Electronic Servicing

Special test equipment issue

RCA CTC99 features

Servicing horiz. sweep
Better than brand new.

Send us your worn out tuners and bad modules. Your Zeniths. Your RCAs. Your Sonys. Your Quasars. Any make, any model. They’ll be returned, rebuilt, better than brand new.

*PTS tuner and module rebuilding includes original or superior parts, expert workmanship, same day service, protective packaging and a one-year limited warranty.

PTS ELECTRONICS, INC.
The Only Name You Need To Know

Circle (1) on Reply Card

For the location nearest you, see Servicenter Guide on next page.
Electronic Servicing

Editorial, advertising and circulation correspondence should be addressed to P.O. Box 12901, Overland Park, KS 66212 (a suburb of Kansas City, MO; (913) 888-4664.

EDITORIAL
Bill Rhodes, Editor
Carr Babcock, Editor
Mary Thornburg, Associate Editor

ART
Dudley Rose, Art Director
Linda Franzblau, Graphic Designer

CIRCULATION
John C. Arnst, Director
Evelyn Rogers, Manager

ADMINISTRATION
George H. Seferovich, President
George Laughd, Publisher

ADVERTISING
Cameron Bishop, Marketing Director
Pam Morris, Production

Regional advertising sales offices listed near Advertiser’s Index.

Member, American Business Press

Member, Audit Bureau of Circulation

Electronic Servicing (USPS 462-050) (with which is combined PF Reporter) is published monthly by Intertec Publishing Corp., 9221 Quivira Road, Overland Park, KS 66212. Controlled Circulation Postage paid at Shawnee Mission, KS 66201. Send Form 3579 to P.O. Box 12901, Overland Park, KS 66212.

Electronic Servicing is edited for technicians who repair home-entertainment electronic equipment (such as TV, radio, stereo and record players) and for industrial technicians who repair defective production-line merchandise, test equipment, or industrial controls in factories.

Subscription prices to qualified subscribers:
A year—$10,2 years—$16, 3 years—$20; in the USA and its possessions. All other foreign countries: 1 year—$13, 2 years—$22. Subscription prices to all others: 1 year—$25, 2 years—$50, in the USA and its possessions. All other foreign countries: 1 year—$34, 2 years—$68. Single copy price $2.25; back copies $3.00. Adjustment necessitated by subscription termination to single copy rate. Allow 6 to 8 weeks delivery for change of address. Allow 6 to 8 weeks for new subscriptions.

Model 1250 $795

- Generates NTSC color bars with or without -131 signal; five step linear staircase (with high or low chroma); dot, cross-hatch, dot-hatch, center cross and 8 raster patterns
- External video input modulates rf or i-f carrier outputs
- Crystal controlled rf, i-f, NTSC sync
- 4.5MHz audio intercarrier modulation: selectable 1kHz or external

The B&K-PRECISION 1250 is a state-of-the-art generator intended for color broadcast, CATV and industrial applications. It’s simple operation also makes it a time-saving tool for aligning and trouble-shooting video tape recorders. Even if you’ve never used an NTSC generator before, the B&K-PRECISION 1250 will give you the master’s touch for color.

Available for immediate delivery at your local B&K-PRECISION Distributor.
Reports from the Test Lab
By Carl Babcoke, Editor
Sencore LC-53 inductor/capacitor tester and CA-55 capacitor analyzer were operated under typical shop conditions. Both performed very well.

Digitization of low-frequency signals
By E. Stanley Busby, Jr., Ampex Corporation
Various methods of converting analog signals to digital are explored.

Test equipment roundup
By the Electronic Servicing staff
Accurate and dependable test equipment is needed now more than ever. Some unique instruments are spotlighted. Use the Reader's Service numbers to request information or catalogs.

Buzz test that failed
By Wayne Lemons
The buzz test used by audio technicians for years has some serious shortcomings, as this tech discovered.

Tips for servicing horizontal sweep
By Homer L. Davidson
These servicing techniques are for tube-type color receivers, because so many of them continue to require repairs.

RCA CTC99 features and “hot” power supply
By Gill Grieshaber
This first article of a series about the CTC99 and CTC101 RCA color TVs provides general information plus explanations of the “hot” power supply and the start-up circuit.

Electronic Scanner
Symcure
People in the News
Reader's Exchange
Test Equipment
New Products
Catalogs & Literature
Photofact Bulletin

About the cover
Graphic design by Linda Franzblau

©Copyright, 1979, by Intertec Publishing Corporation. All rights reserved. Material may not be reproduced or photocopied in any form without written permission of publisher.
With the lowest noise figure on the market for a crisp, clean, clear T.V. reception.

Rather than a bigger, more expensive antenna, a booster may be just what your customers need to get a better picture. Your distributor can tell you. And when he does, ask him about the new line of Galaxy boosters from Blonder-Tongue.

He’ll tell you they outperform any other booster made. With a lower noise figure which means less snow...a better picture.

So ask him all about the extraordinary new line of boosters Blonder-Tongue has just come out with. They’re getting a great reception. Because that’s precisely what they give.

Ask your electronics distributor for more information.

Circle (6) on Reply Card
DiscoVision Associates has been established by MCA and International Business Machines (IBM) to manufacture and market videodisc players and videodiscs. IBM has several patents for computer disc storage while MCA owns and produces many films and TV shows. MCA's present distribution of videodiscs for Magnavox Magnavision players is not affected by the agreement with IBM.

Color TV sales to dealers during August were down 11.7% from those of August, 1978; while for the first 34 weeks of 1979, color sales were 0.4% lower than for the same period in 1978. Monochrome TV sales increased by 13.6% and 4.2% respectively for the same periods. Sales of home videocassette recorders increased in August by 61.1% over sales in August of 1978. For the first 34 weeks of 1979, videocassette sales were 29.6% higher than those of 1978.

Magnavox is expected in early 1980 to begin selling a new videocassette recorder built by N. V. Philips, the parent company of Magnavox. The 4-hour machine has potential for 8-hour operation plus 16-day programming of TV stations, fast motion, slow motion and stop action. Recently, 42 technicians attended extensive Magnavox videodisc training sessions at Fort Wayne, IN. This training was in anticipation of the 1980 national marketing of Magnavision videodisc players.

RCA reported an increase of 12% in color TV sales to dealers for the 1979 third quarter.

Sampo Corporation plans to manufacture television receivers in the United States, beginning in 1980. A subsidiary of the Taiwan company is to produce console color sets first. About 10% of Sampo's output now is through private-label merchandise.

Trends in audio equipment displayed at the Japan Audio Fair included cassette decks for the new metal tape, more pulse-code-modulation (PCM) adapters that permit super-hi-fi audio recording on videocassette machines, more digital displays on tuners and amplifiers, a mini-cassette deck using metal-particle tape, and remote controls of tuners, amplifiers and tables. Several prototypes were displayed. Sanyo Electric demonstrated a home cassette audio deck with PCM giving a signal-to-noise ratio of 85dB in a modified Elcaset cassette; and Pioneer Electronic showed a PCM tape deck using Beta format without the video function.

Electronic controls and digital readouts are used extensively in new 1980 autos. Optional equipment for Ford Thunderbird and Cougar includes a cluster of electronic instruments with warning lights, a bar-chart fuel gauge and digital-readout speedometer. Engines of the Continental Mark VI have third-generation electronic engine controls, called EEC III, that regulate fuel-air ratio, secondary air to the exhaust-emission system, purging of the evaporative cannister, ignition timing, and EGR flow. Electronic keyless-entry systems are offered as options on some Ford models. A row of five pushbuttons must be pressed in a certain sequence to unlock one door, all doors or the deck lid.
Symptoms and cures compiled from field reports of recurring troubles

Chassis—RCA CTC90
PHOTOFACT—1710-2

Symptom—Shutdown occurs erratically when brightness is increased
Cure—Substitute L402 as a test

Chassis—RCA CTC87
PHOTOFACT—1778-2

Symptom—No sound, raster or horiz sweep
Cure—Substitute Q38 as a test

Chassis—RCA CTC81
PHOTOFACT—1615-2

Symptom—Insufficient height with bowed scanning lines at top
Cure—Check for bad soldering or open windings around T501

Chassis—RCA CTC86
PHOTOFACT—1703-1

Symptom—Narrow width
Cure—Check resistor R411, and replace it if increased in value

November 1979 Electronic Servicing 5
$140 Gets It All.

We just knocked down the last reasons for not going digital in a multimeter. Fast continuity measurement. And price.

Beckman’s exclusive Insta-Ohms™ feature lets you do continuity checks as fast as the analogs. And Beckman’s superior technology and experience let you own this beauty for such a reasonable price.

Of course you get a lot more. Like 7 functions and 29 ranges including 10 amp ac/dc current capability. 0.25% Vdc accuracy. In-circuit resistance measurements and diode/transistor test function. Two years’ typical operation from a common 9-volt battery. In other words, all the features you want in one hand-held unit of exceptional good looks and design.

With 1500 Vdc overload protection, 100% instrument burn-in, plus rugged, impact-resistant case, you’re assured of the utmost in dependability and long-term accuracy. You get a tough meter that keeps on going, no matter how tough the going gets.

So visit your dealer today and get your hands on the DMM that does it all. Or call (714) 871-4848, ext. 3651 for your nearest distributor.

A. J. “Jerry” Leeper has been appointed manager, new market development of B&K-Precision. Previously, Leeper was president of AJL-Distribution. Leeper has also held marketing management positions with C.D. Searle & Company, Rohm and Haas and was a field engineer with Beckman Instruments.

George U. Messner, southern region sales manager for Honeywell’s Micro Switch division, is the recipient of the Meritorious Achievement Award presented annually by the Textile Industry Committee of the Institute of Electrical and Electronics Engineers. Messner has been active in IEEE since 1952, and is currently a member of the committee’s executive council.

Four vice presidents have been named to the reorganized and renamed Memorex consumer products group. The vice presidents and their departments are: Howard F. Earhart, operations; Harry G. Hensman, engineering; John R. Humphreys, consumer sales; and Barry K. Berghorn, consumer and business media products.

Switchcraft has named William Gautreau director of manufacturing. Gautreau was director of materials control.

The Electronic Representatives Association, New York chapter, has announced the formation of a communications, audio/visual, professional electronics products (CAP) division and named Joel H. Schwartz, of L-C-A Sales, as chapter vice president, CAP division.

Gerald M. Mills has been named vice president of sales and marketing at Littlefuse. Previously, Mills was director of sales for Switchcraft.

RCA has named Dr. James Vollmer a group vice president. He is responsible for the Government Systems and Commercial Communications divisions. Vollmer is a former physics professor who has been with RCA for 20 years.
There is no charge for a listing in Reader's Exchange, but we reserve the right to edit all copy. Due to the limited amount of space for this department, ads must show no more than five items. If you can help with a request, write directly to the reader, not to Electronic Servicing.

For Sale: B&K-Precision model 1077B, excellent cond., $425; Sencore SM-158 speed aligner, new, $225; Heath KT 3120 FET/transistor tester, $80; Heath IG-5218 sine/square audio generator, never used, $90; Conar solid-state scope with RCA dual-tracer and probes, like new, $225. A. Dolgins, 1905 Woodley St., Arlington, VA 22207.

Needed: Schematics and/or manual for Edison radio receiver model R5 and Edison power unit type 8P, receiver type 7R. These are all one unit. Will buy, or copy and return. Jerome Galiley, 1303 Justin, Cardiff, CA 92007.

For Sale: B&K-Precision model 283 digital multimeter with battery pack, $140 post paid; Leader LCR-740 transistorized LCR bridge, like new, $220 postpaid. H. Geller, 12622 N.E. 3rd St., Bellevue, WA 98007.

For Sale: Precision test master series 10-20 of tube and set tester complete with panel but no case, $55. E. R. Bushman, 207 N. Broadway, Grand Marais, MN 55604.

For Sale: Photofact folders 1-100 in ten original loose leaf binders plus 44 additional sets, $50 or best offer; Sams record changer manual (1947), $5; Sams communications manual, $5. Sidney Smith, 629 Avey, Brooklyn, NY 11235.

For Sale: Riders Troubleshooter’s Manual Volumes 1 through 19, with index, and about 500 tubes for old radios. Art’s Radio R.R. 1 Box 15, Mascoutah, IL 62258.

