APRIL · 1955 Proceedings of the IRE

A Journal of Communications and Electronic Engineering

SILICON RECTIFIERS

Bogue Electric Manufacturing Co.

The rapid strides which recently have been made in the field of solid state materials and devices are typified by the development of the silicon power rectifier shown above. Volume 43

Number 4

PART I

Survey of Magnetic Amplifiers "M"-Type Carcinotron Tube Power Flow in Electron Beam Devices Germanium Surface Recombination Graphical Filter Analysis Noise Figure of Backward-Wave Amplifier Induced Grid Noise Amplification in Electron Streams RLC Transfer Functions Mode Control of Interdigital Magnetrons Minority Carrier Lifetime Measurement *Transactions* Abstracts Abstracts and References Annual Index to *Transactions* Annual Index to *Convention Record*

TABLE OF CONTENTS INDICATED BY BLACK-AND-WHITE Margin, Follows Page 80A

The Institute of Radio Engineers

LEADERS IN MINIATURIZATION FOR OVER TWENTY YEARS

MINIATURIZED TRANSFORMER COMPONENTS FROM

Items below and 650 others in our catalog A.

550

HERMETIC SUB-MINIATURE AUDIO UNITS

These are the smallest hermetic audios made.

Dimensions . . . 1/2 x 11/16 x 29/32 . . . Weight.8 oz.

TYPICAL ITEMS

Type No.	Application	MIL Type	Pri, Imp. Ohms	Sec. Imp. Ohms	DC in Pri MA	Response ±2 db (Cyc.)	Max. leve
H-30	Input to grid	TF1A10YY	50*	62,500	0	150-10,000	+13
H-31	Single plate to single grid, 3:1	TF1A15YY	10,000	90,000	0	300-10,000	+13
H-32	Single plate to line	TF1A13YY	10,000*	200	3	300-10,000	+13
H-33	Single plate to low impedance	TF1A13YY	30,000	50	1	300-10,000	+15
H-34	Single plate to low impedance	TF1A13YY	100,000	60	.5	300-10,000	+ 6
H-35	Reactor	TF1A20YY	100 Her	ries 0 DC 50	Henries	Ma. DC, 4,400	ohmo
H-36	Transistor Interstage	TF1A15YY	25,000	1,000	.5	300-10.000	+10

*Can be used with higher source impedances, with corresponding reduction in frequency range and current

COMPACT HERMETIC AUDIO FILTERS

UTC standardized filters are for low pass, high pass, and band pass application in both interstage and line impedance designs. Thirty four stock values, others to order. Case 1-3/16 x 1-11/16 x 1-5/8 - 2-1/2 high ... Weight 6-9 oz.

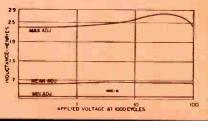
SUB-SUBOUNCER AUDIO UNITS

UTC Subouncer and sub-

subouncer units provide exceptional efficiency and frequency range in miniature size. Constructional details assure maximum reliability. SSO units are 7/16 x 3/4 x 43/64 . . . Weight 1/50 lb.

Туре	Application	Level	Pri. Imp.	MA 0.C. in Pri.	Sec. Imp.	Pri, Res.	Sec. Res.
*\$\$0-1	Input	+ 4 V.U.	200 50	0	250,000 62,500	13.5	3700
SS0-2	Interstage /3:1	+ 4 V.U.	10,000	025	90,000	750	3250
*\$\$0-3	Plate to Line	+20 V.U.	10,000 25,000	3 1.5	200 500	2600	35
SS0-4	Output	+20 V.U.	30,000	1.0	50	2875	4.6
SS0-5	Reactor 50 HY at	1 mil. D.C. 44	00 ohms D.C.	Res.			
SS0-6	Output	+20 V.U.	100,000	.5	60	4700	3.3
*SS0-7	Transistor Interstage	+10 V.U.	20,000 30,000	.5 .5	800 1.200	850	125
* Impeda Any im	ance ratio is fixed, pedance between t	1250:1 for SS he values show	0-1,1:50 for S wn may be em	SO-3. ployed.			115

SALAN BER SECON


HERMETIC VARIABLE INDUCTORS

These inductors provide high Q from 50 - 10,000 cycles with exceptional stability. Wide in-ductance range (10 - 1) in an extremely compact case $25/32 \times 1-1/8 \times 1-3/16$... Weight 2 oz.

Т	YP	ICA	LIT	EM	S
---	----	-----	-----	----	---

TYPE No.	Min. Hys.	Mean Hys.	Max. Hys.	DC Ma
HVC-1	.002	.006	.02	100
HVC-3	.011	.040	.11	40
HVC-5	.07	.25	.7	20
HVC-6	.2	.6	2	15
HVC-10	7.0	25	70	3.5
HVC-12	50	150	500	1.5

UNITED TRANSFORMER CO.

150 Varick Street, New York 13, N. Y. • EXPORT DIVISION: 13 E. 40th St., New York 16, N. Y. CABLES: "ARLAB"

HERMETIC MINIATURE HI-Q TOROIDS

MQE units provide high Q, excellent stability and minimum hum pickup in a case only. 1/2 x 1-1/16 x 17/32 . . . weight 1.5 oz.

TYPICAL ITEMS

Type No. MQE-1	Induc		DC Max.	40			
MQE-3		mhy.	135				
MQE-5	20	mhy.	80	60			
	50	mhy.	50				-1
MQE-7	100	mhy.	3 5	60		I MOE-7	-
MQE-10	.4	hy.	17				3
MQE-12	.9	hy.	12	50		KC	
MQE-15	2.8	hy.	7.2	0	5	1 5 0 5 10 25 30 35 4	ົ່

OUNCER (WIDE RANGE) AUDIO UNITS

Standard for the industry for 15 yrs., these units provide 30-20,000 cycle response in a case 7/8 dia. x 1-3/16 high. Weight 1 oz.

TYPICAL ITEMS

Type No.	Application	Pri. Imp	Sec. Imp
0-1	Mike, pickup or line to 1 grid	50, 200/250, 500 600	50,000
0-4	Single plate to 1 grid	15,000	60,000
0-7	Single plate to 2 grids, D.C. in Pri.	15,000	95,000
0-9	Single plate to line, D.C. in Pri.	15,000	50, 200/250, 500/600
0.10	Push pull plates to line	30,000 ohms plate to plate	50, 200/250, 500/600
0-12	Mixing and matching	50, 200/250	50, 200/250, 500/600
0.13	Reactor, 300 Hysno D.C.;		

LET US MINIATURIZE YOUR GEAR.

SEND DETAILS OF YOUR NEEDS for SIZES and PRICES

UHF and Color **TV**

Ninth Annual Spring Television Conference

CINCINNATI

Two Days • Friday and Saturday • April 15 and 16, 1955

At-The Cincinnati Engineering Society Buildings-as usual-McMillan at Woodburn, Cincinnati, Ohio Technical Sessions . . . Exhibits . . . Banquet

Sponsored by The Cincinnati Section of The Institute of Radio Engineers, in co-operation with the Professional Group on Broadcast and Television Receivers

Cincinnati IRE Invites You!

ISA

1 1 THE NATIONAL TELEMETERING CONFERENCE 9 9 5 5 May 18, 19, 20 5 **Hotel Morrison** Chicago 5

Will feature a full program of technical papers and exhibits in the fields of

Industrial Telemetering Pickups and Transducers Telemetering Components

Dr. Hugh L. Dryden, Banquet Speaker

Director, National Advisory Committee

for Aeronautics will talk about

Problems in Ultra High Speed Flight

Data Processing Flight Testing Multiplexing Techniques New Developments in Telemetry & Remote Control

> Dr. W. A. Wildhack, Luncheon Speaker National Bureau of Standards will treat the subject of

In-Accurate Transmission of Mis-Information Inquiries Regarding Program: Conrad H. Hoeppner Stavid Engineering, Inc. Plainfield, New Jersey

IAS

G. Brittain

Chicago. Illinois

Inquiries Regarding Exhibits:

Armour Research Foundation

PROCEEDINGS OF THE L.R.E. April, 1955, Vol. 43, No. 4, Part J. Published monthly by the Institute of Radio Engineers, Inc., at I East 79 Street, New York 21, N.Y. Price per copy: members of the Institute of Radio Engineer, \$1,00; non-members \$2,25. Yearly sub-cription price: to members \$9,00; to non-members in United States, Canada and U.S. Possessions \$18,00; to non-members in foreign countries \$19,00. Entered as second class matter. October 26, 1927, at the post office at Menasha, Wisconsin, under the act of March 3, 1879. Acceptance for mailing at a special rate of postage is provided for in the act of February 28, 1925, embodied in Paragraph 4, Section 412, P. L. and R., authorized October 26, 1927.

Sponsored by

AIEE

Table of Contents will be found following page 80A

Never before! NOT 2: motor + gear train BUT ONE homogeneous unit New Power Motor-Gear-Train

1. Unique: *Not* 2 separate units but a single entity. An entirely new principle—another OSTER ''first.''

2. More Versatile: Any output speed from 10,000 to .3 RPM.

3. Extremely High Torque Capacity: e.g., 100 #-in. at 523:1 and 1600 #-in. at 10,500:1.

4. Lighter-Smaller: e.g., 10-1/2 oz., 1-1/2" dia., 3-1/2" long at 523:1 ratio.

5. Available in 28 V and 115 V DC or in 28 V and 115 V DC

6. 1.50" dia. (Type 3094) illustrated. Variations include 1.25" dia. (Type 3101), 1.062"* dia. (Type 3200) and 1.75"* dia. (Type 2487). *Available soon.

For a precision speed reducer with low backlash and low composite error at a moderate price specify an OSTER Power Motor-Gear-Train adapted to your individual application. Write for further information TODAY.

110

Actual Size 1.50 dia. (Type 3094)

JOHN OSTER MANUFACTURING CO. AVIONIC DIVISION RACINE, WISCONSIN

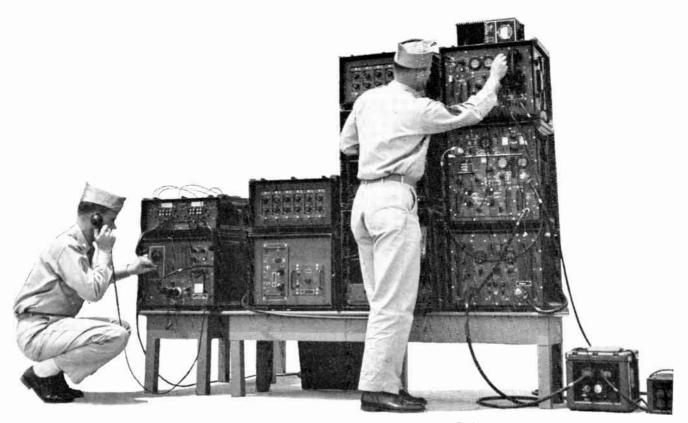
Your Rotating Equipment Specialist

Other products include Actuators, AC Drive Motors, DC Motors for Special Applications, Fast Response Resolvers, Servo Torque Units, Low Inertia Servo Motors, Synchro Differentials, Two-Phase Reference Generators, Tachometer Generators and Motor Driven Blower and Fan Assemblies. France

This power-type wire wound axial-lead Blue Jacket is hardly larger than a match head *but it performs like a giant!* It's a rugged vitreous-enamel coated job—and like the entire Blue Jacket family, it is built to withstand severest humidity performance requirements.

Blue Jackets are ideal for dip-soldered sub-assemblies . . . for point-to-point wiring . . . for terminal board mounting and processed wiring boards. They're low in cost, eliminate extra hardware, save time and labor in mounting!

Axial-lead Blue Jackets in 3, 5 and 10 watt ratings are available without delay in any quantity you require. \star \star


SPRAGUE	RATING	DIMENSIONS L (inches) D		RESISTANCE
151E	3	17/22	13/64	10,000 Ω
27E	5	1 1/8	¥i6	30,000 Ω
28E	10	1%	3/16	50,000 Ω

Standard Resistance Tolerance: ±5%

SPRAGUE ELECTRIC COMPANY . 235 MARSHALL ST. . NORTH ADAMS, MASS.

PROCEEDINGS OF THE I.R.E. April, 1955

Tuning in for radio transmission. Each item of equipment is not much bigger than a suitcase.

A leapfrog telephone system for the Armed Forces!

A new communications system, which takes to the air when water or rough terrain prevents the stringing of wires, has been developed for the U.S. Signal Corps by Bell Telephone Laboratories.

The system uses cable and radio relay interchangeably over a 1000mile range. It is easily portable, unaffected by elimate, and rugged enough for global use. Twelve voices travel at once over a pair of wires or radio waves—as clearly and naturally as over the regular telephone system.

This is the first time a completely integrated wire and radio system of this large a channel capacity has been available for tactical use by the Armed Forces. It is already in production at Western Electric, manufacturing and supply unit of the Bell System.

The new system is a joint achievement of the Signal Corps. Bell Laboratories and Western Electric...one of the many results of long and fruitful co-operation. It shows again how techniques which the Laboratories develop contribute to our national strength.

Improving telephone service for America provides careers for creative men in scientific and technical fields

Amplifiers like this are used every 534 miles in the cable portions of the system. They are weatherproof, can be used on a pole or the ground; and will ever work under water. The system uses a spiral wound cable developed by the Signal Corps.

Easily raised antennas send or receive for the radio links.

choose from this complete line of

MINIATURE PULSE TRANSFORMERS

Type 20Z drawn-shell bathtub pulse transformer

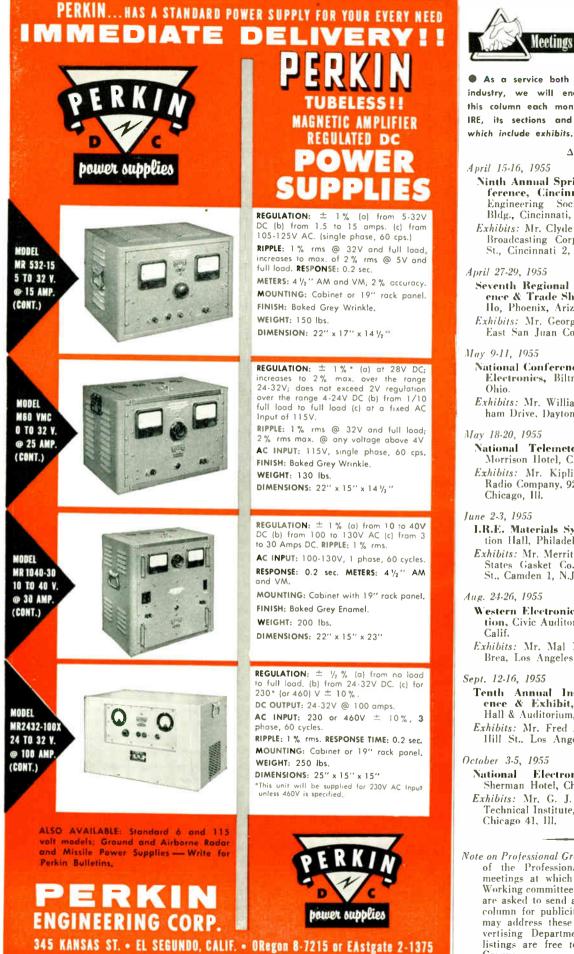
Type 40Z plug-in pulse transformer

> Sprague, on request, will provide you with complete application engineering service for optimum results in the use of pulse transformers.

NOW YOU CAN CHOOSE from eighteen standard pulse transformers in four major construction styles, all in quantity production at Sprague. The standard transformers covered in the table below offer a complete range of characteristics for computer circuits, blocking oscillator circuits, memory array driving circuits, etc.

These hermetically sealed units will meet such stringent military specifications as MIL-T-27, and operate at temperatures up to 85°C. Special designs are available for high acceleration and high ambient temperature operation. In addition, the electrical counterparts of each transformer can be obtained in lower cost housings designed for typical commercial environment requirements.

Complete information on this high-reliability pulse transformer line is provided in Engineering Bulletin 502A, available on letterhead request to the Technical Literature Section, Sprague Electric Company, 235 Marshall Street, North Adams, Massachusetts.


ELECTRICAL CHARACTERISTICS OF SPRAGUE PULSE TRANSFORMERS

Түре	Turns	Pulse Width	Rise Time # seconds	Primary Inductance	Leakage Inductance	Repetition Rate	Load and Output	Typical Applications
No. 10Z1	Ratia 5:1	μ seconds 0.1	0.04	200 µH	5 μH	1 to 2 MC	15 volts 100 ohms	Used in digital
10Z2	4:1	0.07	0.03	200 µH	20 µH	1 to 2 MC	20 volts 100 ohms	computer circuitry for
10Z3	1:1	0.07	0.03	125 µH	12 µH	1 to 2 MC	20 volts 200 ohms	impedance matching and inter-
10Z4	3:1	0.07	0.03	160 µН	15 μH	1 to 2 MC	20 volts 100 ohms	stage coupling. Pulses are of sine wave type.
10Z6	4:1	0.1	0.04	200 µH	6 μH	1 to 2 MC	17 volts 100 ohms	Sille wave type.
10Z12	1:1 =	0.25	0.02	200 µH	2 μH	12KC	100 volts	Blocking Oscillator
10Z13	1:1	0.33	0.07	240 µH	2 µH	2KC	50 volts	Blocking Oscillator
10Z14	7:1:1	0.50	0.05	1.2 mH	20 µH	IMC	25 volts	Impedance Matching
15Z1	3:1	5.0	0.04	7.5 mH	22 µH	10 KC	10 volts 100 ohms	Impedance Matching and Pulse Inversion
15Z2	2:1	0.5	0.07	6 mH	15 μH		40 volts	Blocking Oscillator
15Z3	5:1	10.0	0.04	12 mH	70 µH	10 KC	10 volts	Impedance Matching
15Z4	1:1.4	6.0	0.1	16 mH	15 μH	0.4 KC	15 volts	Blocking Oscillator
20Z1	5:5:1 Push-Pull	1.5	0.25	4.0 mH	0.3 MH		5 volts 10 ohms	Memory Core Current Driver
20 Z3	fr:1	1 to 4	0.22	18 mH	0.8 MH	250 KC (max.)	21 volts 200 ohms	Current Driver
20Z4	6:1:1	1 to 7	0.25	55 mH	0.3 MH	50 KC (max.)	22 volts 400 ohms	Current Driver and Pulse Inversion
20Z5	3.3:3.3:1 Push-Pull		0.2	2.8 mH	0.2 MH		2.5 volts 6 ohms	Memory Core Current Driver
20Z6	11:1	6.0	0.2	90 mH	0.2 MH	50 KC (max.)	10 volts 75 ohms	Current Transformer
40Z1	7:1:1	0.50	0.05	1.2 mH	Hµ 20	1 MC	25 volts	Impedance Matching

SPRAGUE®

Export for the Americas: Sprague Electric International Ltd., North Adams, Mass. CABLE: SPREXINT

PROCEEDINGS OF THE I.R.E. April, 1955

Meetings with Exhibits As a service both to Members and the

industry, we will endeavor to record in this column each month those meetings of IRE, its sections and professional groups which include exhibits.

2

8

۲.

Ninth Annual Spring Technical Conference, Cincinnati Section, IRE, Engineering Society of Cincinnati Bldg., Cincinnati, Ohio

- Exhibits: Mr. Clyde G. Haehnle, Crosley Broadcasting Corp., 140 West Ninth St., Cincinnati 2, Ohio
- Seventh Regional Technical Conference & Trade Show, Hotel Westward Ho, Phoenix, Ariz.

Exhibits: Mr. George McClarathan, 509 East San Juan Cove, Phoenix, Ariz.

National Conference on Aeronautical Electronics, Biltmore Hotel, Dayton,

Exhibits: Mr. William Klein, 1472 Earlham Drive, Dayton, Ohio

- National Telemetering Conference, Morrison Hotel, Chicago, Ill.
- Exhibits: Mr. Kipling Adams. General Radio Company, 920 S. Michigan Ave.,
- I.R.E. Materials Symposium, Convention Hall, Philadelphia. Pa.
- Exhibits: Mr. Merritt A. Rudner, United States Gasket Co., 611 North Tenth St., Camden 1, N.J.
- Western Electronic Show & Convention, Civic Auditorium, San Francisco,

Exhibits: Mr. Mal Mobley, 344 N. La-Brea, Los Angeles 36, Calif.

- Tenth Annual Instrument Conference & Exhibit, Shrine Exposition Hall & Auditorium, Los Angeles, Calif. Exhibits: Mr. Fred J. Tabery, 3443 So. Hill St., Los Angeles 7, Calif.
- National Electronics Conference, Sherman Hotel, Chicago, Ill.
- Exhibits: Mr. G. J. Argall, c/o DeVry Technical Institute, 4141 Belmont Ave.,
- Note on Professional Group Meetings: Some of the Professional Groups conduct meetings at which there are exhibits. Working committeemen on these groups are asked to send advance data to this column for publicity information. You may address these notices to the Advertising Department, and of course listings are free to IRE Professional Groups.

PRECISION <u>PACKAGED</u> **NOISE MEASUREMENT** IN

EVERY RANGE

There's a Ka testing-with goo accurate measure specific frequence obtained with all

Δ

There's a Kay instrument to answer most needs in noise testing-with good measure! Each Mega-Node type affords accurate measurement of noise figure and receiver gain in a specific frequency range, while the Kada-Node can be obtained with all elements required for complete noise figure measurement. 5 mc to 26.500 mc, including power supplies. Thus you may trust your noise test work to one precision line of uniform high quality.

KAY Kada-Node (Illustrated)

Complete radar noise figure measuring set for IF and RF, including attenuators, detector and noise sources. Provides production and lab measurement of noise figure and receiver gain. Complete with power supplies. *Freq. Range*: 5-26,500 mc. *Noise Figure*: Range, 0-21 db, accurate to ± 0.25 db. Prices on request.

----- KAY-----ELECTRIC COMPANY

14 Maple Ave. Pine Brook, N. J.

Calibrated random noise source reading direct in db, for measurement of noise figure, receiver gain, and for indirect calibration of standard signal sources. Freq. Range, 5:220 mc. Output impedances: Unbalanced-50, 75, 150, 300, Infinity. Balanced-100, 150, 300, 600, Infinity. Noise Figure Range: 0-16 db at 50 ohms; 0:23.8 db at 300 ohms, 5:295.00 f.o.b. factory.

KAY Mcga-Node-St. Same uses as Mcga-Node. Freq. Range, 10-3000 mc. Output Impedance: 50 ohms unbalanced into Type N Connector. Noise Figure Range: 0-20 db, \$995.00 f.o.b. factory.

Write for Technical Data Sheets and copy of Kay 1954-55 Catalog.

KAY Microwave Mega-Nodes

Calibrated random noise sources in the microwave range, used to measure noise figure and receiver gain and to calibrate standard signal sources in radar and other microwave systems. Available in the following waveguide sizes to cover the range of 1200-1400 mc and 2600-40,000 mc:

RG-69/U, RG-48/U, RG-49/U, RG-50/U, RG-51/U, RG-52/U, RG-91/U, RG-53/U

Available with fluorescent or inert gas	RG-69/U,\$500
(argon or neon) tubes, Noise output fluor-	RG-48/U, 295
escent tubes 15.8 db \pm .25 db; argon gas	RG-49/U 295
tubes 15.2 db \pm .1 db°; neon tubes 18.0 db	RG-50/U 295
± .5 db*.	RG-51/U 295 RG-52/U 295
*Noise output of inert gas tubes, itsdepend-	RG-91/U, 350
ent of operating temperature.	RG-53/U 350
	KG-33/U, 33V

ALL PRICES INCLUDE POWER SUPPLY

4

1

Dept. I-4

Potting is the *modern* method of moisture-proofing AN connectors—and also the most effective. Briefly defined. Potting is the injection of a synthetic rubber sealant around the wired terminals on the back of a connector; the sealant is contained and shaped by a mold form which may be removed in 24 hours after the sealant has set.

What are the advantages of Potting and why does AMPHENOL present it as the most effective moistureproofing method?

- **1** AN connector assembly terminals are completely enlosed by the sealant.
- 2 The sealant is completely resistant to moisture of any ort, wa er, juel oil, salt-spray-any and all of the usual causes of AN connector failure.
- 3 Porting replaces the back-shell and cable clamp of the AN connector-reduces weight, cost and size of every assembly.
- 4 The method of Potting is easy to learn and easy to maswr; AMPHENOL offers full assistance.

A N connectors for Potting at your plant and complete Potted AN connector assemblies and harnesses may be ordered from AMPHENOL. Check with our nearest representative or with the home office for details.

For additional in ormation request Bulletin 2555

AMERICAN PHENOLIC CORPORATION chicago 50, illinois In Canada: AMPHENOL CANADA LIMITED. Toronto World Radio History

FCC ACTIONS

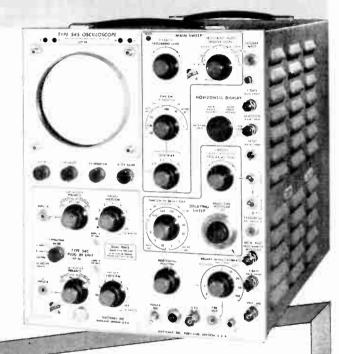
The Federal Communications Commission recently finalized, with certain changes, its proposal in Docket 11031 and amended part 18 of its Rules Governing Industrial, Scientific and Medical Services by redefining "miscellaneous equipment" to include apparatus that applies radio frequency energy to materials to produce physical, biological or chemical changes but which does not involve communications or the use of radio receiving equipment. The new rules became effective on March 1. A new subpart classifies ultrasonic equipment as a special type of miscellaneous equipment which includes any apparatus generating radio frequency energy on frequencies above 20 kc and utilizing that energy to excite or drive an electro-mechanical transducer for the production and transmission of ultrasonic energy for industrial, scientific, medical or other purposes. New technical requirements are established and a type approval and certification procedure is provided. . . . Following comments filed by RETMA with the Federal Communications Commission in Docket 9288, in which it was pointed out that many imported receivers do not comply with the proposed restrictions on spurious radiation, the FCC directed the following letter to all known importers of FM and TV receivers: "Your attention is invited to the attached Notice of Proposed Rule Making (Docket 9288) which proposes limits of oscillator radiation for FM and television broadcast receivers. The radio manufacturing industry in the United States has been cooperating with this Commission in a program of reduction of oscillator radiation. It has come to the attention of the Commission that foreign made receivers imported into this country may be in violation of standards which may be adopted by the Commission and that, in such event, steps toward the enforcement of the Commission's rules may be necessary. It is suggested that you give this problem your earnest consideration and convey this information to the manufacturers of any foreign receivers which you may be importing. The Commission will welcome any comments you may wish to submit in connection with this matter.'

INDUSTRY STATISTICS

The Radio-Television-Manufacturers Association of Canada has announced the projected production of 207,256 television sets in Canada during the months of January, February and March. December production amounted to 93,928 sets and sales of 89,078 units were reported. A total of 593,856 television receivers were produced during the year 1954, with sales for the year reported to be 619,428 receivers by the Canadian RTMA.... The pro-(Continued on page 14A)

• The data on which these NOTES are based were selected by permission from *Industry Reports*, issues of January 24, 31, and February 7, published by the Radio-Electronics-Television Manufacturers Association, whose helpfulness is gratefully acknowledged.

for fast-rise applications (12 MILLIMICROSECONDS)


Tektronix Type 545 and Type 541 CATHODE-RAY OSCILLOSCOPES


TYPE 545-This new high-speed laboratory oscilloscope, in combination with the new Type 53K/54K Fast-Rise Plug-In Unit ... opens the way to quicker, eas-

ier analyses of fast-rising waveforms ... providing faithful displays and accurate measurement facilities well beyond the range of previous oscilloscopes of its size and cost. The Type 545-Type 53K/54K combination offers a vertical-amplifier passband of dc to 30 mc (12-millimicrosecond risetime) at calibrated sensitivities to 0.05 v/cm, with a full 4-cm linear vertical deflection. A wide range of calibrated sweeps, with calibrated sweep delay from 1 µsec to 0.1 sec, and high accelerating potential, 10 kv, fully complement this greatly extended vertical-amplifier range.

The Type 545 is the most versatile oscilloscope ever made, for it can be quickly converted to many other applications. By merely plugging in the appropriate Type 53/54 Plug-In Preamplifier you are ready for wide-band, wide-band high gain, dual-trace, high-gain differential, microvolt-sensitivity, or wide-band differential applications. It's a rare oscilloscope application that isn't easily handled by this modern method.

2.5 µµf, 10 megohms

P4100 2.5 µµf, 10 megohms

FROCEEDINGS OF THE L.R.E.

2.5 v cm

5 v/cm

April, 1955

P450

Type 545 Oscilloscope Characteristics

Wide Sweep Range

24 Calibrated sweeps from 0.1 $\mu sec/cm$ to 5 sec/cm, accurate within 3%. Accurate 5-x magnifier extends calibrated range to 0.02 $\mu sec/cm$. Continuously variable from 0.02 usec/cm to 12 sec/cm.

Wide Sweep-Delay Range

Additional delaying-sweep circuitry provides conventional, or triggered jitter-free delay, µsec to 0.1 sec in 12 calibrated ranges. Range accuracy within 2%. Incremental accuracy within 0.2% of full scale.

Versatile Triggering Internal or external, with amplitude-level selection or AUTOMATIC TRIGGERING. High-frequency synchronization up to 30 mc.

Square-Wave Amplitude Calibrator 0.2 mv to 100 v in 18 steps, accurate within 3%.

New Cathade-Ray Tube Tektronix T54P 5" precision metallized crt provides 4-cm vertical and 10-cm horizontal linear deflection, 10-ky regulated accelerating potential.

Balanced Delay Network 0.15 µsec vertical signal delay.

DC-Coupled Unblanking Uniform unblanking at all sweep speeds and repetition rates.

Electronic Voltage Regulation All valtages affecting calibratians are fully

regulated.

CRT Beam Position Indicators

Type 545 - \$1450 plus price of desired plug-in units,

Type 541 — Same characteristics, less delayed-sweep facility — \$1145 plus price of desired plug-in units.

> Prices f.o.b. Portland (Beaverton), Oregon

Please call your Tektronix Field Engineer or Representative for complete specifications.

CYPRESS2-2611

CABLE: TEKTRONIX

New Line of G-E Component Rectifiers Achieves 3 Performance Highs

• 63 VOLT PEAK INVERSE

• 130 C AMBIENT OPERATION

60,000 HOUR LIFE EXPECTANCY

General Electric's new line of Vac-u-Sel Component rectifiers offer greater application flexibility than any other rectifiers in history. You can now obtain a rectifier cell with a peak inverse rating of 63 volts, or a rectifier which will operate up to 130 C ambient temperature, or a rectifier which has a life expectancy of 60,000 hours.

New G-E Vac-u-Sel rectifiers now make it possible to match performance requirements for life expectancy, ambient operating temperature, and atmospheric protection, as well as electrical characteristics.

THREE NEW RECTIFIER CELLS make up the new line of Vac-u-Sel rectifiers; a 26-volt low temperature cell, a 26-volt high temperature cell, and a 45-volt high temperature cell. All three are produced by the vacuum evaporation process described at the right, but special variations in the manufacturing give them distinctly different electrical characteristics.

26-VOLT LOW TEMPERATURE CELL is the standard industrial cell, used on applications where ambient operating temperature will not exceed 55 C. Rectifiers using this cell have a life expectancy of 60,000 hours at normal current rating.

26-VOLT HIGH TEMPERATURE CELL can meet operating requirements up to 130 C at full voltage. Current need not be derated where shorter life is acceptable. Life expectancy at 130 C is 1000 hours.

45-VOLT HIGH TEMPERATURE CELL has a 63-volt peak inverse voltage. Unlike most 45-volt rectifiers, this is a true, long-life industrial cell. Frequently this rectifier may be substituted for ones employing 26-volt cells. Since fewer cells are required, savings of up to 30% in cost, and up to 35% in the size of the stacks are possible. Life expectancy of this 45-volt cell is 40,000 hours, and the cells can be used at ambient temperatures up to 110 C.

All VAC-U-SEL RECTIFIERS operate with exceptionally low forward voltage drop and low reverse leakage, and their margin of superiority in these characteristics increases in service. All Vac-u-Sel rectifiers undergo extensive testing and grading, and matched cells are used in assembling stacks. A variety of finishes and mounting arrangements are available to meet virtually any requirements.

MORE INFORMATION on these new Vac-u-Sel rectifiers is available from your nearest General Electric Apparatus Sales Office, or by writing Section 461-36, General Electric Co., Schenectady 5, N. Y.

GENERAL CETHER DEPARTMENT METALLIC RECTIFIER COMPONENTS FOR PRACTICALLY EVERY DC REQUIREMENT COPPER-OXIDE COPPER-OXIDE CERMANIUM

Progress Is Our Most Important Product

WHEN WRITING TO ADVERTISERS PLEASE MENTION - PROCEEDINGS OF THE L.R.E.

April, 1955

1

WHAT IS VAC-U-SEL?

Vac-u-Sel is the General Electric trademark for a new line of metallic component rectifiers with exceptional electrical characteristics. The name Vac-u-Sel is used because these new rectifiers are produced by a vacuum evaporation process.

WHAT IS THE VAC-U-SEL PROCESS?

In the Vac-u-Sel process, cells are loaded on the inside of a sphere and a vacuum of over one millionth of an atmosphere is drawn on the sphere. Selenium is then evaporated inside the sphere onto the rectifier plates.

WHY USE A VACUUM?


The vacuum permits greatest control over contaminants which affect the quality of the finished rectifier. There are more than 100 variables involved in making selenium rectifiers.

WHY IS THIS PROCESS BETTER?

Vacuum evaporation provides greater uniformity between individual cells and stacks. It produces a more even deposition over the entire surface of each cell, eliminating cracks and thin spots. The electrical characteristics of a rectifier are highly dependent on the thickness of the deposit, and vacuum evaporation permits greater accuracy in controlling this thickness. In addition, it fosters better crystalline orientation, allowing natural rather than pressed formation.

ARE VAC-U-SEL RECTIFIERS BETTER?

The electrical characteristics of new General Electric Vac-u-Sel rectifiers are greatly superior to ordinary commercial selenium rectifiers. Full details of Vac-u-Sel rectifier performance are given on opposite page.

GENERAL (%) ELECTRIC

NEW RCA TRANSISTOR RCA-2N104 (FOR LOW-POWER AF SERVICE)

Hermetically sealed type for low-power af service . . . features extreme stability and excellent uniformity of characteristics— initially and during life.

This new germanium alloy-junction transistor (p-n-p) type is intended for low-power af service. It utilizes an insulated metal envelope and a lineotetrar 3-pin base. Maximum noise factor—only 12 db. The design of the 2N104 features low base-lead resistance which minimizes ohmic losses, improves frequency response, and insures high inputcircuit efficiency. In a common-emitter circuit, the 2N104 has a collection-to-base current amplification ratio of 44, a matchedimpedance, low-frequency power gain of 40 db, and a collector-to-emitter alpha frequency cutoff of 700 kc.

NEW RCA MULTIPLIER PHOTOTUBES (FOR HEADLIGHT DIMMER SERVICE)

Having instantaneous response to light, RCA-6328 and 6472 are your answer for "roadproved" multiplier phototubes that meet the exacting timing requirements of headlight control. Both tubes have high luminous sensitivity—for operation with amplifiers of relatively low input impedance. Both combine stability with long life. Identical in characteristics to the 6328, RCA-6472 is built with flexible leads—for use in printed circuits.

NEW RCA STORAGE TUBE (FOR COMPUTER SYSTEMS)

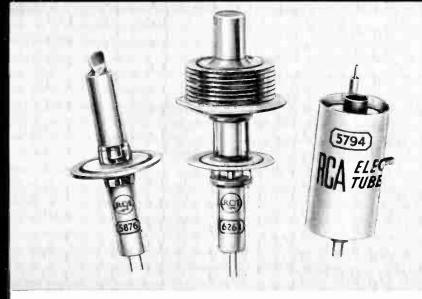
Designed especially for use in binarydigital computer systems, this 3-inch storage tube is of the single-beam type. has electrostatic focus and deflection, and employs "redistribution writing" and "capacitance-discharge reading". Outstanding design features of the tube include: a storage surface having relatively uniform secondary emission to prevent "bad spots" on which information can not be stored; a focused beam having an exceptionally small effective area including the fringe of low-density beam current and a well-defined boundary; and a separate external connection for the collector to permit flexibility in circuit operation.

A CONTRACTOR OF CONTRACTOR OF

YOUR CHOICE OF COMPUTER TUBES RCA-5915, 5963, 5964, 5965, 6197, 6211... Dependable performance, a must in computer apphcations, is accomplished in these six RCA tubes—by using production controls correlated with typical electronic computer conditions. RCA computer tubes feature controlted cutoff for switching applications, low-grid current for applications, applications, low-grid grid resistance, high zero-bias plate current, special cathode material to minimize interface, and low-leakage.

RCA HIGH-VOLTAGE THYRATRON (FOR DC POWER CONTROL AND LOAD-CIRCUIT PROTECTION)

Having a negative control characteristic, this highvoltage 3-electrode, merculy-vapor thyratron is primarily designed for dc power-control applications, but is also useful in load-circuit protection. For example, in power-control application, three RCA-5563-A's in a half-wave, 3-phase circuit can handle up to 45 kw—at a dc output voltage up to about 9500 volts. Six of these tubes in a series, 3-phase circuit can handle up to 143 kw at a dc output voltage up to 19,000 volts (approx.). In protection applications, the 5563-A may be operated as a grid controlled rectifier to remove the dc load voltage by blocking action of the grid, or as an electronic switch across the rectifier output for instant removal of the load voltage in case of a load fault.


ELECTRON TUBES — SEMICONDUCTOR DEVICES — BATTERIES — TEST EQUIPMENT — ELECTRONIC COMPONENTS

RCA SMALL-SIZED UHF **POWER TUBES**

Well-suited for fixed and mobile uhf applications up to 470 mc, these unique twin beam power tubes offer designers unusual advantages-as balanced push-pull rf power amplifiers of frequency triplers. RCA-6524 delivers approx. 20 watts (ICAS) in push-pull class C amplifier service-at 462 mc! Max. plate dissipation. 25 w (ICAS). RCA-5894 delivers approx 55 watts (CCS) at 470 mc. Max. plate dissipation: 40 watts (CCS).

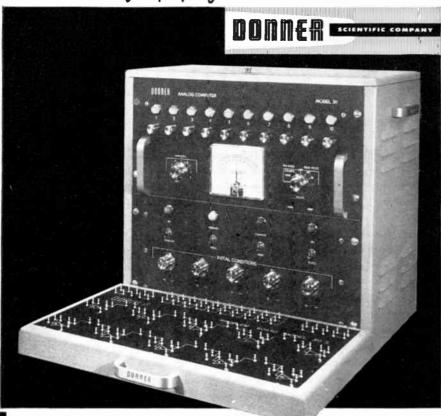


RCA "PENCIL" TUBES FOR UHF

Available in a choice of types for uhf applications, RCA "Pencil Tubes" are designed to have minimum transit time, low lead inductance, and low interelectrode sapacitances. Features include small size, light weight, low heater wattage, and good thermal stability. RCA-6263 with external plate radiator is intended for rf power amplifier and oscillator services, 6264 is like the 6263 but is wellsuited for frequency-multiplier service. Additional RCA "Pencil Tubes" include 5674, 5794, 5876, 6173.

For technical information, write-specifying tube types in which you are interested-te RCA, Commercial Engineering, Section D35R Harrison, N.J., or call your RCA Representative:

EAST	_HUmboldt 5-3900 744 Brood St. Nework, N. J.
MIDWEST	WHitehall 4-2900 589 E. Illinais St. Chicaga 11, Ill.
WEST	—MAdison 9-3671 420 S. Son Pedro St. Los Angeles 13, Colif.


NEW 5" PROJECTION KINESCOPE (FOR CLOSED-CIRCUIT INDUSTRIAL TV)

Providing a clear, bright, projected picture about eight feet by six feet when used with a suitable reflective optical system, the RCA-5AZP4 is especially useful for closed circuit. industrial TV. Contributing to the brightness of the "auditorium-size" picture of high-efficiency, aluminized screen having very good color stability under varying conditions of screen current, and an unusually high operating ultor voltage (40,000 volts max.) for a tube of this type.

PROCEEDINGS OF THE I.R.E. April, 1955 UBE DIVISION

HARRISON, N. J.

A new source of high performance instrumentation!

analog computer MODEL 30 (with one 30-3 problem boord os illustroted) (with one 30-3 problem boord os illustroted)

Here is a compact, economically priced analog computer designed for service as a personal tool of the engineer, mathematician, and scientist. Model 30 computers make electronic computation economically possible wherever differential equations are used. Typical applications include analysis and synthesis of physical systems and simulation of transfer characteristics. Flexibility and economy make the computer ideal for instructional use in schools and colleges and for individual use of the industrial scientist.

eatures

A "Slide Rule" versatility and simplicity anyone who can translate physical problems into corresponding differential equations can use the Model 30... even without specialized knowledge of electronics.

^B Accuracy of solutions to better than 1% is determined by the precision of components selected

Two types of inexpensive plug-in problem boards . Model 30-3 with solder terminals for components . . . Model 30-4 with plug-in connectors for components. D Ten stable, high gain, single pentode D.C. amplifiers.

Five isolated power supplies to set initial condition voltages.

PHYSICAL SPECIFICATIONS

Computer—height 19", width 21", depth 12", weight 75 lbs. Problem Boards—height 2", width 21", depth 13".

Write for technical bulletin#301-A

(Continued from page 8A)

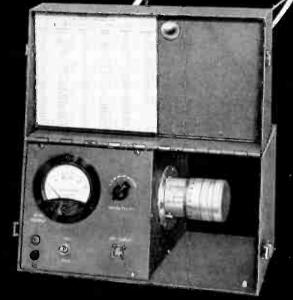
duction of television receivers during 1954 was at the second highest point on record. Over 7.3 million TV sets and 10.4 million radios were produced during the year. Total television set production was reported as 7,346,715 units during the year, compared with 7,215,827 sets manufactured in 1953 and 7,463,800 TV receivers turned out during the record year, 1950. The radio production for 1954 was reported as 10,400,530 units compared with 13,368,556 receivers manufactured a year earlier.

MOBILIZATION

The first of four former Liberty ships to be converted by the Navy to ocean radar station ships will be commissioned on February 1 at the Naval Shipyard, Norfolk, Va. The ships will be employed in the continental air defense system. The conversion work primarily involved the installation of bulkheads which created spaces to accommodate communication and electronics equipment, as well as providing additional berthing and messing facilities for the crews. The electronics equipment includes air and surface search radar. Also being installed is a combat information center for evaluating radar information and controlling action of U.S. fighter aircraft against enemy targets, the Navy said.

TECHNICAL

The National Bureau of Standards has announced the publication of a new circular which describes its Central Radio Propagation Laboratory's facilities atop Cheyenne Mountain, Colo., and gives sample results of the tropospheric propagation research carried out there. The circular, "Chevenne Mountain Tropospheric Propagation Experiments," prepared by A. P. Barsis, J. W. Herbstreit and K. O. Hornberg, is available from the Government Printing Office, Washington 25, D. C., for 30 cents per copy. The announcement stated that the mountain site was established for use in studies of tropospheric radio-wave propagation in the VHF and UHF region of the radio spectrum. These facilities include highpower, continuous-wave transmitters on five frequencies, from 92 to 1046 mc. In the circular the new theory of tropospheric propagation, embodying the Booker-Gordon scattering principles as extended by Staras, is related to the measurements. . . . Men of medicine and industry met recently to discuss how the newest communications medium, color television, can best be used in medical education and also the diagnosis and treatment of disease during a symposium held Jan. 17-19 under the sponsorship of the Armed Forces Institute of Pathology. The climax of the three day meeting was the performance of an operation which brought pathologists from different cities together for consultation. Four closed circuit television presentations were received at the (Continued on page 24A)


WHEN WRITING TO ADVERTISERS PLEASE MENTION - PROCEEDINGS OF THE L.R.E.

Styroflex Coaxial Cable

has many applications in the communication field!

COMPLETELY **SELF-CONTAINED** FIELD TEST INSTRUMENTS

by FREQUENCY Standards

These precision-built field test instruments were designed by Frequency Standards to provide rapid and accurate means of frequency measurement in the field. Frequency is determined by means of a micrometer dial. This reading is translated to frequency by accurate individual calibration charts or curves. Transducers, fittings, and cables can be supplied to meet the requirements of customers and convenient storage space for these items is provided in the lid of the instruments.

UEMEL

	A A A
- All And	ài M

MODEL	FREQUENCY RANG	E ACCURACY
912-4	900-1200 MC	.01%
1217-4	1200-1700 MC	.02%
1723-4	1700-2300 MC	.02%
2335-4	2300-3500 MC	.02%
3545-4	3500-4500 MC	.01%
4458-4	4400-5800 MC	.01%
5882-4	5800-8200 MC	.01%

SPECIAL CAVITYDESIGNS

Frequency Standards maintains complete facilities for the design and manufacture of Reference Cavities, Preselector Cavities, and Filters to customers' specifications or blueprints. Our facilities also permit quantity production of complex wavequide assemblies.

Address inquiries to **BOX 504**

ILLUSTRATED **BULLETINS** SENT ON REQUEST

WHEN WRITING TO ADVERTISERS PLEASE MENTION - PROCEEDINGS OF THE L.R.E.

Frequency Standards

ASBURY PARK, NEW

GERMANIUM GOLD BONDED DIODES SILICON JUNCTION DIODES

in the new

Ϋ́

PSI DIODE PACKAGE

.750

130"

265

CLIP-IN UNIT 020" LEADS ATTACHED CO-AXIALLY

SUBMINIATURE UNIT WITH .020" CO-AXIAL LEADS

SUBMINIATURE UNIT WITH .020" RADIAL LEADS

15

PSI's revolutionary new package, with advantages not found in any other commercially available diodes, was designed only after an exhapstive survey of user requirements. Space limitations, environmental demands, even assembly procedures became factors in the final design. The result: diodes with demonstrably superior performance, greater versatility, top all-around utility.

CHECK THESE FEATURES...

1. VERSATILE LEAD ABRANGEMENT... for maximum adaptability, diodes may be obtained in a variety of configurations.

2. GLASS-TO-METAL SEAL ... for posi-tive moisture resistance, PSI uses a true fusion seal.

3. WELDED CONSTRUCTION . . . for greater strength and freedom from contamination; no low melting point solders are used.

and your net benefit from all these features ...

NEW STANDARDS OF RELIABILITY AND STABILITY

Typical PSI Gold	Bonded Diode Chara	cteristics @ 25°C		
Forward Current @ 1v (ma)	Inverse Current (µa)	Inverse Working Voltage (volts)		
100	100 (-20v)	35		
35	10 (50v)	80		

25 (-50v) 200 (-200v) Typical PSI Silicon Junction Diode Characteristics

220

Typical for officer subscene store officer							
Es/Et	Forward Current	Back Current					
(volts)	@ 1v (ma)	at 25°C	at 150°C				
30/29	80	.01µa (–15v)	5µa (–15v)				
55/53	40	.01µa (-30v)	5µa (30v)				
150/145	15	.01µa (-75v)	5µa (75v)				
300/290	5	.01µa (-150v)	5µa (-150v)				
-							

a: The saturation voltage (Es) is measured at 500 μa_i the transition voltage (Et) is measured at 20 μa_i b: Recovery time: after switching from 5ma forward current to 2/2Es for all these types, back resistance reaches or exceeds 50K in 1 $\mu sec.$

(Pat. Pending) -.075"

1

2

3

For complete product specifications, application data and quo-tations, address inquiries to Dept. S-12.

PACIFIC

SEMICONDUCTORS, INC.

10451 WEST JEFFERSON BOULEVARD CULVER CITY, CALIFORNIA

RAYTHEON TRANSISTORS MILLIONS O :風

RAYTHEON IS FIRST AND FOREMOST IN

- mass production. Raytheon is long past the experiment and development stage in Germanium PNP Junction Transistors — for over 2 years has had the quantity production and quality control techniques and resources

proved reliability in commercial application, based on billions of hours of actual field performance and a record of success exceeding that of many reliable vacuum tubes

- ronge of characteristics. Look at the chart. You'll find one or more Raytheon Transistors that meet your specific requirements, how ever exacting.

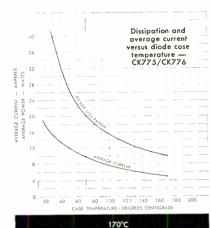
LOW FREQUENCY TRANSISTORS - PLASTIC CASE										
Түре	Collector		Emitter	Base	Base	Max.	Alpha	Max.	Temp.	
	Volts	Nieg. ohms	Cutoff µA	МА	ohms	Current Ampl. Factor	Noise Factor db	Freq. Cutoff mc.	Junction Temp. °C	Rise °C/mW
CK721 CK722 CK725 CK727	$-6 \\ -6 \\ -6 \\ -1.5$	2.0 2.0 2.0 1.0	6 6 6	-1.0 -1.0 -1.0 -0.5	700 350 1500 700	45 22 90 45	22 25 20 12	0.8 0.6 1.2 0.8	70 70 70 70	0.25 0.25 0.25 0.25 0.25

	LC	OW FREG	UENCY	TRANSI	STORS	- HERME	TICALLY	SEALED I	CASB	
Түре		Collector		Emitter	Base	Base	Max.	Alpha	Max.	Temp.
	Volts	Meg. ohms	Cutoff µA	МА	ohms	Current Amp'. Factor	Noise Factor db	Freq. Cutoff mc.	Junction Temp. °C	Rise °C/mW
2N63 2N64 2N65 2N106	$ \begin{array}{r} -6 \\ -6 \\ -1.5 \end{array} $	2.0 2.0 2.0 1.0	6 6 6	-1.0 -1.0 -1.0 -0.5	350 700 1500 700	22 45 90 45	25 22 20 12	0.6 0.8 1.2 0.8	85 85 85 85	0.58 0.58 0.58 0.58 0.58
100			- (ean)	1174	122	Ser /	Mar.	1-	Sal	THE

HIGH EREQUENCY HEDMETICAL

									U VEREL				
TYPE	Coll	ector	Emitter	Extrin.	Base	Alpha	Max.	Temp.	Coll.		ain		Decay time*
	Volts	Cutoff سA	MA	Base Resis. ohms	Current Ampl. Factor	Freq. Cutoff mc.	Junc. Temp. °C	Rise °C/mW	Capac. μμf	at 455kc db	at 2 mc db	μsecs	μsecs
CK760 CK761	-6 -6	1 1	-1.0 -1.0	75 7 5	40 45	5 10	85 85	0.62 0.62	14 14	32 33	18 20	0. <mark>05</mark> 0.04	0.06 0.05
CK762	-6	1 measured i	— 1.0	75 h will be suo	65 olied on requi	20	85 Note :	0.62	14	33	22	0.02	0.03

There are more - several times more **RAYTHEON TRANSISTORS** in use than all other makes combined


World Radio History

April, 1955

Raytheon presents a new and more efficient

SILICON POWER RECTIFIER

with 95 to 99% EFFICIENCY

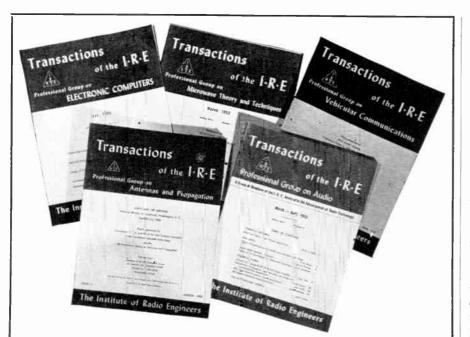
HIGH CURRENT-to 15A HIGH VOLTAGE RATINGS HIGH TEMPERATURE-175°C

ACTUAL SIZE

HERMETICALLY SEALED

MECHANICALLY STABLE

REDUCED COOLING REQUIRED


EXTENDED FREQUENCY RANGE better than 100kc

TYPE CK775	MAXIMUM RMS VOLTS	VOLTAGE PEAK VOLTS	MAXIMUM PEAK AMPERES	CURRENT AVERAGE AMPERES	TYPICAL DISSIPATION WATTS
CASE TEMP. 30°C* CASE TEMP. 170°C*	40 40	60 60	50 15	15 5	40 10
NO HEAT RADIATOR AMBIENT TEMP. 25°C AMBIENT TEMP. 170°C	40 40	60 60	6 2.0	2.0 0.5	3.0 2.0
TYPE CK776					
CASE TEMP. 30°C* CASE TEMP. 170°C*	125 125	200 200	50 15	15 5	40 10
NO HEAT RADIATOR AMBIENT TEMP. 25°C AMBIENT TEMP. 170°C	125 125	200 200	6 2.0	2.0 0.5	3.0 2.0
*maintained by external heat radiator	ADDI	TIONAL RATIN	GS (25°C)		
Be	CK775 has maxin	num reverse curren	lrap at 5 amperes of 1. t at –60 valts af 25 m t at –200 valts af 25 m	A	RAYTHEO

For application information write or call the Home Office or: 4935 West Fullerton Avenue, Chicago 39, Illinois, NABonai 2-2770 589 Fifth Avenue, New York 17, New York, PLaza 9-3900 622 South Lo Brea Ave., Los Angeles 36, California, WEbster 8-2851

RAYTHEON MAKES ALL THESE:

RELIABLE SUBMINIATURE AND MINIATURE TUBES - SEMICONDUCTOR DIDDES AND TRANSISTORS - NUCLEONIC TUBES - MICROWAVE TUBES - RECEIVING AND PICTURE TUBES

At least one of your interests is now served by one of IRE's 23 Professional Groups

Each group publishes its own specialized papers in its *Transactions*, some annually, and some bi-monthly. The larger groups have organized local Chapters, and they also sponsor technical sessions at IRE Conventions.

Medical Electronics (G 18) Microwave Theory and Techniques (G 17) Nuclear Science (G 5) I'roduct:on Techniques (G 22) Reliability and Quality Control (G 7)	Fee e e e e e e e e e e e e e e e e e e	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
I'roduction Techniques (G 22) Reliability and Quality Control (G 7) Telemetry & Remote Control (G 10) Ultrasonics Engineering (G 20)	Fee Fee Fee Fee	\$1 \$2 \$1 \$2
Vehicular Communications (G 6)	Fee	\$2

IRE Professional Groups are only open to those who are already members of the IRE. Copies of Professional Group Transactions are available to non-members at three times the cost-price to group members.

The Institute of Radio Engineers 1 East 79th Street, New York 21, N.Y.

USE THIS COUPON
Miss Emily Sirjane
PG-4-55
IRE—1 East 79th St., New York 21, N.Y.
Please enroll me for these IRE Professional Groups
.....\$
Name
Address
Place
Please enclose remittance with this order.

Professional Group on Microwave Theory and Techniques

The history of radio communications has been marked by continual, relentless progress toward the upper reaches of the frequency spectrum. By the early 1940's services which utilized frequencies as high as 150 mc were coming into quite general use, and considerable experimental work was going on in the uhf and microwave portions of the spectrum.

World War II and the advent of radar gave a tremendous boost to this upward climb through the frequency domain, so that today the microwave field has blossomed to a position of prominence—almost predominance—in the radio engineering art.

On March 7, 1952 this thriving field of activity received another important boost when the IRE formed a Professional Group on Microwave Theory and Techniques. For the first time, this important branch of the field was provided with its own organization for channeling and spreading vital, specialized knowledge to its own members and for stimulating a planned program of service tailored to the needs of the field. The value of the services being performed by the Group is attested to by the fact that more than 1600 engineers have joined and paid the modest \$2 assessment fee.

The most important service provided by the Group is its TRANS-ACTIONS, which is issued quarterly to all Group members. In addition, special issues of TRANS-ACTIONS are published occasionally in order to give members the complete proceedings of important conferences which are held in the microwave and related fields.

The Group has also been very active in sponsoring conferences throughout the year. In addition, local meetings are held by Chapters of the Group in Albuquerque, Baltimore, Boston, Buffalo, Chicago, Long Island, and Philadelphia.

If the activities of the PGMTT are not history-making they are assuredly history-changing, for already these activities have altered the course and speed of progress in this field.

W. R. G. Baker

Chairman, Professional Groups Committee

WHEN WRITING TO ADVERTISERS PLEASE MENTION - PROCEEDINGS OF THE L.R.E.

ENVIRONMENT* CONTROL

is an important part of

QUALITY CONTROL

in the manufacture of all

RAYTHEON RELIABLE SUBMINIATURE TUBES

HOSPITAL-CLEAN conditions minimize danger of contamination from air borne lint or dust particles that might lead to catastrophic tube failures.

* ENVIRONMENT Control at Raytheon involves:

in pressurized mount

assembly and parts

- filtered intake air
- humidity control
- temperature control / manufacturing areas
- lintless clothing for personnel
- "air lock" room entrance chambers
- restricted movement of personnel
- elimination of lint-producing paper work
- elimination of "lint-traps" through deliberate employment of smooth floors, walls, ceilings and work area surfaces
- restricted material flow
- daily vacuum cleaning of area and of containers

Long, flat press, glass to metal seals with in-line leads are used in Raytheon Reliable Subminiatures. This means:

- no buttons to crack
- reduced glass strain
- no lead burning or corrosion
 easier socketing
- easier wiring
- superior adaptability to printed circuits
- extra insurance against
- catastrophic glass failures

-hp- 608D VHF Signal Generator

New premium-quality performance

Wide range, direct calibration

Residual FM less than 1 kc

Drift less than 0.005%

High power output

All types of modulation

Presenting...

-hp- 608C VHF Signal Generator

Models 608D and 608C are designed to be the best commercial instruments of their type, and to set new standards of VHF generator convenience, applicability and performance. They are the redesigned and improved successors to over 3,000 *-bp*-608A/B VHF generators now in use throughout the world.

The premium quality -hp- 608D

-*hp*- 608D is the ultimate in VHF signal generators. It offers the highest stability attained in production equipment of its type. There is almost complete absence of incidental FM or frequency drift. There is a calibrated output from 0.1 μ v to 0.5 v throughout the frequency range, 10 to 420 mc. A built-in crystal calibrator provides a frequency check accurate within 0.01% every 5 mc throughout range.

These unique advantages are made possible in large part by new master oscillator, intermediate and output amplifier circuit design. Other features to improve stability include a regulated filament supply, a new variable condenser design and a completely new coil turret and circuit housing. The result is the most convenient, accurate and effective instrument available for testing and aligning VHF aircraft communications and other receivers having extreme selectivity.

The all-purpose -hp- 608C

The -bp- 608C is a high power, stable and accurate VHF signal generator for general laboratory and field use. Employing a master oscillator-power amplifier circuit, -bp- 608C offers 1 v maximum power and a broad frequency coverage of 10 to 480 mc. The instrument provides outstanding convenience for measuring gain, sensitivity. selectivity and image rejection of receivers, IF

COMPLETE COVERAGE

HEWLETT-PACKARD

two completely new

SIGNAL GENERATORS

amplifiers, broad band amplifiers and other VHF equipment. Its 1 v output is more than sufficient to drive bridges, slotted lines, transmission lines, antennas, filter networks and other circuits.

Outstanding features in both

Both -hp- 608D and 608C have broadest possible modulation capabilities. There is AM modulation to 80%, and flat response 20 cps to 1 mc which provides high quality internal and external pulse modulation. RF leakage is negligible, and sensitivity measurements to 0.1 μ v are possible. Internal impedance is 50 ohms constant, and VSWR is a maximum of 1.2.

Both instruments also feature new mechanical design and quality construction throughout. New aluminum castings and

cabinets reduce weight. Circuitry is particularly clean and accessible. Dial, condenser and turret drives are ball-bearing. Variable condensers are specially manufactured by *-hp-* and feature electrically welded Invar low temperature steel plates to minimize drift. Sealed transformers are used throughout, and construction is militarized.

Data subject to change without notice. Prices f.o.b. factory WRITE FOR COMPLETE DATA

HEWLETT-PACKARD COMPANY

3099D Page Mill Road • Palo Alto, California, U.S.A. SALES AND ENGINEERING REPRESENTATIVES THROUGHOUT THE WORLD

-hp- 608D VHF Signal Generator

Frequency Ronge: 10 to 420 mc, 5 bands.
Colibration Accuracy: ±0.5% full range.
Resettability: Better than ±0.1% after warm-up.

- **Crystal Calibrator:** Frequency check points every 5 mc through range. Headphone jack for audio frequency output.
- Frequency Drift: Less than 0.005% over 15 minute interval after warm-up.
- Output Level: 0.1 µv to 0.5 v into 50-ohm load. Attenuator dial calibrated in v and dbm. (0 dbm equals 1 mw in 50 ohms.)
- Voltage Accuracy: ±1 db full range.
 Generator Impedance: 50 ohms, maximum VSWR 1.2.
- Modulation Fercentage: 0 to 80% indicated by meter.

Envelope Distortion: Less than 2.5% at 30% sine wave modulation.

SPECIFICATIONS =

- Internal Modulation: 400 cps $\pm 10\%$ and 1,000 cps $\pm 10\%$.
- External Modulation: 0 to 80%, 20 cps to 100 kc. For RF output above 100 mc, 0 to 30% to 1 mc.
- External Pulse Modulation: 10 v peak pulse required. Good pulse shape at 1 µsec.
- Residual FM: Less than 1,000 cycles at 30% AM for RF output frequencies above 100 mc. Less than 0.001% below 100 mc.
- Leakage: Negligible; permits sensitivity measurements to 0.1 microvolt.
- Filament Regulation: Provides highest possible oscillator and amplifier stability for line voltage change.
- **Power:** 115/230 volts ±10%, 50/1,000 cps. Approx. 150 watts.

Size: 13%" wide x 16" high x 201/2" deep.
Weight: 70 lbs. Shipping weight. approx. 100 lbs.

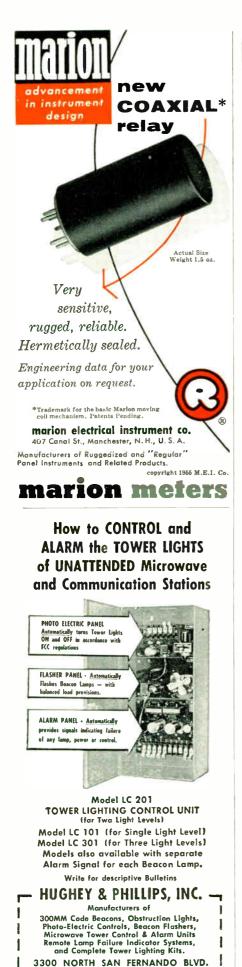
Price: \$1050.00.

-hp- 608C VHF Signal Generator Same as -bp- 608D, except:

Frequency Range: 10 to 480 mc, 5 bands. Crystal Calibrator: In Model 608D only.

- Frequency Drift: Less than ±0.01% over 10 minute interval after warm-up.
- Output Level: $0.1 \ \mu v$ to $1.0 \ v$.

COMPLETE


COVERAGE

Residual FM: Less than 0.0025% at 30% amplitude modulation for RF output frequencies 21 to 480 mc.

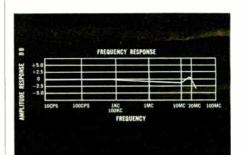
Filament Regulation: In Model 608D only. Price: \$950.00.

INSTRUMENTS

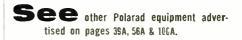
BURBANK, CALIF.

Industrial Engineering Notes

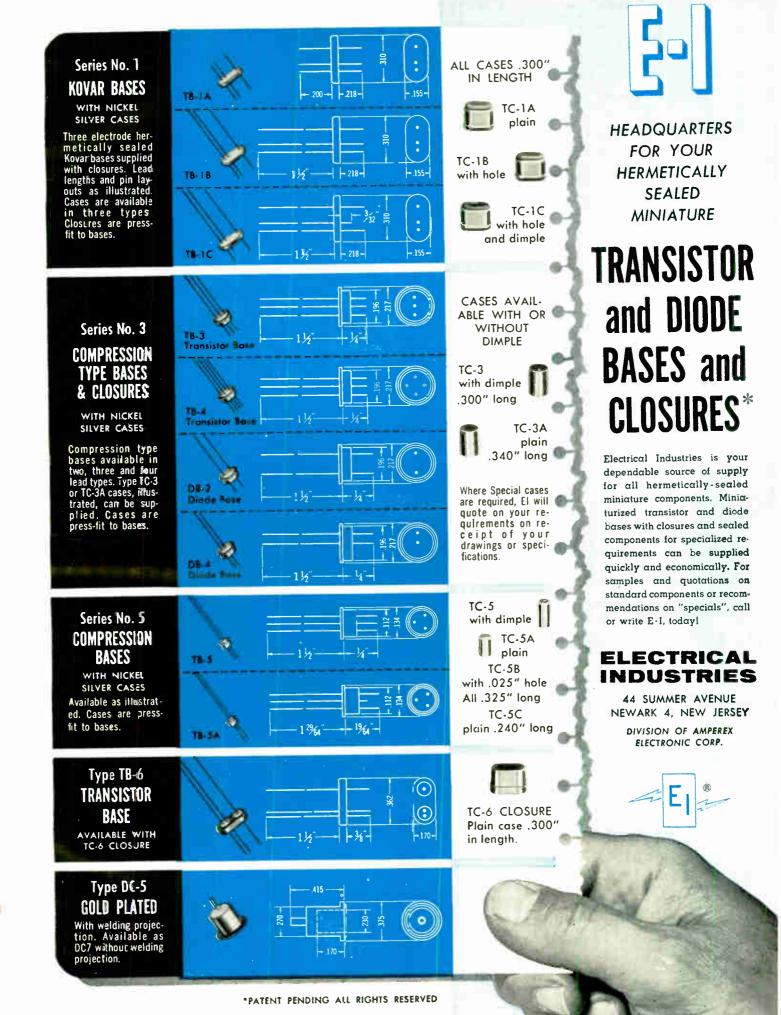
Institute from the hospital of the University of Pennsylvania, from studios in Baltimore, and from the National Naval Medical Center at Bethesda, Md. The Television Committee of the Armed Forces Institute of Pathology announced the names of some of the participants in the meetings. Included among the communications experts were Dr. A. N. Goldsmith, Chief Consultant for RCA; Dr. Peter C. Goldmark. Vice-President, Columbia Broadcasting System Laboratories; Edward W. Allen, Chief Engineer of the FCC; Dr. Axel G. Jensen, Director of Televion Research of the Bell Telephone Laboratories, and Maj. Gen. G. I. Back, the Army's Chief Signal Officer. . . . A large reduction in engineering time and costs for selecting proper components to be used in electronic equipment is claimed for a mechanized system for storing and searching engineering data, the Office of Technical Services, Commerce Department, has announced. Details of this system, entitled the "Electronic Component Information Center (ECIC)," are contained in a research report recently made available to industry by the OTS. This report of research, by Battelle Memorial Institute under an Air Force contract, describes the elements of a machine-sorted punchedcard system for recording, searching and tabulating data on an electronic component. Its importance is pointed up by the fact that proper selection of the most reliable and effective components is often the most costly and difficult step in the development of complex electronic systems. Complete details on the new system are available from the Office of Technical Services, Commerce Department, Washington 25, D. C., for \$4.25 each and should be ordered by number (PB 111548).... The Atomic Energy Commission ... released 21 additional patents, including six in the electronics field. Non-exclusive, rovalty-free licenses on the listed patents, as part of its program to make non-secret technological information available for use by industry, will be granted by the commission. Commission-held patents and patent applications released for licensing now total 747. Applicants for licenses should apply to the Chief, Patent Branch, Office of the General Counsel, U. S. Atomic Energy Commission, Washington 25, D. C., identifying the subject matter by patent number and title. The following six patents of interest to the electronics industry were released: High-Voltage Bushing, 2,692,297; Pulse Analyzer, 2,694,146; Electrostatic Amplifier, 2,696,530; Dual Circuit Electrical Safety Device, 2,696,-539; Radio Electric Generator, 2,696,564, and Ion Source, 2,697,788.... The Office of Technical Services, Commerce Department, has listed studies in the field of electronics in its December-January issues of the "Bibliography of Technical Reports." The following governmentsponsored research reports may be purchased from the Photoduplication Section, Library of Congress, Washington 25, D. C. "Basic Methods for the Calibration of (Continued on page 29A)


WIDE BAND VIDEO Amplifier

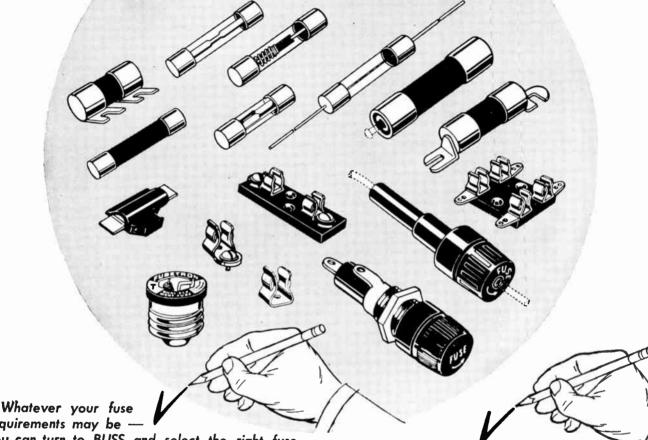
10 cps to 20 mc


An oscilloscope deflection amplifier for measuring and analyzing pulses! Extremely wide band with extended low frequency response down to 10 cps. Will accurately analyze television signals. Excellent to increase the amplitude range of your vacuum tube voltmeters and signal generators.

MODEL VT



The Polarad Wide Band Video Amplifier offers an extremely wide band coverage: flat within $\pm 1\frac{1}{2}$ db from 10 cycles to 20 megacycles per second. It has a time delay of 0.02 microseconds and assures extreme stability because of its associated electronically regulated unit. A low capacity input probe is provided.

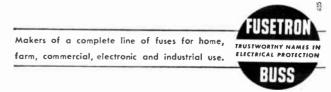


43-20 34th STREET • LONG ISLAND CITY 1, N. Y. Representatives in all principal cities.

YOU CAN SAVE TIME AND TROUBLE **BY STANDARDIZING ON BUSS FUSES!**

requirements may be you can turn to BUSS and select the right fuse for the job.

The complete BUSS line includes fuses in any size from 1/500 up, plus a companion line of fuse clips, blocks and holders.


You'll find that relying on this one, dependable source for fuses helps to simplify your buying, stock handling and records - and results in profit-saving efficiency.

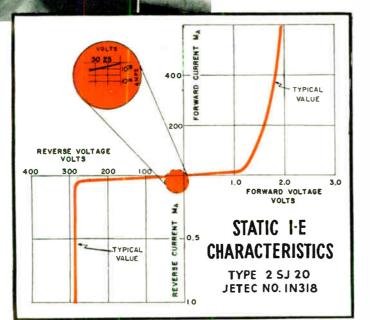
Every BUSS fuse is electronically tested to assure "trouble-free" protection.

To make sure that BUSS fuses will operate properly under all service conditions - every BUSS fuse normally used by the Electronic Industries is electronically tested. A sensitive device automatically rejects any fuse not correctly calibrated, properly constructed and right in all physical dimensions.

If you should have a special problem in electrical protection . . . the world's largest fuse research laboratory and its staff of engineers are at your service - backed by over 40 years of experience. Whenever possible, the fuse selected will be available in local wholesalers' stocks, so that your device can be easily serviced.

For more information on BUSS and Fusetron small dimension fuses and fuse holders ... Write for bulletin SFB.

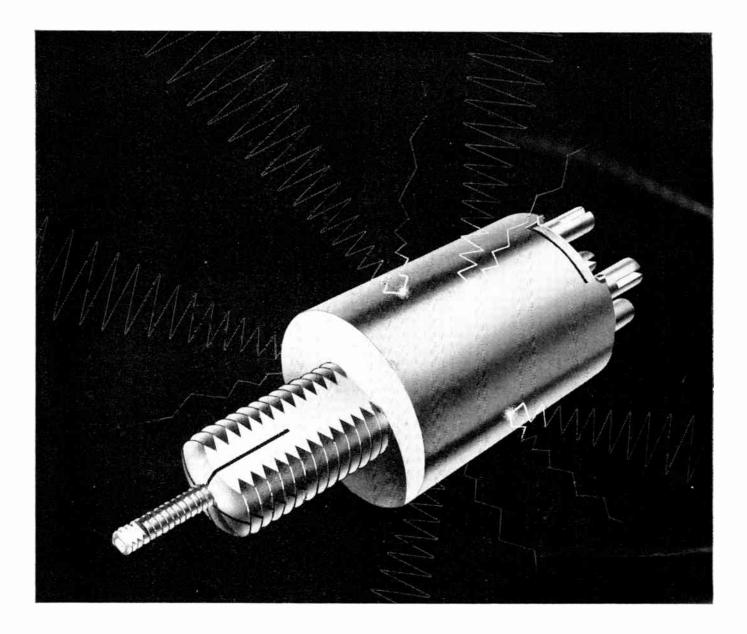
BUSSMANN MFG. CO. (Div of McGraw Electric Co.) University at Jefferson, St. Louis 7, Mo.


An Important Announcement to Industry. SILICON POWER RECTIFIERS AVAILABLE FOR THE FIRST TIME IN PRODUCTION QUANTITIES

★ These units are ideally suited for aircraft and guided missile requirements. Other typical applications that can benefit from their superior characteristics are power rectifiers in commercial equipment, magnetic amplifiers, clipping, meter protection and counter circuits. Anxiety over temperatures is completely eliminated when they are used in digital computers. Automation and control engineering suggest additional fields.

Performance:

- 1. Rectification Efficiency Over 99%
- 2. Forward Voltage Drops Averaging 1.5 Volts at 200 MA
- 3. Peak Inverse Voltages to 1,000 Volts
- 4. Operates Continuously up to 200°C.
- 5. Leakage Current as Low as 10-10 amperes
- 6. Rectification Ratios as High as 10°
- 7. Practically Flat Zener Characteristics


Jetec No.	TYPE	Forward Drop @ 200 MA	Forward Current Continuous	Power Current Peak	Peak Invers
IN 316	25J5	2V Mox	200 MA	2A	50V
IN 317	25J10	2V Mox	200 MA	2A	100V
IN 318	25J20	2V Mox	200 MA	2A	2007
IN 319	25J30	2V Mox	200 MA	2A	350V
IN 320	25,150	2∀ Mox	200 MA	2A	500V

Characteristics:

- **1. HIGHEST EFFICIENCY**
- 2. HIGH CURRENT
- 3. HIGH VOLTAGE
- 4. HIGH AMBIENT OPERATION
- 5. HERMETICALLY SEALED
- 6. SMALL IN SIZE
- 7. LIGHT IN WEIGHT
- 8. RUGGED ALL WELDED
- 9. LOW FORWARD DROP
- **10. LOW LEAKAGE**

Write for fully illustrated and informative Bulletin SR-18-3

Built for close "combat" in tight spots

Into the construction of this coil form goes C.T.C.'s rigid *quality control* to highest production standards.

The result is another C.T.C. first — a miniaturized coil form (1/16'') diameter by 1/2'' high when mounted) that is shock-resistant and exceptionally rugged — shielded against radiation, electrically, and therefore ideal for "close quarter" use in I.F. strips and numerous designs where adjacent mounting is necessary. C.T.C.'s policy of continuous step-

C.T.C.'s policy of continuous stepby-step quality control in the manufacture of every component means guaranteed performance. Already certified materials are doubly checked before manufacture.

Whatever your component need let C.T.C. solve your problem — with either custom or standard designs of *quality-controlled*, *guaranteed* components — including insulated terminals, coil forms, coils, swagers, terminal boards, diode clips, capacitors and a wide variety of hardware items.

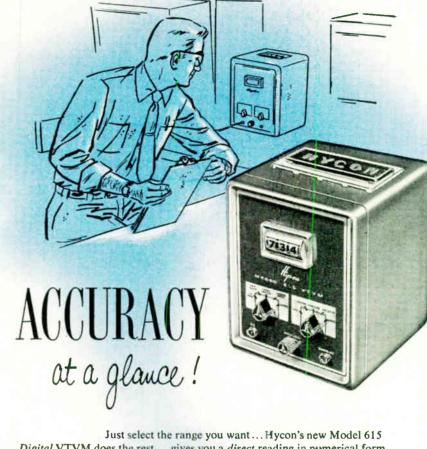
Put your component problem up to

C.T.C. now. For samples, specifications and prices — write today to Sales Engineering Dept., Cambridge Thermionic Corporation, 456 Concord Ave., Cambridge, Mass. On West Coast, contact E. V. Roberts, 5068 West Washington Blvd., Los Angeles 16 or 988 Market St., San Francisco, California.

Coil Form Data: C.T.C.'s I.S.-9 coil form has a brass shell enclosing a powdered-iron cup-core, tuning slug, phenolic coil form and silicone fibreglas terminal board. Three terminal boards are available with choice of two, three or four terminal layout. Forms, unassembled, may be had without windwigs ..., or wound and assembled to your specifications.

Capacitor: New CST-50 variable ceramic capacitor surpasses range of capacitors many times its size. Stands only ¹⁵/₂₀⁺ high when mounted, is less than ¹⁴/₄⁻ in diameter and has an 8-32 thread mounting stud. A tunable element of unusual design practically eliminates losses due to air dielectric giving large minimum to maximum capacity range (1.5 to 12MMFD).

makers of guaranteed electronic components, custom or standard


WHEN WRITING TO ADVERTISERS PLEASE MENTION - PROCEEDINGS OF THE L.R.E.

April, 1955

(Continued from page 24A)

Sonar Equipment," PB 115485, microfilm, \$4; enlargement print, \$12.75. "Development of Harmonic Mode Crystals, Final Report," PB 115059, microfilm, \$4; photocopy, \$11.50, "Diffraction of Pulses by a Circular Cylinder," PB 115215, microfilm, \$2.75; photocopy, \$6.50. "Dual-Channel Rotary Joint for 3300 mc," PB 115441, microfilm, \$1.50; photocopy, \$1.50. "Electronic Structure of Solids. H: The Perturbed Periodic Lattice," PB 115261, microfilm, \$4; photocopy, \$11.50. "IFF Antenna for Mounting on the Wing of a TBM Torpedo Bomber," PB 104816, microfilm, \$2; photocopy, \$2.75. "Interaction of Electrons and R-F Fields. Technical Report No. 1," PB 115243, microfilm, \$2.50; photocopy, \$5.25. "Recommended Designations of Radar Indicator Types," PB 110303, microfilm, \$1.50; photocopy, \$1.50. "Theory of Electromagnetic Corrections to Geometrical Optics," PB 115227, microfilm, \$1.50; photocopy, \$1.50. "Research Services and Investigations on Subminiature Multielement Diodes and Bistable Elements for Microtronic Circuit," PB 115274, microfilm, \$2.50; photocopy, \$5.25. "Services, Facilities and Materials Required for Research and Development of Accurate Fixed, Nonwire-Wound Resistors, Final Progress Report," PB 115407, microfilm, \$4.75; photocopy, \$14. "Studies and Investigations of a 100 Watt CW X-band Klystron," PB 115585, microfilm, \$3.25; photocopy, \$9. "Research on Electromagnetic Reflections from Surfaces of Complex Shape," PB 115547, microfilm, \$2; photocopy, \$2.75. "Propagation of Plane Electromagnetic Waves Past a Shoreline," PB 115630, microfilm, \$3.25; photocopy, \$9. "Reflection and Transmission of Electromagnetic Waves by a Spherical Shell," PB 115629, microfilm, \$2; photocopy, \$2.75. "Multiple Scattering of Radiation," PB 115643, microfilm, \$3.75; photocopy, \$10.25. "Mechanical Resonant Scanner, PB 115605, microfilm, \$2.25; photocopy, \$4. "Microwave Research," PB 115618, microfilm, \$2.25; photocopy, \$4. "Addi-tion Theorems for Spherical Waves," PB 115650, microfilm, \$2.25; photocopy, \$4. "Characteristics of Ridge Waveguide. Space Charge Effects in Reflex Klystrons,* PB 110058, microfilm, \$2; photocopy, \$2.75. "Diffraction of Electromagnetic Waves by a Plane Wire Grating, II," PB 115647, microfilm, \$2; photocopy, \$2.75. "Diffraction of an Arbitrary Pulse by a Wedge," PB 115649, microfilm, \$2.25; photocopy. \$4. "Linear Ordinary Differential Operators of the Second Order," PB 115648, microfilm, \$2.25; photocopy, \$4. "Maxwell's Equations in Spherically Symmetric Media," PB 115636, microfilm, \$2.25; photocopy, \$4. "On the Scattering Effect of a Rough Plane Surface," PB 115646, microfilm, \$2; photocopy, \$2.75. "Electronic Cursor for AN/APS-15," PB 106688, microfilm, \$2; photocopy, \$2.75. "Intermodulation Distortion in Mixers," PB 115589, microfilm, \$2.50; photocopy, \$5.25. "New Ring Counter for Junction Transistors and Vacuum Tubes," PB 115588, microfilm, \$2.25; photocopy, \$4.

Just select the range you want ... Hycon's new Model 615 Digital VTVM does the rest... gives you a *direct* reading in numerical form, complete with decimal point and polarity sign. There's no interpolation, no chance of reading the wrong scale. Even inexperienced personnel find the Model 615 easy to use... you just *can't* read it incorrectly !

Ideal for both laboratory and production-line testing, here's what the Model 615 offers... ...1% accuracy on DC and ohms; 2% on AC

... 12 ranges... 0 to 1000 volts DC and AC; 0 to 10 megohms
 ... Illuminated 3-digit scale, with decimal point and polarity sign
 ... Response (with auxiliary probes) to 250 mc
 ... Shielded case; rugged, bench-stacking design; lightweight
 Two more Hycon test instruments... designed for tomorrow's

circuitry...ready jor color TV...

See these Hycon instruments ... all in matching, benchstacking cases ... at your local electronic jobber. MODEL 617 3" OSCILLOSCOPE... Accurate enough for research, rugged enough for servicing. Features high deflection sensitivity (.01 v/in rms); 4.5 mc vertical bandpass, flat ±1 db; internal 5% calibrating voltage. SPECIAL FLAT 3" CRT FOR UNDISTORTED TRACE FROM EDGE TO EDGE.

MODEL 614 VTVM

Maximum convenience combined with unprecedented low cost, Plus features include: 21 ranges (28 with p-p scales); 5½" meter; 3% accuracy on DC and ohms, 5% on AC; response (with auxiliary probe) to 250 mc. TEST PROBES STOW IN CASE, READY TO USE.

2961 EAST COLORADO STREET PASADENA 8, CALIFORNIA

"Where accuracy counts"

BASIC ELECTRONIC RESEARCH • ORDNANCE • AERIAL CAMERAS • ELECTRONIC SYSTEMS ELECTRONIC TEST INSTRUMENTS • GO NO-GO MISSILE TEST SYSTEMS • AERIAL SURVEYS

STACKPOLE Fixed **RESISTORS**

. . . dependable, easy-to-solder molded Stackpole ¹/2⁻, 1- and 2-watt resistors not only meet exacting Diackpole 1/2", 1, and 2-wall resistors not only meet exacting performance standards, but save assembly time thanks to their MIL-R-11A TYPES -- in styles RC20, RC30, RC31, and RC42 available. Write for data on all MIL

types.

STACKPOLE Variable **RESISTOR**

with versatile switching

Single, gauged and concentric shaft dual types in smallest sizes consistent with real dependability offer long, and trouble-free performance for today's requirements. Gold plated "ring spring" contactors assure low noise level. A complete array of unique midget line switches offers practically any desired switching arrangement, with types for both civilian and military use.

... A dependable source of reliable components for over 30 years

STACKPOLE Composition CAPACITORS

Cost-saving, low-value, fixed types

Originated by Stackpole, these tiny units not only represent the simplest, most inexpensive capacitor design yet produced - but likewise have characteristics that make them more desirable than larger, more costly capacitors for many uses. 47 standard types, 0.1 to 10.0 mmf. Write for Stackpole GA Capacitor Bulletin.

Tab-mounting Bakelite shaft control

Just right for rear-of-chassis or concealed front panel controls in TV receivers , . . especially in high voltage circuits. Measures only 0.894" in diameter, yet handles a full .5-watt. Write for data on Stackpole Type LR-6.

AVAILABLE THROUGH PARTS DISTRIBU-TORS! For name of nearest distributor stocking Stackpole resistors, switches and "EE" iron cores write: Distributors' Division, Stackpole Carbon Co., 26 Rittenhouse Place, Ardmore, Pa.

Ceramag[®] CORES (Ferromagnetic)

for real uniformity! Wherever ferromagnetic cores are used, Stackpole Ceramag Cores have set the quality standards. But proved superiority in Ceramag Cores nave set the quality standards. But proved superiority in essential characteristics is only part of the story. Even more important is the essential characteristics is only part of the story. Even more important is the fact that Stackpole Ceramag core characteristics are maintained with remarkfact that Stackpore Ceramag core characteristics are maintained with remark-able uniformity regardless of size, shape or production quantity. The sample able unitormity regardless of size, shape or production quantity. The sample matches your specification "on the nose" and each production unit is exactly matches your specification on the nose —and each production unit is exactly like the sample! Write for Ceramag Bulletin RC-9A including details on avail.

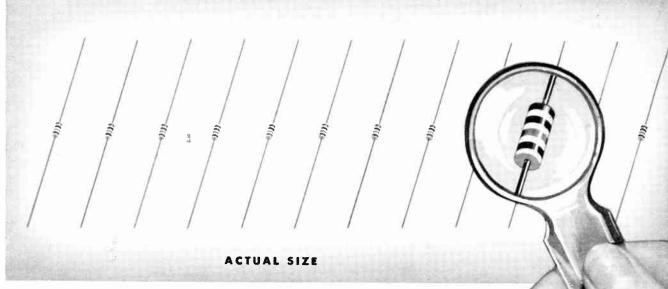
STACKPOLE Molded COIL FORMS

Cut Assembly Costs!

Reduce coil sizes and cut assembly costs with simplified point-to-point wiring and fewer soldered connections. Over 35 new types available in phenolic, iron, or phenolic with iron center sections. Axial or "hairpin" leads. Write for complete specifications on all types.

STACKPOLE Slide SWITCHES

Engineering Samples are proof of the pudding!


STACKPOLE CARBON CO

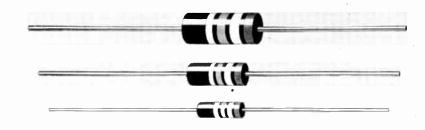
Engineering samples of standard Stackpole components are available to quantity users. Send details of your requirement for recommendation by Stackpole engineers.

... the ecomomy switches of 1001 uses! Over 20 types of these inexpensive little Stackpole slide switches cover just about every mechanical and electrical switching requirement for radio and television equipment, small motors, appliances, electrical toys, instruments, etc. For complete details, write for Stackpole Switch Bulletin RC-9B.

ELECTRONIC COMPONENTS DIVISION STACKPOLE CARBON COMPANY, St. Marys, Pa.

Type TR "tiny" resistors shown in natural size—One unit is magnified to show color-code bands

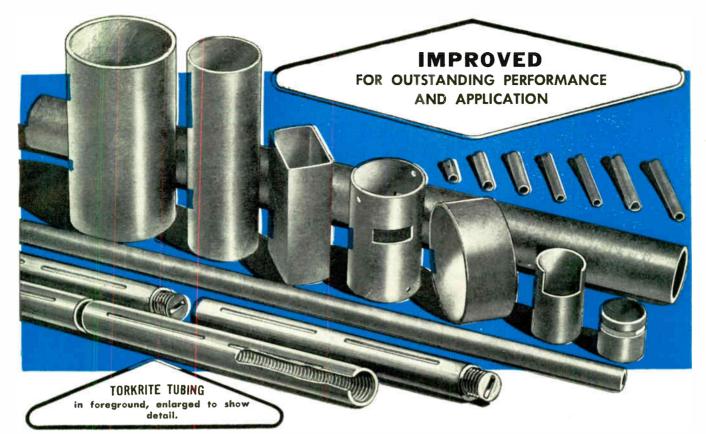
FIXED RESISTORS


Type TR—Length—0.140 in. Diameter—0.067 in. 1/10th Watt—In all RETMA values and tolerances.

For electronic applications, where small size is a major consideration, the new Allen-Bradley Type TR "tiny" resistors are the ideal answer. While these 1/10th watt, miniaturized resistors are extremely small in size, they are a QUALITY product in construction and performance.

Because of their low noise level, they are especially suited for hearing aids and compact, portable receivers. Type TR resistors have an insulating coating which affords a conservative insulation strength of 200 volts DC for continuous operation. These tiny resistors can be supplied in all standard RETMA, JAN-R-11A, and MIL-R-11A resistance values from 10.0 ohms to 22.0 megohms, inclusive in 5%, 10%, and 20% tolerances. If you build miniaturized electronic equipment, take advantage of Allen-Bradley Type TR QUALITY resistors.

The Sign of QUALITY



Allen-Bradley Types HB (2-watt), GB (1-watt), and EB ($\frac{1}{2}$ -watt) solid molded fixed resistors are shown actual size in the above illustration.

Allen-Bradley Co., 114 W. Greenfield Ave., Milwaukee 4, Wis. • In Canada—Allen-Bradley Canada Limited, Galt, Ont.

ALLEN-BRADLEY RADIO, ELECTRONIC AND TELEVISION COMPONENTS

WHEN WRITING TO ADVERTISERS PLEASE MENTION - PROCEEDINGS OF THE L.R.E.

* * *

TORKRITE POSSESSES MANY ADVANTAGES

Torkrite affords unmatched recycling ability. After a maximum diameter core has been recycled in a given form a reasonable number of times, a minimum diameter core can be inserted and measured at 1" oz. approximately.

Torkrite has no hole or perforation through the tube wall. This eliminates the possibility of cement leakage locking the core or cores.

Torkrite permits use of lower torque as it is completely free of stripping pressure.

With Torkrite, torque does not increase after winding, as the heavier wall acts to prevent collapse and core bind.

Improved new Torkrite is now available in various diameter tubes. Lengths from 3/4" to 3 1/8" are made to fit 8-32, 10-32, 1/4-28 and 5/16-24 cores.

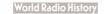
* * *

WRITE for your copy of our new CLEVELITE folder

CLEVELITE LAMINATED PAPER BASE PHENOLIC TUBING

In seven specific grades, Clevelite is one of the finest and most complete lines of tubing available to the electronic and electrical industries.

Grade	Application
Grade E	Improved post-cure fabrication and stapling
Grade EX	
Grade EE	Improved general purpose
Grade EEX	Superior electrical and moisture absorption properties
Grade EEE	Critical electrical and high voltage application
Grade XAX	Special grade for government phenolic specifications
Grade SLF	Special for very thin wall tubing having less than
	.010 wall


High performance factors, uniformity and inherent ability to hold to close tolerances, make Clevelite outstanding for Coil Forms, Collars, Bushings, Spacers and Cores. Competent Research and Engineering facilities are always available to aid in solving those tough and stubborn design and fabrication problems. May we help you?

Fast, Dependable Delivery at all times.

WHY PAY MORE? For Good Quality . . . call CLEVELAND!

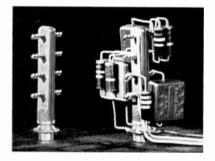
*Reg. U. S. Pat. Off.

April 1955

RUE

Servo Systems Brochure

Feedback Controls, Inc., 1332 N. Henry St., Alexandria, Va., has available a detailed and illustrated brochure describing their complete line of servos and associated equipment. It is a standardized system of units, adaptable to many problems,


Casting Resin

A two-part casting resin which is easy to use and requires no additional catalyst is announced by **Emerson & Cuming, Inc.**, 869 Washington St., Canton, Mass.

Stycast 2340M has excellent electrical and mechanical properties. Warming the two components to about 125°F facilitates mixing and pouring the material which curves to a tack-free, brown, opaque, resin which is tough, and flexible. Its adhesion to metals, plastics, glass, etc. is also good. Stycast 2340M may be machined and is usable over a temperature range of -100°F to ± 400 °F without loss of physical or electrical properties.

Component Mount

A new component mounting post called the Tote-m-pole has been developed by **Sangamo Electric Co.,** Springfield, Ill., to improve the "bug resistance" of model and production wiring in government and industrial gear. It provides ideal mounting support for small components such as resistors, capacitors, diodes and transistors at their operating point. Critical leads to grid suppressor resistors, for example, can be reduced to pigtails.

The device assists the engineer to get near optimum component density and point-to-point wiring. Fewer leads, cables and soldered joints are necessary. Users report as much as 5 feet of wire saved by each Tote-m-pole. Ventilation of parts mounted with this wiring aid is excellent. A melamine pole gives it its low tracking, heat-resistant properties. Post illustrated has 5 resistors and 4 capacitors attached.

The Tote-m-pole mounts with a single chassis drill hole. It can be reused many times for model mock-up or component replacement. It is adapted to jig wiring practices whether the jig is of cardboard for design study or a production type. These manufacturers have invited PRO-CEEDINGS readers to write for literature and further technical information. Please mention your I.R.E. affiliation.

Interference-Field Intensity Meter

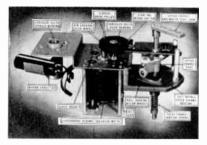
The NM-30A radio interference-field intensity meter developed by **Stoddart Aircraft Radio Co., Inc.**, 6644 Santa Monica Blvd., Hollywood 38, Calif., is a precision made equipment for the accurate measurement of field intensities of signals and rf disturbances within the frequency range of 20 to 400 mc.

Radio signals or interference, either radiated or conducted, may be measured through the use of accessories which are available for the equipment. Sine wave, pulsed rf, impulsive and random noise may be readily measured. Average, quasi-peak or peak values of complex waveforms can be selected. The NM-30A may also be used as a two-terminal frequency selective voltmeter.

Field intensity surveys, antenna radiation pattern studies and interference location and measurement are but a few of the many uses of the versatile NM-30A.

The NM-30A operates from either 105 to 125 volts or 210 to 250 volts ac, single phase, at any frequency between 50 and 1,000 cps.

Miniature Actuator Motor


American Electronic Mfg., Inc., Instrument Div., American Electronics, Inc., 9503 W. Jefferson Blvd., Culver City, Calif., is now in production on a small actuator motor measuring 1.705 inches od $\times 2$ 9/16 inches long.

The motor operates on 400 cps. It is excited with 115 v on the fixed phase and 24 v on the control phase. Torque at stall is 2.9 inch/ounces with a power factor at stall torque of 50 per cent. No load speed is 5,100 rpm. Temperature range: -55° C to 90°C. Weight is 13.7 ounces. Additional data is available from the manufacturer.

Three-Speed Turntable

Gates Radio Co., Quincy, Ill., has a new three-speed turntable for continuous broadcast duty.


All three speeds, plus motor starting, are controlled by one-flip-type lever.

Speed change mechanism by the use of ball-bearing nylon wheels on a diagonal aluminum casting, running against a cast bronze cam, provides smooth, quiet operation for all three speeds. Increased torque is developed through a synchronous motor that operates the drive arrangement. It is claimed that the timing is exceedingly accurate and slippage practically eliminated. Three diameters on the motor shaft engage with the neoprene idler wheel which in turn drives inside platter rim.

Recession in center of platter with large spindle accommodates 45 RPM records and eliminates the necessity for spindle change for $33\frac{1}{3}$ and 78 recordings. Size of cabinet is $29\frac{1}{2} \times 21\frac{1}{4} \times 21\frac{1}{4}$ inches.

Relay

Available in 1 to 5 amperes contact ratings, and in contact combinations from SPST to 6 PDT, the new relay, announced by the Advance Electric & Relay Co., 2435 N. Naomi St., Burbank, Calif., offers a maximum sensitivity of 15 milliwatts per pole in the dpdt combination. This is an optimum combination, withstanding 10 G's vibration from 10 to 500 cps. When power is increased to 40 milliwatts per pole, vibration resistance rises to 30 G's. Sensitivity and vibration resistance decrease as additional contact combinations are added with the same amount of power.

Friction-creating hinge pins are eliminated, and the use of a beryllium copper armature retaining spring insures positive contact between armature and pivot point at all times.

Cross-bar palladium-type contacts are (Continued on page 36.4)

For maximum resistance in minimum space!

NEW Lollypop Precision Resistor Davohm Type 1273

It's no trick at all with Daven's unique and extremely small size resistor to achieve ease of mounting in new printed circuit and transistor assemblies. The trick is **inside** this tiny unit ... it's a completely new specialized winding technique developed by Daven, which enables them to use extremely fine sizes of resistance wire to obtain two or three times the resistance value that was previously supplied on a bobbin of this size.

You can't lick Daven's new wire-wound Lollypop

Only 1/4" in diameter by 5/16" long, yet is available in values as high as 400,000 ohms:

* Fully encapsulated

- Exceeds all humidity, salt water immersion and cycling tests as specified in ML R-93A, Amendment 2
- Operates at 125 C-portinuous power without: de-rating
- Can be obtained in tolerances as close as = .02%
- Standard temperature coefficient is 20 PFM/°C.
 Special coefficients can be supplied on request

Below are other miniature encapsulated Daven resistors part of the largest selection of precision wire-wound resistors available:

	Туре 1250	Type 1170	Type 1195
Max. Ohms	450K	2 Meg.	760K
Dia.	1 4	1/2	1/4
Lengta	1/2	1/2	3/4
Max. Watts	1, 8	1/3	1/4

All Daven resistors can be operated at 125°C continuous power without de-rating.

WORLD'S

LARGEST

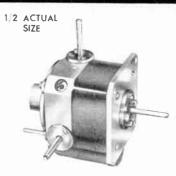
191 Central Avenue, Newark 4, New Jersey

M A N U F A C T U R E R World Radio History

Type 1250

0 F

Resistor


Туре 1195

Write for complete resistor catalog.

Type 1170

TWO NEW KEARFOTT COMPUTER COMPONENTS

MINIATURE MECHANICAL RESOLVER

An extremely compact unit measuring only 1 15/16" high, 1 3/4" wide and 2 1/8" long. It combines the functions of a ball and disc integrator and a spherical resolver. Will integrate the sine and cosine functions of an angle or resolve a vector displacement into its horizontal and vertical components.

INTEGRATING FILTER

Used to integrate a voltage signal from a specified minimum integration period to one approaching an infinite period of time. Available for DC to AC or AC to AC applications. These units eliminate harmonic and quadrature voltages to the servo motor driving a tachometer generator. Permits the use of a low gain, non-critical amplifier by effectively providing infinite gain.

DIMENSIONS: AC-AC Filter 1.437" diam. x 2.484" long. DC-AC Filter 1.969" diam. x 2.938" long.

1/2 ACTUAL SIZE

The close attention to details that has made Kearfott one of the leading producers of servo system components goes into the design and production of these devices. Detailed descriptions sent on request.

KEARFOTT COMPONENTS INCLUDE:

Gyros, Servo Motors, Synchros, Servo and Magnetic Amplifiers, Tachometer Generators, Hermetic Rotary Seals, Aircraft Navigational Systems, and other high accuracy mechanical, electricol and electronic components.

ENGINEERS:

Many opportunities in the above fields are open—please write for details today.

A SUBSIDIARY OF GENERAL PRECISION EQUIPMENT CORPORATION

KEARFOTT COMPANY, INC., LITTLE FALLS, N. J.

Soles and Engineering Offices: 1378 Moin Avenue, Clifton, N. J. Midwest Office: 188 W. Randolph Street, Chicago, Ill. South Centrol Office: 6115 Denton Drive, Dollas, Texas West Coast Office: 253 N. Vinedo Avenue, Pasadeno, Colif.

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your I.R.E. affiliation.

(Continued from page 31.4)

.

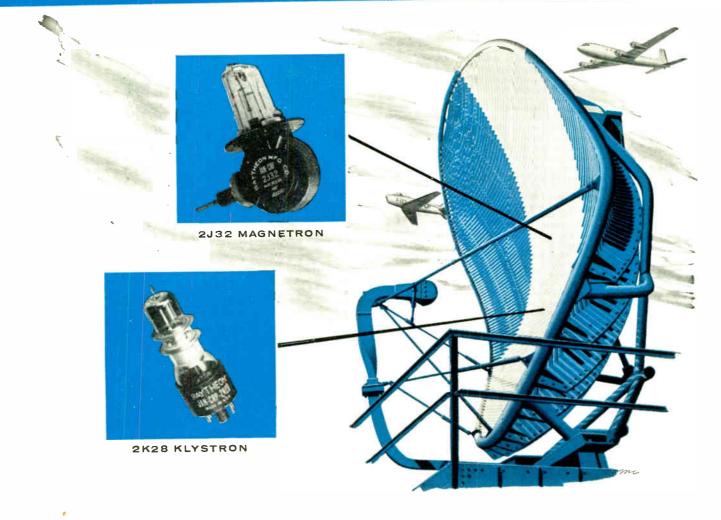
always properly aligned. A long nylon bobbin, fastened to the frame and core assembly by means of a snap-ring, permits the selection of many types of wire insulation, and allows, in addition, the winding of any type of coil including multiple and matched windings. The unit is insulated with Silicon glass, Kel-F, or Teflon tubing. Movable blades are actuated by ceramic bumpers, with nylon or linen-base bakelite optional.

The SQ withstands the Signal Corps tumbling tests and shock for mechanical damage in excess of 200 G's with operating characteristics unimpaired.

Arbor Listing

Precision Paper Tube Corp., 2035 W. Charleston St., Chicago 47, Ill., has published a new arbor list. It contains specifications on over 2,000 coil forms in all shapes, sizes, id's and od's.

Miniature Relays



Pacific Relays, Inc., 6819 Melrose Ave., Los Angeles 38, Calif., announces the new subminiature "CPL" series of miniature relays. It is designed for application where size, sensitivity and low and high temperature are a major factor. These units are hermetically sealed and are 3 inch×18 inch×13 inches and weigh 1 ounce. It is available to spdt (CPL-1) and in dpdt (CPL-2), contacting ratings to 5 amperes resistive at 28 vdc 115 vac or 3 amperes inductive. Temperature range is 55° to +125°, Vibration-15 G's through 500 cps, Shock-50 G's. Operational life is in excess of 1 million cycles under 1 ampere resistive load. For further information, write to the manufacturer.

(Continued on page 121.4)

Kearfott

Raytheon – World's Largest Manufacturer of Magnetrons and Klystrons

HELPING ESTABLISH RELIABILITY RECORDS

Raytheon Magnetrons and Klystrons in proved Gilfillan ASR-1 Radar

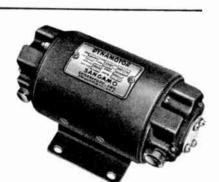
Civil Aeronautics Administration reports record-breaking reliability of Gilfillan airport surveillance radar. Boston International Airport had 8,760 hours continuous performance with only 7½ hours involuntary outage—less than ½0 of 1%—from their Gilfillan installation.

Condensed Typical Operating Data							
	Power Output	Frequency Range, mc	Reflactor Voltage	Resonator Voltage	Maximum Temp. Coef.	Tuning	Cavity
2K28	140 mw	1200- 3750	—140 v. to — 300 v.	300 v.	±.15	Mech. Inductive	Ext.
	Power Output	Frequency Range, mc	Anode kv	Anode Amps.	Pulse Width	P.R.R.	
2]32	285 kw min.	2780- 2820 Fixed freq.	20	30	1 µsec	1,000	

Check these performance records of Raytheon tubes in the Gilfillan ASR-1. Average life, 2J32 Magnetron: 4,000 hours. Average life, 2K28 Klystron: 2,500 hours.

Your microwave and radar equipment offers extra reliability when you specify Raytheon Magnetrons and Klystrons. Use these rugged, reliable tubes in your present and proposed systems. Contact Power Tube Sales to take advantage of Raytheon's Application Engineer Service, without obligation. Write for free Tube Data Booklets.

RAYTHEON MANUFACTURING COMPANY, Microwave and Power Tube Operations, Section PL-19, Waltham 54, Massachusetts


WE ARE CONVINCED -

that Gothard Converters, Dynamotors, Motor-Generators, Gen-erators and special DC Motors have been engineered to the finest standards of any on the market.

SANGAMO DC to AC **ROTARY CONVERTERS** 50 or 60 cycles, 115 or 230 volts AC from available DC supply of 6, 12, 24, 28, 32, 48, 64, 115 or 230 volts.

SANGAMO DC to DC DYNAMOTORS

Series "S" - Military Series "G" - Commercial and Mobile Input voltages 6 to 115 volts Output voltages to 750 volts

Special Motor-Generators, Generators,

Etc.

GENERATORS, INC.

takes over!

Yes, after testing and retesting by our own engineers - careful analysis of Gothard engineering reports - and most important, investigating the degree of satisfaction that these products are capable of providing to you, the user - we decided this line is truly worthy of the name Sangamo. We will continue this line in larger quantities and greater varieties under the new corporate name of Sangamo Generators, Inc. Now you will receive the added advantage of Sangamo service, backed by the engineering and manufacturing experience and reputation of Sangamo Electric Company.

Depend on Sangamo for all your power conversion requirements.

> **Detailed** information is yours for the asking -Write!

Power Conversion Equipment • H.V. Power Supplies Inductive Components • Low-X Resistors


111111 9100 BROADBAND MICROWAVE POWER SIGNALS

300

as fast

as you

can turn the dial

POLARAD Microwave Signal Source

Make microwave measurements rapidly.

No mode charts or slide rule interpolations.

Turn only one dial and read the frequency directly on the dial with assured power output throughout the entire range.

Polarad's automatic tracking mechanism corrects reflector voltages for you as the klystron cavity is being tuned. Frequency accuracy is within 1%.

There are 5 models available, covering the range - 650 to 10,750 mc... each has approximately a 2:1 frequency range with continuous tuning ... power output: 10 to 100 mw ... external modulation: square wave or fm . . . temperature compensated klystron tube.

Polarad Microwave Signal Sources save engineering man hours in the laboratory and in the factory.

Unusual economy and accuracy in making antenna and transmission loss measurements and standing wave determinations in the laboratory-excellent for microwave component testing in the factory. Write for a complete catalog and data today.

MINIMUM POWER AVAILABLE FROM POLARAD SIGNAL SOURCES IN THE RANGE OF 650 TO 10,750 MC

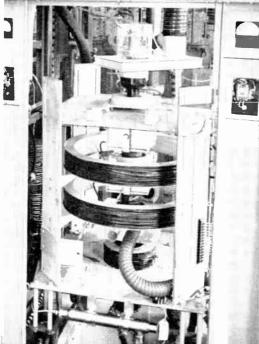
		MODEL	MODEL	MODEL	MODEL	MODEL
		SSR	SSL	SSS	SSM	SSX
FREQUEN	FREQUENCY RANGE		1050-2350MC	2200-4550MC	4350-8250MC	8000-10,750MC
MINIMUM (Low Range		150	80	15	10	13
POWER Available (mw) High Range	400	150	60	70	30	
		100	100	40	15	10

Signal Sources in the range 10,750 to 50,000 mc available on special order.

POLARAD POLARAD ELECTRONICS CORPORATION 43-20 34th STREET, LONG ISLAND CITY 1, N.Y.

REPRESENTATIVES • Albuquerque • Atlanta • Baltimore • Boston • Chicago • Cleveland • Fort Worth • Kansas City • Los Angeles • New York Philadelphia • San Francisco • Seattle • St. Paul • Syracuse • Washington, D. C. • Canada, Arnprior-Export: Rocke International Corporation

PROCEEDINGS OF THE I.R.E. April, 1955



Model KX, Klystran Power Supply, especially designed for Palarad Signal Sources. Works with all 5 madels. Has special 1000 cps square wave output for modulating purposes.

39A

Radio Engineering Laboratories uses Eimac klystrons in high power, beyond-the-horizon communication equipment

Eimac 3K50.000L klystron in klystron section of REL 10kw power amplifier.

EXTENDED RANGE COVERAGE at frequencies previously limited to low power has been achieved in a new high power beyond-the-horizon UHF communication system. Radio Engineering Laboratories designed and manufactured 30 REL type 826 FM radio terminal equipments for a special system employing Eimac high power klystrons in the final amplifier stage. Eimac klystrons were selected not only because of reliability and high power, 10kw/CW power output with a minimum gain of 26 db, but also for their practical design which permits economical transmitter construction and minimizes replacement problems. Completion

of this revolutionary communication system which

CULLOUGH,

 Et En Radio Terminal Amplifier

N

is now in operation confirms that 1) high power, extended range UHF and microwave coverage is practical, and 2) Eimac klystrons are the most efficient, powerful and reliable tubes for the job.

For further information on Eimac high power amplifier klystrons, contact our Technical Services Department.

WHEN WRITING TO ADVERTISERS PLEASE MENTION -- PROCEEDINGS OF THE L.R.E.

employing Eimac klystron has fre-

quency range of 400-1050mc.

The following transfers and admissions were approved to be effective as of February 1, 1955:

Transfer to Senior Member

- Abraham, W. G., Varian Associates, 611 Hansen Way, Palo Alto, Calif.
- Arams, E. R., RCA, Bldg. 55-1, Harrison, N. J.
- Bell, J. F., 618 Meadow Dr., Glenview, Ill.
- Biberman, L. Mr. 703A, Lexington, China Lake, Calif,
- Borders, C. R., 2929 Broadway, New York, N. Y.
- Bristol, T. R., RD 1, Ballston Lake, N. Y.
- Buggy, R. V., 5934 N. Seventh St., Philadelphia, Pa.
- Chelgren, A. E., 576 Fairview Ave., Elmhurst, III. Crothers, H. H., c/o Electrical Engineering Dept., University of Illinois, Urbana, Ill.
- Eannarino, J. M., 610 Highland Ave., Rome, N. Y. Galagan, S., 136 Fessenden St., Newtonville, Mass. Goldstone, L. O., 226-17 Manor Rd., Queens Village, N. Y.
- Hawkins, W. G., 4506 Atwood, Fort Wayne, Ind.
 Hogan, D. L., 12512 Epping Ct., Silver Spring, Md.
 Hoglund, R. H., 1825 E. Lynn St., Seattle, Wash.
 Hutton, W. I., 35 Gilmore Blvd. North, Wappingers
 Falls, N. Y.
- Kahrilas, P. J., 9345 Layola Blvd., Los Angeles, Calif.
- Kirby, T. H., Cow Hill Rd., Mystic, Conn,
- Klawsnik, F., 142 Norwood Ave., Brooklyn, N. Y.
- Lapin, S. P., 1214 W. Jarvis Ave., Chicago, Ill,
- Manning, L. A., 649 Alvarado Row, Stanford, Calif.
- Marion, T. M., 1699 Carling Ave., Ottawa, Ont., Canada
- Mattingly, R. L., Bell Telephone Labs., Whippany, N. J.
- Meek. T. J., Jr., 1001 McLeod Bldg., Edmonton, Alta., Canada
- Meyer, A., 4280 Orchard La., Cincinnati, Ohio Mooney, V. J., 104 Carnation Ave., Florak Pk.,
- L. I., N. Y. Pankove, J. I., RCA Labs., Princeton, N. J.
- Pelc, T., 2775 Delta Ave., Long Beach, Calif.
- Pihl, G. E., 46 Elm, Abington, Mass.
- Powers, A. B., Box 2117, Riverside, Calif.
- St. John, E. E., 4931 W. 122 St., Hawthorne, Calif. Serota, R. M., 1861 Burnette Ave., E. Cleveland,
- Ohio Shankweiler, R. G., Plainsboro Rd., Cranbury,
- N. J.
- Smith, H. M., Electron Tube Lab., Hughes Aircraft Co., Culver City, Calif.
- Smith, M. C., \$12 Inverness Dr., Pasadena, Calif. Ulmer, H. W., 302 N. Clementine St., Oceanside, Calif.
- Whitcraft, W. A., Jr., 60 Division St., Malden, Mass.
- Woodrow, G. V., Jr., 1530 Providence Rd., RD 6, Towson, Md.
- Wroblewski, T., 7 Belgian Rd., Danvers, Mass.

Admission to Senior Member

- Alfven, H., Sweden, Bergsvagen 33, Stockholm 70-Kungl, Tekniska Hogskolan, Sweden
- Alma, G., c/o Bibliotheekcentrale, N. V. Philips' Gloeilampenfabrieken Eindhoven, Holland Arlowe, H. II, 1707 N. 50 St., Seattle, Wash.
- Azgapetian, V., 40 Shelter La., Roslyn Hghts., L. I., N. Y.
- Bennett, B. J., Stanford Research Inst., Stanford, Calif.
- Doehler, O., 21 Bld. de L'Ermitage, Montmorency S.et.O, France
- Edgerton, H. E., 205 School St., Belmont, Mass. England, W. B., 46 Lynwood Dr., Rochester, N. Y. Fleming-Williams, B. C., 18 Grove Ter., Highgate

Rd., London N.W. 5, England

(Continued on page 45A)

PROCEEDINGS OF THE I.R.E. April, 1955

SUPERSEDES 100-1000 MC SLOTTED SECTIONS!

• READS VSWR AND REFLECTION COEFFICIENT ANGLE DIRECTLY

- SMALL AND COMPACT
- . LOW IN COST

The PRD Type 219

Standing Wave Detector is the

small package, low cost solution for

making measurements easily and accurately in

the 100 to 1000 mc/s region. By connecting the

output to a VSWR indicator, such as the PRD

Type 277, VSWR may be read directly on the

indicator meter. No special detection equip-

ment is required. The reflection coefficient

SPECIFICATIONS

Frequency Range: 100 to 1000 mc/s

Residual VSVVR:

Less than 1.05

Accuracy of Reflection Caefficient Angle: Better than ±5°

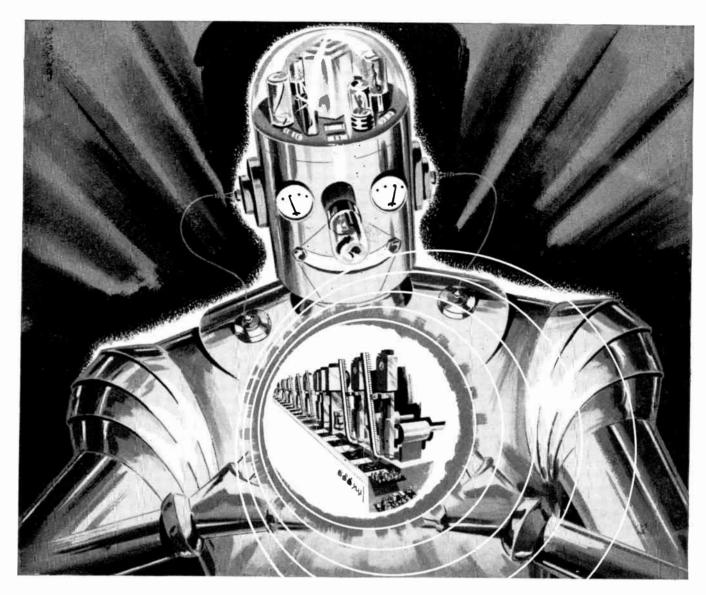
Characteristic Impedance: 50 ohms

Output Terminals:

Type N jack. Other interchangeable connectors

Min, Input Signal: Approx. 1 volt at 100 mc/s, 0.1 volt at 1000 mc/s

Dimensions. **8**" I. x 5" w. x 5³/₄" h. Weight: 4¹/₂ lbs. angle is easily determined merely by rotating the top drum dial to a minimum indication on the meter and reading the angle on the dial directly in electrical degrees. No calculations are required. The probe and crystal detector are self-contained. Usually it is more convenient to work with VSWR and reflection coefficient angle directly instead of with other components of the mea-


sured impedance. When other quantities are also of interest, they can easily be read from a conventional impedance chart. Only \$475 f.o.b. N.Y. Write for PRD Reports, Vol. 3, No. 2, and for 1955 catalog.

202 TILLARY STREET BROOKLYN 1, N. Y. Telephone: ULster 2.6800

1 SO. NORTHWEST HWY., PARK RIDGE, ILL. - TAIcot 3-3174 Western Sales Office: 7411/2 NO. SEWARD ST., HOLLYWOOD 38, CAL. - HO 5-5287

Midwest Sales Office:

Everybody <u>talks</u> about AUTOMATION... Admiral. <u>has it!</u>

Automation, at Admiral, is an established fact . . . fully proved-in-practice on a wholly automatic assembly line which for many months has been producing electronic assemblies at rates up to 5,000 per day.

The importance of automation to the production of military electronic equipment cannot be over-stated. For one thing, automation substantially reduces unit costs . . . makes expendable items less expensive. Automation also guards against error and helps to maintain unwavering quality standards.

The automation equipment now in use was designed, developed and produced by Admiral's own engineering staff. Facilities are available for the production of electronic or electromechanical units in virtually any quantity, large or small. Address inquiries to:

Admiral Corporation

Government Laboratories Division, Chicago 47, Illinois

NOTE: COLOR SOUND FILM on Automation available for showing to technical or business groups. Film runs 9 minutes. Address requests to Public Relations Director, Admiral Corporation, Chicago 47, Ill.

Look to Admiral for

- RESEARCH
- DEVELOPMENT
- PRODUCTION

in the fields of:

COMMUNICATIONS, UHF and VHF, air-borne and ground. MILITARY TELEVISION, receiving and transmitting, air-borne ond ground. RADAR, air-borne, ship and ground. RADIAC • MISSILE GUIDANCE TELEMETERING CODERS and DECODERS DISTANCE MEASURING TEST EQUIPMENT

Send for Brochure ... complete digest of Admiral's experience, equipment and facilities.

ENGINEERS! The wide scope of work in progress at Admiral creates challenging opportunities in the field of your choice. Write to Director of Engineering, Admiral Corporation, Chicago 47, Ill.

WHEN WRITING TO ADVERTISERS PLEASE MENTION - PROCEEDINGS OF THE I.R.E.

IMPORTANT Improvement

 Hermetically Sealed Fansteel Tantalum
 Capacitors are made in 3 sizes,
 29 ratings.

...Fansteel TANTALUM CAPACITORS

Now . . .

Hermetically Sealed for High Temperature Operation

Wider Temperature Range: Continuous operation in ambient temperatures up to 125° C, with working voltage derated to 85_{0}° of nominal. Low temperature limit, -55° C.

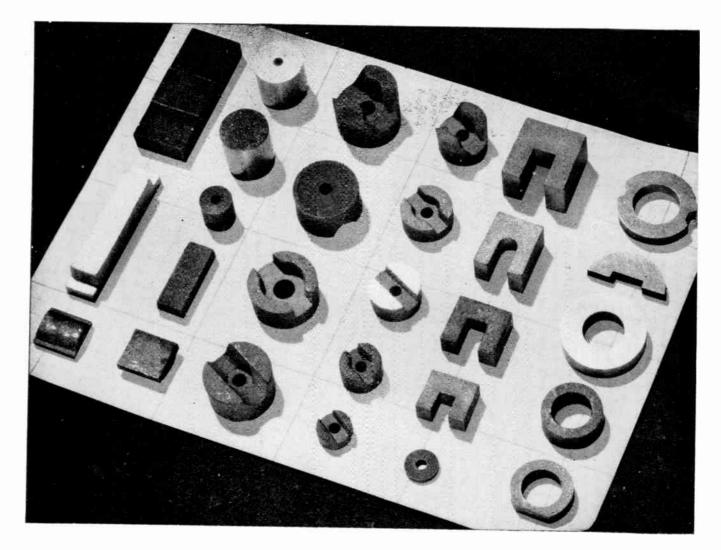
Vastly Improved Leakage Characteristics: Precision construction results in lowest d-c leakage of all tantalum capacitors. Maximum leakage ranges from 1 to 8 microamperes as shown in table.

Closer Capacity Tolerances: All Fansteel Grade 1 Hermetically Sealed Tantalum Capacitors are manufactured to capacity tolerances of -15%, +20%. Grade 2 capacitors, also available, are -15%, +50%.

Rugged Construction: These capacitors have an actual metal to glass hermetic seal. The sturdy, plated steel case is insulated from the capacitor. They have passed rigorous tests for vibration, impact, humidity, reduced barometric pressure and thermal shock.

If your product requires capacitors of long life, small space and exceptionally stable characteristics over a wide temperature range, Fansteel Tantalum Capacitors may be the answer. Engineering samples may be ordered from the list at right. CONDENSED LIST OF AVAILABLE CAPACITORS

	23		
CATALOG NUMBER	CAPACITY MFD.*	WORKING VOLTAGE, D-C	MAXIMUM D-C LEAKAGE ?
PP30H6A1	30	6	1.0
PP25HBA1	25	8	1.0
PP20H10A1	20	10	1.0
PP15H15A1	15	15	1.5
PP10H25A1	10	25	2.0
PP8H30A1	8	30	2.0
PP5H50A1	5	50	3.0
PP4H60A1	4	60	3.0
PP3.5H75A1	3.5	75	3.0
PP2H100C1	2	100	3.0
PP1.75H125C1	1.75	125	3.0
PP140H6A1	140	6	2.0
PP100H10A1	100	10	2.0
PP70H15A1	70	15	3.0
PP40H30A1	40	30	4.0
PP25H50A1	25	50	5.0
PP20H60A1	20	60	5.0
PP15H75A1	15	75	6.0
PP11H100C1	11	100	7.0
PP9H125C1	9	125	7.0
PP325H6A1	325	6	3.0
PP250H10A1	250	10	3.0
PP175H15A1	175	15	4.0
PP100H30A1	100	30	5.0
PP60H50A1	60	50	6.0
PP50H60A1	50	60	6.0
PP40H75A1	40	75	7.0
PP30H100C1	30	100	8.0
PP25H125C1	25	125	8.0


1-15%, +20% at 120cps, 25°C 2 Microamperes, at 25°C

C551

FANSTEEL METALLURGICAL CORPORATION, NORTH CHICAGO, ILLINOIS, U.S.A

PROCEEDINGS OF THE I.R.E. April, 1955

World Radio History

Page-full of ideas for you on Sintered Magnets

Contains handy data on various types of Alnico Magnets, partial lists of stock items, and information on other permanent magnet materials. Also includes valuable technical data on Arnold tapewound cores, powder cores, and types "C" and "E" split cores in various tape gauges and core sizes.

ADDRESS DEPT. P-54

"OFF-THE-SHELF" ITEMS or SPECIAL SHAPES to suit your needs

Magnets of sintered Alnico offer endless opportunities to designers who need their useful combination of self-contained power and small bulk. A wide range of sintered Alnico shapes are carried in stock for quick shipment. Special shapes to meet an individual design need can be developed, where the quantity required is large enough to justify the tooling costs. Arnold sintered permanent magnets are fully quality-controlled and accurately held to specified tolerances. • We'e'll welcome your inquiries.

4

(Continued from page 41A)

- Foster, H. G., 28 Essex St., Strand, London, W.C. 2, England
- Gamache, L. J., Motorola, Inc., 4545 W. Augusta Blvd., Chicago, Ill.
- Geier, L. W., 51 Felch Rd., Natick, Mass.
- Haberstroh, A., 9 Black Horse La., Cohasset, Mass. Hillier, J., RCA Labs., Princeton, N. J.
- Kelly, J. H., 161 W. 16 St., New York, N. Y.
- Keyser, J. H., Jr., 4725 Hampton Rd., La Canada,
- Calif. Lazar, E. F., Sperny Gyroscope Co., Great Neck, L. I., N. Y.
- Masson, F. Y., 340 Cleveland St., Orange, N. J.
- McCord, W. O., Jr., 3405-51 Loop, Sandia Base, Albuquerque, N. Mex.
- Newell, L. T., 6615 Nall Dr., Mission, Kan.
- Newton, L. W., 5 Market St., Nashua, N. H.
- Read, A. H., British Embassy, 3100 Massachusetts Ave., N.W., Washington, D. C.
- Ryerson, C. M., 626 Wayne Ave., Haddonfield, N. J.
- Sinish, R. D., 2723 Indiana Ave., Fort Wayne, Ind.
- Souder, C. W., 2 Sycamore Ave., Glen Cover, L. I., N. Y.
- Welsh, J. P., 544 Lisbon Ave., Buffalo, N. Y.

Zinn, W. H., Box 299, Lemont, Ill.

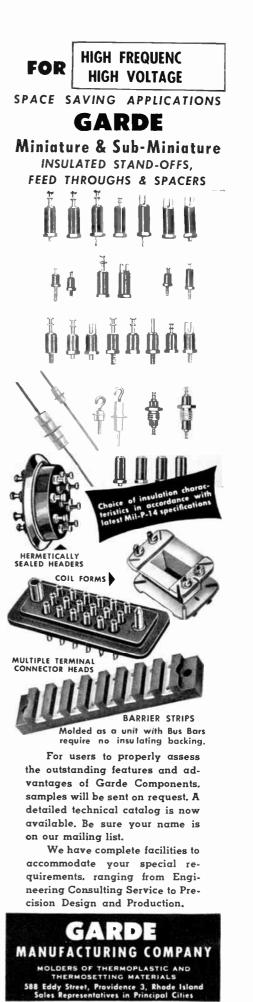
Transfer to Member

- Alrich, J. C., 1268 Sunny Oaks Circle, Altadena, Calif.
- Arnold, J. B., 115 Hillwood Ave., Falls Church, Va.
- Bauer, P. S., Jr., 702 Mattison Ave., Asbury Pk., N. J.
- Benner, B., 930 Huron River Dr., Belleville, Mich. Birch, J. S., 504 Lee St., Seattle, Wash.
- Britton, C. C., Dept. Electrical Engineering, Colorado A & M College, Fort Collins, Col.
- Brown, G. L., 2100 John St., Ponca City, Okla.
- Campbell, R., 6352-49 St., San Diego, Calif.
- Clark, R. G., 1732 Howell, Richland, Wash.
- Cooper, R. E., Jr. 28 E. Bruce Ave., Dayton, Ohio Ehrlich, N., 113 Franklin St., Apt. 7E-1, Morris-
- town, N. J. Eiden, G. E., Farnsworth Electronics Co., Fort
- Wayne, Ind.
- Emmons, A. W., 1308 S. Ridgewood Ave., Daytona Beach, Fla.
- Fredman, N. E., 7871 Clearfield Ave., Van Nuys, Calif.
- Glaser, E. M., 1315 St. Paul St., Baltimore, Md. Graham, N. L. 1811 Fifth Ave., S.E., Cedar Rapids,
- Iowa
- Haber, F., 873 Fairfax Rd., Drexel Hill, Pa.
- Henry, J. L., c/o Sea Lawn Apts., Cocoa Beach, Fla,
- Hymowitz, E. W., Electronics Test (Radar), NATC—Patuxent River, Md. Jones, H., Bumbank, Goosewell Hill, Eggbuckland,
- Plymouth, Devon, England
- Kieshauer, F. W., Apt. C-205, 1420 Pacific Ave., Brackenridge, Pa.
- Krause, C. A., 9332 Glasgow Pl., Los Angeles, Calit.
- Levy, L. G., 53 B Pkway Apts., Haddonfield, N. J. Machtana, L. K., Box 5, Journal, N. V.
- Markham, I. F., Box 5, Jewell, N. Y. Matte, G. W., CASEE-DND (Army), Ottawa,
- Ontario, Canada
- Mitchell, J. L., 1821 W. 144 St., Houston, Tex. Montllor, J. A., 1 Cataract Hollow Rd., Scotch
- Plains, N. J. Morgen, M., 2144-64 St., Brooklyn, N. Y.
- Nelson, J. L., 767 Shoshone Ave., Akron, Ohio
- Norris, P. C., 1337 Forest Glen Dr., Cuyahoga Falls, Ohio
- Owens, D. L., Box 617, Akron, Ohio
- Potter, R. R., Box 16, Dahlgren, Va.
 - (Continued on page 48A)

the **SOLID** impregnant **DURANITE*** Aerovox Type P88N

MOULDED TUBULAR PAPER CAPACITORS

Molded paper tubulars may look alike. But there are differences internally. Duranites are different, because of their solid impregnant, Aerolene, for solidly and permanently imbedded sections. Duranites also feature:


- New molded blue casing—fire-resistant, rugged, permanent and attractive.
- Pigtail leads centered and firmly imbedded. Won't work loose or pull out.
- Exceptional immunity to moisture penetration. Up to 100° C operating temperatures.
- Excellent performance characteristics—Insulation Resistance; Power Factor vs. Temperature; Temperature-Capacitance; etc. Accompanying curves are typical.
- And smaller physical sizes for bigger tubular jobs. Voltage ratings of 200 to 1600 D.C.W.

LITERATURE ON REQUEST:

Get the technical details and compare Duranites with all other molded tubulars. Let us quote on any and all your capacitor requirements.

WHEN WRITING TO ADVERTISERS PLEASE MENTION - PROCEEDINGS OF THE L.R.E.

.....

BROAD-BAND MIXER CRYSTAL

TYPE IN286 covering the frequencies from 10,000 to 22,000 mc

Its broad-band characteristics make the new Sylvania Type IN286 especially useful in tunable radar systems and counter-measure devices. The IN286 is a coaxial, pointcontact silicon crystal diode designed for use as a mixer in the frequency range from 10,000 to 22,000 mc.

RF IMPEDANCE

The RF impedance of the IN286 is designed to match a 65-ohm load over its entire frequency range.

CRYSTAL HOLDERS

A variety of crystal holders may be used with the IN286

- -standard X, K_u, K-band waveguide holders to cover appropriate segments of the band.
- -WR-51 waveguide holder to cover the range from 15,000 to 22,000 mc.
- -WR-75 waveguide holder to cover the frequency range from 10,000 to 15,000 mc.

ACTUAL

SPECIFICATIONS

Conversion Loss	
Output Noise	2.5 times max.
IF Impedance	
	each crystal
8	ubjected to 20 mw (cw)
	at 10.000 mc.

For complete details write to Department D32R

"ANOTHER REASON WHY IT PAYS TO SPECIFY SYLVANIA"

SYLVANIA ELECTRIC PRODUCTS INC. 1740 Broadway, New York 19, N. Y. In Canada: Sylvania Electric (Canada) Ltd., University Tower Bldg., St. Catherine Street, Montreal, P. Q.

LIGHTING • RADIO • ELECTRONICS • TELEVISION • ATOMIC ENERGY

PROCEEDINGS OF THE I.R.E. April, 1955

World Radio History

Туре	Proto- type	Bendix No.	Description	Base And Bulb	Heater Voltage	Plate Voltage	Screen Voltage	Grid Voltage	Gm	Plate Current	Power Output
5992	6V6	TE-8	Beam Power Amplifier	Octal T-9	6.3	250.	250.	12.5	4000	45. MA	3.5 W
•6094	6AQ5 6005	TE-18	Beam Power Amplifier	9-Pin Miniature	6.3	250.	250.	12.5	4500	45. MA	3.5 W
6385	2C51 5670	TE-21	Double Triode	9-Pin Miniature	6.3	150.	-	-2.0	5000	8. MA	-

*Tube Manufactured with Hard (Nonex) Glass for High Temperature Operation (Max. Bulb Temp. 300°C.)

Membershin

(Continued from bage 45A)

Robison, W. C., 309 Ferguson Hall, University of Nebraska, Lincoln, Neb.

Rusnak, M., 5467 Ingleside Ave., Chicago, Ill. Ryan, R. D., 83 Cottenham Ave., Kingsford,

Sydney, N.S.W., Australia Sabo, J. N., 69 Billington Pl., Fort Wayne, Ind.

Schmidt, R. W., 8405 S.W. Ninth Ave., Portland, Ore.

Sleman, G. R., Nova Scotia Tech. College, Halifax, Nova Scotia, Canada

Spear, W. G., 1519 McPherson, Richland, Wash,

Starzec, F. J., 6837 W. Imlay St., Chicago, Ill. Thompson, D. G., 4620 Knox Rd., Apt. 4, College Pk., Md.

Tuma, W. S., 4407 Grantwood Dr., Parma, Ohio Turnage, H. C., 1107 Country Club Rd., Warwick, ٧a.

Weber, S. E., 205 W. Second St., Arcanum, Ohio

Weisman, I., 2811 Exterior St., Bronx, N. Y. Wilkinson, J. H., 1438 Elkgrove Circle, Venice,

Calif.

Wirth, C. H., 78 N. Spring Garden Ave., Nutley, N. J.

Wood, C. E., 6650 S. Cicero Ave., Chicago, Ill.

Yeh, L. P., Elec. Dept., Colorado A & M College, Ft. Collins, Col.

Admission to Member

Alexakis, N. G., 320 S. Cummings St., Los Angeles, Calif.

Alley, J. W., American Embassy, Colombo, Ceylon, c/o U. S. Dept. of State Mailroom, Washington, D. C

Bass, J. W., 1830 El Dorado St., W. Covina, Calif. Berman, B., 5313 Dawes Ave., Culver City, Calif. Brown, L. E., 5573 W. Jackson Blvd., Chicago, Ill. Brunton, H. W., Apt. 116, 415 Lakeshore Rd., Toronto, Ont., Canada

Chun, B., 105-30-66 Ave., Forest Hills, L. I., N. Y. Comer, J. L., 68-35 Burns St., Forest Hills, L. I.,

N. Y. Custer, H. M., 632 S. Locust St., Elizabethtown,

Pa.

Cutlip, S. B., 2230 Birchwood Ave., Wilmette, Ill. David, E., 5185 Borden Ave., Montreal, Que., Canada

De Haas, J., Cia. Shell De Venezuela, Apt. 19, Maracaibo, Venezuela

Ditrick, N. H., 10 Chestnut St., E Orange, N. J.

Dube, J. J., 11845 Guertin St., Montreal, Que., Canada

Duchesneau, B. E., 1821 S. Pinecrest, Wichita, Kan. Edens, R. L., 3131 N. Prairie St., Dallas. Tex.

Eldon, C. A., 3728 Carlson Cir., Palo Alto, Calif.

El-Sabbagh, H. H., 705 W. California, Urbana, Ill.

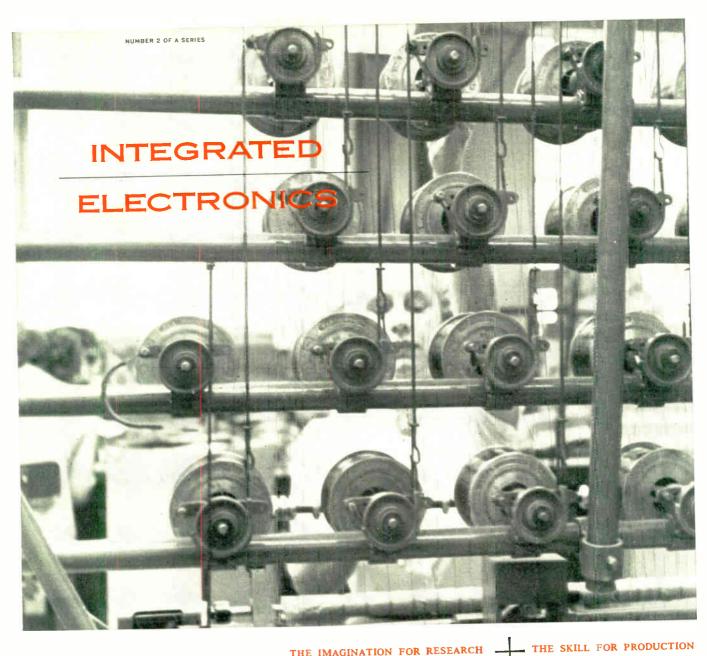
Evans, W. L., Convair, Grants La., Ft. Worth, Tex.

Ferguson, P. M., 1703 N. College, Tulsa, Okla.

Fichter, W. C., Jr., May St., Bath, N. Y.

- Freen, P., Benco Television Associates Ltd., 130 Simcoe, Toronto, Ont., Canada
- Gainey, L. L., Hoffman Ave. & Marlton Pike, Merchantville, N. J.
- Gore, L. D., 7 W. Campbell Ave., W. Long Branch, N. I.
- Gudmundsen, R. A., Hughes Aircraft Co., 5315 W. 102 St., Los Angeles, Calif.
- Hawkins, E. S., 4309 S.E. Anthony Wayne Dr., Ft. Wayne, Ind.
- Hierlihy, O. G., Newfoundland Broadcasting Co., Prince of Wales St., St. Johns, Newfoundland Canada

Hirschl, L., 827 Pearl St., Santa Monica, Calif.


Hobbs, C. A., Jr., 122 E. Stiles Ave., Collingswood, N. J.

Holt, C. A., Box 565, Blacksburg, Va.

House, A. N., 26 Cornwall Ave., St. John's, Newfoundland, Canada

(Continued on page 52A)

ŀ

WINDING PRECISION COILS

0.

THE IMAGINATION FOR RESEARCH

Three complete plants with a total of 240,000 square feet are devoted exclusively to precise military electronics and electro-mechanical production. These facilities are staffed and equipped to design, develop, test, and manufacture equipment ranging in size from miniature trans-ceivers to heavy shipboard fire control weighing more than two tons.

Hoffman Laboratories is equipped with a completely integrated manufacturing operation with sheet metal, machine shop, plating, welding, assembly, and test departments.

Constant quality control and inspection procedures assure the highest equipment efficiency ... equipment that meets and exceeds requirements.

> Write the Sales Department for your free copy of "Report From Hoffman Laboratories."

Navigational Gear Missile Guidance & **Control Systems** Radar **Noise Reduction** Countermeasures (ECM) Communications **Terminal Equipment Transistor Application**

A SUBSIDIARY OF HOFFMAN ELECTRON CS CORP.

CHALLENGING OPPORTUNITIES FOR OUTSTANDING ENGINEERS TO WORK IN AN ATMOSPHERE OF PRACTICAL, CREATIVE ENGINEERING. WRITE TO DIRECTOR OF ENGINEERING, HOFFMAN LABORATORIES, INC., 3761 SOUTH HILL STREET, LOS ANGELES 7, CALIFORNIA

PROCEEDINGS OF THE I.R.E. April, 1955

Shallcross

precision for · resistors

SINCE 1929

AKRA-OHM Precision Wirewounds

High-quality, yet moderately-priced precision resistors suitable for the majority of applications. Reverse-pi wound on accurately-machined ceramic bobbins. Coated, if desired, with moisture-resistant varnish. Std. tolerance—1%, 0.5%, 0.25%, 0.1%, and 0.05%. Meets MIL-R-93A. Five mounting styles available.

"P" TYPE Encapsulated Wirewounds

Small, hermetically-sealed resistors at a truly low price. Unmatched stability for critical applications. Std. tolerance-same as Akra-Ohm types above. Meet and exceed MIL-R-93A requirements including salt water immersion tests. Radial leads, axial leads, or lug type terminals.

BOROHM® Deposited Boro-Carbon Resistors

Small, low-temperature-coefficient resistors. Exceptional stability achieved through deposition of uniform, uncontaminated, soot-free carbon film. Std. tolerance—1%, 2%, and 5%. Meet characteristic R of MIL-R-10509A. $\frac{1}{2}$, 1, and 2 watt sizes.

Unusually light-weight wirewound power resistors

with a unique integral core and coating having excep-

tional resistance to thermal shock and excellent heat

CASTOHM[®] Ceramic Power Resistors

Bulletin L-29

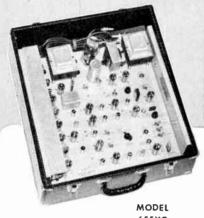
Ten humidity-resistant, tab-terminal styles available with ratings from 8 to 225 watts at 350°C. hot-spot. Meet MIL-R-10566, Amendment 1.

CMP and MP Miniature Power Wirewounds

conductivity.

Lead-mounting, miniature power wirewounds for crowded chassis or printed circuits. MP types enclosed in a Fiberglas sleeve and coated with silicone-impregnated ceramic. CMP types encased in ceramic tube with ends hermetically sealed with silicone cement. Designed to MIL-R-26B. 3 to 10 watt sizes available.

SPECIALS



Hermetically-sealed Steatite resistors, Ayrton-Perry resistors, high-voltage surge resistors, card-type resistors, multi-section bobbin resistors, and many other special types are regularly produced to individual specifications.

SHALLCROSS MANUFACTURING CO., 524 Pusey Ave., Collingdale, Pa.

TELEVISION color bar generator

655XC

This generator produces a standard 100% fully saturated NTSC color bar pattern on color TV sets. Regardless of future color television receiver design this color bar generator will be compatible.

Produces same type of signal that is transmitted over the air. All literature and alignment data is published around this standard NTSC signal. The Model 655XC provides signal for complete color alignment. When alignment is made with this type of signal, operator is sure that proper program colors will be displayed on the TV receiver.

The color bars appear on the TV screen in the following order from left to right: green, yellow, red, magenta, white, cyan, blue and black.

OUTPUT. . . EITHER R F. or VIDEO

Write for . . .

complete technical literature.

THE HICKOK ELECTRICAL INSTRUMENT CO. 10551 Dupont Ave. • Clevelond 8, Ohio

WHEN WRITING TO ADVERTISERS PLEASE MENTION - PROCEEDINGS OF THE I.R.E.

LOOK ТО

Transitron

SILICON RECTIFIERS AND DIODES

designed for specific applications

SILICON POWER RECTIFIERS

Rated for 125°C operation, Transitron's silicon rectifiers provide high power handling ability and reliability at high temperature. They are specifically designed for magnetic amplifier and power supply applications. Send for Bulletin TE-1321.

6

	Specifications and Ratings at 125°C						
POWE	R SUPPLY T	YPES	MAGNETI	AMPLIFIER	TYPES		
ТҮРЕ	P.I.V.* (volts)	ldc** (ma)	TYPE	P.1.V.* (volts)	ldc** (ma)		
1N341 1N343 1N345 1N347	400 300 200 100	400 400 400 1000	1N332 1N334 1N336 1N338	400 300 200 100	400 400 400 1000		

ACTUAL

SILICON JUNCTION DIODES

Transitron's silicon junction diodes are characterized by superior forward conductance and reliable operation up to 150°C. They are specifically designed for applications requiring extremely high inverse resistance at high temperatures. Send for Bulletin TE-1322.

TYPE	Forward Current at + I V (ma)	Inverse Current at Specified Voltage (ua)		Maximum Working Voltage (volts)	A
		at 25°C	at 125°C		
1N137A	3	.03 at 20V	_	36	
1N138A	5	.01 at 10V		18	
1N137B	20	.03 at 20V	5 at 20V	36	
1N138B	40	.01 at 10V	2 at 10V	18	1
1N350	20	.03 at 60V	5 at 60V	70	
1N351	8	.03 at 100V	5 at 100V	120	
1N352	8 5 3	.05 at 150V	10 at 150V	170	
1N353	3	.10 at 200V	20 at 200V	225	
1N354	1	.10 at 300V	20 at 300V	325	ACTUA SIZE

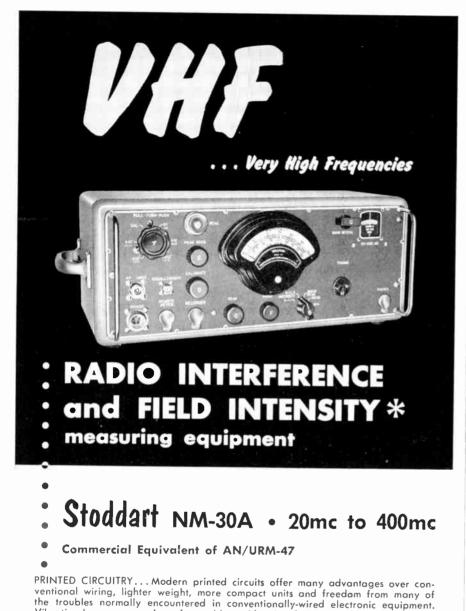
Transitron's silicon bonded diodes are specifically designed for high frequency and very fast switching applications at high temperatures. They are particularly useful in detector, discriminator and pulse circuitry. Send for Bulletin TE-1308.

TYPE	Forward Current at +1 V (ma)	Inverse Current at Specified Voltage (ua)	Inverse Breakdown Voltage	
S4	1	1 at 10V	15	
S 5	1	.1 at 10V	20	1
S6	4	.5 at 5V	10	
S7	2	1 at 10V	20	
S8	1	1 at 10V	10	
	1 ncy range 0.500 m		LU Capacitarice 0.8 uufd	

SILICON BONDED DIODES

Transitron's special engineering group is available to assist you with specific applications. Inquiries concerning your particular design problems are invited.

Transistors


Transitron electronic corporation • melrose 76, massachusetts

Silicon Rectifiers

Silicon Diodes Germanium Diodes

Glass Diodes

Vibration becomes even less of a problem with printed circuits, adding to the many portable features already available with Stoddart equipment. ADVANCED DESIGN . . . Specialized engineering and modern production techniques have produced one of the most advanced instruments for the accurate measurement, analysis and interpretation of radiated and conducted radio-frequency signals and

interference ever manufactured. Designed to laboratory standards, rugged, and with matchless performance, the versatile NM-30A is an outstanding example of modern instrumentation. Its frequency range includes FM and TV bands. SMALLER SIZE ... A wider frequency range and higher standard of performance

is incorporated into an equipment whose size is one-third that of any similar equipment ever manufactured.

SENSITIVITY... Sensitivity ranges from one to ten microvolts-per-meter, depending upon frequency and antenna in use.

APPLICATIONS ... Field intensity surveys, antenna radiation pattern studies, interference location and measurement for checking radiation from virtually any mechanical or electrical device capable of generating or radiating radio-frequency signals or interference.

Staddart RI-FI* Meters cover the frequency range 14kc to 1000mc

VLF NM-10A, 14kc to 250kc Commercial Equivalent of AN/URM-68. Very low frequencies.

HF NM-20B, 150kc to 25mc Commercial Equivalent of AN/PRM-1A. Self-contained batteries. A.C. supply optional. Includes standard broadcast band, radio range, WWV, and communications frequencies. Has BEO.

NM-50A, 375mc to 1000mc

STODDART AIRCRAFT RADIO Co., Inc. 6644-C Santa Monica Blvd., Hollywood 38, California • Hollywood 4-9294

(Continued from page 48.4)

- Howe, D. H., 502 Wherry Dr., White Sands Proving Ground, N. Mex.
- Ibbett, D. B. C., 115 Vachon St., Eastview, Ont., Canada
- Kehm, C. H., 1947 N. Kildare Ave., Chicago, Ill. Khan, A. R., 44/3/1 Vithalbhai Patel Rd., Karachi, Pakistan

Ð

ê

4

34

- Kiss, F. V., c/o Northern Transportation Co., Ltd., 10040-105 St., Edmonton, Alta., Canada
- Kompass, E. J., 270 Glen Ave., Dumont, N. J. Koster, J. A., 59 Delisle Ave., Toronto, Ont.,
- Canada Krystek, M. E., 1835 N.W. 16 St., Oklahoma City,
- Okla. Latimer, D. T., Jr., 47 E. Rennell Ave., Lexington
- Pk., Md.
- Lawton, H. D., 605 Glenview Ave., S.W., Glen Burnie, Md.
- Morton, W. A., Jr., Cedar Ave., Trailer Pk., New Windsor, N. Y.
- Mueller, R. P., 3337 Tech. Training Sqdn., Scott Air Force Base, Ill.
- Ochs, S. A., RCA Labs., Princeton, N. J. Papian, W. N., Rm, B-170, MIT Lincoln Lab.,
- Lexington, Mass. Papouschek, F., 156 Monterrey, Lakeside, Point
- Claire, Que., Canada
- Pittman, R. R., 6534 Clawson, Houston, Tex.
- Primpas, L. V., Sylvania Electric Products, Inc. 70 Forsyth St., Boston, Mass.
- Putman, R. E., 420 E. Corey Rd., Syracuse, N. Y. Rodgers, J. P., Dept. of Transport, 10138-100 A St., Edmonton, Alta., Canada
- Rohde, L., 7 Tassiloplatz, Munchen, Germany
- Ross, C. J., 1290 E. 19 St., Brooklyn, N. Y.
- Sacker, J. E., 10918- 88 Ave., Edmonton, Alta., Canada
- Seed, R. G., 258 East St., Lexington, Mass. Shawl, W. C., Hq. 26 Air Div. (Def.) Roslyn, L. L. N. Y.
- Stanley, G. M., Box 101, College, Maska
- Stites, F. H., Bennett Rd., Wayland, Mass.
- Urling, H. R., 17 Quebec Dr., Huntington, Sta., L. L. N. Y.
- Wachendorf, F. A., 19 Preston Beech Rd., Marblehead, Mass,
- Walker, B. G., 130 Pine Tree Dr., N. Syracuse, N. Y.

White, J., 5223 W. 92 St., Oak Lawn, Ill.

The following elections to the Associate grade were approved to be effective as of February 1, 1955:

- Adams, R. N., Box 820, Melbourne, Fla.
- Alexander, M. T., 817 Duke, Greensboro, N. C.
- Amdabl, L. D., 2929 Broadway, New York 25, N. Y. Anderson, E. C., Box 262, 25 Enfield Rd., Colonia, N. L
- Appleton, E. R., 4324 W. Florissant, St. Louis, Mo. Ault, J. C., 5 Marblehead Dr., Brentwood 17, Mo.
- Ball, M., 104 Garden St., Sayre, Pa.
- Barber, F. A., 226 Hibiseus Ct., Orlando, Fla
- Barsamian, A. S., 16579 Lilac Ave., Detroit 21. Mich
- Becker, H. D., 45 Heath St., Buffalo, N. Y. Belitz, H. G., G. H. Leland, Inc., 123 Webster St., Dayton 2, Ohio
- Benjamin, H. L., 467 Lesher Dr., Dayton 9, Ohio
- Bergen, A. R., 49 Hazelton Rd., Yonkers, N. Y.
- Bergen, S., Commercial Radio Equipment Co., 1319 F St., N.W., Washington, D. C.
- Berwin, T. W., 5708 Bianca, Encino, Calif.
- Bichara, M, R. E., Transvaal Chamber of Mines, Research Laboratories, Box 809, Johannesburg, S. Africa
- Bickley, E. B., 13000 Athens Ave., Cleveland 7, Ohio
- Bland, S. B., 17638 Lemay PL, Van Nuys, Calif. (Continued on tage 58A)

WHEN WRITING TO ADVERTISERS PLEASE MENTION - PROCEEDINGS OF THE L.R.E.

World Radio History

UHF

Commercial Equivalent of AN/URM-17. Frequency range includes Citizens band and UHF color TV-band.

MILLIONS of crystals made to ANY specifications but only ONE standard quality

Midland frequency control units are on the job in two-way communications on land, sea and in the air throughout the world. Now they're playing a leading role in color television. The range of applications Midland serves is wide, but every Midland crystal has one thing in common a single level of quality.

That one quality is simply the highest that modern methods and machines can produce. It's assured by Midland's system of critical quality control exacting inspection and test procedures through every step of processing.

Result: Your Midland crystal is going to give you the best possible service in frequency control—with stability, accuracy, and uniformity you can stake your life on...as our men in the armed forces and law enforcement do every day.

Whatever your Crystal need, conventional or highly specialized When it has to be exactly right, contact

3155 Fiberglas Road, Kansas City, Kansas

WORLD'S LARGEST PRODUCER OF QUARTZ CRYSTALS

and an and a state of the state

G.E. MECHANIZED PRODUCTION At Lower Cost...Assures

Both types offer high reliability at temperatures

Take a close look at the transistor values G.E. now offers. Because production lines are now mechanized, these transistors are made in *less time* at *reduced cost*. Machine methods today assure strictest adherence to the top quality standards demanded of all

TYPE 2N43A

General Electric Germanium Products.

Mechanization results in CON-TROLLED CHARACTERISTICS, removing any inaccuracy on the part of the operator. Narrow limits are built into production transistors giving a more uniform product. In military and commercial applications these G-E transistors offer precision quality, topmost reliability at massvolume prices!

General Electric's P-N-P junction transistor, 2N43A, is the first to be written into Air

Force specifications! MIL-T-25096 (USAF) was actually written around this G-E product which was developed for the military. Now it serves an ever-increasing number of commercial as well as military applications.

APPLICATIONS AND SPECIFICATIONS

TYPICAL USES: Audio and Intercom Amplifiers, Servo Amplifiers, Carrier Current Amplifiers, Test Equipment, Fuel Gauges.

SPECIFICATIONS OF THE 2N43A and USAF 2N43A

Absolute Maximum Ratings:

Collector Voltage	
(Referred to base)	-45 volts
Collector Current	- 50 ma
Collector Dissipation	150 mw
Storage Temperature	100° C
Collector Cutoff Current	
(-45 volts)	-10 microamps

DESIGN FEATURES:

- STURDY CONSTRUCTION...meets critical military tests for shock, vibration, humidity, life.
- SEALED JUNCTION ... contamination gases permanently eliminated!
- HIGH POWER OUTPUT...case design makes possible a collector dissipation of 150 mw.
- HERMETIC SEAL... unaffected by moisture.
- LONG LIFE... no change in characteristics during life of equipment.

MAKES TRANSISTORS AVAILABLE Controlled Characteristics

up to 100°C...are now available in production lots!

HIGH FREQUENCY TRANSISTOR

9

A new, revolutionary manufacturing technique, the exclusive G-E rate-growing process, coupled with the allwelded hermetic seal, now makes possible extra long life, and noticeably-reduced manufacturing costs by—

- Making 2000 or more transistors from one rate-grown crystal.
- Achieving uniform characteristics in all 2000 transistors-eliminating wasteful rejects.

APPLICATIONS

A STATE OF A

For pulse and switching circuits, RF and IF amplifiers; high-frequency test equipment; telephone repeaters.

SPECIFICATIONS

Collector Voltage (Referred to Base)	15 V
Collector Current	20 ma
Emitter Current	-20 ma
Storage Temperature	100° C.
High Frequency Gain at 2 mc	13 db

• For further details on specifications and prices, write General Electric Co., Section X5245, Germanium Products, Electronics Park, Syracuse, N. Y.

Contraction of the Contract of

Billet of germanium is removed from furnace, prior to cutting into enough tiny pellets for 2000 transistors.

ELECTRIC

Progress Is Our Most Important Product

World Radio History

hether it is miniaturizing an airborne antenna down to fighting weight, or designing new ground based waveguide systems ... Airtron's *complete* antenna facilities ... including research, design, testing and mass production of precision components ... can substantially reduce the time and expense between concept and reality.

Airtron offers you "standard" antenna plumbing . . . or will engineer a new design to fit your antenna application, and deliver

it complete from flexible waveguide input to feed horn. Whatever your need, you'll get components that meet your every requirement for high power broadband operation, low VSWR, pattern accuracy, as well as special mechanical characteristics.

For full details on Airtron's microwave antenna facilities and their application to your antenna problems, write or call today.

1107 W. Elizabeth Ave. LINDEN, NEW JERSEY Linden 3-1000 Branch Offices: Albuquerque Chicago Dallas Dayton Kansas City Los Angeles San Francisco Seattle London

Here are electronically regulated power units completely accessible from the front and back because of their vertical mount design. They have extremely fine regulation, low ripple content and appreciable quantities of D. C. power.

⁴³⁻²D 34th STREET • LONG ISLAND CITY 1, N. Y. Representatives in all principal cities.

£

3

OUT OF THE LAB ...

INTO THE LIGHT

Another Hughes semiconductor development, available now -the new, subminiature photocell, Type HD 2501.

SUBMINIATURE—smallest over-all tamination. volume of any photoelectric detector formity of o

(approx. 1/1000 cu. in.). FUSION-SEALED—only subminiature photocell with true glass-to-metal seal. FAST—response at 20 kc down less than 5 per cent.

VERSATILE—non-directional sensitivity (366°) and photovoltaic properties lend unusual flexibility in equipment design.

RUGGED—welded whisker construction withstands severe shock, vibration, and acceleration.

RELIABLE—packaged in the famous Hughes one-piece glass envelope, impervious to moisture and external con-

> Photocell dimensions, glass envelope Length: c.263-inch, maximum Diameter: c.086-inch, maximum

tamination. A 100% testing ensures uniformity of characteristics.

Hughes Type HD 2501 germanium point-contact photocell can be used as a light detector in card readers, binary encoding and decoding wheels, motion picture sound—and for near infrared applications. Because of this infrared response, tungsten light sources can be operated at voltages below normal and their effective life increased accordingly.

For other diode applications in high and low temperature ranges, be sure to check the growing family of Hughes semiconductors. Scores of types of germanium point-contact and silicon junction diodes are available in RETMA, JAN, and Special listings.

TYPE HD 2501 PHOTOCELL—SOME CHARACTERISTICS AT 25° C. Dynamic Breakdown Voltage: 175 Volts, minimum. Maximum Dark Current: 2C μA at 5C Volts. Dynamic Resistance: 1 megohim at 50 Volts and 25 ML. SINCE 1915 LEADERS IN AUTOMATIC CONTROL

The task called for a rugged, reliable drive of a motor which would deliver up to four horsepower on acceleration, and at least 1½ horsepower continuously. Maintenance requirements to be at a minimum. The drive must be able to stand high shock and operate under several G's. It must operate in temperatures from -65° to 165° F.

Ford engineers developed such a drive in a magnetic amplifier servo system. It could be made for position control or rate control, and it operated smoothly and accurately under an unbalanced load condition. The gain or current-output/ current-input (with motor stalled) = 60,000; with a maximum output of over 90 amps.

This is typical of the solution of engineering problems in the field of servomechanisms by the Ford Instrument Company. Should you have a problem such a solution may answer for you, write and indicate your needs. Ford Instrument Company's forty years of experience in developing, designing and manufacturing special devices in the field of automatic control will help you find the answer.

ENGINEERS of unusual abilities can find a future at FORD INSTRUMENT COMPANY. Write for information.

(Continued from page 52A)

Bowker, M. W., Bell Telephone Laboratories, Murray Hill, N. J.

Brendecke, W. H., Jr., 3028 N. 47 Pl., Phoenix, Ariz.

Bryla, L., 3242 S. 49 Ave., Cicero 50, Ill.

Buckley, A. E., Jr., 368 Belmont St., Fall River, Mass.

Bull, T. R., 120 Oriole Pkwy., Apt. 401, Toronto 7, Ont., Canada

Busch, K. J., Bell Telephone Laboratories, Inc., Murray Hill, N. J.

Caldwell, A., 11024-100 Ave., Edmonton, Alta., Canada

Carbine, I. L., Box 548, State College, N. Mex.

- Clarke, A. F., Jr., 84 E. Bradford Ave., Cedar Grove, N. J.
- Comeau, C. P., 8429 Forrest Ave., Philadelphia 19, Pa.

Common, C. A., 921 E. Donmoyer Ave., South Bend 14, Ind.

Conway, P. W., 855 Keystone Cir., Northbrook, III.

Cooke, E. R., 145 N. 72 St., Milwaukee, Wis. Cooper, R. S., Air Force Armament Center, ACVO, Eglin AFB, Fla.

Coria, R. F., 1143 N. Harvard, Tulsa, Okla. Crowe, E. W., 41 N. Dade Ave., Ferguson, Mo.

Dagostino, V. L., Main St., Stirling, N. J.

Darling, R. E., 513 Mulberry St., Hammond, Ind. Davies, W. R., J-4 Meadow Styertowne, Clifton, N. I.

Davis, O. R., 403 Tustin Ave., Newport Beach, Calif.

Dettling, A. K., Moores Mills, R.F.D., Pleasant Valley, N. Y.

Dimmick, J. V., 952 Janet La., Lafayette, Calif.

Donelson, L. E., 15465 Gilchrist, Detroit 27, Mich. Dumey, A. I., 29 Barberry La., Roslyn Heights, L. I., N. Y.

Edgar, G. M., 10312-121 St., Edmonton, Alta., Canada

Edgerton, J. F., The North Country Stations, Box 662, St. Johnsbury, Vt.

Edwards, H. M., 683 Palisade Ave., Yonkers, N. Y.

Ehni, F. P., 413 Dewey La., Alamogordo, N. Mex. Eisenberg, H., Naval Ordnance Laboratory, White

Oak, Silver Spring, Md. Enander, B. N., RCA Laboratories, Princeton, N. J.

Falk, B., 200 Park Blvd., Crystal Lake, Ill. Feland, R. F., Jr., 717 N. Lake Ave., Pasadena,

Calif. Ferguson, J. W., 545 Wilson Dr., Midwest City,

Okla,

Fiorentino, G., Box 248, New Canaan, Conn.

Fish, K. A., Brown St., Baldwinsville, N. Y.

Fisher, R. M., 565 E. Main St., Moorestown, N. J. Fockens, P., 5150 W. LeMoyne Ave., Chicago 51, III.

Frey, W. A., 410 E. Key Blvd., Midwest City, Okla.

Fuchs, H. B., 150-59-87 Ave., Jamaica, L. I., N. Y. Fulton, D. A., 6 Summer St., Watertown, Mass.

Garrett, W. A., 324 E. 11 St., Kansas City 6, Mo.

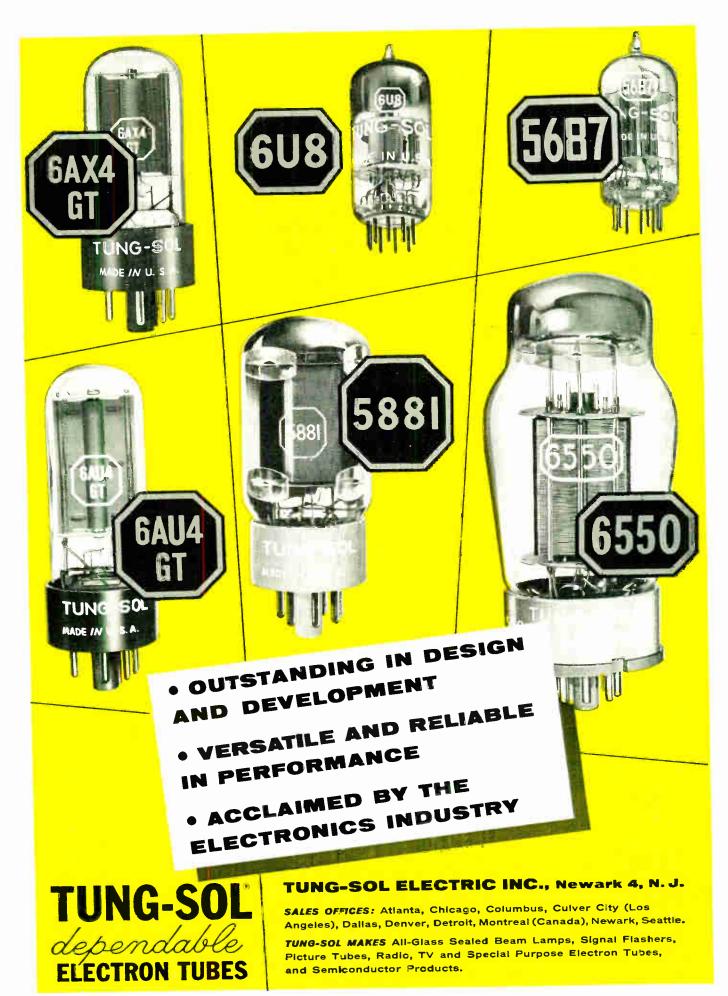
Gerig, J. S., Melpar, Inc., 3000 Arlington Blvd., Falls Church, Va.

Goldstone, G. H., 1926 National Bank Bldg., Detroit, Mich.

Gortley, C., 963 Williams Dr., Alexandria, Va,

Gosch, V. E., 758 Edgbrook La., San Antonio, Tex. Gottmer, G. W., 3508 S. Maplewood Ave., Chicago, F11.

Graham, J. D., Electrical Engineering Department, Kansas State College, Manhattan, Kans.


Granger, B. W., 111 Verbena Dr., Palo Alto, Calif. Gunning, M. E., R.F.D. 1, Medway, Ohio Guy, R. D., 10035-91 Ave., Edmonton, Alta.,

Canada Haulbosky, W. B., Box 199, 3337th Tech. Ing. Sq.,

Scott AFB, Belleville, Ill.

(Continued on page 60A)

1

PROCEEDINGS OF THE LR.E. April, 1953

۰.

10 MC SCALERS

available with:

(Model 4000 Series)

Predetermined count

Predetermined time

voltage power supply

Automatic reset

plex counting systems.

Regulated 500-2.5kv high

Decade or binary systems

0.1 microsecond resolution

A wide range of choice makes it

possible to select the exact high-

speed counting equipment desired.

from the basic manual models to

the most fully automatic and com-

Scale of 1000 or 4096

Preamplifiers and pulse

height discriminators

EPIC

MILLIMICROSECOND

Sauare Pulse Generators

with single or multiple pulse-outputs:

Rise Time: .001 µsec. from 10% to 90% amplitude.

Pulse Width: .001 µsec. to several µsec.

Pulse Amplitude: From 100 volts to .006 volts in one db steps.

Output Imp: Matched to any impedance for standard coax lines. Multi impedance outputs also available.

PULSE GENERATORS . 0-10MC COUNT-ING SYSTEMS . PLUG-IN COUNTING SYSTEMS . 0.1 MICROSECOND RESO-LUTION COUNTER CHRONOGRAPHS

WIDE BAND AMPLIFIERS (Model 700 Series)

Band Width: 2000 cycles to above 10 MC Gain: 40 db or 60 db (Higher Gains Also Avail-

Gain Control: Coarse and Fine Gain Controls Permit a Continuous Gain Variation by a Factor of 100 on Some Models.

Output Limit Level: To 50 Volts for Positive Pulses on Some Models.

Input: Positive or Negative Pulses, or Sine Wave Discriminator: 0-50 Volt Positive Amplitude Dis-

Membership

(Continued from page 58.1)

Healy, B. H., 41 Pine St., Bedford, Mass. Heller, P. N., 17 Chauncy St., Cambridge 38, Mass. Hilker, H. V., Jr., 207 B Groves, China Lake, Calif. Hill, M. E., Mayflower Apts, 1014, Virginia Beach, Va.

