

A simele, douisle and taple combinations

C PARRS or PRIMARISS-yellow, cyon, mogemta

Color-TV
Signal-Generator
Patterns

D DOT-SECUENTLAL WAVEFORM-corresponding to picture A

ULTRA COMPACT UUIIS...OUICER UUIIS HIGH FIDELITY... . SMALL SIZE FROM STOCK

UTC Ultra compact audio units are small and light in weight, ideally suited to remote amplifier and similar compact equipment. High fidelity is obtainable in all individual units, the frequency response being $\pm 2 \mathrm{DB}$ from 30 to 20,000 cycles.
True hum balancing coil structure combined with a high conductivity die cast outer case, effects good inductive shielding.

Type	Application	Primary Impedance	Secondary Impedance	List Price
A. 10	Low impedance mike, pickup, or multiple line to grid	$50,125 / 150,200 / 250$ 333, $500 / 600$ ohms	$50 \text { ohms }$	\$16.00
A. 11	Low impedance mike, pickup, or line to 1 or 2 grid's imultiple	$50,200,500$ e alloy shields for low hum	$\begin{aligned} & 50,000 \text { ohms } \\ & \text { im pickup) } \end{aligned}$	8.00
12	Low impedance mike, pickup, or multiple line to grids	$50,125 / 150,200 / 250$ 333, 500/600 ohms	80,000 ohms overall, in two sections	6.
A. 14	Dynamic microphone to one or two grids	30 ohms	50,000 ohms overal, in two sections	17.00
20	Mixing, mike, pickup, or multiple line to line	$50,125 / 150,200 / 250,$ 333, 500/600 ohms	50, 125/150, 200/250, 333, $500 / 600 \mathrm{hm}$;	相
A. 21	Mixing, low impedance mike, pickup, or line to line (multiple	$50,200 / 250,500 / 600$ alloy shields for low hum	$\begin{aligned} & 50,200 / 250,500 / 600 \\ & \text { pickup) } \end{aligned}$	8.00
16	Single plate to single grid	15,000 ohms	60,000 ohms, 2:1	. 0
A. 17	Single plate to single grid 8 MA unbalanced D.C.	As above	As above	17.00
A. 18	Single plate to two grids. Split primary	15,000 ohms	80,000 ohms overall, 2.3:1 turn ratio	
A-19	Single plate to two grids 8 MA unbalanced D.C.	$000 \mathrm{ohms}$	80,000 ohms overali, 2.3:1 turn ratio	19.00
A. 24	Single plate to multiple line 1	15,000	$\begin{aligned} & 50,125 / 150,200 / 250, \\ & 333,500 / 600 \mathrm{ohms} \end{aligned}$	6.00
A-25	Single plate to multiple line 8 MA unbalanced D.C.	15,000 ohms	$50,125 / 150,200 / 250$ 333, 500/600 ohm;	17.00
A-26	Push pult low level plates to multiple line	30,000 ohms plate to plate	$\begin{aligned} & 50,125 / 150,200 / 250, \\ & 333,500 / 600 \text { ohms } \end{aligned}$	6.
A. 27	Crystal microphone to mul- 1 tiple line	$100,000 \text { ohms }$	$\begin{aligned} & 50,125 / 150,200 / 250, \\ & 333,500 / 600 \mathrm{ohms} \end{aligned}$	16.00
A. 30	Audiochoke, 250 henrys @ 5 MA	ohms D.C., 65 hen	O MA 1500 ohms D.C.	12.00
. 32	Filter choke 60 henrys @ 15 MA	0 ohms D.C., 15 henry	(90 MA 500 ohms D. 2 .	10.00

TYPE A CASE
$11 / 2^{\prime \prime} \times 11 / 2^{\prime \prime} \times 2^{\prime \prime}$ high

JT: OUNCER components represent the acme in compact quality transformers. These units, which weigh one ounce, are fully impregnated and sealed in a drawn aluminum housing $7 / 8^{\prime \prime}$ diameter mounting Jpposite terminal board. High fidelity characteristics are provided, uniform from 40 to 15,000 cycles, exeept for $0-14,0-15$, and units carrying $D C$ which are intended for voice frequencies from 150 to f CO cscles. Maximum level 0 DB .

$\underbrace{\substack{\text { city }}}_{\substack{\text { OUNCER } \\ \text { CASE }}}$
$7 / \mathrm{E}^{\prime \prime}$ Jia. $\times 1 / \mathrm{s}^{\prime \prime}$ high

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	Application	Pri. Imp.	Sec. Imp.	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$
C-1	Mike, pickup or line to 1 grid	$\begin{aligned} & 50,200 / 250 \\ & 500 / 600 \end{aligned}$	50,000	\$14.00
0-2	Mike, pickup or line to 2 gridis	$\begin{aligned} & 50,200 / 250 \\ & 500 / 600 \end{aligned}$	50,000	14.00
0.3	Dyramic mike to 1 grid	7.5/30	50,000	13.00
0.4	Single plate to 1 grid	15,000	60,000	11.00
0.5	Plate to grid, D.C. in Pri.	15,000	60,000	11.00
0.6	Single plate to 2 grids	15,000	95,000	13.00
0.7	Plate to 2 grids, D.C. in Pri.	15,000	95,000	13.00
0.8	Single plate to line	15,000	50, 200/250, 500/600	14.00
0.9	Plate to line, D.C. in Pri.	15,000	50, 200/250, 500/600	14.00
0.10	Push pull plates to line	30,000 ohms plate to plate	50, 200/250, 500/600	14.00
0.11	Crystal mike to line	50,000	50, 200/250, 500/600	14.00
0.12	Mixing and matching	50, 200/250	50, 200/250, 500/600	13.00
0.13	Reactor, 300 Hys.-no D.C.; 50	Hys.-3 MA. D.C.,	6000 ohms	10.00
0-14	50:1 mike or line to grid	200	1/2 megohm	14.00
0.15	10:1 single plate to grid	15,000	1 megohm	14.00

electronics

A McGRAW-HILL PUBLICATION

AUGUST •1951

COLOR-TV SIGNAL-GENERATOR PATTERNS COVER
Three monitor images and a waveform, photographed on Ektachrome tilm at Hazeltine Laboratories (see p 116)DEFENSE DEPARTMENT PLANS FOR BASIC RESEARCH, by H. Zahi, E. Piore and J. Marchetti....... 82Army, Navy and Air Force spokesmen tell what's ahead
AIRBORNE SUBMARINE DETECTION SYSTEMS, by T. B. Schillo 88Survey of recent improvements in submarines and antisubmarine aircraft, with emphasis on electronic equipment
PLANS FOR COMPATIBLE COLOR TELEVISION 90Recommendations for "composite system" proposed by AD Hoc Committee of NTSC
WAR-EMERGENCY OPERATION OF BROADCAST STATIONS 94The plan for assuring broadcast service without revealing the source of the program
ELECTRONIC PROTECTION FOR WAR PLANTS, by Richard Y. Atlee 96Advanced designs offer increased safeguarding of plants engaged in military production
INDUSTRIAL TRISTIMULUS COLOR MATCHER, by George P. Bentley 102Constant-current multiplier phototube circuit accurately matches colors of even darkest plastics, textiles and dyes
NEW CATHODE DESIGN IMPROVES TUBE RELIABILITY, by D. R. Hill 104
Structure contains reservoir of electron-emitting substance
SIDEFIRE HELIX UHF-TV TRANSMITTING ANTENNA, by L. O. Krause 107
Provides power goin of 20 with structural simplicity and ease of adjustment
TRAVELING-WAVE AMPLIFIER MEASUREMENTS, by F. E. Radcliffe 110Quick ond accurate measurement of amplifier characteristics for microwave television program circuits
HIGH-SPEED SAMPLING TECHNIQUES, by B, R. Shepard. 112Ways and means for scanning more circuits with better accuracy and in Iess tiree
PICTURE GENERATOR FOR COLOR TELEVISION, by R. P. Burr, W. R. Stone and R. O. Noyer 116
Simple equipment is added to black-and-white picture generator to provide colc:-sir-ped pictures
STEP MULTIPLIER IN GUIDED-MISSILE COMPUTER, by Edwin A. Goldberg 120
Circuit details of missile and target simulator that minimizes costly test firings of new missile designs
BEAM STABILIZER FOR INDUSTRIAL X-RAYS, by John E. Jacobs 125
Automatic device uses cadmium crystals to keep beam intensity constant
D-C AMPLIFIER WITH REDUCED ZERO-OFFSET, by W. McAdam, R. Tarpley and A. Williams, Jr. 128Input required to bring output to zero is less than one microampere in new contoc-modulcted measuring amplifierFIELD-POWER CONVERSION, (Reference Sheet), by Robert E. Perry134
Shows directly power density corresponding to field strength and levels above $1 \mu \mathrm{v}$ or $1 \mu \mathrm{w}$

DONALD G. FINK, Editor; W. W. MacDONALD, Managing Editor; John Markus, Vin Zeluff, A. A. McKenzie, Associate Editors; William P. O'Brien, James D. Fahnestock, Ronald K. Jurgen, Assistant Editors; John M. Carroll (on Military Leave), Ann Mastropolo, Marilyn Wood, Editorial Assistants; Gladys T. Montgomery, Washington Editor; Harry Phillips, Art Director; Eleanor Luke, Art Assistant

KEITH HENNEY, Consulting Editor

H. W. MATEER, Publisher; WALLACE B. BLOOD, Manager; R. S. Quint, Buyers' Guide Manager; D. H. Miller, James Girdwood, New York; Wm. S. Hodgkinson, New England; Warren W. Shew, Philadelphia; C. D. Wardner, Chicago; J. L. Phillips, Cleveland; J. W. Otterson, San Francisco; J. H. Allen, Los Angeles; Ralph C. Maultsby, Atlanta; Bernard H. Butler, London, England

marion methods

MEASURE HAIRSPRING TORQUE WITH SOUND WAVES

Marion's Hairspring inspection method permits 100% inspection and control of hairspring characteristics at high production rates.

Helf yourdeff to marion meinods

 THE MARION METHOD of hairspring inspection takes advantage of the relationship between the torque of the hairspring and its natural resonant frequency. Initial calibration is made with a standard torsiometer and frequency is adjusted to resonate a hairspring of known torque. Hairsprings of correct torque specifications resonate when held in tweezers placed against the vibrating surface. Amplitude adjustment permits "Go-No-Go" Inspection to $\pm 1 \%$ of specified torque. With this method, inspection rates of 500 to 600 springs per hour may be achieved. This technique affords production torque control to close limits on a 100% basis, rather than the normal spot checking provided by standard torsiometers.NOT FOR SALE - Marion's Method ot inspecting hairsprings by vibrating them at audible frequencies may be adaptable to your own inspection problems. The illustrations show how such a device may be made. The one pictured uses a Hewlett-Packard audio oscillator coupled to a transducer which may be a modified P. M. speaker assembly.

OTHER MARION METHODS - Current demands on industry by the mobilization program accentuate the importance of production methods. Hairspring torque measurement by means of sound waves is only one of a number of methods which Marion proposes to present in the hope that some of them can help you as much as they have helped us. Marion Electrical Instrument Company, 401 Canal Street, Manchester, N. H., U. S. A.

THIS INFORMATIVE QUARTERLY WILL BE MAILED TO YOUR ADDRESS WITHOUT CHARGE

MUIRHEAD \& CO. LTD • BECKENHAM • KENT • ENGLAND Please mail me, free of charge, your quarterly journal "TECHNIQUE",

NAME

POSITION
COMPANY
ADDRESS \qquad

PRECISION

MUIRHEAD

ELECTRICAL INSTRUMENTS

Low temperature is

 themselves! Chief among those who can are IRC Resistors. Advanced, yet practical design-unusual use of heat-dissipating materials-and a rigid qualitycontrol system - all combine to give these resistance units low operating temperatures, greater efficiency and longer life.
 actual field conditions.

essential

Bosides unusually rapid dissipation of heat, IRC Fixed and Adjustable Power Wire Wound Resistors give balanced performance in every characteristic. Special cement coatings are designed for low range high temperature requirements-or for maximum protection against extreme atmospheric conditions. For exacting, heavy-duty applications-high voltage bleeders, bias supply, grid and filament dropping resistors-PWW's are available in a full range of sizes, types and terminals. Leading industrial, aircraft and broadcasting users have specified them for more than 14 years. Technical data Bulletin C-2 gives complete information.

When you're in a hot spot and need experimental or maintenance quantities of standard resistors doublequick, phone your IRC Distributor. IRC's Industrial Service Plan provides him with a full stock of uniformly dependable standard resistors; he can give you fast, round-the-corner delivery of smallorder requirements. We'll be glad to send you his name and address.

For extremely fast heat dissipation, the unique mounting brackets of Type MW Wire Wound Resistors actually transfer heat from chassis to outside. Other radical departures from conventional design give $M W$'s widest adaptability to individual requirements. MW's are flat wire wound resistor strips, permanently enclosed by high pressure molding in a special mica-filled phenolic compound. Special feet permit mounting on any flat metal surface. Low initial cost, lower mounting cost, flexibility in providing taps af low cost, and savings in space, all offer amazing economies. Ask for technical data Bulletin B-2.

Power Rbsistors - Voltméter Mullipliers Insulated Composition Resistors - Low Waftage Wire Wounds • Volume Controls • Voltage Dividers . Precision Wire Wounds • Deposited Carbon Precistors - Ultra-HF and High Volfagy Resistors - Insulated Chokes

Wherever the Cinacoit Says -M-

ÍNTERNATIONAL RESISTANCE COMPANY

403 N. BROAD ST., PHILADELPHIA 8, PA.
Please send me complete information on the items checked below:\square Advanced BT Resistors (B-1) \square BW Resistors (B-5)
\square Power Wire Wounds (C-2) \square MW Resistors (B-2) \square Name and Address of nearest IRC Distributor

NAME
tifle \qquad
COMPANY
ADDRESS
CITY \qquad STATE

For regulated DC problems investigate Sorensen's line of Voltage Reference Standards,

DC Supplys, and NOBATRONS

manufacturers of ac line regulators, 60 and 400 cycles; regulated dC power sources; electronic inverters; voltage reference standards; custom builit transformers; saturable core reactors

Reeves saves space in its Electronic Brain... with IRV=O-LITE Tubing

The Reeves Electronic Analog Computer (REAC) * saves plenty of man-hours in performing complex calculations. And in this Electronic Brain's complicated wiring system, shielding and terminal
labeling are done exclusively with IRV-O-LITE XTE-30 Plastic Tubing-saving plenty of space.
XTE-30's high dielectric strength of $1,000 \mathrm{vpm}$ (dry) frequently permits the use of thinner-walled tubing. Where space is at a premium, follow the example of Reeves and hundreds of other manu-facturers-use XTE-30!
You get these other advantages, too, with XTE-30 Plastic Tubing: high mechanical strength; lasting flexibility; excellent chemical and moisture resistance.
XTE-30 comes in a standard range of sizes from . $022^{\prime \prime}$ to $2^{\prime \prime}$ ID and

took to

 even larger for special applications. Six contrasting colors simplify identification of leads and speed up complex wiring jobs. See for yourself, what XTE-30 will do for you-just mail the coupon for free Technical Data Sheet.

* Manufactured by Reeves Instrument Corp. of N. Y., one of the outstanding pro. ducers of high precision electronic and electro.mechanical computing equipment.

Send this convenient coupon now
 Irvington
 VARNISH \& INSULATOR
 COMPANY

Irvington 11, New Jersey

WILBUR B. DRIVER COMPANY

Plasticon GLASSMIKRS
 have been solving your engineering problems since 1943!

We originally designed Glassmikes for the Metallurgical Laboratory at the University of Chicago for use in radiation counter equipment. The Glassmike construction (metal ferrules soldered to silvered bands at each end of a glass tube) proved ideal for small, high voltage filter and coupling capacitors. As the only exclusive producers of plastic film dielectric capacitors, we use many different films and impregnation combinations. Our application experience enables us to recommend the best dielectric combination for your particular application.

Some of the more common Glassmike types are as follows:
Type ASG—High temperature, high voltage filter coupling and by-pass service.
Type AAG-High resistance, low voltage coupling and storage service.
Type LAG-Very high resistance, extremely low dielectric absorption.
Type LSG-High "Q", high voltage replacement for mica capacitors.
Type TAG—Similar applications to Type LAG, but for higher temperatures.
Type TSG-Similar application to Type LSG, but for higher temperatures.
Type PAG—High DC resistance, low dielectric absorption for temperatures up to $85^{\circ} \mathrm{C}$.
Type FAG-Ultra high resistance, high voltage capacitor.
Send us your requirements and we will recommend the proner camacior.

MANUFACTURERS

Glassmike Capacitors
Plasticon Capacitors
HiVolt Power Supplies Pulse Forming Networks

C_{p}
7517 North Clark street © Chicago 26, H1HOIs

Relay control panel of Loran Transmitter Model T-137, built by Federal Telephone and Radio Corporation. Five adlake Relays are used to control plate and filament power and to provide overload protection - operations calling for the utmost stability in time delay.

Loran transmitters (LOng RAnge Navigation) are of prime importance to both naval and mepchant fleets. The builder of these transmitters, Federal Telephone and Radio Corporation, Clifton, N. J., uses admake Relays-because adlake assures the utmost reliability under all operating conditions.

ADLAKE Relays are designed and built to meet the most exacting requirements. Their mercury-to-mercury contact prevents burning, pitting and sticking, and their sturdy construction armors them against outside vibration or impact. And most important of all, they require no maintenance, for they are hermetically sealed against dust, dirt and moisture.

For the full story on the part adlake Relays can play in your business, just drop a card to The Adams \& Westlake Company, 1107 N. Michigan, Elkhart, Indiana. No obligation, of course.

> Every ADLAKE Relay Glves You These Advantages:

HERMETICALLY SEALED-dusf, dirt, moisfure, oxidation and temperafure changes can'f interfere with operation.

MERCURY-TO-MERCURY CONTACT-prevents burning, pitting and sticking.
SILENT AND CHATTERLESS • ABSOLUTELY SAFE REQUIRES NO MAINTENANCE

we can show you how to use it less and less and less and lest

Here’s Proof: Printed Electronic

What are Printed Electronic Circuits?

Printed Electronic Circuits are complete or partial circuits (including all integral circuit connections) consisting of pure metallic silver and resistance materials fired to CRL's famous Steatite or Ceram-ic-X and brought out to convenient, permanently anchored external leads. They provide compact miniature units of widely diversified circuits -
from single resistor plates to complete speech amplifiers. No other modern electronic development offers such tremendous time and cost saving advantages in low-power applications. Important to note: All PEC's illustrated are developed for standard applications. Numerous other circuit complements can be furnished for volume requirements.

How Do They Save Time and Money - Space and Weight?

Because Printed Electronic Circuits combine several components on a single plate unit, they eliminate approximately 25% to 80% of formerly required soldered connections within the circuits they replace. This means simplified assembly - savings in material. What's more, because they replace several
60% Less Soldered Connections with Centralab Triode Couplates

Centralab Triode Couplates replace 5 components normally used in audio circuits. Triode Couplates are complete assemblies of 3 capacitors and 2 resistors bonded to a diclectric ceramic plate. Available in a variety of resistor and capacitor values. Technical Bulletin 42-127.
50% Less Soldered Connections with
Centralab's AUDET

Audet Printed Electronic Circuits furnish all values of all components generally found in the ontput stage of $A C \cdot D C$ radio receivers. They provide 4 capacitors and 3 resistors on a small plate with only 7 leads. Technical Bulletin 42-129.
individual components, they cut down your purchases and inventory. Because they are complete assembled circuits, they do much to eliminate wiring errors. Their small size (note illustrations) means less space needed as well as less weight . . . important factors in today's crowded chasses.

Plate Capacitor and Resistor-Capacitors Excellent for Miniature Use

Actual size photograph of plate capacitor, resistor, and resistor-capacitor units. Because of size, they readily fit all types of miniature and portable electronic equipment. . overcome crowded conditions in TV, AM, FM and record-player chassis. Technical Bulletin 42-24.

NEW Model 3 AMPEC - A Sub Miniature 3 Stage Speech Amplifier

Here's the latest outgrowth of Centralab's constant research in Printed Electronic Circuit development. The remarkathly small dimensions of this new amplifier unit are approximately $11 / 32^{\prime \prime} \times 15 / 16^{\prime \prime} \times 11 / 32^{\prime \prime}$. Check coupon for Technical Bulletin 42-130.

Circuits = BIG SAVINGS

50% Less Soldered Connections With Centralab's NEW PENDET

PENDET consists of 5 capacitors and 4 resistors in a single plate with only 9 leads. Similar to the popular AUDET, it is designed to couple the diodetriode and pentode tubes in the output stage of AC -DC sets. Check coupon for Technical Bulletin 42-149.
82% Less Soldered Connections With P.E.C. VERTICAL INTEGRATOR

Centralab Vertical Integrators give you big savings in assembly of TV vertical integrator networks. One type consists of 4 resistors and 4 capacitors brought out to 3 leads . . reduces former 16 soldered connections to 3! Check coupon for Technical Bulletin 42-126.

28 \% Less Soldered Connections With NEW FILPLATE

FILPLATES (2 resistors and 2 capacitors) for bypass and filter application in TV, FM and AM, where filter networks of comparable component values and layout are needed Smaller than special delivery stamp. Save vital low wattage resistor stocks. Technical Bulletin 42-131.

Standard Model 2 AMPEC Miniature

3 Stage Speech Amplifier

AMPEC - A full 3 -stage speech amplifier. Provides highly efficient performance. Size $11 / 4^{\prime \prime} \times 1 \frac{1}{8^{\prime \prime}} \times .340^{\prime \prime}$ over tube sockets! Used in hearing aids, mike preamps and other applications where small size and outstanding performance counts. Technical Bulletin 42-117.

Centralab

Division of GLOBE-UNION INC. • Milwaukee

Centralab, Div, of Globe-Union Inc.
914 East Keefe Avenue, Milwaukee 1, Wisconsin
Please send me the Teclinical Bulletins on Printed
Electronic Circuits as checked below
\square 42-24
$\square 42-117$
$\square 42.126$
$\square 42-127$
$\square 42-128$
$\square 42$-129
$\square 42$-130
$\square 42-131$
\square 42-149

Name

Address

Company

How to get any TV

TAKE OME ©F THESE TV TRANSMITTERS.

10 tw, for VHF Type TT-10AL/H (All Air-Cooled)

10 kw , or UHF
IYpe IT ノ-10A

20 kw , for VHF
Type TL-20BL/H

power up to 200 KW:

..ADD ONE OF THESE
TV ANTEMNAS...

POWE:

With RCA's complete line of transmitters (seven different models), you can get any ERP* up to 200 kw -on any channel from 2 to 83. And in most cases, you can get the power you want in several different ways!

If your requirements are best met with g low-power transmitter and a high-gain antenna, RCA has the combination! However, if your needs are better met with a higherpower transmitter and a lower-gain antenna, RCA has that combination foo!

Ask your RCA Sales Representative to sit down and help you plan the most practical and economical equipment setup for your station. He has an intimate knowledge of station planning-knows TV equipment from A to Z. He can tell you exactly what you'll need to get "on the air" . . . with the power you want . . . at the lowest cost.

Call him today. Or write RCA Engineering Products Department, Camden, N. J.

* Efiective rodiated power

TV Super Turastile Type TF-5

UHF Pylan
High-Gain
Type TFU-24B

". . . losing friends and antagonizing people ${ }^{\text {s/ }}$

With her new hearing aid, Grandma Crane was really enjoying life. My it was nice to hear clearly again . . . like now, talking to her grandson at camp. Then-silence-the hearing aid was dead! Nothing to do but go back to the office where she bought it. The technician will be in for a hard time-especially when Grandma Crane finds out that the trouble was just a bit of electrical insulation that failed.
That manufacturer saved a few pennies in costs-and lost dollars in good will.

The failure of electrical insulation in your product is a serious matter-for your customer and for you.

Leading electrical equipment and appliance manufacturers use BH " 649 " \dagger Fiberglas Sleeving and Tubing to minimize the possibility of insulation breakdown.

Here is a superior, high voltage, Fiberglas insulation available in three grades - A-1, B-1 and C-1 ... tough, abrasion resistant and permanently
flexible. It is non-fogging and non-corrosive with unusual chemical resistance, except for Ketones, Esters and Aromatic Hydrocarbons. It will not crystallize at $-67^{\circ} \mathrm{F}$. BH " 649 " won't crack, peel, fray or split. It will take plenty of abuse without loss of these physical properties, or its dielectric strength even after the following tests

15 minutes at $425^{\circ}-450^{\circ} \mathrm{F} ; 24$ hours at $302^{\circ} \mathrm{F} ; 1500$ hours at 220° $230^{\circ} \mathrm{F}$.

BH " 649 " is one of a family of BH insulations, each designed to meet particular conditions in service. Whether your problem is hear, cold, flexibility, abrasion, high voltage or resistance to chemicals, there is a BH insulation to help you. Give us a few facts about your requirements - products, temperatures, voltages. We will furnish samples for testing. Address Dept. E-8
PPatent Pending
Bentley, Harris Manufacturing Co. Conshohocken, Pa .
BH OLberalax:

TUN
 S
 0
 \square

(6) \int triodepentode

h TV recilyar chrcur

triodepentode

\checkmark Completely independent sections

\checkmark Versatility in circuit application \checkmark Improved circuit performance

This tube has two electrically independent sections-a triode and a pentode and is intended as a local oscillator mixer for FM and TV receivers. Each section is adequately shielded, and both are capable of exceptionally good performance at the higher frequencies.

Because the two sections are completely independent, a high degree of flexibility of circuit design is available especially valuable in TV tuner oscillator use. Performance of the 6 U8 triode at low voltages is superior to that of many types previously used for this service. It has

MECHANICAL DATA

Coated unipotential cathodes-2

Outline drowing RTMA 6-2	Bulb	T-6-1/2
Base RTMA E9-1	Minioture button	9-pin
Maximum diameter		$7 / 8{ }^{\prime \prime}$
Maximum overall length		2-3/16"
Maximum seated height		1-15/16"
Base pin connections	RTMA basing	9 AE
Pin 1-triode plate	Pin 6-pentode plate	
Pin 2-pentode grid \#1	Pin 7-pentode cathode	
Pin 3-pentode grid \#2	grid \#3, shield	
Pin 4-heater	Pin 8-triode cathode	
Pin 5-heater	Pin 9-triode grid	
Mounting position		Any

ELEGTRICAL DATA

Interelectrode Capacitances	With Shield \#315	Without Shieid
Pentode grid \#1 to pentode plate	0.006	0.010 max.
Pentode input	5.0	5.0
Pentode output	3.5	2.6
Triode grid to triode plate	1.8	1.8
Triode grid to cathode	2.5	2.5
Triode plate to cathode	1.0	0.4
Cathode to heater (either section) approx.	3.0	3.0

sufficient reserve emission to operate efficiently under widely varying supply voltage conditions.

The pentode provides excellent gain with low local oscillator voltage injection resulting in low oscillator radiation from TV receivers. Use of the pentode section as the mixer permits the high (40 m . c.) I. F. so desirable to reduce interference and increase stability.

The construction and characteristics of the 6 U8 proyide designers with extremely desirable flexibility in combining circuit functions. The pentode section of the tube may be used as an I. F. amplifier, video amplifier, sound limiter or synchronizing separator. The triode performs satisfactorily as a horizontal or vertical oscillator, or sync clipper.

Wherever there is need for a triode and a pentode in a receiver, they can be combined in the $6 U 8$.

ELECTRICAL DATA

Ratings

Heater voltage (ac or dc)
Maximum heater-cathode voltage Maximum plate voltage (pentode) Maximum plate voltage (triode) Maximum grid \#2 supply voltage Maximum plate dissipation (pentode) Maximum grid \#2 dissipation Maximum positive dc grid \#I voltage Maximum positive dc grid voltage (triode) Maximum plate dissipation (triode)

Typical Operating Conditions and Characteristics

	Triode		Pentode	
Heater voltage		6.3		VOLTS
Heater current		450		MA.
Plate voltage	150		250	VOLTS
Grid \#2 voltage	. .		110	VOLTS
Cothode resistor	56		68	OHMS
Transconductance	8500		5200	НMHOS
Grid \#1 voltage (approx.) for $1 \mathrm{~b}=10 \mathrm{ya}$.	-12		-10	VOLTS
Plate current	18		10	MA.
Grid \#2 current	\ldots		3.5	MA.
Plate resistance (approx.)	. 005		0.40	MEG.
Amplification factor	40			

TUNG-SOL ELECTRON TUBES

The TUNG-SOL engineering which has produced the 6U8 is constantly at work on a multitude of special electron tube developments for industry. Many exceptionally efficient general and special purpose tubes have resulted. Information about these and other types is available on request to TUNG-SQL Commercial Engineering Department.

FOR MAXIMUM PERFORMANGE AND LONG LIFE

OFELECTRICALLY-OPERATED-EQUIPMENT

stabiline

Automatic VOLTAGE REGULATORS

TYPE IESIOI

Manufacturers faced with the need for increased production and lower costs are becoming extremely conscious of the importance of maintaining constant voltage to electrical apparatus. The Superior Electric Company's line of STABILINE Automatic Voltage Regulators offers equipment to suit the needs of each application. Two types are available: Type IE (Instantaneous Electronic) and Type EM (Electro-Mechanical).
STABILINE Type IE is a completely electronic unit with no moving parts . . . is used where instantaneous and extremely close correction is required. It maintains a constant output voltage regardless of line variations at no load, full load or any intermediate load. The output voltage is held to within ± 0.1 volts of nominal for wide line variations; within ± 0.15 volts of nominal for any load current change or load power factor change from lagging .5 to leading .9. Maximum waveform distortion never exceeds 3%.

Standard models are available in cabinets or for relay rack mounting in numerous ratings as listed below. In the event you have a special requirement involving other frequencies or ratings, SECO voltage control engineers will study your specific problem and make recommendations without obligation.

INSTANTANEOUS ELECTRONIC CABINET MODELS

Input Voltage Range	Output Voltage Rang*	Frequency In Cycles	load Range In Amperes	Lood Pown Factor Range	Roted Output KVA	Type
95.135	110-120	60 $\pm 10 \%$	0-2.2		0.25	IE51002*
195-255	220-240	$60 \pm 10 \%$	0-1.1		0.25	IE52002*
95-135	110-120	60 $\pm 10 \%$	$0 \cdot 4.5$. 5 lagging	0.5	1E51005*
195-255	220-240	60 $\pm 10 \%$	0-2.2	, 5 lagging	0.5	IE52005*
95-135	110-120	$50 \pm 10 \%$	0-4.5		0.5	IEL51005*
195-255	220-240	$50 \pm 10 \%$	0-2.2		0.5	IEL52005*
95-135	110-120	60 $\pm 10 \%$	0.8 .5	to	1.0	[E5101**
195-255	220-240	$60 \pm 10 \%$	0-4.5	1	1.0	[E5201*
95-135	110-120	$50 \pm 10 \%$	0-8.5		1.0	[EL5101*
195-255	220-240	$50 \pm 10 \%$	0-4.5		1.0	IEL520)*
95-135	110-120	$60 \pm 10 \%$	0-22.0		2.5	IE5102*
195.255	220-240	$60 \pm 10 \%$	0.11 .0	. 9 leading	2.5	IE5202*
195-255	220-240	$50 \pm 10 \%$	0. 11.0		2.5	IEL5202*
95-135	110-120	$60 \pm 10 \%$	0-43.5		5.0	IE5105
195-255	220-240	$60 \pm 10 \%$	0-22.0		5.0	IE5205
* Also offered in rack models.						

REMEMBER, STABILINE TYPE EM (ELECTRO-MECHANICAL) UNITS ARE ALSO AVAIL. ABLE. RATINGS FROM 2 TO 100 KVA. LITERATURE ON REQUEST.

There's a STABILINE Automatic Voltage Regulator for every need. Send today for literature and specific information. Write The Superior Electric Co., 408 Church St., Bristol, Conn.

powenstat vanhable transformeas - voltbox a.c power supplits - stashlime voliage aeculators

-ytron's unique outernctic setting =snweyor. Machine dispenses and settles pracisely uniforn TV pizture-tube scens Automatic disperse- in foregreurc is en achievenment of Hytron mechanizal engineering. Jitraricn-proof shan- int conveyor was corstrusted fo- Fytron by Truiner and Boumans, inc.

NO LIGHT SCREENS... NO HEAVY SCREENS... NO HOLES... NO UNEVENNESS

Another engineering first for you! Hytron's unique, automatic machine for dispensing and settling the screens of TV picture tubes.

What does it mean to you? A guarantee of the most uniform and finesttextured TV screens in the business. No light screens. No heavy screens. No specks from foreign particles. No unevenness.

Automatic dispenser pours exactly the right amount of chemicals into the big bottles as they travel slowly up the ramp. Conveyor's motion is so smooth a nickel standing on edge can ride it! Phosphors fall uniformly out of suspend ing solution . . . undisturbed - a "must" for perfect screens. Decanting or pouring off of chemical residue, loading, and unloading are equally shock-free And there's precise electro-mechanical control throughout . . . with human errors barred!

That is why you can pick any Hytron picture tube. Depend on it. Any one will give you the finest screen money can buy. Yes, it pays to buy from Hytron the most modern picture-tube plant in the world.

MAIN OFFICE: SALEM, MASSACHUSETTS
 set without danger set without danger ... without deturns from your Hytron Jobber

LAPP PORCEAAMNP|PE Inside pipe diameters of $3 / 4,1,11 / 4,1 / 2,2$ and $3^{\prime \prime}$. Available in straight pipe up to $60^{\prime \prime}$ lengths, 90° and 180° elbows,
 and fittings. All connections are swivel-type. Stand off insulators attach directly to bolts which hold pipe sections together. Metal fittings are bronze, polished heavy chrome plated.

LAPP PORGELAIN WATER COILS

Twin hole coils with inside pipe diameters $1 / 4,3 / 4,1^{\prime \prime}$. Single hole coils with inside pipe diameters $3 / 8,11 / 4,11 / 2^{\prime \prime}$. Provide for flow of cooling water from 2 to 90 gal. per min. Coils provided with cast aluminum mounting bases, fittings, and three-foot sections of lead pipe for attachment to coil terminals.

Write for complete description and specifications. Radio Specialties Division, Lapp Insulator Co., Inc., Le Roy, N. Y.

 for the electronics industry

 for the electronics industry}

WRITE FORCOMPLETE 'WIRE SIZE'' CATALOG

98 page catalog lists all AMP tools and terminals. BY WIRE SIZE RANGES. Send for your copy today!

AMP Trade-Mark Reg. U. S. Pat. Off

SOLISTRAND SOLDERLESS TERMINALS

Trade-Mark U.S. Patents Pending
Unique crimp makes this non-insulated terminal equally valuable for solid, stranded, square, or irregular shaped wire. Brazed seam. One piece construction of high conductivity pure copper, electro-tinned for corrosion resistance. Available in a wide variety of tongue shapes and connector styles from \# 22 to \# 4/a

Whatever your production requirements, there is an AMP tool for the purpose. Strong, positive-action hand tools; light weight, compact pneumatic tools; bench presses; dies; hydraulic tools; and Automatic Machines. Terminals feed into AMP Automatic Machines in strip form to yield crimping rates up to 4,000 complete terminations per hour.

AIRCRAFT-MARINE PRODUCTS INC. ELECTRONICS DIVISION 2100 Paxion Street, Horrisburg 10, Pd

MICROWAVE POWER MEASUREMENTS

 COMPLETE COVERAGE! 10 to $12,400 \mathrm{mc}$Instantaneous, direct readings! No adjustment during operation! No tedious computations! Complete new instrumentation for fundamental measurements of CW or pulsed power!

Instrument	Frequencies -Coaxial	FrequenciesWaveguide	Price (f. o. b. Factory)
4758 Tunable Bolometer Mount	1.000104 .000 mc		\$200.00
476A Untuned Bolometer Mount	10 to 1.000 mc		\$125.00
S485A Detector Mount*		2,600 10 $3,950 \mathrm{mc}$	\$125.00
G4858 Detector Mount \dagger		3,950 to 5,850 me	\$95.00
34858 Detector Mount t		5,850 :0 8,200 mc	\$90.00
M4858 Detector Mount +		7,050 to $10,000 \mathrm{mc}$	\$85.00
X4858 Detector Mount +		8,200 to $12,400 \mathrm{mc}$	\$75,00
4308 Microwave Power Meter	For use at any microwave frequency. Operates with mounts listed above.		\$250.00
tFor use with bolometer or crystal.			

-hp- 485 Detector Mounts

For of power measurements in wave guide systems, 2,600 to $12,400 \mathrm{mc}$ (see table) in conjunction with -hp-430A or 43013 Power Meter and Sperry 821 barretter. Also may be used to measure relative I'vel, or detect of energy using a type 1 N 21 crystal. Semi-tuned by means of a built-in movable short.

-hp- 475 B Bolometer Mount
Tunable from 1,000 to $4,000 \mathrm{mc}$ for uni versal application, greatest convenience in making microwave power measurements. Double-stub design, coupling energy from 50 ohm coaxial systems into 100 or 200 ohm bolometers. Uses Sperry 821 barretter, thermistor or $1 / 100$ ampere instrument fuse.

Get complete information! See your locid -hp-representative or urite to factory.

HEWLETT-PACKARD COMPANY

2161A PAGE MILL ROAD - PALO ALTO, CALIFORNIA, U.S.A.
Expori: Frazar \& Hansen, Lid., San Francisco, New York, Los Angeles

New? - hp- 430B Microwave

 Power Meter-measures pulsed or CW power - 02 to 10 mwModel 430B gives you instantaneous rf power readings direct in db or mw at any frequency. (Operates with bolometer mount. Table at left shows -hp-mounts now available.) Measures CW power with instrument fuse or barretter as bolometer element; also measures CW or pulsed power using negative temperature coefficient thermistor at 100 or 200 ohm levels. Reads power direct .02 to 10 mw or in dbm from -20 to +10.5 ranges selected on front panel switch. Accuracy $\pm 5 \%$ of full scale. Higher powers may be measured by adding attenuators (-hp-Models 370, 380) to if system. Directional couplers may be used to sample of energy

New!

-hp- 476A Universal Bolometer Mount

Requires no cuning, no adjustment; measures of power at any frequency 10 to 1,000 me. Extrencly low VSWR: Less than $1.15,20$ to 500 mc , less than $1.25,10$ to 1,000 nic. Reflected power less than 0.1 db under normal conditions. In combination with -hp-430d or 130 B Power Meter gives automatic, instantaneous readings from 0.02 to 10 milliwatts. Measures higher power with addition of attenuators and directional couplers. 50 ohms impedance. Has Type N connector and terminates tlexible cables RG8/U, RG10/U, ctc.

chotoy

RADIO RODS
Roplacing usual loopt Spell now recoption stendards. Pormil mounting on chassia, and final test bofore placement in cabinel " Q " of order of 250 as agains 80 for small loops. Usud Croloy radie rod is $8^{\prime \prime}$ l. by $1 / 2^{\prime \prime} \mathrm{d}$. Othes izes ovai able.

CROLOY CORES Molded in widesi range of shopes and sizes. Doflection yokes expand TV-fube deflection angles without corresponding valiage increase. Croloy coras slosh TV trensformer bulk.

CROLOY

RADIO CORES

Croloysiugiuners and I.F. soils reduce cost and raise gain Made in widest yoriely of designs, sizes ond modifications. With scrow insocts; with throased bodies cup-shaped; Nity closed cores tic. Choice of compostifions to meet electronic charocterisfics.

EXTRUDED
 CROITE
 From tiny fubes no bigger than pencil lead and with one or two longitudinat holes, to -ubes, rode and blocka up to 6^{n} dia. Widest variety of erose ectionel shapes. The Crowley oxtrusion lechriqú mininizes mochining:
 PREsSED
 CROLITE

Farmed in standard or custom molds into the widest choice of shapes end sizes, thereby minimizing machinisg. High degree of occuracy to fis with metol parts in any ásseribly. Plain er fiozed finish.

MACHINED CROLITE

Elaborate shapes, in cluding grooves, bobbins, holes, threads, fins and other features, con be included in Crolite mochined pieces. Precision machined pools in the hands of skilled specialists, insure the matching of rigid mechanical specifications.

parts from powders

 Consider Crowley your No. I source of supply for magnetic and ceramic pieces. For here, under one roof, are specialists who have pioneered the "parts from powders" art for the radio-electronic industry.Crowley means production facilities that have supplied the major portion of magnetic cores in peace and war alike. Here are extrusion, molding and machining facilities that can provide steatite and other severe-service insulators in the widest range of characteristics, sizes, shapes.

By all means try Crowley! You can save time, money and trouble, just as other electronic designers, engineers and production men are doing.

Let us collaborate

on your TV, radio or electronic problems. Samples,
engineering aid, and quotations, on request.

HENRY L. CROWLEY \& COMPANY, INC.
Pioneering POWDER-IRON and STEATITE products
1 Central Avenue
West Orange, N. J.

Tape speeds 25 jobs on this TV transformer!

Rigid quality-control gives "SCOTCH" Electrical Tape uniform, dependable performance

Why do experienced manufacturers like the Woodward-Schumacher Electric Corp., and the Electric Coil Co., Chicago, specify "Scotch" Electrical Tape on their TV transformers and coils? Because they can depend on these tapes for uniformly high quality performance.

And uniformity doesn't "just happen." It's the result of a control system carefully engineered to make every roll of "Scотсн" Electrical Tape

SUPER-STRONG FILAMENT TAPE anchors leads on the primary of a television power transformer. Heavy wire (\#18) used in this winding called for a tape that would really hold. This tape does it!
run true to its prescribed formula in physical and chemical properties. Most important, this uniform quality stays the same year after year.
No wonder so many quality-conscious manufacturers insist on "Sсотсн" Electrical Tapes.
If you haven't tried the "Scotch" Brand, make the switch today. See for yourself how high dielectric, mechanical strength and thin caliper equip these tapes for use in television.

CORROSION-FREE ACETATE CLOTH TAPE holds deflection yoke coils in shape during handling and forming. $1 / 4$ in. tape is used in long strips and cutbetween coils. Tape is available in four colors for quick identification.

FREE BOOKLET "Tapes for Television" gives you many uses of these modern, pressure-sensitive "ScoтcH" Electrical Tapes. Write Minnesota Mining \& Mfg. Co., Dept. E-851, St. Paul 6, Minnesota.

The ferm "Scotch" and the plaid desian are registered trademorks for the more than 100 Pre:isure-sensitive adhesive tapes made in U. S. A. by MINNESOTA MINING \& MFG. CO., St. Paul 6 , Minn. - also makers of "Scotch" Sound Recording Tape, "Underseol" Rubberized Coating, "Scotch. lite" Reflective Sheeting. "Safety-Walk" Non-slip-Surfacing
" 3 M " Abrasives, " 3 M " Adhesives.

General Export: Minn. Mining \& Mfg. Co., International Division, 270 Park Avenue, New York 17, N. Y. In Canada: Canadion Minnesota Mining \& Mfg. Co., London, Canada.

In U-H-F it's

SELIFHTHOUSETUBES
 for stronger construction and a stand-out efficiency record!

Built for hard service.
Pioneering u-h-f types, with many years of successful application. Superior electrical characteristics. Excellent isolation from load and antenna effects.

Check these specific advantages of G-E Lighthouse Tubes in $v-h-f$ and u-h-f circuits where you need high-level detectors and mixers; pulsed and CW oscillators; power amplifiers, and frequency multipliers . . . at frequencies up to thousands of megacycles!

You can't beat G-E Lighthouse Tubes for-

- Aircraft traffic and location control equipment.

Radio, TV, and other microwave rellay equipment.
Microwave fest apparatus.

- Emergency communications equipment (police, taxi, and other fixed and mobile).
- Military and commercial communications and common-carrier equipment.

In applications such as these, General Electric tube engineers will be glad to work closely with you, and with the circuit designers at your drawing-boards. Available at all times, is G.E.'s experience with u-h-f types that goes back nearly two decades, and which you may draw on at will.
Wire or write for comprehensive Bulletin ETD-120. Learn more about G-E Lighthouse Tubes-how they'll improve the performance, increase the dependability of your new u-h-f circuit! Electronics Department, Section 5, General Electric Co., Schenectady 5, N. Y.

CL-2B22 - High-frequency, highperveance detector to beyond 1,500 mc.

GL-2C40-Radio-frequency amplifler, converter, and oscillator to 3,370 mc. Plate dissipation 6.5 w .

GL-2C43-Radio-frequency amplifler, oscillator, and frequency converter from 150 mc to $1,500 \mathrm{mc}$, and in special pulsed circuits to $\mathbf{3 , 3 7 0}$ mc. Plate dissipation 12 w .

GL-2C39-A-Radio-frequency amplifier, oscillator, and frequency converter from 150 mc to $2,500 \mathrm{mc}$. Plate inpult to 100 w .

the right relay will improve

To be exactly RIGHT for your purpose,

relays and stepping switches must be easy to "design into" your product-easy to specify, mount and connect. They must be readily available as you need them, to meet your production schedules. Most important, they must operate dependably help your designers toward the goal of a completely trouble-free product.

Automatic Electric relays and stepping switches are RIGHT on all counts! A wide range of standard types (including hermetically sealed relays, lowcapacitance relays and the most compact stepping
switch on the market!) permits your engineers to select and specify exactly the units they need. Assembled and adjusted to your exact specifications, they'll be shipped on schedule, ready to assemble into your production. And once in service, they'll go far to give your product a reputation for dependable, trouble-free operation.

For any product-for any purpose involving the use of relays or stepping switches-rhere is an Automatic Electric unit that's exactly RIGHT. We'll be glad to help you find it.

The Type 45 Stepping Switch This spring-driven switch is available both for d-c operation and with builtin rectifier for a-c operation. Accommodates up to 10 or more bank levels, each with 25 points plus "home", and is adaptable to 25 - or 50 -point selection. Provides for impulse-controlled or self-interrupted operation (using interrupter springs). Can be supplied with off-normal springs for mechanical "homing" (springs can also control auxiliary circuits). Runs 75 steps a second selfinterrupted, and 35 steps a second impulse-controlled, on 48 volts d-c or 115 volts a-c. Has long service life, tooaveraged $250,000,000$ steps in rigid tests-then required only minor readjustment.

Wherever a relay or stepping switch is used in your product, it is likely to be important far beyond its cost. In fact, the performance of these components usually sets the standard of performance of the entire assembly. Thus, the use of the RIGHT relay or switch is often the simplest, most inexpensive way to make a good product better!

Class "B" Relays Types for extremely high speed operation and for time delays on either the operate or release strokes are available for d-c service; others for a-c operation. Independently operating "twin" contacts assure perfect contact operation. Contact points are dome-shaped to maintain uniformly low contact resistance. May be arranged in one or two pile-ups with maximum of 13 springs in each pile-up.

Hermetically Sealed Relays All Automatic Electric relays can be obtained in hermetically sealed housings. The "sealed-in" controlled atmosphere protects them from electrical or mechanical failure resulting from varying conditions of temperature, dust, humidity, acid, fungus or air pressure-and makes them completely tamper-proof.

Low-Capacitance Relays For chatter-free control of high-frequency circuits. Two types, each providing exceptionally low capacitance between contact springs and between springs and ground. Equipped with "twin" contacts. Unusually small in size for compact mounting. The Class " C " relay shown above is especially suitable for strip mounting; it is only $0.687^{\prime \prime}$ wide and $21 / s^{\prime \prime}$ high and is $5-15 / 32$ " in over-all length. The Class " S " relay (above foreground) is $1^{\prime \prime}$ wide, $1-1 / 38^{\prime \prime}$ high and $1-19 / 32^{\prime \prime}$

relays

Write for our new 88 page catalog No. 4071 F which gives complete specifications, performance and mounting data on the many types of relays and stepping switches manufactured by Automatic Electric
 Company, makers of telephone, signaling, communications and industrial electrical control apparatus. Address: AUTOMATIC ELECTRIC SALES CORPORATION, 1033 West Van Buren Street, Chicago 7, Ill. In Canada: Automatic Electric (Canada) Ltd., Toronto. Offices in Principal Cities.

L.-.-"Tiny-but Mighty!"

SANGAMO

 MINIATURE SILVERED MICA CAPACITORS
Do a "Heap Big" job in a minimum of space

Exceptionally small, easy-to-install capacitors that can do a big job in minimum space are a helpful factor in speeding production.
Where space limitations exist, the tiny-but mighty Sangamo "Shawnee," Type RR Miniature Silvered Mica Capacitor will solve your problem without sacrificing stability or high quality. These capacitors are designed and constructed to meet the Tentative Joint Army and Navy Specification JAN-C-5A for the CM-15 case size. Whether you require Sangamo RR miniature, or standard size types KR and CR silvered mica capacitors, you can safely specify any of them for use in all types of military, or commercial radio and electronic equipment. These and many other types of Sangamo Mica Capacitors are fully described in Catalog No. 800. Write for your copy.

SANGAMO STANDARD SIZE SILVERED MICA CAPACITORS

discusses what to look for in materials used in
package
cushioning Marateraiminis

A concise, factual guide to aid in the safe shipment of products sensitive to rough handling. Tells how compression, compression set, damping, density, dusting, corrosiveness, fungus resistance, moisture and temperature affect performance of cushioning materials.

Send for your free copy today.

THE SPONGE RUBBER PRODUCTS COMPANY

Shelton. Connecticut

Director of Packaging Laboratory
The Sponge Rubber Products Company 469 Derby Place, Shelton, Conn.

Please send me free "Package Cushioning."
Name
Street
City
Name of Firm
\qquad
\qquad

PROBLEM:

How to Prevent Contact Sticking in a Vacuum Tube GENERALPLATE:

Provided the Solution with a Composite Metal Combination

A leading manufacturer of tadio and industrial tubes and electronic equipment was faced with a problem of finding the right wretral for use as a sliding contact in vacuum tub
Copper provided a mechanical problem beause it tended to gall.

Molybdenum was ideal but was too thick to lown and too costly to machine out of solid material.

The problem was presented to General Plate whore engineers quickly found the solution by bonding two metals into, one . . . a thin layer of molybdenum (.005") to a thicker layer of cupro-nickel (.060 ${ }^{\prime \prime}$).

The result was a General Plate Composite Material that was easily fabricated, gave the performance of solid molybdenum, reduced costs considerably.

No matter what your problems, it will pay you to check with General Plate. Their vast experience in combining precious to base metals or base to base metals can overcome your problems... often reduce costs.

General Plate Products include - Precious to base metal laminations . . . Base metal laminations . . . Alcuplate (copper and Aluminum)... Silver solders... Laminated contacts, buttons, rivets . . . Platinum-fabrication-refining . . . Age-hardening Manganese Alloy 720.

GENERAL PLATE

Division of Metals \& Controls Corporation 38 Forest street, attieboro, mass.

WE GET SUCH INTERESTING MAIL!

