TALK ON A LIGHT BEAM

Faster than a speeding comet
your voice travels on an infrared beam
across a room, city block or pasture
from a light-emitting diode to a
space-age solar cell!
Complete plans in this issue.

Plus
Now We're Cooking With Microwaves

The greatest discovery since fire!
Learn how it works and try our
lab-tested appetizing recipes.

- The War of the Currents
 — AC vs. DC
- Ultra Simple Thermin
 — Only 3 Transistors
- Sounds from the Ground
 — A New DX Horizon
- Understanding Semiconductors
109.95 buys you a lot of CB!

Midland's new 23-channel mobile compact is quite a CB rig for 109.95 suggested retail! Try to find another unit near this price that gives you all these features: Synthesized 23-channel system — equipped and ready to go. 5 watts audio power, dual conversion receiver. Highly effective automatic noise limiter with front panel switch. Oversized, easy-view transmit/power meter with built-in red TX light. PA switch. Stylish, compact cabinet is just 5⅛" x 6" x 2". Beautifully styled, hand-fitting mike, coiled cord, and mounting bracket included.

For more on Model 13-869, write for our full-information sheet

P.O. Box 19032, Kansas City, Missouri 64141

CIRCLE NO. 1 ON PAGE 17 OR 103
It tells you more than how much you make. It tells you how far you've come. And if your paycheck looks very much the same as it did last year, or the year before, it simply means that you look very much the same as you did last year and the year before.

But times change, and you should be changing with them. Old dull jobs are disappearing. New exciting ones are being created. There are challenging new fields that need electronics technicians...new careers such as computers, automation, television, space electronics where the work is interesting and the earnings are greater.

RCA Institutes has one of the nation's largest and most respected home study schools devoted to electronics. They can get you started even if you've had no previous training or experience. RCA Institutes has developed a faster, easier way for you to gain the skills and the knowledge you need for a fascinating, rewarding electronics career. And you don't have to quit work and go back to school. With RCA Institutes Home Study Plan you can do both. You set your own pace depending on your schedule.

Check over these RCA benefits:
• You get Hands-On Training—over 300 experiments and as many as 25 kits with some programs.
• You get RCA's unique "Autotext" method of learning—individual programmed instruction, the easy, faster, simplified way to learn!
• You get the widest choice of electronics courses and programs—everything from Electronics Fundamentals right up to Solid State Technology and Communications Electronics.
• You get a selection of low-cost tuition plans!

Sounds great, and it is! For complete information, without obligation, send in the attached postage card...or return the coupon below. That will say a lot about you.

Veterans: Train under new GI Bill. Accredited Member National Home Study Council. Licensed by N.Y. State—courses of study and instructional facilities approved by the State Education Department.
SPECIAL PROJECT—TALK ON A LIGHT BEAM
29 Light-Comm—all solid-state light beam communicator uses an infrared light emitting diode

SPECIAL THEORY FEATURE FOR EVERYONE
33 Now We’re Cooking with Microwaves—a whole new appliance revolution is taking place and radar caused it

GRASS ROOTS THEORY
26 Ask Hank, He Knows—our Q & A
49 Sounds from the Ground—audio and RF radiation travels the granite route
59 The Language of Gain—discover what four technicians and a black box can do
65 War of the Currents—AC vs. DC with a man’s life as the flipped coin
75 Basic Course—understanding semiconductors, part 2

SUPER SIMPLE CONSTRUCTION PROJECTS
67 Ultra Simple Thermin—junior edition of the original Theremin
43 Hobbyist’s Night Light—helps you keep out of the dark

COMMUNICATIONS FOR EVERYONE
22 DX Central Reporting—picking up Peking’s pigeon English
47 Stamp Collectors’ DX Guide to Atlantic Treasure
52 Primates Pick Prime Time—they monkey with the channel selector
55 Kathi’s CB Carousel—Kathi checks out Regency’s Formula 23 CB transceiver
64 CB Coffee Break—special guest columnist

e/e’s PRODUCT PARADE
45 e/e Checks Out EICO’s Burglar/Fire Alarm System—the first in do-it-yourself kits
54 e/e Looks at Hi-Fi Components
57 e/e Checks out the First Digital Multimeter Kit—by Heathkit

THE READABLES—OUR DEPARTMENTS
8 Hey Look Me Over—what’s new
17 Reader Service Page—also on page 103
24 Bookmark by Bookworm
25 Stamp Shack—Philatronics today
27 Literature Library
28 Cartoon Page—hobby house
74 e/e Etymology—wordtronics
103 Reader Service Page—also on page 17

AUTHORS IN THIS ISSUE
Mike Centore III, Norman Crawford, Stephen Daniels, Herbert Friedman, Webb Garrison, Myrtle Gronk, Don Jensen, Jackson Kaye, Ernest A. Kehr, Kathi Martin, Forrest Mims, Jack Schmidt, Hank Scott, C. M. Stanbury II, Gary Webster and the ELEMENTARY ELECTRONICS staff

Cover Illustration by Len Goldberg
NEW 3'' ASTRONOMICAL REFLECTOR TELESCOPE

- See moon shots, orbits, stars, craters!
- 60 to 180X
- DE-LUXE FEATURES
- AT ECONOMY PRICE

Amazingly priced Apollo Space Explorer brings the wonders of the universe up close. Ideal for educational interest levels of resolution & definition. 60X handsomely finished. 1'' Type Eyepiece. 3X adjustable Barlow. 6x nice telescope, big impact plastic tube; metal fork mount w/ positive adjustment. Includes T.E. Finderscope. Star Chart. Instructions. Best value ever!

No. 85.0122EK
$59.50 Ppd.

NEW "SEE-THRU" SIGHT LIGHT!

Luminica see-thru sightlight limits up to difficult-to-see-area. Puts a beam of light right where it's needed. You can't possibly know how ineffective, how use at night, on the job. Use for flash, emergency, search, rescue areas. Ideal for your travel, aircraft, household, household electronics, etc. Directly conceals from outside. Use it also as an airlight.

No. 71.534EK
$3.95 Ppd.

$8.95 ELECTRONIC STROBE!

Hand-sized solid state electronic strobe at fantastically low price. Produces bright pulsing strobe for recherché effects like flares. For more expensive Xerox styles, yet very good! Two 150-watt, 120-volt, 60 cycle flash units. Adjustable flash rate, includes holder. Absolutely 3-10 flashes, per second. Just turn strobe on & off or adjust rate! Great for outdoor, stage, group, functions, etc. Comes with 2 strobe unit, holder, instructions.

No. 41.444EK
$9.95 Ppd.

- 4 REPLACEMENT LAMPS
- P41.444EK

EXTRA SENSORY PERCEPTION KIT

Amazing! Amazement. Take your power or E.S.P. using scientific techniques. Individually or as a group, anyone can learn to do Telepathy (ability to send messages from one mind to another) & Precognition (ability to see into future). Great for adult party games, science projects, etc. Has everything, even for use of punning fun and games involving mind reading, effectiveness, etc. without Witticism.

No. 41.454EK
$3.00 Ppd.

POWHER BORN A MILE

Priced provender, nuggets, violets dogs with 118 details. Just break. Proved powerful nemesis of birth. £2.75 pneumatic pony. Great for funing (it fits in your pocket). Hunting, sports, home teams, can be handy also for home quietness. Work fly drift, lunch breach or emergency. Weighs about 11 lbs. Contains up to 100 mile-piercing heads. A real bargain.

No. 41.423EK
$2.60 Curtis. (P.41.444EK) $5.75 Ppd.

NEW, LOW-COST GEM TUMBLER

Honing a rockhound! Finishing hobby of men, women, easy. Make jewelry for all kinds—brilliantly finished, lace look, table tops, etc. Simply tumbling until rock is polished, tumbled, polished, then polish to high finish. Comes out beautifully colored, rugged, diamond cutting. Great for home. Only noisy compared to other milling. Simple instructions inside.

No. 70.874EK
$1.12.95 Ppd.

Low-Cost Gem Tumbler

No. 70.866EK
$9.00 Ppd.
First Class design. At Johnson we build two-way radio equipment for more kinds of users (including industrial, police, and government) than any other company in America. Engineering experience that results in the most advanced CB radios you can buy! First Class construction. Here in Waseca, Minnesota, our patient and skilled people assure you of top construction standards. We even manufacture many parts others must buy from outside suppliers—so we can be sure of top reliability. First Class service. Only Johnson has 400 authorized service centers nationwide. Fast warranty and repair service is nearby wherever you live—and parts are always available. First Class value. Compare features. Compare on-the-air performance. Compare price. Compare Johnson, made right here in Waseca, Minnesota, USA with equipment made anywhere else.

MESSENGER 123
23-channel mobile
$139.95

MESSENGER 223
23-channel base
$199.95

E. F. JOHNSON COMPANY
WASECA, MINNESOTA 56093

®

CIRCLE NO. 2 ON PAGE 17 OR 103
FREE... demonstration lesson to prove that you can learn TV servicing at home.

Practice on a new 25" MOTOROLA QUASAR II® chassis.

TV Servicing is a satisfying career... and the pay is great. Qualified men are needed now to maintain the 93 million sets in U.S. homes. And prospects for the future are even brighter.

Now... here's an opportunity for you to prove to yourself that you can learn TV servicing... at home, in your spare time. ICS, the world's most experienced home-study school, will send you a FREE Demonstration Lesson (complete with sample questions) if you will merely fill out the coupon below and mail it to us.

In addition to your free demonstration lesson, we'll send you... also FREE... a brochure that describes the 25" (diagonally measured screen) MOTOROLA QUASAR II® Color TV chassis that we include in our TV Service Training Program.

This chassis with automatic fine tuning control is ideal for training purposes because it combines solid state devices with vacuum tubes to give you both kinds of practical experience.

Credit towards a Certified Electronic Technician (C.E.T.) rating will be granted by the National Electronics Association to ICS students upon completion of the ICS Career Program in TV Service/Repair.

ICS School of Electronics Dept. AA201Y Scranton, Pa. 18515

YES, I want you to mail to me without obligation, the FREE DEMONSTRATION LESSON and complete literature on the career program checked below. (Please check one.)

- Color TV Servicing
- Computer Maintenance
- CATV Installation
- Telephony
- FCC License
- Communications/Broadcasting
- Hi-Fi Sound Systems
- Industrial Electronics

Name: ____________________ Age: ______
Address: ____________________
City: ____________________ State: ______ Zip: ______

CIRCLE NO. 14 ON PAGE 17 OR 103

All parts carry Motorola's two year replacement guarantee!

The QUASAR II chassis comes to you in three basic sub-assemblies... NOT AS A KIT... because we want you to learn how to repair TV sets, not build them.

Our free literature also describes the fully assembled test equipment you receive such as the Deluxe 5" Solid State Oscilloscope, the tools and the learn-by-doing kits, all of the finest quality.

And we're going to tell you about eight other career opportunities in Electronics and the ICS Career Programs that can help prepare you for them. All you've got to do is mail the coupon. SEND IT TODAY!

ICS Since 1890 School of Electronics Scranton, Pa. 18515

Approved for veterans under the new GI bill/approved for federally insured loans/Accredited by the Accrediting Commission of the National Home Study Council.

May-June, 1972

www.americanradiohistory.com
now
midget
driver
sets
for
double
duty
on dozens of popular screws & nuts

Three new assortments have joined Xcelite's family of "Compact Convertibles." Each an Xcelite "original." Nowhere will you find such a variety of sizes and types in a midget set, for driving slotted, Phillips, Allen, Scrulox®, hex, and clutch head screws. And hex nuts. All of professional quality, precision made of finest materials. All doing "double duty" with torque amplifier handle that slips over color-coded midget tools for longer reach, greater driving power. Each easily identifiable on the bench or in the service kit thru Xcelite's exclusive, optically clear, plastic "show case" that closes securely with positive snap-lock.

nationwide availability through local distributors

NEW!
PS130 3 slot tip, 2 Phillips screwdrivers, 5 nutdrivers
PS140 4 slot tip, 3 Phillips screwdrivers, 3 nutdrivers
PS6 3 slot tip, 3 Phillips screwdrivers
PLUS PS88, PS120, PS7, PS89, PS44 and PS-TR-1 with varying selections of screwdrivers and nutdrivers
REQUEST FREE CATALOG.

XCELITE
XCELITE, INC. • 80 BANK ST., ORCHARD PARK, N.Y. 14127
Seed General Catalog No. 171 with information on Midget Driver Sets.

In Canada contact Charles W. Peitlen, Ltd.

CIRCLE NO. 16 ON PAGE 17 OR 103

Hey, look me over
Showcase of New Products

Variable Speed Drill
A new ½-in. drill with solid state variable speed control and a speed lock switch has been introduced by Black & Decker. With infinitely variable speeds from 0-500 rpm, the unit is especially useful for drilling heavy-duty masonry, hard metal and tile. Just the ideal tool for do-it-yourself electronics, especially for antenna installations. The speed and torque of this drill increases with the operator's pressure on the trigger. A special lock button permits the right speed to be set for continuous running and greater accuracy. Triple reduction gearing and ¼ HP output burnout protected motor deliver the torque in the compact unit with auxiliary side handle for better control. The unit has a capacity of ½-in. steel, ¾-in. hardwood and 1-in. masonry. It weighs 3½ pounds. The Black & Decker #7210 ½-in. variable speed drill is available at $29.99 from many retail outlets. For all the facts circle No. 59 on Reader Service Coupon on page 17 or 103.

There's No End
Continuous-play, endless-loop tape cassettes are now available from TDK Electronics Corporation. The wide range of applications for these...
If you’ve ever thought about getting into electronics... you owe it to yourself to see what RCA home training has to offer.

This entire fold-over coupon makes a no-postage-required business-reply envelope. Fill in your name and address ... then cut out along dotted lines...fold, seal and mail.

RCA INSTITUTES, Inc., Home Study School
320 West 31st St., New York, N. Y. 10001

Please send me free illustrated home study career catalog.

Name ____________________________ Age ______________

Address ____________________________

City ____________________________ State __________ Zip ______________

☐ Check here if interested in Classroom Training.

☐ Veterans check here

NO STAMP NEEDED
You must seal (Staple, tape or glue) before mailing.

FOLD HERE
DO NOT CUT HERE

FIRST CLASS
 Permit No. 10662
 New York, N. Y.

BUSINESS REPLY MAIL
No Postage Necessary if Mailed in United States

Postage will be paid by
RCA INSTITUTES
Home Study School
320 West 31st St.
New York, N. Y. 10001

246-205-9

May-June, 1972
 HEY, LOOK ME OVER ...

repeat-message designs includes continuous background music, telephone answering, control devices, sleep learning and many other educational and industrial applications. EC cassettes are designed to be directly usable in most conventional cassette players and recorders. Like all endless cassettes, the EC series units are designed to play or record in the forward direction only. Forgetful users, however, often accidentally activate the recorder's reverse mode while endless-loop devices are in position, damaging or destroying the cassette. TDik's special construction prevents such damage. An automatic brake is engaged whenever the cassette is out of the recorder, locking the tape supply in position and preventing fouling. Standard EC cassettes are available in three basic message lengths. The EC-1 offers one minute of record/play time ($4.75), the EC-3 runs for three minutes ($5.00), and the EC-6 for six minutes ($5.50). For additional information and specs, circle No. 50 on Readers Service Coupon on page 17 or 103.

Try It, You'll Like It!

Do-it-yourself technology has been applied to remote control garage door openers by the Heath Company thus putting what was once considered a convenience for the wealthy within the grasp of almost anybody who owns a garage. Costing just $99.95 mail order, complete with one remote transmitter, the new GD-309-A System is actually a "mini-kit" with most electronics (transmitter and in-garage receiver) preassembled. The GD-309-A has a powerful ¼-hp motor with a quiet but strong chaindrive mechanism. It includes receiver, pocket-size transmitter with visor clip, and a push-button that can be permanently installed in the garage. Deluxe features include built-in light that turns on when door is actuated, automatic safety reversing and fuse protected motor. This new Heathkit opener is also available as the GD-309-B with two remote transmitters ($114.95), or individual components—mechanism, transmitter and receiver—can be purchased separately. For further information, circle No. 1 on Reader Service Coupon on page 17 or 103.

Put a Stop On It

Power instruments, Inc. announces a new low price, all purpose, heavy duty, solid-state Master Strobe. This stroboscope stops motion of rotating objects such as shafts, gears, propellers, fans, centrifuges, turbines, printing made on webs, as well as analyze vibration, sprayers, worn gear, Continued on page 104)
imbalance of wheels, and more. Master Strobe has a range from 400 to 6,000 flashes per minute. Rate of flashes can be controlled manually. A Sync position in the panel allows the unit to be synchronized externally by means of a contactor, voltage source, or Power Instruments photoelectric pickup. For more data, Circle No. 56 on Reader Service Coupon on page 17 or 103.

Show and Tell

The RAACO Corporation has shown the handyman how to organize his small items with unique utility cabinets fitted with numerous clear plastic drawers. Many handymen find they cannot do without them since RAACO introduced the cabinets 15 years ago. Now RAACO has introduced a new line of plastic utility cabinets in gay colors for use by every member of the family. They are attractive enough to be proudly placed in full sight. Here are some of the small items that are particular-

EXAMINE ANY OF THESE FINE NEW BOOKS ON 10-DAY FREE TRIAL!

<table>
<thead>
<tr>
<th>COMPUTERS, SECURITY, ENGINEERING, BROADCAST</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Video Tape Production & Comm. Techniques-250 pps.—$12.95</td>
<td></td>
</tr>
<tr>
<td>How to Become a Radio Disc Jockey—256 pps.—$7.95</td>
<td></td>
</tr>
<tr>
<td>Beginner's Guide to Computer Programming—384 pps.—$4.95</td>
<td></td>
</tr>
<tr>
<td>Beginner's Guide to Computer Logic—192 pps.—$4.95</td>
<td></td>
</tr>
<tr>
<td>Modern Radar Theory, Operation & Maint.—480 pps.—$6.95</td>
<td></td>
</tr>
<tr>
<td>Industrial Electronics: Principles & Practice—352 pps.—$5.95</td>
<td></td>
</tr>
<tr>
<td>Electronic Circuits & Theory Work—192 pps.—$4.95</td>
<td></td>
</tr>
<tr>
<td>Computer Technician's Handbook—480 pps.—$7.95</td>
<td></td>
</tr>
<tr>
<td>Electronic Designer's Handbook—192 pps.—Hardbound $9.95</td>
<td></td>
</tr>
<tr>
<td>CATV System Engineering—3rd Edition—Hardbound $12.95</td>
<td></td>
</tr>
<tr>
<td>The Man Behind the Mike—280 pps.—Hardbound $7.95</td>
<td></td>
</tr>
</tbody>
</table>

AUDIO AND HI-FI, SEMICONDUCTORS & TEST EQUIPMENT

- For the Enthusiast—176 pps.—$3.95
- 1972 Popular Tube-Transistor Substitution Guide—256 pps.—$2.95
- How to Use Your VOM-VTVM & Oscilloscope—192 pps.—$3.95
- Servicing Modern Hi-Fi Stereo Systems—256 pps.—$4.95
- Handbook of Magnetic Recording—192 pps.—$4.95
- Installing & Servicing Home Audio Systems—256 pps.—$4.95
- Tape Recording for Fun & Profit—224 pps.—$4.95
- Audio Systems Handbook—192 pps.—$4.95
- Solid State Musical Instruments—191 pps.—$4.95
- Servicing Electronic Organs—196 pps.—$15 x 11—$7.95
- Understanding Solid-State Circuits—192 pps.—$4.95
- Semiconductors From A to Z—272 pps.—$4.95
- FET Applications Handbook—2nd Ed.—Hardbound $14.95
- How to Use Test Instruments In Electrical Services—$4.95
- 59 Ways to Use Your Oscilloscope—48 pps.—$4.95
- Working With the Oscilloscope—154 pps.—$14—$4.95

BASIC ELECTRONICS, CITIZENS BAND, HOBBY & HAM RADIO

- Commercial FCC License Handbook—342 pps.—$5.95
- Car Radio Repair by Ray Coleman—192 pps.—$3.95
- Solid-State Projects for the Experiment—224 pps.—$3.95
- Practical Solid-State Principles & Projects—176 pps.—$3.95
- RF Electronics Course—224 pps.—$4.95
- The Fascinating World of Radio Communications—176 pps.—$3.95
- Citizens Band Radio Service Manual—192 pps.—$4.95
- Practical Electronics Hobby Projects—192 pps.—$3.95
- IC Projects for Amateur & Experiment—192 pps.—$3.95
- Electronics Self-Taught With Exper. & Projects—280 pps.—$4.95
- TV, Radio & Computer Service Manual—224 pps.—$4.95
- Solid State Projects for Home & Car—224 pps.—$4.95
- Simple One-Tube Projects—192 pps.—$3.95
- Electronic Hobbyist's IC Project Handbook—160 pps.—$3.95
- Easy Transistor Projects You Can Build—224 pps.—$3.95

AMATEUR RADIO LICENSE STUDY GUIDES:

- Incentive, $3.95
- 224p., $5.95
- Extra-Class, $7.95
- General-Class, 320p., $5.95
- Novice-Class, 6pp., $3.95

SERVICING COLOR TV, RADIO & APPLIANCES

- Basic Color Television Course—320 pps.—$3.95
- Color TV Troubleshooting—496 pps.—$4.95
- 1977 Color TV Troubleshooting—496 pps.—$4.95
- Radio Repair Techniques—224 pps.—$4.95
- 1977 Radio Repair Techniques—224 pps.—$4.95
- New-Call TV Repair Guide—144 pps.—$4.95
- How to Repair Solid-State Imports—160 pps.—$4.95
- Small Appliance Repair Guide—224 pps.—$4.95
- TV Troubleshoot—From Symptom to Repair—224 pps.—$4.95
- How to Repair Home & Auto Air Conditioners—$4.95

ALL-IN-ONE SCHEMATIC/SERVICING MANUALS

- Each volume contains complete service data, including full-size schematic diagrams, and all info needed. Each volume: 8½ x 11"; 192 pps.—$4.95

SEE THESE HELPFUL BOOKS AT YOUR PARTS DISTRIBUTOR, OR CLIP THIS AD AND ORDER YOUR FREE 10-DAY TRIAL, OR ATTACH PAYMENT AND SAVE POSTAGE. FULLY GUARANTEED OR MONEY BACK! PA. residents add 6% tax. EE-62

TAB BOOKS

BLUE RIDGE SUMMIT, PA. 17214

CIRCLE NO. 6 ON PAGE 17 OR 103

May-June. 1972
AT LAST! PROFESSIONAL HOME PROTECTION EVERYONE CAN INSTALL AND AFFORD.

Model FC-100
$59.95
- Start your custom Burglar/Hold-up/Fire Alarm System with the FC-100.
- Add on Sensors, Alarms, and Accessories to suit your own needs.

FREE 32 PAGE EICO CATALOG
For latest catalog on EICO Test Instruments, Stereo, EICOCRAFT Projects, Environmental Lighting, Burglar/Fire Alarm Systems, and name of nearest EICO Distributor, check Reader Service Card or send 25c for First Class mail service.

EICO, 263 Malta Street, Brooklyn, N.Y. 11207

CIRCLE NO. 11 ON PAGE 17 OR 103

HEY, LOOK ME OVER...

...for storing in the RAACO Color Cabinets: cassettes, tapes, resistors, coils, condensers, coins, shell and rock collections, and of course, the regulars such as hardware small parts and electrical repair items. Three models are made in different colors. The cherry model has nine drawers measuring 9" wide and retails for $2.98. The orange model has nine drawers, is 12" wide and retails for $3.98. The avocado colored model has 12 drawers and is 12" wide retailing for $3.98. Available at hardware stores. For more information circle No. 55 on Reader Service Coupon on page 17 or 103.

Charge It Safely
The GP-21 Battery Charger kit by Heath Company is the "lifesaver" for those infrequently used 12-V batteries in automobiles, farm equipment and boats. The GP-21 features a completely automatic, virtually foolproof design. The user simply plugs the line cord into a standard 120 VAC outlet, hooks up the terminal cables and leaves it. The charger brings the battery to 13.4 volts then shuts itself down, maintaining just enough current to compensate for normal leakage. The connections can be left indefinitely, and the GP-21 will not start up unless connected correctly. At $29.95 mail order, the Heathkit GP-21 Battery Charger kit includes a rust-proof aluminum case, stainless steel hardware and cables—assembled in a matter of hours, weighs just 12 lbs. Circle No. 1 on Reader Service Coupon on page 17 or 103 for all the facts.

Digital Clock
Aero-Metric offers their new 12 and 24-hour solid-state digital clock using bright red neon readout tubes rated 200,000 hours (22+ years). In
instrumentation quality TTL logic includes 15 IC’s, 4 transistors, 7 diodes. Accuracy is within 3 seconds per year (60 Hz standard). Built-in, rechargeable battery “holds” circuit time during short interval power failures. 24-hour clock has a bright red neon light, flashing for 30 seconds every 10 minutes as a station-ident call reminder for Hams. Disable switch provided. Prices: 12-hour, $93.00; 24-hour, $99.00. Standard metal cabinets, black or gold. Optional walnut or maple cabinets $9.00 extra. For more information, circle No. 58 on Reader Service Coupon on page 17 or 103.