Hines, R. L., 3709 Turner, Fort Worth 7, Tex.

- Holliday, T. B., 248 Arlington Ave., Elmhurst, Ill. Howard, C. T., Raydist Navigation Corp., 2514 W. Pembroke Ave., Hampton, Va.
- Howson, J. C., IBM, 590 Madison Ave., New York 22. N. Y.
- Huget, W. J., 11638-76 Ave., Edmonton, Mta., Canada
- Hughes, E. L., 542 W. James, Apt. 6, Lancaster, Pa. Humphrey, C. D., 88 Treat Rd., Glastonbury, Conn.
- Huntoon, V. J., C-E Co., 3800 N, Milwaukee Ave., Chicago 41, Ill.
- Huska, J., 230 Gray Plaza, Scott AFB, Ill.
- Hutton, D. B., 915 S. 17 St., Arlington, Va.
- Jackson, D. A., 1955A Pine Ave., Long Beach, Calif.
- Ja lisdha, S., Box 535, 3337 Tech Training Sq., Scott AFB, III.
- James, R. L., 1119 Grand St., Redwood City, Calif. Janusz, J. S., 16 W. 37 St., Kansas City, Mo.
- Kahu, M. H., Central Eng. & Stores Estab., Karachi
- Airport, Pakistan Kaiser, H. F., 2406-34 St., S.E., Washington 20,
- D. C. Kazuk, W. F., Pleasant View Dr., Paterson 2, N. J.
- Keller, C. C., 980 Memorial Dr., Cambridge 38, Mass
- Kelly, L. J., 8012 Davanagh Rd., Baltimore, Md. Keltonic, F. J., 111 Huntington St., New London, Conn
- Kidwell, R. P., c/o Billeting Office, White Sands Proving Ground, N. Mex.
- Kinsley, R. B., 902 Burrstone Rd., Utica 4, N. V.
- Kondracki, J. J., 2849 H Adams St., Wilmington, N C Konig, H. F., General Electric Co., French Rd.,
- Utica, N. V.
- Koszyn, A. I., 184 E. Mt. Eden Ave., New York 57, N. V.
- Kovacik, F. C., 1925 Euclid Ave., Berwyn, Ill. Kozak, A. S., 829 Emerson St., N.W., Washington
- 11, D, C. Ladd, E. L., e o United Aircraft Products, Inc.,
- 1146 Bolander Ave., Dayton, Ohio La Forte, J. T., 160 Crawford St., Rochester 20, N. Y.
- Lamb, R. W. H., Radio Station CFCM, Calgary,
- Mta., Canada Laugesen, T. C., 48 N. Nelson Cir., Milltown, N. J.
- Leach, G. S., 7320 Austin St., Forest Hills 75, L. L. N. Y.
- Leitch, J. G., 13024 -123 A Ave., Edmonton, Alta., Canada
- Leland, H. E., 123 Webster St., c/o G. H. Leland, Inc., Dayton 2, Ohio
- Levesque, J. J., R.F.D. 2, Marcoutah, Ill.
- Levin, H. L., 415-19 Ave., Paterson 4, N. J.
- Lewin, N. L., 7109 S. Bennett, Chicago, Ill.
- Lewis, D. E., 288 S. Findlay St., Dayton 3, Ohio
- Liang, W. W. L., Electrical Engineering Department, Manhattan College, New York, N. Y.
- Lieberman, G., 2106 Reedie Dr., Silver Spring, Md. Lincoln, C. F., Jr., 3935 Rochelle Dr., Dallas 20, Tex.
- Lobb, R. H. M., 438 Federal Bldg, Victoria, B. C., Canada
- Loken, R. D., RCA, Front & Cooper Sts., Camden 2. N. J.
- Lorenz, E. J., 10 Wasson Dr., Poughkeepsie, N. Y. Louis, S., M. Kidony 10/127, Haxfira, Moshava
- Germanit, Jerusalem, Israel Lowenschuss, O., 67 01--210 St., Bayside, L. I., N, Y.

(Continued on page 64.4)

WHEN WRITING TO ADVERTISERS PLEASE MENTION - PROCEEDINGS OF THE LR.E.

42-19 27th Street, Long Island City 1, N. Y.

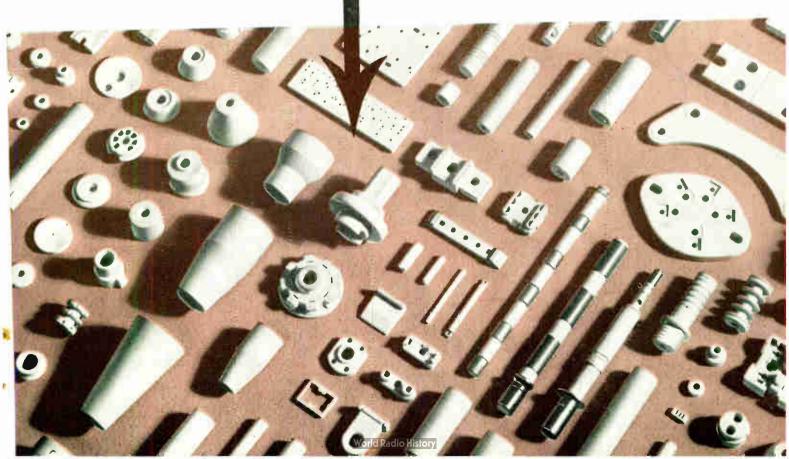
April. 1955

-60 \

- able)
- 0)

ALSIAG® SERVES YOU BEST

Precision Tolerances Uniform Quality Volume Production Dependable Deliveries AlSiMag offers top-notch technical ceramics of every type . . . Die Pressed, Extruded, Machined. Simple or intricate shapes. Large designs. Miniatures. Metal Ceramic Combinations.


Complete equipment for efficient production in any quantity. Widest selection of materials. Competent Engineering and Redesign Service. Tooling at lowest cost from the AlSiMag Die Shop. Plenty of kiln space. Quality Control. Thoroughly trained personnel. Continuous Research.

Complete information on AlSiMag for your requirements on request. Send sample, blueprint or sketch today.

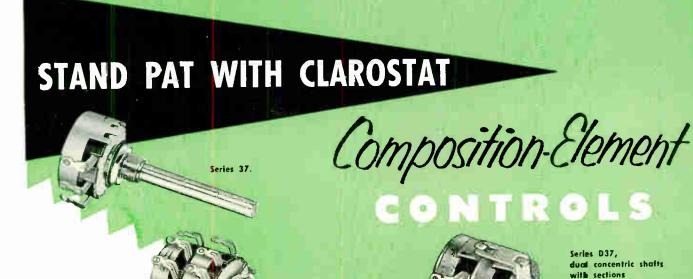
54TH YEAR OF CERAMIC LEADERSHIP

AMERICAN LAVA CORPORATION

CHATTAN OOGA 5, TENNESSEE BRANCH OFFICES IN THESE CITIES (SEE YOUR LOCAL TELEPHONE DIRECTORY): Cambridge, Mass. • Chicago, III. • Cleveland, Ohio • Dallas-Houston, Texas Indianapolis, Ind. • Los Angeles, Calif. • Newark, N. J. • Philadelphia-Pittsburgh, Pa. St. Louis, Mo. • South San Francisco, Calif. • Syracure, N. Y. • Tulsa, Okla. Canada: Irvington Varnish & Insulator Division, Minnesota Mining & Manufacturing of Canada, Ltd., 1390 Burlington Street East, Hamilton, Ontario, Phone Liberty 4-5735.

Courtesy of the American Museum of Natural History

Wider than a fly can see


Unlike most of nature's children, man's endeavors have carried him far beyond the use of his natural endowments. Spurred on by mental development, human efforts have created a dynamic way of life, demanding the most versatile mechanisms man is able to devise.

Scientists at Airborne Instruments Laboratory are constantly at work, creating electronic devices to aid industrial progress. In the Wide Range Power Oscillator, they have achieved an instrument, excellent in performance and quality, for testing over the wide frequency range of 300 to 2500 mc.

Equipped with a self-contained rectifier power supply and a single tuning control for grid-cathode and grid-plate lines, the Wide Range Power Oscillator is representative of Airborne's high standard of achievement in research, development and production. Here is another example of individual design, resulting in the universal appeal of AIL products.

Write for descriptive literature.

Series D37, dual with single shaft.

It's better, quicker, cheaper, to specify CLAROSTAT for those carbon control requirements, because:

For $\mbox{usual needs, there's an adequate choice of standard Clarostat types such as: }$

SERIES 37: 1-1/8" d. 0.5 watt. Linear or tapers. One to three taps. Available with switch. Choice of shafts. Singles or duals. 500 ohm to 5 megohms. Approved for Type RV3, characteristic U, MIL-R-94 specification

SERIES 47: 15/16'' d. 0.5 watt. Linear or tapers. One tap, choice of three positions. Available with switch. Choice of shafts. Singles or duals. 500 ohms to 5 megohms.

SERIES 48: For miniaturization. 5/8" d. C.2 watt. 500 ohms to 5 megohms, linear; or 2,500 chms to 2.5 megohms, tapers. Singles or duals. Available with switch.

independently controlled.

SERIES 51: For high-voltage high-resistance electronic circuitry. 1-17/32" d. phenolic case. 1 watt. 5,000 ohms to 50 megohms. 10,000 V.D.C. breakdown test between terminals and mounting bushing. Maximum operating voltage, 4,000. Tapers available.

And for unusual needs, Ciarostat can design and put into production those special types — quickly, satistactorily, economically — often based on ingenious adaptation of standard features and available tooling.

```
SEND FOR LITERATURE. Engineering collaboration,
                                                         quotations and prompt delivery cycles,
                                                                    available on request!
Series 47.
                                           High-voltage couplers
                                           for use with
                                           elevated potentials.
                                                                                                                         Series 51
                                                                                                                        high-voltage
                                                                                                                        high-resistance control.
                                Series 475.
                                                                                   Series D48
                                with switch.
                                                                                   dual control
                                and twist-tab mounted.
                                                                                   for miniaturization
                                                                                   requirements.
                                                                     trols and Kesistors
                     DAST
                                              CLAROSTAT MFG. CO. INC., DOVER, NEW HAMPSHIRE
                                            In Canada: Canadian Marconi Co., Ltd., Toronto 17, Ont. Manufactured under license in Great Britain
by A. B. Metal Products Ltd., 17 Stratton St., London W. 1, Concessionaires for British Commonwealth
except Canada
```

TATICProvide delays
ranging fromY RELAYS2 to 150
SECONDS

MOST COMPACT MOST ECONOMICAL HERMETICALLY SEALED

- Actuated by a heater, they operate on A.C., D.C., or Pulsating Current.
- Hermetically sealed. Not affected by altitude, moisture, or other climate changes.
- Circuits: SPST only—normally open or normally closed.

Amperite Thermostatic Delay Relays are compensated for ambient temperature changes from -55° to + 70 °C. Heaters consume approximately 2 W. and may be operated continuously.

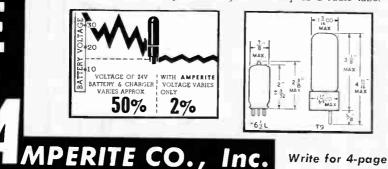
The units are most compact, rugged, explosion-proof, long-lived, and — inexpensive! TYPES: Standard Radio Octal, and 9-Pin Miniature.

THERMOSTATIC

STANDARD

T9 BULB

PROBLEM? Send for Bulletin No. TR-81


Also—a new line of Amperite Differential Relays — may be used for automatic overload, over-voltage, under-voltage or undercurrent protection.

MINIATURE

- Amperite Regulators are designed to keep the current in α circuit automatically regulated at α definite value (for example, 0.5 amp).
- For currents of 60 ma. to 5 amps. Operates on A.C., D.C., or Pulsating Current.
- Hermetically sealed, light, compact, and most inexpensive.

Amperite Regulators are the simplest, most effective method for obtaining automatic regulation of current or voltage. Hermetically sealed, they are not affected by changes in altitude, ambient temperature $(-55^{\circ}$ to -190° C), or humidity. Rugged; no moving parts; changed as easily as a radio tube.

561 Broadway, New York 12, N.Y. In Canada: Atlas Radio Corp., Ltd., 560 King St., W., Toronto 2B Membership

(Continued from page 60.4)

- Mackay, J. B., Box 41, Highland, N. Y. Madeson, A. H., 96 Maple Ave., Patchogue, L. I.,
- N. Y. Maler, P. M., c/o Rocke International Corp., 13 E.
- 40 St., New York 12, N. Y. Markesjo, G. A., Hokmossevagen 27, Hagersten,
- Sweden
- Martin, C. E., 3130 Jackson St., Hapeville, Ga.
- Martin, L. H., 28 Valley Rd., Concord, Mass.
- Martinelli, A. A., 1414 Chelsea St., Winston-Salem, N. C.
- Mason, R. K., I Duffy Ct., Binghamton, N. Y. Matovich, M. J., Stanford Research Institute, Stanford, Calif.
- Maxey, G. S., Box 3554, R.F.D. 1, Redding, Calif. Mayer, J. H., 570 Paul St., Hillside 5, N. J.
- McCann, R. W., 211 E. Third St., Corning, N. Y.
- McMath, D. C., Jr., 1436 S. Madison St., Huntsville, Ala
- Messina, A. S., 779 E. Second St., Brooklyn, N. Y. Mickleburgh, W. C., 9393 Technical Service Unit, Detachment 2, Box 306, White Sands Proving Ground, N. Mex.
- Miraglia, J. F., 1615 Ventura Dr., Tempe, Ariz.
- Montgomery, E. B., 1944 Davison, Richland, Wash.
- Murray, R., Jr., 1874 Davis St., Elmira, N. Y.
- Mushiake, V., c/o Antenna Laboratory, Electrical Engineering Bldg., Ohio State University, Columbus, Ohio
- Mutchek, J. H., R.F.D. 5. Deppe La., East St. Louis, III.
- Newhouse, V. L., Box 179, Marion, Iowa
- Nolan, J. J., 314 W. Sparks St., Philadelphia 20, Pa.
- Northrup, R. M., Box 52, Emporium. Pa.
- O'Hara, F. J., 5 Scott Rd., Belmont 78, Mass.
- Olsen, J. C., 1628 Pleasantdale, Cleveland 9, Ohio O'Neil, J. F., Jr., 121 Hesper St., Saugus, Mass.
- Pallange, E. P., Box 444, Quaker Hill, Conn.
- Palmieri, C. A., 35 16 33 St., Long Island City, L. I., N. Y.
- Parkes, R., 11324-73 Ave., Edinonton, Alta., Canada
- Pascal, J., 13919--102 Avc., Edmonton, Alta., Canada
- Patton, R. C., 1106 Chicago, Valparaiso, Ind.
- Pelles, Y., c/o J. Gilat 3 Zerubabel, Haifa, Israel
- Perkins, J. F., Jr., 48 Collimore Rd., E. Hartford, Conn,
- Phelan, J. L., 11310-110 A Ave., Edmonton, Alta., Canada
- Phillips, W. F., 3337 Tech. Ing. Sq., Box 38, Scott AFB, Ill.
- Pitts, E. H., 515 W. Clinton St., Huntsville, Ala.
- Poehler, H., 101 Bedford St., Lexington, Mass.
- Ponte, A. G., 205 Fourth Ave., White Sands Proving Ground, N. Mex.
- Popovich, R. G., 1019 Georges Rd., New Brunswick, N. J.
- Powley, R. K., 11167-62 Ave., Edmonton, Alta., Canada
- Prier, H. W., 3030 S. Polk, Dallas, Tex.
- Pyle, C. A., Dyn. SVS. Br., EMLD, White Sands Proving Ground, N. Mex.
- Rachlin, M., 1216 Unruh Ave., Philadelphia, Pa. Ramant, S., Mrtillery Static Workshop, Deolali, Nasik Dt., Bombay State, India
- Rao, V. K., c/o V. Ramamurti 5/50 Venkatrayudu, Pulla, Eluru Taluk Andhra, India
- Raymond, J. E., 8912—116 St., Edmonton, Mta., Canada

Reasor, W. J., 84 Peachtree St., N.W., Atlanta, Ga Reinke, E. E., 15124 S.E. 43, Bellevue, Wash, Rogers, L. E., 4518 Cleveland, Kanus City 30, Mo, Rosenstein, M., 4528 – 215 PL, Bayside, L. L., N. Y. Rosenthal, M. H., 44 Highland St., Sharon, Mass, Russell, D. H., 649 Hoey Ave., Longbranch, N. J.

Rust, M. F., 4837 Avondale Dr., Fort Wayne 5, Ind.

(Continued on page 66/1)

Eliminates a costly production step!

Every production step saved *is money saved*! And production savings increase steadily with every Hermetic Mechanical Assembly used. The integrally glassed assembly terminals eliminate the soldering of terminals to enclosure covers. To the manufacturer, this means a profit increase!

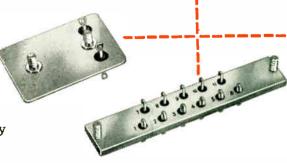
Hermetic Vac-Tite^{*} Seals are available in an unparalleled selection of mechanical designs that provide maximum economy and mounting security.

If requirements call for unit headers — Hermetic can supply them with studs attached, shaped to fit enclosures or cans. For problems concerning terminal strips—Hermetic can provide terminal strips with or without studs and special mounting features, with integrally glassed terminals that offer the advantages of the arc-resistance of glass, and one-piece assembly, modular construction.

Whatever the problem in mechanical assemblies, whether it be color-coded terminal plates, lock-ring safety seals, or attached bracket seals — specially designed Hermetic Vac-Tite* Seals can furnish the money-saving solution to your problem.

Write for engineering assistance, data, and prices.

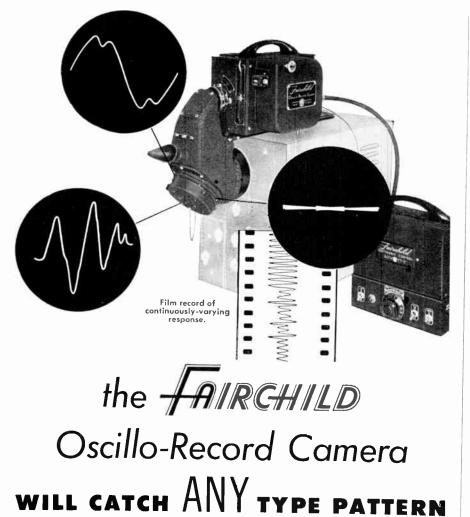
*Vac-Tite is Hermetic's new vacuum-proof, compression construction glass-to-metal seal.


NIA

Hermetic Seal Products Company

29 South 6th Street, Newark 7, New Jersey

FOREMOS


ΤU

FIRST AND FO PROCEEDINGS OF THE I.R.E. April, 1955 1

N

1

RIZAT

Any type of wave pattern-stationary, single-transient or continuously varying, can be photographed with the Fairchild Oscillo-Record Camera. Film speed is electronically controlled and continuously adjustable for all speeds from 1 to 3600 inches per minute (on special order, 2 to 7200 inches per minute). You can adjust to the correct speed for maximum clarity without wasting film. The sprocket film drive eliminates film slippage.

The Oscillo-Record will accommodate either 100-, 400- or 1000-foot lengths of 35 mm film. The entire length of film can be exposed at any speed. Fairchild's top-of-scope mounting permits easy adjustment of the oscilloscope controls and eliminates the use of a tripod.

Fairchild-Polaroid® Oscilloscope Camera

You can produce a print of any stationary or single-transient pattern in one minute with this Fairchild camera. The trace reads from left to right and is reduced to exactly one-half life size for easy measurement. Two images may be exposed on each $3\frac{1}{4} \times 4\frac{1}{4}$ print.

For more information on Fairchild oscilloscope cameras and how they can assist you in engineering and research analysis, write Fairchild Camera and Instrument Corporation, 88-06 Van Wyck Expressway, Jamaica, N. Y., Department 120-22H.

OSCILLOSCOPE RECORDING CAMERAS

(Continued from page 64A)

Ryan, F. A., United Aircraft Products, Inc., 1116 Bolander Ave., Dayton, Ohio

Ryan, P. J., 7 Druid Ct., Tuscaloosa, Ala.

- Rymsha, A. F., 26 Longfellow Dr., Rahway, N. J. Sallus, G. M., 1045 Wahler Pl., S.E., Washington 20, D. C
- Sanders, S., 3410 N.W. Seventh Ave., Miami, Fla.
- Sato, R. H., 1548 Glen Ave., Wahiawa, Oahu, T. H. Sawyer, C. E., 512 Main St., Acton, Mass,
- Schlaeppi, H. P., Dipl El. Ing. ETH, Rigistrasse 31, Zurich 6, Switzerland

Schoenduve, H. W., Westron Sales & Engineering, 7407 Melrose Ave., Los Angeles 46, Calif.

- Schulz, F. J., 289 Beechwood Ave., Union, N. J. Schunneman, R. F., Bell Telephone Laboratories,
- Inc., 463 West St., New York 14, N. Y. Scofield, B. L., 541 Monticello Dr., Falls Church,
- Va. Shapiro, H., c/o General Delivery, Haselton Branch, Rome, N. Y.

Shapiro, S., 855 N. Detroit St., Los Angeles, Calif. Sherburne, R. K., Box 946, State College, N. Mex.

Shirley, J. N., 7400 Hardy, Overland Park, Kans. Silverberg, A., 1475 President St., Brooklyn 13,

- N. Y. Smith, G. A., 11431-63 St., Edmonton, Alta., Canada
- Smith, W. M., 1420 Saltair Ave., Los Angeles, Calif. Smyton, S. A., 5820 Baltimore Ave., Philadelphia 48. Pa.
- Sroufe, S. J., Jr., 1116 N.W. 40, Oklahoma City 18, Okla.
- Staats, R. U., 4208 N. 45 Pl., Phoenix, Ariz.
- Stites, R. S., 4002 N. 48 Pl., Phoenix, Ariz.
- Stoughton, P. N., Treetops La., Poughkeepsie, N. Y.
- Sullivan, O. J., 4008 Cresthaven Rd., Dallas, Tex. Swank, D. A., Electronics Dept., High Energy Physics Laboratory, Stanford University,
- Stanford, Calif. Swanson, E. S., 4925 Gaywood Dr., Fort Wayne, Ind.
- Theall, C. E., Jr., Cold Springs Rd., R.F.D., Liverpool, N. Y.
- Thomas, W. M., 5935 S. Justine St., Chicago 36, I11.

Thompson, D. I., 4517 Leeds St., El Paso, Tex.

- Thurmond, F. S., Jr., 6000 Lemmon Ave., Dallas, Tex.
- Tiller, R. W., 12-11234-116 St., Edmonton, Alta., Canada

Trump, B. C., 6009 Green Tree Rd., Bethesda, Md. Visotsky, V. M., 3834 Evans St., Los Angeles, Calif. Vlach, G., 1934 S. 60 Ct., Cicero, Ill.

Wagner, N., 1765 S. Alamo, Las Cruces, N. Mex.

Wait, W. H., 7726 Joplin St., Houston 17, Tex.

Wallis, J. C., 2406 Kelly Ave., Gulfport, Miss.

- Ward, J. R., III, 6332nd Fld. Maint. Sqdrn., Box 512, APO 239, San Francisco, Calif.
- Weissman, N., c/o Engineering WLWD-TV, 4595 S. Dixie Hgwy., Dayton 9, Ohio
- Whiteside, J. R., 594 Summerdale Ave., Glen Ellyn, HI.
- Wolf, H. S., 3811 Oakford Ave., Baltimore 15, Mo.
- West, T. J., 1133 Mary St., Elizabeth, N. J. Whitacre, J. W., 2313 Alpha St., Lansing, Mich.
- Whiteside, R. L., 4450 Quensnelle Dr., Vancouver 8, B. C., Canada
- Wiant, W. E., 3215 Hursh Pl., N.W., Canton 8, Ohio
- Williams, F. K., 10357 De Soto Ave., Chatsworth., Calif.
- Wines, A. J., Sr., 667 S. Seventh Ave., Mt. Vernon, N. Y.
- Wolkon, D., Superior Magneto Corp., 3B-06-19

Ave., Long Island City 5, L. I., N. Y. Wylie, A., 12611-124 St., Edmonton, Alta., Canada Yoshizuka, R. K., Box 9049 TAS, Fort Bliss, Tex. Yourke, H. S., 9 Wainwright Ave., Yonkers 2, N. Y. Ziegler, A. A., C.M.R. 105, Peoria, Ill.

(Continued on page 68A)

WHEN WRITING TO ADVERTISERS PLEASE MENTION - PROCEEDINGS OF THE I.R.E.

FOR ALL KU-BAND APPLICATIONS SPECIFY THE FINEST KLYSTRON...

VARIAN'S NEW VA-94

TYPICAL OPERATION

Frequency	16.5 kmc
Resonator Voltage	300 v
Resonator Current	38 ma
Reflector Voltage	- 150 v
Power Output	
(VSWR < 1.1)	40 mw
Electronic Tuning	65 mc

Varian now offers the most advanced reflex klystron ever developed for airborne radar local oscillator and beacon service. *The VA-94* provides a minimum power output of 20 mw throughout its range of 16 to 17 kmc...to give you absolutely reliable operation at any altitude without pressurization.

Exclusive Varian features include a unique brazed-on external tuning cavity . . . to assure you of excellent frequency stability, extremely low microphonics, slow tuning rate and long tuning life. Its single screw tuner adapts easily to motor tuning. The VA-94 weighs only four ounces and mates directly with standard waveguide flanges.

FOR EXPERIMENTAL APPLICATIONS...SPECIFY THE VERSATILE NEW VA-92. Varian's VA-92 meets all reflex oscillator requirements in the frequency range 14 to 17.5 kmc... is especially suitable for signal generators and laboratory testing. It gives you the ease of tuning, ruggedness and reliable performance that has made Varian klystrons the first choice among microwave engineers. Special features include linear reflector voltage tracking, wide tuning range and high altitude operation without pressurization.

FOR OTHER K-BAND APPLICATIONS ... SPECIFY V-39, V-40 and VA-96.

FOR COMPLETE SPECIFICATIONS and technical data on the outstanding new VA-94, and other Varian klystrons, contact our Application Engineering Department.

IN KLYSTRONS, THE MARK OF LEADERSHIP IS

Representatives in all principal cities

(Ultra-Low Frequency per I.R.E. "Standards on Electroacoustics, 1951")

Voltage Measurements

with the NEW

BALLANTINE VOLTMETER

FREQUENCY RANGE 0.05cps to 30KC down to 0.01cps with corrections

VOLTAGE RANGE 0.02 to 200V peak to peak lowest reading corresponds to 7.07mv rms of a sine wave

ACCURACY 3% throughout ranges and for any point on meter

IMPEDANCE 10 megohm by an average capacitance of 30 yyf

OPERATION Unaffected by line variation 100 to 130V, 60 cycle, 45 watt

APPLICATIONS

The Ballantine Infrasonic Voltmeter Model 316 has been introduced to satisfy a growing need for an instrument to facilitate the measurement of ultralow frequency potentials as are encountered in low frequency servomechanisms, geophysics, biological research, and in loop analysis of negative feedback amplifiers. Among many other uses, it will serve as a very satisfactory monitor for the output of commercially available ULF signal generators most of which are not fitted with an output indicator.

FEATURES

PRICE: \$290

MODEL

316

- Pointer "flutter" is almost unnoticeable down to 0.05cps, while at 0.01cps the variation will be small compared to the sweep observed when employing the tedious technique of measuring infrasonic waves with a dc voltmeter.
- A reset switch is available for discharging "memory" circuits in order to conduct a rapid series of measurements.
- The reading stabilizes in little more than 1 period of the wave.
- Meter has a single logarithmic voltage scale and a linear decibel scale.
- Accessories are available for range extension up to 20,000 volts and down to 140 microvolts.

For further information on this and other Ballantine instruments write for our new catalog.

(Continued from page 66A)

The following transfers and admissions were approved to be effective as of March 1. 1955:

Transfer to Senior Member

Aldrich, D. F., 1030 Hoffman St., Elmira, N. Y.

Bawer, L. I., 16-27 Eberlin Dr., Fair Lawn, N. J.

Beier, M. G., 440 Fairfield Ave., Elmhurst, Ill. Benson, M. C., Box 1316, Shreveport, La.

Bidlack, C. S., 14 Gregory Hall, Urbana, Ill. Boltz, H. A., 18069 Outer Dr., Dearborn, Mich.

- Brachman, M. K., 2237 Republic National Bank Bldg., Dallas 1, Tex.
- Brent, L. L., 1330 N. Newstead Ave., St. Louis 13, Mo.
- Brooks, J. F., Box 1042, U. S. Naval Station, Key West, Fla.
- Carman, W. H., 2701 Parsifal, N.E., Mbuquerque, N. Mex.

Chapin, E. W., 6 Fairfield Dr., Catonsville 28, Md. Cleveland, W. C., Jr., 4644 Dana Dr., La Mesa,

- Calif. Courad, E., 9027 Molly Woods Ave., La Mesa,
- Calif. Copeland, W. H., 11188 Ophir Dr., Los Angeles 24,

Calif. Cotsworth, A., III, 809 Linden Ave., Oak Park, III.

Criss, G. B., Box 208, R.F.D. 2, Lansdale, Pa. Deerbake, W. J., Watson Laboratory, 612 W. 115

St., New York 27, N. Y. Githens, T. A., Zenith Radio Corp., 6001 W.

Dickens Ave., Chicago 39, 111.

- Golden, N. J., 161 Topsfield Rd., Ipswich, Mass. Gorbunoff, A., 219 N. Vale Ave., Villa Park, Ill.
- Graber, R. E., Box 783, San Fernando, Calif.

Graham, R. W., Graham Electronic Products Co.,

6502 E. Cooper St., Tucson, Ariz.

Gray, R. O., 2305 S. 16 Ave., Broadview, III.

Green, J. S., 6422 Wynkoop St., Los Angeles 45, Calif.

Guerrero, E. S., 115 Witmer St., Los Angeles 26, Cal'f.

Hayt, W. H., Jr., Electrical Engineering School, Putdue University, W. Lafayette, Ind.

Kups, E. F., 552 S. 19 St., Newark 3, N. J Langford, R. C., 920 Adams Ave., Elizabeth, N. J.

Larkin, K. T., Box 359, Wayland, Mass

Larsen, F. J., Honeywell Research Center, 500 Washington Ave., S., Hopkins, Minn,

Lindeman, B., 419 Randolph St., Huntsville, Ala. Loth, P. A., 11 Wishing La., Hicksville, L. L. N. Y. Loughlin, R. G., 31 Laurel Dr., New Hyde Park,

L. I., N. Y Moynahan, G. F., Jr., Box 582, Fort Huachuca,

Ariz.

Nordby, R. M., 1860 Sherman Ave., Evanston, Ill. O'Donnell, R. J., 412 Westgate Rd., Baltimore 29, Md.

Peterson, A. W., 150 Elmwood Ct., Emporium, Pa. Raybin, M. W., 1373 E. Kingsley Ave., Pomona, Calif.

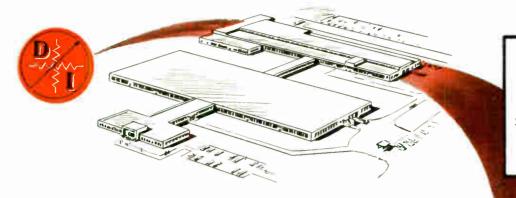
Reedy, P. H., 1742 Grevalia St., Apt. E. S. Pasadena, Calif.

Reiche, H., 235 Cooper St., Ottawa, Ont., Canada Riepka, H. C., Kaiserstr. 23, Porz/Rhein (22c),

Germany

Robinson, L. P., 1438 Loma Vista, Pasadena, Calif. Rohde, L., 7 Tassiloplatz, Munchen 9, Germany Ruze, J., 231 Beacon St., Boston, Mass.

Salz, N. P., Sylvania Electric Products, Inc., Bay-


side, L. I., N. Y. Scheneman, E. E., 412 Oak Ct., Baltimore 28, Md. Scheraga, M. G., 29 Westview Rd., Verona, N. J. Snelling, E. A., 5930 S. Kingsington Ave., La-

Grange, Ill. Steen, W. J., 5442 N. Lamon Ave., Chicago 30, Ill. Stewart, C., 2711 Wilson Ave., S.W., Cedar Rapids, Iowa

(Continued on page 71A)

WHEN WRITING TO ADVERTISERS PLEASE MENTION - PROCEEDINGS OF THE I.R.E.

Servo Amplifiers Electronic Chassis Gear Assemblies Instrumentation Sheet Metal Cabinets Gyros Radar Computers

Precision Parts To Products Weighing Tons ... A Range Of Unusual Versatility!

From Drawing Board To Finished Product ... All Under One Roof!

In Daystrom's 350,000 sq. ft. plant the very finest modern machinery and equipment has been acquired for the manufacture, assembly and test of these products. Daystrom's research, development, engineering and manufacturing specialists have a collective experience that embraces electronics, nuclear instrumentation, computing and electro-mechanical devices. To supplement these creative skills Daystrom also has specialists in metallurgy and welding, as well as organic and plated finishes. Daystrom Instrument has earned its place in the expanding Daystrom Incorporated family.

Write Us For Information or Specifications

DIVISION OF DAYSTROM INCORPORATED

Radio Servo Controls Gun Fire Control Systems Ordnance Telescope Mounts Nuclear Instrumentation Precision Potentiometers Electrical Test Equipment

ARCHBALD, PENNA.

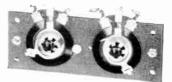
Affiliates: American Type Founders. Inc., Elizabeth, N. J.; Daystrom Furniture Div., Olean, N. Y.; Daystrom Electric Corp., Poughkeepsie, N. Y.; American Gyro. Santa Monica. Calif.: Heath Company, Benton Harbor, Mich.

World Radio History

NEW MALLORY Multiple Controls

New strip-type Mallory controls are available in single, dual and triple sections.

Can Cut Your Production Costs...


UST added to the Mallory line of carbon controls is a new, completely different series that make possible real economics in your production. By means of a unique strip-type design, side-by-side dual and triple units are now available in a form that takes only as much labor to mount as a conventional single unit.

In addition, because of the radically simplified design, Mallory is able to offer multiple units at materially lower cost than that of corresponding numbers of conventional single controls.

WIDE VARIETY OF MODELS

The unusual flexibility of the new design makes it possible to offer many adaptations... at low cost. Mounting arrangement can be twist tabs or holes punched for riveting. Terminals can be solder lugs or wire wrap solderless types. Phenolic hex shafts are available in lengths up to 7g'' FMS, in 1g'' increments, with screwdriver slot for ease in adjustment. Resistances from 250 ohms to 10 megohms are available. Rotational stops, ground ring or provision for a flexible lead can be provided.

A Mallory control engineer will be glad to consult with you on how these new controls can be applied to your present or future equipment. For technical data, write or call Mallory today.

Rear view shows simple, rugged design, with resistance wafer attached directly to phenolic panel,

Parts distributors in all major cities stock Mallory standard components for your convenience.

Serving Industry with These Praducts: Electramechanical—Resistors • Switches • Television Tuners • Vibrators Electrachemical—Capacitors • Rectifiers • Mercury Batteries Metallurgical—Contacts • Special Metals and Ceramics • Welding Materials

Expect more . . . Get more from

WHEN WRITING TO ADVERTISERS PLEASE MENTION - PROCEEDINGS OF THE L.R.E.

⁽Continued from page 68.4)

Stroh, W. J., Tower Lakes, Barrington, III. Vincent, H. F., 305 Edgewood Dr., Huntsville,

Ma. Wade, E., 5337 E. Falls View Dr., San Diego 15, Calif.

Wilkinson, W. C., RCA Laboratories, Princeton, N. L

Winkler, E. H., 1004 Elm St., Rome, N. Y.

Admission to Senior Member

£1

Beck, J. J., 537 Achille Rd., Havertown, Pa.

- Beckman, J. A., 11345 Rudman Dr., Culver City, Calif
- Behn, E. R., 11 Elm St., Garden City, L. L. N. Y. Brough, J. R., Borton Landing Rd., Moorestown,
- N. J. Clementson, G. C., 316 Dawnview Ave., Dayton 3, Ohio

Eaves, H. H., 1575 E. Valley Rd., Santa Barbara. Calif.

- Edmunds, E. E., 55 Queen Anne Dr., Shrewsbury, N. J.
- Eigner, H., 31 Daffodil La., Levittown, Pa. Feldmann, F., 17 Hillside Ave., Roslyn Heights,
- L. I., N. Y. Fishbein, M., 2684 West St., Brooklyn 23, N. Y.
- Glickman, M. N., 29-37 S. Sixth St., Newark 7,
- N. J. Goffi, G., 18 bis Via Verres 18 bis, Torino (811),
- Italia Gray, G. E., 3908 Johnson St., Western Springs,
- 111. Hammack, C. M., 1651 Tulane Dr., Mountain
- View, Calif. Jenssen, M., Norges tekniske hogskole, Troudheim,
- Norway
- Johnson, J. K., 1968 Park PL, Laucaster, Pa.
- Jones, H. J., 6000 Lemmon Ave., Dallas 9, Tex. Kott, W. O., 235 E. Bruce Ave., Dayton 5, Ohio
- Lee, V. W., Electrical Engineering Department, Massachusetts Institute of Technology,
- Cambridge, Mass. Loeb, J. M., Box 550, Schlumberger Instrument Co., Ridgefield, Conn.

Mattox, C. E., 209 Beverly Rd., Cocoa, Fla.

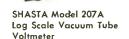
- McDavid, J. A., Headquarters, Northeast Air Command, (Dir/Comm), APO 862, New York, N. Y.
- Morgan, S. P., Bell Telephone Laboratories, Murray Hill, N. J.
- Pelham, K. F., 34 Bobrich Dr., Rochester 10, N. Y. Price, M. A., 418 S. Carlyn Spring Rd., Arlington, Va.
- Pulles, J. H., 1615 Washington St., Evanston, Ill. Reynolds, G. W., 3975 Orange Dr., Los Angeles 56,
- Calif. Sabbagh, E. M., 1800 Garden St., W. Lafayette,
- Ind. Schuler, R. G., Victor Adding Machine Co., 3900
- N. Rockwell St., Chicago 18, Ill. Spindler, C. W., Jr., 617 Arlingham Rd., Flourtown,
- Pa. Suits, C. G., Box 1088, General Electric Research
- Laboratory, Schenectady, N. Y. Watson, R. D., 9323 Wire Ave., Silver Spring, Md.
- Weber, D. W., 396-21 St., S.E., Cedar Rapids, lowa
- Wood, M. R., 108 E. 38 St., New York 16, N. Y.
- Young, C. M., General Electric Co., I River Rd., Bldg. 269, Schenectady 5, N. Y.

Transfer to Member

Allison, D. B., 727 E. Third St., Hastings, Nebr. Barringer, E. E., 4612 E. Eastland, Tucson, Ariz. Berliner, J., 100 Ringdahl Ct., Rome, N. Y. Bernard, H. F., 3670 S.W. Ninth Ter., Miami, Fla.

(Continued on page 72A)

Easy, Error-Free Reading!


New Dual Log-Scale VTVM By SHASTA

a

ient, easiest-to-read volt and decibel scales yet offered. Scale increments are widely, evenly spaced; accuracy percentage stays constant at every point, from top to bottom. Simplified range switch shows only the range in use; no chance for confusion or error.

Model 207A gives accurate measurement of ac voltages from .001 to 300 and db from -60 to +50, over a frequency range of 20 cps to 2 mc. Accuracy is \pm 3% to 100 kc, \pm 5% to 2 mc. Price only \$275.00 f.o.b. factory.

New SHASTA

A versatile, wide-range instru-

ment for measuring resistance,

capacitance, inductance, dissi-

pation factor and Q. Full-scale

ranges (in decade steps) are 1

ohm to 10 meg for resistance,

100 mmf to 100 ml for capaci-

tance, 1 mh to 100 h for induct-

ance. Accuracy is $\pm 2\%$ up to

extreme high or low ranges. In-


terpolation by two large concen-

tric dials gives readings as low

as 1/1000 full scale.

Impedance Bridge

Model 602

Impedance Bridge

Gives capacitor D measurements as low as .002, and inductor Q as high as 1000. Contains dc and 1000 cps ac bridge circuit power sources, sensitive dc and ac vacuum tube detectors. Many basic bridge circuits obtainable from single selector switch; external generators or detectors may also be used. Price is \$380 f.o.b. factory.

SHASTA offers the first major improvement in electronic instrument mechanical construction - investigate this outstanding feature! Write now for data; please address Dept. SA-4

division

BECKMAN INSTRUMENTS INC. P.O. Box 296, Station A • Richmond, California

<u>World Radio</u> History

LOWER YOUR SET COSTS

WITHE THEIS

LOWER-PRICED DEPENDABLE SPEAKER

line of speakers designed for peak performance. Break off or cast magnet may be used.

ow priced only because of unusually efficient manufacturing techniques.

Produced under rigid quality control. Metal stampings completely

manufactured in our own Tool, Die and Punch Press Departments. Exceptionally thorough final inspection.

IDlugs, transformers and/or brackets to your specifications.

ower your set costs with this dependable speaker. Write for further information TODAY.

(Continued from page 71.4)

Bernstein, E., 909 W. University Pkwy., Baltimore 10. Md.

Bowen, H. C., Box 202, Warren, R. I.

- Buck, D. T., 37-41 Marcy St., Freehold, N. J. Bunker, W. M., 1702 Hermosa Ave., Apt. 8, Her-
- mosa Beach, Calif. Busching, H. L., 100 Carpenter Ave., Sea Cliff,
- L. I., N. Y. Bussgang, J. J., 185 Hancock St., Cambridge 39,
- Mass Cannizzaro, M., 22 Division St., Waterbury 36,
- Conn. Caquelin, M. W., 616-26 St., S.E., Cedar Rapids, Iowa

Christiansen, D., 12 Hay St., Newbury, Mass.

- Coble, R. B., 645-34 St., S.E., Cedar Rapids, Iowa
- Colletti, N., 783 S. Hawkins Ave., Akron 20, Ohio Connally, R. E., 515 Cottonwood Dr., Richland, Wash.
- Cottle, D. W., Doyle Rd., R.F.D. 3, Baldwinsville, N. Y.
- Craine, W. P., 3758 N. Pacific Ave., Chicago 34, III.
- Crane, R. L., 528 Ann La., Levittown, L. L. N. Y. Dale, P. R., RCA Service Co., Government Service Division, Gloucester, N. J.
- De Janovich, C. R., 5034 Farwell Ave., Skokie, Ill, Dickinson, I. E., McClatchy Broadcasting Co.,
- Seventh and Eye Sts., Sacramento, Calif. Dresser, S. R., Jr., 104 Elmwood Ct., Emporium, Pa.
- Ellis, P. V., 6334 N. Missouri Aye., Portland 11, Ore.
- Ettman, R. J., 127 Galveston St., S.W., Washington 24. D. C
- Espenlaub, W. C., 56 Hillside La., E., Syosset, L. I., N, Y
- Falkenbach, G. L. Lee Laboratories, Inc., Genesee, Pa.
- Flashner, G., 24 East St., Beverly, Mass,
- Friedman, D., "Caprice" Long Hill Rd., Oakland, N. J.
- Glomb, W. L., 39 Surrey La., Clifton, N. J.
- Hamann, K. R., Cleveland Recording Co., 1515 Euclid Ave., Cleveland 15, Ohio
- Heyesh, A. H., 79-50 Langdale St., New Hyde Park, L. I., N. Y.
- Horowitz, J., 2682 W. Second St., Brooklyn 23, N. Y.
- Howard, D. D., 4230 Oak La., S.E., Washington 22, D. C.
- Johnson, L. B., Range Instrumentation Dept., NAMTC, Point Mugn, Calif.
- Johnson, W. F., 1062 Portola Dr., Monterey, Calif. Larsen, R. L., 5943 N. Warnock St., Philadelphia 41. Pa.
- Luongo, J., 23 Upland Way, Cedar Grove, N. J.
- Machlis, J., 17245 Lahey St., Granada Hills, Calif.
- Makleff, P., 1 Haifa Rd., Tel Aviv, Israel
- Mitoma, E. Y., 6658-13 St., N.W., Washington 12, D. C.
- Montgomery, D. N., 4219 Lynd Ave., Arcadia, Calif.
- Moyer, J. N., 3235 Norwalk Dr., Dallas 20, Tex.
- Norwood, C. A., 830 Gales Ave., Winston Salem, N.C.
- Oettinger, A. G., Computation Laboratory, Harvard University, Cambridge 38, Mass.
- Ossman, E. A., 3 Juniper St., Rochester 10, N. Y.

Piskor, J., 1000 Capitol Ave., Hartford 6, Conn. Puckett, T. H., 410 N.E. 14 St., Oklahoma City, Okla.

- Quist, W. G., 103 Williston, Wheaton, Ill.
- Rabin, R., 105-34-65 Ave., Forest Hills, L. L. NV
- Reiling, G. E., 2226 Winston Ave., Louisville 5, Ky.

(Continued on tage 75.4)

WHEN WRITING TO ADVERTISERS PLEASE MENTION - PROCEEDINGS OF THE L.R.E.

Hicbert, R. D., 1792-37 St., Los Mamos, N. Mex,

THE PILOT BAILED OUT... BUT Bendin Pacific TELEMETERING

"STAYED WITH THE SHIP"

Up to the last split second of impact, **Bendix-Pocific** telemetering systems continue to furnish information which would never be obtained with other instrumentation methods. Virtually every condition encountered while an airplane or missile is under flight test – flutter – strain – vibration – temperature – pressure – acceleration – voltages – and motion can be accurately and continuously relayed from lightweight, compact airborne equipment by a crystal controlled r.f. link to an airborne or ground based receiving and recording station.

While a flight is in progress, test results can be observed remotely and flight conditions varied by radio communication. The crew is free to concentrate on flying the airplane . . . dangerous conditions can be averted . . . or where a crash is unavoidable, the complete story is permanently available for detailed analysis.

A number of airframe companies are speeding up flight testing and cutting costs by using **Bendix Pocific** telemetering systems. We can aid you, too, in your flight test problems through this method of remote instrumentation.

Typical universal airborne package is provided with plug-in components to facilitate changes in test program.

PACIFIC DIVISION • Bendix Aviation Corporation

11600 Sherman Way, North Hollywood, California

April. 1955

Good positions available for Circuit Design and Test Equipment Design Engineers at all levels. Contact W. C. Walker, Engineering Employment Manager.

East-Coast Office: 1207 475 5th Ave., 1207 N. Y. 17 D

Dayton, Ohio Wa 1207 American Blvd., Dayton 2, Ohio 1701

Washington, D. C. Canadian Distributors: Suite 803, Aviation Electric, Ltd., 1701 "K" St., N. W. Montreal 9

Canadian Distributors: Export Division: Aviation Electric, Ltd., Bendix International Montreal 9 205 E. 42nd St., N. Y. 17

World Radio History

Another Sangamo First ...

now you can get mass-produced

PLUG-IN CAPACITORS for printed circuitry applications

Sangamo now offers you production quantities of plug-in paper tubular and dry electrolytic capacitors for use in your automated pro-

duction of under-chassis assemblies. These Sangamo plug-in capacitors are designed specifically for use in printed circuit applications.

PLUG-IN TUBULAR PAPER CAPACITORS

These plug-in paper tubulars incorporate all the internal design features of the famous Sangamo Telechief. They come in a molded bakelite case with a moisture resistant end fill, and leads cut and properly spaced to fit. They are available in a range of popular sizes for almost any application.

PLUG-IN ELECTROLYTICS

Leads will not contaminate solder pots during the printed circuitry dipping process...heat created when leads are soldered will not injure Sangamo plug-ins because terminals are designed so that the unit stands off from the circuit board ... this "stand-off" feature also permits the designer to run additional circuits under the capacitor.

Write for complete information.

WHEN WRITING TO ADVERTISERS PLEASE MENTION - PROCEEDINGS OF THE L.R.E.

SANGAMO ELECTRIC COMPANY

MARION, ILLINOIS

SC55+1 April, 1955

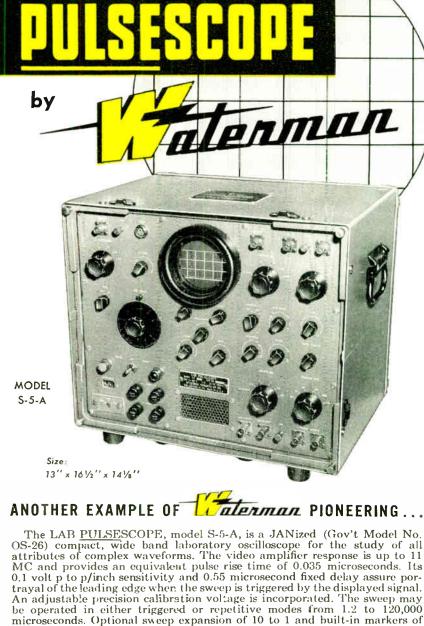
3

(Continued from page 72A)

- Robertson, G. R., 717 N. Lake Ave., Pasadena 6, Calif.
- Schreiner, R. J., 34 Pier St., Vonkers 5, N. V.
- Simmons, D. J., 4305 Fairfax, Fort Worth, Tex.

Stastny, G. F., 202 W. Walnut St., Alexandria, Va.

- Stone, R. M., 1816 Puritan Dr., Irving, Tex. Sutton, A. T., 3913 Cross Creek Rd., Nashville 12,
- Tenn. Tannenbaum, D. A., 1025 Collings Ave., W.
- Collingswood, N. J. Thayer, J. W., 4553 W. 150 St., Cleveland 11, Ohio
- Vehslage, E. P., 14 Stoner Ave., Apt. 33K, Great Neck, L. I., N. Y.
- Vick Roy, J. W., 223 Pembrook Ave., Morrestown, N. J.
- Walance, C. G., 200 Via Colorin, Palos Verdes Estates, Calif.
- Ward, D. L., 1914 Beach St., Winston-Salem, N. C. Williams, R. L., 2705 University Dr., Darham,
- N.C. Willsey, R. H., 1877 Chaucer Dr., Cincinnati 37, Ohio
- Yarosh, N. P., Goodyear Aircraft, Co., Akton, Ohio


Admission to Member

- Anderson, W. W., 905 S. Tenth St., Burlington, lowa
- Archibald, W. R., Box 387, Alamogordo, N. Mex. Backus, J. W., I.S.M., 590 Madison Ave., New York, N. Y.
- Barbeau, A. R., 314 Knoedler Rd., Pittsburgh 36, Pa.
- Barton, B. F., Cooley Bldg., University of Michi gan, Ann Arbor, Mich.
- Bayliss, R. E., IT Robert Ave., Woburn, Mass. Beckman, D. L., 359 Higbland St., South Amboy,

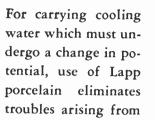
N. L Beidler, R. T., 303 Ruby St., Lancaster, Pa.

Bohr, E. T., 1708 McAllister Dr., Huntsville, Ala.

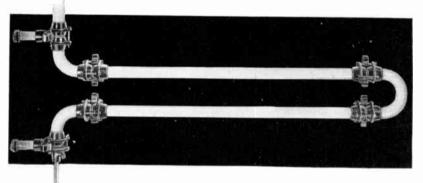
- Brewster, P. J., 92 E. Logan St., Philadelphia 44, Pa.
- Brown, D. J., Hq. NEAC D Comm Opns, APO 862, cro Postmaster, New York, N. Y.
- Brown, E. R., Jr., Philee Corp., Tioga and "C" Sts., Philadelphia, Pa.
- Buckner, G. O., Jr., 1628 Old Spanish Trail, Houston 25 Tex.
- Bugeja, A. A., 6, Leighton PL, London N.W. 5, England
- Burgess, E. G., Jr., 83 47 116 St., Kew Gardens, L. L. N. Y.
- Burns, W. E., Rombout Ridge, Poughkeepsie, N. Y. Busch, C. W., 19 Holbeinstrasse, Bremen, American
- Zone, Germany Byrd, D. J. P., International Telemeter Corp., 2000
- Stoner Ave., Los Angeles 25, Calif. Cali, L. W., 717 N. Lake Ave., Pasadena 6, Calif.
- Campbell, W. O., 515 Walker Ave., Baltimore 12, Md.
- Christianson, L. F., Electronic Associates, Inc., Long Branch, N. J.
- Colistra, W. P., Sperry Gyroscope Co., Great Neck, L. L. N. Y.
- Collins, W. H., 2302 Lee Piwy., Apt. 304, Arlington, Va.
- Constable, R. C., 84 Chestnut Ave., Floral Park, L,L,N,Y
- Coombs, W. F., Jr., 25 Longview Ter., Rochester 9, N. Y.
- Cork, H. A., 1607 E. Newport Ave., Nilwaukee 11, Wis.
- Corwin, J. J., 77 Stonecutter Rd., Levittown, L. L. N. Y.
- Cringan, F. J., c/o Canadian Aviation Electronics, Ltd., 387 Sutherland St., Winnipeg 4, Manit., Canada
- Crockett, G. R., 419 W. 49 St., Indianapolis, Ind. Cronin, H. C., 1730 Newton Rd., WTVD, Box 2009, Durham, N. C.
 - (Continued on page 76.4)

0.2, 1, 10, 100, and 500 microseconds, which are automatically synchronized with the sweep, extend time interpretations to a new dimension. Either polarity of the internally generated trigger voltage is available for synchrovolts widens the field application of the unit. These and countless addi-tional features of the LAB PULSESCOPE make it a MUST for every electronic laboratory.

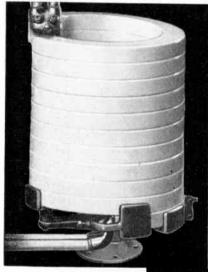
WATERMAN PRODUCTS CO., INC. PHILADELPHIA 25, PA.


CABLE ADDRESS: POKETSCOPE MEMO

WATERMAN PRODUCTS INCLUDE


5-4-C SAR PULSESCOPE® S-5-A LAB PULSESCOPE S-6-A BROADBAND PULSESCOPE S-11-A INDUSTRIAL POCKETSCOPE® S-12-B JANIzed RAKSCOPE® 5-14-A HIGH GAIN POCKETSCOPE S-14-B WIDE BAND POCKETSCOPE S-15-A TWIN TUBE POCKETSCOPE RAYONIC[®] Cathode Ray Tubes and Other Associated Equipment

World Radio History


INSULATION FOR WATER-COOLED SYSTEMS

water contamination and conductivity, sludging and electrolytic attack of fittings. Permanent cleanness and high resistance of cooling water are assured—for positive cooling and long tube life.

LAPP PORCELAIN PIPE

Inside diameters $\frac{3}{4}$ " to 3", in straight pipe, 90° and 180° elbows, fittings. Swivel-type connections. Standoff insulators attach directly to fitting bolts.

LAPP PORCELAIN WATER COILS

Twin-hole and single-hole models in sizes to provide flow of cooling water from 2 to 90 gallons per min. Cast aluminum mounting bases; lead pipe or flexible metal hose for attachment.

WRITE for Bulletin 301, with complete description and specification data. Lapp Insulator Co., Inc., Radio Specialties Division, 224 Sumner St., Le Roy, N. Y.

(Continued from page 75A)

Cushing, R. E., 5016 Lindsay Rd., S.E., Washington 21, D. C.

Davies, J. A., 1774 Griffith Ave., Owensboro, Ky. Deaderick, G. E., 6000 Lemmon Ave., Dallas 9, Tex.

Deavenport, J. E., 2214 Berwyn Dr., St. Louis 21, Mo.

Deininger, C. F., 2609 W. 112 St., Inglewood 4, Calif.

Diamond, A., 80/08 - 45 Ave., Elmhurst, L. L., N. Y. DiFusco, F. J., 7 Micieli PL, Brooklyn 18, N. Y.

Ebrlich, C. L. 1624 N. Farwell, Milwaukee 2, Wis.

Fisk, W. J., 3606 S. Ewing, Dallas 16, Tex.

Fitzgerald, J. J., 11 Brookford St., Cambridge 40, Mass.

- Fix, W. G., Carborundum Co., Globar Division, 3335 W. 47 St., Chicago 32, Ill.
- Fogelberg, J. E., 2812 Benson St., Camden, N. J. Gahn, E. H., 7814 Maplewood Ind. Ct., St. Louis
- 17. Mo. Garner, W. E., 6405 Eighth Ave., Hyattsville, Md.
- Garten, L. A., c/o Louis A. Garten & Associates, 25 Valley Rd., Montclair, N. J.
- George, R. E., 27 Oldert Dr., Pearl River, N. Y. Girerd, J. L. M., 24 Boulevard Raspail, Paris 7ieme, France
- Gonzalez-Correa, E., 133 Rumson Rd., Little Silver, N. J.
- Gregory, C. A., Jr., Box 1 F. Richmond, Va.
- Grossman, H. W., Box 912, Fort Huachnea, Ariz,
- Hall, G. N., General Electric Co., Engineering Department, Clyde, N. Y.
- Harder, D., 110-45 Queens Blvd., Forest Hills, L. L. N. Y.
- Havens, J. D., 124 Grand St., Burlington, Iowa
- Hesse, J. F., 719 Lenrey Ave., El Centro, Calif,
- Hinds, W. C., Jr., 14 Turner St., Presque Isle, Me, Hiser, E. F., Jr., Bendix Radio, McClellan, Calif.
- Hixson, W. C., 5503 Mayfair Dr., Forest Pk., Pensacola, Fla.
- Hogg, F. L., 37 Stormont Rd., Highgate, London N.6, England
- Hurlbut, J. F., 2240 S. Adams St., Denver 10, Colo.
- Israel, F., 1034 Maplewood Dr., Falls Church, Va.
- Johnson, M. D., 803 Northview St., Tullahoma, Tenn.
- Jones, M. E., 901 N. Third St., Burlington, Iowa Katz, H. W. General Electric Electronics Labora-
- tory, Rm. 119, Bldg, 3, Syracuse, N. Y. Kay, A. F., 474 Richmond Ave., Maplewood, N. J. Kay, D. H. J., 4660 Peter St., S. Burnaby, B.C.,
- Canada Kernan, P., 32 Dunyale Rd., Towson 4, Md.
- Kinsman, R. B., 1315 Second Ave., S.W., Waverly, Iowa
- Knowles, R. D., 867 Southern Blyd., New York 59, N. Y.
- Kramer, R., 6 Norfolk Ter., Dorchester 24, Mass,
- Laudon, H., 39/25 51 St., Woodside 77, L. L. N. Y.
- Lawless, J. H., USS Newport News (CA 148), c/o FPO, New York, N. Y.
- Lewis, E. M., 111, 34 School La., Strafford, Wayne, Pa.
- Lodge, C. R., San Diego State College, San Diego 15, Calif.

Lofgren, F. W., 58 Hume Ave., Medford 55, Mass. Loposer, T. L., 3543 S. Ewing Ave., Dallas 16, Tex. Ludekens, L. E., 621 N. Hidalgo Ave., Alhandra, Calif.

McManus, R. P., 2752 Nipoma St., San Diego 6, Calif.

- Meissinger, H. F., Guided Missile Division, Hughes Research & Development Laboratories, Culver City, Calif.
- Mendelson, B. G., 2643 W. Balmoral Ave., Chicago 25, 111.

(Continued on page 78.4)

WHEN WRITING TO ADVERTISERS PLEASE MENTION - PROCEEDINGS OF THE 1.R.E.

THERE ARE NONE FINER!

Power RHEOSTATS

TRU-OHM POWER RHEOSTATS

are more and more in demand and there are many reasons. These include finest quality, better service, and delivery; UL approval; variety from 25 watts up; fairest prices; AND TRU-OHM expedites for YOU ... IRU-OHM ships on time.

DIVISION OF Madel Engineering & Mig Inc. 2800 N. Milwaukes Avenue, Chicogo 18, 111.

the summered backness "Largest producers of wire-wound resistors in the U.S.A.

> Power Rhoustails Frand Resistors. Adjustoble Registers, "Ernnahm" Banisters

MANUFACTURERS

World Radio History

Transfel Bernster

WHEN RESISTANCE OF HIGHEST QUALITY IS A MUST. rpc High Megohm Resistors Fill The Bill!

Time tested and approved, RPC's High Megohm Resistors, Type H, are eminently suited for electrometer circuits, radiation equipment and as high resistance standards in measuring equipment. Resistance values as high as 100 million megohms! Used by leading laboratories and manufacturers.

STABILITY. Permanent resistance changes over long periods of time will not exceed \pm 3%. Resistance returns to original value after normal atmospheric conditions are resumed. Noise level extremely low. Effect of high humidity kept to a minimum. Low voltage and temperature coefficients.

CONSTRUCTION. High stability carbon coating on strong, non-hygro-

scopic steatite rod. Coating applied as a helix, provides very long effective resistor length in small space. This permits use of low specific resistance coatings to obtain high resistance with good stability. Permanent connection is made to ends of resistors with silver contact coating.

TOLERANCE. Standard $-is \pm 10\%$. Also available \pm 5%. In matched pairs $\pm 2\%$ to 10,000 megohms.

TERMINALS. Your choice. Tinned brass soldering terminals fastened by machine screws; with axial wire leads; or without terminals for mounting into special assemblies.

Makers of Resistors - High Megohm, High Voltage, High Frequency, Precision Wire Wound.

(Continued from base 76.4)

- Moldoff, S., 31 Winnetou Rd., White Plains, N. Y Mowatt, A. Q., Box 466, Bedford, Mass. Nardone, L. J., 76 Woodside Ave., Winthrop 52.
- Mass. Neal, J. P., 111, 921 W. Daniel St., Champaign, Ill.

61

....

- Neira, T. M., Apartado Nacional 3252, 40-22 Calle 25A, Bogota, Colombia, S. A.
- NeSmith, W. W., Box 272, Mojave, Calif. Newton, C. E., Jr., 840 Woodington Rd., Baltimore 29. Md.
- Noll, R. E., 1715 B. Waverly Way, Baltimore 12, Md.
- O'Hare, W. S., 1315 St. Paul St., Baltimore 2, Md.
- Orrick, T. W., Box 547, Williams Rd., Rome, N. Y.
- Paul, K. R., c/o Addison Industries, 9-11 Hanna Ave., Toronto 1, Ont., Canada
- Peterson, C. A., R.F.D. 1, Smethport, Pa.
- Pollard, R. E., 2135 Franklin Ave., E. Meadow, L. I., N. Y.
- Pound, A. W., 3300 Chenu Ave., Sacramento 21, Calif.
- Ramos, E., 3513-20 St., N.E., Washington 18, D. C.
- Regis, R., 69-25-182 St., Flushing, L. I., N. Y.
- Ruckstuhl, C. E., Jr., Old Range Rd., Wilton, Conn. Rudolph, J. A., 395 Beechwood Dr., Akron 20,
- Ohio
- Schaefer, L. E., 555 Broadway, Hastings-on-Hudson, N. Y.
- Schuder, J. C., School of Electrical Engineering, Purdue University, Lafayette, Ind.
- Sloan, J. E., 20 Wayne Gardens, Collingswood 7, N. J.
- Smith, G. P., Corning Glass Works, Walnut St., N. Y.
- Smith, I. A., Jr., 129 Brucemont Cir., Asheville, N. C.
- Smith, W., 505 Emerick St., Ypsilanti, Mich.
- Sommer, E. H., Jr., 159 Bickley Rd., Glenside, Pa. Spitalny, A., 103-19--68 Rd., Forest Hills 75, L. I., N.Y.
- Srinivasan, R., 27 Clarendon Rd., London W.11, England
- Starr, J. E., 1550 Collingwood St., Detroit 6, Mich. Steinkamp, W. H., Beckman Instruments, Inc., 2500 Fullerton Rd., Fullerton, Calif.
- Sussman, S. M., 409 Beacon St., Boston 15, Mass. Sutherland, L. C., Speech Department, University
- of Washington, Seattle 5, Wash. Thomas, J. A., C&A Department of Commerce, Domestic Airport Terminal Bldg., S. San
- Francisco, Calif. Thompson, R. L., 3571 Bodega Ct., Sacramento 21, Calif.
- Toscano, P. M., 122 E. Wayne Ter., Collingswood
- Traver, H. R., 10 Catherine St., Lynbrook, L. I.,

Tucker, S. M., 3302 Carolina Pl., A'exaudria, Va.

- Tutwiler, K. E., 1500 Bel-Aire Dr., Belleville, Ill.
- Wis.
- Walker, R. G., 478 Tremont Ave., Orange, N. J.
- Warren, J. D., 935 N. Blaylock Dr., Irving, Tex.
- Watson, A. L., 4018 Norfolk, Houston 6, Tex.
- White, T. M., Jr., 1015 Lindbergh Dr., N.E., Atlanta, Ga.
- Wilder, G. E., 800 Duskin Dr., El Paso, Tex.
- Wilson, L. A., Jr., 801 Calle Alvord, Tucson, Ariz. Winston, A. W., c/o Schlumberger Well Surveying Corp., Box 2175, Houston, Tex.
- Wobig, W. H., Gates Ave., Homestead Pk., R.F.D. 1, Chatham, N. J.
- Wood, H. R. A., 57, Chiltern Rd., Sutton, Surrey, England

Wright, T. E., 937 S.W. 26, Oklahoma City, Okla. Yoon, P., 7740 Livingston Rd., S.E., Washington 22. D. C.

(Continued on page 82A)

WHEN WRITING TO ADVERTISERS PLEASE MENTION - PROCEEDINGS OF THE I.R.E.

April, 1955

- 7, N. J.
- N. Y.

Wagner, W. O., 2106 A. N. 16 St., Milwaukee 5,

- Waldner, R. G., 41 Apple Tree La., Belleville, Ill.

by PYRAMID for ANY climatic condition

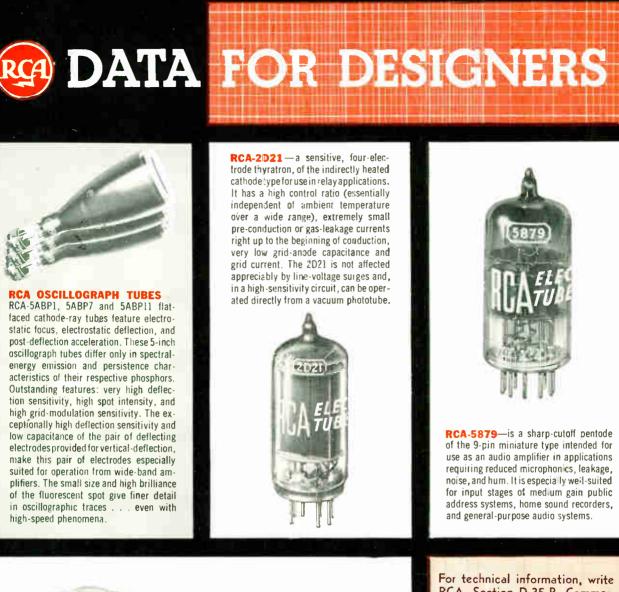
Pyramid Type CT Ceramic Case Tubular Paper Capacitors

The Pyramid version of the CT capacitor has been particularly engineered to be adaptable to any customer's requirements. Particular emphasis has been placed on resistance of Pyramid's CT's to high humidity; withstand 20 cycles of the RETMA humidity test. Non-inductive extended foil section assembly in the highest grade ceramic (steatite) tube. Tinned leads are firmly imbedded and the unit is permanently sealed against moisture or humidity. End seals can-

operating temperature.

not soften or melt even at more than 85°C

Buiton Browne


New York

For full information on available ratings and sizes request catalog J-8 or send details on your particular applications to

Sales Engineering Department Capacitor Division **PYRAMID ELECTRIC COMPANY** 1445 Hudson Blvd., North Bergen, N. J.

World Radio History

RCA-4X150-A—a very small and compact forced-air-cooled beam power tube for use in power amplifier or oscillator service at frequencies up to 500 megacycles and also as a wideband amplifier in video applications. The 4X150-A has a maximum plate diss pation of 150 watts. Terminat arrangements of this power tube facilitate its use with tank circuits of the coaxial type. Additional features: unipotential cathode ... integral radiator ... coaxial-electrode structure. Max. length: 2.468", max. diameter: 1.645"

RCA, Section D-35-R, Commercial Engineering, 415 S, 5th Street, Harrison, N.J. Or call your nearest RCA Field Office:

EAST	_HUmboldt 5-3900
	744 Broad St.
	Newark, N. J.
MIDWEST.	WHitehall 4-2900
	589 E. Illinois St.
	Chicago 11, III.
WEST	MAdison 9-3671
	420 S. San Pedro St.
	Los Angeles 13, Calif.

HARRISON, N.J.

ELECTRON TUBES — SEMICONDUCTOR DEVICES — BATTERIES — TEST EQUIPMENT — ELECTRONIC COMPONENTS

TUBE DIVISION

RADIO CORPORATION of AMERICA

April, 1955

BOARD OF DIRECTORS, 1955

J. D. Ryder President

Franz Tank Vice-President

W. R. G. Baker Treasurer

Haraden Pratt Secretary

John R. Pierce Editor

J. W. McRae Senior Past President

W. R. Hewlett Junior Past President

1955

S. L. Bailey A. N. Goldsmith A. V. Loughren C. J. Marshall (R5) L. E. Packard (R1) L. M. Pettit (R7) B. E. Shackelford C. H. Vollum H. W. Wells (R3)

1955-1956

E. M. Boone (R4) J. N. Dyer (R2) J. T. Henderson (R8) A. G. Jensen George Rappaport D. J. Tucker (R6)

> 1955-1957 J. F. Byrne

Ernst Weber

George W. Bailey Executive Secretary

John B. Buckley Chief Accountant

Laurence G. Cumming Technical Sceretary

Evelyn Davis Assistant to the Executive Secretary

Emily Sirjane Office Manager

Responsibility for the contents of papers published in the PROCEEDINGS OF THE I.R.E. rests upon the authors. Statements made in papers are not binding on the Institute or its members.

110

PROCEEDINGS OF THE IRE

Published Monthly by

The Institute of Radio Engineers, Inc.

VOLUME 43-PART I

April, 1955

NUMBER 4

EDITORIAL

DEPARTMENT

Mfred N. Goldsmith

Editor Emeritus

John R. Pierce

Editor

E. K. Gannett

Managing Editor

Marita D. Sands

Assistant Editor

ADVERTISING

DEPARTMENT

William C. Copp

CONTENTS

John F. Byrne, Director, 1955. Index to Abstracts and References. The Managing Editor 5204. A Survey of Magnetic Amplifiers. Carroll W. Lufcy 5205. The "W" Type Carcinotron Tube	402 403 404	
5205. The "M"-Type Carcinotron Tube. 		
5207. The Effective Surface Recombination of a Germanium Surface	425 427	
with a Floating Barrier		
pedance Characteristics		
Noise T. E. Talbey and A. B. Macnee	449	
 5211. On the Possibility of Amplification in Space-Charge-Potential- Depressed Electron Streams	454 462	
5214. Measurement of Minority Carrier Lifetime and Surface Effects in Junction Devices	470 477	
Correspondence:		
5215. Understanding the Gyrator	483	
5217. On Entropy Equivalence in the Time- and Frequency-Domains.	484 484	
5218. Beam-Hugging Plates for Unlimited Cathode Ray Deflection		
5219. Single-Sideband Transmission without Transient Distortion <i>H. E. Kallmann</i>	485 485	
5220. Quasi-Fraunhofer Gain of Parabolic Antennas, R. F. H. Yang 5221. On Fourier Transforms in the Theory of Cathode-Ray Tubes	486	
5222. Intrinsic Barrier Transistor.	487	
5223. Checking Codes for Digital Computers	487 487 488	
5225. Rebuttal		
5227. Continuous Radar Echoes from Meteor Ionization Trails V. R. Eshleman, P. B. Gallagher and A. M. Peterson 5228. A Mathematical Technique for the Analysis of Linear Systems	489	
5229. High-Voltage Silicon DiodesL. G. Rubin and W. D. Straub	489 49 0	
Contributors	491	
IRE News and Radio Notes:		
IRE Awards, 1955	493 494	
IRE Southwestern Conference Professional Group News and Technical Committee Notes	504 506	
Professional Group News and Technical Committee Notes		
National Conference on Aeronautical Electronics.		
1955 IRE Convention Record		
5336. Abstracts of Transactions		
5337. Abstracts and References		
Meetings with Exhibits		
	108A 122A 137A	

Copyright, 1955, by the Institute of Radio Engineer, Inc.

World Radio History

Advertising Manager

Lillian Petranek Assistant Advertising Manager

EDITORIAL BOARD

John R. Pierce, Chairman D. G. Fink E. K. Gannett T. A. Hunter W. R. Hewlett J. A. Stratton W. N. Tuttle

Change of address (with advance notice of fifteen days) and communications regarding subscriptions and payments should be mailed to the Secretary of the Institute, at 450 Ahnaip St., Menasha, Wisconsin, or 1 East 79 Street, New York 21, N.Y.

All rights of publication, including translation into foreign languages, are reserved by the Institute. Abstracts of papers with mention of their source may be printed. Requests for republication privileges should be addressed to The Institute of Radio Engineers.

John F. Byrne

DIRECTOR, 1955

John F. Byrne was born on October 26, 1905, in Cincinnati, Ohio. He attended Ohio State University, receiving the B.S. degree in Engineering Physics in 1927 and the M.S. degree in Electrical Engineering in 1928.

After a year with the Bell Telephone Laboratories, Mr. Byrne returned to Ohio State as a faculty member; he was Assistant Professor of Electrical Engineering when he left the university in 1937 to join the Collins Radio Company. In 1942, he became associated with the newly formed Radio Research Laboratory at Harvard University, the first laboratory organization to devote its time exclusively to the development of electronic countermeasures equipment and techniques. He was appointed Associate Director of the laboratory in January, 1945. From 1946 to 1950 Mr. Byrne was Vice-President in charge of research and engineering at the Airborne Instruments Laboratory in Mineola, New York. With Motorola since 1950, he was first Director of Engineering for the

Communications Division, and is now General Manager of the Riverside Research Laboratory at Riverside, California.

Mr. Byrne has served on several government committees; he was Chairman of the Electronic Countermeasures Panel of the Research and Development Board, 1949–1951, and is currently a member of the Advisory Council for the Army Electronic Proving Ground at Fort Huachuca.

For his work during World War II, Mr. Byrne received the U. S. Navy Certificate of Commendation and the Presidential Certificate of Merit. He is a member of Tau Beta Pi and Eta Kappa Nu.

Mr. Byrne became a Senior Member of the IRE in 1945, and received the Fellow Award in 1950, "for his development of a system of polyphase broadcasting and for effective engineering administration in connection with countermeasures during the war." He has served on various IRE committees including Tellers, 1949, and Awards, 1953–1955.

402

Index to Abstracts and References

To keep himself reasonably well informed today, the radio engineer must overcome difficulties which could be characterized both as gastronomical and astronomical. He must continually digest large quantities of information about myriad technical developments in a vast and complex field if he is to sustain his professional health and not wither on the vine.

His chief source of nourishment is the technical literature. But here his troubles multiply. There are in existence today at least 1,000 publications in which technical papers related to radio engineering might appear. Hence, he has even greater difficulty in finding the particular nourishment his diet requires than he has in assimilating it.

One of the few outstanding and comprehensive guides to the technical literature is Abstracts and References, which has been reprinted monthly in the PROCEEDINGS since June, 1946 from *Wireless Engineer* in England. This material is compiled from over 200 leading journals by the Department of Scientific and Industrial Research in London for *Wireless Engineer*. Its appearance in PROCEEDINGS has provided readers with an extremely valuable digest of a major portion of the significant contributions to the technical literature.

As valuable as this service has been, its usefulness has been only transitory. The abstracts can be read to great advantage as each issue appears, but once read, their usefulness ceases. There is no ready way of referring back to them at a later date and finding specific information. Thus, a glittering treasure of 30,000 abstracts now lies buried on the bookshelf, beyond the reach of the average reader.

In order that the 3,700 abstracts published last year may be of permanent reference value in the future, an annual index has been reprinted from the March, 1955 issue of *Wireless Engineer* and is published as Part II of this issue of PROCEEDINGS. The index, which is separately bound, has been mailed together with the regular issue (Part I) to all IRE members and subscribers. Since the abstracts are reprinted in PROCEEDINGS one month after they appear in *Wireless Engineer*, the index covers those abstracts which were published in the February, 1954 through January, 1955 issues of PROCEEDINGS.

We are grateful to W. T. Cocking, Editor of *Wireless Engineer*, for his co-operation in providing the material for the index. It is felt that the wide distribution thus afforded the index will add very substantially to the value of an already outstanding service.

-The Managing Editor

*

A Survey of Magnetic Amplifiers* CARROLL W. LUFCY[†]

The following paper is one of a planned series of invited papers, in which men of recognized standing will review recent developments in, and the present status of, various fields in which noteworthy progress has been made.

—The Editor

Summary-This paper was written to present the subject of magnetic amplifiers to those scientists and engineers who have not had an opportunity to observe the progress which has taken place in this field. No detailed technical discussions have been attempted and many aspects of magnetic amplifier operation and applications are only briefly mentioned.

The basic operation, along with certain fundamental circuits which represent present and potential applications, are discussed with the view in mind of indicating to the reader the range and usefulness of magnetic amplifiers.

HISTORICAL DEVELOPMENT

THE FIRST practical application of a magnetic amplifier in which actual power amplification was achieved was reported in a paper presented before the Institute of Radio Engineers in 1916.¹ This paper, by Dr. Alexanderson, described the use of such a device to amplify the current from a carbon microphone to control the output of a high frequency alternator for radio telephone transmission. As a result of Alexanderson's developments magnetic amplifier controlled alternators were incorporated in many low frequency transmitting stations constructed during World War I. Many of these installations are in operation in various parts of the world today and are still a major factor in present longrange radio communication.

By the close of World War I the vacuum tube amplifier had established itself as a powerful tool and the magnetic amplifier was pushed into the background. For many years the vacuum tube reigned supreme. Between World War I and the close of World War II, despite a few publications on magnetic amplifiers and issuance of several patents on magnetic amplifier circuitry, very little was done in this country by way of its commercial utilization. Developments in this field were carried forward elsewhere, however, most notably in Germany, with the result that by the end of World War II magnetic amplifiers of good quality were being used extensively in their military equipment. The appearance of such units as servo controllers in Luftwaffe planes, voltage regulators in the V-1 "buzz bombs," and

in the stabilization equipment of German naval fire control systems, spurred further development in this field in the post-World War 11 years. The result is that today the magnetic amplifier has emerged as a device of considerable importance in both military and industrial control systems, and shows promise of taking an ever increasing position of importance in the developments and designs of the future.

The small interest in the application of magnetic amplifiers in this country was not due to a lack of suitable circuitry for, indeed, the patent literature contains a wealth of information on circuits and applications thereof, which dates back to the early 1920's. Rather, the almost complete absence of suitable core materials in commercial quantities, plus the lack of a suitable drydisc-type rectifier, made the performance of magnetic amplifiers constructed from the available components inadequate for most purposes. The use of superior core materials and the development of the selenium dry rectifier largely account for the present successful utilization of principles and circuits which have been known for years.

BASIC PRINCIPLES OF OPERATION

Fundamentally the magnetic amplifier is a device which utilizes the change in inductive impedance of a winding placed upon a magnetic core when the magnetic core becomes saturated. By using a core material having a highly rectangular B-H loop characteristic, this change in inductive impedance can be made to be quite large and very abrupt. In this manner it is possible, through proper procedures, to make such a reactor—when placed in series with an ac power source and a load-act as a switch between the two. The result is a controller which releases power to the load in a manner analogous to the well-known thyratron-type controller.

The exact method of effecting the control of the reactor flux level, which in turn will determine the time at which saturation occurs, can be quite varied. Also the exact manner of inter-connections between the saturable reactor, main ac supply, and load can assume many configurations. The basic principles of operation, however, remain unchanged.

 ^{*} Original manuscript received by the IRE, January 7, 1955.
 † U. S. Naval Ordnance Laboratory, White Oak, Md.
 ⁺ E. F. W. Alexanderson, "A magnetic amplifier for radio teleph-terms." ony," PROC. I.R.E., vol. 4, pp. 101-120; April, 1916.

6

405

A simple magnetic amplifier circuit, the principles of operation of which are easily followed, is shown in Fig. 1. From inspection of this figure it is seen that N_p is the winding on the reactor which controls the flow of power from the main ac power source E_s to the load R_L . This control is effected by a second winding on the reactor N_c which is connected to a control source E_c . It is immediately seen that N_c and N_p are closely coupled by the reactor magnetic circuit; therefore any control signal on N_c must operate against the reflected impedance

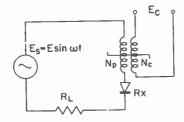


Fig. 1-A simple half-wave magnetic amplifier circuit.

from the winding N_p in effecting a desired flux change in the reactor core. This reflected impedance would normally be very low, thus requiring considerable power from E_c , if it were not for the inclusion of the rectifier element RX in series with N_p . With RX in the circuit there will be one half-cycle of the main ac power source during which the circuit containing N_p is open. During this half-cycle, the impedance reflected from N_p to N_c is very high, and it is possible for a signal from E_c to effect readily a change in flux in the reactor with a small expenditure of power. During the next half-cycle conduction through rectifier RX is permitted. If the internal impedance of E_s and R_L are low, the amount of conduction permitted during this half-cycle will be determined primarily by the inductive impedance of the winding N_p . If the reactor core has a rectangular B-Hloop characteristic as shown in Fig. 2, this inductive impedance will be extremely high as long as the reactor core is unsaturated, and very low when saturated. It is immediately apparent that power flowing from E_s through R_L can be controlled by fixing the time during this half-cycle when saturation of the core occurs. This may be accomplished by the control circuit, through N_c, during the preceding half-cycle or "control" period when conduction through RX is prohibited.

If output is obtained during the conducting or "operating" half-cycle, the reactor must be driven into saturation. Then at the beginning of the next half-cycle (or following control period) the reactor flux will return to its remanence position, which is very near saturation for rectangular loop core materials. This is shown as point A in Fig. 2(a). At this time the main power circuit is again opened by rectifier RX (Fig. 1), and power from the signal source E_c may be made to force the flux of the reactor down the loop from the remanence point. The amount of signal can be adjusted to position or "reset" the reactor flux by an amount $\Delta \phi$ to any given

point on the loop in accordance with Faraday's Law:

$$\Delta \phi = \frac{1}{N_c} \int E_c dt.$$

Thus, at the beginning of the following half-cycle (or next output half-cycle) the voltage from the supply source which will appear across N_p will cause the reactor to proceed again toward saturation from the level established or reset by the control action. If very little flux reset was accomplished during the control period [as to point B in Fig. 2(a)] the reactor very quickly saturates and most of the supply voltage appears across the load. If a large reset action has taken place [Fig. 2(b)] saturation will occur only during the latter portion of the halfcycle and very little supply voltage will appear across the load. Indeed, if sufficient reset action has occurred, the entire supply source volt-time integral may be absorbed by the reactor and no voltage will appear across the load [Fig. 2(c)]. This represents the cut-off condition and is not exactly zero because a small magnetizing current will always flow through the load in a circuit such as is being discussed.

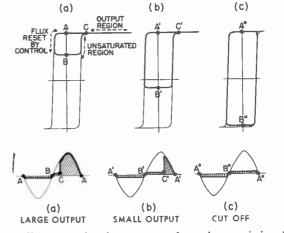


Fig. 2—Flux control and output waveform characteristics of a simple half-wave magnetic amplifier.

MAGNETIC AMPLIFIER CIRCUITS

The simple circuit of Fig. 1 is rarely used as shown. The more commonly used, practical circuits may, however, be easily built from it. The changes made are usually to circumvent certain of its inherent difficulties or shortcomings. For example, two reactors are generally used in which the N_c windings on each are in series opposition. This cancels fundamental supply frequency voltage which is induced into the control winding by transformer action. It is also evident that only halfwave output is obtained from the circuit of Fig. 1. Fullwave output may be obtained by placing two such circuits back to back. A circuit in which these two changes have been incorporated is shown in Fig. 3 on the following page. This circuit, called the full-wave "doubler" circuit,² is one of the most commonly used building

² F. G. Logan, "Electric Controlling Apparatus," U. S. Patent 2,126,790, issued August 16, 1938 (application filed June 23, 1936).

blocks in the magnetic amplifier field today.

If a phase reversing output is desired, as for example in a servo controller, two reactors in a bridge arrangement³ may be used for half-wave output as shown in Fig. 4, or four reactors⁴ if full-wave output is desired, as shown in Fig. 5. It is readily seen that the circuit of Fig. 4 is basically two circuits such as in Fig. 1 in a bridge arrangement, while Fig. 5 is two circuits such as in Fig. 3 in a bridge arrangement.

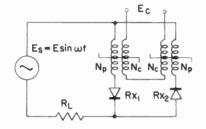


Fig. 3-Full-wave doubler magnetic amplifier circuit.

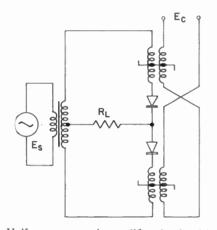


Fig. 4—Half-wave magnetic amplifier circuit with phase reversing output.

Where increased gain or power handling capacity is required these circuits may be cascaded. In a "multistage" amplifier the load of the first stage becomes the control circuit of the second, etc. While larger reactors and rectifiers will generally be used in each succeeding stage, the operation remains basically the same. A typical magnetic amplifier will contain two or three cascaded stages. The exact connections of both the control and power windings depend upon whether an ac or dc signal source is used and upon whether an ac or dc output is desired.

Some requirements may be met by circuits in which the rectifier element (RX in Fig. 1) is absent. In this case control is more difficult because it must be effected in the face of a much lower reflected impedance from the N_p windings, as well as induced voltages from the main power source. Such a circuit is shown in Fig. 6. Magnetic amplifiers of this type have low gain but do have an extremely linear transfer characteristic.⁵

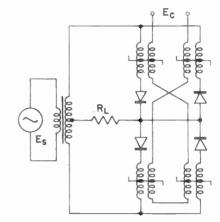


Fig. 5—Full-wave magnetic amplifier circuit with phase reversing output.

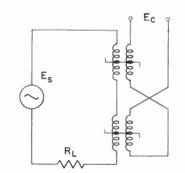


Fig. 6-Simple saturable reactor magnetic amplifier circuit.

Most magnetic amplifiers with a rectifier element in the power winding circuit will, in the absence of any control or bias, immediately proceed into complete saturation and full output. They are therefore called self-saturating amplifiers. In amplifiers without the rectifier element, since both half-cycles of the ac power source voltage appear across the reactor, saturation is brought about only as a result of control action. These are referred to as saturable-reactor amplifiers or "transductors."^{6,7} Self-saturating amplifiers are characterized by high gain, a somewhat nonlinear control characteristic, and are sensitive to control voltage polarity (or phase). Saturable-reactor amplifiers have low gain, are very linear, and are insensitive to polarity of control voltage.

It should not be assumed that the inclusion of a rectifier element in the power winding of a reactor is necessary to the basic operation or control of a high-

 ^{*} C. S. Hudson, "Improvements in or Relating to Magnetic Amplifiers," British patent 598,285, issued February 13, 1948 (application filed October 26, 1945).
 * W. A. Geyger, "Grundlagen der magnetischen Verstärker für die der Magnetic amplifiers for der Mag

⁴ W. A. Geyger, "Grundlagen der magnetischen Verstärker für die Mess- und Regeltechnik" (Fndamentals of magnetic amplifiers for measurement and control purposes), Wissenschaftliche Veröffentlichungen aus den Siemens-Werken, vol. 19, p. 233.

⁶ W. J. Dornhoefer and V. H. Krummenacher, "Applying magnetic amplifiers," *Elec. Mfg.*, vol. 45, p. 94; March, 1951; p. 112, April, 1951 is an example.

⁶ A. U. Lamm, "Some fundamentals of a theory of the transductor or magnetic amplifier," *Trans. AIEE*, vol. 66, pp. 1078-1085; 1947.

^{1947.} ⁷ U. H. Krabbe, "The Transductor Amplifier," Lindhska Boktryckeriet, Örebro, Sweden; 1947.

gain magnetic amplifier. Any means whereby the reflected impedances into the control windings may be increased will result in an increase in gain characteristics. Recent circuitry advances have been made in which a combination of a pulse ac source with selective filters replacing the rectifiers has given excellent results.8

Speed of Response

From the operation of the circuit in Fig. 1 it is evident that magnetic amplifiers of this type have a limitation on their speed of response which is fundamental. The device controls power, operating on an ac or pulsetype source in such a way that each period of output must be preceded by a period which establishes, through a flux-setting control action, the amount of output to be delivered. These control and output periods are usually one half-cycle in duration, but may both be within the same half-cycle.9 If they are one half-cycle in duration there will be a minimum delay of one half-cycle of the source frequency per stage of amplification.^{10,11} Other factors may contribute to extend this delay over a considerably longer period but in no event can a certain inherent "dead time" be avoided. If faster response is required it is obtained usually by increasing the power source frequency. This may be done by static frequency multiplication¹² of a basic line frequency, by high frequency converters, pulse generating circuits, etc. However, the delay will be decreased only in the same ratio as the amplifier source frequency is increased.

Generally, half-wave circuits will exhibit the minimum dead time or delay of one half-cycle. Full-wave circuits (two half-wave circuits back to back), however, exhibit this minimum delay only under certain conditions. The principal difficulties arise from the fact that it becomes necessary to couple at least two reactors together, either by the control windings, bias windings, or output windings, or combinations thereof, which are in different half-cycles of their basic operation. For example, when one reactor is being controlled or reset the other is being driven into saturation or is delivering output. Voltages induced into windings on the reactor that is in its operating half-cycle will be coupled into the other reactor that is in its control half-cycle. This "feedback" from one reactor to the other is usually in such a direction as to act as an additional aiding control, and hence is positive feedback. This positive feedback action has the advantage of increasing the gain of the circuit

amplifier," *Electronics*, vol. 27, pp. 170-173; October, 1954.
¹⁰ R. A. Ramey, "On the mechanics of magnetic amplifier operation," *Trans. AIEE*, vol. 70, part II, pp. 1214-1223; 1951.
¹⁰ C. W. Lufey, A. E. Schmid, and P. W. Barnhart, "An improved magnetic servo amplifier," *Trans. AIEE*, vol. 71, part I, pp. 281-000

but, since it may require several cycles of operation to stabilize, will add to its over-all response time. The fullwave connections also offer many possibilities for circulating currents to flow. These currents will have definite control actions and may have long L/R time constants associated with them. The circuit parameters, core material and rectifier quality determine to a considerable extent the gain versus time delay characteristics of such circuits. It is therefore convenient to express an amplifier's quality in terms of the ratio of its gain to its speed of response. This ratio is called the "figure of merit" of the amplifier,13 and with presentday core materials and rectifiers can be as great as 5,000 or more.

For half-wave circuits the term "figure of merit" has a limited meaning since the gain and the inherent fixed delay discussed above are not related. The maximum gain of a half-wave circuit, in view of the absence of any positive feedback effects, will be much lower than the gains achievable with a full-wave circuit using identical components. By cancelling the inherent positive feedback effects of the normal full-wave circuit,14 its response time may be dropped to the same minimum value, but its gain will generally also be dropped to the same order of magnitude as that of the half-wave circuit. The decision as to whether a half-wave or fullwave circuit is desirable will depend largely on the specific application and should be determined only after careful consideration by qualified engineers.

COMBINATION CIRCUITS

Combinations of vacuum tubes or transistors and magnetic amplifiers are frequently used to accomplish results which would not be possible with magnetic amplifiers alone. Almost without exception these combination circuits use vacuum tube or transistor input stages driving magnetic amplifier output stages. In this way gain or high input impedance requirements may be easily met with a suitable input stage while power output requirements are met with a magnetic amplifier stage. Since most of the vacuum tube failures encountered in practice are in the power handling or output stages, a marked increase in over-all reliability may be achieved. Furthermore, the requirements for a large B+ or plate supply source is eliminated by using magnetic amplifier power stages which operate directly from the main ac power source. In many instances this will result in over-all decrease in amplifier size and weight. Fig. 7 (next page) shows typical combination circuit where use of push-pull vacuum tube driver stage controls saturable reactor-type magnetic amplifier output stage. Transistor input stages may be used to advantage in place of vacuum tube stages. A typical transistor-magnetic amplifier

⁸ R. E. Morgan and J. B. McFerran, "Pulse Relaxation Amplifier —A Low Level D-C Magnetic Amplifier," AIEE Technical Paper 54-198 presented at the AIEE Northeastern District Meeting, Schenectady, N.Y., May 5-7, 1954.
⁹ F. Hill and J. A. Fingerett, "Fast-response magnetic servo amplifier," *Electronics*, vol. 27, pp. 170-173; October, 1954.
¹⁰ R. A. Bargur, "On the mechanics of memotic service of the service of the methanics of memotic service of the service of the methanics."

 <sup>289; 1952.
 &</sup>lt;sup>12</sup> J. J. Suozzi and E. T. Hooper, "An all magnetic audio amplifier system," *Trans. AIEE*. Paper 55-70, for presentation at the Winter General Meeting, New York City, January 31-February 5, 1955 is an example.

¹³ J. T. Carleton and W. F. Horton, "The figure of merit of mag-

netic amplifiers," *Trans. AIEE*, vol. 71, part I, pp. 239–245; 1952. ¹⁴ W. A. Geyger, "Magnetic amplifiers of the self-balancing po-tentiometer type," *Trans. AIEE*, vol. 71, part I, pp. 383–395; 1952. also D. G. Scorgie, "Fast response with magnetic amplifiers," *Trans. AIEE*, vol. 72, part I, pp. 741–749; 1953.

combination appears in Fig. 8 below, where transistor input drives a half-wave bridge phase-reversing, self-saturating magnetic amplifier stage.¹⁵

Both the vacuum tube and transistor stages require a source of dc power to obtain best performance. They are usually less efficient over-all and at present are less reliable than a magnetic amplifier. These factors, nevertheless, are not serious for low-level stages. Such combinations therefore represent an ever increasing field of development and application.

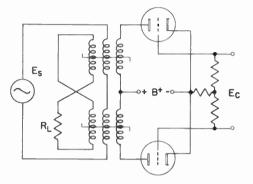


Fig. 7—A combination vacuum tube-saturable reactor magnetic amplifier circuit with the output isolated from the main power source.

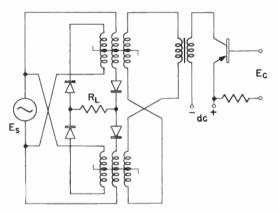


Fig. 8-A combination transistor-magnetic amplifier circuit.

The recent improvement in transistor quality and power-handling capacity have pointed the way to improved designs which in many instances appear to be better than either an all magnetic amplifier or combination transistor-magnetic amplifier system. In many of the lower power applications this may prove to be the case. For control of larger power, however, the magnetic amplifier is unmatched. Where efficiencies are obtained of the order of 50 per cent to 60 per cent with vacuum tube stages, and 60 per cent to 70 per cent with transistor stages, the magnetic amplifier will give 80 per cent to 95 per cent. Neither the transistor nor the vacuum tube at present enjoy the reputation for ruggedness, long life, and low maintenance that the magnetic amplifier has.

THEORY

Circuit-wise the magnetic amplifier is a relatively simple device. This simplicity is very misleading, however, when a formal mathematical analysis of its operation is attempted. Because of the extremely nonlinear characteristics of the core materials and dry rectifiers, linear circuit theory may be applied only to carefully selected periods of its operation. For example, the control period will require one set of assumed conditions, the saturating or output period another. Effects of interwinding and rectifier capacitance, rectifier forward and reverse impedance, induced voltage and current transients, their time constants, etc. need to be carefully considered. If this is rigorously done, a complexity of terms and equations results that is extremely difficult to handle. To simplify the analysis it is common practice to make the assumptions of perfect core material and ideal rectifiers. These assumptions unfortunately do not always give resultant mathematical expressions of sufficient accuracy to predict the performance of actual practical circuits. No satisfactory general analysis of magnetic amplifier operation has yet been done although many of an approximate and specialized nature have been published.¹⁶

It is as yet difficult to design magnetic amplifiers on paper as one might design a vacuum tube amplifier. Thus most magnetic amplifier design today requires considerable past experience and engineering skill. It is reasonable to expect this situation to improve rapidly as more and more effort is put into this field. A survey of published papers on magnetic amplifiers indicates a very healthy increase each year.¹⁷ In the colleges and universities little attention has been given the magnetic amplifier, per se, until very recently. At the present time a few institutions have courses dealing specifically with such circuitry.

Components

Core Materials

In order to obtain well-defined control characteristics from a magnetic amplifier it is necessary to change the saturable reactor's inductive impedance abruptly from an extremely high value to a very low value. In this way a true switching action may be closely approached. This is achieved only by careful selection and application of suitable core materials. The more rectangular the core B-H loop the better will be the switching operation obtained. It is also desirable that the core material have as low a coercive force as possible since the control action must overcome at least the coercive force (H_c) of the core before any control of flux level can be exercised. Thus the lower the H_c the less control power required. Taken together these two requirements dictate a high B/H ratio or high permeability core. Fig. 9 shows the

¹⁶ J. J. Suozzi, "A Half-Wave Transistor Magnetic Amplifier," Master's thesis submitted to the School of Engineering and Architecture of the Catholic University of America, Washington, D. C., February 28, 1954.

¹⁶ J. G. Miles, "Bibliography of magnetic amplifier devices and the saturable reactor art," *Trans. AIEE*, vol. 70, Part II, pp. 2104–2123; 1951.

¹⁷ W. A. Geyger, "Magnetic Amplifier Circuits," McGraw-Hill Book Co., Inc., New York, N.Y.; pp. 6–18, 1954.

8

6

11

B-II loops of several core materials which, due to their rectangularity, are suitable for magnetic amplifier service. From inspection of Fig. 9, it would appear that 4–79 molypermalloy, which has very high permeability, would be the best. From the standpoint of power output, however, a high saturation flux density is also desired because for a given core volume the total volt-time integral which the core can absorb or given power source voltage it can hold back is directly proportional to the saturation flux density. Thus it is seen that the grainoriented 50 per cent Ni-50 per cent Fe Orthonol is an excellent material having all the desirable features. For this reason a major percentage of all high-performance magnetic amplifiers built today use a core material of this type. Where very high gain is necessary a permalloy core would, of course, be used. If gain is secondary to the power to be controlled, a 4750 alloy or grainorientated silicon iron core could be used.

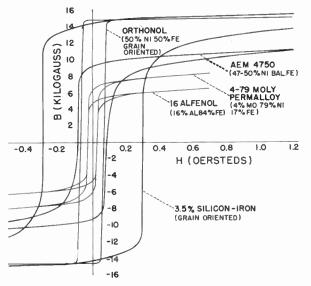


Fig. 9—*B-II* loops of typical core materials for magnetic amplifier service.

All high permeability magnetic materials are extremely strain-sensitive; therefore cores for magnetic amplifier use are usually encased in a protective box that isolates the core from any strains which might be introduced in winding and handling.

Core Types

Because the toroidal configuration has advantages over the stacked *E-I* or double-backed *U*-type core from a magnetic circuit standpoint, the toroid is to be preferred where high performance is paramount. Not only does the tape-wound toroidal core take advantage of the grain orientation of materials, such as the orientated Ni-Fe and Si-Fe, but it can be easily fabricated in very thin gauges. On the other hand a stacked core must be made from laminations carefully punched with the proper orientation if the grain-orientated materials are used. Also it cannot be assembled after anneal, if the laminations are below about 0.007 inch in thickness, without extreme precautions to avoid strain of the material. It is possible, of course, to build excellent magnetic amplifiers using a stacked laminated core, but general commercial availability of a large variety of highgrade toroidal cores (Fig. 10 below) coupled with improved toroidal winding equipment and facilities brought about a definite trend to the toroid reactor, especially in the lower power magnetic amplifier field.

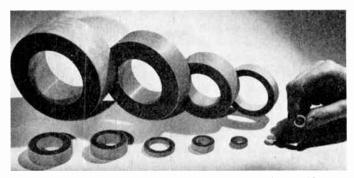
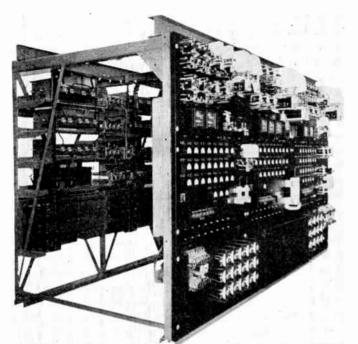



Fig. 10—High permeability toroidal cores for magnetic amplifier use. The cores are encased in protective covers to avoid loss of permeability due to strain which might occur during winding and handling. (Courtesy Magnetics, Inc.)

For very large reactors, where large amounts of power are to be handled, stacked laminations of the poorer grades of core materials such as Si-Fe are frequently used. First the cost of a large core of high quality material becomes excessive and secondly the poorer gain and response characteristics which results are usually secondary to power handling capacity in such applications.

Rectifiers

Dry-disc-type rectifiers are conventionally used in magnetic amplifiers for decoupling the power windings from the control circuits, for producing dc bias, for conversion of ac to dc in the output, etc. Their use is dictated by their long life and ruggedness, their ability to handle large currents, and their relatively high efficiency. For general application it can safely be stated that the best rectifier for magnetic amplifier usage would be one having infinite back impedance and zero forward impedance. If this statement should at first sound facetious, it is pointed out that some circuits are designed to take advantage of commercial rectifier deficiencies and direct substitution of an ideal rectifier in such a circuit would result in a definite loss of operating characteristics. However, as a result of dry rectifier back leakage or forward impedance or both, it is generally necessary to reach a compomise circuit design. The decision as to whether back leakage will be sacrificed for lower forward resistance or vice versa depends upon the circuit's intended application. It is evident, referring again to the simple circuit of Fig. 1, that back leakage in the power circuit rectifiers will appear not only as a decrease in reflected impedance to the control circuit but also as an additional control action on the reactor. Hence it is most important that this leakage either be carefully controlled or kept to an absolute minimum.



Fig. 12—A newspaper press driven by several dc motors powered from a magnetic amplifier-controlled 300 kw power rectifier. Magnetic amplifiers are also used to supply and regulate the press motor fields. (Courtesy Gen. Elec. Co.)

Fig. 11—Magnetic amplifier equipped control panel for a 48-inch four-high metal foil mill. A magnetic amplifier in combination with an amplidyne generator excites and controls the 800 kw main mill generator. A 4.7 KVA magnetic amplifier is used as a regulating exciter for the 1,000 hp mill motor field. The wind-up reei motors—100 hp unwind and 200 hp wind-up—employ 4.7 KVA magnetic amplifiers as field regulators. Magnetic preamplifiers regulate each of the reel motor amplifyne generators. The power section of one 4.7 KVA magnetic amplifier is shown on the lower rear rack. (Courtesy Gen. Elec. Co.)

Unfortunately dry rectifiers tend to change their characteristics with temperature and age. Thus many of the limitations of stability of the magnetic amplifier are centered in the rectifier elements. This is particularly true with respect to temperature drift. Nevertheless, by careful matching and aging of commercial quality rectifiers, their effect on the over-all amplifier can be controlled to the point where very low drift and stable systems are practical. Recent advances in the development of semi-conductor-type rectifiers offer promise of considerable improvement in this respect.

APPLICATIONS

When one considers that a few years ago the magnetic amplifier was practically unknown, its widespread usage today can truly be described as phenomenal. Few people realize to what extent this device has become a part of the control, regulation and instrumentation fields. Despite the fact that it is fundamentally a device to control the impedance in an ac circuit and is primarily limited to this function alone, its potential applications have just begun to be realized. The examples given here represent but a selected few of the uses to which magnetic amplifiers have been placed. They will, however, indicate the flexibility and range of services in which it may be used.

The magnetic amplifier is one of the most efficient and reliable methods of controlling large amounts of power which we have today. In effect a properly designed unit will behave very much like a controlled switch having no moving parts and no contacts, yet requiring relatively small signals to actuate. As a result of its proven reliability and efficiency it has become one of the standard controllers for large power installations. For example, in the electric utilities industry the requirements for continuity of service are so severe that no compromise can be made on the reliability of the main generating equipment. For this reason the regulation of these systems was one of the first big industrial applications of the magnetic amplifier. The acceptance of the magnetic amplifier was accomplished with a very short "proving in" period, and today practically all generating equipment built is equipped with magnetic amplifier voltage and frequency regulators.^{18,19} Indeed many systems use magnetic amplifiers all the way from the low-level voltage and frequency sensing stages through to the main generator field excitors, having replaced the conventionally used rotary amplifiers and dc exciter generators normally used.

The control of speed and tension in steel rolling mills, the rolling and unrolling rates, and tension of steel sheet in cleaning and pickling lines; as paper and textile mill speed regulators; as voltage and current regulators in dc supplies for arc welding; as power controllers for draw bridges, ship steering, gun turret drives, etc., are examples of but a few of the in-service applications of magnetic amplifiers in the heavy-duty control field today (see Figs. 11, 12, 13). Most of the power controlled in such heavy-duty applications is dc; hence selfsaturating full-wave circuitry is commonly applied. In this way ac is converted to dc power in the same rectifiers used with the reactors to obtain high gain in the amplifier.

¹⁸ H. F. Storm, "Voltage regulator with magnetic amplifiers for large alternators," *Proc. NEC*, vol. 7, pp. 247–253; October, 1951. ¹⁹ E. L. Harder, "Power control with magnetic amplifiers," *Electronics*, vol. 25, pp. 115–117; October, 1952.

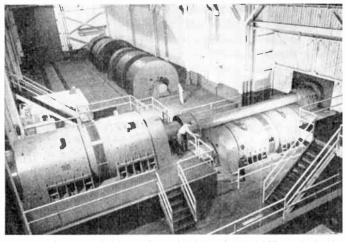


Fig. 13—A 12,000 hp blooming mill drive (with M/G set in background) which uses a magnetic amplifier to amplify current limit signals. The magnetic amplifier, in combination with amplidyne regulators on the motor and generator fields, permits rapid reversals of one second at base motor speed and 2½ seconds at top motor speed. (Courtesy Gen. Elec. Co.)

The magnetic amplifier is by no means limited to the field of heavy equipment. In the regulation of low power generators excellent performance has been obtained (see Fig. 14). In the small instrument-type servo field, great strides have been made until today, within its limitations of input impedance and bandwidths (due to the inherent time delays previously discussed), dynamic performance equal to that produced with vacuum tube amplifiers is not uncommon.²⁰ For example, with a 60-cycle ac supply source bandwidths of from 6 to 10 cycles may be achieved, while with a 400-cycle supply 15- to 20-cycle bandwidths are possible.

Recent advances in applying conventional servo compensation techniques to magnetic amplifiers make possible design of systems incorporating lead, lag, leadlag, integral and lead-integral compensation within the amplifier itself.²¹ Using these techniques in servo controllers it is now possible to replace high-performance vacuum tube controllers in many precision servos that but a few years ago were considered completely out of the range of the magnetic amplifier. The potentials of its applications in this field are indeed far-reaching. The complexity of many of our present-day control systems has become so great and continuity of service so important that failure in any component can scarcely be tolerated. Magnetic servo controllers give the reliability required. They are thus becoming standard servo controller equipment in the guided missile field, in aircraft, submarines, and on shipboard (see Figs. 15, 16, 17, 18 on the following page).

Because of certain of its inherent properties the magnetic amplifier is ideally suited for many instrumentation applications. For example, the saturable-reactortype circuit possesses current transformer character-

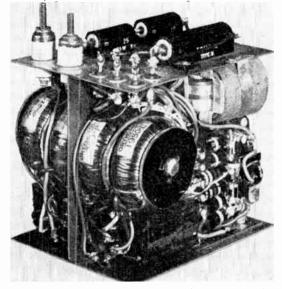


Fig. 14-A magnetic amplifier voltage and frequency regulator for a 750 volt-ampere inverter for use in a guided missile. Regulation of 2 per cent on voltage and 1 per cent on frequency is obtained over extreme conditions of temperature, input voltage and load. (Official U. S. Navy Photo.)

istics in that control dc ampere turns are reproduced as average output ampere turns. Thus by using a singleturn control winding carrying large dc currents with a multi-turn low-level ac power winding it is possible to match huge control current ampere turns with small power circuit current ampere turns in a completely isolated circuit.22 Their use, therefore, in metering large dc currents-as, for example, in big electroplating installations, electro-processing of aluminum, etc .-- is evident. Input levels as low as 10^{-12} watts are capable of controlling magnetic amplifiers. Consequently for thermocouple inputs and the like they are well-suited as metering amplifiers. With compound feedback circuitry it is possible to build magnetic amplifiers which behave as voltmeters having extremely high impedance or ammeters having extremely low impedance.14 Use of magnetic amplifiers as tubeless audio amplifiers has been shown to be practical²³ although the lack of suitable high frequency power sources to obtain the necessary bandwidth is a definite drawback to their use in such service.

In many special applications magnetic amplifier circuitry is being applied to perform operations which are not primarily of amplification. Perhaps the most outstanding example is the bi-stable magnetic decision element²⁴ which has become a powerful tool in the design and construction of digital computer systems. The ease with which multiple inputs may be mixed in a single reactor makes their use in analog computers ideal.25

²² W. F. Horton, "Isolation metering of d-c bus currents," *Proc. NEC*, vol. 7, pp. 260-262; October, 1951. ²³ J. J. Suozzi and E. T. Hooper, *op. cit.* ²⁴ A. Wang, "Magnetic delay-line storage," PROC. I.R.E., vol. 39, pp. 401-407; April, 1951; also R. A. Ramey, "The single core magnetic amplifier as a computer element," *Trans. AIEE*, vol. 71, part I, pp. 442-446; 1952.

²⁶ B. E. Davis and I. H. Swift, "An analog computer technique using magnetic amplifiers," *Trans. AIEE.* Paper 54-389, presented at Fall General Meeting, Chicago, Ill., October 11-15, 1954.

²⁰ C. W. Lufcy, A. E. Schmid, and P. W. Barnhart, *op. cit.*, p. 110. ²¹ H. H. Woodson, C. V. Thrower, and A. E. Schmid, "Compen-sation of a magnetic amplifier servo system," *Proc. NEC*, vol. 8, pp. 158-165; 1952.

Fig. 15—A packaged high performance magnetic amplifier servo controller for airborne applications. This amplifier, which will control a 5-watt ac motor, is completely self-contained. (Courtesy Specialties, Inc.)

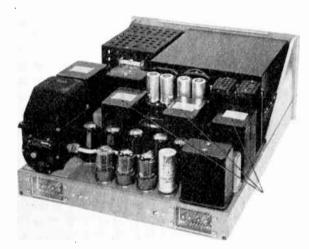


Fig. 16—A commercial auto-pilot three-channel servo controller with combination vacuum tube input-magnetic amplifier output. Arrows point out the three magnetic amplifier output stages. (Courtesy Eclipse-Pioneer Div., Bendix Aviation Corp.)

With sufficient positive feedback an ordinary magnetic amplifier can be made unstable to the point where a small additional control current will result in its going from zero output to full output or vice versa, thus performing the operations of a relay without moving parts or contacts.²⁶

CURRENT STATUS

Rapid as the growth of the magnetic amplifier field has been, it is still retarded by a lack of engineers trained in the design and utilization of such circuitry. A major portion of the potential applications is in the field of servomechanisms, which is in itself a highly specialized field. Generally the servo engineer has a background in electronics and electron tube design but little or no experience with magnetic circuitry. As a re-

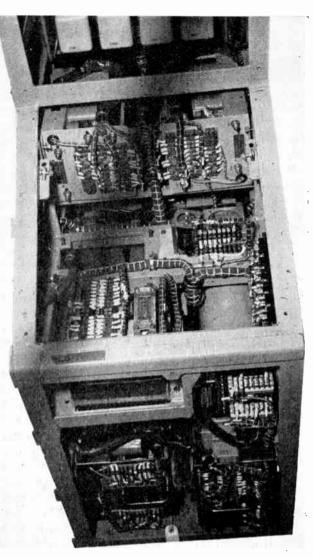


Fig. 17—A cubicle containing several magnetic servo amplifiers used in control of a submarine atomic power plant. These units were designed for long life, very high degree of reliability, and ability to withstand high shock and vibration. (Courtesy Gen. Elec. Co.)

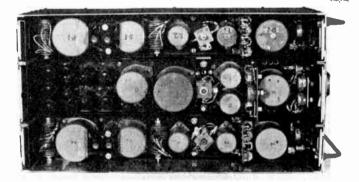


Fig. 18—A three-channel magnetic amplifier servo controller for a small search-track antenna system. One channel controls azimuth, the second controls elevation, and the third controls switching to govern the search pattern. (Courtesy Gen. Elec. Co.)

sult many applications which could be handled with magnetic amplifiers are instead solved by other methods, for, without some knowledge of the magnetic amplifier's characteristics, it is difficult to specify or balance their capabilities against known requirements. Other

²⁶ A. U. Lamm, "The Transductor, D-C Pre-Saturated Reactor, with Special Reference to Transductor Control of Rectifiers," ("Transductor Locking Relay") 2nd. ed., pp. 19–20, Esselte Aktiebolag, Stockholm, Sweden; 1948.

practical considerations, such as available production facilities and engineering costs, also frequently exclude their use. These factors, however, will become less important as more engineering know-how and production experience are gained. The relative simplicity of the magnetic amplifier makes for easier, cheaper and faster assembly once a system has been properly designed and engineered.

The magnetic amplifier is no longer a laboratory device but has been tested and proven in actual military and industrial service until today it is a major factor in the design and development of an ever-increasing number of new and improved systems.

Reliability is by no means the only virtue of the magnetic amplifier. In many applications it has proven to be superior in performance, size and cost to vacuum tube amplifiers, rotary amplifiers and even mechanical devices. No other amplifier offers such a combination of long life; low maintenance; ruggedness; resistance to extreme conditions of vibration, shock and temperature; no warm-up time; and high efficiency, in a completely static device which may be permanently sealed or potted. The day of the magnetic amplifier has arrived.

Acknowledgment

The author gratefully acknowledges the assistance of the many people in the magnetic amplifier field who so freely gave their time and advice in the initial preparation of this paper. Special thanks are given to E. T. Hooper and W. A. Geyger of the Naval Ordnance Laboratory for assistance in the final preparation of the manuscript.

The "M"-Type Carcinotron Tube*

R. R. WARNECKE[†], fellow, ire, P. GUÉNARD[†], senior member, ire, O. DOEHLER[†], AND B. EPSZTEIN[†]

Summary-This paper presents theoretical and experimental results concerning the "M Carcinotron." In particular, the influence of space charge has been considered, thereby permitting an explanation for the measured values of starting current, the influence of the coupling impedance on efficiency and the existence of parasitic oscillations. The "rising sun effect" which should be present in these tubes, as it is in the magnetron, has been investigated theoretically and experimentally. The experimental results exhibit a decrease of efficiency in the predicted range of operation.

INTRODUCTION

THE Carcinotron¹ tubes are backward-wave oscillators. Their structure is characterized by the following features:

1. An electron beam is in interaction with a backward space harmonic of a delay line.

2. The power output is located at the gun end of the interaction space.

3. Means for absorbing rf energy reflected by possible output mismatch are introduced in the rf field of the delay line near the collector end generally inside the tube.

This structure gives a very wide electronic tuning range, and frequency insensitivity to load impedance.

Two types of Carcinotron tubes have been investigated: the "O" type, in which the beam travels in an interaction space at constant dc potential, as in the classical traveling-wave tube, and the "M" type, where the beam travels perpendicularly to crossed electric and magnetic fields, as in the magnetron amplifier.

* Original manuscript received by the IRE, November 9, 1954; revised manuscript received December 16, 1954.

† Electronics Dept., Center of Tech. Res., Compagnie Générale de Télégraphie sans fil, Paris, France. ¹ Registered trade-mark of the Compagnie Générale de T.S.F.

This paper deals with the "M" Carcinotron. The structure of this tube and the results of a simplified small signal theory were given in a short note published in 1952.² The methods used to obtain these results were more fully described later.3,4

The aim of this paper is to describe with more detail the properties of the "M" type Carcinotron, gathering and completing the information given previously.⁵⁻⁷

A small signal theory taking into account spacecharge effects is established, allowing expressions for the starting current and frequency, build-up time and frequency pulling to be derived. The results of this theory are checked against experimental data. Some effects typical of the "M" Carcinotron (rising sun effect, parasitic oscillations) are explained. The practical interest of the "M" Carcinotron is best shown by the per-

² P. Guénard, O. Doehler, B. Epsztein, and R. Warnecke, "Nouveaux tubes oscillateurs à large bande d'accord électronique pour hyperfréquences," C. R. Acad. Sci. (Paris), vol. 235, pp. 235 236; July, 1952. They were given previously, together with experi-mental results, by Epsztein at the 10th Conference on Electron Tube Pesearch, Ottawa, Can., June 1952, in a discussion on R. Kompfner's paper "Packward waves," presented at this conference.
³ R. Warnecke and P. Gnénard, "Some recent work in France on new types of valves for highest radio-frequencies," *Proc. IEE*, vol.

100, part HI, p. 351; November, 1953. 4 R. Warnecke, P. Guénard, and O. Doehler, "Phénomènes fonda-

mentaux dans les tubes à onde progressive," L'Onde Electrique, no. 325; April, 1954.

⁵²⁵ April, 1954. ⁶ P. Guénard, R. Warnecke, O. Dochler, and B. Epsztein, "A new wide electronic tuning high efficiency microwave oscillator, the M Carcinotron," paper presented at the 11th Conference on Electron Tube Research, Stanford University, Stanford, Calif., June 1953. ⁶ P. Cavinget, "On come results obtained with O and M type

6 P. Guénard, "On some results obtained with O and M type Carcinotron," paper presented at the 12th Conference on Electron Tube Research, University of Maine, Orono, Me., June, 1954.

⁷ O. Doehler, "Space charge effects in traveling wave tubes using crossed E-H fields," paper presented at the Symposium on Modern Advances in Microwave Techniques, New York, N. Y., October, 1954.

formances obtained on this type of tube, some of which are given at the end of the paper. These performances, together with those previously published,^{3,4,8} suggest that the "M" Carcinotron should be best suitable when high power high efficiency operation is required.

Description of the "M" Carcinotron

Fig. 1 shows a linear version of the "M" Carcinotron. A delay line L is perfectly matched at the end M near the collector K by means of an attenuating material to avoid reflections. N is the output. An electron beam F, produced by the gun, travels parallel to the delay line L, and the sole S in the x-direction under the influence of a constant and uniform magnetic field B in the z-direction and an electric field E_0 in the y-direction due to the voltage V_0 applied between L and S.

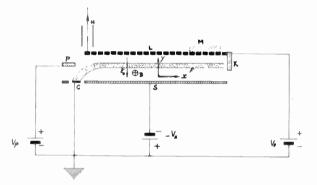


Fig. 1-Schematic structure of a linear "M" Carcinotron.

Interaction between the beam and the backward space harmonic will occur, if the phase velocity of the space harmonic is equal or nearly equal to the mean electron velocity $v_e = E_0/B$, i.e.:

$$v \cong v_e = E_0/B. \tag{1}$$

The positive feedback introduced by the beam leads to an oscillation if the current is high enough. This oscillation occurs with perfect matching at both ends of the line, the necessary feedback being furnished by the beam only. The oscillation frequency will be that for which (1) is fulfilled.

The beam focusing and the transfer of energy from the beam to the rf field occur in the same manner as in the magnetron amplifier:⁹ the transverse rf field produces a beam bunching in the favorable phase of the longitudinal rf electric field.

The energy transfer from the beam to the electromagnetic field of the line is achieved through the longitudinal electric field. The electrons which transfer energy to the rf field, approach the anode and are brought to a higher dc potential, their velocity remaining approximately constant and equal to E_0/B .

As compared to the mechanism of operation of the "O" Carcinotron, it can be said that in the travelingwave tubes with crossed electric and magnetic fields the potential energy of the electrons is transformed into rf energy; while in the "O" type traveling-wave tubes the kinetic energy of the electrons is transformed into rf energy.

SMALL SIGNAL THEORY

Small Signal Theory Neglecting Space Charge

In this theory, a rectilinear beam is considered. In the equations of the static trajectories

$$x = v_e \tau + a \cos(\omega_r \tau + \phi)$$

$$y = y_0 + a \sin(\omega_r \tau + \phi),$$

where τ is the transit time and $\omega_r = eB/m$, the cyclotron angular frequency, the amplitude *a* of the rolling circle is assumed zero, a condition which can be obtained with a proper set of initial conditions. Assuming that all rf quantities vary as $e^{\delta(\omega t - \Gamma x)}$, there exist, in the absence of coupling between the beam and the line, six waves

Beam	$\Gamma_1 = \Gamma_5 = \Gamma_e = rac{\omega}{v_e}$	δx and δy arbitrary $\delta \dot{x} = 0, \delta \dot{y} = 0$
	$\Gamma_{3,4} = \frac{\omega \pm \omega_r}{v_e}$	$\delta y = \mp j \delta x$
	* 3,4 V e	$\delta \dot{x} = \mp j \omega_r \delta x, \ \delta \dot{y} = \mp j \omega_r \delta y$
Line $\begin{vmatrix} \Gamma_2 = \Gamma_0 \\ \Gamma_6 = -\Gamma_0 \end{vmatrix}$	$E_y = jKE_x$	
	$\Gamma_6 = - \Gamma_0$	$E_{y} = -jKE_{x},$

where δz , δy , $\delta \dot{x}$, $\delta \dot{y}$ are the rf components of electron motion, E_x and E_y the field components in the beam, and $K = \coth \Gamma y_0$.

The coupling between the beam and the line can modify significantly only those waves for which the propagation factors are near one another, i.e. the two beam waves Γ_1 , Γ_5 and the line wave Γ_2 .

This assumes that one space harmonic only is considered. There is a possibility of simultaneous coupling of beam waves with different space harmonics, a question which will be discussed later (rising sun effect).

The theory (Appendix A) shows that one of the beam waves, say Γ_5 , is not coupled to the line. For this wave:

$$\Gamma_{\mathfrak{b}} = \Gamma_{\mathfrak{s}} \quad \delta x = jK\delta y \quad \delta \dot{x} = \delta \dot{y} = 0 \quad E_{\mathfrak{x}} = E_{\mathfrak{y}} = 0.$$

The modified values of Γ_1 and Γ_2 are solutions of the equation:

$$(\Gamma - \Gamma_e)(\Gamma - \Gamma_0) = \frac{\Gamma_0^2 \Gamma_e R_c I_0 K}{E_0} = \gamma_M^2, \qquad (2)$$

where R_e is the coupling impedance, I_0 and E_0 the dc beam current and electric field. The two solutions can

-

⁸ R. Warnecke, "Sur quelques résultats récemment obtenus dans le domaine des tubes pour hyperfréquences," *Ann. Radioélect.*, vol. ix, pp. 107-135; April, 1954.

⁹ R. Warnecke, W. Kleen, A. Lerbs, O. Doehler, and H. Huber, "The magnetron type traveling-wave amplifier tube," PRoc. I.R.E., vol. 38, pp. 486-495; May, 1950. See also J. R. Pierce, "Travelingwave Tubes," D. Van Nostrand Co., Inc., New York, N. Y., chap. XV; 1950.

be written:

$$\Gamma_{1,2} = \Gamma_m \pm \sqrt{\Gamma_d^2 + \gamma_M^2},$$

where

ព

$$\Gamma_m = \frac{\Gamma_0 + \Gamma_o}{2}$$

$$F_d = \frac{\Gamma_o - \Gamma_0}{2} \cdot$$

For these waves:

$$\delta x = \frac{K}{\Gamma - \Gamma_e} \frac{E_x}{E_0}, \quad \delta y = j \frac{\delta x}{K}, \quad \delta \dot{x} = -j(\Gamma - \Gamma_e) v_e \delta x, \quad \delta \dot{y} = j \frac{\delta \dot{x}}{K}$$

The three other waves are only slightly modified by the coupling.

This theory can be extended to a beam of finite thickness if the trajectories are linear, which means that a nonequipotential cathode is used. It is then found that the rf charge density inside the beam is zero (see Appendix A).

In addition to assumptions already mentioned, it has been supposed that the periodicity of the line structure has no influence on the static trajectories, i.e. that the distance between the line and the sole is large as compared to the pitch of the line. A two-dimensional problem has been treated, which supposes the structure infinite in the z direction.

These six waves make it possible to satisfy the boundary conditions, i.e. the values of δx , δy , $\delta \dot{x}$, $\delta \dot{y}$ at x = 0 (gun end of the line) and the existence of reflection factors a_0 and a_1 at the ends of the line. If it is supposed that $\delta x = \delta y = \delta \dot{x} = \delta \dot{y} = 0$ for x = 0, the amplitudes of the waves Γ_3 , Γ_4 , Γ_5 are found equal to zero and there remain only the two principal waves Γ_1 , Γ_2 and the reflected wave Γ_6 .

Small Signal Theory Taking Into Account Space Charge

It is no more possible in this case to consider an infinitely thin beam. As shown by Brillouin,¹⁰ linear trajectories are possible, assuming an equipotential cathode, if the plasma frequency Ω_0 equals the cyclotron frequency ω_r :

$$\Omega_0 = \sqrt{\frac{e}{m} \frac{\rho_0}{\epsilon_0}} = \frac{eB}{m} = \omega_r,$$

 ρ_0 being the charge density in the electron beam. The electron velocity varies inside the beam as $\omega_r y$.

If a nonequipotential cathcde is used, it is possible to avoid this condition; with a constant charge density in the beam, the electron velocity varies as $y\Omega_0^2/\omega$.

It has been supposed, with no other basis than the agreement between theory and experimental data, that it is possible to apply the results thus obtained to a beam

with complicated trajectories, if the charge density in the linear beam is taken equal to the average charge density in the actual beam.

The general space-charge theory leads to a transcendental equation which is difficult to solve. Therefore, the influence of space charge has been introduced as a perturbation in the theory without space charge in the following manner:¹¹ The beam travels in an rf field which is the sum of the field Φ_L guided by the line and the field Φ_c created by the space charge. The trajectories of the electrons are determined by $\Phi_L + \Phi_c$, while the transfer of energy from the beam to the line is determined by Φ_L only. The approximation consists in calculating Φ_c from trajectories determined without space charge. This leads (see Appendix A) to the following values of the propagation constants for the two principal waves:

$$T_{1,2} = \Gamma_m \pm \sqrt{\Gamma_d^2 + \gamma_M^2 \left(1 - \frac{\alpha}{\Gamma_d \mp \sqrt{\Gamma_d^2 + \gamma_M^2}}\right)}, \quad (3)$$

where

$$\alpha = \frac{\Omega_0^2 \Gamma \Delta}{\omega v_e}$$

 2Δ is the width of the beam.

Starting Conditions

The boundary conditions give the starting conditions for oscillations⁴

$$(\Gamma_2 - \Gamma_{\bullet})(a_0 a_l \epsilon^{j\Gamma_0 l} - \epsilon^{-j\Gamma_2 l}) = (\Gamma_1 - \Gamma_{\bullet})(a_0 a_l \epsilon^{j\Gamma_0 l} - \epsilon^{-j\Gamma_1 \rho}).$$
(4)

If the line is matched at least at one end $(a_0a_i=0)$ and if it has no attenuation, the starting conditions are:

$$v_0 = v_s \tag{5}$$

$$\gamma_M l = \frac{\pi}{2} + 2\pi n \ (n = 0, 1, 2 \cdots) \ (6)$$

Eq. (5) says that for every possible oscillation (n = 0, 1, etc.) the phase velocity of the line at the oscillating frequency is equal to the electron velocity. Eq. (6) is the condition for the starting current.²

$$I_s = \left(\frac{\pi}{2} + 2\pi n\right)^2 \frac{E_0}{\Gamma_0^2 \Gamma_s l^2 R_c} \operatorname{tangh} \Gamma y_0, \qquad (7)$$

l being the length of the line. The influence of an attenuated line and of reflections already have been discussed.⁴ If space charge effects are taken into account, (3) must be used, and the starting conditions are:

$$\Gamma_d = \frac{\alpha}{2} \tag{8}$$

¹¹ R. Warnecke, O. Doehler and O. Bobot, "Les effets de la charge d'espace dans les tubes à propagation d'onde à champ magnétique," *Ann. Radioélect.*, vol. V, p. 279; October, 1950.

¹⁰ L. Brillouin, "Trajectories in a single anode magnetron," *Elec. Commun.*, p. 460; 1946.

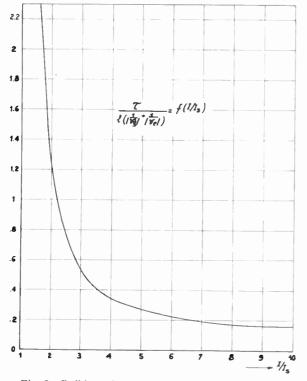


Fig. 2-Build-up time as a function of beam current.

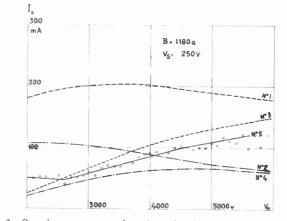
$$\gamma_M l \left(1 + \frac{3\alpha^2}{8\gamma_M^2} \right) = \frac{\pi}{2} + 2\pi n. \tag{9}$$

Eq. (8) shows that, in the presence of space charge, the phase velocity of the line at the oscillating frequency is not the same as the electron velocity and assumes different values for the various values of n.

Eq. (9) shows that the starting current is decreased by the effect of space charge.

Build-Up Time

If the beam current is higher than the starting current, the tube oscillates and the rf amplitude starts increasing with *t*, the time dependent factor being:


$$\epsilon^{j\overline{\omega}t} = \alpha^{j\omega t + t/\tau}.$$

The time τ characterizes the build-up time for small values of t and permits the determination of the approximate order of magnitude of the build-up-time.

The calculation of τ is analogous to the calculation of the starting current. But the balance of power must be modified to take into account the increase of the amplitude.

The power transferred by the beam to the rf field in a section dx of the line, and during the time dt, is the sum of:

- 1. The energy absorbed by the line in the length dx and during the time dt.
- 2. The increase of power, propagated along the line in the section dx and during the time dt.

- Fig. 3—Starting current as function of voltage. (1) Without space charge—linear trajectories. (2) Without space charge—cycloidal trajectories. (3) With space charge—linear trajectories. (4) With space charge—cycloidal trajectories. (5) Experimental curve.
 - 3. The increase of electromagnetic energy dW stored in the section dx during the time dt.

$$dW = j(\bar{\omega} - \omega_0) W dx dt$$

W = stored energy per unit length, $\omega_0 =$ angular frequency of the free wave.

If space charge is neglected, the equation which determines the propagation constant then has the form:

$$\Gamma - \Gamma_e - \frac{\bar{\omega} - \omega_0}{v_g} = \frac{\gamma_M^2}{\Gamma - \frac{\bar{\omega}}{v_e}} \cdot$$
(10)

 v_q is the group velocity.

The boundary conditions of rf current for x = 0 and of electric field for x = l permit determination of $\bar{\omega}$.

If there is a perfect match at least at one end of the tube and if the line has no attenuation, ω and τ are given by:

 $\omega =$

$$=\omega_0$$
 (11)

$$PS\left[2\gamma_{M}{}^{l}\sqrt{1-\left(\frac{\theta}{2\gamma_{M}}\right)^{2}}\right] = -\left[1-2\left(\frac{\theta}{2\gamma_{M}}\right)^{2}\right] (12)$$

with:

CO

$$\theta = \frac{1}{\tau} \left[\frac{1}{|v_{\theta}|} + \frac{1}{|v_{\theta}|} \right]. \tag{13}$$

Eq. (12) is a transcendental equation for θ , if γ_M , i.e. the current, is given. In Fig. 2,

$$\frac{\tau}{l\left(\frac{1}{|v_{\scriptscriptstyle B}|}+\frac{1}{|v_{\scriptscriptstyle B}|}\right)}$$

has been plotted as a function of I/I_s (I_s = starting cur-

World Radio History

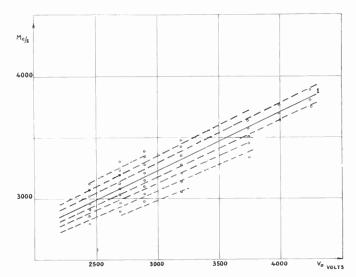


Fig. 4—Frequency of parasitic oscillations as a function of voltage (solid curve-normal oscillation).

rent). If I/I_s is large, τ is given by the approximate expression:

$$\tau = \frac{1}{\pi} \frac{1}{\sqrt{I/I_s}} \cdot l \left(\frac{1}{|v_g|} + \frac{1}{|v_e|} \right) \cdot$$

In practice, τ is of the order of 10^{-9} seconds in the "S" band tubes. The total build-up time is then of the order of 10^{-7} to 10^{-8} seconds.

In the presence of space charge, τ decreases, so that (12) and (13) give the upper limit for τ .

EXPERIMENTAL RESULTS

Starting Current

The theory for the starting current has been checked on different types of experimental tubes with a linear structure. Fig. 3 shows the results obtained with a linear tube. The starting current is a function of the shape of the trajectories, and it has been calculated for two different electron gurs. For the "ideal" gun trajectories are straight lines; for the "magnetron gun trajectories are cycloids as in the plane magnetron without space charge. In practice, the trajectories are between these two limits. Curves 1 and 2 have been calculated from (6) neglecting space charge. Curves 3 and 4 have been calculated from (9). Curve 5 has been measured. The theory neglecting space charge gives starting currents much too high, especially at low voltages; the space charge has an important influence on the starting conditions and the theory gives the correct order of magnitude.

Parasitic Oscillations

For high currents and low voltages, parasitic oscillations can be observed. Sidebands with an amplitude from 1/100 to $\frac{1}{2}$ that of the principal frequency occur.

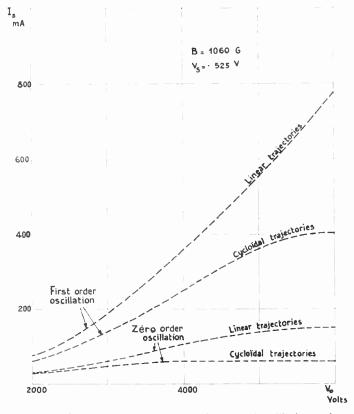
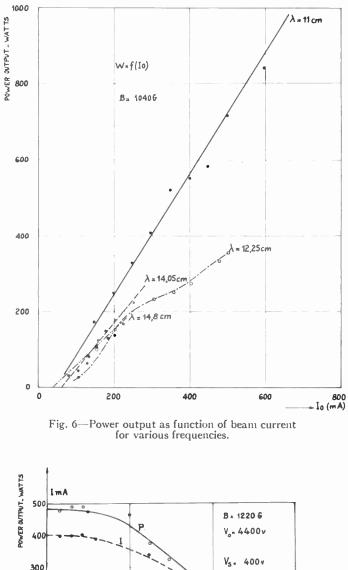


Fig. 5—Theoretical starting current for normal oscillation and first parasitic oscillation.


In Fig. 4 the main frequency and the measured sidebands as a function of voltages are shown. The difference of frequency between successive bands is approximately 60 mc. The amplitude is smaller for sidebands of higher order.

These oscillations can be attributed to the excitation of the higher orders as given by (9). In Fig. 5 the theoretical starting current of the zero order (n=0) and of the first order (n=1) have been plotted. It follows that the starting current of the first order for low voltages is only three times higher than that of the zero order. The frequency difference between these two oscillations is almost independent of voltage and, for the case of Fig. 4, has from (8) a theoretical value of 45 to 70 mc for different trajectories of the electrons.

The high frequency sidebands can be explained by intermodulation between these two oscillations, and an asymmetry must appear, as shown in Fig. 4.

Pushing Figure

If small signal theory with space charge were used to calculate the frequency as a function of current, large variations (a few per cent) of frequency should occur. But measurements show that the pushing figure is relatively low. Measurements on a tube in the "S" band have shown that variation of frequency is 2 to 3 mc for high voltages (5,000 v) and 5 mc for low voltages (2,500 v) when the power output varies from one to ten.

λ . 11,5 cm 1000 CONTROL GRID VOLTAGE (VOLTS)

Fig. 7-Power output and beam current as functions of control grid voltage.

500

Amplitude Modulation

200

100

0

In Fig. 6, power has been plotted as a function of beam current for different frequencies. For these experiments a tungsten filament was used and the current controlled by the temperature of the filament.

Usually, these curves are straight lines and power output is of the form:

$$P = A(I - I_s),$$

 I_s being the starting current and A a constant.

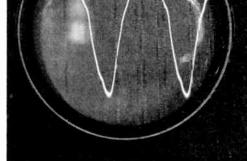


Fig. 8-Oscillogram of power output against control electrode voltage.

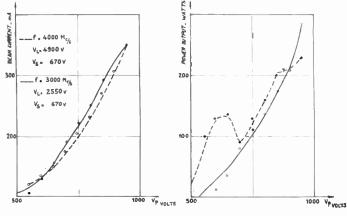


Fig. 9-Power output and beam current as a function of plate voltage.

For some frequencies, especially at low voltages, P = f(I) has a more complicated form. Up to now, this has not been explained.

Fig. 7 shows rf power and beam current as a function of control grid voltage for two frequencies.

Fig. 8 shows the power output as a function of grid voltage for a 50 cps modulation.

This characteristic remains unchanged for modulating frequencies up to at least 5 mc.

The control grid is an electrode surrounding the filament. The "cutoff" is relatively high. It is also possible to control the current with the plate of the optical system. In this case the modulating voltage is lower. But as shown in Fig. 9 the power vs plate voltage curve is sometimes more complicated because the shape of the trajectories is influenced by the plate voltage.

Influence of Load

If attenuation at the end of the line near collector gives a perfect match and there is no reflection along circuit from machining irregularities, frequency will be in-

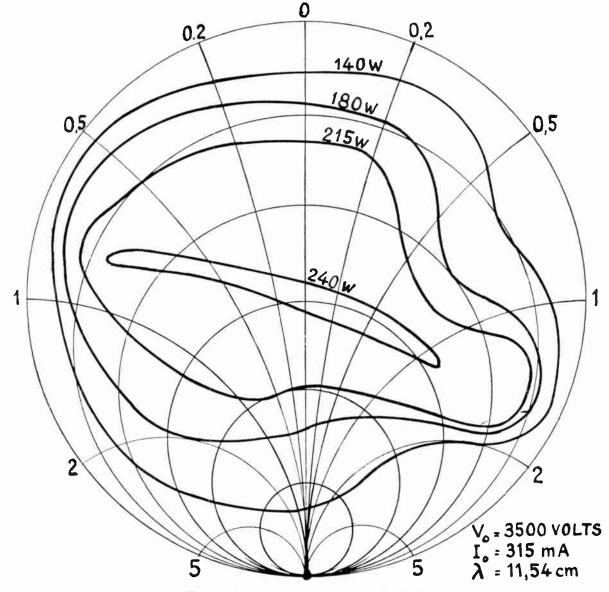


Fig. 10-Lines of constant power on a Smith chart.

dependent of load and curves of constant power must be circles about the center of the Smith chart.

Fig. 10 is the Rieke diagram for constant power. Variation of frequency was below measurement accuracy (1 mc).

Fig. 11 (next page) shows frequency vs sole-voltage for an imperfect attenuation at end of line near the collector. Parameter is vswr introduced in the output circuit. The form of the curves agrees with theory.⁵

Signal to Noise Ratio

)))

16

The measurement of the signal-to-noise ratio is possible, if the "M" carcinotron itself is used as local oscillator. In this case, the variations of frequency due to the ripples in the power supplies cancel out, but it is not possible to separate the two noise sidebands. The noise of the Carcinotron was compared with a mercury-argon noise source amplified with a low-noise traveling-wave tube.

Fig. 12 (next page) shows noise per cps to signal ratio as a function of frequency distance from oscillating frequency. Noise per cps to signal ratio is of the order of -140 db.

Fig. 13 (page 421) shows the noise in relative units as a function of current.

Efficiency

Electronic Efficiency: If space charge is neglected the electronic efficiency η_e can be calculated with the same method as in the magnetron amplifier. If all electrons are absorbed by the line, η_e is given by:

$$\eta_{\,s}\,=\,1\,-\,m\,\frac{V_f}{V_0}$$

 V_f is the voltage corresponding to the drift velocity of

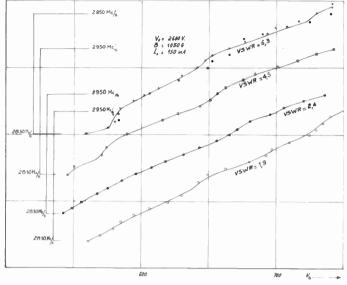


Fig. 11—Frequency vs sole voltage for various values of load vswr (ordinate curves have been translated for the various curves).

the electrons given by (1). m is a constant depending on the trajectories. If the trajectories are linear, K is unity; if they are cycloids corresponding to a plane magnetron without space charge, we have m = 4.

Actually, not all electrons are absorbed by the line. Measurements on distribution of collector and line current indicate that more than 80 per cent of electrons arrive on the line, and electronic efficiency should be:

$$\eta_e \ge 0.8 \left(1 - m \frac{V_f}{V_0}\right)$$

which can be transformed to:

$$\eta_e \geq 0.8 \left(1 - \frac{m}{4} \left(\frac{B_{cr}}{B}\right)^2\right),$$

 B_{cr} being the cut-off magnetic field of a plane magnetron under the same conditions.

Circuit Efficiency: The circuit efficiency is given by the Q_v of the circuit and the external Q_{ext} :

$$\eta_c = \frac{Q_v}{Q_{ext} + Q_v}$$

 Q_v is defined by:

$$Q_v = \frac{\omega \int_0^L W(y) dy}{P_L}$$

and Q_{ext} by:

$$(\mathcal{D}_{ext} = \frac{\omega \int_{0}^{L} W(y) dy}{P_0}.$$

W is the stored energy per unit length, P_L the power loss in the line, and P_0 the output power. If γ_a is the

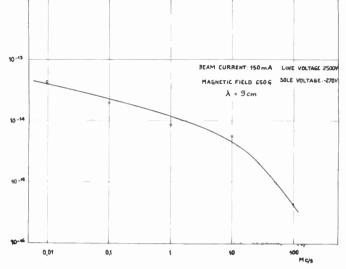


Fig. 12—Noise-to-signal ratio for a 1 cps bandwidth. The abscissa is the difference between the oscillating frequency and the frequency at which noise is measured.

attenuation of the line in Neper/cm, we have:

$$P_L = 2\gamma_a \int_0^L P'(y) dy,$$

where P'(y), power propagating along the line, is related to W(y):

$$P'(y) = W(y)v_{a}$$

and therefore:

$$Q_v = \frac{k_g}{2\gamma_a}, \quad k_g = \frac{\omega}{v_g}.$$

 Q_{ext} is given by:

$$Q_{ext} = \frac{k_g \int_0^L W(y) dy}{W(0)}.$$

For small signal theory W(y) can be obtained by the superposition of the waves with the propagation constants given by (2), and we obtain:

$$Q_{ext} = \frac{k_g}{2} \frac{\epsilon^{\gamma_a l} - 1}{\gamma_a} = Q_v(\epsilon^{\gamma_a l} - 1)$$
(14)

and:

$$\eta_c = \epsilon^{-\gamma_a l}. \tag{15}$$

If the attenuation is small (14) gives:

$$Q_{ext} = \frac{k_g}{2} l, \qquad (16)$$

and found directly, if losses in the line are neglected.

Influence of the Coupling Impedance on the Efficiency: According to the theory neglecting space charge, efficiency should not depend on coupling impedance for

World Radio History

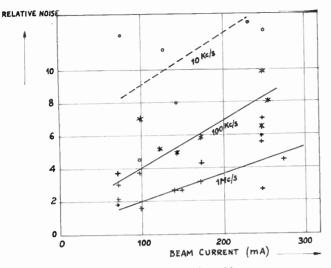


Fig. 13-Relative noise as a function of beam current.

high beam currents and should be a function only of the shape of trajectories, phase velocity of the circuit, and acceleration voltage. However, the first tubes tested have given a relatively low efficiency, much lower than predicted by theory.

It has been assumed space-charge phenomena have an important influence on efficiency (diocotron effect)12 and if coupling impedance is high, space-charge effects should be negligible and efficiency should increase.

It can be seen that, contrary to the space-charge neglecting theory, efficiency increases rapidly with coupling impedance. The same occurs with the tuning range. As far as power is concerned, there is optimum value for the coupling impedance: an increase of coupling impedance decreases the thermal dissipation of the line and consequently the dc power which can be applied.

Rising-Sun Effect¹³

In the small signal theory, it is generally assumed that interaction takes place with one space harmonic. However there is the possibility that one space harmonic Γ_0 being coupled to the beam wave Γ_e , another space harmonic Γ_0' will be coupled to the beam wave $\Gamma_e - \omega_r/v_e$. This will occur if:

$$\Gamma_0 - \Gamma_0' = \frac{\omega_r}{v_e} \,. \tag{17}$$

The differences $\Gamma_0 - \Gamma_0'$ between two successive space harmonics being $2\pi/p$, where p is the pitch of the line, (17) implies that:

$$\frac{\omega_r}{v_e} = \frac{2\pi}{p} \,. \tag{18}$$

12 P. Guénard and H. Huber, "Etude expérimentale de l'interaction par ondes de charge d'espace au sein d'un faisceau électronique se déplaçant dans des change d'espace au sein d'un raisceau electroinque se déplaçant dans des change électrique et magnétique croisés," *Ann. Radioélect.*, vol. VII, p. 252; October, 1952. ¹³ W. E. Willshaw, G. Mourier, and G. Guilbaud, "Effet de réso-

nance électronique dans les tubes à champs électrique et magnétique croisés," Compt. Rend. Acad. Sci. (Paris), (in press).

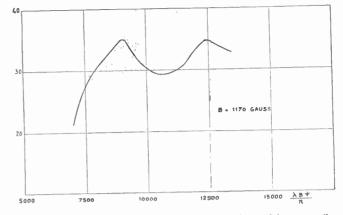


Fig. 14-Efficiency as function of voltage exhibiting rising-sun effect (average over 16 tubes).

If (18) is fulfilled, the space harmonic $\Gamma_0'' = \Gamma_0 + 2\pi/p$ will be coupled to the beam wave $\Gamma_e + \omega_r v_e$. However, this effect can be neglected, because of the low coupling impedance of the wave Γ_0'' .

This simultaneous coupling of two space harmonics can occur in certain lines, e.g., interdigital lines, where asymmetrical and symmetrical space harmonics exist.14,15 The first symmetrical space harmonic being normally used, interaction can occur with the first asymmetrical space harmonic which is in fact the fundamental space . harmonic. For the symmetric space harmonics, the apparent pitch of the line is half the real pitch p. ψ being the phase angle along this apparent pitch for the first symmetric space harmonic, (18) can be expressed numerically in the following form:

$$\lambda B = \frac{10700\pi}{\psi} \cdot \tag{19}$$

At the "cutoff" $(\psi = \pi)$, this is the well-known condition for the "rising-sun effect" in the magnetron¹⁶ characterized by a pronounced minimum in efficiency. As shown by Fig. 14 above, same phenomenon appears in the "M" Carcinotron for values of parameters satisfying (19). It is shown in Appendix B that simultaneously the starting current must exhibit a maximum. This can be seen on Fig. 15 (next page).

CHARACTERISTICS OF AN "M" CARCINOTRON

Fig. 16 (page 422) shows an experimental setup for studying properties of "M" Carcinotron. Fig. 17 (page 422) shows same type of tube in an industrial form. To reduce the bulk of the tube, the line has been curved into a circular form. The electromagnet has been replaced by a permanent magnet. Fig. 18 (page 423) shows the performance charts measured on this tube, and Fig. 19 (page 423)

¹⁴ R. C. Fletcher, "A broad-band interdigital circuit for use in traveling-wave-type amplifiers," PRoc. I.R.E., vol. 40, pp. 951-958; August, 1952. ¹⁵ A. Leblond and G. Mourier, "Etude des lignes à barreaux a

structure périodique," Ann. Radioélect., vol. ix, p. 184; April, 1951. ¹⁶ G. B. Collins, "Microwave Magnetrons," Radiation Lab. Se-ries, McGraw-Hill Book Co., Inc., New York, N. Y., sec. 3.3; 1948.

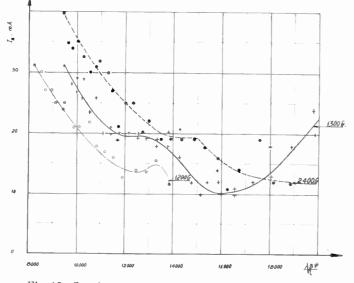


Fig. 15-Starting current curves exhibiting rising-sun effect.

the variation of power, efficiency and frequency with line voltage. These figures show possibility of obtaining, under practical conditions and for frequencies around 3,000 mc, power outputs of several hundred watts in a frequency range larger than half an octave and with efficiencies of the order of 40 per cent. In some cases, efficiencies in excess of 60 per cent have been measured.⁸

CONCLUSION

This paper shows that if the theory does not cover entirely the behavior of the "M" Carcinotron, in particular the space-charge effects, it nevertheless predicts the main features of this type of tube.

The main features of the "M" Carcinotron, as compared to other types of electronically tunable tubes, are: high efficiency, a fairly linear frequency-voltage characteristic, and a low pushing and pulling figure, together with a wide electronic range.

These features make the "M" Carcinotron particularly advantageous as a high-power electronically-tunable tube.

APPENDIX A

Without space charge, the motion of the electrons is determined by the field of the line, the components of which can be written:

$$E_{x}\epsilon^{j(\omega t-\Gamma_{x})} = -\frac{\partial \Phi_{L}}{\partial x}, \qquad E_{y}\epsilon^{j(\omega t-\Gamma_{y})} = -\frac{\partial \Phi_{L}}{\partial y}$$

with:

$$\Phi_L = \phi_L \frac{\sinh \Gamma y}{\sinh \Gamma y_0} \, \epsilon^{i(\omega t - \Gamma_x)}.$$

The equations giving the rf components of the motion are, for a linear trajectory $x = v_e \tau$, $y = y_0$:

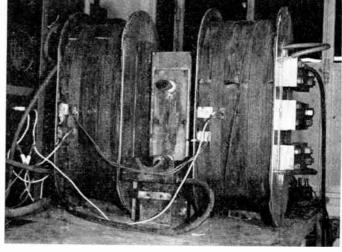


Fig. 16-Experimental setup for studying a linear "M" Carcinotron.

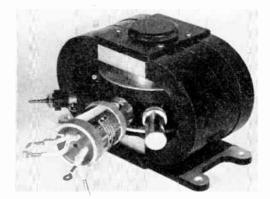


Fig. 17-Industrial model of an "M" Carcinotron.

$$-\xi^2 \delta x - j \xi \omega_r \delta y = -j\eta \Gamma \phi_L \tag{20}$$

$$j\xi\omega_{r}\delta x - \xi^{2}\delta y = \eta\Gamma\phi_{L}K \qquad (21)$$

$$(\xi = \omega - \Gamma v_e; K = \operatorname{coth} \Gamma y_0).$$

The coupling between the beam and the line is given by:

$$\Gamma - \Gamma_0 = j \frac{\vec{I} \cdot \vec{E^*}}{4P} = j \frac{\vec{I} \vec{E^*} R_c \Gamma_0^2}{2\Gamma \Gamma^* \phi_I \phi_I^*},$$

where R_e is the coupling impedance

$$R_c = \frac{E_s E_s^*}{2\Gamma_0^2 P}$$

An infinitely thin sheet of the beam carrying the dc current dI_0 (which is taken positive) contributes to $\vec{I} \cdot \vec{E}^*$ through the following term:

$$-j\Gamma_{e}dI_{0}[\delta xE_{x}^{*}+\delta yE_{y}^{*}]=-\Gamma_{e}\Gamma^{*}\phi_{L}^{*}dI_{0}[\delta x-jK\delta y],$$

which gives, I_0 being the current carried by the beam:

$$j(\Gamma - \Gamma_0)\Gamma\phi_L = \frac{\gamma_M^2}{2} \left[\frac{\delta x}{K} - j\delta y\right]$$
(22)

where

422

World Radio History

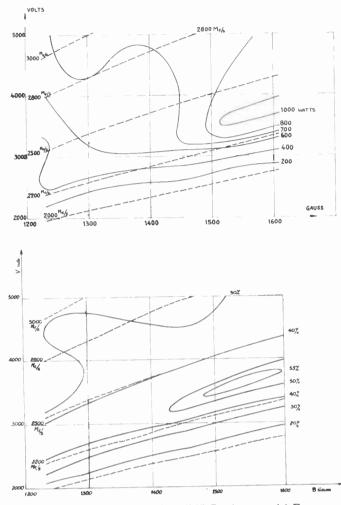


Fig. 18—Performance charts of an "M" Carcinotron: (a) Frequency and power output vs magnetic field and voltage. (b) Efficiency vs magnetic field and voltage.

$$\gamma_M{}^2 = \frac{I_0 \Gamma_e \Gamma_0{}^2 R_e K}{E_0}$$

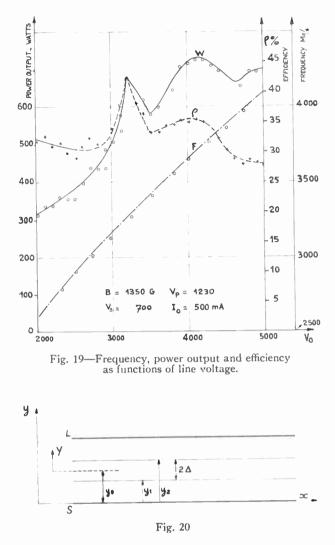
Eqs. (20), (21) and (22) determine five waves, one of which is:

 $\Gamma_{\mathbf{5}} = \Gamma_{\mathbf{0}} \qquad \phi_L = 0 \qquad \delta x = j K \delta y \qquad \delta \dot{x} = \delta \dot{y} = 0.$

Assuming

$$|\Gamma_{s} - \Gamma_{0}| \ll \frac{\omega_{r}}{v_{e}}$$
 and $\gamma_{M}^{2} \ll \left(\frac{\omega_{r}}{v_{s}}\right)^{2}$,

 $\Gamma_{1,2}$ are the two principal waves for which $|\xi| \ll \omega_r$. The propagation constants of these two waves are given by


$$(\Gamma - \Gamma_{e})(\Gamma - \Gamma_{0}) = \gamma_{M}^{2}$$
(23)

i.e.

$$\Gamma_{1,2} = \Gamma_m \pm \sqrt{\Gamma d^2 + \gamma_M^2} \tag{24}$$

with

$$\Gamma_m = \frac{\Gamma_e + \Gamma_0}{2}, \qquad \Gamma_d = \frac{\Gamma_e - \Gamma_0}{2}$$

The two other waves correspond to $\xi = \pm \omega_r$. As compared to the waves $\Gamma_{1,2}$, they are weakly coupled to the field of the line, as seen from (20) and (21), which relate amplitudes of the field and of the electron motion.

The potential $\phi \epsilon^{i(\omega t-Fz)}$, from which derives the spacecharge field of such a beam, can be calculated from the rf space-charge ρ and the surface density $-\rho_0 \delta y$.

The space-charge density:

$$\rho = + \rho_0 \left(\frac{\partial}{\partial x} \, \delta x + \frac{\partial}{\partial y} \, \delta y \right)$$

is equal to zero. The potentials ϕ_c inside, and ϕ_1 , ϕ_2 outside the beam (Fig. 20 above) satisfy Laplace equations and are thus a linear combination of $\epsilon^{\Gamma_{\nu}}$ and $\epsilon^{-\Gamma_{\nu}}$.

If the sole and the line are remote enough from the beam $(\Gamma y_1 \gg 1, \Gamma(d-y_2) \gg 1)$, the potentials are:

$$\phi_1 = A \epsilon^{\Gamma_{\nu}}$$

$$\phi_2 = B \epsilon^{-\Gamma_{\nu}}$$

$$\phi_c = C \epsilon^{\Gamma_{\nu}} + D \epsilon^{-\Gamma_{\nu}}.$$

The boundary conditions at the two edges of the beam give

423

World Radio History

$$\phi_{\epsilon} = \frac{-\rho_0 \delta y_2}{2\Gamma\epsilon_0} \epsilon^{\Gamma(y-y_2)} + \frac{\rho_0 \delta y_1}{2\Gamma\epsilon_0} \epsilon^{\Gamma(y_1-y)}.$$

Assuming $\Gamma\Delta \ll 1$, ϕ_c takes the simplified form:

$$\phi_c = -\psi L \frac{\Omega_0^2 \Gamma}{\omega_r \xi} (K\Delta + Y)(1 - \Gamma\Delta). \qquad (25)$$

With space charge, the equations of motion are:

$$\delta x'' - \omega_r \delta \dot{y} = -j\eta \Gamma \left(\phi_L \frac{\sinh \Gamma y}{\sinh \Gamma y_0} + \phi_c \right) \epsilon^{j \dot{\epsilon}' \tau}$$
$$\delta \ddot{y} + \omega_r \delta \dot{x} = \Omega_0^2 \delta y + \eta \frac{\partial}{\partial y} \left[\phi_L \frac{\sinh \Gamma y}{\sinh \Omega y_0} + \phi_c \right] \epsilon^{j \dot{\epsilon}' \tau}$$

with

$$\xi' = \omega - \Gamma v_{\bullet}' - \Gamma \frac{\Omega_0^2}{\omega_r} Y$$
$$v_{\bullet}' = v_{\bullet} - \frac{\Omega_0^2}{\omega_r} \Delta \left(1 - \frac{2y_0}{d} \right).$$

Introducing in these equations the value of ϕ_c given by (25), and assuming:

$$\Gamma \frac{\Omega_0^2 \Delta}{\omega_r v_s} = \alpha \ll \gamma_M,$$

these equations give

$$(\Gamma - \Gamma_0)(\Gamma - \Gamma_e) = \gamma_M^2 \left(1 - \frac{\Omega_0^2 \Gamma \Delta}{\omega_r \xi} \right), \qquad (26)$$

 ξ being the value of $\omega - \Gamma v_e$, given by the theory which neglects space charge. The propagation constants of the two principal waves are thus given by:

$$\Gamma = \Gamma_m \pm \sqrt{\Gamma_d^2 + \gamma_M^2 \left(1 - \frac{\alpha}{\Gamma_d \mp \sqrt{\Gamma_d^2 + \gamma_M^2}}\right)}.$$
 (27)

Appendix B

In Appendix A, it has been supposed that one space harmonic was coupled to the beam. Let us suppose now that the space harmonics are coupled to the beam corresponding to propagation constants Γ_0 and $\Gamma_0' = \Gamma_0$ $-2\pi/p$, *p* being the pitch of the line. Both space harmonics will be strongly coupled to the beam if:

$$\Gamma_{\sigma} \sim \Gamma_{0}, \qquad \Gamma_{\sigma} - \frac{\omega_{r}}{v_{\sigma}} \sim \Gamma_{0} - \frac{2\pi}{p}$$

that is if:

$$\frac{\omega_r}{v_s} = \frac{2\pi}{p} \cdot$$

The amplitudes of these two space harmonics are related by the properties of the line, and for the second wave, the propagation constant will be $\Gamma' = \Gamma - 2\pi/p$ and the amplitude $k\phi_L$. The equations of motion (20) and (21) hold for the first space harmonic. For the second space harmonic, the equations of motion are:

$$-\xi'^{2}\delta x' - j\xi'\omega_{r}\delta y' = -j\eta\Gamma'k\phi_{L}$$
(28)

$$j\xi'\omega_r\delta x' - \xi'^2\delta y' = \eta\Gamma' k\phi_L K', \qquad (29)$$

with:

$$\xi' = \xi + \omega_r$$

The equation of coupling between the line and the beam must take into account both space harmonics, that is:

$$\vec{I} \cdot \vec{E^*} = -jI_0 \Gamma_{\sigma} [\delta x E_x^* + \delta y E_y^* + \delta x' E_x'^* + \delta y' E_y'^*]$$

$$= -\Gamma_{\sigma} \Gamma^* \phi_L^* I_0 \left[(\delta x - j K \delta y) + \frac{\Gamma'^*}{\Gamma^*} k (\delta x' - j K' \delta y') \right]. \quad (30)$$

Eq. (23) becomes

(

$$(\Gamma - \Gamma_e)(\Gamma - \Gamma_0) = \gamma_M^2(1 - S),$$

where

$$S = \frac{1+K'^2}{4K} \mid k \mid^2 \left| \frac{\Gamma'}{\Gamma} \right|^2,$$

showing that the starting current is increased by the factor $1/\sqrt{1-S}$.

There are now two waves uncoupled to the beam $(\phi_L=0)$ corresponding to $\xi=0, \xi'=\omega_r$, the four factors $\delta x, \delta y, \delta x', \delta y'$ being related by two equations:

$$\delta x - jK\delta y + \frac{\Gamma'}{\Gamma} k(\delta x' - jK'y') = 0$$

$$\delta x' = -j\delta y'.$$

£

Power Flow in Electron Beam Devices*

W. H. LOUISELL[†] and J. R. PIERCE[†], fellow, ire

Summary—This paper discusses power flow in devices in which electrons are constrained to move in the z direction only. Besides the electromagnetic power flow given by Poynting's vector, there is a kinetic power flow per unit area in the z direction. In a linear system equivalent to the electron beam at low levels of operation this power flow is

$$P_R = -\frac{1}{2} \frac{m}{e} (-J_0 + J)(u_0^2 + 2u_0 v).$$

Here $-J_0$ and J are the dc and instantaneous ac convection current densities and u_0 and v are the dc and instantaneous ac velocities.

The electromagnetic power must be calculated including all fields due to the presence of the beam. In the case of space-charge waves, the electromagnetic power flow adds to or subtracts from the kinetic power flow. If the electric field is purely longitudinal, H is zero, and the electromagnetic power flow is zero.

I N ELECTRON beam devices such as travelingwave tubes and klystrons there is not only electromagnetic power flow, but also power flow associated with the kinetic energy of the electrons; we may call this latter kinetic power flow. This note discusses power flow in beam devices, and particularly power flow at low signal levels for which linearized equations can be used to describe the operation of the devices.

Maxwell's equations yield a relation which may be written

$$\nabla \cdot P_e + \frac{\partial}{\partial t} W_e + E \cdot J = 0, \qquad (1)$$

where

$$P_c = E \times H \tag{2}$$

$$W_e = \frac{1}{2}\mu H \cdot H + \frac{1}{2}\epsilon E \cdot E. \tag{3}$$

Here E, H and J are vectors; they are the electric field, the magnetic field, and the convection current density. P_s is the Poynting vector, which may be interpreted as electromagnetic power flow per unit area and W_s , a scalar, is the electromagnetic stored energy per unit volume associated with the total electric and magnetic fields, in the presence of the electrons.

Consider a case in which the only convection current (other than convection current at the surface of perfect conductors, for which $E \cdot J = 0$) is due to a cloud of electrons of charge density ρ , the electrons being free to move in the z direction only and having at any point a common velocity v. The nonrelativistic equation of motion is

$$\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial z} = -\frac{e}{m} E$$

* Original manuscript received by the IRE, November 22, 1954;
 revised manuscript received, January 17, 1955.
 † Bell Telephone Labs, Inc., Murray Hill Lab., Murray Hill, N.J.

$$E_{z} = -\frac{m}{c} \left[\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial z} \right]. \tag{4}$$

We also have relations

$$J = J_z = \rho v \tag{5}$$

$$\nabla \cdot J + \frac{\partial \rho}{\partial t} = \frac{\partial J_s}{\partial z} + \frac{\partial \rho}{\partial t} = 0.$$
 (6)

Consider the term $E \cdot J$ in (1); using (4) we can rewrite it

$$E \cdot J = -\frac{m}{c} \left[\frac{\partial v}{\partial t} + v \frac{\partial \iota}{\partial z} \right] J.$$
(7)

A little differentiation, together with (5) and (6), shows that

$$E \cdot J = \frac{\partial W_k}{\partial t} + \frac{\partial P_k}{\partial z},\tag{8}$$

where

$$W_k = -\frac{1}{2} \frac{m}{e} \rho v^2 \tag{9}$$

$$P_k = (P_k)_z = -\frac{1}{2} \frac{m}{e} Jv^2.$$
 (10)

Thus, we can rewrite (1)

$$\nabla \cdot (P_e + P_k) + \frac{\partial}{\partial t} (W_* + W_k) = 0.$$
(11)

Here of course $\nabla \cdot P_k = \partial(P_k)z/\partial z$. Eq. (11) represents the conservation of energy. As P_e and W_e are electromagnetic power flow and electromagnetic energy, so P_k and W_k are kinetic power flow and kinetic energy.

In dealing with the low-level operation of electron beam devices we do not use (4) and (5) but, rather, we use linearized equations and use

$$E_{z} = -\frac{m}{e} \left[\frac{\partial v}{\partial t} + u_{0} \frac{\partial v}{\partial z} \right]$$
(4a)

$$J = J_z = -\rho_0 v + u_0 \rho. \tag{5a}$$

Here u_0 is the average electron velocity and v is a small ac velocity component; $-\rho_0$ is the average charge density and ρ is a small ac component. We may regard (4a) and (5a) and (6) as the equations of an "equivalent" linear system whose behavior is the same as the behavior of the actual nonlinear system at low levels of operation. We may ask, what is the correct expression for power flow and stored energy in the equivalent linear system.