We grow in Brooklyn, like the Tree, But we're a national industry. Our customers are far and wide, And we produce their jobs with pride. We build their cabinets plain and thrifty Or housings intricate and nifty. And no one ever need be nervous About our workmanship or service.
It's custom-built from A to Z -

And these big benefits you'll see: Your own design, distinctive styleA better product by a mile! With all details so very fine They'll speed up your assembly line. And here's a point that isn't funny: Our dies can save you time and money. Come visit our big plant and look Or send for our new data book.

We Invite You To Visit Our Booth \# 420 at the I.R.E. West Coast Convention and Pacific Electronic Exhibit-San Francisco, August 22-24

215 63rd Street, Brooklyn 20, N. Y.
Specialists in Fabricating Sheet Metal for Industry

The UCINITE CO.
Newtonville 60, Mass.
Division of United-Carr Fastener Corp.

Specialists in

EIECTIIICALASSEMELIES,

IRAIDANIDAUTOMOTIVE

5 WALDES TRUARC RINGS ELIMINATE 4 TOOLING OPERATIONS... SAVE 22½ ${ }^{\text {¢ }}$ PER 100 UNITS

OLD WAY

Unit requires 4 hex head nuts, 4 washers, 4 shoulders, threading of 4 shafts. Clearance and end-play specifications nesessary... constant maintenance.

Just 5 Truare "E' Rings set into predetermined grooves secure parts permanently. Assembly is simple, ecanomical. Na clecrance specifications ... no mointenance!

5 Waldes Truarc Retaining Rings in one assembly of the Dictaphone Tíme-Master dictating machine brought great savings to Dictaphone Corp., Bridgeport, Conn. And this is just one of three different applications where Truarc Rings cut material, tooling and assembling costs for this product.

Redesign with Truarc Rings and you too will cut costs. Wherever you use machined shoulders, bolts, snap rings, cotter pins, there's a Waldes Truarc Retaining Ring designed to do a better job of holding parts together.

Truarc Rings are precision-engineered...quick and easy to assemble and disassemble. Always circular to give a never-failing grip. They can be used over and over again.

Find out what Truarc Rings can do for you. Send your blueprints to Waldes Truarc engineers for individual attention, without obligation.
Waldes Truarc Retaining Rings are available for immediate delivery from

REDESIGN WITH 5 TRUARC"E"RINGS BRING THESE BIG SAVINGS...

Assembly time per unit using screws and washers. 24 seconds
Assembly time per unit using Truare Rings 15 seconds

- Time saved per unit with Truare Rings 9 seconds
- Eliminates skilled labor milling and threading operations
- Eliminates maintenance
- total material and labor cost savings per 100 Units . . $22 \frac{1}{2} 4$

RECTIFIERS-A-c to d-c powersupply units especially built for precision work where unusually low regulation, light weight, and small size are necessary. Typical outputs available are 7,9 , and 13 kv . Illustrated 7 -kv unit measures 6×6 $\times 7$ in., weighs 81 l .

PULSE TRANSFORMERS- For use with either hard-tube or line-type modulators. Available in peak-voltage ratings from 10 to 100 kv or higher; peak-power ratings up to 30,000 kva or more. Designed for operation on pulse durations from 0.1 to 20 microseconds at rates up to 4000 pps .

Available in a wide range of ratings, high-voltage components shown here are typical of units manufactured by General Electric for applications 5000 volts and above where corona must be held to a minimum. They represent many years of experience in meeting Armed Services requirements, and can be built for today's military specifications. Because these components are usually tailored for each job, please include functional requirements and any physical limitations with your inquiry. Write to 43-328A, General Electric Company, Pittsfield, Mass.

RESONANT REACTORS- Accurately designed and built for radar service. Currently available in peak operating voltages from 5 to 45 kv , current ratings up to 2.25 amp . Higher ratings can be provided. Inductance ratings ranging from 0.25 to 300 henrys remain constant within 5 percent at above 50 percent load current.

FILAMENT TRANSFORMERS For special applications or for use with standard high-voltage rectifier tubes. Supplied with or without tube socket mounted integrally with highvoltage terminal. Insulated to nearly any required level.

MODULATION TRANSFORMERS - High-fidelity, low-phase shift, Pyranol* or oil-modulation transformers and reactors for high-power AM transmitters are available as integral or separate units. Highly developed designs in ratings from 3.5 to 500 kw provide wide transmission frequency range, keep down harmonic-voltage insertion. Low phase shift gives flexibility and range. *Reg. TM of General Elestric Co.
GENERAL

Signals with band widths up to 2 megacycles can be delayed from 0.25 to 10 microseconds. Available in lengths up to 100 ft . Delay equals approximately $1 / 2$ microsecond per foot. Characteristic impedances of 1100 and 400 ohms per foot are available. By ordering in bulk, lengths can be cut to fit specific needs. Can be bent into 4 -inch diameter coils. Uses include research and development of special circuits for electronic devices. See Bulletin GEC-459 for further information.

PHOTOVOLTAIG CELLS -

MINIATURE POWER PLANTS

For accurately detecting, controlling, and measuring light and for detecting and measuring even the smallest variations in colors. These cells are especially useful where long life and stability are required or where electronic amplifiers are not practical. Available in a new hermetically sealed series with standard mounting and a wide variety of unmounted sizes. More G-E photovoltaic cells than any other make are used in scientific instruments. Characteristics, dimensions, circuits, and technical data are available in Bulletin GEC-690.

TRANSFER AND CONTROL SWITCH-

 OVER 10,000 POSSIBLE COMBINATIONSBuilt for reliability and long service life, the G-E Type SB- 1 transfer and control switch can be used for more than 10,000 possible circuit-sequence combinations. Precision construction permits as many as 40 stages - four banks of ten stages each - to be operated in tandem. Switches with up to 16 stages and 12 positions are com-
 monly furnished. Ratings go up to 20 amp at 600 volts a-c or d-c. Standard components are interchangeable. Complete description in Bulletin GEA-4746.

SELENIUM RECTIFIERS

. . . HIGH-VOLTAGE UNITS HAVE LIFE EXPECTANCY OF OVER 60,000 HOURS

Now available from General Electric, these 26 -volt RMS selenium rectifier cells have a continuous-service life expectancy of over 60,000 hours. Their initial forward resistance is very low and samples tested after 10,000 hours of operation show an average resistance increase of less than 6 per cent.

The high-voltage output means that stacks made up of these units are about 25 percent smaller than is possible with 12 -volt cells. Low resistance means cooler operation and the space saving that goes with it.

If your application calls for compact selenium stacks for use in cramped quarters, these cells provide the solution. Stacks made with the new G-E cells may be obtained with rated outputs from 18 to 126 volts d-c at 0.15 to 3.75 amp . Check Bulletin GEA- 5280 .

General Electric Company, Section D667-16

Schenectady S, N. Y.
Please send me the following bulletins:

(V) Indicate for	\square GEC-459 Delay Lines
reference only	\square GEC-690 Photovaltaic Cell
(x) For planning an	\square GEA-4746 Here's the All-Purpose Switch
	immediate project
\square GEA-5280 Selenium Rectifiers	

Name
Company
Address
City__ \quad State $\quad \ldots \ldots \ldots \ldots$

The Modern Way to Build Rotary Exhaust Equipment for Miniature Tubes

NRC's TYPE B-1 BOOSTER PUMP

- Provides Higher Vacuum
- Reduces Exhaust Cycle
- Eliminates Troublesome Oil Vapors

HYTRON-DESIGNED GLASS TRAP Ends Important Maintenance Problem

Our Type B-1 Booster Pump was built to meet ideal production methods as outlined by Hytron production engineers. On the production line it exactly meets their specifications in every detail step by step. This Booster Pump lowers production costs. Its high speed reduces the exhaust cycle. Write for details.

 for casson made tect iisal ceramics? Amə-ican Lovj Corporation has an envable re=u-ation for teivers according to spacif cations-orc fer ability to produze ceramics of a type and qualty wist are frequentl: consid. ered " $m=0$ is ${ }^{\text {bule." }}$

- Hen p-oduction fac lities a-e speeding te iv ries. The ex rerienc $¥$ gained
in half a century of specialization is available to you on request. You are most apt to find at American Lavj Corporation the solution to any problem involving technical ceramics.
- Equipment shown in this mock up is under construction. Carefully selected personnel has been added to the present skilled staff to provide experienced operators for all plants.

AMERICAN LAVA CORPORATION

CHATTANOOGA 5, TENNESSEE
50 TH YEAR OF CERAMIC LEADERSHIP

Capacitors

Yes, telephones have changed, and countless developments have played a part in electronic progress since the day of those old stem winders on the wall. Compactness, engineering precision and never-failing dependability are now demanded where the only question once was, will it work at all? In mecting these modern demands of modern electronics for modern ceramic components, HI_{I} Q has led the way.

The HI-Q trademark is unquestioned assurance of capacitors, trimmers, choke coils and wire wound resistors that are uniformly dependable in every respect and rigidly meet specifications and tolerances. As the leading specialists in the ceramic field, $H_{I}-Q$ has come to be regarded by producers of radio, television, communications and other electronic equip. ment, as their best source of technical assistance in developing new components to meet the special needs of any circuit. $\mathrm{HI}_{\mathrm{I}}-\mathbf{Q}$ engineers are at your service any time you see fit to call them.

(Illustration Actual Size)
Ceramic tube of this quick mounting capacitor is enclosed in Cadmium plated metal case with special end seal for protection against humidity and temperature changes. Capacity 1500 $\mathrm{mmf} \pm 500 \mathrm{mmf}$.

BETTER 4 WAYS - precision uniformity DEPENDABILITY MINIATURIZATION

SALES OFFICES: New York, Philadelphía, Detroit, Chicogo, Los Angeles

- Three Compact Units
- Push-button Lens Change
- Right or Left Hand Forus Knobs
- Right or Left Hand Lens lris Control Buttons
- Turret, Focus and Iris Confrols firom remote location if desired
- High Resolution Infegra View Finder
- Enclosed I.O. Controls
- Iris Setting Indicator
- Pre-loaded Color Filter Wheel
- Swing-uf Chassis
- Focus Range Selector Switch
- Equal Flexibility in Studio or Field

WRITE, WIRE OR PHONE FOR DETAILS

GPL's 1951 Image Orthicon Chain is delivering even more features better performance - than the previous model which itself set new industry standards! Compare it for ease of operation, uniform high quality, flexibility in studio or field.

Set this camera up to meet varying requirements... control it remotely if desired... select any of four lenses at the press of a button ... adjust focus from right or left side of camera, with the same 300° arc of focus adjustment for all lenses . . . choose color filters, masks, at the flick of a
thumb . . . control the motor-driven iris from camera or camera control unit. Normal optical focus range automatically adjusts for constant $9^{\prime \prime}$ diagonal at close-up, for all lenses except telephoto. Overtravel switch provides extended focus range, obtaining full optical focus on all lenses.
In every way, GPL's is a "humanengineered" camera chain, built to do a tough job more easily, built to do your specific job best! Arrange to see this great new model at the earliest opportunity.

FINGER-TIP OPERATION from Camera or Remote location

Aircraft
 Instruments
 and Controls

For precision and dependability
look to Kollsman

KOLLSMAN INSTRUMENT CORPORATION

Elmhurst, New York - Glendale, California

How
 CLARE Engineers

improved the performance of a relay without increasing its size

SPECIFICATIONS

Size: Length: $13 \% 4^{\prime \prime}$; Height: $115 / 2^{\prime \prime}$; Width: $1^{\prime \prime}$. Dimensions vary with type of coil rerminal used. Height shown is maximum (with 8 springs in pileup). Waight: Approx. 2 oz. Coil: Single or double wound. Operating Voliage: to 175 volts d.c. Armature: Single- or double Contact Arrangement: Forms A to C available. Maximum 8 springs in pileup. Mounting: Two \#4.40 screws. Can also be furnished with 2 or 4 mounting studs tapped for \#4-40 screws.

- The Clare Type "K" Relay, first of the famous Clare line of small, lightweight, telephone-type ralays, is still the mainslay of design engineers who must have superior relays to operate in extremely small space.
Its fast operation, adequate contact pressure, high resistance to shock and vibration, long life and complete allaround dependability have met many comolex requirements. Once in a while, however, Clare engineers have been confronted with customers' specifications which this Clare Type "K" Relay would not quite meet.
More often than not this was due to the small spool which limited coil winding to a maximum of 6500 ohms. Clare engineers have met this situation with the new Type "KX" whose sensitivity and operating range are increased by use of a slightly longer coil which can be safely wound to a maximum resistance of 8000 ohms. This additional
winding space is gained by a slight change in the design and suspension of the armature which enables the length of the coil to be increased without alding materially to the over-all length of the relay.
The Type "KX", like the Type "K" and Type "R" relays, has the reed armature suspension of special alloy which engineers recognize as one of the subtler reasons for the superior performance of these small Clare relays. The Type "KX" is interchangeable with the Type "K" for mounting.
This new relay is available as either an open or hermetically sealed relay. Call your nearest Clare sales engineer .. . located in principal cities to serve you . . . or write C. P. Clare \& Co., 4719 West Sunnyside Avenue, Chicago 30, Illinois. In Canada: Canadian Line Materials, Ltd., Toronto 13. Cable Address: CLARELAY.

Write for Clare Bulletin No. 116

First in the Industrial Field

WRITE FOR BULLETIN FC-5101

APPLICATIONS:

Be certain of top performance and an uninterrupted supply of deflection yokes and horizontal output transformers by specifying Ferroxcube 3C, the nickel-free ferrite core material

Improved Ferroxcube 3C gives you these basic advantages: 1. High saturation flux density. 2. High permeability. 3. Improved temperat ure stability.

The broad experience gained during 15 years of research and manufacture since the initial development of Ferroxcube, can be helpful ta you! Take advantage of our technical "know-how" in solving your own design problems. Ferroxcube ergineers are always ready to assist you with out obligation.

8 muf....in the space of 4

New General Electric line of 100 -volt d-c capacitors marks another important step in reducing size and weight of electronic equipment.

Here is another outstanding G-E capacitor develop-ment-thinner paper, thinner foil, so that double or triple the capacitance can be designed into a cubic inch.

These new capacitors are comparable in all ways with previously offered paper dielectric units, are equally dependable, and in addition are smaller in size and lighter in weight. They will not introduce noises into the system. They will satisfactorily pass signal voltages approaching zero. Their insulation resistance values remain high after long periods of service. While primarily intended for d-c applications with allowable ripple voltages in accordance with JAN-C-25, they will withstand occasional discharges, and can be used in low-voltage a-c circuits.

In Regular Production. Units of 3, 8 and 10 muf in Case Style 53 and 4 muf in Case Style 61 are in regular production. Other ratings can be built in massproduction quantities.

These capacitors meet all requirements of " F " characteristics of JAN-C-25 for 100 -volt d-c units. For applications where an expected life of 1000 hours at 40 C is satisfactory, rating can be increased to 150 volts. For ambients above 40 C , units should be derated in accordance with JAN-C-25 Specifications. There is negligible change in capacitance from - 40 C to 105 C -and units will give full life at temperatures as low as +55 C .
If you have applications involving reasonable quantities, get in touch with us. Your letter, addressed to Capacitor Sales Division, 42-304, General Electric Company, Pittsfield, Mass. will receive prompt attention.

General Electric Company, Schenectady 5, N. Y.

The new Industrial Cam Recycling Timer continuously repeats a constant cycle consisting of definite ON and OFF periods which can be adjusted from 2% to 98% of the cycle. By means of percentage calibrations on the cam face any desired setting is quickly and accurately obtained. The time cycle itself can also be changed easily by substituting simple gear-rack assemblies. Thus, from one timer, by using different gear racks you can obtain 50 different cycles ranging from the lowest cycle of the timer up to nine times that cycle. The snap action switch operated by the timer is a single pole double throw, totally enclosed 10 ampere type. We can supply 500 different time cycles in this model ranging from one revolution in 15 seconds to one revolution in 72 hours.

The Multi-Cam Recycling Timer is identical to the Single Cam Timer but operates from 2 to 6 circuits and incorporates several additional features. On this timer all cams are mounted on a single driving shaft which assures a common time cycle for all circuits. Each cam, however, is independently adjustable for a specific timing sequence. This is accomplished by actually rotating the cam with finger pressure using the drum calibrations for guidance. Thus a range of timing sequences from 0% to 100% is obtainable on each circuit with ease. The elimination of cam followers and other types of moving parts makes possible this compact unit. 11 models are available with time cycles ranging from one revolution in 1 minute to one revolution in 72 hours.

Wampacturers of These and Other. Temers and Coutrols for Dndustry

time delay TIMERS

INSTANTANEOUS RESET TIMERS

MANUAL
SET TIMERS

IANDEM AUTOMATIC RECYCLING TIMERS

RUNNING time meters

INDUSTRIAL TIMER CORPORATION
115 EDISON PLACE, NEWARK 5, N.J.

1951-1952 Electronics BUYERS' GUIDE

ThThe 650-page 1951-1952 ELECTRONICS BUYERS' GUIDE is now in the hands of every ELECTRONICS' subscriber. Sent as a bonus issue of ELECTRONICS through the cooperation of over 2,000 manufacturers of electronic and allied products, it is a valuable working tool that will be kept at the elbow of every ELECTRONICS' subscriber and reader throughout the year.

Use it . . . refer to it constantly. Mention ELECTRONICS BUYERS' GUIDE when you write to the manufacturers listed in the directory section and when you purchase products advertised in it. Sucb evidence of use will insure continued manufacturer cooperation in making this annual your most comprehensive source of buying information.

The products and services of 475 companies are advertised in this 13 th issue of ELECTRONICS. In the directory section, more than 2,000 manufacturers are listed under 1,400 product classifications. 2,500 trade names are listed, and the names and addresses of 850 distributors of electronic products are arranged alphabetically by states. It also supplies a 36 -page cumulative index to articles published in ELECTRONICS from April 1930 to December 1939.

The 1951-1952 ELECTRONICS BUYERS' GUIDE had the largest print order, and has more total pages, more pages of advertising, and more individual companies' advertising in it than any issue of ELECTRONICS published since the first in April 1930.

A publication's value to an industry is measured by the service it renders to subscribers and readers. When we can mail to every one of our over 30,000 paid subscribers-as a separate, 13 th issue-a valuable working tool such as the 1951-1952 BUYERS' GUIDE, we feel we are rendering a valuable service to our subscribers, advertisers, and industry.

The 1952-1953 ELECTRONICS BUYERS' GUIDE will be published Mid-June 1952.

- Many types and sizes of INDIANA IIYFLUX Permanent Magnets are available for your immediate experimentations. Ask for new Stock Magnet Catalog No. 11. For magnet design information, ask for free Magnet Manual No. 4E-81.

the indiana steel products company

VALPARAISO, INDIANA • . Sales Offices Coast to Coast

FOR READY REFERENCE

A Complete List of GERMANIUM DIODES

PLANT CAPACITY UP 200\%!

$\mathbf{W}{ }^{\text {ithe }}$ new plant facilities devoted entirely to the manufacture of germanium products, we can now deliver $12,000,000$ diodes a year-industry's total estimated needs. Whatever your diode requirements, let us
show you that we can fill them with precisiontested units at prices as low as any in the business. Complete specifications and prices on request. Write: General Electric Company, Section 481, Electronics Park, Syracuse, N. Y.

GENERAL

FOR RELIABLE RADIO PRINTER COMMUNICATIONS

 aquency shift converver
 51 N -5 receiver

Front and -ear views of the Collins
709D-1 frequency shift keyer

Here are three basic Collins units for maximum performance and complete dependability in frequency shift radio receiving and transmitting applications.
The 706A-2 converter is designed to operate from the outputs of two $51 \mathrm{~N}-5$ receivers arranged for diversity reception of radio printer transmissions. In practice, both receivers operate on the same frequency within the range of 2 to 24 megacycles. However, each derives radio frequency signals from a separate directional antenna.

The $706 \mathrm{~A}-2$ converter automatically balances the signal from one receiver against that obtained from the other, instantaneously selects the best, and feeds it to the d-c keyer circuits and thence to the printer line. Both the receivers and the converter are engineered for unattended continuous duty, and will give long, trouble-free operation with only routine maintenance.

The 709D-1 frequency shift keyer was developed to provide a simple yet dependable unit for adapting existing transmitters to frequency shift operation. For such service it is most commonly coupled to the transmitter through a modified crystal holder inserted in the transmitter's crystal socket.
You will find it well worth while to consult us about your radio printer requirements.

IN RADIO COMMUNICATIONS, IT'S . . .

COLLINS RADIO COMPANY, Cedar Rapids, Iowa

7-PIN, 9-PII and SUBMINIATURES

- available in two grades:

MYCALEX 410 priced comparable to mica-filled phenolics. Loss factor is only .015 af 1 mc., insulation esistance 10,000 megohms. Approved fully as Grade L.4B under N.M.E.S. JAN-1-10 "Insulating Materiots Ceramic, Radio, Class L".
MYCALEX 410X - low in cost but insulating properties greatly exceed those of general purpose phenolics. Loss factor is only one-fourth that of phenolics (.083 at $1 \mathrm{mc}$.) but cost is comparable. Insulation resistance 10,000 megohms.

PREMIUM INSULATION - Bodies are MYCALEX glass-bonded mica, the dielectric that combines every characteristic required in a modern insulation including low dielectric loss, high dielectric strength, high arc resistance, non-hygroscopic and great dimensional stability.
COMPETITIVELY PRICED - Although manufacture is to the most exacting quality standards and fully meets RTMA recommendations, an exclusive MYCALEX manufacturing process permits pricing at a level competitive with low cost phenolic types.

PRECISION MOLDED - An exclusive MYCALEX injection molding technique affords great dimensional accuracy, exact uniformity, superior low loss characteristics and perfect homogeneity.

MYCALEX TUBE SOCKET CORPORATION

Under Exclusive License of Mycalex Corporation of America 30 ROCKEFELLER PLAZA - NEW YORK 20, N. Y.

INFORMATIVE DATA SHEETS
 Include them in your files - Complete information including dimensional data, specifications and other pertinent facts on MYCALEX low-loss, low-cost, tube sockets. Write for your set complete with loose-leaf binder that permits the inclusion of subsequent releases and data sheets.

Mycalex Corporation of America

Owners of 'MYCALEX' Pafents and Trade-Marks
Executive offices: 30 ROCKEFELLER PLAZA, NEW YORK 20 - Plant \& General Offices: CLIFTON, N.J.

40.109

 240.651174.6 20000.

- OR ANY OTHER

FREQUENCY

FROM 40 TO 20,000 CYCLES

conservative accuracy under usual conditions
1 PART IN 100,000-(.001\%)

Have you a need for any specific number of cycles in precision frequencies?
Can a source of such frequency solve your design problem or increase its factor of safety?
Have you a system that requires great accuracy, stability and dependability?
The frequencies shown at the top of the page are but a few among hundreds furnished for precision application in industries, laboratories and Government departments.

Calibrated against a standard ACCURATE TO I PART IN 10 -MILLION The basic unit of this frequency standard is an electronically driven fork,-temperature compensated and hermetically sealed against changes of humidity and barometric pressure. Through its use, any frequency or multi-frequencies between 40 and 20,000, fractional or otherwise, are obtainable.

OUR ENGINEERS
ARE AVAILABLE
TO COOPERATE
ON ANY PROBLEM

American Time Products, Inc.
 580 Fifth Avenue
 New York 19, N. Y.

MANUFACTURING UNDER PATENTS OF WESTERN ELECTRIC CO.

Where "Photographic Memory"

When you're comparing waveshapes it takes the "photographic memory" of a camera to give you the whole story in accurate, permanent form.

Until recently, photographic oscilloscope recording called for considerable trouble in setting up equipment and a long time period for developing the results. But today, with the Fairchild-Polaroid Oscilloscope Camera, it's an easy job to record as many traces as are needed.

Take a look at the prints below. They provided the engineer with valuable but inexpensive records for immediate evaluation. All were removed from
 the camera one minute after the final exposure was made.

The stories of 3 "One Minute" Oscillograms

1. BEFORE AND AFTER. A visual comparison of "before and after" conditions is an easy job of before and after conditions is an easy job for the onc step camera. Here, the upper trace shows the output of a full wave rectined power supply with insufficient filtering. The lower trace shows the effectiveness of the addition of a fil
tering condenser. The camera is easily adjusted tering condenser. The cameril is easily adjusted posures; traces are exactly one half scope size.

2. SUPERIMPOSING FOR COMPARISON. The problem-determine the maximum time-interval problem-determine the maximum time-interval variation berween successive camera shutter openmeasuring successive scope traces, the engineer measuring successive scope traces, the engineer
superimposed several exposures for easy comparisuperimposed several exposures for easy compari-
son. The length of the trace before the shutter son. The length of the trace before the shutter
opened is a measure of the time berween the electrical contact closing and camera shutter opening.

3. MULTIPLE EXPOSURE PRE-SOLARIZATION. Here, by making 3 successive exposures on each half of the print, the engineer was able to record performance of a camera shurter at its cord performance of a camera shutter at its $1 / 25,1^{\prime} / 50$, and $1 / 100$ second settings (lower). "Pre-solarizing," the process of pre-exposing the ble to record the high writing speeds involved

A minute after you've pulled the fab a finished print is ready for evaluation.

SPECIFICATIONS

Lens and Shutter-Choice of 75 mm f2.8 Wollensak Oscillo-Anastigmat with \#2 Alphax shutter having speeds of $1 / 25$ sec. to $1 / 100$ sec., "time" and "bulb"; or, 75 mm f1.9 Wollensak Oscillo-Anastigmat with \#3 Alphax shutter having speeds of 1 sec. to $1 / 100$ sec., "time" and "bulb".
Picture Size- $31 / 4 \times 4 \frac{1}{4}$ in. (2 or more images per print; 16 exposures per roll of film.)
Image Size-One-half reduction of scope image.
Writing Speed-With $\mathbf{f 2 . 8}$ lens, up to $1 \mathrm{in} / \mu \mathrm{sec}$ at only 3000 V accelerating potential; higher speeds at higher voltages. With f 1.9 lens these values are approximately doubled.
Dimensions-Camera, $101 / 2 \times 51 / 4 \times 61 / 4 \mathrm{in}$; hood, 11 in . length, $71 / 2 \mathrm{in}$. dia; adapter, 2 in . width, $65 / 8 \mathrm{in}$. max. dia.
Weight-Complete, 73/4 lb.

Fairchild-Polaroid Oscilloscope Camera Kits include camera, carrying case and film. Write today for complete data on the Fairchild-Polaroid and Fairchild Oscillo-Record Cameras. Fairchild Camera and Instrument Corp., 88-06 Van Wyck Blvd., Jamaica 1, N. Y. Dept. 120-15A1.
 solute pressures to 10 microns. Power

Send for Cotalog 700, "Stokes Microvac Pumps for High Vacuum", now a standard reference work on High Vacuum, containing charts, graphs, diagrams, schematics, typical problems, tables, formulas, constonts,
conversion factors. consumption is low. Compact design with top-mounted motor requires minimum floor space.
There are but four moving parts including the high speed, full-opening exhaust valve of corrosion-resistant Teflon. Lubrication is completely automatic, without packing, stuffing-boxes or grease fittings.
Wear is kept to a minimum, and long trouble-free service assured.
Parts are precision-finished, standard and interchangeable.
Stokes is the only manufacturer of equipment for complete vacuum systems, including Microvac mechanical pumps, oil diffusion pumps, McLeod Gages and Vacuum Valves.
Consult with Stokes on the application of vacuum to rotary exhaust machines, house vacuum systems, vacuum impregnation, vacuum furnaces, vacuum metallizing, and to other applications in which vacuum deserves exploration.

STOKES MAKES

 Plasties Molding Presses, Industrial Tabletting and Powder Metal Presses,

Pharmaceutical Equipment, Vacuum Processing Equipment, High Vacuum Pumps and Gages, Special Machinery

[^0]
 improved version of the 2C39, have replaced glass with rugged ceramics. Through the use of new manufacturing techniques and ceramic materials, this new tube will operate at appreciably higher ambient operating temperatures than the glassenvelope type tube. Resistance to physical shock is also increased to a degree beyond that which is customarily associated with vacuum tube structures.

If you anticipate requirements for a tube of this type, we suggest you contact our application engineering department immediately.

> EITEL-McCULLOUGH, INC. San Bruno, California

SAFE Capacitor Specifictions

- From tiniest metallized-paper capacitor symbolizing miniaturization, to giant oil capacitor for atomsmashing Betatron, you are SAFE in specitying Aerovox. For Aerovox makes all categories, types, sizes and ratings. More than that: with a background experience second to none, Aerovox engi-
neers are always ready to study your circuitry, components, operating conditions and anticipated life. Thus capacitor selection is custom-fitted to your exact requirements. And that is why Aerovox capacitors have such outstanding service records.

> - Literature on request. Submit that capacitance problem for engineering aid and quotations.

INTERFERENCE FILTERS

For military and civilian needs, particularly aircraft and radio-equipped vehicles.

MICA CAPACITORS

Dozens of different types, including low-loss molded casings and the silver micas.

MOLDED PAPER TUBULARS

For extra-severe service. Aerolene impregnant eliminates necessity of stocking both oil and wax tubulars. No deterioration in stock.

OIL CAPACITORS

From tiniest tubulars to giant steel-case units in ratings up to 50,000 volts.

HIGH-TEMPERATURE MINIATURES

Hermetically-sealed with vitrified ceramic seal, in tubular metal case.

METALLIZED-PAPER

Full utilization of spacesaving factor, together with self-healing feature.

MICRO-MINIATURES

Molded thermo-plastic. tubulars. Two sizes:
 x 9/16" 1 .

ELECTROLYTICS

Widest choice of containers, terminals, mountings, combinations. In $85^{\circ} \mathrm{C}$. and higher temperature ratings.

11 100-511.

$1 / 4^{\prime \prime}$ SHAFT WATERSEAL BUSHING
"Rotary Waterseal Panel Assemblies, with GRAF-SIL Packing Glands, have an ex cellent five year customer history on gas filled pressurized components. They are available for $1 / 4$ " shafts and for potentiometers and switch bushings."
"NEO-SIL's proven Her,netic sealing components will eliminate rejects resulting from breakage, strains, cracks, etc. Each NEO-SIL component is pressure checked at 25 psi - to meet military requirements and as applied to our units, NEO-SIL rubber will resist abusive temperature cycling, salt water, most acids and alkalies, and withstand high pressures and vacuums."
"In addition to the items illustrated above, NEO-SIL offers many other components, such os Hermetically Sealed Fuse Holders, Hermetic Sealing Terminals, Multiple Pin Headers, Hermetically Sealed Cables, Hermetically Sealed Line Cords With Plugs for European use, Meter Gaskets, Panel Gaskets, Adapters (U. S. to Continental), Coil Forms, Crystal Contacts and other molded bakelite and NEO-SIL rubber units."
"Hermetically Sealed Fuse Holders are available for 3-AG and 4-AG fuses. These units are completely sealed from moisture with or without the cap or fuse inserted and are applicable for use on vacuum or gas filled units."

Your special problems are solicited.

26 CORNELISON AVE., JERSEY CITY 4, N.J.

Which do you need more?

G A \& F Carbonyl

Greater purity means greater permeability Smaller size means lower power loss

TYPICAL TOTAL LOSS
ANGLES OF CORES FROM
CARBONYL IRON
POWDER GRADES Iron Powders and any other matcrial. (We assume that you will make such comparisons as your own specifications may indicate.)

GA \& F Carbonyl Iron Powders are made in six grades-each of which has its own particu'c. combination of qualities and thereby offers its own special advantages. Your sclection of any par-
 bution, internal structure, condition of surface, desirable cr undesiral.e ingredients. The particles are all spherical; the paticle size clistribution differs--from one grade to another.

Collectively, the six gradcs blanket a wide range of applications-in clectronic cores over the whole frequency spectrum, in metallurgy, in chemistry, in pharmacy and in magnetic fluids. The particles may be large, soft crystals-or extremely small, hard crystals arranged in concentric sphericalshell layers. The surfaces are free and active. The purity is invariably high, with non-ferrous metals in traces only; some grades contain beneficial small amounts of carbides, nitrides and oxides.

In the smaller sizes, these powders show exceptionally low power losses in electronic cores. Thus they offer the opimum combination of permeability, particle size and structure.
The chart at the left shows the range in particle size distribution; the chart at the right shows the typical total power loss angle for each grade.

FOR FURTHER DETAILS, WE INVITE
YOU TO WRITE FOR A FREE BOOK -fully illustrated with performance charts and application data. It will help any radio engineer or electronics manufacturer to step up quality, while saving real money. Kindly address your request to Department 87.

ANTARA.PRODUCTS

High Dielectric Strength Low Power Factor

Heat Resistance
Low Moisture Absorption
High Impact Resistance Dimensional Stability
Light Weight
Tensile Strength
Abrasion Resistance

You probably know Lameon (Laminated Plastic) as an old friend for such uses as tube socket supports, coil forms, dials, panels, antenna parts and many other applications.

The same qualities that make it adaptable to these uses mav also provide practical answers to your material shortage problems . . , and perhaps even bring you savings or improvements!

Lamicond is made with fillers such as glass, nylon,
paper, fabric, etc. and a variety of resins. This wide range of materials makes it almost certain that Lamicomb can give you the essential mechanical, structural, or insulating characteristics your product requires.

Lamicom is supplied as standardsheets, rods and tubes, or labricated into parts to your specitication. Whe not let us put our 5^{8} years of experience to work on vour electrical insulation problems. Send your blueprints and specifications to us today for prompt quotation.

RANGE - is continuously adiustable from a minimum of - 0.1 to +1 mv . . up to a maximum of -2 to +20 mv .

ZERO SUPPRESSION — uncalibrated coarse and fine . . . is continuously adjustable from - 50 to +50 mv .

Only a complete line answers all your electrical measuring requirements

The case of Mastic Tile Corporation demonstrates how the complete line of Westinghouse Instruments holds answers to your electrical measurement problems.

Mastic's problem was one of predetermining load on a Banbury Mixer motor in order to facilitate the operator's job and speed the mixing cycle. It was answered by the standard Westinghouse GY-40 Recording Wattmeter with proper choice of scale, current and potential transformers, and chart speed. In fact, so well did this standard instrument accomplish its job that final results show-a 15 percent reduction in mixing cycle time along with the elimination of damaging surge shocks which can now be anticipated and prevented by the machine operator.

Westinghouse will continue to give you a wider selection for every need... whether it be a-c or $d-c$ current and voltage, single or polyphase circuits, watts or vars, frequency, power factor, synchroscopes, temperature indicators, ground detectors or synchrotie. You get assurance of quality too, because every applicable instrument . . .

Meets A.S.A. Performance Requirements!

All Westinghouse Instruments are built to meet the rigid performance requirements of the American Standards Association. No more exacting guarantee of an instrument can be made. And you get . .

Competent Application Assistance!

Westinghouse Instrument Application Engineers are available to help you in selecting and applying the proper instruments for your application. Simply call your nearest Westinghouse office.

For complete information about Westinghouse Instruments write for Booklet B-4696, address: Westinghouse Electric Corporation, P. O. Box 868, Pittsburgh 30, Pennsylvania.

J-40407

from sea level to substratosphere ...

VARGLAS SILICONE

Electrical Insulating Tubing and Sleeving WITHSTANDS TEMPERATURES FROM 500° TO - 85° F

Varglas Silicone is a high dielectric, dimensionally stable insulating material developed by Varflex during World War II to assure dependable performance in the drastic temperatures aircraft might encounter from sea level to substratosphere. Today, Varglas Silicone

serves industry in many of the tough insulating jobs that defeat ordinary insulators. A combination of Varglas (continuous filament Fiberglas) and Silicone High Temperature Resin, Varglas Silicone is the first and only Class H insulation with these features:

Efficient at $500^{\circ} \mathrm{F}$. - flexible at $-85^{\circ} \mathrm{F}$.
Moisture and Fungus-Resistant - has excellent resistance to moisture and fungus.
Fire-Resistant - flame resistant and self-extinguishing.

Abrasion-Resistant - pliable and non-fraying.
Dieifectrically Strong - average readings up to 7,000 volts.
Available in various NEMA colors in several types and grades of tubing and sleeving - lead wire and tying cord, too.

Phe
heck your network probiem with Logic

Every one of the plastics parts shown-from the 33 -inch circular filter plate to the tiny part in the man's hand--was molded by The Richardson Company to solve a special problem.

For each of these parts, Richardson engineers developed a new material, a plastic with just the right combination of physical, electrical, and chemical properties to do the job. In several cases, the material had been considered "impossible" to produce before Richardson plastics engineers applied their broad experience and skill to the problem.

The Richardson Company stands ready to help you with this specialized plastics service. With its six plants, Richardson is one of the world's largest molders of plastics. Its extensive facilities are admirably geared for volume production of standard or special plastics parts-large or small.

Write for full information, today.

The RICHARDSON COMPANY
 FOUNDED 1858-LOCKLAND, OHIO

2797 Lake Street, Melrose Park, Illinois (Chicaso District)

Only Richardson offers you this SPECIALIZED pLASTICS SERVICE
 1 development of special PLASTICS MATERIALS

Richardson has the personnel and complete lahoratory equipment for developing new plastics - inchuding comhinations of resin, ruhber, ete.-for special applications.

DESIGN OF SPECIAL PARTS
Richardson handles your problem from beginning to end-analyzes requirements; designs for appearance, performance, low cost; and develops the proper tools for quality and efficient production.

3

MOLDING OR LAMINATING

Richardson can select just the right production method for your special plastics part, because they use all methods-including molding, laminating, fabricating, post-forming, and laminate-molding.

DESIGNED FOR HIGHER STANDARDS OF PERFORMANCE

COMPLETE COVERAGE 2,600 TO 90,000 Mc/s

It is now possible to obtain standard components from the new DeMornay-Bonardi line of Microwave System Components and Laboratory Instruments, in every frequency band, to provide a solution to the most exacting and diversified "plumbing" requirements. Mechanical design and construction of this equipment insures maximum accuracy and reliability of measurement by elimination of errors normally caused by backlash, mechanical wear, friction and temperature variations.

Electrical design provides for uniformly efficient operation over the entire band of frequencies allocated to each waveguide size, and re-settability characteristics are consistently accurate at all times.

All instruments and components are available in the following Waveguide sizes:

RG-48/U; 49/U; 50/U; 51/U; 52/U; 91/U; 53/U; 96/U; 97/U; 98/U and 99/U.

- Absorbing material is a thin metallic layer vacuum evaporated on mica.
- Two position control knob for fast positioning and vernier adjustment.
- Three point leveling adjustment.
- Kinematic design assures consistent resettability.
- A calibration curve is supplied with each instrument giving attenuation in db versus dial reading.

SPECIFICATIONS

Frequency range	8,200 to $12,400 \mathrm{Mc} / \mathrm{s}$
Overall length	$14^{\prime \prime}$
Coupling	Broad band
Tubing dim.	$1^{\prime \prime} x^{1 / 2}{ }^{\prime \prime} \times .050^{\prime \prime}$
Maximum attenuation	40 db
Insertion loss	Less than .5 db
Accuracy of calibration	-.5 db to 10 db -1.0 db to 20 db -1.5 db to 40 db
Plating	Gold 50 m.s.i.
Approximate wt.	10 Lbs .

MANUFACTURED AND DISTRIBUTED EXCLUSIVELY BY

IYIt W. WASMINGTON BIVD., LOS ANGELES 7, CALIFORNIA

Send for the CALNEVAR CATALOG of the new "DeMornay-Bonardi" Standard Microwave Equipment. Please forward your request on company letterhead.

More naturally than ever, your voice comes to the ear that listens through the latest telephone receiver developed at Bell Telephone Laboratories. The reason: a new kind of diaphragm, a stiff but light plastic. Driven from its edge by a magnetic-metal ring, the diaphragm moves like a piston, producing sound over all of its area. Effective as are earlier diaphragms of magnetic-alloy sheet, the new one is better,
gives more of the higher tones which add that personal touch to your voice.

To work the new receiver, telephone lines need deliver only one-third as much power. So finer wires can do the job. This is another new and important example of the way scientists at Bell Telephone Laboratories work to keep down the cost of telephone service, while the quality goes up.

BELL TELEPHONE LABORATORIES

McGill Manufacturing Company changed to Plaskon Alkyd Molding Compound for contact ratchets in its Levolier Switches - with these surprising results: One molded piece replaced two - no assembly was required! And the exceptional arc-resisting and non-tracking electrical properties of molded Plaskon Alkyd produced a better performing, longer-lasting one-piece ratchet. The most popular type Levolier switch using this ratchet is backed by an unconditional guarantee. It passes Underwriters' tests of a minimum of 24,000 operations carrying maximum electrical load and 100 operations carrying 50% overload!

Many other inherent properties of Plaskon Alkyd are helping to improve a constantly increasing variety of products. And faster production is achieved at lower cost in practically every application thanks to the high-speed of compression molding with this amazing thermosetting plastic which cures in seconds instead of minutes.

Let us send you data on all of the desirable properties of Plaskon Alkyd - and the complete explanation of why many electrical insulating parts can be compression molded faster at less cost with Plaskon Alkyd.

mold if beffer and fasfer wifh

TINY TYPE 85LPT

TUBULAR PAPER CAPACITORS

Fit anywhere!

Suitable for

$\mathbf{8 5}^{\circ} \mathbf{C}$. operation!
CAPACITANCE RANGE:
.OCO1 TO . 5 MFD.
VOLTAGE RANGE:
200 TO 600 V., INCIUSIVE
Sturdily built in phenolic-
impregnated tubes. Ends are plastic-sealed.
waite for complete literature
Representatives and Distributors
Throughout the U.S.A. and Canada
PYRAMID

[^1]
BUSINESS BRIEFS

By W. W. MacDONALD

Sixty-Four Percent of the total military bookings of the electronics and x-ray division of Westinghouse were subcontracted during 1950. Subcontracts ranged all the way from a $\$ 62$ order for brass caps that went to Hamilton Associates to a $\$ 2,938,488$ order for radar antennas given to DalmoVictor.

The Westinghouse division mentioned sold $\$ 400,000,000$ worth of radar and other electronic equipment to the armed forces during World War II.

TV Shipments to dealers in the first quarter of 1951 totalled $1,814,767$, according to RTMA.

Registration at the 7th Annual Pacific Electronic Exhibit and Western IRE Convention to be held in San Francisco August 22, 23 and 24 is expected to reach 9,000 , according to exhibit committee chairman Al Fry.

Fry says there will be 165 exhibit booths, showing the products of about 300 makers of electronic and nucleonic components and equipment. At press time a partial list of exhibitors indicated that there were 94 manufacturers, 22 reps exhibiting the products of 168 manufacturers, three universities and four government agencies.

Philadelphia's Chamber Of Commerce has set up permanent exhibit space at 1413 Walnut, where the armed forces and local de-fense-equipment contractors display new gear made for the military every two weeks. Object is to familiarize other manufacturers in the area with military requirements and so stimulate subcontracting.

Out of a similar effort by the San Francisco Chamber of Commerce has come the formation of Bay Area Electronic Resources, an organization in which 15 manufacturers of electronic equipment are members. Sargent-Rayment, Commercial Electronics, E. R. Vinson, Applied Electronics, H-K Division
of Robert Dollar, Clayton F. Bane, Ampex, Electronic Engineering Associates, Huggins, Birdsell, Thor Transformer, Kaar Engineering, Lenkurt, Imperial Television and K-F Development offer their services jointly or individually for the performance of defense contracts.

Business Forecast: "I believe that by the end of 1952 , the combined civilian and military production of electronic equipment by our industry will be at the rate of $4 \frac{1}{2}$ billion dollars a year. From the standpoint of facilities and manpower, this will be equivalent to an industry production of 34 billion dollars of civilian electronic equipment, which is a very substantial expansion in facilities even from recent production records."-Robert C. Sprague, Chairman of the Board, RTMA.

Brazil had 10,500 television receivers in use at the close of 1950. Two transmitters were in active operation, one in Rio de Janeiro and the other in Sao Paulo. Two more are scheduled for erection in 1951.

Book entitled Industrial Research Laboratories of the United States (see New Books, June, Electronics) lists 2,845, of which 350 are active in the field of electronics. Their interest in various projects within the field is indicated by the following tabulation:

Typical IN56 Resistance Characteristic

IN56 DIODE with a potential of +1 volt will pass a current of 15 ma . or more. With a potential of -30 volts, less than 300μ a. will flow.

For Carrier Communications IN7I VARISTOR-The 1N71 consists of 4 matched low impedance diodes each of which, with +1 volt impressed, will pass a current within one ma. of the average current of the four.

electronic deyices; rado fubes; feleysion picture tubes; electronic test equipment; fluorescent tubes, flixudurs, sign tubing, wirng devices; light bulbs; photolamps; television sets

All Germanium Diodes are notable for their low forward impedance. But the 1N56 is specially engineered to make the most of this quality.
Use this diode for high efficiency circuits with low input and output impedances. Use it for relay activation, heavy current and surge applications with low impedance coils, transformers and condensers.
Try the 1N71 varistor in carrier telegraphy and telephony work. The low shunt capacitanceinsureshigh efficiency throughout the high frequency range. You will find this varistor equally efficient in low impedance modulator circuits of the carrier suppression or carrier transmission type.

Both the 1 N 56 Germanium Diode and 1N71 Varistor are available from your Sylvania Distributor. Ask him for copies of the two books shown below. Price of each is only 25ϕ, together they comprise the most complete collection of Germanium Diode applications yet published.

Sylvania Electric Products Inc.

Dept. E-1008, Emporium, Pa.

[^2][^3]BARRYMOUNTS FOR ASSURED CONTROL OF SHOCK AND VIBRATION

NEW ALL-METL BARRYMOUNTS

for Unusual Airborne Applications

These new Barrymounts provide the aircraft and electronic engineer with a vibration isolator designed to meet the unusual temperature and environmental conditions encountered in high-altitude, high-speed flight. Employing no organic materials, these mountings are not subject to temperature influences that may affect the performance of other mountings.

ALL-METL Barrymounts offer a wide load range with uniform performance. They have a natural frequency of about $71 / 2$ cycles per second, with low horizontal stiffness for maximum isolation of horizontal vibration. Transmissibility at resonance is only $41 / 2$. There is no snubber contact nor resonance carry-over when ALLMETL Barrymounts are vibrated at government-specified amplitudes.

These mountings are designed especially for unusual military conditions. They meet the vibration requirement of JAN-C-172A, MIL-E5272 (USAF), and MIL-T-5422 (BuAer). For details of sizes, ranges, and construction of unit mounts and bases using ALL-METL Barrymounts, see catalog 509.

FREE CATALOGS

- 502 - Air-damped Barrymounts for aircraft service; also mounting bases and instrument mountings.
- 509 - ALL-METL Barrymounts and mounting bases for unusual airborne applications.
- 504 - Shock mounts and vibration isolators for marine, mobile, and industrial uses.
- 607 - How to cut maintenance costs by using Barrymounts with punch presses.

"RUGGEDIZED" BARRYMOUNTS AND MOUNTING BASES

Now Available to Meet Shock Requirements of AN-E-19

Barry vibration isolators and mounting bases are now available in "ruggedized" construction, to withstand the severe shocks of arrested landings in aircraft carrier service and of crash landings. These units are tested to meet the shock-test requirements of Specification AN-E-19, for the equipment sizes listed in JAN-C-172A.

"Ruggedized" Barrymounts are available in both the air-damped type and the ALL-METL type. Airdamped Type 770R covers load ranges between $1 / 4 \mathrm{lb}$. and 9 lbs . Air-dampec. Type 780 R covers load ranges between 4 lbs. and 35 lbs . ALL-METL Type 6600 R covers load ranges between 4 lbs . and 35 lbs . Type $\mathrm{M}-112 \mathrm{R}$ covers ranges between 2 and 10 lbs .

"Ruggedized" mounting bases, equipped with Barrymounts of the above types, are available in standard JAN sizes (JAN-C-172A) and in special sizes to meet customers' requirements. A conspicuous advantage of these "ruggedized" Barry bases is the gain in strength of the base framework itself - beyond JAN requirements - achieved with very little increase in weight for loads up to 60 lbs. by design modification of standard JAN bases. For greater loads, the "ruggedized" Barry bases are of stainless steel instead of aluminum. Write for data sheet.

THE : A B CORP.
707 PLEASANT ST., WATERTOWN 72, MASSACHUSETTS

SALES REPRESENTATIVES IN

Receiver Sales by licensees for the first quarter of 1951 totalled $5,227,834$, worth $\$ 486,245,840$. Here's the way the total broke down:
Type
Electr
Units Dollars
Table
Table (UYnder $\$ 12.50$ billing
price) ...
Table (over
$\$ 12.50$ billing
nrice)
A-M.
$430,415 \quad \$ 4,239,979$
$\stackrel{\mathrm{A}}{\mathrm{A}-\mathrm{M}} / \mathrm{F}-\mathrm{M}$
$\begin{array}{rr}1,169,840 & 20,160,302 \\ 131,346 & 3,996,623 \\ 4,550 & 85,022 \\ 7,158 & 161,221 \\ 4,739 & 560,406 \\ 109,860 & 5,101,357 \\ 5,566 & 566,213 \\ & \\ 21,987 & 2,238,769 \\ 159,989 & 19,925,864 \\ & \\ 291,808 & 5,521,916 \\ 13,842 & 299,125 \\ \ldots 1,989 & 21,504,400\end{array}$
Auto..

Telenision		
Converters	914	144.409
Table		
Models.	693,789	108,608,799
Consoles Direct-Viewing	1,083,742	229,45
Projection	861	225,341
Radio Phonos		
Direct-Viewing.	186,175	56,559,5ı1
Projection.		5,149
Phonographs		
Phono only	159,465	3,297,290
With radio attachment.	2,846	70,801
Without Cabinets		
A-M.	1,393	89,453
A-M/F-M	1,427	178,008
Television	24,121	3,251,411

Chicago Parts Show was particularly successful in that it attracted top brass from the country's leading distributing organizations, including many who stayed away last year and the year before for political reasons.

To get into the Show you had to prove you were a legitimate dis-
tributor or rep, and we mean prove. Most exhibitors liked this rigidity, which held down overall attendance a little but confined it to quantity buyers. A few said they wouldn't have minded talking to some people from manufacturing plants, amateurs and servicemen just to keep their hand in.

Show hours were from $10 \mathrm{a} . \mathrm{m}$. to 6 p.m. on all three days, which gave upstairs room exhibits a lively play. For our particular newshawking purposes the hours seemed a little short.

Manpower Pinch is being felt at Wright-Patterson Field as well as in industry.

The civilian personnel division has approximately 100 types of engineering, scientific and technical positions open and considered critical, plus about 40 other types of jobs proving very hard indeed to fill.

Among the types of jobs offered: Electronic engineers specializing in instrumentation, radio, wire communications and testing; General electronic scientists and specialists in instrumentation, microwave communications and tubes; Maintenance technicians specializing in electronics; Air technical intelligence specialists in bombing systems, electronics, electronuclear systems, aircraft instrument and navigation systems and electron physics; Engineering aides for electronics.

