A Monitoring Times Exclusive
SPY NUMBERS TRANSMITTER LOCATED

by John H. Demmilt

Almost all shortwave listeners have at one time or another heard strange groups of numbers while tuning across the dial. Most often these numbers are spoken in Spanish, German and English.

Stations which transmit these four or five digit groups of numbers are often called the 'Spy Numbers Stations' because they are transmitting on frequencies with no public license, give no identification, nor will governments say anything about them.

A popular belief is that these stations transmit coded information...to spies...operating in foreign countries. In the past few years several spies who have been arrested throughout the western countries had one thing in common: all had an inexpensive shortwave receiver. Some had code books containing what appeared to be one-day pad codes in

Did the Voice Of America actually issue QSLs in verification of 'numbers' reception reports—or was it a...?

That's just one of the questions being hotly debated in monitoring circles around the world. Insiders seem to say the facts behind the — by now—infamous Krueger/Sobkoviak QSLs just don't add up.

And a MONITORING TIMES investigation reveals that there is often less to a domestic VOA QSL than first thought. It's...-

Requiem For A QSL

By Havana Moon

How would you like to be one of the public information officers of a highly respected international broadcaster, then all of a sudden learn that your facility had apparently—on at least two occasions—issued QSLs verifying reception of 4-digit 'Spanish numbers' transmissions?

How would you like to be the one that had to offer a believable explanation to an abrasive freelance investigative reporter?

That just about sums up what happened to Rogene Waite of the Voice of America a few weeks ago, when she was rudely asked to confirm or deny the Terry Krueger and Ralph Sobkoviak QSL incident as published in the March issue of the RCMA NEWS LETTER.

The stark abruptness of these incidents didn't stop with the VOA Public Information Office. They rapidly spread to other sections. It was—well, something of a personal and professional embarrassment for Wayne Green.

You see, it was Wayne Green's signature that appeared on the Sobkoviak 11895 kHz VOA QSL! The signature of Vivian Smith, a receptionist who occasionally verifies domestic reception reports, appears on the 16562 kHz VOA QSL as obtained by Krueger.

The existence of these QSLs continued on page 4

The World's First Numbers Q S L?

By Terry L. Krueger

During the summer of 1982, I frequently heard a numbers transmission in Spanish at 0200 and 1200 GMT on 16562 kHz. Numbers transmissions certainly aren't uncommon, but what struck me as unusual was the fact that this frequency was the same one used by the Voice of America's Greenville, North Carolina transmitter site for feeding programs to relay sites.

The 1560 kHz MW Antigua transmitter, for instance, uses 15652 kHz as a pick-up during the 0000 Caribbean programming in English.

Though the signal level, audio-compression, modulation and frequency similarities, one can only speculate on any connection.

Nonetheless, I thought I would write to the VOA, as a lark, for a QSL.

Much to my surprise a full-data QSL arrived a few days later, confirming my numbers report. Since last August, several other hobbyists have reported numbers transmissions on VOA frequencies, and some have also received QSLs.

One can only speculate on this QSL's authenticity of verification. The VOA has recently been issuing a rash of legitimate QSL cards with the incorrect sites listed (one contact recently received two cards—one indicating Rhodes as Kavala, the other as the Philippines for a 2159 GMT log on 6095 kHz.)

For those interested in monitoring international broadcast feeder transmissions I recommend Bob Grove's "Shortwave Frequency Directory" and Olivers Ferrell's "Confidential Frequency List".

PRESSTIME
NEWSBREAK

A highly-placed intelligence official has notified Monitoring Times that one of the frequency-reported phonetics broadcasts ("kilo papa alpha two") originates from the Yugoslavian embassy in Ottawa, Canada.

Our frequency data base confirms that some of the reported frequencies do, indeed belong to that diplomatic service.

We appreciate hearing from individuals who have authoritative information about these mysterious "Spy numbers" stations.

Just a small portion of the giant antenna complex at Nauen, East Germany

The VOICE OF AMERICA
WASHINGTON, D.C. USA 20547
Office Use Only
Priority Rate Postage Due $300

The signature

TERRY L. KRUEGER
by Winter Park, FL 32707

"Shortwave Frequency Directory" and Olivers Ferrell's "Confidential Frequency List".
Jack McLaughlin...
...Are You Out There?

Yes, we're embarrassed; we've lost your address and really would like to pay you for your article. Jack, please call home! But don't let this lapse in our usual competent proficiency discourage other prospective writers. MT readers are asking for more variety of subjects to be covered in future articles, including:

Satellite reception, antennas for all ranges, aircraft monitoring, public safety radio systems, RTTY and FAX reception, scrambling and encryption systems, simple experimenter projects, Radio astronomy, interference and filters, videotex and electronic mail, police vehicle RTTY reception, monitoring post design and layout, new technologies, starting a club, BCB/FM/TV DX'ing....and much, much more. How about it, writers? Would you like to share your knowledge with other readers?

Articles should run 500-1000 words, include illustrations whenever possible; payment is $5.50 upon acceptance, along with a free subscription to Monitoring Times. Fair enough? Let's hear from you!

Write to Bob Grove in care of Monitoring Times.

Congratulations W5RRR

Monitoring Times would like to publicly thank the amateur radio club at the Johnson Space Flight Center in Houston for retransmitting the voice link on the last shuttle flight. The hams who operated station W5RRR are commended for their effort to fulfill one of the strongest attributes of amateur radio: to inform the public.

Throughout the missions, from liftoff till touchdown, hams worldwide were able to monitor the voices of the astronauts retransmitted on a frequency of 14279 Khz in the 20-meter band. We urge the service to continue.

Bob Grove, editor of Monitoring Times and president of Grove Enterprises, will be a guest speaker at the summer convention of the Association of North American Radio Clubs, July 15-17. This year the ANARC convention will be held at the Rosslyn Westpark Hotel in Arlington, Virginia.

Grove's subjects will include utilities monitoring such as military, government, spies, smugglers ship-to-shore and aircraft as well as insights into new equipment and accessories which will be on display.

Both shortwave and VHF/UHF scanner monitoring will be highlighted as well as ventures into satellite and other areas limited only by the interests of those in attendance.

The ANARC convention is the largest conclave of shortwave and scanning enthusiasts in the country, with hundreds of active listeners in attendance.

Special guest speakers from all areas of monitoring the spectrum will conduct open forums on an array of interesting topics. The preliminary, program is shown below.

The readers interested in attending may write for further information: Washington Area DX Association, 606 Forest Glen, Silver Spring, MD 20901.

Editorial by Bob Grove

WAYPYQ A Monitoring Network For Hams & SWL's

Roughly 25% of Monitoring Times readers are licensed amateur radio operators, many of whom have expressed an interest in starting a nationwide radio network to exchange interests.

Prominent in the minds of most is the use of radio direction finding techniques to identify many unknowns such as the mysterious numbers stations, beacons, illegal communications and sources of interference.

Such a network would also allow active listeners and experimenters to exchange ideas for equipment design, listening tips, and other areas of communications are presently satisfied by existing amateur radio networks, but what about the legality of discussing intercepted communications on the air? Section 605 of the 1934 Communications Act clearly proscribes against an unauthorized listener revealing to another party the contents--even the existence--of a non-broadcast transmission.

Is there a legitimate way to avoid violating this provision? Is there a difference between saying, "I heard Air Force One transmit President Reagan's Mideast status position on 18027 kHz last night at 2000 UTC," and "18027 kHz is commonly used by Air Force One for the transmission of presidential communications of a confidential nature"?

Or how about the interception of a clearly criminal transmission, the content and location of which would be of vital interest to law enforcement?

 Obviously, members of the net could codify their transmissions by using "ten code" techniques, known only to themselves, but this does not exonerate the reporter; it only makes the contents known to fewer unauthorized parties.

Monitoring Times would like to hear from interested hams, shortwave listeners, law enforcement agents and FCC officials regarding this proposed network.

Without question, such a radio network would be a great interest to participants and could provide valuable assistance to overworked and understaffed agencies as well.

Grove To Speak At A.N.A.R.C. '83

Bob Grove, editor of Monitoring Times and president of Grove Enterprises, will be a guest speaker at the summer convention of the Association of North American Radio Clubs, July 15-17. This year the ANARC convention will be held at the Rosslyn Westpark Hotel in Arlington, Virginia.

Grove's subjects will include utilities monitoring such as military, government, spies, smugglers ship-to-shore and aircraft as well as insights into new equipment and accessories which will be on display.

Both shortwave and VHF/UHF scanner monitoring will be highlighted as well as ventures into satellite and other areas limited only by the interests of those in attendance.

The ANARC convention is the largest conclave of shortwave and scanning enthusiasts in the country, with hundreds of active listeners in attendance.

The ANARC convention is the largest conclave of shortwave and scanning enthusiasts in the country, with hundreds of active listeners in attendance.

Special guest speakers from all areas of monitoring the spectrum will conduct open forums on an array of interesting topics. The preliminary, program is shown below.

The readers interested in attending may write for further information: Washington Area DX Association, 606 Forest Glen, Silver Spring, MD 20901.

Friday - July 15
9:00-5:00 p.m. Registration
9:00-12:00 Noon Exhibit set-up
12:00-5:00 p.m. Equipment and club exhibits and displays
3:30-5:00 p.m. ANARC representatives meeting
5:00-5:30 p.m. Official convention opening
5:30-7:00 p.m. Dinner on your own
7:00-9:00 p.m. Wine and cheese reception
Saturday - July 16
8:00-9:00 a.m. Registration
9:00-10:00 a.m. Seminar one-
PUBLICIZING RADIO LISTENING--Who should do it and how much should they do? Hear what broadcasters, clubs and equipment manufacturers think.
10:15-11:00 a.m. Seminar two-
TRENDS IN BROADCASTING, EQUIPMENT AND LISTENING--Find out where the experts think the hobby is headed.
11:15-12:15 p.m. Seminar three--
COMPUTERS IN THE RADIO HOBBY--Learn what you need to know about computers and how they can make your listening more interesting.
12:15-1:30 p.m. Lunch on your own.
1:30-2:30 p.m. Seminar four-
CONCURRENT SESSIONS ON LW/MW, FM/TV, PSB/UTE and SW--Free-wheeling discussion of various aspects of the hobby with noted DXers as discussion leaders.
2:45-3:45 p.m. Seminar five-
MEET YOUR FAVORITE BROADCASTER--An informal opportunity to visit, get autographs and take pictures.
4:00-4:15 p.m. Presentation of "Review of International Broadcasting" awards
4:15-5:30 p.m. Seminar six--
BROADCASTER'S FORUM--A chance to question broadcasters about their stations, their programs or anything else on your mind.
5:30-7:00 p.m. Free time
7:00-7:30 p.m. Cash bar
7:30 p.m. Annual banquet/presentation of ANARC awards
Sunday - July 17
9:00-11:30 a.m. ANARC annual general meeting
11:30-1:00 p.m. Lunch on your own
1:00-1:15 p.m. Presentation of HAP awards
1:15-3:30 p.m. HAP auction
3:30 p.m. Closing ceremonies
New Products

24 HOUR QUARTZ MOVEMENT WALL CLOCK

Benjamin Michael Industries is one of the most prolific sources of clocks of every description and their 973A military format wall clock is professional example.

Available either in 24 hour (973A) or 12 hour (972A) format, the 12-inch wall clock features a quartz crystal movement assuring better than 15 seconds per month accuracy.

Power is provided by an easily replaceable C cell, good for at least one year of uninterrupted operation.

A slightly smaller version is available as the model 963A at lower cost.

The 973A is recommended for communications installations and listening posts, as well as hospitals and broadcasting studios where reliable time readings must be compromised by power outages.

The easy-to-read dial is calibrated in hours, minutes and seconds; the sweep second hand pulses once per second, audibly, but not distracting.

The clock is housed in a black textured plastic bezel and covered by a convex glass crystal.

For those who like digital accuracy but analog readability, the 973A is hard to beat. Readers may wish to inquire for the full-line catalog sheet featuring an array of timekeeping devices at various prices.

Dealer inquiries are invited. (973A, $59.95; 963A, $47.95; plus $3 shipping from Benjamin Michael Industries, 65 E. Palatine Rd. Dept. MT, Prospect Heights, IL 60070)

New Scanners Due

The summer Consumer Electronics Show (CES) in Chicago this June will hold a number of pleasant surprises for scanner buffs.

Electra is scheduled to unveil a number of new programmable scanners. Regency is due to announce a low-priced mobile scanner, and Fanon/Courrier is slated to reveal a handheld (FTS500) and base/mobile (FTS600) programmable scanner employing frequency range 25-312 MHz, continuous coverage, AM/FM.

J.I.L. is rumored to have cleared up many of the problems which have plagued that company's unique SX-200. Problems included severe intermod when using the receiver in metropolitan areas.

Radio Shack is scheduled to include new receivers in their fall catalog. It will be interesting to see what effect Tandy's recent acquisition of basic Electra patents will have on their product line.

Electra recently cut back some 300 production personnel and consolidated their Cumberland, Indiana operations in favor of a progressive, new manufacturing facility in Puerto Rico.

The Cumberland address will still carry as corporate headquarters and customer service.

As with the computer industry, the Japanese are making significant inroads into the scanner market as well. A T-made based firm, GRE, provides basic programmable scanner boards for several manufacturers.

Monitoring times predicts the imminent release of a whole new generation of programmable scanners, significantly more powerful than any previously offered to the consumer.

Spy Numbers Transmitter Located

Continued from page 1

exact location of one of them.

I took an active interest in the numbers stations several years ago and set up a project to learn where these broadcasts were coming from. I began by logging all the known frequencies used by the German language numbers stations and listed the SINPO reception quality and area of reported reception beside each entry.

I took those which were reported stronger on the east coast and made a separate list putting the days and times of transmissions and circulated these lists among friends living in England, Holland, Italy and West Germany. I soon received reports showing that reception was best heard in West Germany.

Since there were no SIO's of 555 (extremely strong) I assumed that the transmissions must be coming from East Germany. This was later confirmed when I arranged for one person from England, Italy and West Germany to use the Parallel Coaxial Loop Direction Finder. Now we had an area to concentrate on.

A check of the card file of people I corresponded with revealed that a friend lived in that very area but was currently attending college in East Germany. I contacted him explaining my project; he promised to assist me during his next term break.

Several weeks later I receiv-ed an envelope from him filled with pictures of the site of the German numbers station! He told me that he drove around using a portable shortwave receiver tuned to the frequency I gave him. As he neared the station, he had to tune to a harmonic to prevent his receiver from overloading! It did not take long for him to realize the transmitter was in the restricted area of Nauen (12,54E 52, 38N) within the giant complex which houses transmitters such as Radio Berlin International, Reigen Radio, YIS, relays of Radio Moscow, military, espionage and spare transmitters which will assure constant communications.

The antenna farm covers an area in excess of 1/4 square miles. Roads to the complex are posted with signs restricting the area. A guard house at the entrance controls who goes into the complex.

My friend, feeling a sense of adventure, got out of the car and walked into a wooded area across the complex and took the pictures contained in this article. Although he knew it was illegal to take pictures of East German military complexes, he felt satisfied after all the trouble those stations gave him as he tried listening to western stations!

Giant steerable array packs a shortwave punch

Forbidding sign in English, Russian, French and German reads: "Attention! Passage of members of foreign military liaison missions prohibited!"

Main gate at the Nauen espionage installation

Monitoring Times, May/June, 1983 — Page 3

"S.A.S.E."

We at Monitoring Times constantly receive letters from readers which begin, "Please send me everything you have on..." Invariably, such requests don't even include a self-addressed stamped envelope.

Obviously, such requests cannot be answered. As much as we would like to help, we are not a public library service. Many publications are available with frequency lists, and our Book Shelf section contains excellent reference works.

We will be happy to reply as time permits to those who inquire with problems. Letters received with an SASE will be answered, questions of a general interest will be reprinted with answers in the Technical Topics column.

And as always, my telephone line is open for prepaid calls weekdays 8-9 Eastern (704-837-2216)...Bob
Requiem For A QSL

was—at first—flatly denied by one anonymous VOA employee. This same employee also claimed to have no knowledge of Wayne Smith, Green Bay, Wis.

And another anonymous VOA employee became highly indignat when it was suggested that the VOA had issued no such QSL. But there were no other incidents— for a time— left this QSL incident shrouded in mystery. The ambiguities surrounding this QSL brouhaha gave rise to a listener mental whirlpool!

There was, however, a certain and welcome amount of consistency from those in the VOA Public Information (PI) Office. There were a few times, however, when the conversations abruptly jumped off into other unrelated directions. This seemed to happen just as our thought processes were going in other more logical ways.

No small amount of thanks goes to VOA's Rogene Waite for delving out of VOA's domestic QSL procedures. It's the correct time and correct frequency that determines whether or not a QSL will be issued. It's that simple, yet it's not given to detailed listings of program content or other related information. Budget cutbacks and the enormous volume of mail received in outpourings of VOA's questions are the primary reasons for this policy. It's unfortunate that this policy seems to be catching on among other international broadcasters. Look also for QSLs to go to computer-generated QSLs. QSLs just aren't what they used to be!

It was learned that only a frequency schedule is used for reception verification. It was also learned that VOA keeps reception reports on file for a two-year period. VOA has some questions after which they are shipped to an out-of-state warehouse where they are stored indefinitely.

Again, thanks to Rogene Waite for providing us with copies of the entire VOA frequency schedule.

Unfortunately, feeder/relay frequencies are not listed on that schedule. This fact adds a certain amount of mystery to the Krueger QSL!

Previously, Krueger's 15652 kHz intercept of August 8, 1982, has raised more than a few eyebrows. It (the QSL) also raises one most interesting question: Did VOA receive 15652 kHz QSL be issued when those responsible for the issuance of QSLs—supposedly—are not in a position to examine the frequency schedule when issuing QSLs?

This is just one of the many questions that VOA sources have agreed to answer. The answers, hopefully, will be forthcoming.

There's also a bit of mystery surrounding the Sokovkiv 0020Z intercept on 11895 kHz of adding to the confusion is the statement from another equally reliable source—also speaking anonymously—the VOA is in no way involved with these two broadcasting concerns. However, VOA indicates that it will clarify this situation in regards to these "others" in the near future. Let's hope that it's not a lengthy wait.

As the "cold-war" gains momentum, it's remotely possible that there's a KGB and DGI (Cuban Intelligence) plot to discredit the VOA. One possibility is that the VOA does not have total control over the "unknown" others that lease VOA transmitter time.

It is also within the realm of possibility that the Castro regime is "miffed" that the "Radio Marti" issue refuses to expire with dignity.

This spectre of "Radio Marti" is now in the form of Senate Bill #659. It's now called the "Radio Broadcasting to Cuba Act." It's dated March 3, 1983. This Bill, in part, states:

"Radio broadcasting to Cuba under this Act shall serve as a continuously and authoritative source of accurate, objective, and comprehensive news." Any broadcasting to Cuba on the AM band other than that conducted by means of least two hours on commercial and comprehensive educational radio broadcasting stations, shall be limited to the frequency used by the VOA for its broadcasts from facilities located at Marathon, Florida. In the event that broadcasting is conducted on the frequency used by the VOA, the VOA broadcasting facilities located at Marathon, Florida, may also be used for the purposes of this Act.

Strangely enough, those "lizard-tongues" of the Revolutionary Voice of Radio Free Grenada have, indirectly, entered this HF "soap opera" (there's also a TV Free Grenada). As recently as March 12, 1983, (one day before the 4th anniversary of the Grenadian revolution) at 2130Z on 15645 kHz, a lengthy and caustic attack was directed at the VOA. Seems that the people of Grenada resent the VOA interfering in their revolution! That's hardly the style of the VOA! It's rather difficult to take this "black" propaganda Grenada bunch seriously. Their affinity for bizarre obituaries and the Old Rugged Cross are a bit much.

It's most unusual for other international broadcasters to speak unkindly of the VOA. It's just not a "class" thing to do. Others, outside and inside the VOA, have been quick to come to the defense of the VOA. A former intelligence officer, with 20 years experience in clandestine operations, states: "it's totally incomprehensible that the VOA would involve itself in such clandestine matters. It would be detrimental to the intelligence community and the VOA...."

...there is no way that VOA would be involved in the dissemination of a great or black operation with another agency...."—George Jacobs, Former Chief of Operations, for VOA.

Diane Conklin of the VOA Public Information Office, in a letter dated March 16, 1983, says: "VOA would like to state for the record that these number transmissions have ever eminated from VOA facilities or transmitters.

VOA does not have the indisputable voice of George Jacobs speaking in defense of the VOE:

"I can tell you without hesitation that there is no way that VOA would be involved in a black operation with Congress with a grey or black operation with another agency. In wartime it would be justified, but present conditions don't warrant it.

Ann Case, VOA Chief of Operations and Warren Euros, Frequency Manager for VOA, have neither been in meetings or out of meetings. Numerous times that phone calls were placed to them. Statements from these two officials would be most welcome and informative.

In all, there have been other incidents on VOA frequencies that warrant immediate explanation.

On numerous occasions, just seconds after 0300, a sign-off on 11885 kHz, a Morse beacon, "T U" (+...) has been monitored. In addition, Slavic (?) and Spanish (?) sign-overs without air were monitored. No apparent identification have been monitored on several occasions on 11885 kHz after signoff.

Another strange incident involving "English numbers" transmission and a VOA (?) news broadcast has been monitored. This incident in its entirety will not be reported. The VOA has been informed of this incident and we are awaiting their reply before publication.

And finally, from Rogene Waite, VOA Public Information Office:

"...we are still in the process of soliciting answers to your questions of March 8, 1983. Will forward responses as forthcoming.

