electronics

JANUARY • 1953
PRICE 75 CENTS

Monothrome effect resulls when suturation coatrol is furred off. Normal setting of control prevides compleie color fittures

COMPATIBLE
COLOR
TV RECEIVER

PERMALLOY DUST TOROIDS FOR MAXIMUM STABILITY...

HOA, HOC, MOJ CASE
$113 / 16^{\prime \prime}{ }^{\prime \prime}$ ia. $\times 133^{\prime} 16^{\prime \prime} \mathrm{High}$

HOB CASE
$15 / 8^{\circ} \times 25 / 8^{\prime \prime} \times 21 / 2^{\prime \prime} \mathrm{High}$

HOE CASE
$1 / 2^{\prime \prime} \times 15 / 16^{\prime \prime} \times 1$ ミ/16"High

The UTC type $H Q$ permalloy dust toroids are ideal for all audio, carrier and supersonic applications. HQA coils have Q over 100 at 5,000 cycles... HQB coils, Q over 200 at 4,000 cycles... HQC coils, Q over 200 at $30 \mathrm{KC} . \mathrm{H} . \mathrm{HQD}$ coils, Q over 200 at $60 \mathrm{KC} . . \mathrm{HQE}$ (miniature) coils, Q over 120 at 10 KC . The toroid dust core provides very low hum pickup... excellent stability with voltage change... negligible inductance change with temperature, etc. Precision adjusted to 1% tolerance. Hermetically sealed.

Type No.	Inductance Value		Net Price	Type Ne.	Inductance Value		Net Price	Type No.	Inductance Value		Net Price
HQA. 1	5	mhy.	\$7.00	HQA. 16	7.5	hy.	\$15.00	HQC-1	1	mhy.	\$13.00
HQA-2	12.5	mhy.	7.00	HCA-17	10.	hy.	16.00	HaC-2	2.5	mhy.	13.00
HQA-3	20	mhy.	7.50	HQA-18	15.	hy.	17.00	HQC-3	5	mhy,	13.00
HQA-4	30	mhy.	7.50	HQB- 1		mhy.	16.00	HQC. 4	10	mhy.	13.00
HQA-5	50	mhy.	8.00	HeB-2		mhy.	16.00	HRC-5	20	mhy.	13.00
HQA-6	80	mhy.	8.00	HQB-3	70	mhy.	16.00	HOD-1	. 4	mhy.	15.00
HQA. 7	125	mhy.	9.00	HQ8-4	120	mhy.	17.00	HQD-2	1	mhy.	15.00
HQA-8	200	mhy.	9.00	HaB-5	5	hy.	17.00	HOD. 3	2.5	mhy.	15.00
HQA-9	300	mhy.	10.00	HRB-6	1.	hy.	18.00	HQD-4	5	mhy.	15.00
HQA-10	. 5	hy.	10.00	HQB-7	2.	hy.	19.00	HRD. 5	15	mhy.	15.00
HQA-11	. 75	hy.	10.00	HQB-:	3.5	hy.	20.00	HRE-1	5	mhy.	6.00
HaA-12	1.25	hy.	11.00	HAB-9	7.5	hy.	21.00	HQE-2	10	mhy.	6.00
HaA-13	2.	hy.	11.00	HQB-10	12.	hy.	22.00	HaE-3	50	mhy.	7.00
HQA-14	3.	hy.	13.00	HQB-11	18.	hy.	23.00	HQE-4	100	mhy.	7.50
HQA-15	5.	hy.	14.00	HQB-12	25.	hy.	24.00	HQE. 5	200	mhy.	8.00

UTC INTERSTAGE AND INE FILTERS

FILTER CASE M
$13 / 16 \times 11 / 16$,
| $5 / 8 \times 2$ 1/2 High

These U.T.C. stock units take care of most common filter applications. The interstage filters, BMI (band pass), HMI (high pass), and LMI (low pass), have a nominal impedance at 10,000 ohms. The line filters, BML (band pass), HML (high pass), and LML (low pass), are intended for use in $500 / 600 \mathrm{ohm}$ circuits. All units are shielded for low pickup ($150 \mathrm{mv} /$ gauss) and are hermetically sealed.

STOCK FREQUENCIES
(Number after letters is frequency) Net Price $\$ 25.00$

BMI-60	BMI-1500	LMI-200	BML-400
BMI-100	BMI-3000	LMI-500	BML.1000
BMI-120	BMI-10000	LMI-1000	HML-200
BMI-400	HMI-200	LMI-2000	HML-500
BMI-500	HMI-500	LMI-3000	LML-1000
BMI-750	HMI-1000	LMI-5000	LML-2500
BMI-1000	HMI-3000	LMI-10000	LML-4000

COMPATIBLE COLOR TV RECEIVER—Unretouched reproductions of crt screen of 42-tube color receiver developed by Westinghouse engineers. Chassis of receiver used in field tests of NTSC system contain all circuits for color or monochrome reception (see p 98)
FIGURES OF THE MONTH4
Includes Electronics Output Index, a business barometer for management 5
Top-level news, trends and market interpretations, plus year-end electronigraphs
COMPATIBLE COLOR TV RECEIVER, by Kenneth E. Farr 98
42-tube receiver uses tricolor picture tube
MEASURING MINUTE CAPACITANCE CHANGES, by George W. Cook 105
Resonant bridge system measures capacitance changes of $0.001 \mu \mu \mathrm{f}$ and less
F-M RECORDING IN GUIDED MISSILES, by Albert A. Gerlach 108
Conventional graphical recordings are made from 198-channel magnetic recording made inside nose of missile
HIGH-FREQUENCY TRANSISTOR TETRODE, by R. L. Wallace, Jr., L. G. Schimpf and E. Dickten 112
Fourth electrode added to junction transistor allows operation at 130 mc
PRESS SAFETY CONTROL USES RADIOACTIVE WRISTBAND, by M. E. Simonton and John Yeiser 114
Geiger tubes mounted on press prevent operation when radium-plated disk on operator's wrist is in danger zoneSTRIPPING TECHNIQUES FOR INSULATING FILMS ON WIRE, by R. George Roesch.116
Evaluation of six different production techniques for removing film-type insulations from magnet and resistance wire
TELEVISION SWITCHER FOR BROADCASTERS, by Harry E. Thomas 120Pushbutton unit for video programs allows instantaneous switching or manual lap dissolves
ELECTRON-MICROSCOPE POWER MONITOR, by Francis W. Bishop 124Simple two-tube amplifier and eye-tube indicator detect fluctuations that cause blurred photographsQUICK-CHANGE BREADBOARD FOR CIRCUIT RESEARCH, by Robert E. Prouty126
Complete circuit can be wired without drilling holes, through use of removable insert panels on chassis
WIDE-ANGLE SCAN RADAR ANTENNA, by H. N. Chait 128
Microwave analog of Schmidt optical system permits 20 -beamwidth scan
EFFECT OF RADIATION ON RESONANT LINES, by R. A. Chipman.133
Influence of radiation resistance on resonant characteristics is studied
BIPOLAR LOGARITHMIC CORONA-CURRENT AMPLIFIER, by Seville Chapman and Leonard Bogdan. 136
Measures entire range from milliamperes to millimicroamperes for study of snowstorm and thunderstorm corona current
TEST SCOPE CHECKS TELEVISION BROADCASTS, by Clifford H. Moulton 138
Special features provide laboratory or field test of video signals
CHART FOR TE 11 MODE PISTON ATTENUATOR (Reference Sheet), by Charles M. Alfred 142
Nomograph speeds finding attenuation constant

W. W. MacDONALD, Executive Editor; VIN ZELUFF, Managing Editor; John Markus, A. A. McKenzie, James Fahnestock, Associate Editors; William P. O'Brien, John M. Carroll, William G. Arnold, Assistant Editors; Ann Mastropolo, Marilyn Wood, Mary J. Johnson, Editoriol Assistants; Gladys T. Montgomery, Washington Editor; Harry Phillips, Art Director; Eleanor Luke, Art Assistant

KEITH HENNEY, Editorial Director
H. W. MATEER, Publisher; WALLACE B. BLOOD, Manager; R. S. Quint, Buyers' Guide Manager; N. F. Cullinan, Promotion \& Research Assistant; H. E. Hilty, Classified Manager; D. H. Miller, James Girdwood, New York; Wm. S. Hodgkinson, New England; Warren W. Shew, Philadelphia; C. D. Wardner, Chicago; J. L. Phillips, Cleveland; T. H. Carmody, R. C. Alcorn, San Francisco; Carl W. Dysinger, Los Angeles; Rolph C. Maultsby, Atlanta

Executive, Editorial and Advertising Offices; McGraw. Hill Building, 330 W. 42nd St.. New York 36, N. Y. Curtis W. MrGraw. 1President; Willard Chevalier, Executive
 Subscriptions: Address correspondence to Electronics-Subscription Service, 99-129 N. Broadway. Albany I, N. Y., or 330 W. 42 nd St., New York 36 . N. Y. Allow one control components. parts and end oroducts. Position and company connection must be indicated on subscription orders.
 -United States and possessions, $\$ 6.00$ a year: 89.00 for two vears. Canada. $\$ 10.00$ a year; $\$ 16.0$ on tor two years. Other western hemisphere countrips, \$15. Nin a yar; \$25.0n

 Inclex.

Yes . . . it pays to figure first . . . instead of afterward... how Veeder-Root Counters can profitably be built into your new products, machines, or processes . . . to build up sales appeal and new markets.

Much easier to call in a Veeder-Root engineer now, than waiting until later, when your design is in production.

And remember that you can count on Veeder-Root to help you, consistent with defense commitments.

VEEDER-ROOT INCORPORATED

"The Name That Counis"
HARTFORD 2, CONNECTICUT
Chicago 6, III. New York 19 - Greenville, S.C. Montreal 2, Canada Dundee, Scotland Offices ond Agents in Principol Cities

THIS INTERESTING quarteriy Will be malled free to any part of the worlid

AUSTRALIA

Messrs. Watson Victor Limited,
9-13, Bligh Street,
Sydney, N.S.W.

BELGIUM

Paul Groeninckx, 4-6, Avenue Hansen-Soulie, Brussels.

CANADA

The J. W. Ellis Industries, 42, Lombard Street, Toronto.

DENMARK

Ditz Schweitzer,
Norre Voldgade, 48 , Copenhagen, K .

FRANCE

Jacques Pérès Fils, 4, Avenue de l'Opéra, Paris 1.

HOLLAND

Geo. C. F. Kauderer, Muiden.

INDIA

Adair, Dutt \& Co. (India) Ltd., 5, Dalhousie Square, Calcutta.

ITALY

U.S.A.

Muirhead \& Co. Ltd., Elmers End, Beckenham, Kent, England.
Ing. Silvio Garrone, Piazza Della Marina, 1. Rome.

NEW ZEALAND
Richardson, McCabe\&Co.Ltd., P.O. Box 792, Wellington.

NORWAY

J. L. Nerlien A/S, Nedre Slottsgt. 13, Oslo.

SOUTH AFRICA

Johnson \& Phillips South Africa (Pty.) Limited, P.O. Box 552, Germiston.

SWEDEN

Ingeniorsfirma Hugo Tillquist, Nybrokajen 7, Postbox 7026. Stockholm 7.

SWITZERLAND

Camille Bauer,
Dornacherstrasse 18,
Basel.
U.S.A.

TECHNIQUE IS ALSO PUBLISHED IN FRENCH. IF THIS EDITION IS REQUIRED, MARK YOUR COUPON "EDITION FRANÇAISE"

FILE IN THIS COUPON AND MAIL TO US OR OUR AGENTS (SEE [IST AbOVE)

Please mail me, free of charge,
the quarterly journal
of instrument engineering
"technique" published by
Muirhead \& Co., Limited.

```
NAME
```

POSITION
COMPANY
ADDRESS

MUIRHEAD \& Co. Ltd.
PRECISION ELECTRICAL INSTRUMENT MAKERS
BECKENHAM \cdot KENT \cdot ENGLAND
Telegrams and Cables: MUIRHEADS ELMERS-END

PRECISION

MUIRHEAD

ELECTRICAL INSTRUMENTS

FIGURES OF THE MONTH

INDUSTRY REPORT

electronics—JANUARY • 1953

John Q. Meets the Transistor

Raytheon announces mass availability of junction types; RCA shows uses

THE YEAR 1952 ended with a flourish, electronically speaking, as the word transistor became public property.

Raytheon announced availability in large numbers of junction types and RCA demonstrated practical applications. Cornell University introduced a course in transistors for electrical engineering students, and amateur George Rose, K2AH, made three contacts on 2 -meter phone using a transistor transmitter (could be call this a transmister?).

It is significant to note that these announcements came in the third year of existence of practical semiconductor amplifying devices.

- A First-From the industry's standpoint, Raytheon's announce-
ment probably created the most stir. Junction transistors, hitherto available only in sample lots from pilot runs, were suddenly available for mass application, and at reasonable cost.

First to take advantage of Raytheon's $\$ 750,000$ transistor production facilities were hearing aid manufacturers who were willing to accept higher initial cost to offer greater operating economy. Battery costs for subminiature tube hearing aids run between $\$ 30$ and $\$ 50$ per year, while the transistor hearing aid might require $\$ 5$ to $\$ 10$ worth of $1 \frac{1}{2}$-volt cells.

- Circus-Adaptability of transistors to other practical applications was demonstrated by RCA in a showing of experimental transistorized entertainment and industrial devices. An automobile radio operated directly from the 6 -volt car battery, without vibrators or other

In this four-transistor audio amplifier pnp and npn types are combined to provide transformerless class-B amplification with direct coupling to loudspeaker voice coil
voltage stepup devices. Power taken from the battery for a half-watt output is less than that required to light two pilot lights for the dial.

A good-quality audio amplifier was shown that used only junction

ELECTRONIGRAPHS-A Year-End Glance at Electronics Industry Figures

Thirty-six transistors perform all the functions in this 5 -inch batterypowered tv set, except for c-r tube
transistors and no transformers. Four junction transistors in a circuit using 'complementary symmetry', for which there is no vacuum-tube analogy, automatically transform signal to push-pull and provide class-B amplification and impedance transformation for direct coupling to a 15 -ohm voice coil.
A transistor-operated 6-note toy organ was demonstrated that plays through any conventional a-m radio. A single broadcast-band oscillator is quenched at different audio frequencies to obtain the desired notes in the receiver. A singletransistor phono oscillator smaller than a package of cigarettes was
also shown that had a self-contained power source capable of powering the oscillator for 3,000 hours.

The application that created most public interest was a portable tv receiver in which the only electron tube was a 5 -inch picture tube. Thirty-six transistors performed the rest of the functions in the set and self-contained batteries provided the necessary power. This set was, however, demonstrated to show what could be done-battery life is prohibitively short.

Petroleum Radio Service Continues Uptrend

Geophysical explorers for oil began early to use radio communications techniques. They are inclined to smile and remark wistfully that their use of frequencies antedates both the old Federal Radio Commission and its successor, the Federal Communications Commission.

With the formalizing of the Pe troleum Radio Service by FCC in 1949, a growth to 10,000 stations was forecast. There are now 20,000 stations and applications are coming in at the rate of 5,000 a year.

- Figures-At present, Region 4 of the National Petroleum Radio Frequency Co-ordinating Associa-

tion, comprising Texas, Louisiana, Arkansas and Mississippi, is the most active.

Figures showing the upswing of communications are plotted in the graph. It is apparent that channels alloted to 48 mc are in greatest demand at present, with future expansion here probable. Experiments now in progress show that it is possible to operate equipment satisfactorily in half the bandwidth as-
(Continued on page 8)

ELECTRONIGRAPHS Continued

 with Sylvania 6BM6 Broadband Tunable KLYSTRONS

Sylvania now offers 4 different Klystron types, designed for external cavity resonators covering a frequency range from 550 to 6500 megacycles.

Types 6BM6 and 6BL6 are designed for CW applications, while types 5836 and 5837 may also be used in pulse modulated oscillation.

Sylvania Klystrons provide continuous tunable output over wide ranges of the micro-wave spectrum. New illustrated catalog gives complete specifications. Mail the coupon for your copy now.

We also welcome your inquiries regarding the designing of cavities for various types of circuits.

signed each channel by FCC. Although halving the channel width does not automatically produce quite twice the station potential, it does permit continued healthy growth in this mobile two-way radio band.

Electronics Gains In Business-Machine Field

More office equipment companies adopt electronics as applications increase

All-electronic offices may be far in the future but the business-machine industry is getting ready now for this multi-million dollar market of the future.

Although business-machine manufacturers have been moving into the field for some years, the trend last year was accelerated. Most recent entrants are National Cash Register, which recently acquired control of Computer Research Corp., and the Friden Calculating Machine Company, which now controls Computyper Corp. Nearly every major business-machine manufacturer now has an electronic division.

IBM, one of the largest companies in the field, is producing elec-

Electronic calculator made by IBM has 1,400 tubes. Over 1,000 of the machines are now used in business offices in the $U . S$.
tronic machines for business use in greater volume. In addition to the machine pictured, more than 100 of its electronic card-programmed calculators are now used in business applications.

- Business Show-Growing importance of electronics in the businessmachine field was apparent at the recent National Business Show in New York, where a wide variety of electronic items were on display. Among them was an electronic sorter which sorts alphabetically and numerically at a speed of 800 cards a minute by means of a photoelectric cell that reads the punched
card values.
Also on display was a device that integrates the operations of an electric typewriter and a calculating machine so that the calculating results are automatically recorded by the typewriter at the rate of ten characters per second.
- Business Trends-The recent Office Management Conference in New York City also showed the increasing potential of electronics for business. One full day of the twoday meeting was devoted to electronics in office management. Topics discussed ranged from an evaluation of present electronic computers for use in business to an analysis of what the smaller office can do now to be ready for the shift to electronics.

Vehicular Radio Group Ponders Expansion

Channel splitting and systems co-ordination seen as solution to present overcrowding

Some 250 engineers of the IRE group on vehicular communications met in Washington early in December to discuss, in particu-
(Continued on page 10)

ELECTRONIGRAPHS Continued

THE MOST EFFECTIVE CAPACITORS FOR R-F NOISE SUPPRESSION

THRU-PASS CAPACITORS are a new Sprague development for use in radio interference reduction in communication and radar equipment.

- Thru-Pass Capacitors not only reduce to a negligible value the effect of external connection inductance to a capacitor but they also have a minimum length of internal path for radio interference currents. Their performance is closer to that of a theoretically ideal capacitor than that of any other paper capacitor!
- Electrically, Thru-Pass Capacitors are three-terminal feed-thru devices which are connected in a circuit in a manner similar to a low pass filter; the tab or lead terminals are connected in series with the circuit being filtered while the case is grounded.
- The threaded-neck mounting on Type 102 P and 103P Subminiature Thru-Pass Capacitors is designed to give a firm metallic contact with the mounting surface over a closed path encircling the feed-thru conductor and to eliminate unwanted contact resistance so that the theoretical effectiveness of these new units is realized in practice. The milled flats on the threads help ensure vibration-proof mounting since the capacitors cannot rotate if mounted in a flatted opening instead of the usual circular hole.
- Type 102 P and 103 P Capacitors are all hermetically encased. Glass-to-metal solder-seal terminals are
employed in order to assure positive protection against severe atmospheric conditions.
- Both types are impregnated with Vitamin Q, Sprague's exclusive inert synthetic impregnant, in order to provide maximum insulation resistance and minimum capacitance change with temperature. Type 102 P units are processed for $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operation while Type 103P units have their top operating temperature extended to $+125^{\circ} \mathrm{C}$.
- Engineering Bulletin 215 gives full details and standard ratiags. Write on your business letterhead for your copy to Sprague Electric Co., 35 Marshall St., North Adams, Massachusetts.

TYPES 102P AND 103P 5 AMPERE THRU-PASS CAPACITORS SHDWING CHOICE OF LEAD OR TAB TERAINALS

lar, band crowding. They received a summation of the results of tests culminating in those conducted by the Joint Technical Advisory Committee at Syracuse, N. Y. during late October. From this information JTAC will propose new standards to FCC , by whom it had been asked for recommendations.

It is expected that the JTAC report will be issued during February or March, but that FCC will probably not take immediate action on it. Instead, as each service in the mobile field encounters intolerable interference, it can come to FCC and ask for relief under the new plan. In this way, the burden of choice is put upon the user.

- Big Business-Keynote speaker at the Washington meeting was W. R. G. Baker of GE, who estimated two-way radio as a $\$ 34$ million business that will grow to $\$ 50$ million a year by 1962. Other engineers think the present figure, undoubtedly based on FCC authorization, is a little high and that the true gross is between $\$ 25$ and $\$ 30$ million. They point out that applicants usually ask for more than the immediately required number of mobile authorizations and FCC customarily honors this blank check to save future bookkeeping when all equipment
finally comes into full-scale operation. But there is no quibbling regarding the health of mobile radio or doubts as to its future.
- Techniques - Increased engineering knowhow has made it possible to split present FCC-assigned channels in half. While, for various abstruse technical reasons, splitting doesn't double the total number of channels, it helps.

In some very crowded areas, it may be necessary for licensees to get together and establish a common transmitting point (in much the manner that television broadcasters use the Empire State tower) to cut down interchannel interference at the mobile receiver. Fixed receivers to pick up the mobile transmitters will have to be spotted around the working area. Wire lines will bring the strongest mobile signal for each user into his operating room. A further advantage to this scheme will be the fact that each mobile transmitter will need only two or three watts of power.

Communications Center Goes Underground

Communications center designed to resist atomic attack, located inside Raven Rock Mountain, about

5 miles East of Fort Ritchie, Md., is being completed by the U. S. A half million cubic yards of hardest rock was blasted out for the equivalent of a 3 -story communications building. Five microwave stations will tie the "Ritchie Project" into signal facilities of Army, Navy and Air Force already constructed in the Washington, D. C., area.

Theater Television Moves Ahead

Equipment sales were down last

 year but the outlook for 1953 is brightDESPITE a decline in sales last year, theater television equipment represented an important and growing business for electronic manufacturers. About 40 systems were sold last year compared to 1951. sales of near 50 units. In 1950, less than 12 units were installed. Even these small unit sales represented substantial dollar volume for electronic manufacturers. The average price for the equipment is between $\$ 15,000$ and $\$ 20,000$.

With about 100 systems now installed, the theater to equipment
(Continued on page 14)

COMMUNICATION AUTHORIZATIONS

how to handle orders for

military electronic equipment...

better and faster!

Choose CENTRALAB...
 America's widest line of components that meet military specifications

CENTRALAB MODEL 2 VARIABLE RESISTORS

There's no prior contract approval or waivers required if you specify Centralab's Model 2 variable resistors on your next military order. They meet JAN R94, characteristic U requirements. Two types available - RV2A and RV2B - plain or with attached switches. Ratings from 2000 ohms to one megohm. For complete engineering data, check Bulletin No. $42-85$ in coupon below.

Model 1, miniature variable resistors . . no bigger than a dime . . . available in Standard or Hi-torque types. Either with or without on-off switch. Also available with slot-front or rear for screw-driver adjustment. Hi-torque units hold settings under conditions of vibration or shock. For complete data check No. 42-158 in coupon below.

For miniature switches - specify Centralab's Series 20 with Steatite or Phenolic sections. Steatite is Grade L5. Meets JAN I- 8 specs. Phenolic sections conform to JAN P. 13 . . . Grade LTSE4. Available in 2 to 11 positions with stops, or 12 positions, continuous rotation-single or multiple sections-with or without attached on-off switch. Check No. 42-156.

Centralab's Medium-Duty Power Switches. Use for R. F. or 110-115 V. application ...71/2 amps. Voltage breakdown to ground - 3000 volts - RMS 60 cycles. Available with Grade L5 (JAN I-8) Steatite sections shorting or non-shorting contacts. Models in 1, 2 or 3 poles, 18 contacts per section with adjustable stops, can be furnished up to 20 sections per shaft. Contacts and collector rings are coin silver. For complete data, check No. 42-136 in coupon.

Centralab's Type 850 high voltage ceramic capacitors are especially designed for high voltage, high frequency circuits. Centralab's Type 950 high accuracy ceramic capacitors are especially developed for exacting electronic applications. Check bulletin No.'s 42 . 102 and 42-123.

TC (Temperature Compensating) Tubulars No prior contract approval or waiver necessary. Meet JAN-C-20A requirements. Type TCZ shows no capacitance change over wide range of temperature. Type TCN has special ceramic body to vary capacitance according to temperature. Bulletin No. 42-18.

BC (Bypass Coupling) Tubulars - Recommended for bypass coupling. Well suited to general circuit use. Centralab's own Ceramic X body provides imperviousness to moisture and low power factor. Easily withstands temperatures normally encountered in most electronic equipment. Bulletin No. 42-3.

Ceramic Disc Hi-Kap Capacitors hold thickness to a minimum . . . have very high capacity in extremely small size. Use in h.f. circuits for bypass and coupling. Ceramic body assures low inductance. Other characteristicshumidity resistance, power factor, etc. similar to BC Tubulars, Bulletin No. 42-4R.

Something new in miniature ceramic capacitors! These "button types" are available in 5 different styles. Used for bypassing in lowpower, high-frequency applications where small size, low inductance and light weight are essential. Check Bulletin No. 42-122 in coupon for more information.

Centralab Ceramic Trimmers meet applicable portions of JAN-C-81. Very small size.Screw driver adjustment over full capacity range (180° rotation). Maintain stability in any position and under vibration. Spring pressure contact for rotor and stator. Bulletin No. 42-101.

Centralab's New Eyelet-Mounted Feed-Through Ceramic Capacitors are smallest available. They meet applicable portions of JAN-C-20A specifications. Capacities range from 10 to $3000 \mathrm{mmf} .$. the widest range on the market. Voltage rating. 500 V.D.C.W. Check No. EP-15 in coupon.

New Sub-miniature Model III Ampec - a full three-stage speech amplifier of remarkably small dimensions - approximately $1 \frac{1 / 32^{\prime \prime}}{} \mathrm{x}$ $15 / 16^{\prime \prime} \times 11 / 32^{\prime \prime}$ (barely larger than a postage stamp!). Excellent for microphone preamplifiers and similar applications. Check No. 42-130 on coupon for complete information.

Centralab standard and custom-molded SHeatite ceramics plain or metallized... fully comply with JAN I-8. Steatite is Grade L5 for military use. Characteristics - high dielectric strength, low loss at high frequencies, high mechanical strength. For data on standard parts or custom molding, check No. 720.

Centralab
 A Division of Globe-Union Inc.

900 EAST KEEFE AVENUE - MILWAUKEE

Please send me Technical Bulletins as marked

\qquad
\square 42-122 \square 42-10EP-1542-130 720
\qquad
\qquad
\qquad

Address

market has only been scratched. There are more than 18,000 theaters in the U. S. Some theater tr proponents estimate that 10,000 theaters will be equipped within the next 5 years, representing an equipment sales volume of nearly $\$ 200$ million. This year sales of at least 100 units are expected.

- Equipment-Instantaneous and delayed film are the two types of equipment that make up the 100 systems now in use. Largest sales volume has been done with instantaneous systems. Only eight film systems have been installed. General Precision Laboratories, a leading manufacturer of film equipment, has discontinued production for theater tr use. The company is now concentrating on instantaneous equipment exclusively. They found that film systems were too costly for the average theater owner ($\$ 30,000$.) and were too bulky for easy installation.

A new type of instantaneous theater tv equipment called Eidophor, introduced by Twentieth Century Fox in recent months, may be the successor to film systems. It will be competitive in price with present instantaneous units and is adapted for CBS color television. Although no sales have been made as yet, it is reported
that production of 500 units is plamed for this year.

- Manufacturers - Three companies are producing and installing theater tv equipment at the present time: RCA, General Precision Laboratories and Trad Television Corp. RCA has sold about 75 percent of all units installed to date. General Precision and Trad follow in that order. General Electric will become the fourth company in the field when it begins production of Eidophor equipment for Twentieth Century Fox. Other electronic manufacturers are working on theater tv systems but have not yet announced definite production plans.
- Future-Theater tv manufacturers agree that the outcome of current FCC hearings on exclusive channels for theater to will have a profound effect on overall development of the field. But they do not see any great immediate effect on equipment sales. They are more concerned with theater tv programs, which have been few and far between. Such programming has made many theater owners reluctant to buy equipment.

Manufacturers are optimistic about future program schedules for theater tv. At least 12 programs have already been scheduled for 1953.

Communications Firms Expand Facilities

Companies sold more stocks and bonds in 1952 to buy new plants and equipment

Expansion that took place in 1952 and is continuing this year in the communications industry is indicated by new corporate securities that were offered for cash sale in the first 9 months of last year. Estimated gross proceeds from such offerings made by the end of September (latest reported month) were expected to total over $\$ 651$ million, topping full year proceeds in 1951.

As shown in the chart, last year's volume of security offerings by the communications industry reached the highest point since 1948. It reflected the continuing need for external financing by communications companies to carry out substantial capital expansion programs.

- Expansion-Proposed uses of estimated net proceeds from the offerings in 1952 was almost entirely for plant and equipment. Out of the total estimated net proceeds of $\$ 645$ million, communications companies planned to use more than
(Continued on page 16)

ELECTRONIGRAPHS Continued

SHOCK " $\operatorname{VIBRATION}$

N E W S

Builder Claims Smooth Performance and Quiet Operation thru the use of Barrymounts in Dehydrator

The 2 -way protection given by Barrymounts is applied in AUTO-DRYAIRE(3) dehydrators as a design feature of these automatic pressurizing units for high-frequency transmission lines.

In this service, Type C-2000 Barrymounts prevent transmission of aircompressor vibration to the supporting surface. They also cushion the mounted apparatus to protect active parts, piping, and controls within the dehydrator from external shock and vibration.

The maker of AUTO-DRYAIRE(B), Communication Products Company, Inc. of Marlboro, N. J., states: "We have used Barry Isolators for several years. The excellent service they have rendered in our equipment is the primary reason for their continued use."

Type 2000 Barrymount
Barry "cup" mounts are satisfying a wide variety of needs in industrial, mobile, and marine service. Ask our Field Engineering Department for help with YOUR vibration problems. FREE CATALOG 504-B tells about these and other vibration isolators.

Miniaturized Vibration Isolators Help Cut Space and Weight in Fuel-Gauge Power Unit

70% size reduction and 50% weight reduction - with no loss of performance - is the effective miniaturization obtained in the new MinneapolisHoneywell aircraft-fuel-gauge power unit. Miniature, air-damped Barrymounts, Type 6465, helped M-H engineers in this achievement.
These vibration isolators, in which size and weight have been cut while operating characteristics have been maintained, will help you redesign for miniaturization.
Check these useful features of miniaturized Barrymounts.
Light weight - only $5 / 16$ ounce each. Small size - $1^{\prime \prime}$ diameter $11 / 32^{\prime \prime}$ loaded height.
Resonant frequency - 9 cps
Transmissibility at resonance - 3
Wide load range - 0.1-3 pounds
4 different styles available - for plate or stand-oft mounting.
Write for data sheets 605 and 606 giving details of dimensions and load ratings.

FREE CATALOGS

- 523-A - Airadamped Barrymounts for aircraft service; also mounting bases and instrument mountings.
- 508.A - ALL-METL Barrymounts and mounting bases for unusual airborne applications.
- 504.8 - Shock mounts and vibrafion isolators for marine, mobile, and industrial uses.
- 607 - How to cut mointenance costs by using Barrymounts with punch presses.

707 PLEASANT ST., WATERTOWN 72, MASSACHUSETTS

SALES REPRESENTATIVES IN

[^0]
$\$ 638$ million in this manner. A total of $\$ 3.8$ million was to be used for working capital. The remainder, which amounted to less than $\$ 5$ million, was to be set aside for retirement of debts, preferred stocks and other purposes.

- Securities-Bonds were the predominant type of security offered for cash sale during the first 9 months of 1952 by communications companies. About $\$ 607$ million out of total security offerings of $\$ 651$ million were of this type. The remaining volume of $\$ 42$ million was split equally between preferred and
common stock sales.
Bond offerings have been predominant in the communications industry since World War II. In fact, most corporate offerings by all industry groups are made in bonds. Two reasons for this are: taxes are
less on bonds; less money needs to be paid out on them before investment of the offering's proceeds begin to pay off. It is expected that future security offerings by the communications industry will be largely in bonds for these reasons.

Television Sales Boom in Canada

Cumulative sales total $\$ 80$ million as broadcasting begins above the border

Scheduled television broadcasting in both Toronto and Montreal has given new impetus to retail sales of tv receivers in Canada and their manufacture is now well established in the dominion.

Cumulative retail sales total $\$ 80$ million, representing 172,000 sets; 92,800 sets were sold during the first ten months of 1952.

- Set Makers-Twenty-two Canadian set manufacturers are active in the field, many of them subsidiaries of U. S. concerns. Several European firms, mostly British, are also represented.

Importation of sets from the states, formerly a big factor in Canadian televiewing, is expected
to decline proportionately as protective tariffs encourage Canadian set manufacturers. Set production is restricted somewhat by a shortage of cathode-ray tubes.

- Market-The tv receiver market is expected to expand even further as more Canadian stations go on the air. Thus far, 40 percent of set sales have been in the TorontoHamilton area and 28 percent in the Montreal area. Remaining sales have been largely in the Windsor area and on the Niagara peninsular, where reception is from U. S. stations.

Canadian Broadcasting Corporation plans include stations in Ottawa, Halifax, Winnipeg and Vancouver. However, the CBC has recently announced that privatelyowned stations will be permitted in cities where no CBC outlet is contemplated. A good deal of (Continued on page 18)

ELECTRONIGRAPHS Continued

* Either Iliree, four or five decades are available in welded aluminum cabinets
\star IIiph basic accuracy$\pm 0.05 \%$ for all decades except $\pm 0.5 \%$ for the 0.1 -ohm decade, and $\pm 0.15 \%$ for the 1-ohn decade
* Excellent stability of calibration mica cards and special phenolic forms are shaped and heat treated to minimize aging effects - temperahure coefficient of resistance is less than 0.002% per degree C. at room temperature; slightlly higher for the 0.1-ohm decade
* Low residual impedance - less than 0.003 ohm per decade at dc; 0.04 ohm at 1 Mc . Zero inductance per decade is 0.10 microhenry. Effective shunt capacilance varies from 10 to 45 nicromicrofarads depending on combinations of decades in use
太 Excellent frequency characteristic permits use up to several hundred kilocycles
* Excellent mechanical and electrical shielding provided by welded aluminum cases
* TYPE 1432 DECADE RESISTORS in ten sizes with resistance ranges from 0 to 111 ohms in 0.1 -ohm steps, 10 1,111,100 ohms in steps of 10 olms . PRICES: $\$ 56$ to $\$ 133$

Precision Decade Resistors

FOR OSE AT DC AUDIO and RADIO

pressure is being exerted on the CBC to allow operation of pri-vately-owned stations in competition with CBC outlets.

Canadian tv station building may affect favorably sales of receivers in American towns near the border not now adequately served by U. S. stations.

- Problems - Cathode-ray tubes and tuners are not yet made in appreciable quantities in Canada. Tariff on these components adds materially to Canadian tv set prices. Assembly costs, too, are
higher and smaller production runs have also served to increase unit costs.

In Toronto costly modifications are necessary to make tv receivers run satisfactorily on 25 -cycle current.
In Montreal, a bilingual population demands programs in both French and English, with accompanying time-sharing difficulties.

Rediffusion, a wired television system operating in Montreal, is also a factor in development of broadcast television.

More New Television Stations On Air

Honolulu, Austin, Colorado Springs, El Paso, Roanoke, and Spokane debut

LAST two months of 1952 saw a flurry of new vhf tv stations go on the air, expanding the market for television receivers. Activity was also evident in the uhf tv field.

Following the debut of KDUBTV in Lubbock, Texas (ElectronICS, p. 10, Dec.) KONA, channel 11 in Honolulu, took to the air. The transmitter went by air to the island. It began operating on November 17. Then Austin's KTBC-TV, channel 7, went on the air Thanks-
giving Day, followed on December 1 by another new tv station in Honolulu, KGMB-TV channel 9. Less than one week later KKTV, channel 11, in Colorado Springs, made its air debut. The station made record time in getting on the air despite the fact that it had to build a second transmitter building after its cp was issued, to comply with FCC requirements.

On December 4, KROD-TV in El Paso began tests. WSLS-TV in Roanoke and Spokane's KHQ-TV began regular programming on December 11 and 15 respectively.

- Market Status - Speed with
which new tv cp grantees went on the air did not catch television receiver manufacturers napping. Set sales estimates for the six new markets seem to indicate that they were far ahead of the game. In Austin, for example, it is estimated that between 12,000 and 15,000 sets were in the area on December 1, just 4 days after the station went on the air. NBC estimated that on November 1, there were just 4,000 receivers in Austin.

Reliable set estimates for Honolulu have been difficult to get even for tv s.tation representatives but educated guesses set the figure between 3,000 and 5,000 as of December 1 . It is reported that both stations are completely covering the city so that sets in use are expected to increase rapidly.

Set estimates for El Paso; Roanoke and Spokane were 8,000 ; 26,000 and 6,000 respectively when the stations began operations in December.

Set makers were also ready for KKTV's debut in Colorado Springs. There were from 1,500 to 2,000 sets in the area long before a cp was granted to the station. Manufacturers had begun selling sets there when Denver stations went on the air. As of December 8, it was estimated that 10,000 sets were in
(Continued on page 20)

ELECTRONIGRAPHS Continued

INDUCTION SOLDERING UNIT MODEL PMI

for soldering small metal parts

The Marion Model PM1 Induction Hecting Units, pictured above, are in service at the Clyde, New York, plant of the General
Electric Company. above, are in service at the Clyde, New York, plant of the General
Electric Company. Germanium diodes, diffused junction rectifiers and iransistors are
manufactured at the Clyde plant and the Model PMI Induction Heater Germanium diodes, diffused junction rectifiers and transistors are
manufactured at the Clyde plant and the Model PMl Induction Heater plays an important role in a sub-assembly operation on the whisker diode line. A very small pellet of germanium metal is soldered to the end of a nickel pin and the Induction Heater is used to elevate the temperature to the desired value lon

SPEEDS UP PRODUCTION REDUCES COSTS IMPROVES QUALITY

This Marion low cost, low powered, portable Induction Soldering Unit (Model PM1) simplifies, improves and speeds up the production of magnet assemblies, relay armatures, connectors, capacitors, transformer cans, germanium diode assemblies and other parts and assemblies in the manufacture of electrical and electronic components. In addition, the Marion PM1 Induction Soldering Unit has many applications in other fields such as jewelry, watches, toys, automotive parts, household fixtures, etc. Wherever the application of intense heat to small units is required chances are that it can be done better, faster and easier with this Marion Unit.

The unit was originally designed and has been used successfully for many years by Marion in the true glass-to-metal sealing of Ruggedized and other hermetically sealed instruments.

KKTV's area, which includes Pueblo as well as Colorado Springs.

- UHF Status-The uhf ty station picture brightened in December when GE made its first shipment of a uhf transmitter, a 100 watt unit, to WKAB-TV in Mobile. Delivery of the antenna, however, was not expected until January.

WHUM, the uhf station in Reading, was also awaiting delivery of equipment. It reported that one of the chief reason's for delay in uhf operations was a shortage of waveguides. Vendors were reported to be unable to supply the much needed equipment in the volume and at the time needed.

CANADA gained but Western Europe lost as

Component Imports Rose In 1952

Totals for first 8 months topped 1951 figures as Canada increased U. S. trade

Radio-TV apparatus and parts imports to the U. S. reached a total of $\$ 4,161,366$ by the end of August last year (latest reported month) compared to $\$ 4,066,891$ for the same period in 1951. As shown in the charts, only Canadian imports increased substantially during the period. Other countries lost.

Volume of U. S. imports of radiotv apparatus and parts by country of origin during the first 8 months of 1952 were: Canada, $\$ 3,371,125$; United Kingdom, $\$ 463,333$; Netherlands, $\$ 88,476$; West Germany, $\$ 25$,263. In 1951, for the same period, the totals of leading countries were: France, $\$ 1,256,903$; Canada, $\$ 847$,436; United Kingdom, \$753,515; West Germany, $\$ 566,103$.

- Gain-Canada increased her volume of radio-tv apparatus and
parts exports to the U. S. by almost 400 percent over 1951 totals. Her volume was larger than all other countries combined. It represented 85 percent of total radio-tv imports for the period.

Most of the expanded volume of radio-tv imports from Canada is attributed to the increasing number of U. S. electronic equipment manufacturers who have opened branch plants in the Dominion. The general overall expansion of the country as well as the rising amount of U. S. investment capital that is going to Canada have also contributed to the rise.

- Outlook-With the upswing in business experienced by all segments of the industry in the last quarter of 1952 , it is expected that final radio-tv apparatus and parts import totals will show a substantial increase over 1951's volume. However, it is considered unlikely that the totals for countries of Western Europe will change appreciably.

Financial Roundup

REFLECTIONS of the slump in radio and $t v$ sales that took place in early 1952 are apparent in the latest income statements released by companies in the field. Continued expansion of the industry is evident, however, in the stock offerings and filings that were made.

- Profits-For most of the following companies, net profits for the first 9 months of 1952 were lower when compared to those of the same period in 1951:

Company	1952	1951
Admiral	\$3,741,107	\$5,400, 156
American Cable \& Radio	io 445,055	1,024,506
American d'henolic.	922,803*	631.356
AT\& T............ 28	264,846,327	43.308,956
CHS	3,807,101	3,532,666
General Cable	3,618,489	3,679,997
Hallicrafters	378,460**	678,946*
Hoffrman.	994,282	-126,957
Motorol	4,079,262	5,327,442
Philco	6,073,000	7,963,000
Standard Coil	1,963,945	1,164,957
Stewart Warner	2,828,306	3,056,754
Stromberg Carlson	779,614	158,921
Tung-Sol Electric.	1,288,324	1,524,628
Webster-Chicago.	-607,118	368,739
Westinghouse...	48,741,000	42,757,000
Zenith.	2,576,212	2,689,630
* Arljusterd to reflect	t retroactive a	aspects of 1951
Revenue Act.		

- Stocks Offered-Standard Tungsten offered publicly 284,499 shares of common stock (par 10 cents) at $\$ 1$ per share "as a speculation". Net proceeds will be used to acquire additional properties, to buy equipment and for working capital.

Telecomputing Corporation offered 1,000 shares of capital stock (par $\$ 1$) at $\$ 29$ per share (dealers discount of $\$ 1.50$ per share). The issue was quickly sold. Net proceeds went to W. W. Beman, selling stockholder.

Standard Coil Products registered with SEC for an offering of $\$ 5$ million of 5 percent convertable subordinated debentures due Dec. 1,1967 and 250,000 shares of common stock. Proceeds will be added to working capital and used to repay present short term bank loans of $\$ 3$ million and to provide additional working and expansion capital.

Electronic Devices publicly offered "as a speculation" an issue
(Continued on page 22)

AN IDEAL COMBNATIOW

Atlas Engineering Company, Inc. of Boston selected Heldor Transformer Cans and Terminals as ideal components for their products Heldor Transformer components give them better quality and consistent uniform production.

Whether your production is military or civilian, it will pay you to investigate the time-saving, moneysaving and inventory-reducing features of HELDOR's complete package . . . transformer cans with com-pression-type hermetic-seal bushings pre-assembled in cans.

Mail specifications of your present can and terminal assemblies for a convincing, money-saving quotation.

FREE!
 New Can Catalog! Write today for your copy!

HELDOR MANUFAGTURING CORPORATION HELDOR BUSHING \& TERMINAL CO., INC.
 225 Belleville Ave.
 Bloomfield, N. J.

of 3 million shares of common stock (par 1 cent) at 5 cents a share. Proceeds will be used to expand operations and for working capital.

- Stocks Filed-Electronics and Nucleonics (no relation to us) filed with SEC for 1.2 million shares of common stock (par 1 cent) to be offered at 25 cents per share. Net proceeds to be used to expand current operations and for working capital.

Sightmaster filed with SEC for 5,000 shares of common stock (par 5 cents) to be offered at the market (about 44 cents per share).

No general public offering is contemplated. Proceeds are to go to M. L. Kaplan, president, who is the selling stockholder.

Trad Television filed with SEC for 130,000 shares of common stock (par 1 cent) to be offered at the market (approximately 27 cents per share). Proceeds go to Victor Trad, president who is the selling stockholder.

General Electronics Distributors filed with SEC for 1,000 shares of non-voting common stock offered at $\$ 37$ per share. Proceeds to be used for business operations.

GERMAN V-2 (left) carried its 2,000 - lb warhead 250 miles at $3,600 \mathrm{mph}$; multistage rocket gains range when 'Wac Corporal' in $V-2$'s nose is fired at top of trajectory (right); intercontinental missiles seem closer today because...

Tiny Gyro May Guide Missiles

Available components can furnish essentials of guidance

Pilotless supersonic parent missiles, able to make round-trip flights and launch air-to-ground atomic missiles at important targets en route, are seen by Arma Corporation engineers as entirely possible.

Using miniaturized gyroscopes, computers and servomechanisms, the 'inertial' guidance system would be wholly self contained, dependent upon the earth's course through space and impervious to enemy deception or jamming.

[^1]flight based upon inertial navigation is forseen as a means for safe supersonic flight where the human pilot's reaction time is now the limiting factor.

The complete system would weigh about 200 lbs and require no more space than a human pilot. In addition, pilot equipment such as G-suits, parachutes and oxygen would be unnecessary.

- Inertial Navigation-The missile's flight plan referred to a free gyroscope could be stored in computers.

With error sensing by accelerometers, the system could be made continuously self-correcting through closed-loop servo systems.

FCC Tosses Ball to JTAC On Interference

Government group outlines

 five-point program aimed towards spectrum conservationAny GI knows the dangers of volunteering. Willing volunteers, the members of the Joint Technical Advisory Committee recruited from Radio and Television Manufacturers Association and the Institute of Radio Engineers, have just learned some of the hard facts of life from the Federal Communications Commission.

- How It Started-JTAC's comprehensive report on spectrum utilization, based on present uses and future needs, was recently published by McGraw-Hill in book form under the title "Radio Spectrum Conservation" (\$5). In it, the Committee points out some present inefficient practices and suggests general principles for future betterment.

At the same time, RTMA (which constitutes half of the JTAC combination) has been carrying on a gentle epistolary feud with FCC, which thinks all television set manufacturers should reduce set radiation interference and start using the new standard $41.25-\mathrm{mc}$ intermediate frequency before more stations and receivers go into circulation.

- What FCC Wants-Now that the JTAC report has outlined broad solutions, including reduction of all interfering signals from transmitters and receivers, FCC is asking that specific suggestions with teeth in them be formulated. It asks that special attention be given to these subjects:
(1) Limits be put on useless but interfering radiations that fall outside the assigned frequency bands. (This is to safeguard broadcasting, aircraft communications and navigational aides.)
(2) Review technical problems of reducing radiation from various non-communications devices (like
(Continued on page 24)
 ruptions, no records to change and no attendants since it needs no attention during operation. It plays at the touch of a button and keeps on playing for as long as eight hours without repetition. Because tape doesn't lose quality with repeated playings, music is always scratch-free and pleasant, with less background noise and distortion.
The Model 450 is engineered to rigid AMPEX standards and is capable of delivering thousands of hours of service with no breakdowns and minimum maintenance.

For further information, write to Dept. E

IF YOU PLAN FOR TOMORROW, BUY AN AMPEX TODAY

- 50 to 7500 -cycle frequency response at $33 / 4$ inch tape speed
- Standard NARTB reels up to 14 inches
- Pushbutton controls
- Automatic reverse control available as an accessory permits full eight hour program without interruption.

MAGNETIC RECORDERS

AMPEX ELECTRIC CORPORATION 934 CHARTER STREET • REDWOOD CITY, CALIF.

INDUSTRY REPORT-Continued

diathermy, welding apparatus and high-frequency heaters) to determine the feasibility of attaining the limits outlined above.
(3) Review the instrumentation problem necessary to put over a national program of spurious radiation control.
(4) Study the procedure and organizational effort in this field to find whether additional effort is needed to co-ordinate interfer-ence-reduction efforts.
(5) Determine whether action is needed to co-ordinate "external performance" of receiver with engineering of service and station allocations.

- TV Proposal—FCC has already proposed a change in its tv broadcast rules. Inviting industry comment before Jan. 12, 1953, it suggests that all emissions removed in frequency in excess of 3 mc above or below the respective channel edge shall be attenuated no less than 60 db below the visual transmitter power. In the event of interference caused to any service, greater attenuation will be required. Manufacturers have already indicated that such suppression at the transmitter output terminals can readily be obtained by harmonic filters.

Parts Industry Set To Appeal Putnam Action

Manufacturers of radio-tv parts and tubes prepared through RTMA to make a joint industry protest to OPS under appeal procedures when Roger L. Putnam, Administrator of the Economic Stabilization Agency, did not lift present price lids on radio-tv parts and tubes (Electronics, p. 8, Dec. '52).

RTMA will base the new protest on the points that the OPS action is not supported by facts, is contrary to the intent of Congress and the law, and that it is arbitrary and capricious. The Association plans to carry the fight to the courts if the joint appeal fails.

Tubes Speed Magazine Mailing

Highlight of the second annual joint AIEE-IRE-ACM Computer Conference held in New York, Dec. 10-12 was Eastman Kodak's multiple-stylus electronic printer, the electronic portion of which is shown above. Printing capacity is 400 characters per second. Machine is designed for printing magazine and mailing envelope labels, utility bills and insurance premium notices. Address labels can be turned out at six hundred per minute

'Booster' TV Stations Aborning

Too young to denote a trend, booster and satellite ty stations now operating nevertheless hold promise for areas too far from ordinary stations to get decent reception and too sparsely populated to support local stations.

The FCC has never authorized such stations commercially, but two of them are operating experimentally. Applications for two more are pending. When results of the experiments are reported, the Commission will consider whether commercial operation should be permitted.

A booster station rebroadcasts the originating station's signal on the same frequency. A satellite rebroadcasts on a different frequency.

- Operating Now-One satellite is in Emporium, Pa., owned by Sylvania Electric, which operates a tube plant there. It is KG2XDU,
radiating 300 watts on uhf channel 22 ($518-524 \mathrm{mc}$). The company also has a construction permit for KG2XEL, to operate on channel 82 ($878-884 \mathrm{mc}$), with 50 watts. Propagation, interference and coverage of the two will be compared. Signals of commercial station WJAC-TV, Johnstown, Pa., are rebroadcast.

A 5-watt installation at Lawrenceburg, Tenn., is operated by WSM-TV, Nashville, as a booster. Like WSM-TV, it employs channel 4, but it radiates vertically polarized signals while WSM-TV transmits conventional horizontally polarized signals. The idea is to determine whether this technique will minimize cochannel interference which would otherwise occur.

- Future Business-A pending satellite application was filed by Howard-Yale Inc., of Palm
(Continued on page 26)

the smallest . . . Iightest
power supply available!

the AIRPAX GPICK-A-BACK:

Model A- 1220 vibrator power supply is designed to deliver 15 watts, 150 volts DC, 100 ma , is filtered to 1% peak ripple, has DC to DC efficiency of approximately 70%. Very small size and weight are possible because of the high frequency (450 cycle) vibrator. Vibrator and power supply are hermetically sealed. Vibrator is replaceable, using Dzus snap fasteners for easy removal. Supply obtainable for 6 or 12 or $\mathbf{2 6 . 5}$ VDC input, on special order any input voltage from 4 to 110 may be used; outputs up to 20 watts and 300 volis can be furnished. Power supply will operate with a 20% input voltage variation, and under severe vibration and shock. It wan't be damaged by exposure to high humidity or high altitude. Internal temperature rise is $38^{\circ} \mathrm{C}$, permitting maximum external ambient of $75^{\circ} \mathrm{C}$.

Write for Bulfetin A-1 220.

Springs, Cal., which seeks to rebroadcast the signals of Los Angeles stations, scramble them, and institute a pay-as-you-look system in Palm Springs.

Also pending is the booster application of WSAZ-TV, Huntington, W. Va., which proposes a onewatt station at Williamson, W. Va., to pick up and rebroadcast the mother station's signals for the benefit of Williamson residents. Engineers calculate that one watt, into a directional antenna, can serve 7,000-10,000 people in a 5.57 square mile area.

KGMB-TV in Honolulu plans to put a satellite tv station in operation this year.

The FCC has been in no hurry to authorize boosters and satellites commercially, feeling that regular stations should be given time to develop first. However, if it can be proved that boosters and satellites don't create interference to existing or prospective regular stations, their chances of getting approval will be considerably enhanced. And if proponents of such baby stations can satisfy the Commission that they will bring tv to people who would otherwise get little or none for years, if ever, they're likely to get favorable action.

Transistors In Use

Long-distance dialing service in Englewood, N. J., is a Bell Telephone proving ground for transistor oscillator equipment. The oscillators are used to generate electrical signals by called numbers sent from one central office to another. Each oscillator unit uses six transistors

MEETINGS

Jan. 6: N. Y. AIEE, Lecture on "Storage Devices In High, Speed Digital Computers," Engineering Societies Bldg., New York, N. Y.
JAN. 6-8: 1953 Surplus Show, Hotel Statler, New York, N. Y.

JAN. 8-9: AIEE, IRE, Symposium on Industrial Applications of Automatic Computing Equipment, Midwest Research Institute, Kansas City, Mo.
JAN. 14-16, 1953: Joint AIEEIRE Conference on High Frequency Measurement, Washington, D. C.
Jan. 16: Mica Symposium, American Ceramic Society. Oscar's Restaurant, New York, N. Y.
Jan. 19-23: AIEE Winter Mecting, Hotel Statler, New York, N. Y.

JAN. 2 2 -27: Seventh Regional IRE Conference, University of New Mexico, Albuquerque. N. M.

Fer. 4-6: Western Computer Conference, Hotel Statler, Los Angeles, Calif.
FEB. 5-7: IRE Southwestern Conference and Electronics Show, Plaza Hotel, San Antonio, Texas.
Feb. 5-7: Audio Fair. Alexandria Hotel, Los Angeloc. Calif. March 9-12: NEMA, Edgewater Beach Hotel. Chicago, Ill.
March 23-25: Sixth Annual Conference for Protactive Rolay Engineers. A \& M College of Texas, College Station, Texas.
MARCH 23-26: IRE National Convention, Waldorf-Astoria Hotel and Grand Central Palace. New York, N. Y.
March 23-27: Weatorn Me \boldsymbol{m} Exposition, Pan-Pacific Auditorium and Western Metal Congress. Statler Hotel. Los

Angeles, Calif.
APRIL 18: Seventh Annual Spring Technical Conference, Cincinnati IRE, Cincinnati, Ohio.
APRIL 27-May 8: British Industries Fair, Birmingham \& London, England.
April 28-May 1: Seventh Annual NARTB Broadcast Engineering Conference, Burdette Hall, Philharmonic Auditorium, Los Angeles, Calif.
April 29-May 1: 1953 Electronic Components Symposium, Shakespeare Club, Pasadena, Calif.
May 11-13: National Conference on Airborne Electronics, Dayton, Ohio.
MAY 18-21: 1953 Electronic Parts Show, Conrad Hilton Hotel, Chicago, Ill.
May 18-23: Third International Congress On Electroheat, Paris, France.
MAY 24-28: NAED, 45th Annual Convention, Conrad Hilton Hotel, Chicago, Ill.
May 24-28: Scientific Apparatus Makers Association Annual Meeting, The Greenbrier, White Sulphur Springs, W. Va.
JUNE 15-19: Exposition of Basic Materials for Industry, Grand Central Palace, New York, N. Y.

JUNE 16-24: International Elec-tro-acoustics Congress, The Netherlands.
June 20-OC'T. 11: German Communication and Transport Exhibition, Munich, Germany.
Aug. 19-21: Western Electronic Show \& Convention, Municipal Auditorium, San Francisco, Calif.
Aug. 29-Sept. 6: West German Radio and Television Exhibition, Duesseldorf, Germany.

Business Briefs

- MIT's computer-controlled milling machine (Electronics cover, Nov. 1952) is now being used to turn out special parts for jet aircraft. One particular part once took 30 hours to produce by conventional methods. With the computer, the job takes 4 minutes.
- Cow Service in the Lehigh Valley is now being facilitated by twoway radio. Artificial inseminators are speedily dispatched to the receptive animal that can ordinarily be bred only during a 17 -hour period every 21 days.
- Siam is expected to have its first television station on the air this month. A second station expects to begin operations in the early summer of 1953. All equipment for both installations, from transmitters to 16 -inch receivers, is being supplied by Marconi.
- Suppressing devices to prevent tv interference will be compulsory in England on new cars, motorcycles and motorboats sold after July 1, 1953. All such interference radiations between 40 and 70 mc must not exceed 50 microvolts beyond 35 feet. Fines will be imposed if suppressors are not used.

THE HICKOK ELECTRICAL INSTRUMENT COMPANY

Why PHELPS DODGE ROUND THE YARDSTICK FOR

Up-to-the-Minute Research
Quality Controlled
for Maximum Performance
Leader in Application Engineering
Experience Over Complete Range-
\#4 to \#44, AWG - All Grades and Colors
"It takes the best PHELPS DODEE COPPER PRODUCTS CORPORATION

FORMVAR has become FILM WIRE QUALITY!

PHelps Dodge, recognizing the advantages of round Formar magnet wire, became the leader in replacing enamel, fabric and papercovered wires. Today, round Formvar is usec extensively in motors, transformers and coils, with resultant overall cost reductions and quality improvements in the insulation system.

Where greater spacing or additional safety factors are indicated, fabrics such as cotton or
paper can be added. For higher temperature operation Phelps Dodge Formsar, with a wrap of fiberglass, has been widely used.

For some applications a thin sheath of Nylon has been applied over the Formvar and identilied as Phelps Dodge Nyform magnet wire.

$$
\star \quad \star \quad \star
$$

Any time magnet wire is your problem, consult Phelps Dodge for the quichest, easiest answer!

to make the
 best!"

design of electrical and electronic circuits, where operating temperatures run fairly high, it is extremely important that the voltage ratings of components such as capacitors conform exactly to nameplate designations.
P-C Capacitors, designed for temperatures ranging from minus $90^{\circ} \mathrm{C}$. to plus $200^{\circ} \mathrm{C}$., depending upon the type, are guaranteed to operate without voltage derating at temperatures specified.
You can design your circuits around P-C Capacitors with complete assurance of their performance at specified

Get Your Copy
of This Catalog

Plastic Capacitors, Inc.

PLASTIC FILM CAPACITORS - HIGH VOLTAGE POWER PACKS
 - PULSE FORMING NETWORKS

"We need an 82-channel tuner

 -only one line of receivers
TRIM TV COSTS WITH G-E VHF-UHF TUNER TUBES!

AVOID DOUBLE INVESTMENT IN WAREHOUSE STOCKS . . . cut production expense . . . with the aid of G.E.'s tuner-tube trio! Now you can have one-dial tuning through all TV channels-economically.
45-TO-870-MC RANGE! No need to switch tubes between high and low bands! General Electric tuner tubes are usable at all TV frequencies. Layout of your combined head end can be simple, saving tubes, components, and circuitry.

HERE ARE PERFORMANCE PLUSSES YOU OBTAIN: (1) low noise level, with less snow, (2) less radiation interference, (3) high r-f gain. They add up to a far better head-end circuit, as well as one that provides singledial tuning at low cost.
 for Booklet ETD-591, giving complete tuner-tube information! Or, if you wish, a G-E tube engineer will be glad to call. Address Tube Department, General Electric Company, Schenectady 5, N. Y.

Selected stock. Always free from defects and surface blemishes.

Moisture and fungus proof coatings, varnish or lacquer smoothly applied. No wrinkles or unsightly heavy deposits.
C.T.C. standard terminals. Types for all applications. Silver* plated, cadmium plated, electro tinned, hot tinned or gold plated as required.

Little details on terminal boards ...make the big difference in quality

C.T.C. is constantly supplying special terminal boards to the top names in electronics. These boards are built to strict government specifications, are fabricated of certified materials to fit the job. Among the specifications involved are: MIL-P3115A, MIL-P-15037, MIL-P-15035, MIL-P-15047, MIL-P-997A.

Our Custom Engineering Service is well-equipped to fill these specifications for you. We are thoroughly familiar with the JAN and MILapproved materials and finishes in accepted usage by government agencies and the armed forces. This, combined with assembly know-how developed over many years of supplying electronic components and equipment to the government, enables us to meet your needs for
quality above and beyond the basic government standards.
Boards can be made of cloth, paper, nylon or glass laminates (phenolic, melamine or silicone resin), and can be lacquered or varnished to specifications: JAN-C-173, MIL-V-173 and JAN-T-152. Lettering and numbering is done by rubber stamping, silk screening, hot stamp-
ing, engraving. Inks used in rubber stamping contain anti-fungus and fluorescent additives.

For complete information write: Cambridge Thermionic Corporation, 437 Concord Avenue, Cambridge 38, Mass. West Coast manufacturers, contact: E. V. Roberts, 5014 Venice Blvd., Los Angeles, or 988 Market St., San Francisco, Cal.

New measuring accuracy and convenience, broad-band operation with low-cost -hp- Attenuators and Loads

These Attenuators and Moving Loads are integral parts of a complete new line of high-quality -hp-waveguide equipment. Like all elements in the line, they cover the full frequency range of their waveguide sizes, and are wholly integrated with other - $h p$ - instruments. They have the simplest possible design consistent with basic function. Their novel circuitry and simple mechanical design insure high accuracy, stability and operating ease, and permit quantity production at low cost.

Waveguide Attenuators

Model 375A Variable Flap Attenuators provide a fast, simple means of adjusting power level or isolating source and load. They consist of a single slotted section in which a matched resistive strip is inserted a variable amount. The degree of strip penetration determines attenuation. A dial shows average reading over the complete frequency band. A shielded dust cover reduces radiation and eliminates hand capacity effects.

Model 375 A Attenuators have a maxinum VSW R of less than 1.15 full range. Attenuation is variable 0 to 20 db and power dissipated is 1 watt ($1 / 2$ watt for smaller sizes). Dial calibration is accurate within $\pm 1 \mathrm{db}, 0$ to $10 \mathrm{db} ; \pm 2 \mathrm{db}$, 10 to 20 db . Typical frequency sensitivity $\pm 1 \mathrm{db}$ entire band. Models for all frequencies 2.6 to 18.0 kmc . $\$ 50.00$ to $\$ 75.00$

In addition to Model 375A, -hp- offers Model 370 Fixed Waveguide Attenuators (6,10 or 20 db attenuation, VSWR 1.15 full range) and Model S380A Calibrated Variable Attenuators (micrometer adjustment, VSWR 1.15 full range). Model 370 is available for all frequencies 2.6 to 18.0 kmc , $\$ 55.00$ to $\$ 75.00$. Model 380A is offered in the 2.6 to 3.95 kmc band only; $\$ 225.00$

Moving Loads

Model 914A Moving Load consists of a waveguide section in which is mounted a sliding, tapered, low-reflection load. A plunger controls the position of the load; and load is variable at least $1 / 2$ wavelength at the lowest frequency. This facilitates reversing phase so residual reflections can be separated from other minor reflections in the system. Load reflection is less than $1 / 2 \%$ full range. Model 914 A is available for all frequencies 2.6 to $18.0 \mathrm{kmc} . \$ 40.00$ to $\$ 80.00$

Data subject to change without notice. Prices f.o.b. factory

For camplete details, see your -hp-field representative or write direct.

[^2]Instruments for Complete Coverage

ACTUAL SIZE

RAYTHEON, the pioneer and world leader in the development and mass production of dependable, top quality Subminiature Tubes, naturally takes the lead in the development and quantity production of PNP Junction Transistors.

Raytheon Germanium Junction Transistors are ready for you, now.

AVERAGE CHARACTERISTICS AT $30^{\circ} \mathrm{C}$

Collector Voltage (volts)
Collector Current (ma.)
Base Current* (ua.)
Current Amplification Factor*
Power Gain* (db)
Noise Factor* (1,000 cycles) (db)
Grounded Emitter connection

DATA SHEETS may be obtained from the nearest Raytheon office listed below.

AAYTHEDD

(®)

Eircellencoin Elechonies

Receiving Tube Division - For application information call
Nawfon, Mas's, B̄lgelow 4.7500 - Chicago, Ill. NAtional 2.2770 - Now York, N. Y. Whisehall 3.4980 Los Angeles, Calif. Rlchmond 7.5524

CK722
 IMMEDIATELY avallable in PRODUCTION quantities

OK721
available in limited quantities until April, 1953

Collector Current - Milliamperes

Ingenuity saves you money when Clarostat engineers collaborate. Mainly because certain basic designs, parts and production procedures are applied to both standard and special control requirements.

Take the Series 42a high-precision wire-wound controls, for example. The basic unit is a marvel of quality production. Exceeds JAN-R-19 specs where applicable.

Used alone or in multi-tandem assemblies, it meets tolerances even to 0.5%.
But Clarostat doesn't stop with the standard unit. Series 42 a is made in many variations - all kinds of shafts; high-torque; continuous rotation; many different mountings; etc.
Typical of Clarostat engineering ingenuity-channeled to your exceptional control needs-and at real savings!

- A Superior Specialty

Men, experience, and machines-that-do-everything-but-talk, are generally the answer to a problem of obtaining parts of complex shape and precise dimension.

Here at Superior, customers for parts of this kind get a particularly good answer. We have the experienced men with a solid background of tubular parts production who are willing and able to take the time and care required for topquality products. And we have the machines.

The delivery end of one of them is shown above. The part coming out came into our plant as a $2^{\prime \prime}$ tule, went through several redraw and annealing operations, was finally cut to exact length, tumbled to remove cutting burrs, then rolled by a controlled process to the
precise dimensions established by customer specifications.

There's nothing spectacular in the story . . . it's just the outline of one of the many jobs that we know how to do well. Behind the story, however, is a thought for you.

Our production story is backed by our ability, facility and desire to help you. If you are an experimenter in electronics or a manufacturer of electronic equipment and you need a tubular part to do a tough job well, better check with us. We'll be glad to assist with research, development, and design aid toward the solution of your problems. Tell us about them by writing Superior Tube Company, 2500 Germantown Ave., Norristown, Pennsylvania.

Cutting and Tumbling. Culting machines and jigs of many types and sizes are combined with extensive tumbling equipment to permit fast, accurate production of quantities of parts at Superior.

Fabrication. Parts can be readily rolled at eilher or both ends, flared, flanged, expanded, or beaded (embossed) as required. The anode above is one of many such parts we produce at high speed and low cost.

The Finished Part. Final stage in the fabrication of the part, shown above at three stages of production, is a bend nicely controlled for both precise angle and freedom from other, unwanted distortion.

This Belongs in Your Reference File . . . Send for It Today.

NICKEL ALLOYS FOR OXIDE-COATED CATHODES: This reprint describes the manufacturing of the cathode sleeve-from the refining of the base metal; includes the action of the small percentage impurities upon the vapor pressure and sublimation rate of the nickel base. Future trends of cathode materials are also evaluated.

Good engineering shows in this Amplifier's wide range of sensitivities, and of impedances, thorough filtering and plug-in connection to the rest of the Speedomax instrument.

Good engineering shows in this Converter's phenomenally low noise level and in its long-lived performance.

Good engineering shows in this Slidewire's non-inductive winding and in absence of any flexible leads which might form inductive loops.

Good engineering shows in this balancing motor's small size, and in its torque ample to operate accessory control and signalling fitments.

it helps Speedomax to fit your ideas!

- Your needs and ideas put this electronic "tool" to work on an amazing variety of jobs. Controlling furnaces and peering into atoms; counting bottles and spying on the weather; taking the "shine" out of rayon or putting it on hardware, to name six out of thousands of uses. For, in general, if you can feed Speedomax a tiny electrical signal, representing the condition you wish to measure, the instrument will not only put "calipers" on it, but will amplify it enormously to direct anything that can be directed through electrical or pneumatic means.

The Speedomax way of handling this job provides particularly accurate results and an especially good fit in meeting your individual ideas. For instance, there's the matter of receiving the signal in a way suited to its size-or, more usually, to its smallness.

We have no less than twenty-three carefully-engineered Speedo\max Amplifiers covering a wide range of sensitivity and impedance levels. One Amplifier in the series enables the Speedomax to respond to a signal of only 10-16 watt-- one ten-billionth of a microwatt. No other recorder amplifier comes within 3 magnitudes of this figure. Such sensitivity means corresponding accuracy in detecting the tiny unbalance--called "error" by circuit engineerswhich actuates the rebalance system.
In terms of power, all 23 Amplifiers deliver the same - 5 or 6 watts. This is from 2 to 4 times the output of other recorder amplifiers; permits a more powerful balancing motor. And the Amplifier-Motor team provides an especially high torque gradient just where it's needed-centering around the balance point for prompt, positive balancing and easy, effortless operation of a "heavy" load of control or signal devices in the motor shaft.

The Speedomax story for industry is told in Catalog ND46(1); for Research, in Tech. Pub. ND46(1). We will send either on request; address our nearest office or 4979 Stenton Ave., Phila. 44, Pa.

2 Waldes Truarc Rings Replace 2 End Plugs Eliminate 3 Operations...Save ${ }^{\text {s. }} .066$ Per Unit

OLD WAY Two inserted-plug type wrist pin locks hold wrist pin in place. 3 operations involved: costly machining, pressing in place, post-assembly machining. Costly maintenance problemresulting from end plugs hammering loose.

Titan Chain Saws, Inc., Seattle, Washington, uses 2 Waldes Truarc Rings to replace old-style insertedplug type wrist pin locks in their Titan chain saws. Use of Waldes Truarc Retaining Rings eliminates 2 press fit end plugs. Machining of plugs, pressing in place, finish machiningno longer required. Truarc way holds rejections to a minimum. Unit efficiency is greatly increased.

Redesign with Truarc Rings and you, too, will cut costs. Wherever you use machined shoulders, bolts, snap

TRUARC WAY Two Truarc Inverted Retaining Rings (Series 5008) hold wrist pin in place. Truarc Rings snap into grooves easily cut in piston, provide positive lock . . . practically eliminate maintenance costs. Quick assembly, disassembly.

rings, cotter pins, there's a Waldes Truarc Retaining Ring designed to do a better job of holding parts together.

Waldes Truarc Rings are precisionengineered... quick and easy to assemble and disassemble. Always circular to give a never-failing grip. They can be used over and over again.

Find out what Waldes Truarc Retaining Rings can do for you. Send your blueprints to Waldes Truare engineers for individual attention, without obligation.

For precision internal grooving and undercutting . . . Waldes Truarc Internal Grooving Tool.
WALDES KOHINOOR, INC., LONG ISLAND CITY 1, NEW YORK waldes truarc retaining rings and plisps are protected or one or more of the following
2.483,380; 2.43.383; 2.487.802:2.487.803;2.491.306: 2.509.081 AND OTHER PATENTS PEMDING.

Waldes Kohinoor, Inc., 47-16 Austel Place, L. I. C. I, N. Y. Please send me the new Waldes Truarc Retaining Ring catalog.
(Please print)
\square
Business Address

with a DU MONT HIGH-VOLTAGE TYPE 303-AH The new Du Mont Type 303-AH is the high-voltage, highfrequency instrument

The 10,000 volts applied to the cathode-ray tube provides a bright, highly resolved presentation for viewing or recording short duration transients or high-frequency signals even at low repetition rates.

The metallization of the cathode-ray tube greatly increases brightness over normal screen brightness and prevents buildup of spurious screen charges, thus allowing faithful reproduction of short-duration transients having low repetition rates.

The BNC-type coaxial input permits convenient connection of pulse-type signals usually carried on coaxial lines.

The wideband vertical amplifier (3 db down) 10 MC has a pulse response of $0.033 \mu \mathrm{sec}$ for faithful reproduction of short rise-times without overshoot.

The fast linear sweeps, $6^{\prime \prime} / \mu \mathrm{sec}(0.065 \mu \mathrm{sec} / \mathrm{cm})$ at 10 KV , take fullest advantage of the wideband amplifier for expanding and measuring short rise-times.

The $0.25 \mu \mathrm{sec}$ signal delay line introduces no signal distortion and allows sufficient time for the sweep to start before the signal appears.

The provision for both amplitude and time calibration of $0.1,1,10$ and 100 volts peak to peak and $0.1,1,10$ and $100 \mu \mathrm{sec}$ intervals insures accuracy and convenience of measurement.

The variable-intensity illuminated scale facilitates visual or photographic measurements.

Type 316-A probe available for low capacity input. Price $\$ 27.00$.

Tiny but tough! The smaller capacitors become, the greater the premium on trustworthiness. Cornell-Dubilier has a dependable miniaturized capacitor for practically every known application. Typical are the High Temperature Tubulars, Metallized Paper Tubulars, Midget Micas, Disc and Tubular Ceramics. For the complete catalog write to: Dept. K-13, Cornell-Dubilier Electric Corp., General Offices, So. Plainfield, N. J.

CORNBLT-DUBITTER

world's largest manufacturers of capacitors

What Rauland means by "Perfection Through Research"

Rauland is one of the few companies devoting so much top engineering talent full time to picture tube improvement and perfection.

The result has been to give you more picture tube advancements since the war than any other manufacturer... first chance at the latest developments
for companies using Rauland tubes as original equipment . . . and a real selling edge at the retail level because of the extra satisfaction which Rauland advantages offer.

That's why so many alert manufacturers look to Rauland for the best in picture tubes.

All-electronic tri-color tube in electronic receiver system (left) in comparison with mechanical system (right).

Rubber model for studying electron optical designing - basis for Rauland's exclusive Indicator Ion Trap.

Inspection and checking of perforations $.0075^{\prime \prime}$ in diameter in masks of tri-color picture tubes.

Alignment of the screen and parallax mask of tri-color tube containing approximately a million fluorescent dots.

Rauland large-screen projectors using three different optical systems, all of which give theater-size pictures.

Careful study of the formation of thin metallic tilms in a vacuum ... basis for the aluminizing of tubes.

Examination with polarimeter permits careful control of strains for superior glass-to-metal sealing.

A physicist using a Rauland-developed radiation meter in checking X-ray radiations from cathode ray apparatus.

THE RAULAND CORPORATION

Perfection Through Research 4245 N. KNOX AVENUE - CHICAGO 41, ILLINOIS

Basic Foundation Components, Plug-in, Connecting \& Fastening Devices for the Electronic Control Industry

Making it possible to build quickly any electronic circuff lito prectical production design (you supply the circuit - we supply the components).

- by giving you basic components of tremendous fexibility which simplify layout time in production of your equipment.
-by providing you a technique to solve mechanical, space, connecting, interconnecting, fastening, sensing and indicating problems for you.
Giving you equipment that is easy to operate and maintain
- 80 that - with spares - your equipment never needs to be out of operation more than 30 seconds.
- so that non-technical personnel can set ap, operate and maintain your equipment.

WORKING WITH "ALDEN'S HANDBOOK", THE DESIGN ENGINEER AUTOMATICALIY CRIATES PRACTICAL PRODUCIION DESIGN, as follows -

I. Anything electrical or electronic usually operates with an outside source of power and may be connected to oufside circuits. So Alden provides for this with the efficient Detachable Line Cord for bringing in 110V AC power. Available in lengths to your specs for making a neat connection. Sure grip plug is self-piloting for quick mating.

SEE "ALDEN HANDBOOK" PAGES 4A 8 B FOR COMPLETE DETAILS
2. A great deal of equipment will have a front panel with such things as sensing controls, jacks for testing and fuseholders. For this Alden provides a basic slide-in chassis with a detachable front and back panel so that rheostats, indicator lights, test jacks, interwiring, ete. are all easy-to-work subassembly operations.
SEE "ALDEN HANDBOOK" PAGES PI-1E thru G FOR COMPLETE DETAILS
3. Sensing Units - telltales that all is well or not - in simple indicator light - fuse hoiders that glow when blown - memory or pulse circuits including Static Magnetic Momory that sense - or command - or keep on repeating so that units or elements almost assume rain functions.

SEE "ALDEN HANDBOOK" PAGES ES-5A \& B; DL-5A \& B; TE-3A B B; CG-all pages
4. The telephone, telegraph, electric light companies have always braught the incoming circuits to a bus bar or ferminal board so that the incoming circuits could always be checked at one point - and equipment connected not being condemned becouse of imperfect outside circuits. So Alden provides in its Back Connectors and supporting Back Plates the one area in which all incoming circuits can be checked.
SEE "ALDEN HANDBOOK" PAGES PI-2A \& B; 4D FOR COMPLETE DETAILS
5. The next problem is to house the components and have them do the electrical or electronic work required. Any such circuitry will have certain main functions and branching from it other functions. Many of these functions can be layered-so circuits go direct from lack connector to front panel. Alden provides: simple component mounting panels for putting any circuit in layers. (And incidentally such component panel simplify the thinking, should the circuits give sufficient volume to be printed.) So Alden has the Terminal Panel Boards to make equipment easy to lay out by putting any function in one plane-plus the unit cables of correct lengths with stripped ends ready for interconnecting the Terminal Panels.
SEE "ALDEN HANDBOOK" PAGES PI-1B thru D FOR COMPLETE DETAILS
6. Not all circuits can be a simple, straight circuit from back connector to front panef because there are auxiliary functions and branches that have to be in the main functions. The usual chassis carries tubes, transformers and components that rise vertically from the chassis, often leaving vacant spaces. In these spaces can be placed the plug.in units which have these secondary circuits; using the plug-in technique usually removes the congestion of the wiring below the chassis, provides automatically for shielding and heat dispersion and yet gives you largest amount possible circuitry per cubic space, the circuits free from interaction.
SEE "ALDEN HANDBOOK" PAGES PI-TA thru H FOR COMPLETE DETAILS
7. Again these fechniques often lead to putting one function sueh as a power supply and amplifier on separafe chassis and so the back connectors or the chassis itself may meed interconnecting unit cables fo either chassis or racks. Alden provides sufficient variety of connectors to choose from-and designed so that any cable, no matter how involved, cannot be wrongly plugged in
SEE "ALDEN HANDBOOK" Sec. PC - Sec. MPS FOR COMPLETE DETAILS
8. To design so that no equipment - whether plug-in unit or slido-in chassis - needs to be out of operation for more than 30 seconds (having adequate spires on hand), Alden provides quick detaching and quick fastening devices for chassis. The Serve-a-Unit locks that will move chassis against weight or the resistance of gagkets. There is the Target Screw (coin operated), a Tool-less screw-the Captive Screw which becomes part of the equipment. SEE "ALDEN HANDBOOK" PAGE PI-11 FOR COMPLETE DETAILS
9. Government designers and those in the electronic control industry want elements of equipa ment so that they can be portably operatied or tested, can ber carried by one man with spares, parts easily sent by mail or airborne and also prefer that the seme design equipment can be used in conventional racks. Those designing for field operation use, at sea, prefer to have the equipment so it can be unloaded by two people, set up and immediately interconnected. This is provided by the Alden Basic Chassis using Back Connectors, Unit Cables and for the last purpose, the Uni-Rack which can be set on top of one another and immediately interconnected with each other.
SEE "ALDEN HANDBOOK" PAGE PI-II FOR COMPLETE.DETAILS

Fuses that indicate
when blown. placed no
nsulated test point backs for plate vot
ages up to $0,000 \mathrm{~V}$

Plug. In Memory or
Pulse Clircults.

 Massing of essential electronte
elements yet with effictent heat
dlapperston and freedom from tinter. dlaspersion and freedom fror
action, In a Basic Chassis.

Separate chassis
may be stacked in alden Uni-rack
Cabinet. Cabinet
can be intercons can be intercon.
nected winn by Alden winit pluy.
in cables.

How Alden Terminal Panel groups
matan functions and how plug th units have parallel functions flor fargest have parallel runctions for large
amount circultry per cuble space.

5%

ying or serv-
or ces.

Alden Target Screw
The Toollegn Screw
 SEND FOR the Alden Handbook-your key to practical production deitgnwith components already tooled-yet can be modified-ready for Volume production without delays or procurement headaches.

in instruments where reliability is imperative

where other materials fail

To assure maximum service life and accuracy, engineers at Lear, Incorporated, planned to protect their new vertical gyro-mechanism from corrosion by housing it in a completely inert and dehydrated atmosphere.
Sealing the housing, however, proved to be more easily said than done. Despite the most elaborate precautions, solder and flux fumes often penetrated the joint and contaminated the delicate mechanism. Once sealed, it was impossible to reopen the case without loss of the expensive cover and harness.
To both of these problems a simple and ingenious solution was found. A thin O-ring of Silastic molded to fit snugly under the cover flange is used to exclude the
corrosive fumes generated in soldering a metal strip over the entire joint. The Dow Corning silicone rubber O-ring is not damaged by soldering temperatures. And, the gyro-mechanism is just as accessible for repairs as the contents of a hermetically sealed can of coffee. Lear also uses a large ring washer of Silastic at each end of the housing to serve as resilient, shock-absorbing cushions for the apparatus at stratospheric temperatures.
And that's just one of hundreds of examples of how Silastic is used to improve the performance of products ranging from cable to traction motors, from domestic steam irons to aircraft.

For more information

about the properties or
fabricators of Silastic, mail
this coupon today or phone our nearest branch office.

Dow Corning Corporation, Dept. BE-1, Milland, Mich.
Please send me:
\square Silastic Facts 10
$\square \begin{aligned} & \text { Silastic Facts } 10 \text { a with new data on properties and applications of all Silastic } \\ & \text { stocks and pastes }\end{aligned}$ stocks and pastes.
\square "What's A Silicone?", your new 32 -page booklet on silicone products and applications.
Name
me-
Company
Address

FIRST IN SILCONES
DOW CORNING SLIICONES

Atlanta - Chicago - Cleveland - Dallas - New York - Los Angeles - Washington, D. C. - In Canada: Fiberglas Canada Ltd., Toronto - In England: Midanal Silicones Lte., Lendon

A NEW AND DEPENDABLE SOURCE OF HIGH QUALITY CERAMIC CAPACITORS

Allen-Bradley ceramic discs of high K dielectric material are molded by precision methods. After discs are sintered, silver paste is applied to each side and heat treated. After leads are soldered to silver surfaces, the capacitor is insulated and wax impregnated.

If you use ceramic capacitors, you will be interested in Allen-Bradley as a source, because we make the entire capacitor, from the dielectric disc to the finished and tested unit. Send for samples for your qualification tests. Available from 0.001 to 0.01 microfarads.

Allen-Bradley makes its own
Ceramic Dises
To assure dependable production and consistent capacitor quality, Allen-Bradiey molds and sinters its own ceramic discs. All manufacturing processes are Allen-Bradley controlled.

Allen-Bradley ceramic capacitors are approved by the engineering departments of leading electronic, electrical, and telephone laboratories. Allen-Bradley . . . long famed for high quality electronic components... is at your service as a major supplier of ceramic capacitors of superlative quality.

Allen-Bradley Co., 110 W. Greenfield Ave., Milwaukee 4, Wis.

Which part interests YOU?...

Perhaps that's one question that rightfully belongs with your future planning.

For, like ourselves, your manufacturing divisions may be toiling night and day in the interests of America's safety

But to research scientists-seeking the solution to some intricate problem of instrumentation and control Kollsman offers an experienced hand. A reputation based on inventive ingenuity, precision craftsmanship and world-over acceptance of its products.

In manufacture or research, there is no finer name than Kollsman designers, developers and makers of:

Aircraft Instruments and Controls

Miniature AC Motors for Indicating and Remote Control Applications - - Optical Parts and Optical Devices Radio Communications and Navigation Equipment

Kollsman Instrument Corporation

REGULATES
AND CONTROLS

SORENSEN'S EXPANDED LINE OF B-SUPPLYS NOW INCLUDES THIS NEW MULTI-RANGE DUAL SUPPLY.

Many users of Sorensen Nobatrons ${ }^{*}$ and AC Regulators are unaware that the standard Sorensen line includes a wide range of "B-Nobatrons" - high voltage, low-current DC sources.

Are you familiar with the number of units in the line? Two of them - models 360BB and 520BB - are low-cost units for those not requiring outputs adjustable down to zero, but which can be paralleled for higher current requirements. The other models are highly flexible, allpurpose laboratory instruments. All of them provide voltage and current well in excess of the specifications given below (these "plus values" are shown graphically in the new Sorensen DC catalog).

You owe it to yourself to get acquainted with these Sorensen B-NOBATRONS. You'll find they are reasonably priced - surprisingly so - yet in all ways live up to the Sorensen reputation for sound engineering, quality construction, dependable operation. Write for information.
${ }^{*}$ Reg. U.S. Paf. Off. by Sorensen \& Co., Inc.

"SEALED-IN" DESIGN eliminates need for metal enclosures and fungus-proof coating.

New G-E cast-permafil transformers are 20\% smaller, "sealed for life"

TRANSPARENT MODEL shows simple construction of new transformer. Terminals are anchored directly in mixture to cut size and weight.

Meet MIL-T-27 (Grade 1) performance requirements

Greater flexibility in many electronic designs is made possible by General Electric's new line of cast-permafil transformers, thanks to their light weight and small size.

These solventless-resin-type transformers are completely mois-ture-proof. They have fewer machined and punched parts. Tough, solid, shatter-resistant cast per mafil ends the necessity for fungusproof protective coatings.

At 130 C ultimate, these trans. formers have an expected life of 1000 hours or more. The complete line of 11 sizes, available in various terminal arrangements, averages about 20 per cent smaller than previous metal-encased transformer models.

For further information, write to Section 667-23, General Electric Company, Schenectady 5, New York.

Permafil d-c capacitors have $\mathbf{8 0 \%}$ less weight, bulk

They operate in ambients up to $\mathbf{1 2 5 C}$ for 10,000 hours without derating High or low temperatures have little effect on the electrical stability of G-E permafil capacitors. Their paper dielectric is impregnated with a solid plastic compound - they can't leak. Insulation resistance is high, and change in capacitance with temperature is slight. With proper derating, these units can be used at temperatures as high as 150 C .

Permafil capacitors average about
$1 / 5$ the size and weight of liquidfilled capacitors properly derated to operate at 125 C . Because of their small size and excellent electrical characteristics they are ideal for most high-ambient blocking, bypass, filtering, coupling and timing applications. They are available in ratings of 0.05 to $1.0 \mathrm{muf}, 400$ volts d-c. All are housed in hermetically sealed metal containers, with G-E all-silicone bushings. Check coupon for Bulletin GEC-811.

Bushings for hermetic sealing

More and more designers are specifying G-E glass bushings - the type used on capacitors, rectifiers, and instrument transformers. For use where permanent hermetic sealing of electric apparatus is desired, these bushings are easily attached by soldering, brazing, or welding to form a permanent, vacuum-tight seal. Bulletin GEA-5093.

Immediate shipment on delay line
G-E delay line, ideal for delaying signals in electronic circuits, is now available for immediate shipment. Nominal 1000 -ohm line delays signals $1 / 2$ microsecond per ft. Light weight and flexible, it is used widely in military and industrial electronics. Can be obtained in bulk to be cut to desired lengths. Bulletin GEC-459.

New relay doubles tip pressure
This new hermetically sealed relay has a larger magnet delivering double average tip pressure yet doesn't exceed Air Force-Navy size and weight specs. Sealed in a standard-size enclosure against dirt, salt, moisture, and pressure changes, it withstands 50 g shocks and instantaneous voltage surges up to 1500 volts. Bulletin GEA-5729.

Wanted!

 Tough circuit problems for GLOBAR Ceramic Resistors

To help you solve those tough problems, five types of globar Brand Ceramic Resistors, with distinctly different characteristics, are available in a wide range of shapes and sizes. Whenever you have difficult temperature or voltage compensation problems in your electrical or electronic circuits, you can count on globar Ceramic Resistors to help you out. In ordinary circuits, too wherever maximum resistor life and dependability are required - try globar Ceramic Resistors.
globar Ceramic Resistors are engineered to meet your exact requirements. They are electrically fired in one piece, and will withstand the severest service. They are always uniform, because they are strictly controlled from design and manufacture to final inspection.

GLOBAR Brand Ceramic Resistors			
TYPE	TEMPERATURE COEFFICIENT	VOLTAGE COEFFICIENT	DISSIPATION CAPABILITY
"A"	LOW	LOW	NORMAL
"CX"	LOW (POSITIVE)	PRACTICALLY ZERO	EXCEPTIONAL
"B"	MODERATE (NEGATIVE)	MODERATE	NORMAL
"F"	HIGH (NEGATIVE)	PRACTICALLY ZERO	ABOVE NORMAL
"BNR"	MODERATE (NEGATIVE)	EXTREMELY HIGH	NORMAL

If you have a resistor problem, let our engineers help you-without obligation, of course. Just send complete circuit information.

GLOBAR Ceramic Resistors by CARBORUNDUM

[^3]
ONLY THE LFE 401 OSCILLOSCOPE

Offers all these Important Features

high sensitivity and wide frequency RESPONSE OF Y-AXIS AMPLIFIER

The vertical amplifier of the 401 has been designed to provide uniform response and high sensitivity from $D-C$. The accompanying amplifier response curve shows the output down 3 db . at 10 Mc . and 12 db . at 20 Mc . Alignment of the amplifier is for best transient response, resulting in no overshoot for pulses of short duration and fast rise time. Coupled with this wide band characteristic is a high deflection sensitivity of 15 Mv./cm. peak to peak at both D-C and A-C.

$75 \mathrm{Mv},. 0.2 \mu \mathrm{sec}$ width, lusec sweep full scole

TRIGGER GENERATOR with variable repetition rate from 500 to 5000 cps .
POSITIVE \& NEGATIVE UNDELAYED TRIGGERS and a POSITIVE DELAYED TRIGGER are externally available.

linearity of vertical

DEFLECTION The vertical amplifier provides up to 2.5 inches positive or negative uni-polar deflection without serious compression; at 3 inches, the compression is approximately 15%. The accompanying photographs illustrate transient response and linearity of deflection.

SWEEP DELAY The accurately calibrated delay of the 401 provides means for measuring pulse widths, time intervals between pulses, accurately calibrating sweeps and other useful applications wherein accurate time measurements are required.
The absolute value of delay is accurate to within 1% of the full scale calibration. The incremental accuracy is good to within 0.1% of full scale calibration.

Additional Features:

An INPUT TERMINATION SWITCH for terminating transmission lines at the oscilloscope. A FOLDING STAND for convenient viewing. FUNCTIONALIY COLORED KNOBS for easier location of controls.

SPECIFICATIONS

Y-Axis
Deflection Sens. $-15 \mathrm{Mv} . / \mathrm{cm}$, peak-to-peak.
Frequency Response-DC to 10 Mc Signal Delay- $0.25 \mu \mathrm{sec}$
Input line terminations-52, 72 or 93 ohms, or no termination
Input Imp. - Direct-1 megohm, $30 \mu \mu \mathrm{f}$

Probe - 10 megohms, $10 \mu \mu \mathrm{f}$

X -Axis

Sweep Range $-0.01 \mathrm{sec} / \mathrm{cm}$ to 0.1 $\mu \mathrm{sec} / \mathrm{cm}$
Delay Sweep Range $-5-5000 \mu \mathrm{sec}$ in three adjustable ranges.
Triggers - Internal or External, + and - , trigger generator, or 60 cycles, undelayed or delayed triggersmaybeused.
Buill-in trigger generator with repetition rate from $500-5000 \mathrm{cps}$.
General
Low Capacily probe
Functionally colored control knobs
Folding stand for better viewing
Adjuslable scale lighting
Facilities for mounting cameras
Price: $\$ 895.00$

VOTTEE REEULITED POWER SUPMIITS
 For Industrial and Research Use

DC POWER SUPPLY SPECIFICATIONS

REGULATION: $1 / 2 \%$ for both line (105-1 25 volts) and load variations. REGULATION BIAS SUPPLIES: 10 millivolts for line 105-125 volts. RIPPLE: 5 millivolts RMS $\quad 1 / 2 \%$ for load at 150 volts.

VOLTS	Current	MODEL	Volts	Current	MODEL
$\begin{aligned} & 100-325 \\ & 0-150 \text { Bias } \\ & \text { 6.3 AC.CT.* } \end{aligned}$	$\begin{aligned} & 0-150 \mathrm{Ma} . \\ & 0-5 \mathrm{Ma} . \\ & 10 \mathrm{Amp} . \end{aligned}$	131	0-600	0-2.25 Amp.	770
			0-600	0-3.00 Amp.	780
$\begin{aligned} & 100-400 \\ & 6.3 \mathrm{AC.CT} . \end{aligned}$	$\begin{aligned} & 0-150 \mathrm{Ma} . \\ & 10 \mathrm{Amp} . \end{aligned}$	141	$\begin{array}{\|ll\|} \hline \text { \#1 } & 0-600 \\ \# 2 & 0.600 \\ \# 3 & 6.3 \mathrm{AC.CT} . \\ \# 4 & 6.3 \mathrm{AC.CT} . \\ \hline \end{array}$	$\begin{aligned} & 0-200 \mathrm{Ma} . \\ & 0-200 \mathrm{Ma} . \\ & 10 \mathrm{Amp} . \\ & 10 \mathrm{Amp} . \end{aligned}$	800
$\begin{aligned} & 200-500 \\ & 6.3 \mathrm{AC.CT} . \end{aligned}$	$\begin{aligned} & 0-200 \mathrm{Ma} . \\ & 6 \text { Amp. } \end{aligned}$	245			
$\begin{aligned} & 0-300 \\ & 0.150 \text { Bias } \\ & 6.3 \mathrm{AC} . \mathrm{CT} . \end{aligned}$	$\begin{aligned} & 0-150 \mathrm{Ma} . \\ & 0-5 \mathrm{Ma} . \\ & 5 \mathrm{Amp} . \end{aligned}$	315	$\begin{aligned} & 0-600 \\ & 0-150 \text { Bias } \\ & 6.3 \mathrm{AC.CT} . \end{aligned}$	$\begin{aligned} & \text { 0-200 Ma. } \\ & 0-5 \mathrm{Ma.} \\ & 10 \mathrm{Amp} . \end{aligned}$	815
$\begin{aligned} & 0-500 \\ & 6.3 \mathrm{AC.CT} . \end{aligned}$	$\begin{aligned} & 0-300 \mathrm{Ma} . \\ & 10 \mathrm{Amp} . \end{aligned}$	500R	$0-1000$ Ripple 10 mv .	$0-50 \mathrm{Ma} .$	1020
\#1 $200-500$ $\# 2$ $200-500$ $\# 3$ $6.3 \mathrm{AC.CT}$ $\# 4$ $6.3 \mathrm{AC.CT}$.	$\begin{aligned} & \text { 0-200 Ma. } \\ & \text { 0-200 Ma. } \\ & \text { 6 Amp. } \\ & \text { 6 Amp. } \end{aligned}$	510	6.3 AC.CT. $0-1200$ Ripple 10 mv . 6.3 AC.CT.	$\begin{gathered} 10 \mathrm{Amp} . \\ \hline 0-20 \mathrm{Ma} . \\ 10 \mathrm{Amp} . \end{gathered}$	1220
$\begin{aligned} & 0-500 \\ & 0-150 \text { Bias } \\ & \text { 6.3 AC.CT. } \end{aligned}$	$\begin{aligned} & 0-300 \mathrm{Ma} . \\ & 0-5 \mathrm{Ma} . \\ & 10 \mathrm{Amp} . \end{aligned}$	615	$\begin{aligned} & 200-1000 \\ & \text { Ripple } 20 \mathrm{mv} . \end{aligned}$	0-500 Ma.	1250
			$\begin{aligned} & 0-1000 \\ & \text { Ripple } 20 \mathrm{mv} . \end{aligned}$	0-500 Ma.	1350
0.350	0-750 Ma.	700			
0-350.	0-1.50 Amp.	710	100-400 Regulation 0.01\% Ripple 1 Mv. 6.3 AC.CT.	0-150 Ma.	2000
0-350	0-2.25 Amp.	720		10 Amp .	
0-350	0-3.00 Amp.	730	0-30 Ripple 0.1 \%	0-30 Amp.	3030
0-600	0.750 Ma .	750	0-3 Regulation 5 Mv . Ripple 1 Mv.	0-100 Ma.	3100
0-600	0-1.50 Amp.	760			

*All AC Voltages are unregulated. All units are metered except Models 131, 315 and 3100
All units designed for relay rack mounting or bench use.

The Kepco Voltage Regulated Power Supplies are conservatively rated. The regulation specified for each unit is available under all line and load conditions, within the range of the instrument. Write for specifications.

The chassis punch-out required for the Style 535 is identical to that for the fubular ceramic trimmers that are in general usage.

Simplicity of design makes possible the extremely small size of the ERIE Style 535 Trimmer. The same simplicity of design results in very low inductance and unifrom, straight-line, noiseless adjustment. It can be mounted close to associated circuit elements, and the ribbon type leads help to minimize inductance in UHF circuits.

When mounted, the high temperature, polystyrene body, extends only $17 / 32^{\prime \prime}$ from the underside of the chassis, and is only $7 / 32^{\prime \prime}$ in diameter. As shown at the left, the operator works from only one side of the chassis when installing the trimmer ...a production cost saving feature . . . no additional hardware required.

The ERIE Style 535 Tubular Trimmer combines the desirable features of small size, easy mounting, stable performance and economical price. Capacity range is from 0.7 to 3.0 mmf and working voltage is 500 volts. Write for full information and samples.

ERIE components are stocked at leading electronic distributors everywhere.

ERIE RESISTOR CORPORATION . . . ELECTRONICS DIVISION				
Main Offices: ERIE, PA.				
Sales Offices: Cliffside, N.J. Philadelphia, Pa. Buffalo, N. Y. - Chicago, Ill. Detroit, Mich. - Cincinnati, Ohio - Los Angeles, Calif.				
factories: ERIE, PA. - LONDON, ENGLAND - TORONTO, CANADA				

How tracing paper is made and why ALBANENE* is Different

TOUGH, LONG-FIBER PAPER not transparentized

Diagrammatic enlargement of cross section of paper with high strength but low transparency. Fibers are surrounded by air, which has different index of refraction. Many light rays are bent back and do not get through.

SAME PAPER
TRANSPARENTIZED WITH FLUID MATERIAL

Same paper as "A", filled with oil or other fluid material, giving spaces between fibers same index of refraction as fibers. Reflection and refraction of light are reduced and paper becomes highly transparent. But transparency is not permanent because fluids "hleed" out. \dagger

SAME PAPER
 TRANSPARENTIZED THE Albanene way

Same paper as "A", filled with an inert synthetic resin, with correct index of refraction. This is how Albanene is made. Its transparentizer does not "bleed" out. Albanene holds its color and strength and is permanently transparent. \dagger

PAPER TRANSPARENTIZED BY CRUSHING AND BEATING FIBERS

Papers are also transparentized at the mill by a "beating" process. The fibers are crushed, flattened and compacted. Reflection and refraction of light are reduced. Hut the process weakens the fibers and the strength of the transparent paper is low.

More than 15 tests are made during production of Albanene. For example, each production roll is tested for pencil "take", for pencil erasing and the taking of drawing ink. To eliminate human variables, pencil lines are drawn by machine. In this way you are assured of the uniformity of working surface so much desired by draftsmen, and assured of a paper that makes cleaner, sharper prints. . . now or a generation later. Ask your K\&E Distributor or Branch for further information.
\dagger Prove this by making the "drafting tape test" Press a short piece of drafting tape on fluid-transparentized paper, and another on Albanene. Strip them off the next day and examine both papers. Notice that enough fluid has drifted out of the ordinary paper into the tape to destroy much of the transparency. And notice that Albanene is not affeeted.
What drafting tape does over night, time will do naturally.

Transparent.... and Better

AVAILABLE IN MANY FORMS FOR MANY USES

Albanene comes in 20 -y ard and 50 -yard rolls in various widths and in three different weights. For those who like the convenience of cut sheets, a new Albanene package has been designed. It strongly protects the paper in shipment and storage, and may lie opened without mutilating the container, thus serves as a dispenser
 in drafting room or stock room.

Once you've discovered the pleasure of drawing on Albanene, the next logical step is to save time, trouble and eyesight with a K\&E PARAGON* Drafting Machine. You control your calibrated straight edge with a light touch of one hand, for parallel lines and lines at any angle.

Make your lettering letter-perfect and save wear and tear on your nerves by using a LEROY* lettering outfit. Template grooves guide your pen so the finished result looks like printers' type, and the whole process is relaxing. There's a wide choice of sizes, styles and symbols.

PARTNERS IN CREATING

KEUFFEL \& ESSER CO. EST. 1867

Drafting, Reproductiont Su'rveying Equipment and Materials, Slide Rules, Measuring Tapes NEW YORK - HOBOKEN, N. J. CHICAGO - ST. LOUIS - DETROIT SAN FRANCISCO • IOS ANGELES MONTREAL

CHECK THESE FEATURES

LOW-EXPANSION WINDING FORMS
(non-hygroscopic) prevent distorted windings, breaking of seal, breakdown of dielectric.

HIGH-STABILITY RESISTANCE WIRES

-pure, carefully selected, pretested alloys.

PRECISION WINDING

-uniformly wound, mechanically tied under scientifically controlled conditions.

NON-CORROSIVE, ANCHORED TERMINALS
-strong, tin-dipped copper terminals, securely and permanently attached to winding form.

HERMETIC SEALING

A special process, employing chemically inert compounds, seals winding against destructive effects of salts, moisture, and atmospheric conditions.

PRETESTED FOR ACCURACY
-quality assured by temperature cycling, salt water immersion, humidity, and overload tests.

JAN R-93 or MIL R93A SPECS.

If finding reliable, lightweight, precision wire wound resistors is your problem, investigate the I-T-E product. I-T-E precision resistors have been developed by experts to meet the exacting requirements of the electronics industry.

Simple basic design, engineering skill, extensive production facilities, and close quality control are all combined to give you lightweight resistors that far exceed requirements of JAN R-93 or MIL R93A specifications. You get quality-close tolerance in every unit-in any quantity you need.

RATINGS:

I-T-E precision wire wound resistors can be supplied in quantity all the way from 0.01 ohms to 10 megohms0.125 to 5 watts. Standard tolerances $\pm 1 \%$. Available in specified tolerances down to $\pm 0.05 \%$. Ideal for all JAN "A" and "B" as well as MIL applications.

FOR DETAILED INFORMATION—Get in touch with your nearest I-T-E representative or write direct to:

I-T-E RESISTOR DIVISION
1924 Hamilton Street
Philadelphia 30, Penna.

G-E selenium rectifiers assure long life for new Electro-Klean home air filter

"IN OUR PRODUCTr" states Mr. William M. Reed, President of American Air Filter Co., "we required uninterrupted and long-lasting performance from every component. We get both in General Electric selenium rectifiers."

American Air Filter Co. recently introduced an electronic precipitator air filter for home use, the Electro-Klean. The direct current used is supplied by General Electric selenium rectifiers in a new, high-voltage power pack.

G-E rectifiers were chosen because of their uniform high-quality and long life.As Mr. W. M. Reed, American Air Filter President has said, "Our experience has proved that G-E selenium rectifiers assure not only a dependable and uniform power supply for the product, but an extra long life as well. They make a major contribution to its quality and consumer acceptance."
QUALITY MEANS SAVINGS-G-E selenium stacks have exceptionally low forward resistance and back leakage. The lower these characteristics are initially, the slower the aging, and the longer the life of the rectifier. Also, these mean higher output, greater efficiency, and cooler operation. Frequently, they permit you to save with a more compact assembly made up of smaller components. MORE INFORMATION? For the full story of how G-E selenium rectifiers can improve your product, contact your nearest G-E Apparatus Sales Office, or write for Selenium Application Bulletin, GET-2350. Address Section 461-24, General Electric Co., Schenectady 5, New York.

Nickel-free Ferroxcube 3 and 3C cores are the modern, superior ferrites now performing with outstanding success in television and military electronics. Both materials have higher permeabilities than the nickelzinc ferrites that are sometimes supplied for these applications.

For the higher-temperature applications, Ferroxcube 3 C cores are recommended. Where maximum initial permeability is the prime requirement, Ferroxcube 3 is generally indicated.

In any case, you can specify either of these excellent manganese-zinc ferrites with full assurance that deliveries will be
made to meet your specified schedules.
For higher-frequency applications, where minimum eddy-current losses are more important than maximum permeability, the Ferroxcube 4 series of nickelzinc ferrites are recommended. Their uses include I-F Transformers, R-F Tuning Coils, Antenna Cores, etc.

The broad experience of Ferroxcube Corporation Engineers - an accumulated knowledge of manufacture and application over a 16 -year period - is the "reference library" which is available to assist you. Write for technical data applicable to your design problems. $\star \quad \star \quad \star \quad \star$

FERROXCUBE CORPORATION OF AMERICA

- A Joint Affiliate of Sprague Electric Co. and Philips Industries, Managed by Sprague ${ }^{\bullet}$ SAUGERTIES, NEW YORK

-now in the pilot production stage - engineered in advance of actual need

In keeping with the MYCALEX policy of progressive design in advance of needs, these Transistor Sockets were engineered months ago and are now in small scale pilot production. They'll be available in quantity in advance of actual needs.

Mycalex 410 Transistor Socket enlarged to show detail Transistor Socket shown actual size

(2)
 Achievement in
 PRECISION
 MOLDING!

The production of Mycelex Transistor Sockets is a real occomplishment of precision molding in miniaiure. The holes for the leads are the tolerances are exceedingly close. Mycalex production engineers are proud of their engineers are proud of inement because low.cost, mass pro. duction fechniques can be adhered to.

> The body is precision-molded of MYCALEX 410 , glass-bonded mica insulation for lasting dimensiona slability, low dielectric loss, immunity o high temperature and humidity exposure combined with maximum mechanical strength. The loss factor is only 0.014 at 1 MC and dielectric strength is 400 volts/mil.
> Eontacts can be supplied in brass or berylium copper. The sockets are readily solderable. The sockel bodies will not warp or -rack when subjected to high soldering temperature. Trey function in ambient temperatures up to $700^{\circ} \mathrm{F}$.

Mycalex Low-loss Tube Sockets and Multiple Headers

A complete line of tube sockets including sub-miniature types is available in Mycalex 410 and Mycalex 410 X glass-bonded mica insulation. Comparative in cost to ordinary phenolic sockets they are far superior in every respect. Dimensional accuracy is unexcelled. For complete information on standard
and custom Tube Sockets or Multiple Headers, call, wire or write . . . there is no obligation, of course.

MYCALEX TUBE SOCKET CORPORATION

Under Exclusive License of Mycalex Corporation of America
30 ROCKEFELLER PLAZA, NEW YORK 20, N.Y.

Mycalex Corporation of America

Owners of 'MYCALEX' Pafenis and Trade-Marks
Executive difices: 30 ROCKEFELLER PLAZA, NEW YORK 20-Plan $\&$ gearal Offices: CLIFTON, N. J.

Air Strike....Submarine Style

Guided missiles launched from submarines promise to be major offensive weapons in case of war. A missile of this type travels to its distant destination under unerring electronic orders. The brain center for such missiles will be typical of the electronic systems developed and manufactured by Arma Corporation.

In close collaboration with the Armed Forces since 1918, and more recently with the Atomic Energy Commission, Arma has contributed much
in basic research, design, development and manufacture to the advancement of electronic and electromechanical weapon control, navigation, and other precision remote control systems. There is every reason to believe that engineering background and techniques-first used successfully in these devices - will see widespread industrial applications. Arma Corporation, Brooklyn, N. Y.; Mineola, N. Y. Subsidiary of American Bosch Corporation.

PRESTIGE of the

PROTECTION of BUSS 1 Ge means

PROFIT For You.....

For more than a third of a century BUSS has lead in the research, design and development of fuses for electrical protection. To maintain this standard of unquestioned high quality, each and every BUSS fuse for the electronic field is tested in a highly sensitive electronic device that rejects any fuse that is not correctly calibrated - properly constructed and right in all physical dimensions.

The complete BUSS line makes it easy and economical for you to select the fuse that is right for any requirement. Choose from Dual-Element (Fusetron slow blowing fuses), Renewable, and One-Time types which are available in all standard sizes, and many special sizes and designs.

BUSSMANN Mfg. CO., Division McGraw Electric Company University at Jefferson, St. Louis 7, Missouri

Do You Have A Protection Problem?
Let our fuse engineers help you select or design the right fuse or fuse mounting to meet your needs. Submit a sketch or description that shows the type of fuse contemplated, number of circuits; type of terminals, and the like. We welcome your requests - and our staff is always at your service.

[^4]
SAFE AGAINST HIGH HUMIDITY IN TROPICAL CLIMATES!

How many research hours in a day?

 controiling temperature, flow, and dozens of other variables, Honeywell offers these special ElectroniK instruments of interest to research men:
Function Plotter: automatically plots the relation of two independent variables.
Two-Pen Recorder: simultaneously measures two variables on a single chart.
Extended Range Indicator: featuring automatic range-changing, readable to one part in 5000 .
Narrow Span Recorder: measures spans as narrow as 100 microvolts, without external pre-amplifier.
Brown Electrometer: measures currents as low as 100^{15} ampere. High Speed Recorder: features pen speed of only one second for full scale travel.

O_{s}BSERVING tests, measuring critical conditions, collecting data, plotting curves . . . the routine labor of research takes a lot of time out of each day . . . each week . . . each month.
You'll find that ElectroniK instruments can save countless scientific man-hours by doing all these laborious but essential jobs for you. They free highly trained scientists for more important work . . . giving them an opportunity to use their brainpower most effectively. And these instruments do the routine work faster, more accurately than could be done by human hands.
ElectroniK potentiometers are accelerating the pace of research in academic and industrial laboratories, atomic energy projects, pilot plants, and test centers throughout the world. For a discussion of how they can help your own research programs, call our nearest engineering representative . . . he is as near as your phone.
Minneapolis-Honeywell Regulator Co., Industrial Division, 4428 Wayne Ave., Philadelphia 44, Pa.
reference data: Write for Research Bulletin 15-14, "Instruments Accelerate Research". . . and for Data Sheets on specific instriments.

0

0

4

flyback transformers

For reliability in high voltage specify Guthman Flybacks-they wont break down even under the most severe voltage requirements. Wire used in Guthman Flybacks is fabricated in our own plant and is quality controlled from raw material to finished product guaranteeing a superior uniformity of performance. The excellent linearity and voltage regulation characteristics of Guthman Flybacks aids in preserving picture quality.
Coils used in Guthman Yokes are form wound. Complete isolation between vertical and horizontal coils achieved by a molded nylon piece permits a yoke rating of 5,000 volts pulse maximum. Anti-magnetic core retainer band and brass mounting nut assures no magnetism in Guthman Yokes.

DELAY LINES
SHIELD CANS
ANTENNA COILS
OSCILLATOR COILS
COMPRESSION TYPE MICA TRIMMERS

I.F. TRANSFORMERS

LOOP ANTENNAS
R.F. TUNERS

yokes

This New, 12-Page Microwave Components Data Book

SEND FOR YOUR COPY

Contains diagrams and tables of sizes and types--detailed Government specifications for rigid and flexible waveguidesmanufacturing and testing operations. If you're working on electronic contracts, this Handbook belongs on your desk. The coupon brings you as many copies as you need.

TITEFLEX, INC.
524 Frelinghuysen Avenue
Newark 5, N. J.
Please send me without cost ___ copies of your new Microwave Components Data Book.

NAME
TITLE
FIRM
ADDRESS
city \qquad ZONE \qquad STATE \qquad

No. 108 machine makes coil winding more profitable

Quick set-up and greater accuracy LOWER COSTS

Leesona ${ }^{\circledR}$ No. 108 Coil Winder for high accuracy, top production and lowest costs in shops where change-overs are frequent. Takes long or short runs; easy to set up; no cams or gears to remove when making setup changes; all controls are within easy reach of the operator even when seated.

Prize-Winning Deaigr

So simple, the operator can make set-up changes in a matter of minutes. So moderate in price you can easily replace older, less satisfactory equipment and soon see savings write off your investment.
This is the manual paper feed machine which won the "Electrical Manufacturing" magazine's design prize. Set-up time is reduced to a minimum by external controls and change-over from job to job is quick and easy. It winds wires
from \#20 to \#44 (A.W.G). Coil lengths may be from $1 / 4^{\prime \prime}$ to $35 / 8^{\prime \prime}$, with outside diameters up to $5^{\prime \prime}$ round or square. ACCURACY CONTROLLED, because leadscrew traverse and quick-reversing clutch give positive control of wire layer. Indicators help operator time paper feeding accurately even at high speed.

Send for Bulletin 108A and read all the good news about this flexible high production, low cost coil winder.

UNIVERSAL WINDING COMPANY

P. O. Box 1605, Providence 1, R. I. Chicago office and Demonstration Room, 9 So. Clinton St., Chicago 6, lli.

For winding coils in quantity accurately... automatically use Universal Winding Machines

The Inside Story

ACCURATE WIRE WOUND RESISTORS

HERMETICALLY SEALED IN CAST EPOXY. EXCEEDS MIL R-93A SPECIFICATION

Scientific progress has made the demand and we believe the CE series resistors are the answer: -

In the cross-section above, we illustrate the single homogenous mass that means so much to stability and provides the ample moisture vapor barrier of this new resistor. Bobbin and encapsulation become one homogenous mass, surrounding the resistance wire with a minimum of strain.

Write today if your requirements are for a hermetically sealed resistor to withstand a wide variety of environments. Ask for the literature covering the CE series resistors.

soters

|ultrahigh-rrequescy a aseou $a b-$ and convarers. for use in stuaying gaseoy als. Electrentic Assoctates, Inc, was of Branch shing have developed ne industry sorely plotter sistel it the labora- for use with ic. Associates, test bridge. 8 week a new : to every perh the tabula nformation. med by Elec Inc. the Data : a Variplotter lch = was devel nic Associates years now. Th infermation Thich is
is held ; surface
Elect fic As-
ter
in
con
en
n
1
in
9
38

Wiece

 nent
avs
子eported that er system is breat many the recording ed: "This sysokesman, "will stry problems reconal. This far as data Prned, and will Down the time ta information. fll undoubtedly f the work in a ane that would Brient has been eqy ment has been iny frms and it has result dou Hevings of tlime An
sing
s. sy
E.
c Ass fres, Inc. ores A in

COMPLETE CIVILIAN LINE

Exceptionally good delivery cycle on civilian orders due to tremendous mass production facilities.

TYPE GC-35, $11 / 8^{\prime \prime}$ diameter variable composition resistor. Wattage roting: $3 / 4$ walt for resistances through 10,000 ohms, $2 / 3$ watt for resistances over 10,000 ohms through 25,000 ofims, $1 / 2$ watt with 500 volts maximum ocross end terminals for resist. ances over 25,000 ohms. Availoble with or without illustrated affoched switch and in concentric shofi tandem construction C2.35 as shown obove.

TYPE GC-45, 15/16" diameter variable composition resistor. Wathage rating: $1 / 2$ watt for resistances through 10,000 ohms, $1 / 3$ wall for resistances over 10,000 ohms through 100,000 ohms, $1 / 4$ watt with 500 valts maxi. mum ocross end terminals for resistances over 100,000 ohms. Available with or without illustrated aftached switch and in concentric shofi tandem construction C2.45 as shown above.

TYPE C2-45

NEW HIGH QUALITY MINIATURIZED "DIME-SIZE" CIVILIAN CONTBDLPerformance fully Equals Lerger Typos.
IYPE 70, 3/4" diamoter variable composition resisfor. Wattage rating: .3 walt for resistances through 10,000 ahms, .2 watt with 350 volts maximum across end terminals far resistances ever 10,000 ohms. Also available in concentric shoff tondem consiruc. fion C45.70 as shown above

TYPE GC-252, 2 wett, 1 17/68" diamefer variable wirewand resisior. Avalable with or without illustrated aftached switch and in concentric shaff tandem construction C2-252 as shown above.

TYPE GC-25, 4 woth, $117 / 32^{\prime \prime}$ diameier variable wirewamd resistor. Avallable with or without illustrated attached switch ond in concentric shaft tandom construction C2-25 as shown above.

Typical concentric shaft tandem with panel ond rear sections operoting separately from concentric shafts (TYPE C $45-70$ ILLUSTRATED). Similar construction available for att milifary resistors.

REPRESENTATIVES
Henry E. Sanders
moctichy Beres. 69th 8 mather s!
Upper Darby; Penna. Phone: Flanders 2 -4.4.
w. s. Harmon Company 1058 So. La cienega : Blvó. Phone: Eratshaw 2.332 -

John A. Grean Company Dallas 9, Texas

IN canada

 C. C. Meredith ${ }^{\text {c }}$ co. SOUTH AMEPICA lose Luis Ponter Buenos Aress, Argenting fino de Jinecio, Brazil OTHER EXPOR Sywan Cinsbury kew Yoik 18 , Rey.910 zecinulasla

Immediate delivery from stock on 189 types including JAN-R-94 and JAN-R-19 types of variable resistors.

NEW 38-PAGF ILLUSTRATED CATAKOG-
Describes Electrical and Mechanical characteristics,
Special Features and Constructions of o complete line of varioble resistors for mititary and civilion use. Includes dimensional drowings of each resistor. Write loday for your copy.

TYPE 4S, (JAN-R-94, Type RV2) 1/4 watt, $15 / 16^{\prime \prime}$ diameter varioble composition resistor. Also available with other special military features not covered by JAN-R. 94 including concentric shaft randem construction. Altached switch con be supplied.

TYPE 35, (JAN-R-94, Type RV3) 1/2 watt, $11 / 8^{\prime \prime}$ diometer variable composition resistor. Also avallable with other special military features not covered by JAN-R- 94 includ. ing concentric shaft tandem construction. Altoched switch can be supplied.

TYPE 252, (JAN-R-19,Type RA20) 2 watt, 1 17/64" diameter variable wirewound resistor. Also ovailable with other special military features not covered by JAN-R-19 including concentric shaft tondem construction. Atrached switch can be supplied.

TYPE 25, (JAN-R-19, Type RA30) (May olso be used as Type RA2S) 4 waft, $17 / 32^{\prime \prime}$ diamefer variable wirewound resistor Also ovailable with other special military features not covered by JAN- R-19 including concentric shaft tondem construction. Attached switch can be supplied.