Unemployment in the television receiver manufacturing business was well over 50,000 in June, according to Robert C. Tait, president of Stromberg-Carlson and a spokesman for RTMA. Inventories were at an all-time high at 500,000 sets, with 25 carried in inventory for every one sold as against one in inventory for every set sold in the first five months of 1950.

A Laboratory engaged in precision work discovered an excellent source of soft, lint-free cloth to be used in a cleaning process prior to evacuation and sealing. Later, it took some explaining to convince the Navy accountant that he should ok a bill for "one bale of diapers."

CLOSE DIFFERENTIAL ADJUSTMENT AND D. C. RELAY PERFORMANCE

1 As a remotely operated switch, a relay must have a structure which moves through a distance (to separate a pair of contacts) and develops force (to maintain closure of contacts). An electromagnet acts on an armature to bring this about, under the influence of variations in energizing power. (fig. 1)

2 In addition to magnetic force, a spring is used to return the armature to its deenergized position and to "make" normallyclosed contacts, if used. Its effect may be shown by odding to Fig. 1 as follows (Fig. 2):-

3 It is most convenient to re-draw Fig. 2, showing the spring plot in the same quadrant as the magnet characteristics, but remembering its opposite direction. One then observes a series of combinations of gap and coil power, which will just cancel the effect of the spring.

4 A typical relay operating cycle may be represented on this same plot, as in Fig. 4. "F1" is the force holding closed the normally-open contact with relay "just operated"; "F2" is the force holding closed the normally-closed contact with relay "just released," and S is the armature stroke, which is of course directly related to contact air gaps. This is a WIDE DIFFERENTIAL ADJUSTMENT.

5 If the relay in Fig. 4 is readjusted to "release" at a power level close to that of "operate" the result is, as shown in Fig. 5, to reduce the values of 5 F1, F2 and S. The marginal (just operated or just released) contact pressure and contact spacing of the switch have been considerably reduced to produce a CLOSE DIFFERENTIAL ADJUSTMENT.

6 The values of F1, F2 and S in Fig. 5 could be made equal to those in Fig. 4 if we build a different relay, having the effect of changing the scales of the plot. Total magnetic force and spring force will both be increased, which will require more iron, and if sensifivity is desired, more copper. In effect - a larger reloy.

Such a relay will have many problems of design and execution, relating to the control of small fractions of large forces, to vibration immunity and therma! stability. Thus, in general it is desirable to compromise. By odding gain and negative feedback to the system in which the relay will be used, the relay operating differential may be kept reasonably large, while desired system performance is not sacrificed.

SIGMA INSTRUMENTS, INC., 62 Pearl St., South Braintree, Boston 85, Mass.

Value Beyond Expectation

MALLORY

TUNGSTEN CONTACTS

Although all Mallory tungsten is chemically the same, the size, shape and distribution of the grain particles are carefully controlled, since these factors vitally affect its electrical and mechanical properties. Mallory will gladly work with you to find the right contacts to meet your specifications. Write today.

Brings Laboratory Standards To Production Operations

The Mallory "E-Treat" finish is onc of the many ways in which Mallory metallurgical developments are improving performance and rellucing costs of electrical contacts.
A typical example is the real help provided by Mallory for a manufacturer of automotive equipment who faced the problem of excessive failures of tungsten contacts. The application involved a critically heavy electrical load with light contact pressure. Mallory contacts with "E-Treat" finish . . . a chemically pure, highly polished face . . . were tested and enthusiastically approved. The "E-Treat" finish afforded lower contact resistance and less material transfer... tripled the minimum contact life. What is more, the Mallory contacts cosi less than those formerly used!
That's value beyond expectation!
Mallory contact know-how is at your disposal. What Mallory has done for others can be done for you!

In Canaln, male and sold by Johnson Mathey and Mallory, Let., 110 Industry St, Tormito 15, Ontario
Electrical Contacts and Contact Assemblies

MALLORY

P. R. MALLORY \& CO.; Inc., INDIANAPOLIS 6, INDIANA

SERVING INDUSTRY WITH
Electromechanical Products

Resistors	Sucitches
Tl Tuners	Vibrators

Electrochemical Products
Capmaturs Rectifiers Mercury Dry Batteries
Metallurgical Products
Contacts Sperial Metals Welding Materials

CROSS
 TALK

- ASIA . . . The current debate on our foreign policy in Asia emphasizes our need to support our friends in that part of the world. One such opportunity will appear in February next year, when the International Radio and Electronics Exhibition (IREE) of India will take place. We sometimes forget that there are a billion people in Asia who enjoy virtually none of the benefits of electronic science, people whose leaders are well aware of these benefits and their social and political implicacations. Concerned as we are with our domestic market, with its shortage of unassembled components and its oversupply of assembled television sets, we should not lose sight of the great opportunity, for service as well as profit, in the Far East. We hope that our industry will be well represented at the Indian exhibition.
- AETAT . . . Dr. Walter Schottky, to whom we owe much of our early knowledge of electron emission and the behavior of vacuum tubes, was

65 on July 23rd. When notice of this even came to our attention, we were reminded that electronics is a young man's game, even as it starts its second half century. The 25 th anniversary of IRE in Canada was celebrated in Toronto only last month, as was the same anniversary of the founding of the Detroit Section.

Marconi would have been 77 this year if he had lived. Many of his contemporaries have achieved three score and ten years and are still with us: Alexanderson (73) Langmuir (70), Zenneck (80), Lynde Wheeler (76), G. W. Pierce (79), Donald McNicol (75), DeForest (77), Hoyt Taylor (72). With Schottky in the three-score bracket are many other illustrious founders of our science: Armstrong (60), T. L. Eckersley (64), Hazeltine (64), Heising (62), Van der Pol (62) and Zworykin (61). To Dr. Schottky and his colleagues, our felicitations!
-STAGES . . . One of KGGF's engineers recently took a long look
at their 10 -kw transmitter at Coffeyville, Kansas, contemplating what manner of gadget it was. He found that said transmitter employs 51 tubes, a quartz crystal, several germanium diodes, in 47 separate $a-f$ and r-f stages, and that the signal undergoes 14 changes in frequency from microphone to antenna. The ratio works out to be about three tubes per frequency change, which we hereby christen the "Gillette factor" after the engineer in question. In receivers, things happen more quickly, three frequency changes (r-f, i-f, a-f) in as few as four tubes. All of which sets us to wondering how many tubes and frequency changes are involved in transmitting a television image from a camera in a New York studio to a receiver picture tube in St. Louis, Missouri. The first reader who sends us a reasonable answer, backed up with full evidence, will have his subscription to this journal extended for a threeyear term. The second reader so doing is out of luck. This offer expires September 30, 1951.

DEFENSE DEPARTMENT

DO YOU NEED TO KNOW . . .

What the short and long-term prospects are for you personally in basic research?

What is ahead for your company or college in the way of military research contracts?

What types of projects are most likely to receive Defense Department support?
What kind of coordination the Services are apt to arrange between similar projects?

This Article May Provide the Answers

The ARMY
\section*{By HAROLD A. ZAHL}
Director of Research
Signal Corps Engineering Laboratovies Fort Monmouth, N.J.

With the close of World War II, there followed a rapid dispersal of the greatest collection of scientific manpower ever mobilized against a single objective. The nation was all-out for defense, but technologically this inferred applied research, engineering, production, training, and combat. Ironically, with almost total mobilization of
the nation's scientists and engineers, basic research was neglected in the rush to quickly make weapons using the science of the day. In retrospect, we see that had the war extended over a substantially greater period of time, the absence of basic research as part of our defense plan might well have been disastrous.

Following the close of the war, numerous reports prepared by such notables as Vannevar Bush, John R. Steelman, and others, strongly urged that intensive basic research be considered as our principal bulwark for long-term defense, and that a National Science Foundation

Equipment of tomorrow frequently depends upon today's basic research
be established immediately to augment the military effort and further carry research into areas where military interests, ostensibly at least, appeared more remote. Legislative delays in establishing the Foundation resulted in the military services, and later also the Atomic Energy Commission, contributing the major portion of the funds and many of the facilities for the country's post-war basic research program. Through this effort, combined with that of private support, basic research within the U. S. reached an all-time high in 1950. Many results of this research have already been put to use in our weapons program and also in strictly civilian interests.

In the aftermath of the President's declaration on December 16 th of a state of national emergency, and in the following rearmament rush, there appeared some signs suggesting that basic research within the U. S. might in part at least be forced to yield to the exigencies of the emergency. In reaction to this general feeling, the Department of Defense has taken the position that while production must be accelerated and development activities greatly increased, it is also imperative that basic research continue apace, since by the time-scale on which the present emergency and possible all-out conflict appears to be plotted, basic research and success therein may well be necessary to our very survival. Implementing this policy, each Service has agreed separately to support basic research by a percentage of its research and development budget; and further, should the present international tension

PLANS for Basic Research

Abstract

Mobilization requirements have speeded up applied research, development and production engineering to meet current military electronic needs. To many it appears that this rules out expansion of basic research and even involves curtailment of existing projects. Such is not the case, however, according to spokesmen for all three branches of our armed forces

ease and permit a reduction in military expenditures, then a fixed minimum will still be maintained for continuity and stability. This broad agreement will again be reviewed in three years from the present.

Manpower Policy

Obviously, during the initial phases of the present emergency, there must be a considerable reshuffling of technological personnel within industry, institutions of learning and government laboratories. Full-scale war would naturally impose still greater changes. Even now, however, it is a serious fact that industry is desperately in need of high-caliber personnel for development and engineering work on defense orders, while government laboratories with almost equal vigor are reaching for similarly qualified men.

Paradoxical to the apparent manpower shortage, because of greatly reduced enrollments due to direct military demands for young men, there exists in the staffs of our universities an increasing number of high-caliber technical men who apparently will be forced to make adjustments due to reduced university budgets. Many of these scientists and engineers will, of necessity or through the magnetism of higher remuneration or personal desire to contribute more directly to the cause of the emergency, yield to the call for work in industry or government. In many instances such shifts represent a direct or potential loss of basic research workers. That some such personnel changes occur, however, is required as the nation girds itself for defense; in fact, is
absolutely necessary for quick and intelligent rearmament where technology and production are our strongest weapons. Still, with the university being the traditional home of basic research, such turnovers in manpower must be watched with caution, lest they become so great as to seriously threaten our major means for keeping truly creative effort at a level consistent with a long-term emergency. Even more important on a long-term basis, if the educational structure of our schools becomes too weakened a prolonged crisis would confront us with a grave shortage of scientists and eventually even a loss of the system which produces them. This in effect would, in less than a generation, precipitate a national catastrophe of the first order.

Selection of Projects

Recognizing that strong forces do exist, pulling many individuals with outstanding research reputations into the generally more remunerative applied fields, it must also be admitted that a reasonable number of private and government dollars still appear to be going into basic research. Hidden in this situation,

DEFINITION

BASIC RESEARCH, as defined by the Rescarch and Development Board, refers to theoretical or experimental studies directed toward the increase of knowledge, either by advance into unknown areas or by detailed filling-in of areas whose general boundaries are already known. Immediate practical application is not necessarily a direct objective of the investigation
however, is the danger that basic research, while admittedly important, is never urgent, and in the rush many of us too easily shift our thinking toward the urgent and accept the dollar statement as satisfactory, without the realization that unless the vast military-supported program is watched with great care there may be a considerable proportion of technical mediocrity eventually supported, instead of research capable of adding real and significant contributions to our fund of knowledge. We shall never win a war or hold our own technically in an indefinitely long emergency solely on the number of reports delivered to a contracting officer and added to a collection. To truly remain technologically ahead of our potential enemies research must produce and hold world leadership in our scientific knowledge, which at the same time must also be geared to the direct military effort, for the criterion of research success, in a military sense, lies in the performance of military weapons in the hands of our troops.

The above leads to the obvious fact that the problem of the military services effectively contributing toward and maintaining a basic research program is not solved merely by the availability or expenditure of dollars. While there are many volunteers for basic research, those obviously deserving of unquestioned support, together with full freedom for their creative effort, are unfortunately very small. Thus the question arises-by what ground rules does one determine whose efforts should be supported with the military dollar? Many of those who wish to participate in the

DEFENSE DEPARTMENT PLANS

program on a relatively undirected basis without change of their peacetime environments would actually require guidance in order to make their efforts effective. For the government to militarily gain in a direct sense from a program substantially more geographically diversified than today's widespread contractual effort, with its host of attendant administrative and technical coordination problems, would also require a proportionate increase in top-notch scientists diverted to assure program coordination, absence of undesirable duplication, and concurrent application studies. Coordination is further complicated in that, while basic research as such is generally considered unclassified, once important findings are made classification almost invariably follows, regardless of the volumes written on the desirability of a free interchange of information.

Choice of Facilities

It would appear that the present situation in regards to military support of basic research calls more for expanding proven existing research centers, both externally and in military laboratories, rather than for further decentralization. This trend is already being felt and will undoubtedly continue toward establishment of numerous scientific groups of substantial size under direct Service sponsorship, largely in universities, for concentrated effort of direct military interest. Highly qualified individuals are now needed to help organize, join, or assist groups in translating the results arising from these more concentrated approaches into weapons. While within such laboratories direct military interests must of necessity be emphasized, considerable opportunity will also exist for work on basic problems related to the applied aspects of the group's technical assignment.

In the physical sciences, a number of such laboratories under joint Service sponsorship are already functioning; some since 1946-for example, at Harvard, Princeton,

Columbia, Stanford, Massachusetts Institute of Technology, Bell Telephone Laboratories and the General Electric Company, while at the time of this writing others are in varying stages of planning or negotiation.

Long-Term Objective

It must be noted, however, that while establishment of larger units and team play of necessity appears to be today's organizational trend, it is also true that individuals whose previous background indicates outstanding qualifications for lone effort, or effort with a small assisting group, should be privately supported or, if private support is not available, should be supported by the military. Equally important, such persons must be further encouraged by allowing them to continue their work on geographical coordinates of their own choosing, for success in basic research begins with the choice of the individual and not necessarily by regimenting all research personnel into milliondollar facilities.

The Signal Corps, with its major development interest in electronics, fed from basic and applied research within the field of the physical sciences-in addition to substantial contractual participation - plans continuance of a basic and particularly a strong applied research effort within its own laboratories to supplement the fast-moving development and engineering program which naturally constitutes its principal laboratory effort. This internal research program carries a threefold objective: first, while it is hoped such effort may lead to discoveries vital to the military effort, as a guaranteed by-product, it is certain to assist in maintaining the scientific environment necessary for leadership in the field of electronics; second, to maintain a corps of specialists available in an advisory capacity to development engineers working on new or improved equipments; and third, to stand ready as a highly trained technological reserve for the possible eventuality, when all existing facilities capable
of assisting must be directed toward the solution of intricate problems thrown back from combat areas for immediate solution.

In all the above, a strong stand has been taken in support of continuing a steady level of truly basic research during the emergency, or in fact even during total mobilization or major combat should such be thrust upon us. However, it is only through the orderly superposition of applied research, development and production that new military weapons can be born and made available in time to troops. The intricacies pertaining to the interrelationship between elements of the scientific-engineering-military team structure, further, make it imperative that everyone in the chain appreciate the contributions of the others. Applied research, development and particularly production have long occupied pedestals of distinction in the minds of those charged with military planning. For basic research, it may be said that never before in our history has a better understanding and greater appreciation of its importance existed than now. In spite of apparent vicissitudes born through the early rushes of the emergency, it is still felt that the conditions remain for keeping a vigorous program underway, and as we move into the uncertainties of the future, the Department of the Army, in its contributions to the national defense, does not intend to lower its long-range technical sights.

The NAVY

By E. R. PIORE

Deputy Chief and Chief Scientist
Office of Naval Research Washington, D. C.

TThe honorable Dan A. Kimball, Under Secretary of the Navy, and Commissioner Gordon Dean, Chairman of the Atomic Energy Commission, issued a joint statement on December 15, 1950, which read in part: "One very essential condition for maintaining our national strength, whether for peace

Checking growth of crystals at Squier Signal Laboratory
or for war, is that research in the sciences, which is basic to all technological progress, be kept at a high level." This is a broad statement of the Navy policy in regard to basic research during this period of increased military effort to improve the readiness of our forces in the field.

The Office of Naval Research, after very careful thought, has taken the following action to implement the policy stated above:
(a) It is continuing the basic research program at the same annual fiscal level that the program enjoyed prior to the recent increase in military appropriations.
(b) At the same time, ONR has increased the average life of contracts for research.

It is hoped that these procedures will give stability to the basic research program and some assurance to scientists and engineers during this period of uncertainty and rapid expansion of the military technical effort in the country.

Basic Research Problems

The policy, and its implementation, is due to the expanded demand for technical people occasioned by the procurement program initiated by the military services, and the additional sums of money available for research and development. A large production effort in military equipment always reflects itself in an increased demand on development facilities and engineering manpower. It is felt that this demand for manpower should not
come initially from those engaged in basic research. This group, although small, is highly competent and imaginative. It is the hope that, pursuing the policy stated above, this small group could be kept initially as a reserve-scientific shock troops. The policy is an attempt to introduce some countermeasure, however small, to the potential flow of all technical manpower to development of new weapons. We are not prepared at this time to commit all our technical reserves in ideas and manpower to weapons and weapons systems. It is desirable that the transition from basic research to development of weapons be gradual and thoughtful, and that the rate of this transition be determined by the character of present and future military needs.

Actually, at present, there is a drift in university, industrial, and governmental laboratories from basic research to the study of more urgent military problems. ONR obviously is involved in this drift by making funds available and by indicating the existence of very urgent unsolved problems. We are calling on our reserves to some extent, but only after a very careful examination of the areas that need attention and the talents of the people that can make an important and vital contribution to those technical and military areas. This is always done in consultation with the engineers and scientists involved. It is necessary to assure ourselves that the problems being tackled
have a high probability of successful solution-in a technical and military sense-in a comparatively short time.

Study-Group Approach

One finds at this time that the major effort among those groups which in the past have been engaged in basic research is on analysis and study of technical areas and needs in the military services, thus determining the new and additional problems in applied research and development that should be undertaken now in our laboratories throughout the country. In other words, the emphasis is on studying the situation rather than on setting up large laboratories, such as the Radiation Laboratory at MIT during the last war. ONR is encouraging this approach. It may insure the proper and intelligent use of our reserves. In addition, it commits our reserves for a limited period of time-for the duration of a study. We are in a period of identifying technical problems in the military setting, and engineers and scientists are familiarizing and identifying themselves with these problems. The state of readiness for an intensified emergency is being improved.

When the studies have been concluded and the validity of the results determined, it becomes necessary to examine the recommendations and to ascertain how large a load can be carried in the existing laboratories and research and development facilities. If the laboratories and research and development facilities are inadequate, an assessment must be made relative to expanding the facilities and adding new manpower to them on the one hand, or establishing new facilities and organizing new teams. Then additional manpower may have to be drawn from those groups that are engaged in basic research. Actually, certain critical technical areas have already been found that require at this time the establishment of new groups so that our military effectiveness can be increased in those areas at the earliest possible date.

In summary, the Office of Naval Research has been trying to maintain its program of basic research,

DEFENSE DEPARTMENT PLANS

superimposing on it study groups and, when necessary, intensifying work in certain applied and development areas. At this time an attempt is being made to keep to a minimum disrupting influences on basic research.

How does electronics, an engineering field, live in terms of this brief and general summary? For a moment we might as well forget the definition of electronics-the editors of Electronics solve this problem daily-and look at the more troublesome problem of basic research in an engineering field.

Broad Electronic Needs

Normally one looks to the sciences for basic research and to engineering for the application of this information. The transistor came from scientists who were concerned with the solid state, rather than from those who were trained in electronics. However, one can rightly argue that the future of the transistor, as an important component in electronic systems, depends on basic and fundamental investigation from the engineering rather than from the scientific point of view. The control of various parameters that make the transistor an important electronic device may not have a profound effect on the theory of the solid state.

Another example of basic research in electronic engineering is the current activity in the statistical theory of communication, analyzing the problem in the time domain. Still another is continued investigations of the interaction of electron beams with themselves and the electromagnetic field-exemplified by the traveling-wave-tube type of research.

Basic research in electronic engineering is a fundamental and philosophical approach to a problem with the goal of controlling nature in a reproducible manner, as contrasted to basic research in science where the interest is in a more profound understanding of the external world. In presenting an argument for the retention of some manpower for basic research, it is
necessary that these engineering problems have a broad and revolutionary impact on some aspects of art.

Nature of Current Work

The three examples are cited to indicate that basic research is to be found in engineering as well as in the scientific fields. At this time it does not appear that new functions for electronic systems in warfare, such as radar, which saw its baptism of fire in the last war, will be found. But unless we maintain a strong basic research program in electronics, the improvements in existing electronic warfare systems will be marginal, accompanied by an ever-increasing number of components, tubes, and knobs, usually with a reduction in overall reliability of the system. We are looking to those areas that will permit us to modify radically the character of the system so that its utility on the battlefield can be increased. Automotive power, the automobile, was used in 1914-1917 and yet the Jeep in the last war had a profound effect on the maner in which the war was fought.

To be a bit more explicit, in a certain sense the single factor that imposes a severe limitation on greater exploitation of electronic equipments is lack of reliability. The solution may come, not from the direct-development approach to increase the reliability of each component, but rather from the introduction of redundancy into the components of the systems in a premeditated fashion. Further analysis may show that many components are vestigial, and that other components are obsolescent.

A more general, venturesome statement can be made to the effect that within the next few years profound changes may be seen in the design and application of electronic systems. The backbone of these changes is the current work in progress in basic and fundamental engineering investigations in various laboratories. Some of the laboratories are managed by industry, others by government, and still
others by academic institutions. Already there are results that need further development to be incorporated into the military system.

It is well to point out that in the last war we had and maintained electronic superiority on all battlefronts and in all types of operations. This very important advantage we may not be able to maintain. If perchance we lose it, one available way to regain this advantage is to have a reserve in beinga reserve not only of brainpower but also of fundamental ideas on which the brainpower can draw.

With the large post-war expansion in academic, industrial, and governmental research and development facilities and activities, one may ask why we are already facing the problem of committing our reserve. The answer is simple. The expansion mentioned above kept pace with the expansion of the national income. The new defense effort is expanding our economy. This imposes an additional load on our research and development manpower and facilities.

The AIR FORCE

By J, W, MARCHETTI

Director of Radio Physics Research
Director of Radio Physics Research
Air Force Cambridge Laboratories Cambridge, Mass.

THe AIr force as an organization is a relative newcomer to the field of basic research. During the years of World War II, it leaned heavily on Office of Scientific Research and Development organizations for getting its research done, particularly in the field of electronics. During the past five years, however, we have had to develop a certain maturity in this field.

The signs are very clear that this maturity is indeed being realized. Only recently a new command has been set up called the Research and Development Command. The organizational level of this command is an indication of the seriousness attached to its technical problems by the Air Force. Although the new command will carry the primary responsibility for equipments needed by our fighting airmen, it will also be vitally interested in basic or background research. Just as in-
dustrial concerns have found that aggressive research departments are their best guarantee of solvency in periods five to ten years ahead, so also do we realize that the outcome of future wars may well be determined by the quality and quantity of basic research efforts during years of peace.

Distribution of Contracts

The distribution of basic research in electronics depends on the location of personnel best fitted to carry on that research. College laboratories are the major recipients of basic research support and usually such support is on an unclassified basis. Industrial laboratories occasionally handle our basic research problems, but only in those instances where the particular skills desired happen to obtain in men having industrial affiliations. Service laboratories are mainly dedicated to applied research and development engineering. The Air Force Cambridge Research Laboratory is an example of a laboratory dedicated entirely to research in the fields of electronics and geophysics. At this laboratory, no development work is done. Models are built on an experimental basis or theoretical analyses of problems conducted. The choice between theoretical or experimental approach depends for the most part on suitability to the problem at hand. The typical output of this Service laboratory is a report telling how a certain job might be done and, perhaps, some experimental gear on which proofs of performance and measurements can be made. The research output of a Service laboratory such as this may require considerable engineering before a useful end item is ready for use. This additional engineering is done either by another Service laboratory or industry.

Future Military Needs

Military operations are becoming more and more a pitting of scientific skill against scientific skill. Under such conditions, the easy-to-do technical things are quickly put to the test of battle and further progress in weapons can only be made by increasing our store of basic knowledge. In the
present emergency, one might suppose the urgency of immediate equipments would relegate to the background any efforts on basic research. We do not intend to follow any such pattern, but will continue the support of basic things regardless of any emergency that may obtain. Experience has shown that both basic and applied work need one another's mutual stimulus, and striking a happy balance between these two is as important as striking the balance between theory and experiment.

One might wonder just how the line is drawn between basic research to be supported and research that should not be supported. There is little knowledge of a scientific nature which in time of war has no military application. Practically all knowledge can be used in one way or another in a battle and the support thereof. Drawing the line is a serious Service responsibility. A decision must be made on the basis of potential usefulness, cost, likelihood of success, capability of the manpower available, and need for security. It is not our intent to draw this line so tightly that due to lack of breadth and scope of research we will be unable to do our job well. Nor can the Service draw the line so loosely that it will be criticized for getting into fields of endeavor that are beyond its interest or, in fact, interfering with the interests of others. In making decisions on research we will operate quite similarly to a progressive business organization in which the profit motive has been replaced by the motive of contributing to the national security by assuring a strong air arm.

Electronic engineers are vitally needed by the Air Force as they are indeed needed by almost everyone else. The present scarcity often seems to be a hopeless situation, but for those whose memory goes back a decade or so it is difficult to resist a silent chuckle at the young graduate who cannot make up his mind what job to take because he has at least three or four to choose from. At least from his point of view it is a healthy situation and indeed I believe it is a healthy situation since it indicates to us that as a nation we are making a concerted
effort to solve our technical problems, be they in research, development or production engineering. The scarcity of talent is a real incentive to the more effective utilization of our present manpower. All of us must be as effective as possible regardless of the particular field we have chosen.

Mobilization Period Planning

During the past six years a technical type has evolved which General Roger B. Colton has called a "military engineer". He is an unusual sort of individual with technical training who knows in quite some detail the inside workings of our military equipment and carries around in his mind an odd assortment of such letters and numbers as AN/42; JAN7 and XDQ. This man is usually a systems man and his evolution indicates quite clearly the major role of technical equipment in our military operations.

From military engineer to tester on the one hand and research scientist on the other, one will find within the Service the full gamut of technical opportunity. In times of stress the development and production engineering is of course expanded, but very definitely not at the expense of our efforts on basic research or applied research for that matter. While the nut-and-bolt portion of our work must expand at a terriffic rate, it is quite true that our research effort gets only a modest increase, but it gets an increase nevertheless, not curtailment.

Just as we derive benefit from sponsoring basic research I would also like to feel that the art as represented by its frontiers is also advanced by this partnership. It is rather the exceptional case today when research can be done with "love and string and sealing wax", or an occasional "ice pail". More of ten than not, it requires the teamwork of experienced men and financial support in excess of that available to private individuals. The same forces which have created the large industrial laboratory for the solution of these problems have also been responsible for the trend research has taken in the Air Force. We are very definitely in research, for its sake and for our sake.

Martin P5M.1 Marlin, latest design of antisubmarine flying boat built for U. S. Navy. Keel of hull goes under water from nose to tail, giving greater stabilify when landing in heavy seas to listen for submarine that has submerged after being detected by radar or other airborne electronic equipment

Airborne Submarine

Abstract

Recent improvements in submarine weapons and electronic equipment, and corresponding improvements in the equipment of aircraft designed especially for detecting and sinking submarines. Sonar and hydrophones are carried on some air units

By T. B. SCHILLO

Electronics Engineer
The Glenn L. Martin Co.
Baltimore, Md.

SUbMARINE WEAPONS and equipment are improving. Equipment now includes radar, radar search receivers, radio and radar jamming transmitters, hydrophones and sonar. New torpedoes have longer ranges and are more dependable. They can be fired from beyond the range of underwater detecting devices, leave no tell-tale wake and are often equipped with homing devices that guide the torpedo to the sound made by the ship's propellers.

The submarine itself now uses the snorkel breathing tube, so small that it practically defies radar detection yet permits diesel-engine propulsion while submerged. Engines themselves are being improved, making it logical to assume
that submerged speeds will increase to 25 knots. Furthermore, if the Walter closed-cycle hydrogen-peroxide engine can be cured of its habit of blowing up, there will be no need for air intake and exhaust tubes. This would eliminate the snorkel, our last radar target.

If there should be another fullscale war, we can be sure that the submarine will be used by both sides, not only for attacks against shipping and naval units but also for mine laying, as troop and cargo carriers, as radar pickets to give advanced warning of air raids, and as guided-missile launchers.

Antisubmarine weapons and equipment are improving too. In addition to radar, we have added magnetic airborne detectors, sonobuoys, radar search receivers, depth charges, heavy-caliber guns and rockets to antisubmarine aircraft.

The magnetic airborne detector is usually suspended below the air-
plane by a cable while sweeping an ocean area. Unfortunately, its range is so limited that it is useful only for localization when a submarine is known to be in the vicinity, or for continuous patrol of restricted areas like harbor entrances or channels.
Sonobuoys are dropped into the water in a pattern by an airplane when a radar-sighted submarine submerges. A hydrophone on each sonobuoy sinks below the surface and a telescoping antenna shoots above the surface. The hydrophone picks up the noise made by the submarine propellers, and the unit transmits this noise by radio to the aircraft overhead. Depth charges are then dropped on or near the noisiest sonobuoy.

In the early hectic days of World War II, aircraft were usually delivered to the Navy without special equipment. These aircraft were sent immediately to modification

New U.S. Navy long-range patrol plane for photo reconnaissance, mine-laying and antisubmarine duties. Known as the Martin P4M-1 Mercator, the plane carries jet engines in the same nacelles with the piston engines, to provide additional power and speed for take-off and when over the target area. Both radomes face downward

Detection Systems

centers. New equipments were becoming available so rapidly that it was not possible to install them for optimum performance and ease of operation. In fact, the end result was often a haphazard arrangement of antennas, radars, direction finders, bomb racks, searchlights and guns.

The aircraft manufacturers, and especially their aerodynamicists, were not too pleased to find their products resembling porcupines, with performance seriously impaired by all these appurtenances. As a result, even before the close of hostilities, the concept of naval aircraft design was changed to that of an integrated weapon especially configured for specific missions.

One example of integration of various equipment with an aircraft is the Martin P4M Mercator. This airplane was specifically designed for mine-laying and bombing, and is also an effective antisubmarine weapon. All Navy aircraft must be versatile. For that reason, the Mercator, with only minor modification, can be assigned secondary missions of area search and reconnaissance. Mine-laying missions require long
range and heavy payload, along with fire power, armor, and speed for protection against enemy aircraft and ground defenses. Therefore, it was decided to install twin turrets fore and aft and a deck turrot. Provision was also made for waist guns although these are not normally carried in peacetime. Allowance was made for installation of protective armor plate for the engines and crew.

The radar antenna is enclosed in a streamlined radome aft of the big bomb bay, and other antennas have been streamlined or imbedded in the ship. There are plastic sections in the leading edge of the wing which act as windows for these antennas.

The Mercator appears to be a twin - engine airplane. Actually there are two jet engines, one on each side, mounted just aft and below the piston engines. In spite of the Mercator's size, its take-off run is surprisingly short especially when all four engines are used. Under many load conditions, only the piston engines are necessary for take-off. If all four engines are used, the jets are secured after take-off because the piston engines
are fully capable of producing cruising speed. The jets are again used over the target area to minimize the time spent in enemy territory under fire.

Another example of system engineering is the Martin P5M Marlin. Carefully specialized airplane design combined with a selected complement of electronic equipment make it ideal for its primary mission of submarine hunting and killing in the open ocean. Like all Navy aircraft, it has secondary missions which include air-sea rescue, transport, hospital and reconnaissance. With only minor modifications, it can perform any of these missions.

The P5M hull has a long, deep afterbody which permits it to land and take off in heavy seas.

Another forward step in improving the aerodynamics of modern aircraft is seen in the utilization of the P5M engine nacelles. Depth charges and torpedoes which used to be suspended under the wings, where they caused considerable drag, are now housed in the nacelles. Antennas have likewise been either streamlined or imbedded to improve over-all performance.

PLANS FOR COMPATIBLE

When the FCC announced its decision to adopt the CBS field-sequential color television system last October, the Commission stated that it would have been preferable to adopt a compatible color system, if such a system had been ready for commercial use. The National Television System Committee (NTSC) decided, shortly thereafter, to set up an Ad Hoc Committee to study compatible systems and to draw up broad standards on which field tests might be based.

The Committee, formed on November 20,1950 , consisted of D. B. Smith (Philco), Chairman, E. W. Engstrom (RCA), T. T. Goldsmith, Jr. (DuMont), I. J. Kaar (General Electric), A. V. Loughren (Hazeltine). R. M. Bowie (Sylvania) joined the committee later. The committee members were chosen to represent research organizations active in the development of color television systems. Axel G. Jensen of the Bell Laboratories served as observer. The Committee attended demonstrations of various system proposals at the Hazeltine, Philco, DuMont and GE laboratories and at the NBC-RCA color test facilities at Washington. On April 19, 1951 it issued a unanimous report to the NTSC.

The report contains five proposed color system standards, drawn in broad terms, but omits any detailed numerical values, stating the latter should be determined by industry field tests.

The system defined by the broad standards will, in the opinion of the committee members, "provide for the maximum utilization of the existing 6-mc channels \qquad . (that is) it will transmit the maximum amount of information useful to the viewer with regard to picture clarity, color fidelity, picture brightness, freedom from flicker and other deleterious effects, of any system of color television now

[^4]

FIG. 1-Block diagram of composite color system as implied by the broad standards proposed by Ad Hoc Committee
known to us."

Composite System

Essentially the proposed system involves the transmission of a highquality black-and-white picture signal in accordance with the present FCC standards, which carries the brightness information, plus a subcarrier within the video band which carries the color (chromaticity) information. The color subcarrier is so synchronized and modulated that it causes minimum interference with the brightness component. Accordingly, portions of the color image which appear predominantly in shades of gray are substantially free from interferences due to the
color subcarrier, while highlycolored portions of the image show dot-structure to a degree depending on the degree of overlap between the brightness carrier sidebands and the color subcarrier sidebands and the relative percentage of modulation. The technique of utilizing a color carrier which is an odd multiple of half the line scan frequency as proposed by Dome of General Electric is utilized further to reduce interference. Observers noted that this method of transmission was common to the experimental systems demonstrated by Hazeltine (March, 1950), RCA (December, 1950) and Philco (February, 1951).

COLOR TELEVISION

Ad Hoc Committee of NTSC proposes broad standards for "composite system" using by-passed monochrome signal and color subcarrier, recommends industry conduct field tests to establish such items as chromaticity subcarrier frequency, manipulation of primaries, details, color sync method and bandpass limits

The standards proposed by the Ad Hoc Committee as a basis for the industry field tests are as follows:
" 1 . The present FCC transmission standards for black-and-white television shall continue to be used for the transmission of compatible color television.
" 2 . Chromatic information shall be transmitted by means of a color subcarrier modulated in amplitude and phase with respect to a reference subcarrier of the same frequency. The color subcarrier shall be transmitted simultaneously with the video signal and during only the video portion of the composite signal.
"Synchronizing signals to transmit information concerning the reference subcarrier shall be transmitted only during the synchronizing and blanking intervals of the composite video signal.
"2.1. To ensure practical invisibility of the color subcarrier its normal frequency, but not phase, shall be related to the horizontal scanning frequency in the following manner: The color subcarrier frequency shall be an odd multiple of half the horizontal scanning frequency.
"2.2. For standard operating conditions, the amplitude of the primary video signal and the amplitude and phase of the color subcarrier shall be specified in terms of a "proper" set of taking characteristics.
(Definition: A "proper" set of taking characteristics is defined as a set, each one of which is a linear combination of ICI distribution characteristics.)
"3. The color sync signal shall be
transmitted by means of a burst of the reference carrier superimposed on the back porch following each horizontal sync pulse, in accordance with the detail shown in Appendix B (Fig. 2)."

The report does not contain a graphical illustration of the proposed system. The block diagram shown in Fig. 1, prepared by Electronics, illustrates the basic principles. At the upper left is a color camera which views the object and produces three signals, corresponding to a proper set (see Standard 2.2 above) of three primary colors (red, green and blue). The camera scanning is controlled by the sync generator, at the left, which produces standard FCC black-and-white sync signals, and generates the color sync burst (Fig. 2) under the control of the color subcarrier generator.

The three color signals from the camera are passed through a linear computer which transforms the color signals into another "proper

FIG. 2-Recommended form of color synchronizing pulse. At left is FCC standard horizontal sync pulse, followed by a sinewave burst at the chromaticity carrier frequency. Exact dimensions and number of cycles in burst are to be established by field test
set" of color signals, related to the original camera output signals by linear simultaneous equations with constant coefficients. This unit is sometimes known as a "matrix unit". Its purpose is to secure color signals whose form is better adapted to transmission, with respect to signal-to-noise ratio for example, than the signals generated by the camera.

The output of the matrix computer consists of three signals, one representative of the brightness component, the other two of the chromaticity components. The brightness black-and-white component is passed with wide bandwidth to a control amplifier where it is combined with the sync signals and the chromaticity subcarrier as noted below.

The chromaticity components are passed through low-pass filters (cutoff frequency not specified in the report, but lower than that of the brightness signal to the chromaticity modulator. Here the chromaticity signals modulate the subcarrier in amplitude and phase. The subcarrier itself is generated, as shown at the left, in a generator, associated with the sync generator, such that the chromaticity subcarrier freqency is an odd multiple (455 or 507) of half the line-scanning frequency.

The output of the chromaticity modulator is a sinewave modulated by the chromaticity signals, in such a way that the chromaticity signals do not interfere with each other and may be separated at the receiver by a synchronous detector demodulator. The chromaticity subcarrier is then passed through a bandpass filter which confines the
signal to the upper portion of the video band.

At the control amplifier (upper center of Fig. 1) the black-andwhite signal, the sync signal with sub-carrier bursts added, and the modulated chromaticity subcarrier are combined. The composite video signal thereby produced is passed to a conventional 6 -mc picture transmitter and the resulting r-f signal is radiated in the usual manner.

At the receiver, shown at the bottom of Fig. 1, the r-f signal is amplified at r-f and i-f in the usual manner and demodulated. The composite video signal thus recovered is utilized in three ways: to operate the conventional sync and scanning circuits; to control (by means of the subcarrier bursts) the chromaticity demodulator; and to actuate a matrix unit.

At the chromaticity demodulator the two chromaticity signals (previously mentioned in the description of the transmitter) are recovered. The chromaticity signals and the composite video signal are then passed through a matrix unit which performs, in principle, a transformation similar to that carried out by the transmitter matrix unit.

The transmitter matrix and its complementary receiver matrix can perform in several ways. For instance, the transmitter matrix may deliver three color signals each containing chromaticity and brightness information, or the transmitter matrix may deliver only two chromaticity signals (no bright-
ness) plus a separate signal containing brightness alone. In either case the receiver matrix must match the scheme chosen at the transmitter. Figure 1 illustrates the scheme wherein brightness is held independent of chromaticity after the transmitter matrix and right up to the color reproducer itself where recombination takes place in the reconstruction of the picture.

It must be emphasized that the diagram of Fig. 1 does not represent a specific system, and in particular it does not specifically represent the RCA, Hazeltine or Philco systems demonstrated up to the present. It is intended merely to show in simple form one embodiment of the elements of the system implied by the Ad Hoc Committee standards as stated in the report.

When the proposed compatible color signal is used with conventional (existing) black-and-white receivers, the chromaticity subcarrier has a secondary effect, and the image is produced essentially by the brightness black and white portion of the composite video signal. Moreover, the chromaticity sync bursts are so located in the sync wave form that they have no effect on the scanning of conventional black-and-white receivers. Consequently, when such receivers are tuned to the color transmissions, they produce images which are virtually indistinguishable from those produced by standard black-and-white transmissions. The principal difference, in the black-andwhite reproduction of the color signal, is the presence of a dot
structure in portions of the image corresponding to highly colored parts of the subject. The visibility of this dot structure depends on the relative amplitude of the chromaticity subcarrier sidebands and the degree of overlap between the bandpass regions assigned to the brightness and chromaticity sidebands. Among the important points to be established in the field tests are the amplitude and bandpass limits which represent the optimum compromise between faithful color transmission and the quality of compatible reception on black-andwhite receivers.

Future Plans

The committee expressed the hope that various organizations in the industry would undertake field tests within the scope of the proposed standards, and recommended that NTSC set up a program to coordinate the tests and to publish the results to interested industrial and governmental agencies.

Several companies indicated to the committee their intention to conduct such tests and gave details in an appendix to the report. The DuMont Laboratories stated that they would conduct color tv tests on station KE2XDN, Passaic, N. J. on $608-614 \mathrm{mc}$ and station KE2XDR, New York, N. Y, on 708-714 mc. In addition, station WABD in New York, channel 5, would be available during off hours for experimental transmission of compatible color images, upon proper authorization from the FCC. The General Electric Company stated that it would

FIG. 3-Color sync pulses used by Philco (A) and RCA (B) during field tests
provide a uhf transmitter at Syracuse, New York which would operate in accordance with the proposed standards of the Ad Hoc Committee. Home-type receivers would be constructed and operated in the Syracuse area for sufficient time to accumulate the required field-test data.

The Hazeltine Corporation stated that color television signals would be available at their laboratory at Little Neck, N. Y., although it was not stated whether the signals would be put on the air. Among the types of signal to be tested was the original RCA proposal, with red, green and blue signals having equal weighting and equal phase intervals, with color subcarrier frequency of 3.58 mc . This signal is essentially that demonstrated by RCA in December, 1950 at Washington. A second system to be tested would employ the modified constant-luminance signal developed by Hazeltine, in which the color signals are weighted in approximate proportion to their luminance, with unequal phase intervals, with a 90 -degree change in the subcarrier phase on odd fields, and with various color signal intensities relative to the brightness signal intensity. Also tested would be the use of oscillating color sequence (red, green, blue on even fields; red, blue, green on odd fields) at color subcarrier frequencies of 3.58 and 3.99 mc .

The Philco Corporation described the compatible color system currently being tested at station WPTZ, Philadelphia (channel 3) between $9: 00$ and $10: 30$ a.m., Monday through Friday. This is the so-called "X-Y-Z" system described by Philco engineers at the IRE convention last March. The brightness signal is of high definition and is represented by the Y black-andwhite or brightness coordinate in the I.C.I. system of color specification. Two color-difference signals (rather than the three shown in Fig. 1), proportional to $X-Y$ (red-minus-brightness and 0.33 ($Z-Y$) (blue-minus-brightness) are imposed in quadrature on the color subcarrier. The subcarrier frequency is 3.583125 mc , which is the 455 th multiple of half the linescanning frequency. The subcarrier

burst used, shown in Fig. 3A, consists of seven cycles, phased to correspond with the phase of the 0.33 ($Z-Y$) component. The subcarrier phase is shifted 90 degrees on alternate fields, returning to reference phase during the intervening fields.

Test transmissions over the NBC-RCA transmitter in New York, station KE2XJV (WNBT, channel 4) were planned during off hours and have since begun. The color subcarrier is 3.583125 mc , as in the Philco transmissions. In addition, it was planned to test the frequency 3.992625 mc (the 507th multiple of half the line scanning frequency) following investigations of receiver i-f characteristics and the effect of oscillating the color sequence.

The color sequence is green, red, blue on one set of alternate fields, blue, red, green on the intervening fields, the reversal to be accomplished by interchanging the blue and red sampling signals. Three color-difference signals, with equal weighting and at equal phase intervals, are employed.

The subcarrier burst of the RCA-

NBC tests, shown in Fig. 3B consists of nine cycles, plus or minus 1 cycle. The color difference signals contain information having a flat spectrum out to 2 mc , and a gradual slope to 30 db down at the sampling frequency. The by-passed black-and-white signal is flat to 3 mc and drops off 6 db at 4 mc . The camera taking characteristics are such as to produce proper color reproduction on a receiver color reproducer having the following primary colors: red $-x=0.678, y=$ 0.322 ; green $-x=0.204, y=$ 0.732 ; blue $-x=0.146, y=0.088$.

In releasing the report, W. R. G. Baker, Chairman of the NTSC, stated that the proposed standards were not intended for submission to the FCC but were designed to serve as a basis for cooperative industry field tests. When the remaining questions are settled by these tests, over the period of the next several months, definite numerical proposals for a full set of compatible color standards would be devised and offered for the approval of the industry, through NTSC, prior to submission to the FCC.D.G.F.

War-Emergency Operation

WOR has no trouble shifting frequency on its emergency Western Electrie iransmitter (above). Some other broadcasiers will find the job difficult

IN EVERY RECENT period of national or local emergency, the broadcast stations have played an important part in keeping the public informed and in maintaining morale. At present, as during World War II, the chief concern is their possible secondary role as navigation aids to enemy aircraft. Recently, the Federal Communications Commission, acting as the appropriate government agency for the several agencies concerned, outlined the problem to the broadcasters with one possible solution.

For the broadcasters, the plan indicates in a general way how they will operate their transmitters and what their program fare must be during an alert. Whether they will operate at all depends upon their desire to cooperate in the overall system. At present, there is no plan for the operation of television or frequency-modulation transmitters after they have sent their initial warning message. Only amplitude-modulation transmitters are considered for alert operation.

The engineering details are more complex and many of them should not be freely revealed. However, the present plan has been designed to furnish at least a minimum of
fairly good broadcast reception to most parts of the country and to dery navigational information to aircraft equipped with any type of mocern direction-finding equipment. Its nature is such that even if every single detail of the operation were known, direction finders would still be unable to use the signals. Only widespread sabotage and enemy control of the broadcast plant can compromise the system.

Synchronous Frequency

The basis of the plan is operation by all participating stations upon a cormmon or synchronous frequency. Provided each transmitter maintains a tolerance of ± 20 cycles (as presently required under normal service) great difficulty is experienced in obtaining a line of position with d-f equipment. And broadcast
reception of a common program is excellent. In actual practice, stations can be grouped on a geographical basis using two or more common frequencies throughout the country. By this means, a greater number of programs (appropriate to the various areas) can be presented, one to a group, with good reception in the coverage areas of each group. Navigational information is only very slightly enhanced using several common frequencies.

It is known, however, that a modern automatic direction finder will indicate the direction of the strongest signal in a common-frequency group. Given sufficient time, or with the aid of espionage, an aircraft could eventually determine the location of the strongest signal and from that, the orientation of the desired target.

Sequential and Pulsating

To overcome the vulnerability of simple common-frequency operation two other techniques can be added, either of which practically eliminates compromising the system for military security. These techniques have been termed sequential operation and pulsating power operation. It should be remembered that in every case, each station in a com-mon-frequency group transmits exactly the same program from a common source.

Common-frequency sequential operation requires that each station of a cluster or group operate intermittently for about a minute. As the first station leaves the air, another immediately comes on. Ideally, the sequence in which the

BROAD PROBLEM

[^5]
of Broadcast Stations

Stations in the a-m band, which have proved our best source of public information during disaster and flood, must remain on the air for Civilian Defense. How to prevent their being used as targets for enemy missiles during an alert is explained

stations follow one another should be varied. It will probably be necessary during the initial stages of the plan for each station to be manually controlled and remain on the air for as long as two minutes. Tests show that transmission periods of less than half a minute result in greater deception. Eventually, electronic equipment may be available so that the group sequence can be controlled from a central point.

Pulsating operation can be employed either by single stations or groups of stations and requires reducing the output power of the transmitter over a 10-to-1 ratio, preferably in periods varying from less than half a minute to not more than a minute. It will obviously be quite a trick to reduce power from a 50 -kilowatt transmitter down to 5 kw and this technique may not be applicable in many cases. However, it is planned generally to limit alert power to 5 kw in order to equalize signal strengths. Under commonfrequency pulsating operation it may often be possible for stations in adjacent towns or cities, if not too close together, to transmit different program material.

Overall Plan

The block diagram gives a representative picture of the various station interconnections that would be necessary. Orders originate in the various air-defense control centers, but their implementation will largely reside in the basic key stations and the relay key stations. Programs and control signals or orders will progress to each individual station by any one means or combination of several means, including land-line and direct pickup of broadcasts.

While there is presently no compulsion for any broadcaster to enter

Chain of command for alert warnings from air-defense control centers via basic-key and relay-key broadcast stations to satellites. Solid lines are telephone; broken lines are radio links. Circles represent stations in commonfrequency groups
into these plans, it is obvious that the effectiveness of the system increases directly with the number of stations in a group. Therefore, it might be necessary for the FCC to draft certain broadcast facilities. It is likewise apparent that the plan will cost money. Estimates vary from about $\$ 500$ for a small station to many times this amount for the big ones. Costs of new crystals and ovens, frequency changing systems, antenna switching and retuning mechanisms running into many dollars will be paid for by the broadcasters, according to the plan. In addition, each station must provide itself with an alert receiver to supplement wire lines. Since nondirectional operation will be used during the alert, it may be less expensive to use existing auxiliary antennas or even to erect simple antennas where switching off all but one tower of a directive array
might prove cumbersome and expensive.

The block diagram indicates that a large number of permanent telephone lines and additional toll calls will be required just to set up the system and rehearse operations. These facilities will be paid for by the government.

Operation of television and f-m stations (as well as isolated a-m stations) will be a matter for further study. The former classes of stations are generally operated in the heart of a city and, as is particularly true of the Empire State installations in New York City, present an excellent target under normal conditions of service. Besides, in the event of widespread power failures their utility would be limited because there are so few automobile or battery operated tv and $f-\mathrm{m}$ receivers in the hands of the public.

Electronic Protection

Central station in which alarm and supervisory signals from subscriber's premises are received and recorded

TJDAY, the United States is facing much the same situation as in the early years of World War II. Every effort is being made to cut down any possibility of work stoppages in war plants. The electronic industry, through the establishment of security safeguards in the physical plant of each industrial concern, can have a far-reaching effect on this security program.

During World War II, the country embarked on a wholesale program of plant protection, both Governmental and industrial. New concepts of plant protection were developed and the use of protective equipment together with normal guard forces became essential in order that manpower be spared and the same ultimate plant safety conditions obtained.
In February 1942², a review of electronic intrusion-detection systems was presented in ElectronICS. This article pointed out how detection systems might be employed to improve plant security conditions.

Early equipment involved crudely constructed manual and semiautomatic alarm-initiating devices from

By RIChard Y. atlee

Engineering Supervisor A. D. T. Company, Inc.
which signals originated and were sent over simple signaling circuits to appropriate remote annunciation points. These early "switches" were sometimes supplemented by time-clock equipment which added a measure of safety against failure of patrols or guards to regularly send signals while making their rounds.

