Worn by all personnel serving permanently under Combined Operations Command. They include not only the British "Commandos" and men of the Royal Navy and the R.A.F., but also U.S. Rangers and personnel of other Allied forces.

FEBRUARY, 1945
VOLUME 33 NUMBER 2

Electronics in Industry
U-H-F Multiplex Radiotelephony
Studio-to-Transmitter Antenna
Reflex Oscillators
Theory of Transmission Lines

NATIONAL SAVINGS AUTUMN DRIVE
WE'VE GOT TO KEEP ON SAVING!
There are many applications in the audio field requiring coils of high Q and good stability. UTC coils of the type HQA series are ideal in this respect. Q CHARACTERISTICS of a typical .14 Hy. coil at three voltages are illustrated. VOLTAGE STABILITY is high. At 1,000 cycles, for applied voltages from .1 to 2.5 volts, the change in inductance is less than 1%. DC current change in inductance is approximately 1% per 10 Ma. linearly.

HUM PICKUP is low due to a self shielding structure:...70 microvolts per gauss at 60 cycles.

TEMPERATURE effects are negligible. From —60 degrees C. to plus 85 degrees C., inductance variation is less than 1/3%.

MECHANICALLY, these units are hermetically sealed in a drawn steel case 1-1/16" diameter by 1-3/16" high. Weight...5 ounces.

VIBRATION effects are not evident over entire range of normal aircraft tests.

HQA UNITS are available in any inductance value from 5 Mhy. to 2 Hy., and are ordered as: HQA followed by value in Mhy. Typical semi-standard values are:

<table>
<thead>
<tr>
<th>HQA</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5</td>
<td>$5.00 net</td>
</tr>
<tr>
<td>30</td>
<td>$6.00 net</td>
</tr>
<tr>
<td>50</td>
<td>$8.00 net</td>
</tr>
<tr>
<td>80</td>
<td>$9.00 net</td>
</tr>
<tr>
<td>1250</td>
<td>$10.00 net</td>
</tr>
</tbody>
</table>
Board of Directors
1945
William L. Everitt
President
Hendrik J. van der Bijl
Vice-President
Benjamin E. Shackelford
Raymond A. Heising
Frederick B. Llewellyn
Harald A. Wheeler
E. Maurice Deloraine
Harald Pratt
Lawrence C. F. Hoyle
Frederick W. Grover
William O. Swinyard
Senior Past President
Ralph A. Hackbusch
Alfred N. Goldsmith
Raymond A. Heising
Harald Pratt
Harald A. Wheeler
Edward L. Nelson
C. M. Jansky, Jr.
Donald G. Little
J. Warren Wright
Harold A. Wheeler

Board of Editors
Alfred N. Goldsmith
Editor
Ralph R. Batcher
Robert S. Burnap
Philip S. Carter
Lewis M. Clement
E. Maurice Deloraine
William G. Dow
Elmer W. Engstrom
William L. Everitt
George W. Gilman
Peter C. Goldmark
Frederick W. Grover
Lew B. Hewick
C. M. Jansky, Jr.
John D. Kraus
Donald G. Little
Frederick B. Llewellyn
Samuel S. Mackeown
Edward L. Nelson
Harry F. Olson
Harold O. Peterson
Greenleaf W. Pickard
Ralph A. Powers
Haraden Pratt
Conan A. Priest
Herbert J. Raich
Peter C. Sandretto
V. W. Sherman
Lynne C. Smeeby
E. C. Wentz
Harold G. Wheeler
William C. White
Laurens E. Whittome
Gerald W. Willard
William Wilson
Charles J. Young
Vladimir K. Zwyorkin

Proceedings
of the IRE
Published Monthly by
The Institute of Radio Engineers, Inc.

Volume 33
February, 1945
Number 2

Section Meetings .. Next Page
Browder J. Thompson—1903-1944 71
Electronic Papers .. 72
The Institute Looks to the Future 73
William L. Everitt
Raymond F. Guy .. 74
Electronics in Industry .. 75
W. C. White
Cape Charles-Norfolk Ultra-Short-Wave Multiplex 78
Correction to "The Use of Field-Intensity Measurements for Commercial-Coverage Evaluation," by Edgar H. Felix 83
Ultra-Short-Wave Multplex Charles R. Burrows and Alfred Decio 84
Ultra-Short-Wave Receiver for the Cape Charles-Norfolk Multiplex 95
Radiotelephone Circuit ...
D. M. Black, G. Rodwin, and W. T. Wintringham
Correction to "Electronic Apparatus for Recording and Measuring Electrical Potentials in Nerve and Muscle," by William B. Rogers and Horace O. Parrack 100
Ultra-Short-Wave Transmitter for the Cape Charles-Norfolk Multiplex System ...
R. J. Kircher and R. W. Fries
A New Studio-to-Transmitter Antenna 106
M. W. Scheldorff
Reflex Oscillators ... 112
J. R. Pierce
The Theory of Transmission Lines
Edward N. Dingley, Jr.
Discussion on "Noise Figures of Radio Receivers," by H. T. Fries ... 118
Dwight O. North and H. T. Fries
Books: (See page 127 for complete list of reviewed books)
Television Awards .. 127
Building-Fund Campaign Launched at Winter Technical Meeting 128
Institute News and Radio Notes 130
Board of Directors .. 130
Executive Committee .. 131
Constitutional-Amendment Balloting
Sections Formed .. 132
Research Scientist Views Electronic Future 133
I.R.E. People .. 133

Correspondence:
"Determination of the Quiescent Operating Point of Amplifiers Employing Cathode Bias" 135
James N. Thurston
"Equivalent-Plate-Circuit Theorem" 136
Herbert J. Reich
Contributors .. 138
Section Meetings .. 34A
Membership .. 41A
Positions Open .. 50A

Responsibility for the contents of papers published in the PROCEEDINGS rests upon the authors. Statements made in papers are not binding on the Institute or its members.

Entered as second-class matter October 26, 1917, at the post office at Menasha, Wisconsin, under the Act of February 28, 1915, embodied in Paragraph 4, Section 538 of the Postal Laws and Regulations. Publication office, 600 Asylum Street, Menasha, Wisconsin. Executive, editorial, and advertising offices, 330 West 42nd Street, New York 18, N. Y. Price, $1.00 a year, foreign countries, $1.10 a year. Changes of address with advance notice of fifteen days, and communications regarding subscriptions and payments should be mailed to the Secretary of the Institute, at 330 West 42nd Street, New York 18, N. Y. All rights of reproduction, including translation into foreign languages, are reserved by the Institute of radio engineers, with mention of their source, may be printed. Requests for republication privileges should be addressed to The Institute of radio Engineers.

Copyright, 1945, by The Institute of radio Engineers, Inc.

PAPERS COMMITTEE
Frederick B. Llewellyn
Chairman
Herman A. Affel
Wilmer L. Barrow
Howard A. Chinn
James K. Clapp
Ivan S. Coggeshall
Murray G. Crosby
Frederick W. Cunningham
Robert B. Dome
Enoch B. Ferrell
Donald G. Fink
H. S. Frazier
Stanford Goldman
Frederick W. Grover
O. B. Hanson
E. W. Herold
John V. L. Hogan
Frederick V. Hunt
Harald Jams
Loren F. Jones
John G. Kreer, Jr.
Emil Labin
Frederick R. Lack
C. U. C. Leiteritz
DeLoss K. Martin
Kno Mcllwain
Harry R. Minno
Ila E. Mournontseff
G. G. Muller
Albert F. Murray
Dwight O. North
A. F. Postertoy
Jack R. Poppele
Simon Ramo
Francis X. Rettenmeyer
Sergei A. Schelkunoff
Donald B. Sinclair
Hubert M. Turner
Dayton Ulrey
Karl S. Van Dyke
E. K. Van Tassel
John R. Whinner
Irving Wolf
J. Warren Wright
Harold A. Zeamans

PAPERS PROCUREMENT COMMITTEE
Dorman D. Israel
General Chairman
William L. Everitt
Vice Chairman

GROUP CHAIRMAN
Jesse E. Brown
Warren B. Burgess
Edward J. Content
Harry Diamond
Edward T. Dickey
J. Kelly Johnson
Carl J. Madsen
Dan H. Moore
James R. Nelson
Howard J. Tzyzor
William C. White

Helen M. Stote
Associate Editor
William C. Copp
Advertising Manager
William B. Cowilich
Assistant Secretary
SECTIONS MEETINGS

<table>
<thead>
<tr>
<th>ATLANTA</th>
<th>CHICAGO</th>
<th>CLEVELAND</th>
<th>DETROIT</th>
<th>LOS ANGELES</th>
</tr>
</thead>
<tbody>
<tr>
<td>February 16</td>
<td>February 16</td>
<td>February 22</td>
<td>February 16</td>
<td>February 20</td>
</tr>
<tr>
<td>NEW YORK</td>
<td>PHILADELPHIA</td>
<td>PITTSBURGH</td>
<td>PORTLAND</td>
<td>WASHINGTON</td>
</tr>
<tr>
<td>March 7</td>
<td>March 1</td>
<td>March 12</td>
<td>March 12</td>
<td>March 12</td>
</tr>
</tbody>
</table>

SECTIONS

- **ATLANTA**—Chairman, Walter Van Nostrand; Secretary, Ivan Miles, 554-14 St., N. W., Atlanta, Ga.
- **Baltimore**—Chairman, W. I. Webb; Secretary, H. L. Spencer, Box 6760, Towson 4, Md.
- **Boston**—Chairman, C. C. Harris; Secretary, Corwin Crosby, 16 Chauncy St., Cambridge, Mass.
- **Buenos Aires**—Chairman, L. C. Simpson; Secretary, I. C. Grant, Venezuela 613, Buenos Aires, Argentina
- **Buffalo-Niagara**—Chairman, A. J. Dybowsky; Secretary, H. G. Korts, 51 Kinsey Ave., Kenmore, N. Y.
- **Cedar Rapids**—Temporary Chairman, T. A. Hunter; Temporary Secretary, J. A. Green, Collins Radio Co., 855-35th St., N.E., Cedar Rapids, Iowa
- **Chicago**—Chairman, W. O. Swinyard; Secretary, A. W. Graf, 135 S. LaSalle St., Chicago 3, Ill.
- **Cincinnati**—Chairman, L. M. Clement; Secretary, J. F. Jordan, 501 Miami Ave., Cincinnati, Ohio
- **Cleveland**—Chairman, A. S. Nace; Secretary, L. L. Stof- fel, 1095 Kenneth Dr., Lakewood, Ohio
- **Connecticut Valley**—Chairman, R. E. Shea; Secretary, L. A. Reilly, 989 Roosevelt Ave., Springfield, Mass.
- **Dallas-Fort Worth**—Chairman, J. D. Mathis; Secretary, B. B. Honeycutt, 9025 Roanoak, Dallas 18, Texas
- **Dayton**—Chairman, G. L. Haller; Secretary, Joseph General, 1319 Superior Ave., Dayton 7, Ohio
- **Detroit**—Chairman, R. A. Powers; Secretary, R. R. Barnes, 1411 Harvard Ave., Berkley, Mich.
- **Emporia**—Chairman, W. A. Dickinson; Secretary, H. E. Ackman, West Creek, R. D. 2, Emporium, Pa.
- **Indianapolis**—Chairman, H. I. Metz; Secretary, J. D. Colvin, 328 E. 47 St., Indianapolis, Ind.
- **Kansas City**—Chairman, A. P. Stuhraman; Secretary, R. N. White, 4800 Jefferson St., Kansas City, Mo.
- **London**—Temporary Secretary, Robert Wilton; Royal Canadian Air Force, Clinton, Ont., Canada
- **Los Angeles**—Chairman, R. C. Moody; Secretary, R. G. Denechaud, Blue Network Co., 6285 Sunset Blvd., Hollywood 28, Calif.
- **Montreal**—Chairman, F. S. Howes; Secretary, J. A. Campbell, Northern Electric Co., Ltd., 1261 Shearer St., Montreal, Que., Canada
- **New York**—Chairman, G. B. Hoadley; Secretary, J. T. Cimorelli, RCA Manufacturing Co., Harrison, N. J.
- **Ottawa**—Acting Secretary, L. F. Millett, 33 Regent St., Ottawa, Ont., Canada
- **Philadelphia**—Chairman, T. A. Smith; Secretary, P. M. Craig, Philco Corp., Philadelphia 34, Pa.
- **Pittsburgh**—Chairman, T. C. Kenny; Secretary, R. K. Crooks, Box 2038, Pittsburgh 30, Pa.
- **Portland**—Chairman, F. H. McCann; Secretary, Kenneth Johnson, 5115 N. E. 73 St., Portland, Ore.
- **Rochester**—Chairman, G. R. Town; Secretary, A. E. Newlon, Research Dept., Stromberg-Carlson Co., Rochester 3, N. Y.
- **St. Louis**—Chairman, N. B. Fowler; Secretary, C. H. Meyer, KFUO, 801 DeMun Ave., St. Louis, Mo.
- **San Diego**—Acting Chairman, August Hund, U. S. Navy Radio and Sound Laboratory, San Diego, Calif.
- **San Francisco**—Chairman, David Packard; Secretary, William Barclay, Stanford University, Palo Alto, Calif.
- **Seattle**—Chairman, G. L. Hoard; Secretary, K. A. Moore, 5102 Findley St., Seattle 8, Wash.
- **Toronto**—Chairman, E. O. Swan; Secretary, Alexander Bow, Copper Wire Products, Ltd., 137 Roncesvalles Ave., Toronto, Ont., Canada
- **Twin Cities**—Chairman, H. S. McCartney; Secretary, C. W. Engelman, 4648 Chowen Ave. S., Minneapolis 10, Minn.
- **Washington**—Chairman, H. A. Burroughs; Secretary, L. C. Smeby, 4801 Connecticct Ave., N.W., Washington, D. C.
- **Williamsport**—Chairman, H. E. Smithgall, Jr.; Secretary, K. E. Carl, Williamsport Technical Institute, Williamsport, Pa.
NO. 4 IN THE IRC NEW PRODUCT PARADE

Seaworthy!... and IRC-Worthy

Exhaustively tested for dependable performance and sound construction, IRC's Type GRW GRADE 1—CLASS 1 RESISTORS are now available. Only after every requirement of Army-Navy specification Jan-R-26 had been met or surpassed would our Engineering Department approve this product for the applications for which it is designed.

Resistant to salt water immersion following thermal shock, they are capable of continuous efficient operation at a total temperature of 275° C. (ambient plus rise).

Made in 7 standard sizes with power ratings from 15 to 140 watts and resistance ranges of from 0.1 to 46000 ohms, the GRW's are enclosed in special heat-treated glass for optimum strength. Non-corrosive ferrules are hermetically sealed to the tube with pure lead. Nickel alloy leads pass through the centering devices and are welded to the outer ferrule cups. All resistors are space wound.

These IRC GRADE 1—CLASS 1's are engineered to "take it" far beyond normal requirements and can stand transverse loads as high as 100 pounds without failure or damage of any kind.

Write today for special Engineering Bulletin containing dimension drawings, temperature rise and derating curves as well as other technical data.

INTERNATIONAL RESISTANCE CO.
DEPT. 10-2
401 NORTH BROAD STREET, PHILADELPHIA 8, PA.

INTERNATIONAL RESISTANCE CO.

PREFERRED FOR PERFORMANCE
FIXED & VARIABLE RESISTORS

IRC makes more types of resistance units, in more shapes, for more applications than any other manufacturer in the world.

COMING... COMING... COMING...
Why Western Electric equipment leads the way!

1. Western Electric products are designed by Bell Telephone Laboratories—world's largest organization devoted exclusively to research and development in all phases of electrical communication.

2. Since 1869, Western Electric has been the leading maker of communications apparatus. Today this company is the nation's largest producer of electronic and communications equipment.

3. The outstanding quality of Western Electric equipment is being proved daily on land, at sea, in the air, under every extreme of climate. No other company has supplied so much equipment of so many different kinds for military communications.

There can be no question that both AM and FM are slated for important jobs in the world of tomorrow—in broadcasting, aviation, mobile and marine radio. And Western Electric will offer you the finest equipment of each type—backed by 76 years of leadership in making communications apparatus for almost every purpose.

Western Electric has specialized
As a result of intensified wartime research at Bell Telephone Laboratories, of improved manufacturing techniques and increased production facilities at Western Electric, many new things are now being produced which will have peacetime applications.

In the years of progress that lie ahead for radio, count on Western Electric to lead the way!

Buy all the War Bonds you can . . . and keep all you buy!

knowledge in all of these fields
These low-capacity space-saving switches are used singly and in groups.

In shops and laboratories, by experimenters and by manufacturers these Centralab switches are becoming increasingly popular.

They are particularly adapted to broadcasting, receiving, public address, test instruments and individual uses.

These Centralab switches are available in ten different combinations including positive and spring return action types with either shorting or non-shorting contacts.

Be sure to specify "CENTRALAB" when ordering Lever Action Switches.

Centralab
Division of GLOBE-UNION INC., Milwaukee

Producers of Variable Resistors; Selector Switches; Ceramic Capacitors, Fixed and Variable; Steatite Insulators and Silver Mica Capacitors.
The Little GIANT
FEDERALS' New LEVER KEY

- Small Size—%" horizontal mounting centers.
- Large Spring Capacity—18 springs; over 500 possible combinations.
- Palladium Contacts . . . Nickel Silver Springs.
- High-Quality Phenol Fibre Insulation.
- Universal Cam—1 or 2 way—locking or non-locking.

Designed for finger-tip control of electronic and communications equipment where size is important, the FTR-810 Series Lever Key occupies less than half the horizontal mounting space required for older types.

And at the same time, its eighteen nickel-silver springs and low-resistance palladium cross-bar contacts permit more than five hundred possible switching combinations.

High-quality phenol fibre insulated throughout, the overall simplification in design has resulted in a more rugged, dependable lever key with a positive, snappy action that once set—stays set.

The universal cam has an unusually long bearing surface for smooth action and long life . . . for either locking or non-locking operation . . . one or two-way, simply by a change in position of the stop pins.

Here is another compact component by Federal with a wide variety of applications in control circuits, and another reason to see Federal first for electronic and communications equipment.
Permanently strong and stable both mechanically and electrically, ceramics are versatile materials capable of intricate design. Competent engineering enables dimensional tolerances to be held to a minimum.

The internally wound coil form illustrated is engineered and produced by Stupakoff for a specific application. Resistance to thermal shock and mechanical strength are specifications embodied in this one-piece extruded insulator. Slotted, longitudinal winding holes expose the heating element and allow heat to be directed instantaneously to the center of the coil.

Specialists in the field of electrical insulation, Stupakoff engineers are trained to find specific solutions for your insulation problems. Contact Stupakoff today —two generations of dependability in the ceramic field justify this choice.

STUPAKOFF CERAMIC AND MANUFACTURING CO., LATROBE, PA.

Ceramics for the World of Electronics
NORTH AMERICAN PHILIPS research and engineering have contributed to four developments that have advanced the art of crystal processing. Each has solved at least one problem in the mass production of quartz oscillator plates to meet the rigid demands of war equipment.

- **Q-Lap**: An exclusive North American Philips development, this high-speed machine automatically grinds crystal blanks parallel to close tolerances, ready for further production operations.

- **Utilisation of Unfaced Quartz**: By developing in 1943 a method of utilizing unfaced quartz, previously very difficult and costly to use, North American Philips materially increased the available supply of quartz in the nation's limited wartime stockpile.

- **X-Ray Quartz Analysis Apparatus**: First practical, commercial device specifically designed for accurate mass production of quartz crystals. It provides the best known method of measuring the precise angles required.

- **Automatic Testing of Crystals**: North American Philips is the only crystal manufacturer, to our knowledge, which has developed special test units which test temperature activity and frequency automatically and at high speed.

These four steps ahead in precision crystal processing further mark the progress of an organization with a background of over half a century in research, development and manufacture in the electrical field. Today, North American Philips is one of the leading producers of quartz crystals for military communications equipment. Tomorrow, our production of crystals will be available for peacetime radio and electronic equipment. In these fields precise frequency control and selection at low cost will be important factors.

We would be glad to send you a copy of an interesting booklet on, "How Quartz Crystals are Manufactured." Just fill in the coupon and mail today.

OTHER PRODUCTS: Amplifier, Transmitting, Rectifier and Cathode Ray Tubes; Searchray (Industrial X-ray) Apparatus, X-ray Diffraction Apparatus; Medical X-ray Equipment, Tubes and Accessories; Tungsten and Molybdenum Products; Fine Wire; Diamond Dies. When in New York, be sure to visit our Industrial Electronics Showroom.
THE new 170-A Audio Chanalyst is a combination testing unit which includes the famous Volthomyst circuit, a new diode flat through the audio range, a B.F.O. signal source, a gain calibrated amplifier, speaker and line output connections.

The various channels of the RCA Type 170-A can be used independently or in unison to check all common defects in audio amplifiers and sound systems. Polarity indication and a.c. can be determined instantly with the new electronic indicator, without danger of overload!

A pamphlet containing full description and specifications of the 170-A Audio Chanalyst will be sent gladly, on request.
For 25 years Faradon Condensers have been used in outstanding communication and broadcasting equipment built by RCA and other well-known manufacturers.

Today these condensers are finding new uses in electronic power generators, which are serving industry in many ways.

The reliability of Faradon Condensers, the wide range of sizes available, and the facility with which they can be adapted to design requirements, makes them a natural choice for all such applications.

For information on Faradon Condensers, for any purpose, write to Engineering Products Department, RCA Victor Division, Camden, N.J.
Parasitic oscillations caused by rebouncing relay contacts can prove mighty troublesome. However, DuMont Oscillography (oscillographic equipment plus the know-how) can be invaluable in determining the source of such difficulty as well as providing conclusive evidence that remedial measures have proved effective. For instance:

A standard DuMont oscillograph with single-sweep feature is used. No additional accessories required. Relay is actuated by closing a switch. Relay contact applies 60-cycle wave to vertical deflection plates of cathode-ray tube. With sweep frequency set at 60 cycles, one complete sine wave period appears on screen.

If relay contact closes without rebounce, the transition from horizontal line to sine wave is a simple straight line and generally occurs so quickly that it is difficult to observe visually. However, if rebounce is present, the interruptions are indicated by a series of parallel vertical lines readily observed, as in Fig. 1.

If it is desired to determine the number of interruptions and duration of rebounce periods, photographic records are made. Since the frequency of the sine wave is known, the evaluation of results is simple. In this oscillogram there were over 20 rebounces before establishing definite contact. Total duration of series of rebounces is 1/250th second. Time between opening and closing of contact is about 50 microseconds. Greater accuracy may be had by using higher frequency wave generated by an external oscillator.

Fig. 2 oscillogram demonstrates that rebounce has been eliminated by cadmium plating the contacts, amalgamating with mercury, and finally dropping liquid mercury on them.

An illustration from hundreds of useful applications of DuMont Cathode-Ray Oscillographs. Perhaps your measurement technique can be simplified or improved upon by DuMont.
ANNOUNCING BULLETIN NO. 444

... JUST OFF THE PRESS

Bulletin No. 444 will prove a valuable tool in the hands of Engineers, Designers and Research Men. It is also a helpful, informative guide for Purchasing Agents.

AlsImag Ceramic Insulator bodies, each with its particular physical and electrical characteristics, are concisely described and the uses indicated.

Typical designs taken from a roster of more than 25,000 distinct items are splendidly illustrated—in groups of applications covering electrical, electronic, industrial heating, chemical, automotive and other fields. Property charts and other technical data, together with practical information on manufacturing processes, are included.

Here is valuable, authentic information...the latest work on Ceramic insulators...in concise, easy-to-use form. If you have not received your complimentary copy of Bulletin No. 444, please write for it today.

AMERICAN LAVA CORPORATION
CHATTANOOGA 5, TENNESSEE
The Greeks gave us a word for it... now we give it to you

When Sperry first developed its velocity-modulated, ultra-high-frequency tube, the word "KLYSTRON" was registered as the name of the new device.

This name — from the Greek, as coined by scientists of Stanford University — is an apt description of the bunching of electrons between spaced grids within the tube.

"Klystron" is a good name. So good, that it has come into widespread use as the handy way to designate any tube of its general type, whether a Sperry product or not.

This is perfectly understandable. For the technical description of a Klystron-type tube is unwieldy, whether in written specifications, in conversation, or in instructing members of the Armed Forces in the operation of devices employing such tubes.

These conditions have prompted many requests from standardization agencies—including those of the Army and Navy—for unrestricted use of the name Klystron. In the public interest, Sperry has been glad to comply with these requests...

From now on, the name KLYSTRON belongs to the public, and may be used by anyone as the designation for velocity-modulated tubes of any manufacture.

Sperry will, of course, continue to make the many types of Klystrons it now produces, and to develop new ones.

On request, information about Klystrons will be sent, subject to military restrictions.

SPERRY GYROSCOPE COMPANY, INC. GREAT NECK, N.Y.
Division of the Sperry Corporation

GYROSCOPICS • ELECTRONICS • RADAR • AUTOMATIC COMPUTATION • SERVO-MECHANISMS

Proceedings of the I.R.E. February, 1945
As the "era of electronics" approaches, it is increasingly evident that the need for more accurate, highly specialized instruments becomes greater. Many of the forerunners of such instruments are already perfected and in use today, but they are still under cover of strict military censorship. When these new developments and others now in the process of development are released—not all, but certainly a good many of the commonly known instruments will instantly become obsolete. In your plans for post-war activity, you should make careful note of this fact, for it may save you valuable time in future plant or product conversion.

Post-war electronics demands new instruments

-Hp- instruments are in the vanguard of these new developments. New -hp- oscillators, signal generators and vacuum tube voltmeters are setting new standards for rugged construction and split-hair accuracy. Technical data on these and others not yet perfected are, of course, not available today, but the time is not far off when they can be released.

In contemplating the improvement of your laboratory or the alteration of your production with post-war activities in mind, it will pay you to consult -hp- engineers. These new instruments may be the answer to your problem. Please give us full details so we can be of maximum assistance.

HEWLETT-PACKARD COMPANY
BOX 980 D STATION A • PALO ALTO, CALIFORNIA
CANADIAN OFFICE: 560 KING STREET WEST, TORONTO 2

Proceedings of the I.R.E. February, 1945
Endorsed from coast to coast
FOR AM COMMUNICATION
AND POLICE RADIO WORK

Types GL-159 and GL-169. Price $60 each.
Medium power high-vacuum triodes for
Class B and C service.

These G-E tubes are strong links in your chain
of equipment for dependable transmission

Tantalum anodes used in the GL-159 and GL-169—three-electrode tubes with medium frequency and power ratings—are more durable than other types at high temperatures, and permit greater dissipation per unit of area. This feature is one of many advancements in the design and construction of these popular amplifiers, enabling them to render the kind of efficient service on which you can bank under all conditions.

Types GL-159 and GL-169 are exceptionally easy to mount. Another advantage is their medium size and ratings, the two tubes being similar in characteristics except for the amplification factor, which is 20 for the GL-159, 85 for the GL-169. Filament voltage and current are 10 v and 9.60 amp. The GL-159 is principally employed in Class C service, with maximum plate ratings of 2,000 v and 0.4 amp—plate input 800 w, dissipation 250 w. Highest frequency at maximum plate input is 15 megacycles; at 50 percent plate input, 35 megacycles.

The GL-169 is designed primarily for Class B audio-frequency service, with an output for two tubes up to 900 w. For such service the maximum ratings per tube are: d-c plate voltage 2,000 v, signal current 0.4 amp; d-c signal plate input 750 w, dissipation 250 w.

Thus these tubes meet ideally the needs of communication, police radio, or other work which employs AM equipment. A price of $60, made possible by large-scale production in the world's most modern tube factory, spells high dollar-value. Check with your nearest G-E office or distributor for detailed information on these or other transmitting tubes in the G-E complete line. Or write Electronics Department, General Electric, Schenectady 5, New York.

Hear the G-E radio programs: “The World Today” news, Monday through Friday, 6:45 p.m., EWT, CBS. “The G-E All-Girl Orchestra,” Sunday 10 p.m., EWT, NBC. “The G-E Houseparty,” Monday through Friday, 4 p.m., EWT, CBS.

GENERAL ELECTRIC
Hytron's telescoping of receiving tubes to BANTAM GT size was at first considered impracticable. Development of the BANTAM JR. was another impossibility to be proved possible. This first sub-miniature was a tiny tube whose diameter was about that of your little finger — and it was a pentode at that! As a production tube it just didn’t seem to make sense.

Encouraged by hearing-aid manufacturers eager to gain the additional sensitivity of the vacuum tube, Hytron sweated it out for two long years. Operators were trained to assemble the minute parts under magnifying glasses. A simple reversal of the conventional stem made baseless tubes possible. Problems of obtaining suitable vacuum with such small bulbs, were licked.

Finally in 1938, Hytron introduced the first successful sub-miniature. Tiny but rugged despite a hair-like filament and a diminutive mount structure, its low current drain and compactness made the BANTAM JR. a natural for all kinds of portable equipment, hearing aids, and military electronic devices. After the war, watch for even smaller and better Hytron sub-miniatures.
Engineers now planning commercial Television will find that RAULAND has anticipated all of the present day tube applications for direct-viewing for the home and projection for home and theatre, using either reflective or refractive optics.

Invitation is extended to confer with RAULAND engineers concerning plans now being formulated.

One of the important qualities which determines the usefulness of the tube in a given application is its light flux density (measured in candlepower) per microampere beam current. The range for tubes shown runs from 0.05 to 0.5 candlepower per microampere, while the useful beam current ranges up to 3000 microamperes.

DIRECT-VIEWING ELECTROMAGNETICALLY FOCUSED AND DEFLECTED TUBES

- Short 15" tube, showing a 13"x10" picture
- Short 12" tube, showing a 9½"x 7½" picture
- 9" tube, showing a 7½"x 5½" picture
- Electrostatically focused and deflected 12" tube, showing a 9½"x 7½" picture

PROJECTION TUBES FOR THE HOME

- Image size up to 24"x18"
 - For Refractive Optics
 - For Reflective Optics
- Projection tube for theatre use, projecting 20"x15" pictures
- 5" electromagnetically focused and deflected Monochrome scope tube, having a 4"x3" signal plate
- Complete line of Visicon phototubes, some of which are particularly suited for Television picture purposes.

Rauland

Electroneering is our business

THE RAULAND CORPORATION • CHICAGO 41, ILLINOIS

Buy War Bonds and Stamps! Rauland employees are still investing 10% of their salaries in War Bonds.
THE SWITCHES of
HUNDREDS OF APPLICATIONS
Line, Slide, Rotary-Action Types
Inexpensive but Dependable

FROM post-war radio equipment to toys; from instruments to appliances. Stackpole switches afford a complete engineering selection. They are compact, dependable, low in price, and are subject to countless adaptations designed to match your specifications exactly.

Standard types include 1-, 2-, 3-, and 4-pole styles, with or without spring return, detent, or other optional features. 3-position and various other types are available. Write today for a copy of the 36-page Stackpole Electronic Components Catalog including Switches, Fixed and Variable Resistors and Iron Cores for a variety of uses.

STACKPOLE CARBON COMPANY, St. Mary's, PA.

STACKPOLE

OTHER STACKPOLE PRODUCTS

BRUSHES - CONTACTS (All carbon, graphite, metal, and composition types)
POWER TUBE ANODES
PACKING, PISTON, and SEAL RINGS
BATTERY CARBONS
POWDER METALLURGY COMPONENTS
WELDING CARBON PRODUCTS
VOLTAGE REGULATOR DISCS
RHEOSTAT PLATES and DISCS, etc.
A Word About Reconversion

Reconversion already is getting started in a few plants. For others, it may be just "around the corner", but Radio still is completely absorbed in its wartime job.

That's the situation at Rola today. The things made here...transformers, coils and other intricate parts for Military Communications...still are being required in gigantic quantities, and since Rola is one of the few plants of its kind equipped to make those things, the obligation to produce in maximum amounts cannot be slighted.

This means we may not be able, now, to give our old customers the kind of service they have learned to expect from Rola...all the experimental models, all the technical assistance and all the other things we used to provide. This we should regret, for we are proud of our quarter-century reputation for Service, but there is no alternative and we hope our friends in the Radio Industry will understand our present position.

No one can predict how long this intervening period may be, but Rola's reconversion...when it comes...will be speedy, and at that time set makers again can look to Rola for the "Finest in Sound Reproducing Equipment."

THE ROLA COMPANY, INC. - 2530 SUPERIOR AVENUE, CLEVELAND 14, OHIO

ROLA

MAKERS OF THE FINEST IN SOUND REPRODUCING AND ELECTRONIC EQUIPMENT

Proceedings of the I.R.E. February, 1945
An "Amperextra" greatly responsible for the high efficiency of Amperex tubes are our specially designed filaments. These filaments are correctly proportioned to take advantage of the full projected filament area. As a precaution against strain in processing, each filament is pre-formed and cleaned in vacuum before being mounted. This "Amperextra" is only one of many Amperex developments which, in total, make for longer operating life and greater economy.

NOTE! There are more than 100 different types of Amperex tubes for broadcasting, industrial and electro-medical applications. Many of our standard types are now available through leading radio equipment distributors.
DeJUR DESIGN EFFICIENCY...

DeJUR ELECTRICAL INSTRUMENTS

Conservation of space and materials while, at the same time, maintaining efficiency is demonstrated in the DeJur 11/2-inch Model 112 Meter. Four of these meters, as shown in the photograph, take no more room than one DeJur 31/2-inch Model 312 Meter. Yet, the 112, measuring only 1 1/4 inches square and 25/32-inch deep is capable of doing a man-sized job in many applications where space is at a premium. Using basically the same carefully designed components as our larger instruments, this meter is built with fine watch precision. Available in standard ranges.

DeJUR RHEOSTAT-POTENTIOMETERS

The manufacturing scope of DeJur is exhibited in the wide range of our rheostat-potentiometer line. There are models for electronic devices, radio transmitters, dynamic voltage control, portable power-amplifiers, mixing panels, spot welding, motor control, etc. Mechanically and electrically engineered to the precise requirements of the industry. Available in standard, multiple or ganged units, and units with special resistance values and tolerances. Designed for efficient service under all operating conditions.

We are equipped to work with you on special models, of all DeJur products, for present or postwar applications. Write for the latest DeJur catalog.

BUY • AND • HOLD • MORE • WAR • BONDS

DeJur-Amsco Corporation

GENERAL OFFICE: NORTHERN BLVD., AT 45th ST., LONG ISLAND CITI 1, N. Y.
No washing machines?

Other people’s green pastures don’t intrigue us. We’re going to stay on our side of the fence.

Electronics is our business. They say we’re good at it. They? Airlines, the armed forces, railroads, manufacturers.

Production-wise, Aireon has established some enviable records for quality, speed, cost. Aireon engineers have made some notable contributions to the advancement of the art and science of electronics.

Our post-war plans primarily embrace the creation of new electronic communication and control systems for industry and transportation, and the production of precision components for manufacturers of electronic equipment.

Your engineers and ours should get together. We can translate their conversation into what you want.
The official caption of this official Navy Photo reads, "Top flight radio operators, plus top flight equipment equals top flight performance at an African clearing base for the Italian Front."

NATIONAL COMPANY
MALDEN, MASS., U. S. A.

NATIONAL RECEIVERS ARE IN SERVICE THROUGHOUT THE WORLD
"As manufacturers of transportation equipment we are constantly alert for the new developments that mean advancement and progress. We look for factors of efficiency, safety and comfort, and any development that provides these factors is a definite step forward. It would seem that..."

Mr. MacEnulty, Vibrator Power Supplies are truly contributing not only to the transportation industry but to many other industries as well. Wherever direct current must be changed in voltage, or to alternating current, for fluorescent lighting or other applications they have proved their advantages. They offer efficiency, versatility and economy in current conversion; and as they are now serving the armed forces with dependability, so in the electronic and electrical era of tomorrow, they will benefit many fields: Transit, railroad, aviation, marine, radio, electronic and electrical, and will have many individual applications within those fields for power outputs of up to 1000 watts.

Electronic Laboratories are pioneers in the field of vibrator conversion of current, and have developed many exclusive advantages in the heavy and light-duty power supply field. For radio telephone, aircraft radio, fluorescent lighting and electrical appliance operation and other specialized applications, Vibrator Power Supplies are the superior type of current conversion unit... Consult with E-L engineers concerning your power supply problem.

E-L STANDARD POWER SUPPLY MODEL S-1050

Model S-1050 is a typical military model Vibrator Power Supply which may easily be adapted for peacetime mobile radio transmitters. Input voltage: 12 or 24 volts DC. Output voltage: 475 volts DC at 200 MA, 8 volts DC at 4.5 MA. Dimensions: 9 1/2 x 8 1/2 x 13 13/16 inches. Weight: 52 pounds.

Write for further information of this and other models.
Heintz and Kaufman engineers have continually developed closer electrical and physical tolerances for Gammatron tubes over the past 16 years, knowing that matched characteristics result in better operation and longer tube life.

Today the importance of tube uniformity, especially in the very high frequencies, is widely recognized; and many of the peacetime standards we have established for Gammatrons are now contained in the wartime specifications for all tubes of the Gammatron type...When you design a transmitter around a pair—or even a dozen—Gammatrons, you will get the full benefit of our years of experience in pioneering constantly higher standards of transmitting tube performance.

HEINTZ AND KAUFMAN LTD.

SOUTH SAN FRANCISCO • CALIFORNIA

Gammatron Tubes

HK-254 Matched Characteristics

<table>
<thead>
<tr>
<th>Maximum Ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Output</td>
</tr>
<tr>
<td>Plate Dissipation</td>
</tr>
<tr>
<td>Amplification Factor</td>
</tr>
<tr>
<td>DC Plate Voltage</td>
</tr>
<tr>
<td>DC Plate Current</td>
</tr>
<tr>
<td>DC Grid Current</td>
</tr>
<tr>
<td>Max. Frequency</td>
</tr>
</tbody>
</table>

INTER-ELECTRODE CAP.:

- C grid-plate: 3.6 uuf
- C grid-filament: 3.3 uuf
- C plate-filament: 1.0 uuf

Filament Voltage: 5 Volts

Filament Current: 7.5 Amps.

KEEP IT UP •••• BUY WAR BONDS
SMOOTH COMMUTATION!

A.C. VOLTAGE CONTROL
with TH 2 1/2 A TRANSTAT

Brush Arm Assembly
One-piece die casting permits good heat dissipation, provides a simple means of replacing the brush and protects the commutator against contact with brush holder if brush should break or loosen.

Core and Coil Impregnated FOR Long Service
Each turn of vinyl acetal insulated wire is PERMANENTLY anchored by impregnation of whole core and coil with phenolic resin, followed by baking.

Broad Commutating Surface
Ground from parallel wires on outer periphery of coil, forms long even segments with solid insulation necessary to avoid shorted turns. Greater contact area results in a lower operating temperature. Smooth, mirror-like finish provides a practically frictionless brush track.

Write FOR THIS NEW FOLDER!
Complete description, including construction details, performance curves, wiring diagrams, ratings, electrical data and applications covered. Ask for Bulletin No. 171-01.

AMERICAN TRANSFORMER COMPANY
178 Emmet Street, Newark 5, N. J.

Proceedings of the I.R.E. February, 1945

25A
RAYTHEON

6AK5

for Broad-Band Amplifiers

in the high and ultra-high frequency regions

For several years Raytheon has been producing for the government a miniature pentode tube so compact and so outstanding in performance that it should be carefully considered by engineers designing future FM, television and amateur equipment.

Inter electrode spacings and element size have been so greatly reduced that the 6AK5 combines the desirable features of low input and output capacitance with high transconductance, reduced lead inductances and lower transit time losses.

It is obvious that “split-hair precision” is required to manufacture the 6AK5, for the distance between the control grid and the cathode is .0035 in. — and the grid is wound with tungsten wire whose diameter is a fraction of that of a human hair.

The 6AK5 is just one example of Raytheon’s outstanding ability to build fine tubes for important military use—ability that will be equally evident in the postwar products of the radio and electronics industry.

Specifications of 6AK5

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Diameter</td>
<td>3/4 inches</td>
</tr>
<tr>
<td>Maximum Seated Height</td>
<td>13/4 inches</td>
</tr>
<tr>
<td>Filament Voltage</td>
<td>6.3 volts</td>
</tr>
<tr>
<td>Filament Current</td>
<td>0.175 amperes</td>
</tr>
<tr>
<td>Plate Voltage</td>
<td>120 volts</td>
</tr>
<tr>
<td>Screen Voltage</td>
<td>120 volts</td>
</tr>
<tr>
<td>Control Grid Bias</td>
<td>-2 volts</td>
</tr>
<tr>
<td>Plate Current</td>
<td>7.7 ma</td>
</tr>
<tr>
<td>Screen Current</td>
<td>2.4 ma</td>
</tr>
<tr>
<td>Transconductance</td>
<td>5100 umhos</td>
</tr>
<tr>
<td>Control Grid to Plate Capacitance*</td>
<td>0.01 μf</td>
</tr>
<tr>
<td>Input Capacitance*</td>
<td>4.0 μf</td>
</tr>
<tr>
<td>Output Capacitance*</td>
<td>2.8 μf</td>
</tr>
</tbody>
</table>

* Using RMA Miniature Shield

All Four Divisions

Have Been Awarded

Army-Navy "E" with Stars

Proceedings of the I.R.E. February, 1945
In one important respect there is a striking similarity between the millions of Bliley crystals which we now produce and the mere handful of custom made units that constituted our annual production when radio was still young.

In those early days of radio, when each quartz crystal was painstakingly cut and ground by hand, a tradition was born. It was a tradition of craftsmanship that has grown with the years—a tradition that Bliley engineers have successfully translated into the more intricate techniques of volume production.

Etched crystals are an outstanding discovery and development of Bliley research engineers. This technique, by means of which crystals are finished to frequency by acid action rather than abrasive action, was an established part of Bliley production long before Pearl Harbor. It has since proven to be an essential element in the manufacture of crystals that have the dependable characteristics necessary for military communication in global warfare.

We have been called upon to solve some knotty problems. But that is nothing new at Bliley. It has been our habit to parallel new developments in radio with the right crystal for each application.

Things will be different soon. Peace-time projects will again come first. But our engineers and craftsmen will be ready, as always, with the right answer to your requirements. Don't fail to include Bliley crystals in the component specifications for your peacetime equipment.

A new star has been added.

Do more than before...

*buy extra War Bonds

BLILEY ELECTRIC COMPANY

UNION STATION BUILDING - ERIE, PENN.
War shortages crop up in strange materials. Mica, for instance. Once seen principally in the windows of stoves, and in small boys’ pockets, it is now used extensively as electrical insulation. In some war products, it is virtually indispensable: capacitors for radio, spark plugs for airplane engines, insulators in electronic tubes.

With demand mounting, manufacturers were desperate. A four-man technical mission flew to London to help ration the world’s supply between the United States and Great Britain. The shortage was serious.

The War Production Board, convinced that much mica was classified too low when judged by appearance alone, asked Bell Telephone Laboratories to develop a new method of electrical tests. The Laboratories were able to do this quickly and successfully because of their basic knowledge and experience in this field.

The new tests were made available to manufacturers in this country and abroad—the supply of usable mica was increased 60%—and a difficult situation relieved.

Skill to do this and other war jobs is at hand in Bell Laboratories because, year after year, the Laboratories have been at work for the Bell System.

BELL TELEPHONE LABORATORIES

Exploring and inventing, devising and perfecting for our Armed Forces at war and for continued improvements and economies in telephone service.
Sure, this is a punch press ... and Utalins* know that a punch press is a pretty important piece of equipment in Utah's modern plant. They guide it in an important step in the precision manufacture of Utah's products and see 'way beyond ... to the finished products in action.

The honest pride they feel in their part is the knowledge that Utah's process makes superior quality inevitable ... eliminates the possibility of error. Utah's plant is entirely self-contained. Every phase of manufacture, from buying raw materials to final delivery of inspection-tested pieces is under Utah's own exacting supervision. Constantly, painstakingly, Utah controls, inspects, rejects and supervises every step of the way.

Yes, heavy machines are made to produce with the precision of delicate instruments in Utah's comprehensively controlled process. And the result is Utah performance ... accepted internationally as the absolute standard of quality.

Utah Radio Products Co., 820 Orleans St., Chicago 10, Ill.
Utah Products (Canada) Ltd., 300 Chambly Rd., Longueuil, Montreal (23) P. Q.
CAPACITOR SELECTION Simplified

Probably no type of Electrical-Electronic component affords a greater variety of selection for a given application than capacitors. Probably no component is more susceptible to design changes to accommodate given conditions. Moreover, nowhere has engineering been moving faster in developing new types, improving old types and, in general, changing past conceptions of Capacitor usage.

That's why proper Capacitor selection is no casual matter—and this, in turn, is why we make the following recommendation to Capacitor users:

Write today for a supply of Sprague Capacitor Sample Request Forms. Then, as Capacitor applications arise, send full data to Sprague engineers on these forms. Let Sprague consider all factors involved—both in the light of long, specialized experience, and of the latest Capacitor developments or adaptations which Sprague engineering may have to offer.

It takes no longer to buy Capacitors on this basis. Such service makes them cost no more—and it frequently means important savings, increased efficiency on your production line, and greater dependability for your product.

(Formerly Sprague Specialties Co.)
Ambient noise is fed into dual apertures, shown in photograph, in correct phase relationship to provide almost complete cancellation of the entire noise spectrum. Speech that originates close to one of these apertures is faithfully reproduced. Articulation percentage is at least 97% under quiet conditions, and 88% under a 115 db noise field. The Model 205-S is unusually versatile . . . can be used, indoors or outdoors, for all speech transmission in any noisy, windy, wet or extremely hot or cold location.

Because the 205-S is a noise-cancelling microphone, it must be used in a manner different from any other type. The microphone should be held so that the lips will touch lightly against the upper lip. This brings the mouth and instrument into the correct position for proper transmission. As with all Electro-Voice microphones, the Model 205-S is guaranteed to be free from defect in material and workmanship — for life.

SPECIFICATIONS OF THE MODEL 205-S

OUTPUT LEVEL: Power rating: 37 db below 6 milliwatts for 10 bar pressure. Voltage ratings: 10 db above 0.01 volt/bar, open circuit. Voltage developed by normal speech (100 bars): 0.2 volt.

FREQUENCY RESPONSE: Substantially flat from 400-4000 c.p.s.

ARTICULATION: At least 97% articulation under quiet conditions; 88% under 115 db of ambient noise.

AVERAGE BACKGROUND NOISE REDUCTION: 20 db and higher, depending on distance from noise source.

WEIGHT: Less than eight ounces.

INPUT: Standard single button input is required.

HOUSING: Molded, high impact phenolic housing, minimum wall thickness, 5/32", vinyl-carbon retainer.

TEMPERATURE RANGE: From -40° to +185°F.

PRESS-TO-TALK SWITCH: Available with or without hold-down lock. Double pole, double throw contacts provide an optional wide assortment of switch circuits.

STANDARD SWITCH CIRCUIT: Provides closing of button circuit and relay simultaneously.

THERMAL NOISE: Less than 1 millivolt with 50 milliamperes through button.

