWare code and your user-written PIC code with the IAPDB (Internet Appliance Development Board) and thus make it possible for you to construct a working Internet Appliance.

EMIT consists of a number of different modules. For the IAPDB, we are only concerned with emMicro, emNet, emManager, emGateway, and emPackage. Let’s start by looking at the server, which in our case is based on the new PIC16F877. emNet, a component of emMicro, resides at the server level on the PIC16F877 and within emGateway. The purpose of emNet is to link the PIC-based server and its resources to a larger networked host (your PC in our case) running emGateway. emNet enables a small network (PIC server to emGateway) to interface to a “large network” (emGateway to the world). Of course, the PIC application that toggles the PIC’s I/O pins resides in the PIC16F877 server program flash along with emMicro. Once loaded and running on the PIC16F877, the device application can employ functions, events, and variables to perform various user-defined tasks. For instance, coupling the device application and the PIC’s A/D converter allows monitoring of anything that outputs a variable voltage. By combining the emMicro-enhanced device application with the PIC’s digital...
I/O resources, you can control and monitor any device that can be interfaced to the PIC.

Although the emMicro application is very small, it can also serve standard HTML objects. Compressing some of the served HTML components into Microtags makes this possible. These Microtags are passed between emMicro and emGateway and are expanded by other EMIT processes to expose their content on the Web browser. In other words, Microtags are expandable abbreviations of the actual data. That lets servers with limited memory resources handle large amounts of data. Using Microtags also reduces the amount of traffic between client and server.

Several emMicro-based servers can be connected to one gateway machine. With the IAPDB, that connection is made serially; the gateway must have a unique serial port for each server device. It is also possible to use RS-485 “multidrop” technology to connect to emGateway. RS-485 uses an addressing scheme to allow multiple server devices on a single RS-485-capable port. On the hardware side, a MAX233 does the RS-232 duties while the MAX487 does the same for RS-485.

A Data Link Module, or DLM, manages each physical connection between the server and the gateway. The DLMs are initiated by the DAS (Device Access Service), which does most of the heavy-duty communication chores. The emGateway also contains an HTTP server to transfer emObjects between the server and gateway to the HTTP Client. These emObjects are the custom controls that make emWare GUIs unique. Examples of emObjects are meters, switches, and 7-segment displays that can be manipulated by the server application or JavaScript on the client.

To sum up, emMicro and the user-written application reside on the server (PIC16F877). The emGateway resides on a networked host PC running Windows 95 or Windows 98. It can also run on Windows NT, but the PIC16F877 IAPDB host programmer code isn’t designed to run on NT.

Although the IAPDB host program won’t use NT, you can use NT in the development mix. Here’s how I did it. I connected my IAPDB’s serial port to an NT machine running emGateway, Visual Café, and Netscape Navigator. The IAPDB’s parallel interface connected to the parallel port of a Windows 98 machine running the IAPDB host program and MPLAB. My machines are all connected to an Ethernet LAN, but that’s not required. This arrangement lets me develop my PIC code on the Windows 98 machine and download it to the IAPDB using the IAPDB host program. Since I didn’t interfere with the Netscape browser on the NT machine, my code changes on the 98 machine were reflected immediately on the NT Netscape browser. On the other hand, if I wanted to make a change in the GUI, I simply used Visual Café on the NT machine to do so without interrupting the host IAPDB program or the IAPDB on the 98 machine. The Ethernet LAN setup allows me to transfer files between machines without the frustration of diskettes.

Let’s talk about emGateway. Its job is to pass information between the server and the client. If the PIC server does not contain the emObjects it needs to serve, emGateway can be configured to “serve” them to the client instead. The emObjects are the variables and GUI objects that display the information at the Web-browser level. For a standard serial connection between the server and a gateway, the gateway must have a serial port for every device connected to it. As you read on, it will become apparent as to how all of this fits together. If you feel that you need to get deeper right now, you

Fig. 4. Here’s the foil pattern for the solder side. Note that large amount of space for prototyping additional circuitry.
can read the details in the EMIT User's Manual. A logical view of what I have described so far can be seen in Fig. 1.

IAPDB Theory of Operation. Now that you understand the concepts behind emWare and EMIT, you can see that the IAPDB is a very tiny Web server that doubles as a PIC16F877 programmer. Look at the IAPDB schematic shown in Fig. 2 on page 38. Most of the EMIT server code resides in IC1, the PIC16F877. IC3 is a Microchip 12C serial EEPROM that lets you store HTML, plain text, or just about any other type of file. In essence, IC3 is a tiny file system. Think of it as a tiny disk drive with no motor.

For instance, if you wanted to include a how-to-use-this-appliance README.TXT file with your design, you would simply create the file and copy it to the file area in IC3 using emGateway. The end user would then be able to click on the file in emGateway, and it would be displayed in a Web browser window. The split file system can also be used to store variables and constants that can be retrieved with the user's PIC program. The beauty of this file system is that the 24LCXXX series of EEPROMs are nonvolatile. When you put something in the EEPROM, even if your appliance loses power, the data is there until you erase it or change it. If you think you have to write supporting code to make this happen, you are wrong. The emMicro module has built-in code to handle all of the 24LCXXX parts. You simply choose your part from the list in the emWare-supplied skeleton code.

Although the PIC16F877 will be acting as a server, most of the PIC16F877's I/O is available to you. On the IAPDB, three pins (RB7, RB6, and RB3) are reserved for programming IC1. Once you've created your custom appliance, you can use these lines as standard I/O. Pin 40 of IC1 (RB7) is the program data I/O line. It is accessed through pin 6 of J1, which is connected to the PC parallel port. The PIC can send program data back to the host PC through pin 10 of J1. To isolate those two functions, IC4-a keeps data from pin 6 of J1 from interfering, as long as pin 7 of J1 is not grounded. To program the PIC, a clock signal is also needed; pin 5 of J1 supplies that signal to pin 39 (RB6) of IC1.

One very important difference in programming the flash-based PIC16F877 with respect to the EPROM-based PICs is that the 13-volt DC programming voltage is optional. As you can see, high-voltage programming is not employed here. A logic level applied to pin 36 (RB3) of IC1 from the PC's parallel port controls program mode. By using the 5-volt programming mode, I was able to eliminate parts and software overhead needed for high-voltage programming. The PIC16F877 on the IAPDB can be programmed without moving jumpers or removing it from its socket.

Another advantage of low-voltage programming is the simplified power-control circuitry, represented by transistors Q1-Q3 and resistors R1-R7. Pin 2 of J1 controls Q1, which in turn activates or deactivates pass transistor Q2, applying regulated VDD from IC6 to IC1. The signal on pin 3 of J1 controls the state of IC1's master reset line through Q3. The reset pin is used in programming and as an IAPDB host program RUN/STOP/RESET line after IC1 is programmed.

Regulator IC6, along with C6 and C7, provides a regulated 5-volt

Fig. 5. When building the IAPDB, use sockets for the ICs. Don't forget to make connections on both sides of the board.

OPTIONAL VARIABLE VOLTAGE REGULATOR

![Diagram](https://via.placeholder.com/150)

Poptronics, June 2000
Distance Education...

✓ Nearly 70 years of experience with over 150,000 graduates worldwide. At CIE you get a proven, patented, learning method to achieve your career and educational goals.

✓ Enroll on-line. Visit CIE's website at www.cie-wc.edu and take a look at all of our educational offerings and services. You can even take a first lesson.

✓ Choose from a Bachelor or Associate Degree/10 Career Courses or over 30 Micro Courses.

✓ Visit CIE's Bookstore's website at www.ciebookstore.com and review our Micro Course offerings and Supplemental Training programs, plus thousands of books, software, tools, test equipment, study guides and videos.

✓ Toll-Free Faculty Assistance and 24 hour priority grading. At CIE you're just a phone call away for one-on-one assistance.

It truly is your one stop training resource center.

We wrote the book on it ...Since 1934

If you're looking to earn a degree, complete a career course, or upgrade your current skills, CIE's independent study programs may be the right answer for you.

Find out more about CIE by logging on to www.cie-wc.edu. In addition to the online enrollment form you'll find everything you need to know about CIE like detailed course descriptions, VA and DANTES benefits, a sample lesson, tuition prices, financial assistance, and it's all just a click away at www.cie-wc.edu.

Call For A Free Catalog
1-800-243-6446

YES! I am interested. Please send me a catalog.

Name: ___________________________

Address: ___________________________

City: __________________ State: _______ Zip: ________

Phone: ____________________________

source for the circuit. A 9-volt power source is connected to J3; it can be a wall transformer or a standard 9-volt battery. Once IC1 is programmed, IC4 can be removed. A shorting block across JP1 allows Vcc voltage flow to IC1. Another shorting block across JP2 grounds pin 36 of IC1, inhibiting programming. Normally, the host IAPDB program controls those jumper points. The IAPDB can operate for quite a while from a standard 9-volt battery when it is in this configuration.

As you already know, the IAPDB interfaces to an emWare software module called emGateway. That module runs on the PC; the IAPDB accesses it through a serial connection provided by IC2, a MAX233. Using the MAX233 eliminates the need for a negative voltage supply to meet the RS-232 standard. Note also that the MAX233 needs no external components to generate the negative voltage. Connector J2 is wired like an external modem so you can connect the IAPDB to a PC serial port with a standard ribbon cable outfitted with the appropriate 9-pin connectors. If we didn’t do that, you’d need a “null modem” cable that crosses the appropriate signals such as the transmit and receive lines. The PIC16F877’s internal serial interface connects to IC2 through pins 25 and 26. Just as it does for the serial EEPROM, IC3, the emMicro code provided by emWare automatically handles the operation of the IC1’s USART.

Parallel connector J1 connects the IAPDB to a Windows-based host program that reads, writes, erases, and controls the programming aspects of IC1. Another way to look at it is that the IAPDB is a PIC16F877 programmer that doubles as an emWare development system. We’ll look at that in greater detail when IC1 is programmed.

An array of eight LEDs is attached to IC1’s port “D” through S1. Those LEDs are not committed to any particular function; their use is entirely up to you and the program that you write for your particular application. In addition, LED9 and LED10 monitor both receive and transmit lines, giving a visual indication of emNet serial activity. Activity between IC3 and IC1 is monitored by LED11. Those LEDs are useful when troubleshooting your homegrown code as they indicate when the IAPDB is communicating with emGateway and when it is accessing IC3.

The EMIT/emWare client/server theory that applies to IC1 also applies to IC5. The IAPDB does not
have PIC12CXXX programming capability. You can use any suitable programmer, such as the PIC Replicator that was described in last month’s issue of Poptronics.

Assembling the IAPDB. The IAPDB can be assembled using point-to-point or wirewrap techniques on a piece of perfboard. As an alternative, you can etch and drill a PC board for a more professional appearance. Foil patterns have been included here for a double-sided board; see Figs. 3 and 4. If you do not wish to etch a double-sided board—not an easy task—one is available as part of a complete kit from the source given in the Parts List.

If you do use an etched board from the Parts List source or the foil patterns, use the parts-placement diagram in Fig. 5 as a guide to component location. Using sockets for the ICs is recommended; this is, after all, a development project. Since the “D” in IAPDB stands for development, the IAPDB includes a generous amount of breadboarding space. Another reason for using sockets is that the IAPDB is a double-sided board; solder connections need to be made on both sides of the board. If you can’t plate the holes on a self-made board, you can use one of the standard alternatives such as eyelets, short lengths of 30-gauge wirewrap wire, or soldering the component leads on both sides of the board where necessary.

Do not install any ICs at this time. Once all of the other components are installed, apply 9 volts to J3 and check the output voltage of IC6. Make sure that 5 volts is present across C2, C3, C4 and C5. If there is a problem, recheck your work. When you’re satisfied with the voltage measurements, install the ICs.

If you plan to use the analog/digital-conversion feature of IC1, you may want to add a variable voltage source to the IAPDB. A suggested circuit that uses an LM317 is shown in Fig. 6. Note that there is a prototyping area next to IC6 for this purpose. The advantage of an adjustable supply lets you set a precise voltage (usually 5.12 volts) for IC1’s A/D reference voltage. An example application that I’ll touch on later involves connecting an LM34DZ Fahrenheit temperature sensor to IC1. With that hardware and appropriate software, you’ll be able to read and display the measured temperature with a Web browser. Consult the data sheets for the LM34DZ and IC1 as well as Fig. 2 for information on interfacing that (and other sensors) to IC1’s A/D inputs.

Now that our hardware is built, it’s time to start working with the software end of the IAPDB.

Fig. 11: A fully expanded Running DLMs Window without the File or Variable details.

Fig. 12: Copying any type of data to IC3 is as simple as “drag ‘n’ drop!”

Fig. 13: Once a file is successfully copied, it shows up immediately.

Fig. 14: Reading the copied file is a snap for any Web browser.
The IAPDB (Internet Appliance Development Board) lets you control any electronic circuit from your Web browser. As with most microcontroller-based projects, the hardware is simple; the magic comes from the software.
Loading and Testing the IAPDB Software. Microchip's MPLAB is a breeze to install: just click on "setup," choose a directory, and you're off. The IAP host program is just as easy as MPLAB to install; again, click on "setup" and off it goes.

The files that you downloaded include some ready-to-run PIC and Visual Café code that you can use to test your new IAPDB. Prepare the Java code by placing the IAPL6.jar, IAPL6.CLASS, and IAPL6.HTM files in the \emWare \emGateway\Html directory. The Java code assumes that COM1 is used to connect to the IAPDB. You can change that to another COM port later; for now, use COM1 so that you do not have to change any code. The IAPDB host program auto-finds the parallel port, so unless you have nonstandard hardware, you should be OK.

Connect your host PC's parallel port to J1 and your PC's COM1 serial port to J2. Make sure that JP1 and JP2 are not installed. Apply power to the IAPDB and start the IAPDB PC host program. A window similar to the one shown in Fig. 7 should appear. Click on "LOAD FILE" and choose EMAp16.HEX. The IAPDB host application should open that file and show a hexadecimal "dump" of the program in the hex view window. Be sure to have EMAp16.COD in the same directory as the EMAp16.HEX file as the IAPDB host program uses the .cod file as well.

Click on "PROGRAM;" you should see programming activity messages in the program's status area. When programming is done, the "Program Verify Status" window will appear. If all entries in that window indicate OK, click on "RUN." That will start IC1 running the program that you just downloaded into it. Note that the "RUN" button will change to a "STOP" button.

Now let's start emManager; you'll find a red emWare logo in your Windows Start menu. From the emManager pulldown menu item, select "Open Connection." You should get a dialog box similar to Fig. 8. Set the "Connection Library," "Username," and "Password" entries to "Administrator." The "Address" is

Fig. 15. Variables used by the PIC program can be examined and modified "behind the PIC's back."

Fig. 16. If a variable changes, you can examine and graph the results in real time. Here are the results of hitting a temperature sensor with a hot-air gun.

Fig. 17. When you point your browser at the IAPDB, you can read all sorts of status information from it. Imagine if you connected an IAPDB to a soft-drink dispensing machine; you could read status of how many bottles of which flavors are available without having to walk down to the machine.

Fig. 18. Accessing the embedded HTML code in the IAPDB demonstration software shows how you can read information (temperature) as well as issue commands. If you replace the LEDs on the IAPDB with transistors or solid-state relays, you could control the displayed devices by clicking on them. With the IAPDB connected to the Internet on a permanent basis, you could do that from anywhere in the world!
the hosts file, use Windows’ Find utility to locate it and a text editor such as Notepad to examine it. The hosts file entries allow you to associate host names with IP addresses. On my PC, the name local host is assigned to 127.0.0.1. The Port entry should be set to 80. Once you have the proper entries for your system, click on “OK.”

You are now inside emManager at the “Running DLMs” window similar to the one shown in Fig. 9. If by chance a DLM is running, stop it. On the far left of the window, choose “DLMs.” Look for the serial entry in the DLM window; it should have a connection string defined as EMNET.RS232+COM1. Double-click on the “Serial” entry. This will return you to the “Running DLMs” window. A Serial entry should now be present under the “Running DLMs” caption. On the IAPDB, LED9 and LED10 should be flashing slowly, indicating that the IAPDB and emGateway are communicating.

Now choose “Devices” from the far left menu of the window. Look for SDKBOARD in the Name column. Note that its Connection String is “Serial/O.” Delete this entry using the context menu by right-clicking on it. Now move your cursor to a clear area in the window and right-click again. Choose “Add” and then “Device.” In the Add Device window, make the Name “iapló-board.” Use the pulldown to select “Serial” for the DLM entry. Enter 0 (zero) in the Device Address field. See Fig. 10. Click on OK and the device “iapló-board” should appear under the Name column with a Connection String of Serial/O. The iapló-board device is the IAPDB.

Double click on the iapló-board device that you just made. There should be a flurry of activity on LED9 and LED10, plus some activity on LED11 as well. The emManager software should return to the “Running DLMs” window and the Serial DLM should have a plus sign in a box to its left—much like a Windows-style file manager. Clicking on this box will display a subtree like a directory structure with a “Devices” entry. Open the Devices item in the same way and your iapló-board should appear as a subtree. Figure 11 shows a fully expanded tree.

Before we move on, let’s format the split file system in IC3. With the iapló-board entry highlighted, select “Tools” from the pulldown menu and then select “Format Device.” Choose a cluster size of 2KB and click OK in the Format window. A “format complete” window will appear when the operation is complete. While formatting, there should be lots of activity on LED11.

After formatting, expand the iapló-board entry again until you see the “Files” and “Variables” subitems. Double click on “Files.” Start Windows Explorer, select a small text file, right-click on it, and drag it into the “Files and Flags” area of the iapló-board window. The File Copy window shown in Fig. 12 will appear with the “Compressed” option checked. Click OK, and you should see more activity on LED11 as the file is copied into the split file system in IC3. When the copy is finished, the name of the file that you selected will appear in the Files column and the Flags entry will read “Compressed.” As you can see in Fig. 13, I copied CONFIG.DOS from my PC’s root directory to IC3. If you double click on the just copied file in the Files window, your Web browser (Netscape in my case) will start and display the file’s text content within the browser window. You can see in Fig. 14 how the browser resolves the IP address of IC3 in order to read and display its contents. According to the HOSTS that I mentioned before, IP address 127.0.0.1 points to the IAPDB rather than any server on the Internet. You could also view this file by entering http://localhost/iap16board/CON FIG.DOS. The http server address is followed by the device, iapló-board, and the file name.

Close the browser and click on “Variables” in the iapló-board subtree. The variables that you see listed in Fig. 15 are the actual names of the variables used in the PIC program. These variables are identified and classified using the emPackage utility. This window is very powerful in that you can actually monitor and change the variable values in real time. For example, highlight and right-click on the Buffer variable.
Utilities can now “talk” to appliances through the information superhighway, allowing utilities to measure demand, determine rate structures, forecast load growth, and model future system requirements to better meet the needs of their customers.

An employee at the local utility views a computer screen and finds a faulty sump pump. She notifies the customer and a flooded basement is averted. Another operator notices a furnace running in the middle of the summer—the problem is an air conditioner blowing cold air directly on the thermostat. Those actions are made possible by the non-intrusive appliance load-monitoring system, or NIALMS.

NIALMS allow utilities to learn where, when, and how much electrical power consumers use. It can be done without entering homes to install monitoring devices on individual appliances. The NIALMS Field Recorder, illustrated in Fig. 1, is placed between the meter box and meter. The recorder is plugged in without any wiring and with only a short power interruption. That feature makes the NIALMS ideal for temporary troubleshooting.

The recorder samples power-line data at 2 kHz with watt and VAR (volt-ampere-reactive) values computed at a rate of three-times-per-
NIALMS Field Recorder is installed on the home's utility meter in between the meter box and the meter, as shown here. Data is stored in memory for subsequent automatic retrieval by the utility's master-station computer, as shown in Fig. 2, via a built-in modem and telephone line. The NIALMS algorithm looks for edge transitions—that is, stepwise changes that are above a programmed threshold—to determine exactly when a particular appliance goes on and off. Then it records, calculates, and stores the date and time of each on/off event along with the voltage, current, and real and reactive power (watt, VAR). The recorder also computes and stores the watt-hours and VAR-hours for each recording interval.

Next, see Fig. 3, the edge transitions (i.e., the on/off events) are plotted on a watt-versus-VAR graph. Transitions from individual appliances tend to form clusters that can be compared against appliance signatures stored in a software library. A positive identification is made and the specific appliance is tagged when a cluster matches a stored signature. Results can be displayed at several analysis stations on a variety of whole-house and individual appliance graphics, including 2-D load profiles, 3-D time-of-use by appliance plots, and energy consumption by appliance pie charts, as shown in Fig. 4. Tabular formats are also available.

NIALMS can identify faulty appli-
Fig. 3. By analyzing the raw data captured by the recorder, NIALMS can recognize individual appliances by their usage pattern.

Fig. 4. Samples of graphics available from NIALMS: A Pie chart showing energy consumption by individual appliances in a home (A) and the graph in B shows usage by an individual appliance and when it was used.

ances, abnormal energy usage, and, in the future, serve as an "early-warning system" for appliances about to fail. Utilities can use NIALMS to measure demand, determine rate structures, forecast load growth, and model future system needs. Cost-of-service and energy-consumption information can help customers make decisions on the use, maintenance, and replacement of appliances. Time-of-use billing, timely resolution of billing disputes, and minimized power disruptions enhance customer relations. In the future, NIALMS could be used, for example, to monitor elderly people who live alone or identify unauthorized tenants by monitoring changes in electricity usage patterns.

NIALMS, commercially available from Telog Instruments, Inc., was developed under the sponsorship of the Electric Power Research Institute (EPRI). Over a decade ago, the EPRI picked up on the pattern recognition techniques discovered by researchers at Massachusetts Institute of Technology (MIT) as a means to identify individual appliances. The Empire State Electric Energy Research Corp., New York State Energy and Development Authority, Consolidated Edison of New York City, and Rochester NY Gas & Electric contributed to the development. MIT is still working on improvements.

During testing, NIALMS recorders were installed by seven utilities in five to eight different homes. At each site, four to eight appliances were monitored to give a total of about 140 individual appliances, including:

- Window, central, and evaporative air conditioners
- Heat pumps
- Resistance and thermal-storage heating systems
- Refrigerators and freezers
- Water heaters
- Clothes washers and dryers
- Well, pool, and sewage pumps
- Dishwashers
- Televisions and computers
- Waterbed heaters
- Central vacuums
- Ranges, ovens, microwaves, and mini-ovens
- Whirlpools

The accuracy of NIALMS was determined by parallel, conventional metering of the appliances monitored. In six months of testing, NIALMS had an accuracy of 90-95% for most appliances. Simple on/off appliances like water pumps and water heaters had the highest accuracy. Accuracy was lower for more complex appliances like heat pumps and dryers with multiple components like compressors, heater...
elements, and lights that go on and off at different times. Refrigerators, which are complex devices, are easily identified by the defrost cycle. The algorithms can be modified and the accuracy improved as more real-world data is collected.

One problem during testing was noise and the somewhat quirky behavior of telephone communications. Hand-held data-transfer units, cellular communications, radio-frequency transmissions, hybrid coax/fiber cable, or even a portable computer could be used in the future.

The recorder modules located at each meter cost around $1200—still too expensive to install at every residence, but ideal for sampling and troubleshooting. NIALMS requires a 486 or higher IBM-compatible PC with Windows NT (Version 3.5), 16MB of RAM, a 500MB hard drive, VGA or SVGA monitor, SCSI CD ROM, and a 2400-baud modem. A high-powered PC and software that can accommodate about 3000 recorders costs about $15,000.

The next step is to extend the NIALMS technology to commercial and industrial customers. A commercial non-intrusive load and monitoring system (C-NILMS) will initially handle more complex three-phase items under 100 kW with enhanced algorithms and more advanced software.

INTERNET APPLIANCE

(continued from page 40)

Choose "Modify" and enter 0x01. If the switch between pins 1 and 9 of S1 is closed, LED1 should light. You can't turn the LED off because under normal conditions, the PIC program reads the button variable and acts accordingly. By modifying the value this way, we are using a "back door": the PIC program doesn't know that we changed anything.

If you've connected an LM34DZ to the IAPDB, you should also see a hexadecimal representation of the temperature in the TEMP variable. Highlight the TEMP variable and right click on it. Select Subscribe to Variable in the menu, and you will get a graph that tracks the value of TEMP. Hold the LM34DZ between your fingers to increase its temperature. Note that the graph follows the variable value. In Fig. 16, I first heated the LM34DZ with my fingers. The big spike is from hitting the sensor with a heat gun and allowing it to cool off and recover. Pretty slick, huh? Highlight and right click on TEMP and choose "Unsubscribe to Variable" to remove the graphical display.

Highlight and right click on the NVSSVAR variable. That variable is a nonvolatile storage variable that I reserved in the serial EEPROM. You can reserve as many bytes as you want as long as there is room within IC3. Formatting IC3 will not remove the reserved variables. They can be accessed and modified by the PIC program. Just like the other variables, we can set it from em-Manager. The difference is that once a value is entered, it is there until it is either erased or changed even following the absence of power to the IAPDB. Choose "Modify" and enter 0xAA in the Set Variable window. Click OK and 0xAA will appear under the Values column of the NVSSVAR variable; Fig. 16 shows that result. Remove power from the IAPDB and everything should go "blank" in the em-Gateway window. Apply power to the IAPDB. You should have LED9 and LED10 activity on the IAPDB. Double click on the lapl6board in the Devices subtree. Lots of LED activity should occur. Select Variables in the lapl6board subtree. Notice that the NVSSVAR variable has the same value it had before you removed power. The BUTTON variable that held 0x01 has been cleared and LED1 is off. That should demonstrate the function of volatile vs. non-volatile storage.

If everything is working as it should, you're ready to bring up the browser and take the IAPDB out for a ride. Start your browser. My examples use Netscape; you'll have to adjust the following instructions accordingly for the browser that you use. Click on "OK" if your browser complains that it "Can't find home." In the Netscape Location panel, enter http://localhost/lap16board/lapl6.html. You should get an emWare Device Status screen similar to Fig. 17—all of which should be familiar to you. The Device String is a line of text in the PIC code to identify this application. This string corresponds with the SemDesc variable. Note that all of the program variables that we saw in emGateway are listed here. Under Documents, you should see the text file that you copied to IC3. If you click on it here, the text contents will be displayed just like it was in the emGateway window: is this cool or what?

We're almost to the end of the rainbow. Enter this URL in the Location panel: http://localhost/lap16board/lapl6.html. After lots of LED activity on the IAPDB, and—poof!—you should have Fig. 18 in your Web browser. Hold the LM34DZ to see the temperature readout change. Click on one button to see the associated IAPDB LED illuminate or extinguish. You have created your first Internet Appliance!

This is the moment that it all comes together. Now that you know how to navigate in the EMIT world, dig a little deeper into the documentation and study the examples and tutorials. I will be posting code updates on my Web site (www.edtp.com). The emWare tutorial demos are the best that I've ever seen. They take you step by step through the PIC code development process. A working code skeleton is presented and the developer is walked through making additions and changes.

Once you've mastered the Visual Café environment and understand the basics of EMIT, send a note to evalupgrade@emWare.com to get a proper EMIT license. Unfortunately, the Visual Café trial version expires after 30 days of use, and you must purchase a full copy from Symantec. If you have other ways to produce your Java code, go for it. The emWare documentation explains how to use Microsoft tools to obtain the same results.

As you can see, making a personal Internet Appliance is within your reach. The things that you can create with these tools are only limited by your imagination and desires. Let the editors at Poptronics know what you are doing with your Internet Appliance. They can publish the information or post it on the Web site for others to use. It will be interesting to see where this project takes the readers.
Non-Linear Configurations For Linear ICs

Linear integrated circuits are not limited to linear applications—there are a variety of non-linear services that these useful devices perform.

JOSEPH J. CARR

The linear integrated circuit, the operational amplifier (better known as an op-amp) in particular, is an extremely flexible electronic device. Anyone with a passing interest in electronics is probably familiar with the varied linear applications for linear ICs, but there are numerous non-linear applications for which the op-amp and other such devices are very well suited.

In this article, we'll explore various non-linear circuits. Of particular interest are circuits in which PN junction diodes are used. But before we get into the “nuts-and-volts” of the subject, however, it might be prudent to do a quick review of the PN-junction diode.

PN-Junction Diode Review. The PN diode is the oldest form of solid-state electronic component. Solid-state diodes are available in two configurations—PN junction and point contact—and although they're considerably different from one another, it has become common practice (even if erroneous) to consider them as one and the same. Figures 1A and 1B show the differences. Both forms feature P- and N-type semiconductor material locked in close contact with each other.

In the point-contact PN diode (see Fig. 1A), the main body of the semiconductor material consists of one type of material (in this instance, P-type), with the alternate type (N-type) diffused into the bulk material. A large metallic electrode connects the P-type end to an external electrode. The N-type material is connected to its electrode through a cat's whisker—a contact that is reminiscent of the “ancient” crystals used in early radio receivers. The PN-junction diode (see Fig. 1B), on the other hand, consists of a bulk semiconductor that has N-type impurities at one end and P-type impurities at the other end. Metallic end electrodes connect the semiconductor material to the outside world. While the PN-junction diode is the most popular, point-contact types are still used in some applications. Germanium diodes tend to be point-contact units, as do the older microwave diodes, while modern silicon signal and switching diodes tend to be PN-junction types.

Bowing to modern usage—even if a little sloppy—when we refer to “PN-junction diodes,” assume that both types are meant.

Figure 1C illustrates the current versus voltage (I-vs.-V) transfer characteristic of the “ideal” PN-junction diode. When the anode of a diode is made positive with respect to its cathode, the diode is forward biased, and as such conducts current in the forward direction. Alternately, when the diode's anode is made negative with respect to its cathode, the diode is reverse biased, therefore, no current flows.
Practical diodes don't live up to the ideal in a couple of important respects. Figure 2 shows the transfer characteristics for a practical junction diode. For the ideal diode, current flow in the reverse direction is always zero; while in a real diode, a minute leakage current (I_L) flows backward across the junction. A manifestation of that current can be seen by measuring the forward and reverse resistances of a PN-junction diode. The forward resistance is very low, while the reverse resistance is very high... but not "infinite," as one might expect from an open circuit.

Another departure from the ideal in the reverse-bias region is the avalanche point (V_A)—the point at which reverse bias is great enough to cause a sharp increase in current flow. That condition is called avalanche breakdown. When carefully regulated, the breakdown potential is both sharply defined and reasonably stable except for a slight temperature dependence. A device designed in that manner is called a Zener diode and is used as a voltage regulator.

There is also an anomaly in the forward-bias region. In the ideal case, there is an ohmic relationship between current flow and the applied forward voltage. Similarly, there is a linear relationship between the applied forward voltage (V_F) and the output voltage (V_O). In real diodes, however, there is a significant departure from the ideal transfer characteristic. Between zero and some critical junction voltage (V_C), the characteristic curves are non-linear. The actual voltage is a function of the type of semiconductor material used and the junction temperature. In general, V_C for germanium diodes is 0.2 to 0.3 volts and is 0.6 to 0.7 volts for silicon diodes. In the 0-to-V_C region, the diode's forward resistance is a variable function of V_F and temperature; the I-vs.-V_F characteristic is logarithmic. Above V_C, the I-vs.-V_F characteristic curve becomes more nearly linear.

Precise-Diode Circuits. A precise-diode, also called ideal-rectifier, circuit combines an active device, such as an op-amp, with a pair of solid-state PN-junction diodes to "serve-out" (i.e., to compensate for or eliminate) the errors introduced to the circuit by a non-ideal diode using a feedback network. Such an arrangement provides a couple of advantages. The circuit can rectify very small AC signals between zero volts and V_C, with rectification more nearly linear than with the diode alone, even in the diode's ohmic range.

Figure 3 shows a schematic diagram of a basic inverting half-wave precise rectifier. A basic assumption about that circuit is that load impedance (R_L) is purely resistive, and therefore contains no energy production or storage elements. The circuit is essentially an inverting, voltage-follower amplifier coupled with two PN-junction diodes (D₁ and D₂). Half-wave rectification occurs because the circuits offer two different gains, which depend on the polarity of the input signal.

Fig. 1. Solid-state diodes are available in two different configurations: point-contact (A) and junction (B) types. The current-vs.-voltage characteristic of the "ideal" PN-junction diode is illustrated in C. Note that there is no reverse-current flow through an ideal diode when reverse biased.
When V_{IN} is positive, the gain (V_O/V_{IN}) is zero, but when V_{IN} is negative, the voltage gain is R_F/R_{IN}.

Consider the operation of the circuit with a positive V_{IN}. The non-inverting input (+) is grounded, and so it is held at zero volts. In accordance with the properties of the ideal op-amp, the inverting input (-) is also assumed to be grounded ($V_A = 0$). Because of that concept—called virtual ground—the differential voltage, V_D, is zero.

When $V_{IN} > 0$ (i.e., when it is positive), $I_1 = +V_{IN}/R_{IN}$. In order to maintain the equality, $I_1 + I_3 = 0$. Because of Kirchoff's Current Law ($I_1 + I_2 = 0$), the op-amp's output voltage (V_O) swings negative, but is limited by the D1 junction voltage to V_O (about 0.6 to 0.7 volts). With $V_B < 0$, even by only 0.6 to 0.7 volts, diode D2 is reverse biased and therefore cannot conduct. Currents I_2, I_4, and I_6 are zero. Thus, for a positive V_{IN}, the output voltage (V_O) is zero.

Now consider its operation when $V_{IN} < 0$. Under that input condition, the op-amp’s output voltage (V_O) swings positive, making D1 reverse biased and D2 forward biased. In order to preserve Kirchoff’s Current Law ($I_1 + I_2 = 0$), current I_2 must be of equal magnitude but of opposite polarity relative to I_1. Because $V_B/R_{IN} = 2V_O/R_F$, the voltage gain ($A_V = V_O/V_{IN}$) reduces to $2R_F/R_{IN}$, as is appropriate for an inverting amplifier. Thus, the gain for negative input voltages ($V_{IN} < 0$) is $2R_F/R_{IN}$, while for positive input voltages ($V_{IN} > 0$), it is zero. From that difference comes half-wave rectification.

The voltage drop across diode D2 is about 10.6 to 10.7 volts and is "served out" by the fact that D2 is in the negative feedback loop of A1. Voltage V_B is correspondingly higher than V_O in order to null the effects of V_{GD2}.

The precise rectifier is capable of half-wave rectifying very low-level input signals. The minimum signal allowed is given by:

$$V_{IN} > V_G/A_{VO1} \quad (1)$$

where V_{IN} is the input signal voltage, V_G is the diode junction potential (0.6 to 0.7 volts), and A_{VO1} is the open-loop gain of the amplifier.

In Eq. 1, the term A_{VO1} refers to the open-loop gain, which for DC and low-frequency AC signals is extremely high. But at some of the frequencies at which precise diodes operate, the input frequency is a substantial fraction of the gain-bandwidth product, so A_{VO1} is less than it might otherwise be. For example, if the gain-bandwidth product is 1.2 MHz, the gain at 100

![Fig. 2. The transfer characteristic of a practical (non-ideal) solid-state diode is shown here. Unlike the ideal diode, there is a minute leakage current (IL) flowing backwards across the junction in a practical diode.](image)

![Fig. 3. Shown here is a schematic diagram of a basic inverting half-wave precise rectifier, which is comprised of an inverting, voltage-follower coupled with a pair of PN-junction diodes (D1 and D2).](image)
Fig. 4. These waveforms help to illustrate the operation of the precise rectifier. The illustration in A shows the input waveform, B shows the waveform at the output of the op-amp, C shows the circuit’s output waveform, and D shows the same situation graphically.

Hz is 12,000. But at 1000 Hz (a typical frequency for a precise rectifier), the gain is only 1200.

The waveforms shown in Fig. 4 help to illustrate the operation of the precise rectifier. If a sinewave (see Fig. 4A) is applied to a precise rectifier, from time t_1 to t_2 (during the positive excursion), V_O is zero, while V_B rests at $-V_G$ (about –0.6 to –0.7 volts). Between t_2 and t_3, the input is negative, so V_O is a positive voltage with a half-wave sine shape (Fig. 4C). Note the behavior of V_O, the op-amp output (Fig. 4B). From t_1 to t_2, the output rests at $-V_G$, but at t_2 it snaps positive. The half-wave sine shape rests on top of the $+V_G$ offset caused by V_{GD2}.