Needed: Parts supply source for a Shetland (now out of business) electric blender. M. B. Danish, Mike’s Repair Service, P.O. Box 217, Aberdeen Proving Ground, MD 21005.

For Sale: Sencore CR-31, with manual and all sockets, $295; Sencore SM-152, with cables, manual and record, $250; Heath GR900 modular color TV, with remote and six books, $175; other equipment available. All prices plus shipping. Mario Rosignuolo, 368 S. Hill Blvd., Daly City, CA 94014.

Needed: Part number 94D351-1 Admiral horizontal oscillator coil for TK-10-2A chassis. R. B. Stuart, 18 Dangle Ave., Akron, OH 44312.

Needed: Service manual and schematic for Tektronix 465 scope. Will buy, or copy and return. Alex Minelli, 718 Michigan St., Hibbing, MN 55746.

For Sale: CB shop equipment including Sencore CB-42 analyzer, Sencore PS-43 Porta-Pack power supply, Conar model 255 scope, Conar signal tracer, substitution box, meters, probes and NRI course, Almost new with probes, $1500 or best offer. John Groome, Route 7, Box 340B, Danville, VA 24541.

For Sale: More than 90 car radio vibrators, covers 1930s to 1950s new, most in original boxes. $200 plus shipping. Damascus Electronics, 12240 S.E. Wildwood Dr., Gresham, OR 97030.

For Sale: Solar model CE capacitor Exam ETER with manual, used very little, $17.50; Conar signal generator model 280 (170kHz to 60 MHz). Practically new, $30; NRI TV and radio servicing course, complete with all kits (kits for 19-inch solid-state TV including cabinet, never assembled), $250. David Bloom, 21 Dodge Rd., Hyde Park, MA 02136.

Needed: Power transformer part number 54-26 for a model 0-10 or 0-12 Heathkit scope. Everett Poff, 4010 Emerson Rd. Sterling, IL 11414.

Needed: Cushman CE-3 (or better) monitor. Martha Lake Electronics, 16521 13th West, Lynwood, WA 98036.

For Sale: RCA new dynamic transistor FET tester type WT-524A, $80; Heathkit model HM-102, HF-RF power & VSWR meter, $30; RCA constant voltage dc-power supply type WP-704A, $80. W. D. Shevtchuk, 1 Lois Avenue, Clifton, NJ 07014.

Needed: One number 886 antique ballast radio tube, or information about a substitute. Herby’s Electronics, P.O. Box 176, Grainfield, KS 67737.

For Sale: Mini Products amateur mini quad antenna, model HQ-1 covering 6-10-15 and 20 meter bands, $80. Very good for DX. Prefered local buyers. W. D. Shevtchuk, 1 Lois Avenue, Clifton, NJ 07014.

For Sale: Rider’s radio manuals with complete index, volumes 1 through 22, number 3 missing, sold as a complete set only, $200. Purchaser pays shipping costs. Hanson’s Radio & TV, P.O. Box 28, Almelund, MN 55002.

Needed: Old radio magazines, service manuals, old radio tubes and stock, 1 or 1000. Please include price in first letter. Dallas Swindal, 1112 San Jose Lane, Hanahan, SC 29406.

For Sale: Sencore CG-135 color-bar generator, $40; Natco 3030-I 16mm sound projector, $130; two Victor Animatophone 60-10 16mm sound projectors, both $125. 42 new and used color and B&W TV yokes plus a few flybacks, all $100; Electrovox model KZ 711 intercom with 3 stations, all new, best offer. Danny Brou, 212 Wainwright Road, Pineville, LA 71360.

Needed: Two new 6-V 4-prong vibrators for Ford car radio. Gus Green, 12692 Green St., Boron, CA 93516.

For Sale: TEAC model 33405 four channel, four track tape recorder. One year old, less than 40 hours of use, $900. Shipping prepaid. Lenton Miller, Rt. 1, Walling, TN 38587.

Needed: Service manual for JFD Roto King antenna rotator. Motor unit is RT100 and control is RT100A; service manual for a Textrotron type B plug in; one 17B-B14 horizontal-output tube (or replacement) for Onkyo B&W model 12PCU; service manual for model 403B audio generator by Bryston; and a service manual for a model 257 Simpson VOM. Rejean Mathieu, C/O Hydro Quebec Telecome, Chantier E.O.L., Bare James, Quebec JOY-2YO.

For Sale: CB-42 analyzer, $750; CB-41, $115; DVM-35, $75; RC-167, $75; B&K-Precision model 283 DMK, $125. All instruments are new or like new. Lionel Murmur, 15 Knox Terrace 2C, Wayne, NJ 07470.

For Sale: RCA WT501A transistor checker, in or out of circuit, $35. Ray Paulson, 5657 Mesa Verda, Margate, FL 33063.

Needed: Two secondary control panels for Philco color TV. Model C4861BWA, Chassis 3CS45. This panel has contrast controls. Please advise price, or information as to where I could obtain them. Mike Costello, 40 Whitoway St., St. John's Nfld, Canada A1B 1K2.

Needed: Service manual for JFD Roto King antenna rotator. Motor unit is RT100 and control is RT100A; service manual for a Textrotron type B plug in; one 17B-B14 horizontal-output tube (or replacement) for Onkyo B&W model 12PCU; service manual for model 403B audio generator by Bryston; and a service manual for a model 257 Simpson VOM. Rejean Mathieu, C/O Hydro Quebec Telecome, Chantier E.O.L., Bare James, Quebec JOY-2YO.

For Sale: CB-42 analyzer, $750; CB-41, $115; DVM-35, $75; RC-167, $75; B&K-Precision model 283 DMK, $125. All instruments are new or like new. Lionel Murmur, 15 Knox Terrace 2C, Wayne, NJ 07470.

For Sale: RCA WT501A transistor checker, in or out of circuit, $35. Ray Paulson, 5657 Mesa Verda, Margate, FL 33063.

Needed: Two secondary control panels for Philco color TV. Model C4861BWA, Chassis 3CS45. This panel has contrast controls. Please advise price, or information as to where I could obtain them. Mike Costello, 40 Whitoway St., St. John's Nfld, Canada A1B 1K2.

Needed: Service manual for JFD Roto King antenna rotator. Motor unit is RT100 and control is RT100A; service manual for a Textrotron type B plug in; one 17B-B14 horizontal-output tube (or replacement) for Onkyo B&W model 12PCU; service manual for model 403B audio generator by Bryston; and a service manual for a model 257 Simpson VOM. Rejean Mathieu, C/O Hydro Quebec Telecome, Chantier E.O.L., Bare James, Quebec JOY-2YO.

For Sale: CB-42 analyzer, $750; CB-41, $115; DVM-35, $75; RC-167, $75; B&K-Precision model 283 DMK, $125. All instruments are new or like new. Lionel Murmur, 15 Knox Terrace 2C, Wayne, NJ 07470.

For Sale: RCA WT501A transistor checker, in or out of circuit, $35. Ray Paulson, 5657 Mesa Verda, Margate, FL 33063.
This card is usable until February 1, 1980. Please apply appropriate postage before mailing.

For more information on products or services mentioned in this issue, simply circle the appropriate numbers below, check one box in each column, type or print your name and address and mail.

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

IMPORTANT! Please check your business classification:

Type of Business
Check One:
A. □ Independent Electronic Service Organization
B. □ Retailer with Electronic Service Department
C. □ Independent or Self-Employed Service Technician
D. □ Electronics, Radio, TV Manufacturer
E. □ Industrial Electronic Service
F. □ Wholesaler, Jobber, Distributor
G. □ Other (Specify)

Position
Check One:
H. □ Owner, Manager
I. □ Ser. Manager
J. □ Technician
K. □ Other

Please print plainly:

NAME ___________________________ FIRM ___________________________
FIRM ADDRESS ___________________________
CITY ___________________________ STATE _____ ZIP CODE _____

TELEPHONE: Include area code _______

Electronic Servicing
P.O. Box 17253
Denver, Colorado 80217
Electronic Servicing
P.O. Box 17253
Denver, Colorado 80217

READER SERVICE INFORMATION CARD 11-79

This card is usable until February 1, 1980. Please apply appropriate postage before mailing.

For more information on products or services mentioned in this issue, simply circle the appropriate numbers below, check one box in each column, type or print your name and address and mail.

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

IMPORTANT! Please check your business classification:

Type of Business
Check One:
A. □ Independent Electronic Service Organization
B. □ Retailer with Electronic Service Department
C. □ Independent or Self-Employed Service Technician
D. □ Electronics, Radio, TV Manufacturer
E. □ Industrial Electronic Service
F. □ Wholesaler, Jobber, Distributor
G. □ Other (Specify) ..

Position
Check One:
H. □ Owner, Manager
I. □ Ser. Manager
J. □ Technician
K. □ Other

Please print plainly:

NAME ____________________________ FIRM ____________________________

FIRM ADDRESS ____________________________

CITY ____________________________ STATE __________ ZIP CODE ____________

TELEPHONE: Include area code ____________________________

Want more information?
Circle the numbers of those items of interest to you
Reports from the test lab

Each report about an item of electronic test equipment is based on examination and operation of the device in the ELECTRONIC SERVICING laboratory. Personal observations about the performance, and details of new and useful features are spotlighted along with tips about using the equipment for best results.

By Carl Babcoke

Sencore model LC-53 "Z Meter" is a unique inductor-capacitor tester with many automatic features. The inductance of a coil or transformer can be checked by one pushbutton. Another button gives a direct reading of capacitance. Both functions have automatic ranging and digital readout for accurate and easy testing of components.

Capacitor leakage is measured at 12 dc voltages between 3V and 600V with the leakage current displayed on the digital readout. The relative "Q" of unknown inductors is tested by the Sencore ringing method, and the number of rings is shown on the readout.

Power comes from the 120V line, so there are no batteries to run down at inconvenient times. Although the unit usually is considered to be for bench use, transportation or storage in a vertical position is made easy by the combination handle and tilt stand, a place to store the power cable, and plastic feet at the unit's back panel.

Testing inductors
Inductances in henrys are tested in the LC-53 by measuring the ac voltage that results from varying the coil current by a specific amount. Six automatically selected ranges cover inductances between 1 microhenry (1µH) and 9,990 millihenries (9.990mH or 9.99H). Decimal position also changes automatically, and LEDs at the right of the digital display (Figure 1) indicate whether the reading is in µH or mH. In-circuit tests are possible if the circuit resistances are fairly high. The Sencore manual gives the limits.

These tests resemble ohmmeter readings in their simplicity (Figure 2). Connect the hook-type test probes to the inductor terminals and then press the inductor-value button. That's all. One LED lights to show whether the reading is in µH or mH, and the digital display gives the reading with correct decimal placement.

For small inductances where the test-lead inductance becomes a source of error, the probes should be placed approximately where the
measurement will be made. The hook probes are shorted together, the value button is pressed, and the lead-zero knob is rotated slowly until the readout is 00.0 with the minus sign showing occasionally. (Slow rotation is required because about two seconds are required for each reading when the probes are shorted.) After the zeroing, tests of small inductances can be made accurately.

When the inductance value is above 10H or if no inductor is connected to the test leads, the display will show 8880 with the three eights blinking. This is the overrange indication.

Ringing tests—For coils of unknown inductance ratings or for shorted-turns tests of vertical- and horizontal-sweep components, a ringing test that shows relative “Q” is included. This test is about the same as supplied by the Sencore YF-33 Ringer.

The probes are connected to the inductor, the ringing-test button is pressed, and the impedance-match knob is rotated through all six positions (Figure 3). The readout shows the number of rings before the amplitude drops to the standard value. Use the knob position that gives the highest number of rings, for accuracy. For most sweep coils, a reading of more than 10 indicates a normal coil.

Test results—Many inductors in an old color-TV chassis were checked for value and ringing. One peaking coil measured 380pH and 24 rings. Another gave readings of 4.2μH with five rings. The delay line measured 1.66mH and no rings.

An out-of-circuit audio transformer’s 4Ω winding read 8.10mH and two rings, while the primary measured 8910mH and five rings.

These tests were interesting but did not prove whether or not the inductors were defective, since the ratings were not known. New coils with factory ratings were tested next.