STURDY CONSTRUCTION: Capable of withstanding impact of more than 10,000 6" drops to hard surface.

POSITIONAL RESPONSE: Plus or minus of 5 db of horizontal.

CONDUCTOR CABLE: 5 feet of two conductor and shielded cable, overall synthetic rubber jacketed.
PHOTOTUBES have found such a wide variety of applications that many types have been developed to meet special needs. The complete RCA line includes both gas-filled and high-vacuum phototubes, with various spectral responses and a variety of sizes and shapes. And for applications requiring extreme sensitivity, RCA supplies multiplier phototubes. A phototube acts as a light-actuated electric valve. (It does not convert light energy to electrical energy, but acts only as a control device.) The current passed is in proportion to incident light. Some phototubes are "high-vacuum" types; some are filled with an inert gas (such as argon) to increase current-carrying capacity. A multiplier phototube contains additional electrodes (dynodes) which emit secondary electrons and thus greatly increase sensitivity and output current as compared to 2-electrode phototubes.

Color Sensitivity: The cathode coating material and the envelope glass determine color sensitivity. RCA phototubes fall into five "color groups":

<table>
<thead>
<tr>
<th>Use</th>
<th>Tube Types</th>
<th>Maximum Color Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>With incandescent lamps</td>
<td>High-vacuum: 925, Gas-filled: 926, 929, 937*</td>
<td>Red and infra-red</td>
</tr>
<tr>
<td>With incandescent lamps and for infra-red application</td>
<td>High-vacuum: 917, 918, 925*</td>
<td>Similar to above, but sensitivity extended further into infra-red</td>
</tr>
<tr>
<td>With light source for colorimetry application</td>
<td>High-vacuum: 926</td>
<td>Blue light, approximates the human eye</td>
</tr>
<tr>
<td>With daylight, carbon-arc or mercury-vapor light source</td>
<td>High-vacuum: 929*, 934, Multipliers: 931-A*, 1P25</td>
<td>Blue light, very sensitive to incandescent light at a color temperature above 2700°K</td>
</tr>
<tr>
<td>Far ultra-violet measure-ment</td>
<td>High-vacuum: 935, 1P28</td>
<td>Same as above, but special glass envelope permits high ultra-violet sensitivity</td>
</tr>
</tbody>
</table>

An RCA Preferred Type Tube

Color response curves are available on all RCA phototubes.

Vacuum- or Gas- or Multiplier-Type? Several important factors to be considered in selecting the general type of phototube for a service are given in the following table. Specific values should be considered in selecting the actual tube type.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>High-Vacuum type</th>
<th>Gas-filled type</th>
<th>Multiplier type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>Low</td>
<td>Medium</td>
<td>Very high</td>
</tr>
<tr>
<td>Current Output</td>
<td>Low</td>
<td>Low</td>
<td>Very high</td>
</tr>
<tr>
<td>Amplification factor</td>
<td>Low</td>
<td>Up to 10</td>
<td>Up to 1,000,000</td>
</tr>
<tr>
<td>Relative signal-to-noise ratio</td>
<td>High</td>
<td>High</td>
<td>Negligible</td>
</tr>
<tr>
<td>(including flat amplifier stage)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anode Volts</td>
<td>Up to 500</td>
<td>Not over 50</td>
<td>Up to 1250</td>
</tr>
<tr>
<td>Distortion (audio)</td>
<td>Negligible</td>
<td>Appreciable in some cases</td>
<td>Negligible</td>
</tr>
<tr>
<td>Frequency Range</td>
<td>Limited largely by circuit</td>
<td>Limited by tube performance</td>
<td>Limited largely by circuit</td>
</tr>
</tbody>
</table>

Gas-filled phototubes are, at present, extensively used for sound-on-film reproduction and for relay work. Vacuum-types are widely used where high sensitivity is needed; for precision measurement where stability of calibration is essential; and for high-speed work.

Sensitivity: The sensitivity of a phototube may vary according to whether the light change is abrupt or continuous. Static sensitivity is the ratio of anode direct current to constant light flux. Dynamic sensitivity is the ratio of the variation of anode current to the variation of light input. The sensitivity of gas-filled phototubes drops off as light-source frequency increases.

Optical Systems: The use of phototubes usually involves some sort of optical system. The fundamentals of optics must be carefully considered in the successful application of phototubes.

Mechanical Features: As illustrated at left, several types of tubes are available. Size, vibration, directional requirements, etc., all may influence the choice of one of the many RCA phototubes.

Phototube Life: Phototubes are inherently sturdy, long-lived tubes and when operated under recommended conditions, give extended reliable service.

Application Hints: Here are a few general suggestions on applying phototubes:

1. In relay and measurement circuits where tubes must respond to very small amounts of light, avoid leakage currents outside tube. Keep tube terminals and sockets clean. Erratic leakage currents will affect results.
2. In amplifiers where low leakage is important, select top cap types such 917, 919, or 938.
3. Shield phototube and leads to amplifier or relay tubes when amplifier gain or phototube load resistance is high.
4. Where high-frequency response is important keep phototube leads short to minimize capacitance shunting of output.
5. For constant calibration of high-precision vacuum phototube devices, keep anode voltage at or below 20 volts. Keep incident light spread over wide cathode area.
6. Design or circuit constants should be based on tests with the equipment operating over the expected range of line-voltage variation.
7. RCA voltage-regulator tubes can improve phototube circuit performance.
8. Anode characteristic curves on phototubes can be used to predict performance under given operating conditions.

What Phototube Do You Need?
Due to space limitations, the suggestions presented here are brief and in a condensed, summary form. If you have a specific application problem or wish to discuss your phototube requirements with us, write to RCA, Commercial Engineering Section, Dept. 62-27P, Harrison, N. J. For further published information on RCA Phototubes and how to use them, send the coupon at left.

Send for this valuable data

Please send free phototube data to:
Name ...
Company
Address
City State ...
Among the most unfortunate and sorely felt effects of the war upon The Institute of Radio Engineers are the inevitable casualties amongst its membership. Browder J. Thompson, killed in action during a special mission for the Secretary of War, is one of these. Mr. Thompson lost his life on the night of July 4-5, 1944, during a flight in an Army plane in the Mediterranean Theater, while serving as expert consultant in the Office of the Secretary of War and performing a mission described as "of direct and vital importance to the war."

Born on August 14, 1903, in Roanoke, Louisiana, Mr. Thompson received the Bachelor of Science degree in electrical engineering from the University of Washington, Seattle, in 1925. In 1926 he entered the research laboratory of the General Electric Company, where he was engaged in the design and development of vacuum tubes for radio and industrial use. In 1931 he was transferred to the RCA Radiotron Company, in Harrison, New Jersey, in charge of the electrical research section of the research and development laboratory. As a result of his outstanding work with that organization in the development of vacuum tubes of small physical dimensions for ultra-high-frequency uses, Mr. Thompson was awarded the Morris Liebmann Memorial Prize for 1936, with the citation "for his contribution to the vacuum-tube art in the field of very-high frequencies."

From 1942 until he accepted his Government assignment, in December, 1943, Mr. Thompson was associate research director of RCA Laboratories, Princeton, New Jersey. He was recognized as one of America's foremost radio research engineers, including amongst his contributions such important work as guiding the development of the famous "acorn" tube used in ultra-high frequencies, and advances in screen-grid tubes and power pentodes that became mainstays in broadcast reception.

Joining The Institute of Radio Engineers as an Associate member in 1929, he was transferred to Member grade in 1932, and became a Fellow of the Institute in 1938. His association with this organization was a very active one; he served on numerous committees, participated in Standards work, and was a member of the Board of Editors and of the Board of Directors from 1937 until his death. Mr. Thompson was also a member of the American Physical Society, Tau Beta Pi, and Sigma Xi.

As one who had a consistently outstanding record of service to his field and an upright and co-operative personality, Mr. Thompson will be sincerely missed by his friends and associates.
The interest of The Institute of Radio Engineers in electronics dates from the early days. The audions, as electronic tubes were then called, were just becoming available when the Institute was organized. They were used largely for experimental purposes but within a few years they found extensive application in wire and radio communication as detectors, amplifiers, oscillators, and modulators. Many of the engineers who contributed to this development have received recognition by the Institute during the past twenty-five years. Among them may be mentioned the following: Medal of Honor: Major E. H. Armstrong, 1917; Dr. Lee de Forest, 1922; Dr. J. A. Fleming, 1933. Morris Liebmann Memorial Prize: R. A. Heising, 1921; J. R. Carson, 1924; Dr. A. W. Hull, 1930; Stuart Ballantine, 1931; Heinrich Barkhausen, 1933; Dr. V. K. Zworykin, 1934; Dr. F. B. Llewellyn, 1935; B. J. Thompson, 1936; W. H. Doherty, 1937; P. T. Farnsworth, 1941.

The increase in the number of electronic papers published in the PROCEEDINGS during the past year has met with the approval of our members. As the techniques developed in connection with the communication art and research continue to find applications in many diverse fields, there has arisen a need for a broader coverage of the subject than has been the practice in the past. Engineers having electronic experience are called upon to apply their knowledge outside the communication field, and in the interest of efficiency they must be fully informed as to what is being done by others. To meet this need the Board of Directors has recently approved a further increase in the emphasis on electronics and has greatly extended the subject material acceptable for the PROCEEDINGS. Some indication of this policy is given by the topics listed on the outside cover of this issue, and more in detail in the editorial by Dr. Goldsmith in the December, 1944, issue in which prospective authors of electronic papers are invited to present them for publication. I urge the co-operation of authors in order that the PROCEEDINGS may cover all phases of electronics adequately and authoritatively.
The Institute Looks to the Future

WILLIAM L. EVERITT
PRESIDENT, I.R.E., 1945

"Electronic devices are not small inherently, they are only young." This intriguing remark was made a number of years ago by Dr. A. W. Hull, a Fellow of the Institute and pioneer worker in electronics. The prophesy implied therein has come true, for many electronic devices are no longer either small or young. But the remark gives a clue as to why radio and communication engineers have contributed to, and are interested in, such a broad range in scientific and technical research, development, and application. Because devices can be used in radio when they are small, they can also be used when they are young. Hence, many new scientific discoveries find their first engineering applications in the radio field. The history of the application of electricity to human needs, starting with the Morse telegraph, is replete with examples where the communication engineer was the pioneer.

But engineering applications grow both in size and breadth. The radio engineer, and his professional society, The Institute of Radio Engineers, have a continued interest in the fields of activity which grow out of his work. The Institute welcomes to its membership the co-workers who are engaged in further research and development in all these expanded fields. In the Institute, they will find the largest group with an interest common to their own, and the publication medium which will give their work the most appreciative audience.

No better illustration of the extensive use of a principle first developed for radio use can be found than electronics. The first application of an electronic device, as it is now defined, was the Fleming-valve detector, whose usefulness was greatly enlarged by the addition of the grid by de Forest. The applications of electronic devices have now expanded so widely that a mere list of uses would cover many pages. The Institute of Radio Engineers has also grown with the electronic art and intends to continue to grow to serve the entire family of engineers who are working in this field. It has shown, and will show, this growth and broadening by expansion of its publication policy, by development of its technical committee functions, by coverage in the technical meetings of the Sections and the Institute at large, and by such other means as the membership may desire and will support.

The programs for securing permanent headquarters and for enlargement of the permanent staff have all been considered by the Board of Directors as a means for serving the broad fields in which the Institute is the natural leader. This Board is composed of your representatives. In performing its functions it needs the advice and suggestions of the members. This advice will be most useful if it is specific in its proposals, so that concrete action may be obtained as rapidly as possible. Such advice is definitely solicited. Plans which are adopted will also require work on the part of the members to put them into practice. Only by concerted, co-operative effort can any professional organization progress and meet the needs of a changing world.

The Institute has adopted and confirmed a membership structure whereby those in professional engineering practice can hold voting membership. It is important that those qualified should avail themselves of this privilege by transferring to the appropriate grades. Each Section is being asked to form a local committee to aid in securing sponsors and otherwise assist those who should transfer to the higher grades. It is important that this work should go forward rapidly and energetically, so that all the professional members can have a part in guiding the policies of the Institute.

It is also important that the Sections should seek out and secure members from workers in the electronic and allied fields, and that they should arrange technical programs which will serve such members. This is not a new policy. Many Sections have done it for years, but we are reemphasizing our interest, and taking positive action to implement it throughout all the activities of the Institute.

The coming years present a great opportunity. We must and will meet it.
Raymond F. Guy became interested in radio as an amateur in 1911. From 1916 to 1917, he served as Marconi Wireless Telegraph Company ship's radio officer for one and a half years, when he resigned to enlist in the Army and served in France.

Upon discharge he entered Pratt Institute, graduating in electrical engineering in 1921. A vacation was spent with the Independent Wireless Telegraph Company, and later he entered the Shipowners Radio Service.

In 1921, Mr. Guy began twenty-four years as a broadcast engineer, at Westinghouse Station WJZ, Newark, when it opened as the world's second broadcast station. Commercial broadcasting did not exist, the audience consisted of only a few amateurs, and practically all apparatus and techniques had to be conceived and developed.

In 1924, he was transferred to the RCA research laboratory and later was made head of the broadcast engineering section which engineered the RCA-NBC stations, did consulting work for clients, and directed development of all broadcast transmitting apparatus used or sold by RCA. During this period, he collaborated in the first trans-Atlantic rebroadcast and the development of the service, improved and extended network broadcasting, and collaborated in the design and construction of many broadcast plants in the United States, Europe, and the Orient.

In 1929, he transferred to the National Broadcasting Company to become NBC's radio-facilities engineer. During the last fifteen years he has directed the planning, design, and construction of all of NBC's radio facilities for standard broadcasting, frequency modulation, television, and short-wave broadcasting throughout the United States, and his duties have included every phase of engineering and economics associated with such facilities.

Mr. Guy has taken an active part in establishing the position of the United States in short wave broadcasting since 1925, when he participated in the design and construction of a 40-kilowatt RCA plant at Bound Brook, New Jersey. Under his supervision NBC has built nine stations, one of them of 200 kilowatts power.

Mr. Guy became an Associate of the Institute of Radio Engineers in 1925, a Member in 1931, and a Fellow in 1939. In 1943, he was elected to the Board of Directors for 1944-1946. He is a Fellow of the Radio Club of America, a charter member of the Twenty Year Club, a member of the New Jersey Society of Professional Engineers, a life member of the Veteran Wireless Operators Association, and is admitted to practice as a Professional Engineer in New York and New Jersey.

Raymond F. Guy

He serves on four panels of the Radio Technical Planning Board, is secretary of a Committee of Panel 4, and chairman of the International Broadcasting Committee of Panel 8. He has served on the I.R.E. Broadcast Committee, the Technical Committees on Transmitters and Antennas (as chairman), as a member of the Standards Committee, two New York Section Committees, is 1944 chairman of the Transmitter Committee, and is a member of the Committees on Frequency Modulation and the Annual Review. He also served on a Technical Committee of the American Standards Association.

Proceedings of the I.R.E.

February
Electronics in Industry*

W. C. WHITE†, FELLOW, I.R.E.

Summary—The science of electronics is considered one of the hopeful influences to help in maintaining a high rate of industrial activity in the postwar era.

To do this requires that new electronic applications for industry be developed rapidly. A review of such applications in the past indicates a period of transition from initial laboratory work to extended commercial use that is too slow to be helpful in an immediate postwar period. The reasons for this are considered.

Under the impetus of war, this period of time required for development has been cut drastically in the case of electronic devices for military use. The reasons for this speeding up are also considered.

In conclusion, there is reason to believe that some of the wartime speeding-up influences will continue on into the postwar era. These, in combination with previous experience and background, give encouragement to the belief that electronics in industry will be of real help in creating new postwar business activity.

No one here needs to be told that the war has expanded the radio and electronics business to an extent matched by few, if any, other of our industries. Also, no one needs to be reminded that there is certain to be a tapering off of the now huge volume of business in electron tubes and electronic devices in the initial postwar era. To complicate the problem further, the war requirements brought many new concerns into this field as well as causing the marked expansion of many former ones already established.

There is much hope that all of the new ideas and developments that have resulted from the war effort can be put to use to produce new devices to minimize the postwar recession in business volume. The big question and likewise the big problem involved is how quickly some of these new ideas and developments can be brought into commercial use.

As my assigned subject is industrial electronics, I shall talk only on this phase of the subject, and shall not include the extension of broadcasting that will result from the development of frequency-modulation stations and the new science of television.

The Past

In the industrial application of electronics, I have always been impressed, as well as distressed, by the amount of time taken for the transition between a good idea or a laboratory development and active commercial utilization. It is natural to ask the question: "Why has it taken so long successfully to introduce new electronic devices and methods?" Let us take, for example, three electronic devices which are really not new, but which have come into extended use only quite recently:

1. High-Frequency Induction Heating With Electronic Tubes.

I remember building one of these equipments of about ½ kilowatt output as early as 1919 and being impressed with its capabilities. I fondly believed that, within four or five years, the use of this principle in industry would be quite widespread. However, it was nearly 20 years before this business amounted to very much. If one looks at the many units being installed today, one is impressed by the fact that they could just as well have been built ten years ago as regards cost, design engineering knowledge, and the availability of the components.

2. The Operation of Direct-Current Motors from an Alternating-Current Supply System through the Medium of Thyatron Control.

Here again, the tubes, components and general circuit arrangements were well-known ten years ago, but it has been only during the last few years that equipment of this type has been used to any great extent.

It has taken a number of years to establish this type of rectifier in the electrical field. No new major technical elements have entered the picture since the advent of the ignitron in 1933.

If one looks for certain basic reasons for the long period of development in cases such as these, a number of factors are apparent. The most important of these seem to be:

(1) The cynicism and stagnation of initiative that accompany a business depression. With an atmosphere dominated by this attitude, it is very difficult to launch new ideas quickly.

(2) There is another psychological factor: the mental resistance to change, which is a most powerful influence. Probably the best example of this in the electronics business was the difference in attitude five or ten years ago, that existed in England and the continent as compared with this country, toward sealed-off tubes and medium-power rectifier units. This particular branch of electronics was much more advanced abroad than in this country. As we were naturally interested in promoting this business, we went to considerable pains to find out why this country lagged so far behind in this particular application. Although there were a few technical factors, they were relatively minor, and the real cause seemed to be that the electrical engineers abroad were rectifier-minded and used rectifiers rather than motor generators for this particular class of application. In other words, abroad it had passed through the various developmental stages and had become an established business. Still another way of expressing it is to say that

* Decimal classification: 621.375.1. Original manuscript received by the Institute, November 21, 1944. Presented, National Electronics Conference, Chicago, Illinois, October 5, 1944 (the Chicago Section of The Institute of Radio Engineers was one of the sponsors of the National Electronics Conference).
† Electronics Engineer, Research Laboratory, General Electric Company, Schenectady, New York.
many engineers are habit-bound. The manufacturers of industrial electronic equipment have always found that their most difficult competition came, not from other manufacturers of similar equipment, but from the old way of doing things.

(3) Somewhat related to this last item is what has aptly been called the “vicious circle in new developments.” It is very difficult to design and build a thoroughly satisfactory device without considerable field and operating experience, but it is also difficult to get such operating experience in the hands of a user unless the device is thoroughly satisfactory. Sometimes new designs are plagued by certain little detail complications or troubles that exasperate the pioneer user and color his whole attitude toward the device, overshadowing many of its advantages and good features. This often makes prospective users loath to try or keep a device.

(4) A survey we made some time ago indicated that first cost and maintenance expense were important factors which deterred potential users of electronic equipment from adopting such devices. Unlike radio equipment, which absolutely requires an electron tube in order to function at all, industrial electronic equipment must usually compete with older and often highly-developed methods. The fact that these older methods are highly developed usually means that they have received a great deal of attention as regards cost reduction.

(5) The second important factor that our survey indicated was ignorance of what the device would do and how it operated. Until recently, electronic devices were thought of as something different and often mysterious. Service men handling industrial electronic devices were at times called in to repair them, and found that the only defect was something simple and obvious, such as a blown fuse. The real trouble, therefore, was that the users feared the unknown and would not apply the elementary checks and tests that are applied to any other piece of electrical equipment that has stopped functioning.

(6) A trait which industrial electronics inherited from radio, and which in the past proved a considerable barrier to its growth, was the item of relatively short tube life. Only a few years ago, a 1000-hour life for the radio transmitting tubes in a broadcast station was generally accepted. In industry, however, electronic devices must usually compete with other methods. Such a short tube life, which should really be expressed as “high tube-replacement cost,” often proved an insurmountable difficulty. Analysis and experience have shown that a 5000 to 25,000-hour tube life is usually essential to enable electronic devices to be competitive with older methods in the industrial field. In general, the larger and more expensive the tube, the longer its life must be for industrial acceptance.

(7) A factor that has presented difficulties to the designer of industrial electronic equipment is the variation in characteristics that exists between individual tubes of the same type. Although the tube engineer has done much in this regard, the fact remains that in such items as transformers, capacitors, resistors, and motors the variation from unit to unit is very much smaller than in the case of tubes. Also tube performance and life vary more with line voltage than for most other basic electrical circuit components. This, too, has imposed special limitations on the designer of electronic devices for industry.

The Present

Let us leave the past and its growing pains and look at the present. Industrial electronic equipments are playing an indispensable role today in America’s record-breaking war production. A comparative newcomer to industrial plants, since the major developments in industrial electronics have taken place since World War I, this industrial tool has been directly responsible for saving millions of man and machine-hours, and millions of pounds of critical materials since Pearl Harbor.

No single kind of industrial electronic equipment has contributed more to the building of war machines than resistance welding control. It is being used to fabricate aluminum and many new and special metal alloys which have come into common use. The high quality of welds required to stand the abuses of wartime operations, particularly aircraft, is obtainable only with the precision timing and heat control offered by electronic control.

This war application of industrial electronics and such others as the tank mercury-arc rectifier, automatic controls, X-ray examination of metals, and induction heating will be covered in detail in later sessions of this conference.

As a result of the war, many new military electronic devices have progressed from the idea stage to actual use in a remarkably short period of time, sometimes only a matter of months. In the light of the retarding factors mentioned, it is interesting to study this accelerated pace and try to arrive at the reasons back of it. Many of these are clearly apparent:

1. In the place of the deadening mental attitude that accompanies depression, there is, instead, the atmosphere of energy and a determination to get results and get them quickly.

2. In place of the normal feeling of resistance to change, there is the certain knowledge that, unless we get ahead and keep ahead of our enemies, we are defeated. Thus, necessity for change and improvement becomes a very part of our existence.

3. The so-called vicious circle of trial and error does not exist or is taken in stride as a necessary cycle.

4. Cost and expense are minor factors if the equipment even promises to help win the war. As a matter of fact, very often several alternative methods are developed simultaneously with the knowledge that one or more of them may be a complete failure and be abandoned at an early date.

5. One can only guess as to how many thousands or perhaps tens of thousands of men and women during the period of the war have been given intensive training in the operation, care and maintenance of a multitude of...
electronic devices. Much good publicity has also helped to minimize the ignorance factor.

It is obvious that a few of these factors are not just temporary but will carry over into the postwar period and, therefore, represent net gains.

THE FUTURE

Now, let us consider the future. In view of the progress that has been made, it is only natural to consider next to what extent, for the immediate postwar era, we can use what we have learned and take advantage of changed conditions in order to shorten the elapsed time between the laboratory and extended commercial use. It would appear that the following factors are important in this respect.

1. Electronics, to the industrial engineer, is another tool to add to his kit for use in conjunction with other well-developed methods. Electronics will not relegate to the background such devices as the induction motor, transformer, amplidyne, and highly-developed instruments. It is clear that, in the final analysis, electronic devices will take their place beside other electrical devices in industry, supplementing and adding new accomplishments rather than superseding many methods now well established.

The successful use of electronic devices in industry is based upon their giving better results than other methods, or because the engineering problem involved cannot be solved in any other way. Practical utility, therefore, is a prime requisite.

Where glamour has been responsible for putting to work some kinds of electronic devices, the chances are almost 100 per cent that these are misapplications rather than progressive steps. There is some reason to believe, for instance, that in a few cases high-frequency heating is today being employed in applications where former types of electrical heating would give satisfactory results and would do it at lower first cost, higher efficiency, and lower operating expense.

2. Another factor that must be kept in mind is that, in most industrial applications, an electronic device is only one part of a larger piece of apparatus. In fact, in the majority of cases the electronic part of the apparatus comprises only a fraction of the cost of the whole. However, in such cases, the electronic part of itself may not only be of very limited use, but the rest of the equipment without its use may also be of little value. With the two parts working together in the proper way, they make a contribution to industrial progress. This leads to the conclusion that electronic devices in industry should not be of the nature of gadgets attached to some piece of equipment, but rather must be engineered as a closely-knit part of the whole. This engineering must be done by men who are familiar with all of the special conditions involved in the particular industry in which the apparatus is to be used, and this factor cannot be supplied by a radio engineer or someone simply familiar with the electronic principles involved.

3. The place where the first trial application is to be made should be one where a high first cost and a high maintenance cost can be justified. Of course, there are entirely too few of these to constitute a real field of business, but usually one can be found that is unusually favorable.

4. Just as important as a trial installation that is economically favorable is one that is in the hands of what might be termed "a friendly customer." The user of a new and untried device in practically every case needs patience, a pioneering viewpoint, an unusual spirit of co-operation, and abiding faith, in order to come through successfully.

5. The developer of the device also must have a great deal of faith, as well as the ability to keep at the development regardless of difficulties, if it is to be really successful.

6. Not only must the tubes have built into them, by design, a long, useful life, but they should be operated conservatively to realize this life. Likewise, users of industrial electronic equipment must be convinced that a few dollars additional first cost in the equipment to permit conservative operation of the components will be repaid many times in lower tube maintenance cost as well as greater freedom from service interruptions.

7. In contrast to radio transmitters and public utility apparatus, there is a minimum of operating personnel whose sole duty is to watch the results, make adjustments from time to time, and see that every item is frequently inspected. To a much greater extent, continuity of operation must be designed into industrial electronic equipment.

All of this is just another way of saying "nothing succeeds like success." Once a new device has shown satisfactory and worth-while service in the hands of a user for a six-months to two-year period, the battle is usually won.

Competition is one of the most powerful of business influences. Let some one industrial concern have a device that lowers cost or produces a better quality of product, and almost over night the other firms in this field will, in the great majority of cases, quickly adopt the idea and be in the market for like equipment.

In closing, I want to remind you that these problems I have discussed are not such that they cast any doubts on the future of electronics. That future is assured. The point is that we want to bring about that coming expansion in the characteristic American way which means: just as rapidly as possible.
Cape Charles-Norfolk Ultra-Short-Wave Multiplex System*

N. F. SCHLAACK†, SENIOR MEMBER, I.R.E., AND A. C. DICKIESON†, SENIOR MEMBER, I.R.E.

SUMMARY—This paper describes the general features of a radio multiplex system which has been installed between Cape Charles and Norfolk, Virginia. The radio-frequency equipment operates in the vicinity of 160 megacycles. The system employs the 12 telephone channels of the type K cable carrier system which are in the frequency range 12 to 60 kilocycles.

GENERAL

The economies afforded by multiplex operation in telephone transmission by wires have always made the attainment of such operation an attractive goal to be achieved in radio transmission. In this type of service, even where directive antennas are used, the radio-frequency power involved is relatively large and is costly to produce. The efficiency, therefore, is of great importance and it becomes impracticable to reduce the intermodulation by operating the vacuum tubes of the output stage of a transmitter at low signal amplitudes. Schemes for spread-band operation have been used to avoid the most serious intermodulation products at the cost of greater bandwidth.1–3 However, the invention of negative feedback,4 which can be applied so as to reduce the intermodulation to a satisfactory value at signal amplitudes approximating the rated output of the tube in the final stage of a transmitter, has given the radio engineer a new tool with which to attack the multiplex problem. In addition, the accumulation of further knowledge regarding the propagation of ultra-short waves and the development of more suitable tubes have facilitated the application of multiplex to certain radio transmission problems. This paper describes the general features of an ultra-short-wave multiplex system which was installed in 1941 between Cape Charles and Norfolk, Virginia, as indicated in Fig. 1. It is used by the Chesapeake and Potomac Telephone Company to provide public telephone service over this route.

The path across the mouth of Chesapeake Bay is a particularly suitable one for the application of multiplex radio. Telephone traffic to and from Cape Charles and vicinity has heretofore been handled by wire circuits routed some 450 miles around the bay by way of Baltimore and Washington. By locating radio equipment at Cape Charles and at East Ocean View, Virginia, this circuitous land route has been replaced by a circuit made up of a radio link of 26 miles and only 12.0 miles of wire.

In order that the radio equipment might fit into the telephone system with a minimum of special engineering from a wire transmission standpoint, the radio transmitters and receivers were designed to accept and deliver twelve channels of the type K carrier system5 which lie in the range from 12 to 60 kilocycles. From a consideration of the various factors involved, it was decided that the radio link should be engineered on the basis that it should be at least as good in performance as 1000 miles of the type K system. This imposes on both the transmitter and receiver unusual requirements in respect to noise and distortion or intermodulation.

At the southern end of the circuit the carrier equipment is installed in the toll office at Norfolk so that the transmission to East Ocean View, a distance of about 11 miles, is accomplished at the carrier frequencies of 12 to 60 kilocycles. From a consideration of the various factors involved, it was decided that the radio link should be engineered on the basis that it should be at least as good in performance as 1000 miles of the type K system. This imposes on both the transmitter and receiver unusual requirements in respect to noise and distortion or intermodulation.

At the southern end of the circuit the carrier equipment is installed in the toll office at Norfolk so that the transmission to East Ocean View, a distance of about 11 miles, is accomplished at the carrier frequencies of 12 to 60 kilocycles. From a consideration of the various factors involved, it was decided that the radio link should be engineered on the basis that it should be at least as good in performance as 1000 miles of the type K system. This imposes on both the transmitter and receiver unusual requirements in respect to noise and distortion or intermodulation.

Fig. 1

Cape Charles—Norfolk Ultra-Short-Wave Multiplex System

N. F. SCHLAACK†, SENIOR MEMBER, I.R.E., AND A. C. DICKIESON†, SENIOR MEMBER, I.R.E.

Summary—This paper describes the general features of a radio multiplex system which has been installed between Cape Charles and Norfolk, Virginia. The radio-frequency equipment operates in the vicinity of 160 megacycles. The system employs the 12 telephone channels of the type K cable carrier system which are in the frequency range 12 to 60 kilocycles.

The economies afforded by multiplex operation in telephone transmission by wires have always made the attainment of such operation an attractive goal to be achieved in radio transmission. In this type of service, even where directive antennas are used, the radio-frequency power involved is relatively large and is costly to produce. The efficiency, therefore, is of great importance and it becomes impracticable to reduce the intermodulation by operating the vacuum tubes of the output stage of a transmitter at low signal amplitudes. Schemes for spread-band operation have been used to avoid the most serious intermodulation products at the cost of greater bandwidth.1–3 However, the invention of negative feedback,4 which can be applied so as to reduce the intermodulation to a satisfactory value at signal amplitudes approximating the rated output of the tube in the final stage of a transmitter, has given the radio engineer a new tool with which to attack the multiplex problem. In addition, the accumulation of further knowledge regarding the propagation of ultra-short waves and the development of more suitable tubes have facilitated the application of multiplex to certain radio transmission problems. This paper describes the general features of an ultra-short-wave multiplex system which was installed in 1941 between Cape Charles and Norfolk, Virginia, as indicated in Fig. 1. It is used by the Chesapeake and Potomac Telephone Company to provide public telephone service over this route.

The path across the mouth of Chesapeake Bay is a particularly suitable one for the application of multiplex radio. Telephone traffic to and from Cape Charles and vicinity has heretofore been handled by wire circuits routed some 450 miles around the bay by way of Baltimore and Washington. By locating radio equipment at Cape Charles and at East Ocean View, Virginia, this circuitous land route has been replaced by a circuit made up of a radio link of 26 miles and only 12.0 miles of wire.

In order that the radio equipment might fit into the telephone system with a minimum of special engineering from a wire transmission standpoint, the radio transmitters and receivers were designed to accept and deliver twelve channels of the type K carrier system5 which lie in the range from 12 to 60 kilocycles. From a consideration of the various factors involved, it was decided that the radio link should be engineered on the basis that it should be at least as good in performance as 1000 miles of the type K system. This imposes on both the transmitter and receiver unusual requirements in respect to noise and distortion or intermodulation.

At the southern end of the circuit the carrier equipment is installed in the toll office at Norfolk so that the transmission to East Ocean View, a distance of about 11 miles, is accomplished at the carrier frequencies of 12 to 60 kilocycles. From a consideration of the various factors involved, it was decided that the radio link should be engineered on the basis that it should be at least as good in performance as 1000 miles of the type K system. This imposes on both the transmitter and receiver unusual requirements in respect to noise and distortion or intermodulation.
miles and to the Onancock central office 40 miles away is accomplished at voice frequencies.

Transmission from Cape Charles to East Ocean View is accomplished on a carrier frequency of 156,300 kilocycles and in the reverse direction on 160,650 kilocycles. This does not represent the minimum possible frequency spacing for this equipment, but was a convenient one which could be obtained.

Radio Equipment

The transmitters are crystal-controlled and have a carrier power output of 50 watts. The crystals are temperature-controlled in order to improve the frequency stability and thereby minimize the bandwidth and noise requirements at the receiver.

A block schematic of the transmitters is given in Fig. 2. The crystal oscillator in which the second harmonic is selected is followed by a stage of amplification, three stages of harmonic generators, and a push-pull modulating amplifier. The final carrier frequency is the twenty-fourth harmonic of the crystal frequency. The amplitudes of the type K frequencies are increased by a 4-stage amplifier before they are applied to the modulating amplifier. The output of the transmitter consists of a carrier with sidebands extending from 12 to 60 kilocycles on each side of the carrier as shown in Fig. 3.

The twelve channels thus take up a total band of 120 kilocycles or 10 kilocycles per channel. This amounts to a considerable saving in frequency space since current radio assignments in this region are on the basis of 150 kilocycles for a single channel. About 40 decibels of envelope feedback is obtained by detecting the output of the modulating amplifier by means of the demodulator and applying a portion of the detected output to the input of the 4-stage amplifier. A monitor which is similar to the demodulator is provided so that the character of the transmitter output can be observed without disturbing the circuits in any way. The filaments of all the tubes operate on alternating current and the plate, screen, and bias potentials are obtained from four single-phase mercury-vapor rectifiers. The transmitters are designed to operate into a balanced impedance of 140 ohms. A view of the transmitter is given in Fig. 4.

Fig. 2—Block schematic for D-159609 radio transmitter.

Fig. 3—Channel-sideband distribution.

Fig. 4—D-159609 radio transmitter.

The input circuits of the receivers were designed to connect to a single 72-ohm coaxial transmission line. Triple detection was adopted in order to obtain sufficient image suppression and to satisfy other requirements. A block schematic of the receiver is given in Fig. 5. The receivers consist essentially of a first detector, a single-stage first-intermediate-frequency amplifier, a second detector, a 4-stage second-intermediate-frequency amplifier, and a high-level-diode final detector. The last three stages of the second-intermediate-frequency amplifier employ negative feedback in order to deliver a large signal input to the final detector with negligible distortion. Two additional amplifiers are bridged onto the circuit just ahead of the final detector. The output of one of these amplifiers is rectified and then used for automatic-volume-control purposes. The output of the other is passed through a sharp crystal filter, rectified and then used to operate a relay. The operation of this relay thus indicates that the frequency deviations of the distant transmitter and the local
receiver heterodyne oscillators have not displaced the second intermediate frequency more than ±0.002 percent of the radiated frequency.

The heterodyne-oscillator supply for the first and second detectors is obtained from a single temperature-controlled crystal oscillator of the same type as is employed in the transmitter. The supply to the first detector is the 36th harmonic of the crystal and the supply to the second detector is the second harmonic. The first intermediate-amplifier frequency therefore depends upon the frequency to be received. The nominal band of the second intermediate frequency is from 1430 to 1570 kilocycles. A view of the receiver is given in Fig. 6.

Separate, directive, horizontally polarized antennas are used for transmitting and receiving. The two antennas at each radio terminal are mounted one above the other on a single 196-foot steel lattice-type tower. The upper antenna at each end is used for transmitting and the lower one for receiving so as to equalize the transmission losses in each direction. A view of the Cape Charles tower and antenna is given in Fig. 7.
in the rear plane act as reflectors. Transmission is, of course, normal to these planes. The elements in both planes are made of one-half-inch-diameter copper tubing which are supported on a wooden framework by means of standoff insulators. The wooden framework for each antenna is in turn supported by six horizontal timbers which extend across the sides of the tower and are bolted to the legs of the tower. The upper antenna framework is somewhat larger than the lower in order that it can support four additional rods on the bottom and a long ground rod across the top. The upper rod is for lightning protection whereas the lower rods give additional attenuation between the two antennas. Each antenna has a gain of 17 decibels over a single half-wave element at the same mean height.

A pair of \(\frac{3}{4} \)-inch coaxial transmission lines connect the transmitter to its antenna while a single \(\frac{1}{2} \)-inch line is used in the case of the receiver. These lines are kept under gas pressure.

Carrier Terminal Equipment

In Fig. 8 is shown a block diagram of the type K carrier terminal equipment\(^6\) used to place the 12 voice channels in the frequency spectrum from 12 to 60 kilocycles. This positioning is done in two steps for reasons of economy. A hybrid arrangement is associated with each voice circuit to transform the 2-wire circuit to a 4-wire circuit. The channel modems,\(^7\) supplied with twelve carrier frequencies spaced 4 kilocycles apart from 64 to 108 kilocycles shift the voice channels to the range 60 to 108 kilocycles in the transmitting direction and restore the 60- to 108-kilocycle range to voice channels in the receiving direction. Associated with the channel modems are modulator and demodulator band filters for frequency selection and demodulator amplifiers to provide the desired volume to the voice circuits. The group modem, supplied with a 120-kilocycle carrier frequency shifts the 60- to 108-kilocycle band to the range of 12 to 60 kilocycles for application to the radio transmitter, and shifts the 12- to 60-kilocycle band from the radio receiver to the 60- to 108-kilocycle band utilized by the channel modems in the receiving direction. Associated with the group modem are two band filters and two amplifiers for frequency selection and gain. To mini-

\[\text{Fig. 9—Block diagram of the Cape Charles-Norfolk ultra-high-frequency multiplex system.}\]

\(^7\) The term modem has been coined to mean a panel or equipment unit in which there are both a modulator and a demodulator to take care of both the outgoing and the incoming signals.
terminal at the far end. At the output of the line amplifier at the distant end, crystal filters select the two pilots and apply them to the pilot channel control circuit. The 12-kilocycle pilot is used to hold the circuit loss constant in the Cape Charles-Norfolk direction and the 28-kilocycle pilot is used for the same purpose in the opposite direction. The 28 kilocycles in the East-West direction and 12 kilocycles in the West-East direction, are used for transmission alarms and in the loop tests, as described later.

The pilot regulation of the receiving-line amplifier gain is accomplished by standard type K carrier circuits. The pilot frequency of 12 or 28 kilocycles is selected by the appropriate filter, amplified and rectified to control the amplifier gain. The degree of regulation obtained with the circuit is such that for ± 11-decibel variation in input of the pilot the output of the pilot varies less than ± 0.5 decibel. Except in cases of trouble the variation in loss over the radio and cable circuits is considerably less than ± 11 decibels so that the variation in loss between the channel equipments of the two carrier terminals is less than ± 0.5 decibel. The variation in the channel equipment at each end does not exceed ± 0.5 decibel and of the pilot-frequency source ± 0.2 decibel so the over-all variation is normally not expected to exceed ± 0.8 decibel. For the circuits to Onancock, a further variation of ± 0.7 decibel is expected, resulting in a total of ± 1.1 decibels probable variation.

CONTROL AND ALARM FEATURES

The system is under the direct supervision of the technical operators in the Norfolk toll office, who are licensed radio operators and are in attendance 24 hours a day. The Ocean View and Cape Charles radio stations are normally unattended, though maintenance forces are available when necessary. There is, of course, continual attendance at the switchboard in the Cape Charles central office.

A control, extended over cable circuits, enables the radio operator at Norfolk to shut off the Ocean View transmitter. By communication with the switchboard operator at Cape Charles, either over these circuits or via an overland wire circuit, orders to shut off the Cape Charles transmitter can be given. This transmitter power is controlled over wire circuits by a key mounted in the Cape Charles switchboard.

A continual check on the distant transmitter is supplied at both attended locations. As previously described, in each radio receiver is a sharply selective filter, tuned to the second intermediate frequency, and connected to a rectifier and relay. If the distant carrier is absent, or if the deviation of the transmitter and receiver beating oscillator is more than ± 0.002 per cent of the assigned value an alarm is given.

In addition to these features, which are designed to give to the technical operators at Norfolk effective control over the system, there are supplied transmission alarms and controls to facilitate maintenance. With a 12-channel system, it is highly desirable that the attendants at both ends of the circuit be notified promptly if the common path is opened in either direction. This is accomplished by the means shown schematically in Fig. 9. The 12-kilocycle pilot frequency sent over the circuit from Cape Charles is under control of the 12-kilocycle pilot received from Norfolk; if 12 kilocycles are not received from Norfolk, none is sent out toward Norfolk. Similarly, the 28-kilocycle pilot frequency sent from Norfolk is controlled by the 28-kilocycle pilot received from Cape Charles. If both frequencies are received at both locations, none of the alarms is operated. If a transmitter failure occurs in the Cape Charles-Norfolk direction (East-West) 28 kilocycles will not be received at Norfolk, and the E-W failure alarm will be operated. At the same time, the W-E failure alarm at Norfolk will be disabled and the 28-kilocycle pilot will be cut off in the other direction. This will cause operation of the E-W failure alarm at Cape Charles. Thus attendants at both circuit terminals will be notified of trouble. A failure in the other direction of transmission will operate similarly on the 12-kilocycle pilot, bringing in the W-E failure alarms.

It is a practical necessity to know on which side of the water barrier the failure has occurred, so that a maintenance man can be sent to the proper unattended location. This is accomplished by means of a near-end loop test. Under the conditions mentioned above operation of the loop test key at Norfolk restores the 28-kilocycle pilot frequency to the transmitting leg, and applies an additional beating oscillator frequency to the first detector of the Ocean View receiver, this being of such frequency as to tune in the Ocean View transmitter. Since the failure was at the other end of the circuit, both pilot frequencies will now be received, and consequently the E-W failure alarm will be released, indicating the failure to be in the transmitting leg at Cape Charles. Under these conditions if the loop test key is operated at Cape Charles, the local receiver will be tuned to the local transmitter, but the 28-kilocycle pilot will still be absent, thus the E-W failure alarm will still be operated, indicating also at this point a failure in the Cape Charles transmitting leg.

It will be noted that operation of the loop-test key also opens the circuit between the carrier channels and the group circuits, so as to prevent the possibility of singing around the near-end loop, across the hybrid coils which terminate the telephone channels.

To facilitate trouble location tests, jacks are provided in the line which is connected to the radio transmitter, at the output of the transmitter monitoring circuit and in the line which is connected to the radio receiver. Further, the circuit is arranged so that these are equal level points. With the loop test key operated, if trouble is indicated on the near side of the water a patch
connection can be made from the transmitter monitoring circuit to the receiving line jacks. If the failure alarm is released, it is apparent that the trouble is in the radio receiver. If the alarm is not released a patch connection can be made between transmitting and receiving line localizing the trouble either in the radio transmitter or in the wire lines and carrier equipment.

Because of the fact that the pilot-channel control circuit and the associated line amplifier do not compensate for changes of loss instantaneously it is necessary to make the E-W and W-E alarm circuits relatively slow in operation. If this were not done a sudden decrease in loss of a few decibels would bring in a temporary false alarm. Slow operation of the alarm circuits is obtained by the use of temperature-compensated thermistors which give slower operation of the alarm circuits than the regulation time of the controlled-line amplifier.

At the Norfolk end the E-W and W-E alarms appear only at the toll office since the carrier equipment is located there. At Cape Charles they appear both at the radio station and the central office.

Other Alarms

At the western end of the circuit alarms are provided both at Ocean View and the Norfolk Toll Office for an open radio-station door, high radio-cabinet temperature, alternating-current power failure, low or high radio-station room temperature, and fire. At Norfolk the first three are grouped together to light a Major Alarm lamp, the fourth lights a Minor Alarm lamp, and the fifth lights a Fire Alarm lamp. Two pairs in the cable between Ocean View and Norfolk Toll Office are required for the transmission of these alarms. An additional pair permits performance of the loop test and shutdown of the radio transmitter from Norfolk.

At the eastern end of the circuit, alarms are provided both at the radio station and the Cape Charles Central Office for open radio-station door, high radio-cabinet temperature, low or high radio-station room temperature, fire, and various power-supply failures. As at Norfolk some of these were grouped into major and minor alarms for transmission to the central office. Four cable pairs with ground return are required for transmission of these alarms. An additional pair permits performance of the loop test and shutdown of the radio transmitter from the central office.

Correction

Major Edgar H. Felix has drawn to the attention of the editors the following corrections to his paper, “The Use of Field-Intensity Measurements for Commercial-Coverage Evaluation,” which appeared on pages 381 to 393 of the July, 1944, issue of the PROCEEDINGS: In the charts which appeared on pages 387, 388, and 389, the word “microvolts” should be changed to “millivolts.”
Ultra-Short-Wave Multiplex*

CHARLES R. BURROWS†, FELLOW, I.R.E., AND ALFRED DECINO‡, SENIOR MEMBER, I.R.E.

Summary—The technical requirements of a twelve-channel ultra-short-wave multiplex system are discussed and the means of meeting them are described. The intermodulation between channels in equipment based on this design has been reduced to the point where it is possible to use twelve-channel radio systems in the toll plant. By employing a sufficient amount of envelope feedback, the transmitter can be operated with a high modulation factor without the use of spread sidebands.

INTRODUCTION

The advantages possessed by multiplex in wire telephony obviously call for the evaluation of corresponding methods in radio communication. Over a period of years, different phases of this problem have been studied in the Bell Telephone Laboratories by various investigators. The present paper is one of a group of four companion papers which discuss the development of equipment suitable for the transmission of twelve telephone channels over radio spans in the telephone plant. The radio can be used as part of a very much longer wire system. This paper deals primarily with the circuit design of the transmitter modulating arrangements.

This system employs the twelve telephone channels of the type-K cable-carrier system which are in the frequency range 12 to 60 kilocycles per second as the signal to modulate a radio-frequency carrier of about 160 megacycles per second. The development during 1940 was specifically aimed at the transmission of the output of a type-K twelve-channel sending terminal, across the mouth of Chesapeake Bay. This system is described in detail in a companion paper. Obviously, however, the principles to be studied are of broader application.