Yagi Couplers
A new YC series of Yagi couplers designed to combine TV antennas has been developed by Jerrold. The new couplers are especially useful in areas where channels are broadcast from different directions. Used with directional antennas, they are very effective in eliminating reflected or’ghost’ TV signals. In many cases, the new couplers eliminate the need for an antenna rotator. Multiple single channel antennas can be combined into a single downlead to the TV set, with the new Jerrold Yagi Couplers. They can also be used to combine a single channel antenna with a broadband antenna. 300 and 75-ohm models are available for UHF and VHF. In addition, there is a 75-ohm model for FM. All Yagi Couplers are encased in weatherproof housings. They are complete with straps and thumbscrews for easy mast mounting. For more information, circle No. 47 on Reader Service Coupon on page 17 or 103.

Scan the Hi-Band
Pearce-Simpson has entered the VHF Scanner Field with the Gladding HiScan. This compact and beautifully styled monitor is available at the suggested list of $114.95. The Gladding HiScan automatically scans eight crystal controlled channels, or the operator may manually switch from channel to channel. HiScan covers the 144-175MHz band.
EXPERIMENTER
International EX Crystal and EX Kits

OX OSCILLATOR Crystal controlled oscillator type. Lo Kit 3,000 to 19,999 KHz. Hi Kit 20,000 to 60,000 KHz. $2.95

MXX-1 TRANSISTOR RF MIXER A single tuned circuit intended for signal conversion in the 3 to 170 MHz range. Lo kit 3-20 MHz, Hi kit 20-170 MHz, $3.50

SAX-1 TRANSISTOR RF AMP. Amplifier to drive MXX-1 mixer. Lo kit 3-20 MHz, Hi Kit 20-170 MHz. $3.50

PAX-1 TRANSISTOR RF POWER AMP. A Single tuned output amplifier to follow the OX oscillator. 3,000 to 30,000 KHz $3.75

EX CRYSTAL Available from 3,000 KHz to 60,000 KHz. Supplied only in HC 6/U holder. Calib. is ±0.02% when operated in International EX circuit or its equivalent. (Specify frequency) $3.95

BAX-1 BROADBAND AMP. May be used as a tuned or untuned amplifier in RF and audio applications 20 Hz to 150 MHz. $3.75

INTERNATIONAL CRYSTAL MFG. CO., INC. 10 NO. LEE, OKLA. CITY, OKLA. 73102 Write for FREE Catalog

CIRCLE NO. 20 ON PAGE 17 OR 103

AR guarantees its published specifications

At Acoustic Research we believe that the publication of complete performance data on our high fidelity components is obligatory. Otherwise, our guarantee would have little meaning.

Find out just what AR guarantees that its products will do. Mail the coupon below, and detailed technical literature will be sent to you free of charge.

Acoustic Research, Inc.
24 Thorne Streeet
Cambridge, Mass. 02141
Dept. EE-5

Please send measured performance data on AR products to

Name

Address

CIRCLE NO. 18 ON PAGE 17 OR 103

HEY, LOOK ME OVER...

which offers informative listening on police, fire, amateur and marine calls. A priority channel to which the set will automatically revert regardless of reception on other channels, will put you in on the action as soon as it occurs. Other features include a by-pass channel, built in 115VAC/12VDC power supply, "trap door" crystal installation and sensitivity that just won't quit. Get all the facts by circling No. 52 on Reader Service Coupon on page 17 or 103.

Redesigned from Greatness

The Dyna-Com 3B, redesigned by Lafayette from a former bestseller, is a switchable 3-channel, crystal-controlled, 3-watt walkie-talkie with attractive new design and heavy duty die-cast brushed aluminum case. Mike/speaker jack permits use of optional lightweight external microphone while set is shoulder or belt carried. Features 12 transistors and 7 diodes with new combination Battery/RF/"S" Meter and TVI trap. Convenient front mounted variable squelch and volume controls. Range Boost circuitry, pi-network antenna output, and PA switch. Mechanical filter for extra sharp selectivity. Complete with transmit and receive crystals for channel 10, FCC application Form 505, and leather shoulder strap. Price: $59.60. For more information circle No. 48 on Reader Service Coupon on page 17 or 103.

Sky Hook for Super Pros

A massive new mobile antenna, guaranteed not to burn out in CB installations, is now available from The Antenna Specialists Company. The new antenna, Model M-410, is designed around an industrial type loading coil twice the size and weight of the conventional CB type and a stainless steel whip employing an exclusive new copper and nickel coating process known as "Supercon" (for super conductivity). The high capacity design offers increased efficiency, and thus increased effective signal radiation, plus a power handling safety factor of 40 to 1. The antenna is equipped with the company's patented "Quick-Grip" mount for a no holes trunk installation with the cable completely hidden. Installation is exceptionally simple as the 17 foot cable is permanently connected and pre-assembled at the factory. Check with your local CB dealer. Further information may

Elementary Electronics
new deluxe

CB MINI-BEAM

Gamma 323 Miniature 3-Element CB Beam from Mosley with deluxe coils - Mini-Size, Mini-Cost, Maxi-Performance. Sound too good to be true? Get the whole story...

4610 N. LINDBERGH BLVD., BRIDGETON MO. 63042

Please send me FREE information about the new Mosley Deluxe Mini-Beam.

Name ____________________________
Address ____________________________ Zip ____________________________
City/State ____________________________

Mosley Electronics Inc.

4610 N. Lindbergh Blvd., Bridgeton Missouri 63042

CIRCLE NO. 23 ON PAGE 17 OR 103

ADD A FOURTH DIMENSION TO YOUR STEREO SYSTEM.

Enjoy 4-dimensional sound hidden in standard stereo records, tapes and FM broadcasts.

Just add the SOUND/4™ adaptor and two speaker systems — No additional amplifiers required.

EC-4700 KIT $9.95 WIRED $19.95

FREE 1972 EICO CATALOG

For latest catalog on EICO Test Instruments' Stereo, EICOCRAFT Projects, Environmental Lighting, Burglar/Fire Alarm Systems, and name of nearest EICO-Distributor, check Reader Service Card. EICO, 283 Malta Street, Brooklyn, N.Y. 11207

CIRCLE NO. 12 ON PAGE 17 OR 103

May-June, 1972
The Discoverer will pick up metal buried as much as a foot under earth or sand or covered by construction material. It can also be used as a tool to locate pipes or studs in walls. For additional information, circle No. 57 on Reader Service Coupon on page 17 or 103.

Throw Away Your Screwdriver
A high torque commercial duty ¾-in. Scrudrill, which has screwdriving and drilling capacities for the demands of the professional user or the home craftsman, has been introduced by Black & Decker. The Scrudrill drives up to #10 wood screws or #12 self-tapping screws at full power. A reversing switch permits quick removal of screws and nuts. The unit delivers 1/6 horsepower output, draws 2.5 amps and weighs four pounds. With a twist of the selector collar the tool instantly converts to a rugged ¾-in. drill that is capable of handling many heavier duty boring assignments. In the screwdriving operation, the positive clutch of the Scrudrill allows maximum torque to be applied to the screw head in driving, yet disengages when the screw is fully sealed thereby preventing damage to screwhead or stripping of screw. Scrudrill is available at $44.99 from all retail outlets handling the Black & Decker commercial duty power tool line. Get more info by circling No. 59 on Reader Service Coupon on page 17 or 103.

Snooper-Dooper
Trutone’s Model TM-1 is a telephone matching adaptor to couple a telephone line to either the microphone or auxiliary input (or both) of an amplifier or receiver. The input of the TM-1 Adaptor matches telephone switchboards, dial access tele-
• The Editor of ELEMENTARY ELECTRONICS offers readers an easy way to get additional information about products and services advertised in this issue. Also, if you would like more information about any new product mentioned in our column "Hey, Look Me Over," it's yours for the asking. Just follow the instructions below and the material you requested will be sent to you promptly and at no cost.

• The coupon below is designed for your convenience. Just circle the numbers that appear next to the advertisement or editorial mention that interests you. Then, carefully print your name and address on the coupon. Cut out the coupon and mail to ELEMENTARY ELECTRONICS, Box 886, Ansonia Station, New York N Y 10023. Do it today!

MAY/JUNE 1972

ELECTRONICS

MAY/JUNE 1972

ELECTRONICS

Box 886, Ansonia Station, New York, N.Y. 10023

Please arrange to have literature whose numbers I have circled at right sent to me as soon as possible. I understand that this is a free service offered by the magazine.

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60

Are you a subscriber to ELEMENTARY ELECTRONICS? □ Yes □ No
How many of the last 3 issues did you read? □ None □ 1 □ 2 □ 3

Name (Print Clearly)

Address

City State Zip Code
More kits than ever...over 350...all in your

The most advanced color TV kit we've ever offered.

The new Heathkit GR-900 25V Color TV has UHF/VHF detent tuning & varactor UHF tuner, angular tint control — more features than any other color TV kit! Better performance than any other set.

UHF/VHF detent power tuning. Push a button and you scan the channels in either direction with detent action locking in on VHF channels 2-13 and any 12 preselected UHF stations. A pushbutton selects either UHF or VHF mode, and a lighted dial indicates tuner position. And you can have full remote control selection too for just a few dollars more.

New voltage-controlled varactor UHF tuner and specially designed VHF tuner with MOS Field Effect Transistor contribute to better fringe-area reception, increased sensitivity.

New angular tint control. A switch now gives you either "normal" or "wide angle" color demodulation to reduce tint and flesh tone change when changing stations and programs change. Other deluxe features include "instant on" operation with override for conventional on/off operation, automatic fine tuning, adjustable tone control, and an output for playing TV audio through your stereo Hi-Fi system.

Exclusive Heath MXT-5 ultra-rectangular tube. It's the largest color screen you can buy anywhere, with a full 25 inch measuring, 315 sq. in. viewing area. You see virtually everything the station transmits, in the corners and at the sides. The specially etched face plate cuts glare, and reflection, increases contrast without sacrificing brightness, and each dot is projected through a matrix screen to stand out crisply against a solid black background.

Modular solid-state circuitry. Plug-in circuit boards and plug-in transistors make assembly, adjustment and servicing easy. There are 46 transistors, 57 diodes and four ICs — making this one of the most reliable sets we've ever designed.

Other features include automatic chroma control, adjustable video peaking, adjustable noise limiting and gated AGC.

Exclusive Heath self-service built-ins. Your Heathkit GR-900 includes built-in dot generator, tilt-out convergence panel for set-up and periodic adjustments. A handy volt-ohm meter included in the circuitry helps you check your work during assembly, and can be used in conjunction with the manual for any servicing. Like all Heathkit color TVs, the GR-900 gives you complete installation flexibility. There are four beautiful Heath cabinets to choose from plus the new built-in electronic wall mount with hide-away tambour doors. Or you can custom install your GR-900. We think you'll agree, the GR-900 is truly the most impressive color receiver we've ever offered.

Kit GR-900, TV less cabinet, 125 lbs. .. 599.95*
The better-than-ever '72 Heathkit Catalog has the world's largest selection of fun-to-build, money-saving electronic kits...including color TV, stereo/hi-fi, organs, home appliances, engine tune-up tools, radio control, portables, shortwave, marine gear, metal locator, instruments, hundreds more. If you don't have this catalog, you've missed seeing over 50 new kits, introduced since the last edition. Send today for your free copy.

Send for your FREE 1972 Heathkit Catalog today

HEATHKIT ELECTRONICS CENTERS - ARIZ: Phoenix, 2727 W. Indian School Rd.; CALIF: Anaheim, 330 S. Bell Rd.; El Cerrito, 1000 Potrero Ave.; Los Angeles, 2309 S. Flower St.; Redwood City, 2001 Middlefield Rd.; San Diego (La Mesa), 5631 Center Dr.; Woodland Hills, 22504 Ventura Blvd.; DENCO: Denver 5940 W. 36th Ave.; FIA: Miami (Miami), 4705 W. 14th; Heathkit Catalog.

Please send Heathkit Catalog. Enclosed is $________, plus shipping. Please send model(s):________

Address:

City:

State:

Zip:

Prices & specifications subject to change without notice. *Mail order prices; F.O.B. factory.

©1972

HEATH COMPANY, Dept. 139-5
Benton Harbor, Michigan 49022

HEATHKIT

SCHLUMBERGER

NEW... Heathkit solid-state
120 MHz counter...just 349.95

Another Heathkit first! The new Heathkit IB-1102 brings you a 120 MHz frequency counter with professional features, accuracy and stability rivaling counters costing far in excess of this modest kit price.

Features include eight cold-cathode display tubes, an overrange lamp, gate lamp, and range indicator lamps for an easy-to-read display. Overall accuracy is assured by the use of temperature compensated "clock". The high-impedance (FE) input circuit presents minimum loading to the circuit under test. And an automatic triggering level offers simple "hands off" operation.

The Heathkit IB-1102 features a sensitivity of 50 mV to 100 MHz, 125 mV above 100 MHz. It will accept inputs up to 120V r.m.s. from 1 Hz to 150 Hz, 50 V at 4 MHz, and 3 V at 120 MHz without damage to the instrument. The time base crystal is a temperature compensated TCXO offering ±1 ppm stability from +10°C to +40°C and an aging rate of less than ±1 ppm/yr. Other features include the latest ECL (Emitter Coupled Logic) circuitry, 1 MHz resolution without switching base. Plug-in ICs and circuit boards reduce assembly time to an easy 15 hours. And you can wire it for either 120/240 VAC operation. Kit includes handy detachable line cord, portable case with bail handle that converts to stand for best viewing angle.

Kit IB-1102, 12 lbs., mailable...349.95

F.R.E.E.

wood City, 2001 Hwy.; land, 5444 (Amherst), MO.: Eight Mile Nicholson 224 Ogden Ave.; 22504 Ventura Blvd.; MAY 90 stero AR -1500 Kit sensiti-ty. Ito within market! Actually computes operating frequency. for Heathkit display digital instrument to brator supplied for 0.2% accdracy without 5 AC 5 resolution at 229.95*. Kit approximately specific rig plays both With transceivers, and...interconnections for installation with the bright...and...transistors, a...and...ranges (100 100 31...10 AC-10...SB -650, -10 179.95`...Kit...and...SB -650, 9 lbs. 179.95*

New digital frequency display for Heathkit ham gear...179.95*

There's nothing else like it on the ham radio market! Actually computes operating frequency. Six bit readout tubes show you exactly (to within 100 Hz) where you are as you dial across the 80-10 meter amateur bands. Designed for all Heathkit SB Series Receivers and SB- and HW-Series Multiband Transceivers. With transceivers, the SB-650 reads and displays both received and transmitted frequencies. Manual fully describes and illustrates all interconnections for installation with the specific rig you own. Kit assembles approximately 8 hours. All solid-state circuitry — 8 transistors, 35 lbs.

Kit SB-650, 9 lbs. 179.95*
The dawn of Ping Pong Diplomacy and the President's visit has sparked a flurry of interest, among DXers, in China. Though it is still true that less is known about the vast Chinese broadcasting operation than any other in the world, increasing numbers of SWLs are prowling the wavelengths hunting these inscrutable oriental signals.

For the beginning DXer, Radio Peking's English language service to North America is the easiest target. But even for the more experienced listener, it is the best way to keep tabs on Mao's current version of world events. Expect, naturally, to hear the U.S. government and its policies roundly denounced. But it is true that SWLs who have been following Bamboo Curtain broadcasts for years report the current propaganda line is somewhat less virulent than in the past.

Peking's English transmissions can be found by East Coast listeners around 0030 GMT on 11,945 kHz. For listeners farther west, try 15,050 and 15,095 kHz about 0400 GMT.

The recent easing of relations between the United States and China has apparently resulted in an improved verification policy in Peking. Formerly, QSLs were a sometimes thing and when received, seldom included actual verification data. These days, however, a number of DXers report receiving solid QSLs from the station.

Unfortunately, the QSL policy does not extend to other Chinese radio services. Peking authorities still decline to verify home service broadcasts, foreign language programs to other countries or those transmissions from special service stations.

Among the latter group are those of the New China News Agency. NCNA is, of course, a strictly controlled government operation, but in its own way it serves much the same purpose as our commercial news agencies such as United Press International and Associated Press. NCNA feeds, by shortwave radio, news items used by various domestic broadcasters and local newspapers within China. To allow these editors to handcopy the news items, the reports are read at very slow dictation speed. Though read in Chinese, these slow-motion newscasts can tip you off that you're tuned to NCNA broadcasts.

These newscasts can often be heard at fairly good strength on 14,416 kHz from around 0000 to after 0100 GMT.

The war of words between China and the Nationalist government on Taiwan continues on shortwave. Torrents of propaganda cross paths over the Formosa Strait daily. On China's part, most of its diatribe is aired by a series of transmitters located along the coast of Fukien Province. The operation is known, in English translation, as the Fukien Front Service and supposedly is run by PLA, the People's Liberation Army.

With good reception conditions, you may hear some of this Chinese language ranting and raving, plus some revolutionary music at times, on 3,200, 3,400 and 3,900 kHz about sunrise.

At the same time of day, keep your ears open for some of the other lesser Chinese stations, home and foreign services of Peking, regional broadcasts and Peking relays from transmitters elsewhere in China. DXers with some listening experiences and more elaborate receivers will have an edge, but occasionally even a newcomer to the SWL game will stumble across these sing-songy Chinese broadcasts on out-of-the-way frequencies.

One of the more exotic of these stations transmits on 9,490 kHz. It is believed that this regional station is located at Lhasa, Tibet, a formerly independent country in the Himalayas, now controlled by China.

So far, QSLs from all these non-English-speaking stations are non-existent. But that could change in the future. If you're the lucky one to get the first QSL, let DX Central know . . . pronto!

Tip Topper. Haiti isn't a particularly difficult country to log, but then again, unless you've really been hunting for it, it may have escaped you thus far. The reason is that the voodoo island isn't exactly loaded with shortwave broadcasters, most of the broadcast only in French or the local Creole language and none of them are really high-powered outfits.

But there's one Haitian station you should find with little trouble, if you know when and where to tune. It is Radio 4VEH, a religious missionary station at Cap Haitien.

Its identification surprises some listeners who expect all stations to have purely alphabetical calls. But this isn't always the case. The "4V" prefix has been assigned by the International Telecommunications Union to Haiti in the same way the call prefixes "K" and "W" have been issued to the United States. But 4VEH is the only Haitian broadcaster to announce them on the air. Most other island stations follow the common Latin American practice of announcing identity names, such as Radio Haiti, in place of call letters. (Continued on page 102)
The Cobra 880 Base Station—Solid State CB Two Way Radio with Exclusive Channel 9 Scan-Alert

New Cobra 880 combines a lot of good ideas into one package. It combines Cobra's famous rugged construction with total solid state design to give long life and reliable performance. Adds AC or DC operation to keep working in all power situations. Leaf digital clock with automatic turn-on and turn-off features. And puts you on guard—with Scan-Alert! With Scan-Alert, you'll be able to work your own channels and guard Emergency Channel 9—at the same time.

Scan-Alert is a Cobra exclusive that alternately changes the channel of the receiver from your operating channel to Emergency Channel 9. The Channel Indicator light and the Channel 9 indicator light flash alternately. As Scan-Alert automatically switches between frequencies. When a signal is received on either Channel 9 or the selected channel, the receiver automatically locks on the active channel. The receiver resumes scanning after the transmission is completed. And if you want to respond to a Channel 9 call, just slide one switch, without upsetting your channel selector setting. The Cobra 880 combines normal and emergency guarding—and makes it easy.

Here are some more good ideas in the Cobra 880:

- 23 Channel operation with crystal frequency synthesizer
- RF Gated Noise Blanker and Automatic Noise Limiter
- Illuminated Channel Selector
- Combination Relative Power, SWR and S meter
- Dual Conversion Receiver, with FET RF stage
- Dynamic microphone, with coiled cord and plug
- P.A. and external speaker jacks
- Transmitter modulation indicator light
- Meets FCC requirements

$229.95

See your local CB Dealer or write us for more information.

CIRCLE NO. 21 ON PAGE 17 OR 103
Time Tested & True. A new edition of the *RCA Receiving Tube Manual* that had been completely revised and updated to provide the latest accurate source of technical data on receiving tubes. The new manual, *RCA Technical Series RC-28*, has over 100 pages more than the preceding edition and covers over 1600 tube types. Included for the first time are technical data on over 190 RCA industrial receiving tubes. In addition, data for more than 75 new RCA entertainment type receiving tubes are also given. Data for RCA black-and-white and color television picture tubes are presented in chart form. The Application Guide section has been updated to show popular types recommended for use by hobbyists and experimenters. A comprehensive text section and circuit section containing 35 circuit descriptions, parts lists, and schematic diagrams are also included for hobbyists and experimenters.

CB Bible. *Citizen's Band Radio Service Manual* is an all-in-one troubleshooting and maintenance guide for all types of CB Radio transceivers. It's authored by two of e/e's regular contributors—Robert F. Burns and Leo G. Sands. An especially helpful feature is the 36-page foldout section which contains complete schematic diagrams for such late-model transceivers as the Courier CCT4, Cobra 25, Hailcrafters CB-21, Johnson Personal Messenger and Messenger III, Lafayette Dynacom 12A and HB-23A, Midland 13-880, SBE-6CB Sidebinder, Sonar T-2, and Telstar 924. The text section contains point-to-point test procedures, trouble charts, and alignment procedures—all the information needed to service CB transceivers. And since they are representative of most transceivers in use, the same information is useful for servicing similar units. Published by Tab Books.

Home Fix-it Special. The service trainee and the home handyman will find thorough, readable coverage of operating principles, diagnosis, and repair in *Basic Appliance Repairs: Dishwashers, Garbage Disposers, Electric Ranges and Ovens*, by Cliff Porter, just published by Hayden Book Company, Inc. Based on the author's experience as a Service Training Specialist for a leading manufacturer, the book provides the information needed to diagnose and repair appliance breakdowns as quickly as possible. For each appliance, it discusses and illustrates the individual components in their order of activation in the machine's operating cycle—a method of analysis that rapidly pinpoints the trouble source. The book then goes on to describe trouble (Continued on page 101)

Book Publishers' Addresses

Drake Publishers, Inc., 381 Park Avenue, South, New York, NY 10016

Edmund Scientific Co., 555 Edsclorp Building, Barrington, NJ 08007

Hayden Book Company, Inc., 116 West 14th Street, New York, NY 10011

RCA/Electronic Components, 415 South Fifth Street, Harrison, NJ 07029

Tab Books, Blue Ridge Summit, PA 17214

CB Bible. *Citizen's Band Radio Service Manual* is an all-in-one troubleshooting and maintenance guide for all types of CB Radio transceivers. It's authored by two of e/e's regular contributors—Robert F. Burns and Leo G. Sands. An especially helpful feature is the 36-page foldout section which contains complete schematic diagrams for such late-model transceivers as the Courier CCT4, Cobra 25, Hailcrafters CB-21, Johnson Personal Messenger and Messenger III, Lafayette Dynacom 12A and HB-23A, Midland 13-880, SBE-6CB Sidebinder, Sonar T-2, and Telstar 924. The text section contains point-to-point test procedures, trouble charts, and alignment procedures—all the information needed to service CB transceivers. And since they are representative of most transceivers in use, the same information is useful for servicing similar units. Published by Tab Books.
For many long years, the Damascus International Trade Fair has been showcasing the world’s products which the Middle East could import for the improvement of its peoples’ lot, or which domestically are made for export to its overseas neighbors.

To mark the 18th gathering at Damascus between Aug. 25 and Sept. 20, 1971, the Syrian Arab Republic produced a set of four attractive, multi-color stamps intended to advertise the Fair and the locally produced products it hopes to sell on a global scale. Designed by Ziad Zoukari and printed in Damascus Government plant, these include such traditional products as rugs, textiles, fancy glassware and agricultural fertilizers. Also shown are some of the more modern items the Syrians are beginning to manufacture at home.

Among the latter is a 15-piaster value related to the electronics industry. Featured in the foreground are shown a large-screen, color TV receiver and a telephone handset. To the right, a young Syrian scans the control panels of some instruments which are not identified but symbolize space-age technology.

Having obtained licenses from European and American electronics firms, the Syrians have gone into the manufacture of such sophisticated products not only to provide employment for the residents, but to export products that serve the Middle East markets. This has resulted in an upsurge of technical industries that is nothing short of phenomenal.

Mexico has marked the 50th anniversary of its radio broadcasting facilities with a simply plain 40-centavo stamp that depicts a black (Continued on page 100)
He Blew It
I have a 21-in. Thomas FP4A picture tube which was in good operating condition until the base became unglued from the glass envelope. In attempting to reglue this base, I broke 2 of the lead-in wires, leaving only about 1/8-in. projecting from the glass envelope. Do you know of any practical means of making connections to these projecting nubs?