Branching out from this fundamental watchman type of circuit, additional "switches" were installed at points of entry, such as windows, doors, and skylights. Such switches were connected to remote annunciating points to give warning of entry ahead of the time an intruder actually completed his entrance. Later, windows themselves were supplied with metal-foil circuits and barriers of dowel screening were installed over skylights and vulnerable wall and door areas. Floor traps consisting of switches actuated by trip cords stretched about the premises further complicated the life of an
intruder who had successfully avoided any of the previously mentioned entrance barriers.

Complete enclosures such as safes and vaults had similar protective devices applied to their doors and any duct openings. These devices were supplemented in more recent years by vibration, temperature and air-pressure-operated detecting equipment.

With very few exceptions, all the early protective devices were connected into simple d-c series circuits usually terminating in a relay or similar device. Dry-cell batteries were often used to power the system.

The use of vacuum tubes as opposed to simple d-c relay circuits, played a prominent part in subsequent development work. The theory of the newer developments was to provide equipment which would signal the approach of an intruder before, rather than after, an attack upon a premises had begun. As in the early stages of World War II and now, this latter consideration is of particular importance in the control of sabotage.

One of the first developments in

for War Plants

Electronic devices offer increased protection against burglary and sabotage in plants engaged in military production. Advanced design in photoelectric, capacity-alarm and sound-detection systems as well as proposed boundary protection systems are discussed

the early 1930's was the photoelectric intrusion-detection system. In the system, a beam of light projecting from a light source to a light detector or receiver was arranged to actuate a local or remote signal. At first, relatively crude phototubes were worked to their output limit in order to drive delicate intermediate control relays connected directly into phototube circuits. Maximum useful beam range rarely exceeded twenty feet.

Makers of most modern photoelectric detection equipment use standard prefocused or sealed-beam lamps of high candle power, usually modified to insure long life. Lenses used at both projector and receiverdetector are usually of the planoconvex or biconvex type mounted singly unless particularly sharp beam patterns are needed. In the latter case, multielement lenses are sometimes employed. Focusing adjustments are provided to make for easy maintenance and adjustment at time of installation and after.

Improvements in phototube manufacture at the present time allow the industry to use either photoemissive or photoconductive anode surfaces with photocells of the cesium oxide or lead-sulphide type, respectively. Higher outputs gained when using the photoconductive cell give a system added sensitivity and wider range of light frequency acceptance. The latter means that filtered light, normally used in systems extending into the infrared range for only a very short portion of the spectrum in early models, can now be successfully accepted over a wide range of infrared light because of the tremendously increased spectral response of the photocell itself. Increased knowledge in the design
of filters makes the cell and the filter itself compatible.

Beam Lengths

Actual beam lengths used today in commercial and Government indoor applications do not often exceed 200 feet. Present day design, however, permits extension of such beams to several times this distance by the use of mirrors, if necessary. Interfering objects and other impediments normally found indoors frequently prevent installation of single beams over these longer distances. It is usually found more practical to break up the beam pattern using more than one set of light source and light detector-receiver.

Not long after photoelectricbeam intrusion-detection equipment became a reality, it was found necessary to establish some sort of guide relating to the speed of operation expected of the system to successfully detect normal intrusion. The guide was established by trial and error through tests made by reputable manufacturers and was subsequently adopted by the Underwriters' Laboratories as a standard. The standard states that the speed of operation of the equipment generally must be such that at their least sensitive settings, photoelectric detecting equipment must initiate a signal when a cylindrical object six inches in diameter with its axis and direction of motion perpendicular to the beam axis, travels through the beam at a speed of 8.8 feet per second (six miles per hour) or less.

The d-c amplifiers used in the static-beam photoelectric systems (in contrast to the modulated type) generally employ a single stage, single tube or two tubes to provide
the necessary gain in an average installation. These must be a compromise between sensitivity and stability; excessive amplification renders systems susceptible to paralysis or triggering by slight variations in ambient light. The limiting effect of ambient light is frequently minimized by placing hoods over the projector and de-tector-receiver lenses. Masking of the phototubes themselves within the detector-receiver unit is effective and serves to exclude extraneous light from the phototube and to confine energy reaching the lightsensitive surface as much as possible to that originating at the projector unit.

The masking described has an additional feature of making it difficult for intruders to paralyze photoelectric systems by shining

Outdoor photoelectric protection of Atomic Energy Commission Building
flashlight beams and other outside light sources into the phototube to hold the circuit in the standby position. The angle at which light must enter to keep the circuit in its normal operative condition is also quite critical.

The difficulty of maintaining accurate beam alignment is multiplied by mirrors, particularly when beam distances are extended to considerable lengths. To avoid misalignment, the general practice is to mount mirrors in rigid frames, supported by strong brackets fastened to the floor instead of to the walls.

While the light reflection loss introduced by mirrors is normally not more than 15 to 20 percent with a silver-backed mirror, most companies increase that loss factor to as much as 50 percent in establishing maximum beam distances when mirrors are used. In such cases, the mirrors cut down the basic units required to protect a given area but introduce beam length reductions which may be impractical and uneconomical. It is generally not recommended that mirrors be called upon to reflect beams at angles greater than 45 degrees with respect to their surfaces (90-degree angle between incoming and outgoing beams). Even at smaller angles, the loss is sufficient to warrant some reduction in beam throw ratings for each successive reflection.

The 50 -percent loss factor mentioned is considered practical because of the major problem of
dust forming on mirror surfaces and its consequent reduction in the reflecting characteristics or reflecting ability of the mirror. Cowls and shades are often placed on photoelectric equipment and mirrors to reduce the dust formation. Often it is found more economical to use multiple or duplicate sets of equipment rather than to try to extend a single set of equipment in beam length by the use of a mirror. This is economically practical because of the comparatively low cost of static beam equipment.

Most companies today limit the use of static beam equipment to indoor applications because of the serious paralyzing effects of ambient light from the sun and other sources on the receiving equipment.

Modulated Light

To protect a perimeter adequately against unlawful intrusion outdoors, the modulated-light type of photoelectric equipment is employed. Long-range coverage is possible with modulated devices and is important when considering the protection of fence perimeters for industrial plants engaged in the production of war material. Sometimes where long beams are required indoors, outdoor equipment of the modulated type may be used to gain distances not attainable with the static type.
Most modulated-beam systems use projector units, lamps, optical filters and lenses similar to those found in static-beam systems. One
such system is electronically modulated rather than mechanically modulated and uses low-power light output, with consequent limitation on beam distance. To return to the preponderance of modulated systems now on the market, 100 percent modulation is accomplished by the use of a suitable interrupter interposed between the lamp and the lens and rotating at a predetermined rate. The prime mover for the modulator is usually a small synchronous motor and the modulator is designed to interrupt the beam somewhere between 500 and 1,000 times a second.

Energy received by the phototube is amplified and an audio band-pass filter tuned to the modulation frequency is included in the amplifier. The receiver is sensitive only to the frequency of the modulated light and the final rectifier stage of the amplifier converts the received impulses into power with which a d-c signal relay may be operated.
As long as sufficient light intensity is received by the phototube to satisfy its threshold operating requirements, comparatively wide variations in ambient light intensity do not paralyze or trigger the system because amplification occurs only at the critical modulation frequency. Relay current may be held within desirable limits by incorporating some form of avc in the amplifier circuit to render the system still more tolerant to the effects of transient increases or decreases

Inside photoelectric protection of warehouse. Two light sources are shown at right angles. Beams protect entire row of windows which run the complete length of both walls

A second location in the same warehouse. Here, two photocell receivers are mounted at right angles. Beams reach the receivers from light sources located at the other ends of both walls

FIG. 1-Block diagram for outdoor capacity-type intrusion detection system of the type shown in Fig. 2

FIG. 2-Detail of capacity-alarm antenna wires on roof, showing counterpoise and wire-tension springs
in light intensity. The system is then insensitive to light from the sun, a flashlight or modulated light at other frequencies.

Continuous trouble-free maintenance of outdoor photoelectric equipment is so important that most operating companies have spent considerable sums over the last few years to improve the basic mechanical and electrical components of such systems. Improvements in motor modulator design and electronic components have not been uncommon and attempts have been made to make the systems more consistent with the application to which they have been placed. The present manufacture of photoconductive cathode surfaces has increased the range of infrared sensitivity of such systems to a point where they can now be used with a greater degree of safety when subject to fogs and other interfering media. While it is recognized that these units are bulky and are difficult to conceal in any perimeter intrusion - detection system, they nevertheless offer a type of protection widely accepted by industrial plant-protection engineers.

Photoelectric intrusion detectors are at a disadvantage where industrial plants are laid out on extremely irregular property plots and on hilly ground requiring coverage of many vertical as well as horizontal angles. Because irregular topography necessitates the use of a plurality of units, such a system is expensive. Capacity-operated relays are often used for such
outdoor protection work.
Capacity relay equipment has been used for protection indoors during the last several years. Where cubical content is not excessive as in filing cabinets and safes and where large metal objects do not move from day to day with respect to the safe, this type of protection is applicable. Many circuits were used by protection companies, all operating on the principle that the capacity between antenna and ground is relatively small whereas capacity to ground added by an intruder approaching the system represents a considerable increase in total circuit capacity. As there is always plenty of capacity change on which to base usable circuit output, adjustments can be made to hold over long periods without drifting, because the capacity between safe and ground remains fairly constant.

Outdoor Capacity Systems

To handle the problem of irregular topography, an outdoor version of the capacity relay system was developed. By erecting antenna arrays on suitable posts about the perimeter of a war plant, it was possible to follow land contours with ease and provide a good protection barrier to an intruder. The circuit principle used for outdoor perimeter systems was much the same as that used for indoor safe protection systems. Because the effects of weather had to be taken into account, provision had to be made to balance out the effects pro-
duced by rain, snow, ice and slow growth of vegetation.

A system developed during World War II and put into limited use as a capacity relay system for plant boundary protection has been used within the last six years on a larger scale. This system has been extended to the protection of roofs, as shown in Fig. 1, 2 and 3 and other outdoor surfaces of buildings themselves. Limitations with respect to favorable ground conditions thought important in the early stages of development have now been overcome by erecting a ground counterpoise making the system independent of surrounding building or earth ground potentials. Limitations on the amount of capacity which one electronic unit can embrace still confine antenna lengths to a maximum of about 200 feet on each side of a control unit. However, protection of this type must be zoned every few hundred feet of length to permit accurate guard response to alarms originating from a specific location.

Early models of capacity-type equipment used a two-wire antenna array until experiments proved that better protection could be accomplished by a triangular antenna configuration. The latter system uses two antenna wires stretched tightly about 18 inches from the ground on insulator posts spaced about 25 feet apart. The third wire forming the triangle usually is placed about 48 inches above the ground.
Further experiments proved that
with some slight reduction in sensitivity, spur antenna extensions could be connected to the triangular configuration to permit coverage up to distances of six to eight feet above ground at boundary points of particularly critical importance. Thus, a curtain of protection produced by an induction field of electromagnetic energy radiating a foot or so from the antenna array was produced. An approach to the array caused system unbalance and a resulting alarm.

Frequencies used in the oscillator portion of the circuit vary from 150 to 200 kc . The system is designed to maintain a continual slight unbalance between oscillator and tuning sections under normal stable conditions. A block diagram of the circuit shown in Fig. 1 depicts the components used. Entry of a foreign body into the antenna field introduces additional capacitive reactance back into the coupling coil to which the antenna is attached and tunes the coupling circuit in the direction of resonance at the frequency to which the oscillator has been set. A sharp increase in diode-detector current results. A pulse is sent from the diode to the amplifying circuits whose output terminates in a signal relay inserted in the final stage.

Triggering of the circuit by slow ambient variations in antenna to
ground capacitance is minimized by using coupling capacitors of several microfarads between the amplifier stages. Changes in capacity which occur at extremely slow rates such as those caused by weather conditions do not build up sufficiently to trigger the relay in the output stage. Circuit values are adjusted so that it is virtually impossible for an intruder to move into the antenna field slowly enough to take advantage of this effect.

Because the capacity system lent itself so well to boundary protection, considerable time and money has been spent in improving upon the principle in an effort to build a more stable system having less sensitivity to unwanted influences such as radiated airborne r-f energy, power-line surges, weather effects and others. Present equipment takes advantage of recent tube refinement, eliminating the use of electrolytic capacitors whose life has been unpredictable and greatly emphasizes the rugged construction needed for important outdoor applications.

Use of the same principle has been extended beyond that previously described for the protection of safes to embrace protection for critical areas indoors. A view of the subscriber's instrument for this type of protection is shown in Fig. 4. A single-ended version of the

FIG. 3-Capacity alarm system on vaulted roof. Extra supports are used to make antenna wires conform to roof contours
outdoor capacity-relay equipment is now in use to provide a protection barrier for stockrooms and other inside enclosures. Instead of using conventional forms of screening, inexpensive antenna arrays are erected about an enclosure and provide a complete wall of protection. Antenna arrays may take the form of thin brass strips mounted on either side of a doorway, on showcases, wooden studding or other building structure. Where metallic surfaces are involved, suitable insulation is used.

Unlike the earlier versions of safe and file-cabinet-type capacity relays, as much as $4,000 \mu \mu \mathrm{f}$ of loading on the expanded circuit instead of the original 1,000 to 1,500 $\mu \mu \mathrm{f}$ may be used. This new protection can be extended to factory-type fenestra windows or to office casement windows in place of conventional foil and screens. The results would be the same from a protection standpoint and the improvement in appearance would be obvious.

Experimental Systems

Just as in World War II, design engineers are now looking for even better forms of protection. Under study at this time are systems for outdoor application using pulsemodulated sources of high-frequency radio energy designed to beam the energy in much the same manner as photoelectric without the inherent faults with respect to weather. Other forms of antenna arrays using high-frequency radio energy are under study and, while none of these has been used extensively, they show the trend of thinking and the application of electronic principles being considered by engineers.
To improve and simplify the systems necessary to protect indoor enclosures adequately, many companies have for years considered the problem of space protection. It has always appeared logical that a system capable of detecting motion within a confined space and yet not requiring complicated equipment would be the ultimate ideal of the protection engineer. Progress within the last three or four years in the design of space protection systems has resulted in the develop-

FIG. 4-Chassis of subscriber's instrument for capacity-type protection of safes and file cabinets

FIG. 5-Chassis of subscriber's instrument for vault sounddetection system
ment and testing of equipment which will do just this with a minimum of components involved. Although extensive industry application of this idea does not yet exist, it should be noted that it may become very useful.

An example of such a system is one operating at a frequency slightly above the audio range in which sound energy is directed from a transducer into an enclosure and reflected back from the multiple surfaces in the enclosure to a receiving transducer. If a stable condition exists in the enclosure filled with such energy, no signal output is obtained. When motion occurs, a frequency change is presented to the receiver. The new frequency may be above or below the initial transmitted carrier frequency. Design of the receiving equipment is such that it can discriminate between the carrier frequency and the difference frequency, using the latter to initiate an alarm.

Space detection systems are not new in principle, but long-term experience of the major operating companies shows that wholesale use of such a system must be approached with caution. There are many interfering factors rendering such systems unstable and until these are properly evaluated, the more tried and tested methods are preferred. For instance, acoustically actuated vault-protection systems are used in hundreds of locations today and will continue to be
used for many years. These systems are designed to operate an alarm when physical attack upon the exterior surfaces of the walls or ceilings occur. They do not trigger on relatively low-level sounds which might result from common building vibration. Detecting devices installed within the vaults function through sounds transmitted to them from the outside through walls, ceilings or floors. The subscriber's instrument chassis for a vault sound detection system is shown in Fig. 5. Output voltage from the crystal-microphone detectors is amplified and diode rectified. The resulting d-c actuates a signal relay.

Established values of ambient noise level specified by Underwriters' Laboratories, Inc., are used as guides by the industry in determining amplifier gain requirements. Most systems are used in vaults of masonry construction and the sensitivity of the system depends on whether or not the vaults are reverberant or nonreverberant.

Conclusions

The information presented covering systems suitable for improving industrial plant security and protection has been based, for the most part, on data of long standing and on practices known to be effective. Knowing the importance of plant protection today, all major companies dealing in this type of equipment are continually looking for
better and more economical ways to do a protection job. Money expended for research has paid dividends and companies are well aware that the field of protection still has a large reservoir of untapped ideas. The theoretical ideal of a boundary protection system might be said to comprise an intangible barrier of controllable thickness and perhaps unlimited height. The barrier should be capable of handling all types of land topography and should withstand without difficulty the rigors of weather and other similar phenomena. Many of the systems on the market today approach this ideal, but all still have certain limitations.

The ultimate in protection for interior spaces would anticipate the elimination of most common forms of traps and contacts and provide intangible protection for the space enclosed by four walls, a ceiling and a floor. Good practice dictates that such protection completely assured of the absence of false alarms would still require some supervision over normal openings to an enclosure. The next ten years will bring to light many advancements and refinements of the basic principles now incorporated in today's equipment. Meanwhile, the industry has available now many types of equipment from which to choose in improving its security picture.

Reference

(1) Electronic Intrusion-Detection Systems, Electronics, 15, p 38, Feb. 1942.

Industrial TRISTIMULUS

ONE requirement of an electronic colorimeter for industrial use is that it detect small color differences in the darker colors quickly and reliably with a sensitivity surpassing that of the human eye. A second requirement is that the instrument be sufficiently rugged, stable and simple in operation for use as a production tool.

In the instrument engineered to meet these requirements, operating controls are reduced to a minimum. The instrument measures on a three-color basis known as tristimulus colorimetry. The color that is to be matched or evaluated is viewed
by the phototube first through blue glass, then through green glass and then through amber glass. The meter indicates the percent difference between sample and standard for each of these primary colors. The sample can be as small as one-half inch in diameter.

The optical system, based on the flicker photometer principle, is shown in Fig. 1. Sample and standard are viewed alternately 30 times per second just as in a spectrophotometer. Illumination is provided by an incandescent light source within an integrating sphere. Color temperature of the

FIG. 1 -Optical system, shown in line for clarify. Actual system is folded for compactness. Rotating decentered lens allows phototube to view sample and standard alternately 30 times per second

FIG. 2-Complete circuit. Motor switch operates synchronously with flicker-producing rotating decentered lens to convert a-c output of amplifier to d-c for microammeter. Selector switch positions are: 1-check lamp voltage; 2-stand-by position: 3-high-sensitivity range ($90-110$ percent); 4-low-sensitivity range (65-150 percent)
source is preserved by voltage control and lamp calibration. Either reflectance or transmission measurements may be made on any commercial color. The optics includes four lens elements, field stops, stray light stops, source filters, tristimulus filters and a multiplier phototube. Source filters permit comparison under standardized $2,848-\mathrm{deg} \mathrm{K}$ incandescent illumination, daylight iliumination (Corning 5900 filter) or directly under illumination from external sources.

Transmission measurements of dyes and other liquids are made by placing a sample and standard in the openings of the transmission measurement holder. Clamps are provided for holding colored transparent solid objects at the same locations. Other clamps hold sample and standard against parts in the integrating sphere for reflectance measurements.

A small a-c motor drives a decentered lens in the optical system so that light from sample and standard are alternately focused on the type 1P22 phototube. Actually, the optics never completely eliminates either sample or standard; instead, it alternates from about 20 percent sample and 80 percent standard to 80 percent sample and 20 percent standard.

If reflected or transmitted light from sample and standard are identical, the phototube output will be unchanged by the flicker. If the two differ, an alternating current will be generated in the phototube circuit.

Electronic System

The electronic circuit of the colorimeter employs a total of seven tubes, connected as in Fig. 2. The high-impedance resistor network for the phototube is soldered directly to the tube pins. A highpermeability magnetic shield is then slipped over the tube and assembled to a flanged metal base with suitable gasketing. Three leads are brought out, from the anode, cathode and dynode 9. The entire net-

COLOR MATCHER

Flicker-photometer type instrument using multiplier phototube in constant-current circuit surpasses sensitivity of human eye in matching even darkest plastic, textile and dye colors. Meter indicates brightness ratio of sample to standard for each ICI tristimulus color

work is potted with a special polymerizing resin that remains plastic but fully protects the high-impedance networks against moisture. When installed in the instrument, an electrostatic shield is fitted over the terminal pins for final shielding. The phototube tube is thus built in to last for the life of the instrument.

When light from the optical system reaches the phototube, the light consists of two components: (1) A steady component representing the mean brightness of sample and standard as viewed through the particular source and tristimulus filters selected by the operator; (2) an alternating or flicker component of magnitude representing the difference in brightness between sample and standard as viewed through the same filters.

The circuit measures the steady component and the flicker component, and performs the computation necessary to express the percentage difference between sample and standard.

The d-c output of the phototube is amplified by V_{1} and V_{2}, which are connected as a d-c amplifier. The resulting voltage drop across the cathode resistor of V_{2}, proportional to the steady brightness component, is applied to the cathode of V_{3}. Variations in brightness change the plate-cathode voltage of V_{3} and thereby change the loading that this tube places on high-voltage rectifiers V_{4} and V_{5}. As a result, this tight d-c feedback loop controls the voltage supply to the phototube in such a manner that the mean current output of the tube is substantially constant for steady-light brightness variations of 5,000 to 1 . A given percentage difference in any one color will then produce

By GEORGE P. BENTLEY

Instrument Development Laboratories, Inc. Needham Heights, Mass.
a proportional a-c output voltage at V_{2}. This is rectified by a commutator on the optical flicker motor, and the resulting d-c voltage is applied to a zero-center d-c microammeter which is calibrated to read percentage difference directly. Flicker and rectifier action are synchronous, hence polarity of the d-c output indicates whether the sample is brighter or less bright than the standard for a particular primary color.

In effect, the sensitivity of the phototube is varied inversely with brightness of light reaching it, just as the iris of the human eye acts to decrease the eye sensitivity when a brighter object is viewed. The range of automatic accommodation is comparable to that of the eye, but is faster, has no fatigue factor with time, and gives a sensitivity exceeding that of the human eye for variations of as much as 10,000 to 1 in brightness. This permits comparison of samples reflecting only 1 percent to an accuracy of $\frac{1}{2}$ percent of reflected light.

To assure measurements truly based on color, regardless of illumination intensity, the instrument computes the ratio of sample brightness to standard brightness. This ratio is indicated on a widescale direct-reading meter with fullscale range of 91 percent to 110 percent (corresponding to differences of +10 percent or -9 percent in relative brightness). A less sensitive scale range covers 70 -percent to 145 -percent ratios.

A direct-reading micrometric slit permits evaluation of colors relative
to white or colored reference stand-- ards beyond the range of the meter. Comparison is on a tristimulus basis. With properly calibrated standards, colors can be defined to high accuracy in tristimulus terms; reflectances or transmissions as low as 0.1 percent can be measured.

The 9001 regulator tube is operating satisfactorily despite an unusually high plate voltage. About 60 instruments are in service at present, some of which have been operating two years. Many of the units work 24 hours a day, yet tube replacement is practically zero. The only tubes that gave trouble were the 1654 's originally used in the high-voltage supply. These have been replaced with 1Z2's which give much better service.

Tolerance in Matching

Color matching involves getting the meter readings for the three primary tristimulus colors up to 100 percent or, from a practical standpoint, sufficiently close to 100 percent to be acceptable to the observer. The absolute tolerance to be set for a measurement varies with each industry. If all these numbers go up and down together, corresponding to a change in the brightness of the color, experience to date in the textile and paint industries indicates that 2-percent tolerance is acceptable. This means that if all three numbers go up and down together from 98 percent to 102 percent, regardless of how light or dark the color is, the match will be within eye color tolerance.

If one number wanders differently from the other two, there is a difference in color rather than a difference in brightness. Only about 1.5 percent can be tolerated for precision matches.

New Cathode Design

Assembled planar type L-cathode

ADVANCES in the electron tube art in recent years have placed severe demands on the heart of the electron tube the cathode. The requirements for higher powers, high-frequency operation, rugged construction, and low-noise operation have taxed the capabilities of the conventional cathode types to their limit.
The great majority of electron tubes employ cathodes of one of three types: tungsten, thoriated tungsten, or oxide coated. Some of the more general characteristics of these cathodes are given in Table I.

With a specific application in mind which required a cathode capable of high emission density and good mechanical strength, a new cathode was developed in the Philips Research Laboratories ${ }^{1}$ in Holland which not only provided these characteristics but also gave exceptionally long life and good resistance to poisoning. This cathode, which has been designated the Lcathode, should find wide application in tubes of all types where reliable performance is desired, especially where the cathode loading is severe.

Figures 1A and 1B show two examples of this cathode: the cylin-
drical type, especially applicable to magnetrons; and the planar type which is applicable to high-frequency disk-seal triodes, klystrons, cathode-ray tubes and other conventional electron tubes. The materials used in the construction of these two types of cathodes and their emission characteristics are identical.

The body of the planar type cathode consists essentially of two sections formed from one piece of molybdenum. The lower section is open at one end and contains a filament for indirectly heating the cathode. The upper section contains a small quantity of barium-strontium-carbonate and is sealed by a cap of porous tungsten so that the means of escape of the active materials is via the pores of the tungsten material. The porous tungsten cap is formed by compressing tungsten powder under high pressure and sintering at high temperatures. The photograph shows an assembled L-cathode of the planar type.

Emission Characteristics

The first characteristic to be considered in comparing the emission of different types of cathodes is the variation of emission density

By D. R. HILL
Philips Laboratories, Inc Irvington-on-Hudson New York

with temperature. This characteristic is given in Fig. 2 for the Lcathode and the three cathodes whose properties are shown in Table I. This cathode curve falls between that of the oxide-coated cathode and the thoriated-tungsten cathode. It should be noted that for continuous operation only about one hundredth part of the saturation emission may be drawn from the oxide-coated cathode. Higher emission densities would result in damage to the surface layer. Therefore, it is apparent that under d-c conditions the oxide-cathode cannot practically operate over the range indicated. The three other types of cathodes can be operated continuously close to saturation emission, and of these the L-cathode has the most favorable temperature-emission characteristic.

Another important cathode property to be considered is its efficiency; that is, the thermionic current emitted in amperes per watt of heater power. The theoretical efficiencies of the four types of cathodes under consideration are shown in Fig. 3. These curves are based on the emission-temperature characteristics and the radiation properties of the cathode surfaces. It should be realized that the cathode shown in Fig. 1B is much less efficient than that shown in Fig. 1A and that the over-all efficiency of a cathode depends largely upon the geometry.

It will be noted that the theoretical efficiency of the new cathode is greater than that of the tungsten and thoriated-tungsten cathodes but less than that of the normal oxidecoated cathode. From the curves we can conclude that in applications where relatively small current densities are required and where the heater power requirements must be kept to a minimum,

Improves Tube Reliability

> High emission density and good mechanical strength are combined with good temperatureemission characteristic and excellent resistance to high voltage and high-speed gas ions. Structure contains reservoir of barium-strontium-carbonate emitting material
the oxide-coated cathode may have preference. However, other factors, which will be discussed further, enter into the selection of a cathode.

Emission Mechanism

Since both the L-cathode and the oxide-coated cathode derive their emission from a supply of barium-strontium-carbonate, it might be supposed that the L-cathode could be regarded as a variation of the oxide-coated cathode. However, if we investigate the emission mechanisms more closely it is seen that this is not the case.

The L-cathode is quite different. The thermionic emission from any surface is largely determined by the work function (the energy, usually measured in electron volts, required to transfer an electron from the interior of the material across the boundary into the adjacent medium). In general, the smaller the work function of the material, the higher the emission from the material at a given temperature. Thus, by comparing values of the work functions, an indication can be obtained regarding the behavior of the various materials as thermionic emitters.

The work functions of the four cathode types under consideration

FIG. 1-Cross section of two basic forms of L-cathode: (A) with cylindrical emitting surface and (B) with planar type flat emitting surface
are given in Table II. It is apparent that the L-cathode has characteristics different from a pure metallic tungsten emitter and also from a conventional BaSrO coated cathode. It will be noted that of those substances listed in the table, the pure metal tungsten emitter has the highest work function and the oxide-coated cathode, a semiconductor, the lowest work function.

The thoriated tungsten cathode has a monatomic layer of thorium on the surface of the tungsten which greatly reduces the high work function of the tungsten. The work function of the L-cathode lies even lower than that of the thoriatedtungsten emitter because of a barium-on-oxygen layer on the tungsten surface which is more effective than thorium in lowering the work

Table I-Summary of Characteristics for L.-Cathode and Three Other Types

FIG. 2-Saturation emission as a function of true temperature for L-cathode and three other types. Vertical dotted line indicates maximum operating temperature for each cathode. This situation can be realized under both pulse and d-c conditions for all cathodes except oxide coated, the d-c emission of which is limited
function of the emitting surface.
The inactivated cathode has an adsorbed layer of oxygen on the tungsten and the surface layer of barium on oxygen is formed during the activation process in the following steps: ${ }^{\text {? }}$
(a) The BaO is chemically reduced by the tungsten, forming Ba vapor of low partial pressure at the bottom of the porous tungsten plug.
(b) Barium is carried through the plug by both a gas flow through the pores and surface diffusion over the pore walls.
(c) Barium diffuses over the external emitting surface.

The barium which is slowly lost by evaporation from the cathode surface is continually replenished from the reservoir. Termination of life appears to be associated with the exhaustion of the barium supply. This supply can be made relatively large and accounts for the long life characteristic of the Lcathode.

Other Properties

The rugged construction of the cathode and its smooth mat emitting surface provide several advantages. It is not subject to damage while being mounted. The emitting surface can be made flat to within very close tolerances. In high-voltage operations no permanent damage results from arcing. The coating of the metallic surface is not subject to stripping under the influence of high electrostatic forces as is the case with the emitting layer of the oxide-coated cathode.

The troublesome interface effects found in oxide-coated cathodes are
eliminated. ${ }^{3}$ The cathode, while subject to poisoning by oxygen or oxygen compounds, recovers quickly. In fact, these cathodes may be used in demountable tubes where all that is necessary for proper operation after exposure to the atmosphere is a second activation process.

Applications

Life has been found to be a function only of the temperature at which the cathode is operated and the quantity of barium in the pellet. Life tests have shown that the cathode when operating at $1,050 \mathrm{C}$ and at an emission density of 2 amp per sqcm has a life of thousands of hours. As the operating temperature is increased, the life is decreased so that when operating in the higher temperature regions where the emission is 250 to 300 amp per sq cm , the life would be expected to be reduced to some hundreds of hours.

The L-cathode has been used successfully in magnetrons, klystrons, disk-seal triodes, iconoscopes, special cathode-ray tubes

Table II-Work Functions

Type of Cathode	Work Function (volts)
Tungsten.	4.44 to 4.63
Thoriated Tungsten	2.6 to 2.9
Oxide-Coated Cathode. .	1.0 to 1.5
L-Cathode	1.6 to 2.0

FIG. 3-Theoretical thermal efficiency as function of saturation emission in amperes per square centimeter of cathode emitling surface
and other types of tubes where a high degree of reliability is required.

The smooth emitting surface makes it possible to hold the cathode-to-grid spacing to close tolerances. In magnetron applications, while the secondary-emission ratio has been found to be appreciably greater than one, it is not as large as the ratio found with conventional oxide-coated cathodes. In both reflex tubes and magnetrons the cathodes have proved capable of withstanding the heavy electron bombardment which takes place. In two similar reflex klystrons working in the $10-\mathrm{cm}$ region with a continuous cathode load of approximately 2 amp per sq cm, the L-cathode had an average life ten times greater than that of the conventional oxide-coated cathode.

Other applications of the new cathode are being explored. Some of its remarkable characteristics seem best suited for high-quality tubes where long life, good mechanical strength, and rigidity are required. The cathodes have been made available in experimental quantities to Government laboratories and the electron tube industry in this country, and production facilities are being established to meet large scale requirements.

References

(1) Lemmens, Jansen and Loosjes, Philips Technical Review, 11, p 341, June 1950 .

[^6]
Sidefire Helix UHF-TV Transmitting Antenna

Abstract

Radiation-attenuated traveling-wave helical antenna provides power gain of 20 with a beaming bandwidth of 20 megacycles at one-db points. Design offers advantages of structural rigidity and ease of installation and adjustment

By LLOYD O. KRAUSE

Broadcast Engineering Section
Commercial Equipment Division
Electronics Department
General Electric Company, Syracuse, New York

TWO PRIME requirements of tv transmitting antennas are high gain and a uniform azimuth pattern. Also desirable are a minimum of feed complexities and a structure capable of withstanding all types of weather.

Antennas used thus far consist of a multiplicity of bays, the power gain being approximately equal to the number of bays. Each bay requires a feed point, with resulting complications. To reduce the number of bays and feed points, each feed point must provide illumination of an appreciable portion of the total aperture. This may be done by means of a traveling wave.

High-Mode Helical Radiator

The antenna described in this article uses the traveling-wave principle to excite a large portion of the aperture from a single feed. Further, this traveling-wave is made to suffer rather high attenuation due to radiation loss. The far end of the conductor may be left open or shorted, rather than terminated, with negligible effects from the reflections occurring at the unterminated ends because of the small amount of energy remaining in the wave at this point. Thus, each portion of the wire serves as

[^7]a radiator and as a feed for successive portions simultaneously.

Since horizontal polarization is desired, it is necessary that the traveling wave of current have its greater component horizontal, yet some vertical travel must be achieved in order that required vertical aperture may be secured. A helix can meet the requirements if its pitch and diameter are properly controlled.

The helix must meet certain dimensional requirements as necessitated by the frequency. The currents at like points in each turn of the helix must be in phase. Thus the current, in progressing from turn to turn, must be delayed for each turn a time equal to that consumed by an integral number of cycles. In other words, each turn must be an integral number of wavelengths in helical circumference as measured at the velocity of propagation along the helix.

It is necessary, of course, to be able to support this helical radiator, preferably with a strong metal mast. The spacing of the helix from the mast must be such that an appreciable amount of radiation loss will occur along the helix per turn. The total length of the helix must be adjusted, commensurate with the loss per turn, so that the order of resonance occurring due to end reflections is low enough to

Four-bay $500-\mathrm{mc}$ antenna offers power gaim of twenty
avoid partial cloverleafing of the horizontal pattern because of the resonant current component. The active length of the helix must not be so great that the beaming bandwidth is too narrow because of progressive phase shift, yet long enough that a fair portion of the aperture is illuminated by one feed.

The operation of the helix can be analyzed by studying the radiation from one turn, and then applying well-known array factors to sum up the effect of all the turns.

Figure 1 shows the calculated results for the vertical pattern up to modes including the fifth (mode numbers correspond to numbers of wavelengths per helix turn). Note that the one-wavelength mode radiates rather uniformly in most directions, better along the axis than in its plane. This is the mode commonly used in the well-known endfire helices.

The one-wavelength mode does not lend itself to practical mast sup-
port. The strong loop field passes directly through the center of the loop, and a large metallic member causes serious disruption of normal operation. By using a higher-order mode, where the field at the center is zero, and where the diameter per turn is large enough to permit a sufficiently strong support without seriously disturbing operation, the desired radiation characteristics can be obtained.

Figures 2A and 2B show a sketch of the instantaneous fields existing in one turn of a first and second mode helix. Figure 2C shows the second mode helix field after a mast of required supporting size (for a power gain of 20) has been inserted along the axis. The fields of the one-wavelength helix would induce large counter currents in a mast the size of that in Fig. 2C. The net radiation loss per turn, because of the close mast spacing, would be too small to permit construction of a practical attenuated-traveling-wave

FIG. 1-Vertical patterns from one turn of integral-mode helix with zero pitch and attenuation. Patterns are shown up to fifth mode

FIG. 2-Partial instantaneous fields in first-mode helix without mast (A), in second mode without mast (B), and in second mode with mast (C)
antenna. The fields in the second mode helix have not been seriously disturbed and the mast counter currents are proportionately reduced. The radiation loss per turn is now large enough to result in a useful attenuated traveling-wave. The mast size may now be adjusted to provide the desired loss per turn.

The mathematical analysis of one turn for the unattenuated case shows that the azimuth pattern is independent of azimuth angle or helix pitch in the plane at right angles to the helix axis, or the horizon. However, the pattern gradually becomes scalloped as the vertical, or parallelism with the helix axis, is approached. The depth of scalloping is a function of the helix pitch angle. No scalloping occurs with zero pitch angle. The scalloping is insignificant in the region of the horizontal beam produced by a practical helix.

Naturally, there is some component of vertically polarized radiation from the helix because of the helix pitch. The percentage of this component is appreciable when based on the analysis of a single turn. However, by making use of a right and a left hand helix, placed end to end and fed in the center, the vertical components can largely be made to cancel, while the horizontal components are reinforced.

Four-Bay Antenna

The high-gain antenna is made of four vertically-stacked bays each having a power gain of five. Most of the initial development work was done on models in the 2,000 and $1,000-\mathrm{mc}$ region to facilitate construction and handling. Since all four bays of the high-gain antenna are electrically identical, only one bay will be described in some detail. Operation in the second mode was found to satisfy all electrical and mechanical requirements. That is, each turn of the helix is two wavelengths in circumference at the velocity of propagation along the helix. The antenna has thus come to be called a second-mode side-fire helical antenna.

The length of one bay is five wavelengths. This length also corresponds to the distance between feed points of the four bays. A series feed is used and the distance
between feeds must be an integral number of wavelengths to yield inphase feeding of the four bays. The five-wavelength bay spacing results in near optimum array factor for the particular pattern produced by one bay.

Figure 3A shows the vertical pattern produced by one bay of a $500-\mathrm{mc}$ model. Note the lack of side lobes, in spite of the fact that each bay in itself is in reality a multibay array. This results from the exponential energy distribution over the aperture of one bay. Figure 3B shows the horizontal pattern attained for a one-day model having certain constructional features.

Feed System

A right and a left hand helix are used in each bay. Each helix has five turns. The two helices are placed end to end, and fed at their junction, which is in the center of the bay.

The use of center feed on each bay prevents beam tilt in the beam of the basic bays. The upper and lower portions advance and retard in phase, keeping the maximum field on the horizon. However, the beamwidth will increase, resulting in a net reduction of gain. The beaming bandwidth is defined as the total frequency separation between the two points where the half-power beamwidth has increased 1 db .

For television purposes, it was decided to make this bandwidth on the order of twenty megacycles, to insure that over the channel the gain variation would be negligible. The beaming curve has a rather flat bottom; the channel under consideration may be placed on this flat portion. Feeding the two helices in parallel has the advantage of reducing the feed resistance per bay to a more convenient value.

By estimating the attenuation and calculating the surge imped-
ance, it was found that the net distributed radiation resistance per turn is on the order of 200 ohms . In the uhf range, even such a high value of distributed resistance results in insignificant phase angle in the surge impedance of the helix.

The helices are supported by Kel-F insulators. This material has excellent mechanical and weathering properties, combined with a very low dielectric constant. A low dielectric constant is desirable to prevent reflections at the support points. The loss factor is high compared to polystyrene or Teflon, but not high enough to result in sufficient loss to cause damage to the insulators, even with ten kilowatts into one bay. There are, of course, no resonant high-voltage points to cause trouble. The ends of the helix may be grounded to the mast to provide lightning protection.

The intrabay feed system is coaxial, with the mast itself serving as the outer conductor. The inner conductor is shorted to the mast a quarter-wave above the top bay feed for mechanical support and r-f isolation of the rest of the mast. The main-line input at the bottom of the antenna is designed for $3 \frac{1}{8}-$ inch line. This input enters the mast from the side through a special matched T. The inner conductor is again shorted to the mast a quarter-wave below this input.

The individual bays are probecoupled to the inner conductor not making direct connection. The probes are adjusted so that each bay receives one-quarter of the input power. Impedance match is maintained throughout the mast coax for maximum bandwidth.

The hollow inner conductor is of adequate size to permit the beacon lighting cable to pass directly up inside it. Thus a means is provided for running this cable without danger of disturbing the antenna oper-

Closeup view of one bay of 500 -me sidefire belical antenna. Each turn of the helix is two wavelengths long at the velocity of propagation along the helix

FIG. 3-Measured vertical pattern (\mathbf{A}) and horizontal voltage pattern (B) of single-bay 500 -me model
ation as might occur if the cable had to be run outside the mast.

The series type feed system used will cause overall beam tilt to result when the frequency is shifted far enough from center. Over one television channel the amount of tilt occurring is inconsequential.

For very high installations it might be desirable to tilt the beam downward so as to graze the horizon, because of the narrow beam. This antenna lends itself admirably to simply accomplishing this beam tilt to the small amounts desired without disturbing the impedance and power distribution. Because the currents on the antenna are of the traveling-wave type, the instantaneous phase is a function of azimuth. Hence, by mechanically rotating one portion of the antenna relative to the other portion, beam tilt can be produced because the relative phase between bays has now been effectively changed.

Sleet-melting is accomplished by running sufficiently high 60-cycle current through the helix Copperweld conductors.

To Professor Howard G. Smith of Cornell University, who spent the summer of 1950 with G-E, goes much of the credit for development of successful operating models of this antenna. Credit is also due R. E. Fisk, who contributed many ideas and gave patient assistance.

FIG. 1—Basic circuit using 500 -mc sweep at 60 -cps rate in 4 kmc region

FIG. 2-Control voltage waveshapes

Traveling-Wave Amplifier Measurements

Rapid sweep-frequency technique used at $4,000 \mathrm{mc}$ can be applied to all broad-band amplifier measurements. Oscilloscope display shows transmission accurate to 0.1 db and return-loss values up to 40 db

EXtension of microwave com-mon-carrier circuits for transcontinental television programming has necessitated the development of quick and accurate test procedures. Techniques described in this article have direct application at $4,000 \mathrm{mc}$, but the same methods are also in general use in the regions of both 60 and 400 mc .
For general studies of broadband networks, amplifiers and particularly traveling-wave tubes, it is advantageous to use sweep-frequency measuring techniques. By these methods it is possible at a glance to observe either the transmission or impedance characteristics. When adjustments are made, the effect on the overall characteristic is seen. This is particularly important in double-coupled or stag-gered-circuit work.

By careful design and construction of the measuring equipment it is possible to make transmission measurements to an accuracy of better than 2 percent over ranges of 500 megacycles in the $4,000 \mathrm{meg}$ acycle common-carrier band.

A block diagram of the basic cir-

Ey FREDERICK E. RADCLIFFE
Bell Telephone Laboratories, Inc. Murray Hill, New Jersey
cuit is shown in Fig. 1. At the left is the r-f power source consisting of a low-power microwave oscillator of the close-spaced triode type driving a traveling-wave amplifier having an output of about one watt, which is sufficient for the type of measurement to be described. By mechanical means, the oscillator is swept at a 60 -cycle rate from 3,700 to 4,200 megacycles.

A small amount of power from the traveling-wave tube is rectified by a crystal, is amplified and fed back to the grid-bias circuit of the oscillator to provide envelope feedback around both the oscillator and amplifier. In this manner the output of the traveling-wave ampifier is made flat to about $\pm 0.2 \mathrm{db}$ over the band.
The power passes two absorptiontype frequency meters that provide two markers on the oscilloscope trace to indicate the band limits. The power divides equally in the
hybrid junction, passes through two attenuators, and is rectified in two identical crystals.
The outputs of the crystals are switched at a 30 -cycle rate by a polarized mercury-type relay and are alternately connected to the Yaxis amplifier of a standard oscilloscope. Attenuators D and E are adjusted until the traces coincide and the gain of the Y-axis amplifier is adjusted for a sensitivity of one db per inch deflection between the two traces as measured by either attenuator D or E.

A circuit to be measured may now be placed in the unknown position. Attenuator D is adjusted until the traces again coincide. The gain or loss of the circuit is indicated by the change in attenuator setting and the flatness is indicated to an accuracy of about 0.1 db on the oscilloscope scale by direct comparison of the oscilloscope traces.

Figure 2 shows the waveshapes of the control voltages referred to the 60 -cycle power-line wave. Waveshapes of oscilloscope blanking, 30cycle switch voltage, oscillator frequency and oscilloscope sweep

FIG. 3-Circuits for measuring transmission and output-impedance characteristics of broad-band networks or 1 -w amplifiers

FIG. 5-Modification to measure input impedance of the t-w amplifier
versus time are shown. The oscilloscope sweep voltage is made to match approximately the oscillator frequency-sweep characteristic so that the frequency display is linear to within 10 percent. Each time the oscillator frequency is increasing the 30 -cycle switch operates connecting one of the two crystals B or C to the oscilloscope. Hysteresis effects of the mechanical sweep mechanism are eliminated.

Figure 3 shows the circuit to measure simultaneously both the transmission and output impedance characteristics of traveling-wave amplifiers or broad-band networks. Measurements at both high and low power can be made. The circuit is similar to the basic circuit shown in Fig. 1 except for the addition of a second hybrid junction, two calibrated attenuators, and a 20 -foot section of shorted waveguide.

The set is calibrated by omitting the traveling-wave amplifier to be tested and adjusting attenuators D and E until the traces coincide as before with attenuator G at maximum attenuation. The amplifier to be measured is inserted and attenuator D is adjusted until the traces
again coincide. The change in attenuator D setting is the gain. By substituting a power meter for crystal B and taking into account the 3 -db loss in the hybrid junction and the loss of attenuator F the power output may be measured.

The output impedance of the traveling-wave amplifier with the tube delivering its normal power output may also be measured by adjusting attenuator G for a convenient amplitude of ripples on the transmission characteristic such as 0.1 db . With this amplitude of ripples the sum of the return loss of the sending and load impedances is 45 db . For this ripple amplitude, the return loss is the difference between 45 db and twice the sum of the loss of the 20 -foot waveguide, the loss of the hybrid junction and the attenuation of attenuator G.
The equations on Fig. 4 show some simple relationships as used in the long-line method of measuring output impedance. Equation 1 is the frequency in megacycles between ripples related to the line length. In this relation, V_{g} is the group velocity; L is the length of the line in feet; and C is the veloc-

FIG. 4-Relationships used in the long-line impedance measuring
ity of light. The line length is chosen to provide the desired resolution of impedance characteristic.

Equation 2 is the relation of the standing wave as seen on the oscilloscope to the reflection coefficients of the source and load impedances. Equation 3 is the relation of return loss to reflection coefficient.

Equations 2 and 3 are plotted in Fig. 4. For convenience the point corresponding to a total W of 45 db is chosen in making measurements.

The arrangement of apparatus shown in Fig. 5 is used to measure the input impedance of the travel-ing-wave amplifier. To calibrate, a short circuit is substituted for the traveling-wave amplifier under test, attenuator A is set to 40 db and the gain of the oscilloscope is adjusted until the signal trace is separated from the base line by 0.1 inch. A return loss of 40 db can now be measured.

The base line is obtained by disconnecting one crystal from the $30-$ cycle switch. The accuracy of measurement is checked by connecting a termination with a W of about 40 db in place of the travel-ing-wave amplifier under test and setting attenuator A to zero db. Movement of the precision termination will cause ripples to move on the signal trace. If the balance of the hybrid is good and the W of the precision termination is satisfactory, these ripples will be small compared to a W reading of 40 db .

The traveling-wave amplifier input impedance may now be measured by connecting it as shown and adjusting attenuator A for 0.1 -inch deflection on the oscilloscope. The return loss is read directly as the difference in attenuator A setting.

WHERE A MULTIPLICITY of information sources must be observed, some system of scanning or sequential sampling may be employed so that certain pieces of measuring equipment need not be duplicated for each information source to be studied. Where the information sources are of low level, special design problems arise. Several high-speed scanning systems are described below that are applicable to low-level operation.

There are two general types of scanners. First, scanners in which the commutating element also carries the information; and second, the type in which the informationcarrying element is controlled by a separate commutating system. The capacitance scanner is one of the first type.

Capacitance Scanner

Basically, the capacitance scanner consists of a large number of input plates to which the individual signal sources are attached. The information applied to the input plate is capacitively coupled to a pickup plate which is moved successively from one plate to another in a predetermined order.

Within the frequency limits of the scanner, the capacitance system is an ideal scanning device. The noise components resulting from the scanning operation are practically eliminated since the variation in average d-c potential from input element to input element is negligible and no direct current flows through the scanner. The noise performance is limited by the output impedance, Johnson noise, and the losses through the scanner.

As is true with most mechanical devices, the life of the capacitance scanner is limited. Another basic limitation of this type of scanner is the top operating speed.

MERB Tube Scanner

For very high scanning rates it is necessary to go to the use of electron beams or electronic circuits. Figure 1 shows a cutaway view of a typical multiple element radial beam tube scanner. For the sake of simplicity the abbreviation MERB

[^8]

FIG. 1-Cutaway view of multiple element radial beam tube scanner

High-Speed

tube ${ }^{1}$ will be used in connection with this tube. Figure 2 is a photograph of such a tube in a complete 50 -element scanner. The arrangement of the elements is shown in Fig. 3.

The physical construction and relative location of the elements is similar to a standard pentode. A common heater and cathode are located at the center as an electron source. The next element out is the inner grid or accelerating grid common to all elements; next, the screen posts, then the signal grids, in the suppressor grid position, and finally the plate. Each signal grid is separated from the adjacent signal grid by a post. The MERB tube shown in Fig. 1 has twentyfive separate signal grids.

In operation, the tube is placed in a strong uniform magnetic field perpendicular to the cathode so that the electron stream from the cathode is focused into a radial beam which flows through one of the signal grid elements to the plate. The
focusing of the electron beam is controlled both by the strength of the field and by the voltages on the tube elements. By varying the voltage on this signal grid the current to the plate can be varied. By rotating the field about the axis of the cathode the electron stream can be focused successively on each signal grid. The focusing action of the field produces a double-ended electron beam; with the result that all elements are scanned twice with each revolution. The scanning rate is twice the number of elements times the excitation frequency.

In the scanning system shown in Fig. 2 the MERB tube is used to scan 50 input elements. Each input element has a preamplifier and each element of the MERB tube is connected to two preamplifier outputs. By switching the input preamplifiers on alternately in groups as each end of the scanner beam comes around, all 50 elements are scanned by one revolution of the field about the MERB tube. This

FIG. 2-Complete scanner using muttiple-element radial beam tube to sample 50 different signal sources

Sampling Techniques

Space, materials and money can be saved by scanning low-level information sources and using common amplifying, indicating and recording equipment. Survey of sampling systems helps designers choose best system for application to future developments

By B. R. SHEPARD

same system could be extended to enable a 25 -element MERB tube to scan any multiple of 25 inputs.

The major precaution necessary to keep the scanning noise of the MERB tube at a low level is to operate with very low plate current. Low plate current and reasonable transmission is obtained by the use of low voltages on the tube elements. This method of operation necessitates accepting relatively high loss through the tubes, about 6 to 1. The actual gain or loss through the scanner is not in itself too important except for its affect on overall signal-to-noise ratio of
the system. The scanner noise should always be greater than the thermal noise level in the scanner output circuit. For most applications it has been necessary to use a one-tube preamplifier ahead of each element to get optimum signal-to-noise ratio.