When considering the noise permissible in a multiplex telephone circuit, a very severe requirement is encountered. The average noise that may be introduced into one channel by the whole toll circuit is commonly expressed as 60 to 70 decibels below the peak load capacity required by the composite multiplex signal at any point. This must cover both the many varieties of "noise" and the intermodulation products produced in the channel under observation by intermodulation from all other channels. The amount of intermodulation may also be determined by sending through one test tone and measuring a single frequency-modulation product. In this form of test, the maximum permissible amplitude of the intermodulation product is about 40 decibels below the single test tone when its amplitude corresponds to the load capacity of the composite multiplex signal. This requires a fidelity of transmission that is unusual in radio transmitters. The requirement might be met by reducing the sideband power to a small fraction of the nominal power capacity of the transmitter but as this method also decreases the signal-to-noise ratio at the receiver, antennas with more gain, or higher antenna towers would be needed, or the system would be limited to a shorter transmission span. Economical design requires the reduction of the intermodulation to a satisfactory value at a sideband power approaching the nominal power capacity of the transmitter.

There are several ways of meeting this distortion requirement. In the nine-channel multiplex system (80 megacycles per second) between Scotland and Ireland across St. George's Channel the distortion problem is mitigated by using the spread-sideband system. In that system there is a frequency range on either side of the carrier which is equal to or greater than the width of the sideband so that the predominant distortion products fall outside of the useful band. This system doubles the frequency range required and makes it greater than the frequency interval between assignments in this country. Furthermore, the British employ a double-sideband signal for each individual channel as well, which multiplies the required frequency range by another factor of 2. The Japanese have a six-channel 75-megacycle multiplex system bridging the Straits of Tugaru. It employs a type of negative feedback to reduce the crosstalk but even with the amount of stable feedback obtained (about 15 decibels) it was necessary to employ the spread-band system to reduce the crosstalk to a satisfactory value.

For present purposes it was considered undesirable to obtain low intermodulation at the cost of operation either at low modulation levels or with spread sidebands. Single-sideband transmission was considered, but the special complexities involved in the terminal problem and the difficulties in obtaining adequate feedback in

† Bell Telephone Laboratories, Inc., New York, N. Y.
‡ Formerly, Bell Telephone Laboratories, Inc., New York, N. Y.; now, Hammarlund Manufacturing Company, New York, N. Y.
this frequency range as compared with the problem if the double-sideband method were used, led to the adoption of the latter. A survey of tubes, at that time available, indicated that more undistorted sideband power could be obtained from a modulated radio-frequency amplifier producing a double-sideband system than from a single-sideband radio-frequency amplifier. The double-sideband system also allowed the use of envelope feedback which greatly simplifies the feedback problem. In order to obtain the desired signal-to-distortion ratio with a double-sideband system, however, the departures of the phase characteristic of the receiver from skew symmetry with respect to the carrier frequency must be considerably less than is usual in the general run of receivers. After considering the various phases of the problem, it was decided to build a double-sideband system with envelope feedback.

DISTORTION REQUIREMENTS

In employing envelope feedback, a double-sideband multiplex system, interchannel modulation may be caused in several ways. These may be classified under three general types: (1) nonlinear distortion, (2) deviation from the ideal of the over-all gain-phase-frequency characteristic of that part of the circuit between the modulator at the transmitter and the final demodulator at the receiver, and (3) generation and detection of parasitic phase modulation. Topics to be discussed are:

I. Nonlinear distortion
 A. Transmitter
 1. Signal-frequency amplifier
 2. Modulator
 3. Demodulator in feedback loop
 B. Receiver
 1. Intermediate-frequency amplifier
 2. Demodulator
 3. Signal-frequency amplifier

II. Nonideal gain-phase-frequency characteristic

III. Generation and detection of parasitic modulation

I. NONLINEAR DISTORTION

Any deviation from linearity of the input-output amplitude characteristic will generate new frequencies causing intermodulation. This may occur in the signal-frequency amplifier either at the transmitter or the receiver or in the modulator at the transmitter or the demodulator at the receiver.

A. Transmitter

When high-level modulation is employed, it is usually the modulator which produces the predominant nonlinear distortion. By proper design, the radio-frequency output is made as nearly proportional to the plate voltage on the modulator as possible, but for any given modulator, there is an irreducible minimum beyond which the distortion cannot be reduced without the use of feedback. In order to reduce this distortion sufficiently, it is necessary to employ a larger amount of feedback than has hitherto been employed in an envelope-feedback system of this bandwidth. The method of obtaining this feedback is described in a later section on Feedback Design.

The use of a large amount of envelope feedback, however, alone cannot solve the problem of nonlinear distortion, because envelope feedback requires an active element in the β circuit, the demodulator. Any distortion generated in the demodulator is, accordingly, present in the output of the transmitter. The demodulator may be a high-level linear detector whose distortion is inherently less than that of the modulator so that there is some improvement from feedback, but the amount of improvement is limited by the linearity of the demodulator and not by the amount of feedback. The nonlinear distortion problem at the transmitter thus involves the design of a demodulator whose distortion is very low, as well as the provision of a sufficient amount of envelope feedback.

B. Receiver

The demodulator is likely to be the predominant source of nonlinear distortion in the receiver. Distortion from this cause may be minimized by employing a high-level linear detector. To obtain the necessary high level to drive this type of demodulator, negative feedback is used to suppress the generation of nonlinear distortion in the intermediate-frequency amplifier.

Another method of reducing the distortion produced by the demodulator in the transmitter and the demodulator of the receiver is to make them the same, so that the distortion produced by the demodulator in the transmitter is canceled by a like distortion of opposite sign in the demodulator of the receiver. The over-all nonlinear distortion will then be less than that from either demodulator. With sufficient feedback the amount of reduction of the distortion below that of either demodulator is a measure of the equivalence of the two demodulators. The practical difficulty of obtaining and maintaining the equivalence of these two demodulators makes it appear desirable to reduce the distortion generated in each without regard to that generated in the other.

II. NONIDEAL GAIN-PHASE-FREQUENCY CHARACTERISTIC

A double-sideband multiplex system places severe requirements on the transmission characteristic from the modulator to the demodulator. The requirement is that the complex gain at any frequency on one side of the carrier be the conjugate of that at the corresponding frequency on the other side when both gains are relative to that at the carrier frequency. This results in a gain characteristic that is symmetrical with respect to the
carrier frequency, and a phase characteristic that is skew symmetrical. Skew symmetry means that the phase at any frequency on one side of the carrier is the negative of that at the corresponding frequency on the other side of the carrier when both phases are expressed as relative to that at the carrier. Any deviation from this type of symmetry introduces new frequencies. The way in which this occurs is shown in the Appendix. The amplitudes of the predominant second-order distortion products for two test tones are found to be
\[
(m_p^2/16)(\delta_p^2 + \delta_p^4) \quad \text{and} \quad (m_q^2/16)(\delta_q^2 + \delta_q^4)
\]
for the second harmonics, and
\[
(m_pm_q/8)(\delta_p^2 + \delta_p^4)(\delta_q^2 + \delta_q^4)
\]
for the sum and difference frequencies. Here \(m_p\) and \(m_q\) are the modulation factors and \(\theta_p\) and \(\theta_q\) are the deviations of the phase characteristic from skew symmetry in radians for the sidebands in question. Each \(\delta\) is the difference of the ratios of the gains at the two side frequencies in question to that at the carrier frequency. These distortion products should be compared with the desired signal amplitudes which in the units used in (2) are equal to the modulation factors \(m_p\) and \(m_q\). In making distortion tests it is customary to use equal modulation factors for both test tones and to express the distortion products relative to either signal amplitude. When this is done, these distortion-to-signal ratios become
\[
(m/16)(\delta_p^2 + \delta_p^4), \quad (m/16)(\delta_q^2 + \delta_q^4) \quad \text{and} \quad (m/8)(\delta_p^2 + \delta_p^4)(\delta_q^2 + \delta_q^4).
\]

III. Generation and Detection of Phase Modulation

Envelope feedback does not affect any phase modulation that may be inadvertently produced in the modulation process. A linear detector responds only to the envelope of the carrier and does not detect any variations in its phase or frequency. But deviations of the transmission characteristic from skew symmetry may change the carrier envelope even if there is no phase modulation present as pointed out in the previous section. With phase modulation present in the transmitter additional requirements must be met.

For an ideal receiver that has a constant gain and linear phase within the band but a zero response outside the band, the second-harmonic-to-fundamental ratio is, to a first approximation,
\[
\Phi^2/48m,
\]
where \(m\) is the amplitude modulation factor and \(\Phi\) is the phase-modulation index. This assumes the worst condition in which the second-harmonic distortion lies within the transmitted band but the fourth harmonic does not. If the fourth harmonic is also transmitted, the second harmonic distortion is reduced. Conditions leading to (4) do not put a stringent requirement on the phase modulation generated by the transmitter. To obtain a fundamental-to-second harmonic ratio of 100 (40 decibels) at an amplitude modulation of 0.8 (80 per cent) would require that the phase-modulation index associated with this amplitude modulation factor should not be more than 0.783 radians or ±45 degrees. A transmitter that meets this requirement for large modulation factors would be expected to meet it for smaller factors since the parasitic phase modulation would decrease with the amplitude modulation associated with it.

When the receiver characteristic deviates from the above ideal, more terms are added to the distortion. W. T. Wintringham has calculated the second-harmonic distortion under these conditions when the bandwidth is just enough to pass this distortion. His results for the second-harmonic-to-fundamental distortion ratio may be expressed in the form
\[
(1/8m)[(\Phi/\delta)^2 + (1/3)(\Phi/\delta)^4 + \Phi^4(\delta_1^2 + \theta_1^2) + (2/3)m\Phi^2\delta_0^2 + 4m\Phi^2(\delta_0^2 - \theta_0^2) - (1/6)\Phi^4(\delta_0^2 - \theta_0^2) + m^2\Phi^2[4(\delta_0^2 - \theta_0^2) + 40\delta_0^2 + 40\delta_0^4] - 2m^2\Phi^2[4(\delta_0^2 + \theta_0^2) + 26\delta_0\theta_0]
\]
and the gain-phase-frequency characteristic is proportional to
\[
A_s \exp i(k_1\omega + k_2x + \phi_s)
\]
where
\[
A_s = \text{amplitude-modulation factor}
\]
\[
\phi_s = \text{phase-modulation index}
\]
\[
\delta_1 = 2(A_p + A_{-p}) - (A_{2p} + A_{-2p}) - 2
\]
\[
\delta_0 = (A_p - A_{-p}) - (A_{2p} - A_{-2p})
\]
\[
\theta_0 = (A_p - A_{-p})
\]
\[
\delta = 2(\phi_p - \phi_{-p}) - (\phi_{2p} - \phi_{-2p})
\]
\[
\theta = (\phi_p - \phi_{-p}) - (\phi_{2p} + \phi_{-2p})
\]
(7)
at any frequency \(\omega + x\). Here \(\omega\) is the carrier frequency, \(k_1\) and \(k_2\) are constants and \(\phi_s\) is the departure of the phase from linearity. The implied proportionality factor is adjusted so that \(A_s = 1\), and \(k_1\) is chosen so that \(\phi_s = 0\). The first line of (5) gives the term that would be present even if the receiver were ideal, the second line gives the additional term if the receiver characteristics have the proper symmetry, and the third, fourth, and fifth lines give the additional terms if the receiver characteristics lack symmetry. The sixth line gives the distortion ratio that is present even in the absence of phase modulation. The first term is small even for excessive amounts of phase modulation. The terms in the second line do not depend upon symmetry but tend to be negligibly small unless there are large ripples in the gain and phase characteristics. Even if the ripples all have their maximum and minimum values in the most undesirable locations, a phase modulation index of 0.2 and ripples of ±1.3 decibels in gain and 9 degrees in phase will allow 57-decibel signal-to-distortion ratio provided the desired symmetry is maintained so that the remaining terms of (5) are zero. The greater importance of symmetry is evident from the last term which indicates that unsymmetrical deviations of the same magnitudes will
result in a 40-decibel signal-to-distortion ratio even if there is no phase modulation.9

TRANSMITTER DESIGN

Fig. 1 shows the circuit schematic of the transmitter designed to meet these requirements. This transmitter is described in detail in a companion paper.10 The radio-frequency drive is obtained from a crystal oscillator and harmonic-generator chain. This is applied to the grids of two bridge neutralized 364A tubes operating as a push-pull modulator. The 12-speech channels in the frequency range from 12 to 60 kilocycles per second come from the type-K equipment at an impedance level of 140 ohms. This is applied to the grid of the first signal-frequency amplifier through a 140- to 30,000-ohm transformer. The first three stages employ new high-transconductance tubes. The last tube is a 350-watt pentode whose output plate modulates the 364A's.

Part of the output of the transmitter is demodulated and fed back to the input of the signal-frequency amplifier to provide negative feedback for distortion correction.

I. FEEDBACK DESIGN

In designing the feedback networks for commercial equipment, it is necessary to include margins to permit a reasonable tolerance in tube manufacture and a reasonable amount of aging of tubes before it becomes necessary to replace them.

Measurements made on the experimental model of the equipment indicate that 28 decibels of feedback is required to limit the nonlinear distortion to the desired value. The commercial equipment is designed for 38 decibels of feedback to allow for the decrease in transconductance as the tubes age. Variations in interelectrode capacitances and transconductances of different tubes will change the μ_β characteristic. This requires a design that provides stability against these variations. In order to allow for this and to allow for a reasonable departure between the designed and realized characteristic, a phase margin of 30 degrees and a gain margin of 10 decibels are assumed in the design. This means that the amplifier will remain stable as long as the phase does not increase as much as 30 degrees or the gain as

9 Numerical values in this paragraph refer to $m = 0.8$.
much as 10 decibels from the design. No amount of decrease in gain will produce instability.

The realization of the necessary amount of feedback was made possible by two factors: (1) the development of new tubes which permit a larger amount of feedback and (2) the feedback design theory of H. W. Bode.\(^{11}\)

Bode's design consists of shaping the \(\mu \beta\) characteristic so that there is a constant gain margin (fixed loss) for frequencies remote from the band where the phase is unfavorable and a constant phase margin against parasitic oscillations near the band where the \(\mu \beta\) gain is equal to or greater than unity. In Fig. 2 there is a gain margin of 10 decibels in the frequency interval \(f_1\) to \(f_2\), and a phase margin of 30 degrees in the interval \(f_1\) to \(f_2\) which depends upon the slope in this interval. Bode has shown that the most favorable phase margins result from minimum phase networks and that for this type of network the phase margin can be maintained by making \(f_2/f_1 = n/z\), where \(n\) is the asymptotic slope of the log gain - log frequency characteristic, and \(z\) is the slope required to give the desired phase margin, and

\[
\theta = 2(1 - \theta/\pi) \tag{8}
\]

where \(\theta\) is the phase margin in radians. In the present amplifier \(n\) is equal to the number of stages counting in the modulator (\(n = 5\)). The present design is based on \(\theta = \pi/6\) (30 degrees) which gives \(z = 5/3\) or 10 decibels per octave.

In actual amplifiers, however, there is a phase shift in addition to the minimum phase shift which is important except at low frequencies where transit times are negligibly small compared with the period of all the frequencies involved and the apparatus is small compared with the wavelength. The feedthrough due to grid-plate capacitance also introduces an additional phase shift. When these additional phase shifts are taken into consideration the foregoing equation is replaced by

\[
f_2/f_1 = n/z + \pi^2Tf_1/f_2 + \pi^2f_2/f_2 \tag{9}
\]

where \(T\) is the time delay due to the transit time of the tubes and the additional delay of any all-pass network that may be inherent in the amplifier, and \(f_2\) is the frequency at which the circuit is, in effect, 1 wavelength long. The last term accounts for the added delay resulting from the physical size of the feedback loop. As expressed, it gives the delay of a terminated transmission line one wavelength long at the frequency \(f_2\). For design purposes it seems to be satisfactory to measure the overall distance around the \(\mu \beta\) loop for determination of \(f_2\).

Because the \(\mu \beta\) gain is constant in the band, it is possible to increase the slope of the \(\mu \beta\) characteristic near the edge of the band as shown on Fig. 2 without decreasing the phase margin. This fact allows the frequency of the upper edge of the useful band to be twice what it would have been if the constant slope were continued as shown by the dotted line in Fig. 2.

The realization of the desired \(\mu \beta\) frequency characteristic with the simplest types of networks is an art. The feedback networks of the experimental models are the result of a design by R. L. Dietzold and W. H. Boghosian. In this particular case the \(\beta\) circuit is fixed by other considerations. The modulator is a radio-frequency network, so as simple a circuit as practical is used in it. It also is the load impedance for the last stage in the signal amplifier and therefore this stage is not

available for use in shaping the $\mu\beta$ curve. In order to operate the three earlier stages at low levels to reduce the distortion, the gain of the penultimate stage is made high. Since little shaping can be accomplished in a high-gain stage it is a simple resistance-coupled stage and all the $\mu\beta$ shaping is realized in the first two stages. On this basis, the next step is to calculate the contribution to the $\mu\beta$ characteristic of the remainder of the $\mu\beta$ loop and subtract it from the desired $\mu\beta$ curve. This result gives the characteristic that must be satisfied by stages one and two and is shown in Fig. 3.

The characteristic shown in Fig. 3 consists of the sharp corner at the upper edge of the band, a broad minimum followed by a peak at higher frequencies where the gain of the remainder of the $\mu\beta$ loop is falling rapidly but the desired characteristic has a constant gain equal to the gain margin. The networks for interstages 1 and 2 and their impedance frequency characteristics are shown in Figs. 4 and 5, respectively. The capacitance C_1 represents the total parasitic capacitance. The resistance R_1 together with the transconductance of the tube determines the gain within the band. The inductance L_1 is put in series with R_1 to enable a high impedance to be obtained at several megacycles. The capacitance C_3 is added to introduce the steep slope required just beyond the edge of the useful band. At low frequencies the impedance in series with C_3 becomes small compared with that of C_2. Accordingly, the network neglecting that impedance is used as the basis of design at frequencies near the edge of the band. Here the response of stage 1 has a minimum followed by a maximum, while that of stage 2 has a single maximum. By properly proportioning the circuit elements it is possible to obtain a characteristic which is substantially flat within the band and has approximately the steep slope required by the design. The remainder of the frequency characteristic must be realized by properly adjusting the circuit elements ignored until now.

The series circuit $(L_3R_3C_3 \left[L_2 + L_3R_3C_3 \right])$ for stage 2 controls the minimum at somewhat higher frequencies and in connection with the parasitic capacitance C_1 produces a peak at still higher frequencies. L_2 may be chosen so as to locate the frequencies of antiresonance or series resonance, but the capacitances C_1 and C_2 are already fixed so that the ratio of resonance to antiresonance is determined. Likewise R_3 may be chosen so as to determine the impedance at resonance or antiresonance. In the design under discussion it was found necessary to introduce the antiresonant circuit $L_3R_3C_3$ in series with $L_2R_3C_3$ in stage 2 in order to obtain the desired peak at 4.5 megacycles.

In Figs. 4 and 5 the impedance characteristic of some of the component parts of the networks are also shown to indicate how they control the characteristic in various frequency ranges. These facilitate sketching in the network response and indicate the way the network should be changed to approach more nearly the desired characteristic.

The low-frequency $\mu\beta$ characteristic below the useful band is designed to satisfy similar phase and gain requirements except that now the gain-frequency slope is positive.

The amount of feedback for which the low-frequency characteristic may be designed is not restricted by the figure of merit of the tubes nor parasitic capacitances of the network but depends only upon the size of the capacitances and resistances of the network. Accordingly it is desirable to design this characteristic with greater margins in order to permit greater manufacturing tolerances in the network elements.
The size of the coupling capacitance is limited by the fact that larger capacitance means larger physical size and larger parasitic capacitance resulting in a lower high-frequency asymptotic gain for the stage. This affects the design of the high-frequency μB characteristic so as to reduce the amount of feedback possible. The value of the grid resistance is limited by the grid current.

If a modulation choke is employed, the plate-supply filter requires special consideration. Unless its resonances and antiresonances are at such low frequencies that the μB characteristic is already well cut off, it is desirable to damp these resonances by including resistances in the filter. See Fig. 1.

All of the remaining low-frequency network components have frequency characteristics composed of products and quotients of factors of the form

$$1 + \omega_0/p$$

where $p = i\omega$ is as usual the coefficient of i in the assumed exponential time factor, and ω_0 is a characteristic frequency of the network. The design problem is to build an over-all network that has a resultant slope of 9 decibels per octave out of factors of this type, each of which changes from a zero slope to a slope of 6 decibels per octave gradually over a two-octave range. (At the characteristic frequency the two asymptotes intersect and the curve is 3 decibels from either. At an octave either way from the characteristic frequency the curve is 1 decibel from its asymptote.)

This design may be accomplished by introducing two factors in the denominator of the expression for the gain with the same characteristic frequency and following them by factors alternately in the numerator and denominator whose characteristic frequencies are separated by a fixed ratio. This results in the following gain-phase-frequency characteristic

$$\frac{1}{(1 + \omega_0/p)^2} \prod_{n=0}^{\infty} (1 + \omega_0/n(2n+1)p).$$

Here n is the frequency ratio between the characteristic frequencies of the successive factors. Fig. 6 shows the gain-frequency characteristic for n equal to 2 and 4. Values of n very much greater than these will produce undesirably large undulations in the characteristic. In order not to reduce the amount of feedback appreciably within the useful band, ω_0 should be made equal to about half the frequency of the lower edge of the band.

It is not necessary that the frequency ratios between successive factors be all the same but only that the characteristic frequency of each factor in the denominator be the geometric mean of the adjacent factors in the numerator. This fact is useful in designing cathode networks because the ratio between the two factors of each cathode network is determined by the tube characteristic.

In order to reduce the impedance required of the modulation choke as much as possible, it is designed so that its impedance at the first characteristic frequency is equal to the mid-band circuit impedance. This characteristic frequency is made equal to about half that of the lower edge of the useful band. Another factor with the same characteristic frequency is then introduced either by a cathode network or by a coupling circuit.

Each cathode network of the type shown in Fig. 7a introduces the quotient of two factors, thus,

$$\frac{1 + \omega_1/p}{1 + \omega_2/p}$$

where $\omega_1/\omega_2 = 1 + RG_m$ is equal to the magnitude of the local feedback introduced at frequencies below those for which the cathode resistance R_4 is effectively bypassed by the cathode filter capacitance C_2. Here G_m is the transconductance of the tube. The lower characteristic frequency is determined by the cathode filter.

$$\omega_2 = 1/R_cC_2.$$
Each coupling circuit of the type shown in Fig. 7b, which consists of the coupling capacitance \(C_4\) between the plate and the following grid and the grid resistance \(R_4\), introduces a factor

\[
\frac{1}{1 + \frac{\omega_4}{\omega}}
\]

(14)

where \(\omega_4 = 1/R_3C_3\).

If the resistance \(R_4\), determined by this equation, is appreciably less than the maximum allowable resistance on account of grid current, two additional factors may be introduced by adding a parallel resistance-capacitance circuit in series with the above grid resistance as shown in Fig. 7c.

This also changes the value of the first characteristic frequency so that the grid resistance must be adjusted to bring this characteristic frequency back to its desired value. The design, however, is straightforward. Given the coupling capacitance \(C_1\) and the total grid resistance \(R_3 + R_4\), determined by other considerations, the highest critical frequency \(\omega_5\) for the network and the relation \(\omega_3/\omega_4 = \omega_4/\omega_5\) required to give the desired slope, then

\[
R_3 = \frac{\omega_5 C_3(R_3 + R_4) - 1 + 1/[\omega_5 C_3(R_3 + R_4)]}{1 + \omega_4/\omega}
\]

(15)

\[C_4 = C_3(R_3 + R_4)^2/R_3R_4\]

(16)

and the network introduces the factors

\[
\frac{1 + \omega_4/\omega}{(1 + \omega_4/\omega)(1 + \omega_5/\omega)}
\]

(17)

where

\[
\omega_4/\omega_3 = \omega_4/\omega_5 = \omega_0 C_3(R_3 + R_4).
\]

(18)

Each plate circuit of the type shown in Fig. 7d introduces the quotient of two factors in such a way that the low-frequency gain is greater than the mid-band gain by the ratio of the total resistance in the plate circuit to the mid-band impedance. The lower characteristic frequency is determined by the time constant of the filter \((R_4C_0)\) and the higher characteristic frequency is determined by the capacitance of the filter and the parallel combination of the filter resistance and the mid-band resistance. This assumes that the impedance of the coupling network is large compared with the remainder of the plate circuit as is usually the case in practice.

When these characteristic frequencies are properly located the desired over-all frequency characteristic may be obtained.

II. FEEDBACK DEMODULATOR

As has been remarked previously, the demodulator is in the \(\beta\) circuit so that any distortion produced in it will be present in the transmitter output. See Fig. 1. In order to minimize the distortion, a high-level linear rectifier may be used. This should have a large filament emission with small transit time and work into a high-impedance load. These requirements are not compatible with those for the maximum amount of feedback, which are low tube capacitance and a low output impedance. In order to satisfy these conflicting requirements J. W. McRae devised a circuit which effectively applies local feedback to the linear rectifier as shown in Fig. 1. This circuit allows the use of a small rectifier tube with small transit time, low capacitance, and only moderate filament emission working into a low output impedance. The effect of the feedback is to make the rectifier operate as if it had a high output impedance so that large filament emission is not required for small distortion. Though without feedback a very high physical resistance might be used, it would so increase the time constant that nontracking in the diode might result. The feedback reduces the time constant by a large factor. Demodulators have been built according to this circuit that operated successfully with 30 and 40 decibels of feedback.

It was found necessary to have a rather imposing array of radio-frequency circuits associated with the main \(\beta\) circuit. Circuit \(A\) of Fig. 1 acts as a shunt to the signal frequency that is present along with the modulated radio frequency on the modulator plates. Its presence is necessary in order that the output be fed back by means of modulation and demodulation and not directly at the signal frequency. Circuit \(B\) prevents the radio frequency from getting on the amplifier plate and helps prevent it from getting through to the grid of the first tube of the signal frequency amplifier. Choke \(C\) and series-tuned circuit \(D\) act as a filter for the amplifier grid. Finally, choke \(E\) suppresses the remaining radio-frequency voltage to a value which will not cause distortion in the first signal-frequency amplifier grid.

RECEIVER

The design and construction of the multiplex receiver are described in a companion paper.\(^{12}\) It is a triple detection set. The first demodulator converts the radio-frequency carrier from 160 megacycles per second to about 8 megacycles per second at which intermediate frequency there is one stage of amplification. This is followed by the second demodulator that converts the carrier to a frequency at which it is convenient to build networks to discriminate against undesired signals such as the adjacent radio channel. The third demodulator recovers the type-K signal in the frequency range from 12 to 60 kilocycles per second.

In order to minimize the distortion the final demodulator is made a high-level linear rectifier. Undistorted power to drive this demodulator is obtained by employing negative feedback in the second intermediate-frequency amplifier. The proper level to the final demodulator is maintained by employing automatic volume control.

One of the major requirements of the receiver is that its phase characteristic be symmetrical with respect to the carrier. This requires that the interstage circuits be accurately tuned and that the frequencies of the beating

oscillators be accurately maintained. Toward this end both beating-oscillator frequencies are obtained from a crystal-controlled oscillator and harmonic-generator chain, in fact, from the same crystal oscillator. Even by employing crystal-controlled oscillators at both the transmitter and the receiver it was not deemed feasible in this particular apparatus to maintain the second intermediate-frequency carrier with sufficient accuracy to maintain the desired symmetry without taking steps to have the frequency characteristic linear.

DISTORTION MEASUREMENTS

Nonlinear Distortion

Fig. 8 shows the second-harmonic distortion from the transmitter A without feedback, B with feedback by linear diodes, and C with feedback using McRae’s feedback demodulator. Similar tests were made for third-harmonic distortion and second- and third-order distortion with two input tones. These indicate that the crosstalk would be prohibitive without either feedback or the use of a spread-band system so that the second-order distortion falls in a vacant frequency range.

Phase Modulation

In a plate-modulated transmitter, phase modulation may be generated by an impedance common to the input and bridge-neutralizing circuits or by variation in the electron transit time with modulation voltage. Phase modulation from either of these causes was reduced by a redesign of the 356A tube. Phase modulation that was produced by the latter was reduced by diminishing the transit time, and that by the former was lessened by reducing the impedance common to the neutralizing circuit and input or output circuit. Besides reducing the length of leads within the tube, separate grid and plate leads were provided for the neutralizing circuit. Fig. 9 shows a picture of the new 364A tube having these desirable characteristics together with its predecessor, the 356A.
setting and tuning of plate and grid circuits. In this respect the new tube is better than the original one.

The distortion produced by departures of the transmission characteristic of the receiver from the ideal was determined by measuring the over-all distortion of the system.

System Tests

As a practical test on the radio system the experimental model was tested in the laboratory in connection with the type-K carrier equipment. The equipment arrangement for these tests is shown in Fig. 11. Type-K transmitting terminal with means for applying speech or a single frequency is at one end, and the type-K receiving terminal with means for listening or measuring is at the other end. These two ends may be connected by means of an attenuator or through the radio repeater. By adjusting the attenuators \(L_1 \) and \(L_2 \) the level at which the radio equipment is operated can be controlled.

A monitor is provided for the transmitter which allows the determination of the level at which the radio equipment is being operated. A significant way of expressing this level is to state the modulation factor for a single-frequency tone equal to the required load capacity at any previous point in the circuit. This modulation factor is called \(B \) when it is expressed in decibels below unity. Increasing attenuator \(L_1 \) decreases the modulation factor on the transmitter and hence decreases the distortion. In order to maintain the same over-all net loss, however, it is necessary to decrease attenuator \(L_2 \) by an equal amount. This increases the first circuit noise from the receiver. Hence, it is desirable to operate the radio equipment at as high a level as possible without exceeding the distortion requirements.

Intermodulation tests were made both with test tones and with speech. In each case the signal was applied to one or more channels and the intermodulation measured in the remaining channels. Measurements were made with the radio equipment operated at various levels. The results of the more significant intermodulation with the first experimental model of the radio equipment operating at the level \(B = 5 \) are given in Figs. 12 and 13. Curve \(A \) represents the design limit below which it was desired to keep the distortion in the radio transmitter for this particular installation. The curves of

![Fig. 11—Equipment arrangement for system tests.](image)

![Fig. 12—Distortion characteristics of the first model. The abscissa gives the input power of each test tone in decibels above 1 milliwatt at the transmitting toll testboard. The radio equipment for these tests was lined up so that a single tone of +20 decibels referred to a milliwatt or two tones each of +14 decibels would modulate the transmitter 100 per cent. The peak load requirement for a 12-channel telephone system is +15 for a single tone or +9 for each of two tones. The ordinate gives the ratio of the distortion to each test tone in decibels below unity so that a rising curve indicates increasing distortion.

\(A \)—Intermodulation design limit.
\(B \)—Second-harmonic distortion at 57.0 kilocycles per second in channel 12.
\(C \)—Second-harmonic distortion at 25.0 kilocycles per second in channel 4.
\(D \)—Second-order cross modulation at 13 kilocycles per second (=58–45).
\(E \)—Third-order cross modulation at 49 kilocycles (=2×53–57).

![Fig. 13—Talking Tests as measured with 2B noise meter.](image)

\(A \)—Cross modulation design limit.
\(B \)—Cross modulation in channel 12 from channel 5.
\(C \)—Cross modulation in channel 10 from channels 11 and 12.
\(D \)—Cross modulation in channel 11 from channels 4 and 5.
\(E \)—Cross modulation in channel 1 from channels 9 and 12.

Figs. 12 and 13 indicate that the experimental radio equipment meets this requirement. The performance illustrated by the curves is obtained when the transmitter is operated at a level such that a sine wave equal
to the peak load of 12 telephone channels will modulate the transmitter 5 decibels below complete modulation. As a matter of interest, the single-frequency and two-frequency inputs equivalent to the 12-channel load are indicated in Fig. 12. The predominant intermodulation involves a high-frequency channel. On comparing, for example, curves B and C, it is seen that the second-harmonic distortion occurring at 57 kilocycles per second is very much greater than that occurring at 25 kilocycles per second. The fact that the predominant intermodulation involves a high-frequency channel was interpreted as being caused by either phase modulation in the transmitter, or a nonsymmetrical transmission characteristic in the receiver, or both. Accordingly, the modulator of the transmitter was redesigned and the intermediate-frequency circuits of the receiver were redesigned. These changes reduced the second-harmonic intermodulation at 57 kilocycles per second to a value approximately equal to that at 25 kilocycles per second; that is, curve C of Fig. 12 represents the second-harmonic intermodulation on any test tone after the changes were made. Similar tests on second- and third-order intermodulation products indicate that the modified transmitter may be operated at a 3-decibel higher level without increasing the intermodulation over that of the first experimental model.

Besides the reduction in distortion and phase modulation with the new transmitter, there is an increase in carrier output from 30 to 80 watts so that the undistorted sideband power is 7 decibels more than the first model.

ACKNOWLEDGMENT

We wish to express our appreciation of the support and encouragement given in the course of this work by Mr. J. C. Schelleng, under whose direct supervision the work was done.

APPENDIX

Cross Modulation Resulting from Deviations of the Gain-Phase-Frequency Characteristic from the Ideal

Consider an ideal transmitter and an ideal linear rectifier but a receiver whose gain and phase is proportional to

\[A \exp (k_1 \omega + k_2 x + \phi_2) \]

(19)
at any frequency \(\omega + x \). Here \(\omega \) is the carrier frequency and \(k_1 \) and \(k_2 \) are constants, and \(\phi_2 \) is the departure of the phase from linearity. Here the implied factor of proportionality is adjusted so that \(A_0 = 1 \) and \(k_1 \) is chosen so that \(\phi_0 = 0 \). Let the transmitter output be

\[\left\{ 1 + \frac{m_p}{2} \exp (i\omega t + e^{i\phi_2}) + \frac{m_q}{2} \exp (i\omega t + e^{-i\phi_2}) \right\} e^{i\omega t} \]

(20)
representing a carrier of constant frequency (no phase modulation) \(\omega \), whose envelope perfectly reproduces the input signal,

\[m_p e^{i\phi_2} + m_q e^{-i\phi_2}. \]

(21)
The input to the linear rectifier is then proportional to

\[\left\{ 1 + \frac{m_p}{2} (A_p e^{i\phi_2} + A_p e^{-i\phi_2}) e^{i\omega t} + \frac{m_q}{2} (A_q e^{i\phi_2} + A_q e^{-i\phi_2}) e^{i\omega t} \right\} e^{i\omega (t + k_1)}. \]

(22)
This may be written in the form

\[(1 + a + ib) e^{i\omega (t + k_1)}. \]

(23)
The output of the linear rectifier is then proportional to the magnitude of the coefficient of \(e^{i\omega (t + k_1)} \).

\[|1 + a + ib| = (1 + a) \sqrt{1 + b^2/(1 + a)^2} \]

\[= 1 + a + (b^2)/(1 + a^2 - a^3 + \ldots) \]

\[- (b^2/8)(1 + 3a + 6a^2 - 10a^3 + \ldots) \]

\[+ \ldots. \]

(24)
The predominant fundamental and second order terms are

\[(m_p/2)(A_p e^{i\phi_2} + A_p e^{-i\phi_2}) e^{i\omega t} \]

\[+ (m_q/2)(A_q e^{i\phi_2} + A_q e^{-i\phi_2}) e^{i\omega t} \]

\[+ (m_p m_q/8)(A_p e^{i\phi_2} - A_p e^{-i\phi_2})(A_q e^{i\phi_2} - A_q e^{-i\phi_2}) \]

\[+ (m_p^2/16)(A_p e^{i\phi_2} - A_p e^{-i\phi_2}) e^{i\omega t} \]

\[+ (m_q^2/16)(A_q e^{i\phi_2} - A_q e^{-i\phi_2}) e^{i\omega t}. \]

(25)
Here \(t_k = t + k_2 \), where \(k_2 \) is the envelope delay.

This shows that in order to prevent distortion (intermodulation) in a double-sideband system the gain-phase-frequency characteristic must be symmetrical about the carrier frequency. Let

\[\theta_p = \phi_p + \phi_2, \quad \delta_p = A_p - A_q \]

\[\theta_q = \phi_q + \phi_2, \quad \delta_q = A_q - A_p \]

(26)
represent the deviations of the gain-phase-frequency characteristic from symmetry. Here \(\theta_p \) and \(\theta_q \) represent the difference between the phase at the upper side frequency from the straight line drawn through the phase at the lower side frequency and the phase at the carrier. \(\delta_p \) and \(\delta_q \) represent the difference between the gains expressed as ratios at upper and lower side frequencies. If these deviations are small, the output of the system will be

\[m_p e^{i\phi_2} + m_q e^{-i\phi_2} \]

\[+ (m_p m_q/8) \sqrt{(\theta_p^2 + \delta_p^2)(\theta_q^2 + \delta_q^2)} (e^{i(\theta_p + \delta_p) t} + e^{i(\theta_q + \delta_q) t}) \]

\[+ (m_p^2/16)(\theta_p^2 + \delta_p^2) e^{i\theta_p t} + (m_q^2/16)(\theta_q^2 + \delta_q^2) e^{i\theta_q t}. \]

(27)

EDITOR'S NOTE: This paper was prepared in March, 1941, but it was not submitted for publication until August, 1944, because of security reasons.
Ultra-Short-Wave Receiver for the Cape Charles-Norfolk Multiplex Radiotelephone Circuit*

D. M. BLACK†, SENIOR MEMBER, I.R.E., G. RODWIN†, SENIOR MEMBER, I.R.E., AND W. T. WINTRINGLEAM†, ASSOCIATE, I.R.E.

Summary—The requirements for an ultra-short-wave receiver for use in a multiplex radiotelephone link circuit are outlined. The technical details of a receiver designed to meet such requirements in the circuit between Cape Charles and Norfolk, Virginia, are described.

Introduction

The development of the receiver described in this paper was undertaken as part of a program to provide practical receiving equipment for use in unattended multiplex radiotelephone lines in toll telephone systems. Single-channel ultra-short-wave radio links over short distances have been in operation for a number of years;\(^1\)\(^2\) multichannel systems for similar types of service have also been in use.\(^3\)\(^4\) Previous multiplex radio systems had fewer channels than this one and as a general rule the channels were spread about the carrier frequency in such a way as to give a minimum amount of crosstalk. The system incorporating the receiver described in this paper differs from these in that there are 12 channels placed in a solid compact group appearing on both sides of the radio carrier in a double-sideband type of transmission. The radio equipment is designed to operate between standard type-K wire-carrier telephone terminals, in which the 12 individual single-sideband channels at 4-kilocycle intervals are located in the frequency spectrum between 12 and 60 kilocycles.

Receivers built in accordance with the principles discussed in this paper have been in continuous service in the multiplex radiotelephone circuit between Cape Charles and Norfolk, Virginia,\(^5\) which was opened to commercial traffic in October, 1941. In the radio circuit a transmitted power of 50 watts in the range of frequencies between 150 and 160 megacycles is used to obtain the desired signal strength at the receiving end 26 miles away. Directive antennas on 198-foot towers provide an optical path over the intervening Chesapeake Bay.

Circuit Description

The receiver circuit, which is of the triple-detection type, is shown in block schematic form in Fig. 1. The signal is supplied directly to the first detector from the antenna system, and is there converted to the first intermediate frequency of approximately 10,000 kilocycles. After one stage of amplification it is then converted to 1500 kilocycles in the second detector. The heterodyne frequencies supplied to the first and second detectors are obtained from a single temperature-controlled crystal oscillator through a series of harmonic generators and amplifiers. The output of the loop-test oscillator can be supplied to the first detector for making local tests when the distant transmitter is not operating.

At the 1500-kilocycle frequency another single-stage amplifier, like the one at the higher intermediate frequency, has its gain varied by the automatic-volume-control circuit. In addition, there is a three-stage fixed-

† Bell Telephone Laboratories, Inc., New York, N. Y.

\(^{1}\) A. G. Clavier, "Production and utilization of micro-rays," \(\text{Elec. Commun., vol. 12, 1, p. 3; July, 1933.}\)

\(^{2}\) A. J. Gill, "Interim report on ultra-short-wave experimental transmissions between Guernsey and the mainland," \(\text{Post Office Engineering Department, Radio Report No. 269, July 21, 1934.}\)

gain feedback amplifier and two sections of band-pass filters to provide the additional amplification and selectivity required. The automatic-volume-control circuit consists of an amplifier and rectifier. The rectifier feeds back negative voltage in the usual manner to the two stages in the receiver. This same rectifier also supplies a voltage of a positive polarity to its own amplifier. This gives a very flat volume-control characteristic. Another branch circuit has an amplifier, narrow-band filter, and rectifier, together with an alarm relay to indicate carrier failure or frequency drift. The third detector is a high-amplitude diode working into a low-pass filter whose output is connected directly to the type-K carrier telephone equipment.

Vacuum-tube currents in all tubes in the receiver, with the exception of those in the power supplies, can be measured by a meter located on one of the panels. A multiposition switch permits the meter to be connected to any one of forty separate circuits. The meter measures the voltage drop across a resistance in the plate, screen, or cathode lead so that the circuits are not opened at any time.

Three separate power supplies are provided in the receiver, all of which are of the regulated type which give constant output voltage with varying load and line-voltage conditions. A 180-volt power supply with the positive side grounded is used to provide the negative bias required for the harmonic generators and other tubes. A relay connected in the output of this power supply prevents either of the other power supplies from operating until the full negative voltage is built up.

Another 180-volt power supply is used to provide the plate and screen voltages for most of the other tubes in the receiver. A third power supply is used to provide the 400 volts required for the crystal-oscillator tubes and the feedback amplifier. A regulating transformer is used to provide constant filament voltage on all tubes in the receiver proper for a range of line voltage from 90 to 130 volts. An external source of 24 volts direct current is required to operate the alarm and testing relays in the receiver.

MECHANICAL DESCRIPTION

The mechanical construction of the receiver follows the usual practice of mounting individual panels in enclosed metal cabinets. Two views of the receiver are illustrated in Figs. 2 and 3. The receiver consists of two cabinets bolted together on a metal base. The panels are of the depressed type with apparatus mounted on the back side and the terminals and wiring in the space between the front of the panel and the mat. The mats which cover the front of the panels present a uniform flat surface matching the other part of the cabinets which have an aluminum-gray finish.

Since the receiver is designed for a fixed frequency, no tuning dials are provided on the front of the panels. Such tuning adjustments as are necessary can be made with a screwdriver inserted in the appropriate hole, which is normally covered with a small plug, in the front mat. The tuning controls have locking devices to prevent them from getting out of adjustment. The individual circuits are enclosed in shield cans and the separate panels in most cases have large cans enclosing all of the apparatus mounted on the back side. The covers of the cans as well as the front mats are equipped...
with safety switches so that when they are taken off, the high voltages are removed from any exposed terminals. All alternating and high-voltage wires between panels are contained in armored cable or pipe conduit.

Requirements and Design Considerations for a Multiplex Receiver

The reasons for the choice of the double-sideband method of transmission for this system are contained in a companion paper. As with any other telephone system, the performance standards of any part of the system, such as the receiver, are so proportioned that each part carries an economical share of the burden. The performance standards to which this receiver was designed are discussed in the following paragraphs.

From the point of view of the designer of the multiplex radiotelephone system, the receiver is a box with input terminals to which an antenna is connected and output terminals to be connected to a telephone line. The performance of the receiver of interest to him only as it reacts on the system as a whole. It is the job of the designer of the receiver to fill the box in such a way that the performance measured between its terminals is satisfactory. The general requirements for the multiplex receiver, therefore, only describe the performance desired between its input and output terminals.

In this system, the receiver is required to accept an amplitude-modulated double-sideband signal from the antenna transmission line and deliver the signal consisting of 12 single-sideband channels at frequencies from 12 to 60 kilocycles to a telephone cable pair. It was estimated that the carrier voltage across a 72-ohm coaxial line from the antenna, when properly terminated, would be about 2500 microvolts. Some variation from this nominal voltage would be expected due to aging of the transmitter tubes, etc. Under full-load conditions with all 12 channels in service the peak-modulation index of this carrier would approach 50 per cent.

The receiver should deliver an output to the carrier system about 40 decibels below 1 milliwatt for each individual channel. There is a further requirement that the output of the receiver for an individual channel should not vary more than ±0.5 decibel. To compensate for all the gain variations between the input to the transmitter and the output of the receiver, automatic volume control is required in the receiver. In order to keep the loss of individual channels to a constant value, the gain of that portion of the receiver preceding the final detector must be flat over a band somewhat greater than 120 kilocycles.

In any radio system nonlinear distortion is present to a greater or lesser degree. In a single-channel system, intermodulation produced by such nonlinearity is of importance only to the extent that distortion of the wave forms of the signals is produced and impairs the quality of speech. In a multichannel system, however, nonlinear distortion produces intermodulation products which can appear in channels other than those in which the fundamental signals are transmitted, and hence cause crosstalk or noise. The requirements for the reduction of such crosstalk and noise are very much more severe than those for distortion within a single channel. The difference in severity of the requirements arises because in the single-channel case the intermodulation products can be present only when the signal is present and therefore tend to be masked by it. In a multichannel system, however, the intermodulation products may fall into a channel which is in use but at the moment is not carrying speech. In this case, the only masking element is the background noise in the channel.

In the present double-sideband system, the use of multiplex imposed requirements on nonlinear distortion many times more severe than is required for single-channel systems. Some sources of distortion not usually considered, became important in the receiver. The carrier voltage applied to the diode detector was made high to minimize the curvature of the diode characteristic and the impedance of the diode-load circuit was made a substantially constant resistance to all of the sideband frequencies further to reduce the distortion produced in the detector. The most difficult source of nonlinear distortion to control, however, was the shape of the amplitude and phase characteristics of the band-pass filters in the intermediate-frequency part of the receiver.

In examining the filter characteristics as a source of distortion, it is necessary to include the action of the final detector. It is well known that a perfect linear detector will reproduce the amplitude modulation of a carrier wave without distortion. However, the same linear detector is likewise known to generate distortion when it is called upon to produce the beat frequency between a carrier and a single-sideband signal. Consider first the effect of an ideal filter on an amplitude-modulated carrier. The amplitude of the two sidebands relative to that of the carrier may be altered by the same amount, in which case the only result is a change in the modulation index or degree of modulation; or the phase of one sideband may be linearly advanced and the other linearly retarded by the same amount relative to the carrier, in which case the signal as a whole is advanced or delayed. In either of these two cases the presence of the filter makes no contribution to the nonlinear distortion. However, in the case of a nonideal filter, if the change in amplitude of one sideband through the filter is different from that of the other, or if the phase advance of one sideband differs from the phase retardation of the other, intermodulation products will be produced. The result, under this condition, may be pictured by considering the wave at the output of the filter as being made up of two components, one formed by the carrier with symmetrical sidebands, and the other being a single component at the frequency of one
sideband and of such amplitude and phase as to represent the difference between the sideband transmitted through the filter of this frequency and the symmetrical sideband component of the same frequency. The symmetrical components form an undistorted amplitude-modulated wave, the modulation on which may be recovered without distortion. The excess or difference component, however, will be demodulated against the perfectly modulated carrier as a single-sideband signal, with all of the distortion resulting from such demodulation by a linear detector.