It's lengthy series of questions that have been presented to the VOE. Perhaps the answers will be revealing.

Shortwave Directory Updates

Additions and changes to the Shortwave Frequency Directory by Bob Grove are now available from Grove Enterprises. The updates include FEMA, NASA, Disaster Communications, enroute aeronautical and VOLMET.

The lists are enclosed free of charge to the owners of the popular Shortwave Frequency Directory (BOK-13); previous customers may order the update separately by sending $1.50 to Grove Enterprises, 140 Dog Branch Rd., Brascatt, NC 28902.
In Search Of The Jolly Bucs

By John Santosusso

DXing shortwave pirates is not the easiest thing you will ever try. In fact, it isn't. Sometimes, Times we noted some of the difficulties encountered in chasing pirates. However, if you possess certain bits of information you can swim the odds somewhat in your favor.

First of all, it is important to know when to listen. Pirates can be heard at almost anytime, since scheduled times are usually less crowded. The majority of transmissions tend to occur at particular times.

Research indicates that many North American pirates are college students. While some do find it possible, it is often difficult to carry the transmitter and antenna off to the dormitory with you. So a number of stations broadcast during those periods when students are likely to be home.

Be especially on the lookout for transmissions around major holidays such as Thanksgiving, Christmas, New Years, and Independence Day. Operators also like the holiday seasons because only the most fanatical of FCC agents would be trying to bust a station on Christmas Eve!

Other times when monitoring may pay off are in the early spring (when colleges usually break for a weeklong summer vacation period). Unfortunately, summer atmospheric conditions somewhat cancel out the advantage of more broadcasting during that season.

Next, it is important to know that most of the broadcasts you are likely to hear will occur on weekends, especially Saturday and Sunday.

Other pirate operators feel the FCC is not as busy working overtime after midnight on a Saturday or Sunday.

Vetran pirate chasers suggest you scan the frequencies at the beginning of the hour, since that is the time most stations tend to begin broadcasting.

Once armed with information on when to listen, it is vital to know when to try to log what some believe, most pirates try very hard not to interfere with any other station. Look at it from the pirate's point of view. Such operations are expensive. No one will be able to hear him, and the station being interfered with probably will complain to the authorities. Consequently, pirates generally will avoid any shortwave broadcast band.

They also dislike amateur radio bands, despite the fact that much of the time the transmit-converted ham gear, because probably 99 percent of the hams vehemently oppose the pirates. The places to look for pirates are those portions of the short-wave frequency spectrum assigned to utility operations, and especially on frequency to do so utility traffic often is rather light.

Recently, most New England FM pirate stations operating near high frequencies have also been highly popular and favored by pirates. For example, the band around 750 kHz has seen the most popular of all pirate frequencies.

Another "pirate broadcasting band" will be found between approximately 8250 and 6300 kHz. Transmissions during daylight hours may not be too common, but a search of frequencies between 14500 and 15000 on a Saturday or Sunday afternoon may just turn up a pirate or two.

Nearly those who want to find pirates on the FM and medium wave bands, the job is going to be more difficult if you live in a major metropolitan area. Those interested in pirate bands have a range considerably shorter than their shortwave counterparts, making reception harder and detection by the FCC easier.

Secondly, notices of a station on any frequency must be made. They are more likely to have interference problems if they attempt to broadcast within the normal limits of the bands. Those stations attempt to make sound anyway, but most appear to land on frequencies just above or below the regular bands.

For medium wave operations, listen for frequencies from about 1610 to 1630 kHz. Recent years have seen considerable activity in the New York City and Long Island, usually received even on car radio.

Under favorable conditions, some of these stations can be heard throughout New England and as far away as New York. Several years ago the now defunct WCBX was even heard regularly in Florida.

Successful use of the 1610 to 1630 band to be found elsewhere in the country, so it is definitely worth monitoring. Recently, KM-JC, a pirate claiming to be in Los Angeles, said it would broadcast in that range in addition to the New York metropolitan area. California has also been the scene of considerable medium wave activity. While some of it has moved from the limits of the band, so residents of that state may also have considerable success in searching for bootleg broadcasters.

The most likely place to find an FM pirate is on the lower end of the FM band, between 88 and 90 MHz, frequencies officially reserved for educational institutions.

One former New England FM pirate, WCRM, actively operated below the band on 87.4 MHz; however, some of the New York area pirates have also operated on higher frequencies within the band, so it pays to look around.

What about TV pirates? Oh, yes, they do exist! About two years ago aSouthern Pines, North Carolina, man was fined $2000 by the FCC for rebroadcasting pay TV signals on locally vacant channel 7, and several established radio pirates have hinted they might give TV a try. Nevertheless, TV pirates are so rare, and their broadcasting range usually so limited, that if you stumble across one consider yourself very lucky indeed. You may never see another one.

There is, of course, a few suggestions for adding to your pirate loggings. Good luck, and while you are at it, why not let us know what you hear? Who knows, you just may be the first person to hear a brand new buccaneer!

Radio X To Leave The Airwaves

By David Crawford

Oak Hill, Fl.

Radio X, 103.5 MHz, from Daytona Beach, Florida, signed off for the last time on Christmas Day, 1982. The station's 20 watt signal had offered listeners in the Daytona Beach area a mixture of oldies and new wave music during weekends for nearly two years.

According to "Bruno The Hippo, Pineapple," the station operator, the decision to close the station down was made in response to a threatening phone call received on 22 December 1982 from a person believed to be a federal agent.

The caller refused to identify himself, but was very knowledgeable on the subject of FCC regulations and threatened, "if we bust the station immediately if it did not leave the air, said Bruno, who added, "the place had seemed to be of local origin."

Radio X's telephone number was no secret. The number was announced on the air frequently for listeners to phone in their music requests.

The beginning of the end for Radio X came on 18 December 1982, when a report of the station's existence was broadcast on Glenn Hauser's DX report over Radio Canada International's "SWL Digest" program.

It appears likely that someone within the monitoring framework of the Federal Communications Commission heard this item and took action.

The FCC, according to documents obtained via Freedom of Information Act petition, had utilized a "working contact" in Daytona Beach previously. His identity was stricken from the documents and his exact capacity is not known.

In addition, there is an FBI office in Daytona Beach from which the call could possibly have originated.

CW For Shortwave Listeners

...A Follow-up

By Sam W. Lambert

First, I would like to thank those readers who responded to my plea for aeronautical Q-codes. Your efforts were much appreciated.

Reader Ed Flynn accompanied his list of Q-codes with an additional request for a recent year's usable broadcast schedule. The following is a relatively new schedule (effective at the end of 1982); all times are GMT (UTC).

0600-0800: LCPM-1
0800-1000: Hydroplants
1000-1200: LCPM-1
1200-1400: Hydroplants
1400-1600: LCPM-1
1600-1800: Hydroplants
1800-2000: Hurrwarns, NAM, LCPM-1
2000-2200: Hurrwarns, NAM, LCPM-1
2200-0200: LCPM-2
0200-0400: Wind and Sea Warnings

For example, tunnel volunteers, in order to find data on which to base their reply, must determine the exact time required to pass through the tunnel in order to determine the day of the week, as well as the day of the month.

The frequencies on which I pick up the broadcast signals are: 5870, 5917, 8090, 12135, and 16180 kHz. Note that Morse code drills are occasionally broadcast outside the times listed in the above schedule. For example, a low-speed drill (5 w.p.m.) was recently heard in progress at 0225 GMT, and it speeded up to 7 w.p.m. at 0230 GMT. It consisted of five-letter groups.

Thanks again, fellow Sam W. Lambert

Monitoring Times, May/June, 1983 — Page 5

www.americanradiohistory.com
THE LOWDOWN ON ELF

Part I

by Larry L. Ledlow, Jr.

(Monitoring Times is pleased to pre- sent the first of a three-part series by Larry Ledlow, Jr., a recognized expert in the field of low frequency communications.

Author Ledlow’s clear presentation is quite possibly the first time such a topic has been presented comprehensively in any publication intended for the listener.

The extremely low frequency range (30 to 300 Hz) is truly the “low” end of the radio spectrum which has captured researchers interests and efforts since before the beginning of the century.

During recent years intense reexamination of the ELF range has taken place. Let’s take a look at what this nether region is all about and what makes it so special.

We all utilize ELF to a certain extent. The AC lines in our homes carry 50 or 60 Hz radio frequency currents. There are many sources of ELF phenomena--lightning in the lower atmosphere, plasma phenomena in the ionosphere, certain meteorological and biological processes are natural sources, while power and communication systems are man-made sources.

Physicist Nikola Tesla figured out in the early conceptual development of man-made ELF systems. In 1899 Tesla envisaged a world-wide communication system utilizing a huge spark gap transmitter located in Colorado Springs.

Several years later he built a large ELF facility on Long Island in anticipation of transmitting signals to a duplicate facility of the Cornish coast of England. Tesla also proposed a modified version of his system to distribute power to all points of the globe without conducting wires.

Unfortunately, Tesla lost his financial support from his sponsor, Morgan, apparently in part because of Marconi’s successful demonstration of transatlantic signal transmission using much simpler and less expensive equipment.

It is commonly known that the penetration of RF energy into conducting media (e.g., the earth or seawater) is improved as frequencies decrease. Further, at extremely long wavelengths the signals are relatively unaffected by obstructions (e.g., buildings and mountains).

Conrad and Marcel Schumberger, two geophysicists interested in using ELF electromagnetic waves for mineral prospecting, first demonstrated transmission of 100 Hz waves over useful distances (0.1-10 KM away) just before 1900.

From that time until recently, ELF has been a region of the spectrum inhabited primarily by geophysicists interested in atmospheric propagation or mineral prospecting.

Readers may familiar with waveguides, metal pipes used to connect antennas to transmitters or receivers at microwave frequencies because their signal losses are considerably less than those of coaxial cables.

At ELF the Earth-ionosphere cavity may function as a waveguide. This allows the propagation of ELF signals around the globe with very little attenuation.

With long distance and useful penetration in mind, we can immediately imagine many uses of ELF communications systems. A prime use is as link between submerged submarines and Naval headquarters.

Currently, submarine communications are limited by HF. To use HF, VHF, or UHF the vessel must have an antenna above the water. This usually requires the submarine to be at periscope depth or less.

VLF (3-30 kHz) communication may be carried out by floating a trailing antenna at or near the surface of the water, while the submarine is submerged, but propagation distances at VLF are severely limited because of saltwater attenuation. In addition, the submarine is still considered vulnerable to detection and attack.

Research is being done on the use of blue-green lasers for communications through seawater for depths comparable to those considered maximum for VLF communications.

ELF, on the other hand, may provide communications with submarines submerged as deep as 300 meters without the use of aircraft or satellites to relay the information.

Short range communications through water (between divers for example) is another application of ELF. The advantages of using ELF rather than acoustic signals in water is immediately apparent, when one considers the reverberation associated with acoustic waves, especially in the proximity of vessel hulls, piers, and other obstructions. Further, acoustic communications between aircraft and a diver, for example, would be impossible without the use of a buoy with a transponder at the surface to receive the aircraft radio signals and to retransmit them to the diver using acoustic waves. ELF radio waves, on the other hand, can readily cross the air-water boundary.

Applications of ELF radio communication to mining can also be seen. Miners working hundreds of meters underground may have their conventional communications link broken during an emergency. However, ELF waves can easily penetrate the overburden for the miners to signal their position and condition to a receiver at the surface.

We have so far discussed only the advantages of ELF but “You don’t get something for nothing”.

How does one detect ELF waves? A half-wavelength dipole for 100 Hz is nearly 900 miles long. This would hardly be suitable for installation on a submarine. A loop perhaps? Start winding. It may be done by the turn of the century (pun intended).

Another problem is a noisy environment. Lightning and upper atmospheric phenomena are very powerful generators of ELF radiation. Shortwave and longwave listeners know how noisy the MW and LW bands are on a summer evening.

In addition, long trailing antennas might as well be installed on an aircraft or a submarine, tend to vibrate due to turbulence. Because of the ever-present geomagnetic field, this vibration induces ELF noise in the receiver system.

Finally, a fundamental issue must be considered—that of data rate and signal bandwidth.

Speech is contained in frequencies below 3000 Hz; if transmitted at ELF (30-300 Hz), one SSB voice signal would occupy a bandwidth 10 times greater than the entire frequency band!! This would be like trying to transmit a normal TV signal (bandwidth 6 MHz) on the AM broadcast band (bandwidth 500 kHz). The Navy has recognized experts in this area.

There have been many suggestions for solutions to these problems. While information may not be passed at a very high rate at ELF, a little information may be very helpful, if nothing more than to say, “Come up for urgent traffic.” Even indications of no traffic would be extremely valuable, thereby eliminating the need of the submarine to surface to communicate with the shore.

During the Carter Administration a selective calling ELF system was proposed which could send messages to submarines without exposure or loss of operational freedom of the submarine.

During April 1983 the Navy demonstrated the effectiveness of ELF communications by transmitting a signal from a site in North Carolina to a submarine 3200 km away with a receiving antenna near keel depth.

The experiment was called the “Intensive Test.” Early Navy experiments have gone under the guise of projects Sanguine and Seafer, among others.

At present there is an ELF test facility established at 200 Hz or another ELF system located in the Chequamegon National Forest near Clam Lake, Wisconsin. Another facility, more extensive than the test facility, has been under construction near K.I. Sawyer AFB in Michigan’s Upper Peninsula.

Now that we have established that ELF is a viable communications band, let’s get down to the business of discussing ELF transmitter and receiver systems including antennas. More on that topics in Part II.
Broadcasting

To err is Human—

Hank Bennett-W2PNA

Welcome to another column devoted to International Shortwave Broadcasting. As I mentioned last month, the term “Shortwave” listening is not entirely correct to most of us since we consider virtually any frequency to be fair game for listening purposes.

From time to time in this column you might well find an item or two on stations having frequencies that are not, in the strict sense, considered shortwave.

It’s easy to go off, though. A number of years back I fell solidly for a report that a fabulously-new and powerful station had gone on the air from the island of Nibi-Nibi. I tuned in the Home Service there and stirred up the shortwave listening boys until someone realized that the whole things was a hoax. Just proves how well engineers can be made without complete research and/or proof reading!

Let’s Look At Some Clubs

Anyone interested in joining a club? The Associated DX Club has a fine list of clubs and we refer you to it. In addition, a club that has been in operation for just over a year is the Association of DX Reporters.

This club formed out of the ashes of the now-defunct Newark News Radio Club by a number of the officers and editors of NRRC. Reuben Dagold and his crew have quietly put together a fine bulletin and they would like to have your name in their membership list.

Drop them a line and send along a half buck for a sample bulletin or plunk down fifteen bucks unseen for membership for a year. Of course please write for membership details and rates. Their address is ADXR, 7008 Plymouth Road, Baltimore, Maryland 21208.

The National DX Club, in last month’s list, has a fine Domestic Log for medium wave DXers. It contains over 200 pages of stations for the U.S. and Canada and listed by frequency and cross-referenced by callsign. The cost is $8.50 for members; $9.50 for others. Use the address as listed in the March/April issue.

An entirely new on the scene is the Central Maryland DX Association. Officers and members meet monthly at the Sacred Heart Church on Conkling Streets, Baltimore, Maryland, at 7:30 p.m. on the second Monday of each month.

Their monthly bulletin is called DX Gram. The dues, at this time, are 35 cents per issue or $4.45 per year and you can get information by writing to Donald E. Stidwell, Editor-In-Chief, 6508 Ebere Street, Apartment 101, Baltimore, Maryland 21215.

Local listeners can get more information from Don at (301) 358-8046 or Tony Kobylish at (301) 565-0409.

MIKE ’N KEY is a new SWL/Ham publication that is published by the Senior Citizens Amateur Radio Society, George P. Kirkwood, Publisher-Editor; P.O. Box 6631, Ithaca, New York 14850. Please write to them for full membership information.

Foreign QSL’s:

DXers send station reports to foreign countries the world over. And in many cases, it’s not only a courtesy, but a necessity, to send return postage. The DX office will sell you International Reply Coupons which, when received at the other end, will enable the recipient to purchase sufficient postage for a one-ounce airmail-rate letter (or QSL) back to you.

But not all countries belong to the International Postal Union and you could be wasting your money and time writing to postage stamps of the country to whom you are writing? Can be done—easily.

The DX Stamp Service is operated by George Robertson, W2AZZ, 760; Roder Parkery, Ontario, New York 14519. He’ll sell you stamps from many foreign countries and at a fair price. Send him a stamped, self-addressed envelope for his list. Or call him at your expense (315) 524-8806.

A Bit Of Nostalgia

I am interested in obtaining information on antique radios and/or parts? Mr. J. W. F. Puett of Puett Electronics, P.O. Box 28672, Dallas, Texas 75226, has an extensive list of material that is available.

This includes cassette recordings of old-time radio shows, old radio tubes, various books on antique radios, service antennas and ground systems, and how to appraise old receivers, along with reprints of many old instruction books...and much more. One booklet will get you his 32-page catalog.

We’ve received many nice comments from the readers of this column and we’re grateful to you for them. Several persons have also commented on my item concerning the old Westhousie crystal sets that I’ve owned for years. Seems that there are still some who remember those antique receivers in circulation.

My best DX on them was many, many years ago when WLL, Cincinnati, Ohio, operated after midnight with the very experimental callsign of W8X0 and a power far in excess of its usual 50,000 watts, on 700 kHz. Does anyone else remember W8X0?

How about retrieving your listening post and obtaining your own individualized callsign-type identification? Full information may be obtained from your Editor at P.O. Box 3333, Cherry Hill, New Jersey 08004. This address is also good for your reports, schedules, and comments on this column.

Mr. Waite was, for many years, an officer in the Newark News Radio Club and the SWL QSL Manager for the American Radio Relay League. He died at the age of 82 after a short illness in the Saratoga Hospital, Saratoga, New York.

Those interested may send cards of sympathy to Mrs. Waite, 39 Hannum Street, Ballston Spa, New York 12020.

Gary Critser of Battle Creek, Michigan, writes in that he has been able to find Radio Free China on 5855 kHz, Taipei, from 0300-0345 GMT with a Chinese language lesson, and commentaries on Chinese history and Art. Please write him on the schedule for Radio Free China, P.O. Box 24038, Taipei, Taiwan, Republic of China.

He also uses a Kenwood R-1000 receiver with a five-band vertical ground-mounted antenna.

The International Red Cross Broadcasting Service, using a number of stations in Switzerland, has prepared a number of broadcasts planned for 1983. The balance of the year runs as follows: In English for 30 minutes followed by French at 0000, 0500, 1200, and 1700 on May 23, June 27, July 25, August 29, September 26, October 24, November 21, and December 26—all the fourth and fifth Monday of the respective months.

The frequency will be 7210 kHz with an omnidirectional antenna; broadcasts in German and Spanish will be on the same schedule on the second Wednesday after the above broadcasts.

Broadcasts to the Middle East and Africa will be at 0945-1015 on May 16, 26, June 27, July 28, September 29, and November 24, in French, Portuguese, and English on 15410, 17810, and 21520 kHz, and in Arabic on 21930 kHz. Programs to Asia will be at 0945-1015 two days before each of the above dates, on 9625, 15305, 21520, and 21615 kHz.

At press time, test transmissions of Radio Medicine, a station in Malta, were being heard at 1800-1900 with pop music and announcements in Arabic, French, and English on 5680 kHz. European stations were also heard on this one on 1557 kHz. Announcements indicate regular service to be at 1800-1900 English, 1900 Arabic, and 2230-2320 in French. Bangladesh Desh, Dhaka (formerly Daaca) is no longer being heard on 3240 kHz or the other service changes of 8950, 7220, 6145, and 4890 kHz.

These transmitters are all quite old; repairs may be in process or perhaps it has been decided to drop these frequencies from the schedule. The SWL Association of the Sudwestfunk in Baden-Baden, West Germany, no longer carries the SWF 1 broadcasts over 7265 kHz. Now, SWF 3 is carried with pop music, traffic warnings, and hourly newscasts.

High powered stations are not confined to the shortwave bands. Sud Radio, an officially recognized registry, is reporting constructing a new transmitter of 600 kW in southern France, to operate on 819 kHz in the medium wave band. East Coast DXers are told to keep their ears tuned up for this one.

Meanwhile, on the long wave band, Medi 1, a new commercial broadcaster with programs in Arabic and Breton language is operated primarily to listeners in North Africa and the countries surrounding the western Mediterranean, is scheduled to go on the air on 173 kHz from North Africa.

To operate 18 hours daily, Medi 1 is a joint French-Moroccan venture. East Coast listeners who are able to tune the long wave bands stand to have a reasonably good chance of hearing this station under good receiving conditions. A loop antenna might well help, too.

Speaking of loop antennas, the Colegrove loop antenna for medium waves is now available in plan form. This loop reportedly does a fine job of tuning fairly large bandwidths, according to information that we have received. For $2.50, check or money order, the plans will be sent to you, postpaid.

The American Radio Relay League is pleased to announce the newsletter of DX Reporters at the address given earlier.

Have you QSLed Austria? This one is possible but it may not be easy. Here are some of its frequency to 5036 kHz, the Austrian Army Training Transmitter (Schullungssender des Oester, Bundessheeres) recently cleared for a U.S. listener in Vienna and moved broadcasts to a 10 kW transmitter located near Plankendorf, just south of Linz, the provincial capital of Ober Austria.

Programming is designed exclusively for military personnel; however, correct reports are being compiled, too. If you are lucky enough to log this one, send your report to Heereschudlungssender Sendeleitung, Franz-Foiss-Kai 73-1/100, 1001 Vienna.

If you are hearing French in the 75-meter band during evenings (your local time) it might well be the French Intercontinental Broadcasting being relayed on 3965 kHz from 1800-0800.