TYPE 65, (Miniolurized)
$1 / 2$ waft $70^{\circ} \mathrm{C}, 3 / 4^{\prime \prime}$ diometer minio. turized variable composition resistor.

TYPE 90
I wolt $70^{\circ} \mathrm{C}, 15 / 16^{\prime \prime}$ diometer varioble composition resisfor. Altoched switch can be supplied. Also avall able in concentric shaft tandem construction.

TYPE 95, (JAN-R-94, TYpe RV4) 2 wath $70^{\circ} \mathrm{C}, 11 / 8^{\prime \prime}$ diameter variablo. composition resistor. Also ovallable with other special militory features not covered by JAN-R-94 including concentric shaft tandem construction. Attached switch can be supplied.

See the complate CTS milliary and wiviion lines of variable reslstors af the

IRE SHOW

Grand Central Polace, New York City
MARCH 23-26, 1953
BоотH 4-608

UNPRECEDENTED PERFORMANCE CHARACIERISTIKS

Specially designed for milliary communications equipment subject to extrene temperalure and humidity rangek. $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$...aridity to saturation.

keeping communications ON THE BEAM

113
 PRODUCTS

Her Ship-to-Shore

 is Ship ShapeHer cecke nay ze awosh bat hereit faf weathet ir the nadts shack. Despie wind and waves the Coptrin's message wil reach the home sort ia cis veather or feul, you'll find JK C_{r} atal rate a Vavy " E " tor heir part is
keepinc rerine conmunications "thp shape."

the dx FD-12
 FREQDENCY \& MODHLATION MONITOR Monitors any four frequencies a yywhere betwoen 25 me and 175 me , check ng bon bequency deviation and amount of modulation. Koeps the "beam" on allocation; guaraniees more solid coverage, tool

THE JAMES KNIGH IS COMPANY

G-E Hydrogen Thyratrons!

-1/10 standard-fube recovery time

GL-6130

Peak anode voltage	3 kv
Peak current	35 amp
Max power delivered	52.5 kw

Replaces GL-3C45, also is suited to high-alfitude applications.

EXTREMELY HIGH VOLTAGE AND CURRENT PEAKS. See ratings at left. These fast-cycling G-E thyratrons perform at far greater peak powers than standard types, because (1) the cathodes are specially designed to deliver very high currents, and (2) hydrogen has high dielectric strength. The GL-5948's rating of 25 kv is some $10,000 \mathrm{v}$ above any standard thyratron. The smaller GL-6130's 3 kv is approximately 3 times the rating of standard tubes of the same size. You can switch top voltages with G-E hydrogen thyratrons!

LIGHTNING-FAST RECOVERY TIME! Almost instantaneous tube recovery permits pulse cycling some 10 times faster than with other gas-filled tubes. Atoms of hydro-gen-lightest of the elements-ionize and deionize quickly enough to make possible thyratrons that will "trigger" your high-repetition pulse circuits.

BACKED BY EXTENSIVE G-E FACILITIES. General Electric's large research, engineering, and test facilities combine to assure continued progress in hydrogenthyratron design. Ask for further facts by return mailor, if you wish, a G-E tube engineer will be glad to call! Wire or write Tube Department, General Electric Compary, Schenectady 5, New York.

New! LAPP TUBE SUPPORTS

for mounting

forced-air-cooled tubes

Now available as a standardized line, these Lapp insulated supports for mounting forced-air-cooled tubes facilitate design of transmitter and other high-power circuits. They are simple, compact and efficient. For high frequency tubes they are available either in Lapp porcelain or Lapp steatite; for standard broadcast frequencies in Lapp porcelain.

WRITE for specification sheets. Radio Specialties Division, Lapp Insulator Co., Inc., Le Roy, N.Y.

L回

To the project engineer about to have a "baby"

You're busy solving the functional design problems of that new projcct. It's taking all your working hours. But what about the chassis or housing? That's where more problems arise.

And that's where Karp helps by answering difficult questions like: how to make your design functional yet attractive...how to make a water-tight seal...how to provide adequate ventilation...in fact, how to solve all the problems of planning a low-cost sheet metal assembly.

By calling Karp in early, your "packaging" problems can be ironed out as you solve your functional problems. And with its creative engineering staff, its vast assortment of available dies, its 77,000 square feet of facilities, Karp can show you how to cut costs and delivery time. We'll be glad to talk it over with you.
KARP METAL PRODUCTS CO., INC., 215 63rd St., BROOKLYN 20, N. Y.

THE PRODUCTION UNIT IS LIKE THE SAMPLE . . . AND EACH PRODUCTION UNIT IS LIKE THE OTHER • . . GLECTRIGALLY AND

MECHANICALLY!

Electronic Components Division, STACKPOLE CARBON COMPANY, St. Marys, Pa.

Thwo 2t-inch Netial Cone Picture Tulbes Innounced bỵ Nessingghouse

21 AP4 and 21 MP4 now available for immediate delivery Manufaturers faced with prohlems of handling, cost and uniformity in large picture tubes now may order Westinghouse 2l-Inch RELIA. TROX Metal Come Pioture Tuhes for immediate delivery. The new tutus - alnost $331 / \% \%$ lighter in weightare manufactured under the must rigid quality control system in the country. Superior face plate guality assures greater freedom from blenithes and glass imperfections. Liniform farw plate thickness greath reduces optical distortion orer the view ing area. The etched olass of the face plate eliminates glare from external lighla soures.

Improved Gun Employs Glass Beads. Westinghenise makes the new metal cone electrostatic forns tube with glassbeaded assembly. 'lhis asoures accurate element sparing within chome baterathes to improve spot wiz and picture uniformity.

The 2l-Incl RELIATRON Picture Tules feature still another important improvement. The face plate is sealed to the metal cone using an intermediate glass-enamel frit.

PRODUCTION SAVINGS

The 21-Inch RELIATRON Picture Tules introduce new economies throughout TV set production. Their lighter weight cuts shipping costs. The 21 VIP 4 tube is electrostatically focused. reguiring no focusing coil or focusing magnet. The 21APt is designed for maguetically focused operation.
Wetal cone tubes give increased mechanical strength. and because of their light weight are easier to handle and asscmule in TV receivers.

BETTER PICTURES

Metal cone picture tubes permit the use of spherical face plates of uniform thickness that allow receiver manufacturers to use standard available deflection components that produce pictures of consistently high quality.
Employment of the Westinghouse 21. Inch RELIATRON Metal Cone Picture Tubes enables you to meet the growing demand for larger sereen TV receivers, to deliver a better picture, and at the same time, to realize important savings in your production operations.
The new RELIATRON metal cone tubes now are available in quantities which permit immediate delivery of production-size orders. For complete details. write Dept. A-201.

RELIATRON: vou \quad an be sure...frit Westinghouse
 ET-95016

 UNSEEN, but all-important in a crystal are the skills, precision standards, and exacting tests that go into its processing. These are the things that add up to dependable performance under toughest conditions.
 TOP PERFORMANGE IN EVERY APPLICATION
 CRITICALLY CONTROLLED QUALITY

MIDLAND QUALITY starts with highly critical selection of raw quartz, inspected and precisely graded for its intended use. Midland optical and mechanical measurement facilities are unexcelled in the industry.
FOR EXAMPLE, STRICT ADHERENCE to prescribed angular relationships is required to give oscillator plates the properties best suited to specific jobs. Constant vigilance is maintained through Midland processing steps to be sure that no deviation of angle or improper contour develops.

THIS CRITICAL QUALITY CONTROL extends through to final mounting, sealing and testing - assuring you the best crystal unit science and top-level craftsmanship can produce.

Whatever your crystal need - conventional or highly specialized...

MANUFACTURING CO., INC. 3155 Fiberglas Road Kansas City, Kansas

Manufacturer of Quartz Crystals for Electronic Frequency Control

Ozalid saves time and money in Printmaster wiring

. . . with smooth, flexible Irvington FIBRON ${ }^{\circledR}$ Tubing

The job of wiring Printmasters and other duplicating and copying machines is simplified by the smooth interior surface and unusual flexibility of Irvington Fibron Extruded Plastic Tubing, according to the Engineering Department of Ozalid Division of General Aniline \& Film Corporation. The tubing slips over the wires easily and quickly-thus saving time and money in assembly.
Ozalid's choice among the many avaikable types of Fibron Tubing is
IRV-O-LITE XTE-30-an unusually effective insulation for normal operating conditions. For more severe service-particularly where high ambient temperatures are encountered-many leading manufacturers of electrical equipment turn to Temflex 105. This Irving-

Look so

Send this convenient coupon now

VARNISH \& INSULATOR
COMPANY
Irvington 11, New Jersey
Plants: Irvington, N. J.; Monrovia, Calif.; Hamilton, Ontario, Canada

Irvington Varnish \& Insulator Co.
11 Argyle Terrace, Irvington 11, N. J. Gentlemen:
Please send me your catalog on IRV.O-LITE XTE-30, Temflex 105 and other types of Fibron Extruded Plastic Tubing.
Name.
Tite
Company.
Street.
City..
Zone..
......State

MOLONEY H/DerCOME ELECTRONIC cores

Moloney HiperCore Electronic Cores now available in quantity to manufacturers of electronic equipment whose product is manufactured for ultimate use by U. S. Government. Produced in lamination thickness from 1 mil to 12 mil and in standard widths from $1 / 4^{\prime \prime}$.
Better transformer performance is assured when HiperCore Electronic Cores are used because these wound cores have greater flux carrying capacity and lower losses than other types of cores of comparable sizes. The overall result, in addition to better performance, is a lighter, smaller core. Because HiperCores are wound cores, they permit accelerated production through savings in assembly time.
Rigid core production control permits these cores to test well within industry tolerances. Typical test requirements for various types are listed in the panel above. Special tests for specific operating conditions will be made if desired.

ME52-22
Write today for information concerning your needs.

MOLONEY ELECTRIC COMPANY

Manmfacturers of Power Transpormers. Distribution. Transformers - Load Ratio Control Transformers Step Voltage Regulators . Unit Substation

FOR UHF-TV

Eimac announces the availability of the $3 \mathrm{~K} 20,000 \mathrm{~L}$ type of five kilowaft klystrons, the most practical and dependable tubes ever developed for high power UHF-TV. With only three klystrons covering the entire UHF-TV spectrum (470.890 mc), manufacturing and supply is no problem, and equipment design is simplified.

Along with these attributes go exclusive Eimac features such as ceramic cavities, external tuning, and true metal to ceramic seals that give the $3 \mathrm{~K} 20,000 \mathrm{~L}$ series a quality of construction that fulfills the rigorous demands of television transmitting. As a performer, each of these new klystrons has a power gain of 20 db ., and will deliver five to six kilowafts peak sync output when driven by an Eimac 4X150G.

3K20,000LA - Channels 14 thru 32
3K20,000LF - Channels 33 thru 55
3K20,000LK - Channels 56 thru 83

- For more information about the five kilowatt klystrons write to our application engineering departmen \dagger
- Visit the Eimac display at the March I. R.E. show

SHBES

JO'Jaxivane fans

are available to meet any ELECTRONIC COOLING NEED

Joy AXIVANE Electronic Cooling Fans are expressly designed to meet the needs of this exacting field of service. They are built in a complete range to suit any requirements, such as: spot cooling of ventilated units where local high-temperature conditions arise; heat removal from pressurized or hermetically-sealed units; or heat removal where space is so restricted that natural ventilation through the unit or over its surface is insufficient. Important operating advantages of these fans are their strength, high resistance to shock and vibration, and efficiency in low or high-pressure service. Aluminum and magnesium construction keeps weight at a minimum.

Available in sizes from $2^{\prime \prime}$ I.D. up, these Joy Fans are built to meet all present Air Force
and Naval electronic specifications. They can be furnished with totally enclosed or explo-sion-proof motors, if desired.

In general, keep these facts in mind: that the light, compact design, low power consumption and high overall efficiency of Joy AXIVANE Fans provide more satisfactory cooling for electronic equipment in either air-borne or surface units. - If you have a problem in heat dissipation from electronic units, let us place at your disposal JOY's experience as the world's largest manufacturer of vaneaxial-type fans.

Over 100 Years of Engineering Leadership

JOY MANUPAGTURING COMPANY

GENERAL OFFICES: HENRY W. OLIVER BUILDING • PITTSBURGH 22, PA.
IN CANADA: JOY MANUFACTURING COMPANY (CANADA) LIMITED, GALT, ONTARIO

RATED:

INPUT: $\begin{aligned} & 120 \text { Volts, } 60 \text { Cycles } \\ & 1 \text { Phase }\end{aligned}$
OUTPUT: 0-120/132 Volts,
1.25 Amperes

150/165 VA

APPLICATIONS

of POWERSTAT Type 10 are as innumerable as is the need for a variable a-c voltage control in today's low wattage electric and electronic equipment. It is ideal as the variable a-c voltage component in electronic tube testers; low wattage power supplies and rectifiers; low wattage heaters, furnaces, plastic molding equipment . . . and in any a-c voltage application where 50,100 and 150 watt rheostats are now being employed.

A COMPACT VARIABLE A-C VOLTAGE CONTROL FOR LOW WATTAGE APPLICATIONS
To date, the many low wattage ($50 \ldots 100 \ldots 150$ watts) applications requiring variable a-c voltage control have had to be content with the inefficient, heat dissipating rheostats and other resistance types of control. With the introduction of the new POWERSTAT Type 10, the many advantages of POWERSTAT variable transformers are available for these low wattage requirements. A continuously adjustable output voltage from 0 to 120 or 132 volts is at the fingertips to control loads up to 165 VA. Type 10 does not have to be tailored to the load - it will deliver a variable voltage to any load up to its capacity. Type 10 is highly efficient - does not control by dissipating power in the wasteful form of heat. Other features: glass smooth commutator surface . . . advanced winding technique . . . superior core and coil design ... rugged construction ... single hole mounting ... can be installed under a $3^{\prime \prime}$ chassis saving valuable space.
For additional information on the new, compact POWERSTAT Type 10, send for Bulletin P252.
Write to: 201 Mae Avenue, Eristol, Connecticut

... and plan to see the new, compact POWERSTAT Type 10 at The Superior Electric display, booths 108,110 at the I.R.E. Show, March 3-6

WHATABOUT Stability
 \section*{I N

 PRECISION WIREWOUND}

Stability-the most intangible and least understood resistor characteristic-is extremely important in critical electronic applications requiring massproduced precision wirewound resistors. Enfortunately, a truly stable resistor of this type has never been made. If it could, such a resistor would never change in ohmic value despite enviromment, power dissipation, or time. The only way to ohtain stability is to minimize the factors that work against it-unfavorable environment. power dissipation. and time.

ARTIFICIAL AGING IMPROVES STABILITY - The processes of winding, terminating, and impregnating a resistor produce strains in the winding. These must be relieved if the resistor is to remain stable at various temperatures. This is done by artificial agingperiodically subjecting the resistor to high ambient temperatures and power dissipation.

Hidden material and manufacturing faults can destroy stability. The effert of such faults can be accelerated by overload testing and temperature cycling at extremes of high and low temperatures. ffer this, unstable resistors may readily be detected by measurement and climinated.

HUMIDITY AND IMPREGNATION-Absorption or adsorption of moisture by the winding, bobbin, impregnant, or label can appreciably lower resistance. Unless impregnation is adequate. the wire may corrode at the terminating points. Wh the presence of
a polarizing voltage electrolysis may also take place. Shallcross uses high grade steatite boblins, carefully inspected wire, special "BX" impregnation, and a three-layer acetate label for protection against humidity. For severe humidity-including salt water immersion-Shalleross manufactures resistors which are hermetically sealed in steatite.

POWER DISSIPATION AND BREAKDOWN-Electrical energy, when converted to heat, affects stability as mentioned in connection with the artificial aging process. The potential gradient concurrent with high power may also cause insulation breakdown between turns, thus lowering resistance permanently or temporarily.

The effects of power dissipation may he minimized ly using wire and bobbins of the largest practicable: sizes. If size is restricted, the resistor must be operated within the conservative ratings and deratings of JAN and Mil Specifications. Within these ratings, and in normal indoor environments, a stability of 1/10 tolerance can be expected without special treatment.

TIME-The insulating elements of the best resistor will deteriorate with time. However, an aged and selected resistor operating in a fixed environment with nerligible power dissipation can lave a stability of $\pm 0.001 \%$. Lnder severe conditions, but within commercial ratings, a standard Shalleross resistor will have a stability better than $1 / 3$ tolerance.

Further details on Stability and other resistor characteristics are available in Shallcross Bulletin R-3C.
SHALLCROSS MANUFACTURING COMPANY - 522 PUSEY AVENUE, COLLINGDALE, PA.

Flying Saucers?

Frankly we don't know if they're fact or fiction . . . but if they are fact it wouldn't surprise us a bit to learn that some extraterrestrial manufacturer has incorporated Seletron Selenium Rectifiers and R. R. Co. Germanium Diodes into the design.

That's because-as pioneers in the field of electronic develop-ment-we've had our hand in some of the most difficult projects and met some of the stiffest requirements ever cooked up! Making drawing board dreams come true are daily chores at Radio Receptor Co.!

GR GERMANIUM DIODES

Radio Receptor's new Germanium Diodes feature polarity at a glance combined with simplicity of construction and sound design principles. The tapered shape speeds. assembly because operators can see at a glance the correct direction of assembly. Users are enthusiastic over the quality of the product which is currently being used in walkie-talkies, computers, TV sets, tuners and other electronic applications.

SELENIUM RECTIFIERS

Seletron Selenium Rectifiers, in both miniature and industrial types, are in constant demand by an increasingly large number of engineers throughout the world because they are completely dependable under the most grueling conditions. Years of experience have given Radio Receptor Co. a deep insight into the idiosyncrasies of rectification.

Our Germanium Diodes and Seletron Selenium Rectifiers may hold the answer to many of your problems. Radio Receptor Engineers will be glad to study your requirements and submit their recommendations on both of these products.

Germanium Transistors available in limited quantities.

Seletron
and Germanium Division

RADIO RECEPTOR COMPANY, INC.

$\widehat{\Omega R}$ Since 1922 in Radio and Electronics $\mathbb{R P}$

SALES DEPT: 251 West 19th Street, New York 11, N. Y. - FACTORY: 84 North 9th Street, Brooklyn 11, N. Y.

* Channel 61 in Reading uses 4 of new GPL chains to cut costs, improve studio-field efficiency

Humboldt Greig, president of WHUM-TV, says:"We picked GPL cameras to gain a truly major reduction in costs by adding remote control. In fact, we feel these will be self-liquidating cameras due to the savings. We bave tested them under the roughest conditions with our mobile unit in the past two months and encountered absolutely no difficulties."

STATION OWNERS

Our engineers will be pleased to show you, without obligation, how you can get maximum efficiency and economy in either UHF or VHF operations with GPL studio and field equipment. Write, wire or phone:

Marking two major milestones in television, WHUM-TV introduces both high powered UHF and remote control for new techniques in camera operation.

For the opening 30 live-hours per week from this 260,000 -watt UHF station, 4 GPL image orthicon chains will be used with remote control pedestals. From as far as 1,000 feet away, all actions of pan and tilt, lens change and focus and iris are easily controlled.

Each camera has a "memory" of 6
pre-set positions. With a four-chain set-up, a director has a choice of 24 camera shots. Pushing a "pre-set" button automatically swings the camera on target . . . with lens, focus and iris in correct adjustment. Speed and ease of operation save time, camera handling, and dollars.

For field operations - covering sports and news - WHUM-TV uses the GPL studio-field interchangeability . . . again cutting costs. Two cameras, complete with remote control pedestals, fit atop the station's mobile unit. Pedestals disassemble in minutes for easy transfer between bus and studio.

WHUM-TV is the first station to equip all its cameras with remote control . . . for tops in quality, for utmost in economy.

H°OW to get optimum isolation into a product design? The answer is not always easy. But it was made much easier to find when Isomode Mounts were developed. They offer what's needed for outstanding results-namely, control of horizontal and rocking motions as well as vertical vibrations.

And here's why. Isomode Mounts have equal spring rates in all directions. They therefore absorb vibrations from all directions equally well. As a result, they can be mounted at any angle, permitting location of ideal suspension points and simplifying design.

In addition, Isomode Mounts have high load
capacity in compact size, saving both space and weight. Large rubber volume for their size lends softness for good isolation, yet the mounts are stable, self snubbing and long lasting.

These mounts are an example of the kind of vibration engineering put to work for you at MB. Many companies have found it good practice to make MB their headquarters for vibration information. You will too - on vibration isolation, control, testing, detection or measurement. For more details on Isomode Mounts, be sure to write for Bulletin 410-5.
*Trade Mark Reg. U. S. Pat. Off.

A vibration exciter to meet your needs

Whether your shake testing requirements are of large order or small, there's an MB Shaker for the job. Model SD, for example, has rated force output of 10 pounds; while the C-25 provides 2500 pounds. Model also available for 10,000 pounds. So if you have to vibration test to MIL-E-5272, be sure to check up with MB. Bulletin No. 1-VE-5 gives technical data on MB Shakers. Write for it.

the manufacturing company, inc.
 1060 state street, new haven i1, conn.

EXPANDING PRODUCTION in Toroids at Coils

At every management meeting in Burnell \& Company there is an unseen but highly respected visitor. He is the spectre of all our customers and his opinions carry weight. Recently he suggested that in addition to our other expansion measures that we must find a way to improve deliveries for emergency and special sample orders. Our solution is certainly not original but no less effective.
Burnell \& Company's new sample department has been able to produce audio filters from proverbial 'scratch' to the customer's waiting hands in as little as ten days :

Frankly, this cannot always be accomplished but our average has been ranging between three to four weeks for emergency samples and four to six weeks for regular prototypes instead of the former twelve weeks of the presample department days.
Adding this to our new winding department and our new testing and finishing departments the sum total has been a still better product at a better delivery than ever before.

EXCLUSIVE MANUFACTURERS OF COMMUNICATIONS NETWORK COMPONENTS

Burnell \& Company

YONKERS 2, NEW YORK

ONE OF U. S. A's LEADING MAKERS OF ELECTRONIC TUBES AND MICROWAVE COMPONENTS

Bomac is 100% High-Vacuum-Equipped by NATIONAL RESEARCH

Type 710 Thermocouple-Ionlzatlon Gauge Control. One instrument for scientific and industrial vacuum gaug. ing. Incorporates two thermocouple gauges. 1 1.1000 microns) and one ionization gauge $\left(10^{-8} \mathrm{~mm} * 010^{-8} \mathrm{~mm}\right.$. Hg. range) in one control.

Alphatron* Vacuum Gauge. Accurate gauging from 10 mm . to 1 micron. Specially fabricated for low leak rate and calibrated for hydrogen.

Vacuum Seals. For connecting pump and manifold.

As tronic tube manufacturers, Bomac has established severe standards for their production equipment to assure an uninterrupted flow of tubes with minimum rejects.

National Research high vacuum equipment meets these rigid standards so well that it was again specified exclusively in Bomac's
recent expansion of facilities.
When you want the same - a single source for all your high vacuum equipment needs . . with a single unexcelled standard of quality look to National Research. For further details write National Research Corporation, Memorial Drive, Cambridge, Massachusetts.

H-2-P Purifying Diffusion Pump. Over 50 liters per second from 10^{-3} to $10^{-6} \mathrm{~mm}$ range. Operates egainst forepressures as high as 0.300 mm . Blank-off $2 \times 10^{-7} \mathrm{~mm}$.

Standard Vacuum Furnace. A versatile
packaged unit to melt, pour, heat treat,
degas, sinter, and anneal under high vacuum or con.
trolled atmospheres. Temperatures up to $2000^{\circ} \mathrm{C}$.

metallurgy - dehydration - dIStiltation COATING - APPLIED PHYSICS

National Research Corporation

Equipment Division

SEVENTY MEMORIAL DRIVE, CAMBRIDGE, MASSACHUSETTS

It's A Specialized Job ...

designing vibrator power supply circuits

To avoid trouble with yours,

Call On MAllory

If your mobile radio equipment is going to operate properly, under all sorts of conditions, the power circuit must be carefully designed. Experienced engineering must go into the design and selection of each element so the vibrator characteristics are in balance with the transformer and buffer capacitor.

These are some of the reasons vibrators can't be selected simply by size and rating alone if you are going to get long, trouble-free performance.
We have worked with leading manufacturers of electronic equipment on their vibrator power supply problems since we introduced the first commercial vibrator over 20 years ago. Our experience includes supplying more vibrators for original equipment than all other makes combined.

To avoid vibrator power supply troubles... call on Mallory in the design stage. Our engineers are thoroughly qualified by experience to study your specifications to be sure the power circuit will give maximun performance.
Our engineers will be glad to discuss your vibrator power supply problems. Write or call us today.

Expect more... Get more from MALLORY

Parts distributors in all major cities stock Mallory standard components for your convenience

ELECTRONICS

CROSS
 TALK

- GIREETINGS . . . From the staff of Electronics a simple but sincere Happy New Year.

We think the new year will indeed be happy from a business standpoint. Military orders could go up, probably will remain more or less level, might go down. If the last occurs this industry is in a better position than most to take up the slack by increasing its service to the civilian market.

- BOOTSTRAPS . . . Our business, right from the start, has shown remarkable ability to lift itself by its own technical bootstraps. In many instances aggressive engineering has opened up new markets without destroying the old ones.
Take television, for example. Replacement of existing receivers with sets having larger screens is proceeding at a healthy rate. New business centering around recently licensed stations is developing so rapidly that even as we write an industry committee is revising a year-old estimate of the market potential. And standards for compatible color ty are now far enough along so that this obvious lift will be ready long before uhf areas are saturated with monochrome.
Radio, then tv, knocked the phonograph market down but didn't knock it out. Long-playing
records built an important market among high-fidelity fans and now binaural reproduction shows promise of doubling the expenditures of the upper fringe. The future of broadcast radio itself is in doubt but even here a bootstrap operation is conceivable in the light of past history. Meanwhile, rapidly increasing use of radio by industry is cushioning the blow.
- PROGRESS . . . The engineering liveliness that keeps electronics perennially young is by no means limited to assembled equipment. The transistor, most important component part to come down the pike since the tube itself, is everywhere in the news despite the fact that it was generally unknown four short years ago and is even now very much in the development stage.

Technical journals are bulging with early design data. Public demonstrations of electronic devices using transistors have been staged. Several new types have been announced. Point-contact units are being widely sampled. And the time schedule for production of junction transistors has been advanced. Unlikely as it seemed just a month ago, there is now evidence that several specialized devices employing transistors will find their way into limited commercial use in 1953.

- EXPANSION . . . We've just returned from an editorial swing through Texas and Oklahoma. This is an area to watch, as heavy industry builds new plants to take advantage of low power costs and population follows. Here is not only a growing market for goods but also future manufacturing competition.

Already a modest electronics industry is building up around aircraft factories, chemical plants and petroleum refineries. Gear is for the most part highly specialized, ranging from geophones to mass spectrometers, but it is from such starts that national distribution frequently comes. And the Texans, in particular, are ambitious. We called on one who is a transistor licensee.

- QUOTES . . . At a recent symposium on airborne equipment it was said that "the carbon microphone is the world's most expensive loose connection."

Elsewhere, a scientist who kindly omitted any reference to raucous commercials maintained that "electrically charged hairs in the cells of the inner ear bend and flex in response to noise and act like variable resistances."

Then there is the wag who frequently, with some humanitarian if not technical accuracy, talks about "misguided missiles."

Circuits of chassis shown on front cover of this issue of ELECTRONICS

Compatible Color TV Receiver

Color pictures produced by the receiver to be described are equivalent in size to a $12 \frac{1}{2}$-inch black and white picture. The receiver accommodates all vhf channels as well as UHF channels, and is capable of black and white as well as color reception. An overall block diagram showing the basic functions of the receiver is given in Fig. 1.

The upper portion of the block diagram is essentially a conventional black and white television receiver. It includes the tuner and i-f

By KENNETH E. FARR
Westinghouse Electric Corp. Metuchen, N.J.

the video channel, deflection and sync circuits and a sound channel. The portion which shows the features particular to the color section includes the color decoders, color difference amplifiers, the color subcarrier generator, and the dynamic convergence and focus circuits which are peculiar to the RCA tricolor picture tube.

The essential monochrome elements of this receiver include the main signal and video channel, the sync and deflection circuits, and the intercarrier sound system. The sync separator, the tuner, i-f and sound portion are patterned closely after present black and white circuits. The i-f passband requirements for color reception are somewhat more critical but the essential difference from standard black and white in this portion of the receiver is in the video section. This has somewhat more gain and driving

Front-end and sound channel circuits are amitted for clarity

A straightforward approach to the problem of receiver design for the NTSC color system results in this 42 -tube receiver. Used in numerous NTSC field tests of color tv, its performance on monochrome transmissions is comparable to current black and white receivers

capability than the average receiver, due to the requirements of the tricolor tube.

The receiver is designed for a compatible color television system, namely the NTSC system. ${ }^{1}$ In this system, information is added to a standard black and white transmission to produce color in an appropriately designed receiver. A normal black and white receiver is capable of receiving a black and white picture from the transmission without any modifications.

There are several ways of speci-
fying color. One way, which is probably the most familiar, is to break the colors down to three pri-maries-green, red and blue. Any visible color may then be specified in terms of the percentage of red, green and blue which could be used to duplicate the impression of this color as far as the viewer is concerned. Another method of specifying color is to describe the color sensation to the eye in terms of brightness, hue and saturation. Brightness is self-explanatory.

Hue is the attribute normally
called color by the layman. That is, whether it is red, green, orange, and so on.

Saturation is a term which describes the amount of white mixed with the color, or as the artist would call it, the tint. This describes the difference between red and pink, for instance. Pink is a lower saturation red and 100-percent saturation would be the pure, strong color. Zero-percent saturation would be white.

The latter system of specifying color is utilized in the NTSC sys-

FIG. 1-Arrangement of stages in the overall receiver
tem. The brightness information is what is presently transmitted in the standard black and white system. This is modified somewhat in the NTSC system so that the black and white pictures represent the true brightness of all colors in accordance with the luminosity curve of the eye. To this brightness signal, two further degrees of information are added relating to the hue and saturation of the color.

Bandwidth

The brightness signal conveys the detail information or the resolution of the picture, and it should be transmitted at the full bandwidth of which the system is capable. It has been demonstrated, ${ }^{2}$ however, that the eye is much less sensitive to detail in color than in brightness.

Translated into engineering terms, this means that less bandwidth is required for the hue and saturation signals than for the brightness signals. Taking advantage of this limitation of the eye, the hue and saturation signals can be transmitted over a much narrower bandwith without notable degradation of the picture. In actual practice, approximately four megacycles of bandwidth is used to transmit the brightness signal, and from 1 to 2 mc for the combined hue and saturation information.

This might seem to require at least a 5 -mc channel. However, use is made of an additional phenom-enon-the frequency makeup of a
scanned television signal. ${ }^{8}$ Since the scanning occurs at a constant repetition rate, frequency components of the signal lie in groups at line frequency and harmonics thereof. Definite gaps exist between these frequencies.

Figure 2 shows the frequency spectrum of the television video signal. The solid lines represent the harmonics of line frequency with 30 and 60 -cycle sidebands corresponding to the field and frame information. The spaces between groups can be noted. This diagram shows the 200th and 201st harmonic of line frequency. The same pattern, however, exists from zero frequency up to the maximum transmitted in the signal.

The question might be raised that if there are no signal components present between these groups, what might happen if signals were placed there. From the theory of scanning, ${ }^{3}$ it can be shown that a

FIG. 2-Frequency spectrum of color signal
signal existing between the harmonics of line frequency, or more spectifically at an odd multiple of half the line frequency, such as the 401st as shown here, will not be visible in the television picture. This is because it will be of opposite polarity on alternate lines and will thus integrate out to the eye.

The hue and saturation information is amplitude modulated onto a color subcarrier whose frequency is such that all this color information falls in these odd multiples of half line frequency between the brightness components and thus have low visibility to the eye. This information, however, can be extracted by an inverse process in the color receiver and used to recreate the colors of the original subject.

The color subcarrier used is at the upper end of the brightness band, namely 3.898125 kilocycles, which is the 495th harmonic of half-line frequency. This high frequency was selected to further reduce the visibility of these color components in the brightness channel.

Hue and saturation information can be modulated onto a single subcarrier by using two subcarriers of the same frequency 90 degrees apart in phase. One piece of information is modulated onto one carrier and one onto the other. Synchronous demodulation at the receiver will recover each piece of information separately.

Suppressed-carrier transmission is used to further reduce the visibility of the color information on black and white receivers. Thus, only the sidebands are transmitted and the carrier, or subcarrier in this case, is reinserted at the receiver. This technique is not common in the television field.

To obtain maximum use of the bandwidth, vestigial sideband transmission is used with the upper sideband extending approximately 0.4 mc above the color subcarrier and the lower side band extending 1 to 2 mc below it. Thus, the entire color information is interleaved in the video frequency region of 3 to 4.5 mc .

A vector diagram of the color subcarrier with modulation is shown in Fig. 3. The equation at the top is the expression for the entire
color signal. It is written as a brightness term E_{Y} plus another term which is the color information. The brightness signal is made up of 59 -percent green, 30 -percent red and 11-percent blue, in accordance with the color sensitivity of the human eye.

The color term consists of two parts. The plus or minus sign on the phase of the second part indicates color phase alternation. That is, this second term alternately leads and lags the first term by 90 degrees.

The vector diagram of Fig. 3 shows the various components of the color subcarrier. The vertical vector marked BURST is the color sync. It consists of about 9 cycles of color subcarrier transmitted on the back porch of each horizontal blanking interval. This burst is designated as the reference phase of the system. Lagging this burst phase by 90 degrees is the blue color signal ($E_{B}-E_{Y}$). This signal is derived by substracting the brightness video signal from the blue video signal and modulating the color subcarrier with this difference. How this is accomplished in the actual equipment will be shown a little more clearly in what follows. It should be noted, however, that if the brightness signal is added back to the color difference signal, the blue signal E_{B} results.

Shown in phase with the burst is the red color difference signal. This phase is that obtained in the so-called odd field. On alternate fields, the phase is reversed 180 degrees, as shown dashed. This periodic reversal of the phase of this component of the color subcarrier, known as color phase alternation, is necessary when vestigal sideband color transmission is used. It cancels out the quadrature components that result from the singlesideband portion of the transmission, and cause cross modulation between the two components of the signal. The amplitude of these $E_{B}-E_{\mathrm{Y}}$ and $E_{n}-E_{Y}$ vectors is a function of the color content of the picture is zero for black and white areas of the picture. Thus, the entire vector diagram with the exception of the burst disappears on black and white pictures.

No green signal is used as such

FIG. 3-Specification of NTSC signal. Color information is modulated onto subcarrier for vestigial sideband sup-pressed-carrier transmission
to make up a component of the subcarrier. The reason for this can be seen in the actual makeup of the ($E_{\theta}-E_{Y}$) color difference signal.

$$
\begin{align*}
& E_{Y}=0.59 E_{G}+0.30 E_{R}+0.11 E_{B} \tag{1}\\
& E_{G}-E_{Y}=E_{G}-0.59 E_{G} \\
& \quad-0.30 E_{R}-0.11 E_{B} \tag{2}\\
& \quad=0.41 E_{G}-0.30 E_{R}-0.11 E_{B}
\end{align*}
$$

Similarly,
$E_{R}-E_{Y}=-0.59 E_{G}+0.70 E_{R}-0.11 E_{B}$
$E_{B}-E_{Y}=-0.59 E_{G}-0.30 E_{R}+0.89 E_{B}$
Each of these color difference signals contain all three of the color video signals. By taking 0.51 unit of the $E_{R}-E_{Y}$ signal, combining it with 0.19 unit of the $E_{B}-E_{\text {r }}$ signal, and reversing the polarity of the combination, the $E_{G}-E_{Y}$ signal will result. This operation can be expressed by

$$
\begin{align*}
-0.51 & \left(E_{R}-E_{Y}\right)-0.19\left(E_{B}-E_{Y}\right) \tag{5}\\
& =E_{G}-E_{Y}
\end{align*}
$$

Thus it is not necessary to transmit the $(G-Y)$ signal as a separate vector, since it can be derived from the proper combination
of the red and blue color difference signals in the receiver.

Typical Transmitter

A simplified block diagram of a color transmitter may make this somewhat clearer. In Fig. 4 is shown a color camera that splits the light from the image into red, blue and green components, and delivers signals corresponding to each of these three colors to a mixer. This mixer is essentially a linear adder which combines green, red and blue in the proper proportions to form the Y or brightness signal which is shown at the top of the diagram.

The mixer also produces the red and blue color difference signals which are shown written in both forms, for instance ($R-Y$), and underneath ($0.6 G-0.7 R-0.1 B$), which is the actual make-up of this signal. The blue and red color difference signals then are passed through $2.5-\mathrm{mc}$ filters to a pair of balanced modulators. These modulators are supplied with color subcarriers at 3.89 mc , which modulate the ($B-Y$) signal in the reference phase and modulate the ($R-Y$) signal at 90 degrees and 270 degrees, alternately at field rate. This is the color phase alternation described above.

The sync and color burst is generated and added to the output of the two balanced modulators, and this mixture is then added to the brightness signal to produce a com-

FIG. 4-Color transmitter video circuits

FIG. 5-Video circuit functions of receiver are inverse of those in transmitter
posite color video signal. The upper portion of Fig. 4, with the addition of the sync, produces a standard black and white picture. The lower portion of the diagram generates the color information which is added to this brightness information.

Figure 5 shows this transmitter schematic simplified further, and below it, for comparison, is shown the video section of a typical receiver. In the transmitter schematic, the brightness or monochrome signal circuits are at the top, and below them are the color encoder circuits, producing the color information that is added to the brightness signal. The receiver video circuits perform the inverse of this transmitter function.

The composite color video signal is supplied through the video amplifier to the grids of the tricolor kinescope. If the circuit shown in the lower portion of the block diagram is made inoperative, an ordinary black and white picture will be obtained. The color subcarrier information existing in the region of 3 to 4.5 mc in the composite video signal is applied through a bandpass circuit, to eliminate unwanted monochrome components, to a pair of modulators in a very similar fashion to that done in the transmitter. These modulators are
supplied with a local subcarrier generated and controlled in phase by receiver circuits to be described later.

The color subcarrier modulates the information in the 3 to $4.5-\mathrm{mc}$ region, beating it down to lowfrequency even harmonics of half line frequency from zero to 1 mc . This demodulated information will then be the ($B-Y$) signal, and the $(R-Y)$ signal as originally derived at the transmitter.

By combination of the ($B-Y$) and the ($R-Y$) signals in the matrix, which is simply a resistive mixing pad, the ($G-Y$) signal is produced as was shown earlier. These three color difference signals are then applied to the cathodes of the blue, green and red guns of a tricolor kinescope or other suitable display device. Addition of the color difference signals to the brightness signal takes place within the kinescope. Thus the blue gun gets the Y signal on its grid, and the ($B-Y$) signal on its cathode, and the effective signal applied between the grid and cathode of this tube then is B.

The same is true for the green and red tubes, so that finally the red, green and blue signals are used to control the beam current of the tube. The three images are superimposed to produce the complete color picture.

Turning to more specific details of the receiver design, it might be interesting to look at the receiver i-f passband requirements. Figure 6 shows the transmitted frequency spectrum of the composite video signal. The picture carrier is shown at zero frequency, with the lower vestigial sideband, the full upper sideband, and the sound carrier shown in their relative positions. The location of the color subcarrier and its components is also shown in the region of 2 to 4.5 mc .

Receiver I-F System

For proper reception of the vestigial sideband monochrome signal, the receiver passband should locate the picture carrier at the 50 -percent response point, and the passband response should be down to essentially zero within the region of the vestigial lower sideband. This locates one edge of the i-f response rather critically. Since the color information is also a vestigial sideband transmission, it becomes necessary to locate the color subcarrier at the 50 -percent response point on the upper slope of the i-f passband. This upper slope must be down to essentially zero at about 4.3 mc , which is the minimum width of the vestigial sideband called for in the NTSC standard proposal.

The sound carrier must, of course, be suppressed at least 26 db for intercarrier sound reception. Actually, it must be down somewhat further than this, approximately 30 to 40 db , to prevent an undesirable beat between the color subcarrier and sound carrier in the monochrome channel. The lower curve marked receiver i-f characteristic shows the idealized receiver passband for proper reception of the color signal. The receiver described has essentially this passband, centered at 44 mc .

Color Decoders and Video

In Fig. 7 is shown a block diagram of the color decoder section of the receiver. The composite video from the second detector is amplified in the chroma amplifier. The gain of this stage is adjustable from the front panel by the saturation control. Its function is to vary the saturation of the color in the picture. When turned completely
off, a black and white picture results. As the control is advanced, the colors become more brilliant. If the control is set above normal, an appearance of fluorescent colors can be produced.

The output of the chroma amplifier, after going through a bandpass circuit, consists primarily of the interleaved color information. This is applied to the grids of the decoders or demodulators. The $3.89-\mathrm{mc}$ local color subcarrier oscillator signal is applied directly to the suppressor of the ($B-Y$) demodulator tube, and through a 90 -degree phase shift network (which is simply a tuned circuit), to the suppressor of the ($R-Y$) decoder.

The output of these decoders are the low-frequency color difference signals. These are applied to the cathodes of the red and blue guns of the tricolor kinescope. The $(G-Y)$ signal, derived from the matrix, is applied to the cathode of the green gun of the kinescope.

The d-c restorers are shown as they are actually connected from the common Y signal to the respective color difference signals. The signals seen by each restorer and by each respective gun of the kinescope are then actually the reconstructed red, green and blue signals. These color difference signals are restricted in bandwidth to about 1 mc in the receiver while the brightness signal has a 4 -mc passband. This causes the color difference signal to suffer a delay relative to the brightness signal. To correct this condition and make the components coincident in time, a delay line is inserted in the monochrome

FIG. 6-Idealized receiver passband and location of color subcarrier
channel. This line has a bandwidth of approximately 4 mc and introduces a delay of one micro-second.

Color Sync and Subcarrier Generator

The local color subcarrier generator and sync circuit is shown in block diagram form in Fig. 8. The $3.89-\mathrm{mc}$ signal is generated at the transmitter by a crystal oscillator. In the receiver, this frequency must be generated and held to an exact phase relationship relative to that at the transmitter. This is accomplished by using the color synchronizing information or burst, consisting of about 9 cycles of the $3.89-\mathrm{mc}$ subcarrier on the back porch following each horizontal sync pulse.

The signal from the output of the chroma amplifier is applied to the burst amplifier, which is a highgain amplifier gated on by the hori-
zontal retrace for the duration of the burst interval. The output of this amplifier then contains only the separated burst signal. This signal is applied to a 6AL5 phase detector where it is compared with the signal from the local $3.89-\mathrm{mc}$ oscillator.

A d-c voltage is developed which is proportional to the phase difference between these two signals. This d-c voltage is applied to a reactance tube to control the phase and frequency of the local $3.89-\mathrm{mc}$ oscillator. The output of this local oscillator, through a buffer stage, is used to modulate the ($B-Y$) decoder directly, and through a tuned circuit introducing a 90 -degree phase shift, it is applied to the color phase alternation multivibrator. This is a flip-flop multivibrator which reverses the polarity of this local oscillator wave at field rate. Thus the signal applied to the ($R-Y$) modulator will lead that

FIG. 7-Color decoder section and the signals handled

FIG. 8-Local color subearrier generator and sync circuits
applied to the $(B-Y)$ modulator by 90 degrees in one field and lag it by 90 degrees in the next field.

Attention must be paid to the phase of this alteration. It must flip when the transmitter flips and flop when the transmitter flops. To accomplish this, a unit called a field recognizer is used. ${ }^{*}$ The necessary sensing information is implicit in the ordinary black and white synchronizing signal, in the alternate field interlacing. The field recognizer gates in a horizontal sync pulse on alternate fields, thus producing a 30 -cycle output.

The field recognizer circuit is shown in Fig. 9. The composite stripped sync is partly integrated and applied to the grid of a 12AT7 tube. In the plate circuit of this tube is a transformer having a secondary resonant at one-half the horizontal line frequency. The integrated stripped sync, consisting primarily of vertical sync pulses, excites this resonant circuit.

On one field the peaks of this damped wave will occur in phase with the horizontal sync pulses while on the alternate field the horizontal sync pulses fall on the axis of the damped wave. A voltage pulse from the horizontal retrace, picked up from a winding on the horizontal output transformer, is added to this damped wave, and the combined signal is applied to the grid of the other half of the 12AT7 tube.

The horizontal pulse at the beginning of one field will ride on the peaks of the damped wave and have higher amplitude than the horizontal pulses at the beginning of the next field, which are riding on

FIG. 9-Field recognizer circuit controls flip-flop multivibrator for color phase alternation

FIG. 10-Dynamic convergence and focus circuits control color registration on picture tube screen
the axis of the damped wave. By clipping the peaks of this composite wave in the output half of the 12AT7, one or two horizontal pulses are gated out on alternate fields. This then is the 30 -cycle wave having a definite sense relative to the transmitted signal.

The 6SN7 gate tube, shown at the bottom of the diagram, gates on this field recognizer circuit only during the vertical retrace interval to improve its signal-to-noise ratio, since it is then only responsive for a fraction of the total time. The 30 -cycle pulse from this field recognizer unit is applied to one grid of the cpa flip-flop multi-vibrator. The 60 -cycle vertical retrace pulse is applied to the other grid, with the result that the flip-flop multivibrator is driven in the correct phase at all times.

Scanning Circuits

The horizontal and vertical scanning circuits are quite conventional. The main difference between those used in this receiver and those in standard black and white receivers is that somewhat more scanning power is required, since the tricolor kinescope has a 2 -inch neck with a large yoke and requires more scanning current. The high voltage for the kinescope is a regulated r -f supply delivering 20,000 volts at about 300 microamperes for an average picture. Regulation is required in this supply to maintain color registration under variations in beam current.

Some special circuitry in conjunc-
tion with the scanning is required for the RCA tricolor tube to maintain correct color registration. ${ }^{\text {s }}$ These circuits, known as dynamic convergence circuits, are outlined in Fig. 10. After the d-c potentials and magnets at the tube neck are adjusted to bring the beams from all three guns into registry at the center of the tube, a-c signals must be applied to the convergence and focus electrodes to maintain convergence and focus of the three beams over the entire face of the tube.

Parabolic waves derived from the cathodes of the horizontal and vertical output tubes are applied to amplifiers. Some phasing and shaping of these waves is done in these amplifier stages. The outputs of the two amplifiers are combined in series, through transformers, to form the combined dynamic convergence and focus waves, which are applied to the picture tube. By careful adjustment of the amplitude and phase of these convergence waves, good registration of the colors can be obtained over the entire face of the tube.

References

(1) C. J. Hirsch, W. F. Bailey, and B. D. Loughlin, Principles of NTSC Compatible Color Television, ELECTRONics, Feb. 1952.
(2) A. V. Bedford, Mixed Highs In Color Television, Proc. IRE, Sept. 1950 . Theorv of Scanning and Frank Gray, A Theory of Scanning and Its Relation to the Characteristics of the Transmitted Signal in Telegraphy and Television, BSTJ,
July, 1934 . Pierre Mertz, Television-The Suly, 1934 Pierre Mertz, Television-The (4) D. Richman, Frame Synchronization for Color Television, ELECTRONICS, Oct. 1952.
(5) A. W. Friend, Deflection and Convergence in Color Kinescopes, Proc. IRE, Oet. 1951.

Measuring Minute

 Capacitance Changes

 Capacitance Changes}

Resonant bridge carrier system permits accurate resolution of minute mechanical motions that produce capacitance changes as small as $0.001 \mu \mu \mathrm{f}$ or less. Equipment is unaffected by relatively severe extraneous disturbances

By GEORGE W. COOK

Chief, Electronics Engineering Division
David Taylor Model Basin
United States Naly
Washington, $\stackrel{D}{ }$. C^{\prime}.

VARIOUS METHODS have been developed for the measurement of minute changes in capacitance. The method to be described has been employed successfully to solve many problems in the measurement of physical quantities which heretofore have been considered very nearly insuperable. Other methods tried have fallen far short by comparison.

The system utilizes a doublyresonant capacitance bridge circuit and a unique phase-amplitude-sensitive discriminator. The circuits are extremely stable and little affected by changes in circuitparameter values other than in the bridge arms. A wide dynamic range of frequency response extending from 0 to $20,000 \mathrm{cps}$ or more is an inherent property of the system.

Figure 1 is a functional block diagram of the system, and Fig. 2 shows a typical response curve.

Measurement System

In the bridge, resonance at a low radio-frequency carrier is induced in two modes. This bridge circuit is excited via a low-impedance transmission line from the crystal-controlled oscillator.

The bridge is initially balanced. When unbalance occurs, the resultant signal current is trans-
mitted via another low-impedance transmission line to the signal amplifier. The output voltage of the amplifier is impressed on a special discriminator circuit in which the sense or direction of the bridge unbalance is determined. A d-c signal voltage of the proper amplitude and polarity is imposed on the output stage which serves as
a voltage or current amplifier to drive an appropriate recording device.

Bridge Circuit

The arms of the bridge consist of four capacitors, one or two of which are active in the measurement process. It is the purpose of the bridge circuit to modulate

[^5]

FIG. 1-Resonant bridge is key to high sensitivity of the capacitance-incrementmeasuring system shown in block diagram
the driving voltage in a manner such that only the sideband components of a modulated carriervoltage wave are produced at the output terminals of the bridge. The bridge circuit is shown schematically in Fig. 3.

The inductive elements that link the driver amplifier to the bridge are critically coupled under operating conditions. A very high bridge-exciting voltage is thus developed with little actual driving energy. The driver transformer is resonated by the diagonal capacitance of the bridge from the point 1 to the point 3.

Likewise the detector transformer is resonated by the other diagonal capacitance. This condition of resonance is independent of that induced in the driver-transformer. The detector transformer is overcoupled to the amplifier to improve the sideband frequency response.

With the bridge in perfect balance, no voltage is developed across the detector-transformer even though a resonant condition exists which includes this transformer. Since the capacitors are part of a resonant circuit with the driver transformer, and the circulating current in each of the four arms is relatively high, the most minute unbalance in the capacitance of the arms produces a relatively large output voltage across the resonant detector-transformer.

The magnitude and phase of the output voltage are proportional to
the degree and sense of unbalance, and to the magnitude of the quiescent resonant currents induced in the bridge arms.

Calibration

The method chosen for calibration is precise and accuracy may be made as high as desired by the exercise of reasonable care, and by the selection of high-quality materials.

As shown in Fig. 4A, one arm of the bridge is shunted by a series circuit consisting of a very small capacitor and a very large capacitor. If the large one is short circuited, the effective capacitance change induced in the arm may be derived quite easily.

Balancing

The bridge may be balanced at some physical distance from the gage by means of a cable as shown in Fig. 4B. This method is somewhat similar to the balancing method employed in the Wien Bridge circuit. The balancing controls are shunted by the cable capacitance and their effectiveness and range of compensation is reduced as the length of the cable is increased.

Stability

This measurement system has been designed around one particular theme; that there must be output signal to the recorder only when there is a change in balance in the bridge. The present limitation in
practical use is not associated with the measurement system at all but rather turns out to be inconstancy in the capacitance of the bridge arms themselves.

It is imperative that the wiring in the bridge compartment be rigidly fixed relative to adjacent circuit components. This is accomplished by embedding the complete bridge section in a thermosetting plastic or resin.

It is essential that the driver

FIG. 2-Overall frequency-response of measurement system

FIG. 3-Driver and pickup transformer windings resonate with their respective diagonal capacitances at operating frequency

FIG. 4-Schematics showing circuits for calibration and remote balancing
and detector transformers be completely shielded from each other electrically to prevent induced stray currents in the detector transformer. Examples of this construction are shown in Fig. 5.

If these precautions are observed and good engineering practices are exercised in the construction of the electronic portion of the system, it will be found that this system is free from microphonics.
Many physical measurement prob-
lems require a transducer or gage with a high natural frequency. Since in most cases the sensitivity of a gage is inversely proportional to the square of its natural frequency, the burden of providing suitable amplification falls on the associated electronic measurement system.

The overall schematic diagram of the system is shown in Fig. 6. The oscillator uses the so-called bootstrap circuit wherein the crystal

FIG. 5-Typical arrangements for measuring seismographic displacements, force, air pressure and acceleration
serves as an extremely sharp filter and is at the same time the fre-quency-determining element.

The signal amplifier consists of two stages of conventional pentode amplification. A precision step attenuator is ganged with a switch for selecting calibrating capacitors to suit the attenuator setting. Thus a known change in the bridge may be directly compared with the unknown capacitance change being measured.

Null Indicator

Initial balance must be obtained for both reactance and resistance and a null indicator is necessary to obtain this balance. A pentode amplifier tube is arranged in a special reflex circuit so that its voltage gain is utilized at the carrier frequency and at the same time it serves as a d-c amplifier for the metering circuit. The deflection of the null indicating meter is approximately logarithmic on an inverse scale.

Four distinct amplitude-modulated carrier wave voltages are developed in the discriminator and are impressed separately on diode rectifiers. The output current of each pair of diodes flows in an independent load resistor. The resultant signal voltages are filtered and fed to the grids of a push-pull output stage. The differential output voltage is directly related to the degree and sense of unbalance in the bridge.

FIG. 6-Overall schemctic of circuits used in resonant bridge carrier system

F-M Recording in

> Information on tape from battery-operated magnetic recorder in guided missile is decoded and recorded. High accuracy in speed control is obtained by separate 4-kc channel on tape that minimizes speed variation between recorder and playback drive motors

TIwo methods of recovering information originating at a remote location consist of telemetering the information over a wire or space link and of recording the information on a medium such as magnetic tape and later transcribing this information into suitable form for evaluation. This paper is concerned with the second method.
Equipment was used in conjunction with a 198 -channel, 100 -track battery-operated magnetic recorder designed to fit into the nose of a missile during flight. Operating conditions of the recorder were such as to require the use of stain-less-steel recording tape. Tape speed variations had to be held to closer than about $2 \frac{1}{3}$ percent tolerance.
After a recording is made of the pertinent flight data, the magnetic tape record is jettisoned and later recovered for playback and transcription at a ground station. The $\mathrm{f}-\mathrm{m}$ transcriber accepts a multiplex signal from a playback head of the ground playback machine and records the information on a suitable graphical recording medium.

F-M Channels

Information at the input of the transcriber is in the form of two f-m signals, each occurring in a band or channel of frequencies separated from the other by 100 cycles. The first band, channel 1, ranges from 4,100 to 5,600 cycles and the second band, channel 2, ranges from 5,700 to 7,900 cycles. The transcriber separates the two channels of information, demodulates the information by discriminating the exact signal frequencies in each channel, and records this information as a function of time
on a suitable graphical recorder.
Since the information in either channel is determined by the instantaneous signal frequency in that channel, any difference in the instantaneous tape speed of recording and playback will result in an erroneous signal frequency. Concurrent with the information signal, the transcriber is furnished a reference frequency from a second magnetic playback head for tape speed error compensation. This reference frequency is recorded on the magnetic tape as a constant frequency of four kc and, during playback, any difference in the instantaneous speed of recording and playback will result in variations of the reference frequency. These variations are detected in playback and are used to correct for errors in the information channels.

Principle of Operation

The basic idea of the f-m transcriber is illustrated in Fig. 1. The signal input is fed into the preamp-
lifier where it is amplified and fed to two selective filters which separate the two channels. The information in each channel is then further amplified and limited. At this point the signals are fed separately into the signal discriminator where they are further limited and deprived of their harmonic content by the low-pass filters. The resulting signals are then of constant amplitude with the information in either signal a function of its instantaneous frequency. The signals are then fed through compensating amplifiers and R-C discriminators producing a voltage output in each case which is directly proportional to the recorded signal frequency.

Reference Signal

A second reference signal, originating from a second magnetic track on the same type as the information signals, is fed into the reference discriminator. This signal is amplified, limited and filtered in the

FIG. 1-Block diagram of the 1 -m transcriber

Guided Missiles

By albert a. gerlach

Armour Research Foundation
Illinois Institute of Technology
Chicago, Ill.
same way as the information signals. The reference signal is then discriminated producing an output voltage proportional to the instantaneous reference frequency. If the reference frequency input is the same as has been recorded on the tape, the discriminator output will be zero. As this frequency deviates in either direction from the recorded frequency, due to tape speed variations during recording and playback, the reference discriminator output will be a positive or negative voltage.

The output voltage is fed into the signal discriminator, where it is used to shift the operating characteristics of the compensating amplifiers and signal discriminators in order to correct for the information signal-frequency errors due to the tape speed variations. The two information outputs of the signal discriminator are then fed to the d-c amplifier where the voltage variations are converted into current variations for application to
the galvonometer elements of the recording oscillograph.

Signal Preamplifier

The circuit diagram for the signal preamplifier is shown in Fig. 2. Amplification is accomplished by three stages of conventional capaci-tance-coupled amplifiers with the separation filters sandwiched ahead of the last stage to prevent saturation of the filters at the higher voltage levels. The system was designed for input levels of from 100 microvolts to 10 millivolts rms and the amplifiers provide 60 db of amplification furnishing a maximum of 10 volts rms to the limiter.

Separation filters are of the L-C type with a characteristic impedance of 10,000 ohms. Specifications on the filters require that they be flat to within 20 db over the channel bandpass frequencies. They must also be down 40 db or more from the minimum value over the bandpass at frequencies greater than 100 cycles on either side of the band-

FIG. 2-Schematic diagram of the signal preamplifier unit

The complete equipment is housed in a single cabinet with five compartments
pass region. Provision is made to bypass the channel 2 separation filter in case it is desired to transcribe only a single channel. This will allow a wider bandpass region and increase the signal-tonoise level at the bandpass extremes.

To obtain the required degree of limiting necessary to realize the desired accuracy, it was necessary to clip the input wave severely and recover the fundamental by eliminating the harmonic content of the resulting wave. Considerable effort was spent to obtain symmetrical clipping to keep the fundamental component of the output wave constant with the expected variations in input level and to minimize the even harmonic content of the wave.

The entire limiter consists of five stages of symmetrical clippers resulting in a fundamental content constant to within 0.5 percent for input voltage variations down to 60 db below ten volts.

The clipping operation is obtained by driving the first half of the 6SC7 twin triode well beyond its cutoff point. The resulting wave at the cathode is then clipped on the positive half of the wave by driving the second half of the 6SC7 beyond its cutoff point. The potentiometer

FIG. 3-Schematic diagram of the reference discriminator
in the cathode circuits adjusts for symmetry of the output wave.

Discriminator Circuits

The purpose of the reference discriminator is to provide an output voltage proportional to the instantaneous frequency of the reference signal input. The required voltage difference to correct for ± 2.5-percent tape speed variation was determined to be of the order of \pm two volts. This required a discriminator whose sensitivity was about 10 volts per kc, which is considerably greater than any standard discriminator circuit. A special discriminator was developed for this application.

Figure 3 shows the circuit of the reference discriminator. Amplifier and limiter sections are similar to those employed in the information channels. Output of the amplifierdriver is applied across an R-C phase splitting circuit whose output voltages are equal and essentially 90 deg out of phase over the frequency range of $4 \mathrm{kc} \pm 2 \frac{1}{2}$ percent. One of the outputs of the phase splitter is fed directly to V_{7} and then into a balanced rectifier. The second output is fed into a bridgedT network, amplified and fed to the rectifiers in push-push fashion.

In order to understand the discriminator action, consider Fig. 4 which shows a plot of the amplitude and phase characteristics of the bridged-T network. The inductor is adjusted so that f_{0} occurs at 4 kc . Next consider Fig. 5 which illustrates the discriminating action at
the rectifier circuit. When the reference frequency is equal to f_{0} $=4 \mathrm{kc}, e_{2}$ will be in quadrature with e_{1} and with magnitude zero. As the reference frequency deviates on either side of the design center frequency, a positive or negative voltage will occur at the output terminals of the rectifier.

The basic function of the signal discriminator is to supply two output voltages which are proportional to the instantaneous signal frequencies recorded. To perform this function, an $\mathrm{R}-\mathrm{C}$ discriminator is used in conjunction with a compensating amplifier to make a highly linear frequency discriminator over the channel bandpass regions. To correct for tape speed variations, the capacitative arm in the discriminator circuits is instantaneously adjusted by the reference discriminator output voltage. The resulting effect is to shift the signal discriminator output characteristics in such a way that the output voltage is proportional to the signal frequencies recorded rather than those being played back.

The circuit diagram of one channel of the signal discriminator unit is shown in Fig. 6. The symmetrically clipped wave of the limiter is fed through the low-pass filter that removes the harmonics. The filter is flat to within 0.7 percent over the channel bandpass frequencies and is down greater than 40 db at the third harmonic of the lowest frequency in the channel region.

The discriminator consists of an R-C voltage divider and a rectifier
circuit. The capacitance arm of the R-C circuit is composed of a fixed capacitor and a high Q variable capacitor ${ }^{1}$ (6J6) in parallel. If $e_{B O}$ is the voltage applied to the $\mathrm{R}-\mathrm{C}$ network, the rectified output voltage will be

$$
V_{o} \propto \frac{1-\frac{\omega}{\omega_{\omega}}}{\sqrt{1+\left(\frac{\omega}{\omega_{o}}\right)^{2}}} e_{R C}
$$

where $\omega_{o}=1 / R C$. Except for the denominator in Eq. 1, this is exactly the relation required for a pure ratio discriminator. To obtain the desired expression, a compensation amplifier was inserted between the harmonic filter and the R-C network whose transfer function is

$$
\begin{equation*}
\left|\frac{e_{A C}}{e}\right|=\frac{g_{m} R_{p} \sqrt{1+\left(\frac{\omega}{\omega_{o}}\right)^{2}}}{\sqrt{\left(1+g_{m} R_{\mathrm{c}}\right)^{2}+\left(\frac{\omega}{\omega_{o}}\right)^{2}}} \tag{2}
\end{equation*}
$$

where g_{m} is the transconductance of the $6 \mathrm{AC}, R_{p}$ is amplifier plate resistance, R_{o} is amplifier cathode resistance, e is a constant voltage

FIG. 4-Transfer characteristics of the bridged-T network

FIG. 5-Discriminating characteristics of the rectifying circuit

FIG. 6-Schemalic diagram of the signal discriminator unit
input from the harmonic filter, C_{c} is cathode bypass capacitance and $\omega_{w}=1 / R_{c} C_{c}$.

It is evident that if $g_{m} R_{0}$ is sufficiently large, the denominator of Eq. 2 will be substantially constant over the channel bandpass region and the rectified output will become

$$
\begin{equation*}
V_{0} \propto\left(1-\frac{\omega}{\omega_{0}}\right) e \tag{3}
\end{equation*}
$$

With the values used in the compensation amplifier circuit, Fig. 6, the denominator of Eq. 2 is constant to within 0.2 percent over the channel bandpass frequencies.

The reactance tube employed in both the R-C circuit and the compensating amplifier is used to vary ω_{o} in Eq. 3 to correct automatically for tape speed variations.

D-C Amplifier

The purpose of the d-c amplifier in the transcriber is to transform the voltage outputs of the signal discriminator into suitable form for application to the galvanometer elements in a recording oscillograph. This essentially requires that the d-c amplifier act as a volt-age-to-current converter.

The circuit of one channel of the d-c amplifier is shown in Fig. 7. The circuit consists of two stages of cross-coupled d-c amplification ${ }^{2}$ and a stage of 6 AC 5 current drivers. Sensitivity of the d-c amplifier is 22 ma per volt when loaded with a $45-\mathrm{ohm}$ resistance. This sensitivity may be varied over a range of about three to one by use of the 1,000 -ohm series potentiometer.

Experimental tests show that the amplifier is linear to within 0.5 percent of its full-scale output of 20 ma. The output may be coupled to almost any standard recording galvanometer.

Conclusion

The transcriber was designed to decode and to record graphically

FIG. 7-Circuitry of the d-c amplifier
f-m information which had been remotely recorded on a multitrack magnetic tape. The problem of decoding $\mathrm{f}-\mathrm{m}$ on magnetic tape is aggravated by errors introduced by variations between the recording and playback speeds of the magnetic tape. To correct for these errors, a constant reference frequency is recorded on one of the magnetic tracks and the frequency of this reference signal on playback is used to automatically adjust the information signal discriminators to produce an output voltage proportional to the original recorded
signal frequencies.
The over-all linearity of the transcriber was checked by recording a series of known standard frequencies and on playback measuring the deviations recorded on the recording oscillograph. A resulting plot of the spot deviation as a function of signal frequency is linear to within 0.5 percent. Dynamic response is considerably more difficult to define explicitly because of the complex nature of the angular modulation process ${ }^{3}$. However, the instrument was designed to be flat out to 100 cycles.

The present limiting factor on dynamic response is the filter response at the output of the signal discriminators and this may be modified to increase the frequency response of the output signal. The only requirement of these filters is that they eliminate the channel carrier frequencies from the detected output. Beyond this they may be designed to cutoff at as high a frequency as desired.

The author wishes to acknowledge major contributions by J. N. Van Scoyoc, J. L. Murphy, W. Goss and H. L. Reichert of the Armour Research Foundation. Appreciation is also expressed for the cooperation of the United Aircraft Corporation, Hartford, Connecticut.

References

(1) J. N. Van Scoyoc and J. L. Murphy, High-Q Variable Reactance, ElecTronics, 22, p 118, Jan. 1949.
(2) J. N. Van Scoyoc and G. F. Warnke, A D-C Amplifier with Cross-Coupled Input, Electronics, 23, p 104, Feb. 1950.
(3) A. A. Gerlach, Distortion-Bandpass Considerations in Angular Modulations,
Proc. $I R E, 38, ~$

FIG. 1-The tetrode structure and the symbol used to represent it

FIG. 2-Transistor tetrode used as a grounded-base amplifier

FIG. 3-Measured and computed gains for the circuit shown in Fig. 2

FIG. 4-Simple tuned amplifier circuit

FIG. 5-Peaks of these response curves show the available gain in the circuit of Fig. 4. The dotted curve shows the computed focus of the peaks

High-Frequency

By R. L. WALLACE, JR., L. G. SCHIMPF and E. DICKTEN Bell Telephone Laboratories, Inc.
Murray Hill, N.J.

IF A FOURTH electrode is added to a conventional junction transistor and biased in a suitable way, the base resistance of the transistor is reduced by a substantial factor. Because of this reduction in base resistance, the transistor may be used at frequencies ten times or more higher than would otherwise be possible.

Two other factors that are responsible for the improvement in high-frequency response are that the cutoff frequency of the current gain α has been increased by using thinner p layers and that the collector capacitance has been reduced by decreasing the area of the collector junction to approximately 10^{-4} square inches.

The configuration of the junction tetrode and its symbol designation are shown in Fig. 1. The fourth electrode, designated b_{2}, is connected to the p layer in the same manner as the base connection is made but on the opposite side of the bar.

Performance of the tetrode transistor, as discussed in the succeeding portion of this paper, will be under the conditions of a fixed current bias $I_{b 2}$ applied between the base and the added electrode. A suitable value of this bias makes the potential of b_{2} and -6 v with respect to base. Emitter and collector electrodes are biased about the same as in conventional junction transistors.

With these operating conditions, the part of the emitter junction near b_{2} is biased in the reverse direction and does not emit electrons into the p layer. That part of the emitter junction in the immediate
vicinity of the base contact is the only part of the emitter junction biased in the proper direction to serve as an emitter. All the transistor action therefore takes place near the base contact and this fact accounts for the reduction in base resistance r_{b} and the resultant improved high-frequency performance. Good high-frequency properties are not dependent on a critical setting of b_{2} bias. All values between one and two ma have been found satisfactory.

For one particular junction transistor tetrode, with no bias on b_{2}, the base resistance was 1,100 ohms. As $-I_{b 2}$ was increased to two $\mathrm{ma}, \mathrm{r}_{b}$ decreased to about 40 ohms. As $-I_{b a}$ was increased from 0 to two ma, current gain decreased from 0.99 to about 0.75 , causing an increase in bandwidth at the expense of gain.

Collector resistance r_{c} is reduced appreciably by the bias applied to b_{2} in the direction of decreasing gain. Emitter resistance r_{0} is increased as $-I_{b z}$ is increased in the range from one to two ma but the total change in r_{e} is not very great.

High-Frequency Considerations

When considering the dependence of α on frequency, it is convenient to define an α cutoff frequency $f_{0} \alpha$ as the frequency at which the magnitude of α has been reduced from its low-frequency value by a factor of $1 / \sqrt{2}$. This frequency is in the order of 15 to 20 mc .

It has been shown ${ }^{1}$ that $f_{c} \alpha$ should be inversely proportional to the square of the thickness of the p layer and should be about 20 mc for

Transistor Tetrode

Sine-wave oscillators at frequencies up to 130 mc and tuned amplifiers with substantial gain at frequencies of 50 mc or higher are obtained by using junction transistors with an added connection to the base electrode biased negative at six volts

the p layers of roughly 0.0005 in . used in these transistors.

Figure 2 is a circuit in which the transistor tetrode is used as a grounded-base amplifier between a generator of internal resistance R_{G} and a load resistance R_{L}. A transistor having the following characteristics was used in the circuit: $r_{e}=6.9 \mathrm{ohms}, r_{b}=92.5 \mathrm{ohms}, r_{c}$ $=0.825$ megohms, $x_{s}=0.82, f_{c} \alpha=$ 18.5 mc and $C_{0}=1.5 \mu \mu \mathrm{f}$.

Response

Measured response of this transistor in the circuit of Fig. 2 is shown in Fig. 3. With $R_{L}=5,100$ ohms, the gain is 22.3 db and the $3-\mathrm{db}$ point is at 5 mc . This is comparable with the performance of good vacuum tubes. If the transistor is used as a triode in the same circuit by making $-I_{b 2}=0$, the cutoff frequency is reduced to approximately 0.5 mc .

As shown in the lower solid curve of Fig. 3, reducing R_{L} to $2,460 \mathrm{ohms}$ raises the cutoff frequency to 10 mc and reduces the low-frequency gain to 18.4 db .

If a grounded-base amplifier is driven by a resistive generator, the output impedance of the amplifier looks like a resistance and a capacitance in parallel. If the amplifier is loaded by a shunt inductance and resistance as shown in Fig. 4, the inductance will resonate with the output capacitance to give a peaked response. Maximum gain will be obtained at the frequency of resonance when R_{L} is adjusted for match.

The curves shown in Fig. 5 were obtained by varying the load in-
ductance to obtain various resonant frequencies and then adjusting R_{L} at each frequency to give maximum gain. Measured gain at 50 mc is

FIG. 6-Output impedance of α grounded-base stage in terms of shunt resistance and capacitance

FIG. 7-Bandpass amplifier stage

FIG. 8-An oscillator circuit suitable for use with junction tetrodes
11.8 db . Figure 6 shows the measured values of output impedance of the stage in terms of an equivalent parallel resistance and capacitance.

Bandpass Amplifiers

The low values of output capacitance and resistance shown in Fig. 6 indicate that it should be possible to build reasonably wide bandpass amplifiers without much sacrifice in gain as compared to the values shown for narrow-band amplifiers in Fig. 5. The stage shown in Fig. 7 was designed to pass a 9 -mc band of frequencies centered around 32 mc . The resultant gain is 15 db , giving a gain-band product of 280 mc.

The circuit of Fig. 8 was used to observe the performance of transistor tetrodes as oscillators at high frequencies. Provision is made for adjusting the value of capacitance in the feedback path to the emitter. At higher frequencies, the input impedance at the emitter tends to become inductive and it is necessary to adjust the capacitor.

Most of the tetrodes used in this circuit produced sinusoidal oscillations up to frequencies as high as 80 to 100 mc , with some at 100 and 130 mc . Between 40 and 75 mc , measured output was approximately one milliwatt for one transistor. At 100 mc , output is 0.25 milliwatt and at $115 \mathrm{mc}, 0.06$ milliwatt. Collector dissipation was held to about 30 milliwatts during the measurements.

Reference

(1) W. Shockley, M. Sparks and G. K. Teal, P-N Transistors, Phys. Rev., 83. p 151, 1951.

Press Safety Control Uses Radioactive Wristband

Abstract

When operator's hand is in danger zone of punch press, gamma radiation from radiumplated disc is picked up by new infinite-life halogen-quenched Geiger tubes mounted on press. These trigger a thyratron that blocks operation of the press control solenoid

By M. E. SIMONTON and JOHN YEISER

Hazatrol Inc.
Berkeley, California

PRoviding operator safety for hazardous work in industrial processes has long presented a difficult problem to plant administrative personnel, safety engineers and insurance underwriters.
To be practical, protective devices must be fail-safe and should not hamper or inconvenience the machine operator, thus providing incentive to avoid their use. Considerable ingenuity is displayed by production workers in tying down one pushbutton of a two-hand control or rigging flashlights onto photoelectric guards.

In the device to be described, wristbands containing small amounts of radioactive material are worn by the press operator. Whenever the bands are within range of the Geiger tube located at
the boundary of the danger zone, the press is locked from operation. Thus both hands must be removed from the danger zone before the press may be set into motion. While the use of tracer techniques in industry is not new, it is believed that this is the first application of such techniques to production machinery.

To prevent operation of the press by persons not wearing wristbands, a timer is connected so that it will render the machine inoperative unless the wristbands have been used to actuate the control during the timing period.

Suppose the press operator leaves his work and, upon returning, has removed the wristbands. The timer will have rendered the press inoperative about 15 seconds after the last piece of stock was inserted. The

FIG. 1-Complefe circuit, as designed for 100-percent fail-safe operation

FIG. 2-Cross-section view through detector head, showing sensitive region
operator must put on the wristbands and pass them into range of the detector to reset the timer and resume operations. This does not interfere with press operation as long as the bands are worn, because each time the operator inserts or removes stock the control is actuated and the timer resets. The timer also prevents operation of the press should any part of the radiation-detecting system fail.

Control Circuit

Inasmuch as radiation is being detected rather than measured, a rate meter is not needed. It is possible merely to use the voltage drop developed across grid resistor R_{1} in Fig. 1 by the average GM tube current to trigger control thyratron V_{1}. Capacitor C_{1}, which integrates the GM tube pulses, is chosen as a compromise between the requirements for fast response (on the order of 0.1 second) and the necessity for reducing background fluctuation to a minimum. The thyratron is normally on, energizing the relay, and is turned off by an increase in GM tube current. One pair of relay contacts completes the circuit to the press control, and the other pair of contacts energizes the synchronous-motor driven time delay which, at the end of its timing interval, opens contacts in series with the press control solenoid. Sensitivity is controlled by the set-

Radiation-type safety control installed on small motor-driven punch press
ting of potentiometer R_{1}.
The thyratron and relay are used in the normally on condition for fail-safe operation.

The power supply uses a conventional half-wave rectifier to supply negative 700 volts d-c to the Geiger tubes. Regulation is accomplished by corona regulator tube V_{3}.

Geiger-Tube Detector

The halogen-quenched Geiger tubes used are of all-metal construction and have a life unlimited by use. The recent development of these reliable tubes has made the use of radiation controls practical.

The tubes are shock-mounted in the detecting head, and have a $\frac{1}{8}$-inch sheet of lead shielding on the side away from the danger area as in Fig. 2 to give a sharp transition zone. This is necessary to reduce the region of uncertain operation and to permit the press operator to hold stock in the machine with his hands close to, but not in, the danger area. As many tubes as are required to protect a given size of press are connected in parallel. The leads are brought out through flexible conduit to the control unit, usually on the press frame.

The manner in which the tubes are used, with a large series resistor, results in a nearly logarithmic response of the system to radiation. This is due to the fact that the signal voltage developed across

Installation of Hazatrol unit on $215-t o n$ draw press. Geiger tubes are mounted horizontally in housing just above die, and control cabinet is at right on press
R_{1} is in effect subtracted from the high voltage supplied to the GM tube. At high radiation intensities, the tube terminal voltage becomes progressively lower, the Geiger pulses become smaller, and the average current is somewhat less than a linear function of count rate. The voltage developed across R_{1} then varies approximately linearly with distance between radiation source and GM tube, as radiation intensity is proportional to the inverse square of this distance.

Since pulses are not being transmitted, there is virtually no limit to the length of cable that can be employed. The 100,000 -ohm resistors in series with the Geiger tubes reduce the instantaneous current surges.

Wristbands

The radioactive material contained in the wristbands is radium, plated on nickel discs. These discs are backed with lead on the surface next to the skin. The maximum range of the equipment is limited by the amount of radiation which can safely be worn on the hands; 1.5 Rep per week is the accepted figure. A wristband safely below this amount (having about three times the amount of radium as the average luminous-dial wristwatch) will give a range of twelve to eighteen inches, inasmuch as the maximum sensitivity of the instrument
is set by the cosmic ray background. Finger rings can also be made radioactive for use in applications where the operator must hold small work close to the die.

Press Controls

With the existence of a suitable electronic system, the safety problem is not yet solved in its entirety. Power presses differ from one type to the next as to clutching and tripping arrangements. In many of the larger presses, control may be accomplished by merely opening an electric circuit. Hydraulic or air controls are also common and are adaptable by use of suitable solenoid pilot valves. Mechanical foottreadle and dog-clutch types of power machinery, a good example of which is a riveting machine, may be controlled by use of a secondary overtravel linkage inserted into the system at some convenient point. This overtravel mechanism is essentially a solenoid-operated pilot clutch. In all cases, nonrepeat action is desirable.

The system can also be applied to other control problems. The same basic circuit, used with a fixed beta source located in proximity to the detector, is being used as a floor level control on passenger elevators in the San Francisco area. Control is accomplished through interruption of the beta beam by a metal plate.

Stripping Techniques for

Evaluation of hand sanding, chemical stripping, wheel-type stripping, burning, solderdipping and welding techniques for removing film-type insulations from magnet and wires. Suggestions and examples aid in choosing the best method for each job

By R. GEORGE ROESCH

President, The Eraser Co., Inc.
Syracuse, N. \quad.

WIRE STRIPPING is the method or means used to remove the insulation from a wire, so the remaining wire may serve as a conductor when attached to other wires or terminals. Before soldering a wire to a terminal, the insulation must be stripped off to provide a clean, bright surface. The importance of obtaining good connections cannot be over-emphasized because over 90 percent of all conductor failures occur at or near the joints. Detrimental effects of poor stripping have shown up in coils as long as two years after the coil was wound.

The demand for better and better insulated wires has resulted in
wires that are harder to strip. Insulation has been made thinner to conserve space, tougher to resist abrasion, more flexible to withstand sharp bends, more resistant to heat, more adherent to bare copper, and more resistant to chemicals. Thus, in trying to provide better insulated wire, the wire manufacturers are making wire-stripping problems more difficult. No single method nor no single machine can possibly prove equally efficient under all conditions.

As a guide in the selection of the best method for a particular problem, the commonest methods of stripping film-insulated wires will be considered one by one.

Sandpaper, emery or crocus cloth may be used to remove any type of insulation which may be abraded from the wire. The selection of the best abrasive material depends upon the gage of the wire and the skill of its user. Extreme care needs to be exercised if fine wires are to be completely stripped without damage to the wire.

Time-wise, hand-sanding may or may not prove efficient, depending on specific conditions. There are some situations where it would be virtually impossible to improve upon a hand-sanding method.

Many chemical strippers are available. Generally speaking, these are suitable for nearly all film-type

CASE HISTORY NO. 1-A typical choke coil (right) wound with AWG 32 Formvar-insulated wire has two leads wrapped loosely around the coil. These are to be stripped as close to the coil as possible. Conventionally, an operator would unwrap and strip the leads, wrap them around the core again, trim off excess wire and solder and tin the joints.

By thinking in terms of wire processing, the procedure reduces to: (1) Wrap a stripped end of wire around the core wire and wind the coil as usual; (2) Strip the wire coming from the spool, stripping twice as much as needed; (3) Cut the wire in the middle of the stripped portion and wrap the finishing lead around the core wire; (4) Tin-dip both ends or solder and break off the excess wire. The stripped end of wire, as it comes from the spool, is used to start the next winding of another choke coil. The octual stripping operation can be performed either by using sandpaper or by using a small wheel-type stripper (left) that is conveniently locoted, even on a swinging bracket

CASE HISTORY NO. 2-The problem here involved stripping heavy stranded leads of a large multiconductor cable, one end of which was anchored. A selected pair of stripping wheels, driven by a flexible shaft, proved to be the best solution in this example

Insulating Films on Wire

insulations, except Teflon and Ceroc or similar insulations for which there may be no presently known solvent.

There are chemical strippers which have no unpleasant odor and which are not injurious to the skin, but allergies of individuals can cause varying reactions to almost any chemical.

Chemical Stripping

With all chemical strippers, care must be exercised to stop the chemical from creeping, which is often impossible, and to prevent the chemical from coming in contact with the coil or winding. Damage to a coil or winding destroys its value.

Chemical stripping leaves a clean, bright surface. Any size or shape of wire may be chemically stripped. For aluminum wire, chemical stripping seems ideal. Chemical stripping methods may be developed so the stripping can be done as rapidly as by any other method.

Cost-wise, comparisons must be made, considering the cost of the equipment used and the chemicals used, as against the overall produc-
tion attained, per dollar of investment and expense.

For small-scale chemical stripping, just set up a line of test tubes. Fill with chemical stripping solution to the desired level. Use as many test tubes as are necessary, so that by the time the insulation has been wiped off the coil in the last tube in the line, the operator can start at the head of the line again.

If there is a chance that the fumes from the chemical will prove harmful to the winding, float a layer of thin oil on the surface of the chemical.

Wheel-Type Wire Strippers

Perhaps the best known method of removing film-type insulations is by the use of wheel-type wire strippers.

Wires as fine as AWG 50 can be stripped. Depending upon the handling methods, there may be no limit in either the size or shape of wires which can be stripped with stripping wheels.

The determination of the best handling methods is most im-
portant. It will frequently be found more economical to strip wires singly than in groups. Likewise, it may be faster to strip components singly than in groups, even though it may appear on the surface that the more wires you strip at one time, the faster the operation. Handling time is worth careful study.

Many sizes and varieties of stripping wheels are made, each for a particular type and size of wire. The commonest materials are brush wire and glass fibers, used separately or in combination in the stripping wheels.

There is an ideal relationship to be attained between the diameter of the stripping wheels, the surface speed of the stripping wheels, the surface characteristics of the stripping wheels, the density of the stripping wheels and the actual wires to be stripped. This ideal relationship can only be attained by experimentation on the production line, since handling methods produce different results.

Wheel costs are worthy of study. Accurate records should be kept to

CASE HISTORY NO. 3-Because a ballast coil was in very high production, the stripping aperation was conveyarized as shown. Three girls on each side at the for end pick out the coil leads, apply a piece of tape, place the coils on the moving conveyor chain and dress the leads outward as above. The leads then pass autamatically between the stripping wheels, after which the coils discharge at the front end onto a conveyor belt (not shown) going to the next pasition. Only two of the three wire strippers on each side are active, the third being a spare. Two strippers insure perfect stripping despite variations in lead positioning and variations in the wires or in their insulotion. The two motors at the front end drive the conveyors. A vocuum system draws dust

determine the cost of stripping wheels in terms of the number of wires stripped per pair of wheels. It may be that high-priced stripping wheels will prove most economical in terms of cost per-thou-sand-wires-stripped.

If the stripped wires are to be tinned, the selection of proper stripping wheels may eliminate a fluxing operation. If the operator of a wire stripper can dip the stripped wires directly into a solder pot, time will be saved and costs reduced.

Wheel-type wire strippers have one disadvantage, but it is the users' fault. They expect to be able to do any kind of a stripping job with the same wheel without considering its limitations.

The predominating advantage of wheel-type wire strippers is their versatility. It is only necessary to change from one kind of stripping wheel to another, in order to strip a different gage wire or strip a different kind of insulation from the wire. All film-type insulations may be stripped, including those which cannot be removed by chemical or burning methods. Fiberglas and other kinds of servings may also be stripped.

Litz wires of almost any number and gage may be stripped, using the proper stripping wheels. Even braided insulated wires may be unbraided and stripped on wheel-type
wire strippers if care is used.

Burning or Open-Flame

Equipment has been developed for removing insulation by burning. The copper oxide thus formed is then removed by brushing.

Some insulations, such as Teflon and Ceroc, cannot be burned off. Aluminum wire may melt before the insulation melts. Wires finer than AWG 30 may melt before the insulation melts.

Since it is nearly always necessary to brush the wires after burning, an all-brushing method is generally preferable unless there is some other reason for using the burning method, such as sealing the serving on Litz wires before stripping.

Hot Solder

Formex, Formvar and similar insulations can be removed and copper wires tinned in the same operation. Some so-called Formvar films cannot always be uniformly removed by this method, hence erratic results may be encountered.

If the hot-solder method is used, the pot should contain 50-50 leadtin solder at not less than 500 deg C .

Wires finer than AWG 30 are almost impossible to strip by the hotsolder method, because one cannot get them in and out of the pot fast enough.

Solder splatter may prove harmful. The tin content must be kept in balance with the lead content by replenishing the tin.

Frequently, insulated wires are twisted together and dipped in hot solder. This may result in highresistance joints because all of the insulation is not always completely removed. If wires processed by this method can be readily untwisted, there is no complete mochanical bond.

Cost-wise, the hot-solder method may be no less costly than any other method, even though the stripping and tinning is done in the same operation.

Brazing or Welding

Lead wires and coil leads are frequently welded. This method is not ordinarily used on wires under AWG 20. A high-temperature gas flame is applied to heat the twisted or spliced lead to a temperature that just melts the copper. By this method, all the film coating is burned off.

Low-Temperature Solder

There are some thermoplastic films which can be removed by using a resin-alcohol flux and the application of a soldering iron, or by dipping in 650-deg F lead-tin solder. Both wires must have the same insulation on them, or one of

CASE HISTORY NO. 4-Leads of a typical transformer coil (right) hoving two widely different gages of wire were to be stripped. Sizes were AWG 24 and AWG 36. A single machine has drowbacks; if the leads tangle, the small wire may be broken, and with the wheels set for the finer wire there will be excessive wire on the wheels and high wheel cost. The answer is the twin-heoded stripper shown above, hoving one pair of wheels for each wire. Machine can be set for any size wire

CASE HISTORY NO. 5-Enamelinsulated telephone switchboard wires were to be stripped. The outer covering was removed with a hotblade stripper, and the ends then inserted in the cone-shoped head of the obove stripper to remove enamel. This machine is suitable only for AWG 20 to AWG 24
the wires must be a clean, bare wire.
As with all other stripping methods, the time-cycle needs to be considered. Some claim that the soldering operation is sufficiently faster when the wires are prestripped to more than offset the advantages of stripping and soldering at the same time.

Close-Up Stripping

One way to strip wires close up to a coil form is to use a one-wheel stripper with a stripper blade in contact with the stripping wheel. By passing the wires between the blade and the wheel and giving them a quarter-turn, the insulation can be stripped off to within $\frac{1}{8}$ inch of the average coil.

If the coil is small and the wires very fine, AWG 36 or smaller, perhaps a small wheel-type stripper will be the best solution to close-up stripping.

High-Production Considerations

Think in terms of wire processing. Begin to study the operation as the wire leaves the spool or reel. Remember that wire stripping is only one of the many operations performed on each wire. Follow each wire through all operations, until that wire is connected to another wire or terminal. Consider all operations in conjunction with all others.

In following any given wire through its various processing operations, seek out the best time to perform the wire-stripping operation. Here are a few things to be considered:
(1) Speed at which the wire stripping operation should be performed, to tie in with prior and subsequent operations.
(2) Cost of the wire stripping operation, in terms of cost of equipment, amortization period, cost of using and cost of maintenance.
(3) Convenience of using, in terms of ease of operation, operator fatigue and operator training.
(4) Equipment used, in terms of location with reference to other operations, floor space required, accessibility and portability.

To arrive at some of the answers to the foregoing, it is necessary to take into consideration these other factors:
(1) Size, shape and weight of the winding on which there are wires to be stripped. Can the winding be taken to the stripping operation, or should the stripping equipment be brought to the winding?
(2) Size and shape of the wires to be stripped, plus the kind of insulation on the wires.
(3) Location of the stripped portion of the wire with reference to the rest of the wire or the winding. The less the amount of stripping,
the lower the cost.
(4) Number of wires which must be stripped in the same operation and at the same time.
(5) Are the wires to be stripped relatively straight or are they kinked and tangled together? By any stripping method, these conditions will lead to trouble.
(6) Do the windings come to the stripping operation in a convenient and orderly fashion and leave there the same way?
(7) What is to be done with the wires after they have been stripped? How soon will they be connected to another wire or termminal? Will it be necessary to treat the wires to prevent oxidation and with what can they be most economically treated?

Conclusions

Do not try to put all wire-stripping jobs into one class and hope to find a single method or a single piece of equipment which will give satisfactory results in all cases.

Try to think in terms of wire processing, beginning with the spool or reel of wire and following the wire all the way through, until it is connected to another wire or to a terminal. This will invariably reveal ways to improve some operations and make the wire-stripping operation easier, resulting in higher quality and lower costs.

CASE HISTORY NO. 6 - Location and length of stripped wires on ignition coils had to be controlled accurately. A rotary stripper having rotating blades was adjusted to the diameter of the bare wire, and the length of stripping was controlled by an odjustable stop inside the machine. Not suitable for wires finer than AWG 24. Housing at left foreground fits over cutting blades, and wire is inserted in conical hole in end of housing. Stripping blades can be removed for shorpening

CASE HISTORY NO. 7 - To eliminate tedious sandpapering of short rectongulor wires for removing $1 / 4$ inch of insulation from the ends, this one-wheel stripper was developed. A wheel setting is made for stripping the flat sides of the wire and a batch is stripped on both ends, by moving each side of each wire in turn ocross the entire face of the wheel from one side to the other. This insures even wear of the wheel. The setting is then changed for stripping each edge of each wire end

Television

Switcher

By HARRYE. THOMAS

Federal Telecommunication Laboratories
(an I. T. ${ }^{\text {Inc. }}$
(an I. T. © ${ }^{\text {d }}$, affliate)
Lodi. New Jersey

Control console with six inputs and six outputs can be expanded with growth in studio operations. Relays normally furnished in console can be remotely operated if it is desired to shorten video lines

FIG. 1-Simplified block diagram of the switching action. Small squares are relay contacts, relay coils are shown as inductances and termination contacts are grounded through resistors

Video transfer or switching is accomplished by connecting a signal source to some particular destination. Such a transition may be made gradually through electronic mixing circuits or abruptly by means of switches and relays. The common video switcher employed in studio equipment uses both types of transfer, the former for programming effects and the latter for rapid and convenient performance of multiple switching.
Rapid or abrupt video switching circuits may in turn be divided into two general categories; those employing direct pushbutton-actuated switches or those employing pushbutton keying switches together with relays to make the actual video transfer at some remote point.
In abrupt switching the transfer may be made by either gap or lap switching-the former meaning break-before-make and lap meaning make-before-break. The usual types of gradual transfer are called fading or lap dissolve. Fade from one signal to another implies complete extinguishment of one signal source before another source is gradually brought up to the appropriate signal level. A lap dissolve means a conjugate variation between two signals but with the signal levels overlapping each other at some predetermined value. These operations are usually accomplished by use of manually operated fader potentiometers associated with the input and output systems of the two sources. Automatic fade and dissolve may be done by variable-timedelay networks in the grid of the mixer amplifier.

Direct switching with interlocking pushbuttons has the advantage

for Broadcasters

Video transfer unit is compact enough to allow its use near the program director. Pushbutton operation of relays either mounted in unit or remotely controlled provides channeling as many as twelve inputs to six destinations. Manually operated fader can be used for lap dissolves through distribution amplifiers
of compactness by allowing for a location where the video lines can be connected directly to the switches. Low capacitance contacts make this method fairly free from discontinuity in the transmission line. For local switching with short direct runs of the video cables, this method is probably as compact as any other. Switch timing, however, is not adjustable, and complete interlock is not always mechanically convenient. Remote control is impossible.

Indirect switching allows the video transfer relays to be remotely located from the control panel. For master control or video control centers this results in the advantage of shortened video lines since relay racks can be located near video circuit terminations.

Selecting lap or gap switching sequence is of considerable importance in smooth operation of the studio and any system should have sufficient flexibility to allow for either type in at least part of the switching system. For local signals employing video signals linked to a common sync generator source, overlap switching is used to keep continuity of sweep and synchronizing conditions while transfer is made. For switching remote-tolocal using independently synchronized signals, gap switching with fade to black is preferable since otherwise synchronizing circuits in receivers would be upset by the simultaneous presence of two nonsynchronous signals. This interval should not be over ten milliseconds to effect synchronism within one field.

Gradual signal transfer by lap dissolve switching or fading by manual control requires auxiliary
equipment centering about geareddown potentiometers and electronic mixing. The manual execution is for convenience, arranged through lever control of two back-to-back potentiometers located directly at the switcher panel. The levers arranged for simultaneous operation move through an arc of about 90 deg arranged so that when they move together the fading is a smooth lap dissolve. At opposite ends of their control, both outputs are conjugate (one full on and the other full off). When automatic control of gradual transition is used, it is accomplished through the inclusion of adjustable time-delay circuits associated with the grid circuits in mixer amplifiers.

General Considerations

A system should operate quickly, smoothly and with a minimum of operations for any one transfer operation. A single push of the finger should form a complete operation.

Since controls are usually in the dim light of a studio control booth the pushbuttons should be illuminated and marked for quick cognizance; they should be in direct view of the operator.

A relay system should generally have mechanical features of reliability, replaceability, ease of switching and convenience of operation. The relays and switches, heart of the system, are preferably d-c operated and should be rugged enough to withstand all vibration and life-test standards including temperature and overvoltage operation.

Ease of adjustment is an important feature. Relays and switches should be accessible to bending and
adjusting tools for arranging the lap or gap sequence. Dust covers should be provided for long unattended operation and the lamps, switches and relays should be readily replaced.

The design should provide flexibility by which the small station may have opportunity to add channels when facilities are expanded without unduly revising the whole studio setup by addition of new racks and rerouting of wiring.

The switcher unit should have versatility within the studio to serve the dual purpose of a program director's console or to be usable in master control or video control positions. For a program director's console where short lines can run direct to the relay racks, it is advantageous to have the relays in the console. A director can thus have control of the switching and fading of two, three or four cameras and still be divorced from the intricacies of technical direction. The unit should be equally adaptable to master or video control positions where other requisites occur.

A large switching capacity in the way of input lines and output lines should exist in a console layout to give master control a wide surveillance of all studio, remote and film sources. Economy of design in simple inexpensive switches and relays is an attractive feature for the small station.

Electrical Characteristics

Electrically, the system should have the following characteristics.

True lap or gap switching are provided with flexibility to adjust for a certain amount of either. Crosstalk between the input and output

Rear view of the control console shows relays mounted on rack within. Below are power supplies for tally lights and relay operation on direct current. A single distribution amplifier is included
lines should be lower than $60-\mathrm{db}$ interference on any one output from any other output. Transmission line mismatch should be of sufficiently low magnitude to maintain picture resolution and eliminate reflection troubles. Interference from relay transients, arcing contacts and induced hum on signal circuits should be of a low value and never visible on a monitored video signal. Gradual electronic transfer should be accomplished conveniently whether by manual or automatic means.

Ideally in such a system the actuation of any one button should perform the following functions. Input and output circuits should be automatically cleared; that is, all sources or signal destinations connected with the pushbutton under operation other than the connection to be made should be automatically
disconnected. For instance, if the signal source buttons are arranged in horizontal rows and the destinations are in columns, the pushing of any one button should clear the column and also clear the row in which is located the selected button. Clearing can be accomplished by a separate operation, buf in many cases, particularly during a program, such lost time is annoying and automatic clearing is a distinct advantage.

Objection to the feature of destination clearing or vertical clearing when two outputs are connected to one input is overcome by the provision of extra input facilities; for instance, when two outputs from the same input are desired, duplicate inputs are usually supplied through a distribution amplifier and these two sources punched up; that is, switched to the two desired
destinations. In this way, either common input can be switched independently of the other with no interference encountered from vertical clearing.
After clearing, the relay actuated should complete the video switching desired, and connect some source to its desired destination; this is the central action of the complete system.

The active relay should apply power to illuminate the actuated pushbutton.

Sources disconnected by the clearing action should be automatically terminated by the switching relay.
Release of the actuated button should keep the system functioning or switched to the above desired set of conditions but in readiness for starting the complete cycle over again.

Equipment for Use

The FTL-89A, as a fundamental structure, is an indirect switching system arranged to be mounted as a completely self-contained unit in a 19 -inch console. It is designed to be expanded from a six input-six output system to a six input-twelve output system. A fader mounted on the desk-top shelf is interconnected to the main switching system through a mixer amplifier to make available the various types of gradual transfer.

Although the switches and relays are mounted in a single console the system allows the relays to be remotely located so the pushbutton switch panel may be placed wherever most convenient. An auxiliary arrangement can be made to include a remote fader system where such is desired. Relay power is supplied from 110 volts a-c through a 24 -volt self-contained power supply.
The circuit arrangement employs automatic clearing and internally illuminated pushbutton switches. Relays are accessible by an operator directly from the front of a console cabinet; lamps and switch adjustments are likewise available by tilting back the front panel. Automatic clearing, automatic termination of video sources and automatic holding after momentary pushbutton action are included. Adjustment of the switches allows for either gap or lap switching. A lap of several
milliseconds can be attained and gaps of any time between zero and twenty milliseconds are possible.

Although the relay contacts on video sources and destinations are in parallel and add capacitance to ground, relays are closely spaced with sufficiently low capacitance to ground that the transmission line discontinuity is negligible. Cross talk between lines is likewise low.

Switching Details

The automatic clearing system uses auxiliary relays that conveniently tie in cycle-wise with the remainder of the system. This method was chosen in preference to mechanically actuated systems because the latter must clear the circuits by means of latch bars or auxiliary clearing mechanisms. Complete clearing of both source and destination circuits by this method in a simple mechanism may sometimes be mechanically difficult.

In the momentary pushbutton switch that is used (in which the actuating button when once operated returns to its original position) there is a need for a second set of auxiliary relays to maintain the system in operated condition while the switch is moving back to original position. These so-called transfer or holding relays have operating characteristics similar to the other relays in the system and likewise tie in with the overall switching cycle.

The internally illuminated pushbutton assembly utilizes a simple commercial switch with a 6.3 -volt
pilot lamp and a lens system incorporated in the pushbutton plunger. Pilot lamps are easily changed through the rear of the switch panel.

The fundamental switching cycle is accomplished by three contact operations in the switch itself besides four in the main video switching relay as shown in Fig. 1. Briefly, one break contact in the switch clears the sources in any one row of signal inputs; another clears the destinations in any column of signal outputs while the third makes contact to apply power to the relay directly connected to the button actuated and thus performs the control function or makes the desired connection between input and output.

The relay functioning can be best described in a direct example. When relay 4 C has been actuated (input 4 and output C) one set of its contacts completes the desired connection of input and output. The second set of contacts automatically disconnects the terminating resistor from source 4 so that the connection of C output will not provide double termination. The third set of contacts applies filament power back through the interconnecting cable to 4 C pushbutton to illuminate it. The fourth set of contacts operates through the transfer and clearing relays to hold power on the relay coil itself while the pushbutton is returning from its momentary contact.

With the pushbutton back in original position video switching

FIG. 2-One channel of two-channel distribution amplifier with frequency 3 db down at 10 mc . Output impedance is either 75 or 10,000 ohms. Tilt control maintains 60 -cps square wave within ± 2 percent
has been accomplished. The horizontal and vertical clearing circuits are restored through closure of switch 4 C contacts and the clearing and transfer functions disengaged. The system is ready for re-enactment of another cycle.

The timing of gap and lap switching is thus a function of the timing of break and make of the switch contacts since the time of relay opening of the clearing relays and the time of closing the main video switching cancel each other. By adjusting the gap between break of the clearing contacts and the make of the main video switching interval can be controlled.

Fading System

A two-channel video amplifier, for which one channel is shown in Fig. 2, permits the output of each of its channels being fed into a

FIG. 3-Any two sources may be controlled or faded and fed back into video inputs for further switching
fader control potentiometer. By appropriate switching of two destination connections to the input of the video amplifier, its two outputs can be mixed in the control potentiometers. With the single fader output connected to another switcher source terminal, any two signal sources may be controlled, faded and routed out through any of the remaining channels. A sample block diagram of the unit interconnections to accomplish this effect is given in Fig. 3.

In order visually to tie the fader tally lights into the destination video outputs, they are colored to match the buttons of the bottom two rows of pushbuttons on the switcher panel. A row of red buttons located elsewhere on the panel is provided to indicate an important output-usually the line output to the transmitter or relay link.

Electron-Microscope

Simple two-tube balanced amplifier operating tuning-eye tube detects power-supply fluctuations not indicated by panel meters or on the final viewing screen. Blurred photographs are eliminated when circuits are checked before operation. Worn controls show up quickly during servicing

PERFORMANCE of the electron microscope depends in large part upon the stability of the power supplies for the various lenses and for the high voltage used to accel-
erate the electron beam. The most critical power supplies are those for the high voltage and for the objective lens.

The electron microscope is com-

[^6]monly energized from a 1 -kva con-stant-voltage transformer plus a regulated 370 -volt d-c supply in the chassis for the plates of various tubes. In addition, individual electronic stabilizing circuits are used to correct fluctuations in the highvoltage unit as well as in the several lens supplies. The high-voltage ripple is usually not allowed to exceed 0.5 volt peak-to-peak at 50 kv. The objective lens current is held constant to within about 0.002 percent.

Defocusing Causes

Minimal fluctuations having an adverse effect upon the image are not visible on the standard panel meter in the circuits involved, so that from time to time an oscilloscope or other instrument must be used to check the power supplies. Noisy reference batteries, poor contacts in the focusing controls and corona or other difficulties in the high-tension circuits may have deleterious effects upon the final image.

Balanced Amplifier

It appeared desirable in view of the number of sources of possible trouble to add a permanent monitoring unit to the microscope, which could be switched from circuit to circuit and would respond only to the fluctuations. It could serve as a check at all times on the stability of the power supplies and as a device for the localization and correction of troubles in these circuits.

Accordingly, a two-stage resist-ance-capacitance coupled amplifier

[^7]
Power Monitor

By FRANCIS W. BISHOP

Atomic Energy Project
School of Medicine
University of California
Los Angeles
was constructed using two 6SC7 twin-triode tubes. These tubes have a common cathode and in a balanced circuit are quite insensitive to fluctuations in their own power supply. The input is capaci-tance-coupled to the various circuits to be measured by means of a double-pole five-position selector switch. One setting short-circuits the input terminals for balancing the unit itself. The other four positions as shown in Fig. 1 are connected to the condenser, objective and projector lenses and the high voltage, respectively.

Voltage Divider

A capacitor voltage-divider was installed on the high-voltage shelf with terminals for connecting an oscilloscope if desired. It was necessary to include an r-f filter to eliminate pickup from the $75-\mathrm{kc}$ oscillator of the high-voltage power supply. All leads to the various lenses, the windings of which are several hundred volts above ground potential, are shielded. The posi-

Tuning-eye tube and selector switch are mounted on the front panel of the cabinet. Amplifier chassis fits into space behind panel
tive terminal of the high-voltage supply is grounded. The connections to the amplifier are made by plugs at the back of the control panel for easy disconnection when this part of the microscope requires servicing or other maintenance attention.

Output Monitor

The output of the amplifier may be brought to a high-resistance voltmeter on the panel or to a tuning eye tube. When switched to the various lenses, the slightest

FIG. 1-Complete circuit diagram of the power-supply monitor for electron
movement of the focusing controls produces large fluctuations in a zero-centered indicating meter or the tuning eye. Several previously unnoticed spots of poor contact in these controls were discovered the first time the device was used. Although the controls were set at the points where the fluctuations as seen on the eye were comparatively large, no change in the image could be noted visually on the final viewing screen. Examination of plates exposed under these conditions revealed, however, a slightly blurred image. The photographs were sharp when the disturbances were absent.

The instrument is capable of revealing fluctuations in the power supplies that are considerably less than those able to affect the image on the photographic plate. Extremely slow changes may not be detected but on the other hand these are not a serious factor for the photographic exposures are relatively short.

The device may be used to maintain the microscope at a high level of operating perfection, to detect and correct incipient difficulties and to function as a trouble-shooting instrument as needed.

Quick-Change Breadboard

Versatile breadboard design uses standard insert panels for individual sockets and larger components, arranged in any desired order between permanent ground and plate-voltage bus-bars. Finished assembly is sufficiently sturdy for rigorous field testing

ATRULY versatile breadboard assembly system should provide a means for collecting and storing mounting panels so they can be inserted and fastened in whatever order the circuit demands. The design shown in Fig. 1 meets these requirements for any conceivable electronic circuit, by permitting the addition or subtraction of complete tube stages with minimum effort. Laying out a blank chassis and cutting mounting holes for components are practically eliminated.

By ROBERT E, PROUTY

Airborne Sonar Branch, Sound Division Naval Research Laboratory, Washington, D. C.

Use of the versatile breadboard involves choosing a mounting panel for a particular socket or component, fastening the component to the panel, then inserting and securing the panel on the special chassis frame in its proper sequence according to the schematic diagram. Blank inserts are provided to permit adequate spacing
between larger components. Without relying upon guesswork or broad experience, the average engineer can develop on this breadboard a prototype of a compact well-designed chassis. After working out circuit design problems and dressing critical leads, the breadboard can be immediately bolted to a blank panel and rack-mounted for field testing.

Special mounting panels can be manufactured in quantity for any conceivable type of component. Two

FIG. 1-Suggested construction and dimensions for versatile breadboard chassis capable of holding as many as ten tube stages. Blank insert panels of various widths are kept on hand for use as spacers, to get room for mall components wired between tube sockets.

for Circuit Research

With good stock of insert panels, complete circuit can be produced directly from schematic diagram, without laying out and drilling a single chassis hole
requirements must be met-the thickness of the panel should not exceed $\frac{1}{18}$ inch and the length or vertical dimension must be exactly $3 \frac{5}{8}$ inches. For economy, 24ST bright-dipped aluminum is suggested for the construction of the mounting panels. The panels can be expendable, or reused, as desired.

Construction Details

Considerable time was spent in developing a bus-bar that would satisfactorily accommodate all soldered components. The final design was subjected to field tests over a period of months. Not one joint came unsoldered, nor did a single component vibrate loose. The busbars provide solid joints and yet permit much easier removal of components when necessary, since there are no wrap-around connections.

The ground bus-bar is $\underset{4}{\frac{1}{4}} \times \frac{1}{4} \times 18$ inch brass angle stock $\frac{1}{16}$ inch thick. The B+ bus-bar is $\ddagger \times 18$-inch brass strip $\frac{1}{16}$ inch thick. The notches in both bus-bars are milled with a 0.050 -inch blade to a depth of 0.15 inch on $\frac{1}{4}$-inch centers. The finished bus-bars are silver-plated.

Any metal which is a good conductor and which can be soldered is satisfactory as bus-bar material. A $3^{\frac{1}{2}-i n c h ~ t h i c k n e s s ~ m i g h t ~ b e ~ m o r e ~}$ desirable than the f-inch strips for bus-bars.

The chassis frame is made of $\frac{1}{2-}$ inch cadmium-plated steel angle iron $\frac{1}{16}$ inch thick, with $\frac{1}{8}$-inch thickness for the tapped-hole strip to insure that the tapped holes will remain satisfactory after repeated usage. Binder-head screws are used in these holes to secure the panels in position. Where circulating chassis currents are involved, the ground bus-bar should be riv-
eted or screwed to the chassis directly opposite each critical tube or part.

Insert Panels

Dimensions for some panel holes are not given, primarily because these are suggested types of panels which may or may not appeal to everyone. Blank insert panels can be made up to any desired width, to serve as spacers.

All rights to this versatile breadboard design have been assigned to the United States Government by the author, for the best interests of the electronic field.

Top view of breadboard on which complete four-tube circuit has been wired. Tubes are upside down underneath, and remain that way during testing. Plate-voltage bus-bar is at bottom, and ground bus-bar at top in this picture

Wide-Angle Scan

Microwave Schmidt antenna is two-layer pillbox (top). With top plate removed (bottom), rotating feed horn, cylindrical reflector and coupling slit are visible

Military and commercial radar systems frequently require that a volume in space be scanned by the radar beam. Scanning in some radar fire-control systems requires oscillation of the radar antenna array while in certain airnavigation approach-control systems, scanning is accomplished by mechanically switching the antenna feed system to produce dual narrow radar beams that alternately illuminate each side of the airport runway.

The problem of developing a microwave antenna system for more rapid scanning is under study at Naval Research Laboratory. One proposed solution is the organ-pipe radar scanner ${ }^{1}$. Another approach is the adaptation of wide-angle optical systems to microwave use. This paper describes some results obtained in adapting the Schmidt optical system, almost universally used in projection television receivers ${ }^{2}$, to microwave use. A method for improving off-axis per-
formance of Schmidt systems in general is also described.

The study has shown that the Schmidt system can be used at microwave frequencies to provide a good wide-angle scanning antenna. A 20-beamwidth scan has been obtained with the corrected Schmidt system without deterioration of beam characteristics. It is possible that this can be extended for systems with narrower beamwidths.

The Schmidt antenna was also found to be useful as a variable beamwidth antenna. Antenna beam-

FIG. 1-Cross section of Schmidt pillbox shows path of microwave energy from horn feed to output aperture

By H. N. CHAIT

Naval Research Laboratory
Washington, D. C.
width can be varied from three to at least 12 degrees simply by varying the feed-horn aperture size from about 0.9 to four inches. Sidelobe level was -20 db or lower at all times. Thus, a scanning system may be designed in which beamwidth can be varied over the scan sector.

The Schmidt microwave focusing system, shown in the photographs, consists of two parallel-plate regions separated by a common plate. The upper region contains the rotating feed horn and the lower region contains the correcting lens and output aperture.

In the lower photograph the top plate of the antenna has been removed to show the rotating feed horn. The long slit in the common plate is of proper dimensions ${ }^{8}$ to effect coupling between upper and lower regions. The radius of the circular reflector of this $3.2-\mathrm{cm}$ antenna is 18 inches providing an available aperture width of 36 inches.

A sectional view of the two-layer pillbox is shown in Fig. 1. The feedhorn aperture is located on the focal surface of the circular reflector and is pivoted about the center of curvature to produce the angular scan.

Energy leaving the feed horn propagates through the upper region of the pillbox until it strikes the circular reflector. The dimensions of the long slit in the common plate are so chosen that the energy passes from the upper to the lower region of the pillbox. Energy now propagates through the lower region of the pillbox and the correcting lens to free space. The correcting lens is made of polystyrene.

The lens corrects for aberrations introduced by the circular reflector

Radar Antenna

Microwave analog of Schmidt optical system permits 20 -beamwidth scan with side-lobes 20 db down from peak intensity. Feed horn pivots about center of curvature to illuminate cylindrical reflector while special polystyrene lens restores plane wave front

FIG. 2-Snell's Law construction illus. trates zero phase front of a reflector

An exact solution was obtained by employing the zero phase front method ${ }^{\circ}$. The zero phase front of a reflector is found in the following manner. It is first assumed that all rays obey Snell's Law, that is, the angle of incidence is equal to the angle of reflection, and the incident ray, the reflected ray and the normal to the surface lie in a plane.

Referring to Fig. 2, if a reflected ray such as $A B$ is extended backwards a distance $A C$ equal to the distance between the feed point O
and the point of reflection A, then the zero phase point of this ray is determined at C. The zero phase front is defined as the locus of the zero phase points for all rays striking the reflector.

Zero Phase Method

An exact solution may be found by use of the zero phase method. If the outer surface of the lens is made plane, the co-ordinates of the points on the inner surface of the lens are found to be
so that the outgoing wave can be considered plane. The parallel-plate mode utilized is the TEM mode although it is possible to design a similar pillbox using the $T E_{10}$ mode.

Equations of Lens Surface

The optical Schmidt system ${ }^{4}$ consists of a spherical mirror together with a thin, refractive lens located at the mirror's center of curvature. The focal surface is spherical in shape and concentric with the mirror. It is located approximately half-way between the mirror and the lens.

Optical workers have employed a variety of techniques ${ }^{5}$ to determine the contour of the aspheric Schmidt corrector. In most cases a series-type approximation was used to simplify the calculations. Since the work at NRL required investigation of a system with a small focal-length-to-aperture ratio, an exact rather than an approximate series-type solution was needed in calculating the correcting lens for the microwave analog of the Schmidt optical system.

FIG. 3-Diagram of Schmidt optical system defines parameters used in solving for co-ordinates of correcting lens surface by zero phase front method

Correcting lenses made from polystyrene dielectric. From top downwards these lenses have focal lengths of 9.0, 9.9 and 10.8 inches

FIG. 4-Variation of side-lobe level, beamwidth and relative gain with sanning for Schmidt antenna with 9.9-inch focal length lens
$\left.-c \sin \psi+n \sin \psi\left(2 \cos \theta-\int \cos 2 \theta\right)\right]$
where

```
\Delta=1-u\operatorname{cos}0
\psi=0-\phi
\phi = 部-1 j sin}0/
\rho}={1+\mp@subsup{f}{}{2}-2\int\operatorname{cos}0:
c=2-f
```

The above parameters are defined in Fig. 3, except for n which is the index of refraction of the material from which the lenses are fabricated.

The equations show that the lens contour is uniquely determined once the index of refraction n and the focal length f are chosen. The focal length is defined as the distance from the center of curvature of the reflector to the paraxial focus.

For any values of these parameters, the Schmidt provides perfect focusing when the beam is on axis. However, once the beam is moved off axis the system is no longer in perfect focus, but it was thought that the off-axis behavior of the Schmidt could be optimized by the proper choice of the parameters f and n.

Microwave Adaptation

For convenience it was decided to fix the index of fraction n and to investigate the properties of the Schmidt as its focal length f was varied. Polystyrene was chosen for the lenses because of its low loss, its availability in pieces of sufficient size and because its index of refraction ($n=1.59$) at microwave frequencies is close to that of glass at light frequencies.

The choice of f was more difficult. However, it was possible to examine the effect of this parameter on the system by employing standard techniques from optics.

As a result of previous theoretical study, focal lengths of $f=0.50$, 0.55 and 0.60 were chosen and three lenses were designed to fit the 36 -inch reflector. The three polystyrene lenses are shown in the photograph. Their actual focal lengths from top to bottom respectively are $9.0,9.9$ and 10.8 inches. These actual focal lengths correspond to the normalized focal lengths quoted above.

Far-field radiation patterns of
the two-layer pillbox alone were first taken to check its design. These measurements indicated that the pillbox was satisfactory and could be used in further testing of the Schmidt system.

Side-lobe level, rather than beamwidth and gain, was used as a measure of merit of the various patterns of the Schmidt because the side-lobe level is more sensitive to changes in the system than either the beamwidth or gain.

The off-axis performance of each of the three lenses was checked by taking far-field radiation patterns as various feed horns were used as primary radiators. It was found that all on-axis patterns were equally good, that is, the side lobe level was at least 20 decibels below peak intensity at all times. However as the beam was scanned off axis, rapid deterioration of the beam occurred with certain combinations of feed horns and lenses.

Off-Axis Behavior

It was found that the lens designed for the normalized $f=$ 0.55 had better off-axis characteristics, that is, lower side lobes and a narrower beamwidth, than the other two lenses when illuminated by the same feed horn. It was also found that the performance of this lens could be optimized by using a feed horn whose intensity is 10 db down from peak intensity at ± 40 degrees. If $f=0.55$ then 0 can be as great as ± 40 degrees without serious aberration.

Figure 4 shows the variation in side-lobe level, beamwidth, and gain (relative to the on-axis condition) as the beam is scanned. Notice that a total scan of 16 beamwidths can be obtained with a side-lobe level of 20 db or more below peak intensity. The deflection of the beam, as the feed horn was moved along the focal surface, agreed very closely with the angular deflection of the feed. In other words, the Schmidt has a beam factor of unity.

Off-Axis Correction

Ray tracing conducted on the Schmidt indicated that the physical aperture increased as the beam was scanned off axis. Referring to Fig. 5, it can be shown that the aperture $A A^{\prime}$ is equal to:

FIG. 5-Ray tracing with Schmidt system illustrates increase in physical aperture as beam is scanned off axis

FIG. 6-Off-axis ray tracing shows that normal Schmidt lens overcorrects edges of wave front

FIG. 7-Schmidt system showing profiles of both normal correcting lens and lens with off-axis correction

FIG. 8-Variation of side-lobe level, beamwidth and relative gain with Schmidt antenna using lens with off-axis correction

$$
\left.\begin{array}{rl}
A A^{\prime} & =2 \cos \theta \sin \beta \\
& +\cos (\theta-\beta) \tan \{\theta+(\alpha-\beta) \\
& -\cos (\theta+\beta) \tan \{\theta-(\alpha-\beta)
\end{array}\right\}
$$ where $\alpha=\sin ^{-1}\left[r_{0} \sin \phi\right]$ and $\beta=$ $\phi-\alpha$. The effective aperture is $A A^{\prime} \cos \theta$. Using a value of $\phi=60$ degrees (one-half the 10 db width of open waveguide), the value of $A A^{\prime} \cos \theta$ was calculated and found

to be constant within 2 percent from $\theta=0$ to $\theta=40$ degrees. Thus if the Schmidt provided perfect correction both the beamwidth and gain should remain constant over the entire field of view. Examination of Fig. 4 shows that this was not the case. The variation in gain and beamwidth is probably due to phase errors, which increase as the
ancle of scan increases.
Further off-axis ray tracing showed that the lens actually overcorrected the edges of the wave front as shown in Fig. 6, even though it did flatten the center.

An attempt was made to weaken the edges of the lens to provide better off-axis correction. A method ${ }^{3}$ was derived which would allow calculation of the lens profile to provide approximate correction both on axis and at two symmetrically chosen scan angles.