F-M Scanner

Figure 4 shows a circuit diagram of an f-m scanner. This scanner is the type in which a vacuum-tube amplifier is provided for each input element. The vacuum-tube amplifier is normally biased off so that no information can be transmitted
from the input to the common output. When it is desired to read information from that particular input element the vacuum-tube amplifier is biased on and allowed to transmit the information to the

FIG. 3-Physical construction and element arrangement of MERB 'tube is similar to standard pentode
output circuit. Several methods are available for performing this switching operation. The particular commutation control element described here is called an f-m scanner control unit. It has the advantage that the equipment required at the scanner itself is small and light and does not necessarily contain vacuum tubes. Only one line is needed between the scanner and the control element, and the control element can be remotely located if necessary. The number of elements is not restricted and can be easily changed.

Each scanner element is provided with a tuned circuit T_{1} and diode rectifier D. Power is coupled into each tuned circuit from a common bus coming from the control unit. When the common bus is excited at the frequency of the tuned circuit, an a-c voltage is transmitted to the diode rectifier element and a d-c output proportional to the excitation on the common bus is applied to the grid of the scanner tube. If the tube is normally biased off and the polarity of the rectified signal is such as to bias the tube on, then that particular tube can be turned on by exciting the common bus at the frequency of the resonant circuit. If each resonant circuit of the different scanner elements is tuned to a slightly different frequency from the one next to it, the circuits can be switched on in sequence by sweeping the common bus excitation frequency through the range of the tuned resonant circuits.

Smooth commutation from element to element is obtained by us-

FIG. 4-Typical f -m scanner circuit

FIG. 5-Subminiature f-m scanner elements
ing the tuned circuit resonance curve as the switching pulse. A smooth or linear sweep frequency rate is used in this case. If desired, an effective square-wave pulse can be applied to each grid by stepping the frequency from that of one tuned circuit to that of the next and so on. It is also possible to stop and turn on only one element at a time and look at that element for as long as necessary by merely exciting the common bus at that particular frequency.

Figure 5 shows two different types of resonant frequency circuits and diode rectifier elements. The unit on the right and center uses subminiature tubes and contains both controlled preamplifier and the switching circuit. The unit on the left uses a germanium diode mounted directly on the tuned circuit. The preamplifier is not included.

Scanning Noise

A scanner as it operates, scanning the input circuits, will generate in its output circuit a complex voltage or current fluctuation which is caused by the scanning action. This noise voltage or current fluctuation is a complex wave which repeats each scanning cycle. In general, this scanning noise is larger than the Johnson noise of the system and is the noise level which
limits the application of the scanner to low-noise circuits.
The scanning noise of a scanner is actually made up of a broad spectrum of finite frequency components each of which is a multiple of the scanning rate. The amplitude of each of these components decreases as the frequency of the component increases. In practice, the scanner output is fed into a band-pass filter which allows only the frequencies around the signal frequency to pass.
If the proper restrictions are placed upon the band pass of the filter following the scanner it is possible to plot a universal noise characteristic curve for the scanner. This noise characteristic will be the same regardless of the actual scanning rate of the scanner. The restriction which must be placed upon the band pass of the system following the scanner is that the band pass be just wide enough to pass the important modulation components introduced by the scanning action. Under these conditions the band pass becomes a fixed multiple of the scanning frequency, the multiplying factor depending upon the shape of the scanner output wave.

The actual noise characteristic for a scanner can be obtained at any practical operating scanning speed. It is possible to evaluate a
scanning apparatus with normally available laboratory equipment and using low or readily available scanning speeds. If the information obtained is plotted as shown in Fig. 6 with a horizontal scale which is a multiple of the scanning rate, the resultant curve is the noise characteristic of the scanner and can be applied to all operating scanning rates for the scanner to determine the circuits required ahead of the scanner.

The two curves on Fig. 6 show the noise characteristic of the MERB tube scanner and the f-m scanner. Both characteristics have essentially the same shape. The level of the noise curve depends upon how well balanced are the different tubes or elements of the scanner. If all of the elements are exactly the same and are switched simultaneously there will be very little scanning noise generated. Practically speaking, this is never true; hence, the amount of noise generated in a scanner depends upon the patience and ability of the designer to select tubes or design a circuit to eliminate tube variations.

The actual rate of cutoff of the noise characteristic curve can be improved by the use of properly shaped pulses for switching. Smooth commutation such as that available in the $\mathrm{f}-\mathrm{m}$ unit will tend to reduce the high-frequency components of the noise. This is shown by the faster decay in the characteristic curve for the f-m scanner. In this particular case the element amplifiers were operated at normal plate current levels. In general, the level of the noise charactertistic can be reduced by operating the tubes at very low current levels.

Reducing Noise

Once the noise characteristic of a scanner is obtained it is fairly easy to outline methods which can be used to make a scanner operate at lower signal levels. Two general approaches can be applied. One is to modify the external circuit to make the best use of the scanner noise characteristic; the other is to work directly with the scanner to try to reduce the level of the noise characteristic.

A study of the noise characteristic curve will show that there are two ways of reducing noise by external circuit modifications. One is to increase the frequency of the signal carrier and the other is to reduce the band pass to the absolute minimum required to pass the information. If the application permits, raising the carrier frequency is an easy way to reduce scanner noise. If the signal frequency cannot be changed, the operating frequency of the scanner can often be raised by mixing in the scanner. The normal loss in gain due to mixing must be taken into account so that a larger increase in frequency is required than would be needed if mixing were not used.
In working with the scanner directly there are four methods or approaches for improving the noise

FIG. 6-Noise characteristics of two scanner types
characteristic or reducing the amount of noise generated by the scanning action. All four methods are based on reducing the amplitude of the variation between elements or reducing the switching rate between elements:
(1) Reduction of the quiescent or average d-c level of the scanner to the absolute minimum necessary to give useable results. The scanning noise components are proportional to the average current. If the average current can be reduced without a proportional reduction in signal gain, a net improvement in signal-to-noise ratio results.
(2) Balancing of all the scanner
elements so that differences between d-c element values are reduced to a minimum.
(3) Increasing the cross-over time between elements. This can be done by proper shaping of the transfer conditions so that a minimum amount of high-frequency components is generated. In general, the noise is generated during the switching period between elements and is caused by dissimilarity between elements of the scanner or gaps in transmission between elements. Any procedure which tends to reduce the dissimilarity and eliminate the gap or reduce the rapidity with which the dissimilarity or gap occurs will aid in reducing the amplitude of the high frequency component generated by the scanning action. An improvement of this kind makes the noise characteristic decay faster with increase in signal frequency.
(4) Reduction of scanning rate. If a slower scanning rate can be tolerated, this will have the same effect as increasing the signal carrier frequency. In addition, a narrower band pass can also be used.

The foregoing methods for improving signal to noise performance of a scanner can be applied to any such commutating device. In general, to utilize a scanner at very low signal levels it is necessary that the information in the signal be available to the scanner at a frequency higher than the scanning rate. Just how much higher will depend upon how low a signal level must be observed and upon the noise characteristic of the particular scanner.

The scanners described here have utilized a switching characteristic or wave form approaching a cosine function in order to obtain smooth commutation. Other switching characteristics will produce a different scanner noise characteristic curve, but the basic problems are the same. Optimum scanner design for any application requires a suitable compromise between circuit complexity, switching characteristics, scanning rate, and scanning noise performance.

Reference

 Jour. App. Phy., p 704, Oct. 1944.

Color generator, exclusive of power supplies, occupies $24 \frac{1}{2}$ panel inches

In color, bars from left to right would appear as red, green, white, yellow and blue for this particular setting of color potentiometers

Picture Generator

Simple equipment is added to conventional black-and-white picture-generating setup to provide color-striped pictures for testing either simultaneous and dot-sequential systems or field-sequential system. Complete adjustability of colors is possible

By R, P. BURR, W. R, STONE and R. O, NOYER
Hazeltine Corporation
Little Neck, New York

THE CURRENT INTEREST in color television systems is, among other things, likely to produce the need for a simple means of generating color television signals.
In the early stages of the present monochrome television system, complete camera chains were soon discarded in favor of the simpler and more reliable monoscope pattern generator as a general laboratory and test line video signal source. In the design, development, and manufacture of color television apparatus, a simple and reliable signal generator is also highly desirable. Current techniques for the production of color television signals rely heavily upon flying-spot scanners or direct-pickup cameras. Although these devices may be
made reliable, they are not particularly simple, nor are they inexpensive. In addition, the versatility of subject material provided by such apparatus is a feature of questionable merit for routine testing.

The purpose of this article is to describe a simple all-electronic source of color television images which may be added to an existing black-and-white television installation. The unit will provide signals for either simultaneous and dotsequential systems employing current monochrome standards or for the recently standardized fieldsequential system.

Output from the apparatus consists of a monoscope or other television test pattern upon which is superimposed a series of five verti-
cal bars. The hue and saturation of each bar is independently variable and under the operator's control. Any color combination whatever, including black or white, may be obtained. The color signal generator derives its input signals, including the monoscope pattern, from existing television equipment.

Color Mixers

A block diagram of the signal generator is shown in Fig. 1. The black-and-white video pattern to be "colored" is inserted at the lower left of the sketch. Following amplification in the two-stage video amplifier, the signal is applied simultaneously to the three mixer, or modulator, stages marked green, red and blue. When no modulating

FIG. 1-Chain of tive multivibrators, triggered by blanking signal, turns on five different colors during horizontal trace

FIG. 2-Waveform chart shows functions of various stages during trace

For Color Television

signal is applied to the three mixers, we may assume that the gains of each mixer-output tube combination may be so adjusted that the green, red, and blue output signals are indentical, or nearly so; that is, the apparatus becomes essentially a triple output distribution amplifier. For a properly balanced threecolor display, this condition will correspond, by convention, to a black-and-white picture. To obtain a color picture, the gains of the mixer tubes must be individually modulated in some desirable manner. One form of modulating signal which produces a useful geometrical color pattern may be obtained from the components shown in the upper portion of the diagram.

A negative composite blanking signal, that is, a white picture, is used as the triggering voltage for the input stage of a chain of five one-shot multivibrators. The trigger amplifier and first multivibrator are arranged to fire on the trailing edge of the blanking waveform, so that operation of the circuit begins synchronously with the start of the television system trace time. Upon completion of its turn-
over cycle the first multivibrator triggers the second of the chain; the second fires the third, and so on, until the action terminates with the operation of the fifth and last stage.

Each multivibrator is adjusted to have a pulse width of approximately one-fifth the system trace time, so that the entire action requires one line of the television picture. Consequently, the voltages applied to the cathode follower stages consist of five successive pulses occurring in time sequence across the picture from left to right.

The cathode followers (which also operate as limiters) are provided with a network of three potentiometers and three resistors in each of their cathode circuits. The object of this arrangement is to permit any amplitude of any one or more of the five pulses to be delivered to the three bus bars marked green, red and blue. The bus bars, in turn, are connected via suitable amplifiers to the suppressor grids of the green, red and blue mixer-modulator tubes, so that modulation of the input video sig-
nal in accordance with the various pulse amplitudes is the end result.

Figure 2 illustrates the functions of the various components of the block diagram. The blanking signal which triggers the five multivibrators is at the top. The second line shows the output of the trigger amplifier, an inversion of the input voltage. The first pulse generator output is shown on the third line of the chart. The second, third, fourth, and fifth pulses are generated in sequence-each one generated by relaxation of the previous stage.
A random mixture of the five pulses is shown at the center of the figure, while modulation of a video signal by this waveform is shown on the remaining lines. It should be noted that the bottom line, marked final output, represents the signal for one color only. When the apparatus is adjusted to produce a color picture, the three signal outputs will differ from one another as the green, red, and blue content of the picture varies across the image.

Since the timing of the pattern generator is determined entirely by

FIG. 3-Circuit of keying pulse generator. The switch adjusting the multivibrator time constant allows quick changeover from present standards to field-sequential standards
the repetition rate of the input blanking signal, operation at line rates other than that standardized for black and white television may be obtained by changing the five pulse durations appropriately. To accommodate operation with the field-sequential color television system, we have included a ganged switch in the active grid time constant of each multivibrator, which may be used to halve the pulse width. The waveform chart would be the same for the higher speed operation.

Trigger Circuit

A simplified schematic diagram of the trigger amplifier and one of the pulse generators is shown in Fig. 3. The multivibrator is of the cathode-coupled one-shot type and is straightforward in design. The negative composite blanking signal applied to the grid of the 6AH6 trigger amplifier causes an abrupt drop in the amplifier plate voltage synchronous with the trailing edge of the blanking signal. The 6SN7 multivibrator and the 1 N34A diode are arranged in such a way that the pulse generator is sensitive only to negative-going voltages. Accordingly, operation of the multivibrator is initiated by the trailing edge of the blanking signal.

The relaxation time of the multivibrator is controlled in the usual manner through the application of
a variable bias voltage to the active control grid. In addition, as previously noted, a switch is provided to vary the time constant in this grid by a factor of two-to-one so that operation on either field sequential color standards or current black and white standards may be obtained. The second multivibrator of the chain is triggered by recovery of the first inasmuch as a large negative voltage drop appears at the first multivibrator output plate at this point in the cycle.

Mixing of the pulses generated by the multivibrators of Fig. 3 occurs in the cathode circuits of the five cathode followers which are shown at the center of the block diagram. In Fig. 4 may be seen the manner in which the five cathode-follower outputs are combined into three independently variable modulating waveforms. The word "independent" is based on the assumption that one percent crosscoupling between the various pulse amplitude controls is tolerable. Practical laboratory experience with the equipment indicates this to be the case.

Mixer Circuit

The circuit arrangement is such that any amplitude of any pulse may be applied to any one of the three bus bars by appropriate manipulation of the fifteen potentiometers. With reference to the

FIG. 4-Fifteen potentiometers in pulse mixer circuit shown permit adjustment of color in each band
generated color pattern, it might be said that the potentiometers of cathode-follower number one correspond to the red, green, and blue values of bar number one in the color picture, and so on.

Initial amplitude adjustment of each keying pulse is provided by a screw-driver adjustment, so that the pulse voltages from the cathode followers may be equalized. The 10,000 -ohm resistors between the potentiometers and the bus bars provide isolation from crosscoupling. A simple two-stage amplifier is provided to raise the output from each color bus bar to a level suitable for operation of the video modulator tubes.

One of the modulator stages is shown in Fig. 5. The video signal is applied to the control grid of a 6AS6, while the pulse modulation voltage is applied to the suppressor. The d-c component is reinserted for both input signals so that operation of the modulator will be unaffected by variations in duty cycle of the video or pulse information. A meter is provided which may be switched into the cathode circuit of each modulator tube for the purpose of setting black current to within a few hundred microamperes of cutoff. Each modulator is followed by a conventional high-impedance current driver for low-impedance lines. The signal delivered to a 75 -ohm cable from each output may be ad-
justed to a maximum of two volts peak-to-peak. The output signal does not contain synchronizing information since sync is seldom, if ever, present on a video signal at this point in a color television system.

Color-Monochrome Switch

Finally, the pattern generator contains one very useful device which will be appreciated by those who have been working with color television systems. This is a switch, called a COLOR-MONOCHROME switch, which may be operated to produce an unmodulated black-and-white output from the apparatus. When set to the COLOR position, the generator produces the color pattern set-up on the control panel. When the switch is set to mONOCHROME, the generator becomes essentially a distribution amplifier; that is, the video signals on all three outputs are identical, and are unmodulated. This arrangement is useful for checking the color balance of subsequent apparatus.

Some typical laboratory applications of the pattern generator's color signals might be of interest. For this purpose we will choose a monoscope test chart modulated so that the colors produced are red, green, white, yellow and blue as shown in the test pattern photo.

Oscillograms

First, this color signal may be applied to a dot-sequential color transmitter and the resulting video
output observed on an oscilloscope operating at line rate. The oscillogram of Fig. 6A shows the sync signal, the color sync burst, and the video information together with the superimposed color carrier. The transmitter we are observing samples the color information at symmetrical angles, and is adjusted in accordance with the operating practice implied in the early proposals for a color television system of this type. It can be seen that the red, green, and blue areas, being saturated single colors, cause the color carrier to swing below black. For the yellow area, which is a saturated two-color area, overmodulation beyond reference white occurs, while for the white central area, the color carrier disappears altogether.

If the color carrier is removed, as in Fig. 6B, it may be seen that this transmitter is correctly adjusted to weigh red, green, and blue equally in the monochrome component of the transmitted signal. It is worthy of note that for any one color the contribution to the monochrome is one-third; for yellow it is two-thirds; and for white, of course, three-thirds.

Having checked the transmitter adjustments, the performance of the color receiver may be examined. It is desirable that the receiver reproduce the colors of the original scene with reasonable accuracy. That is, the phase of the local color subcarrier oscillator at the receiver must be correctly located.

FIG. 5-Video information is fed to control grid of modulator, while pulse modulation voltage is applied to the suppressor

FIG. 6-Oscillograms show waveforms with different combinations of information, as explained individually in text

Let us connect the oscilloscope to the blue video signal channel of the receiver and observe the result. The original colors were red, green, white, yellow and blue, in that order. Therefore, an oscilloscope connected to the blue channel should show no signal during the red and green bars, full signal for the white area, no signal for the yellow bar, and full signal for the blue area. The oscillogram of Fig. 6 C shows that this is not the case. Due to misphasing at the receiver, both the red and green areas of the signal show some output in the blue channel. In particular, the blue tube is slightly illuminated during the red area while it is driven below cutoff during the green area. In addition, the blue tube is not at full brightness during the blue area. Obviously, a readjustment of the receiver phase control is required. This operation is readily performed by adjusting for minimum signal in the red and green areas.

Figure 6D shows conditions prevailing in the blue channel for correct phasing.

STEP MULTIPLIER RACKS (first, third, fifth and seventh racks from left) in missile simulator section of Project Typhoon computer, In foreground is servo-controlled missile model to show attitude of missile constantly during solution of target-interceptior problem

FIG. 1-Basic block diagram of step multiplier

FIG. 2-Method of handling input voliages of both signs in multiplier

Step Multiplier in
 Guided Missile Computer

Abstract

Need for test firings of new missile designs is minimized by simulating missile and target characteristics with new 4,000 -tube analog computer. Required precision is obtained with reversible binary counter and relay-operated conductance networks in step multiplier

PROJECT TYPHOON is a largescale analog-type computer built specifically for the investigation of problems relative to the design of complete guided missile systems, under contract with the Office of Naval Research, Special Devices Center. The computer is divided into several sections, each of which handles some particular phase of a complete guided missile system problem. The major sections are (a) the missile simulator, (b) aerodynamic computer, (c) guidance computer, (d) target simulator computer, (e) recording and display devices and (f) power supply to operate complete simulator.

The input to the missile simulator computer consists of voltages representing aerodynamic forces along the three missile axes (roll, pitch and yaw), aerodynamic torques about the three missile axes, initial position of missile in earth axes, initial spin velocities about the three missile axes, initial linear velocities along the three missile axes, and initial attitude of missile axes relatives to earth axes expressed as direction cosines.

The output consists of missile position in earth coordinates, missile velocities in earth axes, missile linear velocities in missile axes, missile angular velocities (spins) about missile axes, and missile attitude in terms of direction cosines of missile axes relative to earth axes. Among the components required for this section are several high-speed multipliers of high precision. High-precision multipliers were required particularly for maintaining orthogonality of the

By EDWIN A. GOLDBERG
RCA Laboratories Division Princeton, N.J.

earth and missile axes systems as the computation proceeds. The step multiplier as described in this article was developed for this application. Thirty-six multiplications and eighteen integrations are made in this section.

The guidance computer is a flexible arrangement of components interconnected by means of patch cords in a manner dependent on the nature of the guidance system. It receives information from the target simulator and missile simulator and delivers its output to the aerodynamic computer.

The aerodynamic computer receives missile velocity, altitude and attitude information from the missile simulator, and missile fin deflection information from the guidance computer. It computes the aerodynamic forces and torques, and routes this information to the missile simulator section. Thus, a closed-loop computing system is formed.
Target trajectory is generated as target position in earth coordinates by the target simulator. Target maneuvers are made by operation of target speed, climb and turn controls.

The recording and display devices consist of two Electronic Associates Variplotters which are normally used for missile and target trajectory plotting in both the horizontal and vertical planes, eighteen GE photoelectric recorders which may be used to record any
eighteen variables desired, a missile model which assumes the attitude and fin deflections of the missile being simulated, and a three-dimensional trajectory model which moves objects representing the missile and target in three dimensions.

An idea of the size of the computer may be gained from the following tabulation of certain components:

Section	Stabilized D-C Amplifiers	Computing Servo Units
Aerodynamics.....	135	6
Guidance........	148	11
Missile Simulator..	135	9
Target Simulator...	9	2
Recording........	18	
TOTAL.......	445	19

There are a large number of various other types of components which have not been tabulated. For example, a large bank of polystyrene capacitors in the guidance computer makes possible 80 simultaneous integrations in this section. The computing equipment is mounted in 43 special racks, each rack being 9 feet high. Forty of the racks are standard width, and three are double standard width. About 4,000 vacuum tubes are employed, and the total power consumption is 46 kilowatts.

Step Multiplier Design

Project Typhoon requires a multiplier of very high precision and moderate speed of response, for application in certain critical parts. Servo-type multipliers to meet both requirements seemed to be beyond the realm of practicability, and no all-electronic multiplier investigated had sufficiently high accu-
racy. As a consequence, the step multiplier was developed.

In principle, the step multiplier and servo multiplier are similar. Figure 1 is a basic block diagram of the step multiplier. The count stored in the reversible binary counter is made proportional to the input variable X. The conductances of the relay-operated conductance networks are each made proportional to the count stored in the reversible binary counter, and hence are proportional also to the variable X. Thus, if a voltage Y is applied to the input of one of the conductance networks (V), the output current will be $X Y$ and will appear as a voltage proportional to $X Y$ at the output terminals of amplifier VIII.

The reversible binary counter either counts at a rate determined by the frequency of the oscillator, or the number in the register remains stationary, depending upon the value of the input voltage to the polarity-sensitive gate circuits. If this input voltage exceeds a certain positive value, the counter will subtract one unit for every pulse from the pulse former. If this input voltage exceeds a certain negative value, the counter will add one unit for every pulse from the pulse former. Should this voltage be zero, or any value between the minimum add or subtract voltages, the count will remain stationary.
If the current fed back to the summing point of amplifier VII from conductance network IV is of the same magnitude but of opposite polarity relative to the current fed to the same point by the variable
X, the output of VII will be zero and the count will remain stationary. Should this not be the case, the counter will count in the proper direction and change the conductance of IV until the aforementioned condition prevails. Thus, if G is the conductance of each conductance network, K is the input voltage to conductance network IV and X is the input voltage to summing conductance g_{1},

$$
\begin{equation*}
G=X_{o 1} / K \tag{1}
\end{equation*}
$$

The input currents to amplifiers VIII and IX will then be

$$
\begin{aligned}
& i_{V I I I}=X Y_{o 1} / K \\
& i_{I X}=X Z_{01} / K
\end{aligned}
$$

The output voltages of amplifiers VIII and IX will be

$$
\begin{align*}
& E_{\text {VIIII }}=-X Y / K \tag{2}\\
& E_{I X}=-X Z / K
\end{align*}
$$

since the feedback conductance of each amplifier is g_{1}.

Negative values for G are not obtainable since the conductance networks are composed of passive elements only. Hence, some scheme must be provided so that negative and positive values for X may be handled. This may be accomplished by effectively adding a fixed voltage C to X of greater magnitude than X will ever be, and subtracting a voltage $C Y / K$ from the output of the multiplier. This is illustrated in block diagram form in Fig. 2 for two different output arrangements. One output, $E_{\text {viri }}$, will be $-X Y / K$, while the other output, $E_{1 \times}$, will be $+X Z / K$. It is convenient to choose $C=+75$ volts, $K=$ -75 volts, and a value of G for the conductance networks equal to g_{1}
when the count in the counter is half of the full-scale value. The multiplier thus arranged is capable of accepting values for X which vary between +75 volts and -75 volts.

Reversible Binary Counter

Figure 3 is a block diagram of the reversible binary counter. Positive pulses are continuously fed into pulse input terminal B. The count of the counter will remain stationary when the value of the error input voltage at terminal A is zero. If the error input voltage increases in a positive direction, the voltage on the subtract bus will rise to zero and will be prevented from going positive by the diode limiter. This places the subtract gates in the active state so that they can transmit pulses. The add gates will be in the inactive state because the potential of the add bus will be negative. Further increasing the error input voltage will energize the pulse gate so that pulses present at terminal B will be transmitted to the counter, and one unit will be subtracted from the count of the counter for each pulse appearing at B.

For negative error input signals, the potential of the add bus will become zero, and the add gates will be made active. The subtract bus will be negative and the subtract gates will be inactive. Further excursion of the error input signal in the negative direction will activate the pulse gate, and will cause one unit to be added to the count for each pulse appearing at input B.

Thus, the counter will either add

FIG. 3-Block diagram of eleven-stage reversible binary counter

FIG. 4-Circuit used in first two stages of reversible binary counter

or subtract one unit from the count for each pulse at input B, dependent on the polarity of the error signal at input A. The particular mode of operation is obtained by proper choice of the carry-over connections by means of the add or subtract gates.

Figure 4 is the schematic diagram of the first two stages of the counter. The other 9 stages are similar. Diode commutating tubes are used as coupling elements to insure positive counting. The output of each trigger pair is differentiated at the input grid of each gate tube so that the gate tubes transmit pulses. Only negative input pulses will change the state of a trigger pair; positive pulses have no effect.

Each trigger pair has associated with it a neon light to indicate its state. Two pushbuttons per trigger pair are available for setting the state of each stage of the counter, or in other words, the count when the error input voltage is either
zero or is disconnected. The output of each stage drives an amplifier which in turn controls the relays of the conductance networks associated with that stage. Pulses for operating the counter are obtained from the blocking oscillator circuit of Fig. 5.

High-Speed Relays

The rate at which the multiplier (X) may be varied and still have the values of the conductances in the variable-conductance networks accurately follow is a function of the speed at which the associated relays can operate. Since highspeed operation was desired, the use of high-speed relays was necessary. It was not possible to find a suitable commercially available relay so one was specifically designed for the job. It is characterized by an extremely light armature which is carefully damped by proper use of tungsten-loaded rubber dampers. The relay exhibits no chatter, and will either close or open within 100
microseconds after application of control voltage to the coil.

Relay Drive Amplifiers

The time required for a relay to close or open is a function of the rate of rise or fall of the coil current, among other things. Consequently, a relay drive amplifier circuit was designed to cause the coil current to rise or fall as rapidly as practicable without damaging the coil insulation. The rate of rise of current through a coil, with resistance and capacitance disregarded, is given by

$$
\begin{equation*}
d I / d t=E / L \tag{4}
\end{equation*}
$$

where $d I / d t$ is the rate of change of current in the coil, E is the voltage across the coil and L is the inductance of the coil in henrys.

To obtain rapid rise of current, E must be large. However, the maximum current must be limited to a safe value, otherwise the coil would burn up. The high-speed relays used were designed for a
steady-state coil current of 50 ma .
A constant-current type of drive amplifier is used. Since the tube drop would normally be high for tubes driving closed relays, the tube dissipation would be high, necessitating the use of fairly large tubes. To reduce tube dissipation, a resistor bypassed with a capacitor is inserted in series with the plates of each parallel group of tubes. Approximately full plate supply voltage is impressed across the relay at the instant the drive tubes are made conducting. As the current builds up in the relay coils, the voltage drop across the relay coils decreases and the voltage drop across the tubes increases. The capacitor across the series resistor will charge up rather slowly, and thus this network will have negligible effect upon the rate of buildup of relay current. In the steady-state conducting condition, there will be very little voltage drop across the relay coils, little across the tubes, and considerable voltage across the resistor-capacitor network.

When cutting off the tubes, the voltage developed across the relay coils will be a function of the coil current, the capacitance across the coils, the inductance, and the resistance across the coils. Neglecting the capacitance, the peak voltage will be $E_{c}=I_{c} R_{a}$, where E_{c} is peak voltage developed across the coils, I_{c} is coil current at the instant that current is cut off, and R, is resist-
ance shunted across the coils. To prevent $E_{\text {c }}$ from exceeding a safe value, R, must be chosen accordingly. If R, is made too small, the time for opening will be excessive.
Typhoon incorporates multipliers with either four, six, nine or eleven relay coils per drive amplifier. The relay drive amplifier in Fig. 6 is designed to drive nine relay coils in parallel.

Variable-Conductance Networks

Each variable-conductance network consists of eleven T networks whose inputs and outputs are paralleled, and one non-switched conductance. The transfer conductance of each T network may be made zero (relay closed) or a predetermined value (relay open). Transfer conductance values for the various different networks in a set are chosen on a scale of two basis.

The signal amplifiers used in conjunction with the step multiplier are all similar, and are of the wideband chopper-stabilized type ${ }^{1}$ shown in Fig. 7. Their use eliminates the necessity for manual adjustment of d-c zero offset, and they do not drift.

Interpolation Effect

Should the value of the variable X be such that the conductance networks cannot accurately match this condition because their conductance values vary by discrete steps cor-

FIG. 7-Circuit of stabilized d-c amplifier used with step multiplier
responding to 1 part in 1,024 , the conductance value will oscillate between the two adjacent values which straddle the value called for by X.

A partial integrating circuit is used in the feedback network of the error-sensing amplifier (amplifier VII in Fig. 2). The gain of this amplifier for d-c is 11 times the gain for frequencies above a few cycles. The incorporation of some integration in this network is necessary for stable operation of the feedback loop when the loop gain is high.

Performance

The step multiplier is very similar in principle to the servo type of multiplier which incorporates a gang of similar linear potentiometers. Multipliers which tracked very well were needed in the missile simulator section. The step multiplier meets this requirement very well since each conductance network may be adjusted to the calculated value within ± 0.001 percent of full-scale conductance. It was not possible to obtain potentiometers which would track as well.
The speed at which X may be varied yet have the counter track is a function of the oscillator frequency which drives the counter, and also a function of the relay speed.

Since the relays require about 100 microseconds to close or open, they are the limiting factor in speed of operation. An oscillator frequency of about $1,000-\mathrm{cps}$ is used, and consequently about one second is required to change the value of the multiplier (X) from zero to full scale. The rate at which the multiplicands (Y and Z) may be changed is a function of the band width of the conductance networks and associated amplifiers.

The author wishes to acknowledge the contributions to the project of A. W. Vance, who conceived the basic principle of the step multiplier, and R. F. Brady and F. F. Shoup, who jointly contributed to the development of high-speed relays employed.

Reference

(1) Edwin A. Goldberg, Stabilization of Wide-Band Direct-Current Amplifiers for Zero and Gain, RCA Review, p 296, June

Use of cadmium-sulfide crystal in a detector for inspecting cans of baby food. Partially filled can has paper band around it as does nozzle holding crystal. Light above nozzle is illuminated briefly as low-content can passes between x-ray source at left and nozzle.

Beam Stabilizer for Industrial X-Rays

Abstract

Transmitted beam intensity is held within close limits by use of cadmium-sulfide crystals in stabilizer bridge circuit. Industrial inspecting equipment may then be used to detect small changes in beam intensity caused by minute flaws in opaque objects

By JOHN E. JACOBS

General Electric $X-R a y$ Corp. Milwaukee, TVis.

APPLICATION of x-radiation to high-speed automatic inspection of opaque objects for minute flaws has increased the requirements for x-ray beam stability over those previously encountered.

For an automatic system of x-ray inspection to compete successfully with radiography or fluoroscopy, it must offer the resolution obtained by these methods. It is necessary to detect, on the basis of transmitted radiation, variations in
x-ray intensity of a few percent. This is most easily accomplished by designing the associated detecting equipment to be extremely sensitive to slight variations in intensity. Two units embodying this precise control are now undergoing tests, each installation requiring special adaptation and engineering.

In a single-channel system, a comparison method using two detectors may be used to reduce the effects of x-ray beam instability. For the
scanning of large, irregular shapes, a multiplicity of inspecting stations is needed. To attempt to compensate each individual station against beam changes is a major project and usually results in a system that is difficult to keep in balance. The apparent answer to this problem is to stabilize the x-ray source itself in such manner that the transmitted beam intensity is held within close limits.

Regulation of the x-ray beam for
this application is complicated by two factors. The first is that the x-ray output is proportional to the first power of the tube current and the square of the applied peak tube voltage. ${ }^{1}$ Commercially available regulators are not satisfactory because they work on the rms value of the wave. Furthermore, waveform distortion is prevalent in x-ray transformers.

The second factor that contributes to the problem is the relation of x-radiation transmitted through material and the voltage applied to the x-ray tube. Referring to Fig. 1, the addition of any material between the beam and the detector has the effect of making only the higher values of impressed x-ray tube voltage effective in determining the intensity received. This means that a change in applied x-ray tube voltage of a few percent will result in a change of the order of ten times percentagewise in the intensity of the beam

FIG. 1-Quality of x-radiation transmitted as aluminum is added between x-ray tube and detector
transmitted through the material.
The previous discussion leads to one conclusion regarding the stabilization of x-ray beams; the detecting element of such a stabilizing loop should be x-ray sensitive with the same amount of filtration between it and the x-ray tube as is shown by an object to be inspected.

Stabilization Methods

The x-ray tube current may be stabilized to within ± 0.1 percent by an electronically controlled series impedance in the primary of the filament transformer. ${ }^{2}$ This method has been used to control x-ray output by adapting a photomultiplier and fluorescent screen in a comparison circuit. ${ }^{3}$ Regulators of the saturated-inductance type do not function satisfactorily to regulate x -ray tube voltage because of their waveform distortion. ${ }^{4}$ Another approach has been to adapt a series tube regulator, ${ }^{5}$ such as is used in laboratory power supplies. This has the disadvantage of requiring the regulating loop to be insulated to withstand the x -ray voltage, which often exceeds 100,000 volts.

For simplicity and economy it is desired that the regulation of the x-ray tube voltage take place in the primary of the high-tension transformer. The regulating device used should be one with less than 6 cycles response time and should introduce a minimum amount of
waveform distortion.
Recently, numerous references have been made to the use of cadmium sulphide as a detector of x-radiation. ${ }^{8,7,8}$ This material has several advantages. The first is its natural amplification and the second is its high absorption of x-rays as compared to other detectors. The radiation transmitted by an object is only the hard radiation and an efficient detector of this type of radiation is needed.
Because of the density of cadmium and sulphur as compared to the gases used in ionization chambers, it is possible to use a thickness of CdS that will absorb practically all of the radiation. The intensity-wavelength ratios of Fig. 1 are preserved in such a detector. Crystals of CdS have the further advantage of retaining their natural amplification which, in some cases, is in the order of 10° even when the crystals are reduced to small cross sections. This makes for a compact, extremely efficient detector.

A sketch of the setup used for checking fuse trains by means of a cadmium-sulfide detector is shown in Fig. 2. In this application, a $\frac{7}{8}$-in. void in the powder train inside a $\frac{\text { l }}{4}$ in. diameter cord can be detected with the fuse moving at the rate of 60 feet per minute. The indicator may consist of any one of many possible relay-actuated devices. The relay may operate a meter, chart a graph, work a rejection lever to remove the product from the line, ring a bell and so forth.

A fundamental electronic property of semiconductors of the-cadmium-sulphide type lends itself very well to regulator service. Over the intensity range encountered, the number of electrons present in the conduction band at any time is a linear function of the incident intensity. However, any decreasein intensity results in the electrons starting to recombine in accordancewith the familiar relation $d n / d t=$ $-b n^{2}$ where b is the recombination coefficient and n is the number of electrons present in the band. Any change in the beam intensity will show up as the square of the change, as the current measured is proportional to $d n / d t$. This is a
distinct advantage from the standpoint of regulator performance.

The variable-ratio autotransform-er-type regulator was chosen for its simplicity and low waveform distortion. Referring to Fig. 3, the CdS crystal is used in a bridge circuit similar to the way a resistor would be used. The CdS crystals behave as a resistor, the resistance of which is a function of the incident intensity. Unless the powercarrying capabilities are exceeded, the crystals obey Ohm's law. If the voltage is doubled, the current for a given incident intensity is doubled.

Regulator Performance

Output from the crystal-resistance bridge circuit is passed through a bridged-T network that serves to stabilize the regulator loop. The network output voltage is compared with the reference voltage of a VR105; any difference is amplified and used to control the regulator tubes. In this case, two triode-connected 6L6's were used. These tubes control the saturable inductor serving as part of the common leg of an autotransformer. Characteristics of the saturable inductor used are shown in Fig. 4.

To check regulator performance, three runs covering three-hour periods were made on typical workdays. An aluminum filter was placed in the beam to establish the condition shown in Fig. 1. To record the output, a special fluo-rescent-screen photomultiplier pickup was used; arranged to eliminate falling off of response with time. The output of the amplifier was recorded by a high-speed photoelectric recorder. Figure 5A shows the output of the x-ray generator without the regulator. In this case, the output varies over ± 15 percent. The large increase at $4: 30$ is attributed to the factory shutting down at that time.

Using an identical setup, a commercially available electronic regulator of the saturable-inductor type was placed between the line and the x-ray generator. Figure $5 B$ shows that this regulator affords considerable improvement but still leaves much to be desired. The controlling element of the regulator loop in this case was a temperature-
limited diode. An attempt was made to schedule the tests over the same period, as experience has shown that Figure 5A is typical for afternoon line conditions at the factory.
The commercial regulator used for Figure 5B is better than it appears in this application. It is because of the relations existing in an x-ray generator as previously described that commercially available regulators perform as they do when used to stabilize x-ray beams.

Figure 5C shows the effect of placing the CdS regulator on the line. Essentially the only difference between the results as shown by Fig. 5B and 5C is that the error voltage fed to the regulator loop in the case of Fig. 5B is proportional to the rms value of the stabilizer output and in the case of Fig. 5C is proportional to the intensity of the x-rays transmitted through the filtering material.

Since the regulator was developed specifically for automatic inspection applications, no provision was made to handle wide kilovoltage variations. In every application of this type the x-ray generator is set to the optimum kilovoltage by means of an autotransformer. The regulator loop then serves to vary the applied kilovoltage by ± 30 percent about the mean value in response to the output of the CdS crystal. The variable resistor in the bridge circuit serves to balance the bridge in the middle of the range once it is established. It is not anticipated that voltage variations outside this range will be encountered in practice.

On the basis of laboratory investigations still in progress, changing of the crystal characteristics with use appears to be insignificant. Once installed and calibrated, the stabilizer should maintain constant x-ray output and penetration regardless of x-ray tube aging.

The author wishes to acknowledge the assistance of A. L. Pace, Industrial Section, General Electric X-Ray Corporation, in taking various measurements.

References

(1) W. T. Sproull, "X-Rays in Practice", McGraw-Hill Book Co., Inc., New York', p 34.
The Stabilization of -Tay Tube Current

FIG. 3-Schematic diagram of regulator circuit

FIG. 4-Volt-ampere characteristics of saturable inductor

FIG. 5-Output of x-ray generator: (A) unregulated, (B) regulated with ordinary electronic stabilizer and (C) regulated with CdS controlled stabilizer

[^9]

FIG. 1-Basic arrangement of d-c amplifier in which input converter sets limit of zero-offset reduction

Front panel of amplifier, showing zero-center meter having 25 micromicroampere and 25 -microvalt basic ranges

D-C Amplifier with

Input required to bring output to zero is less than 1.6 times peak-to-peak thermal fluctuations in new contact-modulated d-c amplifier, corresponding to zero-offset of 10^{-12} ampere on current ranges and 1 microvolt on 20,000-megohm-per-volt voltage ranges

By WILL McADAM, R. E. TARPLEY and A. J. WILLIAMS, Jr.

Research Department, Leeds and Northrup Co., Philadelphia, Pa.

AN ANNOYING characteristic of practical amplifiers is that when their signal inputs are zero, their outputs are not exactly zero.

The zero-signal output, or noise output, from an amplifier may contain components of all frequencies within the transmission band of the amplifier. For example, amplifiers for d-c, to which this discussion is confined, can have in their zerosignal outputs very-low-frequency components and a d-c component. These output components can be brought to zero by the application of an input having proper magnitude and polarity. Zero-offset is herein considered as the amount of amplifier input required to bring the low-frequency and d-c components of the output to zero.

In measurements made with d-c amplifiers, zero-offset can be a component of error, since at any time the amplifier output represents the amplified sum of its signal input

[^10]and its zero-offset. The error arising from zero-offset is variable in nature because its origin lies in sources affected by uncontrolled conditions such as ambient temperature, line voltage and stray fields. Without special measuring techniques, the limit of uncertainty in measurements made with an amplifier cannot be less than the maximum zero-offset of the amplifier. While zero-offset error can be eliminated by making measurements of the differential type, in general this requires removal of the signal from the amplifier, an inconvenience at best and often a practical impossibility.

The Noise Problem

A contact modulator has previously been described ${ }^{1}$ which produces zero-offsetting voltages not exceeding 0.5 microvolt and zerooffsetting currents not exceeding 1×10^{-12} ampere. Using this contact modulator, d-c amplifiers have been constructed ${ }^{1}$ having zero-offsets less than 0.5 microvolt with
input circuits of about 10^{4} ohms. Zero-offsets not greater than $1 \times$ 10^{-13} ampere have been observed when these amplifiers were adapted to 10^{9} ohm input circuits. No amplifier, however, has been available in which the zero-offset is at the same time limited to both 0.5 microvolt and 1×10^{-13} ampere. The problem was to build an amplifier in which the zero-offset would be limited to these two values simultaneously and so approach the limits of performance imposed by its contact modulator much more closely than either of the two amplifiers mentioned (5×10^{-18} watts as compared to 2.5 $\times 10^{-17}$ watts for the 10^{4} ohm circuit and 1×10^{-15} watts for the $10^{\circ} \mathrm{ohm}$ circuit).

It is suggested in the previous paper ${ }^{1}$ that since the thermal-agitation noise in an amplifier represents the final limit of certainty in measuring with the amplifier, a figure of merit for the zero-offset might be its value relative to the theoretical thermal-agitation noise. ${ }^{2,3,4,5,5,8,}$ The amplifier described

Bottom of amplifier. Chassis cover completes shielding needed to reduce zero-offset

FIG. 2-Preferred range-changing method, in which effective
current gain is set by a known attenuator

Reduced Zero-Offset

with the 10^{4} ohm circuit exhibited zero-offset which exceeded the peak-to-peak thermal-agitation noise by a factor consistently less than 7.
The amplifier to be described uses the contact modulator mentioned above, and has characteristics approaching closely the limits imposed by the contact modulator. The amplifier zero-offset is at the same time less than 1 microvolt and less than 1×10^{-12} ampere.

Amplifier Design

The amplifier is arranged primarily for current measurement, as shown in Fig. 1 and in more detail in Fig. 2 and 3. It employs the parallel-type feedback useful for current measurement. ${ }^{1}$ The action of the circuit is to reduce the current into the input converter to a small fraction of that flowing in R, thus causing the steady-state impedance between the input terminals to be very low (a small fraction of R, so that measurements are of the null-current type).

All amplification in the system is done at a carrier frequency of 60 cps in R-C coupled amplifier stages having poor low-frequency transmission characteristics. Synchronous rectification of the a-c amplifier output and overall d-c feedback are used to stabilize the effective gain to a high degree. ${ }^{1}$ The d-c feedback current, or the d-c voltage developed across a part
of the feedback circuit, is used as the amplifier output and hence as a measure of the input quantity.

With sufficient gain built into the forward or μ path of the amplifier, the effective current gain is determined solely by the ratio of resistances R and R_{f}. This ratio must, therefore, be accurately known. In a single-range model of the amplifier, following the arrangement of Fig. 1, the ratio R / R_{f} was made 2 $\times 10^{\circ}$ so that a 100 -microampere output instrument was deflected fully by an input of 50×10^{-12} ampere. The zero-offset of 1×10^{-12} ampere caused by the input converter thus amounted to only 2 percent of the range.

A zero-offset representing at once a current of 1×10^{-12} ampere and 0.5 microvolt dictates an input circuit impedence of 0.5 megohm. However, because the amplifier was meant to be primarily currentsensitive, a value of 1 megohm was chosen for R to favor the performance for current measurements. The amplifier input circuit impedance is thus about 1 megohm, since it is largely determined by the value of R, and the maximum zero-offset represents both 1×10^{-13} ampere and 1 microvolt. Powerwise, this is 1×10^{-18} watt.

The good current sensitivity of the arrangement just described suggests its use for voltage measurements. The adaptation is sim-
ple, the only requirement being the inclusion of an accurately known resistance in series with the cur-rent-measuring terminals. A second 1-megohm resistor has been included for this purpose, as shown in Fig. 3, giving the instrument a basic voltage range of 50 microvolts with a current drain of $5 \times$ 10^{-11} amperes at this input voltage ($20,000,000,000$ ohms per volt).

Range Changing

The usefulness of an amplifier as a measuring instrument is greatly enhanced by the provision of mul-tiple-range features. Range-changing can be accomplished in this type of amplifier by varying the ohmic value of R or R_{f} (Fig. 1), by varying the portion of R traversed by the unkuown current, or by changing the ratio of the current flowing in R_{f} to the total output current. An early method of range-changing for a current-measuring amplifier ${ }^{1}$ consists of connecting one input terminal to a movable tap on the known resistance R. The current gain then depends upon the position of the tap. This method has the advantage of keeping essentially constant the $\mu \beta$ product of the amplifier, hence its stability against oscillation for various ranges. Further, it has the advantage of minimizing the potential drop between input terminals for all ranges; the input impedance,
therefore, is decreased as the range is increased. However, the method has the distinct disadvantage that the noise output of the amplifier appears as a constant fraction of full output, regardless of the current range of the instrument.
The behavior of the amplifier noise output with the range-changing method just mentioned is illustrated in Fig. 4A. Increase in the measuring range with a constantvalued input signal can be seen to result in decrease in the average (desired) output without any corresponding decrease in the noise output. The noise, therefore, represents greater input equivalents on greater ranges.

A preferred range-changing method is one which yields a noise output which diminishes as the measuring range of the amplifier is increased, and also incorporates the advantages of a constant $\mu \beta$. product.

Range-changing by varying the ratio of the current flowing in R_{f} to the total output current produces the desired reduction of the noise output with increasing range. However, any change in this ratio is a change in the feedback transmission β (the attenuation from the output terminals to R_{f} is changed). Range-changing by this method, therefore, can fulfill the constant $\mu \beta$ product requirement necessary
to preferred range-changing only if changes in the value of β for range control are accompanied by simultaneous inverse changes in the value of μ.

This preferred method of range changing is accomplished in the amplifier, as shown in Fig. 2 and 3, by including variable divider networks in both the μ and β paths. Operation of these variable dividers is from a common shaft, and they are so arranged that an increase of attenuation in one divider is accompanied by a simultaneous decrease of attenuation in the other, maintaining the product of the attenuations of the two dividers constant (except for the three lower ranges as explained below). The values of R, R_{f}, and β are chosen so that on its narrowest range, the amplifier has the same current sensitivity as the single-range version mentioned previously in connection with Fig. 1, 100 microamperes output for 50 $\times 10^{-12}$ ampere input. As in the single-range circuit, provision for voltage measurements is made by inclusion of a fixed multiplier resistor, hence the range-changing mechanism provides a voltage range corresponding to each current range.

The changes in output signal and in output noise caused by changing the amplifier range in the preferred way are illustrated in Fig. 4B. The
noise output can be taken to represent a constant noise current (or voltage) at the input terminals of the amplifier.

With a 100 -microampere output instrument, the performance of the amplifier shows a slight progressive falling-off on its 250,100 and 50 micromicroampere ranges. This occurs because the limited forward gain available requires that the $\mu \beta$ product for these three lower ranges be reduced below its value for the other ranges. The fallingoff in performance is most obviously an increase in response time, the time for 99 -percent response on the 50×10^{-12} ampere range being about 6 seconds as compared with about 2.5 seconds for the higher ranges.

When it is essential to have both a 2.5 -second response time and a 50×10^{-12} ampere range, the $100-$ microampere output instrument should be replaced with a 10 -microampere instrument, and the scale multiplier set to 10 (the normal setting for a 500×10^{-12} ampere range). Since 10 -microampere instruments are somewhat special, it has been found convenient to use a fast, narrow-range electronic recorder for the output device. To simplify shielding, a voltage recorder with a 0.1 -volt range has been used by connecting it to terminals in the amplifier normally

FIG. 3-Simplified circuit diagram of multi-purpose contact-modulated d-c amplifier. Calibrated woven-wire 1 -megohm resistor in voltage input lead sets impedance level at 1 megohm
supplying 1.0 volt of output.
The impedance appearing between the input terminals of the amplifier is low for d-c and lowfrequency inputs, for which rebalancing can be completed, but it is higher for higher-frequency inputs, for which rebalancing cannot be completed because of delay. The delay in rebalancing depends on the time-constant of the low-pass filter in the β circuit (Fig. 3) and the gain around the feedback loop. The delay has been found experimentally to result in a rebalancing time of about 2.5 seconds (for 99 percent response to an abrupt change of input) on all but the lower three ranges. An approximate equivalent circuit can be found by a calculation involving the experimen-tally-determined rebalancing time, the experimentally-determined gain around the feedback loop and the circuit values shown in Fig. 3. An equivalent circuit that approximates the amplifier input closely on all but the three lower ranges consists of a 1-megohm resistance shunted by the series combination of a 543,000 -henry inductance and a 1,700 -ohm resistance.

Reducing Zero-Offset

The use of a contact-modulated amplifier avoids most of the zerooffsets connected with amplification which are encountered in directcoupled amplifiers that follow conventional design practices.

Even with contact modulation, however, zero-offsets can arise from disturbances of electric, magnetic, mechanical and thermal nature. ${ }^{1}$ Preventive measures against zerooffset are chosen on the basis of the frequencies of the disturbing signals and their point of entry into the circuit. Zero-offsetting disturbances in the amplifier have been broken down into three classesthose of power frequency, those of radio frequencies and those of lower frequencies in or near the pass-band of the amplifier. The zero-offset resulting from each of these types of disturbance can be attacked nearly independently, using techniques appropriate to the frequency range of the disturbance, as described with considerable detail in a previous paper. ${ }^{1}$

In building the present amplifier

FIG. 4-Comparison of noise behavior with different range-changing methods. A change in deflection between the two highesi ranges can be seen with preferred method (B), bu! not with other method

FIG. 5-The:mall-induced current outputs from resistors using different alloys. Temperature of air surrounding resistors is given in degees C. Alloy B was used for the input resistors of the amplifier
all of the precautions so described were used, but at first the zerooffset was discouragingly large. Its source was traced to the resistors and the capacitors used in the input filter, as shown in Fig. 3.
The one-megohm resistor used for current measurement and the companion one-megohm multiplier resistor added for voltage measurement must be made of wire in order to have a satisfactorily low temperature coefficient of resistance. In order to minimize loops in these resistors and so minimize the voltage developed in them by changing magnetic fields, woven wire resistors are used. Early resistors of this type were suspected of causing zero-offset. Fig. 5A shows the result of a test to determine if this zero-offset resulted from ther-
mal disturbances. A temperature gradient was set up in a resistor of this type by increasing the ambient temperature 20 degrees in $10 \mathrm{~min}-$ utes. The resulting gradient produced a current of about 2×10^{-10} ampere. While this temperature change is more severe than would be encountered under ordinary service conditions, the test showed that production of current by resistors could result in considerable zero-offset. Figure $5 B$ shows the result of a similar test on a resistor of similar construction made from a different resistance alloy. The generated current is small, in spite of the severe temperature change, showing that this resistor qualifies for use in the amplifier.