A stock peaking coil was marked 250μH. It measured 244μH and 17 rings. A 12μH coil checked 12.1μH. These are very accurate readings. However, at first a 1.35μH peaking coil tested 0.9μH. A careful reading of the manual found the Sencore method of obtaining accuracy with reactances under 2μH. The lead-zero control is offset to give a 2μH reading with test leads shorted together. Then the reading is made and the 2μH subtracted. With this corrected method, the reading was 1.5μH, which is very good for such a low value.

Many technicians probably wonder if the inductance value test can find shorted turns as well as the ringing test does. One old flyback was checked with these comparative results: the primary measured 10.6mH and gave 95 rings, with a 5-turn short. The readings were 9.7mH with 30 rings; when the 2-turn rectifier-filament winding was shorted, the readings changed to 10.5mH and 25 rings. The inductance test can show serious cases of shorted turns, but the ringing test is more sensitive to just a few shorted turns.

Comments—Notice that the inductance-value tests require direct current. Therefore, coils in series with a blocking capacitor cannot be tested; they read as if open.

Tests of inductor’s values in henries are repeated continuously as long as the value button is depressed. So, if the coil under test changes in inductance, the reading changes at the next sampling. However, the ringing test is different. It rings the inductor only once for each press of the ringing button or rotation of the impedance-matching knob to the next position. When the readout retains the number of rings, even if the inductance is disconnected. Releasing the ringing button (or any rotation of the impedance knob) initiates a new reading, which without an inductor becomes zero. This is normal operation and it has no drawbacks.

It is mentioned only for information to prevent questions later on, and because this is different from operation of the YF-33 Ringer and the built-in ringing function of the VA-48. Their ringing is continuous.

Testing capacitors

Capacitances are measured in the LC-53 by charging the capacitor under test through a specified resistance and counting the time required for the capacitor charge to rise to +5V (one time-constant).

The instrument autoranges through 10 available ranges to provide capacitance readings between 1 picofarad (1pF) and 199,900 microfarads (199,900μF). All readouts are direct-reading with LEDs at the right indicating whether the reading is in pF or μF. The decimal moves as needed, and one or two zeros are added at the end to fill out any required number. Accuracy is rated at ±1% of reading plus the resolution error, or ±5% plus resolution error for values over 1000μF.

To test most capacitances, connect the test clips to the out-of-circuit capacitor, press the capacitor value button, notice from the LEDs whether the value is expressed in pF or μF, and then read the value on the digital display.

For accuracy of capacitances.
lower than 1000pF, the test lead should be placed where it will not be moved very much when it is connected. Without anything connected to the test clips, press the value button and slowly adjust the lead-zero control for 00.0 with the negative sign flashing occasionally. Then make the capacitance measurement.

Capacitances of less than 2pF sometimes read 00.0 because of the auto-ranging window. Therefore, for these small values, offset the zeroing adjustment to provide a 2pF reading without a capacitor, make the capacitance reading, and subtract the 2pF from it. The remainder is the true capacitance.

Readings of most capacitance values are seen on the digital display immediately after the value button is pressed. However, very large values require longer. For example, a 50,000μF capacitor has a delay of about five seconds before the reading appears. Any capacitor that does not give a reading within 30 seconds probably is excessively leaky and should be replaced.

Polarity of the test leads is not important except for electrolytic types. For those, the red clip should go to the positive capacitor lead and the black clip to the negative. A 39G144 test lead adapter is furnished for connecting to large terminals.

Leakage tests—Model LC-53 has an excellent leakage test for capacitors. The applied-voltage switch selects dc voltages of 3V, 6V, 10V, 15V, 25V, 50V, 100V, 200V, 300V, 400V, 500V and 600V, as shown in Figure 4. Two amounts of leakage current are selected by the leakage-range switch. The 9.990μA range is for large electrolytics or others that have high leakage. Other types should be measured on the 99.9μA setting of the leakage-range switch.

Ceramic, polyester, polycarbonate or nica dielectric capacitors should not show any leakage current on the display. Any that have leakage are defective and should be replaced.

Electrolytics usually show some leakage. A chart that lists permissible electrolytic leakage according to capacitance is mounted underneath the LC-53 cabinet where it can be pulled out for reference.

There is a small precaution when testing small capacitances for leakages. Without a capacitor connected to the test leads, the leakage voltage consists of positive-going 60Hz pulses (Figure 5). If a resistor is connected across the test leads instead of a capacitor, the measured voltage (and current) will be only ½ to ⅔ of the rated value. For the full rated voltage, the capacitor under test needs to be 0.3μF or larger. Of course, if a very small capacitance value (say 12pF) must be tested at the full 600V, a larger capacitance having low leakage can be paralleled with it during the leakage test.

The leakage test can be used to reform many old electrolytic capacitors. These reforming methods must apply the dc voltage for an hour or so. To keep the leakage button depressed, a 39G145 rod is included with the analyzer. It is placed between the button and the carrying handle, which is moved near the test buttons.

When none of the buttons are pressed, the test leads are shorted together, thus discharging the external capacitors. No leakage voltage is applied to the test leads until the leakage button is pushed.

Comments

For protection of the analyzer from charged capacitors and other external overloads, a 1A slow-blow fuse is located behind the BNC test lead connector. The fuse can be removed and replaced by unscrewing the BNC connector.

A 48-page operation and maintenance manual is supplied with the analyzer. It has much detailed information about the instrument and how to use it for many unusual tests. One section explains how the LC-53 can be used to test SCRs, TRIACs, HV diodes and coaxial cable.

Inductor and capacitor readings were very accurate when measuring components of known values. Busy technicians should appreciate the convenience of merely pressing a button or two for the majority of tests. The LC-53 is recommended for all electronic-service shops.

Model CA-55

Sencore model CA-55 capacitor analyzer has capacitor-testing functions that are identical to those described for the LC-53. The switches are arranged differently because the inductor tests are not there.

Model CA-55 capacitor analyzer sells for $495, and model LC-53 inductor/capacitor analyzer is priced at $695.
Digitization of low-frequency signals

By E. Stanley Busby, Jr., Engineer, Ampex Corporation

Industrial controls and TV broadcasting equipment often contain circuits that convert analog signals to digital signals, or digital to analog. Such interfaces have made noise-free digital audiotape recorders possible. In the future, improved versions might be the answer for digital video. An experienced design engineer describes the general operation of some circuits that digitize low-frequency signals.

Many digital meters indirectly measure dc voltage by counting the time required for an R/C circuit to reach a certain level as it charges or discharges. This counting and displaying operation is repeated over and over, usually several times per second.

![Figure 1](image1.png)

Figure 1 A dc voltage can be measured or digitized by a sample-and-hold action. The instantaneous value of an ac signal also can be determined by a similar method; however, the sampling time and the holding time must be selected carefully.

![Figure 2](image2.png)

Figure 2 Some digital multimeters measure an unknown dc voltage by counting the time required to charge a capacitor until its voltage equals the unknown.

The important word in the previous paragraph is “counting.” A nonvarying dc voltage is easily measured by the counting method. A dependable and accurate reading usually can be obtained by the first or second timing count. Each counting period requires perhaps a quarter to a half second. Measuring the average amplitude of ac voltages is not much more difficult. The ac is changed to dc, a correction factor is added, and the resulting dc is measured.

However, conversion of an ac signal waveform to digital for processing or storage, followed by conversion back to the original analog waveform, is more difficult. One of the problem areas concerns the length of each individual measurement.

Low-repetition-rate signals (such as industrial-control signals or audio) require careful matching of the duration of each measurement versus the repetition of the signal. When the time between measurements (or sampling) is too long for the conditions, some part of the waveform will be missing. For example, a sine wave might have segments missing between each measurement.

Also, a measurement time that’s too long can allow several repetitions of the waveform to occur, thus changing several sine waves into a straight line.

These two timing relationships must be optimized for best results. For example, if a sine wave is converted from analog to digital, processed or stored, and then is finally converted from digital to analog, the output waveform should be the same as the original input. These same precautions apply to digitized video signals.

Several preliminary concepts and a few alternate methods of digitizing ac and varying-dc signals are examined next.

Sample and hold

Figure 1 shows how an electrical signal can be made to hold still while being measured. The procedure goes: close the switch long enough for the capacitor to charge up, open the switch to prevent further change, then measure the voltage across the capacitor.

How fast to repeat the measurement? If a sampling frequency of less than double the highest signal...
frequency is used, the sampling lower sideband is inside the signal bandwidth. The resulting distortion is heard as a *birdie*, is seen on TV as *moire*, and is called an *aliasing component* by digital engineers.

Theoretically, a *brick wall* filter having an infinitely steep cut-off (that eliminates all modulating frequencies above half the sampling rate) could permit sampling at exactly twice the signal bandwidth. However, a brick-wall filter is not possible, and so the sampling rate always is chosen to be faster than twice the signal bandwidth. In systems with analog input, digital in the middle, and analog output, bandwidth-restricting filters are used before and after digitization.

Single ramp A/D

Probably the most simple method of converting a voltage to a number (analog-to-digital or A/D) is the indirect method used in most digital voltmeters. Figure 2 shows one elementary approach. To measure, a short circuit is removed from the capacitor, and at the same time, a counter (usually a BCD counter in bench instruments) is started from zero. The capacitor charges linearly until its voltage exceeds the voltage to be measured. The counter is then stopped and its contents displayed.

This requires that the current source, capacitor, and counting frequency have good long-term stability. There are a number of schemes used to reduce these stringent demands, some of them ramping the capacitor up and down as many as four times. By doing this, the accuracy requirements are concentrated in the reference current source and the instrument can be caused to "zero" itself before each measurement. For digitizing audio or video signals to any usable resolution, this method is too slow.

Start at the output

A/D conversion is often accomplished with the same circuit used to convert a number to a voltage (digital-to-analog or D/A). Figure 3 shows the simplest D/A circuit. \(R_1 \), when connected, furnishes a current into the amplifier which is responsible for \(\frac{1}{2} \) full-scale output; \(R_2 \) is responsible for \(\frac{1}{4} \) full-scale; \(R_3 \) for \(\frac{1}{8} \) and so on.

Figure 3 One binary-weighted resistor and switch for each digit can function as a simple digital-to-analog (D/A) circuit. LSB is the least-significant-bit and MSB stands for most-significant-bit. Each bit adds its own voltage to the output.

Figure 4 A ladder attenuator can perform the same D/A function as the binary-weighted circuit of Figure 4, but the smaller spread of resistances allows better temperature stability.

Figure 5 A/D conversion can be performed by reversing the previous circuits. A counter starts at zero, and the staircase output is compared to the unknown voltage. The counting continues until the staircase voltage equals or exceeds the unknown. When the counter stops, the readout shows the digital value of the unknown voltage.
Figure 6 Operation of the successive-approximation A/D is faster than the counting type because fewer tests are required. First, the MSB (which gives half scale) is compared with the unknown voltage. The circuit then latches or doesn’t latch that MSB and tries the next bit, and so on until a match is obtained and the readout shows the digital value.

Figure 7 Fastest A/D action is obtained by a “one look” circuit that has one comparator for each analog level. Therefore, 255 comparators are required for an 8-bit digitizer.

Digitization

Adding one more resistor doubles the resolution. It has a problem: even with moderate resolution, the resistor values cover an enormous range.

This makes it very difficult to maintain their two-to-one ratio over a range of temperatures, even when they are encapsulated into the same package.

Figure 4 shows how a ladder attenuator can be used. Arranging the resistors into a ladder attenuator (Figure 5) allows D/A operation without temperature drift.

Try it on for size

Figure 5 shows how a D/A can be used as an A/D. A counter which starts at zero drives a D/A whose output is compared to the input being measured. The D/A output increases one step at a time. When it exceeds the input, the counter is stopped and the number read from it. In the worst case (full scale) it is slow, because it must step through each intermediate value in turn.

A very popular method is illustrated in Figure 6. The most significant bit (responsible for 1/2 full-scale) is turned on and the D/A output compared with the input. If the D/A output is too much, this bit is turned off and if not is latched on. The next bit (1/4 full-scale) is turned on and tested to see if it should be kept or not. In this way it is only necessary to make N tests for an N bit A/D instead of 2N tests for the counter type. It is adequately fast for digitizing audio frequencies, but not for video.