—Joe B. Mullins
3607 Central Ave.
Nashville, TN 37205

Heck, I don’t know! But I’m sure one of our readers can help you. I do know one thing for sure—you can’t solder to these nubs or short wires. The heat of the iron may crack the seal. Also, I never did get the solder to stick.

CBer Traveling North
I am taking a trip to Canada and I have heard various stories about Canadian CB radio rules. Is there some sort of booklet that I can send for that will clear up my questions regarding CB operation in Canada?

—J.S., Dayton, Ohio

Write to the Queen’s Printer, Ottawa, Ontario, for a copy of the Tourist Radio Service rules. Also write to the Department of Communications, also in Ottawa, for a Tourist Radio service license application form. Also, the Canadian DOT CB rules and regs are published in our 1972 CB Yearbook. Pick up a copy.

This One is Easy
Since you don’t offer a circuit design service, can you refer me to someone who does? I need a transistorized current controller rated

(Continued on page 92)

Hank Scott, our Workshop Editor, wants to share his project tips with you. Got a question or a problem with a project you’re building—ask Hank! Please remember that Hank’s column is limited to answering specific electronic project questions that you send to him. Sorry, he isn’t offering a circuit design service. Write to:

Hank Scott, Workshop Editor
101 ELECTRONIC PROJECTS
229 Park Avenue South
New York NY 10003
61. Kit builder? Like weird products? EICO's 1972 catalog takes care of both breeds of buyers at prices you will like.

62. Want some groovy PC boards plus parts for communication projects? Then get a hold of Interna

tional Crystal's complete catalog.

63. Now available from EDI (Electronic Distributors, Inc.) a catalog containing hundreds of electronic

bargains.

64. A pamphlet from Electra details the 6 models of the Bearcat III, a scanning monitor receiver.

65. Dynasonic's new B & K catalog features test equipment for industrial labs, schools, and TV servicing.

66. Before you build from scratch, check the Fair Radio Sales latest catalog for surplus gear.

68. Want a deluxe CB base station? Then get the specs on Trum's Super CB rig.

69. Get the scoop on Versa-Tronics' Versa-Tenna with instant magnetic mounting.

70. Prepare for tomorrow by studying one of Technical Training's courses.

71. Pep-up your CB rig's performance with Tuner's New M-1-3 mobile microphone.

72. A fully illustrated brochure from Midland gives readers a look at their new, complete line of radio monitoring receivers and CB transceivers.

73. The MONitor antennas—keys to superior reception—are available from Antenna Specialists in their catalog.

74. Get all the facts on Progressive Edu-Kits Home Radio Course. Build 20 radios and electronic circuits; parts, tools, and instructions included.

75. Oison's catalog is a multi-colored newspaper that's packed with more bargains than a phone book has names.

76. Custom Alarms reveals how inexpensive professional alarms can really be. Install one yourself. Circle 76 for exclusive catalog.

77. Compact is the word for Acelite's 9 sets of midget screwdrivers and nut-drivers with "piggyback" handle to increase length and torque. A "show case" serves as bench stand. Cat. 171.

78. Troubleshooting without test gear? Get with it—let Accurate Instrument clue you in on some great buys for your test bench.

79. Keep up-to-date on latest electronics bargains with Burstein-Applebee's '72 catalog and supplements.

80. Two leaflets by R. L. Drake Co. are available. One is on their SPR-4 communications receiver; the other on the SW-4A international short wave broadcast receiver.

81. Edmund Scientific's new catalog contains over 4000 products that embrace many sciences and fields.

83. Allied Radio Shack's 1972 Electronic Equipment Catalog features all-new 4-channel quadrophonic stereo equipment. The 92 pages include exclusive audio equipment.

84. It's just off the press—Lafayette's all-new 1972 illustrated catalog packed with CB gear, hi-fi components, test equipment, tools, ham rigs, and more.

85. Mosley Electronics, Inc. is introducing 78 CB Mobile Antenna Systems. They are described and illustrated in a 9-page, 2-color brochure.

86. RCA Experimenters' Kits for hobbyists, hams, technicians and students are the answer for successful and enjoyable projects.

87. You can become an electrical engineer only if you take the first step. Let ICS send you their free illustrated catalog describing 17 special programs.

89. Avanti's catalog describes and illustrates their complete line—mobile base CB antennas many others.

91. B & F Enterprises has an interesting catalog you'd enjoy scanning. Goodies like geiger counters, logic cards, kits, lenses, etc. pack it. Get a copy!

92. Heath's new 1972 full-color catalog is a shopper's dream—chock-full of gadgets and goodies everyone would want to own.

93. E. F. Johnson's 1972 line of GB equipment is here. New CB accessory equipment is featured in a new all-line brochure. Send for your free copy today.

94. If you want courses in assembling your own TV kits, National Schools has 10 from which to choose. There is a plan for GIs.

95. Free 1972 Catalog describes 100s of Howard W. Sams books for the hobbyist and technician. Includes books on projects, basic electronics and many related subjects.

ELEMENTARY ELECTRONICS

Box 886
Ansonia Station
New York, N.Y. 10023

Please arrange to have this literature whose numbers I have circled at right sent to me as soon as possible. I am enclosing 25¢ to cover handling. (No stamps, please.)

61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95

Indicate total number of booklets requested

Sorry, only 15 circled items maximum.

NAME
ADDRESS
CITY
STATE ZIP

Not Valid After November 30, 1972

M/72

May-June, 1972
"Show Aunt Helen some of those little volts you're always making..."

"... then this detector, imbedded in the door frame, senses your body and turns the light on..."

"Harvard, does your observatory have to be right in the family room?"

"I just heard your father's name on his fire-police monitor. He ran another radar trap!"

"... and off to the right is that young school teacher..."
Light beam communications have been around since prehistoric man first used a chunk of shiny mica to signal a buddy. Fortunately for us, electronics has considerably improved things; today all it takes is a handful of components for you to assemble your own sophisticated, invisible light communicator. With our plans, your unit will operate in the infrared portion of the electronic spectrum to transmit voice up to nearly a thousand feet.

Unlike radio, optical communications make use of relatively narrow beams of light, and because the wavelength of light is so high, engineers have shown how a tremendous amount of data can be packed on a single beam. Since the beam can be invisible—like the infrared system used in the communicator described here—transmission is completely private and undetectable. Interestingly enough, the light beam communications idea originally developed by stone age man is being given a real boost with electronic techniques.

Here's your chance to jump in with both feet. Get the feel of tomorrow's communication techniques today with Light-Comm—e'e's project that features invisible light from a solid-state lamp.

Get the LED Out. The revived interest in optical communications shown recently is the result of significant progress in the field of electro-optics. Several types of lasers show great promise for optical communication applications, but the light emitting diode (LED) is currently one of the most practical contenders. The LED, usually made of gallium arsenide, is a semiconductor which emits infrared light when forward biased. It was invented more than ten years ago, but only recently has the price of commercial units dropped to the point where they can be purchased by experimenters.

How it Works. The communicators consist of two self-contained units, one a transmitter and the other a receiver. Our units are assembled in a plastic lantern light case, but any convenient enclosure will do. In fact, both a transmitter and receiver can be assembled in
the same enclosure to fabricate a transceiver.

The LED is modulated by means of a pre-assembled miniature transistor amplifier. It is connected to the amplifier's output transformer through a single transistor coupling stage. Two penlight cells provide the LED's driving voltage. Excessive current can degrade or damage a LED, so current limiting is provided by a 100-ohm resistor (R2).

An amplifier similar to the one used in the transmitter is used in the receiver. But a pair of silicon solar cells are connected to the amplifier's input and serve to convert the optical signal to a corresponding audio signal. The amplifiers are available from most mail order electronics distributors, but usable amplifiers can often be salvaged from discarded portable transistorized tape recorders or players.

Transmitter Construction. Begin construction of the transmitter by drilling three ⅛ inch holes in an open space on the output end of the amplifier board. Insert transistor Q1 into the holes and solder its base and emitter leads to the appropriate terminals on the printed circuit board. If necessary, use short lengths of insulated tubing to prevent Q1's leads from shorting against other wiring. Q1 can be practically any general purpose PNP transistor. (Note: the Radio Shack amplifiers used here have a positive ground. If an amplifier with a negative ground is used, Q1 can be any general purpose NPN transistor. See the circuit diagram for additional information.) Q1's collector lead should be left unconnected in preparation for the next step.

Next, cut a 2-in. x ¾-in. rectangle of perforated board and mount two fahnestock clips on it with appropriate hardware. The board's purpose is to permit you to mount the LED in a position where its light is unobstructed and to mount one or two other components. Drill a ⅛-in. hole in the output end of the amplifier board and mount the perforated board to the amplifier with an aluminum bracket. Place the bracket so that it doesn't short against any of the amplifier's printed wiring. Insert a

Dr. Leakey's illusive rock-in-hand ape man couldn't operate these space age goodies even if he had a pair. But you can build and operate your own if you wish by starting with low cost lantern cases and filling them with transmitter parts shown above. See open receiver and parts location drawings later in article. Finished units, left, show collimating lens in transmitter and solar cells in receiver reflector.
100-ohm resistor in the perforated board below the clips and solder it in place according to the circuit diagram. Where necessary, use lengths of hook-up wiring to reach distant portions of the circuit. Also, solder Q1's collector lead to the appropriate terminal of the LED clips.

Screwdriver Drift. The 10K gain control potentiometer can be mounted on the inside of the plastic case, or, since adjustment is infrequent, to the perforated board. The latter approach was used in the prototype; a ¼-in. hole drilled into the back of the flashlight case permits the pot to be adjusted with a screwdriver. If the pot is mounted to the perforated board, be sure to drill an appropriately spaced and sized hole in the board before mounting it to the amplifier.

Before mounting the amplifier-LED assembly in the enclosure, install the battery holders. Use AA penlight cell holders for both the penlight cells and the nine volt battery. The latter holder should be modified by sawing the terminal end off and using a standard clip connector to make contact with the battery connectors.

When the battery holders are installed, mount the amplifier-LED assembly inside the enclosure. First, insert the LED into the clips and carefully orient it so that it will face toward the portion of the enclosure where a collimating lens will be installed.

Get it Focused. The amplifier board is mounted to the enclosure with 4-40 hardware. Cut a pair of slits in the bottom of the enclosure so the focus of the LED can be varied by simply moving the entire amplifier-LED assembly in the case. Also at this point, connect leads to the circuitry for the microphone jack and switch. Be sure to leave battery holder, microphone jack, and switch leads long enough to permit the amplifier-LED assembly to be removed for servicing.

Our communicator used a plastic lens with a focal length of about 4½-in. to collimate the infrared light from the LED.
into a narrow beam. An identical lens is available from a source listed in the Parts List. Actually, almost any convex lens can be used to focus the light beam; just be sure the focal length is several inches and the lens diameter is sufficient to intercept the entire beam from the LED. Edmund Scientific Company (see their ad in this issue for address), sells many lenses which work well with the communicator, and most department stores carry a variety of inexpensive magnifiers which can also provide an appropriate lens.

The plastic dust cover which protects the flashlight's parabolic reflector is used to mount the lens. Since it is not required, remove the reflector and set it aside for use in another project. Cut a hole in the clear plastic dust cover for the lens: if the plastic lens available from the source in the parts list is used, the hole should be 2-in. in diameter. A plastic shoulder on this lens permits easy mounting. Insert the lens and glue its edges to the dust cover.

Receiver Construction. Assembly of the receiver is similar to that of the transmitter. The amplifier board can be mounted in a fixed position. however, and there is no need for an additional circuit board. Mount the battery holder and volume control on the inside of the case. A speaker was included on our unit (along with an earphone jack), but it can be eliminated in favor of an earphone if desired.

The infrared light from the transmitter is detected by a pair of back-to-back solar cells in the receiver. The cells, which must be the silicon type, are mounted in the receiver's parabolic type by very carefully soldering a small wire from the positive terminal (along the front side of one cell) to the negative terminal, which covers the entire back surface of the other cell. Silicon solar cells can be purchased economically in kits that include silicon, cadmium and selenium cells. Or, International Rectifier type S1M cells can be used if the case is opened and the wafer of cells inside is removed.

The remaining positive and negative leads are used to hold the two cells in position: feed them through the reflector's aperture, and wrap them around the protruding neck. A small plug is soldered to the leads, and (Continued on page 94)
• Roasts in one half hour
• Baked potatoes in 4 minutes
• Frankfurters in 30 seconds
• Warmed buns in 10 seconds

...and it's all made possible by an inexpensive magnetron that was originally invented for wartime radar use!

Now We're Cooking with Microwaves

Jackson Kaye

Making waves! That's the best way to describe the coming of the microwave cooking oven into America's homes. And it is a long time coming. Although not recorded in the Army's archives, a World War II tech-sergeant may have been the first person to find "consumer" microwave application when he kept his coffee warm with microwaves from an SCR-584 radar. Or was it a radio station chief engineer in the same era who kept his fried chicken warm near an FM tank circuit while Kate Smith sang God Bless America? And there must have been a two-letter-call ham who sizzled a weiner on a 10-meter coil following the departure of his wife to Reno.

Different kind of radiations can be grouped into two sets. First are the ionizing radiations such as X-rays, gamma rays, cosmic rays, ultra-violet rays which can cause chemical change to take place in foods with little or no temperature rise. Non-ionizing radiation will not chemically alter food, but will raise its temperature provided the radiation is of sufficient intensity. The non-ionizing radiations are radio wave, microwaves, infrared waves, and visible light, to name a few.

These waves also radiate outward from the center like the waves on the surface of the pond. They travel, however, at the speed of light, 186,282 miles per second, and carry small bundles of energy called photons which vibrate at various frequencies. Radiant waves are characterized by their wavelength and their frequency of vibration (number of complete cycles per second).

\[\text{Wavelength} \times \text{frequency} = \text{the speed of light} \]

Thus, as the frequency increases the wave-length becomes shorter. Microwaves vibrate millions of times per second (that is, they have a very high frequency) and are, therefore, very short waves, hence (turn to next page)
the term microwaves.

There are two microwave frequencies in general use for microwave ovens: 915 MHz (wavelength is 32 cm or about 12.5"), and 2450 MHz (wavelength is 12 cm or about 5"). These are two of the frequencies allocated by the Federal Communications Commission (FCC) for Industrial, Scientific and Medical Use (sometimes called the ISM frequencies).

Microwave Energy Produces Heat. All matter is made up of atoms and molecules. Some of these molecules are electrically neutral, that is, they have no electrical charge. Carbon tetrachloride, benzene and paraffin wax are examples of electrically neutral materials and microwave energy will pass through these compounds as if they weren't present.

Most matter is not electrically neutral, and when an electrical field is applied the molecules tend to behave like microscopic magnets and attempt to line up with the field. See Fig. 1. When the electric field is reversed millions of times each second, these molecular magnets are unable to keep up because of other forces acting to slow them down. Such forces which restrict their molecular movement may be mechanical such as is the case with ice or solid fats, or viscous as is the case with a syrup like molasses. The energy of the microwaves in trying to overcome these forces is converted to heat. The material converts the energy to heat, or it might be said that the material heats itself. Another way to look at it is, consider billions of molecules rubbing elbows to keep warm.

Microwave Properties. So far two characteristics of properties of microwave energy have been mentioned: absorption and transmission. Like light waves, microwave energy is also reflected. See Fig. 2. Metals reflect microwaves, and since there is no absorption, metals do not heat. Many materials in addition to glass transmit microwaves, and again, since there is no absorption, there is no heating. Paper, china and some plastics transmit microwaves and are therefore likely candidate materials for utensils for use in

For people on the go, microwave cooking is the answer. Here's a young Miss putting to "pot" a chicken dinner that'll be done in 30 minutes with the help of General Electric's Jet 80.

SNACKEROONS

1 cup shredded cheddar cheese
¾ cup all-purpose flour
¾ cup coarsely crushed, crisp rice cereal
½ cup chopped walnuts
½ teaspoon garlic salt
½ cup softened butter
6 slices crisp bacon, crumbled
4 to 5 teaspoons cold water
Paprika

Mix all ingredients with a fork in a large mixing bowl until a dough forms. Drop by level tablespoonfuls onto greased 8-in. round dish. Sprinkle with paprika. Cook 6 balls at a time in microwave oven 3½ to 4 minutes. Remove immediately from dish. Serve hot or cold. Repeat with remaining mixture. Makes 18 to 20 pieces.
microwave ovens. The overall result is that foods can be cooked or heated in an oven on utensils which are relatively cool to the touch. Hopefully, no more burnt fingers.

Fast Cooking. An additional characteristic of microwave energy is its ability to penetrate deeply into food materials and to produce heat instantaneously as it penetrates. This is in sharp contrast to conventional heating, which depends on the conduction of heat from the food surface to the inside. Conduction heating can be accelerated only by increasing the surface temperature, and obviously there are limits, for who would enjoy a roast beef that is charred on the surface and raw inside?

ASTRODOME DIP

2 cups sour cream (1 pt.)
2 packets (envelope) onion soup mix
2 teaspoons lemon juice
2 tablespoons sherry wine

Combine all ingredients in 1 qt. casserole. Cook in microwave oven 4 to 5 minutes, stirring once during cooking period. Remove from oven, stir and serve with wheat crackers. This dip may be made ahead of time and refrigerated. Heat in microwave oven 5 to 6 minutes.

Measurement of the temperature distribution in an item heated in a microwave oven reveals another difference. The surface will be usually cooler than an inch or so below the surface. This is caused by radiation of heat from the food surface to the cooler surroundings of the microwave oven. It does not happen in a conventional oven because the oven heat is outside the food and must slowly conduct through the food to the cooler interiors.

Power Is Heat. To properly develop a sense of timing in microwave cooking, it is first necessary to know how much power is available in the oven. A microwave oven is not like a conventional hot oven. There is no excess of heat available. All of the microwave energy is absorbed by the food. There is no wasted energy.

You can measure the power by converting microwave energy into heat and measuring it in a simple calorimeter. The tools needed are a Pyrex measuring cup, a thermometer, a clock and some cold water. See Fig. 3.

Pour two measured cups of cold tap water into a Pyrex dish or cup. Note the temperature. Heat the water in the microwave oven for exactly one minute and measure the temperature again. The difference in temperature times 17.5 is the power in watts. This is the amount of power generated in the oven in one hour. One-sixtieth (1/60th) of this power is available every minute.

A British thermal unit (Btu) is the amount of heat which will raise the temperature of one pound of water one degree Fahrenheit. In terms of Btu then, a one kilowatt oven puts out 57 Btu each minute, and if one pound of water were placed in the oven it should increase in temperature 57°F in one minute.

Most foods contain moisture in varying amounts with the exception of pure fats like salad oils, shortening and lard. Another
Electronics comes alive with NRI Training Kits
DISCOVER THE EASE AND EXCITEMENT OF TRAINING AT HOME THE NRI WAY

New Achievement Kit—Custom Training Kits—“Bite Size” Texts

Only NRI offers you this pioneering method of simplified “3 Dimensional” home-study training in Electronics, TV/Radio and Broadcasting/Communications. It’s a remarkable teaching idea unlike anything you have ever encountered, the result of more than half a century of simplifying, organizing and dramatizing learning-at-home techniques. If you are an ambitious man—regardless of your education—you can effectively learn the Electronics field of your choice the NRI way.

NRI has simplified Electronics by producing “bite size” lesson texts averaging only 40 pages each. Dozens of illustrations open wide a picture window through which you’ll see and understand practical uses of Electronics. You start out with NRI’s exclusive Achievement Kit, containing everything you need to get started fast. (Illustrated at right.)

NRI has organized Electronics training to take you step-by-step from the first stages into more intriguing areas. Once you know the fundamentals thoroughly, it’s easy to grasp more advanced theory and techniques. You move with confidence and enthusiasm into a new adventure filled with the excitement of discovery.

NRI has dramatized Electronics through the careful development of special training equipment that is programmed into your training systematically. Beginning with your first group of lessons. Things you read about come alive in your hands as you build, experiment, purposely cause “problems” in circuits—and solve them. You learn to use test equipment, to build radios and TV sets, transmitter, or computer circuits. It’s the priceless “third dimension” in NRI training...practical experience.

More than 50 years of leadership in Electronics Training

1. TELEVISION-RADIO SERVICING — Learn to fix all TV sets, including Color. Includes your choice of NRI Color Kit or 19” black-white TV Kit. Also covers radios, stereo hi-fi, etc. Profitable field spare or full-time.

2. INDUSTRIAL-MILITARY ELECTRONICS — Basics to computers. Starts with fundamentals, covers servos, telemetry, multiplexing, phase circuitry, other subjects.

3. COMPLETE COMMUNICATIONS — Operation, service, maintenance of AM, FM and TV broadcasting stations. Also covers marine, aviation, mobile radio, facsimile, radar, microwave.

4. FCC LICENSE — Preparpes you for 1st Class FCC License exams. Begin with fundamentals, advance to required subjects in equipment and procedures.

5. MATH FOR ELECTRONICS — Brief course for engineers, technicians seeking quick review of essential math: basic arithmetic, short-cut formulas, digital systems, etc.

6. BASIC ELECTRONICS — For anyone wanting a basic understanding of Radio/TV Electronics terminology and components, and a better understanding of the field.

7. ELECTRONICS FOR AUTOMATION — Not for beginners. Covers process control, ultrasonics, telemetering and remote control, electromechanical measurements, other subjects.

8. AVIATION COMMUNICATIONS — Prepares you to install, maintain, service aircraft in-flight and landing systems. Earn your FCC License with Radar Endorsement.

10. MOBILE COMMUNICATIONS — Learn to install, maintain mobile transmitters and receivers. Prepares for FCC License exams.

11. ELECTRICAL APPLIANCE REPAIR — Learn to repair all appliances, including air conditioning, refrigeration, small gas engines. Leads to profitable part or full-time business.

12. ELECTRONICS FOR PRINTERS — Operation and maintenance of Electronic equipment used in graphic arts industry. From basics to computer circuits. Approved by major manufacturers.

* You must pass your FCC License exams (any Communications course) or NRI refunds in full the tuition you have paid.

YOU GET MORE FOR YOUR MONEY FROM NRI

Mail postage-free card now for your free NRI catalog. Then, compare. You’ll find—as have thousands of others—NRI training can’t be beat. Read about the new Achievement Kit sent the day you enroll; about “bite-size,” texts and custom designed training equipment. See why NRI gives you more value. Whatever your reason for wanting more knowledge of Electronics, NRI has an instruction plan for you. Choose from major programs in TV/Radio Servicing, Industrial Electronics and Complete Communications. Or select from special courses to meet specific needs. Check the course of interest to you on postage-free card and mail today for free NRI catalog. Nosalesman will call.

Available Under NEW GI BILL

If you served since January 31, 1955, or are in service, check GI line in postage-free card.

May-June, 1972
exception is dehydrated foods which do not depend on moisture to convert microwave energy into heat. The amount of moisture in a food has a direct bearing on its heating rate in a microwave oven.

One pound of food with 50% moisture will take less time to heat to a specific temperature than one pound of food with 75% moisture. Or if both are heated for the same length of time, the food with less water will reach a higher temperature than the food consisting largely of water. One pound of water, however, will heat only half as fast as one pound of fat. The reason for this requires an explanation of the term *specific heat*. This is a measure of a material's ability to hold heat as compared to water. Water has a value of one (1.0). Fats are about 0.5. Thus water takes twice as much heat as fat to increase its temperature by one degree. Therefore in our one kilowatt oven one pound of fat will increase in temperature by 114°F, while the same amount of water will only increase 57°F. (It should be noted that this does not apply at high temperatures where some of the water may be changed to steam. This change uses up much more energy.)

A simple formula shows the relationship between the heat required and these other factors:

\[
Q = W x s x x t
\]

With this simple equation, you can compute how long it would take to heat 12 ounces of canned green beans to 160°F. in one kilowatt microwave oven. The specific heat of most vegetables, because of their high moisture content, is around 0.9. Let us assume that the beans would be at an initial temperature of about 70°F. (off the shelf).

\[
Q = 0.75 \text{ lbs. x } 0.9 \times (160°F.\text{--}70°F.)
Q = 0.75 \times 0.9 \times 90
Q = 60.75 \text{ Btu}
\]

Since our oven (1 kW) provided 57 Btu per minute, then the heat required (Q) divided by 57 Btu/minute would give the time, or

\[
T = \frac{Q}{57} = 63 \text{ seconds.}
\]

How long would it take if the green beans were just removed from a 40°F. refrigerator?

When two foods at different starting temperatures are heated simultaneously in a microwave oven the colder food takes longer than the warmer food. An interesting example is that of apple pie and ice cream.