The four capacitors used in the input filter (Fig. 3) were suspected

FiG. 6-Thermally-induced curcent outputs i:om two different aapacitor constructions. Temperatures of capacitor cases in degrees C are indicated

FIG. 7-Relation of zero-offset to noise in present amplifier (\bar{A}) and early version (B) when both were operating well within their ratings
of causing zero-offset, so they also were given the temperature gradient test. Fig. 6A shows the results of a test on one of the four capacitors using an early type of construction. While the temperature change is more severe than would be encountered under ordinary service conditions, it is evident that use of such a capacitor could result in considerable zero-offset. Figure 6 B shows the effect of a similar temperature change on a mica capacitor ${ }^{7}$ of about the same capacitance value. The generated current was small, in spite of the severe temperature change, showing that this capacitor is qualified for use in the amplifier.

Figure 7A shows a typical record of the output of the amplifier equipped with good resistors and capacitors. At one time when the zero-offset appeared to be about 0.35×10^{-12} ampere a signal of -0.35×10^{-12} ampere was applied to the input, bringing the average output back to the zero-output line. From more extensive tests it appears that the zero-offset will not exceed 1×10^{-18} ampere. Using this figure, the ratio of maximum zerooffset current to theoretical peak-to-peak noise current is $1 \times 10^{-12} /$ $0.65 \times 10^{-12}=1.6$.

Figure 7B shows for comparison a typical record of the amplifier described in a previous paper ${ }^{1}$ for
which the ratio of maximum zerooffset voltage to theoretical peak-to-peak noise voltage is $0.5 \times 10^{-8} /$ $0.073 \times 10^{-6}=7$. The present amplifier therefore shows a factor of improvement of more than 4 based on the figures of merit represented by these ratios.

Applications

The amplifier which has been described in this paper is not commercially available; to date only a few experimental units have been built. The units which have been completed, however, have found a number of uses in our own investigations and elsewhere.

As might be suspected from its characteristics, the amplifier is particularly well suited to the measurement of insulation resistance; its current sensitivity permits the measurement of high resistances with only small applied potentials. For example, with only 1 volt applied, a micro-micromho of leakage can be detected.

Its capabilities in making highresistance measurements make the amplifier useful in studies of capacitor dielectrics. In addition to the simple insulation resistance characteristics of dielectrics, the phenomena of absorbed charge in capacitors, residual and thermal outputs from capacitors and current outputs from resistors are effects which have been studied with the amplifier.

The authors are grateful to J. W. Harsch, W. D. Voelker and C. A. Alberts for the mica capacitors used, and to W. H. Packer for his continuing assistance in the development of the contact modulator.

References

(1) A. J. Williams, Jr., R. E. Tarpley and W. R. Clark, D-C Amplifier Stabilized for Zero and Gain, AIEE Transactions, $67, p 47,1948$
(2) J. B. Johnson, Thermal Agitation of Electricity in Conductors, Physical Review, 32, p 97, July 1928.
(3) H. Nyquist, Thermal Agitation of Electric Charge in Conductors, Physical Review, 32, p 110 , July 1928
(4) K. G. Jansky, An Experimental Investigation of the Characteristics of Certain Types of Noise, Proc. IRE, 27, p 763, (5) V. D. Landon, A Study of the Characteristics of Noise, Proc. IRE, 24, p 1,514, Nov. 1936
(6) V. D. Landon, The Distribution of Amplitude with Time in Fluctuation Noise, Proc. IRE, 29, p 50, Feb. 1941. (7) C. E. Applegate, Capacitor Requirements of a Manufacturer of Electrical
Measuring Instruments, Proc. Symposium Measuring Instruments, Proc. Symposium
Improved-Quality Electronic Components, p97, May 1950 .

Field-Power Conversion

Direct-reading conversion chart enables quick transfer of propagation data from fieldstrength to power-density values. Gain in db above 1 microvolt per meter and gain or loss in db above 1 microwatt per square meter shows at a glance

IN calculations involving propagation curves it is often convenient to do the computation in terms of power density rather than in terms of field strength, which is given in most propagation curves. Changing field intensity into power density can be greatly simplified by the conversion chart.

The chart is based upon the equation

$$
P=\frac{E^{2}}{120 \pi}
$$

By ROBERT E. PERRY

Electrical Engineer
Bocing Aircraft Co. Seattle, Washington
where E is the field intensity, P is the power density and 120_{π} is the resistance of free space.

The conversion chart is direct reading. A value on the left scale
can be found in terms of the scale on the right side by reading directly across, or it can be read in terms of the upper or lower scale by reading over to the diagonal line and then up or down to the desired scale.

For example, a field of $500 \mu \mathrm{v}$ per meter corresponds to a power density of approximately $7 \times$ 10^{-10} watts per square meter. It is 54 db above $1 \mu \mathrm{v}$ per meter, or about 32 db below $1 \mu \mathrm{w}$ per square meter.

Electrical Characteristics

Resistance Values

Various ranges from $1 / 2$ ohm up to 150,000 ohms.

Standard Tolerance

$\pm 10 \%$; special tolerances available.

Available Tapers

Linear taper is standard. Special combinations can be supplied.

Ratings

for loads of 2,4 and 7 watts.

Wire Woumd Controls

offer designers wide range of types and ratings

From television, through a host of industrial uses, to precision instrumentation... Mallory wire wound controls find a host of applications. And all of the necessary type and rating variations are found in the group of four shown above.

Precision windings, durable contacts and rugged construction make Mallory wire wound controls more than a match for the exacting demands of critical services ... and contribute to the dependable performance for which all Mallory components are known.

Further information is available on request.

Television Tuners, Special Switches, Controls and Resistors SERVING INDUSTRY WITH
Electromechanical Products
Resistors Suitches
TV Tuners Vibrators

Electrochemical Products Capacitors Rectifiers Mercury Dry Batteries

Metallurgical Products
Contucts Special Mretals
Welding Materials

P. R. MALLORY \& CO., Inc., INDIANAPOLIS 6, INDIANA

TUBES AT WORK

Including INDUSTRIAL CONTROL

Edited by RONALD K. JURGEN

Radio to Save Lives 136
Automatic Sheet-Folding Machine 138
Impedance Measurement at Audio Frequencies 138
Ultrasonic Soldering Iron 154
A-M or F-M for British VHF Broadcasting 158
Electronic Shuttle-Bonding Technique 166
An Automatic Time Announcer 170
Circuit Printers for Flat and Cylindrical Surfaces 178
Automatic Audio Level Riding 190
Wide-Range Voltage Regulators 202
Aircraft Communication System 210

Radio to Save Lives

The Air Force's big A-3 lifeboat, dropped by parachute in air-sea rescue operations, will soon have radio control that will bring it up to survivors, allow them to board and then set the boat on course by an operator in the plane which dropped the boat. By simply maneuvering a stick on a small control box he can take over when the A-3 hits the water and keep control un-
til the survivors can take control. The A-3 itself is of all-metal construction, measures 30 feet long and is designed to carry 15 men. It is powered by a four-cylinder water-cooled engine, housed in a water-tight compartment. Carried "bombed up" under the SB-29 (research and rescue version of the B-29 bomber), the A-3 is dropped by a 100 -foot parachute.

The new radio-controlled lifeboat is shown just after being released from beneath a Boeing SB-29 Superfort

When the boat hits the water, the chute is jettisoned by an explosive charge. A sea anchor goes out as the chute is released and holds the boat in position.

Before development of the radiocontrolled system, the A-3 was dropped in the vicinity of the survivors, allowing for drift. The sea anchor held it in place, and if all went well the survivors drifted down to the boat. With the new system, the boat comes to them.

Transmitter and Receiver

After the chute is jettisoned, the operator in the carrier plane takes over on a five-frequency transmitter which is matched up by a fivefrequency receiver in the boat. He sends his first signal from the control box. This, in order, releases the stabilizing fins which held the boat steady in descent, frees the rudder board, opens the engine's air vents and cranks the motor intermittently. When the motor catches and is running at a fast idle, the sea anchor is released.
At the operator's next signal, the engine speeds up, the reduction gear goes into forward, and the boat moves ahead. The operator can control its direction right and left and a flux-gate gyro compass connected to the servo electric system on the boat will keep it on whatever course he sets.
The operator stops the boat when it comes up to the survivors' raft and idles the motor while they board. The boat is equipped with a walkie-talkie radio set for communication between the rescued men and the operator in the plane, who will then set the A-3 on its correct course. The gyro compass will keep it on that course with only slight variations that can be checked by a magnetic compass.

The boat itself is equipped with duplicate controls and a manual over-ride which would enable the survivors to break off the radio control at any time.

The A-3 is equipped with rations, survival equipment and gasoline enough to cruise 800 miles. If the distance is longer than that, the boat can be resupplied from the air, since its preset course will be known.

The system, developed by the

The finest solder made
for all television and radio work
. . . Everything Electrical

Kester Plastic Rosin-Core and Kester "ResinFive" Core Solders are recognized by the

Kester Solder

 Uniform trade as outstanding for the finest type of radio, television and electrical work.These two Solders, which are available in the usual single-core type, can now also be had in a 3 -core form.

Only highly skilled craftsmen are employed by the Kester Solder Company. Flux formulas and specifications are rigidly adhered to for perfect uniformity.

WRITE FOR FREE COPY "SOLDER AND SOLDERING TECHNIQUE"

Be sure to get your free copy of Kester's Technical Manual filled with valuable information regarding the most advanced and efficient industrial solders and fluxes.

KESTER SOLDER COMPANY
4204 Wrightwood Avenue, Chicago 39, Illinois Newark, N. J. - Brantford, Canada

Making Kester Solder is an exact science from the raw material to the finished product. Everyone knows and prefers Kester because it can be relied upon to do the job right every time, even under the most difficult soldering conditions.

Equipment Laboratory of the Air Materiel Command and built by the Westinghouse Electric Corporation, is expected to be completely in-
stalled in all the Air Force's A-3 boats by early 1952. Transmitters have already been installed in all SB-29's.

Automatic Sheet-Folding Machine

By Ronald C. Walker

Reading, England

Photoelectric relay equipment was recently installed in a British laundry for the purpose of folding sheets. The apparatus performs the operations which previously required the attention of two girls and ensures that the laundered sheets are neatly folded twice in the same direction.

Before reaching the detecting point in the various stages of processing, the sheets pass through an ironer and thence are fed on to a conveyor comprising a number of parallel webbing belts. When each sheet reaches a certain point in its forward travel on this conveyor, the leading edge intercepts a light beam which actuates the relay in an associated amplifier.

The photocell relay admits air pressure to a series of pneumatically operated claws arranged in line at right angles to the direction of motion. The leading edge of the sheet is then gripped and held and at the same time slightly raised above the moving belts which con-
tinue to carry the end portion of the sheet forward and underneath the stationary front edge, so that a fold is formed.

When the two halves just overlap one another, the fold is complete and the trailing edge uncovers the light beam again. The claws then release and the sheet travels forward in the folded condition.

After the first fold, the sheet moves on to another detecting point where the process is repeated with the aid of a second and similar photoelectric equipment, thus giving a second fold.

Though the photoelectric apparatus in this particular case is employed for folding sheets, it is equally applicable to industries where textiles, leather, paper and so forth have to be handled in the same way.

A further application of lightsensitive cells in the laundry has resulted in considerable saving of fuel. After the clothes are washed, they are dried by passing on a mov-

Automatic sheet-folding machine operated by photocell relay circuits
ing conveyor around a room heated by a steam radiator. The drying process is accelerated by means of a fan which circulates the hot air. The fan, which is controlled by a simple photoelectric relay, is in the circuit as long as the light beam spanning the room is intercepted by the clothes being carried around on the conveyor.
If, for any reason, there is a temporary hold up in the material being loaded on the conveyor, the light beam is no longer obscured and the fan is shut down. As soon as more clothes come along, it starts up again. This ensures a considerable saving of fuel by preventing the operation of a large fan when no clothes are in the room for drying purposes.

Impedance Measurement at Audio Frequencies

By Paul W. Klipsch
Klipssh and Associates
Hope, Arkansas

DURING the course of loudspeaker development, the necessity for making voice-coil impedance measurements was continuous. The inductometer impedance bridge was capable of yielding the desired information but was slow due to the necessity of balancing simultaneously the resistive and reactive components. Several methods involving a single resistance balance to obtain equal voltages across a calibrated resistor and the unknown were tried.

The most desirable indicator was found to be a cathode-ray oscilloscope in which the vertical and horizontal deflections serve respectively for the voltage measuring devices across the unknown impedance and across a calibrated variable resistor.

In Fig. 1, R is a calibrated slidewire resistor or decade box and Z is the unknown impedance. The cathode-ray oscilloscope is illustrated in simplified form.

Operation

The operation is as follows: a known resistor is substituted for Z, preferably of a value within the known range of variation of Z.
(continued on page 154)

Same v-a rating! At the left is a filament transformer for a radio transmitter wound with double vinyl-acetyl insulated wire and impregnated with synthetic varnish. It is rated at 1,000 hours life under $85^{\circ} \mathrm{C}$. ambient temperature operation. At the right is the same transformer, redesigned, and wound with CEROC 200 and impregnated with silicone resin. It has a rated life of 10,000 hours at $160^{\circ} \mathrm{C}$. ambient temperature operation!

Shrink the size ot small transformers, chokes, relay coils, and other wire-wound electrical components by winding them with Sprague's CEROC 200 Magnet Wire.
This wire has an exclusive ceramic-silicone insulation which permits continuous operation at $200^{\circ} \mathrm{C}$. Size for size, it safely carries far larger currents than ordinary magnet wires using conventional insulating materials. Consequently, CEROC 200 can save both copper and magnetic materlals for you.

Write for Engineering Bulletins 401 and 403B
Croc $T_{\text {Wherever higher temperatures and severe mechan- }}$ ical stresses are present, investigate CEROC T, the most heat-resistant of all magnet wires! For specifications on this $250^{\circ} \mathrm{C}$. ceramic-Teflon insulated wire, write for Engineering Bulletin 402F.

[^11]
THE ELECTRON ART

Edited by JAMES D. FAHNESTOCK

Converter Circuit for Phase-Shift Telemetering.................... 140
A New Analog Computer. 216
Measuring Power Factor of Low-Loss Dielectrics 224
Self-Erecting Weather Station. 232
Zero-Impedance Power Supply Termination 240
Stress-Strain Recorder . 244

Converter Circuit for Phase-Shift Telemetering

By F. G. Willey
Servo Corporation of America
New Hyde Park, New York

Telemetering is the name commonly applied to the transmission of data from one location to another. A quantity which is to be telemetered may be of one of two types: (1) A scalar quantity has a value which lies between two specified numerical limits. (2) A cyclic quantity, such as the angular position of a shaft, has no minimum or maximum limits and is capable of continuous rotation.

A cyclic quantity may be expressed as a periodic pseudo-scalar quantity, as in angular measurement where we count up to 360° and then arbitrarily start counting
again from zero. In many servo and telemetering applications, the arbitrary jump to zero is inconvenient to mechanize.

A cyclic quantity may also be expressed, or recoded, into two or more continuous periodically-varying scalar values. This produces a system having no discontinuities but requiring two or more channels for transmission. A common example of this is the standard synchro which codes the position of a shaft as relative amplitudes of three carrier voltages:
$E \sin \omega t \sin \theta$ $E \sin \omega t \sin \left(\theta+.120^{\circ}\right)$

Commercial plug-in assembly containing two synchro-data telemetering circuits

$$
E \sin \omega t \sin \left(\theta+240^{\circ}\right)
$$

where θ is the angle of the synchro shaft.

Coding Systems

Since the data to be transmitted actually represents only one quantity (angle) it should be possible to find a means of coding which would produce a single transmittible signal which is cyclic in nature rather than scalar. A quantity which has the required characteristic is the phase shift of a single frequency carrier from a reference wave of the same frequency. Thus in order to transmit N different cyclic quantities, it is necessary to transmit $(N+1)$ sine waves of the same frequency, the extra one being (continued on p 212)

MEASURING POWER FACTOR OF LOW-LOSS DIELECTRIC MATERIALS

Equipment used at National Bureau of Standards for making power factor measurements on low-loss dielectrics. Measurements as low as 10^{-4} may be made to three significant figures from 1 kc to 300 mc . In the center is the micrometer electrode and coil mounted on negative resistance circuit. Power supplies and measuring instruments are shown in background. (For complete details and circuitry, see p 224)

50 kc . to 75 mc .

This large $41 / 2^{\prime \prime}$ open faced dial has eight overlapping frequency ranges, each calibrated directly in kilocycles or megacycles, with scales conveniently divided for maximum readability. A vernier dial drive enables fine settings to be made with ease. All frequency ranges are accurate to within $\pm 1 \%$ except the $50-75$ megacycle range which is accurate to $\pm 3 \%$. The clearly marked range change switch located directly beneath the frequency dial facilitates rapid and positive selection of the desired frequency band.

Radio frequency circuit design often requires the accurate measurement of Q, inductance and capacitance values. For this application the Type 160-A Q-Meter has become the uncompromising choice of radio and electronics engineers in this country and abroad.

Each component part and assembly used in the manufacture of this instrument is designed with the utmost care and exactness. Circuit tolerances are held to values attainable only in custom built instruments.

With the 160-A Q-Meter, as with other Boonton Radio Corporation instruments, the keynote in design is to embody accurate direct reading features which save time and simplify operation.

SPECIFICATIONS

Oscillator Frequency Range: 50 kc . 1075 mc . in 8 ranges.
Oscillator Frequency Accuracy: $\pm 1 \%, 50 \mathrm{kc} .-50 \mathrm{mc}$.

$$
\pm 3 \%, 50 \mathrm{mc},-75 \mathrm{mc} .
$$

O Measurement Range: Directly calibrated in $\mathrm{Q}, 20250$. "Mul-fiply-Q-By" Meter calibrated at intervals from $\times 1$ to $\times 2$, and also at $\times 2.5$, extending Q range to 625 .
a Measurement Accuracy: Approximately 5% for direct reading measurement, for frequencies up to $\mathbf{3 0} \mathbf{m c}$. Accuracy less at higher frequencies.
Capacitance Calibration Range: Main capacitor section $\mathbf{3 0 - 4 5 0 ~ m m f , ~}$ accuracy 1% or 1 mmf whichever is greater. Vernier capacitor section $\mathbf{+ 3} \mathbf{~ m m f , ~ z e r o , ~} \mathbf{- 3} \mathbf{m m f}$, calibrated in 0.1 mmf steps. Accuracy $\pm \mathbf{0 . 1} \mathbf{~ m m f}$.
Catalog " H " containing further information available upon request.

DESIGNER' AND MANUFACTURERS OF THE O METER - OX CHECKER frequency modulated signal generator - beat frequency GEN ${ }^{\text {H ATOR ATO }}$ AND OTHER DIRECT READING INSTRUMENTS

2 Q-TUNING CAPACITANCE DIALS.

L-C dial serves iwofold purpose of (1) conveniently and aceurately indicating luning capacitance directly in MMF, and (2) providing an effective inductance scale which also becomes direct reading at certain defined frequencies shown on frequency reference plate. Incremental capacitance dial at right calibrated from +3 MMF through zero to -3 MMF , accurate to $\pm 0.1 \mathrm{MMF}$.

Q-VOLTMETER AND MULTIPLIER METER.

For the indication of Q values the 160-A Q-Meter employs a Weston Model 643 Meler calibrated directly in terms of Q over the range from 20-250. The damping of the meler movement is ideal for the rapid determination of exact resonance withoul sluggishness or overshoot. The lance type pointer enables Q readings to be obtained to the nearest unit. Located directly beneath the \mathbf{Q} volimeter is the "Multiply-Q-By" meter which provides Q multiplier factors of X 1 to X 1.5 in 0.1 steps, $X 2$, and $X 2.5$ thereby extending the useful range of Q indication to 625 . This meter is carefully matched to a particular thermocouple element for maximum accuracy.

NEW PRODUCTS

Edited by WILLIAM P. O'BRIEN

Interesting Laboratory Devices Are Featured . . . Technical Data
Are Given for New Miniature Equipment . . . Thirty Bulletins

Are Described

Lighthouse Tube

General Electric Co., Schenectady, N. Y., has put into production another in the series of lighthouse tubes used in radar during World War II. The GL-2C39A high-mu triode can also be used in radio communications and other military equipments. Its nonmilitary applications include aircraft traffic and location controls, broadcast relay equipment, microwave test apparatus, and utility telemetering and communications systems. The tube can operate at full rating up to frequencies as high as $2,500 \mathrm{mc}$. Maximum d-c plate voltage is 1,000 volts and dissipation is 100 watts.

Square-Wave Generator

Electro - Mechanical Researcif, Inc., Ridgefield, Conn. Model 43A square-wave generator is
a versatile laboratory instrument for use in testing audio, video and r-f amplifiers and networks. It includes a wide-range variable-frequency multivibrator that drives a two-stage clipper circuit to produce negative-going square waves. Freqency range is from 6 cycles to $1,000,000$ cycles with self-contained generator. Output voltage is approximately 24 volts peak-to-peak when the generator is operated on a 115 -volt line. The voltage is delivered at the end of a 300 -ohm transmission line that is 24 in . long from driving point to termination. Power consumption is approximately 125 watts at 115 volts, 60 cycles.

Laboratory Monitor

Tracerlab, Inc., 130 High St., Boston 10, Mass. Developed specifically for use as a routine contamination monitor in radioactivity laboratories, the SU-3B laboratory monitor is especially useful for several important applications. They are: checking laboratory bench tops for contamination; checking laboratory glassware in tracer experiments for adequate decontamination; steady monitoring of laboratory background counting rate to detect large scale fluctuations; and monitoring fingertips and laboratory coats for contamination. The
instrument is compact, direct reading and a-c operated, and it has three full-scale meter ranges of 200 , 2,000 and 20,000 counts per minute. It comes completely equipped including a mica end-window Geiger tube enclosed in a detachable probe assembly connected to the instrument by a convenient length of flexible cable.

Stroboscope

The Synchroscope Co., 57 William St., New York 5, N. Y., has introduced a portable flashlight-type stroboscope capable of indicating synchronous speeds. It is ideal for production and laboratory testing as well as field servicing of synchronous motors, time switches, timing devices, aircraft motors, generators, business machines and other devices using synchronous speeds. The instrument uses an electronic cold-cathode triode tube that rectifies the line source and gives off a pulse of light only during the positive portion of the a-c cycle.

High-Power Amplifier
Newcomb Audio Products Co., 6824 Lexington Ave., Hollywood 38,

RAYTHEON FILAMENTARY SUBMINATURE TUBES
 for supreme reliability and long life

 for supreme reliability and long life for supreme reliability and lonalife for supreme reliability and lona life for supreme reliability and lona life for supreme reliability and lona life DICTAPHONE CORPORATIONdid it - checked the average life of over 25,000 RAYTHEON CK 510 AX Subminiature Tubes used in their Time-Master Transcriber and found these rubes were good for five years of operation (more than 9000 hours on the job) before replacement could be expected.
Performance like this is taken for granted by thousands of users of Raytheon Subminiature Tubes. That's why they are standard throughout the world - more of them in use than all other makes combined. car cuoreme reliability and lona life Annalife

Typo No.	Remarks
heater cathode typls	
CK5702/CK605Cx	Charocteritice of 6AKS
CK5703/CK6086x	Triode, Uhf Oscillotor, \% wats of 500 me
CK5704/CK6088X	Diode, equiviont io one.hall oxis
CK5744/CK619Cx	Triode, High mu,
CK5784	Characterisicic of 6AS6
CK5829	Simiar io onls
CK5975	Triode, Amplifier Orsillotor
CK5999	Hall Wove Refifier
flament types	
1 1AD4	Strielded Rf Periode
iags	Diode: Pentodo Det, Ampifitier
1 AH4	Pentode, \&f Amplifier
2 231.38	Shielded RF Pentode for pocke rodio
2E35-36	Outpu Pontiode for pochet rodia
2621-22	Triode Heptode for pocket radio
Rx61	Gas Tridet, Exp, Rodio Control
Cxsionx	Deuble Space Charge Terode Amplifier
Cxsi2ax	Low microphonic vologe amplificr
cks2isax	Ouput Pentode
crs27ax	Ouput Pentiode 15 me. fitioment
CK529ax	Shielded Outpul Pertode
CKS34AX	Volage Amplifier
crs3sax	Oriput Pertode
CxS74ax ${ }^{\text {a }}$	Stielded Periode ef Amplitier
CK5672	Ouput Pentode
CK5676/CK556AX	Triode, UHF Oxillator
cK5677/ck568Ax	Tiodes UHf Osciliaror
CK5678/Cx 3694 x	Stolded RF Pemiode
ck5697/C5570ax	
CK5785	High vaitge restifier
CK5851	Closic. Rf beom Terode
CK5886/CK571AX	
cksbby	7.5 mo . filoment electrometer pentode Ig=3x10.15 amps. mox.
CK6029/CK5734X	Triode, High frea. Oscillor
CK6050	Triode, UHF Osillator
CK6088/CK522AX	Oulput Pentode
voltage regulators	
CK5783	Voltogo reference tube - like 5651
CK5787	Voltapo regulater
CK * ${ }^{\text {(1) }}$ RK (1)	

Calif. Model E-50D amplifier provides two individual 25 -watt output channels on separate controls for a total of 50 watts of undistorted audio power. Flexibility makes it ideal for installations in which individual control is desirable simultaneously for two auditoriums of different power requirements. It has inputs for three microphones and one phonograph. Distortion is less than 5 percent for each 25 -watt channel. Ample inverse feedback insures good output regulation. An amplifier jack on the chassis permits connecting another E-50D thus providing a total of 100 watts from four separately controlled channels.

Small Oscilloscope

The Hickok Electrical Instrument Co., 10527 Dupont Ave., Cleveland 8, Ohio. Model 380 Miniscope has a frequency coverage to 2.5 mc and features a sensitivity of 0.1 rms volt per inch, direct connection to c-r tube elements, provision for z -axis modulation and a telescopic light shield. It is designed for industrial and laboratory engineering use. The instrument measures 6 in. wide $\times 9$ in. high $\times 13 \pm$ in. deep, and weighs only 14 lb . Price is approximately $\$ 290$.

Isotope Ratemeter

The Victoreen Instrument Co., 5806 Hough Ave., Cleveland 3, Ohio. The model 524 is a laboratoryquality counting ratemeter for detecting and measuring alpha, beta and gamma radiation. Six ranges of sensitivity are provided with full-scale readings from 300 to 100 ,000 counts per minute. A three-
position time-constant selector and an enclosed loudspeaker for aural monitoring are featured. Provision for a scintillation counter as well as adaptability for various specialized counter tubes are incorporated. The instrument requires 110 volts a-c.

Variable Loudness Control

International Resistance Co., 401 N. Broad St., Philadelphia 8, Pa . Revolutionary in the continuously variable audio-compensated control, as opposed to former single or double-tapped, or stepped-type controls, the type LCI offers the following advantages: greater smoothness of adjustment; easy installation, requiring only three connections; less space requirements than previous controls now on the market; and it is less expensive than controls with required taps or the step-type control and associated components previously required to get equal performance. Complete information as to installation, performance and specifications is found in a 14-page leaflet, with full charts and graphs.

D-C Capacitors

General Electric Co., Schenectady 5, N. Y., has available a new line of capacitors that meet all the requirements of F characteristics of JAN-C-25 for 100 -volt d-c units. For applications where an expected
life of 1,000 hours is satisfactory, the rating can be increased to 150 volts and temperatures to 40 C . Test results show that there is negligible change in capacitance from -40 C to 105 C and the units give full life expectancy at temperatures as low as -55 C . These thin-paper, thinfoil capacitors are comparable in all ways with previously offered paper dielectric units and, in addition, are smaller in size and lighter in weight.

Germanium Diode

Berkshire Laboratories, 506 Lexington Road, Concord, Mass. The GCD-1 high-back-resistance germanium diodes pass JAN-1A crystal specifications for cycle immersion in hot and cold water and for temperature cycling. Continuous reverse working voltage is 80 volts maximum ; peak back voltage for zero dynamic resistance is 90 volts minimum; ambient temperature range is -50 to +75 C ; average life, more than 10,000 hours; and shunt capacitance, $0.8 \mu \mu \mathrm{f}$. The diodes operate satisfactorily from $\mathrm{d}-\mathrm{c}$ to above 100 mc . Price is $\$ 2.50$.

Electronic Counter

General Control Co., 1200 Soldiers Field Rd., Boston 34, Mass., (continued on page 248)

Pyramid Type PG "GLASSEAL'" miniature paper capacitors are assembled in metal tubes with glass-metal terminals. They will fully meet the most exacting demands of high vacuum, high pressure, temperature cycling, immersion cycling and corrosion tests.

TEMPERATURE

RANGES: -55° to $+125^{\circ} \mathrm{C}$.
CAPACITANCE
RANGE:
.001 mfd . to 1.0 mfd .
VOLTAGE RANGE: 100 to 600 v.d.c. operating

Your inquiries are invited

PYRAMID Electric Company
 OENERAL OFFICES and PLANT MO. I
 1445 HUDSON BLYD. - NORTH BERGEN, N. J.
 PLANT NO. 2
 155 OXFORD ST. - PATERSON, N. J.

NEWS OF THE INDUSTRY

Edited by WILLIAM P. O'BRIEN

NBS Opens New Lab Center

Aerial view of National Bureau of Standards' Corona, Calif., laboratories

Establishment of a new National Bureau of Standards laboratory center at Corona, Calif., to be devoted to various phases of electronic research, development and engineering was recently announced. To be known as the Corona Laboratories, the new center will be primarily concerned with technical problems of importance to the Department of Defense. About 22 buildings formerly used by the Navy are being renovated to accommodate NBS research and development activities being transferred there from Washington. Limited operations began at the laboratory in June and fullscale operation is planned for September.
In the near future the most important activity at the Corona laboratories will be the development of guided missiles. Every phase of missile development will be covered, from theoretical and applied research to construction of experimental parts and units. An analog computer is being set up in the laboratories to be used in flight simulation problems where trajectories of guided missiles must be computed mathematically. The computer, occupying about 1,000 square feet of floor space, can solve problems in minutes that would take
trained mathematicians weeks to solve. Other equipment at the new center will include electronic laboratories, machine shops, wind tunnel, jet engine test cells and altitude chambers.

Technical Writers Needed

An urgent need for technical writers exists in the Ordnance Development Division of the National Bureau of Standards. Salaries range from $\$ 4,600$ to $\$ 6,400$, depending upon the applicants' experience and education.

This Division is engaged in research and development of electronic ordnance devices for the armed forces. Examples of the type of work reported in the division are:
(1) Experimental work in energy radiation and propagation, static fields, electronic systems and electronic circuitry for military applications.
(2) Development of radio transmission lines and filters, antenna designs and radiation and collection systems, and research and development in electronic circuits for these systems, including gating circuits and servo loops.
(3) Electronic packaging and
production techniques on electronic assemblies.
(4) Design and development of electron tubes to meet unusual requirements.
(5) Statistical analysis of field test data, including studies directed toward devising new and better testing plans and techniques.

Further information concerning the work and the benefits of Govcrnment employment can be had by writing to the Personnel Officer, Division 13, National Bureau of Standards, Washington 25, D.C. A booklet describing work at the Bureau will be sent on request.

FCC Nonbroadcast Applications

The Federal Communications Commission in announcing revision of its Form 401, "Application for New or Modified Radio Station Construction Permit (Other than Broadcasting)", warns that applicants who use the old, unrevised form after August 1, 1951, may have the application returned. The new form will contain questions involving recently adopted Part 17 of the rules that concern the construction, marking and lighting of antenna towers and supporting structures.

RTMA Election Report

Robert C. Sprague, president of the Sprague Electric Co., was reelected chairman of the board of directors of the RTMA at its recent convention in Chicago. The board also reelected Leslie F. Muter as treasurer, and renamed W. R. G. Baker as director of the engineering department, James D. Secrest as secretary and general manager, and John W. Van Allen as general counsel.

Two new directors and 12 former directors were elected. The new directors are Robert S. Alexander, president of Wells-Gardner \& Co, and Harlan B. Foulke, vice-president and director of sales of Arvin Industries, Inc. Reelocted for three-year terms are: Benjamin Abrams of Emerson Radio \& Phonograph Corp.; Max F. Balcom of
 $s=11$ at comperitive prices.
MODELS LLUSTRATED

CU14. Three speed Phonograp unit with high fidelity pick-F a ad atomatic stop. The pick-LF is comple with two pernenent sapphire stylii and the turntable is fitted with removabe abter nuat. MU14. Three speed Phanomotor. Speec change is effected mercly by rotation of the sxex change snots. The turitable dimeter is 10 inches. MUIS. Fhonomotor fo 78 R.P.M. ony enploys an 8 inch diameter furntable and is extremely robust reliable and inexpensive.

> Further selails cowiable on apmicaren.
> U.S. Warehow.e and Ofmces

SAMCO PRODUCTS COMPANY
36 Oak Avenue, Tuckahoe, $\mathbf{N}_{\text {. }} \mathbf{Y}$.
Telephone: Tuckaboe 3-9391

Made by Birmingham Sound Reproducers Ltd., Old Mill; Stafis. England Grams: 'Electronic Old Mill, Cradley Heath.'
H. C. Bonfig of Zenith Radio Corp.; Herbert W. Clough of Belden Mfg. Co.; John W. Craig of Crosley Division, Avco Mfg. Corp. ; E. G. Fossum of Stewart-Warner Electric Div.; G. Richard Fryling of Erie Resistor Corp.; J. J. Kahn of Standard Transformer Corp. ; F. R. Lack of Western Electric Co., Inc.; W. A. MacDonald of Hazeltine Electronics Corp.; and A. D. Plamondon, Jr., of The Indiana Steel Products Co.

Revised Maritime Service Rules

The Federal Communications Commission has announced an order making overall revisions to Part 7, Coastal and Marine Relay Services and Part 8, Ship Service, of their Rules and Regulations, effective July 23, 1951.

Although the order is so voluminous, some 300 pages, that copies are not generally available, it is planned to publish it in a future single issue of the Federal Register. This edition can be ordered prior to publication at about 20ϕ a copy from the Superintendent of Documents, at U.S. Government Print-

MEETINGS

AUG. 15-18: 1951 APCO Conference, Everglades Hotel, Miami, Florida.
Aug. 17-18: 12th Annual Summer Seminar of the Emporium Section of IRE, Emporium, Pa .
Aug. 20-23: AIEE Pacific General Meeting, Multnomah Hotel, Portland, Oregon.
Aug. 22-24: Seventh Annual Pacific Electronic Exhibit and West Coast Annual IRE Convention, San Francisco Civic Auditorium, San Francisco, Calif.

AUG. 28-SEPT. 8: Eighteenth British National Radio Show, Earls Court, London, England.

Sept. 10-13: Annual Electronic Parts Distributors' Convention and Show, Cleveland Auditorium, Cleveland, Ohio.
Sept. 10-14: Sixth National Instrument Conference and Exhibit, sponsored by Instrument Society of America, Sam Houston Coliseum, Houston, Texas.

Ост. 2-4: Twenty-Eighth Annual Session of the Communications Section of the Association of American Railroads, Chateau Frontenac, Quebec, Canada.

Ост. 8-10: AIEE Conference on Aircraft Equipment, Hollywood Roosevelt Hotel, Los Angeles, Calif.

Ост. 22-24: 1951 National Electronics Conference, Edgewater Beach Hotel, Chicago, Ill.

Ост. 22-26: AIEE Fall General Meeting, Hotel Cleveland, Cleveland, Ohio.

Oct. 29-31: Radio Fall Meeting, sponsored by IRE, and RTMA, King Edward Hotel, Toronto, Ontario, Canada.

Nov. 1-3: Third Annual Convention and Audio Fair Exhibition of the Audio Engineering Society, Hotel New Yorker, New York City.
Nov. 12-15: NEMA Convention, Haddon Hall, Atlantic City, N. J.
ing Office, Washington 25, D. C.
Among other objectives, the revised rules are intended to enhance safety of life at sea by providing

STRANGE SKYLINE

Not a view of storm-tossed television antennas as seen in the United Slates but the normal rooflop scene of any British city. In England, the receiving dipoles are oriented for vertical polarization of the transmitted signals instead of the horizontal polarization used for tv transmissions here
type approval or type acceptance for radio equipments, by requiring installation of automatic alarm-signal keyers and inauguration of a radiotelephone distress frequency at 2,182 kilocycles. It is noted, however, that outside of the Great Lakes region, there exists no formal monitoring service for this frequency.

Other provisions include expansion of service for public correspondence and limited service stations, particularly at the very-high frequencies between 152 and 162 mc.

The so-called Marine-Utility class of station has been authorized for low-power, portable vhf radiotelephone operations characterized by the needs of harbor pilots. A Marine Fixed class using the band between 2,100 and $2,210 \mathrm{kc}$ is available for transmission of the communications incident to off-shore oil-well drilling.

NTSC Reorganizes

The National Television System Committee, which recently released an ad hoc committee report on a

WHEN EMERGENCY CALLS FOR

1.In Minnespolis, the police radio network is liaked o hospital a anbalances by twcway mobie rigs equipped with Sylvania receiving and transmitting tubes Imme diately the Minneapolis Police headquarters bears of an accidert, a General Hopital ambulance is alerted by 2 -way radio and routed to the scere.

Police cars nearby are also instructed to go to the location and lend whatever police help is needed.

Minneapolis calls on Sylvania fubes

In Minneapolis, when seconds count, police and hospital authorities know they can count on the sure performance of Sylvania high-quality tubes.

In scores of other critical assignments, including railroads, airlines, steamships, and taxi cabs, you'll find Sylvania tubes get first call.

Now available in types and sizes for every need . . . from subminiature, lowdrain battery types to television receiving and picture tubes. For full information and ratings about the types you need, drop a line to: Sylvania Electric Products Inc., Dept. R-1108, Emporium, Pa. Sylvania Representatives are also located in all foreign countries.

2 This quick, efficient coordination between the Minneapolis Hospital and the Police Department has been an important factor in enabling this city to win the National Safety Council award as the nation's "Safest City"... for 2 successive years.

SIILANIA

, under vibration ل under strain , in limited space $\sqrt{ } \ldots \ldots$ for fine adjustment $\sqrt{ }$.in inaccessible places \checkmark needing strength in small sizes $\checkmark \ldots$ in compact design $\sqrt{ } \ldots$ fo: maximum holding power $\sqrt{ }$. for fastening thin pieces

... USG genuine

 ALLENOHFAD socket screws and keysClass 3 fit, quality controlled uniformity and strength, wide range of standard sizes.

WARNING Allan-Type sumas uran' Alear-Tpersily Allen-made. necessanain Mansyl folat: Ga ganine pred scraws in Allen M hesd samer har. this Hock ond sivea ian.

Sold only thru leading INDUSTRIAL DISTRIBUTORS

MANUFACTURING COMPANY Hartford 2, Connecticut, U. S. A.

Pulse Technigues

By Sidney Moskowitz and Joseph Racker. Prentice-Hall, Inc., New York, 1951, 300 pages, $\$ 6.65$.

The authors' purpose in writing the book, in their own words, is to enable individuals with an electrical engineering background to analyze and design circuits for the transmission and utilization of pulses. They have kept mathematics to a minimum with a practical application viewpoint in mind.

After a short introductory chapter where the nomenclature is discussed, the transient response of linear networks is covered in the second chapter. The transform method of solving transient problems and a very short table of Fourier mates are included. Chapter 3

RELEASED THIS MONTH

An Introduction to Electron Optics; L. Jacob; Methuen's Monograph; Wiley: \$2.00.
Electric Transmission Lines; H. H. Skilling: McGraw-Hill; \$6.50.
Television Principles; R. B. Dome; McGraw-Hill; $\$ 5.50$.
Ultrasonics; P. Vigoureux; Wiley; \$4.00.
is devoted to the design of pulse networks and delay lines. The fourth chapter, on linear pulse amplifiers, discusses various wide-band amplifiers including the transmission-line amplifier and the cathode follower. Chapter 5, on pulse shapers and clamping circuits, covers limiters, clippers, integrators, differentiators, shapers and d-c restorers. Chapter 6, on pulse generation, is rather short for a very important subject in pulse techniques but all of the basic types are covered.

The applications and practical uses are taken up in chapter 7 on measurements and instruments, 8 on pulse communication systems and 9 on aerial navigation aids. These are each about 20 pages long. Also included are three appendices, one on the complex variable, another on the pulse response of
(continued on page 286)

Kenyon

TRANSFORMERS
For All
ARMY
NAVY SPECIFICATIONS

There's a Kenyon quality transformer to meet allmost any standard or spectial application.

K\&nyon

Transformer Co., Inc.
840 Barry St. New York 59, N. Y.

Improved coumsum ant were for Continuously Monitoring RADIO-ACTIVE MATERIALS

Type 1500-B
Counting Rate Meter
$\$ 540.00$

Response Control: 4-position switch gives equilibrium time from 1 second to 3 minutes

Newly Designed Pre-Amplifier: in small cylindrical anodized aluminum case; easy decontamination; long cable may be used; case equipped with tripod-type mounting thread (bench-top mount in photo is accessory sold separately)

Quenching Circuit operates with self-quenching or non-selfquenching counter tubes
Greatly Increased Sensitivily: counting rate meter sensitivity increased four-fold; now responds to $1 / 4$-volt pulses

Panel Jack Terminals for 5 ma pen recorder providing continuous picture of what happens while radio-active material is being monitored; in absence of operator will indicate spurious activity
 may be inserted. Counter tubes are not supplied with the instrument but are available. The G-R Counting Rate Meter has the same rugged mechanical and electrical design and manufacture that has featured all G-R precision electronic laboratory equipment since 1915.

GENERAL RADIO Company

275 Massachusetts Avenue, Cambrídge 39; Massachusatts
90 West St., niw yonk 6 - 920 S. Michigan Ave., chicago s • 1000 N. Seward St., tos angams at

Application

SHAFT LOCKS

In addition to the original No. 10060 and No. 10061 "DESIGNED FOR APPLICATION" shaff locks, we can also furnish such variations as the No. 10062 and No. 10063 for easy thumboperation as illustraled above. All types are available in bright nickel finish to meet Signal Corps requirements or black oxide to meet Navy specificalions.

JAMES MILLEN MFG. CO., INC.

MAIN OFFICE AND FACTORY
MALDEN
MASSACHUSETTS

Backtalk

This department is operated as an open forum where our readers may discuss problems of the clectronics industry or comnient upon articles which ELECTRONICS has published.

Another First

Dear Sirs:
The author of the article "Possible Phototube" which was published in Electronics (September, 1950, p 132), certainly overlooked that this same photocell was already developed and built in the Laboratories of Zeiss Ikon A. G., Dresden, Germany, by the writer and W. Lang. There was published an article describing the development in the Zeitschrift für Instrumentenkunde, 57 (1937, p 249) with the title "Uber lichtelektrische Zellen für Messungen im sichtbaren Spektralberich" (About photoelectric cells for measurements in the visible spectrum).

Dr. Paul Görlich Moskauer Geb. USSR

To All Tech Reps

Dear Sirs:
A comparatively new type of field engineering has come into existence as a result of the growing need of the U. S. Army for technical personnel and the ever-increasing flow of American technical equipment to friendly nations under provisions of various mutual defense treaties.

In the latter case, because of the unfamiliarity of the recipient nations with American types of electronic equipment, methods of operation, preventative maintenance techniques and methods of training, the United States is providing field engineers to assist in the instruction of foreign nations, so that (Continued on page 300)

reproduce.

erase...

with these

Bruesh
 MAGNETIC HEADS

- Extremely uniform

- Nonmicrophonic and moistureproof
- Response smooth and free of discontinuities
- Permit perfect mounting of adjacent heads

RECORDING COMPONENTS

of practically all types for all purposes with reliable characteristics are what have made Brush the leader for more than ten years.

THE BRUSH DEVELOPMENT COMPANY

3405 PERKINS AVENUE

 CLEVELANDIA, OHIO"Our business is the future"

YOU CAM MAKE IT

BETTER

Taylor Laminated Plastics

If Eour Problem

is to design your product or part with a material that offers a combination of electrical, mechanical and chemical properties such as high tensile, flexural and impact strength... resistance to corrosion, moisture and abrasion ... attractive appearance... high insulating qualities... high speed machineability... light weight with great strength and many other desirable characteristics-

A Good Salution

to your problem is Taylor Laminated Plastics. As insulating parts and structural members, Taylor Vulcanized Fibre, Phenol Fibre and Combination Materials, available in a variety of grades, offer you a better, cheaper ... faster means of developing a better product. If you do your own fabricating, Taylor can supply you with sheets, tubes, rods and rolls. If you seek a source of supply for finished parts, Taylor's completely equipped Fabricating Department is at your service.

Mare Information

on Taylor Laminated Plastics and their application is a vailable. If you have a design problem as indicated above, write today for the new 1951 Taylor Laminated Plastics Catalog. If possible, state your problem. Your copy will be sent you promptly, and experienced Taylor Sales Engineers will be happy to consult with you without obligation.

The new 1951 Taylor Catalog contains complete specifications and description of Taylor Laminated Plastics. See for yourself bow you can make your product or part better with these versetile Taylor materials. Write today for Catalog E-8.

Taylor

TAYLOR FIBRE CO.

 NORRISTOWN, PENNSYLVANIA WEST COAST FACTORY: GA VERNE, CALIF.

This iwo-part radio insulator is typical of Faylor's ability to mass-produce accurate parts. Each is stamped in a single operation, one from Taylor Vulcanized Fibre and the other from Grade XXXP-IO Taylor Phenol Fibre, noted for Its high dielectric strength. Whatever combinofion of qualities you may need, it's a good bet that one of the many Taylor grades can fulfill your requirements.

Taylor Post Forming Material is a special grade of Phenol fibre produced in fully-cured sheet form, for the specific purpose of forming to various shapes by heating and forming operations. This Taylor product makes it possible to fransform a flat sheel into one with relatively deep draws and compound curves, with little sacrifice in the strength of material.

More than half a century's experience in the eld of laminated plastics gives Taylor the edge whenever there's a problem Involving the design and fabrication of laminated plastics. There is practically no limfl to the varlety of shapes that may be quickly, accurately ond economicolly produced from these versatile materials. Cambining light weight and great strength with insulating, electrical or dielectric properties to 61 hundreds of applications, Taylor Laminated Plastics can help you produce a better product.
 the
of heat, shock, vibration
of ebsolufe dependibiliy af
to meef ihe uncaivocal specifcotion the
of heat, shock, vibration
of ebsolufe dependibiliy af
to meef ihe uncaivocal specifcotion the
of heat, shock, vibration
of ebsolufe dependibiliy af
to meef ihe uncaivocal specifcotion the
of heat, shock, vibration
of ebsolufe dependibiliy af
to meef ihe uncaivocal specifcotion super-sonic speeds

Wrife for Amphenol's complete catalog . . . and ask for Amphenol's Engineering News, to keep ahead of latest developments.

THAT'S WHY GRAY CHOSE SELETRON!
There's no room in The Gray Manufacturing Company desk model Audograph ${ }^{\text {}}$ Electronic Sound Writer for components without a big payload factor.

Gray engineers found Seletron's tiny new selenium rectifier No. 16 Y 2 a powerhouse of efficiency for all its halfinch square cell size, and incorporated it into the Audograph's compact design . . . It functions direct at 120 volts to operate the back spacer. No. 16 Y 2 is rated at 130 V input, 100 V output, .050 output amps. Weighs less than half an ounce!
Millions of dependable Seletron Selenium Rectifiers are in service. They are available for every purpose from the miniatures used in radio, TV and other electronic circuits, all the way up to the giant stack assemblies required for heavy industrial purposes.

Seletron

 Rectifier 16 Y2 shown actual sizeSeletron engineers are successful in solving rectification problems. Write us today without obligation ... And have you our new 16 page rectifier guide for handy reference? Please request Bulletin 104-D-8

SELETRON DIVISION

RADIO RECEPTOR CONPPANY, INC. $\kappa_{R D}$ Since 1922 in Radio and Electronics $\mathbb{R P}_{R}$

FOR YOUR PANEL

 a novel and unique circuit indicator dESIGNED FOR NE-5I NEON LAMP For 110 or 220 volt circuitsThe required resistor is an integral part of this assembly -"built-in."

RUGGED • DEPENDABLE LOW IN COST

PATENTED: No. 2,421,32 Cot, No. 521308.997

WILL YOU TRY A SAMPLE?

Write on your company letterhead. We will act at once. No charge, of course.
SEND FOR THE 192 PAGE HANDBOOK OF PILOT LIGHTS
Among our thousands of Pilot Light Assemblies there is one which will fit your special conditions. Many are especially made and approved for military use. We pride ourselves on prompt deliveries-any quantity.
ASK for OUR APPI/CATION ENGINEERING SERVICE
Foremost Manufacturer of Pilot Lights
The DIAL LIGHT COMPANY of AMERICA
900 BROADWAY, NEW YORK 3, N. Y.
SPRING 7.1300

PECIALTY OFFERS

LAB-BILT DRY BATHERIE

 Stonderd or Custom-made

RADIO AND IGNITION

Write for FREE CATALOG
This catalog gives complete specifications of 78 Lab-Bilt Batteries of industrial and hard. to-get types.

CUSTOM-MADE BATTERIES

Battery Specification Sheet illustrated in cal. alog enables you to get any type dry battery designed and made to your individual spec. ifications - even in small quantities!
SUPER SERVICE
Specialty Battery Company is specially equipped to make all Lab-Bilt Batteries FRESH for each order and ship immediately. Give your customers this valuable service. Write for a new catalog today.

[^12]
2 KW VACUUM TUBE BOMBARDER OR INDUCTION HEATING UNIT

For Only $\$ 650$.

Never before a value like this new 2-KW bench model "Bombarder" or high frequency induction heater . . . for saving time and money in surface hardening, brazing, soldering, annealing and many other heat treating operations.

Simple . . . Easy to Operate . .
Economical Standardization of Unit Makes This New Low Price Possible.

This compact induction heater saves space, yet performs with high efficiency. Operates from 220 -volt line. Complete with foot switch and one heating coil made to customer's requirements. Send samples of work wanted. We will advise time cycle required for your particular job. Cost, complete, only $\$ 650$ Immediate delivery from stock.

Scientific Electric Electronic Heaters are made in the following ranges of Power: 1-2-31/2-5-71/2-10-121/2-15-18-25-40-60. 80-100-250KW.

Division of
" S " corrugated quenchied gap co. 107 Monroe St., Garfield, N. J.

Here is another example of the practical imagination C-D engineers can put to work to solve your problems. In this case a heavy electrical connector had to be covered with a safe, efficient insulation. The material best suited to do the job was C-D Dilecto.