The block diagram of a circuit that’s designed to create a DC level that is proportional to the average voltage (or rms value) of the output waveform by time-averaging the pulsating DC is shown in Fig. 5. In that illustration, the precise diode is followed by either a low-pass filter (as shown) or an electronic integrator (basically the

Figure 4D graphically illustrates the same situation.

The circuit in Fig. 3 is designed to rectify and invert the negative peaks of the input signal. In order to accommodate the positive peaks, the polarity of the diodes (D1 and D2) need only be reversed.

The output of a precise diode (ideal rectifier) is a pulsating DC waveform. If you need to create a DC level that is proportional to the average voltage (or rms value) of the output waveform, it is possible to time-average the pulsating DC.

The block diagram of a circuit that’s designed for that purpose is shown in Fig. 5. In that illustration, the precise diode is followed by either a low-pass filter (as shown) or an electronic integrator (basically the

Fig. 6. The polarity discriminator shown in A—a circuit built around the inverting voltage-follower—indicates whether the input voltage is zero, positive, or negative. The circuit’s input and two output waveforms are shown in B, and the circuit’s transfer characteristics are shown in C.

www.americanradiohistory.com AmericanRadioHistory.Com
same thing) that has a low enough time constant to produce a time-averaged output. The time constant should start at five times the period of the applied waveform.

Polarity Discriminators. A polarity discriminator is a circuit that produces outputs that indicate whether the input voltage is zero, positive, or negative. Applications for such circuits include alarms, controls, and instrumentation. Figure 6A shows a typical polarity-discriminator circuit. Again the circuit is rooted in the inverting voltage follower; but in this case, the op-amp is coupled with a pair of negative-feedback networks. Each feedback network contains a diode, but because the diodes are connected with opposing polarities, the polarity of the output voltage determines which diode conducts and which is reverse biased.

Consider what happens when \(V_{IN} \) is positive. (Refer to Fig. 6A.) With a positive \(V_{IN} \), current \(I_1 \)—with a magnitude of \(V_{IN}/R_1 \)—flows away from the summing junction toward the source. That causes the output of the op-amp to swing negative, reverse biasing \(D_1 \) and forward biasing \(D_2 \). Current \(I_1 \) is zero and \(I_2 \) equals \(V_{O1}/R_2 \). Output voltage \(V_{O1} \) is negative, with a value of \(V_{O1} = V_O - 0.6 \) volts; output voltage \(V_{O2} \) is zero.

Now consider the opposite case; i.e., where \(V_{IN} \) is negative. The current flows away from the source toward the summing junction. The output of the op-amp swings positive, causing diode \(D_1 \) to become forward biased, while \(D_2 \) is reverse biased. Current \(I_2 \) is now zero, while \(I_1 \) is \(V_{O2}/R_1 \). In this case, \(V_{O2} \) is positive, while \(V_{O1} \) is zero. The waveforms shown in Fig. 6B and the transfer characteristics shown in Fig. 6C help to illustrate the operation of the circuit in Fig. 6A.

Fullwave Precise Rectifier. The fullwave rectifier uses both halves of the input sinewave. Recall that the halfwave rectifier removes half of the sinewave; the fullwave rectifier preserves it. Figure 7 shows the relationships between the various signals in a fullwave-rectifier circuit. Figure 7A shows the input sinewave (upper trace) and the resulting pulsating DC output (lower trace) of a fullwave rectifier. Note that the negative half of the input sinewave is flipped over so as to produce a positive-going output. The characteristic function for the fullwave rectifier is shown in Fig. 7B.

Because the output voltage is always positive, regardless of the polarity of the input signal, the fullwave rectifier can be called an **absolute-value circuit**. The output voltage will be either:

\[
V_O = \frac{K}{V_{IN}} \tag{2}
\]

or

\[
V_O = -\frac{K}{V_{IN}} \tag{3}
\]

depending on the orientation of the diodes within the circuit. While the fullwave rectifier has major applications in DC power supplies, it is the absolute-value characteristic that makes it important for instrumentation and related applications.

Several methods can be used to create a precise fullwave rectifier, several of which are shown in Fig. 8. The circuit in Fig. 8A incorporates the polarity discriminator circuit outlined in Fig. 6A. In the Fig. 8A circuit, the two outputs of the polarity discriminator \(V_{O1} \) and \(V_{O2} \) are applied to the inputs of a DC differential amplifier.

Another approach is shown in Fig. 8B, wherein a pair of oppositely connected diodes are applied to the inputs of a simple DC differential amplifier. That approach is not as well regarded because the diodes in the input stage are not connected in the feedback loop, so their voltage drops are not "served-out."

Fig. 7. The fullwave rectifier uses both halves of the input sinewave. Shown in A is the input sinewave and the pulsating DC output of a fullwave rectifier. The characteristic function for the fullwave rectifier is shown in B.

Fig. 8. There are several methods for creating a precise fullwave rectifier. The circuit in A is based on the polarity discriminator circuit of Fig. 6. The approach illustrated in B uses a pair of oppositely polarized diodes connected to the inputs of a DC differential amplifier.
Another possibility is to connect two precise diode circuits, each with opposite polarity, in parallel.

Zero-Bound and Dead-Band Circuits.

Another non-linear application for the op-amp is the zero-bound circuit. In a zero-bound circuit, the output voltage is limited in such a way as to be more or less than zero for certain input-voltage levels and zero for all others. The term does not mean that V_{IN} values are in any way constrained, but rather that there are constraints on the allowable output voltages. The output of a zero-bound circuit can be used to determine when the input signal exceeds a certain threshold and by how much.

Figure 9 shows a zero-bound amplifier circuit. That circuit is based on the half-wave precise rectifier outlined in Fig. 3. It functions in exactly the same way and includes an additional input (V_{REF}), which generates I_{REF}. The effect of I_{REF} is to offset the trip point at which the input voltage takes effect.

To understand the circuit, we can use an analysis based on the properties of the ideal op-amp. From Kirchoff’s Current Law and the fact that op-amp inputs neither sink nor source current, we know that the following relationship is true:

\[I_1 + I_{REF} = 0 \] \hspace{1cm} (4)

or

\[I_1 + I_{REF} = I_2 \] \hspace{1cm} (5)

We also know that:

\[I_1 = V_{REF}/R \] \hspace{1cm} (6)

\[I_{REF} = V_{REF}/R \] \hspace{1cm} (7)

\[I_2 = V_{O}/R \] \hspace{1cm} (8)

Thus,

\[\frac{V_{IN}}{R} + \frac{V_{REF}}{R} = -\frac{V_{O}}{R} \] \hspace{1cm} (9)

and after multiplying both sides by R:

\[V_{IN} + V_{REF} = V_{O} \] \hspace{1cm} (10)

Thus, the output voltage is still proportional to the input voltage, but is offset by V_{REF}. The transfer characteristics for the circuit are shown in Fig. 10. In Fig. 10A, the value of V_{REF} is negative, while in Fig. 10B the value of V_{REF} is positive. In both cases, the transfer curve is offset by V_{REF}.

Consider the operation of the circuit in Fig. 9 under two conditions: $V_{IN} > 0$ and $V_{IN} < 0$. First assume that $V_{REF} = 0$. For the positive input ($V_{IN} > 0$), the output of the op-amp (A1) swings negative (the circuit is an inverter), causing diode D2 to be reverse biased and D1 to be forward biased. The output voltage, V_{O}, is zero in that case. The output voltage remains zero for all values of $V_{IN} > 0$.

Conclusion. Although we normally think of op-amp circuits in terms of linear electronics, we’ve shown that there are indeed many non-linear applications of the ubiquitous op-amp.

BUY BONDS

YOU CAN WIND YOUR OWN COILS?

There's no trick to it except knowing what you are doing. In a unique, 106-page book you can become expert in winding RF, IF, audio and power coils, chokes and transformers. Practically every type of coil is discussed and necessary calculations are given with the mathematical data simplified for use by anyone. Get your copy today!

Mail coupon to:

Electronics Technology Today, Inc.

P.O. Box 240

Massapequa Park, NY 11762-0240

Please send me my copy of *Coil Design and Construction Manual* (BP150). I enclose a check or money order for $8.99 to cover the book's cost and shipping and handling expenses. NY state residents must add local sales tax.

Name

Address

City State ZIP

Cty State ZIP

All orders must be paid in U.S. funds only. Sorry, no orders accepted outside of USA and Canada. Please allow 6-8 weeks for delivery.
A few readily available components and some technical know-how is all that's required to produce very high DC voltages from a relatively low AC voltage source.

BILL CODY

Although the trend in modern electronics is toward lower-power circuitry, there is simply no getting around the fact that many of the latest electronic gadgets still require a "spritz" or two of high voltage to make them function properly. Unfortunately, many high-voltage circuits depend on relatively expensive and bulky step-up transformers to generate the "juice" that they require. That's because those circuits also have fairly hefty current requirements, as well as a "thirst" for good regulation. Other circuits, in which extensive regulation and "vast" amounts of current are not required, rely heavily on high-voltage-generating configurations that can be built around relatively inexpensive and readily available components.

In order to obtain the high voltages needed for the less demanding circuit configurations, a voltage-doubler is often used. Voltage doublers, which are sometimes used in radio-frequency-actuated circuits to obtain the control voltage, allow you to generate higher voltages than would otherwise be possible with conventional power supplies. Voltage doublers are not generally used when a high degree of regulation is required or when the current drain is high.

Warning!! This article deals with and involves subject matter and the use of materials and substances that may be hazardous to health and life. Do not attempt to implement or use the information contained herein, unless you are experienced and skilled with respect to such subject matter, materials, and substances. Neither the publisher nor the author make any representation as to the completeness or accuracy of the information contained herein, and disclaim any liability for damages or injuries, whether caused by or arising from the lack of completeness, inaccuracies of the information, misrepresentations of the directions, misapplication of the information, or otherwise.
Voltage-Doubler Circuits. As in conventional power-supply circuits, there are two basic voltage-doubler configurations—half-wave and full-wave. Figure 1 is an example of the half-wave voltage doubler (also referred to as a cascade voltage doubler), while Fig. 3 illustrates the full-wave version (also referred to as a conventional doubler). In both circuits, the direct-current (DC) output voltage \(V_{\text{DC(out)}} \) is twice the peak alternating-current (AC) input voltage; i.e., \(V_{\text{DC(out)}} = 2(1.41)V_{\text{AC(RMS input)}} \), or 2.8 times the root-mean-square of the AC input voltage. That means if the circuit is fed from a 12.6-volt AC transformer, the DC output voltage \(V_{\text{DC(out)}} \) would be:

\[
V_{\text{DC(out)}} = 2(1.41)V_{\text{AC(RMS input)}} = 2 \times 1.41 \times 12.6 = 35.532
\]

The conventional doubler (Fig. 3) provides superior voltage regulation and less output ripple, but the cascade circuit (Fig. 1) can be used without a transformer. In addition, two or more cascade circuits can be connected in series to form voltage multiplier circuits with various multiplication factors.

Half-Wave Doubler. Refer to the half-wave voltage-doubler circuit shown in Fig. 1A, and assume that C1 and C2 are both initially discharged. During the first half-cycle of the AC input, the upper input terminal of T1's primary winding is positive with respect to the lower terminal (as illustrated in Fig. 1A), causing an oppositely polarized voltage to be induced in T1's secondary winding. Under that condition, D1 begins to conduct, causing C1 to charge. At the same time, diode D2 is reverse biased, preventing its conduction, so C2 discharges through \(R_L \). The analysis is similar in the second half-cycle, except (as illustrated in Fig. 1B) that D2 conducts and C2 charges, while D1 is cut off and C1 discharges into \(R_L \).

The circuit is really a transformerless voltage amplifier. While T1 can provide isolation, as well as increase the AC voltage initially going into the doubler, the amplification due to the doubling action would occur without it. When the polarity reverses, both the input voltage and the charge across C1 behave like two batteries connected in series, with their voltages combining to produce a DC output of about 36 volts peak. One problem, though, is that a half-wave doubler cannot be used with a current-hungry load.

One way of increasing the circuit's current capacity is to use a full-wave voltage doubler.
Full-Wave Doubler. A full-wave voltage doubler, unlike the half-wave version, is designed to take advantage of both positive and negative half-cycles of the input AC voltage. Figure 2A shows a half-wave rectifier with a positive output. Fig. 2B shows the same circuit redrawn with a negative output. Those half-wave rectifier circuits can be combined (as shown in Fig. 2C) to form a full-wave voltage doubler.

For the sake of greater clarity, the full-wave voltage doubler illustrated in Fig. 2C is shown redrawn in Fig. 3. The full-wave voltage-doubler circuit has better regulation, is easier to filter, and produces nearly double the peak AC voltage of the half-wave version.

Voltage-Multiplication Circuits. There are many variations of the voltage-doubler scheme. Figure 4 illustrates a voltage-multiplication configuration based on the circuit in Fig. 3 that can be used to generate a DC output voltage three times that of the AC input to the circuit. This circuit, a voltage tripler, operates in essentially the same manner as the doubler circuit of Fig. 3. Like the circuit's operation, the formula for calculating the output voltage of the tripler circuit is very similar to that for the doubler: \(V_{\text{DC(out)}} = 3(1.41)V_{\text{AC(RMS INPUT)}} \).

Another circuit—a voltage quadrupler—based on the voltage-doubler of Fig. 3 is shown in Fig. 5. Like the tripler, the voltage quadrupler operates in much the same manner as the voltage doubler. By now a pattern should be beginning to emerge; i.e., \(V_{\text{DC(out)}} = 4(1.41)V_{\text{AC(RMS INPUT)}} \). Note the correlation between each circuit's voltage-multiplication factor and the number of diodes and capacitors in each circuit. For example, the voltage doubler in Figs. 1 and 3 use two diodes and two capacitors to provide a \(x2 \) multiplication factor, while the voltage tripler (Fig. 4) and quadrupler (Fig. 5) use three and...
Fig. 6. Note that the circuit in A is electrically identical to the one in B. The usefulness of these circuits can be enhanced by adding voltage taps at each of the diode junctions (D1/D2, D2/D3, D3/D4, D4/D5, and D5/D6) to provide for multiplication factors of x1, x2, x3, x4, and x5.

Figures 6–8 show a few additional voltage-multiplication circuits. The voltage multipliers shown in Fig. 6 are the most straightforward. Note that the circuit in Fig. 6A is electrically identical to the one in Fig. 6B.

so keep that in mind if you should come across either format. The usefulness of the Fig. 6 circuits can be enhanced by adding voltage taps at each of the diode junctions. For example, referring to Fig. 6B, voltage taps can be added at the D1/D2, D2/D3, D3/D4, D4/D5, and D5/D6 junctions, for multiplication factors of x1, x2, x3, x4, and x5. Plus, another tap can be connected to the anode of D6 for a multiplication factor of x6, or \(V_{DC\text{out}} = 6(1.41)V_{AC\text{RMS input}} \). Thus the circuit is able to provide six levels of DC voltage. Additional stages can be added to the circuit to generate multiplication factors of x10 or more. Note, however, that as the voltage multiplication factor increases, the available current that can be drawn from the circuit decreases by a similar factor. For example, feeding a 12.6-volt, 1-amp AC source through a voltage doubler yields a DC output of approximately 36 volts at about 0.5-amps.

Figure 7 shows an enhanced version of the Fig. 6 circuit—known as either a Cockcroft-Walton or Greinacher cascaded voltage doubler—that offers better stabilization for moderate-current applications.

A sewing needle can be used as an emitter for the voltage doubler shown in Fig. 8 to generate "corona wind," which sounds like a hissing noise. The circuit is capable of delivering 3.75 kV (kilovolts) DC when powered from 117-volt AC source, or 7.5 kV DC when fed from 240 volts AC.

The output of a cascaded voltage doubler should be terminated with no less than 200 megohms, and only then be allowed to extend beyond a protective plastic case, for safety. Voltages as high as 5 megavolts DC have been generated using cascaded voltage doublers, especially when operating in a pressurized atmosphere. The biggest advantage to using voltage doublers is that they use inexpensive
low-voltage parts. Otherwise, if all the parts had to be of the high-voltage variety, you would have to use expensive and rather large capacitors.

High-Voltage DC Generator. A schematic diagram of a high-voltage DC generator is shown in Fig. 9. The circuit is built around a single hex inverting Schmitt trigger (IC1), a couple of transformers (T1 and T2), a transistor (Q1), 21 diodes, and several support components.

At the heart of the circuit is the hex Schmitt trigger. One gate of the hex Schmitt trigger (IC1-a) is configured as a square-wave pulse generator. The output of IC1-a (a pulsating DC voltage) at pin 2 is fed to the inputs of IC1-b to IC1-f, which are connected in parallel to increase the available drive current. The pulsating output of the paralleled gates is fed to the base of Q1 through R2, causing Q1 to toggle on and off in accordance with the oscillations of IC1-a. The collector of Q1 is connected in series with the primary winding of T1. The other end of T1 is connected directly to the positive terminal of the power supply. That produces a driving wave in the primary winding of T1 that is similar to a square wave.

The on/off action of Q1, caused by the pulsating signal applied to it, creates a rising and collapsing field in the primary winding of T1 (a small ferrite-core, step-up transformer). That causes a pulsating signal of opposite polarity, to be induced in T1's secondary winding.

The pulsating DC output at the secondary winding of T1 (ranging from 800 to 1000 volts) is applied to a 10-stage voltage-multiplier circuit, consisting of D1 through D20.

Fig. 8. This circuit, which is capable of delivering 3.75 kV (kilovolts) DC when powered from 117-volt AC source or 7.5 kV DC when fed from 240 volts AC, can be used to generate "corona wind," which sounds like a hissing noise.

Fig. 9. Generate up to 10 kilovolts with this advanced design.
and C3 through C12. The multiplier circuit increases the voltage 10 times, producing an output of up to 10,000-volts DC—\(V_{AC(out)} = 10(1.41)V\) AC (on 15V input). The multiplier accomplishes its task by charging the capacitors (C3-C12) through the diodes (D1-D20); the output is a series addition of all the capacitors in the multiplier.

In order for all the circuit to operate efficiently, the frequency of the squarewave, and therefore the signal applied to the multiplier, must be considered. The output frequency of the oscillator (IC1-a) is set via the combined values of R1, R5, and C1 (which with the values specified is approximately 15 kHz). Potentiometer R5 is used to fine tune the output frequency of the oscillator. The higher the frequency of the oscillator, the lower the capacitive reactance in the multiplier.

Light-emitting diode LED1 serves as an Input-power indicator, while NE1 indicates an output at the secondary of T1. A good way to get the maximum output of the multiplier is to connect an oscilloscope to its high-voltage output via a high-voltage probe and adjust potentiometer R5 for the maximum output. If you don’t have the appropriate test gear, you can place the output wire of the multiplier about a half-inch away from a ground wire and draw a spark, while adjusting R5 for a maximum spark output.

Caution: The output of the multiplier can cause a strong electric shock. In addition, be aware that even after the multiplier has been turned off, there is still a charge stored in the capacitors, which, depending on the state of discharge, can be dangerous if contacted. That charge can be bled off by shorting the outputint he circuit to ground. (In fact, it’s a good idea to get in the habit of discharging all electronic circuits before handling or working on them.)

Also, IC1 is a CMOS device and, as such, is static sensitive. It can handle a maximum input of 15 volts DC. Do not go beyond the 15-volt DC limit or the IC will “vaporize.” Diode D21 is used to prevent reverse polarization of the input voltage source.

As far as the voltage multiplier goes, the diodes and the capacitors must be rated for at least twice the anticipated input voltage, So, if we have a 1000-volt input, all of the diodes and the capacitors must be, respectively, rated for at least 2000-PIV and 2000-WVDC (working volts DC) each. Because diodes with that voltage rating can be hard to find and expensive (if you can find them), pairs of series-connected 1-amp, 1000-PIV diodes were used to form 2000-PIV units.

COMPUTER BITS

(continued from page 10)

month’s column, you’ll notice that the camera and graphics tablet are plugged into a box, rather than the PC. With the proliferation of USB devices in my house, I quickly realized that I was continuously plugging and unplugging devices from the same PC. With the eMachines system pictured, that’s actually pretty easy, since it has a handy USB connector on the front panel. So does the Compaq Presario 5868 that’s my other main test bed. Still, both of these systems only offer two USB ports. At any one time, I may have four or more USB devices that I’m switching between.

A good investment, with so many USB peripherals available, is a USB hub. This provides four or more USB ports, and if it is a powered hub, with an AC supply, each port can provide the maximum 500 mA that the USB standard provides. Unpowered hubs provide only 500 mA in total, so if one or more of the USB devices connected to the hub draws its power from the USB port, you can quickly exhaust the hub’s capacity.

Rather than a hub, I use a device from Xircom called a PortStation. This modular device consists of a pair of end caps, one of which has an input for an AC power supply. In between the end caps, you can insert any combination of modules Xircom offers.

The particular PortStation pictured is simply a 7-port USB hub. It plugs into one of my PC’s USB ports and offers connectors for up to seven USB devices, plenty for my needs. I also have another PortStation that serves as a universal port replicator when I’m using a laptop. That PortStation offers serial, parallel, and even 10Base-T Ethernet connectors.

PortStations aren’t cheap; the 7-port USB one, for instance, sells for about $130. Nevertheless, I’ve always had great luck with Xircom products, and I don’t hesitate to recommend them.

As always, feel free to e-mail me (ineedleman@aol.com) with your comments or questions.

POPOTRONIX®

We’re on the web FREE

We’re starting up, but you can watch us grow!

Projects for beginners to experts!

New Product information!

Bookstore—discover what’s new!

http://www.popotronix.com

WE’RE WITH YOU EVERY DAY
24 HOURS A DAY! DROP IN!
WE’D LOVE TO HAVE YOU VISIT!
Ersatz Fox And Hound

Q I would like to request that you publish a wire tracer circuit. I have a broken phone wire buried in a wall. I need to trace the length of the wire (50 feet) behind drywall with 2 × 4 studs, to find where it is broken—D. S., Orlando, FL

A The "Fox" and "Hound," made by Triplet Corporation (www.triplett.com), are a transmitter and receiver for tracing telephone lines through walls. You connect the transmitter to the wire, and the receiver helps you trace the wire from several inches away. Triplet doesn't say much about how they work, but the Fox and Hound apparently use inductive coupling of a low-frequency signal, maybe around 50 to 100 kHz. Connect the transmitter to the wire to be traced, tune the signal in, and set VR1 to give the weakest signal that does the job. At maximum intensity, you can probably pick it up several feet away; lower settings will enable you to locate wires within an inch or two. Note that you are using the AM loop antenna inside the radio, not the FM whip, which should be fully retracted.

As shown, the circuit transmits on 1000 kHz and is controlled by a 1-MHz microprocessor crystal. Figure 2 shows how to use an LC oscillator to get other frequencies or to save having to order a crystal. Although built with a CMOS gate, this is simply a Colpitts oscillator. Note that the two capacitors are effectively in series, so only half of their capacitance is present in the tuned circuit.

![Fig. 1. A simple carrier-wave transmitter injects an RF signal into a wire; an AM radio can pick up the signal as a low-pitched 'growl.'](image)

Figure 1 shows a cheaper transmitter that uses an AM transistor radio as the detector. It uses a type 4001 (CD4001B) integrated circuit to generate a pulsing signal at 1 MHz (1000 kHz), which is heard as a growling sound in the radio.

![Fig. 2. If you don't want to use a crystal for the frequency that you want, put an inductor in place of the crystal and shunt resistor.](image)

Now for the bad news. As you may have discovered, this type of device probably will not detect a small break in a phone line. Radio waves that can go several inches through wood and plaster can also jump across a tiny gap in the metal. Nonetheless, with care, you may be able to find the break by looking for a place where the signal strength drops dramatically.

Another approach would be to use a much lower-frequency signal, such as 5 kHz from an audio-signal generator, and pick it up inductively with a microphone-level audio amplifier. Try using a coil from a relay as the detector, in place of a microphone. Low-frequency signals are harder to pick up but also less able to jump across breaks in the wiring.

Line-In-Use Indicator Problems

Q Your "Telephone Hold and Line-In-Use Project" on page 21 of the February 2000 issue appears to violate federal regulations. Specifically, 47 CFR 68.312 specifies that the DC resistance of a telephone that is not in use shall be greater than 5 megohms, but the circuit shown will result in a resistance of about 75K (R1 in parallel with R3).—D. B., by e-mail

A Alas, you're right. The circuit draws too much current from the telephone line when it's not in use ("on the hook," and the telephone company's test equipment is likely to detect it as a defect in the line. An older standard allowed the resistance to be as low as 1 megohm, but the circuit that we published doesn't even meet that criterion.

Although I haven't tried it, you could probably correct the problem by changing Q1 and Q2 to type 2N7000 field-effect transistors, changing R1 and R3 to 10 megohms each (try 2.2 megohms if behavior is finicky), and changing R2 to 2.2 megohms.

When working with such large resistors, the circuit board must be clean and dry; coating it with an insulating material after assembly is desirable, because it is easy to let 50 or even 20 megohms of leakage through invisible contaminants adhering to the parts.

As others have pointed out, the article was also in error in saying that the red telephone wire is usually positive. On telephones, red is usually negative. A full-wave-bridge rectifier between the circuit and the phone line will guarantee correct polarity even if the line is miswired.

Really Isolated?

Q Further to the February 2000 Q&A, you can't test an isolation transformer with just a common ohmmeter. What you need is an insulation tester or a Sencore "Z-meter," which can be set to use a test voltage of 999.9 volts. Using this instrument, I have tested a Sola 20-13-60 (small) and a 23-22-125, and both tested OK for isolation.—D. H., Buffalo, NY
A You're right, if the quality of the isolation is in question. All we were trying to do was distinguish an isolation transformer from an autotransformer. We're glad to know that those Sola transformers do pass the test at 999.9 volts.

Troubleshooting Windows Failures

Q My 300-MHz Windows 98 computer has been giving me occasional page faults and general protection faults, about once per week. When the fault message comes up, I click on "details" and get locations that look like hexadecimal addresses. Is there a book that will tell me how to decipher these messages?—L. R., Huntington Beach, CA

A The messages mean that a running program is trying to access memory locations that do not exist or are assigned to other programs. Many people blame Microsoft Windows for detecting these errors; but, actually, Windows is very often just notifying you of a bug in an application program or a device driver. Indeed, Microsoft has had to make numerous small changes in Windows to work around mistakes in popular application programs.

Unless you have an inside track to the authors of Windows and all the other software on the machine, you'll probably never be able to interpret the numbers precisely. But that's not as bad as it sounds. There are plenty of things you can check. Here are a few of the most important.

1. Is the problem associated with a particular piece of software or hardware? If the error message contains a file name, look at the file (find it, right-click on it, and choose "Properties"). It may be a device driver for which a newer version is available.

2. Do a Disk Cleanup (under "Programs," "Accessories," "System Tools") and discard any temporary Internet files that may be on your hard disk. Then run ScanDisk to make sure the disk drive is in good order.

4. Perform a Windows Update and make sure you are running the current version of the operating system. This is something you should do every month or two anyhow.

HOW TO GET INFORMATION ABOUT ELECTRONICS

On the Internet: See our Web site at www.gemsback.com/poptronics for information and files related to Poptronics and our former magazines (Electronics Now and Popular Electronics) and links to other useful sites.

To discuss electronics with your fellow enthusiasts, visit the newsgroups sci.electronics.repair, sci.electronics.components, sci.electronics.design, and rec.radio.amateur. For "sale" messages are permitted only in rec.radio.swap and misc.industry.electronics.marketplace.

Many electronic component manufacturers have Web pages; see the directory at http://www.hitex.com/chipdir/, or try addresses such as http://www.ti.com and http://www.motorola.com (substituting any company's name or abbreviation as appropriate). Many IC data sheets can be viewed online: www.qstlink.com features IC data sheets and gives you the ability to buy many of the ICs in small quantities using a credit card. You can also get detailed IC information from www.icmaster.com, which is now free of charge although it formerly required a subscription. Extensive information about how to repair consumer electronic devices and computers can be found at www.repair-faq.org

Books: Several good introductory electronics books are available at RadioShack, including one on building power supplies.

An excellent general electronics textbook is The Art of Electronics, by Paul Horowitz and Winfield Hill, available from the publisher (Cambridge University Press, 800-872-7423) or on special order through any bookstore. Its 1125 pages are full of information on how to build working circuits, with a minimum of mathematics.

Also indispensable is The ARRL Handbook for Radio Amateurs, comprising over 1000 pages of theory, radio circuits, and ready-to-build projects, available from the American Radio Relay League, Newington, CT 06111, and from ham-radio equipment dealers.

Copies of past articles: Copies of past articles in Electronics Now, Popular Electronics (post 1995 only) and Poptronics are available from our Claggg, Inc., Reprint Department, P.O Box 12162, Hauppauge, NY 11786; Tel: 631-293-3751.

Electronics Now and many other magazines are indexed in the Reader's Guide to Periodical Literature, available at your public library. Copies of articles in other magazines can be obtained through your public library's interlibrary loan service; expect to pay about 30 cents a page.

Service manuals: Manuals for radios, TVs, VCRs, audio equipment, and some computers are available from Howard W. Sam's & Co., Indianapolis, IN 46214; (800-428-7267). The free Sam's catalog also lists addresses of manufacturers and parts dealers. Even if an item isn't listed in the catalog, it pays to call Sam's; they may have a scheme on file which they can copy for you.

Manuals for older test equipment and ham radio gear are available from Hi Manuals, PO Box 802, Council Bluffs, IA 51502, and Manuals Plus, PO Box 549, Tooele, UT 84074.

Replacement semiconductors: Replacement transistors, ICs, and other semiconductors, marketed by Philips ECG, NTE, and Thomson (SK), are available through most parts dealers (including RadioShack on special order). The ECG, NTE, and SK lines contain a few hundred parts that substitute for many thousands of others; a directory (supplied as a large book and on diskette) tells you which one to use. NTE numbers usually match ECG; SK numbers are different.

Remember that the "2S" in a Japanese type number is usually omitted; a transistor marked D945 is actually a 2SD945.

Hamfests (swap meets) and local organizations: These can be located by writing to the American Radio Relay League, Newington, CT 06111; (http://www.arrl.org). A hamfest is an excellent place to pick up used test equipment, older parts, and other items at bargain prices, as well as to meet your fellow electronics enthusiasts—both amateur and professional.

(5) Go to the Microsoft Knowledge Base (http://support.microsoft.com) and search for the particular error message that you're getting. If it points to anything specific, you'll probably find it there. Also search for it on http://www.dejanews.com, but remember that the discussions there are not authoritative.

(6) Look for hardware problems. Unplug everything inside the computer and plug it back in to ensure a good connection. (Take anti-static precautions, of course.) Make sure your memory SIMMs or DIMMs are the right kind and are well matched. Test power supply voltages (5.0 and 12.0 V, accessible at a disk-drive connector). Make sure a cooling fan has not failed and that external cables are not loose.

(7) Look for DLL conflicts. Use "Find" to locate every file on the machine whose name ends in DLL. If you find two with the same name, rename the older one so that its name no longer ends in DLL, and copy the newer one into C:\WINDOWS\SYSTEM. That way, only the newest version of each DLL will be accessible.
Testing Capacitors In-Circuit

Q I would like to know how to test small-value surface-mount capacitors in-circuit. Would a digital multimeter that has capacitance-measuring capability work by doing comparison measurements with a good board?—J. R., Lemon Grove, CA

A Comparison measurements with a good board are always helpful, but measuring the actual value of a capacitor that is connected to other components is always difficult and sometimes impossible.

The normal way to measure capacitance is to apply an AC voltage and measure the current that flows, thereby finding the capacitive reactance. Any other conductive path across the capacitor will throw this measurement off.

A couple of tricks are possible. If the test voltage is less than about 0.1 volt, transistors and diodes will act like open circuits, keeping some of the unwanted paths out of the picture. By applying AC at more than one frequency, you could distinguish capacitive reactance from other effects. Even then, though, perfect in-circuit measurements are not always feasible; for example, if you have two capacitors connected in parallel, all you can measure is the total capacitance of the two.

Howard Electronic Instruments (www.beinc.com) markets a “Capacitor Wizard” for in-circuit testing of the effective series resistance (ESR) of capacitors, not the capacitance. (Bad capacitors generally short out or develop high ESR rather than just changing capacitance.) The instrument is designed for capacitors of 1 microfarad and larger, the ones that are the most failure-prone, and uses an 0.005-volt, 100-kHz test signal.

Hungry For Hungary

Q I got a shortwave radio for Christmas and would like to know the frequencies and broadcasting times of international shortwave broadcasts, especially those from Hungary.—R. A. S., El Cajon, CA

A For a complete guide to international shortwave broadcasts, consult the World Radio-TV Handbook or Passport to World-Band Radio. These are annual handbooks that can be special-ordered through almost any bookstore. If you have trouble finding them, write to Radio Bookstore, PO Box 209, Rindge, NH 03461-0209; Tel: 800-457-7373; Web: www.radio-ware.com.

According to their listings, you can find Radio Budapest on 9835 kHz between 0200 and 0230 UTC, and again between 0330 and 0400 UTC, daily. (That's 6:00-6:30 p.m. and 7:30-8:00 p.m. Pacific Standard Time.) This may change in the summer.

Bear in mind that Hungary is not a shortwave radio powerhouse; the signal will probably not be very strong and will vary from day to day. It's much easier to hear England, France, Russia, and the Voice of America. Also, for several reasons California does not receive as many signals from Europe as the East Coast. Nonetheless, shortwave listening can be a fascinating hobby as long as you recognize that its unreliability is part of the fun. Sometimes even the most reliable signals won't come in; at other times, you'll hear small local or regional stations in far-off parts of the world.

Dim Paper?

Q Is my eyesight dimming or is Poptronics using paper that is less white, thereby making it harder for old eyes to read?

If I recall, the old pulp magazines of the 1930s, where you could actually see slivers of wood in the paper, were easier to read. But then, to be fair, my eyes were a lot younger then—H. S., Longmont, CO

A It must be your eyes, because although our paper is not as glossy as it used to be, it's still lighter than the pulp paper of the 1930s (at least as far as I know; I wasn't actually reading magazines then!).

The new paper is not perfectly white, but it also isn't shiny, so you're not likely to be bothered by glare. Many people find it easier to read the print on this paper than on glossy magazine paper, which, after all, is designed primarily for printing pictures.

(To get real technical, we used to use a coated glossy paper. Then we went to a glossy uncoated paper, known in the trade as SCA. Now we use SCB, another uncoated paper. We used to use pulp paper in our Shopper section, but have abandoned that and now publish on all SCB, except for the cover, of course.—Editor)

Need Philips Scope Manual

Q I am looking for a service manual and an operator's manual for a Philips model PM3305 oscilloscope. Can someone help?—Aldo Martinez, 21420 SW 102 Avenue, Miami, FL 33189

A Did you perhaps mean PM3350, a 100-MHz oscilloscope that was fairly popular in Europe? In any case, we assume you've tried Philips (www.philips.com), a set of Web pages I found almost unusable; all of them were very slow, and some came up blank). Since Philips operates Worldwide and has changed its structure several times, the right division may be hard to find. We're publishing your name and address in the hope that a reader can help.

Writing To Q&A

As always, we welcome your questions. The most interesting ones are answered in print. Please be sure to:

1. Include plenty of background information (we'll shorten your letter for publication);
2. Give your full name and address on your letter (not just the envelope);
3. Type your letter if possible, or write very neatly; and
4. If you are asking about a circuit, include a complete diagram.