HOT ANTIPASTO

1 can (6-oz.) cocktail meatballs
1 can (4-oz.) vienna sausage, drained, each cut into 3 pieces
8 whole canned mushroom crowns
8 large pitted ripe olives
8 stuffed green olives
½ cup Italian salad dressing

Combine ingredients in 1-qt. casserole. Toss lightly and marinate in refrigerator several hours or overnight. Toss lightly again. Cover casserole. Cook in microwave oven 5 to 7 minutes until all items are hot. Makes 8 to 10 servings.
Inside a Microwave Oven

If you have seen the inside of one microwave oven you've seen them all. Basically, tracing from the line cord in, there's the rectifier, high-voltage transformer, and magnetron (hidden behind the oven's cavity). Necessary extras are stirrer assembly, oven lights and timer.

With the pie at room temperature and a scoop of hard frozen ice cream on top, the pie can be warmed without melting the ice cream. About 15 seconds in a 1 kilowatt oven will do the trick.

Inside the Microwave Oven. Unlike most cooking appliances in which the food to be cooked is overwhelmed with heat, a microwave oven operates essentially at room temperature. In fact, if anything, the food heats the oven.

The basic parts of a microwave oven are shown in Fig. 4: the cavity (1) the door (2) the magnetron (3) waveguide (4) the mode stirrer (5) the power supply (6) and the power cord (7). The main function of the power supply is to convert low voltage line power to the high voltages required by the microwave energy generator, the magnetron. When the magnetron is energized it generates high-frequency energy which then passes down the wave-guide to the cavity. The mode stirrer as it turns interrupts the energy as it enters the cavity and causes it to be distributed more uniformly about the cavity before it is absorbed by the food load. Without the mode stirrer, standing waves would occur in the cavity and there would be regions that would receive more energy than others, causing hot spots and cold spots.

The food load is shown positioned off

Cream Beef and Cheese Dip

1 package (8-oz.) cream cheese
1 jar (2⅛-oz.) sliced dried beef, finely chopped.
¼ cup coarsely chopped walnuts
¼ cup dairy sour cream
2 tablespoons each finely chopped onion and green pepper
2 tablespoons milk
1 to 1½ teaspoons pepper

Unwrap and place block of cream cheese in 1-qt. casserole. Cook in microwave oven ¾ to 1 minute, or until cheese is softened. Add all other ingredients and stir until well blended, cover. Cook in microwave oven 3 to 5 minutes, stirring once during cooking. Serve with melba toast rounds, crisp toast points or unsalted crisp crackers. Makes 1½ to 2 cups.
the floor of the oven on a glass shelf (8) for a reason. This position permits some of the energy to be reflected from the oven floor into the food from below. If this were not done the bottom of the food would lag behind in cooking giving uneven doneness.

The purpose of the oven door is to provide an access to the cavity and also to confine the microwave energy. A proper fitting door is essential to completely confine the energy and, it, as well as the door flange, should be wiped clean regularly to insure good contact of the door and the door flange. Considerable ingenuity has gone into microwave oven door design because it is such a critical feature of the oven. Good metal to metal contact is only one means whereby microwave tightness of the oven is assured. Another approach utilizes a quarter wave slot or "choke" seal around the perimeter of the door which acts to choke off or cancel out microwave emissions at this point. On ovens in which tightness is effected by a metal to metal contact, food spatters and spills on or between the door and the flange provide a pathway for microwave energy leakage from the oven. Food buildup should not be permitted to accumulate on the door seals.

Oven controls consist mainly of a timer, indicating lights, a start or cook button and a master switch. Timers vary from one manufacturer to the next, but are usually marked so that short heating cycles can be set with some degree of accuracy. The timer is important because all microwave cooking is gauged by time, not temperature and time.

A few seconds excess time in some cases can mean the difference between success and failure. An audio signal such as a buzzer bell usually indicates when the set time has elapsed and the oven has turned itself off. The oven may also be turned off simply by opening the door. To protect the user from unnecessary exposure to microwave energy is a requirement of all microwave ovens. Two or more interlocks operate when the door is opened any one of which could turn off the oven.

The oven can also be turned off by turning the timer back to zero time or by turning off the master switch. In some oven designs the cook button is omitted and cooking action initiated simply by closing the door.

Browning. The brown surface color of foods is due to a chemical reaction between food sugars and amino acids, the building blocks of protein foods. This reaction proceeds slowly at low temperatures and is accelerated by increasing the temperature. In microwave cooking the surface temperature of foods rarely exceeds 212°F., the boiling point of water, and is usually much lower. Because of this, most foods cooked in microwave ovens lack the surface coloration expected of certain foods. A steak or a meat pattie, for example, would have a gray, unappetizing surface appearance. Baked goods would not have a brown crust. The appearance of such foods can be enhanced by placing them in a hot oven for a few minutes, or in the case of the steak and meat pattie, on a grill or under a broiler.

Restaurants which do a sizable steak business presear a quantity of steaks in advance and finish them in seconds in the microwave oven when ordered. Some foods which because of their size take longer to cook in a microwave oven do take on an acceptable surface appearance. This is aided by the presence of surface fats as in beef.

(Continued on page 95)
Get out of the dark with the...

HOBBYIST’S NIGHT LIGHT

by Steve Daniels, WB2GIF

A bedside light is always a nice thing to have around. It keeps you from falling over wastebaskets, shoes, and other obstacles that might be scattered around. It’s even nicer when you build it yourself. The Hobbyist’s Night Light is a lamp that responds to large changes in ambient light and switches itself on whenever the light level goes below a point that you select.

A Light Response. In this circuit, light is detected by a cadmium-sulphide photocell which varies its resistance in inverse proportion to the light striking it. This simply means that, in the evening when the light gets dimmer and dimmer, the photocell resistance slowly increases. When the resistance of the photocell becomes greater than the total resistance of R1 and R5,
transistor Q1 will turn-on. Recalling basic transistor theory, an NPN transistor conducts (turns on) whenever the base is positive with respect to the emitter.

Whenever Q1 conducts, it makes Q2 conduct and turn on a small pilot lamp that serves as the night light. A night light need not be bright. We've chosen a common, inexpensive #47 pilot lamp for ours because a wide selection of sockets is available.

Quick Pick-up. By connecting the lamp to the junction of PC1 and R4, the circuit is made to switch rapidly from off to on because lamp current flowing through R4 develops a small positive bias voltage to help Q1 turn on and remain on.

Most of the circuitry for this project can be wired on a small piece of perforated board about 2-in. x 3-in. in size. A suggested layout is shown; notice that connections are required for power, sensitivity control, photocell and lamp.

Night Light Construction. Mount the transformer and the rest of the power supply components in the box you are using and wire the power supply leaving 6-in. terminations for connection to the board. Wire the board. A heat sink for the power transistor is only necessary if you use a lamp rated over 300 milliamperes. Mount the sensitivity pot on the box in a convenient location, secure the photocell in a hole with Duco cement where it will be exposed to room light, and screw the circuit board down on a couple of spacers. How you mount the lamp is up to you. A plastic reflector on the author's model came from his junk box; everything was just glued in place.

In any case, just make sure that light from the pilot lamp doesn't get back to the photocell; it would lower your unit's light sensitivity. Finish wiring the unit by connecting the photocell, power supply, sensitivity pot, and the lamp to the board. Screw the cover on and your night light is ready for use.

Adjustment is simple. Turn the unit on and set sensitivity pot R5 somewhat past the point at which the lamp goes out with the room lights on. It may be necessary to readjust things to account for ambient light conditions, but once set you'll be able to count on a light when you need it.

If you want to control an outside or porch light, substitute a 6-volt relay (Potter & Brumfield MR5D or equiv.) for the lamp and control the new lamp through its contacts.

PARTS LIST FOR HOBBYIST'S NIGHTLIGHT

<table>
<thead>
<tr>
<th>PART</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>500 uF, 15-VDC electrolytic capacitor</td>
</tr>
<tr>
<td>D1</td>
<td>Silicon rectifier diode, 2-amp, 50-V</td>
</tr>
<tr>
<td>D2</td>
<td>Diode, IN34 or any general purpose germanium (Lafayette 19-49015 or equiv.)</td>
</tr>
<tr>
<td>T1</td>
<td>Pilot lamp, #47</td>
</tr>
<tr>
<td>PC1</td>
<td>Photocell, Clairex CL703L</td>
</tr>
<tr>
<td>Q1</td>
<td>NPN transistor, Motorola HEP-50</td>
</tr>
<tr>
<td>Q2</td>
<td>PNP transistor, Motorola HEP-230</td>
</tr>
<tr>
<td>R1</td>
<td>1000-ohm, ¼-watt resistor, 10%</td>
</tr>
<tr>
<td>R2</td>
<td>2,700-ohm, ¼-watt resistor, 10%</td>
</tr>
<tr>
<td>R3</td>
<td>330-ohm, ¼-watt resistor, 10%</td>
</tr>
<tr>
<td>R4</td>
<td>2.7-ohm, ¼-watt resistor, 10%</td>
</tr>
<tr>
<td>R5</td>
<td>100,000-ohm, linear taper potentiometer</td>
</tr>
<tr>
<td>T1</td>
<td>Filament transformer, primary 117 VAC, secondary 6.3 VAC @ 1.2 amps (Stancor P-8190 or equiv.)</td>
</tr>
</tbody>
</table>
Dependent on the size of your apartment or home, a burglar alarm system professionally installed will set you back between $600 and $1000 (or more) and there’s no guarantee you won’t be stuck with a monthly service charge of about $10 “to make certain the alarm will work when needed.” But if you’re handy with a screwdriver and hammer, EICO’s $99.95 SS-500 Home Protection System will give you burglar, fire and emergency protection that is “fail safe”; you won’t have to shell out ten bucks a month just to make certain it’s working.

The EICO SS-500 system consists of EICO’s FC-100 Control Center and an assortment of security hardware such as an 8 in. alarm bell, magnetic switches, push switches, heat sensors, remote control panel, entrance key switch, door cords, etc.

The heart of the system is the fail safe FC-100 Control Center which is AC powered and can be powered by a standby lantern battery. In the event of a power failure, or if an intruder cuts the power lines to the house, the FC-100 automatically switches to the standby battery; it automatically switches back to AC operation.

EICO’s do-it-yourself home protection system for fire, theft can be expanded to the requirements of your home. Fail-safe battery supply maintains protection.
ALARM SYSTEM

when power is restored.

The control center provides for both indoor and outdoor alarm bells and horns, has individual circuits for the intruder/burglar, fire and emergency sensors and switches, has a built in battery test meter and test lamps for checking out the installation; and most important, it is impulse controlled—meaning the alarm can be turned on and off from any desired entrance or inside switch. An important feature is that the intruder sensors can be either the open or closed circuit type—anything from window foil to mat (undercarpet) sensors or switches.

The control center also has outputs for signal lights that show all intruder/burglar circuits are “closed,” or ready, and an alarm on lamp. The remote (indoor) control supplied in the SS-500 kit has both lamps, the outdoor (entrance) key switch control plate has an alarm on lamp. Any reasonable number of remotes, key switches and indicator lamps can be used; the limit is about 10 lamp circuits. While the AC power supply can handle much more than 10 lamp circuits, in the event the standby battery switches in you don’t want too many lamps exhausting the battery before AC power is restored.

Three in One. The SS-500’s three protection circuits work slightly different from each other. The intruder/burglar detector has a “lock up”; once tripped the alarm can only be silenced by turning off the system. Even if an intruder restores the protective circuit the alarm bell(s) keep ringing until the system is turned off.

The fire circuit is turned on when heat causes the heat detector(s) to close. The detector automatically resets itself (turning off the alarm bell or horn) several minutes after the excess heat is removed. The emergency circuit is switch controlled. Once turned on, say by a bedside switch, it can only be turned off by the same switch.

Additional protection is easily added by simply connecting the appropriate sensor to the correct terminals in the control center. For example, you can connect a smoke detector to the fire circuit, connect a freeze or water-flooding alarm to the intruder circuit (to summon a neighbor if you’re on vacation), or even connect a telephone diater in place of, or in addition to, the alarm bells.

Ring Them Bells. Since one of our staff was in the process of installing a burglar alarm we decided the best test of the EICO SS-500 was to have the staff member actually install the system.

Everything worked out as claimed. Two really outstanding features that everyone liked were the impulse control and signal lights. The user found it very convenient to check that all circuits were closed by simply looking at a light, rather than going from door to door to see if each “shunt switch” was set properly. (The SS-500 does not use shunt or bypass switches.) It was also convenient to come home late at night and not have to worry whether the entrance key switch index, when facing up, meant the alarm was on—or was it off? If the red light

(Continued on page 98)
THE ART OF DXING (distant radio listening) might best be described as a multi-hobby rather than a mini-hobby as some would have us believe: it ties in with many interests in addition to radio itself. For many, the collection of stamps and post marks from exotic parts of the globe is a rewarding addition to DXing. For example, the philatelist with a short wave receiver would have little trouble locating R. Santa Isabela on, say their off-band 6250 kHz frequency, after which a reception report and a description of the program heard could be sent. Barring political complications he should, in turn, receive the station’s QSL card or letter accompanied by some rare (especially for the beginner) Equatorial Guinean stamps. Equatorial Guinea, a new independent nation, was formerly Spanish Guinea.

However DXing for stamps from these tropical, semi-Atlantic islands presents certain problems not generally encountered with more publicized Pacific counterparts. First, none of the Portuguese held islands (Sao Tome, Cape Verde and the Azores) have their own stamps. This is due to strictly political considerations; the Lisbon government wants each of its colonies to be an integral part of Portugal itself. On the other hand, considering the uncertain future faced by old-style colonial empires today, Portuguese stamps bearing these postmarks might at some not to distant future date become exceedingly valuable. If you’re willing to gamble on this then your DX work is cut out for you.

From the Islands. Each of these islands have short wave broadcast stations operating on either the 60 Meter tropical band or, of all places, 75 Meters. These stations are R. Clube de Cabo Verde (3886 kHz at Praia, the administrative capitol), R. Barlavento (operated by the Portuguese government itself from the nearby island of Sao Vincente on 3930
kH), R. Clube de Sao Tome (nominally a privately owned station on 4807 kHz but has been associated with R. Portugal’s somewhat nebulous plans for a “Voice of the West” relay in Africa), and Emisoras Regional dos Acores (another Portuguese government station at Ponta Delgada on 4865 kHz). All are good verifiers and all four sign-off at 1800 EST. This means that, with patience, DXers and stamp collectors East of the Mississippi should eventually bag them but reception further West would probably be rare.

Those who find themselves in the latter position can nail down the Azores at least via the widely heard Santa Maria Aeradio. A good bet for this is 8947 kHz during daylight hours. But in the evening

(Continued on page 99)
No matter how long you’ve been a radio listener, no matter how sophisticated your receiver may be, chances are you’re missing out on an entire spectrum of communications and broadcasting stations. Where are the signals from these unheard stations? They circulate in the earth beneath your feet!

It all started more than two-hundred years ago when Ben Franklin and others found that electrical impulses could be sent from one place to another by using the earth itself as the conductor. Later, Samuel Morse succeeded in sending code through the ground. Early in the 1900’s, Nathan Stubblefield devised a method of sending audio many miles through the earth’s water table. This sparked the interest of many and was the principle behind the first wireless field phones.

The use of underground radio dates back to World War II. Our Army, Navy, and Air Force used it in situations where conventional radio was useless (because of enemy jamming, etc.). Ham operators, forced off the air because of the war, tried underground radio as a secondary system of communications. While the system was found to be less efficient than above-ground radio, some surprising contacts were made.

Backyard Propagation. To get a basic idea of how an underground communications systems works, look at Fig. 1. As you can see, the signal to be transmitted (be it radio or otherwise) is fed directly into the earth by way of an underground antenna. Since the earth is a mixture of water and minerals, the soil is a

Groundhog DX—a new underground sound.
a highly conductive medium known as a chemical electrolyte. The signal propagates through the ground just as it would travel in a large, low value resistor. But, unlike a resistor, the resistance of the earth is not the same in all places. This is due to variations in chemical make-up, water content, and temperature. Because of this, the signal is distributed unevenly, with maximum signal in the areas of lowest resistance. Fig. 1 shows the high concentration of signal in the wet earth surrounding a body of water. Also shown in Fig. 1 is the all-important water table. This is the upper extreme of the earth’s zone of saturation, where the space between each grain of soil is completely filled with water. At this point, usually eight feet below the surface, the resistance of the soil is at its lowest, making signal conditions excellent. In fact, the water table is just as important to underground communications as the ionosphere is to above-ground radio. The major requirement for the underground transmitting antenna is that it be buried deep enough to make good contact with the water table.

Putting Your Ear to Ground. It’s just as easy to receive underground radio signals as it is to hear the normal variety. In fact, all you need to do is bury your present above-ground antenna! This is absurd, but in theory it would work fine. A more practical approach is to use an “antenna” like the one illustrated in Fig. 2. Here, a metal pipe (or rod) is driven into the ground as deep as possible. While the pipe should be long enough to reach the water table, I have had satisfactory results using pipes as short as three feet. The pipe can be of copper, bronze, galvanized steel, or any relatively non-corrosive metal. The surface of the pipe should be bare metal—free from paint or grease. The diameter is not of great importance. On top of the pipe, some type of wire clamp should be mounted. This may be a regular ground clamp or a large self-tapping metal screw.

The success of your underground reception depends a great deal on the location of your underground antenna. To be effective, the antenna should be driven into an area of high signal concentration. As you know, the mud around a pond or other moist area is an excellent antenna site. But even if there is no such condition around your yard, there are other factors to consider. For example, it has been found that certain types of soil make better electrolytes than others. Soil containing large amounts of refuse material (ashes, cinders, etc.) is the most conductive type. Next best is soil containing adobe, clay, shale, or loam. The least conductive soils are composed mainly of sand and gravel. One final note about the location of your antenna: do not drive your underground antenna into an area which is closer than ten feet from any other ground rod or water pipe. Read on and you’ll see why.

Dirt Cheap Receivers. Well, now that you have your underground antenna set up, it’s time to start thinking about the receiver. The first thing that comes to mind is to use a standard shortwave radio. But unless your receiver tunes down to around ten or twelve kHz (that’s kilohertz), you will be missing out on most of the underground action.
Also, the input impedance of most receivers can’t be varied enough to stay matched to widely changing ground conditions.

For the past few years, I have been using the simple “receiver” shown in Fig. 3 with very good results. When connected to the underground antenna and a good earth ground, the circuit is capable of receiving signals on any frequency, including audio. As shown pictorially, the entire receiver can be built around the connecting lugs on the potentiometer. The sensitivity of the circuit is surprisingly good. Best results have been obtained using a high impedance crystal earphone (Lafayette 99—25512 or equivalent), although a headset with an impedance of 20,000 ohms or more may be used.

Double-Ground Hookup. For proper operation, the circuit must be connected to a good earth ground (cold water pipe, ground rod, etc.) as well as the clamp on the underground antenna. Any signal which is received has developed a voltage between the receiving antenna and the electrode used as earth ground. This explains why the underground antenna must be separated by at least ten feet from the grounding electrode—otherwise, the incoming signal would be short-circuited by the low resistance of a small patch of earth between them.

If it is desired to have the receiver located far from the underground antenna or grounding electrode, you may run long interconnecting wires. However, if the wires are made longer than fifty feet or so, they will begin to act as above-ground antennas, causing you to pick up local broadcast station interference.

What You Will Hear. With everything connected properly, while listening to the earphone, “tune” R1 through its range until you hear something. Fig. 3 shows which direction to rotate the shaft on the potentiometer to select either radio or audio signals. If you hear two stations at once, the potentiometer may be adjusted to bring in one over the other to some degree.

Most of the stations you hear will be operating on the Very Low Frequency range and below. All modes of operation are used ranging from CW (code) to AM (voice), including many types of “radiolocation” beacons. Some of what you hear, including most of the beacons, are not intentionally transmitted underground. The extensive antenna grounding methods employed at these low frequencies set up a strong underground signal that travels many miles. One such station to listen for is the Navy’s two-million watt operating from Cutler, Maine. The station sends CW on 14.8 kHz. The CW is received as a loud low-pitched hum.

Through the years, I have heard everything from CW and beacons to hard rock on my underground receiver. You must understand that some of what is transmitted under ground was sent this way to obtain some degree of privacy. I found this out one hot summer day (when conditions are best) as

(Continued on page 98)
PRIMATES PICK

TV is no monkey business at Emory U. where simians

TV is the favorite pastime at Emory U.—at the monkey house that is. Here primates watch TV all day while their human brothers are busy conducting studies. It all started with an idea that TV might relieve the monkeys' boredom—and it did! Now, this is the basis of a new study, and it seems that you and the ape have the same video taste.

Dr. Bourne, director of the Primate Research Center, sent out requests for old sets, and set these up along the corridors of the monkey house, and in various TV rooms where the monkeys can be more carefully studied. As time passed, differences appeared among the primates. The chimps preferred westerns—the more action the better! They prance around with excitement and can tell the bad guys from the good. But the orangutans and gorillas shied away from violence; their preference seems to be soap operas and quiz shows. And don't think

These chimps go wild over westerns, and can even predict much of the action!
These young chimps are spellbound while the ape would rather have their friend's attention. This orangutan gets his kicks from changing channels. Programs don't excite him.

PRIME TIME

choose the same video programs you do!

they'll allow a show they dislike to stay on. They are quick to change the channel!

This behavior is not so startling if you consider monkeys have keen eyesight and are able to discern figures on a screen. The unusual part is their intense involvement. Moreover, the primates do not even seem to mind commercial interruptions. Some interesting observations were: there's the chimp who tries to kiss all the pretty girls on the screen, and then there's the ape who was spellbound for 120 minutes watching a rerun—King Kong, of course.

—Myrtle Gronk

This chimp's involvement is very similar to a human's. Like us, he's puzzled.

The corridors are lined with television sets so the monks can watch all day long.
The first receiver featuring digital tuning for both FM and AM, the Magnavox IK8898 is rated at 150 watts and priced at $579.95. Precise tuning for FM is achieved when the digital readout "locks" into a steady glow; for AM, the tuning is adjusted for a readout of frequency. Circle No. 33 on Reader Service Page.

When you want to listen to a favorite TV program but can't watch the screen, try the Video Voice by Concept Plus. Featuring both VHF television sound and FM broadcast sound on dual bands, the $24.95 Video Voice is battery powered and has a collapsible antenna, earphone and jack, and loudspeaker. Circle No. 34 on Reader Service Page.

Synthi, an electronic music synthesizer from England's EMS, has its own internal speakers and can set up almost any single sound effect. All outputs can act either as signals or controls. The basic Synthi is $995; with keyboard, $1,095. Circle No. 36 on Reader Service Page.

For your compact or foreign car, Panasonic's RS-248, "The Joplin," is a removable stereo cassette player with a console that bolts to the transmission hump. Priced at $109.95, "The Joplin" has a sliding door that locks securely. The top surface is recessed for cassette storage. Circle No. 37 on Reader Service Page.

Take-it-with-you entertainment from Toyo: the 404 portable 8-track stereo cartridge tape player and recorder features fast forward, and contains an AM/FM-stereo radio, for $159.95. Record your own tapes live, or directly from the radio. Circle No. 35 on Reader Service Page.

HI-FI COMPONENTS

Elementary Electronics
What's a Girl to Do? With hemlines in New York changing faster than Spring weather, it's hard to keep my office wardrobe up to snuff. Skirt lengths change, pant suits become popular (and believe me, very functional on cold, windy winter days) while hot-pants are definitely out! With bikini weather just a warm breeze away, my solution is a half-way compromise.

It's back to mini's with lengths halfway between micro-mini and my knee—leaving pant suits and an occasional midi for next winter. What does all this have to do with this issue's column? Well, with CB transceiver design, a compromise is usually necessary when a manufacturer packs a full 5 watts into an itty-bitty package not much larger than an eye shadow kit. Sure, the mini's are fun to tuck away in the glove compartment or beach blanket, but until I had a chance to work the Regency Formula 23, I'd forgotten just how a little extra size can make a big difference in convenience features and performance.

Instant Performer. By modern standards the Formula 23's 5½-in. x 14½-in. x 9-in. cabinet is large, but the extra space allows Regency to include a power control digital clock that turns on the instant-warmup rig at a preset time. You also get a front panel microphone jack, SWR meter, full size phone jacks for head phones, remote speaker and PA speaker and a 117 VAC/12 VDC power supply with positive and negative ground. And just so you know for certain your signal is really getting out, there's a transmit light and a modulation light that glows only if the rig is being modulated.

The Formula 23 is supplied with all crystals for 23 channels. There is a 3-position delta tune switch that changes the receive tuning approximately ±1.5 kHz. Across the bottom of the front panel are the microphone and headphone jacks, volume and squelch controls, ANL, the SWR meter calibrate, and the meter selector that converts the single meter from an S-meter to a relative power output meter to an SWR meter. The rear apron has the remote speaker and PA speaker jacks, antenna input, power supply connector and antenna loading adjustment (factory preset).

Though easily overlooked, the loudspeaker is an important part of the Formula 23 because it is relatively large and faces forward—not down or sidewise as many do; it's the best combination for no-strain monitoring.