This frequency has been placed in operation due to the difficulties in receiving the program on 6175 kHz during hours of darkness.

Radio Baghdad, Iraq, has English for Europe on 7450 kHz at

Bits
By Mike Edison

Questions From Readers
Several readers have asked where they can obtain informa-
tion on monitoring the weather satellites. Try an experienced—and
free—publication called, "Teachers Guide for Building and
Operating Weather Satellite Ground Station" by R. Joe Sum-
mers and Timothy Godwald. It is available from: Educational
Programs Branch, Office of Public
Affairs, NASA Goddard Space
Flight Center, Greenbelt, MD
20771.

J.R.M. asks about the use of the
TI-99/4A for converting CW/RTTY to a printed format. At
present, I do not know of any systems available for this but it is
reported to me that the International
99/4A Users Group (P.O.
Box 67, Bethany, Ok. 73008) is working on writing the software
for this purpose.

I have seen software for this purpose offered for the APPLE II
and for the VIC-20 computers. I do not have any bench test results for
either set of software but I would
imagine that they are worthily
considered.

The computer would need input of a nature to copy the signals
for translation. This is a hardware
problem and requires additional
components. H.P. Jr. contacted
me about using the Atari 800 to
implement a series of systems, among them are environmental
control, a Burglar alarm system,
temperature; and message. I
advised him to check with Atari
find out if the system could ac-
commodate an ANALOG-DIGITAL
converter.

This device converts analog-represented data (such as
temperature) into a digital signal that a computer can understand.

Many networks (such as The Source or Compuserve) offer systems for messaging (electronic mail). Each manufac-
turer has a word processing system that suggests: Radio Shack has SCRIPSTT, CP/M-based machines have
series of software (I suggest WORDSTAR; there are others

XXX
I would also like to thank DMCd in
N.J. for his call (please call back as
soon as you can).

TCl in Ill.; thanks for
the card; I look forward to helping
you if I can.

XXX
On a serious note, the follow-
ing notice passed to me recently;
All TI-99/4A users are encouraged
to contact TI—there is a potential
fault in the computer transformer
that TI is correcting by providing
an adapter.

TI will be contacting people
with the system if they have sent
their rebate or warranty cards to
Texas Ins. If there is any ques-
tions about this, call TI at
800-585-4565 or 800-527-3550.

It appears that while there
is no major concern, there is a
chance that the transformer can
fail and cause a shock.

It is safe to use the system
and no extraordinary measures
are needed, but do be aware of
phrase odors, overheating, or
computer failure. If this does hap-
pen, return it to the TI EX-
CHANGE CENTER.

The adapter that TI is pro-
viding free of charge is placed
between the wall socket and the
transformer. New computers from TI will have a GREEN

Broadcasting
Continued from page 7
2100-2200. At 0300-0400 there is a
transmission to North and South
America, also on 9745 kHz. Radio
Baghdad is asking for reports on
cassette tapes and promises to
return the cassettes with record-
ings of Iraqui music.

Here's a good challenge for
your West Coast DXers: According
to a QSL, Radio Enga, Papua New
Guinea, is using 10 kW on medium
wave 1494 kHz and 2500 watts on
shortwave 2410 kHz.
The schedule is 0730-1300 and
1930-2200 in Fidgin and Enga. The
station boasts 16 employees and
about the time that you read this
they should be starting an
FM service.

Every Sunday Radio Milano
International can be heard on 6221
kHz with programs in Italian; RMI
too has been heard on
medium wave at 1300-1305 kHz.
The programs of World Music
Radio are no longer heard via
RMI, but instead, another private
system station, IBC.

IBC is active on three
frequencies but those frequencies
are variable and modulation is
weak. They have been heard on
6272-6275, 7332-7335, and
11,585-11,588 kHz.

Most of the programs are
relayed from Radio Time, a local
statewide service.

A new station in Florencia,
Columbia, is Emisora Armonias
del Caqueta, on 4915 kHz with 3
kW. The callsign is HJVK and it
operates daily from 1000-0300.

This is a Catholic-owned sta-
tion with cultural and religious
programming. It's reportedly be-
ing heard well in the U.S.

Before closing, we'd like to
mention that the Association of
North American Radio Clubs 1983
convention will be held from July
15-17 at the Westpark Hotel in
Roanoke, Virginia, just across the
Potomac River from Washington,
D.C.

The world's leading DXers,
broadcasters; radio companies
and experts on a variety of radio
related topics are expected to
attend the convention.

For further information
please contact the host club, the
Washington Area DX Association,
606 Forest Glen, Silver Spring,
Maryland 20001. Please enclose a
stamped self-addressed envelope
for your reply.

The reports in this column
have been supplied by members
of Sweden Calling DXers, care of
Radio Sweden International, S-105
10, Stockholm, Sweden. We thank
them for their efforts.

Radio Sweden International
carries English as follows: At 6220
on 9685 and 11,705 kHz to North
America; at 1100 on 9630 kHz to
Europe and 21,610 kHz to
Australia and New Zealand;
at 1230 on 15,190 kHz to East
Asia and 21,890 kHz to Africa;
at 1400 on 21,615 kHz to North
America and 21,700 kHz to South
Asia; at 1600 on 15,435 to South
Asia; at 1830 on 6065 kHz to
Europe and 15,240 kHz to Africa;
and at 2300 on 11,765 and 15,270
kHz to North America.

Good listening, everyone!

"Backscatter" Fights
Interference At Grass Roots Level

One of the most irritating
sources of interference plaguing
shortwave reception is the
"Russian Woodpecker", a high-
resolution over-the-horizon
backscatter radar system.

Saturating the shortwave
spectrum with high level signals,
the OVTH pulses obliterate
legitimate users of the HF range
with impunity.

Now, the U.S. Air Force plans to
take its own pollution to the
pileups.

In an effort to combat the
potential offender, an activist
newsletter has begun to unite
serious listeners in an effort to
petition the government to recon-
SIDER this interference.

Shortwave enthusiasts may
wish to subscribe to the highly-
informative newsletter, written
by Robert Horvitz, which comes
out approximately every two or
three months. Cost is a nominal
$.30 per issue plus a self-
addressed, stamped envelope.

Send as many SASE's and
$.30's as you wish to: Robert
Horvitz, Chairman, ANARC OV-
THBR Committee, 54 East Mann-
ing Street, Dept MT Providence,
RI 02906.

Page 8 — Monitoring Times, May/June, 1983
Common Complaint: I don't trust mail order companies!

Here are just a few of the comments we have received.

I hesitated to order from you. After learning your policy and prompt attention to your needs, I wish to order further equipment. (Richard Lucas, Frewsburg, NY.)

I really appreciate how you educate us new people in the hobby. You are a great asset to us. We respect your products and knowledge very much. (Rich Newbold, Pittsburgh, PA.)

Am pleased at your service. (L.L. Branch, Cape Girardeau, MO.)

You folks are to be commended for the prompt response to your order (8 days total using the mails, money order, and UPS shipment. (John Arendt, Oswego, IL.)

Thank you for the good service I have received. (Paul Beerbower, Montpelier, OH.)

Remedy: Order from GROVE ENTERPRISES!

Shortwave!

M-600 — UNIVERSAL RTTY/MORSE CRYPTO DECODER
Copy scrambled radioteletype messages never before readable with standard demodulators and readers. Bit inversion TOR/SITOR, formerly garbled on other decoders, now perfectly clear on the revolutionary M-600! Simply attach to your shortwave receiver's external speaker jack and connect a printer or video monitor and copy government transmissions, ship-to-shore messages, public correspondence stations and much more. A sophisticated microprocessor automatically sorts out the encryption for you; sit back and watch what you could never see before! The magnificent M-600 provides scrolling, page recall, speed readout, unshift on space, white on black video, 64 character upper-case ASCII, 36 or 72 character lines, 16 or 25 lines per page, selective call, buffered printer output, isolated loop, and many other deluxe features. The M-600 copies ASCII (110, 150, 300, 600, 1200 baud), Baudot (60, 67, 75, 100, 132 WPM), Morse code (up to 60 WPM), in both standard and non-standard shift. Demand is heavy for this revolutionary new decoding system, so order now! Operates from 120/240 VAC, 50/60 Hz. $999.00 plus $10 UPS. (No discount allowed on this item.)

PICTURE THE FINEST RECEIVER EVER OFFERED TO THE CONSUMER SITTING ON YOUR DESK!

In more than 30 years of active communications usage, the NRD-515 is the most impressive receiver we have ever seen. Manufatured to exacting specifications by a prominent military and commercial shipboard communications company, the NRD-515 continues a tradition of unexcelled performance. No other receiver comes near the features of the NRD-515. A hallmark in receiving technology. From the optically-encoded frequency selection mechanism to the continuous passband tuning system the NRD-515 represents a hallmark in receiving technology. Continuous 100 MHz-30 MHz coverage, phase-locked loop stability, all mode (AM, USB, LSB, RTTY, CW) reception, up-conversion double superhetodyne virtually eliminates images, switchable selectivity and AGC timing, input attenuator, modular construction and a wide selection of terminals for recording and external control. A matching 24 or 96 channel memory unit (optional) allows the luxury of instant selection of any frequencies in any order you desire. Program it with your favorite international broadcasters, military networks, ship-to-shore channels...anything you wish from the NRD-515 receiver range. Even remote control is possible with the flexible NCM-515 microprocessor frequency controller (optional). An illustrated color manual is available.

SORRY, NO ADDITIONAL DISCOUNTS ON THESE ITEMS.

NRD515 Receiver, $1,199 plus $15 UPS
NRD519 96 ch. memory, $259 plus $5 UPS or $110 UPS
NCM515 controller, $179 plus $5 UPS or $10 UPS
NSD515 transmitter, $1,299 plus $15 UPS
CFI230 filter, $74 plus $5 UPS or $10 UPS
CFL260 filter, $49 plus $5 UPS or $10 UPS

OTHER PRODUCTS AVAILABLE FROM GROVE ENTERPRISES:

Info-Tech M2000, $1,995 plus $7 UPS
Kenwood R600, $1,359 plus $7 UPS or $15 UPS
Yasu FGR7700, $849 plus $7 UPS
Sony CFI-1, $1,459 plus $15 UPS
Icom 720A without power, $1,249 plus $15 UPS
Icom ICR-70, $469 plus $7 UPS
Icom 720A with power, $1,378 plus $15 UPS
Kantronics, Minireader, $269 plus $3.50 UPS
AEA/MBA Reader, $289 plus $3.50 UPS

Why Wait? Use Our LayAway Plan
Send SASE For Details

Order Today from a Company You Can Trust!

Prices Effective Thru June 30, 1983
See Product Showcase For Full Product Line

ORDER NOW! Call 1-800-438-8155 (cont. US except NCI)
704.837.2216 — 9 to 5 weekdays EST
or send check or money order
N.C. Customers add 4% Sales Tax
Orders are shipped within 48 hours of your order unless you are notified of a delay.

FOR UPS DELIVERies:
Send SASE in full street address.

Kenwood R-2000
NEW, SUPERB . . . and affordable!
The long-awaited R-2000 receiver has arrived and has been fully checked out by Bob Grove. Outstanding frequency stability makes it a natural for SSB, CW and RTTY reception. Digital readout with 100 Hz resolution for pinpoint accuracy. 10 memory channels (frequency AND mode) may be automatically scanned or searched! 100 MHz-30 MHz. Dual 24-hour clock timer. All modes: AM-FM-SSB-CW-RTTY. Selectable sidebands. Center-carrier readout. 6/2.7 MHz selectivity (15MHzFM)
Noise blanker. Four-step attenuator (0-30 dB) 500/50 ohm antenna output, all ranges. 5000/500/50 Hz tuning speeds. AC or 12 VDC operation . . . and much, much more! Retail $949. GROVE PRICE $499.00 plus 7.50 UPS. (Sorry, no additional discounts on this item.)

Scaner Accessories!
ASK FOR FULL CATALOG
Grove Enterprises, Inc.
140 Dog Branch Road - Brasstown, N.C. 28902
Q. What is the traffic I hear on the air-to-ground frequency 892 kHz? The language is foul, and many numbers are exchanged.

A. You have stumbled across a popular drug smuggler’s frequency; their secondary frequency is a few kilohertz higher. Coded numbers and radio beacons are littered in the geographical coordinates, individuals, and alternative frequencies as well as shipping cargo.

Q. Can my Bearcat 300 be used for normal reception on its regular frequency ranges while the Grove Scanverter is attached for 225-400 MHz conversion?

A. Absolutely. Simply install the small whip antenna which gives signals (converted to 118-136 MHz) to you. Use the external antenna jack, but the little whip will pick up normal signals on all ranges simultaneously.

Q. Do you recommend external audio filters? Does the ICR-70 receiver need IF filter modification? Does the ICR-70 require realignment after a few weeks bake-in time?

A. I should use a high-resolution monitor with my RTTY decoder. Should I use a gas-discharge lighting surge protector in conjunction with a spark-gap arrestor ("Blitz Bug")? (Hank Bradshaw, Marshalltown, IA)

A. WOW! A frequency-adjustable audio filter can help restrict the band-width of any receiver and is a useful accessory. It can eliminate distracting heterodynes (whistles) from adjacent frequency interference and improve RTY, CW, and voice reception.

A wide/narrow switch modification is available from Groove Enterprises, Inc and some other sources of the popular ICOM IC-70 receiver. It definitely improves AM reception. Your ICOM may drift slightly off frequency reading after a few weeks; a simple internal calibration procedure will restore the readout accuracy, and is available from ICOM service centers. You may do it yourself if you feel so inclined.

A high-resolution video monitor may help on graphics. Most standard monitors have excellent color, but the numeric characters generated by all demodulators will improve.

While nothing will protect your station from a direct lightning hit, the new gas-discharge transient absorbers are a good investment in insurance against damage from nearby stormes. It is not necessary to use an additional gap-type arrestor.

But don’t stop there; use a line transient suppressor on the power, line to protect the rest of the system. A simple metal oxide varistor (MOV) works well.

Q. How can I hear the federal government’s 406-420 MHz (20 MHz of a Bearcat) to the desired frequency; this is the image frequency, and although slightly weaker, is usually quite receivable near metropolitan areas. Does this procedure works well on all Bearcat programmables.

Second, use a converter like the popular Grove CB-1R converter; it is designed to provide continuous 216-420 MHz coverage when used with a multi-band programmable scanner. You simply add 36 MHz to the desired frequency, and switch to the 406-420 MHz range from 422-456 MHz on your scanner with better sensitivity than the image reception will provide.

Q. How can I use a frequency counter to measure RPM of a motor (Henry Perry, Lawton, OK)

A. Devise a fan blade for the shaft, and hook a photoelectric cell to the input of the counter. A bright beam of light will be interrupted by the fan’s rotation, giving a readout of "interruptions per second".

Divide by the number of blades to get revolutions per second, and multiply by 60 to get RPM.

Q. Is there a way—and is it legal—to monitor point-to-point microwave telephone links?

A. The mass wiring on towers operate in the 6 gigahertz (6000 MHz) band, not receivable with conventional converters. Thus, a question as to the legality of interception has never been a public issue.

Personally, I see no difference in monitoring those than point-to-point telephone communications on any other band. They are regularly heard on overseas shortwave links.

Q. Are space shuttle transmissions on the air? (Adrian Thomas, Williams Lake, BC)

A. All voice communications are encrypted when Department of Defense payloads are being discussed. In the primary downlink range (2300 MHz band), digital scrambling is used, while the upper band (4200 MHz) is simply switched of...

With the space shuttle program evolving into a pure military exercise, virtually all communications may be expected to remain.

Q. While I enjoy making single projects I see in MT, my local parts store does not have the components I need; where can I get them? (George DiRaimondo, Astoria, NY)

A. If you strike out at Radio Shack, look in the ads of newsstand and subscription hobby radio magazines like Radio-Electronics, QST, Ham Radio and QST. They burgeon with such merchandisers.

If our proposed home construction takes sections off, we will call parts to advertisers in MT, perhaps even offering parts kits through Grove Enterprises. What do you readers think about that possibility?

Q. How can I receive the aircraft band on my Regency K-500 scanner? (Richard Shelton, Chillum, MD)

A. Even if it were possible to get the frequency range to track the 118-136 MHz aircraft band, transmissions are amplitude modulated (AM) and your receiver is designed to hear frequency modulation (FM).

Recipient audio would be weak and distorted, just as when you hear aircraft band images in the 154-155 MHz range of your present scanner.

It is possible to add an AM detector which could be switched in during reception of that service, but it is a project.

Q. Can you provide a list of frequencies (trains and boats use in Austin, Texas? (Charles Ketchem)

A. Check the back (part V) of Gene Hughes’ Police Call Directory, available from all Radio Shack dealers, for railroad and search 156.275-157.425 161.800-162.000 for active marine frequencies, shared by large and small boats alike.

Q. Recommend RG-59/U cable for scanners, while Tom Kneitel says RG-59/U is less than worthwhile for scanner use. Would you elaborate on this? (William Ritz, Cleveland, OH)

Tom and I are miles apart on this one! The fact is that no scanner made, and no scanner antenna maintained perfect 50 ohm impedance at its antenna input over its operational range. Typically, impedance may vary from 40-80 ohms or more. Thus impedance matching is of no consequence.

What is important is low signal loss and high shielding. In order to find the common cable types for scanner use, especially at UHF and even high band for runs in excess of fifty feet: RG-11/U, RG-6/U, RG-8/M, RG-213/U. All cables must be chosen for low loss (typically foam dielectric or spiral-wound polyethylene) and high dielectric losses (in excess of 96%, may be woven copper braid or aluminum foil).

While finding suitable connectors for some of these cables may be difficult, coxial cable may be run under earth-water, alongside metallic surfaces, even adjacent to electrical wiring if suitable shock hazard precautions are
Technical Topics

Continued from page 10

by Bob McGovern

This month we'll take a look at several questions from readers involving monitoring laws.

A reader from the state of Connecticut inquired about the existence of monitoring laws in his state, as well as those of Massachusetts, New Jersey, and Pennsylvania.

While Connecticut does not have a state law which regulates the use of monitor radios in automobiles, some cities and counties throughout the United States have ordinances which govern the use of monitor radios in motor-vehicles and on foot.

There is no master collection of city and county ordinances. However, readers can frequently find these and other ordinances for their own city and county in the reference section of their local public library.

Additionally, most counties have law libraries which are open to the public. Just ask for the location of their collection of municipal and county ordinances. Next, look in the index under radio, motor-vehicles, and police. Chances are, if a regulation exists in your city or county, you will find it.

I believe that Massachusetts and Pennsylvania do not have state laws regulating the mobile or portable use of scanners. New Jersey does have a very strict law which prohibits the use of monitor receivers in motor vehicles. This law was presented in the November/December issue of Monitoring Times.

A reader from Hawthorne, California is curious as to the legality of hand-held scanners in his state. California has only one law which addresses the use of monitor radios. In part, it states that it is unlawful for any person, not authorized by the sender, to intercept a police radio communication and divulge its contents to any person he knows to be a suspect of any criminal offense. Conviction of this charge is treated as a misdemeanor. The average monitor radio listener in California would be concerned with various municipal and county ordinances which do exist in some parts of the Golden State.

As Hawthorne is in Los Angeles County, the following ordinance may be of interest. This county prohibits the operating or capturing of any motor-vehicle radio with a capable of receiving, in part, frequencies between 30 and 10 MHz, as well as 150 to 160 MHz. Certain exceptions are set in the ordinance, but the local police monitor listeners would need to apply to the L.A. County Sheriff's Department for a permit if they wished to lawfully operate the receivers in motor-vehicles.

It is important to note that law enforcement officers frequently use discretion as to what devices will be enforced. It's not unusual for an officer to give a 'first time' ordinance violator a verbal warning if the subject passes the 'attitude test.' In some parts of the United States, enforcement of certain laws is very lax. Some municipalities avoid a monetary deficiency by assessing large fines upon persons who are convicted of misdemeanors. If you break the law, you take your chances.

Some readers own voice descramblers which deserve some attention. Arkansas State Law 41-2855 states that it is 'unlawful for any person other than a law enforcement officer or agency, or fire department or employee thereof to own or operate or possess any radio equipment described as a voice privacy adapter or any other device capable of receiving and decoding police and fire department communications which have been transmitted through a voice privacy adapter.' Upon conviction, a fine between $50 and $500 will be assessed.

In New York City it is unlawful for any person 'to equip, an automobile with a radio set capable of receiving signals on the frequencies allocated for police use, or use or possess an automobile so equipped, without a permit issued by the Commissioner, in his discretion, and in accordance with such regulations as he may prescribe.'

Such permit shall expire one year from the date of issuance thereof, unless sooner revoked by the Commissioner, and shall not be transferred from the vehicle in which it was installed at the time the license was issued. The annual fee shall be $25 for each automobile so equipped. No permit may be renewed upon payment of a like sum and under like conditions. The Commissioner is authorized, in his discretion, to issue permits for radio receiving sets capable of receiving signals on the frequencies allocated to police use to employees of federal, state, and municipal governments without requiring the payment of the annual fee herein provided. A conviction will be punished as a misdemeanor.

It is also true that the New York City Administrative Code forbids 'any person to unscramble or decode or possess or use any instrument or article capable of unscrambling police communications.'

A police scanner user from Hawthorne, California is curious as to the legality of receiving police broadcasts by radio or television, unless such person is duly authorized to do so by permit issued by the Commissioner of the City of New York. Upon conviction, a person will face a fine of not more than $25 and/or a jail term of 30 days. The next installment will contain additional minor laws and answers to some of your questions. Your comments about monitor laws are always invited. What other areas of communications law would you like to read about? Direct your correspondence to this writer at P.O. Box 875, Las Vegas, NV 89125 and be sure to include a SASE.