The method consists of designing the lens in three sections. The center section is contained between the zero slope points, the zero slope point being the point at which a tangent to the lens is parallel to the Y-axis. These points correspond to values of $\pm \theta_{0}$ where $\cos \theta_{0}=\frac{1}{2} f$.

The upper and lower sections lie outside the zero-slope points. For the center section, the lens was designed as though the horn was at $\theta=0$ degrees. For the upper and lower sections, the designs were based on horn positions of $\theta=-30$ deg. and +30 deg. respectively. A new lens was then constructed and tested in the same pillbox. Figure 7 shows the old and the new lenses. Figure 8 shows the variation in side-lobe level, beamwidth and gain as the beam is scanned. A 20 beamwidth scan is now possible with a side-lobe level of -20 db or lower with both constant beamwidth and fairly constant gain. This is quite an improvement over the old model which provided only a 16-beamwidth scan under the same restrictions.

The author wishes to thank M. L. Kales and K. S. Kelleher for their help and encouragement during the course of this development.

References

(1) K. S. Kelleher and H. H. Hibus. Organ-Pipe Radar Scanmer, Electhones, p126, May 1952.
(2) I. G. Maloff and D. W. Epstein, Reflective Optics in Projection Television, Electronics, p 98, Dec. 1944.
(3), Taggart and Fine, "Parallel-Plate Bends", MIT Rad. Lab. Report No. 760. (4) B. Schmidt, "Ein Lichstarkes Komarreies spiegelsy Nternwarte in Bergedoff 7, p 15, Bergedori', 1932.
(5) C. Caratheodory, "Elementare Theorie des Spiegelteleskops von B. Schmidt'", Hamburg Math. Einzelschriften, 28, Nov' 1940.
(ii) J. E. Eaton, Zero Phase Fronts in Microwave Optics, Trans. IRE, PGAP-1, p 38, Fel. 1952.
(7) H. N. Chait, "A Microwave Schmidt System," NRL Report 3989, May 14, 1952.

Effect of Radiation on Resonant Lines

Two-wire transmission-line calculations are made considerably more accurate by including effect of line radiation. Problems are solved using graphs of theoretically-derived equations that have been verified experimentally

By R. A. CHIPMAN
Electrical Engineering Department McGill University Montreal, Canada

Radiation resistance is usually neglected in making calculations for resonant parallel-conductor transmission lines but results obtained in this manner are liable to serious errors.

A means for taking radiation resistance (which may be appreciable, depending on frequency and other factors) into consideration in making optimum design calculations is suggested.

Resistance Calculation

Recent measurements in this laboratory ${ }^{1}$ have shown that the radiation resistance of certain resonant unshielded two-wire transmission line sections is given with good accuracy by the equation.

$$
\begin{equation*}
R_{r a d}=120 \pi^{2}(d / \lambda)^{2} \text { olhms } \tag{1}
\end{equation*}
$$

when d, the separation of the conductor centers, is small compared with the wavelength i and large compared with the conductor radius r. The measurements were made for line sections an odd number of half-wavelengths long with opencircuit termination at each end, and for sections an even number of halfwavelengths long with short-circuit termination at each end. There are now ${ }^{2}$ theoretical reasons for assuming that the same equation applies to all resonant sections of such transmission line with any combination of open-circuit and shortcircuit terminations. Typical examples are shown in Fig. 1.

The usual analysis of uniform transmission lines, neglecting radiation losses, leads to the well-known equation for the Q of any low-loss resonant section

$$
\begin{equation*}
Q=\frac{\beta}{2 \alpha} \tag{2}
\end{equation*}
$$

where α is the attenuation constant in nepers per meter, and β is the phase propagation constant in radians per meter. The approximations involved in deriving this equation are valid with useful accuracy for line sections whose total attenuation does not exceed a few tenths of 1 db .

The input impedance at any point

FIG. 1-Typical resonant transmissionline sections for which effect of radiation on the resonant properties is analyzed
of antiresonance of the same sections, (see Fig. 1) is given by

$$
\begin{equation*}
Z_{a r}=\frac{Z_{0}}{\alpha L_{0}}=\frac{4}{\pi n} Q Z_{\bullet} \text { ohms } \tag{3}
\end{equation*}
$$

where Z_{0} is the characteristic impedance of the line in ohms and $L_{\text {. }}$ $=n \lambda / 4$ is the line length for resonance.

In Eq. 2, β is directly proportional to frequency and is independent of conductor size, material or separation, at high frequencies. When dielectric losses are negligible, the attenuation constant α is given by

$$
\begin{equation*}
\alpha=\frac{R_{\mathrm{c}}}{2 Z_{o}} \text { nepers per meter } \tag{4}
\end{equation*}
$$

where R_{c} is the total conductor resistance in ohms per meter. The value of R_{o} increases as the square root of the frequency at high frequencies, while Z_{o} is independent of frequency.

For a line having two identical circular conductors of radius r meters, center separation d meters, and conductivity o ohms per meter
$Z_{o}=120 \cosh ^{-1}(d / 2 r)$

$$
\begin{equation*}
\left\{(d / 2 r)+\left[(d / 2 r)^{2}-1\right]^{3 / 3}\right\} \text { ohms } \tag{5}
\end{equation*}
$$

$\boldsymbol{R}_{c}=\left(\frac{16 f}{10^{7} \sigma}\right)^{\frac{1}{2}} \frac{1}{2 r}\left\{1-(2 r / d)^{2}\right\}^{-\frac{1}{2}}$
ohms per meter
where f is the frequency in cycles per second.

It follows from Eq. 2, 3 and 4 and the nature of the frequency

FIG. 2-Curves show resonant properties of two-wire line sections at 100 mc for $1 / 8$-inch copper conductors
variation of the parameters involved, that both the Q and the antiresonant input impedance $Z_{a r}$ should increase as the square root of the frequency for resonant line sections of constant electrical length (n constant).

When Eq. 2 is combined with Eq. 5 and 6 it is easily shown that the Q of any resonant section is a maximum at all frequencies for fixed conductor separation I, when the conductor radius is given by $d / 2 r$ $=2.275$, but that for fixed conductor radius the Q increases indefinitely with conductor separation.

Similarly it is found on combining Eq. 3 with Eq. 5 and 6 that, for fixed conductor separation the antiresonant impedance of any section is a maximum at all frequencies when the conductor radius is given by $d / 2 r=4.43$, and that again for fixed conductor radius the antiresonant impedance increases indefinitely with conductor separation.

The calculations in the following sections show that when account is taken of radiation resistance all the conclusions of the last three paragraphs are either totally wrong or seriously in error for practical resonant sections of unshielded two-wire line at high frequencies.

Including $\boldsymbol{R}_{r a d}$

Combining Eq. 2 and 4, and using $\beta=2 \pi / \lambda$. and $L_{\omega}=n \lambda / 4$, leads to

FIG. 3-Optimum separation of conductors for optimum Q expressed in conductor diameters

$$
\begin{equation*}
Q=\frac{\frac{1}{4} \pi n Z_{o}}{\frac{1}{\frac{1}{2} R_{c} L_{v}}} \tag{7}
\end{equation*}
$$

In this equation the denominator is one-half the total conductor resistance of a resonant line section of length n quarter-wavelengths.

Because of the approximately sinusoidal distribution of current along a high-Q resonant line section, the total distributed resistance $R_{c} L_{o}$ introduces only one-half as much loss as the same amount of resistance located at a point of maximum current. By definition, a radiation resistance is referred to such a point of maximum current.

It is evident, therefore, that the Q of a resonant line section whose total radiation resistance is $R_{r a d}$ ohms will be given by

$$
\begin{equation*}
Q=\frac{\frac{1}{4} \pi n Z_{o}}{\frac{1}{2} L_{o} R_{c}+R_{r a d}} \tag{8}
\end{equation*}
$$

a result which is confirmed by more rigorous analysis.

When the two conductors of a line are separated by twenty or more diameters, the line currents are uniformly distributed around the circumference of each. For decreasing separation the currents become more and more concentrated on the adjacent sides of the conductors. This is the proximity effect, which results at high frequencies in the characteristic impedance of a two-wire line approaching zero and the distributed

FIG. 4-Curves show Q values of res-onant-line sections at optimum conducfor separations given in Fig. 3
conductor resistance approaching infinity as the two line conductors approach contact. Equations 5 and 6 include this proximity effect for Z_{o} and R_{c} respectively.

It is to be expected that the conductor separation d occurring in Eq. 1 for radiation resistance is physically of the nature of a separation of effective current centers of the currents in the twoline conductors. It should therefore approach d for large values of $d / 2 r$ and should approach zero as the conductors approach contact and $d / 2 r$ approaches unity.

Since no analysis of this aspect of the problem seems ever to have been made, it will be postulated here for purposes of calculation that the effective separation of the conductor current centers for radiation resistance purposes, as modified by proximity effect, is given by

$$
\begin{equation*}
d_{e f f}=d\left[1-(2 r / d)^{2}\right]^{1 / 5} \tag{9}
\end{equation*}
$$

an expression whose proximity effect term is similar to that in Eq. 5 and 6.

Substituting Eq. 5, 6 and 9 into Eq. 8 and using $L_{o}=n \lambda / 4$ and $\lambda=300 / f_{m c}$, where $f_{m c}$ is the frequency in megacycles, leads to

$$
\begin{align*}
Q & =\frac{\left\{\frac{22}{\sigma} \bar{\sigma}\right\}^{3 / 1} \pi n f_{m c}^{3 / 2}-1}{2 r}\left\{1-(2 r / d)^{2}\right\}^{-\frac{1}{2}} \\
& +\frac{\pi^{2}}{750} f_{\mathrm{mc}}{ }^{2}(2 r)^{2}\left\{(d / 2 r)^{2}-1\right\} \tag{10}
\end{align*}
$$

which is the working equation from

Which the Q of any resonant section of line can be calculated.

The corresponding equation for antiresonant input impedance can be written directly using Eq. 3.

It is not possible to draw significant conclusions from Eq. 10 simply by inspection, except to say that Q is no longer independent of n or proportional to the square root of the frequency, as was the case when radiation losses were neglected. The full implications of the equation can be found only by direct numerical solution.

Graphical Solution

Figure 2A shows the variation with $d / 2 r$, on varying d, of the Q of quarter-wavelength, half-wavelength, and one-wavelength resonant line sections having copper conductors of $\frac{1}{16}$-in. radius, at a frequency of 100 mc , as calculated from Eq. 10. Because of the radiation losses, the Q does not increase indefinitely with d, but has a maximum value at a relatively small value of d, about $1 \frac{1}{2}$ inches for the quarter-wavelength section. The optimum conductor separation is somewhat greater for longer resonant sections, being almost three inches for a full wavelength section.

Figure 2B shows similarly the variation with $d / 2 r$, on varying d, of the antiresonant input impedance for line sections of the same lengths at the same frequency. The maxima in these curves occur at somewhat higher values of $d / 2 r$ than the maxima in the Q curves.

Figure 2C shows, for the same quarter-wavelength line section only, the variation with $d / 2 r$ of the two effective resistance components of the section, being the two terms of the denominator of Eq. 10. The increase of the conductor resistance term with proximity effect at low values of $d / 2 r$ and the increase of radiation resistance at high values are evident. The term $\cosh ^{-1} d / 2 r$ in the numerator of Eq. 10 is mainly responsible for the maximum values of Q and $Z_{n r}$ occurring at considerably higher values of $d / 2 r$ than the value that results in minimum total effective resistance for the line section.

It should be noted that the opti-
mum values of $d / 2 r$ in Fig. 2 A and 2 B are not to be compared with the values of 2.275 and 4.43 respectively given above. These latter values are for the case where the line separation is fixed and the conductor radius is varied.

The value of $d / 2 r$ to give maximum Q has been calculated for quarter - wavelength, half - wavelength and one-wavelength line sections of copper conductors of $\frac{1}{32}$, $\frac{1}{16}$, $\frac{1}{8}$ and $\frac{1}{4}$-in. radius at several frequencies between 10 and 10,000 mc. The results are shown in Fig. 3.

The optimum $d / 2 r$ values were obtained either by plotting curves similar to Fig. 2A or by solving the equation obtained on differentiating Eq. 10 with respect to $d / 2 r$ and equating to zero, the two pro-

FIG. 5-Q curves for quarter-wavelength resonant sections of Fig. 4 are presented together for comparison
cedures being about equally tedious.
The most striking feature of these curves is the indication that, especially for the larger conductor radii, the optimum value of conductor spacing is very small. For example, for a quarter-wavelength section having conductors of $\frac{1}{4}-\mathrm{in}$. radius, the optimum value of $d / 2 r$ at 100 mc is about 1.8 ; at 300 mc the optimum value is 1.17 , and at $1,000 \mathrm{mc}$ it is 1.03 . These values correspond to actual spacings between the adjacent conductor surfaces of about $\frac{15}{16}$, $\frac{3}{33}$ and $\frac{1}{16}-\mathrm{in}$. respectively.

Q Values

The Q values at the optimum values of $d / 2 r$ for the line sections of Fig. 3 are shown in Fig. 4. Up to a certain frequency the Q values increase with frequency though not as rapidly as the square root of the frequency for any of the curves
shown. At higher frequencies they drop off fairly sharply. Longer line sections at a given frequency have higher Q values and their maximum Q occurs at higher frequency.

An interesting feature is that at frequencies above about 300 mc sections made from conductors of ${ }_{32}^{12}-$ in. radius can have higher Q values than sections made from conductors of $\frac{1}{4}-\mathrm{in}$. radius. This is shown more clearly in Fig. 5, where the Q curves for each of the quarter-wavelength lines of Fig. 4 are plotted together. This indicates also that at 300 mc , for example, the optimum quarter-wavelength section using conductors of $\frac{1}{16}-\mathrm{in}$. radius has a higher Q value than the optimum sections with either larger or smaller conductors.

It follows that at any frequency there is an optimum conductor size for sections of any particular electrical length and that the section using this conductor size and the optimum value of $d / 2 r$ will have the absolute maximum Q value obtainable at that frequency and line length.

Figure 5 shows that at 300 mc a quarter-wavelength section made of copper conductors of $\frac{1}{15}$-in. radius with $d / 2 r=2.7$ (from Fig. 3) has a Q value of about 850 , and no higher Q value can be obtained for any quarter-wavelength line at this frequency. The center separation of the conductors for this section is slightly less than $\frac{3}{3} \mathrm{in}$.

If similar curves for larger and smaller conductor radii were added to Fig. 5, the envelope of the resulting set would give the maximum possible Q value obtainable at each frequency.

Curves similar to those of Fig. 3,4 and 5 could also be calculated for line sections of maximum antiresonant input impedance.

A grant-in-aid from the National Research Council of Canada, and the assistance of Judith M. Veith on the calculations involved in this work are gratefully acknowledged.

References

(1) R. A. Chipman, E. F. Carr, N. A. Hoy, and M. Yurko, The Radiation Resistance of Resonant Transinission 1 ines, (2) Storer and King, Radiation Resist (2) Storer and King, Radiation Resist$p 1.408$, Nov. 1951.

Bipolar Logarithmic

Simple circuit using two type 9004 biased diodes back to back measures d-c corona signals of both polarities over entire range from milliamperes to millimicroamperes. Used in studying earth's electric field during snowstorms and thunderstorms

Amplifier chassis, with power supply tubes on top; 9004 and 954 tubes are under the chassis

IN A stuDy of the earth's electric field during snowstorms and thunderstorms, it was necessary to measure the corona current to a corona point exposed 54 feet above the ground. The current range to be covered was approximately from 10^{-7} ampere to 10^{-3} ampere with either polarity. Because of the the wide range of current to be measured, a logarithmic device was needed.

The logarithmic relationship between retarding voltage and current in a temperature-limited diode having a pure metal cathode has been known ${ }^{1}$ at least since 1914 , and various experimenters have constructed logarithmic amplifiers using this principle or variations of $i t^{2-6}$. The theory of such tubes has been discussed in several places ${ }^{7-\varphi}$. Ordinarily, only a single polarity of current has been considered during this early research.

A particularly interesting reports ${ }^{5}$ indicates that, under proper conditions, for one polarity the 9004 acorn diode has a logarithmic range of 10^{9}. For the present application, however, it was necessary to deal with both polarities. After trying several other circuits with unsatisfactory results, the one given in detail in Fig. 1 was constructed. As shown in Fig. 2, it consists essentially of two biased diodes back to back, shunted by a resistor R, the output of which is fed to a simple d-c amplifier which in turn feeds a 0.5 -ma zero-center Esterline-Angus recorder.

In the case where the anode of a diode is biased negatively relative to the cathode (even when the cathode is not a pure metal), the relationship between diode current i and retarding potential $-V$ may be given by

$$
i=i_{0}^{-H / k T}
$$

where e is the electron charge, k is Boltzmann's constant, T is the absolute temperature of the cathode and i_{o} is a constant depending upon geometry and other factors.

In practice, this equation becomes invalid at various parts of the range because of such effects as positive ion current in the tube, shunting leakage or circuit resistance, currents to grids of following stages, saturation of the diode leading to a space charge situation (at the high end of the current range), photoelectric emission from the anode or grid, rectification from a-c pickup in high-impedance leads and even heater leakage or rectification. In fact, in the bipolar case where two diodes are required, it is virtually impossible to operate the circuit without a separate filament transformer for the heater of the diode with the high-impedance cathode.

For the temperatures of typical cathodes, the quantity $e / k T$ corresponds to from 4 to 5 decades per volt. In Fig. 3 the output voltage of the two diodes back to back is sketched in qualitative fashion relative to the logarithm of the current. Naturally no logarithmic function groes through zero. Whether or not there is a shunting resistor, there must be a linear region near zero so that the actual relationship is of the form of a hyperbolic sine (2 $\sinh x=e^{x}-e^{-x}$, which is a function that is linear near zero and logarithmic far from zero).

Practical Circuit

The location of the region of transition from a logarithmic to a linear relationship may be changed by adjusting the shunting resistor R or by adjusting the biases applied to the two diodes. When the biases have fairly large values, the location of the linear range is determined by the shunting resistance R.

Corona-Current Amplifier

By SEVILLE GHAPMAN and LEONARD BOGDAN

Cornell Aeronantical Laboratory Buffalo. N. Y.

Figure 3 has been drawn for this case.

The circuit as constructed actually had a logarithmic range from 3×10^{-8} to 3×10^{-4} amperes for both polarities. Unquestionably the ranges could have been extended to smaller currents, but since the smallest currents which could be measured already were less than required for this application, further development was not undertaken. The Victoreen 5800/VX41A has also been operated between 3×10^{-14} and 3×10^{-8} amperes as a logarithmic diode without reaching the ends of the range, and the Raytheon CK5886/CK571 has been worked over 7 decades.

The biases were adjusted as shown in Fig. 1 to yield the calibration given in Fig. 4. Changing the biases changes the circulating current through the diodes. On the assumption that the cathode temperature is proper, the relationship between current i and output voltage V is given as indicated in Fig. 3 as

$$
i=\frac{V}{R}+i_{o} 10^{r^{5} / 0.0 .25}\left(10^{V^{r} / 0.25}-10^{-V / / 0.25}\right)
$$

where i_{o} is a constant and V_{B} is the bias voltage.

FIG. 2-Simplified circuit of bipolar logarithmic amplifier

FIG. 1-Complete signal circuit of bipolar logarithmic amplifier. Power supply, not shown, uses 5Y3GT full-wave rectifier with VR150 across ungrounded filter to give 145 volts. Circuit ground divides this as indicated by voltage values. Separate filament transformer is used for the 9004 tubes

The practical amplifier shown in Fig. 1 has several built-in calibration points. The meter current is about 800 microamperes per volt input, corresponding to about 200 microamperes per decade of corona current. The equipment has been in service for about 15 months, and providing the tubes are replaced after their rated life, it behaves very well.

References

(1) W. Schottky, Ann. d. Physik, 44, p 1,011, 1914.

FIG. 3-Variation of output voltage with \log of input current
(2) John P. Taylor. D-C Amplifier for Logarithmic Recording, Electronics, p 24, March 1937
(3) R. E. Meagher and E. P. Bentley, Rev Sci Lustr, 10, p 336, 1939.
(4) W. G. James, Logarithms in Instrumentation, Oak Ridge Atational Laboratory Report 413, Sept. 26, 1949; refers to type 9004 tubes.
(5) T. S. Gray and H. B. Frey, Acorn Diode Has Logarithmic Range of $1^{0}{ }^{9}$, Rev. Sci Instr, 22, p 117, 1951; uses type 9004 . (G) W. F. Goodyear, Logarithmic Counting Rate Meter, Electronics, p 208, July 1951 ; uses type' 6 AL 5 .
(7) W. R. Ferris, Some Characteristics of Diodes with Oxide-Coated Cathodes, RCA Review, p 134, March 1949
(8) M. A. H. El-Said, Novel Multiplying Circuits with Application to Electronic Waltmeters, Proc IRE, 37, p 1,003, 1949. (9) H. B. Michaelson, Variations of Grid. Contact Potential and Associated Grid Currents, Jrl Fr 1ust, 249, p 455, 1950.

FIG. 4-Calibration curve for measuring circuit of Fig. 1

Test Scope Checks

Special design features of a new broad-band oscilloscope include sweep-delay circuit, sweep magnifier, time markers for sync pulses and vertical-amplifier calibrator. Individual lines or sync pulses of standard tv signal can be examined and identified

TIelevision broadcast equipment frequently needs maintenance or adjustment that can best be accomplished with a cathode-ray oscilloscope. Station equipment to be tested includes synchronizing generators and video amplifiers as well as camera, monitor and switching equipment. Since any portion of the transmitted video signal must be presented accurately and in good detail, the test oscilloscope must have high input resistance, low input capacitance, good transient response and broad bandwidth. The instrument to be described contains a number of features designed for the purpose of tv testing, including a 10-megacycle bandwidth, an input impedance of one megohm shunted by $40 \mu \mu \mathrm{f}$, and a test probe (with ten times attenuation) that provides 10 megohms and by $14 \mu \mu$.

The sweep circuit of the oscil-

FIG. 1-Block diagram of the sweepdelay circuit
loscope has a range from 0.01 sec per cm to $0.1 \mu \mathrm{sec}$ per cm and is a hard-tube, triggered type. Composite fields or complete frames may be observed by triggering the sweep from vertical sync pulses and selecting a slow-sweep rate that presents the desired amount of information during each sweep.

When individual lines or sync pulses are to be observed throughout the picture, the sweep must be set fast enough to spread out the desired information. It becomes
necessary to delay the start of the sweep until the picture has progressed to the desired portion and then trigger the sweep with one of the horizontal-sync pulses.

The sweep delay introduced is adjustable through about 1.5 fields by means of a sweep-delay control. The sweep-delay circuit operates at the frame rate of 30 cps , so that individual lines are observed from only one of the interlaced fields at any time. A field-shift switch allows the operator to change to the other interlaced field. A block diagram of the sweep-delay circuit is shown in Fig. 1.

Sweep Delay

A trigger delay phantastron V, with 25 -millisecond rundown time will accept alternate vertical-sync pulses from the sync separator. The field-shift switch, normally closed

FIG. 2-Circuit of the trigger-delay and field-shift elements of the oscilloscope

TV Broadcasts

By CLIFFORDH.MOULTON

Tektromix. Ine.

Portland, Oregon

(Fig. 2), provides a unique means of forcing the phantastron to skip one extra trigger and hence change to the other field.

Reversed Phantastron

When the pushbutton is depressed R_{55} charges C_{12} so that point A approaches +225 volts. When the switch is released, point A is again grounded and C_{12} instantaneously forces point $B 225$ volts negative with respect to its normal voltage. This actually reverses the phantastron and forces it to run up for a short time instead of down. Point B returns to normal voltage approximately according to the time constant $R_{x s} C_{12}$, interrupting the phantastron only long enough to skip one trigger. The comparator V_{5} will always be triggered by one of the differentiated horizontal-sync pulses from the sync separator that are superimposed on the phantastron waveform.

Sweep Magnifier

It is frequently desirable to look carefully at a small detail on the screen without upsetting the sweepcircuit settings. A magnifier principle has been incorporated in this oscilloscope that gives either three or ten times magnification of any detail that has been positioned to the center of the screen by a threeturn horizontal-position control. With magnification on, the operator may explore the entire trace by slowly turning this control. If a detail is located with the magnifier on, the position of the detail with respect to the entire sweep may be determined by turning off the magnifier and observing which part of the trace is centered on the screen.

Underchassis view of the television oscilloscope looking towards front panel (left)

Blower (right) provides cooling for greater stability and longer component life

The principle of operation of the magnifier can be explained with the block diagram of Fig. 3. Normally the high-gain amplifier is held to unity gain by feedback networks $R_{1} C_{1}$ and $R_{z} C_{y}$. Three and ten-times magnification are obtained by switching R_{z} and C_{2} to allow corresponding voltage gains.

Time markers are inserted as intensification pips in the crt beam at time intervals of $1 \mu \mathrm{sec}, 0.1 \mu \mathrm{sec}$, 0.05 usec or 200 pips per television line.

These markers provide a means of accurately timing the sync pulses of a composite signal. A hori-zontal-sync pulse with markers is

FIG. 3-Elements of the sweep-magnifier feature

FIG. 4-Horizontal sync pulse with markers supplied from scope
shown in Fig. 4 above.
The marker oscillator is an elec-tron-coupled Colpitts type with split capacitance from grid to cathode to ground. Cathode follower $V_{1 s}$ of Fig. 5 acts as a low resistance, damping the oscillator tuned circuit and preventing oscillations except during the sweep, at which time $V_{1 B}$ is gated off. Magnetic energy stored in the oscillator coil by cathode current from $V_{1 B}$ becomes oscillating energy when the tube is gated off at the start of a sweep.

Tube V_{z} provides positive feedback that maintains the oscillations until $V_{1 B}$ is gated on again at the end of the sweep. The triode section $V_{1 s}$ amplifies the oscillator signal and provides sharp differentiated pulses to the grid of output amplifier V_{3}.

Pips spaced 200 per television line ($0.005 H$, where H is $62.5 \mu \mathrm{sec}$) are useful for adjusting both color and black-and-white equipment.

Timing of sync pulses, specified by the FCC in terms of H, can be measured directly by counting the number of $0.005 H$ pips between specified points of the waveforms.

An improved circuit technique is employed in the crt unblanking circuit. With the new technique a given inteusity control setting will result in the same crt beam current at any sweep speed or duty cycle. A separate floating high-voltage rectifier supplies a direct voltage coupling from the unblanking generator to the crt grid. The floating power supply is a radio-frequency type operating at about 25 kilocycles, and is part of the regular crt high-voltage supply.

A vertical-amplifier calibrator allows the operator to compare an observed signal amplitude to an internal square wave having an amplitude known accurately within 3 percent. The square wave has adjustable duty cycle from 1 percent to 99 percent allowing the duty cycle of the calibrator to be matched to the duty cycle of the observed signal. This adjustment minimizes error in amplitude comparison of an a-c coupled signal resulting from change in amplifier operating bias with the duty cycle of the signal.

A 60-cycle internal sweep with phasing through approximately 150 deg is provided to facilitate bandwidth measurements with a video sweep generator.

Positive and negative gate waveforms produced simultaneously with each sweep are provided so that if desired either intensification or blanking may be produced in a picture monitor to indicate the portion of the picture being observed by the oscilloscope.

FIG. 5—Time-mark generator for providing pips shown in Fig. 4

From the CINCH organization has come many "firsts" in electronic components. Added to these CINCH engineers have developed numbers of metal plastic assemblies for specific needs of set manufacturers and communication systems. Components that by satisfactory performance became STANDARD. The number of CINCH parts in the leading TV and Radio sets, and in communication systems testify to their quality ... to the reputation of the maker. CONSULT CINCH!

Cinch Manufacturing Corporation

Cinch electronic com ponents are available at leading jobberseverywhere

Chart for TE. Mode

 Piston AttenuatorNomograph speeds finding attenuation constant for cylindrical waveguide operated in TE_{11} mode below cutoff. May be used to design piston attenuators with minimum frequency dependence over given range

Piston attenuators are useful because of their linear decibel scale and potentially high accuracy. ${ }^{1}$ However, their attenuation constant is a slowly changing function of frequency due to the proximity of operating frequency to cutoff frequency and the frequency dependence of skin-depth.

The nomograph expedites determination of the attenuation constant, A, for the TE_{12} mode in cylindrical waveguide. Effect of skin-depth is negligible for the TM_{01} mode and nomographs

By CHARLES M. ALLRED
National Bureat of Standorols Washingtom, D. (.

for this mode and the TE_{11} mode for the case of infinite conductivity are available. ${ }^{2}$

The nomograph may be used to design attenuators having minimum frequency dependence over a given range and to determine that dependence after fabrication. In the latter case, consider radius $a=2 \mathrm{~cm}$, conductivity $\sigma=1.5 \times 10^{7}$ mhos per meter, and the frequency f
$=1 \times 10^{a}$ cycles per second; then $a_{\sigma}=3 \times 10^{5}$ mhos, $a f=$ 2×10^{4} meters per second and extension to the A scale of a straight line through these points gives 15.94 db per radius for A. In attenuator design, choose values of a and σ to place the operating point at the right of the $a \sigma$ scale and about the knee of the αf scale.

References

(1) R. E. Grantham and J. J. Freeman, A Standard of Attenuation for Microwave Measurements, Trans AIEE, 67, D $535,1948$.
(2) R. E. Lafferty, Piston Attenuator Chart, Erecthonics, p 132 Feb.

This TE11 mode piston attenuator chart shows dependence of attenuation constant on frequency, conductivity and radius in cylindrical waveguide

To Reduce Your Contact Assembly Costs

Use the same specialized experience that solved this problem...

This tungsten electrode

requires grinding to a tolerance of $\pm .00025$ of an inch to insure absolute concentricity. This braze \longrightarrow must withstand the centrifugal forces of the
 ance of $\pm .00025$ of an inch. This angle between the chuck and electrode is held to within ± 6 minutes of a degree.

Originally Mallory produced only the tungsten electrode for this assembly. Another firm manufactured the chuck, and a third did the brazing and chrome plating... a complicated, costly process. Now, Mallory produces the entire assembly. The customer's problems of quality control, sub-contracting and divided responsibility are entirely eliminated... and his costs are lower.
This is just one more example of how many manufacturers have improved the performance and lowered the cost of contact assemblies by having Mallory do the entire job. No matter what your requirements are, Mallory's specialized production facilities... experience in designing and mass-producing over 5000 different types of contacts . . . can turn out precision contact assemblies for you at lower cost.

Expect more... Get more from $\mathrm{MALLOR}^{\text {Amman }}$

In Canada, mate and sold by Johnson Mathey and Mallory, Led.. 110 Industry St., Toronto I., Ontari,
Electrical Contacts and Contact Assemblies

ELECTRONS AT WORK

Including INDUSTRIALCONTROL

Edited by ALEXANDER A. McKENZIE

Ultrasonic Thickness Measurement. 144 Germans Develop Electronic Robot. . . . 144
Corrosion Detection by Rotogeneration, . 146
High Temperature Carbon-Film
Resistors
Signal Corps Buses Measure Noise.... 148
An Electronic Telephone. 154
Thermal Relays Control Heater Voltage. 166
featured in this issue:Production Techniques. . . 226
New Products 264
Plants and People 334
New Books 346
Backtalk 358

Ulirasonic Thickness Measurement

Because thickness is inversely proportional to resonant frequency, the latter can be used for thickness determinations. The Magnaflux Co. has used this principle in a measuring instrument that gives direct readings on the face of a calibrated oscilloscope.

In making the measurement a quartz-crystal probe, driven by a continuously varying ultrasonic wave, is held against the material. When the varying signal reaches the resonant frequency of the material the resonance causes a reinforcement of the crystal vibration, changing the loading on the oscillator producing the ultrasonic wave. By placing the oscillator signal on the vertical plates of an oscilloscope and synchronizing the horizontal sweep with variation in crystal frequency, a standing wave is produced with a pip at the frequency where resonance occurs. To allow direct determination, a screen calibrating thickness to frequency is placed over the tube.

Variation of the ultrasonic frequency is produced by a motordriven sweep capacitor in the oscillator circuit. A cam arrangement triggers the horizontal sweep at the beginning of each frequency cycle. Five separate ranges allow a total frequency coverage from 8.8 to 0.23 mc , suitable for measuring steel thicknesses from 0.15 to 0.500 in. with the fundamental. Using harmonic readings the range can
be extended to about 5.0 in. ${ }^{1}$ For materials other than steel, measurements can be made by using the ratio of the speed of sound in the material to the speed in steel. In production use, the oscilloscope can be calibrated for the material being measured.

The crystal used to translate the electrical output of the oscillator into mechanical vibrations is an

X-cut type radiating the ultrasonic waves perpendicular to the face of the crystal. For most surfaces, a flat crystal is used but on curved surfaces under six or eight in. in diameter a curved crystal gives a more pronounced indication on the oscilloscope screen. Five separate crystals driven over a two-to-one frequency range cover the entire range of the instrument. The thick-

GERMANS DEVELOP ELECTRONIC ROBOT

Mr. 'Sabor IV" the 500 -pound robot shown in the photograph, has its movements directed by a built-in short-wave radio receiver. Cost of the metal giant was $\$ 7,140$

UNIVERTERS

... for extending the coverage of B.R.C. Signal Generators

UNIVERTER - Type 207-A

A frequency converter for use with FM-AM Signal Generators 202-B and 202-C. Output frequency range of Signal Gənerators is 54 to 216 me. Additional output when using 207-A:

Frequency Range: 0.1 to $\mathbf{5 5} \mathbf{m e}$.
Output: 0.1 to 100,000 microvalts at X1 jack, approximutely 7.5 limes these values at high output [eck.
Frequency Increment Dial: $=300 \mathrm{kc}$ in 5 kc increments.
Modulation: FM and AM controlled by Signal Geierator.
Price: $\$ 345.00$ fob Factory.

UNIVERTER - Type 207-B

A frequency converter for use with FM-AM Signal Generator 202-D. The 202-D is applicable to telerretering problems over frequency rarge of $175-250 \mathrm{mc}$. A1ditional output when using 207-B:

```
Frequency Range: 0.1 to 55 mc.
Ouput: 0.1 to 1 J0,000 riagovalts \(\sigma\) K \(\mathbf{X}\) jack end approximately 7.5 times these velues al high outpul iack.
Frequency Incrament Diak \(=300 \mathrm{hc}\) in 5 kc incraments.
N.edulation: FM and AM costrolled by Signal Ganerator.
Fi:s: \(\$ 345.00\) feb Factory.
```


UNIVERTER - Type 207-C

A frequency converter for use with FM Signal Generator 206-A. The 206-A is applicable to mobile communications protlems ove a frequency range of 146 to 176 mc . Additicnal output when using 207-C:

Frequency Range: 0.1 to 50 mc .
Output: 0.1 to 100,000 microvalts at $\times 1$ jack and approximately 7.5 timas these values at high output jaci.
Modulation: FM controlled by Signal Generetor.
Price: $\$ 345.00$ fob Factory.
Write for complate infermotion.

FIG. 1-Thickness-measuring instrument being used with special jig-holder device to determine cylinder wall thickness in automotive engine
ness measurements in each range are also in a two-to-one relationship, for example from 0.080 to 0.160 in.

Since the readings depend on the loading of the oscillator circuit by the material under test, it is essential that the circuit be sensitive to loading. For this reason the \mathbf{Q} of the circuit must be as high as possible. Low-loss materials and high-Q inductances are used as well as low-loss coaxial cable for the connection to the crystal probe.
The high sensitivity of the oscillator circuit presented difficulties in the design of the high-speed

FIG. 2-Block diagram of ultrasonic thickness measurer. One vertical plate of oscilloscope (not shown) is grounded
rotating sweep capacitor. Electrical noise was caused by the contacts and ball-bearing mountings of the rotor. The most efficient contact was found to be a silver-graphite brush riding on a silver pad at the end of the rotor shaft. Cone-type bearings that serve as both sleeve and thrust type bearings eliminated the mounting noise.

In addition to thickness measure-
ments, the ultrasonic test unit can be used to test the bonding of metals. Poor bonding will produce a single peak at the point on the screen corresponding to the thickness of only one of the pieces. Good bonding will show a pip at the thickness of both pieces.

References

(1) C. B. Betz, Thickness Measure ment by Ultrasonic Frequencies, Electrical Manufacturing, p 86, Aug. 1950.

Silver-plated steel disk specimen (\mathbf{A}) has twenty equally spaced lines of steel. Waveform produced by corrosive activity of dilute hydrochloric acid solution is shown in (B). Aluminum-copper alloy specimen in a sodium chloride-hydrogen peroxide solution produced waveform (C). Effect of adding sodium chromate rust inhibitor to this combination is shown in (D)

Corrosion Detection By Rotogeneration

Corrosion, the oxidation of a metal in contact with a solution, causes a minute flow of current in the corroding solution at the point under attack. Since these currents are quantitatively related to the corrosive activity they can be used to observe the corrosion process. In the past, d-c instruments have been limited by the small potentials to be measured, difficulty of obtaining high gain from d-c amplifiers and the interference of the general instability of the corroding system.

To eliminate these difficulties, the Armour Research Foundation has developed a "rotogenerative" apparatus that uses the d-c corrosion currents to generate a-c potentials. The device, shown in Fig. 1, is described in the September 1952 issue of The Frontier. A motor is used to rotate the specimen under test, and corrosion currents rotating with the specimen produce a varying potential as they pass the stationary electrode. This potential may be regarded as a complex a-c

From the world's largest manufacturer of precision potentiometers

advanced engineering! volume production!

HELIPOT is the organization that originated the helical potentiometer-the device that brought to electronic engineering new horizons of precise control by its greater resolution, higher linearity, mechanical precision, and broad range of resistance values. Helipots policy of constantly working to anticipate the needs of the industry has led to steady advancement in the basic multi-turn principle-and today, Helipots are available in the industry's widest selection of ranges and designs to meet varying requirements.

HELIPOT offers you

Advanced Engineering. Through its years of leadership Helipot has built an organization unequalled in the in-dustry-with trained engineers, specially-designed equipment, overall facilities to solve tough potentiometer problems.
Volume Froduction of Special Designs. Helipot not only welcomes tough potentiometer problems. but also has expanded facilities to mass-produce special designs to rigid specifications-at econemical cest!

Versatile Basic Designs. Most of the basic units shown below can be readily adapted to special requirementsganged assemblies, servo mountings, single or double shaft extensions, taps spot-welded to a sinele turn of winding at virtually any desired point. and many other individualized features ti) meet your particular needs!

Illustrated below are typical basic models of Multi-Turn Helipors ...

MODEL A:

A 10 -turn unit, approximately $13 / 4^{\prime \prime}$ diameter with 12 to 14 times the resolution of singlefurn units of same diameter. Very versatilelow in price-wide range of applications.*

MODEL C:

Similar to Madel A, but 3 turns of resistance winding instead of 10 .*

MODELS B, D, \& E:
Larger-diameter (3 5/16") designs. B has 15 turns-D 25 turns-E, 40 turns, for applicatians requiring extreme ranges of adjustment and highest possible resolution.*

ultra-precision

MODELS AN, BN, \& CN:

Similar to Models A, B \& C in size and performance buil feature precision ball-bearings and extra-close tolerances throughout. Have approximately twice the linearity accurcey of equivalent standard Helipotsare ideal servo units.*

miniature

MODELS AJ, AJS, AJSP:
Tiny multi-furn Helipots the diameter of a penny, weight 1 oz . All have $18.5^{\prime \prime}$ slide wire for high resoliution $11 / 6550-50 \mathrm{~K}$ unit). AJ has threaded bushings, sleeve bearings... AJS, servo mountings, sleeve bearings... AJSP, servo mountings, ball bearings. Many other features.*

FIG. 1-Diagram of the "rotogenerative" apparatus for study of corrosion
waveform that can be amplified for observation on an oscilloscope.

A sweep generator driven by the same motor maintains the horizontal sweep of the oscilloscope at the same rate. In this manner, a standing wave is produced on the screen that can be correlated with the position of corrosive activity around the specimen. Changes in overall corrosion occur at a relatively slow rate and will not be amplified by the a-c instruments.

An alternative method of oscilloscope presentation uses the amplified corrosive-current signals to modulate the oscilloscope traces.
The resulting trace forms a picture of the surface of the specimen with the light and dark areas corresponding to the position and intensity of corrosive activity.

High-Temperature Carbon-Film Resistors

High-stability fixed-composition resistors capable of high-temperature operation result when a film of carbon is deposited on a ceramic base. The film is deposited when hydrocarbon vapor is decomposed by heat. This chemical process is known as pyrolysis and development of these deposited carbon-film resistors is being carried on at Battelle Memorial Institute under Air Force auspices. The resistors under development will have ratings of to two watts and will operate at ambient temperatures of 200 C without deterioration or change in resistance. Figure 1A illustrates stability of carbon-film resistors at high ambient temperatures. Figure 1 B shows results when ambient temperature is maintained at 400 F for an extended period of time.

Study shows that porcelain-base pyrolytic carbon-film resistors having values from ten ohms to five megohms, can be made to withstand operating temperatures of 200 C .

Variations in resistor characteristics that exceed specified limits are functions of geometrical variations of the conducting path in the resistive element.

The problem is to achieve a stable geometry of the conducting path in the resistor, which will remain stable during severe tests. Sources of unstable geometry are film nonuniformity, characteristics of the
ceramic base in relation to those of the carbon films and nature of contacts to the carbon films.

A New Pyrolysis System

Uniformity and continuity of film thickness and structure is necessary for stable geometry of the conducting path. Some factors important in design of a pyrolysis system to produce such films are that film thickness is a direct function of the amount of hydrocarbon vapor contacting each unit area of the porcelain surface during exposure at high temperatures, structure of the film and its electrical

FIG. 1-Charts showing operating characteristics of carbon-film resistors

SIGNAL CORPS BUSES MEASURE NOISE

A fleet of 16 buses, spicially adapted at the Fort Monmouth Army Signal Corps Laboratories, is used to measure noise output from electrical equipment that could cause interference with communications services. By taking the mobile measuring laboratories to the manufacturer, time and money are saved in shipping equipment for tests and duplication of measuring facilities. Bus visits are part of Signal Corps and other armed forces contracts where noise specifications are involved. Photographs show bues ready for action and interior view showing part of equipment

Actual photo of radar screen picture from ship in San Diego Harbor,
i

Raytheon Manufacturing Company, a division of which disclosed the world's first complete radar system in 1930. Pioneers in the development and perfection of magnetrons, the "heart" of all radar systems . . . the first to produce marine radar with 16 " presentation. The "Mariners Pathfinder" radar, as installed on vessels of leading steamship lines, is a product of this world's largest producer of marine radar.

Miniature Precision Bearings

are made by the originators and pioncer developers of ball bearings in this size range. MPB supplies the finest miniature ball bearings to over three thousand discriminating customers.

Exclusive, exacting production and inspection details (practically every new concept in this field has been by MPB designers and engineers) assure highest quality bearings. Fully ground, lapped, honed, and/or burnished to ABEC 5 tolerances or better, MPB ball bearings are torque tested, ultrasonicly cleaned, supplied in specific clearances, and classified within the tolerances for prompt assembly and maximum service.

More than a million MPB ball bearings have been supplied for many unusual operating applications - extreme temperature - shock - continuous high load capacity. The most extensive engineering knowledge in miniature bearing applications is available to you. Write for Catalog and survey sheet El

Though recently expanded, our production facilities are still not entirely adequate to always immediately satisfy the demand for ultra quality bearings. Continuing expansion, and newest exchusive processes will soon enable us to supply you promptly.

Miniature

Incorporated

precision Bearings

Keene, Now Hampshire
8
save
space
weight
friction

ampHiNO
 electronic components by AMPHENOL
 POLYETHYLENE CABLES

AN Typz CONNECTORS

RF Type CONNECTORS

The various categories of cataloged electronic components listed below are an indication of the intensive research and development program at Amphenol. Whatever your application problem, some one of the extensive list of Amphenol components will probably provide you with the quality cable, connector or socket you need. If no existing component will serve your purpose, then Amphenol will pinpoint its vast engineering resources on your problem and custom-engineer the part you need.

an Type CONNECTORS RF Type connectors AUDIO CONNECTORS power plugs BLUE RIBBON CONNECTORS
 rack and panel type CONNECTORS industrial sockets
 miniature sockets
 tube sockets and radio COMPONENTS MICROPHONE CONNECTORS rg coaxial cables, teflon and polyethylene
 CAbLE and Wire assemblies
 PLASTICS - EXTRUDED and INJECTION MOLDED

WRITE Department 13J for your copy of General Catalog B-2

AMERICAN PHENOLIC CORPORATION 1830 South 54th Avenue • Chicago 50, lllinois

FIG. 2-Diagram of pyrolysis system showing how porcelain rods are coated with carbon film
properties depend on the uniformity and invariance of the temperature of the procelain rod; amount of carbon deposition is related to rate of flow of the hydrocarbon vapor past the rod.

In addition, surface roughness, localized catalytic agents, and porosity of the porcelain can play an important part in production of uniform carbon films. However, these factors cannot be controlled by design of the pyrolysis system.

Figure 2 is diagram of a py rolysis system. A ceramic rod approximately six inches in length is introduced into the preheating furnace where it is heated to uniform temperature per unit length and held at a constant temperature. After heating, the rod moves at a uniform velocity through the central furnace, which is maintained at some lower temperature. While in motion, it receives a care-fully-regulated blast of a controlled amount of hydrocarbon from all sides. The rod then moves out through an after-heating chamber, which is held at an even lower temperature. To avoid carbon combustion and contaminations, the whole system is evacuated or filled with an inert atmosphere.

Process Control

Measurements of the porcelain temperature for unit length just before it is sprayed with hydrocarbon can be obtained by an optical pyrometer using a window at one end of the horizontal furnace to control porcelain temperature. The jet system can be designed to achieve the condition of equal amounts of hydrocarbon vapor striking each unit area of the rod

how Kodak Contour Projectors can simplify your inspection and measurement problems

Just off the press is the most informative booklet on Kodak Contour Projectors we've ever published.

- It shows by example and case history how you can inspect large parts, small parts, long parts, curved parts, delicate parts, complex parts, all sorts of parts on the Kodak Contour Projector.
- It gives details of both the Model 2A for precision micrometry, and the Model 3 for fast, routine gaging.
- It describes the features that make Kodak Contour Projectors adaptable to such a wide variety of work.
- It lists the accessories that extend their versatility.
- It discusses the measuring attachments that provide critical accuracy.

Whether your interest lies in toolroom measurement or production assembly and inspection, Kodak Contour Projectors will do the job quickly, completely, and accurately with little training of operators. For complete details, send for your complimentary copy of this new 12-page booklet. Just write to Eastman Kodak Company, Industrial Optical Sales Division, Rochester 4, N. Y.
the KODAK CONTOUR PROJECTOR

Are you profiting from these advantages of Class H insulation?

1. More power for "full speed ahead." Class H motors and cables are setting new performanse standards for naval vessels - with the help of MICO Class H electrical insulating materials. Class H equipment packs more power with less weight, less copper, less insulation... has a longer useful life... is less subject to breakdown.

2. Maximum pawer minimum maintenance. More and more Diesel-electric locamotives are using Class H electric motors and MICO Class H insulating materials. MICO was one of the original developers and is today one of the leading manufacturers of these superior insulating materials.

3. Built-in protection for fewer power interruptions, Class H generators and transformers provide more efficient and reliable operation... need less maintenance ...take more frequent overloads. Although the initial cost of Class H insulating materials is somewhat higher, Class H means long-term savings... increased profits.

4. Increased safety against hazards. Risk of fire and explosion is minimized in automatic mining equipment designed with Clas: H electrical insulation, MICO's Class H insulating materials are also helping to make possible more compact design in this type of equipment.

When you turn to Class H, take advantage of M1CO's experience in this fast-moving field. MICO has the finest equipment in the country for producing extremely highquality silicone fabrics, silicone laminates and silicone-mica combinations.

MICO produces a complete line of Class H insulating materials, as well as all standard types . . . and fabricates special parts to your specifications. We will be glad to consult with you about your electrical insulation problems. Write today.

Schenectady 1, New York

Offices in Principal Cities
LAMICOID (Laminated Plastie) - MICANITE (Built-up Mica) - EMPIRE* (Varnished Fabries and Paper) - fABRICATED MICA

r-b-m 22300 series

Hermetically Sealed Relays

The R-B-M 22300 hermetically sealed telephone type relay is the electrical and mechanical equivalent of AN 3304-1, except for smaller size and mounting dimensions.

An improved armature design, plus high temperature molded nylon coil bobbin, provides greatly improved magnetic efficiency and enables R-B-M to reduce the overall size of the relay. The R-B-M 22300 design still retains palladium cross-bar contacts identical to those used in the larger size.

Maximum contacts-6 Form A and 4 Form C-3 ampere 28 Volts. D. C. coil construction only. Maximum coil resistance 5000 ohms. Minimum power .75 watts. Also available in AN 3304 can for dynamotor or low capacitance application.

Optional Mounting Arrangements

Write Dept. B-1 for ASR Bullotin.

at the same velocity. The total length of the rod can be uniformly coated, because of uniform movement through the vapor system.

An automatic feed and release of the rods provides the means for continuous operation. Calibrations of the various factors involved in processing a rod through this system against the resistance of the film produced will allow predetermination of any desired value of resistance.

The ceramic base upon which the carbon film is deposited is made of ball-milled alumina mixed with other ingredients such as silicon dioxide and calcium oxide in an alcohol binder. The bases are pressed and ground then fired at $2,950 \mathrm{~F}$. A smooth surface for coating can be achieved by grinding with 600 carborundum powder in water. Gold contacts are used.

An Electronic Telephone

A MICROPHONE, amplifier and loudspeaker are part of an electronic telephone system developed by Societe le Teleampliphone of France. The device, known as the Neophone, makes it possible for several persons to speak into the same instrument for telephone conferences. The system does not use a talking-listening key.

Some of the proposed solutions for such a system are as follows: Basic to the various principles employed, one generally finds two amplifiers, each functioning in a single direction and almost always two terminal pieces, a transmitter and a loudspeaker. One system might be to block one of the two amplifiers while the other functions. This could be done by rectifying the signal with a diode element or a drydisk rectifier in order to set in motion a relay that would cut off a tube in the amplifier circuit. With symmetrical circuits, each amplifier could function in turn, according to the necessities of the conversation.

A simple circuit uses negative rectification of the signal and a negative voltage obtained by carrying the bias of one of the amplifier tubes to cutoff. Unfortunately, such

NO NEED TO "STILL HUNT" FOR

When you need cans or covers in unusual sizes, large to sub-miniature, consult Hudson first! Most likely, your particular size and shape will be a standard item at Hudson. Not only will you enjoy prompt delivery but prices quoted will reflect standardized tools and dies, and economical mass production runs.

Hudson stocks square, rounds, rectangulars hundreds of stock sizes, with many optional features, are available in precision-drawn cases and covers to meet all but the most unusual circuit requirements.

Consult the Hudson Engineer-Designer Catalog File for "Bulls-eye" Purchasing of Cases, Covers, Slampings
Keep a copy handy in both your engineering and purchasing deporiments. Calling Hudson first will sove you time, money and detail work. Ask for your calalogs, today. Just call or write Desk 210.

"Here's how. Look closely at the two cathodes at the left. They look alike. They are alike - yet one costs 57.4% less. Our old method was to drill a solid molybdenum rod and machine the outside diameters. This involved a high percentage of scrap waste. Fansteel suggested we use Scamless Molybdenum Tubing as the base material with cut to finish lengths of the desired dimensional tolerances, and with the necessary smooth finish inside. Now Fanstcel docs all the fabricating for us-even grinding the minor outside diamcter and cutting a small chamfer in one end. The net result is a big cost saving!"

Users of molybdenum are invited to consult Fansteel for assistance in design and the most economical fabrication. To the user, Fansteel fabrication eliminates the scrap and reject problem, minimizes inspection costs, and releases equipment
 and personnel for other work.
Write for the informative booklet: "FAnsteel tungsien and molybdenum"

Fansteel Molybdenum

a system involves difficulties that render it useless; namely the Larsen feedback effect.

Two solutions seem likely. One is to use a circuit that is inverse to the one described previously. Such a system would start, from the off position, with two blocked amplifiers and only the necessary amplifier would be unblocked during conversation. Here again, the signal tends to interfere with the operation due to the two auxiliary amplifiers. For example, if the amplifiers are blocked by a tube at cutoff in each amplifier, one could rectify the signal positively and thereby restore the bias to its normal value. In order to transmit in full with this system, all the words, syllables

Earphone on the left allows reception of a call with the same privacy as with conventional sets if desired
and sounds, the operation must start very rapidly. It would be necessary to have extremely short time constants on all the rectifying and signal filter circuits.

A second solution consists of two amplifiers that are not blocked but are working at reduced gain. After blocking the idle amplifier, the gain of the other functioning amplifier is increased. The circuits are relatively simple with the idea being to prevent the overloading of one amplifier by blocking the other. The system which has given the best results uses a cutoff tube by counter reaction.

Counter-Reaction Tube

The counter-reaction tube has a distinct advantage in securing a cutoff in proportion to the input voltage. In the absence of all sound or noise before the microphone,

सिए

 VITREOUSGMAMEFED
I

The resistor line which is specified by engineers employed by the nation's foremost manufacturers of original equipment.

DGUNETY

iwo separate self-contained resistance plants guarantee prompi delivery.

QUALTY

as the world's leading manufacturers of wire wound resistors, we assure you that only the finest engineering techniques and material are utilized.

PRICE

ourtremendous manufacturing capacity enables us to offer resistors . . . in any quantity . . . at exceptionally attractive prices.

ENGINEERING

our factories include the most modern machine shops and engineering facilifies. Our experienced engineering department is at your service to assist in designing any resistance unit to meet your requirements and to meet JAN Specificatiors.

We invite your inquiries.

 7.7.4.4.4.4.4.4.4.

Ournewmulli-colored catalog, complete with engineering dafa and illusirations, is yours without obligation. WRITE TODAY! mon mind Power RHEOSTAT
the practical rheostat in its most exacting form, with a compensating constant pressure contact brush ... designed to meet JAN Specifications. Write for complete technical literature.

$\left(\frac{0}{0} \|^{2}\right.$
 Division of

General Soles Office: 7:00 M. Milwaukee Avenue, Chicoge 18, III.
Factory: Huntington, Indiaria
MANUFACTURERS: Power Rheostat, fixed Resistors, Adjustablo
Resistors, "Esonohm" Resistors

bre Cultall anterime

 Triplett 630-A Has No Counterpart
with a Mirror-Scale

with $1 / 2 \%$ resistors
Try This Volt-Ohm-Mil-Ammeter at your distributor's

Specity

"MAK EP EA

DEMCO collector rings and ring assemblies give you these advantages...

ECONOMY . . . laminated construction provides contact metal where required . . . base metal for strength.

HIGH FINISH . . . on contact surface for long wear and noise-free operation.

PRECISION MADE . . . it is unnecessary to add further machine operations.

COMPLETE . . . rotor or pancake type multi-ring and ring-and-brush assemblies supplied.

PRECISION TUBING

PRECISION DRAWN . . . ID held as close as $\pm .001$.
Solid coin silver, brass or aluminum Rev. MIL-T-85.
LAMINATED SILVER . . . on ID for

- Low attenuation
- Corrosion resistance
- Highest mirror finish

Laminated silver ID and OD for round tuned lines.

PRECISION "KNOW-HOW"

With nearly sixty years of experience in the production of both laminated and solid precious metals, MAKEPEACE is today an accepted "headquarters" for the many special precious metal products and assemblies called for in the electronic field.
Our staff of thoroughly experienced design and production engineers and metallurgists . . . as well as our research and testing laboratory ... are all at your service.

D. E. MAKEPEACE COMPANY

Laminated and Solid Precious Metals for Industrial Use - Fabricated Parts and Assemblies - Bar Contact Material - Precious Metal Solders MAIN OFFICE AND PLANT, ATTLEBORO, MASSACHUSETTS

NEW YORK OFFICE, 30 CHURCH STREET
chicago office, ss east washington street

Check List (A-D) of LEADING BRANDS IN STOCK

Advance Electric

Aerovox
Aircraft Marine Products
Allen-Bradley
Alpha Wire
Amphenol
Arrow-Hart \& Hegeman

ATR Belden Bliley Bogen Bud Burgess Centralab

Chicago Telephone Supply
Cinch-Jones
Clarostat
Consolidated Wire Cos.
Cornell-Dubilier
Dialco
Drake

JAN-APPROVED COMPONENTS

FREE INDUSTRIAL TUBE BOOKLET
Chief Engineers, Purchasing Agents, Purchasing Executives! Write now if you haven't received our Industrial Electronic Tube Booklet *EB. Use company letterhead and state your title. Address Dept. E-1.

the ONE source for ALL your electronic needs

MuL@ RADIO \& ELECTRONICS CORP. Electronice far 7ndustry

200 GREENWICH STREET, NEW YORK 7, N.Y. • Phone BEekman 3-2980

 Teletype NY 1-1839 • Wire MILO-WUX-N.Y. • Cable MILOLECTRO-N Y.there is no voltage on the grids, no counter reaction and no cutoff. The two amplifiers are practically free to use their entire sensitivity. Every impulse to the input of one amplifier, likely to start the Larsen effect, will start the cutoff by counter reaction, reducing the gain sufficiently to avoid the appearance of this effect. By tapping at each input, an auxiliary amplifier will permit blocking the idle amplifier and suppressing the counter-reaction of the working amplifier by biasing to cutoff. The same rectifier secures these two reactions simultaneously.

This latter system is the one actually used. It requires a system of very rapid time constants on the telephone networks to avoid the possible errors introduced by garbling of words. Sensitivity of the blocking circuits must be great enough to respond even on high-loss lines and yet not deliver prohibitive voltages on conversation at high levels.

Transmitter Circuit

For transmitting, the principal amplifier comprises a 6AV6, a 6SL7 and a 6AQ5 which drives an ensemble of two transformers connected differentially toward the line. The auxiliary transmission amplifier includes the same 6AV6 of the input, the same 6SL7 and a special 6AV6 which drives its two diodes by a push-pull transformer.
The counterreaction tube, a 6SL7, cuts off the 6AQ5 of the line by impressing on the cathode of the 6AQ5 a portion of the signal and by retransmitting it 180 deg out of phase on the grid of the 6AQ5.

On the receiving end, the circuits are almost symmetrical. In the principal amplifier a 6SL7 drives the 6AQ5 at its output. In the auxiliary amplifier, a 6AV6 drives its two diodes by a push-pull transformer. The 6SL7 counterreaction tube cuts off the 6AQ5 between cathode and grid. The 6AV6's are mounted in such a way that the voltage which drives the diodes is practically constant beginning at a certain level. The rectified voltage is limited to 15 v . For transmission, a controlled fraction of this voltage serves to block the 6SL7 at the receiving input and another por-

FEATURES TO HELP YOU DESIGN YOUR NEW CLOCK-RADIO
 TWO KNOBS do the work formerly done by three. The new Telechron Timer, model C-78, means unmatched simplicity in clock-radio operation. One knob for alarm . . . the other for radio.

FREEDOM OF STYLING. Two-knob control and separate alarm hand mean greater freedom for your styling people. Telechron Timers are available with round or square face ... any color dial, hands or bezel.

SIGNAL ALARM. It's a must for heavy sleepers.
And it's a sales-boosting extra talking point for your clock-radio. In the clock-radio field only Telechron Timers have the signal alarm.

RADIO ALARM "ON" SWITCH. Contacts rated at 15 A. at 115 v . a-c. Adequate to carry the load of a variety of electrical appliances through an auxiliary outlet on your clock-radio.

DEPENDABLE SLEEP SWITCH. Simple design-friction geared to clock movement-insures accuracy, dependability, and sturdy endurance even with rough handling.

Sales-Boosting Extra Benefit
You are free to display the Telechron trade-mark and the Telechron Seal of Accuracy on your clock-radio. Ask for full information. Telechron Department, General Electric Company, 41 Homer Ave., Ashland, Massachusetts.

C-Cores to meet any requirement

For your single-phase applications, Arnold "C"-Cores are available in any shape and quantity, and in any size from fractions of an ounce to hundreds of pounds . . . wound from Silectron strip in a wide range of wlta-thin and heavier wanges.

made from SILECTRON strip
 (grain-oriented silicon steel)

The use of " E " cores, wound from grain-oriented silicon steel, results in weight and size reduction as well as higher efficiency and possible cost savings. "E" cores can be supplied in a variety of window sizes and core areas from 1, 2, 4 or $12-\mathrm{mil}$ Silectron strip, for high or low frequency 3-phase applications. All Arnold cores are made by precision methods, and carefully tested under closely controlled conditions to assure highest quality and reliability. We'll welcome your inquiries.

Arnold Engineering Company
SUBSIDIARY OF ALLEGHENY LUDLUM SIEEL CORPORATION
General Office \& Plant: Marengo, Illinois

bise under Cúvile

For Aviation and Electronics

Tell us the type of wire or cable you need - the chances are excellent that it is one of our regular production numbers. If it isn't already in our extensive line, we will design the wire especially for you. We have had long experience in coming up with the right answers in wire and cable for many leading manufacturers in the fields of aviation and electronics. Try us. You Specify - We Supply!

Ask us for our new complete catalog. We'll gladly send you a copy.

RHODE ISLAND INSULATED WIRE CO., Inc.

50 BURNHAM AVENUE

Calling for utmost reliability, the system uses several WORKSHOP 7000 mc . reflectors. It is another field-proved installation of WORKSHOP microwave antennas-another reason why more WORKSHOP parabolas are in use than all other makes combined.

> WORKSHOP ASSOCIATES DIVISION THE GABRIEL COMPANY Endicot Street - Norwood, Mass. ofsigners and manufacturers of a COMPLETE LINE OF MICROWAVE ANTENNAS
tion blocks the 6SL7 of the transmission counter reaction.

For receiving, the 6SL7 transmission element is blocked and then the 6SL7 of the receivers. The time constants are such that the line blocking precedes the counterreaction blocking and, inversely, the counterreaction unblocking precedes the line unblocking.

Thermal Relays Control

Heater Voltage

By C. D. Geer \& W. C. Broekhuysen
$G-V$ Controls Inc
East Orange, N.J
Maintaining uniform heating of tube cathodes over wide variations in supply voltage, especially in the design of newer mobile equipment using miniaturized components is an important problem. Limitations of space and weight and variations in supply frequency often rule out conventional voltage-regulating devices for this purpose.

Several effective arrangements for regulating this heating by the use of miniature critical-voltage or critical-current relays of the thermal type have been developed recently.

A critical-voltage or critical-current relay is arranged to operate its contacts when the potential across its operating coil (or the current through that coil), reaches a predetermined value. In a thermal relay, contacts are actuated by the heating effect of the current passing through the energizing coil rather than by the electromagnetic effect as in magnetic relays.
Two general methods have been

FIG. 1-Thermal-relay circuit for Introducing a dropping resistor in series with vacuum-tube heaters when the supply voltage exceeds a certain value
 addition to your data file.

E-I . . your Headquarters for Hermeticallr. Sealed Multiple Headers, Octal Plug-Ins, Terminals, Color Coded Terminals, End Seals, etc
\square E ELECTRICAL INDUSTRIES 2 division of amperex eiectronic corp 44 SUMMER AVENUE, NEWARK 4, NEW JERSEY
production. Unit shown is transformer. High Phase aircraft po Filament Supply. Every Magnetic Amp led. prices gladly and specihermetically seal at your prints for safely. request. please send y mail for satyr. ficaitions by registered

KEISTONEPRODUCTS COMPANY
 UNION CITY 2. N. J.

\section*{ßygrade

ßygrade - fllexice

 - fllexice} tubings cind sleevings
to meet every particular insulation requirement

In the Mitchell-Rand line of HYGRADE and FLEXITE Tubings and Sleevings, there is a particular grade and class to meet the specific insulation requirement of temperature resistance, dielectric strength, abrasion resistance, flexibility and push-back, HYGRADE Tubings and Sleevings conform to the NEMA Standards VSI-1950 and to the Armed Services Specification MIL-I-3190.

The "Select-lt" chart details the various grades and classes of HYGRADE Tubings and Sleevings ... grades differ according to amount of insulating coating applied and class is a A.I.E.E. standardization to indicate the ability of varnished coated products to withstand heat and temperature rises: Class A: $105^{\circ} \mathrm{C}$ or $221^{\circ} \mathrm{F}$, class $\mathrm{B}: 130^{\circ} \mathrm{C}$ or $277^{\circ} \mathrm{F}$, class $\mathrm{H}: 200^{\circ} \mathrm{C}$ or $392^{\circ} \mathrm{F}$. Class A is organic, treated with organic varnishes or coatings. Class B and H are fiberglas treated with organic varnishes or coatings.

Flexite Plastic Tubings . . . made from various grades and types of resins offer an extraordinary combination of qualities including high dielectric strength, flexibility, non-flammability, abrasion resistance, oil and chemical resistance, heat stability, and resistance to aging. . . are low priced to make them the most desirable tubings for many insulation problems.
Hygrade Tubings and Sleevings and Flexite in standard sizes of copper wire are available in black, red and yellow for Class A and B, and natural for Class H. Other colors are available on special order.

Write to MITCHELL-RAND for free samples and descriptive data.

MITCHELL-RAND INSULATION COMPANVIA INC.
 51 MURRAY STREET

 NEW YORK Z. M, Y.

A PARTIAL LIST OF M-R PRODUCTS: FIBERGLAS VARNISHED TUBING, TAPE AND CLOTH INSULATING PAPERS AND TWINES - CABLE FILLING AND POTHEAD COMPOUNDS - FRICIION TAPE AND SPLICE . TRANSFORMER COMPOUNDS FIBERGLAS SATURATED SLEEVING - ASBESTOS SLEEVING AND TAPE - VARNISHED CAMBRIC CLOTH AND TAPE - MICA PLATE, TAPE, PAPER, CLOTH, TUBING. FIBERGLAS BRAIDED SLEEVING - COTTON TAPES, WEBBINGS AND SLEEVINGS • IMPREGNATED VARNISH TUBING - INSULATING VARNISHES OF ALL TYPES. EXTRUDED PLASTIC TUBING

Marconi Television for Venezuela

A Shell Photogrash

Equipment for the Caracas
 Television Station, sponsored by 'Televisa', includes:

- 5 kW vision transmitter
- 3 kW sound transmitter
- Associated aerial system
- Complete studio installation
- Complete mobile O/B television unit, with two camera channels and micro-wave links

Venezuela is the latest country to install Marconi television equipment.
Marconi cameras are used yy the United Nations to televise their Sessions, and the television syste ns of both Canada and Spain teear the name Marcon:. Marconi transmitters and aerials have been installec' in every one of the B.B.C.'s five television stations.

MARCONI of England

 television transmitting equipment

FIG. 2-Circuit used for producing a pulsating potential as described in text
used for reducing effect of voltage variations by means of thermal relays. The first method uses a criti-cal-voltage relay to introduce a dropping resistor into the circuit when the supply voltage exceeds a certain value. Figure 1 illustrates a typical circuit. Four 6.3-v heaters are connected in series across a 24 to $28-\mathrm{v}$ supply. A thermal relay, set to open its normally closed contacts when the voltage across its heater exceeds 26 v , is connected across the supply.
Whenever the supply voltage rises above 26 v , the thermal relay cuts a dropping resistor into the circuit to reduce by two volts the voltage applied to the cathode heaters. As the supply voltage rises from 24 to 26 v , the voltage per tube increases from 6 to 6.5 v . When the supply voltage goes above 26 v , the tube voltage drops back to 6 v , reaching 6.5 once more when the supply voltage goes to 28 v .

On decreasing voltage, the dropping resistor is cut out at the same voltage at which it was introduced.

Variation of cathode heater voltage is reduced to one half of the variation in supply voltage. For effective protection against overheating, the thermal time constant of the relay should not exceed that of the cathode heaters.

The second method produces closer regulation of heating over a substantially wider range of supply-

FIG. 3-Regulating contacts and resistor in the primary circuit of a transformer and relay heater in the secondary

Tunction- 風itted capacitors

The best capacitor at lowest cost results from the experienced interpretation of your circuitry, your associated components, your operational requirements.
That is why Aerovox engineers are so inter-
ested in HOW their capacitors are used. If you wish, they are prepared to collaborate on the details of your entire assembly. Such capacitor application experience. second to none, is yours for the asking.

 lated problems.

Why Federal Cables are SUPERIOR

－CONDUCTORS－meet highest ASTM standards
－DIELECTRICS－of stabilized poly－ ethylene
－BRAIDS－meet highest ASTM standards
－JACKEIS－of latest developments in vinyl and polyethylene

Every Federal Cable Fully Tested for：

－Capacitance
－Attenuation
－Continuity
－High Voltage

DESIGNED FOR：H－F communications，television，industrial electronics，radio and TV lead－ins，aviation，test equipment，radar，pulse and experimental equipment

Quality of product is the secret of dependable cable performance and quality is what you get in every inch of Federal RG type coaxial．．． from jacket to conductor！

Only the finest materials－quality－controlled throughout the entire manufacturing process－are used in Federal cables．Every possible test is made to insure constant efficiency of physical and electrical proper－ ties under the most rugged conditions encountered by general and military applications．

Whatever your transmission line requirement－specify Federal RG types．You＇ll always be sure you＇ve made the right choice！

COMPLETE COAXIAL CABLE ASSEMBLIES also are available from Federal to meet your requirements．This service offers the same＂Precision Production＂that made＂Federal＂the outstanding name in coaxial cables．

Manufacturer of America＇s most complete line of solid dielectric cables

In Canada：Federal Electric Manufacturing Company，Ltd．，Montreal，P．Q． Export Distributors：International Standard Electric Corp．， 67 Broad St．，N．Y

. . . used extensively by the electronics industry . . .
A list of our customers in the Electronics Industry includes many leading manufacturers-Philco, RCA, Federal Tel. \& Tel., Collins Radio, Magnecord, Hazeltine Labs, Presto Tape Recording Co., and many more.

Yes, EMC and CYCLOHM fractional h. p. motors are used by leading companies for hundreds of applications. If you have an application for fractional h. p. motors, check with us on your requirements. Write today for our catalog or better yet, ask to see a Howard representative.

HOWARD INDUSTRIES, INC. RACINE, WIS divisions: \mathbb{E} Me electric motor corp.
© crclohm моtor corp.

FIG. 4-Heater of the thermal relay placed in series with the cathode heater circuit
voltage variations. If the normally closed contacts of a thermal relay are connected so that, on opening, they interrupt the voltage applied to the heater of the relay, then these contacts will supply to the relay heater a pulsating potential of constant integrated heating value, regardless of voltage. As the voltage is increased, the proportion of on time to ofF time is automatically reduced to compensate. The relay heater receives a pulsating potential with a heating effect equivalent to that of a continuous potential equal to its critical voltage setting. Any cathode heaters connected across the thermal relay heater will also receive this pulsating potential of constant heating effect regardless of supply voltage.

In actual operation, a resistor is usually connected across the relay contacts so that the potential is periodically reduced rather than completely interrupted but the net effect is the same. Figure 2 illustrates a circuit frequently used to produce a pulsating potential as described. It may be preferable to place the regulating contacts and resistor in the primary circuit of a transformer with the relay heater in the secondary, as shown in Fig. 3.

The heater of the thermal relay is sometimes placed in series with the cathode heater circuit as shown in Fig. 4. The result is to produce the effect of a constant current through the chain of heaters rather

FIG. 5-Circuit for reducing interference caused by the opening and closing of the relay contacts

Open new fields of design
 New flexibility in production planning New usefulness of ceramic parts Opportunities for product improvement.

Illustrated are a few of the many AlSiMag Metal-Ceramic combinations and metallized ceramics currently produced. Our broad experience and rapid progress in these fields may enable us to help you solve a design, performance or production problem. If you will outline your problem our engineers will make recommendations without

AMERICAN LAVA CORPORATION

[^8]

The amplifying stages of your equipment may be generously designed with plenty of inverse feedback and the electrical characteristics may be 99.9% perfect, but the transition from electrical to acoustic energy may present a serious barrier. LECTRONA speakers, incorporating many special design features, will enable you to penetrate this sound barrier with high efficiency and minimum distortion. A wide range of models is available for radio requirements and other special technical applications.

STANDARD TYPE C. 6104

Diameter 61"
Flux density 10,000 lines per sq.cm.
Peak power handling capacity (speech and music) 4 watts. at 400 cycles.
at 400 cycles. Frequency response chosen to suit requirements.

Other models are available in this diameter, with alternative values of flux density and power handling capacity.

LECTRONA

LOUDSPEAKERS

ACOUSTIIC
P R O
$D \cup \subset \quad \mathrm{C}$
L I M | T E D PHONE: RUISLIP 6093/4
SALES: EDSTONE LIMITED
15. BUCKINGHAM PALACE GARDENS, LONDON, S.W I, ENGLAND PHONE: SLOANE 0621

FOR BETTER ELECTRICAL INSULATION

TUBINGS AND SLEEVINGS

BH "1151" SILICONE RUBBER FIBERGLAS TUBING AND SLEEVING

A revolutionary Fiberglas Class H (inorganic) insulation suitable for continuous operation through a temperature range of $-90^{\circ} \mathrm{F}$. to $400^{\circ} \mathrm{F}$. No dielectric loss through handling, bending or operational stresses. Won't craze or crack when used to cover bent wire. No deterioration at high spot temperatures of $500^{\circ} \mathrm{F}$. for 4 hours. Grades H-A-1 through H-C-2.

BH 649 FIBERGLAS TUBINGS AND SLEEVINGS
A superior insulation which retains its rated dielectric strength after rough handling and severe abrasion. Flexibility and other physical properties unaffected after 1500 hours at $105^{\circ} \mathrm{C}$., as well as standard tests for NEMA Classes B-A-1, B-B-1 and B-C-1.

BH EXTRA FLEXIBLE FIBERGLAS SLEEVING
Comparable to single saturated (B-C-3) sleevings but completely flexible, even after exposure to heat aging, since no hardening varnish is used. Nonfraying because of patented treatment of the basic braid.

BH SPECIAL TREATED FIBERGLAS SLEEVING

An unsaturated sleeving for temperature applications up to $1200^{\circ} \mathrm{F}$. Patented process retards raveling without the use of impregnants or binders.

BEN-HAR SPECIAL TREATED FIBERGLAS TUBING Grades A-1 and B-1, meets normal operating and baking temperatures without stiffening or cracking. Will not fray or split in handling.

Name your insulation problem . . . there is a BH Tubing or Sleeving to solve it. Whether you're concerned with excessive current loads, vibration, extremes in temperatures, fungus resistance, or what . . . let us help you. Send us the facts on your requirements, voltages and temperatures encountered. We'll make our recommendations and send you production testing samples. Address Dept. E-1
Bentley, Harris Manufacturing Co., Conshohocken, Pa.

FOR QUICKER ASSEMBLING

BH GRADE C-3 SILICONE FIBERGLAS SLEEVING
Non-taveling and non-combustible. Working temperatures range from $400^{\circ} \mathrm{F}$. to $-85^{\circ} \mathrm{F}$. It is moisture-proof with high leakage resistance.

- BH Non-Fraying Fiberglas Sleevings are made by an exclusive Bentley, Harris procesg (U. S. Pat. No. 2393530). "Fiberglas" is Reg. TM of Owens-Corning Fiberglas Cord.

BOURNS TRIMPOT, a revolutionary wire-wound potentiometer, is easily and accurately adjusted. The slotted shaft is self-locking, and setting: are maintained during severe
shock, acceleration and vibration.
The TRIMPOT is easily mounted singly or in stacked assemblies.
Superior electrical characteristics are achieved through use of precious metal contacts and windings of exceptional temperature coefficient. BOURNS designs and manufacture; other potentiometer
instruments which measure such physical variables as gage pressure, differential pressure, altitude and acceleration.

β

OURNS LABORATORIES
6135 Magnolia Ave., Riverside, California
Technical Bulletins on request, Dept. 112

FIG. 6-Circuit incorporating a relay with two separate heater windings
than that uf a constant potential across them.

In order to reduce the amount of heat that has to be dissipated at the upper end of the range, the resistor across the contacts in Fig. 3 may be replaced with a choke. The same is true for Fig. 2 if the supply is a-c.

Due to the resis: ur shunting the thermal relay contacts, the interference caused by the opening and closing of this contact is usually not serious. In cases where it is still found objectionable and where the usual type of line filter is not sufficiently effective, the interference can be further reduced by the circuit shown in Fig. 5.

In choosing circuit values for regulation of this kind, the supply voltage must be such that when it is at its minimum value it can produce the heater voltage desired, for the thermal relay can only reduce the supply voltage by interrupting it. It cannot increase it. The dropping resistor across the relay contacts must be such that at the highest supply voltage and with the smallest connected load, it will drop the heater voltage sufficiently. The thermal relay cannot produce a greater reduction in this voltage than that resulting from holding its contacts open continuously,

The thermal relay regulator offers the important advantage of being independent of frequency. In addition, it is small and light and has high efficiency.

An even wider, but as yet largely unexplored field is opened up by the availability of relays with tapped heater windings or with two separate heater windings. Just one circuit using such a relay is shown in Fig. 6. This circuit is similar to Fig. 1 with the addition of a second heater winding of much lower resistance connected in series with

KENYON TRANSFORMERS FOR

JAN Applications
Radar
Broadeast
Afomic Energy Equipment
Special Machinery
Automatic Controls
Experimental Laboratories

For more than 25 years, Kenyon has led the field in producing premium quality transformers. These rugged units are (1) engineered to specific requirements (2) manufactured for long, trouble-free operation (3) meet all Army-Navy specifications.

Write for details
KENYON TRANSFORMER CO., Inc.
840 Barry Street, New York 59, N. Y.

The Westinghouse 296 -million dollar expansion program has produced exceptional career opportunities in the Electronics Division, and in the new Air Arm Division in suburban Baltimore, housed in a modern new plant adjacent to Friendship International Airport.
Immediate openings are available for those trained in any of the Engineering sciences. Graduates in Electrical, Mechanical, Aeronautical, Industrial, and Sales Engineering, as well as Physicists, Mathematicians, Business Administration graduates. Electronic Technicians and others
with related training, are invited to inquire alout the attractive openings available.
Challenging, absorbing assignments are offered both at the plant and in the field on such projects as Guided Missiles, Automatic Pilots, Computors, and other advanced electronic products.
To insure your future, Westinghouse provides leading employe benefis, graduate study opportunities, employe scholarships, relocation expenses. in addition to unlimited ground-floor growth opportunities depending only on individual initiative and ability.

Send resume of qualifications to:
 Manager, Industrial Relations, Dept. M
 WESTINGHOUSE ELECTRIC CORPORATION

41 HOPKINS PLACE, BALTIMORE, MD.

Those employed at their highest skill in
a defense industry should not apply.

Purchasing Agents

 like
TAYLOR VULCANIZED FRBRE

because.

In the
sporting goods industry...

Tough, shock-resistant, resilient.. these are the characteristics that make Taylor Vulcanized Fibre ideal in the manufacture of football helmets and pads, baseball protectors and golf club faces. Why not fit this versatile material into your purchasing picture?

This comprehenside 24-page booklet literally brings the entire Taylor Organization to your fingertips. . . tells in words and pictures bow the many Taylor Laminated Plastics are made . show's you bow you call use these basic materials to make your product better, at lou'er cost. Write today for a copy of Booklet El.
the purchasing age deals with one suplier, eliminates
and trouble.
sheets, rods,
and to which to buying, saves time Fibre in sheets, random buy for Vulcanized in a wide range of .he can buy Taylor Vulcanm... in a wher formsty sufficient to strips, rolls, and othes and sizes, in a
colors, weights, grade colors, weights, gra production requil design and product, one that ...he knows he's getting a top-quality prop his plants design will meet the rigid specification men. engineers and produc calls for Parts Fabricalor Fabricaring And when production calls ant knows Taylomade parts... fications, the purchasing as out precision-made to promptly... and to specification. Why not investigate the possibilities of products? Write for samples
for use in assortment of Taylor
Whation. Tan Vulcanized Fibre and a generous Taylor Insulation Laminates.
complete Let us tell you, too, about and

1In the Vickers-developed forming process (where the invisible rectifying barrier "heart of a rectifier cell" is created) . . Vickers Selenium Rectifier performance factors are stabilized...cells actually "pre-stressed" to guarantee rated performance - with long life. Forming time and rate... current and voltage...humidity and temperature are automatically controlled by the cells themselves to assure ideal forming (without forced forming-or less than complete forming). Such precise cell control guards against overheating or leakage-weaknesses often found in improperly formed rectifiers.
more reasons why VICKERS makes a betfer rectifier:

- Precision-matched cells prevent overloadoverheating.
- Hydraulic assembly equipment assures mechanical strength and dimension.
- Rectifiers shock and vibration tested to military specifications.
- 255 tests and inspections guard quality from start to finish.

Write for Bulletin 3000. Vickers engineering service is available without obligation.

ICKERS ELECTRIC DIVISION

$\sqrt{\text { ICKERS }}$
A UNIT OF THE SPERRY CORPORATION
1801 LOCUST STREET - SAINT LOUIS, MISSOURI
the relay contacts. The relay contacts remain closed up to 22 v input and are permanently open above 30 v. Between 22 and 30 v input, the contacts will alternately open and close with an ON to OFF ratio that will maintain the equivalent of $19 \frac{3}{2} \mathrm{~V}$ across the load. The circuit of Fig. 6 gives the same type of regulation as the circuits in Fig. 2 and 3 except that the change in watts in the relay while flashing is less than one half as great and the flashing consequently substantially slower. For the same rate of flashing as obtained with the circuits of Fig. 2 and 3 , the thermal capacity of the relay heater can be reduced and the warm-up period correspondingly shortened. The output voltage will vary somewhat with a change in load. The two resistors as well as the auxiliary heater winding must be properly matched to the lrad for best results.

Slide Rule Computes Radio Refractive Index of Air

By Stanley Weintraub
National Bureau of Standards Boulder, Colorado

Studies of tropospheric radio propagation often require computing the refractive index of air from meteorological parameters. Computation becomes extremely tedious in making a climatic study of refraction (bending of ray paths) that requires computation of refractive indices from meteorological radiosonde ascents.

This has led to the development of numerous devices designed to facilitate computation ${ }^{1}$, most of which are of low precision or limited usefulness. A slide rule method of computing N, where $N=$ ($n-1$) $10^{8}, n$ being the refractive index, has been developed by the National Bureau of Standards. This method attains a precision of ± 0.5 N-units under almost any conditions likely to be encountered in the troposphere, while being less tedious than other comparable methods now in use.

Details below are carried out with pressure in millibars, temperature in deg C and relative humidity as the parameters. The method is equally applicable when other

for YOUR product

WHICH PILOT LIGHT DO YOU NEED?

THE BIG ONE

This Pilot Light Assembly was first made to accommodate the S-11 lamp and was intended for use in the cabs of great diesel locomotives.

Dialco HAS THE COMPLETE LINE OF INDICATOR and PANEL LIGHTS

This BIG one

Cat. \#613529-211

THE LITTLE ONE

The miniaturization program on defense products required the development of this sub-miniature light. It is used on communication equipment and aircraft. Midget flanged base bulbs to fit are rated 1.3, 6, 12, and 28 volts.

to suit your own special conditions and requirements will be sent promptly and without cost. Just outline your needs.

Let our engineering department assist
 in selecting the right lamp and the best pilot light for YOU.

Write for the Dialco HANDBOOK of PILOT LIGHTS
Foremost Manufacturer of Pilot Lights

PROBLEM:

Manufacture of a Thermopile Calibrated to
 Measure Heat Exchange Over a Large Area.

SOLUTION:

General Plate Provided the Solution with Copper Edge Bonded to Constantan...a Composite Metal.

The American Society of Heating and Ventilating Engineers, developing a calorimeter for the measurement of heat exchange between the human body and its surroundings, was faced with the problem of obtaining material for large area thermojunctions.

The heat flow meters used in this calorimeter had to possess characteristics such as uniformity of response of similar meters, stability of calibration and ability to inregrate heat flow over the entire area of the meter. A principal factor in their performance was the thermopile material used.
General Plate satisfied these thermopile material requirements with a composite metal-copper edge bonded to constantan and rolled to . $002^{\prime \prime}$ thick.

No matter what your metal problem, it will pay you to consult with General Plate. Their vast experience in bonding precious metals to base metals, or base to base metals can overcome your problems - often reduce costs.

General Plate products include . . . precious metals clad to base metals, base metals clad to base metals, silver brazing alloys, electrical contacts, buttons and rivets, TRUFLEX® thermostat metals, ALCUPLATE®, platinum fabrication and refining, \#720 manganese age-hardenable-alloy. W'rite for General Plate's latest catalog.

Have You a Composite Metal Problem? General Plate can solve it for you

METALS \& CONTROLS CORPORATION GENERAL PLATE DIVISION
 31 FOREST STREET, ATTLEBORO, MASS.

"ZERO" PHASE SHIFT

COMPUTER REFERENCE VOLTAGE

TRANSFORMERS

LESS THAN 0.1 MILLIRADIAN PHASE SHIFT

$\pm .02 \%$ ACCURACY OF VOLTAGE RATIOS

A radical new approach to the design and manufacture of precision transformers makes it possible to have calculable minimum errors.

The actual measurement of phase shift and voltage ratio is in complete agreement with the calculation to lowest value that measurement is possible.

MIL-T-27 TRANSFORMERS

TOROIDAL TRANSFORMERS	VIDEO TRANSFORMERS
INSTRUMENT TRANSFORMERS	INPUT-INTERSTAGE-OUTPUT
PULSE TRANSFORMERS	POWER TRANSFORMERS

MAGNETIC AMPLIFIERS

INDUCTANCE MEASUREMENT - Amy operating andition can be simulated in the range of $\mathbf{Q}-1000 \mathrm{~V}$ A.C. and $0-5$ Amps. D.C.

DEVELOPMENT OF AUDIO TRANSFOEMERS - All characteristics of audio transllormers in the range of .01 cycle to 10 Aegracycle can be measured and evaluated.

POWER LOSS MEASUREMENT - Losses as low as 15 micro walts in the range of 20 c to 200 K.C. can be measured and amolyzed and possible improvements effected.

PULSE TRANSFORMER DESIGN - The cut and try methods commonly used in the design of pulse transformers has been largely supplanted by the use of special equipment.

The use of Lord Mountings and Bonded-Rubber
 Parts in every field of automotive transportation results in longer service life and greater economy of operation. And as a bonus . . . Lord Mountings improve operator and passenger comfort. Hundreds of Designers and Engineers of transportation equipment have consulted profitably with Lord Engineers for experienced and field-proved advice in isolating shock and vibration. They draw from over 27,000 Lord Vibration-Control Mountings designed to meet specific requirements.

If you manufacture any of the following transportation equipment or supply component parts or assemblies, Lord Engineering can help you:
Railway Cars and Locomotives . . . Trucks and Buses . . . Airframes and Aircraft Engines . . . Earthmoving, Farm and Road Machines . . . Air Compressors . . . Air Conditioners .. . Engine Generator Sets . . . Communication and Signal Equipment.

Lord Mountings are protecting the performance of many more transportation units.

field engineering offices-

BURBANK, CALIFORNIA
233 South Third Street
dallas, texas philadelphia 7, pennsylvania dayton 2, ohio 413 Fidelity Union 725 Widener Building 410 West First Street Life Building

DETROIT 2, MICHIGAN NEW YORK 16, NEW YORK CHICAGO 11, ILINOIS ERIE, PENNSYIVANIA 7310 Woodward Ave. 280 Madison Avenue 520 N . Michigan Ave. 1635 West 12th Street

LORD MANUFACTURING COMPANY • ERIE, PA.

AMATEUR TRANSMITTERS

MOBILE TRANSMITTERS

AUDIO \& VIDEO MODULATORS

SERVO AMPLIFIERS

RCA-6146, actual size!

F$T^{\text {Rom dc amplifier to VHF services, the remark- }}$ I able RCA- 6146 beam power tube is setting a record for circuit versatility attained by few other tubes. Power sensitivity is high, regardless of plate voltage-or frequency. Small size offers wider latitude for compact equipment. Low cost contributes to genuine economy in circuit designwithout sacrificing efficiency.

In class C rf service (ICAS) at 600 volts, a single RCA-6146 unmodulated can handle an input of 90 watts at frequencies as high as $60 \mathrm{Mc} .$. and 60 watts at 175 Mc with a plate voltage of 400 volts. In class AB_{1} (ICAS) two 6146's can deliver up to 120 watts
of audio . . . and in class $\mathrm{AB}_{2}, 130$ watts. Triodeconnected, two 6146 's will deliver 19 watts of power!

RCA-6146 is designed for all general services calling for a 6.3 -volt heater. Where tubes with 26.5 -volt heaters are required, as in aircraft applications, RCA can supply Type $6159 \ldots$. similar in all other characteristics to the 6146.

For technical data, write RCA, Commercial Engineering, Section 42AR, Harrison, N. J. Or call your nearest RCA Field Office.

FIELD OFFICES :
(EAST) Humboldt 5-3900, 415 S. 5th St., Harrison, N. J.
(MIDWEST) Whitehall $4-2900,589$ E. Illinois St., Chicago, Ill. (WEST) Madison $9-367 \mathrm{I}$, 420 S. San Pedro St., Los Angeles, Cal.

RADIO CORPORATION OF AMERICA ELECTRON TUBES

electronics
 brings you.

PACKAGED POWER FOR SELLING 12 REGULAR MONTHIY ISSUES OF ELECTRONICS and THE ELECTRONICS MID-JUNE BUYERS' GUIDE

Plan NOW for these 13 sales-producing issues in your '53 ad-budget

Abstract

There's a big year ahead for manufacturers of electronic components, equipments and materials. But that big year will also bring big, tough competition. Now is the time to make definite plans, both sales and adver-tising-wise, that will see your company on the top of its market. In making those plans, don't feel that your present customers and prospects are all yours - tied up in a neat bundle for you - loyalty like that just doesn't exist. And don't forget the new customers - brand new ones never heard of before, that are entering the field

in large numbers for its amazing promise of profits. You have got to keep after them, both new and old, telling them your product story month after month. There are many ways to do that in this so-called electronics business - but the best, most economical, most effective, most resultful way is in a consistent advertising campaign in ELECTRONICS - the book that penetrates every portion of the industry and is must-reading for everyone connected with it. So make your plans now and be sure they include ELECTRONICS.

Business in the billions ahead for electronic manufacturers

There's no bunk in those billions for 1953. They are actual fact and add up to more than $51 / 2$ billion. That's a lot of dollars and many factors play a part in building it up in the major classifications of military and consumer expenditures. Industry's increasing use of elec-
tronic equipment and color TV will buoy up those billions - not only for '53, but for years to come. The aggressive, advertising-minded manufacturer will be sure of his share. 1953 promises to be a year upon which the future of many companies may depend.

Manufacturers who should use the sales pages of these 13 issues

Most manufacturers, by the very nature of their products, recognize ELECTRONICS as their most effective sales medium, and for years have consistently utilized its sales pages. The advertisers in ELECTRONICS in reality constitute the Who's Who of the industry. But, due to the tremendous technological advances in electronics, many new and strange products enter its sales
field. What are those products that can profitably be advertised in ELECTRONICS? Well, the list is long 1,445 long. They're all in the Buyers' Guide issue, every one judged necessary by the industry itself. Go through them carefully (borrow it from your engineer, he's using it) and if you make one or more, plan now to advertise it - in ELECTRONICS, of course.

a single Anytime two or more different-but related-phenomena must be measured at the same time . . . under the same conditions . . . more and more engi. neers and scientists are finding that multi-channel oscilloscopes are the only economically sound answer.
No other equipment can give them such correct time relationships for a number of simultaneous phenomena. No other equipment saves the array of instruments and varying test procedures required by other means of coincident analysis, nor gives them such a convenient photographic record.
Speed and vibration . . . input and output signals of circuits . . . displacement time with associated dynamic strains and pressure . . . or even the relation between brain waves and muscular potentials are just a few of the many applications being discovered daily. Are you missing an opportunity in your field?
If your problem is multi-fold, chances are there's an ETC multi-channel oscilloscope that can do the job. Standard 'scopes are available in 2, 4, 5, 6, 8 or even 10 channel models. ETC also produces many special models for specific uses. A free catalog describing these 'scopes and tubes will gladly be sent upon request. W'rite today.

area of the rule, thus speeding the work. The computation of the first term is performed in the following manner:

1. The temperature in deg C on scale $C F$ is set at the pressure in millibars on scale $D F$.
2. The value of this term is read on scale D opposite 77.6 on scale C. A distinguishing marker has been placed at this point on scale C in order to facilitate reading of the value.

The special slide rule in Fig. 2 is used to compute the second term, $3.73 \times 10^{5} e / T^{2}$. In terms of the parameters temperature T, and relative humidity RH , given as a fraction, this expression may be closely approximated by ${ }^{3}$

$$
\begin{equation*}
A(R H)=3.73 \times 10^{5} e_{3} / T^{2}(R H) \tag{2}
\end{equation*}
$$

where e_{s} is the saturated vapor pressure . $A=3.73 \times 10^{5} e_{s} / T^{2}$ and is a function only of T.

The slide rule is constructed in the usual way by laying out distances proportional to the logarithm of A on one scale, and proportional to the logarithms of numbers in linear sequence on the other scale. The first decade of the latter scale represents humidities from 10 to 100 percent as well as values of the term from 1 to 10 in N units.
The A and B scales of a slide rule may readily be modified by cementing a new scale to the latter and laying off values of A on it. Indices of the temperature scale are placed at $-42.7,-15.9$ and +19.7 $\operatorname{deg} \mathrm{C}$, points at which A has the values 1,10 and 100 , respectively. These indices are marked by $\times 0.1$, $\times 1$ and $\times 10$ in the figures, the appropriate multiplier to be used with each index. The second term is

FIG. 2-Operation of slide rules for first term (A) and second term (B)

An automatic heat treat machine. Production is about 3 times that possible with manual methods while quality is held within very slose limits.

automatic production that gives quality control

Alnico magnets have been getting smaller and lighter, thanks to production techniques in use at Crucible. Automatic machinery cuts the possibility of human error to a minimum, so rejections are low. This helps to maintain stable price levels in the face of rising material and labor costs. At the same time, Crucible's rigid inspection standards and attention to quality have developed a magnet with the highest gap flux per unit weight of any on the market.

Today, Crucible can offer lighter, magnetically stronger Alnice magnets because of these automatic production techniques developed over the sixteen years that we have been producing the Alnico alloys.. And behind our familiarity with permanent magnets lies more than 52 years' experience with specialty steelmaking. Let us advise you on your magnet problem,

CRUCIBLE

52 yease of Früe strebinating PERMANENT ALNICO MAGNETS
CRUCIBLE STEEL COMPANY OF AMERICA, GENERAL SALES OFFICES, OLIVER BUILDING, PITTSBURGH 30, PA. STAINLESS•REX HIGHSPEED•TOOL• ALLOY•MACHINERY - SPECIALPURPOSESTEELS

WHY CBS-HYTRON GERMANIUM DIODES ARE BETTER RECTIFIERS

1. MOISTURE-PROOF . . . eliminates humidity and contamination problems
2. SELF-HEALING . . . self-recuperating from temporary overloads
3. SUBMINIATURIZED . . . only $1 / 2$ inch long, $1 / 4$ inch in diameter
4. SOLDERED WAFER . . . omission of plating eliminates flaking
5. LOW SHUNT CAPACITY . . . $0.8 \mu \mu \mathrm{fd}$ average
6. SELF-INSULATING CASE . . . mounts as easily as a resistor
7. EXCEPTIONAL LIFE . . . 10,000 hours minimum under rated conditions
8. NO FILAMENTS . . . low drain, no hum

Vital germanium wafer in a CBS-Hytron diode is guaranteed moisture-proof. Sealed against deadly moisture . . . fumes . . . and contamination, a CBSHytron diode keeps moisture where it belongs . . out! First, by a chemically and electrically inert impregnating wax. Second, by a glass-filled phenolic case. With moisture-proof CBS-Hytron germanium diodes, you can be sure of maximum trouble-free life.
Superior techniques also permit CBS-Hytron to omit plating of the germanium wafer. Soldering is directly to the base. Thus flaking is eliminated and quality improved. Universal design of CBS-Hytron diodes follows Joint Army-Navy specifications. "Clip-in" feature gives you versatility, ruggedness, and electrical stability. Flexible pigtails of copper-clad steel welded into sturdy nickel pins also insure you against damage by soldering heat.
Check the eight important-to-you reasons why CBS-Hytron moisture-proof germanium diodes are better rectifiers. Send today for complete data and interchangeability sheets. Specify CBS-Hytron guaranteed moisture-proof diodes for superior, trouble-free operation.

The obility of today's complex network of communications to function without interference is dependent upon the precision with which its crystal components are madrufactured. Each Reeves-Hoffman Crystal is built with exacting care and submifted to rigid fests to meet the most precise commercial and military specifications.

BFFyA

HOFFMAN Corporation

A subsidiary of Cloude Neon, Incorporated
CHERRY AND NORTH STREETS :- CARLISLE, PENNSYIVANIA

computed as follows :

1. The index of the temperature scale is set at the relative humidity on the RH scale.
2. The value of the second term is read on the sequential scale opposite the temperature in $\operatorname{deg} \mathrm{C}$ on the temperature scale.

The following is an example of a refractive index calculation from radiosonde data showing pressure, $1,014 \mathrm{mb}$; temperature, 21.5 deg C ; relative humidity (RH), 64 percent.

1. To find the value of the first term, $77.6 p / T$, set 21.5 on the paper scale of the first slide rule at 1,014 on scale $D F$ (Fig. 2A). The value is read on scale D, opposite the marker at 77.6 on scale C, as 267.0 .
2. To find the value of the second term, $3.73 \times 10^{5} e_{s} / T^{2}(\mathrm{RH})$, set the index of the temperature scale on the second slide rule at 64 on the RH scale (Fig. 2B). The value is read on the sequential scale, opposite 21.5 on the temperature scale, as 70.5 .
3. The value of N is obtained by adding the first and second terms, found in (1) and (2) and is equal to 337.5 .

This method may also be applied to a circular slide rule, which has the advantage of having a continuous scale. An example of the utilization of a circular slide rule for computing the second term is given in Fig. 3.
Values of $A=3.73 \times 10^{5} e_{s} / T^{2}$ vs T at intervals of one degree over a range of -45 C to +50 C are given in Table I, Adaptations of the slide rule may be made to ac-

FIG. 3-Special circular slide rule for finding second term

New HIPERSIL CORE cuts air-borne transformer size and weight

Transformer weight reduced 25%, size cut 20% in a single unit of air-borne electronic equipment. This is the mark set by a new lightweight Hipersil ${ }^{\circledR}$ Core designed by Westinghouse for the Navy Bureau of Aeronautics.

Adaptable to commercial as well as military use, the new core makes possible more powerful equipment within the size and weight limitations of previous models. A special silicon steel, rolled to a new 4 -mil thinness, with grain structure super-oriented by a refinement of the Hipersil process, achieves the size and weight reductions.

Hipersil Cores cut size and weight in all types of electrical and electronic transformers. They combine highest permeability with lowest losses in a wide
range of sizes (1 through 5 and 12 mils). Two-piece assembly simplifies transformer manufacturing, cuts fabricating costs. Greater flux-carrying capacity, increased mechanical strength help to make them the best core on the market. For specific information on how to apply Hipersil Cores to your product, write Westinghouse Electric Corporation, P. O. Box 868, Pittsburgh 30, Pennsylvania.

J-70632

rou can be SURE. IIf it Westinghouse

> Federal Electronic Sorting Gage uses MICRO precision switches in high-speed gaging cycle

PRECISE and extremely accurate repeat operations of MICRO precision switches recommended them to the design engineers of Federal Products Corporation to control the gaging cycle of their electronic sorting gage. This machine sorts manually loaded mica parts into eight thickness classifications plus over and undersize at an adjustable speed of from 60 to 120 pieces a minute.

The operator breaks the photoclectric beam with the mica in her hand to initiate the gaging cycle. The electronị gage liead moves forward, grips the mica and measures
its thickness. This signal, amplified and classified, causes the correct thickness disposal trap door betow gage to open. The two MICRO switches (upper right) are operated by timing cams to control the various steps of the gaging cycle.

Design engineers are finding hundreds of uses for these small, precise switches in the control of clectronie circuits. MICRO engineers, skilled in the switch requirements of this rapidly expanding industry, are ready to cooperate with you in the selection of the right switch for your application. Write or call the nearest MICRO branch.

A DIVISION OF
MINNEAPOLIS.HONEYWELL REGULATOR COMPANY

Designed for Application

Grid Dip Meters

Millen Grid Eip Meters are available to meet all various laboratory and servicing requirements.
The 90662 Industrial Grid Dip Meter completely calitrated for laboratory use with a range from 225 kc , to 300 mc . incorporates features desired for both industrial and laboratory application, including three wire grounding type power cord and suitable carrying case.
The 90661 Industrial Grid Dip Meter is similar to the 90662 except for a reduced range of 1.7 to 300 mc . It likewise incorporates the three wire grounding type cord and metal carrying case.
The 90651 Standard Grid Dip Meter is a somewhat less expensive version of the grid dip meter. The calihration while adequate for general usage is not as complete as in the case of the industrial model. It is supplied without grounding lead and withont carrying case. The range is 1.7 to 300 mc . Extrainductors available extends range to 220 ke .
The Millen Grid Dip Meter is a calibrated stable RF oscillator unit with a meter to read grid current. The frequency determining coil is plugged into the unit so that it may he used as a probe.
These instruments are complete with a built-in transformer type A.C. power supply and interminal terminal board to provide connections for battery operation where it is desirable to use the unit on antenna measurements and other usages where A.C. power is not available. Compactness
has been achieved without loss of performance or convenience of use ze. The incorporation of the power supply, oscillator and probe into a single unit provides a convenient device for checking all types of circuits. The indicating instrument is a standard 2 inch General Electric instrument with an easy to read scale. The calibrated dial is a large 270° drum dial which provides seven direct reading scales, plus an additional universal scale, all with the same length and readability. Each range has its individual phag-in probe completely enclosed in a contour fitting polystyrene case for assurance of permanence of calibration as well as to prevent any possibility of mechanical damage or of unintentional contact with the components of the circuit being tested.
The Grid Dip Meters may be used as:

1. A Grid Dip Oscillator
2. An Oscillating Detector
3. A Signal Generator
4. An Indicating Absorption Wavemeter

The most common usage of the Grid Dip Meter is as an oscillating frequency meter to determine the resonant frequencies of de-energized tuned circuits.
Size of Grid I)ip Meter only (less prole): $7 \mathrm{in} . \times 3^{3 / 10} \mathrm{in} . \times 3 \frac{3 / 8}{} \mathrm{in}$.

 MAIN OFFICE L Lns 5 AND FACTORY

MALDEN, MASSACHUSETTS, U.S.A.
 ACCURACY 2\% ENTIRE RANGE INPUT IMPEDANCE $1 / 2$ meg shunted by $\mathbf{3 0}$ uuf

- Stability insured by the exclusive use of wire-wound resistors in the attenuator and feedback network.
- Same accuracy of reading at $A L L$ points on the logarithmic voltage scale and linear decibel scale.
- Only ONE voltage scale to read with decade range switching
- No "turn-over" discrepancy on unsymmetrical waves.
- Accessories available to extend the range to 20 uv and to 10 kv .
- Provides 70 DB amplifier flat within 1 DB from 10 cps to 150 kc .

Write for further details of this and other Ballantine valmeters and accessories

PROVAD IN PRODUGTION

HERMETC's Miniature Feed-Through Terminals for All Electronic Applications

『 hese units are typical of the miniatures which HERMETIC is now producing with barrel dimension as small as $1 / 8^{\prime \prime}$ and with a mounting flange dimension as low as .150'. The center conductor is available tubular or solid in a wide variety of terminations. The reduction in overall dimensions which HERMETIC has achieved makes these units suitable for a great many applications.

Because the parts shown represent only a fraction of the vast production achieved by HERMETIC, contact the one and only dependable source of supply, and be sure that your problems will be solved, too.

WRITE for your FREE cOpy of HERMETIC's colorful, informative, new, 32-page brochure, the most complete presentation ever offered on hermetic seals.

Hermetic Seal Products Co.

First and Foremost in Miniaturization 31 South Sixth Street, Newark 7, New Jersey

RCA electron fubes for Industry

Quick Service on All Types. Allied maintains in constant stock for quick shipment, the world's largest distributor inventory of RCA special-purpose tubes -of all types. We specialize in supplying the tube needs of industrial, broadcast, governmental and other users. Phone, wire or write-we ship from stock to any part of the nation within hours after we receive your order. Save time, effort and moneyfill all your tube needs at ALLIED-the complete, dependable electronic supply source for industry

RCA-8008 Rectifier (illustrated). We stack the full line of RCA mercuryvapor rectifiers including the 575-A, 673, 816, 857-B, 866-A, 869-B, 872-A and 5558 .
Look to ALLIED for RCA: Vacuum Power Tubes Thryratrons - Cold-Cathode Tubes - Oscillograph Tubes - Vacuum \& Gas Rectifiers - Ignitrons - Phototubes © Camera Tubes - Monoscopes

Send far this valuable guide to the selection of proper RCA tube type replacements. Lists 1600 type designations, covering nonreceiving electron tubes. Write for your FREE copy of RCA Guide No. 37-046.

RCA test instruments

for All Lob Requirements. Order your RCA laboratory measurement instruments from our extensive stocks. We specialize in the supply of electronic test and measurement equipment for research, development, maintenance and production requirements. Simplify and speed your purchasing - send us your consolidated orders for RCA Tubes and Test Instruments -have the advantages of quick, expert shipment from the world's largest stocks of Electronic Supplies for Industry

> We can supply for quick shipment, all types of RCA test instruments, including the following well-known lab measuring equipment:
> - WO-56A 7" Oscilloscope - WV-87A Master VoltOhmyst* - WO-88A 5" Oscilloscope •WV-77A Junior VoltOhmyst*
> -WR-39C TV Calibrator *WR-59B TV Sweep Generator
*T. M. Reg

WV-97A Senior Voltohmyst* (illus.)
Improved RCA VTVM. Direct peak-to-peak measurement of complex waves from 0.2 volts to 2000 volts. Overall dc measurement accuracy of $\pm 3 \%$ full scale. Measures de voltages $0.02-1500$ volts; rins values of sine wave from 0.1-1500 volts. Frequency response flat from 30 cps to 3 mc . No. 84-075. Net. $\$ 67.50$

236 PAGE ALLIED CATALOG

Send today for the 1953 complete 236-page ALLIED Catalog -the authoritative buying guide to all electronic supplies. ALLIED offers the world's largest stocks of special fubes, parts, test instruments, audio equipment-complete quality lines of electronic apparatus. Save time, energy and money-simplify your purchasing by sending your orders to ALLIED-the single, dependable electronic supply source.

ALLIED RADIO CORP.

833 W. Jackson Blvd., Depf. 11-A-3, Chicago 7, Illinois
E Everything in Electronics from ONE RELIABLE SOURCE
"The Constants in the Equation for Atmospheric Refractive Index at Radio Frequencies," NBS Report No. 1938, Sept. 19, 1952 . Smithsonisn Mtenerogical Tables, Gith Levised EAtition, p :367 and p 348, 1951.
(4) Same as ref (: $: \mathbf{p}$) 351 and 352 .
(5) Name as ref (i) p 347 to 381 .
(6) B. Haurwitz, "Dynamic Meteorology', McGraw-Hill Book Co., Inc., New York' and London, 1 , 7, 1941.
(7) Same as ref (i), p lil

Multiple-Feedback Oscillators

USING A number of feedback circuits in connection with a single tank circuit has made possible the construction of oscillators able to operate over a wide range of frequencies with the L-C of the tank circuit remaining fixed. The circuits and the theory on which they are based are described in a patent by M. Morrison ${ }^{1}$. Some of the important points of the theory are as follows:
In a tuned-grid reactively loaded oscillator the generated frequency is determined by the frequency at which the grid must operate to produce the required grid operating voltage angle, the phase angle at which the grid operates under a given load.
Grid operating voltage angle will either lead or lag the plate voltage depending on the character of the load. Under reactive loads the plate voltage, current and grid voltage are always out of phase with each other.

If an attempt is made to bring the phase position of an oscillator operating under a reactive load into a phase position other than that naturally assumed, the frequency of operation will be shifted to a new out-of-phase position that will be consistent with the load conditions. On a reactive load the phase position cannot be corrected to any arbitrary position.
In a tuned-grid reactively loaded oscillator, the frequency generated is determined by the frequency at which the grid tank circuit must operate to produce the required grid operating voltage angle, which may be leading or lagging depending on the character of the load.

The frequency stability of a re-sistance-stabilized oscillator is not necessarily critical to the Q of the tank circuit, because the frequency stability depends on the grid oper-

IT'S READY NOW!

LET THE POSTMAN BRING YOU THIS UP-TO-THE-MINUTE EDITION OF A BOOKLET SPECIALLY WRITTEN TO HELP YOU ...

Find answers to

 metal-selection problems

When you're looking for a metal that stands up under severe conditions...

Here's a booklet that will help you find it :
The new, revised edition of " 66 Practical Ideas" is just off the press. Get your copy and keep it handy for reference.

You'll save time...trouble... needless rescarch. For "66 Practical Ideas" shows you how designers of electronic, electrical, and allied equipment have solved scores of metal-selection problems by using Inco Nickel Alloys such as Monel@, Nickel, or Inconel ${ }^{\circledR}$.

And it's pretty easy to see why. The twelve Inco Nickel Alloys resist corrosion, heat, abrasion and fatigue. They provide the characteristics so often sought when you're trying to get a design off the drawing board and into protuction... or when you're trying to make a good product into a better one.

Right now, of course, all Inco Nickel Alloys are on extended delivery because so much is taken for defense. But you don't have to watit for" 66 Practical Ideas." The booklet is ready for distribution. ready to start working for you at once.

Send for your copy now. The coupon is here for your convenience. Fill it in while you have it in front of you ... and mail it to Bruce B. Winter at Inco. He'll see that your personal copy of " 60 Practical Ideas" goes into the next mail. Tire International Nickel Company, Inc., 67 Wall Street, New York 5, N. Y.

ans

Bruce B. Winter
 THE INTERNATIONAL NICKEL COMPANY, INC.

67 Wall Street, New York 5, N. Y.
"66 Practical Ideas" sounds like a really worthwhile booklet. Please send me a free copy for my reference file.

RCA states in their descripitive literature that:
"Vacuum Capacitors, which are virtually failure-proof are used in the power amplifier tank circuit."
"The plate circuit of the power amplifier is tuned by a variable vacuum capacitor..."
"There are no air dielectric condensers in the transmitter, thus reducing arc-over possibilities due to dust collection."
You too, may find that Jennings Vacuum Capacitors can simplify and improve your circuits.

隹 LTERATURE MAILED ON REQUEST

ating voltage angle being maintained at the correct position with variations in other circuit parameters rather than the circuit dissipation.

Variation in tank-circuit Q with different applied tank circuit voltages plays an important part in compensating for variation in phase angle of the load current with different applied tank circuit voltages.

Changes in the inductance and/or Q of the load on an oscillator cause changes in the load-imposed current angle. For each change in this current angle there is required a correct change in grid operating voltage angle to maintain the operating frequency. Oscillator stability is attained when the grid tank circuit automatically adjusts the grid operating voltage angle for the new load-imposed current angle at the same operating frequency.

In a resistance stabilized grid-tank-circuit oscillator having an inductive plāte load and a singlefeedback circuit, a frequency is best stabilized against plate voltage variations and is most purely sinusoidal when the tank circuit is operating at a frequency considerably removed from the resonant value.

An oscillator tank circuit having an intermittent drain imposed on it distorts the sinusoidal character of the tank circuit voltage. Therefore an oscillator should not be

FIG. 1-Circuit arrangements for determining the effects of inductors on the operating frequency of an oscillator

There are hundreds of jobs open to engineers today!
 but lew opportunities like these

Westinghouse is in nuclear power to stay. We believe in the development of atomic energy as man's next great source of power. If you want to get in on a new era in industry, we want to talk to you.

Atomic power opportunities are waiting for electronic engineers

 with 4 to 10 years of this kind of experience...ELECTRONIC COMPUTERS, employing pulse amplifying wide range linear amplifying and rate circuits.

NULL BALANCE DEVICES, employing both vacuum tube and magnetic amplifiers, SERVOMECHANISMS, PLANT CONTROL SYSTEMS.

LIAISON with customers, contractors, designers of component equipment.

SUPERVISION of drafting work.

REMEMBER! We are primarily interested in good experienced application and development engineers-lack of previous reactor development experience is no handicap in this type of work.

HOW TO APPLY! What Westinghouse wants to know is: Where and when you obtained your degree . . . how you did in school . . . where you have worked at your profession . . . what kind of work you have done.
In other words, right now we're more interested in your ability to fill current openings and to develop in the Westinghouse Atomic Power Division than we are in your vital statistics. Write your letter of application accordingly.
You will be in communication with men who are experienced in keeping secrets. All negotiations will be discreet, and your reply will be kept strictly confidential.

Address your appilicafion letter fo: Manager, Industrial Relatlons Department, Westinghouse Eiectric Corporation, P. O. Box 1468, Pittsburgh 30, Pennsylvania.

What do you want?

MONEY? Good jobs are open here now-waiting for good men who want to make a permanent connection.

A PERMANENT JOB? Many of the engineers who joined Westinghouse 20 and 25 years ago are still with Westinghouse-and in key positions -and engineers who join us now will have the opportunity to make this work their lifetime careers. When many other industries may be going through slack times, atomic energy will still be in a stage of expansion.
SUBURBAN LIVING? It's here-within easy driving distance of your work. Within a few minutes of shopping centers . . . schools . . . metropolitan centers.
JOB EXTRAS? Westinghouse offers: Low cost life, sickness and accident insurance with hospital and surgical benefits. A modern pension plan. Westinghouse stock at favorable prices. Westinghouse appliances for your home at discount.
YOUR KIND OF ASSOCIATES? Every fourth person in the Division is an engineer or scientist. More than half the top Westinghouse executives are engineers.

FASCINATING WORK? What other branch of science offers such exciting challenges? So many opportunities for discovery? So many chances to benefit mankind? So many opportunities for original work?

GROWTH OPPORTUNITIES? Never again in your lifetime will you be able to get into such a sure-to-expand industry so early in its development.

PRECISION POTENTIONETERS

Linear and Non-Linear

Linear and non-linear units are described in the Gamewell Precision Potentiometer booklet. The booklet also contains a convenient glossary of terms used in conjunction with precision potentiometers. Write for your copy.
To solve your specific precision potentiometer problem, send your specs and sample orders to Gamewell. With over 97 years of experience in manufacturing precision electrical products, Gamewell can provide the answer promptly.

operated with these two factors in phase if sinusoidal operation is desired.
Inductively loaded oscillators have an inherent tendency to produce sinusoidal currents and distorted plate voltages. Capacitive loading induces distorted currents and sinusoidal plate voltages. Oscillators with capacitive loading are more difficult to stabilize than those with inductive plate loads, but are more sensitive to synchronizing currents than the latter.
If the oscillator in Fig. 1A were removed and adjusted independently to a given frequency, it could be placed back in the circuit. By adjusting the feedback control resistor the whole circuit could then be made to oscillate at the same frequency. If, however, the centertapped resistor in the plate circuit were replaced by inductances, as in Fig. 1B, it would be found that the circuit will not oscillate at the given frequency but at a higher one. It will also have a lower output with the same plate impedance, because it will be found that the grid voltage is lower. To bring the oscillator to the given frequency it is necessary to place a variable capacitor across the inductance and increase the capacitance until the frequency and grid voltage reach the same values as in the original circuit. This shows that an oscillator can be made to operate at various frequencies by varying the $\mathrm{L}-\mathrm{C}$ of the parallel oscillatory circuits and that an oscillator operating under inductive plate loading must operate at a frequency higher than the

FIG. 2-An oscillator circuit with a wide range of operating frequencies. Because of the small size of the plate circuit capacitors stabilization is difficult

CHASE ${ }^{\circ}$ PHOSPHOR BRONZES

are worth knowing about

What metal is best for bearings? For diaphragms? For any tough production job that requires a metal of superior qualities? Chase Phosphor Bronzes may be the answer.

These tin bronzes are superior to many other metals for a wide variety of functions. Some Chase Phosphor Bronzes are ideal for fuse clips, spring contacts, bellows, lock washers. Others are suited for bearings, bushings, gears, pinions, screw machine parts. They are made in Rod, Strip or Wire.

Chase Phosphor Bronzes... like all Chase metals... are carefully controlled as to quality to provide a high standard of surface finish and excellent internal characteristics. Fill in the coupon below and we'll send you the free Chase folder.

Chase brass a copper

WATERBURY 20, CONNECTICUT - SUBSIDIARY OF KENNECOTT COPPER CORPORATION

- The Nation's Headquarters for Brass \& Copper

Albany \dagger	Cieveland	Kansas City, Mo.	New Yark	San Francisco
Atlants	Dallas	Las Argeles	Philatel\|háa	Seatile
Baltimore	Ienvert \dagger	Milwaukee	Pitsburgh	Waterbury
Boston	Detroit	Minneapolis	Providsace	
Chicago	Houston \dagger	Newark	Rochestert	(fis
Cineinnati	Indlanapelis	New Orleans	St. Louis	office omy)

excellent corrosion
 resistance

Chase Brass \& Copper Co., Dept. ELECl53

Waterbury 20, Conn.
Please send me the free folder on Chase Pbosphor Bronzes.

Name

Position
Company
Street
City _ _ _ State.

USE THEM FOR

FREQUENCY
 MEASUREMENTS

PERIOD
MEASUREMENTS

TIME INTERVAL MEASUREMENTS

FREQUENCY RATIO MEASUREMENTS

SECONDARY
FREQUENCY
STANDARD

TOTALIZING COUNTER

DIRECT RPM TACHOMETER

Every known need in frequency and pulse measurement is now satisfied by four completely new designs of Potter frequency-time counting equipment.