Full Circuit Line-up. The innards start off with a FET (field effect transistor) front end and double conversion: the second IF has a mechanical filter and 1C amplifier. This feeds a switchable noise limiter and the audio amplifiers. The transmitter uses frequency synthesis for full 23 channel coverage: its modulator has 100% modulation limiting on both positive and negative peaks.

On the test bench, the Formula 23 puts it all together with some first rate performance. The sensitivity is a real signal-grabber—0.8 μV for 10 db S+N/N while selectivity
KATHI'S CB CAROUSEL

is a razor sharp 60 dB on the adjacent channel. Image rejection is 80 dB. And if you want even more, wait till you try out the front end on a powerhouse signal; the FET crushes strong signal overload and cross-modulation. Even with signal levels above 10,000 uV which often cause many rigs to break into squelches and whistles, the Formula 23 comes through and takes it all in stride.

The only thing not up to snuff is the AGC action. Between 10 and 10,000 uV the AGC action is about 6 dB (average), but if you tune from a weak signal below 10 uV to a strong signal there will be moderate speaker blasting.

The S-meter takes 100 uV input for S9; the rest of the readings are relative.

The transmitter put out 2.8 watts RF from a 117 VAC power source and 3.4 watts from a DC supply. The relative microphone sensitivity for 100% modulation was —29 dB—more sensitive than the average —23 dB microphone sensitivity. The modulation is limited to 100%, so even if you scream into the mike you're not going to splatter your message over several channels.

Listening's Good Too. Using the Formula 23 was a real pleasure. The sound quality is terrific, and I can listen to that large speaker for hours without getting an ear-ache. The receiver did a first rate job, and with that FET front end even locals a couple of channels away didn’t give me any problems.

Summing Up. It's hard to sum up a transceiver that just works well all the time. After all, how can I single out something special when the Formula 23 does a terrific overall job. The price is $189.00 plus $6.74 surtax.

For more information circle No. 45 on Reader Service Coupon on Page 17 or 103.

Now there's something rare; standard size phone jacks for the PA and external speakers. Base or mobile power is applied to a dual power supply via single power plug. Rig also includes an effective TVI filter.

The front panel is packed with goodie features. Digital clock can turn rig on or function as an alarm clock. A single meter serves as an S-meter, relative power RF output meter and as an SWR meter for monitoring.
e/e checks out the...

First Digital Multimeter Kit

Count on Heathkit IM-102 to bring accuracy to your test measurements

Do you have these day-to-day problems with your VOM? Is it reading 105 volts when it should be 120 volts, or is the resistance really 180 Ohms and not 160, or is the VOM reliable since it dropped on the floor? Has it worked at all since you dropped it on the floor? Consider how much easier it would be to read out the measurements from digital numerical display tubes having almost "lab standard" accuracy.

Fact is, with a digital multimeter such as the Heathkit IM-102 you can read AC voltages down to 100 μV, or resistance values as low as 0.1 Ohm. (with 0.1 Ohm accuracy). And with the Heathkit digital multimeter, even assuming you botch the calibration procedure, the worst-case accuracy will be about 1% ± 1 digit. If you're really careful about the calibration or have access to laboratory calibration equipment the IM-102 will have a nominal accuracy of 0.5% (or less) ± 1 digit. In short, the Heathkit IM-102 is so accurate it can serve as the calibration standard for all the other instruments in your shop. You've come a long way, baby.

Priced at $229.95 in kit form the IM-102 provides five AC and DC voltage and current ranges, and six resistance ranges. The full scale voltage ranges are 200 mV to 1000 V (500 V maximum for AC) and the current ranges are 200 μA to 2 amperes. The resistance ranges are from 200 ohms to 20 megohms. The polarity of the DC

Reader Service Coupon. Heath by circling No. 1 on Get more information from than the usual shop VOM's. minimum of three times better Don't forget accuracy, it's a than many analog VOM's. makes the IM-102 easier to use for volt and ohm measurements match. Just one set of jacks accuracy no ordinary meter can operates coupled with an convenient way the meter Why a DMM? It's the
voltage and current is automatically indicated, and the decimal point is automatically located for each range. All ranges are overload protected by a fuse and/or a diode clamp. An overrange indicator shows if the applied voltage or current exceeds the range capability.

Digits Do It. The IM-102 is what is termed a 3½ digit meter: meaning there are three display tubes (cold cathode type) with 0 to 9 digits and a neon lamp to provide a "1" (the half digit). It works this way: assume you apply 9.98 volts to the meter; three tubes will light showing 9.98. If you raise the voltage to 19.98 volts the half digit neon lamp illuminates and the display is 19.98. Obviously the display cannot indicate higher than 19.99. If you apply 20 volts the display shows 00.0—one digit higher than 19.99. Since the range switch is set to 20 volts a ±0.00 reading equals 20 volts. (This takes about 1 minute to get used to.)

Now should you apply 20.01 volts or higher the overrange lamp goes on, indicating you must switch to a higher range—this is the equivalent of pinning a conventional meter, except the digital multimeter won't be damaged by "pinning." Depending on the range in use and the amount of overvoltage, the digits might run or scramble in addition to turning on the overrange lamp.

Typical of digital meters, the IM-102 takes one to two seconds for settling, that is, after the test probes are applied the display will run until it locks onto the voltage. Only the 20 megohm range takes longer, nominally 20 seconds because of the very high resistances involved.

Calibration. One of the questions you are sure to ask is how can you calibrate a lab-grade DMM such as the Heathkit IM-102 if you don't have any other lab grade equipment. The answer is simple. Heathkit provides a precision (factory wired and calibrated) calibrator with the DMM kit.

The calibrator serves as a precision voltage reference and as a precision resistance reference. Two supplied precision resistors serve as the reference for the calibration of the 20 megohm and AC current ranges. The DC current ranges automatically calibrate with the DC voltage adjustments; the supplied calibrator is used to simply check the DC current calibration.

Building the kit. Most of the circuitry is on one large printed circuit board, providing a basic DC digital meter. A small PC board that mounts under the main board is an AC convertor that converts an AC input into a DC source for the basic meter. Both boards have wide-spaced component mounting and there is no parts jam. The only hassle you'll have is soldering the IC pins to the rather fine foils. We strongly suggest you obtain a very fine conical tipped soldering iron (such as an Ungar). If you use a large (standard) soldering tip there is a strong chance you will bridge several foils with solder. Total construction time runs about 10 hours plus

Continued on page 98
See what four technicians and a black box do to...

The Language Of Gain
by Norman Crawford

When you glide the old heap into a gas station and ask the attendant for "two bucks worth of hi-test," he's sure to know you want high octane gas and can part with two dollars.

But just try to ask for "two liters of Ethyl" and you just might end up with an empty gas tank and seven or eight kittens!

In this article we want to discuss gain—the kind electronics is made of. But instead of explaining gain in textbook style (to help avoid something akin to our two liters of Ethyl misunderstanding), we think we've found a sort of black box dialect that'll help you understand electronic terms associated with gain.

Mu, beta, and gm. We know that each term describes gain. Why, then, such a variety of terms?

Can a triode have its gain described by mu, or can a FET have a beta? Exactly what do all these terms mean?

Read on . . . To answer these questions let us suppose that we concealed some type of amplifying device in a black box, and sent it to
THE LANGUAGE OF GAIN

an electronics lab with a request that its gain be measured. The input and output leads are brought out and identified, but the lab is not told whether the box contains a vacuum tube, an ordinary bipolar transistor, or a FET. We also supply the lab with a 2-volt signal source for the input, and give them a load resistor to be connected across the output leads.

The lab, to enhance its reputation, decides to make four independent measurements and compare the results. The entire set-up is therefore handed to the first of four lab technicians with the only instruction, "measure the gain of this box."

The first tech takes the straightforward approach and measures input signal voltage and output signal voltage as shown.

Finding that the black box has a 2-volt input and a 12-volt output, he takes the ratio of these two voltages, and obtains the gain.

\[
\text{Gain} = \frac{e_{\text{out}}}{e_{\text{in}}} = \frac{12 \text{ volts}}{2 \text{ volts}} = 6
\]

Since this result is the ratio of two voltages, it is the voltage gain, and is usually expressed by the term mu. This tech therefore reports the black box has a mu of 6.

Joe tries. The entire set-up is then taken to a second technician, who, looking around his lab bench, finds that he does not have at hand any convenient way to measure voltages, but has some excellent current-measuring devices all ready to use. He therefore measures the input and output currents as shown.

A signal current of 3 microamperes flows into the box, he discovers, causing an output signal current of 360 microamperes. Taking the ratio of these two courants, he obtains the current gain.

\[
\text{Gain} = \frac{i_{\text{out}}}{i_{\text{in}}} = \frac{360 \text{ microamps}}{3 \text{ microamps}} = 120
\]

Since current gain is usually expressed by the term beta, the tech reports to his boss that the black box has a beta of 120.

Now, remember that these two numbers, a mu (voltage gain) of 6 and a beta (current gain) of 120, are measurements made on the same amplifier, with the same signal source and the same load. The only difference between the two measurements is that voltages were measured in one case, and currents in the other.

This same set-up now is passed to a third technician, who, with a mischievous glint in his eye, proceeds to measure the output voltage and the input current. He gets yet another figure for gain.

\[
\text{Gain} = \frac{e_{\text{out}}}{i_{\text{in}}} = \frac{12 \text{ volts}}{3 \text{ microamps}} = 4 \text{ megohms}
\]

Fred's Folly? Hold on there! Gain, in meg-
ohms? Yes, indeed! Ohm's law states very clearly that when volts are divided by amperes, the result is in ohms. It's perfectly legitimate to express the gain of an amplifier in ohms, or kilohms, or megohms: whatever the ratio of its output voltage to its input current yields.

Does this mean that the amplifier can be replaced by a 4-megohm resistor? No, for the 4 megohms defined by the ratio is a special kind of resistance, called a transfer resistance, meaning that it indicates the voltage transferred to the output when a certain current is applied to the input. It is sometimes shortened to transresistance and is also called mutual resistance (RM).

This way of expressing gain is a bit unusual, which accounts for the mischievous glint in the third tech's eye. It is not found among the more common gain expressions given in the first paragraphs. Nonetheless, it is a perfectly valid way to describe an amplifier's gain.

Sam's System. The fourth technician, who now inherits the black box for the final measurement, has seen the stir created by his colleague's mixed measurement of current and voltage, so he decides to try for another flurry, only this time by reversing the measurements, getting readings for output current and input voltage. He obtains yet another gain measurement.

\[
\text{Gain} = \frac{i \text{ (out)}}{e \text{ (in)}} = \frac{360 \text{ microamps}}{2 \text{ volts}} = 180 \text{ micromhos.}
\]

This is another variation on Ohm's law. Just as volts divided by amperes' gives resistance (ohms), so the inverse (amperes divided by volts) gives conductance—the inverse (reciprocal) of resistance. The unit of conductance is the mho, which is ohm spelled backwards.

The special conductance used to describe an amplifier's gain is called transfer conductance, for the same type of reason given above for transfer resistance. Similarly, shortened forms include transconductance and mutual conductance, symbolized as gm.

So the fourth and final measurement on the black box yields an answer of 180 micromhos for the gain. In summary then, four different measurements on the same amplifier gave the following differing figures for gain.

- \(\mu \) (voltage gain) = 6
- \(\beta \) (current gain) = 120
- \(\text{RM} \) (mutual resistance) = 4 megohms
- \(\text{gm} \) (mutual conductance) = 180 micromhos

Whatever device is in the box, it certainly can use any of the familiar gain expressions—\(\mu \), \(\beta \), or \(\text{gm} \)—to characterize its gain and, moreover, can even have its gain stated by the less familiar \(\text{RM} \).

What's relevant. In general, any device—triode, pentode, transistor, or FET—could theoretically use any of these four terms to state its ability to provide gain. But in practice, the technique chosen to measure gain depends on how relevant one method may be over another.

For example, a triode's negative-biased grid, sticking into a stream of electrons in a vacuum, draws almost no current, and even that tiny current it does draw doesn't mean much in determining the triode's output. Since the input current is so tiny, and the output current so much larger, a triode vacuum tube's beta (current gain) is extremely large, but it is difficult to measure, it would vary widely from tube to tube, and doesn't mean much anyway when it comes to practical gain calculations.

On the other hand, the voltage on the grid is very easy to measure and is very meaningful in controlling the output. So, the triode's input signal is always stated in terms of voltage.

Similarly, the pentode's grid and the FETs gate draw so little current that their betas would be astronomical but meaningless, while like the triode, their grid or gate voltages are easily measured and relate closely to the output.

Something different. The ordinary bipolar transistor, however, is quite a different animal. Instead of having a grid in a vacuum or an insulated gate, it has an input consisting of a turned-on PN junction—the base-to-emitter diode. (See e/e's Basic Course for March-April, 1972 and May-June, 1972 —Understanding Semiconductors.)

This diode is almost a short circuit for signals; input voltages are therefore, very hard to measure, never go above approximately 0.6 volt, and bear a very unwieldy relationship to the transistor's output. However, this turned-on diode draws an appreciable current which also happens to be the parameter that controls the transistor's output. Therefore, the quantity most conveniently measured at the bipolar transistor's input is current.

Check our box score on the next page.

The output circuits of these devices are the other half of the story. All of them

May-June, 1972
The Language of Gain

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>INPUT Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triode</td>
<td>Voltage</td>
</tr>
<tr>
<td>Pentode</td>
<td>Voltage</td>
</tr>
<tr>
<td>Transistor</td>
<td>Current</td>
</tr>
<tr>
<td>FET</td>
<td>Voltage</td>
</tr>
</tbody>
</table>

certainly produce current, but three of them—the pentode, transistor, and FET—produce it in a most unusual way—the same way a very high voltage and a very large resistor combine to produce current in the following example.

Notice that it would make almost no difference in the 360-microampere output signal current if we dropped the 1,000-ohm load down to 10-ohms, because the total resistance (internal + load) would drop from 1,001,000-ohms to 1,000,010-ohms—an imperceptible change. An upward change of load from 1,000-ohms to, say, 10,000-ohms also has very little effect on the 360-microampere output current, because the huge resistance inside the device overwhelms the relatively small change contributed by the load. So a device that has a large internal resistance will pump out the same unvarying current, almost without regard for the value of the external load, as long as the load is much smaller than the internal resistance.

Such devices are called constant-current sources, and pentodes, transistors, and FETs behave in just this manner to provide an output signal current which is not influenced by typical load resistors. The current from these devices is, therefore, the logical parameter to be measured.

The triode, on the other hand, is not quite so single-minded about producing current as are FETs, pentodes, and transistors. Instead of some 1,000,000 or more ohms of internal impedance, triodes run from as low as 5,000-ohms equivalent resistance to approximately 50,000-ohms.

Since the triode is not a constant-current device (note that it makes quite a difference in the total resistance if the load is changed from 1000-ohms to 10,000-ohms), we normally try to measure both current and voltage in characterizing triode gains.

The box score now reads as shown below.

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>INPUT</th>
<th>OUTPUT</th>
<th>OUT/IN</th>
<th>WHICH IS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triode</td>
<td>Voltage</td>
<td>Voltage</td>
<td>Volts/Volts</td>
<td>mu</td>
</tr>
<tr>
<td>Triode</td>
<td>Voltage</td>
<td>Current</td>
<td>Current/Volts</td>
<td>gm</td>
</tr>
<tr>
<td>Pentode</td>
<td>Voltage</td>
<td>Current</td>
<td>Current/Volts</td>
<td>gm</td>
</tr>
<tr>
<td>Transistor</td>
<td>Current</td>
<td>Current</td>
<td>Current/Volts</td>
<td>beta</td>
</tr>
<tr>
<td>FET</td>
<td>Voltage</td>
<td>Current</td>
<td>Current/Volts</td>
<td>gm</td>
</tr>
</tbody>
</table>

This accounts for the association of beta with transistors, gm with pentodes, triodes, and FETs, and mu with triodes alone. Note that there is no device available which is best characterized as producing an output voltage in response to an input current; hence R is does not appear as a relevant item in the list.

The Unanswered Question. So, what was in

www.americanradiohistory.com
Characteristic low internal impedance makes triode gain measurable in μ.

the black box? Actually, no present-day device, by itself, could respond to the four tests as described above. For example, a vacuum tube would not draw in its grid will work with both AC and DC inputs. Coupling capacitors are used in the remaining three circuits, so only AC measurements are possible with these.

Bet those techs flipped out when they saw how all four circuits could give the same results. Note identical input and output parameters for each circuit.

circuit the 3 microamperes measured by the second and third techs, while a transistor would be destroyed if we attempted to impress 2 volts directly across its input, as measured by the first and fourth techs. Therefore, the box's contents must have included some other components. In fact, any of the following circuits would give the four techs the measurements they reported. However, only the transistor circuit

So we can conclude that μ, beta, and gm (and the unfamiliar rm as well) all describe gain in their own way and can, in general, describe any amplifier's gain. The individual peculiarities of tubes and transistors cause us to prefer certain terms for certain devices, and understanding what these terms are trying to tell us is very important as we learn to speak the language of gain.

MAY-JUNE, 1972
Myths take a long time dying. At some time or other early in life, just about every student learns or studies how modern radio and television broadcasting is built on the work of early radio amateurs—how the Hams got the high frequencies to work, how they made the earliest phone broadcasts, etc. And just as early in life the young electronic student hears the old, tired cliches about the "appliance CB operators," the CB "lids," the "Country Bumpkins" and "Chicken Band" of radio.

You can still tune in the Ham bands and hear endless lectures on how the FCC ought to kick the CB'ers off the air. Yet, unknowingly, these very same Hams who berate all CB'ers in general, are using store-bought equipment with technical performance, features and hardware originally intended for the CB market. And many of these appliance Ham operators know far less about their equipment than the average CB'er.

Get the Facts Straight. First, let's look at antennas. Early CB'ers shared a 108-in. mobile whip with just about every other communications service using approximately the same frequency. And while you will still see Hams, police, fire, ambulance and newscasters driving around with a flagpole on the back of the vehicle, CB'ers are using mini-whips such as the Antenna Specialists M-168 and M-175, Hy-Gain Helicat and Lafayette Auto-Top. Because these mini-whips can mount in a more optimum location—the top of a car—their performance generally equals or exceeds the full length whip swinging from the rear bumper or fender. Of course, if you like the looks of a full length whip, they're still available.

And how about fully portable antennas. While other services are still playing around with SWR meters for tune-up, we CB'ers have the Elencex Tiger Tail with built-in antenna tuner and SWR meter. In the same time it takes a commercial operator just to connect the SWR meter, the CB'er has a Tiger Tail tuned and on the air.

The picture concerning base-station antennas is even better. CB'ers started on a par with most other services—a ground plane got you on the air cheap and fast. But while other services had to go to the directional beam—usually with a rotator—to pick up some power gain, CB'ers were getting low-angle rock-crushing signals on the ground with the stretched ground planes such as the Avanti Astro Plane, Cushcraft Ringo. Antenna Specialists Mighty Magnum and Hy-Gain CLR, just to name a few.

Where It All Starts. Moving on to the rig itself, CB gear started out with the same carbon mikes and cheapie crystal/ceramics. But who was it who put the first speech compressors directly into consumer gear? Right, the CB manufacturer. And who was the first to scrap the garbage mikes and get some decent sound quality. Right again, the CB'er. And though other services have several add-on speech processors, is there anything to compare with Turner's M+3 talk power or new Sidekick 100 microphones—the latter is designed especially for SSB and AM.

While other services were peddling mechanical filters at $20 a unit (with you doing the installation), CB rigs were already using mechanical filters as a matter of course—even in the low-cost models.

(Continued on page 93)
One of America's most furious and important technological struggles, "the war of the currents," ended just eighty years ago. It started when alternating current marketed by George Westinghouse took the field against Thomas Edison's direct current.

Their contest lasted more than a decade—then, incredibly, erupted on death row and led to a switch in public opinion.

Willie Kemmler, a nondescript hatchet-killer, was no more than a pawn in the industrial war. Still, his name appears in every comprehensive biography of Edison and of Westinghouse. For it was the life—or rather, the death—of Kemmler that turned the tide in favor of everyday use of alternating current.

Edison Got the Jump. Michael Faraday developed a crude but workable dynamo on October 17, 1831. Problems connected with commercial production and distribution of electricity were so great that it took thirty years to perfect a practical dynamo for use in arc lighting.

Big-name European scientists devoted a great deal of time to improvement of the dynamo. But self-taught Thomas Edison, who never pretended to be a scientist, was the man who first put it to work on a large scale.

Edison startled the western world in 1879 by developing a constant-voltage dynamo with an efficiency in the range of 90%. His "Long-waisted Mary Ann," devel-

Whether to use AC or DC power in your home was decided over 80 years ago in a small room at the end of Auburn Prison’s death row.

by Gary Webster
op ed in the machine shop at Menlo Park, had potential to turn enough steam power into electricity to light the world. At least, that’s the exuberant claim the inventor made.

Edison put the first commercial central generating station into business on Monday, September 4, 1882. Six dynamos of approximately 125 hp were located at the plant on Pearl Street, New York City. At first only fifty-nine customers contracted to buy current, so just one dynamo was actually used.

Edison’s DC generator used a commutator that functioned best at a low constant voltage—110 to 220. Above 220 volts the commutator tended to heat quickly.

“The potential demand for electric current is practically limitless,” the inventor declared a few weeks after his Pearl Street station began operation. “In the end, production and sale of power will prove more important than all of my inventions.”

Backing that judgment, he put everything he had into the Edison Electric Illuminating Company. Business grew slowly at first. By 1884 there were 508 consumers—and the number of incandescent lamps fed by the system had grown from 400 to 10,164.

Edison had a bear by the tail, and he knew it. “I’m going to be a business man,” he confided to a friend in 1883. “I’m going to take a long vacation in the matter of inventions and devote my time and energy to work as a contractor for electric lighting plants.”

Westinghouse Enters Field. George Westinghouse, just one year older than Edison, hit the big time with his steam-power brake device for railroad use. From 1869 to the mid 1880's he devoted most of his enormous energy to railroads and auxiliary equipment for them.

In the spring of 1885 he became interested in methods of generating and transmitting electric power. By this time Edison was firmly entrenched, determined to hold his monopoly, and rather contemptuous of competing alternating current systems that were in the infancy of their development.

French electrician Lucien Gaulard and English engineer John Dixon Gibbs perfected a device that they called a transformer. With it, they claimed, alternating current could be generated and delivered at high voltages and corresponding efficiency. At the point of use, a transformer would step down current to the desired level.

Edison had an opportunity to buy U.S. rights to the new patent, but decided to stick with his direct current system. Westinghouse, a brash newcomer to the electrical field, paid $50,000 for the Gaulard-Gibbs patent and set out to challenge Edison.

He made several improvements in the European design, pushed forward with development of essential accessories needed in an alternating current system. Two of them, the meter and the AC motor, made him a serious challenger.

By 1886 the newly organized Westinghouse Electric Company was manufacturing transformers in quantity. A test program was arranged in Great Barrington, Mass. Using a power line that carried 500 volts, Westinghouse and his men employed transformers to reduce voltage to about 100 volts at point of use. Several stores in the village were lighted satisfactorily.

Transmission at high voltage meant that the Westinghouse system was not limited by distance. He proved that by establishing a system in Buffalo and putting it into service on the night before Thanksgiving, 1886.

Public Became Involved. Westinghouse and his backers had not completed their first New York installation before the general public became involved. Ex-governor Cornell wrote an urgent letter to New York’s mayor in 1888. “High-tension circuits must be absolutely prohibited within the city limits,” he insisted.

Cornell simply reflected views expressed in lurid newspaper stories, many of which are now known to be of doubtful authenticity. Headlines screamed such tidings as:

WIRE CLAIMS ANOTHER VICTIM

HORRIBLE DEATH OF A LINEMAN

HIGH-TENSION SLAUGHTER

ANOTHER CORPSE IN THE WIRES

At least one repairmen was killed while mending an insulator at the top of a pole and a boy peddler died from contact with a wire that hung too low. Some New York papers set up special departments to collect and distribute gifts to “adults crippled, children orphaned in consequence of public indifference to the arch destroyer running” (Continued on page 92)
Whenever the mad scientist in the movies bends over a console that looks like something from Elementary Electronics, you can bet that any weird background music heard is played in part by an electronic curiously called a Theremin. The Theremin is an old device whose circuits have been around for years but were often too unstable or too complex for an experimenter. We now present the Ultra Simple Theremin—a stable, solid-state musical instrument with a live and most extraordinary sound. We'll also show you how to make a swell-to-great expression pedal for controlling the volume with your foot.

Leon Theremin, a Russian, invented the first Theremin and planned to display it at the 1939 New York World's Fair. A ballerina was to dance between two columns, her body capacitance to generate music. Unfortunately, when the dance was graceful, the music wasn't and contrarily. Thus, the ultimate Theremin never appeared but the smaller versions have ever since. Our Theremin, so simple and so small, took an abbreviated form of Leon's surname, Theremin.