Information

Please

I would like to exchange scanner frequencies with anyone in or near Battle Creek, MI; Miami, FL; Quincy, IL; and Watertown, NY. I have some frequencies but would like more including federal government. Kevin Trickey, 312 Jackson, Delta, OH 43115.

I would like to get in touch with anyone who has ideas or information about underground broadcasting. I'll be all ears and eyes. LE1, PO box 260, Station K, Montreal, Que. Canada.

Would like to receive frequencies for Canadian police, fire and ambulances. Russ Farrell, 206-358 C law, Queenston St. Catharines, Ont. Canada L2P 2X4.
Tune In Canada

By Norman H. Schrein

Greetings to one and all who are all so interested in monitoring Canadian frequencies between 30 and 510 MHZ in Canada.

First of all, a little information about myself: I am the author of "Scanner Radio Listings" (there are several editions out for various areas of the country). I have just recently begun working for COM General Corporation here in Dayton, Ohio. These are the folks that make the "Fox" radar detectors and scanners. I will be working with them in developing the "Scanner Radio Listings" book for various areas in the United States and Canada.

Presently the "Scanner Radio Listings" books are available in the following areas: Cincinnati/Dayton, Ohio areas; Columbus, Ohio area; Toledo, Ohio area; Fort Wayne, Indiana/Lima, Ohio area; Louisville/Lexington, Kentucky areas; Tampa/Saint Petersburg, Florida areas; and Detroit, Michigan/Windsor, Ontario areas.

The books are generally available through retail outlets that sell scanners. Plans by Fox call for me to be developing books for the Oklahoma City, Los Angeles, San Francisco, Dallas/Port Worth, Chicago, New York and Miami areas in the near future.

Obtaining information from the Canadian DOC (Department of Communications) is not an easy task. The laws in Canada are different than in the U.S. and the government will not give out detailed information just for the asking. I managed to be persistent and eventually received a report in microfiche from the DOC which lists the entire country.

FRG7700 Memory Expansion Kit

Considerable interest was generated in the FRG7700 Memory Expansion Kit article in Monitoring Times a few months ago discussing memory expansion for the popular Yaesu FRG7700 receiver.

One reader, J. Mills of Essex, England now offers a 40-channel kit for do-it-yourselfers. An article on the conversion is due shortly in a British journal.

The conversion is quite straightforward, but does require a lengthy disassembly of the receiver cabinet to access the appropriate circuits and may install the CB-type 40 position switch.

Interested readers not intimidated by the procedure may wish to purchase the switch and fully described article reprint sent air mail postpaid for $20 (international money order, bank draft or cash) by writing to the author, J. Mills G3VUO, 7 Temple Grove, Bakers Lane, Lower Chelmsford, Essex, England CM2 8LQ.

Although I have the entire country with regards to frequency assignments and other details, I have not yet had to obtain the coded key which matches the licensee's name up with their frequency.

It is my hope that through an exchange of information we may be able to decode information on licensees and reveal their identity.

Essentially, the DOC issues a company code to a user. There may be one company code assigned to a single frequency across Canada, or one company code identifying literally hundreds of frequencies across the country, depending on how many licenses a particular company may hold.

For example, a local delivery company may be operating on 46.860 MHZ, have a call sign on KLL340 and their company code may be 80051. This company is identified by the one particular frequency and call sign to this license.

Other licensees may use frequencies on a province-wide or national basis, such as the Ontario Provincial Police and the Canadian armed forces.

When I give a list of frequencies you will receive the following information: assigned frequency followed by a reciprocal frequency (if the frequency is different from the assigned frequency); next will be the call sign, then either the name of the licensee or the company code. Next would be the class and nature of the station.

Finally, the location of the transmitter.

The class and nature of station codes: the first two spaces represent the class of station, while the last two spaces represent the nature of service. For example, a land station in the Aeronautical Mobile Service (in certain instances, an aeronautical station may be placed on board a ship or an earth satellite), "FC" is a coastal station.

The code "OT" translates to: "stations open exclusively to operational traffic of the service concerned" relates primarily to the aeronautical mobile and maritime mobile services.

Generally there are only three codes used in the majority of the time which are "CO" and "OF." licenses which do not pay fees: federal government departments, provincial government departments and crown corporations.

Exceptions would include any licensed call sign irrespective of whether they pay fees or not who have a 6269 file number (CP not CO).

The Canadian National Railway is a crown corporation, but they pay fees.

Other common codes are: CP (public correspondence which relates to all assignments which have a 6269 file number, coast stations or any other stations open for non-public correspondence); stations open exclusively to correspondence of a private agency and pay fees. Exceptions would include the Aeronautical Mobile Service which performs a service where traffic of an operation nature is performed.

Canadian Lakes Weather Coast Guard Broadcast

<table>
<thead>
<tr>
<th>ASGN</th>
<th>FQ</th>
<th>H/K/U/P</th>
<th>FQ</th>
<th>CALL</th>
<th>Licensee</th>
</tr>
</thead>
<tbody>
<tr>
<td>161.650</td>
<td>.650</td>
<td>451.0375</td>
<td>VCM 865</td>
<td>166981</td>
<td>Sun Oil Co.</td>
</tr>
<tr>
<td>161.650</td>
<td>.650</td>
<td>451.0375</td>
<td>VCM 865</td>
<td>166981</td>
<td>Sun Oil Co.</td>
</tr>
<tr>
<td>161.650</td>
<td>.650</td>
<td>451.0375</td>
<td>VCM 865</td>
<td>166981</td>
<td>Sun Oil Co.</td>
</tr>
<tr>
<td>161.650</td>
<td>.650</td>
<td>451.0375</td>
<td>VCM 865</td>
<td>166981</td>
<td>Sun Oil Co.</td>
</tr>
<tr>
<td>161.650</td>
<td>.650</td>
<td>451.0375</td>
<td>VCM 865</td>
<td>166981</td>
<td>Sun Oil Co.</td>
</tr>
</tbody>
</table>

ASGN is a five-letter string identifying the station, typically including the province and the number. These stations are not to be confused with the NOAA weather stations in the U.S. These stations pertain to the water only. Part of the forecast consists of five numbers; each number means a different phase of the weather forecast. Let me know what you hear.

Sun Oil Co.

when you ID a station let me know, and the best way for me to communicate who they are is by call letters. If you can obtain that and the frequency and location, it will be of great help to me and others.

You can contact me at the following address: Norman H. Schrein, 1107 Shorewood Court, Kettering, Oh 45429, (513-298-5746).

I hope that these first lists prove helpful to Canadian listeners. If you have frequencies and calls for your area, and especially if you know who they are, be sure to send them to me at the above address, as I may be able to cross them against other frequencies to come up with additional channels to listen to.

www.americanradiohistory.com
Library Shelf...

AMATEUR RADIO CALL DIRECTORY Edited by Jack A. Speer and Ashok K. Anand (8 1/2" x 11", hardbound). $14.95 prepaid from Buckmaster Publishing, 70 Florida Hill Rd, Dept MT Ridgefield, CT 06877. Nearly 2/3 the size of this giant compilation of U.S. amateurs, this list looks more like the Manhattan telephone directory than a listing of hams. In reality, the director is more likely to list hams -- all 369,000 of them -- first by callsign, then indicates their class of license, then full name and mailing address. AAIA through WBOZZZ. Another edition of the directory is also available -- a name/geographic cross index ($25).

CABLE COMMUNICATION by Thomas F. Baldwin and D. Stevens McVoy (6" x 9", 416 pages, hardbound. Prentice-Hall, Inc., Englewood Cliffs, NJ 07632). Not a technical electronics book. Cable is more a systems-oriented publication for a prospective cable television programmer. Virtually every aspect of the cable TV market is explored, complete with demographic, geographic and legal references. Chapters include descriptions of headend installations, distribution techniques, home drop, programming, pay TV and privacy, two-way data, marketing and advertising.

Comprehensively indexed, Cable is exceptionally well organized, a very handy reference or teaching text for the growing market of cable television entertainment, education and business. And three new books from Hayden...

SOLID-STATE ELECTRONICS by Van Valkenberg, Nooger and Neville, Inc. (6" x 9", 930 pages, hardbound. Hayden Book Co., Inc., Eustis, FL 32736). This five volume set is available separately at $8.95 or all five for $34.75 in paperback as well as the hardbound volume we shall review.

Intended as a comprehensive textbook for beginners, Basic covers all of the information management, a synthesis of the US Navy COMMON-CORE training program, effectively preparing about 100,000 Naval technicians a year to record the facts.

Basic is copiously illustrated to visually condition the trainee in a logical, step-by-step examination of electronics.

While it would be difficult to present here every aspect of the textbook program, the following guide should prove informative as to the comprehensive wealth of information crammed into the text:

Chapter 1: Building Blocks (overall view, history, electron flow, block diagrams, analog and digital systems, power supplies, amplifiers, oscillators, modulators, mixers, detectors, components).

Chapter 2: Radio (Spectrum dB concept, amplifier design and measurements, terminology, sound, microphones, headphones, loudspeakers, PA systems, turntable, changing head phones. Dolby and noise systems, video systems, RF/IF amplifiers, oscillators, troubleshooting).

Chapter 3: Transmissions and propagation, CB transmitter circuits, antenna systems, feedlines, modulation -- AM/SSB/FM, TV circuitry.

Chapter 4: Reception (historical development, selectivity, antennas, RF/IF/oscillators, mixes/AGC/detector stages, receiver characteristics -- gain/noise blanking, feedback, communications, communications receivers, TV receivers -- color and black and white, TV signal processing, video recorders).

Chapter 5: Information management (digital introduction, logic elements, arithmetic system design, timing and coupling, displays and microprocessors, I/O devices, applies, digital communications, troubleshooting, video games, calculators, household controls).

Chapter 6: Electronic filters (digital and active, passive and digital filters and their characteristics).

Chapter 7: Subsequent chapters rapidly evolve into transfer functions, phase relationships, poles and zeros, and the dB concept.

Mathematical approximations (Butterworth, Chebychev, Elliptic and Bessel Networks) and finally cascading and frequency information.

Design is copiously illustrated with charts, tables and mathematical documentations in both appendix of common formulas and a handy bibliography are included.

Chapter 8: SOFTWARE TOOLKIT FOR MICROCOMPUTERS edited by Max Schindler (8 1/2" x 11", 348 pages, softbound. $14.95 from Hayden).

This book is compiled from articles appearing in Electronic Design magazine. Software is divided into six sections, each covering a major delineation of software considerations for high-level languages and operating systems. FORTRAN, COBOL, BASIC and Pascal softwave systems and programming are included, each written professionally by an expert in his field.

The six sections discuss software tools (computer-aided designing, programming and debugging); high-level languages (picking the appropriate computer, number-crunching, FORTRAN, MIDL/A, FORTRAN variations); Pascal variations (Ada, Modula-2, Micro-concurrent); operating systems (simultaneous programs, USCD, multi-tasking in real time, multiplexers, Native-code compilers); choosing the best operating system (checklist, micro/midi); and software/hardware impact (architecture, data flow).

INTERFERENCE HANDBOOK by William R. Nelson. Edited by William I. Orr (5 1/2", 400 pages, softbound, $9.95 from Radio Publications, Inc., Box 149, Dept MT Wilton, CT 06897). Or Grove Enterprises. This complete publication is the most comprehensive, easy to understand, practical and up to date book on the subject we have seen.

Evolving from an informative introduction, chapters include spark discharge, tracing and locating, power line interference, receiver noise reduction and protection, electronic interference sources, vehicular noise and suppression, grounding, transmitter interference and its cures and curing interference in home entertainment equipment.

Even telephone and computer interference are discussed with practical suggestions for reducing noise.

A convenient index assists the reader in finding his particular ailment and its cure, assisted by 173 excellent illustrations.

Chapter 9: MAKE AND USE PRIVATE RADIO CODES by Noel Ramsay (8 1/2" x 11", 50 pages, looseleaf. $8.35 from Eustis Press, Box 1390, Dept MT, Eustis, FL 32726).

If radio security is a consideration, you might wish to invest in this unique publication. Topical subjects are cipher systems, making your code, intelligence and direction finding, jamming and countermeasures, deception and imitative communications, electromagnetic compatibility and aggression.

Lists of CB ten codes, sample messages, distress signals and communications are included, as are charts of 24 hour time, Morse code training procedures.

Of interest to survivalists and detectives.

Chapter 10: BEACON GUIDE by Ken Striker (5 1/2" x 8 1/2", 100 pages, softbound. $7 from Century Print Shop, 6859 Essex St. Dept MT Riverside, CA 92504).

Originally published in 1974, this 1980 edition includes an update list. For the LF enthusiast, Striker's book is a goldmine of information for the 190-530 and 1010-1920 kHz beacon worldwide.

The guide is divided into North American and foreign beacons, and cross-indexed by frequency and callsign. A convenient time conversion chart and Morse code interpreter are included.

Some 6000 listings make this little book the ultimate reference for the longwave listener.

RADIOTELETYPE PRESS BROADCASTS by Michel Schaay (discussed in last month's column) This collection of worldwide shortwave press transmissions is sorted both by agency and time of broadcast.

In most cases, schedules have been confirmed by the agencies themselves and off-the-air monitoring. Possibly the most accurate, up-to-date collection of RTTY press services available. $12 plus $1.50 shipping from Grove Enterprises.

GENERAL FREQUENCY AND CALL SIGN LIST by Joerg Klingenfelser, W1JQ, Philadelphia. Frequency lists actively monitored over the past year in the 3-30 MHz range are identified in this exhaustive collection by a world-known utilities expert.

Listings include frequency, callsign, agency and location, even modulation. A valuable alphabetical list covers more than 4000 callsigns worldwide. Even unofficial stations are listed and identified in this useful collection.

$12 plus $1.50 shipping from Grove Enterprises.

Major areas covered include amplitude modulation, frequency modulation, single sideband, television, digital techniques, transmission lines, wave propagation and antennas, waveguides, radar, LASERS and fiber optics.

Subtopics under the major catagories analyze noise, describe and dissect circuits, and explain in a step-by-step manner the various components of each.

Typical of Prentice-Hall textbook illustrations are numerous and concise, well-labelled and easy to understand.

Each chapter closes with questions and problems related to the text (answers are provided in the teacher's edition).

Communications is a cogent, relevant survey of the science of radio communications.
Listeners Log

(Erratum) In March/April issue a typographical error appeared under Governmental Agencies on P. 9 incorrectly identifying the nationwide CAP repeater output as 143.150; this should be 148.150 MHz.

Low-Band
(Military/Federal aircraft) contributed by Kevin Trickey, Delta, OH
30.15 MHz, 39.30, 31.25, 30.20, 32.25, 32.70, 34.10, 34.30, 34.45, 34.60, 34.70, 34.95, 37.30, 41.50

Goodyear blimp: 151.625 (business), 132.0 (police)

VLF Frequencies (kHz) in Canada

Contributed by Guy Vallee, Horden, NS.
Belleville General Hospital (Belleville, Ont)
34.70, 34.95, 37.30, 41.50

32.70, 34.10, 34.30, 34.45, 34.60, 30.15

XOB31 13.2

Saskatchewan Power Crop (Pasqua, Salduckton, Regina)

90.0, 28.0

Franco-Manitoba Cultural Center (Winnipeg)
XNT546 27.1

Canadian Motorola Electronics (Toronto, Ont)
XE83X 28.0

Fairview Corp. (Toronto, Ont)
XE83B 27.2

Hydro Quebec (Moncusa, Que)

Miami County, KS Scanner listening (MHz) contributed by John Blair, Deputy Sheriff

FREQUENCIES USED IN MIAMI CO., KANSAS AND SURROUNDING AREAS

39.46 KS Inter system Point-to-point

39.58 KS Net Station to Car

39.60 Osawatomie Police Dept

39.64 Miami Co. Sheriff - Louisbourg Police

39.70 KS Net - Car to station.

41.94 KS Hwy Patrol - Base to Car

41.96 Mutual Amb. - Car to Base

56.71 City of Osawatomie

45.16 City of Paola

154.085 City of Osawatomie

146.014 Miami Co. KS

47.06 and 47.18 State of KS A.O.T.

93.50 Osawatomie State Hosp.

48.10 Mutual Co. Hosp. Pacing

146.52 ZM AMAT Net

137.5 Laborig Engineers

Hillsdale, KS

160.410 Missouri Pacific RH, Osawatomie

115.175 Blair Service

115.175 Louisbourg, KS

Metro Atlanta Scanner Listing (MHz) Contributed by Mike Walsby, NC

Fire

Atlanta Fire Dept. - Dispatch 154.190

Vernon Fire Dept. 154.445

Fire ground 153.830

Cherokee County Fire Dep. 33.440

Clayton County Fire Dept. 453.400

EMS to Hospital 453.300

Cobb County Fire Dept. 46.200

College Park Fire Dept. 154.205

DeKalb Co. Fire Dept. - Dispatch (Ch. 3) 154.210

EMS/Hospital (Ch. 1) 460.575

Decatur Fire Dept. 154.260

East Point Fire Dept. 154.290

Forsyth County Fire Dept. 154.010

Fulton County Fire Dept. 154.325

Gwinnett County Fire Dept. 154.350

-Fireground/Enroute 154.310

Hal County Fire Dept. 154.340

Coweta County Fire Dept. 154.200

Hapeville Police Dept. 154.265

Henry County Police Dept. 154.370

Marietta Fire Dept. 154.430

Morrow Police Dept. 154.070

Roswell Fire Dept. 154.600

Rockdale County Fire Dept. 435.975

Smyrna Fire Dept. 154.160

EMS

Metro Ambulance Service 426.950

Ga. Baptist * Lifeline *

Ambulance Service 135.285

Rockdale EMS 154.205

NOTE: DeKalb and Clayton Counties dispatch EMS/transport units via Fire Dispatch.

- repeater system

Policing

Atlanta Police Dept.

Ch. 1 (North) 460.450

Ch. 3 (Central) 460.490

Ch. 5 (South) 460.410

Ch. 7 (C.D.) 460.125

DeKalb County Sheriff 154.845

Decatur Police Department 154.895

Douglas County Police 153.520

Fayette County Police Dept. 153.865

Forest Park Police Dept. 153.670

Fulton County Police Dept. 154.775

Fulton County Sheriff 155.415

Gwinnett County

Patrol - base to car 154.680

car to car 154.680

Metro Atlanta dispatch 154.910

State troopers 154.460

State civil defense 45.360

Gwinnett County Police 460.295

Hapeville Police Dept. 154.850

Henry County Police Dept. 154.265

Marietta Police Dept. 154.725

East Point Police 153.210

Morrow Police Dept. 153.775

Rockdale County Sheriff 153.550

Roswell Police Department 453.825

Smyrna Police Dept. 156.150

New York Area Scanner Listening Contributed by Christopherly Morison

NEW YORK STATE POLICE CHANNELS

Channel 1: Trop F

Base-Car 154.335

Channel 1: Trop F

Base-Car 154.835

Channel 1, Troop G

Base-Car 153.445

Channel 1, Troop G

Base-Car 154.680

Channel 2, Statewide

Base-Car 154.665

Channel 3, Statewide

Emergency 154.695

Channel 4, Statewide

B.C. and Car-Car

Backup 155.565

Channel 5, Statewide

Interagency 153.370

Consolidated 150.225

Game Wardens 159.435

Corrections 154.300

Thruway Channel A 154.325

Thruway Channel B 153.525

Psychiatric Centers Security 155.070

ORANGE COUNTY Sheriff Channel 2, Car-Car, Base-Car 39.200

Channel 1, Car-Bas 39.260

Bloomington 155.610

Washingtonville 156.105

Eastern Orange County P.D. 154.875

Middletown P.D. 155.730

Port Jervis P.D. 155.730

Walden Falls P.D. 154.500

Village of Cornwall P.D. 154.965

Orange County Fire Mutual Aid Home-Alert 154.205

Channel 1, Base-Truck 146.160

Truck-Truck 146.220

Base-Car 154.650

New York State Intercounty Fire 155.490

Orange County Local Gty. C.D. Ambulance 153.860

EMS Ambulance-Hospital F1 153.340

F2 154.900

Orange County Highways 159.135

Newburgh Fire 146.460

Middletown Fire 154.310

Rock County Sheriff 154.180

Clarkstown PD 154.310

Orange County P.D. 154.310

Spring Valley and Ramapo PD 154.300

Rockland County Mutual Aid Fire 154.180

46.080

Palisades Interstate Park Police 154.180

U.S. Military Academy West Point MP 38.700

ULSTER COUNTY FREQUENCIES

Ulster County Sheriff F1 39.180

Simplex 39.180

F2 Simplex 39.180

Ulster County Fire Home-Alert 33.480

Channel 1, Base-Truck Truck-Truck 46.460

Truck Base 46.460

SULLIVAN COUNTY FREQUENCIES

Sullivan County Sheriff 38.600

Sullivan County Fire 46.100

AVIATION FREQUENCIES

Civil Air Patrol Repeater Output, Air-Ground Simplex (Nationwide) 148.150

Ground-Team Simplex (Nationwide) 19.925

Repeater Input

Continued on page 10,
SCANNING

COMPLETE ACTION GUIDE TO SCANNERS AND MONITORS
by Louis A. Smith II (256 pages, 6"x9")
A thorough, easy-to-read handbook on public service monitoring, including systems and ac-
ccessories. Explains frequency allocations, scrambles, speakers, antennas and more. Rules and regulations are stressed to help you understand the law. An excellent guide to questions and answers about scanner listening. BOX 9, $9.55.