The simplified Potter 100 KC Frequency, Models 820 and 830 , are suitable for rapid and precise production line applications. The versatile Potter 100 KC and 1 MC Fre-quency-Time Counters, Models 840 and 850 , include all gating, switching, timing and counting circuitry required for any conceivable count-ing-type measurement.

All models feature the convenience of smaller size, lighter weight, and functional panel layout. And, optional readout indication-either the dependable Potter 1-2-4-8 decimal readout or the conventional $0-9$ lamp panels-is available.

For further data or engineering assistance write Dept. I-C.

115 CUTTER MILL ROAD GREAT NECK, N. Y.

FIG. 3-A circuit similar to Fig. 2 but using a 10 to 1 current transformer to eliminate the small capacitors, making it easier to stabilize the oscillator
resonant frequency of the tank circuit.

Applying the information derived from the oscillators in Fig. 1, the multiple-feedback oscillator circuits in Fig. 2 and 3 may be explained. The tank circuits have fixed L-C combinations and a conventional feedback circuit to supply feedback current in phase with the plate voltage.

If the tank circuit of Fig. 2 is to work at resonance with the tank circuit, feedback current must be in phase with the grid operating voltage angle. This is accomplished by a direct feedback circuit comprising two 150,000 -ohm resistors and a second feedback circuit with two $4,000-\mu \mu \mathrm{f}$ variable mica capacitors. This second circuit provides a current having an out-of-phase position of such magnitude and phase difference relative to the reverse feedback circuit that it will cause the desired magnitude of feedback current and proper grid operating voltage angle to maintain the oscillator operating at the proper frequency. Although there are only two phases of feedback current used here, any number can be employed to obtain the proper phase angle and current magnitude to produce the desired phase relation to the reference phase of the circuit.
In this oscillator circuit it is not necessary for the $\mathrm{L}-\mathrm{C}$ of the tank circuit to be set at the resonant

VARGLAS SILICONE. That's the insulating sleeving and tubingpioneered by Varflex-that takes temperatures ranging from $500^{\circ} \mathrm{F}$ above to $85^{\circ} \mathrm{F}$ below in its efficient, resistant stride. Lead wire and treated cord too.

VARGLAS TUBING IMPREGNATED WITH GENERALELECTRIC PERMAFIL. Tough, flexible, heat-resistant-available in coils. Premium tubing at a reasonable price.

VARGLAS SLEEVING AND TUBING. Numerous types and grades-including synthetic treated, varnished, lacquered, saturated, litewall and others.

VARGLAS NON-FRAY SLEEVING. Three types-may be subjected to temperatures up to $1200^{\circ} \mathrm{F}$-for applications where dielectric requirements are not primary.

VARFLO TUBING AND SLEEVING. New, low-priced - for applications where unusually high temperatures are not a factor. A real economy line, this.

VARFLEX COTTON TUBING AND SLEEVING. Varnish or lacquer impregnants - for applications where Fiberglas products are not required.

SAMPLES? All you want with our compliments. For free folder of our complete line, just clip and mail this coupon.

VARFLEX CORPORATION

MAKERS OF ELECTRICAL INSULATING TUBING AND SLEEVING

VARFLEX Corporation, 308 N. Jay St., Rome, N. Y.
Please send me information as well as free samples of your electrical Sleeving and Tubing.
I am particularly interested in samples suitable for

```
Name.
                                Company
                                Street.
                                City--
                                Zone
```

\qquad

``` State
``` \(\square\)


\section*{MAGNETIC IRON CORES • FILTER CORES • MOLDED COIL FORMS THREADED CORES • SLEEVE CORES • CUP CORES}

\section*{NATITNAL}

Samples prompily submitted upon request for design, pre-production, and test purposes SEND FOR CATALOG 110

1410 Chestnut Ave., Hillside 5, N. J. Robert T. Murray Jerry Golten Co. Mertin P. Andrews Perlmuth-Colman \& Assoc. Jose Luis Pontet 614 Central Ave. 2750 W. North Ave. Mott Rood 1335 South Flower Cardoba 1472 East Orange, N. J. Chicago 2, III. Fayetteville, N. Y. Los Angeles, Cal. Buenos Aires
frequency of the oscillator. It may be set at many other values for the same operating frequency if the polyphase feedback circuits are adjusted to provide the required grid operating voltage angle for the load at the operating frequency.

The oscillator of Fig. 3 uses a special current transformer, with a 10 to 1 ratio to accomplish phase alteration of the feedback current. The transformer, with a variable capacitor across the output, is constructed and adjusted to provide feedback load current in phase with the a-c component of the plate load current.

\section*{References}
(1) M. Morrison, Vacuum Tuhe Oscillator System, Patent No. 2,587,750, Mar. 4, 1952.

\section*{Measurement of Flashlamp} Characteristics

The most intense light source commonly available is the brilliant flash produced by the discharge of a capacitor through a gas at reduced pressure. In appearance the light is an intense white and produces an effective duplication of daylight illumination for photographic purposes. Intensities as high as \(10^{6}\) candles per sq cm have been obtained in single flashes in lamps where the average power input is 10 megawatts during the flash. Light output efficiencies in the order of 50 lumens per watt have been measured in single-flash, high-current discharge tubes.

A testing circuit has been developed to measure the electrical and radiation characteristics of flash discharge in gas-filled tubes. Shown in Fig. 1, the device uses a triggering circuit to produce synchronous current pulses for repetitive flashing. Current, potential, power input to the discharge and light output are measured and recorded on an oscilloscope.

The test apparatus consists of a 10 in. disk of Dow metal driven at \(3,600 \mathrm{rpm}\) by a \(1 / 20-\mathrm{hp}\) synchronous motor. A 0.2 mm radial slit on the periphery of the disk passes light from a movie exciter lamp to a multiplier phototube to provide

IN LABORATORIES throughout the electronic field, the Varian X-13 Klystron is widely used as a general-purpose \(x\)-band signal source. In the typical setup above (checking load reflection), note the compactness, the convenience of connection, and the way the tube bolts directly to the waveguide.

OUTPUT POWER typically reaches half a watt at center frequency and exceeds 150 milliwatts over the full frequency range 8.2 to 12.4 kmc . The X-13 exhibits extremely low microphonic levels and operates directly into matched waveguide. Tuning is done with a single control. The tube is air cooled and has clearance dimensions of \(41 / 2\) by \(21 / 2\) by \(21 / 2\) in., weight of only 6 oz .

Typical Power Output - Varian X-13 Klystron (Beam Voltage, 500 v)

OTHER VARIAN KLYSTRONS extend and expand the functions of the \(\mathrm{X}-13\). An extensive line of tubes with designs based on that of the X-13 offers a wide selection of output powers, types of tuning devices and terminations, as well as capabilities for withstanding vibration and shock ranging far beyond 30 times gravity.

SEND FOR DATA on these or other klystrons from the extensive Varian line, many of which are necessarily unpublicized. You are invited to submit your microwave problems to the Varian applica-tion-engineering group for recommendations.

FIG. 1-Block diagram of flashlamp testing apparatus
sharply defined current pulses. These pulses are amplified and used to trigger the oscilloscope sweep and also to initiate the discharge in the flash tube.

A scaler circuit provides pulsing rates lower than the 60 pps set up in the multiplier tube. Consisting of six binary stages, the scaler is arranged so any desired number of stages may be inserted in the circuit to reduce the pulsing rate by a factor \(2^{\prime \prime}\), where \(n\) is the number of stages used. Thus, in addition to the 60 pps rate there are six other rates available, \(30,15,7.5,3.75\), 1.88 and 0.94 pps .

Discharge of the tube is initiated by an external trigger electrode located near the center of the quartz envelope. A capacitor across the electrodes is charged to a potential less than the breakdown voltage of the gas used. When a rapidly changing potential is placed on the trigger electrode it produces sufficient ionization of the gas for discharge to occur. The potential of the capacitor decreases in a few microseconds from an initial value between 1,500 and 3,000 to a few hundred volts. The dielectric strength of the nonionized gas is restored in a few tenths of a millisecond after initiation of the highcurrent arc.

To provide high-voltage pulses for initiating the discharge, the amplified photocurrent pulses are transformed to sharp positive pulses by a thyratron tube. These pulses are then impressed on the grid of a hard tetrode tube, normally biased to cut off, reducing the plate impedance from a high to a very low value. The trigger electrode is connected directly to the plate of the tetrode, and when a

\title{
Copper Alloy Bulletin
}
"Bridgepgrt" MILLS IN BRIDGEPORT, CONN. AND INDIANAPOLIS, IND. - IN CANADA: NORANDA COPPER AND BRASS LIMITED, MONTREAL

Vari-Time Magnetic Contactor and copper-base alloy parts, courtesy The Clark Controller Co., Cleveland, Ohio.

\section*{Copper and its Alloys Ideal for Heavy Duty Contactors}
D.C. Magnetic Contactors are used as motor starters, crane controls, press controls, furnace controls, etc. They must be capable of handling anywhere from 25 to 900 amperes, open and close rapidly with a minimum of arcing and burning, and withstand corrosion even when exposed to the elements. In order to meet these requirements. high conductivity copper and alloys such as free cutting brass and Phosphor Bronze are used to manufacture those parts which form the electrical circuit. Some parts such as the studs, contact tips and arc horns, which require machining, are less costly to produce because of less tool wear and spoilage when using copper or brass.

\section*{Vari-Time Contactor}

Illustrated is a Clark Controller Vari-Time Magnetic Contactor (1) which contains a special core providing
an adjustable time delay before closing after the coil has been energized. The timer (2) consists of a core tube machined from free-cutting brass bar stock. The I.D. of the tube is reamed smooth and has a tolerance of \(\pm\) \(.0005^{\prime \prime}\). Other copper-base alloy parts are the core cap and valve seat, both machined from free-cutting brass and a washer made from commercial bronze. The assembled core is filled with a special oil of controlled viscosity, and then the core tube is sealed with the core cap which is soldered in place. The timing is adjusted by an adjustable stop stud on the front of the contactor which varies the gap between the armature and the front of the core. The entire VT Core is so designed and constructed as to give exceptionally long life. At various times, after years of hard service, Vari-Time cores have been taken apart and rigidly inspected with no appre-
ciable wear or deterioration.
Other copper alloy parts used on the contactor are as follows:

Blowout Stud (3) - This stud is machined from high conductivity hard copper square bar stock and then silver coated. It holds the blowout coil to the slate and also provides a terminal for power connection.

Rear Contact Stud (4) - This extruded part is made from free cutting brass rod which is silver coated after being drilled and tapped. To this stud are connected the other end of the blowout coil, the stationary contact tip and the rear arc horn.

Contact Tips (5) - A heated billet of high conductivity copper is forced through a die producing an oversized cross-section of the tip. This extrusion is then cold drawn through a sizing die which also imparts the correct hardness to the copper. Two contact tips are used on each contactor.

Front Arc Horn (6) - The front arc horn is formed from a Phosphor Bronze Grade A (\(95 \%\) copper, \(5 \%\) tin, \(0.15 \%\) phosphorus) strip while the rear arc horn. not illustrated, is formed from a high conductivity copper strip. Both arc horns are silver coated. The horns extinguish the arc by lengthening it until it is broken.

Stop Stud (7) - Machined from Phosphor Bronze Grade B-1 alloy, this stud acts as a stop for the contact arm.

Connector Stud (8) - This part is machined from high conductivity hex-agon-shaped copper rod. It connects one end of the connector assembly to the slate, and also serves as a power terminal connection.

Before you decide what copper alloy to use for a particular application, many factors must be taken into consideration. Bridgeport Brass produces many alloys, each one with its own distinctive properties. Contact the nearest Bridgeport branch office for assistance with any of your metal problems.
(9247)

when you use Sangamo Paper Capaciiors

Sangamo hermetically sealed paper capacitors for filter, by-pass, coupling or power supply applications can be furnished in types that give excellent performance with long life over a temperature range from \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) ! Diaclor*, or mineral oil impregnation for \(85^{\circ} \mathrm{C}\) operation-and Sangamo developed E-therm impregnation for exceptionally high thermal stability and superior electrical performance over a range of operating temperatures up to \(125^{\circ} \mathrm{C}\). Write for further information. Complete story in Catalog No. 800 A and Engineering Bulletin No. 104.
*TM Regisfered (Chlorinated Dielectric OII)

Trase whaterow...

choose Sangama SANGAMO ELECTRIC COMPANY

FIG. 2-Typical traces of flash current. potential and photocurrent
positive pulse causes the tube to conduct, the potential of the electrode drops from several thousand volts to a very low value. Observations using the fast sweep of the synchroscope indicates that the change occurs in less than \(0.1 u s e c\), or at a rate greater than \(10^{11} \mathrm{v}\) per sec. Using 6,000 to \(8,000 \mathrm{v}\) on the trigger electrode it is possible to pulse all the tubes in a perfectly consistent manner at any rate for which overheating of the electrode did not occur.

Measurements are made on a Navy radar synchroscope having sweep ranges of \(1,2,10,25\) and 60 usec with the sweep triggered by the pulse from the pulse generator circuit. The low-impedance input circuits are properly matched with well-shielded coaxial cables. Identical cables are used to give proper phase relations between current, potential and light pulses.

Measurement of tube potentials is carried out by means of a compensated and shielded voltage divider. Check measurements showed that tube potential errors are not more than \(\pm 5\) percent. Current pulses are obtained by the use of a specially constructed bifilar element having a resistance of 0.089 ohm . The average deviation in mean current values as determined by com-

\section*{These signals find the way}
 00000000000000

When you dial a telephone number, high-speed switching mechanisms select your party and connect you. Through a new development of Bell Telephone Laboratories, similar mechanisms are doing the same kind of job in private wire teletypewriter systems which America's great businesses lease from the telephone company.

Company X , for example, operates an air transportation business with scores of offices all over the country. At one of these offices, a teletypewriter operator wishes to send a message, let us say, to Kansas City. Ahead of the message, she types the code letters " KC ". The letters become electric signals which guide the message to its destination.

Any or all stations in a network, or any combination of stations, can be selceted. Switching centers may handle 50 or more messages a minute . . some users send 30,000 messages a day. Delivery time is a few minutes.

Defense manufacturers, automobile makers, airlines and many other American businesses are benefiting by the speed and accuracy of the new equipment - another example of how techniques developed by the Laboratories for telephone use contribute to other Bell System services as well.

BELL TELEPHONE LABORATORIES
Improving telephone service for America provides
carcers for creative men in scientific and technical fields.

Pr Fast transients and high-frequency phenomena now can be accurately recorded.
Several types of continuous-drive record magazines are available for 6 -inch sensitized paper and film, and for \(35-\mathrm{mm}\) film. The magazine shown on the oscillograph at the left accommodates 100-foot rolls of record paper.

Drum-type magazines, both small and large, are valuable for short high-speed records. The large drum-type magazine at the left has a drum 3 feet in diameter and 6 -inches wide. It can be driven at 3000 RPM for a chart speed of 6000 inches per second when high resolution is needed. It can be used to take one 10 -foot record or a larger number of shorter records.

The ASC-10 6-element direct-coupled amplifier will drive the SC-16 oscillograph from potentials of millivolt level.
Useful for strain recording to 100 Kilocycles.
AUTOMATIC OPERATION Initiate a transient with the oscillograph, or let the transient start the oscillograph.
QUICK-CHANGE TRANSMISSION for wide range of record speeds.
PRECISION TIME LINES.
Z-AXIS MODULATION for timing to one-tenth millisecond.
QUICKLY-INTERCHANGEABLELENS STAGES for dif ferent record and trace widths.
Write for Bulletin 2G1-K for details.
Write for FREE copy of Hathaway Engineering News

paring the charges delivered by the capacitor with the charges obtained by graphical integration of the synchroscope current trace amounted to \(\pm 3\) percent.

Radiation measurements in the ultraviolet region are made with a 1P28 multiplier phototube with a Corning 9863 filter to give an overall response extending from \(2,400 \mathrm{~A}\) to \(4,200 \mathrm{~A}\) with a peak at \(3,350 \mathrm{~A}\). In the visible region a 931 A multiplier is used without a filter. A sixstage multiplier with Cs-Ag-0 cathode is used in conjunction with a Wratten A (No. 25) filter provides a response range from 6,000 to \(12,000 \mathrm{~A}\) with a peak at \(8,500 \mathrm{~A}\) in the near infrared region.

Since peak light intensities ranging up to \(10,000,000\) lumens are encountered at the highest flash energies, considerable attenuation is required to limit the operation to the region of linear response of the multipliers. To provide a fixed amount of attenuation a piece of exposed photographic film is placed over the opening in the multiplier housing.

This article is abstracted from a paper entitled "Electrical and Radiation Characteristics of Flashlamps" by H. N. Olsen and W. S. Huxford, which appeared in the Journal of the Society of Motion Picture and Television Engineers. p 285, Sept. 1950.

\section*{Phonograph Needle Drag Distortion}

Motion of a phonograph needle in a direction tangental to the record groove will cause what is known as drag distortion. If present in a record playing system this distortion may result in spurious tones having greater amplitude than those originally recorded.
Phonograph records are usually recorded laterally, with the audio frequency motion of the needle at right angles to the groove. For accurate reproduction the playback needle should duplicate the exact motion of the recording stylus. If forces act on the reproducing needle to cause longitudinal motion, its movement will no longer duplicate

"We would pay a premium for these 50,000 Air Shipments yet we actually saved thousands of dollars!"

\author{
Robert S. Wnolf, Mgr., Teletranscription Dept., Dumant Television Netwerk
}

When we ship TV film, we're interested in service. We can't afford to take ary other attitude. We've bought program time all over the country, and those programs must be filled
'We at Dumont use Air Express. It's the fastest. It has all-point coverage. Above all, it is DEPENDABLE

As to cost - Air Express costs Dumont less than other air services would, by thousands of dollars per year! For instance, on our regular shipments
to Derroit, other services cost \(37 \%\) to \(337 \%\) more than Air Express. And we can't duplicate the service at any price? 'The Air Express people have carried upwards of 50,000 shipments for Dumont in the last four years. Their ability to trace shipments - especially when being shuttled between stations - is almost uncanny! It has helped us out in many an emergency.
'Ir pays to specify Air Express - in more ways than one!

Division of Railway Express Agency

\section*{How the EDISON thermal relay protects electronic tubes}

\section*{Delays plate voltage application \\ until cathode is properly heated}

PROTECTION OF CATHODES in electronic tubes, such as thyratrons and gas filled rectifiers, depends on allowing cathodes to reach operating temperature rather than delaying application of plate voltage for a fixed time. A thermal relay, since its operation also depends on attaining a predetermined temperature, is eminently suitable for cathode protection.
the edison thermal relay is widely used for this purpose because (a) its delay characteristics vary with lime voltage as does cathode heating; (b) it is suitable for continuous operation; (c) it offers sustained accuracy; (d) it has a wide range of delay
periods; (e) it is silent and positive in operation; (f) it is as independent of ambient temperatures as the cathode it is protecting; \((\mathbf{g})\) it is relatively inexpensive; (\(\mathbf{h}\)) it is small and lightweight. The cooling rate of the Edison Thermal Relay prevents loss of equipment operating time due to momentary power interruptions.

EDISON ENGINEERS will help you solve your cathode protection problems if you will write and give them the data.

Just address Instrument Division, Thomas A. Edison, Incorporated, 94 Lakeside Ave., West Orange, New Jersey.

\title{
Shomas \(a \varepsilon_{\text {dioom }}\)
}

I N C O R P O R A T E D
Instrument Division. West Orange, New Jersey
-OTHER INSTRUMENT dIVISION PRODUCTS
Sealed Time Delay Relays - Sensitive Relays - Electronic Temperature Controls - Critical Temperature Monitors - Electrical Resistance Bulbs.

\section*{YOU CAN ALWAYS RELY ON EDISON}
that of the recording stylus and distortion will be introduced.

Some of the causes of this longitudinal motion are; the varying force that the sides of the groove exert on the needle; the pinch effect due to the uneven width of the record groove and the change in friction with changes in velocity and pressure of the needle in the groove.

In a series of experiments made by the National Bureau of Standards it was found that when playing a recording consisting of a pure tone of constant amplitude, drag distortion will produce only

FIG. 1-Graphical reproduction of drag distortion in a pure sine wave recording. Solid line is path of ideal stylus having only lateral motion. Dotted line shows distorted path followed by needle free to move longitudinally as well as laterally
even harmonics with the second harmonic predominating.

Two methods were tried to measure the longitudinal motion of the needle. A photoelectric arrangment with longitudinal needle motion modulating a light beam did not prove satisfactory. The second method, in which the longitudinal movement frequency-modulated a \(50-\mathrm{mc}\) oscillator was found to be more accurate. Two small metal plates were mounted near the needle so that any longitudinal motion would vary the capacitance between the plates. With the plates connected across the tank coil of the oscillator, an \(\mathrm{f}-\mathrm{m}\) signal was picked up on a standard f-m receiver. When tuned properly, the output of the receiver varied with the instantaneous longitudinal position of the needle. A dual-beam oscilloscope indicated simultaneously both the

\title{
\[
\begin{aligned}
& \text { Quollity control works } \\
& 2 \text { weys of Cuts TER }
\end{aligned}
\] \\ It's a fact and here's
} why! First, Chester quality control engineers certify every phase of manufacture from raw material to finished product packed for shipment. No detail is too small or unimportant to merit their full attention. Second, quality in turn governs production not a single foot of Chester wire or cable is ever "hurried through" to meet a shipping date or heavy schedule. Extra shifts, not faster production is the method used to break bottlenecks at Chester.

This two way quality control is just one of many important reasons why electrical and electronic men, in increasing number, specify Chester wire and cable for an extra measure of reliability. Why not check your requirements with Chester today.

FOR EVERY APPLICATION -
\[
\text { JAN-C. } 76 \cdot 80^{\circ} \cdot 90^{\circ} .105^{\circ} \mathrm{C}
\]

Hook-Up Wire - Shielded Wire and Cable Flexible Cords - Coaxial Cable - Television Lead-In Cable - Gas Tube High Tension Cable - Oil Burner Ignition Cable - Blasting Wire - Thermostat Cable - Bell and Office Wire - TW Building and Fixture Wire

UL
APPROVED \(90^{\circ} \mathrm{C}\)

JAN.C. 76 SRHV

UL APPROVED \(80^{\circ} \mathrm{C}\)

INSTRUMENT WIRES

COAXIAL CABLE

MANUFACTURERS OF QUALITY WIRE AND CABLE FOR EVERY ELECTRICAL AND ELECTRONIC REQUIREMENT

More and more exacting engineers and designers are getting firsthand, proof of the rigid, round-the-clock performance standards built into every Milwaukee Transformer Co. product.
Stringent quality control methods combined with modern production facilities and skilled engineering are reasons why you can expect and get "Performance that Exceeds the Demand."

Custom-engineered components for MIL-T-27 government, and commercial requirements.
Quotations submitted upon request.

Write for your Tree copy of Catalog MTR-I

Hermefically Sealed Components That Perform Superbly, Lestingly In Airborne, Ground Applications.

\section*{AUDIO, POWER, PULSE \\ THAMSFORMERS REAGTORS, FILTER NETWORKS}

SPECIALTY ENGINEERING . . . DESIGN, DEVELOPMENT AND PRODUCTION

\section*{MILWAUKEE TRANSFORMER CO.}

5231 NORTH HOPKINS STREET MILWAUKEE 9 , WISCONSIN

\title{
Admiral \\ DEWALD
}

\section*{Duff Rest}

Heferelles Are Dui GENERAL fab ELEGRIC Instrument
 Magnavor Mayiatis Mack Customers SARGES TARZAN

\section*{ROC DISCAPS} ...Specified and Used by Leading TV Makers

The list of satisfied RMC DISCAP customers reads like the "Blue Book" of the TV industry. Few are missing from this top level roster.

RMC offers a full line of by-pass as well as remperature compensating ceramic disc capacitors.
Engineers specify them for their uniform high quality, low inherent inductance and small size.

Purchasing agents specify them because they can depend on RMC to make delivery when needed.

RMC temperature compensating disc capacitors (which meet the RTMA spec for class one ceramic capacitors) are designed to replace tubular ceramic and mica capacitors at a lower cost.

\title{
RADIO MATERIALS CORPORATION GeNERAL OFFICE: 3325 N. California Ave., Chicago 18, ill.
}

\section*{Measure PHASE Difference Directly \(\mathbf{0}^{\circ}-\mathbf{3 6 0}^{\circ}\). . .}

Type 320AB PHASEMETER
- . . In 4 full scale ranges, \(0^{\circ}-36^{\circ}, 0^{\circ}-90^{\circ}, 0^{\circ}-180^{\circ}, 0^{\circ}-360^{\circ}\), without ambiguity
- . . . Independent of voltage amplitude from 1 to 170 volts peak
- . . . Independent of voltage wave form
- . . . Independent of frequency from 2cps. to 100 kc . (accuracy: 20cps20kc, \(1 \%\) of full scale \(+3^{\circ}\); error increases slightly above 20kc.)
- Large, easily read, mirrored scale panel meter
- Ease of operation - ideal for production testing or laboratory use
- Eliminates tedious and inaccurate oscilloscope techniques
- Terminals for recorder . . . instantaneous response of output voltage to phase changes
- Incremental accuracy better than \(1 \%\) of full scale
- Proven performance and quality workmanship

In audio facilities, ultrasonics, servomechanisms, geophysics, vibration, acoustics, aerial navigation, electric power transformation or signalling, . . . in mechanical applications such as printing register, torque measurement, dynamic balancing, textile and packaging machinery and other uses where an accurate measure of the relative position of moving parts is required . . . the type 320 AB Phase Meter has achieved widespread approval as a unique and versatile measuring instrument.

For further information on measuring phase, send for specification bulletin and TIC Laboratory Reports

\section*{Engineering Representatives}

Chicago, Ill. - UPtown 8-1141
Cleveland, Ohio - PRospect 1-6171
Waveland, Ohio - PRospect 1-6171
Canaan, Conn. - Canadn 649

Arnprior, Ont., Can. - Arnprior 400
New York, N. Y. New York, N. Y. - Murray Hill 8-585
Hollywood, Cal. - HOllywood \(9-6305\) Hollywood, Cal. - DIxon 9918 Dallas, fexas

535 Main Street, Acton, Massachusetts, TeI. ACton 3-7711
tablish the interference levels to be expected in this frequency range. It was necessary to measure signal levels far below those which would ordinarily be considered useful for communications.

Narrow-band, crystal-controlled receivers were used to measure the signals transmitted from unmodulated crystal-controlled transmitters. Use of these narrow-band receivers effectively reduced cosmic and receiver noise levels at 100 mc to such an extent that useful measurements could be made of the available received signal energy at 170 db below one watt, corresponding to a 50 -ohm signal generator output level of only 0.022 microvolts.

The method adopted was to use a heterodyning system with two standard signal generators and a crystal mixer, Fig. 1, the desired frequency being either the sum or difference frequency of the two signal generator frequencies \({ }^{1}\). Since the desired frequency is displaced from the output frequency of either of the signal generators, leakage fields from the signal generator are effectively eliminated.

When a square-law mixer is used, the output voltage at the sum or difference frequencies, \(E_{s d}\), is directly proportional to the product of the two signal-generator voltages \(E_{1}\) and \(E_{2}\). When a linear mixer is used, the output voltage \(E_{s d}\) is proportional to the signalgenerator voltage \(E_{1}\) when \(E_{1} \ll\) \(E_{z}\) and also \(E_{s d}\) is independent of \(E_{2}\).

In both cases, if \(E_{2}\) is made much larger than \(E_{1}\), the output voltage \(E_{s d}\) is proportional to \(E_{1}\) when \(E_{2}\) is fixed. The mixers actually used had over-all characteristics other than square-law or linear. The output voltage \(E_{\text {sd }}\), however, was found to be proportional to the \(E_{1}\) as long as \(E_{1}\) was very small in comparison to \(E_{2}\), since the mixing then occurred only over the very small portion of the characteristic curve which is essentially linear.

The fact that the mixer output voltage \(E_{s d}\) is proportional to the smaller input voltage \(E_{1}\) is made use of in obtaining calibrated voltages from the mixer for calibrating signal-strength recording re-

\title{
New Technical Data on STUPAKOFF's complete line of \\ ELECTRONIC CEIRAMICS \\ \\ ELECTRICAL and
} \\ \\ ELECTRICAL and
}

ROD AND TUBING

New from cover to cover . . . this Stupakoff Catalog is a handbook for the designer of appliances and electronic handbook for the designer of appliances and electronic
parts and equipment . . . contains fact al data on ceramic insulation never before published.

Engineers and manufacturers will find it a practical guide for selecting ceramic parts that (1) will provide the desired characteristics, (2) can be produced economically, and (3) meet the user's standards.

\section*{Contains full information on these and other products:}
ASSEMBLIES

Send for your copy today \(\rightarrow\)

STUPAKOFF CERAMIC \& MANUFACTURING CO. Latrobe, Pennsylvania

Please send me a fres copy of your Catalog 951.

Name \(\qquad\) Title \(\qquad\) Company

DESCRIPTION-The Berkeley Freset Counter is an electronic decade with provisions for producing an output signal or pulse at any desired preset count within the unit's capacity. Any physical, electrical, mechanical or optical events that can be converted into changing voltages can be counted, at rates from 1 to 40,000 counts per second. Total count is displayed in direct-reading digital form. Presetting is accomplished by depressing pushbuttons corresponding to the desired digit in each column. Model 730 Preset Decimal Counting Units are used. These are completely interchangeable plug-in units designed for simplicity of maintenance and replacement.

APPLICATIONS - Flexibility and simplicity of operation make the Berkeley Preset Counter suitable for both production line and laboratory use. It has practical applications wherever signalling or control, based on occurrence of a predetermined number of events or increments of time is desired. Output signals from the unit can be used to actuate virtually any type of process control device, or to provide aural or visual signals.
\begin{tabular}{|c|c|c|c|c|c|}
\hline SPECIFICATIONS & \multicolumn{5}{|c|}{Model} \\
\hline \multirow[b]{2}{*}{MAX. COUNT CAPACITY} & 422 & 423 & 424 & 425 & 426 \\
\hline & 100 & 1000 & 10,000 & 100,000 & 1,000,000 \\
\hline INPUT SENSITIVITY (MIN.) & \multicolumn{5}{|c|}{\(\pm 1 \mathrm{v}\). to graund, peak; at least \(2 \mu \mathrm{sec}\). wide} \\
\hline OUTPUT & \multicolumn{5}{|l|}{Choice of pos. pulse and relay closure, or pos. pulse. SPST relay closure approx. \(1 / 30\) sec; pulse output is +125 v . with \(3 \mu\) sec. rise time and \(15 \mu\) sec. duration.} \\
\hline PANEL DIMENSIONS OVERALL DIMENSIONS POWER REQUIREMENTS & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 153 / 8^{\prime \prime} \times 83 / 4^{\prime \prime} \\
& 1659^{\prime \prime} \times 1014^{\prime \prime} \times 13^{\prime \prime} \\
& 117 \mathrm{v} \pm 10 \% @ 90 \mathrm{w} .
\end{aligned}
\]} & \multicolumn{3}{|r|}{\[
\begin{aligned}
& 19^{\prime \prime} \times 83 / 4^{\prime \prime} \\
& 20^{3 / 4^{\prime \prime}} \times 101 / 2^{\prime \prime} \times 15^{\prime \prime} \\
& 117 \mathrm{v} . \pm 10 \% @ 180 \mathrm{w} .
\end{aligned}
\]} \\
\hline PRICE (F.O.B. FACTORY) & \$375 & \$450 & \$595 & \$695 & \$795 \\
\hline
\end{tabular}

For complete information, please request Bulletin 101
ceivers at very low signal voltages. This may be expressed mathematically:
\(E_{\mathrm{sd}}=E_{1} \times f\left(E_{2}\right)\)
for mixers operating over an essentially linear portion of characteristic \(\left(E_{1} \ll E_{2}\right)\). where \(f\left(E_{z}\right)\) is, for a fixed value of \(E_{幺}\), simply a constant of proportionality.

The constant \(f\left(E_{0}\right)\) is determined experimentally by direct calibration of the output voltage of the mixer against the output voltage of a standard signal generator tuned to \(f_{s d}\), the same desired frequency as the mixer output. This calibration is made at a voltage level sufficiently high that leakage from the standard signal generator is effectively zero (say \(E_{s d}=10\) microvolts). At the same time, the voltages of the mixer signal generators at their fundamental frequency should be completely out of the receiver pass band on the fundamental or spurious response points and should not be so high or so close in frequency to the desired sum or difference frequency that the receiver is overloaded.

Figure 1 is a block diagram of the heterodyne standard signalgenerator arrangement. A 1N34 crystal is used as the mixer. The 1N34 mixer with a load resistance of 50 ohms is approximately square law in the low signal range and thus \(f\left(E_{0}\right) \cong k E_{\%}\).

With this mixer, or any other essentially square law mixer, it is convenient to insert an appropriate attenuator pad in the output of the mixer and then adjust the output voltage \(E_{2}\) until \(f\left(E_{2}\right)=0.1\) or 0.01 as determined by a direct calibration. Then the output voltage \(E_{s d}\) can be read directly on the attenuator of the signal generator supplying \(E_{1}\) after multiplying by the appropriate decimal constant. With a constant \(f\left(E_{2}\right)=0.01, E_{1}\)

FIG. 1-Block.schematic diagram of heterodyne signal.generator method described in text

CERAMICS and
STEATITE CORP.
general offices and plant: KEASBEY, NEW JERSEY Telephone: Perth Amboy 4.5100

FREQUENCY RANGE-any five-octave band between 5 cps and 30,000 cps, with appropriate drum speed.
DELAY-up to 1000 wavelengths of information storage per channel; 200 -second delay maximum at 5 cps -proportionately less with increase in frequency.
NUMBER OF CHANNELS-1 to 16.
MAGNETIC DRUM NON-CONTACT RECORDING-eliminates wear of recording medium; permanent drum recording surface may be used indefinitely.
BOUNDARY-DISPLACEMENT TECHNIQUE—provides a high degree of amplitude linearity; minimizes modulation effects due to non-homogeneity of recording medium or slight variations in head-to-drum spacing.
YOUR DELAY-LINE REQUIREMENTS will receive prompt and careful study by our engineering specialists. Investigate the possible application of a custom-engineered ERA Magnetic Recording Delay Line to your signal-delay problem. Send your requirements to:

1902 West Minnehaha Avenue, Depf. E-7, Sf. Paul 4, Minnesota
DIGITAL COMPUTERS . . . DATA-HANDLING SYSTEMS . . MAGNETIC STORAGE SYSTEMS
INSTRUMENTS . . ANALOG MAGNETIC RECORDING SYSTEMS . . . COMMUNICATIONS EQUIPMENT
is set at 100 microvolt for \(E_{s d}=\) 1 microvolt and \(E_{1}\) is set at 1 microvolt for \(E_{s d}=0.01\) microvolt.

An example of the calibration procedure for the mixer signal generator in Fig. 1 is as follows: A calibrated 92 or \(100-\mathrm{mc}\) standard signal generator is connected directly to the input of the 92 or \(100-\mathrm{mc}\) recording receiver and adjusted to a convenient signal level \(E_{s d}\) which is appreciably above leakage, say 10 microvolts. The output reading of the measuring receiver is recorded as the reference output. The calibrated standard signal generator is then removed and the mixer signal generators shown in Fig. 1 are substituted.

For \(f\left(E_{v}\right)=0.01, E_{v}\) is set to an output voltage 100 times that of the calibrated standird signal generator voltage used to obtain the reference output (\(E=1,000\) microvolts when \(E_{s d}=10\) microvolts). Voltage \(E_{1}\) is then adjusted to a convenient value greater than 10 times the highest \(E_{z}\) which is expected to be used and an appropriate attenuator pad is selected so that the receiver again has the reference output. For these particular values of \(E_{1}\) and attenuator pad, the mixer output voltage will be \(0.01 E_{2}\).

Other useful applications of the heterodyne principle described above in laboratory receiver measuring procedures are for bandwidth measurements at very high frequencies and as a method for tuning relatively unstable highfrequencies signal sources to a narrow bandwith receiver. In both of the latter mentioned cases, frequency of \(E_{2}\) is set relatively close to the desired frequency and the frequency of \(E_{1}\) is a relatively low frequency. Relatively high percentage changes in frequency of \(E_{1}\) are then small percentages of the desired frequency. This permits much greater ease in adjustment to the final desired frequency. For even better frequency stability, voltage \(E_{2}\) may be derived from a crystal-controlled source.

\section*{References}
(1) G. F. Gainsborough, A Method of Calibrating Standard-signal Generators and Radio Frequency Attenuators, Jour. I.E.E., 94, p 203, 1947 .
(2) F. Ts. Terman. "Radio Engineers

\title{
Information Wanted... about your uses for C-D-F BITRAL CLADS
}

Did you know that C-D-F supplies a full range of metal clad laminates in both Dilecto and Teflon grades? With mounting interest in printed circuits it pays to consider the respective advantages of these new C-D-F materials . . . it also pays to line up all the Information Wanted facts and discuss your specific application with your C-D-F sales engineer (Offices in principal cities). He's a good man to know!

\section*{Dilecto MEMA GLAD}

Printed circuits depend upon stable, uniform core material and Dilecto has years of proven insulation service (Dilecto is a laminated thermosetting plastic made only by C-D.F from paper, cotton, glass or asbestos fabric base, or a mat base). Normally phenolic or melamine impregnating resins are used for METAL CLAD sheet stock. There are many grades of Dilecto, but only the better electrical grades are supplied with metal foill surfaces. OutStanding is C.D-F grade XXXP-26, a hot punching grade with high insulation resistance, low and stable dielectric losses and excellent moisture resistance. Green color. New C-D-F Catalog GF-53 gives complete data on Dilecto grades. Write for your copy today.

\section*{Teflon* METAL BLADS}

Glass fiber cloth is first coated with Teflon resin and laminated into C-D.F GB-112T sheet stock. This base withstands high heat (\(200^{\circ} \mathrm{C}\). maximum operating temperature) with the dissipation factor and dielectric constant extremely low over a wide frequency range. No adhesive film is needed to bond metal to the Teflon laminate, thus the inherently good electrical properties of the core material are maintained. GB-112T has practically zero water absorption, so a METAL CLAD with this core offers consistent high insulation resistance with excellent stability of dielectric loss properties.

Grade of laminate
Sheet size
Overall thickness
Thickness tolerances
a. Standard NEMA
b. Closer tolerances requiring sanding
Metal: Copper \(\square\) Other \(\square\)
Metal facing: One side
Minimum bond strength
Punching requirements
Any other specifications

Aluminum \(\square\)
Thickness Both sides \(\square\)

\section*{METAL BLAD Surfaces}

Copper foil (usually \(.00135^{\prime \prime}\) or \(.0027^{\prime \prime}\) thick) is bonded on one or both faces of the sheet grade of Dilecto selected. The foil used is a special grade of electrolytic deposition copper particularly adaptable for cementing onto laminated materials. An adhesive film is placed between the metal and the Dilecto, and cemented during the pressing and curing cycle. When closer tolerances are required C-D-F sands the Dilecto to the required thickness before bonding. Aluminum, silver, or other alloys of various metals may be supplied.

\section*{Betfer Bond Strengths}

One of the most important physical properties of a metal clad product is its peel strength, the pounds pull required to separate the foil surface from the core material. Working with years of laminating know-how, C-D-F has been successful in obtaining the following average test values for its METAL CLAD sheet stocks:
\begin{tabular}{|c|c|c|}
\hline d & & Lbs. pull per \(1^{\prime \prime}\) width \\
\hline XXXP:26 & plus \(.00135^{\prime \prime}\) copper & 5 to 8 \\
\hline XXXP-26 & plus .0027" copper & 7 to 10 \\
\hline XXXP-26 & plus . \(0015^{\prime \prime}\) aluminum & 9 to 12 \\
\hline GB-112 Te & flon plus \(.00135^{\prime \prime}\) copper & 6 to \\
\hline
\end{tabular}

Sheet sizes: Dilecto grades \(-38 \times 38^{\prime \prime}, 38 \times 42^{\prime \prime}\)
Teflon grades - \(16 \times 36^{\prime \prime}\)

\section*{Production Techniques}

\author{
Edited by JOHN MARKUS
}
\begin{tabular}{|c|c|}
\hline Magnetic Amplifier Breadboard & 6 \\
\hline Automatic Cutter and Splitter for Adhesive Tape & 226 \\
\hline Trays for Precision Parts & 228 \\
\hline Easy-to-Reach Storage Racks and Trays & 228 \\
\hline Chains Aid Soldering & 240 \\
\hline Cable Life Tester & 242 \\
\hline Tube-Holding Tool & 242 \\
\hline Jig Borer Speeds Die-Making & 244 \\
\hline Transformer Designer & 246 \\
\hline Plastic-Faced Quality Chart & 248 \\
\hline
\end{tabular}

\section*{Magnetic Amplifier Breadboard}

Appearance of breadboard setup for two-stage self-excited magnetic amplifier voltage regulator being designed for use in the atomic-powered submarine Nautilus

WHEN TRYING out new magnetic amplifier circuit arrangements in Bogue Electric's Paterson, N. J. plant, engineers use sheets of quar-ter-inch Pressdwood as the chassis and a two-level steel caster-mounted table as the chassis frame. Most parts are heavy enough to stay in position without need for mounting. Brackets of wire-wound resistors and other smaller components are fastened to the Pressdwood with small metal screws. All connections are made to terminal screws on the

Cutting and Stripping Long Leads.... 250
Three-Iron Soldering 252
Capacitor Test Set 254
Central Vacuum System Draws Off
Soldering Fumes 25
Labe!-Positioning Mirror 257
Inserts Protect Threads Tapped in
Copper
.............................. 257
Cold Soldering Technique for Printed Circuits 259
Induction Soldering Setups 260
Parts-Mounting Fixture 262

OTHER DEPARTMENTS featured in this issue:

\author{
Page
}

Electrons At Work. . . . 144
New Products 264
Plants and People 334
New Books 346
Backtalk 358
parts, using leads having spade lugs or eyelet lugs. Interconnections are made on terminal strips having pairs of screw terminals, just as in the final design of industrial magnetic amplifiers.

\section*{Automatic Cutter and Splitter for Adhesive Tape}

An automatic dispenser that slits tape into narrower strips and simultaneously cuts the tape to desired lengths is used in the Crosley Division of Aveo Mfg. Corp. to make one roll of tape go twice as far. The machine permits purchasing economical one-inch-wide pressure-
sensitive tape, reducing tape costs and tape handling time as compared to use of half-inch rolls of tape.

The machine is set to cut the tape into \(1 \frac{1}{2}\)-inch lengths for wrapping around the end of coaxial cable after stripping. One movement of a hand lever on the dispenser ejects a length of tape for immediate application to the cable in this television receiver subassembly operation.
The tape dispenser is commercially available as the Big Inch model 4-0, manufactured by Bitter Packages Inc., Shelton, Conn. It can be set to slit one-inch tape into two, three or four narrow strips by loosening a thumbscrew adjustment and flipping appropriate

Automatic dispenser with side cover removed. Cutoff blade at top of spoked wheel is operated by hand lever simultaneously with tape feed mechanism. Slitter blades are under spoked wheel, behind thumb screw

Yes, you can make one false note and be all washed up . . . with the name you've spent years building, quickly consigned to oblivion. We at Kester know the importance of consistency . . . make sure that the solder alloy and especially the flux formula never varies, never changes. Kester never experiments at the expense of the solder user!

For best results in efficient, economical soldering, remember this Solder Trio: "44" Resin, "Resin-Five" and Plastic Rosin - all made by KESTER... Key Name in Flux-Core Solder for More Than 50 Years.

S OLDER C O M P A N Y
4204 WRIGHTWOOD AVENUE, CHICAGO 39, ILLINOIS
NEWARK 5, NEW JERSEY - BRANTFORD, CANADA

blades into position. When the full width is required, all blades may be disengaged. The tape cutoff blade may be set to give 1 in ., \(1 \frac{1}{2} \mathrm{in}\)., 2 in . or \(2 \frac{1}{2} \mathrm{in}\). lengths. The machine is designed to take \(6 \frac{1}{2}-\mathrm{in}\). diameter rolls.

\section*{Trays for Precision Parts}

Multiple-cavity plastic trays are being used to protect delicate precision parts when transferring them from one operation to another on production floors. Plastic covers are provided for use when individual trays are handled. One com-

Examples of plastic parts-hendling trays fabricated to order by Mercury Plastics, Springfield, Mass.
pany uses only the bottoms for interdepartmental handling, as the trays are designed with interlocking construction for easy stacking. Each tray then forms a cover for the tray underneath.

The new parts trays are produced from a low-pressure formable plastic sheet material known as Boltaron, which is chip-proof, acid-proof and oil-resistant. Availability of the material in a large variety of colors permits color-coding for individual departments. Inventory of a day's production is simplified and readily accounted for because each tray holds a definite number of parts.

\section*{Easy-to-Reach Storage Racks and Trays}

Making needed materials easily available to workers is one important goal of production engineers at this time. With labor costs rising, a saving of as little as one second in time needed to reach
for a chassis or part can amount to a substantial yearly boost in output and lowering of cost.

Chassis-transporting racks using inexpensive wood construction are equipped with rubber-tire casters in

Sylvania's Buffalo plant, for movement of auto radio tuner units. Two casters are fixed and two are on swivels. The slides on which the tuners rest are slanted inward so no unit can fall out. The capacity of

These hermetically-sealed, self-contained power supplies are designed to transform AC to high voltage-low current DC for many applications. Our exclusive engineering techniques and oil-filled construction assure smaller, lighter, more flexible units.
radiation counters photoflash devices spectographic analyzers projection television sets
dust and electrostatic precipitators
oscilloscopes
display tubes etc.

Send us your requirements and we will recommend the best HiVolt Power Supply.

\section*{MANUFACTURERS}

Classmike Capacitors
Plasticon Capacitors HiVolt Power Supplies Pulse Forming Networks
 products C CI M D 1 I \(4!\) Division of New Haven Clack \& Watch Co.
* HiV oft Power Supplies . . . occupy as little as \(1 / 3\) the space; weigh as little as \(20 \%\) of conventional supplies

the rack is doubled by arranging to load from both sides, with a sheet of Masonite serving as a divider in the middle.

An additional doubling of flexibility and efficiency is achieved in the same plant through use of movable combination chair-tables for inspection of incoming material. These can be slid easily by one man to any desired location. The metalframe stool, of conventional design, is welded to slotted plates that fit over the table frame. By loosening two knobs, the operator can slide the stool toward or away from the bench to the most comfortable position, then lock the stool in place. An extension cord plugging into a nearby power outlet brings power to the bench when needed for a test sot. The entire table assembly is slid out of the way when not needed.

Wooden tote boxes with a somewhat similar slanting-shelf arrangement are used in the plant of Argus, Inc. for transporting and storing various assemblies. Here the racks are smaller, have no casters, are accessible from only one side, and are carried by means of a handle fastened to the top. Wood crossboards at the base minimize tipping of the rack.

Hundreds of transparent boxes on wood racks are used for stocking precut lengths of various sizes of

Rack for plastic boxes containing precut wires

Factories in Los Angeles, Toronto, New Haven. Representatives in orincipal cities. Address inquiries to Cannon Electric Company. Dept. A-110, P.0. Box 75, Lincoln Heights Station, Los Angeles 31, California.

(Left) Same Cannon Plug without tuning shaft. Straight drive instead of \(90^{\circ}\) gear. (Right) Similar DPD2 with Dzus wing nut extraction method and junction shells. There are several other variations Write for defails.

\title{
CANNON ELECTRIC CANNON EIECTRIC COMPANY
} CANNON ELECTRIC COMPANY LOS ANGELES 31, CALIFORNIA

PRECISE INSTRUMENT DETECTS LEAKS AS SMALL AS \(1 / 100\) OUNCE A YEAR, USES G-E VOLTAGE STABILIZER.

\title{
For Precision Performance Use G-E Voltage Stabilizers
}

Accurate to within \(\pm 1 \%\) in standard models, G-E Automatic Voltage Stabilizers correct voltage fluctuations between 95 and 130 , or 190 and 260 volts, delivering a stable 115 or 230 volts to your product.
AUTOMATIC OPERATION: Compact standard models are now made in sizes 15 to 5000 va . Special designs are available for specific applications, and others can be engineered for your purpose. Operation on all G-E Voltage Stabilizers is completely automatic. Whatever your varying voltage problem, G-E experience will provide the answer.

SIMPLE INSTALLATION: G-E Automatic Voltage Stabilizers have only two sets of terminals to connect - one for supply, one for load.
NO MAINTENANCE: Since there are no moving parts or electronic components, there is virtually no need for replacement parts, adjustments, or any other maintenance. General Electric Co., Schenectady 5, N. Y.

\section*{GENERAL \\ }

MORE HELPFUL INFORMATION
The "why" and "how" of stabilization, including specific details on operating characteristics, uses, and application information, is explained in a new bulletin number GEA- 5754 To get your free copy of this practical, helpful manual on voltage stabilization, fill in and mail the coupon below.

\section*{General Electric Company \\ Section 411-108 \\ Schenectady 5, New York}

Please send me, withouf charge, Manual GEA-5754 on Autamatic Voltage Stabilization.
For immediate project __._._. For reference only \(\qquad\)
_title
\(\qquad\) CITY \(\qquad\) STATE \(\qquad\)
Product or type of product for which stabilizers are to be used,
if not confrdential:

\section*{7}

Voltage Stabilization. \(\qquad\)

\section*{NAME COMPANY}

ADDRESS

Closeup of wire-storing boxes
wire in the Ampex plant in Redwood City, California. The wires are machine-cut in quantities and stored in the plainly marked boxes, making it a simple matter for workers to select the materials needed for construction of wiring harnesses. Gummed stickers are used as labels. In the quantities employed, the rectangular boxes cost about 12 cents each; these are approximately 3 inches wide, 7 inches long and 1辛 inches high including their covers. The circular boxes, approximately 6 inches in diameter and \(1 \frac{1}{2}\) inches high, cost about 15 cents each. The source of supply was Southern California Plastic Co., Glendale.

The real advantage in using these plastic boxes is that no complicated system of inventory control of precut wires is needed. The person in charge of the department can tell at a glance which boxes need a new supply of wire, with no need to open the boxes.

A definite procedure is used for withdrawing wire from the storage rack. When the lead man on an assembly line needs a given size and length of wire, he takes an unmarked plastic box over to the rack, fills it from the appropriate storage box.

Plastic inspection tray set

\section*{NE-11-20-S SPECTRUM ANALYZER}

\section*{Description}

The Spectrum Analyzer is test equipment designed primarily for use with aircraft radar and beacon equipment operating over a frequency range of 8470 to \(9630 \mathrm{mc} / \mathrm{s}\). Housed in a compact portable carrying case, the whole assembly weighs approximately 90 pounds.
In operation, the Spectrum Analyzer displays on an oscilloscope a pattern representative of the distribution of energy among the various frequencies in the output of a pulsed oscillator. This equipment is equal to our government models TS-148/UP.

\section*{Applications}

This very sensitive micro-wave receiver will provide accurate measurement of the spectra of radio frequency oscillations in radar and beacon equipment. It will also measure, within its own range, frequencies of echo boxes, magnetrons, test sets, local oscillators and a variety of resonant cavities. It can also be used to check magnetron pulling and AFC circuits, and as a frequency-modulated oscillator to tune \(\mathrm{T} / \mathrm{R}\) Boxes and \(\mathrm{R} / \mathrm{T}\) Boxes in transmitter-converters.
The Analyzer is so sensitive that the magnetron signal can usually be picked up at some distance from the source, thus making the equipment easy to use in any convenient location.

\section*{Specifications}

Power Supply
Frequency-meter Range
Sweep Frequencies
Attentuation (Spectrum Amplitude)
Operating Temperature Range
Frequency swing of analyzer r-f oscillator (sawtooth FM)
Overall i-f bandwidth at half power paints
Sensitivity to CW - Spectrum Amplified Pos. - 80 db . below 1 watt for 1 inch of deflection on Oscilloscope Screen.
- Spectrum Position - 55 db . below 1 watt for 1 inch of deflection of Oscilloscope Screen.
Maximum dispersion of spectra . \(1.5 \mathrm{mc} / \mathrm{s}\) per inch
Maximum error
\(\pm 5\) megacycles
50-1200 Cps; 105-125 Volts; 125 Watts Calibrated directly from \(8470 \mathrm{mc} / \mathrm{s}\) to \(9630 \mathrm{mc} / \mathrm{s}\) Continuously Variable from 10 to 30 Cps Uncalibrated. Variable from 3 to 70 db .
\(\ldots \ldots-40^{\circ} \mathrm{C}\) to \(+55^{\circ} \mathrm{C}\).
\(\cdots 40\) to \(50 \mathrm{mc} / \mathrm{s}\)
\(50 \mathrm{kc} / \mathrm{s}\)
ow watt for 1 inch of deflection on
\(\ldots \ldots-40^{\circ} \mathrm{C}\) to \(+55^{\circ} \mathrm{C}\).
\(\cdots 40\) to \(50 \mathrm{mc} / \mathrm{s}\)
\(50 \mathrm{kc} / \mathrm{s}\)
ow watt for 1 inch of deflection on
\(\ldots \ldots-40^{\circ} \mathrm{C}\) to \(+55^{\circ} \mathrm{C}\).
\(\cdots 40\) to \(50 \mathrm{mc} / \mathrm{s}\)
\(50 \mathrm{kc} / \mathrm{s}\)
ow watt for 1 inch of deflection on

HETHERINGTON, INC., Sharon Hill, Pa. (West Coast Division: 8568 W. Washington Blvd., Culver City, Calif.)

Rotating holder for small parts
then marks the length and size of the wire on his own plastic box with a grease pencil. When the assembly run is completed, he returns the unused wire to the proper box on the storage rack and erases the grease pencil mark from his box, leaving it free for another use.

Plastic tray sets without covers have recently been made available in a nonchipping Boltaron plastic that is light in weight, durable, and noncontaminating. When used for inspection, the insert trays are set into the larger tray for segregation of rejects. At assembly-line work positions, the insert trays can hold hardware and small parts within easy reach of the operator. The trass are available in various colors from Durable Formed Products, Inc, 6 Greene St., N. Y. C.

Another type of work-position tray, seen at many bench positions

Transferring materials from stockroom bins to containers on cart

\section*{23,698}

\section*{HOURS of SERVICE}
... ard still no change in
Performance Quality!
That's what Earl F. Lucas, Chief Engineer

Paterson, N. J.

\section*{says about}

\section*{Federal's F-5680}

\subsection*{2.5 KW POWER TRIODE}

\section*{Here's another record of the long life and operating stability of Federal Tubes!}
\(\mathrm{S}_{\text {Till }}\) on the job after 23,698 broadcast-hours! That's the record Federal's F-5680 has scored to date for WPAT, popular 5,000 -watt station of the North Jersey Broadcasting Company, Inc.

Moreover, says Chief Engineer Lucas, "periodic comparison with our spare tubes shows no performance differences, so I anticipate many more hours of use."

Based on amazing service records of other Federal broadcast tubes, WPAT's F-5680 should be on the job for years to come!

Here's proof of the solid-rock ruggedness and dependable performance built into all Federal tubes by Federal craftsmen-drawing on tube design and production experience dating from the very birth of the industry... on experience with hundreds of broadcasters!

Get the facts of longer-life Federal tubes ... write to Dept. K-813.

\section*{"Federal always has made better tubes"}

\section*{Federal Telephone and Radio Corporation}

"Home-made coils cost us far too much", you'll say
 when you balance all the costs, wasted time and materials, production delays and excessive rejects against Clippard production-engineered coils. Clippard specialists have made a career of coil and subassembly work... quickly turn out runs of \(1,000 \ldots\) \(10,000 \ldots 1,000,000\) or more units using specially designed high-speed equipment of laboratory accuracy.
For you, as for many of the nation's leading electronic and electrical manufacturers, they'll whip production delays, hasten delivery dates, cut costs.

Often, Clippard works out design improvements that save money, critical materials and valuable time.
Devote your production facilities to more profitable work. Turn your coil winding and sub-assembly jobs over to Clippard. Savings will be greater than you thought possible. wRITE TODAY, describing your requirements.

\section*{PRODUCTION TESTING}

\section*{Resistors and Condensers?}

Send for catalog sheets describing Clippard PR-5 Resistance Comparator and PC-4 Capacitance Comparator. Each will soon earn its keep in your plant by allowing unskilled operators to check more than 30 components per minute with laboratory accuracy.

INSTRUMENT LABORATORY INC.
7350-90 Colerain Road - Cincinnati 24, Ohio MANUFACTURERS OF R.F. COILS AND EIECTRONIC EQUIPMENT
Phone JAckson 4261.

Loading work-position racks from sup. plies on cart
in Sylvania's Buffalo plant, is the Rota-Bin. Based on the theory that in high-speed production you pay for reach, this tray brings from 4 to 8 different types of small parts within the same constant reach distance of the operator. The tray has four permanent dividers, and four more can be inserted at the 45 degree positions to give 8 compartments in all. The tray turns freely on its vertical shaft. Masking-tape labels on the rim identify the contents of each compartment for stock boys as well as for operator.
The close relationship required between stockroom and assembly line for continuous output of electronic products has received major attention in RCA's Camden plant. Elaborate self-nesting stock bins with hinged doors are stacked up

Repair-parts holder made from corrugated cardboard

\section*{The Dimensional Stability of}

\section*{Spells Perfect Product Performance}

Schematic dia-
gram shows
how useful
movement of Nilvar rod corresponds faithfully to the dimensional changes of the copper tube.

Robertshaw-Grayson "Unltrol" fully automatic temperature control for gas wate: heaters

\title{
How Robertshaw-Fulton built a better Water Heater Control with Driver-Harris NILVAR
}

The new "Unitrol" Robertshaw-Grayson gas water heater control streamlines three essential controls into one valve body: a snap action thermostat, a snap action pilot, and a large-capacity gas cock. This reduces inventory for the water heater manufacturer and simplifies part stocking for the dealer.

The "Unitrol" provides a thermostat capable of delivering maximum amount of useful movement, by employing a copper tube enclosing a Nilvar alloy rod. The tube expands and contracts very appreciably in response to immersion temperatures. But the Nilvar rod, because it is dimensionally stable, does not vary in length. Since the free end of the Nilvar rod actuates the working gas valve, the slightest movement of the temperature-
sensitive copper tube is fully utilized to control flow of gas to the burner.

Says Robertshaw-Fulton: "The outstanding dimensional stability of Nilvar actually permits minute changes in water temperature to regulate the heat supplied by the burner, thus assuring extremely accurate operation."

Nilvar has a temperature coefficient of expansion as low as .000001 per degree \(C\)., lowest of any alloy; comparable to that of quartz. Somewhere in your engineering operations such extraordinary dimensional stability may solve a problem-help to perfect product performance. We shall be glad to make recommendations based on your particular needs.
*T.M. Reg. U.S. Pat. OA,

Nilvar is produced only by

\section*{Driver-Harris Company}

\section*{HARRISON, NEW JERSEY}

BRANCHES: Chicago, Detroit, Cleveland, Los Angeles, San Francisco In Canada: The B. GREENING WIRE COMPANY, LId., Hamilton, Ontario.

0
Machine mating surfaces to closest tolerances.
Costly and difficult! And the close fit is often destroyed by warping, corrosion and normal use.

Install numerous latches, serews, bolts or other fastenings. Also costly! And makes maintenance more difficult, more time-consuming.
use metex electronic weatherstripping.
The simple, sure, economical way!
Made of resilient, compressible knitted metal wire mesh, METEX strips and gaskets "close" these openings just as a weatherstrip "closes" windows and doors.

Because they are metallic, METEX strips and gaskets are conductive. Because they are knitted, they are flexible and resilient. They will conform to surface irregularities with no loss in shielding efficiency. Close manufacturing control assures uniformity in the resiliency and dimensions best adapted to specific applications.
METEX electronic strips and gaskets are easy to install. They are not expensive-in fact, they may well save more than their cost by eliminating the need for many operations formerly thought necessary.

It will pay you to investigate the production and performance advantages of METEX Electronic Weatherstripping. A bulletin giving detailed information is yours for the asking -just write on your company letterhead.

METAL TEXTILE CORPORATION
KNITIERS OF WIRE MESH FOR MORE THAN A QUARTER CENTURY

Main Office \& Plant, Roselle, New Jersey
Canadian Plant, Hamilton, Ont.
from the floor to a height of about 7 feet in the stock room. Each bin has its own prominently displayed number, keyed to a master list identifying its contents. Parts are transferred from the bins to bags and boxes on a caster-mounted truck resembling a tea cart. From this cart, the stock man refills benchposition trays as he moves down the assembly line one or more times a day.

Two ingenious ways of keeping a large number of different types of parts within easy reach at repair positions may be seen in Sylvania's Buffalo plant. The simplest version uses corrugated cardboard as a backing sheet. Strips of corrugated cardboard are cemented to this horizontally, to provide vertical in-

Plywood repair-parts holder
dividual receptacles for the leads of resistors and capacitors and for shafts of tuning slugs. The entire parts-storing sheet is wired to a metal strut alongside the test position.

The more elaborate rack uses a plywood backboard having a variety of supports. Long springs threaded through screw eyes stretch horizontally across the rack, with leads of small parts pressed between the turns of the springs. Spring clips. sometimes called tool holders, are used to support spare electrolytics. Other parts are hung on cup hooks, wood pegs and steel nails. A wood

- METALLIZED

GLASS ATTENUATING ELEMENTS
- PRECISE, PERMANENT CALIBRATION
- BROADBAND

Characteristics
- NEGLIGIBLE

INSERTION LOSS
- bACKLASH-FREE
- LOW REFLECTION
- Well shielded Casing

The use of metallic-film-on-glass techniques to provide aftenuation at microwave frequencies is no longer new. This type of PRD attenuator is now well recognized for its constancy of attenuation with time as well as for its insensitivity to variations of humidity and temperature

PRD has now augmented this line of attenuators with units employing metallized mica elements to provide broader-band characteristics for the millimeter region of the microwave spectrum. As a consequence, it is now possible to offer complete coverage of the range irom 2.600 to 40,000 megacycles per second in designs varying from a simple level set attenuator to a precisely calibrated secendary standard. Write today for our complete new catalog of microwave test equipment - address Dept. E-l.

\section*{}

RESEARCH ID \& DEVELOPMENT 3 COMPANY, Inc.

55 JOHNSON STREET, BROOKLYN 1, NEW YORK
\(7411 / 2\) NO. SEWARD STREET, HOLLYWOOD 38, CALIF.

Are you on our mailing list to recelve "PRD REPORTS"?

\section*{highl gain
}

\section*{Andrew Ommidirectional Antemna for VIIF Communications}

No, this new High Gain Communications An. tenna isn't cheap, but it does offer the most economical solution to your coverage problem. Whether you want maximum coverage for a specific transmitter power, minimum power or shortest tower for a specific coverage, or freedom from dead spots, the Andrew Type 3000 Antenna is the least expensive solution. Why? Because talk-back is the limiting factor in mobile communications. Gain in the central station antenna costs less than increased power in every mobile unit.

Andrew Type 3000 High Gain Com munications Antenna offers better than 6 db gain in the 148-174 MCS band. This means that the power delivered to the receiver on both talk-out and talk-back is increased four times. The horizontal radiation pattern is circular.

Write for the Andrew High Gain Antenna bulletin today!

363 EAST 75TH STREET, CHICAGO 19
ANTENNA SPECIALISTS
TRANSMISSION LINES FOR AM-FM-TV-MICROWAVE ANTENNA EQUIPMENT • ANTENNA TUNING UNITS • TOWER UGHTING EOUIPMEN
strip with drilled-out recesses provides individual shelves for spare potentiometers.

\section*{Chains Aid Soldering}

To improve the accuracy of positioning when soldering the antenna loop in the cavity of a pencil triode, foot-operated chain drives are used to bring the loop up to position and bring up a needle-point gas flame. The operator then applies solder by hand. Both feet thus participate in the soldering operation, giving the equivalent of four hands as is

Setup for soldering antenna lead inside cavity for RCA uhf pencil triode. Solder is applied to inside wall of cavity after needle-point gas flame at right end of fixture has heated wall from outside
so often needed for intricate soldering operations.
As shown in the photo, the chains work against springs that move the positioning lever and gas flame out of the way for unloading and loading.
The positioning lever moves the right-angled piece of antenna wire to the correct position for a butt joint to the cavity wall. The gas flame moves up to the outside of the wall in this region, to heat the wall so solder will fow down it to the butt joint without disturbing

\section*{CHOOSE SYNKOTE CABLE AND WIRE for Value - for Service - for Dependability}

FIRST IN COMMUNITY TV: this ultra-rugged Synkote coax cable (RG \(5 \mathrm{~g} / \mathrm{U}\) and \(11 / \mathrm{U}\)) is double-shielded and double-jacketed, transmits signals over long dis. tances with virtually no radiation losses.
 - a Synkote custom-engi. neered cable designed and manufactured from simple specifications read over the telephone. Diffi-cult-.looking, but "duck. soup"'to Plastoidengineers.

NEW FOR UHF: Synkote "Ovaltube" twin-lead is a tubular air-dielectric construction, features low attenuation. Fits ordinar) hardware, can be made weathertight in seconds. Uniquely practical, nothing else like it.

"JUMBO" TWIN-LEAD: 185 mil web-the strongest TV lead-in ever introduced. Withstands gales, extreme heat, cold and humidity. Low loss gives extellent reception in fringe areas.

\section*{1. Choose for Dependable Construction}

You want to be sure that the wire you buy will give dependable service. SYNKOTE wire is warranted by Plastoid to be made of the finest materials, and will meet all applicable specifications.

\section*{2. Choose for Engineering Know-How}

Possibly, you may know what general characteristics you desire, but not how to put these into wire. Plastoid's large staff of engineers can transform your generalized requirements into a finished wire or cable. Simply give us your electrical and physical requirements we'll design the cable.

\section*{3. Choose for Rapid Delivery}

Plastoid's modern manufacturing facilities mean faster production. . . more rapid deliveries to you.

\section*{4. Choose for Friendly Service}

You'll find everyone at Plastoid - executive, salesman or engineer - friendly, warm and informal ... pleasant to work with and eager to do business with you.

\section*{5. Choose for Reasonable Cost}

Remember, "bargains" seldom save you money. In the long run, it pays to pay a fair price and get dependable wire. For true wire economy specify SYNKOTE - manufactured only by Plastoid Corporation, Long Island City, New York

DEPENDABLE Wire and Cablo

plant: HAMBURG, N. J. - offices: 42-61 24th St., Long Island City, N.Y.

\section*{theqhill plating process}

GUARANTEES

\section*{ACCURATE PLATING} IN ELECTRONICS.

Since 1946, M-W LABORATORIES has electroplated precious metal for suppliers to the U.S. Army, U.S. Navy, Atomic Energy Commission and to leading manufacturers in the electronics industry.
M.W LABORATORIES, featuring their Mayhill Plating Process, are equipped to plate these precious metals: gold, silver, rhodium, palladium and indium.

Controlled thickness, smoothness, color, hardness and adhesion of plating is assured through constant testing by our own chemists and engineers, in our chemical and metallographic laboratory.

Contact us for a no-cost-to-you consultation on your plating problems.

\section*{ENGINEERED FOR RUGBED ASSIGNMENTS!}

This relay is designed for use on power systems of two or more \(208 / 120\) volt, 4 wire, three phase, alternators operating in parallel. Its function is to protect the s:/stem by removing an alternator in the event of a drive failure, a shutdown of the drive without prior disconnection of the alternator, a balanced three phase fault within the alternator or a high resistance three phase fault between the relay and alternator. The relay operates if reverse power in any phase exceeds 1500 watts. It has an inverse time characteristic. At 2000 watts the relay operates in 0.4 seconds.

\section*{Completely environment-proofed to meet critical requirements -}

Designed for critical aviation applications, all components except the current transformers are mounted on a single shock-mounted chassis with all items including wiring \(100 \%\) potted for complete immunity to environmental conditions or changes. Rugged cable connectors permit quick, easy replacement of the entire unit or current transformers. This equipment is readily adaptable to power systems of other voltages and frequencies.

Call or Write for New Illustrated Brochure on Gavco's Standard Aviation Components-Inquiries on other than standard equipment will receive prompt attention.

\section*{GAVCO CORPORATION}

A Subsidiary of General Aviation Corporation
540 EAST 80th ST., NEW YORK 21, N. Y. - Tel. TRafalgar 9.8800
DESIGNERS AND MANUFICTUPERS OF PRECISION ENGINEERED POWER RELAYS, VOLTAGE REGULATORS, FREQUENCY CHANGERS AND SPECIA PLIRPOSE ELECTRONIC EQUIPMENT FOR COMMERCIAL AND MILITARY APPIICATIONS

\section*{...WHEN YOU BUY FILTERS}

RESPONSE CURVES and cases may look alike, but component quality and internal construction are the things that determine dependability - in a filter, and in the associated equipment.

TO BE SURE components are the best, Lenkurt presses its own cores, winds the coils, and subjects all parts to the most rigorous checks possible.

IN A LENKURT FILTER, parts are firmly fastened to sturdy headers, connections made to rigid terminal boards. Units are impregnated, cased, and/or hermetically sealed as required.

LENKURT FILTERS are engineered and built to your most exacting specifications on delivery schedules to meet any quantity need by Lenkurt Electric Company-largest independent manufacturers of telephone toll transmission equipment.

\section*{LENKURT ELECTRIC SALES COMPANY \\ San Carlos 1 California}

Picking tube out of carton with holding tool
beyond convenient arm reach. Once a tube is picked up, the tool can easily be turned in the fingers to align the tube correctly with respect to the socket.

When the tube is pushed in with the tool, socket contacts grip the pins tightly enough to hold it while the tool is withdrawn. A felt pad inside the tool permits applying pressure to the top of the tube without danger of breaking the glass tit.

\section*{Jig Borer Speeds Die-Making}

Flat dies for punching chassis holes or stamping out parts for electronic components can be made without preliminary layouts on the

Use of new jig borer in Sylvania's Buffalo plant for drilling required holes in punching die for auto-radio switch contact

\section*{It' Tuna-Sol for radio}

Quality
-that keeps pace with the growth of the electronic industry -that meets fully the performance requirements of all radio and tv set manufacturers -that safeguards dealer service work

\section*{mwemat MOSNEE Forest Fibres to work for you!}

Remember . . . MOSINEE means more than "paper" in the field of electronics and electrical products. MOSINEE stands for FIBRES that have scientifically controlled electrical, chemical and physical properties, to perform specific functions . . . fibres of dependable technical uniformity vital to your quality standards and production requirements.
MOSINEE fibres can be made to your specifications, with
- good dielectric strength, high tensile or tear strength . . .
- specified pH for maximum-minimum acidity or alkalinity ...
- accurate caliper or density . . .
- proper impregnation characteristics for resin, wax or other substances...
- proper characteristics for plastics operations and parts . . .
- uniform softness, stiffness, flexibility, toughness . . . or other vital technical characteristics.

MOSINEE has its sources of quality forest fibres, practical experience, laboratory facilities, and scientific production controls to create and produce the type of fibres your operations require. Contact MOSINEE.

Better corona suppression, longer life - better heat dissipation - less noise. And all this in a transformer that is \(40 \%\) lighter and \(30 \%\) less bulky. Manufactured only by Aircraft Transformer Corporation and its licensees.

Complete data available-write to

\section*{AIRERAFT TRAISSFDIIER CORPDRPITIOD}

MANLFACTLRER5 OF INDUCTIVE EQUIPMEIDT - LONG BRANCH, NEW JERSEY, LONG BRANCH 6-6250

- Over 50,000 square feet of floor space
- ... fully equipped with modern, up-to-- date production equipment including - complete tooling, coil winding, plastic - molding, heat treating, glass metalizing,
- welding, hermetic sealing and machine
- tools for every operation.
-

\section*{10,000 relays per day}

Orderly, efficient plant layout plus competent, well-trained personnel assure speedy, precise assembly line production... single shift eapacity 10,000 relays per day!

\section*{unequalled engineering facilities}

Extensive research, laboratory, development, type test and model shop facilities at your servise any time. Test samples and pilot runs completed quickly af reasonable cost.

\section*{industry's leading supplier}

For many years, the leading supplier of electrical and electronic relays to America's foremost industrial orgonizations.

\section*{specialists in relays} for military equipment
Complete file of latest MIL specifications. All necessary laboratory and testing in. struments ovailable. Certified test reports on request.

> REMEMBER, if your problem concerns the development or production of electro-mechanical components for any electronic or electrical apparalus, Pottor \& Brumfield offers you the quickest, most practical and most economic solution. Send specifications for samples, recommendations and quotations. (Catalog ovailable on request.)

\section*{Potter \& Prumficld}

\author{
PRINCETON, INDIANA \\ Export: 13 E. 40 H St., N. Y., N. Y. \\ SALES OFFICES IN PRINCIPAL U. S. AND CANADIAN CITIES \\
}

Deluxe version of test transformer, mounted on Lucite panel
taps. Both permit quick removal of half the Ferroxcube core for changing the secondary coil. The earlier model has terminals for taps, while the refined version has jacks into which a test lead can be inserted for quick change of primary coil design.
The test transformer is connected directly into the television receiver circuit, with its top cap connector going directly to the top cap of the horizontal output tube.

\section*{Plastic-Faced Quality Chart}

TRANSPARENT plastic sheets mounted over large inked charts permit using the charts over and over again on statistical quality control bulletin boards in Crosley Division's Cincinnati television receiver plant. Hourly or daily records are plotted on the plastic covering with a china marking crayon, using a ruler as a guide. These can easily be wiped off with

Example of monthly quality control chart with plastic facing. Working days in month are hand-crayoned on plastic as horizontal scale

\section*{firthlest norith ...} deepest down

Last summer, on a mission to supply weather station "Alert", the Coast Guard ice breaker "Eastwind" reached what is believed to be the northernmost point ever attained by a vessel under its own power - 442 nautical miles from the North Pole.

Under far different tropical settings in 1949, a United States Navy vessel set another mark, this time related to the "deepest". The E-PCE(R)850, equipped with an Edo deep depth sounder of advanced design, recorded contours of the Brownson Deep off Puerto Rico.

It was not the first time that sonar had measured depths of more than 4000 fathoms from a stationary position, but it was the first time that ocean depths so far down had been so accurately measured by continuous recordings while the vessel was under way. This test and
others have since lead to the installation of Edo depth sounders on many vessels of the U.S. Navy.

The ability of Edo equipment to measure depths from zero to 6000 fathoms is the result of highly significant research and development in the electronic laboratories of the Edo Corporation where the most up-to-date developments in electronics are blended with more than a quarter of a century of precision manufacturing know-how - just one reason why Edo has come to be known as a leader in the application of electronics to under-water detection equipment.

\section*{VIBRATION STUDY}

\section*{saves fime and money with Brush Analyzer}

HERE, in the plant of a large automotive manufacturer, this test of vibration characteristics of rubber engine mounts requires no laborious plotting of test data. The shock mounts are tested under dynamic conditions. Using strain gages on the actuating driver, the Brush Recording Analyzer charts test results instantaneously while the test is underway. Saves valuable engineering time, and the charts provide a complete history of test. Find out how you can simplify the solving of many electrical and mechanical test problems with Brush Instruments. Write for bulletin F-618.

For the finest electronic products for instrumentation, acoustics, piezoelectric materials, ultrasonics and magnetic recording - look to Brush. Brush Electronics Company, Dept. K-1, 3405 Perkins Avenue, Cleveland 14, Ohio.

\footnotetext{
BRUSH ELECTRONICS
electronic instruments for industry piezoelectric materials - acoustic devices ultrasonic equIpment - taperecorders recording equipment
}

\section*{COMPANY} formerly
The Brush Development Co. The Brush Developanert Co.
Brush Electronics Company is an oberating unii of Clevite Corporation
a cloth at the end of the time period for the chart, to put on new scale values and new curves. A thumbtack with the letter \(Q\) on it is pushed in each time the curve hits zero, to emphasize perfect work. Monthly averages are added in crayon at the left of the chart.

\section*{Cutting and Stripping Long Leads}

Abdition of a solenoid-operated V trough at the output end of a standard Artos wire cutting and stripping machine makes it possible to catch and collect long wires automatically without getting them tangled. This enabled one operator to handle three such machines in Crosley's Cincinnati television receiver plant.

In one setup, the machine makes two \(14 \frac{1}{2} \mathrm{in}\). passes and then cuts, to obtain a 29 in . lead. This lead slides down the added \(V\) trough smoothly because of the downward slant and smooth surface of the trough. After cutting, solenoids pull the hinged sides of the trough apart, dropping the lead neatly on a collecting table underneath. Two snap-action switches were added to the machine to insure that the trough opens only after the wire has been cut and not after a pass.
In contrast, a new model CS-10 machine for cutting long leads is also shown. This machine, made by Artos Engineering Co. of Milwau-

Standard Artos machine with a V trough for catching long leads

\section*{For SPECIFIED PERFORMANCE Specify JELLIFF RESISTANCE WIRE}
a WIIE RANGE OF ALLOYS . . . a WIDE RaNGe of EXPEREENCE . . . COMPLLEE CONTROL OF MANUFACTURE . . . make JELLIFF the ideal source of Resistance Wire to assure your Product's

\section*{Performance According to Specs.}
precision resistors-rheostats-relays-thermocouples-ohmmeters —bridges-high-temperature furnaces can all benefit from the PLUS-PERFORMANCE of JELLIFF RESISTANCE WIRE

Detailed Enquiries Welcomed. Address Dept. 17.

\section*{\(\mathbb{B I R T C H E R}\)}

\section*{TUBE CLAMPS}

Hold Tubes in Sockets under all Vibration, Impact and Climatic Conditions

Special machine for automatically cutting and stripping leads up to 45 feet long
kee, Wis., is available in six different models having various cutting ranges and production rates. Three of the models are capable of cutting 400 45-foot lengths per hour, and up to 1,200 pieces per hour in shorter lengths down to a minimum of 40 inches. These machines use a travelling gripper to pull out the desired lead length, and have hooks to catch and collect the cut wires.

\section*{Three-Iron Soldering}

Three soldering irons are mounted with points up to speed soldering of contacts to cavity sections for the RCA type 5794 fixed-tuned

Protective metal cage encloses three vertically mounted electric soldering irons having machined tips on which three cavity sections are resting

TWO SPEEDS - SINGLE CONTROL

\section*{fREE OF BACKLASH}

Accuracy of scale reading \(100 \%\)
Coarse searching speed plus fine setting control.

Single control knob displaced axially to select the speed ratio.
Spring-loaded gears with automatic take-up of any wear or play between primary and secondary drives.
Pointers geared directly to centre spindle.
Security in operation: friction clutch obviates overdriving.
\begin{tabular}{|c|c|c|c|c|}
\hline TYPE & NUMBER & EFFECTIVE & \multicolumn{2}{|c|}{ SPEED RATIOS } \\
\cline { 4 - 6 } No. & OF DIAL & SCALE & SPE \\
\cline { 4 - 6 } & MARKINGS & LENGTH & COARSE & FINE \\
\hline 52 & 1.000 & 3.3 feet & \(1: 8\) & \(1: 120\) \\
63 & 1.000 & 3.3 fect & \(1: 8\) & \(1: 120\) \\
57 & 2.000 & 6.6 feet & \(1: 15\) & \(1: 200\) \\
56 & 2.000 & 6.6 fece & \(1: 15\) & \(1: 200\) \\
5.3 & 2.000 & 6.6 fecs & \(1: 15\) & \(1: 200\) \\
\hline
\end{tabular}

We are specially organized to handle direct enquiries and orders from U.S.A.
Billed in dollars. Settlement by your check.
CABLE OR AIRMAIL TO-DAY
TRANSRADIO LTD
CONTRACTORS TO H.M. GOVERNMENT ¡38A CROMWELL ROAO LONDON, S.WAI., ENGLANO CABLES - TRANSRAD, LONDON

An S.S.White flexible shaff is a simple, economical way to bring control around a furn. Here's how one designer did it in bringing cantrol to an otherwise inaccessible rotary switch.

As shown here, S.S.White flexible shafts enable you to get a convenient, orderly grouping of control knobs, no motter where the variable elements are located.

Here are some of the advantages you gain by using S.S.White remote control flexible shafts to control parts that require operational adjustment:

LOWER COST. One S.S.White flexible shaft can replace an entire system of bevel gears, universal joints, pulleys, straight shafts, etc., resulting in substantial savings in costs and assembly time.

EASIER ASSEMBLY. S.S.White flexible shafts are furnished as ready-to-install units. Just couple one end to the control knob-the other end to the controlled part -and the assembly is complete. No skilled assembly operations are required.

GREATER DESIGN FREEDOM. Mounting control knobs and variable elements in the most favorable locations is easy when you couple them with S.S.White flexible shafts. The shafts will carry control to any point in your equipment.

SEASITIVE CONTROL. Close, sensitive tuning is possible with S.S.White flexible shafts because they have been built expressly for remote control service. What's more they never lose their sensitivity.

\section*{Send for the Flexible Shaft Handbook- \\ This 256-page bandbook bas complete information on flexible shafts including details about their selection and application. Copy sent free if you request it on your business letterbead. \\ } DENTAL MFG. CO. Dept. E 10 East 40th St. NEW YORK 16, N. Y.
Western District Office - Times Building, Long Beach, California
oscillator triode for 1,680 -me radiosonde service. The operator solders at one position while the other two positions are heating. She then removes the soldered piece, replaces it with an unfinished piece and proceeds to solder at the next position.

A heavy asbestos top plate minimizes burning of fingers as the operator removes soldered pieces and places new ones over the appropriately machined tips of the soldering irons. Three working positions give sufficient time so the operator can solder, unload and load continuously.

\section*{Capacitor Test Set}

INCOMING INSPECTION of capacitors to check for adherence to tolerances is carried out with a rugged bridgetype test set in the Tarrytown, N. Y. plant of Simmonds Aerocessories Inc. Preliminary sorting and checking facilitates production of electronic fuel gages by making available the exact capacitor values needed.

The bridge is constructed in

Using test bridge to check values of mica capacitors. After value is measured, operator uses rubber date stamp to stamp exact value in \(\mu \mu f\) directly on the capacitor, then places each capacitor on the stack having that value. Units on bench range from \(1.947 \mu \mu \mathrm{f}\) at lower left to high of \(1,990 \mu \mu \mathrm{f}\) at lower right, with each pile having \(\alpha\) different value
three sections for easy servicing. The 5-kc oscillator circuit is shown in Fig. 1, the bridge circuit is shown in Fig. 2 and the null detector in Fig. 3. The accuracy achieved with these circuits is plus or minus 3 u.f from 50 to 4,000 M.u.f. Continued accuracy is assured by frequent checking against labo-

FIG. 1-Circuit of 5 -kc RC oscillator

FIG. 2-Capacitance bridge circuit

FIG. 3-Circuit of null detector used with capacitor test bridge
 and germanium.
- Controlled removal of surface coatings on printed circuits and deposited carbon resistors.
- Drilling holes in thin sections.
- Cutting small holes, cavities and slits.
- Light etching and finishing operations.

The S.S.White "Airbrasive" Unit produces a cutting action by means of a high-velocity stream of abrasive particles which are directed at the work through an \(.018^{\prime \prime}\) diameter nozzle. The cutting action is cool and eliminates the vibration and pressure ordinarily associated with other cutting methods. Furthermore, the accuracy of the cut is not affected by surface irregularities of the work or by wear, as might be the case with a standard cutting tool. The Unit is ideal for laboratory work and can be readily adapted to any production set-up.

Write for Bulletin 5212. It gives full details about the S.S.White Industrial "Airbrasive" Unit, including specifications, prices and operating and performance data.

CONTRACT MANUFACTURING FACILITIES for
- Control Desks - Instrument Panels
- Boiler, Turbine, Generator Panels
- Power Distribution, Control Panels
- Switch Gear Housings - Cubicles
- Machine Bases - Instrument Panels
- Weatherproof Housings - Breechings
- Transformer Enclosures - Air Ducts
- Stacks - Casings - Hoppers

\section*{KIRK BLUm} METAL FABRICATION
ratory standard capacitors that have been certified by the National Bureau of Standards.

Various types of test fixtures are used in connection with the bridge to provide quick connections to each capacitor in turn. The fixtures are designed to insure precise positioning, eliminating measuring errors that would be particularly serious with smaller sizes of capacitors.

\section*{Central Vacuum System Draws Off Soldering Fumes}

Flexible metal tubing about two inches in diameter, connected to the central vacuum system in Crosley's Cincinnati television plant, is used at each soldering position to keep the area clear of fumes produced by soldering operations. The tubing is easily bent to a position that is just a few inches away from the tip of the soldering iron and yet is out of the way of the operator.

When soldering small parts such as the peaking coil shown, a special stand is used to hold the soldering iron. This leaves the left hand of the operator free to hold a cluster of the small parts while applying solder to each in turn with the right hand as they are held on the

Vacuum-system duct used to pull off soldering fumes, and stand for supporting soldering iron rigidly at optimum working position
soldering iron tip. The stand and clamp are of the type used in chemical laboratories, and were purchased commercially at far less than it would have cost to make them. The slide that locks the clamp at the desired heighth on the vertical rod was made in the Crosley shop. Total cost of the entire holder was about \(\$ 2.25\).

\section*{Label-Positioning Mirror}

To balance out a moving-conveyor assembly line for television sets, the operation of pasting a tube layout diagram on the back of the chassis was assigned to one work position. The back of the chassis was facing

Method of using mirror to aid in positioning a chassis label in Sylvania's Buffalo plant
away from the operator here, hence she could not see it and might possibly cover adjustment holes with the gummed label.

The problem was solved by hanging a small mirror from the back shelf of the bench. The mirror hooks over the edge of the shelf, so that it can easily be slid lengthwise or removed as desired.

Inserts Protect Threads Tapped in Copper

WORK COILS used with induction heaters must be removed frequently and replaced with new coils to accommodate differing sizes and shapes of parts being heat treated. These coils, also known as induction blocks, are secured to threaded holes in the outlet plates of the out-

 or opal.

147-1220 UL Approved. For economical, continuous operation with neon or low powered incandescent bulbs. Double contact bayonet base contains series current-limiting resistor. Red, amber or clear Lucite cap transmits light with good efficiency.

147-1519 Camera type shutter. Rotation of jewel head varies light from full brilliance to off. Uses \(G 6\) double contact bayonet based bulb. Other types available with polarized discs for light variation.

147-1034 UL Approved. Internally frosted jewel with plastic backing color disc eliminates false indication from external light. Color does not appear until lighted. Disc may be specially imprinted and arranged for continuous visibility or only when lamp is lighted.

\section*{ECONOMY}
detachable socket
147-800 Chrome plated friction jewel holder. Lamp replaceable from front or rear of panel. Socket detachable from panel bushing. Insulated solder terminals. For miniature screw, candelabra screw or bayonet based bulbs.

\section*{Send for Catalog 973}

Select Pilot Lights exactly suited to your needs from the complete Johnson line. Write us your requirements and we will be glad to suggest suitable selections.

coil springs, are inserted with a special tool. Once installed, they insure good electrical and physical connections between inductor blocks and transformer outlet plates in induction heating units such as those manufactured by the Tocco Division of Ohio Crankshaft Co. Another use for the inserts, still experimental, is for protection of threads in insulating materials.

\section*{Cold Soldering Technique for Printed Circuits}

As a substitute for lead-tin solders for making electrical connections in printed circuits, a composition of powdered silver and Araldite resin known as cold solder has merit in that only low curing temperatures are required. Formula No. 1 consisted of 14 grams Araldite 101 (made by Ciba Co.), 35 grams DuPont Silver Powder V-9 and 1.5 grams Araldite Catalyst HN-951. This was mixed at 150 F for ten minutes. Since the mixture is too viscous (viscosity of vaseline) for hand mixing, a mechanical means will have to be used until a suitable solvent for lowering the viscosity is found.

Test joints for measuring bond strength were made using metal strips \(1 \mathrm{in} . \times 3 \mathrm{in} . \times 0.005 \mathrm{in}\), cemented together at the ends so that they overlapped \(\frac{1}{2} \mathrm{in}\). The cement was applied by means of a spatula and the strips pressed together. Specimens prepared in this manner were allowed to cure at room temperature over night. Other specimens were cured at 100 C for one hour. Joints made with strips of copper, aluminum and brass were tested to see if different metals had any bearing on bond strength. The specimens were ruptured on an Olsen tensile Test Machine. Ultimate shear strength in lb per sq in. averaged 1,720 for aluminum to aluminum, 1,640 for copper to copper and 1,830 for brass to brass.

Formula No. 2, using 0.5 gram more catalyst to accelerate curing time, gave lower shear strength values (1,300 for \(\mathrm{Cu}-\mathrm{Cu}\) cured 1 hr at 100 C , and 1,400 for \(\mathrm{Cu}-\mathrm{Cu}\) cured overnight at room temperature).

A variety of electrical connec-

No matter how marginal the weather, planes land safely on fields equipped with TVOR. This new let-down facility keeps your airport operating through rain, low ceilings and restrictions to visibility extends its usefulness by \(40 \%\). TVOR provides all the security of VOR-at less than one-fourth the cost.
TVOR was developed to meet the needs of small and medium-sized airports. Its single installation provides a terminal omnidirectional radio range that can be installed in an inexpensive shelter directly on the airport.
Any plane with standard VOR instrumentation can make positive approaches to a TVOR equipped field. On course indication is steady. Over the station cone is definite. Fifty watts of antenna power provides ample coverage for omnirange navigation. TVOR is built by the Maryland Electronic Manufacturing Corporation, producers of similar installations for the CAA.
The cost of a complete TVOR installation is less than a quarter that of VOR. Yet the components are of the same high quality and the system is given the same rugged tests!
Corporation, municipal and private airfields can't afford to be without the safety and convenience of this all-weather let-down facility. Installations

TVOR changes fairwather to all weather airline service.

TVOR guides corporation aireraft safely to their home fields, in spite of low ceilings.

TVOR works with standard instrumentation. Private planes "home"on their own airffeld.

- Any pulse width from 0.1 to 40 microseconds

6 Any impedance from 5 to 500 ohms
- Any voltage rating from 1000 to 25000 volts*

Tobe pulse forming networks have an excellent record of per. formance, both in radar sets and in seasoning equipment for magnetrons and hydrogen thyratrons. Our design experience and production facilities assure deliveries to your schedule requirements. Widely used networks are tabulated below. Many others are available - write for data sheet.
*Over 25 KV , pulsetype capacitors with external coils are usually recommended; write for data sheet.
tions were tested using cold solder as the bonding agent. For example, several sizes of composition resistors were soldered on a printed-circuit base plate and the assembly was then subjected to a temperature of -65 C . The soldered connections were strong enough to withstand pressure applied by the fingers.

Resistance measurements were made on the cold-soldered joint. Resistance values of the joints varied between 0.1 to 0.01 ohm at room temperature.

The information presented here was abstracted from a technical report, "Development and Application of Automatic Assembly Techniques for Minaturized Electronic Equipment", prepared by Stanford Research Institute for the Wright Air Development Center.

\section*{Induction Soldering Setups}

Two different techniques for bringing work to be soldered up to the work coil of a high-frequency induction heater eliminate loss of time in waiting for parts to cool enough so they can be handled. One technique uses a rotary work table, and the other a jig that holds sixteen parts at a time.

In soldering the seams on tinplated steel housings for signal drops, Federal employs a rotating table located in front of the induc-

Six-position pedal-operated work table brings tin-plated steel housings under work coil for soldering of seams. Strips of precut solder are in wood box, and unsoldered housings are stacked neatly on table. Finished housings go into bin on floor at right of operator
tion heater. The operator brushes on flux and places a strip of tape solder along the seam, then sets the piece on the work table at the position just ahead of the heating coil. He then operates the foot pedal to move the piece under the coil and turn on the generator. An electronic timer controls the soldering interval; it takes about 2 seconds for the solder to melt and fill the seam.

The six-position work table allows ample time for the solder to

Jig used to push each of 16 paper capacitors in turn between loops of work coil to obtain soldered hermetic seal
harden and cool. The finished piece is removed just before a new piece is put on. Clearance between the piece and the lower edge of the work coil is \(\frac{1}{16}\) inch. A fluorescent tube hung in the electromagnetic field of the generator lights up when power is on, to serve as an indicator and a warning that the equipment is energized.

End plates of metalized paper capacitors are hermetically sealed to the metal housings by induction soldering in Astron's plant. A simple jig having holes drilled part way through a wood crossbar to take 16 capacitor units is used to bring each part in turn to the work coil. The operator energizes the machine by foot pedal each time a part is in position. A power application of a few seconds is adequate to fuse the circular solder preform, thus soldering the housing to the

FEED-THRU FILTER
for easy installation and efficient operation

The Tobe Type 1600 Power Line Filter utilizes the efficient, feed-thru design to provide high attenuation over a broad frequency band. Installation is rapid and easy - the threaded bushing permits mounting and grounding in a single operation. Feed-thrt construction places the shield afforded by the metal mounting surface between filtered and unfiltered circuits.

\section*{FEATURES}
- Handles 10 amperes at 125 volts a.c., 0-1000 C..P.S.
- High attenuation - 150 KC to 1000 MC
- Low voltage drop
- Low temperature rise at full load
- Operates at ambients from \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
- Compact - \(31 / 4\) inches long by \(11 / 8\) inches diam.
- Hermetically sealed
- Meets JAN specifications for vibration, shock, and salt-spray resistance

Write for data sheet.

TOBE DEUTSCHMANTN CORPORATION NORWOOD, MASSACHUSETTS

Special Shapes and Features? . . . Tolerances within \(.0005^{\prime \prime}\). . . Let our experience in supplying precision small and medium sized gears with such features solve these production problems for you . . . Ask for quotation on your job specifications. Circular on Request.

\section*{1021 PARMELE STREET, ROCKFORD, ILLINOIS}

Manufactured to meet material, workmanship and finish requirements of Army-Navy specifications.

Accessories: Internal framing, partitions, trays and wood chucks as required.

Complete Facilities under one roof for quality mass production, including Heliarc welding, baking and finishing. Whistler and Wiedermann equipment for short runs. Tool and die engineering and designing. Completely conveyerized
finishing facilities. Large assortment of
> stock and special dies for radio and television and electronic field. ART-LLOYD Metal Products Corp.

> 2973 Cropsey Ave., Brooklyn 14, N. Y. - CO 6-5100 precisiov sheet metal products, mass production specialists.

JFD MFG. CO.
BROOKLYM 4, H.Y.
BENSONHURST 6.9200
world's largest manufacturer of \(t v\) antennas \(\mathcal{E}\) accessories
leading manufacturers use

\section*{JFD PISTON TYPE VARIABLE TRIMMER CAPACITORS}
in both civil and military equipment

\section*{WASHERS-ALL KINDS}

WASHER SPECIALISTS for nearly beveled half-a-century. Dies in stock will produce most sizes. Big runs made with automatic presses. An economical, accurate, and highly reliable source for washers, also all kinds of metal stampings. HAVE WHITEhead's Catalog on file; write for it.

\section*{NEW PRODUCTS}

Edited by WILLIAM P. O'BRIEN
Control, Testing and Measuring Equipment Described and Illustrated . . . Recent Tubes and Components Are Covered . . . Forty-Two Trade Bulletins Reviewed

\section*{Junction Transistors}

Raytheon Mfg. Co., 55 Chapel St., Newton 58, Mass., announces the immediate availability of two \(p n p\) germanium junction transistors types CK721 and CK722. Although CK722 may be had in production quantities, CK721 will be limited in quantity until April 1953. Both types have noise factors averaging 22 db at 1,000 cycles. Type CK721 has an average power gain of 38 db while CK722 averages 30 db . The units require a volume of 0.03 cu in . and leads may be soldered or welded into the circuit or cut for insertion into standard subminiature sockets.

\section*{UHF Transmission Line}

Anaconda Wire \& Cable Co., New York 4, N. Y., has developed a new all-weather uhf transmission line for tv service. Known as type ATV270 , the line serves as lead-in from
roof-top to receiver. Design characteristics include a high-strength Copperweld conductor surrounded by polyethylene spiral thread that acts as a centering medium, allowing the conductor to float within its individual polyethylene tube. The brown polyethylene jacket assures better protection against weather and greater resistance to abrasion, assuring longer life of lines and greater protection against mechanical damage. The new cable has been tested and found equally reliable over the entire range of both vhf and uhf channels. Considerable savings on critical materials, particularly on copper, are represented in the new line.

\section*{TV Scanner}

Federal Telecommunication Laboratories, Inc., Nutley, N. J., has developed an improved version of its Poly-Efex Scanner, FTL-93A, for tv station application. Incorporating advanced circuits and expanded operational features, the scanner now allows a single operator to take complete charge of a station's program sources and to present them in the most effective manner. The unit, basically a dual

OTHER DEPARTMENTS
featured for this issue:

Page
Electrons At Work..... 144
Production Techniques . . . 226
Plants and People....... 334
New Books.............. . 346
Backtalk 358
flying spot scanner, has in addition to its two self-contained slide sources, a four-channel video switcher and a special effects or montage section. An integral gamma correction circuit has been built into the unit to compensate for the nonlinearity of the raster produced by the c-r tube. This gives an overall effect of greater contrast range.

Sensitive Relay
Neomatic, Inc., Los Angeles, Calif., announces the sensitive relay, a hermetically sealed unit especially well adapted for use with transistors and germanium diodes. The hermetic seal may be either air or an inert gas. Sensitivity runs as low as 10 mw and the unit will operate as low as 0.0008 ampere. Contacts are spdt to 3 amperes, 24 v d-c; 115 v a-c, noninductive. Coil resistances are available from 4 to 20,000 ohms. Standard temperature range is -55 C to +85 C . The unit is noteworthy for high-speed

Only Sylvania tubes showed NO FAILURES after 1400 hours . . . at accelerated voltages

Exhaustive tests conducted under the supervision of an outside impartial laboratory, the United States Testing Company, showed Sylvania Picture Tubes lasted longer than any others tested.
These tests included the picture tubes of nine leading manufacturers. All tubes were placed in identical test racks and tested under identical accelerated voltages. At the end of 1400 hours, only the Sylvania

Picture Tubes showed no failures. These tests definitely establish the outstanding dependability of Sylvania Picture Tubes. They prove that these tubes will best uphold your reputation for fine performance in the sets you manufacture, sell or service. Send today for complete details about Sylvania Picture Tubes. Sylvania Electric Products Inc., Dept. 3R-1001, 1740 Broadway, New York 19, New York.

RADIO TUBES; TELEVISION PICTURE TUBES; ELECTRONIC PRODUCTS; ELECTRONIC TEST EQUIPMENT; FLUORESCENT TUBES, FIXTURES, SIGN TUBING, WIRING DEVICES; LIGHT bulbs; Photolamps; television sets
operation, operating as rapidly as 2 to 3 milliseconds, depending somewhat upon coil inductance. Its small size is an additional feature. Weight is 2.14 oz .

\section*{Weather Sensing Equipment}

Motorola, Inc., 4545 W. Augusta Blvd., Chicago 51, Ill., has developed a weather sensing unit known as the Snow Detector. Designed primarily for the de-icing of microwave antennas, it also has numerous other applications. The unit, only \(7 \frac{1}{4} \mathrm{in}\). in diameter, detects precipitation when the ambient temperature drops below 37 F. Fully automatic, it will turn on heating elements whenever icing conditions exist. Up to 30 amperes at 117 v a-c can be switched without external relays. The heaters will then remain on until the icing hazard is past, being automatically turned off by the detector.

\section*{Regulated Rectifier}

INET, INC., 8655 South Main St., Los Angeles 3, Calif., has announced a new type of highperformance a-c to d-c regulated
rectifier. Named the MagniVolt, it combines ruggedness and close regulation of low voltage in a highly dependable low-cost unit. Regulation by the instrument is better than 1.0 percent for no load to full load with \(\pm 10\)-percent a-c line variation. Response is faster than 0.2 second, even under extreme contrast of load conditions. The rms ripple is less than 1.0 percent. The MagniVolt is designed to operate on 115 v , single phase, 60 -cycle current. It is built in standard models ranging from 1.2 v to 28.0 v and from 2.5 amperes to 30.0 amperes. It features a magnetic amplifier that contains no moving parts or vacuum tubes.

\section*{Transmitter}

Radio Laboratories, Inc., 1846 Westlake Ave. North, Seattle 9, Wash. Model 75 transmitter was designed for marine, aeronautical and fixed station use. Any two frequencies may be monitored simultaneously, using the crystal receiver for one and the tunable receiver for the other. The crystal receiver features a new improved noise limiter, a variable squelch circuit, plus automatic blanking of the tunable receiver. When a carrier is received on the crystal receiver it electronically disables the tunable receiver so the message may be clearly received. The transmitter features eight independent, separately-tuned channels for maximum efficiency. Also available are 35 watts of audio for paging, public-address or deck horn operation.

\section*{Voltage Tester}

Holub Industries, Inc., 413 DeKalb Ave., Sycamore, Ill,, has announced a voltage tester having only one test lead and other new design features. It is called the Hi Test and indicates a-c or d-c voltage from 115 to 600 v . The second test prod is permanently mounted in one end of the tester making it easy to hold the tester in one hand and still press the prod firmly against contact or wire. The voltage scale is located in the end of the tester opposite the prod where it is always in full view. Flashover between ends of the solenoid coil is completely eliminated as the wires are brought out of the case at opposite ends of the coil. Overall length of the tester is \(8!\mathrm{in}\).; test lead with 4 -in. plastic handle, 48 in .; and weight, with carrying case, 10 oz .

\section*{Selenium Reclifier Power Supplies}

Rapid Electric Co., 2881 Middletown Road, New York 61, N. Y., has announced a new line of selenium rectifier power supplies

\title{
\({ }_{u_{e}}\) RIGHT COMBINATION \(f_{\text {for }}\) maximum performance at minimum cost
}

NO SPLICES. As always, plastic-base Audiotape in 1200 and 2500 ft reels is guaranteed splice-free.

NO FRICTION SQUEAL. Perfected anti-fric. tion process eliminates annoying tape squeal-prevents "tackiness" even under extreme temperature and humidity conditions.

MINIMUM DISTORTION. Audiotape's oxide coating is especially formulated to give maximum undistorted output. Comparative tests show its marked superiority in this respect.

MAXIMUM UNIFORMITY. All \(7^{\prime \prime}\) and \(10^{\prime \prime}\) reels of plastic-base Audiotape are guaranteed to have an output uniformity within \(\pm 1 / 4 \mathrm{db}\) - and a reel-to. reel variation of less than \(\pm 1 / 2 \mathrm{db}\). And there's an actual output curve in every 5 -reel package to prove it!

PRECISION TIMING. Improved reel design with \(23 / 4^{\prime \prime}\) hub reduces timing errors by eliminating the tension and speed changes formerly encountered at the beginning and end of the winding cycle. Ratio of OD to hub diameter is the same as the standard NAB 2500 ft reel.

CONSTANT PITCH is another advantage of the new reel design resulting from the more uniform tape speed throughout the winding cycle.

SLOWER ROTATIONAL SPEED, due to larger hub diameter, minimizes vibration and avoids possible damage to tape on fast forward and rewind.

REDUCED HEAD WEAR can also be expected, because the maximum tape tension is materially decreased.

\section*{audiotape gives you all these advantages at no extra cost!}
* Trade Mark

This new 1200 ft plastic reel with \(23 / 4^{\prime \prime}\) diameter hub is now being supplied on all orders for \(7^{\prime \prime}\) reels unless otherwise specified... at no increase in price. Remember - with Audiotape, there's only one quality - the finest obtainable! Audiotape is availablo in all standard size reels from 150 to 5,000 feet.

AUDIO DEVICES, Inc.
444 Madison Ave., New York 22, N. Y.
Export Dept. 13 East 40th St., New York 16, N. Y., Cables "ARLAB"
audiodises audiotape audiofilm audiopoints

\section*{CTRP's*}

In a recently published document*, reference was made to the "Cyclic Thermal Response Pattern CTRP". The significance of this concept was overlooked by many who believed the publication was not a serious work. The error undoubtedly springs from the rather free (hand) treatment of the block and pictorial diagrams.
Actually, the CTRP concept arose in an effort to make sense out of one of the worst difficulties faced in trying to expand manufacturing capacity enough to satisfy the current military demand.
The response of sensitive relays to variable ambient temperature
varies considerably both between individuals and types. In the CTRP diagram, successive vertical lines represent relay response at successive extremes of ambient temperature. Top and bottom lines trace excursions of pull-on and drop-out values.
Often the Pantographic tendency overshadows the Bellows factor and, not infrequently, neither one emerges above the "thermal noise level". The sensitive relay, however, is like the bumblebee which, cheerfully unaware of the aerodynamic facts of life, goes right ahead and flies! With no really good excuse, thousands of them operate with reasonable reliability.
*See "Tri-Stable Two-Stage Caloriferer with Biased Viewpoint Adjustment" - Sigma Instruments, Inc. publication.

SIGMA INSTRUMENTS, INC. 62 pearl st., so. braintree, boston 85, mass.
designed for installation at individual work stations. Each of the two models currently in production, a 300 -watt unit and a 500 -watt unit, operates from a 115 -v 60 -cycle line, and furnishes from 90 to 135 v of filtered d-c output. Output voltage may be varied in approximately equal steps by a 5 -position tap switch. Output ripple is less than 5 percent at full load. Both units are rated for continuous duty at full load. Over load protection is built into the circuit.

\section*{Ball Relay}

Magnex Corp., 90-28 Van Wyck Expressway, Jamaica 18, N. Y., has announced a shock-proof hermetic-ally-sealed relay of unique design, capable of operating at speeds over 100 cps , for use on d-c circuits. It uses magnetic balls as the contact medium providing new contact surfaces on each operation and preventing misoperation under vibration in locations such as aircraft and automobiles. A special nonmagnetic plating on the balls and the pole pieces provides a long life contact and avoids sticking caused by current interruption. The special material used also prevents contact holding due to residual magnetism. The pole pieces are insulated from each other and are the terminals of the circuit to be closed.

\section*{Carbon Film Resistors}

Chase Resistor Co., 9 River St., Morristown, N. J., is producing two
high stability carbon film resistors. For maximum stability these are sealed in glass envelopes, evacuated, baked at high temperatures under vacuum, and finally sealed in helium of spectroscopic purity. These units are stable to 0.01 percent under all environmental conditions, and have long time drift of 0.01 percent per year or less. They can be supplied in networks with ratios and temperature coefficients held to close tolerances. Less expensive units are made by solder-sealing resistors in ceramic tubes with metallized ends. The stability of these is less than that of the glass-helium sealed resistors, but much better than that of varnished resistors, particularly under conditions of high humidity and temperature.

Decimal Counting Unit
Berkeley Scientific Division of Beckman Instruments, Inc., 2200 Wright Ave., Richmond, Calif. Model 730 preset decimal counting unit is a direct-reading electronic counter capable of producing output information at any selected count. It will operate at speeds up to 40,000 counts per second and resolve pulse pairs separated by as little as \(5 \mu \mathrm{sec}\). Each counter is a plug-in unit designed for ease of replacement and simplification of maintenance problems in highspeed counting equipment. Units are completely interchangeable. The preset decimal counting unit counts from 0 to the preset number and produces an output pulse. By employing additional circuits this out-

Need Linear and Non-Linear ACCURATE Functions?

\section*{Use Fairchild Precision Potentiometers}

Experience with Fairchild potentiometers in hundreds of applications shows that these units are musually precise. Accuracies of \(\pm 1 \%\) in nonlinear types and as high as \(\pm 0.05 \%\) in linear types can be guaranteed. Service life as high as \(10,000,000\) cycles, under certain conditions, also can be provided. High resolution, low torque, and low noise level are other performance features worth noting.

Fairchild Precision Potentiometers perform mathematical computations in electrical computing systems for machine-tool controls, process controls, telemetering, guided missiles, flight control, fire control, and analog computers of all types. They are available in non-linear and linear types and in ganged combinations of either or both windings to meet your requirements.

Use the coupon below to get full details.

\section*{FIIRCHILD \\ PRECISION POTENTIOMETERS /I}

THIS COUPON MAY HELP SOLVE YOUR POTENTIOMETER PROBLEMS!

\section*{WAVEFORM} TIMING

The Browning Model GL-22A Sweep Calibrator is designed to free its users from limitations encountered in the use of crystal calibrators.

Positive pulse with markers to provide deflection - modulated display.

Negative gate pulse.

Negative pulse with markers used to blank sweep.

Positive marker output.

put pulse can be used electronically to reset the unit.

\section*{Octal Sockets}

Sylvania Electric Products Inc., Warren, Pa. Designed to specification JAN-S-28A, the company's new octal sockets are available with either grade L-4B or better ceramic insulating base or with type MFE low-loss phenolic plastic insulation. Mounting saddles are brass nickelplated with four ground lugs hot tinned for solderability. Saddles are available with 0.156-diameter mounting holes or with threaded extrusions for 6-32 screws. Contacts are available in either phosphor bronze or beryllium copper, silver plated. The sockets are designed for high tube retention and pin contact even under severe vibrating conditions.

\section*{Testing Tool}

Kapner Hardware, Inc., 2248 Second Ave., New York 29, N. Y., has introduced a testing tool that permits instant tracing of the cause of trouble in the high voltage section of any tv receiver. It will instantly indicate the presence or absence of high voltage. It will check if high voltage supply is operating properly. Operation of horizontal am-

\section*{here \\ are its advantages}

It can be used as the triggering source, or can be triggered externally by the output of the device to be calibrated. The external trigger may be recurrent, up to 100 KC , random, or "one shot".

Using the internal trigger, the interval between successive markers is wholly independent of the trigger rate. The internal trigger is continuously variable from 200 to 5000 pulses per second.
The markers are produced through the keying action of a continuously variable gate, and thus can be restricted to the desired portion of an observed waveform. The gate pulse itself is also available as a useful output, of either polarity, and known duration.
The output markers, at \(0.1,1.0\), 10 , or 100 microseconds, accurate to \(\pm 1 \%\), of either polarity, can be continuously varied to 50 volts amplitude - sufficient for either intensity or deflection modulation use. The available intervals, in conjunction with the customary ruled screens, permit accurate measurement of intervals from 0.01 microsecond to several thousand microseconds.
Send for data sheet giving full details.

\section*{ELECTRONIC} THERMOPLASTIC HOOK-UPWIRE

There is no mistaking quality performance ... and PHALON hook-up wires are proving their quality in top performances coast-to-coast.

Hook-up, lead or fixture wires ... whatever your requirement, there is a PHALON wire just made for the job! Get strong, tough, easy stripping with PHALON hook-up wires.

\section*{PHALO PLASTICS CORPORATION}
corner of commercial street WORCESTER, MASS.

Manufacturers of Thermoplastic Insulated Wire, Cables, Cord Sets and Tubing

\section*{PHALO}
 diam. \(x^{9 / 16 " ~ d e e p, ~ w i t h ~} 2^{\prime \prime}\) leads of No. \({ }^{\prime \prime}\).
wire-made to your ord
range of specifications. Pulse Width 0.1 to 2.0 microseconds Maximum Pulse Repetition Rate: \(\quad 2.0 \mathrm{mc}\). Operating Range
One or two secondaries may be provided, either inverting or non-inverting.
\begin{tabular}{|cr|}
\hline LOOK AT THESE PRICES! \\
1 to 3 & \(\$ 7.50\) each \\
1 to 10 & 6.35 each \\
11 to 100 & 5.85 each \\
Write us for quotations for quantities \\
over 100 & \\
\hline
\end{tabular}

\section*{TAKE NO CHANCES WITH} VITAL EQUIPMENT... Specify SERIES 6918 or 6924 RACKS by PAR-METAL
\(181 / 2^{\prime \prime}\) or \(24^{\prime \prime}\) DEEP, for \(19^{\prime \prime}\) WIDE PANELS
- Panel Spaces: \(61 \frac{1 / 4^{\prime \prime}}{}\), \(70^{\prime \prime}\), or \(77^{\prime \prime}\) high.
- Finished in Prime Coat, Black Wrinkle, Grey Lacquer, Grey Wrinkle.
- Series 6918 or 6924 Racks may be used in "rows" or "gangs," as corner trims are removable from front of cabinet.
- Standard shelves and roller trucks are manufactured by us for use with these Racks.

\section*{THESE RACKS ARE MODERATELY PRICED} and AV AILABLE FOR SHIPMENT FROM STOCK
Planning an electronic product? Consult Par-Metal for

\section*{RACKS • CABINETS}

Our P. 6924 Rack as used by
Gai-Tronics, Inc., Reading, Pa.

CHASSIS • PANELS
Remember, Par-Metal equipment is made by electronic specialists, not just a sheet metal shop.

\section*{made by}

Electronic Specialists!

\section*{WRITE FOR CATALOG!}

WRITE US YOUR SPECIAL REQUIREMENTS including a brief outline of the contem. plated circuit, or ask for our blank specification sheets.

The costly headaches and limitations of loose tolerances-which have vexed the engineer with variations of \(1 / 32^{\prime \prime}\) in permanent magnet design-have been virtually eliminated by Thomas \& Skinner, specialists in magnetics for more than half a century.

Now your engineers can specify the intricate casting shapes-with sharply defined relief-which in the past have been too difficult or too expensive to produce. Through radically new techniques, Thomas \&

Skinner permanent magnets are cast with such close precision that little or no grinding and finishing is required for dimensional accuracy.

Call in a Thomas \& Skinner en-gineer-let him work with your own development specialists-learn how your permanent magnet problems of close tolerances and intricate designs may be solved by the new Thomas \& Skinner techniquenow! Write today-ask for the new Thomas \& Skinner Permanent Magnet Bulletin, No. 151.

\section*{THOMAS \& SKINNER Steel Products Company 1120 East 23rd Street . Indianapolis, Indiana}
plifier and high voltage transformer are easily checked. The Detecto probe is equipped with a built-in lamp that lights up if high voltage is present.

\section*{Ganged Potentiometer}

The G. M. Giannini Co., Inc., Pasadena, Calif., has produced a vernier phasing ganged potentiometer known as the Gangpot. Gangpots are available with from two to six individual sections; a 6 -section unit operating on 1.5 oz -in. of shaft torque. Assembly is without external clamps or bolts. Mechanical rotation is 360 deg continuous; electrical rotation may be 360 deg or less. Sections are available in resistances from 2,000 to 300,000 ohms and each will dissipate 4 watts continuously at 25 C . Sections may have linear or nonlinear outputs, one or two brushes, and taps as desired. A simple screwdriver vernier phasing for each section permits phasing to 0.2 deg over an angle of 22 deg .

Meter Calibrator
Bruck Industries Inc., Syosset, L. I., N. Y., has developed an instrument designed specifically for the
rapid calibration of d-c volt and milliammeters and for testing and adjustment of d-c type analog computers. The M-DC-1 calibrator is completely self contained. It consists of four major components: two regulated power supplies, a normalizer and the calibrator proper. The normalizer is referenced to a built-in standard cell. The output can be preset on four decade dials, and is maintained automatically constant and accurate to within 0.1 percent over 90 percent of its range, independent of load, input voltage or ambient conditions. Both the normalizer and the calibrator are controlled and compensated by electromechanical transducers in conjunction with high gain 60-cycle amplifiers and all manual operations are completely eliminated.

Oscilloscope Probe
Linear Equipment Laboratories, Inc., Brightwater Place, Massapequa, N. Y. The new model HF2A Lo-C Oscilloprobe introduces no signal attenuation. Measurements of low-level signals in high impedance video circuits can be readily made without affecting the true waveforms. Heretofore such measurements required engineering interpretations, as the relatively large input capacitances of conventional probes distorted the signal under observation. The dynamic output impedance is approximately 60 ohms and the maximum undistorted output is 1.5 v rms . The input voltage range can be selected by a threeposition switch. Signals up to 150 v rms can be applied to the probe without overload. Input impedance

ELECTRONICS - January, 1953

\section*{Attention!... ELECTRONIC DEVELQPMENT ENGINERS}

Reduce your problems with the NEW EUREKA "SNAPPER"
\[
\begin{aligned}
& \text { THIRMATIME } \\
& \text { DELAY REAT }
\end{aligned}
\]

Features . . Snap action. Single Pole Double Throw. Lightweight. Low operating temperature. Operates in any position. High contact rating. Gas filled. Low heater current. Durability and long life.

The ELIMINATION OF CHATTERING is accamplished with the incorporation of "POSITIVE SNAP ACTION" in the EUREKA "SNAPPER"
. LEADING ELECTRONIC MANUFACTURERS have acknowledged the new EUREKA "SNAPPER" as a major cadvancement in this field. and have already accepted this relay as \(e\) standard component of their latest equipment.
Inquiries are invited . . . send for our "Bultetin Number Snapper" EUREKA TELEVISION AND TUBE CORP. Manufacturers of Cathode-Ray Tubes and Electronic Products 69 FIFTH AVE., HAWTHORNE, N. J. - TEL. HAWTHORNE 7-3907

on all ranges is 4.5 megohms with 1.5 u.f.

\section*{Diode Clip}

Computer Research Corp., 3348 W.
El Segundo Blvd., Hawthorne, Calif., has developed a new diode clip that permits quick, easy insertion and removal of diodes. The clips will accommodate most types af diodes now in use. They require no rivets or other fasteners for mounting. The clip is simply pressed into a hole on the diode board. Spring tension holds the diode securely in the clip, and a special plating assures excellent surface contact. Other advantages include greater ease in removing defective diodes, faster assembly of diode boards and quicker initial checkout of finished equipment. They also facilitate preventive maintenance tests and the keeping of performance records on individual diodes.

\section*{Pressure Transducer}

Consolidated Engineering Corp., 300 N. Sierra Madre Villa, Pasa-

IF THE WIRING FAILS

\section*{SO DOES YOUR PRODUCT'S REPUTATION}

\section*{FOR DEPENDABLE PRODUCT WIRING USE} C/H/LEFTRIF M//R/KG SYSTEMS

Year after year - for over ten years - UNILECTRIC has produced millions of wiring systems, for more than 150 leading manufacturers of electric and electronic products. From controls to complex armed forces equipment, these wiring systems have consistently met the most exacting requirements and provided substantial savings to each customer.