In the linear system

$$E \cdot J = -\frac{m}{e} \left[\frac{\partial v}{\partial t} + u_0 \frac{\partial v}{\partial z} \right] J.$$
(12)

We find that $(E \cdot J)$ can be expressed in the form (8) if we define

$$P_{k} = -\frac{1}{2} \frac{m}{e} (-J_{0} + J)(u_{0}^{2} + 2u_{0}v)$$
(13)

and

$$W_{k} = -\frac{1}{2} \frac{m}{e} \left[-\rho_{0}(u_{0}^{2} + 2u_{0}v + v^{2}) + \rho(u_{0}^{2} + 2u_{0}v) \right].$$
(14)

These expressions are not the result of a linearized expansion; (13) and (14) were chosen so that (11) holds for the linear system with P_k and W_k so defined. We will run into no contradictions if we interpret P_k and W_k as kinetic power flow of the beam per unit area and kinetic energy in the beam per unit volume respectively.

In dealing with amplifiers we deal with signals which vary sinusoidally with time. In the linear system we can consider each frequency component of the ac quantities separately. Let us then think of the ac quantities as complex quantities containing a factor $e^{j\omega t}$. Then the average power flow in the z direction per unit area will be

$$P_{z} = \frac{1}{4} \left[(E \times II^{*} + E^{*} \times II)_{z} - \frac{m}{e} u_{0}(vJ^{*} + v^{*}J) \right].$$
(15)

In this expression E, H, v and J are peak values. We can get the total power flow in the z direction by integrating the z component of P as given by (15) with respect to x and y.

Let us now consider the power flow in space-charge waves. In the case of true plasma waves, in which all the di^splacement current is in the direction of electron motion, the displacement current is equal and opposite to the convection current. There is no net current in the z direction and no electromagnetic power flow, since *II* is zero. In this case the total power flow of the wave is the kinetic power flow, the second term of (15).¹

At the other extreme, we can consider space-charge waves in an electron stream in a tube narrow compared with the space-charge wave length. In this case the displacement current in the z direction is negligible, and there is an electromagnetic power flow.

In the case of a space-charge wave, the variation of the ac quantities with respect to z can be expressed by a factor $e^{-i\beta z}$. Let us consider slow space-charge waves, for which the electric field can be expressed with adequate accuracy in terms of the gradient of a potential V, so that

$$E_x = -\frac{\partial V}{\partial z} = j\beta V. \tag{16}$$

Let us consider the electromagnetic power flow in the z direction per unit area, P_{el} associated with the convection current J^2

$$P_{e1} = \frac{1}{4}(VJ^* + V^*J).$$

Using (16) and (12) to express V in terms of v, we find this to be

$$P_{e1} = -\frac{1}{4} \frac{m}{e} u_0 \left[\frac{\omega - \beta u_0}{\beta u_0} \right] \left[vJ^* + v^*J \right].$$
(17)

We see from (15) that the ratio of P_{e1} to the kinetic power density P_k is

$$\frac{P_{e1}}{P_k} = \frac{\omega - \beta u_0}{\beta u_0} ; \qquad (18)$$

for small space charges, very nearly

$$\omega - \beta u_0 = \pm \omega_q \tag{19}$$

$$\beta u_0 = \omega. \tag{20}$$

Here ω_q is called the *effective plasma frequency*. Thus, for small space charge, approximately

$$\frac{P_{e_1}}{P_k} = \pm \frac{\omega_q}{\omega} \cdot \tag{21}$$

In terms of the traveling-wave tube parameters Q and C

$$\frac{P_{el}}{P_k} = \pm (2\sqrt{QC})C.$$
(22)

For realistic space charge waves, the electromagnetic power flow will lie between the extremes of 0 (electric field purely longitudinal) and P_{el} (longitudinal electric field negligible compared with transverse electric field). Thus, we see that when space charge is small ($\omega_q/\omega \ll 1$, $C \ll 1$) the electromagnetic power of the space-charge wave is negligible compared with the kinetic power. However, for large space charge the electromagnetic power may be important except in cases of negligible transverse electric field.

When the space charge is large, (19) does not hold unless the transverse electric field is negligible, and (20) does not hold at all. Thus, to calculate the power accurately one must integrate (15) across the system.

One can also use (15) to calculate the small-signal power flow in traveling wave tubes. Here one must include the total electromagnetic power flow associated with both beam and circuit currents as well as the kinetic power flow.

¹ The kinetic power and the fact that it is negative for the slow space-charge wave, were treated in a paper by L. J. Chu, presented at the IRE Electron Devices Conference, University of New Hampshire, June, 1951.

² S. A. Schelkunoff, "Electromagnetic Waves," D. Van Nostrand Co., New York, p. 79; 1943; S. A. Schelkunoff and II. T. Friis, "Antennas, Theory and Practice," John Wiley and Sons, New York, pp. 76–78; 1952.

There is quite a different approach toward evaluating the power at low levels, in which one deals not with linear equations describing an equivalent linear system, but with the actual nonlinear equations at low levels.³ In this case one must carry the solution beyond the first order. The final results, however, agree with those given here.

³ L. R. Walker, "Power Flow in Electron Beams," to be published in the Jour Appl. Phys.

R. W. Gould of the California Institute of Technology⁴ has evaluated the power flow and stored energy in the case of electrons free to move in any direction and in which H=0 (plasma oscillations).

The authors are much indebted to L. R. Walker for contributions at all stages in the evolution of this paper.

* R. W. Gould, California Institute of Technology, Electron Tube and Microwave Laboratory Quarterly Status Report No. 5, p. 15; April 1, 1954 to June 30, 1954.

The Effective Surface Recombination of a Germaniun Surface with a Floating Barrier*

A. R. MOORE[†] AND W. M. WEBSTER[†], SENIOR MEMBER, IRE

Summary-The effect of heavily doped (alloyed) p-type and ntype surface layers on *n*-type base, and of metallic plating on *n*-type base, on the surface recombination velocity s has been computed on the basis of one-dimensional junction theory. The results indicate that s should be of the order 1 cm/sec for the heavily doped surfaces, and several thousand cm/sec for the electroplated surface. The low s comes about for the same reason that the injection efficiency of alloy junctions is high; the alloy junction is a very efficient emitter of minority carriers into the base and a poor acceptor of majority carriers from the base because of the high doping level in the alloyed region. Since recombination in the surface layer of minority carriers from the base requires both majority and minority carriers, the restriction of the flow of either reduces the surface recombination.

However, measurements of s by diffusion and pulse methods on alloy junction surfaces indicate that their apparent recombination is almost the same as adjacent untreated surface, e.g., 300-500 cm/sec. It is shown that lateral current flow, due to minority carrier gradients parallel to the junction interface, and neglected in one-dimensional theory, gives rise to circulating currents which translate the minority carriers to the nearest high recombination surface. This hole translation property of the floating p-layer is used to explain the erroneously high lifetimes often observed by diffusion measurements on silicon and p-type germanium, and certain discrepancies in effective life measurement on completed transistors.

GENERAL DISCUSSION

THE RATE OF recombination of minority carriers at free surfaces often plays a dominant role in determining the characteristics of semiconductor devices. For example, the current amplification-factor of a transistor is usually determined by surface recombination more than by any other quantity.^{1,2}

* Original manuscript received by the IRE, December 3, 1954; revised manuscript received, January 11, 1955.
 † RCA Labs, Princeton, N.J.
 ¹ A. R. Moore and J. I. Pankove, "Effect of junction shape and

surface recombination on transistor current gain," PROC. I.R.E., vol.

 42, pp. 907–913; June, 1954.
 * W. M. Webster, "On the variation of junction transistor current amplification factor with emitter current," PRoc. I.R.E., vol. 42, pp. 914-920; June, 1954.

Thermal generation of minority carriers, which is related to both surface and volume recombination, results in saturation current in rectifiers and transistors. In many devices, the free surfaces contribute most of this generally undesirable saturation current. In some photoconductor devices, surface recombination limits sensitivity.

Surface recombination can be expressed quantitatively through the surface recombination velocity s.³ The rate at which minority carriers recombine is proportional to the product of their concentration and s. In theory s is a characteristic of the surface and may have any value between zero and thermal velocity (about 10⁷ cm/sec). Experiments on germanium surfaces show that *s* depends on the surface treatment and that values ranging from about 50 cm/sec to several thousand cm/sec may be obtained by different chemical treatments.^{1,4} To reduce surface recombination, we are interested in treatments which result in very low values of s.

A variety of models of the surface which might give low surface recombination velocity can be imagined. Three, experimentally attainable with reasonable certainty, are illustrated in Fig. 1 (next page). They all imply the addition or production of a film on the surface which has different electrical characteristics from the bulk. These three possibilities are: (1) a metallic film, (2) a layer of opposite conductivity type, and (3) a layer of the same conductivity type but of higher conductivity. Plating techniques permit a metallic layer to be formed and the change of conductivity may be accom-

46

³ W. Shockley, "Holes and Electrons in Semiconductors," D. Van Nostrand Co., New York, p. 321; 1950. ⁴ E. M. Conwell, "Properties of silicon and germanium," PROC. I.R.E., vol. 40, pp. 1327–1337; November, 1952.

3

8

plished by alloying⁵ or by diffusing impurities into the surface.⁶ While many other surface models are possible, these three are easily analyzed and should permit comparison of theory with experiment. The present work evaluates the possibilities for reducing s by these means in terms of a simple one-dimensional analysis and discusses some preliminary experimental results.

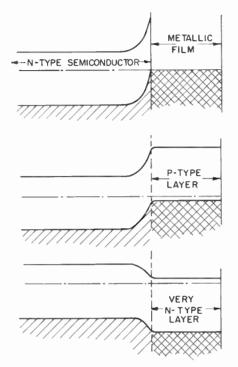


Fig.1-Energy level diagrams for three possible types of surface barrier.

THEORY

In this section, equations are given which may be used to predict the rate of surface recombination for metallic, n, and p-type films on n-type material. The same reasoning can of course be applied to films on *p*-type material. The treatment is one-dimensional for simplicity and is therefore subject to the assumption that no parameters vary appreciably along the surface. The discussion of experimental results which follows shows that this condition can be troublesome in actual practice.

One can see intuitively why surface layers such as these are hopeful. In all cases, a barrier exists near the surface to one type of carrier or the other. Since both holes and electrons must be present for recombination, restraining the flow of either should reduce surface recombination.

The approach of this section is as follows. First, an equivalent surface recombination velocity s is defined for *p*- and *n*-type surface layers and evaluated in terms of recombination in the film. Following this an equation for s for a metallic surface is given and an approximate value computed. Finally, a relation between s and γ ("emitter efficiency" of the layer if it were used as the emitter of a transistor) is demonstrated.

n- and p-Type Layers

Definition of Equivalent s: The equivalent surface recombination velocity for a surface with a semiconducting layer on it will be called s and will be defined as follows:

Consider the situation of an *n*-type semiconductor with a surface layer d cm thick and composed of the same material but of different conductivity. The energy band configuration for both cases of interest, and the pertinent parameters, are labeled in Fig. 2. Holes and electrons recombine in the surface layer by both surface and volume recombination. To maintain nonequilibrium steady-state densities of minority and majority carriers in the surface layer, holes and electrons must flow in equal numbers from the bulk into the surface laver.

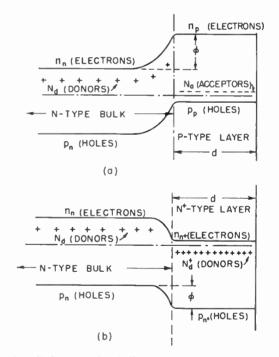


Fig. 2-Detailed energy level diagram for (a) p-type layer on ntype base and (b) strongly n-type layer on an n-type base.

Further, this flow must equal the net recombination rate in the surface layer. This results in two equal current densities J_{e} and J_{p} . The effective surface recombination velocity will be defined as

$$s = \frac{J}{q(p_n - p_0)};$$
 (1)

where $J = J_e = J_p$, p_0 is the equilibrium value of p_n , and

⁶ R. R. Law, C. W. Mueller, J. I. Pankove, and L. D. Armstrong, "A developmental germanium *p-n-p* junction transistor," PRoc. I.R.E., vol. 40, pp. 1352–1357; November, 1952.
⁶ R. N. Hall and W. C. Dunlap, "*P-N* junctions prepared by impurity diffusion," *Phys. Rev.*, vol. 80, pp. 467–468; November, 1950.

q is the electronic charge $(p_n - p_0)$ is the excess hole density in the bulk). This is the value of surface recombination velocity which one would measure by any of our present techniques.⁷⁻⁹

So that the general considerations may apply to either p- or n-type layers we will identify the minority carrier density in the surface layer with the letter m, and its equilibrium value with m_0 . J is determined by the minority carrier lifetime in the surface layer τ , the surface recombination velocity for minority carriers s_m at the actual outer surface [as distinguished from the effective s of (1)]; the thickness of the surface layer d, and the excess minority carrier density $(m-m_0)$ in the surface layer. The minority carriers determine the recombination rate in the surface layer regardless of whether they are electrons or holes.

Two approximate expressions for J are

$$J = q(m - m_0) \left(\frac{d}{\tau} + s_m\right), \qquad (2a)$$

when $d < L_m$ (i.e., for thin layers),

$$J = q(m - m_0) \left(\frac{L_m}{\tau}\right) = q(m - m_0) \frac{D_m}{L_m}, \qquad (2b)$$

when $d > L_m$. D_m and L_m are the minority carrier diffusion coefficient and diffusion length, respectively, in the surface layer.

Combining (2a) and (2b) with (1):

$$s = \left(\frac{d}{\tau} + s_m\right) \frac{(m - m_0)}{(p_n - p_0)} \tag{3a}$$

when $d < L_m$, and

$$s = \frac{D_m}{L_m} \frac{(m - m_0)}{(p_n - p_0)}$$
 (3b)

when $d > L_{m}$.

The ratio of the steady-state excess minority carrier densities. $(m - m_0)/(p_n - p_0)$, are now calculated for *n*-and *p*-type layers.

p-type Surface Layer: The ratio $(m-m_0)/(p_n-p_0)$ depends on the conductivities of the bulk and surface layer with acceptor density N_a as shown in Fig. 2(a). The electron density in the *p*-type material n_p is the minority carrier density *m* in (3a) and (3b). Thus, what is desired is $n_p - n_0$ to replace $m - m_0$ in the general expressions for *s*.

Four basic equations link the densities of holes, electrons, donors, and acceptors with the barrier height, ϕ :

$$n_n = N_d + p_n, \qquad (4a)$$

$$n_p + N_a = p_p, \tag{4b}$$

$$n_n e^{-q\phi/kT} = n_p, \tag{4c}$$

 ⁷ L. B. Valdes, "Measurement of minority carrier lifetime in germanium," PROC. I.R.E., vol. 40, pp. 1420-1423; November, 1952.
 ⁸ S. Lederhandler and L. Giacoletto, "Measurement of minority

Structure in the state of the state

• D. T. Stevenson, and R. J. Keyes, *Bull. Am. Phys. Soc.*, vol. 29, p. 18; March, 1954.

and

$$p_n = p_p e^{-q\phi/kT}.$$
 (4d)

The first two equations indicate charge neutrality in the surface layer and bulk, and the second pair relate the hole and electron concentrations on either side of the boundary. The only assumptions involved in applying these equations are (1) net electrical neutrality except in the depletion layer at the boundary, and (2) *s* reasonably small (compared to thermal velocity). Both are sufficiently satisfied. Eq. (4) may be combined to yield an expression linking n_p and p_n :

$$p_n^2 + p_n N_d + n_p^2 N_a,$$
 (5a)

and the same form applies to the equilibrium densities:

$$p_0^2 + p_0 N_d = n_0^2 + n_0 N_a.$$
 (5b)

Combining these to yield the form needed to calculate s is difficult. However, we may make some simplifying assumptions. In the event that N_a is very large (a very p-type surface), n_p^2 is negligible compared to n_pN_a . If, in addition, $N_d \gg p_n$, we can write very simply

$$\frac{n_p - n_0}{p_n - p_0} \approx \frac{N_d}{N_a} \,. \tag{6a}$$

 N_d/N_a may now be substituted into (3a) and (3b) in place of $(m-m_0)/(p_n-p_0)$ to calculate *s*. Under conditions of high injected hole density in the bulk, p_n may not be negligible compared to N_d . However, it will then be great compared to p_0 and we may write

$$\frac{m-m_0}{p_n-p_0} \approx \frac{n_p-n_0}{p_n} \approx \frac{P_n+N_d}{N_a} \cdot$$
(6b)

Thus, at high levels of p_n , *s* will increase linearly with hole density in the *n*-type material.

Substitution of (6a) into (3a) and (3b) yields:

$$s = \left(\frac{d}{\tau} + s_m\right) \frac{N_d}{N_a}$$
 for thin layers, (7a)

and

$$s = \frac{D_m}{L_m} \frac{N_d}{N_a}$$
 for thick layers (compared to L_m). (7b)

 L_m and D_m apply to electrons in the surface layer. These equations apply for low injection levels ($p_n \ll N_d$).

 n^+ Surface Layer: The form of the equivalent expressions for s for the case of a very n-type layer is similar to the foregoing and may be derived in much the same way. Here, holes are the minority carriers in both the surface layer and the bulk. The symbol + refers to characteristics in surface layer as indicated in Fig. 2b.

We can write four equations similar to those used for the case of the *p*-type surface:

$$n_n = p_n + N_d \tag{8a}$$

$$n_{n+} = p_{n+} + N_d^+$$
 (8b)

$$n_n = n_{n+} e^{-q\phi/kT} \tag{8c}$$

$$p_{n+} = p_n e^{-q \phi/kT}.$$
 (8d)

These equations are of the same form as (4). The difference is that n_p , n_0 , and n_a of (5a) and (5b) are replaced by p_{n+} , p_{0+} , and N_d^+ , respectively. Subject to similar assumptions, the solutions will be of the same form as (7). Thus we have:

$$s = \left(\frac{d}{\tau} + s_m\right) \frac{N_d}{N_d^+}$$
, when $d < L_m$, and (9a)

$$s = \frac{D_m}{L_m} \cdot \frac{N_d}{N_d^+}, \quad \text{when} \quad d > L_m, \tag{9b}$$

where D_m and L_m apply to holes in the surface layer.

General Expressions for s: In the case of a surface layer which is thick compared to a minority carrier, diffusion length within it, we have (7b) and (9b). We may now use the Einstein relationships $(D_p = kT\mu_p/q)$ and $D_n = kT\mu_n/q$ and introduce $\sigma_b \approx q\mu_n N_d$ (the conductivity of the bulk material) and σ_s (the conductivity of the surface layer). For the n^+ type layer, $\sigma_s = q\mu_n N_d^+$. while for the p-type layer, $\sigma_s = q\mu_p N_a$. By manipulation, both (7b) and (9b) become

$$s = \frac{D_p}{L_m} \cdot \frac{\sigma_b}{\sigma_s}; \qquad (d > L_m). \tag{10}$$

It should be emphasized that D_p is the hole diffusion coefficient in the surface layer. Because of impurity scattering this may be lower than D_p in the bulk.

Similarly, a generalized expression for (7a) and (9a)may be written which applies to thin lavers:

$$s = \left(\frac{d}{\tau} + s_m\right) \frac{\sigma_b}{\sigma_s} \cdot \frac{\mu_s}{\mu_b} \quad \text{when} \quad d < L_s. \tag{11}$$

Here, τ is the minority lifetime in the surface layer, s_m is the surface recombination velocity at the actual outer surface of the layer, μ_s and μ_b are majority carrier mobilities in the surface layer and bulk, respectively. The value μ_s will be less than the value measured in relatively pure material because of impurity scattering, and possibly scattering at the surface.

Evaluation of p and n Layers: It is difficult to evaluate (11) since τ and s_m for highly doped semiconductors have not been measured. If we assume, however, that dis sufficiently small that d/τ is dominated by s_m , and assume further that s_m is of the same order of magnitude as surface recombination values already obtained (say 1,000 cm/sec, to be conservative), then s may be of the order of 1 cm/sec when $\sigma_b/\sigma_s = 10^{-3}$. Eq. 10 is easier to consider because the term $\sigma_s L_m$ is the familiar one which enters into the expression for the efficiency of an emitter. Previous work suggests that $\sigma_s L_m$ has the value of about 1.6 mhos in alloy junctions in germanium.² Now, if σ_b is assumed to be 0.2 mhos/cm and $D_p \approx 6 \text{ cm}^2/\text{sec}$ (consistent with heavily doped germanium), then s = 0.75cm/sec. This is a very hopeful result. There is no reason

to prefer a *p*-type layer to an *n*-type layer of equal conductivity as far as values of s are concerned. However, the latter would be preferable in many cases for other reasons (e.g., there would be no tendency to produce surface short-circuit paths from emitter to collector of a transistor).

Metal Films

The above analysis only applies when the surface layer is also a semiconductor and has the same energy gap as the bulk. To add to the picture, surface layers with different energy gaps should be discussed. In particular, the case of a metal film deserves attention.

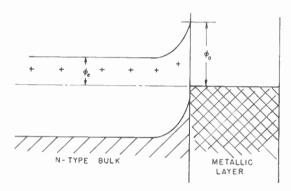


Fig. 3-Detailed energy level diagram for a metallic layer on an *n*-type base.

An expression for s can be computed for the case of a metal-semiconductor contact such as illustrated in Fig. 3. The derivation is straightforward and so will not be given; the result is:

$$s \approx \frac{\sigma_b^2}{\sigma_i^2} \frac{(1+b)^2}{b^2} \frac{\bar{c}}{4} e^{-q(\phi_0 - \phi_c)/kT}.$$
 (12)

Here, σ_i is the conductivity of the intrinsic semiconductor, \bar{c} is mean thermal velocity ($\approx 10^7$ cm/sec at 300 degrees K). ϕ_0 and ϕ_e are labeled in the figure, and $b = \mu_n / \mu_n$. This equation is derived assuming diffusion flow for holes and "diode" flow for electrons crossing the barrier.10;11

Evaluation of (12) requires a knowledge of $(\phi_0 - \phi_s)$. [Schwartz and Walsh have estimated this quantity to be 0.3 electron volt for 5 ohm-cm germanium in connection with the surface-barrier transistor.¹¹] If N_d for 5 ohm-cm *n*-type germanium and 0.3 electron volt for $(\phi_0 - \phi_e)$ are substituted into (12), a value for s of 3,500 may be computed. This calculated value is of the same order as the surface recombination velocity measured for a copperplated surface (7,400 cm/sec.¹). Even if (12) is not

Ð

8

 ¹⁰ W. E. Bradley, "Principles of the surface-barrier transistor," PROC. I.R.E., vol. 41, pp. 1702–1706; December, 1953.
 ¹¹ R. F. Schwarz and J. F. Walsh, "Properties of metal to semi-conductor contacts," PROC. I.R.E., vol. 41, pp. 1715–1720; December, 1972. 1953.

41

strictly applicable, due to inversion layer effects, at present the evidence suggests that metal films will give values of surface recombination velocity which are much larger than those that are easily attained with chemical treatments.

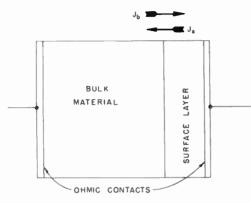


Fig. 4—Hypothetical diode formed by connection to the bulk material and to the surface layer. The arrows show the direction of carrier flow when the diode is biased in the forward direction.

Relation to Emitter Efficiency

Consider Fig. 4 which shows a diode made by connection to the semiconductor bulk and to the surface layer. The currents J_b and J_s labeled according to the direction of carrier flow when the diode is biased in the forward direction. Their ratio defines the emitter efficiency γ of a transistor which might be made using the surface layer as an emitter and the bulk material as the base region. The approximate relation is

$$\frac{1-\gamma}{\gamma} = \frac{J_b}{J_s} \frac{W_b}{L_p},\tag{13}$$

where W_b is the emitter-collector spacing of the transistor.¹² For a *p*-*n*-*p* transistor,

$$\frac{1-\gamma}{\gamma} = \frac{\sigma_b W_b}{\sigma_s L_p}$$

where L_p is the hole diffusion length in the emitter. This is also the result of multiplying (10) by W_b/D_p , since L_p and L_m are identical.

$$\frac{1-\gamma}{\gamma} = s \frac{W_b}{D_p} \,. \tag{14}$$

This relation is actually quite general. It applies to the metallic film of the surface-barrier transistor and even for an n^+ surface layer and what might be called $n^+ - n - n^+$ transistor. In fact, (14) may be derived directly from the diode equations in such a way that the relation between s and γ emerges as fundamental. While such a procedure suggests a more direct way of deriving s for different surface layers, it is less easy to consider in

¹² W. Shockley, M. Sparks, and G. K. Teal, "P-N junction transistors," *Phys. Rev.*, vol. 83, pp. 151-162; July, 1951. physical terms than the preceding development. The connection between s and γ suggests that one may be evaluated from a measurement of the other.

It is worth pointing out that s is dependent on injection level in the same way as γ . Thus, the rate of surface recombination would be expected to go as the square of p_n when p_n becomes large compared to N_d . This is not usually observed in chemically treated samples which probably indicates that none of the simple models considered here may be applied to such surfaces.

EXPERIMENTAL OBSERVATIONS

The rather small values of s predicted by theory for a floating surface layer of opposite conductivity type should be directly measurable. A series of experiments which will be described in detail have been made to test this theory for the case of a very p-type layer on an n-type sample. The expected reduction in s is not obtained. It is by examination of these negative results that an opposing mechanism is revealed which contributes to our understanding of the floating barrier.

Lifetime Measurements

Diffusion Method: Surface recombination velocity is usually obtained by measuring the actual (often called "effective") lifetime of minority carriers in a sample of known volume lifetime and dimensions. Then s is obtained by computation for the specific geometry. For the case of a rectangular bar of cross-sectional dimensions B and C, Shockley gives the first order formula:³

$$1/\tau_m = 1/\tau_v + \nu_s,$$
 (15)

where

$$\nu_s = 2s\left(\frac{1}{B} + \frac{1}{C}\right)$$

holds for small *s*.

Lifetime can be measured by the diffusion method in which the minority carrier density is measured as a function of distance from a line of light. If a thin bar (thickness \ll width) is used, the measured lifetime will be largely surface controlled, thus providing a simple measure of s on the large surfaces. If the thickness of the bar is IV, then $s = IV/2 \tau_m$ when s is the same on both surfaces.

A sample (see Fig. 5) was used. One side of the bar carried a large indium alloy junction. This was the surface whose effective s was to be determined. The point contact and line of light were on the opposite side of the bar. Measurements could also be made on a region of the bar which did not have the floating junction layer. One might expect that the region including the junction, which, theory predicts, will have one side where $s \approx 0$, would show a longer lifetime by a factor of about 2, compared to the rest of the sample. This is because one-half of the surface sink is effectively removed. The situation is the same as if the bar had been in-

creased to twice its thickness, thereby decreasing γ_* by a factor two. Since the bar was known to have a volume lifetime in excess of several hundred microseconds, this would result in a doubled τ_m .

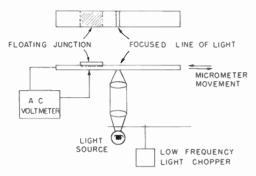


Fig. 5—Apparatus for measurement of lifetime by the diffusion method on a germanium bar carrying a floating alloy junction.

The results of such a measurement are shown in Fig. 6. The log of the open circuit probe voltage in arbitrary units is plotted against the distance between the probe and the light line. When this spacing is less than the thickness of the bar, the slope of the curve yields a lifetime of 90 μ sec. This is about the same as the value measured at probe positions far removed from the

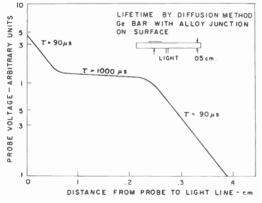


Fig. 6—Curve obtained by plotting probe voltage vs distance from probe to light line, using apparatus of Fig. 5.

floating alloy junction. As the light line is moved further than the bar thickness from the probe, the slope of the curve becomes practically zero, indicating an apparent lifetime of many thousands of microseconds. This is far in excess of the expected factor of 2. When the light line passes the edge of the floating p-layer, the curve resumes its original slope, which is characteristic, as before, of the lifetime far removed from the junction.

The apparent increase in lifetime cannot be explained on the basis of a reduced s on one surface. Additional experiments to be described were performed on the same bar in an effort to find the reason for the discrepancy.

Pulse Photo Conductivity: Another way to determine lifetime in the bar is to measure the time decay of excess conductivity after a pulse excitation of hole-electron pairs by a short flash of light.⁹ In this measurement the conductivity variation is obtained from the voltage across a resistor in series with the sample and a bias battery. If the resistor is matched to the dark resistance of the sample, the light pulse is of low intensity so that $\Delta \sigma \ll \sigma$, and the field across the sample is sufficiently small such that the transit time of carriers due to the electric field is long compared to the decay of recombination, then

$$\frac{\Delta\sigma}{\sigma} = \text{const. } e^{-t/\tau}.$$
 (16)

This method measures lifetime directly, instead of obtaining it through the diffusion relation $L = \sqrt{D\tau}$, as in the previous experiment.

The experimental arrangement is shown in Fig. 7. The light source is a spark discharge in air operated as a relaxation oscillator from a 5,000-volt power supply. When focused on the sample, the spark produces a line of light which was arranged perpendicular to the long axis of the sample. A micrometer screw enables the sample to be moved parallel to this axis so that the lifetime can be measured by the change in the voltage drop across a resistor connected in series with the sample and a bias battery. The measurement is made with an oscilloscope with a built-in delay line so that the entire trace can be studied. If the photoconductivity decays exponentially [as it should from (16)] the lifetime can be read directly on the oscilloscope face as the 1/e point.

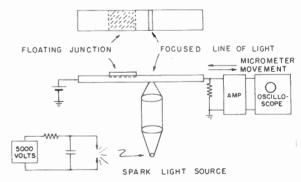


Fig. 7—Apparatus for measurement of lifetime and drift mobility by the drift method on a germanium bar carrying a floating junction.

At positions far removed from the floating junction, the decay time corresponded to 90 μ sec, in agreement with the diffusion length measurement. In the floating junction region the decay departed from an exponential and could not possibly be construed as a doubling of the

8

lifetime. The detailed nature of this curve will be discussed later in connection with the drift-time measurement. For the present the conclusion is that the expected doubling of the decay time was not observed.

Diode Measurements: A measurement of the effective minority carrier lifetime in the base region of an alloy junction diode can be obtained by injecting minority carriers into the region with a pulse of forward current. The decay is then followed by observing the open circuit emitter voltage as a function of time.8 The same measurement can be made in a transistor in which the collector is allowed to float electrically. If the base wafer is thin, the effective lifetime is a measure of s. Furthermore, most of the surface recombination will take place on the surface opposite the allov junction, provided s is the same value there as at other surfaces. Now, if we substitute a large floating collector for the surface opposite the emitter, as in an allow transistor, and if this surface actually has a very low value of s as predicted by the junction theory already given, one would expect a marked increase in the effective lifetime. Such measurements were made on a series of transistors and diodes of essentially identical emitter-base region geometry. Both diodes and transistors gave the same value of effective lifetime within experimental error. Thus, again, the expected reduction in s was not observed.

The Feed-In Feed-Out Effect

The negative results in the above experiments require examination and modification of the theory of surface recombination velocity at a floating junction. The most logical explanation appears to be connected with the fact that the *p*-type germanium on the surface is a good conductor (relatively) and hence, is an equipotential. Under conditions of an applied field within the *n*-type bar, or when a gradient of minority carrier density exists along the interface, the floating junction assumes the dual role of emitter and collector. While the net current across the junction is zero, this need not be true at every point. In fact, the effective s may be the same as for adjacent germanium surfaces. The *p*-region then acts as a translator of holes rather than as a low s interface. Some additional experiments which support this view will now be described.

Floating Potential Measurements: Indirect measurements indicate that the *p*-layer in an alloy junction has a resistivity of the order 0.001 ohm-cm. If an electric field is maintained in a bar which carries a floating junction, and if the bar has a resistivity of the order 1 ohm-cm, the *p*-layer can be considered as an equipotential surface. The situation is illustrated in Fig. 8. The layer will float at some potential intermediate between the potential V_b and V_a . Part of the junction is biased in the reverse direction, collecting thermally generated holes from the *n*-type bar, while the rest is biased in the forward direction, injecting holes back into the bar closer to the negative electrode. The net current across the junction is zero, since the *p*-layer is floating. No holes are lost in the process. Because the hole concentration in the p-type layer is much higher than the electron concentration in the n-type bar, most of the current crossing the junction in either direction will consist of holes. The hole currents will furthermore be small compared to the main electron current in the n-type bar. Hence it can be assumed that the electric field in the bar is not seriously disturbed by presence of the junction.

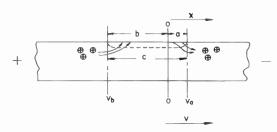


Fig. 8—Diagram for the calculation of the floating potential of the alloy junction.

The floating potential of the junction may be calculated by equating the integrated current for the forward biased region to that for the reverse biased region. One may take the position at which the potential in the germanium is equal to the *p*-layer potential as the zero of x and v. If the total potential drop $V_a - V_b$ is called V and the total length of the *p* region a - b is called c, then v = (x/c) V. Then

$$-\int_{-b}^{0} (e^{qVx/kTc} - 1)dx = \int_{0}^{a} (e^{qVx/kTc} - 1)dx.$$

One can then solve for the floating potential V_f with respect to $V_a(V_f = (a/c) V)$:

$$V_{f} = \frac{kT}{q} \ln \left[\frac{qV/kT}{1 - e^{-qV/kT}} \right].$$
 (17)

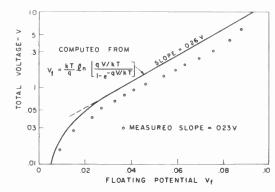


Fig. 9—Results of measurement of the floating potential comparison with (17). Measurement made at 300 degrees K.

Fig. 9 shows the result of a test of this equation. Both the floating potential and the total potential drop were measured by means of probes and a high-impedance millivoltmeter. Inasmuch as there are no adjustable constants in this equation, the agreement is considered

World Radio History

as satisfactory evidence of the feed-in feed-out phenomenon.

Mobility or Drift Time Measurements: The previous experiment suggests that holes can be translated towards a negative electrode through a *p*-type surface layer. It is presumed that this process occurs almost instantaneously, i.e., if a hole is fed into the reverse biased junction region another hole is immediately emitted at the forward biased region. This process occurs much faster ($\sim 10^{-11}$ sec) than ordinary minority carrier drift times ($\sim 10^{-5}$ sec). Thus, if the hole drift time in an electric field is measured on a bar carrying a floating junction, an artificially short drift time should be observed due to the bypassing action of the floating junction. The same pulse lifetime equipment described in connection with lifetime measurements was used to test this conjecture except that the field in the bar was increased to the point at which the drift time was shorter than the lifetime. The light pulse which acts as the hole source was focused at the center of the bar and the drift time measured for holes drifting first toward the end without the floating junction, and then, by reversal of the polarity of the electric field, for holes drifting through the part of the bar carrying the junction. Fig. 10 shows the two cases. From the dimensions of the bar and the length of the junction region, the drift time should have been halved for the second case. The measured ratio was 0.47.

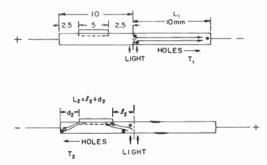


Fig. 10—Measurement of drift time in the germanium bar when (a) holes are confined to the bar volume and (b) when holes bypass the bar through the floating junction region. $T_2/T_1=0.47$; $L_2/L_1=0.50$.

Additional drift experiments using a light line movable along the bar have all confirmed the picture of instantaneous hole translation through the *p*-region. One point which was of special interest was the explanation of an unusual spike on the decay curve during pulse lifetime measurements in the vicinity of the floating junction. This is illustrated in Fig. 11. Initially (Region I), a sharp spike occurs, beginning immediately after the light injection pulse. Then the carriers decay exponentially and simultaneously drift in the electric field, as in Region II. Finally, carriers reach the end of the sample and the conductivity falls, as in Region III. The pulse of light generates hole-electron pairs. In spite of the movement of the holes in an electric field, the hole charge remains neutralized by electrons in order to insure space charge neutrality. Since the translating action of the junction operates on holes only, the holes are re-emitted into the germanium without their accompanying neutralizing electrons. The spike is a consequence of redistribution of electrons which takes place in order to re-establish space charge neutrality. Part of this electron current comes up from ground through the load resistance, generating the spike voltage. The size of the spike depends on the resistance of the *n*-type germanium between the point of absorption and emission of the holes and the load resistance. The width depends on the capacitance in the external circuit.

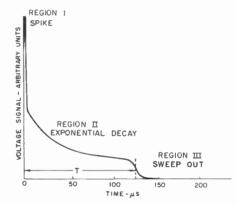


Fig. 11—Typical oscilloscope pattern during drift time measurement.

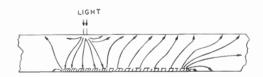


Fig. 12—Sketch of probable hole flow pattern during measurement of lifetime by diffusion method of Fig. 5.

Interpretation of Diffusion Measurements

The results of the diffusion measurement of surface recombination (See Diffusion Method, above) can be understood on the basis of hole translation. The hole flow pattern is of the type sketched in Fig. 12. Holes feed out from the source at the focused line of light. Some recombine at the surface adjacent to the source, but a larger number feed into the floating junction a distance Waway. These are re-emitted about uniformly over the rest of the junction, providing a region along the upper surface in which the hole density is constant with distance along the bar. Thus the measured probe voltage becomes independent of distance after an initial dis-

ŝ.

tance W, as in Fig. 6, until the end of the floating junction is reached. Then there is no feed-in feed-out effect and the hole density falls off with distance in just the way to be expected for a surface controlled filament lifetime, i.e.,

$$\nu_s = \frac{2s}{W}$$
 or $\tau_m = \frac{W}{2s}$

Interpretation of Diode Measurements

The same hole translation effect can take place in the measurement of effective lifetime in alloy transistor structures. After the emitter injection pulse is over, holes feed into the floating collector opposite the emitter, where the hole density is high. They immediately feed out again near the edge of the junction and so are lost to the adjacent surface. Hence this surface becomes the controlling sink, just as in the case of a diode structure without any collector. The fact that experimental agreement between diode and transistor effective lifetimes are about equal may be thus explained.

CONCLUSIONS

The fundamental reason for the failure of the junction analysis to predict the observed result is the assumption of a one-dimensional model. In this model the steady state hole and electron currents balance at every point along the boundary. In practice, that is for a threedimensional case, the total currents balance, as required for steady state conditions, but they do not necessarily balance on a per unit area basis. If lateral gradients are not the same in the surface layer and in the bulk, circulating currents can exist, which destroy the effectiveness of the layer in reducing the surface recombination. Unfortunately, the requirement for low effective surface recombination is just that $\sigma_s \gg \sigma_b$, which implies that lateral conduction in the surface layer is large. This type of surface junction is therefore not suitable for reducing surface recombination in practical cases.

If it is not recognized, this effect can cause difficulty in some measurements. The measurement of lifetime in *p*-type germanium and in silicon by diffusion methods often yields results which are clearly too high. It is thought that this is due to the presence of layers of opposite conductivity type (inversion layer) on the surface, resulting from certain etches. While careful etching apparently removes this layer from *n*-type germanium, we have found no certain method of removing it from p-type germanium¹³ or from n- and p-type silicon. The surface layer probably acts in much the same way as the floating junction in the above experiments; minority carriers from the base semiconductor bias the measuring probe through the inversion layer, thus making the probe voltage less dependent on the distance between probe and the source of hole-electron pairs. The fact that the inversion layer is on the same surface as the probe and source, rather than on the opposite side of a thin bar as in Figs. 5 and 6 does not materially effect the argument. The pulse method of Fig. 7 (See Pulse Photo Conductivity) is dependent only on the number of minority carriers actually within the bar and is independent of their special distribution, provided that the drift field is small enough to prevent sweep-out. Hence lifetime measurements on these materials are best made by the pulse drift method.

Under certain conditions, the interpretation of effective lifetime in completed transistors⁸ can be affected by hole translation. If the collector does not penetrate deeply into the base wafer, the effective lifetime is simply related to the surface recombination velocity by $\tau_{e} = W/2s$, where W is the wafer thickness. If the collector does penetrate far into the wafer, the feed-out of holes from the edge of the collector to the adjacent free germanium surface effectively translates the recombining surface on the collector side closer to the recombining surface on the emitter side. Thus the effective thickness of the wafer is reduced. The measured effective lifetime is less in this case. When the transistor is in use as a device, however, the hole translation effect is not operative since the collector is biased in the reverse direction rather than floating as in the test measurement. The proper value of W can be determined empirically.

¹³ Adsorption of H₂O vapor plays a part in creating the inversion layer on *p*-type germanium. See H. Christiansen, "Surface conduction channel phenomena in germanium," PROC. I.R.E., vol. 42, pp. 1371–1376; September, 1954; also A. L. McWhorter and R. H. Kingston, *ibid.*, pp. 1376–1380.

A Chart for Analyzing Transmission-Line Filters from Input Impedance Characteristics*

HARVEL N. DAWIRS[†], ASSOCIATE, IRE

Summary-Filter calculations become difficult when network elements consist of transmission-line sections, since transcendental equations are involved. It is the purpose of this paper to describe the application of familiar impedance methods and Smith chart^{1,2} techniques which simplify many of these calculations. A chart is developed by means of which the most important characteristics of a filter may be read directly from a conventional input impedance curve plotted on a Smith chart. The principles involved in these methods are equally valid for all lossless filters consisting of identical and symmetrical sections, but are particularly well-suited for use with transmission-line circuits.

INTRODUCTION

T IS OFTEN necessary to construct filters in the frequency range where transmission-line circuits are used. In this range the elements of the filters must be sections of transmission line. The design of such filters is difficult because the usual design equations become transcendental and are difficult to solve. It is common practice, however, to manipulate such expressions arising in connection with transmission-line circuits by means of the Smith impedance chart.^{1,2} It is the purpose of this paper to show how these Smith chart techniques may be used to facilitate many important calculations encountered in the design of lossless transmission-line filters which consist of identical and symmetrical sections.

Since only lossless filters consisting of identical and symmetrical sections are considered, the input impedance of the filter is given by the expression³

$$z_{l} \frac{z_{l} \cosh \gamma_{n} + z_{c} \sinh \gamma_{n}}{z_{l} \sinh \gamma_{n} + z_{c} \cosh \gamma_{n}}, \qquad (1)$$

where

 z_c is the characteristic impedance of the filter. z_i is the impedance of the terminating load,

 $\gamma_n = \alpha_n + i\beta_n$ is the propagation constant of the filter,

and

n is the number of sections in the filter.

* Original manuscript received by the IRE, June 21, 1954; revised manuscript received, Januarv 13, 1955. This work was supported by a contract between Wright Air Dev. Center, and the Ohio State Univ. Res. Found.

† Antenna Lab., Dept. Elect. Engrg., Ohio State Univ., Columbus, Ohio.

¹ P. H. Smith, "A transmission line calculator," *Electronics*, vol.

¹², pp. 29–31; January, 1939.
² P. H. Smith, "An improved transmission line calculator," *Electronics*, vol. 17, pp. 130–133, 318–325; January, 1944.
³ J. J. Karakash, "Transmission Lines and Filter Networks," The Macmillan Company, New York, N. Y., p. 169; 1950.

This expression can be put into the form

$$z_n = \frac{z_0 + \tanh \gamma_n}{1 + z_0 \tanh \gamma_n}, \qquad (2)$$

where

 $z_n = r_n + jx_n$ is the input impedance of the filter normalized to $z_{\rm c}$

and

$$z_0 = r_0 + j x_0 = z_l / z_c. \tag{3}$$

In all further discussion let z_l be an arbitrary (but fixed) real impedance and define:

$$Z_n = R_n + j X_n = z_n / z_0, (4)$$

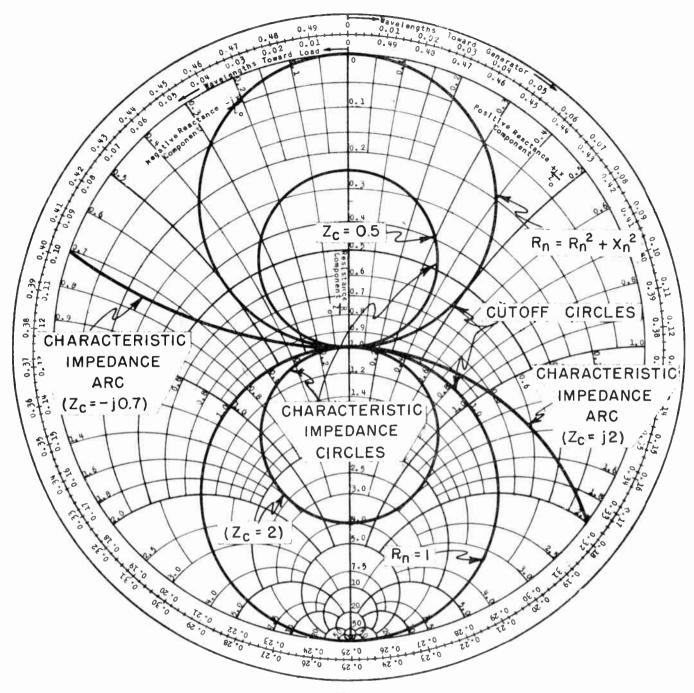
and

$$Z_c = z_c/z_l. \tag{5}$$

Note that Z_n and Z_c are, respectively, the input impedance and the characteristic impedance of the filter, both normalized to z_i and that $Z_c = 1/z_0$. With these definitions the expression

$$Z_{c} = \sqrt{\frac{R_{n}^{2} + X_{n}^{2} - R_{n}}{R_{n} - 1}}$$
(6)

follows from (2) for both the pass and rejection bands.


Since, for transmission-line circuits Z_n is easily obtained by well-known procedures, (6) provides a convenient means of determining the characteristic impedance of a transmission line filter.

SIGNIFICANT IMPEDANCE RELATIONS ON THE SMITH CHART

Now consider the significance of (6) in relation to the Smith chart and to the input impedances of a filter. (It is assumed throughout the remainder of this paper that all filter input impedances are obtained with the filter terminated in z_i and that these are normalized to z_i and plotted as points or a curve on the Smith chart.)

Eq. (6) indicates that cutoff occurs when $R_n = 1$ $(Z_c = \infty)$, or when $R_n = R_n^2 + X_n^2$ $(Z_c = 0)$. These relations are equations of two easily identified circles on the Smith chart which will be called "CUT-OFF CIR-CLES." (See Fig. 1, facing page.) At a cut-off frequency the input impedance of a filter will fall on one of these circles, and conversely, the cut-off circles will intersect the input impedance curve of a filter at any cut-off frequency.

<u>\$</u>

Further consideration of (6) shows that Z_c is real whenever Z_n lies within one of the cut-off circles and is imaginary for all Z_n outside of the cut-off circles. Thus the cut-off frequencies may be determined and the pass and rejection bands identified directly from the input impedance curve of a filter by means of the cut-off circles.

For a fixed value of Z_c in the pass band, (Z_c real and positive), (6) is the equation of a circle on the Smith chart, which is tangent to the cut-off circles at the cen-

đ

ter of the chart and lies wholly inside one of them as shown in Fig. 1. There is one of these circles, which will be called a "CHARACTERISTIC IMPEDANCE CIRCLE," associated with each positive real value of Z_c . This circle will intersect the real axis at the point

$$R_n = Z_c^2, \tag{7}$$

as determined by setting $X_n = 0$ in (6). Eq. (6) indicates that the input impedance Z_n of a filter at any given frequency in the pass band must fall on the impedance circle corresponding to the characteristic impedance of the filter at that frequency. Conversely, a characteristic impedance circle constructed on a Smith chart [this may be done quite easily using (7)], will intersect the input impedance curve of a filter at the frequencies for which the characteristic impedance of the filter is equal to the value associated with the intersecting circle.

Note that if the input impedance of a filter is known at any particular frequency, the characteristic impedance of the filter at that frequency may be found by constructing the unique characteristic impedance circle through the known impedance point and calculating Z_r [by (7)] from the point at which the circle intersects the real axis.

A number of typical characteristic impedance circles may be constructed as auxiliary co-ordinates on a Smith chart and used to determine characteristic impedances of a filter, in its pass bands, directly from an input impedance curve of the filter plotted on the same chart.

Now for a fixed value of Z_c in the rejection band (Z_c imaginary), (6) is the equation of an arc on the Smith chart which is tangent to the cut-off circles (and also to the characteristic impedance circles), at the center (see Fig. 1), and terminates on the rim of the chart. There is a unique arc, which we shall call a. "CHAR-ACTERISTIC IMPEDANCE ARC." associated with each imaginary value of Z_c , terminating at the point

$$X_n = -jZ_c \tag{8}$$

on the rim of the chart (since $Z_c = \sqrt{-X_n^2} = jX_n$ when $R_n = 0$). Thus, (6) implies that the input impedance of a filter at any given frequency in the rejection band must fall on the impedance arc which corresponds to the characteristic impedance of the filter at that frequency. Hence, if the input impedance of the filter is known at any given frequency in the rejection band, the characteristic impedance of the filter at that frequency may be determined by constructing the unique characteristic impedance arc through the known impedance point (by means of a compass), and noting the point at which it intersects the chart rim. The value of Z_c follows by (8).

Conversely (6) implies that a characteristic impedance arc will intersect the input impedance curve of a filter at a frequency for which the characteristic impedance of the filter is equal to that associated with the intersecting arc. A number of typical characteristic impedance arcs may be constructed as auxiliary coordinates on a Smith chart [(8) may be conveniently used for this purpose], and used to determine the characteristic impedances of the filter at rejection band frequencies by means of the intersections of the arcs with the input impedance curve of the filter.

FILTER ANALYSIS CHART

Fig. 2, facing page, is a chart, based upon principles just considered, which may be used to determine many important properties of filters directly from a plot of their input impedances. The co-ordinates of this chart are normalized characteristic impedance and propagation constant. The characteristic impedance co-ordinates consist of the cut-off circles, the characteristic impedance circles and the characteristic impedance arcs discussed previously. The propagation constant co-ordinates are obtained by calculating typical values [by means of (2)] and plotting these on the Smith chart. Note that the co-ordinates of the filter analysis chart are considered to be superimposed upon a Smith chart even though the usual impedance co-ordinates are not shown. Desired impedance points are located by means of a calibrated cursor and the scale around the outside rim.

In the pass band the propagation constant, which is imaginary and hence consists only of the phase constant, is scaled in wavelengths for convenience in use with transmission lines. In the rejection band the propagation constant, which is real and hence consists only of the attenuation constant, is scaled in decibels.

To make use of the chart in analyzing a filter, the filter is terminated in a real impedance z_l and the input impedance measured as a function of frequency over the range of interest. These impedances are then normalized to z_l , and plotted on the analysis chart in the same manner as on a Smith chart. (See Fig. 3, page 440). Since these measurements are usually made and plotted in terms of phase shift and voltage standing-wave ratio (or voltage-reflection coefficient), they may be plotted directly on the analysis chart just as conveniently as on the Smith chart itself if z_l is chosen to be equal to the characteristic impedance of the slotted line (or directional coupler), used in making the measurements.

Now the cut-off frequencies may be determined and the rejection and pass bands identified by means of the cut-off circles as described previously. The normalized characteristic impedance and the propagation constant at any frequency may be read directly from the coordinates of the corresponding input impedance point. The characteristic impedance read from the co-ordinates is normalized to z_l . (That is $Z_c = z_c/z_l$.)

In addition the attenuation of the filter (which in this case is equal to its reflection loss), at any given frequency may be determined by reading the reflection loss of the corresponding input impedance point by means of a calibrated cursor,² or may be calculated by means of the formula²

$$db = 10 \log (1 - |\rho|^2), \tag{9}$$

where ρ is the reflection coefficient (either current or voltage) of the input impedance point. Note that:

- The input impedance curve is obtained by routine procedures, using standard equipment and techniques;
- 2. Only one measurement is required at any one fre-

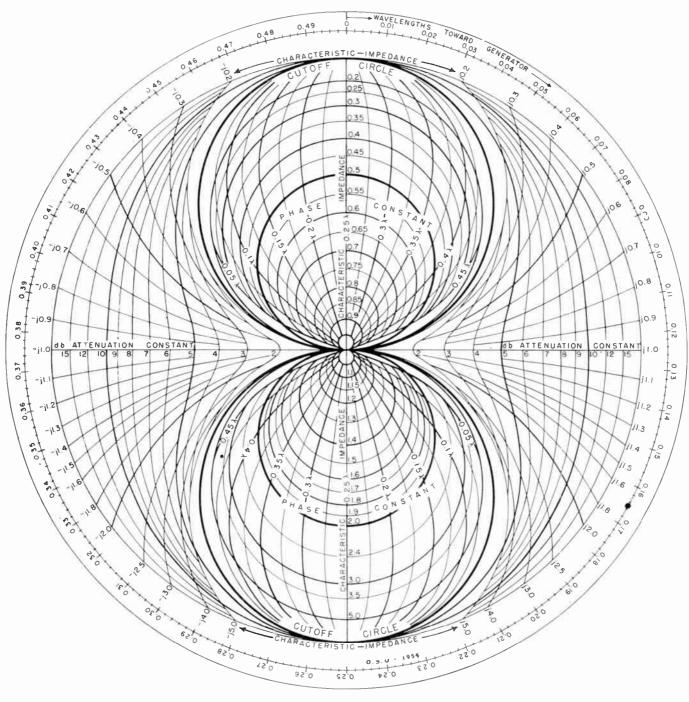
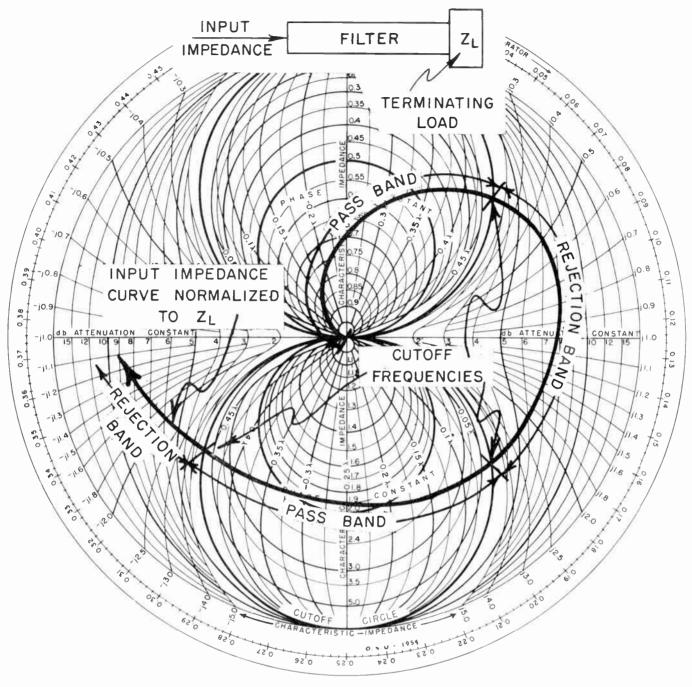


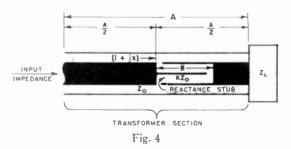
Fig. 2


quency (as against two required for the open- and short-circuit method); and

- 3. Calculations are eliminated by reading values directly from the chart co-ordinates (or a cursor).
- The properties obtained by such procedures are:
 - 1. Cut-off frequencies;
 - 2. Pass bands;
 - 3. Rejection bands:
 - 4. Characteristic impedances;
 - 5. Propagation constants; and
 - 6. Attenuation.

FURTHER APPLICATIONS OF THE CHART⁴

If a proposed filter is to be analyzed from calculated data, the input impedance of only a single section is necessary, since the cut-off frequencies, the rejection and pass bands, and the characteristic impedances of a filter are the same as for the component sections. Hence all these properties may be determined directly from


⁴ H. N. Dawirs and F. K. Damon, "Application of the Ohio State University Filter Analysis Chart," presented at *NEC*, Chicago, Ill.; October 5, 1954.

the input impedance curve of a single section. The propagation constant $\gamma_n = n\gamma_1$, of an *n*-section filter is easily determined from the propagation constant γ_1 of a single section as read from the chart.

The value of the terminating impedance may often be chosen to simplify the calculation of the input impedance of the single section. Consider, for example, a filter section consisting of a reactance located at the midpoint of a transformer section of transmission line as shown in Fig. 4. If Z_l is chosen to be equal to Z_0 , the normalized impedance looking towards the reactance gap at the

center will be simply 1+jX, where the normalized reactance of the series stub is determined by usual Smith

World Radio History

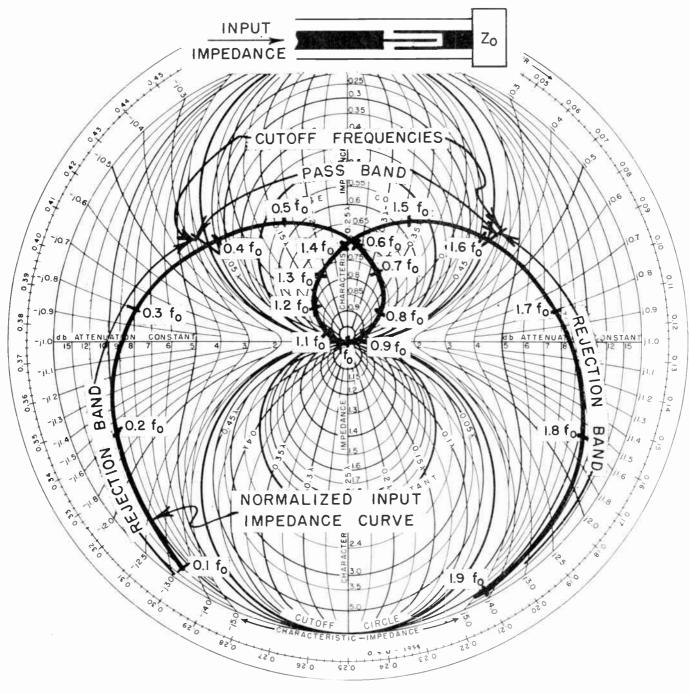
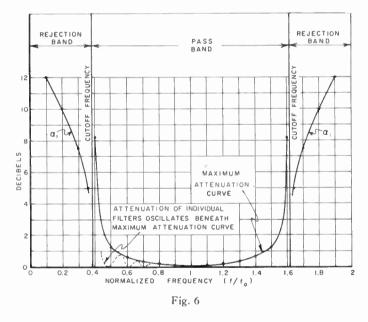


Fig. 5

chart methods. The impedance 1+jX is then transformed through the remaining half of the transformer section (a simple task on the Smith chart) to obtain the normalized input impedance curve of the section. Fig. 5 shows a typical input impedance curve for a filter section of this type.

It is interesting to observe the effect on the input impedance of a filter as a result of adding sections. Since, at any given frequency, the characteristic imped-


1

ance of a filter is independent of the number of sections, the input impedance point Z_n , must always lie on the impedance co-ordinate corresponding to the characteristic impedance of the filter at that frequency. However the propagation constant of the filter at a given frequency $(\gamma_n = n\gamma_1)$, is a function of the number of sections.

At a particular frequency in the pass band, for example, the input impedance point is confined to a spe-

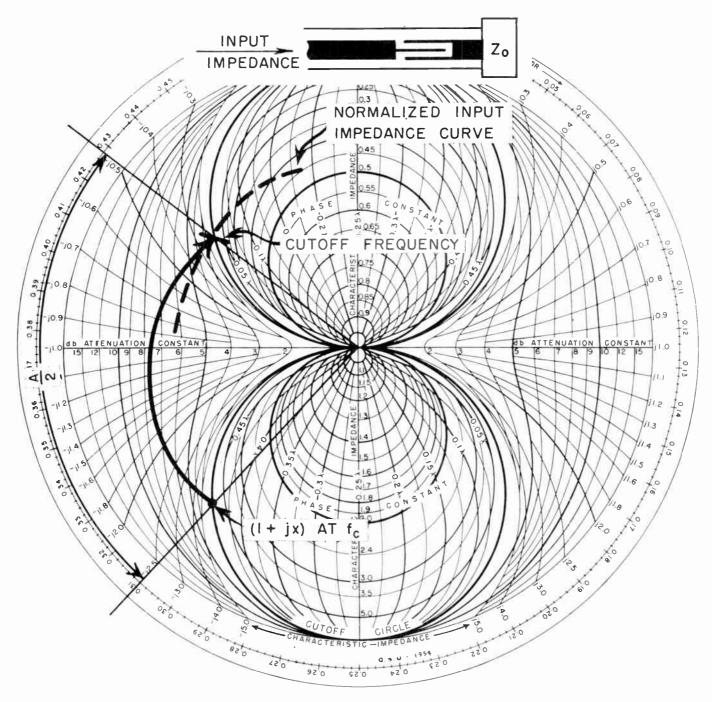
World Radio History

cific characteristic impedance circle, but progresses around and around this circle as sections are added. At other frequencies in the pass band the corresponding input impedance points progress around other impedance circles and at different rates as sections are added. Note that as an input impedance point progresses around its impedance circle the attenuation (or reflection loss), oscillates between zero when the impedance point is at the center of the chart, and a maximum when the point is at $R = \sqrt{Z_c}$. The maximum attenuation at each frequency in the pass band can be determined from the corresponding impedance circle by means of a cursor or (9) and plotted as shown in Fig. 6. The maximum attenuation curve in Fig. 6 was obtained from the input impedance curve in Fig. 5 for the filter section shown in Fig. 4. This curve is characteristic of a filter section and is a property of a filter composed of such sections, which is independent of the number of sections involved. The attenuation of a filter will oscillate between zero and the maximum attenuation curve in the pass band as a function of both the frequency and the number of sections, but can never exceed the values indicated by the curve.

At any particular frequency in the rejection band the input impedance point must remain on the corresponding characteristic impedance arc, but progresses outward along it as sections are added, approaching the rim as a limit. Thus the reflection loss, and hence the attenuation of the filter increases as sections are added. In fact the db attenuation of the filter at a given frequency in the rejection band becomes nearly a linear function of the number of sections. That is

$$\mathrm{db} \cong [A + (n-k)\alpha_1],\tag{10}$$

where A is the attenuation due to the first k sections. This becomes more nearly true as k becomes large but may often be used for making useful approximations, even when k is small. For example


$$\mathrm{db} \cong (n-1)\alpha_1 \tag{11}$$

is usually a reasonable estimate of attenuation for practical purposes but does require a certain amount of judgment in its use.

A chart, such as is shown in Fig. 6, which may be used to evaluate the general performance of a filter section and to determine its suitability for given filter applications, may be constructed using the filter analysis chart. The cut-off frequencies of the section are indicated, the attenuation constant α_1 is plotted over the rejection band and the maximum attenuation curve discussed previously is plotted over the pass band. The cut-off frequencies and the rejection and pass band frequencies of a filter constructed of these sections are shown, the range over which the pass band attenuation of such a filter will be less than a specified value (regardless of the number of sections) may be determined from the maximum attenuation curve, and the number of sections required to obtain the desired attenuation at specified frequencies or over given ranges in the rejection band may be estimated from the curve of α_1 . Thus, such a chart is of considerable practical value in the design of transmission-line filters.

In addition to the above analysis and design application, the filter analysis chart may be used as an aid in the synthesis of some types of filters. As an example of this consider the filter section previously discussed and shown in Fig. 4. Examination of the input impedance curve shown in Fig. 5 indicates that the characteristic impedance of the filter will be equal to the characteristic impedance of the transformer section at a frequency which we shall call f_0 . This is the frequency for which the length, B, of the reactance stub is a quarter of a wavelength long. Hence the stub appears as a short circuit across the reactance gap and the filter section consists only of the transformer section of transmission line. Thus the characteristic impedance of the transformer section and the length of the reactance stub can be chosen so that the filter will match into a given load at a given frequency.

Further examination of the input impedance curve shown in Fig. 5 indicates that there exists a cut-off frequency, which we shall call f_c , which is below f_0 . Now the filter analysis chart may be used to synthesize a filter section of the type being considered which will match into a given load at a specified frequency and will have a given cut-off frequency f_c . To do so the characteristic impedance of the transformer section is chosen to be equal to the impedance of the given load and the length B of the reactance stub is chosen to be a quarter of a wavelength long at the specified frequency. Now to obtain the desired cut-off frequency it is necessary to determine the characteristic impedance of the reactance stub and the length of the transformer. Either of these may be chosen and the other determined. A choice of

a convenient value for the characteristic impedance of the reactance stub is best as an arbitrary choice of the transformer length may result in an impractical value for the characteristic impedance of the stub.

With the length and characteristic impedance of the series stub established, the input reactance, x, of the stub may be determined at the desired cut-off frequency, f_c , by ordinary Smith chart methods. It is now only necessary to determine the length of transmission line required to transform the resulting impedance point, (1+jX), to the nearest cut-off circle as shown in Fig. 7.

This is A/2 or one-half the total required length of the transformer section at f_c . Thus all of the values required to properly construct the filter section have been determined.

.\cknowledgment

It would be difficult to name all of those who assisted in the preparation of this paper. However, of particular importance was the co-operation of L. A. Kail in drawing the filter analysis chart itself as well as a number of the other illustrations.

111

Concerning the Noise Figure of a Backward-Wave Amplifier*

T. E. EVERHART[†]

Summary-The noise figure of a traveling-wave amplifier has been derived as a function of circuit loss and space charge. The minimum-obtainable noise figure of the backward-wave amplifier is shown to be the same as the minimum-obtainable noise figure of the forward-wave amplifier, i.e., about 6 db. The noise figure of an ordinary backward-wave amplifier has been measured as a function of gain. The calculated noise figure checks well with the measured values.

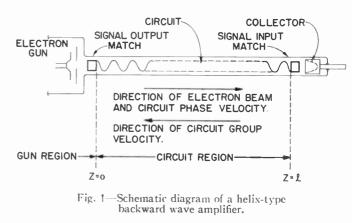
OISE, as related to thermionic vacuum tubes, is caused by random motion of the electrons. This random motion may be attributed to thermal kinetic energy, random emission from thermionic cathodes, random division among the various electrodes in a vacuum tube, or various other causes. The minimum input signal which can be detected by a given tube is determined by the noise of that tube; the higher the noise, the larger the minimum detectable input signal must be. For this reason, it is desirable to predict the noise one might expect from a certain type of amplifier, to devise means to reduce this noise, and to establish a minimum noise level which might be attained with a given type of tube. The noise properties of the forward-wave traveling-wave tube amplifier have been analyzed by several persons;¹⁻³ we shall examine the noise properties of a backward-wave traveling-wave tube amplifier, using the results of these previous analyses where they are applicable.

The backward-wave amplifier is a relatively new beam-type amplifier. It is closely related to the backward-wave oscillator,^{4,5} which is a voltage-tunable, regenerative traveling-wave tube oscillator. In both amplifier and oscillator, the electron beam interacts with a space-harmonic of the circuit whose group and phase velocities are oppositely directed. The phase velocity is toward the collector (in the same direction as the electron velocities), while the group velocity, and hence energy flow, is toward the electron gun end of the circuit. When the beam current is low, and the electron velocity is very nearly the circuit velocity at the frequency in question, a signal impressed at the collector

* Original manuscript received by the IRE, November 10, 1954; revised manuscript received January 10, 1955. Taken from Hughes Report No. 40-31-00-3, October 15, 1954.

[†] Res. and Dev. Labs., Hughes Aircraft Co., Culver City, Calif.
 [†] J. R. Pierce, "Traveling-Wave Tubes," D. Van Nostrand Co., Inc., New York, N. Y., Ch. 10; 1950.
 ^{*} D. A. Watkins, "Noise Reduction in Beam Type Amplifiers,"

Electronics Research Laboratory, Stanford University, Technical


Report No. 31, Stanford, California; March 15, 1951.
⁸ S. Bloom and R. W. Peter, "A minimum noise figure for the traveling-wave tube," *RCA Rec.*, vol. 15, pp. 252–267; June, 1954.
⁴ R. Kompfner and N. T. Williams, "Backward-wave tubes," PROC. J.R.E., vol. 41, pp. 1602–1611; November, 1953.
⁶ H. R. Johnson, "Backward-Wave Oscillators," Hughes Aircraft Component Technical Management Processing Views Network Network 1954.

Company Technical Memorandum No. 361; May, 1954.

end of the circuit will appear amplified at the gun end of the circuit. If the beam current is raised, it will reach a discrete value at which the backward-wave amplifier becomes a backward-wave oscillator. At currents slightly below the start oscillation current, a very high, narrow-band electronic gain is obtained, the center frequency of which is voltage tunable. Such an amplifier has several applications; it could be used as a narrowband detector, an electronically tuned filter, or in numerous microwave devices. A knowledge of the noise figure of this amplifier is both interesting and important. We shall derive a general expression for the noise figure, including the effects of space charge and circuit loss.

Noise figure is defined as the noise power output of an amplifier whose input is matched to its characteristic impedance divided by the output of a noiseless amplifier whose input is similarly matched. The output of the latter is simply power gain times the noise power available from the characteristic impedance, or, symbolically, $P_t = GkTB$. (Because the notation in this paper will be familiar to many workers in the field, the definition of symbols used is omitted from the text. These definitions are presented at the end of the paper.)

Fig. 1 gives a schematic picture of a backward-wave amplifier. In analyzing the interaction space, we shall assume a circuit input voltage at $z = l_1$ and an alternating velocity and current noise modulation in the beam at z=0. The electrons are constrained to move only in the z direction by an infinite axial magnetic field.

ANALYSIS OF CIRCUIT REGION

We assume that the reader is familiar with Pierce's analysis of the traveling-wave tube.⁶ Johnson has modified this analysis to describe backward-wave interac-

6 Pierce, op. cit., ch. 2, 7-9.

World Radio History

tion.⁷ He defines Pierce's impedance parameter K as follows:

$$K = -\frac{E_s^2}{2\beta^2 P} \,. \tag{1}$$

K is positive because P is negative for a backward-wave interaction. Pierce's loss parameter d is defined so that d>0 corresponds to circuit attenuation for a backward wave. The other parameters of Pierce are defined as usual. This analysis yields a small C determinantal equation

$$-\delta^2 = \frac{1}{-b - jd + j\delta} + 4QC.$$
(2)

Realizing that the relation between the partial "total voltage" V_{i} , and the partial "circuit voltage" V_{ci} of Pierce is as follows,

$$\frac{V_{ri}}{V_i} = 1 + \frac{4QC}{\delta_i^2} \quad (i = 1, 2, 3), \tag{3}$$

and writing the equations relating partial circuit voltages to total circuit voltage, total alternating beam velocity, and total alternating current, we have the following expressions. (Unless otherwise indicated, all voltages are taken at axial position z=0.)

$$V_{c1} + V_{c2} + V_{c3} = V_c \tag{4}$$

$$\frac{V_{c1}}{\delta_1^2 + 4QC} + \frac{V_{c2}}{\delta_2^2 + 4QC} + \frac{V_{c3}}{\delta_3^2 + 4QC} = i\left(-\frac{2V_0C^2}{I_0}\right) (5)$$

$$\frac{\delta_1 V_{c1}}{\delta_1^2 + 4QC} + \frac{\delta_2 V_{c2}}{\delta_2^2 + 4QC} + \frac{\delta_3 V_{c3}}{\delta_3^2 + 4QC} = v \left(\frac{ju_0 C}{\eta}\right).$$
(6)

If (4), (5), and (6) are solved for V_{cl} , it is found that

$$\xi(\delta) = (\delta_1 - \delta_2)(\delta_2 - \delta_3)(\delta_3 - \delta_1)$$

$$\tau(\delta, QC) = (\delta_1^2 + 4QC)(\delta_2^2 - \delta_3^2) \exp 2\pi CN\delta_1$$
(8a)

$$\phi(\delta, QC) = (\delta_1^2 + 4QC) \left[\delta_2(\delta_3^2 + 4QC) - \delta_3(\delta_2^2 + 4QC) \right]$$

$$\exp 2\pi C N \delta_1 + \text{cyclic permutation}$$

$$+ \text{cyclic permutation}$$
(8c)

$$D(\delta, QC) = (\delta_2 - \delta_3)(\delta_1^2 + 4QC) \exp 2\pi CN\delta_1$$

+ cyclic permutation
+ cyclic permutation. (8d)

Eq. (8) expresses the voltage appearing on the circuit at z=0 (the circuit output) as a function of the voltage appearing on the circuit at z = l (the circuit input) and the beam velocity and current modulation at z=0. The δ 's appearing in the above equation are functions of b, d, and QC. The latter two quantities, d and QC, do not vary if the loss and beam current of a given tube are held constant. On the other hand, b is varied merely by adjusting the beam voltage, holding the frequency constant. Johnson has calculated the δ 's and the CN for which oscillation begins for given values of d and $QC.^{8}$ This is done by setting D above equal to zero, and solving for CN, using the expression relating δ to b, d, and QC. It is logical to assume that the b of maximum gain for the backward-wave amplifier is the same as the b of start oscillation. This is very nearly true if CN is within 5 to 10 per cent of $(CN)_s$. This assumption restricts the range of validity of the numerical results presented here. If exact results are desired, the roots of the determinantal equation may be found for various b's, and these roots, together with the desired CN, may be sub-

$$V_{c1} = \frac{-V_c [(\delta_1^2 + 4QC)(\delta_2 - \delta_3)] + (j \frac{u_0 C}{\eta}) v [(\delta_1^2 + 4QC)(\delta_2^2 - \delta_3^2)]}{(\delta_1 - \delta_2)(\delta_2 - \delta_3)(\delta_3 - \delta_1)} + \frac{(-\frac{2V_0 C^2}{I_0}) i [\delta_2(\delta_3^2 + 4QC) - \delta_3(\delta_2^2 + 4QC)](\delta_1^2 + 4QC)}{(\delta_1 - \delta_2)(\delta_2 - \delta_3)(\delta_3 - \delta_1)}.$$
(7)

 V_{c2} and V_{c3} are cyclic permutations of V_{c1} . Now $V_1(l) = V_1 \exp(2\pi C N \delta_1)$, and since V_1 and V_{c1} are related by a constant independent of axial position, z, we have $V_{c1}(l) = V_{c1} \exp 2\pi C N \delta_1$. Adding $V_{c1}(l)$, $V_{c2}(l)$, and $V_{c3}(l)$, and solving for V_e results in the following expression:

$$V_{c} = - V_{c}(l) \frac{\xi(\delta)}{D(\delta, QC)} + \left(j\frac{u_{0}C}{\eta}\right) v \frac{\tau(\delta, QC)}{D(\delta, QC)} + \left(-\frac{2V_{0}C^{2}}{I_{0}}\right) i \frac{\phi(\delta, QC)}{D(\delta, QC)}$$
(8)

where

7 Johnson, op. cit., pp. 2-3.

stituted into (8). We therefore substitute the δ 's found by Johnson in (8). *CN* is quickly determined by the relation

$$CN = (CN)_{s} \left(\frac{I_{0}}{I_{0s}}\right)^{1/3}$$
(9)

where I_{0} is the current at which the tube starts to oscillate and $(CN)_s$ is tabulated by Johnson.⁵

We must now transfer circuit voltage into circuit power. Since the thermal noise is not correlated to the beam noise, we must add the two as powers. To avoid

1955

confusion, all voltages, currents, and velocities from this point will be taken as root-mean-square quantities. Keeping this in mind, and using the definition of C at the circuit entrance,

$$C^3 = \frac{I_0 V_c^2}{4 V_0 P},$$
 (10)

we find the noise power from the beam to be

$$P_b = \frac{I_0}{4V_0C^3} \left| \left(\frac{ju_0C}{\eta} \right) v \frac{\tau}{D} + \left(-\frac{2V_0C^2}{I_0} \right) i \frac{\phi}{D} \right|^2.$$
(11)

The thermal noise power is

$$P_t = GkTB = kTB \left| \frac{\xi}{D} \right|^2.$$
(12)

Thus the noise figure is

$$F = \frac{P_t + P_b}{P_t} = 1 + \frac{I_0}{4V_0 C^3 k T B} \left| \left(\frac{j u_0 C}{\eta} \right) v \left(\frac{\tau}{\xi} \right) + \left(-\frac{2V_0 C^2}{I_0} \right) i \left(\frac{\phi}{\xi} \right) \right|^2.$$
(13)

The Gun Region

The gun of a beam-type amplifier consists of a thermionic cathode and various focusing and accelerating electrodes; it produces the electron beam with which the circuit interacts. There are several analyses of electron guns at microwave frequencies. We shall merely state a few general assumptions, and mention the procedure by which the results we use have been derived, referring the reader to the original source for a rigorous derivation. The expression for the noise figure of a backward-wave amplifier derived above contains two unknowns, the alternating velocity and current at the circuit entrance. Watkins,⁹ among others, analyzes the potential minimum to anode region of a space-charge limited diode with the Llewellyn-Peterson¹⁰ equations. Strictly speaking, these equations are valid only between parallel plane electrodes of infinite extent. The electrons may move only in a direction perpendicular to the electrodes, by the usual infinite axial magnetic field assumption. The Rack mean-square alternating velocity at the potential minimum is11

$$v_a^2 = (4 - \pi) \, \frac{\eta k T_c B}{I_0} \, \cdot \tag{14}$$

There is also another source of noise at the potential minimum, namely, the shot noise of the electrons:

$$\overline{i_a^2} = 2eI_0B. \tag{15}$$

Unless noise reduction schemes are incorporated in the gun, this noise is negligible. This shot noise will be neg-

⁹ Watkins, *op. cit.*, pp. 11-19.
 ¹⁰ F. B. Llewellyn and L. C. Peterson, "Vacuum tube networks,"

lected until we find the minimum noise figure of a backward-wave amplifier.

Using the values of v and i found by Watkins, we obtain the following noise figures for the specified guns:

Case 1: Space-charge limited emission from cathode to circuit entrance:

$$F = 1 + \frac{(4 - \pi)}{2C} \frac{T_c}{T} \left| \frac{\tau}{\xi} - \frac{\phi}{\xi} \frac{\sqrt{2}}{\sqrt{4QC}} \right|^2.$$
(16)

Case 2: Space-charge limited emission from cathode to anode, anode followed by drift space followed by circuit; anode, drift space, and circuit at the same potential:

$$F = 1 + \frac{(4 - \pi)}{2C} \frac{T_c}{T} \left[1 + 2 \left(\frac{\omega_q}{\omega_p} \right)^2 \right]$$
$$\cdot \left| \frac{\tau}{\xi} \cos \beta_q z + \frac{\phi}{\xi} \frac{\sin \beta_q z}{\sqrt{4QC}} \right|^2. \tag{17}$$

Case 3: Same as Case 2 except that the first drift space is followed by a second drift space at the helix potential. The two drift spaces are at different potentials, producing a velocity jump at the velocity maximum:

$$F = 1 + \frac{(4 - \pi)}{2C} \frac{T_c}{T} \left[1 + 2 \left(\frac{\omega_{q_1}}{\omega_{p_1}} \right)^2 \right] \frac{V_1}{V_2} \\ \cdot \left| \frac{\tau}{\xi} \cos \beta_{q_2} z + \frac{\phi}{\xi} \frac{\sin \beta_{q_2} z}{\sqrt{4QC}} \right|^2.$$
(18)

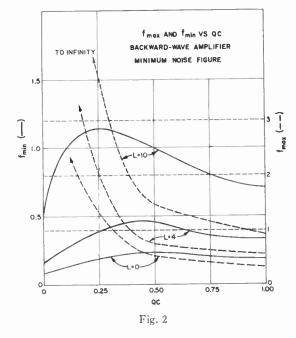
Subscript 1 refers to the first drift space, subscript 2 to the second drift space. By making V_2 large with respect to V_1 , the noise figure can be markedly reduced. However, when V_2 becomes larger with respect to V_1 , the shot noise, (15), is amplified and may no longer be neglected; in short, the noise figure cannot be reduced without limit by velocity jumps.

The Minimum Noise Figure

A recent publication by Peter and Bloom³ concerns a theory on the minimum noise figure of a forward-wave traveling-wave tube amplifier. They start at the potential minimum, assuming full shot noise and the Rack fluctuating velocity; they consider the potential minimum to circuit region as an electron beam transmission line of variable impedance. They adjust the expression they find for the noise figure to its minimum value, which is

> $F_{\min} = 1 + 2\sqrt{4 - \pi} \frac{T_c}{T} \sqrt{4QC} \sqrt{f_{\max}f_{\min}},$ (19)

$$f(\psi) = |\alpha \cos \psi - \beta \sin \psi|$$


$$2f_{\max} = |\alpha|^2 + |\beta|^2 + |\alpha + \beta^2|$$

$$2f_{\min} = |\alpha|^2 + |\beta|^2 - |\alpha^2 + \beta^2|.$$
(20)

4

It can easily be shown that their parameter α may be

PROC. I.R.E., vol. 32, pp. 144-166; March, 1944.
 ¹¹ A. J. Rack, "Effect of space charge and transit time on the shot noise in diodes," *Bell Sys. Tech. Jour.*, vol. 17, pp. 592-619; 1938.

replaced by our parameter τ/ξ , and their β may be replaced by our $[-\phi/\xi\sqrt{4QC}]$. The $f(\psi)$ of Peter and Bloom is taken directly from Watkins. The expressions derived here are the same as Watkins' if the mentioned replacements are made. We have calculated f_{\min} and f_{\max} for L=0, 4, and 10; and for QC=0, 0.25, 0.50, 0.75, 1.00.

In Fig. 2, f_{\min} and f_{\max} are plotted versus QC for the three values of loss. In Fig. 3, $(F_{\min}-1)T/T_c$ has been plotted versus QC for the three values of loss. These graphs are the backward-wave analogs of Fig. 2 and Fig. 4 in the above-mentioned paper of Peter and Bloom.³

It is interesting to note that the minimum noise figure for the zero loss case (L=0) is the same value for both the forward- and backward-wave amplifier, namely,

$$F_{\min} = 1 + .9265 \frac{T_c}{T}$$
 (21)

Oxide cathodes operate about 1020 K; room temperature may be taken as 290 degrees K. The resulting minimum noise figure is about 6.5 db. Slightly different assumptions about the gun would lower this to about 6.0 db.¹²

In calculating the noise figure for the forward-wave amplifier, it is generally assumed that the circuit is long enough to justify dropping all but the growing wave term. The backward-wave theory described above assumes a CN near the CN of start oscillation, for it is only in this region that appreciable gain is found. Within the framework of these assumptions, it is extremely interesting to note that these two vastly different expressions lead to the same minimum noise figure,

¹² J. R. Pierce and W. E. Danielson, "Minimum noise figure of traveling-wave tubes with uniform helices," *Jour. Appl. Phys.*, vol. 25, pp. 1163–1165; September, 1954.

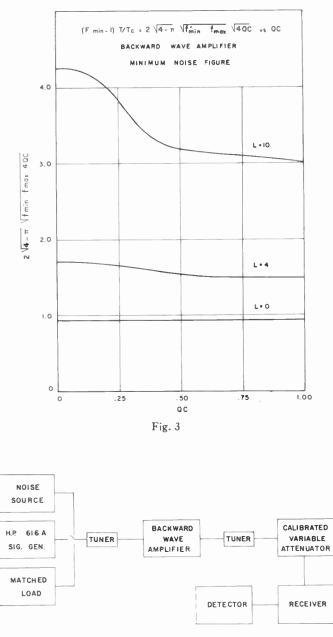


Fig. 4—Block diagram of noise figure measurement.

if the gun assumptions are the same in both cases. Watkins has shown that a klystron also has a theoretical minimum noise figure of about 6 db. This might indicate that all lossless beam-type amplifiers meeting the same assumptions have the same theoretical minimum noise figure.

If the effects of loss are included in the analysis, the minimum noise figure of a backward-wave amplifier differs from that of the forward-wave amplifier. At QC=0, and $L\neq 0$, the backward-wave amplifier has a higher minimum noise figure than the forward-wave amplifier; however, the slope of $(F_{\min}-1)T/T_c$ is negative in the case of the backward-wave amplifier, and positive in the forward-wave amplifier case. Consequently these curves cross, and for QC greater than a

World Radio History

certain value, the backward-wave amplifier will have a lower noise figure than the forward-wave amplifier. These curves can be used to predict the minimum noise figure of a backward-wave amplifier, if the circuit loss, L, and the space-charge parameter, QC, are known.

Because we wanted to compare our results with the work of Peter and Bloom, we have assumed full shot noise at the potential minimum. It should be mentioned that a recent analysis by Watkins¹³ predicts that there is a reduced shot noise at the potential minimum. This reduction lowers the minimum noise figure about 30 per cent for zero loss and space charge, or about 1.5 db.

EXPERIMENTAL RESULTS

The noise figure of a backward-wave amplifier has been measured as a function of gain. Care was taken to match the tube exceedingly well at the frequency of measurement, 3000 mc. The experimental setup is shown in Fig. 4. The experimental procedure was (1) measure the bandwidth of the receiver, (2) calibrate a Hewlett-Packard 616-A signal generator with a standard noise source (which in our case was a fluorescent lamp in waveguide that produced a "white" spectrum 15.8 db above kTB). This calibration gave us a setting, x_i on the attenuator of the signal which corresponded to 15.8 db above kTB. Next, the matched load was connected to the tube, the calibrated attenuator was set at 0 db, and the detector reading was noted. Then the H-P 616A was connected to the tube, the calibrated attenuator set at 3 db, and the signal generator's attenuator adjusted to y, where the detector read the same as before. Thus the noise output of the tube, N_{out} , and the signal output, Sout, were identical, and both equaled the gain, G, times the signal input S_{in} . Since noise figure is defined

$$F = \frac{N_{\text{out}}}{GkTB} = \frac{S_{\text{in}}}{KTB},$$
(22)

and the signal input is merely the attenuator setting of the signal generator, y,

$$F = y - x + 15.8 \text{ db.}$$
 (23) G_k

This method of measurement eliminates any errors introduced by the receiver and detector, because the detector reading, and therefore the receiver input, remain constant during each experimental trial. Thus a non-linear, non-square-law detector may be used in this experimental setup.

It should be stressed that the tube used in this experiment was a laboratory model backward-wave oscillator which was operated below starting current, i.e., as an amplifier. No attempt was made to reduce the noise figure. The gun was quite similar to gun pictured in Fig. 1. After three points were measured the tube was

accidentally broken. For this reason no checks were made and no measure of experimental error was established. However, because of the method of measurement used, and because of the pains taken to match the tube well, we feel that these points are reasonably accurate. The parameters of this tube for these measurements were K = 3.5 ohms, V = 990 volts, ka = .392, $\gamma a = 6.3$, mean beam radius b = .202 inch, mean helix radius a = .245 inch, b/a = .825, and the start oscillation current, $I_s = 1.2$ ma. A longitudinal magnetic field focused the hollow electron beam. Less than 2 per cent of the beam current was intercepted by the helix. The noise figure was calculated assuming space-chargelimited emission from cathode to helix, which is a good assumption for the voltages used. The results of our measurement are shown in Table I, together with the calculated gain of the tube and the calculated noise figures for losses of zero and 4 db.

TABLE I

Lossdb	Beam current—ma	1.1	1.0	0.9
$2.4 \\ 2.4 \\ 0 \\ 4$	Gain—db	19.2	13.4	9.6
	F (measured)—db	23.3	23.1	23.8
	F (calculated)—db	18.0	18.5	18.9
	F (calculated)—db	22.4	22.7	23.0

Acknowledgment

The author gratefully acknowledges the help of each of the following persons, whose contributions have made this report possible: Dr. H. R. Johnson, who suggested the project and gave valuable aid during its progress; Dr. C. K. Birdsall, who gave advice on the subject of noise; Mrs. Kazi Iliga, who performed the necessary computation; and A. M. Anderson and other members of the Engineering Staff, who built the experimental model.

List of Symbols

(in order of appearance)

Thermal noise power at the tube output,
z = 0.
Power gain.
Boltzmann constant $(1.38 \times 10^{-23} \text{ joule/de-gree Kelvin}).$
Temperature of characteristic impedance matched at the tube input, $z = l$.
Tube length.
Axial distance measured from circuit en-
trance.
Bandwidth of amplifier.
Pierce's impedance parameter, defined for the
backward interaction in (1).
Axial electric field.
Circuit propagation constant, ω/v_p , where v_p
is cold circuit velocity.
2π (frequency).
Total power flow on circuit.
Circuit loss parameter of Pierce.

.

 P_{t}

T

l

 \boldsymbol{z}

B

K

 E_{z}

β

 ωP

d

¹³ D. A. Watkins, "Noise at the Potential Minimum in the High-Frequency Diode," *Jour. Appl. Phys.* (to be published).

$C I_0 V_0 \delta \delta b$ $QC V_c V_i$ v	Pierce's gain parameter, $(I_0K/4V_0)^{1/3}$. Average electron convection current. Average beam voltage. Normalized propagation constant of Pierce. $(u_0 - v_p)/Cu_0$, where u_0 is the average electron velocity, $\sqrt{2\eta V_0}$. Space charge parameter of Pierce. Circuit voltage of Pierce (rms). Total voltage of Pierce (rms). Alternating electron convection current, posi- tive if electrons flow toward positive z. Alternating beam velocity, positive toward	$L N T_c e j \omega_q$ $\beta_q \xi(\delta)$	mass, <i>m</i> , 1.76×10^{11} coulomb/kg. Total circuit loss, 54.6 <i>CNd</i> decibels. Number of circuit wavelengths. Cathode temperature in degrees Kelvin. Electronic charge, coulomb. Symbolizes an imaginary number $\sqrt{-1}$. Reduced plasma frequency, $p\omega_p$ or $p\sqrt{\eta I_0/\epsilon_0 u_0 \sigma}$, where σ = beam cross-sectional area, p = plasma reduction factor. ω_q/u_0 .
N η	positive z. l/λ , circuit length in wavelengths. Ratio of electronic charge, e, to electronic	$\tau(\delta, QC) \phi(\delta, QC) D(\delta, QC)$	parameters defined for convenience after (8).

The Nature of the Uncorrelated Component of Induced Grid Noise*

T. E. TALPEY[†], member, ire, and A. B. MACNEE[‡], member, ire

Summary-An investigation of induced grid noise in vacuum tubes has been made. It was found that the uncorrelated component of grid noise can be explained in terms of electrons elastically reflected from the plate of the tube. Experimental and theoretical justifications of this explanation are presented. The accuracy of methods for predicting grid noise from measurements of input admittance is affected because of a component of input admittance arising from reflected electrons. A table is included showing typical (measured) values of the induced grid noise of eleven modern receiving tubes.

1955

61

INTRODUCTION

WO TYPES of vacuum tube noise, shot noise and induced grid noise, are of importance in the design of low-noise, high-frequency amplifiers. Shot noise is the fluctuating component of plate current caused by random variations in the cathode emission rate. Induced grid noise is generated by fluctuations in the number of current pulses induced in the grid circuit by the passage of electrons between grid wires. At the higher operating frequencies, induced grid noise is the limiting factor in low-noise amplifier design.1.3

For many years the theory of induced grid noise has been in a rather unsatisfactory state. Calculations based

* Original manuscript received by the IRE, November 30, 1953; revised manuscript received January 4, 1955. This paper is based upon a thesis submitted by T. E. Talpey to the University of Michigan in partial fulfillment of the requirements for the Ph.D. degree in Electrical Engineering. The research was carried out under the guidance of Dr. A. B. Macnee.

ance of Dr. A. B. Machee.
† Bell Telephone Labs., Inc. Murray Hill, N.J.
‡ Dep't Elec. Engrg., University of Michigan, Ann Arbor, Mich.
¹ Frequencies above about 15mc for modern miniature tubes.
² H. Wallman, A. B. Macnee, and C. P. Gadsden, "A low-noise amplifier," PROC. I.R.E., vol. 36, pp. 700–708; June, 1948.

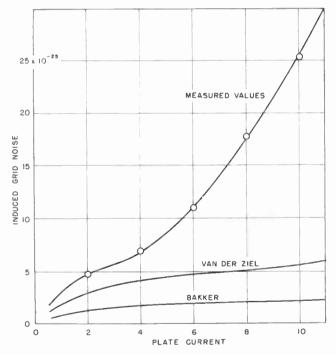


Fig. 1-Comparison between measured and calculated values of mean square induced grid noise current as a function of plate current for one section of a 6J6 double triode at 30 mc. Grid noise is expressed in amperes squared per unit bandwidth, and the plate current in ma.

directly on electron transit times yield induced grid noise magnitudes which are consistently low, often by a factor of two or three, (see Fig. 1), while predictions based on measurements of the input admittance are

found to provide a fair amount of agreement with measured grid noise values.3-5

It is evident from experimental studies that a large component of the induced grid noise is uncorrelated with the shot noise in the plate current stream.^{6,7} Previous writers have suggested two explanations for the origin of this uncorrelated component:

1. Total emission noise⁸-fluctuating currents induced in the grid circuit by electrons returned to the cathode before reaching the potential minimum.

2. Induced partition noise⁹—fluctuations arising because of electron-trajectory variations and inhomogeneities in the electrode structure. It can be thought of as arising from fluctuations in average transit angle.

Consideration of the position of the potential minimum relative to electrode spacings indicates that total emission noise is negligible with respect to the total induced grid noise in tubes such as the 6AK5. Bell⁹ has estimated the magnitude of noise to be expected from electron-trajectory variations and concludes that the effect is small under normal operating conditions. The validity of this conclusion has not been completely substantiated by experiment, but it appears that these two explanations alone are not adequate to account for the observed excess grid noise.

This paper presents the results of theoretical and experimental studies which indicate that a major portion of the uncorrelated component of induced grid noise is caused by fluctuations in a small number of electrons which are elastically reflected by the plate. These electrons are reflected with sufficient energy to enable them to return through the grid, inducing additional current pulses in the grid circuit. This current increases the input admittance and the induced grid noise. A brief discussion concerning the accuracy of grid noise predictions based on measurements of input conductance or susceptance is included.

For the benefit of the design engineer a table has been included showing typical measured magnitudes of induced grid noise and plate noise for a number of modern miniature receiving tubes.

Analysis of Induced Grid Noise

Theoretical studies, published first by Bakker³ and recently extended by van der Ziel,¹⁰ show that fluctua-

- ³ C. J. Bakker, "Fluctuations and electron inertia," Physica, vol.
- 8, pp. 23–43; January, 1941. 4 D. O. North and W. R. Ferris, "Fluctuations induced in vacuum tube grids at high frequencies," PROC. I.R.E., vol. 29, pp. 49-50; ⁶ R. L. Bell, "Induced grid noise," Wireless Eng., vol. 27, pp.
- 86-94; March, 1950.

86-94; March, 1950.
⁶ R. Q. Twiss and Y. Beers, "Minimal Noise Circuits," Vacuum Tube Amplifiers, vol. 18, Ch. 13, M.I.T. Rad. Lab. Series, McGraw-Hill Book Company, New York N.Y., 1948.
⁷ A. van der Ziel, "Noise suppression in triode amplifiers," Canad. Jour. Tech., vol. 29, pp. 540-553; December, 1951.
⁸ A. van der Ziel and A. Versnel, "Induced grid noise and total emission noise," Philips Res. Rep'ts, vol. 3, pp. 13-23; February, 1948.
⁹ R. L. Bell, "Negative grid partition noise," Wireless Eng., vol. 25, pp. 294-297; September, 1948.
¹⁰ A. van der Ziel, "Induced grid noise in triodes," Wireless Eng., vol. 28, pp. 226-227; Luly, 1951.

vol. 28, pp. 226-227; July. 1951.

tions in the cathode emission of a planar triode should produce a mean square induced grid-noise current

$$\overline{i_g}^2 = \overline{i_k}^2 \left(\frac{\omega \tau_1}{3}\right)^2 \left[1 + 2\left(\frac{\tau_2}{\tau_1}\right)\right]^2.$$
(1)

In this equation

 i_{k^2} = mean square space-charge-reduced shot-noise component of cathode current, I_k

$$=2eI_k\Gamma^2\Delta f$$

- $\tau_1 = \text{transit}$ time from potential minimum to gridplane
- $\tau_2 =$ transit time from grid-plane to plate
- $\Gamma^2 =$ space-charge reduction factor
- $e = \text{charge on an electron} = 1.6 \times 10^{-19} \text{ coulomb}$

 $\Delta f =$ bandwidth in cps.

Eq. (1) is plotted for a typical case in Fig. 1. By a method similar to that described by Goldman¹¹ it has been shown that to a first approximation the induced grid noise can be expressed as¹²

$$\overline{i_g^2} = \frac{2I_b \Delta f \Gamma^2}{e} \cdot \mid S(\omega) \mid^2, \qquad (2)$$

where

$$S(\omega) = 2\pi G(\omega) = \int_{-\infty}^{+\infty} F(t) e^{-j\omega t} dt.$$
 (3)

 $G(\omega)$ is the Fourier transform of F(t), the current pulse induced in the grid by the passage of a single electron from cathode to plate [see Fig. 2(a)]. Comparison of (1) and (2) reveals the form of $|S(\omega)|^2$. Since the area of the grid current pulses must be zero, their power spectra and the mean square induced grid-noise current are both proportional to the square of frequency at small transit angles. This observation has been verified experimentally numerous times.3-6

The lack of agreement between measured and calculated values of induced grid noise as exemplified by Fig. 1 can be explained in terms of electrons reflected by the plate. It has long been known^{13,14} that electrons which are elastically reflected at the plate of a diode cause an increase in the shot noise. Strangely enough, no study has been published showing the effect of reflected electrons on grid noise.

An electron which is elastically reflected from the plate has sufficient energy to penetrate the retarding field that it meets between grid and plate. It will very likely succeed in passing back between the grid wires

.

¹¹ S. Goldman, "Frequency Analysis, Modulation and Noise," McGraw-Hill Book Company, New York, N.Y., 356 ff; 1948. ¹² T. E. Talpey, "A Study of Induced Grid Noise," Doctoral Thesis, July 1953, available on microfilm from University Micro-films, Ann Arbor, Michigan.

¹³ D. O. North, "Fluctuations in space-charge-limited currents at moderately high frequencies, Part II, diodes and negative grid triodes," *RCA Rev.*, vol. 4, pp. 441–472; April, 1940; vol. 5, pp. 106– 124; July, 1940.

[&]quot;G. E. Duvall, "The Effects of Transit Angle on Shot Noise in Vacuum Tubes," M.I.T. Res. Lab. of Electronics, Tech. Rep. No. 82, Sept. 8, 1948.

451

 $|S_r(\omega)|^2 \leq 9 |S(\omega)|^2.$ (8)

before it loses its cathode-directed energy and is finally drawn back to the plate again. The pulse of current induced in the grid circuit by such a reflected electron will be approximately three times as long as the pulse produced by an ordinary electron, as indicated in Fig. 2(b).

By the application of two theorems from the study of Fourier integrals¹⁵ it is easily shown that the power spectrum of the complex pulse shown in Fig. 2(b) is given by the following expression:

$$|S_{\tau}(\omega)|^{2} = |S(\omega) - S(-\omega)e^{j2\omega(\tau_{1}+\tau_{2})} + S(\omega)e^{-j2\omega(\tau_{1}+\tau_{2})}|^{2}$$
(4)

where $|S(\omega)|^2$ is the power spectrum of the first third of the pulse, up to the point where the electron first arrives at the plate.

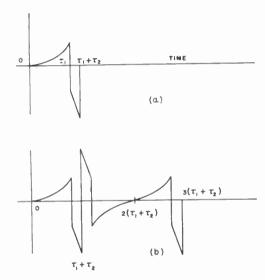


Fig. 2—(a) Current pulse induced in the grid circuit of an ideal space-charge-limited triode by the passage of a single electron,
(b) Current pulse induced in the grid circuit by an electron which traverses the tube, is elastically reflected at the plate, succeeds in getting back close to the potential minimum, and then returns to the plate.

Now $S(\omega)$ can be expanded in a power series in terms of $\omega \tau_1$ as follows:

$$S(\omega) = a_1 \omega \tau_1 + a_2 (\omega \tau)^2 + a_3 (\omega \tau_1)^3 + \cdots$$
 (5)

where the factors a_1 , a_2 , etc. involve terms in (τ_2/τ_1) , $(\tau_2/\tau_1)^2$, etc., as in (1). Assuming that the transit angle $\omega \tau_1$ is considerably smaller than one radian,¹⁶ we can neglect all terms except the first in (5) and write

$$S(\omega) \cong -S(-\omega) \cong a_1 \omega \tau_1.$$
 (6)

Eq. (4) then becomes

$$|S_r(\omega)|^2 \cong |S(\omega)|^2 |1 + 2\cos 2\omega(\tau_1 + \tau_2)|^2.$$
(7)

If $2\omega(\tau_1 + \tau_2)$ is also considerably less than one radian, the cosine is approximately unity and we obtain the relationship

The reflected electrons thus produce an induced grid noise component given approximately by

$$\overline{i_g}^2 = \frac{2\Delta f}{e} (rI_b)(9) \mid S(\omega) \mid^2, \tag{9}$$

where r is the reflection coefficient of the plate, that is, the fraction of incident electrons which are elastically reflected.

Since fluctuations in the number of reflected electrons are independent of fluctuations in cathode emission, the induced grid noise components given by (2) and (9) add quadratically, giving as an approximate expression for the total induced grid noise at small transit angles

$$\overline{i_g}^2 = \frac{2I_b \Delta f}{e} |S(\omega)|^2 [\Gamma^2 + 9r].$$
(10)

Logarithmic extrapolation of experimental data reported by Farnsworth¹⁷ indicate that r = 0.03 is a reasonable estimate of the reflection coefficient for plate voltages of 100 to 150 volts. Nominal values of Γ^2 lie near 0.1, so that the bracket in (10) becomes

$$[\Gamma^2 + 9r] = [0.1 + .27] = 0.37.$$

The reflected electrons in this case have caused an approximately four-fold increase in induced grid noise. We thus conclude that the reflected electrons are entirely capable of producing the observed excess of measured grid noise over values predicted by earlier theories.

EXPERIMENTAL VERIFICATION

The effect of reflected electrons on induced grid noise was verified experimentally by measuring the induced grid noise of a type 6AS6 pentode as a function of suppressor voltage; the results of these measurements are shown in Fig. 3, on the following page.

The induced grid noise increases by a factor of six or so as the suppressor voltage varies from +20 to -20volts. When the suppressor is negative, it creates a retarding field and some electrons are reflected before they reach the plate. As the suppressor is made more negative, more electrons are reflected until at about -10volts they are all reflected and the plate current drops to zero. Those electrons which are not captured by the screen travel on toward the grid and induce additional current pulses in the grid circuit.

The correlation between induced grid noise and reflected electrons is even more striking if the data of Fig. 3 are plotted in a different manner. The deficiency in plate current with respect to its asymptotic value at positive suppressor voltages is a measure of the number of electrons which are artificially reflected by the field of the suppressor before they can reach the plate. The grid

¹⁸ See, for example, E. A. Guillemin, "The Mathematics of Circuit Analysis," John Wiley & Sons, New York, N.Y., Ch. VII, Article 22; 1949.

¹⁶ At 30 mc, the transit angles of all the miniature tubes studied are well below 0.1 radian.

¹⁷ H. E. Farnsworth, "Energy distribution of secondary electrons from copper, iron, nickel and silver," *Phys. Rev.*, vol. 31, pp. 405-422; March, 1928

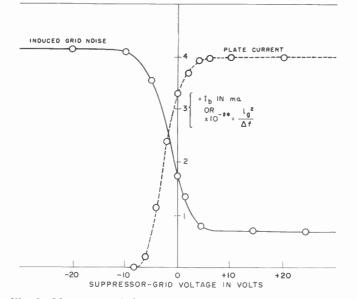


Fig. 3—Mean square induced grid-noise current vs suppressor-grid voltage for a 6AS6 at 30 mc with a fixed control grid voltage and a constant cathode current. The variation in *plate* current is also shown (dashed curve).

noise in excess of its asymptotic value at positive suppressor voltages should be directly proportional to the number of artificially reflected electrons according to (10). When the deficiency of plate current and the excess grid noise are both plotted as a function of suppressor voltage on the same set of coordinates the correlation is excellent, as Fig. 4 clearly shows.

It is significant that the grid noise is appreciably larger for zero suppressor voltage than for positive voltages. When the suppressor is at the same potential as the cathode, the resulting electric field is able to deflect a few electrons sufficiently to prevent them from reaching the plate.18 These electrons are returned to the vicinity of the control grid and thus cause an increase in the grid noise. If the suppressor connection is brought out to a separate pin, it should be connected to the plate and screen. This eliminates the possibility of reflected electrons being produced by deflection in the screensuppressor region yet preserves the obstacles presented by the suppressor and screen wires to the return of reflected electrons from the plate. This connection was tried in a 30-mc cascode amplifier² employing a 6AS6 input stage. It was found that the noise factor could be reduced from 2.95 to 2.25 db by changing the suppressor connection from the cathode to the plate.

Reflected Electrons and Input Admittance

There is a direct relationship between the electrons which are elastically reflected at the plate of a vacuum

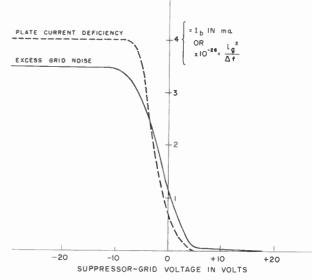


Fig. 4—Excess grid noise and deficiency in plate current (dashed curve) vs suppressor-grid voltage.

tube and the transit-time component of input admittance. This can be demonstrated qualitatively in the following manner. A signal applied to the grid of a tube causes variations in the control-grid voltage which are accompanied by variations in the plate current. For small signals it can be assumed that the reflection coefficient of the plate is constant, so that variations in the plate current will produce proportional variations in the number of reflected electrons.¹⁹ It follows that these reflected electrons must produce, in the grid circuit, a varying induced current which is proportional to the grid voltage. The component of this induced current which is in phase with the grid voltage produces additional input conductance; while the quadrature component produces additional input susceptance. When a measurement is made of the input admittance of a tube, the value obtained includes a component due to reflected electrons as well as the component due to the main electron stream.20

Two methods have been advanced for predicting grid noise from measurements of the input admittance. One of these methods^{3,4} expresses the grid noise in terms of the transit-time component, G_{g} , of input conductance:

$$\overline{i_g^2} \cong 4kT\beta G_g\Delta f. \tag{11}$$

The value of the quantity β is usually taken as 5.0, although it is a function of the cathode temperature and certain geometrical factors. Unfortunately, because of lead inductance effects it is frequently more difficult to measure G_0 than it is to measure the grid noise directly.

¹⁸ The deflection and subsequent reflection are caused by the combined field of the screen and suppressor grids. The reflection takes place just in front of the suppressor grid. The mechanism is similar to that described by W. G. Dow, "Fundamentals of Engineering Electronics," 2nd Ed., John Wiley & Sons, New York, N. Y., pp. 28–29; 1952.

¹⁹ Sizable variations are being considered here; they should not be confused with the minute random fluctuations which give rise to induced noise. The random fluctuations are superimposed on the variations in plate current.

²⁰ There is also a component due to feedback from the cathode lead inductance. This feedback usually produces considerable input loading but negligible additional noise.

1955

A second method of predicting grid noise makes use of the following expression:⁵

$$\overline{i_{\varsigma}^{2}} \cong \overline{i_{p}^{2}} \left(\frac{\omega C_{\epsilon}}{g_{m}} \right)^{2}, \qquad (12)$$

where C_{\bullet} is the space-charge component of input capacity—*i.e.*, the difference between the input capacity when the tube is operating under normal conditions and the input capacity with the tube biased beyond "cutoff."

Both (11) and (12) imply complete correlation between grid noise and plate noise. Both of these equations were derived under the assumption that both grid noise and plate noise owe their origin to fluctuations in the primary electron stream passing the grid. These fluctuations are affected by space charge in the cathode-grid region and are often said to be "space-charge reduced." On the other hand, fluctuations in the number of reflected electrons are not influenced by space charge in the input region. We are thus led to the conclusion that the grid noise produced by reflected electrons, while linearly related to a component of input admittance, must be related in a slightly different manner than indicated by (11) or (12). The use of these equations for predicting the total induced grid noise consequently involves a certain amount of inaccuracy. Further study of the connection between input admittance and reflected electrons is necessary before the magnitude of the error can be ascertained.

The Induced Grid Noise of Miniature Receiving Tubes

During the course of the research leading to the formulation of the above theory many measurements were made of the induced grid noise of a variety of commercially available receiving tubes. Table 1 presents a summary of these measurements. Because of its usefulness in network calculations, the induced grid noise values are expressed in terms of an equivalent grid noise conductance (βG_g), based on the representation defined by (11). (No claim for the measurement of G_{g} alone is intended.) Measurements were also made of the plate noise of these tubes, and the results are presented in Table I in terms of an equivalent shot noise resistance.¹³

The method employed for the measurement of induced grid noise was essentially the same as that described by Bakker.³ A resonant capacitor was connected from plate to cathode of the tube under test to shortcircuit the plate noise and prevent feedback, and the grid was connected directly to the input of a high-gain low-noise amplifier. Noise currents induced in the grid circuit of the tube under test were compared with noise from a temperature-limited diode. The change which occurred in the impedance level of the input circuit when the tube under test was turned on (loading due to transit-time and lead inductance effects) required that a correction be applied to the noise diode reading. The correction was determined from the effect of this loading on the amplifier output level. At 30 mc the effect of lead inductance on grid noise is negligible.

The values given in Table I represent the averages of measurements taken on a few tubes of each type, with particular values of voltage and current. Values for any given tube may differ considerably (20 to 30 per cent) from these data, even under the same operating conditions.

The use of a lower grid bias to obtain more plate current was found to cause an increase in grid noise in approximately the same ratio as the g_m was increased. Raising the plate voltage (leaving bias fixed) increases g_m without any appreciable rise in grid noise. It follows that for a given plate-current value, a high plate voltage and high negative grid bias are desirable for the attainment of a low noise figure.

SUMMARY

Experimental and theoretical evidence indicate that the origin of a major portion of the uncorrelated component of induced grid noise is that small fraction of the electron stream which is elastically reflected at the plate of a vacuum tube. It has been shown qualitatively that

TABLE I								
MEASURED	VALUES	OF	INDUCED	Grid	Noise	АТ	30мс	

	Number examined	Induced grid noise: Equivalent noise conductance βG_g in micromhos			Plate current	Equivalent shot noise resistance	Transcon- ductance gm in
	CARTING	Average	Lowest	Highest	I_b in ma	Req.	micromhos
6AG5	21	142	112	156	7	480	6,000
6AK5	30	46	.36	58	10	460	5,500
6AS6*	4	46	42	52	10	450	5,800
6AU6	17	212	184	254	12	420	6,600
6BC5	6	130	120	142	8	590	5,800
6BH6*	3	224			10		
6BC6*	10	174	144	194	12	410	7,300
6J4	2	200			15	321	12,000
6J6†	10	60	42	82	8	720	4,400
2C51†	8	40	38	46	8	550	5,400
404A	9	72	68	36	15	240	16,000

* Suppressor connected to plate and screen.

† Values are for a single section.

the presence of reflected electrons will affect the accuracy of induced grid noise predictions based on measured values of input admittance.

It is conceivable that the effect of reflected electrons could be eliminated or materially reduced by the use of a specially constructed tube. If this could be done, the remaining induced grid noise would be more completely correlated with shot noise. By properly detuning the input circuit of a suitable amplifier, it should then be

possible to use this correlation to cause a partial cancellation of the effects of induced grid noise and thereby obtain substantially lower noise figures at high frequencies.

ACKNOWLEDGMENT

The authors would like to thank Professors W. G. Dow and G. Hok of the University of Michigan for helpful discussions during the course of this study.

On the Possibility of Amplification in Space-Charge-Potential-Depressed Electron Streams*

WALTER R. BEAM[†], MEMBER, IRE

Summary-Hahn-Ramo theory is used to derive a characteristic wave equation for an electron stream whose single-valued velocity is a function of spatial co-ordinates. A means of solving this equation is found, for the particular case of two-dimensional Cartesian coordinates. A specific, but practical, linear velocity distribution is assumed. It is shown that for several types of boundary conditions, the only waves which can be set up in such a beam are purely propagational and not growing, bearing out the result derived by an approximate method by G. Kent.

Numerical analysis for a cylindrical beam with potential depression was performed by a digital computer. As before, the results showed absence of any growing waves.

In order to check early results of Haeff,1 which appeared to show the possibility of gain in single beam devices, an experiment was set up whereby a movable pickup cavity measured the amplitude of space-charge waves at a number of points along a drift tube.

Outputs were compared at different drift lengths for pulsed and continuous operation. No evidence of growing waves was observed, verifying the analytical results. It was found, however, that operation of the collector electrode at very low potentials created secondary electrons which returned to the gun region, were reflected, and then they flowed back with the primary beam. This double-stream action produced electronic gains up to 30 db. It is believed that either a similar effect, or else a space-charge wave gain produced as a direct result of nonuniform beam flow, can explain any signal gains found in conventional single-stream tubes.

INTRODUCTION

NEVERAL years ago, the double-stream amplifier, a mechanism for obtaining amplification in electron streams, was described by several authors.1-4 It

* Original manuscript received by the IRE, September 24, 1954; revised manuscript received, January 7, 1955. Adapted from a dis-sertation submitted in partial fulfillment of the requirements for the Doctor of Philosophy Degree at the Univ. of Maryland, College Park Md Park, Md.

† RCA Laboratories, Princeton, N.J. ¹ A. V. Haeff, "The electron-wave tube," PROC. I.R.E., vol. 37,

A. V. Haen, The electron-wave tube, T Koc. Likib., vol. 37, pp. 4-10; January, 1949.
² L. S. Nergaard, "Analysis of a simple model of a two-beam growir g wave tube," *RCA Rev.*, vol. 9, pp. 585-601; December, 1948.
³ J. R. Pierce and W. B. Hebenstreit, "A new type of high frequency amplifier," *Bell Sys. Tech. Jour.*, vol. 28, pp. 33-51; January, 1040. 1949.

A. V. Hollenberg, "Experimental observation of amplification by interaction between two electron streams," Bell Sys. Tech. Jour., vol. 28, pp. 52-58; January, 1949.

has been shown analytically and experimentally that the mixture of two homogeneous electron streams of slightly different velocity should give rise to exponentially increasing space-charge waves, the result of the perturbation of the two original sets of space-charge waves by one another. Other authors⁵⁻⁸ have expanded this theory to general multiple-stream amplifiers, with finite boundaries. These theories indicate an optimum gain when only two distinct velocities are present. For the case of homogeneous mixtures of beams of different velocity, it has been shown that velocities in a Gaussian distribution cannot give rise to amplification.8 A general proof given by Walker9 indicates that a homogeneous mixture of electrons whose velocity distribution is flat or monotonic, or has a single maximum, cannot produce gain.

Some of the experimental data presented in Haeff's paper1 indicated large amplification in the case of an electron stream coming from a single cathode. It was proposed that the observed gain was a consequence of the spatial velocity distribution caused by space-charge depression of potential. This had not been taken into account in the existing analyses, which dealt with a onedimensional problem. A considerably more complicated problem results when the electron velocity is made a spatial function. Kent¹⁰ has used a series approximation to show that gain cannot be self-consistent in a ribbon beam having space-charge depression of potential. The

⁵ P. Parzen, "Theory of space-charge waves in cylindrical wave-guides with many beams," *Elect. Commun.*, vol. 28, pp. 217-219; September, 1951.

⁶ J. R. Pierce, "Double-stream amplifier," PROC. I.R.E., vol. 37. pp. 980-985; September, 1949.

7 C. K. Birdsall, "Interaction Between Two Electron Streams for ⁷ C. K. Birdsall, "Interaction Between I wo Electron Streams for Microwave Amplifications," Tech. Rep. No. 36, Elec. Res. Lab., Stanford Univ., Palo Alto, Calif. ⁸ H. Haus, "A Multivelocity Electron Stream in a Cylindrical Drift Tube," unpublished report, Res. Lab. Elec., MIT; June 5, 1952. ⁹ L. R. Walker, "The dispersion formula for plasma waves," *Jour. Appl. Phys.*, vol. 25, p. 131; January, 1954. ¹⁰ G. Kent, "Space charge waves in inhomogeneous electron beams," *Jour. Appl. Phys.*, vol. 25, pp. 32–41; January, 1954.

46

present paper contains a solution of the same problem, in a more rigorous manner. In addition, the spacecharge wave modes for the more practical case of a cylindrical beam have been calculated numerically. The results in both cases strengthen the general conclusions reached earlier in the one-dimensional cases.

FORMULATION OF THE PROBLEM

The basic method used in problems involving spacecharge interaction is the Hahn-Ramo method.¹¹⁻¹² This assumes: (1) a linear interaction in which the perturbations of space-charge density and electron velocity are small fractions of their average values, (2) that alltime varying quantities are of the form $f_T e^{i\omega t - \gamma z}$, where: f_T indicates a function of the transverse co-ordinates only, ω is the angular frequency of the perturbation, γ is the propagation constant (in general complex), zis the direction of electron velocity, t is time; and (3) electron velocities are single-valued functions of position.

The particular situation to be discussed involves an electron beam of space-charge density ρ and velocity v (the average values of which, ρ_0 and v_0 , are functions only of the co-ordinates transverse to z), moving in free space or bounded at or beyond its edge by perfectly conducting metal walls. An infinitely strong axial magnetic field assures zero transverse velocity.¹³

To obtain a solution for the waves in an electron beam one employs Maxwell's equations:

$$\nabla \times \overline{H} = \rho \overline{v} + \epsilon_0 \frac{\partial E}{\partial t}$$

$$\nabla \times \overline{E} = -\mu_0 \frac{\partial \overline{H}}{\partial t}$$

$$\nabla \cdot \overline{E} = \rho/\epsilon_0$$

$$\nabla \cdot \overline{H} = 0$$
(1)

and the equation of motion of an electron

$$m\left[\frac{\partial \bar{v}}{\partial t} + v_x \frac{\partial \bar{v}}{\partial x} + v_y \frac{\partial \bar{v}}{\partial y} + v_z \frac{\partial \bar{v}}{\partial z}\right] = e\left[\overline{E} + \bar{v} \times \overline{B}\right]. \quad (2)$$

The velocity and space charge are separated into static part and perturbation. All cross-products of perturbations are neglected. The equation involving the axial component of electric field can be simplified to the following form:

$$\Delta_t^2 E_z + \left[\gamma^2 + \frac{\omega^2}{c^2}\right] \left[1 + \frac{\rho_0 \eta/\epsilon_0}{[j\omega - \gamma v_0]^2}\right] E_z = 0.$$
 (3)

 Δ_{z^2} is the Laplacian operator of the transverse axes,

c the velocity of light, η the charge-mass ratio of the electron, and ϵ_0 the permittivity of free space.

Eq. (3), if solved under particular boundary conditions, is a characteristic equation specifying characteristic values of γ . Values of γ in the second quadrant of the complex plane are necessary for gain.

The solutions of (3) are real for purely imaginary γ , and complex for complex γ . In cases where there is no gain, the values of γ correspond to solutions having none, one, two, three, etc., zeros interior to the range of solution. The solutions having no zeros (except, perhaps, at the boundaries) are the familiar space-charge waves of the low-level klystron.

Velocity and Space-Charge Distribution

The space-charge density distribution chosen will greatly influence the values of γ . For practical reasons, we shall choose ρ_0 to be constant over the beam, and zero outside the beam proper. This distribution is not too far from that which can be obtained experimentally.

The velocity distribution will be chosen to approximate that found in an electron beam whose potential is depressed by space-charge forces. For an axially cylindrical, drifting beam, the solution of Poisson's equation

 $\nabla^2 V = - \rho_0 / \epsilon_0$

gives:

$$v_0 \sim v_{00} + \frac{\rho_0 \eta}{4\epsilon_0 v_{00}} r^2,$$
 (4)

where v_{00} is the value of v_0 on the axis and r is distance from the axis.

For a two-dimensional "ribbon" beam of infinite extent in the y direction, the solution of Poisson's equation will depend on the potential of the electrodes bounding the beam in the x-direction. One possible solution is linear in x. This is particularly interesting, for it is the only distribution leading to a transformation enabling analytical solution.

Boundary Conditions

In any experimental space-charge amplifier the beam must be enclosed in metal walls. This is essential in order to prevent excessive potential depression due to space charge and to eliminate the effects of charge on insulating walls. Space-charge wave solutions for multiplestream amplifiers show that the presence of metal walls very near the beam tends to inhibit the interaction of electrons near the wall. Furthermore, if the wall is removed by a distance greater than the order of the distance between bunches, its effect becomes negligible. There is no evidence that intermediate positions of the enclosing walls can produce any new effects.

The boundary conditions of (3) at metal walls are $E_z=0$. At the center of an axially symmetrical system not containing a line charge on the axis, $\partial E_z/\partial r = 0$.

When the electron beam does not completely fill the space enclosed by the metal walls, an additional bound-

 ¹¹ W. C. Hahn, "Small signal theory of velocity-modulated electron beams," *Gen. Elec. Rev.*, vol. 42, pp. 258–270; June, 1939.
 ¹² S. Ramo, "The electronic-wave theory of velocity modulation tubes," PRoc. I.R.E., vol. 27, pp. 757–763; December, 1939.
 ¹³ December, and the rectraint on transverse velocities allows.

tubes," PROC. I.R.E., vol. 27, pp. 757–763; December, 1939. ¹³ Of course, relaxing the restraint on transverse velocities allows other types of interaction, some of which can give rise to gain. This is beyond the scope of this paper.

ary condition must be satisfied at the boundary between the electron beam and free space. Outside of the beam $\rho_0 = 0$, making the solution much simpler in that region. It may be expressed as the sum of two linearly independent solutions, whose coefficients are determined by requiring that E_z and its transverse gradient be equal on each side of the boundary.

Cartesian Case

Ribbon Beam: If the electron beam in question is infinite in extent in the y direction, and has the linear velocity distribution described above, (3) will become

$$\frac{d^{2}E_{z}}{dx^{2}} + \left(\gamma^{2} + \frac{\omega^{2}}{c^{2}}\right)$$

$$\cdot \left[1 + \frac{\rho_{0}\eta/\epsilon_{0}}{\left[j\omega - \gamma\left(v_{00} + \frac{dv_{0}}{dx} x\right)\right]^{2}}\right]E_{z} = 0. \quad (5)$$

This assumes no y-components of field or velocity. The further assumption will be made that the wave velocity of a desired solution is much less than the velocity of light c. In that case:

$$\frac{\omega^2}{c^2} \ll |\gamma^2|,$$

and the ω^2/c^2 term may be dropped from the equation. A transformation, used first by MacFarlane and Hay¹⁴ in the solution of the crossed-field amplifier, may be applied. Let:

$$u = \frac{\omega + j\gamma v_0}{\frac{dv_0}{dx}}; \tag{6}$$

then (5) may be reduced to:

$$\frac{d^2 E_s}{du^2} - \left(1 - \frac{\omega_0^2}{\left(\frac{dv_0}{dx}\right)^2 u^2}\right) E_s^{\bullet} = [0.$$
(7)

The ω^2/c^2 term has been dropped, and the notation $\omega_0 = \sqrt{\rho_0 \eta / \epsilon_0}$ used. ω_0 is commonly denoted the "plasma frequency."

It is a characteristic of the linear velocity distribution that $dv_0/dx = \omega_0$. Eq. (7) then reduces to the simple form:

$$\frac{d^2 E_z}{du^2} - \left(1 - \frac{1}{u^2}\right) E_z = 0$$
 (8)

free of explicit dependence on γ . The method of solution will be to first determine a solution satisfying the desired boundary conditions in the *u* variable, and then transform from *u* back to *x*, obtaining γ in the process.

The boundary conditions at a metal wall are $E_z = 0$.

¹⁴ G. G. Macfarlane and H. G. Hay, "Wave propagation in a slipping stream of electronics: small amplitude theory," *Proc. Phys. Soc.*, B. 63, pp. 409-426; June 1, 1950.

For a beam not enclosed by conducting walls at its edges, the solution outside the beam must satisfy

$$\frac{d^2E_z}{dx^2}+\gamma^2E_z=0.$$

Such solutions are $e^{\pm i\gamma z}$.

The solution for a beam in free space must vanish at infinity. Hence only the $e^{i\gamma x}$ term is allowable for large positive x, and $e^{-i\gamma x}$ for negative x. For positive x the matching condition

$$\frac{1}{E_z}\frac{dE_z}{dx} = +j\gamma$$

is replaced by

$$\frac{1}{E_s} \frac{dE_s}{du} = -1$$

in the u plane. On the negative x side of the beam,

$$\frac{1}{E_z}\frac{dE_z}{du} = +1$$

is the matching condition.

Since γ is not known, the mapping of x into the complex u plane is not known. Because (8) does not contain γ , it can be solved, two independent solutions being found. These solutions, combined linearly, encompass an entire class of physical problems, and by proper combination of the two solutions, each allowed γ for a particular set of parameters can be located.

Two values of $u(u_A \text{ and } u_B)$ must be found for which the boundary conditions at the beam edges $(x_A \text{ and } x_B)$ are satisfied; and for some complex γ and for given $v(x_A)$ and $v(x_B) < v(x_A)$, they must transform into real values of x. For given $v(x_A)$ and $v(x_B)$ there is a countable set of such u_A and u_B . The requirements on u_A and u_B are shown in Fig. 1 (opposite). Since u is linear in xand, more directly, in $v_0(x)$, the line joining u_A and u_B must pass through $u = \omega/\omega_0$, which for practical tubes is of the order of 10 or more. u_A and u_B must also be the proper distances from $u = \omega/\omega_0$ so that the ratio of these distances equals the ratio of v_A to v_B . A requirement for gain modes is that u_A to u_B fall in the first and second quadrants of the u plane, or, alternatively, in the fourth and third quadrants, so that the phase velocity of the wave will lie somewhere between v_A and v_B . This is a general requirement on growing waves produced by systems of different velocities.15

Under the boundary conditions required by conducting walls at x_A and x_B , we require the solution $E_z(u)$ to have zeros at u_A and u_B . If u_A and u_B satisfy the other stated conditions, $E_z(u)$ along the line joining u_A and u_B gives the solution along the corresponding segment of the x-axis. We now proceed to show that no such u_A and u_B giving rise to gain do exist.

¹⁵ C.f., J. R. Pierce, "Coupling of mode of propagaton," Jour. *Appl. Phys.*, vol. 25, pp. 179–183; February, 1954.

In order to find such u_A and u_B , $E_t(u)$ must be determined over a large part of the complex u plane. Let a particular pair of independent solutions of (8) be called $f_1(u)$ and $f_2(u)$. The general solution is $c[f_1(u) - \phi f_2(u)]$, in which c and ϕ are arbitrary complex numbers. We are only interested in the zeros of solutions, since u_A and u_B must be among them. All zeros of all linear combinations can be found by plotting f_1/f_2 . Choosing a point where $\phi = \phi_0$, we search for other points where $f_1/f_2 = \phi_0$. These points are all zeros of some particular solution of (8). Curves may be drawn (in the u plane) along which f_1/f_2 varies recurrently through the same set of values. These we call the loci of zeros of the solutions, and on them the next argument will be based.

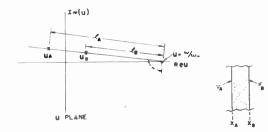


Fig. 1—Illustrating the relation two points u_A and u_B must satisfy to define a solution to (4) with zero boundary conditions, the relation $l_A | l_B = v_A | v_B$ must hold, and a line through u_A and u_B must intersect the real u axis at $u = \omega/\omega_2$. Then $|y| = |l_A|/v_A$ $= |l_B|/v_B$; $\arg \gamma = \alpha$.

Consider the equation

$$\frac{d^2 E_z}{du^2} + \frac{1}{u^2} E_z = 0.$$
 (9)

For u sufficiently less than unity in absolute value, (8) approaches (9). Similarly, solutions of (8) become asymptotic to those of (9) in the same region.

Two solutions of (9) are

$$\sqrt{u} \sin\left(\frac{\sqrt{3}}{2}\ln u\right)$$
 and $\sqrt{u} \cos\left(\frac{\sqrt{3}}{2}\ln u\right)$.

The zeros of these functions lie on the positive real u axis, and loci of zeros of arbitrary solutions of (9) in the u plane are radial lines.

If ju is substituted for u in (8), one obtains:

$$\frac{d^2 E_z}{d(ju)^2} + \left(1 + \frac{1}{(ju)^2}\right) E_z = 0.$$
(10)

For real ju, that is, imaginary u, the solutions of (10) will be oscillatory, with zeros lying on the imaginary u axis. The origin is a branch point and essential singularity, as in the asymptotic functions. The loci of zeros of arbitrary solutions of (10), which also qualify as zeros of solutions of (8), will lie as illustrated in Fig. 2. Since f(-u), $f(u^*)$ and f(u) all satisfy (8), all loci have counterparts in each quadrant. The search for points which satisfy all requirements on u_A and u_B for gain is fruitless, for none of the loci illustrated in Fig. 2 could pass through two such points as are shown in Fig. 1. We conclude that no gain modes are possible.

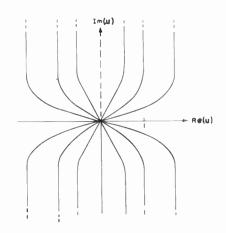


Fig. 2—Shapes of the loci of zeros of solutions to (4). Each radial line represents the locus of zeros of a set of independent solutions.

For the propagating modes which do exist, u_A and u_B lie on the real u axis, and must be spaced appropriately with respect to the ω/ω_0 point. Within the limitations of u_A and u_B can be found one infinite set of zeros lying on the positive real *u* axis, and one on the negative real u axis. These give rise to two sets of characteristic values of γ , one of which gives waves with phase velocity $> v_A$ and the other with phase velocity $< v_B$. No waves are found which have the velocity of any of the electrons. In the two lowest order modes E_z has no zeros between x_A to x_B . The next two modes, with velocities closer to electron velocities, have a zero of E_z between x_A and x_B . Such modes would be hard to detect, for most detectors (cavities, helixes) indicate an integrated value of the field over the beam. The other modes are of successively higher order, and their only importance in practice is the power which they make unavailable for output. The modes of this "ribbon" beam have velocities similar to those calculated for a cylindrical beam in Fig. 3, on the following page.

It is interesting to postulate $(dv_0/dx) \neq \omega_0$, to determine whether a large artificially produced linear velocity distribution could give amplification. For smaller velocity gradients

$$\left(\frac{dv_0}{dx} < \omega_0\right)$$
,

the form of the solutions will be similar to those discussed above, except that the characteristic values of the propagation constant will be closer to one another. If the gradient $(dv_0/dx) \ge 2\omega_0$, the solutions show only two possible values of γ , whose velocities correspond to the beam velocity at the two edges. For such high velocity gradients, the assumption of a plane wave solution is somewhat questionable. Particularly simple solutions are derived when $v_0' = 2\omega_0$, these being reducible to Bessel functions of zero order. Such solutions were examined in detail and found to produce no gain modes.

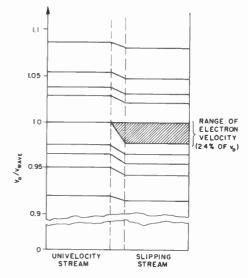


Fig. 3—Computed propagation constants of eight lowest modes of an electron beam with and without slip.

To obtain values of γ for a beam in free space, consider an arbitrary solution of (8), characterized by its locus of zeros. Its derivative dE_z/du also has zeros along approximately the same line (required by the approximate symmetry of the function near its locus of zeros). The function $(dE_z/du)/E_z$ has alternating zeros and poles along and near the locus.

Since E_z is real along its locus of zeros, the points at which the function $(dE_z/du)/E_z$ has values of ± 1 lies along a line which is very near a locus of zeros.

The same argument as before may be used to show the absence of gain modes.

The solution for the case of a beam enclosed by conducting walls at a distance is not readily visualized, and will not be discussed. It may be expected to yield the same results.

The case of an electron beam in which the (linear) velocity distribution has even symmetry about the center may be easily investigated, for the symmetry of velocity requires even or odd symmetry in the solution. For odd symmetry, the solution must be zero in the beam center, a simple boundary condition. For solutions with even symmetry, the first derivative must be zero at the center. Since the locus of zeros of dE_z/dx lies almost upon that of E_z , no new results would be expected.

Thus we have found that in the case of a "ribbon" beam, the only difference between a "slipping" beam and a beam with uniform velocity is the altering of propagation constants of the space-charge waves. This effect is small, and no attempt was made to measure it in the experiments. It is perhaps harmful in the operation of very high current traveling-wave tubes, where bandwidth is already limited by high space-charge density, for the effect is similar to that of a higher spacecharge density.

Cylindrical Beam—Computed Solutions: The more practical problem of a cylindrical, axially symmetrical beam with velocity distribution described by (4) was also attacked. All attempts at analytical solution having met with no success, the problem was presented to the Institute for Advanced Study Electronic Digital Computer.

The method chosen for preliminary analysis was to solve the appropriate form of (3),

$$\frac{d^2 E_z}{dr^2} + \frac{1}{r} \frac{dE_z}{dr} + \left(\gamma^2 + \frac{\omega^2}{c^2}\right) \\ \cdot \left(1 + \frac{\omega_0^2}{[j\omega - \gamma v_0]^2}\right) E_z = 0 \qquad (11)$$

for chosen values of γ and attempt to determine values of γ satisfying the boundary conditions. A complete mesh survey of the γ plane required excessive time, while iteration and successive approximations might not converge correctly when handled by the computer. The chosen method consisted of forward integration of (11) satisfying the boundary conditions $E'_{z} = 0$ at r = 0, to the final value of r, at the conducting boundary. The value $E(\gamma, r_{\text{boundary}})$ was called $f(\gamma)$. It is zero only for γ satisfying the boundary conditions, and since the coefficients of (11) are regular except at $\gamma = j\omega/v_0$, the function of $f(\gamma)$ will be analytic everywhere in the finite plane except on portions of the imaginary axis.¹⁶ We are thereby led to the method of counting zeros of a complex function inside a closed contour by measuring the increase in arg $f(\gamma)$ as γ traverses a chosen contour (Nyquist's criterion).

The net number of times $f(\gamma)$ encircles the origin, in the absence of singularities of the function within the contour, equals the number of zeros in the contour of γ . For the present problem, contours of γ are chosen such that all gain modes of interest would lie inside. These contours do not contain the imaginary axis of γ , where the singularities of the equation are known to lie. γ is traversed point-by-point, with a sufficiently fine mesh so that $f(\gamma)$ does not proceed more than 90 degrees between two successive points. A record is made when $f(\gamma)$ crosses the co-ordinate axes, with due regard to direction. When the contour is closed, four quantities are obtained, being the net number of times each of the four major axes was crossed in a specified direction. These should all be equal to the number of zeros in the contour. This provides a useful check of the method.

¹⁶ This quality of the solution results from a theorem of Fuchs; see, for example, E. T. Copson, "Introduction to the Theory of Functions of a Complex Variable," Oxford Univ. Press, Oxford, Eng., pp. 233–34; 1935.

In the light of the negative analytical and experimental results, the root-counting code was used only in broad sweeps of the γ plane; for practical constants it was confirmed that no roots were present. By confining the operation to purely imaginary values of γ , the propagational modes were computed. In Fig. 3 are shown some mode velocities calculated for a slipping cylindrical stream, as compared with mode velocities of an equivalent univelocity beam. The beam used in this calculation was 0.080 inch in diameter and completely filled its drift tube. Beam-center voltage was 100 volts and current 6 milliamperes.

EXPERIMENTAL INVESTIGATION

Although the analytical and computed results did not make the chance of finding gain experimentally seem optimistic, it was still felt that some gain phenomenon might arise from the complicated electron flow conditions arising in a practical tube. A demountable tube was constructed, the main features of which are illustrated in Figs. 4 and 5. The tube consists of an evacuated glass envelope, inside of which is a cylindrical brass frame. This frame acts as an aligning jig for the electron gun, the two resonant cavities, the collector, and a beam diameter measuring iris. The electron gun used throughout the investigation has an 0.050-inch diameter oxide cathode and produces a beam which can be readily confined to 0.060-inch diameter through the length of

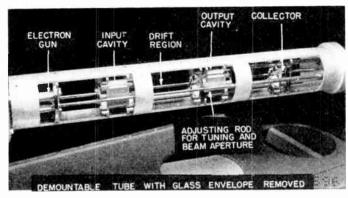


Fig. 4-Experimental demountable tube.

the tube, about fifteen inches from gun to collector. In most of the experiments, the electron beam was surrounded by a set of four molybdenum tapes, which formed a drift space of square cross section, 0.125-inch on a side. The tapes are 0.001-inch thick, and can be made to roll on rollers around the cavities. In this way cavity movement is possible without varying the drift region cross section.

Among the refinements in this demountable tube assembly are: cavities which can be tuned and matched from outside the vacuum, interchangeable collector assembly, and a diaphragm with apertures of graded diameter for measuring beam size by interception of cur-

rent on the diaphragm. Tuning and adjustment of the beam aperture is performed by means of a rod having a half-gear attached, which meshes with other gears in the tube to perform these functions. The liquid-air cooled vacuum system can maintain a pressure of 5×10^{-8} mm Hg.

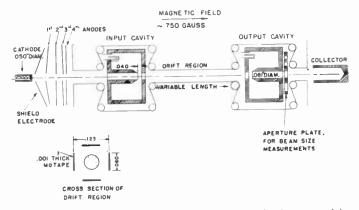


Fig. 5-Diagram of experimental demountable tube (not to scale).

The radio frequency system is sketched in Fig. 6. The loop in each resonant cavity is fed from the coaxial line through a nonmatched hermetic seal. The coaxial line is rigid, and emerges through an O-ring gland seal. Cavities are moved longitudinally by pushing and pulling on this coaxial line; coupling is adjusted by rotating the line, thereby rotating the loop inside the cavity. This has proved to be a satisfactory type of coupling for this type of work, in which little signal power is involved, and fairly large losses are tolerable.

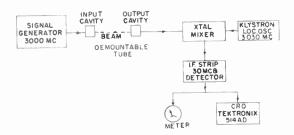


Fig. 6-Block diagram of radio frequency system.

The initial experiments were designed to determine if increasing waves could be set up in a slipping cylindrical stream of electrons. In order to insure that positive ion neutralization of the beam would not destroy the velocity difference, experiments with a continuous beam were compared with experiments in which the beam current was pulsed by application of one microsecond pulses to a gun electrode. In both these cases the measurement consisted of applying signal to the input cavity and observing the output voltage while the voltage of the entire cavity system and drift region was swept with respect to that of the gun electrodes. Typical of the observed waveforms are those shown in Fig. 7. The curves on the right differ from those on the left only in that they contain the pulse edges; it is the envelope of the curve which is of consequence. Fig. 7 illustrates that there is no difference in the space-charge waves under pulsed or continuous operation.

range of beam currents, up to four milliamperes, with similar results.

From the known beam diameter and velocity the theoretical velocity variation from beam center to edge was determined. The amount of gain produced by the

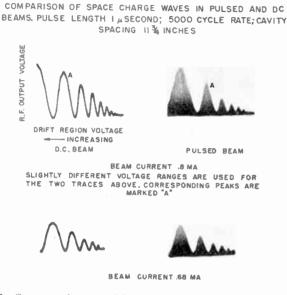


Fig. 7—Output voltage vs drift potential, for pulsed and for continuous beam. Pulse length, one microsceond; cavity spacing 113 inches; beam current 0.8 ma. Corresponding peaks marked "A."

The curves obtained by sweeping cavity and drifttube voltage, for a tube with infinitesimally short cavity gaps, are expected to be of the form $|\sin 2\pi z/\lambda_p|$, where z is the cavity spacing and λ_p the plasma wavelength of the space-charge waves. λ_p is a monotonically decreasing function of drift voltage. The curves shown have a decided decrease of amplitude at low voltages. This may be explained by the effect of transit time in the cavity gap. The curves of Fig. 7 are typical of results obtained with a two-cavity tube having no exponential gain; it is simply a low-level klystron.

To make a sensitive determination of the presence or absence of exponential gain, it is only necessary to make several such records with different cavity spacings. Any exponential gain will show up as a higher output at larger cavity spacing. Naturally, the number of maxima will increase as the spacing is increased, for each maximum is a measure of one plasma half-wavelength. If gain occurs as a result of space-charge depression of potential, the effect should be greater at low-drift voltages. This should show up as an increase in the height of the curve at the low-voltage end. In Fig. 8, showing curves taken at three-cavity spacings, the curve envelopes are all the same, indicating absence of exponential gain. The tube was operated over a wide

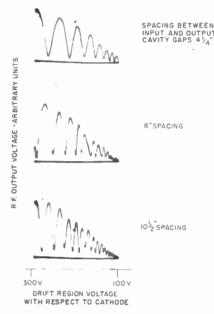


Fig. 8—Output voltage vs drift potential as a function of drift length. Beam current 0.8 am. Rf input fixed.

equivalent double-stream amplifier with half its electrons having the velocity of the beam center and the other half at the edge velocity would be, for a tube of the length used here, about 30 db, under typical voltage and current conditions. Gain in the electron beams observed, due to slipping, was definitely nonexistent.

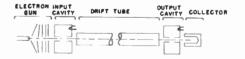


Fig. 9-Diagram of tube of the type used by Haeff.

In a second set of experiments, the drift region of the tube was altered so that it was somewhat similar to that described by Haeff¹ (see Fig. 9). The tape assembly was replaced by a metal cylinder of greater diameter which could be operated at a potential different from the cavity potential. Again, the potential of the drift region

was swept. Results were very similar to those of Figs. 7 and 8, except that the transit-time effect of the gaps could be eliminated by operating the cavities at a high, fixed potential.

It was found that with this configuration, curves such as shown in Fig. 10(b) could be obtained at very lowcollector potential (50 to 150 volts). This may be interpreted as exponential gain, since the curve rises at low voltage, superimposing the gain on the usual oscillatory space-charge wave solution. The mechanism operating here could not have been observed by Haeff¹ because it requires a lower collector voltage than he employed. The gain observed at low-collector voltage was finally traced to secondary electrons emitted at low velocity from the collector, focused back through the cavities and drift tube, reflected from the region in front of the cathode, and refocused through the tube. These secondary electrons, having energy approximately equal to that of the primary beam less the collector potential, could not return to the cathode. With carefully adjusted gun voltages and collector voltage, the primary and secondary beams interacted as a double stream to produce an output above 30 db higher than the normal spacecharge waves. The net gain of the device was never positive, but since the space-charge wave gain (klystron gain) of a tube can be greater than unity, the mechanism could produce net gain if used in a tube with better beam-to-cavity coupling.

Fig. 10—Output voltage vs drift potential, illustrating gain obtained at lowered collector voltage.

Analysis was carried out to determine if the collector voltage, drift-tube voltage, and beam current were consistent with double-stream operation. Double-stream theory gives as the condition for maximum gain $(\omega_0/\omega)(v/\Delta v) = a$ certain constant, where Δv is the difference of stream velocities. Here Δv would be approximately the collector voltage. This condition, written in terms of current and voltages, may be expressed at constant frequency as $I V^{3/2}_{\text{Dr. tube}}/V^2_{\text{collector}}$ in Fig. 11. The curves should be a family of parabolas. Anomalies in the data were due to multiple peaks in the gain maximum, which were, in turn, due to improper focusing at certain voltages.

1

The large drift tube was replaced once more by the tapes, and measurements proved that while some double-stream interaction was present, at the same voltage as before, the smaller cross section did not allow secondaries to return as readily and gain was reduced to the order of several decibels.

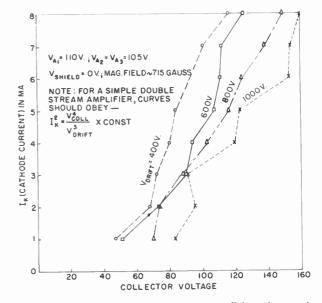


Fig. 11—Illustrating voltage and current conditions for maximum gain at lowered collector potential. Curves should be parabolic, to fit simple double-stream theory. Deviations near 3 and 5 ma are due to poor focusing.

While the experimental tube was operated in a manner which is typical of many beam-type tubes (confined flow, long-drift region, various drift-tube diameters), there are some established sources of gain which were not and could not have been observed. One of these is the growth of space-charge waves in a beam in perturbed Brillouin flow, as described by Bloom and Peter.17 This phenomenon could not have occurred because the beam was always confined by a strong magnetic field, with flux through the cathode. Another mechanism for singlestream gain, first disclosed by Field, Tien, and Watkins18,19 is the velocity-jump effect. This requires velocity changes of a certain type between the modulating and output cavities. Conditions in the measurements described never allowed any measurable gain of this type. A subsequent review of data taken by Haeff indicated that, in certain measurements, each of these phenomena could have resulted in the measured gain. There were also instances where it was possible that secondary electrons could have given double-stream gain similar to that produced by collector secondaries.

¹⁷ R. S. Peter, S. Bloom, and J. A. Ruetz, "Space-charge wave amplification along an electron beam by periodic change of the beam impedance," *RCA Rev.*, vol. 15, pp. 113–120; March, 1954. ¹⁸ L. M. Field, P. K. Tien, and D. A. Watkins, "Amplification by "Provide the provide the second sec

¹⁸ L. M. Field, P. K. Tien, and D. A. Watkins, "Amplification by acceleration and deceleration of a single-velocity stream," PROC. I.R.E., vol. 39, p. 194; February, 1951.
 ¹⁹ P. K. Tien and L. M. Field, "Space-charge waves in an ac-

¹⁹ P. K. Tien and L. M. Field, "Space-charge waves in an accelerated electron stream for amplification of microwave signals," PROC. I.R.E., vol. 40, pp. 688-695; June, 1952.

SUMMARY AND CONCLUSIONS

Analysis of a ribbon-shaped electron beam, and numerical computation of the space-charge waves on a cylindrical beam, have proved that the spatial distribution of electrons of different velocity is not sufficient to alter the criterion for gain found for a homogeneous mixture of electrons of different velocity. While the theory is admittedly limited to certain simple types of velocity distribution, these seem representative of practical situations. The space-charge wave solutions for beams with space-charge depression of potential were found to vary little from those of a univelocity beam. Measurements made on a tube similar to that described by the numerical computations yielded no evidence of gain, supporting the theoretical findings.

Under particular conditions of beam-focusing, it has been found that other mechanisms may give rise to gain: the presence of stray secondary electrons at appropriate velocity, the variations in beam diameter, or the existence of velocity changes in the interaction region.

ACKNOWLEDGMENT

The author wishes to thank Prof. J. Weber, University of Maryland, and Dr. L. Malter and many others at RCA Laboratories, whose advice and encouragement were of great aid. The numerical calculations were made possible by the co-operation of Dr. H. Goldstine of the Institute for Advanced Studies, Princeton, N. J., and were in part supported by a U.S. Army Ordnance Corps contract, held by the Institute.

RLC Lattice Transfer Functions*

A. D. FIALKOW[†] and IRVING GERST[‡]

Summary-Necessary and sufficient conditions that a real rational function be the transfer function of an RLC symmetric lattice are derived. The range of allowable values of the multiplicative factor (which determines the gain level) in the transfer function is determined and an algorithm for its calculation is given. While the zeros of the transfer function may be anywhere in the complex number plane, the poles must lie in the left-half plane or its boundary excluding the values 0 and ∞ . However, at a pole of the transfer function on the pure imaginary axis, the function must satisfy certain further properties which are derived. In virtue of these latter conditions, it is found that there are realizable transfer functions which cannot be synthesized (even up to a multiplicative factor) by means of a symmetric lattice. These realizable transfer functions, which lie outside the symmetric lattice structure, always have some pure imaginary poles which do not satisfy our special conditions for lattice realizability. However, when all the conditions are met, a synthesis procedure for obtaining a corresponding lattice is given. The results are illustrated by an example.

1. INTRODUCTION

N AN EARLIER paper [5],¹ we have obtained a complete theory for the transfer function of the general two terminal-pair network, either grounded or ungrounded, containing resistance, capacitance and selfinductance but no mutual coupling. If one considers two terminal-pair networks with these elements having a particular configuration, then the transfer function has further distinctive properties which are characteristic of that structure. Because of the widespread use of the symmetric lattice in network theory, it is of interest to determine these characteristic properties for it. This is done in the present paper for the case of the open-circuit symmetric lattice driven by a zero impedance generator. However, the necessary conditions for lattice realizability developed below hold also in the case of a resistive source or a resistive load. Also, by a modification of the synthesis method given, it is usually possible to provide for either of these terminations.

We proceed to a statement of our principal result. As usual the transfer function $A(\phi)$ is defined as the ratio of steady-state output voltage to input voltage in the domain of the complex frequency variable p. Write

$$A(p) = KN/D \tag{1}$$

where $N = p^{n} + a_{1}p^{n-1} + \cdots + a_{n}$, $D = p^{m} + b_{1}p^{m-1} + \cdots$ $+b_m$ are polynomials with real coefficients having no common factors, and K is a constant. It is known [5]that in order for A(p) to be the transfer function of a general two terminal-pair network it is necessary that the poles of A(p) be in the left-half plane² (l.h.p) or on its boundary excluding p = 0 and $p = \infty$. Poles on the imaginary axis must be simple and have a pure imaginary residue. These then are also necessary conditions on the transfer function of a symmetric lattice. However, the

^{*} Original manuscript received by the IRE, April 14, 1954; revised manuscript received, January 13, 1955. † Polytechnic Institute of Brooklyn, N.Y

Control Instrument Co., Brooklyn, N.Y.

¹ Numbers in brackets refer to the bibliography at end of paper.

² In this paper the abbreviations l.h.p. and r.h.p. will be used to denote respectively the interior of the left-half and the right-half planes. Reference to the boundary of these half-planes, whenever required, will always be made explicitly.

following further condition on the zeros and poles is also necessary in the case of a symmetric lattice:

(A) Define

$$X_h = \operatorname{Re}\left\{j^h \frac{d}{dp}\left[\frac{1}{A}\right] \cdot \frac{d^h}{dp^h}\left[\frac{1}{A}\right]\right\}, \quad h = 2, 3, \cdots.$$

Then at each pure imaginary pole of A(p) either all the values of X_h are zero or the first nonzero value of X_h occurs for h even and is negative.

As for the multiplicative constant K,

(B) it is necessary that $-K_0 \leq K \leq K_0$ where the maximum gain constant K_0 is the smallest value of κ , $\kappa > 0$, such that at least one of the equations $D - (\kappa + \epsilon)N = 0$, $D + (\kappa + \epsilon)N = 0$ has a zero in the right-half plane for all small positive ϵ . An algorithm for the practical determination of K_0 is given in the proof. Conversely, a function A(p) satisfying all of the above conditions may be realized as the transfer function of a symmetric lattice.

We find that our results are at variance in essential points with results obtained in papers by Kahal [6] and Weinberg [7]³ on the symmetric lattice. Reserving the detailed consideration of these matters for appropriate portions of the sequel, the following remarks may be made now. Kahal [6, p. 131) states that the transfer function of the general two terminal-pair network can always be realized to within a constant factor by the symmetrical lattice structure, while Weinberg [7, p. 427] states that he has realized any physically realizable RLC transfer function within a multiplicative constant by means of a symmetric lattice. Both of these statements are incorrect. (The same criticism applies to a recent abstract by Weinberg [8].)

It is found that there are physically realizable RLC transfer functions having some pure imaginary poles which cannot be realized by any symmetric lattice. As a simple counter-example, the physically realizable transfer function⁴ $A(p) = K(p^2 - 0.5p + 0.5)/(p^2 + 1)$ $\cdot(p+1)$ cannot be synthesized as a symmetric lattice for any $K \neq 0$. For applying (A) above to this function, we find that at the pole p = j of A(p), $X_2(j) = 64/K^2 > 0$. It therefore follows from (A) that this function is unrealizable by means of a symmetric lattice. Thus in so far as the transfer function is concerned, the symmetric lattice is limited as compared to the general two terminal-pair network not only in the maximum gain constant attainable (as was already noted in the RC-case [2, pp. 64-65; 4]) but also in the possible zero-pole combinations.

Coming to another matter, the lattice realization of a transfer function is often used as an intermediary in the practically desirable realization of this transfer function as a grounded network. We do not consider this conversion problem since it appears more natural and more

³ This paper is based on a chapter of [9] and was published on the recommendation of the L.R.E. Professional Group on Circuit Theory, 4 Cf. [5, pp. 125–126] where this function with K = 2 is synthe-

general to synthesize the transfer function directly by means of a grounded network whenever this is theoretically possible as was done in [5]. Further, it does not seem to be generally realized that in order for the conversion process to succeed, it is necessary, at the very least, that the transfer function satisfy the conditions for a grounded network [5, p. 118] e.g., the zeros cannot be positive real. It is thus apparent that there are cases in which the conversion of the lattice into a grounded structure is impossible.

2. The Basic Theorem

Let A(p) be given by (1). Without loss of generality, (by interchanging two terminals if necessary) we may assume K > 0. The following theorem enables us to characterize A(p) completely.

Theorem 1: Necessary and sufficient conditions for A(p) = KN/D to be the transfer function of a symmetric lattice are that the equations $D - \kappa N = 0$, $D + \kappa N = 0$ have no roots in the r.h.p. for all $0 < \kappa \leq K$.

Proof: (a) Necessity. Suppose A(p) as given by (1) is the transfer function of a symmetric lattice whose constituent impedances are Z_a and Z_b . Then we have

$$A(p) = \frac{KN}{D} = \frac{Z_b - Z_a}{Z_b + Z_a}.$$
 (2)

If we replace Z_a and Z_b in the lattice by new impedances Z_a' , Z_b' where

$$Z_{a'} = \left(\frac{1+\lambda}{2}\right) Z_{a} + \left(\frac{1-\lambda}{2}\right) Z_{b}$$
$$Z_{b'} = \left(\frac{1-\lambda}{2}\right) Z_{a} + \left(\frac{1+\lambda}{2}\right) Z_{b},$$

with $0 < \lambda \leq 1$, we get a new transfer function $A_1(p)$ such that

$$A_1(p) = \frac{Z_b' - Z_a'}{Z_b' + Z_a'} = \frac{\lambda(Z_b - Z_a)}{Z_b + Z_a} = \lambda K \frac{N}{D} \cdot$$
(3)

Write $\kappa = \lambda K$ so that $0 < \kappa \le K$. Then it follows from (3) that

$$\frac{D - \kappa N}{D + \kappa N} = \frac{Z_a'}{Z_b'}$$
 (4)

Since the polynomials $D - \kappa N$ and $D + \kappa N$ can have no common zeros, we conclude from (4) that their zeros must lie in the l.h.p. or on its boundary.

(b) Sufficiency. Suppose now that both $D - \kappa N = 0$ and $D + \kappa N = 0$ have no zeros in the r.h.p. for $0 < \kappa \le K$. We shall find constituent impedances, Z_a and Z_b of a lattice having KN/D as its transfer function. First we prove that the rational function

$$\psi(p) = \frac{D - KN}{D + KN} \tag{5}$$

cannot assume a negative real value in the r.h.p. For suppose a value $p = p_1$ exists with Re $\lfloor p_1 \rfloor > 0$ such that

⁴ Cf. [5, pp. 125–126] where this function with K = 2 is synthesized as a grounded, two terminal-pair network. Using an alternative technique [5, p. 125] which is valid for sufficiently small K, this function with K = 2/3 may be synthesized as a two terminal-pair network containing 8 elements.

(6)

Re
$$\left[\psi(p_1)\right] < 0$$
, Im $\left[\psi(p_1)\right] = 0$.

Now⁵

Re
$$[\psi(p_1)] = \frac{|D(p_1)|^2 - K^2 |N(p_1)|^2}{|D(p_1) + KN(p_1)|^2},$$
 (7)

$$\operatorname{Im}\left[\psi(p_{1})\right] = \frac{K}{j} \cdot \frac{\left[\overline{N}(p_{1})D(p_{1}) - N(p_{1})\overline{D}(p_{1})\right]}{\left|D(p_{1}) + KN(p_{1})\right|^{2}} \cdot (8)$$

Since $D(p_1) \neq 0$, it follows from (6) and (8) that $N(p_1) / D(p_1) = \overline{N}(p_1) / \overline{D}(p_1)$, which shows that $N(p_1) / D(p_1)$ is real. Hence from (6) and (7)

$$1 - K^2 \left[\frac{N(p_1)}{D(p_1)} \right]^2 < 0.$$

But then for $\kappa = |D(p_1)/N(p_1)|$, the inequalities $0 < \kappa < K$ hold, but we have $D^2(p_1) - \kappa^2 N^2(p_1) = 0$ which contradicts the first sentence of this paragraph. This proves that $\psi(p)$ cannot be negative real in the r.h.p.

We now make use of a theorem which we state here but whose proof is deferred until Appendix I.

Theorem 2: Let F(p) be a real rational function which does not assume any negative real values in the r.h.p. and let Z(p) be a positive real rational function such that $\operatorname{Re}[ZF] \geq 0$ on $p = j\omega$. Then ZF is a positive real function.

In our application of this theorem we take F as ψ defined by (5) and we form a particular Z as follows: Let the imaginary part⁶ of ψ on $p=j\omega$ be denoted by $V(\omega)$. Since $V(\omega)$ is an odd function of ω , it may be written in the form

$$V(\omega) = \epsilon \omega (\delta_1^2 - \omega^2) \cdot \cdot \cdot (\delta_r^2 - \omega^2) V'(\omega^2),$$

where $0, \pm \delta_1, \pm \delta_2, \cdots, \pm \delta_r$ are all the real zeros and poles of odd multiplicity of $V(\omega)$, arranged so that $0 < \delta_1^2 < \delta_2^2 < \cdots < \delta_r^2$. Then ϵ may be chosen as either +1 or -1 such that $V'(\omega^2) \ge 0$ for all ω . Depending on whether $\epsilon = \pm 1$ or -1, take Z respectively as $(p^2 + \delta_1^2)$ $\cdot (p^2 + \delta_3^2) \cdots / p(p^2 + \delta_2^2) \cdots$ or the reciprocal of this function. One may readily verify that Re $[Z\psi] \ge 0$ when $p = j\omega$ so that $Z\psi$ is a positive real function by Theorem 2. If the impedances of the lattice are now chosen as $Z_a = Z\psi, Z_b = Z$ then according to (2) and (5), the required transfer function KN/D is obtained. This completes the proof of Theorem 1.

The reactance Z which appears above was first defined by Kahal [6]. It is used here to wind up the proof of Theorem 1 in economical fashion. However its use may result in complicating the network realization by introducing certain redundant factors in Z_a . It may be shown (but we omit the proof here) that in general we may find Z_a and Z_b containing no redundant factors and neither one restricted to be a reactance such that $\psi = Z_a/Z_b$. By this means it is frequently possible to provide for a resistive source or a resistive load.

3. The Zeros and Poles of Lattice Transfer Functions

All the properties characterizing the transfer function of the symmetric lattice which are listed in the introduction may be derived from Theorem 1. However, as some of these have already been established for general two terminal-pair networks in [5], we limit ourselves to deriving the remaining ones, (A) and (B) of the introduction, which apply specifically to the symmetric lattice. In this section, we prove (A) reserving the proof of (B)for the following section.

It follows from Theorem 1 that if A(p) = KN/D is to be the transfer function of a lattice for some K (i.e. up to a multiplicative constant) then for all small $\kappa, \kappa > 0$, no zero of either $D - \kappa N$ or $D + \kappa N$ can be in the r.h.p. If D is properly Hurwitz, then this follows automatically by continuity considerations; for any zero of D in the l.h.p. will vary into a zero of $D \pm \kappa N$ which is also in the l.h.p. if κ is small enough. However, if D has zeros on the imaginary axis a further investigation is required. This case is not considered by Weinberg [7], leading him to the error mentioned in the introduction.

Coming to the proof of (A), we consider a pure imaginary zero of D, $p = j\omega_c$, $\omega_0 \neq 0$. Consider the equation $D(p) - \kappa N(p) = 0$ which defines p implicitly as a function of κ . Since $p = j\omega_0$ is a simple root of this equation when $\kappa = 0$, we may expand p as a power series in κ for sufficient small κ , of the form

$$\phi = j\omega_0 + \alpha_1\kappa + \alpha_2\kappa^2 + \cdots . \tag{9}$$

The corresponding root of $D(p) + \kappa N(p) = 0$ has an expansion which is obtained from (9) by replacing κ by $-\kappa$. Hence we require that for all small real κ the right member of (9) have a nonpositive real part. Necessary and sufficient for this to occur are that either⁷

- (i) Re $(\alpha_h) = 0$ for all h.
- (ii) If α_h is the first coefficient in (9) whose real part is not zero, then h must be even and Re $(\alpha_h) < 0$.

It will be shown in Appendix III that these conditions (i), (ii) on the coefficients of (9) are equivalent to condition (A) of the Introduction. (See also the last sentence of the next section.)

In drawing the erroneous conclusion that A(p) may always be realized by a lattice for sufficiently small K, Kahal [6, p. 132] incorrectly assumes that Im [A(p)] in the neighborhood of $p = j\omega_0$ may always be approximated by the imaginary part of the first term in the Laurent expansion of A(p). This error is equivalent to the supposition that the terms $\alpha_2\kappa^2 + \alpha_3\kappa^3 + \cdots$ of (9) may be ignored in our present discussion.

4. THE MAXIMUM GAIN CONSTANT

In this section, it is assumed that D and N meet the conditions for realizability with small K. We now consider the maximum gain constant K_0 which may be

⁶ A bar denotes the conjugate complex number.

⁶ We assume that $V(\omega) \neq 0$. The case in which $V(\omega) = 0$ is considered in Appendix II.

⁷ It may be shown that (i) obtains if and only if A(p) is an even function of p, i.e. we are in the LC-case.

realized. This question did not arise in previous RLC lattice synthesis techniques which realize the transfer function up to a multiplicative constant.⁸ While it simplifies the problem, this commonly used but artificial restriction sidesteps a basic question; for with transfer functions, unlike impedances, the level of response is an intrinsic quantity if transformers are excluded. An amplifier to boost the level may be unnecessary practically and in any case is a device which is alien to passive network theory.

According to Theorem 1, K_0 must have the property that $D - \kappa N$ and $D + \kappa N$ have no zeros in the r.h.p. for $0 < \kappa \leq K_0$, while at least one of $D - (K_0 + \epsilon)N$, $D + (K_0 + \epsilon)N$ has a zero in the r.h.p. for any ϵ sufficiently small and positive. This description of K_0 immediately suggests a way of determining it. For in order to pass from l.h.p. to r.h.p., the zeros of $D \pm \kappa N$ as κ increases positively, must first cross the imaginary axis. Hence K_0 must be one of the positive values of κ for which $D \pm \kappa N = 0$ has some pute imaginary roots.

We assume now that we are not in the LC-case,⁹ i.e., N/D is not an even function of p. If and only if this is so, there are just a finite number of values κ for which $D \pm \kappa N = 0$ has pure imaginary roots. If m = n in (1), then $p = \infty$ is a root of $D - \kappa N = 0$ corresponding to $\kappa = 1$. The values of κ which correspond to finite pure imaginary roots of $D \pm \kappa N = 0$ are obtained by solving the simultaneous system

$$D_{\theta} \pm \kappa N_{\theta} = 0$$

$$D_{0} \pm \kappa N_{0} = 0,$$
(10)

where N_{ϵ} , D_{ϵ} and N_0 , D_0 are respectively the even and odd power terms of N and D. One root of (10) is always p = 0, which corresponds to the value¹⁰ $\kappa = |b_m/a_n|$. From [5] we know that $K_0 \leq \operatorname{Min}(1, |b_m/a_n|)$ if m = n and $K_0 \leq |b_m/a_n|$ if m > n. Let $0 < \kappa_1 < \kappa_2 < \cdots < \kappa_s$ be those solutions of the system (10) (if any such exist) for which $\kappa_s < \operatorname{Min}(1, |b_m/a_n|)$ if m = n and $\kappa_s < |b_m/a_n|$ if m > n. Starting with κ_1 and proceeding to each κ_i ($i = 1, 2, \cdots, s$) in turn, we must test to see whether any zeros of $D \pm (\kappa_i + \epsilon)N$ are in the r.h.p. for small positive ϵ . If κ_M is the first κ_i for which this occurs, then $K_0 = \kappa_M$. If there are no κ_i with this property then $K_0 = \operatorname{Min}(1, |b_m/a_n|)$ if m = n and $K_0 = |b_m/a_n|$ if n < m.

To carry out the above test we need examine only the variation of the pure imaginary zeros of $D \pm \kappa_i N$ when κ_i is replaced by $\kappa_i + \epsilon$. For example, let $p = j\omega_a$ be a zero of $D - \kappa_a N$ where κ_a is one of the above κ_i , and where for $0 < \kappa < \kappa_a$, all the zeros of $D \pm \kappa N$ have been in the l.h.p. (or its boundary). It follows using Lemma 1(*ii*) of

Appendix I (applied to ψ of (5) with $K = \kappa_a$) that $p = j\omega_a$ can be either a simple zero or a double zero of $D - \kappa_a N$. Using (vi) of the same lemma it can be proved that if $p = j\omega_a$ is a double zero of $D \pm \kappa_a N$, then κ_a must be κ_{M} defined above.