Questions can be sent to Q&A, Poptronics Magazine, 275 G Marcus Blvd., Hauppauge, NY 11788, or e-mail to Q@erunsback.com, but please do not expect an immediate reply in these pages (because of our backlog) and please don't send graphics files larger than 100K. Due to the volume of mail, we regret that we cannot give personal replies.
ORDER FORM

<table>
<thead>
<tr>
<th>Book No.</th>
<th>Title</th>
<th>Price</th>
<th>No. of Copies</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP07</td>
<td>100 Radio Hookups</td>
<td>$3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP37</td>
<td>50 Tricks and Tips for PCB's</td>
<td>$3.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP49</td>
<td>Electronic Projects for Beginners</td>
<td>$3.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP56</td>
<td>Electronic Security Devices</td>
<td>$3.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP64</td>
<td>Semiconductor Technology Elements of Elect Book 3</td>
<td>$5.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP74</td>
<td>Electronic Music Projects</td>
<td>$3.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP76</td>
<td>Power Supply Projects</td>
<td>$3.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP78</td>
<td>Practical Computer Experiments</td>
<td>$2.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP85</td>
<td>How to Use OP Amps</td>
<td>$5.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP94</td>
<td>Multi-Circuit Board Projects</td>
<td>$2.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP112</td>
<td>A 2-80 Workshop Manual</td>
<td>$5.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP114</td>
<td>The Art of Programming the 16K Z81</td>
<td>$3.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP115</td>
<td>The Pre-Computer Book</td>
<td>$2.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP148</td>
<td>Computer Terminology Explained</td>
<td>$2.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP154</td>
<td>An Introduction to MSX Basic</td>
<td>$3.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP156</td>
<td>An Introduction to QL Machine Code</td>
<td>$3.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP190</td>
<td>More Advanced Electronic Security Projects</td>
<td>$3.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP194</td>
<td>Modern OPTO Device Projects</td>
<td>$3.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP232</td>
<td>A Concise Introduction to MS-DOS</td>
<td>$3.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP245</td>
<td>Digital Audio Projects</td>
<td>$3.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP248</td>
<td>Test Equipment Construction</td>
<td>$3.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP256</td>
<td>An Intro to Loudspeakers and Enclosure Design</td>
<td>$3.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP267</td>
<td>How to Use Oscilloscopes and Other Test Equipment</td>
<td>$5.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP272</td>
<td>Interfacing PCS and Compatibles</td>
<td>$5.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP390</td>
<td>An Intro to Amateur Communications Satellites</td>
<td>$5.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP397</td>
<td>Loudspeakers for Musicians</td>
<td>$6.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP399</td>
<td>Practical Electronic Filters</td>
<td>$6.99</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SHIPPING COSTS

- $0.01 to $5.00 | $0.20
- $5.01 to $10.00 | $1.00
- $10.01 to $20.00 | $2.00
- $20.01 to $50.00 | $5.00
- $50.01 and above | $10.00

TAXES: Local NY State Sales Tax

TOTAL COSTS

- Subtotal
- Add shipping cost (see table)
- $0.00
- $50.00
- 30% of $50.00

FREE GIFT

With any order over $15 (while supplies last)

* ALL CANADIAN CHECKS MUST CLEAR THROUGH AN AMERICAN BANK

PRICES DO NOT INCLUDE SHIPPING & HANDLING. ALL SALES ARE FINAL, NO RETURNS

SHIPPING & HANDLING. ALL SALES ARE FINAL, NO RETURNS

If you wish to use a Credit Card:
- MasterCard
- Visa

Expire Date

Signature

Allow 6-8 weeks for order to be fulfilled.

Please return this order form to:

ELECTRONIC TECHNOLOGY TODAY INC.
P.O. Box 240
Massapequa Park, NY 11762-0240

Telephone Orders: If you wish to place your credit-card order by phone, call 516/293-0467. Automated order taking system functions 24 hours a day. Have your credit-card ready. Sorry, no orders accepted outside of U.S.A. and Canada. New York State Residents must add applicable sales tax. Offer expires 6/30/00.
More on the BasicX-24 Microcontroller

Last month, we began our look at the BasicX-24 microcontroller from NetMedia (http://www.basics.com/). This month, we'll continue our discussion of this new chip and look at how we can put it to use in various robotic applications, including controlling servomotors and building a joystick teaching pendant.

Controlling RC Servos

Radio-control servos can be readily controlled with the BasicX-24 (BX-24) using a few simple statements. While there is no built-in “servo command” as there is with the OOPic microcontroller (see Poptronics February and March, 2000), the procedure is nevertheless very easy to do in the BX-24. Here's a basic program that places a servo connected to pin 20 of the BX-24 to its approximate mid-point position (I say “approximate” because the mechanics of RC servos can be different between makes, models, and even individual units):

Sub Main
 Do
 Call PulseOut(20, 1.5E-3, 1)
 Call Delay(0.02)
 Loop
 End Sub

The program runs continuously because it is within a “Do” loop. The PulseOut statement sends a short 1.5-millisecond (ms) HIGH pulse to pin 20. The Delay statement causes the BX-24 to wait 20 milliseconds, before the loop is repeated all over again. With a delay of 20 milliseconds, the loop will repeat 50 times a second (50 × 20 milliseconds = 1000 milliseconds, or one second).

Note the optional use of scientific notation for the second parameter of PulseOut. Using the value 0.0015 would yield the same result. You should be aware that the BX-24 supports two versions of the PulseOut statement: a float version and an integer version. The float version is used with floating-point

it tells the BX-24 that you want to send a pulse of 20 “units.” Since each unit is 1.085 microseconds long; 20 units would produce a very short pulse of only 21.7 microseconds. To continue working in more convenient milliseconds, be sure to use the decimal point:

 Call PulseOut(20, 0.020, 1)

This creates a pulse of 20 milliseconds in length.

Listing 1 shows a more elaborate servo-control program and is based on an application note provided on the BasicX Web site. This program allows you to specify the position of the servo shaft as a value from 0 to 100, making it easier for you to use.

The five lines at the beginning of the program set up all the variables that are used. The line:

 Const ServoPin As Byte = 20

Listing 1

Const ServoPin As Byte = 20
Const RefreshPeriod As Single = 0.02
Const NSteps As Integer = 100
Dim SetPosition As Byte
Dim Position As Single, PulseWidth As Single

Sub Main ()
 ' Moves a servo by sending a single pulse.
 ' Insert position as a value from 0 to 100.
 SetPosition = 50 ' move to mid-point

 Position = CSng(SetPosition) / CSng(NSteps)
 Do
 ' Translate position to pulse width, from 1.0 to 2.0 ms
 PulseWidth = 0.001 + (0.001 * Position)
 Loop

 ' Generate a high-going pulse on the servo pin
 Call PulseOut(ServoPin, PulseWidth, 1)
 Call Delay(RefreshPeriod)
 Loop
 End Sub

Gordon McCOMB

ROBOTICS WORKSHOP
Fig. 2. Connecting an IBM PC-style joystick to the BasicX-24 microcontroller.

creates a byte-sized constant, and also defines the value of the constant as pin 20. Because it is a constant, the value assigned to SERVOPIN cannot be changed elsewhere in the program. Similarly, the lines:

Const RefreshPeriod As Single = 0.02 Const NSteps As Integer = 100

create the constants RefreshPeriod and NSteps. RefreshPeriod is a single-precision floating point number, meaning it can accept numbers to the right of the decimal point. NSteps is an integer and can accept values from -32768 to +32767.

The main body of the program begins with Sub Main. The statement:

SetPosition = 50

sets the desired position of the servo relative to the total number of steps defined in NSteps (in the case of our

Listing 2

Sub Main()
Const InputPin As Byte = 20
Const LED As Byte = 26
Dim State As Byte
Sub Main()
Do
' Read I/O pin 20
State = GetPin(InputPin)
' Copy it to the LED
Call PutPin(LED, State)
Loop
End Sub
example, 100). Therefore, a SetPosition value of 50 will move the servo to its approximate midpoint.

The line:

\[\text{Position} = \text{CSng(SetPosition)} / \text{CSng(NSteps)} \]

produces a value from 0.0 to 1.0, depending on the number you used for SetPosition. With a value of 50, the POSITION variable will contain 0.5. The POSITION variable is then used within the Do loop that follows. Within this loop are the statements:

\[\text{PulseWidth} = 0.001 + (0.001 \times \text{Position}) \]
\[\text{Call PulseOut(ServoPin, PulseWidth, 1)} \]
\[\text{Call Delay(RefreshPeriod)} \]

The first statement sets the pulse width, which is between 1.0 and 2.0 milliseconds. The PULSEOUT statement sends the pulse through the indicated servo pin (the third parameter, 1, specifies that the pulse is positive-going, or HIGH). Finally, the DELAY statement delays the BX-24 for the REFRESH-PERIOD, in this case 20 milliseconds (0.02 seconds).

Reading Button Inputs and Controlling Outputs

A common robotics application is reading an input, such as a button, and controlling an output, such as an LED, motor, or other real-world device. The program in Listing 2 demonstrates some simple code that reads the value of a momentary pushbutton switch connected to I/O pin 20. The switch is connected in the circuit shown in Fig. 1, so that when the switch is open, the BX-24 will register 0 (LOW), and when it’s closed, the BX-24 will register a 1 (HIGH).

The instantaneous value of the switch is indicated in the LED. The LED will be off when the switch is open, and on when it is closed.

Now let’s see how the program works. The lines:

\[\text{Const InputPin As Byte} = 20 \]
\[\text{Const LED As Byte} = 26 \]
\[\text{Dim State as Byte} \]

set the constant INPUTPIN as I/O pin 20, and the constant LED as I/O pin 26 (recall from last month that one of the BX-24’s on-board LEDs—the green one, by the way—is connected to I/O pin 26). Finally, the variable State is
defined, as type Byte:

Do
' Read I/O pin 20
State = GetPin(InputPin)
' Copy it to the LED
Call PutPin(LED, State)
Loop

The Do loop repeats the program repeatedly. The GetPin statement gets the current value of pin 20, which will be either LOW (0) or HIGH (1). The companion PutPin statement merely copies the state of the input pin to the LED. If the switch is open, the LED is off; if it's closed, the LED is on.

Build a Joystick “Teaching Pendant”

No doubt you've been to Disneyland or other theme parks that use robotic or Animatronic performers. These on-stage automatons are operated via a sophisticated computer system that plays back the audio portion of the program and controls every movement or every robot on the stage. Walt Disney was one of the early pioneers of this art and science, calling it audio-animatronics; a system his Walt Disney Enterprises group developed that used audio tones on recorded tape as the control medium.

Animatronic shows are most commonly acted out by a human director who operates a joystick or other control in real time. As the sound portion of the program is played, the director moves the joystick to operate the various animatronic devices on stage. The movements of the joystick are recorded for later playback. This same concept is used in many kinds of manufacturing robots, whose actions are programmed not from a keyboard, but from a "teaching pendant," a controller that records the actions of a human operator.

Using an ordinary joystick, you can create your own teaching pendant for your robot (or animatron, if that's to your liking). For this next project, I'll use a common garden variety IBM PC-style analog joystick, though you can apply the same techniques to any kind of joystick, analog or digital. IBM PC-style joysticks are inexpensive (mine cost $5) and available everywhere. The joystick teaching pendant controls the motors of a two-wheel robot. Up to 30 seconds of commands can be recorded and played back. You can also use the joystick teach-

```vba
Listing 3 continued from page 63

If RecordFlag = True Then
    If Steps <= MaxSteps Then
        RecordArray(Steps) = Cint(Motors)
        Call PutPin(RecordArray(Steps))
        Call Newline
        Steps = Steps + 1
    End If
End If
If PlayFlag = True Then
    RecordFlag = False
    Call SetRedLed(RecordFlag)
    For Count = 1 to (Steps - 1)
        Call PutPin(RecordArray(Count))
        TempByte = CByte(RecordArray(Count))
        Call SetMotors(TempByte)
        Call Newline
        Call Sleep(CmdDelay)
        If GetPin(15) = 0 Then
            PlayFlag = False
            Call PutPin(GreenLED, LedOff)
            Exit For
        Next
    Call PutPin(GreenLED, LedOff)
End If
Call Sleep(CmdDelay)

End Sub

Private Sub SetMotors(Motors As Byte)
    Select Case Motors
        Case 0
            Call PutPin(MotLD, 0)
            Call PutPin(Mot LC, 0)
            Call PutPin(MotRD, 0)
            Call PutPin(MotRC, 0)
        Case 5
            Call PutPin(MotLD, 0)
            Call PutPin(MotLC, 1)
            Call PutPin(MotRD, 0)
            Call PutPin(MotRC, 1)
        Case 15
            Call PutPin(MotLD, 1)
            Call PutPin(MotLC, 1)
            Call PutPin(MotRD, 1)
            Call PutPin(MotRC, 1)
        Case 1
            Call PutPin(MotLD, 0)
            Call PutPin(MotLC, 0)
            Call PutPin(MotRD, 0)
            Call PutPin(MotRC, 1)
        Case 7
            Call PutPin(MotLD, 0)
            Call PutPin(MotLC, 1)
            Call PutPin(MotRD, 1)
            Call PutPin(MotRC, 1)
        Case 4
            Call PutPin(MotLD, 0)
            Call PutPin(MotLC, 1)
    End Select

Listing 3 continued on page 65
```
(Continued from page 64)

```
Call PutPin (MotRD, 0)
Call PutPin (MotRC, 0)
End Sub
Call PutPin (MotLD, 1)
Case 13
End Select
End Sub
If Flag = True Then
Call PutPin (RedLED, LedOn)
Else
Call PutPin (RedLED, LedOff)
RecordFlag = False
End If
End Sub
Private Sub SetGreenLed (Flag As Boolean)
If Flag = True Then
Call PutPin (GreenLED, LedOn)
Else
Call PutPin (GreenLED, LedOff)
PlayFlag = False
End If
End Sub
Private Function GetPotValue(ByVal PinNumber As Byte) As Integer
Const CapacitorDischargeTime As Integer = 4
Call PutPin(PinNumber, bxOutputLow)
Call Sleep(CapacitorDischargeTime)
GetPotValue = RCtime(PinNumber, 0) ' Timeout returns 0.
End Function
```

TABLE 1

<table>
<thead>
<tr>
<th>Function</th>
<th>BX-24 Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left motor direction</td>
<td>9</td>
</tr>
<tr>
<td>Left motor on/off control</td>
<td>10</td>
</tr>
<tr>
<td>Right motor direction</td>
<td>11</td>
</tr>
<tr>
<td>Right motor on/off control</td>
<td>12</td>
</tr>
</tbody>
</table>

When creating the project file for the joystick teaching pendant, be sure to include SERIALPORT.BAS as well.

Using the Joystick Teaching Pendant

Test the program by pushing the joystick. For purposes of verification and testing, the Joystick2.Bas program uses the BasicX debug window to display the binary value of the four motor control bits (only the last four bits are used). For example, when you push the joystick forward, the text bx00000101 is shown in the debug window. The last four bits are 0101:

0—LeftMotDir
1—LeftMotCtrl
0—RightMotDir
1—RightMotCtrl

A value of 0 for LeftMotDir/RightMotDir means the motor is going forward (conversely, a value of 1 means the motor is going in reverse). A value of LeftMotCtrl/RightMotCtrl means that the motor is activated. Reading the 0101 bits, both motors are operating and are going forward. Note that the program samples the position of the joystick once every half second.

Recording and Playing Back Steps

Briefly depress button 1 (usually the "fire" button). The Red LED on the BX-24 chip will light up as a visual indicator that recording is on. In addition, a "Recording On" message is displayed in the debug window. The joystick is now in record mode, and the joystick positions are being stored in memory. Recording is simple in the Joystick2.Bas program: each half second the joystick position is stored in an element of a 60-element array. Since there are 60 elements, and a new "snapshot" of the joystick controls is made every half second, this means there is a maximum of 30 seconds of recording.

You can revise the program to add
Algae Hydrogen Source, Applying Taylor Series, Surplus & Auction Update, Lithium Polymer Batteries, and Understanding Nonlinearity

Many of the formulas that you'll find in electronics books are oversimplifications of the vastly fancier math behind what is really coming down. These simple formulas can get you in trouble should you try to use them without understanding their limits. We have already seen in previous columns how power measurement is never the average volts times average amps and how voltmeter-ammeter methods often lie like a rug. They either severely underreport when low duty cycles or strange waveforms are involved or misleadingly overreport when AC reactance lead or lag phase angles are present. Check out MUSE112.PDF and MUSE113.PDF in particular for more power measurement secrets. Another advanced concept that can cause you considerable grief is...

Understanding Nonlinearity

A linear system is one where if you double your input, you'll double your output. In addition, separate inputs will give separate superpositioned outputs, which do not interact with each other in any way. Linear systems are often assumed in most electronics math.

Sadly, real-world linear systems do not exist. Instead, there are always behavior deviations of one type or another, introducing mild to severe nonlinearity. Often, the inevitable nonlinearities are small enough that you can ignore them. Other times they may not be.

Electronic rules all change in the presence of strong nonlinearity. For instance, if you take a resistor and apply a sane voltage, you should measure some current by Ohm's law. Double the voltage and your current also should double.

Now, select any silicon diode and briefly apply 0.4 volts in its forward direction. Measure the current. When you double this voltage, you will get a current that is thousands of times higher than before. Why? Because a diode is a classic nonlinear device. Similarly, if you apply one volt DC to a water electrolysis cell, you will measure a relatively weak current. Double it and the current increases by hundreds or thousands of times—just like a diode.

Yes, Ohm's Law is still valid. However, the resistance now depends upon the voltage or current you apply, rather than being some constant, which is a basic definition of nonlinearity. Let us look at two useful tools for dealing with nonlinearities. The first of these involves...

Using Transfer Functions

A transfer function or a response curve can show the output to input ratio of nearly any "history free" physical system, linear or not. In electronics, transfer functions can relate the voltage in to voltage out, current in to current out, voltage in to current out, or current in to current out, depending on the device. Transfer functions can often be calculated or measured. They can be based upon observed numbers, upon theoretical math functions, on plotted graphs, or be any combination of the three. The automatic generation of suitable graphs is sometimes called curve tracing.

Let's look at a subtle example that seems to be causing untold grief both on the Web and in the patent office. Figure 1 shows us the very low frequency transfer function of a cell used for hydrogen electrolysis. If you remain under the threshold of 1.28 volts, only the solution conductivity will contribute to the current drawn. Above that threshold, more and more current is drawn by the electrolysis gas production itself.

Curiously, the electrons you'll get back are not the ones that you sent out. The outgoing electrons convert hydrogen ions into hydrogen atoms, while the incoming electrons convert oxygen ions
to oxygen atoms. At the terminals, any electron looks like any other electron. Since any overvoltage above the threshold sharply increases both the current and the gases liberated, the transfer function is somewhat similar to a diode or Zener and thus ends up remarkably nonlinear.

Suppose you apply a DC-biased, low-frequency AC to this cell. What will the current look like? Mathematically, you can multiply the instantaneous voltage times the transfer function to get the output current. Graphically, you can simply “bounce off” the curve, sending the voltage in on the x axis and reading the current you get out the y axis.

We see that we input a nice, clean voltage-offset sinewave, but we get a very nonlinear series of quite narrow current pulses out. When you analyze these pulses by using Fourier Series (details in MUSE90.PDF), you’ll see a strong DC term, lots of useless high harmonics, and very little remaining fundamental sinewave energy! Note that the narrow current pulses have rms values that are very much higher than their average value. Note also that the useful portions of your power pulses will be even narrower.

This is the usual source of wildly understated power measurements. There is at least one patent that claims that some audio or ultrasonic sinewaves might “resonate” a water molecule. For a dozen solid technical reasons, I personally feel that this is totally bogus. For starters, the nonlinear cell immediately changes most any sinewave voltage input to a strong DC term, which does a normal electrolysis, plus a bunch of useless harmonics that most likely contribute only to cell heating. The cell capacitance effects should even further significantly reduce both the fundamental and harmonics.

Now yes, a mechanical sonic wave might be able to shake some bubbles loose or maybe sonoluminesce, or do something similar, possibly for some modest efficiency gain, but these are completely different and acceptable “real-science” effects.

If you really wanted to prove there was a highly unlikely process such as electrically-driven audio-frequency water resonance, you would have to use input current waveforms instead. Why? Because the cell’s nonlinearity trashes input voltage waveforms!

Taylor Series

There is a useful math tool known as the Taylor Series that can be handy in dealing with major or minor nonlinearities.

Suppose, as in Fig. 2, you have a “bent” waveshape. Near a value of interest, you could use that value as a zero-order approximation. Mathematically, we can say:

\[f(x) = a_0 \]

or that it is the same everywhere, which is about as useful as a stopped clock that is right twice a day. But, hey, it's a start.
Chances are your waveshape will have some non-horizontal slope at a point of interest. Thus, for our first order approximation, we'll draw a straight line through that slope at our a₀ point:

\[f(x) = a_0 + a_1 x \]

This is a classic linear system with offset. You can think of \(a_0 \) as the DC offset, and \(a_1 \) as the gain. Negative gain values mean that there is a polarity or phase inversion. Gain values that range between +1 and -1 might be interpreted as loss or attenuation. This linear approximation will end up exact at one point and pretty good nearby. To try and correct the errors that are further out, we add a second order term to our series:

\[f(x) = a_0 + a_1 x + a_2 x^2 \]

In other words, we try to add in a little piece of a parabola to our fitting process. This square term is the first nonlinear one. And it often will do nasty or ugly things. For instance, a square term will multiply an input by itself. Worse yet, it might multiply all of the inputs together. Either of these leads to harmonics, distortion, spurs, and other new frequencies that were not present in the input. Proof of this can be found on the trigonometric identities page of any trig book. Add two sinewaves and they’ll remain the same. But if you multiply any two sinewaves together, you'll get lots of sum and difference frequencies. Square a sinewave and you get double frequency and other more exotic terms.

The second order Taylor term may end up “good enough” for analyzing amplifier distortion or correcting the response of a thermocouple or other real world sensor. If a second order approximation is not good enough, you can add a new cubic term, a quartic, and so on. In general, even terms will do the same thing on either side of the zero point, while odd terms will do the opposite. Odd terms thus add asymmetry. It turns out that higher order terms should be more effective away from your zero reference, while the lower order terms can have more results near your zero reference. Normally, the higher order Taylor terms will be quite small and may not be needed at all.

At any rate, you use as much of a “full” Taylor Series as you need:

\[f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \ldots + a_n x^n \]

Taylor Series let you approximate many real-world responses. You can find your first \(n \) Taylor series terms from your data plot. Evaluate the plot at \(n+1 \) points. Then you solve \(n+1 \) equations in \(n+1 \) unknowns. This gives you \(a_0 \) through \(a_n \). We saw an example in MUSE142.PDF.

Note that the Taylor terms form a linear system. Thus, you can largely deal with each individual Taylor term on its own. Note also that the Taylor Series and the transfer functions can be combined.

Lithium Polymer Batteries

The “next big thing” in rechargeable batteries may use lithium polymer technology. Figure 3 shows us a new example from UltraLife. These can offer energy densities of 125 watt-hours per kilogram and 250 watt-hours per liter. A typical three-volt and one-ampere-hour cell might measure two inches by three inches by a tenth of an inch thick. Their cycle life now exceeds 300 charge/discharge cycles. There is no “memory effect” common to heavier NiCD batteries. Prices do remain a tad high, but are certain to drop as the learning curve falls and volume production continues to ramp up. Because most batteries involve the movement of only one electron per atom, the lightest elements (such as lithium) would seem to be the best choice to maximize the watt-hours-per-kilogram density. An important problem has been getting violently reactive lithium to behave well enough to be safe for consumer products.

Extreme caution is needed when you charge a lithium battery. Special chips that monitor voltage, current, and temperature are a must. Initial charging of a nearly empty cell must be very gentle. One good choice for single cell charging

![Fig. 3. New lithium polymer rechargeable batteries can give you one ampere-hour of storage in a credit-card sized package.](image)
is the Maxim MAX1679 of Fig. 4.

Be certain to read the Maxim data sheet very carefully, for there are a few subtle "gochias," not the least of which is that the input DC current must be current limited externally to the maximum fast-charge rate! Typically, you'll handle this with a 6-volt, 600-milliampere wall transformer. The optional LED has four modes: On for fast charge, weak blinking for full-charge maintenance, strong blinking for a fault, or off for no battery present or lack of input power. Evaluation kits are obtainable by way of www.maxim-ic.com. There's also some fancier versions, such as the multi-cell MAX1645.

Some Battery Books

One free resource is the Battery Power Products & Technology trade journal; you can locate it online at www.infowebcom.com. Useful alternate energy battery info appears in Home Power Magazine and their recently released Solar CD IV. Some more scholarly publications include Advanced Battery Technology, Battery and EV Technology, and CA Selects: Batteries & Fuel Cells. Many other related links are found at www.tinaja.com. I've gathered some of the better and newest battery books together for you as this month's resource sidebar.

Plotting Real Functions

As much as possible, I try to use the "real" math in most of my figures and illustrations. For instance, the bat communications plot in last month's Fig. 4 was generated from a swept sinewave and a sin x/x pulse. PostScript-as-a-language, of course, makes this trivial. As our PostScript utility example for this month, I've excerpted and modified slightly the Fig. 4 code needed to generate these two useful math functions. As usual, you first enter your PostScript code into a word processor or editor, modifying it to suit your needs. Then, be certain to save your file as an ordinary ASCII text file; do not use your word processor's custom format. You then send this file to a Postscript interpreter such as Acrobat Distiller, GhostScript, or a PostScript-speaking laser printer. More PostScript-as-a-language is in www.tinaja.com/post01.html and in www.tinaja.com/acro01.html. Ready to run code for this month's example can be found in the file MUSE147.PSL.

By the way, the nonlinear function that I happened to actually use in Fig. 1 is the partial Taylor Series:
over an x range of 0 to 1. This seems to give a good low-frequency approximation to the real world response of a typical cell. However, it almost certainly does not reflect the true underlying physics, which should consist of an IR drop conduction term and a nonlinear 1.25-volt-thresholded gas-generation term. As I mentioned a time or two before, the definitive SPICE model for a H₂ electrolysis cell still seems to remain conspicuously absent, and it is sorely needed.

Surplus Auction Update

The feds are now in the process of privatizing many of their military surplus sales. That change seems to be driven by administrative costs that are much higher than their typical sale income of 0.7 cents on the dollar. The fed-run sales that remain can still be reached by clicking on the DRMS buttons on my home page.

A commercial outfit by the name of Levy Latham has now taken over many of these military surplus sales. Reach them at www.levylatham.com or by clicking the LEVLAT button on my home page. They currently offer sealed-bid plus live auctions, private treaty sales, package ship, eBay auctions, and online sales. Your best source for live auction info remains Auction Advisory found at www.auctionadvisory.com. You can also click on the AUCTADV button on my home page.

These people are now nationwide, having some 75,000 live auctions published to date. I've found that I get the best results in obscure, remote, and lousy weather auctions, especially when I'm the only bidder at a site where the tech goodies are only a non-obvious and very minor part of what is being sold. Community college auctions seem particularly productive for me. Because auctions are typically an extremely inefficient market, lowball bidding on twenty times what I could possibly use and taking a five percent success rate makes a lot of sense to me, as does heavy dumpster triage. (AC linecards with a 386 computer attached are much cheaper than the linecards by themselves!) One little known insider-bidding secret: You can often cut your next bid increment in half simply by waving your hand horizontally across your chest palm down. The closest approach to a used test equipment "blue book" seems to be the free catalog from Test Equipment Connection that you should pick up at www.4testequipment.com. Divide their list prices by five to get a typical eBay price, by eight to get a fair hamfest price, and by thirty to get a sane bid on a military surplus skidded lot. Note that Hewlett Packard and Tektronix overwhelmingly dominate the used test equipment market. With a very few Wavetek, Fluke, or ancient GR exceptions, anything else is likely to end up high risk. See www.tinaja.com/resbnOl.html

I have test equipment bargains up at www.tinaja.com/bargOl.html or by clicking on the AUCTION button on my Web site at www.tinaja.com.

New Tech Lit

The first really new thermoelectric material in three decades is described in Science for February 11, 2000 on pages 945+ and 92+. Although still incomplete and not more efficient than previous abysmal TE offerings, this just may be able to significantly extend thermoelectrics to amazingly low cryogenic temperatures, as well as reawakening a stagnant field of research.
A sneaky ploy to trick algae into generating hydrogen appeared in the January 2000 issue of *Plant Physiology*, authored by Melis, Zhang, and a few others on pages 127–136. The free abstract is at www.plantphysiol.org. Be sure to try and obtain one of the free Microchip Technology "over one billion sold" PR promo kits. Without my giving away the punch line, let’s just say that their mailing tube uses an amazingly advanced technology. [In our recent office move, we used that technology to good effect when rebasing Hugo Gerritsen’s portrait in the front lobby!—Editor.] Our featured trade journals for this month are Randy Roberts’ Spread Spectrum Scene, Industrial Laser Solutions, and the new e bill covering Internet online payments. The latest in "old-new" books from Lindsay Publications are a 1944 publication titled *High Frequency Induction Heating and their Lead Acid Batteries* text. Reach them from their banner on our Web site. For your own banner, see www.tinaja.com/advt01.html or my BANNYEAR.PDF tutorial. Freebie samples of laser-printable hardback book-cover materials are offered by LBS. They also publish a Cover to Cover newsletter. More on Book-on-demand publishing help is in www.tinaja.com/bod01.html. Several useful consulting Web sites are at www.freeagent.com, guru.com, www.expertcentral.com and my own www.tinaja.com/cons001.html and www.tinaja.com/info01.html.

Contacts and publications on underground cave radio communication can be gotten at www.sat.dundee.ac.uk/~arb/creg. For all the fundamentals of digital integrated circuits, check into my CMOS Cookbook and TTL Cookbook, either by themselves or as part of the bargain-priced Lancaster Classics Library as you’ll find in my nearby Synergistics ad. Be sure to look into my low-cost consulting services that you’ll find at www.tinaja.com/info01.html, surplus bargains at www.tinaja.com/barg01.html, and banner advertising opportunities at www.tinaja.com/advt01.html. As usual, most of the mentioned references appear in our Names & Numbers or Battery Books sidebars. These are available hotlinked in the on-line version of this column, MUSE148.PDF. Be sure to check here first before you e-mail me at don@tinaja.com or calling the US tech helpline shown in the box.

Let’s hear from you.

RF Data Modules

AM Transmitter
- Sub Miniature module
- SAW Controlled
- No adjustable components
- Low current - 2.5mA
- Supply 2.5-12Vdc
- 418MHz or 433MHz
- Range up to 300ft
- CMOS/TTL data input
- 9 x 11 x 4mm
- AM-TX1-xxxx ... $12.60

AM Receiver
- Compact Hybrid Module
- Very stable
- CMOS/TTL output
- Potentiom Effect Trimmer
- 5Vdc, 0.8mA (HRR6)
- 2kHz data rate
- Sensitivity -10dBm
- 3 x 12 x 2 mm
- AM-HRR6-xxxx ... $16.33

FM Transceiver
- 23 x 3 x 11mm
- Up to 40,000bps data rate
- Up to 450ft range
- 5V operation
- 418MHz or 433MHz FM
- 7.5-15Vdc, 20mA
- AM-FM xxxx ... $87.36

RS232 Transceiver
- Sound RS232 interface
- 19.2Kbps half duplex
- 418MHz or 433MHz FM
- 7.5-15Vdc, 20mA
- FX-RX Status LED’s
- Up to 400ft range
- 1/4 wave antenna on board
- User data packetizing
- 58 x 40 x 15mm
- CYCIPHERNET ... $139.30

AM Transmitter
- Range up to 250ft
- SAW controlled stability
- Wide supply range 2-14V
- CMOS/TTL input
- Low current 4mA typ
- Up to 4kHz data rate
- Small 17 x 11mm
- AM-RT5-xxxx ... $12.10

ELECTRONIC GAMES

BP69—A number of interesting electronic game projects using ICs are presented. Includes 19 different projects ranging from a simple coin flipper, to a competitive reaction game, to electronic roulette, a combination lock game, a game timer and more. To order BP69 send $4.99 clearance (includes s/h) in the US and Canada to Electronic Technology Today Inc, P.O. Box 240, Massapequa Park, NY 11762-0240, US funds only. Use US bank check or International Money Order. Allow 6-8 weeks for delivery.

Wireless & Electrical Cyclopedia

ETT1—Wireless & Electrical Cyclopedia $4.99. Step back to the 1920’s with this reprinted catalog from the Electro Importing Company. Antiquity displayed on every page, with items priced as low as 3 cents. Product descriptions include: Radio components, kits, motors and dynamos, Leyden jars, hot-wire meters, carbon mikes and more. The perfect gift for a radio antique collector. To order ETT1, send $4.99 (includes s/h) in the US and Canada to Electronic Technology Today Inc., P.O. Box 240, Massapequa Park, NY 11762-0240, US funds only. Use US bank check or International Money Order. Allow 6-8 weeks for delivery.

DIRECT FROM MANUFACTURER WE WILL BEAT ANY COMPETITORS PRICE

WORLD SMALLEST WIRELESS VIDEO CAMERA
(Black & White or Color)
TRANSMITS VIDEO UP TO 1000FT.

WE ALSO CARRY:
- COVERT VIDEO CAMERAS
- COUNTER-SURVEILLANCE PRODUCTS
- CUSTOM MADE VIDEO SYSTEMS
- IN HOUSE ENGINEERING DEPT.

DISTRIBUTOR PROGRAM AVAILABLE

CALL FOR CATALOG: SECURETEK
7175 S.W. 47TH STREET
MIAMI, FLORIDA 33155
SUITE 205
TEL. 305.667.4545
FAX. 305.667.1744
www.securetek.net
Welcome back. This time we are going to toss a few infrared (IR) LEDs, transistors, phototransistors, and CMOS ICs into the old circuit pot, stir it up, and see what fun and useful items turn up. Infrared LEDs and infrared-sensitive phototransistors are not only fun to experiment with but are inexpensive as well. To locate the best variety and prices try searching the ads in the Poptronics Shopper section of this magazine and your local parts stores. Excellent IR devices can be found for about a buck each from many suppliers and for even less on the surplus market. When it comes to purchasing the CMOS 4000-series of ICs, it's really a buyer's market. The going price, at most mail-order houses, is usually much less than a buck each in single quantities and still less on the surplus market.

Simple Electronic Switch

In our first circuit (see Fig. 1), we have an electronic switch that uses two pairs of infrared LEDs and phototransistors and a single CMOS IC. The IR devices are used in our switching circuit to eliminate the troublesome metal contacts found in all mechanically-operated contact switches. In almost every case, the first failure in an electronic piece of equipment is a mechanical component; a properly designed solid-state circuit seldom if ever fails. The only mechanical device in this circuit is the opaque switch handle that is used to block the IR light source.

The 4066 CMOS quad bilateral switch doubles the switch outputs of each IR emitter/detector pair. But before going any further, here's a brief look at the characteristics of the versatile 4066 IC. The IC contains four separate single-pole electronic switches. Each one may be used separately, or all four can be combined into various switch combinations. Each switch has its own input control pin. Connect the control pin to ground, and the switch is an open circuit. Connect the same pin to the circuit's positive supply, and the switch closes. The switch in the off position is like a very-high-impedance circuit and in the on position offers a closed resistance of slightly less than 100 ohms. There is no difference between the two switch contact terminals. The 4066 will operate at a maximum speed of 10-MHz with a 12-volt power source. And just about any number of 4066 ICs can be driven by the same input to multiply the number of output switches.

Now back to our circuit in Fig. 1. When neither IR light source is blocked, transistors Q1 and Q2 are biased on with a collector voltage near zero. All of the 4066's control inputs are at ground potential and the four switches are open.
Placing an opaque object between any of the IR emitter/detector pairs will cause that transistor's collector voltage to rise to the positive supply, turning on the two switches it controls.

Mechanical Details

A 1/4- to 1-inch-square block of wood, opaque plastic, or any similar material that is 1 1/2- to 2-inches long may be used to build a two-pole IR electronic switch. The actual dimensions are not critical, so we can be inventive. The drawing in Fig. 2 is a guide to making your own mechanical version of an electronic knife switch. You can use any scheme that allows an opaque object to block and unblock the IR light source. The basic idea is to have the phototransistor and LED face each other with a separation of no more than about 1/2-inch. The actual range of separation can be several inches if the application dictates, but you have to make sure that no ambient light reaches the phototransistor when it is blocked from receiving the LED's IR light source. Even though the phototransistors are designed to be IR sensitive, most will respond to other light sources. One way to overcome the ambient light problem is to have the blocking device located as close to the phototransistor as possible, thereby blocking all light sources that are exposed to the detector.