THE TOP SECRET REGISTRY OF U.S. GOVERNMENT RADIO FREQUENCIES
by Tom Knetel. (4th edition, 120 pages, 6"x9")
An extensive col-
lection of government and military frequencies, many considered highly-
sensitive, from 25-600 MHz. Includes many locations, codenames, calls, code names. Articles on surveillance, monitoring in the 1930's bugs, scramblers and pictures of federal QSL cards. BOX 11, $9.55.

GENERAL FREQUENCY AND CALL SIGN LIST
by Joerg Klingenhuss. More than 8000 frequencies actively monitored over the last year in the 3-30 MHz range are identified in this exhaustive collection by a world-unknown utilities expert.
Listings include frequency, callsign, mode, agency and location. A separate alphabetical list covers more than 4000 callsigns worldwide, including unofficial stations. BOX 15 - ONLY $11.95.

INTERFERENCE HANDBOOK
by William R. Nelson, edited by William I. Orr. Most comprehen-
sive, easy to understand, practical and up-to-date book on in-
terference we have seen...Solve spark noise, TV interference, com-
puter line noise, power line interference...all kinds of problems encountered in reception. Convenient index and 178 full illustra-
tions. A superb collection of tried and true suppression techniques. BOX 18 - ONLY $18.95.

COMMUNICATIONS MONITORING
by Bob Grove. (117 pages, 5½" x 8¼") Written for the shortwave listener and scanner buff, this fast selling book describes all facets of radio listening from VLF through UHF. Paging, telemetry, voice scrambling, bugs, antennas, receivers, antennas, accessories, clubs and publications, frequency allocations and more. And as a special bonus, a special home projects section: Antennas, amplifiers, power supplies, receivers, converters, filters and other useful, easy-to-build items. BOX 2, $6.00.

MONITORING TIMES Subscribers Receive
A 10% Discount On All Books
Prices Effective Thu June 30, 1983

BUY BOOKS!
EVERYTHING YOU NEED AT YOUR FINGERTIPS!

SCANNING

COMPLETE ACTION GUIDE TO SCANNERS AND MONITORS
by Louis A. Smith II (256 pages, 6"x9")
A thorough, easy-to-read handbook on public service monitoring, including systems and ac-
ccessories. Explains frequency allocations, scrambles, speakers, antennas and more. Rules and regulations are stressed to help you understand the law. An excellent guide to questions and answers about scanner listening. BOX 9, $9.55.

THE TOP SECRET REGISTRY OF U.S. GOVERNMENT RADIO FREQUENCIES
by Tom Knetel. (4th edition, 120 pages, 6"x9")
An extensive col-
lection of government and military frequencies, many considered highly-
sensitive, from 25-600 MHz. Includes many locations, codenames, calls, code names. Articles on surveillance, monitoring in the 1930's bugs, scramblers and pictures of federal QSL cards. BOX 11, $9.55.

RTTY

WORLD PRESS SERVICES FREQUENCIES
by Thomas Harrington. 3rd Edition. 72 pages, 8½x11". An up to date comprehensive manual covering the field of radiotelegraph news monitoring. Contains three different lists of worldwide radio telegraph frequencies used for news services in the English language, plus all needed information on antennas, receivers, terminal units, monitors and how-to receive hints. Master lists include Transmission times, frequency, shift and speed, service (AP, UPI, TASS, REUTERS and other,) location and reception ratings. Highly recommended for all interested in RTTY monitoring. BOX 5, $7.95.

RTTY CALLSIGN DIRECTORY
by Joerg Klingenhuss. (50 pages, 8½x11"). Expanded 8th edition -- the ultimate directory for tuning in news agencies, weather broadcasts, military communications, embassies and telegrams worldwide. Over 2000 RTTY frequencies, 3-30 MHz, identified by location, agency, callsign and schedule. BOX 12, $11.95.

SHORTEWAVE

ORDER NOW and get Supplemented Free!

SHORTWAVE FREQUENCY DIRECTORY

HOW TO TUNE THE SECRET SHORTWAVE SPECTRUM
by Harry L. Heims. (182 pages, 6"x9") If your curiosity is aroused by unusual signals, this is the book for you. Tour the world's shortwave spectrum: pirate and clandestine broadcasts, spy communi-
cations, mysterious beacons, long delayed echoes, diplomatic and military channels, space communication. One of our best selling books. BOX 6, $7.95.

BETTER SHORTWAVE RECEPTION
5th Edition. "What to look for when you buy a new shortwave receiver. 10 things to check before you buy a used receiver. How to use your radio most effectively. How to tune and adjust it for best per-
formance, not half-way performance. How to align your receiver for louder signals, improved sensitivity and selectivity; alignment of RF and mixer stages, IF stages, oscillator and detector. Clear, easy to understand...Radio wave propagation the ionospheric skip distance; sunspot cycle; auroral oval, sporadic-E, F layer; temperature inversion; meteor, auroral and transsequatorial prop-
ation of efficient receiving antennas, dimensions in feet and inches ±SWL's how to hear foreign broadcasts, police, fire, aircraft, marine, weather, amateurs, CBers, private business radio...VHF-FM scanning: receivers; long delayed echoes; mysterious radio signals from outer space. U.S plans to com-
municate with other worlds by using UHF digital signals. 160 pages illustrated. BOX 17, $9.55.

VISIT YOUR GROVE ENTERPRISES DEALER
Amateur Radio Supply, Seattle, WA
Electrovalue Ind., Morris Plains, NJ
Electronic Equipment Bank, Vienna, VA
R and S Electronics, Dartmouth, N.S., Canada
Forncom Communications, NY
Radio World, Osksmy, NY
Scanners Unlimited, San Carlos, CA
Ham Radio, Check, CA
Larry's Morrison, CA
Century Print Shop, Riverside, CA,
Capac; Hobby Shop, Capac, MI.

Teaser Of The Month

Last issue MT presented a frequency trivia quiz. Congratulations to John Demmitt of Bellefonte, PA for correctly identifying perfectly three of the four puzzlers! Your book is on the way.

Let's have a look at those mysterious frequencies and identify them for our readers.

13560 KHz is assigned as an "ISM" (industrial, scientific and medical) frequency and the weird sounds are due to a variety of diathermy and other RF devices of a non-communications nature.

Look also for similar uses on 21720 and 6780 KHz. 40.64 MHz is authorized for wildlife tracking telemetry and beacons such as game collars. Similar sounds may be heard from 40.60-40.69 MHz.

14968 KHz is a nest of intriguing activity ranging from both English and Spanish "spy" numbers transmissions to remote beacons and cryptic voice communications.

4730/5734 KHz are occupied by continuous NASA ionosonde beacons with transmitters in Mussel Shoals, AL and Chattanooga, TN (among others). These "KCA", "KCB" and "KCC" (not registered callsigns).

Receivers at the Manned Space Flight Center, Huntsville, AL and doppler shift is used to detect ionospheric disturbances caused by explosions and tornadoes.

By Dave Beaumont, KBIF

Since publication of "DXing Broadcast Harmonics" (March, 1983) there have been a few interesting developments: a listing correction, a new "catch" (the furthest yet), and a new standard that will encourage a region of 1622 KHz—which sounds like a pirate, but isn't.

Taking them in order:

The Correction: Bob Reinhardt, KA3JYR, program director at WDOV in Dover, Delaware, reports that WDOV does not use the log or jingle recordings on tape, with a call sign believed to be "WDOV." Neither the writer nor MT's editor has been able to make a better "reading" of the recorded callsign, so this station remains a mystery. WDOV assures us that their second harmonic is -86 dB at standard reference points. Our apologies to WDOV for the confusion.

The Catch: On 1900 KHz, from a fundamental of 950 KHz., we noted WYWW, Barbourville, Kentucky, in early February at approximately 6:30 a.m., with good signals and positive I.D. Doug Hammons, KO4Z1, engineer at WYWW, confirms our report and comments that: "I have also heard the second harmonics in the 160 meter band and above, but I am also aware of the propagation that can be obtained on this band using a half wave vertical antenna, 120 full length radials and a few milliwatts of power. This is the propagation at most broadcast stations... (My second harmonic is within limits. Notice, I did not say it wasn't radiating energy, just that it was within FCC limits. Thanks for the letter...and good DX or whatever!"

The "Pirate" That Isn't: Medium-wave DXers in late January had their attention grabbed by a strong signal operating intermittently on 1622 KHz., carrying the audio feed from the Satellite News Channel (a cable news operation), sometimes mixed with what seemed to be a technician's instructions. It was thought to be the transmitter test of a domestic pirate—but DXer Vince Pinto, writing in the March issue of the ACE (Association of Clandestine Enthusiasts) Newsletter, traces the signal to a new FCC allocation in the 1600-1650 sub-band. The transmitter is located in Washington, D.C., and is used by Group W's Satellite News Channel production staff to bring the on-air signal to their news vans operating in the Washington area. The transmitter, Pinto reports, is running 100 watts into a 5-foot loaded whip atop a Washington building. The signal has been heard as far north as Massachusetts (at our listening post) and in several Southern states as well. This signals appears to be blanketing the East Coast with their "private line" feeds, taking place on the prime pirate channel of 1622 KHz.!! Reception reports may be sent to: Engineer in Charge, Remote Field News Broadcasts, Group W Satellite News Channel, 1111 18th St. NW, Washington, D.C. 20006.

Kudos to Vinc for a super sleuthing job on tracking this signal—and more evidence of the extreme sensitivity of these frequencies to long-distance propagation at minuscule levels of transmitter power, given optimum ionospheric conditions.

For more information, contact: Dave Beaumont, KBIF, Magic Media Services, P.O. 695, Amherst, Mass. 01004.)

DXing Broadcast Harmonics:

The New Game Updated

Listen to page 14
BEHIND THE DIALS

The popular Kenwood R-600 Receiver

By Larry Brookwell

What is known as a “sleeper” in merchandising is this fine little receiver. Few hobbyists have paid it any attention. All I have heard have been good reports: Larry Magne in the WRTC-83 says “For most shortwave applications the R-600 is a fine valued money machine which I found the equal of an expensive receiver, one of the new breed of receivers not requiring modification to bring it up to full potential.

SPECIFICATIONS

Coverage: 150 kHz to 30 MHz steps of 1 MHz on band switch. Modes: AM/SSB/CW, Sensitivity: (10 dB or more S plus N) 150 kHz to 2 MHz, AM-5uV, SSB/CW 5uV (on Narrow); 2 MHz to 30 MHz, AM-5uV, SSB-0.5uV. Image If Rejection: better than 60dB. Selectivity: 1 kHz at 675 kHz at 6/50 dB; AM SSB narrow, 2.75/0 kHz at 6/50 dB. Antenna impedance, 50 or 500 ohms Audio output: 1.5 watts 8 ohms (10% distortion), 20 watt output. VDC: Digital display. Size: 13"x5"x8", 9.6 lbs.

The first impression is a small, neat package (Gray plastic cabinet with front mounted speaker) with only eight controls: power, noise blanker, RF attenuation, Mode (AM wide, AM narrow, USB and LSB/CW), tuning dial (with finger spinner), AF Gain, RF, attenuator and the band switch with 30 T-MHz steps. No RIT, Pitch nor RF Gain. Surprisingly, the meager array seems to do the job very well.

The circuitry is modern and includes a stabilized VFO and PLL-synthesizer, band pass filters interlocked with the band selector switch and the ceramic filter circuit interlocked with the mode switch.

The attenuator control provides a 20 dB protection against powerful local stations and overload. The front panel recording output is constant volume. An antenna fuse protects against voltage surge from nearby lightning.

As I have learned to distrust selectivity ratings as much as I distrust MPG claims on new cars I first checked out both bandwidths. On shortwave the 6 kHz filter was too broad; however, it did allow superb voice audio. (Rich bass for music not there) On the 2.7 kHz filter the tone didn’t distort but the high frequencies were chopped off.

Surprisingly the 6 kHz was useless for DXing I stayed on the 2.7 kHz bandwidth for my tests.

Tuning was straightforward and smooth. An annoying feature was the need to back up a full MHz on the kHz dial when switching up on the bandswitch. There are no analog frequency markings; you use the digital display. The Band switch is a click dial without markings.

Proving out the selectivity was easy; I just looked for signals on all the bands that were 5 kHz companions. I had no trouble separating signals on 15125/1530, 1545/1515, 15170/15175 and many more. I also worked other SW bands with equal results.

I found the little set a joy to operate; the mediocre signal/noise ratio is only noticeable when compared with such rigs as R7A and the NRD. I checked for drift and image/spur problems and found the rig clean. Disconnecting 50kΩ and ground left the rig silent, even though I have some bad actors in nearby Tijuana. I douse my ceiling lights to work SW. I tried ESSC tuning and to my surprise, I found it quite good. An RIT or pitch would be a help but would raise the cost. SSB came in well although a tighter IF is nice. Not being a MW fan my inspection of those frequencies is not expert. Seemed to function well and I tuned in some quite exotic catches, although with considerable noise between different frequencies.

A practical beginner’s rig and Okay for your second command on your bench. Has a handle and a DC adapter, and is small so can be toted very handily. Is sensitive enough to work on any old hunk of wire. Is superior to the popular portables in every way.

Built-in receiver noise blankers and impulse-type clickers offer varied levels of success in dealing with the irritating offender.

Several years ago, an amateur radio magazine published an article on an effective blanker which could synchronize its own internally-generated pulse with that of the incoming signal, using the timing to open the antenna circuit. Thus, each time the massive pulse would appear at the antenna, the receiver would be momentary blanked from receiving that debilitating signal.

The system worked well, and the new AEA “Moscow Muffler” is a commercial version of the theory.

Two versions of the AEA unit are available, the WB-1 for receive-only applications, and the WB-IC for transceivers.

Housed in a sturdy aluminum cabinet, the “Muffler” comes equipped with standards SOS-229 rear-panel connectors to interface with the receiver and transceivers.

An internal inspection of the unit revealed a very neatly laid out, crystal-controlled circuit, typical of AEA quality.

A built-in 6 dB preamp provides an optional gain improvement if selected by the user. A source of 12 VDC (575 ma.) is required to operate the unit.

We have been at the Grove Enterprises Lab, results were variable, as anticipated by the manufacturer’s own literature. Multipath and simultaneous output of backscatter transmissions may produce partial suppression and drift of the synch signals as well.

In our case, we found that touch-up of the synchronization control was necessary every few seconds (typically 3-55 seconds) to keep the pulse signal suppressor from drifting back into audibility.

The synchronization is used in tandem with a pulse width control to prevent excessive down-time of the receiver between pulses. This avoids obvious interruption of the desired signal.

In conclusion, our sample of the AEA “Moscow Muffler” provided reliable and repeatable reduction of pulse noise from the Russian woodpeckers, accepting the frequent readjustment as being a necessary annoyance of the Russian Muffler

Moscow Muffler

From AEA

Few forms of interference are as aggravating as those which are deliberate. The “Russian Woodpecker” is one of the worst.

Considered to be a form of over-the-horizon backscatter radar (OVTR, the woodpecker got its name from the rapid rat-a-tat-tat sound its pulses cause over a wide range of shortwave spectrum...)

“Moscow Mufflers” From Digi-Key

Although the cost of digital display clocks is coming down to affordable levels, home experimenters still like to build kits.

Digi-Key Corporation, a prominent mail order parts house, offers a full line of parts, kits and tools for the home builder. Their comprehensive collection of low-cost components which should be of great interest to construction enthusiasts.

We decided to check out two digital clock modules, the MA1020 ($15.95 plus options) and the MA1008 ($6.25 plus options). The first is a 12/24 hour LED featuring large (0.84") numerals and AC operation; the second is a smaller (0.3") display LED, DC operated.

Both modules are manufactured by National Semiconductor Corporation in the Philippines and require a minimum of external components for operation.

A number of options are available with each module depending upon the resources and application needs of the user. These include power transformer, buzzer, pushbutton function switches and plastic case for the clock oscillator.

Anyone who has wired a kit before should have little trouble unless he has wasted through the literature a combination of National Semiconductor reprints and Digi-Key notes.

It is up to the builder to provide hookup wire, mounting hardware and cabinet and, of course, tools and solder.

For more information about Digi-Key Corporation products, write for their free catalog, Digi-Key Corporation, 18875 67th Ave N., Dept. MT, Thief River Falls, MN 56710 or call toll-free 1-800-346-5144 and tell them you read about it in MT?

“FOX PAC” SCANNER

While Bearcat, Radio Shack and Regency may still be the dominant forces in the preprogrammed scanner field, Fox Marketing remains a strong contender. Rumor has it that a number of innovative products are slated for release.

We tested the most recent release, the Fox Pac 100, and were impressed with its straightforward simplicity, sensitivity and compactness.

The Fox Pac is designed to accept any number of preprogrammed plug-in modules (ROMS) which may be custom ordered for your locale. This allows immediate, dense memory operation without the need to purchase crystals or keyboard enter your favorite frequencies.

The modules may be ordered separately with 20, 50 or 100 channel capability. The scanner

Continued on page 18

Monitoring Times, May/June, 1983 - Page 17

www.americanradiohistory.com
Behind The Dials
Continued from page 17
allows additional bank and channel skip (lockout) flexibility.
Audio quality is excellent, with a loud 2 watts of audio available in the small (6" x 1 1/2" x 9") cabinet.
Membrane keys (like on the Regency products) select automatic scan or manual channel
stepping, action (priority), instant weather channel access, as well as the memory bank and
channel skip provision mentioned earlier.

The KENWOOD TS430S TRANSEIVER

A Review by Bob Grove WA4PYQ

With the battle looming between the new general coverage
receiver manufacturers (Kenwood R-2000, ICOM R-70),
would it be possible to combine the best features of both receivers
into one piece of equipment? And how about a transmitter to boot?
Kenwood appears to have done it. The new TS430S general
coverage transceiver has just about everything: 150 KHz-30 MHz
receiver with sharp selectivity, excellent tuning, RIT, notch
filter, 8 channel memory (frequency and mode) with scan and
adjustable-speed search, squelch, superb sensitivity with excellent dynamic range and
image rejection, very few spurious signals, eminent stability, frequency
readout to 100 Hz with ultimate tuning resolution of 10 Hz,
and an internal speaker.
The transmitter features all-mode modulation (SSB/CW/AM)
with an optional FM module for both transmit and receive, at power levels up to 250 watts PEP.
Coverage of all ham bands, including the WARC authorizations,
is also provided with easily adjustable frequency-limiting diodes.

PUTTING IT ON THE AIR

When the TS430S arrived, my natural impulse was to put it on the air immediately without reading the instruction manual.
The new Kenwood is eminently user-friendly; on the air it went.
My first QSO was answered immediately by two stations, reports of excellent signal strength and audio quality (SSB) were received
during this and all subsequent contacts. Even in DX piles, my
call was immediately acknowledged.
The antenna used was my own design, an all-band dipole described elsewhere in this issue.
Its effectiveness obviously played a considerable part in the success of the transceiver, but if the transmitter can't put out a signal,
neither can the antenna.

Using squelch on SSB is a rather recent innovation; the Kenwood squelch has good attack and recovery characteristics.

Frequency stability on both transmit and receive is like a rock; and when the other guy drifts slightly, the Kenwood's RIT (remember increments)
tracks him without affecting the transmit frequency.
The two-speed (10/100 kHz per dial rotation) could be slower, but it is adequate. Interestingly
enough, the two speeds also control the search rate in that receive mode.

With antenna disconnected, I began to search for spurious signals. A number of them were found, especially at 500, 23139
and 29515 kHz, but none strong enough to cause any S-meter deflection.

And with the antenna connected, nearly all of the spurs were virtually undetectable. Obviously, they would not detract from reception of desired signals.
I was disappointed in the noise blanket which seemed to be ineffectual in attenuating a variety
of pulse-noise interference. The IF filter is much too narrow for AM reception, but Kenwood offers
optional filters to suit the needs of the listener.

Exalted carrier SSB reception of AM signals was superb and
fully corrected the muffled audio characteristic of reception in the

AM mode. The 10 Hz tuning resolution meant that speech and music were both very natural

Aesthetically, the TS430S continues the Kenwood tradition, it is compact, attractive and eminently functional. It is unquestionably
the most cost-effective, flexible transceiver released to date.

(“SUPER DF” DIRECTION FINDING ANTENNA

A mobile (or portable) VHF/UHF radio direction-finding system has been introduced by BMG Engineering. Consisting of an upper pair of phase-sensitive
whips and a lower control unit, the new “Super DF” system is designed for continuous 100-260 or 200-550 MHz
applications.

Best operated from a vehicle in motion, the BMG RDF averages out fluctuations in signal strength, measuring only
the phase relationships between the two antennas.

The unit is connected to both the external antenna jack and external
speaker jack of the receiver or scanner. A self-contained
system allows the user to monitor both the incoming
signal and a superimposed pulse tone.

A high/low tone pair corresponds to a red/green LED visual indication; these provide
left/right directional information.

Continued on page 19
Behind The Dials

signal within one second is possible using the BMG system and bidirectional ambiguity is not a problem.

The basic system is available with a variety of options, depending upon the frequency range of interest and whether a kit or factory-built unit is preferred.

The accompanying documentation is exhaustive, examining all aspects of transmitter hunting, as well as explaining the theory of the BMG system.

(SDC1B control unit, $180.75; antenna unit $56-$66; SDC1 K kit, $99.75; antenna kit, $25-$50. For more information, write BMG Engineering, Dept. MT, 9335 Garibaldi Ave., Temple City, CA 91780).

The receive-only CWR6700 and optional video monitor

The HAI Communications Terminal, keyboard, tuning scope and video monitor

HAL RTTY/Morse Systems

A number of accessories for radioteletype and Morse code operation have appeared on the communications scene recently. They are clearly divided between receive-only and transmit/receive devices.