The next requirement was to make this insulation an integral part of the whole piece. Here is where practical imagination went to work. The solution was to laminate and mold the Dilecto directly on the metal bar.

When you have a problem involving plastics-whether it is simple or com-plex-be sure to check with C-D engineers for a practical, unbiased recommendation. They can choose the material best suited to your needs from a wide range of grades of five basic plastics to give you any combination of mechanical, electrical or chemical characteristics. A call to your nearest C-D office will bring you this kind of help any time-all the time.

DILECTO (Laminated Thermosetting Plastic) CELORON (Molded High-Strength Plastic)
diamond ribre (Vulcanized Fibre)
VULCOID (Resin Impregnated Fibre)
MICABOND (Bonded Mica Splittings)

BRANCH OFFICES: NEW YORK 17 • CLEVELAND 14 • CHICAGO 11 • SPARTANBURG, S. C. © SALES OFFICES IN PRINCIPAL CITIES. WEST COAST REPRESENTATIVE: MARWOOD LTD., SAN FRANCISCO 3 - IN CANADA: DIAMOND STATE FIBRE CO. OF CANADA, LTD., TORONTO 8

GLECTRONIC AND COMMUNICATION RELAYS

Now Hemmenticaly Peaded
 IIUNDREDS of thousands of R-B-M telephone type relays saw Government service in World War II. Now most of these relays are available in hermetically sealed enclosures designed to meet AN specifications.
 R-B-M hermetically sealed telephone type relays are available in contact forms

 up to and including 4 -pole, double throw, 3 ampere, 28 Volts D. C. construction. Also 10 ampere rating up to and including 2 -pole double throw at 28 Volts D.C. All relays available with approved AN plug connector, or with solder connections.Engineers! What is YOUR hermetically sealed relay requirement? R-B-M is developing new and smaller relays to meet Armed Services requirements. Perhaps one of these will solve your problems. Write giving complete relay specifications, application, quantity and AN specifications applying. Address Dept. F-8.

AN approved (3304-1)

R-B-M Production and Engineering facilities in two plants, located in different states, (over a quarter million square feet). can assist you in the develop. ment and production of special
electro-magnetic devices for Armed Services application.

R-B-M DIVISION ESSEX WIRE CORP.

Logansport, Indiana

MANUAL AND MAGNETIC EIECTRIC CONTROLS
MANUAL AND MAGNETIC EIECTRIC CONTROLS

Sketch shows high-voltage wire insulated with "Rulan" connected to kinescope in RCA Victor receiver. Extruded insulation of "Rulan" is only 45 mils thick for $10 \mathrm{kv}, 67$ mils for 20 kv , and 93 mils for 40 kv .

Wire manufactured by
Anaconda Wire \& Cable Company, New York, N. Y.

BETTER THINGS FOR BETTER LIVING ... THROUGH CHEMISTRY

DEPARTMENT
PLASTICS - CHEMICALS

permits smaller cable in RCA Victor TV receiver; flame-resistance increases safety

This high-voltage DC lead wire insulated with DuPont "Rulan"* flame-retardant plastic is a space-saver in RCA Victor television receivers. The high dielectric strength of "Rulan" permits a thinner insulating jacket for the cable. The jacket on a 10,000 -volt lead is thin as a soda straw!

The insulation efficiency of "Rulan" is shown by its high resistance to corona in these TV leads. The dielectric constant is 2.7 and the power factor is $0.002-$ both constant over a wide range of frequencies." Rulan" is non-tracking. And-important for safety-"Rulan" is flame-resistant and will not support combustion.

You'll be seeing more and more of this tough, flexible insulating plastic. "Rulan" can be used with no sacrifice of efficiency at temperatures as low as $-76^{\circ} \mathrm{F}$. and has very low water-absorption (only 0.02% by A.S.T.M. test). Excellent for neon sign cable, highvoltage hook-up wire, multi-conductor cable, signal control wire, high-voltage street-lighting cable, and many other applications where a flame-resistant insulation is needed.

Because "Rulan" contains no plasticizer, it is useful in non-migrating jackets. It can be extruded onto wire at high speeds and can be injection-molded.

Demand for Du Pont "Rulan" currently exceeds supply. However, we suggest you investigate the versatile properties of "Rulan" for future application. For more information write:
*trade.mark

> E. I. du Pont de Nemours \& Co. (Inc.),
> Polychemicals Dept., District Offices:
> 350 Fifth A venue, New York 1, New York
> 7 S. Dearborn St., Chicago 3, Illinois
> 845 E. 6Oth St., Los Angeles 1, California

The Model CVM 3153 is the newest and smallest member of the complete Kinney Vacuum Pump family. Compare it with any other mechanical vacuum pump in its class for:

FREE AIR DISPLACEMENT (2 cu. ft. per min.)
 POWER ($1 / 4$ HP motor)
 ULTIMATE LOW ABSOLUTE PRESSURE

(0.1 micron or better)
SIZE (143/4" $\times 10^{3 / 4}$ "' $^{\prime \prime} \times 131 / 4^{\prime \prime}$ high)

WEIGHT (only 70 lbs. complete)

Compare its quiet operation, its ease of starting, its sound construction . . . and you'll see why Model CVM 3153 is an important step forward in vacuum processing.

Write today for Bulletins V51 and V51-A

Wherever small size and big performance are required, put Kinney Model CVM 3153 to work. Use it in the laboratory. Use it in full scale processing installations, by itself or as a backing pump. Use it in permanent installations or as a portable unit for on-thespot repair, service, or test work.
There's a Kinney Vacuum Pump for every service, from the big Single Stage 702 cu . ft. per min. Model 181420 to our "New Baby", Model 3153. KINNEY MANUFACTURING CO., 3565 Washington St., Boston 30, Mass. Representatives in New York, Chicago, Cleveland, Houston, New Orleans, Philadelphia, Los Angeles, San Francisco, Seattle.
Foreign Representatives: General Engineering Co. (Radclife) Ltd., Station Works, Bury Road, Radcliffe, Lancashire, England... Horrocks, Roxburgh Pty., Ltd., Melbourne, C. I. Australia . . . W. S. Thomas \& Taylor Pty., LId., Johannesburg, Union of South Africa . . . Novelectric, Ltd., Zurich, Switzerland . . C.I.R.E., Piazza Cavour 25, Rome, Italy.

Into the manufacture of every Taylor Custom Built Tube goes an extra measure of careful and detailed consideration. We call this determination of trying to do every job just a little better, the "TQS"-Taylor Quality Standard. It takes a little more effort this way, but after all, knowing they're right for the jobs they have to do is what counts most with us and with you.

* TRANSMITTING \star RECTIFIER

\star INDUSTRIAL
\star ELECTRONIC

As always, Taylor is producing tubes of superior quality and outstanding performance. The Taylor Representative nearest you is ready and willing to discuss your particular requirements. Call on him for information any time.

the equipment used for the tests is described in the following paragraphs.

The f-m transmitter at the British station has a power of 25 kw and operates on a mean carrier frequency of 91.4 mc with a maximum deviation of $\pm 75 \mathrm{kc}$. The $\mathrm{f}-\mathrm{m}$ transmitter incorporates a system in which a quartz crystal oscillator is connected through a quarterwave network to a balanced modulator. The susceptance of the balanced modulator varies with the modulating signal and, in turn, varies the frequency generated by the crystal oscillator.

Output from the crystal modulator is passed through three fre-quency-doubling stages and one tripling stage to produce the carrier frequency. Following the tripling stage are six stages of amplification. The first two amplifying stages are conventional pushpull stages and the rest are single-ended grounded-grid stages with coaxial-line tuning elements. The output stage consists of two tubes in parallel.

The a-m transmitter has unmodulated power of 18 kw and operates on a carrier frequency of 93.8 mc. The drive equipment and the r-f amplifiers are like those in the $\mathrm{f}-\mathrm{m}$ transmitter except that the balanced modulator is made inoperative. The a-f modulator has four stages. The final stage consists of two tubes operating push-pull to

FIG. 1-The vhi antenna and part of the triangular support mast. The antenna is shared by both the $1-m$ and $\alpha-m$ transmitters

MODELS A, B, \& C HELIPOTS
A- 10 turns, $46^{\prime \prime}$ coil, $1.13 / 16^{\prime \prime}$ dic., 5 wattsresistances from 10 to 300,000 ohms B-15 turns, $140^{\prime \prime}$ coil, $3.5 / 16^{\prime \prime}$ dia., 10 watts -resistances from 50 to 500,000 ohms. C-3 turns, $13-1 / 2^{\prime \prime}$ coil, $1.13 / 16^{\prime \prime}$ dia., 3 watts-resistances from 5 to 50,000 ohms.

LABORATORY MODEL HELIPOT The ideal resistance unit for use in labora. tory and experimental applications. Also helpful in calibrating and checking test equipment. Combines high accuracy and wide range of 10 furn HELIPOI with
 precision adjustability of DUODIAL. Avail. able in eight stock resistance values from 100 to 100,000 ohms, and other values on special order.

D

E

MODELS D AND E HELIPOTS

Provide extreme accuracy of control and ad. justment, with 9,000 and 14,400 degrees of shaft rotation.
D-25 turns, $234^{\prime \prime}$ coil, $3.5 / 16^{\prime \prime}$ dia., 15 watts -resistances from 100 to 750,000 ohms. E-40 turns, $373^{\circ \prime}$ coil, $3.5 / 16^{\prime \prime}$ dia., 20 watts -resistances from 200 ohms to one megohm.

MODELS R AND W DUODIALS
Each model available in standard turns-ratios of $10,15,25$ and 40 to 1 . Inner scale in. dicates ançular position of HELIPOT sliding contact, and outer scale the helical turn on which it is located. Can be driven from knob or shaft end.
$\mathbf{R}-2^{\prime \prime}$ diameier, exclusive of index $\mathrm{W}-4-3 / 4^{\prime \prime}$ diameter, exclusive of index. Features finger hole in knob to speed rotation.

FOR PRECISION POTENTIOMETERS

 come lo
...world's largest manufacturer of such equipment!

3-GANGED MODEL A HELIPOT AND 3-GANG D MODEL A HELIPOT AND
DOUBLE SHAFT MODEL C HELIPOT OOUBLE SHAFT MODEL C HELIPOT All HELIPOIS, and the Model F Potentiometer, can be Furnished with shaft extensions and mountine bushings ar each end to facilitate coupling The Model f, and the A, B, and C HELIPOTS are available in multiple assemblies, ganged at the fectory on common shafts, for the control of associated circuits.

B

F

MUITITAPPED MODEI B HEIIPOT AND 6-GANGED TAPPED MODEL F
This Model B Helipot contains 40 taps, placed as required at specified points on coil. The Six. Gang Model F Potentiometer contains 19 additional taps on the middle two sections. Such taps permit use of padding resistors to create desired non-linear potentiometer functions, with advantage of flexibility, in that surves can be altered os required.

TH

The SCREW TERMINAL TYPE CONTAINER Provided with either back or bottom mount ing brackets. Barrier
 type face plates prevent short circuits between cable and terminal lugs. Easy access to terminal for circuit revisions is possible since, as in the Lug Header Type, re moval of the relay from the equipment is not necessary. This unit has cations in the aircraft industry.

The Series 335 D.C. (AN-3316-2) Guardian Relay is one of a line of famous controls which distinguish Guardian Electric as a dependable supplier to the U. S. Air Force. Hermetically sealed (AN-3312) to (MIL-5757) specifications, or with conventional open and special mountings, Series 335-D.C. offers a wide variety of aircraft applications. Built to rigorous aviation standards, it meets the ANR-20-B and the MIL-R-6106. Generous coil winding area permits single windings up to 15,000 ohms. Parallel and double windings available
Maximum voltage: 220 v ., D.C. Power requirement: Normal, $31 / 2$ watts. Max. resistance standard unit: 12,000 ohms. Applicable to time delay attract up to .06 second and release up to .01 second. Contact rating: $34^{\prime \prime}$ dia. silver, 12 amps , at $24 \mathrm{v}$. . D.C. inductive load. Combinations up to 4 P.D.T. with 12 amp . contacts. Bakelite insulated, tested at $1,500 \mathrm{v} .-60 \mathrm{C}$.

GUARDIAN'S NEW HERMETICALLY SEALED RELAY CATALOG IS YOURS FOR THE ASKING

Series 30 A.C.

Series 210 A.C. -215 D.C

Series 220 A.C.

Series 595 D.C.

Series 610 A.C. -615 D.C.

SUBMIT YOUR BLUEPRINTS FOR SPECIFIC RECOMMENDATIONS - WRITE

GUARDIAN (G)ELECTRIC

a complefi umf of betays sirying american industry
tubes at work

bringing YOUR MOTORS

| | 1 o maklet | | | |

is a full time job for . . . electronics

Abstract

If the above headline said your meters instead of your motors, it would be accepted without question and without much interest because ELECTRONICS is generally recognized as the foremost sales medium for meters.

Not so well known, however, is the scope of ELECTRONICS' influence on motor marketing. Nor is the impact that the science of electronics has had on the manufacture and marketing of motors generally realized, although 35 of the nation's 75 small motor makers are advertisers in ELECTRONICS. Little known also are the many new control applications motors have found in electronics and the new kinds of instrument-type motors that have been developed for use in modern electronic systems...particularly those for military, industrial and aviation use. Motors are still usually thought of as simple electric power sources.

In electronics, motors and meters have a good deal more in common than a surface similarity in spelling. Working together, they are bringing into being that new industrial revolution . . . ALL-AUTOMATIC CONTROL. With them, modern industrial instrumentation is going from simple indication of the mechanical meter kind to combined indication-and-control. To bridge the gap between the old, visual indication meters and modern complete machine control, the science of electronics uses motors.

Motors in electronic circuits can both meter and translate meter indications into electrical signals that trigger control mechanisms. It is this constantly developing, revolutionary relationship and interchange between meters and motors that is making ELECTRONICS the most effective medium of all for motor, as well as meter, selling.

12 REGULAR ISSUES
supplying latest technical information, design and product news

A McGraw-Hill Publication - 330 West 42nd St., New York 18, N. Y.

ANNUAL BUYERS' GUIDE
supplying all basic product source and tech nical specifying data

For what kinds of motors is electronics the best sales medium?

ELECTRONICS is the quickest, surest and most preferred sales medium for motors like those illustrated and for most fractional horsepower motors. A good rule to go by is: The smaller the horsepower, the better the electronic market. Induction and synchronous motors, induction generators, synchros, motor generators, phase shifters, permanent magnet generators, tachometer generators and hysteresis motors are some examples of the types of "motors" for which electronics offers a big market.

How big is this electronic motor market?

For the types of motors illustrated above, one of the outstanding motor manufacturers estimates that "upwards of 230,000 such devices will be used during 1951 and their total value will be in excess of \$15,000,000."

Where will all these motors be used?

A great many will be used in electronic war gear this year. The rest will be used in electronics through out industry in the same proportion as ELECTRONICS, the magazine, is read throughout industry. It's a simple little trick called self-leveling circulation... in ev-

ELECTRONICS' Research Department estimates, on the basis of past years' markets, that the entire 1951 electronics motor market will be in excess of one hundred and twenty five million dollars-atfactory.
and the important question: How to get YOUR MOTORS used in electronics?

The answer to that is: Get them designed-in by selling the design engineers on the advantages of your motors. Exactly like all other components, materials and allied products used in electronics, every motor used is designed-in and specified by the elec-
ery field of industry the circulation of ELECTRONICS increases in direct ratio to the growth of the use of electronics in that field. ELECTRONICS is everywhere in industry where electronics is used and where there is a market for electronic and allied products.

That's your answer-ELECTRONICS advertising, your key to specialized motor sales throughout industry

MOSINEE plants fibres for industry

In Mosinee Industrial Forests, seedlings by the thousands are being planted annually to replace the trees used for products of industry, assuring future supply of fibres vital to many products.

Also, on privately-owned acreage, Mosinee supplies the seedlings and know-how to convert otherwise waste land to fibre-producing forests for the future.

This reforestation is the first step in the process of making Mosinee Fibres that
 work for industry.

MOSINEE PAPER MILLS CO. MOSINEE, WISCONSIN

MOSIWE makes fibres work for industry

Multiply your present communication facilities, realize new economies, and make sure of the greatest possibilities for future expansion, by insisting on a MOTOROLA, superior-engineered Microwave System.
With the most private-owned microwave mileage now in operation, Motorola offers you the benefit of EXPERIENCE, plus many immediate and practical advantages.

Operating in the proven 6000 Mc . frequency band, Motorola Microwave provides maximum effective power gain. The superior frequencydivision multiplexing system provides optimum reliability. All your electronic equipment is at ground level for fast, precision maintenance.

Installations

Aeronautical Radio Incorporated
s:ate of California
Pan American Pipeline Co.
Shell Pipeline
Panhandle Eastem Pipeline Co.
Texas Illinois Natural Gas Pipeline Co.
Mid-Valley Pipeline Co.
Brazos River Electric Transmission
Cooperative
City of Dayton, Ohio
Michigan State Police

Motorola Microwave is the super communication "pack horse" of complete round-the-clock reliability. Cross-town or cross-country, office to plant-to branch-to mobile crews, it provides multi-channel facilities for voice circuits, supervisory control networks, telemeter, and teletype, 2 -way radio tie-in, with innumerable additional combinations for automatically and simultaneously operating your entire system. Motorola Microwave means efficient, economical point-to-point communication.

4545 Augusta Blvd., Chicago 51, Illinois

5 Big Reasons
 WHY AIRPAX

STANDAIB FOIA THE INIDUNTEY:

AIRPAX A580
400 CYCLE CHOPPERS
Modulating minute $D C$ potentials, this chopper combincs rugged action with sensitivity and precision for delicate servo applications.

PLUTYR NERSTITLITI

C
Uheck your filter problems at Lenkurt. Lenkurt combines filter know-how - gained from years of carrier engineering - with the most modem facilities for molding precision magnetic parts, wind-

LENKURT ELECTRIC CO.
SAN CARLOS - CALIFORNIA ing toroids in a wide range of sizes and sealing assemblics for maximum life.

Suall-sized hermet-ically-sealed mit illustrated contains two filters: a low-pase and a band-pass, designed for single sideband carricer application. Other types to your specifications. Write:

GET THE FACTS ON

high Speed electrohic
PREDETERMINED COUNTERS

For these applications:

- automatic machine conirol
- packaging by predetermined count
- lineal measurements
- frequency measurements
- ilme interval control.

Potter Predetermined Electronic Counters extend the field of automatic counting and control far beyond the scope and capabilities of existing mechanical and electromechanical devices. There are no moving parts, therefore, wear slippage and inertial effects are eliminated.

Although the standard models count at rates up to 60,000 per minute, counters capable of counting at higher rates are available.

A complete line of photoelectric and electromagnetic detectors, for counting any material or action, can be supplied.

The instruments are eastly applied to any problem requiring the precise measurement or control of QUANTITY, LENGTH, TIME, FREQUENCY, REVOLUTION or CAM SEQUENCE. Absolute aecuracy of count is guaranteed.
Write ta'cy for an accurcte ap praisal ci ye:r picbirm ta Dopt. 6.C.

POTTER INSTRUMENT CO. INCORPORATED

115 CUTTER MILL RD., GREAT NECK, NEW YORK

Visit us at booth 812 -Pacific Elcrtronic Exhibit

fomot ciasic

The fiberglas-polyester laminate that provides greater insulation protection per dollar cost

GLASTIC Laminates are made by combining glass fibers with alkyd base polyester resins ...the resultant laminate, combining the best electrical and physical features of both, is an insulating material significantly superior in heat, arc and moisture resistance; flexural, impact and tensile strength . . .also it is tough, rigid and dimensionally stable. GLASTIC Laminates are easy to fabricate; they punch and shear without requiring pre-heating.

GLASTIC Laminates are available in six grades to meet all known insulation requirements:		MECHANICAL AND ELECTRICAL PROPERTIES	GRADE MM	$\begin{gathered} \text { GRADE } \\ \text { GF } \end{gathered}$	$\begin{aligned} & \text { GRADE } \\ & \text { GW } \end{aligned}$
CHASTIG MM	Distinctly superior to cotton fabric reinforced phenolic laminates and similar materials, yet competitive in price.	Flexural Strength (psi)	23,800	34,000	53,200
		Rifitily (Young's Mod. x 10")	1.87	2.84	3.38
CLASTIC GF	Similar to Glastic MM but made with a resin of greater strength and flame resistance; well suited to resist pounding, required in driving slot wedges.	Impadt Strength (lzod)	13.5	19.2	25.0
		Tensile Strength (psi)	11,100	17,300	44,500
		Compressive Sjrengh (psi)	33,500	53,100	57,500
clastic CW	Premium grade, much greater strength than either MM or GF; $45,000 \mathrm{psi}$ at $150^{\circ} \mathrm{C}$ after 200 hours; requires sharp carbide tools in fabricating.	Hardness (notheell M)	90	90	90
		Specific Gravity	1.59	1.51	1.75
		Water Abspption (\% ASTM)	. 54	. 36	. 61
GLASTIC ल	Similar to GW but uses unidirectional glass cloth for maximum tensile strength in one direction (70,000 psi).	Arc Resistonct (ASTM)	150	60	120
		Dielechic Strentith (V/M)	300	280	210
		Dielectric Constonf (at 60 cy)	4.3	4.1	5.4
GLASTIC MP	Tough, semi-rigid sheet stock available in . $038^{\prime \prime}$ nominal thickness only; well suited to cold shearing and punching.	Power factor (\% gr 60 Gy $)$ AFTER 200 HRS.	3.1	2.4	11.2
$\begin{aligned} & \text { GLasTle } \\ & \text { A } \\ & \text { FLEXBLE } \end{aligned}$	Tough and thin; will crease without serious loss in dielectric (500-700 V / M; shearing and handling qualities far superior to mica glass materials; will not puff or distort regardless of long storage under heat or humidity; standard thicknesses $.015^{\prime \prime}$ and $.020^{\prime \prime}$	Flexural Strength (pas)	25,200	32,200	45,000
		Ingoct Strangth (liod)	15.7	25.2	22.0
		Dielectric Sfrength (V/mi)	325	315	200
		Water Absorption (\% ASTM)	1.32	. 61	2.15

GRADE B INSULATION FOR THE PRICE OF GRADE A

GREATER

IMPACT STRENGTH ARC RESISTANCE HEAT RESISTANCE DIMENSIONAL STABILITY MOISTURE RESISTANCE

- MOLDED GLASTIC parts, Grade MG, are available to specification.
- Special GLASTIC for particular requirements will be developed on request.
- Information detailing the superiority of GLASTIC with grade C phenolics and melamine 65 laminates is available . . Write for GLASTIC bulletin MR; also for free test samples-they'll be sent upon written request.

Write for GLASTIC bulletin MR; also for free test samples

MITCHELL-RAND INSULATION CO., INC.

51 MURRAY STREET COrilandi $7-9264$
NEW YORK 7, N Y
a Parthal list of m-r prooucts: fiberglas varnished tubing, tape and cloth - insulating papers AND TWINES. CABLE FILIING AND POTHEAD COMPOUNDS. FRICTION TAPE AND SPLICE - TRANSFORMER COM. POUNDS - FIBERGLAS SATURATED SLEEVING - ASBESTOS SLEEVING AND TAPE - VARNISHED CAMBRIC CLOTH AND TAPE - MICA PIATE, TAPE, PAPER, CLOTH, TUBING - FIBERGLAS BRAIDED SLEEVING - COTTON TAPES, WEBBINGS AND SLEEVINGS - IMPREGNATED VARNISH TUBING - INSULATING VARNISHES OF ALI TYPES - EXTRUDED PLASTIC TUBING

device capable of providing this service automatically.

The equipment manufactured by the Automatic Electric Company was designed with three requirements in mind: verbal announcements should be used rather than signals, the recording medium should be continuous with no switching interruptions and the equipment should be simple to operate so that announcements could be recorded easily and inexpensively.

In the equipment shown in Fig. 1, a 2,700-foot length of magnetic tape made of cellulose acetate with an iron-oxide coating passes between two standard $16-\mathrm{mm}$ film reels, $10 \frac{1}{2}$ inches in diameter. Three separate sound channels are recorded on the tape, two for time announcements and the third for synchronization.

The entire 2,700 feet of tape are used by one channel for providing time announcements for six hours. At the end of this period, the tape direction is reversed and the pickup circuit is switched to the second channel. The second channel is

FIG. 1-Rear view of the automatic time announcer. Tape-reel drive motors are visible at top and power supply and amplifier chassis near center

ROWS.o High Speed Movies of Mechanical Action

 and Oscillog'raph Traces Combined on One Film!

GHAVE NEVER WORKED LOOSE On Over 3000 Pumps!"
 - says this manufacturer about

zar-crap*

Willams Machine \& Tool Co., Omaha, Neb., writes..."'The ZIP-GRIP*Self-Locking Set Screw eliminates use of nut, and spot facing. Not one has worked loose on 3000 pumps built and in use now about one year.' Send for FREE Demonstrator that Shows You Why...over 125 Manufacturers adopted ZIP-GRIP* Self-Locking Set Screws in one year's time.
With your zip-grip* Action Demonstrator we'll also send you illustrated Data Sheet and offer of Engineering Test Samples to suit set screw application conditions that have been puzzling you.

*Pat. Pending
 Makers of
 SETMO
 SET SCREWS

470 Moin St. Bortlett, III. (Chicago suburb)

> We specialize in Solving Puzzling Set Screw Problems.

Steatite

for ELECTRONIC

Applications

You can specify LOUTHAN low-loss Steatite products with complete confidence in the high quality and dimensional accuracy of the parts. Made to exacting standards, Louthan Steatite insulations have the mechanical and electrical characteristics needed for electronics applications and other electrical service. They are formed to meet your needs and made to close tolerances. Surfaces are smooth, hard, clean and non-absorbent.
Write for Catalog 49-E, describing Lourhan Insulations.
 \$250,000 in PRODUCT WIRING COSTS FOR MANUFACTURERS OF ELECTRICAL AND ELECTRONIC EQUIPMENT

While Maintaining
Uncompromising Wiring Integrity - Custom Quality Through Unique Engineering and Mass Production Techniques*

How is Cost Reduction Attained?

1. UNILECTRIC WIRING SYSTEMS are designed especially to simplify product assembly, reduce production time and put your in-plant labor to more effective use.
2. UNILECTRIC'S large-volume use of materials ($100,000,000$ feet of wire in 1950) affords price savings unavailable to individual manufacturers using smaller quantities.
3. Modern high speed, automatic equipment and UNILECTRIC-designed assembly machines provide substantial production cost savings.
4. Constant improvement in production methods and skills - the result of specialized production engineering - assures steadily decreasing costs.
5. UNILECTRIC has developed new components which simplify wiring assembly and field servicing, and result in cost reduction.

How is Wiring Integrity -
 Custom Quality - Maintained?

UNILECTRIC Wiring Systems give you all these factors necessary for complete Wiring Integrity.

1. Specialized wiring engineering experience that assures most efficient circuit design.
2. Selection of components that best meet overall application requirements.
3. Analysis of components to establish individual adequacy without waste.
4. Mass production techniques that assure quality control on hundreds of production sequences simultaneously.
5. Meticulous care in each assembly operation.
6. Supervision by personnel with wiring knowhow.
7. Inspection and re-inspection.
8. Guaranteed workmanship and materials.

COST REDUCTION and WIRING INTEGRITY are inherent in UNILECTRIC'S WIRING KNOW-HOW. They result from nine years of constantly serving hundreds of leading manufacturers of electrical and electronic equipment . . . and extensive current and World War II experience producing wiring systems for RADAR, RADIO, TANKS, FIRE CONTROL MECHANISMS, MOTORCYCLES, INSTRUMENTS and other Armed Forces equipment.

> * Savings for individual customers depend on volume. Actual customer reports available on request. If your Defense or Civilian Products require wiring of any kind, your costs can be reduced. Write for details today.

with help of Ward Leonard's "Mighty Midget"

The "lamp-lighter" is an automatic photo-electric control for street lights.

The "mighty midget" is a Ward Leonard heavy-duty midget relay.

The control manufacturer had space limitations, but needed high current capacity. The relay has high capacity and is small.

Customer reports "excellent results-no sacrifice in performance due to smaller size".*

That's Ward Leonard "result-engineering"-problems turned into perfect performance by the proper selection or adaption of electric controls. Write for relay catalog. ward leonard electric co., 31 South Street, Mount Vernon, N. Y. Offices in principal cities of U. S. and Canada.
-Tabet Manufacturing Co., Norfolk, Va.

FIG. 2-Block diagram of circuit components of equipment
recorded in the reverse direction and provides time announcements for the next six hours.

The time tape supplied for the automatic time announcer is reproduced from a master tape. From the master tape, any number of copies may be made.

Approximately three seconds after the time announcement is made, the tone signal is heard. Announcements are made every fifteen seconds and each one is continuous.

Commercial announcements may be provided by a loop recorder which transmits from a length of magnetic tape mounted on the rim of a drum approximately ten inches in diameter.

A synchronous master clock controls the operation of the time announcer and employs eleven cams to perform all the required functions.

A block diagram of the time announcer is shown in Fig. 2. Audio output is about ten watts which is sufficient to take care of at least 50 trunks simultaneously without an appreciable decrease in volume.

This material was abstracted from an article, "The Automatic Time Announcer", by E. S. Peterson which appeared on page 148 of The Automatic Electric Technical Journal for January 1951. .

Circuit Printers for Flat and Cylindrical Surfaces

Two semiautomatic machines for printing electronic circuits, one for flat surfaces and the other for cylindrical surfaces, have recently been developed at NBS.

In the flat-plate printer, a turntable accepts the unprinted plate at

News of General Electric Laminated Plastics that can be of importance to your business.

EXCEPTIONAL CHEMICAL RESISTANCE

IS FEATURE OF NEW G-E LAMINATE

Wherever corrosive chemicals are handled, it's worth considering equipment fabricated from a new phenolic (plastics) laminate recently announced by General Electric.

Designated G-E 2016, the new material is available in sheets and tubes. Important advantages for a wide range of industrial applications are exceptional chemical resistance, mechanical toughness, resistance to repeated impacts.

G-E 2016 is produced with canvas base material. Investigate its cost-saving possibilities in pipe lines, for fabricating plating tanks, dye vats, for structural work-where extra strength and chemical resistance are most important. Write Section Y-4, Chemical Division, General Electric Company, Pittsfield, Massachusetts.

You can put your confídence in

 GENERAL ELECTRIC
IT'S PRC

 FOR
HIGH
 C
 VOLTAGE RESISTORS

Stable, dependable resistors made in sizes from one inch to $181 / 2$ inches long. Power Rating 1 watt to 90 watts. Resistance values to 100,000 megohms. Designed for easy mounting on a panel or stand-off insulator. Can be assembled to make tapped combinations. Matched pair resistors with 2% accuracy available for high voltage instrumentation. rpc High Voltage Resistors are usod in quantity by leading Manufacturers, Instrument Makers, Universities and Laboratories.
also manufacturers of high quality precision wire wound resistors. high frequency resistors and high megohm resistors. write today for catalog.

T-C RESISTANCE PRODUCTS CO.
-minn 714 RACE STREET - HARRISURG 2, PA.

New birtcher tube clamp for MINIATURE TUBES

POSITIVE PROTECTION AGAINST LATERAL AND VERTICAL SHOCK!

The New Birtcher Type 2 Tube Clamp holds miniature tubes in their sockets under the most demanding conditions of vibration, impact and climate. Made of stainless steel and weighing less than $1 / 2$ ounce, this New clamp for miniature tubes is easy to apply, sure in effect. The base is keyed to the chassis by a single machine screw or rivet...saving time in assembly and preventing rotation. There are no separate parts to drop or lose during assembly or during use. Birtcher Tube Clamp Type 2 is all one piece and requires no welding, brazing or soldering at any point.

If you use miniature tubes, protect them against lateral and vertical shock with the Birtcher Tube Clamp (Type 2). Write for sample and literature.

Builder of millions of stainless steel Locking Type Tube Clamps for hundreds of electronic manufacturers.

For a
Thermosetting Plastic with.

ExCePIONAL

 ELECIRICAL PROPERTIESTOGETHER WITH SUPERIOR CHEMICAL RESISTANCE AND MECHANICAL PROPERTIES

The Hysol 6000 Series is an exceptionally versatile group of materials which derive their properties from the epoxide resins. Supplied in cast rods, tubes and sheets; as a casting resin; and as a coating solution. A variety of formulations can be compounded to assure best service in specific applications.

SPECIFICATIONS

OF THE BASIC CAST RESIN
Specific Gravity
1.18-1.20

Coef. of Thermal Expan. . . 25-60.4 x 10-6 Heat Resistance 230- $250^{\circ} \mathrm{F}$
Water Absorption $24 \mathrm{hrs}.0 .10 \%$ Rockwell Hardness M Scale 85-95 Tensile Strength psi 11,370 Flexural Strength psi 15,540 Modulus of Elasticity psi $426 \times 10-6$ Izod Impact (Ft. lbs. in notch) 45
Compressive Strength psi 14,100

ELECTRICAL PROPERTIES

POWER FACTOR
60 cycles $\quad 0.0011 \quad 10^{3}$ eyeles 0.0042 1 megacycle $0.026 \quad 10$ megacycles 0.035 DIELECTRIC CONSTANT
$\begin{array}{rl}50 \text { cycles } \\ 1 \text { megacycle } \ldots 3.49 & 103\end{array} \quad 10$ megacy
LOSS FACTOR
60 cycles.
$\begin{array}{ll}0.0013 & 10^{3} \text { cycles } \\ 0.091 & 10 \text { megacy }\end{array}$
10 megacycles .0 .0110 DIELECTRIC STRENGTH
step by step ($1 / 8$ inch section)
$350 \mathrm{Volts} / \mathrm{mil}$ ARC RESISTANCE

135 seconds

Write for Technical Bulletins

Plants in Olean, N. Y. and Smethport, Pa.

Expanded Facilfies NOM PRODUCHOX

It seemed that orders for all Aerocom equipment would have to be delayed for about six months because of a greatly increased volume of orders.

But - Aerocom was able to expand plant facilities and production so that, now, some equipment is available with only small delays.

Despite the pressure for new equipment, corners will not be cut . . Aerocom quality will be maintained.

BEACON
Package 50 or 100 wat
transmitter
 METEOROLOGICAL AND COMMUNIこATIONS EQUIPMENT

AERONAUTICAL COMMUNICATIONSEQUIPMENT, INC. 3090 Douglas Road, Miami 33; Florida

BALLANTINE

 STILL THE FINEST in
ELECTRONIC VOLTMETERS

Ballantine pioneered circuitry and manufacturing integrity assures the maximum in
SENSITIVITY • ACCURACY•STABILITY

- All models have a single easy-to-read logarithmic voltage scale and a uniform DB scale.
- The logarithmic scale assures the same accuracy at all points on the scale.
- Multipliers, decade amplifiers and shunts also available to extend range and usefulness of voltmeters.
- Each model may also be used as a wide-band amplifier.

model	\|frequencr range	voltage range	Input impedance	accuracr	PRICE
300	10 to 150,000 cycles	1 mililyoll to 100 volis		2\% up of 100 KC 3% obove 100 KC	\$210.
	2 to 150,000 cycles		on low range		\$225.
304					\$235.
305	Measures peak valshort as 3 migro. seconds with a repe- fition rate as low as 20 per sec. Also measures peak val. ues for sine waves from 10 to 150,000 cos. cps.	1 milivolt to 1000 yolis peak to peak			80.
3104	$\begin{aligned} & 10 \text { cycles } 10 \\ & 2 \text { megacyles } \end{aligned}$	${ }^{100} 100$ micravolts to	${ }_{\text {cose }}^{\text {Same os }}$	${ }_{\text {a }}^{\text {3\% below } 1 \text { MC }}$ S\% above MC	\$235.

For further information, write for catalog.

Circuit printer for flat surfaces. The ceramic plate being loaded on the turntable (left) will be carried to the rear of the machine where a silver circuit pattern will be impressed on it. The printed plate will then be carried to the unloading position (right) where it will be flipped into the discharge chute
a loading position, carries it to a printing position, then carries the printed plate to an unloading position, where it is automatically flipped into a chute.

In regular operation, three plates are processed simultaneously. While the first plate is unloaded, the second is printed, and the third is loaded. The turntable stops while the operations are performed, then advances the plates one-third of a revolution, stops again, and so forth. The usual production rate, about 1,000 plates per hour, can be increased to 1,500 per hour without loss of printing quality but at the expense of excessive wear and tear on the machine.

As the turntable advances the plates from position to position, they rest on rectangular platens about 3 by 4 inches in size. The flat platens are normally flush with the turntable. When a plate-carrying platen reaches the printing position, the platen rises and presses the plate against the underside of the printing screen, which occupies a fixed horizontal position. While the plate is held against the screen, a rubber squeegee is automatically moved over the top surface of the printing screen, forcing conducting paint through the screen onto the plate in the desired pattern. The platen is then lowered to its original position and is advanced by the turntable another third of a revolution to the unloading position. Here the platen is tilted, and the printed

LIELNEMANMN MAGNETIC CIRCUIT BREAKERS

The HEINEMANN Fully Magnetic CIRCUIT BREAKER shown above is c jsolutely dependable at all times, regardless of surrounding temperatures. As demanded in this installation, the breaker trips INST ANTLY on overload (where needed, a magnetictrodraulic Time Delay can be furnished to etard tripping for a predete-mined time). Rotation of the high speed latch relaases contacts which are under heary spring pressure, while magnetic blowout action gives instant arc nterruption.

Write for

Bulletins 3200 and 1010
helps Western Electric salvage millions of feet of drop wire per year

How it Works

Used for salvaging shorl lengths of drop Fire, this machine makes unique lse of the HEINEMANN FuZ y_{y} Magnetic CIRCUIT BREAKER. When the mold is closed and the temperature reaches the vulcanizing heal, I hermoswitch loccted in the lower nold closes and throws into the circuit a resistanse, which is in pcrallel with the heaters. This rodzetion in resistance increases the chrrent so that it exceeds the raed value of the circuit breaker. The Heinemann breaker then opens, permanently discennects the curren to the elements, and exting distes a red light which is used to visually indicate the heat period. The magnetic bseaker, which is equipped with auxiliary contads, then acting as a single pole-double throw switch, franslers the current to the timer which throuch a relay operates a white light that remains illuminated far the entize cure period. At the end of the cure period the relay opers and the light goes out.

開STANDARD UNIVERSAL SECTION BOARDS
Precision universal section boards have met with enthusiastic approval. Engineers, Laboratory Technicians, and Designers find it invaluable as a low cost aid in development and prototype work. Available in 4 widths, each board has 5 sections, each with 10 terminals and 4 mounting holes. One or more sections can be easily separated to suit a particular job. PMP offers a choice of 2 terminal types: No. 100 (Double Turret) or No. 400 (Tubular Turret). Also choice of board material: LE or XXX phenolic. XXX phenolic as board material has found wide acceptance and use in high frequency applications.

SECTION SCORING

The illustration clearly shows the ease with which one or more of the five sections of the PMP Universal Board may be used. Scoring is deep enough to make a clean break but not too deep to remain rigid if all five are used.

PRECISION HARDWARE: Many items in the Electronic Hardware field, such as handles, ferrules, thumb screws, stand-offs, etc., are kept in stock. Many years of experience in all types of metal fabrication, enables PMP to offer manufacturers a specialized service in the designing and production of custom components.

When you need electrical coils, why not take advantage of 34 years of experience, engineering competence, and modern production facilities. Coto coils are built for you, to your specifications.

COTO-COIL C0.m
COIL SPECIALISTS SINCE 1917 65 PAVILION AVE PROVIDENCE 5. RII

LOOKING HIGH

AND L.OW

For low loss factor

For low power factor
\backslash For low cost
For high volume and surface resistivity For high dielectric constant

look to Corning for ALL your electronic glass requirements

Literally hundreds of glasses with widely varying electrical characteristics are available at Corning -glasses that meet almost every electrical requirement. In V.H.F. and U.H.F. applications, where miniaturization and low loss pose difficult problems, one of Corning's glasses often proves the answer. And glasses can be obtained with high physical and thermal shock resistance, and excellent sealing properties, when these characteristics are needed.

While Corning manufactures much standard
electronic glassware, such as electronic tube blanks, television tube blanks, sealing beads, and glass tubing, our engineers are ready to work with you on special requirements. In the hands of Corning technicians, glass can be made in a surprising variety of complicated shapes, of ten to extremely close tolerances. Their technical know-how, years of practical experience, and complete research and engineering facilities are available to help solve your problems. Let us know what you have in mind!

CORNING GLASS WORKS, CORNING, N. Y.

Because all Leach Relays are quality engineered for depeadable duty... they are specified first by leading manufacturers of industrial equipment of all types. If your equipment demands relays that are first and foremost, more dependable and longer lasting, specify Leach Relays . . . they're more dependable . . . performance proves it. Whatever your relay control problem...it's a challenge to Leach. Illustrated are but a few of the wide selection Leach provides industry, as standard equipmeat.

pelays shown above can be supplied with various

 CONTACT ARRANGEMENTS. WRITE FOR DETAILS. BETTER CONTROLS THROUGH BETTER RELAYS

LEAGHREGAY

S915 AVALON BOULEVARD, LOS ANGELES 3, CALIFORN1A
Representatives in Principal Cities of U. S. and Canada
plate slides into the discharge chute.
The flat-surface printer is at present loaded by hand, one plate at a time, as the turntable moves the three platens past the loading position. Otherwise the process, including the flipping of the printed plates into the discharge chute, is entirely automatic.

Culindrical-Surface Printer
The cylindrical-surface printer was developed for the printing of cylindrical ceramic forms less than 0.5 inch in diameter. Such small ceramic cylinders are usually out of round and present a much more difficult printing problem than larger, more perfect forms.

The cylindrical-surface printer is loaded manually by slipping the cylinder to be printed over a mandrel. A single stroke of a handoperated control lever then puts the machine through the entire printing cycle and operates a release mechanism which drops off the printed cylinder.

This printer differs from a conventional printer in that the squeegee remains stationary. As the control lever is brought forward, the mandrel, bearing the cylinder to be printed, rises to meet the stenciled screen. Simultaneously the squeegee, which is directly above the mandrel, drops to press against the top surface of the screen. The screen, which remains flat and horizontal at all times, then starts to move (forward on one stroke, backward on the next) over the cylinder and the cylinder rotates in response

Circuit printer for cylindrical surfaces. A single forward-and-back stroke of the control lever (left) puts the machine through an entire printing operation and drops off the printed cylinder
 tronics, electrical bridges, electrolysis, gas analysis, photometry, and thermometry. It has been used with Pirani gauges, photocells, and ionization gauges. Standard units include Voltage, Current, and Potentiometer Amplifiers, D. C. Converters and D. C. Transformers.

The American D. C. Amplifier is low in cost, easy to operate, compact, portable. Special designs can be engineered, if specific details are supplied. Mail the coupon for complete details.

HEARING AT ITS BEST!
Modern, lightweight, durable-Telex Quality Headsets are easy on the ears . . . No uncomfortable ear pressure . . . Easily adjustable and built for hard usage . . . Telex Headsets effectively block out background noises . . 5 ft . standard cord or special cord with built-in volume control . . .

TWINSET*	MONOSET
Nothing Touches the Ear	Direct Signal for Both Ears
Weighs only 1.6 oz .	Weighs only 1.2 oz .

*Trademark

ELECTRO-ACOUSTIC DIVISION

DEPT. H-15, TELEX PARK, ST. PAUL 1, MINN.

In Canada, Atlas Radio Corporation, Toronto

STANDARD OF THE WORLD FOR QUALITY HEADSETS

Because they combine exceptional resiliency with good conductivity, Metex Electronic Products made of knitted wire mesh offer an unusually effective means of sealing and shielding a wide variety of types of electronic equipment.
As closures for sheet metal cabinets, for instance, the resiliency of "Metex" assures positive conductive contact at every point between cover and cabinet - eliminating costly machining for close tolerances. Metex Gaskets also assure resilient metal-to-metal contact between flanges, and can be combined with rubber com-
pounds to function both as a shield and as a seal.
Applications in which "Electronic Weather Strips" have already proved their eftectiveness include pulse modulator shields, wave-guide choke-flange gaskets, replacement of berylliumcopper fingers and springs on TR and ATR tubes.
We will be glad to put our experience at your disposal. A letter to Mr. R. L. Hartwell, outlining your problem, will receive immediate study. For preliminary information, write for bulletin "Metex 'Electronic Weather Strips.'"

for DEMONSTRATING AND

 TESTING AUTO RADIOS

ERIE STYLES 325 and 326 STAND-OFF CERAMICONS

The Most Efficient Stand-Off Units for VHF and UHF Applications

BBetter by-passing is one solution to control of regeneration in high frequency receivers. The Erie Styles 325 and 326 Stand-off Ceramicons offer outstanding features for extremely efficient bypassing. Style 325 is designed for push-on clip mounting to chassis; Style 326 is for threaded mounting installation.

This basic design provides, in a hermetically sealed case, a by-pass-to-ground through the shortest possible path. Full advantage is taken of the concentric electrode configuration in maintaining this short path by making connection to the outer electrode at the plane of the chassis. The result is an extremely low and uniform series inductance. In assembly operations both location and length of leads are accurately fixed, resulting in better mechanical uniformity. This feature has been demonstrated to be of particular importance in good VHF and UHF design.

OUTSTANDING FEATURES

(1) Tubular ceramic capacitor is com. pletely sealed.
(2) Very low and uniform inductance path to ground.
(3) Electrical shielding is provided by means of the grounded metal case.
(0) Post terminal provides a sturdy tie point for several connections, and is made essentially to match tube socket terminal height in the interest of maintaining uniform short leads.

SPECIFICATIONS

Standard available capacitance values in MMF: $10,33,47,68,82,100,680$, $1,000,1,500$. Voltage Rating, 500 VDC.

VARNISHED TUBING and SATURATED SLEEVING

TURBO

THE WILLIAM BRAND AND CO., INC.

INSLIATING MATERIAL SPECIALISTS SINCE 1920
WILLIMANIIC, CONNECTICUT, U. S. A., Telephone 3-1661

> TURBO Insulated Wires Wire Markers Extruded Tubing Glass Sleeving Saturated Sleeving
> Glass Tubing - Varnished Tubing

Combric Cloths, Tapes, Papers - Mica
SALES REPRESENTATIVES IN PRINCIPAL CITIES
to the horizontal motion of the screen pressing against it. While the cylinder rolls against the screen, the squeegee forces conducting paint onto the cylinder through the pervious pattern of the screen. When the cylinder has made one complete revolution, both cylinder and squeegee are moved away from the screen. As the control lever is moved back to its starting position, the mandrel carrying the cylinder is rotated from a horizontal to a downward position, a release mechanism on the mandrel is actuated, and the printed cylinder drops off.

With hand loading of the cylindrical surface printer, an operator can easily print 1,500 cylinders in an 8-hour day. An automatic feed mechanism and electric drive should increase the production rate to a probable 500 or 1,000 cylinders per hour.

Automatic Audio Level Riding

By T. K. Abernethy
Chief Engineer
Stations WSIC and WSIC-FM Statesville, N.C

All broadcasting stations have, in common, the prime problem of keeping consistant audio levels in regards to changes from program to program and also from music to speech within a program.

Most stations use a compression or limiting amplifier. The purpose served by the limiter is twofold. First, the peak levels which would cause objectional distortion due to overloading of the transmitter are held below the overload value. Second, by compressing program peaks, the average modulation can be substantially increased. This increase helps considerably because of the large increase in the number of a-m stations on the broadcast band with its attending increase of interference.

With a reasonable amount of compression, a station is able to override background noise and interference from co-channel and adjacent channel stations. An otherwise listenable signal can not be kept so unless a good gain-riding

above the horizon - it's Eicor's electronamic team supplying the safe, sure, $A C$ power your nesi-glass deicing system needs for perfect flight-vision under all flying conditions. beyond the horizon - again this dynamic Eicor team provides the ultimate in closely controlled alternating current, the power necessary to give vision to the far-reashing, far-searching eyes of your aircraft's radar and its associate equipment. You can be assured of the flight-reliability of these units. Designed to rigid and exacting AN Specifications, the Eicor 8 Kva Alternator and Exciter Regulator have proven their dependability of performanse over thousands of operational flying hours. The Eicor 8 Kva Alternator will generate $115 / 208$ volts, three phase, or 115 volts, single phase, at frequencies of 380-1000 cycles and over a speed range of $3800-10,000 \mathrm{rpm}$. Sensitive voltage regulation and field excitation for the alternator is supplied by its team-mate, the Eicor electronic

Exciter Regulator. This Exciter Regulator can also be used in any power circuit, for excitation supply, having a range rating characteristic output of 0.5 to 5.5 amperes $D C$ and 14.0 to 170.0 volts D.C.

Leading the way in electronic controls for aircraft power conversion equipment

Ten years of research and over two years of volume production have provided the "know-how" behind RMC's leadership in the production of these new low cost disc type temperature compensating and general purpose DISCAPS.

AN RMC DEVELOPMENT

RMC is the only ceramic condenser manufacturer with actual production experience in the manufacture of disc type temperature compensating ceramic condensers. This is your guarantee of dependable performance.

USED BY LEADING TV MAKERS

RMC Type C temperature compensating DISCAPS conform to the electrical specifications of the RTMA standard for Class 1 ceramic capacitors. They are specified by the leading TV and electronic manufacturers because of their high quality, low inherent inductance, small size and low cost.

Available in a wide range of capacities and temperature coefficients between P-100 and N-2200, DISCAPS may prove to be the answer to many of your problems.

11PMC DISCAPS" The Right Way to Say Ceramic Condensers

RADIO MATERIALS CORPORATION
General office: 3325 N. California Ave., Chicago 18, III.
FACTORIES AT CHICAGO, ILL. AND ATTICA, IND.
Two RMC Plants Devoted Exclusively to Ceramic Condensers

UNRIVALED for AUDIO and INSTRUMENTATION Recording

FIG. 1-Original circuit of Raytheon RL10 amplitier before modification for automatic level riding
job is done to keep the audio level, and hence limiting, at the optimum value.

The circuits shown for automatic gain riding are adaptable for both a-m and f-m stations and can be applied to any limiting amplifier. Most engineers do not want to use compression on f-m programs, for they wish to retain the dynamic range that f-m affords, due to absence of noise and interference. They do express the need for a limiting amplifier, even if used only for limiting peaks which would otherwise over modulate the f-m transmitter and thereby cause serious distortion in f-m receivers.

With some modification of the limiter input circuit, the limiting amplifier can be made an automatic gain-riding amplifier also.

The amount of limiting can be set and the amplifier will limit this value over a wide range of input level variations from console or line. The amount of limiting is arbitrarily set at approximately 10 db and the reference level is set at 10 db (or more, if desired) above 0 db compression, as shown on the limiter meter. Then, if the level decreases, the reference point of limiting is increased a like amount, and the amount of limiting is corrected to its former value of 10 db .