Now consider the remaining case in which $p = j\omega_a$ is a simple zero of $D - \kappa_a N$. Then in a procedure similar to that used in the preceding section, we may expand the solution p of $D(p) - \kappa N(p) = 0$ in the neighborhood of $p = j\omega_a$ as a Taylor series in $\kappa - \kappa_a$ of the form

$$p = j\omega_a + \alpha_1(\kappa - \kappa_a) + \alpha_2(\kappa - \kappa_a)^2 + \cdots$$
 (11)

Recalling that p is in the l.h.p. for $\kappa - \kappa_a$ small and negative, it follows that p will be in the r.h.p. for $\kappa - \kappa_a$ small and positive if and only if the first coefficient α_b whose real part is not zero has h odd.¹¹ The results of Appendix III may now be applied to express this condition directly in terms of the transfer function. It follows from (13) of this Appendix and the argument preceding (13) there, that if we define a sequence $W_h(h=1, 2, \cdots)$ where

$$W_{h} = \operatorname{Re} \left\{ \frac{d^{h}}{dp^{h}} \left[\frac{1}{A} \right] \right\}, \quad h \text{ odd};$$
$$W_{h} = \operatorname{Im} \left\{ \frac{d^{h}}{dp^{h}} \left[\frac{1}{A} \right] \right\}, \quad h \text{ even},$$

then at least one root of $D - (\kappa_a + \epsilon)N = 0$ will be in the r.h.p. if and only if the first nonzero value of $W_h(j\omega_a)$ occurs for h odd. All of the above results apply equally well if $p = j\omega_a$ is a zero of $D + \kappa_a N$.

The preceding conditions for determining κ_M when $p = j\omega_a$ is a simple zero of $D \pm \kappa_a N$ are stated directly in terms of the transfer function. We now derive an alternate set of conditions in this case which are given indirectly, but whose use requires a minimum of computation. Let the series

$$\kappa = \kappa_a + \beta_1(p - j\omega_a) + \beta_2(p - j\omega_a)^2 + \cdots$$

be the inverse of (11), i.e., the expansion of $\kappa = D/N$ at $p = j\omega_a$. Then, when $p = j\omega$, we have

$$\operatorname{Im}\left[\frac{D}{N}\right] = \operatorname{Re}\left(\beta_{1}\right)(\omega - \omega_{a}) - \operatorname{Im}\left(\beta_{2}\right)(\omega - \omega_{a})^{2} + \cdots$$

Since

$$\beta_i = \frac{1}{i!} \left[\frac{d^i \kappa}{d p^i} \right]_{\kappa = \kappa_i}$$

(13) of Appendix III together with the above italicized conditions on the α_h may be used to show that if $\kappa_a \neq \kappa_M$ then ω_a is an even order zero of Im [D/N]. Since

$$\operatorname{Im}\left[\frac{D}{N}\right]_{p=j\omega} = \frac{1}{i} \left[\frac{N_e D_0 - N_0 D_e}{|N|^2}\right]_{p=j\omega}$$

¹¹ The existence of a coefficient α_q with Re $(\alpha_q) \neq 0$ is assured here. For if Re $(\alpha_i) = 0$ for all *i*, then A(p) is again an LC-transfer function which we have excluded from this discussion.

^{*} The maximum gain constant for RC lattice networks has been determined (Cf. [1; 3, p. 58]). On the other hand Weinberg's generalization [7, §3] of [1] for RLC lattice networks yields a constant which is not the true maximum gain constant K_0 . Thus, for example, if $A(p) = K/(p^2 + 0.1p + 1)$, then $K_0 = 1$, but the maximum value possible by Weinberg's method of §3 is K = 1/800.

⁹ For the determination of K_0 in the LC-case, see Appendix II. ¹⁰ We assume here that a_n is different than zero. If $a_n=0$, the ratio b_m/a_n can be interpreted as ∞ in our results.

it follows that for $j\omega_a$ a simple zero of $D \pm \kappa_a N$, p of (11) will be in the r.h.p. for $\kappa - \kappa_a$ small and positive if and only if $j\omega_a$ is an odd order zero of the polynomial $N_e D_0 - N_0 D_e$.

Summarizing the preceding discussion we have the following procedure for determining K_0 : (a) Solve the system (10) for all pairs ($p = j\omega_i$, $\kappa = \kappa_i$), ω_i real and $\neq 0$, $\kappa_i > 0$. By eliminating κ in (10), the values $p = j\omega_i$ may be determined first as the pure imaginary zeros of the polynomial $Q = N_e D_0 - N_0 D_e$ and the κ_i obtained subsequently by substituting in (10). (b) Denote by κ'_i those values of κ_i for which either $p = j\omega_i$ is a double root of $D \pm \kappa N = 0$ or $p = j\omega_i$ is an odd order zero of Q. (c) Then $K_0 = \text{Min}$ [1, $|b_m/a_n|$, κ'_i] if n = m or $K_0 = \text{Min}$ [$|b_m/a_n|$, κ'_i] if n < m.

By employing an argument similar to the one just used, we can also show that condition (A) of the Introduction which was proved in the preceding section, may be replaced by the following condition which is simpler to apply computationally: Let $p = j\omega_0$ be a pole of N/Dwith residue $j\gamma$, γ real, $\neq 0$. Then for realizability we must have $[N_e(j\omega)D_0(j\omega) - N_0(j\omega)D_e(j\omega)]/j = a(\omega - \omega_0)^r$ $+ \cdots, a \neq 0$ with r even and $a\gamma < 0$.

5. EXAMPLE

The following example will serve to illustrate the foregoing procedure. Consider the realizable transfer function

$$A(p) = \frac{KN}{D} = K\left(p^3 + \frac{5}{3}p^2 + \frac{5}{3}p + 1\right) \\ \left/ \left(p^4 + \frac{5}{4}p^3 + \frac{11}{4}p^2 + \frac{7}{4}p + \frac{5}{4}\right).$$

We first determine its maximum gain constant K_0 , when it is synthesized as a symmetric lattice. The final criterion of the previous section for determining K_0 will be applied. Since here

$$Q = N_e D_0 - N_0 D_e = -p(p^2 + \frac{1}{3})(p^2 + 1)^2,$$

we have the pure imaginary zeros $p = \pm j$ and $p = \pm j\sqrt{3}/3$ which may be verified to be simple zeros of $D - \kappa N$ for $\kappa = 3/4$, $\kappa = 1$ respectively. As just $p = \pm j\sqrt{3}/3$ are odd order zeros of $Q(\text{for } p \neq 0)$, it follows that the only κ' is $\kappa' = 1$. Hence, since m = 4 > 3 = n, $b_m = 5/4$, $a_n = 1$, we have $K_0 = \text{Min } [5/4, 1] = 1$.

The synthesis of $A(\phi)$ when K=1 may now be accomplished by the method following Theorem 2. For the function ψ given by (5) is here

$$\psi = \left(p^4 + \frac{1}{4}p^3 + \frac{13}{12}p^2 + \frac{1}{12}p + \frac{1}{4}\right)$$

$$/\left(p^4 + \frac{9}{4}p^3 + \frac{53}{12}p^2 + \frac{41}{12}p + \frac{9}{4}\right) = N_1/D_1.$$

Then we find that $V = Im \left[\psi(j\omega) \right]$ is

$$V = \frac{-2\omega(\frac{1}{3}-\omega^2)(1-\omega^2)^2}{|D_1(j\omega)|^2} = \epsilon\omega(\frac{1}{3}-\omega^2)V'(\omega^2),$$

A pril

$$Z_b = Z = \frac{p}{p^2 + \frac{1}{3}};$$

$$Z_a = Z\psi = \frac{p(p^2 + \frac{1}{4}p + \frac{3}{4})}{p^4 + \frac{9}{4}p^3 + \frac{53}{12}p^2 + \frac{41}{12}p + \frac{9}{4}}.$$

APPENDIX I

Proof of Theorem 2

We require two preliminary lemmas for the proof of Theorem 2.

Lemma 1: Let F(p) be a real rational function which does not assume any negative real value in the r.h.p. Further let $U(\omega)$ and $V(\omega)$ denote respectively the real and imaginary parts of F on the imaginary axis $p = j\omega$. Then F, U and V enjoy the following properties:

- (i) F is analytic in the r.h.p. and has no zeros there.
- (ii) On the imaginary axis $p = j\omega$, F can have at most second order zeros and poles.

The remaining properties all concern the behavior of F, U and V at a point $p = p_0 = j\omega_0$ on the imaginary axis, the indicated expansions being the Laurent expansions at this point.

- (*iii*) If $F = a + \cdots$, $V = a_2(\omega \omega_0)^{2q+1} + \cdots$, where $aa_2 \neq 0, q \ge 0$, then a > 0.
- (iv) If $F = a(p p_0) + \cdots$, $V = a_2(\omega \omega_0)^{2q+1} + \cdots$, where $aa_2 \neq 0, q \ge 0$, then $a_2 > 0$.
- (*iv*)' If $F = a/(p p_0) + \cdots$, $V = a_2(\omega \omega_0)^{2q-1} + \cdots$, where $aa_2 \neq 0$, $q \ge 0$, then $a_2 < 0$.
- (v) If $F = a(p p_0) + \cdots$, $V = a_2(\omega \omega_0)^{2q} + \cdots$, where $aa_2 \neq 0$, $q \ge 1$, then $U = a_1(\omega - \omega_0) + \cdots$ with $a_1a_2 < 0$.
- (v)' If $F = a/(p-p_0) + \cdots$, $V = a_2(\omega \omega_0)^{2q} + \cdots$, where $aa_2 \neq 0$, $q \ge 0$, then $U = a_1/(\omega - \omega_0) + \cdots$, with $a_1a_2 > 0$.
- (vi) If $F = a(p-p_0)^2 + \cdots$, where $a \neq 0$ and $V(\omega) \neq 0$, then a > 0 and $V = a_2(\omega - \omega_0)^{2q+1} + \cdots$, with $a_2 > 0, q \ge 1$.
- (vi)' If $F = a/(p-p_0)^2 + \cdots$, where $a \neq 0$ and $V(\omega) \neq 0$. then a > 0 and $V = a_2(\omega - \omega_0)^{2q-1} + \cdots$, with $a_2 < 0, q \ge 0$.

Remarks: This same subject has already been studied by Kahal [6, Appendix I]. In his discussion, (i) is incorporated as part of the definition of F, (ii) is stated and proved, (iii) and part of (vi) are stated without complete proof. In place of (iv) and (v), he attempts to prove a result [6, p. 132] which we may paraphrase as follows: "If $F = a(p - p_0) + \cdots$, $V = a_2(\omega - \omega_0)^q + \cdots$, where $aa_2 \neq 0$, then either q = 1 and $a_2 > 0$, or else q is even." The latter conclusion is false as may be seen by taking F equal to the product Z_1Z_2 where Z_1 is a reactance function such that $Z_1(j\omega) = jX_1(\omega), X_1(\omega_0) = 0$, and Z_2 is an impedance function such that $Z_2(j\omega) = R_2(\omega)$ $+jX_2(\omega), R_2(\omega_0) = 0, X_2(\omega_0) \neq 0$. Then $V = R_2(\omega)X_1(\omega)$ has an odd order zero of at least third order at $\omega = \omega_0$. For example, let $Z_1 = (p^2+1)/p, Z_2 = (2p^2+p+1)/(p^2+p+2)$

Ô.

and consider p = j. This mistake vitiates Kahal's proof for the synthesis of a lattice when $F = \psi(p)$ defined by (5) has simple zeros or poles on the boundary.

Proof: It suffices to prove the above properties as regards the zeros of F. The statements about the poles then follow by considering 1/F which again assumes no negative real value in the r.h.p. Our proof will depend upon the following well-known mapping property of analytic functions:

(M) Let z = f(p) be analytic at $p = p_0$, and have the expansion

$$z = z_0 + c(p - p_0)^t + \cdots, \qquad c \neq 0, t \ge 1$$

there. Then the map of the sector $S: \theta_1 \leq \operatorname{arc} (p-p_0) \leq \theta_2$ for p in the neighborhood of p_0 , will completely cover a curvilinear sector $S': \phi_1 \leq \operatorname{arc} (z-z_0) \leq \phi_2$ for $|z-z_0|$ sufficiently small. If α and β designate the rays $\operatorname{arc} a = \theta_1$, $\operatorname{arc} \beta = \theta_2$ and if α' and β' are respectively the maps of α and β , then ϕ_1 and ϕ_2 are the variable angles given by $\phi_1 = \operatorname{arc} \alpha', \phi_2 = \operatorname{arc} \beta'$. Furthermore, the angle between β' and α' at $z = z_0$ is $t(\theta_2 - \theta_1)$.

We now proceed to prove the various statements of the lemma seriatim. If now F were zero at $p = p_i$ in the r.h.p. then by (M) with f(p) = F(p), $\theta_1 = 0$, $\theta_2 = 2\pi$, the map of a neighborhood of p_1 would cover a neighborhood of the origin in the z-plane. Thus for some point in the r.h.p. F would be negative real which is a contradiction. This proves (i).

In proving the remaining properties we shall apply (M) with f = F and with S as a semi-circular neighborhood $-\pi/2 \leq \arctan(p-p_0) \leq \pi/2$, so that α and β are respectively the lower and upper halves of the imaginary axis. Suppose now contrary to (*ii*) that F has a zero of order t, $t \geq 3$ at $p = j\omega_0$. Then the curvilinear sector S' will have an angle of $t\pi \geq 3\pi$ at z = 0, and thus surely contains negative real points. This contradiction proves (*ii*).

To prove (*iii*) suppose a < 0. Then in view of the expansion of V one of α' and β' will be in the upper half zplane and the other in the lower half z-plane. Thus S' certainly contains a part of the negative real axis which is a contradiction.

Similarly if a_2 were negative in (iv), then α' would be in the upper half-plane and β' in the lower half-plane, so that S' again would include negative real points. This contradiction proves (iv).

To prove (r) suppose that $a_1a_2>0$. Then it follows from the expansions of U and V that either α' is in the second quadrant and β' is in the first quadrant; or α' is in the fourth quadrant and β' is in the third quadrant. Either of these choices results in S' containing a negative real segment which is a contradiction.

Finally suppose in (vi) that $V = a_2'(\omega - \omega_0)^{2q} + \cdots$, $a_2' \neq 0, q \ge 1$. Then α' and β' would both be in the upper half-plane or the lower half-plane (depending on the sign of a_2'). Since t in (M) is 2 here, the angle of S' is 2π . Thus S' must include a segment of the negative real axis. Hence ω_0 cannot be an even order zero of V and we have $V = a_2(\omega - \omega_0)^{2q+1} + \cdots$, $a_2 \neq 0, q \ge 1$, and a is real. By using the argument of (iv), a_2 must be positive. If now a < 0, then $U = -a(\omega - \omega_0)^2 + \cdots$, and it follows that α' is in the fourth quadrant while β' is in the first quadrant. This again leads to a contradiction and the proof of the lemma is complete.

Lemma 2: Let G(p) be a real rational function such that Re $[G(p)] \ge 0$ on $p = j\omega$. Then at a pole $p = p_0 = j\omega_0$ of G(p) of the first or second order respectively the following expansions hold.

(i)
$$G(p) = c/(p-p_0) + \cdots$$
, c real;
(ii) $G(p) = (c+dj)/(p-p_0)^2 + \cdots$, $c \le 0$, d real.

Proof: Suppose $G(p) = (c+dj)/(p-p_0)^q + \cdots$, q=1, 2, where c and d are real. Then for $p=j\omega$

$$\operatorname{Re}\left[G(p)\right] = \frac{\operatorname{Re}\left[j^{-q}(c+dj)\right]}{(\omega-\omega_0)^{q}} + \cdots$$

If q=1 then d=0, otherwise the real part will assume both positive and negative values in the neighborhood of ω_0 . If q=2, Re $[j^{-2}(c+dj)] = -c \ge 0$, to have Re $[G(p)] \ge 0$. This establishes Lemma 2.

We now consider the proof of Theorem 2. Let u, Uand v, V denote respectively the real and imaginary parts of Z and F for $p = j\omega$. Since Re $[ZF] \ge 0$ on $p = j\omega$ and ZF is analytic in the r.h.p. by Lemma 1 (i), we must show that on $p = j\omega$, ZF has at most poles of first order with positive residues. By Lemma 1 (ii) and the fact that Z is positive real, the orders of ZF, Z and F at a possible singularity $p = p_0 = j\omega_0$ of ZF may be listed as follows:

	ZF	Z	F
(α_1)	-1	+ 1	- 2
(α_2)	— 1	0	- 1
(α_3)	- 1	— 1	0
(β_1)	- 2	0	-2
(β_2)	-2	— 1	- 1
(γ)	- 3	— 1	-2

To establish Theorem 2, we will show that cases β_1 , β_2 , γ are impossible while in cases α_1 , α_2 , α_3 , the residue of the pole of ZF is positive.

Case (α_1) : Here

$$Z = b(p - p_0) + \cdots, b > 0;$$
 $F = a/(p - p_0)^2 + \cdots, a > 0$

by Lemma 1 (vi)' and the result is immediate.

Case (α_2) : Write

$$Z = b_1 + b_2 j + \cdots, \ b_1 \ge 0, \ b_2 \text{ real}, \ b_1^2 + b_2^2 \ne 0;$$

$$F = \frac{a_2 + a_1 j}{p - p_0} + \cdots, \ a_2 \ge 0, \ a_1 \text{ real}, \ a_1^2 + a_2^2 \ne 0,$$

where Lemma 1 (iv)' has been used to establish the sign of a_2 . Then

$$ZF = \frac{(a_2b_1 - a_1b_2) + (a_1b_1 + a_2b_2)j}{p - p_0} + \cdots$$

Hence by Lemma 2 (i) with G = ZF,

0

$$a_1b_1 + a_2b_2 = 0. (12)$$

If $b_1a_2 \neq 0$ then we may use (12) to write the residue

$$a_2b_1 - a_1b_2 = a_2b_1 + \frac{a_1^2b_1}{a_2}$$

which shows the residue at $p = p_0$ is positive. If $b_1 = 0$ then by (12) $a_2 = 0$ and conversely. But then $a_1b_2 \neq 0$. Now $\operatorname{Re}_{p=j\omega}[ZF] = uU - vV$. We have $u = b_3(\omega - \omega_0)^{2k}$ $+ \cdots, b_3 > 0, k \ge 1, V = a_3(\omega - \omega_0)^s + \cdots, a_3 \neq 0, s \ge 0$. Hence

$$\operatorname{Re}_{(p=j\omega)}[ZF] = a_1b_3(\omega - \omega_0)^{2k-1} + \cdots \\ - a_3b_2(\omega - \omega_0)^s + \cdots.$$

If s is odd then Re $[ZF] \ge 0$ requires that s = 2k - 1 and $a_1b_3 - a_3b_2 = 0$. But then by Lemma 1 $(iv)' a_3 < 0$, and the residue $-a_1b_2 = -a_3b_2^2/b_3 > 0$. If s is even then s < 2k - 1 and we must have $-a_3b_2 > 0$. By Lemma 1 $(v)', a_1a_3 > 0$. Hence $-a_1b_2 > 0$. Thus in every case ZF has a positive residue.

Case
$$(\alpha_3)$$
: Let
 $Z = b/(p - p_0) + \cdots, b > 0; \quad F = a_1 + a_2j + \cdots$

Then

$$ZF = (a_1b + a_2bj)/(p - p_0) + \cdots,$$

and as in the preceding case we conclude that $a_2b = 0$, which implies that $a_2 = 0$. If V has an odd order zero at $\omega = \omega_0$ then by Lemma 1 (*iii*), $a_1 > 0$ and the residue $a_1b > 0$. If $V = a_3(\omega - \omega_0)^{2q} + \cdots$, $a_3 \neq 0$, $q \ge 0$ and writing $u = b_1(\omega - \omega_0)^{2k} + \cdots$, $b_1 > 0$, $k \ge 0$ then

$$\operatorname{Re}_{(p=j\omega)}[ZF] = a_{1}b_{1}(\omega - \omega_{0})^{2k} + \cdots + a_{3}b(\omega - \omega_{0})^{2q-1} + \cdots$$

We must have 2k < 2q-1 and $a_1b_1 > 0$ otherwise Re $[ZF] \geqq 0$. Thus $a_1 > 0$ and again the residue $a_1b > 0$.

Case (β_1) : We can write, using Lemma 1(vi)'

$$Z = b_1 + b_2 j + \cdots, \ b_1 \ge 0, \ b_2 \text{ real}, \ b_1^2 + b_2^2 \ne 0;$$
$$F = \frac{a}{(p - p_0)^2} + \cdots, \ a > 0.$$

Then

$$ZF = (ab_1 + ab_2j)/(p - p_0)^2 + \cdots,$$

and the use of Lemma 2(*ii*) leads to $ab_1 \leq 0$. This implies $b_1 = 0, b_2 \neq 0$. By Lemma 1(*vi*)' we have $V = a_2(\omega - \omega_0)^{2q-1} + \cdots$, $q \geq 0$, $a_2 < 0$. If $u = b_3(\omega - \omega_0)^{2k} + \cdots$, $b_3 > 0$, $k \geq 1$ then

$$\operatorname{Re}_{(p=j\omega)} \left[ZF \right] = - ab_3(\omega - \omega_0)^{2k-2} + \cdots \\ - a_2b_2(\omega - \omega_0)^{2q-1} + \cdots .$$

We must have 2k-2 < 2q-1 and $-ab_3 > 0$. Thus case (β_1) is impossible

Case (β_2) : Here, using Lemma 1(iv)'

$$Z = \frac{b}{p - p_0} + \cdots, \ b > 0;$$

$$F = \frac{a_2 + a_1 j}{p - p_0} + \cdots, \ a_2 \ge 0, \ a_1 \text{ real}, \ a_1^2 + a_2^2 \neq 0;$$

$$ZF = \frac{ba_2 + ba_1 j}{(p - p_0)^2} + \cdots.$$

As in the preceding case, $ba_2 \leq 0$ which implies $a_2 = 0$, $a_1 \neq 0$. Let

$$V = a_3(\omega - \omega_0)^s + \cdots, \quad a_3 \neq 0, \ s \ge 0;$$
$$u = b_1(\omega - \omega_0)^{2k} + \cdots, \quad b_1 > 0, \ k \ge 0.$$

Then

$$\operatorname{Re}_{(p=j\omega)} \left[ZF \right] = a_1 b_1 (\omega - \omega_0)^{2k-1} + \cdots + a_3 b (\omega - \omega_0)^{s-1} + \cdots .$$

If s is odd then s-1 < 2k-1 and $a_3b > 0$. This is impossible, for by Lemma 1(iv)', $a_3 < 0$. If s is even, then we must have s-1 = 2k-1 and $a_1b_1+a_3b = 0$. Again this is impossible, for by Lemma 1(v)', $a_1a_3 > 0$.

Case
$$(\gamma)$$
: By Lemma 1 $(vi)'$, $Z = b/(p - p_0) + \cdots$, $b > 0$;
 $F = a/(p - p_0)^2 + \cdots$, $a > 0$.

Let $u = b_1(\omega - \omega_0)^{2k} + \cdots$, $b_1 > 0$, $k \ge 0$. By Lemma $1(vi)', V = a_2(\omega - \omega_0)^{2q-1} + \cdots$, $a_2 < 0, q \ge 0$ so that

$$\operatorname{Re}_{(p=j\omega)} \left[ZF \right] = - ab_1(\omega - \omega_0)^{2k-2} + \cdots + a_2b(\omega - \omega_0)^{2q-2} + \cdots$$

This is impossible since both $-ab_1$ and a_2b are negative. Thus all the pure imaginary poles of ZF are simple and have positive residues. This completes the proof of Theorem 2.

Appendix II

LC Lattice Transfer Functions

Suppose $\operatorname{Im}[\psi(j\omega)] \equiv 0$. Then using (8) with p_1 replaced by $j\omega$ we have $N(j\omega)/D(j\omega) \equiv \overline{N}(j\omega)/\overline{D}(j\omega)$ which implies that N/D is an even function of p. Thus A = KN/D with N and D even polynomials, and where the zeros of D are pure imaginary and distinct. Hence A is an LC transfer function. The results for this case follow by paraphrasing the discussion of the RC case given in [3]. By using an argument similar to that in [3, pp. 56–58] with p replaced by p^2 , it follows that if $D \pm \kappa N$ has no zeros in the r.h.p. for $0 < \kappa \leq K$ then

$$\psi = \frac{D - \kappa N}{D + \kappa N} = \eta \frac{(p^2 + \zeta_1^2)(p^2 + \zeta_2^2) \cdots}{(p^2 + \xi_1^2)(p^2 + \xi_2^2) \cdots}, \quad \eta > 0,$$

where the ξ_i^2 and ζ_i^2 are non-negative, and the combined sequence¹² of ξ_i^2 and ζ_i^2 arranged in ascending order

¹² Kahal's statement [6, p. 124] of the order relations of the zeros and poles of ψ is weaker than the one given here and is insufficient to accomplish the factorization of ψ into reactance functions Z_a and Z_b despite his statement to the contrary. For example the function $(p^2+1)(p^2+2)/(p^2+3)(p^2+4)$ satisfies his order conditions but may not be factored as Z_a/Z_b .

of magnitude consists of consecutive pairs (ξ_i^2, ζ_i^2) or (ξ_i^2, ξ_i^2) which may occur in either order, except that the last term in the sequence may be an unpaired ζ^2 or ξ^2 . We may now choose¹³

$$Z_{a} = \lambda_{1} p \frac{(p^{2} + \tilde{\varsigma}_{2}^{2})}{(p^{2} + \xi_{1}^{2})} \cdot \frac{(p^{2} + \tilde{\varsigma}_{4}^{2})}{(p^{2} + \xi_{3}^{2})} \cdot \cdots, \quad \lambda_{1} > 0;$$

$$Z_{b} = \lambda_{2} p \frac{(p^{2} + \xi_{2}^{2})}{(p^{2} + \xi_{1}^{2})} \cdot \frac{(p^{2} + \xi_{4}^{2})}{(p^{2} + \xi_{3}^{2})} \cdot \cdots, \quad \lambda_{2} > 0,$$

with $\lambda_1 \lambda_2 = \eta$, as the required lattice impedances in (2). The maximum gain K_0 is given [3, pp. 58, 72–73] as

$$K_0 = \operatorname{Min} [1, |b_m/a_n|, K_d], \quad n = m$$

= Min [| b_m/a_n |, K_d], $n < m$.

Here K_d is the smallest numerical value of κ for which the equation $D - \kappa N = 0$ has a multiple root. This means that K_d is the real root of smallest absolute value (if it exists) of the equation in κ obtained by equating the discriminant of $D - \kappa N$ to zero.

Appendix III

The Pure Imaginary Roots of $D(p) - \kappa N(p) = 0$

In §3 and §4 we were led to the consideration of the pure imaginary roots of $D(p) - \kappa N(p) = 0$ with $\kappa = 0$ and $\kappa = \kappa_a$ respectively. In this Appendix, we investigate these roots in detail and obtain the results which were used in these earlier sections. Let

$$p = j\omega_0 + \alpha_1(\kappa - \kappa_0) + \alpha_2(\kappa - \kappa_0)^2 + \cdots, \quad \alpha_1 \neq 0,$$

be a solution of the equation $D(p) - \kappa N(p) = 0$ for κ in the neighborhood of κ_0 . The above equation corresponds to (9) if κ_0 is chosen as $\kappa_0 = 0$ or to (11) if $\kappa_0 = \kappa_a$. The coefficients α_h are given by

$$\alpha_h = \frac{1}{h!} \left[\frac{d^h p}{d\kappa^h} \right]_{\kappa} = \kappa_0$$

Write κ_h for $d^h\kappa/dp^h(h=1, 2, \cdots)$. Then we have

$$\frac{dp}{d\kappa} = \frac{1}{\kappa_1}, \qquad \frac{d^2p}{d\kappa^2} = -\frac{\kappa_2}{\kappa_1^3},$$
$$\frac{d^3p}{d\kappa^3} = -\frac{(\kappa_3\kappa_1 - 3\kappa_2^2)}{\kappa_1^5}, \qquad \dots$$

Thus Re $[\alpha_1] = \text{Re} [1/\kappa_1(j\omega_0)]$. If $\kappa_0 = 0$ (as in §3) then it follows from the fact that the residue of N/D at $p = i\omega_0$ is pure imaginary that $\kappa_1(i\omega_0)$ is pure imaginary

¹³ There are other choices for Z_a and Z_b as follows from the fact that the discussion in [3, p. 55] for the RC case may be made to apply here also.

and hence Re $[\alpha_1] = 0$. For other values of κ_0 this need not be so. However, in the case that Re $[\alpha_1] = 0$, we suppose now that $\operatorname{Re}[\alpha_1] = \operatorname{Re}[\alpha_2] = \cdots = \operatorname{Re}$ $[\alpha_{r-1}] = 0$, Re $[\alpha_r] \neq 0$, $r \ge 2$. Then it follows from the above equations that if r=2, Re $[\alpha_2] = \text{Re} [-\kappa_2(j\omega_2)]$ $/\kappa_1^{3}(j\omega_0)]/2!;$ if r=3, then $\lim [\kappa_2(j\omega_0)]=0$, $\operatorname{Re}[\alpha_3]$ = Re $\left[-\kappa_3(j\omega_0)/\kappa_1^4(j\omega_0)\right]/3!, \cdots$

In general, it may be shown using mathematical induction that if $1 \leq h < r$ then Re $[\kappa_h(j\omega_0)] = 0$ for h odd, Im $[\kappa_h(j\omega_0)] = 0$ for h even, and

$$\operatorname{Re}\left[\alpha_{r}\right] = \operatorname{Re}\left[-\kappa_{r}(j\omega_{0})/\kappa_{1}^{r+1}(j\omega_{0})\right]/r!.$$

Hence writing

$$X_{h}' = \operatorname{Re} \left[j^{h} \kappa_{1}(j\omega_{0}) \kappa_{h}(j\omega_{0}) \right], \quad (h = 2, 3, \cdots)$$

$$\kappa_{1}(j\omega_{0}) = j\beta \neq 0,$$

 β real, we conclude that

Re
$$[\alpha_1] = 0$$
,
Re $[\alpha_h] = X_h' = 0$ $(h = 2, 3, \dots, r-1)$ (13)
Re $[\alpha_r] = \frac{(-1)^r}{\beta^{r+2}r!} X_r'$.

We may use these equations to complete the proof of (A) of the introduction. Since Re $[\alpha_r] \neq 0$, this is also true of X_r' . Furthermore if r is even, then Re $[\alpha_r]$ and X_r' have the same sign. Thus we may use X_h' in place of Re $[\alpha_h]$ in (i) and (ii) of the italicized sentence of §3. Also, since $\kappa = D/N = K/A$, we may replace κ in X_h by $\kappa/K = 1/A$ to get X_h defined in the introduction, as this merely multiplies X_h' by the positive constant $1/K^2$. This completes the proof of (A) in the introduction.

BIBLIOGRAPHY

- Bower, J. L., and Ordung, P. F., "The Synthesis of Resistor-Ca-pacitor Networks." PROC. I.R.E., Vol. 38 (March, 1950), pp. 263– 269.
- Fialkow, A., "Two Terminal-Pair Networks Containing Two Kinds of Elements Only." *Proc. Symposium on Modern Network Synthesis*, Polytechnic Institute of Brooklyn, (1952), pp. 50–65.
 Fialkow, A., and Gerst, I., "The Transfer Function of an RC Lad-der Network." *Jour. Math. Phys.*, Vol. 30 (July, 1951), pp. 49– 72
- 72
- 4. Fialkow, A., and Gerst, I., "The Transfer Function of General Two Terminal-Pair RC Networks." Quart. Appl. Math., Vol. 10, July, 1952), pp. 113–127.
- Fialkow, A., and Gerst, I., "The Transfer Function of Networks Without Mutual Reactance." Quart. Appl. Math., Vol. 12 (July,
- 1954), pp. 117–131. Kahal, R., "Synthesis of the Transfer Function of Two Terminal-
- Kanar, K., Synthesis of the Transfer Function of Two Terminat-Pair Networks." *Trans. IEE*, Vol. 71, Part I (1952), pp. 129–134.
 Weinberg, L., "A General RLC Synthesis Procedure." PROC. I.R.E., vol. 42 (February, 1954), pp. 427–437.
 Weinberg, L., "Networks Terminated in Resistance at both Input and Output," PROC. I.R.E., Vol. 42 (March, 1954), p. 625.
 Weinberg, L., Weinberg, Dardeling, Dardeling, Dardeling, Terminated
- 9. Weinberg, L., New Synthesis Procedure for Realizing Transfer Functions of RLC and RC Networks. Tech. Rep. No. 201, Res. Lab. of Electronics, Mass. Inst. Tech., 1951.

Modes and Operating Voltages of Interdigital Magnetrons*

AMARJIT SINGH[†]

Summary-Methods have been discussed for obtaining a desirable frequency spectrum of the modes of an interdigital resonator, so that it may be possible to get useful operation in more than one mode. The consequences of phase reversal at certain locations in the anode, in the case of nonzero order modes, have been analyzed, together with the effects of phase-shifting fingers. Experimental results have been given, which are seen to be in substantial agreement with theory.

INTRODUCTION

THE RESONANCE frequencies as well as Q values of modes of various orders in interdigital magnetrons have been studied theoretically as well as experimentally.1-4 The frequency spectrum is characterized by the fact that the modes of various orders are well separated from one another. In particular, the zeroorder mode can be operated without the use of any additional mode control devices, such as straps. However, efficient operation in this mode requires the use of decoupling chokes.⁵ Such chokes are not needed in the case of nonzero-order modes, as the latter do not couple strongly with a symmetrically located cathode. On the other hand, these modes occur in degenerate pairs, and also have points of phase reversal around the anode.

Because of these disadvantages of nonzero-order modes, most of the work on operating interdigital magnetrons has been done in the zero-order mode.⁶⁻⁹ Typical results which have been reported in this mode include a cw power output of 500 watts or a peak power output of 300 kilowatts at frequencies of the order of 2,500 mc/sec. and over-all efficiencies up to 70 per cent. This mode has also been used in an inverted mag-

* Original manuscript received by the IRE, March 30, 1954; revised manuscript received January 4, 1955. This work was supported jointly by the U. S. Navy (Office of Naval Research), the U. S. Army Signal Corps and the U.S. Air Force; Contract N5 ORI-76 Task 1, Harvard University.

National Physical Laboratory of India, New Delhi, India.

¹ F. H. Crawford and N. D. Hare, "A tunable squirrel-cage mag-netron-the donutron," PRoc. I.R.E., vol. 35, pp. 361-369; April, 1947.

¹⁹⁴⁷.
² J. F. Hull and L. W. Greenwald, "Modes in interdigital magnetron," PROC. I.R.E., vol. 37, pp. 1258-1263; November, 1949.
³ W. S. Lucke, "Obstacle Loaded Cylindrical Cavities with Application to the Interdigital Magnetron," Cruft Laboratory Technical Report No. 60, Harvard University; November, 1948.
⁴ A. Leblond, "Study of an interdigital line used as an anode circulated content of the anticed circulated content of the second circulated circulated content of the second circulated circleted circulated circulated circleted circulated circulated circ

cuit of a magnetron oscillator for U.II.F.," Ann. Radioélect., vol. 8, pp. 194-210; July, 1953.

⁶ J. F. Hull and A. W. Randalls, "High-power interdigital mag-netrons," PROC. I.R.E., vol. 36, pp. 1357–1363; November, 1948. 6 Ibid.

⁶ 10ta.
⁷ H. W. Welch, Jr. and G. R. Brewer, "Operation of Interdigital Magnetrons in Zero Order Mode," Technical Report No. 2, Electron Tube Laboratory, University of Michigan.
⁸ F. Ludi, "Single cavity magnetron," *Tijdschr. ned. Radiogenool.*, vol. 18, pp. 89-103; March 1953. Also F. Ludi, PROC. I.R.E., vol. 41, p. 799: June 1953.

p. 799; June, 1953.
A. Leblond; O. Dochler and R. Warnecke, "A new magnetron

oscillator with interdigital circuit," C. R. Acad. Sci. Paris, vol. 236, pp 55-57; 5th Jan., 1953.

netron,¹⁰ giving 1,500 watts at 5 per cent duty ratio, with an over-all efficiency up to 50 per cent. However if the problems of degeneracy and phase reversal in the case of nonzero-order modes can be solved satisfactorily. then an interdigital magnetron offers the possibility of useful operation at more than one frequency. With tunable tubes having overlapping tuning ranges for various modes, wide tuning ranges would also be possible. Apart from this, nonzero-order modes can give higher frequencies for the same dimensions of the resonator. Interest in a nonzero-order mode has been shown in another paper¹¹ also, dealing with the design of a waveguide loaded interdigital resonator for operation in the second-order mode.

In order to remove the degeneracy between the two first-order modes, Crawford and Hare used two capacitive fingers behind the main set of fingers. Also, in order to make the "polarity of the fingers alternate regularly all the way around the anode." they used the "phase reversing anode."12 At each position of zero E-field, two adjacent fingers were joined to the same side of the cavity. The two could be made as one broad finger, called a phase-shifting finger. Crawford and Hare obtained a cw power output of 50 watts at an efficiency of 40 to 50 per cent in the wavelength range of 6 to 12 centimeters.

In the work reported here, problems relating to the frequency spectrum of the interdigital magnetron, and to its operation in nonzero-order modes, have been investigated further. The results of an experimental study for correlating the frequencies of various modes with resonator parameters have been given. Methods have been discussed for removing the degeneracy of nonzeroorder modes, and making all the resultant modes equally spaced in frequency.

Experimental evidence and theoretical justification for the excitation of each of the nonzero-order modes at more than one voltage have been given. It has been found that phase-shifting fingers do not ensure operation at only one voltage for one mode. An alternative approach to this problem has been suggested.

Modes of a Simple Interdigital Resonator

In order to control the frequency spectrum of an interdigital resonator, it is first of all desirable to know the general manner in which the modes of various or-

:1

¹⁰ J. F. Hull, "Inverted magnetron," PRoc. I.R.E., vol. 40, pp. 1038–1041; September, 1952.

¹¹ G. Hok, "Design of waveguide loaded resonator for magne-tron with interdigital circuit," PRoc. I.R.E., vol. 41, pp. 763-769; June, 1953. ¹² Crawford and Hare, *op. cit*.

ders are influenced by the parameters of the fingers and the cavity. With this in view, a demountable resonator was designed, so that several combinations of anode and cavity parameters were easily obtainable. Fig. 1 shows a

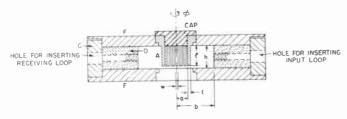


Fig. 1-Cross section of demountable resonator.

cross section of the resonator, the lower set of fingers being omitted for the sake of clarity. The cavity was formed by clamping two face plates F against a thick annular disc D. Fingers attached to two cylinders were inserted through holes in the face plates. The squirrel cage formed by the fingers was made coaxial with the annular disc by fitting the face plates and the disc into an outer cylinder C. Two caps completed the resonator. The resonance frequencies were determined by inserting two coupling loops into the cavity, one for feeding in power from a test oscillator, and the other for detecting the amplitude of oscillations. The modes were identified by plotting the field patterns with the help of a rotating probe. The rectified and amplified output of the probe was fed to a recording milliammeter, while the probe was slowly rotated by a motor with a step-down gear-box.

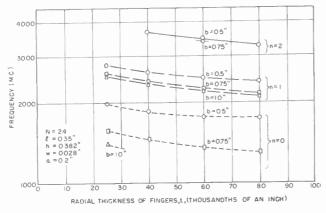


Fig. 2-Variation of frequency with capacity at the anode.

Graphs of resonance frequency of the different modes as a function of resonator parameters are given in Figs. 2 and 3. There N stands for the total number of fingers and n stands for the order of the mode. The symbols for other parameters are explained in Fig. 1. The following general conclusions can be drawn from the data:

1. The ratio by which the frequency decreases for a given increase of cavity radius is smaller for higherorder modes. Consequently, as the ratio of cavity radius

to anode radius (denoted by b/a) increases, the separation of adjacent modes also increases. In a typical case, the separation between the zero- and first-order modes increases from 41 per cent to 68 per cent as b/a increases from 2.5 to 3.75. Under the same conditions the separation between first- and second-order modes increases from 41 per cent to 52 per cent.

2. Increase of radial thickness of the fingers, or decrease of separation between adjacent fingers reduces the resonance frequencies in a ratio which is nearly the same for the various orders. Thus the mode separations do not depend critically on these two parameters.

These conclusions would be of assistance in obtaining desired intervals between the modes of various orders.

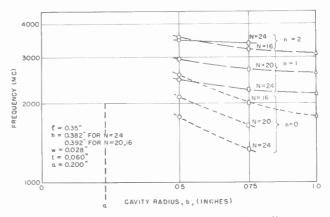
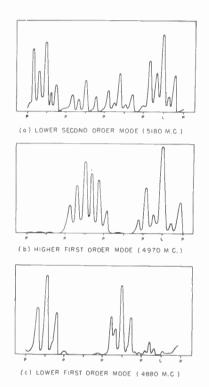


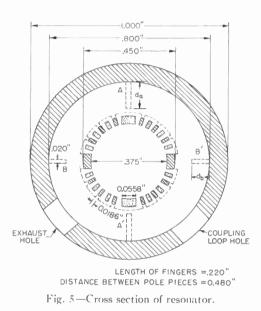
Fig. 3-Variation of frequency with cavity radius.

Modes of Interdigital Resonator with Shorting Wires at Fingers

In the early stages of this work shorting wires were used to solve the problem of degeneracy in nonzeroorder modes. At that time the primary interest was in getting only a second-order mode to give steady operation. The resonator had 24 ordinary fingers, and four phase-shifting fingers located at intervals of 90 degrees. The tips of these four fingers were short-circuited to the opposite face of the cavity. It was expected that all the modes except the second-order mode with nodes of *E*field at the shorting wires would become inoperable.

However, it was found that the other second-order mode and the two first-order modes were still operable. The shorting wires had greatly distorted their field patterns, and raised their frequencies. The higher secondorder mode was separated from the undisturbed secondorder mode by an interval of 32 per cent, and the two first-order modes were separated from the latter by intervals of 4 and 2 per cent respectively. Fig. 4 (next page) shows the field patterns of the 3 lowest modes. Locations of phase-shifting fingers are represented by P, and that of the coupling loop by L.) It is seen that the E-field of the first-order modes was nearly zero in opposite quadrants. When cold tests were performed with the shorting wires put between the faces of the cavity at successively increasing distances behind the fingers, the frequencies of the first-order modes were found to decrease. At a certain stage, the frequency of the higher second-order mode came within the range of the test oscillator, and was found to approach that of the undisturbed second-order mode. The above experiments showed that shorting wires at fingers are not suitable for frequency control. However, they suggested the possibility of using shorting wires or radial vanes in the cavity.




Fig. 4—Field patterns with shorting wires. (a) Lower second-order mode (5,180 mc). (b) Higher first-order mode (4,970 mc). (c) Lower first-order mode (4,880 mc).

Modes of Interdigital Resonator with Vanes in the Cavity

Further cold tests were performed using radial vanes in the cavity. A cross section of the resonator with vanes is shown in Fig. 5. Four radial slots were cut in one of the face plates, so as to lie behind the four phase shifting fingers. Vanes were inserted into these slots and clamped in place. The radial penetrations of the vanes could be varied independently. However, radially opposite vanes were always set at symmetrical locations. The resonance frequencies were determined for all the combinations of a set of values of d_a and d_b , where d_a was the radial length of one pair of vanes and d_b was that of the other pair.

Fig. 6 (page 473) shows the results in graphs of resonance frequencies versus d_a with various values of d_b as parameter. It is seen that the frequencies of the zero-order mode and of the second-order mode, which ordinarily has maxima of *E*-field at the position of the

vanes, are increased by an increase of d_a as well as d_b . The frequency of each of the first-order modes is independent of one pair of vanes, and rises with increase in penetration of the other pair. The second-order mode having zeros of *E*-field at the vanes is practically unaffected by both d_a and d_b . In general, (1) insertion of vanes leaves the resonance frequency of a mode unaltered if the *E*-field for the undisturbed mode is zero at the positions of the vanes; (2) the resonance frequency is increased when the above condition is not satisfied; (3) the rate of increase of frequency with increase of *d* becomes larger as *d* increases.

The graphs also show how five different modes can be located at convenient intervals, with the help of two pairs of vanes in the cavity. The five modes are the zero-order mode, the two first-order modes, and the two second-order modes. By adjusting the difference between d_a and d_b the separation between the first-order modes can be adjusted. By adjusting the actual magnitudes of d_a and d_b the separation between the two second-order modes can be adjusted. In this way, intervals of the order of 9 per cent were obtained in operating tubes having a ratio of cavity radius to anode radius equal to 2:1. The intervals can be increased by increasing this ratio, as discussed in the first section.

The field patterns of the two second-order and two first-order modes obtained when vanes were used are shown in Fig. 7 (page 473). Since phase-shifting fingers were present, a regular field configuration was obtained only with the lower second-order mode, but the distortion was much less than when shorting wires were used.

It is seen that a desirable frequency spectrum can be obtained without undue distortion of the field patterns, by using vanes in the cavity. Other problems to be considered in connection with controlled operation in more than one mode relate to the Q and to the admittance presented by the fingers to the electron stream for the

8

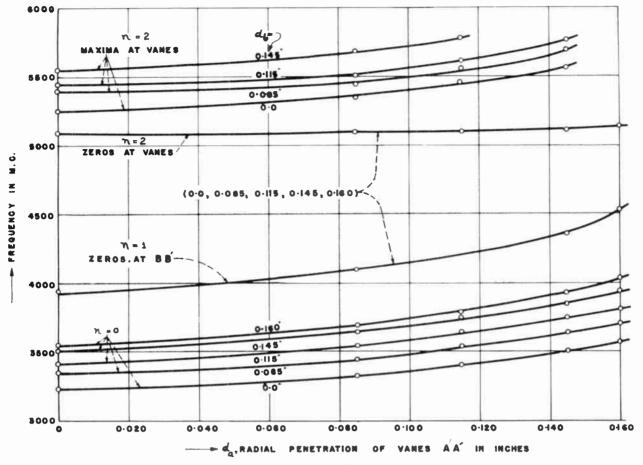


Fig. 6-Variation of resonance frequencies with penetration of vanes.

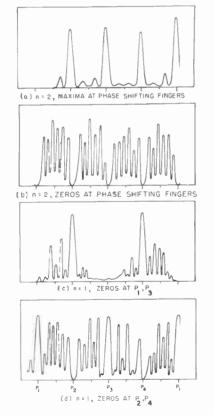


Fig. 7-Field patterns with vanes.

various modes. Some further work has been done by the author along these lines at the National Physical Laboratory of India.¹³ A cavity with rectangular cross section has been used to separate the two first-order modes, keeping the surface losses small. Also the radial width of the fingers has been made to vary, so that the widest fingers are located at the axial plane parallel to the length of the cavity. In this way, further separation of the two first-order modes has been obtained, and at the same time the admittances presented to the electron stream by the two modes can be made nearly equal.

Operating Voltages of Nonzero-Order Modes

The fact that electric field in the cavity changes sign at certain locations, in the case of nonzero-order modes, results in operation being possible for each at more than one voltage. Fig. 8 (next page) shows a current vs voltage curve, at constant magnetic field, for a tube having four phase-shifting fingers. The load was matched to the transmission line at the frequency of the lower secondorder mode. The duty ratio was 0.1 per cent. The curve shows that operation in the lower second-order mode and lower first-order mode was obtained in two distinct ranges of voltage in each case. The same was found to

¹³ A. Singh and N. C. Vaidya, "A new method of mode control of interdigital magnetron," *Jour. Sci. Ind. Res.*, vol. 13, pp. 512–515; November, 1954.

be true for the higher first-order mode also, in other cases. Operation in more than two ranges of voltage for a given mode was observed in some cases. Such observations were made with tubes having shorting wires as well as with those having vanes. It is clear that even in the lower second-order mode more than one Fourier component could be excited, in spite of the presence of phase-shifting fingers at suitable locations. Thus it is of interest to study the Fourier components of the field configurations of different modes, with and without phase shifting fingers.

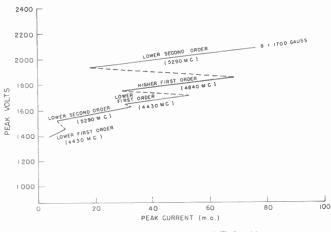


Fig. 8-Modes of operation of Tube 29.

Fourier Components of the Field Configurations

The azimuthal component $E_{\phi}(a, \phi)$ of the *E*-field at the anode in the median plane can, in the general case, be written

$$E_{\phi}(a, \phi) = Z(\phi) \cos n\phi P(\phi), \text{ or } Z(\phi) \sin n\phi P(\phi),$$

where $Z(\phi)$ depends upon the total number of fingers and the ratio of gap width to finger width, and is of the nature shown in Fig. 9; *n* is the order of the mode; and $P(\phi)$ is a function depending upon the number and location of the phase-shifting fingers, as shown in Fig. 9. $Z(\phi)$ can be analyzed into its Fourier components as follows:

$$Z(\phi) = \frac{4}{\pi} \left\{ \sin \frac{\pi}{3} \cos M\phi + \frac{1}{3} \sin \frac{3\pi}{2\rho} \cos 3M\phi + \frac{1}{5} \sin \frac{5\pi}{2\rho} \cos 5M\phi + \cdots \right\},$$

where the ratio of gap width to finger width is 1: $(\rho - 1)$, and M is half the total number of fingers.

When no phase-shifting fingers are present, then for higher order modes,

$$E_{\phi}(a, \phi) = Z(\phi) \cos n\phi$$

$$= \frac{2}{\pi} \left[\sin \frac{\pi}{2\rho} \left\{ \cos \left(M + n \right) \phi + \cos \left(M - n \right) \phi \right\} \right.$$
$$\left. + \frac{1}{3} \sin \frac{3\pi}{2\rho} \left\{ \cos \left(3M + n \right) \phi \right. \right.$$
$$\left. + \cos \left(3M - n \right) \phi \right\} + \cdots \right].$$

Alternatively,

$$E\phi(a, \phi) = Z(\phi) \sin n\phi$$

$$= \frac{2}{\pi} \left\{ \sin \frac{\pi}{2\rho} \left\{ \sin (M+n)\phi - \sin (M-n)\phi \right\} \right.$$
$$\left. + \frac{1}{3} \sin \frac{3\pi}{2\rho} \left\{ \sin (3M+n)\phi \right.$$
$$\left. - \sin (3M-n)\phi \right\} + \cdots \right\} \,.$$

Let γ represent the number of complete cycles around the anode, for a given Fourier component. It is seen that when no phase-shifting fingers are present, γ assumes the values $M \pm n$, $3M \pm n$, $5M \pm n$, etc.

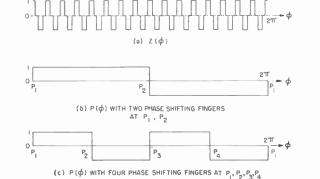


Fig. 9--Functions used for obtaining Fourier components of field configurations.

The case where four phase-shifting fingers are present is considered next. If in that case $P(\phi)$ is denoted by $P_4(\phi)$, then by Fourier analysis,

$$P_4(\phi) = \frac{4}{\pi} \sin 2\phi + \frac{4}{3\pi} \sin 6\phi + \frac{4}{5\pi} \sin 10\phi + \cdots$$

$$P_4(\phi) \sin \phi = \frac{2}{\pi} \cos \phi - \frac{2}{\pi} \cos 3\phi + \frac{2}{3\pi} \cos 5\phi$$

$$-\frac{2}{3\pi} \cos 7\phi + \cdots$$

$$P_4(\phi) \cos \phi = \frac{2}{\pi} \sin \phi + \frac{2}{\pi} \sin 3\phi + \frac{2}{3\pi} \sin 5\phi$$

A pril

a

$$+\frac{2}{3\pi}\sin 7\phi + \cdots$$

$$P_4(\phi)\sin 2\phi = \frac{2}{\pi} - \frac{4}{3\pi}\cos 4\phi - \frac{4}{15\pi}\cos 8\phi - \cdots$$

$$P_4(\phi)\cos 2\phi = \frac{8}{3\pi}\sin 4\phi + \frac{16}{15\pi}\sin 8\phi$$

$$+\frac{24}{3\pi}\sin 12\phi + \cdots$$

 35π

The most significant Fourier components of $E_{\phi}(a, \phi)$ would be obtained from the product of the first term in the expansion of $Z(\phi)$ and the function $\cos n\phi P_4(\phi)$ or $\sin n\phi P_4(\phi)$ appropriate to the given mode. The components given by the subsequent terms in the $Z(\phi)$ expansion would have their γ and excitation voltage far removed from those corresponding to the first term. Taking unity as coefficient of this first term, and expressing products as sums and differences, one obtains

 $P_4(\phi) \cos M\phi$

$$= \frac{2}{\pi} \left\{ \sin (M+2)\phi - \sin (M-2)\phi \right\} \\ + \frac{2}{3\pi} \left\{ \sin (M+6)\phi - \sin (M-6)\phi \right\} + \cdots$$

 $P_4(\phi) \sin \phi \cos M \phi$

$$= \frac{1}{\pi} \left\{ \cos (M+1)\phi + \cos (M-1)\phi \right\}$$
$$- \frac{1}{\pi} \left\{ \cos (M+3)\phi + \cos (M-3)\phi \right\}$$
$$+ \frac{1}{3\pi} \left\{ \cos (M+5)\phi + \cos (M-5)\phi \right\} + \cdots$$

 $P_4(\phi) \cos \phi \cos M\phi$

G

$$= \frac{1}{\pi} \left\{ \sin (M+1)\phi - \sin (M-1)\phi \right\}$$
$$+ \frac{1}{\pi} \left\{ \sin (M+3)\phi - \sin (M-3)\phi \right\}$$
$$+ \frac{1}{3\pi} \left\{ \sin (M+5)\phi - \sin (M-5)\phi \right\} + \cdots$$

 $P_4(\phi) \sin 2\phi \cos M\phi$

$$= \frac{2}{\pi} \cos M\phi - \frac{2}{3\pi} \{ \cos (M+4)\phi + \cos (M-4)\phi \} - \frac{2}{15\pi} \{ \cos (M+8)\phi + \cos (M-8)\phi \} + \cdots$$

 $P_4(\phi) \cos 2\phi \cos M\phi$

$$= \frac{4}{3\pi} \left\{ \sin (M+4)\phi - \sin (M-4)\phi \right\} \\ + \frac{8}{15\pi} \left\{ \sin (M+8)\phi - \sin (M-8)\phi \right\} + \cdots$$

The values of γ thus obtained from the first term are $M \pm 2$, $M \pm 6$, etc. for the zero-order mode; $M \pm 1$, $M \pm 3$, $M \pm 5$, etc. for the first-order modes; M, $M \pm 4$, $M \pm 8$, etc. for one second-order mode; and $M \pm 4$, $M \pm 8$, etc. for the other second-order mode.

The effect of four phase-shifting fingers has been to make the value M available for γ in one of the secondorder modes. But, at the same time, in all the nonzeroorder modes one pair of components has been replaced by a number, whose amplitude does not fall off so rapidly as to make their excitation improbable.

The foregoing study is helpful in explaining the observed voltages of operation. For a given mode and magnetic field, the voltage is inversely proportional to γ , to a first approximation. This approximation was considered adequate because there was uncertainty in choosing values of voltage from the data for comparison with theory, as each mode of excitation was obtained over a range of voltage. The starting point of each range was chosen for comparison with theory.

The following limitations of the above simple theory have to be recognized. The presence of any irregularities in the geometry of the resonator would introduce Fourier components not given by the above analysis. Examples of such irregularities are the coupling loop, an imperfectly aligned cathode, and irregular spacing of fingers. Yet, notice that for Fourier analysis the range of azimuth over which the function $E_{\phi}(a, \phi)$ was defined was 0 to 2π . However, in exciting a given field configuration, the electrons need not be in synchronism with the field over this whole range. The following shows the kind of difference between simple theory and experiment expected on the above basis. In the first-order mode, when four phase-shifting fingers are present, a value of $\gamma = M$ is not given by Fourier analysis, but an excitation voltage corresponding to $\gamma = M$ would be possible, if an electron, while giving energy to the rf field, could reach the anode without crossing the two phaseshifting fingers at the maxima of the E-field.

Comparison of Experimental Results with Theory

In these tubes M was equal to 16, as the tube had 24 ordinary fingers and four phase-shifting fingers, each one of the latter being equivalent to two ordinary ones. Data were taken on the two first-order modes, and the second-order mode whose E-field was zero at the phaseshifting fingers. The zero-order mode could not be operated since cathode decoupling chokes were not used. Operation in the other second-order mode was erratic, due to points of phase reversal around anode.

Tube No.	Mode	Magnetic field in Gauss	Proportions of reciprocals of voltages
22	Lower Second	1370	16.0:17.7:20.2
22	Lower Second	1920	16.0:18.3:19.9
2.3	Higher First	1920	16.0:17.2
23	Lower Second	1920	16.0:18.0
28	Lower Second	1700	16.0:19.9:20.8:22.0
28	Lower Second	2260	16.0:17.3:20.1:21.3
29	Lower First	1480	13.3:16.0:19.2
29	Lower First	1700	16.0:19.1:21.3
29	Lower First	2140	16.0:19.1
29	Lower First	2610	16.0:19.0
29	Lower Second	1480	16.0:20.5
29	Lower Second	1700	16.0:20.0
29	Lower Second	2140	16.0:20.5
29	Lower Second	2610	16.0:20.5

The data given in Table I above may be discussed under the following headings:

1. Within experimental error, the reciprocals of voltages for each mode are proportional to numbers in the series, 16, 16 ± 1 , 16 ± 2 , etc. Table I shows the actual numbers obtained in the series, 16 being taken as the reference number.

2. The presence of voltages corresponding to $\gamma = 16$ and 20 in the second-order mode and to $\gamma = 13$, 17, 19 and 21 in the first-order modes is in conformity with values obtained from Fourier analysis.

3. The presence of a voltage corresponding to $\gamma = 16$ in the first-order modes is due to the fact that electrons can reach the anode by covering only a small range in azimuth, as already discussed. The assumption that the voltage corresponds to $\gamma = 16$ was checked by using the voltage for $\gamma = 16$ in the second-order mode as reference. The voltages were found to be directly proportional to the frequencies to within 1 per cent, as would be expected when γ is the same for the two cases.

4. The occasional presence of voltages corresponding to other values of γ may be ascribed to irregularities in the structure, which would modify the field and thus introduce additional Fourier components.

5. The consistent absence of a voltage corresponding to $\gamma = 17$ from the lower first-order mode is understandable, since the same order of voltage can excite the A pril

 $\gamma = 20$ component of the lower second-order mode; and the latter appears to be more easily excited.

Before the advantage of a number of well separated modes can be exploited, the difficulty of more than one voltage of operation for the nonzero order modes will have to be removed. Phase-shifting fingers are of doubtful advantage. A different approach would be to increase the number of fingers, without using phase-shifting fingers. The separation (in percentage) of the two components will thus be reduced. Considering the fact that operation at a voltage corresponding to $\gamma = M$ is also likely in addition to those corresponding to $\gamma = M$ $\pm n$, it appears possible that all the three voltage ranges may merge into one continuous range. This may be expected particularly for small values of n. The problem invites further work.

CONCLUSIONS

It has been shown that the degeneracy of nonzero order modes can be removed and the resonance frequencies accurately controlled, without undue distortion of the field patterns in the interaction space, by using radial vanes in the cavity. The dimensions of the fingers, the cavity, and the vanes, can be so chosen as to obtain a number of modes at desired intervals.

It was found that each nonzero-order mode normally operates at more than one voltage. The way to get around this difficulty appears to be to use a large number of ordinary fingers, without introducing any phasereversing ones. This alternative is also to be preferred if operation in more than one mode is desired.

Acknowledgment

The guidance and encouragement received from Prof. E. L. Chaffee, Dr. D. L. Benedict and Prof. R. W. P. King are gratefully acknowledged. The work of Dr. C. Yeh and Mr. J. P. Jasionis on operating tubes using shorting wires provided the stimulus for further work on mode control. The observation that the interdigital magnetron operated at more than one voltage for a non-zero-order mode was also first made by them. The data on operating voltages of Tubes 22 and 23 were taken by Dr. Yeh.

Measurement of Minority Carrier Lifetime and Surface Effects in Junction Devices*

S. R. LEDERHANDLER[†], AND L. J. GIACOLETTO[‡], SENIOR MEMBER, IRE

Summary-The characteristics of junction devices are influenced to a considerable degree by the lifetime of the minority carriers. Accordingly, methods for the measurement of this quantity are of considerable importance. Methods have been described for the measurement of the lifetime of minority carriers when these carriers are produced within the volume of a semiconductor. When the minority carriers are introduced near the surface of a semiconductor the resulting effective lifetime may be determined to a large extent by the nature of the surface. For most junction devices, it is the effective lifetime that is of primary importance.

This paper describes a simple method for the measurement of effective lifetimes of injected minority carriers. The measurements may be applied to practical junction structures as, for example, an alloyed junction transistor. Measurements may be made on either completed or partially completed devices. The resulting data are potentially of value as quality controls during the fabrication of transistors and similar devices.

In many cases, the effective lifetime is a good indication of the surface conditions, and immediate evaluation of these conditions may be obtained at various stages of device processing. With selected geometries, the measurement method may be applied to determine absolute values of surface recombination velocities and should therefore be in studying surface conditions and treatments.

The measurement method is described in terms of junction devices using germanium as the semiconductor. However, the method is equally applicable to junction devices made with other semiconductor materials.

INTRODUCTION

N IMPORTANT material property which affects the performance of transistor devices is the life-time of minority carriers in the semiconductor. This lifetime depends on the nature of the material and on the various treatments to which the material has been subjected. Electrically, it is a direct factor in many transistor parameters such as saturation current, current amplification factor, and others. It is, therefore, of considerable practical importance to be able to evaluate this factor directly on junction devices.

Earlier studies of minority carrier lifetimes have been mainly directed to evaluations as a property of the material¹ (volume lifetime) or as a property of a surface² (surface lifetime). As a result, the methods developed in these studies have not used the geometries of practical junction devices nor have they generally involved a p-njunction. This paper will describe a simple method³

* Original manuscript received by the IRE, December 1, 1954; revised manuscript received, January 28, 1955. † Formerly RCA Labs., Princeton, N. J. Now with Research

Formerty RCA Labs., Finiteton, A. J. Now with Research
 Division, Raytheon Mfg. Co., Waltham, Mass.
 RCA Labs., Princeton, N. J.
 L. B. Valdes, "Measurement of minority carrier lifetime in ger-manium," PROC. I.R.E., vol. 40, pp. 1420–1423; November, 1952.
 P. Navon, R. Bray, and H. Y. Fan, "Lifetime of injected car D. Navon, R. Bray, and H. Y. Fan, "Lifetime of injected car-

riers in germanium," PROC. I.R.E., vol. 40, pp. 1342-1347; November, 1952. A related development has been described by B. R. Gossick,

"Post-injection barrier electromotive force of p-n junction," Phys. Rev., vol. 91, pp. 1012-1013; August 15, 1953.

which is directly applicable to junction devices. Indeed this method uses a p-n junction to inject minority carriers by means of a current pulse applied to the junction in the forward direction. The decay of the injected carriers is observed by open-circuiting the p-n junction and observing the junction voltage on an oscilloscope. A particular advantage for investigative work is that this measurement can be made on a single junction, thereby avoiding the more complex construction of a complete transistor. Furthermore, immediate evaluation can be made at various stages in the processing of junction units as a control in the fabrication of transistors or as a measurement in the study of process variations.

EXPERIMENTAL METHOD

The circuit of Fig. 1 shows an experimental arrangement for applying a constant current pulse in the forward direction through a p-n junction and, by means of a thermionic diode, open-circuiting the p-n junction at the termination of the current pulse. The open-circuited junction voltage is observed on an oscilloscope. Minority carriers are injected into the base region during the

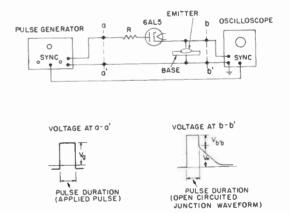


Fig. 1-Circuit illustration for applying constant current pulse to emitter-base junction and observing an open-circuited junction voltage upon termination of pulse.

time the pulse is applied to the junction in the forward direction. Upon completion of the pulse, the thermionic diode effectively opens the circuit between the generator and the emitter. As a result, the junction voltage is a direct measure of what happens to the injected carriers. A typical open-circuited voltage wave form is also illustrated in Fig. 1 (voltage at b-b').

It is observed that, after an initial drop due to an internal series resistance, the open-circuited junction voltage decays approximately linearly with time, and this linear decay is followed by an approximately exponential decay. As will be shown below, this linear portion of the voltage variation lends itself very readily to computation of a minority carrier lifetime, which is here designated as an *effective lifetime* since it results from the combined effect of volume and surface lifetimes.

In Fig. 2 there is shown a flexible circuit for use in connection with a suitable pulse generator and an oscilloscope for observing either the reverse bias (to be described subsequently) or the open-circuited junction

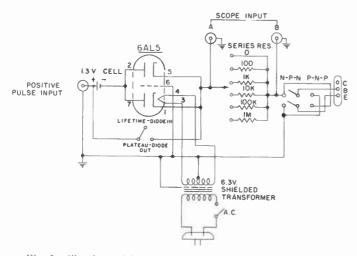


Fig. 2—Circuit used for the measurement of effective lifetime and related characteristics.

voltage. The pulse rise time and more important, the pulse decay time of the pulse generator, should be reasonably small-1/10 of the effective lifetimes to be measured should be adequate. Pulse length and repetition frequency usually used are 10 µsec and 3,000 p/sec, but the exact values employed are not important. The pulse amplitude and generator output impedance are also of no great importance. The oscilloscope response should be at least comparable to the pulse generator decay time mentioned above. It is important that the vertical amplification and horizontal trace speeds be calibrated. A differential oscilloscope connected as shown in Fig. 2 is a convenient means for measuring the pulse current flowing through the junction device. The 1.3-volt battery is inserted in series with the diode to eliminate a spurious voltage arising from the thermal velocities of the cathode-emitted electrons. A reversing switch is provided to accommodate both *n*-type and *p*-type devices with a single socket arrangement. A transparent alignment device with radial lines engraved thereon can be used for measuring effective lifetimes easily and quickly from oscilloscope displays of open-circuited junction voltages. When the vertical deflection sensitivity and horizontal sweep time are suitably adjusted, the effective lifetime is read directly by aligning one of the radial lines with the linear portion of the open-circuit junction-voltage waveform.

THEORETICAL DEVELOPMENT

A theoretical interpretation of the observed junction voltage can be made on the basis of simple but approximate junction theory. A p-n junction in which the conductivity of the p-region is much greater than that of the n-region, as in an alloyed junction of indium on germanium, will be considered. In such a junction, the current flow across the transition region of the junction is predominantly a hole flow, and holes are injected into the n-type germanium. The results, however, will apply with equal validity to a junction in which the conductivity of the n-region is much greater than that of the p-region. In this case, electrons would be injected into the p-type region.

Let p_n be the hole density present in the *n*-region under themal equilibrium conditions, and Δp be the additional injected hole density in the *n*-region at the boundary of the junction transition region. The total hole density at the junction boundary will be

$$p = p_n + \Delta p. \tag{1}$$

From the theory of the p-n junction,⁴ the hole density in the n-region at the junction boundary is given by

$$p = p_n e^{qV/kT},\tag{2}$$

where V is the junction voltage. Combining (1) and (2) the solving for the voltage,

$$V = \frac{kT}{q} \ln\left(1 + \frac{\Delta p}{p_n}\right). \tag{3}$$

If the assumption is made that the excess carrier concentration, Δp , decays exponentially according to a single effective lifetime, τ_e , then

$$\Delta p = \Delta p_0 e^{-t/\tau_{\theta}},\tag{4}$$

8

(64

where Δp_0 is excess carrier concentration at the termination of the forward current pulse. Eq. (4) can be placed in (3). The constant $(1 + \Delta p_0/p_n)$ can be readily evaluated in terms of the junction voltage, V_0 , at t = 0(this is the junction voltage immediately before and immediately after the removal of the forward pulse—see Fig. 1), since

$$V_0 = \frac{kT}{q} \ln\left(1 + \frac{\Delta p_0}{p_n}\right). \tag{5}$$

The open-circuited junction voltage as a function of time is then

$$V = \frac{kT}{q} \ln \left[1 + (e^{qV_0/kT} - 1)e^{-t/\tau_e} \right].$$
(6)

For t/τ_{\circ} very small, and if, as usual, $V_{0} \gg kT/q$ (6) may be simplified to

⁴ William Shockley, "Electrons and Holes in Semiconductors," D. Van Nostrand Company, Inc., New York, p. 312; 1950.

1955

Ċ.

$$V \cong V_0 - \frac{kT}{q} t/\tau_e. \tag{7}$$

The initial voltage variation is linear with time. The slope of the linear variation is a measure of the effective lifetime.

$$\tau_{\bullet} = -\frac{\Delta t}{\frac{q}{kT}\Delta V} = -\frac{kT}{q} \times \frac{1}{\text{Slope of Linear Decay}} \cdot (8)$$

The values of Δt and ΔV may be read directly with the use of a calibrated oscilloscope. Fig. 3 shows some typical voltage wave shapes and some typical calculations for effective lifetimes.

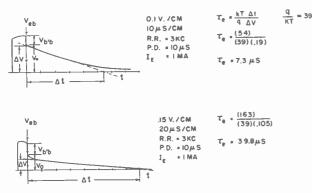


Fig. 3-Measurement of effective lifetime emitter-to-base open-circuited junction voltage.

The basic *p*-*n* junction theory applied above and based on (2) assumes that the injected minority carrier density is small compared with the majority carrier density. Accordingly, accurate measurements of τ_{e} should be made using small enough currents so that this assumption is valid. However, if the current is too small, a well-defined linear region is not obtained. For most of the devices that have been measured, a junction current of about 2 ma has been appropriate. When the junction current is increased so as to invalidate the assumption mentioned above, calculations similar to those above can be carried out, but the results are considerably more complex. The voltage decay for this case, as viewed on the oscilloscope, will exhibit a "hump" separating two regions of approximate linear decay. The latter decay corresponding to the region where the minority carriers are again small compared with the majority carriers can be used for measurement.

As is implied above, the preceding analysis does not possess a high degree of rigor. Only the life history of the holes has been considered, and the manner of their decay has been assumed without consideration of accompanying diffusion effects. In Appendix I this problem is examined in a more rigorous fashion. Both hole and electron carriers with independent lifetimes as well as diffusion effects are included. It is again assumed that the

minority carrier density is small compared with the majority carrier density. A study of the solution indicates that as long as the portion of the junction current due to minority carriers (holes) is approximately equal to the total junction current (injection efficiency, γ , = 1), then the resulting junction voltage decay will be that due to holes irrespective of the lifetime of the electrons. Further, it appears that the method of measuring lifetime discussed above should give results that are adequate for engineering purposes. As an additional check, the method of measuring lifetime discussed herein has been compared with another more involved method of measurement, and good agreement between the two methods of measurement has been obtained.⁵

LIFETIME MEASUREMENTS

Typical Measurements

Measurement of effective lifetimes for p-n-p junction transistors will give results generally ranging from 1 to 10 μ sec.⁶ Sample diodes made with materials having volume lifetimes of 1, 4, and 700 μ sec gave effective lifetimes of 0.5, 3.4, and 39.8 μ sec, respectively. Effective lifetimes as small as 0.01 μ sec have been measured.

It is important to observe that the effective lifetime of the units made from material having 700 μ sec volume lifetime was measured as only 39.8 μ sec. On the other hand, the effective lifetime measured on units which were made from low volume lifetime material was quite close to the volume lifetime. This seems reasonable assuming effective lifetime to be a measure of the combined effects of volume recombination and surface recombination. In accordance with calculations for simple geometries,⁷ effective lifetime, τ_e , volume lifetime, τ_i , and surface lifetime, τ_e , are related as

$$\frac{1}{\tau_s} = \frac{1}{\tau_v} + \frac{1}{\tau_s}.$$
⁽⁹⁾

The surface lifetime, τ_s , will be dependent upon the geometry and upon the surface recombination velocity. For a fixed geometry, the effective lifetime together with the volume lifetime (measured by conventional methods on the bulk material) can be used for determining a surface lifetime which is directly related to the surface treatment. When the volume lifetime is much larger than the measured effective lifetime (as is usually the case in practical device geometries), effective lifetime is very nearly a measure of surface treatment.

⁶ These measurements were carried out by Dr. A. R. Moore, RCA Laboratories and utilize the decay of photoconductivity following illumination with a pulsed light source. This technique has been described by D. T. Stevenson and R. J. Keyes, "Measurement of lifetimes and diffusion constants in germanium," *Phys. Rev.*, vol. 94, p. 1416; June 1, 1954.

⁶ R. R. Law, C. W. Mueller, J. I. Pankove, and L. Armstrong, "A developmental germanium p-n-p junction transistor," PROC. I.R.E., vol. 40, pp. 1352–1357; November, 1952.

⁷ W. Shockley, op. cit., pp. 318-325.

Specimen	τ _υ Volume Lifetime	τ_e After Fabrication and chemical etch s = 400 cm/sec	Dipped in etch containing Cu (NO ₃) ₂ s = 7400 cm/sec	Electrolytic etch 2 min 2 ma s = 250 cm/sec	$\begin{array}{c} \tau_e \\ \text{Electrolytic etch} \\ 5 \min 3 \max \\ s = 250 \text{ cm/sec} \end{array}$	τ_e Electrolytic etch 5 min 3 ma s = 250 cm/sec
Т-6 Т-61	4 μsec 700 μsec	3.4 μsec 37 μsec	1.8 μsec 4.1 μsec	40 µsec	58 µsec	58 µsec

TABLE I CHANGE IN EFFECTIVE LIFETIME VALUES AS A RESULT OF ETCHING

Effects of Etching on Effective Lifetime

To observe the effect of surface treatment on effective lifetime, two germanium alloy junctions having 0.045inch diameter emitter dots, base wafer-thickness of 0.005 inch, and volume lifetimes that were substantially different were first chemically etched and measured and then dipped in an etch containing copper nitrate for 15 seconds. This etch was chosen because of its ability to produce a high surface recombination velocity which has been reported to be approximately 7,400 cm/sec.⁸ It was noticed upon removing the junction from the etch that copper was deposited on the dot and on the germanium surface. Following the etch treatment, the effective life was measured and indicated a substantial lower lifetime than before etching. The copper was next removed by an ammonia and hydrogen-peroxide solution, and the unit was washed in distilled water. The junction was then electrolytically etched in 1 per cent sodium hvdroxide for two minutes at 2 ma current. Subsequent measurement of effective lifetime indicated a decided increase from its previous value. The effective lifetime was further increased by additional electrolytic etching; subsequent etching produced no further increase in τ_e . The measured data for the sequence of etching together with reported values of surface recombination velocities produced by these etching solutions on germanium are shown in Table 1.8 The data in Table 1 indicate that there is a close correlation between surface recombination velocity and effective lifetimes when the volume lifetime is large. With the aid of (9), $\tau_s = 39.5$, 4.12, and 63.3 μ sec are obtained for the chemical etch, containing copper nitrate, and electrolytic etches, respectively. If these surface lifetimes are proportionally related to surface recombination velocities as

$$\frac{1}{\tau_s} = Ks \tag{10}$$

values of the geometrical factor, K, can be computed as 63.2, 32.8, and 63.2 cm⁻¹. If the second value is discarded, a geometrical factor of 63.2 cm⁻¹ is applicable for the units described above. Data similar to that shown in Table 1 can be used to obtain geometrical factors for different junction devices. After the geometrical factor of the unit has been determined, measurements of

⁸ A. R. Moore and J. I. Pankove, "The effect of junction shape and surface recombination on transistor current gain," PROC. I.R.E., vol. 42, pp. 907–913; June, 1954. effective lifetime and volume lifetime can be used for determining the surface recombination velocity of completed or partially completed units. Often only a relative comparison of surface treatments is desired. In this case, the geometrical factor need not be determined. The surface lifetime serves as an index of comparison.

Absolute Determination of the Surface Recombination Velocity

It is sometimes necessary to make a direct determination of surface recombination velocity. Thus, the efficacy of the etching solution may be in question, or a new solution may need calibration.

The absolute calibration can be made by using a junction geometry amenable to analysis as carried out by Shockley.⁹ Thus, for the geometry as shown in Fig. 4,

$$s = \frac{1}{\tau_s \left[\frac{1}{B} - \frac{1}{C}\right]}$$
(11)

The dimensions of the sample are not critical. It has been convenient to use wafers whose dimensions are 2A = 0.215 inch, 2C = 0.125 inch and 2B = 0.005 inch.

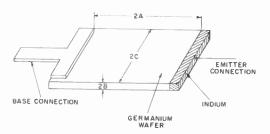


Fig. 4—Device for direct measurement of surface recombination velocity.

The 2A dimension should be chosen several times larger than the volume diffusion length. The 2B dimension should preferably be chosen so as to be the dominant term in (11). In this case then, (11) is valid as long as $s(2B/D) \leq 1$ (D is the diffusion constant for the minority carriers under consideration).

As a typical example of the application of this method of direct determination, several specimens were made with germanium whose volume lifetime was $\tau_v = 700$

⁹ W. Shockley, "The theory of *p*-*n* junctions in semiconductors and *p*-*n* junction transistors," *Bell Sys. Tech. Jour.*, vol. 28, pp. 435– 489; July, 1949. See also W. Shockley, *op. cit.*, pp. 318–325.

usec. The effective lifetime for these specimens averaged 36.5 µsec. Accordingly, using (9), $\tau_s = 38.5$ µsec is computed. Finally, with the aid of (11), s = 320 cm/sec is computed. The surface treatment in question was an electrolytic etch so that this value of s is in good agreement with s = 250 cm/sec that has been previously used (see Table 1).

MEASUREMENT OF BASE-LEAD RESISTANCE

In an alloyed junction device the base-lead resistance, *r*_{bb} is the majority carrier (ohmic) resistance of the semiconductor between the metallic contact to the semiconductor and the region near the actual p-n junction. It is an important factor in the performance of many junction devices.10

The method of measurement to be described below measures a diode base-lead resistance which is generally different from that of the corresponding device operating as a transistor. This difference is due to the dissimilar current distribution within the body of the semiconductor for diode and transistor operation.

The initial drop in the open-circuited junction voltage upon termination of the pulse can be used for the measurement of the resistance. The voltage, $V_{b'b}$, corresponding to the drop across $r_{bb'}$ is shown in Figs. 1 and 3. If the positive amplitude of the generator pulse, V_{g} , is measured, then $r_{bb'} = V_{b'b} R / V_g$, where R is the current limiting resistance in series with the pulse generator. This assumes that the voltage drop across the 6AL5 tube, the voltage across the junction, and the voltage of the series battery are negligible in comparison with the voltage drop across the current limiting resistor. If this assumption is not valid, the junction current just before the pulse is removed can be determined by measuring the appropriate voltage across R with the aid of the differential input to the oscilloscope (see circuit of Fig. 2).

OBSERVATIONS OF REVERSE BIAS WAVEFORM

20

During the course of this work experimental observations were made of the junction recovery voltage under conditions of applied reverse bias. In this case, a reverse bias is applied to the junction immediately after the termination of the forward pulse. The junction waveform under these conditions is observed on an oscilloscope. This type of switched junction operation has been investigated.¹¹⁻¹⁴ Since the interpretation of the observed waveform is somewhat more complex than that of the open-circuited case discussed above, this observation

¹⁰ L. J. Giacoletto, "Study of *p-n-p* alloy junction transistor from dc through medium frequencies," *RCA Rev.*, vol. 15, pp. 506-562;

December, 1954. ¹¹ E. M. Pell, "Recombination rate in germanium by observa-tion of pulsed reversed characteristics," *Phys. Rev.*, vol. 90, pp. 278–

tion of pulsed reversed characteristic 279; April 15, 1953. ¹² R. G. Shulman and M. E. McMahon, "Recovery currents in germanium *p-r.* junction diodes," *Jour. Appl. Phys.*, vol. 24, pp. 1267–1272; October, 1953. ¹³ R. H. Kingston, "Switching time in junction diodes and junction transistors," PRoc. 1.R.E., vol. 42, pp. 829–834; May,

1954.

¹⁴ B. Lax and S. F. Neustadter, "Transient response of a *p-n* junction," Jour. Appl. Phys., vol. 25, pp. 1148-1154; September, 1954.

was not developed into a system for the determination of minority carrier lifetimes. However, qualitative observations made under these conditions may be quite valuable, and in some cases this method of operation is a more sensitive indication of whether or not minority carriers are being injected. A switch is included in the circuit of Fig. 2 to enable this observation to be made. This switch shorts out the 6AL5 diode and bias battery and is labeled "plateau-diode out." The reverse bias is supplied by a blocking condenser in the output of the generator. This condenser becomes charged during the forward pulse. After the forward pulse is terminated, the charged blocking condenser applies a reverse bias to the p-n junction.

Observations of the junction waveform under the conditions of a reverse bias following a forward pulse (see Fig. 5) show first an immediate drop in voltage after the termination of the pulse due to the base-lead resistance.

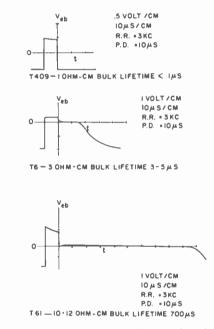


Fig. 5-Variation in plateau length of emitter-base voltage for different base wafer lifetimes.

This is similar to that discussed above in the case of the open-circuited junction voltage. This immediate drop in voltage is generally followed by an extended period of approximately zero voltage after which the reverse voltage across the junction gradually increases in magnitude as the injected carriers recombine and permit the junction to be biased in the reverse direction. The existence of the zero-voltage plateau indicates that minority carrier injection has taken place. These observations can be utilized in a qualitative manner to check for minority carrier injection and as a qualitative observation of the effective lifetime. These effects are illustrated by the experimental observations shown in Fig. 5. This figure shows the experimental waveforms under the reverse bias conditions observed on junction diodes made from

germanium having different volume lifetimes. It is seen that, for the unit made from germanium having a volume lifetime of less than 1 microsecond, there is essentially no plateau region. An appreciable plateau region is observed in the second case for the unit having a volume lifetime between 3 and 5 microseconds. Finally, a rather extended plateau is observed in the third case for a unit made from material having a volume lifetime of 700 microseconds.

APPENDIX I: OPEN-CIRCUITED JUNCTION VOLTAGE

This appendix contains the solution for the open-circuited junction voltage following operation in the forward direction when both holes and electrons with independent lifetimes are considered, and when the movement of these carriers is governed by the one-dimensional continuity equation. The material in this appendix is the work of Dr. D. O. North, RCA Laboratories, Princeton, New Jersey.

The *p*-*n* junction is operated in a forward direction until a steady-state condition is reached, and at time t=0, the forward bias is removed and the open-circuited junction voltage determined as a function of time. The solution for the open-circuited junction voltage when displacement currents are neglected and when the minority carrier density is small compared with the majority carrier density is

$$\frac{e^{\Delta V(t)} - 1}{e^{\Delta V_0} - 1} = \frac{J_p}{J_p - J_n} \left[1 - \operatorname{erf} \sqrt{\frac{t}{\tau_p}} \right] - \frac{J_n}{J_p - J_n} \left[1 - \operatorname{erf} \sqrt{\frac{t}{\tau_n}} \right] + \frac{\sqrt{J_n J_p}}{J_p - J_n} \sqrt{A} e^{-Bt} \left[\operatorname{erf} \sqrt{\frac{J_n}{J_p} A} \frac{t}{\tau_p} - \operatorname{erf} \sqrt{\frac{J_p}{J_n} A} \frac{t}{\tau_n} \right], \qquad (12)$$

where

$$A = \frac{J_p J_n(\tau_p - \tau_n)}{J_p^2 \tau_p - J_n^2 \tau_n},$$
 (13)

$$B = \frac{J_p^2 - J_n^2}{J_p^2 \tau_p - J_n^2 \tau_n},$$
 (14)

and the various quantities have the following meaning:

- $\Lambda = \frac{q}{kt}$ of suitable sign so that ΛV_0 is a positive quantity.
 - = open-circuited junction
- V(t) =open-circuited junction voltage following t = 0,
- $V_0 =$ forward junction voltage at t = 0.
- τ_n, τ_p = electron and hole lifetimes in *p*-type and *n*-type semiconductors, respectively.

$$J_n = n_p \sqrt{\frac{D_p}{\tau_n}} =$$
thermally generated electron

current density in *p*-type semiconductor.

$$J_p = p_n \sqrt{\frac{D^n}{\tau_p}} =$$
thermally generated hole cur-

rent density in *n*-type semiconductor.

- n_p , p_n = electron and hole density present in p-type and n-type semiconductors respectively under equilibrium condition.
- D_n , D_p = electron and hole diffusion constant in p and n semiconductors respectively.

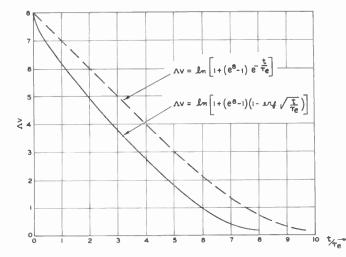
$$\operatorname{erf} y = \frac{2}{\sqrt{\pi}} \int_0^u e^{-x^2} dx.$$

The solution given above is applicable to the general case where the n-type and p-type semiconductors have arbitrary characteristics. Certain special cases can now be considered.

1. If neither $\tau_n \rightarrow 0$ or $\tau_p \rightarrow 0$ and n_p and p_n remain finite, then respectively $J_n \rightarrow \infty$ or $J_p \rightarrow \infty$ and V(t) = 0. This is the case when the minority carrier lifetime in either semiconductor approaches zero.

2. If $J_n \rightarrow 0$ by $n_p = 0$, then

$$\frac{e^{\Delta V(t)}-1}{e^{\Delta V_0}-1}=1-\operatorname{erf}\sqrt{\frac{t}{\tau_p}}.$$


Since $n_p p_p = n_i^2 = a$ constant, $n_p \rightarrow 0$ is the same as $p_p \rightarrow \infty$. This is the case of the conductivity of the *p*-type semiconductor being infinitely large. In this event the minority carrier lifetime, τ_n , can be arbitrarily small provided only that $J_n \rightarrow 0$. The same limit solution is obtained if $J_n \rightarrow 0$ by $\tau_n \rightarrow \infty$. Due to the symmetry of (12), the solution for $J_p \rightarrow 0$ is obtained by interchanging τ_n for τ_p .

3. If
$$\tau_p = \tau_n = \tau$$
, then

$$\frac{e^{\Delta \Psi(t)}-1}{e^{\Delta \Psi_0}-1}=1-\operatorname{erf}\sqrt{\frac{t}{\tau}},$$

irrespective of the values of J_n and J_p . 4. If $J_n = J_p$, then

$$\frac{e^{\Delta V(t)} - 1}{e^{\Delta V_0} - 1} = 1 - \frac{1}{2} \left[\operatorname{erf} \sqrt{\frac{t}{\tau_p}} + \operatorname{erf} \sqrt{\frac{t}{\tau_n}} \right]$$
$$- \frac{1}{2} \left[\operatorname{erf} \sqrt{\frac{t}{\tau_p}} - \operatorname{erf} \sqrt{\frac{t}{\tau_n}} \right]$$
$$\cdot \left[\frac{\tau_p + \tau_n}{\tau_p - \tau_n} + \frac{4t}{\tau_p - \tau_n} \right]$$
$$+ \frac{2}{\sqrt{\pi}(\tau_p - \tau_n)} \left[\tau_n \sqrt{\frac{t}{\tau_n}} e^{-t/\tau_n} - \tau_p \sqrt{\frac{t}{\tau_p}} e^{-t/\tau_p} \right]$$

1955

4

Fig. 6—Comparison of voltage decay for exponential and error function time dependency.

Case 2 is the solution applicable to the operation considered herein. This solution differs from the solution given in (6) which states that

$$\frac{e^{\Delta V(t)}-1}{e^{\Delta V_0}-1}=e^{-t/\tau_p}.$$

When the injected minority carrier density is small, the voltage decay does have a form similar to that given by the error function solution as shown in Fig. 6 for an arbitrary case of $\Lambda V_0 = 8$. For a somewhat larger minority carrier injection level, the voltage decay has more nearly the form of that given by the exponential solution also shown in Fig. 6 for comparison. At still larger minority carrier injection the voltage decay exhibits a "hump" as described in the text.

Understanding the Gyrator*

The gyrator, postulated by Tellegen¹ as a new nonreciprocal network element, is attracting the attention of network theorists nowadays. Shekel² has shown that a fourpole network with nonreciprocal admittance matrix $||Y_{ij}||$ can be separated into the parallel combination of a reciprocal network and a gyrator (Fig. 1) of gyrating admittance $\gamma = (Y_{12} - Y_{21})/2$, i.e.

$$\|Y_{ij}\| = \left\| \begin{array}{cc} Y_{11} & Y_{12} - \gamma \\ Y_{21} + \gamma & Y_{22} \end{array} \right\|$$
$$+ \left\| \begin{array}{cc} 0 & \gamma \\ -\gamma & 0 \end{array} \right\|.$$

Carlin³ has found the necessary and sufficient conditions for the synthesis of nonreciprocal networks by means of reciprocal networks and real gyrators.

The gyrator's physical significance can be seen from the equivalent circuit of Fig. 2 with admittance matrix $||Y_{ij}||$; for an arbitrary value of the admittance Y_2 there follows:

$$\begin{array}{ll} Y_1 \,=\, Y_{11} \,-\, Y_2, & Y_3 \,=\, Y_{22} \,-\, Y_2 \\ I' \,=\, (Y_{12} \,+\, Y_2) \,V_2, & I'' \,=\, (Y_{21} \,+\, Y_2) \,V_1. \end{array}$$

* Received by the IRE. January 6, 1955. ¹ B. D. H. Tellegen, "The Gyrator, a New Electric Network Element," Philips Res. Rep. 3, pp. 81-101; 1948.

Network Liencer, and 1948. * J. Shekel, "The gyrator as a 3-terminal element," PRoc. I.R.E., vol. 42, pp. 1014-1016; August, 1953. * H. J. Carlin, "Theory and Application of Gyrator Networks," Polytechnic Inst. of Bklyn., Res. Rep. 289; March, 1954. Considering separately the system of two current generators it is seen that its total input power is Re $(Y_{12}+Y_2+Y_{21}^*+Y_2^*)V_1^*V_{2*}$

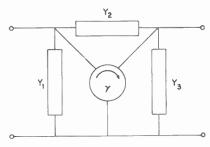


Fig. 1—Separation of a gyrator from a nonreciprocal network.

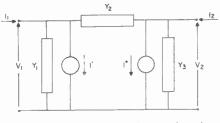


Fig. 2— π -equivalent circuit of a nonreciprocal network.

If in particular $Y_2 = -(Y_{12} + Y_{21})/2$, this power is zero and the system (I', I'') reduces to the gyrator.

Similarly, starting from the network's impedance matrix $||Z_{ij}||$ and assuming an equivalent circuit of the type of Fig. 3, there follows for an arbitrary value of the impedance Z_2

$$Z_1 = Z_{11} - Z_2 \qquad Z = Z_{22} - Z_2$$
$$V' = (Z_{12} - Z_2)I_2 \qquad V'' = (Z_{21} - Z_2)I_1.$$

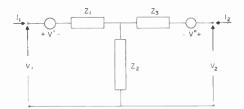


Fig. 3-T-equivalent circuit of a nonreciprocal network.

In particular, if $Z_2 = (Z_{12} + Z_{21})/2$, the system of two voltage generators reduces to a gyrator of gyrating impedance $\zeta = (Z_{21} - Z_{12})/2$.

These considerations suggest methods of simple realization of gyrators by means of current or voltage generators.

> L. M. VALLESE Elec. Engng. Dept. Polytechnic Inst. of Bklyn. Brooklyn 1, N.Y.

Effect of Heisenberg's Principle on Channel Capacity*

The limitations imposed by thermodynamics on the amount of energy necessary to transmit one bit of information, has been discussed by Felker and Pierce.¹ A minimum of $kT \log_{2} ergs$ per bit was obtained. k is Boltzmann's constant, and T is absolute temperature.

Professor Fano has suggested that Heisenberg's principle may affect channel capacity.

The following analysis shows that the energy necessary to transmit one bit is not appreciably increased by quantum mechanical considerations, providing that

$$w\ll \frac{2}{3\pi}\,\frac{kT}{h}$$

w is the channel bandwidth in cycles per second and h is Planck's constant.

Consider a simple channel of bandwidth w, with a signal power per cycle of s/wergs, and a noise power per cycle of N/wergs. In order to optimize efficiency, we shall assume $N > > s.^1$

A single measurement of the signal by the receiver will, according to quantum mechanics, involve some uncertainty in its energy. Let this uncertainty in energy be denoted by e. It will contribute the equivalent of less than 2ϵ ergs of additional noise power per cycle.

Associated with this energy uncertainty is an uncertainty of time of measurement, which we will call r. Heisenberg's principle states that

$$\tau = \frac{h}{\epsilon}$$

is about the most accurate in time-of-measurement we can obtain.

To find the power of the noise equivalent to the time-of-measurement uncertainty, consider that one is observing an equivalent of signal-plus-noise of flat spectrum

$$G(f) = \frac{s}{w} + \frac{N}{w} + 2\epsilon$$
 ergs,

extending from f = 0 to f = w.

Measuring the signal at time $t-\tau$, and using this measurement as an estimate of the value of the signal at time t, will almost always result in some error. The size of this error is the same as the amplitude of the difference between the original signal and the output of a hypothetical delay circuit of delay time τ , into which the signal could be fed

The delay circuit is of frequency re-**SDORSE**

The error signal can be obtained from the original signal, by subjecting it to a filter of frequency response

$$1 - e^{2\pi i \tau f}$$

Received by the IRE, October 4, 1954; revised manuscript received, November 26, 1954.
 J. H. Felker, "A link between information and energy," PROC. I.R.E., vol. 40, pp. 728-729; June, 1952.

The spectrum of the error will be

$$\left(\frac{s}{w}+\frac{N}{w}+2\epsilon\right)|1-e^{2\pi i\tau f}|^2.$$

To find the error power per cycle, we integrate this spectrum over all frequencies at which the signal exists, and divide by w, obtaining

$$\frac{1}{w}\int_0^w |1-e^{2\pi i\tau f}|^2 \left(\frac{s}{w}+\frac{N}{w}+2\epsilon\right) df$$

additional ergs of "noise" power per cycle.

Although the error in time of measurement will not always be τ , but will have a probability distribution of zero mean and width τ , a more exact treatment results only in an unimportant scale factor of the order of unity.

We may approximate this integral rather well by

$$\frac{4\pi^2}{3}N\tau^2,$$

 $s \ll N$, $2\pi w \tau \ll 1$

and

if

$$2\epsilon \ll \frac{N}{w}$$
.

The total additional noise contribution due to both energy and time uncertainties is

$$\frac{4\pi^2}{3}Nw\tau^2 + 2\epsilon = \frac{4\pi^2}{3}Nw\frac{h^2}{\epsilon^2} + \epsilon.$$

Since we may make e arbitrary, let us choose it so that this total additional noise is minimized. We obtain

$$\epsilon = \left(\frac{4\pi^2}{3} Nwh^2\right)^{1/3} \text{ ergs.}$$

The total equivalent increase in noise power then becomes

$$3\left(\frac{4}{3}\pi^2 Nwh^2\right)^{1/3}$$
 ergs.

If this noise is to contribute negligibly to the channel equivocation, it must be much less than N/w, the ordinary thermal noise power per cycle, that is

$$3\left(\frac{4}{3}\pi^2 Nwh^2\right)^{1/3}\ll \frac{N}{w}$$

or

$$6\pi wh \ll \frac{N}{w}$$

Since $N/w = 4kT^1$, we obtain

$$w\ll \frac{2}{3\pi}\,\frac{kT}{h}\,.$$

From purely dimensional considerations, it can also be shown that additional channel equivocation approaches zero, as wh/kT approaches zero, but no clear indication could be obtained as to the relative rates of approach.

Using T = 300 degrees absolute, we find $w < <1.6 \times 10^{19}$ cycles per second at room temperature.

This limitation on bandwidth is not serious from a practical standpoint, but even if one did want to transmit information faster than this, it would be possible to use

several independent channels in parallel, keeping the bandwidth of each below the limit, and still obtain an over-all channel capacity in excess of that suggested by the formula.

From the foregoing, it appears that Heisenberg's principle imposes no additional efficiency limitations on information channels.

> R. J. Solomonoff Technical Research Group 56 West 45 Street New York, N. Y.

On Entropy Equivalence in the Time- and Frequency-Domains*

Shannon^{1,2} has found two different expressions for the entropy of a discrete, stationary, gaussian time series, by analysis in the time- and frequency-domains, respectively. It is interesting to note that by equating these two results a relationship is obtained which is of use in evaluating certain high-order determinants. This relation was first found by Szegö,3 and has recently been derived independently by Whittle^{4,6} using a different procedure. Thus we have the pleasing example of a rather obscure identity which can now be explained heuristically by an information-theoretic argument. Further, a result of Kolmogoroff⁶ and Wiener7 on the extrapolation of a discrete stationary time series can be seen to be a natural consequence of entropy considerations.

Using Shannon's expression for the entropy of an *n*-dimensional gaussian distribution, we have for the entropy per term, or per degree of freedom, H, of the discrete time series \cdots , x_{-1} , x_0 , x_1 , \cdots ,

$$H = \lim_{n \to \infty} \frac{1}{n} \log \left[(2\pi e)^{n/2} \right] a_{ij}^{(n)} |^{1/2}], \quad (1)$$

where $|a_{ij}^{(n)}|$ is the determinant whose elements are a_{ij} :

$$a_{ij} = \overline{x_i x_j} = \phi(|i - j|); i, j = 1, \cdots, n. (2)$$

Filias^a gives an expression similar to (1).

Elias[®] gives an expression similar to (1): $= \lim_{n \to \infty} \frac{1}{n} \log \left[\frac{2}{2n} + \frac{2}{n} + \frac{2}{n}$

$$H = \lim_{n \to \infty} \frac{1}{2} \log \left[(2\pi e) \left| a_{ij}^{(n)} \right| / \left| a_{ij}^{(n-1)} \right| \right].$$
(3)

Now let

$$F(f) = \begin{cases} \sum_{k=-\infty}^{+\infty} \phi(k)\epsilon_k \cos 2\pi fk; \ 0 \leq f \leq 1, \\ \epsilon_k = \begin{cases} 1; \ k = 0 \\ 2; \ k \neq 0 \end{cases}$$
(4)

0; elsewhere.

* Received by the IRE, December 27, 1954. The research in this paper was supported jointly by the Army, Navy and Air Force under contract with Mass. Inst. of Tech.
* C. E. Shannon, "A mathematical theory of communication," Bell Sys. Tech. Jour., vol. 27, pp. 379 and 623; October, 1948.
* Ibid., section 22.
* G. Szegó, "Beiträge zur Theorie der Toeplitzchen Formeln," Math. Zeit., vol. 6. p. 167; 1920, and vol. 9, p. 167; 1921.
* P. Whittle, "Hypothesis Testing in Time Series Analysis," Almquist & Wiksella AB, Uppsala, Sweden; 1951.

Analysis, "Almquist & Wiksens A.J., Opperformation of the series analysis,"
P. Whittle, "Some results in time series analysis,"
Skandinavisk Aktuarietidskrift, vol. 1, p. 48; 1952.
A. H. Kolomogoroff, "Sur l'interpolation et extrapolation des suites stationnaires," Compt. Rend. (Paris), vol. 208, p. 2043; 1939.
See also Bull. Acad. Sci. (URSS), vol. 5, p. 3; 1941.
T. N. Wiener, "The Extrapolation, Interpolation and Smoothing of Stationary Time Series with Engineering Applications," Technology Press; 1949.

1955

72 -

$$\phi(k) = \int_0^{\perp} F(f) \cos 2\pi f k \, df. \tag{5}$$

Applying Shannon's expression² for the entropy per degree of freedom of a gaussian process with limited spectrum, we find

$$H = \frac{1}{2} \int_{0}^{1} \log \left[2\pi e \ F(f) \right] df.$$
 (6)

Equating (1) and (6),

$$\lim_{n \to \infty} |a_{ij}^{(n)}| = \exp\left\{n \int_0^1 \log F(f) \, df\right\}, \quad (7)$$

a result obtained by Szegö³ and Whittle.^{4,5} They have also obtained the result of equating (3) and (6),

$$\lim_{n \to \infty} \left[\left| a_{i_I}^{(n)} \right| / \left| a_{i_I}^{(n-1)} \right| \right]$$
$$= \exp \left\{ \int_0^1 \log F(f) \, df \right\}, \qquad (8)$$

a limit postulated by Polya in 1915.

Finally, using a suggestion of Elias.8 we may employ the Kolmogoroff-Wiener6,7 prediction theory to determine the entropy of a time series term when all preceding terms are known This entropy, for a gaussian process, is given by (3), but is also given by

$$II = \frac{1}{2} \log 2\pi e\sigma^2, \qquad (9)$$

where σ^2 is the variance of the irreducible error of the Kolmogoroff-Wiener procedure. This variance is found by Kolmogoroffe and Wiener⁷ to be

$$\sigma^2 = \exp\left\{\int_0^1 \log F(f)df\right\}.$$
 (10)

Substituting (10) in (9), we obtain (6). Thus expression (10) may now be understood intuitively. Further, we have a simple demonstration, on information-theoretic grounds, of the well-known result that linear prediction is optimal for a gaussian time series. ROBERT PRICE

Lincoln Laboratory Mass. Inst. of Tech. Cambridge, Mass.

⁸ P. Elias, "A note on autocorrelation and en-tropy," PROC. I.R.E., vol 39, p. 839; July, 1951.

Beam-Hugging Plates for Unlimited Cathode Ray Deflection*

The need to present rapid single events with adequate brightness on a cathode-ray oscilloscope has driven tube makers to adopt signal deflecting plates which limit the picture height to a 2-inch on a 5-inch screen. Even such close-spaced plates require about 100 volts for a 2-inch deflection, and wideband amplifiers for much larger undistorted signal output become quite unwieldy.

It is widely believed that increased deflection sensitivity by means of long and close-spaced plates must inevitably be paid for by limiting maximum deflection. But this is not the case if lateral predeflection and twisted beam-hugging plates are used.

₽

How to design such a system can be learned from Fig. 1, showing after the second anode

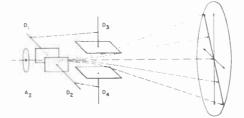


Fig. 1—All possible beam trajectories after subsidiary deflection.

 A_2 two crossed pairs D_1 , D_2 and D_3 , D_4 of parallel plates. Omitting sweep deflection for the moment, and with the signal applied to both pairs connected together, the diagonal deflection is, of course, linearly proportional to signal voltage. The interesting point of the picture is that all possible paths -of which five are shown--of the electron beam form one twisted sheet, nowhere thicker than the beam. Therefore one may proceed in an imagined experiment in the following manner:

- 1. Leave the subsidiary plates D_1 , D_2 unchanged (D_s) .
- 2. Keep the main deflecting plates D_3 , D_4 parallel (D_m) .
- 3. Move D_3 and D_4 closer together, but stop wherever a surface point touches the beam; while
- 4. Simultaneously reducing the signal voltage applied to D_3 and D_4 in the same proportion as they are closer spaced.

With this procedure the deflecting field strength and all paths of the beam remain unchanged. At the end of the experiment both plates D_3 , D_4 will just touch the sheet of possible trajectories on either surface and be twisted like it, parallel to it and to each other. But their close spacing requires much less signal voltage, although no limit is imposed on maximum angle of deflection.



Fig. 2-Top and side view of beam-hugging deflecting plate system.

Fig. 2 shows top and side view of the so developed system D_1 , D_2 combined from D_a and D_m . It is now clear that the subsidiary predeflecting plates D_* were introduced to spread the beam trajectories through the main deflecting plates. Beyond this, their contribution to the total signal deflection is of no importance. The vector diagram Fig.

3(a) shows how the total "vertical" deflection D_{V} is composed of D_{*} and D_{m} . A third pair of plates would provide scanning "horizontal" deflection D_H at right angle to D_V . Actually, the deflection due to the twisted main plates is more accurately represented by the-otherwise similar-diagram Fig. 3(b). The resultant deflecting angle of D_V

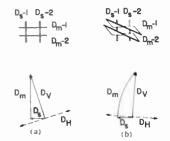


Fig. 3—End-on views of deflecting plates and resulting deflections.

depends on the relative effectiveness of the two pairs D_{n} and D_{m} but, like the shape of the plates, it is permanent for a given design. Fig. 4 shows that only one pair of signal terminals is brought out and that the location of the new sweep deflection plates D_3 , D_4 is as usual.

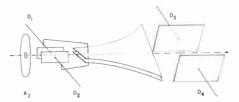


Fig. 4-Complete deflecting plate system.

The surfaces of such close-spaced plates must be accurate and smooth, or inhomogenous fields will de-focus the beam. Defocusing by image charges due to the proximity of the plates need not be feared. A recent study¹ indicates instead that space charge depression due to such plates should rather aid the focus.

A model of a 5-inch tube, 17-inches long, has been tested. The main plates were spaced approx. 0.1-inch for a length of 2.5inches. They had less than 5 $\mu\mu$ f capacity and a sensitivity of about 6v per inch per kv acceleration without limiting full screen deflection. Transit time in such plates should reduce, at 2 kv, the sensitivity by about 4 per cent at 100 mc.

H. E. KALLMANN New York, N. Y.

¹ J. S. Hickey, Jr. and T. G. Mihran, "The spread-ing of an electron beam," Proc. I.R.E., vol. 40, p. 994; August, 1952.

Single-Sideband Transmission without Transient Distortion*

It has long been recognized that each sideband of an amplitude-modulated carrier contributes two components to the detector output signal, an undistorted in-phase com-

* Received by the IRE, December 22, 1954.

^{*} Received by the IRE, December 22, 1954.

ponent and a 90-degree phase-displaced distortion. In double-sideband reception the former contributions add, the latter, being of opposite phase, cancel each other. If only one sideband is transmitted, failure of this cancellation shows up as a distorted transient response.¹ The vestige of the suppressed sideband in vestigial-sideband television systems serves to reduce this fault. It had also been understood² that the distorting out-of-phase component could be entirely eliminated in a synchronous detector whose beat oscillator is locked to the carrier frequency; but this solution seemed impractical at the time.

It would now appear that a very similar problem is being solved in the demodulator for the coloration subcarrier in color television. The essential step is to control the frequency and phase of a synchronous local oscillator by periodically comparing it with the received carrier at a time when that is unmodulated (or perhaps modulated by a known signal).

To suppress single-sideband distortion in television (monochrome or color) then requires the following steps, none of them at the transmitter:

- Use a synchronous second detector, with a stable local oscillator at the nominal video IF carrier frequency.
- Provide a gate circuit that opens when there is no modulation or a welldefined modulation, for instance during the color "burst."
- 3. During gate time compare the second LO in frequency and phase with the received IF carrier as it reaches the second detector.
- 4. The output of the comparison circuit then controls either the frequency of the second LO, or perhaps that of the first LO, so as to minimize the error.

Failure of the system, for instance during warm-up, will merely mean that single-sideband distortion remains as now.

The key to the control of the synchronous oscillator is, of course, the periodic comparison during the synchronizing periods, and any other transmission system that provides such periods of clean carrier can thus be made a single-sideband system without penalty of transient distortion.

Regarding transmission systems that do not provide regular synchronizing intervals, the question remains whether doublesideband transmission with its redundant waste of half the bandwidth is the only possible way to avoid single-sideband distortion. This is not the case. For instance:

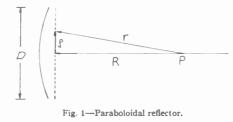
- 1. In a single-sideband system, let there be transmitted two pilot frequencies so chosen and locked that their difference after demodulation is an exact measure of the transmitter carrier frequency; or
- Transmit one pilot frequency so controlled by the whole modulation at the transmitter that after demodulation it yields an exact measure of the true transmitter carrier frequency; or

H. E. Kallmann, R. E. Spencer, and C. P. Singer, "Transient response of single-sideband systems," PROC. I.R.E., vol. 28, pp. 557-563; December, 1940. * Loc. cit., p. 560. 3. In systems where intervals without modulation are sufficiently frequent, even if irregularly spaced, let the gate select such periods for comparison.

Such methods would not now seem very attractive, except for particular applications. On the other hand, phase distortion in a sharply cutting single-sideband filter need not be feared; suitable filters are known.³

H. E. KALLMANN New York, N. Y.

⁸ H. E. Kallmann, "Transversal filters." Proc. I.R.E., vol. 28, pp. 302-310; July, 1940, (see Fig. 7).


Quasi-Fraunhofer Gain of Parabolic Antennas*

The gain of a parabolic antenna over an isotropic radiator may be defined as

$$G = \frac{4\pi P_m}{W}, \qquad (1)$$

where W is the total radiated power and P_m is the maximum radiated power per unit solid angle in the axial direction of the paraboloidal reflector.

Let us assume that the wave is everywhere in-phase at the aperture plane of the considered parabolic antenna (Fig. 1). Since all the wavelets from various parts of the aperture plane do not arrive simultaneously at point P, a phase error exists which will effect the measured value of gain. However, for $R \ge 2D^2/\lambda$, D being the aperture diameter, this phase error is small and the gain measured under this condition may approximate the true Fraunhofer gain, which is the value measured at $R \rightarrow \infty$.

In the practice of parabolic antenna design, tapered aperture illumination is employed for the reasons of optimum over-all efficiency and sidelobe reduction. Wavelets from regions near the edge of the aperture, which are largely responsible for the phase error, are now less weighted due to the tapering in the primary illumination toward the edge. It is the purpose of this note to show how the measured gain varies with *R* for several assumed tapered aperture illuminations. The transition region between the Fresnel and Fraunhofer regions, $D^2/4\lambda < R < 2D^2/\lambda$, is called Quasi-Fraunhofer region.

Assume that aperture illumination is:

$$E = E_0 \left[1 - \left(\frac{\rho}{a}\right)^2 \right]^n, \qquad (2)$$

where a is the aperture radius and n is the tapering constant. If $(\rho/R)^2 < 1$, then we find $r \simeq R + p^2/2R$. Thus the field at P is

* Received by the IRE, September 27, 1954. ¹ S. Silver, "Microwave Antenna Theory and Design," Rad. Lab. Ser., vol. 12, pp. 198-199, McGraw-Hill Book Co., New York, N. Y.; 1949.

$$E_{p} = j \frac{E_{0}}{\lambda R} e^{-jkR} \int_{0}^{2\pi} \int_{0}^{a} \left[1 - \left(\frac{\rho}{a}\right)^{2} \right]^{n} e^{-jk\rho^{3}/2R} \rho d\phi d\rho, \qquad (3)$$

where $k = 2\pi/\lambda$. The corresponding radiation intensity at *P* is

$$P_m = \frac{1}{2}\eta R^2 |E_p|^2.$$
 (4)

The total power radiated by the aperture is

$$W = \frac{1}{2}\eta E_0^2 \int_0^{2\pi} \int_0^a \left[1 - \left(\frac{\rho}{a}\right)^2 \right]^n \rho d\phi d\rho.$$
 (5)

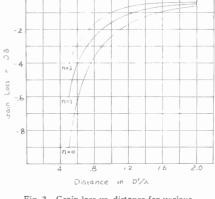
The above integrations may be readily carried out for n = 0, 1 and 2. On substituting (3), (4), and (5) into (1), we obtain

$$G = g_n 4\pi^2 a^2 / \lambda^2$$

where g_n is the gain factor with the following expressions for n = 0, 1 and 2.

$$g_{0} = \frac{1}{K^{2}} [\sin K]^{2}$$

$$g_{1} = \frac{3}{K^{4}} [2 + K^{2} - 2\cos K - 2K\sin K]$$


$$\pi_{2} = \frac{20}{K^{6}} \left[\left(1 - \frac{K^{2}}{2} - \cos K \right)^{2} + (K - \sin K)^{2} \right],$$

in which $K = ka^2/2 R$.

It is not difficult to show that, as $R \rightarrow \infty$, we have the true Fraunhofer gain

$$G_{\infty} = g_{\infty} \cdot \frac{4\pi^2 a^2}{\lambda^2} = \frac{2n+1}{(n+1)^2} \frac{4\pi^2 a^2}{\lambda^2} \cdot$$

The normalized quantities g_0/g_{∞} , g_1/g_{∞} and g_2/g_{∞} are plotted in Fig. 2. It is noted that n=0 is the special case of uniform aperture illumination and the result is the same as that given by Silver.¹

51

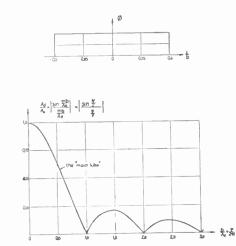
Fig. 2—Grain loss vs. distance for various tapered dish illuminations.

It is seen from Fig. 2 that, at a given distance, the error in the measured gain value is less for the tapered aperture illumination. If the primary feed pattern may be fitted into one of the family curves given by expression (2) for a large part of its major lobe, then Fig. 2 may be used as a correction curve to find the true Fraunhofer gain. This is permissible because the effects of the deviations between the hypothetical illumination [eq. (2)], and the practical primary feed pattern tend to average out in the process of integration.

RICHARD F. H. YANG Andrew Corp. Chicago 19, Ill. It has been shown how Fourier Transforms can be used in a theory of determining the dynamic sensitivity of cathode-ray tubes at VIIF.¹ Using the notations stated in the paper, the relative dynamic sensitivity of a cathode-ray tube is

$$\frac{A_{d}}{A_{0}} = \left| \frac{\int_{-b/2}^{b/2} \phi(x) e^{-j(2\pi_{x}/\lambda_{0})} dx}{\int_{-b/2}^{b/2} \phi(x) dx} \right|.$$
 (1)

The determination of the relative dynamic sensitivity at VHF may be divided into two steps:


1. Determinination of the static field strength distribution $E_{y}(x)$ along the x axis by either calculation or measurement when the forms of the plates are prescribed.

2. Determination of the sensitivity curve by means of the Fourier transform theory. As the electron velocity in the x direction is very nearly constant, $\phi(x)$ is proportional to $E_y(x)$, according to the equation

$$\phi(x) = \frac{d\varphi}{dx} \approx \frac{e}{mv_x^2} E_y(x).$$
 (2)

Knowing $\phi(x)$, the normalized Fourier transform immediately gives the relative dynamic sensitivity A_d/A_0 , choosing a convenient length *l* of the field strength distribution.

Fig. 1 illustrates the well-known case of parallel plates neglecting stray fields and exit displacement.

нĮ

Fig. 1—The distributions of $\phi(x/b)$ and $A_d A_o(b/\lambda_o)$ in the parallel plates case.

In the same way as in the theories of antennas, inhomogeneous lines, time pulses, etc., a law equivalent to the uncertainty relation of Heisenberg determines the limits within which the distributions of the two Fourier transforms may vary. As is well known, the uncertainty relation has the following appearance for a particle with the momentum p in the x direction:

* Received by the IRE, October 28, 1954. ¹ E. Folke Bolinder, *A theory of determining the dynamic sensitivity of cathode-ray tubes at very high frequencies by means of Fourier transforms," *Trans, I.R.E.* PGED, scheduled for early publication.

$$\Delta p \cdot \Delta x \approx h, \qquad (3)$$

where h = Planck's constant and the sign \approx means "is proportional to and is of the order of"

Using the connection

$$=\frac{h}{\lambda}$$
, (4)

we obtain the corresponding formula for waves:

$$\Delta \frac{1}{\lambda} \cdot \Delta x \approx 1. \tag{5}$$

In the theory of cathode-ray tubes we get

$$\Delta \frac{1}{\lambda_{\theta}} \cdot \Delta x \approx \text{ constant}, \qquad (6)$$

$$\Delta \frac{l}{\lambda_o} \cdot \Delta \frac{x}{l} \approx \text{constant.}$$
 (7)

Here $\Delta(l/\lambda e)$ = the width of the A_d/A_0 distribution, and $\Delta(x/l)$ = the width of the ϕ distribution. *l* must be constant in all cases to be compared.

As the electron velocity v_x is constant through the deflection field, (6) may be written

$$\Delta \frac{v_x}{\lambda_\theta} \Delta \frac{x}{v_x} \approx \text{ constant}$$
 (8)

or

$$\Delta f \cdot \Delta \tau \approx \text{constant},$$
 (9)

where τ is the electron transit time.

It is thus evident that the relative dynamic sensitivity is increased if the lengths of the plates are decreased, or if the electron velocity is increased. In the limiting case, when $\Delta \tau \rightarrow 0$, we obtain theoretically a field strength distribution in the form of a mathematical Dirac-pulse which corresponds to a horizontal A_d/A_0 distribution, i.e., a cathode-ray tube having the same relative sensitivity for all frequencies. However, at the same time the absolute sensitivity is approaching zero. This has been counteracted in modern cathode-ray tubes having small plates by using large distances between the plates and the screen and accelerating the electrons after deflection.

E. FOLKE BOLINDER Division of Radio Engineering The Royal Institute of Technology Stockholm, Sweden

Intrinsic Barrier Transistor*

A new junction transistor, the *p*-*n*-*i*-*p* has recently been described.¹ Included in its structure is a thick collector-depletion layer of intrinsic (*i*-type) semiconductor. Theory predicted the extension of the useful frequency range of junction transistors by greatly reducing collector capacitance, while maintaining low ohmic base resistance and high collector breakdown voltage.

Transistors have recently been constructed using laboratory techniques which

* Received by the IRE, October 29, 1954. 1 J. M. Early, *P-N-I-P and N-P-I-N junction transistor triodes," Bell Sys. Tech. Jour., vol. 33, p. 517; May, 1954.

verify details of the theory. Alpha cutoff
frequencies
$$(f_{\alpha} - 3 db)$$
 in the 50- to 100-mc
range, collector capacitances in the 0.3 to
0.7mmf range, ohmic base resistances be-
tween 100 and 200 ohms, and collector
breakdown voltages greater than 100 volts
have been obtained. The best unit produced
thus far oscillates stably at 465 mc.

As shown in Fig. 1, collector capacitance

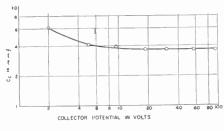


Fig. 1. p-n-i-p collector capacitance.

characteristically decreases with initial increase of collector bias and then becomes constant at higher voltage, as expected from theory. Collector reverse cutoff current (I_{co}) , nominally below $20\mu a$ at 100v bias, increases 4.5 per cent per degree C. temperature rise. A concurrent study of small area *p-i-n* diodes with series ohmic resistances of less than 1 ohm showed a dynamic forward impedance of 2(kT/qI) (52 ohms at 1 ma). Again, this result agrees with theory.³

W. C. HITTINGER, J. W. PETERSON, and D. E. THOMAS Bell Telephone Labs., Inc. Murray Hill, N. J.

² R. N. Hall, "Power rectifiers and transistors," PROC. I.R.E., vol. 40, pp. 1512-1518; November, 1952.

Checking Codes for Digital Computers*

There has been considerable interest recently in the representation of decimal digits in digital computers by binary expressions. The most general binary code consists of ten arbitrary binary expressions assigned to the decimal digits in some order. The most obvious code is the so-called 8421 code, which represents the decimal digit n by the number n written in the binary scale. A more useful code is the excess 3, which represents the decimal digit n by the binary number n+3. Its advantage is the property of nines—complementing by interchange of zeros and ones.

While the n + 3 code is simple and useful, requiring only four binary digits, and having a simple addition rule in addition to the complementing property, it does not allow of a check. This letter reports the results of a study of checking codes made at the Moore School, University of Pennsylvania, in 1950–1951, on contract with the Burroughs Adding Machine Co., by Morris Plotkin and myself.

A "check," in the sense used here, is an examination of the expressions at a given point in the machine to determine whether

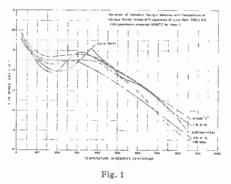
• Received by the IRE, November 12, 1954.

or not they belong to the code. If such an examination is to detect even a single error in a binary digit, the code must be so constructed that no code expression can be changed into another by a single error. It is convenient to define the "distance" between two binary expressions as the number of binary digits in which they differ. Thus, the expressions 1101 and 0011 are at distance three. A code is then said to be of distance d if the minimum distance between any two of its ten expressions is d. A code must, therefore, be of distance 2 or greater to qualify as a checking code. A code of distance d will give an alarm if d-1 or fewer errors occur simultaneously in a single expression.

The question then arises of constructing checking codes of distance 2, 3, etc., which retain the desirable addition and complementing properties of the n+3 code. It can be shown that a code must be of the form an+b if addition is to be realizable through binary addition of the code expressions, with at most a constant additive correction (an additional correction is allowed in case of decimal carry). This requirement can be pictured as uniform spacing (with spacing n) of the code expressions in the list of consecutive binary numbers. The complementing property simply amounts to symmetrical spacing of the code expressions about the center line, for a given number of binary digits. Both points are illustrated in Table I, below, by the n + 3 code, which is of distance 1, with four binary digits:

TABLE 1

Decimal Digit n	n+3	Binary Expression
	0	0 000
	1 2	0 001
	2	0 010
0	3	0 011
1	4	0 100
2	5	0 101
1 2 3 4	3 4 5 6 7	0 110
4	7	0 111
5	8	1 000
6	9	1 001
5 6 7 8	10	1 010
8	11	1 011
9	12	1 100
	13	1 101
	14	1 110
	15	1 111


Naturally, it is desirable to use as few binary digits as possible in constructing a code. It is known that a code of distance 2 requires at least five binary digits, and a code of distance 3 at least seven. For the case of distance 2, the only five binary digit code with all properties is the 3 n+2 code. This code has the additional useful property of using all expressions of the form 3 n+2 in five binary digits, thus making for a simple checking process. Unfortunately, no comparable situation exists for distance 3 codes in seven binary digits-it is necessary to go to eight digits, making admissible the 27 n+6 code which has all properties, including the property of using all expressions of the form 27 n + 6 in eight digits. But before dismissing the possibility of an acceptable distance 3 code in seven digits, several variations on the an+b form were investi-

gated, including codes whose expressions fall into two blocks of five each, with the same spacing in each block, and codes consisting of the 8421, excess 3, or 2421 nonchecking codes plus a three-digit check, which is added separately (though it is permitted to receive a carry correction). It was shown that no such possibility exists. Therefore, unless more complicated addition laws than the ones considered are found to be usable, the 27 n+6 code is the most desirable code of distance 3. It and the 3 n+2code are believed to be new.

> JOSEPH M. DIAMOND United Transformer Company 150 Varick Street New York 13, N.Y.

"Valve Noise Produced by Electrode Movement"*

With reference to the above paper,¹ a formula for cathode resonance following eq. (30) was given assuming 19.9×10¹¹ dynes per square centimeter as Young's Modulus. This is the value at 20 degrees C. Since the cathode operating temperature is about 825 degrees C., the Young's Modulus corresponding to this temperature should be used.

As shown in Fig. 1, a considerable change in the Modulus occurs with increasing temperature. The curves shown are for grade "A" nickel, no. 220 alloy (melt #66), no. 499 alloy, 1 per cent and 4 per cent tungstennickel alloy.

Assuming a value of 15.25×10^{11} for no. 220 alloy at 825 degrees C., (30) reduces to:

$$f_{220} = \frac{1.24 \times 10^{5} (r_{1}^{2} + r_{2}^{2})^{1/2}}{1^{2}}.$$

The specimens plotted on the curves were measured by the transverse vibration method. The specimens were made with a cross section and length for resonance at 500-700 cps. The effect of higher frequencies is to lower the dynamic modulus at elevated temperatures. As lower frequencies are used, the modulus approaches that obtained by static testing. The highest value of modulus at cathode-operating temperatures will be that of a single crystal. Fine-grained nickel appears to have a somewhat lower modulus.

I am indebted to Mr. Richard L. Hoff, Assistant Development Metallurgist, Supe-

* Received by the IRE, June 6, 1954. ¹ P. A. Handley and P. Welch, "Valve noise pro-duced by electrode movement." PROC. I.R.E., vol. 42, pp. 565-563; March, 1954.

rior Tube Company, Norristown, Pa., for this data and information.

> **JOHN J. GLAUBER** 1800 North Huntington Street Arlington 5, Va.

Rebuttal²

In the derivation of the formula for calculating the resonant frequency of a cathode, reference was made to the original empirical relationship for the resonant frequency of nickel rods supported by mica insulators and the value of Young's Modulus at 20 degrees C. was used in the absence of further information

We are indebted to Mr. Glauber for his graph showing the change in Young's Modulus with temperature. It is of interest that this change depends upon the type of cathode nickel used and that therefore the resonant frequency must be modified by the ratio of the square root of this value to that of the square root of 19.9×10 inches.

During our investigational work we have not observed the effects of cathode resonance and you will note that the noise frequency diagrams do not show them. For this reason we have concluded that the actual resonant frequency of cathodes in miniature valves is generally so high that it does not affect the valve performance in the same way as the lower frequency grid resonances and low frequency rattle noises. However, the fact that cathode resonance will be lower than that given by the empirical relation by about 10-15 per cent shows that this could be a source of trouble if long thin cathodes were used.

> P. A. HANDLEY and P. WELCH Brimar Valve Eng. Dept. Standard Telephones & Cables Ltd. Fortscray, Kent, Eng.

* Received by the IRE. July 15, 1954.

Russian Vacuum-Tube Terminology*

In a note under the above heading, on page 1023, vol. 42, of the June, 1954 Pro-CEEDINGS OF THE I.R.E., G. F. Schultz makes two statements which, to me, born and educated in Russia, appear not to be strictly correct.

The first statement is that "Russia has no 'h,' and this letter is commonly transliterated as I' (g) in words of non-Slavic origin." The Russian language has a letter corresponding to "h." It is "x," and can be seen as the first letter of the Russian equivalent for the word "characteristics," as given by Mr. Schultz: it is a soft "h," as in "home," and in this way different from the hard "x" or "chi" of the Greek.

The second is that "Russian has no equivalent to the English 'plate'." There is a Russian equivalent to the term "plate." It is "Пластинка," phonetically spelled "plastinka," and not infrequently found in Russian technical literature.

> I. G. MALOFF RCA Camden, N. J.

* Received by the IRE. December 8, 1954.

Correspondence

Continuous Radar Echoes from Meteor Ionization Trails*

It is now established that there is a scattering medium in the E-region of the ionosphere which supports extended-range vhf radio propagation.12 That is, when sufficient power is used, a substantially continuous signal can be propagated over medium distances (500 to 2000 km) at frequencies (30 to 100 mc) which are above the "maximum-usable-frequencies" of the regular ionospheric layers. The exact nature of the scattering process has never been adequately demonstrated. The principal theories offered in explanation of E-region scatter are: (1) scattering from "blobs" of ionization which may be created by turbulence;1,3 and (2) overlapping of reflections from numerous meteor ionization trails.2.4.5

We are here proposing a simple experimental method of determining the relative contributions of (1) and (2) to E-region scatter. On the basis of measurements taken in a preliminary application of this method, we conclude that extended-range vhf propagation may be almost entirely supported by reflections from meteor ionization trails.

If the scattering medium consists of a horizontal layer of blobs formed by isotropic turbulence, the number of scatterers in a narrow radar antenna beam varies as R³, where R is the range to the illuminated scatter region. (As used here, the term radar implies that the transmitter and receiver are at the same location.) The power scattered from each blob would vary as R^{-4} , so that the integrated power received from the illuminated region would be proportional to R^{-1} . Thus, the maximum radar response from blobs formed by isotropic turbulence would be obtained when the antenna beam is pointed vertically.

If the scattering medium consists of numerous meteor trails, the antenna elevation angle giving the strongest integrated radar echo is different from that required for blobs. The number of meteor trails illuminated by the narrow beam varies as R^3 . These trails, being long and thin, produce strong echoes only when they are normal to a ray from the radar. The power reflected from an individual trail which is so oriented is proportional to R^{-3} . It has been shown that the number of properly-oriented trails in a limited volume of the E-region is dependent upon the location of this volume relative to the radar site.4 In particular, very few metcor reflections can be obtained

* Received by the IRE. January 10, 1955. This work was supported by the U.S. Navy (Office of Naval Research), the U.S. Army Signal Corps, and the U.S. Air Force, Contract Noon-251 Task 7.
* D. K. Bailey, R. Bateman, L. V. Berkner, H. G. Booker, G. F. Montgomery, E. M. Purcell, W. W. Salisbury, and J. B. Wiesner, "A new kind of radio propagation at very high frequencies observable over long distances," *Phys. Rev.*, vol. 86, pp. 141-145; April, 1952.
* O. G. Villard, Jr., A. M. Peterson, L. A. Maning, and V. R. Eshleman, "Extended range radio transmission by oblique reflections from meteoric ionization," *Jour. Geophys. Res.*, vol. 58, pp. 83-93; March, 1953.

transmission by oblique reflections from meteoric ionization," Jour. Geophys. Res., vol. 58, pp. 83-93;
* H. G. Booker and W. E. Gordon, "A theory of radio scattering in the troposphere," PROC. I.R.E., vol. 38, pp. 401-412; April, 1950.
* V. R. Eshlennan and L. A. Manning, "Radio communication by scattering from meteoric ionization," PROC. I.R.E., vol. 42, pp. 530-536; March,

PROC. I.R.E., vol. 42, pp. 530-536; March,

100. PROC. I.K.E., Vol. 42, pp. 530-530; March, 1954, 5 D. W. R. McKinley, "Dependence of integrated duration of meteor ecloses on wavelength and sensi-tivity," *Can. Jour. Phys.*, vo. 32, pp. 450-467; July. 1954.

from an area directly over the radar, since there are very few horizontal meteor trails. The maximum number of properly-oriented trails per unit volume occurs in those areas of the E-region which are about 100 km away from the point over the radar site. It follows that the radar antenna beam should be elevated about 45 degrees from the horizontal to obtain the maximum integrated response from meteor ionization trails.

Weak radar echoes have been observed from what appears to be a scatter region by groups at Ottawa⁶ and Saskatoon,⁷ Canada. The relative effect of the elevation angle of the antenna beam was not studied by either group. The experimental results obtained at these locations, when considered in terms of the antenna effects outlined above, appear to provide conflicting evidence on the cause of the echoes. The possibility of auroral effects also makes it difficult to use these results to differentiate between meteoric and other types of scatter.

A number of attempts were made at Stanford University during the summer of 1953 to detect E-region scatter with a radar system. The frequency used in the Stanford tests was 23 mc, and the average radiated power was about 2 kw. Range gating, coherent detection, and narrow bandwidth were used in the receiver for increased sensitivity.8 On those occasions when a high-gain, vertically-directed antenna was used, continuous scatter signals could not be detected at any range. On the other hand, continuous signals were readily observable when a fairlybroad antenna beam having maximum gain at an elevation angle of about 45 degrees was used. In this latter instance, the range gate was set to approximately 140 km.

In the experiments where the everpresent scatter echoes were recorded, strong individual meteor-bursts were very much in evidence. The remainder of the signal fluctuated randomly, as would be expected if it were due to the integrated effect of many small-amplitude, short-duration echoes occurring at random times. The characteristics of the continuous signal observed between the individually-discernible, larger meteor bursts is not of much help in explaining the nature of the scattering process, owing to the random nature of the integrated resultant whatever the causative agency. The fact that a continuous signal could not be obtained from overhead, whereas it could easily be obtained from more remote E-region areas, is regarded as evidence that overlapping meteor echoes were responsible for the total signal in the second case. From the wavelength and distance dependence of the signal amplitude measured in existing vhf propagation circuits,9 and the dependence of meteoric reflections on wavelength and path length,⁴ the conclusion is drawn that these preliminary radar results

⁶ D. W. R. McKinley and P. M. Millman, "Long duration echoes from aurora, meteors, and ionospheric back-scatter," *Can. Jour. Phys.*, vol. 31, pp. 171-181;

Back-scatter, Can. Sour. 1 Mys., vol. 31, pp. 11–101, 7 P. A. Forsyth, B. W. Currie, and F. E. Vawter, "Scattering of 56-mc/s radio waves from the lower ionosphere," Nature, vol. 171, pp. 352–353; February,

1953.
* P. B. Gallagher and A. M. Peterson, "Ionosphere sounding by cross-correlation techniques," paper presented at the Western Electronic Show and Convention, San Francisco, Calif.; August 21, 1953.
* D. K. Bailey, talk presented at the 11th General Assembly of URSI, The Hague. Netherlands; August 30, 1954.

provide support for the view that meteoric ionization plays the dominant role in extended-range vhf propagation.

V. R. ESHLEMAN, P. B. GALLAGHER and A. M. Peterson Radio Propagation Lab. Stanford University Stanford, Calif.

"A Mathematical Technique for the Analysis of Linear Systems"*

Ragazzini and Bergen¹ have shown how the z-transformation can be applied to the analysis of linear systems. In their method, the time response of a feedback control system can be obtained fairly readily as the coefficients of the infinite series that results when the numerator of the system pulse transfer function is divided by the denominator. In obtaining the over-all pulse transfer function, the Laplace Transfer Function of the individual component blocks in the feedback loop must be known in factored form.

A relation exists, which has not, to the writer's knowledge, appeared in the literature, that permits one to check the derivation of a particular z-transform when the continuous transform is known. The relation is:

$$\lim_{T \to 0} TF^*(z) = F(S) \tag{1}$$

where:

T =Sampling Interval $F^*(z) = Z$ -transform F(S) =Laplace-transform.

This relation can be derived by noting that the Polygonal Approximation utilized¹ to the true time function approaches the true time function as the sampling interval approaches zero. The factor, T, is required in the equation to allow for the fact that the z-transform is based upon impulses of infinitesimal time duration rather than upon the generating triangles whose sum yields the Polygonal approximation.

The following example illustrates the use of (1). Given a z-transform that has been obtained by operation upon a time function:

$$F^*(z) = \frac{z}{z - \exp(aT)} \cdot$$
(2)

In this particular case, the function of time is $f(t) = \exp(at)$. Substituting (2) into (1), and utilizing the relation $z = \exp(ST)$ one has:

$$\lim_{T \to 0} \frac{T \exp(ST)}{\exp(ST) - \exp(aT)} = \frac{0}{0} \cdot (3)$$

Applying L'Hospital's Rule:

$$\lim_{T \to 0} \frac{TS \exp(ST) + \exp(ST)}{S \exp(ST) - a \exp(aT)} = \frac{1}{S - a} \cdot (4)$$

The result of (4) is known to be the Laplacetransform of $f(t) = \exp(at)$.

RUBIN BOXER Rome Air Dev. Center Air Res. & Dev. Command Griffiss AF Base Rome, N.Y.

* Received by the IRE, December 20, 1954. ¹ PROC. I.R.E., vol. 42, pp. 1645-1651; November, 1954

High-Voltage Silicon Diodes*

Breakdown of a semiconductor junction diode is characterized by a rapid increase in back current as the applied reverse voltage increases slightly beyond some critical value. This value is such that the electric field across the junction, or parts of it, is sufficient to cause either Zener field emission or avalanche breakdown. The particular breakdown mechanism involved, as well as the magnitude of the critical voltage, depends on the semiconductor diode material, its resistivities, and the nature of the junction (step, linear gradient, etc.).

Although this paper is not concerned with the nature of the breakdown mechanism it should be noted that recent experimental evidence¹ indicates that the fields necessary for Zener emission are attainable only in narrow germanium junctions. Breakdown of broad germanium junctions and of silicon junctions in general is apparently of the avalanche type.

The high back resistance attainable in a properly made grown junction silicon diode, together with the superior temperature characteristics of silicon, make it an obvious choice for a "high voltage" diode. We shall arbitrarily list diodes with breakdown voltages in excess of one kilovolt in this class. Since the impurity distribution of a grown junction diode determines the magnitude of the breakdown voltage, the majority of the effort in such a project must necessarily be concentrated in the crystal growing stage where the impurity distribution is originally built in. For a given type of junction the breakdown voltage will, of course, be larger, the smaller the concentration of impurities (the higher the resistivity). However, it is important to realize that for an operational diode the forward resistance not only of the junction but of the entire unit must be kept as low as possible. Thus, the desired forward characteristics of the diode may set the upper limit on the resistivity.

When growing a junction crystal from the melt it is impossible to obtain a true "step" junction, at least as compared with that resulting from an alloy fusion process. However, when one considers the width of the space charge region at high reverse voltages, it becomes evident that this region is considerably wider than the junction itself, so that the abruptness of the original transition region (perhaps several tenths of a mil wide) becomes relatively unimportant. Calculations for one of the units discussed below indicate a space charge region width of 7 mils at a reverse voltage of 2.3 kilovolts. This is computed from the following expression:

 $d = \sqrt{2\epsilon(\mu_n\rho_n + \mu_p\rho_p)V}$ in M.K.S. units where

- d = space charge width
- $\epsilon = dielectric constant$
- $\mu_n \mu_p = \text{drift}$ mobilities of electrons and holes respectively
- $\rho_n \rho_p = \text{resistivities of the } n \text{ and } p \text{ regions}$ respectively
 - V = applied reverse voltage.

* Received by the IRE, December 29, 1954. Supported in part by the Bureau of Ships, Department of the Navy, and the Signal Corps.
 ¹ K. G. McKay, "Avalanche breakdown in silicon," *Phys. Rev.*, vol. 94, pp. 877; May 15, 1954.

This is obtained directly from solution of Poisson's equation for a step junction.

From the above argument it might seem that the distinction between the "step" and "graded" junctions was entirely meaningless as regards high-voltage diodes. This, however, is not true, as the concentration gradients across the junction regions can be varied over such wide limits that the breakdown behavior differs considerably between the two types of junctions, even at high reverse voltages.

With these design criteria as a guide, an attempt was made to assess the practical possibilities of high-voltage grown-junction silicon diodes. Several high-resistivity junction crystals were grown and sliced into bars of suitable dimensions. Low resistance ohmic contacts were made to the ends of these bars. Various etching and surface techniques were used, and the best ones selected. The following figures will show the characteristics of two of these experimental units, which were contained in glass envelopes filled with an inert atmosphere.

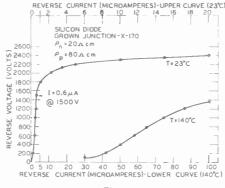
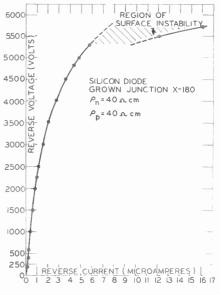


Fig. 1

Fig. 1 shows the reverse characteristics of a silicon step junction diode with resistivities of 80-ohm/cm on the p side and 20-ohm/cm on the n side. Data were taken at room temperature and at 140 degrees C., and were plotted on a linear scale to show detail in the high-voltage region. Points of interest on the room temperature curve (upper abscissa) include the 2,500 megohm resistance at 1,500 volts and breakdown at 2,300 volts. At 140 degrees C., the unit still exhibits better than 20 megohms of back resistance at 1,400 volts. The diode was about 50 mils square in cross section, so that the abscissas should be multiplied by about 50 to get the current density. (1 ma/cm² full scale for the upper abscissas, 5 ma/cm² full scale for the lower.)

Fig. 2 shows the forward characteristics of the same diode. The forward current was the same at 140 degrees C. as at room temperature. The forward resistance above 2 volts is lower than that of the 5V4G high vacuum rectifier, which is an indirectly heated cathode type. Of course, in terms of replacement possibilities, it must be pointed out that the 5V4G is a full wave rectifier and will pass 175 ma of forward current at a dissipation of 4 to 5 watts. The silicon laboratory diode discussed here is outclassed in this respect at this point.


Fig. 3 shows the result of measurements of an interesting diode. This unit was cut from a crystal of 40 ohm/cm resistivity for both the p and n side. Its concentration

gradient differs from that of the first unit shown in that it is a "graded" junction. With this unit, even though the resistivities are of the same order of magnitude as those of the step junction, one would expect a higher breakdown voltage. Various surface treatments were necessary before it became possible to obtain data at the highest voltages.

The highest such point corresponds to less than 6 microamps at 5,300 volts. Above this voltage, a region of what was believed to have been surface instability was found. In this region, the readings were not reproducible, i.e., the currents of 12 and 16 microamps corresponding to 5,500 and 5,700 volts respectively could change by as much as 100 per cent from one instant to the next. The location of this unstable region was very much a function of the surface treatment. It is assumed that instability of surface prevented observation of a junction breakdown.

22

Fig. 3

It may thus be seen that an extension of the useful range of junction diodes has been made possible through the use of highresistivity silicon junctions. For the first time, high-voltage characteristics are obtainable in a single unit solid-state rectifier such that the device becomes comparable to highvacuum rectifier tubes.

L. G. RUBIN and W. D. STRAUB Raytheon Mfg. Co. Waltham, Mass.

Contributors_

W. R. Beam (A'50) was born in Richmond, Va., on August 27, 1928. He received the B.S. degree in 1947, the M.S. in 1950. and the Ph.D. in

W. R. BEAM

1953, in electrical engineering, all from the University of Maryland, He was an instructor in electrical engineering at the University of Maryland from 1947 to 1952, and from 1947 to 1949 was also associated with Washington Institute of Technology, Inc.

Since 1952, he has been a member of the technical staff at Radio Corporation of

America, RCA Laboratories. Dr. Beam is a licensed P.E. in New Jersey and a member of Tau Beta Pi and

Sigma Xi. -0

H. N. Dawirs (S'49-A'52) was born in Colorado, on July 10, 1920. He received his B.S. in electrical engineering in 1942 from Colorado State Col-

H. N. DAWIRS

lege of Agriculture and Mechanic Arts, and his M.S. in mathematics from Ohio State University. From 1942 to 1946

Mr. Dawirs worked in the engineering departments of a number of Westinghouse plants. From 1946 until 1948 he worked in the research de-

partment of the Curtiss Wright Corp., Colunubus plant. Since 1948 he has been with the Antenna Lab. of Ohio State University Research Foundation.

He is a member of Pi Mu Epsilon.

O. Doehler was born on January 27, 1913, in Schwarzenbek, Germany. He studied from 1932 to 1938 at the University of

Hamburg and received his Doctorate from the Institute of Applied Physics. From 1938 to 1945 he was an assistant professor at the Institute of Applied Physics, where he worked on the development of microwave tubes.

In 1946 he joined

O. DOEHLER the Compagnie Gé-

nérale de Télégraphie Sans Fil, where he has been conducting theoretical and experimental studies on traveling-wave tubes.

Bernard Epsztein was born in Paris, France, on November 28, 1924. He received the Licence ès Sciences in 1947 from Paris University. That

B. Epsztein

member of the Société Française des Radioélectriciens.

ϕ

T. E. Everhart was born in Kansas City, Missouri, on February 15, 1932. He received a B.A. degree in physics from Harvard Col-

lege in June, 1953, and immediately after graduation became a member of the Hughes Research and Development Laboratories Cooperative Plan for Master of Science degrees.

year, he joined the

Compagnie Générale

de Télégraphie Sans

Fil where he has been

engaged in research

work on microwave

tubes, especially high

tron amplifiers) and

Mr. Epsztein is a

Carcinotron tubes.

klystrons,

(magne-

power

T.P.O.M.

At Hughes, he has been engaged in traveling-wave tube research. In January, 1955, he received a

T. E. EVERHART

A. D. FIALKOW

M.S. degree in applied physics from U.C.L.A. He is a member of Phi Beta Kappa and

an associate member of Sigma Xi.

A. D. Fialkow was born in New York, N. Y., on August 9, 1911. He received his B.S. and M.S. degrees from City College of

New York. At Columbia University, he was University Scholar and University Fellow and received the Ph.D. degree in mathematics. He has done research at Federal Telephone and Radio Laboratories, and Control Instrument Co. At present, he is

professor of mathematics at Brooklyn Polytechnic Institute. Dr. Fialkow is a member of the American Mathematical Society, Phi Beta Kappa and Sigma Xi.

4

I. Gerst was born in New York, N. Y., on May 30, 1912. He received the B.S. degree from the City College of the City of New York in 1931 and the M.A. and Ph.D. degrees in mathematics from Columbia University in 1932 and 1947. He taught mathe-

I. GERST

matics in the New York City school system from 1937-1942.

Since 1946 he has been research mathematician and then head of the mathematics section at Control Instrument Company, Brooklyn, N. Y.

Dr. Gerst is a member of the American Mathematical

Society, the Mathematical Association of America, Phi Beta Kappa and Sigma Xi.

•••

L. J. Giacoletto (S'37-A'42-M'44-SM'48) was born in Clinton, Ind., on Noveniber 14, 1916. He received the B.S. degree in electrical

engineering

Rose Polytechnic In-

stitute, Terre Haute,

Ind., in 1938; and the

M.S. degree in phys-

ics from the State

University of Iowa

in 1939. He received

his Ph.D. degree in

electrical engineering

from the University

of Michigan in 1952.

Licence ès Sciences

in 1935 and the Agrégation des Sciences

Physiques in 1937.

He joined the Com-

pagnie Générale de

Télégraphie Sans Fil

in 1942, where he was

engaged in research

work on microwave

tubes. In 1948 he be-

from

L. J. GIACOLETTO

Since June, 1946, he has been a research engineer with the RCA Laboratories, Princeton, N. J.

Dr. Giacoletto is a member of the American Association for the Advancement of Science, Gamma Alpha, Iota Alpha, Phi Kappa Phi, Tau Beta Pi, and Sigma Xi.

.....

P. R. Guénard (SM'50-F'55) was born on January 22, 1914, in Amiens, France. As a student at the Ecole Normale Supérieure, Paris, he received the

came head of a research laboratory on microwave tubes. Recently he has been appointed assistant director of the Department Electronique of the C.S.F.

He is a member of the Société Française de Physique, Société française des Electriciens, Société des Radioélectriciens and Société Française des Ingénieurs Techniciens du Vide. In 1952, he received the Prix d'Aumale de l'Académie des Sciences.

P. GUÉNARD

A

S. R. Lederhandler was born in Astoria, N. Y., on March 19, 1927. He received the B.E.E. degree in 1951 from Rensselaer

Polytechnic

tute. From 1951 to

1953 he did graduate

work under a bio-

electrical fellowship,

serving also as an in-

structor. He received

the M.E.E. degree in

1953 from Rensse-

laer, where he con-

tinued his doctoral

studies having been

awarded an R.P.I.

Insti-

S. LEDERHANDLER

fellowship. Mr. Lederhandler is now associated with the research division of Raytheon Manufacturing Co.

He is a member of Sigma Xi and Eta Kappa Nu.

 $\dot{\mathbf{v}}$

W. H. Louisell was born in Mobile, Ala., on August 22, 1924. He received his Ph.D. degree in physics from the University of Michigan in 1953.

He was a member of the U.S. Army from 1943 to 1946. and was associated with the Engineering Research Institute, University of Michigan from 1948 to 1953. Since June, 1953 he has been a member of the technical staff at the Bell Telephone Labora-

an M.S. in physics

from the Illinois In-

stitute of Technology

in 1944. He worked

at the latter institu-

tion as a research

associate in electron

doing graduate work.

He was honorably

discharged from the

Navy in 1945, after

while

microscopy

W. H. LOUISELL

tories, Murray Hill, N. J.

Dr. Louisell is a member of Sigma Xi, Phi Kappa Phi, and the American Physical Society.

C. W. Lufcy was born in Puxico, Mo., on December 11, 1920. He received an A.B. degree from the Southeastern Missouri State College in 1942 and

C. W. LUFCY

which he served as head of the Physics Department at the Southeastern Missouri State College.

He joined the Naval Ordnance Laboratory, White Oak, Md., in 1947, and he set up an electron microscope and mass spectrometer facility there. Upon completion of this work he transferred to the magnetics division in 1949 to take charge of the applied research program on magnetic amplifiers. In 1952 he was made chief of the magnetics division.

Mr. Lufcy is an associate member of the American Institute of Electrical Engineers and a member of Sigma Xi.

For a photograph and biography of A. B. Macnee, see page 1026 of the June, 1954 issue of the Proceedings of the L.R.E.

•••

For a photograph and biography of A. R. Moore, see page 1026 of the June, 1954 issue of the Proceedings of the LR.E.

•

J. R. Pierce (S'35-A'38-SM'46-F'48) was born in Des Moines, Iowa, on March 27, 1910. He received his Bachelor's and Master's degrees in electrical

engineering from the California Institute of Technology in 1933 and 1934 respectively. In 1936 he received his Ph.D. degree from the same institution. Since 1936 he has

been a member of the technical staff of the Bell Telephone Laboratories, Inc., where

he has been concerned with various vacuumtube problems. In January, 1952, he became director of Electronics Research at Bell Laboratories.

J. R. PIERCE

In 1948 Dr. Pierce received the IRE Fellow Award for his "many contributions to the theory and design of vacuum tubes."

Dr. Pierce is the recipient of the Eta Kappa Nu "Outstanding Young Electrical Engineer" award for 1942, and the IRE Morris Liebmann Memorial Prize for 1947. Dr. Pierce is the author of two widely known books in his field, Theory and Design of Electron Beams, and Traveling Wave Tubes, and in addition has written many popular science articles for various magazines.

He is a Fellow of the American Physical Society, and a member of the American Institute of Electrical Engineers, the British Interplanetary Society, Tau Beta Pi and Sigma Xi. He is Editor of the PROCEEDINGS OF THE I.R.E. and a Director of the I.R.E., 1954-1955.

•

A. Singh received his M.S. degree in physics from Punjab University in 1945. Following this he was sent to the United States on

A. Singh

scientific officer with the National Physical Laboratory of India.

T. E. Talpey (S'47-A'50-M'53) was born on March 20, 1925, in Auburn, N. Y. He received the B.E.E. degree from Cornell University in 1946 and the M.S. and Ph.D. degrees in electrical engineering from the University of Michigan in 1948 and 1954. In 1951 he was awarded

T. E. TALPEY

gan. In July, 1953 he joined the technical staff of the Bell Telephone Laboratories, Murray Hill, N. J., where, as a member of the Electron Tube Development Department, he has been engaged in the study of noise in grid-control tubes.

Dr. Talpey is an associate member of the AIEE and a member of Sigma Xi, Tau Beta Pi, Eta Kappa Nu and Phi Kappa Phi.

\cdot

R. R. Warnecke (SM'48-F'50) was born on November 16, 1906, at Tours, France. He received the degree of Docteur de l'Uni-

R. R. WARNECKE

chief engineer at the research center of this company. He is now technical director of the Electronics Department in the same organization.

Dr. Warnecke is a member of the Société Française de Physique, the Société Française des Electriciens, the Société des Radioélectriciens, and the Société des Ingénieurs et Techniciens du Vide. He received the IRE Fellow award in 1950 for "his engineering and research contributions to vacuum-tube theory and design in France." Dr. Warnecke also received the Prix Ancel of the Société Française des Electriciens in 1943, the Prix II. Becquerel de l'Académie des Sciences de Paris in 1945, the Blondel Medal in 1951, and the Prix d'Aumale de l'Académie des Sciences de Paris in 1952. In 1954, he was the recipient of the Morris Liebmann Memorial Prize Award,

÷

For a photograph and biography of W. M. Webster, see page 346 of the March. 1955 issue of the PROCEEDINGS OF THE L.R.E.

a Fulbright grant to

study at the Univer-

sity of Grenoble,

France, where he ob-

tained the Doctorat

d'Université in 1952.

1953, he was an in-

structor in the De-

partment of Electri-

cal Engineering at the

University of Michi-

versité in Paris in

1933. Following this

he became chief of

the vacuum tube

laboratory of the So-

ciété Française Ra-

dioélectrique; in 1940

he was head of the

electronic tube re-

search laboratory of

the Compagnie Gé-

nérale de Télégraphie

Sans Fil and, in 1946,

From 1946 to

World Radio History

a Government of India Scholarship. He received a Master of Engineering Science degree in 1947, and a Ph.D. in 1949, both from Harvard University.

Dr. Singh was a lecturer in radio physics at the University of Delhi from 1949 to 1953. Since 1953 he has been a

IRE Awards, 1955-

Medal of Honor Award

Morris Liebmann Memorial Prize

ARTHUR V. LOUGHRIN For his leadership and technical contributions in the formulation of the signal specification for compatible color television.

HARALD T. FRIIS

For his outstanding technical contributions in the expansion of the useful spectrum of radio frequencies, and for the inspiration and leadership he has given to young engineers.

Browder J. Thompson Memorial Prize

BLANCHARD D. SMITH, JR.

For his paper entitled, "Coding by Feedback Methods," which appeared in the August, 1953 issue of the PROCEEDINGS OF THE L.R.E.

Harry Diamond Memorial Award

BERNARD SALZBERG

For his contributions in the fields of electron tubes, circuits, and military electronics.

Vladimir K. Zworykin Television Prize

HAROLD B. LAW

For development of techniques and processes resulting in a practical form of shadow-mask tri-color kinescope.

.

đ

PROCEEDINGS OF THE IRE

New Fellows

V. J ANDREW

For his contributions to radio antennas and transmission lines.

R. M. Ashby

For his contributions to radar detection theory and integration of fire control-flight control systems for aircraft.

C. H. BACHMAN For his contributions in the field of electron physics.

G. I. BACK

For his leadership in the field of military communications and communication systems.

B. G. BALLARD For his direction of radar and electronic research in Canada.

G. S. BROWN

For his contributions to automatic control systems and to engineering education.

G. H. BROWNING

For his early contributions and his inspirational leadership in the electronics field.

For his contributions to the field of radio propagation.

V. S. CARSON

For his contributions to the development and analysis of long-range aeronautical electronic navigation systems.

ŧ

d

비

New Fellows

J. A. CHAMBERS

For his contributions to the development of high power broadcast transmitters and military electronic equipment.

R. D. Chipp

For his contributions to the development of radar and television apparatus for the Navy.

C. E. CLEETON

For his contributions to microwave spectroscopy and electronic identification systems.

J. W. COLTMAN

For his contributions to the fields of microwave techniques, X-ray applications, and nuclear studies.

A. G. COOLEY

For his contributions to facsimile transmission methods.

F. A. COWAN

For his contributions to long-distance communication, particularly in the development of television network facilities.

C. C. CUTLER For his research on microwave antennas and tubes.

For his contributions to the development of electronic aerial navigation systems.

J. W. DAWSON

For his contributions to the advancement of scientific and engineering knowledge.

New Fellows

R. L. DIETZOLD For his application of mathematics to network design and military problems.

C. S. DRAPER

For his contributions to the theory and practical application of precise instrumentation and to engineering education.

O. M. DUNNING

For his contributions to the field of sound recording, and his effective organization of engincering effort.

J. B. Fisk

For his contributions to the development of the magnetron and his leadership in basic electronic research.

J. W. FORRESTER

For his contributions to the development and engineering design of high speed digital computers.

G. L. FREDENDALL

1

1

÷

For his applications of network analysis and synthesis to television system problems.

F. J. GAFFNEY For contributions to the field of electrical measurements.

For his contributions to the field of engineering education.

HAROLD GOLDBERG

For his contributions to the field of guided missile armament.

New Fellows

T. E. GOLDUP

For his pioneering achievements in the design and development of thermionic tubes and his contributions to the technical and administrative counsels of the British radio industry.

A. W. GRAF For his contributions to the radio engineering profession.

C. E. GRANQVIST

For his contributions to air navigation systems and devices, and for his leadership in the engineering of electronic apparatus.

E. I. GREEN

For his contributions in the development of communication systems and apparatus components.

P. R. GUÉNARD

For his scientific and technical contributions in the field of microwave tubes.

W. A. HARRIS

For his contributions to the development of frequency converter tubes and to the understanding of fluctuation phenomena in electronic tubes.

A. E. HARRISON

For his contributions as a teacher, author and engineer, especially in the field of klystrons.

GERHARD HERZOG

For his contributions to radioactive instrumentation for geological survey and medical applications.

S. C. HIGHT

For his contribution to communication and weapon systems development.

New Fellows

G. W. O. HOWE

For his pioneering work in radio and his outstanding contributions to engineering education.

L. A. Hyland

For contributions to aircraft radio direction finding, and his effective direction of research.

R. B. JANES

For his contributions to the development of improved camera tubes.

MARTIN KATZIN

For his contributions to the knowledge of microwave propagation.

V. R. LEARNED

For his contributions to research and development of microwave electron tubes.

E. A. Lederer

For his contributions to the application of chemical and metallurgical science to electron tubes.

MEYER LEIFER

For his contributions to the fields of electronic navigation and information theory.

T. M. LIBBY

For his technical contributions and long service in the field of communications.

URNER LIDDEL

For his contributions to the establishment, promotion and integration of government sponsored nuclear research in academic institutions. di

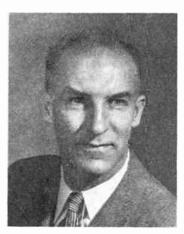
5

w

E. G. LINDER For his contributions to microwave electronics.

B. D. LOUGHLIN For contributions to color television, frequency modulation, and superregeneration.

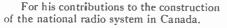
For his contributions to airborne television and radar research and development.


R. E. Moe

1

For his contributions to the field of electronics.

R. C. MOORE For his contributions to television circuitry.



P. L. MORTON

For his contributions to the field of digital computers and the teaching of electronics.

W. A. NICHOLS

R. S. Ohl

For his contributions to the development of solid state point contact rectifiers.

W. H. PICKERING

For his contributions as teacher of electronics, and for his leadership in missile guidance, control and instrumentation.

World Radio History

J. R. RAGAZZINI For his contributions in the fields of computers and control systems and as a teacher of these subjects.

E. G. RAMBERG For his theoretical analyses of electronic devices.

W. G. RICHARDSON

For his contributions to the art of broadcasting, both sound and television, in Canada.

L. N. RIDENOUR

For his stimulating leadership in the field of electronic engineering.

H. E. Roys For his contributions to the improvement of disk and tape recording.

O. H. SCHMITT

For his contributions to the application of electronics to the study of living organisms.

B. A. Schwarz

For his contributions to the development and production of automobile radios.

SAMUEL SEELY

For his contributions as an educator, author and as a director of research and development.

World Radio History

For his contributions to development of the transistor.

C M. SINNETT For his contributions in the field of electronic circuitry.

C. E. SMITH For his contributions to broadcast engineering and for his training activities.

For his contributions to the art of radio communications.

P. L. Spencer

For his contributions to the design and development of electron tubes.

G. C. Sziklai

For his contributions to television circuits and systems.

B. D. H. Tellegen

For his contributions and teachings in the field of vacuum tubes and communication networks.

J. R. TOLMIE For his early contributions to radio.

W. G. TULLER (deceased)

For his contributions to the advance of theoretical analysis of information theory and its practical application.

C. H. VOLLUM

For his contribution to the development and manufacture of electronic laboratory instruments.

501

World Radio History

P. K. WEIMER

For his contributions to the development of television pickup tubes.

E. L. WHITE

For his leadership in advancing the use of radio in the interest of safety and efticiency in industry.

A. J. WILLIAMS, JR. For his contribution to the field of selfbalancing recorders of electrical quantities.

R. D. Wyckoff

For his contributions to geophysical instrumentation, and the development of guided missiles.

A pril

ě.

5

-

IRE News and Radio Notes_

IRE GRANTS MEMBERSHIP LEAVE TO MEMBERS IN ARMED SERVICE

At the January meeting, the Board of Directors voted on a policy to grant leave of absence from IRE membership to those in the Armed services. The leave will be granted, upon written request to IRE Headquarters, for a period up to three and one half years.

The member will have an inactive status during this period; he will not be required to pay dues, nor will he receive the PROCEED-INGS, or have other privileges of membership. When the member is discharged from service, he will be restored to the position he held preceding leave of absence. If Headquarters does not receive notice at the end of the three and one half year absence period, restoration to active membership will be made automatically.

NUCLEAR ENGINEERING CONFER-ENCE TO MEET IN CALIFORNIA

From April 27 to 29 a Conference on Nuclear Engineering will be held at University of California Los λ ngeles Campus.

A panel discussion will be featured each day of the conference: "Water and Liquid Metals as Primary Working Fluids," "Radiation Sources for Industrial Applications," and "Power Reactor Control During Load Changes." At a t evening dinner session on April 28, John von Neumann, Institute for Advanced Studies, wil' speak.

The conference is sponsored by the UCLA Department of Engineering; Nuclear

Engineering Division, AIChE; Southern California Section, ASME; Southern California Section, AIChE; Golden Gate Chapter, ASM; San Francisco Section, AIEE; and Northern California Section, AIChE. Further information may be obtained from the University of California Extension, Los Angeles 24, California.

Automation Symposium to Meet at Michigan State in May

The Engineering School of Michigan State College will sponsor a symposium called "Automation—Engineering for Tomorrow" on May 13. A part of the college's centennial year activities, the symposium will present general sessions, of interest to all branches of engineering, and special meetings, each presented by different departments and of interest to specific engineerings fields.

Among the symposium speakers, will be W. R. G. Baker, Vice-President of the General Electric Company, and Eric A. Walker, Dean of Engineering at Pennsylvania State University. Dr. Baker will look at automation from a technical point of view, while Dean Walker will discuss it from the philosophical and sociological standpoint. Included for discussion at the general sessions are: Automatic Control Systems; Design of Systems; and Instrumentation of Automation.

Further details may be obtained from Prof. J. M. Apple, School of Engineering, Michigan State College, East Lansing, Michigan.

PGANE and Dayton Section Honor Dayton Univ.

Dayton University is honored for its support of the Dayton Section and PGANE of Dayton. From left to right, J. H. Parr and L. H. Rose, both of the university, receive scroll and set of MIT Radiation Laboratory Series from A. B. Henderson and P. G. Wiegert, the Chairmen of the Dayton Section and of Dayton PGANE respectively.

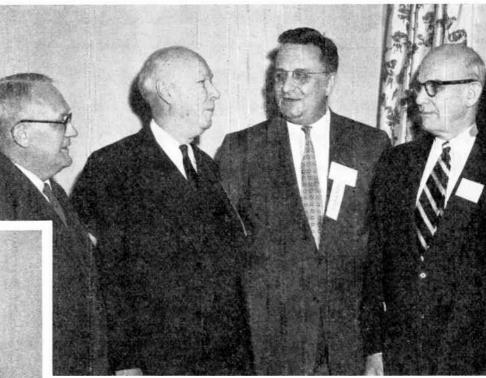
Calender of Coming Events

- IRE-PIB Symposium on Modern Network Synthesis, Engineering Societies Building, New York, N. Y., April 12-15
- Instrumentation Symposium, Proving Ground Instrumentation Committee of the American Ordnance Association, Patrick Air Force Base, Cocoa, Florida, April 14 and 15
- IRE 9th Annual Spring Technical Conference, Cincinnati, Ohio, April 15-16
- SMPTE 77th Semiannual Convention, Hotel Drake, Chicago, Ill., April 17-22
- International Symposium on Electrical Discharges in Gases, Technical University, Delft, Netherlands, April 25–30
- IRE Seventh Region Technical Conference and Trade Show, Hotel Westward Ho, Phoenix, Ariz., April 27-29
- New England Radio Engineering Meeting, Sheraton Plaza Hotel, Boston, Mass., April 29-30
- Semiconductor Symposium, Electrochemical Society, Cincinnati, Ohio, May 2–5
- IRE URSI Spring Meeting, Washington, D. C., May 3-5
- National Aeronautical Electronics Conference, Biltmore Hotel, Dayton, Ohio, May 9-11
- IRE-AIEE-IAS-ISA National Telemetering Conference, Hotel Morrison, Chicago, Ill., May 18-20
- AFCEA Global Communications Convention, New York City, May 19– 21
- IRE-AIEE-RETMA-WCEMA Electronic Components Conference, Hotel Ambassador, Los Angeles, Calif., May 26-27
- American Society for Engineering Education Annual Meeting, Pennsylvania State University, State College, Pennsylvania, June 20–24
- URSI-U. of Michigan International Symposium on Electromagnetic Wave Theory, University of Michigan, Ann Arbor, Mich., June 20–25
- IRE-AIEE Conference on Industrial Electronics, Rackham Memorial Building, Detroit, Michigan, September 28-29
- IRE PG on Electron Devices Annual Technical Meeting, Shoreham Hotel, Washington, D. C., Oct. 24-25
- IRE-AIEE-ISA Eighth Annual Technical Conference on Electrical Techniques in Medicine and Biology, Washington, D. C., November
- IRE Annual Electronic Conference, Towne House Hotel, Kansas City, Kansas, Nov. 3-4

de

IRE SOUTHWESTERN CONFERENCE

Sponsored by Dallas-Fort Worth Section


(Below) John A. Green, Chairman of the Dallas-Fort Worth Section which sponsored the Southwestern Confer-ence, Mr. Green is president of John A. Green Company.