Simple Optical Electronic Lock

Our next IR light circuit is in Fig. 3. It is an electronic lock that requires a simple programmed key to open and close the lock. Three pairs of IR LEDs and phototransistors are arranged very much like what was done in the previous circuit. The key can be made out of circuit board material, cardboard, or some other opaque material with a single 1/4-inch hole (see drawing of key in Fig. 3). It is used to unlock the electronic locking circuitry.

Fig. 2. You can use infrared LED/phototransistor pairs in an optical switch. Throwing the handle to either extreme blocks one of the pairs. An advantage of this arrangement is that you can sense if the handle is only thrown half way.

Fig. 3. A simple programmed key operates this basic electronic lock.
Parts List for the Simple Electronic Lock

Semiconductors
- IC1—4012B CMOS dual four-input NAND gate, integrated circuit
- IC2—4049B CMOS hex inverter, integrated circuit
- Q1—Q3—IR phototransistor
- Q4—2N2222 NPN transistor
- LED1—LED3—Light-emitting diode, infrared

Resistors
(All resistors are 1/4 watt, 5% units)
- R1—R3—10,000 ohm
- R4—1000 ohm
- R5—2200 ohm

Additional Parts and Materials
Relay or solenoid, material for key, mounting block for IR devices, etc.

Parts List for the Electronic Lock Driver

- Q4—IRF510 hexFET field-effect transistor
- D1—1N4002 silicon diode
- Relay or solenoid

Circuit Diagram

Fig. 4. For heavy-duty requirements over 100 mA, a hexFET driver is needed to handle the higher current load.

Two CMOS ICs are used to handle the lock's simple logic circuitry. IC1 is a 4012 dual 4-input NAND gate. All four inputs of the NAND gate must be high to produce a low output. If one or more of the inputs are low, the output will be high. Our circuit only uses one of the four input NAND gates. The unused NAND gates must have all inputs tied to circuit ground. This is necessary to keep the unused gates from interaction with the operating gate. When using CMOS logic ICs, all unused inputs should be tied to either battery positive or battery negative. IC2 is a 4049 hex-inverting buffer that simply inverts the input signal.

When the key is not in place, all phototransistors are flooded with an IR source and are turned on producing a near zero voltage at their collectors. The inputs at pins 2 and 5 of IC1 are low and if any input of a NAND gate is low, the output will always be high. The low out-

Fig. 5. The complexity of the electronic lock is increased when you use six IR pairs.
PARTS LIST FOR THE COMPLEX ELECTRONIC LOCK (FIG. 5)

SEMICONDUCTORS
LED1-LED6—Light-emitting diode, infrared
Q1-Q5—IR phototransistor
Q7—2N2222 NPN transistor
IC1—4012B CMOS dual four-input NAND gate, integrated circuit
IC2—4011B CMOS quad two-input NAND gate, integrated circuit
IC3, IC4—4049B hex inverter, integrated circuit

RESISTORS
(All resistors are 1/4 watt, 5% units.)
R1—1000-ohm
R2, R7—10,000-ohm
R8—2200-ohm

ADDITIONAL PARTS AND MATERIALS
S1-S5—Single-pole, double-throw toggle switch
Relay or solenoid, IC sockets, material for key and IR devices, etc.

put at the collector of Q2 is inverted by IC2 to a high, which ties to inputs 3 and 4 of IC1. The high output of IC1 is inverted by IC2 to a low at the base of Q4. This turns Q4 off, and the relay or solenoid is not activated.

Inserting a key with a hole in the middle position blocks the IR light source from Q1 and Q3, but allows Q2 to continue receiving its IR signal. The collectors of Q1 and Q3 go high to produce a high at input pins 2 and 5 of IC1. Now all inputs of IC1 are high, and its output is low. IC2 inverts the low output, supplying a positive input to the base of Q4, turning it on, and activating the relay or solenoid to unlock whatever is attached.

The circuit shown in Fig. 3 will operate a relay or solenoid that requires no more than 100-mA, but if a heavy-duty solenoid or relay is required, you can use the hexFET driver circuit shown in Fig. 4. An IRF510 hexFET can handle up to 3 to 5 amps in the driver circuit.

More Complex Lock Circuit

Our next design (see Fig. 5) is an expanded version of the electronic lock circuit. This one offers greater security by increasing the number of IR pairs to six. This expanded circuit requires two 4049 hex inverters, a 4012 four-input NAND gate, and a 4011 quad two-input NAND gate to take care of the added logic functions. Five pass/block selector switches are added to give greater versatility in programming the circuit for various key configurations.

The drawing in Fig. 6 shows one way of arranging the IR LEDs and phototransistors on an opaque block of wood, plastic, or similar material. Now the key can be inserted into the slot to operate the lock circuit. This is by no means the only arrangement that will work. The IR devices could be arranged so that a credit card shaped key could be used to activate the lock. Design your own unique arrangement. It will make it much more difficult for someone to operate or bypass your electronic lock. The key can be made out of any opaque material that will slide down the slot between the IR devices. Set your imagination free.

The lock circuit is designed to read the output of the first five IR pairs only when the last IR source is blocked (LED6 and Q6). This arrangement insures that the key must be fully inserted into the lock before the circuit reads the input code. Switches S1 through S5 are used to select either a blocked or
unblocked logic output that is fed to the gate inputs of IC1 and IC2-a. The circuit can only unlock when all six inputs of IC1 and IC2-a are high. If the position on the key is programmed to block an IR source, the corresponding selector switch must be placed in the “B” position to allow the high at that collector to be fed to the input of the NAND gate. If the position on the key is programmed to pass the IR source, the corresponding selector switch must be placed in the “A” position. The 4049 inverter changes the low to a high and sends it on to the input of the NAND gate. A key may be programmed with up to twenty-five different combinations of blocked and unblocked positions. Therefore, twenty-five different keys may be made and used with the circuit by setting the five selector switches to their proper positions for any given key.

Without a key in place, all six phototransistors are flooded with IR light and are turned on with their collectors at near ground level. If all of the selector switches are placed in the “B” position and a key without any holes (set up to block all positions) is slid into position, the circuit will unlock.

With all selector switches set in the “A” position and a key with holes in all of the first five positions (the last position must always be blocked) moved into position, the circuit also will unlock. Here’s how the logic must function for the circuit to unlock and operate the relay or solenoid. When all of the inputs of IC1 and IC2 are high, their outputs are both low. Inverters IC3-f and IC4-a invert the lows to highs. This brings both inputs of IC2-b high, which produces a low output. This low is inverted by IC4-b to a high that turns Q7 on, operating the relay or solenoid.

As in the previous circuit, output driver Q7 may be replaced with the higher powered IRF510 hexFET driver circuit. The electronic lock circuit can be expanded to as many positions as desired by adding IR LED/phototransistor pairs and the necessary logic circuitry.

Here’s hoping that at least one of the basic circuits we looked at this visit will be helpful to you in a present or future project. In any case, be sure to be here next month, same time, same station. Good circuitry!

ROBOTICS WORKSHOP
(continued from page 65)

longer programming time, but take note that the BX-24 has 400 bytes of memory; the more elements, the more memory is consumed. As written, Joystick2.Bas consumes about 190 bytes of RAM, so there is room for expansion if you so wish.

When you are done recording the steps you want, briefly depress button 1 again. The joystick will be taken out of record mode. You can play back your previously stored steps by briefly depressing button 2. While playing a previously stored set of steps, any joystick motions are ignored. If necessary, you can abort play mode at any time by depressing button 2 again. When playback is complete, the program goes back into “free run” mode.

Possible Enhancements

You can add a number of enhancements. One is to increase the number of steps per second. This is done by decreasing the value:

mdelay as integer = 256

The value 256 is approximately one half of a second, so 128 would be a quarter second, 64 would be an eighth of a second, and so forth. Be aware that the smaller the number, the more steps that are recorded per second, so the faster the 60-element array will fill.

This concludes our look at the BasicX-24 microcontroller. Next month, we’ll cover some “back to basics” topics, including motor control and sensor-interfacing techniques.

ELECTRONIC SECURITY DEVICES

A great book for project builders, it is quite common to associate the term “Security Devices” with burglar alarms of various types. However, in fact it can refer to any piece of equipment that helps to protect people or property. The text is divided into three basic sections: Chapter 1 covers switch-activated burglar alarms and includes exit and entry delays. Chapter 2 discusses other types of security devices such as Smoke and Gas Detectors; Water, Temperature and Baby Alarms; Doorphones. Most circuits are simple, and stripboard layouts are provided.

To order Book BP56 and send $5.99 includes shipping and handling in the U.S. and Canada only to Electronics Technology Today Inc., P.O. Box 240, Massapequa Park, NY 11762-0240. Payment in U.S. funds by U.S. Bank Check or International Money Order. Please allow 6-8 weeks for delivery.
Polaris Video Cameras for all environments

Wireless Camera System
GW-2400S - $449.95
Includes: 2.4 Ghz Color Wireless Camera, 4-Channel Receiver with Built-In Monitor

Wireless Camera System
GC-2400
$269.95 (monitor/receiver)

Wireless Camera System
GC-2400
$229.95 (camera)

Polaris Industries
470 Armour Dr. Atlanta GA 30324 • Tech Info: 404.872.0722 FAX: 404.872.1038

Modern “ZOOM” Lens
MB-1250HRVF
$199.95

470 TV Line Color Board Camera with a 4-8mm Vari-Focal lens.

B/W & Color C-Mount Cameras
The CM-220 & CM-220c are truly outstanding performance cameras with 380 Line Resolution with C-Mount option.
Color CMOS Camera: CM-220C $139.95

View Up To Six Live Camera Locations on Your PC!

NETVID-6x6M Server...Works 3-Ways!
1. Over standard phone line or ISDN.
2. Internet using Internet Explorer or Netscape Navigator. 3. PC - LAN/Network.

PC remote software allows user to dial into NETVID-6x6M Server from any location!
Includes: NETVID-6x6M server, Software & Modem.

Dial-Up Video Security for:
• Security/Intrusion • Detect & Photograph Intruders
• Corporate management tool • Beach House, Cabin
• View your home while at work • Save to a Hard Drive

Polaris Industries
http://www.polarisusa.com
800.752.3571

Free Polaris Video Catalog

www.americanradiohistory.com
Doppler Direction Finder

Track down jammers and hidden transmitters with ease! This is the famous WABEY DPF, featured in April 1999 in QST. Shows direct bearing to transmitter on compass style LED display, easy to hook up to any FM receiver. The transmitter - the object of your DPF'ing - need not be FM, it can be AM, FM or CW. Easily connects to receive a distant transmitter. Kit is fully equipped, you add nothing! Operates on 12V DC. Pro Model includes AC power. Add $19.95 for ship.

DFF-1, Doppler Direction Finder Kit $149.95

Wireless RF Data Link Modules

RF link boards are perfect for any wireless control application; alarm, data transmission, electronic monitoring...you name it. Very stable SAW resonator transmitter, crystal controlled receiver - no frequency drift! Range up to 600 feet, license free 433 MHz Band. Encoder/decoder units have 12 bit Holtek H-12 series chips allowing multiple units to all individually addressable, see web site for full details. Super small size - that's a quarter in the picture! Run on 3-12 VDC. Fully wired and tested, ready to go and easy to use! RX-433 Transmitter/Receiver...$16.95 TX-433 Transmitter...$14.95

World's Smallest TV Transmitters

We call them the 'Cubes'! Perfect video transmission from a transmitter you can hide under a quarter and as thin as a stack of four pennies - that's a nickel in the picture! Transmits color or B&W with fantastic quality - almost like a direct wired connection to any TV tuned to channel 50! Crystal controlled for frequency drift with performance that equals models that cost hundreds more! Basic 20 mW model transmits up to 300', while the high power 100 mW unit goes up to 1/4 mile. Their very light weight and size makes them ideal for balloon and rocket launches. R/C models, robots - you name it! Operates on 9 volts and hook-up to any TV, VCR or audio / video source. In fact, all of our cameras have been tested to mate perfectly with our Cubes and work great. Fully assembled, just hook up power and you're on the air! One customer even put one up on his dog!

C-2000, Basic Video Transmitter...$89.95
C-2001, High Power Video Transmitter...$179.95

AM Radio Transmitter

Operates in standard AM broadcast band. Pro, version A-25, is synthesized for AM, no frequency drift and is setable for high power output where regulations allow. Typical range of 1-2 miles. Entry-level A-1 1/2 is tunable, runs FCC maximum 100 mW, range 1/4 mile. Both accept line-level inputs from tape decks, CD players or microphones, run on 12 volts DC. Pro-A-25 includes AC power adapter, matching case and bottom loaded antenna. Entry-level A-1 1/2 has an available matching case and knob set that dresses up the radio. Great sound, easy to build - you can be on the air in an evening! A-25, Professional AM Transmitter Kit...$129.95
A-1 1/2, Entry-level Transmitter Kit...$59.95
AM, Matching Case Set for A-1 & A-25...$14.95

Mini Radio Receivers

Imagine the fun of tuning into aircraft a hundred miles away, the local police/fire department, ham operators, or how about Radio Moscow or the BBC in London? Now imagine doing this on a little radio you built yourself - just an evening's project. Lots of RF engineers are the nuts for catching all the action on the local ham, aircraft, standard broadcast radio, shortwave or World Time National Standard Radio boards. Pick the receiver of your choice, each easy to build, sensitive receiver has plenty of crystal clear audio to drive any speaker or earphone. Easy one evening assembly, run on 9 volt battery, all you have squelch for shortwave and FM broadcast receiver which has subcarrier output for hook-up to our RCA adapter. The RCA will tune in commercial-free music, other "hidden" special services when connected to FM receiver. Add our matching case and knob set for that smart finished look!

AR-1, Airband 108-168 MHz Kit...$29.95
HP-1, WWV 10 MHz (crystal controlled) Kit...$29.95
FR-1, FM Broadcast Band 88-108 MHz Kit...$29.95
FR-1, FM Broadcast Band 88-108 MHz Kit...$29.95
SR-1, Shortwave 4-11 MHz Band Kit...$29.95
SCA-1, SCA Subcarrier Adapter Kit for FM radio...$29.95
Matching Case Set (specify which kit)...$14.95

PIC-PIC Chip Programmer

Easy to use programmer for the PIC16C48, 16F84, 16F843 microcontrollers by Microchip. All software - editor, assembler, run program - as well as free update available on RAMSEY download site! This is the popular unit designed by Michael Covington of Covington Tech in England! Now, September 1998, connects to your parallel port and includes the great looking case, knob set and AC power supply. Starting programmers those neat microcontrols now...order your PICPRO today!

PIC-1, PICPRO PIC Chip Programmer Kit...$59.95
PIC-2, PICPRO PIC Chip Programmer Kit...$59.95

Order Toll-free: 800-446-2295
Sorry, no tech info, or order status at 800 number
For Technical Info, Order Status
Call Factory direct: 716-924-4560

RAMSEY ELECTRONICS, INC.
793 Canning Parkway Victor, NY 14564
See our complete catalog and order on-line with our secure server at www.ramsyelectronics.com
CIRCLE 263 ON FREE INFORMATION CARD

1 GHz RF Signal Generator

A super price on a full featured RF signal generator. Covers 100 KHz to 999,99999 MHz in 10 Hz steps. Lots of features; calibrated AM and FM modulation, 90 front panel meters, built-in RF-202 interface, f10 +130 dBm output and more! Fast and easy to use, its bright big vacuum fluorescent display can be read from anywhere on the bench and the handy 'smart-knob' has great analog feel and is intelligently enabled when entering or changing parameters in any field - a real time saver! All functions can be continuously varied for the need for a shift or second function key. In short, this is the generator you'll want on your bench, you won't find a harder working RF signal generator - and you'll have almost $300 left over for options! RSG-1000B RF Signal Generator...$1995.00

Super Pro FM Stereo Transmitter

Professional synthesized FM Stereo station in easy to use, handsome cabinet. Most radio stations require a whole equipment rack to hold all the features we've packed into the FM-100. Set freq with Up/Down pots and LED display. Get the great sound (no more squeals or swishing from cheap CD inputs!) of a CD punch-in audio, without mod. LED meters to easily set audio levels, in-line level inputs. Churches, drive-ins, schools, colleges find the FM-100 completely synthesized transmitter needs, you'll love. Great features, great price! Kit includes cabinet, antenna, 120 VAC supply. We also offer a high power export version of the FM-100 fully assembled with 120 VAC power for miles of program coverage. The export version can only be shipped accompanied by a signed statement that the unit will be exported.

FM-100, Pro FM Stereo Transmitter Kit...$249.00
FM-100KT, Fully Wired High Power FM-100...$396.95

RF Power Booster

Add muscle to your signal, boost power up to 1 watt over a range of 100 KHz to over 1000 MHz. Use as a lab amp for signal generators, plus many foreign users employ the LPA-1 to boost the power of their FM transmitters, providing radio service through an entire town. Runs on 12VDC, thermally over loaded lock, the nice matching case case, outdoor unit attaches right at the antenna for best signal - receiving or transmitting, weatherproof, too!

FM-10A, Tunable FM Stereo Transmitter Kit...$34.95
CPM, Matching Case and Antenna Set...$14.95
FMA-12, 12 Volt DC Wall Plug Adapter...$9.95

FM Station Antennas

For maximum performance, a good antenna is needed. Choose our very popular dipole kit or the Comet, a factory made 5/8 wave collinear model with 3.4 dB gain. Both work great, but the Comet is a little bit higher. Add $6.95 for shipping, handling and insurance. Orders under $50, add $3.50. NY residents add 8% sales tax. Sorry, no CODs, foreign orders, add 20% for surface mail or use credit card and quickly shipping method.

www.americanradiohistory.com
Microscopes

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>System 703</td>
<td>Stereo Inspection Microscope</td>
<td>$270.00</td>
</tr>
<tr>
<td>System 707</td>
<td>Deluxe Stereo Microscope</td>
<td>$266.00</td>
</tr>
</tbody>
</table>

- Adjustable interpupillary distance between 2.5" (55mm) and 3" (75mm)
- Slide mount objectives for rapid magnification change
- Provides a long working distance of 6" at 10x magnification
- Built-in illuminator with articulating arm allows infinite positioning

System 703 Specifications
- Adjustable interpupillary distance between 2.5" (55mm) and 3/4" (75mm)
- 35 degree inclined eye tubes
- Weighted stand with 9° arm is fully adjustable
- Magnification: 5x, 10x, and 20x
- 5 year limited warranty

System 707 Specifications
- Provides a long working distance of 6" at 10x magnification
- Built-in illuminator with articulating arm allows infinite positioning
- Weighted stand with 9° arm is fully adjustable
- Magnification: 5x, 10x, and 20x
- 5 year limited warranty

Cables Testers

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
</table>
| Multi-Network Cable Tester | Part #25.102
- Quickly tests by auto scanning
- Suitable for thin ethernet (BNC) / UTP/STP / 56A / 56A / 56B / 56B
- Token ring
- Use attached remote terminator to test cable before or after the cables are installed. Also allows you to test the ground of shielded twisted pair cable. |
| Multi-Modular Cable Tester | Part #25.022 |
- Quickly tests modular cables USOC4 / USOC6 / USOC8 terminating with RJ45, RJ12 and RJ11 modular plug
- Combs with remote terminator, allows you to test installed cables.

Toolkits

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 PC Aven Personal Computer Tool Kit</td>
<td>Part #15.014</td>
<td></td>
</tr>
</tbody>
</table>
- Includes super drill set
- Aluminum case

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 PC Aven Basic Electronic Tool Kit</td>
<td>Part #15.019</td>
<td></td>
</tr>
</tbody>
</table>
- Includes super drill set
- Aluminum case

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>73 PC Aven Master Electronic Tool Kit</td>
<td>Part #15.018</td>
<td></td>
</tr>
</tbody>
</table>
- Includes super drill set
- Aluminum case

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>47 PC Aven Premier Compact Technicians Kit</td>
<td>Part #15.004</td>
<td></td>
</tr>
</tbody>
</table>
- Includes super drill set
- Aluminum case

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>88 PC Premier Field Service Kit</td>
<td>Part #15.006</td>
<td></td>
</tr>
</tbody>
</table>
- Includes super drill set
- Aluminum case

Accessories

- Perfectly balanced fluorescent lighting with a precision 3 Diopter Magnifier Lens
- Double-sided care

Professional Multimeter
- Part #25.015
- Price $15.64

20 PC Precision Screwdriver Set With interchangeable blades
- Part #13.714
- Price $16.64

Digital Soldering Station
- Part #17.510
- Price $132.65

- Ceramic heater unit for quick start
- Temperature adjustment: 160-480°F Celsius
- Six different tip sizes available at options
- Perfect for most soldering applications including SMD
- ESD Safe

Digital Soldering Station
- Part #17.510
- Price $132.65

- Ceramic heater unit for quick start
- Temperature adjustment: 160-480°F Celsius
- Six different tip sizes available at options
- Perfect for most soldering applications including SMD
- ESD Safe

Digital Soldering Station
- Part #17.510
- Price $132.65

- Ceramic heater unit for quick start
- Temperature adjustment: 160-480°F Celsius
- Six different tip sizes available at options
- Perfect for most soldering applications including SMD
- ESD Safe

Digital Soldering Station
- Part #17.510
- Price $132.65

- Ceramic heater unit for quick start
- Temperature adjustment: 160-480°F Celsius
- Six different tip sizes available at options
- Perfect for most soldering applications including SMD
- ESD Safe

Digital Soldering Station
- Part #17.510
- Price $132.65

- Ceramic heater unit for quick start
- Temperature adjustment: 160-480°F Celsius
- Six different tip sizes available at options
- Perfect for most soldering applications including SMD
- ESD Safe

Digital Soldering Station
- Part #17.510
- Price $132.65

- Ceramic heater unit for quick start
- Temperature adjustment: 160-480°F Celsius
- Six different tip sizes available at options
- Perfect for most soldering applications including SMD
- ESD Safe

Digital Soldering Station
- Part #17.510
- Price $132.65

- Ceramic heater unit for quick start
- Temperature adjustment: 160-480°F Celsius
- Six different tip sizes available at options
- Perfect for most soldering applications including SMD
- ESD Safe

Digital Soldering Station
- Part #17.510
- Price $132.65

- Ceramic heater unit for quick start
- Temperature adjustment: 160-480°F Celsius
- Six different tip sizes available at options
- Perfect for most soldering applications including SMD
- ESD Safe

Digital Soldering Station
- Part #17.510
- Price $132.65

- Ceramic heater unit for quick start
- Temperature adjustment: 160-480°F Celsius
- Six different tip sizes available at options
- Perfect for most soldering applications including SMD
- ESD Safe

Digital Soldering Station
- Part #17.510
- Price $132.65

- Ceramic heater unit for quick start
- Temperature adjustment: 160-480°F Celsius
- Six different tip sizes available at options
- Perfect for most soldering applications including SMD
- ESD Safe

Digital Soldering Station
- Part #17.510
- Price $132.65

- Ceramic heater unit for quick start
- Temperature adjustment: 160-480°F Celsius
- Six different tip sizes available at options
- Perfect for most soldering applications including SMD
- ESD Safe

Digital Soldering Station
- Part #17.510
- Price $132.65

- Ceramic heater unit for quick start
- Temperature adjustment: 160-480°F Celsius
- Six different tip sizes available at options
- Perfect for most soldering applications including SMD
- ESD Safe

Digital Soldering Station
- Part #17.510
- Price $132.65

- Ceramic heater unit for quick start
- Temperature adjustment: 160-480°F Celsius
- Six different tip sizes available at options
- Perfect for most soldering applications including SMD
- ESD Safe

Digital Soldering Station
- Part #17.510
- Price $132.65

- Ceramic heater unit for quick start
- Temperature adjustment: 160-480°F Celsius
- Six different tip sizes available at options
- Perfect for most soldering applications including SMD
- ESD Safe

Digital Soldering Station
- Part #17.510
- Price $132.65

- Ceramic heater unit for quick start
- Temperature adjustment: 160-480°F Celsius
- Six different tip sizes available at options
- Perfect for most soldering applications including SMD
- ESD Safe

Digital Soldering Station
- Part #17.510
- Price $132.65

- Ceramic heater unit for quick start
- Temperature adjustment: 160-480°F Celsius
- Six different tip sizes available at options
- Perfect for most soldering applications including SMD
- ESD Safe

Digital Soldering Station
- Part #17.510
- Price $132.65

- Ceramic heater unit for quick start
- Temperature adjustment: 160-480°F Celsius
- Six different tip sizes available at options
- Perfect for most soldering applications including SMD
- ESD Safe

Digital Soldering Station
- Part #17.510
- Price $132.65

- Ceramic heater unit for quick start
- Temperature adjustment: 160-480°F Celsius
- Six different tip sizes available at options
- Perfect for most soldering applications including SMD
- ESD Safe

Digital Soldering Station
- Part #17.510
- Price $132.65

- Ceramic heater unit for quick start
- Temperature adjustment: 160-480°F Celsius
- Six different tip sizes available at options
- Perfect for most soldering applications including SMD
- ESD Safe
Start a Great Career! Study at Home

BE AN FCC LICENSED ELECTRONIC TECHNICIAN

- No costly school
- No commuting to class

The original Home-Study course prepares you for the “FCC Commercial Radio-telephone license.” This valuable license is your professional “ticket” to thousands of exciting jobs:

- Communications
- Radar
- Maritime
- Microwave
- Radio-TV
- Avionics & more

You can even start your own business
No Need to Quit Your Job or Go to School
This proven course is easy, fast and low cost!

GUARANTEED PASS
You get your FCC License or money refunded

Call Now for FREE Info:
(800) 932-4268 ext. 412
FAX: 415.332.1901
email: fcc@commandproductions.com
Visit our website: www-license-training.com

COMMAND PRODUCTIONS
FCC LICENSE TRAINING - Dept. 412
P.O. Box 2624 San Francisco, CA 94126-2824

Yes! Please rush FREE details immediately on how I can study at home for my FCC License.

Name
Address
City
State Zip

Mail This Coupon Today!

CIRCLE 232 ON FREE INFORMATION CARD

Future Horizons Advanced Technology
Po Box 125 Marquette, MI 49855 www.futurehorizons.net

Traffic Light Buster
This device will turn traffic lights green in many cities by the touch of a button. Emergency vehicles use this to pass through traffic lights quickly. Can be dash mounted or handheld.
TLBU Plans-$15.00
TLBZ Ready to Use-$250.00

Ambient Power Module
Low cost circuit provides up to 9 watts of electrical power from free-energy in the air. Can replace batteries in many devices.
PWRM Plans-$20.00
PWRZ Ready to use-$97.00

Ionocraft
Proven electrical phenomnem produces anti gravity levitation of small craft. Solid State, no moving parts, easily scaled up. Larger craft can exceed lifting efficiency of modern helicopters. Uses HIDZ power supply.
IONO plans-$20.00
HIDZ Power supply-$225.00

Lightsaber
Produces brilliant blade of glowing humming light 36” long by the flick of a switch. Virtually identical to those seen in the movies but this one is REAL. Completely safe, (available in red, green, blue)
LIGHT Plans-$20.00
LIGZ 24” Lightsaber-$140.00
LIGZ-36” Lightsaber-$160.00

Cordless Phone Extender
Learn to extend your cordless phone range to 50 miles. Place calls all around town. Great alternative to cell phones.
CPHE Plans-$20.00

Electronic Mind Control
Control minds with this simple technology.
Others will do anything you program them to. Get that raise you always wanted or reprogram your mind.
MIND Plans-$15.00
MINZ Ready to use-$124.00

Please add $5.00 Shipping/Handling, Overseas $11.00

(906)249-5197 24 hr order only line (906)249-1525 Fax
Pay by Visa,MC,Amex,Disc,Chk,Mo,Cash Send $3 for catalog

Are you interested in Microprocessors & Embedded Control Systems? If not you should be! Look around, just about everything these days has an embedded microprocessor in it. TVs, cars, radios, traffic lights & even toys have embedded computers controlling their actions. The Primer Trainer is the tool that can not only teach you how these devices operate but give you the opportunity to program these types of systems yourself.
Examples & exercises in the Self Instruction manual take you from writing simple programs to controlling motors. Start out in Machine language then move on to Assembler, & then continue on with optional C, Basic or Forth Compilers. So don’t be left behind, this is information you need to know!

Examples Include:
- Measuring Temperature
- Using a Photocell to Detect Light Levels
- Making a Waveform Generator
- Constructing a Capacitance Meter
- Motor Speed Control Using Back EMF
- Interfacing and Controlling Stepper Motors
- Scanning Keypads and Writing to LCD/LED Displays
- Bus Interfacing on 8255 PPI
- Using the Primer as an EPROM Programmer
- DTMF Autodialer & Remote Controller (New)

The Primer is only $119.95 in kit form. The Primer Assembled & Tested is $169.95. This trainer can be used stand alone via the keypad and display or connected to a PC with the optional upgrade ($49.95). The Upgrade includes: an RS232 serial port & cable, 32K of battery backed RAM & Assembler/Terminal software. Please add $5.00 for shipping within the U.S. Picture shown with upgrade option and optional heavy-duty keypad ($29.95) installed. Satisfaction guaranteed.

EMAC, inc.
11 EMAC WAY, CARBONDALE, IL 62901
618-529-4525 Fax 457-0110 BBS 529-5708
World Wide Web: http://www.emanic.com

1985 - 1998
OVER 12 YEARS OF SERVICE

www.americanradiohistory.com
Laser Window Bounce Listening System

Powerful listening system, yet simple in operation. You shine a LASER at a window and intercept the reflected beam with our ultra-sensitive filtered OPTICAL RECEIVER. Vibrations on the window from internal sounds and voices are now clearly heard. Range can be up to several hundred meters depending on the output power of the laser and optics used.

LLR30 Optical RECEIVER with voice filter...$99.95 LLR3K Kit of Optical Receiver...$69.95
LLR40 Higher performance with low noise exempt, basic optics and deluxe headsets...$199.95

Tesla Coil

Produce 30" Sparks. Create a spectacular display of nature's own lightning. Amazing experiments possible. See in action on our web site!

BTC40 Plans...$6.00 BTC4K Kit...$79.95 BTC40 Ready to Use...$999.95
BTC40 Plus...$15.00 BTC3K Kit...$434.95 BTC30 Ready to Use...$449.95

Cybernetic Ear!

Provides a "extra edge" to many listening applications. Enhances 3 to 4x of normal CYBERBEAR...$19.95

Cybernetic Pulse

Complex Magnetic waves are claimed to produce man health benefits. Board level experimental device is sold for research purposes only. THMAG10 Lab Assembled...$24.95

Doomsday Shield

Temporarily protects you from any external energy field of up to 100000 volts. Can be used to keep you out of a room to observe a dangerous situation without risk. SHIELD...$299.95

Gravity Motor

Electrical charge reactions produce the effect of "anti-gravity. You build a model craft from simple parts and levitate it with our ion power source. Battery or 115v ac operation. Great science of fascinating model project includes our gravity handbook.

GRA3 Plans/Book...$20.00 GRAK3 Power Source Kit...$99.95 GRA30 Assembled...$149.95

Mobile Magnetic Pulser

Electronic circuitry induces hypnotic Controller. Room. Mini experimental device includes our gravity handbook. GRA3 Plans/Book...$20.00 GRAK3 Power Source Kit...$99.95 GRA30 Assembled...$149.95

Amazing Gravitron

Remarkable true levitation without any tethering or external sources of energy. Winning science project includes self starter.

GRV10 - Anti Gravity Tool...$23.95 GRV30 - Super Levitator...$49.95

Ion Ray Guns

Star Wars Technology Directs Energy

Star Wars Technology Demonstrates Weapons Potential, Force Fields, Lasers, Antigravity etc. Projects electric shocks without contact!! Conduct many weird and bizarre experiments. Handheld battery operated and easy to operate.

IOG77 Plans...$10.00 IOGT7K Gun Plans...$99.95 IOGT7 Assembled/Tested...$149.95

Semi-Cond Burning Lasers

Use for directed beam of heat. Illumination source for night vision, laser window bounce, IR driver for ultra-bright green lasers.

CWL5K Kit/Plans minus diode...$199.95 CWL50 Assembled minus diode...$299.95 LD34 CW 3/4 W 9830m. diode...$199.95

Nightstar Night Viewer

Sees in total darkness.

• 35000x Light Gain
• Over 1000x Recognition
• Built in IR illuminator
• 20 degree Field of View
• 20 Hour's Battery Life
• Spectral Response 810-860 nm.
• SpectraStar-10 Ready to Use...$239.95

Jacobs Ladder

Pyrotechnical traveling fairy plasma expands over 3° before evaporating into space. Solid state circuitry with adjustable arc control. 115/230 volt operation. Uses safe high frequency energy.

JACK1 Plan...$8.00 JACK1K Kit Plans...$11.95 JACK1K Ready to Use...$249.95

Polytechturning GLOBAL 3D" to "1D series for free flight into space! Replaceable Blanks, Override Switch Interactive Sound Module Available on Request

3 Mi FM Voice Transmitter

FMV1K Kit and Plans...$39.95

Fusion Laser Portable

Intercept any laser beam from inside or outside your house. Signal generator and laser for legal surveillance.

GFL10 Plans...$239.95 GFLD10 Plans...$499.95

30 to 50x brighter than the red pointers. Shott pocket sized pen 55" x 6.3 Full Sway. Operates for hours from two "AAA" batteries. Call for pricing as we will not be undersold!!

6 FM Xmtr Kits!

1 Super Sensitive Ultra Clear 1 Mile+ Voice Transmitter $99.95
2 Micro Telephone Transmitter $9.95
3 Line Powered Phone Transmitter Never Needs Batteries!!
7 Tracking/Beacon Deception Transmitter
10 Video/Audio Rebroadcaster 1 Mi.
15 T/FM Radio Disruptor Neat Prank!! Discretion Required
Includes Hints Using Wireless Devices

COMBOX Above 5 Kits/Plans...$59.95 COMBOX Above 6 Plans Only...$110.00

Shock Force Field Vehicle & Object Electrifier

Hand shop, balls, wands. Mint circuit is easy hidden. Great "play back" for these wire guys. SHIK1K Kitplan...$19.95

Mind & Brain Controllers

Incredible device Turbo charges memory, Boost mental powers, Controls stress, speeds up healing processes and Uncover hidden potentials.

BWPLUS-APOLLO Ready to use...$179.95 BWII - EINSTEIN Lower cost unit...$129.95

Current and Future Weapons Systems

We Stock Parts!!

LC3 Plans Poor Mans CO2 System...$15.00 LG7 Plans Lab CO2 System 30W...$20.00
LAGUN2 Plans N# Yag, Ruby 6kw...$20.00 All Three Plans for only...$225.00

PLASMA FIRE SABER

Patented Moving Light Concept Defies All Logic as it Apears to Evaporate into Space! Replaceable Blanks, Override Switch Interactive Sound Module Available on Request

Available colors: "C" photon blue, starfire red, phaser green, neon red

PFS15K "C" Kit of 15" Active Length...$24.95 SAB34K "C" Kit of 24" Active Length...$199.95 SAB46K "C" Kit of 30" Active Length...$99.99

*Please add $10.00 for special handling

June 2000, Pediotics

Information Unlimited PO Box 716 Amherst N.H. U.S.A. 03031
1 800 221 1705 Orders/Catalogs Only! Fax 1 603 672 5406 Information 1 603 673 4730 Free Catalog on Request
Pay by MC, VISA, Cash, Check, MO, COD. Add $5.00 S&H plus $5.00 if COD. Overseas contacts for Proforma

CIRCLE 225 FOR FREE INFORMATION CARD

www.americanradiohistory.com
Train At Home To Become A Telecommunications Technician

This is the hi-tech electronics career you've been searching for! Study the ins and outs of fax machines, modems, fiber optics, cellular networks, and more. And learn it all from your own home! Work for telephone companies, hospitals, or electronics repair shops. And earn as much as $34,000 a year! Endorsed by the National Association of Radio and Telecommunications Engineers (NARTE), this great Harcourt Learning Direct program features a voucher for the NARTE Class IV Technician Certification exam.