To assure utmost dependability plus cost saving engineering, assistance, low cost production and "on-schedule delivery" investigate UNILECTRIC today.

\section*{f1megiver Whane Sistizs \\ Manufactured by \\ UNITED MANUFACTURING \& SERVICE COMPANY 408 SOUTH 6th STREET • MILWAUKEE 4, WISCONSIN}

\author{
SCOPE DOLLY \\ Model 1
}

Convenient Height and Viewing Angle Adjustable to Hold Portable Scopes Ball Bearing Swivel Rubber Tired Costers Lightweight Aluminum Construction Recommended by Loboratories Wherever Used
\(\$ 35.00\) fob louisville, Ky.
Formerly manufactured by UNIQUE DEVICES
Now manufactured and sold by
technical service corporation
3116 Mechlgon Drive
Louisville 5, Kentucky

\section*{Specify \\ GII \\ Servo Motors \\ PRECISION ENGINEERED}
reliable performance - rugged construction
In the operation of - GUNFIRE CONTROLS - ROCKET CONTROLS GUIDED MISSILES • AIRCRAFT CONTROLS • INDUSTRIAL CONTROLS

G-M Servo Motors can be supplied to meet rigid military specifications with regard to humidity, temperature range, vibration and altitude. Available in 2, 4 or 8 pole construction and for frequencies from 60 to 400 cycles.

Write today for complete information.

\section*{\(\Longrightarrow\)}
(INC. \({ }^{4336 \text { NORtH KNOX avenve }}\)

\section*{The Spotight's On
}

\section*{WIRE WOUNDSILICONE COATED RESISTORS}

\author{
Complete welded construction
} from terminal to terminal. Tem perat ure coefficient \(0.00002 / \mathrm{deg}\) C Ranges fromi 0.1 Ohm to 55.000 Ohms depending on Type. Toler ance \(0.05 \% 0.1 \%, 0.25 \%, 0.5 \%\) \(1 \% .3 \%, 5^{\prime \prime} \%\).
 in 25.50 and 250 watt sizes. black anodized radiator finned housing for maximum heat

Dalohm precision deposited carbon resistors offer the hest in accuracy stability. dependable performance and economy. Available in \(1 / 2\) watt. 1 watt and 2 watt sizes.

Carefully crafted in every respect, Dalohm resistors are true power in miniature - provide the answer to those space problems

Write, wire or phone George Risk 1300 28th Ave., Columbus, Nebr. for price and delivery

Telephone 2139

\footnotetext{
In Canoda: Teletronics Corp. Ltd.
}
miniaturization wire stands temperatures from-55 \(5^{\circ}\) to
\(+105^{\circ} \mathrm{c}\). . . . and metto or BEATS ALL OTHER REQUIREMENTS OF JAN-C-76 AND MIL-W-5086

ACTULSIZE of a 27 GAUGE (7/35) VINYL INS. - 0.0075" NYLON INS. - 0.0025" MAX. O.D. - 0.058"
- PROVE TO YOURSELF that wire does not need bulky insulation to stand extreme temperatures, or give you insulating values above 1000 megohms per 1000 ft .
- SEND FOR A SAMPLE of Turbo Miniaturization Wire. Test it on any electronic application where the continuous operating voltage does not exceed 600 volts R.M.S. See how its thin extruded vinyl primary insulation and thinner extruded nylon jacket resist boiling water, oils, fuels, hydraulic fluids, fungus, abrasion, etc.
- tURBO MINIATURIZATION WIRE COMES IN AWG SIZES FROM 30 TO 12 GAUGE ... in standard or flexible wiring . . . in solid colors, or candy-striped colors with 1, 2 or 3 tracer combinations, to fit your circuit coding needs.
- bULLETIN A-4662 gives you more information about TURBO insulation. Ask for it when requesting your samples of TURBO Miniaturization Wire. Write Dept. E-1.
 inglating materal TURBO the brand only brand makes
THE WILLIAM BRAND ANDCO., INC.

North and Valley Streets, Willimantic, Connecticut - Phone 3-1661
dena 8, Calif. Extremely rapid transient pressure surges and highfrequency pressure pulsations, both frequently encountered in presentday processing equipment, vehicles and hydraulic systems, can be easily and accurately measured with the new type 4-301 pressure transducer. It may also be used for measuring static or slowly varying pressures over an extremely wide temperature range in both gaseous and liquid systems. The transducer's output may be either recorded on an oscillograph, when extremely rapid pressure changes must be analyzed in relation to time, or it may be used to indicate pressure changes on meters or oscilloscopes, which can be monitored visually or photographed. Output is linear within \(\pm 0.5\) percent of full scale. The pickup, complete with cable and plug, weighs only 9 oz and measures \(1 \frac{1}{2} \mathrm{in}\). in diameter.

\section*{Preservative and Noise Eliminator}

Grayburne Corp., 103 Lafayette St., New York 13, N. Y., has developed a new chemical solution for the elimination of noise and the preservation of moving contacts in home radios and television sets. The formula cleans and preserves all controls and contacts without any harm to insulation and soldered joints. It has been so prepared that each drop has the same chemical content as any other. Perfect equalization has resulted in a sedi-ment-free solution that does not clog contacts. Known as Q-T, it contains only the pure basic ma-
terials and has no artificial coloring.

\section*{R-F Coax Connector}

Teletronic Laboratories, Inc., 1835 West Rosecrans Ave., Gardena, Calif., has developed a new miniaturized r-f coaxial cable connector designed for use at microWave frequencies with either RG\(55 / \mathrm{U}\) or RG-58/U coax cable. It shows a vswr of less than 1.3 over the entire band, operating between 8,400 and \(9,600 \mathrm{mc}\). Compressionsealed against moisture and atmospheric changes, this smaller, lighter connector is manufactured from brass, Tefion, phosphor bronze and beryllium copper.

\section*{Indicator Light}

Hetherington, Inc., Sharon Hill, Pa., has developed a new indicator light for edge-lit AN-P-89 aircraft panels. Known as the type L2000, the light flange-mounts on the backup plate and the socket extends through the edge-lit panel. The plastic lens screws into the light socket from the front of the panel. The light \(1^{\frac{1}{4}} \mathrm{in}\). long overall and weighs less than \(\frac{1}{4} \mathrm{oz}\). A 327 miniature lamp is used for 6,12 or \(28-\mathrm{v}\) operation, and amber, blue, green,
Want more information? Use post card on last page.

\section*{MOOEL C-3 RESISTANCE METER IS YOUR ANSWER}

The Módel C-3 Resistance Mêtel is designed for use by manufacturers in checking both leakage and continuity of electrical components. It is particularly valuable for making rapid cheek's of the insulation resistance of transformier windings, condengers, and electrical wiring, as well os measuring the ohmic value of resistors and wihdings:

\section*{ELECTRICAL SPECIFICATIONS}

ACCURACY: Plus or minus \(3 \%\) of full sceale ideflection plus 1 ohm on the OHMS ranges.

Plus or minus \(3 \%\) of full scale deflection (lapproximately 3 degroes) gn the MEGOHMS ranges except \(10^{\prime}\) ranges

Plus or minus \(5 \%\) gf foll scale deffection on 10 megoh̨ms range.

RANGES: 1 ohm to 1 million megohms
The ohmimeter applies a maximum of \(11 / 2\) volts to the resistor under test. It has a scale of from \& to 500 ohms and a selector switch for selecting stale multipliers of \(\times 1, \times 10, \times 10^{2}\) and \(\times 10^{3}\).

The teakage tēster applies" a maximum of 105 volts to the unit under test. Its scale reads from 1 to 100 megohms and has multipliers of \(\times .1\), x \(\times 10, \times 10^{\circ} \times 10^{2}\), and \(\times 10^{\circ}\).

SOUHHMESTERN MDUSTRLAL
EMECTRONIGS GOMPANY

EVERYONE WHO DESIGNS, SPECIFIES OR BUYS fasteners should have this important brochure at his fingertips. Write for your copy today.

See our catalod in the 1953 Sweet's Product Designers File.
Est. 1919
the UTLTEORD RIVET \& MACHINE CO.
MILFORD. . . the name to rivet in your memory for fasfeners
855 bridgeportave, 1106 W . RIVERST. 26 PLAIt St. 806 ILIIMDIS aVE. 715 SO. PALM AYE. mhlord, conn. elyria, bhio hatboro, pa. aurora, lllimols alhambra. calif.
red or white plastic lens is available. The molded-in terminal will not vibrate or pull loose.

\section*{Filter}

Cinema Engineering Co., 1510 West Verdugo Ave., Burbank, Calif., is in production on its new variable high and low-pass filter, type 6517-D. This sound effects filter is used for sound and electronic lab research and control; and for sound recording, transmission and reproduction control. Minimum input level is -70 dbm ; maximum, +28 dbm . Insertion loss is zero. It features wide frequency spectrum with overlapping cutoff frequencies; zero phase distortion over the transmission range; and clickless steps of control. All inductors are toroidally wound.

\section*{Toggle Switch}

Hetherington, Inc., Sharon Hill, Pa., has introduced a new aviation type (MIL-S-6745) miniature toggle switch with a unique cylindrical design that reduces size approximately 25 percent by comparison with conventional rectangular switches. Features include exceptionally effective contact wipe; positive cam-roller snap action that makes it impossible to tease the switch off contact; and strong lever operating action to break any contact welding that may result from an accidental overload. Four circuit arrangements are available: on-off and spdt maintained contact

- HYCOR DECADE - INDUCTOR units are indispensable for design and experimentation work on audio filters.
- The units are available in four ranges up to 10 henries. Units may be used individually or all four may be connected in series to obtain 11.11 henries in 1 millihenry steps.
- Toroid coils are used to obtain high " \(Q\) ", stability and low pickup from external
fields. Inductar. se accuracy is \(2 \%\).
Send for bulletin D-2
HYCOR COMPANY, INC.
11423 VANOWEN STREET, NORTH HOLLYWOOD, CALIFORNIA • SUnset 3-3860
Manufacturers of Toroid Inductors, Decade Inductor Instrumenti, Wave Filfers, Resistive Networks, and Precision Reslstor,

NOW available to you . . . without costly sub-contracting problems
MIL-3-233A SFARE-FARS BOAES... FOR THE PROTECTION OF ON-BOARD REPAIR PARTS To better service your Stock standard TYPE M - need tor Specification STEEL SPARE OR REPAIR Spare-Parts Boxes we PARTS BOXES, made in have put them on a mass strict accordance with production line.
Military Specifications. Military Specifications. prodrce chart
DOLIN METAL PRODUCTS INC.
METAL PRE, BROOKLYN 16, N. Y.

The number and complexity of the circuits in large electronic computers make it impera－ tive that the cables used not only stand up in heavy service，but consume as little space as possible．The special 136 conductor Rome Synthinol＊insulated cable illustrated was manufactured by Rome Cable for this pur－ pose．And，there are good reasons why Rome was asked to do the job．
Leading manufacturers have found that Rome Cable＇s facilities，experience and en－ gineering＂know－how＂make Rome their best source for complicated electronic cables of the highest quality ．．．cables that meet the most exacting specifications．
Rome Cable，also，manufactures a com－ plete line of standard Underwriters＇approved， as well as military type radio and television hook－up wires utilizing both rubber and ther－ moplastics．So，whatever your wire or cable requirements，look to Rome for dependable quality．The coupon below will bring you descriptive literature．Mail it today！
＊T．M．REG．

ーーーーーーIT COSTS LESS TO BUYTHEBEST——————

\section*{ROME CABLE CORPORATION}

Dept．E－1－Rome，N．Y．
Please send me informa－ tion on Electronic Wiring

Name．
\(\qquad\)

Address

Ciiy ．．．State．．．．．．．．．．．．．．．．．．
adian Navy-Army-Air Force specifications, which are similar to but not identical with JAN specifications. Electrical and mechanical features, uses and circuit description are given in a loose-leaf perforated catalog sheet.

\section*{Vertical Deflection Amplifier}

General Electric Co., Schenectady 5, N. Y., has announced a new high-perveance triode for vertical output service in television receivers. The tube, type 6AH4-GT, is expected to be particularly useful in receivers with large-deflectionangle picture tubes. Typical operating characteristics with 250 v on the plate include: heater voltage, 6.3 v ; grid voltage, -33 v ; plate current, 30 ma ; transconductance, 4,500 umhos; amplification factor, 8.0; and plate resistance, 1.780 ohms.

\section*{Carrier System}

Lenkurt Electric Co., 1113 County Road, San Carlos, Calif. Up to 24 broad-band voice channels can be

\section*{Winchester Electronics}

\section*{\(5 \begin{gathered}\text { Hish curont } \\ \text { DISCOHINETING } \\ \text { COHIECTOR }\end{gathered}\)}

The AQRE Connector, particularly suitable for power eirevits, permits the use of higher currents fup to 25 amps) and provides the quick-disconnect, self-aligning features of our widely accepted QRE-type connectors12 extro-large contacts with \(.113^{\prime \prime}\) dia. solder cups for \#12 A.W.G. wire are housed in a molded melamine (high dielectric) insert body. Knob (as shown in illustration right) or lever actuated bayonet locking guides assure positive engagement of plug ond receptacle at all times and prevent accidental disconnection due to vibration in rugged field applications. Hoods fit plug or receptacle (and are obtainable by including the letter " h " in the code number).

AQRE 12P-LT

\section*{QUALITY FEATURES OF THE AQRE 12}

QUICK DISCONNECTING. The separately spring loaded contacts used in this connector eliminate the annoying prying and pulling necessary when separating ordinary multicontact connectors. Forcing, which frequently results in serious damage, is eliminated and special levers are not required.
SELF-ALIGNING. Individually floating contacts assure self-alignment.
PRECISION MACHINED CONTACTS. Pins are from brass bar (QQ-B611) and sockets from spring temper phosphor bronze bar (QQ-B746a). They are gold plated over silver for consistent low contact resistance, reduction of corrosion and ease of soldering.
MONOBLOC* CONSTRUCTION eliminates unnecessary creepage paths, moisture and dust pockets and provides stronger molded parts.
MOLDED MELAMINE BODIES (in accordance with MIL-P-14) Mineral-filled-are fungusproof and provide mechanical strength as well as high arc and dielectric resistance.
MOUNTING. A die cast aluminum, black anodized bracket for rack and panel mounting permits necessary float for self-alignment.

> NOTE! Plug and receptacle can be furnished with regular guides for alignment and polarization only, For locking guides, the addition of "LT" to the plug or recepcacle code num ber indicates the actuating mechanish \(;\). the locking device is actuated from one side plug or receptacle only. The letter "L" must then be added to the mating side. Illustration above shows the plug with knob-actuated locking guides, i.e.. AQRE 12 P . \(L T\). The mating receptacle is therefore coded as AQRE. \(12 S-L\). For levers instead of knobs add "LT type \(B\) " to code number. For hoods with locking guides add "HLT" type C" to plug or receptacle code number on which hood will be used.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Receptacle Code No.} & \multirow[t]{2}{*}{\begin{tabular}{l}
Plug \\
Code \\
No.
\end{tabular}} & \multicolumn{2}{|c|}{Weight 02.} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Number } \\
& \text { of } \\
& \text { Contacts }
\end{aligned}
\]} \\
\hline & & Rec'pt'le & Plug & \\
\hline \begin{tabular}{l}
AORE \\
12S
\end{tabular} & \[
\begin{aligned}
& \text { AORE } \\
& 12 P
\end{aligned}
\] & 2.10 & 1.23 & 12 \\
\hline \multirow{3}{*}{} & \multicolumn{4}{|l|}{D.C. Volts Breakdown (Connector Engaged)} \\
\hline & \multicolumn{2}{|l|}{Sea Level Normal Humidity} & \multicolumn{2}{|l|}{60,000 Feet Altitude} \\
\hline & \begin{tabular}{l}
Between \\
Contacts
\end{tabular} & \begin{tabular}{l}
Contacts \\
to Ground
\end{tabular} & Between Contacts & Contacts to Ground \\
\hline \#12 & 6250 & 9150 & 1450 & 2150 \\
\hline
\end{tabular}

\section*{PHTSICAL AMD EIEGRICAL DATA}

Wire or write for catalog of other types or advise your special requirements.

West Coast Branch: 1729 Wilshire Blvd.,
Santa Monica, California
* Trademark

GLENBROOK, CONN., U.S.A.

\section*{easier to use, more complete than ever}

You'll find more than 500 units listed in the new chicago Catalog . . . transformers for every application
... presented in one complete,
easy-to-use specification guide, covering the following categories:
- MIL-T-27 Hermeticaliy-Sealed Transformers
- New Equipment Transformers - Television Replacement Transformers - General Replacement Transformers - Control \& Power Circuit Transformers

You'll want this new chicago Catalog for handy reference. It provides a wealth of terse factual information on chicago Transformers for original or replacement use in the radio, electronic, electrical, aeronautical, geophysical, and automotive industries. Use this Catalog as your buying guide to the World's Toughest Transformers . . . depend on your chicago distributor for prompt, efficient service.

\section*{CHICAGO TRANSFORMER}

DIVISION OF ESSEX WIRE CORPORATION 3501 W. Addison Street - Chicago 18, Illinois
transmitted over a wide-band radio channel with the new type 33C carricr telephone system. Designed specifically for application to radio links, this frequency division multiplex system is comprised of three eight-channel groups. A single group or less can be installed initially and expanded to the maximum capacity in the future as traffic increases. Because the problem of channel co-ordination common to wire line carrier operation does not apply to radio operation, the channels have been spaced at 5 kc intervals. Two frequency allocations are available: one uses frequencies up to 135 kc ; and the other, frequencies up to 150 kc . Each channel includes a broad speech band of approximately 300 to 3,400 cycles with provision for out-of-band signaling at 3.9 kc .

\section*{Time Delay Relay}

Assembly Products Inc., Main at Bell Street, Chagrin Falls, Ohio. This new moving coil, permanent magnet-type relay, model CMR-TD, offers adjustable time delays for many ranges of voltage and current, both a-c and d-c. The dial is calibrated directly in delay in seconds. The timing is adjusted by hand-setting a pointer to the time indicated on the dial. Full-scale ranges of less than 10 seconds can be furnished. Timing is relatively unaffected by changes in temperature or barometric pressure. Delay action results from the magnetic drag inherent in sensitive microammeters. There are no capacitors, dash pots nor motors. Contacts are self-locking and rated at \(5 \mathrm{ma}, 100\) v d-c for one million operations. Ratings up to 500 ma can be supplied for a reduced number of operations. Contacts are locked by an

\section*{improve your coils...}
- Quality Controlled
- Greater Insulation
- Better Heat Dissipation
- Higher Moisture Resistance
- 15 to \(20 \%\) Stronger
- Lighter Weight
- More Winding Space

PRECISION Coil Bobbins are finished to your exact specifications. Only the finest dielectric materials are used.

Cores furnished in an infinite variety of sizes and shapes-kraft, fish paper, acetate, or combinations. Flanges cut to specifications-plain or fitted with leads, slots or holes; embossed or recessed.

\section*{PRECISION PAPER TUBECO.}

2041 W. Charleston St. Chicago 47, III. Plant No. 2, 79 Chapel St., Hartford, Conn.

Also Mfrs. of Precision Paper Tubes
 electrical and instrument manufacturers.

The Green Engraver zips out precision work on metal, plastics, wood, glass, hard rubber etc. . . engraves panels, name plates, scales, dials, molds, lenses, instruments, instruction plates, directional signs ... by simple tracing. Routing, profiling and three dimensional modeling indicate its versatility. Electric etching attachment available.

Specify the Green Engraver for the best in
low cost performance. Special attachments and engineering servise available for production work.

FREE - Fact-packed folder yours upon request.

363 PUTNAM AVENUE•CAMBRIDGE, MASS.

\section*{RAHM TRANSDUCERS...}
\begin{tabular}{|c|c|c|}
\hline Typical Data & FOR & \\
\hline \begin{tabular}{l}
Linearity: \\
with pressure: \(\pm 0.25 \%\) to \(\pm 0.75 \%\) \\
with alititude \(+0.5 \%\) (0.70000 ft)
\end{tabular} & PRE & SSURE \\
\hline Resolution: \(0.15 \%\) to \(0.4 \%\) of pres- & AL & TUDE \\
\hline Desif \({ }^{\text {a }}\) tures & & \\
\hline Design Features & AIR & \\
\hline Operation from \(-60^{\circ} \mathrm{C}\) to \(+160^{\circ} \mathrm{C}\) and to 60 G acceleration. & & Spidd \\
\hline a.c or d-c output usable without & & \\
\hline amplification. & & Ration \\
\hline Special Teatures & & \\
\hline Protection from corrosive media or & & \\
\hline atmosphere. Mutiple outpun from
single instument. Ouput non-linear & & \\
\hline with pressure.
REQUEST
BULLETIN A-4 & & \\
\hline REQUEST BUILTM A-4s & & \\
\hline
\end{tabular}

PROBLEM: ULTRA MINIATURIZATION - Design and mass produce an extremely miniaturized slip ring assembly. Reduce diameter of rings to absolute minimum to lessen torque friction. Maintain microtolerances; eliminate accumulated errors common to "assembled" slip rings.

\section*{SOLUTION: ELECTRO TEC EXCLUSIVE* METHOD}
of unitized, one piece construction provided a prompt, economical solution to this problem. Final design was even smaller than was originally specified and tolerances were held to closer limits.

\section*{Same Exclusive* One-Piece Construction Used in All Electro Tec Assemblies}

Diameter of Electro Tec assemblies range from \(.045^{\prime \prime}\) to \(24^{\prime \prime}\) cylindrical or flat. Cross sections of the rings may range from \(.005^{\prime \prime}\) to \(.060^{\prime \prime}\) or more. Rings are polished to a jewel-like finish . . . can be held to four micro-inches or better. Regardless of size, the same exclusive Electro Tec manufacturing technique is used to guarantee precise concentricity, higher dielectric strength, longer life and closer tolerances.

\section*{WRITE FOR LITERATURE!}

A completely illustrated, four page folder contains full information on Electro Tec Miniature Slip Rings and Commutatars. Describes the Exclusive* method of construction that has made Electro Tec the leading supplier to America's major instrument manufacturers. Send for your free copy today on company letterhead.
 \((0)=(0)=(0)=0\)

\section*{CORPORATION}

NEW JERSEY
SO. HACKENSACK

extra coil in the meter. Relays with nonlocking contacts can be supplied for special applications.

\section*{Printed Circuit Connectors}

DeJur-Amsco Corp., 45-01 Northern Blvd., Long Island City 1, N. Y. The series PC miniature printed circuit connectors have precision phosphor bronze contacts, silver and gold plated, tinned on the solder end for easy soldering at assembly. They feature positive polarization, minimum insertion and disengagement force, and a molded body from melamine mineral filled. Literature on minature, subminiature, power and E-Z release connectors is available on request.

\section*{Open Wire Line}

Gonset Co., 801 S. Main St., Burbank, Calif., has released a new, closer-spaced open wire transmission line more suited for uhf tv use than the more standard 1-in.-spaced line. Using No. 18 gage solid copper wire spaced \(\frac{z}{2}\) in., it utilizes polystyrene spacers and is similar to the standard 1 -in. line except for spacing. The closer spacing restricts the field and minimizes the dissipation losses and reflection bumps that occur at uhf when open wire line is brought close to almost any physical object. Surge impedance is 375 ohms, sufficiently close to 300 ohms that the new line may be used interchangeably without concern over mismatch. Attenuation is approximately 2 db per 100 ft at the low end of the uhf band
and approximately 3 db at the high end (dry). Unlike conventional ribbon line using a web of polyethylene, the uhf attenuation increases only moderately when the line is wet. The line is also well suited to use at vhf.

\section*{High-Speed Level Recorder}

Sound Apparatus Co., Stirling, N. J. Recent electronic and mechanical design changes have been made in the model HPL high-speed level recorder. Frequency response has been improved. Sensitivity has been increased and can be adjusted from 7 to 12 mv . A new semiautomatic electronic damping is provided that controls the writing stylus and is particularly useful when the input potentiometers or writing speed are changed. The electronic chassis is an integral part of the recorder and can be easily substituted with circuits of different functions. Mechanical changes have been made for a more convenient chart roll insertion and manual chart setting. A chart rewinding mechanism has been added.

\section*{Frequency Computer}

North American Instruments, Inc., 3445 Cahuenga Blvd., Los Angeles 28, Calif. The Northam frequency computer is the result of

If you manufacture any type of electronic equipment, you know how important high quality, noncorrosive fastenings can be to your production.
H. M. Harper is the largest manufacturer specializing in fastenings of non-ferrous metal and stainless steel. Over 7,000 items carried in stock.
Harper Everlasting Fastenings offer manufacturers of electronic equipment:
- fastenings of brass, naval bronze, silicon bronze, Monel, nickel, aluminum, all stainless steel-many non-magnelic materials
- high quality and extreme accuracy
- a vast metallurgical and engineering background capable of solving any fastening problem
- twenty-nine years of manufacturing experience
- one source of supply for all your needs, with the added advantages of one source of responsibility, one account to handle, one bill to pay.
There is a Harper distributor near you with stocks to fill your order. Harper engineers and metallurgists will be glad to assist you in the solution of any fastening problem.

THE H. M. HARPER COMPANY
8244 Lehigh Avenue, Morton Grove, IIl.
Mail the coupon below for complete catalog of Harper Everlasting. Fastenings. There is a Harper distributor near you with stocks to fill
 your requirements. everlasting fastenings
```

The H. M. Harper Company
8244 Lehigh Avenue
Morton Grove, Illinois
Please send the complete catalog of Harper Everlasting
Flease send the complete catalog of Harper Everlasting
Name...............................................................
Position................................................................
Company...............................................................
Address.................................................................
City................................State.............

```


For the most effective solution use the
SIMPLEST, MOST COMPACT MOST ECONOMICAL HERMETICALLY SEALED

\section*{THERMOSTATIC \\ binirgtays}

Provide delays ranging from 2 to 120 seconds.
- Actuated by a heater, they operate on A.C., D.C., or Pulsating Current.
- Hermetically sealed. Not affected by altitude, moisture, or other climate changes.
- Circuits: SPST only-normally open or normally closed.

Amperite Thermostatic Delay Reloys are compensated for ambient temperature changes from \(-55^{\circ}\) to \(+70^{\circ} \mathrm{C}\). Heaters consume approximately 2 W . and may be operated continuously. The units are most compact, rugged, explosion-proof, long-lived, and-very inexpensive!

TYPES: Standard Radio Octal, and 9.Pin Miniature.
PROBLEM? Send for Bulletin No. TR-8I

\section*{BALIAST-REGULATORS}

T9 8uLb

- Amperite Regulators are designed to keep the current in a circuit automatically regulated at a definite value (for example, 0.5 amp).
- For currents of 60 ma . to 5 amps . Operates on A.C., D.C., or Pulsating Current.
- Hermetically sealed, light. compact, and most inexpensive.

Maximum Wattage Dissipation: T61/2L—5W. T9—10W.
Amperite Regulators are the simplest, most effective method for obtaining automatic regulation of current or voltage. Hermetically sealed, they are not affected by changes in altitude, ambient temperature (\(-55^{\circ}\) to \(+90^{\circ} \mathrm{C}\)), or humidity. Rugged; no moving parts; changed as easily as a radio tube.
Write for 4-page Technical Bulletin No. AB-51
Amperite co., Inc. 561 Broadway, New York 12, N. Y.
In Canada: Atlas Radio Corp., Ltd., 560 King St., W., Toronto 2B
a development for the Navy to provide a simple and accurate frequency measuring unit for a flowmetering system. This system is used for the continuous measurement of flow of difficult fluids. The frequency computer is operable with pulses as low as 1 mv in amplitude. Ranges of 5 to 100 cps and higher with an accuracy of \(\pm 0.5\) percent full scale are available. An internal frequency reference is incorporated to provide overall system standardization. The frequency computer, in addition to its flow meter application, may be used as a tachometer, with a photoelectric or magnetic pickoff; as a frequency deviation meter; or in other applications where accurate measurement of frequency is desired.

\section*{Terminal Boards}

General Products Corp., Union Springs, N. Y. The terminal boards illustrated represent a few of the many types, sizes and ratings that are available. They are in strict accordance with Navy Dept., Bureau of Ships drawing 9000-S650573214 and Bureau of Ordnance drawing 564101, both to latest revision. The many sizes, types and ratings available permit their use in a variety of electrical and electronic power, lighting and signalling applications. All terminal boards are molded of high-impact, high heat resistant electrical grade molding compound. Identifying numbers are molded into each barrier adjacent to the terminals, thus eliminating the need for marker strips. The terminal studs are
 on all AVIEN Fuel Gage Indicators.

Do you have our Bulletins R-12, R-13, and R-14?
THE J. M. NEY COMPANY, 179 Elm St., Hartford 1, Conn.
Specialists in Precious Metal Metallurgy Since 1812

> HIGH BAPPNCTU Duo-Seal Vacuum Pump
> 5 Cubic Feet
> GUARANTEED VACUUM (140-Liters) Per Min. 0.0001 mm Hg. or 0.1 Micron

1402. DUO-SEAL TWO STAGE VACUUM PUMP. Pump unit only, not

Available for Immediate Shipment.

This new two-stage Duo-Seal pump is constructed with the same care and precision as its fore-runners in the Duo-Seal line. The extremely quiet operation, so much appreciated in the other models, is also characteristic of this unit.

A positive oil seal prevents the oil from backing into the exhaust line. Oil may be changed in a few minutes due to the conveniently located oil drain.
- FASTER PUMPING
- QUIET OPERATION
- VISIBLE OIL LEVEL - COMPACT DESIGN

Overall dimensions for pump and motor \(15 \frac{1}{2} 2^{\prime \prime}\) high and \(11^{\prime \prime}\) wide x 195/8" long.

1402B. DUO-SEAL PUMP, MOTORDRIVEN. A No. 1402 Pump mounted on a base with a \(1 / 2\) H.P. 115 -volt A.C. motor. Complete with pulleys, beit, and cord. Each \(\$ 250.00\) 1402BG. BELT GUARD for 1402B Duo-Seal Pump. Each \(\$ 15.00\)
mounted on a base, but with a 10 inch grooved pulley, a supply of oil, and directions for use. Each \(\$ 190.00\)

Alpha's preformed solders, in any shape or size, cut many hours from your production time. You can select washers, rings, coils, cut shapes, drops, pellets, solder foil, to fit your specific needs. They save you considerable money and materials in repetitive soldering processes.

\section*{SPEED AUTOMATIC SOLDERING}
for flame, oven or induction heating
Increase Production - Melts Faster - Guarantee Product Precision - With Or Withour Self-Flux Save Labor Costs - Desıgned For Your Application All Sizes, Shapes, Alloys - Stronger, Smoother Joints

\section*{AVAILABLE IN}
\(\star\) CEN-TRI-CORE \(\star\) TRI-CORE
ENERGIZED LEAK-PRUF
ROSIN-FILLED ACID-FILLED
\(\star\) SINGLE-CORE \(\star\) SOLID WIRE \(\star\) SHEET SOlder

Please consult us on your soldering problems. Trained Field Engineers always available to assist you Small or large quantities
write to

for further information

ALPHA METALS, INC. 58 Water St., Jersey City 4, N. J.

\section*{designed}

\section*{by Microtran} for transistor

SUB MINIATURE TRANSFORMERS

Open Frame Construction
TRANSISTOR TRANSFORMERS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PART & MIL & APPLICATION & Primary & SEC. & \multicolumn{2}{|c|}{LIST PRICE} \\
\hline & & application & IMPED. & IMPED. & M & SM \& MM \\
\hline - TI & TFIAIOYY & Indut-Line to emitter & 500 & 500 & \$14.50 & \$14.15 \\
\hline - 12 & TFIAIOYY & Indut-Hi impedence mike to emitter & 50.000 & 500 & 15.70 & 14.15 \\
\hline - 13 & TFIAI5YY & Interstage-collector to emitter & 50,000 & 500 & 15.70 & 14.15 \\
\hline \({ }^{-14}\) & TFIAİYY & Output-collector to line & 50.000 & 500 & 15.70 & 14.15 \\
\hline * 15 & TFIAIJYY & Outout-collector to speaker & 50.000 & 6 & 14.50 & 14.15 \\
\hline
\end{tabular}
* Add \(M\) Prefix to indicate miniature size, \(S M\) for sub-miniature size, \(M M\) for micro-miniature size. for full details.

\section*{回 \\ Write for catalogue w and name of nearest representative \\ } an affiliate of Crest Laboratories, Inc. WHITEHALL BUILDING FAR ROCKAWAY 91, N. Y.
molded in and have a minimum tensile strength of 80,000 psi. Terminal nuts and connectors are supplied where required.

\section*{Step Variable Delay Line}

Advance Electronics Co., P. O. Box 394, Passaic, N. J. For variable time delay where faithful reproduction of input signal pulses, complete freedom of time jitter and no limit on repetition rate are desired, the type 601 step variable delay line is extremely valuable. It consists of 44 sections of lumpedparameter L-C networks. Time delay is variable in step of 0.2 sec up to \(2.2 \mu \mathrm{sec}\). Characteristic impedance is 190 ohms nominal for both input and output. Maximum rise time is less than 0.1 ysec at any step. Cutoff frequency is 6.37 me nominal. Maximum input voltage is 500 v peak. Accuracy is \(\pm 1.0\) percent of maximum delay.

\section*{Multiplier Probe}

Insuline Corp. of America, 360235th Ave., Long Island City 1, N. Y., has available a multiplier probe that extends the d-c voltage ranges of standard vtvm's 100 times. The device is of special value to tv engineers, servicemen, x-ray workers and other technicians who
have occasion to measure very high voltages. If the meter has a normal top range of 300 v , it reads up to \(30,000 \mathrm{v}\); if it has a range of 500 v , it reads up to 50,000 v. Complete safety for the user is assured by a heavily insulated handle fitted with a finger guard. The probe is \(8 \frac{1}{2} \mathrm{in}\). long and has a 5 -ft flexible cord and an accompanying grounding wire.

\section*{Single Phase Inverter}

Eicor, Inc., 1501 W. Congress St., Chicago 7, Ill., has developed a 40 va single phase inverter designed to operate at a nominal input of 28 v , d-c, with an output of 26 v , 400 cycles, a-c. A novel method for mounting the thermistor-resistor combination is incorporated in the design, achieving a minimum size package. The combination is mounted on the a-c end bracketaffording easy access for adjustments and repairs. Speed of the inverter is controlled by a centrifugal governor. The unit is self-cooled by an internal fan.

Portable Sound Recorder
Broadcast Equipment Specialties Corp., 135-01 Liberty Ave., Rich-

The RVC. 2 Precision Potentiometer ."a flight simulator.

John P. Poth,
Chief Engineer, ERCO says:
"Precision potentiometers play a primary part in the constructoin of the present day Operational Flight Trainers and Simulators developed by the
They constitute a basic part of the heyrcy accuracy analogemputers which solve tions in completely simulating flight of all types of modern aircraft. Such all types of modern aimcraft. Such potentiometers are a necessary part of functions.'

RVC-2 "UNITIZED" CONSTRUCTION provides:
- Maximum versatility
- Ease of service and maintenance
- Units interchangeable
- Standardization of individual units
- Maximum economy
- Ideal for both experimental and production application
- Meet the most exacting standards of quality and performance

\section*{}

small or large quantities

ENGINEERING REPRESENTATIVES Clevelond, Ohio - PRospect 1-6171 Arnprior, Ontorio, Can. - Arnprior 400 Chicago, lll. - UPtown 8.1141 New York, N. Y. - MUrray Hill 8-5858 Rochester, N. Y. - Monroe 3143 Cambridge, Mass. - ELiot 4-1751 Canaan, Conn. - Canaan 649 Mollywood, Cal. - HOllywood 9.6305 Dayton, Ohio - Michigan 8721 Dallas, Texas - Dixan 9918.
114 WEST IIINOIS STREET. CHICAGO 10 . ILIINOIS O IEL. SUPERIOR 7.3082
e EASTERN branch office-mramingham CENTRE. mass. -
TEL. FRAMINGHAM 4421

Recent additions to the broad array of Struthers-Dunn relay types play vital defense roles in a wide variety of applications ranging from 70,000 feet in the air to below the ocearsurface. Important S-D design and engineering advances materially improve relay performance under shock, vibration, ambients to \(200^{\circ} \mathrm{C}\)., high humidity and other adverse conditions encountered in military operations.

STRUTHERS-DUNN, INC., 150 N. 13th St., Philadelphia 7, Pa. baltimore , boston - bujfaco - gharlotie - chicago - cincinnati CLEVELAND • DALLAS - detroit . KANSAS city • LOS ANGELES MINNEAPOLIS - MONTAEAL - NEW ORLEANS • NEN YORK - PITTSBURGH St. COUIS - SAN FRANCISCO - SEATTLE - SYRACUSE - TORONTO

\footnotetext{
OVER 17,000 COPIES NOW IN USE
"RELAY ENGINEERING," the famous 640-page handbook brings you full benefit of Struthers-Dunn's experience in producing thousands of relay types. The ideal guide to modern relay selection, use, maintenance and circuitry. Price \(\$ 3.00\).
}
mond Hill 19, L. I., N. Y., has available the Tapak portable, selfpowered walk-about type of sound recorder, suitable for making onlocation magnetic tape recordings in a form ready for direct broadcast. It turns out finished continuity ready for immediate airing or playback. This entails ability to monitor continuously while recording, to erase when desirable, to play back material for on-the-spot evaluation and to edit conveniently in the field. The unit, including microphone, headphone and spare tape all fit inside a \(14-\mathrm{in}\). x \(10-\mathrm{in}\). \(\mathrm{x} 5 \frac{1}{2}\)-in. space. Rewind is 44 in . per second. Tapak operates continuously (with cover open, removed or closed) for up to 19 minutes with 0.0017 -in. thickness tape or 15 minutes with 0.0022 -in. tape. It may be rewound while operating without disturbing speed.

\section*{Industrial Abrasive Unit}

The S. S. White Dental Mfg. Co., 10 E. 40th St., New York 16, N. Y. Cutting by means of a high-velocity stream of gas-propelled abrasive particles, the recently developed Airbrasive unit provides a fast, accurate method of doing a number of high precision operations. The cutting action is accomplished without the usual increase in temperature and without the pressure and vibration ordinarily experienced with other cutting methods. This is of particular significance when working on materials such as germanium, whose physical or electrical properties might be affected by heat and shock. The unit's place in the electronics field also includes printed circuit applications and work on spiral wound carbon resistors. It operates on \(110 \mathrm{v}, 60\) cycles
 loses none of its properties in temperatures as high as \(390^{\circ} \mathrm{F}\). Matter of fact, it runs the temperature gamut all the way up from \(-320^{\circ} \mathrm{F}\). ... range of 710 fahrenheit degrees!

You'll find reason upon reason for liking this high polymer thermoplastic. For one thing, it has an excellent memory. Press it out of shape and it returns, once pressure is released, to its original form.

KEL-F has unusually high chemical and electrical resistance. Conducts little heat. Resists "wetting". Humidity, moisture and fungus bother it not at all.

\section*{Largest Single Sheet}

Besides rods, tubes, compression and injection molded forms, we are now making this versatile insulating material in the biggest single sheets ever known-up to 5 ft . discs.

\section*{Lowest Cost Ever}

Expanded production now enables us to offer KEL-F in all its forms at the lowest prices in history. We'll be glad to quote on your own requirements. Write today for KEL-F Brochure \#202.

En minn

101 CLIFTON BOULEVARD CLIFTON, NEW JERSEY

\section*{MICROWAVE RESISTORS TELEWAVE TYPE R}

\section*{SMALLEST RESISTOR AVAILABLE}

\section*{(Ideal for Miniaturization)}

TYPE R RESISTORS employ noble metal film deposits on specially selected heat resistant glass.
FILM THICKNESS offers negligible skin effect, at microwave frequencies.
POWER CAPACITY of \(1 / 4\) watt provides high power handling ability. PHYSICAL STRUCTURE is ideally suited to impedance matching in standard coaxial line and waveguides.
FINISH. Coated with a special silicone varnish to protect the film.
TELEWAVE LABORATORIES, INC.
100 Metropolitan Ave. - Brooklyn 11, New York

\section*{7 OUT OF10 MAJOR POLICE} DEPARTMENTS USE Resistance, 50 ohms standard, othe values on request.
Wattage: \(1 / 4\) watt continuous duty at \(25^{\circ} \mathrm{C}\)
Size: \(1 / 16\) inch diam. x \(3 / 16\) inch long Terminals: Tinned sections \(1 / 16\) inch
Film Length: Type R-063-1/16 inch Type R-093 - 3/32 inch Temperature Coefficient:
approx. 0.0019 ohms \(/ 0 h m /{ }^{\circ} \mathrm{C}\)
Power Sensitivity: Approx. 10 ohms/ watt
TYPICAL APPLICATIONS
- Power measurement at any
frequency
- Matched terminations for wave. guides or coaxial lines - Resistive power pickup loops - Dummy loads
- Temperature measurements - Impedance matching

high receiver voltage insures high system performance
James "Red Ball" design results in bigher voltage output, lower "hash" influence your assurance of longer life and increased receiver performance. Try the James model designed for your specific communications equipment and you will know why James is specified where "vibrators must not fail."

See your Distributor or write directls for FREE booklet on "Improving Vibrator life Through Good Maintenance:"

EXTRUDED TEFLON (Tetrafluoroethylene) hook-up wire is organically capable of sustained operation from \(+210^{\circ} \mathrm{C}\) to \(-90^{\circ} \mathrm{C}\) with no appreciable decomposition. This wide range of operating efficiency continually opens new applications for EXTRUDED TEFLON - especially where constant stability under exceptional temperature conditions is required for long periods. EXTRUDED TEFLON \(+210^{\circ} \mathrm{C}-90^{\circ} \mathrm{C}\) is noninflammable . . . is resistant to most chemicals . . . has no known solvent.

Because of low electrical losses, EXTRUDED TEFLON is adaptable for high frequency use. It has very high volume and surface resistivity. EXTRUDED TEFLON is available in hook-up wire sizes, with shield or jacket and also as coaxial cable.

NOW AVAILABLE in 10 colors - black, brown, red, orange, yellow, green, blue, violet, gray, white. Samples available.

199 WASHINGION ST. BOSTON 8, MASS. PIant CLINTON, MASS.
Engineered Wire and Cable for the Electronic and Aircraft Industries

\section*{Accelerometer}

Endevco Corp., 180 E. California, Pasadena 1, Calif. A new thimblesize accelerometer provides an improved research instrument for the measurement of high-frequency shock and vibration. It is designed for missile, aircraft and vibration table measurements. The instrument gives a self-generated output of 5 mv per g . Output is flat \((+5.0\) percent) over the range from 5 cps to \(5,000 \mathrm{cps}\) and is stable to within 5.0 percent over a temperature range of -20 C to +70 C .

\section*{C-R Tube Analyzer}

The Jackson Electrical Instrument Co., 20-32 S. Patterson Blvd., Dayton 2, Ohio. Model 707 dynamic c-r tube analyzer completely and accurately tests all tv picture tubes, deflected types. It will also analyze both magnetic and electrostatic oscilloscope, radar and other special purpose c-r tubes, without removal from chassis or carton. Four classes of tests are made: a beam current test, grid test, gas test and interelement leakage test. The instrument is designed around a highly sensitive, balanced bridge-type
vtvm. A continuously variable line voltage adjustment is provided to assure accurate readings.

\section*{Binary Counter}

The Walkirt Co., Inglewood, Calif., announces the type 1552 high-speed binary counter for all types of counting and frequency division to rates in excess of 3 mc . It has an 11-prong, octal-type, base plug that allows access to all tube elements and other important circuit points. Input is 75 v negative pulses with a rise time of 0.2 usec. Output is 125 v with a rise time of 0.2 usec. Power is 17 ma at 250 v . The unit operates over an ambient temperature range of -40 C to +70 C .

\section*{H-V Rectifier Tubes}

Westinghouse Electric Corp., 401 Liberty Ave., Pittsburgh 30, Pa., has available two new high-vacuum diodes for industrial use in highvoltage rectifier applications. Type 6102 (illustrated) is designed for use in rectifier applications involving peak inverse voltages up to 40 kv . Maximum average current is 150 ma and peak current is 900

Close-up view of Babson Bros. Co.'s Surge Fence Controller showing location of Honeywell Mercury Switch which tilts back and forth as motor is operated.

\section*{HONEYWELL Mercury Switch delivers low current once every second in Babson Surge Electric Fencer}

Babson Bros. Co.'s electric stock control unit which pulses electric current through a wire fence and permits a strand or two of wire to keep animals in the field is an interesting application of Honeywell Mercury Switches.
This electrical device takes current from the high line, cuts it down to an approved 25 milliamperes, and delivers a safe but effective electric impulse once every second. The ch is housed in a glass enclosed control unit. It tilts back and forth and causes an electric shock through the fence.
This use of Honeywell Mercury Switches for applications which require low current capacity and long-time continuous operation is typical of the many uses of these switches in industrial controls. MICRO engineers are fully trained and experienced in switching problems and can give you helpful advice and cooperation in selecting the Honeywell Mercury Switch best suited to your requirements. Call the nearest MICRO branch office today.

A DIVISION OF
MINNEAPOLIS-HONEYWELL REGULATOR COMPANY FREEPORT, ILLINOIS

\title{
For Low-Cost, High-Production Stripping of Film Insulation from Wires AWG 50 to AWG 25
}

\section*{IN STOCK—For Immediate Delivery Purchase or Test-Rental Plan}

These highly efficient wire strippers, equipped with stripping wheels especially selected for YOUR wirestripping operation, give you high production at low cost with rejects reduced to the very minimum.

Instead of digging off the insulation, RUSH WHEELS develop FRICTIONAL HEAT to melt the insulation and brush it off. Space Regulator keeps the wheels from coming closer together than the bare-wire diameter-prevents scoring or breaking the wire or reducing its diameter. Pressure Regulator permits simultaneous stripping of any number of strands. Particularly efficient on LITZ WIRE.

Speed your wire-stripping production-cut your wire-stripping costs. Send samples of the wire you are stripping together with description of your stripping operation for recommendation and TestRental Plan Offer.

\section*{Rush Wire Stripper Division \\ THE ERASER CO., INC.}

114 S. State Street
Syracuse 2, N. Y.
ma. It is intended for oil-immersed operation and is only \(213 / 16 \mathrm{in}\). long and \(23 / 16 \mathrm{in}\). in diameter. Type 6103 is for use in applications involving peak inverse voltages up to 20 kv . It has the same average and peak current as the 6102. It is provided with an integral radiator for forced-air cooling. The tube is only \(215 / 16 \mathrm{in}\). long and \(23 / 16\) in. in diameter. It weighs \(8 \frac{1}{2}\) oz.

\section*{Voltage-Regulated Power \\ Supply}

Kepco Laboratories, Inc., 131-38 Sanford Ave., Flushing 55, N. Y. Model 141 voltage-regulated power supply features one regulated B supply and one unregulated filament supply. It is distinguished by excellent regulation, low ripple content and low output impedance. The B supply is continuously variable from 100 to 400 v and delivers from 0 to 150 ma . In the 100 to \(400-\mathrm{v}\) range output voltage variation is less than 0.5 percent for both line fluctuations from 105 to 125 v and load variations of minimum to maximum currents. Ripple is less than 5 mv peak to peak. The unregulated filament supply is 6.3 v , 10 amperes, unregulated, center tapped and ungrounded.

Ceramic Capacitors
Aerovox Corp., Olean, N. Y. Voltage ratings of from 1 to 20 kv are

\title{
ELECTRICAL and ELECTRONIC ENGINEERS
}

\author{
With Several Years' Experience or Advanced Degrees for Permanent Positions with
}

\author{
Endicott, N. Y. Dis TRADE MARK
}

\author{
Poughkeepsie, N. Y.
}

Excellent Opportunities in the Fields of: Audio Amplifier Design - Servo Amplifier Design - Servo and Computer Theory • ReceiverTransmitter Design • Small Transformer Design - Regulated Power Supply Design - Circuit Design • Test Equipment Design - Logical Design • Pulse Techniques - Programming • Electrostatic Storage • Magnetic Recording - Component Development - Environmental Testing • Production Engineering

Good salaries, unusual opportunities for professional development, exceptional employee benefits, excellent working and living conditions, moving expenses paid.

Write, giving full details, including experience and education to: Mr. E. H. Getkin, Coordinator of Engineering Recruitment, International Business Machines, Dept. 686 (4), 590 Madison Avenue, New York 22, N. Y.

> There is Always One Leader in Euery Field BODNAR INDUSTRIES, Inc. leads in the field of TRANSILLUMINATED PLASTIC LIGHTING PLATES
> BECAUSE OF Quality • Uniformity • Performance Design \& Layout "Know-How Service" Quantity Production Promptly
> NEW YORK - 19 Railroad Ave,, New Rochelle (Home Office) TEXAS -Jefferson Tower Building, Dallas CALIFORNIA-11056 Cumpston St., N. Hollywood CANADA - 313 Montreal Trust Bldg., 67 Yonge St., Toronto
> DEMONSTRATION PANEL MIL-P-7788 (AN-P-89) Sent on Letterhead Request

\section*{2 MUSTS}

\section*{For Low-Cost Servicing of Mobile Radio Systems}

Lampkin equipment gives you the lowest cost per channel, whether you supervise a large multiple-frequency system, or whether you service numerous smaller installations! Lampkin equipment measures center frequency and modulation deviation, to FCC specifications!

The Type 205 FM Modulation Meter For Multiple Mobile Frequencies.

The Type 205 FM Modulation Meter measures peak frequency swing due to voice modulation of FM transmitters, as raquired by the FCC. Indicates 0-25 KC. deviation. Instantly tunable to any frequency from 25 MC . to 200 MC . Simple to use. Direct reading. No charts. No tables. \(\$ 240.00\).

For Any Number of Frequencies, AM or FM. The Type 105-B Micrometer Frequency Meter

The Type 105-B Micrometer Frequency Meter measures center frequency deviation on any number of transmitters, AM or \(F M\), from 0.1 MC . to 175 MC . The accuracy, determined by over 500 field tests, is conservatively guaranteed better than \(0.0025 \%\), surpassing FCC requirements. Readily checked against WWV. \(\$ 220.00\)

Return coupon TODAY for complete literature.
LAMPKIN LABORATORIES, INC.
Instruments Div., Bradenton, Florida ture and delivery information on the following Lampkin-designed instruments:
\(\square\) Type 205 FM Modulation Meter
\(\square\) Type 105-B Micrometer Frequency Meter
\(\qquad\)
Address

City
zone. State.

\section*{VERSATILITY}

This small, compact unit-transmitter, frequency selective receiver and power supply in a single package-is a vastly improved, new approach to remote signaling and supervisory control system design. It may be used for remote on-off switching, continuous supervisory indication of operating conditions, ringdown signaling, dialing terminal equipment, automatic detection of system functional failures, or for providing channels for transmitting and receiving telemetering information.

\section*{FLEXIBILITY}

These Hammarlund Duplex Signaling Units have the flexibility required for efficient system design. Up to 36 individual functions can be controlled over a single circuit when they are installed in multiple. Transmitters and receivers operate on the same or different frequencies between 2000 and 6475 cycles per second. Center frequencies in the 2000 to 3500 -cycle range are spaced at 100 cycle intervals. And center frequencies in the 3625 to 6475 -cycle range are spaced at 150 -cycle intervals.

\section*{RELIABILITY}

Ruggedized, quality-recognized components throughout. A highly stable tone generator, and an amplifier designed for bridging a 600 -ohm circuit, assure reliable operation over wire lines, telephone or power line carrier, and radio or microwave communications circuits. It is designed to operate in the range of \(-30^{\circ}\) to \(+60^{\circ} \mathrm{C}\). with excellent frequency stability, and under high humidity and other adverse conditions. Harmonic distortion is negligible.

Write for detailed information

now made available in Hi-Q ceramic capacitors of the slug, disk, plate and tubular types. In the new slug type, utilizing thick disk dielectrics, the strength of the capacitor is greatly increased by an exacting jacketing procedure in conjunction with a newly developed plastic that provides excellent arc-resistant properties. Terminals are silvered brass integrally soldered to silver electrodes fired directly to the ceramic dielectric. Insulation resistance is in the order of 50,000 megohms. Working voltage is 20 ,000 v d-c and flash test \(27,000 \mathrm{v}\) d-c. The high-voltage tubulars have been developed specifically for use in horizontal sweep and deflection sections of tv receivers, and come in standard capacitances from 4.7 to \(1,000 \mu \mu \mathrm{f}\), voltage pulse ratings of 1 to 7 kv and capacitance tolerances of \(\pm 5.0\) percent.

\section*{Insulation Tester}

The Herman H. Sticht Co., 27 Park Place, New York, N. Y., has developed a new model P-1 plug-in type Megohmer insulation tester for portable or bench use. It was specifically developed to meet the need for a direct-reading megohmmeter where a large number of tests have to be performed in one location such as in production testing. The unit has a true ohmmeter movement that is independent of voltage variations and requires no adjustment whatsoever during normal operation. It is provided with a self-contained power unit to step up and rectify \(115-\mathrm{v} 60-\) cycle a-c supply. Output voltages of \(500 \mathrm{v} \mathrm{d-c}\) and \(1,000 \mathrm{v}\) d-c are available. The instrument comes in single-range or double-range
models. Ranges available are 100 or 1,000 or 2,000 megohms.

\section*{Corona Ionization Detector}

Network Mfg. Corp., 213 West 5th St., Bayonne, N. J. The corona ionization detector is designed for testing corona initiation and extinction levels in coaxial cables, transformers and other insulated electrical components. It will perform corona test requirements of JAN-C-17A specifications for coaxial cables and MIL-T-27 for transformers. It is especially useful for the study of insulating materials and dielectrics before rupture by breakdown. It is suitable for nondestructive testing of valuable specimens.

\section*{Wideband Directional Couplers}

Sierra Electronic Corp., 810 Brit\(\tan\) Ave., San Carlos, Calif. Widely applicable tools for measuring numerous parameters relating to transmission lines, the new wideband directional couplers are available in three models. Model 137 operates over the entire frequency range from 30 to \(1,500 \mathrm{mc}\) with a sensitivity rising from -70 to -35 db. Model 138 covers the same frequency range but has a sensitivity ranging from -55 to -20 db . Operating in a 51.5 -ohm coaxial line, these couplers are usable from 0.1 w up. Frequency-independent at a sensitivity of -50 db over the
meets

We're sorry, but we think it's only fair to tell possible new customers our Standing Room Only sign must be changed to Sold Right Out!

The design and production facilities of our microwave department are now taken over by the increasing requirements of our present customers. Because of our responsibility to them, this situation may continue quite a while.

We are sorry to say this because we enjoy making new friends. But we feel that we should tell those who might be interested in our engineering and manufacturing facilities, that for some time we may not be able to serve them.

Any change in the situation will be announced in this publication.

\section*{L. H. TERPENING COMPANY}

DESIGN • RESEARCH • PRODUCTION
Microwave Transmission Lines and Associated Components 16 West 61st 5t. . New York 23, N. Y. . CIrcle 6-4760
\(30-\mathrm{kc}\) to 1 -mc range, the model 139 coupler is applied to balanced two-wire lines at power levels ranging up to 15 kw .

Subminiature Potentiometers
Galetronics, Inc., Pasadena, Calif., is manufacturing a new line of subminiature precision potentiometers for the telemetering and electronics industries. The rotary type \(R C\) can be furnished up to 320,000 ohms with a resolution of 0.1 percent, in a \(\frac{3}{4} \mathrm{in}\). diameter case. Type LE (illustrated), a rectilinear potentiometer in a case \(1 \frac{3}{8} \mathrm{in}\). long, can be furnished up to \(1,000,000\) ohms with a resolution of 0.05 percent.

\section*{Field Strength Meter}

Erwood, Inc., 1770 Berteau St., Chicago 13, Ill., has introduced a uhf-vhf field strength meter. The unit was designed to determine the strength of signals available at any given location and covers all the frequencies used today in broadcasting tv and f-m programs. It is also useful in determining the relative efficiency of different types of antennas as well as the optimum heights. The vhf range is continuous from 52 to 218 mc , with sensitivity at 60 -percent meter deflection per \(100-\mathrm{mv}\) input. The uhf range is continuous from 470 to 890 me , with sensitivity at 50 -percent meter

\section*{U. G. CONNECTORS}

\section*{Our Coaxial Cable} Connectors Meet All Government Specifications
* ALL ORDERS DELIVERED PROMPTIY

Manufacturers of Higbest Quality Connectors

ALIED INDUSTRIES, INC. 1023 S. 21st STREET LOUISVILLE 10, KY.

Phone Arlington 4640

\section*{DX Announces \\ a NEW \(90^{\circ}\) YOKE for \(27^{\prime \prime}\) TUBES}

It's Engineered for TOP PERFORMANCE ... in Production NOW!

This new DX \(90^{\circ}\) Deflection Yoke has everything a television receiver manufacturer wants . . a sharp full-screen focus, a minimum of pincushioning, the ultimate in compactness and a price that's downright attractive. Because this yoke has been brilliantly designed for mass production on DX's specialized equipment, it warrants immediate consideration in your \(27^{\prime \prime}\) receiver plans. Write us today.

DEFLECTION YOKES . . . TOROID COILS . . . CRYSTALS 1. F. TRANSFORMERS . . . R. F. COILS . . . DISCRIMINATORS SPEAKERS . . . TV TUNERS ... ION TRAPS . . . TRANSFORMERS

\section*{DX RADIO PRODUCTS CO.}

GENERAL OFFICES: 2300 W. ARMITAGE AVE., CHICAGO 47, ILI.

"the heart of a good television
the heart of a good television \(\xrightarrow[\text { receiver }]{\text { rent }}\)

\section*{Ruggedly Designed for Dependable, Heavy-Duty Operation}

When operating conditions demand a solenoid switch that will stand up under the most rugged requirements, always choose Tech Laboratories Solenoid Switches. These multi-pole units are built to "take it" and are designed and produced to meet your individual requirements.

\section*{According to your specifications you can get:}
- Remote push-button operation,
with or without manual reset.
- Single or dual direction operation.
- Single, or up to 8 decks.
- Single pole to 4 poles per deck.
- Two contacts up to several hundred contacts per deck.
- Shorting or non-shorting.
- Ceramic or phenolic insulation.
- Load capacities up to 10 Amp.- 120 Volts AC (depending on number of contacts).
- Long, trouble-free service life.

Information on these and our additional line of motor operated switches is yours for the asking Write today for complete catalog.
deflection per \(100-\mathrm{mv}\) input. The meter uses 11 tubes. Power consumption is 70 watts, 110 v a-c.

Wire Wound Resistor
Hamilton-Hall Mfg. Co., 227 N . Water St., Milwaukee, Wisc. The Hall-Ohm resistor is completely impervious to high humidity and the abuses encountered during assembling operations. The unique coating will not chip or flake and provides excellent surface radiation. These resistors are available up to 25,000 ohms resistance value and up to 20 watts dissipation.

\section*{UHF Signal Generator}

Measurements Corp., Boonton, N. J. Model 84-TV standard signal generator, with frequency range of 300 to \(1,000 \mathrm{mc}\), is useful for determining the characteristics of tv receivers for the uhf band, and other equipment operating within that range. Output voltage is continuously variable from \(0.1 \mu\).v to 1 v across a 50 -ohm load. Output impedance is 50 ohms and vswr is 1.3 to 1 or better. Provision is made for operating the filament of the oscillator tube from an external d-c supply to remove residual hum. Modulation, continuously variable from 0 to 30 percent, may be obtained from an internal 400 -cycle oscillator. Provision is also made for applying external modulation
within the range of 50 to 20,000 cycles. Percentage modulation is indicated by a panel meter.

\section*{TV Console Unit}

Radio Corp. of America, Camden, N. J. This versatile two-section console, which provides centralized audio and video control and monitoring facilities, is a practical basic unit for almost any tv station, large or small. The type TC-4A console ties togecher transmitter operation and primary program sources. Addon console units of the same flexible construction, may be added as program functions are expanded.

\section*{Sound Analyzer}

Hermon Hosmer Scott, Inc., 385 Putnam Ave., Cambridge 39, Mass. Type 420-A sound analyzer separates noise, sound and vibration signals into their component frequency bands. The high and lowpass filters can be independently adjusted in steps of 0.5 octave. A simple interlock permits the passband width to be fixed in any multiple of 0.5 octave. The position of this pass-band can then be adjusted throughout the audible range by a single control. The analyzer exceeds all proposed speci-

\section*{A Precision Scope .that can GO PLACES}

\section*{THE TYPE 315-D}

How often have you wished for a precision oscilloscope that you could easily take on long trips and into tight spots? The TEKTRONIX Type 315-D is that kind of instrument-weighs only 36 lbs ., measures only \(123 / 8^{\prime \prime}\) high, \(85 / 8^{\prime \prime}\) wide, \(18 \frac{1}{4} 4^{\prime \prime}\) deep. Designed for portability, it works on power supply frequencies from 50 to 800 cycles. And it has all the features you expect in a fine laboratory oscilloscope... plus several new features never before commercially available.

Time base range . . \(1 \mu \mathrm{sec}\) to \(\mathbf{5 0} \mathrm{sec}\)
Sensitivity \(0.01 \mathrm{v} /\) division ac (double the originally published sensitivity)

Vertical bandwidth. . . . dc to 5 mc
Risetime 0.07 \(\mu \mathrm{sec}\)

Sensitivity - 12 Calibrated Ranges ac only- \(0.01,0.02,0.05 \mathrm{v} /\) division 5 cycles to 5 mc
dc and ac- \(0.1,0.2,0.5,1,2,5\), \(10,20,50 \mathrm{v} /\) division dc to 5 mc

Signal Delay-0.25 \(\mu \mathrm{sec}\)
Time Base - 24 Calibrated Ranges -3 per decade, \(0.1 \mu \mathrm{sec} /\) division to \(5 \mathrm{sec} /\) division. 100 second sweep available but not calibrated

Graticule - Edge lighted, marked in \(1 / 4^{\prime \prime}\) divisions

5X Magnifier - Expands time base to right and left of center
Direct coupled unblanking
Trigger amplifude discriminator
Flat-faced high-definition \(3^{\prime \prime}\) CRT
Square wave voltage calibrator
Sawtooth and + Gafe available af front panel
TEKTRONIX Type 315-D—\$785 f.o.b. Portland, Ore. Call or write your TEKTRONIX Field Engineer for demonstration of the Type 315-D.

P. O. Box 831A, Portland 7, Oregon Cable: tektronix

fications of the ASA for filter-type sound analyzers. Weight of the unit is 20 lb , and measurements are \(10 \mathrm{in} . \times 10 \mathrm{in} . \times 6 \mathrm{in}\).

\section*{Thermosetting Plastic}

Melkor Research Laboratories, Inc., 11740 Detroit Ave., Cleveland 7, Ohio, has developed a new plastic material that withstands continuous temperatures of 200 C and also possesses a high dielectric strength. It is particularly advantageous where hermetic sealing and gas sealing under pressure is needed for perfect functioning of electrical components. The terminal shown is being manufactured in three sizes-沓 in., 告 in. and \(\frac{3}{8} \mathrm{in}\). mounting holes. Chief applications of the new terminal are in the assembly of instruments meters and various types of electric and electronic equipment requiring hermetic sealing.

\section*{Oscillographı Tube}

Radio Corp. of America, Harrison, N. J. The 7-in., c-r tube 7VP1 is designed especially to give sharp focus and to provide high brightness of the trace in general oscillographic applications. Utilizing electrostatic focus and electrostatic deflection, it has a small, brilliant spot and high-deflection sensitivity

\section*{520-A VOLTMETER}

1 Millivolt Full Scale To 300 Volts 10 Cycles To 2 Megacycles Only \(41 / 4^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime}\) Deep
\$180 FOB, N. Y.
ALSO - MATCHING
510-B OSCILLATOR
18 Cycles To 1.2 Megacycles Distortion Less Than \(0.2 \%\) Constant Output \(\pm 0.5 \mathrm{db}\)
\(\$ 150\) FOB, N. Y.
Literature on Request
Waveforms, inc.
333 SIXTH AVE. NEW YORK, N. Y.

ADDRESS, RADIO, and kindred fields, JONES stios PLUCS \& SOCYETS
of proven quality!

Sockef contocts phor bronze Mug plated. bross cadmium plated. Insulation molded bokelite. Plugs and sockets polarized. 2, 4, 6. 8, 10, 12 contacts. Steel cops with

\section*{EAD ALTERNATORS}

\section*{For "POSITIVE"} Performance-

\section*{"NEGATIVE"} Distortion

EAD offers you the answer to your small permanent magnet alternator requirements; units designed for special applications where Size, Weight and Efficiency are top considerations.

N3E-2
Low harmonic content, dual frequency alternator with less than \(3 \%\) total distortion on each frequency

\section*{There's an EAD Alternator for Your Every Application}
\begin{tabular}{|c|c|c|c|c|c|}
\hline TYPE & OUTPUT & VOLTS & PHASES & FREQUENCY (CYCLES) & SPEED (RPM) \\
\hline N2A & 45 Volt Amps & 115 & 3 & 400 & 6000 \\
\hline - N2B-1 & . & 7 & 1 & 30 & 1800 \\
\hline - N2B. 2 & & 7 & 2 & 30 & 1800 \\
\hline N3C:1 &** & 10.15 & 1 & 1000 & 20,000 \\
\hline tN3E-2 & & 7 & 1 & 90/150 & 1800 \\
\hline N5B & 8 walls & 20/40 & 1 & 1000 & 5000 \\
\hline N6A & 20 walls & 40/80 & 1 & 1000 & 5000 \\
\hline N6B & 60 watts & 30 & 1 & 400 & 8000 \\
\hline
\end{tabular}
-Less than \(\mathbf{2 \%}\) Total Distortion
- Less than \(2 \%\) Total Disfortion on each phase
\(\dagger\) Dual frequency alternator less than \(3 \%\)
Total Distortion on each frequency,
Solving special problems is routine at EAD
If your problem involves rotating electrical equipment, bring it to EA D. Our completely staffed organization will modify one of our standard units or design and produce a special unit to meet your most exacting requirements.

\section*{EASTERN AIR DEVICES, INC.}

585 DEAN STREET, BROOKLYN 17, NEW YORK
for its relatively short length. Having the same shape, dimensions, basing and deflection factors as the 7JP1, it can be used in place of the latter to give superior performance in all oscilloscope equipment having a high-voltage supply up to \(4,000 \mathrm{v}\).

\section*{Capacitors}

Industrial Condenser Corp., 3243 N. California Ave., Chicago 18, Ill. The Stabelex D series of capacitors are particularly adapted for use in equipment subjected to extreme altitude and climatic changes or similarly difficult operational variables. They have an unusually low temperature coefficient of capacitance, as is evidenced by only a 0.8 -percent change in capacitance from +20 C to -80 C . Power factor is 0.00025 at 1 kc . These capacitors have time constants in excess of 4,800 hours.

\section*{Sensing Switch}

Thompson Products, Inc., 2196 Clarkwood Road, Cleveland 3, Ohio, has developed an airborne sensing switch actuated by a 115 v a-c, 380 to 1,000 -cycle motor. It has two independent double-throw r-f circuits which are switched at a rapid rate (15 to 35 cps) to furnish

\title{
A LINK IN YOUR FUTURE
}

\section*{DESIGN AND LAYOUT DRAFTSMEN}
who wish to locate in the attractive lake country of Central New York.
Link Aviation, Inc., has outstanding permanent opportunities for electrical

Write full details to
Manager of Industrial Relations.
draftsmen in chassis and schematic layout.

These openings are on long range programs in the flight simulator and industrial electronic fields.

Top salaries-good bene-fits-good housing in suburban area.

DANO's battery of vacuum impregnating tanks and heat controlled ovens for curing varnish impregnations is al- ways at your service. Yes, Dano coils and Dano customers are always treated in the manner that makes your production pay dividends.

Send us samples or specifications with quantity requirements
- Paper Section
- Acetate Bobbin
- Molded Coils
- Bakelite Bobbin
- Cotton Interweave
- Coils for High Temperature Application
for our recommendations. No obligation!
Also, Transformers Made To Order for our recommendations. No obligation!
Also, Transformers Made To Order

\section*{THE DANO ELECTRIC CO. \\ 93 MAIN ST., WINSTED, CONN.}

ELECTRONIC ELECTROPLATING TO EXACTING SPECIFICATIONS

\section*{PALLADIUM - GOLD
SILVER - RHODIUM} LEAD - other metals

PLATED ON - STAINLESS STEEL
ALUMINUM
- Contact Pins ALUMKTAL - BERYLLIUM COPPER
- Wave Guides MU-METAL PHOSPHOR BRONZE
- Conductors
- Cavities
- Terminals

During the growth of the Electronic In dustry, MERIT PLATING CO., has been, in the forefront in solving Elec troplating problems arising from the highly specified requirements for plating Electronic Components and Equipment.

\section*{LON FASTENERS}

\section*{LOCKS TIGHT WITH A QUARTER TURN Always at correct tension}

Lion Fasteners are right for buttoning parts that must be removed repeatedly for inspection, maintenance, or other reasons.

Vibration and shock can't loosen a Lion Fastener. Even an inexperienced service man can't replace it wrong. A quarter turn opens it. Another quarter turn locks it. The tension is designed into it.

Lion Fastener Spring Assembly is quickly spot welded or riveted in place. The stud cannot be lost. It is grommeted tight to the sheet. They will button sheets .040 plus or .020 minus over or under stomdard rating. The misalignment is as much as .156. The onepiece forged stud is tested to 1425 lbs . Write today for demonstration kit and application data.

TYPICAL APPLICATIONS: INSPECTION PLATES • COWLING ELECTRICAL PANELS • CABINETS • DUCTWORK

Zree demonstration Kit contains sample Lion Fasteners to help you visualize their adaptability to your product. Write on your company letterhead. No obligation.

accurate circuit time sharing. The connectors are type BNC and are for use with RG-58/U cable applications. In the frequency range to 250 mc it has a maximum vswr of 2.0 to 1 . Insertion loss is less than 1.0 maximum and crosstalk is in excess of 32 db . Its life is greater than 500 hours continuous operation.

Tiny Hermetic Transformers United Transformer Co., 150 Varick St., New York 3, N. Y., has announced stock hermetic sealed transformers that cover the entire range of audio requirements for subminiature equipment. They include input, interstage and output transformers, as well as a reactor. Overall case dimensions are only \(\frac{1}{2} \mathrm{in} . \times\) ty \(\times \frac{{ }^{2}}{2} \mathrm{in}\). The units weigh only 0.8 oz . This miniaturization is made possible through the use of special nickel-iron alloy laminations and fine wire windings on nylon bobbin. Mounting is effected through a unique single threadedstud arrangement with case tabs to prevent twisting.

\section*{Resistance Boxes}

The Daven Co., 191 Central Ave., Newark, N. J., has available its new type 750 resistance boxes. The units are complete assemblies of

\section*{MINIATURE SLIP RING ASSEMBLIES}

Commutators and other Electro-Mechanical Components PRECISION MADE TO YOUR OWN SPECIFICATIONS

Our Swiss methods and techniques are geared to meet exacting requirements. We invite your inquiries.

\section*{COLLECTRON CORPORATION}
- NEW YORK 17, N. Y.

MUrray Hill 2-8473

\section*{ELECTRIC INSTRUMENT \& CONTROL HEADQUARTERS YES, OFF-THE-SHELF SERVICE}

Electro-Tech maintains one of the largest and most complete stocks in the country of electrical meters, instruments and industrial control equipment-representing over 250 top lines.
Yes, our warehouse is buliging with sfandard sfocks of
\begin{tabular}{lll}
Counters & Solenoids & Toggle Switches \\
Panel Meters & Tachometers & Shunts (Electricall \\
Transformers & Thermometers & Meggers \\
Switchboard Meters & Thermostats & Solenoid Valves \\
Micro Switches & Rectifiers & Pyrometers \\
Photo Electric Equipment & Rheostats & Multimeters \\
Relays & Timers & Oscilloscopes
\end{tabular}
and Laboratory Standard Instruments
In addition, we manufacture and stock Special Test Equipment - Electric Heating Units - Current Transformers Pyromefers - Thermocouples - Rectifiers.

Our laboratory is available for repair work, rescaling, recalibration and special calibration of your electrical and industrial instruments. Often months are saved by rescaling and calibrating stock instruments to your specifications.

CONSUIT US ABOUT YOUR REQUIREMENTS

\begin{tabular}{lrcc}
\hline Type & \begin{tabular}{c}
*Regulating \\
Voltage \\
(Volts)
\end{tabular} & \begin{tabular}{c}
Regulating \\
Range \\
(Miero- \\
amperes)
\end{tabular} & \begin{tabular}{c}
Regulation \\
Maximum \\
\((\%)\)
\end{tabular} \\
\hline 5950 & 700 & \(2.0-50\) & 1.5 \\
5841 & 900 & \(2.0-50\) & 1.5 \\
VXR1000 & 1,000 & \(2.0-50\) & 1.5 \\
6143 & 1,200 & \(2.0-50\) & 1.5 \\
VXR1500 & 1,500 & \(2.0-50\) & 1.5 \\
6119 & 2,000 & \(2.0-50\) & 1.5 \\
VXR2500 & 2,500 & \(2.0-50\) & 1.5 \\
VXR10,000 & 10,000 & \(5.0-50\) & 2.0 \\
VXR15,000 & 15,000 & \(5.0-50\) & 2.0 \\
& & &
\end{tabular}
*Other voltages within the 50 to *Other voltages within the 50 to stock or made to order. Write for further specifications.

Victoreen Instrument
3800 PERKINS AVE.
CIEVELAND 14, OHIO

. . We had stopped to watch the test run of a new Collins Helium Cryostat. As liquid helium poured into the dewar our guests, both electronic research workers, talked about Ab solute Zero and Thermal Noise. As they talked we became interested . . . perhaps you will too.
... apparently they've based a recent research project on the theory that thermal motion ceases at absolute zero which might mean that a Signal-to-Noise Ratio at \(0^{\circ} \mathrm{K}\). would approach infinity. Using one of our Collins Helium Cryostats to get within \(4^{\circ}\) of absolute zero, they actually minimized thermal noise in circuit components.
... their guess was that perfection of this technique might conceivably lead to new control devices operating from minute energy changes . . scintillation counters and voice modulation were mentioned as possibilities.

Perhaps your industry, equipped for low-temperature research, could profitably perfect a technique just like this.

Write for Bulletin E10-3
on the Coltins Helium Cryostat
and Low-Temperature Research in Electronics

two or more type 275 decade units. The cabinet shielding consists of a full copper lining making electrical contact with the metal panel for complete isolation of the resistive elements. There is no electrical circuit between the shield and resistance elements. Three terminals are provided, two for the resistance circuit and the third as a ground connection to the shield. These precision boxes may be used as laboratory standards, as directreading resistor elements in bridge circuits, as shunt or series elements in transmission networks, as dummy loads, or other applications where accurate, stable, adjustable resistance elements are applicable. They are equally suitable for the college or industrial laboratory, production test circuits, direct current, audio-frequency work and many applications in the radio-frequency range up to 10 mc when properly applied.

\section*{Resistance Meter}

Southwestern Industrial Electronics Co., 2831 Post Oak Road, Houston 19, Texas, has announced a new combined ohmmeter and leakage tester. Model C-3 resistance meter is a compact, portable instrument designed for production testing of transformers and capacitors, with a useful range of 1 ohm to 1 million megohms. The four ohmmeter ranges are powered by a \(1.5-\mathrm{v}\) battery. The six-megohm ranges apply a maximum of \(105-\mathrm{v}\) to the unit under test, providing a quick and accurate indication of insulation resistance or dielectric leakage. Accuracy is \(\pm 3.0\) percent of fullscale deflection for all ranges except

ONE OF A SERIES OF Modernized．．． REGULATED POWER SUPPLIES

MODEL 300A
A laboratory instrument designed to meet research requirements
－ 0 to 500 V DC at 0 to 300 MA
－HV regulation within 0.2 V at any setting
－HV hum level within 2MV
－0 to－150V bias，stabilized，5MA max．
－6．3V AC filament，6A
Send for Bulletin E－300A
Also available：general purpose units for industrial or laboratory use．

\section*{Universal}

Electronics 0 ．
2012 South Sepulveda Boulevard Los Angeles 25，California
．
M．S．C．
（Mass Spectrometer Checked）

\section*{RARE GASES}

HELIUM－NEON
ARGON • KRYPTON • XENON

LINDE Rare Grises－ür mass specirom－ eter checked to assure you gases of known purity and uniformly high quality．Available in commercial－size cylinders and glass bulbs．
LINDE，the world＇s largest producer of gases derived from the atmosphere， can meet your individual needs of pur－ ity．．．volume ．．．mixture ．．．containers．．．

IINDE AIR PRODUCTS COMPANY
a division of union carbide and carbon corporation
30 East And Street ULC．Now York 17，N．Y．
In Canada
Dominion Oxygen Compony，Limited，Toronto

The term＂Lind＂is a registered trado－mark of Union Carbide and Carbon Corporation

\section*{INSULATION FORMVAR • FORMEX • ENAMEL}淠itit SeCoNDS

1．DIP WIRE in X－VAR for 3 seconds．

2．WITHDRAW and watch coat－ ing disintegrate．

\section*{WIPE}

X－VAR is non－corrosive，non－creeping－leaves wire ready for soldering．Now in use by leading manufacturers of electrical products．Write for FREE SAMPLE for testing．

FIDELITY CHEMICAL PRODUCTS CORP．
472 Frelinghuysen Avenue，Newark 5，New Jersey

\title{
TRRWNSTODNEESNO
}

NEW PRODUCTS
the highest megohm range which is \(\pm 5.0\) percent.

Permanent Magnet Generator
Georator Corp., Arlington 9, Va., announces an improved electric generator that avoids brushes entirely by a permanent magnet construction. The generator is adapted for aircraft use, for field or laboratory supply of 400 cycles, for portable power units, for mounting in marine craft or vehicles, or for operation of newer high-frequency portable power tools. Outputs range from 250 va to 25 kva . Usual voltages, single or three-phase are provided.

\section*{Stainless Steel Strip}

American Silver Co., 36-07 Prince St., Flushing 54, N. Y., has available stainless steel strip, rolled to precision tolerances and ultrathin gages. Stainless steels are being produced in strip up to 8 in . wide and down to 0.0005 in . thin-to tolerances as close as \(\pm 0.0001 \mathrm{in}\). The strip is available in any quantity from one pound to thousands of pounds. Typical uses for stainless steel strip in the electrical, electronics and communications industry include: nonmagnetic components, instrument paneling, cor-rosion-resistant parts (such as springs, stampings and ball-bearings), name plates, veneers and decorative trim.

\section*{Instrument Resistor}

Shallcross Mfg. Co., Collingdale, Pa., has announced type 245 S , a

INDUSTRIAL HARDWARE MIg. Co., Inc. 109 Prince streit - new york 32, n. y.

\section*{Make a [BM poraste oasonval}

\section*{GALVANOMETER}

In Canada: Cossor (Canada) Lut.,
301 Windsor St, Halifad, N.

\section*{IS IT COLD OUT YOUR WAY?}

If you are experiencing trouble with outside pipe lines freezing up, try Lewis heating cable for non-freezing protection. Nickel Chrome conductor with special insulation good for temperatures to \(500^{\circ} \mathrm{F}\).

\section*{HEATING UNITS}
heating element RESISTANCE LINE CORD
THERMOCOUPLE WIRE
ASBESTOS LEAD
\& FIXTURE WIRE
INSULATED RESISTANCE WIRE

FIBERGLAS insulated wire

WIRE TO ANY SPECIFICATIONS

Send your electronic control, communications or appliance wiring specifications for a recommended solution by our engineers.
 FOR A TRIAL ORDER OR A CARLOAD consult
THE LEWIS ENGINEERING CO.
ZUiro Midro-isian
NAUGATUCK
CONNECTICUT

\section*{EIN Simplifies Your Instrumentation}

\section*{with this} Expandable Consolette Recorder

\section*{Start with a} 2 Channel System

Add units, as you need them, to make a 4, 6 or 8 Channel System.
The Consolette gives you rack mounted dimensions with option of Direct Coupled, Condenser Coupled or Carrier Amplifiers; a wide variety of chart speeds and galvanometer types; full writing desk for review of intelligence; and an efficient, modern and beautifully designed instrument.

new 1-watt precision wire-wound resistor for decades and other applications requiring low resistance values with close tolerances, low temperature rise and low inductance. The new resistor can be calibrated to a tolerance of \(\pm 0.1\) percent or better and is available in values from 0.1 ohm to \(1,000 \mathrm{ohms}\). A single layer bifilar winding protected by a moisture resistant lacquer coating is used for all values. The Steatite bobbin and axial wire leads at the same end make it easy to mount the resistor directly on decade switch decks or other similar equipment. Size is \(1 \frac{1}{8} \mathrm{in}\). long by \(\frac{3}{8}\) in. diameter.

\section*{Line Voltage Booster}

Radio Apparatus Corp., 55 New Jersey St., Indianapolis 4, Ind., has designed the V-15 booster for areas where line voltage is below normal. This compact, portable booster provides full rated performance from any 110-v electrical device requiring between 500 and \(1,500 \mathrm{w}\). The meter reads actual line voltage and load voltageswitch increases 5 v per step. It can raise 85 v to 120 v with a \(1,250-\mathrm{w}\) load. Television servicemen will find the booster valuable for checking line voltage and to provide adequate power supply to test equipment when servicing in low-line-voltage areas. Measurements are \(7 \frac{3}{8} \mathrm{in}\). high, \(4_{8}^{7} \mathrm{in}\). deep and \(5{ }^{7}\) in. wide. Weight is approximately 10 lb .

\section*{Literature}

Fabricated Mica. Mica Fabricators Association, 420 Lexington Ave., New York 17, N. Y., has available a handbook that brings together pertinent facts on natural sheet and block mica with particular emphasis on characteristics required in the electrical industry. It is expected that the book will serve as a guide for manufacturers of electrical, radio and electronic equipment in selecting the best and

\section*{PRIMARY BATTERIES for your Specialized Needs}

\section*{DRY TYPES}

78 Standard Industrial, Laboratory and Government Types.

LAB-BILT BATTERIES
Our engineers will design and create to your requirements. Send us your specifications.

Precision-built, low-cost, battery-operatedavailable for delivery now.

RESERVE TYPES
Water activated "One Shot" Batteries.

Send for FREE Catalog

ALL ORIGINAL BEEDE METERS ARE INDIVIDUALLY INSPECTED AND TESTED FOR

\section*{"ON THE DOT" ACCURACY}

CATALOG or INFORMATION on REQUEST

\section*{BEEDE}

ELECTRICAL INSTRUMENT CO., INC. PENACOOK, N. H.

\footnotetext{
founded by
walter E. beede-1880-1947
}

\section*{BOGART MANUFACTURING CORPORATION}

315 SIEGEL STREET - bROOKLYN 6, N. Y.
most economical grade and quality of mica available for any given application.

Potentiometer Noise. The Helipot Corp., 916 Meridian Ave. South Pasadena, Calif., has available the reprint of a paper entitled "Electrical Noise in Wire Wound Potentiometers". The 8-page bulletin describes the source and nature of the six major types of electrical noise found in potentiometers. It develops and assigns a unit of measurement to electrical noise, and describes how each source can be isolated and measured. Diagrams and sketches show sources and measuring circuits. Results of the latest studies of the subject undertaken by the company are presented.

Transformers. Altec Lansing Corp., Peerless Electrical Products Division, 9356 Santa Monica Blvd., Beverly Hills, Calif., has released a new 15-page transformer catalog and price list containing 92 items, representing an increase of 50 percent over previous issues. It lists many new items including the line of 20-20 Plus transformers, and also describes facilities for the design and manufacture of Class A. B and H transformers, which are built to meet JAN-T-27 and MIL-T27 specifications.

Industrial Instrumentation. Berkeley Scientific, division of Beckman Instruments, Inc., 2200 Wright Ave., Richmond, Calif. A 32-page booklet briefly describes electronic instruments providing direct-reading digital presentation of information, and their principal industrial applications. It covers high speed counting, counting plus control, precise interval timing, measurement of rpm, pressure, temperature, flow, viscosity, velocity, frequency and distance.

Signaling Temperature Controllers. Thermo Electric Co., Inc., Fair Lawn, N. J., has published an 8 -page Catalog Section 55 illustrating and describing their new "Thermo Electronic" signaling temperature controller and resistance bulbs. Illustrations, chief features

\section*{PRODUCTIMETER "SPEC/ALS"}
for Radar and Electronic Applications

Companion shutter counters used as dual direction indicators. One counter adds while the other subtracts. Shutter blanks out counter which is on negative side of 000 .

"Y" 2-figure Rotary Counter used in navigating instruments.

High-speed, non-resef " \(Y\) " type counter for building into radar instruments.

Special Model " \(Y\) " with window at rear designed for use in radar equipment.

These are a few of the "specials" developed by Durant for Radar and Electronic applications. When one of the many standard Productimeters is not the exact answer to a problem, Durant engineers modify, combine, or develop entirely new counters to meet the particular requirements of the job.

DURANT MFG. COMPANY 1912 N. Buffum St. 112 Orange St. Milwaukee 1, Wis. Providence 3, R. Representatives in Principal Cities

\section*{YOUR PRODUCTS HERMETICALLY SEALED}

\section*{SHE'D BE STUCK WITH NO MOVING PARTS!}

\section*{BUT THE C. G. s. INCREDUCTOR* LINE OF CONTROLLABLE INDUCTORS NEED NO MOVING PARTS}

THIS FEATURE, COMBINED WITH RUGGED, SHOCK RESISTANT, COMPACT AND LIGHT WEIGHT CONSTRUCTION PROVIDES THE IDEAL UNIT FOR ADVANCED CIRCUITRY.

\section*{SOME OF THE OUTSTANDING AND VALUABLE FEATURES OF THE INCREDUCTOR UNITS ARE:}
- WIDE RANGE • REMOTE CONTROL•FAST RESPONSE • - HIGH SENSITIVITY • EXTREME FLEXIBILITY •

\section*{THE INCREDUCTOR UNIT IS A NATURAL FOR ADVANCED TECHNIQUE APPLICATIONS SUCH AS: \\ - High Speed Switching • F. M. Oscillators • \\ - Automatic Frequency Control Systems . \\ - Receiver Front Ends . Sweep Oscillators . \\ - Amplitude Controls • Variable Filters .}

Write on your company letterhead for engineering data and technical bulletins covering standard types. We will be glad to give you our recommendations regarding your specific problems.

\author{
C. G. S. LABORATORIES, INC.
}

391 LUDLOW STREET, STAMFORD, CONN.

One-half size.
and operating principles are included.

Attenuators. Kay Electric Co., 25 Maple Ave., Pine Brook, N. J. A single-page bulletin covers models 20 and 21 high-frequency switchable attenuators. An illustration, description and technical specification are included.

Nickel Containing Alloys for Permanent Magnets. The International Nickel Co., Inc., New York 5, N. Y., has published a 16-page booklet showing 8 graphs and a list of sources of supply on nickel containing alloys for permanent magnets. It reviews the commercially available p-m alloys, especially the Alnico family. Advantages and limitations of these are high-lighted. Characteristics of ductile permanent magnets (Cunife and Cunico) and of special permanent magnets (silver or platinum) alloys are described. A table gives representative magnetic properties and composition of 23 alloys.

X-Ray Trouble Chart. North American Philips Co., Inc., 750 South Fulton Ave., Mt. Vernon, N. Y., has available a new \(11 \times 15\) in. chart titled "Locating Common Electrical Faults in X-Ray Generators." Developed to aid plant engineers and laboratory technicians, the chart lists symptoms, suspected location, trouble possibilities and methods for locating and correcting generator troubles common to all makes of x-ray generator equipment. It shows nine different trouble symptoms, 14 possible locations, 31 trouble possibilities and the corresponding correction procedures.

Electric Tachometers. The Bristol Co., Waterbury 20, Conn., has published a 20 -page bulletin (No. S1402) describing a full line of recording and indicating electric tachometers. The instruments described include models for measuring speed of rotation or travel, processing time, speed ratios, sum or difference of speeds and average of speeds. Featured in the bulletin are the recently announced electric Dynamaster recording tachometers. Engineering information and com-

\section*{Molbile Anteninas}

\section*{For All Regular and} Emergency Service

Car-top, Whip, Center-Loaded, Zone and Sector Civil Defense Control . . . a complete line for every purpose including Marine. Send for special bulletin.

\section*{PRभMAE REODUCIS} DIVISION CHISHOLM:RYDER CO. IWO

5301 Highland Ave., Niagara Falls, N. Y.

plete specifications on magnetos and the various types of magneto drives are given. The bulletin is liberally illustrated with photos and drawings showing methods of application, reproductions of actual chart records and dimensions.

UHF Antennas. Technical Appliance Corp., Sherburne, N. Y. Cata\(\log 83\) announces a line of antennas designed specifically for uhf reception. Included in the line described are parabolic-reflector types, yagis, modified X (Bow-Tie) and Vee-type antennas. With the exception of the modified-X design, all the antennas discussed are of the sharp directivity type. The modified- \(\mathbb{X}\) will be marketed for areas where reception from channels in opposite directions is required.

Dynamic Temperature and Strain Recorder. Allegany Instrument Co., Inc., 1000 Oldtown Road, Cumberland, Md. An 8-page folder discusses the model 204 dynamic temperature and strain recorder designed for the quantitative study of strains, temperatures and d-c potentials. Besides the general description and uses are included component descriptions and performance specifications.

\section*{Radiation Detection Instruments.} Radiation Counter Laboratories, Inc., 5122 West Grove St., Skokie, Ill. Illustrated price list No. 12 is a new 16-page brochure describing in detail all types of radiation detection and health instruments. Included are electronic instruments; Geiger, proportional and scintillation counters; health instruments; shields and safety devices. Cataloged for the first time is complete reactor control instrumentation.

Circuit Breakers. Heinemann Electric Co., 307 Plum St., Trenton 2, N. J., has published a new manual explaining operating principles of basic circuit breaker designs, and providing engineering data on factors of application. Included are simplified diagrams showing the three basic types of circuit breakers in general use: today with brief descriptions. Through colored charts and dia-

\section*{A NEW RACK-MOUNTING} 5" BASIC SCOPE

Made of tough, durable Ethyl Celhulose plastic. This cable clip will hold wires or groups of wires neatly and securely in position... no possibility of shorts or grounds. Only one fastener is required (screw, nail, rivet or eyelet) with these loop type supports.

Write for samples details, prices
WECKESSER CO.
5267 N. Avondale Ave. - Chicago 30, III.

apparałus

Servomechanisms, Inc., versatile Mechanical Development Apparatus is intended for numerous applications in the research, instrumentation, and servo control fields. Typical applications of these precision built components include análog computers, signal generators, process programmers

Assembly is made with standard tools...each component is designed for repeated use.

Atypical development assembly including servo motors and synchros.
grams, explanations of temperature factors, inrush current effects, tripping and reset time, and time delay curves are provided. Also discussed are the questions of quick or slow make-andbreak, and wire deterioration rates at various ampere values.

Rectifier Bulbs. General Electric Co., Schenectady 5, N. Y. A new 8-page, two-color data manual on Tungar bulbs (used for rectifying a-c power to d-c) has been announced. Designated GEA-5677, the bulletin contains charts and graphs illustrating the characteristics, construction, operation and application of Tungar bulbs.

Infrared Analyzer. MinneapolisHoneywell Regulator Co., Brown Instruments Division, Wayne and Windrim Aves., Philadelphia 44, Pa . Instrumentation data sheet 10.16-7a describes a newly designed selective infrared analyzer produced by Process Controls Div. of Baird Associates. The data sheet illustrates and discusses the application, operation, design features and uses of the unit for plant stream service. It also discusses the ability of the equipment, which incorporates a Brown Electronik potentiometer, for use as a process control medium.

Slide Rule Instructions. The Frederick Post Co., 3650 N. Avondale Ave., Chicago, Ill., has published a new self-instruction text showing the practical application of mathematical principles. The text is divided into three distinct sections and deals with the improved principles of the Versalog slide rule as it applies to electrical, mechanical and civil engineering. Each section of the 120 -page booklet presents a practical, easy-tocomprehend guide to the efficient use of the Versalog in these specialized fields.

Relays for Industry. Automatic Electric Co., 1033 W. Van Buren St., Chicago 7, Ill. A complete line of telephone-type relays, including hermetically sealed (in metal and glass containers) subminiature, and plug-in types is described in a new, color-illustrated brochure

\section*{Are Your Laboratories Overloaded?}

\section*{A PRACTICAL SOLUTION TO THE PROBLEM OF TECHNICAL MANPOWER SHORTAGE}

Are you interested in the possibility of getting some of your testing analysis and trouble shooting work done without hiring additional technical help?

Our solution is very direct. No doubt many of your trained engineers and chemists are tied down by routine but essential testing and analytical tasks. You can release these men for more demanding, more responsible duties by entrusting our laboratories with your routine testing and analytical schedules.

Why is this possible? Because Testing is our Business. Your assignments to us will be handled by men who live and think testing. They will receive the care and attention that only a specialized laboratory can give. That means speed, accuracy, and real economy.

We would like to get together and discuss your manpower problems and possibly point the way to a solution.

\section*{UNITED STATES TESTING COMPANY, Inc.}

ESTABLISHED 1880
1550 Park Avenue, Hoboken, N. J. PHILADELPHIA • BOSTON • PROVIDENCE CHICAGO • NEW YORK - IOS ANGELES MEMPHIS - DENVER - DALLAS

Nurber of American Coxncil of Commartid tabortories

\section*{MODEL 300 VARIABLE ELEGTRONIG FILTER}

Two simple controls are all that are necessary to operate the Model 300 Variable Electronic Filter. With the variable frequency dial and range swith any cul-off frequency from 20 cps to 200 KC may be quickly and accurately selected and reselected. With the range switch either low-pass or high-pass filter action may be chosen. In either case the rate of attenuation is 18 db per actave and the insertion loss 0 db . For higher rates of attenuation or continuous band pass operation two or more sections can be cascaded. Its low noise level and flexibility of operation make the Model 300 indispensable in geophysical and acoustic research, industrial noise measurements, in the automotive and aircraft industries cis well as the radio broadcasting, recording and motion picture studio.

Write for further information foday.

\section*{SPECIFICATIONS}
- CUT-OFF RANGE

20 cps to 200 KE
- attenuation rate

18 db per octave
- SECTIONS

Single, can be high pass and low pass
- INSERTION LOSS 0 dh
- PASS BAND LIMITS

2 cycles to 4 MC
- NOISE LEVEL

80 db below 1 volt

\section*{SK SPENCER-KENNEDY LABORATORIES, INC. 181 MASSACHUSETTS AVE., CAMBRIDGE 39, MASS.}

SIGMUND COHN CORP. 12 so Columbur Avenue - Mount vernon NX

recently released. Ask for circular No. 1702-A.

Printed Circuits. Photocircuits Corp., Glen Cove, N. Y. Printed circuits, their function, fabrication and application are comprehensively outlined and described in a new 8-page brochure. Lower wiring costs, reduced assembly time, circuit reproducibility, improved reliability and miniaturization are the advantages shown by this method of wiring. The brochure includes information on methods of application, materials, electrical characteristics with tables of values, components such as capacitors, resistors, tube sockets and switches. Assembly methods are described and costs are suggested.

\section*{Accessories for Testing Machines.} Tinius Olsen Testing Machine Co., 1022 Easton Road, Willow Grove, Pa. Detailed information on instrumentation, tools and accessories for universal testing machines is given in catalog No. 46. Electronic recorders; electronic strain instrumentation; mechanical extensometers; tension compression, wood and plastics testing tools; and control accessories are only a few of the topics covered in the 24 -page catalog.

Delay Lines. Electronic Systems Co., 578 E. 161st St., New York 56, N. Y. A recent booklet deals with custom-built delay lines that are offered now as stock items. The delay lines described are constructed to meet military specifications, including temperature specifications ranging from -55 C to +80 C. Next to each model number are listed the delay in \(\mu \mathrm{sec}\), bandwidth in me and price.

Radiotelephones and Direction Finders. Applied Electronics Co., Inc., 1236 Folsom St., San Francisco 3, Calif. Eight radiotelephone models, two radio direction finder models and various accessory units are described in an 8-page catalog identified as form 852. Besides a description of the basic design features of these units, the catalog includes a full tabulation of models showing number and types of channels, frequency ranges,

\section*{MICO}

Precision Apparatus TOROID COIL

\section*{WINDERS}

Flexible machines for your laboratory prototype development work.

Production machines built for volume manufacturing of specific coils.

\section*{MICO INSTRUMENT CO.}

76E Trowbridge St. Cambridge, Mass.

ELECTRONICALLY REGULATED LABORATORY
POWER SUPPLIES

\section*{MIDGET TELEPHONE TYPE RELAYS} in hermetically sealed containers

Surface mounting, open type, Series 80 Relay size: \(115 / 32^{\prime \prime}\) l. \(\times 5 / 8^{\prime \prime}\) w. x \(125 / 64^{\prime \prime} \mathrm{h}\).

Compact, multiple contact with vibration and shock-proof characteristics. Designed to meet various operating requirements typical of Armed Services applications. Unique pile-up arrangement reduces width below the conventional relay, thereby reducing over-all space volume.

Coils are varnish-impregnated to resist high humidity conditions. All ferrous parts are treated to pass salt-spray tests.

Engineering Representatives in Principal Cities

WRITE FOR BULLETIN MTR-6

\section*{FOR YOUR}

STAINLESS STEEL FASTENERS...

Our Engineering Department will gladly answer all inquiries relative to your particular problems.

WESTERN GOLD \& PLATINUM WORKS Ceramic Division

\section*{589 Bryant Street}

SAN FRANCISCO, CALIF.
receiver sensitivities, transmitter power outputs ranging from 40 to 500 peak, tube complements, power requirements, dimensions and weights. Accessory units listed include a sectionalized spun glass whip antenna, plug-in crystals, a model 106 mobile p-a system, indoor and outdoor extension speakers, microphones and press-to-talk hand sets.

Small Predetermined Counters. Durant Mfg. Co., 1929 North Buffum St., Milwaukee 1, Wisc. Bulletin 501 covers the SP small predetermined Productimeters designed for both stroke and rotary application, to control production to exact quantities required, and eliminate losses due to over-runs and under-runs. Complete description, specifications, dimensional data, and switch capacities are included.

Picture Tube. Hytron Radio and Electronics Corp., Salem, Mass. A recent series of engineering data sheets give a technical description of the type 27 EP 4 , a 27 -in. rectangular, \(90-\mathrm{deg}\), all-glass, magnetically focused picture tube. Terminal connections are shown and dimensional drawings included.

Coax Connectors. Mendelsohn Speedgun Co., Inc., 457 Bloomfield Ave., Bloomfield, N. J., has published two four-page bulletins covering the types C and N coaxial connectors. Listed with dimensional drawings for both types are plugs, cable jacks, panel jacks, bulkhead jacks, receptacles, angle adapters, angle plugs, tee adapters and straight adapters.

Picture Tube Comparison Chart. Sylvania Electric Products Inc., Emporium, Pa., has available a wall chart for tv picture tube comparison. It lists 136 types and includes in tabular form information on the face, body, focus, deflection and maximum length of each.

Pressure Pickup. Consolidated Engineering Corp., 300 North Sierra Madre Villa, Pasadena 15, Calif., has issued a 12-page brochure on its type 4-310 flush-diaphragm pressure pickup, a small

In Stock for Prompt Delivery!

Hudson carries a complete line of

Includes the New, larger edition of

\section*{JAN \(\underset{\text { Refererence }}{\text { Cors }}\) GUIDE}

The most complete buying guide of its kind! INCLUDES the latest JAN CFOSS-REFERENCE GUIDE and all types of fully approved JAN COMPONENTS. Over 196 pages of the laiest and largest selection of 1 ndustrial Electronic Equipment, Tubes,
Test
Instruments,
Recording and Test Instruments, Recording Equs. High Fidelity Audio and Sound Equlp. ment. Complete Mas. All Standard Makes in Stock for Prompt Delivery at LOWEST PRICES

Send for your FREF Catalog today! 48 WEST 48th ST. • 212 FULTON ST. New York 36, N, Y.

New York 7, N. Y.

\section*{Certury}

Patented Century Nos. 2519591, 2519689,
2439576 Konnestine No. 2149442

\section*{MODEL 210}

\section*{RECORDING GALVANOMETERS}

COIL: Anodized aluminum wire. High space factor and low mass result in unprecedented efficiency. SUSPENSION: Gold, silyer or platinum ribbon, either flat or round depending on frequency STANDARD FREQUENCIES: \(100,200,500,850,2000\), 3300 cps.
DAMPING: Normally domped \(64 \%\) of criticol. Fluid or electro-magnetically damped depending an frequency.
MAGNETIC ASSEMBLY: Permanent Magnel type . Alnico V-DG. Assembly permits independent vertical and horizontal adjustment of each element with positive locking of adjustment.
SPECIFICATIONS:

Mirror: Cylindrical, focal lengths \(11.5^{\prime \prime}\) or \(6.2^{\prime \prime}\) ore standard.
Size: \(2.5^{\prime \prime}\) length; \(125^{\prime \prime}\) diameter.
Weight: . 11 oz
Mounting: Plug in - no external wiring.
Pole Pieces: Integral with tubular cose, except in fluid damped units.
Terminals: Within magnetic assembly. All elements are electrically isolated.
Balance: . 010 per \(g\) at \(15 \frac{1}{2}\) ".

\section*{Write for Bulletin CGC-301}

\section*{Centurry geophysical gorporation TULSA, OXLAHOMA}

\author{
4447. No. Bodine \\ 403 W. Woihington Blvd. 238 Lofayeht St, 309 Irevier 51. Lat Angeles 18, Calif
}

NEVAMAR industrial grade laminates are manufactured by one of the nation's foremost producers of high-pressure decorative laminates. This is immediate assurance of engineering and manufacturing "know how" . . . the ability gained from research and experience to produce industrial grade laminates of superior quality and dependable performance. NEVAMAR is produced in many grades to meet varying requirements. It meets or exceeds the standards of the National Electrical Manufacturers' Association. Would you like to see samples?

Hanulacturers of Nevamar Decoralive and Industrial L OdEnton, MARYLAND - NEW YORK: EMPIRE STATE BUILDING

\section*{drawn} cases

hot tin dipped . . fabricated terminal and vent holes . . . smooth, one-piece construction using cold rolled steel . . . draw depths up to \(21 / 2^{\prime \prime}\) . . . inside fit covers for easy hermetic sealing in all sizes . . . available as stock sizes and as special fabrications.

(C) Min] CMETAL PRODUCTS COMPANY, INC.

\author{
P. O. BOX 71A
}

PHILLIPSBURG, N. J.

\section*{ characterized by extremely low losses. Exact values are given in the table. \\ Possessing very high electrical qualiries, they are ideal elements for use in electronic anatyzers and computers, in tuned circuits and wave filters, as standards of capacitance, in radiation detection, and power supply circuits. Unicon Polystyrene capacitors are available in many different types of housings, as well as uncased for potted assemblies. \\ Prices on Unicon Polystyrene capacitors are reasonable, and delivery excellent. \\ Unicon always gives your capacitor problems the Optimum Solution. \\ Capaciors made to yoer specificatioss. Write for catalog EE \\ united condenser corrp. \\ UNICON \\ 337 EAST 139 th STREET NEW YORK 54, N. Y. \\ }

The Type 2113, 12 Channel Picture Signal Generator has been specifically designed for production line testing of TV receivers. Used in conjunction with the equipment listed below, the manufacturer can produce his own "Indian Head" test pattern and is no longer dependent on local transmissions. This signal generator has also received wide acceptance for dealer demonstrations of TV receivers in areas where transmitting facilities are not yet available.

\section*{SPECIFICATIONS}

OUIPUT SIGNALS AND ACCURACY: Picture and sound R. f. signals on all 12 standard TV channels. Picfure carrier accuracy \(0.01 \%\); sound carrier better than \(\pm 4.5 \mathrm{KC}\) of "standard" on all channels.
PICTURE CARRIER OUTPUI: At least 50,000 microvolts into a 75 ohm terminated coaxial coble.
R. F. OUTPUT IMPEDANCE: Output is into a 75 ohm cooxial cable. Iwo probes are supplied far use with 75 ohm coble to match 75 or 300 ohm receiver antenna input circuits.
VIDEO INPUI IMPEDANCE: 75 ohms single ended.
VIDEO INPUT: Minimum I Volt Paak to Peak, block nagative polarity

PICTURE CARRIER MODULATION: Continuously variable 0 to \(87 \%\).
D. C. RESTORER : A D.C. restorer is provided to main. tain constant average picture brightness when using program material for video modulation.
SOUND CARRIER DEVIATION: COntinuously variable 0 to 40 KC .
sOund modulaion: Modulation from 400 cps internal oscillator or external signal such as music. Input either high impadonce, unbalanced, or 600 ohms balanced. Either input can be selected by front panal switch.

Price \(\$ 565.00\)

\section*{These other TIC Instruments complete the "package"}

TYPE 2120 PICTURE SIGNAL GENERATOR: A single channel TV transmitter for use where a high percentage of picture modulation is required for checking inter-carrier buzz. Price \(\$ 700.00\)
TYPE 1311 VIDEO DISTRIBUTION AMPLIFIER: A 5 channel amplifier recommended where multiple 75 ohm , unity gain outlets are desired. Price \(\$ 550.00\)

TYPE 2200 SYNC. SIGNAL GENERATOR: Provides all necessary RTMA sync. blanking and drive signals plus linearity blanking, in either polarity, for monoscope or studio camera operation. Price \(\$ 1900.00\)
TYPE 2300 MONOSCOPE: A "must" for checking linearity, resolution and smear in TV receivers and video distribution facilities. Recommended for use with Type 2200 Sync-Generator. Price \(\$ 1200.00\)

All prices FOB Factory.
cluded is information on specially adapted Electronik instruments such as the electrometer, function plotter, scanning system, TV-Dial recorder, double-range precision indicator and console desk precision indicator.

UHF Antenna Systems. The LaPointe Plascomold Corp., 155 W . Main St., Rockville, Conn. An eight-page catalog called "UHF Antenna Systems-How, What and Where for Every UHF Area" was recently published. The brochure includes considerable important uhf data such as a page of questions and answers for the technician; a page on the Vee-D-X Mighty Match for separating vhf and uhf; two pages on newly developed uhf antennas; a page describing the new Vee-D-X universal mounting bracket and its many uses; and a page showing typical installations that combine both vhf and uhf.

Microwave Components. Titeflex, Inc., 500 Frelinghuysen Ave., Newark 5, N. J. A 12-page folder shows the company's facilities for manufacture of a wide range of microwave components. Rigid and flexible waveguides are described and illustrated, and complete technical specifications and dimensional drawings are included.

Instrumentation Catalog. Tektronix, Inc., P. O. Box 831, Portland 7, Oregon. Short form cata\(\log 5207\) illustrates and technically describes seven types of oscilloscope, two square wave generators, an amplifier, two preamplifiers, a time mark generator and a waveform generator. Prices for all are included.

Microwave Measurements. Kay Electric Co., 25 Maple Ave., Pine Brook, N. J. A 4-page brochure shows how microwave measurements may be simplified by using (1) the Mega-Nodes as primary standards for noise figure measurements on microwave receivers; (2) the new Centilators, as signal sources, swept, c-w or pulsed for measurements of frequency and transient response of microwave systems; and as experimental mi-

\section*{Combining}

Simplicity of Operation, Reliability and Accuracy

\section*{Strain Indicator}

Also-complete line of high quality strain gage switches, balancing boxes and associated equipment.

\section*{POLYPHASE}

INSTRUMENT COMPANY BRYN MAWR, PA.

\section*{BE SAFE WITH \\ A-27 LOW-LOSS LAGQUER \& CEMENT}
- Q-Max is widely accepted as the standard for R-F circuit components because it is chemically engineered for
this sole purpose.
- Q-Max provides a clear, practically loss-free covering, penetrates deeply, seals out moisture, imparts rigidity and promotes electrical stability.
- Q-Max is easy to apply, dries quickly and adheres to practically all materials. It is useful over a wide temperature range and serves as a mild flux on tinned surfaces.
- Q-Max is an ideal impregnant for "high" \(Q\) coils. Coil "Q" remains nearly constant from wet application to dry finish. In 1, 5 and 55 gallon containers.

\section*{ \\ MARLBORO, NEW JERSEY (MONMOUTH COUNTY
Telephone: FReehold 8.1880 C}

\(\sqrt{1 E t a}\)VICTORY THERMISTORS VARISTORS ANALYSIS CELLS COMBUSTION EFFICIENCY TESTERS

\section*{Measuring and}

Controlling
- TEMPERATURE
- CURRENT
- POWER
- VOLTAGE \(?\)

\section*{- PRESSURE}
- VOLUME
- COMPOSITION
- FLOW OF

AIR, GAS, AND LIQUIDS ?

VECO THERMISTORS, approved and accepted by Government Agencies, are highly versatile new circuit elements - electrical resistance varies extensively with relatively minute thermal changes.

QUANTITY PRODUCTION - stocked in a wide range of specific resistance values and made in the forms of rods, discs, washers, and beads.

Western Electric and Victory have a crosslicense arrangement covering thermistors, and are the only manufacturers in the \(\mathrm{U} . \mathrm{S}\). making the bead type.

VECO VARISTORS are used in voltage control and limiting circuits, and VECO GAS ANALYSIS CELLS incorporate the extremely sensitive VECO THERMISTORS.

Submit your unusual or new measurement or control problem to Victory for a prompt complete analysis and recommendation.

Visit Victory at the IRE Show, 3rd Floor, Booth 403 -
Grand Central Palace, New York, N. Y. - March 23-26.

\title{
Opportunities at BECKMAN for ENGINEFRS-SCIENIISTS
}

\author{
To Develop Instruments and Electronic Components
}

Use your training, aptitudes and experience in the following (or allied) fields:

Spectroscopy . . . Precision Electronics Optics . . . Physics . . . Electromechanics Mechanics . . . Feedback Systems

Men who combine fields will find our projects especially interesting. Typical developments include spectrophotometers af all wavelengths, pH meters, electrometers, flame photometers, computers, radiation instruments, titrators and others to be announced
Unusual opportunities in all divisions: Helipot and Beckman Instruments-So. Pasadena, California; Berkeley Scientific-Richmond, California. Our company is a leader in the fast growing instrument industry, which is not dependent for its future on military contracts, but is of fundamental importance to all types of research and industry.

Write for application and in-

Personnel Department
Beckman Instruments, Inc.
1001 El Centro Street
South Pasadena 59, California

\section*{Vacuum Tube Accessories By Eimac - Now Available!}

Type HR heat dissipating connectors are designed to provide an efficient method of heat transfer from tube elements and seals to the air. Also facilitate electrical connection to plate or grid leads of most popular transmitting tube types. Machined from solid dural rod, come complete with necessary machine screws for use.
- Write for new Eimae Catalogue Summary showing Eimac tubes and other accessories.

Eitel-McCullough, Inc. San Bruno, California

\section*{Here at Coto-Coil...}
. . . the High Speed Covering Department winds outer covers of natural or synthetic yarns over Coto Coils. These top quality yarns position and hold down leads according to specifications, provide electrical insulation and physical protection. Here power winders and expert operators insure maximum production output of the highest quality. These modern production facilities, plus 35 years of experience, combine to make Coto Coils the first cholce for engineered coils. Coto-Coil Company. 65 Pavilion Avenue, Providence 5, R. I.
\[
\begin{aligned}
& { }_{6} \mathrm{Cl} 1510 \\
& \text { Coto }
\end{aligned}
\]

\section*{GTC Transformers} Unusual Applications Whwnwhwn
"GTC" Transformers are used in the AUTOMATIC PIN-SPOTTER because of their accepted ability to meet the most rigid specifications. If your application is most unusual or standard, we suggest you consider "GTC" proven transformers where maximum performance is essential.

We welcome your inquiries.
GENERAL TRANSFORMER COMPANY
serving industry since 1928
18240 Harwood Avenue, Homewood, Illinois (Suburb of Chicago)
voltage variations and lists typical applications for stabilizers.

TV Transformers. Standard Transformer Corp., 3580 Elston Ave., Chicago 18, Ill., has announced its new simplified television transformer catalog and replacement guide, listing replacement information on over 4,400 tv models and chassis. Manufacturers' part numbers are conveniently listed in numerical order with the proper replacement listed next to them. The guide also features a separate section listing 117 tv replacement transformers with complete electrical and physical specifications.

Solderless Terminals. AircraftMarine Products, Inc., 2100 Paxton St., Harrisburg, Pa. Two new illustrated booklets present the highlights of the industrial films, "All's Well That Ends Well" and "By the Millions." One demonstrates the use and application of solderless terminals with precision hand tools. The others shows how solderless terminals in strips fed from reels can be applied to write at rates of up to 4,000 per hour with automatic machines.

Auto Radio Replacements. Merit Coil \& Transformer Corp., 4427 N. Clark St., Chicago 40, Ill., has prepared an 8-page replacement guide for auto radios that includes 4 pages on transformers and 4 pages on i-f/r-f coils. Ask for Form No. 3.

Acoustical Insulations. GustinBacon Mtg. Co., Kansas City, Mo. A new four-page folder titled "A Complete Line of Glass Fiber Acoustical Insulations" includes all relevant details on Ultralite, Ultrafine and Ultraacoustic. The folder describes the physical properties of each of the three products, such as sound absorption and thermal conductivity. It points out the qualities the three have in common, including their principal uses, their ease of application and the choice of facings available with each. Sizes and dimensions for each are given, along with information on the engineering service the company makes available since each acoustical problem is different.

"Here is a resistor that will withstand ambient temperatures of \(105^{\circ} \mathrm{C}\) for at least 1000 hours with full rated loads.
"Certified inspection after 1000 hours found these resistors remained within \(1 \%\) of their original resistance."

- Specifically designed to meet the growing need for a U. H. F. insulating material thats low in cost.
- Meets IAN-P-77 and MIL-P-77A specifications.
- Withstands high temperature due to its thermosetting nature.
- Has outstanding electrical properties.
- Has low specific gravity - is strong and rigid with unusually high compressive and tensile strengths.
- Has excellent impact strength and hardness allowing its use under highly abusive conditions.
- Its dimensional stability and unusual chemical inertness allow its use where other materials fail.
- Readily mach:nable to extremeIy close tolerances.
- Available as centerless ground rods in any ciameter up to \(1^{\prime \prime}\). Also cast in larger diameter rods and sheets.
Write today for technical balletins and samples. Our engineering staff is glways at your disposal.

Manufacturers of Non-srip wire, High Temperature Electrical Tubing a id other extruded piastic products.

\section*{THE RFX CDRPORATION}

66 LANDSDOWNE STREET CAMBRIDGE 39. MASS.

\section*{PLANTS AND PEOPLE}

\section*{Edited by WILLIAM P. O'BRIEN}

\section*{Radio Engineers to Honor Sarnoff, Others}

FIRST recipient of the newly established Founders Award of the IRE will be David Sarnoff, chairman of the board of RCA. The award, which will be given only on special occasions and not annually, was established to recognize an outstanding leader in the radio industry and to commemorate the three radio pioneers who founded the IRE forty years ago-Alfred N. Goldsmith, editor of the Proceedings of the \(I R E\) and consulting engineer; John V. L. Hogan, president of Hogan Laboratories, New York, N. Y.; and Robert H. Marriott, deceased.

Other awards announced by the Institute's board of directors are as follows:

Robert M. Page, superintendent of Radio Division III and associate to the director of research of the
U. S. Naval Research Laboratory, Washington, D. C., was named recipient of the 1953 Harry Diamond Memorial Award, given annually to a person in government service, for his "outstanding contributions to the development of radar through pioneering work and through sustained efforts over the years."

The 1953 Browder J. Thompson Memorial Prize will go to Richard C. Booton, Jr., of MIT for his paper entitled, "An Optimization Theory for Time-Varying Linear Systems with Nonstationary Statistical Inputs." This award is bestowed annually on an author under 30 whose paper constitutes the best combination of technical contribution and presentation of the subject.

Edward O. Johnson and William M. Webster, Jr., of RCA Labora-

\section*{WCEMA AWARD WINNERS}

Robert A. Millikan, Assistant Secretary of the Navy John Floberg, Lee DeForest and A. M. Zarem, director of the Staniord Research Instifute, study the plaques awarded Drs. Millikan and DeForest by the West Coast Electronic Manufacturers Association for their contributions to the electronics indusiry. Presentation was made following the association's tenth anniversary banquet in Los Angeles, Calif.

\section*{OTHER DEPARTMENTS}
featured for this issue:

\section*{Page}

Electrons At Work..... 144
Production Techniques . . 226
New Products. 264
New Books. 346
Backtalk 358
tories Division, Princeton, N. J., were named recipients of the 1953 Editor's Award for their paper entitled, "The Plasmatron, A Continuously Controllable Gas-Discharge Developmental Tube." The award recognizes literary excellence.

Presentation of all the awards will be made at the annual banquet to be held at the Waldorf-Astoria, New York City, on March 25, 1953, during the Institute's national convention.

\section*{DuMont Fills Three Key Posts}

Promotion of three members of the Instrument Division, Allen B. DuMont Laboratories, Inc., to new key posts within the division was recently announced.
The appointees and their new positions are as follows:
H. B. Steinhauser has been named manufacturing engineer. He was formerly a senior engineer.
L. E. Florant moves from an intermediate engineer to head of the engineering services section.
A. W. Russell is now head of the electrical design section. He was formerly a senior engineer.

\section*{Philadelphia Plant Acquires More Space}

El-Tronics, Inc., designers and manufacturers of nucleonic and electronic instruments, has announced the expansion of its research and industrial facilities by the acquisition of an additional

\(17,000 \mathrm{sq} \mathrm{ft}\) of space in new and modern quarters. General offices, research and engineering are now located in the new building at Fifth and Noble Streets, Philadelphia, Pa. The entire plant facilities at 2647 North Howard St. are being devoted to production manufacturing operations.