Do it all at once

Figure 7 shows the fastest approach of all. To conserve paper, the illustration is for a 3-bit A/D. One look at the input sample yields an answer. Its problem is that it requires 2N-1 comparators for N bits. An eight-bit digitizer would require 255 comparators. It has been done for digitizing video where time is very short. There are better ways.

When time is short...

Television video is normally sampled at three or four times the
subcarrier frequency.

The method used in many digital time-base correctors is shown in Figure 8. Fifteen comparators in a one-look configuration examine the input sample and split out the four most significant bits of the end product. These four bits are applied to a D/A whose output is subtracted from the input sample. The remainder is amplified 16 times and applied to an identical 4-bit one-look A/D to yield the four least significant bits.

Stepping over the bad

D/A circuits take time to settle down after the input number is changed. As their output moves from one value to another, they are likely to produce nasty transients. The fast component of the transients will be smoothed by the output low-pass filter, but the average of all these ragged edges does not necessarily equal zero and this can produce undesirable effects in the output analog signal. A solution is to re-sample the D/A output as shown in Figure 9, capturing it only after it has become stable. It's like opening the curtains only when the sun is out.

There is a loss of amplitude at high frequencies of the same form as that produced by a playback head gap or an optical scanning slit on a film projector. In practical systems, it is usually less than three dB and easily equalized.

Different Kinds of noise

You may hear the term "quantizing noise." It is not a noise in the sense that it sizzles in the background when no one is talking. Rather it comes from the deliberate limiting of accuracy when converting a signal to a number.

The final output is then only an approximation to the input. A large, spectrally pure input sine wave will emerge as a large sine wave accompanied by some low-level trash spread throughout the spectrum. The magnitude of this trash is halved for each added binary bit of resolution. It occurs only in the presence of a signal. It is similar to the asperity noise or modulation noise of an audiotape recording.

Idling noise is more like real noise. If an amplifier somewhere has a little dc offset, its output (with zero input) can present to the A/D converter a voltage midway between step N and step N+1. Add to this the inevitable thermal noise in all amplifiers, and the A/D sometimes says N and sometimes says N+1. The output varies accordingly.

The peak amplitude of this garbage is one step. It can be minimized by adding to the input signal a square wave at half of the sampling frequency and having an amplitude of ½ step. This tends to concentrate the noise at a frequency which later will be removed by the output low-pass filter. This added signal is called dither.

It would seem that adding more bits of resolution is the answer to all ills. It is, if you can afford it. For N bits, memory cost is at least proportional to N and the cost of A/D's and D/A's tends to vary as 2N. More accuracy also takes more time.

Analog systems tend to distort large signals, while digital systems mangle weak signals. But there are tricks that allow digital performance to exceed that of analog.

Comments

In industrial situations, digital circuits minimize drift problems and permit elimination of noise from analog control signals. Also, certain kinds of machine controls are practical only in digital form.

The number of digital circuits in industrial equipment will expand greatly.

Digital TV transmitters, tape recorders, and color receivers are coming some year soon. Look for them.
Electronic test equipment has advanced in step with the significant improvements of radios, television receivers, tape recorders and stereo machines over the years. This peaceful revolution has occurred quietly, one small item at a time, so the extent and importance of these changes are not apparent until a comparison is made between equipment at the beginning of modern instrumentation and the sophisticated test equipment of today.

First generation

The first generation of improved test equipment included FET multimeters that gave better stability with decreased drain (thus making battery operation practical), sweep-alignment generators with multiple post-injected crystal-controlled markers, color-bar/crosshatch generators with count-down ICs for permanently locked dividers, and improved transistor testers that could be operated rapidly either in-circuit or out-of-circuit.

Other generations followed with more features and improvements. Probably the most spectacular external change was the introduction of digital/analog converters with digital-readout displays. These were made possible by Large-Scale Integration (LSI) ICs which crowd thousands of transistors into a small package. The result was unprecedented accuracy at reasonable cost.

For example, older volt-ohm-meters (VOMs) typically had accuracy ratings between ±3% and ±5%. However, with a drifted zeroing adjustment and parallax error, the true accuracy often was no better than ±10%. Contrast those figures to digital multimeters with ratings between ±0.1% and ±0.5%. Even more important than accuracy, in many cases, are those digital displays that are direct

Pictured is the Doric model 130 capacitance tester. Ten or more models are offered by other manufacturers. A few (such as the Doric) are autoranging, and most measure capacitance alone by displaying each accurate result on a digital readout. Sencore has two models (see Test Lab this month) that autorange and check leakage. The ESR Meter from Creative Electronics measures the ESR of capacitors to give a rapid and dependable test of bad electrolytics.

B&K-Precision model 1250 color generator (pictured) produces high-accuracy NTSC color patterns suitable for servicing videotape recorders and other video machines. Sencore VA-48 has color-bar and frequency burst patterns for videotape servicing.

Digital experiments or home-built gadgets are produced easier and more accurately by a modern breadboard, such as this Continental Specialties model 103.
<table>
<thead>
<tr>
<th>Roundup</th>
<th>GENERATORS</th>
<th>METERS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RF with</td>
<td></td>
</tr>
<tr>
<td></td>
<td>audio mod</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RF</td>
</tr>
<tr>
<td></td>
<td>Audio, pulse</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>function, sine sq</td>
</tr>
<tr>
<td></td>
<td>Dot/cross hatch/ color bar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NTSC color</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sweep</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Capacitance and/or inductance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Counter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Analog</td>
<td></td>
</tr>
<tr>
<td></td>
<td>multimeter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Digital</td>
<td></td>
</tr>
<tr>
<td></td>
<td>multimeters</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RF, Power/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VSWR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tester</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Supplies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Digital</td>
<td></td>
</tr>
<tr>
<td></td>
<td>probes</td>
<td></td>
</tr>
</tbody>
</table>

- Ballantine
- Beckman
- Berkeley 27
- Bird
- Boonton 29
- Cincinnati ElectroSystems 30
- Continental Specialties 31
- Creative
- Data Precision 33
- Data Tech 34
- Datel-Intersil 35
- Doric 36
- Dumont 37
- B&K-Precision 38
- Fluke 39
- GenRad 40
- GC 41
- Hewlett-Packard 42
- Hickok 43
- IET Labs 44
- Leader 45
- Lectrotech 46
- LFE 47
- Marconi 48
- Narda 49
- Newport
- Polarad 51
- PTS
- Sencore 53
- Systron-Donner 54
- Tektronix 55
- Triplet 56
- VIZ 57
- Wavetek 58
- Workman 59

Circle numbers listed above on Reply card for more information.

Reading, with correct decimal placement and automatic positive or negative signs. And digital multimeters sometimes sell for about the same price as analog types.

Digital circuitry is very common in modern test equipment. However, digital readouts are not very effective when presented with a varying input signal. Don’t judge the worth of any instrument solely on whether or not it has digital circuitry. There are other important considerations.

Digital ohmmeters, for example, are usually not efficient at identifying rapid and small variations of resistance. Some manufacturers furnish an extra test. One multimeter emits an audio tone when continuity is established; another rapidly lights an ohm symbol. A few digital multimeters have auxiliary analog meters (perhaps without...
Test equipment roundup

calibrations) which show those varying readings. If varying or erratic readings degrade your tests, examine these extra features of digital instruments or use analog types.

True-RMS and peak-to-peak ac measurements are features previously unheard of in digital multimeters, but they are beginning to become available in selected models. Check the specifications, if these measurements are important to your troubleshooting.

It is unlikely that digital circuitry ever will replace scopes (however, scopes will include more digital features in the future). Although the emphasis this month is not on scopes, it is true they have reached new heights of performance. This is fortunate, for scopes will be increasingly important for servicing in the future.

The table on page 19 lists generic types of test equipment and their manufacturers along with Reader's Service numbers for catalogs and data sheets. Also, a few unique instruments will be described and pictured.

For technicians who prefer a VTVM-type of analog multimeter, VIZ offers the super-deluxe WV-534A Volt-Ohmyst. Some of the features include: automatic polarity with plus and minus indication, ac and dc voltages between 0.05V and 1500V full scale, high- and low-power ohms ranges, and both dc and ac current.

A few digital multimeters now measure decibels, true RMS and peak or peak-to-peak ac voltages. The Fluke digital multimeter models 8010A and 8012A measure true RMS ac values. The 8920 series (pictured) does not measure dc but reads true RMS voltages up to 20MHz, or dBs at many impedances. Ballantine 3030A accurately reads average, peak, true RMS or decibels. The microprocessor controlled Sencore DVM-56 (to be available in January) measures peak-to-peak, average, true RMS or decibels. Models 248, 258 and 248OR from Data Precision are 4½-digit multimeters that measure true RMS.

Several digital multimeters provide a rapid audible or visual indication of continuity to help in the location of intermittents. The Beckman TECH-310 (pictured) shows an ohm symbol in the upper left corner of the display. Data Precision model 936 has an overvoltage alarm and a continuity beep, while an audible signal from Weston model 6100 meter sounds for dc voltages or continuity below certain ranges.

A few digital multimeters now measure decibels, true RMS and peak or peak-to-peak ac voltages. The Fluke digital multimeter models 8010A and 8012A measure true RMS ac values. The 8920 series (pictured) does not measure dc but reads true RMS voltages up to 20MHz, or dBs at many impedances. Ballantine 3030A accurately reads average, peak, true RMS or decibels. The microprocessor controlled Sencore DVM-56 (to be available in January) measures peak-to-peak, average, true RMS or decibels. Models 248, 258 and 248OR from Data Precision are 4½-digit multimeters that measure true RMS.

Metered power supplies are becoming a necessity for voltage substitution during troubleshooting or for testing modules and other components out of the machine. PTS Electronics model DG-5 features four adjustable-voltage supplies which can provide either positive or negative voltage. The built-in digital voltmeter can monitor any of the four supplies or be switched to jacks for external tests.
Audio-amplifier gain can be estimated by an electronic technician who touches his finger to the input connection and listens for hum or buzz from the speaker. This shortcut technique has been used for more than 50 years and continues to be a valid test in many cases where only a good/bad indication is sufficient. *Audible buzz proves the following stages have sufficient gain; but a lack of buzz indicates a defect has eliminated the gain.*

Infallible test?

One technician had used the buzz test for years without making diagnostic mistakes and he believed it was an infallible method. However, all tests have limitations, as the technician soon learned when a transistorized public-address system was brought to the shop for repair. After the bottom shield was removed, the tech touched his finger to the mic jack's hot lug. A loud buzz came from the test speaker indicating normal gain. But when he plugged in the microphone and spoke into it, no sound came from the test speaker even at maximum gain setting.

Bad mic, plug or cable

The technician now assumed that the mic, cable or plug was defective. But no sound came from a test mic when it was substituted. Reasoning that the jack might be shorting to ground only when the mic plug was inserted, he searched for shorts and opens by using the ohmmeter range of a VOM. There were no opens or shorts (either with a mic plugged in or without it), and the wiring was correct.

The technician reviewed the procedure and repeated the tests. But the conclusion was the same—the amplifier worked normally except with a microphone.

Better tests

Up to this point, the technician had diagnosed efficiently by performing simple, but appropriate, tests. The buzz test indicated a dead microphone, but replacement of it disproved that possibility. If the tech then either had given up or had shotgunned the input stages, he would have wasted much time and learned nothing.

Fortunately, this technician guessed correctly that a limitation of the buzz test was responsible for the ambiguous conclusions, and he went on to the next level of more-precise tests.

His troubleshooting ESP guided him to the first transistorized stage, the microphone preamplifier. Dc-voltage measurements were the first to be performed, and they revealed abnormal conditions. Voltage at the collector (see schematic) was equal to the supply voltage and the base voltage was almost zero. These dc voltages proved the transistor was non-conducting because of insufficient forward bias. This stage should have had zero gain. How did the buzz pass through?

Curiosity caused the technician to measure the dc voltages during a repeat of the buzz test. With his finger touching the input lug and a buzz coming from the speaker, the base voltage measured about -1Vdc, and the collector reading was about half of the supply voltage. During the buzz test, the transistor was conducting and amplifying. Those voltages hinted that the buzz signal was acting as bias for the transistor, thus permitting amplification. But unexplained was the question of why the microphone signal was ignored rather than being used as bias, also.

Use theory either before or afterwards

When the total picture is con-
fused, a good rule for troubleshooting is to follow all known discrepancies or symptoms. Often this will lead to finding the bad component, and then the theory can be reviewed later.