The Seventh Annual Southwestern IRE Conference and Electronics Show was held February 10 to 12 at the Baker Hotel in Dallas, Texas. The conference was sponsored by the Dallas-Fort Worth Section.

Special events included a reception for President John Ryder, an Executive Committee Meeting for Region Six, a ladies' program, a cocktail party and banquet, and a Directors meeting, John F. Jordan, IRE Fellow and Director of engineering and research for the Baldwin Piano Company, spoke at the banquet on "Musical Tone Color." Included in the special events were tours of seven plants in the Dallas area. At the Electronics Show there were exhibits by nearly eighty concerns.

Theme of the conference program was "Our Expanding Technology." The program included Airborne Electronics, Geophysics, Computers, Applied Electronics, Television, Automatic Control, Solid State Electronics, Microwaves, and Audio. Papers were presented by: Airborne Electronics-R. E. Lanier, B. L. Powell, B. H. Easter, E. H. Flath, Jr., and F. E. Schulte. Geophysics-

(Abore) The opening day speakers at the Dallas meeting are T. A. Hunter, Editor of the IRE Stude-nt Quarterly and President of Hunter Manufacturing Company, W. V. Houston, President of Rice Institute, J. D. Ryder, President of the IRE and Dean of the Michigan State College School of Engineering, and George W. Bailey, Executive Secretary of IRE.

(Right) Conference leaders are R. A. Arnett of the Houston Technical Labora-tories, and James G. Flynn, Jr., Vice-President of Col-lins Kadio Company. They served as Vice-Chairman and Chairman, respectively of the Seventh Annual of the Seventh Annual Meeting,

M. A. Arthur, G. W. Fordham, G. C. Summers, and H. J. Jones. Computers-L. E. Heizer, H. M. Martinez, J. F. Forrester, F. S. Preston, and P. A. Dennis, Applied Electronics-K. B. Bennett, F. W. Tatum, D. F. Sellers, W. G. Redmond, and C. J. Schultz. Television-J. W. Wentworth, I. C. Abrahams, D. A. Peterson, and J. P. Gallagher. Automatic Control -L. B. Wadel, E. J. Kompass, H. A. Spuhler, J. M. Salzer, R. G. Brown, and A. R. Teasdale, Jr. Solid State Electronics-W. J. Pietenpol, J. W. Englund, K. E. Loof-

bourrow, W. A. Adcock, and C. P. Dotson Microwaves-N. L. Pappas, J. R. Linciocome, V. Graziano, R. W. Haegele, and C. C. Campbell, Audio-W. Rudmose, J. D. Colvin, W. E. Stewart, and W. E. Seaman. Contributing to the success of the conference were: J. G. Flynn, Jr., Chairman; R. A.

Arnett, Vice-Chairman; J. H. Honsy, Secretary; J. S. McNeelv, Treasurer; T. A. Wright, Jr., Technical Program; Mark Shepherd, Jr., Registration; Thomas B. Moseley, Inspection Tours; James O. Weldon, Banquet; John Albano, Housing; Theil Sharpe, Exhibits; Mrs. D. H. Clewell, Ladies' Program.

1

504

SEVENTH REGION TECHNICAL CON-FERENCE WILL MEET MAY 27-29

From April 27 to 29 the Phoenix Section will be host to the Seventh Region Technical Conference and Trade Show at the Hotel Westward Ho in Phoenix, Arizona.

The three days of technical sessions will feature thirty-five papers on Engineering Management, Semiconductors, Specialized Components, Special Measuring Techniques and Testing Equipment, Missile Design Considerations and Missile Equipment, and Telemetering Problems. These papers will present interpretive rather than theoretical material, emphasizing information which can be applied to design and development problems.

The manufacturers will provide a show featuring the latest developments in the field of electronics and plans have been made for a women's program. Social activities will include an informal registration get-together on April 26, a conference luncheon on April 27, and a western barbecue dinner and cocktails, on April 28. Especially for the women, arrangements have been made for a fashion show featuring creations by Western designers, and a tour of the Valley of the Sun with a luncheon in Scottsdale, "the West's most Western town." On Saturday, April 30, special arrangements may be made for visits to Nogales, Mexico, Boulder Dam, Grand Canyon, and local resorts.

IRE MANUAL OF STANDARDIZATION Now Available to Members

The IRE Manual of Standardization, which describes the procedure of standardization followed by Technical Committees, is now available to members. Copies may be obtained from the Office of the Technical Secretary at IRE Headquarters.

WILLIAM DUBILIER RECEIVES COOPER UNION ALUMNUS AWARD

William Dubilier, IRE Fellow and founder of the Cornell-Dubilier Electric Corporation, has received the Gano Dunn Medal for outstanding pro-

fessional achievement by a Cooper Union alumnus. The annual award, given for the first time this year, was presented February 12 at the Founders Day Dinner in the Hotel Commodore, New York City.

Mr. Dubilier re- WILLIAM DUBILIER

ceived the award for his contributions to the development of high voltage condensers. Among his other awards are the Chevalier Cross of the Legion of Honor, Officer of the French Academy, Grand Medal of the Association des Ingenieurs-Docteurs de France.

Chicago to Be Host to National Telemetering Conference

The National Telemetering Conference, sponsored by the IRE, AIEE, IAS, and ISA, will meet May 18 to 20 at the Hotel Morrison in Chicago. The program will feature papers and exhibits in *Industrial Telemetering*, *Pickups and Transducers*, *Telemetering Components*, *Data Processing*, *Flight Testing*, *Multiplexing Techniques*, *Developments in Telemetry and Remote Control*.

Hugh L. Dryden, Director of the National Advisory Committee for Aeronautics will speak to the conference on "Problems in Ultra High Speed Flight." Luncheon speaker will be W. A. Wildhack of the National Bureau of Standards. Inquiries regarding exhibits should be addressed to G. Brittain, Armour Research Foundation, Chicago, Illinois. For further information concerning the program, write to C. H. Hoeppner, Stavid Engineering, Inc., Plainfield, New Jersey.

Syracuse Forms Three Chapters

On January 6 at the Syracuse Museum of Fine Arts three new professional group chapters were formed. These were the first chapters to be formed in the Syracuse Section and *pro tem* chairmen were selected to head each group. Donald E. Maxwell is Chairman of the Audio Chapter. Wilbur R. LePage of Syracuse University, heads the Circuit Theory Chapter, and C. Graydon Lloyd directs the Engineering Management Chapter.

Speakers on the program represented the various interests of the newly formed chapters. W. R. G. Baker, General Electric Vice-President and General Manager of the Electronics Division, was the first speaker. Dr. Baker gave a history of IRE professional groups, covering their initial conception and philosophy and their development up to the present. H. Brainard Fancher, General Electric General Manager of Germanium Products, reviewed the essential characteristics of a good manager. He defined the managerial function and explained how it was practically fulfilled. Norman Balabanian, Syracuse University, noted that the many branches of network theory arise from the application of various mathematical methods to network problems. The most used tool at present is complex function theory. Norman S. Cromwell, General Electric Radio and Television Department, discussed and demonstrated the application of low pass filters to prevent the energy in low frequency room and turntable vibrations from saturating and distorting the desired output of a high fidelity record player.

(Left to right) Past Chairman Richard Shea, Meeting Arrangement Coordinator; Speaker Norman Cromwell; Syracuse Section Chairman William Hall; Vice-Chairman Daniel Healy; Chairman Don Maxwell, Audio; Speaker H. Brainard Fancher; Speaker Norman Balabanian; Chairman Wilbur LePage, Circuit Theory; Chairman Graydon Lloyd, Engineering Management; Meetings and Papers Committee Chairman Don Arsem; Speaker Walter R. G. Baker, and the Secretary-Treasurer Major A. Johnson

SUMMER COURSES IN NUCLEAR REACTORS AND AUTOMATIC CON-TROL OFFERED BY U OF MICHIGAN

An intensive course on Nuclear Reactors and Radiations in Industry will be presented August 15 to 26 by the University of Michigan. Tuition, covering fee for a printed set of course notes, will be \$200 and the registration deadline will be June 1.

Sponsored by the Nuclear Engineering Committee of the College of Engineering, the course will be conducted by guest lecturers and staff members, including L. E. Brownell, H. J. Gomberg W. Kerr, H. A. Ohlgren and J. R. Sellars. Further details may be received from Prof. William Kerr, Department of Electrical Engineering, University of Michigan, Ann Arbor, Michigan.

Two intensive courses in Automatic Control will also be offered by the university. Course 1 is scheduled for June 13 to 18 and Course II is scheduled for June 20 to 22. Closing date for registration is April 15.

The courses are built around the principles and application of measurement, communication, and control. Course I will consist of the fundamentals in each of these fields and will include work in nonlinear systems. Course II will consider applications of the fundamentals to more advanced problems. More information may be obtained by writing to Prof. L. L. Rauch, Room 1521, East Engineering Building, University of Michigan, Ann Arbor, Michigan.

TECHNICAL WRITERS WILL MEET

A two-day meeting of technical writers and editors will be held May 12 and 13 at the Statler Hotel in New York City. Ten papers will be presented by well-known representatives of industry, government, and education. The meeting will also discuss plans for a more formal organization of technical writers and editors.

Robert T. Hamlett of Sperry Gyroscope Company is Chairman of the group and Elsie Ray, Anaconda Copper Mining Company is Secretary.

TRANSISTOR BIBLIOGRAPHY READY

Through the courtesy of the Northwestern University Technological Institute, a comprehensive bibliography of transistors is now available. Reprints of the publication may be obtained without charge from A. R. Krull, Technological Institute Library, Northwestern University, Evanston, Illinois. Requests should designate "Transistors and Their Applications, A Bibliography, 1948– 1953," by Alan R, Krull, IRE Trans. PGED, Vol. ED-1, No. 3, 1954, pp. 40–70.

Symposium on Modern Network Synthesis to Be Held in April

An international Symposium on Modern Network Synthesis will be held April 13 to 15 at the Engineering Societies Building in New York. The fifth in a series by the Microwave Research Institute, it is part of the celebration commemorating the 100 anniversary of the Polytechnic Institute of Brooklyn. The program will consider advances in the synthesis of passive networks in the frequency and time domains. It will include improved methods for designing RLC transducers and advances in the design of sampling filters. Developments in active and non-reciprocal circuits, such as unconventional applications of transistors, will also be presented. A roundtable discussion is planned on the significance of new network synthesis techniques to the solution of design problems in industry.

The cooperation of the PG On Circuit Theory and the co-sponsorship of the Office of Naval Research, Air Force Office of Scientific Research, and Signal Corps permits the symposium to be held without admission charge or registration fee. Volume V of the MRI Symposia Series, "Proceedings of the Symposium on Modern Network Synthesis. II" will be published by October 1955, at five dollars per copy. Copies of the program. hotel accommodation information and registration forms are available from: Polytechnic Institute of Brooklyn, Microwave Re-Johnson Street. search Institute, 55 Brooklyn 1, New York.

DIGITAL MACHINES FOR NATION-WIDE DIALING TO BE DISCUSSED

The Boston Section and the Boston Chapter of the Professional Group on Electronic Computers will hold a joint meeting on April 21 to discuss "Digital Machines for Nationwide Dialing."

John Meszar, Director of Switching Systems Development at Bell Laboratories, will outline the progress of the new automatic long distance switching system developed at the laboratory.

OBITUARIES

Charles Jackson Pannill, IRE Fellow, former President of the Radiomarine Corporation of America, and of RCA Institutes, Incorporated died recently.

Mr. Pannill held the first Certificate of Skill in Radio Communications and the first radio operator's license issued by the United States Government. He retired in 1947 after nearly half a century in radio communications.

His career in communications began in 1898 when he enlisted in the Navy as a telegrapher during the Spanish-American War. After tours of duty at the Norfolk Navy Yard and Coast Signal Service, he applied his telegraphic training to wireless communications under Professor Reginald A. Fessenden. It was at Brant Rock, Massachusetts in 1906 that Professor Fessenden conducted the first transatlantic demonstration of the spoken word. Mr. Pannill later assisted Professor Fessenden in the first installation of radio equipment aboard a United States battleship, and in the inauguration of overland wireless communications between New York, Philadelphia and Washington, D. C.

He joined the Marconi Wireless Telegraph Company of America, predecessor of RCA, in 1912 and served for two years as Superintendent of the Southern Division. Re-entering the Navy in 1914, he assisted in the establishment of the Naval Communication System. He later became Assistant to the Director of Naval Communications, but resigned from the service in 1919.

During the following eight years, Mr. Pannill served as Vice-President and later President of the Independent Wireless Telegraph Company. In 1927, he was American delegate to the International Radio Conference. In 1928, he joined the Radiomarine Corporation of America, a service of RCA, as Vice-President and General Manager. He became Executive Vice-President in 1931, and was President from 1935 until his retirement in 1947. He served as President of RCA Institutes from 1932 until 1947.

Mr. Pannill received the Degree of Chevalier of the First Order of Leopold from the Belgian government for his work in international marine communications, and was awarded the Marconi Memorial Medal of Achievement by the Veteran Wireless Operators Association. He was a member of the Society of Naval Architects and Marine Engineers, the Cosmos Club, the New York Maritime Exchange, and the Board of Managers of Seanan's House of New York City, He was also a former Governor of the Propeller Club of New York.

PROFESSIONAL GROUP NEWS

Three New Chapters Approved

At a meeting on February 1, the Executive Committee approved petitions for the formation of the following chapters: PG on Audio, San Antonio Chapter; PG on Electronic Computers, Baltimore Chapter; PG on Information Theory, White Sands Proving Ground Chapter (El Paso Section).

TECHNICAL COMMITTEE NOTES

The Antennas and Waveguides Committee met at IRE Headquarters on January 12. Chairman P. H. Smith presided at the meeting. The possibility of standardizing impedance or reflection charts was discussed.

The committee discussed its published Standards which are in need of review (Standards on Antennas, Modulation Systems, and Transmitters: Definitions of Terms, 1948 and Standards on Antennas: Methods of Testing, 1948). It was announced that preparation of new definitions had been assigned to the West Coast Subcommittee and that H. Jasik's Subcommittee was preparing Standards on Methods of Testing Waveguide Components.

This committee met again on February 9 to discuss conflicts in the proposed *Definitions for Waveguide Components* with definitions approved by ASA Committee C42.

The Facsimile Committee met at the Times Annex in New York on January 7 with Vice-Chairman A. G. Cooley presiding and on February 11 with Chairman H. F. Burkhard presiding. The Committee's proposed definitions were discussed, and plans were made for reproducing the Facsimile Test Chart prepared by the committee.

The **Feedback Control Systems** Committee met at the MIT Faculty Club in Cambridge on January 11, with J. E. Ward presiding. The committee reviewed the proposed Standards on Graphical and Letter Symbols for Feedback Control Systems and the proposed Standards on Terminology for Feedback Control Systems. The formation of a new subcommittee on Measurements was discussed. Terms prepared by G. Biernson and W. B. Williams were referred to the Definitions Subcommittee.

The Radio Transmitters Committee met on January 12 at IRE Headquarters with P. J. Herbst presiding. The committee formulated new terms in the field of spurious transmitter output. Three subcommittee chairmen made reports: Harold Goldberg reported that the proposed Methods of Measurement of Pulse Quantities was being revised and would be submitted to the main committee in two months. T. M. Ghuyas, Jr. stated that work would be resumed on the proposed Standards on Monochrome Television Transmitters. Chairman B. Sheffield of Subcommittee 15.2 agreed to review with the subcommittee the suggestions of the main committee for the proposed Standards on Methods of Testing Radio-Telegraph Transmitters (Below 50 MC).

The Electron Devices Committee met on January 21 at IRE Headquarters with Chairman W. J. Dodds presiding. The Subcommittee on Cathode-Ray and Television Tubes announced that they were beginning activity on methods of testing. The Subcommittee on Gas Tubes has prepared a list of Gas Tube Definitions. The Subcommittee on Camera Tubes, Phototubes, and Storage Tubes in Which Photoennission Is Essential reported that Camera Tube Definitions will soon be ready for considera-

tion by the committee and gave suggestions. for liaison of the Electron Devices Committee and the new committee on nuclear science, soon to be formed. The Subcommittee on High-Vacuum Microwave Tubes reported that three task groups (Cold Test, Oscillators, and Amplifiers) were working on standards. The Physical Electronics Subcommittee reported that a review of definitions is almost completed. R. M. Ryder, Chairman of the Solid State Devices Subcommittee stated that proposed Methods of Testing Transistors are ready for submittal to the Standards Committee. He also reported on proposed standards in the following fields now in preparation in this subcommittee and its task groups: Large Signal Test, Point Contact Transistors; Letter Symbols for Transistor Qualities; Large Signal Tests for Junction Transistors; Single Tests on Power Transistors; Definitions of Hybrid Parameters. Recommendations for chairman of a Task Force on Ferroelectric and Ferromagnetic Devices were requested. Two subcommittees will make recommendations for assignment of work on temperature-sensitive resistors. It was noted that both the Tube Conference and the Semiconductor Conference were fully organized for 1955.

The Measurements and Instrumentation Committee met on January 31 at IRE Headquarters with P. S. Christaldi presiding. The following subcommittee reports were given: C. D. Owens (Magnetic Measurements Subcommittee) reported that the problem of testing ferrite core antennas for broadcast receivers would be considered by

this subcommittee. The written report of A. P. G. Peterson of the Subcommittee on Audio-Frequency Measurements stated that revision of proposed Standards on Nonlinear Distortion was being continued in cooperation with two other IRE subcommittees. The Subcommittee on Video-Frequency Measurements reported that the work on angle and delay measurements should be completed by June, 1955. Dr. Showers, Chairman of the Interference Measurements Subcommittee, reported that his subcommittee was co-operating in the work of the Ad Hoc Committee on Spurious Radiation (Standards Committee). Definitions of terms compiled by the Subcommittee on Oscillography were described as nearly complete by the chairman, M. J. Ackerman. This subcommittee will also study measurements made with cathode-ray instruments. After hearing the subcommittee reports, the committee discussed the Compilation of References to Methods of Measurement which it plans to prepare.

The Audio Techniques Committee met at IRE Headquarters on February 9 with Chairman D. E. Maxwell presiding, L. D. Runkle, Chairman of the Definitions Subcommittee, reported on the action of his group on the proposed definitions. A report of Chairman R. C. Moody of the West Coast Subcommittee was read, describing the work on the proposed Standard on Intermodulation Distortion. The committee reviewed the proposed Standards on Methods of Measurement of Gain, Loss, Amplification, Altenuation and Frequency Response which is nearing completion.

Books_

Electronics by A. T. Starr

Published (1954) by Pittman Publishing Corp., 2 West 45th St., New York City, 388 pages +7 page index +viii pages, 352 figures, 84 ×54, \$7.50.

This book was written by Dr. Starr especially to cover the requirements of the electronics examination for the degree of Bachelor of Science in Engineering at the University of London. It makes no pretense at being a textbook. Within its scope it is an excellent reference volume; it should be a great help to engineers reviewing (not studying for the first time) the field of electronics in preparation for State Licensing or university doctoral examinations.

The emphasis of the book is on electronic circuitry rather than on the physics of electron tubes. Probably no two authors would agree on just what to include in such a book, but to this reviewer it seens that Dr. Starr has made a good selection. His presentation of topics is both clear and concise. At the end of each chapter there is a group of problems taken from recent London University examinations, and at the end of the book there is a set of answers to a few of these problems.

The six chapter titles are: "Physical Fundamentals"; "Valves"; "Rectification"; "Circuit Theory"; "Amplifiers, Oscillators and Detectors"; and "Electronic Applications." There are, in addition, seven appendixes covering various mathematical topics.

This reviewer believes that there should be at least a few references to other literature on the various topics discussed, but, other than that, feels that Dr. Starr had done an excellent job.

F. T. MCNAMARA Dept. Electrical Engineering Yale University New Haven, Connecticut

Television, Second Edition by V. K. Zworykin and G. A. Morton

Published (1954) by John Wiley and Sons, Inc., 440 Fourth Ave., New York 16, N. Y. 1020 pages +xvpages +17 page index. Illustrated. $6\frac{1}{4} \times 9\frac{1}{15}$. \$17.50.

What can be said in a love song that hasn't been said before? The second edition of this classic book is a complete reworking of the field and is even more of a gold mine than the first edition. Despite compression and omission of some of the topics which are better known now, the authors have been forced to expand the size of the book by approximately sixty per cent. Color fundamentals and practical color and industrial television systems account for about half of the expansion in four new chapters. The rest is just to take care of discussions of the new techniques evolved during the last fourteen years. Every chapter has been revised and many completely rewritten.

The material covered ranges from the physics of electron emission and the fundamentals of color vision to discussions of the uses of television receivers in home management and interplanetary travel. The greatest stress is laid on those topics which are peculiar to television.

The treatment is thorough and restrainedly technical; mathematics is used where necessary. The prose is clear and readable. The book is well illustrated both with line drawings and half-tones. A knowledge of basic radio and circuit theory is assumed.

This is a must for every engineer interested in television.

> KNOX MCILWAIN Hazeltine Electronics Corporation Little Neck, New York

REVIEW CREDIT CORRECTION NOTED

In the February issue II. J. Carlin was incorrectly credited with reviewing *Magnetic Amplifier Circuits* by W. A. Geyger, E. J. Smith, Polytechnic Institute of Brooklyn, should have been listed as the reviewer.

a

Electrical Transients by L. A. Ware and G. R. Towne

Published (1954) by Macmillan Co., 60 Fifth Ave , N, Y., N, Y, 219 pages ± 2 page index $\pm xi$ pages. Illustrated, $5\frac{5}{8}\times 8\frac{1}{2},$ \$4.75.

This book is intended as a text for undergraduate electrical engineering students at the junior or senior level. It is primarily an introduction to the Laplace transform with applications to the solution of the differential equations of simple electric circuits. The position of the authors, that the teaching of the Laplace transform to undergraduate students is not only feasible but highly desirable, seems well taken. The limited aspects of the subject which are dealt with in this book require no mathematics beyond that normally given in undergraduate studies.

The title is perhaps inappropriate since there is very little discussion of transient phenomena as such. The direct Laplace transform is presented in Chapter Two and the remainder of the book is devoted to applications. The major emphasis is on the mechanics of the solution of circuit problems by Laplace transform. As an introduction to the transform method *Electrical Transients* is fairly good.

Unfortunately, the preoccupation with the manipulations required to solve various differential equations results in a complete neglect of the conceptual advantages afforded by the Laplace transform. The use of the impedance or admittance concept in obtaining transform relationships is ignored except for a footnote. Instead, the authors write down the differential equations for each problem and then transform them term by term. The link between the behavior of linear networks in the time and frequency domains, which is perhaps more important than any other single aspect of the Laplace transform, is also completely ignored. The treatment of initial conditions is not, as is strongly implied, the major advantage of the Laplace transform.

Many examples are worked out in the book and additional problems are given at the end of the chapters. The long involved treatment of the shunt-peaked video amplifier given in Chapter Nine seems of questionable value, but in general the problems are well chosen and should be helpful to the student. However, in spite of some good features and a worthwhile objective, the over-all treatment is not as good as it might be and leaves much to be desired.

LEONARD A. GOLDSTONE Polytechnic Inst. of Brooklyn Brooklyn, N. Y.

Electromagnetic Theory by V. C. A. Ferraro

Published (1954) by John de Graff, Inc., 64 West 23 St., N. Y. 10, N. Y. 550 pages +viii pages +5 page index, 161 figures. 81 × 54, \$7.00.

This book follows the historical approach set by Maxwell in his classic treatise, an approach which has been followed by many writers in electromagnetic theory. Ferraro's text differs from older treatises of this school (e.g. J. H. Jeans, Electricity and Magnetism, Cambridge 5th edition, 1933) in that vector notation is used, including an introductory chapter on vector analysis, and the book is modern in language and notation. It differs from other modern books of similar outline

(e.g. W. R. Smythe, Static and Dynamic Electricity, McGraw-Hill, second edition, 1950) in that classical cgs units are used rather than the rational mks system; there is slightly more emphasis on the mathematical proofs and somewhat less emphasis on specific applications. However, examples are worked out at the end of each chapter and there are extensive listings of problems, many taken from the Cambridge and University of London examinations,

The author states that the book is intended primarily for mathematicians and only secondarily for physicists and engineers. Thus there are several valuable proofs of uniqueness and existence for the stationary field. The major part of the text has, however, to do with the physical laws and their interpretation, and all of the book can be followed readily by graduates or advanced undergraduates in science and engineering.

Magnetic fields are introduced through the concept of magnetic charges. This approach has the advantage of stressing the similarities between electric and magnetic fields, but the disadvantage of masking the differences, and of requiring the difficult proof of equivalence between current flow and a magnetic shell. The author claims novelty for his proof of this point, and the proof seems direct.

The writing is concise and clear. The major fault is one which seems to come naturally to texts following the historical approach-treatment of the time-varving electromagnetic field is relegated to a secondary position out of keeping with its present importance. Less than one-fifth of this text is devoted to the time-varying field. Applications are seldom mentioned, and even the proofs of existence uniqueness, and convergence, which might be expected in a text for mathematics, are omitted.

> J. R. WHINNERY University of California Berkeley, California

Feedback Control Systems by Gilbert Howard Fett

Published (1954) by Prentice-Hall Inc., 70 Fifth Ave., N. Y., N. Y. 351 pages +5 page index +ix pages +4 page index +4 page appendix. Illustrated. 8[‡] ×6[‡]. \$10.00

This book is a text covering the theory and analysis of feedback control systems. The presentation is pitched at a level suitable for senior undergraduate or graduate students or for practicing engineers who desire an introductory grounding in the field. The coverage of material ranges from a brief presentation of the components of feedback systems, time domain analysis of linear closed loop systems, a substantial discussion of frequency domain methods of analysis, to a chapter on non-linear systems.

The material is presented in a manner which reflects the fact that the author has had teaching experience. Explanations are clear and the order of presentation logical. On the other hand, there is a rather heavy emphasis on the more academic discussions of stability and stability diagrams at the expense of practical problems encountered in synthesis. For instance, considerable space is devoted to the Nyquist diagram and to modified transfer loci which result from the

mapping of paths other than the imaginary axis, such as a displaced imaginary axis, and of straight lines at a fixed angle with respect to the imaginary axis. While interesting from an academic viewpoint, these studies are not too important in practice. The low accuracy with which system constants are known and the difficulty of correlating these loci with time domain response do not always warrant such detailed and precise analyses of modified transfer loci.

The book would have profited from inclusion of more material on system design of feedback control systems. A unified analysis of the methods of compensation and their effect on over-all performance and a discussion of the practical advantages of one form or another is missed. In the treatment of multiple loop systems, techniques for the reduction of the system to an equivalent single loop system for study and design is not pointed out. Also the inverse (M^{-1}) plane, a powerful yet simple approach to the design of feedback systems with other than unity or proportional feedback, is not adequately exploited.

Despite some differences in viewpoint, this reviewer would like to reemphasize that the text is a careful and technically correct work and that a reader would benefit by studying it carefully. The book contains a comprehensive bibliography and a set of practice problems at the end of each chapter so that the reader is able to extend and apply some of the concepts developed in the text. Some of the more practical aspects of design and synthesis can be supplemented by use of other sources.

This text is well recommended for those engineers or students who wish to be introduced to the underlying theory of feedback control systems.

> JOHN R. RAGAZZINI Columbia University New York, N. Y.

RECENT BOOKS

- Alsberg, Harold, Ed., TV Field Service Manual with Tube Locations: Volume Three. John F. Ryder Publisher, Inc., 480 Canal Street, New York 13, N. Y. \$2.10.
- Courant, R. and Hilbert, D., Methods of Mathematical Physics: Volume One. Interscience Publishers, Inc., 250 Fifth Ave., New York 1, N. Y. \$9.50.
- Gray, Truman S., Applied Electronics. John Wiley and Sons, Inc., 440 Fifth Ave., New York 15, N. Y. \$9.00.
- La Joy, Millard II., Industrial Automatic Controls. Prentice-Hall Inc., 70 Fifth Ave., New York 11, N. Y. \$6.65.
- MacLanachan, W., Ed., Television and Radar Encyclopaedia. Pitman Publishing Corp., 2 West 45 Street, New York, N. Y. \$6.00.
- Noll, Edward M., Television for Radiomen. Macmillan Co., 60 Fifth Ave., New York 11, N. Y. \$10.00.
- Snitzer, Milton S., TV Manufacturers' Receiver Trouble Curcs: Volume Six. John F. Ryder Publisher, Inc., 480 Canal Street, New York 13, N. Y. \$2.10.
- Zbar, Paul B., and Schildkraut, Sidney, Advanced Television Servicing Techniques. John F. Rider Publisher, Inc., 480 Canal Street, New York 13, N. Y. \$3.60.

THE 1955 NATIONAL CONFERENCE ON **AERONAUTICAL ELECTRONICS**

Sponsored by the Dayton Section and PG ON AERONAUTICAL AND NAVIGATIONAL ELECTRONICS

DAYTON OIIIO, MAY 9-11

Monday Morning

Semiconductors I-Transistors AND RECTIFIERS

Engineers Club, Auditorium

- "Medium Powered, Hermetically Sealed, Silicon Rectifiers for High Temperature Applications," A. Bergson and W. G. Mitchell, Raytheon Mfg. Co.
- "Semiconductor Power Rectifiers," J. W. Thornhill, Texas Instruments, Inc.
- "Some Practical Considerations Concerning the Limiting Operating Voltages of Junction Transistors," W. E. Sheehan, Raytheon Mfg. Co.
- "Transistor Pulse Characteristics," E. A. Hoskinson, North American Aviation, Inc.
- "Silicon Power Transistors and their Applications," J. W. Lacy and P. D. Davis, Jr., Texas Instruments, Inc.

ANTENNAS AND PROPAGATION I

Engineers Club, Italian Room

- "Investigation of the Electrical Characteristics of Low Frequency Transmitting Antenna Towers by Scale Model Measurements," Sidney Rosenberg and Paul Wilson, USAF Rome Air Development Center.
- "Aircraft Antenna System Lightning Protection," R. F. Huber, Joslyn Mfg. Co., M. M. Newman and J. D. Robb, Lightning & Transients Research Inst.
- "An Evaluation of Liaison Antennas for the Boeing Jet Transport," O. C. Boileau, Jr., Boeing Airplane Co.
- "Helicopter Antenna Design Considerations," A. R. Ellis, Stanford Research Institute.
- "The Antenna Crossover Problem in Conical Scan Radar," M. S. Wheeler, Westinghouse Electric Corp.
- "High Speed Sequential Lobing Antenna for Tracking Radar," J. T. McDonough, Westinghouse Electric Corp.

MANAGEMENT I-ENGINEERING AND PRODUCTION

Biltmore Hotel, Main Ballroom

- "Management of a Study Program," N. V. Petrou and J. E. Darr, Westinghouse Electric Corp.
- "The Role of Electronics Research in Systems Engineering," Sidney Wald, The Glenn L. Martin Co.
- "Management and Production of Airborne Electronics in the Event of Atomic War," A. S. Brown, Stanford Research Inst.
- "A New Packaging Design Well Suited to
- Automation," D. H. Westwood, RCA. "An Approach to the Packaging of Sub-

- miniature Electronic Equipment," A. H. Stoney, Sylvania Electric Products, Inc. "Miniaturization and Unitization in Equipment Design," S. M. Stuhlbarg, Crosley
- Div., AVCO Mfg. Co.

ELECTRONIC COMPONENTS I

Biltmore Hotel, English Room

- "Design of Airborne Power Transformers from a Heat Transfer and Weight Point of View Using Forced Air Cooling and Metal Tape Windings," A. B. Cicero, Sylvania Electric Products, Inc.
- "Airborne High Temperature Transformer and Reactor Components," A. Lucic, North American Aviation, Inc.
- "Audio Frequency Selective Tunable Relay," Gerald Zomber, Avion Instrument Corp.
- "The Model 307 Photo-Electric DC Chopper," F. H. Davis, Avion Instrum. Corp.
- "Practical Design Criteria for High Order Mode Cavities," Amasa Pratt, Kearfott Co., Inc.

Monday Afternoon

Semiconductors II-Circuits

Engineers Club, Auditorium

- "Microwave Video Detection Characteristics of Crystals," R. E. Henning, Sperry Gyroscope Co.
- "Characteristics and Circuit Design for High Power Transistors," H. T. Mooers, Minneapolis-Honeywell Regulator Co.
- "Transistor DC-DC Converters," D. A. Paynter, General Electric Co.
- "Transistorized Time Encoder," J. C. Groce, Federal Telecommunication Labs., Inc.
- "A Silicon Transistor Resolver Amplifier," W. W. Wells, North American Aviation, Inc.
- "Transistor Application in a 2 to 8 MC Communications Receiver," H. J. Woll, RCA.

ANTENNAS AND PROPAGATION II

Engineers Club, Italian Room

- "Loop Antennas," Phyllis A. Kennedy and Thaddeus Kaliszewski, Harvard Universitv.
- "Evaluation of Structural Dielectrics for Use in Flush Type Cap Antennas," Bruce M. Sifford and Henry J. Sang, Stanford Research Inst.
- "VSWR Circle Transformations," David A. Cope, Glenn L. Martin Co.
- "Obtaining a Uniform Field in the Diffraction Zone of a Large Aperture," J. O. Stenoien, Boeing Airplane Co.
- "Absolute Backscattering Measurements Employing the Synchrodyne Principle, Hybrid-T, and Image Plane in the

K-Band," Capt. L. A. Yarbrough, USAF Institute of Technology.

"Characteristics of Meteor Bursts on 15 MC Over a 608 KM Path," H. T. Castillo, Dayton, Ohio.

RELIABILITY

Biltmore Hotel, Main Ballroom

- "Measuring, Assessing and Predicting Equipment Reliability," C. M. Ryerson, RCA.
- "System Function or Information Flow as a Measure of Reliability," A. Kohlenberg, Melpar, Inc.
- "Airborne Radar Reliability," A. M. Levine and A. J. Finocchi, Federal Telecommunication Lab.
- "Airborne Radar Reliability," L. A. Mayberry, Motorola, Inc.
- "Reliability in Complex Airborne Electronic Equipments," G. H. Scheer, USAF Wright Air Development Center.
- "Field Support of Complex Airborne Electronic Equipment," H. W. Brown, Jr., RCA.

MEASUREMENT AND TEST I

Biltmore Hotel, English Room

- "Characteristics of X-Band Radar Test Set," Murray Kaye, Sperry Gyroscope Co.
- "A Calorimeter for Microwave Low Level Power Measurements," L. D. Strom, Texas Instruments, Inc.
- "Improvements in Calorimetric Wattmeters and Water Loads," Samuel Freedman, Chemalloy Electronics Corp.
- "Design Considerations for a New Type of Dummy Load," D. Self, Sperry Gyroscope Co.
- "Recent Developments on the National Bureau of Standards Microwave Refractometer," M. C. Thompson, Jr., National Bureau of Standards.
- "A Method of Wavelength Measurement for the Microwave and Millimeter Wave Regions," W. W. Balwanz, M. B. Rapport, and E. W. Ward, USN Naval Research Laboratory.

Tuesday Morning

Ferromagnetics and Plastics

Engineers Club, Auditorium

- "Bimag Applications in Airborne Control Systems," I. L. Auerback, Burroughs Corp.
- "A New Passive Magnetic Binary for Digital Applications," J. R. Horsch, General Electric Co.
- "Ferrite Duplexers for Microwave Radar Applications," T. N. Anderson, Airtron, Inc.
- "Plastics Material," J. H. DuBois, Mycalex Corp. of America.

"A New Class of Artificial Dielectrics for Microwave Applications," W. O. Puro, H. T. Ward, Jr., and D. M. Bowie, Melpar, Inc.

HUMAN ENGINEERING

Engineers Club, Italian Room

- "A Miniature Airborne Pictorial Plotter," S. Romano, Avion Instrument Corp.
- "A Preliminary Study of Operational Advantages of Pictorial Navigation Displays," F. S. McKnight, CAA Technical Development & Evaluation Center.
- "Problems of Simulations with Human Subjects," M. Goetz, Westinghouse Electric Corp.
- "Development of a Pilot Analog for the Single-Degree-of-Freedom Case," R. J. Mead and N. Diamantides, Goodyear Aircraft Corp.
- "Some Human Engineering Problems in Fly by Wire Techniques," Arthur Kahn, Westinghouse Electric Corp.
- "Human Engineering Analysis of Flight Director Systems," N. J. Cafarelli, Stavid Engineering, Inc.

COMPUTERS

Biltmore Hotel, Main Ballroom

- "Gain Compensation for Airborne Analogue Computers," T. G. Nichols, Westinghouse Electric Corp.
- "An Analogue Surface Function Generator," J. J. Earshen, Cornell Aeronautical Lab., Inc.
- "Comparative Advantages of Airborne Digital Computers," D. L. Nettleton, RCA.
- "Analysis of Systems Containing Digital Computers," E. Arthurs, RCA.
- "The Flying Spot Scanner as a Digital Data Read Out Device," C. E. Jones, Federal Telecommunication Labs., Inc.

SERVOMECHANISMS

Biltmore Hotel, English Room

- "Gain Equalization of Linear Servomechanisms which Solve Non-Linear Equations," G. E. Adams, Farnsworth Electronics Co.
- "Feedback Control Systems Using Sampled Data," L. E. Mertens, RCA.
- "Some Loading Effects on Servomechanism Performance," George Axelby, Westinghouse Electric Corp.
- "Non-Linear Boost System Flow Characteristics and its Effect upon Autopilot Performance," A. M. Fuchs and F. J. Huddleston, Westinghouse Electric Corp.

Tuesday Afternoon

FORUM: THE WEAPONS SYSTEMS CONCEPT AND HOW IT AFFECTS **AERONAUTICAL ELECTRONICS**

Engineers Club, Auditorium

RADIO INTERFERENCE

Engineers Club, Italian Room

"Low-Impedance Gaskets for Radio-Frequency Applications," Verne Pulsifer and A. J. Hoehn, Armour Foundation.

- "Measurement of Interference Fields about Aircraft," J. R. Stahmann, Lightning and Transients Research Institute.
- "Radio Interference Control in Aircraft." A. L. Albin and J. E. McManus, Armour Research Foundation.
- "A Study of Interference between Messages from Independent Multiple Sources on a Single Channel," Bobby Buchanan, USAF Cambridge Research Center.
- "Interference Blankers," R. O. Engels, USAF Rome Air Development Center.
- "Study of Noise Reduction by Feedback in Ultra-High Frequency Amplifiers," A. B. Glenn, RCA.

ENVIRONMENTAL CONDITIONS

Biltmore Hotel, English Room

- "A Comparison of the Thermal Efficiencies of Subminiature Tube Shields Using a New Method of Measurement," L. C. Calhoun, Westinghouse Electric Corp.
- "Relationship between Heat and Temperature or How Is a Dissipation in Watts Related to the Temperature of Parts," A. S. Gutman, Sylvania Electric Products, Inc.
- "General Design Aspects for Cooling Electronic Equipment," M. Mark, Raytheon Mfg. Co.
- "Reliable Tube Bulb Temperatures and Plate Operating Ratings," E. S. Mockus, Raytheon Mfg. Co.

Wednesday Morning

ELECTRON TUBES I

Engineers Club, Auditorium

- "Some Results of a Comprehensive Program to Improve Tube Reliability, Arthur Kohlenberg," Melpar, Inc.
- "Developmental Low Noise TW Tubes for L-, S-, and C-Band," P. R. Wakefield and A. G. Hogg, RCA.
- "A Developmental High Power Tunable X-Band Pulse Magnetron for Airborne
- Applications," W. F. Beltz, RCA. "A High Power X-Band Klystron," R. A. LaPlante, Philips Laboratories.
- "Casting Waveguides Complete with Flanges by the Shell Molding Process," Samuel Freedman, Chemalloy Electronics Corp.

Equipment I

Engineers Club, Italian Room

- "A Precise 60 CPS 6.5 KVA Power Source," F. A. Kahl, Bendix Radio,
- "Ultra-Linear, Wide Range 400-Cycle to D-C Converter," Darwin Krucoff, Melpar, Inc.
- "An Airborne Radio Sextant," R. M. Ringoen, Collins Radio Co.
- "AVQ-10 Commercial Airlines Weather Radar," C. J. Monroe and Aubrey W. Vose, RCA.
- "Precision Ranging with a Pulsed Optical Radar," Leonard Geller and John Lawton, Cornell Aeronautical Laboratory, Inc.
- "Pod-Mounted Electronic Equipment has Advantages," H. A. Brelsford, RCA.

NAVIGATION I

Biltmore Hotel, Main Ballroom

- "An All Weather Radio Sextant," D. O. Mc-Coy, Collins Radio Co.
- "Model Measurements of Rotor Modulation for VOR Antennas," W. E. Barrick, Electronics Research, Inc.
- "Measurement of TACAN and VOR Bear-ing Errors," D. T. Latimer, Jr., USN Naval Air Test Center.
- "Recent Developments in Distance Measuring Equipment (DME)," R. C. Borden,
- Civil Aeronautics Administration TDEC. "Radio Beam Coupler System," Herbert Hecht and G. F. Jude, Sperry Gyroscope Co.
- "The RHO in Navarho," Raymond Alexander, American Machine & Foundry Co.

MEASUREMENT AND TEST II

Biltmore Hotel, English Room

- "Propeller Blade Angle-and Deflection-Measurement," J. C. Camm, Electronics Corp. of America.
- "A Pulse System of Strain Recording," P. L. Toback, Armour Research Foundation.
- "A Versatile 200 Channel Recorder for Static Stress Analysis," T. C. Fletcher, Beckman Instruments, Inc.
- "A Miniaturized Telemetering System Resulting from Modern Design Techniques,' I. P. Magasiny, Raymond Rosen Engineering Products, Inc.
- "Flight Testing an Airborne Magnetic Tape Data Recorder," J. J. Dover, USAF Flight Test Center. "Signal Generator," Norman Greenberg,
 - Avion Instrument Corp.

Wednesday Afternoon

ELECTRON TUBES II

Engineers Club, Auditorium

- "Magnetron Beam Switching Tube," Hilary Moss, Burroughs Corp.
- "Recent Developments in the Raytheon Recording Tube," R. C. Hergenrother, A. L. Luftman, and C. S. Sawyer, Raytheon Mfg. Co.
- "Stacked Ceramic Tubes," H. E. Sorg, Eitel-McCullough, Inc.
- "Status of Stacked Tube Development," W. R. Wheeler, Sylvania Electric Products, Inc.
- "Ceramic Techniques and Parts Fabrication for Vacuum Tube Applications," T. S. Stanislaw, Sylvania Electric Products, Inc.

INFORMATION THEORY

Engineers Club, Italian Room

- "Z Transform for Multiple Sampled Systems," N. T. Simopoulos, U. of Dayton.
- "Modern Network Theory Design of Crystal Filters for Communications and Navigation," M. Dishal, Federal Telecommunication Labs., Inc.
- "Phase Detector for Pulsed I-F Signals," O. E. Linderman, General Electric Co.
- "The Philosophy of Design of Data-Processing Systems," R. L. Whittle, Federal Telecommunication Labs., Inc.

4

- "A 30-Target Electronic Radar Simulator: Its Application to Human Engineering and Systems Research," Lowell Schipper, Ohio State University.
- "A Multiple Target Radar Simulator," Sidney Wald, Glenn L. Martin Co.

NAVIGATION II

Biltmore Hotel, Main Ballroom

- "The Magnetic Drum as an Aid for Air Traffic Control and Weather Reporting," G. E. Fenimore, CAA Technical Development & Evaluation Center.
- "A Novel Holding Pattern for Inbound Airplanes," C. E. Young, Cornell Aeronautical Laboratory, Inc.

- "Analytic Approach to the General Air Traffic Control Problem," L. J. Fogel and N. J. Cafarelli, Stavid Engineering, Inc.
- "Evaluation of the Rho/Theta Transponder System for Air Traffic Control," D. S. Crippen and J. E. Herrmann, CAA Technical Devt. & Eval. Ctr.
- "An Investigation of Ilas Beam Characteristics and Aircraft Tracks," Abe Tatz, Airborne Instruments Lab., and Capt. C. P. Thomas Wright Air Development Center.
- "A Broad Band Blue Lighting System for Radar Approach Control Centers," C. L. Kraft and P. M. Fitts, Ohio State University and Arthur Perong, USAF Wright Air Development Center.

Circuits

Biltmore Hotel, English Room

- "A High Stability RF System for DME Interrogators," M. Feller, Federal Telecommunication Labs., Inc.
- "8.5-15 CM Plate Pulsed Reentrant Oscillator Circuits," W. E. Babcock, RCA.
- "TEM Mode Microwave Filters," D. V. Geppert and R. H. Koontz, Sylvania Electric Products, Inc.
- "A Wideband Low-Noise Amplifier for Millimicrosecond Pulses," Harry Kihn, RCA.
- "A Precision Omnibearing Selector for the Test and Adjustment of VOR Receivers," R. L. Olson, Collins Radio Co.

1955 IRE CONVENTION RECORD

All available papers presented at the 1955 IRE National Convention will appear in the IRE CONVENTION RECORD to be published in June. The CONVENTION RECORD will be issued in ten Parts, with each Part devoted to one general subject. The papers for each session are listed on pages 349–377 of the March issue.

Instructions on Ordering

1. If you are a member of a Professional Group and have paid the group assessment by April 30, you will automatically receive, free of charge, that Part of the CONVENTION RECORD pertaining to the field of interest of your group, as indicated in the chart below. 2. If you are not a member of an IRE Professional Group, CONVENTION RECORD, Parts may be purchased at the prices listed in the chart below. Orders must be accompanied by remittance, and to assure prompt delivery, should be sent immediately to The Institute of Radio Engineers, 1 East 79 Street, New York 21, N. Y.

CONVENTION RECORD

Part	Title	Free To Paid Members of Following	Prices for Members (M) College and Libraries (L) Non-Members (NM)			
		Professional Groups	М	L	NM	
1	Antennas & Propagation Sessions: 2, 10, 33, 40	Antennas & Propagation	\$1.00	\$2.40	\$3.00	
2	Circuit Theory Sessions: 7, 32, 39	Circuit Theory	1.00	2.40	3.00	
3	Electron Devices and Components Parts Sessions: 16, 23, 43, 44, 51, 52	Electron Devices Component Parts	1.50	3.60	4.50	
4	Computers, Information Theory, Automatic Control Sessions: 8, 14, 24, 27, 35, 42, 48, 53	Electronic Computers Information Theory Automatic Control	2.25	5.40	6.75	
5	Aeronautical and Navigational Electronics Sessions: 11, 19, 55	Aeronautical & Navigational Electronics	1.00	2.40	3.00	
6	Management, Quality Control, and Production Sessions: 18, 29, 37, 46, 50	Engineering Management Reliability and Quality Control Production Techniques	1.50	3.60	4.50	
7	Transmitters, Receivers, and Audio Sessions: 12, 13, 20, 21, 25, 31, 38	Broadcast Transmission Systems Broadcast & Television Receivers Audio	2.50	6.00	7.50	
8	Communications and Microwave Sessions: 3, 4, 28, 36, 47, 54	Communications Systems Vehicular Communications Microwave Theory and Techniques	2.00	4.80	6.00	
9	Ultrasonics, Medical and Industrial Electronics Sessions: 5, 26, 34, 41, 49	Ultrasonics Engineering Medical Electronics 1.50 Industrial Electronics		3.60	4.50	
10	Instrumentation, Telemetry and Nuclear Science Sessions: 1, 6, 9, 15, 17, 22, 30, 45	Instrumentation Telemetry and Remote Control Nuclear Science	2.50	6.00	7.50	
	Complete Convention Record (All Ten Parts)		\$16.75	\$40.20	\$50.25	

a

NATIONAL TELEMETERING CONFERENCE

SPONSORED JOINTLY BY IRE, AIEE, IAS, AND ISA

CHICAGO, ILLINOIS, MAY 18-20

Wednesday Morning

Components I

INDUSTRIAL TELEMETERING

Chairman, K. C. Black

- "A New High-Speed Telemeter Transmitter for dc Measurements," R. M. Stuart, General Electric.
- "A New Electronic Telemetering Transmitter for Pilot Wire Applications," T. Barabutes, Westinghouse Electric & Manufacturing.
- "An Incremental Remote Position Control System," Jonathan Mass, Kiryat Motz-kin, P.O. Box 1, Haifa, Israel.
- "A New Time Interval Telemeter System," W. H. Howe, The Foxboro Co.

Wednesday Afternoon

Systems I

INDUSTRIAL TELEMETERING

Chairman, P. A. Borden

- "Pulse Telemetering for Industry," V. C. Kennedy, Jr., Streeter-Amet Co.
- "Automatic Teletype Transmitting System," J. R. Cunningham, Beckman Instruments, Inc.
- "Ultra Sonic Liquid Level Indicator Sys-tem," R. L. Rod, Bogne Electric Mfg. Co. "Channels for Telemetering, Supervisory
- Control and Other Purposes," H. A. Rhodes, A. T. & T.
- "Telemetering System for Space Position Data," R. N. Nicola, The Newton Co.

Components II

PICK-UPS AND TRANSDUCERS

Chairman, K. M. Uglow

- "Vibrotron Digital Telemetering System," J. Ohman, Southwest Research Inst.
- "A Commutatorless Direct Current Motor," H. D. Brailsford, Brailsford & Co.
- "Precision Data Recording and Repeating System (The Inductosyn)," J. L. Winget,
- Farrand Optical Co. "A Gravity Switch," P. Weaver, W. L. Maxson Corp.
- "A Phase Modulated Transistorized Pressure or Acceleration Telemetering Channel," A. I. Dranetz and J. L. Upham, Gulton Mfg. Corp.
- "New Developments in Miniature Telemetering Pick-Ups," L, A. G. TerVeen, Pacific Division, Bendix Aviation Corp.

Thursday Morning

Systems II

FLIGHT TESTING

Chairman, C. A. Taylor

- "New AKT-6 Flight Test," J. E. Spooner, Radiation, Inc.
- "Telemetry as a Flight Test Instrument,"

- J. J. Dover, Air Force Flight Test Cntr., Edwards A. F. B.
- "A PDM-FM Telemetering System for Low Level DC Inputs," R. H. White, Natl. Advisory Committee for Aeronautics, Langley Aeronautical Lab., Langley Field.
- "An Analog Cross-Spectrum Analyzer for Telemetering," R. L. Kenimer, Natl. Advisory Committee for Aeronautics, Langley Aeronautical Lab., Langley Field.
- "Automatic Digital Recording of Flight Test Data," L. I. Goldfischer and S. G. Cohen, General Precision Labs.

Thursday Afternoon

Systems III

MULTIPLEXING TECHNIQUES

Chairman, E. L. Gruenberg

- "Mechanical Sampling Devices in Telemetering and Related Fields," J. F. Brinster, General Devices, Inc.
- "A New Subminiature Airborne FM Demultiplexer," L. Finkel, F. Shandelman, and J. Piontkowski, Raymond Rosen Engineering Products, Inc.
- "The Magnetron Beam Switching Tube," H. Moss, Burroughs Corporation Research Center
- "A Mercury Jet Commutating Switch, W. R. Davis, Detroit Controls Corp.
- "Miniaturized Airborne Electronic Commututator," R.O. DuBois, Electro-Mechanical Rsearch. Inc.
- "Telemetry Filters and Their Effect on the Dynamic Accuracy of Multiplex FM Subcarrier Instrumentation Systems," G. S. Sloughter, R. A. Bunyan, W. H. Duerig, and G. E. Tisdale, Electro-Mechanical Research. Inc.

COMPONENTS III

NEW DEVELOPMENTS IN TELEMETRY AND REMOTE CONTROL

Chairman, J. T. Mengel

- "Mixing Airborne Telemetering Subcarriers for Maximum Isolation with Minimum Loss," W. F. Link, Pacific Division, Bendix Aviation Corp.
- "A New Ground Station Telemetering Receiver," M. S. Redden and H. W. Zancanata, Nems-Clarke, Inc.
- "The Use of AC Excited Gages in a PDM /PM Telemeter System," W. F. Carmody, Pilotless Aircraft Division, Boeing Airplane Co.
- "A New Instrumentation Direct Writing Recorder and its Application to Telemetry," G. E. Bower, Century Electronics Co.
- "Precision Multi-Channel Heads for Magnetic Tape Recording," A. V. Gangnes, Ampex Corp.
- "A Digital Approach to Telemeter Testing," C. R. Reid, Aerophysics Dept., Goodyear Aircraft Corp.

"An Automatic Landing System for Aircraft," M. H. Goldstein, Jr., and C. W. Merrian III, M.I.T.

Dinner

- Speaker: Dr. Hugh L. Dryden, Director, National Advisory Committee for **Aeronautics** "Problems in Ultra High Speed Flight"

Friday Morning

Systems IV

NEW DEVELOPMENTS IN TELEMETRY AND REMOTE CONTROL

Chairman, W. J. Mayo-Wells

- "Radar Beacon Telemeter," J. W. Poliseo, Stavid Engineering, Inc.
- "Flight Control Group AN/DRA-2," W. H Eggerton, Melpar, Inc.
- "A Pulse Telemetering System for Use on Balloon-Launched Rockets," L. R. Davis, Naval Research Lab.
- "The AN/DKT-4 and AN/MKR-1 Tele-metering System," T. B. Jackson, U. S. Naval Ordnance Lab.
- "Silicon Transistor Applications in Telemetering Equipment," C. E. Earhart and O. A. Becklund, Texas Instruments.
- "Coherent Pulse Telemetry," A. H. Cooper, E.M.I. Engineering Development, Ltd., Hayes, Middlesex, England

Luncheon

Speaker: Dr. William A. Wildhack, National Bureau of Standards "In-Accurate Transmission of Mis-Information"

Friday Afternoon

COMPONENTS IV

DATA PROCESSING

Chairman, C. F. West

- "The Role of Magnetic Tape in Data Recording Processing and Analysis," G. L. Davies, The Davies Laboratories, Inc.
- "Talking to a Computer," R. F. Shaw, Electronic Computer Division, Underwood Corp.
- "A Precision Pressure Telemetering System with Digital Data Handling," J. Prast, Bell Aircraft Corp.
- "An Automatic Digital Data Reduction System Utilizing PDM Telemetering,' R. F. Hummer, R. M. McClung, and D. J. Simmons, U. S. Naval Ordnance Test Station, Inyokern Aviation Ordnance Dept., China Lake, Calif.
- "Data Reduction Equipment Used with the FALCON Missile," H. D. Greif, Hughes Research & Development Laboratories, Hughes Aircraft Co.

The following issues of Transactions have recently been published, and are available from the Institute of Radio Engineers, Inc., 1 East 79 Street, New York 21, N. Y., at the following prices. The contents of each issue and, where available, abstracts of technical papers are given below.

Sponsoring Group	Publication	Group Members	IRE Members	Non- Members'
Aeronautical and				
Navigational Electronics	Vol. ANE-1, No. 4	\$1.00	\$1.50	\$3.00
Audio	Vol. AU-3, No. 2	.95	1.40	2.85
Electronic Com-				2.00
puters	Vol. EC-3, No. 1	1.10	1.65	3.30
Reliability and Qual-	,			
ity Control	PGOC-4	1.20	1.80	3.60
Telemetry and Re-				
mote Control	PGRTRC-2	0.95	1.40	2.85
Proceedings of the V	VESCON Computer			
Sessions		1.45	2.15	4.35

* Public libraries and colleges may purchase copies at IRE Member rates:

AERONAUTICAL AND NAVI-GATIONAL ELECTRONICS

Vol. ANE-1, No. 4, DECEMBER, 1954

Editorial-K. E. Black

Electronic Simulators for Study of Aircraft Flight Paths-S. L. McDonough. The simulation facilities described in this paper were developed at the Cornell Aeronautical Laboratory, Inc. in Buffalo, N. Y. under the sponsorship of the U.S. Navy Bureau of Ships. The simulator was designed for use as an aid in the study of the problems of coordinating many aircraft in a given geographic area. Correspondingly, the equipment is only as sophisticated as the requirements of the special problem dictated. The main significance of the simulator lies in its ability to develop with a small operating crew, a complex aircraft traffic situation as might be viewed by a ground based surveillance radar. Further, the simulator is capable of generating signals for use in testing and developing experimental data processing, computing, and recording equipment.

Several methods of simulating simplified aircraft tracks in three dimensions are included. Simulation equipments based on these methods are in use as data sources for trackwhile-scan radar repeater presentation and for direct use in ground installed computing and recording equipment. The methods involve both integration and multiplication techniques in generating voltages which represent tracks in rectangular coordinates. The voltages may be used directly in computers, or video circuits may be employed to convert aircraft position to polar form for PPI and RIII presentation. The simulation methods vary in the degree of aircraft maneuverability from nonmaneuvering straight-line aircraft to that of fixed rate of turn aircraft. The complete installation has the capacity to simultaneously generate 24 aircraft paths.

High Voltage Problems in Flush and External HF Antennas—R. L. Tanner. At frequencies near the low end of the hf band the radiation resistance of aircraft antennas is almost always very small compared to antenna reactance. To radiate appreciable power, therefore, large voltages must be applied to the antenna terminals, resulting in a severe voltage breakdown problem at the high operating altitudes of modern a:rcraft. This paper discusses the mechanisms of breakdown at radio frequencies and relates them to the problem of voltage protection of cap-type and fixed wire antennas and associated components. The use of models in the design of cap-type antennas for high breakdown voltage is considered, and experimental data are given on rf breakdown voltage as a function of altitude for typical geometries.

Development of the Ring Goniometer for Radio Direction Finders—Yoji Ito and Isokazu Tanaka. The radio direction finder of the Bellini-Tosi type requires a radiogoniometer to compare the direction of wave arrival to that of the rotating angle of the search coil. The newly designed Ring Goniometer described is the most efficient developed thus far due to high coupling coefficient (70–80%) and low coupling or octantal error (one degree without correction). It is simple to construct, consisting of two coils which are wound on ring-shaped concentric iron cores.

This paper presents the detailed theoretical analysis and method of measurement of such a ring goniometer.

A New Airborne DME Interrogator Designed for Stable Operation and Ease of Maintenance-A. R. Applegarth. This paper describes the technical design of the NARCO Model UDI-1 DME Interrogator. The transmitter section consists of a ten channel crystal controlled oscillator followed by a chain of amplifier-frequency multipliers to provide 500 watts pulse output in the band 960 to 990 mc. The receiver sect on is a ten channel superheterodyne using a crystal controlled local oscillator, which operates in the band 1185 to 1215 mc. The range unit contains electronic ranging circuitry along with improved magnetostriction delay code and decode systems, an extremely simple identity signal detector, and a novel means for causing intentionally irregular interrogations. The mechanical design which permits the set to be easily separated into its major components for maintenance is also described.

AUDIO

Vol. AU-3, No. 2, March-April, 1955 IRE-PGA News

A Versatile Audio Spectrometer—W. O. Essler. A new method of obtaining audio power spectra is described. Advantages of the new method are speed of use and great frequency of detail. The new method is based on the production of a "composite signal" which has a time continuous power spectrum. The composite signal method can be used with many types of signals such as speech, music, traffic noise, et cetera.

Triode Cathode-Followers for Impedance Matching to Transformers and Filters—T. J. Schultz. The material presented in this paper gives a selection of ready-made triode cathode follower circuits applicable to the problems of impedance matching to audio filters and transformers. Curves resulting from breadboard tests are given on five tube types, and an illustrative example is included.

Noise Analysis with a Heterodyne Type Sonic Analyzers—J. D. Richard, Jr., P. Smith, and F. H. Stephens. A technique for obtaining noise spectrum levels using a heterodyne type sonic analyzer is described. The analysis of a specific noise recording is shown as an example. A method is also described for obtaining spectrum levels directly from the cathode ray tube photographs.

Basic Principles of Stereophonic Sound-W. B. Snow. Stereophonic sound has become of vital importance to industry. The subject has been studied for many years, but the published material is scattered. This paper summarizes the fundamental theory underlying stereophonic sound so far as it has been published, and gives examples of how the theory is employed in representative practical situations. Fundamental differences between ordinary binaural listening and stereophony are pointed out, as well as similarities. It is shown that much qualitative but little quantitative information has been reported. Factors which aid some stereophonic effects are shown to be detrimental to others, and methods of minimizing the undesirable conditions are suggested, Applications to recording are discussed.

ELECTRONIC COMPUTERS

Vol. EC-4, No. 4, March, 1955

News

Reviews

Engineering Description of the Electro-Data Digital Computer—J. C. Aldrich. The operation of the ElectroData digital computer, control console, input-output equipment, and power units is described. The chief logical components are described in detail and the characteristics of some circuits are given, with a description of logical operation. Basic design decisions are stated.

Transistor Circuitry for Digital Computers —C. L. Wanlass. Transistor circuitry is presented that enables the construction of a digital computer which will operate at a clock frequency of 200 kc or less. The circuitry employs readily available germanium or silicon junction transistors of the type used in audio-frequency circuit work. A new system of diode gating is also presented as a necessary part of the circuit philosophy. No vacuum tubes are required or used with the computer.

A High Speed Permanent Storage Device— J. M. Weir. This paper describes a device useful for the permanent storage of digital information which ordinarily is not to be altered once it is stored. The device utilizes a large

sh

1

magnetic-core matrix switch, of a type described by Rajchman, in conjunction with a storage system used with the Bell Computer, Model VI, to obtain permanent storage capacities up to about a million bits. The information is stored by suitability lacing a set of drive leads from the output of the magnetic switch through an array of magnetic cores. This device is characterized by low-access time, large-operating tolerances, and a relatively small number of magnetic cores.

Control Features of a Magnetic-Drum Telephone Office—W. A. Malthaner and H. E. Vaughn, Several functional arrangements useful in conjunction with a parallel magneticdrum memory are described with general reference to their application in an experimental telephone-switching system. The functions included are detection and registration of input information, counting, timing, transfer of information from one drum location to another, and translation of information from one form to another.

Stability of a Method of Smoothing in a Digital Control Computer—W. Karush. In a certain operation a digital computer was used as an element of a control system to smooth consecutive observational data. The method of smoothing consisted or predicting from past smoothed values and then combining the prediction with the next observation. In this paper an analysis of the stability of this useful method is made, and an explicit formula of the range of the parameters for which the method is stable is derived. Also, the statistical variance of the smoothed variable is calculated.

Review of Electronic Computer Progress During 1954-D. A. Brown.

RELIABILITY AND QUALITY CONTROL

PGQC-4, DECEMBER, 1954

Developments in Trustworthy-Value Techniques—E. G. Rowe and P. Welch. Quality-Control procedures in the manufacture of vacuum tubes, with particular emphasis on those designed for reliable or trustworthy service, are discussed. Histograms are used to distinguish between manufacturing variations and manufacturing errors to aid in their rapid detection and correction. Tests are made for short-circuits, disconnections, glass faults, premature heater and emission failures, noise, and short lives under high shock and vibration environment.

Reliability of Quantity Produced Transistors in Low Power Audio Applications— F. M. Dukat. Transistors have now been in quantity production for more than eighteen months and many hundreds of thousands of transistors have been put into daily use in hearing aids and other applications and are giving highly satisfactory and reliable service. A great deal of information has been accumulated relating to the performance of transistors at initial installation and during thousands of hours of operation.

Data will be presented summarizing this experience. The nature of defects that have been encountered will be discussed together with the relation of circuitry and other operating conditions to service performance and reliability.

Reliable Electronics Through Protective Coating Techniques—E. R. Gamson and H. Henesian. Stanford Research Institute has been engaged in a program involving studies and methods of protective coating materials. The techniques investigated, including thin coatings, cast-resiu embedment, and foamplastic encapsulation, were found to offer effective methods for improving the reliability of electronic systems. The protective medium surrounding such equipment could, in the ideal sense, eleminate failures due to vibration, moisture, or other environmental effects. The results of these studies indicate the degree of protection now offered and the direction whereby the ideal may be obtained. Our research indicates that it is now possible to operate critical electronic devices in adverse environmental conditions for extended periods, by the application of the correct protective coating system.

Quality in Production—Dr. R. Weller. The quality of the product delivered by a manufacturer is largely determined by management policy. Where high quality is desired it is important to direct attention to ways and means of getting it.

The cost of an article from the user's point of view is a function of performance and reliability. The marginal value of improved performance is difficult to evaluate but the marginal value of increased reliability is readily stated.

Reliability can be discussed in terms of the reasons for failure, the identification and analysis of specific causes, the remedies necessary and especially the organizational steps necessary to ensure adequate flow of information and authority to secure a good product.

TELEMETRY AND REMOTE CONTROL

PGRTRC-2, NOVEMBER, 1954

Delay Line Controlled Subcarrier Discriminator-K. A. Morgan and R. F. Blake. A new FM subcarrier discriminator utilizing a delay line as the frequency stable element has been developed. The design has exceptionally good linearity and stability without requiring parts selection. The output is essentially independent of tube characteristics since the sensitivity is primarily determined by a regulated reference voltage and the delay line. The linearity is theoretically perfect and in practice, linearities of plus or minus 0.1% have been obtained when used as a subcarrier telemetering discriminator. Input signal amplitude variations over a dynamic range of 100:1 have no noticeable effect on the output. This discriminator is particularly useful at high frequencies up to 1 mc (where other types of linear discriminators are difficult to construct) and as low as 3 kc. This low frequency limitation may be overcome by the design of miniature lumped constant or disturbed delay lines. Subminiaturization techniques are directly applicable to the design which requires only six tubes and a minimum number of electrical components.

Telemetering and Information Theory— Frank W. Lehan. Issue is taken with the reaction that seens to be in evidence among some radio engineers to the effect that information theory is an extremely complex and somewhat impractical subject fit only for mathematicians to amuse themselves with.

By way of illustration, a short engineering style discussion is given about the misbehavior of the audio frequency discriminator common in fm-fm telemetering at weak signal levels. An intuitive presentation is made as to why such misbehavior is not basic to the fm-fm system but is characteristic of the discriminator used. A different type of discriminator, suggested by information theory, is described and its performance outlined.

The discussion is extended to the fm transmitter, Receiver link and methods of improving the performance of this combination at poor signal to noise levels are suggested. It is speculated that some 10 db improvement may be possible here.

Finally, speculation concerning the possibilities of an integrated fm-fm transmissionreception system capable of operating at greatly reduced signal levels is indulged in. It is emphasized that such speculation is merely an indication of possible fruitful avenues of research, not a proposal for an actual system. A Temperature-Stable Transistor VCO-Fred M. Riddle. A transistor oscillator which is stable up to 150°F has been developed for obtaining electrical measurements. A reactancemodulation technique uses time rather than gain to control the frequency shift. Reactive current of constant amplitude is applied to an le circuit for a controlled portion of each cycle. The portion of the cycle is controlled by a bias current injected into the modulating transistor. A differential converter circuit which functions also as a dc amplifier is used with the oscillator in making voltage measurements at high impedance level. Drift of the unit with variation in temperature, vibration, and supply

multi-vibrators and dc-amplifier combinations. A Slope Modulator for FM Recording of Analog Data on Magnetic Tape—Louis W. Erath and Frank C. Smith, Jr. A new method of accomplishing frequency modulation enables this system to be used for the recording of analog data on magnetic tape with high signal-tonoise ratio and good linearity.

voltage is comparable to that of vacuum-tube

Conventional means of accomplishing frequency modulation, e.g. multivibrators, suffer from a number of limitations, especially in deviation ratio and linearity. Such circuits are much less elegant than the frequency-meter type of demodulator used in association with them.

The Slope Modulator described in this paper is a new circuit equal in refinement to the demodulator. Theoretically capable of 100 per cent deviation, it is operated in geophysical equipment at 75 per cent deviation for 100 per cent modulation, and in this application distortion is less than 1 per cent with noise down 80 db. Good carrier-frequency stability and freedom from tube characteristics are other features of the circuit.

The Slope Modulator shows promise for applications in telemetering, process control, vibration analysis and laboratory measurements where analog data must be recorded for reproduction. In its present form the system is capable of recording frequencies from zero to 500 cycles at a tape speed of $7\frac{1}{2}$ inches per second. A maximum input signal to the modulator of 10 volts rms or 28 volts dc can be handled with less than 1 per cent distortion and an over-all signal-to-noise ratio (including tape drive mechanism) of approximately 56 db.

PROCEEDINGS OF THE WESCON COMPUTER SESSIONS

A Dependent Variable Analog Function Generator—C. J. Savant, Jr., and R. C. Howard. An all electronic, versatile, analog, arbitrary function generator which permits the rapid change of the functional form over a wide range is described. The basic components are explained with the aid of response oscillograms. The heart of the system is a linear-tologarithmic converter which displays dependable performance when operating on the nonlinear portion of triode characteristics. After a slide-augmented description of the hardware, various nonlinear equations, including that of Duffing and Van de Pol, are mechanized and the solutions compared with analytical results.

Automatic Iteration on an Electronic Analog Computer—Louis B. Wadel. This paper discusses the employment of an electronic analog computer for automatic solutions of ordinary differential equations whose computer solution depends upon the application of an iterative process. Three types of equations falling in this category are noted, and a simple example of each is given. A computer solution procedure applicable to each example is outlined, with circuit diagrams included. Also described is the 46

.

use of a multipole stepping relay to effect the iteration procedures required. Illustrative results are presented.

A Logarithmic Voltage Quantizer-E. M. Glaser and H. Blasbalg. An analog to digital converter is described which converts a voltage into a chain of pulses whose number is proportional to the logarithm of the voltage. The device is automatic. It can handle input data at the rate of 10,000 voltage samples per second. Samples of amplitude between 3.3 and 100 volts and length greater than .3 microseconds can be quantized. Accuracy of conversion is adjustable to either 5 per cent or 10 per cent. A simple rc circuit performs the logarithmic conversion. The mathematical analysis of the conversion and quantization is given. Design equations are developed. A laboratory model of the quantizer is described and experimental results are shown.

A Digital Converter-J. B. Speller. A digital converter, which uses a unique disk pattern, has a shaft rotation input and unambiguous output in the natural binary code. The unit has 13 binary digits with an accuracy of one part in 214. By adding additional gear trains and disks it is possible to provide considerably higher count and accuracy. No transformations are required to obtain the natural binary code output. The input torque is about 0.2 in oz. and is uniform throughout the range of the instrument. Sixty-four revolutions of the input shaft are needed for the complete count. The converter weighs less than 7 oz. and is similar in appearance to a small synchro. Brushes and commutator disks permit either dc or pulse voltage inputs and outputs.

Efficient Linkage of Graphical Data and Digital Computers-E. D. Lucas, Jr. This paper discusses the problem of transferring graphical data into digital form, and the converse problem of converting digital data into graphical form, for use with digital computers. Semiautomatic machines are described for analyzing and reading both oscillographs and film records, and associated machines for converting these readings into digital form. The latter includes conversion devices with digital output on punched tape, punched cards, or magnetic tapes. Several automatic plotting machines are described which present in graphical form the results of digitally computed data. These plotters will accept computer input in numerous digital forms, both serial and parallel, including punched tape and cards and electrical signals from contact closures. The plotters also accept input from analog devices.

Transistor Flip-Flops for High-Speed Digital Computers—Edmund U. Cohler. This talk sketches the design and operation of various point-contact transistor flip-flops for use in computors. The analysis of the various types are explained and the circuits discussed in terms of their limitations and capabilities. Schematics for these flip-flops are presented and salient differences noted.

A system using various flip-flops and associated gates is described and evaluated in terms of extended use of transistors in computor circultry.

Design Fundamentals of Photographic Data Storage-Gerhard L. Hollander. This paper is designed to give in one place sufficient background in the fundamentals of photography to permit engineers to evaluate film as a storage medium. The first section briefly presents the terminology and discusses available specifications which characterize films intended primary for ordinary photography. With this background material the data needed to use film for data storage are described. Once these characteristics are determinated, a design procedure can reply experimental development, and the memory transfer function of photographic media can be formulated. Finally, the separate problem of selecting the storage locations in photographic media is treated.

Pulse Response of Ferrite Memory Cores-James Robert Freeman. The response of magnetic-ferrite cores to current pulse in a two-toselection coincident-current magneticone memory are classified as fourteen basic voltage outputs. These outputs are defined and described with relation to the hysteresis loops and pulse sequences involved. Photographs of the pulse responses are presented and certain distinctive differences compared. The concept of reversible and irreversible outputs is explained. Measurements of the various core voltage outputs for the General Ceramics body MF-1326B are given. Curves are included of the pulse voltage characteristics, and the switching and peaking times versus the driving current. An example is given of the use of pulse test data for evaluating the merit of a memory core. Disturb sensitivity is defined and its relationship to the driving pulse duration and overdriving is described. The effect driving pulse rise time also is considered.

Computer-Programmed Preventive Maintenance for Internal Memory Sections of the ERA 1103—S. R. Cray. Daily preventive maintenance routines for the electrostatic and magnetic drum storage systems of the ERA 1103 have greatly reduced the probability of storage failures during subsequent operation. Diagnostic test programs and marginal checking features are described which are used during preventive maintenance periods to insure that satisfactory operating margins prevail. Results obtained through the use of these procedures are presented. The general characteristics of the storage systems are discussed together with operational limitations.

An Input-Output System for a Digital Control Computer—L. P. Retzinger. A control system involving twelve input functions and fourteen output functions using a digital computer as the computation element is discussed. A method of converting shaft rotations to serial binary inform tion, time sharing the basic circuitry, is described. In going from serial digital control signals to output shaft positions a novel system is used to generate and store semiproportional positioning signals which serve as inputs to magnetic amplifiers. Throughout the system, time sharing is utilized to a high degree, and independence of supply voltage, temperature, and other factors normally affecting analog systems, is stressed.

Characteristics of a Logistics Computer-Eugene Leonard. The ORDFIAC, a largescale computer having punched-card input and output and a 10,000 word magnetic drum memory, was built to handle supply problems for the Ordnance Department of the Army. Its code includes an unusual and highly versatile vector instruction, which in addition to its original purpose of facilitating matrix manipulation has proved very useful for a wide variety of operations. The 100 channels of the memory are relay-selected, with relay operation thoroughly checked before each transfer of information into or out of the memory. The paper also will discuss design features and operating experience

The Dico 20 Digital Differential Analyzer— Floyd Steele. Dico 20 is a twenty integrator magnetic drum differential analyzer. The four information channels are interplexed to form two recirculating channels. Trapezoidal integration is used. Integrator numbers are 20 significant digits long. Complete integrator communication exists and either the dx or dy integrator inputs may be multiple. Decoding is accomplished for multiple inputs by non-numerical addition. Variables are represented and processed as difference numbers. Decision is acchieved by an ordinary integrator.

Dico 20 has 6 logical flip-flops and 4 memory flip-flops. There are 180 logical diodes. Conventional computer techniques are used in electronic design. The drum speed is 30 rps. and the clock rate is 50 kc. The Bendix General Purpose Computer—

The Bendix General Purpose Computer— D. C. Evans and H. D. Huskey. The Bendix Model G-15 is a general purpose, stored program computer having exceptional computing efficiency. The logical design incorporates innovations which permit a substantial reduction in the physical side and complexity.

The novel command structure permits effective use of sub-routines and minimum access coding. It has commands for addition, sub-traction, multiplication, and division of both single and double length words. Commands for branching and other logical operations are incorporated. The memory has a capacity of more than 2000 words including a section with 0.6 millisecond average access time.

Input-output facilities may operate concurrently with computation and include electric typewriter, punched paper tape with photo-electric reader, magnetic tape, and adapter for punch cards.

611

614

615

Abstracts and References

Compiled by the Radio Research Organization of the Department of Scientific and Industrial Research, London, England, and Published by Arrangement with that Department and the

Wireless Engineer, London, England

NOTE: The Institute of Radio Engineers does not have available copies of the publications mentioned in these pages, nor does it have reprints of the articles abstracted. Correspondence regarding these articles and requests for their procurement should be addressed to the individual publications, not to the I.R.E.

Acoustics and Audio Frequencies	516
Antennas and Transmission Lines.	517
Automatic Computers	518
Circuits and Circuit Elements	518
General Physics	519
Geophysical and Extraterrestrial Phe-	
nomena	521
Location and Aids to Navigation	522
Materials and Subsidiary Techniques	522
Mathematics	526
Measurements and Test Gear	526
Other Applications of Radio and Elec-	
tronics	527
Propagation of Waves	528
Reception	528
Stations and Communication Systems.	528
Subsidiary Apparatus	529
Television and Phototelegraphy	529
Transmission	529
Tubes and Thermionics	529
Miscellaneous	530

516

The number in heavy type at the upper left of each Abstract is its Universal Decimal Classification number and is not to be confused with the Decimal Classification used by the United States National Bureau of Standards. The number in heavy type at the top right is the serial number of the Abstract. DC numbers marked with a dagger (†) must be regarded as provisional.

U.D.C. CHANGES

In anticipation of a new edition of the Universal Decimal Classification Abridged English Edition (BS 1000 A), certain changes in U.D.C. numbers will be made in this and subsequent issues. The new numbers used will be:

Radio astronomy: 523.16 Ultrasonics: 534 subdivisions with the special analytical subdivision -8 attached

Sound recording and reproducing: 534,85 Electroacoustic problems, transduction, etc.: 534.86

ACOUSTICS AND AUDIO FREQUENCIES

534.121.2:621.395.61 Theory of the Effect of a Thin Air Film on

the Vibrations of a Stretched Circular Membrane-D. H. Robey. (Jour. Acous. Soc. Amer., vol. 26, pp. 740-745; September, 1954.) Analysis generally applicable to conditions in capacitor microphones is presented. Application of the results to the case of a particular miniature microphone with titanium diaphragm shows that the effective stiffness at 20 ke is 15 times that at 5 cps.

534.132

603

604

602

Radial Vibrations of Thick-Walled Hollow Cylinders-J. A. McFadden, (Jour. Acous. Soc. Amer., vol. 26, pp. 714-715; September, 1954.) Approximate formulas are given for the natural wavelengths.

534.213.4

The Propagation of Elastic Waves in Thin-Walled Cylindrical Shells-M. C. Junger and F. J. Rosato, (Jour. Acoust. Soc. Amer., vol. 26, pp. 709-713; September, 1954.) Analysis indicates that there are two possible modes of propagation in the axial direction; at high frequencies the one corresponds to flexural waves and the other to longitudinal waves. The dis-

The Index to the Abstracts and References published in the PROC. I.R.E. from February, 1954 through January, 1955 is published by the PROC. I.R.E., April, 1955, Part II. It is also published by Wireless Engineer and included in the March, 1955 issue of that journal. Included with the Index is a selected list of journals scanned for abstracting with publishers' addresses.

persion curves are in good agreement with published experimental results. The results are relevant to investigations of cylindrical BaTiO₈ transducers and to the problem of sound insulation by lightweight partitions.

534.213.4:534.6

Propagation of Sound in Narrow Tubes-H. W. Helberg. (Akus. Beihefte, no. 2, pp. 578-586; 1954.) Theory is developed yielding the formulas of Rayleigh and Kirchhoff as limiting cases. The accuracy of Kirchhoff's expression for the attenuation is improved by addition of a constant. Using a tube of cross section 1.03 $\times 19.4$ mm with suspended particles as indicator, measurements were made of attenuation, sound velocity, and transverse distribution of particle velocity; the results give considerable support to the theory.

534.213.4:534.833.4

Propagation of Sound over Single Absorptive Strips in Ducts-J. E. Young. (Jour. Acous. Soc. Amer., vol. 26, pp. 804-818; September, 1954.) A method is developed for predicting the absorptive effect of the strip, with accuracy sufficient for practical purposes, by a combination of approximations involving assumptions about the potential distribution at the surface of the strip. In the case of resonant absorbers with low dissipation, the attenuation can be calculated simply and accurately for strips of sufficient length, found experimentally to be about four times the duct diameter. Predictions can be made for porous strips in the same length range if the appropriate phase parameter is determined.

534.23 607 An Exact Method for determining the Directivity Index of a General Three-Dimen-

sional Array-E. Rhian. (Jour. Acous. Soc. Amer., vol. 26, pp. 704-706; September, 1954.)

534.26 Diffraction of an Acoustical Wave Obliquely Incident upon a Circular Disk-H. S. Heaps. (Jour. Acous. Soc. Amer., vol. 26, pp. 707-708; September, 1954.) Calculated values of the sound pressure behind the disk with an obliquely incident wave are compared with those with a normally incident wave.

534.61:621.395.61

Ceramic Probe Microphones-E. Ackerman and W. Holak. (*Rev. Sci. Instr.*, vol. 25, pp. 857-861; September, 1954.) Report of a study of two types of microphone used for measuring intense sound fields at frequencies in the range 6-100 kc. The sensitive element is a BaTiO₃ cylinder 1/16 inch in length and in over-all diameter. Calibration procedures are described.

534.612.4

Pressure Calibration of Condenser Microphones above 10,000 c/s-B. D. Simmons and F. Biagi. (Jour. Acous. Soc. Amer., vol. 26, pp.

693-695; September, 1954.) "A 'plane wave' acoustic coupler and an electrical admittance method are described for the pressure calibration of condenser microphones in the ultrasonic frequency range.'

534.614-8

605

606

Rapid-Indication Ultrasonic Interferometer -L. Bergmann. (Akus. Beihefte, no. 2, pp. 591-593; 1954.) Measurements of the velocity of sound in gases and liquids are made quickly using a decade counter tube to count the number of maxima traversed as the interferometer reflector is shifted through a given distance.

 $534.62 \pm 621.317.3.029.63$ 612 Construction of a Reflection-Free Room for Sound Waves and Decimetre Electrical Waves -G. W. Epprecht, G. Kurtze and A. Lauber. (Akus. Beihefte, no. 2, pp. 567-577; 1954.) Description of a room constructed at Berne, having inner dimensions $5 \times 4.4 \times 2.6$ m, lining depth 60 cm and acoustic cut-off frequency 120 cps. To make the lining absorbent for em waves, steel wool is used rather than the graphite used in the anechoic chamber at Göttingen [942 of 1954 (Meyer et al.)]. The floor is netting made of perlon cables of diameter 4 mm.

534.785

613 Some Factors affecting Multichannel Listening-J. P. Egan, E. C. Carterette and E. J. Thwing. (Jour. Acous. Soc. Amer., vol. 26, pp. 774-782; September, 1954.) An experimental investigation is reported of the intelligibility of a wanted speech message in the presence of an unwanted speech message. Use of a highpass filter in either of the two channels improved intelligibility. The advantages of dichotic presentation were demonstrated. Masking of speech by noise was also investigated.

534.832:534.121.1

Sound Radiation from a Wall excited to Flexural Vibrations-W. Westphal. (Akus. Beihefte, no. 2, pp. 603-610; 1954.) By using the "radiation coefficient," whose value can be found approximately from theory developed by Gösele (949 of 1954), an estimate can be made of the sound energy radiated from a plate from measurements of the amplitude of flexural vibrations. A determination of the lateral transmission in building acoustics can hence be made.

534.833.4

609

610

The Multiple-Panel Sound Absorber-E. C. H. Becker. (Jour. Acous. Soc. Amer., vol. 26, pp. 798-803; September, 1954.) Equivalentcircuit analysis is presented for multiple-panel absorbers; increasing the number of elements increases the absorption bandwidth, particularly at low frequencies. An example is described of a particular construction giving satisfactory results.

517

1955

616 534.84 Review of Architectural Acoustics during the Past Twenty-Five Years-V. O. Knudsen. (Jour. Acous. Soc. Amer., vol. 26, pp. 646-650; September, 1954.)

534.84

10

Definition and Diffusion in Rooms-E. Meyer. (Jour. Acous. Soc. Amer., vol. 26, pp. 630-636; September, 1954.) The importance of diffusivity as a criterion of acoustic quality is indicated in an account of architectural acoustics research at Göttingen. The product of definition and diffusivity may prove to be a useful figure of merit.

617

618

619

534.845

534.84

The Statistical Parameters of the Frequency Response Curves of Large Rooms-M. Schröder. (Akus. Beihefte, no. 2, pp. 594-600; 1954.) Frequency response curves are obtained using a variable-pure-tone generator and a microphone at different pairs of separated points in the room. Calculations are made of the rms response fluctuation, the mean height of the peaks, the mean spacing of the zero points (intersections of response curve with mean level), the mean spacing of the peaks, the mean phase rotation per cps, and the "frequency irregularity."

534.84

The Frequency Dependence of the Sound Pressure in Rooms-H. Kuttruff and R. Thiele. (Akus. Beihefle, no. 2, pp. 614-617; 1954.) Measurements made on 19 rooms under different conditions are reported, using stationary excitation. Analysis of the frequency response curves over the range 70-4000 cps indicates that the mean difference of level between successive maxima and minima amounts to 9-10 db, irrespective of room volume or reverberation time. The total number of maxima is proportional to mean reverberation time, with a mean fluctuation of 10 per cent. The "frequency irregularity" is thus also proportional to reverberation time.

534.84

-25

10

620 Experiments for the Determination of Optimum Reverberation Time for Large Music Studios-W. Kuhl. (Akus. Beihefte, no. 2, pp. 618-634; 1954.) Estimates of optimum reverberation time were made on the basis of over 13,000 individual judgments on different records of three pieces of orchestral music recorded in a number or different rooms with volumes ranging from 2,000 to 14,000 m3. Reverberation-time/frequency curves derived from the records are presented, together with the frequency analysis of a typical loud chord for each record. Values of reverberation time judged to be optimum for the different types of music are quoted; these values do not depend on studio volume. For an occupied studio the best compromise is 1.7 second; for a small unoccupied studio the best value is considerably higher.

534.84

Electroacoustic Characteristics of the Palais des Festivals at Cannes-C. Soulé. (Rev. Son, 18, pp. 251-252; September/October, no. 1954.) The measured reverberation-time/frequency characteristic is in general agreement with the theoretical curve for an auditorium of volume 2,000 m3; the theoretical curve corresponding to the actual volume of 10,000 m³ lies rather higher. This slight deadening was achieved deliberately by acoustic treatment. Curves of recorded level/frequency in stalls and circle are also given.

534.84:621.395.623.8

Sound Systems for Large Auditoriums-L. L. Beranek. (Jour. Acoust. Soc. Amer., vol. 26, pp. 661-675; September, 1954.) This comprehensive review includes consideration of auditorium acoustics, loudspeaker types and arrangements, and psycho-acoustic factors.

Reference is made to the sound systems in the University City Hall, Caracas, Venezuela, in the United Nations Headquarters Hall, New York, in a municipal theater, and in the Holy Cross Cathedral.

623 534.845 Advances since 1929 in Methods of Testing Acoustical Performance of Acoustical Materials -F. G. Tyzzer and H. A. Leedy. (Jour. Acous. Soc. Amer., vol. 26, pp. 651-656; September, 1054)

624

626

627

628

629

Possibilities of Error in Measurements of Sound Insulation at Low Frequencies: Part 1-W. Kuhl. (Akus. Beihefte, no. 2, pp. 611-614; 1954.) Measurements subsequent to those reported by Becker et al. (311 of 1953) indicate that the methods used may involve appreciable errors at low frequencies, due to (a) standing waves, (b) insufficient size of specimen, (c) natural resonances of the test rooms, and (d) incorrect determination of the absorption surface in the receiving space.

625 534.845 On Sound Absorption by Cylindrical Diffusers-G. Parolini. (Jour. Acous. Soc. Amer., vol. 26, pp. 795-797; Ricerca sci., vol. 24, pp. 1465-1470; July, 1954.) Measurements were made on the acoustic absorption of plywood cylindrical diffusers coated with porous materials, such as glass wool. High absorption was obtained even in the low frequency range, owing to the resonance of the cylindrical plywood frame, and to sound scattering. The experimental values have been found in good agreement with those computed according to Cook and Chrzanowsky's theory.

534.845

A Nomogram for Simplification of the Determination of Sound Absorption by the Reverberation-Chamber Method-W. Händler and G. Venzke. (Akus. Beihefte, no. 2, pp. 587-590; 1954.) A nomogram based on the Sabine formula is presented and the method of use explained.

534.845.1

Comparative Measurements of the Absorption of Sound by Absorptive Materials, using the Tube and Reverberation-Chamber Methods-G. Kurtze and A. Lauber. (Tech. Mill. schweiz. Telegr.-Teleph. Verw., vol. 32, pp. 249-253; July 1, 1954. In German.) Report of measurements made on some commonly used porous materials, with the object of determining the range of validity of the cosine law of variation of absorption coefficient with angle of incidence, and hence determining the degree of reliance to be placed on results obtained by the simple tube method. Large discrepancies observed between the results by the two methods are probably due to velocity components parallel to the boundary surface and not taken into account in the calculations.

534.845.1

621

622

Resonance Reverberation Method for Sound Absorption Measurements-J. Karpovich. (Jour. Acous. Soc. Amer., vol. 26, pp. 819-823; September, 1954.) The method described is suitable for measurements on liquids at frequencies from about 20 kc to over 600 kc. Sound absorption coefficients of 44 liquids are tabulated. Application of the method to measurements on solids is mentioned.

534.85

A Review of Twenty-Five Years of Sound Reproduction-H. F. Olson. (Jour. Acous. Soc. Amer., vol. 26, pp. 637-643; September, 1954.) 630 534.85

Noise Level and Mechanical Stresses in Plastic Sound Records-E. A. Keller. (Jour. Acous. Soc. Amer., vol. 26, pp. 685-687; September, 1954.) "Residual mechanical stresses in press-polished plastic film material used for the embossing type sound recording are in many cases responsible for relatively high noise levels. Results of noise measurements of different plastic materials on a 400 grooves per inch recorder are presented. The relation between optically observed stresses and recorded noise level is given. Practical consequences are discussed.

631 534.85 Contribution to Analysis of Recording Process in H.F. Magnetic Recorders—O. Schmidbauer. (Funk u. Ton, vol. 8, pp. 341-360; July, 1954.) The hf bias recording method is analyzed and the influence of tape type, tape speed, width of recording-head gap and other parameters is discussed. A brief comparison with experimental results is made and reasons for discrepancies are noted. The possibility of indicating the quality of commercial tapes by a code is examined.

632 534.85:621.395.625 Fluctuations of Pitch of Recorded Sounds and Determination of Permissible Limits for Broadcasting-P. H. Werner. (Tech. Mitt. schweiz. Telegr.-Teleph. Verw., vol. 32, pp. 360-362; September 1, 1954. In French.) Methods of measurement of wow and flutter are outlined. Subjective tests have been made of the threshold of audibility for these two effects, using sounds produced by violin, piano and organ, recorded on magnetic tape. Frequency variations of 4 per cent were perceived by highly sensitive listeners.

621.395.61/.62

633 Loudspeakers and Microphones-L. L. Beranek. (Jour. Acous. Soc. Amer., vol. 26, pp. 618-629; September, 1954.) Illustrated survey of developments from 1915 to date.

634 621.395.61 Unidirectional Microphone utilizing a Variable Distance between the Front and Back of the Diaphragm-A. M. Wiggins. (Jour. Acous. Soc. Amer., vol. 26, pp. 687-692; September, 1954.) A gradient microphone is described in which the force acting on the diaphragm is made frequency independent by providing two frequency-selective sound inlets at the back of the diaphragm so that the distance between the front and back inlets is greater for the lower frequencies. Under these conditions the soundresponsive element can be constructed as for a pressure microphone.

ANTENNAS AND TRANSMISSION LINES 635 621.372.2

The Elliptic Surface Wave-A. E. Karbowiak. (Brit. Jour. Appl. Phys., vol. 5, pp. 328-335; September, 1954.) Formulas are derived for E-mode propagation on the surface of an elliptic cylinder; in this mode the field decays monotonically as the radial distance in the tranverse plane increases. The relation between this case and that of the surface-wave line with circular cross section is examined; the performance of the latter is shown to be substantially unaffected by slight deformation. Particular types of elliptical guide discussed include (a) the dielectric-coated conducting rod, (b) the rod with rectangular corrugations, (c) the homogeneous metal rod, and (d) the dielectric rod.

636 621.372.2.029.6

High-Frequency Phenomena-W. A. Tripp. (Wireless Eng., vol. 32, pp. 19-25; January, 1955.) It is shown that the introduction of em field analysis is not essential for dealing with hf phenomena, which can be discussed satisfactorily in terms of current and voltage in the same way as If phenomena; these concepts are applied to examination of the operation of transmission lines, including waveguides.

637 621.372.8 Propagation of Electromagnetic Waves in

World Radio History

Cylindrical Waveguides with Imperfectly Conducting Walls-V. M. Papadopoulos. (Quart. Jour. Mech. Appl. Math., vol. 7, pp. 326-334; September, 1954.) Calculations are made by a perturbation method, using approximate boundary conditions. The imperfectly conducting walls have the effect of removing a particular type of degeneracy occurring in the ideal guide, in which definite linear combinations of E- and H-modes are propagated with definite propagation constants; this type of degeneracy occurs in rectangular guides. It follows that the power-loss method of calculating the attenuation constant, which assumes pure E- or Hmode propagation, is not correct in these cases. The perturbation method gives not only the attenuation constant for each combination of modes, but also the value of the phase velocity, and the corresponding field components.

621.372.8

An Approximate Method for the Calculation of Propagation Constants for Inhomogeneously Filled Waveguides-L. G. Chambers. (Quart. Jour. Mech. Appl. Math., vol. 7, pp. 299-316; September, 1954.) A variational method is developed which is applicable to waves whose field components are given in terms of one scalar potential, for cases where the electrical constants vary across the waveguide but not along it. The conditions for the existence of pure TE or pure TM waves in such a guide are considered.

621.372.8

Two-Section Transmission-Line Transformer-M. S. Wheeler. (Wireless Eng., vol. 32, pp. 15-18; January, 1955.) Analysis is presented for a waveguide-type impedance transformer convenient for coupling a magnetron to a standard waveguide and comprising two sections of different transverse dimensions. The cases of equal-length and nearly-equal-length sections are treated.

621.372.8:621.317.333.6

Electrical Breakdown in Waveguides at 3000 Mc/s- J. W. Sutherland. (Electronic Eng., vol. 26, pp. 538-540; December, 1954.) Development of methods for testing highpower waveguides is described. The powerhandling capacity can be improved by using other gases, notably "arcton 6" in place of air,

621.372.8:621.39 641 Waveguide as a Communication Medium-S. E. Miller. (Bell Sys. Tech. Jour., vol. 33, pp. 1209-1265; November, 1954.) The circularelectric mode is particularly advantageous for long-distance communication, since the attenuation coefficient for this mode decreases as the carrier frequency increases: the theoretical value is 2 db per mile for round guide of diameter 2 inches, for frequencies around 50 kmc. Scale-model experiments using guide of internal diameter 4.73 inches and a frequency of 9 kmc are reported. Under favorable conditions the observed losses are within 25 per cent of the theoretical values; the discrepancy is attributed partly to guide roughness and partly to mode conversion at irregularities along the guide. Distortion and crosstalk due to undesired modes can be reduced by means of mode filters; constructions providing continuous filtering are described. A suitable structure comprises a helix or series of metal rings supported in a lossy housing. Problems associated with bends in the guide are examined. Base bandwidths of the order of 500 mc should be possible, using pcm. Regeneration would probably be required at the repeaters: the spacing between repeaters

621.396.67

should be about 25 miles.

On Isotropic Antennas-II, F. Mathis, (PROC. I.R.E., vol. 42, p. 1810; December, 1954.) Addendum to 37 of 1952.

621.396.67.012.12 643 Radiation from a Point Dipole located at the Tip of a Prolate Spheroid-E. C. Hatcher, Jr., and A. Leitner. (Jour. Appl. Phys., vol. 25, pp. 1250-1253; October, 1954.) Calculations are made of the radiation patterns for spheroidal conductors of various thicknesses, with major axes equal to λ/π , $2\lambda/\pi$ and $3\lambda/\pi$.

621.396.67.029.62

Internally Accessible Tubular Masts as Supports for U.S.W. and Television Aerials-W. Berndt. (Funk u. Ton, vol. 8, pp. 288-294 and 481-489; June and September, 1954.) Mechanical construction features of support masts for use with antennas for bands I-IV are described. Slot-antenna masts are also discussed and the radiation characteristics of various systems are presented graphically. The account deals mainly with modern German practice.

621.396.674.3

638

639

640

Aerials for U.S.W. Broadcasting and Television-W. Stöhr. (Frequenz, vol. 8, pp. 240-248; August, 1954.) The application of dipole units for directional and omnidirectional transmissions is illustrated in descriptions of three particular systems: (a) a vhf Yagi with relative bandwidth 1.15:1; (b) a band-III television broadcasting array consisting of stacked groups of four coupled full-wave dipoles, relative bandwidth 1.5:1; (c) a vhf broadcast array built up of units comprising two full-wave dipoles arranged with their two halves at right angles so as to form a square, fitting readily around or within a mast and secured to it at the voltage nodes, Antenna systems at Langenberg and Bogota and those of the Milan-Rome television link are described. Results of an investigation of the effects of ice formation on exposed antennas are noted.

621.396.676.029.62

Homing Aerials for Aircraft-S. Zisler and G. Dubost. (Ann. Télécommun., vol. 9, pp. 226-236; September, 1954.)Vhf systems comprising identical parallel cylindrical antennas are discussed. General relations are derived for a quadripole arrangement. Calculations are made of optimum antenna length for homing, and of the ratio between the antenna currents; these calculations are based on defining limits for the form of the radiation pattern. Factors taken into account include antenna sensitivity, represented by the variation of the radiation with direction; precision of indication of the axis, which depends on the symmetry of the system; and the need to avoid spurious indications corresponding to equality of the diagrams for directions other than the true axis.

AUTOMATIC COMPUTERS

681.142

DYSEAC-the New N.B.S. Electronic Computer-(Tech. News. Bull. Nat. Bur. Stand., vol. 38, pp. 134–141; September, 1954.) See 39 of 1954 (Elbourn and Witt) and 2320 of 1954 (Leiner and Alexander).

681.142

The Effect of Interpretive Techniques on Functional Design of Computers-T. Pearcey, G. W. Hill and R. D. Ryan. (Aust. Jour. Phys., vol. 7, pp. 505-519; September, 1954.) Analysis of the programs for a number of computations performed by the C.S.I.R.O. Mark I computer indicates the feasibility of designing an adaptable and reliable computer having only a relatively small amount of rapid-access erasable store and a larger amount of rapid-access nonerasable store in which would be held all interpretation routines, function blocks, etc. The operator would require no knowledge of the actual machine code, but would place his hyperprograms and data into a slow-speed backing store.

681.142

642

649 Program Design for the C.S.I.R.O. Mark I Computer: Part 3-Adaptation of Routines for

Elaborate Arithmetical Operations-T. Pearcey and G. W. Hill. (Aust. Jour. Phys., vol. 7, pp. 485-504; September, 1954.) Discussion of the extension of the library routine system to deal with floating point, multiple precision and complex arithmetic and certain combinations of these. The "interpretive" method of program organization [1655 of 1952 (Wilkes et al.)] is used, Part 2: 641 of 1954.

CIRCUITS AND CIRCUIT ELEMENTS 621.314.7: [621.37+621.396.621 650

Some Transistor Circuits-A. J. W. M. van Overbeek. (Tijdschr. ned. Radiogenool., vol. 19, pp. 231-260; September, 1954.) The characteristics of junction transistors are discussed; at frequencies of 1-10 mc the equivalent circuit is already as complicated as that of a thermionic tube at frequencies a hundred times higher. Particular circuits examined include one for a medium-wave broadcast receiver in which the selectivity is automatically increased as the signal strength decreases. It is pointed out that for a peak output power of e.g. 250 mw the consumption is 150-200 mw, Nonlinear distortion in transistors is compared with the corresponding effect in thermionic tubes. The upper frequency limit set by cut-off of current amplification is considered in relation to trigger circuits. A circuit including a p-n-p and an n-p-n transistor is shown which has properties resembling those of a gas-filled tube with adjustable ignition voltage, short ignition time, very low discharge voltage drop and low discharge noise.

621.316.722.4:537.226

Dielectric Potentiometers-G. E. Pihi. (PROC. I.R.E., vol. 42, pp. 1758-1761; December, 1954.) A voltage divider is described comprising a movable electrode and a system of fixed electrodes all immersed in a lossy liquid dielectric, so that the paths between the electrodes are both resistive and capacitive. The arrangement is suitable for wide-band operation (e.g. 20 cps-1 mc), since the product of the equivalent parallel resistance and capacitance is a constant depending only on the nature of the dielectric. Various practical embodiments are described. Desirable characteristics for the dielectric are indicated.

621.316.86:621.396.822

Current Noise in Carbon-Film Resistors-K. E. Doering. (Funk u. Ton, vol. 8, pp. 378-385 and 422-429; July and August, 1954.) An experimental investigation at audio frequencies is reported. The results are consistent with an empirical formula according to which the current-noise voltage varies approximately di rectly with current. In a few specimens the noise was found to depend on the direction of current, 45 references.

621.316.89

653 The Resistivity of "Composition" Resistors at Radio Frequencies-U. Tiberio, (PROC. I.R.E., vol. 42, pp. 1812-1813; December, 1954.) Continuation of the previous discussion (654 of 1954) of the mechanism causing the drop of resistance of composition resistors at hf. Experimentally obtained resistance/frequency curves are presented for resistors coniprising (a) a cylindrical column of an aqueous solution of sodium chloride, (b) a cylindrical column of an aqueous solution of copper sulphate, and (c) a cylindrical column of carbon resin composition. The resistance of type (a) is practically constant at frequencies up to 100 mc, while that of types (b) and (c) drops considerably. The drop in the resistance of the composition resistor is ascribed partly to the "resistivity factor," and partly to the "ex-ternal capacitance factor." It is suggested that a frequency-independent resistor could be obtained by mixing carbon with a material of high dielectric constant.

621.318.4

Component Design Trends-High-Fre-

A pril

651

652

654

647

648

646

644

645

quency Coils use New Core Materials-F. Rockett. (Electron cs, vol. 27, pp. 140-143; December, 1954.) Points discussed include use of ferrite cores for coils operating at frequencies up to about 100 mc, use of glass and other lowloss materials for formers and use of toroidal constructions.

621.319.4

655

The Capacity and Field of a Split Cylindrical Condenser, using the Method of Inversion-H. J. Peake and N. Davy. (Brit. Jour. Appl. Phys., vol. 5, pp. 316-321; September, 1954.) "The complex potential of a split cylindrical condenser is obtained by inversion of a known, simpler case. Expressions are obtained for the value of the electrostatic field at points on the axes of symmetry, the surface density of charge on a conductor and the capacity of the condenser. The expressions obtained by Adams, using another method, are deduced as one of three special cases for which tables and graphs are provided. The results should prove of value in the design of electrode systems for various purposes.

621.319.42

656

657

658

659

660

Miniature Lacquer-Film Capacitors-D. A. McLean and H. G. Wehe. (PROC. 1.R.E., vol. 42, pp. 1799-1805; December, 1954.) A manufacturing process is described in which a thin film is cast on a supporting base and is metallized and slit while still supported, after which it is stripped and wound into capacitor units. Metallized films 0.1 mil thick have been produced; the resulting capacitors are about a seventh the size of the smallest metallizedpaper types. The support may be left in if the film is extremely fragile or if the capacitor is to operate at voltages below about 15 v. A formula is derived for the effective series resistance.

621.372.412

10

0

Thickness-Shear and Flexural Vibrations of a Circular Disk-R. D. Mindlin and H. Deresiewicz. (Jour. Appl. Phys., vol. 25, pp. 1329-1332; October, 1954.) Antisymmetrical modes of vibration in an AT-cut quartz disk are investigated by considering the simpler corresponding case of an isotropic disk. Differences between the frequency spectrum in this case and in that of the rectangular plate [1861 of 1951 (Mindlin)] are due to the presence of thickness-twist modes in addition to the thickness-shear and flexural modes.

621.372.413

Theory of Coupled Endovibrators [cavity resonators]-A. I. Akhiezer and G. Ya. Lyubarski. (Zh. Tekh. Fiz., vol. 24, pp. 1697-1706; September, 1954.) A system of two cavity resonators coupled by means of a narrow slot in their common wall is considered theoretically. Two classes of oscillations are considered: (a) those whose frequencies are determined primarily by the length of the slot and are nearly independent of the shape of the resonators; (b) those whose frequencies are near the frequencies of the oscillations in the resonators when

621.372.5 The Wien Bridge as a Phase Shifter-J. M.

not coupled.

Diamond. (PROC. I.R.E., vol. 42, pp. 1807-1808; December, 1954.) Several circuits are presented illustrating the use of the Wien bridge to provide phase shift with small amplitude change.

621.372.5

Networks Attenuation and Input Impedance

-R. Talks. (Wireless Eng., vol. 32, pp. 29-30; January, 1955.) Useful formulas are presented.

661 621,372,54 Four-Terminal Networks with Transfer Function having Zeros with Small Real Part-W. Krägeloh. (Frequenz, vol. 8, pp. 249-256; August, 1954.) Analysis of low-pass filter net-

works based on insertion-loss principles [2940 of 1940 and 3226 of 1942 (Bader)] to investigate the effect of "critical" zeros in the transferfunction plot on the reactance to be developed, the accuracy required in the calculation, and the component values.

621 372.622

Some Aspects of Mixer-Crystal Perform-ance-P. D. Strum. (PROC. 1.R.E., vol. 42, pp. 1806–1807; December, 1954.) Correction to paper abstracted in 2941 of 1953. Please note change of U.D.C. number.

621.373.421.11.016.35

Criteria for the Amplitude Stability of a Power Oscillator-W. R. MacLean. (PROC. I.R.E., vol. 42, pp. 1784-1791; December, 1954.) Stability criteria for a tuned-anode oscillator are established in the form of two inequalities derived from differential equations expressing the voltage variations of the grid and anode, and involving the ratio of feed-back power to anode power, the ratio of the time constant of the grid-leak and capacitor combination to the time constant of the tank circuit, and functions of the angles of current flow for grid and anode. Experimental verification of the results using a Type-3C24 triode is reported.

621.373.43:517.93

Investigation of the Dependence of Natural Frequency of Oscillation on Spectral Composition-I. I. Minakova. (Zh. Tekh. Fiz., vol. 24, pp. 1677-1686; September, 1954.) A particular case of the theory of nonlinear electric oscillations is considered. Writing the solution of the equation $\ddot{x} + \psi(x)\dot{x} + \omega_0^2 x = 0$ as the sum of $A_k \sin (k\omega t + \phi_k)$, where A_k is the amplitude of the kth harmonic given by the Fourier series, the ratio $\omega^2/\omega_0^2 = \sum_{1}^{n} A_k^2 / \sum_{1}^{n} k^2 A_k^2$. Using this relation, the dependence of ω on the amplitudes of the spectrum can be calculated. The measured and calculated frequency characteristics of relaxation oscillators agreed well. The results are presented graphically. See also van der Pol, PROC. I.R.E., vol. 22, pp. 1051-1086; September, 1934, for a general introduction.

621.374.4:621.314.63

Crystal Frequency Multipliers for Centimetre and Millimetre Waves-L. Grifone. (Ricerca sci., vol. 24, pp. 1870-1879; September, 1954.) Circuits are described for generating harmonics at frequencies >30 kmc, using Type-1N23B crystals. The generator is coupled by a cross-bar transition to the crystal, which can be shifted axially for purposes of impedance matching. Higher frequencies can be achieved by use of Type-IN26 crystals in a similar arrangement.

666 621.375.2.018.75 On the Faithful Reproduction of the Flat Top of a Pulse in a High Fidelity Pulse Amplifier: Part 2-B. K. Bhattacharyya. (Indian Jour. Phys., vol. 27, pp. 565-577; November, 1953.) An experimental verification is reported of analysis presented previously (3566 of 1953). It was demonstrated that the anode current may sag appreciably if the time constants of the cathode and screen-grid RC circuits are not properly chosen.

621.375.223+621.373.421

667 Resonance Circuits comprising RC or RL Elements, and some Applications-H. Müller (Funk u. Ton, vol. 8, pp. 471-479; September, 1954.) The frequency characteristics of the Wien bridge and of an analogous inductance bridge are investigated theoretically. Pseudoresonance phenomena occurring in the neighborhood of bridge balance are discussed. True resonance is obtained when the bridge is associated with a feedback circuit to act as an oscillator. The tuned RC amplifier and the RC and RL oscillators are described.

668

621.375.23 Multistage Amplifier Output Impedance-

J. B. Earnshaw. (Electronic Eng., vol. 26, p. 553; December, 1954.) Based on the result that the ratio of the net amplification to the parallel output impedance of a simple amplifier is the same with and without voltage feedback, a simple expression is obtained relating the parallel output impedance to the amplifier constants for the multistage amplifier with over-all feedback. The design of an amplifier with a gain of 1,000 and a parallel output impedance of 1Ω is discussed briefly.

621.375.3

662

663

664

665

Magnetic Amplifiers-G. M. Ettinger. [Elec. Rev. (London), vol. 155, pp. 348-352; September 3, 1954.] A general survey of types and applications.

670 621.375.3 Three-Phase High-Speed Magnetic Amplifiers-A. E. Maine. (Electronic Eng., vol. 26, pp. 514-521; December, 1954.) The principle of magnetic amplifier is exthe "half-wave" tended to three-phase circuits. Various arrangements are described. Applications in the field of high-power control systems are discussed.

671 67. 375.4.026

The Transistor as a D.C. Amplifier for use r Microwave Measurements-C. F. Davidson. (Electronic Eng., vol. 26, pp. 548-549; December, 1954.) A junction-type transistor with emitter earthed may have a current amplification as high as 50, with low input impedance and high output impedance. Such an arrangement is useful for amplifying the current from a Si rectifier before application to a meter, and enables the usual galvanometer to be replaced by a robust microanimeter.

621.375.5

Analyses of Basic Dielectric Amplifier Circuits-Shou-Ilsien Chow. (Jour. Appl. Phys., vol. 25, pp. 1297-1301; October, 1954.) Analysis is based on a simplified charge/voltage characteristic neglecting hysteresis; both paralleland series-connected arrangements are studied. The steady-state response can be found with a high degree of accuracy by a method involving successive approximations; transient response is also discussed.

GENERAL PHYSICS

535.215 Photoelectric Emission in the Extreme Ultraviolet-H. E. Hinteregger. (Phys. Rev., vol. 96, pp. 538-539; October 15, 1954.) Results of experimental studies on photoelectric emission from various metals for quantum energies up to 21.2 ev cannot even qualitatively be ac-counted for by the common "free-electron"— "surface effect" representation. A new theoretical model capable of explaining the observations at high photon energies is presented.

537.226:537.52

The Influence of the Cathode Material on Measured Breakdown Strengths of Solid and Liquid Dielectrics-J. J. O'Dwyer. (Aust. Jour. Phys., vol. 7, pp. 400-409; September, 1954.)

537.311.31

675 Kinetic Equation for Electrons in Metals in Strong Fields--V. P. Shabanski. (Zh. Eksp. Teor. Fiz., vol. 27, pp. 142-146; August, 1954.) See also 676 below.

537.311.31

On Deviations from Ohm's Law in Metals -V. P. Shabanski. (Zh. Eksp. Teor. Fiz., vol. 27, pp. 147-155; August, 1954.) It is shown, on the basis of the kinetic equations of electrons in metals in strong fields (675 above), that the deviations observed are due primarily to the delayed transmission of energy at the collision of electrons with the lattice. At sufficiently low temperatures, the resistance should pass through a minimum at a given current.

669

672

673

674

676

537.52 677 On the Dependence of the Decay Times of Space Charges by the Static Characteristic in Intermittent Discharges-D. Brini, O. Rimondi and P. Veronesi. (Nuovo Cim., vol. 12, pp. 413-424; September 1, 1954. In English.) The validity of the hypothesis previously formulated [2068 of 1954 (Brini and Veronesi)] has been investigated experimentally. Measured decay times depend on the external circuit associated with the discharge tube, but the existence of an inherent decay time dependent only on the static characteristic of the tube is indicated. An empirical method is developed for calculating decay times.

537.52

Space Charge Formation and the Townsend Mechanism of Spark Breakdown in Gases-R. W. Crowe, J. K. Bragg and V. G. Thomas. (Phys. Rev., vol. 96, pp. 10-14; October 1, 1954.)

537.523.4

Measurement of the Current during the Formative Time Lag of Sparks in Uniform Fields in Air-II. W. Bandel. (Phys. Rev., vol. 95, pp. 1117-1125; September 1, 1954.) Measurements were made of the current in a parallel plane gap during the period between application of a voltage and occurrence of breakdown. The current increased from 10^{-6} a a few microseconds after application of the voltage to 10^{-2} a just before breakdown, for time lags between 10 and 100 μ s. The results are in agreement with previously developed theory, except for an observed delay in the initial current rise; a possible explanation of this is discussed.

537.525.72:537.562

Determination of the Electronic Temperature in U.H.F. Gas Discharges-M. Bayet and F. Guérineau. [Compt. Rend. Acad. Sci. (Paris), vol. 239, pp. 1029-1031; October 27, 1954.] Measurements made in an electrodeless discharge over a pressure range 0.13-11 mm Hg and an electron-concentration range of ratio 1 to 80 indicate that the electronic temperature remains practically constant, its value being 30,000 degrees K to within 10 per cent in drv air.

537.533:537.534.8

Auger Ejection of Electrons from Tungsten by Noble Gas Ions-II. 1). Hagstrum. (Phys. Rev., vol. 96, pp. 325-335; October 15, 1954.) Report of an experimental investigation using atomically clean tungsten and ions with various charges. The results indicate a value of about 6.3 ev for the energy of the Fermi level above the ground state in the conduction band in tungsten.

537.533:537.534.8

Theory of Auger Ejection of Electrons from Metals by Ions-11. 1). Hagstrum. (Phys. Rev., vol. 96 pp. 336-365; October 15, 1954.)

537.533.73/.74

Diffraction and Inelastic Scattering of Electrons [in Metals]-A. Ya. Vyatskin. (Zh. Eksp. Teor. Fiz., vol. 27, pp. 162-170; August, 1954.)

537.533.8:546.45 684 Secondary Electron Emission from Thin Layers of Be: Part 1-I. M. Bronshtein and T. A. Smorodina. (Zh. Eksp. Teor. Fiz., vol. 27, pp. 215-223; August 1954.) An experimental investigation is reported of the change of the secondary emission coefficient (σ) and the electron energy distribution with the adsorption of Be atoms on Ni. σ decreases monotonically with adsorption of pure Be, but increases at first with impure Be, decreasing finally to σ_{Be} . The emission depth of secondary electrons depends linearly on the energy of the primary

537.533.8:546.561 685 Investigation of Energy-Distribution Func-

electrons in the range 100-600 ev.

tion of Secondary Electrons from Cu Single Crystal covered with a Single-Crystal Cu₂O Layer using the Method of Electrical Differentiation-N. B. Gornyi. (Zh. Eksp. Teor. Fiz., vol. 27, pp. 171-179; August, 1954.) The subsidiary maxima observed previously (2918 of 1954) are confirmed and discussed. See also 3527 of 1954 (Gornvi and Rakhovich).

537.562:538.561

678

679

680

681

682

683

Dielectric Constant of Plasma in Stationary Magnetic Field-M. E. Gertsenshtein, (Zh. Eksp. Teor. Fiz., vol. 27, pp. 180-188; August, 1954.) The tensor of the complex dielectric constant is calculated taking into account the thermal motion of the electrons. It is shown that in a system of coordinates connected with the moving electron, the field of a monochromatic plane electric wave is frequency modulated, hence resonance effects occur at higher harmonics. Gaps in the plasma oscillation spectrum at multiples of the gyromagnetic frequency [2151 of 1951 (Gross)] can only occur if two conditions are satisfied; the first is the condition for resonance effects to occur with all electrons the second gives the condition for high intensity of higher harmonics. With radio waves the effect of higher harmonics is negligible and hence there are no gaps in the radio wave spectrum. The conditions are satisfied in the case of sound waves in ionized gas and the effects due to resonance at multiples of the gyromagnetic frequency can be considerable.

537.581:546.56 687 Thermionic Emission from Copper at the Melting Point-V. G. Bol'shov and L. I. Dobretsov. [Compt. Rend. Acad. Sci. (URSS), vol. 98, pp. 193-196; September 11, 1954. In Russian.] An experimental determination is reported of the constants A and ψ in the Richardson-Dushman equation $j = A T^2 \exp (\frac{1}{2} - \frac{1}{2} + \frac{1}{2})$ $(-\epsilon \psi/kT)$ where ϵ is the electron charge and ψ is the effective or isothermal work function. For solid Cu at the melting point the values of A and ψ were 16.7 a. cm⁻². deg⁻² and 4.4 v, respectively, for liquid Cu 3.2×10^{5} a. cm⁻². deg⁻² and 5.5 v respectively. The discontinuity at the melting point is discussed.

538.1/.2

Recent Developments in Magnetism--E. P. Wohlfarth. [Research (London), vol. 7, pp. 360-367; September, 1954.] A survey with reference to 16 publications dealing with various aspects of the subject.

538.122

Magnetic Flux produced by a Dipole Located inside a Ferromagnetic Circular Wire-S. M. Rytov. (Zh. Eksp. Teor. Fiz., vol. 27, pp. 307-312; September, 1954.) An approximate formula is derived for the magnetic flux through a coaxial plane circular area normal to the wire, due to a magnetic dipole element inside the wire. The radii of the circular area and the wire are assumed to be small compared with the axial distance between the circular area and the dipole element. For experimental confirmation of the formula see Grachev et al. (690 below),

538.122 690 Experimental Investigation of Change of Magnetic Flux in a Wire when One Domain is Remagnetized-A. A. Grachev, K. A. Goronina, N. N. Kolachevski and I. A. Andrianova. (Zh. Eksp. Teor. Fiz., vol. 27, pp. 313-317; September, 1954.) The problem, which is of importance in magnetic recording, was investigated theoretically by Rytov (689 above); the calculated and experimental results are in good agreement.

538.221:538.566

Theory of Strong Electromagnetic Waves in Massive Iron-W. MacLean. (Jour. Appl. Phys., vol. 25, pp. 1267-1270; October, 1954.) Maxwell's equations are solved for propagation in material having a rectangular hysteresis curve. Formulas are derived for depth of penetration, wave impedance and power input. The results are compared with those of Rosenberg (Electrician, vol. 91, p. 188; August, 1923). See also 2006 of 1954 (Papoulis).

538.566

686

692 Reflection from a Wire Grid Parallel to a Conducting Plane-J. R. Wait. (Canad. Jour. Phys., vol. 32, pp. 571-579; September, 1954.) The parallel-wire grid backed by a conducting plane can be represented by an impedance shunted across a transmission line as in the case of a single wire [2589 of 1948 (Macfarlane)]. The value of this impedance depends on the angle of incidence, the spacing of the grid wires, and the distance between grid and backing plane. Conditions are derived for the reflection coefficient to become zero.

538.566:535.42

693 Diffraction of Electromagnetic Waves by an Aperture in a Plane Screen-R. D. Kodis. (Jour. Appl. Phys., vol. 25, pp. 1342-1343; October, 1954.) Discussion of 709 of 1954 (Bekefi) and 2078 of 1954 (Crysdale).

538.566:535.42

604 The Diffraction of Waves by an Irregular Refracting Medium-E. N. Bramley. (Proc. Roy. Soc. A, vol. 225, pp. 515-518; September 22, 1954.) "A method is described of calculating the diffraction effects produced by a thick stratum of an irregular refracting medium. It consists of evaluating the statistics of the phase irregularities in the wave-front after traversing the medium, and treating these irregularities as having been produced by a thin phasechanging screen. For a particular statistical model of the irregularities in the medium, the result is shown to be identical with that obtained by Fejer [1730 of 1954] using a different method.

538.566:535.42:517.942.9

695 A Further Note on Dual Integral Equations and an Application to the Diffraction of Electromagnetic Waves-C. J. Tranter. (()uart. Jour. Mech. Appl. Math., vol. 7, pp. 314-325; September, 1954.) A solution obtained previously (1614 of 1951) is extended to cover cases in which the order of the Bessel-function kernel is not zero. As an example, the solution is applied to a problem in the diffraction of em waves by a plane slit; Groschwitz and Hönl's discussion of the problem (2183 of 1952) is criticized. Results obtained are in agreement with those of Müller and Westpfahl (1971 of 1953).

538.632:537.525

688

689

691

696 Hall Effect in Positive Column-K. Takayama, T. Suzuki and T. Yabumoto. (Phys. Rev., vol. 96, pp. 531-532; October 15, 1954.) Report of measurements of Hall voltage in the positive column of dc gas discharge tubes as a function of magnetic field, tube current, distance between probes and gas pressure.

538.632:538.221

697

698

Theory of Hall Effect in Ferromagnetics-N. S. Akulov and A. V. Cheremushkina, [Compl. Rend. Acad. Sci. (URSS), vol. 98, pp. 35-38; September 1, 1954. In Russian] Assuming s-d-phonon interaction, the Hall voltage is given by the equation $e = [a_0 \gamma_0 + a_2(c_T - \rho_0)] I_{si}$, where a_0 and a_2 are constants, ρ_0 and ρ_τ are the resistances of the specimen at absolute zero and at temperature T, respectively, I_s is the intensity of magnetization at saturation and i is the current density. Comparison with experimental results obtained from measurements on a barshaped 45 per cent-Ni/55 per cent-Fe specimen (containing stated impurities) shows close agreement.

538.632:538.221

Hall Effect in Ferromagnetics-R. Karplus and J. M. Luttinger. (Phys. Rev., vol. 95, pp. 1154-1160; September 1, 1954.) Anomalous effects are explained in terms of the spin-orbit interaction of polarized conduction electrons.

709

548.0:53

Wave Functions for Impurity Levels-G. F. Koster and J. C. Slater. (Phys. Rev., vol. 95, pp. 1167-1176; September 1, 1954.) A general method of solving difference equations arising in impurity calculations is developed.

GEOPHYSICAL AND EXTRATER-RESTRIAL PHENOMENA

523.16 + 621.396.11 + 621.396.9700 Propagation of Electromagnetic Waves, Radio Location and Radio Astronomy-E. Roessler. (Elekirciech. Z., Edn A, vol. 75, pp. 632-635: September 11, 1954.) A brief survey of recent progress, particularly since 1951. 73 references

523	.16									- 7	'01
	Detection	of	Dis	cret	e	Radio	S	our	ces	at	21
cm	Waveleng	th-	J.	Р.	Ha	agen,	E.	F.	Mc	Cla	ain

1cClain and N. Hepburn, (PROC. I.R.E., vol. 42, p. 1811; December, 1954.) Details are tabulated of 20 sources observed at the U.S. Naval Research Laboratory. The equipment used is briefly described.

523.16

600

701

702

703

Nature of Discrete Sources of Cosmic R.F. Radiation-I. S. Shklovski. [Compl. Rend. Acad. Sci. (URSS), vol. 98, pp. 353-356; September 21, 1954. In Russian.] Energy considerations of the colliding gas "coronas" in Cygnus A show that a considerable proportion of the kinetic energy of the colliding masses is transferred to a relatively small number of relativistic particles and hence into rf radiation. The cut-off frequency is estimated to be about 2×10^{10} cps assuming the particles to be electrons.

523.16

Observations of Cosmic Noise at 9.15 mc-S. Higgins and C. A. Shain. (Aust. Jour Phys., pp. 460-470; September, 1954.) "From observations made at a frequency of 9.15 mc. with an aerial of beam width 29 degrees between half-power points and directed to Dec. -32 degrees, a curve of equivalent aerial temperature, as a function of sidereal time, is derived. The temperatures observed were of the order of 10^6 degrees K. The curve is compared with curves derived for similar conditions by calculation from the results of observations at 18.3 mc and at 100 mc. It is found that the emivalent temperatures increase rapidly with decreasing frequency, but the ratio of maximum to minimum temperature decreases with frequency. It is shown that 'atmospheric' noise levels observed by the standard techniques sometimes contain a large contribution from cosmic noise at this frequency.

523.72:621.396.822 704 Harmonics in the Spectra of Solar Radio Disturbances-J. P. Wild, J. D. Murray and W. C. Rowe. (*Aust. Jour. Phys.*, vol. 7, pp. 439–459; September, 1954.) Detailed account of observations reported previously (391 of 1954). Investigations over the frequency range 40-240 nic indicate that spectral features of solar noise bursts are commonly duplicated at or below the frequency of the second harmonic. The results are consistent with the hypothesis that the fundamental frequency corresponds to the natural plasma frequency of the corona in the vicinity of the source. By applying this result to a standard model of the corona, information is deduced regarding the position, velocity and size of the sources. Velocities of 500 and 4,000 km were found for two longduration outbursts, and velocities as great as 105 km for short-lived type-III bursts. The generation of bursts may be associated with longitudinal plasma oscillations excited by fast streams of charged particles.

523.746:621.396.822 705 The Emission Polar Diagram of the RadioFrequency Radiation from Sunspots-K. E. Machin and P. A. O'Brien, (Phil, Mag., vol. 45, pp. 973-979; September, 1954.) The variation in received sunspot radiation with solar rotation was determined from a statistical analysis of observations made over a number of years. Half-power widths of the radiation pattern of an average sunspot, derived from this analysis, are 15 degrees, 20 degrees and 36 degrees for frequencies of 81.5, 175 and 500 mc respectively. Results indicate that the lifetime of the radiation sources is shorter for the lower frequencies; the lifetime at 175 mc is comparable with that of a visible spot.

551.510.535

Abnormal Amplitude of Seasonal Effects in the Ionosphere at the Equator, and Structure of the Upper Atmosphere-F. Delobeau and R. Gallet. [Compl. Rend. Acad. Sci. (Paris), vol. 239, pp. 1067-1069; October 27, 1954.] Dlayer absorption, maximum ionization and structure of the F_2 layer have been studied. Seasonal variations observed in equatorial regions are much greater than expected from the geometrical variation of the sun's position. Known theories assume simple variation of ionosphere parameters with $\cos \chi$. The deviations observed are interpreted as indicating seasonal variations of the structure of the upper atmosphere, particularly as regards temperature and its gradient, molecular dissociation and movements of air masses. At an equatorial station at the solstices, not only is the solar radiation incident at an angle of 23 degrees, but the structure of the upper atmosphere is that appropriate to a latitude of about 23 degrees.

551.510.535

Motion of a Single Cloud in the Ionosphere -S. N. Mitra. (Indian Jour. Phys., vol. 27, pp. 562-564; November, 1953.) The system comprising cloud and ionosphere is treated as analogous to the system formed by a horizontal wire antenna and the ground. The radiation pattern consists of minor lobes arranged symmetrically with respect to a central major lobe: as this pattern moves with the cloud, periodic fading of transmitted pulses is observed at the receiver. Periodic fading preceded and followed by a steady signal can thus, with appropriate reservations, be interpreted as due to a single cloud. An example is discussed in which 14 maxima were observed; the wavelength being 75 m, the horizontal length of the cloud is estimated to be about 1 km.

551.510.535 708 A Monochromatically Ionized Layer in a Non-Uniformly Recombinant Atmosphere; with Applications to the D and E Ionospheric Regions-S. Chapman. (Proc. Phys. Soc., vol. 67, pp. 717-727; September 1, 1954.) The recombinance α of the atmosphere is assumed to be given by a term α_0 independent of height together with a term $\alpha_1 e^{-bh}$ which varies exponentially with height. A recombinance datum level is defined as that at which the two terms are equal, and heights are measured from this level, in scale-height units. "The level of the absorption peak being z_{χ} (when the sun's zenith distance is χ , or z_0 when $\chi = 0$), the level zm of the electron peak and the height distribution of the electron density n_e are considered, for different values of z_0 and of c(=b/H), particularly c = 1, 2, 3. When c > 0 the electron peak is always above the absorption peak, and for $c \ge 2$ it is always above the recombinance datum level: the electron peak for c = 1, when the absorption peak is below the recombinance datum level, is about half way between the two. The decrease of n_e (from its maximum value n_{em}) on the underside (or incline) of the electron layer can be much less steep than for a Chapman layer, if the absorption peak is below the recombinance datum level. The results for the model atmospheres considered are tentatively discussed with reference to the

E and D ionospheric regions, but their potential value may be realized only when better data for the D region become available.

551 510 535 538 566

706

707

Focusing Phenomena due to Undulations of the Ionosphere, and Determination of Collision Number-Rawer and Argence. (See 842.)

710 551.510.535:551.594.5 Electron Density in the E-Layer during Auroral Displays deduced from Measurements of Absolute Brightness of the Auroral Luminosity-A. Omholt. (Jour. Almos. Terr. Phys., vol. 5, pp. 243-244; September, 1954.) Values of electron density calculated from the photon emission for different auroral forms range from 1.6×10^6 to 12×10^6 electrons/cm³. See also 716 below (Seaton).

551.510.535:551.594.5 711 The Association of Pulsating and Flaming Auroras with Complete Ionospheric Absorption at Macquarie Island-G. Major. (Aust. Jour. Phys., vol. 7, pp. 471-476; September, 1954.) Simultaneous records show that pulsating or flaming auroras are frequently accompanied by complete absorption of waves incident vertically on the ionosphere, but the nocturnal variations of frequency of occurrence of the two phenomena are markedly different in form.

712 551.510.535:621.3.087.4 Equipment for Accurate Measurement of Height of Ionosphere Layers-S. J. Bauer. (Ösl. Z. Telegr. Teleph. Funk Fernsehlech., vol 8, pp. 122-125; September/October, 1954.) Use of a 200-µs timebase, corresponding to a height range of 30 km, enables measurements to be made accurate to within 1 km. The timebase triggering is controlled by means of a phase shifter calibrated in height, so that any desired height range can be selected for close examination. Because of the pulse widening involved, a differentiator stage with wide-band amplifier is interposed between receiver output and indicator. Measurement procedure is described.

551.510.535:621.3.087.4 713 Ionospheric Height Measurement by the

Method of Delayed Coincidence-II. Rakshit and S. D. Chatterjee. (Naturwiss., vol. 41, pp. 401-402; September, 1954. In English.) An outline description, with block diagram, is given of equipment in use at an Indian station for regular observation of lunar tides in the upper atmosphere. The apparatus can be readily adapted for automatic recording of h' curves. The method is basically as described previously (Science and Culture, vol. 17, p. 520; 1952), but the technique has been improved, giving an accuracy within ± 0.1 km. Good results are obtained even in the presence of heavy atmospherics.

714 551.510.535:621.396.812.3.029.53

Periodic Fading of Medium-Wave Radio Signals-B. R. Rao and N. V. G. Sarma. (Current Sci., vol. 23, pp. 287-288; September, 1954.) Slow fading was found to correspond to interference between $1 \times E$ and $2 \times E$ paths and between $2 \times E$ and $3 \times E$ paths, rapid fading to interference between $1 \times E$ and $3 \times E$ paths. The values of the vertical drift velocity of the E layer calculated on the basis of observations of the three types of interference at an Indian station, for the period between 0700 and 0800 hours, were 2.15 m, 2.34 m, and 2.29 m respectively. Ground-wave fading indicates a drift velocity of 2.37 m. Analysis of records shows that the drift velocity decreases during the morning; depth of fading also decreases, due to increasing D-layer absorption.

551.594.5

Variations of Intensity of the Aurora at Macquarie Island—F. Jacka. (Aust. Jour. Phys., vol. 7, pp. 477–484; September, 1954.)

715

716

551.594.5

Excitation Processes in the Aurora and Air-

730

731

glow: Part 1-Absolute Intensities, Relative Ultraviolet Intensities and Electron Densities in High-Latitude Aurorae, Part 2-Excitation of Forbidden Atomic Lines in High-Latitude Auroras-M. I. Seaton, (Jour. Atmos. Terr. Phys., vol. 4, pp. 285–313; January, 1954.) The excitation processes are evaluated on the basis of optical and rf observations. Calculations show that electron densities of 107-108 cm⁻³ occur in bright high-latitude auroras. A summary is given of the various excitation and deactivation processes which may occur and an attempt is made to decide which of those will be of major importance.

551.594.6

Atmospherics with Long Trains of Pulses-F. Hepburn and E. T. Pierce, (Phil. Mag., vol. 45, pp. 917-932; September, 1954.) "The waveforms of atmospherics having long-continued trains of pulses and the systematic modifications associated with time of recording. storm distance and the presence of a low-frequency component, are described. Their interpretation is discussed and the results of analysis - assuming the simple ionospheric reflection mechanism - are presented. Estimates of reflection height and storm distance show the applicability of the theory to the temporal parameters of the waveforms, and the origins of two groups of atmospherics having calculated ranges of 4500 and 7000 km are considered. The variation of pulse amplitude with reflection order is shown to lead to the postulation of horizontal radiating elements in the channel during the later stages of the return stroke, although difficulties arise in reconciling this concept with considerations of the magnitude and orientation of the horizontal elements. See also 2771 of 1953.

LOCATION AND AIDS TO NAVIGATION

 $621.396.9 \pm 621.396.11 \pm 523.16$

Propagation of Electromagnetic Waves, Radio Location and Radio Astronomy-E. Roessler, (Elektrolech, Z., Edn, A, vol. 75, pp. 632–635; September 11, 1954.) A brief survey of recent progress, particularly since 1951, 73 references.

621.396.96.012.3

719 Radar Doppier Nomograph-A. H. Schooley, (Electronics, vol. 27, p. 180; December, 1954.) A nonogram is presented relating the Doppler frequency shift to transmitter frequency and target velocity.

621.396.963.325

P.P.I. Light-Spot Brightness Probability Distributions-G. C. Sponsler and F. L. Shader, (Jour. Appl. Phys., vol. 25, pp. 1271-1277; October, 1954.) A study is made using the statistics of noise theory. For a Type-10KP7 cathode-ray tube, the intensifier electrode has an approximately 2.5-power-law characteristic; this combines with the squarelaw second detector to give an over-all 5thpower detection characteristic. The spot brightness is investigated for integration of seven individual returns. "Various mathematical methods of handling the problem are considered. The Edgeworth series approximation is found to give poor results compared with the Laguerre polynomial approximation. By the latter method the light brightness probabilities are found to be obtainable by interpolation from a table of the incomplete gamma function. Ancillary tables of statistical moments and selected values of the confluent hypergeometric function, ${}_1F_1(-5n/2; 1; -x)$, are included in the text.

621.396.969:551.577/.578

Radar Echoes from Monsoon Rain-L. S. Mathur, A. C. De, B. N. Dutta and H. Mitra. (Indian Jour. Met. Geophys., vol. 5, pp. 173-186; April, 1954.) Account of observations made at New Delhi, using modified Type-AN /APQ-13 3-cm radar equipment. PPI displays

corresponding to different weather conditions are reproduced.

621.396.969.33/.34:621.396.822

The Reduced Range in a Radar Subjected to an External Noise Generator-U. Tiberio. (PROC. I.R.E., vol. 42, pp. 1791-1798; December, 1954.) An analytical method is described for calculating the reduction of range due to a noise generator (a) carried by the target, or (b) at some fixed location. A "reduced range index" is determined from consideration of free-space operation against aircraft, and the effect of reflection from the sea is investigated in relation to operation at low height against ships. The effect of noise on the visibility factor is briefly discussed.

MATERIALS AND SUBSIDIARY TECHNIQUES

535.5

717

718

720

Ion Pump-P. F. Váradi. (Acla Tech. Acad. Sci. Hungaricae, vol. 9, pp. 343-353; 1954. In English.) The ultimate pressure and pumping speed calculated for the case of a simple model are in agreement with experimental results of Foster et al. (Rev. Sci. Instr., vol. 24, pp. 387-390; May, 1953.), who described an ion pump with pumping speeds between 3,000 and 7,000 l/sec at a base pressure of about 10⁻⁶ mm Hg. The present experimental result indicates that the reduction of gas pressure is attributable not solely to adsorption but also to a true pumping effect.

535.215: [537.311.33 + 537.226]

Photoeffect from Surface Levels- G. E. Pikus, (Zh. Eksp. Teor. Fiz., vol. 27, pp. 369-381; September, 1954.) The external photoeffect in semi-conductors and dielectrics, corresponding to removal of electrons from the surface zone, is considered theoretically. Expressions are derived for the energy distribution of the emitted photoelectrons and the quantum output and its dependence on the frequency of the incident light.

535.215:546.482.21

Photovoltaic Effect in Cadmium Sulfide D. C. Reynolds, G. Leies, L. L. Antes and R. E. Marburger, (Phys. Rev., vol. 96, pp. 533-534; October 15, 1954.) Brief report of observations.

535.215:546.482.21 Absorption and Conductivity Measurements on CdS in the Soft-X-Ray Region-E. Schnürer. [Ann. Phys., (Lpz.), vol. 15, pp. 15-20; September 15, 1954.]

535.215:546.817.241:539.23

Effect of Oxygen on the Electrical Properties of Lead Telluride Films-D. E. Bode and H. Levinstein. (Phys. Rev., vol. 96, pp. 259-265; October 15, 1954.) Account of an experimental investigation. Exposure to oxygen produces first an increase and then a decrease in the film resistance. The nature of the material changes from n-type to p-type in the neighborhood of the resistance maximum. The magnitudes of the photoconductive and photovoltaic effects depend on the amount of oxygen adsorbed. The observed results are explained on the basis of a model in which the oxygen removes electrons first from the conduction band, then from trapping states, and finally from the valence band.

535.37

721

On the Infrared-Sensitive Behaviors of Some Doubly Activated ZnS Phosphors-S. Asano. (Jour. Phys. Soc. (Japan), vol. 9, pp. 580-594; July/August, 1954.)

535.37

Investigations of the Stimulation of Phosphorescence in Calcium Oxide—A. Crozet and J. Janin. [Compt. Rend. Acad. Sci. (Paris), vol. 239, pp. 1031-1034; October 27, 1954.] The

effect of different activators is discussed. If rare earths are used there is a large recapture of liberated electrons.

537.226.2

722

723

724

725

727

728

720

The Dielectric Behaviour of Acetaldehyde Vapour at 9000 Mc/s-Krishnaji and P. Swarup. (Z. Phys., vol. 138, pp. 550-556; September 18, 1954. In English.)

537.226.31

Investigation of Dielectric Losses due to Low-Frequency Relaxation in Polyethylene-G. P. Mikhailov, A. M. Lobanov and B. I. Sazhin. (Zh. Tekh. Fiz., vol. 24, pp. 1553-1560; September, 1954.) Experimental results show that the losses are connected with the presence of C = 0 polar groups and their orientation. The relaxation time associated with If $(\sim 10^2 \text{ cps})$ losses decreases with extension of the specimen, that of hf ($\sim 10^9$ cps) losses increases. The dependence of the loss angle on temperature, frequency, and percentage of crystalline phase is shown graphically.

537.226.33 732 Transient State in Dielectrics-J. Granier and P. Caillon. [Compt. Rend. Acad. Sci. (Paris), vol. 239, pp. 1025-1027; October 27, 1954.] If only one hysteresis effect came into play, it would be possible to predict ac dielectric properties from dc properties. Examination of experimental results on high polymers confirms the existence of two independent hysteresis phenomena, the one related to the dipole orientation and the other to jonic polarization. See also 2963 of 1954.

537.227:546.431.824-31 733 Electromechanical Activity of BaTiO₃ Ceramic subjected to Opposing Polarization-T. F. Hueter and D. P. Neuhaus. (Naturwiss., vol. 41, p. 424; September, 1954.) Over a range of field strength within the coercive field strength, second-harmonic oscillations become pronounced while the fundamental and the third harmonic disappear. Curves showing the variation of fundamental and second-harmonic amplitude with field strength are presented for a disk of thickness 0.1 cm, and an interpretation is provided in terms of domain processes.

537.227:546.431.824-31 734

An Experimental Study of Polarization Effects in Barium Titanate Ceramics T. F. Hueter, D. P. Neuhaus and J. Kolb. (Jour. Acous. Soc. Amer., vol. 26, pp. 696-703; September, 1954.) The following points were investigated: (a) transducer performance as a function of polarizing bias; (b) relative role of mechanical and dielectric losses; (c) coercivity of pre-polarized BaTiO₃; (d) effect of bias on subsidiary transducer responses; (e) constriction of dielectric hysteresis loops. The value of the experiments for elucidating the relation between the properties of the ceramic and single-crystal forms of the material is discussed.

537.227:546.431.824-31 735

Dielectric-Constant Behavior of Single-Domain, Single Crystals of Barium Titanate in the Vicinity of the Curie Point- M. E. Drougard and D. R. Young. (Phys. Rev., vol. 95, pp. 1152-1153; September 1, 1954.) Brief report of measurements which confirm earlier observations by Cross (751 of 1954) of a discontinuity in the value of the dielectric constant at the Curie point

537.227:546.431.824.831.4-31 736 Ferroelectric Properties of Solid Solutions of Barium Zirconate in Barium Titanate--G. A. Smolenski, N. P. Tarutin and N. P. Grudtsin. (Zh. Tekh. Fiz., vol. 24, pp. 1584-1593; September, 1954.) An experimental investigation of solutions containing up to 40 per cent (molar) of BaZrO3. Results, which are presented graphically, show (a) the highest value of dielectric constant (>12,000) at a frequency of 1 kc occurs for 18-20 per cent BaZrO₃ content,

(b) the Curie temperature is displaced downwards more slowly than in the $BaSnO_3$ -in- $BaTiO_3$ solutions due to the different character of the bonds of Zr and Sn ions with oxygen ions, (c) the dielectric constant of solutions with low electrostriction falls considerably following polarization at high field strengths, (d) the dependence of resonance frequencies on field strength decreases with increase of the zirconate content, and (e) the piezoelectricmodulus maximum occurs at a temperature slightly lower than that corresponding to the dielectric-constant maximum. Some properties of pure $BaTiO_3$ were also investigated.

737 537.311.31: [538.632+537.312.8 Hall Effect and Change of Resistance of Pb, Cu, and Mg in a Magnetic Field-E. S. Borovik. (Zh. Eksp. Teor. Fiz., vol. 27, pp. 355-368; September, 1954.) An experimental investigation is reported on pure polycrystalline specimens in fields of strengths up to about 25,000 oersted at temperatures between 2 degrees and 300 degrees K. From a comparison of the experimental results with results calculated on the basis of an isotropic model of a metal with overlapping energy bands values are obtained for the mobilities and concentrations of charge carriers. The magnitude of the mean free path is compared with the values obtained by other methods. Results are tabulited and presented graphically,

537.311.31:621.3.029.64
738
Surface Loss of Silver-Plated Metal Plates at 9000 Mc/s and its Correlation with Surface Roughness—S. Saito. (PROC. I.R.E., vol. 42, p. 1810; December, 1954.) A cavity-resonator method is outlined for comparing the surface loss of metal plates. The surface roughness was simultaneously observed by a mechanical-stylus method and by means of electron micrographs. The results confirm that surface loss increases rapidly with increase in surface roughness. Plating defects in the silver-plated samples appear to be responsible for abnormally high losses.

537.311.33

\$

P

8

Magnetoresistance Effect in Cubic Semiconductors with Spheroidal Energy Surfaces— M. Shibuya, (*Phys. Rev.*, vol. 95, pp. 1385– 1393; September 15, 1954.) "The collision frequency of electrons having a spheroidal energy surface with acoustical modes of vibration is calculated without neglecting phonon energy. Using an asymptotic form in which the collision frequency is proportional to the square root of their energy, the electronic current in a semiconductor in combined magnetic and weak electric fields can be calculated in a closed form by the formal theory of conductivity. The results are compared with those obtained experimentally by Pearson and Suhl (166 of 1952)."

739

741

537.311.33 740 Mathematical Methods for Zone-Melting Processes—H. Reiss. [Jour. Metals (New York), vol. 6, pp. 1053–1059; September, 1954.] The mechanism of zone melting [2125 of 1954 (Pfann)] is discussed in terms of a transport process including diffusive and convective flows. This approach provides a basis on which equations are developed for the solute concentration in the ingot as a function of the number of zone passes.

537.311.33

Quantum Theory of Cyclotron Resonance in Semiconductors—W. Kohn and J. M. Luttinger. (*Phys. Rev.*, vol. 96, pp. 529–530; October 15, 1954.) For the electrons in semiconductors, the quantum theory is identical with the classical theory [2479 of 1950 (Shockley)]. For holes, the situation is complicated due to degeneracy at the top of the valence band; the quantum theory leads to different energy levels and selection rules for low quan742

537.311.33:537.323

Temperature Dependence of Thermoelectric Power of Impurity Semiconductors—T. A. Kontorova. (Zh. Tekh. Fiz., vol. 24, pp. 1687 1696; September, 1954.) Theoretical considerations show that the large values of the thermoelectric power observed by Frederikse (1093 of 1954) and others at very low temperatures can be accounted for by accepted theory, assuming the electron gas to be highly degenerate in that region. The maximum occurs at the transition from the degenerate state to the "classical" state.

 537.311.33:537.323:546.289
 743 Theory of Thermoelectric Power in Semiconductors—J. Tauc. (*Phys. Rev.*, vol. 95, p. 1394; September 15, 1954.) A method is suggested for calculating the thermoelectric power which gives a more correct expression than that presented by Johnson and Lauk-Horowitz (1092 of 1954).

537.311.33:546.23 744 Some Investigations on the Electrical Properties of Hexagonal Selenium-L. M. Nijland. (Philips Res. Rep., vol. 9, pp. 259-294; August, 1954.) Known properties of Se are reviewed with references to published data. A method of purifying 99.9 per cent-pure Se by evaporation at a temperature near its melting point is described. Results of measurements of hf conductivity confirm the assumption that polycrystalline Se consists of crystals of fairly good conductivity embedded in poorly conducting layers of amorphous Se. The inclusion of thallium increases the resistance of the layers without greatly affecting that of the crystals. Measurements of Hall effect and of equivalent shunt resistance as a function of frequency are also reported for pure and brominecontaining samples; results indicate the same layer structure, but inclusion of Br lowers the resistance of the layers. Conduction mechanism is discussed with reference to detailed experimental results.

537.311.33: [546.28+546.289 745

Etch Pits and Dislocations in Germanium and Silicon—J. J. Oberly. [Jour. Metals (New York), vol. 6, pp. 1025–1026; September, 1954.] Brief illustrated discussion of conical etch pits observed while examining lineage boundaries described by Vogel et al. (2693 of 1953).

537.311.33: [546.28+546.289 746 Theory of Electron Multiplication in Silicon and Germanium—P. A. Wolff. (Phys. Rev., vol. 95, pp. 1415–1420; September 15, 1954.) Multiplication of electrons and holes at junctions in Si and Ge is explained in terms similar to those of gas-discharge theory. The calculated ionization-rate/field characteristic for Si is in agreement with that obtained experimentally, assuming a mean free path of 200 Å for interactions between electrons and optical phonons.

747

537.311.33: [546.28+546.289

Mobility of Impurity Ions in Germanium and Silicon-C. S. Fuller and J. C. Severiens. (Phys. Rev., vol. 96, pp. 21-24; October 1, 1954.) The diffusivity D of Li in Ge and Si was investigated by measuring the mobilities of the Li⁺ ions on applying an electric field. Using the Einstein formula relating the two properties, the value of D was found to be 25×10^{-4} exp (-11,800/RT) for Ge and 23×10^{-4} $\exp(-15,200/RT)$ for Si, in satisfactory agreement with previously published results. The region into which the Li diffuses in the p-type Ge changes to n-type, but a small region round the injection area reverts to p-type. Similar experiments with Cu in n-type Ge are mentioned.

537.311.33: [546.28+546.289]: 536.2 748 The Thermal Conductivity of Germanium

and Silicon at Low Temperatures—H. M. Rosenberg. (*Proc. Phys. Soc.*, vol. 67, pp. 837– 840; September 1, 1954.) "The thermal conductivity of a single crystal of Ge and a polycrystalline specimen of Si have been measured in the range 2 to 100 degrees K. Both specimens were very pure. The results indicate that, at low temperatures at least, the lattice waves are not scattered by the conduction electrons, but that their mean free path is limited either by the size of the specimen (for the germanium) or by the crystallite size (for the silicon)."

749 537.311.33:546.28 Electron Spin Resonance of an Impurity Level in Silicon- A. Honig and A. F. Kip. (Phys. Rev., vol. 95, pp. 1686-1687; September 15, 1954.) Electron spin resonance has been observed in a Si sample containing Li at a concentration of 7×10^{16} atoms/cm³. The ionization energy of an electron in the impurity level is 0,033 ev. A single resonance line was observed over the temperature range 4 degrees-20 degrees K using an applied frequency of about 8.8 kmc and a magnetic field of about 3,200 oersted; the same line was observed at 300 mc. The evidence indicates that the electron is bound to the impurity atom rather than associated with an impurity band.

750 537.311.33:546.28 Electrical Properties of Silicon containing Arsenic and Boron-F. J. Morin and J. P. Maita. (Phys. Rev., vol. 96, pp. 28-35; October 1, 1954.) Measurements were made of the conductivity and Hall constant of singlecrystal specimens over the temperature range 10 degrees-1,100 degrees K. Analysis of the extrinsic carrier concentration values, as computed from the Hall constant, indicates the ionization energy of As donor levels to be 0.049 ev, and of B acceptor levels to be 0.045 ev for low impurity concentrations. Fermi degeneracy is found to occur in the impurity concentration range 1018-1019 per cm³. A formula is derived for the variation of carrier concentration with temperature up to 700 degrees. Mobility values are computed.

537.311.33:546.28 751 Effective Masses of Holes in Silicon-R. N.

Dexter and B. Lax. (*Phys. Rev.*, vol. 96, pp. 223–224; October 1, 1954.) Cyclotron-resonance experiments are reported, the carriers being excited by infrared radiation chopped at 900 cps. The effective mass of holes is plotted as a function of direction of magnetic field.

537.311.33:546.28 752 Effective Masses of Electrons in Silicon— R. N. Dexter, B. Lax, A. F. Kip and G. Dressel haus. (*Phys. Rev.*, vol. 96, pp. 222–223; Octo haus. (*Phys. Rev.*, vol. 96, pp. 222–223; Octo-

haus. (*Phys. Rev.*, vol. 96, pp. 222–223, October 1, 1954.) Results of cyclotron resonance experiments using optical excitation of carriers are reported. Curves are shown of the effective electron mass as a function of direction of magnetic field.

537.311.33:546.28
753 Polarization of Arsenic Nuclei in a Silicon
Semiconductor—A. Honig. (*Phys. Rev.*, vol. 96, pp. 234–235; October 1, 1954.) A mechanism capable of producing nearly 100 per cent polarization of nuclear spins at moderate values of field strength and temperature has been found in the course of electron spin resonance studies of the type previously reported [3254 of 1954 (Fletcher et al.)].

537.311.33:546.289 754

Electron Multiplication in Germanium at Low Temperature—E. J. Ryder, I. M. Ross and D. A. Kleinman. (*Phys. Rev.*, vol. 95, pp. 1342–1343; September 1, 1954.) In response to Conwell's suggestion of an experimental check (2976 of 1954), measurements were made of the current density in a small bar of *n*-type Ge as

a function of electric field strength at several temperatures in the range 12.1 degrees-300 degrees K. The curves for the lower temperatures exhibit a steep rise over part of the fieldstrength range; this is interpreted as evidence of electron multiplication.

537.311.33:546.289 755 Distribution of the Mass Transported from a Collector into a Germanium Crystal by the Forming Process-W. M. Aarons, M. Pobereskin, J. E. Gates and E. B. Dale. (Phys. Rev., vol. 95, p. 1345; September 1, 1954.) Measurements were made using a radioactive isotope of Au as tracer. The Au was plated on a W needle which was used to form the crystals. Results obtained with successive lappings of the surface indicate that the concentration of the transferred Au atoms is high in a region near the surface, then falls, rises a little, and finally drops abruptly.

537.311.33:546.289

The Interaction of Impurity Atoms with Dislocations in Germanium-A, D, Kurtz and S. A. Kulin. (Acta metallurgica, vol. 2, pp. 352-354; March, 1954.) It is suggested that the existence of dislocations in Ge gives rise to certain specific distributions of solute atoms, Results of approximate calculations give some support to this view; the theory enables some of the electrical properties of Ge to be predicted.

537.311.33:546.289 757 Effect of Dislocations on Minority-Carrier Lifetime in Germanium-S. S. Kulin and A. D. Kurtz, (Acta metallurgica, vol. 2, pp. 354-356; March, 1954.) The density of randomly distributed dislocations in Ge, as determined by two independent methods, varies between 106 and 10⁸ per cm². The lifetime of minority carriers decreases hyperbolically as the dislocation density increases. The recombination efficiency per dislocation is about 2×10^{-3} per em per second. The change in energy gap width is calculated as a function of position in relation to a dislocation

537.311.33:546.289 New Minority-Carrier Phenemenon in Ger-

manium-S, J. Angello and T. E. Ebert. (Phys. Rev., vol. 96, pp. 221-222; October 1, 1954.) An experiment is described in which minority carriers were withdrawn from a bar of n-type Ge at an In-alloyed junction biased in the highresistance direction, and the deficit was propagated along the bar by means of an electric field. The effect is the inverse of that described by Haynes and Shockley (2109 of 1949).

537.311.33:546.289

Injection Breakdown in Iron-Doped Germanium Diodes-W. W. Tyler, (Phys. Rev., vol. 96, pp. 226-227; October 1, 1954.) Brief description of an experiment providing evidence of hole traps in high-resistivity n-type Fe-doped Ge.

537.311.33:546.289

Properties of Zinc-, Copper-, and Platinum-Doped Germanium- W. C. Dunlap, Jr. (Phys. Rev., vol. 96, pp. 40-45; October 1, 1954.) Measurements of Hall constant and resistivity over the temperature range 15 degrees-400 degrees K indicate that Zn, Cu and Pt are all acceptors, with ionization energies of 0,029, 0.036 and 0.040 ev respectively. The temperature variation observed could be due to (a) surface conductivity with low activation energy, (b) traces of low-ionization-energy acceptors, or (c) internal leakage due to imperfections or dislocations. Evidence was found of a Pt acceptor level 0.2 ev below the conduction band and of a Cu acceptor level just below the middle of the forbidden band.

537.311.33:546.289

Thermal Effects on Lifetime of Minority Carriers in Germanium-R. A. Logan and M.

Schwartz. (Phys. Rev., vol. 96, p. 46; October 1, 1954.) Practical precautions are described which enable Ge to be heated to temperatures as high as 875 degrees C, without causing a decrease in the lifetime of the minority carriers.

537.311.33:546.289

762 Precision Wavelength and Isotopic Shift Measurements of Germanium Arc Lines-G. V. Deverall, K. W. Meissner and G. J. Zissis. (Phys. Rev., vol. 95, pp. 1463-1468; September 15, 1954.)

537.311.33:546.623.86

756

758

759

760

761

763 Some Electrical Properties of AlSb---W. Sasaki, N. Sakamoto and M. Kuno, (Jour. Phys. Soc. Japan, vol. 9, p. 650; July/August, 1954.) Measurements of resistivity, Hall constant and thermoelectric power as a function of temperature are reported.

537.311.33: [546.682.86+546.682.19 764 Anomalous Optical Behavior of InSb and InAs-H. J. Hrostowski, G. H. Wheatley and W. F. Flood, Jr. (Phys. Rev., vol. 95, pp. 1683-1684; September 15, 1954.) Observations have been made of the room-temperature transmission spectra of degenerate n-type InSb samples doped so as to have different values of electron concentration. The absorption edge is displaced to shorter wavelengths as the electron concentration is increased. The variation of the energy gap E_0 with electron concentration is compared with the curve obtained by calculation from the data of Tannenbaum and Maita (758 of 1954). Similar but smaller effects have been observed with InAs. The results indicate that the anomalous variation of E_0 is unlikely to be due to a specific impurity.

537.311.33:546.682.86

Neutron Irradiation of Indium Antimonide J. W. Cleland and J. H. Crawford, Jr. (Phys. Rev., vol. 95, pp. 1177-1182; September 1, 1954.) Measurements were made of Hall coefficient and resistivity of n-type and p-type single crystals of 1nSb after exposure to neutron irradiation. The results indicate that bombardment by fast neutrons converts p-type material to n-type and produces shallow electron traps in n-type material. Reduction of carrier mobility and changes of carrier concentration resulting from the bombardment can be removed by heat treatment.

537.311.33:546.817.241 766 Preparation and Properties of Lead Telluride-E. L. Brady. (Jour. Electrochem. Soc., vol. 101, pp. 466-473; September, 1954.) "Single crystals of lead telluride, PbTe, have been prepared and their resistivity and Hall coefficients determined. Both n- and p-type lead telluride have been produced, but they were not of high resistivity. Charge carrier concentration in every case has been $1-5 \times 10^{18}$ cm³ Hall mobility of n- and p-type carriers was found to be about 2,240 and 860 $\mathrm{cm^2/volt\text{-sec}}$, respectively. Material of *p*-type was converted to n-type by allowing lead to diffuse into the crystal at 500 degrees C. The value of the diffusion coefficient of Pb in PbTe at this temperature is estimated to lie between 5.6×10^{-4} and $9.2 \times 10^{-8} \text{ cm}^2/\text{sec.}$

537.311.33:546.817.241:539.234:535.3 767

Optical Properties of Lead Telluride-M. E. Lasser and H. Levinstein. (Phys. Rev., vol. 96, pp. 47-52; October 1, 1954.) Evaporated films were prepared having a density about 10 per cent less than that of the bulk material, The optical constants were calculated from curves of reflection and transmission plotted against λ . Addition of oxygen caused an increase in absorption and a slight increase in refractive index; the optical properties were then strongly dependent on the film temperature. A possible explanation of the results is presented.

537.311.33:621.314.63

Influence of Recombination at Contact on

the Volt/Ampère Characteristics of a Rectifier-A. V. Rzhanov. [Compl. Rend. Acad. Sci. (URSS), vol. 98, pp. 389-390; September 21, 1954. In Russian.] An expression is derived for the current flowing in an *n*-type semiconductor bounded on one side by p-type material and on the other by a nonactive contact. The electron flow across the p-n junction is neglected. Surface recombination takes place at the other boundary. If the thickness of the semiconductor is small compared with the diffusion path of holes, and the velocity of surface recombination is large, then the effect of recombination is to increase the saturation current. This result is derived on the assumption of a concentration of holes which is small in comparison with the equilibrium concentration of electrons, i.e. applies to reverse and small direct currents through the rectifier. An expression for the current in the case of large hole concentrations is also given.

537.311.33:621.314.63 760

Theory of Rectification at a Metal/Semiconductor Contact-W. Schultz. (Z. Phys., vol. 138, pp. 598-612; September 18, 1954.) A study is made particularly of the influence of the inversion layer. The analysis is presented for an excess semiconductor, but corresponding arguments hold for a defect semiconductor. On making simplifying assumptions which are generally valid for semiconductors with high mobility and long diffusion path, the rectification process can be described using diode theory for the electron current and Shockley's theory of p-n junctions for the hole current. An expression is derived for the blocking-layer capacitance as a function of bias voltage and of a parameter V which varies slightly with the bias. The temperature dependence of V is discussed.

537.311.33:621.314.632

765

Theory of Contact Phenomena-G. M. Abak'yants. (Zh. Eksp. Teor. Fiz., vol. 27, pp. 333-346; September, 1954.) This theory of metal-semiconductor contacts takes into account the change of the mean kinetic energy ("heating") of electrons in an electric field. The contact resistance, at constant current, is calculated for both Schottky- and Davydov-type layers. In a discussion of a note by Burgess (2697 of 1953) it is pointed out that the Einstein equation does not apply and the diffusion coefficient D is approximately proportional to the product of the mobility and the mean energy of the electrons in the electric field. The expression for drift velocity should take into account the difference between the temperature of the electrons and the lattice, which gives rise to thermal currents, and also the effect of a nonuniform electric field in the contact region. Krömer's paper (2821 of 1953) is also briefly commented on.

537.311.33:621.314.632

Flow of Electrons and Holes through the Surface-Barrier Region in Point-Contact Rectification—M. Cutler, (*Phys. Rev.*, vol. 96, pp. 255–259; October 15, 1954.) Equations are derived for emission-controlled flow, taking account of nonequilibrium concentration of carriers on the semiconductor side of the barrier. A solution based on the assumption that part of the voltage drop occurs between the metal and semiconductor surfaces, rather than entirely in the barrier, leads to improved agreement between theoretical and observed current/voltage characteristics. The part played by diffusion is also discussed.

537.311.33:621.396.822

Some Notes on Gisolf's Theory of Electron Fluctuation Phenomena in Semiconductors-K. W. Böer, [Ann. Phys. (Lpz.), vol. 15, pp. 55-56; September 15, 1954.] Correction to paper abstracted in 2139 of 1954.

537.529:621.315.61

768

773 The Statistical Time Lag of the Dielectric

770

771

772

Breakdown of Mica, Glass and KCl-H. Kawamura, H. Ohkura and T. Kikuchi. [Jour. Phys. Soc. (Japan), vol. 9, pp. 541-545; July/August, 1954.] Results of pulse measurements indicate that the statistical time lag at 10 per cent overvoltage is up to 10⁻¹ second for mica but $\geq 10^{-7}$ second for glass and KCl. Theories of the breakdown mechanism are discussed in the light of these figures.

538.221

3

护

5

Ferromagnetism of Certain Manganese-Rich Alloys-E. R. Morgan. [Jour. Metals New York), vol. 6, pp. 983-988; September, 1954.] Report of an investigation of a series of alloys based on the composition $({\rm MnX})_4 {\rm C},$ where X is a metallic element which has both a positive size factor with respect to Mn and a high positive valence, e.g. Al, 1n and Sn. Measurements indicate that the effective magnetic moment of Mn in the alloys is at least 1.0 Bohr magneton per atom.

538.221

Study of Strip Ferronickels around the Curie Point, using Weak Alternating Fields-A. Marais. [Compt. Rend. Acad Sci. (Paris), vol. 239, pp. 873-875; October 11, 1954.] Curves are given showing the variation of initial permeability with temperature for some Ni-Fe-Cu alloys containing either Mo or Cr in addition. The influence of specimen thickness and duration of heat treatment is indicated.

538.221:537.533.8

Nickel Alloys with High Secondary Emissivity-A. Bobenrieth, J. Millet and S. Teszner. [Compt. Rend. Acad. Sci. (Paris), vol. 239, pp. 794-796; October 4, 1954.] Ni-Be alloys with Be content up to 5 per cent by weight were prepared in a lif oven at low pressure. Measurements of the secondary emissivity are reported on specimens with 4 per cent and with 3 per cent Be, using primary electron voltages between 300 and 800 v and collector voltages between 100 and 500 v. Values up to 96 were recorded for the 4 per cent alloy and up to 45 for the 3 per cent alloy. With secondary electron currents ≯1 ma, no signs of fatigue were observed in the 4 per cent alloy over test periods of 8 hours. Ni Mg alloys were prepared containing up to 1.2 per cent Mg. The highest value of secondary emissivity obtained was 2.

538.221:538.632

Hall Effect in Ferromagnetics--C. Kooi. (Phys. Rev. vol. 95, pp. 843-844; August 1, 1954.) Measurements on Si-Fe alloys are reported briefly; the results are in good agreement with values predicted theoretically by Karplus and Luttinger (698 above).

538,221:621.318.134

Some Properties of Nickel-Zinc Ferrites-I. Rabkin and B. Sh. Epshtein. (Zh. Tekh; Fiz., vol. 24, pp. 1568-1578; September, 1954.) Experimental investigation is reported of the dependence of the magnetic properties of ferrites with mean permeabilities ranging from 40 to 2,500 on the frequency of the magnetic field (up to >10 mc), temperature between about -80 degrees C, and the Curie points (lying between 250 degrees C, and 80 degrees C.), and field strength up to ~ 1 oersted. The permeability and losses in weak pulsed fields and the dielectric properties were also investigated. Results are presented graphically; the code numbers denote the mean permeability in gauss/oersted.

538.221:621.318.134

Temperature Dependence of the Magnetic Properties of Nickel-Zinc and Copper-Zinc Ferrites-A. I. Suchkov. (Zh. Tekh. Fiz., vol. 24, pp. 1579-1583; September, 1954.) Magnetic properties investigated experimentally include the saturation magnetization, saturation magnetostriction, coercive force, and initial and maximum permeabilities. Curie points of CuO-ZnO-Fe2O3 ferrites, of the molar compo-

sitions stated, lie between 30 degrees and 180 degrees C. Results are presented graphically and indicate that the general theory and the quantum theory of ferromagnetism also cover the temperature dependence of the magnetic properties of ferrites.

538.221:621.318.134

774

775

776

777

778

770

Neutron Diffraction Studies of a Nickel Zinc Ferrite-V. C. Wilson and J. S. Kasper. (Phys. Rev., vol. 95, pp. 1408-1411; September 15, 1954.)

538.221:621.318.134.029.64/.65 781

On the Internal Field of the Microwave Resonance in Ferrites - N. Tsuya. (Jour. Phys. Soc. (Japan), vol. 9, pp. 644-645; July/August, 1954.] A possible mechanism is proposed which may cause the additional internal field.

538.221:669.14.018.58 782 Nature of Change of Coercive Force due to

Tempering of Hardened Low-Carbon Steel-I. A. Bil'dzyukevich, Ya. M. Golovchiner and G. V. Kurdyumov. [Compt. Rend. Acad. Sci. (URSS), vol. 98, pp. 385-387; September 21, 1954. In Russian.] The effect of tempering of 0.1-0.12 per cent C steel, hardened by quenching in water from 1,100 degrees C. was investigated experimentally. Results indicate that the decrease of coercivity with increase of temperature (up to 600 degrees (.) is primarily due to the removal of strains in the steel.