\section*{Hunkins Advances at Federal}

Appointment of Harold R. Hunkins as chief engineer in the Selenium-Intelin Division of Federal Telephone and Radio Corp., Clifton, N. J., has been announced.

Mr. Hunkins, who has been with Federal for eight years, is the former project manager for three

H. R. Hunkins, chief engineer
of the company's government contracts. Previously he was in the Wire and Radio Transmission Division, first as product line man-

\section*{Time and Place Set for Western Show}

Establishing show dates of August 19 through 21, 1953 was the first order of business as the new WESCON (Western Electronic Show and Convention) board of directors recently held its first organizational meeting for next season in San Francisco. Location of the show will be the San Francisco Municipal Auditorium.

In 1952 a total of 15,092 individuals attended WESCON in Long Beach, Calif., and plans for 1953 envision a substantial increase, not only in general attendance, but also in the 1952 figures of 2,692 who registered for the technical sessions and 199 exhibitors who displayed products and services in 224 booths.

Composition of the new WESCON board of directors is as follows: (standing, left to right) W. D. Hershberger of the University of California, member; Leon B. Ungar of Ungar Electric Tools Inc., member: Howard G. Grove of West Coast Electronics Co., member; (seated) Noel E. Porter of Hewlett-Packard Co., secretarytreasurer: W. E. Noller of Remler Co., Lid., Vice-chairman; Heckert Parker, WESCON business manager; Richard G. Leitner of Packard-Bell Co.. past chairman; Joseph H. Landells of Westinghouse Electric Corp., chairman; Jeanne Jarrett, WESCON recording secretary; and (foreground) Richard A. Huggins of Huggins Laboratories, vice-chairman. WESCON, as an operating organization, is jointly sponsored by WCEMA and the Seventh Region IRE.
ager, then as chief systems engineer and finally as sales manager. In his new position he directs the design of new products and the development of new processes and material for the Selenium-Intelin Division, which produces selenium rectifiers, high-frequency coaxial cable, television lead-in wire and other wire products in Federal's Clifton and East Newark plants.

IRE Elects Officers for '53
One of the nation's highest professional honors was recently accorded James W. McRae, vice-president of Bell Telephone Laboratories, New York, N. Y., with the announcement of his election as president of the IRE for 1953. He succeeds Donald B. Sinclair, chief engineer of General Radio Co., Cam-

J. W. McRae, new IRE president
bridge, Mass., as head of the society.
S. R. Kantebet, general manager of the Government of India Overseas Communications, succeeds Harold L. Kirke, assistant chief engineer of the British Broadcasting System, as IRE vice-president.

Elected as directors for the 1953 1955 term are Stuart L. Bailey, partner of Janskey and Bailey, Washington, D. C., and B. E. Shackelford of RCA International Division, New York, N. Y.

Regional directors elected for 1952-'53 are as follows:

Region 2 (North Central Atlantic), John R. Ragazzini of Columbia University, N. Y.; Region 4 (East Central), Conan A. Priest of General Electric Co., Syracuse, N. Y.; Region 6 (Southern) Archie W. Straiton of the University of Texas,

\section*{Sensational Advancements In Science \& Industry}

\section*{Created the Need for THE NEW} Stabelex "D" CAPACITORS INDUSTRIAL CONDENSER CORPORATION Stabelex "D" Capacitor Catalog may prove to be the most important new single piece of literature for you this year!

Curve \#1107 illustrates the low temperature coefficient of capacity. This low coefficient, therefore, makes these capacitors highly desirable in circuits, the constants of which depend on unvarying capacity.
Performance curves illustrating various characteristics of the Stabelex "D" Capacitor will appear in this magazine each month.

\section*{OUTSTANDING FEATURES}

INSULATIUN RESISTANCE AT \(20^{\circ} \mathrm{C}\). AF'IER THIREE MINU'TES CHARGE-900,000 megohm microfarads
INSULATION RESISTANCE AT \(75^{\circ}\) C. \(-78,000\) megohm microfarads
INSULATION RESISTANCE AT - \(75^{\circ} \mathrm{C}\).-In excess of 5 million megohm microfarads
CHANGE IN CAPACITANCE FROM \(25^{\circ}\) C. TO \(-30^{\circ} \mathrm{C} ;+0.76 \%\)

SELF TIME CONSTANT OF 10 MFD CAPACITOR - 4800 hours

Q AT 50 KILOCYCLES- 10.000
POWER FAC'OR AT1 KC—0.00025

\section*{SEND FOR CATALOG 1117 TODAY}

After a long period of research, Industrial Condenser Corporation now offers to industry for the first time the first of their family of Stabelex capacitors, Stabelex " \(D\) ", which has been produced for special applications for some time.

Complete information performance curves, characteristics, and suggested applications of the varlous types now available will be found in this catalog.

\section*{INDUSTRIAL CONDENSER CORPORATION} Mfrs. of OIL, WAX, ELECTROLYTIC, PLASTIC

Austin, Texas; Region 8 (Canadian) John T. Henderson of the National Research Council, Ottawa, Ont., Canada.

\section*{Magnavox Names V.P}

Richard A. Wilson, general manager of industrial and defense products of The Magnavox Co., has been appointed a rice-president of the company.

Before joining Magnavox, he was manufacturing manager of the apparatus division of RCA, Indianapolis, Ind.; vice-president and director of the Hudson American Corp., Brooklyn, N. Y.; vicepresident and director of ReevesEly Laboratories, New York City; division manager of P . R. Mallory \& Co., Inc., and executive vice-president and director of the Elizabethtown Corp., subsidiary of the Muzak Corp., New York City. He was also vice-president and a director of Muzak.

\section*{Hycon Ups Crisp}

Raymond F. Crisp was recently appointed manager of technical services for Hycon Mfg. Co., Pasadena. Calif. Prior to his recent assignment, he had held the position of chief electronics engineer for the company.

New England Plant Expands The Andersen Laboratories Inc., 37 Talcott Road, West Hartford, Conn., has completed an addition to the plant that doubles its facilities. The expansion was made necessary by the broadening demand for solid ultrasonic delay lines, particularly in the electronic computer field. It will increase the facilities for research and development as well as manufacture.

RTMA Sets Up Reliability Group
With a view toward helping the military obtain higher reliability in

\title{
ONLY Heminway \& Bartlett Produces this Sensational NEW FUNGUS.PROOF NYLON LACCMG CORD
}

\author{
Meets Army, Navy and \\ Civilian Requirements
}

\begin{abstract}
The special synthetic resin coating on Heminway \& Bartlett's Nylon Lacing Cord resists the growth of mold and micro-organisms-factors most often responsible for the deterioration of linen and cotton lacing cords. In addition, Heminway \& Bartlett's Nylon Lacing Cords have high abrasion resistance, low moisture absorption and the finish has the desirable malleability of wax. The finish is also non-toxic to humans.
For fine wire lacing, we have developed a Nylon Flat Braided specially treated Tape. We'll be glad to send you samples of both the Nylon Lacing Cords and the Nylon Flat Braided Tape. Why not write us today!

The Heminway \& Bartlett Mfg. Co., 500 Fifth Avenue, New York 36. Sales Offices: Chicago,
\end{abstract} Francisco, Charlotte, N. C., Gloversville, N. Y.

TYING TWINE

New Panoramic engineering achievements embodied in these improved instruments open important new applications involving modulation and interference problems.
SA-8a and SB-8a enable spectrum analysis of signals so close in frequency that their corresponding indications would normally mask one another.
- IMPROVED RESOLUTION down to 50 cPs for RF spectrum analysis where maximum resolution is a"must"
- LOW SWEEP RATES down to 1 scan per sec ond for analysis of pulsed RF signals with low p.r.f.'s
- LONG PERSISTENCE DISPLAYS SCANNING WIDTH
3 types available with maximum sweepwidths 3 types of 200 KC ., 1 MC . and 10 MC .

10 South Second Avenue, Mount Vernon, N. Y. MOunt Vernon 4-3970

Here is what one of these positions offers you:

\section*{THE COMPANY}

Hughes Research and Development Laboratories, located in Southern California, are presently engaged in the development and production of advanced radar systems, electronic computers and guided missiles.

\section*{THE NEW OPENINGS}

The positions are for men who will serve as technical advisors to government agencies and companies purchasing Hughes equip-ment-also as technical consultants with engineers of other companies working on associated equipment. Your specific job would be essentially to help insure successful operation of Hughes equipment in the field.

\section*{THE TRAINING}

On joining our organization, you will work in the Laboratories for several months to become thoroughly familiar with the equipment which you will later help users to understand and properly employ. If you have already had radar or electronics experience, you will find this knowledge helpful in your new work.

\section*{WHERE YOU WORK}

After your period of train-ing-at full pay - you may (1) remain with the Laboratories in Southern California in an instructive or administrative capacity, (2) become the Hughes representative at a company where our equipment is being installed, or (3) be the

Hughes representative at a military base in this country or overseas (single men only). Compensation is made for traveling and moving household effects, and married men keep their families with them at all times.

\section*{YOUR FUTURE}

In one of these positions you will gain all-around experience that will increase your value to our organization as it further expands in the field of electronics. The next few years are certain to see large-scale commercial employment of electronic systems. Your training in and familiarity with the most advanced electronic techniques now will qualify you for even more important future positions.

> How to apply:

\section*{HUGHES}

RESEARCH AND DEVELOPMENT LABORATORIES

Engineering Personnel Department Culver City, Los Angeles County, California
electronics apparatus, the engineering department of the RTMA has announced the establishment of an Electronic Applications Committee. The committee, under the chairmanship of Lewis M. Clement of the Crosley Division, Avco Mfg. Corp., will collect and disseminate information on the design, manufacture and installation of electronic equipment as an aid to obtaining more reliable military apparatus. It plans to work and cooperate with other associations, research laboratories, manufacturers and government agencies in furthering its program.

The following duties have been assigned the new committee:
(1) To act as a central collecting agency to which all reports and data from surveys relating to reliability of equipment in the field would be referred.
(2) To set up routines with various RTMA and JETEC committees so that data collected in the course of their operations could be referred to proper groups for study and action.
(3) To correlate data from various types of users to determine if their needs follow certain patterns that would be of interest to manufacturers. It may be found that a general class of components or tubes would serve many groups of users.

\section*{Announce New Chief Engineer}
F. Clark Cahill has been appointed chief engineer of the engineering and production division of Airborne Instruments Laboratory, Inc., Mineola, L. I., N. Y. He formerly served in the Laboratory's research and engineering division as supervisor of the radar section.

With Airborne since its founding as an independent electronic research and development laboratory in 1945, he was associated during World War II with the Radio Research Laboratory at Harvard University, an organization sponsored by the government's Office of Scientific Research and Development, as the head of a war research work division. During this same period, he also was associate director of

F. C. Cahill
the affiliated American British Laboratory in Great Britain.

In his new position with the Laboratory's production division, which recently moved into a new and modern plant in Garden City, L. I., N. Y., he will direct production engineering activities.

\section*{Aveo Elects V-P}

Leonard F. Cramer, assistant general manager of the Crosley division of Avco Mfg. Corp. since 1951, was recently elected a vice-president of Avco. Prior to joining Avco, Cramer was executive vice-president of the Allen B. DuMont Laboratories and was the first manager of WABD, pioneer ty station of the DuMont network. He will be in charge of Crosley's entire radio-tv activities.

\section*{Wiener Joins SKL}

Francis M. Wiener has become section head in the engineering department of Spencer-Kennedy Laboratories in Cambridge, Mass. Dr. Wiener comes to SKL from the Bell Telephone Laboratories at Murray Hill, N. J., where he worked on acoustic diffraction theory and the fundamental communication aspects of speech, as well as on classified problems for the Office of Naval Research.

\section*{AES Names Fellows}

Several outstanding engineers in the audio industry were recently

WHEN YOU NEED A SUB-FRACTIONAL HORSEPOWER MOTOR,FAN OF BLOMER

\section*{OUR NEWEST TYPE...}

This 60 cycle single phase blower was custom built to exacting Navy specifications. It is driven by a self-cooled motor for high ambient temperature operation, and is especially impregnated for humid atmosphere. This compact model is designed for such applications as cooling transmitting tubes, cabinets, chassis, amplifier assemblies, and a wide variety of electronic controls.

YOUR REQUIREMENTS
If you need synchronous type

\% or induction type, motors, MMe
* makes them.
" "LIGHTER - MORE EFFICIENT-COOLER for LONGER LIFE under extreme temperatures.
RANGE: \(1 / 1000 \mathrm{hp}\). to \(1 / 10 \mathrm{hp} .60\) cycle, 400 cycle variable frequency
```

SEND,US YOUR PROBLEM

```

We are leading specialists in the design and production of acfuators, * gear motors and torque motors for application in automatic devices, electronic controls, radar equipment, timing devices, fire controls, sine : wave alternators, aircraft cameras, etc.
 SPRINGS when you need

\section*{DEPPENABEE} WIREFORMS

\section*{QUALITY, ECONOMY and PROMPT SERVICE on Every Order - Large or Small!}

There is never any letdown in Lewis quality or service. Your order will be given prompt, efficient attention regardless of size. You can be sure that the springs, wireforms or stampings you order will be fairly, economically priced. What's more, Lewis has the extensive, modern facilities, the long-experienced engineers and skilled production craftsmen to supply you with springs, wireforms and stampings tailored to your exact needs.
If you have any tricky or tough problems involving springs, Lewis's engineers will be glad to help you solve them. Or, if you need large or small quantities of standard springs in a hurry -just call on Lewis! Send us your drawings, specifications or samples today!

LEWIS SPRING \& MANUFACTURING CO. 2656 W. NORTH AVENUE, CHICAGO 47, ILLINOIS

The Finesf Light Springs and Wireforms of Every Type and Maferial
raised to the rank of Fellows in the Audio Engineering Society at the annual banquet in New York City. They are:

Lindsay Black of Bell Telephone Laboratories, Inc.; Harold BurrisMeyer of Stevens Institute of Technology; Isabel Capps of Frank L. Capps, Inc.; James Y. Dunbar of William J. Scully Acoustic Corp.; Price Fish of Columbia Broadcasting System; Ernest W. Franck of Reeves Soundcraft Corp. ; Lewis S. Goodfriend of Audio Instrument Co., Inc.; John K. Hilliard of Altec Lansing Corp.; William F. Jordan of Fox Movietone News; Harry F. Olson of RCA Laboratories; Norman Pickering of Pickering \& Co.; John Preston of RCA Laboratories; Albert A. Pulley of RCA Victor; Richard H. Ranger of Rangertone, Inc.; H. I. Reiskind of RCA Victor; C. R. Sawyer of Bell Telephone Laboratories; Hermon H. Scott of H. H. Scott, Inc.; J. T. Mullin of Bing Crosby Enterprises; J. P. Smith of Daven Co.; S. Edward Sorenson of Columbia Records, Inc.; W. E. Stewart of RCA Victor; Myron J. Stolaroff of Ampex; W. J. Temple of Brooklyn College; and S. F. Lybarger of E. A. Myers \& Sons, Inc.

\section*{Beckman Builds Eastern Plant}

BECKMAN INSTRUMENTS, INC., South Pasadena, Calif., manufacturer of scientific and industrial instruments and precision components comprising a line from pH meters to computers, has started construction on a new 20,000 -sq ft building in Mountainside, N. J.

To be used as eastern sales and service offices for the parent company and as an eastern manufacturing facility for the Beckman subsidiary, Helipot Corp., manufacturer of helical potentiometers, the new plant will employ more than 150 people.

\section*{Langevin Appoints Engineering Director}

William W. Dean has been appointed director of engineering of

\section*{free! \\ NEW AGF BURNER CATALOG}

The first complete catalog of never before available technical data.

Gives hole sizes, flame patterns, gas consumption on various gases and complete information with illustrations of -

\section*{BURNERS BLOW PIPES GAS FIRES} MIXERS INSERTS BALL JOINTS MANIFOLDS CROSSFIRES MACHLET TIPS GOVERNORS TUNNELS OXYGEN GAS BURNERS

Write for your copy today on your company letterbead.
AGF

\section*{American Gas Furnace Co,}

130 SPRING ST., ELIZABETH 4, N.J.

Precision drilling made easyl

\section*{Phillips \& Iliss 204-c}

\section*{Sensitive "Feel"}

Sensitive Speed Control:
Foot-operated, leaves both hands free
High Precision: Selected Chuck and Bearings. Spindle true within \(.0002^{\prime \prime}\). Table square \(.0005^{\prime \prime}\) in 5 " circle. Permanent accuracy, castings annealed and ground.

FOR MARKING...

PLASTIC - METAL GLASS - PAPER RUBBER•CERAMIC CARDBOARD
in such products as Resistors, capacitors, valves, tubes, labels, sleeves, spark plugs, cartons, etc., etc.
THESE PRODUCTS AND MANY OTHERS OF ALMOST ANY MATERIAL AND SHAPE CAN BE IMPRINTED

\section*{ON THE}

\section*{REJAFIX}

MARKING MACHINE
Why not send us samples of your products? They will be test-printed and returned to you for your examination!

\section*{- REJAFIX HAND-OPERATED MODELS FOR SMALL RUNS. FULLY AUTOMATIC MODELS FOR MASS PRODUCTION.}

EST. 1922

\section*{}

\section*{REGULATED HIGH VOLTAGE POWER SUPPLY \\ Provides Electronically Regulated Continuously Adjustable Voltages from 150 to 1500 VDC at \(0-5\) Milliamperes \\ }

This unit is specially designed to supply proper power for making precise quantitive measurements with photomultiplier tubes, klystrons and similar applications.

Voltages are held to close limits even with wide line voltage and load variations.
No meter is required. Accurate voltage readings are made directly from a 15 turn vernier dial which is calibrated to read 1 volt per scale division.
MODEL 810-P SPECIFICATIONS

See the Model 810-P and other Furst Power Supplies at the I.R.E. Convention
- OUTPUT VOLTAGE: 150 to 1500 VDC at \(0-5\) Milliamperes.
- REGULATION: Output voltage varies less than \(.01 \%\) per volt change of line voltage and less than 1 volt with variation of output current from 0 to 5 Milliamperes.
- RIPPLE: Less than 5 Millivolts r.m.s.

Positive output terminal is grounded. 5 neqative output connectors (type AN-3102A-18-16-s) are connected in parallel and mounted on front panel.

Write for Descriptive Bulletin

\section*{furst electronics 3324 W. Lawrence, Chicago 25, III.}

\section*{itó NEW!... A WIDE RANGE}

- Internally generated single pulses and recurrent pulses 20 cycles to 20 KC
- External synchronization 0 to 20 KC from almost any waveform
- Direct reading Recurrence Rate Meter, 20 cycles to 20 KC
- Pulse duration continuously variable and calibrated from 0.1 to 50 a seconds
- Rise and decay times less than 0.03 a seconds, \(10 \%\) to \(90 \%\) amplitude
- Position continuously variable and calibrated from 50 a seconds advanced to \(50 \mu\) seconds delayed with respect to synch output trigger
- Amplitude 1 to 100 volts open circuit, positive or negative, driving impedance 50 ohms
- Amplitude control isolated from un-terminated DC coupled output for maximum flexibility
- Maximum average load current 0.1 amperes automatically limited

W. W. Dean
the Langevin Mfg. Corp., New York City. He will direct all engineering activities of that concern, manufacturers of broadcast and sound systems, audio equipment and transformers.

Mr. Dean was associated with General Electric Co. for eleven years prior to joining the Langevin organization on Nov. 1. Since 1945 he has been audio facilities project engineer in the broadcast engineering section of GE at Electronics Park. During the war years he was in the radio transmitter engineering department where he did development work on high-power transmitters and military radio equipment.

\section*{Resonant Moves to New Quarters}

Open for business in its new Belmont, Calif., home is the Resonant Co., subcontractor for Dalmo Victor, of San Carlos, Calif., in the manufacture of microwave components. The new plant covers a \(31,000-\mathrm{sq}\) ft area.

\section*{Zenith Appoints Associate Director}

Robert Adler, a member of the corporation's research division since 1941, has been appointed associate director of research for Zenith Radio Corp., Chicago, Ill.

During the past eleven years Adler has been responsible for numerous contributions to the ad-
vancement of the electronics industry and the improvement of communications equipment used by the armed services.

One of the most significant is the gated-beam tube for television, which represents an entirely new concept in the field of vacuum tubes. The use of this tube has greatly simplified the sound system in tv receivers, markedly improving reception by screening out certain types of sound interference while lowering the cost of the sound channel.

He was also instrumental in originating and developing a synchronizing circuit that permits better picture stability even in fringe areas of tv reception.

\section*{Fontaine Rejoins Bendix}

Raymond P. Lansing, vice-president and group executive in charge of six eastern divisions of Bendix Aviation Corp., has announced the appointment of A. P. Fontaine as staff assistant.

Fontaine, recently vice-president and general manager of Consolidated Vultee Aircraft Corp. and previously with Bendix in 1944-46, returns to the company to help di-

A. P. Fontaine
rect vastly expanded operations in aircraft control, navigation and instrument equipment, electron tubes, ignition systems, meteorological instruments, precision electrical units and many other products. These operations at six of Bendix' 17 manufacturing divisions embrace nearly half the company's 40,000 employees.

\title{
There's More to a Good Filter Than Meets the Eye!
}

All of these 66 parts are from a single B\&W Toroidal-coil type discriminator only \(13 / 4^{\prime \prime}\) square by \(31 / 2^{\prime \prime}\) long exclusive of terminals!

Throughout, the job is one calling for precision components plus a wealth of engineering "know how" in producing and assembling them for maximum performance and effectiveness.

Like all other B \& W Special Components, the one illustrated here was designed and produced for a specific application-in this instance a critical military use.

\section*{FILTERS}

In addition to "tailor-made" discriminators, B \& W offers a complete line of performanceproved filsers including highpass, low-pass, band-pass and band suppression types.

\section*{TOROIDS}

B \& W Toroidal Coils of various styles and sizes are available in a wide range of inductance values in open, shielded, potted and hermetically sealed types.

\section*{Radio Spectrum}

\section*{Conservation}

Report of the Joint Technical Advisory Committee, IRE-RTMA. Mc-Graw-Hill Book Co., New York, 1952, 220 pages, \(\$ 5\).
Anyone who, during the past 25 or 30 years, has watched the radio spectrum grow in extent but become parceled out piecemeal as circumstances demanded will read this excellent survey with mixed feelings. In the first place he will hope to find strong language applied to our methods of conserving a natural resource which, having an infinite life, has limited boundaries; and secondly, he will have a feeling of relief that, at last, a calm, dispassionate, objective survey of this type has been made. In his hope for excoriation, the reader will be disappointed but he will not be deprived of the pleasure of thinking what he would have said had he the chance! As befits engineers dealing with the facts of nature, this report is restrained, it is thorough, and should be the property of all who have anything to do with the communication spectrum.

The book is remarkably easy to read, couched, as it is, in layman's language for the most part. Where the going is rough, the layman can skip into easier reading. This means that non-technical administrators and legislators can get a judicial point of view on a matter of utmost importance and urgency. For if we continue to hand out channels without due regard to their properties for the services intended, the next step will have to be taken-those who do not make the best use of their franchises will have to be a ousted-a job that no one wants and few would undertake.
In five chapters, much information is packed. The first deals with the history of the allocation of the radio spectrum, then follows a long and very important chapter on the propagation characteristics of the spectrum which is divided into five reasonable portions whose characteristics are relatively similar; next an ideal approach to the allocation problem, a critique of present allo-

\footnotetext{
Wont more information? Use post card on last poge.
}

You'll be well repaid by getting the facts on a special group of Pure Ferric Oxides, developed by Williams especially for use in the manufacture of ferrites.
Williams Ferric Oxides analyze better than \(99 \% \mathrm{Fe}_{2} \mathrm{O}_{3}\). They contain a minimum of impurities. They are available in a broad range of particle sizes and shapes. Among them, we're certain you'll find one that's "just right" for your requirements. The proper application of Ferric Oxides to the manufacture of Ferrites is our specialty.
Tell us your requirements... we'll gladly send samples for test. Chances are good that our Ferric Oxide "Know How" can save you considerable time and money. Address Dept. 25, C. K. Williams \& Co., Easton, Pa.

\section*{WILILAMS \\ COLORS E PIGMENTS}
C. K. WILLIAMS \& CO.

Easton, Pa. - East St. Lovis, III. Emeryville, Cal.

\section*{P. S. We also produce IRN Magnetic Iron powders for the Electronic Core Industry, the Magnetic Tape Recording Industry and others. Write for complete technical information.}

\section*{Whot Makes A} Moiling Click?
- Advertising men agree -the list is more than half the story.

McGraw.Hill Mailing Lists, used by leading monufacturers and industrial service organizations, direct your advertising and sales promotional efferts to koy purchasing power. They offer thorough horizontal and vertical coverage of major markets, including new personnel and plants. Selections may be mode to fit your own special requirements.

New names are added to every McGrow-Hill list daily. List revisions are mode on a twenty-four hour basis. And all names are guaranteed accurate within two per cent.

In view of present day difficulties in maintaining your own mailing lists, this -fficient personalized service is particularly important in securing the comprehensive market coverage you nead and wont. Ask for more detailed information todar. You'll probably be surprised of the low over-all cost and the tested effectiveness of these hand-picked selections.

\section*{McGraw-Hill Publishing Co.,Inc.}

DIRECT MAIL DIVISION
330 WEST 42nd ST.
NEW YORK 18, N. Y.
Want more information? Use post card on last page.
January, 1953 - ELECTRONICS

\section*{GALBRAITH OUTDOOR SPEAKERS}

All bronze housings, complete with mounting brackets, \(15^{\prime \prime}\) horn diameter, double re-entrant type. Frequency response from 400 to over 6000 cycles. Thoroughly weatherproof. Powered with Alnico-V-Plus driver unit, U.S. Coast Guard approved made by specialists in the manufacture of Marine equipment and Controls, Emergency Loudspeaker Systems, Public Address Systems, Music Broadcast Systems and Docking and Navigating Systems.

\section*{C. C. GALBRAITH \& SON ELECTRIC CORP.}

450 Ave. of the Americas New York 11, N. Y.

\section*{DIGITAL COMPUTER ENGINEERS}

ELECTRICAL ENGINEERS and PHYSICISTS
needed for circuit design and development. Engineers and Physicists with 1 to 4 years experience in pulse circuits, pulse handling techniques, and systems development. Openings also for recent graduates.

> Replies strictly confidential
- Interviews arranged at our expense

\section*{}

A Subsidiary of Themsingreme Mrand
Leaders in the Development of Digital Computers
1902 W. Minnehaho, St. Paul 4, Minn. "You Will Enjoy Living in Minnesota"

\section*{}
- Vacuum Tight - Glass to Metal
- Standard Types from Stock
- Special Designs to Fit Your Product
- Write or Call for Full Information

Representatives:
\begin{tabular}{ll}
PAUL D. AARON & 120 Liberty St., New York 8, N. Y. \\
J. R. GASTON CO. & 213 Locust St., Harrisburg, Pa. \\
& or \\
& 618 N. Calvert St., Baltimore, Md.
\end{tabular}

\footnotetext{
SCIENTIFIC ELECTRONIC LABS, INC. 266 Bergen St.

Bigelow 8-6553
Newark 8, N.J.
}

\section*{NEW.. \\ THE C B MODEL 712 C-R-L BRIDGE}

MEASURES CAPACITANCE, RESISTANCE, INDUCTANCE, INSULATION RESISTANCE, THE TURN RATIO OF TRANSFORMERS, DC LEAKAGE CURRENT OF CAPACITORS, DISSIPATION FACTOR "D" AND STORAGE FACTOR "Q"

\section*{10 MMF to 1100 MFD}

\section*{1 OHM to 11 Megohms}

100 Microhenries to 110 Henries
Insulation Resistance Up to 10,000
Megohms
Turns Ratio 01 to 110
DC Voltage for Polarizing Electrolytics \(0-500 \mathrm{~V}\)
Meter Measures Polarizing Voltage and Leakage Current

Copacitor Quality Test for Open or Shorted Capacitors Without Disconnecting from Circuit

CB MODEL 712
SMALL SIZE - LIGHT WEIGHT - HIGH ACCURACY FOR COMPLETE CONSTRUCTION DETAILS AND PERFORMANCE DATA WRITE FOR BULLETIN 300
The CLOUGH BRENGLE CO.

\author{
6014 Broadway
}

Chicago 40, III.
cations and, finally, a chapter on the dynamic conservation of spectrum resources. An extensive bibliography and an appendix containing the charter of JTAC complete the book.

A highly recommended report of an important public service undertaken by busy men, this book could be made the basis for an excellent study course in allocations, if such a course were ever contemplated. -K. H .

\section*{Electrodynamics}

Lectures on Theoretical Physics, Vol. III. By Arnold Sommerfeld, University of Munich. Translated by Edwarl G. Ramberg. Academic Press Inc., New York, 371 pages, 1952, \(\$ 6.80\).
The Third volume, "Electrodynamics," of Arnold Sommerfeld's "Lectures on Theoretical Physics," has now been translated into English. The reputation of Sommerfeld is too widespread to require biographical introduction. His translator, Mr. Ramberg, has spent most of his life in the United States and is eminently qualified, having been awarded the degree of Ph. D. in Physics by the University of Munich.

The subject of this volume is Maxwell's equations, presented from the viewpoint of Hertz and extended to their more general implications as far as the theory of relativity, matter and energy. Among the other philosophers whose approaches are followed, the outstanding are Einstein, Lorentz, Minkowski and Schwarzschild.
In general, the first half of the book (Parts I \& II) is devoted to an axiomatic development of classical electromagnetic theory from Maxwell's equations, while the second half (Parts III \& IV) deals with the generalizations and extensions thereof following the theory of relativity. Dimensional analysis, the historical origins of physical concepts, and the limitations of these concepts as valid descriptions of the universe are critically examined. The book may be read separately from the rest of "The Lectures," to which only occasional reference is made, prin-
cipally for mathematical justification.

The Maxwell equations are specialized for static fields and some elementary problems of electrostatics and magnetostatics are treated. The discussion of circuit theory is brief but its relation to the field theory is well stated. The sections on general electromagnetic fields includes an extensive treatment of "wave fields of cylindrical symmetry". Sommerfeld's original solutions to the problems of propagation over a conducting plane and along a straight wire are given as follows:

Parts III and IV deal with the invariance of Maxwell's equations in four dimensions and the special theory of relativity. The Lorentz force is derived in a natural way. Application is made to the behavior of a single electron. Minkowski's equations, which are Maxwell's equations for moving media, are developed and analyzed. Special topics of the general theory of relativity are discussed briefly.

A set of rather formidable problems is appended. As the solutions to these problems are given in detail, they form a supplement to the text.

Special attention is paid to the philosophy of various systems of units. The MKS rationalized system is generally employed, occasionally with suffixes Q for coulomb (electric pole strength) and \(P\) for magnetic pole strength, where the author feels the need for these restrictions. The reader appreciates the author's continual effort to purify concepts and to clarify terminology; the term "wave resistance" is an example of the commendable results.

The organization of the book is somewhat loose. This is sometimes disturbing, and detracts from the readability and the reference value of the text. On the other hand, the frequent discursions are enlightening in themselves, and impart a freshness uncommon in textbooks. Many well labeled figures illustrate the text. The notation has been revised to correspond to current American practice, with minor exceptions. The use of the dot to represent differentiation (either

Compare the performance of Raytheon magnetic Voltage Stabilizers with any other make. You'll find at least ten good reasons why they guarantee better, more reliable operation of any electrical or electronic equipment. All models are compact, light in weight and ruggedly built with no moving parts to wear out.

Raytheon Voltage Stabilizers rated from 15 to 2000 watts are carried in stock by 125 parts distributors strategically located from coast to coast. Customengineered units, ranging from 5 to 10,000 watts are also available for military or commercial applications.

Write for complete information and performance data.
TESTS PROVE 10 POINTS OF RAYTHEON SUPERIORITY
1. Deliver accurate AC voltage within \(\pm 1 / 2 \%\)
2. Stabilize output with more 2. precision
3. Regulate better at full load
4. Hold up better under overload
5. Better no-load to full-load
. regulation
6. Accept wider input voltage 6. range
7. Less voltage change as
1. Units heat Up
8. Less change in output as
9. Smaller, lighter, more com.
9. Smaller, lighter, more co
10. Cost less to operate

\section*{MULTIPLE ASSEMBLIES FOR SMALL PARTS BELONG TO HORSE-AND-BUGGY DAYS}

\section*{GRIES die castings give you} TINY PARTS LIKE THESE IN
 COMPLETE OPERATION

Compare GRC zinc alloy die castings with small parts Compare GRC zinc alloy die castings with small parts finished parts save you time, labor, money. Die cast in one high-speed operation, they open broad cast in one high-speed operation, they open broad GRC offers fost delivery of 100,000 pieces to many millions. Write today for bulletin and samples. Send prints for quotations. America's PRODUCERS Casting Die
 Manufacturers of Small Castings Exclusively
total or partial) with respect to time is to be regretted. The arrangement of the table of symbols, and its lack of several minor symbols, again lowers the ready reference value.

The prerequisites for the reader are, at least, a well rounded background of classical physics with emphasis on electromagnetics, and a mathematical preparation through vectors and tensors, as far as an introduction to the special functions of Bessel, Hankel and Mathieu.

Sommerfeld's presentation is in the form of a philosophical treatise rather than a textbook or reference handbook. Each topic usually receives just enough attention to cover the basic principles, stopping short of the simple concepts, theorems, rules and design formulas of recent years. Therefore it is best adapted for side reading by the advanced student of physics and electromagnetics.-

Walter K. Kahn and Harold A. WheELER, Wheeler Laboratories, Great Neck, N. Y.

\section*{Technical Reporting}

By Joseph N. Ulman, Jr., Massachusetts Institute of Technology. Henry Holt \& Co., New York, N. Y., 1952, 290 pages, \(\$ 4.75\).
As an editor who, in nearly thirty years of technical publishing, has read, edited, rejected with regret, published, listened to and written literally thousands of technical reports and papers, far too many of which were dull, or too long, or written wrong-end-to, or just plain awful for any number of reasons, this reviewer unhesitatingly recommends this book to technical people whether they be students or Ph.D's with a long record of accomplishment behind them. For the facts are that engineers and scientists do not take with enough seriousness the importance of being able to tell others about their work. They do not seem to realize that oral and written reports of their work are their salestalk; that advancement in their job or their profession often depends upon a simple, concise, easy-to-understand description of

P. E. G. Duplex Magnifier, with genuine precision-ground glass lenses, gives ac-curately-magnified readings on both faces of duplex rule, without having to fit scratch-proof chamois case

> Save your eyes Send for your
P.E.G. Duplex Magnifier today!
Order by width of rule.
P.E.G. DUPLEX MAGNIFIER

Pocket slide rule size. \(\mathbf{\$ 2 . 5 0}\) (magnifies \(3 X\))
Standard rule sizes (magnify 2 \(1 / 2 \mathrm{X}\))
\begin{tabular}{|c|c|c|}
\hline 1 15/16 in. & order \# & 3.50 \\
\hline 15/8 in & order \(\# 2\) & 3.50 \\
\hline \(19 / 16 \mathrm{in}\). & order \# 3 & 3,50 \\
\hline \(13 / 8 \mathrm{in}\). & order ts 4 & 3.50 \\
\hline
\end{tabular}

Send check or money order to manufacturer's representative:
F LATTO Mgt. Co.
70 W. 40 ST., N. Y. 18, N. Y.

The recent development and improved LINDGREN DOUBLE SHIELDED SCREEN ROOMS - designed, engineered and constructed to incorporate True Insulated double shielding - for maximum shielding efficiency and the highest possible attenuation. TWO close mesh copper screens are each physically separated and electrically insulated from each other. Each screen is independently grounded. No soldered connections. A true laboratory screen room made in sections-easily assembled. Can be supplied in Special Sizes. Built to be a permanent investment

QUICK FACTS by return mail, with construction diagrams and engineering test reports. Write us today.

ERIK A. LINDGREN \& ASSOCIATES

\section*{Established 1939}

4515-17 N. Ravenswood Avenue Chicago 40, Illinois
Phone Sunnyside 4-0710
Sales Engineering Representatives Throughout The United States

\title{
aljanots \\ \\ AIIR \\ \\ AIIR \\ ARBOR PIRESSES
}

\author{
[AIR OR SPRING RETURN] Completely Flexible
}

IR-MITE now supplies solid steel upright columns A in any lengths required to give you these important flexibility features:

1 Normal ram clearance of \(0^{\prime \prime}\) to \(6^{\prime \prime}\) may be increased to any clearance required for special application.

Supplementary or replacement cylinders with any ram stroke required are available for quick, easy mounting on same brackets.

3Rapid socket wrench adjustment cylinder bracket swivels for perfect alignment with work.

Presses are available in \(1 / 4,1 / 2,3 / 4\) and 1 ton capaci-ties-for staking, riveting, marking, punching and similar operations.

Write for complete catalog of Air-Arbor Presses and single and double acting Air Cylinders.

\section*{AIR-MITE \\ 4417-E West Carroll Ave.,} Chicago 24, III.

WHEN YOUR PROBLEMS YOU CAN'T ABIDE LOOK IT UP IN THE BUYERS' GUIDE*

* He means the electronics BUYERS' GUIDE

When you don't know who makes the component, equipment or material you need just loak it up in the "GUIDE"

\section*{Precision Resistors}

IN AMBIENT TEMPERATURES
from \(125^{\circ} \mathrm{C}\). to \(-65^{\circ} \mathrm{C}\).
AT FULL RATED LOAD up to \(100^{\circ} \mathrm{C}\). ambient.
IN HIGH RELATIVE HUMIDITY less than 1\% change.

Available for use in equipment for the U.S. Government in 1 watt size in values from 1000 ohms to 1.0 megohm.

Write for details
what they have been doing. And anyone who has had the humiliating experience of losing credit for an accomplishment simply because he did not write up his notebook with completeness as well as with clarity knows the value of good writing.

It is all in this book-the fine points, the mechanics-how to write lab reports, technical papers, memos and job-seeking letters, visual means for presenting information, and how to deliver a talk that will keep your audience awake as well as inform them on a highly technical subject. The do's and don't are set forth in a way anyone can read, enjoy and learn from.K. H.

Harmonics, Sidebands, and
Transients in Communication Engineering

By C. Louis Cuccia. McGraw-Hill Book Co., New York, 1952, 465 pages, \(\$ 9.00\).

THIS book summarizes under one cover the use of practically all the mathematical tools with which every practicing communications engineer should be familiar. The text is written in such a fashion that it is easily usable by any graduate from a recognized engineering college. It is an excellent textbook for an undergraduate or a graduate course which is constructed around its content,

The mathematical tools are presented in the first four chapters covering Functions of a Complex Variable, Trigonometric and Complex Fourier Series, Fourier Transforms, and Laplace Transforms. The development of these tools is the smoothest, clearest and most logical presentation the reviewer has ever seen under one cover. Mathematical rigor is replaced by "horse sense" and physical reasoning. The use of each idea is more than adequately illustrated by practical engineering problems.

Chapter 5 through 22 show the applications of the mathematics to the solutions of problems of linear and non-linear networks and the representation of communications
waves. Most of the illustrations are of problems encountered by every communications engineer. A few are fictitious from the practical standpoint but are very useful for illustrating techniques of solution.

Most of the chapters are followed by groups of excellent problems which range in difficulty from the "Substituting in the formula type" to those requiring a real engineering insight. Throughout each chapter is scattered a bibliography, listing, in most cases, the works of the communication pioneers.

The reviewer has found a phenomenally small number of mistakes and no blunders in the text.Charles A. Hachemeister, Associate Professor of Electrical Engineering, Polytechnic Institute of Brooklyn.

\section*{Advanced Antenna Theory}

By S. A. Schelkunoff. John Wiley \& Sons, 216 pages, \(\$ 6.50,1952\).

This recent book by Dr. Schelkunoff is an advanced treatment of certain phases of antenna theory. The author assumes that the reader has a fair degree of mathematical maturity so that the book will be of interest mainly to those engineers who have an adequate mathematical background.

After an introductory chapter on spherical waves, the second chapter concerns itself with the mode theory of antennas. This chapter, which constitutes more than a third of the book, treats the method of antenna analysis which was originated by Dr. Schelkunoff. In addition to discussing the well-known problems of the conical antenna and the spherical antenna, such problems as the end-fed antenna and the problem of a current element above a circular ground plane of finite size are also treated. The chapter closes with a discussion of waves on thin wires. There is a very interesting physical explanation of the formation of plane waves on parallel wires and of the radiation loss at the ends of the wires.

Chapter 3 is a discussion of the

\section*{MINIATURIZATION}

Thru constant research, Acme transformer engineers have developed designs, that save pounds and ounces in weight and provide long-life performance. We build miniature transformers by the thousands, each individually performance tested.

PRESSURIZED SEAL
Here is a transformer design with terminals sealed under pressure with a resilient sleeve that accommodates expansion and contraction of femperafure changes.

\section*{PLASTIC COATING}

This is one of a number of ways that plastic has been adapted to seal transformers or individual coils for service in humid atmospheres or under condifions which breed fungi.

\section*{ACME ELECTRIC CORPORATION}

311 WATER STREET - CUBA, NEW YORK IN CANADA: ACME ELECTRIC CORPORATION LTD. 50 NORTH LINE ROAD - TORONTO, CANADA

I.D.E.A., Inc., is looking for a design enginfee:Someone who would like to make Indianapoli: nis permanent home-who would like to work for a young, forward looking company that is already the leader in its field. If you are that man, address full information about yourself to: R. A. Morris, Chief Engineer,
I.D.E.A., Inc., 7900 Pendleton Pike, Indianapolis 26.

Mokers of the Regency VHF Booster, UHF Converter and other electronic devices.

INDIANAPOLIS, INDIANA Cut production costs - speed operations, by specifying BIRNBACH - your reliable Source of Supply for all requirements in Radio, Television, and Electronic Components, Áccessories, Wire and Cables.

\section*{COMPLETE WAREHOUSE STOCKS}

\section*{FOR PROMPT DELIVERY}
- Govt. Spec. Hookup Wire JAN-C-76 SRIR-SRHV Plastic WL-Extruded Nylon Jacket Aircraft Wire-Nylon Jacket \(105^{\circ} \mathrm{C}\). UL Approved JAN-C-76 WL-Glass Braid
- Multiconductor Rubber Covered Cables, shielded, unshielded
- Tinned and Bare Wire
- Magnet Wire
- Heovy Formvar Wire

Vinyl Extruded and Radio Grade Tubing

Quality Products for the Electronics Industries since 1923 WRITE FOR CATALOG 53-E
- Shielded Wires
- Insulafed Hardware
- Plugs, Jackets, Sockets
- Test Leads, Switches
- Insulators, Steatite and Ceramic
- Terminal Strips

\section*{BRNBAGH RADIO CO. Inc.}

145 GUDSON STREET MEW YORX 13. M.Y.

\section*{RUGGED CONSTRUCTION FOR SUPERIOR PERFORMANCE}
- Copper - cadmium - dichromate fin. ished case.
- Black satin onodized aluminum bezel.
- Excellent shielding due to case material and construction.
- Double strength clear glass.
- Glass to metal seal under controlled humidity and temperature conditions.
- D'Ărsonval permanent magnet type movement for DC applications.
- Magnetically damped, moving iron vane type movement for AC applications.
- Available in \(11 / 2^{\prime \prime}\) square, \(21 / 2^{\prime \prime}\) and \(31 / 2^{\prime \prime}\) round case types.
- Guaranteed for one year against defec. tive workmanship and materials.
theory of spheroidal antennas. Chapter 4 is on integral equations and treats the basis for the method used by Hallén in his theory of cylindrical antennas. In chapter 5, the theory of the cylindrical antenna is further developed and various solutions are obtained. The last chapter on natural oscillations contains an excellent discussion of equivalent networks. One of the more interesting points is the network representation of the radial wave impedances which had previously been used by Chu to demonstrate the impracticality of super-gain antennas. The chapter closes with a discussion of the resonant properties of thin wires.

A comprehensive set of problems which will enable the reader to test his skill is followed by a set of appendices containing integrals and numerical data useful in antenna theory.

The book represents an excellent treatment of the present status of the theory of dipole antennas. As such, the book will prove valuable to engineers and mathematicians interested in this branch of the antenna field.-Henry Jasik, Consulting Engineer, Westbury, New York

\section*{Musical Engineering}

By Harry F. Olson, RCA Laboratories. McGraw-Hill Book Co., 1952, s69 pages, \(\$ 6.50\).
A ONE-VOLUME encyclopedia on all the interrelated elements that enter into the production and reproduction of vocal and instrumental music, written from the engineering viewpoint. It should be useful, and interesting, to all engineers in the radio, sound picture and recording field. Each engineer will have his own special interests, of course, but the author, drawing from his long experience has placed a vast quantity of material in his book, covering virtually all aspects. It should help to bridge the gap between the musicians whose work is largely subjective and who have very faint knowledge of the science, and the engineer whose work is purely objective and whose knowledge of the

North American encourages advanced thinking, because they know looking ahead is the only way to maintain leadership in the aviation industry. That's why North American needs men of vision. If you like hard thinking and would like to work for a company that will make the most of your ideas, you'll find real career opportunities at North American. North American offers you many extra benefits, too.

\section*{North American Extras -}

Salaries commensurate with ability and experience - Paid vacations A growing organization - Complete employee service program - Cost of living bonuses - Six paid holidays a year - Finest facilities and equipment - Excellent opportunities for advancement - Group insurance including family plan - Paid sick leave - Transportation and moving allowances - Educational refund program - Low-cost group health (including family) and accident and life insurance - A company 24 years young.

\section*{Write Today}

Please write us for complete information on career opportunities at North American. Include a summary of your education, background and experience.

\section*{NORTH AMERICAN AVIATION, INC.}

Aerophysics, Electro-Mechanical Research Division
Dept. 3, Personnel Section, 12214 Lakewood Blvd., Downey, California North American Has Bullt More Airplanea Than Any Other Company In The World

ELECTRONIC GLASS WORKING EQUIPMENT for RADIO, TELEVISION TUBES, INCANDESCENT LAMPS, GLASS LATHES for TELEVISION TUBES
We make Transformers, Spot and Wire Butt Welders, Wire Cutting Machines and 500 other items, indispensable in your production. Eisler Engineers are constantly developing New Equipment. If you prefer vour own designs, let us build them for you. Write to Charles Eisler who has served The Industry over 32 years. Machines for small Radio Tubes of all kinds.

Charles Eisler, President and Founder
Charles Eisler, Jr., Vice President
Joseph A. Morick, Plant Manager
Howard F. Kingdon, Manager of Transformer Dept., and our entire organization send

\section*{SEASON'S GREETINGS AND BEST WISHES FOR THE COMING YEAR}

TO ALL of our customers and friends in the United States as well as in all foreign countries. We all thank you for your patronage for the past 33 years.

Charles Eisler takes pleasure in announcing three new catalogs. If you are interested, they will be sent to you for the asking.

1 -Glass Lathes with holding devices.
2-High Temperature Furnaces. A very complete line of all kinds of furnaces and ovens.
3-Turntables and Positioners for welding, brazing, and soldering, and other rotating devices. Over 100 types.

CAMS TO YOUR ORDER

TURNTABLES

751 So. 13 th St Newark 3, N. J.

\section*{POLYPENGO TEFLON*}
available for economical fabrication

Extruded \(.187^{\prime \prime}\) dia. to \(2.0^{\prime \prime}\) dia. Tolerance \(+.002^{\prime \prime}-.000^{\prime \prime}\) up to \(l^{\prime \prime}\) dia. Molded 2.25" dia. to \(4.0^{\prime \prime}\) dia. Beading \(.030^{\prime \prime}\) to \(.187^{\prime \prime}\) dia.

Extruded .50" to 2.0" O.D. \(3 / 16^{\prime \prime}\) to \(1.0^{\prime \prime}\) I.D. min. wall \(1 / 8^{\prime \prime}\)

Molded \(11 / 4^{\prime \prime}\) to \(8^{\prime \prime}\) O.D. at \(1 / 4^{\prime \prime}\) intervals Wall thickness \(3 / 8^{\prime \prime}-23 / 4^{\prime \prime}\)

Strip thickness \(.002^{\prime \prime}\) to \(.060^{\prime \prime}\)
Slab thickness \(1 / 8^{\prime \prime}\) to \(11 / 2^{\prime \prime}\)
Special extruded shapes to customer specifications

\section*{Outstanding properties of TEFLON}

Advantage
\begin{tabular}{|c|c|}
\hline WIDE sERVICE TEMPERATURE RANGE & \(-100^{\circ} \mathrm{F}\) to \(+500^{\circ} \mathrm{F}\) \\
\hline CHEMACALLY INERT & Resists all known acids, alkalies and commercial solvents over the service temperature range. \\
\hline ZERO WATER ABSORPTION & Water will not wet the surface. \\
\hline LOW POWER FACTOR & \(.05 \%\) p.f. constant over entire frequency spectrum. \\
\hline STABLE DIELECTRIC CONSTANT & 2.0 unchanged over entire spectrum. \\
\hline TOUGHNESS AT LOW TEMPERATURE & Izod impact strength \(-70^{\circ} \mathrm{F} 2 \mathrm{ft}\). lbs./in. \\
\hline
\end{tabular}
*Teflon is a trademork of the
also available to your specifications MACHINED PARTS • MOLDED PARTS DOLYPENCO/ nylon

\footnotetext{
Write for technical data and prices on Polypenco Teflon and Nylon
} The POLYMER CORPORATION of Pennsylvania - Reading, Penna. Canadian Represputative: C-H Engineering Company, Montreal, Quebec and Toronto, Ontario
fine points of why music has such universal appeal may be quite limited.

The descriptions of musical instruments is very interesting and show how our modern devices have grown, by cut and try, from very primitive noise and music makers. The complexities of musical scales is made clear from the engineering standpoint as is the theory of music, musical terminology and the relations between musical symbolic notation and the physical characteristics of tones.

The nine chapters give only an inadequate indication of the great amount of information packed between the book's covers: sound waves, musical terminology, musical scales, resonators and radiators, musical instruments and their characteristics, properties of music, theater, studio and room acoustics, sound-reproducing systems.

Although the chapter headings might indicate that most of the book is concerned with music per se, this is not the fact for there is much engineering as well.-K. H.

\section*{Sound Recording and Reproduction}

By J. W. Godfrey and S. W. Amos, British Broadeasting Corporation, England. Iliffe and Sons Ltd., 1952, 272 pages. Available from British Book Centre of New York at \$6.75, 122 East 55th Street, New York, New York.
"Sound Recording and Reproduction" presents an introduction to three general methods of sound transcription. It is intended as a training manual for technicians concerned with disc, film, and magnetic tape recording and reproduction. As such it offers a concise and clearly presented exposition of the history, development and basic concepts employed in the recording and reproduction of sound as practiced by a typical broadcasting organization

Major emphasis in this manual is given to disc recording and reproduction, the mechanical parameters, equalization and processing. A brief introduction to magnetic tape and sound film recording is also included. Discussion of the chrono-
logical development of equipment actually in use by the British Broadcasting Corporation is integrated with fundamental design considerations. Several appendices of special interest and convenience to recording engineers are included. "Sound Recording and Reproduction" provides an interesting alternate to the more familiar idiom of American technical presentations on the subject. It gives a different slant to everyday problems of sound recording in that differences in the use of the language often illuminate the simplest explanation of well known engineering problems. Price Fish, Columbia Broadcasting Syjstem

\section*{THUMBNAIL REVIEWS}

ESSENTIALS OF MICROWAVES. By Robert B. Muchmore, Hughes Aircraft Co. John Wiley \& Sons, 236 pages, 1952, \$4.50. Elementary explanation of Maxwell's laws and the many devices and phenomena following these laws.
ASTM 50 YEAR INDEX. American Society for Testing Materials, 1916 Race St., Philadelphia. 216 pages, \(\$ 6.000\), 1952. Detailed author and subject index to all ASTM technical papers and reports dealing with materials, particularly their properties and testing, appearing in ASTM publications during period 1898 through 1950.
TITAN-SYSTEM No. 41. Geology, geochemistry; metallurgy, chemistry, physics and technology of titanium, the world's literature up to January 1, 1950. Available from Walter J. Johnson, Inc., 125 East 23 st, New York or Stechert-Hafner, Inc., 31 East 10th, New York. 511 pages plus index, 1952, \$27.20.
ADVANCES IN GEOPHYSICS: Edited by H. E. Landsberg, Airforce Cambridge Research Center. Vol. 1, 362 pages, \(1952, \$ 8.50\). To keep geophysicists and meterologists abreast of research in the field.

TABLES OF BESSEL FUNCTIONS \(Y_{n}(x), Y_{1}\left(x^{*}\right) . K_{w}^{\prime}(x), K_{1}(x), 0 \leqq x \leqq 1\). National Bureau of Standards Applied Mathematics Series 25, 60 pages, 40 cents, Government Printing Office, Washington 25, D. C. Tables computed at much closer intervals than existing tabulations. Useful to nuclear physicists and other design engineer's and physicists.

CORRECTION. By error, the price of "Survey, R-F Transmission Lines and Waveguides" by E. S. Winlund, published by the Radio Club of America, was stated in the November Electronics to be \(\$ 1\), whereas the correct price is \(\$ 1.50\).
. . an instrument for all your magnetic measuring problems.

\section*{Dyna-Labs \({ }^{\text {足 }}\) D-79 GAUSSMETER}

This precision built instrument measures flux density, determines direction of flow. It locates and measures stray fields and plots variations in strength and checks production lots against a standard. Simple to operate. No ballistic readings . . . no jerking or pulling. Supplied with protective carrying case.
- Other itafures -
- Reads 10 to \(\mathbf{3 0 , 0 0 0}\) Gouss Flux Fields
* Probe is only .025" thick
- Active area . 01 square inches
- Overall size \(13^{\prime \prime} \times 6-3 / 4^{\prime \prime} \times 10-1 / 2\)
- Net weight only \(10-1 / 2 \mathrm{lbs}\)
- Power supply 105-125 volts, 50-60 cycles

\section*{The S.S. WHITE 80X HIGH VOLTAGE RESISTOR}

\section*{(1/2 Actual Size) \\ 4 watts • 100 to 100,000 megohms}

Developed for use as potential dividers in high voltage electrostatic generators, S.S. White 80X Resistors have many characteris-tics-particularly negative temperature and voltage coefficients -which make them suitable for other high voltage applications.

They are constructed of a mixture of conducting material and
binder made by a process which assures adequate mechanical strength and durability. This material is non-hygroscopic and, therefore, moisture - resistant The resistors are also coated with General Electric I)ri-film which further protects them against humidity and also stabilizes the resistors.

\section*{WRITE FOR BULLETIN 4906}

It gives complete information on S.S.White resistors. A free copy and price list will be sent on request. Send for a copy.

WESTERN DISTRICT OFFICE: Times Building, Long Beach, Calif.

Wide range of grades available for standard and special applications.
Brush holders and coin silver slip rings available for use with Silver Graphalloy Brushes.

\section*{OTHER GRAPHALLOY PRODUCTS:}

Oil-free self-lubricating Bushings and Bearings, Oilfree Piston Rings, Seal Rings, Thrust and Friction Washers, Pump Vanes.

Write us for Data Sheets and further information.

\section*{GRAPHITE METALIZING CORPORATION}

1055 NEPPERHAN AVENUE - YONKERS, NEW YORKPlease send dato on Gropholloy BRUSHES and CONTACTS. Send dota on BUSHINGS.

\section*{NAME}

COMPANY
STREET

\footnotetext{
Want more information? Use post card on last page.
}

\section*{BACKTALK}

Mobile Radio Service
Dear Sirs:
I was very much interested in the article beginning on page 140 of the October 1952 issue of Electronics, by Maurice E. Kennedy, entitled, "Servicing Mobile Radio Equipment".

I became interested in this field two years ago and approached one of the larger manufacturers of two-way equipment for information, but I did not even receive a reply to either of the two letters I sent. This is in marked contrast to statements made in Kennedy's article: ". . . servicemen have found the equipment manufacturers interested in helping them do a good job. Most manufacturers will gladly furnish service manuals, circuits and a wealth of technical data to qualified servicemen. . . ."

I found Mr. Kennedy's article very helpful in that it is very specific, and I am at this time looking into local possibilities in this field, with a view to obtaining the necessary license and equipment.

Would it be possible for you to inform me who the manufacturers are who are referred to in the paragraph quoted above?
W. A. Geiger
W. A. Geiger Radio Shop Elienburg, Washington
(Editor's Note: It occurred to us that the information requested in this letter might be of value to many of our readers. We wrote to a representative selection of manufacturers of two-way mobile radio equipment and asked them to outline the facilities they make available to servicemen. The following are excerpts from the letters we received in reply.)

\section*{FEDERAL}
"Federal Telephone and Radio Corporation does make available to servicemen information of the kind described in your article. Information of this category can be obtained by any qualified field service organization by writing to our Mobile Radio Service Department.
"Field service assistance to servicemen is limited, at the present time, to resolving service problems beyond the ability of the local service organization. In some areas of the country, it is possible for a serviceman to obtain direct assist-

\section*{engineers}

\section*{with communication backgrounds}

\section*{Here is your big opportunity -} IF...

IF you are a top-flight electronic engineer with a degree in electrical engineering from a fully recognized college or university.

IF you have a successful background in communications.

IF you have the creative and inventive spark to come up with new and sound ideas.

IF you can offer all these, National can offer you an enviable position with a world-respected leader in the communication field an exceptionally good salary, generous social benefits and a fine group of people to work for and with.
W. A. Ready, President, National Co., Inc.

Send complete resume (education, experience, present salary, marital status, etc.) to Industrial Relations Dept., National Co., Inc., 61 Sherman Street, Malden, Mass.

Want more information? Use post card on last page. January, 1953 - ELECTRONICS

\section*{Western is ready TO SERVE YOU}

Radio and electronics manufacturers in the West know from experience that Western Coil Co. is completely reliable, its products completely dependable. Western has the facilities to serve you-in design, development and manufacturing. We invite your inquiries relative to your needs and problems.

2993 Middlefield Rd. Palo Alto, Calif.

\section*{High Sensitivity . . Logarithmic AC VOLTM ETER 50 MICRO VOLTS TO 500 VOLTS \\ MODEL 47 VOLTMETER}

SELF-CONTAINED ALL AC OPERATED UNIT An extremely sensitive amplifier type instrument that serves simultaneously as a voltmeter and high gain amplifier.
- Accuracy \(\pm 2 \%\) from 15 cycles to 30 kc .
- Input impedance 1 megohm plus 15 uuf. shunt capacity.
- Amplifier Gain 23000
\begin{tabular}{|c|}
\hline AIso MODEL 45 \\
WIDE BAND \\
VOLTMETER \\
.0005 to 500 Volts! \\
5 Cycles 1600 kc
\end{tabular}

of all
types of audio equipment
- Low level phonograph pickups
- Acceleration and other vibration measuring pickups.
- Densitometric measurements in photography and film production.
- Sound level measurements.
- Light flux measurements in conjunction with photo cells.
Instrument Electronics Corp.
90 MAIN STREET PORT WASHINGTON, N. Y.

\section*{THERMADOR \\ TRANSFORMERS BECAUSE:}

Wide Selection..
The new catalog line includes units for amateur, audio, broadcast, aircraft, television, geophysical, radio and radar applications.
2 Design and Testing Facilities...
Thermador has complete facilities for designing and testing transformers for prototype equipment and compliance with JAN specifications.

Long Experience - Big
Manufacturing...Years of learning how and the West's largest transformer manufacturing facilities give you precision and quality in quantity.

\section*{THERMADOR}

ELECTRICAL MANUFACTURING CO.
5119 District Boulevard, Los Angeles 22, Calif.
 jam. It is impervious to moisture, oil, dirt, tampering and mis-adjustment.

\section*{Accuracy with Long-Life}

Rigid tests by users have proved that Electro-Snap Switches last longer-while
ance from our sales representatives. Requests for this service can be addressed as indicated above."
J. J. McDevitt

Manager
Mobile Rudio Commumations Dept Federal Telephone and Radio Corp 'ussaic, New Jerses

\section*{GENERAL ELECTRIC}
"We make available to all our customers who so request, and to their servicemen, service bulletins concerning not only General Electric Company equipment, but also allied equipment. This year we have issued 70 odd to date and expect to issue 25 more before Christmas. All customers, of course, receive instruction books with the equipment.
"These bulletins are obtained usually by the customer requesting us to send bulletins, using a postcard he receives with his instruction manual or by direct requests from our various Field Representatives on behalf of customers. A surprisingly large percentage of our customers are using this free service.
"We have in addition an "Authorized Service Shop" program. This program insures that the serviceman who has "Authorized Service Shop" status will have all instruction manuals and service bulletins applicable to our equipment at his fingertips. We make special effort to see that these shops obtain service bulletins normally not of interest to many customers; such as installation and maintenance instructions covering antennas, alternators and so on.
"We maintain a field group to assist the "Authorized Service Shop" wherever possible in training and guidance. This same group helps customer service personnel with their problems. In addition, customer problems peculiar to a customer installation are referred back to Syracuse when they cannot be solved in the field."
C. C. Falion

Field Service-Commercial I'roducts Commercial and Government Equipment
```

General Electric Company

```

Electrouics Parl. Syracuse, New York

\section*{LINK}

In answer to your inquiry concerning servicing information, the Link Radio Corporation does make
available service information to any interested parties. We normally supply service manuals with equipment shipped from the plant. Additional manuals are available by writing to the Technical Services Division of the Engineering Department and a minimum charge of \(\$ 2.50\) is made to cover handling costs. In addition to this, Engineering Bulletins and Production Change Notices are available to all persons servicing our equipment by writing for same, including the Model No. and Serial No. of said units. There is no charge for this latter service.

To answer your second question, Link has a number of representatives throughout the country who are available to inspect individual service organizations who might be considered for servicing our equipment. These arrangements are made through the New York Plant and interested parties should write to the Engineering Department.

Stuart Meyer
Chiel Lnameer
Link Tudio Conoralion

\section*{MOTOROLA}
"Much of the two-way radio communications equipment in use in the field today is serviced by qualified technicians operating out of authorized service stations. These stations are privately owned and operated and function under a working agreement or franchise with Motorola, Inc. For these authorized companies, we offer engineering consultation, warranty service assistance, business management guidance and a complete technical manual library supported by a continuing program of technical bulletins and service hints. In addition to this basic service, the contract includes a formal arrangement for discount procurement of replacement parts and servicing equipment.
"The above arrangement is restricted to those service stations operating under Motorola Communications and Electronics Division franchise. This does not extend to unaffiliated service stations or to Motorola dealers concerned only with the consumer

Try Remler for Service-Tested "Hard-to-Get" Components

\section*{Components Metal-plastic components} designed and manufactured to order. Write for quotations specifying electrical and mechanical characteristics. Describe application. No obligation.

\section*{PLUCS \& CONWECTORS \\ BANANA PIN TYPES...JAN SPECIFICATIONS}

Multi-contact connectors and mating chassis counterparts. Melamine or alkyd insulation; steel or brass nickel-plated shells. Banana springs are heat treated beryllium copper. Unexcelled low resistance contact. Highest quality ... good for thousands of connects and disconnects.
Special Connectors to Order-Miniatures; water tight and pressure proof types to JAN specifications.

Remler Company Ltd. 2101 Bryant St. San Francisco 10, Calif.

Since \(/ 9 / 8^{\circ}\) pioneers in electronics and plastics

products.
"Many of the larger users of our equipment employ their own maintenance technicians. These companies and individuals are supplied with complete servicing literature and are assisted on unusual problems by our field engineers and authorized service stations.

Harold A. Jones
Technical Intarmation Manager
Communications \& Electronics. Div
Motorola. 11 cc
Chicran Mllinois

\section*{RCA}
"The RCA Service Company through its national organization services RCA mobile equipment either under service contract or at a flat rate on a demand basis. The company's service technicians are specially trained and kept posted with the latest information on this equipment.
"Buyers of our mobile communications equipment receive standard instruction books with the equipment. These instructions include information on both operating and servicing. Customers and their independent service organizations (in the case of customers who do not use our service staff) also receive special technical service notes on the equipment they have purchased."
E. C. Cahill.

President
RCA Service Co
Canden, Nrew dersey

\section*{Quarantine}

DEar Sirs:
In CARrying out his obviously distasteful but necessary duty of quarantining the highly "insanitary" 40-DB Feedback Amplifier (letter to Electronics for October 1952 re our article in the March 1952 issue), Mr, E. F. Good forgot to include another damning reason why innocent audio experimenters should be sternly discouraged from contact with so fundamentally "unfit" a design.

Not only are 0.1-percent matched resistors demanded for the feedback chain and phase-splitter stage (according to the Good book), but other "absurd" requirements are some ultra-special tubes that can

\section*{how to Get 0.05\% Accuracy!} - for Rotational Speed Measurement
 NEW TT-4

The 6T-4 measures all types of repetitive frequencies, both constant and variable - no waiting or computation. Frequencies become continuous, visual pattern. for the duration of the signal, from which precise analysis and measurement can be made at any instant. Whether your problem is determining frequency drift under varying conditions, measuring natural or line frequencies, calibrating precision oscillators or tachometers, or measuring rotational speeds, you can always be sure of accuracy to \(0.05 \%\).

Stratos Division of Fair-hild Engine \& Airplane Co-p meisures the impeller speed o ther superchargers
without direct contact with the impeller. A magnztized nur on the impeller shaft generates a siznal which is registered by the STROBOCONN to measure impelle r.p.nn. to an accuracy ot \(0.05 \%\)

\section*{Free FOLDER}

Informative folderon request. axplains and, illustrates operation,
specifications and spenlications.

Write C. G. CONN Ltd., Electronics Div., Dept.112, Elkhart, Ind.

The Nonmelting Sticone Insulating and Waterproofing Compound that is stable from \(-70^{\circ}\) to over \(400^{\circ} \mathrm{F}\).

Meets all
Requirements DCIN CORNING

Dow Corning 4 applied by brushing to AN corrnecto: on V.H.F. Transmitter/Recewer excludes moisture without opprecioble chorge in resistance across properly nated pin and socket connections

Arrowis show where Dow Corning 4 is used on variable inductance rellers in a Collinsto lubricate, minimize resistance and reduce leakage losses.
Photos rourtesy Braniff listermationall Airways.
More waler repellent than parofinn, Dow Corning 4 Silicone Compaend is highly nesistamito oxygen, ozone andl deferiorafion caused by corana discharge. Rhleate Facloy? for your copy of our new booklet on Dow Corning 4 Compound. Address Deportment BD.

MIDLAND, MICHIGAN

\section*{NOTHELFER"NWL" Special TRANSFORMERS \\ Proven by \\ Past Performance}

Over 28 years' experience in the manufacture of special transformers to meet individual requirements. Built in quality proved by years of actual use.
From 10 VA to 300
 KVA Dry-Type only. Both Open and Encased. 1, 2, and 3 Phase. 15 to 400 cycles.
 Send for NEW 8 page BULLETIN

9 ALBEMARLE AVE., TRENTON 3, N. J.

precision-made to your needs... BENDIX-FRIEZ

\section*{thermistors}

\begin{abstract}
Maybe your need for these temperature responsive resistors can be satisfied by a type we carry in stock. Maybe you require a specially developed type. In either case you can depend on BendixFriez to provide precision-made thermistors to serve you with maximum efficiency. High standards of quality control in manufacture make Bendix-Friez Thermistors pre-eminent in their field . . . assure you of utmost satisfaction.
\end{abstract}

STANDARD TYPES FOR IMMEDIATE DELIVERY
\begin{tabular}{|c|c|c|c|}
\hline Size (inches) & @ \(+30^{\circ} \mathrm{C}\). & @ \(0^{\circ} \mathrm{C}\). & \(@-30^{\circ} \mathrm{C}\). \\
\hline \(.140 \times .75\) & 45.0 ohms & 86 ohms & 194 ohms \\
\hline \(.040 \times 1.5\) & \(12,250 \mathrm{ohms}\) & 26,200 ohms & 65,340 ohms \\
\hline \(.018 \times 1.5\) & 35,000 ohms & 82,290 ohms & 229,600 ohms \\
\hline
\end{tabular}

Write for details.
FRIEZ INSTRUMENT DIVISION of 1454 Taylor Avenue, BALTIMORE 4, MARYLAND Export Sales: Bendix Infernational Division 72 Fifth A venue, New York 11, N. Y.

provide far better \(\mu\)-matches than ordinary 6SJ7's and 6L6's. For even the best JAN types admit variations in gain up to \(\pm \mathbf{2 5}\) percent (2 db per tube or 4 db for a pair).
The audio-amplifier literature (at least outside the pages of ElECTronics) has indeed included so many dubious designs in recent years that Mr. Good has strong justification for his skepticism. But if that skepticism extends to the practical as well as the theoretical field, he might (as many others have done) throw together the \(40-\mathrm{db}\) feedback amplifier, using quite ordinary resistors and tubes, and taking no extraordinary matching pains. And when he discovers that what shouldn't work, actually does work, we are sure that he'll be good enough to lift his quarantine warning.

He may be shocked to discover, for instance, that deliberately unbalancing this circuit by the insertion of output tubes mismatched by a plate-current factor of 5 to 1 , or by mismatching one of the phaseinverter load resistors by as much as 10 percent (neither of which, we hasten to add, is recommended as normal practice) - the only discernible result is a less than \(0.5-\mathrm{db}\) reduction in undistorted power output.

Or he might go so far as to remove the mutual impedance between the halves of the output circuit by using a separate transformer for each 6L6, and then achieve maximum unbalance by bypassing one of the exciter-tube cathodes to eliminate the \(40-\mathrm{db}\) feedback entirely from one-half of the push-pull stages. Getting rid of the center-tapped output autotransformer makes it meaningful to measure the output unbalance at the 6L6 plates. What started out as a \(40-\mathrm{db}\) unbalance proves to be reduced to between 4 and 5 db at the output.
Of course, many of those who have actually built and used this amplifier have shared Mr. Good's dubiety to some extent-at least to that of adding one of the many varieties of manual-balancing adjustments currently so dear to the hearts of most American and British amplifier designers. Doing so
they may have helped to equalize the output tube lives, but no matter how they twiddled the knobs, they didn't affect the quality of output sound, whether judged by acute ears or measured instrumentally.

It is of course quite true that when 6L6's are operated in the current vogue at maximum or overmaximum ratings, well-regulated screen supplies indeed are advisable. It should be re-stressed, however, that the present design calls for operation of the output tubes at a modest 14 watts or so of plate dissipation-under which condition the omission of screen and cathode bypasses results in no perceptible change in undistorted power output.

The proof of any pudding is in the eating-and of any amplifier design in the hearing and measuring. Even though Mr. Good may not have any 0.1 -percent resistors handy, we hope he'll try out this circuit, subjecting it to the most rigorous listening and distortionmeasurement tests he can devise.

Benjamin B. Drisko Hingham, Mass.
R. D. Darrell New York Citu

\section*{On a Limb}

\section*{Dear Sirs:}

The men who developed the Vidicon (P. K. Weimer, S. V. Forgue, R. R. Goodrich and A. D. Copesee Electronics, May 1950, p 70) have an acute feeling of having been pricked by the branches of your sapling rather than of having reclined comfortably on the strong limbs of your oak tree (see "Evolution of Electronics" Electronics, Sept. 1952, p 98). The unique aspects of the Vidicon represent a solid state problem in photoconductivity of insulators rather than a tube problem in electron optics.

Albert Rose
Radio Corporation of America Princeton, New Jerses
(Editor's Note: We asked tree-designer Bill White about this one. His answer is as follows:)

\section*{Falling Leaves}

Dear Sirs:
Mr. Rose is certainly correct in pointing out that the Vidicon de-

Simple. Easy to Operate. Economical Standardization of Unit Makes This New Low Price Possible

Never before a value like this new 2.KW bench model "Bombarder" or high fre. quency induction heater... for saving time and money in surface hardening, brazing, soldering, onnealing and many other heat treating operations.

This compact induction heater saves space, performs with high efficiency Operates \#rom 220 -voit line. Complete with foot swith
and one hearing coil made to customer's requirements. Send samples of work wanted. Specify time cycle required for your particular job. We will quote on proper size unit for your requirements. Immediate delivery.

Scientific Electric Electronic Heaters are made in the following ranges of power: \(1-2-31 / 2-5-71 / 2-10-12 \frac{1}{2}-15-18-25\) \(40-60-80-100-250 \mathrm{KW}\).

\title{
acmes New reeulatid d.c. POWER SUPPLIES
}

\section*{NO TUBES}

Incorporating the use of mag. netic amplifier techniques - eliminating all vacuum tubes - this new Acme Regulated Power Supply provides an extremely dependable, trouble-free precision unit for both industrial and laboratory use. Because of the absence of all tubes, the equipment will give a minimum of 20,000 hours continuous service. It is available in a variety of voltages and frequencies.

Write for complete information.

pends as much, if not more, for its action on the semiconductor science as on the use of an electron beam. Therefore, I might well have included it also on the semiconductor tree rather than merely a general reference to the selenium photocell as a development.

Perhaps, in keeping with the analogy to growing things, I should have attempted somehow to portray the Vidicon as a hybrid.

You, with admirable foresight, provided a spare unnamed twig at the top of each main branch. Such an unnamed twig also appears at the top of the semiconductor sapling. I certainly will "write in" the Vidicon alongside this top twig and suggest that others also make this addition.
W. C. White Electronics Angineer Research Laboratory
(Editor's Note: The change required to give the Vidicon its rightful place on the electronics industry's sapling is indicated in the accompanying reproduction of the "Electronics Tree".)

\section*{Ternary Memory}

Dear Sirs:
I would like to clear up two points in connection with my article entitled, "High Speed Counter Uses Ternary Notation" which appeared in the October 1952 issue of ElecTRONICS (p 118).

The title used implies that the feature of the counter is ternary notation. Actually, the interesting

\section*{flEXIBLE DELAY LINES}

RICHARD D. BREW and CO., INC. 106 CONCORD AVE., BELMONT 78, MASS.

\section*{DOUBLE BARREL} ADVERTISING

Advertising men agree-to do a complete Advertising job you need the double effect of both Display Advertising and Direct Mail.

Display Advertising keeps your name before the public and builds prestige.
Direct Mail supplements your Display Advertising. It pin-points your message right to the executive you want to reach -the person who buys or influences the purchases.
In view of present day difficulties in maintaining your own mailing lists, our efficient personalized service is particularly important in securing the comprehensive market coverage you need and want.
Ask for more detailed information today. You'll be surprised at the low overin coat and the tested effectiveness of thec hand-picked selections.

MeGraw-Hill Publishing Co., Inc. 530 Wast 42nd St., New York 36, N. Y.

\section*{ENGRAVING • PROFILING}

\section*{for heavy production}
 UNSKILLED LABOR

\section*{NEW HERMES, Inc.}

13-19 University Place, New York 3, N.Y.

Write for literature describing:
1. Heavy Duty model (as illustrated) - Catalog H 29
2. Portable models - Catalog IM 23

\section*{NEW HERMES, Inc. \(13-19\) Univerity Place, N.Y. 3, N.Y. In Canada: 359 St. James St., Montreal World's Largest Manufacturer of Portable Engroying Machines}

\section*{FS MICROMETER HEAD \\ for the Electionics Industry}
engineers using is micrometer heads for various applications find the temperature compensa. tion construction and automatic compensation for wear of spindle and nut thread contributing lactors to the instrument's precise accuracy . . a degree of accuracy in reading, hitherto dinattainable in any micrometer head. send today for your copy of the new descriptive bulleth.
P. O. 80X 66, EATONTOWN, N. J. TELEPHONE ASBURY PARK 1-1018
 custom-made precision. Wire formed to any shape for every need.

IMMEDIATE CAPACITY FOR
DEFENSE SUB-CONTRACTS
STRAIGHTENING \& CuTting
Perfect straight lengths to 12 ft . .0015 to .125 diameter WIRE FORMS
0015 to . 125 diameter SMALL METAL STAMPINGS .0025 to .035 thickness .062 to 3 inches wide Specializing in Production of Parts for Electronic, Cathode Ray Tubes \&Transistors Write for illustrated folder. Send Blueprints or Samples for Estimate. ART WRE and STAMPNG

C O M P A \(\mathbf{N} \mathbf{Y}\) 1 boyden place NEWARK 2, N.

\title{
COAXWITCH
}

\section*{COAXIAL SELECTOR SWITCH}

50 Ohms-
Type N Connectors-Manually Controlled Low VSWR-4 Models
at Collins, or about 17 db less.
(4) Antenna gains were about 10 db and 20 db or a net circuit gain of some 30 db . Collins to NBS antenna gain totaled about 36 db .
(5) Receivers employed bandwidths of about 1 kc , and noise figures of about 2.5 db , which gave us a possible edge on receiver performance.

\section*{Results}

Starting on January 29, 1951, we carried out schedules three nights a week, each time at \(10 \mathrm{p} . \mathrm{m}\). These schedules continued through the month of July, reducing to once a week toward the end. It soon became apparent that we could exchange very weak signals with consistency. Due to severe, rapid fading it was difficult to exchange much information, but the amazing fact was that signals were so consistently weak, always fading in and out rapidly, and never reaching more than the same few db above noise level.

Both stations are familiar with super refraction through the froposphere, as well as aurora reflection, and have contacted frequently by these mediums, but the consistent scheduled contacts were definitely of a different nature. After reading the story of Collins' transmissions to NBS at Sterling, Va., I feel it is quite likely that the same, or a similar reflecting medium was used between Erie, Penna. and S. Plainfield, N. J.

One final, significant clue. During August 1951 both stations dismantled antennas, and replaced them with larger and higher arrays. Tests from both stations indicated that average ground wave signals at 100 miles or so had increased considerably in strength, which of course is what we thought we wanted. But, attempted schedules have failed completely since. Apparently our angle of radiation is now too low. A new antenna under construction at W3QKI has a tilt mechanism for controlling the angle, and it is expected that results will prove interesting as well as useful.

Herbert Johnson
WsQKI

The COAXWITCH is an RF switch for use in coaxial circuits where it is important that the 50 OHM impedance of the cables be maintained. In a circuit sense, this switch monists of two pairs of " \(N\) " connectors spaced \(4 / 2^{\prime \prime}\) apart using RG-8/U as the conacting link. The COAXWITCH itself introduces no VSWR other than that of connectors. Characteristic impedance is maintained thru all switch details. Cut .a-

way view shows that shield as well as center conductor is switched. Beryllium copper contacts, on the gooseneck, mate directly with male "N" (Type UG-21B/U) consectors, which connect directly to back plate of switch. Since all connectors come out in line with axis of switch, right angle conhectors are usually unnecessary.
\(\angle\) Lecture Gladly Sent

 NELLY ENTERPRISES HOLLYWOOD 46, CAL.

\section*{Covering FREQUENCY RANGE}

\footnotetext{
from 100 KC to 16 MC - 5 Watt output purpose high stability oscillator designed to give stability equivalent to that obtained by temperature controlled crystal oscillators. Unit may be used as a transmitter-exciter or for laboratory measurement purposes. Completely shielded.
description the final fervency is defined by mixing crystal controlled frequency with a tunable hi-stability low frequency oscillator and extracting the difference frequency through a variable tuned filter. These frequencies are fed into a balanced modulator where the higher frequency is greatly reduced and the difference frequency or lower side band is passed through a tuned filter. Here it is amplified and used to drive the power output stage.
now in Use so kw vice of Americas Transmitters.
}

\footnotetext{
Erie, Pennsylvania
}

\title{
- CONTACTS
}

FOR THE FIELD OF ELECTRONICS

\section*{EISLER MANUFACTURES COMPLETE EQUIPMENT} TADIOELDERS FOR SPOT \& WIRE BUTT
INCAND, TV TUBE EQUIPMENT \& REPAIR UNITS NEANDESCENT, FLUORESCENT MFG EQUIPMENT NEON SIGN MAKERS EQUIPMENT, GLASS LATHES ELECTRONIC EQUIPMENT, VACUUM PUMPS, Etc. TRANSFORMERS, SPECIAL \& STANDARD TYPES EISLER ENGINEERING CO., INC.
751 So. EISLER St.

\section*{ELECTRO PLATING}
\(\sqrt{\begin{array}{c}\text { SPECIALISTS iN } \\ \text { Silver, Cadmium \& Zinc } \\ \text { Barrel Plating } \\ \text { Iridite and Cronak } \\ \text { Processes } \\ \text { To Government specifications } \\ \text { Government Cerrified }\end{array}}\)
EVEREADY
PLATING CO. 1790 FIRST AV. N.Y.C.

EN 9.1222

\section*{cotics}

Bobbin, spool, form, layer, interleaved. interwoven types. Made of any material. any finish, for any application.

Send blue-prints and specifications lor prompt quotation.

\section*{THE FIVE STAR COMPANY}

West Main Street Plontsville, Conn.

Shorted Turn Indicator

WALKIE-RECORDALI BECDADERFBAMIEAK
Continuous, permanent, Indexed recording, up to 4 hrs., only 3c hr. Instantaneous, permanent playback. tures. dictation, 2 -way phone \& sales talks; while Walking, riding or fying. Records in closed briefcase
with "hidren nuik" 1 Write for Detalled Litorature.
MILIS REPRODUCER CO., INC.
312 ROADWAY Dept E-1 NEw YORK 3, N. Y.

\section*{SUB-CONTRACTING}

MILITARY and COMMERCIAL receivers-test equipment transmitters-confr
sub-assemblies
TELETRONICS LABORATORY, INC. Westbury, L. I., N. Y. Westbury 7-1028

\section*{MICO "SOLDERUX"}

INSTRUMENT SOLDERING FLUXES Non-Corrosive. Especially recommended for soft soldering tine wires and small parts of many metals including steel, brass, chromel, constantan, nickel, silver and copper. Mico Solderux Liquid for vigorous action-Mico Solderux Cream for strong action-Mico Solderux Paste for milder action. These fluxes arc unique in that chemical action, so necessary in cleaning metals of oxides, grease, and dirt, does not begin until soldering temperatures are reached. When the work cools, any remaining flux subsides into a chemically inetr material of low conductivity having non-
hygroscopic properties. 1 oz. trial jar- \(50 \alpha\). MICO INSTRUMENT CO.
76E Trowbridge St. Cambridge 38, Mass.

\section*{HAVE YOU PROBLEMS IN. METAL to GLASS SEALS? \\ Name it, Weill make it! TERMINALS, HEADERS END SEALS, SPECIAL ITEMS QUALITY Products Co. 397 charles street PROVIDENCE, R. I.}

\section*{MICA}

Gauge Glass Gasket Mica in any size also any otligr large size for electrical lise buy direct from
nine owners known for quality, honesty and sonableness. Airmail your requirements to ARUNA BROTHERS
\[
\begin{aligned}
& \text { Kecling Road. } \text { Cables: "mUKTI". Nehhi (Indla) } \\
& \text { New }
\end{aligned}
\]

\section*{SUBCONTRACTING}

\section*{MILITARY and COMMERCIAL.}

Power supplies, controls, lest equipment,
sub-assemblies, sub-assemblies, cable and harness work.

PESCHEL ELECTRONICS, INC.
13 garden st. NEW ROCHELLE, N.
NEW Rochelle 6.3342

\section*{This CONTACTS Section}
supplements other advertising in this issue with these additional announcements of products essential to efficient and economical production and mainte-
nance. Make a habit of checking this nance. Make a habit of checking this
page, each issue.

\section*{ANALYSIS OF ALTERNATING CURRENT CIRCUITS Just Published}

Here's a modern introduction to a-e circuits completely devoted to the steady state in lumped linear
networlis. Notations for potential differences follow newly recommended practices, and the two dimernsional quantities used in network analysis likewisp are in accord with the latest trends. The appendix Lives You a comprehensive coverage of d-o circuits. neering, Syracuse University. \(444 \mathrm{pp} ., 520\) Engi-
\(\$ 6.50\)

Electronic MEASUREMENTS
Second Edition
Just Published
bevers measurement fundamentals in many ficlds radar, and other pulsed systems, microware techaiguts, and technifures of value to engineers in
other area-who ust tlectronics in their instrumenta tion. Troat "rouit constants and lumped cireuits; waverform, phate, and time interval measurements: recelber and anterna measurements; penerators of
special wareforms; attenuators and stonnal senerit special "averioms: attenuators and stgnal gentra
tor. etc. By F. E. Terman, Dean, School of Engi neering, and J. M. Perman, Dean, School of Engi-
Eltactrical Engit, Associate Professor of Electrical Engineering, Stanford University. Second Edition, 683 DD.. \(\$ 50\) illus., \(\$ 10.00\)

\section*{PRINCIPLES OF RADAR}

Third Edition

\section*{Just Published}

Deals with the fundamental concepts and techniques of pulse radar. l'resents the engineering
principles of the pulse circuits and the high-frequancy devices common to nearly all radar systems. system components; riseusses pulse circults and and recelvars. Covers radio-frequency aspects of radar, including basic concepts bertaining to transantennas, and the techniculues of their use in radar systrms. By the Massachusetts Institute of Tech. nology Radar School Staff. Revised by J. F. MIT. Third Edition, \(887 \mathrm{pp}, 565\) illus., \(\$ 7.75\)

\section*{HANDBOOK OF INDUSTRIAL ELECTRONIC CIRCUITS}

\section*{SEE BOOKS TEN DAYS FREE!}
\begin{tabular}{|c|}
\hline McGraw-Hill Book Co., 330 West 42 St., N.Y.C. 36 \\
\hline Send me book(a) checked below for 10 days ex- \\
\hline amination on apyroval. In 10 days \(\mathbf{1}\) wili remit \\
\hline for bonk(s) I keep. plus a few cents for delivers. \\
\hline and return unwanted lookfes fonstmaid. Whe ray \\
\hline for delivers if you remit with this coupon; samu return privilabe. \\
\hline \(\square\) Lerage-ANALYSIS OF A-C CIRCUITS. \({ }^{\circ} 6.3\) \\
\hline 'ferman-ELECTRONIC MEASUREMENTS. \\
\hline M.I.T.-PRINCIPLES OF RADAR, 3rd E \\
\hline \\
\hline \begin{tabular}{l}
\(\square\) Markus-HNDBK. OF IND. ELECTRONIC \\
CIRCUITS. 5 -
\end{tabular} \\
\hline Name \\
\hline Address \\
\hline City.................. . Zonn. Stat \\
\hline Company \\
\hline Position fris.a...................... \(\mathrm{T}_{6}\)] \\
\hline U \\
\hline
\end{tabular}

\title{
Professional SERVICES
}

\author{
CROSBY LABORATORIES, INC. \\ Murray G. Crosby \& Staff Radio-Electronic \\ Research Development \& Manufacturing Communications, FM \& TV Robbins Liane, Hicksville, N. Y. Hickstille 3-3191
}

\section*{DUBROW DEVELOPMENT CO.}

Design - Development - Mfr.
Quality Electronic Equidment
347 High St
Burlington, N. J
Burlington 3-0446
EDGERTON, GERMESHAUSEN \& GRIER, INC.
Consulting Engineers
Iesearch, Development and Manufacture of Electronic and Stroboscopic Equipment 160 Brookiine Avenue, Boston 15, Mass.

Eldico of New York, Inc.
Pioneers of Television Interference Elimination from Transmitters, Induction Heaters, Diathermy and Tran
etc.

Donald J. S. Merten \& Engineering Staff 44-31 Douglaston I'kwy Douglaston. N. Y. Bayside 9-8686

\section*{ERCO RADIO LABORATORIES, INC.}

Radio Communications Equipment
Engineering - Design - Development - Production
Phoneers in Frequency Shift Tole Phoneers in Frequency Shift Telegraph Garden City - Long Island - New York

\section*{HARRIS GALLAY}

Consultant
MhCrowave and
PIILAE TECIINIQUES
BE Ilevlle 2-4237 60 l'erry St., Belleville 9, N. J.

HANSON-GORRILL-BRIAN INC.
Products \& Mfg. Development ELADCTliICAI - ELAECTRONIC HyDRAULIC - ADECHANICAL
One Continental Iilll
Glen Cove. N. Y.
(:14n Cove 4-1022

\section*{HIGHLAND ENGINEERING CO.} William R. Spittal E Staff
DESIGN, DEYELOPMENT AND MANIFACTURE

ELE: YJ:ONIC. INTHTSTRIAL \& ALLIED FIELDS Main \& Urbath, Westbury, L. I., N.Y.
WE- -2033

\section*{R. W. HODGSON}

IRESPARCF \(\&\) DEVELOPMENT ENGINEERS ONICS INSTRUMENTANOT SERYOMECHA NISMS \& CYBEIELTICS Office- 6600 Lexington Ave., ITollywood 38, Callf
All Mail to lox 87 , Sherman Oalis, Calif. GLadstone 96so

\section*{Professional Assistance} in solving your most difficult problems in the specialized field of electronic devices is offered by consultants whose cards appear on this page.

\section*{R. W. HODGSON}

PATENT AGENT SPRCIALIZING Registered to Practice Before the U. S. \& Foreign I'atent offices
office-66no Lexington Ave., Hollswood 38 , Calif. All Mail to box sit, Nherman Oaks, Calif. GLadstollu 9680

\section*{hogan laboratories, INC.}

\section*{John v. L. Hogan, Pres.}

Applied Research, Development, Engineering
Est. 1929. Electronics, Optics, Mechanisms, Facsimile Communication, Digital Computers, Electro155 l'erry street, New York l4. CHIelsea 2-7855

\section*{the kuljian corporation}

Consultants - Engineers - Constructors Electronic Control Specialists
Utility - Industrial - Chemical
1200 N. Broad St. . 1'hila. 21, Pa.

\author{
MEASUREMENTS CORPORATION \\ Research \& Manufacturing Engineers \\ Harry W, Houck \\ John M. van Beuren \\ Develonment of Flectronic Test Instruments SBoonton. N. J.
}

Eugene Mittelmann, E.E., Ph.D.
Consulting Engineer \& Pbysicist
High Frequency Heating-Industrial Electronics Applied l'hesics and Mathematics
549 W . Washington Blvd. Chicago 6. 111. State 2-8021

\section*{NIAGARA ELECTRON LABORATORIES}

CONSULTATION - DESIGN - CONSTIRETION
CONSULTATION - DESIGN CONSTIRU
Specializing in solution of problems of electronic and electro-physical instrmentation for the re-
search of analytical laboratory. Incustrial plant search of analytical
prohlems also invited.
Andover. New York Cable Address: NLAThonlab

\section*{PHYSICS RESEARCH} LABORATORIES, INC.
Applied Mechanies. Thermodynamics. Heat Transfer, opties, Magnetic and Electrical Devicen, Elec tronics. Nuelear Physics.

5й Jempstead Turnpike.
West Ifompstead. L. I., N. Y.

\section*{PICKARD AND BURNS, INC.}

Consulting Electronic Engineers
Analwis and Evaluation
of Ladio Systens
Hesearch, Dryelopment and Design
Heseareh, Bryelopment and Design
of special Electronic Equipment
240 Hightand Ave.
Needham 94, Mass.

\section*{ALBERT PREISMAN}

Consulting Engineer
Television, Irulse Techniques, Video
Amplifiers, Phasing Networ
Industrial Apdiances
Industrial Appliance
Affliated with
MANAGEMENT-TRAININe ASSOCIATES
3308-14th St. N. W. Washington 10, D. C.

\section*{JOSEPH RACKER COMPANY}

Radar Consultants \(\mathcal{E}\) Editors
Technical Manuals
Research and Development
140 Nassall Street, New York 38. N. Y.
Worth 4-1463

\section*{W. C. ROBINETTE CO.}

MOTRON DEADBEAT HIGH GAIN SERVOS
Speed control of any Prime Mover \(1 / 2 \%\) to \(.001 \%\) average. Flectric Transmissions \(1 / 2\) to 50 HP plus controls-Zero droop-No load to full load.
802 Fair Oaks Ave. South Pasadena. Catif. Py 11594

SKINNER, HARLAN AND IRELAND, INC.
Consulting Engineers
Specializing in Magnetic Materials and
Office and Laboratory Indianapolis 7. Indiana

\section*{THE TECHNICAL MATERIEL CORPORATION}

Communications Consultants
General Offices and Laboratory
121 Spencer Place, Mamaroneck, N. Y

\section*{TELECHROME, INC.}

Electronic Design Specialist
COLOR TELEVISION EQUIPMENT Flying Spot, Scanners, Color Synthesizers, Keyers,
J. R. Popkin-Clurman, Pres. \& Ch. Engr.

88 Merrick MA.
Amityville. L. I., N. Y.

\section*{HARRIS A. THOMPSON}

Microwave Electronic Radar
Electro-ntechanica
Consulting
MFG. \& DEVELOOLMENT IROBLEMS
2525 I'enn. Boulder. Colorado Phone lataw

\section*{WHEELER LABORATORIES, INC. \\ \section*{Ladio and Electronics}}

Consulting-Research-Development 1R-F Circuits-Lines-Antemas
Aicrowave Components-Test Equipment
Harold A. Wheeler and Enginering Statr
Great Neck, \(\mathrm{N} . \mathrm{Y}\) Great Neek 3-7806

\section*{YARDNEY LABORATORIES, INC.}

Research - Design - Deislopment
Electro-Chemical Generators of Energy
105 Chambers street worth 2 nonnt. 35, 36
New York 7. \(\mathrm{K} . \mathrm{Y}\).

UNDISPLAYED RATE
\(\$ 1.50\) a line, minimum 3 lines. To figure advance payment count 5 average words as a line. POSITION WANTED \& INDIVIDUAL SELLING OPPORTUNITY undisplayed advertising rate is one-half of above rate, payable in drance
BOX NUMBERS count 1 line additional.

INFORMATION
DISCOUNT \(10 \%\) if full payment is made in advance for four consecutive insertions of undisplayed ads (not including proposals).
EQUIPMENT WANTED OR FOR SALE Advertisements acceptable only in Displayed Style.

DISPLAYED-RATE PER INCH
The advertising rate is \(\$ 14.00\) per inch for all advertising appearing on other than a con tract basis. Contract rates quoted on request AN ADYERTISING INCH is measured \(7 / 8\) inch vertically on one column, 3 columns- 30 inches -to a page.

ELECT. NEW ADVERTISEMENTS ADDRESS N. Y. Office, 330 W. 42 St., N. Y, 36, for the February issue closing January \(2 n d\). The publisher cannot accept adevrtising in the Searchlight Section, which lists the names of the manufacturers of resistors, capacifors, rheostats, and potentiometers or other names designed to describe such products.

\section*{INGINEFRS WITHOUI COIILEE IIERYRES}

We put no limits on your engineering future!!

0
Are you capable of doing real professional-level engionstrated your ability to do first class engineering work but feel you are being handicapped by the lack of a college degree, get in touch with this company.

WE ARE a large manufacturer of Electronic Equipment (Military, Aviation, Automotive. Television) and have over 100 -million-dollar backlog. Located on Eastern Seaboard.

There are many responsible positions open in our organization which offer unlimited op by competent men, regardless of their formal educational backgrounds.

P-5912, Electronics
330 W. 42 St., New York 36, N. Y.

\section*{RESEARCH ASSISTANTSHIPS}

Ph.D. candidates in chemistry and M. S. candidates in chemistry electrical engineering (Electronics), chemical engineering, physics and geology are wanted by a South-western State University.
These positions provide part-time research duties with time for academic work toward advanced degrees. Stipends are up to \(\$ 2,150\) for 12 months. Nonresidents fees are waived.
```

P-5756, Electrontcs

```

520 N . Michigan Ave., Chicago 11, Ill.

\section*{ELECTRONIC ENGINEERS}

5 OR MORE YEARS EXPERIENCE
Small electronic research and development laboratory, located 8 miles outside of Washington, D. C., has several openings for senior electronic engineers. Degree essential. Varied projects, including considerable Defense work. Liberal salories dependent upon experience. Excellent personnel policies.

\section*{THE DAVIES LABORATORIES Incorporated}

4705 Queensbury Road, Riverdale, Maryland

\section*{SENIOR • JUNIOR}

\section*{ENGINEERS}

\section*{TECHNICIANS}

FOR PERMANENT POSITIONS
With a well established progressive organization engaged exclusively in the design and manufacture of specialized electronic equipment; both for defense and for an expanding commercial line. Projects are varied and include radar systems, computers, antenna systems, microwave equipments, airway navigation aids, transmitters and receivers.

Write full resume of education and employment record.
Located in suburban Washington, D. C.

MARYLAND ELECTRONIC MANUFACTURING CORPORATION 5009 Calvert Road College Park 26, Md.

\section*{ENGINEERS \\ ELECTRONIC ORGANS}

\section*{Design}

Development
Quality Control
Unusual opportunities exist with expanding manufacturer in a fascinating field. Send resume to President

\section*{ALLEN ORGAN COMPANY}

Allentown, Pennsylvania

\section*{EIECTRONIC' ENGIIIFERS}

We are looking for electronic engineers, with experience in the development of clectronic digital computers, to work in the development of business machines. Plenty of opportunities for advancement. Write, giving full details, including education and experience.
THE NATIONAL CASH REGISTER CO. South Main and "K" Streets Dayton 9, Ohio

\section*{CANADIAN FIRM}
well established in Electronic field wishes to affiliate with U. S. company to manufacture electronic components (or complete equipments) in Canada.

Excellent manufacturing facilities, machine shop and plant with fully trained personnel.

CW-5496, Electronics
330 W. 42 St., New York 36, N. Y.

\section*{New Microwave Tube \\ This unusual tube has interesting possibilities as a new product, as a supplement for existing types, or for new microwave applications. Further development required. \\ Inventor-ownership; principals only \\ BO-6270, Electronics \\ 330 West 42 nd St., New York 36 , N. Y.}

\section*{REPLIES (Box No.): Address to offce nearest you \\ EW YORK: 330 W. \(42 n d\) St. (36) \\ GICAGO: 520 N. Michigan Ave. (11)}

\section*{POSITIONS VACANT}

ELECTRONICS ENGINEERS and Chief Electronics Engineer required in new electronics division of established company. Must have considerable electro-mechanical development
experience preferably in instrumentation. experience preferably in instrumentation.
transducers,
servomechanics. Salary- Open These positions are permanent with an opportunity to advance with an entirely new product. Control Cells. 321 West Douglas, Wichita Kansas.
SALES ENGINEER under 30 years old with a flair for writing wanted. Good job and future open in advertising department of a wellEngland. P-6062, Electronics.

TECHNICAL WRITER wanted. If you have a technical background, some sales experience and can write we have a good job with a fu ture waiting for you in the industrial advertis
ing fleld. \(P-6061\), Electronics.

YOUNG ENGINEER wanted who likes to write Should have some experience in sales work. P-6060, Electronics.

\section*{WANTED}

Wanted: by U. S. Forest Service, zy60 N. W Yeon Avenue, Portland, Oregon, Signal Corps Radio Signal Generators, Type I-208. Advise price and condition.
ANYTHING within reasen that is wanted in the field served by Electronics can be quickly located through bringing it to the attention of cause this is the business paper they read.

\title{
RESEARCH AND DEVELOPMENT
}
forge the KEY to America's future in the AIR take YOUR place . . . with GOODYEAR AIRCRAFT
The continued and steady growth of established research and development projects presents a number of unusual opportunities for outstanding and experienced men.

\section*{SCIENTISTS}
- ENGINEERS

DESIGNERS
Positions are available in our organization for qualified personnel in the following fields:
- Electrical Systems
- Circuit Analysis
- Analog Computers
- Servomechanisms
- Test Equipment
- Structures
- Aerodynamics
- Applied Mathematics
- Electronics
- Physics
- Stress Analysis
- Flight Test
- Missile Design
- Dynamics
- Microwaves

Openings also exist for welding engineers, civil engineers, and mechanical engineers with experience in metals fabrication; and for personnel with ability and experience in technical editing, art, and motion pictures.
Positions are available at several levels, and inquiries are also invited from recent graduates. Salaries are based on education, ability, and experience. Liberal salary, vacation, insurance, and retirement plans are yours if you qualify.
If YOU are interested in a secure future, write, giving full details, to
Mr. C. G. Jones, Salary Personnel Depariment.

GOODYEAR AIRCRAFT CORPORATION, 1210 Massillon Road, Akron 15, Ohia

Fon complete information about the opportunities available for qualified engineers and scientists write to Personnel Dirctror
melpar, inc.
The Research Laboratory of Westinghouse
Air Brake Co. and its subsidiaries 452 Swann Avenue, Alexandria, Virginia

\section*{electronic designers \\ For design and layout of UHF equip-} ment, Microwave components and sys tems

\section*{radio engineers}

Minimum 5 years' experience. For research and development in radio and radar systems and components.

\section*{engineers}

Experienced in the design and develop ment of components for the magnetic deflection of Cathode Ray Tubes.

\section*{What can Kollsman mean to you?} opportunity

The progressive, growing Kollsman organization offers continuing opportunities in the design and development of America's finest aircrafi instruments.

CONVENIENCE
An easy-to-reach modern plant, located in a quiet, residential sec tion of New York.
SATISFACTION
The finest facilities at your disposal . . . friendly, cooperative co-workers . . many liberal benefits including completely paid life, hospitalization, surgical, accident and health insurance. Find Out For Yourself - Contact Kollsman Today!
KOLLSMAN INSTRUMENT CORP.
80-08 45th Avenue, Elmhurst
Long Island, N. Y.

\section*{A NEW Bendix Division! A NEW Electronic Product! NEW JOB OPPORTUNITIES}

In our modern plant of York, Pennsylvania, this new division of Bendix Avia tion Corporation is producing a new elec tronic product. This division has a big future; and this is your opportunity to get in on the ground floor, with excellen possibilities for rapid advancement. We need the following:

\section*{- ELECTRONICS ENG.}
- MECHANICAL ENG.

Also we have many opecings for men ence in all phoses of electronics.

YOU BENEFIT
With the Bendix York Division, you will bencfit from high wages, paid vacations and holidays and ideal living conditions in a beautiful suburban area.

Write, Wire or Phone

AVIATION CORPORATION YORK DIVISION

Phone: York 5521
York, Penno.

\section*{ENGINEERS} interested in

Sylvania is leading the field in its development of an all-electronic compotible color television receiver. Your imagination and engineering talent can be used in furthering this development. Here is your chance to get real professional recognition.
Sylvania, a sound, well established firm, is still expanding, still reaching out for new ideas. If you are interested in challenging assignments and definite opportunity for personal growth.
Investigate NOW!
All replies will be held in strict confidence. Send your personal resume' to

\section*{JOHN WELD}

Supervisor of Employment Department B
Sylvania Electric Products, Inc.
Radio \& Television Division
254 Rano Street
Buffalo 7, New York

If you want to work where you enjoy the highest professional recognition among your colleagues, come to RCA. Here your accomplishments are recognized and rewarded. Here your future is brighter, through challenging assignments that lead to better opportunities, better positions. Here you set goals for future attainment at advanced levels.

If your talent and skill are not being used in a way for which your education and experience has equipped you, come to RCA. Here you will find unusual opportunities to work in close association with distinguished scientists and engineers in research . . . development . . .
design . . . and application of specialized electronic equipment for military projects as well as for an ever-increasing line of diversified commercial products.
Positions open are lifelong carcer opportunities. They are not "temporary" jobs. Unlike "feast or famine" industries,

RCA has forged ahead regardless of war or depression. You can continue advanced study at recognized universities under RCA's modern tuition refund plan. You and your family enjoy outstanding Company benefits. Yes, your future is better at RCA.

\section*{LIFETIME OPPORTUNITIES FOR}

\author{
ENGINEERS-Electronic . . . Electrical . . . Communication . . . Mechanical . . . Computer . . . METALLURGISTS and PHYSICISTS
}

In Research—Development-Design-Application: in the following fields: RADAR - MISSILE GUIDANCE - SERVO MECHANISMS - COMPUTERS - TRANSFORRERS AND coils - navigation alds - television - electron tubes - communications technical sales - electronic equipment field service

Send a complete résumé of your education and experience.

\section*{Personal interviews} arranged in your cify.

> Mr. ROBERT End résumé to: Specialized EMCQISTON, Manager Specialized Employment Division, Dept. 200A
> Radio Corporation of America 30 Rockefeller Plaza, New York 20, N, Y

We desire personnel of the highest caliber-experienced in the
field of airborne automatic electro-mechanical control equipment.

\section*{ENGINEERS}

MECHANICAL DESIGN
ELECTRONIC
SERVO

\section*{DESIGNERS-LAYOUT MEN ELECTRONIC MECHANICAL}

This work deals with the manufacture and development of highly complex equipment of the most advanced type in a new and expanding division of an established firm with 20 years of successful experience in the precision instrument field.

We cite a tew of the good reasons why you might like to join our organization...

SALARY increases are based on merit and initiative-two weeks VACATION, HOSPITALIZATION BENEFITS, GM's Own INSURANCE PLAN-POSITIONS ARE PERMANENT due to long range manufacturing and developing pro-grams-EXPENSES incident to inter. views and moving all absorbed by company-HOUSING and LIVING CONDITIONS among the best and finest of any along Lake Michigan.
- We have a Junior Engineering Training Program of one year for inexperienced engineering graduates. Opportunity to be come acquainted with all phases of
industry. industry.
- For the convenience and direct use of engineers in our Engineering Department we have our own model shop where higkest skilled mechanics are employed.
- Educational opportunities for advanced degrees available at U. of W., Marquette. Technical engineering offered at Milwau-
kee Vocational School. kee Vocational School.
. . . all inquiries answered-write or apply . . .
\(\star\) ac spark plug division

\section*{Generbl Motors Corpopation}

1925 E. KENILWORTH PL.
MILWAUKEE 2, WIS.

You gain MORE with W. L. MAXSON. Top salaries... greater opportunities... more responsibilities. Advance with W. L. Maxson.
BACKGROUND: Practical and research experience in advanced Electronic Circuits YSIS related YSIS, related to: Instrumentation, Fire tions, Navigation Optical Fields Ability Optical Fields. Ability supervision desirable
If your skills are now being fully utilized in a vitol defense industry please do not apply.

Kindly send resume and

\section*{ENGINEERS}

AND

\section*{PHYSICISTS}

\author{
BS-MS-Ph.D:
}

Responsible positions in mechanical, electrical or electronic engineering, physics or engineering physics for advanced development and design of special equip. ment and instruments. Prefer men with minimum of two years' experience in experimental research design and development of equipment, instruments, intricate mechanisms, electronic apparatus, optical equipment, servomechanisms, control devices and allied subjects. Positions are of immediate and permanent importance to our operations. Southwestern location in medium sized community. Excellent employee benefits. Reply by letter giving age, experience and other qualifications. All applications carefully considered and kept strictly confidential.

Ind. Rel. Manager
Research \& Development Dept.
PHILLIPS
PETROLEUM COMPANY
Bartlesville - Oklahoma

\section*{Hectronics}

\section*{Research \& Development}

\author{
Positions Open
}

Cornell Aeronautical Laboratory, Inc. has several professionally challenging and rewarding positions open in the field of Electronic Engineering.

The laboratory was acquired in January, 1946. by Cornell University in response to a widespread need for \(a\) stable, highly competent research organization in the aeronautical sciences. Since its acquisition the laboratory has grown steadily to a multi-million doliar annual contract level with a staff of over 850 .

The laboratory's projects deal largely with applied science. Typical electronics projects include computer design, radar and microwave applications, precision instrumentation, missile guidance, telemetering, and complex control systems.

Professional growth of staff members is encouraged through regular seminars, attendance at meetings of scientific societies, a graduate study tuition refund program, and constant interchange of ideas and discussions with senior level scientists. Salary level and em. ployee benefit programs are on a par with industry. While the pace of projects is high, the informal organization of the laboratory tends more toward a friendly, thought-stimulating, academic atmosphere. Practical scientists and engineers work closely together in making important contributions to America's scientific progress.

If you would like to learn more about this unique organization or its personnel needs, please feel free to write. No obligation, of course.

\section*{CORNELL AERONAUTICAL LABORATORY, INC.}
P.O. BOX 235

BUFFALO 25, NEW YORK

\title{
STAFF ENGINEERS
}

\section*{Design and Development}

Leading Chicago Electronics firm is seeking the services of qualified men to fill several staff openings in its Electronic Design and Development Division. Persons selected will be given intermediate and advanced level assignments in our well equipped Television, Radio and Government Equipment Laboratories.
Experience in monochrome receivers, deflection and high voltage circuits, radiation interference, NTSC color receivers, color generating equipment or UHF systems essential.

These are permanent positions and offer excellent opportunities for advancement. Company has well planned, long range program of design and development.
Please write Mr. Paul White, Personnel Division, giving related experience and educational qualifications.-Or telephone SPauiding 2-0100.

Interviews arranged at your convenience.

\section*{Admiral Corporation}

\author{
3800 W. Cortland St.
}

Chicago 47, Illinois

\section*{Slectronic} ENGINEFRS
- CAN YOU PRODUCE?
- LOOKING FOR ADVANCEMENT?
- DO YOU HAVE IMAGINATION?
- ENGINEERING TALENT?
- BROADCAST STUDIO EXPERIENCE?

Our commercial expansion program offers attractive and unusual opportunities for electrical engineers in the sound recordirig field. Electronic design and development background with mechanical "know-how" required. Positions open include design and development, administration, and Sales Engineering. Replies held in the strictest confidence.

Write or Call Mr. George Whitehall 4-1889

\section*{MICROWAVE ENGINEER \\ \(1-10 \mathrm{~cm}\). Antenna Design \\ AND \\ COMPUTER ENGINEER \\ Gircuits and Systems}

Unusucl problems on both commer. cial and delense equipment. Need originality. solid theoretical back. ground and live or mere years of design experlence.

Excellent opportunity for tull development of the prolessional engincer. An unusual laboratory location in \(\alpha\) rapidly growing. woll established firm encouraging a broad contribution and giving wide responsibilities.

VICTOR Adding Machine Co. 3900 N. Rockwell Chicago 18

\section*{SYSTEMS ENGINEERS}

For design and installation of radio communication systems of all types in HF, VHF and Microwave bands for use in foreign countries.

Applicants should have experience in either radio propogation studies and antenna design or in the application of telephone and telegraph terminal equipment.

These positions are not dependent on government contracts and would be based in New York with occasional overseas duty.

Send full details to Personnel Dept.

\section*{Radio Corporation of America}

RCA International Div. 30 Rockefeller Plaza
New York 20 New York

\section*{TWO ENGINEERS}

Two engineers, mathematicians or physicists are needed to plan and execute theoretical studies in two general problems of communications and control systems.

Exceptional ability and a Ph. D. or equivalent experience are essential. Training in mathematics and statistics, noise and communication theory, and systems analysis necessary.

Problems involve the synthesis of reliable mechanisms from unreliable components by parallelism or other means, and the application of information and noise theory to radar and communications systems, both as applied to guided missiles.

Send resume including education, scholastic record, experience and references to

\section*{California Institute of Technology}

Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena 3, California

\section*{STAVID ENGINEERING, INC. has openings for GRADUATE ELECTRONIC and MECHANICAL ENGINEERS}

Experience in Design and Development of Radar and Sonar necessary.
Broad knowledge of Search and Fire Control Systems; Servo Mechanisms, Special Weapons, Microwave, Antennas and Antenna Mounts, etc. Mechanical Engineer should also have experience in packaging of Electronic Equipment to Gov't specifications including design of complex cabinets, shock mounts and sway brace structures.

\section*{FIELD ENGINEERS}

Qualified to instruct in the operation and supervise installation, maintenance and repair of Radar, Sonar and allied electronic equipments in the Field.
A chance to grow with a young and progressive company; salary and advancement commensurate with ability; liberal vacation, sick leave, 9 paid holidays, group life, sickness and accident insurance plans, and a worthwhile pension system.
Personnel Office, 200 W. Seventh St. Plainfield, N. J. - Tel. Pl. 6-4806

\section*{UHF and \\ MICROWAVE ENGINEERS}

This rapidly growing Organization in south central Wisconsin, approximately 100 miles from Chicago, has several openings for Junior and Senior Engineers in the U.H.F. and Microwave fields.

\section*{UNUSUAL}

\section*{SALARY OPPORTUNITIES}
exist under ideal working conditions in large, well-equipped laboratories. Personnel benefits such as sickness, accident, and life insurance in addition to a very liberal pension system are offered.
For more information concerning the positions that are open we invite you to write to Personnel Director, Department A.

\section*{GIBBS MANUFACTURING \& RESEARCH CORPORATION}

Janesville, Wisconsin

\title{
ENGINEERS
}

\section*{FOR ATOMIC WEAPONS INSTALLATION}

Mechanical Engineers, Electronics and Electrical Engineers, Physicists, Aerodynamicists, and Mathematicians. A variety of positions in research and development open for men with Bachelors or advanced degrees with or without applicable experience.

These are permanent positions with Sandia Corporation, a subsidiary of the Western Electric Company, which operates the Laboratory under contract with the Atomic Energy Commission. The Laboratory offers excellent working conditions and liberal employee benefits, including paid vacations, sickness benefits, group life insurance and a contributory retirement plan.

\section*{OOCAHE N N HLE}

Albuquerque, center of a metropolitan area of 150,000, is located in the Rio Grande Valley, one mile above sea level. Albuquerque lies at the foot of the Sandia Mountains which rise to 11,000 feet. Cosmopolitan shopping centers, scenic beauty, historic interest, year 'round sports, and sunny, mild, dry climate make Albuquerque an ideal home. New residents experience little difficulty in obtaining adequate housing in the Albuquerque area.

\author{
THIS IS NOT A \\ CIVIL SERVICE APPOINTMENT
}

\title{
ELECTRONIC ENGINEERS * PHYSICISTS
}

OUR STEADILY EXPANDING LABORATORY OPERATIONS ASSURE PERMANENT POSITIONS AND UNEXCELLED OPPORTUNITY FOR PROFESSIONAL GROWTH IN

\section*{RESEARCH \& DEVELOPMENT}

\section*{GUIDED MISSILES}

TELEVISION
ELECTRONIC NAVIGATION SOLID STATE PHYSICS VACUUM TUBES

THE EMPLOYMENT DEPT.

\section*{ADDRESS INQUIRIES to CAPEHART FARNSWORTH CORP. FORT WAYNE, IND.}

\section*{ELECTRONIC ENGINEERS}

\section*{Mechanical Designers for Research and Engineering}

To work in the design and development of new electronic equipment. Excellent working and living conditions, good salaries and exceptional employee benefits. Write, giving full details including education and experience. Personal interviewt will be arranged.

\author{
THE NATIONAL CASH REGISTER COMPANY Main \& K Sts., Dayton 9, Ohio
}

WILCOX ELECTRIC COMPANY, INC.
KANSAS CITY, MISSOURI requires

\section*{ENGINEERS!}
with Experience in
- HF and VHF systems
- Aeronautical Equipment
- Application of Advanced Circuit Technique
- Ability to combine associated engineering skills in electronic systems also needed

\section*{PROJECT ENGINEERS (2}
who can accept responsibility for suc
cessful completion of a system design These positions are available in a company which supplies equipment to the major airways of the world.

Write stating Eulucation \&
A. E. HARRISON, Director of Engineering WILCOX
ELECTRIC COMPANY, INC
1400 Chestnut Street
Kansas City 27, Missouri

\section*{ELECTRONIC ENGINEERS}

FOR DESIGN \& DEVELOPMENT WORK IN RADAR
COMPUTERS
DIGITAL TECHNIOUES
with a young progressive company,
send resumé of experience and
education, with salary requirements
\(+\)
(4. Electronic Engineering Compiny

180 south alvalado staiti
cos anours of Californin
dunkink 2.93ss

\section*{NATIONAL MANUFACTURER D.C. POWER SUPPLIES}

Sales Engineering Representatives Write: Stating present lines and territory. 68 Post St., San Francisco 4, Callf.

Electronics Enginers WANTED SOUTHERN CALIFORNA

Attractive opportunities offered to Engineers experienced in and quali. fied to design aircraft flush antennas and radomes.

Complete modern facilities for laboratory testing and evaluation avail able.

Salary dependent upon experience and ability.

Contact Mr. J. C. Buckwalter, Chief Engineer

DOUGLAS AIRCRAFT COMPANY, Inc. long beach, california

\section*{FLORIDA CALLS ELECTRONIC ENGINEERS}

Graduate engineers for \(R \& D\) in microwave components and receivers, SONAR, transistors, nonlinear circuitry and computors.
Ideal sports, living \(\&\) working conditions with excellent pay, unusual employee benefits and profit sharing.

Write for application to:
RADIATION, INC.
MELBOURNE, FLORIDA

\section*{WANTED \\ MANUFACTURERS AGENTS All Territories}

Expanded sales policy affords unusual opportunity to represent manufacturer of highest quality open type and hermetically sealed relays and electrical or electronic assemblies. Direct to industry-no jobber sales. Liberal arrangement, prompt quota. tions and deliveries, good business tactics assured. In reply please mention territory travelled, number of salesmen employed, lines you carry and firms you represent. Write.

RW-6100, Electronics
330 W. 42 St., New York 36, N. Y.

Don't forget
THE BOX NUMBER..
Fhen answering the olassified sdvertivemente in ing the advertigemene you mose sinvering.

\section*{EIECTRONIC ENGINER WaNTED! \\ An established business organization engaged in development and manufacture of products for VHF and UHF Television Application, requires an individual qualified to work independently, to organize, and to supervise development projects. \\ This position is to be permanent and will offer the opportunity for unlimited advancement to a successful career. Offers stimulating and congenial surroundings in a newly acquired plant. \\ Attractive Salary \\ Write stating qualifications \\ Blonder-Tongue \\ LABORATORIES \\ 526-536 North Avenue \\ Westfield, New Jersey}

\section*{WANTED}
- AN/TRC-1 Equipments.
- T14 Transmitters.
- H 19 Receivers.
- TS32 Test Oscillators.

Any condition or quantity
W-3858, Electronics
330 W. 42nd St. New York 36, N. Y.