Therefore, the technician investigated the source of the insufficient base bias. He disconnected the base ends of R1 and R2 and measured their resistances. R2 was within tolerance, but R1 had increased to more than 7MΩ. A new resistor restored proper microphone volume.

Explanation

Current between collector and emitter in a silicon transistor is zero for all reversed-bias voltages, and it also is zero for forward-bias voltages of less than 0.5V (dc or peak). Only forward bias of more than 0.5V produces significant amounts of C/E current and gain.

A 60Hz signal of several volts can be transferred to a high-impedance amplifier input by ungrounded

Price Without Sacrifice.

HITACHI V-302 & V-152

Put a proven Hitachi dual-trace oscilloscope on your bench for as little as $695. Our V-152 15MHz model includes unprecedented sensitivity (1 mV/div.)...10X sweep magnification...front panel XY operation...trace rotation...Z-axis input...and more. Need greater bandwidth? Our V-302 model is the only 30MHz dual-trace scope with signal delay line priced under $1000, with all the above features, to make your testing operations fast, easy, and accurate. Reliability is exceptional, too. (As you'd expect from a manufacturer with over 20 years of experience "outscoping" the competition.) So exceptional, in fact, that Hitachi quality is backed by a 2-year warranty...the longest in the industry. Whether you use it for teaching or repairs, for video, audio, or computer testing, you can't find more scope for your dollar than at Hitachi. Write for more details.

Hitachi...The measure of quality.

- V-152 15 MHz Dual Trace...$695*
- V-302 30 MHz Dual Trace...$945*

*Probes included.

Hitachi Denshi America, Ltd.
175 Crossways Park West
Woodbury, NY 11797
(516) 921-7200
fingers. During positive peaks this signal acts as strong forward bias, thus saturating the transistor with maximum collector current. The negative peaks are reversed bias which eliminates all collector current. Therefore, the buzz-test (collector) output signal is a series of strong pulses.

The signal level of most public-address microphones is about 1mV. Suppose the forward bias of the malfunctioning transistor is 0.15V. Adding the 1mV signal increases the bias to only 0.16V on positive peaks. This is far below the conduction threshold. The transistor remains cut off, no signal is at the collector, and no microphone sounds reach the speaker.

Details of buzz tests

Tests by hum or buzz are possible because an ungrounded human body picks up a significant amount of 60Hz power signal by capacitance action from surrounding electrical wiring. Amplitudes of more than 200VPP have been measured with an ungrounded scope when the low-capacitance probe was grasped firmly between thumb and finger. Less-firm connections reduced the variable amplitude. When a 1MΩ resistor was used as a load, the signal dropped to about 75VPP. The low-resistance load of a transistor would lower the signal even more, although the reduced amplitude is sufficient for a buzz test.

Results were very different when the scope was grounded by the third prong of the ac plug. Only about 1VPP could be obtained by finger connections. About 5VPP was obtained from a 15-ft wire. With an ungrounded scope the measurement had been 100VPP.

Tubes vs. transistors

Accuracy of the buzz test varies according to the total amplifier gain and the impedance of the input. Loudest buzz volume is obtained from high gain amplifiers having high-impedance inputs. Therefore, a larger percentage of tube amplifiers fulfill these qualifications than the solid-state versions do.

For example, an input for ceramic phonograph record cartridge has an input resistance of 500,000Ω or higher and the amplifier gain is sufficient for full output with about 0.5V RMS at the input. These amplifiers provide a loud buzz regardless of whether they have tubes or transistors.

Tube circuits of two or more stages produce a satisfactory buzz during tests. However, a single power-output transistor might not produce a buzz because of the low input impedance. Many audio stages in TVs have sufficient gain for a dependable buzz test.

Another variable is that the buzz volume depends on the amplifier grounding. Different results are obtained when one side of the ac line is bypassed to ground with a capacitor than when both sides are bypassed or if a single capacitor is connected between the ac inputs.

However, for most tests there is more than enough amplitude of 60Hz signal to drive the amplifier into distortion. This distortion is the reason why the test signal sounds as a raw buzz rather than a smooth hum (as it would with a pure sine wave of that frequency).

Waveform examples

Figure 1 shows actual waveforms obtained by grasping the base lead of the transistor in the previous circuit. The amplitude was not stable, making detailed analysis and sharp traces very difficult to obtain. Therefore, a second set of waveforms was simulated (Figure 2). The Figure 2A waveform shows base-signal clipping that begins at +0.6V above the zero-voltage line. Current from the forward bias between base and emitter produces the line of clipping marks where transistor amplification begins. This analysis is proved by the collector waveform of Figure 2B.

Comments

In most applications, the buzz test of amplifier gain is practical and dependable. However, question the results if they do not agree with other allied tests. Go on to instrument analysis if there is doubt about the accuracy of any buzz test.

All of the confusion and wrong symptoms would have been prevented if the technician had applied a .01V signal from an audio generator to the microphone input.

Moral: The buzz test for gain can cause gross errors when applied to amplifier inputs that normally are supplied with less than about 0.1V of signal.

Figure 1 Top scope trace is the base waveform with part of the positive peak clipped by transistor base current during an actual buzz test in the previous circuit. Collector waveform (lower trace) is a near-square wave because the finger hum at the base was strong.

Figure 2 (A) To obtain a stable waveform, a sine-wave generator was used during a simulated buzz test. Scope gain was 0.5V/division, so the zero-voltage line shows no base conduction until +0.6V. Base current then clipped the sine wave. This base current in turn produced collector/ emitter current. (B) The collector waveform was almost a square wave, with the positive peaks reaching the +8V-supply level during negative base peaks (cut-off bias) and the negative peaks reaching saturation at about +0.1V during positive base signal.
Although no tube-type color TVs have been manufactured for several years, about half of the bench repairs now involve these older models, according to many shop owners. Therefore, these service techniques are for tube-equipped TV models.

By Homer L. Davidson

More component failures occur in the horizontal-sweep section than in all other color-TV circuits combined. Most of the power of a TV is used there, which increases the number and seriousness of the parts' defects. Problems are compounded by the high-voltage circuit, which is included with the horizontal deflection.

A good sequence of tests is absolutely necessary if a technician is to locate the source of trouble in the shortest time. Such logical methods should include waveform analysis, ac and dc voltage measurements, and other instrument tests after the preliminary steps and before replacement of any parts that are suspected without proof.

Visual and preliminary steps

For cases of intermittent noise lines, missing raster and picture, excessive replacement of horizontal-output tubes, raster blooming, or a narrow picture, perform this list of preliminary tests:

- Look for missing tubes and tubes with cracked glass or loose plate caps and connectors.
- With power turned on, look for any tube showing internal arcs. those showing a gassy ionized glow. Blue glow on the inside of the glass envelope is merely fluorescence. It is harmless and should be ignored. A blue glow between plate and cathode indicates gas, and the tube should be replaced.
- Gently tap the horizontal tubes with a plastic rod or the handle of an insulated screwdriver. Replace any tube showing internal arcs.
- After the power has been applied for two to three minutes, carefully examine the damper and horizontal-output tubes for any red areas on the metal plate. A tube with a red plate either is bad or there is an overload in the circuit at input or output. Try a new tube as a test, but don't let it show a red plate for more than a few seconds, because it might be ruined.
- If none of the previous tests aroused suspicion, test all horizontal-sweep tubes including oscillator, output, damper, HV and focus rectifiers, and regulator (if used). Replace any bad ones.
- Assuming that no raster has been obtained to this point, the high voltage should be checked at the picture tube. Normal HV but no raster indicates the horizontal deflection is alright but the picture tube is bad or a chassis defect is preventing it from conducting the HV and showing a raster.
- If the HV is normal but there is no raster, the dc voltages at the picture tube socket should be checked against the schematic. Low G2 screen voltages, low control grid voltages, or high cathode voltages can eliminate the raster. Wrong grid voltages point to a problem in the chroma circuit, and high cathode voltages indicate a video
Critical oscillator components

Figure 1 These are the reactance and horizontal-oscillator components that should be tested first in the Admiral 6H10 (Photofact 1113-1). An open #1 capacitor causes soft locking, resistor #2 burns when the tube shorts, an open #3 capacitor weakens the output-grid drive, #5 oscillator coil can become intermittent from bad soldering, leakage in #6 coupling capacitor changes the frequency, reduced values of #7 resistor can shorten the output tube life, a leaky #8 coupling capacitor also ruins output tubes, and the resistance and capacitor values of #9 waveshaping can affect frequency or the lifespan of the output tube.

Defect. Loss of focus voltage or heater voltage also kills the raster.
• But when there is no high voltage, measure the grid and screen voltages of the horizontal-output tube. Judge them by schematic voltages.
• A common shortcut is to measure the negative dc voltage at the output control grid and assume the oscillator signal is proper if this reading is within tolerance. However, an oscillator signal about double in frequency kills the HV while providing the correct negative voltage. Also, dc voltages can reach the grid from outside sources, thus giving wrong dc voltages when the oscillator signal is normal. A distorted waveform from the oscillator can provide the correct dc voltage but give wrong operation. It is best to measure with a scope the wave shape, amplitude and frequency of the grid waveform. This removes the guesswork.
• When the output or damper tube (or both) have a red area on the plate, a limited analysis of the source of trouble is possible. A red spot on a damper plate before the output turns red is caused either by loss of oscillator drive or by damper-circuit leakage. Such damper leakage does not allow the output plate to run red, but a loss of oscillator drive does. A red plate of the output tube (but none in the damper) indicates an excessive ac load at the plate of the output tube. This can be a shorted or gassy HV rectifier, shorted turns in a pin-cushion transformer or excessive current in a regulator tube. Excessive picture tube current will do the same, but the overload can be removed by unplugging the CRT socket.
• A narrow picture and reduced high voltage can be caused by low oscillator-signal voltage at the output grid by a weak output tube, a weak damper tube or low screen-grid voltage.
• A defective HV regulator can kill the raster, cause blooming or produce a dim narrow picture. Most regulators can be defeated easily to prove whether or not they are at fault. No damage occurs if the TV is not operated very long without the regulation. Removing the plate cap (watch out for arcs) works fine for 6BK4s, while pulse regulator tubes can be taken out of the socket (if the heaters are not in series). Varistor grid regulators can be defeated usually by disconnecting the horizontal pulses at the varistor. Check a schematic for the best method.
• Total loss of oscillator signal at the output grid overloads the output tube, causes a bright red plate and destroys the output tube within a few seconds. This probably is the principal cause of excessive output-tube failures.
• Soft horizontal locking and horizontal-frequency drift usually originate in the horizontal phase-detector or the horizontal-oscillator stages.

Critical oscillator components

Figure 1 schematic shows the components of reactance stage and horizontal oscillator that should be checked first during any oscillator malfunction.

November 1979 Electronic Servicing 25
Servicing horizontal

Insufficient drive
The problem in a Philco 22QT79 (Photofact 1239-3) that developed a ruined horizontal-output tube every few hours was traced to a leaking capacitor in the horizontal-oscillator circuit, as shown in Figure 2. Signal from the oscillator to the output grid was low, reducing the negative voltage there, and causing excessive current in the output tube.

Narrow picture
An over-active regulator (that operates by adjusting the negative voltage at the output grid) was the cause of a narrow picture in an RCA CTC38. Horizontal pulses are rectified by diode X23, and the negative voltage from rectification is filtered and applied to the output grid (see Figure 3). Positive voltage from R170 cancels the regulator negative voltage at high brightness. But at low brightness, the diode pulse amplitude and rectified negative voltage increase. This increase of negative grid voltage reduces the maximum 6LQ6 plate current and decreases the high voltage.

In this case the grid bias was about -75V.

Boost problem
A dim picture and a slightly narrowed picture were the symptoms of a Penncrest TV. Although drive at the output grid was low, the most significant clue was the insufficient boost voltage.

Changing capacitor C115 (Figure 4) cured the problems.

Damper capacitors
Shorted damper capacitors eliminate all high voltage, and leaky damper capacitors often narrow the picture and distort the linearity (see Figure 5).

One lead of each capacitor should be removed for an accurate leakage test. Use only good quality capacitors for replacement of any bad ones.