Mail Coupon For FREE Facts Or Call Toll Free Today! 1-800-572-1685 ext. 1347

Call anytime, 24 hours a day, 7 days a week.

Harcourt Learning Direct
Dept. A1Z560S
925 Oak Street, Scranton, PA 18515-0700

YES! Send me FREE FACTS on how I can train at home to be a Telecommunications Technician. I understand there is no obligation.

Name __________________________ Age ______
Street __________________________ Apt. # ______
City/State Zip ______________________
Phone () ________________________

www.mouser.com

COPY RENTAL TAPES WITH OUR VIDEO STABILIZERS

BEFORE

AFTER

The clearest picture possible playing back movies. GUARANTEED to eliminate copy protection.

- No Roll/Shutters/Flickers/Fading
- Works on all TV's VCR's Beta & Cable
- Gold Video Connectors & Cables Included
- 1 Year Warranty
- Money Back Guarantee

VISION
ELECTRONICS
1-800-562-2252
2609 S. 156TH CIRCLE • OMAHA, NE 68130
http://www.modernaelectronics.com

NetSurf wireless keyboard™

100 feet range

Power indicator

Integrated Touchpad

104-key functionality

$99 only

- 900MHz Wireless RF Technology
- No Line of Sight Requirement
- Encrypted Data Transmission
- Long Battery Life

Robc Kits, Programmable Robots,
LEGO Robots, Living Robots,
Home and Office Robots, Muscle
Wires™, Electronics and More!

REQUEST OUR FREE 48 PAGE CATALOG
WITH OVER 400 ITEMS!

www.RobotStore.com
800-374-5764

Mondo-tronics, Inc.
PMB-N 4286 Redwood Hwy Dept. 166
San Rafael, CA 94903
ph 415-491-4600 fax 415-491-4696

www.americanradiohistory.com
LISTEN UP!

Hear what you've been missing!

“I could not believe my ears!” – Audio Magazine

- New award-winning technology creates incredible Theater Sound for your EXISTING 2 or 5-speaker system
- Easy hook-up to your stereo receiver or amplifier
- Transforms your TV, VCR, CD, Satellite or Video games into pure cinema sound

www.TheaterSound.com or toll free (877) 857-3484

CABLE BOXES

BEST PRICES

Ship Anywhere In U.S.A.

1-800-637-4615

www.xxbox.com

<table>
<thead>
<tr>
<th>Cable Box</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP 5475A TRANSPLACEMENT TEST SET</td>
<td>$900.00</td>
</tr>
<tr>
<td>HP 5484A SIGNATURE ANALYZER</td>
<td>$1,500.00</td>
</tr>
<tr>
<td>HP 8650B 100 MHZ DIGITAL SCOPE</td>
<td>$1,000.00</td>
</tr>
<tr>
<td>HP 54204A 300 MHZ DIGITALIZING SCOPE</td>
<td>$1,000.00</td>
</tr>
<tr>
<td>HP 54204A 300 MHZ DIGITALIZING WAVEFORM ANALYZER</td>
<td>$700.00</td>
</tr>
<tr>
<td>HP 5450A 100 MHZ DIGITAL SCOPE</td>
<td>$250.00</td>
</tr>
<tr>
<td>HP 5370A 100 MHZ DIGITAL SCOPE</td>
<td>$300.00</td>
</tr>
<tr>
<td>HP 5466A LEVEL METER</td>
<td>$50.00</td>
</tr>
<tr>
<td>HP 5461A POWER METER WITH SENSORECORDER</td>
<td>$50.00</td>
</tr>
<tr>
<td>HP 5550B SWEPT SIGNAL GENERATOR MASTER</td>
<td>$2000.00</td>
</tr>
<tr>
<td>HP 5370A DIGITAL SYSTEM VOLT METER</td>
<td>$100.00</td>
</tr>
<tr>
<td>HP 5370A DIGITAL MULTIMETER</td>
<td>$250.00</td>
</tr>
<tr>
<td>HP 5370A DIGITAL THERMOMETER</td>
<td>$50.00</td>
</tr>
<tr>
<td>HP 5060A SYNTHESIZER LEVEL GENERATOR</td>
<td>$800.00</td>
</tr>
<tr>
<td>HP 5151A SYNTHESIZER FUNCTION GENERATOR</td>
<td>$1000.00</td>
</tr>
<tr>
<td>HP 53945A 200 MHZ DIGITAL OSCILLOSCOPE</td>
<td>$500.00</td>
</tr>
<tr>
<td>HP 5151A DIGITAL SIGNAL SOURCE</td>
<td>$1100.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL GENERATOR</td>
<td>$900.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$1000.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL ALARM</td>
<td>$500.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$1500.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$300.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$1000.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$500.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$1000.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$500.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$1000.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$500.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$1000.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$500.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$1000.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$500.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$1000.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$500.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$1000.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$500.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$1000.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$500.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$1000.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$500.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$1000.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$500.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$1000.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$500.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$1000.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$500.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$1000.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$500.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$1000.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$500.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$1000.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$500.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$1000.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$500.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$1000.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$500.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$1000.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$500.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$1000.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$500.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$1000.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$500.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$1000.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$500.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$1000.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$500.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$1000.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$500.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$1000.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$500.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$1000.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$500.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$1000.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$500.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$1000.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$500.00</td>
</tr>
<tr>
<td>HP 58560A 500 MHZ DIGITAL SIGNAL SOURCE</td>
<td>$1000.00</td>
</tr>
</tbody>
</table>
Power Supplies

- Elenco Quad Power Supply Model XP-581: $79.95
- Elenco Power Supply Kit Model XP-720K: $54.95
- 4 Fully Regulated DC Power Supplies in One Unit: $119.95
- B&K High Current DC Power Supply: $249

Soldering Equipment

- Elenco Hot Air SMD Rework Station Model SR-979: $450
- Weiler Low Cost Soldering Iron Model WLC-100: $36.95
- Weiler Soldering Station Model WES50: $119

Generators & Counters

- Elenco Sweep Function Generator w/ built-in frequency counter Model GF-8036: $225
- Elenco RF Generator with Counter (100kHz - 150kHz) Model SG-9500: $225

Oscilloscopes

- Weiler Sweep Function Generator with Frequency Counter Model 4040: $445
- Multifunction Counter B&K Model 1875 10kHz 3.5GHz: $189
- Digital Oscilloscope Super Specials: $99

Kits & Corner

- Model RCC-7K Radio Control Car Kit: $29.95
- Model AK-700 Pulse/Tone Telephone Kit: $15.95
- Model AM-780K Radio Kit: $11.95

Guaranteed Lowest Prices

- UPS Shipping: 48 States 5%
- OTHERS CALL FOR DETAILS
- IL Residents add 6.25% Sales Tax

C&S SALES, INC.

150 W. CARPENTER AVENUE
WHEELING, IL 60090

FAX: (847) 541-9904 (847) 541-0710

CALL TOLL FREE
(800) 292-7711
Orders Only

Se Habla Español

Excellence in Service

www.cs-sales.com
Elenco LCR & DMM Model LCM-1950

- 12 Functions: Freq. to 40MHz
- Inductance
- Capacitance and Much More
- 12 Functions: Freq. to 20MHz
- Capacitance
- Inductance

Elenco Model M-1740

- 11 Functions: Freq. to 20MHz
- Capacitance
- Inductance
- AC/DC Voltage
- AC/DC Current
- Temperature
- Diode Test
- Transistor Test
- Replaces Elenco Safety Spec. Model M-2750 - $24.95 (9 functions)

Elenco LCR Meter Model LCR-1810

- Capacitance: 3pf to 20µF
- Inductance: 5µH to 100mH
- Resistance: 300Ω to 2000kΩ
- Temperature: 75°C
- DC Voltage: 0-20V
- Frequency up to 1MHz
- Diode/Antenna Continuity Test
- Signal Output Function
- 3 1/2 Digit Display

Elenco Digital Multimeter Kit Model M-1005K

- 18 Ranges
- 3 1/2 Digit LCD
- Transistor Test
- Diode Test
- Training Course
- M-1008B (Assembled) - $15.95

Fluke 79III

- Capacitance ranges from 99.99nF to 9999µF
- Built-in frequency counter of voltage input from Hz to over 20kHz.
- Lo-Ohms range, a 40Ω range with Fluke's proprietary Zero Calibration, offers 0.01 resolution with increased noise rejection.

Fluke 87III

- Features high performance AC/DC voltage and current measurement, frequency, duty cycle, resistance, capacitance, and capacitance measurement.

Elenco Digital Multimeter Kit Model M-1005K

- 18 Ranges
- 3 1/2 Digit LCD
- Transistor Test
- Diode Test
- Training Course
- M-1008B (Assembled) - $15.95

B&K Video Monitor Tester Model 1275

- Great handheld unit to test PC and Mac monitors. The model 1275 is ideal for the field or the service bench. Small, portable and very effective, the 1275 generates crosshatch, dots, color bars and raster patterns in green, blue, red, black and white.

PC Repair Introduction to PC Repair Self-Study Course™

- **$179**

COURSE CONTENTS

- Introduction to Computers
- IBM PC's and Clones
- PC Assembly/Disassembly
- Introduction to MS-DOS

Provides you with the easiest and most effective way to learn the fundamentals necessary for a profitable and successful career as a PC Repair Technician. Ideal for individuals new to the field, and an excellent introduction prior to entry for A+ certification.

A+ Certification Self-Study Course™

- **$379**

DOS/WIN Exam

- Windows 3.1 Installation and Configuration
- Windows 3.1 Application Support
- Windows 3.1 Devices and Drivers
- Windows 3.1 Networking and Troubleshooting
- Windows 3.1 Installation and Deployment
- Windows 95 Basic Configuration
- Windows 95 Troubleshooting and Optimization

Includes all the technical material, knowledge and interactive exercises needed to pass the A+ exams and excel in the competitive PC repair marketplace.

11 pc. Computer Service Tool Kit Model TK-1100

- **$12.95**

Includes:
- 3/16" Nut Driver
- 1/4" Nut Driver
- 3-prong Parts Retriever
- Reversible Bit Screwdriver T10 & T-15
- Reversible Bit Screwdrivers 3/16", 1/4", #1 & #2 Phillips
- Tweezers
- IC Inverter 14-16 pin
- IC Extractor
- 18" Flat Screwdriver
- #0 Phillips Screwdriver

C&S Sales, Inc.

- 150 W. CARPENTER AVENUE
- WHEELING, IL 60090
- FAX: (847) 541-0004, (847) 541-0710
- WWW.CS-SALES.COM

Guaranteed Lowest Prices

UPS SHIPPING: 48 STATES 5%
OTHERS CALL FOR DETAILS
IL Residents add 8.25% Sales Tax
SEE US ON THE WEB

CALL OR WRITE FOR OUR FREE 64 PAGE CATALOG!
(800) 445-3201

Digital Multimeters

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elenco LCM-1950</td>
<td>$69</td>
</tr>
<tr>
<td>Elenco LCR-1810</td>
<td>$99.95</td>
</tr>
<tr>
<td>Elenco M-1740</td>
<td>$39.95</td>
</tr>
<tr>
<td>Fluke 79III</td>
<td>$195</td>
</tr>
<tr>
<td>Fluke 87III</td>
<td>$319</td>
</tr>
</tbody>
</table>

CCTV Cameras

Cameras have 420 lines (360 color) of resolution, 0.08 Lux, 3.6mm/F2 50° field of view. Power requirement is 12VDC @ 100mA (order SC-1).

- **MONOCROME CAMERAS**
 - SC-12 - 35mm Lens (1.25"x1.25") - $9
 - SC-15 - Pin Lens (1.25"x1.25") - $9
 - Add $10 for lenses + $10 for audio

- **COLOR CAMERAS**
 - SC-20 Pin Lens
 - SC-20 3.6mm Lens
 - SC-20 1/2" x 1.25" Infrared Sensitive Audio Included - $109
 - Add $10 for case

TEKK Radios

Pro-Sport FRS Two-Way Radio

Model PRO-SPORT+

- 1/2 Watt Output, 14 Channels.
- TX & RX LED/LCD Indicators.
- Large LCD Display.
- 38 Privacy (CTCSS) Tones.
- Removable Antenna.
- Weather Resistant.
- 500mW Output.
- Palm Sized.

- **$69.00 each or 2 for $125.00**

CIRCLE 290 ON FREE INFORMATION CARD
DIGITAL STORAGE
OScilloscopes

With Spectrum Analyzer, DVM, Freq. Counter, and Data Logger.

From $189.

PORTABLE MODULES CONVERT PC'S INTO MULTIPURPOSE TEST AND MEASURING INSTRUMENTS.

Why lug a scope around? Toss one of our modules into your laptop case or tool kit. For a multi-purpose test device, plug to a PC parallel port and use the PC screen. Continuous, delayed, or triggered sweeps can be frozen on the screen, printed out, or saved to disk. Frequency Spectrums DC to 25 MHz.

Allison now provides PICO TECHNOLOGY Ltd. portable test equipment, including high-speed scopes, and multi channel data loggers. Pico and O-Scopes modules accept standard probes and work with 286 or faster PC's.

FEATURES:
- PORTABLE UNITS TO 25 MHz
- USES PRINTER PORT
- USES STD. PROBES

O-Scopes Made in U.S.A. Picos Made in U.K.

Same Day Shipping
Includes Cable, Software & Manuals

O-Scopes Ip (DC-50KHz, single trace) $189.
O-Scopes II (DC-500KHz, dual trace) $349.
PICO (ADC 200/20) (DC-10MHz, dual trace) CALL
PICO (ADC 200/60) (DC-25MHz, dual trace) CALL
PICO pc based data loggers from $99.

Shipping within U.S. UPS Ground $7.50(Second day $11.50)

SEND CREDIT CARD INFO., M.O., or CHECK OR CALL
1-800-980-9806

Allison Technology Corporation
2006 Finney-Vallet. Rosenberg, TX 77471
PHONE: 281-239-8500 FAX: 281-239-8006
http://www.atcweb.com

Learn to Hack!
The Happy Hacker is nothing less than a step-by-step, easy to follow course on computer hacking. It will teach you all the ins and outs of hacking like the pros. You'll also learn how to hack safely, without getting caught or fired. This brand new 3rd edition has it all! Everything from breaking into computers to hacking web sites, forging email - you name it!

432 PAGE PAPERBACK, $34.95 SHIPPING $3

The Hacker's Companion CD-ROM is chock full of hacking software and information. It includes everything from phones, cellular and satellite hacking to password cracking, war dialing, sniffers and exploit programs. Even a video of Dutch hackers breaking into a classified US military computer. An excellent companion to the Happy Hacker, includes many of the programs discussed there. Brand new for the year 2000!

PC CD-ROM, $29.95, SHIP $3

Or call or write for FREE CATALOG of hard-to-get information about computer viruses, computer hacking, security and cryptography! Check our web site www.americanradiohistory.com for lots more about these books and CD's!

American Eagle Publications, Inc.
P.O. Box 1507, Dept. E
Show Low, AZ 85902
(800)719-4957

CIRCLE 315 ON FREE INFORMATION CARD

Start a Career with High Wages, Excellent Benefits and Job Security!!

With UCANDO's extraordinary maintenance training programs you can quickly and easily enter a high paying field as a maintenance technician for a very small investment of time and money.

RC-M ONLY $165 RC-M is a 15 hour training course on relay ladder logic systems. Includes a 5-part video and workbook. Great Value!

PLC-M ONLY $198 PLC-M is a 32 hour training course on PLC systems. Includes (2) 4-part video's and workbook. This training is valuable.

HYD-M ONLY $209 HYD-M is a 32 hour course on Fluid Dynamics. Includes (2) 4-part video's and workbook. This Module is a must.

SC-M ONLY $215 SC-M is a 32 hour training course on AC & DC Servo Controls. Includes (2) 4-part video's and workbook. Learn everything you need about AC and DC servo Control Systems.

Electronic Training Videos: Basic Electronics, Digital Electronics, TV Repair, LASER and Fiber Optic training videos available at very affordable prices starting at Only $39.95 each.

For information or to place an order call:
1-800-678-6113
www.ucando-corp.com

UCANDO VCR Educational Products Corp., Greenville, OH
Perfect for hobbies, repair, prototype, OEM and equipment modification.

Low cost, high quality boards are fully assembled and 100% tested at the factory.

Each includes full specifications and application information.

These and over 100 additional modules are stocked exclusively at MCM Electronics.

TO RECEIVE SALE PRICING, You Must Provide This Source Code: POP76A

PRE-ASSEMBLED CIRCUIT MODULES

Prices effective May 23 through October 27, 2000.

FM Transmitters

- Accepts mic level input
- Transmits from 88-108MHz
- Requires single 9-13VDC supply

<table>
<thead>
<tr>
<th>Description</th>
<th>Order #</th>
<th>Mfr. #</th>
<th>Reg.</th>
<th>Sale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM transmitter</td>
<td>28-4850</td>
<td>FM-1</td>
<td>$14.95</td>
<td>$10.90</td>
</tr>
<tr>
<td>High power FM transmitter</td>
<td>28-4851</td>
<td>FM-2</td>
<td>24.95</td>
<td>22.39</td>
</tr>
<tr>
<td>Pre-amplifier with compression</td>
<td>28-6230</td>
<td>PM-9</td>
<td>12.50</td>
<td>10.20</td>
</tr>
</tbody>
</table>

Digital Message Recorder

- Records any audio signal
- Retains information with power removed
- Includes an electret microphone
- TR-4 and TR-6 have on-board SW amplifiers

<table>
<thead>
<tr>
<th>Description</th>
<th>Order #</th>
<th>Mfr. #</th>
<th>Reg.</th>
<th>Sale</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 second</td>
<td>28-4855</td>
<td>TR-1</td>
<td>$34.95</td>
<td>$28.99</td>
</tr>
<tr>
<td>16 second with repeat</td>
<td>28-7854</td>
<td>TR-3</td>
<td>39.95</td>
<td>35.90</td>
</tr>
<tr>
<td>16 second with repeat</td>
<td>28-7856</td>
<td>TR-4</td>
<td>$5.20</td>
<td>47.20</td>
</tr>
<tr>
<td>60 second with repeat</td>
<td>28-6245</td>
<td>TR-6</td>
<td>37.95</td>
<td>79.00</td>
</tr>
</tbody>
</table>

DC Power Supplies

- Includes AC transformer
- Provides tight voltage regulation
- Short circuit protection

<table>
<thead>
<tr>
<th>Description</th>
<th>Order #</th>
<th>Mfr. #</th>
<th>Reg.</th>
<th>Sale</th>
</tr>
</thead>
<tbody>
<tr>
<td>12VDC</td>
<td>28-4772</td>
<td>FE-2</td>
<td>$14.95</td>
<td>$11.85</td>
</tr>
<tr>
<td>12VDC, 300mA</td>
<td>28-4775</td>
<td>FE-4</td>
<td>$14.95</td>
<td>$16.70</td>
</tr>
<tr>
<td>24VDC, 1A</td>
<td>28-4776</td>
<td>FE-7</td>
<td>24.95</td>
<td>20.55</td>
</tr>
<tr>
<td>12VDC, 2A</td>
<td>28-4777</td>
<td>FE-11</td>
<td>34.95</td>
<td>29.95</td>
</tr>
<tr>
<td>12VDC, 5A</td>
<td>28-4778</td>
<td>FE-13</td>
<td>49.95</td>
<td>44.50</td>
</tr>
</tbody>
</table>

Audio Pre-Amplifiers

- Use with Cebek or any amplifier with line level input
- Operates from a single 6-18VDC supply
- Gain adjusted via board-mounted potentiometer

<table>
<thead>
<tr>
<th>Description</th>
<th>Order #</th>
<th>Mfr. #</th>
<th>Reg.</th>
<th>Sale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microphone preamp, H-Z</td>
<td>28-7962</td>
<td>PM-1</td>
<td>$8.95</td>
<td>$6.90</td>
</tr>
<tr>
<td>Microphone preamp, Low-Z</td>
<td>28-4805</td>
<td>PM-2</td>
<td>8.95</td>
<td>6.50</td>
</tr>
<tr>
<td>Preamplifier for general use</td>
<td>28-7966</td>
<td>PM-4</td>
<td>8.95</td>
<td>7.00</td>
</tr>
<tr>
<td>Electric guitar preamp</td>
<td>28-4815</td>
<td>PM-7</td>
<td>8.95</td>
<td>6.49</td>
</tr>
<tr>
<td>Voice activation "Vox" relay</td>
<td>28-4825</td>
<td>PM-11</td>
<td>17.95</td>
<td>13.15</td>
</tr>
</tbody>
</table>

Audio Amplifiers

- Perfect for repair and equipment modification
- Operates from a single 12VDC supply
- Accepts line level input

<table>
<thead>
<tr>
<th>Description</th>
<th>Order #</th>
<th>Mfr. #</th>
<th>Reg.</th>
<th>Sale</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5W single channel</td>
<td>28-5165</td>
<td>E-13</td>
<td>$9.49</td>
<td>$5.60</td>
</tr>
<tr>
<td>0.5W single channel</td>
<td>28-4795</td>
<td>E-1</td>
<td>7.49</td>
<td>5.60</td>
</tr>
<tr>
<td>1W single channel</td>
<td>28-5170</td>
<td>E-1</td>
<td>14.95</td>
<td>11.25</td>
</tr>
<tr>
<td>5W single channel</td>
<td>28-4797</td>
<td>E-2</td>
<td>13.95</td>
<td>10.99</td>
</tr>
<tr>
<td>5W two channel</td>
<td>28-4800</td>
<td>ES-1</td>
<td>24.95</td>
<td>20.65</td>
</tr>
<tr>
<td>15W single channel</td>
<td>28-4797</td>
<td>E-4</td>
<td>19.95</td>
<td>17.20</td>
</tr>
<tr>
<td>15W two channel</td>
<td>28-4801</td>
<td>ES-1</td>
<td>39.99</td>
<td>35.50</td>
</tr>
</tbody>
</table>

Programmable LCD Displays

- Provides one or two line x 16 character display
- Fully programmable with easy menu programming
- Stores up to 14 alpha numeric messages
- EC-3 and EC-4 are backlit

<table>
<thead>
<tr>
<th>Description</th>
<th>Order #</th>
<th>Mfr. #</th>
<th>Reg.</th>
<th>Sale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single line</td>
<td>28-6135</td>
<td>EC-1</td>
<td>$99.95</td>
<td>$79.95</td>
</tr>
<tr>
<td>Two line</td>
<td>28-6140</td>
<td>EC-1</td>
<td>99.95</td>
<td>89.95</td>
</tr>
<tr>
<td>Two line</td>
<td>28-4766</td>
<td>EC-1</td>
<td>15.99</td>
<td>12.99</td>
</tr>
</tbody>
</table>

Timer Modules

- Operates from a single 12VDC supply
- Provides precise time delay for a variety of uses
- SPDT, SA relay output

<table>
<thead>
<tr>
<th>Description</th>
<th>Order #</th>
<th>Mfr. #</th>
<th>Reg.</th>
<th>Sale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single event 1-180 second</td>
<td>28-4735</td>
<td>I-1</td>
<td>$12.95</td>
<td>$12.45</td>
</tr>
<tr>
<td>Single event 2-45 minute</td>
<td>28-4736</td>
<td>I-2</td>
<td>12.95</td>
<td>12.45</td>
</tr>
<tr>
<td>Single event 30-240 minute</td>
<td>28-4737</td>
<td>I-3</td>
<td>18.49</td>
<td>13.85</td>
</tr>
<tr>
<td>Repeat cycle 0.3-60 second</td>
<td>28-4740</td>
<td>I-10</td>
<td>18.49</td>
<td>13.85</td>
</tr>
<tr>
<td>Repeat cycle 1-30 minute</td>
<td>28-4741</td>
<td>I-11</td>
<td>19.95</td>
<td>17.75</td>
</tr>
<tr>
<td>Repeat cycle 20-150 minutes</td>
<td>28-4742</td>
<td>I-12</td>
<td>18.95</td>
<td>15.85</td>
</tr>
</tbody>
</table>

Visit www.americanradiohistory.com to see our full line catalog at:

1-800-543-4330

www.mcmelectronics.com

MCM Electronics

A Premier Farnell Company

CIRCLE 160 ON FREE INFORMATION CARD
WELLER SOLDERING STATION - MODEL WLC 100
- Variable power control (5 to 40 watts)
- Replaceable heating element
- Quality lightweight pencil iron

LOWEST PRICE 20%IZE

<table>
<thead>
<tr>
<th>Weller Soldering</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model WLC 100</td>
<td>$36.95</td>
</tr>
</tbody>
</table>

INSTEK OSCILLOSCOPE
- MODEL GDS-820
- Dual Channel - 20MHz
- Includes: Probes

<table>
<thead>
<tr>
<th>Scope Probe 60 MHz</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switchable X1, X10</td>
<td>$299.00</td>
</tr>
</tbody>
</table>

DIGITAL MULTIMETER
- 32 Ranges - 3 1/2 Digit
- AC/DC Volts/Current, Res., Cap., Frequency

<table>
<thead>
<tr>
<th>Digital Multimeter</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model MY-64</td>
<td>$279.00</td>
</tr>
</tbody>
</table>

PREMIUM ELECTRONIC SUPPLIES
- INSTEK FUNCTION GEN.
- WITH INT/EXT FREQ. COUNTER
- 3 MHz, Digital Display

<table>
<thead>
<tr>
<th>INSTEK Function Gen.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODEL 8216</td>
<td>$199.00</td>
</tr>
</tbody>
</table>

ALLIGATOR LEADS
- SET OF 10

<table>
<thead>
<tr>
<th>Alligator Leads</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>50¢ ea.</td>
<td>$12.95</td>
</tr>
</tbody>
</table>

SOLDERING IRON
- 3-WIRE
- HIGH PERFORMANCE
- #060501

<table>
<thead>
<tr>
<th>Soldering Iron 3-Wire</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Performance</td>
<td>$25.25</td>
</tr>
</tbody>
</table>

CASE FAN
- For PS/2 Male, Female
- 120V, 208 / 230V, 400W

<table>
<thead>
<tr>
<th>Case Fan</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>120V, 208 / 230V, 400W</td>
<td>$12.00</td>
</tr>
</tbody>
</table>

Discover the Wider World of Electronics
- Includes:
 - One MiniView KVM switch
 - 2 Sets of Premium Grade
 - KVM Cables
 - One PS/2 to AT keyboard adapter
 - One PS/2 to Serial mouse adapter
 - One User Guide

Features
- Keyboard & mouse emulation for error
- Fixed PC housing
- No external power required
- Works virtually with any operating system
- Fully modular plugable

<table>
<thead>
<tr>
<th>Electrode CPU Switch</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrode CPU Switch</td>
<td>$99.00</td>
</tr>
</tbody>
</table>

EXIRENS, male to female
- CC-VGA-4C 6FT
- CC-VGA-5C 10FT
- CC-VGA-25CX 25FT
- CC-VGA-50CX 50FT
- CC-VGA-100CX 100FT

Coaxial Cables
- CC-VGA-3C 6FT
- CC-VGA-9C 10FT
- CC-VGA-11C 25FT
- CC-VGA50MM 50FT
- CC-VGA100CX 100FT

SWITCH BOX, male to male
- CC-VGA-4C 6FT
- CC-VGA-5C 10FT
- CC-VGA-25CX 25FT
- CC-VGA-50CX 50FT
- CC-VGA-100CX 100FT

SVGA COAXIAL CABLES
- CC-VGA-3C 6FT
- CC-VGA-9C 10FT
- CC-VGA-11C 25FT
- CC-VGA50MM 50FT
- CC-VGA100CX 100FT

CIRCLE 205 ON FREE INFORMATION CARD
New MILLENNIUM SALE on Our Best Soldering & Desoldering Tools

DEN-ON SC7000Z Desoldering Tool Guaranteed to be the BEST Transporatable Desoldering Tool you will ever own. Base Station Performance in a Portable Tool. Very High and Quick Vacuum. Quick cleaning filter.

10% off of our Nationally Advertised Low Price of $395 For a Limited Time

$355.50

The Best Hot Air Tool available is the HG3002LCD by Steinel. Temperature controlled from 120°F to 1100°F. Variable speed motor, Hot and Cool switch. LCD Readout for Accurate Nozzle Temperature control. Regular price $182.00

Now **$163.80**

Very REDUCED Price on the EDSYN ZD500DX. Save $200.00 on one of the Best Industrial Grade Desoldering Stations available. Completely made in the USA by skilled USA workers. 18 Month Warranty. Very Inexpensive to Operate.

Was $749.95

Now **$549.95**

Capacitor Wizard ESR Meter
Will be on sale for a Limited Time Only
Advertised elsewhere
In this magazine for $179.95
Must Mention this Ad
Now **$159.95**

Inspect your SMD work with the Stereo Zoom Microscope from Scienscope. Add different eyepieces and auxiliary lens to get various Magnifications, field of views, and large working distances. Several microscopes listed on our Web site as low as $495.

GL-CO-PK4
Regular Price $1364.00
Millennium Price **$1245.60**

EDSYN’s 951SX Industrial Grade Temperature Controlled Soldering Station is by far their most popular Soldering Station. Sold nationally for as much as $164.95.

Our Special Price **$99.00**

DEN-ON SS-8200 Temperature Controlled Soldering Pencil is a hit with everybody who ventures to try it. It is small, lightweight, easy to use, temperature controlled, and has a burn proof cord and long lasting tips. It also has a 200W Ceramic Element that keeps it at a constant temperature.

Special Millennium Price **$95.00**

EDSYN’s ZD906 includes a Desoldering Tool, a Soldering Pencil and a Hot Air Pencil. Shop air is required. Very small footprint required on your bench. Check out the Specs on our Web Site. 18 Month Warranty

Save 10% from our already low price of $1169.00
New Millennium Price **$1061.10**

New Product from EDSYN 971HA SMT Hot Air Station
Precise adjustment for heat and air flow. Air automatically shuts off when pencil is placed in holder. Excellent for SMD work up to 80 pins. Easily converts to Powerful Solder Station w/large selection of tips.

Our Regular Price $599.00
Now **$539.10**

Scienscope Video Inspection System
Ideal for inspection, training, and/or documentation. Magnification to 540x & working distances to 13 inches. Specs are on web site. Mention this ad for 10% OFF regular Price of $2520.00

CC-97-VS2

$4250.00

PDR/Xytronic 710 SolderLight
IR Component Heating w/IR Hand tool
IR PCB Preheating/W/Botom Heater
All types SMD’s and BGA’s
See Web Site for Specs.
Millennium Madness

$2395.00

Visit - M/C - Discover - A/E - COD - Terms to Qualifying Companies
30 Day Money Back Total Satisfaction Guarantee

www.howardelectronics.com

6222 N. Oliver Kechi, KS 67067
Toll Free U.S. and Canada 1-800-394-1984

www.howardelectronics.com
sales@howardelectronics.com
International (316) 744-1993
or Fax (316) 744-1994

CIRCLE 237 ON FREE INFORMATION CARD
A Trained Computer Repairman Charges $100 An Hour and More... You Can Get That Training!

Foley-Belsaw's Totally New Computer Repair Course gives you the skills to start earning top pay FAST!!!!!!

No Experience Necessary!
Get "hands-on" training in the exciting field of computer repair.

Fully illustrated, easy to understand course gives you everything you need to succeed.

The key to your success lies in providing a service that is in great demand. Even if you have no experience, you can become an expert in a few short months. Foley-Belsaw's computer repair course is broken into small, easy to manage lessons. Each lesson is designed with your success in mind. After you complete the course, you'll have the expert knowledge to earn up to $100 an hour, or more!

Latest technologies and insider knowledge available only to Foley-Belsaw students!

Get the "hands-on" experience you need in Computer Repair. Foley-Belsaw's CD-Rom Learning Assistant guides you through each lesson and is always right at your fingertips. The Test Preparation Tutor makes preparing for your A+ Certification as easy as turning on your computer. Foley-Belsaw's inside knowledge gives you the practical experience to become a computer repair professional. Get started today!

World leader in training since 1926, provides at-home, "hands-on" training in high-demand fields.

You get these Foley-Belsaw Exclusives! At no extra cost!
- A+ Certification Test Preparation Tutor
- Foley-Belsaw CD-Rom Learning Assistant
- Business Start-up Resource

SPECIAL BONUS
Inquire now and your course will come with a complete video archive library of early printer and computer repair techniques...at no additional cost.

Train At Home!

There's not a more complete or affordable PC Repair course that will have you trained and job ready in such a short time.

Take the first step to top pay. Call for a FREE Opportunity Kit today! 1-800-487-2100 Ext #A0092

or complete this coupon and mail to Foley-Belsaw Institute, 6301 Equitable Road, Kansas City, MO 64120-1395

Yes! Send me one of the following Free Opportunity Kits:
- Computer Repair, Maintenance, Upgrade, 321 NEW!
- Personal Computer Specialist, 325
- Professional Computer Programming, 323
- Professional Saw and Tool Sharpening, 332
- VCR/DVD Service and Repair, 320 NEW!
- Small Engine Service and Repair, 306
- TV/Satellite Dish Service and Repair, 322
- Professional Gunsmithing, 340
- Home Inspection, 342 NEW!
- Networking Specialist, 324
- Locksmithing, 307
- Woodworking, 319
- Upholstery, 308
- HVAC/Refrigeration, 343
- Electrician, 326

Satisfaction Guaranteed
Foley-Belsaw gives you a Free 30-Day Trial. More info please call 1-800-487-2100 Ext A0092

Name
Street
City State Zip
Phone ()
June 2000, Populons

CIRCLE 318 ON FREE INFORMATION CARD

www.americanradiohistory.com
The Velleman PERSONAL SCOPE™ is a portable fully-functional oscilloscope. At the cost of a good multimeter it gives you the best possible value for the money. The PERSONAL SCOPE™ provides you with the high sensitivity (down to 5mV/div) often missing in higher or similarly priced units. Together with the other scope functions it makes this the ideal tool for students, hobbyists and professionals.

SPECIFICATIONS:
- Maximum sample rate: 5MHz
- Input amplifier bandwidth: 1MHz (-3dB at 1V/div setting) 1Mohm/20pF (standard probe)
- Vertical resolution: 8 bit (6 bit on LCD)
- LCD Graphics: 64 x 128 pixels
- dBm measurements: From -73dBm to +40dB (up to 60dB with X10 probe) ± 0.5dB
- True rms AC measurement: 0.1mV to 80V (400Vrms with X10 probe) 2.5% accuracy
- Time base: 20s to 2us / div in 22 steps
- Input sensitivity range: 5mV to 20mV/div in 12 steps (up to 200V/div with X10 probe)
- Supply voltage: 9VDC / min 300mA adapter
- Batteries (in option): Alkaline type AA (5 pcs required)
- Battery life: Up to 20 hours with alkaline batteries
- Safety: Meets IEC1010-1 600V CATII, pollution degree 1
- Dimensions: 105 x 220 x 35mm (4.1" x 8.7" x 1.3"
- Weight: 395g (14oz.) (excl. batteries)

OPTIONS:
- Unshielded measurement probe x 1 / 7 x PROBE405
- Adapter for 110VAC PROBEUSA

$199.95
Probe not included

Questions? Contact us for a list of US distributors or to get your FREE catalogue
CIRCLE 275 ON FREE INFORMATION CARD
EARN
MORE
MONEY!

Be an FCC LICENSED
ELECTRONIC TECHNICIAN!

EARN up to $60 an hour
and more!

Learn at home in spare time. No previous experience needed!

No costly school. No commuting to class. The Original Home-Study course prepares you for the FCC Commercial Radiotelephone License. This valuable license is your professional ticket to thousands of exciting jobs in Communications, Radar, Radio-TV, Microwave, Maritime, Avionics and more even start your own business! You don't need a college degree to qualify, but you do need an FCC License.

No Need to Quit Your Job or Go To School
This proven course is easy, fast and low cost! GUARANTEED PASS—You get your FCC License or money refunded. Send for FREE facts now.

Call 1-800-932-4268 Ext. 210
Fax 1-415-332-1901
Email: fcc@commandproductions.com
Visit our Website: www.LicenseTraining.com

COMMAND PRODUCTIONS
FCC LICENSE TRAINING - Dept. 210
P.O. Box 2824 San Francisco, CA 94126-2824

Please rush FREE details immediately!