More exact analysis confirms the conclusion of this very rough descriptive analysis. In order that the non-linear distortion be kept within satisfactory limits for this multiplex system, the phase shift through the filters must be linear to within a few degrees, and the amplitude distortion over the pass band of the filter must be less than a decibel.

An analysis of the selectivity required in the receiver indicated that it should be of the triple-detection variety in which the signal is converted in frequency twice before being detected by its own carrier. It was thought that the importance of interference-free operation warranted a very high over-all selectivity. In line with previous experience in similar circumstances a value of 90 decibels discrimination against adjacent-channel interference was thought to be desirable. The last intermediate frequency was, therefore, chosen as low as was consistent with easily attaining a symmetrical amplitude and phase characteristic and designing the necessary by-pass circuits for the final detector, which will be discussed later. The first intermediate frequency was chosen roughly as the geometric mean between the signal frequency and the last intermediate frequency.

Ordinarily a linear detector would consist of a diode operating into a high resistance. The output would be by-passed at the intermediate frequencies by a condenser and the detector would be operated at a high input amplitude. With this receiver the band to be transmitted is 120 kilocycles requiring that the by-pass be good at the final intermediate-carrier frequency plus and minus 60 kilocycles, and at the same time the output impedance of the detector be uniform and high at the frequencies from 12 to 60 kilocycles. It was found that by making the final intermediate frequency 1500 kilocycles, a reasonable design could be obtained for both the final intermediate-frequency selectivity and the detector output-circuit-impedance characteristics.

In order to obtain a large signal input to the final detector in the receiver, it was necessary to build an intermediate-frequency amplifier which had a high gain and which could handle a large signal voltage with extremely low distortion. The amplifier needed to have a wide flat band in order to satisfy all the requirements. This made it desirable to build an amplifier having a large amount of negative feedback:

It is not possible to construct a feedback amplifier which has a broad pass band and sharp cutoff at the edges. For this reason it was necessary to construct a feedback amplifier having a broad band and to limit the band by two filters, one placed ahead of the amplifier and the other after the amplifier.

The concentration of a large amount of fixed gain in the feedback amplifier to obtain good linearity put a limitation on the automatic-volume-control circuit, since there were only two stages of amplification in the receiver which could be varied by the automatic volume control. To provide a sufficiently constant output a third amplifier stage was provided ahead of the volume-control rectifier but not in the main signal path through the receiver. A voltage which becomes more negative as the input carrier increases is supplied to the first two stages in the conventional manner. A voltage which becomes more positive as the signal increases is supplied to the third amplifier. The effect of increasing the gain of the third amplifier as the signal becomes stronger is to increase the negative voltage supplied to the other stages, and thus reduce the gain in the main signal path. By properly proportioning voltages the receiver output can be kept practically constant over a wide range of input.

The frequency stability of both transmitter oscillator and receiver-heterodyne oscillator must be such that the signal at the last intermediate frequency operates on a suitable linear portion of the filter characteristic. A fairly small deviation of either frequency would introduce an intolerable amount of distortion in the output. This requirement makes necessary the provision of considerably greater frequency stability in the transmitter than would be required for keeping on the assigned channel.

Since the receiver was to be used at a fixed frequency, it was desirable to provide a single crystal oscillator to supply both heterodyne-oscillator frequencies required. For the first beating oscillator it was necessary to multiply the fundamental frequency of the oscillator with several harmonic-generator stages, as suitable commercial crystals of the required stability were not obtainable for frequencies above a few thousand kilocycles. The second beating oscillator made use of the second harmonic of the crystal oscillator. The use of a common oscillator to supply both beating oscillator frequencies imposed a fixed relationship between the first intermediate frequency and the received frequency. This resulted in the receivers at opposite ends of the circuit having slightly different first intermediate frequencies, since the operating frequencies in the two directions are not the same.

Since the frequency stability is so important, some means of detecting any large deviation of the transmitted carrier from the center of the band of the receiver was required. Accordingly, a narrow-band crystal

filter was designed to be placed in a branch circuit connected to the second intermediate-frequency amplifier just ahead of the final detector. A relay in a rectifier circuit in this branch gives an alarm in case the carrier frequency drifts outside the band of the filter.

From an operating standpoint it was necessary in case of circuit failure to determine quickly at which end of the circuit the trouble has occurred. A simple way of doing this was to introduce a suitable voltage into the first detector from another oscillator of such frequency that the beat frequency between it and that of the local transmitter was exactly equal to the frequency of the distant transmitter. Since this frequency had to be held within close limits in order to pass through the narrow-band filter, another temperature-controlled crystal oscillator was required for this loop-test oscillator. The antenna system was designed so that the pickup into the receiver from the local transmitter would be great enough so that the combination of it with the additional oscillator in the first detector of the receiver would produce a signal in the receiver at least as strong and preferably two or three times stronger than that from the distant transmitter. At the same time the pickup should not be great enough to produce cross modulation difficulties in the receiver.

Since the failure of only one tube in the multiplex receiver may interrupt service on twelve separate circuits, it is very important to make frequent checks on the condition of the various tubes. In order to avoid interrupting the circuits by removing the tubes from the receiver to check them with a vacuum-tube tester, a scheme was developed to be able to check the tubes under operating conditions. A switch on one of the panels reduces the filament voltage on the tubes by 10 per cent. The currents measured at the metering panel under this condition indicate whether any of the tubes have low emission.

Performance

The curve shown in Fig. 4 illustrates the amplitude-frequency characteristic of the pass band of the two intermediate-frequency filters connected in tandem. The over-all frequency characteristic of the pass band of the receiver is essentially the same as the curve shown. This characteristic proved to be satisfactory in service.

In Fig. 5 the over-all frequency characteristic is plotted on a different scale to show the selectivity obtained outside of the nomina1 band of the receiver. The discrimination of about 90 decibels on adjacent channels has proved to be ample insurance against interference from signals near the operating frequency.

The curve in Fig. 6 shows only the departure from linearity which was obtained in the over-all phase characteristic of the receiver, since this is the criterion which determines the contribution to nonlinear distortion. If a curve of total phase shift were shown instead, the departure from linearity would not be evident, since the phase shift in the filters alone amounts to about 180 degrees in the middle of the band and has a slope of about 16 degrees per kilocycle. About two thirds of the amount of phase departure from linearity is contributed by the two filters and one third contributed by the other tuned circuits in the receiver. This departure is within the value which was being striven for, and it was found that it was not possible to improve it materially without increasing the complexity of the filter design beyond practical limits.

The low-pass filter in the output of the final detector has an amplitude characteristic as shown in Fig. 7. The group of 12 channels from 12 to 60 kilocycles pass through this filter and are supplied to the type K carrier equipment at substantially equal volumes.

The automatic-volume-control characteristic is shown in Fig. 8. The use of positive-voltage feedback on the
automatic-volume-control amplifier made possible the flat characteristic over such a wide range of input with control on only two stages in the intermediate-frequency amplifier. With the operating point as shown, the incoming signal can drop more than 30 decibels before the receiver-output volume will change appreciably.

The narrow-band crystal filter used to indicate departures of the carrier from its correct frequency has a characteristic illustrated in Fig. 9. The carrier-indicator relay is set to give an alarm when the amplitude drops 6 decibels. This will occur if the frequency of the carrier is off by as much as 2.5 kilocycles.

The performance of the receiver in regard to noise or distortion is difficult to measure independently of the other parts of the radio circuit. As an example of the results which were obtained in regard to distortion, a typical curve including the transmitter and measured at the output of the receiver is illustrated in Fig. 10. Signal-to-distortion ratio is plotted against percentage modulation in the transmitter. In actual operation of the radio circuit an input of 1 milliwatt at the toll switchboard on one of the twelve channels modulates the transmitter about 20 decibels below 100 per cent modulation so that it is very seldom that the peak volume of all twelve channels approaches full modulation. The signal-to-noise ratio of the over-all circuit including the transmitter and associated carrier telephone equipment measures approximately 60 decibels in each of the single channels at normal volume.

Correction

Dr. William B. Rogers has drawn the attention of the editors to the following corrections to his paper, "Electronic Apparatus for Recording and Measuring Electrical Potentials in Nerve and Muscle," which appeared on pages 738 to 743 of the December, 1944, issue of the PROCEEDINGS: The second paragraph in the right-hand column on page 738 should read "Directly coupled to the oscillator is a 6J7 tube (T2) which amplifies the pulse resulting from the charging current."

The fifth paragraph in the right-hand column of page 738, fifth line, should read "The charging pulse amplified by a 6J7 tube (T1),..."
Ultra-Short-Wave Transmitter for the Cape Charles-Norfolk Multiplex System*

R. J. KIRCHER†, SENIOR MEMBER, I.R.E., AND R. W. FRIIS†, SENIOR MEMBER, I.R.E.

Summary—Design features of an unattended ultra-short-wave double-sideband multiplex transmitter are described. Forty decibels of envelope feedback is utilized over the 12- to 60-kilocycle band of the twelve type-K carrier-signal channels which modulate the last stage of the transmitter. Accessibility of apparatus and ease in maintenance contribute toward obtaining maximum reliability of the equipment in commercial service.

RADIO equipment in the 160-megacycle region has been developed as a means for spanning natural barriers which present serious obstacles to the normal cable and wire routes. For this service a number of severe requirements are imposed on the radio apparatus, particularly when it is to operate on an unattended basis. For example, an absolute frequency stability of approximately 0.002 per cent is required in the radio link. A further requirement is that nonlinear distortion products which appear as crosstalk should be suppressed approximately 50 decibels below the fundamental frequencies from which they are derived. From the operational standpoint, service interruptions must be guarded against in every way possible, and the utmost convenience in servicing and maintaining the equipment provided. This paper describes the transmitter developed for this purpose which meets these requirements.

The most significant feature in the design of the transmitter is the use of 40 decibels of envelope negative feedback which is effective in the 12- to 60-kilocycle transmission band. The Chesapeake Bay installation of this equipment is discussed in a companion paper.†

By referring to the block schematic diagram of the radio transmitter given in Fig. 1, a general idea of the components may be obtained. The radio-frequency carrier is produced by a chain of units consisting of a quartz-crystal oscillator, a buffer amplifier, and three stages of harmonic generators. The last stage, which is the modulator stage, is a bridge capacitance neutralized, plate-modulated, class C amplifier which delivers approximately 50 watts of radio-frequency power. This stage may be modulated 100 per cent. The signal-modulating power is developed through a chain of four class A amplifier stages. Loosely coupled to the modulator is the demodulator unit from which the signal envelope voltage of correct phase is obtained which is returned to the input of the signal amplifying stages to effect the negative-feedback correction on the transmitter. A monitor unit designed to check the operation of the transmitter is connected at the junction of the output circuit of the modulator and the balanced coaxial transmission line. With this general picture as a guide, a more detailed description of the equipment and its operation follows.

MECHANICAL DESIGN

Maximum accessibility and ease in maintenance without any sacrifice in operating performance must be attained in a multiplex transmitter designed for unattended operation. The transmitter is housed in two 6-foot steel cabinets each 30 inches deep and 21½ inches wide which are bolted together. Each cabinet has a full-length door on the right and left sides; the left-side door in each case has a long glass window through which most of the tubes within may be seen. The inside of the cabinets, and most of the apparatus, are finished with

Fig. 1—Block schematic of the transmitter.

Fig. 2—Photograph of the left side of the transmitter.
aluminum lacquer to provide good interior illumination. Most of the apparatus is mounted on both sides of flat 27-inch panels supported by relay-rack channels centrally placed on the front and back of the cabinets. The wide panels allowed a greater flexibility in the initial design, and with an equipment depth of approximately 11 inches, a high degree of accessibility is realized.

A full left-side exposure of the transmitter appears in Fig. 2. The cabinet on the left contains the four rectifiers and the regulating transformers for the 115-volt alternating-current primary power to the plate and filament transformers. This cabinet is ventilated by means of intake louvers near the bottom, and an exhaust fan at the top. A pair of thermostats are visible near the top of each cabinet. One of each pair gives a high-temperature alarm at the terminal room, should excessive heating develop; the other removes the plate power, should a predetermined higher temperature be reached. In the upper half of the cabinet on the right the radio-frequency stages may be seen enclosed in a shielded compartment the cover of which has been removed. Plug-in crystal-oscillator chassis are at the left, the lower one being the spare unit. The box in the lower right corner of this compartment is the envelope demodulator which is placed directly below the modulated amplifier. A spare demodulator is provided with each transmitter and may be quickly inserted in place of the regular unit. The 4-stage signal amplifier is in the shielded compartment of several sections directly below the radio-frequency panel. On a half panel at the bottom of the cabinet on the right are mounted the relays and fuses, while on the left is the blower which provides a forced air draft on most of the tubes in this cabinet.

The corresponding full right-side exposure of the transmitter is given in Fig. 3. A feature of interest in the left cabinet is the filtered-air intake for the blower and the vertical distribution duct through which the air is forced to the tubes. The air escapes through a thin spun-glass filter in the top of the cabinet. The transmitter monitor unit is the box similar to the demodulator which appears in the upper central position, and in the upper left corner the ground switch may be seen. The accessibility of apparatus in both cabinets is emphasized in this view.

The front view of the transmitter appears in Fig. 4. A particular advantage of this design is that all the tuning controls can be readily brought into a recessed compartment behind the front panel mat as shown. Meters are provided for measuring all significant voltages and currents through appropriate meter switches. Four lamps indicate the correct operation of the thermostats, the blower, and the holding-circuit controls. Four jacks on the front panel facilitate testing the signal-frequency-amplifier circuits. Six individual circuit breakers are provided, one for the primary power for each rectifier, one a master breaker for the four rectifiers, and the sixth is the main primary breaker for the transmitter. The latter removes all alternating-current power except that to the ovens of the crystal oscillators. The handle prominent in the upper right-hand corner operates the ground switch. In the ground position this switch opens the holding circuit, and directly grounds the high-voltage supply of each rectifier, and, through a mechanical linkage, releases the four identical door keys contained in the key barrels shown on the front panel. The switch is illuminated in the
ground position and may be clearly seen through a meter bezel just above the switch handle. As a further safety precaution, opening any cabinet door also opens the high-voltage holding circuit. Remote control of the transmitter is effected through a relay, the contacts of which normally close the high-voltage holding circuit.

Circuit Description

Due to the stringent frequency-stability requirement imposed by the receiver design which is considered in detail in a companion paper, the low-temperature coefficient quartz plate of the crystal oscillator is maintained at a nearly constant temperature. A fundamental crystal frequency of one twenty-fourth the final frequency is used, the second harmonic being selected in the oscillator plate circuit and amplified in the following stage. The power supply for these two stages is a 400-volt full-wave mercury-vapor rectifier.

The next two stages in the radio-frequency chain are single-tube harmonic generators which are operated as frequency doublers. The following stage is a two-tube harmonic generator operated as a frequency tripler to obtain the final frequency. A balancing control is provided to equalize the driving voltages applied to this unit. In the plate circuit a short lecher-frame system is used which is coupled to a similar lecher frame in the modulator grid circuit. Both lecher frames are tuned by external controls. The power for the three stages of harmonic generation, in which Western Electric 356A tubes are used, is obtained from a 1000-volt full-wave mercury-vapor rectifier.

The last stage in this chain is designated as the modulator. The signal voltage is introduced on the plates of the tubes of this push-pull amplifier which thus acts in accordance with the constant-current system of modulation. For this stage there was developed the Western Electric 364A tube which is similar in electrical properties to the 356A but provides two sets of independent plate and grid terminals.

A conventional parallel-tuned circuit is used in the first mesh of the modulator plate circuit. From each stator of the twin-stator plate condenser a short rod projects down to establish a small capacitative coupling with the demodulator pick-up probes, thereby supplying the radio-frequency envelope voltage to that unit. The coupling is so loose that the presence or absence of the demodulator unit is difficult to observe insofar as it affects the radio-frequency conditions of the modulator. The secondary mesh of the plate circuit is inductively coupled to the primary, and controls are provided for coupling in the load and varying the impedance into which the modulator operates. This two-mesh circuit is compactly mounted in turret style very close to the modulator tubes.

The first three stages of the type-K carrier-signal amplifier use low-power Western Electric D-159511 pentodes which are operated at a transconductance of approximately 10,000 micromhos. Stray capacitances are kept to a minimum in the design of the interstage circuits which are two-terminal networks the characteristics of which will be presented later in this paper. The power supply for these tubes and those in the monitor and demodulator is a 600-volt full-wave mercury-vapor rectifier. In each stage a series resistance drops the voltage developed on the plate to the right value. The correct screen potential is obtained from a potentiometer, while the bias required is obtained through a cathode resistance. The fourth stage is a Western Electric 363A, 350-watt power pentode, operating at a transconductance of approximately 7000 micromhos.

The modulation choke in stage four is a compact, low-capacitance, high-Q, air-core inductance wound in four sections and supported by an Isolantite tube. Screen and suppressor voltages as well as plate power for this stage are supplied from a 1250-volt well-filtered full-wave mercury-vapor rectifier. The frequency characteristic of the filter of this rectifier enters into the design of the gain-frequency characteristic of this stage at low frequencies. Direct-current plate power to the modulated amplifier is delivered through the modulation choke and a series voltage-dropping resistor suitably by-passed for the signal frequencies.

As shown in Fig. 1 a diode voltmeter is provided on the plate circuit of stage four to indicate the peak alternating-current signal voltage applied to the modulator. The gain of the four stages in tandem with 40 decibels of negative feedback is such that a single tone input at 28 decibels below 1 milliwatt will modulate the transmitter 80 per cent. The input impedance of the transmitter is 140 ohms. Without feedback the gain of these stages is approximately 110 decibels in the 12- to 60-kilohertz transmission band. To protect the signal amplifiers from excessive input signal voltage in case the feedback voltage is interrupted through a failure of the radio-frequency carrier, a relay is used in the grid circuit of the modulator which opens the primary circuit of the 600-volt rectifier when the grid current drops below a given value.

Test jacks appearing on the front of the transmitter enable the maintenance personnel to introduce a test signal from a standard signal generator on the grid of any stage. Provision is also made for the insertion of a shielded vacuum-tube voltmeter on the grid and on the plate of the stage under test. The grid of the following stage is disconnected and grounded, and the plate voltmeter capacity made equal to the grid capacity. This measuring technique allows the gain-frequency characteristic of each signal frequency amplifier, or of the four in cascade, to be readily obtained.

The demodulator is of particular interest, for it is from this unit that a facsimile of the radio-frequency envelope is obtained which is of correct phase to be reintroduced on the grid of the first stage of the signal amplifier.

to effect the negative-feedback correction of both distortion and noise. A departure from the conventional practice of using a simple diode rectifier or rectifiers is the use in this unit of symmetrical diode rectifiers each of which is acted upon independently by an amplifier driven by a small signal voltage developed across a resistance in the cathode of each diode. Each amplifier has approximately 25 decibels gain at signal frequencies. The plate of the amplifier is directly returned through radio-frequency filtering circuits and a direct-current blocking condenser to the anode of its driving diode. A marked improvement in the fidelity of the diode in rectifying the radio-frequency envelope at high per cent modulation is achieved by this local negative feedback connection on the diode. In addition, a remarkably flat transmission gain is realized out to approximately 2 megacycles although without the negative feedback the diode-cathode circuit has a cutoff frequency of approximately 75 kilocycles. A more comprehensive description of the functioning of this unit will be found in a companion paper.

The transmission characteristic of the demodulator is of fundamental importance in considering the design requirements governing the amount of over-all negative feedback permissible without jeopardizing the stability of the transmitter. This characteristic is in general identified as a part of the β characteristic. Design features to achieve compactness, minimize stray capacitances, and to effect a high degree of isolation between the radio-frequency and the signal-frequency circuits are of great importance in obtaining trouble-free operation of this unit. It is appreciated that the inherent distortion in this unit limits the amount of the negative-feedback correction obtainable in the transmitter as a whole.

In the monitor two diodes are used, one connected directly to each side of the balanced coaxial transmission line which connects the transmitter to the antenna. A circuit similar to those of the demodulator employing one of the diodes as the radio-frequency envelope rectifier with a local negative-feedback amplifier is utilized as a means which, in conjunction with type K carrier terminal equipment, permits the measurement of the distortion characteristics of the transmitter. By inserting a vacuum-tube voltmeter across the plate circuit of the monitor amplifier, the signal-voltage amplitude due to modulation of the transmitter may be measured. This measurement, taken in relation to the radio-frequency carrier voltage indicated by the diode, allows the determination of the degree of modulation of the transmitter. It is readily shown that the voltage developed in the plate circuit of the monitor amplifier is within a few per cent of the actual envelope voltage when the gain of the amplifier is 25 decibels or more. The limitation on distortion measurements from the monitor is of the same order as the inherent distortion in the demodulator.

These transmitters may be operated into either an artificial antenna load or into the antenna array by means of a manually operated selector switch built into the junction box in which the gas-filled transmission lines supplying the antenna terminate. Two artificial antenna load resistors are placed in the junction box. From this box approximately 2 wavelengths of ½-inch concentric-pipe transmission line are used to connect the selector switch to the output circuit of the modulator. The similarity of the load impedance presented by the antenna to that presented by the artificial-antenna-load resistors, and the degree of radio-frequency balance, may be noted by comparing the voltages indicated by the monitor diodes. The radio-frequency carrier power can be determined from the current of a thermocouple in series with the artificial antenna resistors of known value.

CIRCUIT CHARACTERISTICS AND PERFORMANCE CURVES

In the paper by Burrows and Decino a comprehensive study of the design used in these transmitters is presented. In that paper the relationship between the gain-frequency characteristic of the transmitter and the stability of the transmitter with negative feedback is analyzed, and criteria established from which the component parts of the transmitter were then designed. The features of the negative-feedback design are clearly brought out by examining the μβ gain-frequency characteristic. This characteristic is the resultant of the gain-frequency characteristics of all the forward-acting, or μ circuits, plus all the gain-frequency characteristics of the backward-acting or β circuits.

Because of its importance, provision is made for measuring the μβ gain-frequency characteristic in the following manner. A known voltage from a variable-frequency standard-signal generator is applied to the grid of the third stage of the signal-frequency amplifier. To the plate circuit of the second stage of the signal-frequency amplifier, which for this test is disconnected from stage three, a shielded-vacuum-tube voltmeter is attached which simulates closely the circuit capacity normally present, and allows the measurement of the output voltage developed. In all other respects the transmitter remains normal. The ratio in decibel units of the output voltage of stage two to the applied voltage on stage three, as the frequency is varied, constitutes the μβ gain-frequency characteristic. This characteristic is plotted on semilog paper with frequency on the logarithmic scale to facilitate the recognition of the criteria established by W. H. Bode for negative feedback amplifier design.4

Since each interstage gain-frequency characteristic is a constituent of the μβ characteristic, the individual circuit characteristics must be carefully checked. Typical circuit characteristics are shown in Fig. 5. These characteristics were obtained by the use of auxiliary vacuum-

tube voltmeters and a variable-frequency standard-signal generator. Such gain-frequency measurements extend from approximately 25 cycles to as high as 30 megacycles, although the range of the $\mu \beta$ design may be covered adequately in going from 100 cycles to 5 megacycles. The difference between the sum of the gain-frequency characteristics of the four forward-acting μ stages, and the over-all $\mu \beta$ characteristic, gives the β gain-frequency characteristic. The β characteristic may be further subdivided into the active elements characteristic and the passive elements characteristic when the gain-frequency characteristics of the passive circuit elements are known.

The radio-frequency operating characteristics of the modulator which are of particular interest are the effectiveness of the neutralization and the linearity between plate voltage and load current. With respect to neutralization, an excellent condition was obtained with the simultaneous minimizing of the modulator plate currents and maximizing of the grid currents. It was found that a suitably linear relationship between the plate voltage and load current was realized for a load impedance permitting a carrier output power of approximately 50 watts. For this condition the plate circuit bandwidth, for a 3-decibel reduction in amplitude, is approximately 1.8 megacycles.

By the simple expedient of grounding the negative-feedback return load, the transmitter may be operated without feedback although allowance must be made for a reduction in input voltage to the signal amplifier equal to the former amount of negative feedback. In this manner a set of distortion characteristics was obtained without benefit of negative-feedback correction. The feedback connection was then completed with negative feedback values of 30 and 40 decibels. No improvement in the distortion characteristics could be noted between the two values of feedback used, thus indicating that the

Fig. 5—Gain-frequency characteristic of the transmitter. The ordinates give the voltage gain in decibels plotted against the frequency on a logarithmic scale on the abscissa.

- Curve (1) from the grid of Stage 1 to the grid of Stage 2
- Curve (2) from the grid of Stage 2 to the grid of Stage 3
- Curve (3) from the grid of Stage 3 to the grid of Stage 4
- Curve (4) from the grid of Stage 4 to the plate of Stage 4
 (Stage 4 load is the modulator)
- Curve (5) from the grid of stage 3 to the plate of stage 2 (Normal $\mu \beta$ Characteristic)
- Curve (6) The total β characteristic obtained from the sums of curves 1, 2, 3 and 4 less curve 5.

Fig. 6—Distortion characteristics of the transmitter and receiver with single-frequency input. The ordinates give in decibels the ratio of second-harmonic distortion to the fundamental as a function of the modulation level of the transmitter given in decibels below 100-per-cent modulation on the abscissa.
limitation in distortion measurement is to be found in the inherent distortion in the demodulator and monitor. However, the use of 40-decibel negative feedback assures the operating advantage that 10 decibels of negative feedback may be lost due to aging of tubes, etc., without penalizing the distortion correction realized in the transmitter. Furthermore, a corresponding reduction in noise is obtained with the higher value of feedback. Noise per channel with 40 decibels of negative feedback has been measured at 85 to 87 decibels below a signal which would modulate the transmitter 100 per cent. It is interesting to note that a negative-feedback voltage correction of 52 decibels could be used in these transmitters before any indication of instability was observed. This is in close agreement with design expectations. Typical distortion characteristics for the transmitter with and without feedback, and for the over-all radio system with feedback are shown in Fig. 6.

A New Studio-to-Transmitter Antenna

M. W. SCHELDORF†, ASSOCIATE, I.R.E.

Summary—A directive antenna for studio-to-transmitter service is described, starting with a choice of structure based on physical requirements. A method for a general solution of radiation problems is described. Evolution of the components is carried out, and final performance curves are shown.

INTRODUCTION

The antenna about to be described is one employed by the General Electric Company in its studio-to-transmitter link from the top of the International General Electric building at Schenectady to the main transmitter in the Helderberg Mountains, about 12 miles distant. The frequency is 343.6 megacycles. Fig. 1 is a view of the antenna from the street. It has been in continuous operation for two years, having passed through the severe sleet storm of the spring of 1943 without interruption of programs.

CHOICE OF STRUCTURE

The Federal Communications Commission has set up requirements for the transmitting antenna for this service as follows, quoted from "Rules Governing S-T Broadcast Stations," section 4.34 (d) "... the gain in power toward the receiver shall be 10 (field gain 3.16) times the free space field gain from a doublet (137.6 millivolts per mile for 1 kilowatt at one mile). In all other directions 30 degrees or more off the line to receiver, the power gain shall not exceed \[\frac{1}{2} \] the free-space field gain from a doublet." In graphical terms this means field-intensity limitations as shown in Fig. 2. Spherical co-ordinates are used for purposes of visualization and cartesian co-ordinates for purposes of engineering analysis.

The frequency range under the present allocations is 330.4 to 343.6 megacycles.

Radiating structures that will give the directivity required for this application fall approximately into three classes: (1) long wire systems such as the rhombic antenna; (2) dipole and plane reflector; (3) array of dipoles. The choice of one of these classes is principally a matter of physical requirements.

From a commercial viewpoint, an antenna for this application is preferably mounted on a single pole. This limits the dimensions in the horizontal plane and immediately eliminates class 1. The electrical system must be protected against ice and snow collection. This places a severe handicap on class 2. If the reflector is made of an open construction, ice and snow will fill in the spaces...
and the wind load becomes as large as for a solid reflector. Due to the fact that a reflecting area must be provided both vertically and horizontally, this reflector load becomes very great, and the mounting arrangement becomes a problem. In the third class, it is possible to consider two linear arrangements of dipoles in a horizontal plane, each mounted in a cylindrical insulating tube which will protect the conductors from the weather and yet allow the radiation to take place with very little loss. In our case, we have chosen to place the entire radiating and connecting system within an airtight enclosure so that all metallic parts are pressurized and condensation problems are completely avoided.

Concentration of the radiation in the horizontal plane in the form of a single beam requires an array of radiators in the horizontal plane, and because of the simplicity of enclosing elements each of which lies in the horizontal plane as indicated above, the choice of polarization is automatically made. Obviously, the same beam can be secured from an array of vertical elements, but an enclosing structure would be difficult and the overall structure would have a less acceptable appearance.

Theory

The determination of the disposition and number of radiating elements can be made in a rather systematic manner with the aid of some simplified relations concerning radiation from dipole arrays. It has been found that the resultant radiation pattern for a complex arrangement can be secured by the simple product of terms representing the radiation from one dipole, with terms representing the disposition of the other dipoles, for extensions both in line and in parallel with the chosen basic dipole. For example, refer to Fig. 3. Here we have two sets of dipoles, each dipole \(l \) wavelength long, with \(m \) wavelength spacing in each set, and \(s \) wavelength spacing between the sets. The radiation in direction \(P \) is merely the product of the radiation from one of the dipoles \(A \), for instance, multiplied by one factor representing the addition of one element \(B \) at a spacing \(m \) wavelength in line with it, and a second factor representing the addition of a second set of such dipoles \(A' \) and \(B' \) at a distance of \(s \) wavelength.

The casual reader, partly because of the length of the paper, may easily miss the fundamental importance of the relationships derived. In this paper we will endeavor to emphasize their usefulness and illustrate the application.

This multiplying procedure is limited to cases where all the elements are exactly the same and have the same magnitude and distribution of currents.

However, the phase of currents in group \(A'B' \) can have any desired relation with respect to \(AB \). The phase of currents in \(B \) can differ from \(A \) also, by any fixed amount so long as \(B' \) and \(A' \) differ by the same amount. In other words, a condition of symmetry must exist. If it is desired to have \(B \) different from \(A \) in current magnitude or distribution or both, but with \(B' \) different by the same manner from \(A' \), one may still apply a factor to the resultant radiation from set \(AB \) to get the over-all resultant. Stated simply, the procedure may be applied to the smallest common element to which the system may be broken down.

The resultant radiation in a vertical plane from a system such as that shown in Fig. 2 combined with several layers in the vertical direction (or several bays, as they are commonly called), can likewise be determined from the product of the radiation from one dipole, with one factor representing the addition of a set of dipoles spaced horizontally and with a second factor

representing the presence of a series of bays in the vertical direction.

It is obvious that this calculating procedure is of extreme value when one is interested in making adjustments in any of the parameters that are at his disposal. It is necessary simply to change the factor corresponding to the parameter change, the other factors and basic pattern remaining the same.

The use of the procedure outlined will now be illustrated, to show how we arrived at the fundamental radiating system of our antenna as shown in Fig. 4. As indicated, we have five half-wavelength dipoles end-to-end in each set and two sets spaced horizontally at three-fourths wavelength with a phase corresponding to this spacing. This spacing and phase may be recognized immediately by those familiar with radiation, as the necessary condition for complete cancellation of fields in the direction opposite to the main beam.

To simplify calculations and adjustment of the array, we chose to keep all the elements alike with respect to size, current magnitude, and current distribution, so that the smallest common element was the half-wave dipole. Its radiation pattern is shown in Fig. 5, which shape is exactly described by the expression \(E = K \cos(\pi/2 \sin \theta)/\cos \theta \), a slight variation from the common shape often shown, i.e., two tangent circles.

The general expression for factors due to combinations of antennas is taken from Southworth:

\[
 f(\psi) = \frac{\sin n\pi(a \cos \psi + b)}{n \sin \pi(a \cos \psi + b)}.
\]

Where \(n \) is the number of common elements, \(a \) is a numeric equal to the center-to-center spacing between adjacent elements in wavelengths, \(\psi \) is the angular deviation from a line through the centers of the elements in the plane desired, and \(b \) is the time-phase angle between currents in adjacent elements.

Applying this to two dipoles placed end to end, with currents in phase, we obtain the following: \(a = 1/2 \) and \(b = 0 \) and the expression for the net radiation is

\[
 F = K \left[\frac{\cos(\pi/2 \sin \theta)}{\cos \theta} \right] \frac{\sin(\pi \cos \phi)}{2 \sin(\pi/2 \cos \phi)}.
\]

With reference to the two angles given in this expression, see Figs. 4 and 5. The first part uses an angle \(\theta \) measured from the normal to the elements, as shown in both figures. The second part must use an angle measured from a line through the centers of the elements, which would be \(90^\circ - \theta \) or \(\phi \) as we have shown.

For additional dipole elements, the first factor of the above expression remains the same, and the second is altered slightly. Fig. 6 shows the factors \(f(\phi) \) forming the second part of the expression for dipole combinations up to six elements end-to-end, and Fig. 7 shows the net radiation of these antenna combinations. The heavy lines in Fig. 7 show the superimposed Federal Communications Commission limits, indicating that four elements are essentially sufficient, if it is possible by other means to reduce the back radiation to a sufficiently low value.

It is necessary next to study the effect of horizontal sets of elements, in reduction of this back radiation. In the first place, we have found by experience that parasitic reflectors cannot be used to control the radiation as satisfactorily as is possible with directly-excited reflectors. This implies that both sets of elements will be energized by some form of transmission-line system. The most direct method is to use a feed line between the sets, of a length equal to the spacing, which for practical purposes fixes the time-phase-angle difference at a value equal to the space-phase angle. For simplicity, \(n \) is kept at the value 2. Fig. 8 shows the factors \(f(\theta) \) representing the effect on a radiation pattern by sets of elements in a plane spaced at distances from one-eighth wavelength to a full wavelength.

It is obvious that we cannot use any spacing other
Fig. 6—Radiation factor.

Fig. 7—Radiation from dipoles in line.

Fig. 8—Radiation factor.
than substantially one-fourth or three-fourths wavelength, and secure sufficient reduction of the back wave.

Fig. 9 shows the application of the corresponding factors to the sets of elements in line, for element quantities of 3, 4 and 5 in each set. The greater spacing shows a definite improvement in the first side lobe which is forward, with a permissible increase of side lobes in the rear. In addition, this spacing has the advantage that approximately one third the mutual impedance will be experienced between sets, due to the greater spacing. This is especially important in the case of antennas having linear dimensions of several wavelengths such that mutual impedances may become accumulative. Having chosen the spacing, only one factor remains to be settled, that of the number of elements in each set.

Experimentally, we have found that the main beam is usually wider than that called for by theory. It is consequently improbable that three elements in a set could ever be made to meet the requirements. Four elements in each set are theoretically sufficient, but this condition has a decided disadvantage. It requires (if we wish to have but one feed point in each set of conductors) that the system be end-fed, that is, at high terminal impedance, which is well known to give shunt-capacity trouble and results in an unnecessarily high matching ratio. Also in the physical structure which we planned for this antenna, we had a large tubular metal support placed horizontally at the center, between the sets of elements, and considerable metallic mass at the ends of this support. This, we anticipated, would upset the radiation pattern, and we felt it would be desirable to have the theoretical beam well within the limits. For this reason the five-element array was chosen. It is true that the first side lobe theoretically fails to pass, but we have found experimentally that this is not the limitation, as will be borne out by the final performance curves.
Plot on Fig. 10 is the chosen theoretical curve, in polar form.
The theoretical power gain for this form is 14.5, well in excess of the 10 required.

Practice

The problem of putting this antenna into a practical form for manufacture, involved principally the realization of equal currents in all the elements, with a time-phase-angle difference of 270 degrees between the sets of elements. As indicated previously, for practical reasons it is desirable to feed each set of elements at only one point, which, because of symmetry requirements, places this point at the center of the middle element, at a low impedance level, which is a preferred condition. Excitation of the other elements is made by means of phase-inverting elements as illustrated in Fig. 11B.

This is a very common method and has been very extensively applied by amateurs. The behavior may be understood by comparison of A and B in Fig. 11. A shows the condition of standing waves of current set up in a wire in free space, when the left-hand end is excited at a constant frequency. Note that at points a and d, where the current amplitudes go through zero, the instantaneous directions of current are opposite. This makes it possible to fold the conductor which has the reverse current at the points a and d to secure the configuration of B. Here the instantaneous currents are opposite in direction and equal in magnitude at all positions so that there is no field produced by the current flow. The net result is currents in successive half-wavelength sections which are flowing in the same direction as is required for successful array operation.

We incorporated this plan into our first antenna as indicated by the construction of C in the figure, but after considerable experimental procedure were able to show that this particular interpretation of the theory has decided limitations. Due to a definite measured field from the antenna system in line with the conductors, i.e., \(\theta = 90 \) and 270 degrees (where there should be none), we established the fact that the phase-inverting elements were acting as radiators. This is a result of voltage induced in them by currents in the antenna elements. These voltages are such as to produce current in the two branches in the same direction as shown by the dotted arrows in B, Fig. 11. A solution for the trouble is shown in D, where it is evident that cancellation of external fields from the inverter itself is essentially effected.

The disturbance of the pattern by currents in the simple inverters is also found in conductors and metallic supports which lie in the plane of the sets of elements. Therefore, it was necessary to support each set of elements in the vertical direction and to bring the feeding transmission lines to the terminals in the same general direction. This accounts for the rather odd physical structure at which we arrived. The diagram of Fig. 12 shows the entire electrical system. Starting from the main transmission line, we have first an elevator or line-balance converter, to permit attachment to a balanced
Reflex Oscillators

J. R. PIERCE†, ASSOCIATE, I.R.E.

Summary—This paper discusses qualitatively the behavior of reflex oscillators. Power production, electronic tuning, variation of frequency with resonator voltage, effect of modulation coefficient, and influence of load are considered. Two brief mathematical appendices are included.

I. INTRODUCTION

The reflex oscillator is a form of high-frequency long-transit-time tube which has distinct advantages as a low-power source. It may be light in weight, need have no magnetic focusing field, and may be made to operate at comparatively low voltages. The reflex oscillator may serve as a beating oscillator in double-detection receivers or as a frequency-modulated oscillator in low-power transmitters. So far the efficiencies which have been attained are quite low, but that need not be a severe handicap in some applications.

In this paper some general aspects of reflex oscillators will be discussed in a qualitative manner with the aid of various diagrams. It is believed that such a discussion may be of considerable value in orienting one's thinking about a type of tube which may be comparatively new to many radio engineers.

Although this is intended to be a descriptive rather than a mathematical paper, two brief appendices are attached indicating the derivation of some expressions used, and mathematical expressions for the various curves used have been indicated in the figures. The symbols in the mathematical expression of the figures are defined in the appendices. Readers are referred also to early papers on allied work by several writers.1-7

II. GENERAL DESCRIPTION

Reflex oscillators can be considered as oscillators in which an electron stream passes through a longitudinal radio-frequency field across a "gap" between two electrodes, then into a drift space in which there is a retarding electric field produced by a negative-repeller electrode, and finally returns through the radio-frequency field across the gap.

Reflex oscillators are not entirely new. Fig. 1 shows an early "reflex" oscillator, the negative-plate Barkhausen tube operated with the resonant circuit between cathode and grid. In this tube, the initial radio-frequency field through which the electron stream passes is applied across the "gap" between the cathode and the positive grid. The drift space with its retarding field is between the grid and the negative plate. This retarding field returns the electrons through the grid.

across the "gap" between the grid and the cathode. This form of reflex oscillator has the disadvantage that electrons which lose energy in the first crossing of the gap cannot again cross the gap and reach the cathode under a retarding radio-frequency field. The disadvantage is not fatal. At high frequencies reflected electrons, which merely penetrate into the cathode-grid region and are turned away from the cathode without reaching it, can give up energy to the circuit connecting the cathode and grid.

Although reflex oscillators themselves are not entirely new, there is a new terminology, that of velocity modulation, drift action, and bunching, which makes it possible to explain the action of reflex oscillators in simple terms. Fig. 2 explains the principle of the drift space and bunching in a retarding field. The retarding field may be, for example, the gravitational field of the earth. The drift time may be the time required by a ball thrown upward to return. If the ball is thrown upward with some medium speed \(v_0 \), it will return in some time \(T_0 \). If it is thrown upward with a low speed \(v \) smaller than \(v_0 \), the ball will return in some time \(T \) smaller than \(T_0 \). If the ball is thrown up with a speed \(v \) greater than \(v_0 \), it returns in some time \(T \) greater than \(T_0 \). Now imagine three balls thrown upward in succession, evenly spaced in time but with large, medium, and small velocities, respectively. As the ball first thrown up takes a longer time to return than the second, and the third takes a shorter time to return than the second, when the balls return they will be closer together than when they were thrown upward. Thus "bunching" occurs when the velocity with which a uniform stream of particles is projected into a retarding field is progressively decreased.

Fig. 3 shows a modern reflex oscillator. In this oscillator the gap is defined by two grids, at a positive potential with respect to the cathode, which accelerate the electrons to a sufficient speed so that even electrons which have lost a certain amount of energy to the radio-frequency field on the first crossing of the gap can still re-cross the gap against a retarding radio-frequency field. By referring either to Fig. 3 or Fig. 1, one can see how velocity modulation and drift action are utilized in producing radio-frequency power. The electrons leave the cathode and enter the radio-frequency field across the gap in a uniform stream and there receive a velocity modulation. In drifting in the retarding field produced by the repeller and returning to the gap, the electrons which passed across the gap when the field was becoming progressively less accelerating became bunched, and the electrons which passed across the gap when the field was becoming progressively more accelerating became spread out. Thus the returning electron stream forms a pulsating current when it again crosses the gap. By thinking through the drift action, remembering that the current induced by a given electron in the circuit flows in opposite directions for the two successive transits across the radio-frequency field in the gap, one can see that the electron stream will give power to the field across the gap when the time between leaving the field and returning across it is \(n + \frac{1}{2} \) cycles, where \(n \) is any integer, including zero.

III. Power Production

Important in understanding the functioning of the reflex oscillator is the dependence of power upon length of drift time, voltage across the gap, and other parameters. It is rather obvious that the power output will increase as the direct-current voltages and currents are increased. The other important factors in determining power output are drift time, (which will be measured in number of cycles, \(N \)) and radio-frequency voltage across the gap, which is controlled by the loading of the oscillator. Fig. 4 shows plots of radio-frequency electron current in the electron stream returning across the gap.
and radio-frequency voltage across the gap. As might be expected, the greater the number of cycles the electrons drift in the drift space, the lower the radio-frequency gap voltage required to produce a given amount of bunching and hence a given radio-frequency electron current. It may be seen from Fig. 4 that as the radio-frequency gap voltage is increased, the radio-frequency electron current gradually increases until a maximum value is reached, representing as complete bunching as is possible, after which the current decreases with increasing gap voltage. The maximum value of the current is approximately the same for various drift times, but occurs at smaller gap voltages for longer drift times.

The radio-frequency power produced is the voltage times the current. As the given maximum current occurs at higher voltages for shorter drift times, the maximum power produced will be greater for shorter drift times. This is clearly brought out in the plots for power versus voltage shown in Fig. 4.

The power dissipated in the circuits and load will vary as the square of the radio-frequency voltage. Part of this power will go into the load coupled with the circuit, and part will be put into unavoidable circuit losses. A typical curve of power into the circuit and load versus radio-frequency voltage is shown in Fig. 4. Steady oscillation will take place at the voltage for which the power-production curve crosses the power-dissipation curve. For instance, in Fig. 4 the power-dissipation curve crosses the power-production curve for a drift of $1\frac{1}{2}$ cycles. This means that the tube for which the curves are drawn loaded to give the power-dissipation curve shown could not oscillate with the short drift time of $1\frac{1}{2}$ cycle, corresponding to a very negative repeller voltage.

In general, the conclusions reached by examining Fig. 4 are borne out in practice. The longer the drift time, that is, the less negative the repeller, the lower the power output. For very-negative repeller voltages, however, corresponding to very short drift times, the power either falls off, which means that most available power is dissipated in circuit losses, or the tube fails to operate at all because, for all gap voltages, the power dissipated in circuit losses is greater than power produced by the electron stream.

IV. ELECTRONIC TUNING

An important aspect of reflex oscillators is the possibility of tuning them electronically. The frequency of oscillation can be changed by a substantial amount, usually several tens of megacycles, by varying the voltage of the repeller electrode. Both the amount of electronic tuning which can be obtained and the rate of change of frequency with voltage can be explained simply in terms of admittance diagrams.

Because of velocity modulation and drift action, the electron stream produces an admittance across the gap. Because of nonlinearities, for a given drift time this electronic admittance decreases in magnitude as the power-production curves to the right of the maximum, and hence the particular circuit loading shown does not result in maximum power production for these longer drift times. This is an example of operation with lighter-than-optimum load. The power-dissipation curve might cross the power-production curve to the left of the maximum, representing a condition of too heavy loading.

* See Appendix A for origin of curves. These curves are based on an approximation and are not valid for large values of V. Thus the curves for $N=\frac{1}{4}$ cycle are in error in the "maximum-power" region.
radio-frequency gap voltage is increased. This can be seen by examining the curves for current versus voltage shown in Fig. 4. The electronic admittance for any voltage may be obtained in dividing the radio-frequency electron current by the radio-frequency gap voltage. Fig. 5 shows how the magnitude of electronic admittance varies with radio-frequency gap voltage. Fortunately, explanations of the behavior of reflex oscillators are greatly simplified by the fact that the phase of the electronic admittance is unaffected by the radio-frequency gap voltage.

Fig. 6 shows a plot of electronic admittance produced across the gap by the electron stream for very small radio-frequency voltages, plotted as a function of drift angle \(\theta \), which is \(2\pi \) times the number of cycles drift, \(N \). This small-signal electronic-admittance plot takes the form of a spiral, in which the amplitude gradually increases, and the phase continually changes as \(\theta \) is increased. The crossing of the negative-conductance axis first from the origin corresponds to \(\frac{3}{4} \) cycle drift, the second crossing to \(1\frac{1}{4} \) cycles drift, etc. For a larger radio-frequency gap voltage the variation of electronic admittance with \(\theta \) may be represented by a similar spiral with all radii reduced as indicated in Fig. 5. Also shown in Fig. 6 is minus-the-admittance of a tuned circuit near resonance. This admittance plot takes the form of a straight vertical line. The distance from the origin along a horizontal axis is minus-the-conductance of the circuit, which near resonance does not change appreciably with frequency. Susceptance, measured in the vertical direction, is proportional to frequency off resonance and to the effective capacitance of the resonant circuit.

In order for oscillations to build up the electronic conductance, that is, the horizontal component of the electronic admittance, oscillations must be negative and have a magnitude greater than the circuit conductance. This means that oscillations can occur only in the region of the admittance diagram not cross-hatched in Fig. 6.

The electronic-tuning range between extreme frequencies which can be obtained by changing \(\theta \) in the neighborhood of one optimum-power value is proportional to the vertical distance between intersections of the spiral and the minus circuit-admittance line. It will be observed in examining Fig. 6 that when the circuit conductance is small enough so that the electronic-admittance spiral cuts the circuit-admittance curve near the vertical axis, changes in circuit conductance will cause only small changes in the vertical position of intersection and hence will cause only small changes in the electronic-tuning range. When the circuit conductance is almost as large as the electronic admittance for small gap voltages, changes in circuit conductance may, however, produce large changes in the electronic-tuning range.