538.652

783 Derivation of Magnetostriction and Anisotropic Energies for Hexagonal, Tetragonal, and Orthorhombic Crystals-W. P. Mason. (Phys. Rev., vol. 96, pp. 302-310; October 15, 1954.) "In order to determine the measurements necessary to characterize the anisotropic energy and the saturation magnetostriction in hexagonal cobalt, a phenomenological derivation has been given for the equations which characterize the effects. Out to fourth rank tensors, the results are the same as those for circular symmetry and it requires two constants to specify the anisotropic energy and four to specify the magnetostriction. When sixth rank tensors are evaluated, a characteristic hexagonal symmetry appears. It requires four constants to characterize the anisotropic energy and nine to characterize the magnetostriction. These constants can be measured by using two oriented slabs. Four of the constants can be determined by measurements parallel to the saturation magnetization, four when the magnetostriction is perpendicular to the magnetization and one when they are 45 degrees apart. In the appendix the first approximations for the magnetostrictive and anisotropy energies are derived for tetragonal and orthorhombic crystals.

538.652

Magnetostriction and Crystal Anisotropy of Single Crystals of Hexagonal Cobalt-R. M. Bozorth. (Phys. Rev., vol. 96, pp. 311-316; October 15, 1954.) Measurements at field strengths up to 25,000 oersted are reported. Results are discussed in terms of theory developed by Mason (783 above). A volume contraction associated with domain orientation was observed, its value being as great as 26×10^{-6} for the most effective direction of magnetization. Superposed on this contraction is an isotropic increase of volume of 0.6×10^{-9} ner oersted.

784

785

538.652:538.221 The Magnetostriction Constants of Silicon Steel: Part L .-- H. Takaki and Y. Nakamura.

(Jour. Phys. Soc. Japan, vol. 9, pp. 507-511; July/August, 1954.) Magnetization measurements using a ballistic method and magnetostriction measurements using a mechanooptical method were made on long singlecrystal specimens of 0.7 per cent and 1.8 per cent Si steel; the magnetostriction constants $\lambda_{100} \, \text{and} \, \lambda_{111}$ and the crystal-anisotropy constant

K₁ were hence determined. The results confirm that these three constants decrease as the Si content increases.

786 538.652:538.221

Temperature Dependence of Magnetostriction of Ferromagnetic Alloys-D. 1. Volkov and V. I. Chechernikov. (Zh. Eksp. Teor. Fiz., vol. 27, pp. 208-214; August, 1954.) The saturation-magnetostriction/temperaturecharacteristics of Ni-Cu, Ni-Mn, and Ni-Fe alloys were determined by means of a tensometer method at temperatures up to the Curie point. Results, which are presented graphically, are in good agreement with theory.

539.23:537.311.3

780

Resistance of Thin Metal Films at High Frequency and Low Temperature-S. Offret and B. Vodar. [Compt. Rend. Acad. Sci. (Paris), vol. 239, pp. 1027-1029; October 27, 1954.] Results of measurements indicate that short-circuiting by intergranular capacitances is probably responsible for the decrease of resistance at high frequency and for the increase in the algebraic value of the temperature coefficient of resistance. At sufficiently high frequencies it should be possible to measure the resistance of the metal grains themselves.

621.315.613.1

Synthetic Mica Investigations: Part 5-A Low-Shrinkage Machinable Ceramic of Phosphate-Bonded Synthetic Mica-J. E. Comeforo. (Jour. Amer. Ceram. Soc., vol. 37, pp. 427-432; September 1, 1954.) Total shrinkage is easily maintained at <3 per cent with a material formed by pressing powdered synthetic mica with phosphoric acid as binding agent. The dielectric properties approximate to those reported [784 of 1954 (Comeforo et al.)] for hot-pressed phosphate-free material of similar porosity. Loss factor is 1-2 per cent at room temperature and 4-8 per cent at 300 degrees C. at a frequency of 1 mc. The material is suggested as a substitute for natural block tale.

621.315.616:537.533.9

Irradiated Polyethylene-J. B. Campbell. (Mater. and Meth., vol. 40, pp. 91-95; September, 1954.) The effect on polyethylene of bombardment by high-voltage electrons is described; details are given of commercially available material in tape form. Unlike ordinary polyethylene, the irradiated material is not thermoplastic; its use may permit reduction in size of electrical equipment operating at high temperatures. Dielectric strength at high temperature may be improved by the treatment.

700 621.372.412:549.514.51 Effect of Acoustic Impedance and Viscosity

of Gases on the Electrical Constants of Quartz -S. Parthasarathy and V. Narasimhan. [Ann. Phys. (1.pz.), vol. 15, pp. 6-14; September 15, 1954. In English.] Experimental results show that the equivalent electrical resistance of a quartz crystal is proportional to the acoustic impedance of the gas in which it is vibrating; the Q factor decreases exponentially with increasing viscosity, as in liquids, but the relation is approximately linear over the small range involved. The natural frequency of the crystal used was 414,216 kc.

791 621.39:621.791.3

Investigations on Soldered Joints - H. Künzler and H. Bohren. (Tech. Mitt. schweiz, Telegr.-Teleph. Verw., vol. 32, pp. 329-351; September 1, 1954. In German.) Chemical and physico-chemical problems are discussed. Tests were made to find a solder with a noncorrosive flux. The influence of temperature on the structure of soldered materials and the quality of the joints was studied. The wear of Cu soldering irons is much reduced if the solder contains some Cu.

787

788

789

World Radio History

811

812

814

666:539.61:669

Frictional Adhesion of Metal to Glass, Quartz, and Ceramic Surfaces-R, B. Belser, (Rev. Sci. Instr., vol. 25, pp. 862-864; September, 1954.) Experiments were made using small disks of various metals rotated at high speed in contact with the various insulator surfaces; by suitably adjusting speeds and pressures a layer of metal was made to adhere securely. The process may be useful for making glass-to-metal joints and electrically conducting lines, and for glass cutting.

MATHEMATICS

512.393 703 Solution of Cubics and Quartics- G. Millington: A. C. Sim, (Wireless Eng., vol. 32, p. 30; January, 1955.) Comment on 187 of January and author's reply. An error in the original paper is corrected.

519.281

Method of Averages and its Comparison with the Method of Least Squares-M. Morduchow, (Jour. Appl. Phys., vol. 25, pp. 1260-1263; October, 1954.) Comparison of the two methods is illustrated by treating the problem of fitting a straight line to a number of points. It is shown that the standard deviation of the residuals by the method of averages is at most $2/\sqrt{3}$ times as great as that by the method of least squares,

517 0 795 Relaxation Methods [Book Review]-D, N. de G. Allen, Publishers: McGraw-Hill Book Co., New York and London, 1954, 257 pp., \$7.50. (Science, vol. 120, pp. 423-424; September 10, 1954.) A strongly recommended textbook, giving descriptions of the basic operations and their application,

MEASUREMENTS AND TEST GEAR

53.088

Sensitivity-a Criterion for the Comparison of Methods of Test-J. Mandel and R. D. Stiehler. (Jour. Res. Nat. Bur. Stand., vol. 53, pp. 155–159; September, 1954.) "If M is a measure of some property Q, and σ_M its standard deviation, the sensitivity of M_1 denoted ψ_M is defined by the relation $\psi_M = (dM/d(J)/\sigma_M$. It follows from this definition that the sensitivity of a test method may or may not be constant for all values of the property Q. A statistical test of significance is derived for the ratio of sensitivities of alternative methods of test. Unlike the standard deviation and the coefficient of variation, sensitivity is a measure of merit that is invariant with respect to any functional transformation of the measurement, and is therefore independent of the scale in which the measurement is expressed.

621.316.842(083.74)

Recent Development of Standard Resistors

-A. Schulze. (Elektrotech. Z., Edn A, vol. 75, pp. 547-550; September 1, 1954.) The construction and manufacture of sealed-in standard resistors is described. The temperature coefficient of resistance has been reduced to 1×10^{-6} in 97.95 Au/2.05 Cr alloy resistors by heat pre-treatment, and to 10×10^{-6} in manga-nin-wire resistors. The change of resistance of the Au/Cr standards is of the order of 1×10^{-6} over a period of 3 to 5 years.

621.317.3.029.63:534.62

Construction of a Reflection-Free Room for Sound Waves and Decimetre Electrical Waves -Epprecht, Kurtze and Lauber. (See 612.)

621.317.33 A Two-E.M.F. Method for the Comparison

of Resistances-H. J. Hoge. (Rev. Sci. Instr., vol. 25, pp. 902-907; September, 1954.) Two sources of emf, each with an associated dropping resistor, are respectively connected in series with two resistors to be compared in such a way that the latter are not adjacent; the circuit is adjusted so that the potentials at the corresponding ends of the two resistors are equal when they carry equal currents. The method permits continuous observation or recording without error due to uncontrolled change of resistance in the connections,

621.317.333.6:621.372.8

702

704

706

797

798

Electrical Breakdown in Waveguides at 3000 Mc/s-Sutherland. (See 640.)

800

802

803

805

621.317.335 801 Measurement of Permittivity and Tangent of Loss Angle of Dielectrics with High Absorption at Centimetre Wavelengths-E. Briganti, (Poste e Telecomun., vol. 22, pp. 327-332; July, 1954.) A cavity-resonator method suitable for liquid specimens is described. Rigorous but simple formulas are derived for determining the permittivity and loss angle from measurements of wavelength and power.

621.317.337:621.372.413

Nomogram for Q of a Cavity-I, D, Harmer. (Wireless Eng., vol. 32, pp. 25-27; January, 1955). A nomogram is presented with the aid of which the O factor can be determined. from a small number of measurements of the standing waves in a feeder coupled to the cavty.

621.317.41/.42:621.395.625.3

Experimental Determination of [magnetic] Parameters of Magnetic-Recording Media-G. S. Veksler and P. S. Tomashevski, (Zh. Tekh. Fiz., vol. 24, pp. 1594–1598; September, 1954.) Description, with circuit diagram, of cro apparatus for tracing $4\pi 1/H$ curves at frequencies up to $>10^4$ cps. Photographs of typical hysteresis loops are presented including one showing also the initial part of the curve.

621.317.7:621.396.822:621.385 804 A Multichannel Noise Spectrum Analyzer for 10-1000 c/s-E, G. Nielsen and A, van der Ziel. (Rev. Sci. Instr., vol. 25, pp. 899-902; September, 1954.) An instrument for rapid analysis of flicker noise in tubes is described. Values of either the equivalent saturated diode current or the equivalent noise resistance at 10. 30, 100, 300, 1,000, 3,000 and 10,000 cps are obtained simultaneously by feeding the signal into seven parallel channels each incorporating a wide-band RC filter and a thermistor squarelaw detector.

621.317.715:621.375.13.029.424

A Tuned Galvanometer Amplifier-J. R. Beattie and G. K. T. Conn. (Rev. Sci. Instr., vol. 25, pp. 888-891; September, 1954.) Description of a system consisting of a galvanometer tunable by feedback over the range 1-3 cps, followed by an electronic amplifier covering the same frequency range (2950 of 1953), for amplifying signals from a radiation thermocouple used with a low-frequency interrupter. The output is presented as a rectified smoothed meter deflection. The amplification is sufficient to reveal thermal noise in the thermocouple circuit.

621.317.73

806 A Goniometer Quotient-Measurement Method for the Direct Determination of Admittance-H. Fricke. (Funk u. Ton. vol. 8, pp. 225-238 and 369-377; May and July, 1954.) Voltages proportional respectively to the current through the unknown impedance and the voltage across it are applied to the crossed coils of a goniometer, phase equalization being effected by a tuned circuit or a short-circuited transmission line across the unknown impedance. Calibration curves for 1-mc operation are given; error can be kept within a given limit, say 1 per cent, over different ranges by adjustment of series resistance and goniometer coupling; sensitivity is improved by a two-goniometer system. Circuits and goniometer arrangement for operation at uhf are described. A possible application of the

World Radio History

equipment with a cro for displaying locus curves is outlined.

621.317.733 807 Modern Bridge Techniques-P. M. Rat-

cliffe. (Marconi Instr., vol. 4, pp. 167-175; September, 1954.) A concise review.

621.317.733:621.316.86:537.312.6 808 A Self-Balancing Thermistor Bridge-A. F. Standing, (Jour. Sci. Instr., vol. 31, pp.

343-344; September, 1954.) A direct reading of power in the range 0,1-10 mw is obtained by including the thermistor in an oscillatory feedback circuit such that the thermistor resistance is held constant. The oscillator output is balanced against a direct voltage to give a zero meter reading in the absence of rf power.

621.317.74:621.315.212 800 R.F. Cable Characteristics measured with

Q-Meter-J. Shekel. (Electronic Eng., vol. 26, pp. 540-542; December, 1954.) Theory and practical details are given for a method in which a Q-meter determination of the frequency at which a section of the cable becomes a $\lambda/2$ resonator enables the propagation velocity, the characteristic impedance and the attenuation of the cable to be computed. A numerical example is included.

621.317.74+621.317.772:621.397.5:535.623

810 Differential Phase and Gain Measurements in Color-Television Systems-Kelly, (See 871.)

621.317.742:621.3.018.756

Direct V.S.W.R. Readings in Pulsed R.F. Systems-L. A. Rosenthal and G. M. Badoyannis. (Electronics, vol. 27, pp. 162-165; December, 1954.) Development of the ratio meter previously described [466 of 1953 (Rosenthal et al.)] to deal with pulse systems such as radar. Thermionic diodes are used as detectors. Pulse stretching is found necessary; a suitable circuit is shown. Operating procedure is outlined and measurements with standard and other loads are reported.

621.317.742:621.315.212

A Coaxial Standing-Wave Indicator for Frequencies near 10,000 Mc/s-F. A. Benson and G. V. G. Lusher. (Electronic Eng., vol. 26, pp. 534-537; December, 1954.) Details are given of the construction of a precision instrument.

621.317.75:631.396.3

813 Response of Radio Spectrometers to Nonperiodic Morse Signals- J. Marique. (Ann. Télécommun., vol. 9, pp. 215-223 and 247-255; July-September, 1954.) The analysis is presented for the same arrangement of cascaded tuned circuits as discussed in previous studies (e.g. 2034 of 1954); expressions are derived for the currents in these circuits. The envelope-response of the circuit is defined and the conditions are investigated for this response to be sufficiently independent of the circuit design for practical purposes.

621.317.755

Measurement of an Impedance by means of a Double-Trace Cathode-Ray Oscillograph: Coincidence Method-A. Grumbach, [Compt. Rend. Acad. Sci. (Paris), vol. 239, pp. 869-871; October 11, 1954.] The unknown impedance is connected in series with a known impedance across the output terminals of a sine-wave generator, one of these terminals being earthed while the other is connected to one of the cro deflection systems. The second deflection system is connected to the junction between the impedances. The known impedance is varied to produce phase coincidence between the two curves; amplitude coincidence is produced by means of amplifiers. The sensitivity of the method is discussed in relation to measurement of the permittivity and conductivity of a capacitor dielectric. Use of the arrangement for measuring frequency is also indicated. The frequency range is up to 100 kc.

621.317.755

ß

P

9

Wide-Band Amplitude Distribution Analysis of Voltage Sources -L. W. Orr. (Rev. Sci. Instr., vol. 25, pp. 894-898; September. 1954.) Signals to be analyzed are applied to a cro fitted with a slotted mask through which the luminescence output is fed to a photocell, the required amplitude distribution function being displayed on a second cro. The apparatus can be set up and operated quickly, and the accuracy is within 5 per cent. Analyses of two noise sources are shown.

621.317.755:621.385.3/.5 816 Development of a Characteristic-Curve Tracer for Transmitting Valves-J. Kammerloher and H. Krebs. (Funk u. Ton, vol. 8, pp. 453-470; September, 1954.) Description of a dc-pulse cro suitable for dealing with positive grid voltages. Circuit diagrams and some details of the switching arrangements are included. Typical curves obtained are reproduced; these include I_a/V_a curves for I_a up to 2A. V_a up to 1,000 v and grid voltages of 0, 60, ... 300 v. An ac-pulse instrument is briefly mentioned.

817 621.317.761:621.374.3 A Pulse-Interval Meter for measuring Pulse Repetition Frequency-A. M. Andrew and T. D. M. Roberts. (Electronic Eng., vol. 26, pp. 469-474 and 543 547; November and December, 1954.) The instrument described is suitable for use in cases such as neurophysiological measurements where the pulse repetition frequency varies rapidly. The output voltage at any instant is determined either by the duration of the preceding pulse interval, or by the duration already attained by the current interval, whichever is the longer. Frequency is indicated on an approximately linear scale, either by oscilloscope or by moving-coil meter.

621 396.001.4 818 Prediction of Electronic Failures-(Elect. Jour., vol. 153, pp. 717-718; September 3, 1954.) The N.B.S. experimental failure-prediction unit is based primarily on the detection of a decrease in tube transconductance in successive stages of the equipment under test, which requires slight modification to enable stages to be tested separately. Provision for checking capacitors for leakage, and for voltage and current measurements is also made.

OTHER APPLICATIONS OF RADIO AND ELECTRONICS

534.1-8:669

Metallurgical Effects of Ultrasonic Waves -E. A. Hiedemann. (Jour. Acous. Soc. Amer., vol. 26, pp. 831-842; September, 1954.) A survey with 121 references.

534.88

820 Echo-Location for the Blind-C. M. Witcher and L. Washington, Jr. (Electronics, vol. 27, pp. 136-137; December, 1954.) Developments are described in devices of the type emitting high-frequency clicks which are reflected by obstacles. The sound projector is rotated through an angle of 60 degrees in a period of 0.7-1 second by means of a miniature motor. A model for attachment to clothing weighs $1\frac{3}{4}$ pound.

621.314.214.5:621.317.39 821 Differential Transformers for Mechanical Measurements-L. W. Blick. (Jour. Brit. IRE, vol. 14, pp. 603-610; December, 1954. Discussion, p. 611.) Circuits for use with this type of transformer are described and applications as transducers are indicated.

621.316.7

A Design Philosophy for Man-Machine

Control Systems- II, P. Birmingham and F. V. Taylor. (PRoc. 1.R.E., vol. 42, pp. 1748-1758; December, 1954.) Methods are described for designing control systems so that the human operator is required to act only as a simple amplifier. Aided tracking is discussed in relation to efforts to improve the stability of manmachine systems by the use of special equalization networks.

621.316.718:534.85:621.94 823 Magnetic Tape controls Machine Tools-J. W. Hogan. (Electronics, vol. 27, pp. 144-147; December, 1954.)

824

621.317.39

815

Three Electronic Thickness Gages for Metallic Coatings-(Tech. News Bull. Nat. Bur. Stand., vol. 38, pp. 127-132; September, 1954.) Three instruments are described, in all of which operation depends on the difference in electrical conductivity between the plating and the support metal. The "dermitron" and the phase-angle thickness meter are electromagnetically coupled to the specimen and make use of the reflected field from eddy currents induced in the specimen. The "wageguide plating quantity indicator" makes a direct measurement of conductivity, using point electrodes.

825 621.317.39 Wire Strain-Gauge Transducers for the Measurement of Pressure, Force, Displacement, and Acceleration-J. L. Thompson. (Jour. Brit. IRE, vol. 14, pp. 583-600; December, 1954. Discussion, pp. 600-601.) Construction, theory of operation, and applications are discussed.

621.317.39 826 Load-Cell Force Transducers -D. L. Johnston, (Jour. Brit. IRE, vol. 14, pp. 613-620; December, 1954. Discussion, p. 620.) A chart is presented indicating ranges of power level and conversion efficiency for various types of transducer; the strain-gauge load-cell type is particularly useful for dealing with large forces. Associated measuring circuits are discussed.

621.317.79:621.385:531.717.3 827 Electronic-Mechanical Transducers-L. A. Goncharski, (Zh. Tekh. Fiz., vol. 24, pp. 1711-1723; September, 1954.) Theory and practical considerations are discussed of a sensitive electron-tube-type transducer consisting basically of a thin, electrically heated filament between a pair of plate electrodes, one of which is operated as anode. The two plates are rigidly attached by through leads to a glass pinch, flexibly sealed in the container wall, which picks up the displacements to be measured. Using a constant anode current of 1.5 ma, with >90 v on the anode and -10 v on the other plate, the voltage sensitivity is $\sim 6,000 \text{ v}$ per cm displacement of the plates. The current sensitivity is of the order of 0.1 a/cm-displacement. References to previous papers on the applications of this transducer are given.

621.365.55:674

819

822

Electronic Heating and the Woodworking Industry-M. T. Elvy. (Jour. Brit. IRE, vol. 14, pp. 547–566; November, 1954. Discussion, p. 567.) A review of hf dielectric heating methods with particular reference to the use of synthetic resin glues. The design of oscillation generators and coupling systems, jigs and electrodes is discussed.

621.384.612

Suppression of Coherent Radiation by Electrons in a Synchrotron-J. S. Nodvick and D. S. Saxon. (Phys. Rev., vol. 96, pp. 180-184; October 1, 1954.)

621.384.612

Phase Oscillations in the Strong-Focusing Synchrotron-E, Bodenstedt. [Ann. Phys. (Lpz.), vol. 15, pp. 35-54; September 15, 1954.]

Phenomena connected with the acceleration of particles beyond the critical-energy region in the strong-focusing synchrotron [1454 of 1953 (Courant et al.)] were investigated using a mechanical analog machine. Acceleration of particles beyond the critical energy can be accomplished by means of an odd number of jumps of the oscillator phase or by modulation of the oscillator voltage.

831 621.384.612 Project for an Electron Synchrotron in Italy-G. Salvini. (Nuovo Cim., Supplement to vol. 12, pp. 77-100; 1954.) Plans are discussed in some detail for a 600-mev machine to be available for all nuclear physics work in Italy; the desirability of raising the energy to 1,000 mev is indicated.

832 621.384.612 Amplitudes of Oscillations in the Strong-Focusing Synchrotron-J. Seiden. [Compt. Rend. Acad. Sci. (Paris), vol. 239, pp. 798-800; October 4, 1954.] Simple formulas are presented.

621.384.612 833 Effects on Orbits of Correlation between Lens Alignment Faults in the Synchrotron-J. Seiden. [Compt. Rend. Acad. Sci. (Paris), vol. 239, pp. 966-958; October 18, 1954.)

621.384.622.1:537.533.9 834 Applications of High-Energy Electrons to the Sterilization of Pharmaceuticals and the Irradiation of Plastics-C. W. Miller. (Jour. Brit. IRE, vol. 14, pp. 637-652; December, 1954. Discussion, p. 652.) For irradiating the materials discussed, the available energy can be used more efficiently by electron bombardment than by X- or γ -rays. The required highenergy electrons should be obtained from a linear accelerator rather than a radioactive source. Practical and economic aspects of the use of linear accelerators are discussed. Over 50 references.

621.384.622.2 835 A Theory of Electron-Beam Loading in Linear Accelerators-G. Saxon. (Proc. Phys. Soc., vol. 67, pp. 705-716; September 1, 1954.) Analysis is presented for the waveguide circuit of a linear accelerator using rf power feedback, to determine how the power flowing into such an accelerator varies with the beam loading. The relations derived are used in conjunction with formulas for the energy gain and beam power output of a length of accelerator waveguide to calculate the performance to be expected under feedback conditions as the beam current is varied. The calculated results are in reasonable agreement with measurements.

621.385.833

The Application and Limitations of the Edge-Diffraction Test for Astigmatism in the Electron Microscope-M. E. Haine and T. Mulvey, (Jour. Sci. Instr., vol. 31, pp. 326-332; September, 1954.)

621.385.833

Rigorous Calculation for a Typical Electrostatic Unipotential Lens--W. Glaser and P. Schiske. [Optik (Stuttgart), vol. 11, nos. 9 and 10, pp. 422-443 and 445-467; 1954.]

621.385.833

Centering of Magnetic Electron Lenses S. Leisegang. [Opiik (Stuttgart), vol. 11, no. 9, pp. 397-406; 1954)

621.387.4

829

830

839

838

836

837

The Reliability of Nucleonic Instruments-D. Taylor. (Jour. Brit. IRE, vol. 14, no. 11, 570-580; November, 1954. Discussion, p. 580.) The servicing of nucleonic instruments under factory conditions is discussed; problems encountered in the British Atomic Energy Project are considered. Annual failure rates of some of the standard instruments are given; these are highest for the more orthodox com-

621.387.424

Secondary Electron Emission by Photoelectric Action and Ion Bombardment at the Cathode in Corona Breakdown of Argon-L. Colli and U. Facchini. (Phys. Rev., vol. 96, pp. 1-4; October 1, 1954.) Discussion of secondaryemission mechanisms in cylindrical argon-filled counter tubes with positive axial wire.

621.308.020 62:525.6

Radio-Linked Unattended Tide Gauge for Persian Gulf-[Engineer (London), vol. 198, p. 305; August 27, 1954.] A 27-w vhf transmitter is keyed by a series of half-second pulses generated by a balance wheel system; the number of pulses is controlled by a plunger system operated by a tide drum and gives a coded indication of tide height over a range -1 to +13feet. The transmitter is supplied by NiFe cells charged automatically. The output of a receiver 12 miles away is fed to an integrator which operates an indicator scaled in divisions of 0.1 foot.

PROPAGATION OF WAVES

538.566:551.510.535

Focusing Phenomena due to Undulations of the Ionosphere, and Determination of Collision Number-K. Rawer and É. Argence, [Compt. Rend. Acad. Sci. (Paris), vol. 239, pp. 1066-1067; October 27, 1954.] An approximate formula is given for the amplitude of echoes for a reflecting surface with sinusoidal undulations. The effect of the curvature becomes preponderant near the focus state $r = ph_0$, where r is the radius of curvature, p the order of the echo, and h_0 the height of the ionized layer. The parameters involved can be calculated from the amplitudes of three successive echoes, most conveniently observed at night. The curvature effect is useful for re-interpreting old observations giving reflection coefficients greater than unity. Adopting the hypothesis that collisions are mostly between electrons and neutral molecules, a collision number of about 400 is found for the middle of the F_2 layer during winter nights.

621.396.11+621.396.9+523.16 843 Propagation of Electromagnetic Waves, Radio Location and Radio Astronomy-E. Roessler. (Elektrotech. Z., Edn A, vol. 75, pp. 632-635; September 11, 1954.) A brief survey of recent progress, particularly since 1951. 73 references.

621,396.11:551.510.5

Central Radio Propagation Laboratory of the N.B.S.—[Engineer (London), vol. 198, pp. 401-404; September 17, 1954.] See 3018 of 1954.

621.396.11.029.62:551,51

A Study of Some of the Meterological Effects on Radio Propagation at 96.3 Mc/s between Richmond, Va. and Washington, D. C.-D. L. Randall. (Bull. Amer. Met. Soc., vol. 35, pp. 56-59; February, 1954.) "For meteorological observations during which the wind speeds were equal to or greater than 10 m.p.h., and when fronts, low overcast clouds (less than 5,000 feet), rain, thunderstorms and fogs were excluded, a 0.70 correlation coefficient was found between hourly surface refractive index and hourly median field strength.'

621.396.81

846 Theoretical Field Strengths and Angles of Incidence of WWV Transmissions at the Châtonnaye Receiving Station-C. Glinz. (Tech. Mitt. schweiz. Telegr.-Teleph. Verw., vol. 32, pp. 253-267; July 1, 1954. In German.) German version of paper abstracted in 3668 of 1054

621.396.81

841

842

844

845

Some Observations on Rayleigh Fading-B. van der Pol. (Tijdschr. ned. Radiogenoot., vol. 19, pp. 223-229; September, 1954. In English.) Fading due to multipath propagation is discussed on the basis of the randomwalk problem. A formula is presented from which (a) the most probable, (b) the median, and (c) the mean signal amplitude is evaluated. The method of obtaining the Rayleigh distribution curve from a typical fading record is shown. The distinction between Rayleigh fading and fading due to variation of ionospheric absorption is emphasized.

621.396.812.3.029.53:551,510.535 848 Periodic Fading of Medium-Wave Radio Signals-Rao and Sarma. (See 714).

RECEPTION

621.376.232.2.015.7

Pulse Response of Signal Rectifiers-M. V. Callendar. (Wireless Eng., vol. 32, pp. 3-14; January, 1955.) An examination is made of the loading imposed by a diode rectifier on a tuned circuit from which it is fed. The response time for the circuit together with the diode is investigated, both directly and via the modulation-frequency response characteristic. Measurements are reported confirming the theory for the simplest case of a single circuit centrally tuned and yielding information on the response with more complex wideband amplifiers. Comparison is made with the performance of a triode detector. The most important practical conclusion is that no advantage is gained by using a shunt resistor across the circuit to provide damping.

621.396.62(43)

New German Broadcast Receivers --(), Limann. (Elektrotech. Z., Edn. B, vol. 6, pp. 347-351; September 21, 1954.) Improved sensitivity, selectivity and fidelity are features of the 1954 models. The triode Type-ECC85 is used almost universally as low-noise USW first-stage tube; the medium-slope Type-EF89 pentode has advantages for the IF stage. Distortion in the af stages has been reduced by two-channel amplification and other methods; side loudspeakers are used in some models.

621.396.621+621.37]:621.314.7

Some Transistor Circuits-van Overbeek. (See 650.)

621.396.621.54

A.M./F.M. Communications Receiver-(Wireless World, vol. 61, pp. 41-43; January, 1955.) Description and performance report of a commercial model with continuous tuning over the range 19-165 mc in six bands. The IF is 5.2 mc. Rf, oscillator and mixer stages form a single unit; the six-position rotary-coil turret, three-gang split-stator capacitors and other components are arranged so as to minimize the amount of wiring.

621.396.821:519.2

853 Study of Statistical Models suggested by Consideration of the Effects of Atmospherics on Amplifiers-A. Blanc-Lapierre, M. Savelli and A.Tortrat. (Ann Télécommun., vol. 9, pp. 237-245; September, 1954.) An analysis is made of the output of a linear amplifier to whose input is applied (a) Gaussian noise with uniform spectrum, and (b) random pulses with a Poisson distribution in time. Consideration is given to the limiting condition when the density of the Poisson distribution is very high. A method of calculating the instantaneous amplitude distribution is developed. The case of a train of very short pulses is dealt with, and properties of the detected voltage are discussed.

621.396.621

Radio Receiver Design-Part I [Book Review]-K. R. Sturley. Publishers: Chapman &

Hall, London, Eng., 2nd ed., 667 pp., 58s. (Jour. Sci. Instr., vol. 31, p. 347; September, 1954.) Revised and augmented to a length about 50 per cent greater than that of the first edition. "The book should be a useful and reliable guide to those concerned with circuits for radio frequencies or with the characteristics of radio receivers."

STATIONS AND COMMUNICATION SYSTEMS

621.376.56

847

840

850

851

852

854

855 Experimental Model for Pulse-Number Modulation-J. Holzer, G. Missriegler, E. Niedermayr, H. Putschi and H. Zemanek, (Öst. Z. Telegr. Teleph. Funk Fernschlech., vol. 8, pp. 125-132; September/October, 1954.) Description of equipment installed at the Technische Hochschule at Vienna. The principle of operation is to convert the lf signal into width-modulated pulses which are in turn converted into groups containing corresponding numbers of narrow equal-width pulses; these are counted in a binary system and the results give the code group. 32-step quantization is used. Decoding is performed by causing the received pulses to charge a capacitor which is discharged through a resistor, the time constant of the system being made equal to l_0/\log 2, where t_0 is the time spacing of the pulses in the code group.

621.376.56

856 Reception of Code-Modulation Signals by Integration-H. Harmuth. (Fernmeldetech, Z., vol. 7, pp. 461-464; September, 1954.) See 2505 of 1954.

621.39:621.372.8 857

Waveguide as a Communication Medium-Miller, (See 641)

621.39.001.11

858 1954 Symposium on Information Theory-(Trans. I.R.E., no. PGIT-4, pp. 1-227; September, 1954.) The text is given of the following papers presented at the symposium held at the Massachusetts Institute of Technology in September, 1954:

"A New Basic Theorem of Information Theory,"—A. Feinstein (pp. 2–22).
 "Binary Coding,"—M. J. E. Golay (pp. 23–28).

- 'Error-Free Coding,"-P. Elias (pp. 29-37).
- "A Class of Multiple-Error-Correcting Codes and the Decoding Scheme,"-1. S. Reed (pp. 38-49).
- "Coding for Constant-Data-Rate Systems," -R. A. Silverman and M. Balser (pp. 50-63). "Information, Organization and Systems,"
- J. Rothstein (pp. 64-66), "An Information-Theoretical Model of Or-
- ganizations,"-M. Kochen (pp. 67-75).
- "Simulation of Self-Organizing Systems by Digital Computer,"—B. G. Farley and W. A. Clark (pp. 76-84).
- "A Study of Ergodicity and Redundancy based on Intersymbol Correlation of Finite Range,"—S. Watanabe (pp. 85–92).
- "Multivariate Information Transmission," W. J. McGill (pp. 93-111).
- "Choice and Coding in Information Retrieval Systems,"—C. N. Mooers (pp. 112–118).
- "Modern Statistical Approaches to Reception in Communication Theory,"-D. Van Meter and D. Middleton (pp. 119-145).
- "A Nonlinear Prediction Theory,"-R. F. Drenick (pp. 146-162).
- "The Detection of Signals perturbed by Scat-ter and Noise,"—R. Price (pp. 163–170).
- 'The Theory of Signal Detectability,"—W. W. Peterson, T. G. Birdsall and W. C. Fox (pp. 171-212).
- "The Human Use of Information: Part 1-Signal Detection for the Case of the Signal Known Exactly,"-W. P. Tanner, Jr., and J. A. Swets (pp. 213-221),
- "The Human Use of Information: Part 2-

Signal Detection for the Case of an Unknown Signal Parameter,"-W. P. Tanner, Jr., and R. Z. Norman (pp. 222-227).

859 621.39.001.11 Note on a Theorem of Shannon-S. De Francesco. (Ann. Geofis., vol. 7, pp. 195-207; April, 1954.) The formula given in Shannon's "sampling theorem" (1649 of 1949) is shown to correspond to complete convergence of a generalized Fourier-series expansion. An expression is derived for the inherent error

621.395.44:621.375.2

Line Amplifiers for Symmetrical Carrier Frequency Cables-F. Feil. (Fernmeldetech. Z., vol. 7, pp. 454-460; September, 1954.) Amplifier types V12, V60 and V120 for the German Post Office system are described. As a result of advances in design, the V120 is smaller and consumes less power than the V12. A comparison table of the most important data is presented.

621.396.3

861

862

863

865

867

860

Predicted-Wave Radio Teleprinter-M. L. Doelz. (*Electronics*, vol. 27, pp. 166–169; December, 1954.) The "predicted-wave" system is a particular form of frequency-shift. The detection circuits accumulate over each pulse period the signal and noise from each of the two frequency channels in high-Q magnetostrictive resonators; a mark or a space is registered according as the accumulated amplitude is greater in the mark channel or in the space channel. A synchronizing signal is transmitted on a frequency of 23.04 kc, midway between mark and space trequencies. Performance figures are given; an error rate of 0.1 per cent was obtained with signals 6 db below noise level in the IF band; this constitutes a considerable improvement over the performance of a conventional frequency-shift system.

621.396.3:621.317.75

16

Response of Radio Spectrometers to Nonperiodic Morse Signals-Marique. (See 813.)

621.396.712+621.397.743

Plans for F.M.-Radio and Television Networks in Denmark-G. Pedersen. [Teleteknik (Copenhagen), vol. 5, pp. 220-230; July, 1954.]

621.396.932 864 Radio Communication in the Merchant Marine-W. E. Steidle (Elektrotech. Z., Edn A; vol. 75, pp. 584-587; September 11, 1954.) A brief account is given of the use made of the several frequency bands allocated to shipping, and of modern radio equipment used at sea.

621.39.001.11

Information Theory [Book Review]-S. Goldman. Publishers: Syracuse University, Prentice-Hall Inc., New York, N.Y., 1953, 385 pp., \$9.00, (Electronics, vol. 27, pp. 360-362; December, 1954.) Intended for graduate students in electrical engineering. The treatment is based on Shannon's work; liberal use is made of examples.

SUBSIDIARY APPARATUS

866 621.314.63:546.28 Silicon Power Rectifier handles 1200 Watts-E. F. Losco. (Electronics, vol. 27, pp. 157-159; December, 1954.) A p-n fused-junction Si-Al rectifier with a junction area of 0.05 cm² is mounted in a copper radiator with a slotted periphery. High power-handling capacity is obtained by use of forced-air cooling. Characteristic curves are shown.

621.316.722

Direct-Voltage Stabilizers in the Range 10-100 kV with Particular Reference to Degenerative Systems-M. W. Jervis. (Jour. Bril. IRE, vol. 14, pp. 629-636; December, 1954.) The maximum usable loop gain depends on the

frequency response of the system; in practice, loop gains of the order of 1,000 are possible, i.e. the effects of mains-voltage and load-current fluctuations are reduced by this factor. Reference elements are reviewed; wire-wound resistance potential dividers are the most stable, but electron-energy analysers give comparable stability with smaller size and current drain.

621.316.722.1 868 A 2 kVA A.C. Voltage Stabilizer-R. G. Ackland, (Aust. Jour. Instr. Tech., vol. 10, pp. 98-101; August, 1954.) A motor-operated variac type of stabilizer is described, in which the voltage-sensing unit contains only one tube, of cold-cathode type, and incorporates biasing to hold the output voltage near the center of the control range. The output is maintained at 230 $v \pm 1$ per cent (or $\pm 1 v$ if required). The correction rate is 10 v/second.

TELEVISION AND PHOTOTELEGRAPHY

860 621.397.5 Television Engineering [in Western Germany]-F. Kirschstein. (Elektrolech. Z., Edn A, vol. 75, pp. 638-640; September 11, 1954.) Brief survey of studio and industrial techniques, transmitters, receivers and microwave and cable links. 55 references.

621.397.5:061.3

Technical Conference of West German Broadcasting Authorities held at Munich, 24th-28th May 1954-(Tech. Hausmitt. NordwDisch. Rdfunks, vol. 6, pp. 149-176; 1954.) Summaries are given of 29 papers dealing with various aspects of television. Subjects include transmission, studio equipment and techniques, television links, and measuring equipment.

621.397.5:535.623: [621.317.74+621.317.772 871

Differential Phase and Gain Measurements in Color-Television Systems-H. P. Kelly. [Elec. Eng. (New York), vol. 73, pp. 799-802; September, 1954.] Portable appartus suitable for color-carrier-frequency measurements in N.T.S.C. systems is described with the aid of block diagrams, Simplified circuit diagrams are also given of sections of the test transmitter and receiver.

872 621.397.5:535.767 Stereo-Television-H. Dewhurst. (Jour, Telev. Soc., vol. 7, pp. 279-285; July/September, 1954.) A review of possible methods. Only those involving viewer aids appears to be practicable. 33 references.

621.397.61

An Experimental Camera Circuit for 405 Lines-C. H. Banthorpe. (Jour. Telev. Soc., vol. 7, pp. 300-303; July/September, 1954). A simple camera for scanning still pictures and captions makes use of a Type-5527 iconoscope, with es focusing and deflection. Brief descriptions are given of the vision pre-amplifier, black-level clamp, spurious-signal remover, picture and synchronizing-signal mixer, blanking-pulse amplifier, scanning circuits and power supply.

621.397.62

Frame Flyback Suppression-W. T. Cocking. (Wireless World, vol. 61, pp. 33-35; January, 1955.) An explanation is given of the fact that the flyback trace is commonly visible at the receiver notwithstanding that the form of the television signal is designed to render this part of the trace invisible. Circuits for deriving a suppression pulse from the frame timebase are described, this pulse can be applied, with appropriate polarity, to either grid or cathode of the picture tube.

621.397.62:621.397.335 A Critical Review of Synchronizing Sepa-

875

rators with Particular Reference to Correct Interlacing-G. N. Patchett. (Jour. Brit. IRE, vol. 14, p. 621; December, 1954.) Discussion on 2527 of 1954.

621.397.621.2:621.385.832 876 Transfer Characteristics and Mu Factor of Picture Tubes-H. Moss: K. Schlesinger. (PROC. I.R.E., vol. 42, p. 1809; December, 1954.) Comment on 2171 of 1953 and author's reply.

877 621.397.7 The Television Centre at Hamburg-Lokstedt-E. Schwartz. (Fernmeldetech. Z., vol. 7, pp. 468-472; September, 1954.) A brief dcscription. For a detailed account see Tech. Hausmitt, NordwDitsch. Rdfunks, vol. 5, nos. 7/8; 1953.

621.396.712 + 621.397.74.3 878 Plans for F.M.-Radio and Television Networks in Denmark-- G. Pedersen. [Teleteknik (Copenhagen), vol. 5, pp. 220-230; July, 1954.]

TRANSMISSION

879 621.396.61:621.396.3

Keying V.L.F. Transmitters at High Speed -M. I. Jacob and H. N. Brauch. (Electronics, vol. 27, pp. 148-151; December, 1954.) Naval communication technique is discussed; transmitters with power ranging from 250 kw to 1 mw and operating at frequencies from 15 to 35 kc are used. High-speed frequency-shift keying is made possible by varying the resonance frequency of the antenna in synchronization with the signal-frequency variation. This is done by connecting a saturable reactor across the antenna. Successful teleprinter transmissions have been made over distances >5,000 miles, using an output of 450 kw.

TUBES AND THERMIONICS

880 621.314.632:546.289 Transient Phenomena in the Backward Direction of Germanium Crystal Rectifiers-M. Kikuchi and Y. Tarui. (Jour. Phys. Soc. Japan, vol. 9, pp. 642-644; July/August, 1954.) Theory based on the heating process involved is developed to account for the step variation of the current observed in pointcontact rectifiers on sudden application of reverse voltage. The step occurs at the instant when the contact temperature reaches a critical value, estimated to be about 80 degrees C. This result is supported by observations.

881 621.314.632:546.289:537.312.6 An Additional Observation on Thermal Effects in Point Contact Rectifiers-II. L. Armstrong (Jour. Appl. Phys., vol. 25, p. 1345; October, 1954.) Addendum to 1242 of 1954.

621.314.7

873

874

870

The Effect of a Transverse Electric Field on

882

883

Carrier Diffusion in the Base Region of a Transistor-J, S. S. Kerr, J. S. Schaffner and J. J. Suran. (Jour. Appl. Phys., vol. 25, pp. 1293-1297; October, 1954.) Analysis is presented for a junction transistor with parallel emitter and collector junctions and a field applied across the base in a direction parallel to the junctions. An expression is obtained for the current gain as the sum of terms each having the same form as that found by Steele (881 of 1953) for the one-dimensional case.

621.314.7

Expression for the "a Cut-Off" Frequency in Junction Transistors-D. Haneman. (PROC. I.R.E., vol. 42, pp. 1808–1809; December, 1954.) The expression $\omega_c = \kappa D_M/W^2$, where D_M is the diffusion constant for minority carriers in the base region of width W, has been used by a number of workers, and various values have been proposed for κ . A method of solution is indicated for nonzero values of W/L_m , where L_m is the diffusion length; in this case κ is a

slowly varying function of W/L_M , with a value around 2.5. Results obtained are in qualitative agreement with observations, in particular the prediction that ω_e is more sensitive to variations of collector voltage if ω_c is initially high.

621.314.7:621.318.57 884 Large-Signal Behavior of Junction Transistors-J. J. Ebers and J. L. Moll. (PROC. I.R.E., vol. 42, pp. 1761-1772; December, 1954.) Analysis relevant to the use of transistors for switching is based on recognition of three distinct de operating conditions defined by Anderson (652 of 1953) and corresponding to the on, off, and transition states. Expressions for the impedance in the open and in the closed state are derived in terms of easily measurable transistor parameters. The influence on switching time of the alpha cut-off collector capacitance and minority carrier storage is considered.

885

886

889

890

621.314.7:621.318.57

Large-Signal Transient Response of Junction Transistors-J. L. Moll. (PROC. I.R.E., vol. 42, pp. 1773-1784; December, 1954.) Analysis is based on the three distinct operation states defined previously (884 above), A calculation is made of carrier storage time, or time required for the operating point to move from the collector-current-saturation state to the intermediate state. The alpha cut-off frequency ω_N is the most important parameter affecting switching speed. It is possible with moderate driving current to switch the operating point from collector-current-cut-off to collector-current-saturation in a period of the order of $3/\omega_N$ sec; to permit switching at this speed in the opposite direction, carrier storage effects must be avoided.

621.314.7.002.2

Manufacturing Grown Junction Transistors -F. H. Bower. (Electronics, vol. 27, pp. 130-134; December, 1954.) A step-by-step account of the procedure.

621.385.029.6

887 Some Recent Advances in Microwave Tubes-J. R. Pierce, (PROC. I.R.E., vol. 42, pp. 1735-1747; December, 1954.) A review covering high-power klystrons, double-tuned circuits for reflex klystrons, reduction of noise in traveling-wave tubes by velocity-jump or space-charge-wave de-amplification, periodic magnetic focusing of the beam, and the backward-wave oscillator. 23 references.

621.385.029.6

888 The Wave Picture of Microwave Tubes-J. R. Pierce. (Bell. Sys. Tech. Jour., vol. 33, pp. 1343-1372; November, 1954.) The low-level operation of long-beam tubes such as klystrons, resistive-wall amplifiers, easitrons, spacecharge-wave amplifiers, traveling-wave tubes and double-stream amplifiers is discussed in terms of the waves propagated.

621.385.029.6

Equations for the Oscillations in Uniform Electron Beams-Yu. A. Katsman. (Zh. Tekh. Fiz., vol. 24, pp. 1359-1360; July, 1954.) Addendum to 3144 of 1953.

621.385.029.63/.64

Focusing of a Long Cylindrical Electron Stream by means of Periodic Electrostatic Fields-Ping King Tien. (Jour. Appl. Phys., vol. 25, pp. 1281-1288; October, 1954.) Spaceperiodic fields produced by a bifilar helix or a series of annular rings are considered. The potential distribution is given in the form of a power series and the equation of electron motion is derived. The solution indicates that the flow is essentially parallel provided the electrons have low transverse velocity on entering the focusing structure and are distributed transversely so that the transverse distribution of space-charge field is similar to that of the focusing field. Numerical examples relevant to the design of traveling-wave tubes are presented. The use of a bifilar helix to provide both retardation and focusing is discussed.

621.385.029.63 891 Scalloped Beam Amplification-T. - G. Mihran, (Jour. Appl. Phys., vol. 25, p. 1341; October, 1954.) Brief account of experiments on a tube in which electron bunching is produced by the usual control grid close to the cathode, to which a 1-kinc signal is applied, and alternate debunching and bunching occur along the beam under the influence of a longitudinal magnetic field only. Rf power gain and beam diameter are plotted against beam drift distance. An over-all gain of 24 db was measured, of which 10.6 db resulted from the "scalloped-beam" amplification.

621.385.032.216:621.396.822

On the Flicker Noise Generated in an Interface Layer-H. J. Hannam and A. van der Ziel. (Jour. Appl. Phys., vol. 25, pp. 1336-1340; October, 1954.) The equivalent noise resistance R_n of a tube due to the oxide-cathode interface layer is proportional to the square of the interface resistance R_i and inversely proportional to f^{α} , where f is the frequency and α ranges from 1.1 for low values of R_i to 1.5 for high values of R_i , at af. Experiments are reported proving that the noise originates in the interface layer. Measurements at hf indicate an increase in the value of α .

621.385.2:621.376.232.2.029.63/.64 893 Mechanism of Rectification in Vacuum-Tube Diodes at Microwave Frequencies-G. Papp. (Elec. Commun., vol. 31, pp. 215-219; September, 1954.) The equations of motion of the electrons are derived. Calculation of the diode current indicates that appreciable rectification is obtained; this is confirmed by measurements. Similar work has been reported by Bronwell et al. (3096 of 1954).

621.385.2.032.216

804 Effects of Cathode and Anode Resistance on the Retarding-Potential Characteristics of Diodes-G. C. Dalman (Jour. Appl. Phys., vol. 25, pp. 1263-1267; October, 1954.) Anomalous retarding-potential characteristics of diodes with oxide cathodes are explained by taking account of high-resistance layers at cathode and anode; an improvement is thereby obtained in the accuracy of estimating the cathode temperature.

621.385.3

Amplification Factor and Perveance of an Elliptic Triode-S. Deb and G. S. Sanyal. (Jour. Appl. Phys., vol. 25, pp. 1196-1203; September, 1954.) Expressions for the amplification factor μ , interelectrode capacitance, and perveance P of the triode are derived using a conformal transformation to reduce the elliptic geometry to plane geometry. Results indicate that μ depends on the parametric angle θ of the ellipse and that the average value of μ increases as the grid eccentricity increases and as the anode eccentricity decreases. Curves are presented for finding μ when the value of θ is known. The value of P depends mainly on the grid eccentricity and the focal distance. The theory is illustrated by considering the design of a Type 6C5-GT/G tube.

621.385.3/.5:621.317.755

Development of a Characteristic-Curve Tracer for Transmitting Valves-Kammerloher and Krebs. (See 816.)

621.385.3.029.63 897 The Design of Triodes for U.H.F. Medium-Level Power Amplifiers-W. E. Rowlands. Electronic Eng., vol. 26, pp. 522-527; December, 1954.) Tubes with parallel-plane electrode systems are considered, for operation at about

2 kmc with output of about 10 w. An expression si derived for radiant-heat dissipation in the grid, and an estimate is made of the influence of the heat-reflection coefficients of the electrodes. Particular attention is devoted to problems arising from cathode evaporation in conjunction with the close spacing of electrodes. A relation between evaporation rate and increase of grid-wire diameter is derived, and the effect of grid growth on tube operating parameters and on tube life is investigated. A life of about 10,000 h appears possible.

898

899

000

901

621.385.5:621.396.822

Partition Components of Flicker Noise-T. B. Tomlinson. (Jour. Brit. IRE, vol. 14, pp. 515-526; November, 1954.) In a pentode, the reduction of flicker noise obtained by operating under space-charge-limited conditions (281 of 1953) is to some extent canceled as a result of the partition of the current between anode and screen grid. Noise measurements made with the tube connected (a) normally and (b) as a triode confirm the existence of this partition component and provide information on the origin of the flicker noise. Defects giving rise to excessive noise at low frequencies were encountered in standard type tubes examined.

621.385.832

892

Dark-Trace Display Tube has High Writing Speed-S. Nozick, N. H. Burton and S. Newman. (Electronics, vol. 27, pp. 154-156; December, 1954.) A cathode-ray tube is described in which a high value of beam current for a given spot size, and hence high writing speed, is obtained by using an auxiliary focusing system to reduce the beam diameter in the region of the deflection coils. Writing speeds up to 15 km have been attained.

621.387

895

896

A Magnetic Gas-Discharge-Tube Oscillator -J. M. Somerville. (Jour. Sci. Instr., vol. 31, pp. 279-284; August, 1954.) If a glow discharge is established between an axial cylindrical anode and an outer cylindrical cathode split transversely into two differently biased sections, then, in the presence of a magnetic field, the conductance between the two cathode sections will, under particular operating conditions, be negative. The effects of various factors on the conductance and the efficiency of the tube as an oscillator are discussed. The frequency range is up to about 50 kc, and efficiencies up to 70 per cent are attainable. A mercury-vapor split-cathode tube suitable for commercial production is also described.

621.314.7

Transistoren [Book Review]-M. J. O. Strutt, Publishers: S. Hirzel Verlag, Zurich and Stuttgart, 1954, 166 pp., DM21. (Arch. elekl. Überlragung, vol. 8, pp. 371-372; August, 1954.) "..., the main emphasis of the book is on the technical application of transistors.

MISCELLANEOUS

061.4:621.3 002 Ninth Annual Electronics Exhibition, Manchester-(Instrum. Practice, vol. 8, pp. 703-711; August, 1954.) Illustrated account of the exhibition held in July, 1954.

903 621.38+621.39 Fortschritte der Hochfrequenztechnik, Band 3. [Book Review]-F. Vilbig and J. Zenneck (Eds.). Publishers: Akademische Verlagsgesellschaft Geest and Portig K.-G., Leipzig, 1954, 718 pp., DM49. (Frequenz, vol. 8, p 198; June, 1954.) Progress reports include surveys on radio-propagation conditions in various wavebands, the sun and ionosphere,

traveling-wave tubes, radio-interference suppression, receiver engineering, frequency modulation, etc. A 36-page index is included.

World Radio History

BOARD OF DIRECTORS, 1955*

J. D. Ryder President

Franz Tank Vice-President

W. R. G. Baker Treasurer

Haraden Pratt Secretary

John R. Pierce Editor

J. W. McRae Senior Past President

W. R. Hewlett Junior Past President

1955

S, L. Bailev A. N. Goldsmith A. V. Loughren C. J. Marshall (R5) L. E. Packard (R1) J. M. Pettit (R7) B. E. Shackelford C. H. Vollum H. W. Wells (R3)

1955-1956

E. M. Boone (R4) J. N. Dyer (R2) J. T. Henderson (R8) A. G. Jensen George Rappaport D. J. Tucker (R6)

1955-1957

J. F. Byrne Ernst Weber

George W. Bailey Executive Secretary

John B. Buckley Chief Accountant

Laurence G. Cumming Technical Secretary

> Evelyn Davis Assistant to the Executive Secretary

Emily Sirjane Office Manager

•

EDITORIAL BOARD

John R. Pierce, Chairman D. G. Fink E. K. Gannett T. A. Hunter W. R. Hewlett J. A. Stratton W. N. Tuttle

* Numerals in parentheses following Directors' names designate Region number.

CONVENTION RECORD OF THE IRE

Published Yearly by The Institute of Radio Engineers, Inc.

Index to Volume 2-1954

Editorial Department John R. Pierce, Editor

Alfred N. Goldsmith Editor Emeritus

E. K. Gannett Managing Editor Marita D. Sands Assistant Editor

Advertising Department

William C. Copp Advertising Manager Lillian Petranek Assistant Advertising Manager

The Institute of Radio Engineers, Inc. I East 79 Street New York 21, N.Y.

Copyright, 1955, by The Institute of Radio Engineers, Inc.

-

-

60

đ

World Radio History

TABLE OF CONTENTS

Gener	al Information	over 11	Part 7—Broadcasting and Television Re-	
			ceivers	Page 5
Part	1—Antennas & Propagation	Page 3	Part 8—Communication and Microwave	Page 6
Part	2—Circuit Theory	Page 3	Part 9—Medical and Nuclear Electronics	Page 6
Part	3—Electron Devices, Component Parts	Page 3	Part 10-Instrumentation, Industrial Elec-	
Part	4-Electronic Computers, Information		tronics	Page 6
			Part 11-Engineering Management, Quality	
Part	5—Aeronautical Electronics and Telem-		Control	Page 7
			Index to Authors	
Part	6—Audio and Ultrasonics	Page 5	Index to Subjects	Page 8

GENERAL INFORMATION

The Institute

The Institute of Radio Engineers serves those interested in radio, allied electronics, and communications fields through the presentation of technical material, and by the monthly publication of PROCEEDINGS OF THE IRE, a technical journal. The Institute also publishes IRE Standards, and a number of Professional Group Publications, as well as a Convention Record.

Membership has grown from a few dozen in 1912 to more than 42,000 in 1955. There are several grades of membership, depending on the q: alifications of the applicant, with dues ranging from \$5.00 per year for Students to \$15.00 per year for Members, Senior Members, Fellows, and Associates of more than five years' standing.

PROFESSIONAL GROUPS

To serve more fully the many special fields of interest, Professional Groups have been formed in each of 23 technical fields on an Institute-wide basis, with membership open only to IRE members.

Group activities include the sponsoring of symposia and conferences, and the publication of TRANSACTIONS OF THE IRE, journals containing technical material on special interest to Group members. To support Group activities, assessment fees may be levied by the Groups on their members.

The Proceedings

The PROCEEDINGS has been published without interruption from 1913, when the first issue appeared. Over 5,300 technical contributions have been included in its pages, portraying a currently written history of developments in both theory and practice. The contents of papers are the responsibility of the authors and are not binding on the Institute or its members. All rights of republication are reserved by the Institute.

Annual subscription rates for the United States of America, its possessions, and Canada, \$18.00; to college and public libraries when ordering direct, \$13.50; other countries, \$1.00 additional for postage.

The Transactions

TRANSACTIONS have been published at intervals by Professional Groups since December, 1951, when the first issue appeared. A total of nearly 900 specialized technical papers have thus been made available to Group members during the first year of publication. All papers published in the TRANSACTIONS are procured and reviewed by the respective Professional Group. The contents of papers are the responsibility of the authors and are not binding on the Institute, the Groups, or their members. All rights of republication are reserved by the Institute. The annual contents of the TRANSAC-TIONS are published in a separate index. The TRANSAC-TIONS are sent free to paid members of the respective Groups.

Subscription rates covering all issues of TRANSAC-TIONS published during the twelve-month period starting July 1, 1954, for the United States, its possessions, and Canada, \$100; to colleges and public libraries, \$75.

IRE STANDARDS

IRE Standards published in the PROCEEDINGS OF THE IRE from time to time, are available in reprint form for those who wish to buy them from the Institute.

CONVENTION RECORD

In 1953, for the first time, the Institute published the first volume of the Convention Record of the IRE. In 1954, a second Convention Record was issued in eleven parts, comprising an almost complete record of the hundreds of papers presented at the annual national Convention. The subject matter of each part is devoted to a specialized field of electronics.

All members of the IRE Professional Groups receive a copy gratis of that part of the Record that contains papers within the member's specialized field of interest. Any one part of the Convention Record, or all 11 parts, can be purchased from the Institute.

CONTENTS OF CONVENTION RECORD OF THE I.R.E. VOL. 2–1954

3

10

25

31

39

54

60

71

76

79

87

98

Part 1-Antennas and Propagation

Cumulative

Index Number

ъ

- Page SESSION 30: Antennas and Propagation I—General (Spon-sored by the Professional Group on Antennas and Propagation.) 214. Empirical Approximations to the Current Values for Large Dolph-Tchebycteff Arrays, Louis L. Bailin, Robert S. Wehner, and Ivan P. Kaminow
- 215. Gain Pattern of a Terminated-Waveguide Slot Antenna
- 210. Gain Fattern of a Terminated-Waveguide Slot Antenna by an Equivalent Circuit Method, Leopold B. Felsen.
 216. A Four Slot Cylindrical Antenna for VOR Service, An-drew Alford and R. M. Sprague. 12
- 217. Trapped Wave Antennas, Herman Ehrenspeck, Werner Gerbes, and Francis J. Zucker....
- 218. Scattering of Electromagnetic Waves by Wires and Plates, J. Weber.....
 - SESSION 37: Antennas and Propagation II-Microwave Antennas (Soonsored by the Professional Group on Antennas and Propagation.)
- 219. Reflections in Microwave Antennas and Their Harmful Effects, Peter W. Hannan
- 220. Surface Matching of Dielectric Lenses, E. M. T. Jones and S. B. Cohn.
 221. Double Parabolic Cylinder Pencil Beam Antenna, Roy C. Sporeer, F. Shabbard Halt, Hala, M. P. Start, Starter Matching, Computer Starter, Starter Matching, Sciences, Starter, St 46
- Spencer, F. Sheppard Holt, Helen M. Beauchemin, and John L. Sampson
- 222. Diffuse Radiation in Pencil Beam Antennas, David Carter
- 223. Theoretical Gain of Flat Microwave Reflectors, D. R. Crosby ...
- SESSION 42: Antennas and Propagation III (Sponsored by the Professional Group on Antennas and Propagation.) 224. Isotropic Variable Index Media, W. O. Puro and K. S.
- Kellcher 225. The Characteristics of a Vertical Antenna with a Radial Conductor Ground System, James R. Wait and W. A.
- Pope. 226. Some Information Theory Aspects of Propagation
- 220. Some information intervy Aspects of Propagation Through Time Varying Media, Joseph Feinstein......
 227. Comparative 100 Mc Measurements at Distances Far Beyond the Radio Horizon, Albrecht P. Barsis.......
 228. The Measurement of the Polarization of Radio Waves Re-
- flected from the Ionosphere at Non-Vertical Incidence, 108 G. T. Inouyc. SESSION 49: Antennas and Propagation IV-Symposium:
- 116
- 120 Herbstreit. . .
- 231. Overcoming the Line-of-Sight Shibboleth with the Air and High Power, *Thomas J. Carroll*.
 232. A Comparison of Antenna Problems at UHF and VHF 121
- 126
- TV, Lloyd O. Krause....

1954 CONVENTION RECORD OF THE L.R.E.

Part 2-Circuit Theory

- SESSION 28: Circuit Theory I-Symposium: Network Equalization (Sponsored by the Professional Group on Circuit Theory.
- 233. Limitations on Amplitude Equalizers, Herbert J. Carlin.
 234. Synthesis of Resistively-Terminated RLC Ladder Networks, Er-Chun Ho and DeForest L. Trautman......
 235. Equalization of Video Cables, Philip W. Rounds......
 236. Application of a Minimum Phase Matrix to Adjustable Equalizer Usion W. R. Lundra.
- - Equalizer Design, W. R. Lundry....

Part 2-Circuit Theory (Cont'd.)

Page

Number

- 237. Equalization in the Time Domain, Murlan S. Corrington, 30 T. Murakami, and Richard W. Sonnenfeldt..... SESSION 35: Circuit Theory II-Circuit Theory (Spon-
- sored by the Professional Group on Circuit Theory.) 238. The Group Theoretical Aspect of Linear Four-Pole The-
- 36 44
- 52
- 58 241. Interconnection of Linear Transducers, Herbert Kurss.
- 242. Dynamic Characteristics of Four-Terminal Networks, 60 W. W. Happ..
- SESSION 39: Circuit Theory III—Network Synthesis (Sponsored by the Professional Group on Circuit Theory.)
- 243. Some Techniques for Network Synthesis, George L. Mat-77 thaei..
- 244. An Iterative Method for RC Ladder Network Synthesis, 86 R. E. Scott and N. DeClaris.....
- 245. Networks Terminated in Resistance at Both Input and 90 Output, Louis Weinberg.
- 246. Approximating Band-Pass Attenuation and Phase Functions, V. II. Grinich. 247. An Application of Modern Network Synthesis to the De-96
- sign of Constant-Time-Delay Networks with Low-Q Elements, Leo Storch ... 105
- SESSION 46: Circuit Theory IV-Transistor Circuits (Sponsored by the Professional Group on Circuit Theory.)
- 118 248. A Transistor Analog (Abstract), R. D. Lohman 249. Junction-Transistor Multivibrators and Flip-Flops,
- Eugene W. Sard. 250. A Synthesis Procedure for Linear Transistor Circuits, 119
- 125
- 130 252. A New Equivalent Circuit for Junction Transistors, Ge
- 135 Yao chu

1954 Convention Record of the L.R.E.

Part 3-Electron Devices and Component Parts

- SESSION 6: Electronic Components I-Techniques (Sponsored by the Professional Group on Electronic Components.)
- 253. The Effect of Maintenance on Reliability of Complex Military Electronic Equipment, J. B. Arnold..
- 254. Miniaturized Computer Applications of the Hughes Di-8 ode, S. G. Lutz ..
- 255. Subminiaturization Techniques for UHF Communication 16 Equipment (Abstract), Gustave Shapiro.....
- 17
- Öscillators, David Hodgin 22 SESSION 14: Electronic Components H-Application (Sponsored by the Professional Group on Electronic
- Components.) 258. Magnetic-Core Delay Cables, *Dimitri R. Stein*...... 259. Improvements in the Field of Electrolytic Capacitors, 30
- Dietrich Altenpohl 35 An Investigation of Lowest Resonant Frequency in Com-
- 260. mercially Available Bypass Capacitors, David T. Geiser 261. Resolution in Precision Wire-Wound Potentiometers, *Robert J. Sullivan*. 43
- 48
- 262. Evaluation of Core Materials for Magnetic Amplifier Applications, R. D. Teasdale and H. R. Brownell 56

Convention Record Index-3

3

3

14

16

25

Cumulative Index

Cumulative Index

Number

- Page SESSION 25: Electron Devices I-Electron Tubes (Sponsored by the Professional Group on Electron Devices.
- 263. The Hollow Cathode in Cylindrical Geometry, B. D.
- Kumpfer and Herbert Brett. 264. The Machining of Tungsten and its Application in the Fabrication of Philips Dispenser Cathodes, *Roberto Levi*
- 70 265. The GE Post Acceleration Color Tube (Abstract), C. G.
- Lob . . .
- 266. Amperex Type E1T Decade Counter Tube, Irwin Rudich
- 200. Ampered Type Er Frieder Capable of Current Inter-ruption by Grid Action (Abstract), E. O. Johnson, J. A. Olmstead, and W. M. Webster
 - SESSION 32: Electron Devices II-Transistors (Sponsored by the Professional Group on Electron Devices,
- 268. Transistors for High Power Application, John S. Saby.
- 269. A New High Tenperature Silicon Diode, C. G. Thornton and L. D. Hanley. 84
- 270. Small-Signal Parameters of Grown-Junction Transistors at High Frequencies, R. L. Pritchard and W. N. Coffey
 271. The Study and Design of Alloyed-Junction Transistors,
- 89 L. J. Giacoletto. 99
- 272. An Analytical Study of z, y and h Parameter Accuracies in Transistor Sweep Measurements, II. G. Follingstad ... 104 SESSION 40: Electron Devices III-Storage Tubes (Spon-
- sored by the Professional Group on Electron Devices.) 273. The Metrechon-A New Half-Tone Picture Storage Tube, L. Pensak. .
- 117 274. Characteristics of Viewing Storage Tubes with Halftone Display (Abstract), M. Knoll, II. O. Hook, and R. P. Stone
- 120 275. A High Writing Speed Dark Trace Tube, S. Nozick, N. II. Burton, and S. Newman. 121
- 276. A Large Capacity Storage Tube for Digital Computer Ap-125
- plications, R. B. DeLano, Jr. 277. Noise Limitations on Storage Tube Operation, Stanley Winkler and Seymour Nozick 131 SESSION 47: Electron Devices IV-Microwave Tubes (Sponsored by the Professional Group on Electron De-
- vices.) 278. A Voltage-Tunable Magnetron for Operation in the Fre-
- quency Range 1500 to 3000 Megacycles, Joseph A. Boyd 1.39 279. Control of Electron-Beam Spread by Positive Ion Traps, E. L. Ginzton and B. II. Wadia.
- 145 280
- The Multipactor Effect in Klystrons, Kees Bol. 151 281.
- Backward-Wave Oscillator Characteristics (Abstract), H. R. Johnson. 156 282. The Propagation Properties of Cross-Wound Twin Helices
 - Suitable for Traveling-Wave Tubes (Abstract), M. Chodorow, E. L. Chu, and J. R. Nevins, Jr..... 156

1954 Convention Record of the L.R.E.

Part 4-Electronic Computers and Information Theory

SESSION 2: Information Theory I-Application of Information Theory to Communication Systems (Sponsored by the Professional Group on Information Theory.)

- 283. Information Theory-Past, Present and Future, R. M.
- Fano 284. Optical Filters: Their Equivalence to and Difference from Electrical Networks, Thomas P. Cheatham, Jr. and Arthur Kohlenberg. .
- 285. Theoretical Improvement in Signal-to-Noise Ratio of Television Signals by Equivalent Comb Filter, M. J. Stateman and M. B. Ritterman.
- 286. Information Losses in Regenerative Pulse-Code Systems,
- Warren D. White 287. A Gaussian Noise Generator for Frequencies Down to 0.001 Cycles per Second, David F. Winter
- SESSION 12: Information Theory II-Coding and Noise (Sponsored by the Professional Group on Information Theory '
- 288. Matched Filters for Detecting Pulsed Signals in Noise, John S. Rochefort. . .
- 289. An Experimental Study of the Information Rate of a Digital Computer, Norman R. Scott
- 290. Time-Varying Quasi-Linear Method of Speech Noise Suppression (Abstract), M. J. DiToro. 40
- 291. Discriminatory Analysis Applied to Speech Sound Recog-nition, II. L. Stubbs. 41

Convention Record Index-4

Part 4-Electronic Computers and Information Theory (Cont'd.)

Cumulative Index

Number

66

73

74

79

80

- Page 292. A Discussion of Auto-Correlated Error Terms in Time Series Analysis, Ralph K. Weller 45 SESSION 19: Information Theory III-Speed and Computation (Sponsored by the Professional Group on Information Theory.)
- 293. Optimized Data Encoding for Digital Computers, William II. Kautz.
- 47 294. Symbolic Methods in the Design of Delay- and Cycle-Free Logical Nets, *George W. Patterson*.
 205. Threaded Detection P. J. P. 58
- 65
- 295. Threshold Detection, B. L. Basore.
 296. The Nature of the Uncorrelated Component of Induced Grid Noise, T. E. Talpey and A. B. Macnee.
 297. Effect of Limiting on the Information Content of Noisy Signals C. O. Young and B. Cald 69
- Signals, G. O. Young and B. Gold 76
- SESSION 27: Electronic Computers I-Computer Design and Techniques (Sponsored by the Professional Group on Electronic Computers.)
- 298. The Role of General Purpose Digital Computers in Automatic Control and Information Systems, Arnold A. Cohen
- 82 299. Design Features of Current Digital Differential Analyzers, Edward L. Braun. 87
- 300. Design Features of the JAINCOMP-C and JAINCOMP-98
- D Electronic Digital Computers, Donald II. Jacobs.... 301. A Germanium Tape Reader (Abstract), R. A. Langevin. 105 302. Electrostatic Reading of Perforated Media, Samuel Lub-
- kin. 106 SESSION 34: Electronic Computers II-Computer Com-
- ponents (Sponsored by the Professional Group on Elec-tronic Computers.)
- 303. Considerations for the Selection of Magnetic Core Mate-rials for Digital Computer Elements, O. J. Van Sant, Jr. 109
- 304. Magnetic Core Selection Systems, S. Guterman and R. D. Kodis. 116
- 305. Circuits to Perform Logical and Control Functions with Magnetic Cores, S. Guterman, R. D. Kodis, and S. Ruhman 124
- 306. Packaged Logical Circuitry for a 4-Mc Computer, Norman Zimbel 1.3.3
- 307. Transistor Shift Registers, C. Iluang, E. Slohodzinski, and B. White.... 140

1954 CONVENTION RECORD OF THE L.R.E.

- Part 5—Aeronautical Electronics and Telemetry SESSION 3: Aeronautical and Navigational Electronics I (Sponsored by the Professional Group of Aeronautical
- and Navigational Electronics.) 308. An Impulse Generator for Receiver Performance Measure-
- ment, Joseph II. Vogelman. 309. Aerial Methods in Microwave Survey, Marc Sheldon and

3

71

77

- Lewis A. Dickerson. 12 310. The Development of a Production Radome Tester, Robert
- . Walcutt. 31 311. A Correlation Direction Finder for Guided Missile Range
- Instrumentation, Marvin S. Friedland and Nathan Marchand. 35 312. Present Status of Microwave Radiometric Receiver De
 - velopment, R. M. Ringoen 42 SESSION 5: Radio Telemetry and Remote Control I-Systems and Elements (Sponsored by the Professional
- Group on Radio Telemetry and Remote Control.) 313. Guided Missile Range Instrumentation-A New Elec-
- tronic Art, M. S. Friedland. 314. Interpretation of Sequential Samples from Commutated 48
- Data (Abstract), Lawrence L. Rauch. 315. Comparison of Required Radio Frequency Power in Dif-58
- ferent Methods of Multiplexing and Modulation, M. H. Nichols. 59
- 66
- 316. Flight Testing of an Airborne Digital Computer, E. M. Grabbe, D. W. Burbeck, and S. B. Neisler.
 317. Evaluation for Magnetic Tape Equipment for Telemetering Instrumentation (Title Only), R. E. Rawlins. 71
 - Session 8: Aeronautical and Navigational Electronics II (Sponsored by the Professional Group on Aeronautical and Navigational Electronics.)
- 318. The Digitae Airborne Digital Computer, E. E. Bolles.
- 319. A New Fixed-Beam Approach System, R. A. Hampshire.
- 320. The Role of Flight Directors in Present-Day Aircraft. N. L. Graham 84

2

6

13

18

23

30

3.5

Part 5—Aeronautical Electronics and and Telemetry (Cont'd.)

Cumulative Index

Number

- Page 321. Navaglobe-Navarho Long-Range Radio Navigational System, C. T. Clark, R. I. Colin, M. Dishal, I. Gordy, and M. Rogoff.....
- 88 322. The N-1 Compass System, Robert C. Rosaler 98 SESSION 10: Radio Telemetry and Remote Control II-Telemetry (Sponsored by the Professional Group on Radio Telemetry and Remote Control.)
- 323. A 227 Mc Pulse Position Modulation Telemetering Unit, D. G. Mazur.
- 324. Crystal Control Low Distortion FM Telemetering Transmitter (Title Only), R. E. Rawlins.... 112
- 325. A Crystal Control FM Telemetry Transmitter, Foster N. Reynolds 113
- 326. High Gain Antenna System for Multiple Operation, James B. Wynn, Jr. 116 SESSION 15: Aeronautical and Navigational Electronics
 - III (Sponsored by the Professional Group on Aeronautical and Navigational Electronics.)
- 327. Operational Analysis of Track-While-Scan Radars, Stephen J. O'Neil.
 328. A Study of the UHF Omnidirectional Aircraft Antenna 123 Problem and Proposed Methods of Solution, W. Spanos
- and J. J. Nail. 135
- 329. A Modulator Technique for Producing Short Pulses in High Powered Magnetrons, *Thomas J. Parker*.......
 330. The Role of Stereo in "3-D" Radar Indicating Systems, 142 152
- Walter R. Tower. 331. An Automatic Antenna Matching Unit, E. W. Schwiltek. 163 SESSION 45: Radio Telemetry and Remote Control HI-Remote Control (Sponsored by the Professional Group
- on Radio Telemetry and Remote Control.) A Proportional Data Transmission System, W. C. Petrie. 332.
- 169 333. A Digital Autopilot Coupler, W. L. Exner and A. D. Scar-
- brough. 174 334. System Compensation with a Digital Computer, John M. Salzer.
- 179 335. Binary Control System for Digital-to-Shaft Position
- Mechanisms, Arthur H. Wulfsberg. 187 336. Optimization of Servosystems, Richard C. Lyman and
- William P. Carwood, Jr. 193

1954 Convention Record of the I.R.E.

Part 6—Audio and Ultrasonics

- SESSION 11: Audio I-High Fidelity (Sponsored by the Professional Group on Audio.)
- 337. Large Area Microphones for Distant Pickup Use (Abstract), T. Aamodt and F. K. Harvey.....
- 338. The Enhancement of Music by Reverberation, Daniel W. Martin . . .
- 339. Some New Developments in High Fidelity Loudspeakers (Abstract), II. F. Olson and John Preston ...
- 340. High Fidelity and the Hearing Process (Abstract), W. E. Kock . . .
- 341. Some Aspects of Stereophonic Sound in Motion Picture Theaters (Abstract), R. H. Ranger.....
- SESSION 18: Audio II-General (Sponsored by the Professional Group on Audio.) 342. Nonlinear Communications Systems: Some Aspects of
- Clipped Speech, R. E. Lacy and R. K. Saxe.
- 343. A Miniature Unidirectional Microphone, B. B. Bauer and J. W. Medill...
- 344. A High Efficiency-High Quality Audio Power Amplifier, Alexander B. Bereskin...
- 345. System Design Factors for Audio Amplifiers, M. V. Kiebert, Jr...
- 346. Driver System for Single Ended Push-Pull Amplifiers (Abstract), C. T. Hall
- SESSION 23: Audio Seminar-High Fidelity in Audio Engineering (Sponsored by the Professional Group on Audio.)
- 347. Microphones, Jehn K. Hilliard.
 348. Loudspeakers (Title Only), H. F. Olson.
 349. Room Acoustics (Title Only), R. L. Hanson.
- 350. High Fidelity in Radio Broadcasting Systems, John V. L.
 - Hogan...... SESSION 41: Ultrasonics I (Sponsored by the Professional Group on Ultrasonics.)
- 351. The Ultrasonic Burglar Alarm System, Samuel Bagno, Jack B. Cooper, and Eli A. Levy

Part 6—Audio and Ultrasonics (Cont'd.)

Cumulative

105

3

4

8

8

8

9

12

18

25

41

42

45

45

46

49

- Index Number Page 352. A Complex Impedance Recorder, Harold M. Sharaf..... 50 353. Ultrasonic Delay Lines, David L. Arenberg. 63 354. Wide-Band Large-Dynamic-Range Fused Quartz Delay Lines for Increased-Capacity High Speed Computer Memories, D. A. Spaeth, T. F. Rogers, and S. J. Johnson 355. Contour Modes of Plates Excited Piezoelectrically and 77 Determination of Elastic and Piezoelectric Coefficients, R. Bechmann..... 77 SESSION 48: Ultrasonics II (Sponsored by the Professional Group on Ultrasonics.) 356. Applications of Ultrasonic Energy to Industrial Use (Abstract), A. L. Bayles 357. The Effects of Ultrasonic Waves on Electrolytes and 85 Electrode Processes, S. Barnartt.... 86 Application of Ultrasound to the Brain, P. 358 A. Lindstrom. 96 359. Selective Action of Ultrasound on Nerve Tissue, William J. Fry and John W. Barnard. 102 360. Effects of Ultrasound on Living Cell Structure, Earl H. 107 Newcomer 1954 Convention Record of the I.R.E. Part 7—Broadcasting and Television Receivers SESSION 13: Broadcast and Television Receivers I-General (Sponsored by the Professional Group on Broadcast and Television Receivers.) 361. Ferrite Cored Antennae, C. A. Grimmett. 3 362. Transistor AM Broadcast Receivers, Arthur P. Stern and John A. A. Raper. 8 363. Wide-Band Amplification with Surface-Barrier Tran-sistors, J. B. Angell. 15 364. Automatic Damping for Vertical Output Circuits in TV Systems, H. E. Thomas, S. A. De Mars, and M. E. Jones 21 365. A Wide Range Tuning System, H. T. Lyman, F. G. Mason, and II. Ross.... 27 SESSION 20: Broadcast and Television Receivers II-Color Television (Sponsored by the Professional Group on Broadcast and Television Receivers.) 366. A Self-Balancing Phase Detector for Color Receiver Refer-31 .38 39 Stephen K. Altes and Arthur P. Stern ... 46 370. Significance of Some Receiver Errors to Color Reproduction, Harold Weiss..... 53 SESSION 26: Broadcast Transmission Systems I-Symposium: TV Broadcasting (Sponsored by the Profes-sional Group on Broadcast Transmission Systems.) 371. Antenna System for Station WOR-TV Channel 9, Installed on the Empire State Building in New York City, G. J. Adams, Andrew Alford, II. II. Leach, Richard Rubin, and Fred Abel..... 65 372. A Pulse Distribution System for a Network Originating Center, John S. Auld and Anthony Gallonio.. 72 373. An Improved Television Clamp Circuit Employing Feed-back, K. R. Wendt and W. K. Squires..... 79 374. A High Level Plate Mixer for Use at UHF, Ralph E. Western 85 375. Coaxial Line Transfer Switch for Television Transmitters, Carl F. Schunemann and J. B. Epperson.... 88 SESSION 33: Broadcast Transmission Systems II-Symposium: Color TV Broadcasting (Sponsored by the Professional Group on Broadcast Transmission Systems.) 376. Color Film Scanner-Circuits, Joseph F. Fisher 94 377. Color Characteristics of a Television Film Scanner, Jesse H. Haines... 100 378. Factors in the Design of Keyed Clamping Circuits, Roland N. Rhodes. 105 379. Photographic Simulation of Color Television Brightness Modifications, J. H. Ladd and W. L. Brewer..... 110 380. Feasibility and Technique of Storing Color Video Infor-mation on Black and White Film, *William L. Hughes*. 114
- 381. A System for Recording and Reproducing Television Sig-nals (Abstract), H. F. Olson, W. D. Houghton, A. R. Morgan, J. Zenel, M. Artzt, J. G. Woodward, and J. T.
- 119 Fischer 382. V T R: A Video Magnetic Tape Recorder, John T. Mullin 120

Convention Record Index-5

1954 Convention Record of the LR.E.

Page

3

0

15

18

24

44

51

63

70

74

78

82

88

89

91

98

104

2

6

7

9

13

Part 8-Communications and Microwave

- SESSION 1: Symposium: Advances in Mobile Communications (Sponsored by the Professional Group on Vehicular Communications.)
- 383. Transient Response of Selective Networks and Impulse Noise in Narrow-Band FM Receivers, Stanley P. Lapin and Jerome J. Suran
- 384. Advances in Petroleum Mobile Communications, L. A. M. Barnette..
- 385. A New Approach to 450-470 Mc Communication Equipment, R. W. Tuttle ...
- 386. Operation and Planning of a Utility Radio System, A. B. Buchanan.....
 - SESSION 7: Radio Communications I-Symposium: Facsimile (Sponsored by the Professional Group on Communications Systems.)
- 387. Facsimile Systems, A. S. Hill. 388. Operation of International Commercial Radiophoto Circuits, M. P. Rehm...
- 32 389. Applications of Facsimile in the USAF, Harold R. Johnson 39
- 390. Application of Cathode-Ray Tubes on Facsimile, Warren H. Bliss
 - SESSION 21: Radio Communications II-General (Sponsored by the Professional Group on Communications Systems.)
- 391. System Aspects and Trends of Modern Communication, I. S. Coggeshall...
- 392. A Predicted Wave Radio Teletype System, Melvin L. Doelz and Earl T. Heald.....
- 393. Design Consideration for FSK Circuits, Walter Lyons...
- 394. Predicting Interference Levels in the Communication Sys-

tem, Paul G. Wulfsberg.

395. UHF Diversity System for Long-Range Ship-to-Air Com-munication, F. J. Altman and J. J. Nail.....

SESSION 43: Microwave Electronics I-Ferrites and Strip Lines (Sponsored by the Professional Group on Microwave Theory and Techniques.)

- 396. Nonreciprocal Microwave Components, *Herman N, Chait* 397. Ferrite Quarter-Wave and Half-Wave Plates at X-Band (Abstract), *N. G. Sakiotis*.
- 398. The Radiation Conductance of a Series Slot in Strip
- Transmission Line (Summary), Arthur A. Oliner......
 399. New Techniques for High-Q Strip Microwave Components, E. G. Fubini, W. E. Fromm, and H. S. Keen...
 400. Microwave Applications of High-Q Strip Components,
- E. G. Fubini, W. E. Fromm, and H. S. Keen.
 - SESSION 50: Microwave Electronics II-Components (Sponsored by the Professional Group of Microwave Theory and Techniques.)
- 401. Design of Stable Tunable Microwave Oscillators, J. G. Stephenson.
- 113
- 115 125
- 405. A High Precision Compensated Reference Cavity for C-Band. John Hall and Frank McCarthy..... 134

1954 CONVENTION RECORD OF THE L.R.E.

Part 9—Medical and Nuclear Electronics

SESSION 17: Medical Electronics (Sponsored by the Pro-

- fessional Group on Medical Electronics.) 406. The Gamma Ray Pinhole Camera with Image Amplifier, Robert K. Mortimer, Hal O. Anger, and Cornelius A. Tobias. .
- 407. Expansion Chamber for Measurement of Red Cell Permeation by Water (Abstract), A. K. Solomon and C. V.
- Paganelli.
- E. Stickley... 410. Use of Charged Particles to Measure Skin Thickness and Other Surface Properties, Franklin Hutchinson
- Convention Record Index-6

- Cumulative Index Number Page SESSION 22: Medical Electronics Symposium: Engineering Based on Biological Design (Sponsored by the Profes-sional Group on Medical Electronics.) 411. Medical Electronics Symposium: Engineering Based on Biological Design, W. R. G. Baker. 17 19 413. Information Theory (Title Only), Norbert Wiener..... 26414. Biological Transducers, S. S. Stevens 27 415. Biological Servomechanisms and Control Circuitry, Otto H. Schmitt..... 34 SESSION 24: Nuclear Science I-Symposium: Progress Report (Sponsored by the Professional Group on Nuclear Science.) 416. Electronics in the Nuclear Industry, L. V. Berkner... 42 417. Secrecy and the Electronic Engineer (Abstract), J. G. Beckerly ... 44 418. Nonreactor Electronics at Oak Ridge (Abstract), P. R. Bell 44 419. Brookhaven Electronics Instrumentation Program, W. A. Higinbotham 45. 420. Nonreactor Electronic Work at Argonne, Thomas Brill. 51 421. Nonreactor Electronics at Los Alamos, R. J. Watts..... 61 SESSION 31: Nuclear Science II-Symposium: Reactor Electronics (Sponsored by the Professional Group on Nuclear Science.) 422. Chairman's Introductory Remarks: Symposium on Reactor Electronics, William M. Breazeale 67 423. Nuclear Reactor Simulators, *Kenneth II. Fischbeck*..... 424. Safety Aspects of Control Circuitry, *T. E. Cole*...... 69 75 425. Instruments Used with Experimental Reactors, Elmer J. 79 Wade.. 426. Synthesis of Control Systems for Nuclear Power Plants, J. N. Grace..... 83 1954 Convention Record of the I.R.E. Part 10-Instrumentation and Industrial Electronics SESSION 29: Instrumentation 1 (Sponsored by the Professional Group on Instrumentation.) 3 7 and David Definger. 429. A Shielded Two-Wire Hybrid Junction and its Use as an Ultra-High-Frequency Impedance Bridge, Edgar W. Matthews, Jr. 14 430. High-Speed, High-Resolution Spectrum Analyzer, Nesbit L. Duncan. 22 431. Rapid, Precision Impedance Measurements in the 400-1600 Megacycle Frequency Range, David M. Goodman 27 SESSION 36: Instrumentation II-Symposium: High Frequency Measurement and Control (Sponsored by the Professional Group on Instrumentation.) 432. An Approach to a Company-Owned Frequency Standard, John W. Smith. 34 433. Standard Frequency Controlled Wide Range Oscillator, E. P. Felch, J. O. Israel, and O. Kummer 38 434. Performance of the Bell System Frequency Standard (Abstract), George N. Packard. . 45 435. A Computer-Type Decade Frequency Synthesizer, R. W. Frank 46 436. A High-Speed Digital Frequency Divider of Arbitrary Scale, Robert W. Stuart..... 52 SESSION 38: Industrial Electronics (Sponsored by the Professional Group on Industrial Electronics) 437. The Design of Automatic Factories, Geoffrey Post..... 58 438. Industrial Punch Card Automatic Control Development, Wilfrid L. Atwood . . . 63 439. Considerations in the Automatic Assembly of Components, Ben Warriner 67 440. Electronic Flow Measurement and Control (Abstract), Eugene Mittelmann..... 69 441. Photosensitive Germanium Devices and Some Device Applications, Richard G. Seed..... 70SESSION 44: Instrumentation III (Sponsored by the Professional Group on Instrumentation.)
- 442. A Novel Approach to Transistor Testing (Abstract), N. J. Gottfried..... 80

Part 10-Instrumentation and Industrial Electronics (Cont'd.)

Part 11-Engineering Management and Quality Control (Cont'd.)

Cumulative	
Index	
Number	

Page

88

92

97

2

0

1.3

- 81
- 445. Wide-Band Amplitude Distribution Analysis of Voltage
- Robert Bernstein, Henry Bickel, and Eli Brookner.....

1954 Convention Record of the LR.E.

Part 11--Engineering Management and Quality Control

- SESSION 4: Quality Control and Reliability (Sponsored by the Professional Group on Quality Control.)
 447. Improving Reliability of Electronic Equipment by Effec-tive Analysis of Field Performance, *Richard R. Landers*448. A Survey of Electronic Failure Prediction Technique, *J. H. Muncy*.
 419. A New Average to Attraction to Predictive in the Prediction Technique, *J. H. Muncy*.
- New Approach to Attainment of Reliability in the Pro-duction of Airborne Electronic Systems, A. Warsher. 449. A

- Cumulative Index
 - Page Number 450. A Method of Testing and Evaluation of Complex Missile Systems, E. J. Althaus, S. C. Morrison, and W. R. Tate SESSION 9: Engineering Management I (Sponsored by

23

- the Professional Group on Engineering Management.) 451. The Engineer and Return on Investment, S. C. Peck....
- 29 452. Technical Information: Communication for Research,
- 35 Charles De Vore... 453. A Working Philosophy for Engineering Management, Thomas G. Slattery..... 38
- 454. Organization for Operations Research, Foster L. Weldon. 42
- 45 455. Training for Operations Research Groups, Thornton Page SESSION 16: Engineering Management II—Symposium: Personnel Training and Selection for Engineering Management (Sponsored by the Professional Group on Engineering Management.)
 456. Personnel Selection and Training for Engineering Management from the University Viewpoint, S. C. Hollister
 457. Personnel Training and Selection for Engineering Management, W. R. G. Baker.
- 49
- agement, W. R. G. Baker.
 458. Selection and Training for Engineering Management in the Department of Defense, James M. Mitchell. 52 55

INDEX TO AUTHORS

A Aamodt, T., 337 Abel, F., 371 Adams, G. J., 371 Alford, A., 216, 371 Alford, A., 216, 371 Alfen, E. W., 229 Altenpohl, D., 259 Altes, S. K., 369 Althaus, E. J., 450 Altman, F. J., 395 Altschuler, A. M., 402 Angell, J. B., 363 Anger, H. O., 406 Arenberg, D. L., 353 Arnold, J. B., 253 Artzt, M., 381 Aseltine, J. A., 240 A Aseltine, J. A., 240 Atwood, W. L., 438 Auld, J. S., 372

B

Bagno, S., 351 Bailin, L. L., 214 Baker, W. R. G., 441, 457 Barnard, J. W., 359 Barnartt, S., 357 Barnett, L. A. M., 384 Barsis, A. P., 227 Basore, B. L., 295 Baisore, B. L., 295 Bauer, B. E., 295 Bauer, B. B., 343 Bayles, A. L., 356 Beachemin, H. M., 221 Beckerly, J. G., 417 Bechmann, R., 355 Bell, P. R., 418 Bereskin, A. B., 344 Bergen, A. R., 239 Berkner, L. V., 416 Bernstein, R., 446 Bickel, H., 446 Bickel, H., 446 Bingley, F. J., 367 Bliss, W. H., 300 Bol, K., 280 Bolles, E. E., 318 Boyd, J. A., 278 Braun, E. L., 299 Breazeale, W. M., 422

Breese, M. E., 404 Brett, H., 263 Brewer, W. L., 379 Brill, T., 420 Brookner, E., 446 Brownell, H. R., 262 Buchanan, A. B., 386 Burbeck, D. W., 316 Burnett, J. R., 250 Burton, N. H., 275

C C Carlin, H. J., 233 Carlisle, R. W., 444 Carroll, T. J., 231 Carter, D., 222 Caywood, W. P., Jr., 336 Chait, H. N., 396 Charbonnet, W. H., 256 Cheatham, T. P., Jr., 284 Chodorow, M., 282 Chu, E. L., 282 Chu, E. L., 282 Chu, G. Y., 252 Clark, C. T., 321 Clark, E. G., 366 Coffey, W. N., 270 Coggeshall, I. S., 391 Cohen, A. A., 298 Cohen, A. A., 298 Cohn, S. B., 220 Cole, T. E., 424 Colin, R. L., 321 Copper, J. B., 351 Corrington, M. S., 237 Crosby, D. R., 223

D DeClaris, N., 244 DeLano, R. B., Jr., 276 DeMars, S. A., 364 Dettinger, D., 428 DeVore, C., 452 Dickerson, L. A., 309 Dishal, M., 321 DeToro, M. J., 290 Doelz, M. L., 392 Duncan, N. L., 430

Ehrenspeck, H., 217 Epperson, J. B., 375 Exner, W. L., 333

E

Fano, R. M., 283 Favreau, R. R., 240 Favreau, R. R., 240 Feinstein, J., 226 Felch, E. P., 433 Felsen, L. B., 215 Fischbeck, K. H., 423 Fischer, J. T., 381 Follingstad, H. G., 272 Frank, R. W., 435 Friedland, M. S., 311, 313 Fromm, W. E., 399, 400 Fry, W. J., 359 Fubini, E. G., 399, 400

G

Gaertner, W., 238 Gallonio, A., 372 Geiser, D. T., 260 Gerbes, W., 217 Giacoletto, L. J., 271 Ginzton, E. L., 279 Gold, B., 297 Goodman, D. M., 431 Goodman, D. M., 431 Gordy, I., 321 Gottfried, N. J., 442 Grabbe, E. M., 316 Grace, J. N., 426 Graham, N. L., 320 Graustein, W. W., Jr., 427 Greenbaum, W. H., 444 Grimmett, C. A., 361 Grinich, V. H., 246 Gutorwan, S. 304, 305 Guterman, S., 304, 305 H Haiues, J. H., 377 Hale, D. R., 256 Hall, C. T., 346 Hall, J., 405 Hampshire, R. A., 319 Hanley, L. D., 269

Hannan, P. W., 219 Hannan, P. W., 219 Hanson, R. L., 349 Happ, W. W., 242 Harvey, F. K., 337 Heald, E. T., 392 Herbstreit, J. W., 230 Higinbotham, W. A., 419 Hill, A. S., 387 Hilliard, J. K., 347 Ho, Er-Chun, 234 Hodgin David 257 Ho, Er-Chun, 234 Hodgin, David, 257 Hogan, J. V. L., 350 Hollister, S. C., 456 Holt, F. S., 221 Hook, H. O., 274 Houghton, R. W., 427 Houghton, W. D., 381 Huang, C., 307 Hughes, W. L., 380 Hutchison, F., 410

Inouye, G. T., 228 Israe', J. O., 433

Jacobs, D. H., 300 Johnson, E. O., 267 Johnson, H. R., 281, 389 Johnson, S. J., 354 Jones, E. M. T., 220 Jones, M. E., 364

Kaminow, I. P., 214 Kautz, W. H., 293 Keen, H. S., 399, 400 Kellcher, K. S., 224 Kiebert, M. R., Jr., 345 Knoll, M., 274 Kock, W. E., 340 Kodis, R. D., 304, 305 Koblenerg, A., 284 Kohlenberg, A., 284 Krause, L. O., 232 Kummer, O., 433, 443 Kumpfer, B. D., 263 Kurss, H., 241

Convention Record Index-7

L Lacy, R. E., 342 Ladd, J. H., 379 Lapin, S. P., 383 Landers, R. R., 447 Langevin, R. A., 301 Leach, H. H., 371 Levi, R., 264 Levy, E. A., 351 Lindstrom, P. A., 358 Livingston, D. C., 368 Lob, C. G., 265 Lohman, R. D., 248 Lubkin, S., 302 Lundry, W. R., 236 Lutz, S. G., 254 Lyman, H. T., 365 Lyman, R. C., 336 Lyons, W., 393

Μ

Mackay, R. S., 408 Macnee, A. B., 296 Marchand, N., 311 Markarian, H., 251 Martin, D. W., 338 Marson, F. G., 365 Matthaei, G. L., 243 Matthews, E. W., Jr., 429 Mazur, D. G., 323 McCarthy, F., 405 Mead, L. C., 412 Medill, J. W., 343 Mitchell, J. M., 458 Mittelmann, E., 440 Morgan, A. R., 381 Morrison, S. C., 450 Mortimer, R. K., 406 Mullin, J. T., 382 Muncy, J. H., 448 Murakami, T., 237

Ν

Nail, J. J., 328, 395 Neister, S. B., 316 Nevins, J. R., 282 Newcomer, E. H., 360 Newman, S., 275 Nichols, M. H., 315 Nozick, S., 275, 277 O Oliner, A. A., 398, 402 Olinstead, J. A., 267 Olson, H. F., 339, 348, 381 O'Neil, S. J., 327 Orr, L. W., 445 P Packard, G. N., 434 Paganelli, C. V., 407 Page, T., 455 Parker, T. J., 329 Patterson, G. W., 294 Pearson, H. A., 444 Peek, S. C., 451 Pensak, L., 273 Potrie, W. C., 332 Pope, W. A., 225 Post, G., 437 Preston, J., 339

Raggazzini, J., 339 Pritchard, R. L., 270 Puro, W. O., 224 R Raggazzini, J. R., 239 Ranger, R. H., 341 Raper, J. A. A., 362 Rauch, L. L., 314 Rawlins, R. E., 317, 324 Rehm, M. P., 388 Reynolds, F. N., Jr., 325 Rhodes, R. N., 378 Rickert, H. H., 428 Ringoen, R. M., 312 Ritterman, M. D., 285 Rochefort, J. S., 288 Rogers, T. F., 354 Rogoff, M., 321 Rosaler, R. C., 322 Ross, H., 365 Rounds, P. W., 235 Rubin, R., 371 Rudich, 1., 266 Ruhman, S., 305 S Saby, J. S., 268 Sakiotis, N. G., 397 Salmon, A. K., 407 Salzer, J. M., 334 Sampson, J. L., 221 Sard, E. W., 249 Saxe, R. K., 342 Scarbrough, A. D., 333 Schmitt, O. H., 415 Schunemann, C. F., 375 Schwittek, E. W., 331 Scott, N. R., 289 Scott, R. E., 244 Seed, R. G., 441 Sferrazza, P., 403 Shapiro, G., 255 Sharaf, H. M., 352 Sheldon, M., 309 Slattery, T. G., 453 Slobodzinsky, E., 307 Smith, J. W., 432 Solomon, A. K., 407 Sonnenfeldt, R. W., 237 Spaeth, D. A., 354 Spanos, W., 328 Spencer, R. C., 221 Sprague, R. M., 216 Squires, W. K., 373 Stateman, M. J., 285 Stein, D. R., 258 Stephenson, J. G., 401 Sterr, A. P., 362, 369 Stevens, S. S., 414 Stickley, E., 409 Stone, R. P., 274 Storch, L., 247 Stuart, R. W., 436 Stubbs, H. L., 291 Sullivan, R. J., 261 Suran, J. J., 383

Talpey, T. E., 296

Tarc, W. R., 450 Teasdale, R. D., 262 Thomas, H. E., 364 Thornton, C. G., 269 Tobias, C. A., 406 Tower, W. R., 330 Trautman, D. L., 234 Tuttle, R. W., 385 **V** Van Sant, O. J., Jr., 303 Vogelman, J. H., 308 **W** Wade, E. J., 425 Wadia, B. H., 279 Wait, J. R., 225 Walcutt, R. P., 310 Warsher, A., 449 Watts, R. J., 421 Weber, J., 218 Webster, W. M., 267 Wehner, R. S., 214 Weinberg, L., 245 Weiss, H., 370 Weldon, F. L., 454 Weiler, R. K., 292 Wendt, K. R., 373 Western, R. E., 374 White, B., 307 White, W. D., 286 Wiener, N., 413 Winkler, S., 277 Winter, D. F., 287 Woodward, J. G., 381 Wulfsberg, P. G., 394 Wynn, J. B., Jr., 326 **Y** Young, G. O., 297

Z Zenel, J., 381 Zimbel, N., 306 Zucker, F. J., 217

INDEX TO SUBJECTS

A Acoustics, Room: 349 Aerial Methods in Microwave Survey: 309 Amplifier: 262, 344, 345, 346 Audio: 344, 345 Design Factors: 345 Magnetic: 262 Core Materials: 262 Single-Ended Push-Pull: 346 Antennas: 215, 216, 217, 219, 221, 225, 232, 321, 326, 328, 331, 361, 371 Aircraft Omnidirectional: 328 Ferrite Core: 361 For Multiple Operation in Telemetry: 326 Four Slot: 216 Matching Unit, Automatic: 331 Microwave, Reflections in: 219 Pencil Beam: 221, 222 Slot: 215 Gain Pattern: 215 Trapped Wave: 217 UHF and VHF TV Problems: 232 Vertical, with Radial Conductor Ground: 225 WOR-TV Installation: 371 Argonne Nonreactor Electronics: 420

Convention Record Index-8

Arrays: 214

Dolph-Tchebycheff: 214 Autocorrelated Error Terms: 292 Time Series Analysis: 292 Autopilot, Digital: 333 Automatic Assembly of Components: 439 Automatic Control Systems: 298, 438 Punch Cards: 438 Role of Digital Computers: 298 Automatic-Factory Design: 437

В

Back-Wave Oscillator: 281 Biological Design Applied to Engineering: 411, 412, 413, 414, 415 Biological Servomechanisms: 415 Biological Transducers: 414 Brookhaven Instrumentation Program: 419 Burglar Alarm, Ultrasonic: 351

C

Camera, Pinhole, Gamma Ray: 406 Capacitors: 259, 260 Bypass: 260 Lowest Resonant Frequency: 260 Electrolytic: 259 Cathode-Ray Tubes: 390 Applications in Facsimile: 390 Cathodes: 263, 269 Hollow: 263 Machined Tungsten: 269 Machined Tungsten: 209 Cavity, Reference, for C Band: 405 Circuits: 248, 249, 250, 251, 252 Transistor: 248, 249, 250, 251, 252 Circuit Theory: 238, 239, 240 Analysis of Linear Systems: 239 Four-Pole Theory: 238 Time Varuing Foodback Systems: Time Varying Feedback Systems: 240 Clamp Circuit for Television: 373, 378 Coding: 286, 293 Optimized Data for Computers: 293 Pulse-Code Systems: 286 Information Losses: 286 Color Television: 265, 366, 367, 368, 369, 370, 376, 377, 378, 379, 380, 381, 382 Clamp Circuit: 378 Distortion in Sequential Displays: 368 Fidelity in Receivers with Nonstandard Primaries: 367 Film Considerations: 379 Film Scanner: 376, 377 Characteristics: 377 Circuits: 376

Magnetic Tape Recording: 381, 382 Phase Detector for Color Reference Oscillator: 366 Picture Tube: 265, 369 Post Acceleration: 265 Single Gun: 369 Reproduction, Effects of Receiver Errors on: 370 Storing on Black-and-White Film: 380 Color X-Ray Pictures: 408 Communication of Technical Information: 452 Communication Systems: 391, 394 Predicting Interference Levels: 394 Ship-to-Air UHF Diversity System: 395 Trends: 391 Compass, N-1: 322 Complex-Impedance Recorder: 352 Complex-Impedance Recorder: 352 Computers: 254, 289, 293, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 316, 318, 334, 354 Airborne, Flight Testing of: 316 Differential Analyzer Design: 299 Electrostatic Reading of Perforated Media: 302 Germanium Tape Reader: 301 Information Rate: 289 JAINCOMP Design: 300 Magnetic Core Circuits: 305 Magnetic Core Circuits: 305 Magnetic Core Materials: 303 Magnetic Core Selection Systems: 304 Miniaturized Diodes: 254 Optimized Data Encoding: 293 Quartz Delay Lines: 354 Role in Automatic Control Systems: 298 System Compensation: 334 Transistor Shift Registers: 307 Control System for Digital-to-Shaft Positioning: 335

Color Television, Cont'd.

3

D

Data Interpretation, Telemetry: 314 Delay Cables, Magnetic-Core: 258 Delay Lines, Quartz: 354 Delay Lines, Ultrasonic: 353 Diode for Miniaturized Computer Applica-tions: 254 Diodes: 269 Silicon: 269 Diplexing Filters: 404 Directional Couplers: 404 Directional Couplers: 403 Direction Finder for Guided Missiles: 311 Diversity System for UHF Ship-to-Air Com-munication: 395

E

Electrolytic Capacitors, Improvements: 259 Electron Beams: 279 Positive Ion Traps for Control: 279 Electronics in Nuclear Industry: 4161 Electron Tubes: 254, 263, 264, 265, 266, 267, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 329, 369, 390 Backward-Wave Oscillator: 281 Cathode: 263, 264 Hollow: 263 Machined Tungsten: 264 Cathode-Ray, For Facsimile: 390 Color Picture: 265, 369 Post Acceleration: 265 Single Gun: 369 Decade Counter: 266 Diode, Miniaturized: 254 Computer Applications: 254 Klystrons: 280 Multipactor Effect: 280 Magnetron Modulator: 329 Magnetton, Voltage Tunable: 278 Positive Ion Traps for Beam Control: 279 Storage Tubes: 273, 274, 275, 276, 277 Half-Tone Picture: 273, 274 High-Speed Dark-Trace: 275 Large Capacity: 276

Limiting, Effects on Signal Content: 297 Noise Limitations: 277 Thyratron: 267 Current Interruption by Grid: 267 Traveling Wave: 282 Twin Helices: 282 Electrostatic Reading of Perforated Media: 302 Engineering Based on Biological Design: 411, 412, 413, 414, 415 Engineering Management Philosophy: 453 Equalizers: 233, 234, 235, 236, 237 Amplitude, Limitations on: 233 In the Time Domain: 237 Minimum Phase Design: 236 RLC Ladder Networks: 234 Video Cables: 235 Expansion Chamber for Red Cell Measurements: 407 Facsimile: 387, 388, 389, 390 Applications in USAF: 389 Cathode-Ray Tube Applications: 390 International Radiophoto Operation: 388 Systems: 387 Failure Prediction Technique: 448 FCC Rules and Propagation Data: 229 Feedback: 240 Time Varying Systems: 240 Ferrite Core Antennas: 361 Ferrite Plates at X-Band: 397 Filters: 284, 285, 288, 404 Comb: 285 Television Signals: 285 Detecting Pulse Signals in Noise: 288 Diplexing: 404 Optical: 284 Fixed-Beam Approach System: 319 Flight Directors, Role of: 320 Flow Measurement and Control, Electronic: 440 Frequency Divider, Digital: 435, 436 Frequency-Shift-Key Circuit Design: 393 Frequency Standard: 432, 434 Bell System: 434 Company-Owned: 432 Frequency Synthesizer: 435 G

Electron Tubes, Cont'd.

Generator: 287, 308, 446 Impulse: 308 Receiver Measurements: 308 Noise: 287, 446 Germanium Tape Reader: 301 Guided Missile Instrumentation: 311, 313

Direction Finder: 311

H

High Fidelity and Hearing: 340 High Fidelity in Radio Broadcasting: 350 Human Engineering: 412

Impedance Bridge, UHF: 429 Impedance Recorder, Complex: 352 Impedance Measurements at 400-1600 Mc: 431 Information Rate of Digital Computers: 289 Information Theory: 226 Propagation through Time Varying Media: 226 Information Theory in Biology and Engi-neering: 413 Information Theory, Past and Future: 283 Interference-Level Prediction: 394

Interference-Level Prediction: 394 Isotropic Variable Index Media: 224

K

Klystrons: 280 Multipactor Effect: 280

L

Lenses: 220

Surface Matching: 220

Logical Nets, Symbolic Methods in Design: 294 Los Alamos Nonreactor Electronics: 418 Loudspeakers: 339, 348 High-Fidelity: 339 M Magnetic Amplifiers: 362 Core Materials: 262 Magnetic Core Circuits: 305 Magnetic-Core Delay Cables: 258 Magnetic Core Materials for Computers: 303 Magnetic Core Selection Systems: 304 Magnetic Tape Equipment for Telemetry: 317 Magnetic Tape Recording of Color TV: 381, 382 Magnetron Modulator: 329 Magnetron, Voltage Tunable: 278 Maintenance Effect on Reliability: 253 Microphones: 337, 343, 347 Distant Pickup: 337 Miniature Unidirectional: 343 Microwave Measurements with Lossy Variable Short Circuit: 402 Missile System Evaluation: 450 Mixer for UHF Television: 374 Mobile Communications: 383, 384, 385, 386 450-470 Mc: 385 Impulse Noise in FM Receivers: 383 Petroleum Industry: 384 Public Utility System: 386 Modulation: 323 Pulse-Position Unit: 323 Modulation Power Requirements: 315 Multiplexing Power Requirements: 315 Music Enhancement by Reverberation: 338 N N-1 Compass System: 322 Navaglobe Navigation System: 321 Navigation System, Long-Range: 321 Networks: 234, 243, 244, 245, 246, 247 Band-Pass Attenuation and Phase Functions: 246 Constant Time Delay, with Low Q Elements: 247

RC Ladder Synthesis: 244

Resistance Terminated: 245 RLC Ladder Synthesis: 234

- Synthesis Techniques: 243 Neutron Depth Dose in Tissue: 409 Noise: 287, 288, 290, 296, 297, 383, 445, 446 Amplitude Distribution Analysis: 445 Detecting Pulse Signals: 288 Effects of Amplitude Limiting: 297
 - Generator: 287, 446

- Impulse: 383 In FM Receivers: 383 Induced Grid: 296

- Suppression in Speech: 290 Nonreciprocal Microwave Components: 396
- Nuclear Industry, Electronics in: 416 Nuclear Reactor: 422, 423, 424, 425, 426
- Electronics: 422
- Instruments: 425
- Power Plant Control Systems: 426
- Safety Aspects of Control Circuitry: 424
- Simulators: 423

Oak Ridge Nonreactor Electronics: 418

Operations Research: 454, 455

- Organization: 454
- Training for: 455
- Optical Filters: 284
- Organization for Operations Research: 454 Oscillators: 257, 281, 401, 428, 433
- Backward-Wave: 281
- Precision Components for: 257
- Standard-Frequency Controlled: 433 Tunable Microwave: 401
- X-Band Rapid-Sweep: 428

P

Personnel Selection and Training: 456, 457, 458

Government Viewpoint: 458

Industry Viewpoint: 457 University Viewpoint: 456 Petroleum Mobile Communications: 384 Phase Detector for Color Reference Oscillator: 366

Phase Measurements in Video Range: 427 Photosensitive Germanium Devices: 441 Piezoelectric Coefficient of Plates: 355 Pinhole Camera, Gamma Ray: 406 Polarization: 228

Waves Reflected from Ionosphere: 228 Potentiometers, Precision Wire-Wound: 261 Pulse Distribution System for TV: 372 Punch Card for Automatic Control: 438

Quartz Crystals, Synthetic: 256 Quartz Delay Lines: 354

- Radar: 327, 330 Stereo "3D" Indicating Systems: 330 Track-While-Scan: 327 Radome Tester: 310 Receivers: 312, 362, 367, 370, 383 Color Television: 367, 370 Nonstandard Primaries: 367 Errors, Effects on Color Reproduction: 370 FM: 383 Impulse Noise: 383 Microwave Radiometric: 312 Transistor, Broadcast: 362 Red Cell Permeation by Water, Measurements: 407 Reference Cavity for C Band: 405 Reflectors: 223 Flat Microwave, Gain of: 223 Reliability Effect of Maintenance on: 253 Reliability Improvement by Field Per-formance Analysis: 447 Reliability in Airborne Systems: 449 Return on Investment: 451 Reverberation for Music Enhancement: 338 Room Acoustics: 349 S Scattering of Waves by Wires and Plates: 218 Secrecy and Electronic Engineering: 417 Servomechanisms, Biological: 415 Servosystem, Optimization: 336 Silicon Diode: 269
- Skin Thickness Measurement: 410 Slot Radiation Conductance: 398 Spectrum Analyzer: 430

Speech, Clipped: 342 Speech Noise Suppression: 290 Speech Sound Recognition: 291 Stereophonic Sound for Movies: 341 Storage Tubes: 273, 274, 275, 276, 277 Half-Tone Picture: 273, 274 High-Speed Dark-Trace: 275 Large Capacity: 276 Noise Limitations: 277 Strip Transmission Line: 398, 399, 400 High-Q Components: 399, 400 Slot Radiation Conductance: 398 Subminiaturization Techniques: 255 Symbolic Methods in Logical Net Design: 204

Т

Telemetering: 314, 317, 323, 324, 325, 326, 332 Antenna for Multiple Operation: 326 Data Interpretation: 314 Magnetic Tape Equipment: 317 Proportional Data Transmission: 332 Pulse Position Modulation Unit: 323 Transmitter: 324, 325 Teletype, Predicted-Wave System: 392 Television: 229, 230, 231, 232, 265, 285, 364, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382 Antenna Problems at UHF and VHF: 232 Clamp Circuit: 373, 378 Color: 265, 366, 367, 368, 369, 370, 376, 377, 378, 379, 380, 381, 382 Clamp Circuit: 378 Distortion in Sequential Displays: 368 Fidelity in Receivers with Nonstandard Primaries: 367 Film Considerations: 379 Film Scanner: 376, 377 Characteristics: 377 Circuits: 376 Magnetic Tape Recording: 381, 382 Phase Detector for Color Reference Oscillator: 366 Picture Tube: 265, 369 Post Acceleration: 265 Single Gun: 369 Reproduction, Effects of Receiver Er-rors on: 370 rors on; 370 Storing on Black-and-White Film; 380 Comb Filters; 285 FCC Rules and Propagation Data; 229 Pulse Distribution System for Network Studio: 372 Transmitter Transfer Switch; 375

- UHF Mixer: 374 UHF Propagation: 230, 231
- Vertical Deflection Circuits: 364 Automatic Damping: 364

Television, Cont'd. WOR-TV Antenna System: 371 Threshold Detection: 295 Thyratron: 267 Current Interruption by Grid: 267 Time Series Analysis: 292 Autocorrelated Error Terms: 292 Tissue, Neutron Depth Dose: 409 Training for Operations Research Groups: 455 Transducers: 241 Linear, Interconnection of: 241 Transducers, Biological: 414 Transistors: 248, 249, 250, 251, 252, 268, 270, 271, 272, 307, 362, 363, 442, 443, 444 Accuracies in Sweep Measurements: 272 Alloyed-Junction: 271 Broadcast Receiver: 362 Circuits: 248, 249, 250, 251, 252 Frequency Scanner: 443 High Power: 268 Noise Test Set: 444 Shift Registors: 307 Small-Signal Parameters: 270 Surface-Barrier: 363 Testing: 442 Transmission Line: 398, 399, 400 Strip: 398, 399, 400 High-Q Components: 399, 400 Slot Radiation Conductance: 398 Transmitters: 324, 325 Telemetering: 324, 325 Traveling-Wave Tubes: 282 Twin Helices: 282 Tuning, Wide-Range Systems: 365 H Ultrasonics: 351, 353, 356, 357, 358, 359, 360 Action on Nerve Tissue: 359 Application to the Brain: 358 Burglar Alarm: 351 Delay Lines: 353

Wave Scattering by Wires and Plates: 218 Wave Propagation: 226, 227, 229, 230, 231 Far Beyond Horizon: 227, 231 At 100 Mc: 227 At UHF: 231 FCC Rules and Data: 229

Effects on Living Cells: 360

Industrial Uses: 356

Through Time Varying Media: 226 UIIF-TV Band: 230

Effect on Electrolytes and Electrode Processes: 357

-

X-Ray Pictures in Color: 408

BOARD OF DIRECTORS, 1955*

J. D. Ryder President

Franz Tank Vice-President

W. R. G. Baker Treasurer

Haraden Pratt Secretary

0

John R. Pierce *Editor*

J. W. McRae Senior Past President

W. R. Hewlett Junior Past President

1955

S. L. Bailey A. N. Goldsmith A. V. Loughren C. J. Marshall (R5) L. E. Packard (R1) J. M. Pettit (R7) B. E. Shackelford C. H. Volhum H. W. Wells (R3)

1955-1956

E. M. Boone (R4) J. N. Dyer (R2) J J. T. Henderson (R8) A. G. Jensen George Rappaport D. J. Tucker (R6)

1955-1957

J. F. Byrne Ernst Webe**r**

George W. Bailey Executive Secretary

John B. Buckley Chief Accountant

Laurence G. Cumming Technical Secretary

> Evelyn Davis Assistant to the Executive Secretary

Emily Sirjane Office Manager

•

EDITORIAL BOARD

John R. Pierce, *Chairman* D. G. Fink E. K. Gannett T. A. Hunter W. R. Hewlett J. A. Stratton W. N. Tuttle

* Numerals in parentheses following Directors' names designate Region number.

TRANSACTIONS OF THE IRE

Published by The Professional Groups of The Institute of Radio Engineers, Inc.

1954 INDEX

Aeronautical and Navigational Electronics Antennas and Propagation Audio Broadcast and Television Receivers Circuit Theory Communications Systems Component Parts Electronic Devices Electronic Computers Engineering Management Information Theory Instrumentation Microwave Theory and Techniques Nuclear Science Quality Control Radio Telemetry and Remote Control Ultrasonic Engineering Vehicular Communications

Editorial Department John R. Pierce, Editor

Alfred N. Goldsmith Editor Emeritus

E. K. Gannett Managing Editor Marita D. Sands Assistant Editor

The Institute of Radio Engineers, Inc. I East 79 Street New York 21, N.Y.

Copyright, 1955, by The Institute of Radio Engineers, Inc.

TABLE OF CONTENTS

General Information		H
Combined Index to Authors	Page	3
Contents of 1RE Transactions	Page	5
Professional Group on Aeronautical and		
Navigational Electronics	Page	-5
Professional Group on Antennas and Propa-		
gation	Page	-5
Professional Group on Audio	Page	6
Professional Group on Broadcast and Tele-		
vision Receivers	Page	7
Professional Group on Circuit Theory	Page	8
Professional Group on Communications		
Systems	Page	8
Professional Group on Component Parts	Page	9
Professional Group on Electronic Devices	Page	10
Professional Group on Electronic Com-		
puters	Page	11

Professional Group on Engineering Manage-		
agement	Page	12
Professional Group on Information Theory.	Page	12
Professional Group on Instrumentation	Page	13
Professional Group on Microwave Theory		
and Techniques	Page	13
Professional Group on Nuclear Science	Page	14
Professional Group on Quality Control	Page	14
Professional Group on Radio Telemetry and		
Remote Control	Page	14
Professional Group on Ultrasonic Engineer-		
ing	Page	15
Professional Group on Vehicular Communi-		
cations	Page	15
Index to Subjects	Page	16
Nontechnical Index	Page	20

GENERAL INFORMATION

The Institute

The Institute of Radio Engineers serves the radio allied electronics, and communications fields by presentation of technical material, and the monthly publication of the PROCEEDINGS OF THE IRE, a technical journal. The Institute also publishes Standards, Professional Group publications and a Convention Record.

Membership has grown since 1912 to more than 42,000 in 1955. Grades of membership depend on the applicant's qualifications, with dues ranging from \$5.00 per year for Students to \$15.00 per year for Members, Senior Members, Fellows, and Associates of more than five years' standing.

PROFESSIONAL GROUPS

To fully serve the IRE membership, Professional Groups have been formed in 23 specialized technical fields, with membership open only to IRE members.

Group activities include the sponsoring of symposia and conferences, and the publication of TRANSACTIONS OF THE IRE, journals containing technical material of special interest to members. To support activities, assessment fees may be levied by Groups on members.

The Proceedings

The PROCEEDINGS has been published without interruption since 1913. Over 5,300 technical contributions have appeared in its pages, portraying a written history of developments in both theory and practice. Contents of papers are the author's responsibility and are not binding on the Institute or members. All rights of republication are reserved by the Institute.

Annual subscription rates in United States, its possessions, and Canada, \$18.00; to college and public libraries ordering direct, \$13.50; other countries, add \$1.00 for postage.

The Transactions

TRANSACTIONS have been published at intervals by Professional Groups since December, 1951. More than 900 specialized technical papers have been made available to Group members to date. All papers published in the TRANSACTIONS are procured and reviewed by the respective Professional Group. Contents of papers are the responsibility of the authors and not binding on the Institute, the Groups, or their members. All rights of republication are reserved by the Institute. The TRANS-ACTIONS are sent gratis to paid Group members.

Subscription rates covering all issues of TRANSAC-TIONS published by all 20 Professional Groups during the twelve-month period starting July 1, 1954: United States, its possessions, and Canada, \$100; colleges and public libraries, \$75. Yearly subscription rates for the TRANSACTIONS published by any single Professional Group: non-members, \$17; libraries and colleges, \$12.75.

COMBINED INDEX TO AUTHORS

Code numbers refer to papers as given in the contents list for each Professional Group. The letters in the code number designate the particular Professional Group, as follows:

- ANE: Aeronautical and Navigational Electronics
 - AP: Antennas and Propagation
 - A: Audio
- BTR: Broadcast and Television Receivers
 - CT: Circuit Theory
 - CS: Communication Systems
 - **CP:** Component Parts
 - ED: Electronic Devices
 - EC: Electronic Computers

Adam, H. R.: CS52 Adler, R.: BTR25 Ahlert, R. H.: ED37 Ahlert, R. H.: ED37 Albright, W. G.: AP116 Aldrich, R. W.: ED29 Mexander, S. N.: EC25 Allaire, R. P.: ED83 Mlen, J. E.: BTR26 Allison, W. M.: CP5 Alsberg, D. A.: ED95 Mtman, J. L.: MTT37 Annnerman, C. R.: AP115 Amos, B.: BTR31 Anderson, E. I.: BTR34 Amos, B.: BTR31 Anderson, E. J.: BTR34 Angelakos, D. J.: MTT39 Apelbaum, J.: ED82 Applegarth, A. R.: AE41 Armstrong, D. B.: CT29 Arndahl, G. M.: EC51 Arnett, H. D.: ED80 Artzt, M.: A81 Astrahan, M. M.: EC51 Atkinson, J. F.: VC39 Avins, J.: BTR21, BTR41 Ayres H. F.: ED112

R

L.

B Ba Hli, F.: CT39 Bailey, S. L.: BTR38 Balamuth, L.: VE10 Balser, M.: IT55 Bangert, J. T.: ED26 Barton, L. E.: BTR17 Bauer, B. B.: A75, A82 Beck, A. C.: CS32, MTT32 Bedrosian, S. D.: CS61 Belevitch, V.: CT45, CT58 Bell, H.: EC32 Bennett, B. J.: CT43 Belevitch, V.: C145, C158 Bell, H.: EC32 Bernett, B. J.: CT43 Bereskin, A. B : A65 Bernstein, M. S.: MTT50 Binns, J. E.: NS1 Biondi, F. J.: ED60 Birdsall, C. K.: ED94 Birdsall, T. G.: IT65 Bittman, C. A.: ED77 Bixler, O. C.: A60 Blachman, N. M.: IT48 Blake, R. F.: TRC5 Bloomsburg, R. A.: BTR45 Bogan, L. B.: CS60 Booth, R. E.: ED54 Boughtwood, J. E.: CS66 Boyd, J. A.: ED119 Boykin, R. S.: CS61 Brewer, G. R.: ED94 Briggs, T. H.: ED42 Brooks, H. B.: I-20 Brown, R. N.: CP6 Brown, R. N.: CP6

Brown, S. P.: CS70 Brown, S. F.: CS70 Brueckmann, H.: CS71 Burnham, J.: CP2 Bushby, T. R. W.: AE36 Buss, R. E.: I-22 Buss, R. R.: ED85 Butterfield, F. E.: AP133 C Cachens, J. C.: AE34 Cain, C. W.: BTR29 Callahan, J. L.: CS12 Cameron, C. F.: CP8 Capelli, M.: AE31 Caprarola, L. J.: ED66 Carlin, H. J.: CT35 Carman, J. N.: ED77 Caywood, W. P., Jr.: IT49 Cervenka, F. J.: CS51 Chaney, J. G.: AP117 Chapin, E. W.: BTR48 Chapman, R. D.: CS23, MTT23 Chittick, K. A.: BTR48 Chapman, R. D.: CS23, MTT23 Chittick, K. A.: BTR48 Clark, M. A.: AP128 Clark, M. A.: AF7 Clark, N., Jr.: UE8 Clark, W. A.: IT58 Claypool, W. S.: VC36 Chement, L. M.: BTR37, QC12 Cohen, R. M.: ED31 Cohn, S. B.: MTT41 Coleman, A. F.: EM11 Coleman, A. F.: EM11 Coleman, A. F.: AP124 Collins, A. L.: ED126 Comerci, F. A.: A80 Comley, A.: EC34 Comuntzis, M. G.: CP11 Convert, G.: ED116 Corput, V. D., Jr.: CS38 Cottingham, J. G.: NS3 Convert, G.: ED116 Corput, V. D., Jr.: CS38 Cotingham, J. G.: NS3 Crain, C. M.: AP114 Crain, C. W.: ED24 Creedon, J. E.: ED58 Cronshagen, A.: QC18 Crownover, J. W.: CP12 Cruser, V. I.: CS69 Crytzer, S.: ED35 Csepely, J. A.: CP7 Cunningham, W. J.: EC48 Cysack, F. H.: CS67

D Dalman, C. G.: ED105 Danielson, W. E.: ED121 Danos, M.: MTT47 Danser, J. W.: CS59 Davies, G. L.: A77 Davis, L., Jr.: ED88 Davis, R. C.: IT40 Day, C.: ED52 Deschamps, G. A.: CS33, MTT33

- EM: Engineering Management
- IT: Information Theory
- 1: Instrumentation
- MTT: Microwave Theory and Techniques NS: Nuclear Science

 - OC: Reliability and Quality Control
- TRC: Radio Telemetry and Remote Control
- **UE:** Ultrasonics Engineering
- VC: Vehicular Communications

Deutch, R.: 1T44 de Wolf, F. C.: CS42 Dietsch, C. G.: CS20 Dobischek, D.: ED74 Dodrill, G. E.: VC39 Doehler, O.: ED116 Donald, D. D.: CS57 Dorr, R.: BTR30 Dorr, R.: BTR30 Drenick, R. F.: IT63 Drennan, J. E.: ED57 Dropkin, H. A.: AE34 Duffendack, O. S.: ED39 Dukat, F. M.: QC19 Dwork, L.: ED27 Dyke, E.: CS29, MTT38 \mathbf{E} Edwards, E. V.: ED63 Elias, P.: IT53 Elliott, R. S.: AP122 Elliott, R. S.: AP122 Ellis, C. E.: EM4 Erath, L. W.: TRC8 Espersen, G. A.: ED128 Everitt, W. L.: A58

F Fagen, M. D.: UE7 Fairbanks, G.: A58 Farley, B. C.: IT58 Feinstein, A.: IT51 Feinstein, J.: AP115, AP121 Felton, W. W.: AE29 Ferris, W. R.: ED110 Finison, H. J.: EM7 Fink, D. G.: BTR41 Finke, II. A.: I-21 Firle, T. E.: ED87 Fischer, J. T.: A81 Fitch, J. L.: I-22 Foss, F. A.: EC45 Fossier, M. W.: EC50 Foster, R. M.: CT60 Fowler, A. B.: ED92 Fowler, V. J.: AP130 Fox, G. W.: CS29, MTT29 Fox, W. C.: UT65 Fraser, W. C. G.: AP131 Frayne, J. G.: A70 Freas, R. R.: AE27 Freely, J.: ED74 Freeman, H.: EC26 Fried, C.: ED115 Freeman, H.: EC26 Fried, C.: ED115 Fyler, N. F.: ED24 Fyler, N. J.: BTR29 G

Gabor, D.: CT53 Gamson, E. R.: CP14, QC20 Gates, P. E.: ED55 Gaw, N.: CP9 Gerhard, J. R.: AP114 Ghose, R. N.: AP117

Gifford, R. P.: VC37 Gillis, T. B.: ED35 Gilman, G. W.: CS40 Giodano, P. J.: MTT38 Given, I. K.: CS56 Glenn, A. B.: BTR42 Goddard, C. T.: ED84 Goetz, D.: UE9 Golay, M. J. E.: IT52 Goldberg, H.: EM2 Gordon, B. M.: EC27 Gottschalk, W. M.: ED107, ED128 Gottschalk, W. M.: E ED128 Gow, J. D.: BTR30 Grammer, G.: BTR35 Gratien, J. W.: A61, A62 Green, E.: CT57 Greenhow, C. R.: ED111 Greenslit, C. L.: AE37 Grien, G. W., Jr.: AE26 Grimm, H. H.: ED109 Grinich, V.: CT50 Grinich, V.: CT50 Gruen, W. J.: BTR20 Gruenberg, H.: AP132 Guillemin, E. A.: CT25, CT48 Gyorgy, E. M.: MTT51

Hall, J. D.: ED55 Halliday, R. G.: CT19 Halvorsen, R. L.: MTT24, MTT29 CS24, L.: MTT24, MTT29 Hamer, H.: EC49 Hanley, T. E.: ED61 Harp, M. C.: CS25, MTT25 Harris, B.: BTR21 Harris, W. A.: ED120 Hasse, A. P.: ED44, ED45 Hattery, L. H.: EM10 Haus, H. A.: ED124 Hazen, D. F.: CS59 Hazen, D. F.: CS59 Hedrich, A. L.: UE6 Henesian, A.: CP14, QC20 Herrick, J. F.: UE1 Hetland, G., Jr.: ED85 Hickle, J. C.: ED45 Higginson, G. M.: CS50 Hill, F. R.: CS35 Hilliard, J. K.: A84 Hoffmann, L. P.: CS03 Hilliard, J. K.: A84 Hoffmann, J. P.: CSo3 Honey, R. C.: MTT35 Hopfer, S.: MTT54 Hopkins, M.: EM8 Horton, C. E.: ED44 Horvath, J. S.: BTR21 Houghton, W. D.: A81 Howard, R. C.: EC43 Huang, C.: ED27 Huang, C.: ED27 Huber, G. H.: CS64 Huer, C.: BTR25

Continued on page 4

Transactions Index---3

Combined Index to Authors

Huggins, W. H.: CT46, ED127 Hurley, R. B.: CP13 Huskey, H. D.: EC51

I

Ito, Y.: AE43

Jacobs, H.: ED74 Jaeger, R. P.: A58 James, K.: BTR22 Johnson, C. M.: MTT49 Johnson, J. H.: CS61 Jones, E. M. T.: AP129 Jones, P.: CT20 Jones, R. E.: AP125 Jones, W. R.: ED30, ED40, QC16 Joyce, M. V.: CT33

Κ

K Kalmus, H. P.: AE34, UE6 Kaufman, W. M.: 1749 Kautz, W. H.: CT37 Kearny, T. J.: UE4 Kebby, M. H.: CS25, CT25 Kelleher, K. S.: AP124 Kellogg, E. W.: A72 Kenn, V.: ED50 Kiebert, M. V., Jr.: TRC2 King, W. C.: MTT45 Kingsley, H. F. X.: CS62 Kline, M.: CP9 Klopfenstein, R. W.: AP126 Klotter, K.: CT26, CT52 Knecht, W.: ED51 Knoblaugh, A. F.: A71 Knoll, M.: ED78 Kohl, W. H.: ED34, ED Kohl, W. H.: ED34, ED68, ED70 ED70 Kovach, L. D.: EC34 Kroll, N. M.: MTT50 Krulee, R. L.: ED113 Krull, A. R.: ED99 Krusen, F. H.: UE1 Ku, Y. H.: CT51 Vumpfor, R. D. + ED60 Kumpfer, B. D.: ED62 Kyser, R. H.: ED80

L

L Laemmel, A. E.: 1T47 Lanciani, D. A.: MTT40 Lane, J. F.: AE33 LaPlante, R. A.: ED108, ED128 Larkin, K. I.: ED102 Lashinsky, H.: MTT47 Lawton, C. S.: CS58 Lee, L. K.: CP1 Lehan, F. W.: TRC7 Lehr, C. G.: ED126 Leiner, A. L.: EC25, EC30 Lenehan, J. J.: CS27, MTT27 Lesk, I. A.: ED29 Levine, D.: AE28 Levine, R. H.: CS68 Levy, I. E.: ED49 Lewis, N. W.: CT56 Libbey, R. L.: A83 Linville, T. M.: EM12 London, A. L.: ED86 Loveridge, L. E.: A61 Lubkin, S.: EC40 Lyman, R. C.: IT49 Lynch, W. W.: CS53

M

Mack, A.: CS68 MacQuivey, D. R.: CS45 Maggs, C.: EĐ59 Maginnis, W. P.: CS21, MTT21 Mallinckrodt, A. J.: IT50 Maloney, E.: ED48

Transactions Index-4

Mandelbrot, B.: IT46 Manuelorot, B.: 1140 Manuelorot, B.: A140 Manning, L. A.: AP123 Maron, M. E.: EC29 Martin, D. W.: A71, A73 Mason, S. J.: CT31 Mauchley, J. W.: EC51 May, J. E.: UE3 Mayo, B. R.: ED109 McBride, W. J., Jr.: ED64 McClain, E. F.: ED110 McCool, C. D.: ED46 McDonough, S. L.: AE44 McGill, W. J.: IT60 McLeod, W. W., Jr.: ED101 McHwain, K.: BTR27 McMahon, M. E.: ED87 McRuer, D. T.: CT19 Meaker, L. S. F.: CS55 Meissner, P.: ED47 Mctzger, S.: CS30, MTT30 Mannheimer, D.: AE40 Metzger, S.: CS30, MTT30 Meyer, M. A.: EC27, EC31 Michael, F. R.: ED42, ED43 Middlekamp, L. C.: BTR48 Middleton, D.: ED106, IT39, 1162 1T62 Miessner, B. F.: A76 Miles, P. D.: CS43 Miller, W. A.: CS13 Miller, W. F.: CS64 Mitra, A. P.: AP125 Mookus, E.: ED35 Mooers, C. N.: 1T61 Moore, E. F.: EC51 Morgan, A. R.: A81 Morgan, H. K.: A74 Morgan, R. B.: ED76 Morganl, R. B.: EC35 Morrill, C. D.: EC35 Moulton, A. B.: CS14 Mueller, R.: ED104 Muller, D. E.: EC38 Mushiake, Y.: AP135

N Nail, J. J.: AP113 Needle, J. S.: ED96 Neely, G. M.: CS49 Nelson, E. C.: EC39 Nelson, J. H.: CS15 Nethercot, A. H., Jr.: MTT46 Neubauer, J. R.: VC33 Newhouse, R. C.: AE39 Nicola, R. N.: EC27 Noble, J. J.: A84 Nordahl, J. G.: CS65 Normau, R. Z.: IT67 Notz, W. A.: EC30

Okress, E. C.: ED65 Okun, A. M.: CP10 Olson, H. F.: A81 Olthuis, R. W.: CS34, MTT34 Orchard, H. J.: CT57 Ornstein, W.: VC35 Oswald, J.: CT59

Page, C. H.: CT47 Palmer, H. W.: ED27 Pan, W. Y.: BTR18, ED28 Pankove, J. I.: ED25 Pappas, N. L.: I-23 Pardue, D. R.: UE6 Partone E.: UC26 Pardue, D. R.: UE6 Parsons, E.: EC26 Partridge, G. R.: EC46 Pasek, D. M.: AE32 Paul, F. A.: CP1, CP3 Peck, S. C.: BTR19 Peeler, G. D.: AP124 Pennell, E. S.: UE5

Percival, W. S.: CT60 Peterson, W. W.: IT65 Petry, C. A.: CS54 Pettit, J. M.: CT36 Peyser, W. P.: I-24 Phinney, T. W.: A64 Pierce, J. R.: ED114 Place, H.: CS21, MTT21 Plotkin, M.: NS3 Podolsky, L.: CP4 Polimerou, L. G.: EC42 Pope, W. A.: AP134 Pope, W. A.: AP134 Porter, W. A.: CS41 Post, E. A.: AE38 Powell, F. H.: QC13 Pratt, IL: CS39 Pratt, IL: CS39 Price, R.: IT64 Price, R. L.: A66 Pritchard, W. L.: ED102 Pryslak, N. E.: ED67 Pugsley, D. W.: BTR39 Purington, E. S.: A69 Purinton, H. G.: EM3 Putzrath, F. L.: A63 Pynn, R. D.: CS22, MTT22

0 Quirk, C.: BTR31

Rabinowitz, S. J.: MTT48 Raka, E. C.: NS3 Read, A. H.: CS46 Records, J. K.: ED109 Reed, I. S.: IT54 Reed, R. H.: AP127 Painzeld, L. ED64 Reed, 1, S. 1154 Reed, R. H.: AP127 Reingold, I.: ED63 Reza, F. M.: CT24, CT29 Rhoads, A. S., Jr.: ED105 Rhodes, H. A.: CS31, MTT31 Ribe, M. L.: CS70 Richman, D.: BTR28 Riddle, F. M.: TRC6 Riddle, R. L.: AP116 Ridenour, L. N.: EC51 Rideout, V. C.: EC32 Rittner, E. S.: ED37, ED38 Rives, T. C.: EM1 Roach, J. F.: ED87 Roberts, F.: BTR47 Roberts, F.: BTR47 Roberts, F.: BTR47 Roberts, W. O.: CS16 Roberts, W. C.: ED81 Roberts, W. S.: BTR48 Ro Rosen, H. A.: EC50 Rothe, H.: ED125 Rothe, H.: ED125 Rothlein, B. J.: ED92 Rothstein, J.: EM5, IT56 Roveto, J. P.: BTR46 Rowe, E. G.: QC17 Rowe, W. E.: BTR29, ED24 Rubin, L. G.: ED88 Buddl, L. D. CE190 Rudd, J. B.: CS19 Ruddisuhle, E. J.: CS25, MTT25 Rush, J. H.: CS16 Rutledge, W. C.: ED38 Ryan, R. D.: EC37

S Samuel, A. L.: EC51 Sandretto, P. C.: AE30 Savant, C. J.: EC43 St. John, G. E.: ED118 Schaffner, J. S.: CT28 Schiesser, A.: A59 Schlack, N. F.: CS17 Schlesinger, K.: BTR24, BTR49 Schramm, C. W.: CS64 Schwartz, L. S.: QC15 Schwartz, R.: A80

Schwartz, R. F.: MTT42 Schwarz, R. J.: CT55, CT56 Selsted, W. T.: A78 Seybold, A. M.: ED41 Shanahan, W. J.: AE32 Shannon, C.: EC51 Shannon, W. W.: BTR23 Sharaf, H. F.: UE2 Sharpless, W. M.: MTT53 Shekel, J.: CT30 Shelton, E. J.: ED103 Shepherd, W. G.: ED33 Sherman, H.: EM6 Shiowitz, M.: TRC3 Shrader, T. M.: ED71 Sichak, W.: AP113 Siegert, A. S. F.: IT38 Silbertstein, R.: AP120 Silver, M.: ED90, ED91 Silvernan, D.: CP9 Silvernan, R. A.: UT55 Silver, M.: E.1990, E.D91 Silverman, D.: CP9 Silverman, R. A.: IT55 Skar, R. C.: BTR50 Skellett, A. M.: A61 Skinner, L. V.: CT32 Slepian, D.: IT42 Smith, F. C., Jr.: TRC8 Smith, G. A.: CT27 Smith, J. L.: EC30 Smith, O. J. M.: CT17, IT45 Smullen, L. D.: ED115 Snyder, R. H.: A78 Sollenberger, T. E.: IT50 Soltes, A. S.: EC33 Spanke, W. F.: CS48 Spencer, R. C.: CT34 Sprague, J. K.: CP4 Stansel, F. R.: I-25 Stegan, R. J.: AP127 Stello, P. E.: ED77 Stephanz, K. R.: ED69 Sterling, G. E.: BTR36 Stilse, K. P. CS18 Silverman, D.: CP9 Stephanz, K. R.: ED69 Sterling, G. E.: BTR36 Stiles, K. P.: CS18 Stone, R. P.: ED79 Stout, T. M.: CT22 Straub, W. D.: ED88 Strum, P. D.: ED128, MTT36 Stubbs, G. S.: NS2 Swets, J. A.: IT66

ed)

Talkin, A. I.: CT44 Talkin, A. I.: CT44 Tallman, O. G.: EM13 Talpey, T. E.: MTT44 Tanaka, I., AE43 Tanner, R. L.: AE42 Tanner, W. P., Jr.: IT66, IT67 Taub, N. B.: CT38 Tharp, N. B.: CS26, CT26 Thomas, D. E.: ED89 Thomson, W. E.: CT55 Todd, F. C.: ED36, ED37 Torsch, C. E.: BTR32, BTR33 Truxal, J. G.: CT42

Udelson, B. J.: ED58 Ullman, F. G.: ED75

Vance, R. L.: ED59 van der Ziel, A.: ED73, ED93 Van Meter, D.: IT62 Varallo, F. A.: 1-26 Veronda, C. M.: ED97 Vilbig, F.: A68 Von Ohlsen, L. H.: ED117

W

Wait, J. R.: AP134 Wakefield, E. H.: ED56 Continued on page 5

Combined Index to Authors

Walters, L. G.: CT21 Wargo, P.: ED72 Watanabe, S.: IT59 Waters, W. E., Jr.: ED112 Watson, D.: EM9 Webber, S. F.: ED98 Webster, F. D.: CS47, VC34 Webster, F. D.: CS36 Webster, S. K.: A67 Weinberger, A.: EC30 Weisner, J. B.: ED100

AE34

Weiss, M. T.: MTT51 Weisz, W. S.: VC38 Welch, P.: QC17 West, C. F.: TRC1, TRC4 Westcott, J. H.: CT41 Whinnery, J. R.: ED123 White, R. C.: ED54 White, W. D.: CT49 Whittier, R. J. E.: QC14 Widrow, B.: EC47 Wiesner, J. B.: EC51 Williams, C. E.: AP114 Wilpon, S.: A80 Wilson, R. D.: ED53 Wimberly, F. T.: AE33 Winkler, M. R.: A79 Winkler, S.: CT38 Woll, H. J.: A63 Woods, R. E.: ED112 Woodward, J. G.: A81 Wyler, E. N.: ED36

Y York, D. E.: VC40 Youla, D. C.: IT43 Young, G. O.: IT41 Young, K. D.: CS60 Young, W. J.: VC41

Z Zeirdt, C. H., Jr.: ED32 Zenel, J.: A81 Zillis, G. S.: CS59 Zweizig, J. R.: EC41

CONTENTS OF IRE TRANSACTIONS

Professional Group on Aeronautical and Navigational Electronics

1954

Vol. ANE-1, No. 1, March, 1954

Number	,	Page
1410110101	Special Announcement, John E. Wilkinson	1 3
AE26	The Information Content of Air-Ground Messages,	5
AE27	Airborne Loran Receiver—the AN/APN-70, R. R. Freas. Antenna Scan Considerations, Daniel Levinc.	17 26
AE28 AE29	Some Channel Allocation Problems in Air-Ground Voice Communications, Walter W. Felton	-11
	Vol. ANE-1, No. 2, June, 1954	
AE30	Dayton Conference, K. C. Black	$ \begin{array}{c} 1 \\ 2 \\ 3 \end{array} $
AE31 AE32	Radio Altimeter, M. Capelli	
	Instrument Landing, D. M. Pasek and W. J. Shana- han.	7
AE33	The AN/APN-22 Radio Altimeter, F. T. Wimberly and J. F. Lane	8

Vol. ANE-1, No. 3, September, 1954

Index Number		Page
	East Coast Conference, K. C. Black	1
	A Maintenance Plan for Airborne Radio Equipment, T. R. W. Bushby	2
	A Thunderstorm Avoidance Radar for Civil Aircraft,	1
AE38	The Operational Applications of Airborne Radar, E. A. Post.	15
AE39	Feedback Relations in Military Weapon Systems, R. C. Newhouse.	24
	Vol. ANE-1, No. 4, December, 1954	
AE40	Airborne Radar as a Navigational Aid, David Mann-	
AE41	heimer. A New Airborne DME Interrogator Designed for Sta- ble Operation and Ease of Maintenance, A. R. Ab-	

Die Operation and Pase of Infinite during 11 11 11	10
plegarth	10
High-Voltage Problems in Flush and External Aircraft	
HF Antennas, R. L. Tanner	16
Development of Ring Goniometer for Radio Direction	
Finders, Ito and Tanaka,	20
Electronic Simulators for Study of Aircraft Flight	
Paths. S. L. McDonough	24

Professional Group on Antennas and Propagation

T . . . J . . .

 $\frac{15}{22}$

1954

Nonquantized Frequency-Modulated Altimeter, II. P.

AE35 Corrections.....

Kalmus, J. C. Cacheris and II. A. Dropkin

Vol. AP-2, No. 1, January, 1954

Index Nuniber		Page
	News and Views	1
	UHF Omnidirectional Antenna Systems for Large Air- craft W. Sichak and J. J. Nail	6
API14	A Preliminary Survey of Tropospheric Refractive In- dex Measurements for U. S. Interior and Coastal Regions, C. M. Crain, J. R. Gerhardt and, C. E.	
AP115	Williams Some Stochastic Problems in Wave Propagation-	1.67

Number		Page
	Part I, Joseph Feinstein.	2.3
	A Preliminary Study of Fading of 100 Megacycle FM Signals, R. L. Riddle and C. R. Ammerman	30
	VIIF Field Intensities in the Diffraction Zone, R. N. Ghose and W. G. Albright	35
AP118	Mutual Impedance of Stacked Rhombic Antennas, J. G. Chuney	

PGAP-2, January, 1954 (Cont'd.)

Continued on page 6

Transactions Index-5

Index		
Number		Page
	Why Transactions? (Editorial)	41
	News and Views	42
AP119	An Experimental Investigation of the Single-Wire	
	Transmission Line, T. E. Roberts, Jr.	46
AP120	Sweep Frequency Backscatter—Some Observations	
	and Deductions, Richard Silberstein.	56
AP121	Some Stochastic Problems in Wave Propagation-	
	Part II, Joseph Feinstein.	63
AP122	On the Theory of Corrugated Plane Surfaces, R , S ,	
1.0.0.1	Elliott	71
AP123	Meteoric Radio Echoes, L. A. Manning	82
	$V_{0} \to V_{2} \to V_{0} \to V_{0} \to 1051$	

Vol. AP-2, No. 3, July, 1954

	News and Views.	-91
AP124	Virtual Source Luneberg Lenses, G. D. M. Peeler,	
	K. S. Kelleher, and H. P. Coleman	-94

- , S. Kelleher, a ind H. P. Cole 99
- 103

PGAP-3, July, 1954 (Cont'd.)

Index Number	Sterey and P. H. Dead	Page 109
AP128	Stegen and R. II. Reed A. New Antenna Feed Having Equal E- and H-Plane	109
AP129	Patterns, <i>Alvin Chlavin</i> Paraboloid Reflector and Hyperboloid Lens Antennas,	113
	E. M. T. Jones.	119
	Vol. AP-2, No. 4, October, 1954	
10120	News and Views.	129
AP130	Analysis of Helical Transmission Lines by Means of the Complete Circuit Equations, V. J. Fowler	132
AP131	Radiation from a Vertical Dipole over a Stratified Ground, J. R. Wait and W. C. G. Fraser	144
AP132	A Waveguide Array for Solar Noise Studies, II. Gruen-	
AP133 AP134	berg Dielectric Sheet Radiators, F. E. Butterfield	$\frac{147}{152}$
ML194	Evaluation of Errors in an Eight-Element Adcock An- tenna, J. R. Wait and W. A. Pope	159

6

	Communications:	
AP135	An Exact Step-Up Impedance-Ratio Chart of a Folded	
	Antenna, Y. Mushiake	163

Professional Group on Audio

1954

Vol. AU-2, No. 1, January-February, 1954

Index Num		Page
	PGA Chapter News	0
	San Diego Chapter Activities. Philadelphia Chapter Events Summary of Available Tape Scripts. PGA Briefs.	1 1 2 3
	Audio News	
	Department of Defense Symposium on Magnetic Re-	
A57	Cording RCA Records Color Television on Magnetic Tape An Acoustic Lens as a Directional Microphone, <i>M. A.</i>	34
A58	Clark Method for Time or Frequency Compression-Expansion of Speech, G. Fairbanks, W. L. Everitt and R. P.	5
A59	Jaeger A Device for Time Expansion Used in Sound Recording, II. Schiesser (translation by V. Ruvalds)	7 12
A60	Mechanical Components for Handling Magnetic Record-	
A61	ing Tape, O. C. Bixler Electron-Beam Head for Magnetic Tape Playback, A. M. Skellett, L. E. Loveridge, and J. W. Gratian	15 23
A62	Investigation of Core Structures for the Electron-Beam Reproducing Head, J. W. Gratian	27
	Vol. AU-2, No. 2, March-April, 1954	
A63	A Note on Noise in Audio Amplifiers, H. J. Wall and F. L. Putzrath	39
	PGA News	
	Houston Chapter PGA, L. A. Geddes	42 42 43
A64	PGA Briefs The Vagabond Wireless Microphone System, T. W. Phinney	40
A65	Phinney. A High-Efficiency High-Quality Audio-Frequency Power Amplifier, A. B. Bereskin.	49
A66 A67	The Cascode as a Low Noise Audio Amplifier, R. L. Price An All-Transistor Hearing Aid, S. K. Webster	60 65
	Vol. AU-2, No. 3, May-June, 1954	
	PGA News	
	Chairman's Report 1953–54, Marvin Camras Treasurer's Report 1953–54, B, B, Bauer	71 72

""	A	Inday (6
Iransac	tions	Index—	υ

PGAU-2, May-June, 1954 (Cont'd.)

Num		Page
	Editorial Committee Report 1953–54, D. W. Martin. PGA Sessions at National IRE Convention PGA Briefs	72 73 74
	PGA Chapter News Cleveland Chapter Has Stereo Sound Symposium, <i>Albert Preisman</i> IRE Technical Committee News	75
A68	Sound Recording and Reproducing Committee, M. S. Corrington	76
A69	Analyzer, Friedrich Villerig. Dynamic Amplifiers for Phonograph Reproduction, E. S.	76
A70	Purington Components and Machanical Considerations for Mag-	80
A71	netic Sound on 35 mm Film, J. G. Frayne A Loudspeaker Accessory for the Production of Rever-	86
	berant Sound, D W. Martin and A. F. Knoblaugh	95
	Vol. AU-2, No. 4, July-August, 1954	
A72 A73	Comment on Flutter Standards, E. W. Kellogg High Fidelity in Musical Tone Production? D. W. Mar- lin	99 102
	PGA News Philadelphia Chapter Activities, M. S. Corrington Cincinnati Field Trip to Dayton, E. M. Jones PGA Briefs	104 104 105
A74 A75 A76	 IRE Technical Committee News Recording and Reproducing Committee, M. S. Corrington. Natural Sound Reproduction, H. K. Morgan. Equivalent Circuit Analysis of Mechano-Acoustic Structures, B. B. Bauer. Frequency Modulation Phonograph Pickups, B. F. Miessner. 	106 106 112 121
	Vol. AU-2, No. 5, September–October, 1954	
	PGA News Houston Chapter PGA, <i>Les Geddes</i> Reports on Tapescripts Committee, <i>A. B. Jacobsen</i> PGA Briefs	131 131 132
	Continued on page 7	

Ì۴

PGAU-2.	Novem	ber–December,	1954 ((Cont'd.)
---------	-------	---------------	--------	-----------

Index Numb	ber	Page	Index Number
	Magnetic Recorders for Data Recording Under Adverse Environments, G. L. Davies	100	PGA Chapter News
	Magnetic Recording—A Report on the State of the Art, W. T. Selsted and R. H. Snyder	137	1954–1955 PGA Committees Λ81 A System for Recording and Reproducing Television Sig
	Cathode Bias Resistor for Class A ₁ Triode, M. R. Wink-	145	A81 A System for Recording and Reproducing Television of nals, II. F. Olson, W. D. Houghton, A. R. Morgan J. Zenel, M. Artzl, J. G. Woodward and J. T. Fischer.
Α80	Navy Standardization of 4-inch Magnetic Tape and Re- corder-Reproducers, F. A. Comerci, S. Wilpon and R. Schwartz.		A82 Correction: Equivalent Circuit Analysis of Mechano Acoustic Structures, <i>B. B. Bauer</i>
	Vol. AU-2, No. 6, November-December, 1954		A83 A Miniature High-Gain Audio Amplifier, R. L. Libbey, A84 The "Lipstik" Condenser Microphone System, J. K Hilliard and J. J. Noble
	PGA News PGA at WESCON	155	Cumulative Index for 1954, W. R. Ayres

Professional Group on Broadcast and Television Receivers

PGBTR-5, January, 1954

Index Number	Pag	;e
Minutes of the Meeting		1
BTR17 An Experimental Transis	stor Personal Broadcast Re-	6
BTR18 Investigation of UHF	felevision Amplifier Tubes,	4
RTR 19 A Disc-Seal Triode as a U	HF Amplifier, S. Christopher	1
Walf I Cruan		6
BTR21 Improving the Transient ceivers (Abstract), J. A	Response of Television Re- vins, B. Harris and J. S. Hor-	4
BTR22 A Practical Adaptation o Kinescope-Screen Col	f the Barnes Colorimeter for or Determination, Kenneth	-==
RTR73 The Barnes Colorimeter	Applied to Television Qual-	9
BTR24 Pulsed Envelope Detect	tion of Color Signals, Kurt 5	53
BTR25 Color Decoder Simplifica flection Tube, Robert A	tions Based on a Beam De- Idler and Charles Heuer	4
BTR26 Beat Between Sound Ca	rrier and Color Signal Com- n Receiver, John E. Allen., 7	1
BTR27 Discussion of Paper ". Committee Field Test	ational Television System	37
BTR28 The DC Quadricorrelator	A Two-Mode Synchroniza-	4
DTD20 The CBS Colortron, A	Color Picture Tube of Ad- act), N. F. Fyler, W. E. Rowe	>5
RTR30 Operation of the Chron	natron on NTSC Standards	96

PGBTR-6, April, 1954

BTR31	Dorman D. Israel Factors Affecting the Correlation of TV Picture Qual- ity Between Field and Laboratory Signals, Bernard
BTR32	Amos and Carl Quirk

PGBTR-6, April, 1954 (Cont'd.)

Index Number		Page
BTR33	Extension of the Balanced-Transient Response Prin- ciple to Color Television Yokes, C. E. Torsch.	33
BTR34	NTSC Ad Hoc Committee on Amateur-Color TV Interference, Earl I. Anderson	.36
BTR35	Industry-Amateur Cooperation, George Grammer	- 39
BTR36	Blights on the Radio Spectrum, George E. Sterling.	42
BTR37	Television Receiver Interference Industry Record to Date. L. M. Clement.	50
BTR38	Measurement and Standards for Control of Spurious Radiation, Stuart L. Bailey	59
BTR39	The Ignorance of the IF in TV Receivers, D. W. Pugsley	65
BTR40	Spurious Radiation from TV Receivers, K. A. Chit-	71
BTR41	Industry-Wide Cooperation Under the JIAC Spurious Radiation Program, Donald G. Fink	78
BTR42	Study of Noise Reduction by Feedback in Ultra-High Frequency Amplifiers, A. B. Glenn	82

PGBTR-7, July, 1954

Minutes of the Meeting of the PGBTR Administra-	
tive Committee	1
UHF Tuner Design for 6BA4 Amplifier, Ralph S.	
Brown	4
IF Amplifier Design for Color TV Receivers, Jack	
Anins	14
The Measurement of Yoke Astigmatism, R. A.	
Bloomsberg	26
Semiconductor Diodes for TV Receivers, J. P. Roveto	.34
A New Approach to Series Heater Strings for Televi-	
sion. Frank Roberts	.30
Interference to Color and Monochrome TV Receivers	
by Oscillator Radiation and Other CW Signals,	
W. K. Roberts, L. C. Middlekamp and E. W. Chapin	47
	tive Committee. UHF Tuner Design for 6BA4 Amplilier, Ralph S. Brown IF Amplifier Design for Color TV Receivers, Jack Avins. The Measurement of Yoke Astigmatism, R. A. Bloomsberg. Semiconductor Diodes for TV Receivers, J. P. Roveto A New Approach to Series Heater Strings for Televi-

PGBTR-8, October, 1954

2		The Vectroscope and Its Applications in Color TV, FM and Radio Navigation, Kurt Schlesinger	1
17	BTR50	A Method for Determining Q and Selectivity of Low- loss Parallel Resonant Circuits, <i>Robert C. Skar</i>	14

76

1954

Vol. CT-1, No. 1, March, 1954

Index Numbe	· 7	Pag
	Abstracts of the Servomechanism Papers	
CT17	Editorial, Trends in Feedback Systems, Otto J. M.	
CT18	Smith.	
	Nonlinear Control Systems with Random Inputs, Richard C. Booton, Jr.	(
CT19	-A Method of Analysis and Synthesis of Closed-Loop	
	Servo Systems Containing Small Discontinuous	
	Nonlinearities, D. T. McRuer and R. G. Halliday	19
CT20	Stability of Feedback Systems Using Dual Nyquist Di-	
	agram, Paul Jones	33
CT21	Optimum Lead-Controller Synthesis in Feedback-Con-	
	trol Systems, Louis G. Walters.	4
C″F22	On the Comparison of Linear and Nonlinear Servo-	1.
	mechanism Response, T. M. Stout	-40
СТ23	Predictor Servomechanisms, Lawrence M. Silva	50
CT24	Conversion of a Brune Cycle with an Ideal Transformer	
	into a Cycle without an Ideal Transformer, F. M.	
	Reza	7

Correspondence:

CT25	What is Nature's Error Criterion?, Ernst A. Guillemin	
CT26	Multi-Loop Nonlinear Systems, K, Klotter	

- 76 77 Are Bibliographies Wanted? G. Allan Smith...... PGCT News Section. CT27
- 78

Vol. CT-1, No. 2, June, 1954

	Abstracts
CT28	Abstracts Simultaneous Oscillations in Oscillators, <i>Johannes S.</i> <i>Schaffner</i> .
СТ29	Schaffner. Synthesis of Transfer Functions by Active RC Net- works with Feedback Loops, D. B. Armstrong and F. M. Reza.
CT30	Reciprocity Relations in Active Three-Terminal Ele- ments, <i>Jacob Shekel</i>
СТ31 СТ32	Power Gain in Feedback Amplifiers, Sam J. Mason Spectra of Waves with Periodic Modulation, Leo V. Skinner.
СТ33 СТ34 СТ35	Correspondence: What is Nature's Error Criterion? Maurice V. Joyce Network Synthesis and the Moment Problem, Roy C. Spencer The Champions, H. J. Carlin
(155	PGCT News: Minutes of Administrative Committee Meeting Reports of PGCT Committees. Chapter News. General Assembly of URSI.
	Vol. CT-1, No. 3, September, 1954 Abstracts of Papers in this Issue

PGCT-1, September, 1954 (Cont'd.)

Ð

Index		
Numbe	27	Page
СТ36	Editorial-The International Scientific Radio Union,	0
	J. M. Pettit	2
CT37	The Approximation Problem, W. H. Kautz	4
CT38	The Approximation Problem of Network Synthesis,	
CT 39	S. Winkler.	ξ.
CT37	A General Method for Time Domain Network Synthe-	
CT40	sis, F. Ba IIIi Transient Synthesis in the Time Domain, W. II. Kautz	21
CT41	The Introduction of Constraints into Feedback-System	21
	Designs, J. II. Westcott.	30
CT42	- Numerical Analysis for Network Design, J. G. Truxal	49
CT43	A Note on Filter Synthesis, B, J, Bennett	61
CT44	Transient Response of Cascaded-Tuned Circuits, A. I.	
	Talkin	- 65
	Correspondence:	
CT45	On the Bott-Duffin Synthesis of Driving-Point Imped-	
	ances, V. Belevitch.	68
CT46	A Low-Pass Transformation for Z-Transforms, W. H.	00
	Huggins	- 69
CT47	Error-Criterion vs. Harmonic Content, C. H. Page	70
CT48	What Is Nature's Error Criterion? E. A. Guillemin,	70
	PGCT News Section	71

Vol. CT-1, No. 4, December, 1954

CT49	Nonlinear Filters, W. D. White	0
CT50	- Erratum: Approximating Band-Pass Attenuation and	~
	Phase Functions, V. Grinich.	Ş
CT51	Analysis of Multi-Loop Nonlinear Systems, Y. H. Ku	(
CT52	Steady-State Oscillations in Nonlinear Multi-Loop	
() (1) =)	Circuits, K. Klotter	- 13
CT53	Communication Theory and Cybernetics, D. Gabor.	-10
CT54	The Measurement and Representation of Nonlinear	
()/I) = =	Systems, R. C. Booton, Jr.	- 32
CT155	A Theory of Time Series for Waveform Transmission	
CT56	Systems, W. E. Thomson (Reviewed by R. J. Schwarz)	- 35
C LOO	Wave Form Computations by the Time Series Method,	27
CT57	N. W. Lewis (Reviewed by R. J. Schwarz) Synthesis of Ladder Networks to give Butterworth or	36
< 1 <td>Chebyshev Response in the Pass Band, E. Green (Re-</td> <td></td>	Chebyshev Response in the Pass Band, E. Green (Re-	
	viewed by H. R. Orchard).	37
CT58	Bandpassschaltungen mit Minimaler Spulenzahl	
	(Bandpass Circuits with Minimum Number of In-	
	ductors), G. Bosse (Reviewed by V. Belevitch)	37
CT[59	Filtres en Echelle Elementaires (Elementary Ladder	
	Filters), J. Oswald (Reviewed by V. Belevitch)	- 38
СТ60	The Solution of Passive Electrical Networks by Means	
	of Mathematical Trees, W. S. Percival (Reviewed by	
	R. M. Foster)	2()

				.,
T61	Suggestions for	r an	Improved Terminology, W. R.	
	Bennett			4

1 CT62 On the Definition of "Sensitivity," II. A. Schulke, Jr., 42

Professional Group on Communications Systems

1954

Vol. CS-2, No. 1, January, 1954

IndexNumber Page Discussion of Solar Research Papers, J. L. Callahan... Solar Study as a Phase of Radio Systems Engineering, William A. Miller... Tidal Forces on the Sun, A. B. Moulton... De B. Wester, D. Senether Physical Letter Medical Systems (2019) CS12 1 CS13 4 **CS14** 15 CS15 Radio Weather Forecasting Techniques, John II. Nel-10

- CS16 Solar Spicules and Their Role in Solar Phenomena,

Transactions Index -8

PGCS-2, January, 1954 (Cont'd.)

Index		
Numbe	r	Page
	J. H. Rush and W. O. Roberts	24
CS17	Development of the LD Radio System, N. F. Schlaack.	29
CS18	Overseas Radiotelephone Services of A. T. & T. Co.,	
	K. P. Stiles.	39
CS19	A Codan for A-M Receivers, James B, Rudd	45
CS20	The Tangier Radio Relay System of RCA Communica-	
	tions, Inc., Carl G. Dietsch	65

Continued on page 9

(All but the last two papers in this issue were presented at the Microwave Radio Relay Systems Symposium, New York, N. Y., November 5-6, 1953 and appeared also in Transactions of the I.R.E. Professional Group on Microwave Theory and Techniques, Vol. MŤT-2, No. 1, April, 1954.)

r	n	d	e:	¢		

Number

- The Microwave System of the Michigan-Wisconsin Pipeline Company, W. P. Maginnis and II. Place... CS21 1
- Microwave Site Selection in Undeveloped Country, CS22 R, D, Pynn...
- Microwave Repeater Site Planning and Development, CS23 R. D. Chapman.
- Remote Control of Standby Engine Generator Sets over a Microwave System, *Robert L. Halvorson* Application of Compandors to FM Radio Systems with CS24
- CS25 CS26 Application of Companying Action Multiplexing, M. C. Harp. M. II. Kebby, and E. J. Rudisuhle.
 CS26 A Double Side-Band Amplitude-Modulated Multiplex CS26 Companying the Amplitude Modulated Multiplex
- System for Use over Microwave Radio, Nelson B. Tharp. ..
- A Microwave System for Trunk Service, J. J. Lenchan A Microwave Radio System for Pipeline Use (Abstract), CS27
- **CS28** 60 Ed Dyke. Microwave and VIIF Radio Installation for the Union CS29 63
- Electric System, George W. Fox. Microwave Radio Relay Link for Military Use, Sidney CS30
- Metsger Transco Microwave System, II. A. Rhodes. CS31
- Microwave Testing with Millimicrosecond Pulses, A. C. CS32
- Beck.
- Theoretical Aspects of Microstrip Waveguides (Ab-CS33 100 stractl, G. A. Deschamps.
- Considerations in Klystron Design for Microwave Re-lay Systems, R. W. Olthius. CS34
- New 5 Kilowatt HF Multi-Channel Transmitter, CS35 .\ $F. R. Hill \dots$
- Radio Transmitters in the American Cable and Radio CS36 System, Fullerton D. Webster 122

Vol. CS-2, No. 3, November, 1954

(Section I—IRE Symposium on Global Communications, Washington, D. C., June 23-25, 1954)

CS37 Historical Exhibits at Global Communications Sym-

- posium... Global Communications Systems of the Armed Serv-ices, V. D. Corput, Jr. CS38 Global Communications, Ilaraden Pratt. CS39
- Development and Research Trends in Global Com-CS40 munications, G. W. Gilman . . . Administrative Aspects of Telecommunications, W. A.
- CS41
- CS42 International Radio Frequency Management, Paul D. CS43
- Miles.
- The Organization and Functions of the C.C.I.R., E. W. **CS44** Allen
- Improving Frequency Management to Facilitate Global CS45

- Index Page Number Communications, D. R. MacQuivey..... British Global Communications, A. H. Read..... 30 35 CS46 Global Marine Communications, E. M. Webster..... Department of the Army Command Communications, 38 CS17 CS48 W. F. Spanke. Organization and Operation of the Naval Communica-43 CS49 tion System, G. M. Neely. . 51 USAF Strategic Communications System, G. M. Hig-CS50 56 ginson ... Overseas Air Traffic Control and Meteorological Com-CS51 munication Circuits of the Civil Aeronautics Admin-63 istration, F. J. Cervanka International Planning of Global Communications for CS52 67 Aviation, II. R. Adam. CS53 Global Air/Ground Radiotelephone Communications, W. W. Lynch.
 CS54 Frequency Propagation Forecasting for Civil Airline 7) Operations on World Air Routes, C. A. Petry. 77 Frequency Propagation Forecasting for Military World Air Route Operations, L. S. F. Meaker,.... CS55 82 Recent Advances in International Radio Communica-CS56 86 tions, I. K. Given..... Global Public Telephone Service, D. D. Donald 93 CS57 The Impact of Submerged Repeaters on Global Teleg-**CS58** raphy, C. S. Lawton 101 (Section 11—IRE-AIEE Symposium on Military Com-munications, New York, N. Y., April 28, 1954) A Private Microwave Radio System for Power Com-pany Use, D. F. Hazen, J. W. Danser, and G. S. Zilis CS59 113 Simplified Transmission Engineering in Exchange Cable CS60 119 Plant Design, L. B. Bogan and K. D. Young..... Considerations for Development of New Military Car-CS61 rier Telephone Systems, R. S. Boykin, J. H. Johnston, and S. D. Bedrosian. 124 CS62 A New Cable Design for Military Carrier Telephone Systems, II. F. X. Kingsley.
 CS63 New Military Carrier Telephone Systems Equipment Features, J. P. Hoffmann.
 CS64 New Military Carrier Telephone Systems C. H. Hoffmann. 127 130New Military Carrier Telephone Systems, G. 11. Huber, W. F. Miller, and C. W. Schramm..... CS64 136 CS65 147 CS66 152 Telegraph Terminal AN/FGC-29 Equipment Features, CS67 157 F.H. Cusack.. A New Multichannel Teletype Terminal for Use on CS68 Long-Range High-Frequency Radio Systems . 1. Mack and R. H. Levine. 161 Equipment and Mechanical Features of the AN/TRC-24 Radio Set, V. I. Cruser CS69 165 18
 - CS70 Considerations for a New Military Radio Relay System. M. L. Ribe and S. P. Brown.... 168
 - Section III
 - Steerable Directional High Frequency Antenna, Ilcl-CS71 174 mut Brueckmann.....