Name
Address
City
State Zip

Mail This Coupon Today!

CIRCLE 231 ON FREE INFORMATION CARD

No Need to Quit Your Job or Go To School

Electronic CAD Software

 Only $99.95 each (msrp)

- spice simulation-standard
- vext Gerber View
- WinDraft Schematics-P350
- WinBoard PCB Layout-P350

More Features
More Power
Less Money

I'vex spice is available now!
Find a store near you at the NTE website, product selection "CAD software"

www.nteinc.com
800-631-1250
Call Today

KENWOOD
Analog Oscilloscopes

CS-4125/4135 Features:
• High Withstand Voltage to 400V
• Wide bandwidth & fast sweep
• VERT mode / FIX triggering
• One touch X-Y switching
• Relay attenuator

CS-5355/75 & CS-5370
Features:
• 2% accuracy
• Delay sweep for expanded waveforms
• Reliable relay attenuator
• 3 signals synchronized on V mode

800.638.2020
www.prodintl.com

PRINT

Function Generators
Oscilloscopes
Signal Generators

www.americanradiohistory.com

June 2000, Poptronics

93

www.americanradiohistory.com
PCB LAYOUT
Software For Windows - FREE

1. Download our board layout software
2. Design your 2 sided plated-through PCB
3. Send us your layout over the Internet
4. In 2-3 business days, UPS delivers your boards, often under $100

www.expresspcb.com

SONY, ROBOTIC, COLOR CAMERA.
Over 450 lines, 8X zoom, PAL & Y/C OUT, WINDOWS 95/98 Control Software.
NOTE: This is the PAL (European version)
Serial Control of Pan, Tilt, Zoom, Auto Iris and Auto Focus as well!

Like having your own R202 intended for use in fortune 500 board rooms. The video performance superior to almost anything we have seen. Camera and lens is an integral assembly Excellent Condition. I/O is on an 8 pin mini-DIN & Std. S-Video jack. Size: 8"x6"x2.5" Serial port ICM 21 software is provided. Std. rs232 serial cable not supplied. The unit does self test on power up and the video is active. Reg price over $4K

VERY Limited QTY, SONYPAL....$249ea.

NEW, "COLOR STEALTH CAM":
MICRO SIZE, & AUDIO!
That's right! COLOR in the same size package too! Sleek aluminum housing fits like a glove! Removable mtg. bracket & d 1.3MM cable, with BNC vid., RCA audio, linearial mic & DC pwr. jack. for no sweat hook up. Why fool around with an open P.C. board? Now you can have the "COLOR STEALTH CAM".

-1/3" x 350 Lines
- Auto Shutter
- 270K pixels
- Focus 10mm to Inf.
- 1-ounce!
-GM-4000S-STD/audio, NOW...$389ea.

CIRCLE 246 ON FREE INFORMATION CARD
www.web-tronics.com

High Performance Auto Range DMM

- Date, Time & Temperature
- Digital I/V/A, Continuity, Diode
- Auto Rangeing: for any precision range settings
- Range, Continuity & Diode: for manual adjustment of your test range
- 3.3 DIG LCD Display, Ready up to 3460 easy to read display
- Functions: Easy to use, set to measure function or type of test on/off
- Jack Plugs: Safety with design in different functions for different devices
- Display, Continuity Check Push-Button: for toggling between diode, continuity and ohm
- Low Battery Indicator: Advises you when time to charge battery
- Extra Long 46" Test Leads: Helps you get to hard to reach places
- Screw-On Alligator Clips: Connect one or both probe tips to alligator clips
- Test-Protect Circuitry
- Built-In Stand: Make test and operation easier
- Shock Absorber: Built-in rubber padded test leads, internal soft rubber padding and hanging helps protect the DMM from damage when misusing

2GHz RF Field Strength Analyzer

- Frequency Range: 100KHz to 2.00GHz
- Narrow Band: 1MHz Wide Band: 1Mill HF/ MHz Wide Band
- Digital Readout: 192x92x192
- TTL Level: TTL
- PLT Testing System for Partially: Frequency Measurement and Timing
- LED Backlit Display: 192x192x192

#3201

www.web-tronics.com

Removable Hard Drive Rack

For IDE/Ultra DMA Hard Drives

- For short of space
- Easy to use with any 1x IDE hard drive up to 3.5" high, it includes an electronic lock.
- Made of ABS 7075 frangible plastic.
- One product that permits sensitive hard disk drives to take your unit to a home or office or to set up on your own, with a hard disk drive that you playfully move from one time (you’re PC Drive)-model possible to keep from C1: IDE 590E series and IDE 590S series, which are incompatible within the same interface design (IDE or SCSI). Other Models are Available. See www.web-tronics.com under “Hand Tools” for additional documentation for products and prices.

RM-10-IDE

www.web-tronics.com

Removable Hard Drive Rack with Auto Door and Cooling Fan

- Auto Door on the outer frame
- Auto material of outer frame: high efficiency cooling fan
- Worldwide patent pulling function handle
- CE: Approved
- Cooling fan burlap cover
- Fan: Diameter
- For "1" high 3.5" HDD
- Can be compatible with our #R10-600 model
- Compatible with our RM-10-IDE model

Mini CCDs (B/W & Color)

Sensational New Design for Small Observation Cameras. Smaller and Better!

- Ultra Miniature Design
- Black & White Versions Only 25mm x 25mm
- Color Versions Only 32mm x 32mm
- Available in Standard Lens or Pinhole Lens
- All Include Pre-Wired Cable Harness for Video & Power
- 12 Volt Regulated Power Supplied (120mA typical power consumption)
- 0.1 \% LUX Rating B/W, 1.1 \% LUX (color)
- CCD Area Image Sensor for Long Camera Life
- Back Light Compensation
- Built-In Electronic Auto Iris Lens

VCM-21A 44mmx38.5mmx28mm, with 6 infra-red LEDs, 12V $59.00
VCM-22A 42mmx42mmx25mm, standard lens, 12V $79.00, 12V, reverse mirror image feature $89.00

Bullet CCD Cameras B/W & Color

- Smart Rugged Metal Housing
- Extremely Low Power Consumption
- 500TV Lines
- Built-In Electronic Auto Iris for Auto Light Compensation
- VM1030PA-B 30mmx30mmx25mm, Pinhole lens, 12V $59.00
VM1030A 30mmx30mmx25mm, Standard lens, 12V $79.00
VM1042A 42mmx42mmx25mm, Standard lens, 12V with back light compensation $99.00
VMC21B 44mmx38.5mmx28mm, with 6 infra-red LEDs, 12V $49.00
VMC22A 42mmx42mmx25mm, standard lens, 12V, 12V, reverse mirror image feature $59.00

COLOR CCD Mini Board Cameras

- Low Power Consumption
- 1 Lux illumination
- Internal Synchronization
- 12VDC
- 400 TV Lines
- Built-In Electronic Auto Iris for Auto Light Compensation
- VM3010PA 33mmx33mmx18mm, Pinhole lens, 12V $29.00
VM3011-A 40mmx40mmx24mm, Standard lens, single board $19.00
VM3010-A 33mmx33mmx18mm, standard lens $99.00

2.4 GHz A/V Sender/Receiver System

- Wireless FM transmission of video (color or B/W) and sound (stereo or mono) up to 150 meters (line of sight)
- Directional Antenna Design optimizes performance
- Use with remote cameras or any input (satellite TV, cable etc.) where wireless transmission is necessary
- View on a TV set.
- Performance through walls varies depending on construction methods etc.
- Each set includes a plug-in power supply for the transmitter and receiver.
- 7 segment LED displays channel (1-4) on receiver & transmitter.

CSHTHR2400 Includes One Transmitter & One Receiver with Power Supplies $319.00
CSHTR2400X Extra Transmitter/Receiver will Monitor up to 4 Transmitters $89.00

See more detailed specifications at www.web-tronics.com in the CDDA camera section.

CIRCUIT SPECIALISTS, INC. 220 S. Country Club Dr., Mesa, AZ 85210 800-528-1417/480-464-2485/FAX: 480-464-5824

CIRCLE 233 ON FREE INFORMATION CARD

June 2000, Pedophils
PIC's Books

LEARN ABOUT PIC MICROCONTROLLERS

See Table Of Contents: http://www.sq-1.com
Secure Online Ordering is Available
PIC is a trademark of Microchip Technology Inc.

SQUARE 1 ELECTRONICS
Voice (707) 279-8881 Fax (707) 279-8883
http://www.sq-1.com

CONTROL RELAYS • LIGHTS • MOTORS

MEASURE TEMPERATURE • PRESSURE • LIGHT LEVELS • HUMIDITY

INPUT SWITCH/POSITIONS • THERMOSTATS • LIQUID LEVELS

MODEL 30 $79
- Pulse into PIC BUS
- 34 Digital I/O
- 8 Channels
- 8 Bit A/D
- Up to 16 Smp/sec

MODEL 45 $189
- RS-232 Interface
- 8 Digital I/O
- 16 Analog Inputs
- 2 Analog Outputs
- 2 Counter-34 Bit

MODEL 100 $279
- 12 Bit 100 KHz A/D
- 4 Analog Outputs
- 3 Timer Coundts
- 34 Digital I/O

MODEL 150-02 $179
- 25-232 Interface
- TRMA, 20 Amps
- 12 Bit A/D
- Opto-isolated
- Complete DMH

MODEL 10 $109
- RS-232 Interface
- 25 Lines Digital I/O
- 4 Analog Inputs
- Pwm output

MODEL 70 $239
- 96-232 Interface
- 16 Bit A/D
- 3.5 Digit
- Up to 60 Smp/sec

Prairie Digital, Inc.
PHONE 608-643-8599 • FAX 608-643-6754
920 S. FOURTEENTH STREET, PRAIRIE DU SAC, WISCONSIN 53578

CIRCLE 219 ON FREE INFORMATION CARD

SERIAL LCDs

Serial LCDs work great with BASIC Stamps® and other microcontrollers. One-wire interface • simple serial protocol • low cost • high quality • in stock

BPI-216N
- 2x16 text LCD
- 2400/9600 bps
- $45 (non-backlit)

SGX-120L
- Mini graphics LCD
- 2400/9600 bps
- just $99

Many other models available—see www.seetron.com!

Scott Edwards Electronics, Inc.
www.seetron.com • 520-459-4802

PIC Microcontrollers

MOTOROLA MICROS' (68HC705/68HC71)
ATMEL MICROS' (2708, 2716-28C080), 40
MICROCONTROLLERS (2716, 28C010), NVRAMS (27C256/27C512)
EEPROMS (2816, 28C010), FAX PROMS (2708, 2716, 28C010), PROMS (27C256, 27C512)
BIPOLAR PHINS (755-IC, 755-ICB, 955, 5155, 87C051, 87C520)
ATMEL MICROCHIPS (8401 PIN 99C051, 99C051) (80C051)
PIC MICROCHIPS (80C186, 80C187, 80C3187, 80C3187)
Motorola MICROCHIPS (68F05/6805, 68HC05, 68HC05, 68HC20)

$289

ANDROMEDA RESEARCH, P.O. BOX 222, MILLFORD, OH 45150
(513) 831-9708 FAX (513) 831-7562 website: www.arlabs.com

LASERS

AT GREAT PRICES

Complete Ruby Laser Assembly less than $300
He-Ne Lasers, complete, for less than $50
American 60X Argon Lasers from $95
Laser Diode Modules from under $40
X-Y Scanners from $79

FREE CATALOG
- Helium-Neon
- Ruby Lasers
- Argon Lasers
- X-Y Scanners
- Diode Lasers
- Lightshow Equipment
- Pointers
- Holography
- Books
- Optics

Email: mlp@nlenx.com http://www.midwest-laser.com

Midwest Laser Products
P.O. Box 262, Franklin, IL 62623
(618) 664-0085 FAX: (618) 664-0767

30 Day Satisfaction Guarantee
7% SALES TAX / MT Accepted

www.americanradiohistory.com
www.islandlogix.com
1-888-847-0080 or 847-688-9621

Prices start at $99

Full Featured Schematic Capture
Device Symbol + Model Editor
Create Your Own Parts + Libraries
Device librarian
Auto Save
Searchable Device + Model Browser
Over 7000 devices/models
BSIM SO Support
BSIM3 Deep SubMicron
BSIM4 (NEW!!!)
Named Off Page Connectors
Interface with PCB Layout programs
Virtual Instruments
64 channel Real-Time Oscilloscope
Multimeter + Function Generator
Named Busses and wires
16 Different Analysis
AC, DC, TR, MC/OC, Pole/Zero
OP, Transfer Function, Noise, THD
Fourier, Power Plots, Impedance plots
Distortion + Bode Plotter
Nested Parameter Sweep
Temperature Sweep
Pole-Zero Source Converter
Logic analyzer with break points
Model Import Wizard
Import and Simulate External Netlist
Device Parts Search/Browser
Bill Of Materials
Multiple WorkSpaces
Signal Generator Preview
Automatic Graphics Tools
Graphical Annotation on Graphs
Signal Post Processor
PCB Netlist Generation

Analog, Digital Circuit Design and Simulation

High Performance web savvy 32-bit mixed signal

Signal Cross Probing
Edit PCB FootPrint Fields
Combinational Breakpoints
Advanced Sequential Breakpoints
Voltage threshold breakpoints
Edge and level sensitive breakpoints
Customizable Tool Bars
AutoZooming
Expandable Symbol Library
Expandable Model Library
Mathematical Interpreter + Scripting
Power meter with complex V and I
Watt Meter
Digital Word Pattern generator
Import models from different manufacturers
Stackable Waveform Display Output
Waveform Tracking Cursors
Automatic measurements using cursors

Also available:
* Basic and Advanced PCB Layout loaded with features!!!
* Basic AutoRouter
* Advanced Spectra Autorouter from Cadence Design Systems
 * Student and University Discounts
* FREE LIFETIME TECH SUPPORT
* IMPROVED CUSTOMER SERVICE
* IMPROVED FEATURES!!!!
* DEALERS WANTED!!!!!

Voltages + Currents on Schematic
Auto Save
Docking Windows
Hierarchical Project Browser

New and Pre-Owned Test Equipment

New Equipment Specials

SIMCHECK IIse PLUS – Module Tester
* Tests SIMMs/168 pin DIMMs
* Stand alone/portable

AVCOM PSA-37D – Spectrum Analyzer
Satellite Downlink – Installation – Maintenance & Service
* Band 1: 10 – 1750 MHz
* Band 2: 1.0 – 4.2 GHz
* Carrying Case Included

Instek GOS-6103 – Analog Oscilloscope
* 100 MHz Bandwidth
* 2 Channel, High Sensitivity
* Trigger Signal Output
* Cursor Readout

Leader LF 941 – CATV Signal Level Meter
* TV/CATV Coverage from 46 – 870 MHz
* Video/Audio Carrier Measurements

Finke 87 IV – Digital Multimeter
* Basic DC Accuracy of 0.025% at 50,000 Count
* True-RMS AC, AC+DC, dBm, & dBV

Pre-Owned Oscilloscope Specials

<table>
<thead>
<tr>
<th>Model</th>
<th>Type</th>
<th>Frequency</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tektronix 465</td>
<td>100 MHz</td>
<td>$599.00</td>
<td></td>
</tr>
<tr>
<td>Tektronix 465B</td>
<td>100 MHz</td>
<td>$729.00</td>
<td></td>
</tr>
<tr>
<td>Tektronix 475</td>
<td>200 MHz</td>
<td>$829.00</td>
<td></td>
</tr>
<tr>
<td>Tektronix 475A</td>
<td>250 MHz</td>
<td>$999.00</td>
<td></td>
</tr>
</tbody>
</table>

- Professionally Refurbished
- Aligned & Calibrated to Original Specifications
- The Industry Standard of Oscilloscopes
- 1 Year Warranty - The Longest Available!!!
- See Website for Complete Specifications

See us on the Web!
www.testequipmentdepot.com

Toll Free 1-800-996-3837

Test Equipment Depot
A FORTRONIC CORPORATION COMPANY
99 Washington St. Melrose, MA 02176
(781) 665-1400 • FAX (781) 665-0780
e-mail: sales@testequipmentdepot.com
CABLE SECRETS!!!

Build your OWN cable box "test" devices!

Why pay $100.00 or more for a "test" device that someone else made? Make your own! Includes complete source code and plans for the most commonly used cable boxes. Unlock all the channels on your box! Or start your own lucrative business! Complete source code $79.95 Code for individual boxes $29.95

DSS SECRETS — Vol. 2

Step-by-step instructions on programming your own DSS access card. Unlock all channels on your own card! This is the most current information on the market! Includes software, plans, and hardware sources. Book & CD-ROM. DSS Secrets Vol. 2 $49.95

VISA • MasterCard • American Express

To order, call Worldwyde @ 1-800-773-6698 21365 Randall Street • Farmington Hills, MI 48336 Visit us on the web at www.worldwyde.com

Press-n-Peel Transfer Film

PC Boards in Minutes

Visit Our E-Store On-Line!

GLOBAL TEC DISTRIBUTORS

The Ultimate Electronic Savings Store

Call Today!—1-(800)-582-5116

PIC12C508 1.30 1.20 1.15
PIC16C54 1.40 1.35 1.30
PIC16C56 1.65 1.50 1.45
PIC16C521 2.00 1.95 1.85
PIC16C622 2.25 2.15 1.95
68HC11C8A 3.50 3.50 4.85
ATT99F512 4.00 3.50 3.15
8051 1.50 1.30 1.15
Gal16V8b 1.00 1.00 0.75
4mbh Res. 0.45 0.40 0.32
20mbh Crystal .50 .45 .40
CATV Remote 4.25 3.75 3.25
Universal Remote Controls 4.50

Order@globaltecdistributors.com

BEST MICROPROCESSOR STOCK DISTRIBUTOR WORLD WIDE.

OWN A MACHINE SHOP?

Do it yourself!

No more waiting to have parts or repairs done.

- Easy to use—Free training.
- You'll be doing quality work right away.
- Affordable—Six models starting at $995.
- Versatile—Work metal—and wood or plastic.
- CNC adaptable

Enjoy the freedom & cost savings of owning a benchtop CNC machine!

CALL TODAY! 1-800-345-6342

Guaranteed to pay its own way in one year!

Visit us at www.smithy.com

LASER MODULE

Auto Power Control
Compact Size

$29 (US)

Visible Laser Modules(635-670 nm)
TTL Modulated Laser Modules
Line Generator Laser Modules
Infrared Laser Modules(780-830 nm)

LASER POINTER

Focus Adjustable
Elegant Design
Solid Metal Body

$19.95 (US)

Pen-Style Laser Pointer (1500 ft visibility)
Key-Chain Laser Pointer (1500 ft visibility)
Available in silver and black finish.

World Star Tech.
Tel: (410) 204-8628 Fax: (410) 780-7169
http://www.worldstartech.com e-mail: info@worldstartech.com

PIC PROJECTS

Book & CD-ROM

Many PIC Projects for Beginners & Experts! Includes Software, Documentation, and PCB Layout

- LCDs
- X10 - Home Automation
- Keypads
- Serial Port Interface
- On-Screen Displays
- Robotics
- Data Logging
- Serial-Parallel
- And Many More!

PIC Programmer

Programs all PIC16C5x/6x/7x/8hx/9x, PIC KFxx, and PIC16C derivatives.
Optional Zip adapters for SOIC & PLCC
Includes all necessary software.
Only $249

CONTROL IT

Intec Automation Inc.
www.microcommander.com

Poptrons, June 2000

www.americanradiohistory.com
The Hack & Crack Bible on CD-ROM
Includes all Software, Documentation, Plans, and PCB Layouts!
Unlock the secrets of:
- DBS & Smart Cards
- Programming & Schematics
- Cable Test Devices
- Sony Playstation
- Mod Chip/CD Backups/Emulation
- Backup Sega & SNES Consol/Con, Cartridges
- Sega & SNES Emulation on your PC or Mac
- Wiring - where to find them on the Internet
- Cellular Hack/Phreak/Mod
- mod. hack. approv.?
- PIC & Mac Compatible (CD-ROM)
- except
V199 + MasterCard + Signature Required
To order, call Worldwide @ 1-800-773-6698
21365 Randall Street • Farmington Hills, MI 48336
Visit us on the web at www.worldwidey.com/hack

35¢ Switches
Premium quality. Rated 6A/125V. All hardware included. 1/4" panel hole.
SPDT or DPDT, on-on or on-off-on.
1000 pcs minimum. VISA or Master Card. Sorry, no COD. Order Toll-free.
Gateway Products Corporation
Email: GtvwPrds@aol.com
800-830-9195

PIC Programmer Kits
Super Value! $19.95
- Program at 8, 18, 28 & 40 pin
- MC in the
- 12C56 (12C561), 1400 and 16CX (16F84) series
- All components, PCB and instructions included.
- Parallel port of PIC is used with straight through (25 pin) cable (not supplied).
- Kit uses shareware which is downloaded from the web and registered for $20.00 (at) ZIP socket recommended (available for $11.95).
- For more info and Attmel programmers visit www.electronics123.com

Video Camera module
CMOS Camera Module, Black & White, Size: 0.33" / 0.35" x 0.59 H.
- Low cost, low power and very small
- Lens: F4.9, F2.8 FOV 56 deg x 42 deg EIA 320x240V.
- Scan: 2.1 Interface. 0.5" 4P. Package: 5 pins. Pin 3 is 1V p-p composite video (75 ohm) to standard video monitor. Power Supply, 5V +/- 0.5V. Current 10mA. Needs regulated power supply. (S&D to Canada is $7.95.)

www.jm-micro.com
PIC In-Circuit Emulator
for the PIC16Cx series
from $295
PIC Programmer $155
80C552 (8051) Development Training System $235
68HC11 SBC $120
ROMY-16 EPROM Emulator from $195
Universal Microprocessor Simulator/Debugger (including Assembler, and Disassembler)
$100 each CPU
J&M Microtek, Inc.
83 Seaman Rd, W Orange, NJ 07052
Tel:(973)325-1892 Fax:(973)376-4567

COVERT CATALOG2000
BRAND NEW!
The Latest, Up-to-date, Hands-on Supplier and Source Guide for:
- Electronic surveillance equipment
- Covert video cameras and transmitters
- Counter measures gear
- Entry supplies
- Electronic tracking systems
- Computer surveillance and remote viewing
Equipment, exact addresses and ordering info from 15 countries!! 220 pages — $39.95
II 3555 S El Camino Real, San Mateo, CA 94403 Phone 650-513-5549 • fax 650-728-0525 or www.intelligence.to (no "dot com")

www.americansradiorhisoty.com
POWER HOUSE 650NET
HEAVY DUTY BACK-UP
POWER SUPPLY
Brand new latest and most powerful uninterruptible power supply features: save and restore software, phone modem protection and full network backup protection. These heavy duty units can provide up to an impressive 40 minutes of run time for computer and monitor. Rated 650V, this is the unit you need for serious network workstation & home office use. These are factory fresh, brand new retail boxed units by SL Waber and are complete with full factory warranties. These retail for up to $300.00 however if you hurry you can get yours for our blowout price! Weighs 21 lbs. Size 15/1 (L) x 6/1, (H) x 4/1/4 (W) G1817 $149.00

CALL, E-MAIL, WRITE OR FAX US FOR YOUR FREE COPY OF OUR NEW 104 PAGE CATALOG CONTAINING ALMOST 5,000 PRODUCTS!

UPSTART
UNINTERRUPTIBLE POWER SUPPLY
High quality UPS by Waber features up to 10 minutes of backup for your computer when the power fails plus includes save and restore software. This model features a slim line design to allow you to place your monitor or computer right on top of unit. Exclusive Electronic Bookmark Software saves any job... In a power outage, automatically saves work & shuts down.... Then reboots and restores data when power returns... Unattended. Also stops surges, and spikes from damaging computers and peripherals. This unit even has modem protection. These are factory new perfect units with complete warranties. High quality retail boxed unit with software, warranty and simple to understand instructions. Weighs 16 lbs. Size 13 (L) x 2/1, (H) x 13/1, (W). Buy yours today at a fraction of the retail price G1816 $69.95

HANDY WALL POWER SUPPLY +5VDC, +12VDC, -12VDC
Handy power supply plugs into any standard 120VAC wall outlet and provides the following: +5VDC @ 8AMP, +12VDC @ 1AMP, and -12VDC @ 1AMP. Brand new. Has built in 3 prong outlet plug on wall unit and flexible cable with 5 pin Din plug on other end. E1004 $4.95 Sale! $1.95 ea.

“AS IS” INVENTORY MANAGEMENT
HANDHELD BARCODE WAND AND
COMPUTER
These are handheld data collection computers with barcode wand. They were used by people to take inventory of products in stores. The data was scanned in from the barcode wand and dty, etc was entered. After collecting the data, a built in modem with a “plug in” acoustic speaker was used with standard phones to download the data to the mainframe computer. These were made by Telxon and are well used. We are selling them "as is" only and we don't have any info or data on them. We do know that each unit has a barcode wand, and a removable acoustic cup. The units are made to operate from 4 AA batteries but the batteries and battery holder are probably missing. We make no claim as to the condition of these as the cases are scratched and slightly dinged up. Sorry no returns. E1005 $9.95 Sale! $2.99 ea.

THE ELECTRONIC GOLDMINE: PO BOX 5408 SCOTTSDALE AZ 85261
TOLL FREE ORDER LINE: 800-445-0697 • FAX: (480) 661-8259 • ALL OTHER CALLS: (480) 451-7454
CIRCLE 312 ON FREE INFORMATION CARD

SPY MIKE
This is the tinyst electret condenser microphone we have ever seen. It is only 6 mm in diameter x 3 mm thick. Has dust screen and 2 tiny pins for PC board mounting. Operates on 15V up to 3VDC. G1814 2/$1.00 • 100/$45.00

HIGH QUALITY IBM JOYSTICK

SURGE PROTECTED 6 OUTLET MULTIPLE OUTLET STRIP
This high quality strip has surge suppressor capability built in. Great for computers or other sensitive electronic products. Rated 15Amp 125VAC and has a clamping response time of 1 nanosecond. Brand new retail carded with 2 year warranty. Computer grey color. G1823 $7.95

http://www.goldmine-elec.com
NOTE: All items subject to prior sale. All prices expire 5-31-00
For Phone Orders Call: 800-445-0697 or Fax Your Orders to: (480) 661-8259
For a Free Catalog Call: 800-445-0697
E-mail: goldmine-elec@goldmine-elec.com
Foreign catalog request: send $5.00
Minimum Order: $10 plus min. $5 Shipping and Handling. We accept MasterCard, Visa and personal checks, however, we cannot accept personal checks on orders outside the U.S. Minimum Foreign Order Amount: $50 plus a minimum $10 S&H

TOLL FREE ORDER LINE: 800-445-0697 • FAX: (480) 661-8259 • ALL OTHER CALLS: (480) 451-7454
CIRCLE 312 ON FREE INFORMATION CARD
Power Tools for Electronic Design Automation

More Features
More Power
Less Money

Ivex Spice is the latest addition in affordable EDA solutions. Use Ivex Spice with WinDraft Schematics for fast, professional results with unsurpassed ease.

Ivex 650 pin versions have no feature limitations like other low cost products on the market. Fast expert technical support, free 24 hour Knowledge Base on the web, and professional full-featured tools have made Ivex the preferred choice for designers.

For larger designs use these Ivex Products:

WinDraft unlimited: $495
WinBoard unlimited: $495
Spectra autorouter SP2-1000: $650
Ivex View unlimited $ 99

Visit the Ivex web site for complete product information and download full function demos.

www.ivex.com
Tel: (503) 531-3555 e-mail: sales@ivex.com

WinDraft®
Schematics $250
650 pin version

Full Featured 32 bit application
Powerful hierarchical designs
Easy single click editing
Graphical part editor
Windows functionality
Advanced Bill of Materials
User Definable Electrical
Rules Check
Common netlist formats:
(Accel, Protel, Pads,
wirelist, Spice 3f5, & more.)
Import Orcad/SDT files/parts
Visual PCB footprint browser
Over 12,000 parts included

Ivex Spice/Standard
Analog Simulation $99

The Standard Edition includes:
Multi channel display
Over 3,000 models
Uses Spice 3f5 netlist
Use with WinDraft 3.05+

Seven Analysis types:
Operating Point,
DC Sweep, Transient Analysis,
Fourier, AC Frequency Sweep,
Small Signal Transfer,
Sensitivity.

WinBoard®
PCB Layout $250
650 pin version

Multi layer designs (16)
Surface mount designs
Advanced Design Rule Check
Electrical DRC check and
Real-Time DRC
Single click editing
Graphical part & pad editor
Hundreds of footprints
Copper zone pour
Output Gerber photo plot files

Ivex Spice/Advanced
Analog Simulation $299

The Advanced Edition has all the features of the Standard Edition, with these additional analysis types:

Transient Parameter Sweep,
AC Parameter Sweep,
Distortion Analysis,
Pole-Zero Analysis, Noise
Analysis and Monte Carlo.
There is the Computer monitor tester you have been asking for. Sweep rates to 15-64 KHz, MGA, CGA, VGA, lots of MACs, even video (mono), GRAY SCALE, quick push button operation, “Energy Star” testing, and more. AC or Battery.

Checker Pro TV Jr.

The TV Jr is a small NTSC video generator with colorbars, crosshatch with dots, white red blue green, and black screens. Small enough to fit in your pocket, powerful enough to drive the largest projection TV.

Checkers TV Jr....PRICE: $129.00

Checker Pro TV & TV Jr.

The TV is just the tool for your repair bench. It provides Video, Audio, and RF outputs. It also has the most important pattern, GRAY SCALE! You can’t set up a color TV without it. All with NTSC standards and COMPLEX sync. The RF output also includes an audio tone and STEREO signaling. With colorbars, gray scale, crosshatch with dots you can set and test quickly.

Checker TV Pro...PRICE: $499.95

Ordering Information

- **Checker Pro TV**
 - **Price:** $499.95
- **Checker TV Pro & TV Jr.**
 - **Price:** $129.00
- **Checker TV Jr.**
 - **Price:** $295

Programmers

- **Price:** $59.95

- **Programmers**

LOW COST PICmicro Tools

- **New! PICXI**
 - **Experimentor/Lab Board**
 - **Price:** $49.95 to $199.95

- **EPIC Pocket PICmicro Programmer**
 - **Price:** $59.95

- **Program PICmicros in BASIC!**
 - **PicBasic Compiler**
 - **Price:** $59.95
 - **PicBasic Pro Compiler**
 - **Price:** $249.95

- **PICProto Boards make prototyping with PICmicros easy**
 - **Price:** $8.95 to $19.95

- **Savings BONDS**

GCE

Your first step to help yourself better your future!

- **Grantham College of Engineering**
 - **Address:** 34641 Grantham College Road Slidell, LA 70460-6815

- **Degrees**
 - **B.S.** in Electronics
 - **B.S.** in Integrated Computer Science

Train Blazer wireless joystick

- **Price:** $49.95
- **Features**
 - Omni-directional wireless joystick
 - 20 feet Operating range
 - Integrated wireless mouse controls

Contact Information

- **Electronic Workbench Professional 5.0**
 - **Included in our B.S.E.T. curriculums**
 - **Approved by more than 200 Companies**

- **For your free catalog of our programs dial**
 - **1-888-919-8181 Ext. 15**
 - **http://www.grantham.edu**

- **Grantham College of Engineering**
 - **Web Site:** www.grantham.edu

- **American Radio History**
 - **Website:** www.americanradiohistory.com

- **Contact:**
 - **Phone:** 1-888-919-8181
 - **Fax:** 916-393-4949
 - **Email:** sales@rfdevices.com
 - **Website:** www.rfdevices.com

- **Location:**
 - **Address:** 4545 Northport Loop East, Fremont, CA 94538, USA
 - **Phone:** (510) 623-8832
 - **Fax:** (510) 623-8832
 - **Email:** sales@rfdevices.com
 - **Website:** www.rfdevices.com
CREDIT CARD COMPUTER

$14.20 OEM (1000 pc.) price EVAL KIT (Qty 1) $50

Includes:
- serial and parallel
- 256kbit nvmem
- A to D converter
- ISA/PC104 bus
- BASIC and ASSY
- Calendar/Clock

NEW, improved version with ...
PLUG-N-GO™ !!!

COMPLETE! No cables or power supply to buy.

$95 UNIVERSAL PROGRAMMER

FLASH,EPROM,NVRAM,EEPROM to 8meg (27080). Adapters for micros, PLCC, etc.. Parallel port version for notebooks. FAST and EASY TO USE.

PC SOLID STATE DISK

$21 OEM (1k), EVAL $75
FLASH,NVRAM,ROM 256K-16M DIP/PCMCIA

PC WATCHDOG!

NO MORE HANGUPS..
Reboots PC on hardware or software hangup..
oem $21, eval $75

ADC/DAC cards

8/12/16/18bit up to 32 channel for PC or SBC starting at $14.20 oem

$27 MINI PC

OEM $95, oem $27 includes:
- DOS,3 ser,2par,rtc,nvmem,
built-in LED display,ISA bus,
Keyboard and LCD interface
COMPLETE!
Not a "core" or "engine". All utilities and tutorial included.
Use Turbo C,Basic,MASM.
386 version $42 oem $195 eval

SINGLE CHIP COMPUTER!

$1.99 OEM (1K) EVAL KIT (1) $7.00
- Zero External Components
- Built-in BASIC / Assembly
- RS232 Program Download
- 1K flash, 64ee, 3irq, 2timers
- 15 I/O bits, A/D comparator
- 20mips, faster than pic/8051
- 20 pin DIP part #MV1200

NEW! 8K SUPER CHIP

Improved BTERP with 40 times the BASIC program capacity
- 40 pin DIP part #MV8515 - 32 I/O, 12 irq, 3 timers, bus
- 8K flash, 512 ee, 512 nvraram - Watchdog with internal osc.

$5.40 OEM (1k), Eval Kit $19.00

WWW.STAR.NET/PEOPLE/~MVS

MVS Box 850
Merr.,NH 03054 (508) 792 9507

WWW.STAR.NET/PEOPLE/~MVS

MVS Box 850
Merr.,NH 03054 (508) 792 9507
PLUG IN AND MEASURE

NEW

500mV - 400V
0 - 20MHz
8 bit

TiePie introduces the HANDYPROBE model HP 2
A powerful 8 bit, 20MHz virtual measuring instrument for the PC

Convince yourself and download the demo software from our web page: http://www.tiepie.nl.
When you have questions and / or remarks, contact us via e-mail: support@tiepie.nl. The
HANDYPROBE HP2 is delivered with a user manual. Windows and DOS software.
The price of the HANDYPROBE HP2 starts at USD 199 excl. VAT.

US dealers:
Conway Engineering Inc.: Tel 510-568-4028; Fax 510-568-1397; www.conway-engineering.com
Feedback Incorporated: Tel 800-526-8783; Fax 919-644-6470; www.fbk.com

Outside US:
TiePie engineering, P.O. BOX 290, 8600 AG SNEEK, The Netherlands.
Tel: +31 515 415 416 Fax: +31 515 418 819 Web: www.tiepie.nl

CIRCLE 217 ON FREE INFORMATION CARD

Wireless Remote Control

- 8 ch. keychain size RF/IR transmitter.
- 8 ch. receiver can learn up to 4 transmitters.
- Encoder and decoder ICs available.
- Easily prototype your wireless concepts.

Visit our web site for on-line catalog:
www.rfmicrolink.com
www.irmicrolink.com
Copyright © International Electronics Corp.
Phone: (865) 546-9863
Fax: (865) 546-8324
Visa/MasterCard/Discover
Prices effective May 23 through July 7, 2000.

McM Electronics

What you want... Today!

You must provide this source code to receive discount pricing: **POP76**

MCM Color LCD Monitor Module

4" Color LCD Monitor Module

Open circuit board has no case or housing allowing easy incorporation into automotive seat backs, custom panels and enclosures. Use for automotive multimedia and navigation systems, surveillance and video equipment.

- 3.5mm A/V input
- Resolution: 383 (H) x 234 (V)
- Requires: 12VDC, 500mA
- Dimensions: 3/4" x 5" x 1/4"

Electrolytic Capacitor Assortment

- Contains 75 assorted radial and axial lead capacitors
- Values range from 0.1-470uF
- Voltages vary from 6.3-50V

Isn't it time you trusted the source code?