For steady oscillation, the electronic admittance must, of course, be minus the circuit admittance. As oscillations build up, the electronic-admittance spiral shrinks in accordance with Fig. 5 until this condition is fulfilled. Thus, from curves such as those shown in Figs. 5 and 6, the gap voltage or amplitude of oscillations and the frequency of oscillation can be obtained for any drift angle \(\theta \).

It will be observed that the electronic-admittance spiral crosses the circuit-admittance line at points farther from the horizontal axis for longer drift times. This means that the longer the drift time, the farther off circuit resonance the oscillator can be made to oscillate, and, hence the greater the range of electronic tuning which is available. The diameter of the admittance spiral increases with the increasing direct-current and with decreasing direct voltage, as well as with increasing drift time. As has already been pointed out, the circuit susceptance varies more rapidly with frequency as effective circuit capacitance is increased. Thus we may conclude that the greater the direct beam current, the lower the direct voltage at the gap (disregarding effects on the modulation coefficient, which will be discussed later), the longer the drift time, and the smaller the effective capacitance of the circuit, the larger will be the range of electronic tuning. This is borne out in practice, and it can be particularly noted that the electronic-tuning range is greater for lower repeller voltages, that is, for longer drift times.

The diagram in Fig. 7 explains why frequency changes more rapidly with drift angle as the oscillator is loaded more heavily, thus reducing circuit \(Q \). In this diagram, part of the electronic-admittance spiral and two circuit-admittance curves are shown. One of these latter is close to the vertical axis, corresponding to light loading of the oscillator; the other is farther from the axis, corresponding to heavy loading of the oscillator. Height above the horizontal (zero susceptance) axis along either of the minus circuit-admittance axis is proportional
to frequency off circuit resonance. The angle of a line from the origin (zero susceptance point) through a point on a minus circuit-admittance curve gives the phase of minus-the-circuit-admittance for that point, and hence gives the phase the electronic admittance must have for oscillations to occur at the frequency corresponding to that point. As oscillations build up the electronic-admittance spiral shrinks, as has been explained, but its phase will not change. It may be seen that, for a given frequency off resonance, the required electronic-admittance angle with respect to that for \(n + \frac{1}{2} \) cycle drift will be small for the large-circuit conductance, corresponding to heavy loading, and large for the small-circuit conductance corresponding to light loading. This angle is controlled by varying the repeller voltage. In order for the oscillator to operate off resonance by a given frequency, the phase of the electronic admittance, and hence the drift angle, must be changed more in the case of a lightly loaded circuit than in the case of a heavily loaded circuit, and in order to change the phase more, the repeller voltage must be changed more. This is a characteristic of reflex oscillators that is borne out in practice.

From figures such as 5, 6 and 7, and from the relation between drift time and repeller voltage, curves of amplitude versus frequency and of frequency versus repeller voltage can be derived. Fig. 8 shows such curves for several load conditions. Actual behavior of reflex oscillators is very similar to that illustrated by these. Of course, circuit losses make the cusp-like amplitude-versus-frequency curve for zero load unattainable, but a sharpening of the top of amplitude-versus-frequency curves may be noted at low loads. It should be noted that in these amplitude-versus-frequency curves, relative amplitude is shown. Of course the actual radio-frequency voltage will be high for light loading and low for heavy loading. The S shape of the frequency-versus-repeller-voltage curves is very noticeable in practice.

V. Variation of Frequency with Resonator Voltage

The fundamental variable in electronic tuning is drift time. Drift time is changed by changing voltage. So far, the variation of frequency with repeller voltage has been discussed. The frequency of operation is also a function of the direct voltage between the cathode and the gap in the resonator across which the electrons travel, here called the resonator voltage. Making the repeller more negative invariably shortens the drift time and increases the frequency. Increasing the resonator voltage may, however, either shorten or lengthen the drift time, and change the frequency in either sense. Increasing the resonator voltage increases the mean speed of the electrons in the drift space, tending to reduce the drift time, but it also increases the penetration of the electrons into the drift space, tending to increase drift time. For a linear potential variation in the drift space, the drift time decreases with increase in resonator voltage and the frequency increases with resonator voltage when the cathode-to-resonator voltage is numerically greater than the cathode-to-repeller voltage, while the drift time increases and the frequency decreases with increase in resonator voltage when the cathode-to-repeller voltage is numerically greater than the cathode-to-resonator voltage. Changes in resonator voltage change the power input into the tube, and hence change the heating. This may change the frequency by changing the resonator size or shape. Hence, change in frequency may be different for slow changes in resonator voltage than for rapid changes in resonator voltage.

VI. Modulation Coefficient

Imagine an electron crossing a gap across which a radio-frequency voltage of magnitude \(V \) appears. If the electron takes an appreciable part of a cycle to cross the gap, it will gain an energy less than \(V \) electron volts, regardless of the moment at which it crosses the gap. The peak energy it can gain may be expressed

* See Appendix B.
as MV, and M is called the modulation coefficient of the gap.

In crossing the gap the electron transfers a charge q from one side of the circuit to the other. This charge q times the voltage V is the work the electron does on the circuit. The work done on the electron is MVe, where e is the electronic charge. By the conservation of energy we see that $q = Me$.

The modulation coefficient, then, is a factor which relates the energy (measured in electron volts) gained by an electron crossing a gap to the voltage appearing across the gap, and also relates the circuit current induced in the circuit attached to the gap (of which the gap capacitance forms a part) to the electron current crossing the gap. We see that the maximum value of M is unity, for very short gaps, and it can be shown that M gets progressively smaller and may oscillate in sign as the transit time across the gap is increased. The exact variation of M with transit time depends on the configuration of the gap.

It may be seen that in the operation of a reflex oscillator the factor M is encountered twice. For a given gap voltage the amount of velocity modulation, and hence the strength of the radio-frequency electron current due to bunching are proportional to M. Further, the circuit current produced by the bunched electron current is proportional to M. Thus the circuit current for a given gap voltage is doubly dependent on M, and for small signals is proportional to M^2. The falling off in M because of increased gap transit time is partly responsible for the rapid decrease in power and in electronic-tuning range as resonator voltage is lowered.

VII. INFLUENCE OF LOAD

It is well known that frequency of oscillation may be influenced by the load coupled to an oscillator. One kind of influence is obvious. A reactive load coupled to the resonant circuit changes the resonant frequency of that circuit, and hence the frequency of oscillation. Another kind of frequency change with load is particularly important in the case of reflex oscillators which have a wide electronic-tuning range. This can be explained by means of the frequency-versus-repeller-voltage diagrams of Fig. 8. Imagine, for instance, that the oscillator is operating off circuit resonance by means of electronic tuning. Such operation is represented by a point away from the common intersection of the frequency-versus-repeller-voltage curves of Fig. 8. Thus it may be seen that if the repeller voltage is kept constant and if the circuit conductance is changed, that is, the load is changed in purely resistive sense, without changing the resonant frequency of the resonant circuit, the frequency of oscillation will change in shifting to a new frequency-versus-repeller-voltage curve.

Not only frequency of operation is affected by load; the electronic tuning is affected as well. For instance, coupling the oscillator tightly to a high-Q resonant circuit has the effect of increasing the effective capacitance of the resonant circuit as defined in terms of the rate of change of gap susceptance versus frequency in the neighborhood of resonance or in terms of stored energy for a given radio-frequency gap voltage. This cuts down the electronic-tuning range and makes the variation of frequency with repeller voltage less rapid, as explained in Section IV.

APPENDIX A

Power Production

While the production of power in a reflex oscillator can be treated from the point of view of velocity modulation and bunching, as exemplified by the work of Webster, it is interesting to note that a method of analysis of high-frequency tube behavior considerably antedating these ideas may be used in obtaining the desired result without any explicit reference to the concepts of velocity modulation, drift, or bunching. An excellent idea of early methods of analysis may be obtained from a paper by Benham.

Assume that before crossing the gap of a reflex-type tube an electron has a velocity specified by a potential V_0. Assume that there is a radio-frequency voltage V sin ωt across the gap, and that an electron crossing the gap gains an energy MV sin ωt volts. Assume that after crossing the gap the electron enters a uniform field of strength E_0. The electron will then return to the gap in a time τ.

$$\tau = [2\sqrt{2(e/m)}(V_0 + MV \sin \omega t)]/(e/m)E_0$$

If $(V/V_0) << 1$, this may be written

$$\tau \approx \tau_0(1 + (MV \sin \omega t/V_0))$$

Here τ_0 is the drift time in absence of radio-frequency voltage. In a time $d\tau_0$ at t_0, a charge $-I_0d\tau_0$ will cross the gap, I_0 being the direct beam current. This charge will pass the gap again at a time $t_0 + \tau$. The total element of work dW done in the two transits may be expressed

$$dW = (I_0MV)[\sin \omega t - \sin (\omega t + \frac{MV}{2V_0})].$$

This may be written in terms of convenient quantities

$$\omega t_0 = \theta$$

$$\omega \theta = \gamma$$

$$dW = - (I_0MV)/(\omega [\sin \gamma - \sin (\gamma + \theta + (MV \sin \gamma/2V_0))] d\gamma$$

$$- (I_0MV)/(\omega [\sin \gamma - \sin \theta [\cos (\gamma + (MV \sin \gamma/2V_0)]) \sin \gamma]$$

$$- \cos \theta [\sin (\gamma + (MV \sin \gamma/2V_0) \sin \gamma]).$$

The work per cycle may be obtained by integrating dW from $\gamma = 0$ to $\gamma = 2\pi$. This integral times f, the frequency, is the power absorbed by the electron stream

$$P = f \int_0^{2\pi} dW = I_0MV \sin \theta J_1(MV \theta/2V_0).$$

From this result it is easy to infer an electronic admittance

$$Y = (2I_0M/V)J_1(MV \theta/2V_0)e^{-i\theta - \pi/2}.$$
Suppose an electron enters a uniform field through a grid at a potential V_0 with respect to the cathode and travels toward a repeller a distance L away which has a potential $-V_R$ with respect to the cathode. The electron will penetrate a distance

$$x = L V_0 / (V_0 + V_R).$$

(7)

The time required to travel this distance and back will be

$$\tau_0 = 4x/\sqrt{2(e/m)V_0} = (4L/\sqrt{2(e/m)})\sqrt{V_0/(V_0 + V_R)}. \quad (8)$$

Differentiating with respect to V_0 and combining the expression so obtained with (8) we obtain

$$d\tau_0/dV_0 = (\tau_0/2V_0)(V_0 - V_R)/(V_0 + V_R). \quad (9)$$

From time to time it is proposed to present in the PROCEEDINGS papers of tutorial nature which, from the clarity of their presentation, the comprehensiveness of their data, and the convenience of their availability in the PROCEEDINGS are suitable for that purpose. Accordingly the following paper has been placed before the Institute membership.

The Editor

The Theory of Transmission Lines*

EDWARD N. DINGLEY, JR., SENIOR MEMBER, I.R.E.

Summary—Most texts dealing with this subject assume that the reader is familiar with complex exponential functions. They also omit steps in mathematical transformations on the assumption that the reader can interpolate these steps. The purpose of this article is not to present new material but only to describe, in step-by-step fashion, the derivation of the formulas necessary to the solution of transmission-line problems and to demonstrate, by examples, how to use these formulas. This treatment will be helpful to students and to engineers not regularly confronted with transmission-line problems.

In an infinitely long uniform transmission line having uniformly distributed constants of $X = \omega L$ ohms series reactance, R ohms series resistance, G ohms leakage conductance, and $B = \omega C$ ohms shunt susceptance per unit loop length, the series impedance may be termed $Z = R + jX$ and the shunt acceptance may be termed $Y = G + jB$ per unit loop length. In the foregoing $\omega = 2\pi f$, $f =$ frequency in cycles per second, $L =$ inductance in henries, and $C =$ capacitance in farads, per unit loop length of line. A unit loop length is a unit length of the transmission line the series resistance of which is the sum of the series resistances of the two wires, the series reactance of which is the sum of the series reactances of each wire minus their mutual reactance, the shunt leakage conductance of which is the reciprocal of the leakage resistance between the two wires, and the shunt susceptance of which is the reciprocal of the capacitive reactance between the two wires. A unit length of line is shown in Fig. 1.

In an infinitesimally short length (dl) of the transmission line the voltage drop (dE) along the line (in the direction of the current flow) due to the series impedance will be the product of the current flowing (I) times the impedance of the line per unit length (Z) times the length of the line (dl) through which the current flows. In the same manner, the current lost along the line (in the direction of the current flow) due to the shunt acceptance will be the product of the voltage (E) acting across the line times the shunt acceptance (Y) per unit length times the length of the line (dl). By convention, voltage drop and current losses carry negative signs; therefore the above statements may be expressed algebraically as follows:

$$dE = -IZ(dl) \quad (1)$$
$$dI = -EV(dl) \quad (1a)$$

or

$$dE/(dl) = -IZ \quad (2)$$
$$dI/(dl) = -EV. \quad (2a)$$

Equations (2) and (2a) may be differentiated to obtain

$$d^2E/(dl)^2 = -Z(dI/(dl)) \quad (3)$$
$$d^2I/(dl)^2 = -Y(dE/(dl)). \quad (3a)$$

Proceedings of the I.R.E.

February, 1945
Equation (2) may be substituted in (3a) and (2a) may be substituted in (3), to obtain
\[d^2E/(dl)^2 = ZEY \quad (4) \]
\[d^2I/(dl)^2 = ZIV. \quad (4a) \]

Equations (4) and (4a) are simple linear differential equations of the second order, the general solution for which is of the form
\[E = A_1 e^{i\sqrt{ZY} t} + B_1 e^{-i\sqrt{ZY} t} \]
\[I = A_2 e^{i\sqrt{ZY} t} + B_2 e^{-i\sqrt{ZY} t}. \quad (5a) \]

Equations (5) and (5a) may be differentiated to obtain
\[dE/(dl) = A_1 i\sqrt{ZY} e^{i\sqrt{ZY} t} - B_1 i\sqrt{ZY} e^{-i\sqrt{ZY} t}. \quad (7) \]
\[dI/(dl) = A_2 i\sqrt{ZY} e^{i\sqrt{ZY} t} - B_2 i\sqrt{ZY} e^{-i\sqrt{ZY} t}. \quad (7a) \]

Equation (2) may be substituted in (8) and (2a) may be substituted in (8a) to obtain
\[-I_s V = E_s \sqrt{Z Y} (A_1 - B_1) \]
\[-E_s V = I_s \sqrt{Z Y} (A_2 - B_2) \quad (9) \]

Equations (6) and (10) may be added and (6a) and (10a) may be added to obtain
\[A_1 = 1/2 [E_s - I_s \sqrt{Z Y}] \]
\[A_2 = 1/2 [I_s - E_s \sqrt{Z Y}]. \quad (11a) \]

Equations (6) and (10) may be subtracted and (6a) and (10a) may be subtracted to obtain
\[B_1 = 1/2 [E_s + I_s \sqrt{Z Y}] \]
\[B_2 = 1/2 [I_s + E_s \sqrt{Z Y}]. \quad (12a) \]

Equations (11) and (12) may be substituted in (5), and (11a) and (12a) may be substituted in (5a), to obtain
\[E = 1/2 [E_s - I_s \sqrt{Z Y}] e^{i\sqrt{Z Y} t} + 1/2 [E_s + I_s \sqrt{Z Y}] e^{-i\sqrt{Z Y} t} \]
\[I = 1/2 [I_s - E_s \sqrt{Z Y}] e^{i\sqrt{Z Y} t} + 1/2 [I_s + E_s \sqrt{Z Y}] e^{-i\sqrt{Z Y} t}. \quad (13) \]

If the line is infinitely long \((l = \infty)\) then \(E\) and \(I\) at the far end must be zero. Note that \(e^{-\infty} = 0\). Then there is obtained from (13) and (13a)
\[o = E_s e^{-\infty} - I_s \sqrt{Z Y} e^{-\infty} \quad (14) \]
\[o = I_s e^{-\infty} - E_s \sqrt{Z Y} e^{-\infty}. \quad (14a) \]

Rearranging (14) and (14a) there is obtained
\[E_s/I_s = \sqrt{Z Y} \quad (15) \]
\[E_o/I_o = \sqrt{Z Y}. \quad (15a) \]

But \(E_s/I_s\) is the ratio of sending voltage to sending current at the input of an infinitely long line and is therefore the impedance of an infinitely long line. This impedance \((\sqrt{Z/Y})\) is called the "surge" impedance and is written \(Z_o\).

Equations (13) and (13a) state that if the voltage \((E_s)\) and the current \((I_s)\) at any point (called the sending point) on an infinitely long line are known, the voltage and current at another point in the direction of current flow may be determined. Call this second point \(R\) (the receiving point) and call the voltage and current \(E_R\) and \(I_R\). If the voltage and current at a point in the direction opposed to the current flow is desired, then the distance \((l)\) to that point must be written \((-l)\) and the positions of the sending and receiving points become transposed. Thus, in (13) and (13a), if \(-l\) is substituted for \(+l\) and \(E_R\) and \(I_R\) are substituted for \(E_s\) and \(I_s\), respectively, there is obtained
\[E = 1/2 [E_R + I_R Z_o] e^{i\sqrt{Z Y} t} + 1/2 [E_R - I_R Z_o] e^{-i\sqrt{Z Y} t} \]
\[I = 1/2 [I_R + E_R Z_o] e^{i\sqrt{Z Y} t} + 1/2 [I_R - E_R Z_o] e^{-i\sqrt{Z Y} t}. \quad (16) \]

In (16) and (16a) assume that the voltage \(E_R\) and the current \(I_R\) exist at the point \(R\) on a line which is infinitely long to the right of this point and which is finitely long to the left of this point. As the right-hand portion is infinitely long, it represents a constant impedance \(Z_o\) in shunt to the line at the point \(R\) but which has no effect on the line to the left of this point because \(E_R\) and \(I_R\) have been stated to exist regardless of impedances which may be shunted across the point \(R\). Thus the infinitely long right-hand portion of the line may be considered as nonexistent, and the finite left-hand portion of the line may be considered as being terminated at the receiving point \(R\) and as being terminated in the impedance \(Z_R\) such that \(Z_R = E_R/I_R\).

Equation (16) may be multiplied by \(2/I_s\) and (16a) may be multiplied by \(2Z_o/E_o\) to obtain
\[2E_s/I_s = [E_s/I_s + Z_o] e^{i\sqrt{Z Y} t} + [E_s/I_s - Z_o] e^{-i\sqrt{Z Y} t} \]
\[2I_s/E_s = [I_s/E_s + Z_o] e^{i\sqrt{Z Y} t} + [I_s/E_s - Z_o] e^{-i\sqrt{Z Y} t}. \quad (17) \]

But, \(E_s/I_s = Z_R\) and \(I_s/E_s = 1/Z_R\), therefore,
\[2E_s/I_s = [Z_R + Z_o] e^{i\sqrt{Z Y} t} + [Z_R - Z_o] e^{-i\sqrt{Z Y} t} \]
\[2I_s/E_s = [1 + Z_o/Z_R] e^{i\sqrt{Z Y} t} + [1 - Z_o/Z_R] e^{-i\sqrt{Z Y} t}. \quad (18a) \]

Equation (18) may be divided by (18a) to obtain
\[E/E_o = Z_s = [Z_R + Z_o] e^{i\sqrt{Z Y} t} + [Z_R - Z_o] e^{-i\sqrt{Z Y} t} \]
\[I/I_o = Z_s = [Z_R + Z_o] e^{i\sqrt{Z Y} t} - [Z_R - Z_o] e^{-i\sqrt{Z Y} t}. \quad (19) \]
In order for (19) to be useful it is necessary to define the terms $e^{+j\omega t}$ and $e^{-j\omega t}$.

The first paragraph of this article defined $Z = R + jX$ and $Y = G + jB$. It follows that

$$V = \frac{1}{t} = \frac{2\pi f}{f^3} = \frac{w}{\text{unit lengths per second}}.$$

The right-hand member of (20) will contain real and quadrature components. If these components are called α and β, respectively, (20) becomes

$$\alpha + j\beta = \sqrt{(R + jX)(G + jB)} = \sqrt{V} \quad (21)$$

$$\alpha^2 - \beta^2 = (RG - XB) \quad (24)$$

or, from (24a),

$$\alpha = (GX + BR) / 2 \beta. \quad (24b)$$

Equation (24b) may be substituted in (24) to obtain

$$[(GX + BR)^2] / 4 \beta^2 - \beta^2 = (RG - XB) \quad (25)$$

or, simplifying

$$\beta^2 + \beta^2(RG - XB) - (GX + BR)^2 / 4 = \beta. \quad (26)$$

Solving for β and α

$$\beta = \sqrt{1/2\left\{(R^2 + X^2)(G^2 + B^2)\right\}^1 - (RG - XB)} \quad \text{circular radians} \quad (27)$$

$$\alpha = \sqrt{1/2\left\{(R^2 + X^2)(G^2 + B^2)\right\}^1 + (RG - XB)} \quad \text{hyperbolic radians} \quad (28)$$

If the values of R, X, G, and B per unit length are known, then α and β may be computed by (27) and (28) and Z_o may be computed from (15) as follows:

$$Z_o = \sqrt{V / Y} = \sqrt{(R + jX)/(G + jB)}. \quad (29)$$

In (27) and (28), β is an angle measured in circular radians and as will be demonstrated later, represents the angular change in phase of the voltage or current as it travels a unit length of the transmission line and α, measured in hyperbolic radians, represents the change in amplitude of the voltage or current as it travels a unit length of the transmission line.

If β represents the difference in phase of the voltage (or current) at the point l compared to the voltage (or current) at the point o, then the voltage (or current) may be considered as being a sine wave of energy traveling down the line and the crest of a wave leaving o will reach l in the length of time t required for the rotating vector representing the voltage (or current) to rotate through β radians. This vector, however, is rotating at the rate $\omega = 2\pi f$ radians per second; therefore $t = l\beta / 2\pi f$ seconds. If the crest of the wave has traveled the distance l in $l\beta / 2\pi f$ seconds, then the velocity with which the wave travels on the wire is

$$V = 1/t = 2\pi f / \beta = \omega / \beta \text{ unit lengths per second}. \quad (30)$$

It will be noted that the velocity of travel of the wave on the line is proportional to the frequency f and inversely proportional to β. If, as is usually the case in telephone lines, β is not also proportional to f, then waves of different frequencies will travel at different velocities along the line and will reach the receiving end of the line with phase relations not identical to those at the sending end, and serious distortion will result.

The term β is called the "wavelength constant" of the transmission line for the reason that if the phase of the voltage (or current) along the line changes β radians per unit length, then the number of unit lengths required for the phase to shift 2π radians will be

$$\lambda = 2\pi / \beta. \quad (31)$$

This number of unit lengths is called λ because it is the distance between two points on the transmission line having the same phase or the same instantaneous values of voltage or current. If β is in radians per loop meter of line length, then λ will be in meters.

The term α is called the "attenuation constant" of the transmission line for the reason that it represents the change in the crest amplitude or the change in the effective value of the voltage or current as it travels a unit length of the transmission line.

The vector sum of α and β, expressed as $a + j\beta$ is called the "propagation constant" of the line. These terms are not "constants" because they vary with frequency. In (27) and (28), which express the exact values of α and β, it will be noted that both $X = \omega L$ and $B = \omega C$ are discrete functions of frequency while R and G both vary somewhat with frequency because of "skin effect" and variable dielectric losses which are functions of frequency.

There are two special cases relating to α and β which are of particular interest. The most important case concerns relatively short radio-frequency transmission lines wherein, to a close approximation, R and G are negligibly small compared to X and B. If $R = \omega = G$ is substituted in (27), (28), and (29), there is obtained

$$\beta = \sqrt{XB} = \sqrt{(\omega L)(\omega C)} = \omega \sqrt{LC} \quad (32)$$

$$\alpha = 0 \quad (33)$$

$$Z_o = \sqrt{jX / jB} = \sqrt{\omega L / \omega C} = \sqrt{L / C} \quad (34)$$

where $\omega = 2\pi f$,

$$f = \text{frequency in cycles per second}$$

$$L = \text{inductance of line in henries per unit loop length}$$

$$C = \text{capacitance of line in farads per unit loop length}$$

$$X = \omega L$$

$$B = \omega C$$

It has been demonstrated\(^1\) that the inductance in henries and capacitance in farads per centimeter length of two parallel wires is\(^1\)

\(^2\) Equations (35) and (36) are accurate only when d is at least 20 times greater than r. For a coaxial line, if the inner radius of the outer conductor is substituted for d and the outer radius of the inner conductor is substituted for r, then the inductance of the coaxial line per centimeter of length will be one half of equation (35) and the capacitance will be twice equation (36) and the formulas are exact for any values of d and r.\(^2\)
Transmission-Line Theory

4\mu \log \frac{d}{r} \text{henries per centimeter loop length} \quad (35)

\frac{K10^8}{4(3\times10^{10})^2 \log \frac{d}{r}} \text{farads per centimeter loop length} \quad (36)

where \log = \text{Napierian logarithm}

\begin{align*}
&d=\text{axial distance between wires in any units} \\
r=\text{radius of each wire in same units} \\
\mu=\text{magnetic permeability of medium between wires} \\
K=\text{dielectric constant of medium between wires} \\
3\times10^{18}=\text{ratio of electromagnetic units to electrostatic units = centimeters per second.}
\end{align*}

In the case of the 2-wire line, if the medium between the wires is air, then \(K=1=1/12\), and from (35) and (36)

\begin{align*}
\sqrt{LC} = \frac{1}{(3 \times 10^{10})} & \quad \text{2-wire lines.} \quad (37) \\
\sqrt{L/C} = 120 \log \frac{d}{r} & \quad \text{coaxial lines.} \quad (39)
\end{align*}

Substituting (37) and (39) in (32) and (38) and (40) in (34) there are obtained the following values for this special case of \(R=\omega=G\):

\begin{align*}
\beta &= \omega/(3 \times 10^{10}) \quad (41) \\
\alpha &= \omega \\
Z_0(2\text{-wire}) &= 120 \log \frac{d}{r} \text{ohms} \quad (42) \\
Z_0(\text{coaxial}) &= 60 \log \frac{d}{r} \text{ohms.} \quad (43)
\end{align*}

Substituting (41) in (30) and (31) there is obtained

\begin{align*}
V &= \frac{\omega}{\omega/(3 \times 10^{10})} = 3 \times 10^{10} \text{centimeters per second} \quad (45) \\
\lambda &= \frac{\omega/(3 \times 10^{10})}{2\pi} = \frac{2\pi(3 \times 10^{10})}{2\pi f} \\
&= \frac{3 \times 10^{10}}{f} \text{centimeters.} \quad (46)
\end{align*}

Thus, in a line having \(R=\omega=G\), the velocity of propagation is \(3 \times 10^{10}\) centimeters per second and is independent of frequency, the same as in air; the wavelength, or distance between crests of the waves, equals \(3 \times 10^{10}/f\) centimeters (\(f\) in cycles) or equals \(3 \times 10^{4}/f\) meters (\(f\) in kilocycles), the same as in air; and the attenuation of the voltage and current is zero, that is, the sending and receiving voltages (and currents) are equal. These values of \(V\) and \(\lambda\) are valid whether or not there are "standing waves" on the line. Standing waves will be defined later.

On telephone lines using voice frequencies it is desirable that the velocity of propagation should be the same for all frequencies. This condition can be attained if \(R=\omega=G\) as demonstrated above, but such conditions are physically impossible. The alternative leads to the second important case involving \(\alpha\) and \(\beta\).

In most telephone lines and cables, \(R\) and \(B\) are much larger than \(G\) and \(L\); that is, \(R\) and \(C\) are much larger than \(G\) and \(L\). It is desirable that \(R\times B\) should equal \(G\times X\). This is partially accomplished by reducing \(R\) and \(B\) by using larger diameter wires spaced farther apart. It is obviously undesirable to increase the leakage conductance \(G\) to attain the desired equality but the inductance \(L\) can be increased by loading the line at intervals with lumped inductors, as is done with long land lines or by uniformly loading the line by wrapping it with high-permeability material, as is done with cables. If \(R\times B\) is made to equal \(G\times X\), and these values are substituted into (27) and (28), there is obtained

\begin{align*}
\beta &= \sqrt{XB} = \omega \sqrt{LC} \quad (47) \\
\alpha &= \sqrt{GR}. \quad (48)
\end{align*}

Equation (47) is identical to (32) and therefore the velocity of propagation in this special case of \(R\times B=G\times X\) is the same as in the special case of \(R=\omega=G\). This velocity is constant for all frequencies, is the same as the velocity of transmission in air, and is correctly expressed by (45). Similarly, the wavelength or distance between wave crests is the same in this case as in the other and is the same as the wavelength of transmissions in air and is correctly expressed by (46).

Equation (48) is not equal to zero as was (42) of the first case and therefore represents a finite attenuation.

Having defined the term \(\sqrt{YZ}\), the propagation constant of the line, as being equal to \(\alpha+\beta\) and having further defined \(\alpha\) and \(\beta\) in terms of \(R, G, X, \) and \(B\) of the line, and noting that \(e^{\alpha t}Y=e^{(\alpha+\beta)t}=-\omega e^{ait}\), equations (16) and (16a) may be rewritten as follows:

\begin{align*}
\frac{E}{E_0} = 1/2 [E_R+I_RZ_0]e^{a\alpha t}e^{-\beta t}+1/2 [E_R-I_RZ_0]e^{-a\alpha t}e^{-\beta t} \quad (49) \\
I = 1/2 [I_R+I_0Z_0]e^{a\alpha t}e^{-\beta t}+1/2 [I_R-I_0Z_0]e^{-a\alpha t}e^{-\beta t} \quad (50)
\end{align*}

In analyzing the meaning of (49) and (50) it should be noted that \(I_0Z_0\) is a vector voltage which, when added to the vector voltage \(E_R\) represents a vector voltage (say \(E_1\)) making a definite phase angle (say \(\phi_1\)) with respect to a reference axis. In the same manner \(E_R-I_0Z_0\) is another vector voltage (say \(E_1\)) making a definite phase angle (say \(\phi_2\)) with the same reference axis. In vector notation, the first vector is represented by \(E_0 e^{i\phi_1}\) and the second by \(E_0 e^{i\phi_2}\) where the operator \(e^{i\phi}\) is merely a shorthand method of stating that the vector to which it is attached has been rotated counterclockwise (leading phase) by an angle \(\phi\). The expression \(e^{-i\beta t}\) means that the vector is rotated clockwise (lagging phase). The expression \(e^{i\alpha t}\) is merely a shorthand way of stating that the vector of length \(E\) has been lengthened by multiplying it by \(e^{\alpha t}\) or by 2.7183 raised to the \(\alpha t\) power. As \(e^{-i\beta t}=1/e^{\beta t}\) is less than unity, this operator shortens the vector.

Equation (49) can now be written as follows:

\begin{align*}
E = 1/2 E_0 e^{a\alpha t}e^{i\phi_1}+1/2 E_0 e^{-a\alpha t}e^{-i\phi_1} \quad (51)
\end{align*}

Of the right-hand member of (51), the first term represents a vector voltage which has an initial amplitude \(E_0/2\) and initial phase \(\phi_1\), when \(l=0\), and which increases in amplitude by \(e^{a\alpha t}\) and advances in phase by the angle \(e^{i\phi_1}\) as \(l\) increases. Because \(l\) increases from the
receiving end toward the transmitting end of the line, this right-hand member represents a voltage wave which attenuates and lags in phase as it travels from sending to receiving end of the line and is therefore the sent wave. In the same manner, the second term of (51) represents a voltage which attenuates and lags in phase as it travels from the receiving end to the sending end and therefore constitutes a wave reflected from the receiving end.

These transmitted and reflected waves may be represented by the vectors in Fig. 2. At the point \(l = 0 \), the transmitted wave \(E_1/2 \) is represented by a vector \((A) \) of constant length rotating counterclockwise about the point \(o \) at the angular velocity of \(\omega = 2\pi f \) radians per second. Its projection at any instant on the \(X - X \) axis represents the instantaneous voltage at the point \(l = 0 \) on the line due to the transmitted wave. As the vector \((A) \) rotates at constant angular speed, its projection on \(X - X \) axis represents a voltage which alternates sinusoidally.

In the same manner the reflected wave \(E_2/2 \) is represented by the vector \((B) \) of constant length also rotating counterclockwise about the point \(o \) at the same angular velocity \(\omega = 2\pi f \) radians per second. Its projection at any instant on the \(X - X \) axis represents the instantaneous voltage at the point \(l = 0 \) on the line due to the reflected wave. This projection also represents a voltage which alternates sinusoidally. The total instantaneous voltage on the line at the point \(l = 0 \) is the sum of the projections on \(X - X \) axis of vectors \((A) \) and \((B) \) taken at that instant. By inspection it is seen that the sum of these two projections would be a maximum and equal to \(E_1/2 + E_2/2 \) if \(\phi_1 + \phi_2 = 0 \), that is, if the vectors \((A) \) and \((B) \) always coincided as they rotated, and it would be a minimum and equal to \((E_1/2 - E_2/2) \) if \(\phi_1 + \phi_2 = 180 \) degrees, that is, if the vectors were always opposite each other as they rotated.

If a point \(l = l \) on the line is considered, then the vector \((A) \) has gained in phase and the vector \((B) \) has lagged in phase until their relative positions are as shown at \((C) \) and \((D) \) in Fig. 2. However, in advancing phase, the vector \((A) \) must follow the spiral in a counterclockwise direction which increases the amplitude from \(E_1/2 \) to \([E_1/2]e^{\alpha t} \) and in retarding phase, the vector \((B) \) must follow the spiral in a clockwise direction which decreases its amplitude from \(E_2/2 \) to \([E_2/2]e^{-\alpha t} \). In Fig. 2 the vectors \((A) \) and \((B) \) have been rotated through approximately \(5\pi/2 \) radians or 450 degrees in opposite directions in order to reach the positions shown by vectors \((C) \) and \((D) \).

If our movement along the line from \(l = 0 \) to \(l = l \) is stopped at the point \(l = l \), then the two vectors cease to gain and lose phase and length with respect to each other and may be considered to be two new vectors both of which rotate counterclockwise at the rate \(\omega = 2\pi f \) and the crest or maximum voltage obtained at the point \(l = l \) will be the maximum of the sum of the projections of these vectors on the axis \(X - X \).

Thus it has been demonstrated that there is an interference pattern produced on the line by the transmitted wave and reflected wave; that at certain points on the line the crest of the resultant wave is equal to the sum of the two and at other points it is equal to their difference. The greatest maxima and minima will occur near the receiving end where the transmitted wave and received wave are nearly equal in amplitude.

The foregoing analysis applies to the current waves in exactly the same manner.

The following special cases involving (49) and (50) are of particular interest:

Infinitely Long Line. Here \(l = \infty \), therefore \(e^{-\alpha l} = e^{-\infty} = 0 \), therefore the second terms of the right-hand members of (49) and (50) are zero and therefore there are no reflected waves. In this case there are no consecutive points of maximum and minimum voltage or current along the line; on the contrary, the voltage and current increase smoothly from the received value to infinity at the point \(l = \infty \).

Open-Circuited Line. Here \(I_R = 0 \) because the receiving end of the line is open. Equations (49) and (50) then reduce to

\[
E = E_R \left[\frac{e^{\alpha l} + e^{-\beta l}}{2} \right] \quad (49a)
\]

\[
i = \frac{E_R}{Z_0} \left[\frac{e^{\alpha l} + e^{-\beta l}}{2} \right] \quad (50a)
\]

If \(\beta l = \pi/2, 3\pi/2, 5\pi/2 \) etc., then,

\[
E = E_R \left[\frac{e^{\alpha l} - e^{-\alpha l}}{2} \right] = 0 \quad \text{if} \quad \alpha = 0 \quad (49b)
\]

\[
i = \frac{E_R}{Z_0} \left[\frac{e^{\alpha l} + e^{-\alpha l}}{2} \right] = \frac{E_R}{Z_0} \quad \text{if} \quad \alpha = 0 \quad (50b)
\]

If, from the above, \(l = \pi/2\beta, 3\pi/2\beta, 5\pi/2\beta \) etc., and if \(\alpha = 0 \), equation (31) may be substituted for \(\beta \) above and there is obtained \(l = [1/4]\lambda, [3/4]\lambda, [5/4]\lambda \), etc.

Thus for an open-circuited line, voltage minima occur at a point one-quarter wavelength from the open end and at every half wavelength thereafter. Current maxima...
occur at these same points. The voltage and current are in quadrature as indicated by the j preceding the current term. Note here that $E_R e^{j(\omega t)}$ is a polar co-ordinate shorthand method of designating a vector rotated 90 degrees $= \pi/2$ radians from the reference axis. The term jE_R designates the same thing in rectangular co-ordinate form. The two, therefore, are equal.

Short-Circuited Line. Here $E_R = 0$ because the receiving end of the line is short-circuited. Equations (49) and (50) then reduce to

$$E = I_R Z_0 \left[\frac{e^{\alpha t} e^{j\beta t} - e^{-\alpha t} e^{-j\beta t}}{2} \right]$$

$$I = I_R \left[\frac{e^{\alpha t} e^{j\beta t} + e^{-\alpha t} e^{-j\beta t}}{2} \right]$$

If $\beta t = \pi/2$, $3\pi/2$, $5\pi/2$ etc., then,

$$E = jI_R Z_0 \left[\frac{e^{\alpha t} + e^{-\alpha t}}{2} \right] = jI_R Z_0 \quad \text{if } \alpha = 0 \quad (49d)$$

$$I = I_R \left[\frac{e^{\alpha t} - e^{-\alpha t}}{2} \right] = 0 \quad \text{if } \alpha = 0. \quad (50d)$$

If, from the above, $l = \pi/2\beta$, $3\pi/2\beta$, $5\pi/2\beta$, etc., and if $\alpha = 0$, equation (31) may be substituted for β above and there is obtained: $l = [1/4]\lambda$, [3/4]λ, [5/4]λ, etc.

Thus, for a short-circuited line, voltage maxima occur at a point one-quarter wavelength from the short-circuited end and at every half wavelength thereafter. Current minima occur at these same points. The voltage and current are in quadrature as indicated by the j preceding the voltage term.

It will be noted that the distance between any two voltage (or current) nodes is equal to one half the wavelength of the waves on the line. If the velocity of propagation is equal to that in air as is usually the case with radio-frequency transmission lines, the frequency in kilocycles may be found by dividing 3×10^4 by the wavelength in meters.

Line Terminated in Z_0. Here the line is terminated in an impedance equal to Z_0, therefore the product of the received current (I_R) and the impedance through which it flows (Z_0) is equal to the received voltage E_R. In the same manner $E_R / Z_0 = I_R$. Thus the second terms of the right-hand members of (49) and (50) become zero, there is no reflected wave, and the equations become

$$E = E_R e^{\alpha t} e^{j\beta t} = E_R e^{\alpha t} e^{j\beta t} \quad (49e)$$

$$I = I_R e^{\alpha t} e^{j\beta t} = I_R e^{\alpha t} e^{j\beta t}. \quad (50e)$$

Thus for a line terminated in an impedance equal in magnitude and phase to the surge impedance of the line, there are no reflected waves, and hence, no standing waves on the line, and the voltage and current at any point on the line have a phase difference equal to the phase angle of Z_0.

Line Input Impedance. Having defined the term $\sqrt{Z_0 Y}$, the propagation constant, as being equal to $\alpha + j\beta$ and having further defined α and β in terms of R, G, X, B of the line, equation (19) may be written

$$Z_s = Z_0 \frac{[Z_R + Z_0] e^{\alpha t} e^{j\beta t} + [Z_R - Z_0] e^{-\alpha t} e^{-j\beta t}}{[Z_R + Z_0] e^{\alpha t} e^{j\beta t} - [Z_R - Z_0] e^{-\alpha t} e^{-j\beta t}}. \quad (52)$$

If the values of the terms in (52) are known, the equation is easily solved as follows:

In general, Z_R and Z_0 will each consist of a resistive (real) term and a reactive (quadrature) term. Add the reals and add or subtract the “quads” as required and obtain, say: $R + jQ$ in rectangular co-ordinates.

Convert to polar co-ordinates as follows:

$$R + jQ = \sqrt{R^2 + Q^2} e^{\tan^{-1}(-Q/R)} \quad \text{say, } Z e^{i\theta}$$

where $\tan^{-1} Q/R = \theta = \text{the angle whose tangent is } Q/R$.

Next convert θ from radians to degrees by multiplying by 57.3. Next add or subtract βl degrees to or from θ according to whether βl is plus or minus.

Next multiply or divide Z by the number $e^{\omega t}$, depending on whether αl is plus or minus.

There is obtained a new vector making the angle $\theta \pm \beta l$ with the origin and having a length of $Ze^{\omega t}$. Call this new vector $Ze^{i\omega t}$ in polar co-ordinates.

Convert to rectangular co-ordinates as follows:

$$Z e^{i\omega t} = Z_1 \cos \theta_1 + jZ_1 \sin \theta_1 \quad \text{or say } R_1 + jQ_1.$$

The four bracketed parts of (52) may be treated in this manner to convert each part to the form $R_1 + jQ_1$. Next add the real (R_1) terms of the numerator parts and add the quad (jQ) terms of the numerator parts to obtain new real and quad parts, say $R_2 + jQ_2$. Do the same for the denominator.

Next convert the numerator to polar form, say $Z_2 e^{i\theta}$ as demonstrated above. Do the same with the denominator.

Next arithmetically divide the numerator Z_2 term by the denominator Z_2 term and algebraically subtract their angles θ_2 remembering that $-(-\theta) = +\theta$ and obtain the form $Z_3 e^{i\theta_3}$.

Next place Z_3 in its polar form ($Ze^{i\theta_3}$) as demonstrated above. Arithmetically multiply Z_3 and Z_0 and algebraically add their phase angles θ_3 and θ_0 to obtain the new form $Z e^{i\omega t}$ which is the desired value of the input impedance of the line in polar form. This may be converted into the rectangular co-ordinate form of $R_4 + jQ_4$, as demonstrated above. The latter form shows that Z_s will consist in general of an apparent resistance R_4 in series with an apparent reactance Q_4.

In (52) it should be noted that if the line is infinitely long ($l = \infty$) then $Z_s = Z_0$. Also if a line of finite length l is terminated in an impedance equal to Z_0 then $Z_s = Z_0$. Measurement of Z_0, α and β. If the values of R, G, X, B are known, then Z_0, α and β can be determined from (27), (28), and (29). In most cases, the values of R, G, X, B are not known and cannot be measured directly. The values of Z_0, α and β can, however, be determined by measuring Z_s (the apparent input impedance of the line) for the condition that the far end of the line is short-circuited and again for the condition that the far end of the line is open-circuited. Call these values Z_{sc} and Z_{so}, respectively. The apparent impedance is measured in the same way that the apparent
 impedance of an antenna is measured, that is, by driving the line through a reactance of such a value as to produce resonance, under which condition the apparent reactance of the line is equal to the tuning reactance but of the opposite sign or kind. At resonance, resistance is inserted until the input current is halved, under which condition the apparent input resistance of the line equals the inserted resistance. For a given uniform line, identical values of \(\alpha \) and \(\beta \) (per unit length) and identical values of \(Z_0 \) will be obtained regardless of the length of line which is measured. However, if the line has a length equal to any multiple of a quarter wavelength the measurement of \(Z_{oc} \) or \(Z_{ec} \) will be difficult because one will be nearly infinite while the other will be nearly zero. Consequently, the length of line or frequency of measurement should be chosen so that the length of the line is approximately an odd multiple of one-eighth wavelength.

In (52), if \(Z_R = \alpha \), then \(Z_R + Z_e = Z_0 \), and

\[
Z_{oc} = Z_0 \left[\frac{e^{0i+\alpha i} + e^{-0i-\beta i}}{e^{0i+\alpha i} - e^{-0i-\beta i}} \right]
\]

(53)

and if \(Z_R = 0 \) then

\[
Z_{ec} = Z_0 \left[\frac{e^{0i+\alpha i} - e^{-0i-\beta i}}{e^{0i+\alpha i} + e^{-0i-\beta i}} \right]
\]

(54)

If (53) and (54) are multiplied there is obtained

\[
Z_0 = \sqrt{Z_{oc} Z_{ec}}
\]

(55)

Equation (55) states that the surge impedance of any line is equal to the root of the vector product \(Z_{oc} \times Z_{ec} \). To accomplish this operation, convert the measured values of \(Z_{oc} \) and \(Z_{ec} \) from the form \(R + jX \) to the form \(\sqrt{R^2 + X^2} \tan^{-1}(X/R) \) or say \(Z_{oc} e^{i\phi} \) and \(Z_{ec} e^{i\phi} \). The product of these terms is \(Z_{oc} Z_{ec} e^{i(\phi_1 + \phi_2)} \) and the square root of this product is \(\sqrt{Z_{oc} Z_{ec}} e^{i(\phi_1 + \phi_2)/2} \). This polar expression for \(Z_0 \) may be converted into the rectangular co-ordinate form of \(R + jX \) by the method previously demonstrated.

If the root of the quotient of (54) divided by (53) is taken, there is obtained

\[
\sqrt{\frac{Z_{oc}}{Z_{ec}}} = \frac{e^{0i+\alpha i} + e^{-0i-\beta i}}{e^{0i+\alpha i} - e^{-0i-\beta i}}
\]

(56)

The value of \(\sqrt{\frac{Z_{oc}}{Z_{ec}}} \) is obtained from the measured values of \(Z_{oc} \) and \(Z_{ec} \) by using the same type of operations as were described for evaluating \(\sqrt{Z_{oc} Z_{ec}} \).

Call the real and imaginary terms of \(\sqrt{Z_{oc} Z_{ec}} \) \(A \) and \(jM \), respectively, and obtain

\[
\sqrt{\frac{Z_{oc}}{Z_{ec}}} = A + jM
\]

(57)

It can then be demonstrated that

\[
\tanh 2\beta l = \frac{2A}{(1 + A^2 + M^2)}
\]

(58)

and

\[
\tan 2\beta l = \frac{2M}{(1 - (A^2 + M^2))}
\]

(59)

The value of \(\alpha d \) may be found by taking one half of the hyperbolic angle whose hyperbolic tangent is (58) and the value of \(\beta l \) may be found by taking one half of the circular angle whose trigonometric tangent is (59). Table...