With practice it's possible to play any kind of tune on the UST, making it a natural for Rock Combos. Another plus in this application is its ability to work through a standard Hi-Fi amplifier or musical instrument amplifier. Adding effects to home recordings or school plays; or just jamming with friends are some of the ways UST can prove its worth. Cost is all of ten bills if you'll settle for a cigar box or similar case.

Some Thumbnail Theremin Theory. Everybody knows that a superheterodyne receiver works by mixing too high frequency signals and amplifying one of the resulting (sum or difference) frequencies. That is exactly what happens in the UST. As two signals are mixed, the resultant difference frequency falls within the audio spectrum. Look at the schematic and you'll see two oscillator circuits similar to those found in wireless mikes. Each oscillator generates a signal at approximately 540 kHz depending on the setting of the loopstick slugs. Each RF signal is then coupled through C5 or C6 to the gate of Q3 where mixing occurs. Initially, the oscillators are adjusted to generate signals of the same frequency; therefore, no audio note is heard. But if someone were to approach an antenna connected to the tuned circuit of one of the oscillators, his or her natural capacitance would load the circuit and lower the frequency of oscillation. A beat note, whose frequency is in proportion to the amount of body loading, i.e., distance from the antenna, would be heard.
What makes this circuit stable is the use of a FET as the mixer. It provides a very high-Z load to the oscillators to prevent the external amplifier and cable from affecting frequency.

Construction. First, locate and drill holes for the output and antenna jacks. A hole larger than the diameter of the cable for the pedal goes in the back, and a grommet is inserted to prevent damage to the insulation. A hole on the front panel for the slide switch is made with a nibbling tool, while a clamp for the battery can be just a strip of sheet metal bent to shape and screwed to the side wall. Mount and tighten all components.

The author used a 3½-in. x 4½-in. punched phenolic terminal board and push-in terminals to construct the circuit. You'll probably find it convenient to wire an oscillator on either side of the board with the mixer in the middle. Don't wire in C5 until the rest of the oscillator section is complete; this way you can decide where Q5 will go and make the gate connections with no trouble. Start by bending the coil mounting brackets at right angles. Mount one on either side of the circuit board. Snap the coils in place and put a knob on the coil which will be connected to the antenna. Finish the tuned circuits by soldering 3-in. leads to each coil terminal and by soldering the 270pf capacitors across opposite lugs (1 and 3). Wire one oscillator at a time; orient Q1 and Q2 so both emitters point toward the front of the case.

When the board is ready, mount it in the box. Thread the 3-conductor pedal cable through the grommet in back and wire it to the circuit. One lead goes to the hot side of J1, one to the circuit board output terminal, and one to ground. Make the antenna by soldering a 1-foot length of busbar to the center contact of an RCA phono plug. Connect the antenna to the antenna jack and begin work on the swell-to-great pedal.

No Cake Baking Here. Make the pedal by screwing together a 6 x 3½-in. piece of thin sheetmetal and a piece of slightly smaller masonite. It must be hinged at the bottom with a butt hinge available from a hardware store. Fasten it to the masonite side of the pedal with short screws and nuts so that it won't restrict pedal movement. The base is a metal cake pan. Ours measured 9¼ x 5¾ x 2¾-in. Screw the pedal assembly to the inverted pan about a half-inch from the edge. Uncoil one turn of a small, firm spring and re-wrap it under the head of a 6-32 screw. Fasten the spring to the center of the pan in a position that raises the pedal about two inches above its base (include a solder lug under the nut for later use).

An angle bracket is used to mount the potentiometer shaft about 1½-in. from the bottom of the pan. Turn the shaft to its maximum counter-clockwise position, and file or sandpaper a small area on the top of the shaft to make it rough. Tin the area with solder using a very hot, clean iron. At this point, solder a 1½-in. length of No. 18 Busbar to the tinned area on the shaft. Bore a hole in the pan directly under the center of the pedal top and run a second piece of busbar through this hole and solder to the upper end of the pedal. Use trial and error fitting to loop the two busbar ends together until the pedal moves freely up and down. When all is well, connect the 3-conductor cable from the UST. Ground the pedal with a wire from the solder lug to the cable ground.

Tuneup and Testing. Temporarily break the lead from the emitter of Q2 to ground; turn the UST on and place it near an AM
radio tuned to 540 kHz. Adjust the slug in L1 with a screwdriver for a strong carrier signal. Reconnect the Q2 emitter. With the antenna plugged-in, connect an amplifier to the output jack. Turn on the UST, depress the foot pedal and turn the L2 slug slowly until you hear a squeal. As you keep turning, the squeal should get lower and lower in pitch until it disappears. This will occur at two settings very close to each other. You will want the setting which allows you to change the pitch by moving your hand toward the antenna. If you have a problem with stability, lack of range, or sensitivity (your hand has to be too close to the antenna to get a tone), just play with the adjustment of L2 to get the best compromise. It's critical but should be stable once properly set.

Now start to practice by learning where various notes are located. Any special effects on your amplifier, particularly reverb, can be used to advantage for modifying the basic sound of the instrument. When people want to know how you get the squeals without touching anything, say there's a Qirl inside and when you bring your hand too close...
Subject: New Home Entertainment Electronics Systems Program

Competitive Advantages:
- Features first Solid-State Color TV (315-square inch, rectangular screen) Kit for at-home training to build, keep.
- Provides three additional professional quality kits to assemble, keep, use.

COMPONENTS:

- Note: Our 315 sq. in. rectangular Solid-State Color TV is an industry first!

Specifications:
New 25" diagonal, ultra rectangular screen, 315-sq. inch viewing area. 25,000 volt, solid-state design, w/ 45 transistors, 55 diodes, 2 silicon rectifiers. 4 advanced IC's w/46 transistors, 21 diodes, 2 tubes: picture and high voltage rectifier, Solid-State VHF and UHF tuners. 3-stage solid-state IF, APT standards. VHF power tuning. Also: "Instant On" circuit, automatic color control, noise limiter.

Descriptive analysis:
Modular plug-in circuit board design provides for more than 100 advanced solid-state devices. Insures premium color, sound control, exceptional reliability, easy access. Includes Hi-Fi amplifier for sound output, built-in dot generator, tilt-out convergence panel. Handy Volt-Ohm meter permits initial set-up and adjustment plus detailed troubleshooting. 315-sq. inch picture tube face transmits entire image. Push button channel advance. AFT module brings in perfect picture, sound automatically. Easier to service than older, non solid-state sets. Quality components throughout.

Electro-Lab-at-Home:
Components included:
The Electro-Lab® consists of three units, arriving in 16 shipments which recipient assembles, keeps. All components are professional quality. The circuit DESIGN CONSOLE contains built-in power supply, test light, speaker. Patented Modular Connectors permit plug-in to console to rapidly "breadboard" many different circuits. No soldering or messy un-soldering necessary.

The portable 5-inch, wide-band OSCILLOSCOPE is calibrated for peak-to-peak voltage and time measurements... offers 3-way jacks to handle test leads, wires, plugs. Images on screen are bright, sharp.

The lightweight TRANSISTORIZED METER combines most desired features of a vacuum-tube voltmeter and a high-quality multimeter. Features a highly sensitive, 4-inch, jewel-bearing d'Arsonval meter movement. Registers current, voltage and resistance on large, easily read dial.

Consensus: first class gear.

Program is designed to give:
- Understanding of electronic circuits in most home entertainment electronic systems
- Ability to analyze and troubleshoot a wide variety of advanced solid-state and other TV circuits
- Capability to understand and use test equipment and procedures with special emphasis on TV testing
- Ability to assemble, test and adjust the solid-state TV kit included with the program

www.americanradiohistory.com
Color TV is going Solid-State—here's how to help yourself get ready for it:

There's nothing else like this exciting new program that offers the first 315-sq. inch Solid-State Color TV available for at-home training.

As you follow the simple, step-by-step assembly and testing procedures, you will soon become thoroughly familiar with the most advanced solid-state TV circuitry. And you'll help prepare yourself for a profitable Color TV service business of your own—either full or part time.

Why Color TV pays better.
Today, Color TV is the big seller. And tomorrow, when it goes all solid-state, the man who has mastered this circuitry, will be in demand. This, of course, is where the money is going to be made.

But, this new Bell & Howell Schools program will also give you the in-depth knowledge of the basics as well as TV circuit analysis. You'll get the theory and practical experience you need to handle radios, Hi-Fi's, stereos, tape recorders, B & W television as well as most other home entertainment electronic devices.

Build, keep your own 25” diagonal Solid-State Color TV Set
Whether you are a beginner, an experienced hobbyist, or a pro working in the field, you are going to be delighted with the performance you get from this new solid-state kit. So proud, you'll want to show it off to your relatives and friends.

The "spare" at left give a few of the facts. But there are many, many features besides these which you will not find in any set on the market today. Send for all the facts and this is the one you'll want.

You're ready for many kinds of Home Entertainment Equipment
This is a thorough-going program, put together by professionals, with completely up-dated components and materials. When you have completed it, you'll have a new kind of confidence in your ability to tackle almost anything related to electronics in the home. And I can assure that these devices are definitely on the increase!

In addition, you'll have the kind of sound technical background you need for either a career as a technician in the Electronics industry or a business of your own—either full or part time.

Note: TV picture is simulated.

CONSIDER THESE ADVANTAGES:
Bell & Howell Schools' Electro-Lab-at-Home Plan gives you the most thorough background possible in solid-state Color TV. Everything comes to you by mail. No traveling. You go at your own speed and never miss a paycheck!

When you have completed your program our Lifetime National Placement Service will help you locate in an area that interests you. This service is available at any time—now or in the future.

Approved for G.I. Benefits.
Our programs are approved for Veterans' Benefits. If you're a Vet, check the space in the card for full details.

Student Loans now available
If you are a non-veteran and need financial assistance, you may qualify for Student Loans, which are also available.

Special Help Sessions.
These are scheduled regularly (Saturdays) at seven Bell & Howell Schools and in many other cities. Here you can get expert guidance by top instructors to help you over any rough spots.

Bell & Howell Schools offer you even more. Once you have finished your program at home, you may decide you want more advanced preparation. In this case, you can earn transfer credits to any one of our seven schools which are located all across the country.

Mail the postage-free card today for all the facts. There is no cost or obligation of any kind.

DeVry Institute of Technology
ONE OF THE
Bell & Howell Schools

(TV kit is not available in Canada)
STAR

▲ In the current edition of Webster's International Dictionary, "star" rates ten entries. Most of 'em have two, three, or more subheads. But there's nary a word about STAR.

Scientists at Caltech's Jet Propulsion Laboratory perfected an electronic whiz kid and put it into operation in 1968. Unlike most computers, this one has capacity (within limits) to diagnose its own flaws and to figure out ways to master those flaws—without human help.

A prototype of the kind of computer that will be needed to guide unmanned expeditions to Jupiter and the outer planets, it was natural to call the Caltech electronic brain a "Self-Testing and Repairing" computer.

But in everyday use, no one—not even the persons who are proudest of it—are going to use such a title. Initial letters of the label describing the computer that will (hopefully) pave the way to the stars form a cluster of symbols that reads: STAR.

Obviously, this combination of letters was not formed by chance. Builders of STAR, casting about for a name, chose one from which the acronym could be formed.

- So many thousands of devices, techniques, procedures, and substances have tongue-twisting names that abbreviation is practically demanded. Result: a special dictionary of acronyms. To distinguish these artificial words, they're commonly written in capital letters.

Increasing numbers of them are going lowercase, however, by entering the common vocabulary in the fashion of radar (radio detecting and ranging).

NAL

▲ Unless an acronym is the result of deliberate manipulation of words, its unlikely to resemble any term in common speech. Until it becomes so widely used that great numbers of persons recognize it instantly, the coinage continues to be written or printed in capitals—and does not win space in ordinary dictionaries.

It's anybody's guess as to what the future of NAL will be.

Until it was chosen as the site for the National Accelerator Laboratory, Batavia, Illinois, was merely another obscure mid-western community. Today, scientists everywhere speak of Batavia because of its most famous son.

NAL was initially planned to operate with maximum energy of 500 billion electron-volts. Competition from other big accelerators on the drawing board, plus desirability of yet more energy, has caused keepers of NAL to do some re-thinking.

A ring of super-conducting magnets laid on top of the present main ring of conventional electromagnets offers theoretical hope of boosting power to 1,000 or even to 2,000 GeV. Regardless of whether that peak is ever reached, work at Batavia offers such exciting possibilities in proton acceleration that NAL has a good chance of becoming nal during this century.

LIDAR

▲ A casual glance suggests that LIDAR is at least distantly related to radar. In the family of words, this relative newcomer is a grandson of the old-timer that is in the working vocabulary of practically all air travelers, weather report watchers, and traffic officer lookers.

Using light from a laser in lieu of sound, light detection and ranging is proving more versatile and efficient than pioneers in the field conceived possible. LIDAR has already demonstrated its capacity to scan the face of the moon with uncanny accuracy; now it is being adapted for pursuit of the elusive CAT (clear air turbulence). That is a major hazard in aircraft operation here on earth.

FRAT

▲ Put to its first practical use in Viet Nam, FRAT is a highly-sophisticated device with which many GIs prefer not to fraternize.

Research workers have known for years that heroin affects body chemistry. But it was not until this decade that the drug was found to leave its "signature" on certain free radicals (clusters of atoms that do not form molecules, but which retain their identity).

Once this effect of heroin was known, it was comparatively simple to devise an electronic machine for Free Radical Analysis Technique. A FRAT costs only $26,000 and for about $1 gives a decisive verdict about whether or not a person is on heroin.
PART 2
UNDERSTANDING SEMICONDUCTORS

What You Will Learn. In this part you will learn about how transistors are biased for use as amplifiers and why different polarity voltages are required for PNP and NPN transistors. You learned what a hole was in Part 1, now you will see where hole flow is found in transistors. How a transistor amplifies is discussed, and a look at the three basic types of transistor amplifiers shows you why each has special uses. You will also be introduced to transistor specification sheets.

* This series is based on Basic Electricity/Electronics, Vol. 2, published by Howard W. Sams & Co., Inc.
TRANSISTOR OPERATION

Several questions have probably come to mind by now if you have read and digested Part 1. How can a solid-state material amplify? Is there a difference between a junction and point-contact transistor or between a PNP and an NPN transistor? One of these questions can be answered immediately. Junction and point-contact transistors are almost identical in operation for our purposes. Therefore, all discussion will be directed to junction transistors, but it is understood that it applies to both types.

Biasing

In the junction transistor, two PN junctions are established. If these PN junctions are properly biased, the transistor can be made to operate as an amplifier. The proper method for biasing an NPN transistor is discussed next.

The figure shows an NPN transistor biased properly to operate as an amplifier.

Q1. A transistor is a single semiconductor crystal with - - - PN junctions.
Q2. A transistor can perform the same function as a - - - - - - - - - - - - - - - - (From part 1)
Q3. P-type semiconductor material sandwiched between two pieces of N-type material forms an - - transistor.

Your Answers Should Be:
A1. A transistor is a single semiconductor crystal with two PN junctions.
A2. A transistor may perform the same function as a vacuum-tube triode.
A3. P-type semiconductor material sandwiched between two pieces of N-type material forms an NPN transistor.

In the arrangement shown, a forward bias is applied between the base and the
emitter. This results in emitter current. A reverse bias is applied between the collector and the base. This results in a flow of collector current that is nearly equal to the emitter current. The reason for this seeming contradiction, as we will see, is that the base is very thin—less than one-thousandth of an inch.

Before continuing, it is time to learn a few more short-hand notations used when referring to transistors:

- **B**—Base
- **E**—Emitter
- **C**—Collector
- **I_B**—Base current
- **I_E**—Emitter current
- **I_C**—Collector current
- **V_EB**—Voltage from emitter to base
- **V_Cb**—Voltage from collector to base

Current Flow in a Biased Transistor

The figure shows the electron flow in a biased NPN transistor. With the emitter-base junction forward biased, electrons in the emitter drift into the base to combine with the holes in the base. Each time an electron enters the emitter from V_EB, an electron leaves the base and returns to V_EB. Thus there is electron flow from emitter to base.

Since the base-collector junction is reverse-biased, very little current should flow through it. This current is produced by leakage due to V_Cb.

Why is I_C almost equal to I_E? Since the base is very thin, there is not a sufficient barrier in the base region to stop the large number of electrons coming from the emitter. These excess electrons pass through the base and on to the collector due to the presence of V_Cb. The reason why these electrons are not stopped by the collector-base barrier is that there is a strong positive voltage attracting them. This voltage is due to the series combination of V_EB and V_Cb. The major portion of I_C is due to the electron flow from emitter to collector. Notice that current flow in the base is due to both the forward and reverse bias voltages. Thus, there are current flows indicated in both directions. I_E is the difference between these two currents.

Q4. The emitter-base junction of a transistor amplifier must be forward biased and the collector-base junction must be reverse biased.
Q5. Under these conditions collector current is (equal to, slightly less than, more than) emitter current.
Q6. This is explained by the fact that not a large enough electrical barrier exists in the base to stop all the coming from the emitter.
Q7. Identify the following shorthand notations: I_B, I_C, I_E, V_{EB}, and V_{CB}.

Your Answers Should Be:
A4. The emitter-base junction must be forward-biased and the collector-base junction reverse-biased.
A5. Under these conditions collector current is slightly less than emitter current.
A6. This is explained by the fact that not a large enough electrical barrier exists in the base to stop all the electrons coming from the emitter.
A7. I_b—Base current
 I_c—Collector current
 I_e—Emitter current
 V_{EB}—Voltage from emitter to base
 V_{CB}—Voltage from collector to base

Biasing PNP Transistors
The difference in operation between PNP and NPN transistors is that the movement or flow of electricity in PNP transistors is accomplished not by electron flow but by hole flow. Also, proper bias for a PNP unit is achieved by using negative voltage polarities—just the opposite of those used for an NPN transistor. However, the bias between emitter and base is still forward bias and the bias between collector and base is still reverse bias. Since the emitter is P-type and the base is N-type germanium, a battery with its positive terminal connected to the emitter

CURRENT IN A BIASED PNP TRANSISTOR

ELEMENTARY ELECTRONICS
will forward-bias the emitter-base junction. In a similar fashion, a battery whose negative terminal is connected to the P-type collector will reverse-bias the collector-base junction.

When so biased, the transistor conducts. The emitter, being a P-type semiconductor, passes a positive charge to the base. Whenever an electron from the emitter enters the positive terminal of the forward bias battery, it leaves what is called a hole. At the same time, an electron from the negative terminal of the battery enters the emitter via the base to fill a hole. This is the technique employed to describe the passage of electrons in P-type semiconductor material. Because the base is thin, nearly all the holes from the emitter are drawn to the negative terminal of the battery connected to the collector. Of course, only electrons, and not holes, flow in the external circuit.

HOW A TRANSISTOR AMPLIFIES

Recall in basic theory how the control grid in a vacuum-tube triode has a great control over plate current. A transistor is capable of amplification because of a similar arrangement. The base in the transistor acts to control current through the transistor in much the same fashion as the grid controls current in the triode.

GROUNDED-EMITTER BIAS CIRCUIT

Consider another arrangement of the transistor. This arrangement is similar to the one showing a properly biased NPN transistor. The only difference is that the reverse bias between collector and base is provided by V_{CE} in series with but opposing V_{BE} (V_{CE} is large compared to V_{BE}). This is called a grounded-emitter circuit.

Q8. Bias polarities for a PNP transistor are the _______ of those for an NPN transistor.

Q9. The base in a transistor has an action similar to the _______ in a triode.

Your Answers Should Be:

A8. Bias polarities for a PNP transistor are the opposite of those for an NPN transistor.

A9. The base in a transistor has an action similar to the grid in a triode.

Triode Amplifier Versus Transistor Amplifier

The grounded-emitter circuit mentioned is the most common arrangement for a transistor amplifier. Let's compare it with the most common triode circuit, the grounded-cathode amplifier. You can see from the figure where this amplifier gets its name.
Compare the two circuits shown in the figure. The triode is composed of a cathode (K) that emits electrons; a plate, or anode, (P) that collects the electrons; and a grid (G) that controls the flow of electrons to the plate. The transistor is composed of an emitter (E) that supplies electrons, a collector (C) that collects the electrons, and a base (B) that controls the flow of electrons. The transistor base is very thin, and the vacuum-tube grid has a fine-wire construction. Each of these elements, therefore, allows accelerated electrons to pass through. However, each has great control over the number of electrons that actually reach the collector of electrons (the plate or collector).

In the transistor, the forward bias \((V_{BE}) \) serves the same function as the negative bias in the triode. Instead of a voltage gain, however, a current gain will be measured. The symbol for current gain is the Greek letter \(\beta \). To obtain this current gain, \(I_c \) and \(I_e \) are recorded for a particular \(V_{BE} \). \(V_{BE} \) is changed and the new \(I_c \) and \(I_b \) recorded (\(V_{CE} \) is held constant). Current gain is then calculated by dividing the change in \(I_c \) by the change in \(I_b \). \(\beta \) is often called hfe.

Another parameter of the transistor (beta is a parameter like \(\mu \) in the triode tube) is alpha (\(\alpha \)). Alpha is the ratio of the change in collector current to the corresponding change in emitter current, when the collector voltage is constant. Another symbol for \(\alpha \) is \(h_{FE} \). It has been shown that under most biasing methods the collector current is slightly less than the emitter current (due to the base drawing some of the current from the emitter). Therefore, the ratio of \(\Delta I_c \) and \(\Delta I_e \) must be less than one. For example, if the collector current changes 4.8 ma and the emitter current changes 5 ma, then the base current must change 0.2 ma. Calculate alpha as follows:

\[
\alpha = \frac{\Delta I_c}{\Delta I_e} = \frac{4.8 \text{ ma}}{5.0 \text{ ma}} = 0.96
\]
Q10. A transistor configuration corresponds to a grounded-cathode triode amplifier.

Q11. The numerical value of alpha is

Q12. If \(I_B \) is 100 \(\mu \)a when \(I_C \) is 1.0 ma, and \(I_B \) is 50 \(\mu \)a when \(I_C \) is 0.5 ma, what is \(\beta \)?

Your Answers Should Be:

A10. A grounded-emitter transistor configuration corresponds to a grounded-cathode triode amplifier.

A11. The numerical value of alpha is less than one.

A12.

\[
\beta = \frac{\Delta I_C}{\Delta I_B} = \frac{1.0 \text{ ma} - 0.5 \text{ ma}}{100 \mu \text{a} - 50 \mu \text{a}} = \frac{0.5 \text{ ma}}{50 \mu \text{a}} = 10
\]

Transistor Amplification

How can a current gain of less than one result in amplification? The answer is that a power gain is realized. The reason for this can be found in the values of the input and output impedances (resistances) of the transistor. The input resistance of the forward-biased, emitter-base junction is low. The output impedance of the reverse-biased, collector-base junction is very high. Consider the formula for power:

\[P = I^2R \]

If you compare the input and output circuits of the transistor in terms of their power consumption, you will see that there is a power gain. Consider a transistor with an emitter-base resistance of 100 ohms and a collector-base resistance of about 1 megohm. Since the collector and emitter currents are very nearly the same, the difference in the power produced by each will depend largely on the resistance. Thus, the power in the collector circuit will be much larger than that in the emitter circuit. The transistor is capable of matching low-resistance circuits to high-resistance circuits and of providing a power gain. It is this transfer of resistance that gives the transistor its name. Contracting transfer and resistor gives transistor.

BASIC TRANSISTOR AMPLIFIERS

NPN or PNP transistors can also be used as grounded-collector and grounded-base amplifiers. The three basic transistor amplifiers can be compared with the three basic vacuum-tube amplifiers—the grounded-cathode, grounded-grid, and grounded-plate.

Common-, or Grounded-, Base Amplifier

Shown below are an NPN common-base amplifier and its vacuum-tube equivalent, the grounded-grid amplifier. The base and grid are grounded. The input signal is applied to the emitter in the common-base circuit, and to the cathode in the grounded-grid circuit. The output signal is taken from the collector and the plate. The input and output signals of these amplifiers have the same polarity; that is, they are in phase. The common-base circuit is used mostly as a voltage amplifier. It has these characteristics:
1. The input impedance is low, about 60 to 100 ohms.
2. The output impedance is high, about 0.5 to 1.0 megohm.
3. Current gain is less than one.
4. Voltage gain is medium, about 150.
5. Power gain is medium, about 450.
6. No phase reversal occurs.

Q13. Phase shift in a grounded-base amplifier is .
Q14. The voltage gain in a grounded-base amplifier is .
Q15. In a grounded-base amplifier, the input impedance is , and the output impedance is .

Your Answers Should Be:
A13. Phase shift in a grounded-base amplifier is zero.
A14. The voltage gain in a grounded-base amplifier is medium.
A15. In a grounded-base amplifier, the input impedance is low, and the output impedance is high.