TELEMA 450VA Isolation Transformer

- Provides safety and equipment protection on the service bench
- Two direct and one isolated output
- Both circuits are independently fused

PC Mount 12 Volt Relays

- High current for autosound, security and other applications
- PC board mount, pins may be directly soldered
- Contact rating: 15A/16VDC
- Contact resistance: 180 ohm
- Current consumption: 67mA
- Dimensions: 3/8" (H) x 3/4" (W) x 5/8" (D)

Micro Board CCD Camera

- Compact open-tc 3rd black & white camera
- Measures: 1" x 1 1/4" x 1 3/4"
- CCD image device
- 380 lines of resolution
- NTSC composite video output
- 12VDC, 330mA

PRO-LUXE Behind-the-Head Stereo Headphones

- 30mm diaphragm
- Straight 4 cord 3.5mm nickel plated plug
- 3.5mm to 3.5mm adapter
- Frequency response: 20Hz-20KHz
- SPL 115 dB at 1KHz
- Impedance: 32ohm

SOURCE CODE: POP76

CHECK OUT

Full line catalog at: 1-800-543-4330

FREE INFORMATION CARD

SOURCE CODE: POP76

CIRCLE 160 ON FREE INFORMATION CARD
spyoutlet.com

Countersurveillance - Electronic Devices

Purchase your video cameras from one of the largest importers in the U.S.

• NEW Waterproof Bullet Cameras • Spy Pinhole Cameras starting at $79.00 • Wireless Video
• Voice Changer • 3 Hour Micro Recorder • Shotgun Mic • Locksmithing • Bug & Phone Tap Detectors
• Phone Call Register • UV Pens & Powder
• Realtime Telephone Recording Systems:
 12 Hour $125.00, 15 Hour $149.00
• GPS Vehicle Tracking System (nationwide)
 And much more

www.spyoutlet.com
Printed Catalog send $5.00

SPY OUTLET
2468 Niagara Falls Blvd., Tonawanda NY 14150
(716) 695-8660 fax (716) 695-7380

Digital Panel Meters!!

- LCDs • LEDs • 3 1/2 digits • 4 1/2 digits
- loop powered • adjustable voltage input
- bezel mount • surface mount
- miniatures • big digits
- black • red
- amber • green
- negative backlighting
- positive backlighting
- RF resistant EMI resistant
- displayed engineering units • snap-in

1-800-
356-4920

Visit our catalog on-line
knsinstruments.com

Or call toll free: 800/356-4920
Fax: 800/356-1250

We also have Knob tape and shrink tube labeling systems and supplies!

The Pocket Programmer
Only $129.95

The portable programmer that uses the printer port of your PC instead of a internal card. Easy to use software that programs Eprom, EEprom, Flash & Dallas Ram. 27(C) / 28(C) / 28F / 29F / 29C & 29XX series from 16K to 8 Megabit with a 32 pin socket. Adapters available for Pic, PLCC, 5-Gang, 874X, 875X MCU's, 40-Pin X 16 & Serial Eprom's, 82/74 Prom’s and Eprom Emulator to 32K X 8.

Same Name, Address & Phone # for 16 Years... Isn’t it Amazing?

Intronics, Inc.
Box 13723 / 612 Newton St.
Edwardsville, KS 66113 Add 15.00 COD
Tel. (913) 422-2094 Add 14.00 Shipping
Fax (913) 441-1623 Visa / Master Charge

BEST DEALER PRICING!

CABLE DIRECT
CONVERTERS • FILTERS
DESCRAMBLERS

IMPROVE YOUR IMAGE WITH
VIDEO STABILIZERS

FREE CABLE TV CATALOG!

100% MONEY BACK GUARANTEE!

36 DAY FREE TRIAL!

Now you can tune-in your favorite cable TV programming and SAVE $100'S - EVEN $1000'S on premium CABLE TV EQUIPMENT.

MODERN ELECTRONICS
1-800-906-6664
2699 S. 156TH CIRCLE • OMAHA, NE 68130
http://www.modernelectronics.com

www.americanradiohistory.com
LIQUID CRYSTAL DISPLAYS

240x64 dot LCD with built-in controller.
AND 4021ST-EC. Unit is EL back-lit. $59.99 or 2 for $119.99 or OPTREX. LMF505S (non back-lit) $49.99 or 2 for $89.99.

20 character x 8 Line. 1/4". The built-in controller allows you to do text and graphics.

Alphanumeric-parallel interface

16x1 $6.00 20x2 $8.00 240x64 $12.00
16x2 (lg char.) $6.00 20x4 $8.00 240x64 $12.00
16x2 (ly char.) $10.00 24x2 $8.00 240x64 $15.00

(5V power required) Includes, C-MOS LCD driver & controller. "Easy microprocessor interface": 98 ASCII characters generation. Certain models are backlit. Call for more info.

Graphs and alphanumeric-serial interface

Monitors

Non-Enclosed TTL

Comes with proof 12V or 1.4 A Amp input • Horizontal frequency 15KHz • Ability to do 40 and 60 column.

5 inch monitor $19.00 7 inch Amber $19.00

5" COLOR MONITOR $29.99

- 5" Color display • 320 x 200 Dot Resolution • VGA & Hercules Compatible
- 12 VDC, Operation • 15.75 KHz Horiz. Fre, • 60 Hz Vert. Sync. Free
- Open frame Construction • Standard Interface Connector • Degaussing Coil included • Molex connection

9" COLOR SVGA MONITOR $169.99 • Fully enclosed • 1/2th and swivel type

Pos & Bar Code

MAGNETIC CARD READER $19.99

Includes • 21 or more • 5"X3V/2S Amp power supply • ATD telephone interface extension card • lithium battery and flat cord, speaker.

HIP bar code wand (HBCS 2300) $19.00

Competitive Analysis

Characteristics B² Spice A/D 2000 EWB Multimania Personal

PRICE $299 $399

DC Operating point X X

DC Parameter Sweep X X

Temperature X X

Transient X X

Parameterized transient X X

AC Analysis (FREQ sweep) X X

Parameterized AC Sweep X

Pole Zero X

Transfer function X

DK Sensitivity X

Timebase X

Noise X

DC Op. Point Carlo X

DC Sweep Monte Carlo X

AC Monte Carlo X

Transient Monte Carlo X

Interactive, free running digital logic simulator.

Visit our web site for a free trial.

$99 Lite Version

Hacker Corner

Rockwell "Jupiter" GPS Receiver $69.99

Miniature (2.75" x 1.5" x .25") handheld receiver engine. Supports NMEA 0183 and binary protocols. Supports DGPS signal in both protocols. Comparable with larger and more popular "Keep-Away" handheld receiver capability. Includes MCM 20-pin interface assembly (which includes power supplies, serial interface assembly, antenna, APRS and Packet, and interface documentation available. Compatible with most laptop software using NMEA Interface. Suitable for wide range of GPS applications including digital GPS, Automotive/Navigation Applications, Amateur APRS and Packet

EMBEDDED 486 COMPUTER $79.99

Complete enhanced front RISC-based computer in a small 4-inch x 6.5-inch x 1.5" case. Ideal for embedded systems or as a personal computer. Features include: One 16 bit ISA slot • 2 ISA ports plus dedicated printer port • Parallel interface and adapter port • Built-in 160KB 32-bit keyboard • SD interface documentation available. Various models are available. Contact us for more info.

SONY Miniature Color LCD Display $29.99

1.8cm (0.7 inch) unit LCX549AKX 6872 x 228 V $29.99

CELL SITE TRANSMITTER $49.99

These transmitters were designed for operation on public N-GMRS (National Mobile Radio Service) cell site. The 20 MHz bandwidth of the transmitter allows it to operate on all 666 channels allocated. The transmit channels are 870-900 kHz. The receive channels 45 MHz below those frequencies. A digital synthesizer is utilized to generate the selected frequency. Each unit contains two independent receivers to demodulate voice and data with a Ready Signal Strength Indicator (RSSI) circuit to select the one with the best signal strength. The transmitter provides a 1.5 watt modulation signal to drive the internal power amplifier. Channel selection is accomplished with a 10 bit binary input via a connector on the back panel. Other interface requirements for operation are 26 VDC (unregulated) and an 18.9-kHz reference frequency for the digital synthesizer. The unit contains internal power supplies for receiver, exciter, synthesizer, tuneable front end, and interface assembly (which includes power supplies and voltage-controlled oscillator). Service manuals, schematics and circuit diagrams included.

4 INCH LCD MONITOR $49.99

Compact (4.4" x 3.8" x 1.4") TFT active matrix LCD color monitor including fluorescent backlight. Analog-in/Out and composite sync input with switchable horizontal/vertical viewing. Low power consumption and long life backlight make it ideal for security and door phone use. Single & VDC supply and good resolution allow suitable operation in use with laptop, Standard ribbon cable - Molex connector interface. Complete specifications included.

NTSC COMPOSER 4" LCD MONITOR $69.99

Includes • 4.3" Color LCD display • 600 x 480 display resolution • National Television Standards Committee (NTSC) 8.5 mm composite output • Composite sync. • Audio input/output • RCA connector interface • AC adapter supplied • Dual power supply • Standby power • Bluetooth wireless interface for remote control • Audio in • A/V in • A/V out. Complete specifications included.
Any waveform you want!

New Features:
- **21.5 MHz**
- **.01 Hz steps**
- **multi-unit phaselock**

Telulex Inc. model SG-100A

- DC to 21.5 MHz linear and log sweeps
- Int/Ext AM, SSB, Dualtone Gen.
- Noise
- Int/Ext FM, PM, BPSK, Burst
- Ramps, Triangles, Exponentials

Synthesized Signal Generator
Clean sinewaves DC-21.5 MHz, .001% accuracy! .01 Hz steps. DC Offset. RS232 remote control.

Arbitrary Waveform Generator
40 Megasamples/Second. 32,768 points. 12 bit DAC

Function Generator
Ramps, Triangles, Exponentials & more to 2 MHz!

Pulse Generator
Digital waveforms with adjustable duty cycle

Telulex Inc.
2455 Old Middlefield Way
Mountain View, CA 94043
Tel (650) 938-0240 Fax (650) 938-0241 Email: sales@Telulex.com

CIRCLE 311 ON FREE INFORMATION CARD

Turn Your Multimedia PC into a Powerful Real-Time Audio Spectrum Analyzer

Features
- 20 kHz real-time bandwidth
- Fast 32 bit executable
- Dual channel analysis
- High Resolution FFT
- Octave Analysis
- THD, THD+N, SNR measurements
- Signal Generation
- Triggering, Decimation
- Transfer Functions Coherence
- Time Series, Spectrum Phase, and 3-D Surface plots
- Real-Time Recording and Post-Processing modes

Applications
- Distortion Analysis
- Frequency Response Testing
- Vibration Measurements
- Acoustic Research

System Requirements
- 486 CPU or greater
- 8 MB RAM minimum
- Win. 95, NT, or Win. 3.1 + Win.32s
- Mouse and Math coprocessor
- 16 bit sound card

Priced from $299
(U.S. sales only – not for export/resale)

DOWNLOAD FREE 30 DAY TRIAL!
www.spectraplus.com

Data Acquisition and Control
The ADR series of interfaces allow control of analog, digital and relay I/O via RS232 or RS485. Visit the web site for specs, applications and programs in VB, C, BASIC etc. (705) 671-2652

www.ontrak.net
Ontrak Control Systems Inc.

Visit our Web Site at:
www.poptronics.com

Mobile Robotics
Sonar Vision Systems Micro Controllers Motor Drivers Neural Networks

Telulex Inc.
2455 Old Middlefield Way
Mountain View, CA 94043
Tel (650) 938-0240 Fax (650) 938-0241 Email: sales@Telulex.com

CIRCLE 311 ON FREE INFORMATION CARD

Turn Your Multimedia PC into a Powerful Real-Time Audio Spectrum Analyzer

Features
- 20 kHz real-time bandwidth
- Fast 32 bit executable
- Dual channel analysis
- High Resolution FFT
- Octave Analysis
- THD, THD+N, SNR measurements
- Signal Generation
- Triggering, Decimation
- Transfer Functions Coherence
- Time Series, Spectrum Phase, and 3-D Surface plots
- Real-Time Recording and Post-Processing modes

Applications
- Distortion Analysis
- Frequency Response Testing
- Vibration Measurements
- Acoustic Research

System Requirements
- 486 CPU or greater
- 8 MB RAM minimum
- Win. 95, NT, or Win. 3.1 + Win.32s
- Mouse and Math coprocessor
- 16 bit sound card

Priced from $299
(U.S. sales only – not for export/resale)

DOWNLOAD FREE 30 DAY TRIAL!
www.spectraplus.com

Data Acquisition and Control
The ADR series of interfaces allow control of analog, digital and relay I/O via RS232 or RS485. Visit the web site for specs, applications and programs in VB, C, BASIC etc. (705) 671-2652

www.ontrak.net
Ontrak Control Systems Inc.

Visit our Web Site at:
www.poptronics.com

Mobile Robotics
Sonar Vision Systems Micro Controllers Motor Drivers Neural Networks
6-1/2" Two Way System

This is our most popular in-wall. You won't believe how good these really sound. Big enough to produce great home theatre sound and still fit everyone's budget. Put a pair in every room of your house. Great for front or rear speakers in your surround system. The 6-1/2" polypropylene woofer and 1" textile dome tweeter were specially designed with home theatre in mind. The crossover network utilizes a mylar capacitor for crisp clean highs. 3 piece design makes installation in new or existing walls a snap.

Specifications: *6-1/2" polypropylene cone woofer with poly foam surround *1" textile dome tweeter/midrange *4 ohm impedance *3 component L/C crossover network *40,000 Hz *Power handling capacity: 60 watts (RMS) *80 watts max *Sensitivity: 89 dB 1W/1m *Overall dimensions: 8-1/2" W x 12" L x 3-1/2" D *Includes 1-1/2" to 10" risers *Fits into standard 2" x 4" wall *Net weight: 12 lbs. per pair.

#300-036 $99.90 (3PRS) #79.50 (4PRS UP)

Satellite Speaker Stands

These quality speaker stands are perfect for mini or rear surround speakers. The heavy die cast base provides stability. Textured black satin finish blends in well with any decor. The height is adjustable from 41-1/2" to 7-1/2" to accommodate most mini speakers. The heavy die cast base is perfect for mini or rear surround speakers. These quality speaker stands are.*Lighted accommodation for most mini speakers.*Hole adjustable from 4 1/2 -1/2" and the *speakers. The heavy die cast base is perfect for mini or rear surround speakers. These quality speaker stands are.*Lighted accommodation for most mini speakers.*Hole adjustable from 4 1/2 -1/2" and the

#300-408 $69.95 (2PRS) #62.75 (4PRS-UP)

3 Amp Power Supply

This fully regulated power supply is perfect for powering CBs, car radios, and other 12 VDC devices. It can supply up to 3 amps. Heavy duty steel housing provides long life. Adding music to the kitchen, den, bath, or patio has never been easier! System features a weather resistant 6-1/2" treated plywood woofer with coaxial mounted 1/2" round polyester dome tweeter, and built-in crossover with a mylar capacitor in the tweeter lead. Retrofit design allows installation in both new and existing construction in just minutes. System includes removable steel mesh grill, built-in mounting bracket, hardware, and complete installation instructions.

Specifications: *Impedance: 8 ohms *Frequency response: 60-20,000 Hz *Power handling capability: 20 watts RMS (max) *Sensitivity: 89 dB 1W/1m *Dimensions: 9" round x 2-7/8" deep *Net weight: 5 lbs. per pair.

#372-120 $39.95 EACH

6-1/2" Round Coaxial System

Designed for the home and office. These 6-1/2" round in-walls are ideal for ceiling installations, or for use as rear channel surround speakers. Adding music to the kitchen, den, bath, or patio has never been easier! System features a weather resistant 6-1/2" treated paper cone with poly foam surrounds, coaxially mounted 1/2" round polyester dome tweeter, and built-in crossover with a mylar capacitor in the tweeter lead. Retrofit design allows installation in both new and existing construction in just minutes. System includes removable steel mesh grill, built-in mounting bracket, hardware, and complete installation instructions.

Specifications: *Impedance: 8 ohms *Frequency response: 60-20,000 Hz *Power handling capability: 20 watts RMS (max) *Sensitivity: 89 dB 1W/1m *Dimensions: 9" round x 2-7/8" deep *Net weight: 5 lbs. per pair.

#370-095 $199.50 (2) #185.50 (4) (UPL)

DMC and LCR Meter

In addition to functions found in regular DMC’s, this meter can also measure inductance in 5 ranges (40uH, 40mH, 400mH, 4000mH, 4uH), frequency in 4 ranges (4kHz, 40kHz, 400kHz, 4MHz), TLL logic test, diode test and transistor RFE test. 5 AC/DC ranges up to 1000VAC/DC, 3 AC/DC current ranges up to 20A and 7 resistance ranges up to 4000 M ohms. Includes test leads, battery, spare fuses, and manual. Net weight: 1 lb.

#390-513 $89.95 EACH

2.5W Mini Audio Amplifier

This amp contains both pre- and power amplifier on a super small mounting board only 1-5/8"x1-1/4". Maximum output power is 2.5W RMS at 4 ohms with 12VDC input power. No adjustments required. Short circuit protected.

#320-215 $9.95 EACH

If you haven't received a copy of our current 260 page catalog ... have one added to your order or give us a call and we will send one out to you immediately.

Weller WLC100 Soldering Station

The Weller WLC100 soldering station is ideal for the professional, serious hobbyist, or kit builder who demands performance and quality at a price. The Ultra compact design allows movement through menus in a mind. The height is adjustable from 41-1/2" to 7-1/2" to accommodate most mini speakers. The heavy die cast base is perfect for mini or rear surround speakers. These quality speaker stands are.*Lighted accommodation for most mini speakers.*Hole adjustable from 4 1/2 -1/2" and the

*Net weight: 5 lbs. per pair.

#372-120 $39.95 EACH

"44" Solder

Kester "44" rosin core solder is designed for electronic and electrical work. It uses a fast acting, instant wetting, non-corrosive, and non-conductive flux for faster soldering and a strong long lasting bond.

Pro Wick

Pro Wick's advanced fine braid design provides wicking action that is second to none.

Gold Plated A/V Cables

A super quality, "anodized" type cable. Two RCA cables for stereo (audio) signal from VCR to receiver/stereo, TV and one low noise coaxial type cable for video.

Part # Length Price Price (10) (UP)

180-120 3 ft. $4.25 $3.95
180-118 6 ft. $4.90 $4.55
180-115 10 ft. $8.95 $8.25
180-124 20 ft. $12.75 $11.50

LARGEST SELECTION OF \nSPEAKER DRIVERS \nIN THE COUNTRY!

VISIT OUR WEBSITE AT

www.parts-express.com

OR CALL TOLL FREE

1-800-338-0513

CIRCLE 257 ON FREE INFORMATION CARD
Digital On-Timer

Digital timer from Mr. Coffee™ Small modular design, no brand name or logo. Ideal for use in any product that needs to be turned automatically at a specific time. Operates on 120 Vac. Switch loads up to 10amps. Can be switched manually. White plastic face. 2.48" x 1.77", with four digit LED clock. Overall size: 2.56" x 2.17" x 1.88" deep behind face. 0.25" qc terminals. Easy to connect and operate. Includes instruction sheet. CAT# MCT-3 $5.00 each

Organize your CDs or CD ROMs with these high-impact, black plastic CD storage racks. Slots for 12 jewel cases. Each 12 CD module can interlock vertically and horizontally with other modules. Can be free-standing or wall mounted. $2.00 each CAT# CDR-3

Thermolectric Cooler

These incredible miniature solid state heat pumps raise or lower temperature in a small area almost instantly. Utilizing the Peltier effect these modules perform the same cooling or heating functions as freon based refrigerators but they do it with no moving parts, and are very reliable. Current applied to the device will produce heat on one side and cold on the other side, up to 68°C difference between the two sides. Operate on 3-12 Vdc. Requires a heat sink to prevent overheating. 1.57" (40mm) square x 0.16". $13.95 each CAT# PJT-3

“Ear Bud” Stereo Earphones

Miniature “in-ear” earphones for use with most portable CD, radio and tape players. 3.5 mm stereo phone plug. 32 ohm impedance. Large Quantity Available. CAT# HP-6 $85c each 10 for $7.50 100 for $50.00

22 UF 450 Vdc

0.63" diameter x 1.6" long axial electrolytic capacitor. CAT# 22/450/VA 10 for $10.00 100 for $80.00

Bosch. Powerful new 12 Vdc motor with replaceable brushes. Purchased from a company making electric bicycles, they were used two per bicycle, powered with a 24 Volt battery pack. May have originally been fan motor for Ford automobiles. 4" diameter x 2.75". 0.31" (5/16") diameter shaft is 1.2" long. No load Rating: 2200 RPM @ 12 Vdc @ 2.8 Amps. Weight: 3.25 lbs. 0.25" quick-connect terminals. CAT# DCM-142

16 Character X 2 Line LCD with Backlight

Daewoo # 16216L-5 VSO 5 x 7 dot format. 2.56" x 0.54" viewing area. 3.15" x 1.41" module size. LED backlight. Includes hook-up/spec sheet. CAT# LCD-53 $7.50 each

Order Toll Free 1-800-826-5432

Shop ON-LINE www.allelectronics.com

Call, Write, Fax or E-mail for a Free 96 Page Catalog. Outside the U.S.A. Send $3.00 postage.

QUALITY Parts FAST Shipping DISCOUNT Pricing

CALL, WRITE, FAX or E-MAIL For A Free 96 Page CATALOG.

Seawise Industrial Ltd. Model# SW750 Input: 120 Vac Output: 7.5 KV 60 Hz. The main component in a household ionization unit. 2.2" x 1" x 0.86" thick with a mounting tab that extends 0.75" from the unit. UL recognized. CAT# SW-750

Blue & White Ultrasound

BLUE / water clear 1200 mcd 45 degree viewing angle. CAT# LED-58 10 for $30.00

WHITE / water clear 1100 mcd CAT# LED-48 10 for $35.00

Alps Electric # 7267-10KBX2 Dual 10K linear pot powered by a small reversible 6 Vdc gearhead motor. Pot and motor assembly are 1" square x 1.7" long excluding shaft and bushing. 6 mm flatted shaft is 0.5" long. 9mm threaded bushing. PC pins and mounting tabs for pc board mounting. CAT# MPOT-10K

Motorized Potentiometer Dual 10K Linear Taper

Daewoo # 16216L-5 VSO 5 x 7 dot format. 2.56" x 0.54" viewing area. 3.15" x 1.41" module size. LED backlight. Includes hook-up/spec sheet. CAT# LCD-53 $7.50 each

Outside the U.S.A. Must Pay Full Shipping Quantities Limited Prices Subject to change without notice.

ManuFacturers - We Purchace Excess Inventories... Call, Write, E-Mail or Fax Your List.
World's Smallest 68HC11 Microcontroller Module!

Applications:
- telemetry
- micro robotics
- smart toys
- animation
- model railroads
- automate your home
- many others!

MicroStamp11

- tiny 1-inch x 1.4-inch 68HC11 module
- 5V regulator, 8MHz crystal
- choice of 8K or 32K EEPROM
- plugs into your breadboard like a DIP
- SCI, SPI, OCS, ICS, timers, & more
- all 14 I/O lines and 2 interrupts brought out to versatile 20-pin connector
- easy code-loading with Docking Module
- Starter Packages:*
 - with 8K EEPROM (#MS11SP8K)$49
 - with 32K EEPROM (#MS11SP32K)$60
 - additional modules from $34 each
- includes MicroStamp11, documentation, PC software, serial cable & Docking Module

Many other modules & accessories available. Visit our website at: www.technologicalarts.com

MicroCore-11

- tiny 2-inch x 2-inch 68HC11 module
- 12 inputs/outputs plus 8 analog inputs
- RS232, 5V regulator, 8MHz crystal
- 32K SRAM plus 8K or 32K EEPROM
- plugs into your breadboard like a DIP
- simple program loading from any PC
- motor driver & accessories available
- ideal for MicroMouse robot competitions
- 8K Starter Package #MC11SP8K$75
- 32K Starter Package #MC11SP32K$89

Technological Arts

CCTV OUTLET
INTERNATIONAL DISTRIBUTORS

SECURITY CAMERAS
WIRELESS TRANSMITTERS
OUTDOOR CAMERAS
MONITORS
HIDDEN CAMERAS
ALARMS & ACC.
OUTDOOR HOUSINGS

WWW.CCTVCO.COM

$34.00

over 50 brands to choose from
buy on line or dial toll free
1-800-323-8746

One Pocket Sized Tool Does It All
A universal multi programmer combining performance, flexibility and room for expansion. Optimal for use in the field. Small enough to fit in your pocket, it will output to a wide array of devices.

Fast, Versatile Field Programmer
Programs 8-bit and 16-bit EEPROM, EPROM, Zero Power RAM’s, Flash, Serial EEPROM / GAL, PAICE, ATX/16xxx, 89xxx, PIC12/16/17/18xxx / All DIL devices without adapter / Lightning fast parallel data transfer (e.g. 27C512 read/compare 2 sec!)

GALEP-III
Pocket Multi programmer

With Expanding Output Capability
Independent power supply with rechargeable battery / Uses PC printer port / Hex, JEDC, and binary file formats / Hex & fuse map buffer editor / SPI & serial shuffle for 8-bit, 16-bit and 32-bit targets / Runs under Win3.1, 95, NT / "Remote Control" by DDE script / Designed for the future with flexible pin driver technology / new devices added every month / Device list, demo software and lifetime free updates from our website.

GALEP-III: cable, bat. & charger$33.00
PCC adapter / 8-bit EPROMs (16-bit EPROM 1X33)$149.90

BEAN ELECTRONICS TECHNICIAN!
Home study. Learn to repair, service, and install TVs, VCRs, camcorders, stereos, sound and lighting systems, alarms, and more.

FREE LITERATURE: 800-223-4542

THE SCHOOL OF ELECTRONICS
P.O. BOX 1353
GASTON, NC 28053-1353

CABLE TV BOXES
(WE'LL BEAT ANY PRICE!)
30 DAY TRIAL! 1yr. warranty. FREE CATALOG
QTY DISCOUNTS * DEALERS WELCOME:
1-800-785-1145

HABLAMOS ESPANOL

PRIVATE CABLE SYSTEMS

www.americanradiohistory.com
CLASSIFIEDS

AUDIO-VIDEOS-LASERS

BUSINESS OPPORTUNITIES

- FREE MONEY! NEVER REPAY. GUARANTEED. BUSINESS START, EXPANSION, PERSONAL NEEDS, DEBT CONSOLIDATION. FREE PACKAGE 1-888-290-5605.
- START your own technical venture! Don Lancaster’s newly updated INCREDIBLE SECRET MONEY MACHINE III tells how. We now have autographed copies of the Guru’s underground classic for $24.50. [Synergetics Press](http://Box 809-C, Thatcher AZ, 85552. (520) 428-4073. www.tinaija.com VISA/MA).

CABLE TV

- Descramblers, Converters, Activators, RF's, Figs, Bullet Snoppers. All Options Explained, Best Prices, Services, 2 yr. Warranty, Free Catalog. 1-800-854-1674 www.resourceleader.com/aapc
- NEW! Jerrold and Pioneer wireless test units $125 each, also 75DB notch filters $19.95 each, quantity pricing available please call KEN ERNY ELECTRONICS 24-hour order and information hot line 516-389-5336.
- ALL CABLE TV BOXES. WE'LL BEAT ANY PRICE. 30 DAY TRIAL 1 YEAR WARRANTY. FREE CATALOG! www.CATV BOXES.COM 1-800-765-4912
- CABLE DESCRAMBLER SUPERSALE! Original, Universal and Anti-on equipment. Guaranteed to beat any price. Models available for all areas in the U.S. 30 day trial, One year warranty. Great discount prices! 877-203-6854

CB-SCANNERS

EDUCATION

MISC. ELECTRONICS FOR SALE

- ATMEC MICROCONTROLLER board with integrated programmer. www.telusplanet.net/public/briangs
- PLANES-KITS-SCHEMATICS
- ELECTRONIC PROJECT KITS: $3.00 catalog. 49 McMichael St. Kingston, ON, K7M 1M8. www.kkits.com - QUALITY KITS
- AWESOME KITS. Ion Propulsion Motor, Stepper Driver, Solar Robot, Scrolling Clock and more! Catalog $1.00. LNS Technologies, PO Box 67243, Scotts Valley, CA 95067 www.techkits.com

SATELLITE EQUIPMENT

TEST EQUIPMENT

- BROWSE OUR WEB SITE and check out the "Monthly Special". TDL Technology, Inc. WWW.2IANET.COM/TDL

ROBOTICS

- Arobit Kit from Arrick Robotics uses the BASIC Stamp II. Quality metal construction. Easy to assemble and very expandable. $235. http://www.robotics.com/arobot

An Introduction to Light in Electronics

Taken for granted by us all perhaps, yet this book could not be read without it, light plays such an impressive role in every day life that we may be tempted to consider just how much we understand it. This book makes a good start to this fascinating and enlightening subject. It has been written with the general electronics enthusiast in mind.

To order Book #8P395 send $6.99 plus $3.00 for shipping in the U.S. and Canada only to Electronics Technology Today Inc., P.O. Box 240, Massapequa Park, NY 11762-0240. Payment in U.S. funds by U.S. bank check or International Money Order. Please allow 6-8 weeks for delivery.
NESDA and Manufacturers Seek Service Survival Solutions

In today's business climate, few servicers can afford to subsidize product sales through no-warranty work. NESDA advised manufacturers that they must pay more now, if they expect independents to service their consumers' products in the future. Manufacturers were receptive, but ...

by Wallace Harrison

On January 8, 2000, NESDA leaders met again with key service personnel of major product manufacturers at a manufacturer/servicer "summit meeting." This was part of NESDA's ongoing effort to strengthen a wobbly and numerically declining product service industry. NESDA invited leaders from other national associations, and a replacement-parts distributor, to share in the discussion.

The meeting was held at the Tropicana Hotel in Las Vegas, during the International Consumer Electronics Show. Leading the NESDA contingent were Wayne Markman, President, and Vic Gerry, Chair of the Industry Relations Committee. Following is a complete roster of participating manufacturer representatives (MR), distributor personnel (DP), and service dealers (SD), as well as company and association affiliation.

ATTENDANCE ROSTER

Distributors: Tritronics: Kimberly Wagner CSM, V.P.

Servicers: NESDA: Wayne Markman, Pres., Markman TV, Hamden CT; Mike Webber CSM, V.P., Rucker’s Radio/TV, Ft. Worth TX; Vic Gerry, Chair, Ind. Rel. Com., Page TV, Bethpage NY; Leo Cloutier CSM, Past Pres., Electronic Service Center, Los Angeles CA; George Weiss CSM, Past Pres., Bell TV, Chicago IL; Pat Narcisco, Tech-Tron TV, Brooklyn NY; and Bill Warren CET/CSM, Warren Electronic Services, Knoxville TN; NASD: Randy Whitehead CSM, NASD Pres., Wood Technologies Inc., Long Beach CA; and PSA: John Eubanks CET, PSA Dir., Quality TV, Jacksonville FL.

Bill Warren served as meeting recorder, and his minutes provided much of the material contained in this report. Other contributors were Wayne Markman and Kim Wagner.

SETTING THE AGENDA

NESDA President Markman announced the dual purposes of the meeting: (1) to discuss the state of today's service industry, and (2) solicit input to improve the value of the annual National Professional Service Convention.

He paraphrased the written preamble to the meeting agenda, as follows:

"Most manufacturers need a healthy independent service network to honor your commitments to the consumers of..." (continued on PS-2)
your products. At NPSC '99, many of you shared some valuable insights with our members, on how they might better survive today's business climate. You stressed the need for servicers to become computerized, to get on-line, and to have their service center certified for quality service. You said that the future of service is in digital, HDTV, and systems. We agree with much of what you said.

"However, many servicers have spent the necessary funds to become fully computerized, and have gone on-line. Many have also made the substantial investment to certify their service center. Yet, with the eroding profit structure for consumer electronics products, and the shrinking dealer network, it's difficult for them to amortize their investments. And it will be some time before HDTV, and the other promises of large-screen video become a profit factor in the service community. We have concerns that many good servicers won't be around when you need them in the 'more profitable' future."

DISAPPEARING SERVICE CENTERS

Some of the following discussion substantiated that the numbers of dealers is indeed rapidly declining. And it was noted that the business closings and bankruptcies included many large and formerly profitable service centers. Kim Wagner of Tritronics said that, for the first time, her company was having write-offs for some previously large companies that have closed. Jose Garcia of Philips confirmed that his company was losing 50 to 60 servicers per month. George Weiss, editor of the ESDA (IL) Newsletter informed the group that there has always been a certain amount of returned mail due to business closings or deceased members and subscribers. Laterly, however, the number of returned copies has reached "alarming" proportions.

OUTSIDE PRESSURES

Since the failed businesses include both large and small service centers, as well as well-run and previously profitable organizations, the blame can't be placed solely on poor management. It is common knowledge that increased product reliability has drastically reduced the numbers of failed out-of-warranty units. It is also common knowledge that the low price of new consumer products, versus the artificially high price of replacement parts has further and more dramatically limited the number of failed out-of-war-

ranty units offered for repair. At the same time, the escalating costs of doing business, and the low, below-profit repair rates offered for in-warranty service, severely restricts the potential for service company profits.

The questions that these revelations lead to formed the topics of the fact-seeking agenda. The first item up for discussion was: "What can the remaining servicers do NOW to remain profitable in light of the eroding prices on many products, and the vanishing dealer network?"

PROFIT SOURCES

Mr. Garcia suggested that servicers within market segments might merge their companies, or form cooperatives to combine income sources while achieving reductions in overhead expenses. Some other MRs suggested soliciting service business from large retailers, even those that do their own service. A consensus of opinion by the MRs was that only dealers who provide in-home service would survive. But some also felt that the need for highly skilled technicians will diminish, since most products will feature one or more field-replaceable boards.

The SDs were skeptical of the latter thought. Based on previous experiences, they question the manufacturers' ability to consistently supply high-quality, bug-free replacement modules. They feel that competent technicians will continue to be needed to restore the product's optimum performance. Moreover, they question the implied savings in doing field service. That's because an in-home technician — even a less technically qualified one — must have a higher degree of rare people-skills.

WARRANTY PAY VS. ACTUAL COSTS

The next most-discussed agenda item covered the topic of whether warranty or service contract labor rates should be based on a service center's costs of doing business. Pat Narciso detailed many inherent costs, and pointed out how manufacturers' current rates fail to address them. Several SDs addressed the difficulty independents have in attracting competent technicians. This is due to both the sub-profit rates paid by warrantors, and out-of-warranty rates being limited by the low cost of new, replacement products.

One MR opined that servicers' business costs are too high, and that the profitability of the offered rates depend on the ASCs reducing their overhead, and
profit expectations. Another MR said that NESDA should work with the manufacturers to establish the extent of services' needs. Another said that it's unrealistic to expect that big rate increases will "just happen." He stated, and other MRs concurred, that they need valid information on service business costs to take to their cost-conscious superiors when asking for a budget increase.

However, it was pointed out by some MRs that an individual dealer's statement of business costs would not be sufficient by itself. Since business costs vary by region, and even between metropolitan and suburban areas, they need a composite, or average of figures from the different areas. Gene Pilgrim of Zenith revealed that he has started to develop a multi-tiered warranty rate structure, and would be glad to work with NESDA on such a project. When the question was asked as to whether the owner's salary and desired return-on-investment should be included, some MRs said no. They felt this would skew the results.

Many of the MRs seemed to agree that it would help them help their servicers if NESDA could develop such regional averages for product service business costs. They cautioned, however, that it could not be done simply by NESDA. The form, and/or the resultant figures must be authenticated by a nationally recognized accounting firm.

President Markman, and IRC Chair Gerry accepted the charge for NESDA to get this done.