Using (55)

\[Z_0 = \sqrt{Z_{rad} Z_{et}} = \sqrt{629.5 e^{-189.5} \times 629.5 e^{159.5}} \]
\[= \sqrt{(629.5)^2 e^{-184.5}} \]
\[= 629.5 e^{-182} = 623 - j89.8 \text{ (ohms).} \]

Assume this length of line to be terminated in an impedance of

\[Z_R = 346.4 + j200 = 400 e^{j50} \]

Using (52)

\[Z_s = 629.5 e^{-j59.2} \frac{(346.4 + j200 + 623 - j89.8) e^{j16.2}}{(346.4 + j200 - 623 + j89.8) e^{-j16.2}} \]
\[+ \frac{(346.4 + j200 - 623 + j89.8) e^{-j16.2}}{[346.4 + j200 + 623 - j89.8] e^{j16.2}} \]
\[+ \frac{[346.4 + j200 - 623 - j89.8] e^{-j16.2}}{[969.4 + j110.2] e^{j16.2}} \]
\[+ \frac{[276.6 - j289.8] e^{-j16.2}}{[969.4 + j110.2] e^{j16.2}} \]
\[+ \frac{[276.6 - j289.8] e^{-j16.2}}{[976 e^{j59.2} e^{j16.2} + 401 e^{-j49.2} e^{-j16.2}] e^{j16.2}} \]
\[+ \frac{[976 e^{j59.2} e^{j16.2} + 401 e^{-j49.2} e^{-j16.2}] e^{j16.2}}{976 e^{j59.2} e^{j16.2} + 401 e^{-j49.2} e^{-j16.2}} \]

\[Z_s = 629.5 e^{j59.2} \frac{976 e^{j(59.2 + 16.2)} - 401 e^{-j(59.2 + 16.2)}}{976 e^{j(59.2 + 16.2)} + 401 e^{-j(59.2 + 16.2)}} \]
\[976 e^{j37} e^{j16.2} - 401 e^{-j37} e^{-j16.2} \]
\[976 e^{j37} e^{j16.2} + 401 e^{-j37} e^{-j16.2} \]

From a table of values of \(e^x \):

\[e^{0.37} = 1.4477 \text{ and } e^{-0.37} = 0.6907 \]
\[Z_s = 629.5 e^{-j59.2} \frac{880 + j1106 + 5.1 + j277}{880 + j1106 - 5.1 - j277} \]
\[885.1 + j1383 \]
\[874.9 + j1380 \]
\[1640 e^{j57.4} \]
\[1205 e^{j43.4} \]
\[856 e^{j59.2} = 852 + j86.5 \text{ ohms.} \]

Discussion on

“Noise Figures of Radio Receivers”

H. T. Friis

Dwight O. North: Dr. Friis’ article is a valuable contribution towards the standardization of techniques in receiver measurement and classification. His definitions of available power and of gain in available power will be especially useful, and should eventually become standardized terms in the lexicon. One wishes that his treatment of earlier definitions in this field had been accorded the same care.

Following reference to a paper of mine which defined and formulated certain concepts relative to the rating of noise in receivers, he continues in reference to his own text. “In this paper a more rigorous definition of the standard of absolute sensitivity, the so-called noise figure, of a radio receiver is suggested.” The assertion of greater rigor might happily be overlooked; yet his choice of labels is most confusing, for what he calls “noise figure” I had termed “noise factor,” and I had employed “absolute sensitivity” in a quite different sense. In my work, and unlike noise factor, which is a numeric, absolute sensitivity referred to a field strength: that field strength, in a plane-polarized wave passing an antenna, necessary to produce a signal power at the detector of a receiver equal to the total noise power (from all sources) at the same point. I make this attempt to set the nomenclature straight because technical progress seems difficult enough even in the absence of verbal entanglement. As for “noise factor” versus “noise figure,” there is no special plea from this quarter beyond the cogent observation that, while the term “noise factor” has found common usage in this country, in Britain its use appears to be exclusive.

The formulation of absolute sensitivity ran as follows, in practical units.

\[E^2 = \frac{24072}{\lambda^2} \cdot 4kT_0 \Delta f \cdot D^2(\omega, \phi) \left(\frac{F}{T_o} - 1 \right) \]

where \(E \) is field strength, \(\lambda \) is wavelength, \(k \) is Boltzmann’s constant, \(T_0 \) is room temperature in degrees Kelvin, \(T_a \) is a fictitious temperature assigned to local space in recognition of the power of local noise fields, \(D^2(\omega, \phi) \) is the antenna’s space-directivity function, \(F \) is the noise factor under review, and \(\Delta f \) is the over-all noise bandwidth. The quantity in square brackets I termed the “operating noise factor,” meaning the noise factor as modified through the use of a real rather than a dummy antenna, thus: \(F_{op} = F + (T_a/T_0) - 1 \). Neither the “operating noise factor” nor the “absolute sensitivity” has yet enjoyed general usage, partly through want of information as to the value to be assigned to \(T_a \), partly because it is convenient and useful to compare receivers on the bench, for which purpose \(F \) itself was devised. But it should be thoroughly recognized that the noise factor alone is by no means a “standard of absolute

* RCA Laboratories, Princeton, New Jersey.

February, 1945

Proceedings of the I.R.E.
A recent communication from the Radiophysics Laboratory, Sydney, Australia, emphasizes the need for revision of the definition of noise factor in a particular circumstance. Noise bandwidth Δf was defined as the over-all bandwidth in my work; Dr. Friis' definition agrees. However, a superheterodyne receiver may possess a considerable response, between antenna and converter, at image frequencies. Other things being equal, and according to present definitions (if not usage), its noise factor might, in consequence of an augmented Δf, be quoted several decibels lower than the noise factor of a similar superheterodyne without image response! Before we decide to abandon this problem, let us agree to redefine Δf as the noise bandwidth in the useful signal channel only. In this event the receiver with image response yields a somewhat greater noise factor than one without image response—as it should, in view of the extra thermal noise of the antenna in the image channel; and, provided the local noise fields possess a uniform power distribution over the entire pass band, the revised expression for operating noise factor becomes

$$F_{op} = F + h(T_e/T_0 - 1)$$

where $h = (\text{entire noise bandwidth}) / \Delta f$.

The formula for absolute sensitivity is revised only through F_{op}.

It is of great importance to understand this revision and the need for it, since a faithful adherence to the earlier rules for a determination of noise factor, when exercised in the measurement of a receiver with equal response in signal and image channels, would lead to a quotation some 3 decibels below its deserts.

Another limitation upon the concept of noise factor, this time constitutional, restricts its employ to that class of receivers which exhibits no measurably significant source of noise beyond the detector. For, the signal-to-noise ratio before a detector is transformed within the detector in a complex fashion which may depend upon the magnitude of both the signal and the noise. Fortunately the limitation is, on the whole, an academic one, since it is generally demonstrable that detection at low level is bad practice from a noise standpoint, and such designs can usually be avoided.

Of course, even with high-level detection, the signal-to-noise ratio ρ_2 after detection (by any reasonable definition) can be equal to the signal-to-noise ratio ρ_1 before detection only when the latter is large, and decreases more rapidly as ρ_1 approaches unity, finally as-

- p_1 - The sensitivity of the receiver.
- F - The noise figure of the receiver.
- T_e - The temperature of the environment.
- T_0 - The temperature of the detector.
- Δf - The noise bandwidth.

For purposes of analysis, particularly in the event of nonuniform distribution of noise over the pass band, one often wishes to refer to a quantity associated with each differential element of bandwidth df, whose weighted average over the entire band is the noise factor. The weight factor is, of course, the gain in available power, or its equivalent, as employed in the definition of noise bandwidth. In accord with a proposal by E. J. Schremp, we have found the term, "single-frequency noise factor," a definitive title for this quantity. Nevertheless, it lacks the brevity it merits; perhaps something better will eventually be suggested.

In order fully to convey a useful magnitude in the quotation of a noise factor, one must convey also the value of room temperature T_a upon which it is based. The latter information is ordinarily suppressed. I indicated a preference for 300 degrees Kelvin; Dr. Friis suggests 290. Of course neither of us is suggesting that the test work in a thermostatted atmosphere of 81 degrees Fahrenheit or a comparatively chilly 63 degrees; nor are we even suggesting that the dummy antenna be maintained during test at a standard temperature. The requirement is merely that its temperature be ascertained and the computations be corrected to a standard temperature before a noise factor is quoted. It should be recognized that no such procedure need ordinarily be followed unless one's quotation carries a claim to accuracy of 0.1 decibel or better, except perhaps in unusual circumstances which subject the dummy antenna to a humanly uncomfortable climate.

H. T. Friis: It is stimulating to read the discussion by Dr. North, who has contributed so much on receiver rating by his paper.

The use of the phrase "more rigorous" in the first sentence of the second paragraph of the paper under discussion was perhaps unfortunate since I did not wish to imply that Dr. North's definitions were at all inaccurate, but merely that my suggested definitions were believed to be sufficiently precise to apply to four-terminal networks in general, including low-gain amplifiers and converters, and cases where a mismatch existed.

As far as the nomenclature is concerned, I am perfectly willing to leave the choice of terms up to the engineers who use the definitions and to those who will finally write the standards on the subject. The term

- p_1 - The sensitivity of the receiver.
- F - The noise figure of the receiver.
- T_e - The temperature of the environment.
- T_0 - The temperature of the detector.
- Δf - The noise bandwidth.

For example, M. G. Crosby, "The service range of frequency modulation," *RCA Rev.*, vol. 4, pp. 349-371; January, 1940.

- Radiation Laboratory, Massachusetts Institute of Technology, Cambridge, Mass.
- Bell Telephone Laboratories, Inc., Red Bank, New Jersey.
"noise figure," as is known, is widely used in this country and has appeared in at least one British publication.3

I used the words "absolute sensitivity" in their abstract sense. As defined by Dr. North or by me, the noise factor or noise figure of a receiver certainly is a measure of the absolute sensitivity of that receiver itself. I most certainly agree that the noise figure or factor is not a measure of the absolute sensitivity of a complete radio receiving installation. The importance of the local noise field in this case has long been recognized,4 but so far we have not found it necessary or convenient to set aside any particular phrase to designate this absolute sensitivity. In radio-circuit design we use the noise-figure definition given by formula (5) in my paper for the four-terminal network made up of both the transmitting antenna and the receiving antenna, and we assign, as Dr. North has suggested, for the temperature of the receiving-antenna impedance, a value that takes care of the external noise sources. This way of rating a complete radio circuit is briefly outlined in my paper at the end of the section entitled "Measurement of the Noise Figure."

As Dr. North points out, it makes little difference whether the noise figure be defined for a temperature of 290 degrees Kelvin or 300 degrees Kelvin. I chose the value 290 degrees merely because it makes the value of KT a little easier to handle in computations.

I am glad to see that Dr. North calls attention to the effect of image response on the noise figure. For reasons of clarity I made my paper as brief as possible and a great many details have therefore still to be settled. He has also pointed out that the concept of noise figure cannot be applied indiscriminately to the final or audio detector of a receiver. Fortunately, as he has stated, the limitations are such that they will have little effect upon the usefulness of the noise figure as a standard.

Television Awards

Sixteen leaders in the television field were presented awards on December 11, 1944, for outstanding contributions to television development at the First Annual Conference Banquet of the Television Broadcasters' Association at the Commodore Hotel ballroom in New York City.

The presentations were made before a gathering of more than 1000 by Paul Rabin, president of Television Productions, Inc., and in charge of television activities for Paramount Pictures, Inc., who was chairman of the Committee on Awards, which included Frederick R. Lack (A'20-M'37), and Orestes H. Caldwell (M'40-SM'43). Each recipient was presented a gold medal.

These awards were the first ever bestowed for achievement in the advancement of the art, science, and industry of television. They were made in three classes, including technical achievement, program achievement, and general achievement in television. Those made to I.R.E. members are listed below:

First Award

Dr. Vladimir K. Zworykin (M'30-F'38), RCA Laboratories, Princeton, N. J., with the citation: "For development of the iconoscope and the storage principal of picture pickup, resulting in the first practical television pickup equipment."

Awards for technical pioneering in television were made to:

- Philo T. Farnsworth (A'28-M'34-F'39), Farnsworth Radio and Television Corporation, Fort Wayne, Ind., with the citation: "For work on television scanning methods and the electron multiplier." A similar award was made to Lloyd Espenschied (M'13-F'24), Bell Telephone Laboratories, New York City, with the citation: "For adapting the coaxial cable to transmitting wide bands of radio frequency suitable for modern television."

- Dr. Peter C. Goldmark (A'36-M'38-F'42), Columbia Broadcasting System, New York City, received an award with the citation: "For work in the development of motion-picture pickup equipment and electronic analysis and control of equipment for color television." And F. J. Bingley (A'34-M'36-SM'43), Philco Radio and Television Corporation, Philadelphia, Pa., received an award with the citation: "For improvement in contrast of television pictures through flat-face tubes and experiments on link operations particularly as regards outdoor events."

A technical pioneering award was also granted to Dr. Allen B. DuMont (M'30-F'31), Allen B. DuMont Laboratories, Passaic, N. J., with the citation: "For the development of the cathode-ray tube to a satisfactory commercial instrument of television control and reproduction."

An award was made for general contribution to television to each of the following and this award also does not cover the past year, but it is a summation of the efforts of many years.

First Award to General David Sarnoff (A'12-M'14-F'17), former Secretary of The Institute of Radio Engineers and on leave from the Presidency of Radio Corporation of America, with the citation: "For his initial vision of television as a social force and the steadfastness of his leadership in the face of natural and human obstacles in bringing television to its present state of perfection."

Other awards of this class were made to Dr. W. R. G. Baker (A'19-F'28), with the citation: "For his leadership in standardizing television through the National Television System Committee and supporting it through the Radio Technical Planning Board;" to David B. Smith (A'35-SM'44), Philco Radio and Television Corporation, Philadelphia, Pa., with the citation: "For his work on the National Television System Committee and his planning of television future as panel chairman with the Radio Technical Planning Board;" and to Dr. Alfred N. Goldsmith (M'12-F'15), Editor of the Proceedings of the I.R.E., with the citation: "For his work on the National Television System Committee and the Radio Technical Planning Board and his vision of the relationship of the motion picture and television."

Books

"Radio's 100 Men of Science," by Orrin E. Dunlap, Jr. Keith Henney 138

"Meet the Electron," by David Grimes ... Arthur F. Van Dyck 138

Building-Fund Campaign Launched

BY THE time this article appears in the Proceedings, the Building-Fund campaign to raise not less than $500,000 will have been formally launched at the Winter Technical Meeting, and all the Sections will have been informed as to their participation. The objective is to secure, during February and March, donations to the Building Fund from every member and friend of the Institute, including friendly corporations. To attain this objective, the campaign organization has been so designed as to insure that personal calls will be made by members, usually in pairs or groups, upon all members and upon certain corporations in the United States and Canada, to set forth fully our need and our plans, and to facilitate the making of contributions. Reliance will be placed upon telephone or direct-mail appeals only in the case of foreign members and others too remotely located to make personal calls feasible.

WHY $500,000 OR MORE?

Months of study, conference, and investigation have culminated in this action. Members will recall from previous Proceedings articles, that the Board of Directors initiated this campaign for the financing of “a suitable headquarters building, whether alone or in association with other engineering societies as the opportunity presents.” With this aim in mind, the entire Building-Fund program has been and will be kept flexible. Essential to final determination of detailed plans, however, is the primary objective: successful financing at the earliest possible date.

The fact that the goal has been set at the sum of not less than $500,000 does not imply that we seek to acquire a half-million-dollar building. If the cost of land and building, including alterations and furnishings, were placed at $300,000, wisdom would dictate the inclusion of an additional $200,000 representing the capitalized difference between the present office rent and the estimated annual maintenance of the building. The Board feels that maintenance to the extent of present rent is an obligation to be met out of current income, and that excess maintenance obligations taken on with a building should be capitalized and the amount raised with the fund collected to buy or build. The Board also feels that it has no right to ask its members and corporate and other friends to contribute to a sinking fund to cover depreciation, so no amount for depreciation is included. By this campaign, this generation plans only for itself—a matter of, say, 25 to 40 years—knowing that our successors, alert to changed conditions, will in their time probably initiate more ambitious plans.

The amount of $500,000 is also felt to be adequate to provide freedom of action: alternatively to join with other engineering and scientific societies in occupying acquired premises, if to do so proves ultimately more feasible and desirable. If, for example, favorable consideration were to be obtained from one of several foundations, or by other means, to establish an Engineering and Science Center, realization of the amount which is our goal would put the Institute in the same financial company as other societies likely to be included in any grant.

A PROGRAM OF EXPANSION

If the radio-and-electronic field held less brilliant promise for the future; if the growth and prestige of I.R.E. were unlikely to keep step with the expansion of its field; if its Directors had no intention and no plans for giving increased service to its membership and to the industry—there would be no justification for a fund to house the Institute as other similar societies are housed. It is of utmost importance to remember that the prospective housing of our activities is merely a necessary means to their expansion. Therein lies the real interest of every contributing member and corporation.

Through wise stewardship, successive Boards of Directors have built up the Institute’s reserves and surplus so that we do not have to go before our prospective corporate contributors as beggars, but as a body of engineers, with a respectable financial standing and record of good management, seeking funds to broaden our activity and usefulness. If the Directors had felt it desirable, they could have allocated the first $100,000 to the Building Fund from invested funds of the Institute. But they realize that a real program of expansion will take money for many purposes besides that of a building, its furnishings, and its maintenance.

The present funds of the Institute have accordingly been earmarked, not for the Building Fund, which is to stand on its own feet, but for the greater service of the Institute to its membership and the industry. Corporate contributors to the Building Fund, who have a right to expect that the stewardship basis of a request for a corporate contribution shall be as valid as that for a loan from a bank, will be impressed by the judgment of the Directors in not obligating, for a building, the funds now in its investment account.

Although this plea for donations comes before the membership as a Building Fund, from the foregoing it will be recognized that raising of the Fund is only part of a program far broader than that: rather, it is the first of a series of steps (and being the most expensive, the only one we cannot financially handle without the assistance of our friends) to put The Institute of Radio Engineers where it belongs—in the forefront of engineering, alongside other societies which give their respective memberships and industries better service than I.R.E. up to now has had office space and staff enough to
render. Because it is the first step towards enlarged service, the Building Fund is the Institute's great opportunity. To succeed in its realization presents a challenge much greater than any that has previously been before us. Upon the way that we accept it will undoubtedly depend much of the entire future course of our society.

SUCCESS DEPENDS ON MEMBERSHIP

The outcome of the Building-Fund campaign necessarily rests with the membership of the Institute. The Directors have engaged competent fund-raising counsel in order to promote efficiency and to save time and money; and, because there is no room at Institute headquarters, have temporarily rented campaign offices in Suite 930 at 55 West 42nd Street, New York. The Board and its committees are doing their utmost to promote efficient planning and comprehensive presentation of this important project. All this will be futile, however, without the full co-operation of the members in financial support, and by assistance in the securing of subscriptions.

Appeals will be made, for the most part, through Section Building-Fund Committees organized in the various Sections, including the New York Section (the Canadian Sections are to organize under the Canadian Council). The chairman of each of these Section Building-Fund Committees: (a) will be appointed by the Chairman of each Section; (b) will receive instruction from and be responsible to the Sections Solicitation Committee chairman at campaign headquarters; (c) will himself appoint and direct two line committees: (1) a Membership Solicitation Committee to direct the activities of pairs or groups calling on members; and (2) a Corporation Solicitation Committee to direct calls made on officers of selected corporations; plus five staff committees (wherever the Section is large enough to justify), to handle: (3) prospect ratings and quotas, (4) accounting and audit, (5) local publicity, (6) training and meetings, and (7) liaison with members not on the Section list but in the geographical vicinity, and with college representatives in the vicinity.

An Initial Gifts Committee will function at campaign headquarters, its chairman making direct appointment of individuals and teams to make the approach to the larger corporations and individual givers wherever located in the United States and Canada. These firms and individuals will be "blocked" against duplicate solicitation by Section Building-Fund Committees, but donations secured from them will be credited to the proper Sections.

Section Building-Fund Committees will be furnished all necessary further information on organization, procedure, handling and accounting for funds, and so on. Building-Fund representatives will, so far as possible, visit the various Sections during February and March.

A ONE-TIME APPEAL

To guarantee that funds paid in by subscribers shall be properly safeguarded, and that they be disbursed for the designated purposes only, a suitable agreement has been executed, particulars of which will be made available to all potential donors. Assurances that gifts to the Building Fund are deductible for Federal Income Tax, Estate, and Gift Tax purposes, have been secured from the Commissioner of Internal Revenue, particulars of which will also be made available.

Because a Building-Fund campaign is nonrecurring, has not been made previously in the engineering profession for approximately 40 years, is not likely to be made by the Institute again during the lifetime of most of the present members, gifts may be "stepped up" higher than customary in the case of annually recurring "drives" for charity. The fact that the net cost to the donor for the gift is a fractional amount of the face of the checks drawn (by the percentage of taxes that would have to be paid were no gift made), is a further justification of liberality. Notes on pledges may be given to spread the amounts over 1945 and early 1946 to suit the donor's financial and tax program. If full advantage is taken of these three inducements to liberal giving, there will be no doubt of a happy conclusion to the Building-Fund campaign.

THE CASE FOR THE BUILDING FUND

In summary of this article and the two which preceded it in the December and January issues of the PROCEEDINGS, the following statements appear to be axiomatic:

(a) Postwar need for I.R.E. will be greater than ever before.

(b) The Institute must have more room to function efficiently.

(c) Vision is needed if the housing problem is to be solved adequately.

(d) Support must come from the Institute's friends.

(e) Now is the time for action. The need for sufficient space is not theoretical; the overcrowded offices are a reality today. Delay will only permit the problem to be aggravated as tomorrow's need for expansion crowds in upon us. More temporary movings will disrupt operation and leave us no better off than we are now. This situation calls for a permanent solution; and the Board believes all members will agree that an aggressive Building-Fund campaign is the answer.

1945

Proceedings of the I.R.E.

129
Proceedings of the I.R.E.

Board of Directors

November 29 Meeting: At the regular meeting of the Board of Directors, which was held on November 29, 1944, the following were present: H. M. Turner, president; R. A. Hackbush, vice-president; S. L. Bailey, W. L. Barrow, E. F. Carter, I. S. Coggeshall, W. L. Everitt, president-elect; Alfred N. Goldsmith, editor; R. F. Guy, R. A. Heising, treasurer; Keith Henney (guest), F. B. Llewellyn, Haraden Pratt, secretary; H. J. Reich, B. E. Shackelford (guest), H. A. Wheeler, L. P. Wheeler, W. C. White, and W. B. Cowilich, assistant secretary.

Constitutional Amendments

Report: The November 27, 1944, report of the Tellers Committee, was unanimously accepted and the amendments approved by the voting membership which had been considered at recent meeting before July 1, 1945.

Mr. Heising, chairman of the Constitution and Laws Committee, pointed out that the following proposed amendments failed to pass:

No. 2—The purpose of this amendment was to substitute the names of Member, Associate, and Affiliate for the present names of Senior Member, Member, and Associate, respectively.

No. 6—The purpose of this amendment was to increase the dues.

No. 10—This amendment was a limitation upon the appointment of Secretary, Treasurer, Editor, and appointed members of the Board.

Second Constitutional Amendment Ballot: This ballot, to include the amendment of Article IV recently submitted by petition and relating to a second plan to increase membership dues, should be mailed after the annual meeting of the Sections Committee scheduled for January 24, 1945. It was noted that H. P. Westman, who initiated the petition, was agreeable to the postponement.

In the publicity on the foregoing dues increase plan, it was considered important to emphasize that the resulting larger revenue would make possible more service to the membership and an increase in Section rebates. The suggestion was also made to the effect that the Sections should be given ample opportunity to discuss this plan and requested to report on such discussions to the Institute.

Following the discussion, the following motion was unanimously approved:

"Because the proposed amendment will primarily affect the new members in 1945, the Constitution and Laws Committee is empowered to decide when the petitioned amendment shall be submitted to the voting membership before July 1, 1945."

Bylaws: These proposed bylaws sections, which had been considered at recent meetings, were approved:

Section H—The Board, by this Bylaw, waives the dues of each and every member of the Institute who has attained the age of 65 years and has been a member of the Institute for 35 years.

Section B—"The Proceedings shall be sent to all members. All members, except Students, shall be entitled to a Yearbook, if it is published. The Board of Directors shall determine the distribution of other publications."

Awards

Medal of Honor for 1945: This citation for H. H. Beverage, to whom the medal was awarded at the last meeting, was given unanimous approval:

"In recognition of his achievements in radio research and invention, of his practical applications of engineering developments that greatly extended and increased the efficiency of domestic and world-wide radio communications, and of his devotion to the affairs of The Institute of Radio Engineers."

Morris Liebmans Memorial Prize for 1944: W. W. Hansen was chosen by the committee as the recipient for the 1944 prize, with the following citation:

"For application of electromagnetic theory to radiation, antennas, resonators, and electron bunching, and for the development of practical equipment and measurement techniques in the microwave field."

Fellowships: 12 candidates were elected to the grade of Fellow and approval was given to their citations.

H. H. Butiner—"In recognition of his direction of radio communication activities in the international field."

O. H. Caldwell—"For his contribution in broadening the horizon of the engineer by his long-continued effort to increase the use of electronic principles in industrial operations."

W. H. Doherty—"For his contributions to the development of radio transmitting equipment."

A. W. Hull—"In recognition of his many contributions to the development and design of electron tubes both for radio and industrial applications."

A. L. Loomis—"In recognition of his work in the application of electronic techniques to medical research and for contributions to microwave development."

A. V. Lougheed—"For his many valuable contributions to broadcast and television engineering and his untiring efforts to advance this profession."

F. X. Reitenneyer—"In recognition of his achievements in the development of broadcast and automobile receivers and aviation radio."

S. A. Schilknoff—"In recognition of his mathematical contributions to electromagnetic theory."

R. L. Smith-Rose—"In recognition of his pioneer work in the field of direction finding and radio propagation, allied to his leadership of an outstanding radio research group."

K. S. Van Dyke—"In recognition of his work in research on characteristics of piezoelectric crystals and their application to frequency control."

E. M. Webster—"For his contributions to the development of the maritime mobile radio services and his leadership in promoting measures for enhancing the safety of life and property at sea."

P. D. Zottu—"For his contributions in the field of high-frequency heating, particularly in the application of dielectric heating in industry."

Sections

San Diego: The establishment of an Institute Section at San Diego, California, recommended by the Executive Committee, was authorized with San Diego County as the official territory.

Cedar Rapids: Mr. H. A. Wheeler reported that the November 25, 1944, petition for the formation of an Institute Section at Cedar Rapids, Iowa, contained the signatures of thirty qualified members, or five more than the number prescribed in the By-laws, and thus is in good order.

After considering the petition, it was moved to authorize the establishment of the Cedar Rapids Section with the official territory to consist of the thirty-two counties which are within a sixty-mile radius of the Section.

COUNTIES IN IOWA

Bremer

Marshall

Henry

Fayette

Benton

Johnson

Clayton

Kokomo

Cedar

Grundy

Jefferson

Clinton

Black Hawk

Linn

Scott

Iowa

Jones

Mabaska

Louisa

Jackson

Muscatine

Delaware

Jasper

Tama

Buchanan

Poweshiek

Polt

Dubuque

Washington

Story

COUNTIES IN ILLINOIS

Rock Island

Mercer

Committees

Code of Ethics: Upon recommendation of the Executive Committee, a special Committee on Code of Ethics was created and W. L. Barrow, chairmam; Alfred N. Goldsmith, and L. E. Whittemore were named members of the group.

Technical: The following persons, including those recommended by the Executive Committee, were appointed.

ELECTRONICS

G. W. Greer

Symbols

H. F. Dart

TELEVISION

R. N. Harman-H. T. Lyman

Standardization of Program Loops and Private-Line Terminations: Dr. Llewellyn, in charge of standardization and other technical committees, referred to the recent letter from Edward J. Content, suggesting the formation of a committee on the indicated subject to include two representatives of the Institute. This matter was considered at the recent Executive Committee meeting.

February, 1945
H. A. Chinn and O. B. Hanson were named to serve as the Institute's representatives on the committee, which is to study the standardization of program loops and private-line terminations at points of origin of radio programs.

Rochester Fall Meeting: The November 27, 1944, letter from Mr. Horle, containing a report on the fall meeting, was read by President Turner and it was noted that the registered attendance was more than 700.

President Turner and President-Elect Everitt, who attended the meeting, stated that the meeting was regarded as successful. 1945 Summer Convention: Mr. H. A. Wheeler, the Executive Committee member responsible for conventions and conferences, gave reports on matters concerning this convention.

It was unanimously decided to hold this convention at Montreal, Canada, approximately June, 1945, and to communicate with the Montreal Section relative to making preliminary arrangements for the convention. **The Institution of Electrical Engineers:** Upon recommendation of the Executive Committee, these members were appointed to the Liaison Committee: Ralph Bown, chairman; F. S. Barton, and F. B. Llewellyn.

Office Organization: Secretary Pratt explained the proposed organization chart and called attention to the necessity for taking immediate steps to fill the three new positions listed below:

- Executive Secretary
- Technical Editor
- Technical Secretary

The following motions were unanimously approved:

"The Board establishes the positions of Executive Secretary, Technical Editor, and Technical Secretary, and authorizes that provisions be made for these positions in the 1945 budget."

"It was moved to appoint a committee consisting of S. L. Bailey, chairman; F. E. Terman, W. O. Swinyard, F. R. Lack (Ralph Bown, alternate), the Secretary, and the Editor, for the purpose of entering into negotiations without making commitments with prospective candidates, and to instruct this committee to submit their recommendations to the Board on candidates for the positions of Executive Secretary, Technical Editor, and Technical Secretary."

It was stated that these additions to the staff are intended to broaden future Institute activities, including the expansion of the publications program and the increase in membership. It was also indicated that a deficit could be expected for a few years from the Institute's organization and activities on the new basis.

President's Traveling Expenses: Upon the recommendation of the Executive Committee, the sum of $1000 was appropriated for the traveling and related expenses of the President of the Institute, the appropriation to become effective in 1944 and to continue annually thereafter until further notice.

H. J. van der Bijl: President Turner called attention to this radiogram, addressed to Secretary Pratt and received on November 28, 1944, from Vice-President-Elect van der Bijl relative to his recent election to the stated office.

"Please convey to Institute my sincere appreciation electing me vice-president 1945 which I cherish as exceptional honor. My best wishes for continued success and evergrowing importance of contribution to civilization by its Fellows and members."

"Societe des Radioelectriciens:** This message, dated November 27, 1944, from Monsieur Bouthillon was read by Secretary Pratt:

"The Societe des Radioelectriciens at its meeting of November 25th held at the Sorbonne, first meeting since March, 1940, voted that a message be sent to The Institute of Radio Engineers to mark and celebrate the occasion of renewed co-operation with the American radio scientists and engineers through the Institute. It is the firm belief of the Societe des Radioelectriciens that proper co-operation with the U. S. Radio Institute will help materially in the commonplace. Signed, Bouthillon, President of Societe des Radioelectriciens."

The Board's appreciation of the message was expressed and Secretary Pratt was requested to acknowledge the communication. It was also decided to bring a copy of the message to the attention of the Liaison Committee, which is in the process of formation.

Executive Committee

November 27, 1944: The following members were present at the November 27, 1944, meeting of the Executive Committee: H. M. Turner, president; W. L. Everitt, president-elect; E. F. Carter, Alfred N. Goldsmith, editor; R. A. Heising, treasurer; F. B. Llewellyn, Haraden Pratt, secretary; H. A. Wheeler, and W. B. Cowilich, assistant secretary.

Constitutional-Amendment Balloting

Of the 3660 ballots on Constitutional Amendments, dated September 15, 1944, and mailed on that date to the voting membership, 1742 were received in good order, according to the report of the Tellers Committee.

The Constitution prescribes that in such balloting, at least 20 per cent of all voting members must participate and a minimum of 75 per cent of the votes cast must be affirmative to adopt a proposed amendment.

The seven of the ten proposed amendments, approved by the voting membership, were adopted by the Board of Directors at its meeting on November 29, 1944 and by that action became effective on December 29, 1944.

The table at the foot of this page shows the results of the balloting. The amendments, including those approved and not approved, are listed below and in each case the wording, or the explanation of the purpose, is indicated:

No. 1 (Approved)

Article I, Section 2

Insert after the first word "be" the following words "scientific, literary, and educational. Its aims shall include" making it read

"Section 2. Its objects shall be scientific, literary, and educational. Its aims shall include the advancement of the theory and practice of radio, etc."

No. 2 (Not Approved)

The purpose of this amendment was to substitute the names Member, Associate, and Affiliate for the present names of Senior Member, Member, and Affiliate, respectively.

No. 3 (Approved)

Article II, Section 1d

Delete the last sentence, "Furthermore, etc."
London, Ontario,
Section Formed

An instrument, still on the secret list, actually launched the London, Ontario, section of The Institute of Radio Engineers at the University of Western Ontario on November 24, 1944, by carrying the image of the charter of the section from one room to another. The layman might say the section and its charter were projected into being on the screen of a little black case — contents unknown.

Culmination of a year’s organization work marked the charter night of the London section of the parent organization designed to advance and coordinate discoveries and methods of furthering electronics and electrical communication through discussion of individual and group problems.

Wing Commander K. R. Patrick, officer commanding the R.C.A.F. station at Clinton, and several of the camp personnel handled the equipment which projected the London Section’s charter on a screen from another room by means of a new departure in television. Flight Lieutenant Robert Wilton, secretary of the new section, then read the charter from the screen.

Election of a permanent slate of officers, reading of congratulatory messages, and a technical description of Canadian and American radio planning, marked the charter ceremonies. Ralph W. Hackbusch, vice-president of The Institute of Radio Engineers, explained the organization of Radio Technical Planning Boards both in the United States and in Canada, and stated that advancement of radio and electronics through these groups is assured.

Dr. Sherwood Fox, president of the University of Western Ontario, welcomed the members of the London section and congratulated them on receiving their charter. Dr. Fox offered any available facilities of the university to the London section for future meetings, and use of any equipment that might be of assistance in furthering the work of the members.

Congratulations and greetings were offered by E. B. Buchanan, general manager of the London Public Utilities, and Charles Miller, of the Ottawa section of the I.R.E. And so, in striking and appropriate fashion was started the promising career of the new section.

After Cedar Rapids Meeting

Cedar Rapids Section Formed

On November 29, 1944, 64 people met in Cedar Rapids, Iowa, to organize a proposed new Section of The Institute of Radio Engineers. The section is to include thirty counties in Iowa and two counties in Illinois, covering approximately a sixty-mile radius from Cedar Rapids.

A paper on "The Romance of Ceramics" was presented by G. Milton Ehlers, head of the ceramics division of the Centralab Company, Milwaukee, Wisconsin; and R. V. Guettler, of the silver mica division at Centralab, also spoke briefly on the subject of silver mica condensers.

It is estimated that the new section will have a charter membership of approximately 100; the election of permanent officers was scheduled for the next meeting. Temporary officers appointed were T. A. Hunter, Chairman, and John A. Green, Secretary-Treasurer.

Following the meeting, those in attendance were invited by W. S. Parsons, assistant sales manager of the Centralab Company, to be guests of that organization at a luncheon.

Since this meeting, the Board of Directors of the Institute has formally authorized the Cedar Rapids Section, for which a successful and constructive career is hoped and anticipated.

Research Scientist Views Electronic Future

Dr. O. S. Duffendack (SM'44) research director of North American Philips Company, Inc., stated in a recent talk before the Yonkers, New York, Chamber of Commerce that although progress along some lines in electronics has been phenomenal and that a very noticeable effect on our mode of life will certainly be evident in the decade following this world war, it was necessary to sound a note of caution.

He said, "Don't expect miracles. What has happened is that certain developments—not all in this field have been speeded up so that we shall have available at the end of the war, devices and processes that normally would not have been ready for another ten or possibly twenty years. To anyone who knows research and development, that is almost a miracle.

"Without violating the rules of military security we may predict some of the changes that may be anticipated as a consequence of electronic developments. Radio communication especially will benefit from the availability of higher frequency bands, and marked improvement in frequency-modulation techniques. New tubes, new conductors, new receivers, and new circuits will make possible a greater use of radio communication without mutual interference. We may expect to see a greater use of long-distance and localized services as well as in local police-radio systems. Fleets of trucks may be directed by radio and plane-to-plane, train-to-train, as well as engine-to-engine communication by radio, wire, or rail are probable. The improvements in small portable two-way sets, such as the walkie-talkie, have been rapid; and a widespread use of these devices by surveying, prospecting, and exploring parties is certain.

"Improvements in antenna design and other things have resulted in sharper, better defined radio beams that will be reflected in a marked increase in beam communication and in improved air navigation. The development of quartz-crystal oscillators has been truly phenomenal. Now a single plant produces in a single month more crystal oscillators of higher quality than were produced in the entire world in a year before the war. As a consequence, close frequency control and precise tuning are making possible narrower channels and improved radio operation. The story of the development of processes for the large-scale manufacture of crystal oscillators is the fascinating one of an achievement for which the electronic industry can be very proud.

"Broadcasting and radio communications likewise will be noticeably improved and extended by developments in the high-frequency ranges and frequency modulation. Television is certain to have a rapid spread to continental coverage in a few years after the war. It was ready for this when the war broke. Color television is a definite possibility and will follow in due course. Facsimile transmission, which is not a specific war development, likewise will benefit from others and be quickly improved.

"Transportation will be faster and safer as a consequence of wartime electronic developments. Transoceanic flights were barely emerging from the stunt and novelty stage when the war began. Now that thousands of planes have been flown across both the Atlantic and the Pacific, transoceanic traffic by air is commonplace with a remarkably low rate of loss. We can give due credit to automotive and aerodynamic developments and still say that without new and improved navigation aids resulting from electronic research, the present achievements would have been impossible.

"Radar is the outstanding achievement in electronics during the war. After the war, not a passenger ship will sail nor a transport plane take off without the benefit of navigation aids from some type of radar making passage safe which before would be hazardous. Radar and radio, underwater sound, and other devices will guide and protect our ships of the sea and the air and bring them safe to port through darkness and storm and hail and fog. Blind landing of airplanes will be commonplace and the mail will go with passengers through storm and cloud.

"Buzz bombs and rockets and V-2's are instruments of terror and death in this war. Now they carry explosives and we dread their approach. But in times of peace, these same carriers can be tamed and used for our benefit. Electronic devices to guide them and control their landing are entirely within the realm of the possible so that instead of sending death and destruction to London we may send gifts and benefits. The world again will shrink and become small through the achievements of electronics and they will find that the lives of our children will be filled with broader and fuller experiences than our own."

Dr. Duffendack, formerly professor of physics at the University of Michigan, is best known for his work in the field of electronic conduction through gases and has published a number of scientific papers.

I.R.E. People

E. F. W. ALEXANDERSON

The Edison Medal for 1944 has been awarded by the American Institute of Electrical Engineers to Doctor Ernst Fredrik Werner Alexanderson, consulting engineer, General Electric Company, "For his outstanding inventions and developments in the radio, transportation, marine, and power fields." It is awarded annually for "meritorious achievement in electrical science, electrical engineering, or the electrical arts" by a committee composed of twenty-four members of the A.I.E.E.

Dr. Alexanderson joined the Institute of Radio Engineers as an Associate in 1913, transferred to Member grade in 1913, and to Fellow grade in 1915.

JOHN M. MILLER, JR.

John M. Miller, Jr. (A'41), has been made chief engineer at United Cinephone Corporation, Torrington, Conn., in which capacity he is in charge of the corporation's designing and development work. Mr. Miller formerly did radio design and development work with Philco, the Navy Department, and RCA Victor, and is a member of the Circuits Committee of the I.R.E.
JOHN M. MILLER

WILLIAM W. GARSTANG

William W. Garstang (A'31-M'35-SM'43), is vice-president and director of Electronic Laboratories, Inc., of Indianapolis, Ind. Under his direction there are produced light- and heavy-duty vibrators and vibrator power supplies applicable to a wide range of devices from smallest portable radio equipment to fluorescent lighting in vehicles, and also permitting the operation of refrigerators and other appliances for nonstandard power supplies.

WILLIAM W. GARSTANG

WINFIELD G. WAGENER

Winfield G. Wagener (A'29-SM'44), formerly chief engineer at Heintz and Kaufman, has been appointed chief engineer of the vacuum-tube division of Litton Engineering Laboratories, Redwood City, Calif. Graduated from University of California in 1928 with honors, Mr. Wagener won the John W. Mackay scholarship for advanced work in electrical engineering and, with its aid, continued to his master's degree. He also engaged in research work at Stanford under former I.R.E. President, Dr. F. E. Terman. At the present time he is chairman of the San Francisco section of I.R.E. Mr. Wagener is author of "Calculating the Performance of Vacuum Tubes," included in many standard books on radio. He has originated a number of practical applications of vacuum tubes in ultra-high-frequency circuits.

Prior to his previous connection he spent several years in development work with Federal Telegraph Company and later served with the Radio Corporation of America.

BENNETT S. ELLEFSON

Bennett S. Ellefson (A'38-M'44) has been appointed assistant to the vice-president in charge of engineering of Sylvania Electric Products, Inc. Associated with the company since 1937, Dr. Ellefson has specialized in research on fluorescent screens, special uses of glass, fluorescent powders for cathode-ray tubes, and specialized war products. He holds a number of United States and foreign patents on fluorescent materials and glass, including certain special war products.

Prior to joining Sylvania, Dr. Ellefson conducted important research on industrial chemical processes. He is a member of the American Society for the Advancement of Science, the American Chemical Society, the American Ceramic Society, Phi Kappa Phi, and Sigma Xi. A native of Canby, Minnesota, he holds a B.A. degree from St. Olaf College, an M.S. degree from the University of Minnesota, and a Ph.D. degree from Pennsylvania State College.

ROGER M. WISE

The appointment of Roger M. Wise (A'26-M'30-F'37) to the newly created post of vice-president in charge of engineering of Sylvania Electric Products, Inc., has been announced by Walter E. Poor, the company's president.

Sylvania's director of engineering for the past two years, Mr. Wise previously served as the company's chief radio engineer for ten years.

Prior to joining the company in 1929, Mr. Wise was associated with the Remler, Cunningham, and Grigsby-Grunow companies.

After serving in the United States Navy during World War I as chief electrician (radio), Mr. Wise completed his education at the University of California.
L. M. LEEDS

Institute News and Radio Notes

L. M. Leeds (A'30-M'40) has been appointed manager, electronics laboratory of the General Electric Company's electronics department, it has been announced by Dr. W. R. G. Baker (A'19-F'26), vice-president in charge of the department, W. C. White (A'15-M'15-F'40), formerly in charge of this laboratory, has been appointed the electronics engineer of the General Electric research laboratory.

Mr. Leeds will have his headquarters in Schenectady and will have charge of electronic research and advanced development for the electronics department.

Since 1943, he has been an electronics consulting engineer for the company, as well as an expert consultant on radar and radio in the Office of the Secretary of War, with offices located in the Pentagon Building, Washington.

Mr. Leeds, born in Tulsa, Oklahoma, worked eight years in various phases of the radio industry before receiving his B.S. degree in electrical engineering from Rutgers University in 1934. He joined General Electric that year and went to work for the radio transmitter engineering department.

In 1938, Mr. Leeds was placed in charge of the development of the first General Electric television station (W2XB) in the Helderberg Mountains outside Schenectady, and the establishment of General Electric's "proving ground" station WRGB in 1939. In 1940, he was named leader of the radar-development section.

Mr. Martin was educated at Massachusetts Institute of Technology, and has a background of fifteen years experience in the design and research division of the engineering field. He had previously been associated with Westinghouse Aircraft Division, de Forest Radio Company, Federal Telephone and Radio Manufacturing Company, Radio Receptor Company, and the J. H. Bunnell Company.

CANADIAN RTPB

Reginald M. Brophy (A'25) of the Canadian Marconi Company, Montreal, has been elected president of the newly organized Canadian Radio Technical Planning Board. Ralph A. Hackbusch (A’26-M’30-F’37), vice-president of the Stromberg-Carlson Company, Toronto, was elected vice-president.

H. S. OSBORNE

H. S. Osborne (A’14-M’29-SM’43) of the American Telephone and Telegraph Company was re-elected chairman of the Standards Council of the American Standards Association for 1945.

Correspondence

Correspondence on both technical and nontechnical subjects from readers of the PROCEEDINGS of the I.R.E. is invited subject to the following conditions: All rights are reserved by the Institute. Statements in letters are expressly understood to be the individual opinion of the writer, and endorsement or recognition by the I.R.E. is not implied by publication. All letters are to be submitted as typewritten, double-spaced, original copies. Any illustrations are to be submitted as inked drawings. Captions are to be supplied for all illustrations.

Determination of the Quiescent Operating Point of Amplifiers Employing Cathode Bias

The most common method by which grid-bias voltage is obtained for a receiving-type tube operating without grid current is by means of a cathode resistor, either bypassed or not depending upon the circuit requirements. A typical circuit of this type is shown in Fig. 1.

In each such application the question arises as to what the quiescent operating conditions are for a given set of circuit parameters. The usual method of solution is to draw the proper load line on the &e; &i characteristics for the tube, assume a value of plate current, and then revise this assumed value until a plate current is obtained which produces the value of grid-bias voltage (the drop in R4) required to allow this plate current to flow. Such a method lacks precision and may be rather time-consuming.

A more satisfactory method than the cut-and-try process is described below. While certainly not new,1 this method is not widely used, and a brief review may be of some assistance.

The load line in the circuit of Fig. 1 is drawn upon the basis of the equation

\[\text{ib} = \frac{(E_{bb} - \text{eb})}{(R_b + R_1)} \]

and the line obtained determines the values of plate current and plate voltage for all negative values of grid voltage. The use of such a locus is well known.

Note that in Fig. 1 the value of grid voltage \(\epsilon_r \) is dependent only upon \(\text{ib} \) and \(R_b \). Thus

1 This method was first brought to the author's attention by W. R. Saylor of the General Radio Company, Cambridge, Mass.

or \(\epsilon_r = -\frac{\text{ib}}{\left(\frac{\text{eb}}{R_b}\right)} \).

This holds true regardless of \(R_b \) or \(E_{bb} \). Therefore a grid-bias line can be plotted on the tube characteristics by the use of (2). The desired quiescent operating point is then simply the intersection of the load line and the grid-bias line.

Fig. 1—Triode with cathode and plate resistors

An example will help to illustrate the convenience of this method. Consider a type 76 triode connected as shown in Fig. 1, with \(E_{bb} = 250 \) volts, \(R_b = 5000 \) ohms, and \(R_1 = 20,000 \) ohms. The published \(\epsilon_r \) characteristics are given in Fig. 2. The usual load line, corresponding to \(R_4 + R_1 \) is shown. The grid-bias line, which is, in general, not a straight line, is also shown, and the intersection of these two lines gives the required
Equivalent-Plate-Circuit Theorem

Mr. Preisman's letter has brought out two important facts that are sometimes overlooked. These are that the equivalent plate circuit applies only to alternating voltages, currents, and associated power, and that it is strictly valid only at current amplitudes that are low enough so that nonlinear distortion is negligible. Normally the determination of power and of plate dissipation is necessary only in power or current amplifiers, in which the current amplitudes are so large that the equivalent plate circuit must be abandoned in favor of graphical methods of determining power output.