HAL Communications Corporation (Box 364, Dept Mt, Urbana, IL 61801) is one of the leaders, having been in the commercial amateur and SWL market for several years. We recently field-tested several pieces of HAL gear and now reflect our findings to Monitoring Times readers.

CT2100 Communications Terminal (suggested retail $845)

A remarkably flexible demodulator for ASCII, RTTY and CW, the CT2100 features a large array of function clustered pushbuttons on the front panel, and an impressive mass of input and output jacks on the rear apron as well.

Designed to interface with a companion multifunctional keyboard (KB2100) and video monitor (KG12), the CT2100 simply connects between the receiver audio output and the transmitter audio input. Tape recorder and printer loop connections are included.

A built-in monitor with speaker allows the user to listen to the audio signal if desired, since connecting the unit to the external speaker jack of a receiver or transceiver will disconnect that rig's internal speaker.

Common functions are chosen for convenience on the MODEM, display, TX/RX control, 1/0. A row of tuning LED's assists in proper alignment of the unit.

A novel feature is a video bargraph generator which allows the listener to visually peak the incoming signal while watching the monitor—a very handy display.

While the rows of pushbuttons are too close together for comfortable switching, it must be remembered that they will not be used like a typewriter. Set and forget; it's forgivable.

Data formats are ASCII and Baudot (170/425/850 Hz shift) with transmit or receive rates of 45/56/72/100/110/150/300/600/1200 Baud.

Morse code adjusts automatically on receive speed, manually for transmit: 5-99 WPM.

Some RF interference hash was detected from the video system on various frequencies in the shortwave spectrum. Well-shielded cables and common ground are mandatory to avoid problems on reception.

The video format is quite pleasing; a slow scroll—not the abrupt line "snap" of competitive units—is a thoughtful consideration in design.

Video format includes 24-line pages from either 48 72-character line or 96 36-character lines (extra large characters). Either black-on-white or white-on-black characters may be selected.

The BEST in Code Converters

THE INFO-TECH M200-F TRI-MODE CONVERTER

Converts Morse & RTTY (Baudot & ASCII) to video, and serial Baudot or ASCII for hard copy

Morse Reception: 6-55 wpm standard (simple user adjustment for higher speeds). Automatic speed tracking & word space adjustment.

RTTY/ASCII Operation: Decodes RTTY (45, 50, 57, 74, 100 Baud) and ASCII (110 & 300 Baud) Auto CR/LF, automatic threshold control. Selectable unshift on space, limiter is switch selectable, solid state tuning "meter". Demodulator has 3 fixed shifts and 1 tunable shift, user selectable printer outputs in all modes for ASCII or Baudot for all modes with crystal controlled baud rate generator. RS232, TTL & isolated loop outputs. User adjustable autostart.

Video Display Formats

(UserSelectable)

16 lines x 32 characters, 16 lines x 72 characters, 25 lines x 32 characters, 25 lines x 72 characters, 50 or 60 Hz operation. Cursor, on or off

Built-in 115/230v power supply

Order direct or from these dealers

INFO-TECH ELECTRONIC EQUIPMENT

Monoprice Products
16500 Brandywine Ave.
Vista, CA 92081
(619) 593-2500

Data Supply
4387 15th St.
San Francisco, CA 94118
(415) 431-0877

Electronic Equipment Bank
1525 14th St.
San Francisco, CA 94122
(415) 861-1894

Global Communication
506 California Ave.
Cupertino, CA 95014
(408) 948-1978

Durell Associates
3200 Pacific Ave.
San Francisco, CA 94132
(415) 474-6945

Han Radio Center
3380 Peach Tree Rd
Marietta, GA 30066
(404) 931-3333

Keystome Communications
15201 N. 33rd Ave.
Glendale, AZ 85308
(602) 946-1700

Microphone Technology
3244 Ranberry St.
Forestville, MD 20755
(301) 927-3700

Universal Amateur Radio
1380 Auto Drive
Placentia, CA 92670
(714) 999-4550

Grove Enterprises, Inc.
Redlands, CA 92373
(909) 384-8155

Price $495.00

FOD factory

We accept

Mastercharge, Visa

Monitoring Times, May/June, 1983 – Page 19

The CT2100 may be used stand-alone for reception, or with KB2100 keyboard for transmission.

KB2100 Keyboard ($175 retail)

A full typewriter keyboard with excellent feel complements the HAL system. Addressable memory provides several messages: "DE" (here is), Quick Brown Fox, CQ. 2040 character EPROM storage may be divided up among a variety of user-specified messages. Rub out and Break keys are included among the 88 keys plus space bar.

Split-screen operation allows composition while a message is being received and read.

CWR6700 Morse/RTTY/ASCII Demodulator (Suggested retail $495)

This receive-only terminal is designed to work with either a video monitor or ASCII printer. Input may be either audio from the speaker jack of the user's receiver, or TTL logic from a keyer.

Oddly, the CWR6700 is designed to operate from 12 VDC at 0.8 A; no power supply is available from HAL. A standard CB-type base power supply works well.

The accompanying manual is extraordinarily complete, containing informative chapters on teletype, ASCII, Morse, interference, alignment procedures and a variety of other topics. It is well-written.

The demodulator itself is compact, extremely easy to use with its array of labelled pushbut-
Behind The Dials

Continued from page 19

tions. Rear-ajaron jacks are pro-
duced for XY scope use if desired.

As a standard speeds for
Baudel and AM/AM II at 43.50/-5/75/110/180 baud rating.
Standard shift selections of
45/90/135, etc. are also available.

A built in audio monitor
with speaker for headphone jack
output allows volume control as
the listener hears the audio on the
recovered audio even if the
receiver's speaker was cut off by
the insertion of an auxiliary plug.

Two pages of memory storage
and recall permits the operator to
refer back to text previously

Morse reception is the best
way to operate a HF transponder/receiver/decoder to date; it
is very forgiving of sloppy dot-
dash radio and spacing, acquiring
valid text virtually instantly with
a data rate change.

The CW filter is quite sharp
without ringing and could prob-
ably be used to advantage when
manually copying CW under
recorded conditions even when
the full capability of the demodulator
is not in use.

RS2100 Scope ($295 retail)

Although considered by many
users to be a luxury, a CRT display
for tuning is extremely useful. At
a glance, the listener can tell
whether mark/space signals are
properly tuned.

The RS2100 is a miniature
oscilloscope featuring a one-inch
CRT display with separate
horizontal and vertical inputs.
Internal AC is included.

The little scope is not limited
to use with HAL equipment; its
universal applications include
direct connection to loop supplies
teleprinters and goal outputs
of competitive demodulators as
well.

Front panel controls include
vertical and horizontal position,
intensity and focus (as well as
power). Loop indicator lamps are
provided.

Internal adjustments are ac-
cessible for X, Y axis gain and
astigmatism.

The RS2100 with its shar-
trance display proved an invaluable
aid in rapid tuning of
received signals. While many RT-
TY demodulators leave some
question during their initial
tuning period as to whether the
signal is optimized in the
mark/space bandpass, the RS2100
tells the whole story.

The vast majority of inexpen-
sive video monitors now on the
home computer market are mass-
produced by Japanese TV
manufacturers. They offer excellent
performance at reasonable cost.

The HAL KG-12 features a
green 1-Phosphor and 18 MHz
bandwidth, composite output at
nominally 1 volt. Typical of
the current genre of video monitors.

Power switch, brightness and
contrast controls are external.
The display was bright and sharp
with a minimum of character
distortion. A protective skin covers
the front screen, removable by the
user. Even with the skin left
intact, characters are sharp and
easy to read.

General conclusions:

The performance of the entire
video system is consistent with
the HAL tradition of quality and
dependability. While system costs
may seem a little high, relief is
available through discounts of-
fered by Monitoring Times adver-
sisers.

All equipment tested was neat
in appearance, flexible in applica-
tion and dependable in operation.
It was obvious that considerable
thought went into the develop-
ment of the HAL system.

SWL HEADQUARTERS

ELECTRONIC EQUIPMENT BANK THE NAME IN SHORTWAVE LISTENING

KENWOOD R-2000

- 50 Hz to 30 MHz
- All mode AM-CW-SSB
- 10 Memories (Memories Mode)
- Memory Backup
- Memory Scan
- Programmable Band Scan
- 24 hour Clock Timer

YAESU FRG-7700

- Our Best Seller
- 50 kHz to 30 MHz
- All mode AM-CW-SSB
- Digital Frequency and clock

IONIC R-70

- You have the details on this revolutionary
receiver. It's getting rave reviews.
- Frequency Range 100 kHz-30MHz
- Pass Band Tuning
- FM Filter
- Computer Compatible
- Fully Synthesized
- Noise Blanker Wide/htwpr

G.E. WORLD MONITOR II

- Best Buy under $250
- 6 Bands 3.5 to 31.5 MHz SWL-MM FM
- World Power 120/220 V 50/60 Hz
- DC operation from internal batteries
- Extended warranty of 3 months parts and labor AT FULL COST TO YOU.

SONY ICF 2001

- Microcomputer and Synthesizer offer best value in its class.
- Features quartz crystal locked PLL frequency synthesizer and dual conversion super-

- Internal adjustments are accessible for X, Y axis gain and astigmatism.

- Although considered by many users to be a luxury, a CRT display for tuning is extremely useful. At a glance, the listener can tell whether mark/space signals are properly tuned.

- The RS2100 is a miniature oscilloscope featuring a one-inch CRT display with separate horizontal and vertical inputs. Internal AC is included.

- The little scope is not limited to use with HAL equipment; its universal applications include direct connection to loop supplies of teleprinters and goal outputs of competitive demodulators as well.

- Front panel controls include vertical and horizontal position, intensity and focus (as well as power). Loop indicator lamps are provided.

- Internal adjustments are accessible for X, Y axis gain and astigmatism.

- The RS2100 with its sharptrance display proved an invaluable aid in rapid tuning of received signals. While many RT-TY demodulators leave some question during their initial tuning period as to whether the signal is optimized in the mark/space bandpass, the RS2100 tells the whole story.

- The vast majority of inexpensive video monitors now on the home computer market are mass-produced by Japanese TV manufacturers. They offer excellent performance at reasonable cost.

- The HAL KG-12 features a green P-Phosphor and 18 MHz bandwidth, composite output at nominally 1 volt. Typical of the current genre of video monitors.

- Power switch, brightness and contrast controls are external.

- The display was bright and sharp with a minimum of character distortion. A protective skin covers the front screen, removable by the user. Even with the skin left intact, characters are sharp and easy to read.

- General conclusions:

- The performance of the entire video system is consistent with the HAL tradition of quality and dependability. While system costs may seem a little high, relief is available through discounts offered by Monitoring Times advertisers.

- All equipment tested was neat in appearance, flexible in application and dependable in operation. It was obvious that considerable thought went into the development of the HAL system.

PIRATES BEWARE...

A public notice from the FCC was received recently here at MT headquarters. It is reproduced in full for our readers.

On January 26, 1983, Ricky Lee Henderson of Salem, Missouri, paid a $750 forfeit imposed as a result of his operation of an unlicensed FM broadcast station.

The fine was assessed as a result of an investigation conducted by the FCC Kansas City District Office. Henderson, who holds a First Class Radiotelephone license as well as an Amateur Extra Class license, was observed operating a radio station on November 22, 1982, on a frequency of 102.72 MHz. The station was being identified as "KKJ103".

Under Part 15 of the Commission's Rules, any frequency license is operation in the FM Broadcast band, 88-108 MHz, is authorized only by use of an unmodified FCC approved wireless microphone. Henderson's equipment did not meet this criteria.

The Commission's Field Operations Bureau is aware of the increasing number of unlicensed broadcast stations and is currently engaged in an extensive effort to eliminate violations of the Communications Act by imposing substantial fines to the responsible individuals.

(Rith special thanks to Jeff Kreus of Rockville, MD for sending the notice)
Helpful Hints

EXPANDING THE SCANNERVERTER

By David Wilson

I present my Grove CVR-1 SCANNERVERTER with a BC-20-20 scanner and an R-1000 receiver. For improved calibration accuracy, I set my R-1000 to lower sideband and tune in a MARI SAT satellite RTTY transmission (248.925-249.300 MHz, 25 kHz channel spacing).

I have also heard much FM satellite traffic including Air Force One working “Cartwheel”. Some operational hints may help other listeners snare interesting communications.

EXTERNAL PREAMP LI FFERS

If you use an external preamp with the SCANNERVERTER, be careful not to use too much gain; this will cause the system to go into oscillation, characterized by a sudden increase in background noise.

The problem may be corrected by turning the gain down somewhat (as I do with my Grove ANT-4 Power Ant), or by lowering the DC voltage if you have a selectable AC adapter (like the Grove PWRC). 1

OSCILLATOR ADJUSTMENT

As components age it is not unusual for an oscillator to slowly drift off frequency. The oscillator trimmer may be adjusted to proper frequency (18.000 MHz) by listening for a harmonic on 504.000 MHz on a multiband scanner (or 126.000 MHz on an aircraft-only scanner) and tuning for greatest quieting of background noise.

The procedure is to tune in exactly 18.000 MHz on a shortwave receiver with BFO on (calibrated accurately to WWV) and adjust for zero-beat. Be sure to use a non-metallic (plastic) tuning screwdriver or homemade tool like a filed-down picnic fork.

OUT OF BANDRECEPTION

Because of the large numbers of oscillator harmonics present in the SCANNERVERTER, a correspondingly large number of combinations are possible for out-of-band signal reception. Let’s take a look at how this can be used to our advantage.

For FM reception of 406-420 MHz (federal government band), adjust your scanner to receive 445.000 MHz. Similarly, for 216-220 MHz (inland waterways) and 220-225 (amateur), use 162.171 MHz on your scanner.

The mathematically ambitious may want to try other combinations as well.

USING SCANNERVERTER WITH A SHORTWAVE RECEIVER

To increase sensitivity of the system on shortwave, a simple preampifier used between the SCANNERVERTER and the shortwave receiver may be used to improve reception.

SPACE SHUTTLE RECEPTION

It is unlikely that you will hear the shuttle while in flight, but at an altitude similar to that of the Hubble Space Telescope. Reception will be improved by using a large dish antenna.

Complimentary frequency reception is extremely handy for receiving signals when the normal tuning range of the scanner is below the frequency of the signal provided with your unit. Several formulas may be used to assist you in identifying these alternate channels.

Complimentary frequency reception is extremely handy for receiving signals when the normal tuning range of the scanner is below the frequency of the signal considered from the chart provided with your unit. Several formulas may be used to assist you in identifying these alternate channels.

The first formula is: 630 - UHF Complimentary UHF Frequency. For example, if the normal conversion of 240 MHz to 118 MHz causes problems, the signal may also be heard on the conversion frequency for 386 MHz (630-240=386). Thus, you could hear 386 MHz on your scanner while set at 134 MHz.

Naturally, every 18 MHz you could theoretically hear a complimentary signal from the top line of the chart. The same is true for all lines and frequencies.

Alternatively, to find which other frequency in 118-136 MHz range you will hear the complimentary channel, use the formula of a converted 225-400 MHz frequency, use the second formula: 252 - VHF Complimentary VHF Frequency.

For example, you are hearing a converted UHF signal on 125 MHz, the same signal should be heard as well on 127 MHz (252-125=127). This is excellent for avoiding interferences from images (planes) and birds.

For shortwave conversion, the formula becomes: 36-HF, and for VHF-FM high band conversion, use 324-VHF.

Two recent developments, both implemented in all current Grove CVR-1B SCANNERVERTERS, improve performance of the popular 225-400 MHz military band converters.

Under certain circumstances, the high gain amplifier stages can go into "parasitic oscillation", recognized by a raucous buzzing sound coming through the scanner, the buzzing seems to change character if the listener's hand is placed on the SCANNERVERTER cabinet. Additionally, a rash of TV, FM and shortwave signals may heard during the episode.

The malady is easily corrected by the addition of a small carbon resistor (220 ohm, 1/4 watt) soldered across the antenna input jack (center terminal and ground).

The second improvement involves better oscillator stability, preventing excessive frequency drift with changing voltage and temperature.

The improvement is realized by soldering a small signal diode (1N914 or 1N4148) between the oscillator base (transistor center lead) and the nearby ground foil.

Be sure the cathode (bar symbol or marked end) is on the base of the transistor.

After the oscillator mod, the crystal trimmer capacitor will have to be readjusted to exactly 18.000 MHz. This is easily done with a shortwave receiver calibrated to WWV and then switched to 18 MHz (BFO on, of course), tuning the trimmer for zero beat.

Alternatively, the scanner may be set to receive 504.000 MHz, a high multiple harmonic of the 18 MHz crystal, on the trimmer for maximum signal (greatest quieting of background hiss).

This tuning procedure should be performed after the SCANNERVERTER has been running for a couple of minutes to stabilize circuit temperatures. It is also recommended for SCANNERVERTERs which have been in service for several months as a field touch-up procedure.

All SCANNERVERTERS shipped after January 1, 1983 have the diode modification already.

All SCANNERVERTERs shipped after April 1, 1983 have the resistor as well.

Continued on page 22
HELPFUL HINTS
Continued from page 21

How To Choose A Scanner Antenna

by B-B Grove

As with many articles of manufacture in this technological age, antenna selection for most listeners seems a black art. This needn't be so except for the fact that most dealers (and some manufacturers) don't really understand any more about antennas than their customers do! One look at some cold, hard facts about antennas for scanner reception.

First, an antenna is either omnidirectional (well in a circle around it) or is directional (must be rotated to face the direction it favors). All mobile service (police, fire, etc.) antennas are vertically polarized; that is, the elements will be pointed in an up-and-down direction, not horizontal like your TV antenna. A directional (passive or active) antenna will work as well as an outside antenna.

Only discone antennas and log-periodic beams offer continuous coverage without frequency gaps—from one end to the other of their design spectrum. All other antennas favor specific frequencies within the bands for which they are designed.

For example, while a trap-loaded antenna might be advertised for 30-50, 144-174 and 450-512 MHz, it is really designed for 40, 15-16 and 460 MHz (or thereabouts!). All other frequencies are off the design center, and performance gradually falls off the farther the scan is tuned away from the design center.

The same is true for 'diode clusters', those non-trap-loaded nondirectional multiband base antennas with several elements of vastly-different lengths. Each set of elements is designed for the center of a common band of interest.

From a practical standpoint, the common multiband antennas work quite well for the standard scanner frequency ranges. But if you are considering out-of-band reception (225-400 MHz military aero, etc.) the conventional multiband scanner antennas are very inferior to the broadband discones and log periodic beams.

THE BOTTOM LINE

For non-demanding, local coverage of signals in the low, high and UHF scanner ranges, virtually any of the standard multiband antennas will work just fine.

For weak or distant signal reception in the high or UHF band use a gain type antenna like a directional beam.

For out-of-band coverage, a single ground plane antenna cut to the center of that band will work well on that band, but not on other frequency ranges.

For continuous coverage of in-band and out-of-band scanner reception, use a discone or a log-periodic dipole array beam antenna.

Discones are made by several manufacturers, while the LPDA is only available as the Grove Enterprises Scanner Beam.

A discone performs uniformly over its entire frequency range as well as a ground plane cut to frequency anywhere in that range. And when you assemble a discone, it is essential that the upper elements are directly above the corresponding lower elements.

And don't forget to use good coax, especially if you are planning on a length in excess of 25 feet and want to listen to UHF.

Coaxial cable must be low-loss and well-shielded, like RG-59/U, RG-8/U (regular or mini) and RG-6/U (cable TV coax). Do not use RG-58/U in long lengths for fixed installations; it's OK for mobile applications, however, just so long as it has good shielding (at least 90%).

SCANNER BEAM HINTS.... Seven Steps to Outstanding Reception

Although instructions packaged with the Grove ANT-1 Scanner Beam are reasonably good, an occasional oversight may cause problems when the antenna is first erected. Let's have a look at some common errors:

(1) Be sure the antenna is mounted away from any metal mast; an offset boom is provided for this type of installation. Plastic mast pipe section from the rotor is even better.

(2) Examine the coax (which should be RG-8/U, RG-6/U, RG-11/U or RG-59/U low loss, fully-shielded foam dielectric) for breaks or shorts with an ohmmeter.

(3) Be sure the center conductor of the coax is long enough at the F connector to make contact with the mating balun transformer; if not, carefully pull it out slightly with a pair of longnose pliers.

(4) Be sure the antenna is mounted in a vertical plane (element ends pointing up and down, not horizontally like a TV antenna).

(5) Be sure the short elements are facing the direction of the desired signal (forward).

(6) Check the wind phase harness to be sure that nowhere along its length does it touch anything except the element to which it is riveted.

(7) Finally, substitute another balun transformer if no signal is being received; they can be defective like any other component.

Free replacements are available from Grove Enterprises.

For transmitting on the 144, 220 and 432 MHz ham band, don't run more than about 25 watts into the balun transformer or overheating of the small internal wires could result in a blown balun.

Properly installed, the Scanner Beam is the best scanner antenna ever made available to the public; it will give you years of outstanding, dependable service.

Antenna Improvements For The Bearcat 100

While the BC-100 portable programmable scanner from Electra represents a giant step forward in solid state frequency-synthesized technology, few readers will forgive the oversight of omitting provision for an external antenna.

Although it is expected that future models of the popular handheld scanner popular handheld scanner will include a BNC connector for wider antenna flexibility, a prominent antenna accessory manufacturer may have solved the problem for present BC-100 owners.

Centurion International (PO Box 62946, Dept MT Lincoln, ND 68510) has announced the availability of their BC-BN adapter, a cleverly-made, rugged antenna adaptor for the little Bearcat.