WARRANTY SPECIALIZATION
Wayne Markman noted that many servicers who have been long-time authorized service centers (ASC) are facing difficult choices. Though they might be relatively satisfied with the warranty arrangements on one or more type of product, they can't justify the financial arrangements on other products. His question to the MRs was whether ASCs could decline to service certain products without jeopardizing their ASC status for the original categories?

With but one exception, the MRs were unanimous in saying the servicers could be selective in product choices. One, Mr. Ryan of Sony, said that the decisions would be made case-by-case.

GOOD COMMUNICATIONS
In closing, President Markman expressed the gratitude of NESDA, and of the independent product service industry, for the participation of these execu-

tives, and the support of their respective companies. They came at NESDA's request, and they participated with unusual candor. Their attendance involved some cost in time, money, and risk. Many of these people are aware of the crisis facing independent service. They know how it can affect their future ability to provide quality service to the consumers of their products.

The meeting was relatively informal, and discussion was random and candid. Even without tangible results at this time, the demonstrated concern and intelligent contributions of all the participants is encouraging. NESDA is proud to be the catalyst for meaningful dialog between manufacturers and interdependent servicers. With the support of caring MRs, we will continue our harmonious search for mutually beneficial solutions to common problems.

ONGOING DIALOG
The next Service Industry Summit Meeting is tentatively scheduled to be held at NPSC 2000 in Reno during the first week in August.

NESDA.com
Your Gateway to Repair

Welcome to NESDA.com
The On-line Home of the National Electronics Service Dealers Association representing 50 years of servicing the independent consumer product servicer

If you're a consumer, search for a NESDA Servicer in your area by zip code using our FREE Servicer Locator. NESDA stands for ethical, high-quality repair and customer satisfaction by caring, highly trained, professional repair dealers.

If you're a servicer, you'll find links to major manufacturers, a FREE tech tips service download, and information on how to figure your "cost of doing business" in NESDA's "Members Only" section. Or, sign up for technical training and management seminars at the 2000 National Professional Service Convention in Reno. You can't lose!

For more information — lots of information — visit www.nesda.com. We're here to help.
Schemes Against Your Business

They" are always out there, lurking in the shadows waiting for you to slip up. Before the vultures start circling, make sure your business doesn't fall prey to one of these common scams.

from the Better Business Bureau

Every year, businesses lose millions of dollars to con artists through a host of different tricks and scams. As the workload for the average American employee increases, so does the likelihood of business scheme success.

A recent workplace survey revealed that, in today's bustling business world, 9 out of 10 employees responsible for paying company bills have other major responsibilities in addition to handling accounts payable. Therefore, it's understandable how busy employees can be easy prey for business schemes if they aren't careful.

The best protection against business schemes is knowledge and vigilance.

During the holiday season or summer months, employees who are responsible for paying company invoices sometimes take time off. As a result, con artists may step up their efforts to try to cheat a company during those periods.

Even when persons with financial accountability are present, such as accountants, bookkeepers, etc., nearly 4 out of every 10 companies do not require any second line of oversight; i.e., no other employee is required to provide a second look at or approval of invoices before bills are paid.

Business scheme crooks and shysters owe their success to companies that have careless bookkeeping practices, inattentive or ill-equipped employees, and faulty corporate communications that blind each division of a company to the important responsibilities of another division.

By educating your employees to identify common business scams, you can help them to defend your business against swindlers.

To protect your organization, learn to recognize the most common business scams.

ADVANCE FEE LOAN BROKERS

Businesses in need of commercial loans to expand or even stay afloat may be vulnerable to pitches by loan broker sharks. In a typical advance fee loan scheme, a business will answer an advertisement regarding the availability of money to lend. During a subsequent phone conversation with the loan broker, the client is assured that he qualifies for a loan but is asked to submit an advance fee for the finding of this risk capital or loan. The advance fee is characterized as payment to the broker to prepare a business plan and present it to prospective investors. However, the despicable "broker" all too often makes no effort to find funds as promised. The business never receives the promised loan, and loses all advance fees paid to the broker.

THE GIFT HORSE

This scam tries to create mistrust within an organization. It starts when the caller tricks an employee into accepting a gift—a free promotional item—with a passing reference to merchandise or services. Overpriced, unordered merchandise is received, followed by an invoice with the employee's name. If the business questions whether it must pay the invoice, the employee comes under suspicion. The scheme works if the company believes that the employee blundered into ordering something that must now be paid for.

PHONY INVOICES

Schemers know that a business sometimes makes mistakes or can be careless in its accounting, so they prey on these weaknesses. Lifting names from mailing lists, business registers, the Yellow Pages or published advertisements, swindlers send "pro-forma" invoices for directory listings or advertising in various publications, journals or directories.

The invoice may seem genuine to the company's accounting department, and may even include the name of a company executive as the "authorizing agent." However, the invoice may be a solicitation in disguise and in very fine print contain the following disclaimer: "This is a solicitation. You are under no obligation to pay unless you accept this offer." Although the law states that it is illegal to send such a solicitation without the disclaimer being conspicuous and in large print, there are those who flout the regulations and send disguised solicitations. These phony invoicers are often persistent and may send a company two or more advertising invoices in the hope that the "bill" will be paid twice.

OFFICE SUPPLY & PAPER PIRATES

This scheme covers a wide range of office goods such as photocopying paper, copying supplies or ballpoint pens. The supplier makes a pitch by telephone, fax, or e-mail or a salesperson may just show up on the premises. Usually, the supplier tries to target an employee who is unfamiliar with purchasing procedures. A common approach is for the salesperson to claim "liquidation of stock" or "going out of business." The merchandise, if delivered at all, is often of inferior or quality, greatly overpriced, or may come in twice the amount ordered.

THE BRUSH OFF

When a business or organization complains that it didn't order merchandise or services that are too high, a scam seller reacts in predictable ways:

• Bullying: If you express any uncertainty about whether the supplies or services were ever ordered, the seller argues: "They were ordered. We have a recording of Mr. Jones. If you don't pay, we can take you to court."

• Negotiating: The seller agrees to accept a lower price. The goods and services are so grossly overpriced that almost anything the seller gets is profit. If you complain about price, the seller may say, "You were charged what? They must not have given you the discount for . . . " The seller then tries to negotiate a "better deal." Sometimes, the seller appeals for sympathy: "We really need the business. I'll let you have it for"

• Paying for returned merchandise: The seller claims you can return merchandise if you pay a "restocking fee." In fact, the fee is often more than the goods are worth. Similarly, the seller may try to get you to pay shipping charges to return the items.

THE VANITY PITCH

"Dear Business Executive" begins the letter. "We would like to include you in our next edition of "Who's Who in the (fill in the blank)." All too frequently, such pitches for "Who's Who" type pub-
lications, biographies of successful people, or nominations for awards or special memberships have a catch to them. The executive who is flattered into providing the details of his or her career may be stuck with a subscription fee, a charge for the listing, or an inflated price for buying a publication that does not receive the widespread distribution implied in the initial offer.

PROTECT YOUR BUSINESS

Here are some ways you can protect your business from paying for unsolicited or unordered goods and services:

1. Know your rights. If you receive supplies or bills for services you didn't order, don't pay, and don't return the unordered merchandise. You may treat unordered merchandise as a gift. By law, it's illegal for a seller to send you bills or dunning notices for unordered merchandise, or ask you to return it—even if the seller offers to pay for shipping.

2. Assign designated buyers and document your purchases. For each order, the designated employee should issue a purchase order—electronic or written—to the supplier with an authorized signature and a purchase order number. The order form should instruct the supplier to note the purchase order number on the invoice and bill of lading. The buyer should send a copy of purchase orders to the accounts payable department. Keep blank order forms secure.

3. Check your documentation before paying bills. When merchandise arrives, an employee should verify that it matches the shipper's bill of lading and your purchase order. Pay close attention to brand and quantity. Refuse merchandise that doesn't match internal documentation.

4. Train your staff. Train everyone how to respond to unsolicited phone, fax or email offers for office supplies and services. Advise employees who are not authorized to order supplies and services to refer all such sales pitches to the employee who is authorized to make these purchases. The authorized employee should then properly document any purchase orders.

QUICK CHECK LIST

Before accepting any business proposition, you should do the following:

- Get everything in writing. Require that all in-person, Internet or telephone sales pitches, advertising and charity appeals, or requests for your personal information be made in writing;
- Refuse to make commitments with the unknown. Train employees to refuse to make deals with unknown sellers, especially over the phone, without first verifying the reliability and complaint history of the seller's business with your local Better Business Bureau and other consumer protection agencies.
- Institute strict accounting controls. The handling of invoices, etc. should be centralized and authorization closely checked.
- Comparison Shop. Compare product prices, quality, and company service with other suppliers when offered a deal from an unknown salesperson or company.
- Keep a list of regularly used publications or vendors. Protect your business against schemers who try to take your money by claiming that your company previously used a publication or service.

BOGUS YELLOW PAGE BILLS

Each year, businesses fall prey to phony mail invoices bearing the familiar "walking fingers" and the name "Yellow Pages."

Unscrupulous promoters are soliciting advertising in alternative or nonexistent business directories from unsuspecting businesses. Although these directories are portrayed as legitimate Yellow Pages publications, they are not distributed to the general public; and worse yet, they might not even be published at all.

The Yellow Pages Publishers Association estimates that over $500 million is collected annually by con artists.

(continued on PS-6)
The solicitation to buy ad space in a bogus Yellow Pages directory may look like an invoice and bear the "walking fingers" logo and the Yellow Pages name. Neither the name nor logo is protected by federal copyright or trademark registration. Consequently, con artists can fool businesses into believing that they are dealing with a local, affiliate telephone directory.

The United States Postal Service requires that all solicitations, that are not invoices, conspicuously carry the following notice: "THIS IS NOT A BILL. THIS IS A SOLICITATION. YOU ARE UNDER NO OBLIGATION TO PAY THE AMOUNT STATED ABOVE UNLESS YOU ACCEPT THIS OFFER."

HOW TO PROTECT YOURSELF

Before buying advertising space through a mail solicitation or paying a "Yellow Pages" invoice, do the following:

1. Check out the company and its publication. Call your local Yellow Pages publisher to discover if it is affiliated with the soliciting company.
2. Ask the publisher for a copy of a previous directory edition. If one is provided, contact a sampling of previously listed businesses to find out if the directory was helpful to them.
3. Ask the publisher to provide all information in writing. This includes: where the directory is distributed; the way it is distributed (does each local telephone customer receive it?); how often it is published; and total distribution or circulation figures.
4. Check out the company and its publication. Call your local Better Business Bureau and other state and local consumer protection agencies to determine if any complaints have been filed against the publisher.

To learn more about schemes against business issues, contact the following:

- **Your Local Better Business Bureau:** www.bbb.org/bureaus
- **Federal Trade Commission** at 202-382-4357; www.ftc.gov
- **U.S. Postal Inspection Service** at www.usps.gov/websites/depart/inspect
- **U.S. Small Business Administration** at 1-800-U-ASK-SBA; www.sba.gov
- **Yellow Pages Publishers Assn.** at 303-333-9772; www.yppa.org

If you find any of the web sites listed above to be inactive, please contact the respective organization. Also, be aware that the above phone numbers may be subject to change without notice.

Define Your Market

When you decide to spend money advertising, do you know who you will be advertising to? Get better results by targeting the right market.

by Kathy J. Kobliski

Most entrepreneurs have had experience as employees of similar businesses and already have a grasp of who their customers should be. It is a good idea, even if you think you know who your customers are, to keep track of them on paper — not only during your first weeks and months, but throughout your business life. Your customer base can change with the addition of services or new merchandise to your inventory, a shift in the community caused by the opening or closing of a university, an industry, a military base, or just the natural aging of people in the community. Throughout this article, I refer to the following groups:

18-34, 18-49, 25-54, 50+ Female, Male, Adults

These are basic demographic age ranges and gender groups used by media to divide the population into manageable segments.

At one time 18-34 was rarely used; a wider range of 18-49 covered the bigger group. However, there is a huge difference in the musical taste of an 18-year-old and a 49-year-old — the opposite ends of that spectrum — so the 18-34 group was created to break down the larger segment. It allows us to see where the younger portion of that group tunes in and where the older population settles in to listen. The same principle applies to the overlapping of the other groups. As you read along, keep in mind that they do, and are supposed to, overlap. For instance:

The group 18-34 seems like it could be synonymous with 18-49. But 18-34 represents the younger segment of the two groups, ending a full 15 years short of the larger group. Therefore, a business catering to teens or people in their twenties, would choose to advertise to the 18-34 group rather than choosing the 18-49 group simply because it doesn’t want to waste money reaching people too old for its product.

The 18-49 group fits totally within the 25-54 range. But you will reach the younger portion of that population segment (ending around age 35) by using 18-49 and the older group (35-54) in the 25-54.

The same goes for the 25-54 segment and the 50+ group. The 50+ group represents persons age 50 and up; senior citizens, grandparents, and retired people. While you may reach some of these people using 25-54, you would mainly be reaching people too young for your product or service if your major target group is 50+.

While television stations use slightly different age groups, they will fall into the same ranges as the ones listed above. Your television account executives will know exactly which programming best suits your business based on the information you provide.

This chapter provides guidelines for making the correct demographic age and gender choices for your business. Use those guidelines until you get a feel for the process, and keep in mind the "overlap" factor of the groups as you read.

In the advertising and media-buying class I teach, I offer myself as an example of how complex choosing a primary and secondary (even tertiary) demographic group can be. I am a 52-year-old female. Businesses catering to 50+ year-old females, like those selling cars, clothing, grocery stores, weight-loss clinics and products, vitamins, etc., would know they could send their message to me on the stations and programs catering to the 50+ Female demographic group. Easy, right? Well...

- I am also a wife and I buy men’s clothes. My husband’s hobbies include hunting and railroad modeling.
- I am the mother of 3 sons. The oldest works in a bank and is also a hunter. Along with men’s clothing, I need to know where to purchase hunting items for birthday and holiday gifts. He was married 2 years ago and that involved me in some of the wedding preparations: balloons, invitations to the rehearsal dinner, flowers, the rehearsal dinner itself, tuxedos, hotel accommodations for our out-of-town guests.
- I love to shop for my 27-year-old daughter-in-law, a teacher by trade, whose hobby is photography.
- Last year my husband and I became grandparents and I began purchasing...
NEW GEAR
(continued from page 28)

Desoldering Braid Dispenser

A HAND-HELD TOOL, THE XURON Wickgun Desoldering Braid Dispenser eliminates the handling of braid and getting burned fingers when desoldering. Technicians can dispense, position, and cut off braid with one hand using a thumbwheel and trigger while holding their soldering iron in the other.

Featuring replaceable cassettes, the Desoldering Braid Dispenser speeds up desoldering and cuts braid waste. The cassettes are preloaded with 15 feet of pure copper braid impregnated with water clear flux and are offered in four different braid sizes.

The Xuron Wickgun Desoldering Braid Dispenser is priced at $39.95.

Xuron Corp.
62 Industrial Park Road
Saco, ME 04072-1865
Tel: 207-283-1401
Web: www.xuron.com

Memory Card Reader

QUATECH’S PCD-U USB SMART-Media and Flash Card Reader/Writer provides an easy way to move large blocks of data via a USB port. The PCD-U has two card slots, each designed for a different type of media. The small bottom slot is designed for SmartMedia cards—tiny storage disks, available in 2 to 32 MB versions. The larger upper slot can accommodate a single Type I or Type II PCMCIA Flash card or CompactFlash card.

The PCD-U provides both Read and Write access. High-speed transfer speeds of up to 1.5 MB/sec can be expected. Easy to install, the reader is bus powered, so no external power supply is needed.

The PCD-U USB SmartMedia and Flash Card Reader/Writer has a list price of $99.

Quatech, Inc.
662 Wolf Ledges Parkway
Akron, OH 44311
Tel: 800-553-1170 or 330-334-3154
Web: www.quatech.com
baby clothes, baby furniture, and many other baby items.
- Son #2 is a police officer who is interested in physical fitness. Again, I need to know about men’s clothing, but for a younger demographic than the clothes I buy for my husband. He plays the guitar and likes to go to concerts, things I consider when buying for him.
- Son #3 is 14-years-old. I shop for clothes, movie passes, computer games and programs, video games, school supplies, orthodontist services, and a whole different set of products and services than I deal with for his father and older brothers.

Would you think of advertising to the 50+ Female group for the following items:
- Guitars and accessories
- Baby furniture and baby clothes
- Wedding products and services
- Hunting gear, including guns, ammunition, camouflage outerwear, etc.
- Video games
- Clothes and shoes for 25-27-year-old women

While I may not be your primary audience, I surely am a strong secondary. You must think very hard about the people you want to reach. Your conclusions will not only guide your decisions on where to consistently place your advertising dollars, but will allow you to take advantage of affordable promotions or advertising packages proposed to you by reps of stations or programs you don’t normally consider.

Delivering your message to the right people is the whole story of advertising. The first critical step of determining who the right people are is the one you are about to take. You may find after some thought, that the answer might not be as obvious as you believed.

A car dealer reading this book may go to the next page and circle all of the age choices in Group A because every one who can drive is a potential customer. Then again, he or she may consider one demographic group for brand-new luxury models, another for the more economical models and still another for used cars as the secondary market. Other types of businesses will have a very narrow selection for a primary choice and another very specific group circled for the secondary market.

When you feel you have identified your primary and secondary customers, circle the correct choices from Groups A and B. You may need to circle more than one age choice from Group A. From Group B, you will circle only one option.

Does your business lend itself primarily to males, females, or both (in which case you will circle Adults). You will now use this information to identify radio and television stations and publications targeting the groups you have selected. These choices are the basis for all of your media planning and media buying. This is the information from which all advertising decisions are made, so give careful thought to your selections.

Describe your customers by circling the appropriate choices from Groups A and B. You may need to circle more than one choice from Group A. To simplify the demographic choices you need to make and compensate for the overlapping, use the following guidelines until you develop a feel for the process:
- If you estimate your customers to be 12-24 years of age, circle the 18-34 group.
- If you estimate your customers to be 25-35 years of age, then circle the 18-49 group.
- If you estimate your customers to be 36-50 years of age, circle 25-54.
- If you estimate them to be over 50 years of age, circle the 50+ group.

Primary Market
Group A-Age Group B-Gender
18-34 Male
18-49 Female
25-54 Adults (Male & Female)
50+

Secondary Market
Group A-Age Group B-Gender
18-34 Male
18-49 Female
25-54 Adults (Male & Female)
50+

A Customer Information Worksheet will track changes in your customer base and provide facts you need to make proper advertising decisions. At least twice a year for a 3- or 4-week period, keep these worksheets by your register on a clipboard. Ask for each purchaser’s zip code, fill in the gender section and estimate the age. Analyzing this information will provide, along with the demographic facts for selecting radio and television stations, the zip code data you need to help you with direct mail and outdoor advertising. It will allow you to evaluate changes in your customer base and respond accordingly.

After each sheet is completed, total the columns and list in order the top 5 zip codes, the number of males and females, and the number of people falling into each age group at the bottom of the page. As you begin analyzing your Customer Information Worksheet, the results will either validate your original assessment of who your customers are or give you a clearer picture of them. If, over time, the numbers in the columns change, you will be ready to react not only with your service or product lines, but with your advertising decisions.

A small budget doesn’t allow much experimentation, and common sense dictates that you target your primary audience first, then the secondary group. Start by reaching the people closest to your location and then work your way out. Various forms of advertising let you be geographically specific as well as demographically specific, such as direct mail, some forms of print, outdoor advertising, and even cable TV.

Tip: Does your business require you to enter customers’ homes for estimates, cleaning, or installations? Be aware of what station the radio is tuned to or what program is on the television when you are there. Keep a list.

Full convention registration includes all programmed meals, banquets, door prize drawings, trade show, dealer/manufacturer meetings, seminars and workshops. Activities may be scheduled for optional participation at an extra cost. There is no convention youth program. However, children 17 and under are free.

Name ________________________________
Firm Name ________________________________
Address ________________________________
City __________________________ State __________
Zip _______ Phone _______

Member of (please check the appropriate boxes below):
☐ NESDA; ☐ ISCT; ☐ PSA; ☐ NARDA/NASD; ☐ Non-Member;
☐ Instructor; ☐ Speaker; ☐ Distributor; ☐ Manufacturer; ☐ Sales Rep;
☐ Press; ☐ Dealer; ☐ Technician; ☐ Other ______

Below, please print legibly your name, and the names of all other registrants (including nicknames) as they are to appear on the registration badges:

Check box if first NPSC

☐ Full Name (The one name you want in large letters) ________________________________
☐ Badge Name ________________________________

Numbers of Participants/Length of Registration

<table>
<thead>
<tr>
<th># Adults Full:</th>
<th># Adults 3-Day:</th>
<th># Adults Daily:</th>
<th>Total No. of Days:</th>
</tr>
</thead>
<tbody>
<tr>
<td># Children Full:</td>
<td># Children 3-Day:</td>
<td># Children Daily:</td>
<td>Total No. of Days:</td>
</tr>
</tbody>
</table>

Make your check payable to NESDA
☐ Visa ☐ MasterCard No. ___________ Exp. ___________ Signature: ___________

Special Room Rates: Deluxe room rates at John Ascuaga’s Nugget Hotel are $89 single or double: $10 per person over 2 in the same room, max. 4. Children 18 years and under stay free with parents. Rates do not include room tax. Rooms are subject to availability. You may call the Nugget directly to make your reservations at 800-648-1177 (tell them you’re reserving under the National Professional Service Convention). Due to a city-wide celebration the week prior to NPSC 2000, our room-block does not begin until Sunday, August 6th. Hotel reservations beginning prior to August 6th are on your own. To guarantee a room at John Ascuaga’s Nugget Hotel, reservations MUST be made by June 30.

REFUND POLICY: Register in advance. If find that you have to cancel — any time prior to convention — all money prepaid will be refunded except for a 10% processing fee per registered person.
ADVERTISING INDEX

Poptronic does not assume any responsibility for errors that may appear in the index below.

<table>
<thead>
<tr>
<th>Free Information Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abacom Technology</td>
<td>71</td>
</tr>
<tr>
<td>ABC Electronics</td>
<td>83</td>
</tr>
<tr>
<td>215 All Electronics</td>
<td>110</td>
</tr>
<tr>
<td>Allison Technology</td>
<td>86</td>
</tr>
<tr>
<td>Amazon Electronics</td>
<td>99</td>
</tr>
<tr>
<td>American Eagle Publications</td>
<td>86</td>
</tr>
<tr>
<td>Andromeda Research</td>
<td>96</td>
</tr>
<tr>
<td>Arrow Technologies</td>
<td>99</td>
</tr>
<tr>
<td>AVEN Tools</td>
<td>79</td>
</tr>
<tr>
<td>Beige Bag Software</td>
<td>107</td>
</tr>
<tr>
<td>Bosil Software, Inc.</td>
<td>94</td>
</tr>
<tr>
<td>C&S Sales, Inc.</td>
<td>84</td>
</tr>
<tr>
<td>CCTV Outlet</td>
<td>111</td>
</tr>
<tr>
<td>Circuit Specialists</td>
<td>95</td>
</tr>
<tr>
<td>CLAGKK, Inc. CV3, 17, 76</td>
<td>35</td>
</tr>
<tr>
<td>Cleveland Inst. of Electronics</td>
<td>35</td>
</tr>
<tr>
<td>Command Productions</td>
<td>93</td>
</tr>
<tr>
<td>Command Productions</td>
<td>80</td>
</tr>
<tr>
<td>Computer Monitor Maintenance</td>
<td>102</td>
</tr>
<tr>
<td>Conitec Data Systems</td>
<td>111</td>
</tr>
<tr>
<td>EDE Spy Outlet</td>
<td>106</td>
</tr>
<tr>
<td>Electronic Goldmine</td>
<td>100</td>
</tr>
<tr>
<td>Electronic Workbench</td>
<td>CV4</td>
</tr>
<tr>
<td>Electronic Tech. Today</td>
<td>60</td>
</tr>
<tr>
<td>Electrionics Express</td>
<td>89</td>
</tr>
<tr>
<td>EMAC Inc.</td>
<td>80</td>
</tr>
<tr>
<td>Engineering Express</td>
<td>94</td>
</tr>
<tr>
<td>Foley-Belsaw</td>
<td>91</td>
</tr>
<tr>
<td>Future Horizons</td>
<td>80</td>
</tr>
<tr>
<td>Gateway Products</td>
<td>99</td>
</tr>
<tr>
<td>General Device Instruments</td>
<td>102</td>
</tr>
<tr>
<td>Globaltech Distributors</td>
<td>98</td>
</tr>
<tr>
<td>Grantham College of Eng.</td>
<td>102</td>
</tr>
<tr>
<td>Howard Electronics</td>
<td>90</td>
</tr>
<tr>
<td>ICS</td>
<td>82</td>
</tr>
<tr>
<td>Information Unlimited</td>
<td>81</td>
</tr>
<tr>
<td>Intec Automation</td>
<td>98</td>
</tr>
<tr>
<td>Intelligence I² Inc.</td>
<td>99</td>
</tr>
<tr>
<td>International Electronics Corp.</td>
<td>104</td>
</tr>
<tr>
<td>International Hanbaw, Co., Ltd.</td>
<td>3</td>
</tr>
<tr>
<td>Intrinsics</td>
<td>106</td>
</tr>
<tr>
<td>Island Logix</td>
<td>97</td>
</tr>
<tr>
<td>IVEX Design</td>
<td>101</td>
</tr>
<tr>
<td>J&M Microtek</td>
<td>99</td>
</tr>
<tr>
<td>J-Tron</td>
<td>98</td>
</tr>
<tr>
<td>Jameco</td>
<td>CV2</td>
</tr>
<tr>
<td>KNS Instruments</td>
<td>106</td>
</tr>
<tr>
<td>Lynxmotion</td>
<td>111</td>
</tr>
<tr>
<td>M²L Electronics</td>
<td>83</td>
</tr>
<tr>
<td>McGraw-Hill</td>
<td>11</td>
</tr>
<tr>
<td>MCM Electronics</td>
<td>87, 105</td>
</tr>
<tr>
<td>Mendelsons</td>
<td>99</td>
</tr>
<tr>
<td>Merrimack Valley Systems</td>
<td>103</td>
</tr>
<tr>
<td>microEngineering Labs</td>
<td>102</td>
</tr>
<tr>
<td>Midwest Laser</td>
<td>96</td>
</tr>
<tr>
<td>Modern Electronics</td>
<td>106</td>
</tr>
<tr>
<td>Mondo-tronics</td>
<td>82</td>
</tr>
<tr>
<td>Mouser Electronics</td>
<td>82</td>
</tr>
<tr>
<td>Print Products Int.</td>
<td>93</td>
</tr>
<tr>
<td>Pro Planet</td>
<td>112</td>
</tr>
<tr>
<td>PTS Electronics Corp.</td>
<td>PS-7</td>
</tr>
<tr>
<td>Pulsar, Inc.</td>
<td>88</td>
</tr>
<tr>
<td>Ramsey Electronics</td>
<td>78</td>
</tr>
<tr>
<td>Resources Unlimited</td>
<td>94</td>
</tr>
<tr>
<td>RobotiKits Direct</td>
<td>88</td>
</tr>
<tr>
<td>Roger's Systems Specialist</td>
<td>89</td>
</tr>
<tr>
<td>Secureteck</td>
<td>71</td>
</tr>
<tr>
<td>Scott Edwards Electronics</td>
<td>96</td>
</tr>
<tr>
<td>Sil Walker</td>
<td>83</td>
</tr>
<tr>
<td>Smithy Company</td>
<td>98</td>
</tr>
<tr>
<td>Spectrum Research</td>
<td>83</td>
</tr>
<tr>
<td>Square 1 Electronics</td>
<td>96</td>
</tr>
<tr>
<td>Techniks</td>
<td>98</td>
</tr>
<tr>
<td>Technological Arts</td>
<td>111</td>
</tr>
<tr>
<td>Telux</td>
<td>108</td>
</tr>
<tr>
<td>Test Equipment Depot</td>
<td>97</td>
</tr>
<tr>
<td>Tie Pie Engineering</td>
<td>104</td>
</tr>
<tr>
<td>Timeline</td>
<td>107</td>
</tr>
<tr>
<td>UCANDO Videos</td>
<td>86</td>
</tr>
<tr>
<td>Ultima Associates</td>
<td>82, 102</td>
</tr>
<tr>
<td>Velleman</td>
<td>92</td>
</tr>
<tr>
<td>Vision Electronics</td>
<td>82</td>
</tr>
<tr>
<td>World Star Technologies</td>
<td>98</td>
</tr>
<tr>
<td>World Wyde</td>
<td>98, 99</td>
</tr>
<tr>
<td>XX Box</td>
<td>83</td>
</tr>
<tr>
<td>Zagros Robotics</td>
<td>108</td>
</tr>
<tr>
<td>Zorin</td>
<td>99</td>
</tr>
</tbody>
</table>

ADVERTISING SALES OFFICES

Gernsback Publications, Inc.
275-G Marcus Blvd.
Hauppauge, NY 11788
Tel. 631-293-3000
Fax: 631-293-3115

Larry Steckler
Publisher (ext. 201)
e-mail: advertising@gernsback.com

Adria Coren
Vice President (ext. 208)

Ken Coren
Vice-President (ext. 267)

Marie Falcon
Advertising Director (ext. 206)

Adria Coren
Credit Manager (ext. 208)

For Advertising ONLY
EAST/SOUTHEAST

Megan Mitchell
9072 Lawton Pine Avenue
Las Vegas, NV 89129-7044
Tel. 702-240-0184
Fax: 702-838-6924
e-mail: mmitchell@gernsback.com

MIDWEST/Texas/Arkansas/Oklahoma

Ralph Bergen
One Northfield Plaza, Suite 300
Northfield, IL 60093-1214
Tel. 847-559-0555
Fax: 847-559-0562
e-mail: bergenrj@aol.com

PACIFIC COAST

Megan Mitchell
9072 Lawton Pine Avenue
Las Vegas, NV 89129-7044
Tel. 702-240-0184
Fax: 702-838-6924
e-mail: mmitchell@gernsback.com

Poptronics Shopper

Megan Mitchell
National Representative
9072 Lawton Pine Avenue
Las Vegas, NV 89129-7044
Tel. 702-240-0184
Fax: 702-838-6924
e-mail: mmitchell@gernsback.com

Subscription/ Customer Service/ Order Entry
Tel. 800-827-0383
7:30 AM - 8:30 PM CST

www.americanradiohistory.com

TEST PROCEDURES for Basic Electronics

- **Build Your Own Home Lab.** #61108 -- $29.95

 Shows you how to assemble an efficient working home lab, and how to make it pay its own way. Includes projects for creating your own test instruments too. 7 3/8 x 9 1/4", 249 pp, paperback.

Oscillator Circuits and Projects. #61111 -- $24.95

A textbook and project book for those who want to know more about oscillator circuits. You can build and enjoy the informative and entertaining projects detailed in this book. Complete information is presented in an easy-to-follow manner. 7 3/8 x 9 1/4", 249 pp, paperback.

Troubleshooting and Repair Guide to TV. #61146 -- $34.95

Repairing and troubleshooting a TV is very simple and economical with help from the information in this book. It is the most complete and up-to-date TV repair book available, with tips on how to handle the newest circuits. 8 1/2 x 11", 263 pp, paperback.

Complete VCR Troubleshooting and Repair. #61102 -- $34.95

Though VCRs are complex, you don't need complex tools or test equipment to repair them. This book contains sound troubleshooting procedures that guide you through every task. 8 1/2 x 11", 184 pp, paperback.

Complete Camcorder Troubleshooting and Repair. #61101 -- $34.95

Learn everything you need to know about the upkeep and repair of video camcorders. Start by examining camcorder troubleshooting procedures, then move into more advanced repair techniques. 8 1/2 x 11", 208 pp, paperback.

Computer Monitor Troubleshooting and Repair. #61100 -- $34.95

This book can save you the money and hassle of computer monitor repair by showing you how to fix it yourself. Tools, test instruments, how to find and solve problems are all detailed. 8 1/2 x 11", 308 pp, paperback.

Joe Carr's Circuit Toolkit. #61181 -- $29.95

Easy-to-build, useful circuits from Carr's workbench to you. They will spark new ideas in your day-to-day use of circuits and help solve frustrating problems. 256 pp, paperback. Contact Jim Surface.

Please circle the products you would like to buy on the page above, calculate the total cost, include shipping charges, using in the form below and send it to us. Please allow 4 - 6 weeks for standard delivery.

Name:

Address:

Zip:

Telephone:

Number:

Expiration Date:

Card Type:

Signature:

Please charge my credit card for:

Shipping Charges in USA

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total price of books</td>
<td>$5.00</td>
</tr>
<tr>
<td>Shipping (see chart)</td>
<td>$5.00</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$10.00</td>
</tr>
<tr>
<td>Sales Tax (NYS only)</td>
<td>$7.00</td>
</tr>
<tr>
<td>Amount Enclosed</td>
<td>$17.00</td>
</tr>
</tbody>
</table>

SORRY No orders accepted outside of USA & Canada.

www.americanradiohistory.com
The world's most popular simulator just got better.

MULTISIM SCHEMATIC CAPTURE AND SIMULATION

- **Flexible Symbol Editor** NEW
 - To add or modify symbols for any component.
- **Power Meter** NEW
 - Works just like with a real Wattmeter.
- **1000 New Components** NEW
 - New families include Electromechanical, Connector, Wideband Opamp, and Tiny Logic.
- **Editable Footprint Field** NEW
 - Add or change default footprint values directly from the schematic.
- **New Analyses** NEW
 - AC sensitivity and DC sensitivity help determine the stability of your design.
- **Multiple Instruments** NEW
 - Now you can have more than one copy of an instrument on the screen at once.
- **Enhanced Wiring** NEW
 - Improved connections to pins and more intelligent autowiring.
- **Analysis Wizards** NEW
 - Guide you through an analysis, making it easier than ever to take advantage of these powerful functions.

Virtual Instruments
- Includes oscilloscope, function generator, multimeter, bode plotter, word generator, and logic analyzer.

9 Powerful Analyses
- To analyze circuits in ways just not possible with real instruments. Includes DC & AC operating point, transient, fourier, noise, DC sweep and AC & DC sensitivity.

5,000 Components
- Wide selection of commonly used components, all complete with simulation, symbol and footprint information.

Full-Featured Schematic Capture
- Industry's easiest-to-use design entry is ideal for generating high-quality schematics.

Changes on the Fly
- The world's only simulator that lets you tweak your circuit during simulation for instant feedback.

Analog and Digital SPICE Simulation
- Fast, accurate SPICE simulation with no limit on circuit size.

Custom Model Support
- Edit existing models to create new parts, or import components as SPICE models from vendors.

ultiBOARD POWERFUL PCB LAYOUT

- **Fast Autorouting**
 - Multi-layer autorouter with configurable options for customized performance.
- **Real-Time DRC**
 - Automatic Design Rule Check prevents costly errors by monitoring the size and clearance of pads, vias and traces.
- **Ideal for all Boards**
 - Built-in board editor to create any shape board up to 50" X 50" in size, with as many as 32 layers.
- **Multiple Output Formats**
 - Outputs to the formats you need including Gerber, DXF, plotters, printers, and more.
- **Tight Integration with Multisim**
 - Supports forward and back annotation with Multisim, so that the programs share important design information.
- **Flexible Editing**
 - Full support of power and ground planes, with or without thermal relief. "Reroute while move" to move copper without losing connectivity.

ultiboard $399

Call for upgrade pricing

ultiBOARD $399

For a FREE demo visit www.electronicsworkbench.com

ULTIBOARD POWERFUL PCB LAYOUT

- **Fast Autorouting** Multi-layer autorouter with configurable options for customized performance.
- **Real-Time DRC** Automatic Design Rule Check prevents costly errors by monitoring the size and clearance of pads, vias and traces.
- **Ideal for all Boards** Built-in board editor to create any shape board up to 50" X 50" in size, with as many as 32 layers.
- **Multiple Output Formats** Outputs to the formats you need including Gerber, DXF, plotters, printers, and more.
- **Tight Integration with Multisim** Supports forward and back annotation with Multisim, so that the programs share important design information.
- **Flexible Editing** Full support of power and ground planes, with or without thermal relief. "Reroute while move" to move copper without losing connectivity.