Starting from expression (6) of Mr. Stockman's letter, Mr. Preisman has derived a relation, which may be stated in terms of standard symbols as follows:

\[P_i = P_o + P_e \]

(a)

where \(P_i \) is the input power to the plate circuit supplied by the direct-current source, \(P_o \) is the total plate dissipation, and \(P_e \) is the power developed in the plate circuit (load). This relation is important not only because it may be used in determining the plate dissipation in any type of operation, but also because it shows that if the input power remains constant, which is essentially true in class A amplifiers, any reduction in power output results in increased plate dissipation. It is of interest to note that (a) follows directly from the law of conservation of energy, since it states that power supplied by the source can appear only as plate dissipation and as power developed in the load. Equation (a) can, therefore, be obtained without reference to the equivalent plate circuit or to a diagram such as Mr. Stockman's Fig. 2, which is likely to prove confusing to a student. One may obviously reverse Mr. Preisman's procedure and obtain Mr. Stockman's expression (6) from (a) under the assumptions that the direct-current resistance of the load is negligible and not what is ordinarily termed the equivalent-plate-circuit theorem, but rather an equation that may be obtained from an equivalent circuit constructed by applying the general theorem to a particular type of circuit.

Such an application is often useful in direct-current amplifier design.

JAMES N. THURSTON
Massachusetts Institute of Technology
Cambridge, Mass.
The equivalent-plate-circuit theorem may be stated in general form as follows: The fundamental component of alternating plate and plate-circuit currents and voltages in vacuum-tube circuits may be determined from an equivalent plate circuit in which the tube is replaced by the alternating-current plate resistance in series with a fictitious constant-voltage generator of voltage \(\epsilon \mu E \), or by the alternating-current plate resistance in parallel with a fictitious constant-current generator supplying a current \(\epsilon \mu E \). The voltage \(E \) is the vector sum, along any continuous path in the actual circuit, of all alternating voltages between the \(n \)th grid and the cathode, \(\mu \) is the mu factor of the \(n \)th grid relative to the plate, and \(\epsilon \mu E \) is the transconductance relating the plate and the \(n \)th grid.

Use of the following procedure ensures the correct formation and solution of equivalent plate circuits. With suitable changes of symbols it may be applied to the circuit of any electrode.

1. (a) Series Equivalent Circuit. Insert the equivalent voltage \(\mu E \) and the alternating-current plate resistance \(r_p \) in series between the plate and the cathode, indicating the polarity of the equivalent voltage to be such that the cathode side of the voltage is positive, as in Fig. 2B. (The polarities indicate the vector relations between the voltages, change in sign being equivalent to a reversal in the direction of the vector representing the voltage. The polarities may also be construed to apply to the instantaneous voltages at some instant in the cycle.) If alternating voltage is impressed upon more than one grid, there is an equivalent voltage in series with \(r_p \) for each grid that is excited.

(b) Parallel Equivalent Circuit. Connect the plate resistance and an equivalent constant-current generator in parallel between the plate and the cathode of the tube. The current supplied by the generator is \(\epsilon \mu E \) and should be indicated as flowing through the generator from the plate terminal to the cathode terminal. If alternating voltage is impressed upon more than one grid, there is a similar component of current for each additional grid that is excited.

2. Assume polarities for the grid and plate excitation voltages (impressed voltages) \(V_g \) and \(V_p \). It is convenient to indicate the polarities to be such as to make the grid and the plate positive relative to the cathode. (When excitation voltages that are in phase opposition are applied simultaneously to two electrode circuits, however, obviously only one of the excitation voltages can be indicated as having such polarity as to make its electrode positive relative to the cathode.)

3. Assume positive directions for the various alternating circuit currents. It is sometimes convenient to choose the positive direction of plate current as that in which the equivalent voltage \(\mu E \) tends to cause it to flow, i.e., through \(r_p \) from plate to cathode, as shown in Fig. 2A, but this is not essential.

4. Delete the tube symbol (or show dotted), all electrode supply voltages and other direct voltages, and all circuit branches not coupled to the plate (such as the screen circuit of a screen-grid tetrode, as it is usually used).

5. Redraw the resulting equivalent circuit in the form in which it may be most readily analyzed.

6. Express the alternating grid voltage \(E \) as the vector sum of all alternating voltages between the cathode and the grid along any continuous path. This can usually be done most conveniently by reference to the original circuit. Any voltage that contributes to \(E \), including the excitation voltage \(V_g \), must be preceded by a positive sign in this summation if it tends to make the grid positive relative to the cathode, and by a negative sign if it tends to make the grid negative relative to the cathode. If alternating voltage is impressed upon more than one grid, each equivalent grid voltage in the equivalent circuit must be evaluated in this manner. It should be noted that \(V_p \) may be zero in some circuits, \(E \) being derived entirely from the flow of alternating currents through impedances contained in the grid circuit.

7. Write network equations for each loop of the equivalent circuit. These equations, in conjunction with the expression for \(E \) found in step (6) may be solved simultaneously to find all circuit currents and voltages. (Thévenin’s theorem or other methods of simplifying the solution may, of course, be used.) A negative value of any current found in this manner merely indicates that the current is opposite in direction to the assumed positive value, i.e., that its phase is opposite to that assumed in the equivalent circuit.

The method of constructing an equivalent plate circuit and of evaluating \(E \) can be shown best with the aid of a specific example. Application of steps (1) to (4) of the above procedure to Fig. 2(A) gives the equivalent series circuit of Fig. 2(B), which may be rearranged in the more convenient form of Fig. 2(C). The parallel equivalent plate circuit is shown in Fig. 2(D). The most direct path between the cathode and the grid is through \(C_t \). The only alternating voltage between the cathode and the grid along this path is that resulting from the flow of \(I_g \) through \(C_t \). Hence \(E_c = -I_g / \mu C_t \). The minus sign must be used because the flow of \(I_g \) in the indicated positive direction causes \(C_t \) to charge in such polarity as to make the grid negative relative to the cathode. An alternative path from cathode to grid is through \(r_p \) and \(V_p \). Summation of voltages along this path shows that \(E_p \) is also equal to \(+ V_p + (I_g - I_t) r_p \). The voltage \(I_g r_p \) is positive because the flow of \(I_g \) in the indicated positive direction produces a voltage across \(r_p \) that tends to make the grid positive relative to the cathode. Either of these two expressions for \(E_p \) together with the three equations obtained by summing voltages in the three loops of the equivalent circuit, may be solved simultaneously to find the values of the currents in terms of the circuit constants.
and \(V_g \). If \(C_1 \) were omitted, \(I_2 \) would be zero and \(I_0 \) would be equal to \(V_p - I_2 R_s \). The right-hand loop of the equivalent circuits of Figs. 2(C) and 2(D) would then also be absent.

HERBERT J. REICH
Radio Research Laboratory
Harvard University
Cambridge, Massachusetts

Books

Radio's 100 Men of Science,
by Orrin E. Dunlap, Jr.

Published (1944) by Harper and Brothers, 49 E. 33 Street, New York, N. Y. 287 pages +6-page index +xx pages. 97 illustrations. 8½ × 6½ inches. Price $3.50.

Divided into two groups—those who were pioneers in electricity and those who pioneered the radio age—Mr. Dunlap's 100 men of science are indeed the pioneers of radio. In most cases, the names of the individuals are familiar, but in general the biographical background is not so familiar. When it is needed, one must dig it out of encyclopedias or other sources. For this reason the author has performed a distinct service in collecting in one place the essential facts about these 100 men.

Of the 100 men, 19 laid the early groundwork by fundamental discoveries or inventions. Such men as Benjamin Franklin, Volta, Galvani, Ohm, Ampere, Henry, Faraday and the others are obvious choices for this book of short biographies. The accomplishments of many of these 19 forerunners of radio are written into almost every mathematical equation used by radio men.

When the author chooses the remainder of the 100 names, he is in a realm in which he might find argument. After all, the selection made is but one man's opinion. It is doubtful, however, if there will be disagreement regarding his 'choices of those to honor. It is interesting to note that 45 of the pioneers are still living, and that 6 were born since 1900.

Into this book of brief biographies is packed much background that is not only interesting but useful, and downright stimulating to newcomers to the radio engineer's field.

KEITH HENNEY
Editor-in-Chief, Electronics
New York 18, N. Y.

Meet the Electron, by David Grimes

Published (1944) by Pitman Publishing Corporation, 2 W. 45 St., New York, N. Y. 120 pages +vii pages. 65 illustrations. 8½ × 6¼ inches. Price, $2.00.

This book was written for the layman in science and engineering, and was intended to give laymen a beginning understanding of electronics in the spectacular manifestations which have come to popular notice, such as sound broadcasting and television. It succeeds in accomplishing the intention, and provides easily understandable reading which will leave the layman reader with numerous satisfying conceptions of "how such things work."

The best chapter is that on electron chemistry, which gives the layman a clear and useful beginning conception of what goes on in the atom. Other chapters, particularly those on the inventions of Bell and on music on light waves, are largely extraneous to the subject.

The book is suitable for recommendation by engineers to those friends who ask questions about the electron. (There are many such as a result of the current publicity campaign which the electron is receiving!)

The author, Dave Grimes, had the ability of clear exposition, to a degree which comes only when accompanied by sympathetic, friendly understanding of the other fellow's viewpoint. This book is a reflection of that ability which will be appreciated by his wide circle of friends in radio engineering.

ARTHUR F. VAN DYCK
Lieutenant Commander, U. S. N. R.
Washington 8, D. C.

Ultra-High-Frequency Radio Engineering, by W. L. Emery

Published (1944) by the Macmillan Company, 60 Fifth Avenue, New York, N. Y. 281 pages +13-page index +viii pages. 136 illustrations, 6 × 9 inches. Price, $3.25.

This is a book on ultra-high-frequency radio engineering written for senior electrical engineering students. After an introductory chapter on the propagation of microwaves and their fields of application, there are chapters on Voltage-Regulated Power Supplies, Electronic Switching and Synchronization, Cathode-Ray Tubes and Sweep Circuits, Amplifiers, Square-Wave Testing and Transient Response, Ultra-High-Frequency Circuit Elements, Oscillators, Modulation and Detection, Radiation, and Wave Guides.

The subjects are well chosen and the information given is sound. However, the topics covered are so many and varied that it is impossible to do justice to them in a book of this size. Since this is intended as a college textbook, it is to be expected that the instructor will fill in the gaps in accordance with the needs of his students.

An interesting feature of the book is the listing of experiments to be performed by the student at the end of each chapter. Students who have the apparatus available and who perform these experiments will receive a good background in radio laboratory practice. Any author writing a text on microwaves these days is working under a handicap because of censorship restrictions. No text on the subject written during the war can, therefore, be considered up to date.

STANFORD GOLDMAN
General Electric Company
Bridgeport, Connecticut

Contributors

Donald M. Black (A'30-M'40-SM'43)
was born on December 22, 1907, in Chatham, Ontario, Canada. He received the B.S. degree in electrical engineering in 1928 and the E.E. degree in 1933 from the University of Kansas. Since 1928 he has been a member of the technical staff of the Bell Telephone Laboratories, where he has been engaged in research and development work on radio receiving equipment in the short-wave, ultra-short-wave, and microwave region. He is a member of Tau Beta Pi, Sigma Xi, and a Member of the American Institute of Electrical Engineers.

Charles R. Burrows (A'24-M'38-SM'43-F'43)
was born on June 21, 1902, in Detroit, Michigan. In 1924 he received the B.S.E. degree in electrical engineering from the University of Michigan, where he had been
Contributors

ALFRED DECINO

a research assistant. He also received the A.M. degree in physics from Columbia University in 1927; the E.E. degree from the University of Michigan in 1935; and the Ph.D. degree from Columbia University, in 1938.

Since 1924, Dr. Burrows has been a member of the radio research department of the Western Electric Company and the Bell Telephone Laboratories. His first work was in connection with the long-wave transatlantic radio telephone transmitter at Rocky Point, followed by analyses of wave propagation in the early days of short-wave radio. From 1930 to 1938 he carried out experimental and theoretical investigations on ultra-short-wave propagation. During 1939 and 1940 he was engaged in the development of radio transmitters. Dr. Burrows is a member of Sigma Xi and the American Institute of Electrical Engineers.

Alfred Decino (A'29-M'39-SM'43) was born in Pueblo, Colorado on June 23, 1907. He received the B.S. degree in electrical engineering from the University of Colorado, 1928. From 1928 to March 1944 he was a member of the technical staff of the Radio Department of the Bell Telephone Laboratories where he was engaged in work on short-wave and ultra-short-wave radio transmitters and receivers. He is now associated with the Hammarlund Manufacturing Company.

EDWARD NELSON DINGLEY, JR.

Alton C. Dickieson (SM'44) was born in New York City on August 16, 1905. He studied electrical engineering at the Brooklyn Polytechnic Institute, and has been a member of the technical staff of the Bell Telephone Laboratories since 1925.

Mr. Dickieson has been engaged in the design of long-distance telephone systems, including the problems involved in connecting radio links into the wire network. His war projects have included design of wire communication and various underwater sound systems.

He is a member of the American Institute of Electrical Engineers.

Alton C. Dickieson

EDWARD NELSON DINGLEY, JR.

Reymond J. Kircher (A'30-M'40-SM'43) was born on November 2, 1907, in El Paso, Texas. He received the B.S. degree in electrical engineering from California Institute of Technology in 1929, and the M.S. degree in communications engineering from Stevens Institute of Technology, in 1941.

Robert W. Friis (A'34-M'40-SM'43) was born on October 10, 1907, in Kenmare, North Dakota. He received the B.E.E. degree from the University of Minnesota in 1930. Since 1930 he has been a member of the technical staff of the radio research department of the Bell Telephone Laboratories, where he has been carrying on research and development work on short-wave and ultra-short-wave radio transmitters. Since 1941 he has been engaged in the development for production of various types of radio transmitters for the armed forces.

Robert W. Friis

Robert W. Friis

Reymond J. Kircher

Robert W. Friis

Robert W. Friis
Since 1929 he has been a member of the radio research department of the Bell Telephone Laboratories engaged in development work on short-wave and ultra-short-wave transmitters and receivers. He is a member of Tau Beta Pi.

J. R. Pierce (S'35-A'38) was born at Des Moines, Iowa, on March 27, 1910. He received the B.S. degree in 1933 and the Ph.D. degree in 1936 from the California Institute of Technology. In 1936 Dr. Pierce became a member of the Technical Staff of the Bell Telephone Laboratories, where he is engaged in electronics research.

George Rodwin (A'25-M'40) was born in 1903 in New York City. He received the A.B. degree from Columbia University in 1923, and the E.E. degree in 1925. From 1925 to 1929 he was engaged in radio research work for the Radio Corporation of America in connection, with receiver, transmitter, and field-strength-measuring equipment. During part of 1929 and 1930 he was with the Engineering Department of the Earle Radio Corporation, developing broadcast receivers. Since 1930 Mr. Rodwin has been a member of the technical staff of the Bell Telephone Laboratories where he has been carrying on research and development work on the transatlantic radio receiving equipment and general ultra-short-wave problems.

M. W. Schederland (A'25-M'39-SM'43) was born on June 4, 1901, at Birmingham, Michigan. He received the B.S. degree in electrical engineering from the University of Michigan in 1925. He has been a member of the technical staff of the Bell Telephone Laboratories since 1925, engaged primarily in the development of short-and ultra-short-wave transmitting equipment.
THE SOLAR MODEL CE Capacitor Exa-
meter speedily locates common defects in
capacitors without disconnecting condens-
ers—often eliminating further tests. This
saving of time and labor is accomplished
by the unique Solar "QUICK-CHECK"
feature.

In this single instrument are combined
the simplest, most convenient methods for
examining the true condition of every
capacitor in ordinary use...shorts, opens,
intermittents, high R.F. impedance and
high power factor.

Catalog IN-1 illustrates and describes features
of all models. Send for your copy today.

SOLAR CAPACITOR SALES CORP.
285 Madison Avenue, New York 17, N. Y.

Please send me a copy of Catalog IN-1 on Solar
CAPACITOR ANALYZERS.
Name_____________________________
Title_____________________________
Company Name____________________
Street Address_____________________
City_______________________________State_________________________

SEND THIS COUPON IN—TODAY
QUALITY CONTROL

The Pressure Test

One of the many tests developed for quality control at Chicago Transformer subjects the case-seam and bushing seals of all Hermetically-Sealed transformers to air-pressure prior to compound filling. This procedure, along with numerous other tests, detects any weakness in bushings and seems at an early stage of production and insures perfect sealing of every unit.
It's the little things that loom biggest in the manufacture of delicate electrical measuring instruments. Little things like specks of dust or breath condensation can play havoc with accuracy. That's why Triplett Instruments are made in spotless manufacturing departments; why the air is washed clean, de-humidified and temperature-controlled; why every step in their mass production is protected. As a result Triplett Instruments perform better, last longer and render greater service value.

Extra Care in our work puts Extra Value in your Triplett Instrument.
<table>
<thead>
<tr>
<th>RADIO, SOUND AND COMMUNICATIONS EQUIPMENT?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loud Speakers</td>
</tr>
<tr>
<td>Headsets</td>
</tr>
<tr>
<td>Microphones</td>
</tr>
<tr>
<td>Hearing Aids</td>
</tr>
<tr>
<td>Electrical Musical Instruments</td>
</tr>
<tr>
<td>Sound-powered Telephones</td>
</tr>
<tr>
<td>Telephone Ringers</td>
</tr>
<tr>
<td>Voltage Regulators</td>
</tr>
<tr>
<td>Phonograph Cutting Heads</td>
</tr>
<tr>
<td>Phonograph Pick-ups</td>
</tr>
<tr>
<td>Vibration Pick-ups</td>
</tr>
<tr>
<td>Polarized Relays</td>
</tr>
<tr>
<td>Generators</td>
</tr>
<tr>
<td>Meters</td>
</tr>
<tr>
<td>Magnetron Fields</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AUTOMOTIVE AND AVIATION EQUIPMENT?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetos</td>
</tr>
<tr>
<td>Tachometers</td>
</tr>
<tr>
<td>Compasses</td>
</tr>
<tr>
<td>Ammeters</td>
</tr>
<tr>
<td>Voltmeters</td>
</tr>
<tr>
<td>Galvanometers</td>
</tr>
<tr>
<td>Seismographs</td>
</tr>
<tr>
<td>Voltage Regulators</td>
</tr>
<tr>
<td>Motors</td>
</tr>
<tr>
<td>Speedometers</td>
</tr>
<tr>
<td>Light Meters</td>
</tr>
<tr>
<td>Oscillographs</td>
</tr>
<tr>
<td>Flux Meters</td>
</tr>
<tr>
<td>Watt-hour Meters</td>
</tr>
<tr>
<td>Flow Meters</td>
</tr>
<tr>
<td>Generators</td>
</tr>
<tr>
<td>Magnetic Oil Filters</td>
</tr>
<tr>
<td>Instruments</td>
</tr>
<tr>
<td>Instruments</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISCELLANEOUS PRODUCTS?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic Separators</td>
</tr>
<tr>
<td>Magnetic Chucks</td>
</tr>
<tr>
<td>Magnetic Conveyors</td>
</tr>
<tr>
<td>Magnetic Clutches</td>
</tr>
<tr>
<td>Magnetic Damping Devices</td>
</tr>
<tr>
<td>Arc Blow-out Magnets</td>
</tr>
<tr>
<td>Temperature and Pressure</td>
</tr>
<tr>
<td>Control Equipment</td>
</tr>
<tr>
<td>Circuit Breakers</td>
</tr>
<tr>
<td>Limit Switches</td>
</tr>
<tr>
<td>Holding Magnets</td>
</tr>
<tr>
<td>Clocks</td>
</tr>
<tr>
<td>Toys and Novelties</td>
</tr>
<tr>
<td>Coin Separators for Vending Equipment</td>
</tr>
</tbody>
</table>

IF YOU make any of the above products, it will pay you to find out how better permanent magnets can improve efficiency and reduce costs.

Put your design, development or production problems up to The Arnold Engineering Company. Arnold engineers have been of great assistance to many manufacturers and are at your service to advise exactly what Alnico permanent magnet will solve your particular problem.

NEW! Get your copy of this valuable, up-to-the-minute manual on the design, production and application of modern Alnico permanent magnets. Write us, on your company letterhead, today.

THE ARNOLD ENGINEERING COMPANY

147 East Ontario Street, Chicago 11, Illinois

Specialists in the manufacture of ALNICO PERMANENT MAGNETS

(Continued from page 34A)
You have to *know* to design for quality . . . efficiency . . . reliability.

In FM equipment these factors are vitally important and can only result from proved ability.

You will find this ability at Federal — whose engineer-specialists *know* FM. Federal's broadcast equipment has earned an enviable reputation . . . the end result of a long list of impressive achievements. It was Federal's engineers who contributed their knowledge to the development of the "Micro-ray", the forerunner of modern high-frequency technique.

This pool of research and development experience, working in the same tradition of perfection, is now responsible for Federal's FM equipment — the ultimate in modern engineering design.

Look to Federal for complete FM installations . . . antennas, cables, transmitters, transformers, vacuum tubes . . . all backed by Federal's name . . . the name that stands for the best in broadcast equipment.

Federal Telephone and Radio Corporation

Federal Telephone and Radio Corporation

Federal Telephone and Radio Corporation

Federal Telephone and Radio Corporation
AS THE NAME IMPLIES, these new Actuators by Pacific Division exclusively incorporate a Geneva movement operated by a high speed motor. Positioning by switches has been completely eliminated.

These Actuators offer extremely accurate control (within 1°) of any series of operations up to eight positions with each position positively locked against movement.

There are no clutches, torque limiters, brakes or adjustable limit switches—eliminating major causes of trouble.

Motor comes up to speed under no load, then engages cam with varying ratio which develops maximum torque at break-away positions. Thus cutout switches always operate when motor is under no load, permitting maximum switch life.

Write or wire today for data on these simplified, positive actuators. Pacific Division, Bendix Aviation Corporation, 11600 Sherman Way, North Hollywood, Calif. Sales Engineering offices in New York City and St. Louis.

Pacific Division also manufactures an additional line of Rotary Actuators which are readily adjustable for any angular rotation of the output shaft. They incorporate a basic motor and reduction gear assembly to which may be added, in any combination, a brake, limit switches, positioning switches, torque and/or a thermal protector.

All models are conservatively rated at 100 lb. in. output torque at a speed of 9 r.p.m. Overloads up to 400% of rated torque can be handled without injury to the unit at normal temperatures.
Engineers at Hallicrafters are continually striving for new heights of perfection in high frequency development work. The Model S-37 is one example of the progress they have made. This is the first and only set of its kind—covering both AM and FM and operating in the range of 130 to 210 Mc. Two r.f. stages are used and in conjunction with an intermediate frequency of 18 Mc., assure an amazingly high ratio of image rejection. It is becoming a valuable instrument in the hands of all exploring the upper reaches of the high frequency ranges.

how high is very high?

Model S-37. The highest frequency range of any continuous tuning commercial VFO receiver.
The Sherron Null Detector is a necessary adjunct to all A.C. Bridge measurements, such as, A.C. resistance, impedance, capacity and others, and is used to indicate rapidly and accurately when that bridge is at balance or null point.

The standard Sherron Null Detector is designed to give an appreciable deflection with an input voltage of .01 volts. However, increased sensitivity can be readily obtained to any desired degree.

The Null Detector is so designed that while an input voltage of .01 volts will cause an appreciable deflection of the indicating meter, 32 volts across the input will not cause the meter to swing off scale.

The substitution of a Cathode Ray Tube in place of a meter moves the test equipment upward from quantitative to qualitative.

All Null Detectors are equipped with a 1000 cycle tone source of sufficient level to operate any of the standard bridges, and a filter circuit resonated to that frequency to insure only that frequency activating the indicating meter.

Inasmuch as most of the standard bridges may be used at frequencies other than 1000 cycles per second, switching arrangements are provided to disconnect both the internal tone source and filter circuit.

By means of a conventional jack, a headset may be inserted to ascertain audibly if the meter is indicating the bridge frequency or any extraneous noises.

Use of the Cathode Ray Tube permits the engineer or operator to note immediately and correct any distortion of wave shape, any displacement of phase or extraneous noise that may cause error.

SHERRON ELECTRONICS COMPANY
Division of Sherron Metallic Corporation
1201 Flushing Ave., Brooklyn 6, N. Y.

"Where the Ideal is the Standard, Sherron Units are Standard Equipment"
Unique in design and construction, this permanent magnet field motor has been selected for many applications having critical space and weight factors. Wound as a shunt motor, its output characteristics are adaptable for a wide variety of power requirements.

FEATURES

ELECTRICAL

- Alnico field magnets
- No field losses
- Low starting current
- Reversible with change of polarity
- Low RF interference
- Armature windings varnish impregnated and baked

MECHANICAL

- Completely enclosed
- Mounting in any position
- Aluminum end brackets
- Laminated pole pieces
- Stainless steel shaft
- Rotation on ball bearings
- Commutator mica insulated

PM MOTOR - 1310

- Watts Output Int. (max.) 11
- Torque at 7000 RPM (in. oz.) 1
- Torque at 4500 RPM (in. oz.) 3.5
- Lock Torque (in. oz.) 6
- Volts Input (min.) 5
- Volts Input (max.) 32
- Temperature Rise Int. 50°C
- Weight 11 oz.
- Shaft Diameter (max.) 0.250"
- Length less Shaft 2 3/4"
- Overall Diameter 11 3/4"

The following admissions and transfers were approved on January 10, 1945:

Transfer to Senior Member

- Beraneck, L. L., 50 Follen St., Cambridge 38, Mass.
- Cohen, T. A., 4237 Grenshaw St., Chicago, Ill.
- Dawson, H. S., 7 Coldstream Ave., Toronto, Ont., Canada
- Gurevitch, A. M., 203 Jackson Ave., Schenectady 4, N. Y.
- Harrison, A. E., Sperry Gyroscope Co., Garden City, L. I., N. Y.
- Kauzman, A. F., RCA Victor Corporation, Harrison, N. J.
- Penther, C. J., Eatontown Signal Laboratory, Eatontown, N. J.
- Schaefer, J. B., Ashley Pl., and Glenwood Rd., Glen Head, L. I., N. Y.
- Smith, T. A., Radio Corporation of America, Camden, N. J.
- Tawney, G. L., Sperry Gyroscope Co., Clinton Rd., and Stewart Ave., Garden City, L. I., N. Y.
- Young, N. H., 37-34—84 St., Jackson Heights, L. I., N. Y.

Admission to Senior Member

- Roy, C. S., 1051 W. Madison St., Chicago 12, Ill.

Transfer to Member

- Bloomer, A., Walnut House, 10 New St., Baddesley Ensor, Atherstone, Warwicks, England
- Bloomer, T. M., 605 Warwick Rd., Baltimore 29, Md.
- Burnett, W. W. L., 4814 Idaho St., San Diego 4, Calif.
- Dehn, R. A., 2011 Wahash Ave., Schenectady, N. Y.
- Foster, A. P., 3 Larchmont Ave., Wyoming 15, Ohio
- Hunter, T. A., 1164 Court St., Iowa City, Iowa
- Jamieson, H. W., 2452 Watt St., Schenectady 7, N. Y.
- Karker, E. C., 55 Plymouth Ave., S., Rochester 8, N. Y.
- Keekinen, A. R., 54 Burkeleigh Rd., Townson 4, Md.
- Lavoo, N., 203 Jackson Ave., Schenectady 4, N. Y.
- Pepperberg, L. E., 6210 N. Hoyte Ave., Chicago 45, Ill.
- Petersen, E. L., 4981 Julian St., Denver, Colo.
- Skellwith, A. G., 176 W. Utica St., Buffalo 9, N. Y.
- Steffel, K., 77 Marianne Rd., Waltham, Mass.
- Waldock, D. A. G., 33 Madeira Ave., Bromley, Kent, England

Admission to Member

- Abbott, N. A., 2327-25 St., S.E., Washington, D. C.
- Auckland, H. G., 7608—41 Ave., S.W., Seattle 6, Wash.
- Carberry, R. L., Bell Telephone Laboratories, 403 West St., New York 14, N. Y.
- Chaplin, E. W., 2805 Shirley Ave., Baltimore 14, Md.
- Donaldson, H. J., 120 N. Green St., Chicago 7, Ill.
Shallcross Portable KILOVOLTMETERS

Now available for rapid delivery, Shallcross Kilovoltmeters are produced in a complete line for the measurement of the high potentials encountered in radio transmitters, radar, television equipment, X-ray systems, dust precipitators, and similar high-voltage equipment. Ruggedly constructed, yet light in weight, the instruments are suitable for either laboratory or field work, and are entirely safe in operation. Full scale accuracy on a typical 1,000 ohms-per-volt Shallcross D. C. Kilovoltmeter is ± 2%. The accurate fixed wire wound resistors are closely calibrated and properly aged. Corona protected resistors can be supplied for measurements up to 200 KV.

In addition to its standard line, Shallcross likewise produces regularly a wide variety of “tailor-made” Kilovoltmeters and high voltage Meter Multipliers to match individual requirements. Write for details or engineering recommendations.
Type EF-50 Pentode
Found Useful at
High Frequencies

Sylvania's Type EF-50 Amplifier Pentode, originally produced primarily for military purposes, has a number of unusual features that suggest many applications in postwar design.

The outstanding characteristic of the EF-50 is that it is designed to operate at 250 volts on both screen and plate, permitting operation at higher frequencies because of the resulting reduction in input loading.

Tube is provided with its own external shield, grounded through center lug, as well as internal shielding brought out on two terminals. Since suppressor and cathode are brought out separately, 9 pins are needed. Full technical data on the EF-50 can be obtained from Sylvania.

Sylvania Equipment Helps B-29s
Report "Mission Accomplished"

Company's Tubes, Electronic Devices
Extensively Used on Superfortresses

Radio communications equipment and electronic navigational aids have been developed to a new pitch of perfection aboard the giant Boeing Superfortresses, which have so convincingly demonstrated their ability to strike hard and effectively, deep within the enemy's territory, after flying from far-distant bases. The long operating range of the Superfortresses necessitates a complex electronic nerve system to assure close contact in flight, accuracy in reaching target, and safe return to base. Radio and electronic equipment — estimated to total approximately one ton for each Superfortress — includes the most modern navigational devices, in addition, of course, to the transmitters, receivers and other apparatus necessary for communication between crew members, between aircraft in flight, and between planes and their distant bases.

Sylvania has made important contributions to the electronic equipment that helps make possible—and ultimately transmits—the terse, stirring message, "Mission Accomplished." Not only are many Sylvania tubes utilized in the various radio sets and control devices carried by the Superfortresses, but Sylvania is among the manufacturers supplying electronic equipment for the B-29s.

DID YOU KNOW...

That many industries use Sylvania Pirani tubes to measure pressures ranging from 1/10 to 1/10,000 mm?

That newly defined life ratings for Sylvania Fluorescent lamps show that, in many applications, life expectancy is greater than previously indicated, when lamps are burned on long time-on cycles.

"Next time you go bailing out, for heaven's sake grab a set with Sylvania Tubes!"

Exterior view shows the B-29 bristling with 50-calibre machine guns and 20 mm. cannon. The Superfortress is powered by four 2200-hp. engines, rolls on double-wheeled landing gear, carries electronic equipment such as is manufactured by Sylvania and others. (Boeing Photo)
Commonly you think of the microscope as a scientific laboratory instrument. But at National Union, these days, you will find it even more extensively used, as a production machine, insuring microscopic precision step by step through many processes of manufacture.

With the aid of microscopes, National Union workers accurately check almost invisibly small parts. They see to it that welds are sound, clearances are exact and the structure is mechanically perfect. In the photograph above, for example, a N. U. 6AG5 miniature tube mount, no higher than your thumb nail is enlarged approximately 10 times, to permit minute examination of important structural factors. Enlargements up to 500 times—making a hair on your head look as tall as a tree—are just as readily obtained, when needed. Moreover, this tube, assembled from 31 individual parts, must pass 40 individual inspections, in addition to thorough examination under the microscope.

Here, again, is one of those unusual techniques developed by National Union engineers to make tube manufacture a more exact science. Such infinite care makes certain that every electronic tube which carries the National Union name will deliver a uniformly high level of performance with long service life. Count on National Union.

NATIONAL UNION RADIO CORPORATION, NEWARK, N. J.
Factories: Newark and Maplewood, N. J.; Lansdale and Robesonia, Pa.
Unsurpassed QUALITY

- The Industrial Condenser Corporation manufactures a complete line of Oil-filled, Electrolytic, Wax and Special Mica Capacitors for all industrial, communications and signalling applications up to 250,000 volts working. Complete laboratory and engineering facilities available for solution and design of capacitor problems for special applications.

An Industrial Condenser for every industrial application.

.5 MFD. 50,000 Volts DC WORKING

(Illustrated above)...28 inches high, weight 175 pounds, built by Industrial Condenser Corporation to meet Navy specifications. Oil-filled, oil impregnated. Built for 24 hour continuous operation and total submersion in salt water.

PAPER, OIL AND ELECTROLYTIC CAPACITORS

INDUSTRIAL
CONDENSER
CORPORATION

3243-65 NORTH CALIFORNIA AVE., CHICAGO 18, U.S.A.

DISTRICT OFFICES IN PRINCIPAL CITIES

MEMBERSHIP

(Continued from page 44A)

Littenberg, F. E., Education Dept., Ninth Month, Navy Pier, Chicago, Ill.

Louvell, S. S., County Police Station, Wendling Derham, Norfolk, England

Lower, J. W., 527 N. Central Ave., Chicago, Ill.

Luebke, L. A., Route 1, Beaver Crossing, Neb.

Lubia, C. H., 60 Pine St., Garden City, L. I., N. Y.

Luscombe, C. F., 1534 Northgate Rd., Baltimore, Md.

Manning, F. W., 335 W. Monument Ave., Dayton, Ohio

Marino, J. L., 313-46 Street, Brooklyn, N. Y.

Marsten, B., 133 St. Albans Rd., Hatfield, Herts., England

Mayo, L. E., 20 Mark Rd., Mt. Albert, Auckland, New Zealand

McCoy, V. D., 1851 D Ave., N.E., Cedar Rapids, Iowa

McGee, W. F., Jr., 3859 Kumquat Ave., Miami, Florida

Miller, R. J., 1433 S. Fairfax Ave., Los Angeles, Calif.

Millard, C. J., 3051 Oak Forest Dr., Baltimore, Md.

Mitchell, H. T., 5723 Dorchester, Chicago, Ill.

Moss, H. A., 2146 E Ave., N.E., Cedar Rapids, Iowa

Murphy, J. L., 5220 Drexel Ave., Chicago, Ill.

Musselman, H., 1913 Boyert Ave., New York, N. Y.

Myers, C. E., Box 41, S. Mary's, Ont., Canada

Nadler, M., 4430 Fillmore St., Los Angeles, Calif.

Ortmann, P. B., 4903 W. 82 St., Mission, Kan.

Pace, E., 26 Concord Ave., Cambridge, Mass.

Papenfuss, C. A. C., 1037 Dayton Ave., Apt. 9, St. Paul, Minn.

Paterson, J. G., Sparton of Canada, Ltd., London, Ont., Canada

Perry, V. G., 1109 Maplewood Dr., N.E., Cedar Rapids, Iowa

Phillips, J. N., 187 Steinmetz Homes, Schenectady, N. Y.

Pittierew, C. A., Box 45, St. John, Kan.

Powers, A. T., 31 German Ave., Baltimore, Md.

Price, G. W., 1270 Lake Ave., N.E., Cedar Rapids, Iowa

Pugh, J. E., 7616 Quimet Ave., Verdun, Que., Canada

Quayle, V. H., Hq. ATCS, TSEPL, 3P6 Area B, Wright Field, Dayton, Ohio

Redd, J. Z., 1210—32nd St., N.E., Cedar Rapids, Iowa

Rogers, R. G., 712 Vancouver St., Victoria, B. C., Canada

Roue, J. E., No. 3 Bldg., H.M.C. Dockyard, St. John's, Newfoundland, C/O R.M.O., R.M. Dockyard, St. John's, N.fld.

Rutledge, C. H., 3022 Desmoulins St., St. Hyacinthe, Que., Canada

Sage, D., New Zealand Radio College, Hella Bend, Auckland, New Zealand

Sage, D., Federal Communications Commission, Engineering Div., International Div., Wash., D. C.

Senti, E. C., 1921 Highley Ave., S.E., Cedar Rapids, Iowa

Shrader, V. L., 1666 N. Raymond Ave., Glendale, Calif.

Siebers, L. S., 5234 Karne Blvd., Kansas City, Mo.

Simmons, C. O., 302 E. 70 St., Kansas City, Mo.

Smith, J. W., 3734 C Ave., N.E., Cedar Rapids, Iowa

Snowden, J., Heathbank, West Rd., Dibden Purley, Southampton, Hampshire, England

Stryker, N. G., 3950 Woodbridge Rd., New Jersey City, Herts., England

Thiel, J. G., 102 W. Third St., Frederick, Md.

Vaughn, K., 400—90 St., S.E., Cedar Rapids, Iowa

(Continued on page 48A)
ADJUSTABLE RESISTORS

Three-section control

Two-section control

Single-section control with switch

The Only Continuously Adjustable Composition Resistor of 2-Watt Rating with Substantial Safety Factor

The resistor material in the Type J Bradleyometer is molded with the insulation, terminals, face plate, and threaded bushing into a one-piece unit. It is not a film or paint type resistor. During manufacture, the resistor material is varied throughout its length to provide the desired resistance-rotation curve. Once molded, the resistance curve does not change. Heat, cold, or moisture cannot affect the Type J Bradleyometer, and long, dependable life is guaranteed. Supplied for rheostat or potentiometer uses, with or without a switch.

FIXED INSULATED RESISTORS

1/2-WATT
Length 3/8 in. Diam. 9/64 in.

1-WATT
Length 9/16 in. Diam. 7/32 in.

2-WATT
Length 11/16 in. Diam. 5/16 in.

Length of all leads—1 1/2 inches

All Experts say—

Allen-Bradley Resistors are "Tops" in Quality

WAR SERVICE... far more grueling than laboratory tests or civilian service... has proved beyond a doubt that Allen-Bradley resistor engineers know how to design and produce fixed and adjustable composition resistors that satisfy all service conditions. Allen-Bradley resistors are the choice of the experts because they are "tops" in quality.

The latest Allen-Bradley achievement is the new 2-watt insulated Bradleyunit... 11/16-inch long and 5/16-inch diameter... yet it passes all load and endurance tests and requires no derating for even the toughest service. Like the well-known 1/2-watt and 1-watt Bradleynits, it is available from 10 ohms to 0.47 megohms in all R.M.A. standard values in tolerances of 5, 10, and 20 per cent. Send for technical data sheet, today.

Allen-Bradley Co., 114 W. Greenfield Avenue,
Milwaukee 4, Wis.

Proceedings of the I.R.E. February, 1945
--- for Post-War Planning

An Introduction to Electronics

By Ralph G. Hudson

The enormous potentialities of the relatively new science of electronics offer many avenues for the post-war development of new products. This book provides a guide and reference for manufacturers, research departments and others interested in such developments. It explains as simply as possible the basic ideas and theories, the existing and potential applications, and the construction of modern electronic devices. Illustrated. (Jan.) $2.75

--- for Practical Instruction

Ultra-High-Frequency Radio Engineering

By W. L. Emery. "Exceptionally good for courses at the undergraduate level," say teachers about this new book. Contains much practical how-to-do-it information; laboratory problems; 2-color Illustration $3.25

THE MACMILLAN COMPANY • 60 FIFTH AVE. • NEW YORK 11

(Continued from page 46A)

Wachter, J. W., Naval Research Laboratory, Anacostia Station, D. C.
Warner, S. D., 1148 Laurel Ave., Bowling Green, Ky.
Wein, F. H., 1600 S. 60 Ct., Cicero, Ill.
Wetzel, G. N., 1815 Grande Ave., S.E., Cedar Rapids, Iowa
Whittle, R. L., 192 Jackson Ave., Minolta, L. I., N. Y.
Williams, C. S., U. S. Army Motion Picture Service
200 Orpheum Bldg., 1900 Fifth Ave., Seattle, Wash.
Williams, H. V., 32 Tunxis Rd., West Hartford, Conn.
Wise, H. G., 1705 N. 68 St., East St. Louis, Ill.
Wood, C. E., 6650 S. Cicero Ave., Chicago, Ill.
Wroten, J., Jr., 33 E. Barney St., Baltimore, Md.
Yenesski, J. A., 244 Rockville Ave., Newark, N. J.

M. F. M. Osborne Associates
Consulting Physicists
703 Albee Bldg., Washington 5, D. C.
Atlantic 9084

OUR MEN NEED * BOOKS *

SEND ALL YOU CAN SPARE

GIVE A BOOST WITH A BOOK
—Good books, in good condition, are wanted by the 1943 VICTORY BOOK CAMPAIGN for men in all branches of the service. Doubtless some of our soldiers and sailors are interested in modern radio engineering methods and will find your books on that subject helpful to them in their work. Leave yours at the nearest collection center or public library.

cornish WIRE COMPANY, INC.
15 Park Row, New York City, New York

Proceedings of the I.R.E. February, 1945
With the installation of Bendix Radio Type MN-31 Dual Automatic Radio Compasses and RA-2C Receivers, all of PANAGRA'S scheduled planes for passenger service will be 100% Bendix Radio equipped.

Bendix Radio Type TA-2J Transmitters have already flown many millions of miles over PANAGRA'S Route between Balboa in the Canal Zone and Buenos Aires, Argentina.

Thus Bendix joins with PANAGRA in building ever closer and friendlier relations with the republics of the Americas; and in contributing to the safety, comfort, and dependability of air transportation in South America.
The following positions of interest to I.R.E. members have been reported as open. Apply in writing, addressing reply to company mentioned or to Box No. ________________

The Institute reserves the right to refuse any announcement without giving a reason for the refusal.

Proceedings of the I.R.E.

330 West 42nd Street, New York 18, N.Y.

OPPORTUNITIES IN PRESENT AND POST-WAR WORK

Senior and Junior graduate engineers with one or more years radio experience wanted by an expanding manufacturing division of an established communication company.

Present activities include high and medium power transmitters, frequency shifters, other communication products for the Navy and designs and models for post-war use.

Engineers with practical experience also required for radio communication plant installation and test in foreign countries.

Phone, call or write stating experience, education, present salary, etc. Press Wireless, Inc., Hicksville, L.I., N.Y.; Attention of S. A. Barone, Chief Mfg. Engr.

TELEVISION TECHNICIANS

The Television Laboratories of the Columbia Broadcasting System, in New York, need television technicians. Men having had definite experience in the television field, transmitters, or receivers, preferred. Excellent opportunity for well qualified applicants. Our staff knows of this advertisement and replies will be kept confidential. Write giving all details, to CBS Television Engineering Department, 485 Madison Avenue, New York 22, N.Y.

ENGINEERS

A Midwestern manufacturer of radio transmitters and associated equipment has openings for several junior project engineers qualified to supervise or assist development of transmitters, speech input systems, control apparatus, and similar items. Salary average $2500 per year. Give full details first letter. Address Box 365.

ELECTRICAL ENGINEER FOR ELECTRONIC RESEARCH

An unusual opportunity for a man who has a knowledge of hot and cold cathode tubes and tube applications in amplifiers, multivibrators, triggers, and switching circuits. Permanent position in laboratory of established manufacturer, doing research and development work, both present and post-war. Salary open and commensurate with experience, initiative, and ability. Include complete details of experience, education, and WMC availability with reply to Box 366.

ELECTRICAL OR RADIO ENGINEER

Should have general experience in Electrical or Radio Measurements. Graduate engineer (radio or electrical) from recognized engineering school, desirable. Long-established radio-electrical components manufacturer in New England, doing war work at present. Post-war future for right man. Give detailed outline of experience, etc., salary requirements. Address Box 367.

ELECTRONIC ENGINEER

Electronic engineer or physicist for developmental work. Also, electronic technician for construction work on radio test equipment.

Post-war future in both positions. Write to Premier Crystal Laboratories, 63 Park Row, New York 7, N.Y.

ASSISTANT PROFESSORS

Assistant professors or instructors in electrical engineering to specialize in electronics, communications, and illumination. Strong eastern engineering college. Submit professional record and photograph with application. Positions permanent. Address Box 368.

ELECTRONIC ENGINEERS AND DRAFTSMEN

The services are required of several electronic equipment design engineers capable of supervising the system layout of electronic and electro-mechanical devices.

Also, several draftsmen are needed with ex-

(Continued on page 52A)

OPPORTUNITIES IN PRESENT AND POSTWAR WORK

Senior and Junior graduate engineers with one or more years radio experience wanted by an expanding manufacturing division of an established communication company.

Present activities include high and medium power transmitters, frequency shifters, other communication products for the Navy and designs and models for post-war use.

Engineers with practical experience also required for radio communication plant installation and test in foreign countries.

Phone, call or write stating experience, education, present salary, etc.

TO PRESS WIRELESS, INC.

HICKSVILLE, L.I.

ATT: S. A. BARONE CHIEF MFG. ENGR.

ELECTRONIC ENGINEERS WANTED

Two excellent positions are available for graduate engineers or physicists with a good fundamental knowledge of radio and having some transmitter type equipment experience. The work will consist of field installation of high frequency heating equipment and complete follow-through servicing. Operating conditions will have to be established for the customer and maintained through repairs, adjustments or new applications. Positions are permanent and offer fine postwar possibilities for development.

THE GIRDLER CORPORATION

Thermex Division

223 E. Broadway

Louisville 1, Kentucky

Attn.: Personnel Department

Proceedings of the I.R.E. February, 1945
SUBMIT YOUR PROBLEMS

Your cost figures, as well as technical problems, come within the scope of Aerovox Application Engineering. Our engineers can help you design and build to a price with these and other low-cost types, write us.

CLAMP-MOUNTING ELECTROLYTICS

- **Price** with inbuilt Aerovox Quality—that's the prime objective of the ingenious Type PRV one-hole-mounting paper-cased electrolytic. • Wax sealed. Impregnated cardboard-tube container. Suitable for commercial and other applications where extreme operating conditions are not encountered and metal-can types are not essential. • Note ingenious clamp and center-screw mounting means. This type can take the place of various other vertical-mounting electrolytics such as twist-prong, spade-lug, screw-base, etc. • Normally with etched foil. Also available in plain foil. High-purity aluminum elements throughout. Positive and negative lead for each section. 450 and 600 v. D.C.W. 4 to 40 mfd.; 8-8 to 20-20 mfd. 1-3/8" dia.; 3 to 4-3/4" high.