Designed to screw into the threaded antenna hole of the scanner, the BC-BN sports a BNC connector for attaching to an external antenna cable.

An effective ground return to the radio is provided by a strong steel strap which may be bent down to touch the radio's earthed seat, or trimmed to slip in to the jack barrel hole.

Additionally, a series of flexible "rubber ducky" helical antennas is available from Centurion to replace the small stub antenna which comes with the BC-100. HOW DO THEY WORK?

Recently, we decided to give a rugged field trial to the three accessories on a trip through the eastern states.

Without exception, the BC-BN adaptor provided sturdy, dependable interfacing between the Bearcat 100 and coax line from the car's rooftop antenna.

Our two sample flexible antennas were identical to one another, except one had a threaded base to match the unmodified Bearcat (A-TRI-BC) and the other had a BNC base to fit the adaptor (A-TRI-BN).

The antennas which were compared in the test were the original BC-100 flexible antenna, a home-made screw-in 36-inch telescoping whip, and the Centurion A-TRI.

TEST RESULTS

In all cases, the best performance came from the telescoping whip, adjusted for ¼-wavelength on high band and UHF, and fully extended for low band. This was to be expected; no physically-short antenna can work as well as a full-length antenna.

Next, the Centurion worked better than the original Bearcat factory antenna on low band and high band.

At UHF the Bearcat antenna was better than the Centurion.

By way of a side note the Centurion threads are not pitched the same as those on the BC-100, so the antennas will not fully seat. They are, nonetheless, secure.

RECOMMENDATION

For connection to an outside antenna, the BC-BN adaptor is an excellent accessory. For an attachable whip, nothing can outperform a telescoping whip (10-32 screw base) adjusted for ¼-wave at the band of interest.

Between the flexible whips, the original Bearcat stub works best on UHF and VHF high band; the Centurion provides better low band performance and about the

Continued from page 23
Viewpoint

I wish to congratulate you for the SWL scoop in having Hank Bennett as an editor in Monitoring Times. MT is now of age and will continue to be a successful newsletter. What WORLD RADIO is to the hams, MONITORING TIMES is to the SWL's. (Stewart Mitchell, past president, American Shortwave Listeners Club)

Just a note to let you know how much I enjoy Monitoring Times. It is a great help to someone who is just getting started in scanners and shortwave. Keep up the reviews on the different scanners and SW receivers (Dale Packer, Allegan, MI)

ERRATUM

In the November/December issue of MT, p. 16 "Meters of Megahertz", it says, "The use of meter band by many broadcasters and amateurs, alike often causes confusion"; I would say so, the table used says "99 MHz - 6200 Megahertz" and so on. It should read "49 MHz and 5.950-6.200 MHz", and so on.

Any publication is great. I would like more ads and product exposure. (William J. Patterson, Houston, TX)

Thanks, William, for pointing out a glaring error! Readers are advised to correct the caption at the top of that table on page 16 of the November/December issue to read "METERS OF MEGAHertz - 1111 MHz and 5950-6200 MHz".

Please note that this page may be interesting in knowing that new, unused copies of the 1979-1980 issue of Jane's Military Communications are available for $14.95 plus $1.00 handling and shipping from Publishers Central Bureau, 1 Champion Avenue, Avenel, NJ 07001. Their stock number for this 469 page book is 39156.

When new, the book sold for $125 as does the current issue. The sale book was the first issue to concentrate mainly on the operations of military communications equipment for radio, satellites, land line, teletype and encryption. (William J. Neill, San Antonio, TX)

Thanks Bill for sharing this item with our readers. I took advantage of that special offer and am well pleased.

HELPFUL HINTS

Continued from page 22

same high band performance as the Bearcat. UHF reception on the Centurion is poor.

Centurion also offers a wide variety of enhancement packages for amateur and commercial handy-talky antennas as well as rechargeable batteries for virtually any handheld.

For more information on those products, the adaptor ($7.50) or the antennas ($15.65/$18.35) contact Centurion directly at their address given earlier.

Well, you persuasive rascals did it! Your anniversary issue with the feature article on CW marine listening was the clincher. The promise of the feature on naval and the NPMOL-FP is just too much to pass up on.

The competent replies to your esoteric question on the Bellini-Tosi fixed loop goniometer in dialect, I think, was the highlight of your readership. This was especially interesting when "yours truly", a self-styled SWL expert, was thinking in terms of a "null" used in the kitchen of a restaurant specializing in Italian cuisine!

Seriously, though, having marked a human "rounds" of other communications-specialized publications, it's obvious that you people have a winner. (Richard Phillips, St. Catherines, Ont.)

Bob, you are the only one I write to who actually gave me the courtesy to answer my letter in regards to line noise and interference problems. You seem to know what you are talking about. Your paper is excellent and very informative. (Martin J. Theil, Holiday, FL)

It's very hard to answer all questions, Martin. Those accompanied, stamped envelope are given first priority.

I am first subscribed to MT it was because of the majority of articles concerned scanners and HF and LF utility monitoring. However, I've noticed within the last few issues that several more columns have been devoted to international shortwave broadcasting. Why?

There are as many clubs with sold bulletins right now. I'm honestly hope MT isn't going to go that way. Please keep MT the way it was originally! (L. Jean BAKER, Indianapolis, IN)

MT can only be 8 pages tabloid in one year we have grown to 28 pages allowing for considerably more flexibility in article themes. MT will not become another SWL magazine where we can only read a substantial number of readers who listen to international broadcasting. Therefore, we will continue to have periodic broadcast articles while concentrating on the information throughout the spectrum.

In reference to "What is that Hum?" (p.3 January/February), I believe I may have an answer to the question concerning radio waves bouncing the American Embassy in the USSR. It has been discovered that metal rods of a specific length were found fastened to support members inside the walls of the embassy. Calculation showed that the rods were resonated at the same frequency which was being directed at the embassy from outside at high power.

Any conversation taking place in the rooms would vibrate the walls and consequently the metal rods buried inside. Since the rods were sympathetically vibrating in step with the voices, any radio energy picked up by the rods would be modulated ever so slightly in frequency and re-radiated.

Receivers located a few blocks away would decode these signals, allowing the operators to listen and record the conversations at the embassy.

Never did hear of what happened to the American radio operators who went on to the game. Hopefully, another reader can supply more information or add corrections to mine. (Neil Schlaifer, Chicago, IL)

THE HOME BUILDER

A couple issues back, we asked our readers if they would like to see a publication dedicated to home radio and electronics experimenters. This-pagination reply from a well-known and respected home projects author is typical of the encouragement:

In reference to your question as to whether you should start a new magazine, one dedicated to the home builder, the radio experiment, and the serious hobbyist: YES, A thousand times YES! Such a magazine is sorely needed. Please fill the vacancy. (Carl C. Drumeller WSSJ, Warr Acres, OK)

* * * * * * * * * * * * * * * * *

The issue of starting a new publication dedicated to the home experimenter is still not resolved. Such an undertaking is extremely expensive.

Roughly 5% of our letters to

VISUAL MONITORING

The World of Amateur Television (Part II)

By John Edwards

In the previous issue of MONITORING TIMES, we found out about monitoring amateur television signals. Now it's time to discover exactly how ATV signals are transmitted and the requirements of an ATV station.

Basically, three items are required to perform an ATV transmitting station: a transmitter, a camera, and an antenna.

Like receiving converters, ATV transmitters have a long way from the days of surplus homeowner use, as the current trend is toward factory-manufactured units.

Typical of this type of transmitter is the Kiltzing ATV transmitter (Haldet Specialties, 729B E. Evelyn, Sunnyvale, CA 94087) which lists for $199, or the $1200 model (1986 Reference Court, San Jose, CA 95131) TVX-10.

Both units are solid-state, 10 watt transmitters that use a plug-in crystal to determine the output frequency.

The crystals can be exchanged so that one can use the transmitter on a number of ATV frequencies.

The converter can use a conventional 420 MHz power amplifier to boost the signal.

Before leaving the subject of transmitters, let's take a look at a form of hybrid ATV unit—the transmitter/converter. As the

name implies, this is an ATV transmitter and receiving converter built into one cabinet; a sort of transceiver, if you will.

Actually, this is more expensive than that. The transmitter/converter also acts as a central control point for the entire ATV station. Most contain an AC power supply for the video and camera inputs and,最主要的 components for transmitting audio.

ADDITIONAL SOURCES

Audio is one facet that many budding ATV users fail to think about at first. Yet it's quite obvious that television isn't very effective without sound (unless you're a silent movie fan!). However, most converted surplus transmitting gear, and even some ready-built ATV transmitters, have no sound capability.

In the past, various systems were designed to provide audio. Among the ideas used were separate phone transmissions on a higher frequency, 2-meter voice links (still used in some parts of the country) and various methods of adding an audio subcarrier to the visual signal.

The system that seems to have won out across most of the nation is use of an FM subcarrier.

Continued on page 24
Visual Monitoring

Continued from page 23

added to the video signal. This allows any standard TV set (with a converter, of course) to pick the sound right out of the IF system and play it over the set’s normal speaker. That sure beats fooling around with 2-meter rigs or separate 450 MHz transceivers!

The last element of an ATV station is the camera. Thanks to the recent boom in home videocassette recorders, low-cost, high-quality TV cameras are available just about everywhere. The price of a new camera should be somewhere in the $150-200 range.

If that’s a little steep for you, try scouting your area’s next electronic flea market. You can usually find a few sellers hawking used CCTV (closed-circuit television) cameras for about $30 and up, depending on the condition.

If you think you might be ready for color, you might want to buy one of the new portable color cameras. These units are available new for about $400 and up.

Once the ATV station is assembled and made operational, the next step is to put together some programming. In the next issue of MONITORING TIMES, we’ll look at what can be seen on ATV.

Experimenters’ Workshop

REDUCE TELEVISION ‘SYNCH BUZZ’ INTERFERENCE

by Bob Grove

One of the most irritating forms of interference to plague the shortwave and longwave listener alike is TV sweep oscillator noise. It is recognized by its raucous buzzing sound, prominent throughout the lower part of the spectrum when nearby television receivers are turned on.

The signal is generated by the horizontal oscillator of the TV set to provide synchronized sweeps of the electron beam across the TV screen in order to produce a picture. To do so, it must sweep at a rate of 15,750 times per second (15.75 kHz).

The signal is a square wave, rich in harmonics; it is just these harmonics that cause the problem.

Fortunately, there are some measures which are within the capabilities of many home experimenters which may reduce the blight.

The first is to experimentally try a ‘stub filter;’ this consists of a 22” piece of twin-lead, shorted at the distant end, and connected across the antenna terminals. A 0.01 microfarad disc capacitor connected from that shorted end to a convenient chassis screw.

The filter acts like a short circuit to remove any low-frequency radiation which might escape from the antenna lead-in.

Another home remedy requires taking the back off, or at least getting access to the AC interlock wires inside the set. Try connecting a 0.01 microfarad, 600 volt disk capacitor from either side of the line to the chassis at the point. Naturally, AC power must be disconnected during the fix.

Another possible solution is to ground the signal by affixing a 0.01 microfarad, 600 volt disc capacitor between the chassis and ground return of the electrical AC outlet.

Now, with your set suitably remedied, I’m sure you will have absolutely no problem convincing all your neighbors to convert their set as well!

For superb shortwave reception and amateur transmitting, try

THE GROVE ALL-BAND DIPOLE

By Bob Grove, WA4PYQ

Few questions come into the headquarters at Monitoring Times as often as “What is the best choice in a shortwave antenna?”

For that reason, we decided to try an elaborate series of experiments to devise an antenna that not only worked exceptionally well for receiving, but would work as a transmitting antenna for the amateur bands (1.8-30 MHz) without the need of a tuner!

The challenge was clear, but not insurmountable. The road had already been paved by experiments early this century by a ham, Loren Windom. His name is still identified with one of the most popular antennas of all time.

Unfortunately, Windom’s antenna had its limitations. It worked only on even harmonics of its half-wave fundamental frequency and it was fed at an awkward (400-500 ohms) impedance point.

We decided to try to expand on the concept to produce an antenna with more universal application.

After many weeks of frustrating pruning, testing and on-the-air checks, the following scheme was finally perfected.

Duplication installations by other hams and shortwave listeners produced similar results—excellent worldwide transmission and reception without the need of an “antenna tuner” (transmatch).

As with all shortwave dipoles, the higher above ground the better to keep VSWR low—especially at the lower frequencies—for transmitting. Preliminary tests revealed that the antenna may also be used for transmitting outside the conventional amateur bands with similar VSWR.

It is entirely possible that a half-size wire antenna (25 and 45 foot legs) would work as well. We at Monitoring Times would appreciate the results our readers have with any modifications of and applications for this excellent antenna.

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>FREQUENCY</th>
<th>VSWR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8/1.9</td>
<td>3.5/3.6/3.7/3.8/3.9/4.0/4.1/4.2/4.3/4.4/4.5/4.6/4.7/4.8/4.9/5.0</td>
</tr>
</tbody>
</table>

TYPICAL VSWR VS. FREQUENCY (MHz) FOR GROVE DIPOLE
TUNING IN THE COASTAL CW STATIONS

by Joe Woodland

(EDITOR'S NOTE: The recent series of WT articles on shortwave CW by Sam Landup of W.Gerulany's Air-Railroads was favorably commended by our readers. As a result, we are pleased to present this excellent list of coastal frequencies collected recently by the patient monitoring of author Joe Woodland.)

Coastal stations serve ships at sea by exchanging telegrams. They also gather weather observations from the ships and broadcast weather forecasts.

Despite the growth of RTTY and other forms of sophisticated communications, most of this traffic is still carried on by Morse code. And a large amount of it is conducted in English.

You don't have to be a code expert to DX coastal stations. Except for the Russians and a few other stations, the code speed isn't that great. The general calls used by most coastal stations are brief and are repeated over and over. If you miss something the first time, it will be repeated in just a few seconds.

These general calls are to let ships know that the station is monitoring that band. Calls and responses are usually conducted on other frequencies, so the general calls continue at the same time.

The general calls start with a series of VY or OQ, or perhaps just a DE. This is followed by the station call letters (usually repeated 3 times). Many coastal stations will follow this with some various Q" messages such as QX7 or QRZ. Then the whole cycle will be repeated over again. It may only take 3 or 4 messages, or maybe up to 15-20 seconds, before the repetition begins. In any case, it's a short cycle.

Following is a list of some of the more common coastal stations in the US in the 8 and 12 MHz marine bands. You should be able to hear many of the 12 MHz stations during summer evenings as well as the normal daytime listening.

COASTAL STATIONS - 12 MHz

<table>
<thead>
<tr>
<th>FREQ</th>
<th>STATION</th>
<th>LOCATION</th>
<th>FREQ</th>
<th>STATION</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>12655</td>
<td>FTF6</td>
<td>St. Lys France</td>
<td>12875</td>
<td>FUG</td>
<td>Le Regine France</td>
</tr>
<tr>
<td>12657.5</td>
<td>PJE123</td>
<td>Suffissant Neth.Ant.</td>
<td>12876</td>
<td>VAI</td>
<td>Vancouver BC</td>
</tr>
<tr>
<td>12660</td>
<td>WSL</td>
<td>Amagansett NY</td>
<td>12890.5</td>
<td>SAG62</td>
<td>Goteborg-Sweden</td>
</tr>
<tr>
<td>12665</td>
<td>FUM</td>
<td>Papette F, Poly</td>
<td>12897.5</td>
<td>WLD</td>
<td>Mobile AL</td>
</tr>
<tr>
<td>12667</td>
<td>OFJ3</td>
<td>Helsinki Finland</td>
<td>12897.5</td>
<td>NMO</td>
<td>Aranjuez Spain</td>
</tr>
<tr>
<td>12673.5</td>
<td>CLA</td>
<td>Havana Cuba</td>
<td>12897.5</td>
<td>DAI</td>
<td>Honolulu Hawaii</td>
</tr>
<tr>
<td>12673</td>
<td>JOU</td>
<td>Nagasaki Japan</td>
<td>12907.5</td>
<td>KLR</td>
<td>Norddeich, W.Germany</td>
</tr>
<tr>
<td>12678</td>
<td>FSPG</td>
<td>St. Lys France</td>
<td>12927.5</td>
<td>VHP</td>
<td>Marysville, Wash.</td>
</tr>
<tr>
<td>12682.5</td>
<td>LFC</td>
<td>Rogaland Norway</td>
<td>12927.5</td>
<td>FFL6</td>
<td>Bermuda Canada</td>
</tr>
<tr>
<td>12687</td>
<td>OFJ4</td>
<td>Helsinki Finland</td>
<td>12927.5</td>
<td>UX5Z</td>
<td>Tokyo Japan</td>
</tr>
<tr>
<td>12692</td>
<td>ZAO</td>
<td>Kuala Lumpur RSA (Navy)</td>
<td>12940.5</td>
<td>ZLW</td>
<td>St. Lys France</td>
</tr>
<tr>
<td>12693</td>
<td>UKD</td>
<td>Leningrad USSR</td>
<td>12940.5</td>
<td>ZLW</td>
<td>Varna Bulgaria</td>
</tr>
<tr>
<td>12956.5</td>
<td>KFS</td>
<td>Palo Alto CA</td>
<td>12940.5</td>
<td>ZLW</td>
<td>Sydney Australia</td>
</tr>
<tr>
<td>12700</td>
<td>NMR</td>
<td>San Juan P, (USA)</td>
<td>12947.5</td>
<td>ZRH</td>
<td>Royal Australian Navy</td>
</tr>
<tr>
<td>12702</td>
<td>CKN</td>
<td>Vancouver Canada (Mil)</td>
<td>12952.5</td>
<td>VIL</td>
<td>Singapore RSNV (Navy)</td>
</tr>
<tr>
<td>12703</td>
<td>XFL</td>
<td>Northern Germany</td>
<td>12952.5</td>
<td>LFI</td>
<td>Sydney Australia</td>
</tr>
<tr>
<td>12704.5</td>
<td>WLO</td>
<td>Mobile AL</td>
<td>12957.5</td>
<td>IUX</td>
<td>Trieste Italy</td>
</tr>
<tr>
<td>12709</td>
<td>DPV</td>
<td>Barbados</td>
<td>12958.5</td>
<td>PPL</td>
<td>Reale Brazil</td>
</tr>
<tr>
<td>12719.2</td>
<td>ZLO</td>
<td>Bernuda</td>
<td>12959.5</td>
<td>JOK</td>
<td>Gen. Pacheco Argentina</td>
</tr>
<tr>
<td>12719.5</td>
<td>ZLO</td>
<td>Irlantig A. (Navy)</td>
<td>12960.5</td>
<td>VIL</td>
<td>Cerritos CA</td>
</tr>
<tr>
<td>12718.5</td>
<td>NIN</td>
<td>Portsmouth VA (USN)</td>
<td>12996</td>
<td>IAR</td>
<td>Port Elizabeth, N.Y.</td>
</tr>
<tr>
<td>12720</td>
<td>SV6G</td>
<td>Athens Greece</td>
<td>12997.5</td>
<td>WSL</td>
<td>Rome Italy</td>
</tr>
<tr>
<td>12726</td>
<td>CFT</td>
<td>Halifax NS (Military)</td>
<td>13002</td>
<td>KPH</td>
<td>San Francisco CA</td>
</tr>
<tr>
<td>12727</td>
<td>HJL</td>
<td>Seoul S. Korea</td>
<td>13008</td>
<td>JOR</td>
<td>Nagasaki Japan</td>
</tr>
<tr>
<td>12729</td>
<td>LQJ</td>
<td>Rogaland Norway</td>
<td>13011</td>
<td>WLM</td>
<td>Vladivostok, Russia (Navy)</td>
</tr>
<tr>
<td>12730</td>
<td>UNV</td>
<td>Munster USSR</td>
<td>13015.5</td>
<td>IAD3</td>
<td>Rome Italy</td>
</tr>
<tr>
<td>12736</td>
<td>PPP</td>
<td>Rio de Janeiro Brazil</td>
<td>13200</td>
<td>GKC5</td>
<td>Point Pleasant, NJ</td>
</tr>
<tr>
<td>12740</td>
<td>ZLB5</td>
<td>Avarua N. Zealand</td>
<td>13237.5</td>
<td>HEH</td>
<td>Port Sudan, W. Sudan</td>
</tr>
<tr>
<td>12745</td>
<td>ZTB5</td>
<td>London England (Navy)</td>
<td>13248.9</td>
<td>WSL</td>
<td>Pembroke, Mass.</td>
</tr>
<tr>
<td>12749</td>
<td>NWC</td>
<td>Guayaquil Paris</td>
<td>13297.5</td>
<td>UAL</td>
<td>Athens Greece</td>
</tr>
<tr>
<td>12750.5</td>
<td>UX62</td>
<td>Lyndsay Denmark</td>
<td>13301</td>
<td>FUG</td>
<td>Port de France, Mart.</td>
</tr>
<tr>
<td>12768</td>
<td>PCH50</td>
<td>Scheveningen Netherlands</td>
<td>13303.5</td>
<td>WCU</td>
<td>Chaiten Chile</td>
</tr>
<tr>
<td>12767.5</td>
<td>OZT5</td>
<td>Ostendt Belgien</td>
<td>13338</td>
<td>KLC</td>
<td>Amsterdam, Neth.</td>
</tr>
<tr>
<td>12781</td>
<td>GOKS</td>
<td>Portsmouth Eng (Navy)</td>
<td>13344</td>
<td>FVU</td>
<td>Alanya Turkey</td>
</tr>
<tr>
<td>12789</td>
<td>UXN</td>
<td>Arkhangelsk USSR</td>
<td>13351.5</td>
<td>AOK</td>
<td>Haifa Israel</td>
</tr>
<tr>
<td>12799</td>
<td>PCH51</td>
<td>Scheveningen Netherlands</td>
<td>13390</td>
<td>WPU</td>
<td>Tampa FL</td>
</tr>
<tr>
<td>12795</td>
<td>UX05</td>
<td>Arnhem Holland</td>
<td>13391</td>
<td>JOC</td>
<td>Osaka Japan</td>
</tr>
<tr>
<td>12802</td>
<td>PPP</td>
<td>Rio de Janeiro Brazil</td>
<td>13200</td>
<td>GKC5</td>
<td>Point Pleasant, NJ</td>
</tr>
<tr>
<td>12805</td>
<td>ZLB5</td>
<td>Avarua N. Zealand</td>
<td>13237.5</td>
<td>HEH</td>
<td>Port Sudan, W. Sudan</td>
</tr>
<tr>
<td>12806</td>
<td>WBN4</td>
<td>Slideaid LA</td>
<td>13367</td>
<td>USF52</td>
<td>Point Pleasant, NJ</td>
</tr>
<tr>
<td>12824</td>
<td>WBN4</td>
<td>Slideaid LA</td>
<td>13367</td>
<td>USF52</td>
<td>Point Pleasant, NJ</td>
</tr>
<tr>
<td>12838</td>
<td>WBN4</td>
<td>Slideaid LA</td>
<td>13367</td>
<td>USF52</td>
<td>Point Pleasant, NJ</td>
</tr>
<tr>
<td>12852</td>
<td>WBN4</td>
<td>Slideaid LA</td>
<td>13367</td>
<td>USF52</td>
<td>Point Pleasant, NJ</td>
</tr>
<tr>
<td>12852</td>
<td>WBN5</td>
<td>Slideaid LA</td>
<td>13367</td>
<td>USF52</td>
<td>Point Pleasant, NJ</td>
</tr>
<tr>
<td>12852</td>
<td>WBN5</td>
<td>Slideaid LA</td>
<td>13367</td>
<td>USF52</td>
<td>Point Pleasant, NJ</td>
</tr>
<tr>
<td>12852</td>
<td>WBN5</td>
<td>Slideaid LA</td>
<td>13367</td>
<td>USF52</td>
<td>Point Pleasant, NJ</td>
</tr>
<tr>
<td>12874</td>
<td>HP6N0</td>
<td>Port of Armella Panama</td>
<td>13390</td>
<td>WLO</td>
<td>Limon Costa Rica</td>
</tr>
<tr>
<td>12874</td>
<td>HP6N0</td>
<td>Port of Armella Panama</td>
<td>13390</td>
<td>WLO</td>
<td>Limon Costa Rica</td>
</tr>
</tbody>
</table>

The 8 MHz stations are good from late afternoon into the daylight hours.