Professional Group on Component Parts

Index

1954

PGCP-1, March, 1954

Index		D
Number		Page
CP1	A New Profession, Component Part Engineering, L. K.	
.	Lee and F. A. Paul.	1
CP2	Breakdown and Leakage Resistance Investigation of	
	Metallized Paper Capacitors, John Burnham	.3
CP3	A Comparison of 6AK5 and 5654 Tubes, Floyd A. Paul	18
CP4	Some Characteristics and Limitations of Capacitor and	
	Resistor Components, Leon Podolsky and J. K.	

Sprague....

Number		Page
	WESCON Component Parts Sessions Program	1
	WESCON Component Parts Technical Papers Com-	
	mittee	3
CP5	Short Time Ratings for Paper Capacitors (Abstract),	
	W. M. Allison	4
CP6	Rotating Components and Their Application to Ad-	
	vanced Electronic Systems (Abstract), R. N. Brown	+
CP7	Appraisal of Wirewound Potentiometers, J. A. Csepely	,

PGCP-2, September, 1954

Continued on page 10

Transactions Index-9

Page

9

16

32

36

41

50

81

89

93

103

108

7

11

14

22

26

Number CP8

Index

Number

	Page
Relay Characteristics and Application, C. F. Cameron	34

- A Precise, Wide Band, Continuously-Variable Delay Line, N. Gaw, M. Kline and D. Silverman..... The User Looks at the Component Parts Problem, CP9 48
- **CP10** A. M. Okun..... 58
- CP11 Packaging of Component Parts for High Intensity Vi-

1954 PGED-1, February, 1954 (Cont'd.) Index Vol. ED-1, No. 1, February, 1954 Number Eugene Maloney. Thermal Effects in Vacuum Tubes, I. E. Levy. Page ED49 Microphonic Reduction in Filamentary Tubes, Vladi-ED50 Part I-Radio Fall Meeting Papers The CBS Colortron—A Color Picture Tube of Ad-vanded Design (Abstract), N. F. Fyler, W. E. Rowe, mir Kenn Mar Kenn. Advanced Processing of Receiving-Type Electron Tubes Subjected to High Temperatures, *W. Knecht* Novel Techniques Used in the Assembly of Phototubes and Similar Vacuum Devices, *C. Day*. ED51 and C. W. Crain. ED25 A PNP Triode Alloy Junction Transistor for RF Am-6 ED52 plification (Abstract), J. I. Pankove and C. W. Muel-Tube Analysis Program, R. D. Wilson. A New Frame Grid that Improves Electron Tube Uni-ED53 ler 6 ED54 formity and is Adaptable to Automatic Production, 7 Some Application Aspects of the Tetrode Transistors (Abstract), L. Dwork, C. Huang, and H. W. Palmer. Investigation of UHF Television Amplifier Tubes, Richard C. While and R. E. Booth. ED55 The Nature and Prevention of Keep-Alive Malfunction 7 in TR Tubes, John D. Hall and Paul E. Gates. Nuclear Radiation Counter Tubes, E. II. Wakefield. ED56 Wen Yuan Pan. 8 Gaseous Impurities and the Performance of VR tubes, J. E. Drennan and F. C. Todd. ED57 Analog, R. W. Aldrich and I. A. Lesk.... General Problems in the Use of Electron Tubes, Wal-24 ED58 Dependence of Microwave Cavity Characteristics on Properties of Enclosed Regions of a DC Discharge, ter R. Jones... *B. J. Udelson and J. E. Creedon*..... Magnetron Heater Design to Avoid Undesirable Mag-netic Effects, *R. L. Vance and C. Maggs*. 28 ED31 Application Considerations for RCA Commercial ED59 32 ED60 Corrosion Proofing Electronic Apparatus Parts Exposed sistor for Medium Power Applications, Conrad II. to Ozone, F. J. Biondi. Synthetic Mica for Vacuum Tube Use, T. E. Hanley Zierdt, Jr..... 47 ED61 ED62 Miniature Magnetron Assembly Techniques, B. D. Kumpfer. Techniques Resonant Window Fabrication Techniques, I. Rein-ED63 gold and E. V. Edwards. of Cathode Problems, W. G. Shepherd. Cathode Structure of Indirectly Heated, Narrow, Elongated Oxide Cathodes, W. II. Kohl Power Capabilities of Mica Output Seals at 10,000 Megacycles, W. J. McBride, Jr... Utilization of Stainless in Large Tube Fabrication, 56 ED64 56 ED65 E. C. Okress.... Properties of Nickel Alloy Cathodes, Sherman Cryl-zer, Edmud Mockus, and T. B. Gillis.... ED66 Fabricating Copper Magnetron Parts with High Preci-sion and Uniformity by a "Coining"-Type Tech-56 nique, L. J. Caprarola ... and F. C. Todd. 57 ED67 A Sandwich-Type Metal-to-Ceramic Vacuum Tight Seal, N. E. Pryslak. ED68 A Combination High Temperature Hydrogen or Vacu-um Furnace, W. H. Kohl. E. S. Rittner and R. H. Ahlert. 57 Manufacturing Techniques Used in the Production of of Magnetrons, K. R. Stephanz ED69 Production and Transport of Barium, W. C. Rutledge and E. S. Rittner ED70 A Ceramic-Insulated, Flush-Mounted Terminal for All-Metal High-Vacuum Tubes, W. II. Kohl. 57 O. S. Duffendack. Interface Measurements and Methods Employed, 58 ED71 A Demountable Vacuum System for Tube Development, T. M. Shrader ... W. R. Jones. The Improvement of Base Adherence on Electron 58 The Effect of Electron Bombardment on the Secondary Emission of MgO Thin Films, P. Wargo. ED72 58 ED73 Flicker Noise Resistance in Vacuum Tubes, A. van der Ziel.. F. R. Michael and T. H. Briggs..... ED74 Vacuum Tubes Utilizing Self-Sustained Emission from Three Dimensional Data Presentation, F. R. Michael 59 MgO Films, D. Dobischek, J. Freely, and H. Jacobs. Sealing Techniques for Miniature Tubes, A. P. Hasse and C. E. Horton.... Thermionic Emission of Positive Ions from Alumina-Coated Tungsten, F. G. Ullman. ED75 60 Conductivity of Single-Crystal Al₂O₃, R. B. Morgan... Preliminary Report on the Regrowth of Silicon Through a Low Melting Zone of Silicon-Gold Eutec-tic, J. N. Carman, P. E. Stello and C. A. Bittman... Design and Properties of Target Structures for Storage Tubes Mark Medl ED76 Hasse.. 60 ED77 Triode, C. D. McCool..... 60 ED78 60 Tubes, Max Knoll.....

Index Number

		0.
	bration Environments, M. G. Comuntzis	72
CP12	Electrostrictive Relay, J. W. Crownover.	$\tilde{77}$
	incertostricerve realy, J. W. Crownover	11
CP13	A Temperature Stabilized Transistor Amplifier, R. B.	
	Hurley.	93
CD11		20
CL14	Reliable Electronics I brough Protective Coating Tech.	
	niques, E. R. Gamson and A. Henesian	104
	in green and compose white it. Henesich	104

Professional Group on Electronic Devices

- 66 66
- 67
- 67
- 67
- (8
- 68 69
- 69
- 69
- 70 70
- 70

Continued on page 11

World Radio History

6

Pave

Page

61

61

61

62

62

62

63

63

63

64

64

64

65

65

65

65

65

66

- ED33 The Use of Radioactive Tracer Techniques in the Study
- ED34
- ED35 An Experimental Tube for Measuring the Sublimation
- ED36 Study of Cathodes of Rare-Earth Oxides, E. N. Wyler
- ED37
- ED38 Studies on the Mechanism of the L-Cathode; Part II-
- General Survey of the Philips Dispenser Cathodes, EC39
- ED40
- ED41
- ED43 ED44
- Vacuum Tube Spacer Materials, J. C. Ilickel and A. P.
- Design and Development of a High-Reliability Twin ED46
- Tube Envelope Temperatures with Heat-Sensitive ED47

- ED24

- ED26 The Transistor as a Network Element (Abstract), J. T. Bangert.
- ED27
- ED28
- ED29 The Dougle-Base Diode: a Semiconductor Thyratron
- ED30
- Transistors, R. M. Cohen. ED32 A Hermetically Sealed PNP Fused Junction Tran

Part II-Abstracts of National Conference on Tube

- Studies on the Mechanism of Operation of the L-Cathode; Part I--Nature of the Emitting Surface,

- ED42

- ED45

- ED48 Vacuum Tube Processing and Characteristics,

naex Number		Page	Number	
ED79	Some Problems in the Design of a Direct View Storage		ED103	Stabilization of Microwave Oscillators, E. J. Shelton.
	Tube D D Stone	71		Session II
	A Demountable Gun Tester Which Can Be Baked Out, H. D. Arnett and R. H. Keyser	71	ED104	Noise Measurements of Microwave Local Oscillators,
E D81 ED82	Accuracy of Filament Centering, Kenneth Roomson.	71 71	ED105	R. Mueller. Microwave Oscillator Noise Spectrum Measurements, C. G. Dalman and A. S. Rhoads, Jr.
	and Control of Thoria Cathodes, J. Apelbaum A Vertical Inconel Furnace for Experimental Labora- tories, R. P. Allaire	72	ED106	Theory of Phenomenological Models and Direct Meas- urements of the Fluctuating Output of CW Magne-
ED84	The Measurement of Surface Flatness of Cathodes for Close-Spaced Electron Tubes, C. T. Goddard	72	ED107	trons, D. Middleton Direct Detection Measurements of Noise in CW Mag- netrons, W. M. Gottschalk
	Vol. ED-1, No. 2, April, 1954		ED108	Development of a Low-Noise X-Band CW Rlystron Power Oscillator, R. A. LaPlante
ED85	Microwave Oscillator Stability, George Hetland, Jr. and		ED109	Frequency and Phase Stability Considerations, B. R. Mayo, II. H. Grimm, J. K. Records
ED86	Robert R. Buss	1 9	ED110	A Technique for Measuring FM Noise in Microwave Oscillators (Abstract), E. F. McClain and W. R.
ED87	Recovery Time Measurements on Point-Contact Ger- manium Diodes, T. E. Firle, M. E. McMahon and		ED111	Ferris. National Bureau of Standards Noise Comparator (Abstract), C. R. Greenhow.
121200	J. F. Roach	21	ED112	A Magnetron Test Set for MTI Purposes, II. F.
ED88	Semiconductors, Luther Davis, Jr., Lawrence G.	34	ED113	Ayres and R. E. Woods
ED89	A Point Contact Transistor VHF FM Transmitter	43		Session III A
ED90	D. E. Thomas. Pulsed Operation of a Cold Cathode Thyratron (395A), M. Silver	53	ED114	Pierce
ED91	Ionization Phonomena in Thyratrons, M. Silver	31	ED115	Microwave Noise Measurements on Electron Beams, L. D. Smullin and C. Fried
ED92	Germanium Photovoltaic Cells, Bernard J. Konnern	67	ED116	The Signal to Noise Radio in the M-Carcinotron, O Dochler and G. Convert
ED93	An Equivalent Circuit for the Noise in VHF Triodes A. van der Ziel	72	ED117	The Small Signal Performance of the 416B Planar Tri- ode Between 60 and 4000 mc. L. H. VanOhlsen
	Vol. ED-1, No. 3, August, 1954		ED118	Measurements of Traveling-Wave Tube Noise Figure (Abstract) G. F. St. John
ED94	Traveling Wave Tube Characteristics for Finite Values	5	ED119	Noise Characteristics of a Voltage-Tunable Magne- tron, J. A. Boyd
ED95	of C, Charles K. Birdsall and George R. Brewer Transistor Metrology, D. A. Alsberg A Developmental Voltage-Tunable Microwave Mag	12	ED120	Measurement and Analysis of Triode Noise, W. A. Harris.
ED96	notron Inles S Needle	. 10		Session III B
ED97	Measurement of Klystron Amplifier Parameters, C. M Veronda	29	ED121	Space Charge Wayes on an Accelerating Stream of
ED98	Calculations of Wave Propagation on a Helix in the	35		Uniformly Charges Square Laminae (Abstract), W. E. Danielson
ED99	Attenuation Region, S. E. Webber Transistors and Their Applications (A Bibliography		ED122	Observations on Ion Oscillations in a Cylindrical-
E1199	1948–1953), Alan R. Krull.	40		Beam Tetrode Under Hard Vacuum Conditions, W. E. Waters, Jr.
	Vol. ED-1, No. 4, December, 1954		ED123	mum I R Whinnerv
	Welcoming Address, G. A. Esperson	. 1	ED124	fiers of the Beam Type, II. A. Haus
	Session I		ED125 ED126	Physical Mechanism of Noise Generation in Magne-
ED100	T D Wassage	, J	1.0120	trons, C. G. Lehr and A. L. Collins
ED101		. 11		Session IV
ED102		y	ED127	Summary of Important Points of Paper, W. II.

Index

Professional Group on Electronic Computers

22

ED128

Huggens

1954

of Microwave Receivers, W. L. Pritchard and K. I.

Larkin.....

Vol. EC-3, No. 1, March, 1954

Index Number		Page
EC25	System Organization of the DYSEAC, A. L. Leiner and S. N. Alexander	1
EC26	A Time-Sharing Analog Multiplier, H. Freeman and	11
FC27	E. Parsons. An Operational-Digital Feedback Divider, M. A.	
	Meyer, B. M. Gordon, and R. N. Nicola Review Section, H. D. Huskey, Ed	11

Vol. EC-3, No. 2, June, 1954

Open Discussion Notes.

Index		D
Number	۸	Page
	PGEC News, Stanley B. Disson, Editor	1
EC29	Logic, Discovery, and the Foundations of Computing	2
	Machinery, M. E. Maron.	2
EC30	System Design of the SEAC and DYSEAC, A. L.	-
	Leiber, W. A. Notz, J. L. Smith, and A. Weinberger.	8
EC31	Digital Techniques in Analog Systems, M. A. Meyer.	23
EC32	A High Speed Correlator, Harold Bell, Jr., and Vin-	20
	cent C. Rideout	30
	Continued on page 12	

Transactions Index-11

Page

30

42

51

56

91

99

107

121

122

123

131

135

168

184

189

200

201

206

215

216

221

2.38

258

260

270

274

Index

Number

ED79

ED80

ED81

ED82

ED83

ED84

ED85

ED86

ED87

ED88

ED89

ED90

Index

Index Numbe	۲ <i>۲</i>	Page	Index Numbe	r
EC33	A Wide-Band Square-Law Computing Amplifier, Aaron S. Soltes	37		News, S. B. Disso Contributors
EC34	An Analog Multiplier Using Thyrite, L. D. Kovach and W. Comley.	42	EC44	Review Section
EC35	A. Sub-Audio Time Delay Circuit, C. D. Morrill.	45		
EC36	Contributors Review Section, II. D. Huskey, Editor	50 53		Vol. EC-3,
	Vol. EC-3, No. 3, September, 1954		EC45	The Use of a Ref tems, F. A. Fos
	Editorial, W. Buchholz.	1	EC46	A Transistorized
EC37	A Permanent High Speed Store for Use with Digital	1	EC47	A Radio-Frequence
EC38	Computers, R. D. Ryan. Application of Boolean Algebra to Switching Circuit	2	EC48	netic-Core Men Time-Delay Netw
EC39	Design and to Error Detection, <i>D. E. Muller</i> An Algebraic Theory for Use in Digital Computer De-	6	EC49	Cunningham A Stabilized Dr
EC40	sign, E. C. Nelson	12	EC50	Hamer A Desk-Model E
EC41	corded Digital Data, <i>Samuel Lubkin</i> . A Digital Voltage Encoder, J. R. Zweizig.	22		Rosen and M. F
EC42	A New Method of Generating Functions, L. G. Poli-	25	EC51	1954 IRE Nationa Contributors
EC43	A Function Generator for the Solution of Engineering	29	EC52	News Review of Curren
	Design Problems, C. J. Savant and R. C. Howard	.34		Annual Index

PGEC-3, September, 1954 (Cont'd.)

Page 39 39 41 . No. 4, December, 1954

EC45	The Use of a Reflected Code in Digital Control Sys-
EC46	tems, F. A. Foss
EC47	Partridge 7 A Radio-Frequency Nondestructive Readout for Magnetic-Core Memories, Bernard Widrow 12
EC48	Time-Delay Networks for an Analog Computer, W. J.
EC49	Cunningham 16 A Stabilized Driftless Analog Integrator, Howard 16
EC50	A Desk-Model Electronic Analog Computer II 4
EC51	Rosen and M. W. Fossier
	Contributors
EC52	Review of Current Literature. 33 Annual Index. 45

Professional Group on Engineering Management

Index

Number

1954

PGEM-1, February, 1954

Number		Page
	Message to Members of the Professional Group on En- gineering Management, T. C. Rives	1
	Message from Publications Committee, C. G. Cam- bridge	2
EMI	Management and the Engineer, T. C. Rives	3
EM2	An Engineering Incentive Problem, Harold Goldberg.	7
EM3	Staff Engineer's Part in Control of Design and Devel-	
	opment Costs, Harold G. Purinton	10
EM4	How Design Quality Control Can Help Engineering,	
	Charles E. Ellis	17
EM5	An Informational Approach to Organization and Sys-	
	tem Engineering Design, Jerome Rothstein	25
EM6	The Role of the Military Laboratory in Electronics Re-	
	search and Development, Herbert Sherman	- 30

Constitution of the	Professional Group on Engineering	
Management	****	44

PGEM-1, February, 1954 (Cont'd.)

Bylaws of the Professional Group on Engineering Management....

PGEM-2, November, 1954

Contributors.....

EM7	Control of Cost of Research and Development Proj-	
EM8	ects, <i>II. J. Finison</i>	
EM9 EM10	ville Hopkins Engineers Can Be Managers, Douglas Watson Management Can Be Taught, Lowell II. Hattery	10 28 41
EM11	The Responsibility of Engineering Management, A. F. Coleman.	41
EM12	Some Views on Executive Management, T. M. Linville	- 52
EM13	The Selection and Development of Laboratory Execu-	./2
	tives, Oliver G. Tallman	- 59
	Biographical Notes on the Authors	- 60

Professional Group on Information Theory

1954

PGIT-3, March, 1954

Index Number Page Symposium on Statistical Methods in Communication Engineering 1 1T38 Passage of Stationary Processes through Linear and Non-Linear Devices, A. J. F. Siegert. 1T39 Statistical Theory of Signal Detection, David Middleton 1T40 Detectability of Random Signals in the Presence of Noise, R. C. Davis 1 26 52 The Response of Linear Systems to Non-Gaussian $\Gamma1.41$ Noise, B. Gold and G. O. Young... 63 1142 Estimation of Signal Parameters in the Presence of

Transactions Index-12

PGIT-3, March, 1954 (Cont'd.)

Index Numb	cr	Page
	Noise, David Slepian.	- 68
IT43	I he Use of the Method of Maximum Likelihood in Es-	
	timating Continuous-Modulated Intelligence which	
TTTA	has been Corrupted by Noise, Dante C. Youla.	- 90
1144	Detection of Modulated Noise-like Signals, Ralph Deutsch.	106
IT45	Statistically Almost Optimum Nonlinear Network De-	
	sign (Abstract), Otto J. M. Smith	123
LT46	Simple Games of Strategy Occurring in Communication	1
	through Natural Languages, Benoit Mandelbrot	124
	Continued on burn 12	

Continued on page 13

5,

Page

48

52

PGIT-3, March, 1954 (Cont'd.)

Index			1 110000	
Numbe	2Y	Page	Numbe	r
	Application of Linear Graphs to Communication Prob- lems (Abstract), Arthur E. Laemmel	1.38		An Information-The M. Kochen
IT48	Minimum-Cost Encoding of Information, Nelson M. Blachman	1.39	IT58	Simulation of Self-Or puter, B. G. Farley
IT49	Generalized Servomechanism Evaluation (Abstract). William P. Caywood, Jr., Richard C. Lyman and		IT 59	A Study of Ergodicity symbol Correlation
	William M. Kaufman	150	IT60	Multivariate Informa
LT:50	Optimum Pulse-Time Determination, A. J. Mallinck-		IT61	Choice and Coding in
	rodt and T. E. Sollenberger	151		C. N. Mooers
			FT62	Modern Statistical A
	PGIT-4, September, 1954			munication Theory
	r (ii t - i, september, r / o /			A Non-Linear Predic
	Preface, W. G. Tuller	1	IT64	The Detection of S
IT51	A New Basic Theorem of Information Theory, A. Fein-			Noise, R. Price
	stein	2	1T65	The Theory of Sign
IT52	Binary Coding, M. J. E. Golay	23		T. G. Birdsall, and
IT53	Error-Free Coding, P. Elias	29	FT 66	The Human Use of I
IT 54	A Class of Multiple-Error-Correcting Codes and the De-			the Case of the S
	coding Scheme, I. S. Reed			Tanner, Jr., and J
IT55	Coding for Constant-Data-Rate Systems, R. A. Silver-	= ()	1167	The Human Use of
	man and M. Balser	50		for the Case of an
	mun und m. David tit tit tit tit tit tit tit tit tit t			(T) T (T)

2	Numbe	27	1 age
	IT57	An Information-Theoretical Model of Organizations,	_
5		M. Kochen	67
	IT58	Simulation of Self-Organizing Systems by Digital Com-	
)		puter, B. G. Farley and W. A. Clark	76
	IT 59	A Study of Ergodicity and Redundancy Based on Inter-	
		symbol Correlation of Finite Range, S. Watanabe	85
)	IT60	Multivariate Information Transmission, W. J. McGill.	- 93
	IT61	Choice and Coding in Information Retrieval Systems,	
		C. N. Mooers	112
	FT62	Modern Statistical Approaches to Reception in Com-	
		munication Theory, D. Van Meter and D. Middleton.	119
	LT 63	A Non-Linear Prediction Theory, R. F. Drenick	146
l	1.104	The Detection of Signals Perturbed by Scatter and	
		Noise, R. Price	163
2	1T65	The Theory of Signal Detectability, W. W. Peterson,	
3		T. G. Birdsall, and W. C. Fox	171

- 1. G. Dirasan, and W. C. Fox..... he Human Use of Information. I: Signal Detection for the Case of the Signal Known Exactly, Wilson P. Tanner, Jr., and John A. Swets..... he Human Use of Information. II: Signal Detection for the Case of an Unknown Signal Parameter, W. P. Tanner, Jr., and R. Z. Norman. 213
- 222

Professional Group on Instrumentation

64

Inder

1954

Information, Organization and Systems, J. Rothstein.

PGI-3, April, 1954

Number	Page
Foreword, Ivan Easton	1
I-19 The Application of Counter Techniques to Precision Fre-	
quency Measurements, A. F. Boff	2
1-20 Timing Circuits, II, B, Brooks	11
I-21 Impedance Meter-50-1000 MC/S, II. A. Finke	15
1 32 THE ALCOUNT OF THIS DEFINE IN TENING OF VILLO	

1-22 The Measurement of Time Jitter in Trains of Video

PGI-3, April, 1954 (Cont'd.)

	Index Numi		Page
		Pulses, John L. Fitch and Robert E. Buss	23
3		A Ratiometer, Nicholas L. Pappas	- 28
	I-24	Swept Wide-Range SWR Indicators for 100 to 1350 Megacycles, W. P. Peyser	35
)	I-25	An Improved Method of Measuring the Current Ampli- fication Factor of Junction Type Transistors, F. R.	
,	1-26	Stansel	11

Professional Group on Microwave Theory and Techniques

1954

Vol. MTT-2, No. 1, April, 1954

Index Number		Page	MTT33	Theoretic stract),
MTT21	The Microwave System of the Michigan-Wisconsin Pipeline Company, W. P. Maginnis and II. Place.	1	MTT34	Considera Relay S
MTT22	Microwave Site Selection in Undeveloped Country, R. D. Pynn	9		Vol.
MTT23	Microwave Repeater Site Planning and Develop- ment, R. D. Chapman	16		Symposiu
MTT24	Remote Control of Standby Engine Generator Sets over a Microwave System, Robert L. Halvorson	32		Technic Frequency
MTT25	Application of Compandors to FM Radio Systems with Frequency Division Multiplexing, M. C.		MTT35	A Trave R. C. I.
MTT26	Harp, M. H. Kebby, and E. J. Rudisuhle	36	MTT36 MTT37	Crystal C A Techni
	plex System for Use over Microwave Radio, Nel- son B. Tharp.	41	MT [*] F38	Jerome Use of Cr Paul J.
MTT27	A Microwave System for Trunk Service, J. J. Lene- han	50	MTT39	A Coaxia
МТТ28	A Microwave Radio System for Pipeline Use (Ab- stract), Ed Dyke	60	MTT40	electric H ₀₁ Mode
MTT29	Microwave and VHF Radio Installation for the Union Electric System, George W. Fox	63	MTT41	<i>Lanciar</i> Character
МТТ30	Microwave Radio Relay Link for Military Use, Sid-	84	MTT42	Transn Bibliograf
MTT31	ney Metzger Transco Microwave System, H. A. Rhodes	89		Schwar
MTT32	Microwave Testing with Millimicrosecond Pulses, A. C. Beck.	93	MTT43	Addenda.

PGMTT-2, April, 1954 (Cont'd.)

	Index Number		Page
e	MTT33	Theoretical Aspects of Microstrip Waveguides (Ab- stract), G. A. Deschamps	100
	MTT34	Considerations in Klystron Design for Microwave	100
1	101 1 1 0 1	Relay Systems, R. W. Olthuis.	103
)		Vol. MTT-2, No. 2, July, 1954	
6		Symposium on Modern Advances in Microwave Techniques	1
2		Frequency Curves	1
	MTT35	A Traveling-Wave Electron Deflection System, R. C. Honey	2
6	MTT36	Crystal Checker for Balanced Mixers, P. D. Strum,	10
	MTT37	A Technique for Stabilizing Microwave Oscillators, Jerome L. Altman	16
1	MTT38	Use of Crystals in Balanced Mixers, Jesse Taub and Paul J. Giordano.	26
0	MTT 3 9	A Coaxial Line Filled with Two Non-concentric Di-	
		electrics, D. J. Angelakos.	39
0	MTT40	H ₀₁ Mode Circular Waveguide Components, D. A. Lanciani	45
3	MTT41	Characteristic Impedance of the Shielded-Strip Transmission Line, Seymour B. Colm	52
4	MTT42	Bibliography on Directional Couplers, Richard F.	
9	MTT43	Schwartz.,	58 64
,	211142	Addenda	04
3		Continued on page 14	

Transactions Index-13

ΓΓ56

Inder

Vol. MTT-2, No. 3, September, 1954

87

Page

1

14

32

40 51

Index			Index		
Number		Page	Number		Page
MTT44	Optical Methods for the Measurement of Complex			Region, C. M. Johnson	27
	Dielectric and Magnetic Constants at Centimeter		MTT50	Magnetron Research at Columbia Radiation Lab-	
	and Millimeter Wavelengths, T. E. Talpey	1		oratory, M. J. Bernstein and N. M. Kroll	- 33
MTT45	Millimeter Wave Spectroscopic Components, W. C.		MTT51	Low Loss Dielectric Waveguides, M. T. Weiss and	
MTT46	Harmonics at Millimeter Wavelengths, A. H. Nether-		MTT52		
	col, Jr	17			
MTT47	Millimeter Wave Generation by Cerenkov Radia-				48
		21	MTT53		
MTT48					
			MTT54		
MTT49	Superheterodyne Receiver for the 100 to 150-kmc				
	Number MTT44 MTT45 MTT46 MTT47 MTT48	 Number MTT44 Optical Methods for the Measurement of Complex Dielectric and Magnetic Constants at Centimeter and Millimeter Wavelengths, T. E. Talpey MTT45 Millimeter Wave Spectroscopic Components, IV. C. King MTT46 Harmonics at Millimeter Wavelengths, A. H. Nethercot, Jr MTT47 Millimeter Wave Generation by Cerenkov Radiation, M. Danos and H. Lashinsky MTT48 Stabilization of Reflex Klystrons by High-Q External Cavities, S. J. Rabinowitz 	Number Page MTT44 Optical Methods for the Measurement of Complex Dielectric and Magnetic Constants at Centimeter and Millimeter Wavelengths, T. E. Talpey 1 MTT45 Millimeter Wavelengths, T. E. Talpey 1 MITT45 Millimeter Wavelengths, T. E. Talpey 13 MTT46 Harmonics at Millimeter Wavelengths, A. H. Nether- col, Jr 17 MITT47 Millimeter Wave Generation by Cerenkov Radia- tion, M. Danos and II. Lashinsky 21 MTT48 Stabilization of Reflex Klystrons by High-Q External	Number Page Number MTT44 Optical Methods for the Measurement of Complex Dielectric and Magnetic Constants at Centimeter and Millimeter Wavelengths, T. E. Talpey1 MITT50 MTT45 Millimeter Wave Spectroscopic Components, W. C. King	NumberPageNumberMTT44Optical Methods for the Measurement of Complex Dielectric and Magnetic Constants at Centimeter and Millimeter Wavelengths, T. E. TalpeyMTT50Region, C. M. JohnsonMTT45Millimeter Wavelengths, T. E. Talpey1MTT50Magnetron Research at Columbia Radiation Lab- oratory, M. J. Bernstein and N. M. KrollMTT46Harmonics at Millimeter Wavelengths, A. H. Nether- col, Jr13MTT51Low Loss Dielectric Waveguides, M. T. Weiss and E. M. GyorgyMTT47Millimeter Wave Generation by Cerenkov Radia- tion, M. Danos and II. Lashinsky17MTT53A Calorimeter for Power Measurements at Millime- ter Wavelengths, W. M. Sharpless.MTT48Stabilization of Reflex Klystrons by High-Q External Cavities, S. J. Rabinowitz.23MTT54The Use of Flat Waveguide in the Millimeter Range

Professional Group on Nuclear Science

1954

Vol. NS-1, No. 1, September, 1954

	Vol. NS-1, No. 1, September, 1954		Index Num		Page
Index Num		Page		Program of the Annual National Meeting, Chicago, Oc- tober 6-7, 1954	
VCI	Editorial Instrumentation and Control of the Brookhaven Nuclear			Abstracts of Contributed Papers for Annual Meeting.	
1.21	Reactor, J. E. Binns.			Annual Report of the Secretary	25
NS2	Constant Reactor Outlet Temperature Control System,			Revised Constitution of the PGNS	26
	G. S. Stubbs	8		By-Laws	29
NS3	Electronic Equipment for an Electron Analogue Accel-	-		Publication Policy	31
	erator, J. G. Collingham, M. Plotkin and E. C. Raka.	12	NS4	Selections from "Nuclear Science Abstracts"	33

Professional Group on Quality Control

1954

PGQC-3, February, 1954

Inde x Number		Page	QC17	Developments in Trustworthy-Valve Techniques,
	The Program on Reliability of Electronic Equipment, Lewis M. Clement.			<i>E. G. Rowe and P. Welch</i> Analysis of a Cumulative Results Sampling Plan for
QC13	Report on U. K. Project to Improve Valves for Mili- tary Applications, F. H. Powell.			Use with Sampling Tables Using Zero Acceptance Numbers, Arnold Cronshagen
QC14	Inspection Procedures for MIL-E-1B Reliable Elec-		QC19	Reliability of Quantity Produced Transistors in Lower Power Audio Applications, F. M. Dukat
QC15	tron Tubes, R. J. E. Whittier. The Panel on Electron Tubes Program for Coordinating		QC20	Reliable Electronics Through Protective Coating Tech-
QC16	Tube Reliability Activities, L. S. Schwartz Those Unreliable Thermionic Tubes, Walter R. Jones.		QC21	Quality in Production, R. Weller.

Professional Group on Radio Telemetry and Remote Control

1954

PGRTRC-1, August, 1954

Index Number		Page
	Editorial	1
TRC1	The Integrated Air Force Missile Test Center Data	
	Processing Facility, Charles F. West.	
TRC2	Basic Design of Commutating Devices, Martin V.	
	Kiebert, Jr.	7
TRC3	High Speed Digital Computers, Marc Shiowitz	12
	Correction	16

PGRTRC-2, November, 1954

Editorial, M. V. Kiebert, Jr.

Transactions Index-14

PGRTRC-1, November, 1954 (Cont'd.)

Index Number		Page
TRC4	Modern Concepts for Digital Computer Input-Output Philosophy, Charles F. West	2
TRC5	Delay Line Controlled Subcarrier Discriminator, Kenneth A. Morgan and Richard F. Blake	7
TRC6	A Temperature-Stable Transistor VCO, Fred M. Riddle	11
	Telemetering and Information Theory, Frank W. Lehan.	15
TRC8	A Slope Modulator for FM Recording of Analog Data on Magnetic Tape, Louis W. Erath and Frank C. Smith, Jr.	20

Continued on page 15

IndexNumber

PGQC-4, December, 1954

PGNS-1, September, 1954 (Cont'd.)

Professional Group on Ultrasonics Engineering

1954

PGUE-1, June, 1954

I ndex Number		Page
	History, Plans and Policies of the PGUE, A. L. Lane,	1
	Our Membership—Who We Are and Where, M . D .	
	Fagen	3
UE1	Ultrasound and Medicine, Julia F. Herrick and Frank	4
UE2	A Noncontact Micro-Displacement Meter, Harold F.	4
U E 4	Sharaf	14
UE3	Characteristics of Ultrasonic Delay Lines Using Quartz and Barium Titanate Ceramic Transducers, John E.	
	May	- 26
UE4	Metal Cleaning and Its Improvement by the Use of	
	Ultrasonics, T. J. Kearney	4.3
UE5	A Temperature Controlled Ultrasonic Solid Acoustic	4.0
	Delay Line (Abstract), E. S. Pennell	- 48

Þ

PGUE-1, June, 1954 (Cont'd.)

Index Number		Page
UE6	An Acoustic Flowmeter Using H. P. Kalmus, A. L. Hedrich,	

PGUE-2, November, 1954

-		Chairman's Report 1953–1954, A. L. Lane	1
	UE7	Bibliography on Ultrasonic Delay Lines, M. D. Fagen.	- 3
Ļ		Introduction	9
	UE8	An Ultrasonic Machine Tool, Neil Clark, Jr	10
	UE9	Ultrasonic Machining of Tungsten Carbide, Dieter	
)		Goetze	19
	UE10	Mechanical Impedance Transformers in Relation to	
5		Ultrasonics Machining, Lewis Balamuth	23
		Bibliographical Notes on the Authors	- 34
ξ		PGUE Constitution and Bylaws.	- 35

Professional Group on Vehicular Communications

Index

1954

PGVC-4, June, 1954

Index	_
Number	Page
VC33 Integrated Mobile-Microwave System, J. R. I	
VC34 A Commissioner's Reflections on the Mobil	
Service, E. M. Webster	
VC35 Duplex and Multi-Channel Mobile Equ	aipment,
W. Ornstein	
VC36 Mobile Radio System Performance in the Unite	
Forest Service, W. S. Claypool	

PGVC-4, June, 1954 (Cont'd.)

		Nunibe	r	l'age
		VC37	The Knee of the Nose, R. P. Gifford	40
	Page	VC38	Portable Equipment in the Communications System,	
m, J. R. Neubauer	1		W. J. Weisz	52
he Mobile Radio		VC39	Mobile and Fixed Radio Relay Operation in the Power	
	13		Radio Service, G. E. Dodrill and J. F. Atkinson	62
bile Equipment,		VC40	Problems in Maintenance and Operation of Long-Haul	
	22		and Distribution Radio Networks, D. E. York	86
the United States		VC41	Planning and Operation of the Erie Railroad Main Line	
	34		Radio Communications System, W. J. Young	- 91

INDEX TO SUBJECTS

Professional Group on Aeronautical and Navigational Electronics

Air-Ground Communication: AE26, AE29 Channel Allocations: AE29 Information Content of Messages: AE26 Mitimeters: AE30, AE31, AE32, AE33, AE34 AN/APN-22: AE33 AN/AFN-22: AE35 Flare-Out Unit: AE32 History: AE30 Low-Altitude: AE34 Principles: AE31 Autennas, Aircraft: AE28, AE42 High-Voltage Problems: AE42 Scan Considerations: AE28 Direction Finders: AE43 Ring Goniometer: AE43 Distance Measuring Equipment: AE41 Interrogator: AE41 Feedback in Weapons Systems: AE39 Flare-Out Unit: AE32 Instrument Landing System: AE32 Flare-Out Unit: AE32 Loran Receiver, Airborne: AE27, AE35 Maintenance of Airborne Radio Equipment: AE36 Radar, Airborne: AE37, AE38, AE40 Applications: AE38 **Savigation** Aid: AE40 Thunderstorm Avoidance: AE37 Ring Goniometers for Direction Finders: AE43 Simulators for Flight-Path Study: AE44 Thunderstorm Avoidance Radar: AE37

Professional Group on Antennas and Propagation

Adcock Antenna Error Evaluation; AP134 Aircraft Antennas, Omnidirectional: AI 113 Antenna Feed with Equal E and H Plane Patterns: AP128

- Backscatter Observations, Sweep-Frequency Method: AP120
- Corrugated Plane Surface: AP122
- Dielectric Sheet Radiators: AP133 Dipole Radiation over Stratified Ground: AP131

Fading of 100 Mc FM Signals; AP116

- Field Intensities in Diffraction Zone, VHF: AP117
- Folded Antenna Impedance Chart: AP135
- Helical Transmission Line Analysis; AP130 Hyperboloid Lens: AP129 Hyperboloid Lens: AP129 Lens, Luneberg: AP124 Meteoric Radio Echoes, Survey: AP123 Paraboloid Reflector: AP129 Recombination Coefficient in Lower Iono-

- sphere: AP125 Refractive Index Measurements, U. S.:
- AP114
- Rhombic Antennas, Mutual Impedance: AP118
- Single-Wire Transmission Line Experiments: AP119
- Slots, Closely-Spaced: AP127 Stochastic Problems in Wave Propagation: AP115, AP121
- Transmission Lines of Composite Section: AP126
- VHF Field Intensities in Diffraction Zone: AP117
- Waveguide Array for Solar Noise Studies: AP132
- Transactions Index-16

Professional Group on Audio

Acoustic Lens as Directional Microphone: A57 Acoustic-Mechanical Circuit Analysis: A75, A82 Amplifiers: A63, A65, A66, A69, A83 Cascade: A66 Dynamic, for Phonograph: A69 Miniature High-Gain: A83 Noise in: A63 Power: A65 Cascade as an Audio Amplifier: A66 Cathode Bias Resistor for Class A, Triode: A79 Circuit Analysis of Mechano-Acoustic Struc-tures: A75, A82 Correction to A75; A82 Electron-Beam Reproducing Head: A62 Film, Magnetic Recording on: A70 Flutter Standards: A72 puency Compression-Expansion Speech: A58 Frequency of Frequency Modulation Phonograph Pick-ups: A76 Hearing Aid, Transistor: A67 High Fidelity in Musical Tone Production: Loudspeaker Accessory for Reverberance: A71 Magnetic Recording: A58, A59, A62, A70, A77, A78, A80, A81 Adverse Environments: A77 Electron-Beam Reproducing Head: A62 Navy Standard Recorder-Reproducer: Navy S A80 On 35 MM Film: A70 State of the Art: A78 Television Signals: A81 Time Expansion Device: A59 Time or Frequency Compression-Expansion: A58 Magnetic Tape: Mechanical Components for Handling: $\Lambda 60$ Navy ¼" Standard: A80 Mechano-Acoustic Circuit Analysis: A75, $\Lambda 82$ Microphones: A57, A64, A84 Directional: A57 "Lipstik" Condenser: A84 "Vagabond" Wireless: A64 Noise in Audio Amplifiers; A63 Phonograph Pickups, FM: A76 Resistor, Cathode Bias, for Class A, Triode: A79 Sound Reproduction, Natural: A74 Speech, Time or Frequency Compression-Expansion: A58 Speech, Visible: A68 Time Compression-Expansion of Speech: A 58 Time Expansion Device: A59 Fransistor Hearing Aid: A67 Professional Group on Broadcast and Television Receivers Amplifiers: BTR19, BTR44 IF, for Color Receivers: BTR44 UHF Disc-Seal Triode: BTR19

Colorimeter, Barnes: BTR21, BTR23 Color Television: BTR21, BTR22, BTR23, BTR24, BTR25, BTR26, BTR27, BTR28, BTR29, BTR30, BTR33, BTR34, BTR35, BTR44, BTR48 Amateur Interference: BTR34, BTR35 Barnes Colorimeter: BTR22, BTR23

For Quality Control: BTR23 Screen Color Determination: For BTR22 CBS Colortron: BTR29 Chromatron Operation on NTSC Standards: BTR30 Color Decoder: BTR25 DC Quadricorrelator: BTR28 IF Amplifier Design: BTR44 Interference from Oscillator Radiation: BTR48 NTSC Field Tests: BTR27 Pulsed Envelope Detection: BTR24 Sound-Color Beat: BTR26 Transient Response of Receiver: BTR21 Yokes: BTR33 Electron Tubes: BTR18, BTR19 UHF Disc-Seal Triode: BTR19 UHF Television Amplifiers: BTR18 Generator, Test, for Horizontal Scan: BTR20 Heaters, Series Strings for TV: BTR47 Horizontal Scan Test Generator: BTR20 Horizontal Scan Test Generator: BTR20 Interference: BTR34, BTR35, BTR36, BTR37, BTR38, BTR39, BTR40, BTR41, BTR48 Amateur-TV: BTR34, BTR35 TAC Program: BTR41 **Oscillator** Radiation: BTR48 Over Radio Spectrum: BTR36 Spurious Radiation from TV Receivers: BTR40 Spurious Radiation Standards: BTR38 Television IF: BTR39 Television Receiver Industry: BTR37 Noise Reduction in UHF Amplifiers: BTR42 Q Determination of Resonant Circuits: BTR50 Quality Constraints Constraint Control, Barnes Colorimeter: Receivers: BTR17 Transistor Broadcast: BTR17 Selectivity Determination of Resonant Cir-cuits: BTR50 Semiconductor Diodes for TV Receivers: BTR46 Television Picture Quality: BTR31 Test Generator for Horizontal Scan: BTR20 Fransient Response of TV Receivers: BTR21 Transient response of 1 v Receivers: B1 Transistor Broadcast Receiver: BTR17 Tuner Design, UHF: BTR43 Vectorscope Applications: BTR49 Velo Automation (2004) Yoke Astigmatism: BTR45 Yokes: BTR32, BTR33 **Professional Group on Circuit Theory** Amplifiers, Feedback, Power Gain in: CT31 Approximation Problem: CT37, CT38 Band-Pass Attenuation: CT50 Band-Pass Filter Classification: CT58 Bibliographies, Suggestion on: CT27 Bott-Duffin Synthesis of Driving-Point Intpedances: CT45 Brune Cycle Without Ideal Transformer: CT24 Cascaded-Tuned Circuit Transient Response: CT44 Champions, The: CT35 Communication Theory and Cybernetics: CT53 Control Systems: CT18, CT21 Lead-Controller Synthesis: Optimum CT21

- Random Input, Nonlinear: CT18 Cybernetics: CT53 Error Criterion, Nature's: CT25, CT32, CT47, CT48
 - Continued on page 17

5

Filter, Nonlinear: CT49 Filter Synthesis: CT43 Ideal Transformer in Brune Cycle: CT24 International Scientific Radio Union: CT36 Ladder Filters: CT59 Ladder Network Synthesis: CT57 Moment Problem in Network Synthesis: **CT34** Multi-Loop Nonlinear Systems: CT26, CT51, CT52 Nature's Error Criterion: CT25, CT32, CT47, CT48 Network Synthesis and the Moment Problem: CT34 Nonlinear Filters: CT49 Nonlinear System Response Measurements: CT54 Numerical Analysis for Network Design: CT42 Nyquist Diagrams, Dual: CT20 Oscillations in Multi-Loop Circuits: CT52 Oscillations, Simultaneous, in Oscillators: СТ28 Passive Network Solution by Mathematical Trees: CTo0 Reciprocity, CT30 Three-Terminal Elements: Servomechanism: CT17, CT18, CT19, CT20, CT21, CT22, CT23 Closed-Loop System Analysis: CT19 Control Systems with Random Inputs: CT18 Feedback System Trends: CT17 Optimum Lead-Controller Synthesis: CT21 Predictor: C l'23 Response: C l'22 Stability, Using Dual Nyquist Diagram: CT20 Spectra of Waves with Periodic Modulation: CT32 Time Domain Network Synthesis: CT39 Time Domain Transient Synthesis: CT40 Transient Response of Cascaded-Tuned Circuits: CT44 Transient Synthesis in the Time Domain: CT40 URSI: CT36 Waveform Computations: CT56 Waveform Transmission Systems: CT55 Z-Transforms: CT46 Professional Group on Communications Systems Administrative Aspects: CS41 Air Force: CS50 Air-Groun I Radiotelephone: CS53 Propagation Forecasting: CS54, Airline CS55 Antenna: CS71 Steerable Directional: CS71 AN/TRC-24 Radio Set: CS69 Army, Dept. of: CS48 Aviation Global Communications: CS52 British Global Communications: CS46 CCIR: CS44 **Civil Aeronautics Administration: CS51** Codan for AM Receivers: CS19 Compandors for FM System: CS25 Double Sidehand AM Multiplex System: CS26 Exchange Cable Plant Design: CS60

Feedback Systems: CT17, CT20, CT21, CT29, CT31, CT41

Power Gain in Amplifiers: CT31 Stability, Using Dual Nyquist Diagrams: CT20

Transfer Function Synthesis: CT29 Trends in: CT17

Synthesis:

Constraints in Design: CT41 Optimum Lead-Controller

CT21

2

- Frequency Management, International: CS43, CS45 Frequency Propagation Forecasting: CS54, CS55 Generator, Standby, Remote Control of: **CS24** Global Communications: CS37, CS38, CS39, CS40, CS42, CS43, CS45, CS46, CS47, CS52, CS57, CS58 Air-Ground: CS53 Armed Services: CS38 Aviation: CS52 British: CS46 Development and Research Trends: CS40 Frequency Management: CS43, CS45 Historical Exhibits: CS37 History: CS39 ITU: CS42 Marine: CS47 Public Telephone: CS57 Telegraphy: CS58 History of Global Communications: CS37, CS39 International Radio Communications: CS56 ITU: CS42 Klystron Design Considerations: CS34 LD Radio System: CS17 Marine Communications, Global: CS47 Microstrip Waveguides: CS33 Military Carrier Telephone Systems: CS61 Navy: CS49 Pipeline Microwave System: CS21, CS28 Private Microwave Radio for Power Co.: CS59 Radio Relay: CS20, CS30, CS65, CS70 Military: CS30, CS65, CS70 Considerations for: CS70 Microwave: CS30 UHF: CS65 Tangier System of RCA: CS20 Radiotelephone: CS18, CS53 Air-Ground: CS53 AT&T Overseas: CS18 AT&T Overseas: CS18 Receivers: CS19 Codan Anti-Noise Device: CS19 Repeater Site: CS23 Repeaters, Submerged: CS58 Site Selection: CS22, CS23 Solar Research: CS12, CS13, CS14, CS15, CS16 Telegraph: CS66, CS67 Telegraph: CS66, CS67 Terminal Circuits: CS66 Terminal Equipment: CS67 Telegraphy: CS59 Submerged Repeaters: CS59 Telephone: CS57, CS61, CS62, CS63 Cable Design: CS62 Equipment Features, Military: CS63 Public, Global: CS57 System, Military: CS61 Teletype: CS68 Multichannel Terminal: CS68 Testing with Millimicrosecond Pulses: CS32 Transco Microwave System: CS31 Transmitter: CS35, CS36 American Cable and Radio: CS36 HF Multi-Channel: CS35 Trunk Service, Microwave System for: CS27 Union Electric System Installation: CS29 Waveguide: CS33 Microstrip: CS33 **Professional Group on Component Parts** Amplifier, Transistor: CP13 Capacitors: CP2, CP4, CP5 Limitations: CP4
 - Limitations: CP4 Metallized Paper: CP2 Breakdown and Leakage Resistance: CP2 Short Time Ratings: CP5 Coating, Protective: CP14 Component Part Engineering Profession:
 - Component Part Engineering Profession: CP1

World Radio History

(Component Parts, User's Problems: CP10) Delay Line, Continuously Variable: CP9 Electron Tubes: CP3 Comparison of 6.NK5 and 5654; CP3 Electrorestrictive Relay: CP12 Packaging for Vibration: CP11 Potentiometers: CP7 Wirewound: CP7 Protective Coating: CP14 Relays: CP8, CP12 Characteristics and Applications: CP8 Electrostrictive: CP12 Resistors: CP4 Linuitations: CP4 Rotating Components, Applications: CP6 Transistor Amplifier: CP13 User's Problems: CP10 Vibration, Packaging for: CP11 Professional Group on **Electron Devices** Air Coolers for High Power Tubes: ED86 Amplifiers: ED28, ED97, ED124 Parameter Measurements: Klystron, ED97 Microwave, Noise Figure: ED124 UHF Tubes: ED28 Assembly Techniques: ED52 Automatic Production, Frame Grid for: ED54 Base Adherence on Tubes: ED41 Bibliography of Transistors and Applications: ED99 Cathode: ED33, ED34, ED35, ED36, ED37, ED38, ED39, ED82, ED84, ED128 L-: ED37, ED38 Emitting Surface: E37 Production of Barium: ED38 Narrow, Elongated: ED34 Nickel Alloy, Sublimation Measurement: ED35 Philips Dispenser: ED39 Impregnated, Noise Figure: Philips ED128 Method: Radioactive-Tracer Study ED33 ED55 Rare-Earth Oxides: ED36 Surface Flatness: ED84 Thoria, Study of: ED82 Carcinotron: ED113, ED116 Noise Measurements: ED113 Signal-to-Noise Ratio: ED116 Carity, Microwaver, ED59 Cavity, Microwave: ED58 CBS Colortron Picture Tube: ED24 Conductivity of Single Crystal Al-O₃: ED76 Contact Potential, Tube Processing Effects on: ED48 Copper Magnetron Parts Fabrication: ED65 Corrosion Proofing: ED60 Counter Tube, Radiation: ED56 Definitions of Noise: ED128 Diode: ED29, ED82, ED87 Demountable, for Cathode Study: ED82 Double-Base: ED29 Germanium, Recovery Time: ED87 Electron Beam: ED115 Noise Measurements: ED115 Electron Gun: ED80 Tester: ED80 Electron Tubes, Problems in Use of: ED30 Emission: ED72, ED74, ED75 From Aluminum-Coated Tungsten: ED75 Secondary: ED72 MgO Thin Films: ED72 Self-Sustained from MgO Films: ED74 Envelope, Tube, Temperatures: ED47 Filament Centering Accuracy: ED81 Flicker Noise Resistance: ED73 Fluctuation Phenomena in Microwave Sources: ED100-ED128 Foreign Tube Techniques: ED42 Frequency and Phase Stability, MTI Ra-

dar: ED109

Continued on page 18

Transactions Index-17

Furnace: ED68, ED83 Combination Hydrogen or Vacuum: ED68 Vertical Iconel: ED83 Germanium Photovoltaic Cells: ED92 Grid: ED54 Frame, for Automatic Production: ED54 Helix: ED98 Propagation Calculation: ED98 Interface Measurements: ED40 IRE Standards, Tube Noise Measurements: ED128 Klystron: ED97, ED108 Amplifier Parameter Measurements: ED97 Oscillator, Low-Noise: ED108 Magnesium Oxide Films: ED72, ED74 Electron Bombardment: ED72 Self-Sustained Emission: ED74 Magnetron: ED59, ED62, ED66, ED69, ED96, ED106, ED107, ED112, ED119, ED126 Fabricating Copper Parts: ED66 Fluctuation Output, Measu Measurement: Fluctuation ED106 Heater Design, Magnetic Effects of: ED59 Heater Design, Magnetic Effects of: ED5 Manufacturing Techniques: ED69 Miniature Assembly Techniques: ED62 Noise Generation: ED126 Noise Measurements: ED107, ED119 Test Set: ED112 Voltage-Tunable: ED96 Metal-to-Ceramic Seal: ED67 Mica Seals, Power Capabilities: ED64 Mica, Synthetic: ED61 Microphonic Noise Reduction: ED50 Microphonic Noise Reduction: ED50 Noise: ED50, ED73, ED93, ED100, ED102, ED104, ED105, ED107, ED108. ED113, ED110, ED111, ED114. ED115, ED116, ED123, ED1 107 ED128 ED118, ED119. ED120, ED122, ED123, ED ED125, ED126, ED127, ED126 Carcinotron, Measurements: ED113 ED124. Carcinotron, Signal-to-Noise Ratio: ED116 Cathode: ED128 Comparator: ED111 Definitions: ED128 Discussion of: ED128 Electron Beam, Measurements: ED115 Figure, Microwave Amplifiers: ED124 Figure, Traveling-Wave Tube: ED118 Flicker, Resistance: ED73 Four-Pole: ED125 General Sources in Tubes: ED114 In Region of Potential Minimum: ED123 IRE Technical Committee Standardization: ED128 Low-, Klystron Oscillator: ED108 Magnetron, Generation of: ED126 Measurement: ED107. Magnetron, ED119 Microphonic, in Microwave Components: ED128 Microphonic, Reduction of: ED50 Microwave Oscillator, Measure ED104, ED105, ED110 Measurement: Microwave Receiver Sensitivity: ED102, ED128 Monitoring: ED128 Source, Effect on Electronic Systems: ED100 Specification: ED128 Summary of Fluctuation Symposium Papers: ED127 Tetrode Ion Oscillations: ED122 Triode, Equivalent Circuit for: ED93 Triode, Measurement and Analysis: ED120 Oscillator: ED85, ED101, ED103, ED104, Oscillator: ED85, ED101, ED103, ED104, ED105, ED108, ED110 Klystron, Low-Noise: ED108 Microwave, Noise Measurements: ED104, ED105, ED110 Microwave, Stability: ED85, ED103 Radar, Noise Requirements: ED101 Phototube: ED52

Transactions Index-18

Assembly: ED52 Photovoltaic Cell, Germanium: ED92 Processing Receiving Tubes: ED51 Radioactive-Tracer Study of Cathodes: ED33 Seals: ED44, ED64, ED67 Metal-to-Ceramic: ED67 Mica, at 10,000 Mc: ED64 Miniature Tube: ED44 Secondary Emission of MgO Thin Films: ED72Semiconductors, Rapid Determination of Properties: ED88 Silicon: ED77 Regrowth by Zone Melting Method: ED77 Space-Charge Waves on an Accelerating Stream: ED121 Spacer Materials: ED45 Stainless Steel in Large Tube Fabrication: ED65 Standards, IRE, Tube Noise Measurements: ED128 Storage Tubes: ED78, ED79 Direct View: ED79 Target Structures: ED78 Television: ED24, ED28 CBS Colortron Picture Tube: ED24 UHF Amplifier Tubes: ED28 Terminal for All-Metal Tube: ED70 Tetrode: ED122 Ion Oscillations: ED122 Thermal Effects in Tubes: ED49 Three-Dimensional Data Pre Presentation: ED43 Thyratron: ED90, ED91 Ionization in: ED91 Pulsed Operation: ED90 Transistor: ED25, ED26, ED27, ED31, ED32, ED89, ED95, ED99 Bibliography: ED99 Hermetically Sealed: ED32 Metrology: ED95 Network Element: ED26 PCA Commercial, Applications: ED31 **RF** Triode Junction: ED25 Tetrode Applications: ED27 VHF FM Transmitter: ED89 Fransmitter: ED89 Transistor, VIIF, FM: ED89 Traveling-Wave Tube: ED94, ED118 Characteristics for Finite C: ED94 Noise Figure Measurements: ED118 Triode: ED46, ED93, ED117, ED120 Noise, Equivalent Circuit: ED93 Noise Measurement and Analysis: ED120 Planar, Small Signal Performance: ED117 Twin, High Reliability: ED46 TR Tube: ED55, ED63 Failure of Keep-Alive Electrodes: ED55 Resonant Window Fabrication: ED63 Tube Analysis Program: ED53 Twin Triode, High Reliability: ED46 Vacuum System, Demountable: ED71 Voltage-Regulator Tube: ED57 Gaseous Impurities and Performance: ED57 Window Fabrication for TR Tubes: ED63 Professional Group on **Electronic Computers** Amplifier, Square-Law: EC33 Analog Computer, Desk Model, EC50 Analog Computing with Digital Techniques: EC31 Analog Integrator: EC49 Vnalog Multiplier: EC26, EC34 Time-Sharing: EC26 Using Thyrite: EC34 Autonomous Computers: EC51 Boolean Algebra: EC38, EC39 Computer Design: EC39 Switching Circuits and Error Detection: EC38

Code, Reflected Binary: EC45

Correlator, High-Speed: EC32 Desk Model Analog Computer: EC50 Digital Computer Design by Algebra: EC39 Digital Techniques in Analog Systems: EC31 Discovery by Computers: EC29 Divider, Digital Feedback: EC27 DYSEAC: EC25, EC30 System Design: EC30 System Design: EC30 System Organization: EC25 Encoder, Digital Voltage: EC41 Feedback Divider, Digital: EC27 Function Generating Methods: EC42 Function Generator: EC43 Generating Functions: EC42, EC43 Integrator, Analog: EC49 Logic: EC29 Modulator, Transistor Pulse-Code: EC46 Multiplifier: EC26, EC34 Time-Sharing Analog: EC26 Using Thyrite: EC34 Reading Magnetically Recorded Data: EC40 Readout, RF Nondestructive: EC47 Repairing Computers Automatically: EC51 Review of Literature: EC28, EC36, EC44, EC52 SEAC System Design: EC30 Self-Repairing Computers: EC51 Storage, Permanent High-Speed: EC37 Sub-Audio Time Delay Circuit: EC35 Thyrite for Analog Multiplier: EC35 Time-Delay Circuit, Sub-Audio: EC35 Time-Delay Networks for Analog Com-puters: EC48 Transistor Pulse-Code Modulator: EC46 Professional Group on **Engineering Management** Cost Control in Research and Development: EM7 Design Quality Control: EM4 Engineers Can Be Managers: EM9 Executive Management: EM12 Human Relations: EM8 Incentive: EM2 Informational Approach to Organization: EM5 Laboratory Executives, Selection: EM13 Management and the Engineer: EM1 Management Can Be Taught: EM10 Military Role in Research and Development: EM6 Responsibility of Management: EM1 Selection of Laboratory Executives: EM13 Staff Engineer's Part in Controlling Cost: EM System Engineering Design: EM5 Professional Group on **Information Theory** Binary Coding: IT52 Coding: IT52, IT53, IT54, IT55, IT61 Binary: IT52 Constant-Data-Rate Systems: IT55 Error-Free: IT53 Information Retrieval Systems: IT61 Multiple-Error-Correcting: 1754 Continuous-Modulated Intelligence Cor-rupted by Noise: IT43 Detection: IT39, IT40, IT44, IT64, IT65,

£.

IT66, IT67

Modulated Noise-Like Signals: IT44

Random Signals in Noise: IT40

Sensory: IT67 Signals Perturbed by Scatter and Noise: IT64

Statistical Theory: IT39

- Theory: IT65 Visual: IT66

Encoding, Minimum-Cost: 1T48 Ergodicity, Study of: 1T59 Error-Free Coding: 1T53

- Graphs for Communication Studies: IT47
 - Continued on page 19

- Information Retrieval, Coding: IT61
- Language, Statistical Study of: IT46
- Library Indexing: 1T61
- Almost-Optimum: Network, Nonlinear, **TT45**
- Non-Gaussian Noise in Linear Systems: **IT41**
- Organization and Systems: IT56
- Organizations, Model: 1T57 Information-Theoretical
- Prediction Theory, Nonlinear: IT63 Pulse-Time Determination; Optimum: IT50 Reception, Statistical Approaches to: IT62
- Redundancy, Study of: 1T59 Response of Linear Systems to Non-Gaussi-
- an Noise: IT41

1

- Self-Organizing Systems: 1758 Servomechanism, Generalized Evaluation: **IT49**
- Signal Parameters in Noise, Estimating: IT42
- Stationary Processes, Passage of: IT38
- Systems and Organization: IT56
- Theorem for Noisy Channels: IT51
- Transmission, Multivariate Information: **IT60**

Professional Group on Instrumentation

Counter Techniques for Frequency Measurement: I-19

Impedance Meter: I-21

Ratiometer: I-23

- Strain Gage Oscillator: I-26
- SWR Indicators, Swept Wide-Range: I-24 Time Jitter in Video Pulse Trains: I-22
- Transistor Current Amplification Measure-
- ments: I-25

Tuning Circuits: 1-20

Professional Group on Microwave Theory and Techniques

- on Directional Couplers: Bibliography MTT42
- Calorimeter for Millimeter Power Measure-ment: MTT53
- Cerenkov Radiation, Millimeter Wave Generation: MTT47
- Coaxial Line with Two Nonconcentric Di-electrics: MTT39
- Compandors for FM Systems: MTT25 Crystal Checker for Balanced Mixers: MTT36
- Crystals in Balanced Mixers: MTT38 Dielectric Constant, Optical Measuring Method: MTT44
- Direction Couplers, Bibliography: MTT42 Double Sideband AM Multiplex System: MTT26
- Generation of Millimeter Waves: MTT47 Generator, Standby, Remote Control of: MTT24
- Millimeter Wavelengths: Harmonics at MTT46
- Klystron Design Considerations: MTT34

- Klystron Stabilization: MTT48
- Magnetic Constant, Optical Measuring Method: MTT44
- Magnetron Research at Columbia: MTT50 Microstrip Waveguides: MTT33 Optical Measurement of Dielectric Con-
- stant: MTT44
- Oscillator Stabilizing: MTT37 Pipeline Microwave System: MTT21, Pipeline
- MTT28
- Polarization Chart: MTT43
- Radio Relay for Military Use: MTT30 Receiver, Superheterodyne, 150 KMC: Receiver, S MTT49
- Repeater Site: MTT23
- Shielded-Strip Transmission Line Imped-ance: MTT41
- Site Selection: MTT22, MTT23 Spectroscopic Components: MTT45
- Stabilizing Microwave Oscillators: MTT37 Superheterodyne Receiver for 150 KMC: MTT49
- Millimicrosecond Pulses: Testing wit MTT32 with
- Transco Microwave System: MTT31 Transmission Line: MTT41, MTT43
- Chart: MTT43
- Shielded-Strip, Impedance: MTT41 veling-Wave Amplifier, Wavelength: MTT52 Millimeter Traveling-Wave
- Traveling-Wave Electron Deflection System: MTT35
- Trunk Service, Microwave System for: MTT27
- Union Electric System Installation: MTT29 Waveguide: MTT33, MTT40, MTT51, **МТТ54**
 - Circular, Components for: MTT40 Flat, for Millimeter Range: MTT54
- Low-Loss Dielectric: MTT51
- Microstrip: MTT33

Professional Group on **Nuclear Science**

Abstracts: NS4

Accelerator, Electron Analogue: NS3 Brookhaven Reactor Instrumentation: NS1 Temperature Control, Reactor Outlet: NS2

Professional Group on Reliability and **Quality Control**

(formerly Quality Control)

Cumulative Result Sampling Plan: QC18 Equipment Reliability Program: QC12 Panel on Electron Tubes Program: QC15 Protective Coating Techniques: QC15 Quality in Production: QC21 Transistor Reliability, Low-Power Audio:

OC19

Tube Reliability: QC13, QC14, QC15, QC16, QC17

World Radio History

Inspection Procedures: QC14 Panel on Electron Tubes Coordination Program: QC15

Professional Group on Telemetry and **Remote Control**

(formerly Radio Telemetry and Remote Control)

Commutating Device Design: TRC2 Computer: TRC3, TRC4

- High-Speed Digital: TRC3
- Input-OutputPhilosophy: TRC4
- Data Processing Facility, Air Force: TRC1 Discriminator, Subcarrier: TRC5 Information Theory and Telemetering: TRC7
- Modulator, Slope, for Magnetic Recording: TRC8
- Oscillator, Voltage-Controlled, Transistor: TRC6
- Telemetering and Information Theory: TRC7

Transistor Oscillator: TRC6

Professional Group on **Ultrasonics Engineering**

Bibliography on Ultrasonic Delay Lines: UE7

- Delay Lines: UE3, UE5, UE7
- Acoustic, Solid: UE5
- Bibliography: UE7
- Characteristics: UE3
- Flowmeter, Acoustic: UE6 Machine Tool, Ultrasonic: UE8 Machining, Mechanical Impedance Trans-
- formers for: UE10 Machining of Tungsten Carbide: UE9
- Medicine and Ultrasound: UE1

Metal Cleaning with Ultrasonics: UE4

Micro-Displacement Meter: UE2

Professional Group on Vehicular Communications

Duplex and Multi-Channel Equipment: VC35

Erie Railroad Communication System: VC41

Mobile Radio Service, Frequency Use and

Network Maintenance and Operation Prob-

Radio Relay Operation in Power Radio Service: VC39

U. S. Forest Service Mobile Radio Per-

Transactions Index-19

Interference: VC37 Mobile-Microwave System: VC33

lems: VC40

Licensing: VC34

Portable Equipment: VC38

formance: VC36

NONTECHNICAL INDEX

Professional Group on Aeronautical and Navigational Electronics

Chairman's Report: March, p. 3 East Coast Conference: September, p. 1 National Conference on Airborne Electronics: March, p. 1; June, p. 1

Professional Group on Antennas and Propagation

Editorials

"Why Transactions," by Ernst Weber: March, p. 41

Group News

Administrative Committee: July, p. 91; October, pp. 129, 130

Chapters:

Albuquerque-Los Alamos: January, p. 3; March. p. 44; July, p. 92 Chicago: March, p. 44; October, p. 131

Los Angeles: January, p. 4; July, p. 92 San Diego: January, p. 3

- Washington: January, p. 3; July, p. 92 Subdivision: January, pp. 1–2; July, p. 92 Transactions: January, pp. 2, 3; March, p. 45; July, pp. 91–92; October, p. 129

Meetings

IRE National Convention, 1954; January,

pp. 3, 4 URSI Fall Meeting, 1953; January, p. 4 URSI Spring Meeting, 1954; March, p. 44 Western Electronics Convention, 1954:

March, p. 44; July, p. 92

Miscellaneous

- Antennas and Waveguide Committee: January, p. 3; July, p. 92 Combining Professional Groups: October, p.
- 129
- Data on Professional Groups: October, p. 130

National Bureau of Standards Relocated: October, p. 130 New Unit for Logarithmic Ratios: pp. 42–44

Personals

Cohn, S.: October, p. 131 Jordan, E. C.: July, p. 93; October, p. 131 Loria, R. M.: October, p. 131 Newman, M. M.: October, p. 131 Rumsey, V. H.: July, p. 93

Professional Group on Audio

Chapters

- Cincinnati: July-August, p. 104 Cleveland: May-June, p. 75 Houston: March-April, p. 42; September-
- October, p. 131

Philadelphia: January-February, p. 1; July-August, p. 104 San Diego: January-February, p. 1

Committees

- PGA Committees: November-December, p. 156
- Recording and Reproducing: July -August, p. 106 Sound Recording and Reproducing: May-

June, p. 76 Tapescripts: January-February, p. 2; Sep-tember-October, p. 131

Meetings

Department of Defense Magnetic Recording Symposium: January-February, p. 3 IRE National Convention: May-June, p. 73 WESCON: November-December, p. 155

Miscellaneous

How Much Distortion Can You Hear?:

Narch-April, p. 42 RCA Records Color Television on Magnetic Tape: January-February, p. 4

Reports

Chairman, 1953–1954: May–June, p. 71 Editorial Committee, 1953–1954: May June, p. 72 Treasurer, 1953–1954: May–June, p. 72

Professional Group on Broadcast and Television Receivers

Administrative Committee Meeting: January, p. 1; July, p. 1 Israel, Dorman D.: April, p. 1

Professional Group on Circuit Theory

Chapters

- Albuquerque-Los Alamos: March, p. 79;
- June, p. 39 Chicago: June, p. 39; September, p. 72;
- December, p. 41 Formation: March, p. 78

Los Angeles: June, p. 39; September, p. 72;

- December, p. 41 Philadelphia: March, p. 79; June, p. 39; September, p. 72; December, p. 41 Seattle: June, p. 39; September, p. 72

Committees

Administrative: June, p. 34 Nominations: June, p. 38 Papers and Transactions: June, p. 36 Reviews and Abstracts: June, p. 37 Section-Chapters: June, p. 36 Symposium: June, p. 35

Meetings

URSI Eleventh General Assembly: June, p. 30

Miscellaneous

Future Transactions Topics: September, p. 71

Society for Industrial and Applied Mathematics: March, p. 79

Reports

Chairman: June, p. 35 Papers and Transactions Committee: June, p. 36

Secretary-Treasurer: June, p. 35 Section-Chapters Committee: June, p. 36 Symposium Committee: June, p. 35

Professional Group on Electronic Computers

Administrative Committee: June, p. 1; September, p. 39

Chapters:

- Akron: September, p. 39

- Albuquerque: June, p. 1 Chicago: June, p. 1 Dallas-Fort Worth: September, p. 39
- Los Angeles: June, p. 1
- New York: June, p. 1
- Philadelphia: June, p. 1
- Washington: June, p. 1
- Eastern Joint Computer Conference: June, p. 1; September, p. 39; December, p. 32
- Editorial: "The Editor" by W. Buchholz: Septem-
- ber, p. 1 Membership: June, p. 1; September, p. 39 Report of Chairman: December, p. 31

- Standing Committees: September, p. 39 Western Computer Conference, 1955: December, p. 31

Professional Group on Engineering Management

Chairman's Message: February, p. 1 Constitution and By-Laws: February, p. 44 Publications Committee: February, p. 2

Professional Group on Nuclear Science

Annual Meeting Abstracts: September, p. 21 Annual Meeting Program: September, p. 18 Constitution and By-Laws: September, p. 26 Editorial: September, p. 1 Publication Policy: September, p. 31 Secretary's Report: September, p. 25

Professional Group on **Ultrasonics** Engineering

Chairman's Message: June, p. 1 Chairman's Report: November, p. 1 Constitution and Bylaws: November, p. 35 Membership: June, p. 3

MATERIALS RESEARCH · ELECTRONIC COMPONENTS · PRECISION INSTRUMENTS · SYSTEMS ENGINEERING

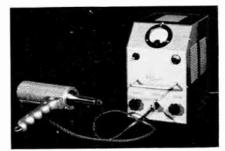
Variable reluctance pressure gauge has high accuracy over a wide frequency range

Glennite PVR-200-1 Pressure Gauge Specifications: Frequency response, 0-500 c.p.s.; Natural frequency, 5 KC or higher; Linearity, better than $\pm 1.5\%$ full scale; Pressure ranges, ± 100 mm Hg, ± 5 psi, ± 10 psi; Temperature range, -67° F to $+120^{\circ}$ F; Size, 11/16" D., 5/16" high; Weight, 12.5 grants.

The new Glennite PVR-200 series pressure gauges fulfill the requirements of industry for subminiature differential pressure transducers of high accuracy and performance over a wide frequency range.

These rugged gauges are designed to transform differential air or gas pressure into a measurable electrical signal which can be utilized by standard instruments.

New, portable ultrasonic soldering iron eliminates use of flux


The Glennite Ultrasonic Soldering Iron, Model U-611, is an electrically heated, ultrasonically driven tool for soldering such materials as aluminum and magnesium and their alloys without the use of corrosive flux. It is invaluable for soldering metals or alloys that form refractory oxides and eliminates special surface pre-treatment.

Exceedingly versatile, they can measure static or slowly varying pressures, as well as those fluctuating at frequencies well into the audio range. These flexible, dynamic test instruments can be easily and accurately calibrated.

Because of their outstanding characteristics. the Glennite PVR-200 gauges permit research where pressure measurement was hitherto difficult or impractical, as in flight testing. In stationary installations, such as wind tunnels, they can be used in confined spaces to measure rapidly varying phenomena which are beyond the capabilities of manometers or the conventional bulky pressure pickup. The transducers are engineered to work with commercially available carrier amplifier systems.

Gulton Mfg. Corp.

Lightweight, small size and portable, the unit can operate in areas not accessible to bench work. Uses include assembly and installation of wave guides, surface

Model U-611 Soldering Iron

tinning and filling of voids in aluminum or magnesium castings.

Only 35 watts are needed to drive the soldering tip to sufficiently agitate the molten solder and remove oxide films.

The 9" x 9" x 6" generator, supplied with the soldering iron, has an input of 117 volts at 1 ampere, 60 cycles. It has gain control, off-on power switch and fine frequency tuning control. A gas heated ultrasonic soldering iron. Model U-610, is also available for soldering large components.

Vibro-Ceramics Corporation

Gulton Industries, Inc. 201 Durham Ave., Metuchen, New Jersey Put me on Gulton Abstracts mailing list Please send me additional information on: Glennite Ultrasonic Soldering Irons

 ☐ Glennite Ultrasonic Soldering Irons
 ☐ Greibach Meters
 ☐ Glennite PVR-200 Variable Reluctance Gauges
 ☐ Glennite Electromechanical and Electronic Instruments
 ☐ Glennite Electronic Components

NAME	
TITLE	
COMPANY	
ADDRESS	

Friction-free meter achieves high sensitivity, ruggedness and precision

The radically new Greibach Meter employs a unique bifilar suspension movement.

In the Greibach movement the rotating coil is centrally suspended by taut twin wires anchored to precisely tensioned spiral disc springs. Virtually friction-free construction eliminates bearings or pivots, and delicate hair or coil springs. A light beam pointer minimizes inertia effects and eliminates parallax errors, permitting reading from any angle; no tapping is necessary.

Standard meters utilizing the Greibach Bifilar Suspension are made with sensitivities up to 1 microampere full-scale. This performance is achieved with only 4500 ohms internal resistance, an accuracy of better than 0.25%, an ability to survive high mechanical shocks and mo-

Greibach Light Pointer Precision Meter

mentary electrical overloads of up to 100,000%! Panel and laboratory meters are available for DC and AC voltage and current measurements and for precision resistance measurements.

Greibach Instruments Corporation

Comprising: Gulton Mfg. Corp. - Glenco Corporation - Vibro-Ceramics Corporation Greibach Instruments Corporation - Thermistor Corporation of America

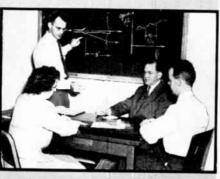
GULTON INDUSTRIES, INC.

Idea to Reality... Put WHEELER Microwave **Experience to Work for You!**

Wheeler Laboratories' outstanding achievements in better engineered microwave components for radio and radar place it in a unique position to handle your microwave needs.

Under the direction of Harold A. Wheeler, our competent engineering staff, with complete supporting facilities, is equipped to tackle your toughest design problem . . . and come up with positive results.

Submit your idea for immediate analysis, or arrange a meeting with our engineers. A brief summary of our work is available on request.

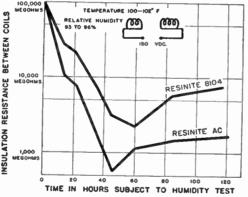

WHEELER

Great Neck, N. Y.

HUnter 2-7876

Laboratories, Inc.

122 Cutter Mill Road



Members of the engineering staff discuss a problem in antenna design with Mr. Wheeler.

INSULATION RESISTANCE (READINGS TAKEN UNDER HUMIDITY)

Tests conducted on .253 I.D. x **GIVES YOU THE HIGHEST** .283 O.D. tubes used on coil forms for television receivers. **INSULATION RESISTANCE OF ANY RESINATED PRODUCT**

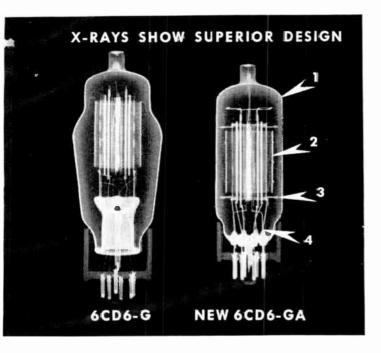
Performance data-compiled from laboratory tests, actual field operations and reports from manufacturers-prove the outstanding operating characteristics of Resinite. In volume resistivity... low moisture absorption ... excellent thermal properties .. low power factor ... and resistance to voltage breakdown... Resinite outperforms all other resinated products. Resinite Coil Forms are available with inside or outside threads-slotted, punched or embossed. Special three-row threaded design per-mits axial pressure in excess of 25 lbs. Torque con-trollable to + or -1 inch oz. Performance data-compiled from laboratory

RESINITE 8104 very high dielectric properties under extreme humidity. **RESINITE "AC"** very high dielectric properties-completely immune to electrolytic corrosion.

RESINITE 104 for stapling, severe forming and fabricating.

trollable to + or -1 inch oz.

(Continued from page 78A)


Zaphiropoulos, R., 7887 Sunkis . Dr., Oakland, Calif. Zill, F. W., 5000 Gulf Freeway, Houston, Tex.

The following elections to the Associate grade were approved to be effective as of March 1, 1955:

- Adams, C. B., 5100 San Francisco Ave., St. Louis 15, Mo.
- Adikaram, K. B., 416-A New Rd., Panadura, Ceylon
- Anderson, O. A., 4435 General Dr., Beaumont, Tex. Anderson, T. E., Parkway Apts., 66-D, Haddonfield, N. J.
- Arnell, E. B., 107-06-122 St., Richmond Hill 19, L. I., N. Y.
- Asch, B., 80 Lawrence Dr., N. White Plains, N. Y. Atkins, J. W., Jr., Chance Vought Aircraft, Dept. 55180, Dallas, Tex.
- Bachrach, H. E., Bermudez F-32, La Lucila, Buenos Aires, Argentina
- Balacki, S. J., 49-09-103 St., Corona 68, L. I., N. Y.
- Bauman, V. R., 12315 Washington PL, Los Angeles 66, Calif.
- Bederka, S. E., General Electric Co., French Rd., Utica 4, N. Y.
- Bekker, D., 21 Shoshanim, Tiv'on, Haifa, Israel
- Bender, W. W., 6106 Bertram Ave., Baltimore 14, Md.
- Bennett, L., 765 Third Ave., New York 17, N. Y.
- Bergh, F. H., 1307 Whitswing, McAllen, Tex.
- Berquist, A. O., 602 Mission St., Apt. 2, San Antonio 3, Tex.
- Bezaire, W. A., 4105 Wisconsin Ave., N.W., Washington 16, D, C,
- Bingham, T. V., 2500 Willowbrook Dr., Cincinnati 15. Ohio
- Birge, W. A., 4-C Alder Dr., Baltimore 20, Md,
- Bloomquist, L. A., 8258 S. Halsted St., Chicago 20, III.
- Blum, H. E., 2734-74 Ave., Hyattsville, Md.
- Blymiller, A. L., Mounted Rt., Dale Rd., Rome, N. Y.
- Blusiewicz, E., 2257 Deheze, Buenos Aires, Argentina
- Bow, B. H., 53 Garrison Rd., Brookline 46, Mass.
- Bradbury, L. D., 5437 Dorado Ave., Orlando, Fla.
- Brant, E. D., 1426 Bristol Ave., Westchester, Ill. Briscoe, H. R., 403 Signal View, Chattanooga,
 - Tenn.
- Brunton, R. H., HI, 105 Birds Hill Ave., Needham 92, Mass.
- Buckley, R. O., 822 Gist Ave., Silver Spring, Md. Cagney, W. M., 3545-78 St., Jackson Heights, L. I., N. Y.
- Calvin, C. C., Jr., 1408 Paxton, Arlington, Tex.
- Capers, J. L., 5611 Rideway Dr., Houston, Tex.
- Carlile, R. N., Rm. 2754, Bldg. 12, Hughes Aircraft Co., Culver City, Calif.
- Carlson, W. A., 93 Churchill Ave., Arlington 74, Mass.
- Cary, S. L., 9835-82 Ave., Edmonton, Alta., Canada
- Casey, P. J., 1229 E. 57 St., Chicago 37, Ill.
- Casselman, W. G. B., 112 College St., Toronto 5,
- Ont., Canada Chestnut, E. H., 1020-A South AlA, Patrick AFB, Fla.
- Ciceroni, S., Via D'Azeglio 3/B, Rome, Italy Clapp, M. F., 5527 W. Jefferson Blvd., Los Angeles 16. Calif.
- Class, J. S., 746 Skyline Dr., Lancaster, Pa.
- Cohen, I., 8030 Thuron Ave., Philadelphia 19, Pa. Coleman, G. E., 509 Rogers Ave., Brooklyn 25, N. Y.
- Collins, J. L., 3398th Tech. Ing. Sqdn., Box 86, Keesler AFB. Miss.
- Coniber, G. A., 327 W. Colvin St., Syracuse 5, N. Y. Conti, T. L., 34 Hilltop Rd., W. Long Branch, N. J. (Continued on page 84A)

WHEN WRITING TO ADVERTISERS PLEASE MENTION -- PROCEEDINGS OF THE L.R.E.

G.E.'s IMPROVED 6CD6-GA SWEEP TUBE IS COMPACT, STURDY...HAS NEW, HIGH RATINGS!

(D)

- New bulb is straight-side, smaller and sturdier.
- Redesigned, more shockresistant tube structure. Redesigned plate, with larger area.
- 3. Bottom mica, as well as top, now contacts the glass, for greater rigidity. Both micas are completely redesigned to minimize arc-overs.
- Button-stem base gives shorter and better-separated leads; improves heat conduction.

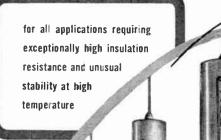
No price increase! Now one economical tube will serve in both monochrome and color TV sets!

N^{EW} high-rating tube performance, arc-overs cut 'way down . . . yet price stays the same as the prototype 6CD6-G! Plate positive-pulse voltage now is 7,000 volts, against 6,600 volts. Plate dissipation has been increased one-third from 15 watts to 20 watts.

Every 6CD6-GA gets an arc-over test at absolute max ratings. This built-in, tested-in freedom from tube arcing, with high-capacity performance as shown by the new ratings, makes G.E.'s new sweep tube equally suitable for color TV along with black-and-white.

Consequently, you need specify and stock only

one tube for monochrome and color. You save on inventory...and save substantially on tube cost, at the 6CD6-GA's low price. Also, TV quality benefits. Fewer arc-overs mean less horizontal picture streaking.


To high-rating tube performance, add important structural improvements. These make the new 6CD6-GA more shock-resistant—far longerlived. The tube also takes up less chassis space than before. Side-by-side X-ray pictures above show details of Type 6CD6-GA's new design.

Ask for complete information! Tube Department, General Electric Co., Schenectady 5, New York.

Also available: NEW 25CD6-GB. Same improved design and performance as 6CD6-GA, but has heavy-duty 600-ma heater with "series-string" warm-up time.

Progress Is Our Most Important Product

"HY-THERM" New sub-miniature high temperature CAPACITORS

HOPKINS

Hermetically sealed and metal en-cased, new HY-THERM capacitors have been designed to meet or exceed military requirements (Mil-C-25A). Ex-ample: At 125°C the minimum insulation resistance is 20 megohm-microfarads and maximum insulation resistance is 500 megohms. Available in all standard values and tolerances. Variety of mounting and circuit combinations. Special units designed to meet individual requirements.

Catalog available

Write, wire or phone for details, TODAY!

Have a special problem?

2082 Lincoln Ave., Altadena, Calif., SYcamore 8-1185 • Offices in WASHINGTON, D.C. and DETROIT

AN/APR-4 LABORATORY RECEIVERS

Complete with all five Tuning Units, covering the range 38 to 4,000 Mc.; wideband discone and other antennas, wavetraps, mobile accessories, 160 page technical manual, etc. Versatile, accurate, compact—the aristocrat of lab receivers in this range. Write for data sheet and quotations.

We have a large variety of other hard-to-get equipment, in-cluding microwave, aircraft, communications, radar; and labo-ratory electronics of all kinds. Quality standards maintained. Get our quotations!

NEW TS-13/AP X-BAND SIGNAL GENERATORS, with manual, \$755.00 . . T-47A/ART-13 Transmitters, \$450.00 . . . H-P, Boon-ton, G-R, Measurements, and other standard items in stock; also nucleonic equipment.

⁽Continued from page 82.4)

Copestakes, J. E., 3230 Friendship St., Philadelphia, Pa.

Corbin, S. A., 289 Ashford St., Brooklyn 7, N. Y. Cude, H. H., Box 298, Duncanville, Tex,

Cyl-Champlin, C., 308-S West St., Arlington, Tex. Dale, W. L., General Electric Co., AGT Division

6

- Development, Cincinnati 15, Ohio Daw, E. H., 1133 Knickerbocker Dr., Sunnyvale,
- Calif Dean, F. A., 12703 Hathaway Dr., Silver Spring,
- Md De Halmy, A., 674 Roslyn Ave., Westmount, Mon-
- treal, Que., Canada De Mesme, T. A., Box 1187, Haselton Branch, Rome, N. Y.
- Dennis, D. L., 2026 Boyer Ave., Seattle 2, Wash.
- Dennis, P. A., 2810 Tennyson Pl., Hermosa Beach, Calif
- Doran, T. F., 514 Girard-Hubbard Rd., Youngs town 4, Ohio
- Dowe, R. J., 1215 Prytania St., New Orleans 13, La.
- DuBois, R. O., Jr., Electro Mechanical Research, Ridgeffeld, Conn.
- Efstathiou, J., 589 Merritt Ave., Oakland 10, Calif. Ellsworth, B. E., 302 S. Maple, North Flatte, Nebr.
- Elliott, J. R., 408 Thurman Ave., Columbus 6, Ohio Erdinan, A. L., 6920th Security Wg., APO 73, San Francisco, Calif.
- Favors, E. L., 844 N. 67 E. Ave., Tulsa, Okla,
- Fluhrer, A. C., 318 N. Berendo St., Los Angeles 4, Calif.
- Flynn, J. G., 111, 6214 DeLoache, Dallas, Tex.
- Freeze, R. C., 8601 Dyer St., El Paso, Tex,
- Frewaldt, E. W., Box 1740, Wichita 1, Kan,
- Furlong, G. F., 56 Sterling Ave., S., Kitchener, Ont., Canada
- Galli, E. J., 1616 Bogart Ave., New York 62, N. Y. Garritson, F. K., 3357 W. 132 St., Hawthorne, Calif.
- Geiger, R. H., 173 Pascack Ave., Emerson, N. J.
- Giampiccolo, P. M., 1767-58 St., Brooklyn 4, N. Y. Glixon, H. R., 51 Alpine La., Hicksville, L. L.
- N. Y. Goldstein, S., 149 Brighton 11 St., Brooklyn 35,
- N. Y. Coodman, H. A., 14 E. 96 St., Brooklyn, N. Y.
- Grabowski, J. H., 7405 Tennyson I.L. Hermosa Beach, Calif
- Greenstein, J. L., 4248 Bernadine PL, San Diego 15, Calif.
- Grosper, A. J., Jr., Box 246, R.F.D. 1, Hanover, Md. Gyllenkrok, T.-G., Bjornstorp, Sweden
- Halldorsson, T. J., 6 Nonnustig, Hafnarfirdi, Iceland
- Halloran, T. F., 3 Edgehill Rd., Winchester, Mass.
- Hankin, R. B., 7029 N. Greenview, Chicago, III. Harper, J. T., 6515 Rosemont Ave., Baltimore 6,
- Md.
- Harrold, G. B., Box 441, Tombstone, Ariz,
- Harvey, G. C., 1165 Monument, Pacific Palisades, Calif.
- Hatcher, C. M., 4454 Osprey St., San Diego 7, Calif Hauf, J. C., II1, 1608 Glen Keith Blvd., Baltimore 4. Md
- Hayes, C. R., Box 885, Oxnard, Calif.
- Hennessy, Pox 94, Eq. Sqdn, Sec., 5001st Air Def. Croup, APO 731, c/o Postmaster, Seattle, Wash.
- Hernaiz, S. C., 165 Manhattan Ave., New York 25, N. Y.
- Hiers, K. G., Box 327, R.F.D. 2, Cocoa, Fla.
- Hornung, S. A., 260-11 Ave., New York 1, N. Y. Hughes, R. M., 1332 W, 15 St., Owensboro, Ky,
- Huller, M., 2470 Corrientes, Buenos Aires, Argentii a
- Hurst, E., 532 Circle Dr., Burlington, N. C.
- Ireland, R. O., 3532 Holboro Dr., Los Angeles 27,

Calif.

(Continued on page 86A)

WHEN WRITING TO ADVERTISERS PLEASE MENTION - PROCEEDINGS OF THE L.R.E.

1523 L St., N. W. Washington 5, D. C

DAYTON 9, OHIO

ENGINEERING ASSOCIATES 434 PATTERSON ROAD

Solve your problems quickly and economically with –

STANDARD SIZE ANTENNA CORES

GENERAL CERAMICS

Standardized Parts...

Specifying General Ceramics standard antenna rods assures maximum economy, greater uniformity of quality and faster deliveries. These new components of Ferramic "Q" are available in five standard lengths in both rods and plates.

Ferramic "Q" offers...

Complete stability in respect to age, shock, vibration and temperature. Additional advantages are higher Q and lower losses at all frequencies up to 30 megacycles. Basic toroidal and typical antenna rod measurements are shown below. Call, write or wire for prices, today!

BASIC	TOROIDAL	MEASUREMENTS

Initial Permeability µ _O (1Mc)	125
Figure of Merit Q (1Mc)	400
Loss Factor $\frac{1}{\mu_0 Q}$ (SMc)	.000020 .000050 .000130
(1CMc) (20Mc)	.000500
μ _O vs Frequency Characteristics	Good to over 30 Mc
Q vs Frequency Characteristics	Good to over 30 Mc
Curie Temperature (°C)	350
Temp. Coeff. of $\mu_0(1Mc)$ "%/ °C (25°C to 70°C)	+0.10 max.
Temp. Coeff. of Q (Same units as above) Suturation Flux Density	0.75
Bs (gauss) at Hide = 25 oersteds	3300
Max. Permeability 4 max	400
Coercive Farce H (oersteds)	2.10
Residua. Magnetism Br	1800

	DIA, ROD ,250" ==,015"+	DIA. ROD .330" = .020"•	.725" ±.025" THICKNESS .125" +.030" —.000"
LENGTH	PART NO.	PART NO.	PART NO.
7.520 + 7/32 6.250 + 3/16 5.300 + 5/32 4.625 + 1/8 4.100 ± 1/8	1 2 3 4 5	6 7 8 9 10	11 12 13 14 15
Camber .011 per			

5 214

F-429 WIDTH

63

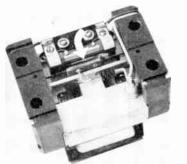
TIFICAL ANTENNA KOD MEASUREMENTS					
FREQUENCY	Q	C mmf.			
0.6	310	360			
0.8	331	200			
1.0	325	126			
1.2	325	85			

310 TEMPERATURE COEFFICIENTS

1.4

Antenna Rod No. F-214 (.330 x 7.520"). Standard Test Coil-Space wound solenoid 85 turns ± 26 AWG. Formex copper, occupying approx. 90% of length of rod and centered on rod. (Resonates at 1 Mc. with, 126 mmf.)

$$\label{eq:tc} \begin{split} \text{TC} &= \frac{\% \ \bigtriangleup \ \mu_0}{\mu_0} \quad (25^\circ \ \text{to} \ 75^\circ \text{C}) \\ \text{Temp. Coeff. of Rod. } +1.0 \ \text{to} \ +2.0 \\ \text{Temp. Coeff. of Coil only} &\simeq 0 \end{split}$$



MAKERS OF STEATITE, ALUMINA, ZIRCON, PORCELAIN, SOLDERSEAL TERMINALS, LIGHT DUTY REFRACTORIES, CHEMICAL STONEWARE, IMPERVIOUS GRAPHITE, FERRAMIC MAGNETIC CORES

NEY'S small parts play a **BIG** part in precision instruments

Genisco Accelerometers are used in the guidance systems of missiles now in large-scale production. They are rugged, potentiometertype instruments chosen for their reliability and precise performance.

The Ney Precious Metal Contact (indicated by arrow) is an im-portant part of this Genisco Ac-celerometer.

For the double-contact wiper of the potentiometer, Genisco selected Ney's Precious Metal Alloy Paliney #7* because it provides the important advantages of holding noise at a minimum, excellent linearity, long life and satisfactory performance in temperatures from -65° F. to $+200^{\circ}$ F.

Ney Precious Metal Alloys have high resistance to tarnish, are unaffected by most industrial corrosive atmospheres, and have ideal electrical characteristics. These precious metal alloys, developed by Ney especially for precision instruments, have been fabricated into slip rings, wipers, contacts, brushes, commutator segments and similar components. Call the Ney Engineering Department for the selection and design of the right Ney Precious Metal Alloy which will improve the characteristics and prolong the life of your precision instruments.

THE J. M. NEY CO. • 171 ELM ST., HARTFORD 1, CONN. Specialists in Precious Metal Metallurgy Since 1812 *Registered Trade Mark 6NY55B

(Continued from page 84A)

Irwin, R. R., 638 Abington Ave., Glenside, Pa. Jeanne, C. E., 200 Wood Rd., Whitesboro, N. V. Jensen, M. W., 656 Rosemont St., La Jolla, Calif. Johnson, R. M., 359 Woodland Rd., Madison, N. J. Jurriaans, G. F., 4821 W. Van Buren, St., Chicago 24, 111,

Kasprazycki, E. J., 2312 N. Hoyne Ave., Chicago 47, 111.

Kattoua, I. E., 883 Delaware, Detroit 3, Mich.

Katz, J., 576 E. 91 St., Brooklyn 36, N. Y.

Keating, L. M., 59 Tiel Way, Houston, Tex.

Keely, J. F., 1555 Nostrand Ave., Brooklyn 26,

N. Y. Keener, M. A., 4860 Pescadero Ave., San Diego 7, Calif.

Keller, A. L., 5 Park Vale, Brookline 46, Mass,

Kennaugh, E. M., 67 W. Patterson, Columbus, Ohio

Keroes, H. I., 369 Shure La., Philadelphia 28, Pa. King, E. F., 22861 Edgewood Dr., St. Clair Shores, Mich.

King, M. L., 320 Dorn Ave., Bound Brook, N. J. Klein, M. L., 23002 Ostronic Dr., Woodland Hills.

Calif.

Kloepping, J., IBM Corp., Poughkeepsie, N. Y.

Kunkel, W. E., 2217 West Rd., Little Rock, Ark, Kronlage, R. B., Jr., 647 Coleraine Rd., Baltimore

- 29, Md. Kydd, J. G., 338 Queen St., Ottawa, Ont., Canada Lamm, L. M., NAESU, Naval Receiving Station,
- Washington 25, D. C. La Presti, P., 220 Knickerbocker Ave., Brooklyn

37. N. Y.

Levy, G., 100 Ringdahl Ct., Rome, N. Y.

Lindsay, W. J., Electronic Defence Group, Engineering Research

Institute, University of Michigan, Ann Arbor. Mich.

Little, B. W., 11316 Venice Blvd., Mar Vista 66, Calif,

Love, K. A., 1111 N. 18 Ave., Melrose Park, Ill.

Loveland, H. D., 4026 Oberlin, Houston 5, Tex. Lunn, W. B., 11157 Braddock Dr., Culver City,

Calif. Lupano, E. L., 2717 Throop Ave., New York, N. Y.

Lydick, J. D., 1220 N.W. 37, Oklahoma City 18, Okla.

McCabe, R. P., 1470 Edward L. Grant Hwy., New York 52, N. Y.

McCormack, E. J., Box 250, 3337th Tech. Tr. Sodn., Scott AFB, III,

McDonald, A. E., 1319 W. Ninth St., N. Little Rock, Ark.

McIver, D. A., 6303 Benbury Rd., Baltimore 12, Md.

McNamara, J. E., U. S. Steel Corp., 525 William Penn Pl., Pittsburgh, Pa.

Macgill, L. T., Jr., 576 N. Chestnut St., Westfield, N. J.

Manigold, F. E., Drawer D. Bloomfield, N. Mex. Marinakos, L. C., 8244 Evans Ave., Chicago 19, 111.

Maxwell, J. W., 3237-B Inwood Rd., Dallas 19, Tex. Maestrini, R., 2 Via Oneto, Novi Ligure, Alessandria. Italy

Merkel, K., 66-33 Myrtle Ave., Glendale 27, N. V. Metzner, J. J., 87-49-62 Rd., Rego Park, L. I., N. Y.

Miles, W. J., 836 Berwyn St., Indianapolis 3, Ind.

Miller, F. J., 312 N. 23 St., Harrisburg, Pa.

Moeller, L. H., 1051 N. Kenwood, Baltimore 5, Md.

Morgan, E. K., 561-41 St., Brooklyn 32, N. Y. Morris, H., 3840 Harrison St., N.W., Washington

15, D. C. Morrow, A. J., 111 Spindle Rd., Hicksville, L. I.,

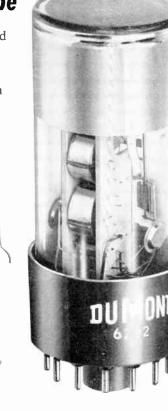
N. Y.

Murray, P. C., 44 Central Dr., Bronxville 8, N. Y. Myers, R. H., 2003 Huntington Dr., Arlington, Tex.

(Continued on page 88A)

STABILITY ...

One of the Many Outstanding Characteristics of the DU MONT TYPE 6292 Multiplier Phototube


Stability – the ability of a multiplier phototube to operate over extended periods of time without appreciable change in output characteristics – is essential to *reliable* quantitative measurements and to high-quality flying-spot scanner applications, particularly those involving color signals. The stability of the Type 6292, achieved with silver-magnesium dynodes and a construction exclusive to Du Mont multiplier phototubes (see below) assures reproducible results without continual recalibration of equipment or, in the case of flying spot scanners, continual readjustment of video level.

Unparalleled stability, added to excellent sensitivity and cathode uniformity, very low dark current, and high signal to noise ratio makes the Type 6292 particularly well suited for those applications where quality of performance must not be compromised.

The unique Du Mont Dynode Structure

0

Note independent screen between photocathode and first dynode, which is brought out to a base pin. By varying the potential on the screen, optimum electron collection is achieved, greatly improving signal to noise ratio. Linear arrangement of box-type dynodes provides longest possible leakage paths between low- and high-voltage dynodes, greatly minimizing dark current and noise. This construction also provides effective shielding of electron stream, minimizing the effects of external fields.

Spectral Response Cathode Luminous Sensitivity (at 210 V. 0 cps) between cathode and all other electrodes
Anode Luminous Sensitivity
105 v/stage; 0 cps
145 v/stage; 0 cps
Current Amplication at:
105 v/stage
145 v/stage
Average Anode Current
Peak Anode Current
Tube Diameter
Seated Height to Center
of Window
And a set of the local

SPECIFICATIONS

60 µA/lumen

\$11

13 A/lumen 120 A/lumen

215,000 2,000,000 5 ma 25 ma 2 ± 1/16 in.

 $4-7/8 \pm 3/16$ in.

The performance features of the Type 6292 are representative of those of the entire line of Du Mont Multiplier phototubes, covering the entire range of sizes from ³/₄-inch to 16 inches. All are built to Du Mont's rigid specifications for quality, and are backed by the well known Du Mont guarantee. For full technical details on the Type 6292, or other Du Mont multiplier phototubes, write the Technical Sales Department, Allen B. Du Mont Laboratories, Inc., 2 Main Avenue, Passaic, N. J.

Technical Sales Department ALLEN B. DU MONT LABORATORIES, INC. 760 BLOOMFIELD AVENUE, CLIFTON, NEW JERSEY

France CAMDEN 4, NEW JERSEY

WHEN WRITING TO ADVERTISERS PLEASE MENTION PROCEEDINGS OF THE L.R.E. World Radio History

ESTABLISHED 1920

April, 1955

- Membership (Continued from page 86A)
- Nelson, J. S., Jr., 1910 Hillcrest Rd., Los Angeles, Calif.
- Nelson, O. A., Box 23, Albany 6, Calif.
- Nelson, W. C., 610 Garrett, Pasadena, Calif. Nidus, L. S., 1324 Rosedale Ave., New York 72, N. Y.
- O'Brien, E. D., 1060 S. Broadway, Rm. 807, Los Angeles, Calif.
- Oefinger, H. C., Safety Center, 653 Main St., Stamford Conn
- Ohlmann, G. A., 1295 Morningside Dr., Sunnyvale, Calif
 - Oliver, E. F., 14 Diana La., N., Fairborn, Ohio
- Phillips, W. E., Jr., 1221 Virginia Ave., Lakewood, Ohio Podell, R. L., 1417 Chandler Dr., Fair Lawn, N. J.
- Porat, D. I., Weizmann Institute of Science,
- Rehovoth, Israel Founds, W. H., 7432 Olive Tree La., Highland, Calif.
- Quirk, J. B., 2133 Sunset Dr., Owensboro, Ky. Rastovich, M., 7506 S.E. Reedway, Portland 6. Ore.

Reading, A., 33 Pine St., Hamilton, Ont., Canada Regniere, J. P., 1090 Pere Marquette, Quebec, Que., Canada

Reilly, R. A., 48 Grant Ave., Somerville, N. J. Reimherr, R. N., 4450 Gondar Ave., Long Beach, Calif.

Rhodes, W. H., 6902 Marlborough Rd., Baltimore 12. Md.

Risley, M. I., 118 S. 19 St., Omaha 2, Nebr.

- Robbins, L. W., 17 Selfridge Rd., Reading, Mass.
- Robinson, D. E., 4030 Maypole, Chicago 24, 111.
- Rossi, S., 500 Madison St., Hoboken, N. J.
- Rubin, S., 237 Harvard, Malden 48, Mass. Sanders, H. E., Controls, Bldg. 30, General Electric Co., Cincinnati, Ohio

Sang, W. W., 1202 E. Pontjac St., Fort Wayne, Ind.

- Sarrafian, G. P., 4580 Pordeaux, Dallas, Tex, Schmidt, H. L., 409 Dupont St., Toronto 4, Ont.,
- Canada Schock, H. E., Jr., Rittenhouse Claridge, Phila-
- delphia 3, Pa.
- Schroer, C. F., 7814 Maplewood Industrial Ct., St. Louis 17, Mo.
- Schwartz, H., Electronic Fabricators, Inc., 682 Broadway, New York 12, N. Y.
- Scott, W. A., 157 Saratoga Ave., Yonkers, N. Y.
- Shaw, J. R., 10343 S. Morgan St., Chicago 43, Ill.
- Shipe, J. J., 7322 Reeds Rd., Overland Park, Kan. Shoemaker, H. M., 1362 S. Flower St., Los Angeles
- 15, Calif Olsen, R. T., 941 Jefferson Ave., Brooklyn, N. Y.
- Osick, W. R., 41411 Monroe St., Los Angeles, Calif.
- Park, K. R., 64 Avenue De Salaberry, Quebec, Que., Canada
- Paul, R. A., 2445 Laurier Blvd., Sillery, Que., Canada
- Pena, H., Casilla de Correo #4, Lomas de Zamora, Buenos Aires, Argentina
- Peters, J. D., Jr., 11 Hillside Ave., Chelsea 50, Mass.
- Peterson, T. W., 233 Gray PL, Apt. 402, Scott AFB, 111.
- Pierson, G. R., 17256 Horace St., Granada Hills, Calif.
- Pinkstaff, J. R., 408 Shannon St., Schenectady, N. Y.
- Plank, P. E., Newton Rd., Baltimore 19, Md.
- S'eth, H. P., 3846 W. Grand Ave., Chicago 51, Ill. Simon, H., 3033 Brighton 14 St., Brooklyn 35,
- N. Y. Smikle, K. R., 150-32 -115 Rd., Jamaica 36, L. I.,
- N. Y. Smith, L. C., 1057 Prospect Ave., Westbury, L. I.,
- N. Y.
- Smith, L. L., Jr., 543 W. Butterfield Rd., Elmhurst, T11.
- Sokoloff, B. A., 32 Rue D'Alleray, Paris, Seine,

(Continued on page 90,4)

VIBRATION ISOLATIC FOR HIGH FIDELIT

ŧ.

LORD Bonded **Tube-Form Joint** For Microphone Heads "Vibration Isolation" has helped solve the increasing problem of mechanical vibrations in high fidelity reproduction of sound.

For years, sound engineers have been plagued by mechanical vibrations caused by movement of grips, dollies and other studio equipment. And the progressive development of the high fidelity microphone has increased the importance of eliminating the adverse effects of these disturbances.

Faced with this problem, design engineers of a leading manufacturer of microphones and related electronic equipment consulted with LORD engineers. LORD's 30 years of experience and knowledge in vibration control resulted in a bonded tube-form joint of live rubber which effectively isolated mechanical vibrations from the microphone head.

"Vibration Isolation" is the answer to only one of the many problems presented to and solved by LORD engineers. If you are interested in producing tape recorders, microphones and other types of reproduction equipment, LORD engineers are ready to consult with you. Let them help you produce equipment of the most exacting professional standards with LORD rubber bonded products.

DESIGNERS AND PRODUCERS OF BONDED RUBBER PRODUCTS

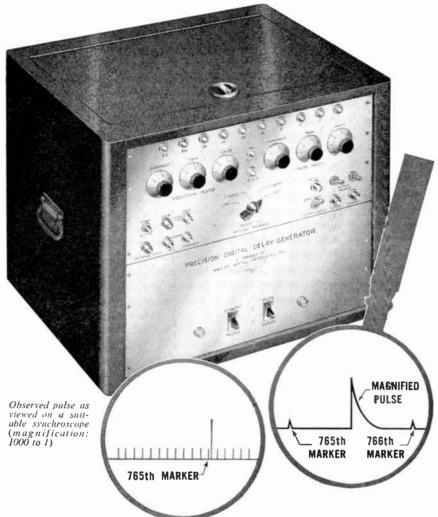
CHICAGE III

COMPANY,

DALLAS TEXA

DAYT THE DELL

PROCEEDINGS OF THE I.R.E. April, 1955


GELIS CAL

LORD MANUFACTURING

A PHI PENN

ERIE

ANNOUNCING!

A Precision Digital Delay Generator Providing Accuracies of Better Than .01 in 1000 Microseconds

FLEETWINGS DIVISION

ТНЕ

ETAL

OF

BRISTOL,

Through unique application of digital circuitry and crystal controlled stability, this new development enables you to achieve accuracies never before approached in a unit of this type.

Continuous calibration is unnecessary with digital circuitry. Selfcontained decimal to binary converters save many hours of costly laboratory set-up time. This advance in delay generators has many applications. It can be used for accurately measuring time delays; as a radar simulator; for supplying

HEART

a single output pulse precisely delayed in time with respect to a reference pulse; as a secondary frequency standard, generating crystal controlled frequencies from 20 cycles to 1 megacycle in 3000 discrete steps; as an elapsed time indicator; and in many other similar functions.

Engineers working with radar, pulse circuitry, digital computer and navigational electronics find the Precision Digital Delay Generator an indispensable addition to the laboratory. Write for details.

RODUCTS, INC.

VALLEY

(Continued from page 88A)

Sperling, J., 55 Cooper St., New York 34, N. Y.

-

G

- Steele, K. P., General Delivery, Fry, Ariz.
- Stephens, J. F., 614 Glenn Ct., Owensboro, Ky.
- Stevens, A. M., Jr., Vauxhall St., Ext., R.F.D. 2, New London, Conn.
- Stevenson, D. D., 133 A Hornet, China Lake, Calif. Stimpson, L. D., Jr., 3388 Rosewood Ave., Los
- Angeles 66, Calif.
- Stripeika, A. J., 6204 Majestic Ave., Oakland 5, Calif.
- Summers, C. R., 28110-B S. Abingdon, Arlington 6, Va.
- Swing, R. E., 21 Notre Dame Rd., Bedford, Mass. Sze, T. W., Electrical Engineering Department,
- University of Pittsburgh, Pittsburgh, Pa. Tate, J. P., Jr., 2121 N. Hollister St., Arlington 5,
- Va. Tetters, D. R., 3 B 212, Bell Telephone Labora-
- tories, Whippany, N. J. Thalmann, V., Gundeldingerstr. 325, Basel, Switzerland
- Thomas, E. K., R.F.D. 2, † Peakham Cir., Sudbury, Mass,
- Thomas, G. W., Box 133, R.F.D. 7, Oklahoma City, Okla,
- Tibbits, A., c/o Young, Trott & Co., Ltd., Hamilton, Bermuda
- Titherington, R. H., Jr., 15 Gibson St., Cambridge 38, Mass.
- Todd, J., 924 Broadway, Boulder, Colo. Toler, E. L., Jr., 522 Eighth St., Virginia Beach,
- Va. Tringale, S. R., 141 Hillsdale Rd., W. Somerville, Mass.
- Triplett, J. E., 6410 Knollbrook Dr., Hyattsville, Md.
- Tyksinski, S. P., 3644 N. Leclaire Ave., Chicago 41, Ill.
- Tylinski, F. V., Grayhill, 561 Hillgrove Ave., La Grange, Ill.
- Verstrate, J. W., 22 A Vosmaerstraat, Rotterdam W., Holland
- Vierling, H. D., 7915 Elmhurst Ave., Parkville 14, Md.
- Visocnik, H. R., 1748 S. Fifth St., Columbus 7, Ohio
- Vogel, R. P., 21 Young Ave., Yonkers, N. Y. Wainscott, D. M., 110 W. Kirby Ave., Champaign,
- Wainscott, D. M., 110 W. Kirby Ave., Champaign Ill.
- Walker, D. H., 320 Willow Ave., Frederick, Md.
- Walls, D. M., 3747 Eaton, Kansas City, Kan.
- Warhurst, J. S., 194 Hubbard St., Glastonbury Conn,
- Wessel-Berg, T., Stanford University, Microwave Laboratory, Stanford, Calif.
- Whitley, W. M., 10949-109 St., Edmonton, Alta., Canada Wiek, M. H., Jr., 99 Chapel Rd., Havre de Grace,
- Md. Williams, H. C., Det. 4, 9470-TU, Ft, Hauchuca,
- Ariz.
- Williamson, R. T., 216 Beach 126 St., Belle Harbor, N. Y.
- Willner, W. H., Hazel Trail, Herald Harbor, Crownsville, Md.
- Witlin, J. J., 1332 W. Sixth St., Brooklyn 4, N. Y.
- Woods, E. L., 14035-C Dicky St., Whittier, Calif. Worthington, R. L., 255 Prospect St., E. Orange,
 - N. J.
- Wott, H. W., 545 N. Locust St., Oak Harbor, Ohio Young, E. A., c/o Hawk Eye Works, 20 Ave. E., Rochester 4, N. Y.
- Ziegler, N. F., 121 W. Bryn Mawr Cr., Oak Ridge, Tenn.

Zimmerman, E. A., R.F.D. I, New Ringgold, Pa.

Closing date for advertising 1955 IRE DIRECTORY June 15, 1955

WHEN WRITING TO ADVERTISERS PLEASE MENTION - PROCEEDINGS OF THE L.R.E.

World Radio History

DELAWARE

PA.

90a

I N

KAISER

THE

FOR YOUR AUTOMATION PROGRAM

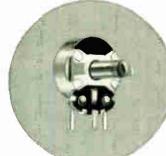
VARIABLE RESISTORS For Printed Circuits

Type UPM-45

For TV preset control applications. Control mounts directly on printed circuit panel with no shaft extension through panel. Recessed screwdriver slot in front of control and 3/8" knurled shaft extension out back of control for finger adjustment. Terminals extend perpendicularly 7/32" from control's mounting surface.

Type GC-U45

Threaded bushing mounting. Terminals extend perpendicularly 7/32" from control's mounting surface. Available with or without associated switches.


Type U70 (Miniaturized)

Threaded bushing mounting. Terminals extend perpendicularly 5/32" from control's.mounting surface.

Type YGC-B45

Self-supporting snap-in bracket mounted control. Shaft center spaced 29/32" above printed circuit panel. Terminals extend 1-1/32" from control center.

Type XP-45

For TV preset control applications. Control mounts on chassis or supporting bracket by twisting two ears. Ava:lable in numerous shaft lengths and types.

Type XGC-45

For applications using a mounting chassis to support printed circuit panel. Threaded bushing mounting.

Type WGC-45

Designed for solderless wire-wrapped connections with the use of present wire-wrapping tools. Available with or without switch and in single or dual construction.

The controls illustrated are typical constructions. CTS' years of engineering and technical experience makes available many other types for your automation needs.

EAST COAST OFFICE Inst E. Sarder 13) North Incoderay Candin 2, New Jirt y Piccos Voorlaer 6-1688 TWX No. Canden NJ 380 Tuda, Phone: Market 7-3129

VEST COAST OFFICE tobe 1 A Stuckhout 928 - Robert on Bl d., 1 and 15, Calit hours: Creative with 5931 Will No. BN 9215 - 566 Son a Creen Company 6815 Oriole Drive P.O. Box 7224 Dallas 9, Taxas Phone: Dison 9918

CANADIAN DIVISION C. C. Meredith & Co., Ltd. Struct wills, Ontario Please, 310 South AME I A Jose Lais Ponter Benes Aires Ares Montevideo, Urusuay Re de Janeiro, Brazi Seo Paulo, Brazi

OTHER EXPORT 5 IV: Gin bury 1 Wet 10 h Server New of 11 h Server Passe Passe 6 10 and 6 10 h

CHICAGO TELEPHONE SUPPLY Corporation

VARIABLE RESISTORS

WRAP" CONNECTIONS


FOR SOLDERLESS "WIRE-

ELKHART - INDIANA

The Exclusive Specialists in Precision Mass Production of Variable Resistors

World Radio History

ALBUQUERQUE-LOS ALAMOS

"Time Conversion Pulse Height Analyzers," by R. J. Watts, Los Alamos Labs., Univ. of California; February 18, 1955,

"Mathematics of Boards, Panels and Committees," by Dr. J. W. McRae, Sandia Corp., and "Problems Encountered in Phase Measurements," by Claxton Foster, Technology Instruments Corp.; January 20, 1955,

ATLANTA

Tapescript: "Method for Time or Frequency Compression-Expansion of Speech," by Messrs. Everitt, Fairbanks and Jaeger, University of Illinois; January 21, 1955.

BALTIMORE

"Transmission Lines for Millimeter Waves," by Dr. D. D. King, Johns Hopkins Radiation Lab.; February 9, 1955,

BEAUMONI-PORT ARTHUR

"Recent Advances in the Reproducing Art," by A. M. Wiggins and H. T. Souther, Electro-Voice, Inc.; January 17, 1955.

CEDAR RAPIDS

Installation of officers; January 29, 1955.

CLEVELAND

"Teaching Old Dogs New Tricks in Electronic Instrumentation," by W. C. Moore, Boonton Radio Corp.; January 27, 1955.

CONNECTICUT VALLEY

"A Resistor Network for Simulating Geological Conditions," by J. H. Baker, Schlumberger Well Surveying Corp., and "The Solution of Simultaneous Equations on a Differential Analyzer," by G. H. Martin; January 20, 1955.

i.

DAVION

"Air Defense," by Dr. A. G. Hill, MIT Lincoln Laboratory; February 3, 1955.

DENVER

"Transcontinental Microwave Radio Relay Systems," by E. L. Broders and F. D. Borstadt, both of American Tel, and Tel, Company; December 10, 1954.

"Synthesis of Aperture Antennas," by Dr. C T. Johnk, University of Colorado; January 14, 1955.

DES MOINES-AMES

"The Effect of Utilization of Engineering Manpower," by F. D. Agathe, Allis Chalmers, February 15, 1955.

"Manpower Development," by George Downing, General Electric Company; January 18, 1955.

DETROIT

"Principles of Color Television," by C. N. Hoyler, R.C.A.; January 26, 1955,

"Controls that Think and Act Automatically," by C. R. Molenaar, General Electric Company; February 18, 1955.

EL PASO

"Field Measurements of Guided Missiles," by Lt. Col. W. J. Bromley, Flight Determination Lab., WSPG, N. Mex.; January 27, 1955,

EMPORIUM

"The 600 Mill Line of T.V. Tubes," by A.W. Peterson, Sylvania Electric Products, Inc.; January 25, 1955

EVANSVILLE-OWENSBORD

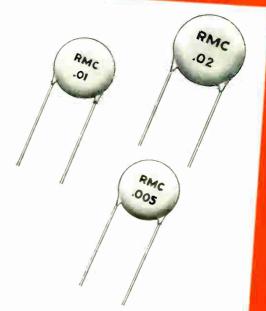
"Application of IBM Equipment to Engineering and Statistical Problems," by Dr. P. Sterbenz, I.B.M.; February 9, 1955.

(Continued on page 94.4)

WHEN WRITING TO ADVERTISERS PLEASE MENTION - PROCEEDINGS OF THE L.R.E.

April. 1955

World Radio History

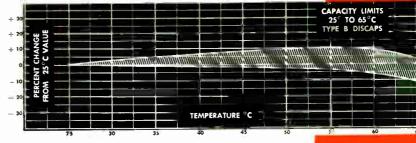

RMC BY-PASS DISCAPS

RMC Type B "Heavy Duty" DISCAPS are designed for all by-pass or filtering applications and meet or exceed RTMA REC-107-A specifications for type Z5Z capacitors

Rated at 1000 working volts

D

- Available in any capacity between .00015 MFD and .04 MFD
- Minimum capacity change between +10°C and +65°C (See Curve)
- Heavy duty construction means greater dependability at no extra cost



PLUG-IN TYPES

RMC

AVAILABLE

applications.

RMC is now producing plug-in DISCAPS designed for printed circuit applications. Available in by-pass, temperature compensating, and stable capacity types, plug-in DISCAPS have the same high specifications featured in standard RMC capacitors. Leads are No. 20 tinned copper (.032 diameter) and are available up to $1\frac{1}{2}$ " in length. Popular range of sizes for all

RADIO MATERIALS CORPORATION

GENERAL OFFICE: 3325 N. California Ave., Chicago 18, III.

FACTORIES AT CHICAGO, ILL. AND ATTICA, IND. Two RMC Plants Devoted Exclusively to Ceramic Capacitors

PROCEEDINGS OF THE I R.E. April, 1955

ALLIED CONTROL starts with the <u>finest....</u>

When you specify Allied Control, you're asking for the best. For example, take the relay shown here. It's the finest there is — in split-second response, unfailing accuracy, rugged dependability.

Design — construction — materials — all have to be the best for Allied...and the heart of this relay is wound with Garfield Enameled Magnet Wire.

You'll start with the finest in wire, too, when you specify Garfield. Our modern drawing and enameling equipment, our rigid production control and our stringent inspection system are geared to produce only top-quality wire with tolerances closer than NEMA specifications.

Write for price lists and specification chart on Garfield bare wire, plain and heavy enamel additions today.

142 Monroe Street, Garfield, N. J., GRegory 2-3661-2

Molded and Machined Parts

O. J. Maigne Co. 321 PEARL STREET • NEW YORK 38, N. Y. • WORTH 2-1165

(Continued from page 92A)

FORT WAYNE

"Telemetering Challenge, 1955," by W. J. Mayo-Wells, Johns Hopkins University; February 3, 1955.

"Illustrating the Technical Report," by Adrian TerLouw, Eastman Kodak Company; February 10, 1955.

HAMILTON

"Microwave Techniques," by Arthur Dinnin, Bell Telephone Co.; January 10, 1955,

HAWAII

"Inspection Tour and Demonstration of CAA Airport Surveillance Radar, ASR-2," by Frank Kadi, Civil Aeronautics Administration; February 10, 1955.

Houston

"Electrons, Engineers and Education," by Dr. J. D. Ryder, President, IRE; February 8, 1955.

HUNTSVILLE

"The Southern Research Institute, Its Objectives and Functions, and Summary of Its Projects," by Sabert Oglesby, Southern Research Institute; December 16, 1954.

"Analysis of Data Recording Systems," by T. L. Greenwood, Redstone Arsenal; January 26, 1955.

INVOKERN

"Low Noise Travelling Wave Tubes," by Dr. D. A. Watkins, Stanford University; December 31, 1954.

ITHACA

"Electronics and Medicine," by Dr. E. B. Wright, University of Rochester; February 1, 1955.

LITTLE ROCK

"Recent Amendments of F.C.C. Rules and Standards Affecting Color Television and AM Broadcasting," by J. G. Roundtree, consulting radio engineer; February 8, 1955.

"Electronies in the Computer Systems," by R. R. Pierce, I.B.M.; January 11, 1955.

LONDON

"The Principles of Color Television," by C. N. Hoyler, RCA Victor Ltd.; January 27, 1955.

"Primary Standard and the Radio Engineer," by Dr. J. T. Henderson, Director, IRE Region 8; February 10, 1955.

LONG ISLAND

"Measurements at DC and Power Frequencies," by John H. Miller, Weston Electrical Instrument Corp.; January 27, 1955.

"Basic Audio and Radio-Frequency Measurements," by W. R. Thurston, General Radio Company; February 3, 1955.

"Computers," by J. Johnson, I.B.M.; February 8, 1955.

"Oscillography," by W. G. Fockler, A. B. Du-Mont and A. A. Emmerling and H. H. Chamberlain, General Electric Company; February 10, 1955.

LOS ANGELES


"Electronics and Mathematical Analysis in Business Operations," by Dr. Simon Ramo, Ramo Wooldridge Corp.; January 11, 1955.

"Instrumentation in Smog Research." by Dr. F. Littman, Pasadena Lab. of S.R.I., "Surface Wave Antennas," by Dr. R. S. Elliott, Hughes Aircraft, and "New Developments in Traveling Wave Tubes and Backward-Wave Tubes," by Dr. D. A. Watkins, Stanford University; February 1, 1955.

(Continued on page 96A)

Airborne Components... a C. A. C. Specialty /

Depicted - 6KC 100 Watt Unit

Less than 1.65 cubic inches

POWER TRANSFORMERS

Range - 400 - 6000 cps Efficiency - up to 95% Wattage - 6mw - 200 watts Temperature -- 55 to +155° C.

D

10

H -- 5/16"

4KC

H-11/16"

SUB-MINIATURE FILTERS

For Chassis Mount

Pulse Width -. 2-50 microseconds

Blocking oscillator

Toroidal construction

Pulse coupling

Rise Time-from .03 microseconds

Frequency - 2.3-35Kc Impedance in - 600-10K Ohms Impedance out-Grid

- Hermetic Sealed
- Temperature Compensated
- Internal D.C. Isolation
- Balanced or Unbalanced Military Specifications
- Band Pass

W = 1''L-11/4" H - 15/32"

SATURABLE REACTORS

- Applications
- Servo Systems
- Data Telemetering
- Remote Frequency Control

Illustrated -- High Frequency Reactor Tuned by Varying D. C. Current

 $W = 1 \frac{1}{4''}$ L-13/4" H-25/32"

Wattage (output) .5-200 watts

Response - 1 cycle up

Illustrated — Auto Pilot Application for Printed Circuit Mounting

 $W \rightarrow 1''$

 $L = 4 \frac{1}{4''}$

 $H = 7/16^{\circ}$

SUB-MINIATURE TUNED CIRCUITS

For Printed Circuit Applications

- Multiple Tuned Transformers
- Delay Lines
- Tuned Circuits

– TUBELESS DUAL · **TRANSISTOR SUPPLY**

(Continued from page 94A)

MIAMI

Taped recording: "Principles, Design and Operation of Color Television," by John Wentworth, RCA, and question and answer forum conducted by C. X. Castle, WGBS-TV; January 28, 1955.

NEW ORLEANS

Colorcast and demonstration of the color cam* era and monitoring equipment of WDSU; January 30, 1955.

"Electrons, Engineers and Education," by John D. Ryder, President, IRE; February 7, 1955.

NEW YORK

"The Past, Present and Future of Magnetic Recording," by J. S. Boyers, The National Company; January 5, 1955.

"Limitations on the Production and Measurement of Very Low Pressure," by D. Alpert, Westinghouse Research Labs.; February 2, 1955.

NORTH CAROLINA-VIRGINIA

"Recent Developments in Raydist Systems," by A. L. Comstock, Hastings Instrument Company: February 18, 1955.

NORTHERN NEW JERSEY

"Highlights of Antenna Lore," by E. A. Laport, RCA International; February 9, 1955.

OKLAHOMA CITY

"AC Network Calculators," by Miles Maxwell Westinghouse Electric Corp.; February 16, 1955.

OTTAWA

"Recent Advances in Microwave Tubes," by Dr. J. R. Pierce, Bell Telephone Labs.; January 27. 1955.

PHILADELPHIA

"Electronic Instrumentation for the Brookhaven Nuclear Reactor," by J. Binns, Brookhaven National Laboratory; January 13, 1955.

"Operation Dew Line," (Distant Early Warning) by V. B. Bannall, Western Electric Company; February 2, 1955.

PHOENIX

"Smog" (included movie "The City That Disappears") by Dr. Beardsley Graham, Stanford Research Institute; January 21, 1955.

"The Mission and Technical Philosophy of the Army Electronic Proving Ground," by Dr. Robert Burns, Fort Huachuca; February 18, 1955.

PORTLAND

"Bonneville Power Administration Microwave Communication and Load Dispatching Systems," by E. Warchol and L. W. Danilson; January 20, 1955.

"High Fidelity and Speaker Enclosures," by J. C. Riley, Iron Fireman-Electronics Div.; February 16, 1955.

ROME-UTICA

"Information Theory," by Dr. Stanford Goldman, Syracuse University; February 3, 1955.

SACRAMENTO

"Locked Oscillators," by L. S. Cutler, Gertsch Products Corp.: February 11, 1955.

ST. LOUIS

"Global Communications in the Air Force," by by R. P. Mueller, Scott Air Force Base; December 16, 1954.

"The latron Variable Persistence Cathode Ray Tube," by Harold Jacobsmeier, Emerson Electric Corp.; January 27, 1955.

(Continued on page 99.4)

 High Conversion Efficiency • Low Heat Dissipation Excellent Transient Response Stable, Trouble-Free Operation Zero Warm-Up Time For transistors and other multi-polarity low voltage applications. Has dual vernier D C outputs for any combination of emitter and collector bias, positive or negative. This new instant warm-up time design results in cool, high efficiency, longlife operation.

-Specifications-

INTERNAL IMPEDANCE Less than 15/20/100 onms REGULATION (INPUT) ±1% change in output for 95-125v AC SIZE19" Rack and Bench mounting, Panel 51/4"

Models 110, 110M, output #2, 0-100v.

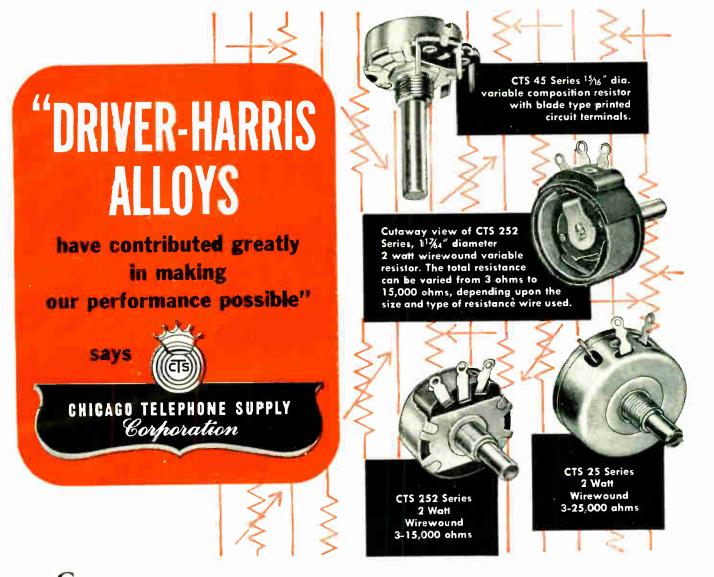
NEW! Standard models also available with ad-ditional Dual Constant Current Outputs. 5MA

max, 20,000 ohms internal impedance (Models 110C-110MC, 110DC, 110DMC.)

DUAL TRANSISTOR SUPPLY For all Transistor and

Low Voltage Applications Model 110Price \$169.50 (illustrated)

Model 110M (illustrated)Price \$215.00 Model 110D Price \$179.50


Model 110DM

(metered) Price \$224.50

ELECTRONIC RESEARCH ASSOCIATES, INC. MAILING ADDRESS: BOX 29, CALDWELL, NEW JERSEY 67 EAST CENTRE STREET, NUTLEY, N.J. NUtley 2-5410

WHEN WRITING TO ADVERTISERS PLEASE MENTION-PROCEEDINGS OF THE LR.E.

Chicago Telephone Supply Corporation has succeeded in accomplishing two things indeed difficult to combine, as summed up in their slogan "Specialists in Precision Mass Production of Variable Resistors." They manufacture the high quality variable resistors indispensable to radio, television, and military electronics. In fact, they are the world's largest producers of variable resistors.

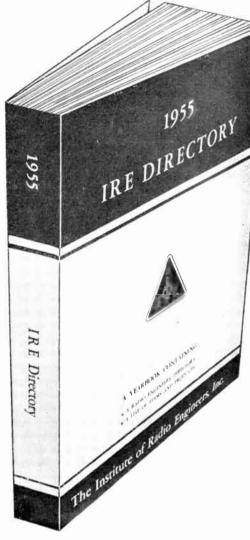
To achieve this outstanding record, they concentrate their entire effort on variable resistors, they maintain close control over all manufacturing processes, and fabricate their own parts under close supervision from basic raw materials. Naturally, they make no secret of the importance to them of high quality materials.

States Chicago Telephone: "To make our raw material program effective, we have stressed the

importance of dependable, quality-minded sources of supply. Driver-Harris is a supplier with these qualities, and Driver-Harris alloys have contributed greatly in making our performance possible. For many years we have been using Driver-Harris Nichrome*, Karma*, Advance*, and other D-H Alloy wires for our resistance windings, with excellent results. We can strongly endorse Driver-Harris' dependability and high quality products."

Nichrome, Advance, and Karma are at your service too, as are more than 80 other D-H alloys developed for application in the electrical and electronic fields. If a high degree of resistance and absolute uniformity of output are "musts" for your product, let us have your specifications. We'll be glad to make recommendations based on your specific requirements.

*T.M. Reg. U.S. Pat. Off.


Driver-Harris Company HARRISON, NEW JERSEY

Sole producers of Nichrome, Advance, Karma

BRANCHES: Chicago, Detroit, Cleveland, Louisville, Los Angeles, San Francisco in Canada. The B. GREENING WIRE COMPANY, Ltd., Hamilton, Ontario.

MAKERS OF THE MOST COMPLETE LINE OF ELECTRIC HEATING, RESISTANCE, AND ELECTRONIC ALLOYS IN THE WORLD

IT'S IN YOUR HANDS

FAST FACTS

- 32,647 MEMBERS
- 2,760 RADIO ELECTRONIC FIRMS
- TELEPHONE NUMBERS AT YOUR FINGER TIPS

For the first time in any electronic directory the telephone numbers of all the firms you are constantly calling as well as complete addresses in one book.

USE YOUR I.R.E. DIRECTORY . . . IT'S VALUABLE

THE INSTITUTE OF RADIO ENGINEERS I East 79th Street, New York 21, N.Y.

DIRECT

STREET TO THE RADIO-**ELECTRONICS MARKET!**

35,000 IRE members are the engineers who spark new developments in the fast-paced, fast-growing radio-electronics industry. To feed the fires of their creative thinking, they must have the latest facts. That's why they turn first to IRE DIRECTORY - a working encyclopedia of products, firms and men. This vital working information remains within arm's reach 365 days a year.

When it's packed with facts, your product catalog in IRE DIRECTORY "tells and sells" the men who specify and buy - the IRE radio-electronics engineer.

The Institute of Radio Engineers **Advertising Department** 1475 Broadway, New York 36, N. Y.

TTTTTTTTTTTTTTTTT

(Continued from page 96A)

SAN ANTONIO

"Digital Computers," by W. M. Aamoth and W. Robert Hydeman, Remington Rand, December 16.1954.

"Recent Improvements in the Reproducing Art," by A. M. Wiggins and H. T. Souther, Electro-Voice, Inc.: January 20, 1955.

"High High Frequencies (Generation of Millimeter Waves)," by Dr. J. D. Ryder, President, 1RE: February 9, 1955.

SCHENECTADY

"Electrons, Engineers and Education," by Dr. J. Ryder, President, IRE; January 21, 1955.

SYRACUSE

"The Psychological Matrix Rotation Computer," by G. T. Jacobi, General Electric Company; February 7, 1955.

TORONTO

"The Automatic Switching of Long Distance Calls," by F. H. Western; January 17, 1955.

"Problems of Television Receiver Manufacturing in Canada," by R. Munitz, Canadian Westinghouse Company; January 31, 1955.

Students' Night: "Electrical Characteristics of Human Nervous Systems," by L. D. Pengelly, "Magnetic Recording," by J. F. Hanson and "Binary Numbers and Boolean Algebra," by W. F. Elliott, all students; February 10, 1955.

TULSA

"Characteristics of Mechanical Filters," by Bob Loming, Collins Radio Corp.; January 20, 1955

TWIN CITIES

"A Case History of a Booster Station for Improved UHF TV Reception," by W. C. Morrison, RCA Labs.; January 20, 1955.

VANCOUVER

"Automatic Computers as Applied to Training Devices," by Dr. E. V. Bohn, University of British Columbia; January 17, 1955.

WASHINGTON, D. C.

"Information Storage in the Protein Molecule," by Dr. George Gamow, George Washington University; February 14, 1955,

WILLIAMSPORT

"A General Discussion of Various Color TV Picture Tubes," by Dr. H. B. Law, RCA; January 19, 1955.

SUBSECTIONS

AMARILLO-LUBBOCK General meeting; January 13, 1955.

BERKSHIRE COUNTY

General meeting; February 2, 1955.

BUENAVENTURA

"Raydac Computer at Point Mugu," by Dr. L. Fein, Computer Control Company; January 13. 1955.

ERIE

Demonstration lecture on "The Principles of Color Television," by C. N. Hoyler, RCA; January 24, 1955.

LANCASTER

"Control of Costs of Research and Development Projects," by H. J. Finison, National Pneumatic Company, Inc.; January 12, 1955.

MID-HUDSON

"High-Voltage Equipment," by Dr. Victor Wouk, Beta Electric Corp.; February 1, 1955. (Continued on page 191A)

ROTARY POWER IS BEST 15 BEST The "clop-clop" of "Old Bess" gove Grandma's buggy ride more vibration than the smooth Rotary Power of today's modern au-tamabiles. ROTARY POWER is best for ma-ble radio too blle radio, too , , , and for all DC to AC canversion . . . smoother . . . more dependable.

DC TO AC CONVERTERS

For operating tape recorders, dictating ma-chines, amplifiers and other 110-volt radia-

audio devices from DC or storage batteries. Used by broadcast studios, program producers, exec-utives, salesmen and other "field workers".

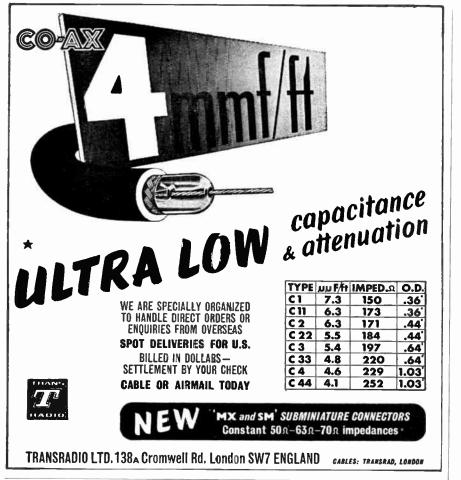
DUO-VOLT GENEMOTORS

The preferred power sup-ply for 2-way mobile radio instal latians. Operates from either 6 or 12-valt botteries. Corter Gene-motors are standard equipment in leading makes of auto, aircraft, railrood, utility and marine communications.

CHANGE-A-VOLT DYNAMOTORS

Operates 6-volt mobile radio sets from 12-volt automobile batteries . . . also from 24, 32 and 64-volt battery power. One of many Corter Dynamo-tor models. Made by the warld's largest, exclusive man-ufacturer af ratary power sup-

BE SURE . . . BE SATISFIED



AC can be praduced by revers-ing the flaw of DC, like thraw-ing a switch 120 times a secing a switch 120 times a sec-and. But ROTARY canverters actually generate AC valtage from an alternator, same as utility statians. That is why ROTARY power is such clean AC, sa dependable ... essen-tial for hash-free aperatian af recorders fram DC pawer.

AAIL COUPON for illustrated bulletin

with complete mechanical and electrical specifications and performance charts. Carter Motor Co., Chicago 47.

CARTER MOTOR CO. 2645 N. Maplewood Ave. Chicago 47, Illinois
Please send illus*rated literature containing cam- plete infarmotion an [] Corter ''Custam'' Con- verters and [] Dynomatar Pawei Supplies
NAME
Address
CityState

18

The Polarad Model M-105 is portable comes in sturdy aluminum case, can be rack mounted as well! And it is one of the finest instruments available to check the picture quality of video signals. Equipped with 12½" aluminized kinescope, capable of presenting highest definition transmitted p.ctures with exceptionally good "sync" stability over a wide range of operating conditions.

EXCELLENT FOR SUBCARRIER MEASUREMENTS LOOK AT THESE FEATURES:

- 1. Can be rack mounted.
- 2. Can be used for both color and black and white TV.
- 3. Vertical Amplifier Bandwidth Switch for 2MC, 4MC, 6MC.
- 4. Special TV Sync. Circuits.
- 5. Horizontal Sweep Magnification 20 Tube Diameters.
- 6. Compact and Rugged.

Polarad manufactures a complete line of color TV equipment including a Flying Spot Scanner, Sync Generator, Bar Generator and Color Monitors.

See other Polarad equipment advertised on pages 24A, 39A & 56A.

43-20 34th STREET • LONG ISLAND CITY 1, N. Y. Representatives in all principal cities.

٥

(Continued from page 99A)

MONMOUTH

"Color Television," talk and demonstration by I. E. Lempert, Westinghouse Electric Corp.; February 2, 1955.

ORANGE BELT

"General Considerations and Mathematical Development of Reliability in Electronic Systems," by J. H. Parsons and A. Yeiser, Hughes Aircraft Company, and "Your IRE—Let's Discuss It," by John Byrne, Motorola Research Lah.; February 9, 1955

TUCSON

"Etched Circuitry Processes," by G. McLaughlin and Dr. L. Ott, both of Hughes Aircraft Company; December 16, 1954.

AERONAUTICAL AND NAVIGATIONAL ELEC-TRONICS

The Dayton Chapter of the Professional Group on Aeronautical and Navigational Electronics met December 2 at the Engineers Club, Chairman Paul Wiegert presiding, Kenneth C. Jordan, Monsanto Chemical Company, presented a paper ou "Nuclear-Powered Batteries," in which he outlined the history of atomic batteries from 1878, the time of Faraday's first experiments with radium as a source of electrical power, and described the technical composition and application of the battery. The paper provoked much discussion from the floor.

Audio

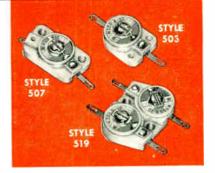
The Houston Chapter of the Professional Group on Audio met at the Humble Research Center on January 18. Chairman Walter J. Greer presided. A paper on "High-Fidelity Components" was delivered by A. M. Wiggins and Howard T. Souther, Vice President of Engineering and Sales Manager of Electro-Voice, Incorporated.

The meeting of the Cleveland Chapter, at which Chairman Herbert H. Heller presided, was held at WDOK-Cleveland Recording Company Studios on January 20. E. M. Jones, an engineer with the Baldwin Company, presented a paper on "How Much Distortion Can You Hear?"

Hoyt Westcott presided at the meeting of the Albuquerque-Los Alamos Chapter, held on January 17 at the Radiation Therapy Building, Lovelace Clinic, Albuquerque. Ben Sanders, of Sanders Associates, gave a paper on "Ampex Stereophonic System and Ampex 600 Design," and demonstrated the system.

(Continued on page 102A)

PROCEEDINGS OF THE I.R.E. April, 1955


RADIO & TV APPLICATIONS

ECONOMICAL
 EASY TO INSTALL
 VARIETY OF
LEAD ARRANGEMENTS
 AND POSITIONS

MILITARY APPLICATIONS

RELIABLE
 RUGGED
 AVAILABLE IN VARIETY
 OF TEMPERATURE
COMPENSATING CHARACTERISTICS
 STABLE
 EXCEED REQUIREMENTS
 FOR JAN-C-81

CUSTOM TRIMMER ASSEMBLIES

ERIE Style 557 Trimmer is manufactured for Military use and is widely used in Test Equipment and other Industrial Applications. It can be Compactly Mounted in Multiple Groups on practically any desired Phenolic Base Design.

Shown here are typical examples of Single and Multiple Space Saving Assemblies.

Write for a copy of the new Erie Trimmer catalog

TRANSFORMERS FOR AVIATION APPLICATIONS

Our facilities for manufacturing miniature type transformers embraces many different types. Our methods of processing and testing are positive assurance of uniformly high performance standards and long life as required by military specifications. We invite your inquiries.

ACME ELECTRIC CORPORATION 4 4 WATER STREET • CUBA, N. Y. West Coast Engineering Laboratories: 1375 W. Jefferson Blvd. • Los Angeles, Calif. In Canada: Acme Electric Corp. Ltd. 50 Northline Road • Taronto, Ontario

This ONE instrument checks RF, IF, and AF performance of receivers.

SPECIFICATIONS:

FREQUENCY RANGE: 20 cycles to 200 K c, in four ranges, 80 K c, to 50 M c, in seven ranges,

OUTPUT VOLTAGE: 0 to 50 volts across 7500 ohms from 20 cycles to 200 Kc, 0,1 microvolt to 1 volt across 50 ohms over most of range from 80 Kc, to 50 Mc,

MODULATION: Continuously variable 0 to 50% from 20 cycles to 20 Kc.

Laboratory Standards

POWER SUPPLY: 117 volts, 50/60 cycles, 75 watts. **DIMENSIONS:** 15" x 19" x 12". Weight, 50 lbs. Standard Signal Generator

20 cycles - 50 mc.

FEATURES:

- Continuous frequency coverage from 20 cycles to 50 mc.
- Direct-reading individually calibrated dials.
- Low harmonic content.
- Accurate, metered output.
- Mutual inductance type attenuator for high frequency oscillator.
- Stray field and leakage negligible.
 - Completely self-contained.

(Continued from page 104A)

AUTOMATIC CONTROL

On January 13, The Dallas-Fort Worth Chapter of the Professional Group on Automatic Control met at the Engineering Building, Southern Methodist University, John A. Green, Section Chairman, spoke briefly on IRE general policies and plans. At this meeting, the following officers were elected: Chairman—F. W. Tatum, Head of Electrical Engineering Department. Southern Methodist University; Vice-Chairman—A. R. Teasdale, Chief of Electronic Design, Temco Aircraft Corporation, Dallas; Secretary—H. W. Prier, Lead Systems Design Engineer, Chance Vought Aircraft, Dallas,

1

BROADCAST TRANSMISSION SYSTEMS

George M. Ives presided at the January 21 meeting of the Chicago Chapter of the Professional Group on Broadcast Transmission Systems. A paper on "The Chromacoder" was presented by Pierre H. Boucheron, Jr., Project Engineer, General Electric Company, Syracuse, N. Y. The Chromacoder is a device for changing a field-sequential color-television signal into a N.T.S.C. color TV signal. Mr. Boucheron outlined its structure and use.

COMMUNICATIONS SYSTEMS

The Washington, D. C., Chapter of the Professional Group on Communications Systems met on January 26 at the Audi-torium of the Potomac Electric Power Company, William C. Boese, Chairman, presided. The speaker was Haraden Pratt, Secretary of the Institute of Radio Engineers. Mr. Pratt spoke on the "Birth and Growth of Telecommunications," covering the highlights of the growth of telecommunications, and describing the vicissitudes of such early pioneers in the field as Morse, Collins, and Field. Mr. Pratt's address reflected his intimate knowledge of the history of the early wire, cable, and radio telecommunications organizations and the personalities who directed it.

Component Parts

M. P. Feyerherm presided at the Sepber 28 meeting of the Philadelphia Chapter of the Professional Group on Component Parts, held at the Engineers Club of Philadelphia. Alex Bezat, of the Minneapolis-Honeywell Company, spoke on "Electric Insulation at Elevated Temperatures." Mr. Bezat described the Minneapolis-Honeywell program for classification of insulating materials according to useful temperature range, and discussed specific materials in some detail. He also submitted proposals for new industry-wide temperature classes and new test methods.

The Dayton meeting was held at the Engineers Club of Dayton on December 2, with Floyd E. Wenger presiding. A paper on "Computer Components" was pre-

(Continued on page 101A)

MEASUREMENTS

CORPORATION

BOONTON . NEW JERSEY

COMMON CHARACTERISTICS OF ALL TYPE 2131 GEARED MOTOR GENERATOR UNITS

No. of Poles (Motor)......6 *No Load Speed (Min.)......6500 rpm Rotor Inertia......1.1 gram-cm²

*Motor Speed at input to gear train

NEW

integral gear head in small servo motors

OUTSTANDING FEATURES OF TYPE 2131 GEARED MOTOR GENERATOR

- New methods of manufacture result in high efficiency
- High torque to inertia ratio to give fast response
- Available for 115 volt—115 volt two phase or single ended tube operation
- High impedance winding for direct plate to plate operation available
- High generator output voltage with excellent signal to noise ratio
- Zero degree phase shift in generator
- All metal parts corrosion resistant
- Extremely wide operating temperature range

Other models of one inch O.D. units

TYPE NO.	DESCRIPTION
2103	Induction Motor
2101	Geared Induction Motor
2028	Motor Generator

A new line of units has been added to the Kollsman "Special Purpose Motors" family combining precision machining, advanced electrical design and the latest in new materials. An unusual feature of the new line is the integral gear head unit. Contained within a single case is the gear train and motor; or gear train, motor and generator. Gear ratios as high as 300:1 can be supplied.

This new line consists of Induction Motors and Induction Generators supplied separately or combined in a single case one-inch in diameter. The new motors have been designed to give the maximum torque per watt ratio with the minimum rotor inertia. The generators have been designed to give the maximum output voltage with the minimum residual voltage and phase shift.

One of the principal features of the Kollsman "Special Purpose Motors" is the interchangeability of parts which permits numerous electrically different combinations of motor and generator windings within the same case.

INPUT PER PHASE ONLY 1.8 WATTS ELECTRICAL CHARACTERISTICS

OF TYPICAL TYPE 2131 GEARED MOTOR GENERATORS

	MOTO)R	G	ENERAT	DR			
TYPE NO.	HO. FIXED CONTROL PER 110 26 26 2.3 12120 26 26 4.0 3120 26 26 1.8 6600 115 115 4.0 600 115 55 4.0 600 115 55 4.0	PER	STALL	Theoretical Acceleration At Stall	EXCI- TATION FIXED	INPUT	OUTPUT PER 1000 rpm	
2131-0411110	26	26	2.3	0.4	25600	26	1.8	.51
2131D-0412120	26	26	4.0	0.6	38500	26	2.2	.68
2131D-0413120	26	26	1.8	0.3	19200	26	2.2	.68
2131-0460600	115	115	4.0	0.6	38500	115	2.6	1.00
2131-0463600	115	55	4.0	0.6	38500	115	2.6	1.00
2131-0470600	115	P.P	4.0	0.6	38500	115	2.6	1.00
	volts	volts	watts	0z•n	rad/sec ^z	volts	watts	volts

Solisman Instrument Corporation

Latest cata

and/or compl specifical drawings will sent upon requ

80. 16 45th AVE., ELMHURST, NEW YORK . GLENDALE, CALIFORNIA . SUBSIDIARY OF Standard COIL PRODUCTS CO. INC.

for service and lab. work Heathkit PRINTED CIRCUIT **OSCILLOSCOPE KIT** FOR COLOR TV!

Check the outstanding engineering design of **(1)** this modern printed circuit Scope. Designed for color TV work, ideal for critical Laboratory applications. Frequency response essentially flat from 5 cycles to 5 Mc down only 1½ db at 3.58 Mc (TV color burst sync frequency). Down only 5 db at 5 Mc. New sweep generator 20.500,000 cycles, 5 *times* the range usually offered. Will sync wave form display up to 5 Mc and better. Printed circuit boards stabilize performance specifications and cut assembly time in half. Formerly available only in costly Lab type Scope. Features horizontal trace expansion for observation of pulse detail — retrace blanking am-plifier — voltage regulated power supply — 3 step frequency compensated vertical input — low ca-pacity nylon bushings on panel terminals — plus a host of other fine features. Combines peak performance and fine engineering features with low kit cost!

Heathkit IV SWEEP GENERATOR KIT ELECTRONIC SWEEP SYSTEM

A new Heathkit sweep generator covering all frequencies encountered in TV service work (color or monochrome). FM frequencies too! 4 Mc - 220 Mc on fundamentals, harmonics up to 880 Mc. Smoothly controllable all-electronic sweep system. Nothing mechanical to vibrate or wear out. Crystal controlled 4.5 Mc fixed marker and separate variable marker 19-60 Mc on fundamentals and 57-180 Mc on calibrated harmonics. Plug-in crystal included. Blanking and phasing controls - automatic constant amplitude output circuit — efficient atten-uation — maximum RF output well over .1 volt vastly improved linearity. Easily your best buy in sweep generators.

PLASTIC MOLD & ENGINEERING CO., INC. 157 CLIFFORD STREET . PROVIDENCE 3. RHODE ISLAND

(Continued from page 102A)

sented by Gilbert Devy of the Sprague Electric Company, Mr. Devy described two assembled components, a flip-flop circuitry unit, and a phase-shift device. He stressed the requirements for utmost reliability and stated the aim of satisfying RETMA and military standards wherever such requirements have been formalized or specified.

Electron Devices

The San Francisco Chapter of the Professional Group on Electron Devices met at Stanford University on January 5. Chairman S. F. Kaisel presided, G. Alpert, Manager of the Physics Department Research Laboratory of Westinghouse Electric Corporation, delivered a paper on "Ultra-High Vacuum Techniques."

ENGINEERING MANAGEMENT

On January 6 the Dayton Chapter of the Professional Group on Engineering Management met at the Engineers Chub under the Chairmanship of Elbert W. Piety, Raymond W. Crowley spoke on "The Rights of Employers in the Inventions of Employees." He traced the origin of common law on such invention rights, and outlined the present position on patent ownership, "shop rights," employer-employee contracts, and the establishment, by Executive Order No. 10096, of a uniform patent policy for the government.

ELECTRONIC COMPUTERS

The Philadelphia Chapter of the Professional Group on Electronic Computers met on January 18 at the Benjamin Franklin Center for Physics, Astronomy, and Mathematics of the University of Pennsylvania, T. H. Bonn was the presiding officer. A paper on "Automatic Programming for Digital Computers" was presented by Dr. John W. Mauchly, Eckert-Mauchly Division, Remington-Rand, Incorporated, Dr. Mauchly discussed the probable development of programming, especially automatic coding. and gave the presently known types of automatic coding techniques, i.e., compiler techniques, generator techniques, interpretive techniques, and analytic techniques.

The Dallas-Fort Worth Chapter met on November 30 at Magnolia Petroleum Company, Field Research Laboratories. Louis B. Wadel occupied the Chair. Lynn D. Mullins and W. F. Baldwin, of the Magnolia Petroleum Company, demonstrated an analog computer used for finding the best method of recovering petroleum from an oil field of known or assumed characteristics. From a four-year history of the field, including logging information from field engineers, prediction of future production under different rates and pressures may be made for a two-year period with an accuracy of five to ten per cent.

(Continued on page 107A)

World Radio History

During the past five years, the radio-electronic industry's spectacular growth has been paced by the increase of advertising pages in the annual IRE DIRECTORY.

Such growth!

Goodness

٥

In the 1949 edition, 158 advertisers took 133 pages. In the 1954 IRE DIRECTORY, the number of advertisers mushroomed to 501 and advertising pages numbered 358-an increase of 168% over the '49 edition.

The IRE DIRECTORY sells year 'round by serving over 35,000 IRE members who daily are developing and perfecting remarkable new devices. To sell ahead, put your product story before radio-electronic engineers who are planning ahead ... in the 1955 IRE DIRECTORY.

Engineers are educated to specify and buy.

Temprex Extruded Striped Teflon Wire

WIRE

reliability

Temprex Extrudød Tefton Wire-Shielded (Møtal)

Temprex Extruded Teflon Wire-Fiberglas Braid, Teflon Saturated

> 50-70⊖90 Ohm Coaxial Cable also available

Insulated with a smooth sheath of extruded Teflon, Hitemp's new TEMPREX hook-up wire is unaffected by commercial solvents, temperatures from -90° to +260°C (Class H or better), fungus growth, moisture, or weathering. Retains its excellent electrical properties over a wide range of frequencies, conforms to MIL-W-16878A (Navy) E and EE constructions, and to MIL Standard 104. Furnished in 14 solid colors and numerous striped combinations over silverplated, stranded copper wire, or a solid conductor. Sizes 26-10 AWG in production lengths. Delivery within 10-14 days...

Write for complete engineering information and price list.

EMPRITE TEFLON MAGNET WIRE EMPRITE-X SPECIAL TEFLON MAGNET WIRE HERMALON SILICONE MAGNET WIRE EMPVAR W. A. ENAMEL MAGNET WIRE EMPRENE TEFLON HOOK-UP WIRE TEMPREX TEFLON EXTRUDED HOOK-UP WIBE TEMPCLAD TEFLON-FIBERGLAS LEAD WIRE RETEP TEFLON SATURATED GLASS BRAID . LEAD WIRE NEBROC TEFLON-FIBERGLAS LACING CORD TEMPTUBE TEFLON-FIBERGLAS TUBING

*Dy Pont's Trade Name for Polytetrafluoroethylene

The No. 80070 Series of Cathode Ray Tube Bezels

The MILLEN "Designed for Application" line of plostic and cost aluminum panel bezels includes units for the 1", 2", 3" and 5" tubes. The 5" size is also available with a special neoprene cushion for the new flot faced tubes as well as the standard cushion. The finish on all types, either metal or plastic is a handsome flot block. The 2", 3" and 5" sizes include a green plexigloss filter. Mumetol and nicoloi shields are also available for all types for use with ony of these bezels.

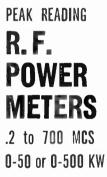
JAMES MILLEN MFG. CO., INC.

MAIN OFFICE AND FACTORY

MASSACHUSETTS

20-18000 C.P.S. 50 VA

10


SPECIFICATIONS

- I. NOMINAL OUTPUT VOLTAGE-115.
- 2. FULL POWER OUTPUT FROM 110-120 VOLTS.
- 3. REGULATED OUTPUT FROM 55 TO 130 VOLTS WITHIN 2% OF PRESET VALUE AT ANY LINE VOLTAGE FROM 110-125 VOLTS.
- 4. TOTAL HARMONIC DISTORTION—NOT OVER 3% FROM 30-18000 CPS, 5% FROM 20-30 CPS.
- DYNAMIC OUTPUT IMPEDANCE APPROXIMATELY 75 OHMS. WRITE FOR CATA-LOGUE "M" FOR COMPLETE DESCRIPTION OF THIS UNIT AS WELL AS OTHER CML GENERATORS, SINGLE, TWO & THREE PHASE—100 TO 13000 V.A.

COMMUNICATION MEASUREMENTS LABORATORY, INC.

350 LELAND AVE., PLAINFIELD, N.J.

Type PM-12 shown

These peak reading power meters are designed to accurately measure the peak power of pulsed RF signals in the range of .2 to 700 MC with PRF of 800 to 10,000 pps and pulse duration of .5 microseconds or more, and less than specified maximum average power dissipation.

Model	Power Range	VSWR	Maximum Average Power Dissipation	Connector	Impe d ance	Supply Voltage	Accuracy	Freq. Response
PM-12	0-50 kw	F. 15	60 watts	To Be	51.5	110 volts 60 cps	10%	.2•700 M (
PM-18	0-500 kw	1.15	500 watts	Specified	51.5	110 volts 60 cps	10%	.2-700 M C

106a

World Radio History

PROCIEDINGS OF THE L.R.E.

(Continued from page 104A)

On January 25, the chapter met again in Fort Worth with D. J. Simmons presiding. On this occasion L. E. Heizer, an aerophysics engineer with Convair, presented a paper on a "Handbook of Analog Computer Circuits and Techniques." Topics discussed in the paper included basic problem set-up procedures, voltage scale factors, time-scale changes, tables of computing circuits, machine applications and limitations, and problem check-out procedures. A sample airplane autopilot problem is set up to illustrate and integrate the various sections of the manual.

0

At Massa Hall, Hayward, California, the San Francisco Chapter held a meeting on November 16, 1954. Dr. Jerre Noe conducted the meeting. "A Symposium—Computer Maintenance" was presented by Arnold Karpin, Lou Fine, and Preston Hamilton.

The Akron Chapter met on December 20 at Goodyear Hall, with Chairman C. D. Morrill presiding. Professor Robert M. Howe of the University of Michigan presented a paper on "Choosing Computer". Components for Large-Scale Simulators." Dr. Howe discussed the type and scope of equations involved in several large-scale simulations, the computer-component requirements for solving these equations, and the relative merits of ac and dc differential analyzers.

INFORMATION THEORY

The Albuquerque-Los Alamos Chapter of the Professional Group on Information Theory met on January 12 at the University of New Mexico, C. H. Bidwell presided, Dr. B. L. Basore spoke to the group on "A Statistical Theory of Target Detection by Pulsed Radar."

With Dr. D. B. Duncan presiding, the Los Angeles Chapter met at the Institute for Numerical Analysis on December 9. There were two speakers, "Passage of Non-Gaussian Noise through Linear Systems" was the name of the paper presented by Dr. Jack Heilfron of Ramo Wooldridge Corporation, Ralph Deutsch, Hughes Aircraft Company, spoke on "A Method of Wiener for Noise through Non-Linear Devices."

MICROWAVE THEORY AND TECHNIQUES

On January 19 the Northern New Jersey Chapter of the Professional Group on Microwave Theory and Techniques held an organizational meeting at which the following officers were elected: Chairman, T. N. Anderson; Vice-Chairman, R. E. White; Secretary, S. Levine; Program Chairman, R. C. McVeety, Jr. A paper, "A Display of X-Band Impedance on an Oscilloscope," was presented by H. L. Bachman of Wheeler Laboratorics.

The Buffalo-Niagara Chapter met on October 27 at the University of Buffalo. Dwight Caswell, President of Cascade Research Corporation, spoke to the group on

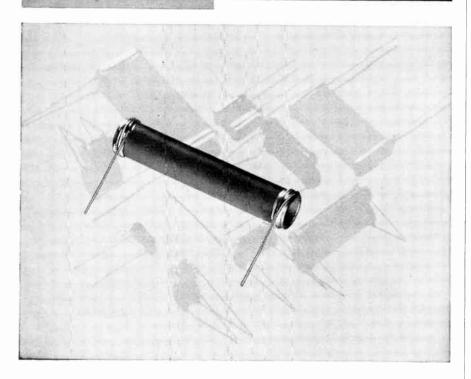
(Continued on page 108.4)

QUALITY THE BEST!

AMERICAN BEAUTY makes the finest of Soldering Irons. No second or third grade bears the name which is still the standard of top performance — sixty-one years of it!

DEPENDABLE • **DURABLE** • **EFFICIENT** American Beauty Soldering Irons are doing fast, precision, production soldering on leading radio, TV, electronic and aviation equipment.

We also manufacture and stock a wide variety of soldering iron tips in special shapes and sizes. Tell us your requirements.



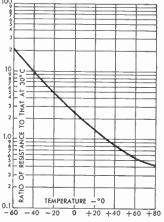
DETROIT 2. MICHIGAN

146-H

Stupakoff

Negative Temperature-sensitive Resistors

THERMISTORS for temperature measurement, control or compensation


Stupakoff Thermistors are made from specially formulated ceramic bodies. Furnished with radial or axial wire leads, and with reflective or moisture-proof coating, or uncoated as desired. Some general characteristics are:

Resistivities: 10 ohms / cm3 and up Resistance: decreases approx. 3% for each degree C temperature rise (see curve) Made in the form of rods, tubes, bars.

discs, washers, etc.

Send for Thermistor Inquiry Questionnaire for prompt and accurate estimate.

Above curve shows typical temperature-resistance characteristic of Thermistor. Resistance drops approximately 3% for each degree C temperature rise. As temperature varies up and down, resistance retraces its path precisely, regardless of number of reversals.

(Continued from page 107A)

"Ferrites for Microwave Applications." On December 15 the group met jointly with the Buffalo-Niagara Section. "An Airborne Weather Radar for Civil Aircraft," was the subject presented by K. F. Molz of Bendix Radio.

-

NUCLEAR SCIENCE

The Oak Ridge Chapter of the Professional Group on Nuclear Science met on October 20 with H. E. Walchli presiding. J. E. Broyles, Chief Engineer of Station WTSK, spoke on "Some Operational Aspects of Television Stations." On November 17 the Oak Ridge Chapter met again, W. H. Lee, Chairman of the AHEE Oak Ridge Section, presided. Dr. Robert M. Page, Naval Research Laboratory, presented "Detection of Ice and Hurricanes by Radar."

The Connecticut Valley Chapter met on December 14 at Christopher Columbus Auditorium. Three films were presented to the group: "Operation Greenhouse," "Operation Crossroads," and "A Tale of Two Cities."

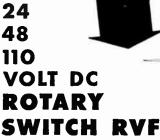
TELEMETRY AND REMOTE CONTROL

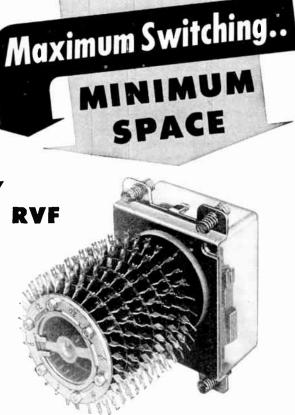
The Los Angeles Chapter of the Professional Group on Telemetry and Remote Control met on January 18 at the IAS Building, R. E. Rawlins presided and there were two speakers. F. E. Bryan of Douglas Aircraft spoke on "Telemetering of Millivolt Level Signals by PWM-FM," and G. F. Anderson of Radiation, Incorporated, discussed "A High Capacity PTM-AM Telemeter." A summary of telemetering objectives at Convair was presented by E. L. Watkins, Consolidated-Vultee Aircraft Corporation.

VEHICULAR COMMUNICATIONS

The Detroit Chapter met on January 19 at the Engineering Society of Detroit. A. B. Buchanan presided and T. P. Rykala, Michigan Consolidated Gas Company, discussed the company's communication problems as related to its growth.