Common- or Grounded-, Emitter Amplifier

The figure below shows a common-emitter amplifier and its vacuum-tube equivalent, the grounded-cathode amplifier. The emitter and cathode are grounded. The input signal is applied to the base and the grid, respectively, and the amplified output is taken from the collector and the plate, respectively. A phase reversal of 180° occurs between the input and the output. The common-emitter amplifier had these characteristics:

1. Input impedance is low, about 700 to 1,000 ohms.
2. Output impedance is high, about 50,000 ohms.

ELEMENTARY ELECTRONICS
3. Current gain is about 50.
4. Voltage gain is high, about 500.
5. Power gain is very high, about 800.
6. Phase reversal occurs.

Common-, or Grounded-, Collector Amplifier

The figure shows a common-collector amplifier and its vacuum-tube equiv-

MAY-JUNE, 1972
alent, the grounded-plate amplifier. Notice that the collector and plate are not at DC ground, but at AC ground, due to the large capacitor bypassing the battery. The input signal is applied to the base and grid, respectively. The output signal is taken from the emitter and cathode, respectively. This circuit is also called an emitter follower, and its equivalent is called a cathode follower. The characteristics of the emitter-follower amplifier will follow.

Q16. A common-emitter amplifier produces a phase shift of ——.
Q17. The voltage gain of a common-emitter amplifier is ——.

Your Answers Should Be:
A17. The voltage gain of a common-emitter amplifier is high.

Emitter-Follower Characteristics
The gain of an emitter-follower and a cathode-follower circuit is always less than one. These circuits are usually used to match impedances between two circuits. The common-collector amplifier has these characteristics:

1. Input impedance is very high, about 300K to 600K.
2. Output impedance is low, about 100 ohms.
3. Current gain is about 50.
4. Voltage gain is less than 1.
5. Power gain is low, about —250. (The negative sign means that power is consumed by RL.)
6. No phase reversal occurs.

TRANSISTOR CHARACTERISTICS
The performance of transistors, like solid-state diodes, is affected by temperature. A change in temperature varies the junction resistance. From the study of diodes you learned that the PN junction has a negative temperature coefficient. This changes the junction bias and the current flow across the junction and therefore affects transistor performance. For this reason, manufacturers list operating temperatures for their transistors.

TRANSISTOR CHARACTERISTIC CURVES
Do you remember how to obtain information from a family of curves associated with vacuum-tube amplifiers? Transistors have similar curves. The figure shows the family of curves for both a pentode amplifier and an NPN-type transistor connected as a common-emitter amplifier. Notice the correspondence between \(I_E \) and \(I_C \), \(E_P \) and \(V_C \), and \(E_o \) and \(I_B \).
Q18. The emitter follower is best used for what purpose?
Q19. The common-base circuit is most used as a ____________
Q20. The ____________ circuit may best be used as a power amplifier.
Q21. Use the V_c-I_c curves to obtain beta.
Your Answers Should Be:

A18. The emitter follower is best used to match high-impedance circuits to low impedance circuits.
A19. The common-base circuit is most used as a voltage amplifier.
A20. The common-emitter circuit may be used as a power amplifier.
A21.

\[\beta = \frac{\Delta I_c}{\Delta I_b} = \frac{19 - 12 \text{ ma}}{0.2 - 0.1 \text{ ma}} = \frac{7 \text{ ma}}{0.1 \text{ ma}} = 70 \]

Notice that this method is almost identical to the method used to obtain parameters from vacuum-tube curves.

TRANSISTOR SPECIFICATION SHEETS

Most transistor manufacturers present transistor information on specification sheets. These sheets are the equivalent of a tube manual. The figure shows some of the typical data supplied.

Each manufacturer selects some of his own special electrical specifications for presentation on these data sheets. However, many of them are alike for various manufacturers. Notice that the temperature at which these specifications were obtained is mentioned. Many of these specifications differ at other temperatures. The maximum values listed are limiting values. Above these values transistor life and performance are impaired.

Q22. Transistor data sheets give - - - - - - - - and - - - - - - - - specifications.

Your Answer Should Be:

A22. Transistor data sheets give electrical and mechanical specifications.
WHAT YOU HAVE LEARNED

1. The collector-base junction must be reverse-biased.
2. Transistor current gain (measured from collector to base) is called beta (β) and may be quite large. Another current gain (measured from emitter to collector) is called alpha (α) and is usually less than one.
3. The base of the transistor is very thin.
4. Holes in a PNP and electrons in an NPN transistor are drawn to the collector by the voltage connected to the collector terminal.
Great careers

Join the high-paid electronics technicians who got their start through NTS Home Training.

Your home can become your own private classroom-workshop. NTS sends you everything you need to learn valuable technical skills in electronics. You get easy-to-grasp lessons, comprehensive kit manuals, large fold-out charts, and more. Plus the finest professional equipment available today. It's all included in your tuition, yours to keep.

Your equipment is sent to you in kit form, matched to lesson material. With the NTS Project Method, you start with simple projects, then move from basics to more complex concepts. You discover how electronic principles work by performing practical, fascinating experiments. Learn at your own pace.

You quickly become expert in the actual equipment and methods you'll use on the job. And soon you're ready to cash in on the tremendous opportunities in the expanding, exciting world of electronics!

If your field is television, you might decide to join a first-class TV repair center. Or start a shop of your own. Or specialize in industrial applications of television. Once you master an area of electronics, the direction you take is really up to you. And you'll be able to use the test instruments you built yourself!

It all begins at home, with NTS Project Method Training. Find out how fast and easy it is to learn skills that pay off. Check card or coupon today for your free full-color NTS Catalog and complete details. No obligation. No salesman will call.

NTS COLOR AND B&W TV SERVICING

Solid-state B&W TV 74 sq. in. picture (cabinet included)

Learn sophisticated solid-state circuitry as you build this B&W TV receiver. Course covers the full range of home entertainment electronics.
New solid-state
315 sq. in. color TV

The exclusive
NTS Compu-Trainer

NTS COMPUTER ELECTRONICS
Build and operate the exclusive NTS Compu-Trainer! Loaded with integrated circuits, it teaches you the how, what, and why of computers faster, more thoroughly. You perform all wiring and patch-cording. No short-cuts. No pre-wired circuit boards. Also receive an FET Volt-Ohmometer and a 5" wide-band Oscilloscope.

NTS ELECTRONIC COMMUNICATIONS
Gain the prestige and earning power of owning an FCC First Class Radio Telephone License! Two exciting courses in the fields of transmitting and receiving. Experiment with an amateur phone 6-meter VHF transceiver. NTS' exclusive 6-transistor solid-state radio, and a fully transistorized volt-ohmmeter.

NTS AUTOMATION/INDUSTRIAL ELECTRONICS
Systems automation is the future of industry — and you can play an important role! Enter the age of electronic controls by training on the NTS Electro-Lab—a complete workshop. Also receive a 5" wide-band professionally rated Oscilloscope. Build five industrial controls to regulate motor speed, temperatures, pressure, liquid level and much more.

CLASSROOM TRAINING AT LOS ANGELES
You can take classroom training at Los Angeles in sunny Southern California. NTS occupies a city block with over a million dollars in facilities devoted exclusively to technical training. Check box in coupon.

APPROVED FOR VETERANS
Accredited Member: National Association of Trade and Technical Schools, National Home Study Council.

CIRCLE NO. 10 ON PAGE 17 OR 103

May-June, 1972
Ask Hank, He Knows . . .
Continued from page 26

at 40 amp capacity at 12 volts. Output to be used to control a DC motor.
—R.L.W., Calif. Hot Springs CA

Forty amps is a lot of juice at any voltage. Your best bet is a surplus or inexpensive battery charger that can deliver 40 amps continuously. This purchase will be a heck of a lot cheaper than trying to buy parts for the powerhouse you need.

It's Where You Look!

I have a Lear Radio and need a tube that so far we can't find. It's a 6SF7. What do I do?
—J. L., Hoopeston, IL

I didn't believe your address was real till I checked the postmark. Nice to know we have friend(s) in Hoopeston. As for the 6SF7, gad—they should be all over like umgwha! Find the oldest TV or radio repairshop in your neck of the woods and I'll bet you they have a basement full. If the owner has trouble finding some, tell him they're under the pile of 6SN7's.

War of Currents
Continued from page 66

from telegraph pole to telegraph pole.” Edison wrote an article on The Dangers of Electric Lightning for the influential North American Review. He virtually converted his big West Orange laboratory into a propaganda factory where stray dogs and cats purchased for 25¢ each were killed in the presence of reporters and dignitaries.

A New Use for Electricity. Propaganda plus demonstrations plus occasional fatal accidents convinced the masses that the new alternating current actually was deadly.

Ordinary folk paid no attention to the Westinghouse emphasis upon use of transformers, by which current was customarily reduced to 50 volts before it entered a shop or residence. They only knew that alternating current will kill.

In this climate, it took just one vivid incident to suggest a new use for electricity.

Several members of the New York state legislature were among witnesses to a particularly gruesome hanging. Since the rope was not adjusted properly, the condemned woman slowly strangled before their eyes.

Why not do away with ropes? Why not bring “instant and painless death” by means of the dreadful alternating current?

This proposal made so much sense that the legislature of 1886 created by statute a commission of three investigators. Headed by Elbridge T. Gerry, they reported in favor of adopting capital punishment by electricity—and were careful to specify that alternating current be used.

Westinghouse took out advertisements protesting that direct current can be lethal, too. He pointed to the example of Benjamin Franklin, who had killed a number of small animals with direct current of low voltage.

Widey revered, more firmly established, and perhaps more aggressive in his propaganda campaign, Edison won easily. On June 4, 1888, Governor David B. Hill signed a bill stipulating that in New York condemned felons would, after January 1, 1890, be executed by means of “alternating currents of electricity applied to the body.”

Contracts were drawn up for electrical death apparatus at Sing Sing, Auburn, Buffalo, and Clinton prisons. Significantly, it was the one-time Edison employee Harold P. Brown who got the jobs.

At Clinton he used a dynamo capable of supplying alternating current for 650 incandescent lamps of sixteen candle power each.

Three commissioners appointed by the New York State Prison Superintendent

DXing Ice Cubes

My DX-150A Realistic SW receiver equipped with a Hy-Gain window-mount antenna experiences extremely strong interference from the refrigerator compressor in our home. Is there an inexpensive way to cure this?

—C. S. E., Poultney, VT

If your refrigerator does not have a three prong plug, ground the unit to the outlet plate with a #12 copper wire. By the way, your radio is trying to tell you your refriger's motor may go anyway. Start saving for a new unit.

Receiver Hot Line

What type of aerial would pull in the most DX possible? Is it a doublet, a long-wire antenna, a loop, a directional loop or what?

—F. B., Montreal, Quebec

A long wire antenna because the longer and higher the wire, the greater its capture effect. However, in a metropolitan area, such as Montreal, there are so many strong radio signals on the air that selectivity will suffer and even receiver overloading can occur. Better, use a tuned antenna in such an area, but this will require retuning the antenna system when you retune the receiver.

Elementary Electronics
made elaborate tests at each prison. To be sure that apparatus was lethal and painless, at Auburn they tested current on a calf and a horse. "Death was instantaneous," they reported.

One member of the commission, Dr. Alphonso D. Rockwell, devised but did not patent a special wooden chair fitted with electrodes. Hailed as "a marvel of humane progress," the new electric chair and its deadly alternating current would "forever end shame and indignities of barbarous dispatchment of those condemned by society."

Equipment was ready; the only thing needed was an occupant for the chair.

Declared guilty of having killed his common-law wife, timing of Willie Kemmler's trial was such that he seemed to be the logical candidate upon which to test the new and humane method of execution.

Long-drawn Legal Contest. Sentenced in Buffalo early in June, 1889, Kemmler was sent to death row in Auburn Prison.

While his case was being appealed, a number of prominent persons began challenging the Electrical Death Law. Kemmler, who had no money, suddenly announced that he was being represented by a big-name and high-fee law firm headed by the nationally famous W. Burke Cochran.

Legal maneuvers, public protests, paid advertisements, and secret lobbying failed.

Electrocuted by means of alternating current shortly after dawn on August 6, 1890, Kemmler's death was seen by two dozen notables. Reporters were barred, so mingled with thousands of curious outside the prison.

Instead of producing a quick and tidy death, the electric chair virtually cooked its victim during several minutes when current was applied and then re-applied.

Strange Denouement. More than any other single factor, the slow and tortured death of Willie Kemmler convinced the man on the street that Thomas Edison was wrong. Alternating current couldn't possibly be so lethal as the great inventor had said.

A surge of popular support for Westinghouse came in the aftermath of one of the most highly publicized executions in American history. Efficiency and low cost of the alternating current system gave it ever-increasing advantages over the direct current system.

Edison eventually capitulated and joined forces with Westinghouse. They pooled their patents and resources to expand alternating current and make it standard in most U.S. operations. Twenty years afterward Edison made one of his rare confessions: "I was wrong," he told George Stanley. "If I had followed your father's advice and given alternating current a fair trial, this country never would have been subjected to the war of the currents."

CB COFFEE BREAK
Continued from page 64

Frequency synthesis? Cut crystal costs in half? While electronic magazines were still printing articles on what it was. CB'ers were using it!

How about noise blankers to crush mobile

Lafayette HB-625 has high quality noise blanker.
(Circle 41 on Reader Service Page)

MAY-JUNE, 1972
spring for more bread you can go sideband with SBE, Tram and Lafayette, whose sideband signal sounds a lot better than a lot of commercial stuff.

The time will come when someone will strike a medal in honor of creativity and performance brought to modern communications by CB. But until that happens, you'll just have to grin and bear it the next time you hear someone say, "CB is just a plaything for kids."
aperture of the lens when the lens is observed several feet distant. Adjust the receiver's solar cells so that the entire reflector takes on the dark color of the cells when observed straight-on. This means that all light striking the reflector will be reflected to the cells.

When the units are aligned, leave the transmitter and its operator at a fixed location, and slowly walk away while directing the receiver toward the point of maximum signal. Instruct the transmitter operator to count into the microphone. As the range is increased, reception will be more difficult (because of alignment), but the signal from the transmitter should be receivable at about 1,000 feet at night. Range will be dependent on the size of the receiver's reflector. Daylight operation will result in considerably reduced range due to saturation of the detector solar cells. The problem can be partially alleviated by placing a cardboard tube over the front of the receiver to shield the detector from stray sunlight. Reception can be further improved by placing an infrared filter over the receiver detector. Edmund Scientific Co. sells several inexpensive filters. These optical shielding techniques will also reduce effects of buzz and hum from artificial light sources.

MICROWAVE OVENS

Continued from page 42

roasts or roasting chickens and turkeys. These fats reach temperatures above 212°F, and act to accelerate the browning reaction on the meat surface.

Some Cooking Tips. Since small items cook faster than large items, it is good practice to do all of one size at a time. In baking potatoes, for example, if they are nearly alike in size they will all be finished at the same time. The alternative to size grading is to remove the smaller items as they are done and continue to cook the larger items. This requires considerably more attention.

Since metals, including aluminum foil, reflect microwave energy you can use this phenomenon to advantage in certain cooking operations to restrict heating in certain areas. A good example to illustrate this effect is in the cooking of a large beef roast. See Fig. 5. First, wrap aluminum foil over the outer two inches at each end of the roast and cook for 2 to 3 minutes per pound (in a 1 kW oven 20 to 30 minutes for a 10 lb. roast). The roast should be turned at least once during this time. Remove the foil and cook for an equal period of time, again turning at least once. Remove the roast from the microwave oven, cover and let stand an additional 30 to 45 minutes or until a meat thermometer inserted into the center of the roast reads 140-150°F. Shielding the roast in this way dur-
ing cooking will insure a more uniform degree of doneness from one end of the roast to the other. If a more well done roast is desired, it can be returned to the oven for an additional 5 to 10 minutes.

A circle of foil placed in the center of a slice of left over roast will keep it from becoming too well done while warming it for service. When heating a casserole, the use of a strip of foil around the edge will slow down the heating effect in this area and insure a hotter center. There are many other possibilities using foil and metal forms to control microwave heating.

Regular shapes heat more uniformly in a microwave oven. When the shape is irregular the thin, narrow parts tend to overcook and may be dried out by the time the thicker parts are done. This of course, happens in conventional cooking but is less pronounced because cooking is slower. Where it is possible to control the shape, as for example with a meat loaf or by tying a beef roast into a more cylindrical form, much more uniform results are obtained. Where this is not possible, thin parts may be covered with aluminum foil for a part of the cooking cycle. The same technique can be applied in protecting the wing tips and legs of roasting chickens and turkeys.

Dinner is in the Bag. One of the principle advantages of microwave cooking is that it often can be accomplished in the serving dish or in the package in which the food was purchased. With the exception of metals, all packaging materials are transparent to microwave energy. The list includes oven-proof glass, ceramics, chinaware, plastic ware, paper containers of all types and plastic films.

It is not entirely true that in microwave cooking only the food is heated. Some plastics must be used with caution. Melamine plastic ware, for example, absorbs enough energy to cause charring in places. Such plastic ware quickly becomes too hot to handle. Styrenes give off a strong odor and deform if heated too long.

The amount of energy containers absorb can be determined by making an oven power measurement with and without the container in the oven. The difference is the amount of energy absorbed by the container.

Some ceramic dinnerware may absorb several watts of power for each ounce of weight. Considering the weight of such containers, the total power absorbed can be considerable. In some cases this is a desirable feature since foods in these dishes tend to remain warmer after serving.

Care should be taken not to use chinaware with metallic trim designs, as the thin metal trim will tend to arc and pit, thereby damaging the appearance of the chinaware. The container also is likely to be quite hot in these regions and care should be taken in handling such dishes. It should be pointed out that no harm will come to the oven if such dishes are inadvertently used.

Save the Nutritive Value. The effect of microwave energy on vitamins in foods is negligible with a slight edge in favor of the microwave oven. Generally the effect is about the same as for conventional heating methods.

In many instances more of the natural vitamins are retained when vegetables are cooked in a microwave oven because in most cases this is done without the addition of water, thus there is no leaching out of vitamins. When vegetables are cooked in water usually only the vegetable is served, not the liquid, though studies have shown that a good percentage of the vitamin is in the liquid.
160-plus fully-indexed pages by make and model of car • Thousands of listings • Prices for all domestic cars including American Motors, Chrysler, Ford, GM, GMC, International, Jeep • All models and accessories prices • Prices on light trucks

Join thousands of smarter car buyers

More than a car-buying guide! More than a price-comparison listing. You get the easy-to-use, reliable, accurate dollars-and-cents figures that put you on even terms with professional auto-sales people who seek profits as avidly as you seek savings—on one of the biggest single-dollar investments you make! Car/Puter's AUTOFACTS is an indispensable working tool for insurance companies settling claims, banks in financing loans, for car dealers and salesmen in "cutting" from list prices. AND FOR YOU, THE CONSUMER, WHO AT LAST HAS THE FIGURES TO SAVE HUNDREDS & HUNDREDS OF DOLLARS ON ANY NEW CAR PURCHASE!

Dealers will take a small profit over their cost, rather than lose a sale—if it's offered to them! And this is where AUTOFACTS gives you real bargaining power!

With this truly valuable price-facts book, in seconds you flip to the new car you want... you check the dealer's cost...and you MAKE YOUR OFFER RIGHT THERE ON THE SPOT! Today, thousands have already saved unbelievable sums of money—this simple, no-begging way. BEFORE YOU BUY ANY NEW CAR, get your copy of AUTOFACTS.

Simply fill in and mail immediately the coupon with $1.50 plus 25¢ for postage and handling (cash payment only) and the newest issue of AUTOFACTS will be sent to you immediately. Or if you prefer a subscription, send $7.50 cash for all 5 editions shown in the coupon and save $1.25 in postage.

If you're buying or selling a USED CAR, get the complete listing of all American make cars (and light trucks) for the past 7 years. There are two AUTOFACTS used car editions—Spring and Fall—complete with wholesale and retail prices. Only $1.50 each.

• WHAT DEALERS ACTUALLY PAY FOR CARS
• HOW MUCH DEALERS MARK UP THEIR COST ON THOSE "SPECIAL DEALS" YOU'RE OFFERED
• EXACT COST OF OPTIONS AND ACCESSORIES
• CHARGES THAT CAR DEALERS CAN ADD...and lots more useful information.

SPECIAL BONUS FOR AUTOFACTS READERS

How to get a brand new car for only. $125 over dealer's cost!

New 48-hour computerized service helps you make the best deal on your own—or you can arrange purchase through UAB for $125 over cost! HOW? Through the United Auto Brokers' Car/Puter organization, participating with 400 dealers. Your purchase price includes freight and pre-delivery service. No hidden charges! Take delivery from a local dealer without delay. A new car of your choice with every option you selected. SAME NEW CAR WARRANTY AND SERVICE as if you had paid full list...same financing and terms as if you had dealt with the dealer directly. A BONUS COUPON in your AUTOFACTS entitles you to a 20% discount off the Car/Puter computerized service. Certain limited production or specialty models priced higher. Some foreign models not available.

Car/Puter's AUTOFACTS • Davis Publications, Inc. • 229 Park Avenue South • New York, N.Y. 10003

Please enter my order for Car/Puter's AUTOFACTS as indicated below:

[] Send Spring issue of 1972 New Car Prices (latest Gov't-approved price hikes). Payment enclosed of $1.50 plus 25¢ for postage and handling.

[] Send Fall edition of Used Car Prices. Payment enclosed of $1.50 plus 25¢ for postage and handling.

[] I prefer a full year's subscription (April issue; June issue of estimated '73 new car prices; Nov. issue of actual '73 new car prices; Spring Used Car edition; Fall Used Car edition).

[] Payment enclosed of $7.50

Write publisher for bulk rates. Add $1 per issue for orders outside Continental USA & Canada.

MAIL THIS COUPON TODAY!

name (please print)
address
city state zip code

www.americanradiohistory.com
above the switch was on the alarm was on, and a flick of the key turned it off. The SS-500 entrance key switches are spring-return, so it always resets to the operating position.

It is important to note that the basic intruder/burglar protection uses series connected ("closed circuit") sensors, and only they operate the "circuit test" or "ready" light. Though the intruder/burglar circuit can also accommodate "open circuit" sensors they cannot signal through the "circuit test" light. Of course, if an open circuit sensor is tripped the alarm will instantly sound the bell when the system is turned on. Open circuit sensors are generally used for a backup, such as a matswitch placed under the carpet at the foot of the stairs, or next to patio doors; a closed circuit sensor would normally protect the door itself.

It Gets Larger. Another feature we liked is that of expandability. You can start with basic protection—such as the entrance doors, with fire detection in the bedroom areas, and then easily expand the system, as the budget or your time allows to other rooms in your house.

And just to make sure you get the installation and any possible expansion done correctly, the SS-500 is supplied with a thorough, well illustrated installation manual.

Summing up. The EICO SS-500 Home Protection System works as well as, if not better, than many so-called "professional" or industrial systems—at a lot less cost. Fact is, the SS-500 has more features than much "professional" equipment. And it certainly works a lot better than many do-it-yourself systems presently on the market that are supposedly intended for the average home owner.

We should point out that if you live in an apartment or very small house and have no need for all the security hardware in the SS-500 kit, you can obtain just the FC-100 Control Center and the necessary bell, horn and/or sensors. EICO sells all parts on a peg board rack at your local independent electronics dealer. For additional information write, circle No. 44 on Reader Service Coupon on page 17 or 103.

Sounds from the Ground
Continued from page 51

I casually tuned across a weak signal that seemed to be a three-way telephone call! Well, you'll just have to listen for yourself...

Audio? Why Audio? You may be wondering why the underground receiver was designed to receive audio signals. It seems that there's a new fad among electronics minded Hippies. Recently, they have been feeding their high-power guitar amplifiers into the earth! They tell their local friends to drive a pole into the ground, connect it to the input of their own guitar amplifier (along with a good earth ground), and listen to the speaker!

Healthkit DVMM
Continued from page 58

an additional hour or so for calibration. Since the overall accuracy is totally dependent on the user's calibration efforts, the more time you spend on calibration the greater the accuracy.

How it works. The Heathkit DVMM uses what is called "dual slope" integration, which in non-fancy words means that it is really, a frequency counter with a readout expressed in volts, ohms or milliamperes. The basic DC voltmeter simply measures how long it takes for a capacitor to discharge. The DC input voltage is applied to an integrator; the integrator's capacitor charges and discharges in accordance with the applied voltage. The greater the voltage the longer the discharge time. The discharge time is measured and the readout is calibrated in DC volts. The readout is maintained until the input voltage changes, at which time the readout locks onto the new voltage input.

For AC measurements the input voltage is simply converted to DC through a half-wave rectifier. For resistance measurements the meter applies a current between 1 mA and 100 nA through the unknown resistance and the meter measures the voltage drop across the unknown resistor (which is in series with a known resistance). For current measurements the meter again measures voltage drop, this time across calibrated resistors built into the IM-102.
Goof proof. You would have to try hard to damage the IM-102 because the inputs are protected both by fuses and diode clamps. Even if the meter were set to say, the 200 mV range, it is protected against overload up to 250 AC volts, 350 DC volts. On the higher ranges the overload protection extends to 500 AC volts, 1000 DC volts.