Other bands to try include 4220-4350, 6325-6500 and 16856-17215 MHz.

Continued on page 26

www.americanradiohistory.com
Shortwave Listening On A Rainy Weekend

The French have a word for it at 1600 daily - The only time they broadcast in English.

By Roger N. Peterson

Unless you're retired or still going to school; the chances are most of your shortwave listening is done during the evening hours. Daytime, even during weekends and holidays, can bring big conflicts with golf, fishing,
gardening and yardwork. But having a bad, rainy day and that shortwave receiver looks pretty good!

For those of you who don't listen much during weekdays, here are some choice day-time programs for Saturdays and Sundays.

Starting on Saturday morning at 1100 GMT (7 AM Eastern) for your early risers, tune in the BBC News on 6.185 MHz or 11.755 MHz. If you're interested in Great Britain, stay tuned at 1115 and listen to "News About Britain." At 1200, check Radio Australia on 9090 MHz for news from that corner of the World. At 1210, on the same station, you can hear "Dunstan's Diary" a lighthearted account of the events of the past week in Melbourne.

Another good program at this time is on the BBC - "Anything Goes" at 1215 GMT features a variety of music and comedy-all requests by listeners. However, this is not just the average "Music Request" show.

The requests have to be a bit on the unusual side to be aired. For example, I requested some hit tunes of the World War II period in London. No problem. Three weeks later, they played four tunes from London musicals of that era.

At 1315 GMT, it's time to tune in the Swiss and hear one of the best DX programs on the air: Swiss Merry-Go-Round, featuring the "Two Bobs". They discuss the latest in shortwave receivers, antennas, etc.

The program is heard on the 2nd and 4th Saturdays of the month on 21.570 MHz. Reception in North America is usually excellent.

At 1400 GMT go to 21.615 MHz and listen to the famous Radio Switzerland can be heard easily on Saturdays and Sundays at 1315 and 1530. Try 21.570 MHz.

<table>
<thead>
<tr>
<th>Tuning In The Coastal CW Stations</th>
<th>Continued from page 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>3463 CKN</td>
<td>Vancouver BC (Ml) 3646 FUL</td>
</tr>
<tr>
<td>3465 NW4</td>
<td>Portsmouth VA (US)</td>
</tr>
<tr>
<td>3469 CUL3</td>
<td>Lisbon Portugal 3649.5 ICB</td>
</tr>
<tr>
<td>3470 ZKB</td>
<td>Capetown RSA (Navy) 3650 NWD</td>
</tr>
<tr>
<td>3471 YRH</td>
<td>San Juan PR (USN) 3652 OY4</td>
</tr>
<tr>
<td>3474 ZHU</td>
<td>Leiden, Holland (Navy) 3653.6 U3C4</td>
</tr>
<tr>
<td>3474.5 WLO</td>
<td>Mobile AL 3654.1 PCH42</td>
</tr>
<tr>
<td>3475 FUF</td>
<td>Fort de France Mart. 3653a IA843</td>
</tr>
<tr>
<td>3480 TIB</td>
<td>Limon Costa Rica</td>
</tr>
<tr>
<td>3483.5 DAK</td>
<td>Norddeich W.Germany 3646 FUR</td>
</tr>
<tr>
<td>3494 WOE</td>
<td>Lantana FL</td>
</tr>
<tr>
<td>3499 CUL7</td>
<td>Lisbon Portugal 3673 IA843</td>
</tr>
<tr>
<td>3499.5 GYA</td>
<td>London England (Navy) 3672.5 DAF</td>
</tr>
<tr>
<td>3499 SMO</td>
<td>Goteborg Sweden 3675.2 FFP3</td>
</tr>
<tr>
<td>3502 PPL</td>
<td>Helen Brazil 3678 ZLP</td>
</tr>
<tr>
<td>3502 XGU</td>
<td>Shanghai PRC 3679 IQX</td>
</tr>
<tr>
<td>3510 FFS4</td>
<td>St.Lys France 3682 EA03</td>
</tr>
<tr>
<td>3511.9 DAL</td>
<td>Norddeich W.Germany 3683.5 LGB2</td>
</tr>
<tr>
<td>3519 WSL</td>
<td>Anzangnatt W. 3683.5 FRR</td>
</tr>
<tr>
<td>3526 GKC4</td>
<td>Porteous England 3687 SV4</td>
</tr>
<tr>
<td>3527 PPO</td>
<td>Olinio Peramambua Brazil 3637.6 URO</td>
</tr>
<tr>
<td>3527 VIS26</td>
<td>Sydney Australia 3688.8 ZSC6</td>
</tr>
<tr>
<td>3527.5 FFL4</td>
<td>St.Lys France 3692.5 SV4</td>
</tr>
<tr>
<td>3529 WJU33</td>
<td>Sidell LA 3694 XG11</td>
</tr>
<tr>
<td>3527.6 LFN</td>
<td>Roslageland Norway</td>
</tr>
<tr>
<td>3545 GKA4</td>
<td>Porteous England 3697 CFH</td>
</tr>
<tr>
<td>3545.4 WPA</td>
<td>Port Arthur TX 3699 UK2</td>
</tr>
<tr>
<td>3552 CIF</td>
<td>Oeiras Portugal 3700 YUR3</td>
</tr>
<tr>
<td>3557 SVE4</td>
<td>Szczecin Poland 3712 CLA24</td>
</tr>
<tr>
<td>3557.4 GKH4</td>
<td>Porteous England 3703 CTQ</td>
</tr>
<tr>
<td>3558.4 KFS</td>
<td>Palo Alto CA 3704 SVA4</td>
</tr>
<tr>
<td>3562 PCH4</td>
<td>Scheivening Netherlands 3705 WSL</td>
</tr>
<tr>
<td>3565 OGE</td>
<td>Luanda Angola 3705.5 GKE4</td>
</tr>
<tr>
<td>3566 DGO</td>
<td>Magallanes Mexico 3706 KFS</td>
</tr>
<tr>
<td>3570 NRV</td>
<td>Guan (USN) 3707 ZSO</td>
</tr>
<tr>
<td>3573 CLA21</td>
<td>Havana Cuba 3707 LGB2</td>
</tr>
<tr>
<td>3574 HCU</td>
<td>Buenaventura Colombia</td>
</tr>
<tr>
<td>3580 LDX</td>
<td>Roetalgoland Norway 3707.5 VIP</td>
</tr>
<tr>
<td>3580 NMC</td>
<td>Holmis CA (USN) 3707 HECH18</td>
</tr>
<tr>
<td>3582 KLI</td>
<td>Marysville WA 3711 GKP4</td>
</tr>
<tr>
<td>3586 WCC</td>
<td>Chatham MA 3711 KPH</td>
</tr>
<tr>
<td>3594 UXZ4</td>
<td>Lyngby Denmark 3715 VIS50</td>
</tr>
<tr>
<td>3594.5 ZLO</td>
<td>Irriangal N.Z.(Navy) 3712 WLO</td>
</tr>
<tr>
<td>3604 ZHR</td>
<td>Simonston RSA (Navy) 3712.5 SV44</td>
</tr>
<tr>
<td>3607 ZLN</td>
<td>Varona Bulgaria 3715.5 WCC</td>
</tr>
<tr>
<td>3608 HNP</td>
<td>Puerto Arruella Panama 3717 WLO</td>
</tr>
</tbody>
</table>

Alastair Cooke presents the BBC's very popular "Letter from America" on Sundays at 1115, 1645 and 2315 GMT.
Sweden “Saturday Show”, It’s usually a winner. Lots of humor and variety.

At 1500 GMT switch to 25.790 and listen to Radio RSA from South Africa. They have an excellent program called, “Good Afternoon Africa”. Don’t miss it!

The only English broadcast from France can be heard at 1600 GMT from Paris, called “Paris Calling Africa”. Reception in North America is very good on 21.620, 21.580, and 17.620 MHz.

At 2130 GMT you will want to tune into Radio Canada International to hear the best DX program on the air. Ian McFarland’s “DX Digest”, featuring people like Larry Magne covering new receivers and other equipment and Glennus talking about frequency changes and new stations heard on the air.

At 1300 GMT you have several choices. Radio Canada International offers “Sunday Morning” on 11.995 MHz. This is a three-hour-long program with a magazine format - news, interviews, and features.

At 1345 tune back to the BBC to hear the “Sandi Jones Request Show”, contemporary music with a “sassy-voiced” host. Try it; you may like it.

At 1645 the BBC has “Letter from America” again, in case you didn’t hear it earlier. This is on 21.700 or 15.077 MHz and at 1800 you can hear Radio Canada International’s DX Digest if you missed it the day before, tune for it at 5.995, 15.325 or 21.695 MHz.

At 2015 GMT BBC has “Letterbox” on again, in case you missed it Saturday. It’s on 6.175 or 15.23 MHz.

At 2230 GMT try Israel on 11.655 for news and comments. It’s a pretty good program and gives you a nice insight into their point of view as to what’s going on over there.

At 2300 GMT you have a couple of choices for news and features. Radio Canada International has a popular review of Canada’s situation on 5.960 or 9.755. BBC has World News on 7.325 and 16.715. AT 2330, WRNO (New Orleans) has a repeat of “The World of Radio”-DX news with Glenn Hauser on 11.956 MHz.

At 0000 GMT you have three good choices. Radio Israel comes on again on 11.655 and 9.815 MHz.

Order Now at These Low Rates

Subscription Form to Monitoring Times

| SUBSCRIBERS RECEIVE A 10% DISCOUNT* ON GROVE ENTERPRISES PRODUCTS |
|---|---|
| 1 year | 1950 (5 Issues) |
| 2 years | 1180 (12 Issues) |
| 3 years | 2510 (18 Issues) BEST BUDGET! |

Please Start My Subscription with the Following

<table>
<thead>
<tr>
<th>May Issue</th>
<th>July Issue</th>
<th>Renewal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Payment should be made to Grove Enterprises, 140 Dog Branch Road, Brinston. N. C. 28902. Payment must accompany subscription.

Remember a special friend-MT makes an excellent gift!

Please Send Subscription to

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>City</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Foreign Subscribers Please Note

Due to the postal service requiring to place MT in an envelope if mailed outside the US, the following additional charges must be applied.

- Canada and Mexico - 1.30 per year (you will receive air mail shipment; surface rate does not reduce the cost).
- All other foreign countries please choose the following:
 - Surface mail please add $1.00 per year.
 - Air mail please add $.90 per year.

All foreign subscriptions must be paid by international money order in US funds.

*Discount not available on products so marked, or on sale items.

Listening on Russian Aircraft and Ships

One of our readers, a former intelligence officer with the defense department, would like to share a recent list of frequencies used by Russian aircraft, ships and stations.

- All frequencies are in kilohertz and the prevailing mode is upper sideband voice communications.
- Identifications are tentative.

Monitoring Times wishes to thank this contributor and invites other readers with interesting lists to share them with fellow listeners through the pages of Monitoring Times.

Russian Aircraft

- Freq
- Identifier
- Blaga (Blagoveschensk)
- 5557 Khobarovsk
- 5557 Khobarovsk
- 5557 Khobarovsk
- 5632 Khobarovsk
- 6589 Khobarovsk
- 6692 (AM) Khobarovsk, Magadan, Okhotsk, Petropavlovsk
- 6736 Khobarovsk
- Russian Volmet (Weather)

Russian Point to Point

- 3160 7415 (LSB)
- 4640 5292
- 5049 (LSB) 5415
- 5089 (LSB) 7414 (LSB)
- 5292 7470
- 5415 7780
- 5790

Need a Military Technical Manual?

A frequent question asked by surplus radio enthusiasts is, “Where can I get a manual for this thing?” One answer is, “From Wayne D. Russell (9140 Washam

Wayne is a respected dealer of surplus parts, but his main claim to fame is an enormous stock of equipment manuals--by the thousands--for virtually every piece of surplus gear you are likely to come across.

Write him today for a catalog sheet if surplus is your thing!
Note: Monitoring Times assumes no responsibility for misrepresented merchandise.

SUBSCRIBER RATES: $10 per word, paid in advance. All merchandise must be listed.

Ask for a STOCK EXCHANGE must be received 30 days prior to publication date.

Kenwood R-1000 and SP-100 speaker, both mint and less than year old. Boxes. IB's. $375. UPS paid. Frank Shoemaker, Box 6432, Syracuse, NY 13217. 315-486-9916.

Realistic PH-48 scanner VHF low, high, aircraft, UHF. Included 10 marine band crystals, antenna, 25 coax and vehicle antenna. $125 plus shipping. David Gaines, 2347 Tassajara Ave., Savannah, GA 31404.

Military radio relics—collect, restore, operate the older military radio equipment. I am looking for any Japanese, German, other foreign radios and any related items. Also US gear from earliest to mid-1960's, particularly early RAY, HBM, TY. (No postwar FM/VHF please). J. E. Miller KATLX, 11206-1 NE, Seattle, WA 98125.

I'M MINT CONDITION! DX-200 original box and manual. NEW. $155 DX-200 original box and manual. Slightly used, $155 National NC-60B. Used. $75. Hallicrafters S-38. Used. $75. Bearcat thin line pocket scanner new neics, AC adaptor, 4 crystals, charger pack and manual. $36. Heathkit AJ-53 AM hi-fi tuner (tubes) makes a great "BCH DX" receiver, 7 microvolt sensitivity or better, $50. Montgomery Ward 40 channel CB sets pair. $90. Send bank or postal money order. Call anytime; no collect calls 919-752-6732. Garry Faison, PO Box 561, Greenville, NC 27834.

Must sell my Infotech M-200F, $320, excellent condition, very little use. Will ship UPS. Money order or certified check. Randolph Hildenbrand, 204 Sarazen Drive, Orlando, FL 32808 (ph. 305-281-1258).

WANTED: Tennelec 4V-4000—Regency M-400 and MT-500—RCA 165400 scanners, also crystals. Taylor, 72 Anthony, East Providence, RI 02914.

DX-302 receiver. New! $235 or best offer. George Konya, 3607 N. 2500 East, Salt Lake City, UT 84106.

Regency AT16K "Touch", perfect condition except two screw holes in top of cabinet. $150. MFJ-770 memory unit—new, still under warranty. $100, or trade either/both plus cash for scanner with VHF/UHF/aero in good condition. Art Kimball, 802 N. Parke, Tuscola, IL 61953 (217-253-4398 evenings).

SWAP OR SELL: Hammarlund SP-1000 VLF receiver. Regency TMH2 monitor receiver, front end removed, with manual. M. Porter, 27 Brown St., Clendenin, WV 25045.

Listen to Ohio at work—RR's, local, business, federal government PLUS MORE! Sample bullet & SASE for details. All Ohio Scanner Club, 10 Avalon Rd., Mt. Vernon, OH 43050.

White Sands

Missile Range

Communications

In the desert of New Mexico an enormous and historic military research and development project stretches over thousands of square miles.

Maintaining communications with outposts over this vast territory is a formidable problem, especially with vehicles and personnel in constant transit.

To accommodate the need for intercommunications in this vast complex, a high-band VHF-FM network has been established. Voice communications are in the clear and conducted on six channels.

<table>
<thead>
<tr>
<th>CH.</th>
<th>BASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>138.975</td>
</tr>
<tr>
<td>2</td>
<td>139.975</td>
</tr>
<tr>
<td>3</td>
<td>139.225</td>
</tr>
<tr>
<td>4</td>
<td>139.325</td>
</tr>
<tr>
<td>5</td>
<td>140.025</td>
</tr>
<tr>
<td>6</td>
<td>140.025</td>
</tr>
</tbody>
</table>

MOBILE

<table>
<thead>
<tr>
<th>CH.</th>
<th>Freq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>138.975</td>
</tr>
<tr>
<td>2</td>
<td>139.975</td>
</tr>
<tr>
<td>3</td>
<td>139.225</td>
</tr>
<tr>
<td>4</td>
<td>139.325</td>
</tr>
<tr>
<td>5</td>
<td>140.025</td>
</tr>
<tr>
<td>6</td>
<td>140.025</td>
</tr>
</tbody>
</table>

MFJ 2000 preselecting tuner, unamplified, 10 kHz-30 MHz; like new, $75.

M-FO 3000 preselecting tuner, unamplified, 10 kHz-30 MHz; like new, $29.

Gold Star VR-201 portable TV, 5" screen, battery/12VDC or AC (adapter included). VHF/UHF. Like new, $75.

Hickok OS-121C/USM-140 dual-trace oscilloscope, DC-225 MHz (usable to 50 MHz), Manual, probe, nearly new condition, $395.

Bearcat 100 portable programmable scanner perfect. Recently updated by factory. Includes AC adaptor/charger and antenna. $295.

Special Grove Enterprises “Only One Sale!” Hurry on These Items! All Prices Include Shipping!

Bearcat 100 portable programmable scanner perfect. Recently updated by factory. Includes AC adaptor/charger and antenna. $295.

Hickok OS-121C/USM-140 dual-trace oscilloscope, DC-225 MHz (usable to 50 MHz). Manual, probe, nearly new condition, $395.

Gold Star VR-201 portable TV, 5" screen, battery/12VDC or AC (adapter included). VHF/UHF. Like new, $75.

MFJ 2000 preselecting tuner, unamplified, 10 kHz-30 MHz; like new, $75.

SCRIPTOMATIC 84 addressing machine; compact, solid-state, new condition, still in warranty. Cost $600, sell $395.

Send check or money order to Grove Enterprises 140 Dog Branch Rd., Brasstown, NC 28902. Charge cards will not be accepted on these items. All sales final.

Club Corner

(Come for sure to include $1 with any sample for bulletin from these clubs to help with their postage and printing!)

ALL OHIO SCANNER CLUB

One of the most active statewide clubs is Grove Enterprises 140 Dog Branch Rd., Brasstown, NC 28902. Don’t forget to add $1 for the ASSOCIATIONOF DX REPORTERS is a general interest club with worldwide membership interested in broad-spectrum monitoring of both utilities and broadcasting, amateur radio and QSLing.

An excellent monthly bulletin is published, a sample of which is available by sending $1 to 700 Oakwood Rd., Dept. MT Baltimore, MD 21208.

INTERNATIONAL DXERS CLUB OF SAN DIEGO presided over by Larry Brookwell, who publishes a monthly bulletin of timely topics, concentrating on equipment and accessories for shortwave listening.

His new 1983 supplement to the Shortwave Hobby Equipment Review is 194 pages in looseleaf form for $7. An additional quarterly update is another $7, and a leatherette binder with the club logo is $8.50; $16 postpaid for the package.

For more information on the club and its services, write to 1820 Cypress St., Dept. MT San Diego, CA 92104.

EMERGENCY NOTIFICATION ASSOCIATION OF NEW YORK (ENANY) is a non-profit repeater society (462.700 MHz output) to alert members of activity on various scanner channels within a 25 mile radius of Manhattan. An additional repeater (462.000) now services adjacent New Jersey communities.

Membership is open to anyone and dues are to support the repeater operation. For more information write ENANY, PO Box 741, Dept. MT Ridgewood, NJ 07451-0741.)