A quick test for a shorted damper capacitor is to operate the TV without a damper tube. If careful adjustment of brightness brings a dim picture with foldover, it is certain a short somewhere is in

![Figure 2](image2.png)

![Figure 3](image3.png)

![Figure 4](image4.png)
parallel with the damper tube. These damper capacitors are usually the cause of the short.

Shorted damper tubes and capacitors often overheat the horizontal output tube and cause red areas on the plate. However, other bad plate loads, such as the carbonized path of the flyback in Figure 6, also kill the high voltage and cause a red plate.

Intermittent oscillator

Any moderate overload of the horizontal-output tube will ruin it. Such overload conditions usually cause these failures at regular intervals. Drive and cathode current of the output tube are the important tests for those symptoms.

However, failure of the output tube at very irregular intervals after careful tests have shown no steady overload are caused most often by an intermittent horizontal oscillator. No other defect ruins an output tube quicker.

There are two general causes of an intermittent oscillator. One is that sometimes does not start when the TV is turned on. Suspect that cause if the receiver fails to light up, but works dependably otherwise.

The other basic defect is an intermittent in the oscillator circuit, such as a hairline crack in the circuit board or an intermittent component. Alternate applications of heat and coolant spray help locate erratic components.

Other unsuspected sources are loose contacts in the tube socket or a bad ground at the oscillator tube’s heater pin.

Figure 7 shows the troublemaker in one RCA CTC39. A bad soldered joint at the C274 end of the oscillator coil would open sometimes. Of course, this stopped the oscillation completely.

To reduce the number of ruined output tubes while you search for the cause of intermittent oscillation, monitor the output grid with scope or dc meter. Turn off the TV power within seconds after the monitor shows lack of drive to the output grid.

Excessive high voltage

A previous example showed how
too much regulation could reduce both the width and high voltage. The opposite is true also. A lack of regulation can increase high voltage during times of dark scenes (the extra width is not noticeable).

For normal picture brightness, the Figure 8 circuit should balance the negative voltage (from pulse rectification by the two varistors) against a positive voltage coming from the high-voltage control (R113). At those times, the regulator circuit essentially does nothing; the negative and positive voltages are equal.

When the screen goes dark, the HV and width increase, if there is no regulation. But the regulation varistors receive higher pulse amplitude and they produce a higher negative voltage which exceeds the positive voltage from the HV control. This increases the negative output grid voltage and the width and HV are reduced.

Therefore, any defect that eliminates the variable negative voltage causes excessive high voltage. In fact, the HV is higher than it would be without regulation (that is, with the bottom end of R108 grounded). An open in C106, R109, varistors V110 or V111 can produce excessive HV without regulation.

Arcing

All metal connections or soldered joints around high voltage should have rounded corners to prevent HV arcs. As shown in Figure 9, apply a silicone-rubber seal over each flyback or HV-rectifier-socket connection.

Many of the older Zeniths had a 1500Ω resistor at the HV tube socket. It was wired in series with the HV to the picture tube. These resistors often become erratic and cause noise lines in the picture.

Watch out for loose or corroded plate caps on output or HV tubes. They too can radiate noise.

Comments

These methods and hints should help technicians troubleshoot horizontal-sweep problems in less time. Remember, use visual and short-cut methods first, but follow them with instrument readings to identify the difficult repairs.
RCA CTC99 features and "hot" power supply

By Gill Grieshaber, CET

Programming active and skipped TV channels on frequency-synthesis tuner systems requires prior knowledge of the correct method. This information is given for RCA CTC99 and CTC101 chassis, along with explanations of other new features, plus details of hot and cold power supplies and the start-up circuit.

New to the RCA 1980 color-TV line are receivers with CTC99 and CTC101 chassis. These are almost identical, although the CTC101 has a comb filter that decreases color disturbances on certain scenes and also increases sharpness of the luminance (B&W) part of the picture. Several versions of the ChannelLock frequency-synthesis tuner systems are offered. One type has a 10-button keyboard for direct channel selection and an LED readout. Another has remote control with up/down volume, up/down channel selection and channel readout on the TV screen. The type that will be analyzed has a conventional volume control plus up/down channel scanning (nonprogrammed channels are skipped over) with LED readout of the channels.

The sample TV used for this series is an RCA model FD485W (Figure 1) which has a CTC99 chassis. However, details of the CTC101 comb filter will be provided later.

CTC99 features

New features include the use of more ICs than any previous RCA TV, two special ICs in the IFs, a countdown IC that replaces both vertical and horizontal oscillators, simulated stereo (called Dual Dimension Sound) in some versions, an electronic pincushion circuit, single-circuit-board construction with grounded rails around the board, and elimination of convergence. Most other circuits are similar to those of previous XtendedLife ColorTrak models. These include hot and cold grounds (which eliminate a power transformer), and SCR regulation of the main B+.

These CTC99 and CTC101 chassis have major sections located in the same general areas as those of the previous CTC93 chassis. So, some technicians probably will find the general layout familiar (Figure 2).

Channel programming

All 82 TV channels are available with no adjustment necessary. A push on the up button changes the tuner to the next higher channel, and a push on the down button tunes-in the adjacent lower channel. Or, either button can be held steadily and the tuner scans the channels at about 2/s.

Even with this convenience, it would be too much work for a viewer to scan through 82 available channels for six local stations. The solution is a method of bypassing all undesired channels. (Of course, any channel can be restored when needed.) This method is simple and quick.

Picture A of Figure 3 shows the channel-selector appearance when the control door is closed. To the left of the on/off/volume knob are the large red LED digital channel readouts. Two channel-selector pushbuttons are below. Those are the only controls needed after the programming is completed.

A viewer can set the system to tune-in or bypass any channel by opening the door and operating the switch and buttons. The channel flip-type switch has select and lock positions (Figure 3B). Below it are the erase and add pushbuttons. When the channel select/lock switch is in the select position, the tuner stops at each of the 82 channels, regardless of the programming. However, any that have been erased previously have a black picture without sound. To erase a channel, operate the up or down pushbuttons until the proper channel number is seen on the LEDs, then press the erase button, noticing that the picture (or snow) and sound disappear after a short time.
To restore any previously erased channels, press the add button and notice that the picture (or snow) and the sound appear. This channel erasing or adding should be done for all channel positions. Finally, after the selection is complete, the channel-select/lock switch is flipped to lock (Figure 3C).

In the lock position, only those channels that were added or not erased will be selected by the up and down pushbuttons.

This channel-scanning system has one peculiarity. After the set has been turned off (or the power has been lost), the lowest programmed channel will be tuned-in when the receiver is turned on the next time. For example, assume that a certain locality has only channels 3, 10 and 27 selected by the up/down scanning. If the receiver was tuned to channel 27 when turned off, channel 3 will be tuned-in when power is turned on next time. (Keyboard models have a transformer-operated power supply that retains the last channel memory, so the same channel is there before and after every turn-off.)

Figure 4 shows the only other front-mounted component: a small light sensor (probably a cadmium-sulphide or cadmium-selenide type) which adjusts contrast and brightness according to the level of incident light striking the cell.

No convergence—almost

A casual look at the CTC99 chassis and picture tube (Figure 5) shows no convergence assembly on the picture tube neck or any convergence board. That's because convergence almost has been eliminated.

Used for the first time is the 100° precision-in-line-guns (PIL) Super Accufilter 100 picture tube. The in-line guns and a uniquely wound yoke reduce edge convergence adjustments to a minor tilting of the yoke. Center convergence and purity-magnet functions are factory-adjusted by a magnetic-tape beam bender (see Figure 5) which resembles black plastic tape wound around the neck and secured by a plastic tie.

If the yoke ever moves (or anything disturbs the center convergence), a conventional multi-
section beam bender must be installed to replace the magnetic tape, since it cannot be adjusted or reused.

Cable input

As the CTC99 chassis comes from the factory, there are separate UHF and VHF 300 Ω inputs. Both have the usual twin screw-type terminals (Figure 6A). This cap covers the 75 Ω input that goes direct to the VHF tuner section. When 75 Ω operation is desired, the wire should be pulled out, the cap removed, and the external cable attached to the coax connector (Figure 6B).

Tuner-control system

No tuners are mounted in the area behind the cabinet's front panel where two bulky mechanically operated tuners traditionally were placed. Instead, only switches, controls, and the LED readout are there (Figure 7A). The tuners are located beside the main chassis, as shown in Figure 7B.

Specifically, the shielded box nearest the chassis contains both the UHF and VHF tuners, while the other shielded box encloses the control circuitry. Details of this sophisticated tuning system will be given later in the series.

Cold chassis—hot ground

One previous distinction between types of TV receivers was whether the chassis was hot or cold. Cold-chassis sets had a power transformer that provided various ac voltages, and it also allowed isolation between the 120V line and the TV chassis. Hot-chassis TVs did not have power transformers. The 120V line power was rectified to produce dc voltages. However, one side of the ac line (or a leg of the bridge rectifier) was grounded to the chassis. The safety of TV users

Figure 7 No tuners, but only controls and readout, are behind the front panel (picture A). The tuner-control system and the combined tuners are located beside the chassis (picture B).

Figure 8 Rectified line-voltage power (hot-ground system) is isolated from chassis grounds. It supplies only the regulator and the horizontal-output transistor. Isolation for the cold-ground wiring is provided by a transformer in the start-up circuit and the flyback transformer. Shields and chassis rails are safe to touch; however, an isolation transformer should be used during servicing because some techniques connect the hot and cold grounds together temporarily.
RCA power

required elaborate precautions to insulate the hot chassis from cabinet, knobs, shafts, antenna connections and all other metal parts that might be touched from the outside.

In the XttendedLife series, RCA has combined most advantages of both hot and cold types, without many drawbacks of either. This is accomplished by using a bridge to rectify the ac line. Only one +155V source is produced—a hot supply that must be (and is) isolated from the TV chassis.

As shown in Figure 8, the 155V supply first activates the start-up (temporary) B+ source, then the 155V is regulated by the SCR system to 123V, which powers the horizontal-output transistor. Notice that the 155V and 123V power supplies are connected only to the SCR (and its circuitry) and to the Q100 horizontal-output transistor along with its heat sink and associated components. Therefore, very few areas of the circuit require any special insulation. Only the circuits just mentioned are hot. All other shields, rails and circuit grounds are cold. Unless the insulation precautions are circumvented, this receiver should be just as safe as a transformer-operated TV.

Figure 9 shows the horizontal-output transformer's heat sink, which is the most accessible hot ground (flyback is behind it). At the extreme right is C106, the only filter in the hot supply.

In the CTC99 and CTC101 chassis, the flyback transformer supplies isolation and the multiple ac-voltage taps needed for separate dc-voltage sources. In other words, the flyback assumes most duties of the power transformer used in older cold-chassis TVs. Of course, lower dc voltages can be obtained from higher-voltage supplies by dropping resistors or voltage dividers, but many watts of power would have to be dissipated uselessly in resistors.

Another significant reduction of power-line wattage and interior cabinet heat has been achieved by use of an SCR (instead of a power transistor) to control the 123V supply. As described next month, the SCR either is fully conducting or else is totally open. Therefore, little heat is dissipated in the SCR.

Hot power supply

Figure 10 is a schematic of the 155V hot (ungrounded) power supply, including the start-up wiring. The permanently attached power

![Image of the schematic circuit](image-url)
Fuse, radiation choke and the line bypass capacitor are mounted on a small circuit board. The line cable is attached permanently to the circuit board.

The line cable is attached permanently to the circuit board.

The four diodes of the bridge are flanked by large resistors RF100 on the left and R106 on the right. At the upper left is the T100 start-up transformer.

Figure 11

Figure 12

The four diodes of the bridge are flanked by large resistors RF100 on the left and R106 on the right. At the upper left is the T100 start-up transformer.

The four diodes of the bridge are flanked by large resistors RF100 on the left and R106 on the right. At the upper left is the T100 start-up transformer.