A number of changes in the staff of the Antenna Laboratory at the Ohio State University have been made recently. T. E. Tice (S'46- λ '50) has been made Supervisor of the Antenna Laboratory. Dr. Tice received the Ph.D. degree from Ohio State in 1951 and since last spring has been Acting Supervisor of the laboratory; he replaces V. H. Rumsey (SM'50). C. T. Tai (S'44-A'48-SM'51) has joined the Antenna Lab-

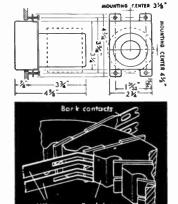

(Continued on page 110A)


- **PURPOSE** The Northern Radio Company Type 181 Dual Half Duplex Adapter couples a 4-wire full duplex tone telegraph system to a half duplex 2-wire D.C. teleprinter loop. This makes possible the half duplex operation of the tone links, and in such a system a teleprinter in any D.C. loop becomes a two-way non-simultaneous system, with any other teleprinter in any other D.C. loop associated with a remote tone station. This provides for an economical two-way communication system between any number of stations which are linked by tone lines or radio links and at each station a maximum of 6 teleprinters which are linked by a standard 2-wire D.C. loop.
- **EXCLUSIVE BREAK CIRCUIT** In a half duplex circuit, two-way communication cannot be carried on simultaneously and the stations obviously have to take turns in the use of the circuit. Thus in the case of urgent messages, it must be possible for any teleprinter to break into the transmission of any other teleprinter and thereby show its need to take over the circuit. For this reason the Northern Radio half Duplex Adapter is provided with a Break Circuit which immediately recognizes a break signal and automatically switches the Adapter from its transmit to its receive position. This enhances the half duplex arrangement by permitting a receiving operator to break into the circuit, bringing the system closer to full duplex operation.
- **EXCLUSIVE MARK RESTORING CIRCUIT** A difficulty generally inherent in Loop operation is that an intentional or accidental space signal may "lock out" the circuit. The Automatic Mark Restoring Circuit built into the Northern Radio Adapter overcomes this trouble by insuring that the tone keyer will be automatically keyed to Mark if Space is sustained for more than 3 seconds.
- LONG-TERM UNATTENDED OFERATION The Adapter is conservatively designed for long-term unattended operation. While both vacuum tubes and sealed relays are used, the relays perform only non-critical switch functions and are not depended upon to repeat telegraph signals. This design takes advantage of the relatively high power efficiency and electrical isolation inherent in a relay without the maintenance requirements usually associated with relay circuits.

Write for Catalog P-4.

Pace Setters in Quality Communication Equipment NORTHERN RADIO COMPANY, inc. 147 WEST 22nd ST., NEW YORK 11, NEW YORK In Canada: Northern Radio Mfg. Co., Ltd., 1950 Bank St., Billings Bridge, Ottawa, Ontario

30 Points 6 Levels Single Wiper or 15 Points 12 Levels Twin Wipers



Now Available from Stock

Combining outstanding quality and craftsmanship with the most advanced principles of design and construction, the R V F Rotary Switch features greater reliability, smoothness of operation, precision, speed, longer life, compactness and light weight as standard specifications.

- Built-in silicon carbide spark suppression on 24 and 48 volt standard switches.
- 2. Each switch is shock mounted with full spring suspension for shock and vibration isolatian.
- Bank and drive mechanism completely dust-proof—in transparent cover—permits easy inspection.
- 4. Rotor index visible fram top or bottom.
- 5. 10,000,000 revalutions with no adjustment.
- 6. Bifurcated wiper contacts.
- 7. And more ...

USAGE: Automatic controls . . . Scanning . . . Coding . . . Register Storage . . . Programming . . . Sequence Operation . . . Pulsing . .. Tele-metering Computors.

Detailed specifications available on request.

THE NORTH ELECTRIC

MANUFACTURING COMPANY Originators of ALL RELAY Systems of Automatic Switching 544 South Market Street, Galien, Ohio, U.S.A.

(Continued from page 108A)

oratory and been appointed Associate Professor in the Department of Electrical Engineering. Dr. Tai received the Ph.D. degree from Harvard in 1947 and comes to Ohio State from the Stanford Research Institute. Professors J. D. Kraus (A'32-M'43-SM'43-F'54), and G. E. Mueller (S'39-A'41-SM'46) of the Department of Electrical Engineering are consultants to the Antenna Laboratory. R. G. Kouyoumjian (A'53) continues on the Antenna Laboratory staff and also joins the Department of Electrical Engineering as Assistant Professor.

*

George Haydu, General Manager of the Haydu Brothers Division, Burroughs Corporation, has announced the appointment of Victor Le Gendre

(M'53) as Chief Engineer of the Plainfield, New Jersey plant.

Mr. Le Gendre came to Haydu from Chatham Electronics Corporation where he was Design and Development Engineer. In the interim between the war years

VICTOR LE GENDRE

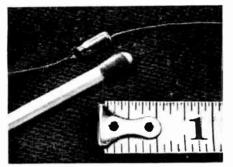
and his experience with Chatham Electronics Corporation, Mr. Le Gendre was with Tung-Sol Electric, Inc., for five years and National Union Electric for a year and a half. Prior to United States' entry in World War II, Mr. Le Gendre volunteered for the Canadian Army and saw three and a half years of service with the Anti-Aircraft Artillery; he attained the rank of Captain.

Although born in the United States, he was educated in Canada, where he received the B.A. degree from Laval University in Quebec City and the B.S. from University of Ottawa where he taught physics and chemistry for three years. Mr. Le Gendre holds Patent No. 2,654,401 on fine pitch grid winding and has another patent pending on grid winding structures.

•*•

The appointment of **G. L. Haller** (A'28-II'36-SM'43-F'50) as Manager of the Laboratories Department of General Electric Company's

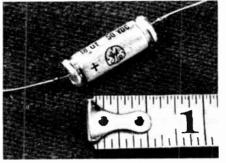
Electronics Division has been announced. Dr. Haller was Dean of the College of Chemistry and Physics at Pennsylvania State University prior to his appointment and, for the past two years, was also a consultant to the Laboratories Department.


G. L. HALLER

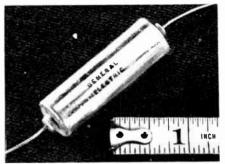
April, 1955

Dr. Haller was born in Pittsburgh, Pa. (Continued on page 112A)

WHEN WRITING TO ADVERTISERS PLEASE MENTION - PROCEEDINGS OF THE 1.R.E.


CAPACITORS by General Electric

D


MICRO-MINIATURE

For low voltage d-c miniaturized electronic equipment (hearing aids, walkie-talkies, paging systems). Ideal for transistorized assemblies. Ratings 1-8 uf at 4 v. d-c, 1 uf at 8 v. d-c, 0.5 uf at 15 v. d-c. Tolerance -0to +200%. Temp. range -20 to $+50^{\circ}$ C. BULLETIN GEA-6065.

TANTALYTIC[®]

For electronic equipment requiring small size, low leakage current, long shelf life, wide temperature range. Plain or etched foil, and polar or non-polar types, suitable for a c or d-c. Ratings 0.25-580 uf, 3.75-150 v. Tolerance $\pm 20\%$ (plain foil), -15 to +75% (etched). Temp. range -55 to $+85^{\circ}$ C. BULLETIN GEC-808.

METAL-CLAD TUBULAR

For d-c uses where reliability under severe operating conditions is required (military electronic equipment). Ratings 0.001-1 uf at 100, 200, 300, 400 and 600 working v. d-c. (Can be applied to a c circuits with adequate elerating.) Tolerances ± 5 , ± 10 , or $\pm 20\%$. Temp. range -55 to $+125^{\circ}$ C. BULLETIN GEC-987.

PERMAFIL-IMPREGNATED

Designed to meet requirements of MIL-C-25A, characteristic K specifications, and are suitable for high-temperature operation, Ratings 0.05-1 uf at 400 v. d-c. Tolerance $\pm 10\%$. Temp. range -55 tc $+125^{\circ}$ C. BULLETIN GEC-811.

STANDARD COMMERCIAL For motors, filters, communication equipment, luminous-tube transformers, industrial control. Rolings dual rated units (a-c or d-c) rated at 0.01-50 uf, at 236-660 v. a-c, 400-1500 v. d-c. Single rated units also available. Tolerance $\pm 10\%$. Temp. range -55 to $+85^{\circ}$ C. BULLETIN GEC-809.

DRAWN-OVAL

For air conditioning and refrigeration equip-ment, fluorescent lamp ballasts, business machines, voltage stabilizers. Single, dual or triple-section types. Ratings 1-20 uf at 236-660 v. a-c, and 1-15 uf at 600-1500 v. d-c. Tolerance $\pm 10\%$. Temp. range -30 to $\pm 70^{\circ}$ C. BULLETIN GEA-5777. *Reg. trademark of General Electric Company.

SEND COUPON BELOW for complete in-

Please send me capacitor bulletins

□ GEC-808

formation about G-E capacitors.

General Electric Co. Section E442-25 Schenectady 5, N.Y.

checked below.

GEA-4646

ENERGY STORAGE

For use in high magnetic fields and high intensity arc discharge. Rotings: may be built as high as 2000 joules (watt-seconds). Tolerance ±10%. BULLETIN GEA-4646. specifications. BULLETIN GEA-4996.

NETWORK

ment. Ratings: built to user specifications. Temp. range -55 to +125° C, or to user

NOTE: All capacitance tolerances are given at $\pm 25^\circ$ C.

PROCEEDINGS OF THE L.R.E. April. 1955

For guided missiles, aircraft, radar equip-

□ GEC-809 □ GEA-4996 □ GEA-5777 □ GEC-811 GEA-6065 □ GEC-987

Name	··	 • • •						 • •									÷	
Position		 					••	 									-	
Company		 				- *		 						 	 		-	
Address						, .		 	,									
City		 	7	Ze	n	9	١.		S	1	a	1	e	 -			-	

Special alloys supplied to small diameters

From initial selection of melt components through production and final completion. SECON puts a complete metallurgical unit at your service.

Tell us your wire and ribbon problems and we'll gladly submit prompt recommendations. Small quantity inquiries and orders specially invited. Write for Pamphlet P-4.

element calls for PRECISION

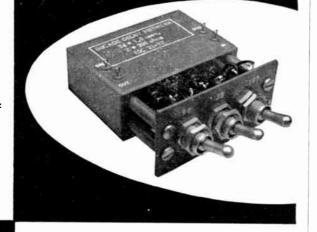
SECON METALS CORPORATION

7 Intervale Street, White Plains, New York

WHite Plains 9-4757

diameter

and Ribbon


Ribbon rolled to 0.0001" in

thickness Electro-Plated Wire

DELAY LINES

custom-made*

* Custom-made to precise specifications, this new, compact decade pulse forming network (Model compact decade pulse formations from .25 usec. #21-19) provides pulse formations from .25 usec. to 2.0 usec. in width by means of three miniature toggle switches. Embedded in epoxy resin and hermetically sealed, the entire assembly comes in a dust-proof case and is finished in accordance with MIL-T-945A Salt Spray & Humidity Conditions.

Brochure Available Upon Request

(Continued from page 110A)

He was graduated from Mercersburg Academy in 1924, and received four degrees from Pennsylvania State University: B.S. in e.e. in 1927, electrical engineer in 1934, M.S. in e.e. in 1935, and Ph.D. in physics in 1942.

-

He was a radio engineer for Westinghouse Electric and Manufacturing Company, in East Pittsburgh from 1927 to 1929, and audio engineer for E. A. Myers & Sons in Pittsburgh from 1929 to 1933, before returning to Penn State as a graduate assistant. He remained at the university until 1935 when he became a radio engineer at Wright Field for the War Department. From 1942 until 1946, Dr. Haller served in the Signal Corps and later the Air Corps, holding the rank of colonel. For his service, he was awarded the Legion of Merit. He became assistant dean of the College of Chemistry and Physics at Penn State in 1946, and a year later was appointed dean.

Dr. Haller is a member of the Signal Corps Research and Development Advisory Council, the Army Electronic Proving Ground Advisory Council, and the Technical Advisory Panel on Electronics for the Assistant Secretary of Defense. He is a fellow in the American Physical Society, an associate in the Institute of Aeronautical Engineers, and a member of the American Institute of Electrical Engineers, the American Society for Engineering Education, the Franklin Institute, the Newcomen Society of England, Sigma Xi, Tau Beta Pi, Eta Kappa Nu, Sigma Pi Sigma, Phi Lambda Upsilon, Phi Eta Sigma, Pi Mu Epsilon, Alpha Epsilon Delta.

÷

The appointment of R. G. E. Hutter (SM'46-F'54) as Manager of the Physics Laboratory of Sylvania Electric Products Incorporated has

been announced. Formerly Manager of the Physical Electronics Branch of the Physics Laboratories, Dr. Hutter has been with the Sylvania Laboratories on Long Island since November, 1944. As a research physicist he has been associated

R. G. E. HUTTER

with the field of electron optics, especially the design of cathode ray and traveling wave tubes.

Born in Berlin, Dr. Hutter was a graduate student in physics and mathematics at the University of Berlin from 1930 to 1936. From 1936 to 1938 he was a research physicist in the transmitter laboratories at Telefunken, G.M.B.H. Following that he was Chief Engineer of radio station KZIB, Manila, Philippine Islands. From 1940 to 1941 he was a graduate student in com-

(Continued on page 114A)

WHEN WRITING TO ADVERTISERS PLEASE MENTION - PROCEEDINGS OF THE L.R.E.

To give you a complete selling program to radio and electronic engineers,

ø

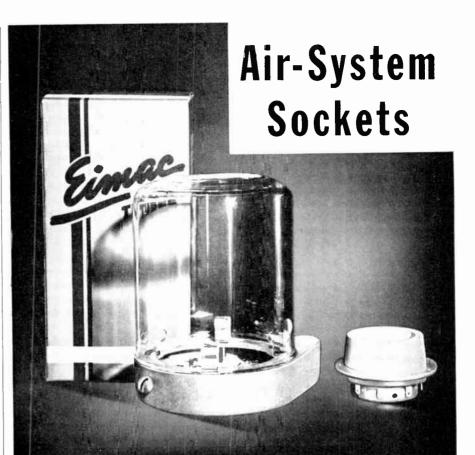
"Proceedings of the I.R.E."

puts your product promotion monthly before the "thinking and doing" engineers in the fabulous, fast-moving radio-electronic industry. Circulation 43,505 (ABC)

IRE DIRECTORY

provides 35,000 engineers educated to buy and specify with your detailed product data for ready reference all year long.

RADIO ENGINEERING SHOW


... the eye-opening event of each radio-electronic year...where over 40,000 engineers come to you for all that's new.

For complete facts, ask IRE about all 3!

Engineers are educated to specify and buy.

The Institute of Radio Engineers

Adv. Dept. 1475 Broadway New York 36, N. Y. BRyant 9-7550

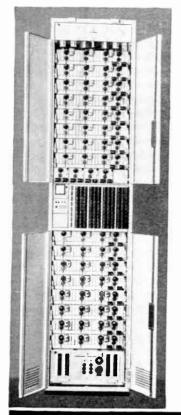
Eimac air-system sockets are custom designed to provide adequate cooling with the most economical blower requirements for several Eimac radial-beam power tetrodes.

4-400A/4000 air-system socket is employed with Eimac tube type 4-400A. Air enters through the bottom of the socket and is guided by a pyrex glass chimney, assuring efficient cooling of the various seals. If desired, this socket may also be used with Eimac 4-125A and 4-250A.

4-1000A/4000 air-system socket is designed for use with Eimac tube type 4-1000A. Air entering the bottom of the socket is guided by a pyrex glass chimney toward the plate seal, assuring correct cooling even during maximum rating operation of the tube.

4X150A/4000 air-system socket provides adequate air cooling and high frequency circuit arrangement for Eimac 4X150A and 4X150D. Air enters the socket through the bottom and is guided by a ceramic chimney.

4X150A/4010 socket is identical to the 4X150A/4000 except that this socket is complete with grounded cathode connecting tabs.


Eimac air-system sockets and chimneys are also available as separate units.

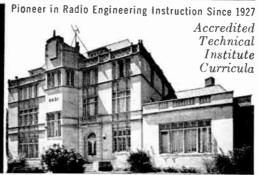
For further information contact our Technical Services Department.

EITEL-MCCULLOUGH, INC. SAN BRUNO The world's largest manufacturer of transmitting tubes

World Radio History

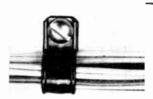
SIXTY-CHANNEL CARRIER-TELEPHONE SYSTEM OF **ADVANCED DESIGN FOR RADIO LINKS**

The type F60 carrier-telephone system provides up to 60 channels, in 12-channel groups, on a four-wire basis for transmission over cable pairs or an FM radio system. Transmission is single-sideband suppressedcarrier in the frequency range 12 to 252 kc. Miniaturized plug-in equipment units are used, which also form part of universal carrier-telephone systems of from 3 to 960 channels. Channel band width is 300 to 3400 cycles. Three telephone channels in each group may be replaced by a 10-kc program channel. Built-in ringing and dialling facilities are available. The types FM 60/2000 Radio System, operating in the band 1700 to 2300 mc, FM60/300 Radio System, in the band 235 to 328 mc, and FM24/50 Radio System, in the band 41 to 68 mc, are designed for use with the F60 carrier-telephone system.


Forty-eight chonnel modems mount on one boy side. Two boys mount a complete type F60 terminal.

RADIO ENGINEERING PRODUCTS **1080 UNIVERSITY STREET, MONTREAL 3, CANADA**

Telephone: UNiversity 6-6887 MANUFACTURERS OF CARRIER-TELEGRAPH, CARRIER-TELEPHONE AND BROAD-BAND RADIO SYSTEMS


CAPITOL 410 116 1443 INSTITUTE

Advanced Home Study and Residence **Courses in Practical Radio-Electronics** and Television Engineering

Cable Address: Radenpro, Montreal

Request your free Home Study or Resident School Catalog by writing to: Dept. 26B4 3224 16th St., N. W. Washington 10, D. C. Approved for Veteran Training

From $\frac{1}{16}$ " to $\frac{1}{2}$ " dia. with our Type 4 "NyGrip" all Nylon cable clip, pictured here full size. These are now carried in stock with fastening holes for No. 4 to No. 8 screws. Tough, flexible, strong, light in weight. May also be used for fastening glass tubing without breakage.

HOLD WIRING

Prices Recently Reduced 10% on Most Sizes Write today for sample and details.

WECKESSER CO. 5269 N. Avondale Ave. Chicago 30, III.

(Continued from page 112A)

munication engineering and physics at Stanford University; in 1941 he became a research associate in the Division of Electron Optics; and in 1944 he received the Ph.D. degree there.

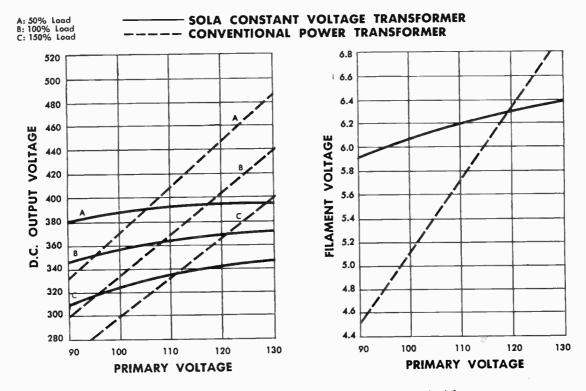
Dr. Hutter is a member of the American Physical Society and of Sigma Xi. He is an Adjunct Professor at the Polytechnic Institute of Brooklyn.

P. C. Sandretto (A'30-M'40-SM'43-F'54), Brigadier General U.S. Air Force Reserve, has been named an Assistant Vice-President of

Federal Telecommunication Laboratories, Nutley, New Jersey, a division of International Telephone and Telegraph Corporation. A technical director of FTL, he will act as general coordinator for military research and development projects.

40

P. C. SANDRETTO


General Sandretto joined the IT&T System in 1946 and held a number of positions in the aeronautical radio research and development activities of the corporation. He was made an Assistant Technical Director of the laboratories in 1948 and was promoted to Technical Director in 1953. Prior to his association with IT&T, he was a member of the technical staff of Bell Telephone Laboratories where he helped design some of the first radio equipment for commercial aircraft in the United States. During World War II, he won recognition for his services with the U.S. Air Force in connection with the planning and establishing of military electronics in the Pacific area.

A writer on aeronautical radio engineering, General Sandretto has served on committees of the Radio Technical Commission for Aeronautics since its inception in 1935. He is a member of the Institute of Navigation, and an associate member of the Institution of Electrical Engineers.

A. E. Abel (A'43-SM'45) has been named Director of Engineering and Research for the Bendix Radio Communications Division of the Bendix Aviation Corporation. In his new post he will direct the activities of the division's 1900 engineering employees engaged in design, test and inspection, research and development, and field engineering work. Mr. Abel formerly served as Assistant Director for more than two years.

A native of Chicago, he was graduated from the Oak Cliff High School in Dallas, Texas, and attended the University of Illinois from 1926-34. He was awarded a Bachelor of Science and a Master of Sci-(Continued on page 117A)

WHEN WRITING TO ADVERTISERS PLEASE MENTION - PROCEEDINGS OF THE I.R.E.

These curves contrast the plate and filament supply voltages obtained from a Sola ond a conventional power transformer when line voltage is varied from 100v to 130v.

Improve Performance of electronic products with built-in regulating power transformer

You can make sure your product will always receive correct plate and filament voltages by building in a Sola Constant Voltage Power Transformer (Type CVE) in place of a conventional, non-regulating power transformer.

The Sola CVE provides $\pm 3\%$ regulation of plate and filament supply, with line voltage variations of 100 to 130 volts. Regulation is completely automatic, continuous and substantially instantaneous (1.5 cycles or less). Sola CVE stabilizers have no moving parts or tubes, require no manual adjustments or maintenance, and are selfprotecting against short circuits.

Three stock units (all with high voltage ct, 5.0v and 6.3v regulated windings) are stocked by your electronic distributor. You can order production quantities of special units manufactured to your specification. We invite your inquiry.

Automatic, Maintenance-Free Voltage Stabilization

TYPICAL STOCK UNIT: Sola Electronic Power Transformers are made for chassis mounting. They are furnished complete with separate capacitors and capacitor mounting brackets.

SEND FOR FOLDER: Please write for folder which gives complete data. Ask for CIRCULAR 1D-CVE-195

CONSTANT VOLTAGE TRANSFORMERS for Regulation of Electronic and Electrical Equipment • LIGHTING TRANSFORMERS for All Types of Fluorescent and Mercury Vapor Lamps. • SOLA ELECTRIC CO., 4633 West 16th Street, Chicago 50, Illinois, Bishop 2-1414 • BOSTON: 272 Centre Street, Newton 58, Massachusetts • NEW YORK 35: 103 East 125th Street • LOS ANGELES 26: 2025 Sunset Boulevard • PHILADELPHIA: Commercial Trust Building • CLEVELAND 15: 1836 Euclid Avenue • KANSAS CITY 2, MISSOURI: 406 West 34th Street • Representatives in Other Principal Cities

116x

WHEN WRITING TO ADVERTISERS PLEASE MENTION - PROCEEDINGS OF THE L.R.E.

4

G

(Continued from page 114.1)

ence degree from that university, both in electrical engineering. During his last two years there he was a special test assistant.

From 1935–1936 Mr. Abel was a Project Engineer for the RCA Manufacturing Company, in Camden, New Jersey, and worked primarily with aircraft transmitters. In 1937 he joined the Bendix Radio Corporation, predecessor of the present division and has been with the organization ever since.

At the conclusion of World War II, Mr. Mel received a Certificate of Commendation from U. S. Navy, Bureau of Ships, and a Certificate of Appreciation from the War Department for outstanding service during the war in radar, communication development, and production.

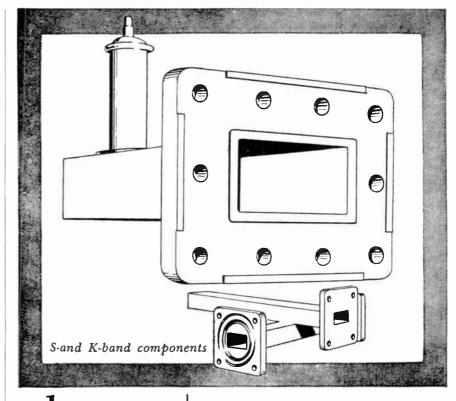
÷.

A. B. Bronwell (A'39-SM'43) has been elected to succeed Alvin E. Cormeny as President of Worcester Polytechnic Institute. On the Northwestern University electrical engineering faculty since 1937, Dr. Bronwell during World War 11 organized and supervised the Army Signal Corps school in radio and ultra high frequencies, located at Northwestern. Executive secretary of the American Society for Engineering Education for the past seven years, in 1951, at Gen. Matthew B. Ridgway's invitation, he visited Japan as a member of a commission on engineering education.

•••

The appointment of **N**. **H**. **Mageoch** (M'53) to the position of Vice-President for Operations at Daystrom Instrument has been announced. In

his new position, he will direct certain phases of product engineering and all activities related to industrial engineering, manufacturing engineering, quality control, production control, assembly, fabrication and installation.


N. H. MAGEOCH

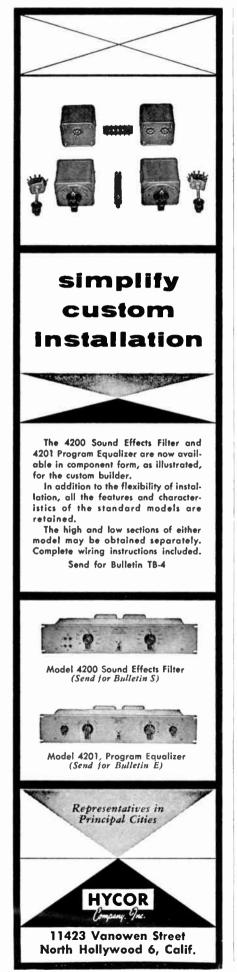
Mr. Magcoch, a graduate of Drexel Institute with post graduate work in applied science at University of Pennsylvania, came to Daystrom Instrument in 1951. He was made Chief Engineer in 1952, Director of Research and Engineering in 1953, and in 1954 Vice-President of Research and Engineering. In this position he directed industrial engineering, equipment installation, inspection and test and the firm's

Pilot Plant operation. Mr. Mageoch is a member of the American Institute of Electrical Engineers, the American Ordnance Association, the Institute of Radio Engineers, and the Association of Computing Machinery.

(Continued on page 118.1)

PROCEEDINGS OF THE I.R.E. April, 1955

how small


can a

wave guide get?

Well, alongside some of the stuff we're working with now, the radar plumbing we used during World War II gets to look like air-conditioning duct. What's more, some of our boys here seem to regard anything below S-band as practically pure D.C. Naturally, we're up to our hips as usual in work on military equipment. However, we do occasionally have some extra creative capacity available, so if you have a problem involving something special in wave guide components (real small ones, too) and like that, maybe we can help. Drop us a line.

L. H. TERPENING COMPANY DESIGN • RESEARCH • PRODUCTION Microwave Transmission Lines and Associated Components 16 West 61st St. • New York 23, N. Y. • Circle 6-4760

World Radio History

(Continued from page 11;A)

A. G. Clavier (M'30–F'39), formerly a Technical Director, has been made an Assistant Vice-President of Federal Telecommunication Labo-

ratories, a division of International Telephone and Telgraph Corporation. Mr. Clavier joined the IT&T System in 1929 as a member of the engineering staff of Laboratoire Central de Telecommunications, an IT&T associate in

A. G. CLAIEVR

Paris, and later became assistant director of the company. He was named an Assistant Technical Director of FTL in 1946 and a Technical Director in 1952.

The new Assistant Vice-President is recognized in connection with the development of microwave communication. He was associated with the first successful demonstration of microwave transmission across the English Channel in 1931 and directed the project which led to the opening of the world's first microwave radiotelephone link between England and France in 1934. Mr. Clavier has written on highfrequency radio communication and has taught field theory and applications of ultra-high frequencies at the Ecole Superieure d'Electricite in France.

He was made a Fellow of the American Institute of Electrical Engineers in 1953 for "pioneer work in research, development and engineering in the microwave field." He was chairman of the IRE's Professional Group on Microwave Theory and Techniques in 1953, "Membre Laureat" of the Societe Francaise des Electriciens, and a member of the Institution of Electrical Engineers of Great Britain.

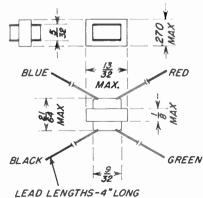
(Continued on page 121A)

Closing date for advertising 1955 IRE DIRECTORY June 15, 1955 From servo-mechanisms to electronic computers, "RADIO" is a way of THINKING!

20

Far-reaching progress in the radioelectronic field is no "happy accident." Television, electronic computers and the "radiation" power of the atom, which soon will be harnessed to industry were not discovered . . . they were engineered. From "fission" to "computation," these engineering achievements are accomplished through an enormous process of information exchangethe methodical and brilliant teaming together of engineering thinking to solve a problem. In radio this work has been done deliberately by a growing engineering society, through its meetings and published proceedings, which unleash the creative minds of men.

In 1954, "Proceedings of the I-R-E" published 1837 text pages, exclusive of product news and departmental features. This is the word-count equivalent of seven 500-page textbooks on radio-electronics for engineers. It exceeds the contents of the next two contemporary publications put together. This "high" in genuine reader service was logically matched by advertising worth over a halfmillion dollars, by firms investing in the engineers' reading interest and benefiting by it.



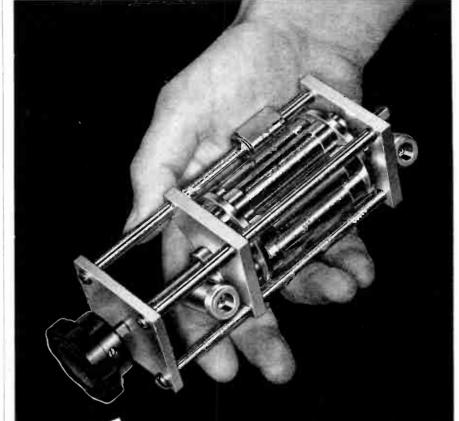
SUBMINIATURE TRANSFORMER

Field tested—used with transistors by leading manufacturers in large quantities.

FRANK KESSLER CO. 41-45 47th St., Long Island City 4, N.Y. Tel: STillwell 4-0263

WHEN WRITING TO ADVERTISERS PLEASE MENTION -- PROCEEDINGS OF THE L.R.E.

0


• Q-Max is widely accepted as the standard for R-F circuit components because it is chemically engineered for this sole purpose.

Q-Max provides a clear, practically loss-free covering, penetrates deeply, seals out moisture, imparts rigidity and promotes electrical stability.

• Q-Max is easy to apply, dries quickly and adheres to practically all materials. It is useful over a wide temperature range and serves as a mild flux on tinned surfaces.

• Q-Max is an ideal impregnant for "high" Q coils. Coil "Q" remains nearly constant from wet application to dry finish. In 1, 5 and 55 gallon containers.

PROTECTED UNDER STODDART PATENTS

IOW **Precision Attenuation** to 3000 mc!

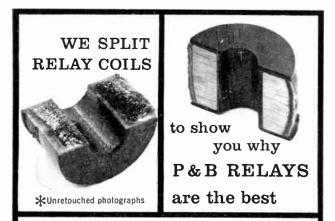
TURRET ATTENUATOR featuring "PULL-TURN-PUSH" action

SINGLE "IN-THE-LINE" ATTENUATOR PADS and 50 ohm COAXIAL TERMINATION

FREQUENCY RANGE: dc to 3000 mc. CHARACTERISTIC IMPEDANCE: 50 ohms CONNECTORS: Type "N" Coaxial female fittings each end **AVAILABLE ATTENUATION:** Any value from .1 db to 60 db

VSWR:

- <1.2. dc to 3000 mc., for all values from 10 to 60 db
- <1.5, dc to 3000 mc., for values from .1 to 9 db ACCURACY:


±0.5 db

POWER RATING: One watt sine wave power dissipation

> Send for free bulletin entitled "Measurement of RF Attenuation"

Inquiries invited concerning pads or turrets with different connector styles

STODDART AIRCRAFT RADIO Co., Inc. 6644-C Santa Monica Blvd., Hollywood 38, California · Hollywood 4-9294

In the coil at left—impregnated by the standard method—the varnish has failed to penetrate beyond the first few strands. The resulting air- and moisturetrapping spaces allowed the strands to pull loose when sawed. This trapped moisture sets up electrolytic action and causes eventual breakdown. Note, though, that the P&B coil at right has no

such "empty" spaces. Centrifugal impregnation-exclusive with P&B in the relay field-solidly imbeds all strands in varnish and protects completely against moisture and electrolysis.

It's just one of many reasons why, when you need a relay . . . of any size, any lype, for any application ... your smartest move is to P&B and Sterling Relays.

Another (Amf) Product

Write Potter & Brumfield Mfg. Co., or Sterling Engineering Co., Princeton, Indiana.

a Silver-Copper Eutectic brazing alloy by ESGO . . producers of Nicoro, Nioro, Incosil and Incoro high purity, low vapor pressure

brazing alloys for high vacuum systems.

Decarbonization . . . an exclusive process for elimination of carbon and "dirt" ever present in silver brazing alloy wires. No "leakers" due to non-wetting characteristics of carbon. No free carbon particles in electron beam.

- Write for additional information -

589 BRYANT

WESTERN GOLD & PLATINUM WORKS SAN FRANCISCO 7, CALIF.

Quick way to measure low currents

H ERE'S a simple way to measure currents down to 10⁻¹⁴ ampere. A. Keithley Electrometer and Shunt give fast results, accurate with 3%.

Keithley Electrometers are vacuum tube voltmeters with input resistances above 1014 ohms. They are quickly converted to inexpensive micromicroammeters by clipping an accessory shunt over the input terminals. Current is then read directly by simply combining the current range on the shunt with the voltage reading on the Electrometer.

Features of the equipment include excellent resolution over a range of 10⁻³ to 10⁻¹¹ ampere, polarity sensitivity, and output terminals for recorders. Typical uses include measurement of the inverse current of semiconductors (illustrated), capacitor and insulation leakages, current in photocells, ion chambers, and vacuum tube grids. For a complete catalog, write-

KEITHLEY INSTRUMENTS 3868 Carnegie Avenue Cleveland 15, Ohio

(Continued from tage 118A)

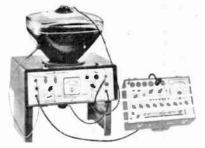
F. J. Gaffney has been appointed recently Vice-President for Engineering of Marion Electrical Instrument Company.

In his new position he will direct the development of industrial and aircraft instrumentation.

3

Mr. Gaffney, well known for his work in electrical measurements, was formerly Director of Engineering for the Guided Missiles Division of Fairchild Engine and

F. J. GAFFNEY


Airplane Company, During World War Two he served as head of the Test and Measurements group of the M.I.T. Radiation Laboratory, and, from 1945 until 1953, he was General Manager of the Polytechnic Research and Development Company.

For a number of years he has served as a consultant to the Department of Defense and currently serves as a member of the Steering Committee of the Panel on Electronics in the Office of the Assistant Secretary of Defense for Research and Development. Mr. Gaffney is a member of the AIEE, American Physical Society, American Association for the Advancement of Science, U. S. Committee of the International Scientific Radio Union, Tau Beta Pi, and Sigma Xi.

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your I.R.E. affiliation. (Continued from page 36A)

Portable Picture Tube Tester

In order to provide a complete, accurate test of the quality of a TV picture tube at a reasonable price, the Model 590 Picture Tube Tester, has been introduced by Hickok Electrical Instrument Co., 10551 Dupont Ave., Cleveland 8, Ohio. The 590 permits an accurate check of the overall "light" efficiency of a TV picture tube, including brilliance, condition of phosphor, possible ion burns and probable life, and also permits an accurate check for emission, shorts, gas content, leakage and grid control.

(Centinued on page 146.4)

PROCEEDINGS OF THE L.R.E. April, 1955

Top-level design and development positions are now open. If you can fill one of these exciting openings . . . you will find unlimited creative opportunity. You will be well-compensated for your efforts . . . both in income and benefits, and in the satisfaction of contributing to America's superiority in ground and shipborne radar; fire-control, communications and missile guidance systems.

openings exist for:

YOU CAN BE SURE ... IF IT'S

estinghouse

A STORE SERVICE AND A STORE AND A STORE

Circuit Engineers Radar Systems (Indicator) Engineers Antenna Waveguide Engineers **Transformer Magentics Engineers Digital Analog Tracking Specialists Technical Writers**

act now! Send letter outlining education and experience toR. M. Swisher, Jr. Employment Supervisor, Dept. 119 WESTINGHOUSE ELECTRIC CORP. 2519 Wilkens Avenue Baltimore 3, Maryland

Positions Wanted

By Armed Forces Veterans

In order to give a reasonably equal opportunity to all applicants and to avoid overcrowding of the corresponding column, the following rules have been adopted :

The Institute publishes free of charge notices of positions wanted by I.R.E. members who are now in the Service or have received an honorable discharge. Such notices should not have more than five lines. They may be inserted only after a lapse of one month or more following a previous insertion and the maximum number of insertions is three per year. The Institute necessarily reserves the right to decline any announcement without assignment of reason.

ELECTRONIC-PRODUCT ENGINEER

BEE 1951. Age 33. 13 years in electronics. Design, development, production on fire and missile control radar systems. Video, servo, CRT, data transmission, system integration, human engineering. Liaison between engineering and production. Supervisory and some administrative experience. Self-starter and neck sticker-outer when expediency requires. Seeks position slightly over his head. Will relocate. Present income \$9,000. Box 802 W.

(Continued on page 126A)

ENGINEERS

MICROWAVE

Development of microwave instruments & test equipment

ELECTRONIC

Development of electronic instruments

Precision instrument manufacturer requires men with good academic & practical background. At least 2-3 years design & development experience required. Should exhibit qualities of leadership, with the ability to meet & deal with people. Men who fill the bill will be substantially compensated.

あるというところです

の語言はないらいというないないという

いたのでは、日本のないないないです。

MISSILE SYSTEMS

Research and Development

Physicists and engineers at Lockheed Missile Systems Division are engaged in a group effort covering virtually every field of science.

Missile Systems Division scientists and engineers discuss a new missile systems concept in light of tactical requirements. Left to right: Dr. H. Hall, nuclear physicist; l. H. Culver, systems development division engineer; Dr. R. J. Havens, research scientist; W. M. Hawkins, chief engineer; Dr. Ernst H. Krause, nuclear physicist and director of research laboratories; S. W. Burriss, experimental operations division engineer; Ralph H. Miner, staff engineering division engineer; and Dr. Eric Durand, nuclear physicist.

Continuing developments are creating new positions for those capable of significant contributions to the technology of guided missiles.

Pockheea

MISSILE SYSTEMS DIVISION research and engineering staff

LOCKHEED AIRCRAFT CORPORATION . VAN NUYS, CALIFORNIA

World Radio History

ENGINEERS AND

Your future measures up to your ability...

in these positions open now at RCA!

You'll find RCA opportunities in:

A whole new program of expansion at RCA—in Research, Systems, Design, Development and Manufacturing—opens a broad variety of permanent positions with all the features that appeal to the alert, creative engineer. These are opportunities with a future... available *today* for the man who wants to move ahead professionally with the world leader in electronics. They include work in fields of phenomenal growth. At the RCA engineering laboratories *listed in the chart on the right*, you'll find the kind of living and working conditions attractive to the professional man and his family.

Engineers and scientists find every important factor that stimulates creative

AVIATION ELECTRONICS ELECTRON TUBES COMPUTERS MISSILE GUIDANCE RADIO SYSTEMS

effort...including a quality and quantity of laboratory facilities unsurpassed in the electronics industry...and everyday association with men recognized at the top of their profession.

RCA's benefits add up to an impressive list of "extras." Among them: tuition for advanced study at recognized universities . . . a complete program of companypaid insurance for you and your family . . . a modern retirement program . . . relocation assistance available.

Your individual accomplishments and progress are recognized and rewarded through carefully planned advancement programs. Financially as well as professionally, you move ahead at RCA!

SCIENTISTS:

ø

Check the chart below for openings in your field.

		ΤΥΡΕ	OF D	EGREE	AND	YEAR	S OF E	EXPER	ENCE	PREF		-
FIELDS OF ENGINEERING ACTIVITY		lectric nginee			есћалі пділев			Physica Scienc		Glass	hemis erami Techr letallu	cs nolog
	1.2	2-3	4+	1.2	2.3	4+	1.2	2.3	4+	1.2	2.3	4+
SYSTEMS (Integration of theory, equipments, and environment to create and optimize major electronic concepts.)												
AIRBORNE FIRE CONTROL			W						W			
DIGITAL DATA HANDLING DEVICES			C			C			C			1
MISSILE GUIDANCE			М			M			M		1	1
INERTIAL NAVIGATION			M			M			M			
COMMUNICATIONS		F	C O F					F	C _0 F			
DESIGN • DEVELOPMENT COLOR TV TUBES — Electron Optics — Instrumental Analysis —Solid States (Phosphors, High Temperature Phenomena, Photo Sensitive Materials and Glass to Metal Sealing)	L	L	L	L	L	L	L	L		L	L	L
RECEIVING TUBES —Circuitry—Life Test and Rating—Tube Testing—Thermionic Emission	н	Н	H		H	H		н			H	IH
MICROWAVE TUBES—Tube Development and Manufacture (Traveling Wave—Backward Wave)		Н	Н	H			H	Н			H	ŀ
GAS, POWER AND PHOTO TUBES—Photo Sensitive Devices— Glass to Metal Sealing	L	L	L	L	Ľ		L	L		L	Ľ	Ī
AVIATION ELECTRONICS—Radar—Computers—Servo Mech- anisms—Shock and Vibration—Circuitry—Remote Control —Heat Transfer—Sub-Miniaturization—Automatic Flight —Design for Automation—Transistorization		F	M C F		F	M C F		F	M C F			
RADAR – Circuitry – Antenna Design – Servo Systems – Gear Trains – Intricate Mechanisms – Fire Control		F	M C F		F	M C F		F	M C F			
COMPUTERS —Systems—Advanced Development—Circuitry —Assembly Design—Mechanisms—Programming	C	C F	M C F	C	C F	M C F	C	CF	M C F			
COMMUNICATIONS — Microwave — Aviation — Specialized Military Systems		F	M C F		F	M C F		F	M C F			
RADIO SYSTEMS — $HF-VHF$ — Microwave — Propagation Analysis — Telephone, Telegraph Terminal Equipment		0	0 F		0	0 F		0	0 F			
MISSILE GUIDANCE—Systems Planning and Design—Radar —Fire Control—Shock Problems—Servo Mechanisms		F	M F		F	M F		F	M F			
COMPONENTS – Transformers – Coils – TV Deflection Yokes (Color or Monochrome) – Resistors		C	C		C	C		C	C			T
MACHINE DESIGN		н	н		н	н		Н	н			
Mech. and ElecAutomatic or Semi-Automatic Machines												

Locotion Code C-Camden, N. J. -- In Greater Philadelphia near many suburban communities.

F—Florida—on east central coast,

H-Harrison, N. J.-just 18 minutes from downtown New York.

L—Lancaster, Pa.—about an hour's drive west of Philadelphia.
 M—Moorestown, N. J.—quiet, attractive community close to Phila.
 O—Overseas—domestic and overseas locations.
 W—Waltham, Mass.—near the cultural center of Boston.

Please send resume of education and experience, with location preferred, to:

Mr. John R. Weld, Employment Manager Dept. C-1D, Radio Corporation of America 30 Rockefeller Plaza New York 20, N.Y.

RADIO CORPORATION OF AMERICA

Copyright 1955 Radio Corporation of America

World Radio History

Address: Mr. L. H. Noggle Dept. M Phone: VAlley 3-2200

confidence, and we guarantee speedy action!

DIVISION OF BENDIX AVIATION CORP. Baltimore 4, Maryland Positions Wanted

By Armed Forces Veterans

(Continued from page 122A)

ELECTRONIC ENGINEER

BEE, MS. 5 years electronic engineering experience. Pulse circuits, microwave, radar development. 1 year technical writing. Desires position in electronic research and development. New York City area preferred. Box 803 W.

SALES ENGINEER

BEE, age 27, married. 4 years experience in military electronics, including 2 years application engineer in aviation electronics. Desires a challenging opportunity in a sales capacity. Metropolitan New York area. Box 804 W.

ENGINEER

Twenty-seven years **a** technical writer and editor on a New York newspaper. Wants public relations, publicity or technical writing-editing jub in electronics. Preferably in New York area. Box 805 W.

ADVERTISING & PUBLIC RELATIONS MANAGER

BS Engr./Bus. Admn., MBA Marketing. 10 years progressive experience all phases of industrial marketing. Program planning, budgeting and administration, market survey, agency liaison, media evaluation, copywriting and production. Pamphlets & brochures, catalogues & direct mail, trade shows & technical publicity. Media, industry, community & Government relations. Licensed radio operator with background in radio & electronic equipment promotion. Age 35. Desires career position offering greater responsibilities & advancement. Box 811 W.

COMPONENTS ENGINEER

BEE communications option, some graduate courses. Age 31, married, 2 children. 5 years experience in the field of radio-frequency coaxial, and multi-contact audio, power and control connectors and fittings. Desires development and/or production engineering position in this or related fields. Box 812 W.

PHYSICIST

MS Physics, 1952. Age 30, married. Research and development experience in electronics, ion devices, vacuum systems and instrumentation. Prefer location in southwest or Florida. Box 813 W.

SYSTEMS ENGINEER

BSTE January 1949. Age 30, married, 1 child. 6 years diversified experience: radar, automatic data reduction systems, digital computers, telemetering and instrumentation systems. Desires similar project or systems engineering position. Box 814 W.

ELECTRONIC ENGINEER

BEE 1950, MEE expected 1955 from New York University. Age 30, married. 5 years experience as electronic circuit and development engineer on automation. Considerable production and mechanical experience. Desires position in New York City area until June 1955 and then will relocate. Box 817 W.

ELECTRONIC ENGINEER

BEE 1955 (Jan.). Age 34, married. 3 years radio coils, 2 years radar, 2 years VIIF communications, 2 years radio and TV service. 2 years dial switching ckts., 3 years TV broadcast lab. (color), 2 years sales. Desires responsible position where broad experience can be utilized. Box 818 W.

(Continued on page 134.4)

WHEN WRITING TO ADVERTISERS PLEASE MENTION - PROCEEDINGS OF THE L.R.E.

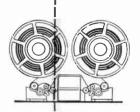
April, 1955

APRIL'S BIG CAREER OPPORTUNITIES

DEVELOPMENT ENGINEERING*

Digital computer component development – design of components and functional units of accounting and data processing machines – transistors and transistorized units – special electron tubes—counters—magnetic core, drum, tape, and ferro-electric storage devices. ALSO fine openings in digital computer circuit design, electro-mechanical development and systems planning and analysis.

"I'VE GROWN WITH IBM"


says Wolloce D. Bolton, Development Engineer at the Endicott Laborotories

"The way IBM is growing certainly offers a young engineer the opportunity to move ahead and in work that's interesting," says Wally. "Since I joined IBM in July of '50, right after getting my BS 'EE from the University of Pennsylvania, I've been closely

associated with a new development in the field of high-speed printing. Now, I'm in charge of the research phase of this program. And in just about every other area around me, I've seen opportunities opening up all the time for other young engineers."

IBM MAGNETIC TAPE DEVELOPED BY ADVANCED ENGINEERING

a

The great data processing machines produced by IBM employ the latest advances in processing and data storage. Among these is oxide-coated acetate tape used to record information in the form of magnetized spots. Tape units for either reading or writing operate at a rate of 15,000 characters per second.

The density of recording is 200 characters per inch, permitting permanent files of data to be compressed onto a $10\frac{1}{2}$ -inch diameter reel holding 2,400 feet of tape. A single reel can contain over 50,000 grouped records of 100 characters each.

Your replies, of course, will be held in strictest confidence.

MANUFACTURING ENGINEERING*

Design and development of electronic test equipment for digital computer production testing—circuit design—systems planning and analysis—test planning. ALSO excellent openings in functional and acceptance testing—test equipment installation and maintenance—automation engineering—manufacturing research.

*<u>Required</u> – a degree in E.E., M.E., or Physics, or equivalent experience.

Desirable – experience in any of the following fields: digital and analog computers, including airborne types, radar, TV, communications equipment, relay circuitry, automation, servo-mechanisms, instrumentation, or data handling systems.

APPLIED MATHEMATICS**

IBM seeks a special kind of mathematician and will pay well for his abilities. You'll work as a special representative of IBM's Applied Science Division as a top-level consultant to business executives and scientists. Employment assignment can probably be made in almost any major U.S. city you choose.

****Required:** major or graduate degree in Mathematics, Physics, or Engineering with Applied Mathematics equivalent. Desirable, but not required, experience in teaching Applied Mathematics and use of automatic computing equipment.

For information on these career opportunities WRITE,

giving details of education and experience to: William M. Hoyt, IBM, Dept. 686 (27) 590 Madison Ave., New York 22, N.Y.

> World's Leading Producer of Electronic Accounting Machines and Computers

ENGINEERS

for immediate placement

ENGINEERING AT NCR:

1. Immediate, permanent positions in Mechanical and Electrical Engineering Divisions.

2. Engineering project work involving design and development of mechanical, electronic, electromechanical devices, and electronic data processing equipment in Business Machine applications.

3. Some experience in development, design, and application of high-speed, light-weight mechanisms of the intermittent motion type is desirable.

4. Openings also for Mechanical and Electrical personnel for writing technical and application literature describing newly-developed machines.

5. Ample training and indoctrination is available to all employees.

ELECTRICAL ENGINEERS MECHANICAL ENGINEERS ELECTRONIC ENGINEERS MECHANICAL DRAFTSMEN

AS AN NCR ENGINEER you, with your family, will enjoy:

1. UNLIMITED OPPORTUNITY in the broad, everexpanding field of Business Machine Engineering.

2. AN EXCELLENT SALARY, plus exceptional benefits of lifetime value for you and your family.

3. A RECREATIONAL PROGRAM for year-round enjoyment of the entire family including a new Country Club with 36 holes of golf, and a 166-acres park for outings with swimming, boating, and supervised play for the children.

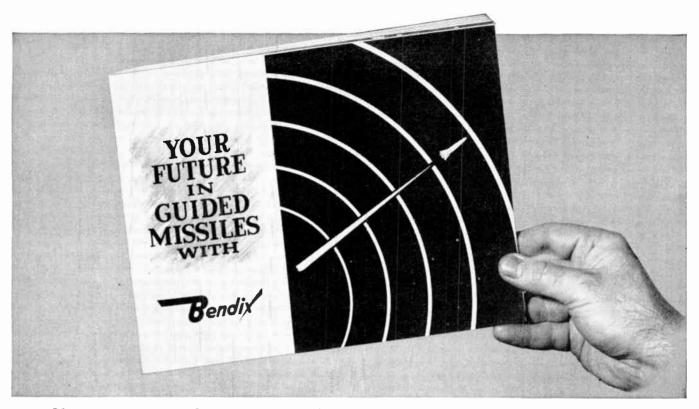
4. LIVING IN DAYTON . . . considered one of the cleanest and most attractive eities in the Midwest with outstanding school facilities.

5. YOUR WORK AT NCR with its friendly, family atmosphere, with its employee morale at a very high level, and with people who, like yourself, have decided to build their professional future with NCR.

ACT AT ONCE-Send resume of your education and experience to: EMPLOYMENT DEPARTMENT, TECHNICAL PROCUREMENT SECTION

THE NATIONAL CASH REGISTER COMPANY

Dayton 9, Ohio


UNUSUAL **OPPORTUNITY**

For Electronics Engineer With Leader in **Gaging Field Eastern Part of Country**

Qualifications

- 1. A good background in electronics with 4 to 5 years experience in development work and preferably a B.E.E.
- 2. Specifically \rightarrow experience in application of electronics to gaging or switching circuits, or to servo-control.
- 3. Potential in personality to take charge of a group engaged in research and to eventually direct production.
- 4. Interest in dimensional gaging, especially in the field of automatic gaging application.

A growing field for your specialization and good salary combine to make this a desirable opportunity. Address Box No. 808, Institute of Radio Engineers, 1 East 79th St., New York 21, N.Y. Include photograph.

If you are interested in guided missiles this book will interest you. Here is one of the most complete guides to job opportunities in the guided missile field yet published. In this book, you will find not only a complete outline of the objectives and accomplishments of the Bendix Guided Missile Section, but also a detailed back-ground of the functions of the various engineering groups such as system analysis, guidance, telemetering, steering intelligence, component evaluation, missile testing, environmental testing, test equipment design, reliability, propulsion, and other important engineering operations. Send for your free copy today.

23 challenging opportunities in the newest and fastest growing branch of the aviation industry are now open

Bendix job opportunities in guided missiles range from top senior engineers to assistant engineers, junior engineers, technicians, and a score of other assignments.

Qualified men are given real job responsibility with Bendix and grow with the development of what is not only the nation's most important weapon system, but a project that will undoubtedly lead to new and important longrange commercial applications.

And at Bendix you will be associated with top missile authorities and have at your command unexcelled engineering and manufacturing facilities.

If you are interested in a future in guided missiles, the first step is to fill out the coupon and mail it to us today.

Bendi	e Section, Employment Department M x Products Division, Bendix Aviation Corporation North Bendix Drive, South Bend, Indiana
	Please send me a copy of the book "Your Future in Guided Missiles."
Name	·
Addre	Dss
City_	
State	

ŝ

4300 mph

You're looking up—at a great future in the world of flight.

The Martin men who engineered the 4300 MPH Viking Rocket are now considering vehicles with speeds beyond mach 20. And of course, at these speeds, the moon doesn't have to be the earth's only charted satellite.

Interesting? Martin research in the rocket field is only one of many exciting new long-range developments which are creating exceptional opportunities and futures on projects of the highest priority and promise.

If you're a creative engineer with an eye for the big chance, look up! And look into the Martin story.

Contact J. M. Hollyday, Dept. P-4, The Glenn L. Martin Company, Baltimore 3, Maryland.

ELECTRONIC FIELD ENGINEERS

An outstanding opportunity awaits you in our nationwide ELECTRONIC COMPUTER and DATA HANDLING SYSTEMS program

- **TRAINING** at our expense with full salary.
- **PERMANENT** installation assignment, perhaps in your own locality.
- HOUSEHOLD goods moved at our expense.

• INSURANCE, PENSION and other liberal employee benefits.

• INTERVIEWS arranged at our expense.

Send written résumé to:

REMINGTON RAND Inc. ERA DIVISION 1894 W. Minnehaha St. Paul W4, Minn. Ð

WHEN WRITING TO ADVERTISERS PLEASE MENTION - PROCEEDINGS OF THE L.R.E.

At General Electric plants and laboratories from New York to California, G.E. engineers are constantly planning new and revolutionary advances in the field of electronics.

And with each new development, they are broadening the scope and opening new challenges and new opportunities in this young and fast-growing field.

Thus, the opportunity is ever-increasing at General Electric. If you are interested in taking on new challenges...in working with the finest facilities...in growing along with this leader in industry, you are invited to apply now for positions open at Schenectady, Utica, Ithaca, Syracuse, and Clyde, New York; Owensboro, Kentucky; and Palo Alto, Calif. New GENERAL ELECTRIC Opportunities Throughout the Country In Advanced Electronic Developments

ENGINEERS · PHYSICISTS

Positions available in the following fields: Advanced Development, Design, Field Service and Technical Writing in connection with:

MILITARY RADIO & RADAR • MULTIPLEX MICROWAVE MOBILE COMMUNICATION • COMMUNICATIONS ELECTRONIC COMPONENTS TELEVISION, TUBES & ANTENNAS

> Bachelar's ar advanced degrees in Electrical ar Mechanical Engineering, Physics, and experience in electranics industry necessary.

> > Please send resame to: Dept. 4-5-P, Technical Personnel

GENERAL 🍪 ELECTRIC

ELECTRONICS PARK, SYRACUSE, N. Y.

SALES ENGINEER

(CAPACITOR PAPERS)

We have an opening for a technical salesman, preferably with experience in the development and design of capacitors. Headquarters will be in Lee, Massachusetts.

After a training period, the position will involve some traveling, principally in the east.

The right man can expect an attractive fixed salary and expenses with an excellent opportunity for advancement.

All inquiries will be treated in strictest confidence and should be directed to the personal attention of M. Peter Schweitzer.

> PETER J. SCHWEITZER, INC. 261 Madison Avenue New York 16, New York

Stability and Opportunity for ELECTRONIC ENGINEERS

who want more room to grow

Top opportunities for achievement and recognition are open at FTL...key unit of the world-wide, American-owned IT&T System. FTL's long-range development program offers stability and security. Finest facilities – plus broad and generous employee benefits.

INTERESTING ASSIGNMENTS IN:

Radio Communication Systems • Electron Tubes Microwave Components • Electronic Countermeasures Air Navigation Systems • Missile Guidance Transistors and other Semiconductor Devices Rectifiers • Computers • Antennas Telephone and Wire Transmission Systems

> SEND RESUME TO: PERSONNEL MANAGER, BOX IR-4

Federal Telecommunication Laboratories A Division of INTERNATIONAL

TELEPHONE AND TELEGRAPH CORPORATION 500 Washington Avenue, Nutley, N. J.

FTL's famed Microwave Tower —28 minutes From N. Y. C.

World Radio History

ENGINEERS, EE

You'll Find These Advantages at Kollsman:

- An organization small enough to provide diversity & recognition of achievement, large enough for stability and continuing growth.
- Intricate design and development work on America's finest aircraft instruments, with the best facilities available in a modern plant.
- Convenient location in a quiet residential section only 20 minutes from Times Square by IND subway to Elmhurst Ave. local station-2 short blocks to plant.

A Few Pasitions Available for Wark Associated with Airbarne Navigational Systems

- 1. Systems Work
- 2. Field Service
- 3. Handbook Preparation
- 4. Preparation of Test Procedures and Specifications

Some previous experience with electronic and electromechanical computers and instruments desirable.

For appointment, send resume to the Employment Manager. Or if in the New York Metropolitan area, phone

NEwtown 9-2900

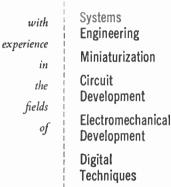
KOLLSMAN Instrument Corp. subsidiary of Standard Coil Products Co., Inc.

80-08 45th Ave., Elmhurst, Ll., New York

Westinghouse

in Elmira, N.Y.

This could be the most important step of your life. Working creatively on world-important assignments, with some of the finest minds in the electronic engineering field, you'll have the opportunity, based on merit, to achieve professional and financial recognition. Moving to Elmira can be rewarding, too, for life is pleasant in this resort-land community.

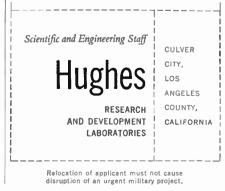

Opportunities for:

DESIGN, DEVELOPMENT and APPLICATION ENGINEERS: Receiving, image orthicon or vidicon tubes; solid state devices.
 MICRO-WAVE TUBE DESIGN ENGINEERS: 2 or more years experience, for designing magnetrons, traveling-wave tubes, TR and ATR tubes, reference cavities, etc.
 Above openings are for Engineers and Physicists with Bachelor's, Master's or Doctor's degree. Also . . .
 ELECTRICAL ENGINEERS, for EQUIPMENT DESIGN: designing, costing, and guiding construction of processing and testing equipment, e.g. atmosphere furnaces, electrical welders, induction heaters, X-ray seasoning and test units, waveguide apparatus, transistor life test units.

Interviews arranged in your area, or travel expenses paid if invited to Elmira for interview. Send resume:

WESTINGHOUSE ELECTRIC CORP. Electronic Tube Division • P.O. Box 284, Elmira, N. Y.

Digital Communication Engineers




Long-Range Information Transmission

New advancements in the field of long-range information transmission are being made at Hughes with digital techniques.

Areas of Work

To further expand work in this area, Hughes Research and Development Laboratories are interested in people with experience in airborne communication systems, digital storage, low frequency measurements, modulation systems, miniaturized packaging, audio, IF and RF circuitry in the HF range, analog to digital and other data conversion methods.

1955-B-47 Stratojet assembly, Beeing Wichita Division

Boeing offers engineers long-range careers

Back in 1927 engineers designed airplane wings in simple terms of wood and cloth. An airplane wing of today is a complex aerodynamic structure housing a myriad of electrical, mechanical and hydraulic systems.

n,

Yet many Bocing engineers of 1927 are still with the company. They have grown with the science of aviation capitalized on its potentials, and contributed to its progress.

What engineer in 1927 could foresee the stature of the aviation industry today. They saw only a challenge—an opportunity—to create a future. If you seek similar challenge—limitless opportunity—and growth potential—you can find it at Boeing.

Boeing is seeking more engineers of ability—in Research, Design and Production. Today, one out of each seven Boeing employces is an engineer! You'll work on such diverse programs as: The B-52 and B-47 multi-jet bombers. The "707," America's first jet transport. Research in nuclearpowered and supersonic flight. One of the nation's major guided missile programs, the INI-99 Bomarc pilotless aircraft. Beyond that? Engineers will establish the future pattern.

Boeing has openings for virtually all types of engineers—electrical, civil, mechanical, aeronautical and related fields, as well as for applied physicists and mathematicians with advanced degrees.

For full information on your opportunities at Boeing, send résumé of your education and experience background to:

JOHN C. SANDERS, Staff Engineer — Personnel Boeing Airplane Company, Dept. G-10, Seattle 14, Wash.

ATTLE, WASHINGTON 👘 WICHITA, KANSAS

Electronic Data Processing Systems For BUSINESS…

Provide an exciting new challenge for those with ingenuity and analytic ability. ENGINEERS, PHYSICISTS, MATHEMA-TICIANS and PROGRAMMERS now have the opportunity to participate in the growth of a great new industry. Positions are open in research, development and application of:

> MAGNETIC CIRCUITS SEMI-CONDUCTOR APPLICATIONS VACUUM TUBE CIRCUITS LOGICAL TECHNIQUES SYSTEM DESIGN PRODUCT DEVELOPMENT COMPUTER APPLICATIONS SYSTEMS ANALYSIS

Personnel with ability in the above or allied fields are invited to submit a resume or write for an application. Recent and prospective college graduates with high scholastic standing are also invited to apply. Training will be given at full pay. Liberal company benefits and advancement on merit are offered to those who would like to work and play in sunny Southern California.

WRITE TO DIRECTOR OF PERSONNEL

The National Cash Register Company ELECTRONICS DIVISION

3348 WEST EL SEGUNDO BOULEVARD + HAWTHORNE, CALIFORNIA *TRADE MARK REG. U.S. PAT. OFF.

By Armed Forces Veterans

(Continued from page 126A)

BROADCAST ENGINEER

RCA graduate. 1st Class ticket, Ambitions beginner, Desires position in radio or TV station anywhere, to start at bottom. Anxious to learn all aspects involved in broadcasting, Salary secondary, Box 828 W.

TRANSISTOR ENGINEER

AB., BSEE., MEE., Tau Beta Pi, Eta Kappa Nu, Sigma Xi, pre-doctoral student and EE instructor. 2 years experience design and teaching audio and pulse transistor circuits. Also several years vacuum tube circuit experience. Desires summer job in New York City. Box 820 W.

RADIO ENGINEER

BSEE 1950, Oregon State College, age 28, married. 4⁺5 years experience in airborne electronics and radio aids to navigation, theoretical and practical. Desires position with future with a progressive company in the west, preferably the northwest. Box 830 W.

OPERATIONS RESEARCH

Master's degrees in physics and in electronics, 14 years experience in research engineering and management, analytical mind with keen mathematical ability. Desires position in operations research, Box 831 W.

ENGINEER (no license)

Age 27, single, 3 years Army, 6 years civilian experience in electronics. Speak read and write Spanish fluently. Desires position in Latin-America, Box 832 W.

ELECTRONIC ENGINEER

Five years of missile, radar and fire control system study work, and four years of radar and missile component development prior to that. Desires position in southern South America. Box 833 W.

RADIO-TV TECHNICAL DIRECTOR

Six years experience in program production and direction. Education: BA, in programming and production. Technical background includes control room operations, equipment design, construction, maintenance. 1st phone license, Age 26, married. Completing Army duty as microwave instructor at the Signal School in June 1955. Prefer Chicago or vicinity. Box 834 W,

ELECTRONICS RESEARCH

BEE 1946, MEE, 1950 electronics, Age 29, married, 1 child, 4 years experience hyperbolic radio navigation systems research, creative design, construction, analysis, laboratory and field evaluation. Lieut, Naval Reserve, Member LR.E.P.G.A.N.E. and LO.N. Presently Unit head, Desires similar position with advancement opportunity industry or university research program. Box 835 W.

ENGINEER

Instructor of technical electricity and electronics with extensive field and teaching experience. Desires (within 25 miles of Poughkeepsie, N.Y.) a teaching position with some H.S. or college or some phase of technician-engineering work with a private firm. Box $836~{\rm W}.$

(Continued on page 137.A)

WHEN WRITING TO ADVERTISERS PLEASE MENTION — PROCEEDINGS OF THE L.R.E. World Radio History

ELECTRONIC ENGINEERS

ADVANCE YDUR CAREER WITH A LEADER IN WESTERN ELECTRONICS

An expanding program of:

- research development
- production
 specialized military
- equipment

4

- advanced commercial design
- real creative challenge

Special receivers and transmitters, DF and DME, various instruments and Transistor applications-special devices. Studies in noise, radar, miniaturization and test equipment. Relocating expenses, good insurance plan, central location, steady advancement.

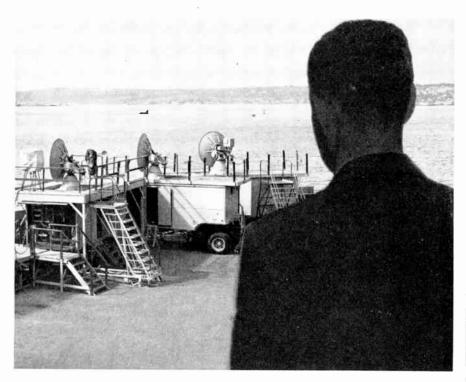
Send resume to L. D. Stearns Engineering Employment Manager Hoffman LABORATORIES, INC. (SUBSIDIARY OF HOFFMAN RADIO COMP.) 3761 S. HILL ST., LOS ANGELES. CALIF.

PROFESSOR Electrical Engineering

Professorial appointment at Brown University open for Electrical Engineer with established ability in teaching and advanced research. Will have responsibility for organizing and directing theoretical and experimental research program in his fields of interest.

Write to:

D. C. Drucker, Chairman Division of Engineering BROWN UNIVERSITY PROVIDENCE 12, R.I.



TO THE FINE ENGINEERING MIND SEEKING THE CHALLENGING PROJECTS IN

ELECTRONIC SYSTEMS

ELECTRONIC SYSTEMS ENGINEERS, to create guidance system design for missile control applications, will find unequalled career opportunities within the advanced Convair Engineering Department now. These opportunities include the development and application of data utilization systems for control purposes. Techniques currently under consideration consist of digital and analogue computation, cw and pulse transmission, analogue to digital to analogue conversion, and frequency and phase measurements. Engineers who apply should have a minimum of five years experience including circuit and system design from VLF through EHF. In addition, a strong theoretical background in circuit analysis, control or servo theory, plus a good foundation in physics is desirable.

CONVAIR offers you an imaginative, explorative, energetic engineering department ... truly the "engineer's" engineering department to challenge your mind, your skills, your abilities in solving the complex problems of vital, new, longrange programs. You will find salaries, facilities, engineering policies, educational opportunities and personal advantages excellent.

SMOG-FREE SAN DIEGO, lovely, sunny city on the coast of Southern California, offers you and your family a wonderful, new way of life ... a way of life judged by most as the Nation's finest for climate, natural beauty and easy (indoor-outdoor) living. Housing is plentiful and reasonable.

Generous travel allowances to engineers who are accepted. Write at once enclosing full resume to:

H. T. Brooks, Engineering Personnel, Dept. 804

A Division of General Dynamics Corporation 3302 PACIFIC HIGHWAY SAN DIEGO, CALIFORNIA

ENGINEERS

The APPLIED PHYSICS LABORATORY OF THE JOHNS HOPKINS UNIVERSITY offers an exceptional opportunity for professional advancement in a well-established laboratory with a reputation for the encouragement of individual responsibility and selfdirection. Our program of

> GUIDED MISSILE RESEARCH AND

DEVELOPMENT

provides such an opportunity for men qualified in:

ELECTRONIC CIRCUIT DESIGN AND ANALYSIS

DEVELOPMENT AND APPLICATION OF TRANSISTOR CIRCUITRY

SERVOMECHANISMS AND CONTROL SYSTEM ANALYSIS

ELECTRONIC EQUIPMENT PACKAGING INSTRUMENT DESIGN

MISSUE SYSTEMS DEVELOPMENT FLIGHT TESTING

Please send your resume to **Professional Staff Appointments** APPLIED PHYSICS LABORATORY

THE JOHNS HOPKINS UNIVERSITY 8621 Georgia Avenue Silver Spring, Maryland

PROJECT ENGINEER

(Electrical and Electronic)

to design electrical and electronic installations in aircraft and to supervise a small section of electrical and mechanical draftsmen. Applicants should have a degree in Electrical Engineering or Mechanical Engineering with electrical subjects as a strong secondary and preferably 5 years experience in design of electrical and electronic installations in aircraft. Experience in supervision of draftsmen desirable. Salary commensurate with experience and qualifications. Reply stating age, education, experience, personal particulars and salary expected to Box No. 807, Institute of Radio Engineers, 1 East 79th Street, New York 21, N.Y.

World Radio History

By Armed Forces Veterans

(Continued from page 134A)

ENGINEER

BSEE 1952 Communications option, 1½ year graduate work in nuclear engineering and EE, 2 years as electronics technician, Navy, 2 years industrial experience in electronic design. Desires job placement in electronics work, possibly numerical controlled machine tools. Box 837 W.

5

The following positions of interest to I.R.E. members have been reported as open. Apply in writing, addressing reply to company mentioned or to Box No.

The Institute reserves the right to refuse any announcement without giving a reason for the refusal.

> PROCEEDINGS of the I.R.E. I East 79th St., New York 21, N.Y.

ELECTRONIC ENGINEER

Laboratories located in a small midwestern town have an opening for a man experienced in the field of magnetic recording. Must be capable of building and operating a testing laboratory for the development and quality control of magnetic tape. Box 798.

ELECTRONIC ENGINEER

Edgerton, Germeshausen & Grier, Inc., 160 Brookline Ave., Boston, Mass. has a position open for an electronic engineer experienced in the development of instrumentation including oscilloscopic pulse techniques and allied circuitry. Send resume or call Personnel Dept. at COpley 7-3520.

ELECTRONICS ENGINEER

Electronics manufacturer on San Francisco peninsula has openings for engineers qualified to handle design and development of specialized electronic circuits involving amplifiers, telemetering and related systems. Must have BSEE and at least 2 years experience in related fields. Salary commensurate with experience. Please send resume to Dalmo Victor Co., 1414 El Camino Real, San Carlos, Calif.

ELECTRONICS ENGINEER

The Civil Aeronautics Administration urgently needs electronics engineers who have had or who wish experience and training in electronics research and development. Salaries range from \$3410 to \$5940 per annum. Write or send application or Standard Form 57, which can be obtained at Post Office, to Personnel Officer, Civil Aeronautics Admn., Development of Evaluation Center, P.O. Box 5767, Indianapolis, Ind.

ENGINEERS IN ELECTRO-ACOUSTICS

ELECTRO-VOICE, INC. has positions open for engineers with degrees in electrical engineering or physics. Positions are open for experienced men in speaker, microphone or phonograph pickup design and development for the recent graduates. Excellent future for the exceptional man. Write to Vice-President. Engineering, Electro-Voice, Inc., Buchanan, Michigan.

(Continued ou page 138A)

SANDIA CORPORATION, a subsidiary of the Western Electric Company, operates Sandia Laboratory under contract with the Atomic Energy Commission. Sandia engineers and scientists work at the challenging task of designing and developing atomic weapons. Graduate engineers and scientists, with or without applicable experience, will find excellent opportunities in the fields of component development, systems engineering, applied research, testing, and production.

COMPENSATION is competitive with that offered in other industry. Ingenuity and initiative are valued highly, and opportunities for professional advancement are outstanding. Working conditions are excellent, and employee benefits are most liberal.

SANDIA LABORATORY is located in Albuquerque — a modern, cosmopolitan city of 150,000, rich in cultural and recreational attractions and famous for its excellent year-around climate. Adequate housing is easily obtained. For descriptive literature giving more detailed information on Sandia Laboratory and its activities — or to make application for employment — please write:

professional employment division 1A

SUPERVISOR Guidance Design

Attractive supervisory assignment now available for an experienced electronics engineer to direct the analysis, design and flight test of systems for the guidance of pilotless aircraft. Applicants must possess supervisory experience and specialized knowledge of U.H.F. and microwave frequencies.

Requirements include Bachelor degree with advanced study preferable. Minimum of eight years of experience necessary. Generous travel allowance; insurance, hospitalization and retirement programs.

For detailed information and to arrange for a personal interview, submit resume of education and experience with salary desired to

G. H. Orgelman, Supervisor - Engineering Personnel

DUGHT AIRCRAFT

P.O. Box 5907 • DALLAS, TEXAS

IMMEDIATE Openings:

CHANCE

PROJECT ENGINEERS | COIL PRODUCTION ENGINEERS |

with experience in the design, development and production of delay lines, pulse transformers and allied electronic components.

Salaries commensurate with ability and experience.

Enjoy the security and exceptional advancement opportunities of a large company—with small company environment—in the West Los Angeles division of Gudeman, a large, progressive and expanding national organization. Superior climate, housing accommodations and leisureenjoyment facilities near to your employment. Send complete resume of your qualifications to: Donald H. Allen, Generai Manager,

The GUDEMAN Company of California, Inc. 9200 Exposition Blvd., Los Angeles 34, Calif. Branches: Terryville, Conn., Chelsea, Mich., Los Angeles, Sunnyvale, Monrovia, Calif.

(Continued from page 137.4)

ENGINEER, CHEMIST OR PHYSICIST

Opening for research and product development in the field of semi-conductors and semi-conductor devices. Prefer direct experience with growth of silicon crystals and use for transistors. Also opening for research and product development of thermistors. Direct experience required. With a midwest manufacturer of electrical components. Capable of taking complete responsibility. Excellent working conditions in new laboratory. Reply in detail giving experience, training and salary desired. Box 801.

£

RADIO ENGINEERS

Consulting engineering firm requires senior and junior engineers for permanent staff positions. Experience in design and development of military radio and radar systems required. Work is of un usual interest and offers sound opportunities for advancement, Location midwest. Salary open. Send summary of qualifications and background to Box 802,

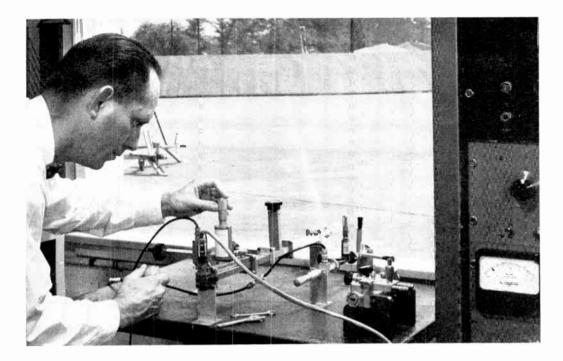
RADIO ENGINEER

As technical consultant to large national trade association in two-way mobile and microwave radio fields. Also act as contact man with FCC and other associations on technical matters and frequency allocations. Location: Washington, D.C, Send complete details in first application. Salary \$600 per month. Reply Box 803.

(Continued on page 141A)

Electrical Engineers and Physicists

- Radar Simulation
- Advanced Circuitry
- Analog Computors
- Ballistics
- Mapping
 Telemetering


Senior and Junior Engineers

Join a Firm ["] with a Future

Our future is bright ... we're small but we're growing. We offer you the opportunity to grow with us ... to gain individual recognition by working closely with technical management ... to advance rapidly. You will work and live in a delightful suburban community ... associate with other top-notch engineers, and with them, develop yourself by contact with a complete project, not just a segment of a project. If you are interested in allying your future with a firm with a future ... write;

Industrial Research Laboratories Division of Aeronca Manufacturing Corp. Dept. B-4, Hilltop & Frederick Rds. Baltimore 28, Maryland

WHEN WRITING TO ADVERTISFRS PLEASE MENTION - PROCEEDINGS OF THE L.R.E.

Research Specialist Edward Lovick measures reflection coefficient of dielectric materials in the K-band region. Lockheed is expanding K-band studies to meet future radar requirements.

Lockheed expands airborne antenna program

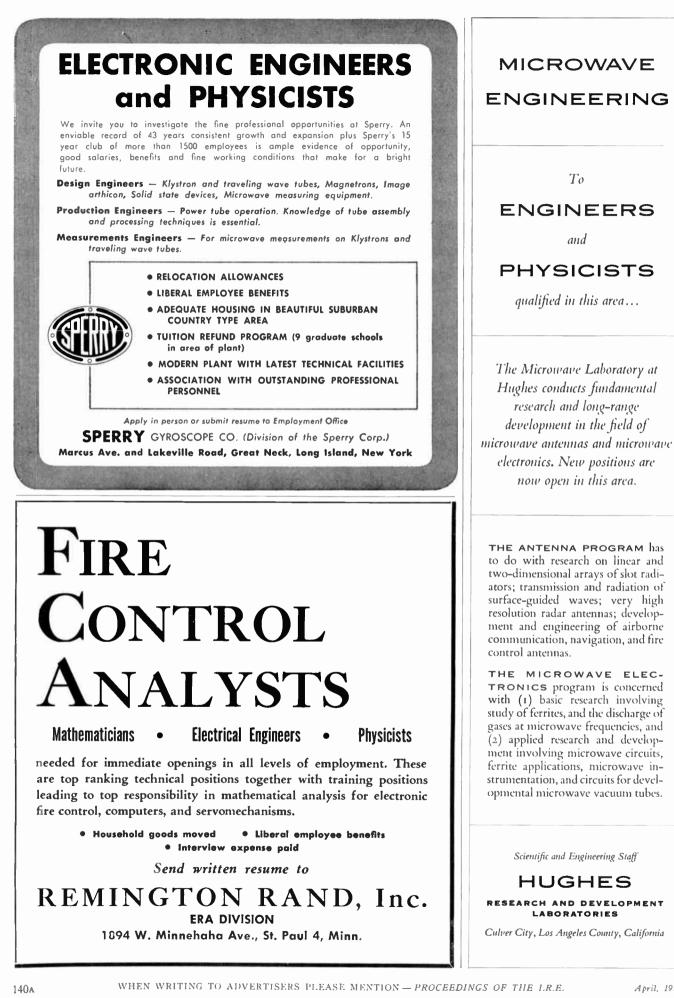
Lockheed's diversified expansion program is causing a major increase in airborne antenna research and development. Antenna design is one of the fastest growing areas at Lockheed, with research and development being applied to: extremely high-speed fighters, advanced jet trainers and jet transports; advanced versions of vertical-rising aircraft, turbo-prop transports, radar search planes (developed and produced exclusively by Lockheed) and a number of significant classified projects.

New positions at Lockheed

6

The program presents Physicists and Electronic Engineers qualified for airborne antenna design with a wide range of assignments in communication, navigation and microwaves.

In addition to the compensation of challenging work, Lockheed offers you increased salary rates now in effect; generous travel and moving allowances; an opportunity to enjoy Southern California life; and an extremely wide range of extra employe benefits which add approximately 14% to your salary in the form of insurance, retirement pension, etc.


Electronics Research Engineer Irving Alne records radiation antenna patterns. Twenty-two foot plastic tower in background eliminates ground reflections, approximates free space. Tower is of Lockheed design, as are pattern integrator, high gain amplifier, square root amplifier, logarithmic amplifier.

PROCEEDINGS OF THE L.R.E. April, 1955

E. O. Richter, Electronics Research department manager (seated), W. R. Martin, antenna laboratory group engineer (standing), and J. L. Rodgers, electronics research engineer, discuss design of corrugated surface antenna.

Lockheed AIRCRAFT CORPORATION BURBANK California

April. 1955

е,

(Continued from page 138A)

TELEVISION ENGINEERS

Television engineers for civilian production of both new color and conventional black and white sets. Development and manufacturing engineers are needed. Employer pays our fee and interviewing and relocation expenses. Write Guilford Personel, 308 American Bldg., Baltimore, Md.

PROFESSORS

The USAF Institute of Technology has several vacancies for qualified professors or engineers to teach on a graduate and undergraduate level in electrical engineering. Employment will be effected in accordance with Civil Service regulations. Grade levels range from GS-9, \$5,000 per annum to GS-13, \$8,360 per annum. Applications should be made by letter to the Dean, Resident College, USAF Institute of Technology, Wright-Paterson Air Force Base, Dayton, Ohio.

COMPONENTS APPLICATION ENGINEER

Wanted for an intriguing job. Essentials: knowledge of military electronics; an interest in a skill at writing technical information; freedom to travel; ability to communicate with other engineers; organizing power and punch. Opportunity: this job will make your reputation in an important phase of electronics. Location: New York City. Box 804.

(Continued on page 143A)

Radar, Sonar and Telemetering are available at Pacific Division, Bendix Aviation Corporation in North Hollywood, California. These positions, which are directly associated with our long-range projects for industry and for defense, are available at all levels.

Please address inquiries to: W. C. WALKER

Engineering Employment Manager

ENGINEERS Success Comes Early to Men of Talent

SVIVANIA

Here are challenging opportunities in a newly formed Division of a pioneer electronics firm for continued growth and responsible positions.

INVESTIGATE SYLVANIA'S OPPORTUNITIES NOW!

The following CAREER POSITIONS

are now open

BOSTON Engineering Laboratory

Majors in E.E., M.E., Math, Physics. Research & Development experience in -

Countermeasures Systems Analysis Transistor Applications Noise Studies Antenna Res. & Dev. Systems Development Mechanical Design Miniaturization Digital Computer circuits & systems Circuit Design Shock & Vibration Technical Writing Missile Analysis

BUFFALO Engineering

Majors in E.E., M.E., or Physics. Experience in Product Design and Advanced Development in-**Mechanical Design Shock & Vibration Subminiaturization Microwave Applications** Pulse Techniques Servo Mechanisms F. M. Techniques **Equipment Specifications Circuit Design Heat Transfer** Systems Development Components Mechanization

INTERVIEW and RELOCATION EXPENSES

will be paid by Sylvania Sylvania provides financial support for advanced

education as well as liberal insurance, pension and medical programs.

Please forward resume to: Professional Flacement Supervisor SYLVANIA ELECTRIC PRODUCTS INC. Thomas A. Tierney | Randall A. Kenyon 70 Forsyth Street | 175 Great Arrow Ave.

Boston, Mass. | Buffalo 7, N. Y.

SYLVANIA ELECTRIC PRODUCTS INC.

Your inquiries will be answered within two weeks.

141A

Creative Engineering Opportunities with Republic

Research

Electronics Engineer

Familiar with airborne electronic equipment (communications, navigation I.F.F., Radar and Autopilots), preferably with 2 to 4 years aircraft experience. Should be a college graduate. Duties will include system investigations, establishing test procedures and conducting environmental tests on airborne electronic equipment and components.

Computer Engineer

To supervise maintenance and to design special circuitry for computers. Experience with either analogue or digital computers required. College graduate preferred.

Senior Power Plant Engineer

Three to eight years aircraft power plant experience. Capable conducting power plant testing in conjunction with jet engine and induction system analysis. B.S. in M.E. or A.E.

Antenna Engineer

To conduct pattern studies, design prototype antennas and supervise flight tests of new antenna installations. College graduate in Physics, Math or E.E.

Electronic Instrumentation Engineer

Three to five years aircraft instrumentation experience required. Knowledge of transducers, amplifiers and recording equipment used in experimental research testing of hi-speed jet aircraft is essential. Knowledge of servo loop theory as applied to aircraft systems coupled with ability to properly instrument, record and analyze is desirable. Graduate with E.E. degree preferred.

Please address complete resume, outlining details of your technical background, to: **Mr. R. L. Bortner** Administrative Engineer

FARMINGDALE, LONG ISLAND, NEW YORK

Developers of the Corporal Guided Missile.

PROPULSION LABORATORY

INSTITUTE OF

Active in all phases of electronics and physics related to guided missiles and jet propulsion.

The nation's foremost guided-missile research and development facility, established in 1940, offers exceptional opportunity for engineers and research scientists in the fields of guidance and control, information theory, computers, electromechanical devices, instrumentation, and related aspects of electronic research. The Laboratory offers an ideal blend of academic and industrial environments and maintains a high level of technical competence Attractive salaries are offered.

A brochure describing opportunities and activities at the Laboratory will be sent upon request.

JET PROPULSION LABORATORY California Institute of Technology 4800 OAK GROYE DR., PASADENA 3, CALIFORNIA

142A

WHEN WRITING TO ADVERTISERS PLEASE MENTION - PROCEEDINGS OF THE L.R.E.

4

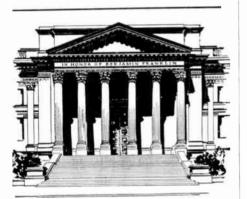
(Continued from page 141A)

TECHNICIAN

Position open. Community antenna system in growing community located in desirable valley southwest Oregon, needs technician capable adjusting RCA and Jerroll amplifier equipment. An excellent opportunity for the right man in an area with good schools, moderate climate, outstanding recreational inducements. Reply Umpqua TV, Inc. 1500 Harvard Ave., Rosehurg, Oregon, giving qualifications, experience, etc.

SOLID STATE METALLURGIST

Experience in s-miconductors preferred: Ph.D. level or equivalent. Salary will reflect applicant's ability, education and experience, and will satisfy the professional man. All replies confidential Reply: P.O. Box 407, Waltham 54, Mass.


METALLURGIST-MATERIAL MAN

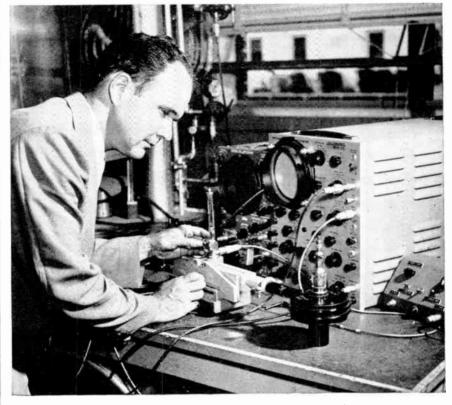
Experience in germanium essential, silicon experience in acdition preferred. Good salary for competent man. All replies confidential. Reply: P.O. Box 407, Waltham 54, Mass.

ENGINEERS

Engineers, interesting, diversified assignments on missile systems development, airborne digital computers, missiles stability and control, radar guidance. Sperry Gyroscope Co. (Division of the Sperry Corp.). Great Neck, Long Island, N.Y.

(Continued on page 145A)

ELECTRONIC ENGINEERS or PHYSICISTS


Experience in communications, navigation, and/or radar systems desirable. A minimum of three years' experience is required.

Desirable positions are open in the fields of:

- RADAR REFLECTION STUDIES
- Analytical and Experimental
- CIRCUIT DESIGN
- COMPUTER DESIGN

THE FRANKLIN INSTITUTE LABORATORIES for RESEARCH and DEVELOPMENT PHILA. 3, PA.

CHALLENGING CAREERS AT RAYTHEON

Measuring the impedance match of a backward wave oscillator, newest member of the Raytheon microwave tube family. Tube shown is an efficient, high power oscillator, electronically tunable over wide frequency range, and insensitive to load conditions.

How to make performance pay

As a result of Raytheon's microwave tube development program, tubes *now in production* include klystrons with wave lengths approaching 0.1 cm and magnetrons with power levels of 5 megawatts. These achievements are typical of the long-range program that has made Raytheon the world's largest manufacturer of magnetrons and klystrons,

When you join Raytheon you work in an atmosphere of progress. Openings now for engineers, scientists in many areas including:

microwave tubes • special purpose tubes • guided missiles transistors • diodes • receiving tubes radar • sonar • computers • ultrasonics

metallurgy • ceramics • communications systems servomechanisms • control equipment • solid state physics

Join a team where performance pays off. Please address inquiries to L. B. Landall, Professional Personnel Section.

RAYTHEON MANUFACTURING COMPANY 190 Willow St., Waltham 54, Mass. Plants also located in California and Illinois

To those engineers who prefer a variety of assignments on interesting, long-range projects, General Precision Laboratory offers an exceptional opportunity.

ENGINEERS

Electronics

Component Application

Analogue Computer

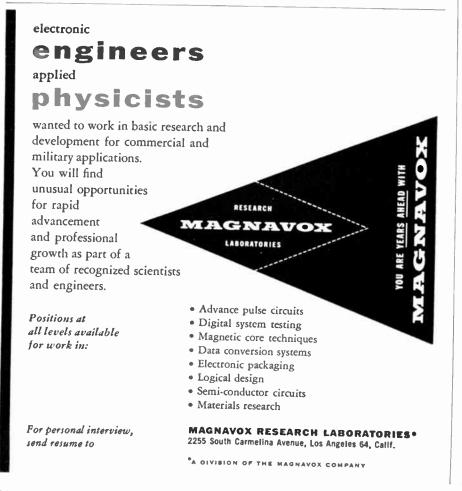
Environmental Test

> Senior Microwave Research

diversified parent organization-General Precision Equipment Corporation. The location in New York's well-known Westchester County provides an ideal living and working environment-beautiful surroundings, high standard of living, and

just one hour from New York City with its

many cultural and educational facilities.


This growing research laboratory combines the challenge of exploring new fields with the stability afforded by a large and

Men with interests in the above and related fields should submit resumes to Mr. H. F. Ware. Expenses will be paid for qualified applicants who come for interviews. We regret we can consider only U. S. citizens.

GENERAL PRECISION LABORATORY INCORPORATED

A subsidiary of General Precision Equipment Corporation

63 Bedford Road, Pleasantville, New York

ELECTRONIC ENGINEERS

You can work in the stimulating atmosphere of an applied research and development laboratory where ideas are important, initiative is encouraged and associates are competent. The project areas listed below are typical of our extensive electronics interest; a complete list would include almost every branch of modern electronics. We are interested in men of all levels with sound training, imagination and potential, regardless of their specialty.

> Communications Dynamic Control Systems Aircroft Instrumentation Rador

> > Computers

Electricol Meosurements

Varied Electronic Circuits

Servo-Mechanisms

Missile Guidonce

Microwaye

ENGINEER WRITER

Must be a competent Electronics Engineer with an avocation for technical writing. Writing will include specifications, test procedures, operating procedures and reports.

If you are interested in working at your maximum professional level in an organization that combines the most desirable elements of academic and industrial research and development, we invite you to communicate with our Employment Manager.

B.S. degree and experience required; advanced degree with experience to back it up is even better.

Hospitalization, surgery; group life, sickness, accident and retirement insurance is available with most of the cost paid by the Laboratory. Salaries are comparable with industry. Merit reviews occur semi-yearly assuring recognition of work well done and expediting advancement. Other personnel policies are very liberal, such as our self-sponsored internal research program. Graduate study at University of Buffalo is encouraged through generous tuition refund program.

CORNELL AERONAUTICAL LABORATORY Buffalo 21, New York wholly owned by Cornell University

WHEN WRITING TO ADVERTISERS PLEASE MENTION - PROCEEDINGS OF THE I.R.E.

(Continued from page 143A)

ELECTRONICS ENGINEER

The U. S. Naval Postgraduate School has need for an electronics engineer in the computer laboratory for work with analog and digital computers. Opportunity to learn programming and coding and continue graduate studies. Electronics experience and mathematical interest necessary. Annual salary \$5,060 to \$6,940. Reply: Dept. of Mathematics and Mechanics, USNPS, Monterey, Calif.

POWER SUPPLY ENGINEERS

Graduate engineers with experience on tubeless regulated power supplies and magnetic amplifiers are needed. Write company complete resume, or phone Philip Diamond, President, Perkin Engineering Corp., 345 Kansas Street, El Segundo, Calif., ORegon 8-7215.

Deadline for ordering 1955 IRE Convention Record (complete text of papers delivered at the 1955 IRE Convention in New York, published in 10 parts)

is

April 30, 1955 Act Now!

DU MONT Instrument Division

needs additional high calibre engineers for

Electronic Instrumentation Missile Work Test Equipment Timing and Pulse Circuits Video Circuits Electro-Mechanical Devices Recording Systems

for both commercial and government output

Cantact Mr. Gearge A. Kaye Emplayment Manager

ALLEN B. DU MONT LABORATORIES, INC. 35 Market Street East Paterson, New Jersey

interested in INERTIAL GUIDANCE?

Increasingly important to the guided missile program at Bell Aircraft, the development and broadened application of these and allied devices offers an opportunity and challenge to:

ELECTRONIC DEVELOPMENT ENGINEERS

including specialists in magnetic amplifiers, transistor circuits and airborne digital computer techniques to design and develop electronic components such as precise integrators, accelerometers, computers, feedback amplifiers, and instrument servos for use in inertial guidance.

SERVO SYSTEM ENGINEER

Analyze, design and develop complete systems for inertial guidance, with the help of a team of specialists.

SERVO VALVE DEVELOPMENT ENGINEERS

Design and develop high performance servo valves for autopilots in special aircraft, helicopters, and missiles.

To qualified personnel, these positions are well worth investigating. Get complete facts by writing (or sending resume') to: Manager, Engineering Personnel

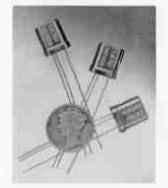
World Radio History

FOR ENGINEERS with heads in the clouds

Chances are the men we seek are not looking for just a job...they already have that along with a satisfactory income. Yet these men are not happy ...their vision clouded with lack of opportunity ...their creative effort diverted into detail and frustrations.

> To engineers and scientists with significant professional potential Farnsworth offers a future limited only by their own initiative . . . facilities, equipment and operational procedures designed to fit their special needs . . . living conditions in a community famed as America's happiest city . . . working with associates and problems that inspire creative accomplishment in these fields: Pulse Circuitry, Antennas, Information Theory, Receivers, Data Recording, Microwaves, Radar, Electronic Countermeasures, Missile Guidance and Control, Systems Test Equipment.

> > but who have their feet on the ground



Address Inquiries to FARNSWORTH ELECTRONICS CO., Fort Wayne, Indiana

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your I.RE. affiliation. (Continued from pag 121A)

Transistors

Raytheon Manufacturing Co., Receiving and Cathode-Ray Tube Operations, 55 Chapel St., Newton 58, Mass., announces three rf fusion-alloy germanium transistors, types CK760, CK761 and CK762 with alpha cutoff frequencies of 5, 10 and 20 mc, respectively. All are hermetically sealed and use a polarized lead arrangement for ease in socketing. Collector capacity for each type averages 14 $\mu\mu$ f, and extrinsic base resistance for each is about 75 ohms. Further information may be obtained from Technical Information Service, Ratheon.

(Continued on page 149A)

April, 1955

61 Shermon St.

NATIONAL COMPANY, INC.

Malden, Mass

ۋر

GINEE

Which

Matters

Most

The SIZE of the

COMPANY

The **SIZE** of the **OPPORTUNITY?**

Many engineers have found that the size of a company does not always determine the size of the opportu-

Consider the National Company, for example: solidly-established since 1914, recognized as a quality pioneer in the electronics industry,

we have remained comparatively small by choice, growing slowly

while consistently increasing our

Ours is an organization where the

accent has always been on individu-

ality, on encouragement of initia-

tive, on personal interest in each engineer's progress. In this kind of environment, opportunity is inher-

ent, and an engineer can do his

best work, knowing it will not go

National invites engineers who are "Tuned to Tomorrow" to apply

now for the following positions:

ELECTRONIC ENGINEERING

RESEARCH PHYSICS MECHANICAL ENGINEERING

MECHANICAL DESIGN

You will participate in the research,

nity it offers.

scope of operations.

unnoticed.

"MR. GCA RADAR" also holds prime contracts in highly diversified electronics fields

RESULT: Important, permanent career opportunities for electronics engineers and radar technical representatives.

Gilfillan has been so closely associated with GCA radar since its inception that the two names are practically synonymous.

Less well known is the fact that Gilfillan holds prime long-range research and development contracts in many electronics fields. This is due to the Gilfillan ability to approach a whole problem and arrive at a whole solution in the field of counter measures and guided missiles.

One that can now be announced is Gilfillan's prime contract for the complete guidance system of the Army's "Corporal." Others concern more advanced systems for the missiles of tomorrow. Still other classified projects deal with advanced and unsolved techniques for all branches of the military services.

This adds up to unusually advantageous career opportunities for electronics engineers in Southern California and good openings for radar technical representatives overseas. More details about this pioneer and progressive firm can convince you that your place in the sun is with Gilfillan.

WRITE: R.E.Bell, Gilfillan Bros. Dept. 45, 1815 Venice Blvd., Los Angeles, Calif. Personal interview will be arranged at a location convenient for you.

World Radio History

A New Role for the ELECTRONIC ENGINEER

Pioneering in Automatic Control

> he automation of industrial processes, the elimination of tedious paper work, the safeguarding of human lives and creative energy through split-second sensing, thinking and deciding machines that act with intelligence and discretion are part of the second industrial revolution that is changing the life and work patterns of us all.

ECA's engineers are creating the automatic industrial controls, the electronic business machines, the digital and analog computers that are bringing this revolution into focus day by day. Until they can design a machine that can do it better, these engineers are encouraged to bend their best thoughts to this work in an atmosphere that allows for professional freedom, where there are open channels for the propagation of new ideas, where work executed with imagination is remembered, where there is opportunity to grow in the profession.

As one of the leaders in this change, ECA is daily stretching out into new fields, and enlarging its interest in old ones. Nevertheless, the corporation rests on a sound base of well-established commercial products, which provide the ECA engineer with stability, and assure him of compensation on a high industrial pay scale.

There are now a few positions open for electronic engineers with a good theoretical background and a few years' experience. Address all inquiries to: Mr. W. F. Davis, Dept. 706.

ELECTRONICS CORPORATION OF AMERICA 77 Broadway

Cambridge 42, Mass.

Among important activities at Hughes is a program involving comprehensive testing and evaluation in connection with Hughes-developed radar fire control and navigation systems for latest type military all-weather interceptors,

Ŋ

System Test Engineers

There is need on our Staff for qualified engineers who thoroughly understand this field of operation, and who have sufficient analytical and theoretical ability to define needed tests; outline test specifications; assess data derived from such tests, and present an evaluation of performance in report form.

Engineers who qualify in this area should have 1 a basic interest in the system concept and over-all operation of test procedures; 2 experience in operation, maintenance, "debugging," development, and evaluation testing of electronic systems, and knowledge of laboratory and flight test procedures and equipment; 3 understanding of basic circuit applications at all frequencies; 4 initiative to secure supporting information from obscure sources.

RESEARCH AND DEVELOPMENT

SCIENTIFIC AND ENGINEERING STAFF

148a

WHEN WRITING TO ADVERTISERS PLEASE MENTION - PROCEEDINGS OF THE I.R.E.

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your I.R.E. affiliation. (Continued from page 146.4)

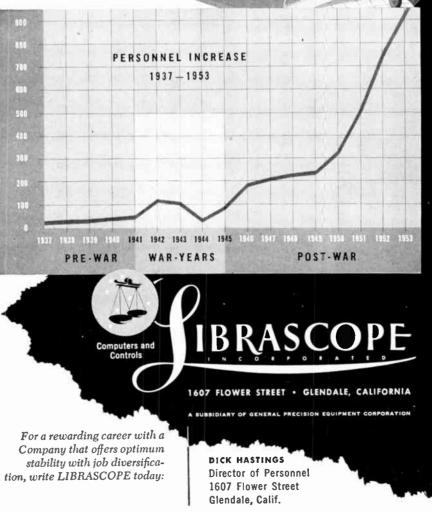
New Meters

The Herman H. Sticht Co., Inc., 27 Park Place, New York 7, N. Y., announces their new line of $3\frac{1}{2}$ inch flush panel mounting vibrating reel frequency meters, tradename, "STANDCO." These instruments are direct-reading frequency meters which are based on the principle of resonance. They consist of a number of steel reeds which are tuned to specific frequencies.

"Standco" panel frequency meters are made in 3 styles of cases, molded bakelite case, metal case and hermetically sealed case. They come with 5, 7, 9, 11, 21, 36 or 41 reeds for normal frequencies of 25, 50, 60 and 400 cps. Other ranges from 15–1500 cps can be supplied. Accuracy of calibration ± 0.5 per cent. Request bulleting 805 from the manufacturer.

Gams Appointed by N. J. Electronics

N. J. Electronics Corp., 345 Carnegie Ave., Kenilworth, N. J., announces the appointment of Theodore C. Gams as Director of Research. He will direct the company's new development program in the field of electronic instruments.


Mr. Gams has been a consultant in industrial electronics, instrumentation, and radar equipment design for the past eight years. Previously he was a lecturer in applied electronics at the Polytechnic Institute in Brooklyn from 1945 to 1952. (Continued on page 150A)

There must be a reason...

SINCE 1937, LIBRASCOPE, INC. of Glendale, California, has been offering careers of satisfaction to engineers. There are four major reasons why engineering personnel choose LIBRASCOPE. Foremost is the opportunity to participate in new and ever-changing problems. At LIBRASCOPE you can vary your experience and background and develop your career more quickly in the proper direction. Job security, good pay and full benefits are important reasons too, and, as the chart shows, greatest growth at LIBRASCOPE has been *since* the war-boom, pointing to a sound industrial future for the Company in the analogdigital computer and control instrumentation field.

Engineers — Physicists — Mathematicians for functional development and design of mechanical and/or electrical computers and for systems evaluation and analysis.

Electronic Engineers in the following: computers, analog or digital, magnetics, servos, packaging.

TI subminiature transformer .

News-New Products These manufacturers have invited PROCEEDINGS

readers to write for literature and further technical information. Please mention your I.R.E. affiliation. (Continued from page 149.4)

Hermetic-Seal Bushing

1

A new rivet-type, hermetic-seal bushing which meets MHL-T-27 specifications and conforms to the MIL-T-27 Twist Test, has been announced by the Heldor Bushing & Terminal Co., Inc., through its sales agent Heldor Manufacturing Corp., 238 Lewis St., Patterson, N. J.



Its insulation resistance, at 45 per cent relative humidity at seal level, is over 500,000 megohms. The manufacturers claim that these terminals can be supplied and installed at a lower price than solder seal terminals of equivalent rating. They further claim they will out-perform any terminal made today. These bushings are available in 5 standard styles, or can be modified to meet the customer's requirements

ENGINEERS ---

Save your firm thousands of dollars in searching for data on ELECTRONIC TEST EQUIPMENT of interest to USAF.

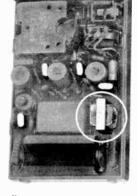
By special permission data sheets on Research supported and monitored under our WADC, ARDC contract now available to manufacturers at low cost.

• Order your copy of a three volume set containing illustrated descriptive data sheets on 870 items procured for use by the U.S. Air Force.

Contains 2400 (81/2 x 11") pages, recently brought up-to-date, mounted in 3 post expandable hard back binders.

 Price \$100 per set plus postage while supply lasts. Orders accompanied by check filled as received with postage paid.

> CARL L. FREDERICK AND ASSOCIATES Bethesda 14, Maryland


used in the first transistorized consumer product!

The world's smallest commercial radio receiver makes the most of miniaturization possibilities with a Texas Instruments subminiature transformer and four TI transistors. TI subminiature transformers, such as the one used in the Regency pocket radio, are adaptable to mass production dip-soldering assembly techniques.

Your most experienced source of supply for transistorized circuit components. Texas Instruments produces the most complete line of subminiature transformers, consisting of 32 standard models. Ranging from less than 3/8 inch cubed (one milliwatt output) to one inch cubed (200 milliwatts output in push-pull), TI subminiature transformers are precision units specifically designed for transistorized and other miniaturized circuits. TI engineers will design special models --- in virtually unlimited variety-to meet your exact requirements.

Don't delay your own product miniaturization program. Write today for Bulletin DL-C 424, describing TI subminiature transformers in detail.

Rear view of pocket radio with back removed, showing TI transformer and transistors in relation to other circuit components.

PROFESSIONAL ENGINEERING CARDS

ALFRED W. BARBER LABORATORIES

Specializing in the Communications Field and in Laboratory Equipment Offices, Laboratory and Model Shop at: 32-44 Francis Lewis Blvd., Filshing, L.1., N.Y. Telephone: Independence 3-3306

Edward J. Content, P.E. and Staff INTERNATIONAL RADIO CONSULTANTS Pan American Radio Bidg., 16 Rue Delacroix Morocco Specialized in the design, construction, foreign, Electronic, projects, and advising governments at Int'l Telecommunications Union.

CROSBY LABORATORIES, INC. MURRAY G. CROSBY & STAFF RADIO-ELECTRONIC RESEARCH DEVELOPMENT & ENGINEERING COMMUNICATIONS, FM & TV ROBBINS LANE HICKSVILLE, NEW YORK HICKSVILLE, 3-3191

TRANSISTOR ENGINEERING

S. Moskowitz D. D. Grieg N. J. Gottfried Product Transistorization. Complete service in consulting, research, development, and production on transistor circuitry, products and instrumentation.

tion on transistor strumentation. c/o Electronic Research Associates, Inc. 67 East Centre Street, Nutley, N.J. NUtley 2-5410

ELK ELECTRONIC LABORATORIES, INC.

Jack Rosenbaum Specializing in design and development of Test Equipment for the communications, radar and allied fields.

333 West 52nd St., New York 19, PL-7-0520

FREDERICK RESEARCH CORPORATION

Carl L. Frederick, D.Sc., President Bethesda 14, Maryland

OLiver 4-5897 Engineering Research and Development, Evaluation, Technical Writing and Publishing—Electronic and Electro-mechanical Systems, Test Equipment, Radio Interference, Instrumentation, Controls.

Specializing in Signal Corps Electronic Require ments, Technical Manuals, Tabular List of Parts, Drawings L. Gordon, Pres. 157 Broad Street Red Bank, New Jersey Red Bank 6-2743

HIGHLAND ENGINEERING CO. William R. Spittal & Staff Specialize in Design and Development of Transformers, Chokes, etc. for the Electronic, Industrial and Allied Fields. Westbury, L.I., N.Y. WEstbury 7-2933 HOGAN LABORATORIES, INC. John V. L. Hogan, Pres. APPLIED RESEARCH, DEVELOPMENT, ENGINEERING Est. 1929. Electronics, Optics, Mechanisms. Facsimile Communication, Digital Computers, Electro-sensitive recording media, Instrumentation.

155 Perry Street, New York 14 CHelsea 2-7855

INTERFERENCE TESTING AND RESEARCH LABORATORY, INC. Rexford Daniels E. T. Buxton P. B. Wilson 150 Causeway Street, Boston 14, Mass. Lafayette 3-7826 Specializing in the design and testing of equipment to meet Military and FCC specifications for radio interference.

LEONARD R. KAHN

Consultant in Communications and Electronics Single-Sideband and Frequency-Shift Systems Diversity Reception - Modulation Theory Television Systems

Elizabeth Bldg., 22 Pine St., Freeport, L.I., N.Y. Freeport 9-8800

George W. Baker, Pres. KIP ELECTRONICS CORPORATION

Electron tube consulting and design. Research and development and preparation of prototype electron tubes. 29 Holly Place, Stamford, Connecticut Phone 48-5328

Harry W. Houck Martial A. Honnell John M. van Beuren

RESEARCH ENGINEERS Specialists in the Design and Development of Electronic Test Instruments c/o MEASUREMENTS CORP. BOONTON, N.J.

L. J. CASTRIOTA S. W. ROSENTHAL Microwave Consultants Radio Frequency and Microwase Components Cable—Waveguide—Coax Dielectric Evaluation Telephone BOulevard 3:2096 G.P.O. Box 844 Brooklyn 1, N.Y.

Olympic Radio & Television, Inc. Radio-Electronics Consulting-Research-Development Environmental Tests Performed for the Industry B. Parzen - E. Bradburd Olympic Building, Long Island City 1, N.Y. STillwell 4-6961

Deadline for ordering 1955 IRE Convention Record (complete text of papers delivered at the 1955 IRE Convention in New York, published in 10 parts) is April 30, 1955

Act Now!

EVERT M. OSTLUND Consulting Radio Engineer Radio-Microwave Communication-Control Systems and Equipment Planning, Research, Development ANDOVER, NEW JERSEY Tel.: Lake Mohawk 8635

N. G. Parke S. J. O'Neil **Parke Mathematical Laboratories, Inc.** Specialists in engineering analysis and computation in the fields of electronics and aeronautics. Independence Court © Concord, Massachusetts Telephone Concord 827

PENN-EAST ENGINEERING CORPORATION

(Formerly-Atlantic Electronics Corp. of Port Washington, N.Y.) Designers of Industrial Controls Gereid L. Tawney, Robert R. Sparacino, Warren M. Janes, Arthur J. Pretty, Richard C. Tawney P.O. Box 240, Telephone Kutztown 2675

PICKARD AND BURNS, INC.

Consulting Electronic Engineers Analysis and Evaluation of Radio Systems Research, Development, Design and Production of Special Electronic Equipment and Antennas. 240 Highland Ave. Needham 94, Mass.

SIDNEY PICKLES

Consulting Radio Engineer Antennas & Transmission Lines

Phone: Monterey 5-3379

Post Office Box 643 MONTEREY, CALIFORNIA

RADIO SONIC CORP.

ENGINEERS—QUALITY ASSURANCE Testing, Processing Electron Tubes, Semicenduoters, Medels, Production Test Equipment, Antennas, Analyzers, Power Supplies, Ultrasonics, Advanced Development G. EMERSON PRAY, PRESIDENT 421 W. 54th St., New York 19, N.Y. PLaza 7-2798

Paul Rosenberg Associates Consulting Physicists 100 Stevens ave • Mount vernon, New York Cable: Physicist Mount vernon 7-8040

M. D. Ercolino and Associates ANTENNA CONSULTANTS Research and Development Communication Arrays Commercial and Amateur FM and TV c/o TELREX, INC. ASBURY PARK, N.J. Phone Prospect 5-7252

WHEELER LABORATORIES, INC. Rodio ond Electronics Consulting — Research — Development R-F Circuits — Lines — Antennos Microwove Components—Test Equipment Horold A. Wheeler ond Engineering Stoff Great Neck, N.Y. HUnter 2-7876

MMUNICATIONS EQUIPMENT

MICROWAVE COMPONENTS

10 CM.-RG48/U Waveguide
 plungers
 \$12.50

 McNALLY
 KLYSTRON
 CAVITIES
 for 707B or 207B or 207B or 207B or 35.400

 AS14A
 AP-10
 CM
 Pick up
 Dipole with first
 HOLMDELL-TO-TYPE "N" Male Adapters, W. E. DIG7284 I.F. AMP. STRIP: 30 MC, 30 d.b. gain, 4 Band-width, uses 6AC7's-with video deto BEACON ANTENNA, AS31/APN-7 in Lucite Term vivil food \$2.75 MC \$17.50

 TTENNA
 S22.50

 ANTENNA
 AT49A/APR: Broadband Conical, 300 3300 MC Type 'N'' Feed

 S00
 S00 WC Type 'N'' Feed

 Feed
 S12.50

 "E" PLANE BENDS, 90 deg. less flanges
 \$7.50

 \$22.50

3 CM.-RG 52/U Waveguide 3CM. DIPOLE FEED, 15" L, for APS-15...514.50 MITRED ELBDW, Cast aluminum, 14"x%" W.G. W.E. FINDES, "E" Plane E. T. MAYEGUIDE SECTION, 1 fr. long, Wilh UG 40 ICG 29 famages, Attenuation Is less than 0.1 db, at 9975 me, and VSWR is less than 1.02 1.02 CM ANTENNA ASSEMBLY: Uses 177 parab-oloid dish, operating from 24 ede motor. Beam pattern: 5 deg. in both Azhnuth and elevation, Sector Scan: over 160 deg. at 35 scans per minute Elevation Scan: over 2 deg. Tilt: Over 24 deg \$7.53 3 Sector Scan: over 160 deg. at 35 scans per minute Elevation Scan: over 2 deg. Tilt. Over 24 deg.
 Otoss-Guide Directional Coupler, UG-40 output flauge. Main Guide is 6" Long, with 50 Deg. "E" Plane bend at one end, and is fitted with Std. 17G 39/UG 40 flanges. Coupling flauge. 29 dh Nominal S22.50
 RG52/U Waveuide in 5" lengths. fitted with 143 as flanges to 1G10, Silver plated ...per length 55.00
 Buikhead Feed-thru Assembly. \$15.00
 Directional Coupler, IC: he to the section with 01 deg. \$15.00
 Pressure Gauge Section with 15 the gauge. \$15.00
 Directional Coupler, IC: he to the section \$15.00
 Pressure Gauge Section with 15 the gauge. \$15.00
 Directional Coupler. IC: he to Take off 20dh \$17.50
 Magnetion. \$24.55
 Rotary joint clube to choke with deck mounting. \$15.60
 Pressure Gauge Scetion with 15 the gauge. \$10.00
 Directional Coupler. IC: he to Take off 20dh \$17.50
 MAGNET AND STABILIZER CAVITY for 2.341
 Manetion. \$24.55
 ADAPTER, wavenuide to type "N". UG 81-U, P'A and \$12.75.75
 ADAPTER, UG-163/U round cover to special BTL, Flange for TS 45, etc. \$2.50

PULSE NETWORKS

DCR. 9000 Vac test E. 6E3-.5-2000 50 P2T: 6 KV. 'E' Circuit 0.5 /2000 PPS/50 ohms/2 sections G.E. \$7.50

PULSE TRANSFORMERS

K .2745 weil is out in any isso out in an argierron
 \$32.50
 condary 14/11.5 KV-1000 oims Z. Pulse Length: 1
 usec @ 600 PPS. Pk. Power Out: 200/130 KW.
 Bitlar: 1.3 Anne. Fitted with magnetron weil \$29.50

I. F. AMPLIFIER STRIPS

DELAY NETWORKS

 DLLAY NEIWORKS

 D-168184:0.5 tasec, up to 2000 PPN, 1800 ohms ...54.00

 D-170199:0.257.57.57.01856; 8 KV, 50 ohms ...58.50

 D-165397 Delas 1.25 tasec

 D-168184:0.25 tasec

 D-165397 Delas 1.25 tasec

 D-168184:0.25 tasec

 D-165397 Delas 1.25 tasec

 D-165397 Delas 1.25 tasec

 D-168135. Delay of 0.5 usec; 72 ohms with 4 Mt

 Handwidth
 54.75

 D-168135. Delay 0.5 usec; 555 ohms, 5mc, BW, \$1.50

 D-172578; 416 ohms imp. 0.22 usec; Delay, ..., \$4.75

 D-172578; 416 ohms imp. 0.32 usec; Delations at \$1.955 kc;

 Wher semal current
 10ma, is interrupted. Has built-in temperature central for stability; Assembled in stable ..., \$4.35

MAGNETRONS

Туре	Peak Range (MC)		ower Duty (W) Ratio	Price
2J21A	3345-9405	50		\$ 8.75
2J22	3267-3333	265		7.50
2126	2992-3019	275	.002	7.49
2127	2965-2992	275	.002	13.50
2129	2914-2939	275	012	44,95
2131	2820-2860	285	.002	21.50
2J32	2780-2820	285	.002	21.50
2138*	3249-3263	5	.002	8.50
2J39*	3267-3333	8,7		8.50
2148	9310-9320	50	.001	21.50
2149	9000-9160	50	.001	54.50
2J56*	9215-9275	59	.011	132,59
2162†	2914-3010	35	.002	32,50
3131	24-27 KMC	50	.001	85 99
4J34	2740-2780	900	.001	87.50
4J38	3550-3600	750	.001	125.00
4142†	670-730	30	.003	120.00
5J23	1044-1056	475	.001	49.50
700B	690-700	40	.002	22.50
700 D	710-720	40	.002	39.75
706 E Y	3038-3069	200	.001	32.50
706CY	2976-3007	200	.001	32.50
OK2591	2700-2900	800	.001	249,50
Q K 60†*	2840-3005	.100	ĊW	65.00
QK61+*	2975-3170	.100	čŵ	65.00
Q K 62†*	3135-3350	100	čŵ	
*-Pack	aged with magne		0.4	65.00
+	bla	· · · ·		

+-Tunable over Indicated range.

٠

K \$9685 70G30G1

TEST EQUIPMENT • L&N #1553 RATIO BOXES \$275 ESTERLINE-ANGUS RECORDING

MILLIAMMETERS, O-1 MA \$155

400 CYCLE TRANSFORMERS (All Primaries 115V, 400 Cycles) K\$13101

K S13104 K S9615 K S9318 K S9608 352-7102 M-7472426 352-7039 702724 K 59581 K S9607 352-7273 352-7070 352-7196 352-7176 RA6400-1 901692 901699-501 901698-501 Ux8855C RA6405-1 T-48852 352-7098 K\$9336 5A 6.3V/2.7A. 6.3V/.66A. 6.3VCT/21A 27V/4.3A. 63V/2.9A. 1.25V/02A 650VCT/50MA. 6.3VCT/2A, 5VCT/ 3.95 4.25 2.95 M-7474319 52C080 3.75 2A 400VCT/35MA, 6.4V/2.5A, 6.4V/ 32332 400VCT/35MA. 6.4V/2.5A. 6.4V/ 15A 1150-0-1150V 2MA 63V/5.10006 KVA 6.3V/5.1A. 6.3VCT/6.5A. 2.5V/3.5A 2.5/3.5A 592VCT/18MA. 6.3V/8.1A, 5V/2A 6.4/7.5A. 6.4V/3.8A. 6.4/2.5A 500VCT/36MA 3.85 68G631 2.75 80G198 302433A 4.85 KS 9445

	DY	NAN	NOTO	۲S	
	INP	UT	оит	PUT	
TYPE	VOLTS	AMPS	VOLTS	AMPS	Price
35X.059	19	3.8	405	.095	\$4.35
POSX-15	14	2.8	220	.08	8.95
DA-7A	28	27	1100	.400	15.00
DM 33A	28	7	540	.250	3.95
23350	27	1.75	285	.075	3.95
B-19	12	9.4	275	.110	6.95
			500	.050	0100
DA-3A*	28	10	300	.260	6.95
			150	.010	0100
			14.5	5.	
PE 73 CM	28	19	1000	.350	17.50
BD 69‡	14	2.8	220	.08	8.95
DAG-33A	18	3.2	450	.06	2.50
DM 25†	12	2.3	250	.05	6.95
BDAR 93	28	3.25	375	.150	6.95
t Less Fi Used. I	Excellent.		* Replace	ement for	PE 94,
PE 94-, B	krand Ne	w			5.95

INVERTERS

 INVERTERS

 Stort 21 vdc. 62 A. Output: 115 V. 800 cy. 7A.

 1 phase. Used. excellent
 518.75

 PE-218H: Input: 25/28 vdc. 92 amp. Output: 115 V 380
 532.50

 PE206: Input: 28 vdc. 38 amps. Output: 80 V 800 cy.
 532.50

 PE206: Input: 28 vdc. 38 amps. Output: 80 V 800 cy.
 500 volt-amp. Dim. 13 x 5/2 x 10/9. New ... \$22.50

 EICOR—ML 3011-5. Input: 13.75 V; 18.4A. Dutput: 115 VAC.
 559

 PU 7/AP. Input: 28 vdc/160A. Output: 115 VAC.
 559

 PU 7/AP. Input: 28 vdc/160A. Output: 115 VAC.
 570

 Used, Exc.
 \$75

MICROWAVE ANTENNAS

POWER TRANSFORMER	S
COMBINATION-115V/60 ~ IN	IPUT
CT-133 150-C-150V/65MA, 6.3V/2.5A, 6.	3V/
0.6A	\$1.79
CT-127 900V/25MA PK. 5V/2A. 2V/7.5A CT-006 350-0-350V/120MA, 5VCT/3A.	2.79
2.5VCT/12.5A. 2.5VCT/3.5A	4.39
CI-965 78V/0.6A, 6.3V/2A	1.95
CI-004 350-0-350V/90MA 5VCT/2A	
2.5VCT/12.5A CT-002 350-0-350V/50MA, 5VCT/2A, 2.5V	4.60
/7.5A	/CT 3.65
CT-479 7000V/.018A (2 X Ind, V, Test) 2	5V
5A/17.800 V. Test	03 00
UI-013 450-0-450V @ 200MA, 10V/1.5A, 2	.5V
3.5A 5V/3A	6.05
	2.75
	4.25
CT-929 4200V/.001A, 2.5V/2A, 6.3VCT/.6A	5.35
	-
PLATE—115V/60 \sim INPUT	
PT 07 400VCT/4.0 AMPS For RA43	\$17.50
PT 034 125V 15MA	1.15

F1 U34 123V 15MA	1.15
PT 157 660-0-660VAC (500VDC) or 550-0-	
550VAC (400VDC) at 250 MADC	8.70
PT 167 1400-0-1400 VAC (300MADC) or 1175-	
0-1175 VAC (1000VDC) at 308 MADC 2	5.50
PT 168 2100-0-2100 VAC (1750VDC) or 1800-	
0-1800 VAC (1500VDC) at 300 MADC 3	3.00
PI 371 210-0-210V at 2.12 Amp.	9.15
P1 133 3140/1570V, 2,36KVA	5.00
PI 801 22.000V/234 MA., 5.35 KVA 13	5.00
PI 521 7500V .06A, Half-Wave	5 00
PT 913 2500V/12 MA H'SLD	4 95
PT 12A 280VCT/1.2A	2 06
	2.15

... 2.15 FILAMENT-115V/60 \sim INPUT FT-140 SVCT @ 10A 25 KV 7 654 17.50 FT-157 4V/16A, 2.5V/2.75A 2.95 FT-101 6V/25A .79 FT-924 5.25A/21A, 2x7.75V/6.5A .14.95

THERMISTORS

D-167013 Disk Type Don, 305 Dinns @ 100°F. 4220 Dinns @ 80°F. 4220 Dinns @ 80°F. 4220 Dinns @ 80°F. 1640 Dinns @ 120°F. \$1.00

MAIL ORDERS PROMPTLY FILLED. ALL PRICES F.O.B. NEW YORK CITY. 25% DEPOSIT WITH ORDER. BALANCE C.O.D. RATED CONCERNS SEND P. O.

131 Liberty St., New York 7, N. Y.

Dept I-4 Chas. Rosen Phone: Digby 9-4124

5.39 4.79 2.65

World Radio History

IRE DIRECTORY QUESTIONNAIRE

Send to:	: Industry Research Div., Institute of Radio Engineers 1475 Broadway, 22nd Floor, New York 36, N.Y.	Date
Firm Na	me:	Phone No.
Address:	City	Zone State
Name of	f: Chief Engineer	
	Advertising Manager	
3-55	Purchasing Agent	

Method to be used by firms to indicate products manufactured or services rendered. Please read the entire questionnaire. Products are grouped beneath basic headings to facilitate location.

Do not check products that you do not manufacture for sale to the industry. Components manufactured for incorporation in your own end products (and not intended for sale) should not be listed, as this will only result in annoyance to you and the firms who make inquiries concerning product availability. If, after a thorough examination of this

form, you do not find a listing for your products, a short description and litera-

ture or catalogs that you have should be attached and returned to us.

After checking off the products, please fill in full data on your firm name and address, and mail the entire form to: Frank MacAloon, Industry Research Div., Institute of Radio Engineers, 1475 Broadway, New York 36, N.Y.

Industry Research Division Information Service

07 Emergency Communica-

tions Equipment.

Despatching equipment

08 Facsimile Equipment.

09 Industrial Sound Systems.

10 🗌 Installation & rental contractors

□ Pleasure craft radiotelephones

15 🔲 Shipborne communications equip.

Central station receivers

Central station transmitters

05 □ Receiving equipment 10 □ Sensitized paper 15 □ Transmitting equipment

10 Marine Equipment.

11 Mobile Equipment.

Citizen radio

Modulation

20 TVideo monitors

ceivers.

15 🗌 Radar

05 🗆 Microwave relay 10 Desition indicators

Mobile receivers

Mobile transmitters

12 Monitor Equipment.

13 Radar-Microwave Re-

30 🗆 Selective calling equipment

Remote control monitors

05
Complete systems

05
Contract installers

10

05 🗆

15 🗆

20

25 🗆

05 🔲 Frequency

10

10

 $\begin{array}{c|c} 10 & \square \\ 15 & \square \end{array}$

10 🔲 Walkie-talkies

1. Communications

Audio-Broadcast Microwave-Radar

01 Aircraft & Airport Equip.

- 05 🗌 Airborne receivers
- 10 Airborne transmitters
- 15 Airport receivers 20 Airport transmitters
- 25 ☐ GCA equipment, etc. 30 ☐ VOR equip., complete

02 Amateur Equipment.

- 05 🗌 Receiving equipment
- 10 Transmitters

03 Antennas & Accessories.

- 05 🗆 AM broadcast transmitting
- 10 All-wave receiving
- 15 🔲 Amateur antennas, accessories &
- rotators 20 🗆 Dummy
- 25 ☐ FM broadcast transmitting 30 ☐ Microwave
- 35 🗌 Mobile
- Radar reflectors 40
- 45 🗍 Rotators
- 50 □ Supporting towers
- 55
 TV broadcast transmitting 60 TV multiple systems 65 Tower lighting equipment

- 70 🔲 Tower erection & maintenance service

04 Broadcast Receivers.

- 05 🗌 AM broadcast
- 10 🗌 AM shortwave
- 15 🗍 FM broadcast
- 20 □ TV broadcast B & W 25 □ TV broadcast Color
- 30 🗌 TV closed circuit

05 Broadcast Transmitters.

- 05 🗌 AM broadcast
- 10 I FM broadcast
- 15 🗌 Relay broadcast & STL equip. 20 🔲 TV broadcast
- 25
 TV closed circuit

06 Carrier Current Equipment

- 05 □ Complete terminal equip. 10 □ Installation & maintenance

PROCEEDINGS OF THE I.R.E.

- 15 🗌 Repeat & relay equip.
- 05 🗌 Microwave

April, 1955

- 10 🗌 Microwave relay
 - 15 🔲 Radar

15 Recording Equipment.

- Disk recorders 05
- 10 Embossing types of recorders
- 15 🗍 Magnetic tape recorders

World Radio History

14 Radar-Microwave

Transmitters.

- 20 🗌 Magnetic wire recorders

16 Studio Equipment.

- 05 🗌 Consoles & speech input equip.
- TV cameras TV camera control equipment 10
- 15 🗆
- 20 TV film projectors 25 TV studio lighting equipment TV film projectors
- 30 🔲 Turntables

17 Telegraph & Teleprinter Equipment.

- Frequency shift converters
- 10 🗌 Frequency shift keyers
- 15 🗖 Receivers
- 20 Transmitters

2. Components

18 Amplifiers.

- 05 🗌 DC amplifiers
- 10 Decade
- Dynamic noise suppressors 15
- 20 🗆 Geophysical
- 25 Hearing Aid
- 30 🗌 High fidelity
- IF amplifiers
- 35 □ lF amplifie 40 □ Inter-coms
- Magnetic
- 45 □ 50 □ Microwave
- 55 Phono Pre-Amplifiers
- 60 Power
- 65 🗌 Public Address
- 70 **RF** amplifiers
- 75 Recording
- 80 🗆 Servo
- 85 Strain gage
- TV amplifiers TV boosters 88 🗆

19 Antenna Accessories.

Lightning arrestors

Mounting hardware

90

05 🗌 Feeder line

20 Mounting ha 25 Small towers

05 🗌 Decade

20 Attenuators.

Microwave

10 🗌 Impedance matching

20 🗌 Volume controlling

153A

10

15

15

Insulators

92 🗍 Transistor 94 □ Ultrasonic 96 □ Wideband 94

21 Batteries.

- 05 🗌 Dry batteries
- 10 Mercury batteries
- 15 Storage batteries lead-acid 20 Storage batteries nickel-all Storage batteries - nickel-alkali
- 25 🔲 Storage batteries silver-zinc

22 Blowers & Cooling Fans.

- 05 🗌 Air wheels & housings
- 10 Complete blower assemblies
- 15 🔲 Fan blades

23 Cabinets, Consoles, & Enclosures.

- 05 Assembly enclosures
- 10 Metal cabinets
- 15 🗍 Metal relay rack panels
- 20 Moulded plastic cabinets
- 25 🗍 Wood cabinets

24 Capacitors: Fixed.

- 05 🗌 Ceramic 10 🗌 Decade
- 15 🗌 Electrolytic
- 20 ☐ Feed through 25 ☐ Fixed composition 30
- 30 Gas filled 35 Glass dielectric
- 10 🗌 High voltage 15 🗌 Metallized pa Metallized paper
- Mica
- 50 🔲 55 🗌 Oil filled
- 60 Deper 65 Plastic insulated 70 Power factor

- 75 Precision air 80 Printed circuit
- 85
 Pulse forming networks
- Silvered mica
- 90 🗌 Silvered 95 🗌 Tantalur 98 🗌 Vacuum Tantalum

25 Capacitors: Variable.

- 05 🗌 Neutralizing
- 10 🗌 Precision variable
- 15 🔲 20 🔲 Temperature compensating
- Trimmers, air 25
- Trimmers, ceramic
- 25 □ Trimmers, ceramic 30 □ Trimmers, glass 35 □ Trimmers, vacuum
- 40 🗍 Tuning

26 Chassis & Racks.

- 05 🗌 Aluminum chassis
- 10 🗌 Chassis slides
- 15 🗌 Racks, aging
- 20 🗌 Relay racks & cabinets 25 🔲 Steel chassis

27 Coils.

- 05
 □
 Audio frequency chokes

 10
 □
 Deflection yokes

 15
 □
 Filter

 20
 □
 Flyback

 25
 □
 Focusing coils

 30
 □
 Power chokes

 25
 □
 RE & He chokes

- 35 □ RF & IF chokes 40 □ Toroids 45 □ Tuning

28 Connectors.

- 05 🔲 AN & MIL standard types 10 🗌 Co-axial
- 15 Hermetically sealed 20 Microphone

154A

- 35 🗌 Slip ring and commutating
- connectors 40 🗌 Sub-miniature
- 45 🗌 Waterproof

29 Converters.

- 05 🗌 AC to DC 10 DC to AC

- 15 🗌 Inverters 20 🗌 Rotary 25 🗌 Vibrators 30 🗍 Voltage
- 30 Cores.

05 🗌

- Ceramic 10 🗌 Ferrites
- 15 Powdered metal
- Powdered me
 Tape wound 20
- 25 🗌 Toroids

31 Crystals & Accessories.

25 □ Dynamic 30 □ Velocity 35 □ Microphone stands

41 Motors & Motor-

05 🗌 Blower & fan motors

Frequency changers

Synchronous motors

12 Phonographs, Pick-ups,

Record Changers, etc.

Motor-generators

Generators.

Dynamotors

Phonograph 30 Servo 35 Synchronous m 10 Timing motors

Pick-ups—crystal

Playback arms

equipment

44 Power Supplies.

engine driven

45 Printed Circuits.

chassis

05 🗌 Blank disks

base

base

17 Rectifiers.

10 🗌 Germanium

25 🔲 Silicon

19 Relays.

05 🗌 Co-axial

15 🗌 Differential

10

Copper oxide

05 Grid controlled 10 Mercury vapor 15 Receiving 20 Transmitting

D'Arsonval

20 🗌 Frequency selective

Selenium diodes

Selenium stacks

18 Rectifiers, Vacuum Tube.

April, 1955

05

15 🔲 20 🗌

10 Cutting heads 15 Cutting styli

erase heads

05 🗌 High voltage, (kilovolt)

10 [] Klystron
15 [] Low voltage
20 [] Medium voltage
25 [] Microwave
30 [] Primary power sources, fuel-

35
Transistor 40 Voltage regulated power sources

05 \square Etched or screened prewired

10 🗌 Printed electronic assemblies

16 Recording Accessories.

15 🔲 Solder dipped prewired chassis

20 🗌 Magnetic recording, playback &

25
Magnetic recording tape-acetate

30 🗌 Magnetic recording tape-paper

35 ☐ Magnetic recording wire
40 ☐ Stylus resharpening
45 ☐ Suction pumps & equipment
50 ☐ Tape splicing equipment

10 🗌 Incandescen 15 🗌 Neon lights

Pick-ups—dynamic Pick-ups—magnetic

Pick-ups-reluctance

25 Introports arms
30 Record changers
35 Record players
40 Styli-diamond
45 Styli-metallic
50 Styli-sapphire
55 Tape phonographs & playback

13 Pilot Lights & Assemblies.

05 🔲 Brackets, jewels, mounts, sockets

Incandescent lights

10 🗆 15 🗌

20 🗍

25

05

10 15

20

25

- 05
 Crystal holders
- 10 Crystal ovens
- 15 🔲 Germanium
- 20
 Oscillating quartz crystals 25 🔲 Piezo electric

32 Delay Lines.

- 05 Decade 10 Distributed constant 15 Distributed perameter
- 20 Lumped constant
- 25 🔲 Ultrasonic

33 Equalizers.

- 05 🗌 Dialogue equalizers
- 10 🗌 Line equalizers 15 🗌 Magnetic recording
- Recording diameter equalizers

34 Filters.

05 🗌 Antenna

30 🗌 Microwaye

05 🔲 Fuses

05 🔲 Jacks

05

05

10

20 🗆 25 🗖

30 🗍 35 🗍 30

10

05 🗌 Carbon

15 🗌 Conden 20 🗌 Crystal Condenser

Ceramic

10 Jack fields 15 Patch cord 20 Plugs

phones.

38 Magnets. 05 🗌 Electro 10 🗌 Permanent

□ Ammeters

Patch cords

10 🗌 Fuse holders

35 ☐ RF noise reduction 40 ☐ TV noise reduction 45 ☐ UHF & VHF

45 🔲 UHF & VHF 50 🗌 Variable band pass

- Band pass & band rejection 10
- 15 High pass

35 Fuses & Fuse Holders.

37 Loudspeakers & Head-

10 ☐ Headphones
15 ☐ High-frequency loudspeakers
20 ☐ Low-frequency loudspeakers
25 ☐ Wide-range, 2 & 3 way systems

39 Meters (Indicating

Instruments).

Elapsed time

15 Frequency indicating

Galvanometers Micro-ammeters

Milli-animeters

40 ☐ Volume level, (DB & VU) 45 ☐ Wattmeters & watt hour meters

40 Microphones & Stands.

WHEN WRITING TO ADVERTISERS PLEASE MENTION - PROCEEDINGS OF THE L.R.E.

World Radio History

Voltmeters

Commercial grade loudspeakers

36 Jacks, Jack Fields & Plugs.

Loudspeaker dividing networks 20 25Mechanical

- 25 ☐ Hermetically sealed 30 ☐ Impulse 35 ☐ Keying 40 ☐ Latching 45 ☐ Mercury contact 50 ☐ Pelazier
- 50
 - Polarized
 Power control & overload
- 55
- 60 Sensitive 65 Stepping 70 Sub-miniature 75 Telephone 80 Time delay

50 Resistors.

- 05 🗌 Carbon fixed, moulded
- 10 Carbon, variable 15 Deposited carbon
- Potentiometers
 Precision film 20 Potentiometers 25
- 30
 Printed circuit 35
 Rheostats

- 40 ☐ Thermistors 45 ☐ Vacuum sealed 50 ☐ Very high megohm
- 55 🗌 Wirewound, fixed 60 🔲 Wirewound, variable
- 65 🗌 Wirewound, precision

51 Semi-Conductors.

- 05
 Germanium diodes
 10
 Transistors, junction
- 15 🔲 Transistors, point contact

52 Sockets.

- 05
 Capacitor, plug-in sockets 10
 Crystal

- 15 Diode 20 Receiving tube

- 25 □ Transistor 20 □ Transmitting tube 35 □ UL approved industrial types

53 Switches & Contacts.

05 Band 10 Coaxial 15 Contacts 20 Foot 25 Key 30 Mercury 35 Momentary contact 10 Dawar 35 ☐ Momentary contact
40 ☐ Power
45 ☐ Precision snap-acting
50 ☐ Rotary
55 ☐ Side
60 ☐ Solenoids
65 ☐ Spring-return
70 ☐ Tap
75 ☐ Thermally operated
80 ☐ Toggle & push button

54 Thermostats.

05 🗌 Bellows 10
Bimetal
15 Hermetically sealed

2

55 Transformers.

05 ☐ Andio 10 ☐ Current limiting 15 ☐ 400 cps 20 ☐ Geophysical 25 🗍 Hermetically sealed 30 Horizontal ontput & flyback 35 Intermediate frequency 40 Isolation 15 Power components 50 Precision matched 55 Pulse 60 Radio Frequency 65 🗌 Saturable TV deflection TV impedance matching 7075 80 Toroidal 85 Ultrasonie 90 Variable 95 🗍 Voltage regulating

Transistors, See: 51

PROCEEDINGS OF THE LR.E.

56 Tuners.

- 05 🗌 AM tuners FM tuners
- 10 🗌 15 🗌 Klystron
- 20 🗌 Microwave
- 25 □ TV tuners 30 □ UHF & VHF
- 57 Vacuum Tubes, Receiving.

65 Computers & Counters.

05
Analog to digital converters

Computers, analog

Computers, digital

Counters, pre-set

Drums, magnetic 40 🗌 Electronic calculators

66 General Laboratory

20
RF shielding materials 25
Shielded enclosures

Accelerometers

Chemicals

Counters, continuous

Data reduction equipment

Equipment & Supplies.

General laboratory equipment

□ Atmospheric test chambers

67 General Test Equipment.

Bridges, capacitance Bridges, impedance

Bridges, inductance

Decades, capacitance

Ohm & megohim meters

Decades, inductance Decades, resistance

Bridges, resistance

Crystal testers

Diode testers

Multimeters

Pyrometers

Spectrometers

Strain gauges

Transistor testers 82 🗌 Ultrasonic generators

Ultrasonic testers 81 □ Ultrasonic testers 86 □ Vacuum tube tester 88 □ Vacuum tube voltm 90 □ Vibration analyzers Vacuum tube testers Vacuum tube voltmeters

68 Geophysical Apparatus. 05 🗌 Complete exploration equipment

Control equipment

20 🔲 Recording galvanometers

69 Graphic Recorders.

70 Induction Heating Equip.

05
Brazing, soldering & welding 10
Di-electric heating 15
Induction heating

71 Laboratory Standards of

Elapsed time measuring equip.

Primary standards of time

Primary standards of frequency

Primary standards of time
 Secondary standards of frequency

Frequency & Time.

25 □ Secondary standards of time 30 □ Tuning forks

Electro-encephalographs

73 Microwave & Radar Test

Slotted lines & measuring

155A

72 Medical Equipment.

10
Diathermy
15 Electronic cauterizing

Equipment.

Oscillators

accessories

Frequency meters

Marker generators

Pulse generators

Bolometers

05 🗌 Cardiographs

20 □ Electro-ence 25 □ Stimulators

Microphones

05 🗌 Charts & papers Ink writing

Inkless types 20 □ Fixed speed types 25 □ Variable speed types

Stroboscopes

60 □ Multimeters 65 □ Null indicators

Insulation testers

10

15

20

25

30

35

05

10

15

05

10

15

20

25

30

35

40

45

50

55

60

72

74

80

81

10

15

10

15

05

10

15

20

05

10

 $15 \square$ $20 \square$

 $25 \square$

30

70 🔲

76

78 🗆

05 Cathode-ray & TV picture

- 10 Miniature
- Standard types, glass & metal 15
- 20 Sub-miniature

58 Vacuum Tubes, **Special Purpose.**

- Electrometer tubes 05
- Geiger-Mueller
- Phototubes
- $\begin{array}{c|c} 10 & \square \\ 10 & \square \\ 15 & \square \\ 20 & \square \\ \end{array}$ Pirani tubes
- 25Thyratrons
- 25 🔲 Thyrat 30 🔲 Voltage 35 🔲 X-Ray Voltage regulators & ballasts

59 Vacuum Tubes, Transmitting.

- 05 □ ATR & TR type
 □ Air-cooled power
 □ lconoscopes
 □ Image orthicons ATR & TR types
- 10 Air-cooled power tubes
- 15
- 20
- 25 Klystrons 30
- Magnetrons 35
- Monoscope tubes 40
- Traveling wave 45 🔲 Water-cooled power tubes

60 Vibration Controls.

05 □ Vibration & shock mounts 10 □ Isolation pads

61 Voltage Regulators.

- 05 Automatic
- 10
 Manually operated 15 Varistors

62 Waveguides & Accessories.

- 05 🔲 Couplings
- 10 🗌 15 🔲 Flexible waveguides Hybrid junctions 10
- □ Rigid waveguides 20
- Sampling lines, reflectors, etc. 25
- 30 Switches
- 35 🗍 Transmission lines

3. Controls—Instruments—Test Equipment

63 Audio Frequency Test Equipment.

- 05 🗌 Beat frequency oscillators
- 05 ☐ Beat frequency oscillators
 10 ☐ Distortion & noise analyzers
 15 ☐ Intermodulation meters
 20 ☐ Output power meters
 25 ☐ RC oscillators
 30 ☐ Spectrum analyzers
 35 ☐ Square wave generators
 40 ☐ Telegraph test
 45 ☐ Voltmaters endia frequency

- 45 🗍 Voltmeters audio frequency

64 Automatic Control Equip.

- 05 🗌 Burglar-alarm & protective
- systems 10 🔲 Combustion & smoke-nuisance controls
- 15 Electronic remote controls
 20 Photo electric
 25 Positioning equipment
 30 Production control, counting &

sorting equipment

Qualitative controls

45 🗌 Vacuum controls 50 🗌 Variable speed controls

World Radio History

10 🗍 Quantitative controls

35

April, 1955

- 35 □ SWR meters 40 □ Time delay generators
- 45 🗍 Wavemeters

74 Nuclear Equipment.

- 05 🗌 Dosimeters
- Ionization chambers 10
- 15 D Pulse count integrators Radiation detectors
- $\begin{array}{c} 10 \\ 20 \\ 25 \\ \Box \end{array}$ Scalers
- 30 Survey meters

75 Oscilloscopes—Cathode-Ray.

- 05 🗌 General purpose
- 10 Oscilloscope cameras 15 Oscillosynchroscopes

- 20 🗌 Recording oscillographs 25 🗌 Special UHF & pulse analysis equipment

76 Radio Frequency Test Equipment.

- 05 □ Field strength meters 10 □ Impedance & admittance meters
- 15 🖂 20 🖂 Marker generators
- Multi-vibrators
- 25 □ Oscillators 30 □ Phase meters

- 35 [] "Q" meters 40 [] RF power output meters
- 45 Signal generators, AM
- 50 🔲 Signal generators, FM
- 55 🗌 Sweep generators

77 Servo-Mechanisms.

- 05 🗌 Controls
- 10 □ Gears, gear-trains, etc. 15 □ Servo amplifiers
- Servo amplifiers
- 20 🗌 Servo motors & generators

78 Telemetering Equipment.

- 05 🗍 Data recorders
- 10
 Data storage mechanisms 15
 FM/FM modulators

79 Television Test Equipment.

- 05 🗌 Synchronizing generators
- 10 □ TV calibrators 15 □ TV marker generators 20 □ TV signal generators

- 25 TV sweep generators

4. Materials & Services

80 Cable & Wire.

- 05 🗌 Aluminum
- Co-axial cables
- 10 Co-axial cables 15 Copper, bare 20 Enamel coated
- 25 Low-loss, high-frequency types Magnet wire
- 30 🗍
- Precious & rare metals wire
- 30
 □
 Magnet wire

 35
 □
 Precious & rare m

 40
 □
 Pre-formed wire h

 45
 □
 Rubber insulated

 50
 □
 Shielded

 55
 □
 Svnthetic insulated

 60
 □
 Wire mesh

 65
 □
 Woven wire braid
 Pre-formed wire harnesses

- Synthetic insulated

81 Ceramics.

- 05 🗌 Coil forms
- 10 🗌 Custom fabrication 15 🔲 Insulators
- 20 🗌 Proprietary forms

82 Consulting Engineers.

- 05
 Acoustical
 10 Electrical
- 15 🗌 Electronic 20 🗌 Mechanica 25 🗍 Radio Mechanical
- 30 🗌 Television

1564

83 Core Materials.

- 05 🗌 Laminations
- 10 Metallic powders

84 Fabricators & Services.

05 Contract fabrication & assembly
10 Electro-plating
15 Embedment
20 Fungus & moisture proofing
25 Ilardening & heat-treating
30 Hermetic sealing service
35 Metal stamping & spinning
40 Packaging

25 □ 28 □ 30 □

25

20

30 🔲 35 🗌

40 🔲

92 Metals. 05
Alloys
10
Copper
15
Ferrous

Ferrous

05 🗌 Insulators

94 Plastics.

 $10 \square$ $15 \square$ $20 \square$

05 🗆 10 🗖

15 🗌

05 🗌

10 || 15 || 20 ||

 $32 \square$

40 □ 42 □ 45 □

25

30

35

05 🗌 Extrusions

Rods

95 Solder.

Sheets 25 🗍 Tubes

Acid core

Precious metal

96 Vacuum Tube Parts.

Envelopes, glass

Envelopes, metal

Grids & grid wire

Guns & gun parts

Spacers & insulators

Education & Publishing

10
Data sheet & manual preparation 15
Magazines

Distributional Functions

10 Jobbers & wholesalers 15 Manufacturers representatives

April, 1955

Fluxes

Plain

Anodes

Getters

Lead wires

Phosphors

Shaft locks

 50
 Stampings

 55
 Tube caps

 60
 Tube clamps

 65
 Tube shields

 70
 Tubing-cathode

97 Education.

resident

98 Publishing.

05 🗌 Book publishers

99 Distribution.

05 🗌 Export & import

20 🗌 Sales & service 25 🗌 Surplus dealers

05
Technical instruction

home study

Pins & Prongs

20 Precious m 25 Pre-forms 30 Rosin core

10 🗌 Raw powders

10 🗌 Knobs & parts 15 Proprietary mouldings

25 Powdered 30 Precious & rare

93 Moulded Products.

35 🗌 Silicones

05 🗌 Aluminizers

tools

Moisture proofing Phosphors

91 Machinery & Tools.

10 Coil winding machines 15 Dehydrators

Vacuum pumps

15 🗌 Vibration exciters

50 🗍 Welders & brazers

Sealing & potting compounds

20 General production machinery &

Soldering irons & guns

Vacuum tube machinery

Marking & engraving machines

Non-ferrous, excluding copper

1

6

- Ilermetic sealing service Metal stamping & spinning
- 40 Packaging 45 Plastic fabricat 50 Plastic molders Plastic fabricators

85 Gasses & Vapors.

- 05 Acetylene 10 Argon 15 Hydrogen 20 Krypton 25 Neon 30 Oxygen 35 Xenon

86 Hardware & Findings.

- 03 🔲 Adhesive labels & tapes
- 06 🗌 Brushes, motor

- 00 □ Brushes, motor
 09 □ Bushings & bearings
 12 □ Cable clips
 15 □ Cans
 18 □ Dials & dial assemblies
 21 □ Fasteners
 24 □ Flexible shafts

42

57

48 🔲

45

51

54

60

63

66

69

10

15

20

30

38

05

15

72

- 27 Gaskets 30 Grilles 33 Grommets
- 36 Lacing cord & tape 39 Machine screw products Markers & tags

Paper preforms, for coil

Screws, nuts & washers

Terminal boards & straps

Terminals, rivet or stud

Terminals, wire end

Nameplates

foundations

Rivets

Springs

75 🗌 Test clips

Retaining rings

Strain reliefs

87 Hermetic Seals.

10 Complete headers

05 🗌 Cambric sheeting

Ceramic

Ceramic Cotton tapes

25 [] Fiberglas tapes

Paper 40 🗌 Plastic

55 🗌 Synthetics

05 🗌 Coil dope

10 Conducting paint 15 Finishing & prote

20 🗌 Fungus preventatives

Builders.

Cambric tubing

30 □ Fiberglas tubing 35 □ Glass bonded mica

89 Laboratories & Custom

🗌 Individual item builders

10 □ Pilot run plants 15 □ Research & development labs. 15 Research & development labs.
20 Testing & certifying organizations

90 Lacquers, Paints, Com-

WHEN WRITING TO ADVERTISERS PLEASE MENTION - PROCEEDINGS OF THE L.R.E.

World Radio History

Finishing & protecting lacquer

Pounds & Waxes.

15 Glass to metal seals

05
Ceramic to metal seals

88 Insulating Materials.

INDEX AND **DISPLAY ADVERTISERS**

Meetings with Exhibits
Industrial Engineering Notes
News-New Products
Membership
Section Meetings
Professional Group Meetings
IRE People
Positions Wanted by Armed Forces
Veterans
Positions Open

DISPLAY ADVERTISERS

Acme Electric Corporation
Admiral Corporation42A
Advance Electronics Company
Aerovox Corporation
Air Marine Motors, Inc
Airborne Instruments Laboratory, Inc
Airtron, Inc
Alford Manufacturing Co., Inc92A
Allen-Bradley Company
Allied Radio Corp
American Electrical Heater Co
American Lava Corporation
American Phenolic Corporation8A

٢

American	Television	&	Radio	Co.		 		. 46A
Amperite	Company				 	 	• • • •	.64A
Arnold En	gineering (Con	npany		 	 		.44A

Bendix Aviation Corp., Guided Missile Section Bendix Aviation Corp., Pacific Division73A Bendix Aviation Corp., Pacific Div. (Empl.) ... 141A Bendix Aviation Corp., Radio Communication Bendix Aviation Corp., Red Bank Division 48A Berkeley Division of Beckman Instruments, Inc. , 159A

California Institute of Technology, Jet Propulsion Lab. (Empl.)
Cambridge Thermionic Corp
Capitol Radio Engineering Institute
Carter Motor Company
Chance-Vought Aircraft (Empl.)
Chicago Telephone Supply Corp
Clarostat Mfg. Co., Inc
Cleveland Container Co
Cohn Corporation, Sigmund
Communication Accessories Co
Communication Measurements Lab., Inc 106A
Communication Products Co

TYPE 205A

MEASURES TIME DELAY WITH 1% AC-CURACY

• MEASURES PHASE DELAY WITH I' AC-CURACY

IO KC TO IS MEGACYCLES. 0.01 VOLT SENSITIVITY

SPECIFICATIONS

- ACCURACY: ± 0.1 degree in phase reading or $\pm 1\%$ of the time delay indicated on the dial of the continuously variable delay line.
- RESOLUTION TIME: 5 × 10⁻¹⁰ seconds or smaller; the smallest phase angle in degrees can be read on the dial is approximately equal to 5 × 10⁻¹⁰ × 360 × frequency in cps.
- TIME DELAY: Three continuously variable delay lines are supplied with the unit, 0 to 0.45 microsecond, 0 to 0.25 microsecond and 0 to 0.05 microsecond. A step delay line with 3 us delay in steps of 0.25, is also supplied.
- PHASE RANGE: The maximum phase range is equal to the total time delay of the con-tinuously variable delay line multiplied by the frequency of the signals and 360.
- INPUT IMPEDANCE: Two low capacity probes with input capacitance less than 4 mmf are supplied with the unit. The panel binding posts have about 1 megolim shunted with 12 mmf on both input channels.

PRICE \$585.00

SIGNAL AMPLITUDES Type 405 Phase Meter has a frequency range of 8 cps to 100 kc, phase range 0-36, 0-90, and 0-180 degrees; a switch is pro-vided for 180-216, 180-270, and 180-360 de grees. The accuracy is $\pm \frac{1}{2}4$ degree relative and 1 degree absolute in any range. The input impedance is 2.7 megohms shunted with 20 uuf on both channels. The meter scale is $6\frac{1}{2}$ " long, thus a fraction of $\frac{1}{4}$ degree can be read easily. Price \$485, F.O.B., Pas-saic, N.J. For 0.0001 cps to 1000 cps, use our U-L

saic, N.J. For 0.0001 cps to 1000 cps, use our U-L Phase Counter.

World Radio History

DISPLAY ADVERTISERS

Communications Equipment Co
Content, Edward J
Convair Div., General Dynamics Corp. (Empl.)
Cornell Aeronautical Lab., Inc. (Empl.) 144A
Cornell-Dubilier Electric Co
Crosby Laboratories, Inc

Daven Company
Daystrom Instrument Div., Daystrom, Inc
Detectron Corporation
Donner Scientific Co
Driver-Harris Company
DuMont Labs., Inc., Allen 8. (Empl.)
DuMont Labs., Inc., Allen B

ESC Corporation
Eastern Industries, Inc
Eitel-McCullough, Inc
Electrical Industries
Electrical & Physical Instrument Corp60A
Electro-Impulse Laboratory
Electro-Measurements, Inc
Electronic Research Associates, Inc96A, 151A
Electronics Corp. of America (Empl.)
Elk Electronic Laboratories, Inc
Engineering Associates
Engineering Research Associates, Div. of Rem- ington Rand, Inc. (Empl.) 126A, 130A, 140A
Erie Resistor Corporation

Fairchild Camera & Instrument Corp 66A
Fansteel Metallurgical Corp
Farnsworth Electronics Corp. (Empl.) 146A
Federal Telecommunication Labs. (Empl.) 131A
Ford Instrument Company
Franklin Institute (Empl.)
Frederick & Associates, Carl L
Frederick Research Corp
Frequency Standards

Garde Manufacturing Co
Garfield Wire Division, The Overlakes Corp. 94A
General Ceramics Corp
General Electric Co., Apparatus Dept IOA & IIA
General Electric Co., Capacitor Sales Div. 111A
General Electric Co. (Empl.)
General Electric Co., Tube Div54A & 55A, 83A
General Precision Lab., Inc. (Empl.)
General Radio CompanyCover 4
Gilfillan Brothers, Inc. (Empl.)
Godley Company, Paul
Gordon Associates
Gudeman Co. of Calif., Inc. (Empl.)
Guiton Industries, Inc

Heath Company
Heppner Manufacturing Co
Hermetic Seal Products Co
Hewlett-Packard Co
Hickok Electrical Instrument Co
Highland Engineering Co
Hitemp Wires, Inc
Hoffman Laboratories, Inc. (Empl.) 135A
Hoffman Laboratories, Inc
Hogan Laboratories, Inc
Hopkins Engineering Co

. maintain a predetermined temperature range in electronic equipment

Complete Refrigeration Cooling Systems using various gases and liquids as cooling media in closed-cycle operation, are Eastern specialties. Within the conditions shown at the right, these compact airborne units can be supplied complete with one heat exchanger, or with several exchangers in different locations as a centralized compressor unit.

We welcome inquiries regarding custom made or adapted units which may solve your specific cooling problems, meeting appropriate government specifications.

SPECIFICATIONS: Operate up to 70,000 feet. Ambients up to 185°F. Units from 100 to 6,800 watts capacity. Operating range from below 0°F. to 100°F. Pressurized evaporators available with units. Explosion-proof systems complete in one container for many applications. Normal aircraft power sources can be used.

Write for data on Eastern's Cooling Unit line, included in Eastern Aviation Catalog No. 330. Related Pressurization Equipment and Hydraulic Products are also described in this catalog.

WHEN WRITING TO ADVERTISERS PLEASE MENTION - PROCEEDINGS OF THE L.R.E.

X

Ħ

×

А

World Radio History

Measure Frequency to 515 mc

READ IT DIGITALLY, PRINT IT AUTOMATICALLY! Add a Model 5580 VHF-UHF Converter and 1452 Printer (below) to a BERKELEY Frequency Meter*-get the most convenient, inexpensive means yet devised for frequency measurement to 515 mc. Exclusive BERKELEY Modular design uses low cost fixedband plug-in units in place of costly wide-band amplifiers. Accuracy of measurement is ± 1 cycle, \pm crystal stability (1 part in 10[†]).

*Model 5580 connects directly to BERKELEY Model 5570 or 5571.

Unit extends range of Models 5570 or 5571 to 515 me by use of plug-in units (below). Dimensions 21" x 11" x 15"; Price \$300.00 f.o.b. factory.

> Plug-in units covering 13 fixed bands from 42-515 mc eliminate costly wide-band amplifiers. Price, \$100.00 each except for 42-155 mc Model 5581/4, which is \$150.00 f.o.b. factory.

Automatic Digital Recorder Completes System

Model 1452 prints 6 digits (8 or 10 on special order) on standard adding machine tape. Only 19" wide x 101/2" high x 14" deep, weighs 60 Ibs. Price, \$750.00 f.o.b. factory.

BERKELEY Model 1452 Digital Recorder operates directly from any late model BERKELEY meter, automatically prints up to 10-digit readout on standard adding machine tape. Scanner and printer are combined in one compact unit. Can be modified to print "Time" or "Code" information simultaneously with count data on same tape.

Write for complete specifications and data; please address Dept. N-4

DISPLAY ADVERTISERS

Hughes Aircraft Company	57 A
Hughes Research & Development Labs	
	48 A
Hughey & Phillips	24A
Hycon Manufacturing Co.	29A
Hycor Company, Inc	18A

Institute of Radio Engineers ... Interference Testing & Research Lab., Inc. .. 151A International Business Machines Corp. (Empl.) 127A

Johns Hopkins University, Applied Physics Lab. (Empl.) Jones Div., Howard B., Cinch Mfg. Corp.86A

Kahle Engineering Company
Kahn, Leonard R
Kaiser Metal Products, Inc
Kay Electric Company
Kearfott Company, Inc
Keithley Instruments
Kessler Company, Frank
Kip Electronics Corp
Klipsch & Associates
Kollsman Instrument Corp
Kollsman Instrument Corp. (Empl.)

Lapp Insulator Company, Inc
Librascope, Inc
Lockheed Aircraft Corp. (Empl.) 123A, 139A
Lord Manufacturing Co

Magnavox Research Laboratories (Empl.)144A
Maigne Company, O. J
Mallory & Co., Inc., P. R
Marion Electrical Instrument Co
Martin Company, Glenn L. (Empl.)
Measurements Corporation
Melpar, Inc. (Empl.)
Microwave Consultants
Midland Manufacturing Co., Inc
Millen Manufacturing Co., Inc., James
Model Engineering & Mfg. Co., Inc

National Cash Regist	ter Co. (Empl.)
	ter Co., Electronics Div.
National Company,	Inc. (Empl.)
Ney Company, J. M.	
North Electric Mfg.	Co
Northern Radio Com	pany, Inc

Pacific Semiconductors, Inc
Panoramic Radio Products, Inc 116A
Parke Mathematical Laboratories, Inc 151A
Penn-East Engineering Corp 151A
Perkin Engineering Corp 6A
Phelps Dodge Copper Products Corp15A
Pickard & Burns, Inc
Pickles, Sidney151A
Plastic Mold & Engineering Co

M-52

VEDTIGEDA

DISPLAY ADVERTISERS	
Polarad Electronics Corp24A, 39A, 56A, 100A	
Polytechnic Research & Development Co., Inc. 41A	
Polytechnic Research & Development Co., Inc. (Empl.)	
Potter & Brumfield & Sterling Engineering 120A	
Pyramid Electric Company	
Radiation, Inc	
Radio Corp. of America (Empl.)124A & 125A	
Radio Corp. of America, Tube Dept. 12A & 13A, 80A	
Radio Engineering Products Limited	
Radio Sonic Corporation	
Raytheon Manufacturing Co. (Empl.)	
Raytheon Manufacturing Co., Power Tube Div. 37A	
Raytheon Manufacturing Co., Receiving Tube Div.	
Republic Aviation Corp. (Empl.)	
Resinite Corp., Div. Precision Paper Tube Corp. 82A	
Resistance Products Co	
Rosenberg Associates, Paul151A	
Sandia Corporation (Empl.)	
Sangamo Electric Company	
Schweitzer, Inc., Peter J. (Empl.)	
Secon Metals Corp	
Shallcross Manufacturing Co50A	
Shasta Division, Beckman Instruments, Inc71A	
Sola Electric Company	
Sperry Gyroscope Co. (Empl.)	
Sprague Electric Company	
Stackpole Carbon Company 30A & 31A	
Stavid Engineering, Inc	
Stoddart Aircraft Radio Company52A, 119A Stupakoff Ceramic & Mfg. Co	
Sturtevant Company, P. A	
Sylvania Electric Products Inc	
Sylvania Electric Products Inc. (Empl.)141A	
Tektronix, Inc9A	
Telrex, Inc	
Terpening Company, L. H	
Times Facsimile Corp	
Transitron Electronic Corp	
Transradio, Ltd	
Tru-Ohm Products Div., Model Engineering & Mfg. Co	
Tung-Sol Electric, Inc	
United States Gasket Co	
United Transformer CoCover 2	
Unitek Corporation	
Varian Associates67A	
Waterman Products Co., Inc	
Weckesser Company114A	
Western Gold & Platinum Works	

Westinghouse Electric Corp., Baltimore, Md. Westinghouse Electric Corp., Elmira, N.Y. Wickes Engineering & Construction Co.88A

break the GLASS HABI

with tough TEFLON **Stand-off and Feed**through Insulators

Brittle glass is fast being replaced by Chemelec Components, made with duPont TEFLON, which permit compression mounting directly into punched chassis without additional hardware, facilitateminiaturization, greatly reduce assembly costs, withstand shock and vibration in service, are unsurpassed for high frequency, high voltage, high temperature service.

And TEFLON Insulated Components are now competitively priced with those of lesser quality-due to simplified manufacturing techniques, mass production methods and declining material costs. Investigate "price-wise", too.

Nineteen stock sizes of Chemelec stand-off and feed-through insulators, including sub-miniatures. Other dimensions feasible. Write for Chemelec Bulletin No. EC-1153.

Fluorocarbon Products, Inc. Division of **UNITED STATES GASKET COMPANY** Camden 1, New Jersey

WHEN WRITING TO ADVERTISERS PLEASE MENTION - PROCEEDINGS OF THE I.R.E.

ONLY THE LEADER

always points the way

Pointing up progress in capacitor manufacturing is an old tradition at Cornell-Dubilier. Our list of new capacitor developments for every use began in 1910with a record of consistent dependability and outstanding field performance, ever since.

C·D...45 YEARS OF FAMOUS FIRSTS

ER CAPACITORS

Typical of these "famous firsts" are the three examples shown here ... proof that whatever your capacitor requirements may be, your needs can be filled by C-D. Write to Cornell-Dubilier Electric Corp., Dept. M45, South Plainfield, N. J.

FIELD, N. J.; NEW BEDFORD, WORCESTER AND CAMBRIDGE, MASS.; PROVIDENCE AND HOPE VALLEY, R. I.;

EPENDABLE

INDIANAPOLIS, (ND.; SANFORD AND FUQUAY SPRINGS, N. C.; SUBSIDIARY, RADIART CORP., CLEVELAND, OHIO. THERE ARE MORE C-D CAPACITORS IN USE TODAY THAN ANY OTHER MAKE

B

ONSISTENTLY

FIRST-

Standard-Signal Generator

40 to 2000 Mc

The range of the popular Type 1021-A Standard-Signal Generator has been extended to 2,000 Mc with the addition of a third oscillator unit, and downward to 40 Mc with the added 40-50 Mc range of the low-frequency oscillator unit. Now, the complete frequency range from 40 to 2,000 Mc is covered by one power supply and three oscillator units with frequency ranges of 40-250, 250-920, and 900-2,000 Mc, respectively.

The new Type 1021-P4 900-2,000 Mc Unit is a grid separation triode oscillator using a Type 5675 uhf pencil tube. It delivers relatively high output at uhf . . . is stable and well shielded . . . has provision for square-wave modulation . . . and is low in cost for a high-performance signal source. Line sections with sliding contacts are used to tune plate and cathode—tuning is exceptionally smooth. The instrument is remarkably free of noise modulation caused by microphonics and vibrations.

Additional Oscillator Units

40 - 250 Mc Type 1021-P3B now has added 40-50 Mc range for television i-f measurements, v-h-f receiver and amplifier development.

250-920 Mc

Type 1021-P2 is a convenient, wellshielded source of power for bridge and slotted line measurements and u-h-f television work.

New

Type 1021-P4 Oscillator Unit

SPECIFICATIONS

Frequency Range 900-2000 Mc

- Frequency Calibration Accuracy Large direct-reading dial with slow motion drive calibrated to 1% over 200°
- Incremental Frequency Control Variable resistor in grid circuit provides small frequency adjustments.
- Frequency Drift Under 0.1% per day
- Output Voltage Continuously adjustable from 0.5 μ v to 1.0 volt open circuit.
- Output Impedance 50 ohms ±10%
- Output Meter Output voltage indications accurate to better than 20% - meter circuit can be calibrated in terms of accurately known 60-Cycle voltage.
- Modulation Provision Square-wave modulation from 100-5,000 cycles from external modulator.
- Leakage Stray fields and residual output voltage cannot be detected with receiver having 2 µv sensitivity.
- Heater Voltage Rectified To reduce modulation by power frequency.

Inexpensive Tube Replacement Only \$15.20

Frequency	Standard-Signal Genenerator	Oscillator Unit	Power Supply
40 - 250 Mc 250 - 920 Mc 900 - 2000 Mc	1021—AV, \$595 1021—AU, \$615 consists of . 1021—AW, \$845	1021—P3B, \$400 	} and 1021—P1, \$195

275 Massachusetts Avenue, Cambridge 39, Massachusetts, U.S.A.

GENERAL RADIO Company

90 West Street NEW YORK 6

8055 13th St., Silver Spring, Md. WASHINGTON, D. C. 920 S. Michigan Avenue CHKABO World Rad 1000 N. Seward Street LOS ANGELES J

In Electronics

40 Years of Pioneering

1915-1955