CARDBOARD-CASE ELECTROLYTICS

- **Price** with inbuilt Aerovox Quality—that's the prime objective of this popular Type PBS rectangular cardboard-case dry electrolytic. • Sections housed in sturdy cardboard containers. Patented Aerovox Adjustimount or swivel metal flange permits mounting flatwise or on narrow side according to space limitations. Also, PBS units may be stacked and held together by overlapping metal flange and soldering securely. • Normally with etched foil. Plain foil also available. High-purity aluminum elements throughout. Made in single and multiple sections. Separate sections with positive and negative leads for each section. • 450 and 600 v. D.C.W. 4 to 16 mfd.; 8-8, 8-16 and 8-8-8 mfd. Dimensions: L, 2-7/16 to 3-3/16"; W, 3/4 to 1-1/2"; H, 1/2 to 1-7/16". A good general-purpose electrolytic for normal service.
FIELD SERVICE ENGINEERS
FOR DOMESTIC AND FOREIGN SERVICE
MUST POSSESS GOOD KNOWLEDGE OF RADIO

Hazeltoine Corporation
58-25 Little Neck Parkway
Little Neck, Long Island

An Unusual Employment Opportunity

The world wide demand for Seismic Crews provided by Seismograph Service Corporation requires an immediate expansion of its technical personnel.

Men with training and experience particularly in Geology, Physics, Mathematics or Electronics, who will enter foreign service are offered an opportunity leading to responsible positions in petroleum exploration.

Applicants who qualify will be given training in SSC methods, and those who show promise may be sent to South America for further field experience, and when proved competent will be considered for assignments on Seismic crews throughout the world.

Applicants in the U. S. A. must comply with the regulations of the War Manpower Commission.

In writing for details as to training, salary, living allowances, etc., please state your qualifications and age.

Seismograph Service Corporation
Kennedy Building
TULSA, OKLAHOMA, U.S.A.

(Continued from page 50A)

experience in electronic schematics, circuit layouts, and wiring diagrams, or with considerable experience in other related electrical fields.

Applicants giving full qualifications to Personnel Department, Curtain-Wright Corp., Development Division, 88 Jewettown Ave., Bloomfield, N.J.

Consulting Engineers

For laboratory with adequate facilities to take on the design of R.F. precision measuring instruments on a contract basis. Send reply to Box 339.

Electronics Engineers

Development engineers on television and ultrahigh-frequency tubes. Technician on tubes. Radio engineers on special applications. Write full details to Box 363.

Electronic Expert

Needed in management of large New York plant. Capable of supervising manufacture of transmitting and receiving radio assemblies, transformers and other electronic equipment. Excellent opportunity. Write personal and professional qualifications, salary expected, to Box 210, Suite 1024, 122 E. 42 St., New York 17, N.Y.

Electronic Engineer

Radio or electronic engineer for design and development of Army and Navy electronic equipment. Position offers excellent opportunity with well established and expanding company in Connecticut, employing over one hundred personnel. The company's big post-war program in the industrial electronics, radio, and aircraft communications fields assures engineering personnel a continued opportunity for advancement. Address reply to Box 364.

Radio, Electrical and Mechanical Engineers

In the development and production of all types of radio-receiving and low-power transmitting tubes. Excellent opportunity for personnel with an established company in a field of opportunities. Apply in person or write to Personnel Manager, Raytheon Manufacturing Company, 55 Chapel Street, Newton, Mass.

Radio Engineers

Need radio engineers with experience in Frequency-Modulation transmitting and receiving equipment. Familiarity with F.C.C. rules and field operation of equipment desirable. Send complete experience and education in letter of application, and state salary desired. Company located in the northwest, where living conditions are good, and expenses below average. Address to Box 351.

Radio Engineer

Unusual opportunity for experienced radio engineer. Well established medium-size Midwest radio manufacturer. Large post-war program. Nationally advertised radio line. Write qualifications and experience to the Agency Service Corporation, 66 East South Water Street, Chicago 1, III.

Vacuum-Tube Designers

Engineers and physicists for research and development work on small vacuum tubes. An opportunity for post-war employment with a growing organization in both war and essential civilian production. Recent graduates with adequate training and experienced personnel will be considered for these positions. Certificate of availability required. Write to Manager of Research, Sonotone Corporation, Elmsford, N.Y.

(Continued on page 54A)

RADIO ENGINEERS

Three promising positions are open to men who want to be associated with a progressive company of established reputation and accomplishments. At present there are openings for one senior engineer and two junior engineers. Desire men for work on military projects now who, will be adaptable to postwar engineering. Prefer men with experience in radio receiver or television laboratory, and with college education in communication engineering.

Address your communication to

Majestic Radio & Television Corp.
2600 W. 50th Street, Chicago 32, Illinois

Engineers Wanted

by Large Radio Manufacturer
for Its Midwest Plant

1. R.F. and I.F. Coil Design Engineer with knowledge of powdered iron cores for tuning. An important position involving coordination and supervision of other engineers. Man must be engineering graduate or have equivalent experience in permeability tuning systems.

2. Vibrator Power Supply engineer, thoroughly familiar with all types of vibrators, synchronous and non-synchronous, and associated transformer and filter circuits. Engineering graduate or equivalent experience.

Write details on education and background to Dept. 60, Box 429, Grand Central Station, New York 17, N. Y.
These two "action words" are being used by us to headline this ad for a very definite reason.

We are NOW ready with a NEW announcement which, we are sure, will be welcomed by hundreds of dealers, radio "hams", jobbers, and industrial organizations of all types who use transformers in the course of their operations.

We have stated before, and we must reiterate, that our first concern is to do our part in helping to win the war.

Nevertheless, the time has arrived when we can state that we are now actually engaged in preparing new models of transformers, for civilian use as soon as war conditions permit. These new Thordarson transformers embody ideas based upon our 50 years of leadership in this industry, our war experiences, and our determination to again set the pace in the field when civilian needs can once more be taken care of.

The new Thordarson transformers will be streamlined, modern... in many instances more compact... designed with all the skill and ingenuity that can be brought to bear in order to produce more serviceable products. When you see these new designs, you will again be reminded of how Thordarson leadership means more service, more convenience and more all-around satisfaction for you.
"Forging Ahead in Business" is a practical, thoughtfully-written book with "punch" and common sense on every page. It carries a message of vital importance to every man who wants to make more money, get a better job and improve his station in life.

Partial Contents:
- Law of Success
- Forging a Career
- Organized Knowledge
- Highway of Achievement
- Making Decisions
- Failure and Success

Noted Contributors
Among the prominent men who have contributed to the Institute's training plan, which is described in "Forging Ahead in Business," are: Thomas J. Watson, President, International Business Machines Corp.; Clifton Slusser, Vice President, Goodyear Tire & Rubber Co.; Frederick W. Pickard, Vice President and Director, E. I. du Pont de Nemours & Co.

Simply return the coupon below, and your FREE copy of "Forging Ahead in Business" will be mailed to you.

MAIL COUPON TODAY
ALEXANDER HAMILTON INSTITUTE
Dept. 226, 71 W. 23rd St., New York 10, N. Y.

Please mail me, without cost, a copy of the 64-page book—"FORGING AHEAD IN BUSINESS."

Name ____________________________
Firm Name ________________________
Business Address __________________
Position __________________________
Home Address ______________________

WANTED
ENGINEERS

Radio
* Electrical
* Electronic
* Mechanical
* Metallurgical
* Factory Planning
* Materials Handling
* Manufacturing Planning

Work in connection with the manufacture of a wide variety of new and advanced types of communications equipment and special electronic products.

Apply (or write), giving full qualifications, to:
R. L. D.
EMPLOYMENT DEPT.
Western Electric Co.
100 CENTRAL AVE., KEARNY, N. J.

*Also: C. A. L.
Locust St., Haverhill, Mass.

Applicants must comply with WMC regulations

INSTRUMENT ENGINEER WANTED

Engineer needed to develop and apply electronic instruments for measuring vibrations, strains, pressures and temperatures. Experience with electro-mechanical devices desirable. Position of permanent nature and at present concerned with measurement of aircraft and engine characteristics on projects of war urgency. Apply in writing stating education, experience and salary expected.

Persons now utilized at highest skill in essential industry need not apply as all hiring is done in accordance with Hartford area stabilization plan.

PRATT & WHITNEY AIRCRAFT INSTALLATION
ENGINEERING DEPARTMENT
EAST HARTFORD 8, CONNECTICUT
You Are Going to Want
BROWNING FREQUENCY METERS

Take this opportunity to name your specific desires...to have your own wishes incorporated into equipment you will want to make standard for mobile radio installations.

You will want Browning Frequency Meters because they do what you will want them to do, at a price that will let you use them generously.

Ever since their rapid acceptance several years ago, Browning Frequency Meters have been standard equipment in police and other emergency systems all over the United States.

HERE IS WHAT BROWNING FREQUENCY METERS ALREADY HAVE AND DO:

1. Check, with better than 0.005% accuracy, any five frequencies from 1.5 to 120 Mc.
2. Less than a minute required to check any one frequency.
3. Pre-calibrated for specific frequencies.
4. 100 Kc. crystal oscillator provides at least two check points in any band.
5. High dial-reading accuracy achieved by narrow frequency range.
6. Cathode ray indicator permits visual check against crystal standard and transmitter.
7. Complete voltage stabilization.

What More Do You Want?

Certain interesting improvements are already in store for this product of Browning Laboratories research. Whole-hearted devotion of all our energies to war production keeps them in the planning stage. But our postwar thinking, as it takes shape in rough sketches, turns to you — the future owner of future Browning Frequency Meters. We want you to have what you want.

Your letter about what you want in Browning Frequency Meters will receive a cordial welcome. And will, if possible, be reflected in the model delivered to you when we can deliver. Write soon, won't you?

Browning Laboratories, Inc.
750 Main Street
Winchester, Mass.

Gentlemen:

Here are the new features I'd like to see in Browning Frequency Meters:

NAME___________________________
TITLE____________________________
COMPANY_________________________
ADDRESS_________________________

HERE ARE MY ROUGH SKETCHES
ANDREW DRY AIR PUMP

- Dry Air Pumps provide simple, inexpensive source of dehydrated air for your pressurized electronic products. You can avoid component failure due to humidity by enclosing the entire apparatus in an air tight chamber and maintaining dry air pressure.

ANDREW CO.

363 East 75th Street
Chicago 19, Illinois

For detailed information write for Bulletin No. 30

FOR AIR-BORNE EQUIPMENT, TOO!
Condenser plates will not spark over at high altitudes if the apparatus is pressurized with dry air, because then moisture condensation is no longer a problem.

IN PEACETIME, Boonton Radio direct reading instruments were standard equipment for the Electronic Laboratory.

IN WARTIME, these dependable instruments are on the Front Lines safeguarding and protecting our fighting men against Communication Failures.

POSTWAR, these instruments will again be available for the Electronic Industry contributing to the development of the New Era of Electronics that is to come.

BOONTON RADIO CORPORATION

DESIGNERS AND MANUFACTURERS OF "0-METER . . . QX-CHECKER . . . FREQUENCY MODULATED SIGNAL GENERATOR . . . BEAT FREQUENCY GENERATOR . . . AND OTHER DIRECT READING TEST INSTRUMENTS

SEND FOR BULLETINS

STATE OF CALIFORNIA

THE HORSE OF
Plenty

(MODERN VERSION)

Plenty of high frequency
Sound reproduction, up to 15,000 cycles plus...plenty of bass response, down to 40 cycles...plenty of horizontal distribution, 60 degrees...plenty of vertical distribution, 40 degrees...plenty of quality...plenty of EVERYTHING a modern post-war America wants in quality sound reproduction.

You enjoy them all in the Altec Lansing Duplex Speaker.

SEND FOR BULLETINS

ALTEC

LANSING CORPORATION

1210 TAFT BLDG., HOLLYWOOD 28, CALIF.

Proceedings of the I.R.E. February, 1945
Reflection of Superior WORKMANSHIP
EXPERIENCE DESIGN

Not only does the image in the mirror show a view of these 1 KVA POWERSTATS but it reflects the years of experience gleaned by SECO engineers in designing variable voltage transformers. All the "know-how" gained through laboratory research, technical achievement, and customer demand is incorporated into these new 116 and 216 models... assuring a POWERSTAT with features offered by no other unit of comparable size.

TYPE 116
Input 115 volts, 50/60 cycles
Output voltage 0-115 and 0-135 volts
Output current 7.5 amperes available over entire output voltage range.
Output watts 1000 va.
No-load power loss 3.5 watts
Dimensions Over-all — 5 1/16 x 6 7/8 x 6 3/8 inches high
3 mounting holes — 120 degrees apart on 2 1/2 inch radius.

TYPE 216
Input 230 volts, 50/60 cycles
Output voltage 0-230 and 0-270 volts
Output current 3.0 amperes available over entire output voltage range.
Output watts 810 va.
No-load power loss 3.5 watts

As illustrated, this type of POWERSTAT is available either cased or uncased... the uncased model designated by the letter "U" following the type number.

For further information, write for your copy of bulletin 116 ER.

SUPERIOR ELECTRIC COMPANY
481 LAUREL STREET • BRISTOL, CONNECTICUT

Proceedings of the I.R.E. February, 1943
Find Products Never Before Cataloged—
Get this NEW Electronic Buyer's Guide!

K EEP pace with swift advances in Radio and Electronics! Now for the first time you can have at your fingertips all in one concise book information on such products as Industrial X-Ray Machines, Test Equipment including Signal Generators, and Electronic Comparator, Tube Testers and Multitester, Die-less Duplicating Tools, Plastic Sectional Wiring Systems, Photo-Electric Devices and many others never cataloged before! Better still, vital industrial and research work can depend upon our Special Emergency Service for speedier deliveries and procurement that you ever thought possible under the scarcities of war! Take advantage of this unusual service. . . . Get your copy of the new Reference Book and Buyer's Guide now!

FILL IN AND MAIL THIS COUPON TO YOUR NEAREST EMERGENCY DISTRIBUTOR TODAY!

GENTLEMEN: Please send me a free copy of your Reference Book & Buyer's Guide.

NAME

COMPANY

CITY ZONE STATE

TROPICALIZED

. . . Both Men and Communication Equipment Need Protection Against the Tropics.

Just as G. I. Joe is inoculated to protect him against germs before he sails for the tropics, so today are the many delicate parts of communication equipment dipped and brushed with Tropicalized Q-Max A-27 H. F. Lacquer before it reaches the tropics and its performance enemy, fungi and mold.

To Q-Max research chemists, must go credit for finding the right fungicide-and-lacquer combination. Many effective fungicides were discarded because they were incompatible with the lacquer, or interfered with its good electrical characteristics, or its fine corrosion resistance. But Q-Max "know how" found the correct fungicide and the tropicalized lacquer is so effective that it not only fungus-proofs the coated area, but the untreated surfaces adjacent to the treated part as well.

In war, or peace, it's always worthwhile to play safe and use Tropicalized Q-Max A-27 Lacquer to fungus-proof components of your electrical and communication apparatus. Specify "Tropicalized"—it's on the Q-Max label.

Q-MAX CHEMICAL DIVISION

Coaxial Transmission Line & Fittings • Sterling Switches • Auto Dryaire • Antenna & Radiating Systems • Tropicalized Q-Max A-27 H. F. Lacquer

Communication PRODUCTS COMPANY, INC.
340 BERGEN AVE., JERSEY CITY, N. J.

Proceedings of the I.R.E. February, 1945
Westinghouse

has incorporated the Jennings High Vacuum Capacitors in their standard radio frequency generating and control equipment, ranging in frequencies wide enough to meet all probable dielectric and induction heating needs.

TROPICALIZE your equipment with Jennings Capacitors

Literature will be mailed on request

JENNINGS RADIO MANUFACTURING COMPANY
1098 EAST WILLIAM STREET
SAN JOSE 12 - CALIFORNIA
To correctly seal transformers and filters it is highly important to select the right terminal for each particular design. Relationships between electrical and mechanical requirements, space limitations and overall specifications are all important in the achievement of good performance — every factor must be given careful and detailed consideration.

Here at ADC, we use many types of terminals for hermetic sealing — making a point to use each where best suited. It takes a little more effort to produce final designs this way, but after all, knowing they're right for the jobs they have to do is what counts most with us and with you.

SEND FOR LATEST CATALOG!

<table>
<thead>
<tr>
<th>AVAILABLE I.R.E. STANDARDS</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standards on Electroacoustics, 1938</td>
<td>$0.50</td>
</tr>
<tr>
<td>Definitions of Terms, Letter and Graphical Symbols, Methods of Testing Loudspeakers. (vi + 10 pages, 6 × 9 inches.)</td>
<td></td>
</tr>
<tr>
<td>Standards on Electronics: Definitions of Terms, Symbols, 1938</td>
<td>$0.20</td>
</tr>
<tr>
<td>A Reprint (1948) of the like-named section of “Standards on Electronics, 1928.” (viii + 8 pages, 8½ × 11 inches.)</td>
<td></td>
</tr>
<tr>
<td>Standards on Electronics: Methods of Testing Vacuum Tubes, 1938</td>
<td>$0.50</td>
</tr>
<tr>
<td>Standards on Transmitters and Antennas: Definitions of Terms, 1938</td>
<td>$0.20</td>
</tr>
<tr>
<td>A Reprint (1942) of the like-named section of “Standards on Transmitters and Antennas, 1938.” (vi + 6 pages, 8½ × 11 inches.)</td>
<td></td>
</tr>
<tr>
<td>Standards on Transmitters and Antennas: Methods of Testing, 1938</td>
<td>$0.50</td>
</tr>
<tr>
<td>A Reprint (1943) of the like-named section of “Standards on Transmitters and Antennas, 1938.” (vi + 10 pages, 8½ × 11 inches.)</td>
<td></td>
</tr>
<tr>
<td>Standards on Radio Receivers: Definitions of Terms, 1938</td>
<td>$0.20</td>
</tr>
<tr>
<td>A Reprint (1942) of the like-named section of “Standards on Radio Receivers, 1938.” (vi + 6 pages, 8½ × 11 inches.)</td>
<td></td>
</tr>
<tr>
<td>Standards on Radio Receivers: Methods of Testing Broadcast Radio Receivers, 1938</td>
<td>$0.50</td>
</tr>
<tr>
<td>A Reprint (1942) of the like-named section of “Standards on Radio Receivers, 1938.” (vi + 20 pages, 8½ × 11 inches.)</td>
<td></td>
</tr>
<tr>
<td>Standards on Radio Wave Propagation: Definitions of Terms, 1942</td>
<td>$0.20</td>
</tr>
<tr>
<td>(vi + 8 pages, 8½ × 11 inches.)</td>
<td></td>
</tr>
<tr>
<td>Standards on Radio Wave Propagation: Measuring Methods, 1943</td>
<td>$0.50</td>
</tr>
<tr>
<td>Methods of Measuring Radio Field Intensity, Methods of Measuring Power Radiated from an Antenna, Methods of Measuring Noise Field Intensity. (vi + 16 pages, 8½ × 11 inches.)</td>
<td></td>
</tr>
<tr>
<td>Standards on Facsimile: Definitions of Terms, 1942</td>
<td>$0.20</td>
</tr>
<tr>
<td>(vi + 16 pages, 8½ × 11 inches.)</td>
<td></td>
</tr>
<tr>
<td>Standards on Facsimile: Temporary Test Standards, 1943</td>
<td>$0.20</td>
</tr>
<tr>
<td>(v + 8 pages, 8½ × 11 inches.)</td>
<td></td>
</tr>
</tbody>
</table>

ASA STANDARDS (Sponsored by the I.R.E.)

<table>
<thead>
<tr>
<th>Standard Title</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Standard: Standard Vacuum-Tube Base and Socket Dimensions</td>
<td>$0.20</td>
</tr>
<tr>
<td>(ASA C16.1-1939). (8 pages, 7½ × 10½ inches.)</td>
<td></td>
</tr>
<tr>
<td>American Standard: Manufacturing Standards Applying to Broadcast Receivers</td>
<td>$0.70</td>
</tr>
<tr>
<td>(ASA C16.3-1939). (16 pages, 7½ × 10½ inches.)</td>
<td></td>
</tr>
<tr>
<td>American Standard: Loudspeaker Testing</td>
<td>$0.25</td>
</tr>
<tr>
<td>(ASA C16.4-1942). (12 pages, 7½ × 10½ inches.)</td>
<td></td>
</tr>
<tr>
<td>American Standard: Volume Measurements of Electrical Speech and Program Waves</td>
<td>$0.20</td>
</tr>
<tr>
<td>(ASA C16.5-1942). (8 pages, 7½ × 10½ inches.)</td>
<td></td>
</tr>
</tbody>
</table>

Prices are net and include postage to any country. Include remittance with order, and address:

THE INSTITUTE OF RADIO ENGINEERS, Inc.
330 West 45th Street, New York 18, N.Y.
SM Fractional H.P. Motors for blower, band switching, turntable, and other radio applications.

You can get a SM motor engineered and precision-built to your exact job specifications to give you maximum power per ounce of weight and per inch of space, long life and dependable performance. From 1/10th to 1/200th H.P. Speeds from 3,000 to 20,000 R.P.M. Voltage from 6 to 220 AC-DC. SM motors are built of quality materials in a plant with facilities for large volume production. Many thousands have been designed and built for signal corps and military aircraft use. What are your requirements?

Small Motors, Inc.
Dept. 31 — 1308 Elston Ave., Chicago 22, Ill.
Manufacturers of special small universal, fractional H.P. motors, dynamos, shaded pole motors, heater motors, generators.

Design • Engineering • Production

Proceedings of the I.R.E. February, 1945

BLAW-KNOX speaks to you over the air

Tonight when you tune in, it's highly probable that your favorite programs will emanate from stations equipped with Blaw-Knox Radio Towers.

These Vertical Radiators have been specified by major broadcasting systems because they are both electronically and structurally sound — providing clear signals and maximum range...

It is of note, too, that Blaw-Knox Directional Radio Beacons are used to guide all air transport service in the United States.
TECHNICAL NOTES
Excerpts from New Home Study Lessons Being Prepared under the Direction of the CREI Director of Engineering Texts

CIRCUIT EQUIVALENTS

The February issue of the CREI NEWS contains Number Five in a series of articles on the subject, "CIRCUIT EQUIVALENTS." Part 5 discusses an interesting application of the equivalent tee network to the problem of a television series peaking circuit. By means of the equivalent tee network, one can clearly see how to arrange the series peaking network so as to obtain optimum results from the plate and grid capacities of the two tubes involved.

The response for this series of articles on "Circuit Equivalents" as they appear in our magazine has been very enthusiastic. Each of these articles is complete in itself—so, send now for the current issue. A new technical article appears each month and each is of interest to professional radiomen in applying this material to their daily activities, or for filing in a scrap book for future and permanent reference.

If you have not, as yet, requested being placed on our mailing list, do so now by asking for the February issue. The CREI NEWS is published each month and is sent free to those who ask to be placed on our mailing list. Of course, you incur no obligation.

The subject of "Circuit Equivalents" is but one of many that are being constantly revised and added to CREI lessons by A. Preisman, Director of Engineering Texts, under the personal supervision of CREI President, E. H. Rietzke. CREI home study courses are of college calibre for the professional engineer and technician who recognizes CREI training as a proved program for personal advancement in the field of Radio-Electronics. Complete details of the home study courses sent on request.

Ask for 36-page booklet.

CAPITOL RADIO ENGINEERING INSTITUTE
E. H. Rietzke, President
Home Study Courses in Practical Radio-Electronics for Professional Self-Improvement
Dept. PR-2, 3224-16th St. N.W.
WASHINGTON 10, D.C.

Keep Electronic Tube PRODUCTION-ON-SCHEDULE with GOAT

DRAWN . . .
SHAPED . . . STAMPED
METAL PARTS

Deliveries-on-schedule by Goat take one of the big headaches out of purchasing and production. Accurately made Goat precise-formed parts cut assembly time and improve tube performance.

For Over 15 years...

Goat's dependable delivery of uniform high quality parts has been helping to keep production on schedule.

METAL STAMPINGS, INC.
AFFILIATE OF THE FRED GOAT CO., INC. • EST. 1893
314 DEAN ST., BROOKLYN 17, N.Y.

PULSE GENERATOR

MODEL 79-B
SPECIFICATIONS:
FREQUENCY: continuously variable 60 to 100,000 cycles.
PULSE WIDTH: continuously variable 0.5 to 40 microseconds.
OUTPUT VOLTAGE: Approximately 150 volts positive.
OUTPUT IMPEDANCE: 6Y6G cathode follower with 1000 ohm load.
R. F. MODULATOR: Built-in carrier modulator applies pulse modulation to any r.f. carrier below 100 mc.
MISCELLANEOUS: Displaced sync output, individually calibrated frequency and pulse width dials, 117 volt, 40-60 cycles operation, size 14"x10"x10", wt. 31 lbs.
Price 3295.00 F.O.B. BOONTON

MEASUREMENTS CORPORATION
BOONTON • NEW JERSEY

Proceedings of the I.R.E.
February, 1945
Binders
for the Proceedings
Protect your file
of copies against
damage and loss

Binders are available for those who desire to protect their copies of the PROCEEDINGS with stiff covers. Each binder will accommodate the twelve monthly issues published during the year. These binders are of blue Spanish grain fabricoid with gold lettering and will serve either as temporary transfers or as permanent binders. They are so constructed that each individual copy of the PROCEEDINGS will lie flat when the pages are turned. Copies can be removed from the binder in a few seconds and are not damaged by their insertion.

Available for both the old, small size, PROCEEDINGS or the new, large size (1939 to date).

Price: $1.50

either size (specify which)
Postpaid to all countries

You may have a volume number or your name stamped in gold for 50 cents additional.

Remittance should accompany your order

THE INSTITUTE OF
RADIO ENGINEERS, INC.
330 West 42nd Street,
New York 18, N.Y.

Only "AIR WOUND" Coils Give You All These Advantages

LESS WEIGHT... No conventional winding form required—less critical material used in manufacture.

LOW DIELECTRIC LOSS... Design incorporates an absolute minimum of extraneous material in winding field.

ADAPTABLE TO ANY MOUNTING... Ideal for plug-in or other services where mounting problems are involved.

LESS SUBJECT TO DAMAGE... Nothing much to break. Can easily be repaired without tools, even if bent completely out of shape. Bumper rings or other protective features available for extreme services.

GREATER DESIGN ADAPTABILITY... Can be equipped with fixed or variable internal or external coupling links, special indented turns for easy tapping, and many other special features.

MORE ACCURATE... Can be wound to more uniform pitch. Easier to tap at the exact desired point. No coil form to cause dielectric loss.

WIDE RANGE... Sizes and types for any application. 10 watts to 10 KW.

BARKER & WILLIAMSON
Dept. IR-25, 235 Fairfield Ave., Upper Darby, Pa.
Air Inductors, Variable Condensers, Electronic Equipment Assemblies

Proceedings of the I.R.E. February, 1948
You can put **Teamwork** into Testing!

Condenser Tester—Model 650A.
Measures Capacity, Power Factor and Leakage

Electronic Multimeter—Model 645.
A new Jackson instrument of advanced design

Sensitive Multimeter—Model 642.
20,000 ohms per volt—complete ranges

Tube Tester—Model 634.
Uses exclusive Jackson "Dynamic" Test Method

Multimeter—Model 643.
1000 Ohms per volt. Push key range selection

Test Oscillator—Model 640.
Accurate to 1/2% covers full frequency range

YES, TEAMWORK is needed to test and service a radio set. No one instrument, of course, can do the full job. Each Jackson instrument is a specialist, yet a member of the team—each outstanding in accuracy and performance, and each backing up the other.

Every Jackson unit is separate and complete. And besides being matched in quality and performance, the instruments shown here are uniform in dimensions, appearance and finish. They can be assembled in any combination you choose—as in the Jackson-built Service Lab illustrated (left). Whether you need one, several, or a complete set of instruments, buy for the future—with Jackson.

BUY WAR BONDS AND STAMPS TODAY

JACKSON

Fine Electrical Testing Instruments

ACKSON ELECTRICAL INSTRUMENT COMPANY, DAYTON, OHIO

Attention, Associate Members!

Many Associate Members can qualify for higher membership grades and should certainly do so. Members are urged to keep membership grade up in pace with their present development.

An Associate over 24 years of age who is occupied as a radio engineer or scientist, and is in this active practice three years may qualify for Member Grade.

An Associate who has taught college radio or allied subjects for three years may qualify.

Some may possibly qualify for Senior Grade. But transfers can be made only upon your application. For fuller details request transfer application form in writing or by using the coupon below.

Coupon

Institute of Radio Engineers
330 W. 42nd St.
New York 18, N.Y.

Please send me the Transfer Application Membership-Form.

Name ..
Address
Place ..
State ...
Present Grade

Proceedings of the I.R.E. February, 1945
The newcomer in the G. I. family of radio components is a lusty youngsters bound to make itself heard. Set manufacturers who have long looked to us for high precision, high performance, high production standards in condensers, tuning units, actuators and record changers will welcome our latest arrival—Speakers!

When the mammoth capacity, the engineering genius and production know-how developed by our large-scale participation in the war effort can be diverted to peacetime activities, we are prepared to do a real job on speakers.

Set manufacturers who, like us, are figuring ahead, will undoubtedly be interested to know that we plan to make our new speaker subsidiary a dominant industry factor and an important part of G. I.'s production of precision radio components.

GENERAL ELECTRONIC APPARATUS CORPORATION
A SUBSIDIARY OF

GENERAL INSTRUMENT CORPORATION
829 Newark Avenue · Elizabeth 3, New Jersey
RADIO PARTS OF
"TAYLOR
LAMINATED
PLASTICS"

THE VERSATILITY OF

* * *

Phenol Fibre, Vulcanized Fibre,
* * *

And Phenolastic Fibre
* * *

* * *

Gives radio engineers a

* * *

WIDE LATITUDE in the design

* * *

Of parts for post-war radios.

* * *

Dielectric qualities, strength-weight

* * *

Ratios, and the ability to

* * *

MASS-PRODUCE sheets, rods, tubes,

* * *

Or fabricated parts are

* * *

Bringing Taylor Engineers a

* * *

Constant stream of inquiries.

* * *

We'll welcome yours, too.

Almost quicker than the eye can follow, these
radio terminal strips are sawed, drilled, and milled
from sheets of Phenol Fibre having a fine-weave
cotton base. They are tough and moisture-resistant
and have high electric properties. Whatever com-
bination of qualities you require, it's a good bet
that Taylor can give it to you.

TAYLOR FIBRE
COMPANY

LAMINATED PLASTICS: PHENOL FIBRE-VULCANIZED FIBRE
Sheets, Rods, Tubes, and Fabricated Parts

NORRISTOWN, PENNSYLVANIA
OFFICES IN PRINCIPAL CITIES

Pacific Coast Headquarters:
544 S. SAN PEDRO STREET, LOS ANGELES

Proceedings of the I.R.E. February, 1945
The dainty watch that graces a lady’s wrist is just as efficient a time piece as the huge chronometer of the century past. Modern engineering has made it so. Likewise, the modern miniature electronic tubes will do everything the large, old style tubes will do. The minute dimensions of miniature tubes themselves and their sockets open up entirely new possibilities in the compactness of electronic equipment.

Manufacturers of radio sets are invited to consult with TUNG-SOL engineers preferably while their equipment is in the blueprint stage. While continuing to make the old style tubes, for replacement, TUNG-SOL is now producing many of the same types in miniature and is preparing to produce others when set manufacturers require them. Of course, your future plans will be held in strictest confidence.

TUNG-SOL

vibration-tested
ELECTRONIC TUBES

TUNG-SOL LAMP WORKS, INC., NEWARK 4, NEW JERSEY
Also Manufacturers of Miniature Incandescent Lamps, All-Glass Sealed Beam Headlight Lamps and Current Intermittors

Proceedings of the I.R.E. February, 1945
HARVEY REGULATED POWER SUPPLIES

for use with CONSTANT FREQUENCY OSCILLATORS
AMPLIFIERS • PULSE GENERATORS • MEASUREMENT EQUIPMENT

The HARVEY Regulated
POWER SUPPLY 206 PA

This new HARVEY OF CAMBRIDGE development is designed for use with equipment requiring a constant D.C. voltage source in the 500-1000 volt range. It operates in two ranges—500 to 700 at ¾ of an ampere; 700 to 1000 volts at .2 of an ampere. The voltage change is less than one per cent in both ranges. Write for complete specifications.

The HARVEY Regulated
POWER SUPPLY 106 PA

performs smoothly and dependably in the lower voltages. It has a D.C. output variable from between 200 to 300 volts that is regulated to within one per cent. It operates on 115 volts, 50-60 cycles A.C., introduced by a convenient two-prong male plug. For complete information, write for bulletin.

HARVEY OF CAMBRIDGE

HARVEY RADIO LABORATORIES, INC.
447 CONCORD AVENUE
CAMBRIDGE 38, MASSACHUSETTS

GET THIS SAMPLE
OF E-Z Code MARKERS

SEE FOR YOURSELF
HOW QUICK AND EASY IT IS TO
CODE WIRES

Cuts Time, Saves Money...on Assemblies...
...Installations and Maintenance Work

E-Z CODE is the quickest known method of coding electrical wires. Made on handy cards, ready to use, they stick quickly — no moistening — stay on — stand abuse. Styles in stock fit most coding requirements. Special sizes or codes can be made to order. Mail requests to:

WESTERN LITHOGRAPH COMPANY
Dept. F1, 600 East 2nd St., Los Angeles 54, California

In Everything of Uncle Sam's that "flies, floats or shoots"

—because of their lightness in weight, high dielectric strength, ready machine-ability, exceptional wearing and other qualities—are playing a vital part.

"BACK THE ATTACK" with WAR BONDS

NATIONAL VULCANIZED FIBRE CO.
Offices in Principal Cities
WILMINGTON, DELAWARE

Easy to Erect
Masts and Towers

Just off the Press—This complete 24 page Harco catalogue that every engineer and executive concerned with Radio Masts and Towers will want for their files. Write for it on your business letterhead.

Write Dept. AG

HARCO
STEEL CONSTRUCTION CO., Inc.
Elizabeth 4, New Jersey

Proceedings of the I.R.E. February, 1945
Take a look at the size of the "BATTERY OF TOMORROW"

"EVEREADY" "MINI-MAX" "B" BATTERY
(22½ VOLTS)

Here it is—the midget battery that opens up new fields of opportunity in postwar radio and electronics. 22½ volts crammed into a space so small that it staggers the imagination!

"Eveready's" exclusive "Mini-Max" construction makes all this possible. Actually it has proved a vital factor in improved communication equipment for this mobile war. By the same token this revolutionary "Mini-Max" construction will make possible radically new portable radio sets and other electronic devices after the war—sets for the personal use of an individual. Sets so small they will fit in a man's vest pocket or a woman's handbag. The portable radio business, just coming into its own before the war, promises to return with an even brighter future—aided by this midget battery. You can look forward to a new line of merchandise on your shelves—new customers—new business.

Actually, the baby "Mini-Max" "B" Battery in itself is an invitation to creative men to develop new devices to keep pace with it. We urge engineers and designers to consult us—discuss their ideas and problems with our engineers, who are ready and willing to cooperate in every way. The laboratories and technical staff of National Carbon Company are at your disposal.
VERSATILITY and dependability were paramount when Alliance designed these efficient motors — Multum in Parvo! They are ideal for operating fans, movie projectors, light home appliances, toys, switches, motion displays, control systems and many other applications... providing economical condensed power for years of service.

Alliance Precision

Our long established standards of precision manufacturing from highest grade materials are strictly adhered to in these models to insure long life without breakdowns.

EFFICIENT

Both the new Model "K" Motor and the Model "MS" are the shaded pole induction type — the last word in efficient small motor design. They can be produced in all standard voltages and frequencies with actual measured power outputs ranging upwards to 1/100 H. P. Alliance motors also can be furnished, in quantity, with variations to adapt them to specific applications.

DEPENDABLE

Both these models uphold the Alliance reputation for all 'round dependability. In the busy post-war period, there will be many "spots" where these Miniature Power Plants will fit requirements... Write now for further information.

Remember Alliance! — YOUR ALLY IN WAR AS IN PEACE

VERSATILITY and dependability were paramount when Alliance designed these efficient motors — Multum in Parvo! They are ideal for operating fans, movie projectors, light home appliances, toys, switches, motion displays, control systems and many other applications... providing economical condensed power for years of service.

Alliance Precision

Our long established standards of precision manufacturing from highest grade materials are strictly adhered to in these models to insure long life without breakdowns.

EFFICIENT

Both the new Model "K" Motor and the Model "MS" are the shaded pole induction type — the last word in efficient small motor design. They can be produced in all standard voltages and frequencies with actual measured power outputs ranging upwards to 1/100 H. P. Alliance motors also can be furnished, in quantity, with variations to adapt them to specific applications.

DEPENDABLE

Both these models uphold the Alliance reputation for all 'round dependability. In the busy post-war period, there will be many "spots" where these Miniature Power Plants will fit requirements... Write now for further information.

Remember Alliance! — YOUR ALLY IN WAR AS IN PEACE

VERSATILITY and dependability were paramount when Alliance designed these efficient motors — Multum in Parvo! They are ideal for operating fans, movie projectors, light home appliances, toys, switches, motion displays, control systems and many other applications... providing economical condensed power for years of service.

Alliance Precision

Our long established standards of precision manufacturing from highest grade materials are strictly adhered to in these models to insure long life without breakdowns.

EFFICIENT

Both the new Model "K" Motor and the Model "MS" are the shaded pole induction type — the last word in efficient small motor design. They can be produced in all standard voltages and frequencies with actual measured power outputs ranging upwards to 1/100 H. P. Alliance motors also can be furnished, in quantity, with variations to adapt them to specific applications.

DEPENDABLE

Both these models uphold the Alliance reputation for all 'round dependability. In the busy post-war period, there will be many "spots" where these Miniature Power Plants will fit requirements... Write now for further information.

Remember Alliance! — YOUR ALLY IN WAR AS IN PEACE
Constant checking of plating solutions and rigid quality control gives Hammarlund variable capacitors a finish that will last a lifetime under practically every operating condition.

HAMMARLUND

THE HAMMARLUND MFG. CO., INC., 460 W. 34TH ST., N.Y.C.
MANUFACTURERS OF PRECISION COMMUNICATIONS EQUIPMENT
INDEX
Section Meetings .. 34A
Membership .. 41A
Positions Open ... 50A

DISPLAY ADVERTISERS
Aerovox Corporation .. 51A
Airco Manufacturing Corp 21A
Allen-Bradley Co .. 47A
Alliance Mfg. Co .. 70A
Alteco Lansing Corp 56A
American Lava Corp 13A
American Telephone & Telegraph Co 28A
American Transformer Co 25A
Amperex Electronic Corp 21A
Andrew Co .. 56A
Arnold Engineering Co 36A
Audio Development Co 60A
Alfred W. Barber Laboratories 54A
Barker & Williamson 63A
Bendix Aviation Corp 38A, 49A
Biley Electric Co ... 27A
Boonton Radio Corp 56A
Browning Laboratories, Inc 55A
Capitol Radio Engineering Institute 62A
Centralab ... 6A
Chicago Transformer Corp 34A
Sigmund Cohn & Co 70A
Communication Measurements Laboratory 70A
Communication Products Co, Inc 58A
Cornell-Dubilier Electric Corp Cov. III 48A
DeJur-Amsco Corporation 22A
Toke Deutschmann Corp 73A
Allen B. Dumont Labs., Inc 12A
Ector Inc .. 41A
Etel-McCullough, Inc 74A
Electronic Laboratories, Inc Facing 24A 31A
Electro-Voice Corp .. 31A
Federal Telephone & Radio Corp 7A, 37A
General Electric Co 16A
General Instrument Corp 65A
General Radio Co .. Cov 19
Girdler Corp .. 50A
Goat Metal Stampings, Inc 42A
Hallicrafters Co ... 39A
Alexander Hamilton Institute 56A
Hammarlund Mfg. Co, Inc 71A
Harco Steel Construction Co 68A
Harvey Radio Laboratories, Inc 68A
Hazeltine Corp ... 52A
Heintz & Kaufman, Ltd Facing 25A 65A
Hewlett-Packard Co 15A
M. F. M. Osborne Associates 48A
Peerless Electrical Products Co 72A
Raytheon Mfg. Co ... 26A
Rola Co, Inc .. 32A and 50A
Seismograph Service Corp 52A
Shallicross Mfg. Co .. 42A
Sheron Electronics Company 40A
Small Motors, Inc .. 61A
Solar Mfg. Corp .. 33A
Sperry Gyroscope Co 14A
Sprague Electric Co 30A
Stackpole Carbon Co 19A
Standard Transformer Corp 66A
Stupakoff Ceramic & Mfg. Co 8A
Superior Electric Company 57A
Sylvania Electric Products Co 43A
Taylor Fibre Co ... 66A
Tech Laboratories .. 44A
Thordarson Electrical Mfg. Co 53A
Triplott Electrical Instrument Co 35A
United Transformer Corp Cover II 58A
Tung-Sol Lamp Works, Inc 67A
Utah Radio Products Co 29A
Walker-Jimerson, Inc 58A
Western Electric Company 4A, 5A and 64A
Western Lithograph Co 68A
Wheatite Co .. 29A

FOR YOUR COPY OF THE NEW PEERLESS TRANSFORMER CATALOG
Contains latest information and prices on the complete line of Peerless transformers, windings and reactors.

PEERLESS ELECTRICAL PRODUCTS CO.
6920 McKinley Avenue, Los Angeles 1, California

Industrial Condenser Corp 46A
International Resistance Co 3A
International Telephone & Telegraph Corp 7A, 37A
Jackson Electrical Instrument Co 64A
Jennings Radio Mfg. Co 57A
Macmillan Co .. 48A
Majestic Radio & Television Corp 52A
Measurements Corp 62A
National Carbon Company, Inc 69A
National Company ... 24A
National Union Radio Corp 45A
National Vulcanized Fibre Co 68A
North American Philips Co, Inc 9A

Proceedings of the I.R.E. February, 1945
“Capacitors of Long Life”

is more than a slogan at

TOBE

Long Life is a Quality Built into each and every Capacitor we make

SPECIFICATIONS OF JUST ONE TYPE OF THE MANY TOBE OIL-IMPREGNATED AND OIL-FILLED PAPER CAPACITORS...

<table>
<thead>
<tr>
<th>TYPE</th>
<th>SPG-CAPACITORS</th>
<th>MIDGET SPG-CAPACITORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>RATINGS</td>
<td>.05 to 2.0 mfd. 600 V.D.C.</td>
<td>.05 to .1 mfd. 600 V.D.C.</td>
</tr>
<tr>
<td>STANDARD CAPACITANCE TOLERANCE</td>
<td>20%**</td>
<td>20%**</td>
</tr>
<tr>
<td>TEST VOLTAGE</td>
<td>Twice D. C. rating</td>
<td></td>
</tr>
<tr>
<td>GROUND TEST</td>
<td>2,500 Volts D. C.</td>
<td></td>
</tr>
<tr>
<td>OPERATING TEMPERATURE</td>
<td>-55° F to 185° F</td>
<td></td>
</tr>
<tr>
<td>SHUNT RESISTANCE</td>
<td>.05 to 0.6 mfd. 20,000 megohms</td>
<td>.25 to 0.5 mfd. 12,000 megohms</td>
</tr>
<tr>
<td></td>
<td>1.0 mfd. 10,000 megohms</td>
<td>2.0 mfd. 5,000 megohms</td>
</tr>
<tr>
<td>POWER FACTOR</td>
<td>1,000 cycles-.002 to .005</td>
<td></td>
</tr>
<tr>
<td>CONTAINER SIZE</td>
<td>Width 5/8", height 1-5/16", height 21/2"</td>
<td>Width 5/8", length 1-5/16", height 1-11/64"</td>
</tr>
<tr>
<td>MOUNTING HOLE CENTERS</td>
<td>.125"</td>
<td>.125"</td>
</tr>
</tbody>
</table>

*Data sheets showing complete code number for units having a specific capacitance value and voltage rating available on request. **Other tolerances available.

Illustrations show capacitors with terminals on bottoms.

Capacitors also available with terminals on top.

A SMALL PART IN VICTORY TODAY — A BIG PART IN INDUSTRY TOMORROW

Proceedings of the I.R.E. February, 1945

73A
Pan American World Airways, which has done so much to advance the war-time goals of the nation, has just announced a plan for a new service to South America. Employing a fleet of stratosphere planes, carrying 108 passengers, flying at more than three hundred miles an hour, Pan American proposes to take travelers from New York to Rio de Janeiro in less than twenty hours instead of the present sixty-six hours, charging $175 for the trip, as against the current rate of $491.

Pan American Airways and all its associated and affiliated companies, which comprise the P. A. A. World System, have been using Eimac tubes in the key sockets of all ground stations for a number of years.

Because of the extensive operations of Pan American World Airways, these tubes have been subjected to about every test possible—altitudes; ground level; extremely cold climates and high temperatures found at the equator; conditions of high and low humidity; and in some instances, when new bases are being built, perhaps somewhat trying power conditions. The high regard which P. A. A. engineers have for Eimac tubes is clearly evidenced by their continued and more extensive use, as the years roll by.

The fact that Eimac tubes are the number one favorite of the commercial airlines is important evidence to substantiate the oft repeated statement that “Eimac tubes are first choice of leading electronic engineers throughout the world.”

Follow the leaders to Eimac TUBES

Write for your copy of Electronics Today—a 64 page book—fully illustrated—covering fundamentals of Electronics and many of its important applications. Written in layman’s language.
This specialist is giving our Type 52 a thorough physical. He is checking voltage and capacity. Type 5E will also be checked for current rating, temperature rise and insulation resistance.

Capacitors may look alike. When new, they may be comparable in physical and electrical properties. The difference—that you don't see—shows up later after long hard service.

The difference is due to the men who make them . . . and their methods.

Through 35 years of capacitor specialization, Cornell-Dubilier has built a tradition of quality . . . has originated many basic innovations in capacitor design, engineering and manufacture.

In its six large plants, C-D has every facility to insure product perfection. These facilities are at your service. Cornell-Dubilier Electric Corporation, South Plainfield, New Jersey. Other Plants: New Bedford, Brookline, Worcester, Massachusetts, and Providence, Rhode Island.

CORNELL-DUBILIER
CAPACITORS 1910 1945
MICA - DYKANOL - PAPER - WET AND DRY ELECTROLYTICS

TYPE 59 TRANSMITTING CAPACITOR.
Improved design, extremely adaptable under severe operating conditions. In low-loss white glazed ceramic cases. Low-resistance, wide-path end terminals. For grid, plate blocking, coupling and bypass applications.
GENERAL RADIO was granted the coveted Army-Navy "E" Production Award for the fifth time in December of last year. G-R is one of very few in the electronic industry to receive this honor five times.

The production of precision electrical test equipment is a highly specialized business, demanding maintenance of close tolerances in all inspection, manufacturing and calibrating operations. Constant and close supervision by highly trained personnel is required to produce equipment of the precision and reliability of G-R instruments.

In order to meet the greatly increased production called for by the war, G-R has expanded to its limit, both in space and in personnel. We have subcontracted machining operations to several local firms; we have transferred our entire VARIAC production to leased space in another building; we have obtained considerable space in another building where we have contracted for a large number of war-time workers under our own foremen; we have let out the complete manufacture of several instruments to other manufacturers; we have turned over the design, drawings and models of several critical instruments to other manufacturers for their exclusive use.

G-R is proud that it has been able to meet the urgent production requirements of the war effort. It is equally grateful that the substantial contributions from its Development and Engineering Departments, through many thousands of hours of consulting engineering on secret war projects, have directly assisted in the solution of technical problems of the greatest urgency.