\section*{WANTED}

MN-53A Marker Beacon Receivers 28 VDC 110 RPM G.E. \#BA 8 VDC 120 RPM Delco \#5069625 motors Westinghouse type CA or CV V percentage differential
relays. \({ }_{\text {Furnish }}\) full details and prices. HARBER INDUSTRIALS
3520 W. Ogden Ave.
Chicago 23, III.

\section*{Watch- \\ the Searchlight Section for \\ Equipment Opportunities}

\section*{THE DE HAVILLAND AIRCRAFT OF CANADA LTD.}
is requiring experienced engineers for development work on special new projects. Applicants should possess an honours degree together with at least two years industrial experience. Preference will be given to Canadian Nationals.

Employment is offered in four general categories as follows:-
(a) Physicists. Men with a sound background of basic physics to work on optical, electronic and mechanical devices.
(b) Servo Engineers. \(A\) thorough knowledge of basic servo-mechanism theory is essential fogether with experience in the design and operation of electronic servo systems. A knowledge of air-operated servos would be an advantage.
(c) Gyro Engineers. Applicants should have had first hand experience in development work on electrically driven gyros preferably from both the electrical and mechanical viewpoints. A knowledge of production techniques is essential.
(d) Electro-Mechanical Engineers to work on accelerometers, proportional relays, high-frequency motors and similar devices. A knowledge of production methods is desirable.

Successful applicants are to be sent to the U.K. for a period of one to two years to work on the research and development team of the parent De Havilland Company. After this period, they will return to Canada continuing the work at De Havilland, Toronto. There, a team of engineers will be built up with the U.K. trained personnel as a nucleus.

\section*{Please apply to: Mr. D. G. Simpson}

The De Havilland Aircraft of Canada Ltd.

\author{
Postal Station "L", Toronto, Canada
}

\section*{WANTED}

\section*{WANTED \\ Federal type}

101B Voice-frequency Ringers Signal Corps type TA-3/FT.

W-4814, Electronice
330 W. 42 St., New York 36, N. Y.

\section*{WANTED}

Western Electric gray-finished EQUIPMENT CABINETS
For \(19^{\prime \prime \prime}\) panels. Heights of \(2^{\prime} 6^{\prime \prime}, 3^{\prime} 6^{\prime \prime}\), For \({ }^{19^{\prime \prime}}{ }^{\prime \prime} 0^{\prime \prime}\) pand \(7^{\prime} 6^{\prime \prime}\).

W-5956, Electronics
330 W. 42 St., New York \(36, \mathrm{~N}\). Y.

WILL PAY TOP PRICE

\section*{DM 35 DYNAMOTORS}

\section*{IN QUANTITY}

Must Be in Excellent Working Condition W-6278, Electronics 330 W. 42 St., New York 36, N. Y.

\section*{WE BUY... all kinds of \\ DOGS}

SURPLUS MATERIAL Aircraft \& Electronics
- Amplidynes
- Dynamotors
- Motor Generators
- Switches
- Wire
or What Have You?
ATLAS EQUIP. CO.
229 Southwest Blyd.
KANSAS CITY, MO.

\section*{OIL FILLED CONDENSERS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline MFI & VDC & Price & MFD & vDC & Price & MFD & vDC & Price & MFD & vDC & Price \\
\hline 2.5 & 400
400 & \$. 5.65 & . 1 & 1500
1500 & \$1.69 & 1 & & \$9.95 & & \({ }^{250 \mathrm{KV}}\) & \$85.00 \\
\hline 1 & 600 & . 55 & 3 & 1500 & 2.50 & .1-1 & \({ }_{7000} 8\) & 5.95 & . 0025 & 50 KV & 24.50
42.50 \\
\hline \(\frac{2}{2}\) & 500 R & . 69 & 1 & 1500 & 2.95 & . 1 & 550 & 2.85 & . 2 & 50 KV & 85.00 \\
\hline 2-2 & \({ }_{600}{ }^{0} \mathrm{R}\) R'd & 1.69
1.65 & \({ }^{.1-25}\) & 2000 & 1.50 & .075-.075 & 8 SKV & 6.50 & \({ }_{-}^{25}\) & 50 KV & 95.00 \\
\hline 3 & \({ }_{600}^{600}\) & 1.65 & \({ }^{25}\) & & 1.30 & 1 & 10 KV & 29.50 & \({ }_{1-3}^{7.5}\) & 220 VAC & 1.95 \\
\hline 4 & 600 & 1.65 & - & 2000 & 1.95 & . 1 & 12 KV & 8.95 & \({ }_{10}^{1-3}\) & 330 VAC & 1.95 \\
\hline 4 & \({ }^{600} \mathbf{~ R}\) 'd & 1.65 & 3 & 2000 & 3.75 & 1 & 15 KV & 45.00 & 12.75 & 330 VAC & 4.10 \\
\hline 5 & 600 & 1.75 & \(1^{12}\) & 2000 & 8.95 & . 045 & 16 KV & 4.70 & 15 & 330 VAC & 4.50 \\
\hline 8 & \({ }_{600}^{600} \mathrm{R}\) 'd & 1.85 & 1-1 & 2500
2500 & 2.85 & . 05 & 16 KV & 4.95 & 2.9 & 440 VAC & 3.10
3.50 \\
\hline 88 & 600 & 1.95 & 32 & 2500 & 15.80 & . 075 & 16 KV & 8.95 & \% & 660 VAC & 3.55
4.25 \\
\hline \(\stackrel{4}{4-4}\) & 600 & 2.50 & \({ }^{5}\) & 3000
3000 & 2.40 & . 25 & \({ }_{20 \mathrm{KV}}^{20 \mathrm{KV}}\) & 19.95
54.00 & & 660 VAC & 4.50 \\
\hline 10 & 600 & 3.25 & 2 & 3000 & 4.50 & & & & & & \\
\hline \(\frac{1}{2}\) & 1000
1000 & \({ }_{90} 6\) & \({ }_{3}{ }^{03} \times 1\) & 4000
4000 & \(\begin{array}{r}1.25 \\ 8 \\ \hline\end{array}\) & & & OILM & ITES & & \\
\hline & 1000 R 'd & . 95 & & 4000 & 6.95 & MFI & \(v\) & & TYPE & & \\
\hline 4.5-. 5 & 1000
1000 & 1.85 & \({ }_{2}\) & 5000
5000 & 1.60 & . 02 & & & OM 600 & & \% . 48 \\
\hline 6 & 1000 & 2.50 & i & 5000 & 4.88 & . 1 & & & \(\mathrm{OM}^{\text {O-610 }}\) & & . 58 \\
\hline 8 & 1000 & 3.25 & 2 & 5000 & 18.50 & . 25 & 60 & & OM-625 & & . 55 \\
\hline 1-1-1 & 1200 & 1.85 & . \(01-.03\) & 5000
6000 & 29.50 & 1.5 & 60 & & OM-650 & & . 85 \\
\hline
\end{tabular}
COAXIAL CONNECTORS

\begin{tabular}{|l|}
\(83-22 R\) \\
\(83-22 S\) \\
\(83-22 T\) \\
\(83-168\) \\
\(83-185\) \\
\(83-765\) \\
\(83-776\)
\end{tabular} 5.68
1.80
1.95
.15
. .24
.85

FULL LINE OF JAN APPROVED COAXIAL CONNECTORS UHL—N-PULSE-BN—BNC
 \(\mathrm{M}-359 \mathrm{~A}\)
\(\mathrm{M}-360\)
\(2 \phi\) LOW INERTIA SERVO MOTORS KOLLSMAN一 45 Volt 60 cycle 4 watts 1500 RPM \(\$ 22\).

HIGH VOLTAGE TRANSFORMERS
G.E.-Pri. 115 V 60 cy. Sec. \(6250 \mathrm{~V} 80 \mathrm{MA}-12.5 \mathrm{KV}\)

ANTENNAS

AT 49 APR R-4 (300103300 MC)
AN-65A (P/O SCR-521)
ASA-3CM conical scan
ASB Yagi-5 elpment 450 to 560 MC ASA Yagi-Double stacked 370 to 430 Mc

\section*{RELAYS}

Sigma type \(4 \mathrm{AH}-2000 \Omega\). ma DC coil-SPDT con-tacts-hermetically sealed 5 pin plug-in base \(\$ 3.30\)
Sigma type \(4 R-8000 \Omega 1 \mathrm{ma}\) DC coil-SPDT contacts -enclosed type 5 pin plug.in base........... \(\$ 4.25\) Stevens Ar nold type 171 millisec relay- 900 ohm coil SPST NO contact
Cutler Hammer and Squaro D tybe B-7A contactor-
24
VDC coil Price Bros. tyoe \(161-\mathrm{M}-220\) VAC contactor No double bk 30A contacts.
G. E. CRS181-1A6-115 V 60 cy . 30 Amp contacts plus two auxiliary SPDT REM-1i5 \(\left.\begin{array}{rl}\text { tacts } \\ 60 & \ldots y\end{array}\right]\)

SOUND POWERED TELEPHONES
U. S. NAVY TYPE M HEAD AND CHEST SETS A. A.E. GL832BABO D-173013 ANY TYPE- \(\$ 14.88\) EACH
\(\qquad\) GENERATORS AND INVERTERS
 Output-AC il5V 10.4A 800 to 1400 cy . Id: DC 30
Volts 60 Amps. Brand new............ \(\$ 38.50\) Eclipse-Pioneer type \(1235-1 \mathrm{~A}\). Output-30 Volts DC
\(\mathbf{1 5}\) Amps. Brand New-Original Packing.... \(\$ 15.50 \mathrm{C}\) 15 Amps. Brand
New-Original Packing.... \(\$ 15.50\)
VA Inverters 28 VDC to 115 VAC 460 cy 1500 Pioneer Type \(800-1 \mathrm{~B}\) inverter-28 V 0 C to 120 V 800 G. Ey. Inverter-28 VDC to 120 VAC 800 cy 750 VA
 PU-7/AP Inverter-28 VDC to 115 VAC 400 cy 2500 Eclipse-Pioneer type \(12121-1 A\) Inverter- Voltage and requency regulated- 24 VDC 18 Amp input-AC
output 115 V 3 \(\phi 400 \mathrm{cy} 250 \mathrm{VA} 0.7 \mathrm{PF}\) (New)

\section*{TEST EQUIPMENT}
- Gen. Radio 475B Frequency Monitor...... \(\$ 200.00\)

 20 Amps
TS-I43/CPN Oscilios..........
Dumant
 A. W. Barher Labs, VM-25 VTVM........... \(\$ 87.00\)
TS.10A/APN Delay Line Test Set....... TS.-10A/APN Delay Line Test Set........... \(\$ 45.00\) CWI-60AAG Range Calibrator for ASB, ASE, ASV

 -138A Signal Generator-
BC-221 Frequency meter. CW-60ABM Frequency Meter-io CM........ \(\$ 125.00\) - Weston Model I D.C. Milliameter 150/is00 MA All items Now Except where noted "Exe. Used Condition.)

\section*{MISCELLANEOUS EQUIPMENT} AN/APA-23 Recorder.
SCR-5I5 compl. w/

Fi-7/ABS-2 Receiver
File
BM-29 remote control unit.
BTA-1B \(12 / 24 \mathrm{~V} V\) dynamotor.
BC-1206-CM2 Reciver
ASR-4 Radar equip. Complete
RCA AVR-15 Beacon Recvr.
Navy DP. 14 Direction Finder complete. .
T. 85/APT-5 \(300-1600\) MC Transmitter.
Sola \#30807 Constant Volt. Transf 250
SP-104/APT-5 Rectifier Unit for above \({ }^{250}\).
BC-1016 Tape Recorder
AN/APA-30
BC. 910 A Osciliosco
BC-1068 Rectiver

ATI and ATK TV Block Equip................. 57.50
BC. 348 Receiver ..
BTA-1B Transceiver
Sperti IS21 vacuum relay switeh (P)OAN/
ART-13)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PULSE TRANSFORMERS} \\
\hline & UTA慁 \(\begin{aligned} & 9318 \\ & 9340 \\ & 9350\end{aligned}\) \\
\hline G.E. K541318 & WestInghouse 187AW2F \\
\hline G.E. 68G.627 & Westinghouse 232-AW2 \\
\hline G.E. 68 G 828 & Westinghouse 232-BW-2 \\
\hline G.E. 68G929GI & AN/APN-4 Block Ose. \\
\hline G.E. 80 Gi 3 & Philco 352-7149 \\
\hline G.E. K-2468B & Philco 352-7150 \\
\hline G.E. K-2469A & Philco 352-7071 \\
\hline AN/APN-9 (901756-501) & Raytheon UX-7350 \\
\hline AN/APN-9 (901756.502) & Raytheon UX-10066 \\
\hline AN/APN 9 (352.7250\()\) & W.E. D. 161310 \\
\hline AN/APN-9 (352.7251) & W.E. D-163247 \\
\hline Westinghouse 132.AW & W.E. D. 163325 \\
\hline Westinghouse 139DW2F & W.E. D.164661 \\
\hline Westinghouse 166AW2F & W.E. KS-9563 \\
\hline Westinghouse 176AW2F & \\
\hline
\end{tabular}

SPARE PARTS
FOR ARMY AND NAVY RADIO,
RADAR \& SONAR EQUIPMENT AN/APS-2 AN/APN-4 AN/ARC-5 QCB AN/APS-3 AN/APN-9 SF
AN/APS-4 AN/ARC-1 SL
etc.
QUOTATIONS UPON REQUEST
SPRAGUE PULSE NETWORKS 7.5 E3-1-200-67P, \(7.5 \mathrm{KV}, ~ " E "\) ' Circuit I Mierosec.
200 PPS 67 ohms imped, 3 sections. \(\$ 4.30\)
 7. E3PP.200-67P. 7.5 KV. "E"" Circuit 3 Microsec.
200 PPS. 67 ohms imped, 3 sections. 16 microsec. \(60^{\circ}\) PPS. 67 ohmms imped. 88.25 400 PPS. 50 ohms imped. "E" Cercuit . 91 microsec.
 "CABLE ADDRESS-LECTRONIC PHILADELPHIA"

SEARCHLIGHT SECTION

\section*{MOTOR GENERATORS}
2.5 KVA Diehl Elec. Co. 120DC to 120AC, 60 og,
1 Ph., Complete with Magnetic Controller, \(2{ }^{6}\) Field Rheos and full set spare parts including spare armatures for generator and motor. New. \(\$ 295.00\) 2 KVA \(0^{\prime}\) Keefe and Merritt, 115 DC to 1.20AC. 50 cy. 1 Ph. ExDort Crated. New......
Mor GENERATOR,TYPE CGU-2
Unit of U. S. Navy TCK-7 Transmitter Motor: 2 H.1. 230 V.D.C., 10 amps. Generator: 1800 V . D.C. 0.4 . A, 500 V, D.C. 0.35 A

\section*{INVERTERS}
Onan M-G.-215H, Nary type PU/13. Input 115/230, and 26 V DC at 4 amps. New.............. \(\$ 295.00\) Leland Eloc. Co. PE206A. Input: 28 DC at 38 Amps.
Output. \(80 \mathrm{~V}, 800\) cy. 1 Ph., 485 VA . New. \(\$ 22.50\) G.E. 18169172 , Input: 28 DC . Output: 115,400 ev.
 put: 115,400 cy., 1 Ph., J. 1 KVVA. Hegulated.

 New .. \(\$ 39.50\)

\section*{DYNAMOTORS}
Navy type CAJ0-211444. Input: 105 to 130DC. Output, either 26 DC at 20 amps. or 13 DC at 40 amps .
 seas cases \(\$ 19.50\)

\section*{AMPLIDYNES}
G.E. 5AM21JJ7. Invut: 27 VDC . Output: 80 VDCC . Edison 5 AM3IRJ18A. InDut: \(27 \mathrm{VDC}, 44 \mathrm{Amps}\). 8300RPM. Output: 60 VDC at 8.8 Amps. \({ }^{530}\)

\section*{SMALL D.C. MOTORS}

 Dumore Co. type ELBG. 24 D DC. \(40-1\) gear ratio
For type B-4 Intervalometer. New.

\section*{BLOWERS}
Westinghouse. Type FL. \(115 \mathrm{~V}, 400 \mathrm{cy} ., 6,700 \mathrm{RPM}\). A.A.D. Type j50-cW-60 cycle-NEW............. \(\$ 9.50\)

\section*{SYNCHROS}
Ford Inst. Co. Synchro Differential Generator. Mod.
3 Type \(5 \mathrm{SDG} .90 / 90 \mathrm{~V}\). 400 cy ., Ord. Dr.
 Armor. Synchro Differential Generator. Type 62.50
New Hobart Mfg. Co. Symcho Differential Synchro Trpe
XIX 115 V .60 cy . New. \(\$ 9.50\)

\section*{SWEEP GENERATOR CAPACITOR}

\section*{RADAR ANTENNAS}

Type SO-I (IOCM) assembly with reffector, wave-
gnide nozzle, drive motor, etc, New \(\$ 279.50\) Type SO-3 (3 CM.) Surface Nearch type with reflector, drive motor, etc., but less plumbing. New Type So-13. (10cs) Complete assembly with 24 dish, dipole, trive motor, gearing, ete. New \(\$ 149.50\) Also in stock - spare reffectors, nozzles, probes.

Provides 4 Types of Presentation:
(1) Panoramic (2) Aural (3) Oscillographic (4) Oscilloscopic

Designed for use with receiving equipment AN/ receiver with l.F. of 455 kc . 5.2 me or 30 me or any recerver with \(1 . \mathrm{F}^{2}\) of 455 kc .5 .2 mc or 30 mc .
With 21 fubes inclutling \(3^{\prime \prime}\) scope tube, Converted for operation on 115 V. 60 cycle source. \(\$ 245.00\) Price
Goy't Cost \(\$ 180 n .0\).
AN/APA-10 80 Page Tech Mannal. \(\$ 2.75\)

TERMS: Rated Concerns Net 30, FOB Bronxville, New York. All Merchandise Guaranteed Prices Subject to Change

\section*{SEARCHLIGHT SECTION}

Brand New
\$29.50
Metal Dust Cover Included

SCR-5 22 EQUIPMENT
Complete BC-624C receivers and BC-625AM Transmitters including mounting racks, plugs, connectors, P.E. 94 CM aynamols.

Westinghouse "Variac type"' Controllers; 600 watts; \(110 / 220\) designed as an adjustable speed controller but can be used for any application requrn ex-
variable transformer. Brand new and an
ceptional bury at.......................... \(\$ 12.00\)

> U. Snstrument Co. No. A- 260 Combination headset and chest microphone, Brand new, including 20 ft . of rubber covered cable........ \(\$ 17.50\) each

\section*{MICRO-SWITCH \\ S.P.ST NORMALLY CLOSED}
 BRAND
NEW
\(\$.85\)
ACH

\section*{G. E. BATTERY CHARGER \\ Charges 54 cell battery of from 1 to 10 ampere rate}

Input 135V., 60 cg . I Phase.
The model 6RC89F16 Copper Oxide battery clarger consista of a transformer, a secondary reactor, a copper oxide rectifying eiement, a ventilating fan, control circuits an ans for sroper operage. Eight secondary taps for adjusting changing rate. Built into metal cabinet Metered.
Complete with spare fan and fuses. New in original packing cases. Shipping weight approx. 305 lbs.

Price
. \(\$ 255.00\)

\section*{RELAY}

Clare octal base Re-
lar No. 30 FMX 115 V .
lar No. 30 FMX 115 Y . lites. 75 ohms. Makp.
two lireaks one.

Brand new
\(\$ 2.45\)

\section*{RADAR REPEATER}

ADAPTERS
NAVY TYPE CBM-50AFO
A repeater unit for video signals and trigger pulses designed to work in conjunction with standard Navy radar equipments wherein provision is made for operation of remote P.P.I. sets. This adapter provides four video and trigger pulse lines
for operating one or more remote P. P. I. mstallatons. The equipment contains its own D.C. power supply; 115 Volts, 60 cycles A.C. from ships power upply line is recuired for operation Dimensions re \(311 / 2 \times 21 \times 15\) in
Description
A: Output Video Signal Lines.
C: Video Amplifier Bandwidth.
less than 3 dh down at 5 mc .
4 lines at +2 volts amplitude.
4 lines at \(+50-+65 \mathrm{~V}\). Amplitude. Uses \(8-6 \mathrm{AG7}, 1-\mathbf{O D} 3_{2} 3-6 \mathrm{SN} 7,2-5 \mathrm{R4GY}\).

Full details on request.

\section*{24V DC SOLENOID}

2 LB. PULL- \(3 / 4^{\prime \prime}\) STROKE

PRECISION RESISTORS— \(1 / 4\) WATT- 30 C

GEAR ASSORTMENT

HAYDON TIMING MOTOR 1 R.P.M. 115 Y., 60 Cycle.......... \(\$ 1.95\)

\section*{TIMING MOTOR}

8 RPM 115 V 60 cyc
E. Ingraham Co.

400 CYCLE INVERTERS

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Amp.} & \multicolumn{5}{|c|}{3 AG FUSES} \\
\hline & Per 100 & Amp & Per 100 & Amp. & Per 100 \\
\hline 1/8. & \$4.00 & 3/4 & \(\$ 4.00\)
3.00 & 8 & \$3.00 \\
\hline 3 '8 & 4.00 & 4 & 3.00 & 10 & 3.00 \\
\hline \multirow[t]{2}{*}{1,2} & 4.00 & 5 & 3.00 & 15 & 3.00 \\
\hline & AG FI & HOL & ERS (Fin & ger) & \\
\hline
\end{tabular}

DELAY NETWORK—ALL 1400Q
T 114-Approx. 2.2 micro ser. delay.
AC LINE CORDS 6 ft . long with molded plug
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{BALL BEARINGS} \\
\hline \(\mathrm{Mff}^{\text {Mf. }} \mathrm{No}\) & 10 & OI) & Thi & Ice \\
\hline MRC5028-1 & \(51 / 2\) & \({ }^{6} 1.5\) & & \$3.75 \\
\hline MRC7026-12 & \({ }^{5} 515 / 64\) & (3) 15 64 & & 3.50 \\
\hline MRC106M1 & \({ }_{1}^{1} 13 / 64\) & \({ }_{2}{ }_{7} 116\) & 25/64 & 1.75
1.60 \\
\hline Federal LS11 & \(11 / 8\) & \(21 / 2\) & 5/8 & 1.75 \\
\hline Norma S11R & \(11 / 8\) & \(21 / 8\) & \(5 /\) & , \\
\hline Schatz. & 1/4 & \(11 / 2\) & 9 & 1.50 \\
\hline Norma 203 S & 5/8 & \(19 / 16\) & \(7 /\) & . 90 \\
\hline ND5 3202 -613M & \(1 / 2\) & \(13 / 8\) & \(13 / 8\) & 1.00 \\
\hline Ni) 26. & 3 \(3 / 8\) & 1788 & & -60 \\
\hline MRC39R1 & 11/32 & \(11 / 32\) & & \\
\hline MRC38R3 & S/16 & 55/64 & 13/32 & 45 \\
\hline
\end{tabular}

NEEDLE BEARINGS
Brand New Meters-Guaranteed

SELENIUM RECTIFIERS
Full Wave 200 MA 115 y
Half Wave 100 MA 115 V

POSTAGE STAMP MICAS

10 mmf to 700 mfd . .0011 mfd to .002 mmd

\section*{PULSE TRANSFORMERS}

TMAH-9262 9278 9289 9318 (1:34) 9350 WESTERN ELECTRIC-D166173 D161310 KS8696. KS9800, KS9862, KS13161ł
GENERAL ELECTRIC-80-G-5
JEFFERSON ELECTRIC-C-12A-1318
DINION COIL-TR1048 \({ }_{3}\)

COAXIAL CABLE CONNECTORS

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{NEW COAXIAL CABLES} \\
\hline \multicolumn{4}{|r|}{Price per Price mer} \\
\hline & 1000 ft . & & 1000 ft \\
\hline RGifit & \$180.00 & & \\
\hline RG; 7 , \({ }^{\text {P }}\) & 180.00 & RCit \({ }^{\text {R }}\) & 675.00 \\
\hline RG8/1* & 100.00 & RC 26 & 475.00 \\
\hline RG9 9 \({ }^{\text {d }}\) & 250.00 & RG 29 & \\
\hline RG \({ }^{\text {RA }}\) & 275.00 & \({ }_{\text {RGG }}\) & 300.00 \\
\hline RG \(11 / \mathrm{U}\) & 240.00
100.00 & RGG \({ }_{\text {R1/ }}\) & 29500 \\
\hline RG 11a, & 150.00 & RG \(51 / 1\) & 97.08 \\
\hline \({ }_{\text {RGG }} 12 / \mathrm{U}\), & \({ }_{216}^{240.00}\) & \({ }_{\text {RG }}{ }^{\text {5 }}\) & 110.00
32500 \\
\hline RCP 17 V & 650.00 & RG 5\%/ & 360.00 \\
\hline RG \(18 / \mathrm{T}\) & 1250.00 & RG 59/5* & 65.00
55.00 \\
\hline RCi 20/U & 1450.00 & RG \(62 / \mathrm{U}\) & 70.00 \\
\hline RG 21/U* & 220.00 & RG 77/U* & 100.00 \\
\hline \multicolumn{4}{|c|}{Add \(25 \%\) for orders less than 500 feet.} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{5}{*}{\begin{tabular}{l}
UNIVERSAL JOINT ALUMINUM \\
\(1 / 4^{\prime \prime}\) hole \(\times 1 / 2^{\prime \prime}\) O.D. \(11 / 8^{\prime \prime}\) long 85 C
\end{tabular}}} \\
\hline & & & \\
\hline
\end{tabular}

\section*{TYPE "J" POTENTIOMETERS}

 Onk asm power is applied - rully Cased as
ONLY \(\$ 6.50\)

\section*{AN CONNECTORS} Immedate service phonel wire! write your needs

\section*{RELLALLCEMmeaharuzace co.}

Arch St., Cor. Croskey Phila. 3, Pa. Telephone Rittenhouse 6-4927

ALNICO FIELD MOTORS （Approx．size overall） Delco－Type 5063230 volten；I；P！ 145 RPM \(\$ 19.95\) c： PM Motor．Delco Type \＃50693\％0： 27.5 volt Alnico Field； 10.000 r．p．m．；dimension
 PM Motor，Wiehl Mfg．SS IDG－？ \(1: 27.5\) volt

\section*{AC CONTROL MOTOR}
 Diehl Mfy Co．FPE Dieni Mre 60 cycle \(2-2,-11: 95\) to 115 volts ertia motor， 5 watts output．．．．．．．．．． \(\mathbf{\$ 3 0 . 0 0}\) AC CONTROL MOTOR．WIEIIL FPE 19－Z： 115 Volt； 60 Cycle； 32 Amp； 2 Phase：ot T－ A．C．SYNCHRONOUS MOTOIK TY゙TF RRC H505：Volts 115 ；CyCles 60 ：RPM fo：Mfg

\section*{400 CYCLE MOTORS}

PIONEEK：TYPE CK5 2 Phase； \(10 n\) rxctin FIATERN AIR IDEVICES TYPE JHA： 115
 phase 6500 RPM； 1.4 amp；Tol＇clle 4.6 in．
 \({ }_{6}^{2} 00\) VAC： 1 amp； 3 phase： 400 rycles EASTERN MIR DEVYCES，TYiPE J3II \(115 \mathrm{~V}, 400-1200\) Cycle，Single Phase \(\$ 12.50\) IIRESFARCH：AC Induction，20n ジ： Thase， 400 Cycle， 2 H．P．；11，000 R AIRESEARCH：AC Inductinn． 200 V： Phase， 400 Cycle， 12 H．P．，6500 R． Flectro Motor：PNT－ 1400 －A1－iA Serial No． 207,208 V．， 400 cycles， 3 phase Kearfott

SERVO MOTOR 10047－2－A； 2 Phase 400 Cycle；with 40－1 Reduction Gear \(\$ 10.00\) ea．

\section*{SMALL DC MOTORS}

General Filertric Type 5 A B10A Th ：：\(-\bar{i}\) volts shunt wound： 4 leads：raversible，\＄12．50 eat General Electric．Mor．STA10FT3B： 12 a inches torque， 12 V DC．कf RFM， 1.02 anm General Flectric－Type 斤BA10A．J52C；？ Yolts．DC；\(x^{5}\) anns． 8 nz inches torque：
145 RPM；shunt wound； 4 leads；reversihle GENERAL ELECTRIC TOC MOTOR NY 5 GA10AJ64． 160 r．p．m．； 65 amp； 12 oz，in torque； 27 V DC．．．．．．．．．．．．．．．．．．．．．．．．．19．95 ea

\section*{BLOWER}

Fastern Air Devices
 Tyne Thib： 115 volt
font 200 cycie single
phase：variable fre－

 BLOWER ASSEMBL｀
115 Volt， 400 Cycle．Westinghonse Type Fiv， 17 CFM ，complete with capacirot

\section*{MICROPOSITIONER}

Barber Colman AYLZ 2133－T Polarized D．C Relay：Double Coil Differential sensitive symmpe： 28 V．Used for remote positioning，

SENSITIVE ALTIMETERS
Pionere Semsitive altimeters \(0-35,000\) ft．Jange
brated in \(100^{\prime}\) of fept．Baro－ brated in 100 of feet．Baro－
metric setting adjustment．No

\section*{INVERTERS \\ \\ 10563 LELAND ELECTRIC Outunt： 115 VAC； 400 eycle： 3 －phase \(115 \mathrm{VA}:\)－ s PF ．Input：28．5 YDC； 12}

\section*{PE 218 LELAND ELECTRIC} Ontput： 115 VAC；\＆ingle Phase；PF 90； \(380 / 500\) cycle 1500 VA．Input： \(25-28\) VDC， BRAND NEW

MG 153 HOLTZER－CABOT
Input： \(24 \mathrm{~V}, \mathrm{DC}, 52\) amps：Output： 115 Volts－ 400 cycles， 3 －phase，\({ }^{750}\) VA，and 26 Volt－ 400 eycle， 250 VA．Voltage and fre－

PIONEER 12130－3－B
Outpme： \(125 . \bar{\sigma}\) VAC； 1.15 amps． 400 cycle single phase． 141 VA ．Input： \(20-30\) VDC， lated ……．．．．．．．．．．．．．．．．．．．．．．\(\$ 89.50\) ea．

\section*{E－1616－2 EICOR，INC}

100 V．A． 3 Phase： 115 Vinlts； 400 Cycle

12116－2－A PIONEER
Output： 115 VAC： 400 cye；single phase；
45 amp． 1 nput： 24 VDC 5 amp．．．\(\$ 90.00\) eat
10285 LELAND ELECTRIC
Outwit： 115 Volts AC， 750 V．A．， 3 phase， 4100 ＇y＂le， 90 PF，and 26 volts， 50 amps
single phase， 400 cycle， 40 PF．Input OT．\({ }^{\circ}\) DC， 60 anmps，cont．duty， 6000 RPM．

10486 LELAND ELECTRIC
Output： 115 VAC： 400 Cycle； 3 －Phase： 175 Duty … ．．．．．．．．．．．．．．．．．．．．．．\(\$ 00.00\) ea．

METERS
IMMETER：DC： \(2^{\prime \prime}{ }^{\prime \prime} 100-100\) With external shunt．．．．．．．．．．．．．．．．\(\$ \mathbf{5 m b}\) ．95
 AMP METERS；II．C．， 0.300 amps， \(3^{\prime \prime}\) rouncl type complete with external shunt．\(\$ 6.95\) en． ELAMPED TIME METER，Aero Instru－ time of AC electrical and electronic equip－ ment．Pegisters up to \(9,999.9\) hours in 1／10th hour incrempent \({ }^{\circ}\) then autnmati－

\section*{SCHWEIN \\ REMOTE CONTROL DUAL GYRO}

Free and rate gyro type D C constant speed gyros me operates horizontally haster gyro influences hori zontal gyro position，whicl curate a series of of elec rical devices．Both gyros turn in excess of with metal cover
.\(\$ 22.50\) ea
HIACK \＆IDECKER MOTOK AN 94－32159－ A；volts 24；1 amp； stifies vouma；12，000
 luty；overall size \(5-3 / 8 " \times 3^{\prime \prime}\) dia．．\(\$ 9.95\) ea PIONEER GYRO FLUX GATE AMPLIFIER Type 120＂6－1－A，complete with tubes
\(\$ 27.50\) ea．

G．E．GENERATORS
General Electric Type 5ASB－ ．JJ3； 400 cycles out at 11 olts； \(7.2 \mathrm{amps} ; 8,000 \mathrm{rpm}\) ize \(6^{\prime \prime}\) long x \(6^{\prime \prime}\) dia． \(\$ 99.50\) ea．

\section*{SINE－COSINE GENERATORS}

Resolvers
Diehl Type FiE43－9（Single Phase Rotor）． Two stator windings \(90^{\circ}\) apart，provides two outputs equal to the sine and cosine of the angular rotor displacement．Input 00 pa． Dieht Type FPE－4及－1 same as FJE－43－9 except except it sumplies maximum stator voltage Arma Resolver Type eiso44：equal in size o size synthro：55－60 cycle；single phase brimaty，！phase secondary．．．．．．．．．．．\(\$ 79.50\)

\section*{GENERATORS}

Grlipse－Pioneer：716－3A Navy Model NEA－ 3ג）OUTPUT： 115 VAC： 10.4 amps： 800 cycle：single phast＇ 28.6 VDC； 60 amps（it 3400 rpm ；spline frive；self exciting．wt． G07RAND NEW in original box．．．． 839.95 ea． POWER UNIT PU－6／TPS－1
ne driven 2－cycle engine．Dual volt－ re generator： 120 VAC； 1400 watt： 400

SYNCHRONOUS SELSYNS

\section*{110 volt． 60 cyrle，
minas cased，approx．
dia．\(x 6^{\prime \prime}\) long． Iff by Diehl long．} Guantities Available REIEITERK

\(\$ 20.00\) ca．

\section*{SYNCHROS}

IF Sperial Reporater（ \(115 \mathrm{~V}-400\) Cycle）\(\$ 15.00\) en． 2．IIF3 Generator（ 115.400 cyc．）．\＄10．100 ea． cye Control Transformer．．．．．．．\＄50．00 ea．
 ，GG Generator（ \(115 / 90\) volt－60 eyc．）\(\$ 50.00\) ea． 5／I）G Differential Generator（90／90 Volts TRANSMITTEK，isENDIX C－78248： 115 Iffercutial－C＇－78249； 115 Volt； 60 Cycle REIPEATER．ISENIIX C－78410；115 Volt．

 yele） Bic Syichro ienerator（ \(115 / 90\) volt： 60 Ginf sunchro infierential Generator（90／90

 6．1D5IIA1 Seleyn Generator：115－105 \＄50．00
 SIII DIFFERNNTAALGFNERATOR － 10.51 CON＇IROT，TRANSFORMER \(\$ 12.50\) ea． － 5 Tolt． 00 eyole

PIONEER AUTOSYNS

\section*{PIONEER TORQUE UNITS}

TPPE 1．2604－3－A：Contain CK5 Motor cou－ pled to output shaft through 125：1 gear re－ huction train．Output shaft coupled to auto－ haft to follow－up Autosyn is 16：1．．\(\$ 70.00\) eat． THTE 12toz－1－A：Same as 12606－1－A ex－ cept it has a \(30: 1\) ratio hetween output shaft TYPE 1260\％－1－A：Same as i2606－1－A ex－ ent it has hase mounting type cover for

\section*{Immediate Delivery \\ ALL EQUIPMENT FULLY GUARANTEED \\ All prices net \(F O B\) Pasadena，Calif．}

\section*{SEARCHLIGHT SECTION}

\section*{NEW YORK'S RADIO TUBE WAS EXCHANGE}
\begin{tabular}{|c|c|}
\hline TYPE & PRICE \\
\hline OA2 & \$1.40 \\
\hline OA3 & 1.75 \\
\hline OB2 & 1.75 \\
\hline OC3 & 1.25 \\
\hline OD3 & 1.25 \\
\hline C1B & 6.95 \\
\hline 1B21A. & 2.75 \\
\hline 1 B 22. & 3.95 \\
\hline 1 B 23. & 9.95 \\
\hline 1 B 24. & 17.95 \\
\hline 1 B 26. & 2.95 \\
\hline 1 B 27. & 13.50 \\
\hline 1 B 32 & 4.10 \\
\hline 1 B 38 & 33.00 \\
\hline 1 B42 & . 19.95 \\
\hline 1 B 51. & 9.95 \\
\hline 1 B 56. & 49.95 \\
\hline 1 B 60. & 69.95 \\
\hline 1 N21 & 1.35 \\
\hline 1 N 21 A & 1.75 \\
\hline 1 N 21 B & 4.25 \\
\hline 1 N 22 & 1.75 \\
\hline 1 N 23 & 2.00 \\
\hline 1 N 23 & 2.00 \\
\hline 1 N 23 A . & 3.75 \\
\hline 1 N 23 B & 6.00 \\
\hline 1 N27. & 5.00 \\
\hline 1 N 43. & 2.50 \\
\hline 2 B 22. & 1.95 \\
\hline 2 B 26. & 3.75 \\
\hline 2 C 34. & . 35 \\
\hline 2 C 40. & 20.00 \\
\hline 2 C 43. & 27.00 \\
\hline \(2 \mathrm{C44}\). & . 90 \\
\hline 2 D 21 & 1.75 \\
\hline 2E22... & 3.75 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline TYPE & PRICE \\
\hline 2E30 & 2.75 \\
\hline 2 J 21 & 17.95 \\
\hline 2 J 22 & 17.95 \\
\hline 2 J 26 & 27.75 \\
\hline 2727 & 29.95 \\
\hline 2 J 31 & 29.95 \\
\hline 2 J 32 & 69.95 \\
\hline 2 J 36 & 105.00 \\
\hline 2 J 38 & 17.95 \\
\hline 2340 & 35.00 \\
\hline 2 J 42 & 189.0 \\
\hline 2 J 49 & 109.00 \\
\hline 2 J 50 & 195.00 \\
\hline 2 J 55 & 95.00 \\
\hline 2 J 61 & 75.00 \\
\hline 2 J 62 & 75.00 \\
\hline 2K25 & 37.50 \\
\hline 2K28 & 37.5 \\
\hline 2 K 29 & 37.50 \\
\hline 2 K 41 & 150.00 \\
\hline 2 K 45 & 149.50 \\
\hline 2 V 3 G & 2.10 \\
\hline 3RP1 & 7.50 \\
\hline \(3 \mathrm{B24}\) & 5. \\
\hline 3B24W & 7.50 \\
\hline EL3C & 5.95 \\
\hline 3 C 22 & 120.00 \\
\hline 3 C 24 & 1.95 \\
\hline 3 C 31 & 5.95 \\
\hline 3DP1A & 10.95 \\
\hline 3DP182 & 12.00 \\
\hline 3F29 & 15.50 \\
\hline 3GP1 & 5.50 \\
\hline SN4 & 5.50 \\
\hline 4 Al & 1.75 \\
\hline 4 A 21. & 2.75 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline TYPE & Price \\
\hline 4B26. & 10.95 \\
\hline 4C.27. & 25.00 \\
\hline 4 C 28. & 35.00 \\
\hline 4 E 27. & 17.50 \\
\hline 4 J 25 & 199.00 \\
\hline \(4 J 26\). & 199.00 \\
\hline 4 J 27. & 199.00 \\
\hline 4 J 31 & 199.00 \\
\hline 4 3 32. & 199.00 \\
\hline 4333 & 199.00 \\
\hline \(4 \mathrm{J37}\). & 199.00 \\
\hline 4338. & 89.00 \\
\hline 4339. & 199.00 \\
\hline 4 4 41. & 199.00 \\
\hline C5ß & 3.95 \\
\hline 5RP1 & 6.95 \\
\hline 5BP4 & 6.95 \\
\hline SCP1 & 6.95 \\
\hline 5D21 & 27.50 \\
\hline 5 P P1. & 27.50 \\
\hline 53 P 2 & 19.50 \\
\hline \(5 \mathrm{JP4}\). & 27.50 \\
\hline WE6A & 2.50 \\
\hline 6 C 21 & 29.50 \\
\hline C6A & 12.50 \\
\hline C6J. & 10.95 \\
\hline 7BP7 & 7.95 \\
\hline 7 PP 4 & 10.00 \\
\hline 12AP4. & 55.00 \\
\hline 15E. & 1.95 \\
\hline 15R & . 95 \\
\hline NE16. & . 68 \\
\hline FG17. & 6.95 \\
\hline BX21 & 3.95 \\
\hline FG33. & 12.95 \\
\hline 35 T. & 4.95 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline TYPE & PRICE \\
\hline 45 Special. & . 35 \\
\hline RK39... & 2.95 \\
\hline HF50. & 1.75 \\
\hline VT52 & . 25 \\
\hline RK72. & 1.95 \\
\hline HK73. & 1.95 \\
\hline 100TH & 9.95 \\
\hline FG105. & 19.00 \\
\hline 203A & 8.95 \\
\hline 211 & . 95 \\
\hline 217 C & 18.00 \\
\hline 242 C & 10.00 \\
\hline 244A & 12.95 \\
\hline 249 C & 4.95 \\
\hline 250 TL , & 19.95 \\
\hline 274A & 3.00 \\
\hline 274B & 3.00 \\
\hline 304 TII & 15.00 \\
\hline 304 TL & 14.50 \\
\hline 307A & 4.95 \\
\hline 310A & 7.95 \\
\hline 311 A & 7.95 \\
\hline 312A & 3.95 \\
\hline 323A & 25.00 \\
\hline 327A & 3.95 \\
\hline 328A & 9,95 \\
\hline 350A & 7.95 \\
\hline 350R & 5.95 \\
\hline 357A & 20.00 \\
\hline 368AS. & 6.95 \\
\hline 371B. & 2.95 \\
\hline 385A & 4.95 \\
\hline 388A & 2.95 \\
\hline 394A & 7.95 \\
\hline MX408U. & . 75 \\
\hline 417A...... & 27.95 \\
\hline
\end{tabular}

\section*{MICROWAVE TEST EQUIPMENT TS148/UP SPECTRUM ANALYZER}

Field type \(X\) Band Spectrum Analyzer, Band 84309580 Megacycles.

Will check Frequency and Operation of various \(X\) Band equipment such as Radar Magnetrons, Klystrons, TR Boxes. It will also measure pulse width, c-w spectrum width and \(Q\) or resonant cavities. Will also check frequency of signal generators in the \(X\) band. Can also be used as frequency modulated Signal Generator etc. Available new complete with all accessories, in carrying case.

Also available of new production TS239A Synchroscope.

\section*{Other test equipment, used checked out, surplus.}

TSK1/SE K Band Spectrum Analyzer TS3A/AP Frequency and power meter \(S\) Band RF4A/AP Phantom Target \(S\) Band TS10/APN Altimeter Test Set TS12/AP VSWR Test Set for X Band TS13/AP X Band Signal Generator TS14/AP Signal Generator TS15/AP Flux Meter
TS16/AP Altimeter Test Set TS19/APQ 5 Calibrator
TS33/AP X Band Power and Frequency Meter TS/34AP Western El Synchroscope TS34A/AP Western EI, Synchroscope

T35/AP X Band Signal Generator TS36/AP X Band Power Meter TS47/APR 40-400 MC Signal Generator TS69/AP Frequency Meter 400-1000 MC TS100 Scope
TS102A/AP Range Calibrator TS108 Power Load
TSIlo/AP S Band Echo Box TS125/AP X Band Power Meter TS126/AP Synchroscope TS147 X Band Signal Generator TS251 Range Calibrator APN9 TS270 S Band Echo Box

TS174/AP Signal Generator
TS175 Signal Generator
TS226 Power Meter
TS239A Synchroscope

\section*{SURPLUS EQUIPMENT}

APA10 Oscilloscope and panoramic receiver APA38 Panoramic Receiver APS 3 and APS 4 Radar
APR5A Microwave Receiver
APT2 Radar Jamming Transmitter APT5 Radar Jamming Transmitter

MINIMUM ORDER
25 Dollars

YOU CAN REACH US ON TWX NY1-3235
Cables:
TELSERSUP

Large quantities of quartz erystals mounted and unmounted.
Crystal Holders: FT243, FT171B others.
Quartz Crystal Comparators.
North American Philips Fluoroscopes Type 80.
Large quantity of Polystyrene beaded coaxial Cable.

\section*{SEE OUR PREVIOUS ELECTRONICS ADS FOR LISTINGS OR WRITE FOR CIRCULARS}

\section*{PHASE SHIFT CAPACITORS}
W.E. \#D150734. S.C. stock No. 2C69961053A/C2
As Used in LC1053A, Equipment. New, in original boxes. 10 for
\(\$ 150.00\). 100 for \(\$ 1250.00\).

\section*{\(\$ 17.50\) each}

\section*{MU-METAL LAMINATIONS}

Es, Es, Is, Ls. Ten Sizes. Quantities Available.
Each Size Kit, 6 lbs, Sufficient Quantity of
\(\$ 19.75\)
H-F TIE POST
Low- loss Melamine Insula-
Lion, pictured actual size
(4-40 \((4-40\) The
\(\$ 67.50 / \mathrm{M}\)

KOVAR GLASS TO METAL SEALS HIGH-VOLTAGE FEED THRU

Many types and sizes. Send us sour blueprint or sample for our
original factory
cost.
sample kit

DELAY RELAYS
PARAGON Model 815; 115 V , 60 cyc; Adjustable 0 to 100 sec; \({ }^{21 / 2}\) see Recycling time;
SPOT, 10 Amp contacts: \#R944 Amp contacts;
PARAGON Model 810 B 115V, 60 cyc: 60 sec Delay, \(21 / 2 \mathrm{sec}\) Recycling time; SPST, no., 10 Amp con-
facts; \(\#\) R945

\section*{TELEPHONE TYPE RELAYS}

These relays have been standardized so that coils and frames of most manufacturers can be interchanged without affecting adjustments. A wide variety of applicable combinations are thus possible from a comparatively small number of relays.
Listed below are frames and coils from our stock. They may be purchased separately, However, a complete relay consists of coil and frame. In ordering complete relays specify which coil with which frame, i.e.: F101 with K 117.

Representative completed relays are also listed with voltage and current ratings. Values are indicative of sensitivity that may be expected from similar combinations.

Part of SCR 522, \#12365. 2.49
 \begin{tabular}{lll}
R502IAI AUTOMATIC 1300 ohm, 20 maDC \\
SILT & 2.95 \\
\hline
\end{tabular} COILS
(For Cost of Relay Add Price of Coil to Price of Frame)
\begin{tabular}{ccr|ccr}
\begin{tabular}{c}
Stock \\
No.
\end{tabular} & Ohms & \begin{tabular}{r}
Price \\
each
\end{tabular} & \begin{tabular}{c}
Stock \\
No.
\end{tabular} & Ohms & \begin{tabular}{r}
Price \\
each
\end{tabular} \\
K101 & 0.75 & 1.25 & K106 & \(1100 / 500\) & Dual \\
K102 & 12 & 1.25 & K111 & 1300 & 1.75 \\
K103 & 250 & 1.25 & K112 & 2000 & 2.25 \\
K104 & 450 & 1.50 & K113 & 3000 & 2.50 \\
K105 & 500 & 1.50 & K114 & 3600 & 2.50 \\
K106 & \(500 / 1100\) & Dual & 2.00 & K115 & 4600 \\
K107 & 750 & 1.50 & K116 & 6500 & 2.75 \\
K108 & 900 & 1.75 & K117 & 10,000 & 3.75 \\
K109 & 1000 & 1.75 & K118 & 40,000 & 3.25 \\
& & & & &
\end{tabular}

AC COILS
voltage
6 V AC
24 V AC
110 V AC
Price
each
1.75
1.75
2.50

Price
each
1.50
1.50
1.50
1.75
2.00
\begin{tabular}{lclc}
\multicolumn{4}{c}{ SLOW ACTION COILS } \\
Stock & & \begin{tabular}{c}
Slow
\end{tabular} & Price \\
No. & Ohms & Action & each \\
K122 & 33 & Make & 1.50 \\
K123 & 75 & Release & 1.50 \\
K124 & 200 & Release & 1.50 \\
K125 & 300 & Make & 1.75 \\
K126 & 2000 & Make & 2.00 \\
Throw. & & &
\end{tabular}

\section*{RELAYS! RELAYS! RELAYS!}

TERMS:-All Prices F.O.B. Our Plant. Rated Firms Net 10 Days. All Others Remittance with Order. Orders Under \(\$ 10\) Remittance With Order, Plus Approximate Shipping Charges (overage will be returned.)

\section*{COMMUNICATIONSEQUIPMENTCO.}

24 VOLT TRANSFORMERS
For operating surplus gear, toy trains, gad-

\section*{RECTIFIER TRANSFORMERS}

 Pri: 115 V 60 Cy . Sec: 18.5V @ 3.5A......... 2.79

\section*{POWER TRANSFORMERS}

Comb. Transformers-115V/50-60 cps Inpu CT75B 600-0-600V/-6A, 2XSVCT/6.2A, 6.3VCT/ CTJ5-2-600VCT/.2A, \(5 \mathrm{~V} / 6 \mathrm{~A}\)
 CT-341 1050 Test. 10 MA. 3 . 625 V (@) 5 MA, 26 V @ 4.5 A
 \(\begin{array}{llll}\text { CT-626 } & 1500 \mathrm{~V} & .160 \mathrm{~A} & 2.5 / 12,30 / 100 . \\ \text { CT-071 } & 110 \mathrm{~V} & .200 \mathrm{~A} & 33 / .200,5 \mathrm{~V} / 10,\end{array}\) \(\begin{array}{llll}\text { CT-367 } & 580 \mathrm{VCT} & .050 \mathrm{~A} & 5 \mathrm{VCT} / 3 \mathrm{~A} .\end{array}\)
 \(\begin{array}{llll}\text { CT-403 } & 350 \mathrm{VCT} & .026 \mathrm{~A} & 5 \mathrm{~V} / 3 \mathrm{~A} .1 \\ \text { CT- } 931 & 585 \mathrm{VCT} & .086 \mathrm{~A} & 5 \mathrm{~V} / 3 \mathrm{~A}, 6 \mathrm{~V} / 6 \mathrm{~A} . \\ \text { CT } 456 & 390 \mathrm{VCT} & 30 \mathrm{MA} & 6.3 \mathrm{~V} / 1.3 \mathrm{~A}, 5 \mathrm{~V} / 3 \mathrm{~A} \\ \text { CT }-160 & 800 \mathrm{VCT} & 100 \mathrm{MA} & 6.3 \mathrm{~V} / 1.2 \mathrm{~A}, 5 \mathrm{~V} / 3 \mathrm{~A}\end{array}\)

\section*{Thes Womelfe Special}

SA4A/APA-1 Motor Driven Coaxial Ant. SWitch DPDT, Continuous Operation from
24VDC. Completely Enclosed.......... \(\$ 24.50\)
MP-22 MAST BASE Mohile Antenina Mount. MP-22 MAST BASE Mohile Antenina Mount. 4.59
SA1A/APN-1 Altitude Limit Switch for SA1A/APN-1 Altitude Limit Switch for ALTITUDE INDICATOR for APN- 1 610 2-3.5 inc RA-74 Power Supply for Super Pro.
f-17/ARC-5 Junction Box for ARC- 5. J-22/ARC-5 Junction Box.
SUPERSONIC CRYSTALS MOTOR, 24 vde. 3 HP 3800 rpm , New... TV LEAD-IN WIRE, 300 ohms, HI-Q,
BC 306 ANTEXNA TUNONG UNIT, NEW. 5 . BC 306 ANTENNA TUNING U
R9/APN-4, New, With Tubes RO6/APN-4, New, With Tubes and Crystal......... 75.00
 Supersonic Crystal Head, M-1, 22-27KC 27.4

G.E. RELAYS*
 parent plastic case, which may be
removed for adjustments... \(\$ 1.59\)

\section*{GE\#CR2791B116W3}

Same as above, except additional terminal hrought
out from contact arm.......
GE\#CR2791-F100D3

GE\#CR2791F100G3
Same as above, except has extra
IA contact. Rated \(5 \mathrm{Amp} \mathbf{\$ 2 . 3 5}\)
GE\#CR2791D101F3

\#CR2791B106J3
3PDT, 5 Amp contacts. Coil rated \(22-30 \vee \mathrm{DC}\). 150 Ohms. DCR. Contacts are designed for fast operation, and enclosed by clear plastic
cover \(\ldots \ldots \ldots \ldots \ldots \ldots \ldots . \$ 1.35\)

GE \#CR2791B106C3
 Amps. Coil: \(\begin{aligned} & 18 \cdot 28 \vee \mathrm{DC} \\ & \mathrm{DCR} \\ & 125 \text { Ohms }\end{aligned}\) DCR \(\qquad\) \(\$ 1.25\)
*THESE RELAYS AVAILABLE IN MFRS, QUANTITIES

\section*{ELECTROLYTIC CAPACITORS}

\section*{UPRIGHT OIL CAP.}

\section*{ \\ TWIST}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{PRONG} & \multicolumn{2}{|l|}{\(15 . \ldots \ldots . . .31 .49\)} \\
\hline Cap. Mfd & WVDC & & \[
\begin{aligned}
& 330 \mathrm{VA} \\
& 15 \ldots .
\end{aligned}
\] & \[
3.79
\] \\
\hline \(8{ }^{8}\) & 450 & \[
50.16
\] & & \\
\hline 30 & 300 & . 18 & & . 69 \\
\hline 40 & 450 & . 38 & -5- & 1.19 \\
\hline 50 & 400 & . 36 & & 1.49 \\
\hline \({ }_{60} 6\) & 300 & . 21 & 4-1.5 & 2.19 \\
\hline 80 & 150 & . 29 & 1.5 & \(c^{1.39}\) \\
\hline 8.88
\(30-20\) & 450 & . 24 & 1500 & \\
\hline 30-20 & 25 & . 16 & & 1.59 \\
\hline 20-20 & 150 & . 23 & 1.5 & 1.59 \\
\hline 80-80 & 300 & . 21 & & 1.79 \\
\hline 90-10 & 350 & . 21 & 2000 & vD \\
\hline \(80-10\) & 450 & . 49 & 1....... & 1.79 \\
\hline 150-50-25 & 150 & . 49 & c 2500 & \\
\hline 80-10-10-10 & 300 & . 21 & .5. . & 2.98 \\
\hline 40-40-20-20 & 150 & . 28 & & \\
\hline 30-15-15-15 & 300 & . 28 & . 15. & \(c^{6.95}\) \\
\hline 80-10-10-10 & 350 & . 32 & & \\
\hline \(40 / 10\)
\(40 / 20\) & 450/350 & . 51 & .1-. \({ }^{1}\) 6000 & idc \({ }^{4.79}\) \\
\hline 40/50 & 400/300 & . 28 & & . 3.69 \\
\hline 80/50 & 450/50 & . 65 & .15-, 15 & 3.89 \\
\hline 250/1000 & 10/6 & . 30 & 1.5 & 10.98 \\
\hline 8-8-10 & 450/25 & .26 & 7000 & \\
\hline 10-10/10 & 150/25 & . 23 & 1-.1... & 3.79 \\
\hline 10-10/20 & 450/25 & . 26 & & 9.95 \\
\hline 10-15/20 & 350/25 & . 18 & 8000 W & \\
\hline 15-15/10 & 450/350 & . 23 & .075-. 075 & 3.79 \\
\hline 80-40/150 & 400/50 & . 45 & 10K & \\
\hline 120-60/20 & 150/25 & . 45 & 1. . 15 к & 8.95 \\
\hline 30-30-15/30 & 300/50 & . 39 & 15 K & \\
\hline 40-40-20/20 & 350/15 & . 28 & .0016. \({ }^{\text {a }}\) & 7.95 \\
\hline 60-40-20/50 & 300/25 & . 28 & 16 K & \\
\hline 60-40-20/200 & 150/10 & . 39 & -015. & 9.50 \\
\hline 80-40-30/20 & 150/25 & . 36 & 20K & \\
\hline 80-40-30/100] & 150/25 & . 36 & . 25. & '17.50 \\
\hline 8/8/8 & 475/100/100 & . 23 & & \\
\hline 10/50/100 & 350/100/50 & . 23 & & 85.00 \\
\hline 10/50/100 & 450/100/50 & . 27 & & 65.00 \\
\hline \multicolumn{5}{|l|}{20/20/10/20 350/300/300/25.35} \\
\hline \multicolumn{5}{|l|}{SELENHUM NON-POLAR} \\
\hline \multicolumn{5}{|l|}{RECTIFIERS} \\
\hline \multicolumn{2}{|l|}{F. W. BRIDGE} & CAP. & VAC. & RICE \\
\hline UPTTO 18 & AC IN- & 13-15 & \(220-\) & \$1.20 \\
\hline UP TO 14 & DC OUT & 20-24 & 110- & 1.00 \\
\hline & .. \$2.50 & 26-30 & 220- & 1.35 \\
\hline & 4.00 & 43-65 & 110- & 1.25 \\
\hline 6 A. & 6.00 & 43-48 & 110 & 1.25 \\
\hline 10A. & 7.50 & 50-75 & \(110-\) & 1.25 \\
\hline 12A. & 9.00 & 53-60 & 220- & 1.50 \\
\hline & 18.00 & 61-69 & 320- & 1.60 \\
\hline UP TO 36 & VAC IN- & 64-72 & 110 & 1.25 \\
\hline UP TO 28 V & DC OUT & 72-87 & 110- & 1.25 \\
\hline 14........ & \(\$ 3.00\) & 75-84 & 110- & 1.25 \\
\hline & . 4.00 & 88-106 & 6 110- & 1.50 \\
\hline 54 & 10.00 & 107-129 & 110- & 1.65 \\
\hline 10A. & 14.50 & 130-157 & 7 110- & 1.75 \\
\hline 12 A . & . 18.00 & 130-150 & 0 70- & 1.50 \\
\hline 24A. & 36.00 & 130-180 & - 110- & 1.85 \\
\hline UP TO 54 & VAC IN- & 158-191 & 1 110- & 1.85 \\
\hline UP TO 42 V & DC OUT & 161-180 & O 110- & 1.75 \\
\hline 2A... & \$6.50 & 189-210 & 0 118- & 1.95 \\
\hline 4A & W. 8.50 & 200-220 & 110- & 1.95 \\
\hline UP TO 120 & VAC IN- & 270-300 & 110- & 2.10 \\
\hline UP TO 100 & VDC OUT & 324-360 & 110- & 2.40 \\
\hline 2A......... & . . . \(\$ 11.00\) & 378-420 & 175- & 3.00 \\
\hline 10 A & . 48.00 & 432-480 & 110- & 275 \\
\hline 12A. & 60.00 & 485-540 & 0 110- & 285 \\
\hline
\end{tabular}

\section*{FILTER CHOKES}

Stock
\(\mathrm{CH}-366\)
\(\mathrm{CH}-322\)

\(\begin{array}{ll}\text { CH-119 } & \text { 5KV DC Test } \\ \text { CH-69-1 } & \text { Dual } 125 \mathrm{MA} \\ \text { DH: }\end{array}\)
\(\begin{array}{ll}\text { CH-69-1 } & \text { Dual; 120H / } 17 \text { MA. } \\ \text { CH-8-28 } & 2 \times 5 H / 380 \mathrm{MA} / 25 \text { Ohim }\end{array}\)
\(\begin{array}{ll}\mathrm{CH}-8726 & 1.28 \mathrm{H} / 130 \mathrm{MA} / 755 \mathrm{ohms} . \\ \mathrm{CH}-344 & 1.5 \mathrm{H} / 145 \mathrm{MA} / 1200 \mathrm{~V} \text { Test }\end{array}\)
\(\begin{array}{ll}\text { CH-344 } & 1.5 \mathrm{H} / 145 \mathrm{MA} / 1200 \mathrm{~V} \text { Test } \\ \text { CH-43A } & 10 \mathrm{H} / 15 \mathrm{MA}-850 \text { ohmis DCR. } \\ \text { CH-366 } & 20 \mathrm{H} / 300 \mathrm{MA} .\end{array}\)

\(\begin{array}{ll}\mathrm{CH}-511 & \text { 6H/80 MA }-310 \text { ohms DCR }\end{array}\)
\(\begin{array}{ll}\mathrm{CH} 3-501 & 2 \times 5 \mathrm{H} / 400 \mathrm{MA} \\ \mathrm{CH}-188 \mathrm{M} & 5 \mathrm{HY} \\ 200 \\ \mathrm{MA} .\end{array}\)
\(\begin{array}{ll}\text { CH }{ }^{303} & \text { 300H/.02A, } 2500 \mathrm{~V} \text { Test. } \\ \text { CH } 932 & \text { SWING } 9-60 \mathrm{H} / .4-.05 A, 10 \mathrm{KV}\end{array}\)
UNIVERSAL SUPPLY KIT

\section*{INTERPHONE} AMPLIFIER
Easity converted too an Idoal intor. Communications set for office,
or factory
orivinal. Nome
Now

MAIL ORDERS PROMPTLY FILLED. ALL PRICES F.O.B. NEW YORK CITY. SEND M.O. OR CHECK. ONLY SHIPPING SENT C.O.D
PARCELS IN EXCESS OF 20 POUNDS WILL BE SHIPPED VIA CHEAPEST TRUCK OR RAILEX.

\section*{COMMUNICATIONSEQUIPMENTGO.}
[MICROWAVE COMPONENTIS
S BAND—3" \(3^{\prime \prime} 11 / 2^{\prime \prime}\) W,G. 10 CM.
 DIRECTIONAL COUPLER: Broadband. Cohplete with all Hardware. Navy
WAVAYM -47AAN-2. AS Shown.. \(\$ 37.50\)
WAVETER 2700-3400 WAVEMETER \(2700-3400\) MC. Keaction REACTION WAVEMETER, Mfg G.E. LHTR LIGHTHOUSE ASSEMBLY. leevt. Uses 2c:40, 2C43, 11327 . Tunable APX \(2400-\) BEACON LIGHTHOUSE cavity io cm. Mifg. Bernard MAGNETRON TO WAVEGUiDE Coupler with 721 A RT-39/APG-5 10 cm. lighthouse MF Head coo Xntr. nsing 6 AK (2040, 2ctu 11327 lineup) w/Tubes. McNALLYY KLYSTRON CAVITIES for TUG: or F 2R28/SPR-2 FiLTERS. ivpe N . input and output WAVEGUSDE TO T/" MJGiD COAX *DOURKNOB" ADAPTER CJIOKに FLANGE, SILNER PLITTED ASIUA/AP-IO CM 1'jel up Dipole with "N" Cables \({ }^{2} 40\) OAI ECHO BOX. 10 CM TUNABLE. HOMEDELL.TO-TYPE
 1. F. AMP STRIP: 30 MC 120 d.b. gain, 2 MC POLYROD ANTENNA, ASBI/ABN-7 in Jucite 1Rall. ANTENNA. AT49A/AP1, Mroadband conical, \(300-\)

7/8" RIGID COAX—3/8" I. C.

 RIGHT ANGLE BEND, with flexible coax output pickSHORT RIGHTANGLE BEND, with pressurizing \(n\) RIGID COAX to ilex coax connector
RT ANGLES for above \(\ldots \ldots\).
RT. ANGLE BEND \(15^{\prime \prime} \mathrm{L}\). OA
A……........... * RIGID COAX BULKHEAD FEED.THRU \(\$ 14.00\)

X BAND-1" \(\times 1 / 2^{\prime \prime}\) W.G. 3 CM . CROSS-GUIDE COUPLER
MAIN SECTION, \(i^{\prime \prime}\) long with no deg. hend (Fi-Plane)
 \(x 1 / 2^{\prime \prime}\) waveguide in \(5^{\prime}\) lengths, IUG 39 flange to
UG40 cover Iength \(\$ 7.50\) Rotating joints supplied either
mounting. With UG40 flanges Bulkhead Feed-thru Assembly.
Pressure Gauge Section 15 Pressure Gauge. 15 ibs.
Dual Oscillator, Mount Back to bark............... \(\$ 2.50\) mount, tunable termination attenuating silugs... \(\$ 18.50\) TR-ATR Duplexer section for above............... \(\$ 8.50\) Wavequide section \(12^{\prime \prime}\) 告 \(\$ 12.00\) twist \& \(21 / L^{\prime \prime}\) radius, 90 dep. bend.
Twist 90 deg. 5 choke to rover w/pres nippi.....
Waveguide Section \(21 / 2\) ft. long silver plated with flange
cm mitered elhow choke with deck mounting. \(\$ 17.50\) UG 39 Flanges.
90 degree elthows
45 degree twist.

\section*{1988/4}
 Slug Tuner Attenuator W.E. givide Gold plated. \(\$ 6.50\)
 B1-Directional Coupler, UG-52, Takeof 25 db coupK BAND- \(1 / 2^{\prime \prime} \times 1 / 4^{\prime \prime}\) W.G. 1.25 CM

MAGNETRONS
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{} \\
\hline Tube & Tube & Tube & & \\
\hline 2127 & 2149 & 720BY & & \\
\hline \(2 J 31\) & 9161 & 725.A & - & \\
\hline 2521 & 700 & 730-A & & \\
\hline \(2 J 22\) & 706 & QK 62 & & \\
\hline 2526 & 2162 & QK 61 & & \\
\hline 2132 & 3131 & QK 60 & & \\
\hline 2137 & 5130 & 2156 & & \\
\hline \(2 J 38\) & 718 DY & 2139 & & \\
\hline \(2 J 39\) & & & & \\
\hline \multicolumn{5}{|l|}{THERMSTOTS} \\
\hline D167018. & & \$1.50 & D171812 & 51.50 \\
\hline D167332 & & 1.50 & D172155 & 1.50 \\
\hline D167613 & & 1.50 & D167176 & 1.50 \\
\hline D166228. & & 1.50
2.50 & & \\
\hline D164699, & & 2.50
1.95 & D167208E, \({ }^{\text {308A, 27-B }}\). 17. & 1.50
1.50 \\
\hline D166792 & & 2.15 & D168403 & 2.15 \\
\hline
\end{tabular}

\section*{AMPEREX TUBES COMPLETE LINE}
magnetrons-thyratrons SPECIAL PURPOSE GEIGER-MULLER AMATEUR - INDUSTRIAL GERMANIUM DIODES
send for complete listing

\section*{TEST EQUIPMENT}
\begin{tabular}{|c|c|}
\hline - Signal Gen. & RCA 710A, 370-560 MC...... 350.00 \\
\hline - Signal Ger. & 20A Microvolter 175.00 \\
\hline - TS 10A & Altimeter Test Set 32.50 \\
\hline - TS 16/A. & Altimeter Test Set \\
\hline - TS 36 & Power Meter, 3:CA1 \\
\hline - TS 47/APR & Test Osc. 50-3000 MC. 325.00 \\
\hline 1- TS,56/AP & Slotted Line, 500.MC 325.00 \\
\hline - TS 127/UP & Wavemeter, 300-700 MC..... '72.50 \\
\hline - TS 69/AP & Wavemeter. 340-1000 MC . . . 72.50 \\
\hline - TSi70/AP & Pwr. Meter. 200-800 MC \\
\hline - TS 110/AP & Echo Box. 2400-2700 MC \\
\hline
\end{tabular}

\section*{MICROWAVE ANTENNA EQUIPMENT}

\section*{\(\vec{y}\) AT
As,
Rel
Rel
dit \\ Toy "AMM Dinoie \\ \(\square\) \\ 30' SIGNAL CORPS RADIO MASTS}

Complete set for erection of a funl flat top antemna. Of ruged plymuld construction telescoping into 3 ten-
foot section tor rast itowage and transportation. A
perfect set-hio for setting out. Supolied complete: 2

10 CM GUN-SIGHT ANTENNA

PULSE TRANSFORMERS
G.E. K K273I lkepetition Rate: 635 PPS. Pri lmp:

 U. 10198 Irri: \&5KV. ! \(\begin{gathered}\text { D. } 166173: \text { Video. leation } \\ \text { 2NIC }\end{gathered}=50: 900\) Ohms 10KC-G.E.K.-2745
G.E.K.-2744-A. 11.5 KV lligh voltage. 3.2 KV Low
or 1 micresec. (s Coli IIs....................... \(\$ 39.50\)
W.E. DI69271 Hi Volt input pulse Transformer. . \(\$ 27.50\) G.E. K2450A. Will recrive 13K \(\boldsymbol{I}^{4}\) micro-second pulse KiV4. WCM.... \(\$ 34.50\) Ray UX 7896 -Pulse Output Pri. 5v. sec. 41r.... \(\$ 7.5\) Ray UX \(8+12\) - l"ulse imersion- \(40 \mathrm{v}+40 \mathrm{r} \ldots . .\). PHILCO 352-7250, 352-7251, 352-7287 UTAH Y332, 9278. 9311.
RAYTHEO UX8693, UX5986.............. \(\$ 5 \mathrm{ca}\) W.E.: D-IG6310. D-I6638, KS 9800, KS9948

DELAY LINES

PULSE EQUIPMENT:

H/I-Volt Pulse Bulkhead. Feed-
 Tor out 35 kiV Errap. iate 624 to 1348 Pps. Plk. KW (1200 KW MODULATOR. Pls. power 50 amp . 24 pulse line impedance 50 ohms. Circuit series charging rectifiers. \(11 \bar{\omega}, 400\) cycle indut. New with all
tubes \(\$ 49.50\)

\section*{400 CYCLE TRANSFORMERS}
\begin{tabular}{|c|c|c|}
\hline Stock & (All Primaries \(\begin{aligned} & 115 \mathrm{Ratings} \\ & \mathbf{4 0 0} \text { Cycles) } \\ & \text { R }\end{aligned}\) & co \\
\hline 352-7039 & 640VCT @ \(250 \mathrm{MA}, 6.3 \mathrm{~V} / .9 \mathrm{~A}, 6.3 \mathrm{~V} / 6 \mathrm{~A}\),
\(5 \mathrm{~V} / 6 \mathrm{~A}\) & \\
\hline 702724 & 9800/8600@ & 95 \\
\hline 12033 & \(4540 \mathrm{~V} / 250 \mathrm{MA}\) & 7 \\
\hline K59584 & \(5000 \mathrm{~V} / 290 \mathrm{MA}, 5 \mathrm{5V} / 10 \mathrm{~A}\) & 22.50 \\
\hline 521652 & \(13.500 \mathrm{~V} / 3.5 \mathrm{MA}\) & 14.65 \\
\hline KS9607 & 734 VCT/.177A, 1710 & 6.79 \\
\hline 352-7273 & \(00 \mathrm{VCT} / 350 \mathrm{MA}, 6.3 \mathrm{~V} / 0.9 \mathrm{~A}, 6.3 \mathrm{~V} / 2.5 \mathrm{~A}\) \(6.3 / .06 A, 5 \mathrm{~V} / \mathrm{CA}\) & - \\
\hline 352-7070 & \begin{tabular}{l}
\(2 \times 2.5 V / 2.5 A(2 K V\) \\
\(1200 / 1000 / 75\) OV TEST) \(6.3 \mathrm{~V} / 2.25 \mathrm{~A}\), \\
\hline
\end{tabular} & , 7.45 \\
\hline 352-7196 & \begin{tabular}{l}
\(1140 \mathrm{~V} / 1.25 \mathrm{MA}, 2.5 \mathrm{~V} / 1.75 \mathrm{~A}, 2.5 \mathrm{~V} / 1.75 \mathrm{~A}\) \\
- 5 KViTest
\end{tabular} & \({ }^{\text {A }} 3.95\) \\
\hline 352-7176 & \(320 \mathrm{VCT} / 50 \mathrm{MA}, 4.5 \mathrm{~V} / 3 \mathrm{~A}, 6.3 \mathrm{VCT} / 20 \mathrm{~A}\), 2X6.3VCT/6A & , 4.75 \\
\hline R & 2.5V/1.75A, \(66.3 \mathrm{~V} / 2 \mathrm{~A}-5 \mathrm{KV}\) Te & 2.39 \\
\hline 901692 & 13 V 4 A & 2.45 \\
\hline 901699-501 & 2.77 V (a) & 3.45 \\
\hline 901698-501 & \(900 \mathrm{~V} / 75 \mathrm{MA}, 100 \mathrm{~V} / 04 \mathrm{l}\) & 4.29 \\
\hline UX8855C & 900VCT/.067A, 5 & 3.79 \\
\hline RA6405-1 & \(800 \mathrm{VCT} / 65 \mathrm{MA}, 5 \mathrm{VCT} / 3 \mathrm{~A}\) & 3.69 \\
\hline T-48852 & \(700 \mathrm{VCT} / 80 \mathrm{MA}, \mathbf{5 V} / 3 \mathrm{~A}, 6 \mathrm{6V}\) & 4.25 \\
\hline 352-7098 & \(2500 \mathrm{~V} / 6 \mathrm{MA}, 300 \mathrm{VCT}, 135 \mathrm{MA}\). & 5.95 \\
\hline KS 9336 & \(1100 \mathrm{~V} / 50 \mathrm{MA}\) TAPPED \(625 \mathrm{~V} 2.5 \mathrm{~V} / 5 \mathrm{~A}\) & 3.95 \\
\hline M-7474319 & - \(6.3 \mathrm{~V} / 2.7 \mathrm{~A}, 6.3 \mathrm{~V} / .66 \mathrm{~A}, 6.3 \mathrm{VCT} / 21 \mathrm{~A} .\). & 4.25 \\
\hline KS 8984 & \(27 \mathrm{~V} / 4.3 \mathrm{~A}, 6.3 / 2.9 \mathrm{~A}, 1.25 \mathrm{~V} / .02 \mathrm{~A}\) & 2.95 \\
\hline 52 C 080 & 526VCT/50MA, 6,3VCT/2A, 5 VCT/2A & 3.75 \\
\hline 32332 & \(400 \mathrm{VCT} / 35 \mathrm{MA} .6 .4 \mathrm{~V} / 2.5 \mathrm{~A}, 6.4 \mathrm{~V} / .15 \mathrm{~A}\) & 3.85 \\
\hline 68G631 & 1150-0-1150V & 2.75 \\
\hline 80G198 & 6VCT/.00006 & 1.75 \\
\hline 30 & VCT & \\
\hline
\end{tabular}

\section*{A \\ A LEADING SUPPLIER \\ A. C. \\ SYNCHRONOUS MOTORS}

\section*{OF ELEGIRONIO \& AIRCRAFT EQUIPMENT}

110 Vt. 60 Cycle
HAYDON TYPE 1600, \(1 / 240\) RPM HAYDON TYPE 1600, \(1 / 60\) RPM HAYDON TYPE 1600, 4/5 RPM HAYDON TYPE 1600, 1 RPM HAYDON TYPE 1600, 1 1/5 RPM TELECHRON TYPE B3, 2 RPM telechron type bc, 60 RPM HOLTZER CABOT, TYPE RBC 2505, 2 RPM, 60 oz. 1 in, torque.

\section*{SERVO MOTORS}

PIONEER TYPE CK \(1,2 \phi 400\) CYCLE
PIONEER TYPE 10047-2-A, \(2 \phi, 400\) CYCLE, with 40:1 reduction gear.

\section*{D. C. MOTORS}

BODINE NFHG-12, 27 VTS., governor controlled, constant speed 3600 RPM, 1/30 H.P.

DELCO TYP 5068750, 27 VTS., 160 RPM, built in brake.
DUMORE, TYPE EIY2PB, 24 VTS., 5 AMP., . 05 H.P., 200 RPM.
GENERAL ELECTRIC, TYPE 5BAIOAJ18D, 27 VTS., 110 RPM, 1 ox. 1 ft. torque. GENERAL ELECTRIC, TYPE 5BAIOAJ37C, 27 VTS., 250 RPM, 8 oz., 1 in. torque.
BARBER COLMAN ACTUATOR TYPE AYLC 5091, 27 VTS., 7 amp., 1 RPM, 500 in. lbs. torque.
WHITE ROGER ACTUATOR TYPE 6905, 12 VT., 1.3 amp ., \(11 / 2\) RPM, 75 in . lbs. torque.

\section*{AMPLIDYNE AND MOTOR}

AMPLIDYNE, GEN, ELEC. 5AM31NJIBA input 27 vts., at 44 amp . output 60 vts . at 8.8 amp., 530 watts.

MOTOR, GEN. ELEC. 5BA50LJ22, armature 60 vts. at 8.3 amp., field 27 vts. at 2.9 amp. \(1 / 2\) H.P., 4000 RPM.

\section*{PIONEER AUTOSYNS 400 CYCLE}

TYPE AY1, AY5, AY14G, AY14D, AY20, AY27D, AY38D, AY54D.
PIONEER AUTOSYN POSITION.
INDICATORS \& TRANSMITTERS.
TYPE 5907-17, single, Ind. dial graduated 0 to \(360^{\circ}, 26\) vts., 400 cycle.
TYPE 6007-39, dual Ind., dial graduated 0 to \(360^{\circ}\), \(26 \mathrm{vts} ., 400\) cycle.
TYPE 4550-2-A, Transmitter, 2:1 gear ratio

\section*{INVERTERS}

WINCHARGER CORP. PU 16/AP, MG750, input 24 vts. 60 amps. outputs 115 vts., 400 cyele, 6.5 amp ., 1 phase.
HOLTZER CABOT, TYPE 149F, input 24 vts . at 36 amps., output 26 vts. at 250 V.A. and 115 vts. at 500 V.A., both 400 cycle, 1 phase.
PIONEER TYPE 12117, input 12 vts., output 26 vts. at 6 V.A., 400 cycle.
PIONEER TYPE 12117, input 24 vts., output 26 vts. at 6 V.A., 400 cycle.
WINCHARGER CORP., PU/7, MG2500 input 24 vts. at 160 amp., output 115 vts. at \(21.6 \mathrm{amp} ., 400\) cycle, 1 phase.
GENERAL ELECTRIC, TYPE 5D21NJ3A, input 24 vts. at 35 amps., output 115 vts. at 485 V.A., 400 cycle, 1 phase.
LELAND, PE 218 , input 24 vts . at 90 amps. output 115 vts. at \(1.5 \mathrm{~K} . V . \mathrm{A} ., 400\) cycle, 1 phase.
LELAND, TYPE D.A. input 28 vts., at 12 amp. output 115 vts. at 115 V.A., 400 cycle, 3 phase.

\section*{ENGINE HOUR METER}

JOHN W. HOBBS, MODEL MI-277 records time up to 1000 hours, and repeats, operates from 20 to 30 volts.

\section*{VOLTAGE REGULATOR}

LELAND ELEC. CO. TYPE B, CARBON PILE. Input 21 to 30 volts D.C. regulated output 18.25 vts . at 5 amp .
WESTERN ELEC. TYPE BC937B, input 110 to 120 volts 400 cycle. Output variation 0 to 7.2 ohms at 5 to 2.75 amps.
WESTERN ELEC, TRANSTAT, input 115 vts ., 400 cycle output adiustable from 92 to 115 vts., rating . 5 K.V.A.
AMERICAN TRANS. CO., Transtat input 115 vts., 400 cycle output 75 to 120 vts . or 0 to 45 volts, rating .72 K.V.A.

\section*{SYNCHROS}

1 F SPECIAL REPEATER 115 vt. 400 cycle. 2JIF1 GENERATOR, 115 rt .400 cycle.
2 JIF 3 GENERATOR, 115 vt .400 cycle.
2JIG1 CONTROL TRANSFORMER 57.5 rt. 400 cycle.
2J1H1 DIFFERENTIAL GEN. 57.5/57.5 vt. 400 cycle.
5G GENERATOR, 115 vt. 60 cycle.
5DG DIFFERENTIAL GEN. \(90 / 90\) vts. 60 cycle.
5HCT CONTROL TRAN. \(90 / 55 \mathrm{rts} .60\) cycle. 5CT CONTROL TRAN. 90/55 vts. 60 cycle. 5SDG DIFFERENTIAL GEN. \(90 / 90\) vts. 400 cycle.

\section*{GENERAL ELECTRIC D. C. SELSYNS}
8TJ9-PAB TRANSMITTER 24 VTS.
8TJll- INDICATOR, dial 0 to \(360^{\circ}, 24\) vts.

\section*{RECTIFIER POWER SUPPLY}
HAMMETT ELECTRIC MFG. CO. MODEL SPS-130. Input voltage 208 or 230 volts, 60 cycle, 3 phase, 21 amps. Output 28 volts at 130 amps. continuous duty, 8 point tap switch, voltmeter ammeter, thermo reset all on front panel.

\section*{MISCELLANEOUS}
PIONEER MAGNETIC AMPLIFIER ASSEMBLY Saturable reactor type, designed to supply variable voltage to a servo motor such as CK1, CK2, CK5 or 10047.
SPERRY A5 CONTROL UNIT, part No. 644836.
SPERRY A5 AZIMUTH FOLLOW-UP AMPLIFIER, part No. 656030.
SPERRY A5 DIRECTIONAL GYRO, part No. 656029,115 vt. 400 cycle, 3 phase.
SPERRY A5 PILOT DIRECTION INDICATOR, part No. 645262 contains AY 20.
ALLEN CALCULATOR, TYPE C1, TURN \& BANK IND., part No. 21500,28 vts. D. C. TYPE C1, AUTO-PILOT FORMATION STICK, part No. G1080A3.
PIONEER GYRO FLUX GATE AMPLIFIER, type 12076-1-A, 115 vt. 400 cycle.

26 vts., 400 cycle.

ALL PRICES
GFAT O. BE.
N. Y.

\section*{U. G. CONNECTORS}

\section*{"UHF"}

\section*{COAXIAL CABLE CONNECTORS}

The following low loss RF connectors and adapters have been especially designed for use with RG coaxial cable. There is a connector for every RF and UHF application.

- All Connectors Are Brand New
- All Connectors Are JAN Approved

IMMEDIATE DELIVERY FULLY GUARANTEED

Certificate of Compliance on Request
\begin{tabular}{|c|c|c|}
\hline NO. & JAN NO. & DESCRIPTION \\
\hline 83-IR & SO 239 & RECEPTACLE \\
\hline 83-1 SP & PL 259 & PLUG \\
\hline 83-168 & UG 176/U & ADAPTER \\
\hline 83-185 & UG 175/U & ADAPTER \\
\hline 83-1 SPN & PL 259A & PLUG \\
\hline \(83-776\) & UG 203/U & PLUG \\
\hline 83-1 RTY & & RECEPTACLE \\
\hline 83-1H & UG 106/U & HOOD \\
\hline 83-1 HP & & HOOD \\
\hline 83-765 & UG 177/U & HOOD \\
\hline 83-1 AC & & CAP \& CHAIN \\
\hline 83-1BC & & CAP \& CHAIN \\
\hline 83-1T & M 358 & T CONNECTOR \\
\hline 83-1 AP & M 359 & ADAPTER \\
\hline 83-1 AP & M 359A & ADAPTER \\
\hline 83-1 J & PL. 258 & JUNCTION \\
\hline 83.1 F & PL 274 & FEED THRU \\
\hline 83-22SP & UG 102/U & TWIN PLUG \\
\hline 83-29R & UG 103/U & RECEPTACLE \\
\hline 83-22AP & UG 104/U & ADAPTER \\
\hline 83-29J & UG 105/U & JUNCTION \\
\hline 83-29T & UG 196/U & T CONNECTOR \\
\hline 83-29F & PL 275 & FEED THRU \\
\hline 83-2SP & PL 295 & PLUG \\
\hline 83-2R & SO 265 & RECEPTACLE \\
\hline
\end{tabular}

WHLGREEN INDUSTRIES • 99 MURRAY STREET, NEW YORK 7, N. Y. • worth 4-2490
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline TYPE & TYPE & TYPE & TYPE & TYPE & TYPE & TYPE \\
\hline U/6/U & ŪG 37 A/U & UG 97 A/U & PL 156A & PLP 200 & PLP 256 & UG 421/U \\
\hline U/7/U & UG 38 A/U & PL 98 & UG \(156 / \mathrm{U}\) & UG \(201 / \mathrm{U}\) & PLQ 256 & UG 492/U \\
\hline UG 7A/P & UG 39/U & UG 98/U & UG 157/U & UG 202/U & UG 956/U & UG 493/U \\
\hline U/8/U & UG 40/U & UG 98 A/U & UG 158/U & UG 203/U & PLP 257 & UG 478/U \\
\hline UG 8A/P & UG 45/U & UG 100/U & CW 159/U & UG 204 A/U & PLQ 257 & UG 479/U \\
\hline U/9/U & UG 46/U & UG \(100 \mathrm{~A} / \mathrm{U}\) & UG 159/U & UG 206/U & UG 257/U & UG 482/U \\
\hline UG9/U & UG 49/U & UG 101/U & PL 160 & UG 207/U & PL 258 & UG 483/U \\
\hline U/10/U & UG 50/U & UG 101 A/U & UG/160 A/U & PL 208 & UG 259/U & UG 484/U \\
\hline UG 10/U & UG 57/U & UG 102/U & UG \(160 \mathrm{~B} / \mathrm{U}\) & UG 208/U & PL 259 & UG 486/U \\
\hline U/11/U & UG \(57 \mathrm{~B} / \mathrm{U}\) & PLP 104 & M 160 & UG 212 A/U & PL 259A & UG 487/U \\
\hline UG 11/U & UG 58/U & PLQ 104 & M 161 & PL 213 & UG 959/U & UG 489/U \\
\hline U/12/U & UG 58 A/U & UG 106/U & M 162 & UG \(213 \mathrm{~A} / \mathrm{U}\) & UG 960/U & UG 491/U \\
\hline UG 12/U & UG 59/U & UG 107 A/U & M 163 & UG \(215 / \mathrm{U}\) & UG 960 A/U & UG 492/U \\
\hline UG 13/U & UG 59 A/U & UG 107 B/U & M 164 & PL 216 & UG \(961 / \mathrm{U}\) & UG 493/U \\
\hline UG 14/U & PLP 60 & PL 108 & PLP 164 & UG 216/U & UG 261 A/U & UG 494/U \\
\hline UG 15/U & PLR 60 & UG 108/U & UG 166/U & UG \(217 / \mathrm{U}\) & UG 262/U & UG 495/U \\
\hline U/16/U & UG 60/U & UG 108 A/U & PL 167 & UG 818/U & UG 266/U & UG 496/U \\
\hline UG 16/U & UG \(60 \mathrm{~A} / \mathrm{U}\) & UG 109/U & PLQ 167 & UG 219/U & UG 267/U & UG 497 \\
\hline UG 17/U & PL 61 & UG \(109 \mathrm{~A} / \mathrm{U}\) & PLP 167 & UG 890/U & UG 969/U & UG 499/U \\
\hline UG 18/U & PLQ 61 & & & & UG 270/U & UG 503/U \\
\hline UG 18 A/U & UG 61/U & & & & UG 971/U & MX 504 \\
\hline \[
\text { UG } 18 \text { B/U }
\] & \[
\text { UG } 61 \text { A/U }
\] & & & & UG \(279 / \mathrm{U}\) & UG 505/U \\
\hline UG 19/U & UG 61 B/U & - & & & UG 273/U & UG 506/U \\
\hline UG \(19 \mathrm{~A} / \mathrm{U}\) & PL 63 & & U. G. DIVIS & & PL 274 & UG 526/U \\
\hline \[
\begin{aligned}
& \text { UG } 19 \mathrm{~B} / \mathrm{U} \\
& \text { UG } 20 / \mathrm{U}
\end{aligned}
\] & PLQ 63 & & U. G. DIVIS & & UG \(274 / \mathrm{U}\) & UG 530/U \\
\hline UG 20 A/U & PLQ 64 & & & & UG 276/U & UG 531/U \\
\hline UG \(20 \mathrm{~B} / \mathrm{U}\) & PL 71 & UG 110/U & UG 167/U & UG 292/U & MC 277 & UG 532/U \\
\hline UG \(21 / \mathrm{U}\) & PL 72 & PL 112 & UG 167 A/U & UG 893/U & MC 277A & UG 533/U \\
\hline UG 21 A/U & UG 73/U & PL 114 & PLP 169 & UG 224/U & UG 279/U & UG 535/U \\
\hline UG \(21 \mathrm{~B} / \mathrm{U}\) & PLP 74 & UG 114/U & M 170 & PLP 227 & UG 282 & UG 536/U \\
\hline UG \(21 \mathrm{C} / \mathrm{U}\) & PLP 77 & UG 115/U & PL 170 & PLQ 227 & UG 286/U & MX 539 \\
\hline UG 21 D/U & PLQ 77 & PL 118 & M 171 & PLP 230 & UG 987/U & UG 541/U \\
\hline UG 22/U & PL 80 & PL 119 & PL 171 & PLQ 230 & UG 990/U & MX 543 \\
\hline UG 29 A/U & UG 80/U & UG 119 U/P & PL 172 & UG \(231 /\) U & UG 991/U & MX 54/U \\
\hline UG \(22 \mathrm{~B} / \mathrm{U}\) & UG 83/U & PL 122 & UG 159 A/U & UG 233/U & UG 994/U & UG 557/U \\
\hline UG \(22 \mathrm{C} / \mathrm{U}\) & UG 85/U & PL 123 & UG 160 A/U & UG 234/U & PL 295 & MX 564/U \\
\hline UG \(23 / \mathrm{U}\) & UG 86/U & CW 193 A/U & UG \(160 \mathrm{~B} / \mathrm{U}\) & UG 235/U & UG 299/U & UG 564/U \\
\hline UG \(23 \mathrm{~A} / \mathrm{U}\) & UG 87/U & LP 126 & UG 166/U & UG 236/U & UG 306/U & UG 565/U \\
\hline UG 23 B/U & UG 88/U & M130 & UG 167/U & UG 237/U & UG 309/U & UG 567/U \\
\hline UG \(23 \mathrm{C} / \mathrm{U}\) & UG 88 B/U & UG 131/U & UG 167 A/U & SO 239 & UG 318/U & UG 568/U \\
\hline U/26/U & UG 89/U & PL 133 & UG 173/U & UG 240/U & UG 333/U & UG 569/U \\
\hline UG \(27 \mathrm{~A} / \mathrm{U}\) & UG 90/U & PL 138 & UG 174/U & UG \(241 / \mathrm{U}\) & UG 334/U & UG 570/U \\
\hline UG 27 B/U & UG 91/U & UG 146/U & UG 175/U & UG 242/U & UG 335/U & UG 571/U \\
\hline UG 28/U & UG 91 A/U & PL 147A & UG 176/U & UG 243/U & UG 347/U & UG 572/U \\
\hline UG 28 A/U & UG 92/U & PL 148A & UG 180 A/U & UG 244/U & UG 348/U & UG 573/U \\
\hline UG 28 B/U & UG 92 A/U & UG 148 A/U & M181 & UG 245/U & UG 349/U & UG 586/U \\
\hline UG 99/U & UG 93/U & UG \(149 \mathrm{~A} / \mathrm{U}\) & UG 181 A/U & UG 946/U & UG 359/U & UG 593/U \\
\hline UG 29 A/U & UG 93 A/U & M150 & UG 182 A/U & UG 249/U & M 358 & UG 625/U \\
\hline UG \(29 \mathrm{~B} / \mathrm{U}\) & UG 94/U & M 151 & PL 184 & UG \(950 / \mathrm{U}\) & M 359 A & UG 627/U \\
\hline UG 30/U & UG 94 A/U & PL 151 A & PL 188 & UG \(251 / \mathrm{U}\) & UG 361/U & UG 698/U \\
\hline UG 32/U & UG 95/U & PL 152A & UG 188/U & UG 252/U & UG 402/U & UG 631/U \\
\hline UG 33/U & UG \(95 \mathrm{~A} / \mathrm{U}\) & PL 154 A & UG 190/U & UG 253/U & MT 412 & UG 634/U \\
\hline UG 34/U & PL 96 & UG 154/U & UG 199 A/U & PLP 254 & UG 413/U & UG 643 \\
\hline UG 35 A/U & UG 96/U & CW 155/U & M 192 & PLQ 254 & UG 414/U & MX 913/U \\
\hline UG 36/U & UG 96 A/U & UG 155 A/U & MX 195/U & UG 954 A/U & UG 415/U & \\
\hline UG 37/U & UG 97/U & UG 155/U & UG 197/U & UG 255/U & UG 419/U & \\
\hline
\end{tabular}

\section*{"A N" CONNECTORS - Immediate Delivery}

\section*{Buy TOP Radio-Electronic Values!}

\section*{AIR THIMMER CONDENSERS}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} & & \multicolumn{2}{|r|}{Fig. E} & \multicolumn{3}{|c|}{Fig. F} \\
\hline STOCK NO. & \[
\begin{aligned}
& \text { CAPACITY } \\
& \text { Min. Max. }
\end{aligned}
\] & MANUFACTURER'S NUMBER & FIGURE & SHAFT LENGTH & \begin{tabular}{l}
POST \\
LENGTH
\end{tabular} & GROUND LUG & \[
\begin{aligned}
& \text { PRICE } \\
& \text { EACH }
\end{aligned}
\] \\
\hline 2937. & \(2.5-7\) & Hamm 250034 & & & & & \\
\hline \(5716^{*}\) & \(3.5-8\) & ASP 17A224. & - & \(5 / 16\)
\(9 / 16\) & \(3 / 32\)
\(3 / 32\) & Right & 18 d \\
\hline 5717 & \(3-10\) & ASP 22G192. & A & \(9 / 16\) & \(3 / 32\)
\(3 / 32\) & & \(25 d\) \\
\hline 4090 & \(2-15\) & ASP 482212. & E & 1 \(\times 1 / 4 \times\) & 3/32 & \[
\begin{aligned}
& \text { To Post } \\
& \text { Left }
\end{aligned}
\] & 18 c \\
\hline 2939 & \(3-15\) & ASP 217-2... & C & \(5 / 16 \ldots\) & \(3 / 32\)
\(1 / 4\) & Left Top & 25d \\
\hline 5718 & \(3-15\) & Telrad 682070-30. & D & 5/16 & 1/3/32 & Top Right & 208 \\
\hline \[
5719
\] & \(3-15\)
\(3-25\) & Hamm 682070-30. & D & 5/16 & \(3 / 32\)
\(3 / 32\) & Right Right & \(20 d\) \\
\hline \[
\begin{aligned}
& 231 \\
& 5720
\end{aligned}
\] & \(3-25\) & CAIM 481881. & A & \(9 / 16\) & 3/32 & Left. & 25 d \\
\hline \[
\begin{aligned}
& 5720 . \\
& 5721 .
\end{aligned}
\] & 3
\(2.5-27\) & Hamm 11725-1... & D & 5/16 & 3/32 & Right & 25 \% \\
\hline 5721
5723 & - \(2.5=28\) & Comar M420864-6 & D & 5/16. & 3/32 & Top. & 25 f \\
\hline 5724 & . \(4.5-39\) & OB7751E-25 & \({ }_{\text {A }}\) & 9/16 & 3/32 & To Post & 25 \% \\
\hline 5086 & . 5 - 30 & Hamm SBL-72265-3 & B & 5/16 & 5/16 & Right. & \(30 ¢\) \\
\hline 232. & . \(5-54\) & Hamm ESA682070-35 & D & 1/2. & 3/32 & Bottom & 30 d \\
\hline 5087. & - \(5-54\) & Hamm BL 72265-4... & B & 5/16. & \(3 / 32\)
\(3 / 32\) & Left. & \(40 ¢\) \\
\hline 236** & . \(8-140\) & ASP 19A34504... & D & 1/2.16. & \(3 / 32\)
\(3 / 32\) & \begin{tabular}{l}
Right \\
To Post
\end{tabular} & \(40 \%\) \\
\hline 6124.
5726. & \(6-140\)
\(.9-204\) & \begin{tabular}{l}
ASP 19 A 54023 \\
OAK 114M510
\end{tabular} & E & 5/8* & 1/4 & & 75 \% \\
\hline \multicolumn{3}{|r|}{\multirow[t]{3}{*}{\begin{tabular}{l}
* Double spaced piates. \\
** Adjusts both ends, some available w/dust cover \\
Fig. A Round Shaft Screwdriver edf. w/locknut. \\
Fig. B Bakelite Knob Ins. Screwdriver adj.
\end{tabular}}} & \multicolumn{3}{|r|}{\multirow[t]{3}{*}{\begin{tabular}{l}
Fig. C Round Shaft Screwdriver adf. \\
Fig. D) Hexnut Screwdriver adj. \\
Fig. It \(1 / 4\) Round Shaft.
Fig. F Double End Plate.
\end{tabular}}} & Top & 95 d \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

\section*{RELAYS}

LEACH TYPE 1204. D.P.S.T \(1 / 4 "\) Diam. Normally open contacts. Bakelite
base. 24 V.D.C., 265 ohm Coil. \(\underset{\substack{\text { Stock } \\ \text { No. } 6169 \mathrm{~A}}}{\substack{\text { Price } \\ \text { Each }}} \mathbf{\$ 1 . 9 5}\)
ALLIED CONTROL TYPE BOX 60 D.P.D.T. \(1 /{ }^{\prime \prime}\) Diam. Contacts. One Pole makes
before break. 9.6 V.D.C., 40 ohm Coil.

STRUTHERS-DUNN_ TYPE GIAXXIOO. S.P. S.T. Normally open contacts rated at 20 amps
@ 24 V.D.C. 80 ohm, 24 V.D.C. Coil.
\[
\begin{array}{ccc}
\text { Stock } \\
\text { No. } 6171 \mathrm{~A} & \substack{\text { Prieo } \\
\text { Each }} & 75 ¢
\end{array}
\]

10 MFD. - 600 VDC
 Capacitor with Universal Mounting Ring. 2 -
\(7 / 1\) IV \(^{6}\) Diameter, \(314^{*}\) high. Bakelite insulated
terminals.
\[
\begin{array}{cc}
\substack{\text { Stock } \\
\text { No. } 5958 \mathrm{~A} \text { Sace } \\
\text { Each }} & 95 ¢ \\
\hline
\end{array}
\]

9.62 mmfd per section. 6.34 mmfd sections in series. Double ceramic end plates and bear-
ings. \(1 / 4^{\prime \prime}\) diam. shaft. \(5 / 16^{\prime \prime}\) " long. 065 Plate spacing end plates \(1.8 / 8\) square. Stock
No. \(5076 . A\) FIG. \(1 \quad \begin{gathered}\text { Price } \\ \text { Each }\end{gathered} \quad 90 \notin\)
 series. Sinale ceramic ond plate \(1-\frac{1}{8^{\prime \prime}}\) square 4 diar. \(x 1 / 4^{\prime \prime}\) long shaft.
\[
\begin{array}{cccc}
\begin{array}{c}
\text { Stock } \\
\text { No. } 5077-A
\end{array} & \text { FIG. } 2 & \begin{array}{c}
\text { Price } \\
\text { Each }
\end{array} & \mathbf{6 0} \boldsymbol{4}
\end{array}
\]

OIL FILLED CONDENSERS
\begin{tabular}{lcccc}
\begin{tabular}{l}
Stock \\
No.
\end{tabular} & \begin{tabular}{c}
Capacity \\
MFD.
\end{tabular} & \begin{tabular}{c}
D. C.WKG. \\
Voltage
\end{tabular} & & Dimensions
\end{tabular}

All have ceramic insulated terminals. All are NEW, standard name brands,

\subsection*{6.3 VOLT FILAMENT TRANSFORMERS}

Primary 115 Volt 60 Cycle 1600 Insulation Three 6.4 Volt Secondaries
6.3 Volts @ 4.9 Amps. Horizontal Half Shell Mounting. 21/4" \(x\)
 Stock No. \(\quad 33 / \mathbf{g}^{\prime \prime}\) Core Size. 21/2" above Chassis. Soder 5254A Lug Terminals-All Terminals Marked.

\section*{Rado Surpins corp.}

POWER TRANSFORMER
Horizontal double half shell type.
PRI: 117 Volt- 60 Cycle.
SEC: \(265.0-265\).
SEC: \(265.0-265 \vee\) V.C. @ 40 MA .
SEC: 6.3 V.A.C. \(\#\) i. 65 amps.
MTG. Centers \(21 /{ }^{* \prime \prime} \times 2^{\prime \prime}\) amps.
H.V. Center tan is orounded to cor
Stock
No. 6183 A
Price
Each
\$1.25

\section*{CANNON CONNECTORS}

Popular 3 contact polarized lateh lock connectors
for low-level sound transmission circuits. 6172 is for low-level sound transmission circuits. 6172 is
straight cord female type. 6173 is wall mount restraight cord female
ceptacle male type.
\begin{tabular}{ccc}
Stock & & Price \\
No. & Type & Each \\
\(6172 A\) & \(\times L-3-11\) & 35 \\
\(6173 A\) & \(X L-3-14\) & \(30 ¢\) \\
\hline
\end{tabular}

\section*{PLANETARY DRIVE}

CRONAME PLANETARY DRIVE. 5 to 1 ratio. ration drive or will accommodate
多
direct drive. direct drive
\begin{tabular}{ccc}
\begin{tabular}{c}
Stock \\
No. 6146 A
\end{tabular} & \begin{tabular}{c}
Price \\
Each
\end{tabular} & \(\mathbf{2 5}\) \\
\hline
\end{tabular}

BRADLEY INSTRUMENT RECTIFIER 3 BRADLEY \#CX2E4E-69 Copper Oxide Rectifier,
\[
\begin{aligned}
& 3 \text { color coded insulated wire leads. } \\
& \text { Stock Price }
\end{aligned}
\]
\begin{tabular}{ccc}
\begin{tabular}{c}
Stock \\
No. 6184 A
\end{tabular} & \begin{tabular}{c}
Price \\
Each
\end{tabular} & \(50 \neq 1\)
\end{tabular}

RCA and KENRAD
Individually Boxed
JAN 826's
\(75 ¢{ }_{1}^{\text {Eaah }}\) hots
85¢ ea
RAYTHEON
Individually Boxed JAN VT-127's
\(\$ 1.95 \underset{\substack{\text { Each } \\ \text { loc } \\ \text { Lots }}}{\substack{\text { Lots }}}\)
35 ¢ each
3 far \(\$ 1.00\)

732 South. Sherman Street Chicago 5, Hlinois Phone: HArrison 7-5923

\section*{TIME'S PRICES CAN'T BE BEAT}

\section*{UG CONNECTORS}

\section*{KINGS - IPC - AMPHENOL — DIAMOND}

THE MOST COMPLETE INVENTORY OF UG CONNECTORS AT PRICES THAT ARE UNBEATABLE

ALL CONNECTORS IN FULL COMPLIANCE WITH JAN SPECIFICATIONS

Time Electio offers these proudly sampling of ustings as a ventory and the vast into be found at Time It's Time for a change to dependable ice, complete inventory

\title{
Checked-Tested ond APPROVED
}

It has to be right! when it's from Semler. Semler is one of the leading suppliers of precision ess equipment to the aircraft industry. Semler is a recognized and approved source of supply for many foreign and U.S. Government agencies.

\section*{...WHEN IT'S FROM}

\section*{SCR-291} Direction Finding Equipment

> d senil-portable radio direc-
tion finder using \(\mathbf{U}\)-Adcock type antenna system for-ground station operation. Instantaneous visual bearing indications are given on the fact of a \(5^{\prime \prime}\) cathode ray tube with an illuminated 360 degree azimuth scale projected in the same plane. The indicator instrument is equlpper with a motor driven goniomete: and beatings may be read directly without any mental calculation.
> An extremely efficient unit for the location of gun installations: radio stations and portable transmitting equipment. By the use of a dual installation and placing the rinits in diverse tocations, the signal is received On the two separate indicators and the exact point of con vergence can be readily anr
accurately calculated. urately calculated radio receiving and control ranioment as well as the bear ing indicator with goniometer.

\section*{BORESIGHT KITS}
- To boresight free and flxed .30-Cal., .50-Cal., 20 mm grins.
- For horesighting from beech or muzzie.
- Includes muzzle and breech sights, adapters, extension
- For precise optical alignment and laboratory use
 For aligning optical axis of camera and guns sight on 16 mm GSAI Camera. MARK ID-Model O-Western Union cellent latmatory instrument and precision optical collima-

ASSOCIATED INDUSTRIES, INC. photographic electronic
5730 Wilshire Blvd. Los Angeles 36, California

855 6855 Tujunga Ave. 118-18 Ventura Bl
North Hollywood. North Hollywood, California

\section*{AIRCRAFT}

California

\section*{OSCILLOGRAPH} RECORDING EQUIPMENT
For photogranhic recording of oscillographs. For automatic oveloping pape ST. GEORGE RECORDING CAMERA-Originally designefl or use with APQ-7 radar. An electrically operated 35 mm . DEVELOPING OUTFITS-The following are electrically operated and completely, automatic. They include geared motor drives, three stainless steel tanks and developing eels. Excellent for developing either flm or paper.
Type B-5-91/2" \(\times 200^{\prime} \quad\) Model K—7" \(\times 75^{\prime}\) Type B-4-9 \(91^{\prime \prime} \times 200^{\prime} \quad\) Type K-20-51/2" \(\times 50^{\prime \prime}\)

Aircraft and Communications Inverters

MG-149F Inverter-Holtzer Cabot Input: 28 V DC- 36 Amp.
Output: 26 V 400 Cycle- 500 V . Amp.-Single Phase
\[
\begin{aligned}
& 15 \text { V } 400 \text { Cycl } \\
& \text { Single Phase }
\end{aligned}
\]
\(\$ 65.00\)
MG-149H Inverter-Holtzer Cabot
Input: \(28 \mathrm{~V}-0 \mathrm{C}-44 \mathrm{Amp}\).
Output: \(26 \mathrm{~V}-400\) cycle- 250 V . Amp.-Single Phase
Single Phase 500 V. Amp........................ \$145.00
MG-153F Inverter-Holtzer Cabot
Output: \(26 \mathrm{~V}-400\) Cycle- 250 V . Amp.-Single Pliase
15V-400 Gycle-750 V. Amp.- \$125.00
94-32270A Inverter-Leland \#10285
\(\begin{aligned} \text { input: } & 27 \mathrm{~V}-0 \mathrm{O}-60 \text { A mp. } \\ \text { Output: } & 26 \mathrm{~V}-100 \text { cycte } 50 \mathrm{~V} \text {. Amp. Single Phase } \\ & 115 \mathrm{~V}-400 \text { cycle } 750 \mathrm{~V} \text {. Amp.- }\end{aligned}\)
Three Plase
\(\$ 90.00\)
PU-7 Inverter-Wincharger
lnput: 28 V OC-160 Amp
Output:
\(115 \mathrm{~V}-400\) cycle- 2500 V. Amp.
Single Phase

PU-16 Inverter-Wincharger
Input: 28 V DC-60 Amp. . 5 Amp.
Output: \(\begin{aligned} & 115 V-400 \text { cycle- } 6.5 \text { Amp. } \\ & \text { Single Phase }\end{aligned}\)
10563 Inverter-Leland
Innut:
Output:
\(281 / 2 \mathrm{~V}\) OC- 12 Amp.
11500 cycle- 115 V Amp. \(15 \mathrm{~V}-400\) cycle
Three Phase
\(\$ 75.00\)
PE-20́́ Inverter-Leland
Output: \(500 \mathrm{~V}-800\) cycle -500 V . Amp.-Single Pliase \(30 \mathrm{~V}-800\) cycle- 500 V . Amp.-
Single Phase
\(\$ 40.00\)
PE-218 Inverter-Leland-Winciarger-
Gen. Electric
Input: 28 V DC-92 Amp.
Output: \(115 \mathrm{~V}-380 / 500\) cycle- 1500 V Amp.-
\(\$ 40.00\)
778-B Inverter-Bendix
Input: \({ }^{2} 4 \mathrm{VVOC}-250 \mathrm{~V}\) Amp.
Output: 26 V 400 cycle-60 V . Amp.-Single Phase
\(115 \mathrm{~V}-400 \mathrm{cyc}\)
Single Plase
\(\$ 65.00\)

5man

\section*{AN/ARC12}

Semier has one of the most complet and extensive stocks of Electronic Test Equipmen
ments?

One only ...Just released!
RT178/ARC27
1750 Channel, manuatured hiv col
inins,
orystal
controlled, \(\mathbf{2 5 0 0}\)

Prospective purchaser must have

\section*{AIRBORNE COMMUNICATION EQUIPMENT}

\section*{RT18/ARCI Trans/ceiver}

10 \& 20 Channel AN/ARC3 Trans/ceiver SCR 718C Absolutc Dadar Altimeter AN/ARNS ILS 3 \& 6 Channel RC-103 ILS T47A/ARTI3 Transmitter BC348 Superhet. Receiyer R5/ARN7 Radio Compass SCR522 Trans/ceiver RTA IB Trans/ceiver MN62A Radio Compass CRTS3 Dual Channel Emergency Transmitter LOOP ANTENNAS

AT4/ARNI
LP21AM

> Semler Photographic Division; COMPLETE LINE OF AERIAL CAMERAS, LABORATORY, SPECIALIZE PHOTOGRAPHIC RECORDING EQUIPMENT. Semler Aircroft Division; COMPLETE LINE OF AIRCRAFT INSTRU. MENTS \& ACCESSORIES.

Magnetron and Special Purpose TUBES
\begin{tabular}{|c|c|c|}
\hline \(2 J 26\) & \$15 & 2K25 \\
\hline \(2 J 27\) & 15 & 2K48 \\
\hline \(2 J 30\) & 100 & 3 C 22 \\
\hline \(2 J 31\) & 40 & 4 C 22 \\
\hline \(2 J 32\) & 30 & 4J31 \\
\hline \(2 J 33\) & 30 & 4J50 \\
\hline 2134 & 40 & \(4 J 52\) \\
\hline \(2 J 48\) & 35 & \(700 C\) \\
\hline \(2 J 55\) & 75 & 7000 \\
\hline \(2 J 56\) & 125 & 706FY \\
\hline \(2 J 61\) & 30 & 723AB \\
\hline \(2 J 62\) & 35 & 725 \\
\hline
\end{tabular} COLLECT

\author{
if you have ony of the follow
} ing: TS3, TS12, TS13, TS33, TS120, TS146, TS147, TS148, TS155, TS174, TS175, TS239, TS251, TS268, TS375; 1-100, 1-182, 1-201; TSX4SE; AN/ ARC3; 1-152C; APN9: BC788C. Semler pays TOP BUCK for all in.

\title{
QUARTZ CRYSTALS \\ NEW LISTING
}

Made from the finest Brazilian Quartz. Will provide a high degree of activity and frequency stability. All tested and marked by the manufacturer to a very close tolerance. In the frequencies outlined below the crystals itemized under the heading "From \& To" are mostly in progressive frequencies between the limits shown (as for example: "From 3300 to 3377 ," are as follows: \(3300 \mathrm{KC}, 3301 \mathrm{KC}, 3302 \mathrm{KC}\)-, 3377 KC .) are of limited quantitics in each frequency. Thase listed singly are in quantities of 50 or more.

\section*{NEW-GUARANTEEI METERS}

\section*{IMMEDIATE DELIVERY} COAXIAL CONNECTORS

WRITE, WIRE OR PHONE FOR LIST

\section*{ATTENTION ONE EACH SPECIALS}

\section*{Panoramic Adaptor}

Model AN/APA-10. For 115 volt 400 cycle operation. Easily converted to 115 volt 60 cycle by transformer change. Special Price
\(\$ 175.00\)
Du Mont AR Range Unit
An ideal Radar Laboratory or TV Laboratory scope for observation short time duration pulses. Complete descrip. tion in MIT Radiation Lab. Series Vol. 20. Special Price.
\(\$ 600.00\)
Call ARmory 4-8989
Electro Devices, Inc.
4-6 Godwin Ave. Paterson, N. J.

\section*{DYNAMOTORS}

From our inventory. New, original containers, BD-77; DM-21; DM-32; DM-36; DY-22; PE-86 and others. Substantial quantities. Also John Oster Co. fractional horsepower motors.

LINE HARDWARE CO.
1515 N. 26 th St.
Phila. 21, Pa.

\section*{\(\square\)}

\section*{ATR－13 TRANSCEIVER}

Dynamotor powered，either 14 or 28 V ．Shock
 nel crystal controlled VHF transmitter．built－ in provision ormm．Weight，complet wit pluts，less cable， 19 Lbs．Less \(\$ 245.00\)

APR－4 New
Complete APR－5 APS－4 New Complewe
APS－6 New APS－6 New．
Complete \({ }_{\text {APT－1 }}^{\text {Complete }}\)

PORTABLE RADAR
Motel SQ． 12 cm ．Used on small ships．Has put．Operates from 110 VAC， 60 cds KW．Out
```

Part \&

```
564916
565927
K 7890443
\({ }_{564605}^{\text {K } 78943}\)

AN／ART－13 PARTS Antenna Laading

T－47A／ART－1 \({ }^{\text {Item }}\)
Barometric Switc
4－Pile Ceramic，Variable Cap． 4 Centralap－Type 843－003 Cad

GAS ENGINE POWER SUPPLY 112 Kw .110 V． 60 ens ．Complete gas engine
nower supply．New．with spare parts．P．U．R． GOVERNMENTS AIRLINES \＆

INDUSTRIALS！
Send for FREE Catalogue No． 112\(\}\) for complete list of Military，ind f WE HAVE THE LARGEST INVEN． \} WE HAVE THE LARGEST INVEN-\{ \} THE UNITED STATES.

\section*{\(-\)}

\author{
（NONONONHN
}

Complete Line \(1-7^{\top}\) Hickok Tube Checker －208 FM Signal Generator
RPC Model 644 Multimeter RPC Model 644 Multimet
He lett Packard \(200-C\) ． Heplett Packard \(200-\mathrm{C}\) －196 TS27／T \(\mathrm{BC}-538\)
\(\mathrm{BC}-1255\) BC－1255 \(\begin{array}{ll}\text { E－36 } & \text { TS34／AP } \\ \text { TS－35／AP }\end{array}\) TS34／AP
TS－35／AP
TS36／AP TS36／AP \(\begin{array}{ll}\text {－95 A } & \text { TS－45A／APM－3 } \\ -12 z & \text { TS－59／APN }\end{array}\)

\author{
TS159
} TS－159／TPX TS170／ARN TS－173／UR TS－174／UR TS175／UR TS182／UP TS184A／AP
TS204／AP TS－218 TS311A／UP TS323／UP
TS61／AP TS62／AP TS89 TS92 TS100／AP TS－102
TS111／CP TS－118／AP TSI26 TS127／／ TS127／U
TS131 15／APQ TS131
TS－148／E

\author{
3
} 1－146 1－146
TS－268／U Boonton Mod． 78B Sig．Geo． 102 F Sig．Gen． LAD Sig．Gen． LAE－2 LAYOIE Fres． Moter：sot－ 600 Mc ．

SUPREME TEST EQUIPMENT Modsl 600 Tube and Set Tester．．．．．．．． 589.50
Mlodel 616 Tube and Battery Tester．．．． 69.50

\section*{FLUX METER}

For measuring fiux density between magnet poles．Has two meters in series with a poten－ 50 n ter and battery for power supply，Range： whic 1 mounts in case．NEW．．．．．．．．．．．\(\$ 37.50\)

\section*{MISCELLANEOUS}

MIN＝DETECTOR：SCR－425 for prospecting LP－21 LOOPS：Mod．LM，AM．A，Excel．cond

\section*{\(50=\) \\ }

\section*{WORTH 5 TIMES THE PRICE！ REMOTE CONTROL UNIT \\ ELECTRONIC THYRATRON THERMOSTAT CONTROL THAT USES A PLATE CIRCUIT TRIGGER RELAY！ \\ A terrific value！．．．an electronic unit that not only can be changed over to serve many purposes but is loaded with valuable standard parts（for anyone who recognizes an outstanding buy and wants to buy it for the parts alone）． The relay alone is worth the price we＇re asking for the entire unit ．．．check the list below： \\ DON＇T PASS UP THIS OPPORTUNITY FOR ONLY \\ \(\longrightarrow\) \\ PRODUCTION \\ RUNS \\ AVAILABLE 1－115V－6．3V Filament Trans－
former \\ 1－Flectrolytic Condenser 1－Fiectrolytio C
1－Potentiomet er
Ple

 \\ Piot Lamp．Dal Assembly
Knobs．Feet \＆Assorted lldwe \\ 10 UNITS \(\begin{array}{ll}\text { 1二S．P．S．T．Switch } \\ \text { 4－Sader Tubular Condensers } & \text { Knobs．Feet \＆Assort } \\ \text { Schematio Diagrami }\end{array}\) \\ MANUEL KLEIN CO，94D Chambers St．，New Y \\ } Transtat controlled to produce high voltage DC
from 110
Nic
kit
 KV）and curreit（ \(10-20\) \LA）．NEW．．

\title{

}

\section*{TRANSCEIVER—MODEL 52}

\begin{abstract}
5W．2－way．2－channel radto transmitter－receiv－
er unt．Complete with ubes，batery charger．
microohione Less crystal
\end{abstract} miicrophone．Less crystal and antenna．Operates
from © battery，New

TRANSTAT \(\begin{array}{cc}11-5 & \text { KVA50／60 eyeles．Conmutator range } \\ 0-115 & \text { V．Max．} 100 \text { amp．} \\ \text { Good cond．．．} \$ 125.00\end{array}\)

\section*{SGeodals}

RECEIVERS－TRANSMITTERS
\(\begin{array}{lll}\text { ARC－1 } & \text { PE－125AX } & \text { RTA／113 } \\ \text { ABC－3 } & \text { B－9／APN－4 } & \text { SCR－522 }\end{array}\)

\section*{RA－52 RECTIFIER}

 AIRCRAFT－MARINE－＿ INDUSTRIAL BUYERS

\section*{We carry huge，complete line of new} and used electronic equipment－ Radar，Test Sets，Transmitters，Re－ ceivers，Hi－Voltage Condensers， Meters，Motors－and hundreds of other items．See our ad Nov／52 Electronics．Call，cable，write or phone your exact needs．REMEM－ BER：We pay top dollar for new and used radio gear！
COLUMBIA

ELECTRONICS SALES
522 S．San Pedro St．í
Los Angeles 13，Calif．

SEARCH RECEIVER—ARD-2
Frequency range 80 to 3000 Mcs . Measures RF signals from 80 to 3000 Mcs and pulse rates from 50 to 8000 cycles. The ARD-2 can be used as a Direction Finder to locate signals, or as a frequency meter by VISUAL and AURAL indicators, pro vide Originally designed and used by USN arircraft. Ideally suited for military laboratory and general purpose use.
Equipment consists of the following:
Antenna Detector-CMD-66AFH-Has variable length antennas, diode detector and silver plated tuning stub with calibrated scale.
AMPLIFIER CMD-50ADC-has three stage pulse amplifier, a trigger circuit, a pulse rote counter circuit and audio amplifier visual signal indicator, rectifier power supply which is operative on 115 Volts AC 60 to 2400 cycles current, regulated.
Test OSCILLATOR-CMD-60ABG-Has cavity frequency of 400 cycles with selection of four pulse repetition rates.
ALL CABLES AND FITTINGS, ACCESSORIES AND SHOCK MOUNTED RACK for immediate installation, plus two Technical Man SPARE
for components Preel chest includes spares for components and two extra sets of
spare tubes.