Easy to use. One of the nicest features of the Heathkit IM-102, which is not even found on many higher priced lab models, is the single set of input jacks (with standard 3/8" spacing) for all voltage and resistance measurements. You do not have to move the test leads when going from AC to DC volts or volts to ohms. You need move only the positive test lead when measuring current.

Performance. Since this is supposed to be a lab grade meter we tested it for long term stability. After initial calibration we turned it on and let it run continuously for two weeks. There was absolutely no change in performance, calibration or accuracy at the end of the test period. Since we do not have a voltmeter calibrator we checked the IM-102 against a lab grade DVMM (priced well over $500) with a 0.1% accuracy. Under worst-case conditions our IM-102 had a 0.5% accuracy except on the AC current ranges where it was nominally 1%. (All accuracy is of course ± 1 digit.)

Most important the IM-102 has a nominal accuracy of 1% from 20 to 20,000 Hz on the lower ranges and a worst-case 2% 20-20k accuracy on the higher ranges. This makes one heck of a good, sensitive AC meter and is superior to many so-called lab grade DVMMs whose accuracy poops out above 10 kHz. And bear in mind that this accuracy is with a preset adjustment of the high frequency input divider trimmers. If you can latch onto a voltage calibrator (or have an alignment lab or Heath do a full instrument calibration) the 20-20k accuracy improves to a nominal 0.5%. And that is top performance in any language.

Summing up. Because the Heathkit IM-102 is so accurate you'll find it's a natural for calibrating your other test equipment such as VOMs and signal generators. Fact is, we'll bet this is one instrument you'll never loan a friend, because you'll suddenly find you cannot do without a DVMM. Why don't you get more facts and figures direct from the Heath Company by circling No. 1 on the Reader Service Coupon found on page 17 or 103.

DX Guide

they have been logged in North America on frequencies as low as 2868 kHz. All reports should contain two International Reply Coupons available from any post office for 15-cents each. This is of course less than you would pay a dealer for the equivalent stamps, and in most cases he couldn't provide the rare postmarks.

Stamp collectors turned DXers will encounter a completely different kind of problem if they tackle the Spanish held Canary Islands and British owned Ascension. These are the sites of widely heard international relays operated by R. Nacional Espana and the British Broadcasting Corporation. It is official policy of both these organizations to issue all QSLs from their headquarters in Madrid and London respectively. However some reports addressed to Sr. J. de Rojas Mora, Director, RNE Canarias, Santa Cruz de Tenerife have been answered directly from the islands. RNE Canarias is easily heard evenings in North America with Spanish transmissions beamed to Latin America on 11,800 and 15,360 kHz.

(Continued on next page)

It just may happen!

"Burp..."

May-June, 1972
Electronic QSL's? When the BBC's S. Atlantic Relay Station first appeared on the scene in 1966, the staff planned to issue special QSL cards directly from Ascension Island at their own expense. However, the quantity of mail, among other factors, soon became so overwhelming that the project had to be abandoned. As giant interrelated networks of SWBC relays, of which BBC Ascension is a part, become ever more all-encompassing and politically intricate, DXers will find it increasingly difficult to obtain QSLs representing any individual transmitter site. This same “transmitter explosion” is part of an overall technological trend which, ironically, may eliminate the postal system entirely as we know it. If that happens, collectors will have to abandon stamps, except as high priced historical artifacts of an antique communications system, and concentrate entirely upon the QSL which by then would reach the DXer electronically via a myriad of completely interchangeable facilities.

In other words, the very problems posed for stamp collectors by RNE Canarias and BBC Ascension suggest yet another reason why all philatelists should also now become QSL connoisseurs. On the other hand, if you are unable to receive a reply directly from RNE Canarias, you can always try for Canarias Aeradio working South Atlantic traffic on 8882 kHz. Unfortunately, Ascension Aeradio won’t do you a bit of good as it is operated by the USAF and would use U.S. stamps.

Early Morning Goodies. With the exception of ultra-rare St. Helena, Bermuda is least involved in political/technological issues of all the islands covered in this article and therefore, once you log it, it will be the easiest from which to receive a QSL with the island’s own individual stamps affixed. But even here, ZFB1, a MW Broadcast Band station (960 kHz) at Hamilton, sometimes acts as an unofficial Voice of America relay. Early in 1971 they were reported by members of the International Radio Club of America with VOA English language transmissions during the wee hours of the morning; QSLs for these can be obtained directly from ZFB1. If you live East of the Mississippi and don’t have an all night local on 960, you should eventually bag this one.

Meanwhile, during the evening hours Eastern collectors, depending upon their selectivity of their receivers and local QRM situation, might also be able to hear ZBM1 on 1235 kHz, half way between two graveyard channels. Or, if you can hear neither ZFB1 nor ZBM1, Kindley Aeradio is widely heard days on 8871 kHz and 2868 kHz at night.

Stamp Shack
Continued from page 25

speaker against blue and green concentric circles to suggest radio waves.

- Shortly after the United States developed the Marconi invention and began broadcasting, our southern neighbor’s technicians decided to adapt this then-newest of communications methods for the enlightenment and entertainment pleasure of its people. A small studio was erected in Mexico City and on Oct. 9, 1921, the first transmission was effected. In the intervening five decades, radio broadcasting has become a major enterprise, not only in the capital, but all over the Mexican landscape from the Rio Grande to Yucatan. Having added TV to its facilities, Mexico City’s broadcasting operations (including network programs) are housed in an immense skyscraper whose many floors are filled with studios of every size and with equipment that rivals that to be found in Radio City or Hollywood. (See top of next page)
When Carl Zeiss began business at Jena in 1846, he concerned himself solely with the careful grinding of small optical lenses. He possibly never anticipated that his name one day would become world famous, nor that it would be honored by postage stamps—after all, the first ones had been introduced only six years earlier; Jena itself would not have postage stamps until four years later. Yet that is what happened on Nov. 9, 1971.

The Postal Administration of East Germany released an interesting triptych stamp as a tribute to the 125-year old firm. At the left to a small 10-pfennig value which depicts a model Dahlta 010A theodolite in the firm's geomat series, the first of which was developed by Zeiss in 1908. In the center is a multi-lens projector with a circle of astronomical phenomena as the subject of the 25pf value. It was Zeiss' invention of this instrument that enabled him to create the world's first planetarium for the reproduction and study of the heavens and outer Space, under artificial conditions.

At the right is another small design, a 20pf stamp which shows a modern medical microscope in the Mikroval series which developed over the decades since Zeiss made his and Europe's first high-power magnifier only a year after he opened his shop.

All three of the stamps, which may be individually or as an unservered triptych for a total face value of 55pf, include the internationally recognized "Carl Zeiss/Jena" trademark to be found on all of the firm's optical products.

Following WWII and the Soviet occupation of East Germany, the firm's plants in Jena were appropriated by the Communist regime, and because of the exceptionally high standards of excellence and precision of Zeiss products it became a vital part of East German economy. It still is the foremost of that land's industries.

What's New? Sensing that some collectors do not like printed albums but prefer to make up their own individual ones, the Vidiforms Company, of New York, N.Y. 10956, has turned out a handy spiral-bound binder containing 20 heavy pages that have only a thin black frame and pale gray quadrilles. Owners, then, can mount their stamps to satisfy personal tastes with as much or as little descriptive matter and decoration as may be desired. The album costs $2, and may be ordered from the publisher.

The H. E. Harris Co., Boston, Mass. 02117, has come up with its newest edition of its annual "US-UNBNA Catalogue." This latest in a long series of price guides for those who do not want to spend much more for the more elaborate, standard ones, costs $1 as usual. It describes, illustrates and gives current market values of United States and UN stamps in mint and used singles and mint blocks of four, and also includes a section for British North American issues.

Bookmark
Continued from page 24

Everything a license applicant needs to know is included—complete detailed answers to questions on any subject he may be asked when taking an exam, plus complete sets of questions on each element (with answers in the back of the book) as a double-check on what has been learned and what needs further study. Numerous practical examples are used to describe the various principles covered in the exam questions. Published by Tab Books.

(Continued on next page)

May-June, 1972
A Freebee. One of the first booklets ever to clearly and simply explain the use of optical flats is *Optical Techniques For Measuring Flatness* which is published by Edmund Scientific Co. The text familiarizes readers with the effects of the interference of light and the necessary techniques for measuring flatness using optical standards. To use an optical flat (Edmund carries a complete line in stock), it is necessary to understand the theory on which it is based. This instructive booklet is practical not only for quality control and machine shops but also for educators... because it clearly explains the theory so you will be able to devise your own techniques when faced with an unusual problem, or a situation differing slightly from those described. The 16-page booklet covers: light waves and interference; contact method for testing flatness; typical interference patterns and their interpretation; non-contact methods of measurements (Twyman & Green and Fizeau Interferometers); and applications. To get your free copy of the Optical Techniques... Booklet. No. 9883, by return mail, just write to Edmund Scientific Co., 555 Edscorp. Bldg., Barrington, New Jersey 08007. Tell 'em you saw it in ELEMENTARY ELECTRONICS.

DX Central Reporting
Continued from page 22

In a land where pagan voodooism is still widely believed and practiced, it’s understandable that Christian missionaries would turn their attention to Haiti. It was in 1950 that a missionary group, the East and West Indies Bible Mission, began Radio 4VEH. Its work was taken over by the Oriental Missionary Society in 1958, and since then the station's operations have expanded greatly.

On both medium and shortwaves, Radio 4VEH operated with dual programs in Spanish, French, Creole and English, some 150 hours a week. Co-directors, the Rev. Maridy Picazo and Gaudin Charles, a Haitian citizen, co-ordinate the efforts of some 17 Haitian missionaries who produce religious and informational programs in the local languages. Seven foreign missionaries handle the technical aspects of broadcasting and produce the English and Spanish programs.

In the U.S., Radio 4VEH can be heard broadcasting in English during the morning hours around 1230 to 1400 GMT, on 9,770 kHz.

The station is very friendly to SWLS and appreciates letters. Over 22,000 were received by 4VEH in 1970 alone. Correct reports, sent to Radio 4VEH, Box 1, Cap Haitien, Haiti, will bring a QSL card. Return postage, in the form of unused Haitian stamps, or two (2) International Reply Coupons, available at your post office for 22 cents, are appreciated by this station which operates on a limited budget.

Bandsweep. Frequencies in kHz, tunes in GMT. 3,223—Remember a few months back when we mentioned the proposed new African station, Swazi Radio? Though this commercial outlet in Swaziland is not on the air as this is written, look for them on this frequency during the late afternoons... 4,965—Consistently one of the best bets for those looking for South American stations is Radio Santa Fe in Colombia. Its Spanish broadcasts can be heard nearly every night on this spot... 5,047—And for those looking for African signals, the powerful transmitter at Lome, Togo is the ticket. On the East Coast you might catch it before 2300 sign off. Otherwise, try around 0600 GMT... 6,090—Radio Australia’s foreign service is often heard by SWL’s. For something a tad more difficult, try the domestic broadcaster of the Australian Broadcasting Commission at Sydney around dawn... 7,300—One of the more audible clandestine stations is the so-called Voice of Truth, operated from East Germany by the Greek Communist Party. A tuning signal, played on a flute, precedes its sign on at 1900... 9,516—Many DXers need Uruguay in their countries logged list. Radio Sarandi, Montevideo with Spanish broadcasts until 0100 s/off may do the trick for you... 10,040—The English-speaking “lady” who broadcasts to American troops in Indochina has been dubbed “Hanoi Hattie.” You can hear her over North Vietnam’s Voice of Vietnam 2320... 11,850—Another African outlet worth tuning is Radio Ghana, which has an English transmission to North America from 2000 to 2100. 15,520—The conflict between India and Pakistan resulted in the creation of a new country. You can find Radio Bangladesh in an English foreign service from 0230 to 0300.

Bockstelle. “I enjoy your column and look forward to each issue of ELEMENTARY ELECTRONICS for the information in the Bandsweep section,” writes Edward Parker of Hoffman Estates, Illinois. “But I have a question. I read somewhere that the BBC does not accept reception reports and I’d like to have the situation clarified.”

The British Broadcasting Corporation (BBC) is happy to receive reception reports, Ed. And SWLs reporting correctly will receive an attractive card in return. However, the card’s text says only that the report was in agreement with BBC’s scheduled programs; obviously...
The Editor of ELEMENTARY ELECTRONICS offers readers an easy way to get additional information about products and services advertised in this issue. Also, if you would like more information about any new product mentioned in our column "Hey, Look Me Over," it's yours for the asking. Just follow the instructions below and the material you requested will be sent to you promptly and at no cost.

The coupon below is designed for your convenience. Just circle the numbers that appear next to the advertisement or editorial mention that interests you. Then, carefully print your name and address on the coupon. Cut out the coupon and mail to ELEMENTARY ELECTRONICS, Box 886, Ansonia Station, New York N.Y. 10023. Do it today!

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
</tr>
<tr>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
</tr>
</tbody>
</table>

Are you a subscriber to ELEMENTARY ELECTRONICS? □ Yes □ No
How many of the last 3 issues did you read? □ None □ 1 □ 2 □ 3

Name (Print Clearly)
Address
City State Zip Code

May-June, 1972

MAY/JUNE 1972
Void after November 30, 1972

ELEMENTARY ELECTRONICS
Box 886, Ansonia Station, New York, N.Y. 10023
something less than a definite verification statement. The BBC's rational for this policy is that their programs are aired not only from transmitters in England, but also relay stations on Ascension Island, Cyprus and Malaysia, to say nothing of off-the-air pickups and relays by non-BBC stations in various parts of the world. Since many of these stations broadcast within the same range of frequencies, sometimes at the same hour, the BBC apparently feels it can't be sure which transmitter a listener has logged.

One of the top medium wave listeners on the West Coast, Father Jack Pejza of San Diego, passes along the word that California CBC monitors are hearing a new Russian station on 1529 kHz from 1000 to 1200 GMT.

Clyde Burdette, Jr., describes himself in his letter as "an Army GI stationed in Germany whose spare time hobby is SWL'ing." Clyde has nabbed a station that many Stateside DXers would love to tune. The station is FEBA, a religious missionary outlet on 11,950 kHz, operating from the island of Seychelles in the Indian Ocean. He logged them at 1700 to 1900 GMT, asking for reception reports to Box 234, Seychelles. This one has been heard in the U.S., so the rest of you, go to it!

Letters have been received also from Robert Vance, Kansas City, Mo., who sends a nice list of DX loggings, from 15-year-old Tim Fisher of Columbus, Ohio, who has logged 51 countries in a year and a half of SWLing.

Both Bob and Tim list among their loggings the powerful Radio Nacional de Nicaragua, a solid catch on 11,875 kHz, during the evening hours in North America.

Be a Joiner. Our parade of DX clubs continues this month with the Worldwide TV-FM DX Association. It is particularly appropriate that we tell you about this fine club now, as the annual late spring-summer TV and FM DXing season is almost upon us.

Maybe you didn't know that really long range TV and FM DXing was possible. If you didn't know that reception of FM and television stations hundreds and thousands of miles away was possible, then a glimpse of WTFDA's information packed monthly bulletin will be a real eyeopener!

If you are a newcomer to this special field of DXing—or if you'd like to become one and don't know where to start—WTFDA will help you become familiar with the equipment and techniques of other members and offer plenty of useful information. Some members have been in FM-TV DXing for 20 years and are willing to pass along tips learned by long experience. A basic packet of material for the new DXer is also available through the club.

Curious? Then use the handy form on this page to join up or request a sample bulletin. Remember to send it directly to the club, not to DX Central Reporting.

Hey, Look Me Over

Continued from page 16

phones, or internal telephone systems as a paging source. The TM-1 has two outputs: (1) a high level output for matching the auxiliary (phone-line) input of an amplifier or receiver; (2) a low level output that matches either a Lo-Z or Hi-Z microphone input of an amplifier or receiver. Supplied in a sturdy metal case with mounting flanges. List price: $13.50. For more information circle No. 49 on Reader Service Coupon on page 17 or 103.

Plum Snakey Stereo

Heathkit has given portable stereo a whole new dimension with its new GD-111 "Plum Snakey" kit that puts an automatic recorder player and an AM radio in a turned-on prismatic purple package. There's an acoustically matched stereo system—4-speed automatic turntable, powerful 18-watt amplifier and two detachable 4½ in., high-compliance speakers. Turn the mode switch and the GD-111 is turned on to the solid-state AM receiver. To stash it all and go, the speakers swing closed, the turntable tilts in and a handle flips up, resulting in a durable rough-and-ready carrying case. The GD-111 goes together in a few hours. The changer and cabinet are preassembled. The kit builder simply constructs the AM and amplifier circuits boards, installs the changer, speakers in the cabinet. The "Plum Snakey" sells for $109.95 mail order direct from Heath Company. For further information, circle No. 1 on Reader Service Coupon on page 17 or 103.

WORLDWIDE TV-FM DX ASSOCIATION

P.O. Box 5001
Milwaukee, Wisconsin 53204

I read about WTFDA in ELEMENTARY ELECTRONICS "DX Central Reporting." (Please check one:)

☐ I want to join. I am enclosing $5.50 (third class mail) or $8.50 (first class mail) for one year's membership.

☐ Please send me more information about WTFDA and a sample bulletin. I am enclosing 50 cents.

Name__________________________

Address________________________

City State ZIP_________________
This important job (and its big income) is reserved for a qualified electronics technician. It can be you!

It's a fact. There are thousands of jobs like this one available right now for skilled electronics technicians. What's more, these men are going to be in even greater demand in the years ahead. But how about you? Where do you fit into the picture? Your opportunity will never be greater... so act now to take advantage of it. The first step? Learn electronics fundamentals... develop a practical understanding of transistors, trouble-shooting techniques, pulse circuitry, micro-electronics, computers and many other exciting new developments in this growth field. Prepare yourself now for a job with a bright future... unlimited opportunity with lasting security... prestige and a steadily growing paycheck.

Cleveland Institute of Electronics courses have been stepping stones to good jobs in electronics for thousands of ambitious men. Why not join them? You can learn at home, in your spare time, and tuition is remarkably low. Read the important information on the facing page. Then fill out the postage-free reply card and drop it in the mail today. Without obligation we'll send you all the details. But act now... and get your high-paying job just that much sooner.

Elementary Electronics
How You Can Succeed In Electronics
... Select Your Future From Seven Career Programs

The "right" course for your career

Cleveland Institute offers not one, but seven different and up-to-date Electronics Home Study Programs. Look them over. Pick the one that is "right" for you. Then mark your selection on the bound-in reply card and send it to us. In a few days you will have complete details . . . without obligation.

1A. Electronics Technology
A comprehensive program covering Automation, Communications, Computers, Industrial Controls, Solid-State Devices, and preparation for a 1st Class FCC License.

1B. Electronics Technology with Laboratory
Includes all areas of Course 1A including 1st Class FCC License preparation. In addition, student receives 161-piece Electronics Laboratory and 17 "lab" lessons for "hands-on" experience.

2. Broadcast Engineering
Here's an excellent studio engineering program which will get you a 1st Class FCC License. Now includes Video Systems, Monitors, FM Stereo Multiplex, Color Transmitter Operation and Remote Control.

3. First Class FCC License
If a 1st Class FCC ticket is your goal, this streamlined program will do the trick and enable you to maintain and service all types of transmitting equipment.

4. Electronic Communications
Mobile Radio, Microwave and 2nd Class FCC preparation are just a few of the topics covered in this "compact" program. Highly recommended for jobs with telephone companies.

5. Industrial Electronics & Automation
This exciting program includes many important subjects such as Computers, Electronic Heating and Welding, Industrial Controls, Servomechanisms and Solid-State Devices.

6. Electronics Engineering
A college-level course for men already working in Electronics . . . covers Steady-State and Transient Network Theory, Solid-State Physics and Circuitry, Pulse Techniques, Computer Logic and Mathematics through Calculus.

An FCC License . . . or your money back!

The CIE courses described here will prepare you for the FCC License specified. In fact, we are so certain of their effectiveness we offer this warranty: Should you fail to pass the FCC examination after completing a CIE license preparation course, we will refund all tuition payments. You get an FCC license... or your money back. This warranty is valid during the entire completion time established for your course.

CIE's AUTO-PROGRAMMED Lessons help you learn faster and easier

Cleveland Institute uses the new programmed learning approach. Our Auto-Programmed Lessons present facts and concepts in small, easy-to-understand bits . . . reinforce them with clear explanations and examples. Students learn more thoroughly and faster through this modern, simplified method. You, too, will absorb . . . retain . . . advance at your own pace.

Employment Assistance available for all CIE students . . . at no extra cost

Once enrolled with CIE, you will get a bimonthly listing of high-paying, interesting jobs available with top companies throughout the country. Many CIE graduates hold such jobs with leading companies like American Airlines, AT&T, General Electric, General Telephone and Electronics, IBM, Motorola, Penn Central Railroad, Raytheon, RCA, Westinghouse and Xerox . . . to name a few.

CIE Lessons are continually up-dated

All lesson books and materials from CIE are continually revised or replaced according to the current needs of industry and the rapidly advancing and changing state of the art.

New Revised G.I. Bill Benefits:

All CIE courses are approved for full tuition refund under the new G.I. Bill. If you served on active duty since January 31, 1955, or are in service now with more than 180 days active duty, check box on reply card or coupon to get latest G.I. Bill information.

Cleveland Institute of Electronics
1776 East 17th Street, Cleveland, Ohio 44114

If card has been removed, mail this coupon for 2 FREE BOOKS

Cleveland Institute of Electronics
1776 East 17th Street, Cleveland, Ohio 44114

Please send me without cost or obligation:
1. Your full-color book, "Succeed in Electronics"
2. Your copy of "How To Get a Commercial FCC License"

I am especially interested in:
☐ Electronics Technology ☐ Broadcast Engineering ☐ Electronic Communications ☐ Electronics Technology with Laboratory ☐ First Class FCC License ☐ Industrial Electronics & Automation ☐ Electronics Engineering

Name (please print) ________________________________ Age ______
Address ___
City __________________ State __ Zip ___________
☐ Veterans & Servicemen check here for G.I. Bill information
Accredited Member National Home Study Council

EL-33

CIRCLE NO. 3 ON PAGE 17 OR 103
BUILD 20 RADIO and Electronics Circuits

PROGRESSIVE HOME RADIO-TV COURSE

Now Includes:
- 12 RECEIVERS
- 3 TRANSISTORS
- SQ. WAVE GENERATOR
- SIGNAL TRACER
- AMPLIFIER
- CODE INJECTOR
- CODE OSCILLATOR

YOU DON'T HAVE TO SPEND HUNDREDS OF DOLLARS FOR A RADIO COURSE

The "Edu-Kit" offers you an outstanding PRACTICAL HOME RADIO COURSE at a rock-bottom price. Our Kit is designed to train Radio & Electronics Technicians, making practice portable. This is a COMPLETE RADIO COURSE IN EVERY DETAIL. In a professional manner, you will learn to build radios using actual parts, making practice real and drastic. This is THE radio course for anyone who wants to learn the principles of radio. You will learn to build radios using the Progressive Signal Tracer, Progressive Signal Injector, Printed inductive material. You will receive practice trouble-shooting, using the Progressive Oscillator. You will learn to use the dynamic Radio & Electronics Tester. You will be able to do all the job for your family, neighbors, and charges without the price of the "Edu-Kit." Our Consultation Service will help you with any technical problems you may have.

FREE EXTRAS
- SOLDERING IRON
- ELECTRONICS TESTER
- Pliers-Cutters
- VALUABLE DISCOUNT CARD
- CERTIFICATE OF MERIT
- LEDGER INSTRUCTION MANUAL
- DEALER'S INTEGRITY GUIDE - QUizzes TELEVISION RADIO,BANDC WINNING BOOK
- MEMBERSHIP IN PROGRESSIVE HOME RADIO & TV CLUB
- FCC AMATEUR LICENSE TRAINING
- PRINTED CIRCUITRY

SERCVING LESSONS
You will learn trouble-shooting and servicing in a progressive manner. You will be able to do all the job for your family, neighbors, and charges without the price of the "Edu-Kit." Our Consultation Service will help you with any technical problems you may have.

FROM OUR MAIL BAG

J. Statasiko, of 25 Poplar PI., Waterbury, Conn., writes: "I have repaired many radios, and made good money. The "Edu-Kit" has paid for itself many times, and I found your ad and sent for your Kit.

Ben Vemer, P. O. Box 21, Magna, Utah, writes: "I have repaired many radios, and made good money. The "Edu-Kit" has paid for itself many times, and I found your ad and sent for your Kit.

Robert L. Shuff, 153 Monroe Ave., Huntington, W. Va., "Thought I would drop you a few lines to say that I received my "Edu-Kit," and was really amazed that such a bargain can be had at such a low price. I have already started repairing radios, and phonographs. My friends were really surprised to see me get into the hobby of radio, and they are really swell and finds this stuff, if there is any to be found."