Figure 13 Waveforms of the start-up circuit help explain its action. (A) Bottom trace shows 60-Hz line voltage. Twice as many cycles in the top waveform prove the repetition rate of the start-up signal at the anode of CR422 is 120Hz from full-wave rectification. (B) Top trace shows pulses of C106-charging current that power the start-up action. Center trace is the waveform across the T100 primary that results from the charging current (top trace). Bottom trace is the conventional sawtooth ripple across C106 filter. (C) This dc waveform shows why -10V is brought to the T100 secondary. Without the -10V, the positive tips would extend more than 24V above the zero line on bright scenes, and the start-up diodes might conduct thus throwing the whole +23V-supply load on the start-up circuit, which is not designed for so much load. With the -10V, only about 12VPP extends above the zero line, and this is not enough to cause CR422 and CR421 to conduct. During turn-on time, the amplitude is increased greatly for a split second, so CR422 and CR421 conduct and start the horizontal oscillator and driver stages. (D) These waveforms explain the peculiar waveshape at T100. Top trace shows half-wave rectification, and the bottom trace reveals the waveshape after it goes through a high-pass filter. In other words, differentiation of half-wave pulses produces the bottom waveform, which is almost identical to the T100 waveforms.

Figure 13 Waveforms of the start-up circuit help explain its action. (A) Bottom trace shows 60-Hz line voltage. Twice as many cycles in the top waveform prove the repetition rate of the start-up signal at the anode of CR422 is 120Hz from full-wave rectification. (B) Top trace shows pulses of C106-charging current that power the start-up action. Center trace is the waveform across the T100 primary that results from the charging current (top trace). Bottom trace is the conventional sawtooth ripple across C106 filter. (C) This dc waveform shows why -10V is brought to the T100 secondary. Without the -10V, the positive tips would extend more than 24V above the zero line on bright scenes, and the start-up diodes might conduct thus throwing the whole +23V-supply load on the start-up circuit, which is not designed for so much load. With the -10V, only about 12VPP extends above the zero line, and this is not enough to cause CR422 and CR421 to conduct. During turn-on time, the amplitude is increased greatly for a split second, so CR422 and CR421 conduct and start the horizontal oscillator and driver stages. (D) These waveforms explain the peculiar waveshape at T100. Top trace shows half-wave rectification, and the bottom trace reveals the waveshape after it goes through a high-pass filter. In other words, differentiation of half-wave pulses produces the bottom waveform, which is almost identical to the T100 waveforms.
RCA power

A rush of rectified dc current into the C106 capacitor. Resistor RF100 limits the amount of turn-on current. But between the bridge rectifier and C106 is the primary winding of start-up transformer T100. This initial current surge through T100 consists of positive pulses at a 120Hz repetition rate (see waveforms in Figure 13).

Those pulses of direct current produce a waveform across the T100 primary winding. By transformer action, the same waveform of greater amplitude appears at the secondary where the amplitude is high enough to cancel the -10V of reversed bias and force the start diodes CR422 and CR421 to conduct positive peaks to the +23V supply. This positive voltage (filtered by C421) allows the horizontal oscillator and driver stages to operate, thus activating the horizontal-output transistor and the flyback which furnishes pulses for the low-voltage supplies.

After the oscillator and driver stages begin operation and the dc voltages of the various flyback-powered low-voltage supplies reach proper levels, the TV functions. But, the start-up circuit now must be disconnected.

After turn-on, the surge current through T100’s primary diminishes rapidly to normal, thus causing a corresponding decrease of acV to the turn-on diodes. Finally, the decreasing signal cannot overcome the -10V of bias; thus the CR422 and CR421 start diodes are reverse biased and become open circuits. The turn-on (or starting) action now is over, and the start circuit is disconnected.

To recap, during start-up time the anode of run diode CR420 has zero voltage, but the cathode has positive voltage from the start diodes. Therefore, CR420 is an open circuit that disconnects other loads from the +23V line. This lighter load increases the starting voltage so the oscillator and drive can function. Later when the +23V source becomes fully active and the start-up voltage has decreased, the CR422 and CR421 start diodes are reverse biased. They become open circuits; this disconnects the starting circuit from the +23V supply.

At this time, the anode of CR420 is more positive than its cathode, so it conducts and thus connects the 23V source to the proper load. Each time the TV is turned on, this sequence is repeated.

Waveforms

The start-circuit waveforms produced one surprise: the T100 primary waveform was radically different from the one expected. Because the winding current flowed in positive pulses, it seemed logical that the winding’s ac-voltage waveform should be similar. (This would be true if the winding had only resistance.) For the waveform to make sense, remember that inductances often differentiate a waveform, thus changing it as though the signal had gone through a high-pass filter. At the output of a sine-wave generator, a few components were added (to clip [rectify] the sine into positive peaks and then differentiate them. As shown in Figure 13, the start-up waveform and the filtered test waveform were almost identical. Other background material is contained also in Figure 13.

Next month

Power supplies years ago were simple and required no great troubleshooting skills. That is not true of late model solid-state circuits. For example, one low-voltage supply (to be examined next month) seems to have all components in the wrong places, including a grounded diode.

In addition, the entire 123V-regulator circuit will be analyzed. Four transistors determine where in the horizontal cycle the SCR conducts. Longer conduction times produce higher regulated voltage, after the pulses of current are integrated. In previous years, RCA recommended that the regulator module be replaced when problems existed there. In the CTC99 and CTC101 chassis, the regulator components are not on a separate board, but are scattered around the single large circuit board. Therefore, total replacement is not possible, and these circuits must be repaired at the component level when problems occur. Specific repair information is a necessity.

Troubleshooting methods will be supplied at the end of the power-supply coverage.
Improve your business and sharpen your skills as a technician for less than 16 cents a week...

Every single issue of Electronic Servicing brings you a wealth of time-saving—and money-making—tips and ideas on servicing and selling all kinds of electronic products, from color TV to CB radio. No "skimming over the top" here! In-depth lab reports, prepared by the nation's leading experts, dig right in to the servicing problems you face most, complete with photos and step-by-step guidance in trouble-shooting even the toughest symptoms!

IMPORTANT!
Please check your business classification.

Type of Business

- Independent Electronic Service Organization
- Retailer with Electronic Service Department
- Independent or Self-Employed Service Technician
- Electronics, Radio, TV Manufacturer
- Industrial Electronic Service
- Wholesale, Jobber, Distributor
- Other (Specify)

Position

- Owner, Manager
- Service Manager
- Technician
- Other

Be sure you have checked one box under each arrow!

Enter my subscription to Electronic Servicing

I PREFER:

- 2 years at $16.00 (You save $4 off regular price)
- 1 year at $10.00

Above rates apply only in U.S.A. and its possessions. Other countries please add $3.00 per year.

I ENCLOSE PAYMENT OF $__________

□ PLEASE BILL ME

PLEASE PRINT

NAME ____________________________

ADDRESS ____________________________

CITY ____________________________ STATE ________ ZIP ________

Your signature, please ____________________________
Writing to Electronic Servicing?

PREVENT DELAY BY USING THESE ADDRESSES:

ABOUT YOUR SUBSCRIPTION
Changes of address or any questions about your subscription should be sent to the address at right. Please advise us of a change of address at least 6-8 weeks in advance of your move, if possible. Also allow 6-8 weeks for new subscriptions.

TO THE EDITOR
If you have a comment or question about an article, an opinion about industry conditions, a Troubleshooting Tip, an item for Reader's Exchange, or a suggestion for a future article, write to:

PHOTOFACTS, BOOKS, OR SCHEMATICS
Electronic Servicing does not have parts, books, or schematics for sale. Questions or orders for Photofact schematics of Sams technical books should be sent to:

Dee Manies, Customer Service
ELECTRONIC SERVICING
P.O. Box 12901
Overland Park, Ks. 66212

Carl Babcoke, Editor
ELECTRONIC SERVICING
P.O. Box 12901
Overland Park, Ks. 66212

Howard W. Sams & Co., Inc.
4300 West 62nd Street
Indianapolis, Ind. 46268

BUSINESS REPLY MAIL
First Class Permit No. 1810 Overland Park, KS

Electronic Servicing
P.O. Box 12901
Overland Park, KS 66212

Your ticket to learn more and earn more.
MAIL TODAY!
UNLOCK TROUBLESHOOTING SECRETS

Through this Treasure of servicing Know-How!

Chart your path with this introductory collection of REPRINTS from among the best servicing articles ever published.

Employ today's TOP Authors as your Guides:
FOREST BELT, JACK DARR, WAYNE LEMONS, CARL BABCOKE
...and other popular writers.

Valuable bargains in specific, timely, easy-to-remember, profitable training...at less than $2 a page.

<table>
<thead>
<tr>
<th>Service Training REPRINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each</td>
</tr>
<tr>
<td>15 - 24</td>
</tr>
<tr>
<td>25 or more</td>
</tr>
<tr>
<td>(Add 20% outside U.S.)</td>
</tr>
</tbody>
</table>

HERE!

X

I have selected _______ Service Training REPRINTS, for which I enclose $_______ check or money order.

Name: ___________________________ Age: __________

Address: _________________________ Phone: __________________________

City: ___________________ State: ______ Zip Code: __________

MAIL TO: Service Training GROUP, Post Office Box 47, West Newton, IN 46183

FREE... Binder and Index Guides with order of $200 or more

November 1979 Electronic Servicing 37
10MHz triggered scopes
Two 10MHz, 5-inch scopes, the dual-trace model 1476 and single-trace 1466, are available from B&K-Precision. The scopes feature 18 sweep range selections, triggered and automatic sync with 10mV/cm sensitivity, and a fully regulated power supply. Calibration is unaffected by ±10% line voltage changes.

The 1476 is priced at $700. The 1466 is $560. Prices include probes. Circle (60) on Reply Card

NTSC color generator
B&K-Precision has made available a new NTSC color-pattern generator, Model 1250. The unit can be used for aligning and trouble-shooting videotape recorders. The 1250 features the NTSC bar pattern and a 5-step staircase pattern with selected chroma levels. Available patterns include dot, cross-hatch, dot-hatch, center cross and color raster. In addition to video patterns, the 1250 generates a 4.5MHz sound carrier with 1kHz or 3kHz modulation.

The price is $795. Circle (64) on Reply Card

Digital frequency counters
The 500HH series of hand-held digital frequency counters from DSI Instruments have frequency ranges of 50Hz to 500MHz, and 50Hz to 100MHz. The 8-digit LED display, with characters that measure .4-inch high, features automatic decimal point shifting and zero blanking. Total case dimensions (excluding antenna) are 3.5”x1.25”x5.75”.

Circle (65) on Reply Card

Capacitance meter
A 31/2-digit benchtop ac-powered capacitance meter has been introduced by Continental Specialties. The Model 3001 measures capacitances from 1pF to .1999F in nine ranges. Accuracy is within ±1 count on all ranges within 0.1% of indicated reading.

Suggested price is $190.

30-MHz scope
Hitachi has introduced the V-302 dual-trace 30-MHz oscilloscope. The unit features sensitivity up to 1mV (with X5 vertical magnifier), triggered time base sweep speeds from .02μs to 0.2s/div in 19 calibrated steps, a TV sync-separator circuit, X10 sweep magnifier, trace rotation and a signal-delay line.

The V-302 is available for $945, including probes. The single-trace V-301 is $745.

Circle (62) on Reply Card

Multifunction frequency counter
The FC-841 from Soar Corporation is a 7-digit multifunction frequency counter that covers the 10Hz to 50 MHz range. The counter can be plugged into an ac outlet or a car’s cigarette lighter. The FC-841 is supplied complete with batteries, antenna, and test lead and is priced at $90.

Circle (66) on Reply Card

Multimeter
A new line of digital multimeters from VIZ features a choice of LED or LCD display, accuracy of 0.1% (dc volts) and function indication (voltage, current or resistance).

Overload protection is provided for all functions in all models. All models are designed for battery or ac operation. A 6V ac adaptor is supplied, or it may be operated on 4 C cells.

Circle (61) on Reply Card

Electronic Servicing November 1979
urements near midscale. Features include a fuse-protected ohm circuit, three-color-coded scale and front panel, diode protected movement and one year warranty.

In Canada, contact Martin Industrial Sales Ltd. 4445 Harvester Road, Burlington, Ontario.

B&K-Precision has designed the model 2815 3½ digit portable 0.1% DMM. The unit offers LCD readout and rf interference shielding. A 9-V alkaline battery powers the unit. The 2815 features an automatic low-battery warning indicator, auto zero and auto polarity. The 2815 is available at local distributors for $150.