Gucranteed NEW
All the above in original export packed cases. Wt.: 113.1 bs

Price each. . . \(\$ 27500\)
EQUIPMENT SPARE PARTS
We ean ship from stock all the important spares for the following: SCR-300 Wallie Talkie

SCR-536 Handy Talkie SCR-506 (BC-652 \& 653)
SCR-211 (BC-221 Freq. Meter)
SCR-508, 528, 608, 628 Series
TCS-US Navy Transmitter \& Receiver and many others, in lesser quantities. Requests for quotations immediately answered.

\section*{TRANSMITTERS}

Western Electric, Type 34-A Carrier Shift C.W. Transmitter for 220 V. AC. Output 350 watts medium freq. New.
Federal Tel \& Tel, BC-365 Radio Range, 150 550 kc 350 watts output, C.W., from Westinhouse US N
Westinghouse US Navy Type TDE 300 to 18,100 kes 125 watts conservative, CW and less on phone, in most input voltages. M.O. Conirolled
.C.A. US Navy Type TCR Radiotelephone 6 crystal channels, 125 watts output, 2000 3000 kcs high level modulation. 110/220 VAC input.
BC-325 400 watt CW, less on phone
Many others in single lots in all power outpuis.

\section*{GUARANTEE}

Our equipment carries with it an unqualified guarantee of satisfaction to the user.
Inquiries for materiel other than those briefly listed here are welcome. We offer and sell only materiel owned by us.
Export packing facilities on the premises to expedite fast quotations overseas.

\section*{- RADIO TELEPHONE COMBINATIONS}

Bendix 70 watt Transmitter and Receiver covering low and high frequencies, emis spare parts. \(24 / 28 \mathrm{~V}\) DC input.

\section*{\#AS-1C PERSONAL PLANE TRANSMITTER \& POWER SUPPLY}

General Electric compact 12 watt oulput 'phone only, with 3105 KCS crystal Includes 6 V' 6 Xtal OSC, 26 V 6 R Amp., 26 V6 Modulators, and \(26 \times 5\) Rectifiers. 12 V DC (with vibrator) \(6^{\prime \prime}\) wide with cable. Measures \(9^{\prime \prime}\) Iong: \(6^{\prime \prime}\) wide and \(41 / 2^{\prime \prime}\) high. Ne each \$59.50
R.C.A. Model AVT.112A Trans; 10 watt out put AVR-20A Recvr; AVA-126A power supply. In three compact units for either kcs phone or CW, complete with antenna, mike, key and cables. New, less Xtals.

\section*{MICROPHONE, WESTERN ELECTRIC}
(\#1120-DA), high quality, single button press-to-talk upright telephone stand type new, individually boxed with cord and W.E. Swbd plug similar to PL-58. Perfect for airport, police commercial radiotelephone installations. New, Each...... \(\$ 8.50\)

TWX-NYI-2223
Cable-Communider, N. Y.
Tel. ADirondack 4-6174

\section*{COMMUNICATION DEVICES CO.}

2331 TWELFTH AVENUE

\section*{ \\ All equipment tested in our shops and guaranteed ready for installation in aircraft. Complete reconditioning facilities for all Electronic Equipment. "Specializing in Installations of the Highest Quality" MATERIAL IN STOCK READY FOR IMMEDIATE SHIPMENT \\ T1A Bombsight Sets, Complete with Computers and Fittings.
 Guaranteed \\ 125.00 ea. \\ SCR-183. Installations Complete. New . 125.00 ea \\ RT22/APX1 Transceiver. New . 49.50 ea \\ AVR7-HLN Receivers. New. \\ IE-36 Test Sers. New. \\ 55.00 ea \\ FT220A-SCR 274 N Rack. New \\ 39.50 ea. \\ BC-221 Frequency Meters. \\ ART-13/T47 A Transmitters. Reconditioned. Guaranteed. \({ }^{84.50}\) P.U.R. \\ DY-17 Dynamotors. Reconditioned. Guaranteed \\ P.U.R. \\ DY-12 Dynamotors. Reconditioned. Guaranteed \\ P.U.R.
P.U.}

Inquiries given prompt attention-Eorly deliveries

\section*{SPECIALS!!}

800-HB-7 Headbands. Useable.
\$. 80 ea.
31-ARB Spare Parts Kits. New Sealed
12.50 ea.

175-ARC-1 Autotune Sections less Knobs. New 1.95 ea .

6-BG Radar Spare Parts Kits (450 lbs.). New
50.00 ea.

94-PE-94 Dynamotors. Some New. All Good
1.15 ea.

8000 ft .-RG-8U Coaxial Cable. New
\(.11 \frac{1 / 2}{\mathrm{ft}}\).

\section*{JAMES S. SPIVEY COMPANY}

1406 G. ST. N.W. - Tel. STerling 3-2215 - WASHINGTON, D. C. "Buyers of Surplus Aviation Electronic Moterials"
- SCHOOLS, COLLEGES send us a list of electronic inotion inventory -
- SCHOOLS, COLLEGES send us a list of electronic items surplus to your operation -

MOVED
TO A BIGGER \& BETTER WAREHOUSE PILED HIGH WITH HARD-TO-FIND PARTS \& EQUIPT.

Just a partial list of our present stock:
- BC-348 - BC-342 - ART-13
- ARC-3 - APN-9 - LM
- BC-221 - BC-611
- VARIOUS TEST EQUIPMENT NEW EXPORT DIVISION FOR ALL FOREIGN ORDERS

Prompt attention to all
inquiries-all languages!
Attn: Schools, Labs, Hams!
WE PAY MORE
FOR RADIO PARTS \& EQUIPMENT Canh in on your surplus equipmentWr we'lil tride tor something you really

NEW ADDRESS: CANDEE-AIRCO

Dept. E-9
P. O. Box 1187

Magnolia Park Station
BURBANK, CALIFORNIA
CHerleston 0-1486•ROckwell 9-1070

COMPASSCOMMUNICATIONS COMPANY

393 GREENWICH STREET NEW YORK 13, N. Y. CABLE ADDRESS: COMPRADIO, N. Y. ALL PHONES: BEEKMAN 3-6509

\author{
WE MAINTAIN OUR OWN FULLY EQUIPPED TESTING LABORATORY TO TEST AND GUARANTEE ANYTHING WE SELL
}

\section*{Suppliers of}

MARINE, GROUND \& AIRBORNE
TRANSMITTERS
FROM 25 WATTS TO 5 KILOWATTS

\section*{RADAR \\ SONAR}

\section*{TEST SETS}

TELEPHONE EQP'T. CONVERSION EQP'T.
-mOTOR GENERATORS
—CONVERTORS
—DYNAMOTORS
—INVERTERS
—POWER SUPPLIES
-RECTIFIERS
AND

TCS-Collins mfd. Navy radiotelephones for shipboard and mobile use, compelte with all accessories for operation from 12, 24, 110 , 230 volts d.c. and 110 or 220 volts a.c.

TDE-Navy or commercial marine transmitters, complete 110 \& 220 volts d.c. and a.c.

TBK-Navy high frequency transmitter, 2-20 mcs; 500 watts output. Supplied complete with \(\mathrm{m} / \mathrm{g}\) and starter for d.c. or a.c. operation.

TBM-5ame transmitter but with speech input equipment to give 350 watts phone.

TBL -Nayy all-wave transmitter; 350 watts output: CW and phone. Supplied complete with \(\mathrm{m} / \mathrm{g}\) and starter for d.c. or o.c. operation.

TAJ-Navy intermediate freq. transmitter, \(175-550\) kcs; 500 watts output. Supplied complete with \(\mathrm{m} / \mathrm{g}\) and starter for a.c. or d.c. operation.

SCR-284-the famous mobile and ground station for field use. Large quantity of complete sets available.

MAG-10 cm. portable link radar transmitter receivers, 6 -volt operation.

TBN-200-500 kcs, complete with 220/440 volt, 3 ph. 50-60c. power supply-conservatively rated at 1 kw . output.

SCR-510 and 610 in quantity.
\(\star\)

\section*{- BEACONS}

AN/CPN-8 10 cm.
AN/CPN-6 3 cm .
YJ and YG....for shipboard use

\section*{TUBES- sPECIAL PURPOSE and TRANSMITTING TYPES}

\section*{Portable Instruments}

Molded Bakelite case \(7^{\prime \prime} \times 4 \frac{1122^{\prime \prime}}{} \times 3^{\prime \prime}\) D.C. MICROAMMETERS 5..10.. 50 microamperes THERMOCOUPLE MILLLAMMETERS 1, 5..5.. 10 millicmperes THERMOCOUPLE VOLTMETERS

5 to 500 volts
Available in multiple range combinations
Precision Electrical Instrument Co. 146 Grand Street New York 13, N. Y.

\footnotetext{
T.47/ART \(13 \&\) ATC Transmitters DY-12 Dynamotors. LM \& BC-221 irequency meters. SCR-694-C \& SCR-284-A. Teletype equipment. Motors, Parts. Panoramic Adaptors.

ARROW APPLIANCE COMPANY
Box 19, Boston 1, Mass.
Tel: Lynn 8-3100 or Richmond 2-0916
}

\section*{STANDARD BRAND JAN TUBES}

ALL ARE NEW \& GUARANTEED
\begin{tabular}{|c|c|c|c|}
\hline 2 C 40 & \$7.25 & 394 A & 53.95 \\
\hline & 6.25 & & \\
\hline \({ }_{2} \mathbf{2} 22\) & 37.50 & & 3.50 \\
\hline \({ }_{38 \mathrm{CP1}}^{21}\) & 29.50
3.75 & \({ }_{7214}\) & \\
\hline \({ }_{3 C P 1 / S i}\) & 3.75 & 807 & 1.50 \\
\hline \(3 \mathrm{EP1}\) & 3.75 & 811 & 2.75 \\
\hline 3 E 29 & 12.50 & 813 & 5 \\
\hline 6AS6 & 2.00 & 814. & 2.50 \\
\hline \(78 \mathrm{PP7}\) & 5.00 & \({ }^{8298}\) & 11.00 \\
\hline \(9 \mathrm{GP7}\) & 9.75 & \({ }^{832}\) & 8.00 \\
\hline \({ }^{109 T}\) & \({ }^{7.50}\) & 837 & 1.25 \\
\hline \({ }_{304}^{2504}\) & 17.50 & \({ }_{936}^{864}\) & \({ }^{1.95}\) \\
\hline 3074 & 4.50 & 9314
1624 & \({ }_{1.75}^{3.55}\) \\
\hline & & & \\
\hline SPECAL & & 12567. & 60
.65 \\
\hline
\end{tabular}

Many other Tubes at above low mrices.
Query us for prompt action.
Remit in full or \(20 \%\) deposit on C.O.D. erders.
Rated Firms send P.O. Order.
Minimum order \(\$ 5.00\) F.O.B. N.Y.C.
ALLIED ELECTRONIC SALES
74 CORTLANDT STREET, NEW YORK 7, N. Y. Phone Barclay 7-5839-5840

All Prices F.O.B. Los Angeles, subject to change without notice. Minimum order \(\$ 3.00\).

Los Angeles 46, California

\section*{K-RK-ARC-UG-PL-AN}

CONNECTORS In Stock for Immediate Delivery Ronnector Rorporation

137 Hamitton St., New Haven 11, Conn. Phone: Spruce 7-2513
New York Phone: LExington 2-6254

\section*{WHOLESALE ONLY}

ELECTRONIC COMPONENTS AIRCRAFT EQUIPMENT HYDRAULICS

RADIO \& ELECTRONIC SURPLUS 13933-9 BRUSH STREET
Detroit 3, Mich. TO 9-3403

MOTOR
GENERATORS
NEW
1 KVA Allis Chalmers 230 Volt D.C. to 120 Volt, 60 Cycle, A.C., Single Phase, Speed 3600 R.P.M.-packed for export. \(\$ 250.00\)

Immediate Shipment, F.O.B. Keyport, N.J.
C. C. GALBRAITH \& SON, Inc.

99 Park Place
New York, N. Y
```

Tantalum wire: FOR SALE
*)
Tungsten Ribion: .0015x.03"-.0015x.062"-.003x
Moly Ribbon: .005\times075", Tungsten mesh, KOVAR
wire .030"-.020""-.015"\#
Kovar tubing: 1/4"一1/8"OD.50% of manufacturers
F. ALEXANDER 115 W. 23d Str., N. Y. C.

```

\section*{FOR SALE}

1 DuMont 208-B
1 Sensitive Research Model D, \(1 / 4 \%, 0-1\) Volt
330 W. 42 SS-6239, Nectronics New York 36, N. \(\mathbf{Y}\).
> "Opportunity" Advertising: Think "SEARCHLIGHT" First

\title{
WAREHOUSE CLEARANCE TUBE SALE NEW, STANDARD MANUFACTURERS, IMMEDIATE DELIVERY
}

\section*{RESISTORS EB-GB-HB all makes \\ POTENTIOMETERS "J"} 1-99 ea. 100-999 ea.
\begin{tabular}{crc}
\(1 / 2\) Watt \begin{tabular}{rl}
.06 & EB
\end{tabular} & \(-4.00 / C\) & \\
other makes & \(2.75 / \mathrm{C}\) & Lots of \\
1 Watt . 09 GB & \(-6.00 / \mathrm{C}\) & 1000 \\
other makes & \(4.50 / \mathrm{C}\) & of each \\
2 Watt .15 HB & \(-10.00 / \mathrm{C}\) & special \\
other makes & \(6.50 / \mathrm{C}\) & prices
\end{tabular}

Above are prices for Resistor 10\% tolerance. For 5\% tolerance add 100\%.

1-24 ea. 25-99 ea. \(\quad 100+\) over

Single J 1.80 ea. 1.50 and up (x) 1.20 and up (x)
Dual JJ 5.50 ea. 4.25 and up (x) 3.85 and up (\(x\))
Triple JJJ on spec. quote
(x) depends on bushing, shaft and taper

\section*{CERAMIC CAPACITORS and DISCS}
any makes
any values
5.-per \(C\) and up or \(35 / M\) and up
- IMMEDIATE DELIVERY from stock in New York LEGRIS Company
158 West 99 St., New York 25, N. Y.
Phone: University 5-4111
Since 1945_Resistors is our business.

PRICE SCHEDULE

Special Mica Kit 100 @ \(\$ 3.50\)
SILVER MICA CONDENSERS
 \(107^{7}\) to \(1955 \mathrm{mmfd} .\).
\(100 t 088\)
2500 mmid .
Special S. Mica Kit-100@\$6.50
CHOKES
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{CHOKES} \\
\hline \({ }^{5} \mathrm{Hen}\) & \({ }^{2} \mathrm{smps}\) & 14 Hen & \\
\hline \({ }^{7} \mathrm{Hen}\) & . 57 nimps & \({ }_{\text {Thord'n }}\) & 50 40 nlbs \\
\hline \({ }^{8}{ }^{8}\) Hen & . 52 amps & Thord & C45 \\
\hline
\end{tabular}

CERAMICON CONDS.
\(10.56 d 100 \mathrm{mmid}\)
1000 to 8000 mmaid
.01400
MICRO SWITCH

WANTED
Condensers of all types in any quantity. Also other standard components. Top prices.

MMCRD d TMDE. SWVS. - RELAYS - \({ }^{66} J^{99}\) PDTS

25 W. POWER RHEOS

Write: ART HANKINS, Owner

MONMOUTII RADIO LABORATORIES
EHOX 15!

\section*{GAPACITOR HEADQUARTERS}

ELECTRONIC SPECIALTY SUPPLY CO. 58 Walker St. WA 5-8787 NYC 13 N.Y.

\section*{An Investment}

Productive advertising is an INVESTMENT rather than an EXPENDITURE.
"Searchlight" advertisers almost invariably report prompt and satisfactory results.
BE CONVINCED send us your advertisement TODAY.

\section*{Address}

Classified Advertising Division ELECTRONICS 330 W. 42nd St., N. Y. 36, N. Y.
\(148 \underset{\text { CHAMBERS ST., }}{\text { CHEW YORK }} \begin{aligned} & \text { AND } \\ & \text { NEW YR }\end{aligned}\) We do both!-Electronic Equipment of every description. No lot too large. TOP PRICES. Ask us to help you. RAPID ACTION ALWAYS.
ELECTRONIC SURPLUS BROKERS

THE NEEDS OF INDUSTRY GOVERNMENT - FOREIGN PURCHASING COMMISSIONS WITH
COMMUNICATIONS EQUIPMENT, RECEIVING AND TRANSMITTING
TUBES, ELECTRIC WIRE AND CABLE
AIRCRAFT ELECTRONICS-INSTRUMENTSHYDRAULICS
PROMPT ATTENTION GIVEN TO ALL INQUIRIES

Rated-Dun \& Bradstreet
Elutamic \(\mathcal{E}_{\text {yputas }}\)
Dept. WW, 225 N. Wabash Avenue
Chicago 1, Illinois • ANdover 3-0841 Cable Address: "ELEXPEDITE" - TwXCGisio

\section*{RADCOM'S H O T TEST BUYS for '53}

\section*{5,000 LOADING COIL UNITS}

A Toroidal coil for matching telephone equipment, to line. Heavy duty type in watertight case. Used with EE8 field telephone.

25,000 MAST SECTIONS Type MS. 49 to MS-55.
Also Canvas Bass BG - 56 for same.

ALL TUNING COILS for BC-610

 recsiver.

Write for prices and details.
- AVAILABLE: Large quantitios of Radio ReAccessories.
- SERVICE: Complete Reconstruction and Custom Building of Electronic Equipment.
Blgelow 2-6666 Wire: WUX - Newark
Heanags Reghe With Eanl White RADCOM Engineering Co LIVINGSTON ST NEWARK³, N. J.

\section*{TIME DELAY}

\section*{GEAR HEAD MOTORS}

GENERAL ELECTRIC.DJ motor model \(5 \mathrm{BBA50}\) 60 v 8.3 a armature and and has magnetic brake. Gear Box No. T8254261G1. has two 160 RPM and one 120 IRPM take-offs, controlled by throw-out type clutch. Mall-bearings. Size, less shaft ex-
tension, \(6 \times 8 \times 13^{\prime \prime}\). Wt. 18 bs. Acquisition cost tension,
\(\$ 207.00\),
Our price NEW. \(\qquad\) .\(\$ 13.95\)
 Wht. 14 lbs. Acquisition cost \(\$ 194.00\). Our \({ }^{14}\) price
NEW
 EMERSON ELECTRIC-DDC 110tor type D44FZ- \(554-0417\).
1 H. P. 5800 IRPM. \(27 \mathrm{v}-40 \mathrm{a}\) \(1 \mathrm{H}, \mathrm{P} .5800 \mathrm{IRPM} .27 \mathrm{v}-40 \mathrm{a}\)
armature and \(27 \mathrm{v}-2.5 \mathrm{a}\) feld, reversible. Throw-out type clutch on gear box controls
twa 480 llPM take-offs. Ball-
bearings.

Note: Above Gear Box arailable with an E12.95 1/2 H. P. DC motor, 4000 RPM, 60 Ge8. 3 armature antin \(27 \mathrm{~F}-2.3 \mathrm{a}\) fleld. Shafts on Gear Box turn
330 RPM, Price NEW...................... \(\$ 10.95\)

EMERSON ELECTRIC.-DC
 \(60 \mathrm{v}-6.5 \mathrm{a}\), feld 27 r , reversible.
lever on front top operates fever on front top operates
throw-out type clutch con-

DUMORE.-Spec. \#5277. Series
Wound. \(1 / 3\) H. \({ }_{2}\) rolts AC wound. \(1 / 3 \mathrm{H} . \mathrm{P}_{\text {j/ }}{ }^{24}\) volts AC
or DC, 20 amps.
with rennovable shaft
sprocket gears,

WHITE.ROGER SERVO MO-TORS.- 24 VI)C. Torque 150
in.-1bs. Reversible. Control hn,-1bs. top has limit suithes.
hox on toper and seleniun rectitiers
relays, relays, and selenium rectitiers
(to bock AC out of motor).
Size \(5 \times 5 \times 4^{m}\). Can be supplied in Models \(6904-5\) R1'M or \(690+3,1 / 2\) IRPM. I'rice each NEW.. \(\$ 8.50\)

DC MOTORS

EICOR.-Part No. 82706 .
H.P. \(4500 \mathrm{RPM}, 60 \mathrm{v}\)
. 3 ar H.P. 4500 RPM , \(60 \mathrm{v}-8.3 \mathrm{a}\) arm\(5^{\prime \prime \prime}\) spline shaft \(9 / 16^{\prime \prime}\) long.
Comes with \(3^{\prime \prime}\) long spline adap-
ter. Size \(6 \times{ }^{1 / 4} 7^{71 / 2}\) Wt. 9 lbs. ter. Size \(6 \times 41 / 4 \times 7^{1 / 2}\) Wt. \({ }^{9} \$ 7\).
Price NEW
EICOR.-Part No. 305975 . \(1 / 2\) II. P. 4000 It \(60 \mathrm{~F}-8.3 \mathrm{a}\) armature, \(24 \mathrm{v}-2.3 \mathrm{a}\) neld, reversible. \(7 / \mathrm{h}^{\prime \prime}\)
shaft \(\mathbf{1}^{\prime \prime}\) long has keyway and threaded end for
 EMERSON ELECTRIC. \(\$ 7.45\)
Type D44FO447-0417. Can ho used as motor or generator. 1 H.P.
5400 MPM . 12 rolts 100 amms. Double-end shaft \(\mathrm{k} / \mathrm{s}\) " dia. by
\(1-3 / 16^{\prime \prime}\) length on each end.

\section*{SPECIALS}

60 VOLT AMPLIDYNE MOTOR GENERATOR
 Made to supply 60 p srmature Emerson Electric. \#5AMS1NJ18A. Input 27 VDC-44 amps. Output
60 VDC-8.8 amps. 530 watts. 8300 RPM . Two can be connected in series across 120 VDC line to give out 27 volts at 88 amps or 54 volts at 44 amps- rice
\(6 \times 8 \times 12^{\prime \prime}\) Versus. \({ }^{5}\). 34 lbs. Complete with \(\mathrm{A}-\mathrm{N}\) cable. Price NEW
3,750 WATT RECTIFIERS TUBE.-Continental Electric Co. Type CE202. IIalf-wave mercury vapor.
ament
NEW
2.5 volt-20 amps. Mogull base. Price
SLIP RING
ASSEMBLY
(Shown with and
without housing)

EMERSON ELECTRIC.-Used to transfer voltages between stationary and moving parts as in turrets and revolving antennae. Full \(360^{\circ}\) rotation,
Silrer-plated rings and carbon brushes. Capacity twelve conductors. Unit also incorporates brass plumbing for transfering liquids. Size \(9 \times 6 \times 10^{*}\)

SYNCHO DIFFERENTIAL. Bendix \#C78249. 115 V 60 cycle. Used as a dampener hetween two
C78248 Synchos. Easily convertad C7824 8 Sychos, Easily convertud
to \(3600 \cdot \mathbf{R P M}\) motor (Instructions included). Size \(3-\frac{3}{8 x 5}-8 / 8=\). Price
riginal containers. Brand New in original containers.............. \(\$ 8.50\)

HAND CONTROL Emerson Electrio \#250CE15. For Martin Power Gun Turret which this unit completely controls. Handie
assembly moves in tro assembly moves in two elevation and azimuth field rheostars. Six switchettes,
built into molded plastic handles, control signals and fling of guns. Unit is filled with other switches, circuit breakers, resistors, gears, AN connectors and cables, ete. Size \(12 \times 111 / 2 \times 61 / 2^{\prime \prime}\). Wt. 10
lbs. Acquisition Cost orer \(\$ 200.100\). Price NEW in original boxes

HEAVY DUTY TRANSFORMERS
\(\qquad\) 120
rolts.
long.
x7 \({ }^{\prime \prime} 7^{\prime \prime}\)
Brand
\(\$ 23.50\)

GENERAL ELECTRIC. \#79G907. 2 KVA Intermittent dutp. Input: \(100 / 110 / 120\) volts 60 cycle. Output 0.8
(eight-tenths) amps Can be used for
 Price NEW\$12.50
ATTENTION MANUFACTURERS. LARGE QUANTITY OF THESE TRANSFORMERS ARE available.

PROMPT DELIVERY ON ALL ORDERS-ALL MERCHANDISE fULLY GUARANTEED Terms: Prices FOB St. Louis. Cash or \(25 \%\) with orders. Balance COD. Rated Concerns (D8B) Net 10 doys cash. Prices subject to change without notice.
MCNEAL ELECTRIC \& EQUIPMENT CO.

\section*{AIRCRAFT ELECTRONICS}

ARC-1's, ART-13's, RTA 1B's, BC348's
AND COMPONENT PARTS FOR ABOVE
WRITE OR CALL FOR BULLETIN
MERRICK ELECTRONICS
166-08 DOUGLAS AVE.
JAMAICA, N. Y. RE 9-5960

\section*{Headguarters for Wieromave Test Equipment}

THE WIDEST ASSORTMENT, THE STRONGEST DEPTH AND THE MOST IMMEDIATE AVAILABILITY OF ANY SOURCE ON TEST EQUIPMENT.

We are currently producing and delivering the TS-117, TS-125, TS-108, TS-102A, TS-89, TS-268, TAA-16EA, TSX-4SE, and the newly certified BC-221 frequency meters.
A more complete listing follows:
\begin{tabular}{|c|c|c|c|c|c|}
\hline TS-1ARR & TS-62/AP & TS-170/APN-5 & TS-301/U & 1-145 & BC-1201/A \\
\hline \[
\begin{aligned}
& \text { TS-3A/AP } \\
& \text { TS-8A/U }
\end{aligned}
\] & TS-63/AP & TS-173/UR & TS-303A/G & J-147 & BC-1203 \\
\hline TS-10A/APN-1 & TS-76/APM-3 & Ts-174/U & TS-311/rSm-1 & -153A & BC-1236/A \\
\hline TS-11/AP & TS-78 \({ }^{\text {d }}\) & TS-184/AP & TS-323/U & -167A & BC-1255/A \\
\hline *TS-12 & TS-87/AP & TS-189/U & TS-328 & I-178 & BC-1277 \\
\hline -TS-13 & TS-89/AP & TS-192/CPM-4 & TS-338 & I-196A & BE-67 \\
\hline TS-14 & TS-92 & TS-194/CPM-4 & TS-359A/U & 1-198A & LAD \\
\hline TS-15B/AP & TS-96/TPS-1 & TS-197/CPM-4 & TS-363/U & 1-208/A & LAF \\
\hline TS-16/APN & TS-98/AP & TS-198/CPM-4 & TS-375 & 1-212 & LAE-2 \\
\hline TS-18 & TS-100/AP & TS-203/AP & TS-377/U & 1-222/A & LM-(*) \\
\hline TS-19 & TS-101/AP & TS-204/AP & TS-389/U & 1-223A & LU-2 \\
\hline TS-23/AP & TS-102/AP & TS-205/AP & TS-421/U & 1-225 & LU-3 \\
\hline TS-24/APM-3 & TS-108/AP & TS-210/MPM & TS-437 & 1-233 & L2 \\
\hline TS-26/TSM & TS-110/AP & TS-218/UP & 1-56 & IE-21/A & ME-11 \\
\hline TS-27/TSM & TS-111/CP & TS-220/TSM & 1-618 & 1E-36 & OAA-2 \\
\hline TS-32A/TRC-1 & *TS-117/GP & TS-226A & 1-83A & iF-12/C & OAW \\
\hline TS-33/AP & TS-118/AP & TS-230/B & 1-95/A & IS-185 & P4E \\
\hline TS-34AP & *TS-125/AP & TS-233/TPN-2 & 1-98/A & IS-189 & SG/8U \\
\hline TS-34A/AP & TS-127/U & TS-239A & 1-106/A & AN-PNS-1 & TAA-16EA \\
\hline TS-35/AP & TS-131/AP & TS-251. & I-114 & BC-221(*) & TSS-4SE \\
\hline TS-36/AP & TS-142/APG & TS-263 & t-115 & BC-376 & TSX-3SE \\
\hline TS-46/AP & TS-143/CPM-1 & TS-268 & 1-122 & BC-438 & TSX-4SE \\
\hline TS-47/APR & TS-144/TRC-6 & TS-270A/UP & 1-122-8 & 8C-439 & TTS-48R \\
\hline TS-18 & TS-146 & TS-281/TRC-7 & 1-126 & 8C-838 & TTX-10RH \\
\hline TS-51/APG-4 & *TS-147/UP & TS-285/GP & 1-130A & BC-906/D & TUN-9HU \\
\hline TS-55/AP & *TS-148/UP & TS-293 & 1-1348 & BC-949/A & UPM-13 \\
\hline TS-60/U & TS-153 & TS-294/U & 1-137A & BC-1060/A & \\
\hline TS-61/AP & *TS-155 & TS-297/U & I-139A & BC-1066/A & \\
\hline
\end{tabular}

Before selling your idle test equipment, please get our offer
Cable: WESLAB
Tel: Boston: WE 5-4500

\section*{Westan Laboratorise} Westan 93. Mass.

\(Y\) 811 Boyston St., Boston 16, Mass. CO 7-4700

\title{
WIRE-CABLE TUBES
}

\section*{PARTS}

\section*{CORDAGE}

CO-122 3 conductor each \#22 AWG neoprene iacket \(550^{\circ}\) lengths
CO-127 single \#14 AWG braided and tinned copper braid shield

MULTI-CONDUCTOR
2 conductor AWG 127 conductor AWG 16
7 conductor AWG 14 19 conductor AWG 16
14 conductor AWG 166 conductor AWG 20
\begin{tabular}{l|l}
11 conductor shielded 10 conductor AWG 16 \\
AWG 20
\end{tabular}
AWG 20
2 conductor AWG 18
2 conductor shielded AWG 10
AMOUR
DRIA-23 DHFA-100 FRIA-4
SINGLE CONDUCTOR AWG 10 shielded cable with terminal lug each end \(100^{\circ}\) and \(150^{\circ}\) lengths

WIRE
AWG 18 copperweld
AWG 29 tinned copper
Resistance wire AWG 32
AWG 22 with nylon core plastic insulation OIL FILLED CONDENSERS

80-86 Crystal in Holder \(\$ 2.50\)
Balloon with Hydrogen Generator \(\$ 2.50\) 300 Feet Aerial Wire \(\$ 2.00\)

MICROWAVE TEST EQUIPMENT 10 CM echo box CABV 14ABA-1 of OBU-3, trequency range 2890 MC - 3170 MCS. Direct reading micrometer head. Ring prediction scale plus \(9 \%\) to minus \(9 \%\) Type " \(N\) "' input. Resonance indicator meter. With accessories, spares and
CM directional coupler. Brand New.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{TUBES} \\
\hline \({ }_{2}^{2 \mathrm{C} 54 .}\) & 5.45 & \({ }^{803}\) & 3.60 & CEQ 72 & r. 85 \\
\hline 3820...... & 4.95 & 864 & . 25 & \({ }_{\text {CRP }}{ }^{\text {ch }}\) & \({ }^{4.15}\) \\
\hline 3 C 24 & 1.60 & 931 A & 4.45 & E1148 & . 30 \\
\hline \(7{ }^{7} 4{ }^{\text {d }}\) /203A & . 70 & 955 & . 35 & HY 615. & . 85 \\
\hline & . 65 & CK 1005 & . 35 & RKR \({ }^{\text {73 }}\). & -85 \\
\hline 30 spac. & . 40 & CK 1007. & . 90 & \({ }^{58}{ }^{\text {P1 }}\). & 4.25 \\
\hline 39/44.... & . 25 & \({ }_{1629}^{1626}\) & . 35 & \({ }^{\text {5FP7 }}\) & 1.75 \\
\hline WE 203A.. & 6.75 & 2051 & 1.10 & 183 GT & 80 \\
\hline \({ }^{3164}\) & 4.60 & \({ }_{8011}^{7193}\) & 1.50 & \({ }^{344} 5\) & 60
57 \\
\hline 713 A . & . 90 & 9006 & \({ }^{3} 10\) & \({ }_{6 K 6 G T}\) & . 60 \\
\hline 801a..... & . 25 & C5 & 8.00 & & \\
\hline
\end{tabular}

HI VOLTAGE FILTER CHOKES
\(\therefore\) HY 4.5 Amp DC 3 ohms 1230 RMS to
1 GY 3.2 Amp DC 3.5 ohm GE69G459.
1.7-3 HY 2 AMP DC 34,000 VDC GE Y346A.

Now.
NAVY ENTERING TYPE INSULATOR Porzelain flanged bowl with brass rod, fit\({ }_{43} \mathrm{~m}_{\mathrm{s},}^{\text {and }}\) high, \(6-5 / 16^{\prime \prime}\) OD at base. Brand new \$4.50.

10 CM ROTATING ANTENNA
24" Parabola in turret \(360^{\circ}\) span at 12 RPM

\section*{TIME DELAY SWITCHES}

1 Minute 115 VAC 60 cycle Enc, in Waterproof Metal Case New \(\$ 5.25\)
3 Micro Switches Contact at 40-41-42 Second Time Delay 110 VAC Motor New \(\$ 4.50\)
Thermo Switch \(50^{\circ}\) to \(300^{\circ}\) F 115 VAC 6A
230 VAC @ 5A
Breaks Contact with increase in Temferature New \$1.35

\section*{CONTACTORS}

DPST 115 VAC 60 cycle 15 Amp De-Ion Line Starter Westinghouse \(\$ 6.95\)
DPST 115 VAC "AB" \#700 \(\$ 5.95\) RELAYS
12 VDC DPST Allied Control Box 32.... \(\$ 1.25\) 24 VDC DPDT Allied Control BJD36..... \(\$ 1.45\) 24 VDC 3PDT 8 Amp. \(\$ 1.50\) 110 VAC DPST 1 Amp Contacts Struthers
Dunn CKA 1970........................ \(\$ 8.65\) 15 VAC DPST Struthers Dunn CXA \(\ddot{2} \dddot{2997} \$ 8.65\) 220 VDC DPDT Struthers Dunn CK 2122. .\$4.50 230 V 50 cycle DPDT G.E. \(12 \mathrm{HGA11}\) A2. \(\$ 4.00\) ROLLER INDUCTANCE COIL 0-15 MH WITH VERNIER ADJUSTMENT Coil is wound on ceramic form \(31 / \mathrm{s}^{\prime \prime}\) long. Right angle drive gear with \(5 / 8^{\prime \prime}\) staft. Three position switch for vernier operation New-Meissner-C-625

METERS
Portable 0-25 Amps AC Weston \#433 Brand New \$37.50
Switch Board Panel 0-100 Amps DC Weston \#269 with 100 Amp Shunt Brand New \(\$ 24.95\)

\section*{EQUIPMENT}

Walkie-Talkies 2.3-4.6 MC
MN-26Y Bendix Compass Receiver
BC-733 Glide Path Receiver
DAB-3-Direction Finder
RDF Receiver Equipment 200-550 KC Fized Tuned

SWITCHES—BATHTUB—OIL FILLED-MICA CONDENSERS-POTENTIOMETERS. SEND FOR CATALOG

\section*{COMET ELECTRONIC SALESCO.}

22 Washington St.
Tel. BEacon 2-7863
Brighton 35, Mass. Boston, Mass. Send M.0. or check.
Shipping charges sent C.O.D. \(25 \%\) de-
posit required with all C.O.D. ord 3 rs.

\section*{State Iabs Ine.}

Nation's Largest Wholesale Supplier Specializing ONLY in Buying and Selling
ELECTRONIC TDIS AND CRYSTALS
OVER 4000 TYPES AVAILABLE TOP STANDARD BRANDS IMMEDIATE QUOTATIONS WRITE FOR FREE WEEKLY MARKET GUIDE
State Iabs Ine.
37 EAST 28 STREET, NEW YORE TS, N. Y. PHONEz MURRAY HLL 3-9802 ELETYPE: M. Y. 1-1807 CABLE: BTATEABA

\section*{SOLA}

Constant voltage transformer Model \#30807

SHILICK ELECTRONIC SALES
281 W . Pico BIvd. Los Angeles 19 , Calif.

\section*{OIL FILLED UPRIGHT CAPACITORS}

\begin{tabular}{cc|cc|cc}
Cap. MFD. & Voltage & Cap. MFD. & Voltage & Cap. MFD. & Voltage \\
4.0 & 400 & \(2 \times 3\) & 600 & .15 & 4000 \\
.1 & 500 & \(2 \times 4\) & 600 & .25 & 4000 \\
1.12 & 600 & 2.0 & 800 & 2.0 & 4000 \\
1.0 & 600 & 1.0 & 1000 & .01 & 5000 \\
4.0 & 600 & 2.0 & 1000 & .2 & 5000 \\
5.0 & 600 & 4.0 & 1000 & .25 & 6000 \\
6.0 & 600 & \(2 \times .5\) & 1000 & 1.0 & 6000 \\
7.0 & 600 & .25 & 2000 & \(2 \times .1\) & 7000 \\
8.0 & 600 & .5 & 2000 & .1 & 7500 \\
9.5 & 600 & 1.0 & 2000 & 2.0 & 7500 \\
10.0 & 600 & .25 & 3000 & .03 & 10000
\end{tabular}

All above Standard Brands and in stock-Write, wire, phone your requirements.
Oil Filled Filter Condensers-Super-Special
Here's a sensational Standard Brands buy in 10 mid .600 VDC/220 VAC, Type R2.157 or Type CRA-2100. \(23 / /^{\prime \prime}\) diam. \(35 \mathrm{a}^{\prime \prime}\) high. These condensers are now being used for hundreds ancessfully used in circuits of 800 VDC. \(A\) once in a \(95 \not \subset\) ea

400 Mfd. C-D Photoflash Condensers
These 400 mfd .450 WV photoflash condensers are equivalent to 40 watts/seconds output each. 4" high, \(23 / 9^{\prime \prime}\) diam. Each

\section*{ACORN ELECTRONICS CORP.}

76-E Vesey St. WOrth 4-3270 New York 7, N. Y.

\section*{END OF YEAR CLEARANGE ON OUR ENTIRE STOCK OF SPECIAL PURPOSE \& TRANSMITTING TUBES. ADDITIONAL DISCOUNTS FOR QUANTITY SHIPMENTS}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline OA2. & . 89 & 5C30/C5B. & 3.75 & 3718 & . 79 & 832A & 8.50 \\
\hline OA3/VR75 & 1.04 & 5 CP 1. & 4.50 & 388A & 1.29 & 841. & 8.59 \\
\hline \(\mathrm{OB}^{\mathbf{O} / \mathrm{V}} \mathbf{V} \mathbf{R} 90^{\circ}\) & 1.05 & 5FP1 & 24.00 & 394A & 4.75 & 843 & . 25 \\
\hline OC3/VR105 & 1.10 & C5B & 3.75 & 450 TH & 14.95 & 846 & 49.95 \\
\hline OD3/VR150 & . 85 & SR4GY & 1.49 & 530.. & 16.95 & 860 & 21.50 \\
\hline 1822 & 1.95 & C6A & 5.75 & 531 & 16.95 & 864 & \(\begin{array}{r}21.50 \\ \hline 75\end{array}\) \\
\hline \[
\begin{aligned}
& 1826 \\
& 1 \mathbf{B 2 7}
\end{aligned}
\] & 2.25 & 6AK5 & . 79 & 533 & 19.95 & 865 & 1.25 \\
\hline 1829. & 12.50 & 7KP5 & 14.95 & 559 & . 95 & 8664 & 1.35 \\
\hline 1836 & 7.50 & 7C4. & 14.95
.35 & H00A. & 17.50 & \({ }_{874}^{872 A}\) GE & 3.59 \\
\hline 1856 & 24.50 & 7E5 & . 39 & 701A & 4.95 & & . 69 \\
\hline ELIC & 2.49 & 10 Y & .39 & 702A & 2.49 & 876
879 & . 59 \\
\hline 1D8G & . 59 & 12A6 & . 59 & 703A & 2.75 & 931 í & 4.45 \\
\hline 1R4/1294 & . 59 & 24 G & 1.49 & 704A & 89 & 954 & . 32 \\
\hline \(1 \mathrm{~T}^{\text {ret }}\) & . 69 & \({ }_{45} \mathrm{R} 34\). & . 39 & \({ }_{706 A} 705 \mathrm{~S}\) - \({ }^{\text {PY }}\) & 1.69 & 955 & . 45 \\
\hline 2C21 / 1642 & . 44 & FG17... & 4.50 & 706EY-GY & 39.50
39.50 & 956. & . 45 \\
\hline 2C22/7193 & .29 & RK72 & . 75 & 707A..... & 39.50
7.95 & 957. & - 59 \\
\hline 2 C 26 A & . 15 & RK73 & . 75 & 708A & 3.75 & E1148 & . 59 \\
\hline 2C34/7K34 & . 39 & RK75 & 3.50 & 710/8011 & . 75 & CK1005 & . 59 \\
\hline 2 C 43 & 14.95 & FG81A & 19.95
3.49 & 713A & . 92 & 1608 & 3.95 \\
\hline 2 C 44 & - 7.95 & VT90. & 3.45 & 714 A Y & 4.95
4.95 & 1616 & . 69 \\
\hline 2 J 22. & 7.50 & VT98 & 19.95 & 715 B & 6.95 & 1619 & . 35 \\
\hline 2 2 26 & 14.95 & 100 TH & 7.75 & 715 C & 19.95 & 1625 & . 40 \\
\hline \(2 \mathrm{2J27}\) & 14.95 & HY114B & . 50 & 717A & . 98 & 1629 & . 30 \\
\hline \(2 \mathrm{l}{ }^{2} 540\) & 19.50 & \({ }_{2051}{ }^{\text {V127 }}\) & 1.75 & 721A & 1.75 & 1636 & 2.95 \\
\hline 2 J 61 & 36.50 & 211. & 1.49 & \({ }^{7224} \mathrm{~A}\) & 1.89 & 1642 & . 59 \\
\hline 2 J 62 & 39.50 & \(217{ }^{\text {C }}\) & 6.95 & 725A & & 1851 & 1.29 \\
\hline 2 V3G & . 75 & 250 TH & 18.50 & 800 A & 6.75
1.75 & 2051 & . 35 \\
\hline 2X2 & . 49 & 2501 TL & 16.95 & 801A & . 45 & 8011 & \\
\hline 3B7/1291 & +.39 & 285A & 4.95 & 803 & 3.75 & 8012 & 2.75 \\
\hline 3 C 24 & 2.49
1.49 & 286A \({ }^{\text {3 }}\) & 6.95 & 805 & 3.50 & 8013A & 2.95 \\
\hline 3 C 28 & 4.95 & 304 TL & 8.75 & 808 & 1.59
2.25 & 8020 & 1.25 \\
\hline 3 CP1/Si & 1.49 & 307 A . & 3.50 & 811 & 2.25
2.75 & 8025 8 & 1.95
5.45 \\
\hline D6/1299 & . 35 & 316A & . 49 & 811 A & 3.50 & \({ }_{9001}^{80251 .}\) & 1.45 \\
\hline 3 D 23 & 4.75 & 328 A & 4.95 & 812 & 2.75 & 9002 & . 95 \\
\hline O4. & 1.75 & 329 A & 7.25 & 812 A & 3.50 & 9003 & 1.25 \\
\hline B28 & 2.95 & \({ }_{350 B}\) & 6.95
3.95 & 813 & & 9004 & . 35 \\
\hline J42,700A & 17.50 & 353 A & 3.95 & 814 & & 9006 & 25 \\
\hline AP1 & 3.49 & 357 A & 14.95 & 830 B & 2.75 & Bulbs & 2.4 \\
\hline
\end{tabular}

SEND US YOUR INQUIRIES ON TYPES NOT LISTED

\section*{MARITIME INTERNATIONAL COMPANY \\ 11 STATE STREET \\ NEW YORK 4, N. Y.}

\section*{Radar}

SCR.545A Search and Track. Complote trailer. power supply and spare parts. Nearly Now. Writ

Transformers \& Chokes New 10 K.W. Amertran oil cooled plate trans. tormers 17,600 volts. 5 . 2 av. 60 cy. singie phase priniary, 17,600 volts. 5 amp. secondary. Can be furnithed
center tapped or two wirs 8800 State primary and secondary voltage desired. Priced \(\$ 75.00\) each f.o.b. Los Angeles.
 test. 12 Kv doc operating. Pri. \(115 \mathrm{v} .:\) sec. 5 y . for \#371, 872 , etc. Transtat, line voitage reoulator, \(\$ 15.00\) each. 60

 \(105-115-125 \mathrm{~V}\). si C. Soc. \(105.90-75.60 .45 .30 \mathrm{v}\).@
6 amps. each side of center tap. Voltage reduced \(10 \%\) amps. each \(20 \%\) thru tapeed rapimary; two \(x 5\)

 New. oria.
- Choke. swinging \(15,000 \mathrm{v}\) d-e linne, rippte tre quency \({ }^{120 .} 49\) ohms. 0.02 amp. © 900 henrys; .52 \#29io7. \(\$ 42.00\).

\section*{Capacitors}
 \begin{tabular}{l}
\(\$ 17.50\) \\
\(.25 . .25\). \\
\hline \(1000 \mathrm{v.d-c}\) or \(.125 @ 12.000 \mathrm{v}\). d-c.. Fast
\end{tabular} Cat. \#A7548 oit. \(\$ 3.75\).
\(1.25 / 1.25\)
\(\$ 17.50\)
*Resistors
Fixed \(w, w, 160,000\) ohm, 200 w . ferrule ends. \(\$ 1.00\)
Fixed, \(w . w .5,000 \mathrm{ohm}, 20 \mathrm{w}\). ferrule ends. 1.00
*Meters \& Multipliers
Westinghouse Tyse R-5, 1 meg. precision meter \(1 / 2 \%\) tolerance. Can
 Ammeter, a.c. \({ }^{3 \prime \prime}\) Westinghouse NA. 35 or Weston Model 476, 3 amps, i.s. defiction; scale calibrated \(w / 200-5\) ratio at 25.133 cy . \(\$ 8.50\).

\section*{*Relays}

Allen-Bradley overload relay, 110 v .60 cy . Cat. \#810. Adjustable 6.3 to 18.1 amps. \(\$ 7.95\) each. Wosting house, 110 v. 60 cy . D.P.S.T. 15 amp.
contacts with interlock. \(\$ 4.95\) each.

\section*{*Rectifiers, Dry Disc} Cu. S. FWB 1.8 B , dec @ 1 amp.... \(\$.754\) for 2.50 Selenium, HW. 36 v . d.ec@ 2 amp amp 754 for 2.50
 Selenium, FWB, 180 v. a.c. \(.4 \mathrm{amp}, \ldots{ }_{5.50}\)
*Stand Off Insulators, Ceramic
 All sizes with metal caps and bases.
High Voltage Rectifier Power Supply Variable output \(0 \cdot 15,000 \mathrm{v}. \mathrm{d-c} @ 500\) mills. Input
 are new. comolete with soare. tubes and remote con. *Quantities available-subject to special discounts.

\section*{EPCO}

1527 E. Seventh Street
Los Angeles 21, Calif.

\section*{GLASS TUBING}

PYREX - NONEX - URANIUM bULBS \& CYLINDERS
WRITE FOR FREE MONTHLY LIST
HOUDE SUPPLY COMPANY
PHONE KEYPORT 7.1286
M. R. \# 1 Box 86X

Keyport, N. J.

\section*{POWER RHEOSTATS Nom}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline r 1 & W & Ea.1 & w & E, & W & \\
\hline . 5 & 25 & 1.9875 & 25 & 1.98500 & 300 & 9.49 \\
\hline . 5 & 50 & 2.8175 & 75 & 3.90585 & 150 & 6.59 \\
\hline .\(^{5}\) & 150 & 5.9380 & 50 & 2.53750 & 25 & 2.23 \\
\hline 1 & 50 & 2.8180 & 500 & 12.46750 & 150 & 5.46 \\
\hline 2 & 50 & 2.81100 & 25 & 1.981000 & 25 & 2.53 \\
\hline 2 & 100 & 4.68100 & 50 & 2.531000 & 50 & 2.66 \\
\hline 2 & 300 & 8.42100 & 100 & 4.391200 & 225 & 7.20 \\
\hline 3 & 100 & 4.67125 & 25 & 2.231200 & 300 & 8.40 \\
\hline 3 & 225 & 6.58150 & 50 & 2.531250 & 50 & 2.66 \\
\hline 4 & 225 & 6.60175 & 25 & 2.231250 & 150 & 6.10 \\
\hline 5 & 25 & 1.97185 & 25 & 2.231500 & 25 & 2.53 \\
\hline 5 & 60 & 2.53200 & 25 & 2.231500 & 60 & 2.66 \\
\hline 5 & 100 & 4.68200 & 100 & 4.401600 & 50 & 2.66 \\
\hline 6 & 25 & 2.23200 & 150 & 5.041800 & 150 & 6.19 \\
\hline 6 & 50 & 2.53225 & 50 & 2.532000 & 25 & 2.53 \\
\hline 6 & 75 & 3.90250 & 25 & 2.232000 & 50 & 2.66 \\
\hline 7 & 25 & 1.98250 & 50 & 2.532250 & 150 & 6.24 \\
\hline 7.5 & 75 & 3.95300 & 50 & 2.532500 & 50 & 2.64 \\
\hline 8 & 50 & 2.53300 & 75 & 3.902500 & 100 & 4.68 \\
\hline 10 & 25 & 2.23300 & 100 & 4.402500 & 150 & 6.24 \\
\hline 10 & 50 & 2.53300 & 150 & 5.043000 & 25 & 2.66 \\
\hline 10 & 100 & 4.37350 & 25 & 2.253000 & 100 & 4.95 \\
\hline 12 & 25 & 2.23350 & 100 & 4.405000 & 25 & 2.66 \\
\hline 12 & 50 & 2.53376 & 25 & 2.23 .5000 & 50 & 2.90 \\
\hline 15 & 25 & 1.98378 & 150 & 6.59.7500 & 50 & 2.90 \\
\hline 15 & 75 & 3.90400 & 25 & 2.23,7500 & 100 & 5.32 \\
\hline 15 & 100 & 4.38400 & 75 & 3.90'1000 & 50 & 2.99 \\
\hline 20 & 50 & 2.53,500 & 25 & 2.231000 & & 5.32 \\
\hline 22 & 50 & 2.53500 & 50 & 2.5310000 & 100 & 5.51 \\
\hline 25 & 25 & 2.23500 & 75 & 3.9515000 & & 3.25 \\
\hline 50 & 25 & 1.98500 & 100 & 4.502000 & & 8.75 \\
\hline 50 & 50 & \(2.53 / 500\) & 150 & 5.15 & & \\
\hline \multicolumn{7}{|c|}{Specify Type Shaft Required "S" or "K nob" \(\$\) pecial Prices to Quantity Unerm.} \\
\hline
\end{tabular}

LARGEST VARIETIES OF NEW SURPLUS AT LOWEST PRICES
- OIL CAPACITORS

LARGE RECTANGULARS
BATHTUBS: TUBULAR
- MICA SILVER G-1-2-3-4
- ELECTROLYTIC FP CANS
- AMPHENOL-CANNON
- AN-UG-UHF CONNECTORS
- LORD SHOCK MOUNTS
- BIRTCHER Tube CLAMPS
- JONES PLUGS-SOCKETS
- POWER RHEOSTATS
- SWITCHES MOGGLEE ROTARY
- POTENTIOMETERS 尛
- OTHER WIRAREONNND POTS
- MOSSMAN swEVER
- AIRCRAFT FILTERS
- RESISTORS GLASSFERRUL
- FUSEHOLDERS-MOUNTS
- INSTRUMENT KNOBS
- MANY OTHER ITEMS

HIGH POWER TRANS. MICA

\({ }_{.0001}^{\text {C-2 Typ }}\)
ypo G-2 Type|c
T G-4 Type
\(.00025 \quad 301 \%\) .00015 54 0002

1.5 kr
\begin{tabular}{ll|ll|l|l|}
\hline 00057 & 10 kV & .001 & 20 kV & .03 \\
0.0011 & 20 kV & .056 \\
001 & 10 kV \\
\hline 001 & 00124 & 15 kV & \\
\hline
\end{tabular}

\section*{000155 C-D Type \(\$ 56\) \\ \begin{tabular}{ll|ll}
.000155 & 30 kV \\
0004 & 30 kv & .001 & .03356
\end{tabular} \begin{tabular}{ll|l}
.0004 & 30 kV & .03356 \\
.000533 & 30 kV & \(.007 / 15 \mathrm{kV}-70 \mathrm{~A} / \mathbf{3 0 0 \mathrm { kc }}\)
\end{tabular} \\ Full ratings and prices upon request. Specify your needs. \\ A. MOGULL CO.}

50 West Broadway N. Y. 7, N. Y. Phone: WORTH 4-0865

FOR THE BEST IN ELECTRONICS!

PARTIAL LISTING OF OUTSTANDING SURPLUS COMMUNICATIONS EQPT.

\section*{MARINE}

TCS X'mttr-Receivers for Ship or Shore.

TBK HF 500W. Transmitter with MG, Starter, and Spares.

TAJ 500 Watts Output, \(175-550 \mathrm{KC}\). New. Equipment, with Spares, Motor Generator (AC and DC available) Starter, Tubes, Complete.
G0-9 100/125 W. IF/HF Ship or Aircraft Transmitter, A1 or A2 Emission. All New with Spares.
150-AY Mackay IF Ship X'mttrs. 8707 RMCA Ship Radio Compass
\[
\begin{aligned}
& \text { SCR-610 Crystals, in sets (120 } \\
& \text { channels) or individually. TESTED. } \\
& \text { Write for PRICES. }
\end{aligned}
\]

\section*{TELEMARINE COMMUNICATIONS CO.}

\section*{IMMEDIATELY AVAILABLE FROM STOCK}

3040 W. 21ST STREET, B'KLYN 24, NEW YORK. PHONE: ESPLANADE 2-4300 CABLE: TELEMARINE, N. Y.

\section*{EXTRA!}

PE-104 POWER SUPPLIES for Receiver of SCR-284, NEW, with Spare Vibrator, Export-Packed. Large Quantity Available. WRITE FOR PRICES.

\section*{MISCELLANEOUS}

DZ-2 Direction Finders
GP-7 Aircraft Transmitters
ZB-3 ILAS Eqpt.
SCR-283 Rcvg \& X'mttng Eqpt. Complete.
RT-3/ARN-1 Altimeter
RADIOSONDES AN/AMQ-IA to D. New.

> APR-4 TUNING UNITS:
> TN-18, 300-1000 MC \$149.50 ea. TN-19, 1,000-2,000 MC
> \(\$ 149.50\) ea.
> New, Original Cases.

GROUND, SHIP \& AIR COMMUNICATIONS

TDQ VHF \(100-156\) MC 50 W . AM X'metr for \(110 \mathrm{~V} .50 / 60 \mathrm{C}\). AC. BC-797 VHF \(110-126 \mathrm{MC}, 50 \mathrm{~W} . \mathrm{AM}\) Output for \(110 \mathrm{~V} .50 / 60 \mathrm{C}\). AC. SCR-284 Ground Portable AM, TransRevg Eqpt. for Field Communications.
SCR-522 VHF, 4-Channel, 100-156 MC Trans-Rcvg. Eqpt. for Plane or Ground Communications.
SCR-511, Walky-Talky, 3-6 MC, Crystal Controlled Trans-Rcvg. with Plug-In Units for Freq. Changing. \(96-200 \mathrm{~A}, 2 \mathrm{KW}\) Wilcox X'mttr. 125525 KC, 3 Cabinets: RF Unit, Modulator, Rectifier; A1, A2 and A3 Emission.
250 \& 500 WATT SOUND SYSTEMS for Airports, Shipyards, Amusement Parks, Civilian Defense, Etc. Write for Prices and Literature.

Pasadena 8, Calif.
LaI \& BC-221 Frequency Meter with cal, book, crystal, and zu
TS. \(352 / \mathrm{U}\) Weston Test Set. TS-148/UP
Sikmal Generator I96A
Million Simbern PUR* Dumont 208 Scope........Exd PUR**
Dumont 208 Scope. ABn Genera
TS-146/UP X-Rand Signal Gener tor 3051 Floor model Oscilloscope \(3^{\prime \prime}\) tub RCA mig. TS-34/AP Portable OscilloscoDe.....Exc. \(\begin{gathered}\text { PUR } \\ \text { 350.00 }\end{gathered}\) TS-12 Test Set for X-Rand Box 1 \& 2
complete \(\ldots\)................................. PUR.
Tun-4 Search Receiver Mits for APR-4 Receiver Tuning Units for APR-4 Receiver....
BC-348, BC-312, BC-342 Receivers.

TyDe 120A Q meter \(130-210 \mathrm{mc}\).
Type 120A Q meter 130

Antenna AT 104/APN9....................ew PUR \({ }_{20.00}^{\text {A }}\)
Automatic Pilot Inverter
Type DA Input 28 VDC . 12 amps.
Type DA Input 28 VDCC . 12 am
Output \(115 \mathrm{~V} ., 3 \mathrm{phsse} .400 \mathrm{cps}\).
115VA. 80.00
T-17 Hand Wicrophone with cord and \(\quad 4.50\)
PL-68 \(\quad\) Briagedance Bridge 650 A GeneralExc. 4.50
Radio
HS-23 8000 ohm . Used \(\$ 2.95\).........................
HS-23 8000 ohm . Used \(\$ 2.95 \ldots \ldots\) New
\(\begin{array}{llll}\text { HSS-23 } & 600 & \mathrm{ohm} \text {. Used } & 3.50 . . \\ \text { HS-38 } & 600 & \mathrm{ohm} .\end{array}\)
*PUR-PIICE uDon request.
NOTE: One of the largest and most complete electronic surplus stocks in the country. We have transmitters-receivers, test equipment, etc. Send us your requirements.
TERMS: Prices F.o.B. Pasadena, California. 25\% on all C.O.D. orders. Californians add \(3 \%\) Sales Tax. Prices subject to change without notice.

SAVE! SAVE!

SAVE! SURPLUS RADIO CRYSTALS
PRICED TO SELL . . . AT A FRACTION OF THEIR ORIGINAL COST MFG. BY WESTERN ELECTRIC AND FEDERAL TEL. \& RADIO ALL FT-241-A HOLDERS
Available As Follows For:
SCR 608-A and SCR 628-A SCR 528 and SCR 538

500 KC Crystals. \(\$ 1.95\) ea. 1000 KC Crystals. \(\$ 3.95\) ea. QUANTITIES AVAILABLE

Write For Price Quotation On Your Requirements.

BOX 356-2 EAST PASADENA STATION
PASADENA 8, CALIFORNIA

LIMMEDIATE DELIVERY FROM STOCK
(in any quantity)
\(\square\) FINEST QUALITY OF FAMOUS BRANDS
3 GENERALLY LOWER PRICES
\(\triangle\) RETURN PRIVILEGE FOR FULL
CREDIT IF NOT SUITED TO YOUR REQUIREMENTS

The valuable service Wells provides to the industry is being used by many of our greatest manufacturers as a matter of course.

Our vast stock (the world's largest) may contain just the components you need to fill urgent orders - at a substantial savings in time and cost.

ADEL CLAMPS - ANTENNAS, Insulators, Mast Sections BINDING POSIS : BLOWERS - CABLE ASSEMBLIES - CHOKES - COILS - CONDENSERS Oif Filled, Bathtub, Hearing Aid, Transmitting Micas, Silver Micas. Ceramic, Variable, Irimmer © CRYS. TALS FILTERS FUSES \& MOUNTINGS • GENERATORS GROUND RODS: HEADSETS • I.F. COILS JACKS JACK BOXES E KEYS, Telegraph KNOBS : LAMPS - LORD MOUNTS TEIegraph MOTORS \& BRUSHES - PLUGS : RECTIFIERS Selenium, Copper Oxide, Meter, Diode * RESISTORS-AII Types SELSYN' SOCKETS SWITCHES Aircraft, Micro, Switchettes, Toggle TIMERS. TUB-NG-Flexible : TUNING SHAFTS TRANSFORMERS

All Types • VIBRATORS • WALKIE TALKIES

\section*{DYNAMOTORS}

OVER 100,000
NEW DYNAMOTORS IN STOCK!

DM 32A - DM 53A - PE 86 - PE 101 C DM 33A - D 101 - PE 94, etc.
Large quantities of brushes for all types of dynamotors and motors.
Write us for quotations. Advise us your requirements.

A complete Signal Corps stock number listing of items in our stock. Write for listing No. SG-200. (For government agencies and contractors only.)
Manufacturers and distributars-write for new Condenser Catalog C-10 now available. Write, Wire, Phone Your Requirements all phones: SEeley 8-4143

833 W. Chicago ave., dept. Sl, chicago 22, ill.

\section*{CHECK AND COMPARE OUR COMPLETE STOCKS}

The following is just a partial list of the current electronic and aircraft equipment now in our warehouse. Write for complete information. Prompt replies to all inquiries.

\section*{RC-103 \& AN/ARN-5 ILS}

New in original cartons. Complete. Consists of afl accessories, plus AS27A, R89B/ARN-5 and BC-733D. Modified to flag alarm.

BC-611 \& BC-721 HANDIE TALKIES,
Plus SPARE PARTS, Quantity available.
1E-17 TEST SET
AN/ARN-7 COMPLETE
SCR-269 COMPLETE
TBS \(4 \& 5\), NEW, COMPLETE
AN/ARC-1 VHF EQUIPMENT
BC-348 RECEIVERS
BC-342 RECEIVERS
31 KVA BUDA DIESEL PLANT
3 phase, 110 V, 60 cycles. Spare parts and generator available. Has been run only 40 hours.

\section*{AN/ART-13 EQUIPMENT}

ATC XMTR T-47/ART-13 XMTR CU-25 ANT. LOAD MT-283 MOUNT MT-284 MOUNT SA-22 ANT. LOAD

T-47A/ART-13 XMTR CU-24 ANT. LOAD DY-11 \& 12. Dynam't'r 0-16 LFO ATC DYNAM'T'R C-87 CONTROL BOX

\section*{AN/APG-13A RADAR \\ Absolutely complete, brand new}

\section*{AN/APN-2}

SCR-729 New
TA2J-24
RTA-1B
BC-1016 APA-6 INDICATOR APA-11 INDICATOR APA-17 RADAR
HS-33 HEAD SETS,
NEW
MG-149F \& H

\section*{SPARE}

SCR-720
SO-7
AN/ARN-7
SCR-269
MG-153
APS-2, 3, \& 15 Components AN/ARC-5 VHF SCR-274 \& ARC-5 Command Equipm' R-4/ARR-2 Receivers BC-640 VHF XMTR SCR-510 SCR-522 MG-153

PARTS
SCR-522
AN/ART-13
AN/ARC-1
BC-611
SCR-718 A, AM, B \& C
Altimeter equipment-complete
To insure the finest of service and quality of merchandise, we have just recanditioning and function-testing plant complete with ail facilities.

\section*{EXPORT INQUIRIES INVITED} We carry an unusually large stock of Alrilne Equipment. Test Equipment, Radar Sots, eto. Write for our low prices and completo information. We furnish immediate answers to all inquiries. Write today!

\section*{V \\ aH \\ ELECTRONIC
INDUSTRIES
ING.}

2033 West Venice Bivd.——Dept. E-19 Los Angeles 6, California Phone: REpublic 3-1127

\section*{Excellent \\ "RW" Values!}

\section*{RA-52 RECTIFIER}

Transtat controlled to produce high voltage DC from 110 VAC 60 cycle source. Up to 11,500 VDC@ 90 W. Metereu high voltage (\(0-15 \mathrm{KV}\)) and current (\(0-20 \mathrm{MA}\)) New

TS159/TPX
COMBINATION SIGNAL GENERATOR AND FREQUENCY METER
Freq. range: \(150-200 \mathrm{MC}\)., crystal cali brated. Has separate 30 MC signal output, crystal cal: 3 -stage, AF amplifier. Power measurements by built-in VTVM circuit. \(0-1 \mathrm{MA}\). meter as 2 -range voltmeter. Builtin 400 cps . voltage regulated power supply. New

\section*{WOBULATOR}

BUILD TV-FM-AM SWEEP GENERATOR
You can build "Versatile Sweep Frequency Generator" with APN-1 magnetic units..
\(\$ 5.95\)

\section*{WANTED!}

All TS, APR, APS, ARC, ARN, ART, SCR, R89 and BC equipment . . . write today!
Quote lowest prices in your first letter

RM 29 with the TS-13 handset \$14.95 ea.

2 for \(\$ 27.50\)
RL-42 Reversible Motor with antenna reel and clutch, used.

\section*{WRITE FOR PRICES}
\begin{tabular}{lll}
BC1033 & BC376 & LP21LM \\
BC939 & BC638 & TS61 \\
APS13 & RA42 & TS92 \\
ARN7 & RA52 & BC1277 \\
SCR269F\&G & RTA1B & BC191 \\
SCR619 & TA2J & BC1287 \\
B00NTON SIG. & CRT3 & APR-4 \\
\(\quad\) GEN. I.26 B & MP10 & MN26C \\
TS 100/AP & MN26Y &
\end{tabular}

SCR 625 Famous Army Mine-Detector
For Prospectors, Miners, Oil Companies, Plumbers, etc.
This unit is being offered now at a considerable reduction in price. Recently advertised at \(\$ 79.50\) it is now available in the same brand new wrappings in suitcase style carrying case (less batteries) at
\(\$ 59.50\) WHILE THEY
\[
\text { Used, } \$ 39.50
\]

Shipments FOB warehouse. \(20 \%\) Deposlt on orders. Minimum order \(\$ 5.00^{\circ}\). Illinois residents, add regular sales tax to remit-
tance.

Prices subject to change without notice.

PHONE: HArrison 7.9374

\section*{DIRECTRON SELENIUM RECTIFIERS}

\author{
Buy Direct From M'facturer
}
\begin{tabular}{|c|c|c|c|c|}
\hline Current (Continuous) & \[
\begin{aligned}
& 18 / 14 \\
& \text { Volts }
\end{aligned}
\] & \[
\begin{aligned}
& 36 / 28 \\
& \text { Volts }
\end{aligned}
\] & \[
\begin{aligned}
& 54 / 42 \\
& \text { Volts }
\end{aligned}
\] & \[
\begin{gathered}
\angle 86 \pi \\
\mathrm{n} 30 / 100 \\
\text { Volts }
\end{gathered}
\] \\
\hline 1 Amp. & \$1.35 & \$2.15 & \$3.70 & 57.50 \\
\hline 2 Amps. & 2.20 & 3.60 & 5.40 & 10.50 \\
\hline \(21 / 2\) Amps. & & 6.75 & 10.25 & 13. \\
\hline \({ }_{5}^{4}\) Amps & 3.75
4.25 & 6.75 & 12.25 & 25.25 \\
\hline 6 Amp & 4.75 & 9.00 & 13.50 & 33.00 \\
\hline 10 Amps. & 6.75 & 12.75 & 20.00 & 40.00 \\
\hline 12 Amps. & 8.50 & 16.25 & 25.50 & 45.00 \\
\hline 20 Amps. & 13.25 & 25.50
3250 & 39.00
\(\mathbf{4 5 . 0 0}\) & 79.50
90.00 \\
\hline \({ }_{30} \mathbf{2 4}\) Amps. & 16.25 & 32.50
38.50 & 45.00 & 90.00 \\
\hline 30 Amps.
36 'Amps. & 20.00
25.00 & 38.50
48.50 & & \\
\hline \multicolumn{5}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
- New, Selenium Rectifier Transformers \\
PRI: 115 V., 60 cycles \(\ln\).
SECC: \(9,12,18, ~ 24, ~ a n d ~\)
volts
\end{tabular}}} \\
\hline & & & & \\
\hline & & & & \\
\hline & & & & \\
\hline
\end{tabular}
- New Selenium Rectiffer Chokes

4 Amps. \(-.07 \mathrm{Hy} .-6 \mathrm{ohm}\) \(\$ 7.95\)
\(\$ 14.95\)
24 Amps.- .004 hy . .025 ohm \(\$ 29.95\)
we can manufacture other Selenium Rectifiers, Sole nium Rectifier Supplies, XFMRS., SOLA HEAVY-DUTY PLATE TRANSFORMER.
- LEEDS \& NORTHRUP WHEATSTONE BRIDGES-MODEL 5430-A EXCELLENT CONDITION \$99.50
TRANSFORMER SPECIALS
- 115 V. PRI二 \(36 \mathrm{~V}, 50\) amp second XFMR.
-115 V. PRI 5 V . \(\mathbf{\$ 5 9 . 5 0}\)
\(\mathbf{\$ 5 9 . 9 5}\)
\(\frac{-115 V \text { PRI-5V.@ } 190 \mathrm{Amp.S}}{\text { TUBES }}\)

\section*{DC SMALL MOTORS:}

 \({ }^{24} \mathrm{VDC}\) Reversible-3.7 RPM, 40 . 1 lb . Torque. Shaft

TRANSFORMERS-100V. 60 Cycle Pri. 5 VOLT CT-25A-10,000 V. Ins. OPEN FRAME
 Sec. 24 Vott \(1 / 2 \mathrm{AmD}\). Sec. 24 Volt 1 Amp.

\section*{MOUNTING AND CLAMPS}
 \(\begin{array}{ll}\text { MC-396 Wood Clamp for Fairlead................... } & .75 \\ \text { M-235 Bobbin \& } 250 \mathrm{Ft} \text { W-106 Antenna Wire.. } & 3.50\end{array}\) WT-7 Weight for Tralling Antenna..

\section*{BLOWERS:}

115 Volt 60 cycle BLOWER
 surplus surplus
\[
\$ 8.95
\]

DUAL BLOWER-Same as RN-520 above, except has bower assembly in each side of motor. Ore \({ }^{\text {No. }} 1\). 880 \(\$ 13.95\) COMPACT TYPE- 108 CFM motor built inside
 2C067 ….. \(\$ 14.50\)
 FLANGE TWIN-275 CFM, 4-1/2" Intake: \(3-1 / /^{\prime \prime}\) I \(3^{\prime \prime}\) D. No. 2C069... \(\$ 21.95\) AERIAL WIRE-Phosphorus Bronze \#16 Stranded. 200 1b test. Weatherproof. 150 ft on Reel. RL-3
with Clips .. \(\$ 1.50\) TELEPHONE WIRE-3 COnd. copper \& steel. 525 ft .

SELENIUM RECTIFIER UNITS HEAVY DUTY-30 VOLT DC OUTPUT:
\(115 / 200\) V. Three Phase 400 Cycle Input:
TYPE 143 w/Transformer \& VR 100 Amp.... 569.50 TYPE 3FS-5 W/Trans., VR, \& Blower- 200 Amp. \(\$ 69.50\) TYPE-52A- 11 Rectifier Only, Cased, 200 Amp. \(\$ 39.50\)
TYPE A- 1 Rectifier Only. Cased, 300 Amp.... \(\$ 49.50\)

\section*{MOTOR-_GENERATOR:}

Navy type CCL-211014, 115 VDC- \(3 / 4\) HP- 1750
IRPM Generator 27

\section*{ANTENNA EQUIPMENT}

MAST BASES_INSULATED:
MP-132 BASE-(As Illustrated at lef; \({ }^{1}\) heavy coil spring, \({ }^{2 \prime \prime}\) insulator. Overal Prlce MAST BASE-Insulated tipe with beary

MAST SECTIONS For ABOVE BASES Tubular steel, copper coated, painted, in 3 ft. sec tions, screw-in length with MS-52-51-50-49 for taper. Any sec tion .. \(\begin{gathered}\text { Each } \\ \text { Larger Diameter }\end{gathered}\) AN-104B Antenns-100-156 MC.-Codper. \(\$ 5.9\) \begin{tabular}{ll}
AN-104B Antenna-100-156 MC. -Stee....... & 3.95 \\
AN-104A Antenna-100-156 MC. Copper...... 3.00 \\
\hline
\end{tabular} AN-104A-Antenna-100:15 1ength Steel \({ }_{\text {AN }}-117\) Whip Steel- 6 Ft . length. AS-27/ARN-5 Ram's Horm, 10 MC .-USED. AT-42/APT-3 or APT-1 Stub- \(113-150\) MiC AT-42/APG-8 Spike with coaxial load in base
AS-61/ARN-5-Half-Wave Dipole-335 MC.

AIRCRAFT CONTROL CABLE- \(3 / 32^{\prime \prime}-7 \times\)
Strand, Weatherproofed, Galvanized, Preformed Strand, Weatherproofed, Galvanized, Preformed,
920 lb . test. Ideal for Television Guying and many other uses. Pricas: 4-1/2c per Ft.-1000 Ft or more at 46 per Ft

\section*{CORDS_CABLES}

C-501 Cord-I/GN-45 Gemerator \(\ldots\) O............52.5 \(\begin{array}{ll}\mathrm{CD}-318 & \text { Cord } \mathrm{W} / \mathrm{PL}-68 \text { \& SW-141 \& JK-48F } \\ \mathrm{CD}-307 & \text { Cord- } 6.5 \mathrm{Ft} \text {. } \mathrm{W} / \mathrm{PL}-55 \text { \& JK-26... }\end{array}\) CD-604 Cord w/C-410 Trans. \& PL-54 Plug. CD-365 Cord for LP-21-Loop

\section*{PLUGS AND CONNECTORS}

PL-118 Plug for I-81 and I-82.
\(\$ 1.50\)
\(\$ 1.25\) \(\begin{array}{ll}\text { PL-P-103 Plug for BC-348................................. } & \text {. } 50 \\ \text { MC-211 Rightangle Adapter for } \\ \text { M-359 Rightangle CoaxdaI Connector............. } & .55\end{array}\)

\section*{DYNAMOTORS:}

DYNAMOTOR and BLOWER: 9 Volts DC input: Out put 450 Volts 60 MA. 4500 RPM. At 6 Volts DC 1 in
put: output 260 Volts 65 MA. 3000 RPM...... \(\$ 495\) Input Output Stock No. Price \(\begin{array}{lll}14 \mathrm{~V} . \mathrm{DC} & 600 \mathrm{~V} .300 \mathrm{MA} & \mathrm{BD}-8 \\ 12 \mathrm{~V} . \mathrm{DC} & 220 \mathrm{~V} .70 \mathrm{MA} . & \mathrm{DM}\end{array}\) \(\begin{array}{ll}12 \mathrm{~V} . \mathrm{DC} & 220 \mathrm{~V} .10 \mathrm{MA} . \\ 12 \mathrm{~V} . \mathrm{DC} \\ 12 \mathrm{or} 24 \mathrm{~V} . \mathrm{DC} & 220 \mathrm{~V} .100 \mathrm{MA} . \\ 14 \mathrm{~V} . \mathrm{DC} & 220 \mathrm{~V} .100 \mathrm{MA} . \& \\ & 375 \mathrm{~V} .150 \mathrm{MA} .\end{array}\) \(\begin{array}{ll}14 \mathrm{~V} . \mathrm{DC} & 375 \mathrm{~V} .150 \mathrm{MA} . \\ 14 \mathrm{~V} . \mathrm{DC} & 330 \mathrm{~V} .135 \mathrm{MA} . \\ 14 \mathrm{~V} . \mathrm{DC} & 500 \mathrm{~V} .500 \mathrm{MA} . \\ 12 \text { or } 24 \mathrm{~V} . \mathrm{DC} & 275 \mathrm{~V} .110 \mathrm{MA} .\end{array}\) D-104
 ALSO-PE-73; PE-86; DM-53; DM-33; 5055; DM-416;

ADDRESS DEPT. E All Prices Are F.O.B., Lima, Ohio - \(25 \%\) Deposit on C.O.D. Orders
FAIR RADIO
SALES
132 S. MAIN ST

New SPARE ARMATURES FOR PE95A, B, C.
23 in CRATES SIG 5 \#3H4595/A5
TELETYPE PERFORATOR TAPE \(11 / 16^{\prime \prime} \times 8^{\prime \prime}\)
8800 ROLLS, OILED, FRESH \#4A2702.2
GEORGE BELLING
170
12th St. Oakland, Calif.

\section*{HIGH VOLTAGE POWER SUPPLY}

Many models available in ranges from 2500 to 25,000 volts D.C.,
Send for free catalogue Dept. E.
PRECISE MEASUREMENTS CO
942 KINGS HIGHWAY, BROOKLYN 23, N. Y

\section*{GIGANTIC SURPLUS SALE!}
- Power Plants - Air Compressors : Paint Spray Outfits - Telephones : Electric Tools: Waws - Binoculars: Flood-Lights: Electric Drilt, We pay all freight. Rush card for large catalog.

BNRDEN SALES COMPANY

\section*{ERIE CERAMICONS}

Large quantities in stock; immediate delivery.
All values and tolerances.
N.P.O. \& TEMPERATURE COEFFICIENT FEED-THRU, STANDOFF, DISC, CERAMICONS. LITTLEFUSE FUSE-ALL VALUES.

BELOW FACTORY PRICE.
CAP ELECTRONICS INC.

\section*{102 Warren Street}

New York 7, N Y
WOrth 24363

\section*{LARGE INVENTORY}

OIL FILLED CAPACITORS CONNECTORS BATHTUB CONDENSERS SOTENTI SWITCHES

TYPE "J", AND "JJ" POTENTIOMETERS IMMEDIATE DELIVERY
LEMAR ELECTRONICS CO
I35 LIBERTY ST

\section*{TUBE REBUILDING}

Large Transmitting and Power types
Economical - Guaranteed
FREELAND PRODUCTS CO.
700 DRYADES ST., N. O., LA.

New "SEARCHLIGHT" Advertisements
received by January 2nd will appear in
the February issue subject to limitations of space available.

Classifted Advertising
ELECTRONICS
330 West 42nd St. New York 18, N. Y.

\section*{Prompt ANSWERS}

\section*{to your business problems...}

M
ISCELLANEOUS business problems are daily being solved, quickly and easily, by the use of the Searchlight Section of this and other McGraw-Hill publications.
The Searchlight Section is classified advertising; you can use it at small cost, to announce all kinds of business wants of interest to other men in the fields served by these publications. It has long been the accepted meeting place of men with business needs and the men who can fill those needs.
When you want additional employees or a position, want to buy or sell used or surplus new equipment, want products to manufacture, seek new capital or factory sites or have other business want-advertise them in the Searchlight Section for quick, profitable results!

Classified Advertising Division

\section*{McGRAW-HILL}

PUBLISHING CO., Inc.
330 West 42nd Street - New York 36, N. Y.

\section*{SEARCHLIGHT}
(Classified Advertising)

\section*{SECTIONS}
are found in these

\section*{McGRAW-HILL}

Publications:

American Machinist
Aviation Week
Business Week
Bus Transportation
Chemical Engineering
Chemical Week
Coal Age
Construction Method \&
Equipment
Electrical Construction \&
Maintenance
Electrical Merchandising
Electrical World
Electronics
Engineering \& Mining Journal
Engineering News Record
E. M. J. Metal Mineral Markets
Factory Man. \& Maint
Fleet Owner
Food| Engineering
Nucleonics
Power
Product| Engineering
Textile World
Welding Engineer

10 seconds 1024 Minites Simer A hand wound electric TIMING SWITCH RADIO - TV-Electric Mixer-Photographic Devices-Time Delay etc. Furnished Devices-Time Delay etc. Furnished
with Calibration Chart and Pointer \(\$ 7.25\)
Knob. Biggest bargain we ever had.

HAYDON SYNCHRONOUS TIMING MOTOR
110 ₹. 60 crcle 30RPM,... \(\$ 2.60\) 110 v. 60 cycle \(1 / 10\) RPM. \(\$ \mathbf{2 . 3 5}\) 110 ₹. 60 cycle 1RPM. \(\$ 2.85\)

REDMOND Powertul 5* Blower or Ventilator 115 volts AC 60 cycles 18 watts. For Kltchen - Laboratory. watts. For Kitchen - Laboratory.
Heat or Cold or Chemicals... \(\$ 7.50\)
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
Genuine TELECHRON Motors \\
2.RPM..... \(\$ 2.90\) \\
3 RPM..... 3.90 \\
3.8 RPM... 3.15 \\
1 RPM..... 3.95 \\
60 прм.... 4.30 \\
One of oach \(\$ 15.00\)
\end{tabular} \\
\hline \\
\hline \\
\hline \\
\hline ALL PRICES F.O.B. N. Y. \\
\hline
\end{tabular}

\section*{CARRIER EQUIPMENT}

Western Electric CF-IA 4-channel carrier telephone terminals.
EER101-A 2 -channel 1000/20 cycle carrier ringers. CFD.B A-channel carrier pilot repulated telephone
terminals complete with tour channels \(1000 / 20\) cycle rinaing.
CFD-B
4 -channel
pilot
regulated telephone re-C-42-A V. F. tolegraph In from 2. to 12-channel terminals. FMC I or 2 channels carrier telephone terminals. automatic requlation, duplex signaling each
channel. Carrier frequencies above 35 KC . Ideal channel. Carrier frequencies above 35 KC . Ideal complete engineering and installation services offered.

RAILWAY COMMUNICATIONS, INC. Raytown, Missouri
Telephone: FLeming 2121

\section*{PREMIER}

Special Purpose and Transmitting Tubes

SPECIAL TUBE BUYS
\begin{tabular}{|c|c|c|c|c|c|}
\hline 183GT.. & . 57 & 68C5... & . 46 & 12 A & . 47 \\
\hline & . 48 & \({ }_{68 \mathrm{E}}^{686} . .\). & .410 & 12AXXIGT & 7 \\
\hline \(1 \mathrm{1R5}\) & . 38 & \({ }_{6866}{ }^{6} \mathbf{6}\) & 1.21 & \(12 \times 7\) & 3 \\
\hline \({ }^{1 T 4}\) & . 48 & \({ }_{6816}^{681}\) & 50 & \({ }^{12} 12 \mathrm{BEG}\). & . 38 \\
\hline 105. & . 39 & \({ }_{68969}\) & . 77 & 12 SNTGT & 7 \\
\hline 3 A 4. & . 54 & 6 C 4. & . 32 & 19 T & 70 \\
\hline 304. & . 54 & \({ }_{6} 6\) CB6 & - \({ }^{.46}\) & 25896 GT & 77 \\
\hline \({ }^{3} \mathbf{3} \mathbf{3} 4 . . .\). : & . 51 & \(6{ }_{6 S D}\) & \(\begin{array}{r}1.58 \\ \hline 41\end{array}\) & 2566 C
3585. & 41 \\
\hline \({ }_{5}^{514}\) & . 36 & \(658 G T\)
6507 & . 77 & & 15 \\
\hline GAG5 & . 46 & \(65 \mathrm{~L} /{ }^{\text {ct. }}\) & . 53 & \({ }^{35} 54\). & 26 \\
\hline 6AK5 & . 86 & 6SN7GT & . 47 & 3525 ta . & 32 \\
\hline \({ }_{6} 64\). & . 36 & & . 70 & 5085.... & 1 \\
\hline 6A \({ }^{6}{ }^{\text {a }}\) S: & . 312 & 6WAGT: & . 40 & 50 & .43 \\
\hline \({ }_{6}{ }^{\text {AUG }}\) & - 37 & \(6 \times 4 \times\) & . 29 & 11723 & 4 \\
\hline SAXAGT & . 54 & 12AT7 & : 61 & orde & \\
\hline 6BA6.. & . 38 & 12AU6: & .37 & & \\
\hline
\end{tabular}

Critical tubes are always on hand and at the right prices in quantity

We Will Be Pleased to Quote Special Prices for Large Quantity Purchases OVER 1,000,000 TUBES IN STOCK
Since 1926 Prime Source for

\section*{TUBES Special Purpose and Picture Tubes}

PARTS All Types - All Brands -
Manufacturers Jobbers - Exporters

We invite your inquiries on electronic components of all descriptions.

Division of Continental Corp.
324 I W. North Ave. . Chicage 47, III. ARmitoge 6-5550

\section*{is pleased} to announce the removal of its plant in Paterson to its NEW and LARGER quarters at

\section*{1086 GOFFLE RD. Hawthorne,}

TELEPHONE: HAwthorne 7-3100

\section*{Complete line of}
- DC Motors
- AC Motors
- Aircraft Inverters
- AC Servo Motors
- DC Servo Motors
- Servo Controls
- 400 Cycle Blowers
- Nary Ordinance Synchros
- DC \& AC Generators
Standard Brands

\section*{We Own and Have In Stock All Items Listed Below.}
Note: This is only a partial listing of our vast inventory of electronic components.

 \%igitioni
Guaranteed

\title{
INDEX SEARCHLIGHT
}

January, 1953

This index is published as a conyenience to the readers. Care is taken to make it accurate but ELECTRONICS assumes no responsibility for errors or omissions.

\section*{EMPLOYMENT}

Positions Vacant. 372-381
Selling Opportunities Offered............................. 380
SPECIAL SERVICES
Contract Work. 372
BUSINESS OPPORTUNITIES
Offered
372
VANTED
Equipment . 381

ADVERTISERS INDEX
\begin{tabular}{|c|c|}
\hline Acorn Electronic & 407 \\
\hline Admiral Corporation & 378 \\
\hline Alexander, E. E. & 402 \\
\hline Allen Organ Company & 372 \\
\hline Allied Electronic Sales & 401 \\
\hline Arrow Appliance Co. & 401 \\
\hline Arrow Sales Inc.. & 399 \\
\hline Atlas Equipment Co & 381 \\
\hline Barry Electronics Corp & \\
\hline Belling, George & 411 \\
\hline Bendix Aviation Corp., Radio & 376 \\
\hline l3endix Aviation Corp., York Div & 374 \\
\hline Blan & 413 \\
\hline Blonder-Tongue Laboratories Inc & 381 \\
\hline Brooks Co., Inc., B. D. & 408 \\
\hline Burden Sales Co.. & 411 \\
\hline California Institute of Technology & 378 \\
\hline Candee-Airco & 400 \\
\hline C \& H Sales Co..... & 409 \\
\hline Capehart Farnsworth C & 380 \\
\hline Cap Electronics Inc. & 411 \\
\hline Chase Electronics Supply C & 401 \\
\hline Columbia Electronics Sales. & 399 \\
\hline Comet Electronics Sales Co & 407 \\
\hline Communications Devices Co & 412 \\
\hline Communications Equipment Co & 391 \\
\hline Compass Communications Co. & 401 \\
\hline Connector Corp. of America & 402 \\
\hline Convair & 377 \\
\hline Cornell-Aeronautical Laboratory In & 377 \\
\hline
\end{tabular}

Daries Laboratories, The

Douglas Aircraft Co Canada Ltd...... 381

Drillick Electronic Sales Co....................... . . 480

Fair Radio Sales. 411
Finnegan, H. 381
Freeland Products Co. 412
Galbraith \& Son Inc. 402
General Motor Corp., A A C Spark Plus Div** 376 Gibhs Manufacturing \& Research Corp.... 379

January, 1953 - ELECTRONICS

TO THE ADVERTISERS

January, 1953

SEARCHLIGHT SECTION (Classified Advertising) H. E. Hilty, Mgr.

Goodyear Aircraft

Harber Industrials.
Hatry \& Young...
Houde Supply Co..
Instrument Associates. 392
J. S. H. Sales Co. 402

Lapirow Bros.....................
Legri S Company.
Liberty Electronics Inc
Line Hardware Co...
383
403
...................... 398
Magnecord, Inc. 378
Maritime Switchboard
Maryland Electronic Manufacturing Corp.
McNeal Electric \& Equipment Co Melpar, Inc
Merrick Electronics
Mogull Co., Inc., Alexander
Monmouth Radio Laborator
Morgan \(\&\) Co., Griffith M.
National Cash Register Co.
Phillips Petroleum Co.
Photocon Sales.
409
Precisi, Harold 1 .
Precision Electrical Instrument Corp....
Premier TV Radio Supply, Div. of Cons-
tinental Corp.

Sandia Corp.................................. . . . 379
Semier Associated Industries, inc........ . . 397
Spivey Co., James S............................... 400
Stavid Engineering Inc
State Labs, Inc.. 407
Sylv
"TAB" 419, 420
Time Electronic Sales.
Universal General Corp.
V. \& H Electronics Industries Inc.

Wells Sales Inc
Weston Laboratories

\section*{RADAR - COMMUNICATIONS - TEST EQUIPMENT}

AN/ARC-1-Transceiver \(100-156\) mes APN-1-Pulse Analyzer
ARC-4-Vrborne Radio Altimeter ARN-7-Alirberne Direction Finder ARR-2-Honing \& Ikeceiving Equipmen BC-223-30-Watt Transmitter 2-5.2 MC BC. 3.2 -Receiver- 1.5 to 18 MC 110 v AC
\(\mathrm{BC}-3+8\)-Receiver- 1.5 to 18 MC 28 DC BC-639 BC-640-VHF Receiver 100-156 MC. BC-1206-Beacon Receiver \(200-400 \mathrm{KC}\) SCR-269-lRadio Connass Receiver SCR-274N-Command Equ SRR-284--Field Radio Stat SCR-291-Semi-Portable Direction Finder SCR-300-Field Transmitter and Receiver SCR-536-Handi-Talkie
SCR. 555 -Semi-1'ortable Direction Finder SCR-634-Portable lield Transceiver SCR-718A-AM-C-High Altitude Altimeter TS.3/AP S-1sand Power Frequency Meter
 TS-13/AP-X-Band Signal Generator TS-15/AP-Flux Meter TS-18/AP-Capacity Divider S-34/AP--Syneroscore coniplete TS-35/AP-X-Mand Test Set
TS-36/AP X-Ranci 1 'wer Meter........
TS. \(45 / \mathrm{APM}-3\) X-itand Signal Generator TS-59/APN-APN-1 Test Set TS.62/AP-X-Band Rcho Ho TS. 69/AP-300-1000 MC Frequency Meter TS-89/AP-1'ulse Voltage Divider TS. \(102 /\) AP-Range Cadibrator
 TS. \(170 / \mathrm{ARN}-\mathrm{S}\) - S . TS. \(181 / \mathrm{AP}\)-Test Set TS-268/UP-Crvstal Test Set IE.19-SClR-522 Test Set BC.221 Frequency Meter TBN/3EV-Thermistor Bridge CW/60/ABM-S I Band Frequencs Meter APA-10--Panoramic Adaptor APA-17-Automatic Direction Finder iso \(\$ 225.00\) APR-1-L APR-1-l Radar Search Receiver 40-3400 MC
APR-2-Radar Search Receiver \(85-1000\) MC

WANTED! WANTED! Needed for Government Defense Projects-all trpes of military electronic gear with the prefix TS, EP, exchange for sour needs. No ofter too small or 100

APR-4 hadar Search Recelver 38-4000 MC APR-6-Radar Search lieceiver \(1000-: 100 \mathrm{MC}\) APS-2-S-Band Search Madar
APS. 4 - -Band Search Tathar
APS-15A-X-Band Blind Bombing Radar
APT-4-Radar Jamming Xnitter 165-780 MC APT-5-TRadat damming Xnitter 350-1400 MC. \(\$ 189.50\)
So.13-S-Band Marine Jadar so. 13 -S-Band Marine Iadar, Lightweight
SQ 10 CM Portable Radar \(\$ 850.00\) TPS.1-1'ortable Search Radar TPS-3-1 - Jand Search Itadar
UPN-1 \& 2-S-Band Tortable Leacon Hattery or RA. 34-lower Supply for 1BC-375: .\(\$ 225.00\) RA-G2-1'ower Supply for SCI- 522 BC. 1016 - Ink Tape Recorder
PE-103-Dynamotor Power Supply ..\(\$ 24.50\) PE-103-Dynamotor Power Supply, . \({ }^{\text {GN-58-Mand Cranked Generator W/Legs \& Seat }}\) SCR-578-Gibson Girl (Emergency Xinitter) CRT. 3-Victory Ginl Dual Frea Emergener Xmitter
Sound Jowered Chest \& Headsets MI-2454- 5 :

FL-5-F-Filter, Less Cables
3C-16-D GSAP-Gun Can

\section*{PANEL METERS}

2" SQUARE WESTON-SANGAMO

XMITTIING TUIBES

\section*{STOCK DELIVERY}

Sealed relays telephone relays DIFFERENTIAL ReLays
plate current relays
antenna switching relays
minature relays
STEPPING RELAYS
CURRENT RELAYS
aUTOSYN AIRCRAFT INSTRUMENTS
MERCURY SWITCHES
TIMING MOTORS
MAGNESYN COMPASS INDICATORS
remote compass systems
hydraullc pressure gauges
alr pressure gavges
alrcraft engine gauges
alrcraft or marine sextants
SENSITIVE ALITMETERS
TURBO SUPERCHARGER AMPLIFIER
PITOT STATIC TUBES
tachometer woicators
mechanical tachometers
hYoraulic cylinder Servos
temperature inolcators
FORMICA ARCRAFT PULLEYS
ball bearings
DYnamotors
Electric meters
ampere demand meters
MICRO SWITCHES
Lever SWITCHES
TOGGIE SWITCHES
wafer Swiches
INTERVALOMETERS
pILOT LIGHT ASSEMBLIES
SWIEEP generator capacitors
OIL FILLED CAPACITORS
blower wheels
range calibrator (1-108)
POTENTIOMETERS
FUSE HOLDERS
thyratron tubes
etc.

See our previous Electronic ads.
Your catalogue requests and quotation requests will receive our prompt attention. Call ARmory 4-8989.

 arec
avis
aig RELAY SPECIAL

 BENCH TOOLS

 Utilliy Scrow Driver Sot. a Standird. A 2 Reoen Interohangable Blad diL:

OIL CAPACITORS

 \(\frac{\text { HIV PHOTOFLASH }}{\text { Puttorpla }}\)

 \begin{tabular}{l}
Pe \\
\hline
\end{tabular}

PHOTOFLASH CAPACITORS

\section*{100 MFD 500 WVDC
200 MFD S00 WVC}

5MFD 450 WVDC

Dept. 1E 111 Liberty Street New York 6, N. Y., U. S. A.

PRECISION
RESISTORS
Over \(21 / 2\)

ingun mwn whoopo

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
MICROWAVE \\
Klystron Mta Assy (723AB)
fo Coupling to 2 Typo \\
Co-Ax Fittings.......: \(\$ 19.98\) \\
1 Microseond \(\$ 2.95\); flar 510.00
\end{tabular} & \begin{tabular}{l}
SELENIUM \\
RECTIFIERS \\
We apodalize in Rectifiers and Power auppliea to your bpecifion Lions. Immedate delfivery.
\end{tabular} \\
\hline P/O M Tr9 AAGs \({ }^{\text {a }}\) & \(\begin{array}{lllllllll}\text { Currant } & 18 / 14 & \text { 26/18 } & 36 / 28 & \mathbf{5 1 / 4 0} & 130 / 100\end{array}\) \\
\hline 为 & \\
\hline & \\
\hline Watt Meter Low Power. Une & \\
\hline Mridgo M Meauren Low Level Miorowayo Powert & \\
\hline Comel & \\
\hline (eater & \\
\hline CONTACTOR & Full Wave Selen Rect \& Trans, in Kit Form. \(115 \mathrm{~V} / 60 \mathrm{c}\) y inguts. \\
\hline C. E. CR2811C22AQ. Heary & \\
\hline mitter or M Motor Starter & \\
\hline & \\
\hline H & \({ }_{\text {1 }}^{18.8-19.2-20.4}\) \\
\hline & 18-12-9 - \({ }^{18}\) \\
\hline & \\
\hline Open. SPEEIAL...........599.98; 4 for 599 & 18V/2A . . . 2.75 ¢ \(18 \mathrm{~V} / 4 \mathrm{~A}\)..............:.: 3.95 \\
\hline SE TRANSFORMERS & \\
\hline & \\
\hline Pulso f mr 1000 . & \\
\hline & \\
\hline NSFO & \\
\hline & \\
\hline \({ }_{7} 5\) & or sped control and center oft roversing \\
\hline & \\
\hline
\end{tabular}

\section*{INDEX TO ADVERTISERS}
\begin{tabular}{|c|c|}
\hline Ace Engineering \& Machine Co., Arme Electric Corp. & \[
\begin{aligned}
& 232 \\
& 353
\end{aligned}
\] \\
\hline Acme Electronics, Ine & 366 \\
\hline Acoustic Products Limited & 176 \\
\hline Advance Electric \& Reluy Co & 305 \\
\hline Aeronautical Commonications & \\
\hline Equlpment, Inc. & 348 \\
\hline Aerovox Corp. & 171 \\
\hline - ir-Mite & 351 \\
\hline . Nir Marine Motors, 1 & 313 \\
\hline Aircraft-Marine Products, Inc. & 157 \\
\hline Aircraft Transformer Corporation & \(24 \%\) \\
\hline Airpax Products Company & 25 \\
\hline Alden Products Company & 43 \\
\hline Allen-Bradley Co. & 45 \\
\hline Allen Co., Ine., L. Is & 370 \\
\hline Allied Industries, Inc. & 299 \\
\hline Allied Kadio Corp & 204 \\
\hline Allmetal Screw Products Co., Inc & 323 \\
\hline Nipha Metals, Inc. & 287 \\
\hline American Electric Motors & 302 \\
\hline Anmerican Gas Furnace Co. & 343 \\
\hline American Lava Corporation & 175 \\
\hline American Phenolic Corp. & 150 \\
\hline American Television \& Radio ('o & 263 \\
\hline American Time Products, Ins. & 172 \\
\hline Amperite Co., Inc & 286 \\
\hline Ampex Electric Corp. & 192 \\
\hline Andersen Laboratories, Inc. & 327 \\
\hline Andrew Corporation & 240 \\
\hline Arma Corporation & \\
\hline Arnold Engineering Company & 164 \\
\hline Art-Lloyd Metal Produrts ('orp) & \({ }^{2} 6\) \\
\hline Art Wire \& Stamplng Co. & 368 \\
\hline Aruna Brothers & \\
\hline Audio Devices, Inc & \\
\hline
\end{tabular}

Ballantine Laboratories. Inc. 198
Barker \& Williamson, Ine 345
Barry Corp.
Beaver Gear Works, Inc. 268
Beckman Instruments, Inc. 331
Heede Electrical Instrument Co., Inc.... 313
Bell Aircraft Corporation. 335
Bell Telephone Laboratories. 213
Bendix Aviation Corporation,
Eclipse-Pioneer Div.
Friez Instrument Div 322
.... 364
Berkeley Scientific Div. of
Beckman Instruments, Inc. 222
Hird Electronic Corp...................... . . 369
Birnbach Radio Co., Inc. 354
Birteleer Corporation
Biwax Corporatlon
Isodnar Industries, Inc
Bogart Manufacturing Corp. 314
Boonton Radio Corporation. 145
Bourns Laboratories
Brand \& Co., Ine., William.
Brew \& Co., Ine., Richaral I)
Bridgeport Brass Company.
.... 211
rwing Laboratories, Inc'.............. 270
Brisil Electronics Company. 250
Burlington Instrument Company. 354
Burnell a Company \(^{\text {B }}\)
Buasmann Mfg. Co.

Cinema Fingineering (0................... . 70
Clarostat Mfg. Co., Inc.. 36
Cleveland Container Co
Clippard Instrument Laboratory, line. 57
Clough Hrengle Co.. 348
Cohn ('orp., Sigmund. 321
Collectron Corporation 329
Condenser Products Company,
Div. of New Haven Clock \& Watch Co 229
Conn, Ltd., C. G. 63
Continental Connectors Corp.. 422
Continental-I iamond Fibre Co 925
Cornell-Dubilier Llectria Corp 41
Coto-Coil Company 331
crescent co., inc. 288
Crest Laboratories, Inc
317
Cross Con, H.191
Dage Electric Co., Inc 339
Dano Elpetric Co. 305
Daven Co. Third Cover De Jur Amseo Corporation 183
Dialight Corporation 182 Dolin Metal Products, Inc. 279 Dow Corning Corporation. 44. 363 Driver-IHarris Company 237 DuMont Iaboratories, Inc., .Illen I3...... 40 Durant Difg. Co............................ 315
Dyna-labs, Ince. 35
Wastern Air bevices, Ine 304Eastman Kodak Company,
Industrial Optical Sales Div 151
Edison 312
249Edo Corporation
Eisler Engineerin: Co., Ine.355, 3\%0Eitel McCullough, Inc. 83, 331
Electrical Industries, lic. \(16{ }^{7}\)
167
Electro Lngineering Prod. Co 360
Electro Tee Corporation 36
Flectro-Tech Equipment Co... 307
Electronic Associates, Inc 71Electronic Parts Manufact291
329
Electronic Tube Corporation.190
Electronics of Colorado. 19
Eingineering Resenrcin Assordates, 294. 34Inc.
Eraser Co., Inc 294
Erie Resistor Corp 53
Eureka Television \& Tube Corp. 273
Eveready Plating Co. 370
Fairchild Camera \& Instrument Corp. 269
Funsteel Metallurgical Corporation. 158Federal Telephone \(\&\) Radio Corp.... 173, 235Ferroxcube Corp. of America. \(\quad \$ 9\)
Fidelity Chemical I'roducts Corp. 309The \(3^{7}\)Flatto Mrt Co................................... 351Foredom Electric (o...................... . . 355Foredom Electric Co. \(355{ }^{7}\)
Frequency Standards
Fugle-Miller Laboratories 366
Furst Electronics . 343

Galbraith \& Son Electric Corp., C. G.... 347 Gamewell Company 204 Gaveo Corporation 243 General Ceramies \& Steatite Corp...... 223 General Electric Company,

Apparatus Dept.
Tube Dept.
\(48,49,58,23\)

Cinch Mamafarturing Corporation....... 141
C.G.s. Jaboratories, Inc. 316

Cambridge Thermionic Corp............. 32
Cannoil Hlectric Company. 230
Carhorundum Company 50
('argo Packers Incorporated 27 \%r
Centralab, A Div. of Globertinion,
Inc. 11, 12, 13
Century Geoplysical Corp. 32.
Chase Brass \& Copper (0. 20.
Chester Cable Corp....................... . \(21 \%\)
Chicago Telephone Supply Corp......72, 73 Chirago Transformer,

Oscillograph Recorder
for applications requiring an instrument of minimum size and weight

The Heiland A. 500 Portable Oscillegraph Recorder has been designed and. developed for recording strains, pressures, accelerations, temperatures, etc. under conditions requiring an insteument of minimum size, light weight and extreme versatility. Incorporated in the " 500 " are many features found only in much larger instruments . . . simultaneous viewing and recording...four "quick change" paper speeds...easy loading and operation...

For complete information on the Heiland A-500 and the possible application of this instrument to your particular problem, write or wire...

The Heiland Research Corporation 130 East Fifth Avenue, Denver 9 , Colorado
dependable instruments

Want more information? Use post card on last page

General Hermetic Sealing Corp 315
General Precision Laboratory, Inc 89
17
General Transformer Company 332
Gertsch Products, Inc.. 252
GM Laboratories, Inc 275, 311
Goat Co., Inc., Frel. 344
Graphite Metallizing Corporation 358
Green Instrument Co., Inc. 283
Gries Reproducer Corj
350
60
Guthman \& Co., Inc.. Edwin I
Hammarlund Mfg. Co.. Inc 296
Harper Company, H, M
Hathaway Instrument Company 285
Haydon Company, A. W. 214
317
Heath Company 333
Helland Research Corp. 421
Heldor Manufacturing Co 21
Helipot Corporation 147
Heminway \& Bartlett mig. Co 339
Hermetic Seal Products Co 199
Hetherington, Inc. 234
Hewlett-Packard Contpany 33
Hexacon Electric Co. 361
Hickok Electrical Instrument Co 27
Howard Industries, Inc. 13
Hudson Radio \& Television Corp. 325
Huison Tool \& Die Company, Inc 15.
Lhes Research Deveiopment Laboratories 340
Hycor Company, Inc. 279
Hytron Radio \& Electronics Co. 193
Improved Seamiess Wire Company. 360
nduction Motors CorD. 341
Industrial Condenser Corp. 337
Industrial Hardware Mfg. Co., Inc 311
industrial Tape Corp 358
Instrument Electronics Corp 35
International Business Machines 295
International Nickel Company, Inc. 201
ppolito \& Co., Inc., James. 319
Irvineton Varnish \&i Insuiator Co 81
56
James Vibrapower C 291
Jeffers Electronics,
Division Speer Carbon Co 152
Jelliff Manufacturing Cort 252
Jennings Radio Manafacturing Co. 202
JFD Mfg. Co 263
Jones Div, Howard B, Cinch Mfg. Cerp 288
303
Joy Manufacturing Company 84
Kahle Engineering Co 299
Karp Metal Products Co., Ino
77
77
Kartron
\(\begin{array}{r}60 \\ \hline\end{array}\)
Kenyon Transformer Co., Inc 179
Kepco Laboratories, Inc
52
Kester Soliler Company
54, 85
Keuffel Esser Co168
Kirk \& Blum Mfg. Co. 256
Knights Company, James. 74
Kollsman Instrument Corporation 18
Laboratory for Electronice, Inc. 51
Lambda Electronies Corp..... 328
Lampkin Laboratories, Inc 29.3
Lapp Insulator Co 76
Leeds \& Northrup \(C\) 38
Lenkurt Electric Sales Company 244
dewis Spring \& Mfg. C 342
Linde Air Products Company, A Dlv of

\section*{CHEMELEC(42\% ELACTRONIC PARTS}

Panoramic Radio Products, Inc. 339
Par-Metal Products Corporation........ . 271
Penta Iaboratories, Inc. 311
Permag Corp. 315
Peschel Electronics, Inc................ . . . 370
Phalo Plastics Corporation.............. 271
Phaostron Co 33
Phelps Dorlge Copper Products Corp.,
Inca Manufacturing Division....... 28, 29
Phillips \& Hiss Co., Inc................. . . 343
Pix Manufacturing Co., Inc............... 339
Plastle Capacitors, Inc.................. . . . 30
Plastoid Corporation 241
Polarad Electronics Corporation........ . 91
Polymer Corporation 356
Polyphase Instrument Company......... 323
Polytechnic Research \& Development
Company, Inc. 23
Popper \& Sons, Inc. 343
Potter \& Brumfield. 248
Potter Instrument Company, Inc........ 206
Praktica Co., Inc.......................... 303
Precision Apparatus Co., Inc. 424
Precision Paper Tube Co... 283
Premax Products, Div. Chisholm-Ryder
Co., Inc.
Pyroferric Co., Inc........................ . . . 251

Quality Products Co

National Company, Inc................274, 358 National Moldite Company 208
National Ilustic Products Co............ 326
National Research Corporation94, 95 Neo-Sil Corporation 361
New Hermes, Inc 367
New York Transformer Co., Inc. 310
Ney Company, J, M. 287
Norden Inst ruments, Inc. 318
North American Aviation, Inc........... 355
Northeastern Engineering, Inc............ 233
Nothelfer Winding Laboratories........ 364

Olympic Metal Products Co., Inc........ \(32 \%\)

*ask Pont's trademark for is cetrafluorbethylene esin
tTrademark

Chemelec Teflon*-insulated electronic components include a complete line of 7 and 9 pin miniature tube sockets, crystal sockets, feedthrough insulators and terminals.
All provide the same high performance which this superior insulating material assures. Surface resistivity \(3.5 \times 10^{13}\) ohms. Loss factor less than 0.0005 . Dielectric constant 2.0 (60 cycles to 30,000 megacycles). Serviceable at \(-110^{\circ} \mathrm{F}\). to \(500^{\circ} \mathrm{F}\). Won't carbonize under arcing. Zero water absorption by ASTM Test. Unaffected by extreme humidity. Won't DC plate. Chemically inert, non-gassing, immune to corrosive atmospheres, fungus, oil, solvents. Non-flammable, tough, resilient, withstands and absorbs mechanical shock and vibraticn.

\section*{TEFLON and KEL-F STOCK and Custom-Fabricated Parts}

Fabricating "Know-how", the result of years of specialized experience-and the most modern facilities for rapid, low-cost, close-tolerance production are at your command when you specify Teflon or Kel-F \(\dagger\), fabricated by the United States Gasket Company. Ours is the most complete line in the country-sheets, tape, rods, cylinders, tubing, bars, and custom-machined or molded parts to 'manufacturers' specifications.

\section*{You Get OVERALL Test Performance With}

\section*{PRRECTISTONSSERIES 10-12 Electronannic TUBE PERFORMANCE TESTER}
with 12 ELEMENT free-point Master Lever Selector Sysfem
To test modern tubes for only one characteristic will not necessarily reveal overall performance just mutual conductance or other single factor.
In the Precision Electronamic Circult, the tube PERFORMS under appropriately phased and selected individual element potentials, encompassing a wide range of plate family characteristic curves. This complete Path of operatlon \(1 /\)
lntegrated by the indicating meter in the positive PERFORMANCE terms of Replace-Weak-Good.

MODEL 10-12.P: in sloping, portable hardwood ease with toal compartmant and hinsed romovAlso in counter or rack-panel mounte.
\(\star\) Facilities to 12 element prongs.
* Fllament voltages from \(3 / 4\) to 117 volts.
\(\star\) Fests Noval 9 pins; 5 and 7 pin acorns mitting tubes. ac R mitting tubes; elc. ReGAN PIN OPITIONENT OR aNY OTHER ELENENT PIN POSITIONS.
* ISOLATES EACH TH PELEMENT REGARDLESS OF MULTIPLE PIN POSITIONS
* oual short check sensitivity for special pur. pose tube selection.
* Battery Tests under dynamic load conditions.
* Built-in Dual-Window, brass-geared roller chart. * \(41 / 2^{\prime \prime}\) Full Vision Meter.

SEE the "Precision'" Electronamic Tube Tester at leading radio equipment distributors. Write for new 1952 catalog describlag Precision Test Equidment for all phases of modern electronics

\section*{Precision Apparatus Co., Inc.
}
\({ }^{-H e g}\) U.S. l'atent Omse
Export: 458 B'way, N.Y.C., U.S.A. Cables: MORHANEX Want more information? Use post card on last page.

Radio Corporation of America.
.......................rth Cover, 187
Radio Receptor Corporation............. 219
Radio Shack Corporation. 89 297
Kahm Instruments, Ine 283
Railway Express Agency,
Air Express Div.....
Rauland Corporation
Raytheon Manufacturing 42
Company
\(\ldots .34,35,349\)
(B.M Division, Essex Wire Corp....... 154

Keeves IIoffman Corporation............. . . 194
Regency . 353
Kemler Company, Litd. 36
Republic Foil \& Metal Mills, Inc......... . . 25
Rex Corporation 33
Rex Rheostat Co. 370
Rhode Island Insulated Wire ('o., Inc. . . . 165
Roanwell Corporation 331
Rome Cable Corporation. 280
Runzel Cord \& Wire Co.......... 359
Kutherford Electronies Co................. 295

Sangamo Electric Company............. 212
Scientific Electric Div. of " \(S\) ",
Corrugated Quenched Gap Co......... . 365 Scientific Electronic Labs, Inc. 347
Secon Metals Corporation. 365
Servomechanisms, Inc. 320
Servotrol Company . 289
Shalleross Mig. Company. 86, 87
Shieldings, Inc. 338
Sigma Instruments, Inc................... . . 268
Signal Engineering \& Mfg. Co........... 323
Sorensen \& Co., Inc........................ . . 47
Southern Industries of Maryland, Inc. . . 368
Southwestern Industrial Electronies Co. \(27 \%\)
Specialty Battery Company............. 313
Spencer-Kennedy Laboratories, Inc..... 321
Sprague Electric Company. 9, 64
Standard Plezo . 363
Sterling Transformer Corp. 317
Stoddard Aircraft Radio Co... 210
Struthers-Dunn, Inc. 290
Stupakoff Ceramic \& Mfg. Co........... . . 221
Sturtevant Co., P. A. 252
Superior Electric Co. 85
Superior Tube Company 37
Surprenant Mfg. Co........................ 292
Sylvania Flectric Products, Inc........ 7,265

Taylor Fibre Co. 181
Tech Laboratories, Inc. 300
Technical Service Corporation........... 275
Technitrol Engineering Company........ 271
Technology Instrument Corp............. 220
Tektronix, Inc. 301
Tel-Instrument Co., Inc. 328
Telechron Dept., General Electric
Company
163
Teletronics Laboratory, Inc...........344, 370
Telewave Laboratories, Inc. 291
Telex, EIectro-Acoustic Div. 303
Terpening Company, L. H................... 298
Thermador Electrical Mig. Co............ . 359
Thomas \& Skinner Steel Products Co.... 272
Tinker \& Razor. 310
Titefiex, Inc. 67
Tobe Deutschmann Corporation..... 260,261
Trad Television Corp...................... . . . 315
Transformers, Inc. 185
Transradio, Ltd. 253
Triplett Electrical Instrument Co....... 160
Tru-Ohm Products, Div, of Model

Engineering \& Mig., Ine. 159
Tung-Sol Electric, Inc. 245

Union Carbide \& Carbon Corp.,
Linde Air Products Div. . 309
United Catalog Publishers, Inc. 279
United Condenser Corp................... . 327
United Manufacturing \& Service Co..... 275
Cnited States Casket Co.................. 423
linited States Testing Company......... 321

United Transformer Corp.......Second Cover Universal Electronics Co.................. 309 Universal Winding Company 68

Varflex Corporation 207
Varian Associates 209
Veeder-Koot Incorporated . 2
Vickers, Inc, . \(18{ }^{2}\)
Victoreen Instrument Co.................. . . 307
Victory Engincering Corp.................. 330

Waldes Kohinoor, Inc. 39
Warren Wire Company . 252
Waterman Products Co., Inc. 325
Waveforms, Inc. 303
Weckesser Company . 319
Welch Scientific Co., w. M............. . . . 287
Western Coil Products Co............... . . 359
Western Gold \& Platinum Works........ 324
Westinghouse Electric Corp.79, 180, 195, 203
White Dental Mfg. Co., S. S.,.. \(254,255,357\)
Whitehead Stamping Company......... 263
Wickes Engineering \& Construction Co.. 329
Williams \& Co., C. K...................... 346
Winchester Electronics, Inc.............. . 281
Workshop Associates Div., The
Gabriel Company 166
Wunderlich Radio Company 369

Zophar Mills, Inc............................ . . 310
rROFESSIONAL SERVICES 371

SEARCHLIGHT SECTION
(Classified Advertising)
H. E. hilty, Mgr.

SEARCHLIGHT ADVERTISERS INDEX
416.417

This index is published as a conventence to the readers. Every care is taken to make it accurate, but ELECTRONICS assumes no responsibility for errors or omissions.

Bulletin R Now!
 the market. It's another thing to improve them . . . to conceive advanced designs . . . after they are on the market.
RCA engineers take nothing for granted-even after design has been "frozen," RCA engineers continue to work closely with equipment designers to solve problems dealing with the performance of tubes and components. RCA engineers never
"let go"' in their efforts to provide the ultimate in useful performance of the product.
Take the tubes and components illustrated here. - The improved rectangular kinescope features a metal shell which permits use of a reflection-free faceplate having uniform thickness and high quality; it weighs less; it allows new flexibility in chassis layout. The improved plate radiator of the power tube reduces operating temperature, increases tube life, saves customers' money. - The improved deflecting yoke provides beam deflection through a diagonal deflection angle of \(90^{\circ}\)-with inherent compensation for deflection defocusing. The improved rectifier tube has a greater reserve of emission, greater stability, longer life . . . is better suited for TV receiver requirements.

You can rely on RCA engineering leadership for continuous product improvement.

RADIO CORPORATION OF AMERICA```

[^0]: Athato Chienge Clevelamd Daflas Dayton Detroif Los Angeles Minneopolis New York Philedselphia Phoenix Rochester 54. Louis San Froscisco Seattle Torento Wasmington

[^1]: - Pilotless Flight-Aside from missile applications, programmed

[^2]: HEWLETT-PACKARD COMPANY 2608A PAGE MILLROAD PALO ALTO, CALIFORNIA, U.S.A. Export: Frazar \& Hansen, Ltd, San Francisco, Los Angeles, New York City

[^3]: "Carborundum" and "Globar" are registered trademarks which indicate monufacture by The Carborundum Company, Niagara Falls, New York

[^4]: Your
 Invited to man rus

 - no -- manor coupon roar

 BUSSMANN Mfg. Co. (Division of McGraw Electric Co.) University at Jefferson, St. Louis 7, Mo.
 Please send me bulletin SFB giving the facts on BUSS small dimension fuses and fuse holders.

 Name...
 title. \qquad
 \qquad
 Address. \qquad

[^5]: Complete system for measuring dynamic pressure under wing of aircraft in flight

[^6]: Capacitor voltage divider mounts on the high-voltage shelf of standard electron microscope. Lucite tube protects the stack from dust

[^7]: This paper was based on work performed under contract AT-04-1-GEN-12 between the United States Atomic Energy Commission and the University of California at Los Angeles.

[^8]: OFFICES: METROPOLITAN AREA: 671 Broad St., Newark, N J.. Mitchell 2.8159 - PHILADELPHIA, 1649 North Broad St., Stevenson A. 2823 SOUTHWEST: John A. Green Co., 6815 Oriole Drive, Dallas 9. Dian 9918 - NEW ENGLAND, 1374 Massachusetts Ave., Cambridge. Mass., Kirkland 7.4498 LOS ANGELES, 5603 North Huntington Drive, Capitol 1.9114 - CHICAGO, 228 North LoSolle St., Central 6.1721 - ST. LOUIS, 1123 Washington Ave., Garfield 4959