Circle (68) on Reply Card

Analog multimeter

The S-20 analog multimeter from Soar features a d'Arsonval meter movement. Five function modes, as well as 20 measurement ranges make this instrument versatile. A mirrored scale minimizes parallax reading errors. The battery-operated S-20 can measure ac and dc voltage from 0 to 1000V, dc current from 0 to 250 mA, resistance from 0 to 1MΩ and di/dt from -20 to +36. Typical accuracies are ±3% dc and ±4% ac. Price is $35.

Circle (69) on Reply Card

MASTER-MITE

HEAT GUN FROM MASTER

- Rugged, Anodized. Air cooled body
- Safety Light - Easy to see. Indicates unit is "on"
- One Hand Control. Three-way switch operated with simple finger movement
- Convenient Hanging Loop
- U.L. listed

Now bring a new dimension to heat shrinking as well as countless other industrial applications. Easier to handle. Only two pounds with nozzle. Perfectly balanced.

Three easily interchangeable color-coded nozzles to speed specific jobs. Silver (standard) used for most shrinkables (475°F). Blue nozzle for Mylar® (500°F) and Black for Teflon® (800°F), both optional equipment. Nozzles can be changed in seconds.

Reg Trade Name of DuPont

Send for your free full line catalog and price list.

In Canada, contact Martin Industrial Sales Ltd. 4445 Harvester Road, Burlington, Ontario.

Circle (11) on Reply Card
9 reasons why the real pros prefer Endeco desoldering irons

1. Operates at 120v, 40w. Idles at 20w for longer tip life
2. Flexible, burn resistant Neoprene cord set
3. Cool, unbreakable polycarbonate handle
4. Exclusive bracket insures alignment, prevents damage
5. Safety light in handle tells when it’s on
6. Stainless steel construction
7. Temperature control: Low, high or off
8. Eight tip sizes. Comes with .063 I.D.
9. Converts to soldering iron with 1/4” shank type tip

See your distributor or write...

Enterprise Development Corp.
5127 E. 65th St. • Indianapolis IN 46220
PHONE (317) 251-1231

Circle (13) on Reply Card

Cordless telephone

The DuoFone ET-300 cordless pushbutton telephone is now available from Radio Shack. The ET-300 has an operating range of up to 300 feet from the base unit, and a universal dial system. The phone features an auto-redial for one-button redialing of the last number called. Priced at $219.95, the ET-300 is available from participating Radio Shack stores and dealers nationwide.

You Are Not ALONE!

If you think that being in business makes you INDEPENDENT, think again!
Consumerists and government agencies are your silent — but greedy — partners!
AND THEIR SHARE COMES FIRST: even if you don’t make a profit!

WELL, YOU DON’T HAVE TO FACE THEM BY YOURSELF
JOIN NESDA
AND YOUR LOCAL & STATE ASSOCIATIONS
Send for more information to:
NESDA, 2708 W. Berry St.
Fort Worth, Texas 76109

Phono cartridge

Shure Brothers has announced the addition of the V15 Type III-HE to its series of V15 Type III phono cartridges. The new model features a hyperelliptical nude diamond tip. User price of the V15 Type III-HE cartridge is $115. The VN35HE stylus may be purchased alone for $38.

You Are Not ALONE!

If you think that being in business makes you INDEPENDENT, think again!
Consumerists and government agencies are your silent — but greedy — partners!
AND THEIR SHARE COMES FIRST: even if you don’t make a profit!

WELL, YOU DON’T HAVE TO FACE THEM BY YOURSELF
JOIN NESDA
AND YOUR LOCAL & STATE ASSOCIATIONS
Send for more information to:
NESDA, 2708 W. Berry St.
Fort Worth, Texas 76109

Temperature sensors

Two film temperature-sensing resistors have been introduced by TRW/TRC Resistors. A metal glaze-on-ceramic element offers near-linear change in resistance, thermistor-like impedance, fast response time and small physical size, according to the manufacturer.

Quick disconnect system

Antenna has introduced a quick disconnect system for the Persuader CB antenna enabling the owner to remove the 60-inch whip to protect it from theft or damage. The system can be used on all Antenna coil-in-cup antennas, but it is specifically designed for the Persuader trunk lip model, according to the manufacturer. List price is $10.28.

Desoldering tool

Hunter Associates offers model GSS combination soldering iron and solder removal unit. A vacuum is created by the Venturi principle from air pressure supplied either by a compressed-air line or a foot pump. A solder catcher is provided to prevent extracted solder from falling back onto the circuit board. The tool sells for $39.95.

Digital clock-radio

RCA has designed an AM/FM/FM stereo car radio with digital station/readout and clock. The radio is equipped with a special nosepiece
for universal application, permitting in-dash installation in most late model domestic cars. To simplify installation, the unit incorporates universal type bullet connectors for two or four-speaker hook-up, automatic power antenna activator lead, antenna trimmer and adjustable shafts. The suggested list price is $227.50.

RCA has a catalog of replacement remote control transmitters for RCA color TV sets. The 4-page brochure illustrates all current RCA products and provides a convenient cross-reference chart, to help identify the correct units.

The Antenna Specialists offer a 6-page brochure discussing 800MHz base and mobile antenna systems. The brochure contains information and specifications on A/S's complete line of 800MHz antennas including ¼-wave, 3dB-gain and low silhouette mobile antennas.

RCA has issued a 16-page directory of knobs for all control functions of RCA monochrome and color TV sets. The directory covers model years 1977 through 1979. It lists part numbers for channel selectors, fine tuning, on-off volume, brightness and contrast, horizontal sync., Accumatic and automatic fine tuning and auxiliary knobs.

When you price by “The Book”... everyone benefits!

Eliminates undercharging...controls over-pricing...treats both customer and shop owner fairly!

The Parts Pricing Book

Lists over 160 pages of current parts prices for instant reference. Computerized with automatic up-dating...$24.50 + up-dating.

The Labor Pricing Book

The new 4th Edition will expand your business mind as never before! Greatly simplified while being expanded to include all the new products, as well as the traditional.

CALL TOLL FREE: 800-228-4338

ARE YOU A PRO?

...the not for profit association championing independents' right to compete, and delivering valuable benefits continuously since 1950.

- **LEADING SPOKESMAN**
- **TRADE INFORMATION DISPENSER**
- **WATCHDOG**
- **LOBBYIST**
- **YARDSTICK OF STANDARDS**
- **CONSUMER RELATIONS**
- **COUNSELOR**
- **PROBLEM SOLVER**

We are not freeloaders. So our check for $60.00 dues is attached. As our special premium, please ship the indicated $15.00 Manual.

Check () Practical Business Manual

Check () Service Contract Manual
<table>
<thead>
<tr>
<th>Brand</th>
<th>Chassis</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADMIRAL</td>
<td>Chassis 10M60ET5</td>
<td>ET5 Electronic Tuning System, R700 Remote Control (RA70 Adaptor and RT70 Transmitter)</td>
</tr>
<tr>
<td></td>
<td>Chassis ECC-1001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C059/C, BP059</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRUETONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GCI3620A-08, GCI3620B-97</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(24-4020-4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WARDS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GAI-12966C, D, E, F, G, H, GAI-12994C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZENITH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chassis 25KC45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADMIRAL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chassis 10M55, 10M55/ET5, 10M55/PV12, 10M55A/ET5</td>
<td>Electronic Tuning ET5, Plug-in Adaptor RA70, Remote Control Receiver R700, Remote Control Transmitter RT70</td>
</tr>
<tr>
<td></td>
<td>Chassis 4M46-1D (Run 10, 11, 12)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MIDLAND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chassis KCS205A, B, P</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chassis CTG97A, H, HA, HB, HC, JA, JB, KA, KB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>REALISTIC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12-1512 (CHRONOMATIC 207)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SANYO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chassis A2C90000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chassis MR-20000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SHARP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model 13C37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13B32A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KMB-455</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19C68A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHILCO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chassis E24-9/-10/-13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chassis A12-21/-28</td>
<td></td>
</tr>
</tbody>
</table>
Chassis E20-10 .. 1835-1
Chassis E21-31, E21-32 1826-1
Chassis A30-1 .. 1829-2

QUASAR
Chassis ADTS-962N, DTS-962N (Run A01) 1826-2
Remote Control Receiver, Chassis TRT-14 1826-2-A

RCA
Chassis KCS 204A 1817-1

SHARP
19C81 ... 1832-1
15B50A ... 1817-2
19C71 ... 1819-2
19C79 ... 1820-1

SONY
KV-1713 (Chassis SCC-171A-A), KV-1911
(Chassis SCC-171C-A), KV-1922 (Chassis
SCC-171B-A) 1831-2
KV-1742R (Chassis SCC-100T-C), KV-1942R
(Chassis SCC-100U-C), KV-2142R
(Chassis SCC-100V-C) 1821-2
TV-121 .. 1829-3

SYLVANIA
Chassis A12-14 1832-2
Chassis E14-6/-7 1836-2
Chassis A30-1 1820-2
Chassis A16-21 1825-3

TEKNIKA
2152 Chassis EMC-12137 1823-2

TOSHIBA
Chassis TAC750, TAC755, TAC760,
TAC761, TAC765, TAC766 1820-3
Chassis TAC820, TAC821, TAC825, TAC826 1823-3

TRUETONE
GEC3019A-08 (24-3019-7), GEC3020A-08
(24-3020-5) 1832-3
GEC4924A-97 (24-4924-7) 1833-2
GEC4917A-97 (24-4917-1) 1834-2
WEG 2960A-97 (24-2960-3) 1836-2

WARDS
GAI-17530B, GAI-17535B, GAI-17630B,
GAI-17635B (Chassis 28M55) 1830-2
GAI-12909A, GAI-12959A, B 1818-2
GEN-11208A 1822-3
GGV-12960A/C, GGV-12976A 1827-2

ZENITH
Chassis 19KC48Z 1816-2
Chassis 3-Plus (19"), Remote Control
Receiver 130-9A, Remote Control Transmitter
124-11-01 ... 1828-2
Business Opportunity

MEN/WOMEN FOR FUN! Shaklee Independent Wholesale Distributors earn $200-$5,000 monthly, Bonanza, Car, Etc., Golden, RT2, Box 392ES, Fair Grove, MO 65648 Phone (1-417) 759-2738.

23 ways to help assure your company's future.

Our country and your company depend on new ideas. College trained minds produce new ideas. And college need your help. Write on your company letterhead to CFAE for 23 ways companies can aid colleges. We can't afford to run out of ideas.

B&A Precision
Beckman Instruments
Blonder-Tongue
Creative Electronics
Enterprise Development
Fuji Svea
GTE Sylvania
Gamit Enterprise
Hitachi Denshi America Ltd.
Jensen Tools and Alloys
Master Appliance Corp.
Oelrich
Nesda
Nesda
Phipps & Bird, Inc.
Sperry Tech
Zenith Radio Corp.
SYLVANIA ECG SEMICONDUCTOR GUIDE HELPS SOLVE GE AND RCA'S PROBLEMS.

No one knows better than Sylvania that the show must go on. So when a faulty semiconductor in any brand of home entertainment product turns into a showstopper, it's Sylvania to the rescue. Our ECG semiconductor guide is the most used, and useful, guide in the industry. It makes it easy to replace any ailing performer with an ECG semiconductor that will get the show back on the road.

When it comes to replacement parts the right place to come is Sylvania. Your Sylvania distributor carries a complete line of ECG semiconductors, picture tubes, receiving tubes, and test equipment designed to make any brand work like it's brand new.

Sylvania. The easy way to get even the hardest part.
FOR YOUR OWN REPUTATION
AND IN YOUR CUSTOMERS’ BEST INTEREST
ALWAYS INSIST ON EXACT REPLACEMENT PARTS AND ACCESSORIES

Zenith’s Instant Parts Program (ZIP) is the simplest, least expensive Zenith inventory control system ever devised for TV service technicians. Organizes the most needed, most used Zenith TV replacement parts and accessories so they are where you want them, when you want them.

And ZIP keeps these parts organized thru periodic checks by your Zenith distributor salesman who replaces slow moving stock numbers with new, more popular parts. As a result, your original investment is protected and your supply of Zenith parts remains current.

And you need never again risk your reputation with “will fits.”

Call your Zenith distributor now for all the details on the ZIP program that best suits your individual needs.

ZENITH RADIO CORPORATION/SERVICE, PARTS & ACCESSORIES DIVISION
11000 Seymour Avenue/Franklin Park, Illinois 60131

Circle (3) on Reply Card