For $\mathrm{f}-\mathrm{m}$, the amplifier is set for no limiting, but in practice it actually amounts to about 2 db and the level is corrected automatically from around -15 db to 0 db , using 0 db as reference level. This amounts to an input level of 15 db above that which would modulate the transmitter 100 percent, with no limiting taking place.

The level correction and set

As you know, "Lavite" is a Trade Name of the oldest manufacturer of technical ceramics. "Lavite" Ceramics are backed by 75 years of experience in research and development, and a continuous scientific search for new and better properties to satisfy the stringent requirements of present day communication and power. This valuable experience is now augmented by added facilities - research, design and production with which to even better meet your requirements in quality and quantity - even in periods of general shortages.
I invite you to profit from Steward's research victories and now greater ability to produce. If you have a problem in technical ceramics, I sug. gest you seek the aid of our engineers for individual study and recommendations, and I am sure you will use one of the many "Lavite" Technical Ceramics.

D. M. STEWARD MANUFACTURING $C 0$. 3604 Jerrome Avenue Chatranooga, Tennessee Sales Offices in Principal Cities

Write for your copy of our booklet, "Larite" Technical Ceramics, Table of Properties.

Millions of Coils mound on PARAMOUNT Paper Tubes

Stock Arbors or Special Tubes to Meet Every Need SQUARE, ROUND, RECTANGULAR $.450^{\prime \prime}$ to $25^{\prime \prime}$ I.P. ${ }^{1 / 2 \prime \prime}$ to $30^{\prime \prime}$ long. Tolerances $\pm .002^{\prime \prime}$

You find PARAMOUNT Spiral Wound Paper Tubes at the core of coil dependability in nationally known products and equipment. That's proof they're made right to wind right and stay right on the job. Hi-Dielectric. Hi-Strength. Kraft, Fish Paper, Red Rope, or any combination, wound on automatic machines.

NEW! Sbellac-Bound $\mathrm{K}_{\mathrm{raft}}$ paper tubing. Heated shellac forms an adhesive bond between the laminations. Absolutely mois. ture resistant.

SEND FOR ARBOR LIST

 OF OVER 1000 SIZESWrite on company letterhead for stock arbor list. Includes many odd sizes.

Demanalamen PAPER TUBE CORP.

616 LAFAYETTE ST., FORT WAYNE, IND.
Mfrs. of Paper Tubing for the Electrical Industry

Laminated

 Silver Material in bar form or blanked

to your specifications!

With laminated silver you obtain the high electrical and thermal conductivity characteristic of fine silver . . . yet the precious metal is only where you need it . . . non-precious base metal supplies the added strength and greatly reduces costs.

You will find the fast, dependable service of owner-management and our 53 years of experience a source of complete satisfaction.

Your inquiries will
be appreciated and
replied to . . promptly:

The Home of IMPROVED Service
The IMPROVED SEAMLESS WIRE COMPANY
INCORPORATED 1898
775 Eddy Street, Providence 5, Rhode Island

These miniafure and sub-miniafure corona voltage regulator tubes have been developed for high voltage, low current applications. Specifically designed for such uses as: counter tube power supplies, photomultiplier tubes, stabilizing the second anode potential of cathode ray tubes, reference voltages for regulator systems, nuclear and cosmic ray research. These fubes have been used in such applications as radio frequency and vibrator high-voltage power supplies. They have excellent regulation, exceedingly long life, and their small size gives them a high degree of space efficiency.
In sufficient quantities these corona regulator tubes can be supplied for any voltage between 450 and 16,000 volts

CHARACTERISTICS

	5841	5950	6119	6120
DC Starting voltage (VOLTS MAX)	930	730	2050	18,000
DC regulated voltage (VOLTS)	900 ± 15	700 ± 15	2.000 ± 30	15.600 ± 400
regulateo CURRENT RANGE (ya)	2.50	2.50	2.50	$5-200$
voltage regulation (2-50 עa) (\%)	1.5	1.5	1.5	2
日ulb size	T. 3	T. 3	T-3	3/8' Dio.
LIFE	Untimited by use			

RATINGS
maximum regulator tube current (hol
maximum regulator tube current
maximum relative humidity $(\%) . .$.
$-6510+100$

BETTER COMPONENTS MAKE
BETTER INSTRUMENTS
Victoceen Instrument
5806 HOUGH AVE. CLEVELAND 3, OHIO

PRED

"PRODUCTS OF EXTENSIVE RESEARCH

TRANSFORMERS \& INSTRUMENTS

1010 COMPARISON BRIDGE RAPID TV PARTS TEST

NO. 1030 LOW FREQUENCY "Q" INDICATOR

NO. 1140 NULL DETECTOR AMPLIFIER MODEL

NO. 1180 A.C. SUPFLY . 1 VOLT TO 100 VOLTS AT 60 CYCLES

NO. 1170 D.C. POWER SUPPLY DIRECT CURRENT UP TO

No. 1110A INCREMENTAL INDUCTANCE BRIDGE

FOR ACCURATE TESTING OF TELEVISION AND COMMUNICATION COMPONENTS UNDER LOAD CONDITIONS.

This bridge has an impedance range of one millihenry to 1000 henries in live ranges. The inductance values are read directly from a four dial decade and multiplier switch. Range of this instrument can be extended to 10,000 henries through the use of an external resistance.

The inductance accuracy is within plus or minus 1% through the frequency range from 60 to 1000 cycles. For the largest multiplier at 1000 cycles, the accuracy of the bridge is decreased to $2 \% .60$ or 50 cycles line frequency is generally used with this bridge. On the 1000 henries range, the D.C. is limited to 20 MA . On the 100 henries range the D.C. is limited to 200 MA . On all lower ranges, the current can be one ampere maximum.

nom you nead
 QUALITY OSCILLATOR

 SIE
Model M-2 Oscillator Is Your Answer

The unique SIE oscillator circuit which has no lower limit to its possible frequency of oscillation is responsible for the excellent low frequency performance of the Model M-2 and other SIE oscillators.

SPECIFICATIONS

Range: 1 cps to $120,000 \mathrm{cps}$
Calibration: within $11 / 2 \%$ plus $1 / 10$ cycle
Output circuits: 20 volts or 20 millamps and 1 volt at 300 ohms constant impedance
Amplitude stability: Plus or minus $1 / 2 \mathrm{db}$ UNDESIRED VOLTAGES
Power Supply Noise: Less than $1 / 100 \%$ of output signal
Power Line Surge: Less than 1/10\% of output signal
Harmonic Distortion: Less than 2/10\% from 20 cps to $15,000 \mathrm{cps}$. Less than 1% at all other frequencies
Microphonic Noise: Less than $1 / 100 \%$ of output signal

SOUTHWESTERN INDUSTRIAL ELEGTRONIGS GO.

2831 POST OAK ROAD
HOUSTON 19, TEXAS

434 SEVENTH AVE. EAST - CALGARY, ALBERTA, CANADA

FIG. 2-Modification of RL-10 amplifier for level riding with limiting for α-m
amount of limiting is accomplished by using two time constants in the limiter circuit; one fast and one slow. As the rectified voltage is fed to the fast time constant circuit, part of this voltage is stored in the slow time constant circuit, because the two are in series.

In Fig. 1 is shown the limiting circuit of the Raytheon RL-10 before modification by the author. The changes shown in Fig. 2 were made for 10 db of limiting and for level excursions from -10 db to $\pm 5 \mathrm{db}$, which is extreme but often encountered. Under normal program level the limiter meter indicates a drop in gain of the amplifier of 10 db and the meter will still show 10 db of limiting-varying from 10 db to 20 db on the meter. If the level should drop 8 db there would still be 10 db of limiting and the reference level on the meter would then ride at 2 db .

Although it was not necessary to do so, the $0.1-\mu \mathrm{f}$ capacitors ahead of the 6 H 6 rectifier were changed to $0.5 \mu \mathrm{f}$ to lower the source impedance for the limiter bias. This will make the attack time about twice as fast and much smoother. This change should be made whether used for automatically riding gain or not.

Fig. 3 shows the same amplifier where it is desired to maintain the dynamic range as in f-m program material. Limiting ordinarily is of the order of about 2 db on most programs, but sudden increases in level are not discernable to the listener because the level is corrected so fast. Sudden decreases in level are noticed because of the slow recovery time constant. This feature seems to be quite desirable. The level increase by the amplifier

A lot of

"Military Intelligence" comes from counters like these... because every branch of the service... in fact...

Everyone Can Count on

 VEEDER-ROOTShown here are an aircraft and an artillery counter. What they do, and how they do it, is "nobody's business" but that of the military personnel using them. And now, what might we do for you? If you have an important military job on hand, you can count on us to help you just as quickly as
our present military commissions will permit.
VEEDER-ROOT INCORPORATED
"The Name That Counts"
HARTFORD 2, CONN. - GREENVILLE, S. C.
Montreal, Canada • Dundee, Scotland Offices and agents in principal cities

VEEDER-ROOT
 COUNTERS

SELF-BONDING POLYETHELENE BASE TAPE

Forms into a solid mass of insulation producing moisturetight seals by means of a gasketing action on all materials.

FOR Torrolds - Coils - Resistors - Deflectlon Yokes - Antennas
FOR Electroplating - Masking surfaces of external recessed diameters Clean edges eliminate the need of lacquers.
FOR End Sealling of Cables.
FOR An underwater sealing mechanism both for dielectric and hermetic sealing.

CHECK THESE EXCLUSIVE FEATURES:

$\sqrt{ }$ Fuses into a non-Jaminar homogeneous mass.
$\sqrt{ }$ Excellent dielectric characteristicsover 1,000 volts $/ \mathrm{mil}$.
\downarrow A perfect moisture barrier and corona resistant. (Can be applied at- 30° F.) Prolonged ageing without deterioration.
$\sqrt{ }$ Will not corrode metals.
\checkmark Easy to apply-conforms readily to odd contours. $\sqrt{ }$ S.I.C. 2.12, P. F. . 0004 (a, 10 m.c.

SEND TODAY FOR FREE SAMPLE STRIP

MEMO TO DESIGNERS

FOR ELECTRICITY wW~ IS

THE PATH OF LEAST RESISTANCE

for your PURCHASING AGENT

We're Talking About

JELIIFF wer 1000

This new resistance wire is almost too good to be true. Not only is the Resistivity 1000 ohms/cmf (48% higher than that of the widelyused nickel-chromiums), but it also has such outstanding mechanical and electrical properties that it can easily replace several other alloys now being used in the smaller gages for precision resistors.

This means simplified procurement, stock and inventory procedures more compact precision resistors lower cost and longer life for the finished product.

For the full story of Alloy 1000, write for Bulletin 17

the right combination

 of comparison, the leader among all popularly-priced turntable units. It's General Industries' turret-type 3-speed phonomotor, available in manual type, as illustrated, and also to record-changer manufacturers.
Write today for complete information about this and General Industries' complete line of three-speed, dualspeed and single speed phonomotors, and the popular new GI Tape-Disc Recorder Assembly. Quantity price quotations furnished promptly upon request.

FIG 3-Modified circuit of RL-10 amplifier for automatic level riding for f-m
is slow enough so that the listener is very seldom aware of the level changes, as there is little change in the dynamic range of the f-m programs.

Since peak limiting is not desirable on the f-m programs, the reference level on the $\mathrm{f}-\mathrm{m}$ limiter amplifier meter can be set at 15 db , or more, below 0 db (no limiting). This is an actual input of $\pm 15 \mathrm{db}$ above reference level of 0 db for 100 -percent modulation of the transmitter.

Wide-Range Voltage Regulators

By Joseph Houle
Washington, D. C.

A regulated power supply whose voltage can be adjusted from a few hundred volts down to zero is often needed. Of the many series-tube regulators, no conventional circuit is operable below about 100 volts output because too little plate voltage is then available for the d-c voltage-amplifier tube. While the voltage range of such regulators can be extended downward by means of floating B batteries in the control circuit, this expedient is not usually a complete nor a desirable solution.

To extend the range down to zero without using auxiliary batteries, it is possible to use a circuit having an auxiliary negative supply after a disclosure by White ${ }^{1}$. This general principle has, it is believed, been applied commercially. Figure 1 shows a regulated supply delivering 0 to 300 volts, that was designed by the writer in 1947. A d-c

Chase th brass \& copper

WATERBURY 20, CONNECTICUT - SUBSIDIARY OF KENNECOTT COPPEI CORPDAAIION

- The Nation's Headlquarters for Brass \& Copper

Albanyt	Cleveland	Kınsas City, Mo.	New York	San Francisco	
Atlanta	Dallas	Los Angoles	Philadelphia	Seattie	CHASE
Baltimore	Denvert	Milwaukse	Pittsburgh	Waterbury	th
Bostom	Detroit	Minneapolis	Providence		danmivinsart
Chicago	Houston \dagger	Newark	Rochaster \dagger	(tsales	15
Cincianati	Indianapolis	New Orieans	St. Louis	office only)	

TO GET THIS BOOK

Because of the expense in making this book, we must limit its distribution to those directly concerned with the fabricating of metals. Please send your request on firm letterhead, giving your position or title.

By permitting simultaneous observation or recording of $2,4,6$ or more different phenomena, ETC multi-gun cathode ray tubes and multi-channel oscilloscopes pave the way to farther-reaching analysis and better operation in many fields.

New catalog on request.

H. 81 8-Channel Oscilloscope originally developed for recording seismographic phenomena

H-42A Strainalyzer for simulfaneous analysis of 4 stresses or strains from 0 to 50,000 cycles

electrontc tube corporation

 1200 E. MERMAID LANE, PHILADELPHIA 18 , PA.

FIG. 1-Schematic diagram of a 0 to $300-\mathrm{v}$ regulated supply with straight d-c control amplifier
amplifier tube V_{1} controls the series tubes V_{2} in the usual way, but the cathode of V_{1} is returned to a point 75 volts below ground.

The output voltage is adjusted conventionally by a potentiometer R_{2}, but the negative end of the divider string $R_{1} R_{2} R_{3}$ is returned to a point 150 volts below ground in order to preserve a favorable control ratio at low output voltages. Unfortunately, while the circuit looks simple, too many separate heater windings are required and the power dissipation in auxiliary circuits is excessive, so that the supply is bulkier than one might infer from the diagram.

Carrier D-C Amplifier

The designer is handicapped by the necessity for a common return connection in the output and d-c amplifier circuits, which makes the plate voltages for the d-c amplifier dependent on the output voltage of the supply. What is needed is a four-terminal d-c amplifier, whose output is divorced completely from the operating potentials of the tubes.

Such a four-terminal amplifier is realizable by using a carrier-voltage principle. Amplification is effected at a carrier frequency, isolation is effected by capacitors or transformers and the d-c is recovered with a diode.

For the present application, $d-c$ modulation is best carried out by means of a germanium crystal rectifier. Carrier voltage is applied to the rectifier at low level, and the resulting carrier voltage across a load resistor is changed by varying the d-c bias on the crystal. Such a circuit and its transfer characteristics are shown in Fig. 2. For this regu-

TRANSFORMER CANS STOCKED IN STANDARD SIZES

We can save you die costs on all stock size transformer cans, and will make IMMEDIATE DELIVERY. A full range of sizes are available with or without covers. List of stock sizes and prints furnished on request.

SPECIAL SHAPES AND SIZES

We are also equipped to fabricate special sizes and shapes (round, square and rectangular) to your own specifications. Tell us your transformer can requirements and we will be glad to submit estimates.

Craft Transformer Cans are drawn in one piece.

3949 W. Schubert Ave., Chicago 47
Stainless Steel Snecialists

FIG. 2-Carrier modulator with crystal diode. Slope is about twice as steep at $0.1 \cdot v$ input carrier level but linearity is poorer
lator application the low input impedance is of no consequence, nor is waveform distortion.

Carrier-Type Requlator

The circuit of a complete regulated d-c power supply using a fourterminal carrier-type d-c control amplifier is shown in Fig. 3. While the circuit looks comparatively complex, its physical realization is relatively compact and efficient. The additional components are all small and cheap and power dissipation in auxiliary circuits is low.

The circuit of Fig. 3 will deliver from 0 to 300 volts with an internal impedance of about 40 ohms. Current output at high output voltages is determined by the current passed by the series tube V_{4} at zero bias and is determined at low voltages by the allowable plate dissipation of that tube.

The source of carrier voltage is an ordinary oscillator, V_{1}. A convenient carrier frequency was chosen as 150 kc . A winding L_{2} of a few turns on the oscillator coil form L_{1} takes off a signal of about 1 volt for excitation of the carrier modulator system.

The modulator comprises a 1 N38 crystal diode and a load resistor R_{1}. The d-c control voltage, varying the conduction of the 1 N 38 diode, is the difference between a fixed fraction of the d-c output voltage, taken from point A on a divider and the potential of the slider B on a potentiometer P_{1} across a d-c reference source V_{b}. If point A becomes more positive than point B, the conduction of the 1N38 diode will increase

	4
$=$	
$\begin{array}{ll} \\ \\ 20 \end{array}$	43
	AFP

There's a standard C-D QUIETONE filter
for practically every known application, engineered by the largest filter laboratory in the world.

If your problem is a brand new one, our filter engineers
will be glad to collaborate with you! Write Dept. K-81, for full information.
Cornell-Dubilier Electric Corp., South Plainfield, N. J.
Cornell-Dubilier
CAPACITORS
PLANTS IN SOUTH PLAINFIELD N. J.: NEW GEDFORO, WORGESTER, AND CAMBRIDGE. MASS.: PROVIDENCE, R. I.: INDIANAPOLIS. IND.: FUQUAY SPRINGS, N. C.: AND SUBSIDIARY. THE RADIART CORP.. CLEVELANO, OHIO
 the beginning of the industry. From design to final inspection, Mack manufacturing methods-keyed to the electronic industry - give assurance that each part is electrically and mechanically correct. Complete service from blueprint to finish features deliveries to meet your assembly line schedules. Inquiries will receive prompt attention; address Mack Molding Company, Inc., Wayne, N. J.

> MOLDED EXCELLENCE

OVER 30 YEARS OF MOLDING SERVICE TO INDUSTRY

FIG. 3-Schematic of a 0 to $300 \cdot \mathrm{v}$ requlated supply with carrier-type fourterminal d-c control amplifier
and more carrier voltage will appear across diode load resistor R_{1}.

Amplification of the controlled carrier voltage is effected by a conrentional tuned amplifier $V_{\text {s. }}$. Recovery of the d-c signal after amplification is carried out by a 6 H 6 diode V_{3}, connected as a voltage doubler.

The return side of the voltage doubler is connected directly to the cathode of the series tube V_{s}. The rectified d-c is negative on the $V_{\text {。 }}$ grid. An increase in the d-c output voltare at the cathode of V_{*} will bias the 1 N 38 so as to increase the carrier voltage; the voltage rectified by the 6H6 will increase and bias the series tube V_{1} in a regulatory manner.

The high frequency limit of the regulating action depends on the bandwidth of the carrier amplifier system. To keep the output impedance of the whole power supply low at frequencies above a few thousand cps, a capacitor C_{1} is provided across the output.

Design Considerations

No untoward tendencies to instability were observed in trying out the circuit of Fig. 3. Hum averaged around 5 mv .

To permit lowering the d-e output voltage all the way to zero under conditions of light load, the carrier-rectifier system must be capable of producing enough negative bias to cat off the series tube V_{1}. About 150 volts is required. The high rectified voltage makes a thermionic diode advisable for V_{3}, rather than germanium diodes.

An attractive feature of this type of regulator is that the control ratio can be made extremely high hy merely providing a lot of ampli-

New York Transformer Co. Insulates with IRVINGTON No. 10Φ Varnish
 "FOR EXCEPTIONAL LIFE IN SEVERE SERVICE'"

For specialty transformers that meet unusual and exacting requirements, the electronic industry turns to New York Transformer Co., Inc., Alpha, N. J. And for insulation that gives outstanding performance under the toughest conditions, NYT has turned-for more than 10 years-to Irvington No. 100 Clear Baking Varnish, for use on all its power transformers and chokes.
Here are two major reasons why NYT counts on Irvington No. 100: MOISTURE RESISTANCE. 24-hour water immersion reduces dry dielectric strength of 2250 vpm by only 2.2%.
HEAT RESISTANCE. Irvington No. 100 withstands ASTM heat endurance test at 105° to $110^{\circ} \mathrm{C}$ for over 1000 hours.
You too can give your products service advantages like these-and save time and money, because . . .
Irvington No. 100 cures fast and thoroughly, even in deep windings. Its clarity allows quick identification of color coding or numberingsaves time on the assembly line, reduces risk of rejects.
Get the full story today-Technical Data Sheet is yours for the asking.

Send this convenient coupon now

Irvington 11, New Jersey

Irvington Varnish \& Insulator Company
6 E Argyle Terrace, Irvingion 11, N. J.
Gentlemen:
Please send me your Technical Data Sheet on Irvington No. 100 Clear Baking Varnish.
Name. Title..
Company
Street.
City. \qquad Zone. \qquad State.

use NORTH RELAYS nos ATOMATIC SWITCHING4.

This North Relay

mounted with standard microswitches, provides for instantaneous, dependable, flash-proof opening, closing or transfer of circuits up to 250 volts with 5 amp. lood. Micro switches may be poled for normally open, normally closed or break-make contacts. The fast-acting, fastreleasing relay normally operates at one watt. Single-wound coils may be had in any resistance up to 10,000 ohms. Center contacts, independent of micro-switches, automatically control a signal circuit.

This North Relay

automatically latches in the operated position, is released by on impulse to the second coil which trips the simple, positive latch. This permits holding of all circuits in the operated position for indefinite periods without continued energizing of either coil. Both coils are fast-acting, fast-releasing, and normally operate at 2 watts. Three pile-up spaces provide for a choice of more than 100 break and/or make contact sets.

In Combination

the latching relay with the micro-switch mounfing, provides an ideal automatic switching control. Typical are its uses in controlling airport runway lights, signalling devices and other on-and-off controls within

WRITE FOR THE NEW
NORTH
RELAY
CATALOG
fication at the carrier frequency. When this is done, the carrier level at the modulator diode should be lowered proportionately. The low limit for diminishing returns has not been well investigated, but is probably of the order of 50 mv .

Stability of contact rectifiers is considered somewhat better than that of thermionic tubes, so that this type of regulator may well be capable of holding to within a few tens of millivolts with respect to the reference voltage under a wide range of conditions.

Reference

(1) E. L. C. White, U. S. Patent 2,268,790, Jan. 6, 1942 .

Aircraft Communication System

Engineers of the Air Materiel Command's Electronics Lab at Wright-Patterson Air Force Base have redesigned all the audio components of an aircraft communication system in one coordinated project which, they say, has achieved better integration of parts than was possible in the projects of the past.

One of the most important changes is the use of small amplifiers at each station instead of the one large central amplifier used in current sets. This serves as a preamplifier when the crew member is talking into his mike and as a booster for his earphones when he is listening. It is built into the crew station control panel.

Voice distortion and instability have been cut down by 95 percent by increasing the frequency range and using a moving coil dynamic microphone and earphones instead of the carbon mike and magnetic diaphragm earphones now in use.

Earphones, the source of sore ears after several hours of flight, were redesigned to be more comfortable. They are of plastic with a nylon cap. The uncomfortable leather-covered metal bands that now form the headband will give way to a netting that snaps on easily. The two plugs and cord used for the earphones and mike have been cut to one plug and one cord.

The new system will replace all sets now in use on bombers, fighters and transports.

112 R Series 3000 V (RMS) Flange diameter $1 / 2^{\prime \prime}$ For exterior mounting Electrode treatments HTL, HT, FP, FPSW, FPNH and FP Threaded

105 TB-FP 1500 V (RMS) Flange $3 / 8$ " hex. Mounting hole $1 / 4$ " 28 threaded Electrode treatment FP only

THE ELECTRON ART
(continued from p 140)

FIG. 1-Basic circuit of synnchro data telemetering converter
a common reference signal for all data channels. Various means of multiplexing these channels onto a single radio or wire transmission have been devised by the writer and others.

Converter Circuit

An extremely simple circuit has been devised to convert three-wire synchro data to a single, phaseshifted signal.

The first portion of the circuit consists of a conversion from threephase to two-phase data. We refer here to space-phase rather than time-phase voltages. Referring to Fig. 1, three resistors R_{1}, R_{3} and R_{3} are connected in wye between the synchro output lines A, B and C. The values of the resistors are so chosen that the space-phase vectors of the voltages $B D$ and $C D$ are at right angles. It may be seen from Fig. 2 that the magnitudes of the vector voltages across these resistors must then be related as follows:

$$
\begin{aligned}
& \left|\frac{e_{A D}}{e_{B D}}\right|=\frac{\sin 15^{\circ}}{\sin 30^{\circ}} \\
& \text { and } \\
& \left|e_{B D}\right|=\left|e_{C D}\right|
\end{aligned}
$$

Because current vectors $i_{B D}$ and $i_{C D}$ are perpendicular in space phase, and the sum of currents

FIG. 2-Space-phase vector diagram of voltages appearing in Fig. 1

We promised you better resistors than had been available before. Our new crazeless, blue-gray enamel resistors are out-performing our highest expectations in the field.

Let us summarize the improvements you get in these new Hardwick, Hindle resistors:

1. Crazeless-complete elimination of the crazing which results in failure of the resistive element due to moisture penetration from humidity, salt and severe atmospheric conditions-providing greater dielectric strength.
2. High temperature qualifications - provide greater safety factor under abnormal operating conditions.
3. Stronger core-gives greater resistance to excess vibration and shock test.
4. Alloy terminals-greater strength-corrosion and rust resistant-spot-welded to the ceramic body.
5. Resistive element-finest quality wire free from impurities that could cause weakness.
6. Connections-all wire connections to terminals are protected by positive non-corrosive bonding.

The above factors give you absolute assurance of longer life and outstanding performance.

The fixed, the ferrule and the flat types are designed for and manufactured in accordance with JAN-R-26A specifications.

HARDWICK, HINDLE, INC.

Rheostats and Resistors

Subsidiary of

the national lock washer company

Established 1886
NEWARK 5, N. J.
U.S.A.
the mark

of quality
for more than a quarter of a century

* FINDS A FIELD OF BLACK GOLD

Modern engineers know that black gold is where you find it . . . scientifically! That's why they use Magnecord tape recorders in their search for new oil supplies. Magnecord recordings of signals from sensitive electronic instruments help determine the depth and location of oil bedring rock strata,

Whatever your recording problem in science, industry or communications, Magnecorders offer greater fidelity and precision. Available for subsonic, audio and supersonic research, Magnecord can fill your most exăting requirements.

Illaquecotal, inc.
 high fidelity tape recorders fon industay

Write for NEW CATALOG

MAGNECORD, INC., DEPT. EA-8
360 N. Michigan Avenue, Chicogo 1, Illinois
Sund me further information on Magnecord tape recording for industrial "Sound" Research.
\qquad
Company....
Address.....

Used by more engineers then oll other professional tope recorders combined

Address.....

FIG. 3-Complete circuit which employs additional components to avoid loading of phase network by output circuit
entering point D must be zero, the relative magnitude of the currents must be

$$
\begin{aligned}
& \quad\left|i_{A D}\right|=\left|\left|\sqrt{2 i_{B D}}\right|\right. \\
& \text { and }\left|i_{B D}\right|=\left|i_{C D}\right|
\end{aligned}
$$

Using these expressions, the ratio of the resistances is:

$$
\frac{R_{1}}{R_{2}}=\frac{e_{A D}}{e_{B D}} \times \frac{i_{B D}}{i_{A D}}=
$$

$$
\frac{\sin 15^{\circ}}{\sin 30^{\circ}} \times \frac{1}{\sqrt{2}}=0.366
$$

and

$$
\frac{R_{2}}{R_{3}}=\frac{e_{B D}}{e_{C D}} \times \frac{i_{C D}}{i_{B D}}=1
$$

The above values have been verified experimentally.

The second portion of the circuit of Fig. 1 converts the two-spacephase voltages, $B D$ and $C D$, into a phase-varying output voltage, $E D$. The voltages $B D$ and $C D$ are related as follows:

$$
\begin{aligned}
& \quad e_{B D}=E \sin \omega t \sin \left(\theta+45^{\circ}\right) \\
& \text { and } \\
& e_{C D}=E \sin \omega t \sin \left(\theta-45^{\circ}\right)
\end{aligned}
$$

If R_{4} is chosen equal to $1 / \omega C$ at the synchro supply frequency, then the output voltage is:

$$
\begin{aligned}
& e_{E D}= \sqrt{2\left(e_{B D} \angle 45^{\circ}-e_{C D} \angle-45^{\circ}\right)} \\
& e_{E D}= \sqrt{2 E}\left[\sin \left(\omega t+45^{\circ}\right) \sin \left(\theta+45^{\circ}\right)\right. \\
&\left.\quad-\sin \left(\omega t-45^{\circ}\right) \sin \left(\theta-45^{\circ}\right)\right] \\
&= \sqrt{2} E\left[\sin \left(\omega t+45^{\circ}\right) \sin \left(\theta+45^{\circ}\right)\right. \\
&\left.\quad+\cos \left(\omega t+45^{\circ}\right) \cos \left(\theta+45^{\circ}\right)\right] \\
& 2 E \cos (\omega t-\theta)
\end{aligned}
$$

The latter is seen to be a con-stant-amplitude carrier of frequency ω whose phase is proportional to the synchro shaft angle θ. It is convenient that any load applied across terminal $E D$ be a negligible load on the network. The

...Automatic Push-Button Tuning

Exclusive

DAVENDistortion and Noise Meter Type 35-A

The DAVEN Type 35-A, Distortion and Noise Meter, is a new, skillfully engineered instrument that provides a rapid, accurate means of measuring distortion, noise and hum level in audio frequency equipment.
Of particular importance is the fact that there is no balancing or laborious time consuming tuning required to make measurements. The user need only push a button and the unit is automatically balanced.
This is accomplished by the use of a series of 8 fixed band rejection filters covering the range 50 cycles to $15 \mathrm{~K} . \mathrm{c}$., followed by a stable, high quality, wide range (50 cycles to $45 \mathrm{~K} . \mathrm{c}$.), high gain amplifier. There are no tube circuits or other sources of inherent distortions, making it possible to measure low levels of distortion accurately over a wide level range.

SPECIFICATIONS

RESIDUAL DISTORTION: No tube circuits or non-linear devices between input of set and filter input.
DISTORTION MEASUREMENTS: Filters provided for 50, 100, 400, 1000 cycles, $5 \mathrm{Kc}, 7.5 \mathrm{Kc}, 10 \mathrm{Kc}$, and 15 Kc with cut off of -70 db . Distortion measurements to 0.1% full scale meter deflection with zero level input.
NOISE MEASUREMENTS: With zero $\mathbf{d b}$ input, limit is $\mathbf{- 8 0} \mathbf{~ d b}$. At +40 input, limit is -115 db below input.
AMPLIFIER FREQUENCY RANGE: 50 cycles to 45 Kc .
ACCURACY: Filters are down 70 db at fundamental frequencies, and within $\pm 0.5 \mathrm{db}$ of flat response at the second harmonic. Absolute accuracy of measurement can be depended upon to be within $\pm 5 \%$. RESIDUAL NOISE LEVEL: Below $\mathbf{- 8 0} \mathbf{d b}$ at gain control full on. Multiple gain control employed so that residual noise drops to -90 db . when gain control is set at $\mathbf{- 3 0}, \mathbf{- 1 0 0} \mathrm{db}$ when gain control is set at -20 , etc.

... Switch to Arkwright Tracing Cloth! You can re-ink clean, sharp lines over any erasure without "feathering" or "blobbing" to spoil your work.

Painstaking Arkwright inspection guards your drawings against pinholes, thick threads or other imperfections-Arkwright quality insures them against brittleness, opaqueness, or paper-fraying due to age. That is why Arkwright Tracing Cloth takes clean, sharp drawings that yield clear, sharp blueprints years after you make them.

Remember: if your work is worth saving, put it on Arkwright Tracing Cloth. Would you like a sample? Write Arkwright Finishing Co., Industrial Trust Bldg., Providence, R. I.

ARKWRIGHT Tracing Cloths

load consisting of R, and C is directly across two synchro output terminals and must, like R_{1}, R_{2} and $R_{\text {s }}$, be high enough in impedance to avoid a voltage drop through the synchro. In certain cases, if the output load is not negligible, network constants can be adjusted to compensate therefore.

Accuracy

By careful selection of the five circuit elements mentioned above, angular inaccuracies as small as a fraction of a degree may be attained.

Figure 3 shows a complete circuit which employs additional components to avoid loading of the phase network by the output circuit, and to allow grounding of one side of the output. The photograph shows a manufactured plug-in assembly of two such circuits.

A New Analog Computer

By S. Bosworth
Computer Corp of America New York, N.Y

An inexpensive desk-size electronic differential analyzer has recently been developed by the Computer Corporation of America. Although it is housed in a cabinet which is only 36 -备 in. high, IDA (for Inte-gro-Differential Analyzer) contains $20 \mathrm{~d}-\mathrm{c}$ computing amplifiers, 23 precision ten-turn potentiometers, 8 of which may be used for setting in initial conditions, 8 integrating capacitors, a control panel, a highly stable regulated power supply, and a setup board for wiring in the analog.

The top panel of the main cabinet shown in Fig. 1 contains the 23 coefficient-setting potentiometers. Any of the eight potentiometers in the upper row may be used to set initial conditions into the integrating capacitors mounted behind them. For this purpose, the switch directly below each one is thrown either to left or right for positive or negative initial conditions respectively. With the switch in the center position, the corresponding potentiometer may be used as a coefficient-setter.

The eight $1-\mu \mathrm{f} \pm 1$ percent herme-

OUMDNTIT

VIDEO SWITCHING

Comprising the Nine-Channel Switch Unit (5262-A), Mixer Line Amplifier (5263-A) and Low Voltage supply (5019-A).
Variety of special effects, achieved quite simply with the provisions in the Mixer Amplifier, can be previewed before being put on the air. Single Mixer Control at Switching unit permits smooth transition from one channel to another. Again, another control at Switch Unit determines bus cutoff voltage cross-over point, so that any degree of fading, lapping or superimposing of two signals an be accomplished. Provision is made available in the Mixer Amplifier for insertion of special blanking to create special effects such as wipes, montages, etc.
While main line is feeding transmitter, the mixer amplifier output can be used to feed, simultaneously, a different mixed studio show to an audition circuit. The Mixer Amplifier has three identical program outputs which may be fed to transmitter, network cable and master line monitor.

Fiist with the Fimest in Television

FEATURES

Switch Unit available for mounting in standard $19^{\prime \prime}$ relay rack or in console. Mixer Line Amplifier and its power supply are rack-mounted.
All channels take either local or remote signals.
Lap, fade or super are achieved with single control. Facilities for inserting special blanking (horizontal wipes, montages, etc.). Preview for special effects.
Sync insertion on local signals, controlled by pushbuttons. No switching transients on main-line switching. Automatic pedestal setup incorporated in mixer amplifier.
Frequency response of preview monitor No. 1 amplifier, mixer amplifier and main-line amplifier flat within 0.5 db to 8 MC : less than 6 db down at 10 MC. Preview Monitor No. 2 amplifier flat with in 0.5 db to 6 MC : less than 6 db down at 8 MC .
Lucite, pushbuttons lighted internally when button is pressed.
further detalls and quotations on request

ROBINSON ENGINEERED

MOUNTNG SYSTEMS

Vibration isolation and shack preatection

 fat Airbarne Equipment

FOR LEAR INC....

Robinson Engineered Mounting Systems, similar to the Met-L-Flex base above, are being used by Lear Inc. for their famous aircraft electronic equipment after extensive in-flight and laboratory tests.

Abstract

Vital and costly equipment aboard new high performance aircraft must be protected through extreme conditions of vibration, overload and shock. Engineers have found that "off the shelf" mounts seldom deliver the required results and therefore they look to Robinson Aviation for systems engineered for the specific application. Current Robinson Met-L-Flex Mounting Systems exceed the, requirements of JAN-C-172A and Applicable specifications. Mer-L-Flex systems are available in JAN form factors and special designs, to fit your equipment.

FIG. 1-Compact computer which is capable of so!ving eighth order differential equations
tically sealed capacitors permit the solution of problems describable by an eighth-order differential equation.
The second panel is hinged to permit plug-in and removal of the set-up board shown in Fig. 2. Use of set-up boards makes possible almost continuous operation of the computer, since problems may be changed in the few seconds required to remove one board, and insert another. Since all interconnections are made on the set-up board, the necessity for patch-cords is eliminated, and once the board is in place, it is virtually impossible to disturb the problem set-up accidently.

The boards consist of two panels mounted back to back on an aluminum frame. On the panels are 266 spring-type binding posts. All computer elements are terminated at these posts through three 50 -contact connectors at the rear of the frame which mate with receptacles in the cabinet. The remaining uncommited posts may be used as junction points, and to support resistors. By connecting jumpers, which may be ordinary hook-up wire, and fixed resistors of any desired accuracy, between the proper binding posts, all the elements of the computer are interconnected to form the analog of the problem.

Directly below the hinged panel in Fig. 1 are the balance meter and balance controls of ten amplifiers. The balance controls of the other ten appear just above this panel. Each control incorporates a balance switch. Pushing inward on the knob throws this switch and simul-

MILITARY CONTIACTORS:

Voltage Regulation is PERFFORMANCE INSURANCE

Increasingly complex and sensitive electrical and electronic units demand narrow supply voltage tolerances. Yet, the very nature of military operations often requires operation in the face of widely varying supply vollages. You can assure the constant line voltage your unit requires by building in a SOLA Constant Voltage Transformer.
SOLA regulators are ideal for military use. They are self contained ... regulate automatically and in. stantaneously . . . contain no moving or expendable parts . . . require no manual adjustment or maintenance ... and are self protecting against overload. SOLA Constant Voltage Transformers often replage costly bulky regulating networks, greatly simplifying design and production.
Standard and custom designs can be engineered and produced to meet most voltage regulating requirements.
We welcome your inquiry. Our engineering staff and production facilities are at your disposal.

Transformors fort Constant Voltage - Fluarescert Lighting - Cold Cathode Lighting • Airport Lighting ${ }^{\circ}$ Series Lighting \bullet Luminous Tube Signs

Here's what W. J. SCHNELL, of Sentinel, says about the

We can't honestly say this is an unsolicited statement. Sure, we wrote to Bill Schnell. Asked him point blank what he, as director of engineering for one of our oldest customers, actually thought about the Tarzian Tuner. Naturally, we were pretty sure of what he'd say, for engineers appreciate the many desirable features-such as pin-point oscillator alignment . . . unexcelled stability-which are characteristic of the Tarzian Tuner. Manufacturers are invited to write for complete engineering data on the Tarzian Tuner.

SARKES TARZIAN, Inc.

Tuner Division • Bloomington, Indiana

taneously engages a potentiometer. The inherent stability of the amplifiers makes balancing necessary only once or twice a day, while the operation itself requires only a minute.

The twenty computing amplifiers, one of which is shown in Fig. 3, are miniaturized plug-in units. The direct-coupled circuit incorporates a positive feed-back loop which is adjusted to give infinite gain. When used with an external negative feed-back loop, as it is in a computing circuit, the amplifier is stable, and has zero output impedance.

By virtue of the fact that the input and feedback impedances that determine the transfer functions of the amplifiers can be selected and connected on the set-up board, each amplifier may be used as a summer, integrator, sign-changer, or constant multiplier.

Just beneath the lower row of balance knobs and to the left in Fig. 1, are the two controls which select the forcing function and adjust its amplitude. Either a positive or negative internally generated step function may be chosen, at a level of zero to 50 volts monitored on the meter below. Special functions, such as sine or exponential, may be internally generated and applied in the same manner. One position of the selector switch also permits an externally generated forcing function to be introduced through the socket just below this switch.

On the right-hand side of this panel are the two operating controls. A spring-loaded switch allows the application of the forcing function either momentarily or

FIG. 2-The analog of the problem is constructed on this set-up board. Use of several boards makes possible storage of problems and continuous operation of the computer

Dag. Exeterore we wesion on Any Glass graphite in a lacquer-base vehicle. Semi-colloidal dispersion of pure coating that adheres and forms a smoring is easily applied to CRT sure This ideal CRT coating denaciously to all types of glass. conductive black the tubes after two or coating dries very rapidly by drying at room the three minutes. Mapidly, permitting handling of job, infra-red will do thempature for twenty When thoroughly dried, trick in one-half hour at hours. For a fast cannot be readily loong dried, the resulting hour at $100^{\circ} \mathrm{C}$. For a fast The versatility of "dage by immersion film resists scratching and dustry is explained of "dag" colloidal graphite immersion in water. your free cofy of Bulletinghly in a recent bulle in the electronic in-

dad
 Acheson aspessunto Colloids

 Corporation Port Huron, Mich.... alsa Acheson Colloids Limited, London, England

ELECTRONIC INSTRUMENTATION
 for LABORATORY or PRODUCTION LINE!

decimal counting unit, model 700 is a direct reading electronic counter capable of operating at speeds up to 30,000 counts per second. Digits from 0 to 9 are presented on illuminated front panel. Electrical reset to zero. Plug-in octal mounting for easy interchangeability. The counter operates on input pulse of 100 volt neg. with 2 microsec. max. rise time. Output will drive following unit in cascade. Dimensions $13 / 8^{\prime \prime} \times 5^{\prime \prime} \times 51 / 4^{\prime \prime}$. W t. 12 oz . Other models to a million counts per second.

ELECTRONIC COUNTER, MODEL 10 was developed to meet the need for a rugged industrial counter operating at speeds up to 6000 counts per minute. Total count is displayed on the Decimal Counting Unit and the mechanical register to a maximum capacity of $9,999,999$. Unit may be operated from closing contacts, photocell, or any means that will supply a positive potential of at least 3 volts. All circuitry moisture and fungus proofed. Unit is available in a variety of vapor-proof and explosion-proof housings to meet individual requirements.
 Dinmensions $61 / 4^{\prime \prime} \times 71 / 4^{\prime \prime} \times 61 / 2^{\prime \prime}$. Weight approximately 6 lbs .

PRESET COUNTER consists of a serics of scale-of-10 electronic counting units each in parallel with a 10 position push-button switch. This instrument accepts counts in the conventional manner at rates up to $10,000 \mathrm{cps}$. Any number from 0 to maximum capacity may be preset merely by depressing appropriate push-button in each column. Upon reaching the preset count, the unit supplies an output pulse to drive a register, close a gate, divert a production line or perform any other desired function. It then resets to 0 and recycles automatically. Available in any desired capacity.

EVENTS PER UNit time meter, MODEL 554 will automatically count and display the number of events that occur during a precise one second interval at rates up to 100,000 events per second. Accuracy is \pm one event. Will operate either manually or automatically to count any mechanical, electrical, or optical occurrences, regularly or randomly spaced, that can be converted into changing voltages. Instrument counts for one second and displays the results
 on illuminated five-digit panel. Will recycle continuously on automatic operation. Convenient test switch permits 2 second self-check of entire unit. Dimensions $203 / \mathbf{4}^{\prime \prime}$ $\times 101 / 2^{\prime \prime} \times 15^{\prime \prime}$. Weight approximately 68 lbs.

TIMEINTERVAL METER, MODEL 510 provides a direct reading of elapsed time between any wo events in the range of 0.000010 to 1.00000 sec onds. Accuracy is ± 10 microseconds. Any occurrences that can be translated into changing voltages may be so timed. Timing may be started and stopped by independent voltages, the polarity of which may be selected by means of toggle switches. Sensitivity control permits selection of the amplitude of start or stop voltages at optimum level for elimination of interference. Dimensions $203 / 4^{\prime \prime} \times 101 / 2^{\prime \prime} \times 15^{\prime \prime}$. Weight approximately 58 lbs .

SINGLE/DOUBLE PULSE GENERATOR MODEL 903 is a general purpose laboratory instrument that supplies either single or paired pulses individually variable in amplitude, width and polarity. Pulse spacing is continuously variable from 0 to 10 microseconds, pulse width from 0.10 to 1.6 microseconds and pulse amplitude from 200 volts maximum negative and 50 volts maximum positive for 1000 ohm load, and 10 volts maxi-
 mum negative and 50 volts maximum positive for 50 ohm load. Single or double pulses are available through separate panel connectors. Repetition rate internally controlled 1 to 1000 cps . Push-button control single cycle. External signal control for any rate up to 1000 cps .

These are basic descriptions of representative standard instruments. A variety of modifications, both standard and special, are aiailable
to meet specific requirements. For complete details urite Dep't. E.

Berkeley Scientific Corporation 2200 WRIGHT AVE. - RICHMOND, CALIF. A NATIONAL ORGANIZATION

THE ELECTRON ART (continued)

FIG. 3-Twenty computing amplifiers of the type shown are used. These interchangeable units can operate as integrators, summers or sign changers
continuously, before the start of, or during, the computing process. The large knob alongside it is marked Off-Record-Compute. With this switch in the OFF position, the recording oscillograph motor is turned off, and each computing capacitor is maintained in either a discharged condition, or at some preset initial condition voltage. Under these circumstances, the computing process is, in effect, clamped to correspond to conditions in the system at time $t=0$. When the switch is turned to Record, the computing process remains clamped, but the recorder chart drive is turned on. This permits the chart to reach full speed, and allows the pens to be zeroed mechanically. Rotating the switch to Compute removes the capacitor clamps, and allows the computation to proceed.

Below the control panel is the regulated power supply. Positive and negative B voltages are furnished to the amplifiers, as well as to the integrating capacitors for initial condition charging, and to the forcing function circuit. These voltages are regulated to better than 0.1 percent for simultaneous variations in load from zero to full, and line from 105 to 135 volts. Power supply voltages and currents are monitored by the two meters on this panel.

Figure 4 is a close-up view of the recorder and its control unit. Amplifiers for driving the magnetic oscillograph are contained in the control unit, as well as switches to select the input to each channel. This cabinet also contains circuits for controlling and calibrating the gain of the recording channels, and for monitoring any of the amplifier

... that's what the trademarks and brand names of American producers establish. For never has a country accumulated such wealth of designing and engineering talent, such monumental means for producing both the necessities and luxuries of the day, or such massive potential for meeting the needs of tomorrowhowever vast and varied they may be.

Accordingly, we take particular pride in our per. sonal emblem. Representing a wide range of alloys for the electrical, electronic and heat-treating industries, it is the very symbol of quality and dependability to a host of manufacturers thruout the nation. We are well aware of our obligation to uphold its reputation-in peace or war.

So if your products demand electrical resistance material of outstanding uniformity, high stability, and long life ... or if you require radio alloys for elec.
tronic uses . . . or high heat-resistant equipment . . . consult with us. Our fifty years' experience is at your disposal.

As recipient of the highest Armed Services Award in 1918, and of no less than five Army.Navy " E " Awards in World War II, it is logical that the resources of this firm should be engaged to an unprecedented extent in meeting the demands of the present emer. gency. However, we stand ready to make recommenda. tions based upon your specific requirements, and shall be glad to serve you to the best of our ability.

One thing is sure: Your use of a D.H product will prove a source of confidence-confidence not only in Driver-Harris products per se, but, in a wider sense, confidence in the capacity of creative America to meet any situation, come what may.

Mionufacturers of warld famous Nichrome*
and over 80 other allors for the electrical,
electronic, and heat-freating fialds.

Test, Grade, or Match Resistors

Just place the "unknown" resistance across the terminals of this precision, production Clippard tester. Even unskilled operators can process up to 17 resistors (of all types) per minute. Working to an accuracy of better than $\pm 1 \%$ through the entire range of 100 ohms to 100 megohms, the PR- 5 is a companion instrument to the famous PC-4 Automatic Capacitance Comparator. With it, radio, electrical, resistor manufacturers and large part jobbers save time and money and assure unerring accuracy of inspection.

Completely self-contained, the PR-5 requires no outside attachments other
than the Standard Resistor against which unknowns are checked. Operates on 110 Volt- 60 Cycle AC. Range: 100 ohms to 100 megohins; reads de. viation from standard on any of three scales: -5% to $+5 \%,-25 \%$ to $+30 \%$ or -50% to $+100 \%$. Size: $18^{\prime \prime} \times 12^{\prime \prime} \times 12^{\prime \prime}$. Weight: approx. 32 lbs. For complete details, write for Catalog Sheet 8-E.

Clippard

 instrument laboratory inc. 1125 Bank Street - Cincinnati 14, Ohio,[^13]

FIG. 4-Solutions appear graphically on the magnetic oscillograph (left). The control unit (right) selects the computed quantities to be recorded
outputs or the forcing function by means of a meter or cathode-ray oscilloscope. For those applications requiring simultaneous recording of more than two quantities, a sixchannel recorder and control unit is available.

To increase the usefulness of the computer, 44 terminals on the setup board are brought to connectors at the rear of the main cabinet. This makes possible interconnection of two or more computers, and permits the introduction of special function generators, servo multipliers, additional integrating capacitors and other auxiliary equipment.

Measuring Power Factor of Low-Loss Dielectrics

By J. L. Dalke and R. C. Powell
National Butreau of Standards
Washington, D. ${ }^{\text {C. }}$. Washington, D. C.
Accurately measuring the power factor of low-loss materials is frequently difficult with equipment that is usually available. The smallest power factors determined by most commercial bridges is hardly better than 10^{-1}, whereas materials such as polystyrene and teflon have power factors only two to three times this value. When resonance methods are used, the smallest detectable power factor is inversely proportional to the Q. For a circuit with a Q of about 200 and the usual voltmeters and generators the sensitivity of power factor measurements is of the order of 10^{-4}. The sensitivity can be increased by introducing negative resistance into

[^14]
Federal was FIRST to develop...

FIRST to receive military approval of

RG TYPE CABLES

WITH THE NEW LOW-TEMPERATURE NON-CONTAMINATING THERMOPLASTIC JACKET

THESE ARE THE TYPES	
APPROVED TO DATE-	
RG-5B/U	RG-21A/U
RG-6A/U	RG-22B/U
RG-8A/U	RG-58B/U
RG-9B/U	RG-58C/U
RG-10A/U	RG-59A/U
RG-11A/U	RG-62A/U
RG-12A/U	RG-63B/U
RG-13A/U	RG-65A/U
RG-79B/U	

The following types-over $1 / 2$-inch diameterare available, subject to military approval:

RG-14A/U	RG-20A/U
RG-17A/U	$R G-23 A / U$
RG-18A/U	$R G-34 A / U$
RG-19A/U	$R G-74 A / U$

Review your requirements now to insure prompt delivery

Millions of feet of this

 special approved type have been produced by Federal-AMERICA'S pioneer source of supply for low-temperature RG types-that's Federal! It was Federal that first successfully developed this type ... first received approval of the U. S. Signal Corps and the U. S. Air Force . . . first manufactured it in enormous quantities!

That's why it pays to specify Federal when you need RG types. With Federal quality you get an extra measure of experience and know-how...experience that assures complete product satisfaction and dependable cable performance.

In addition to being a primary source of the listed RG types, Federal now is ready to supply complete coaxial cable assemblies... to meet your requirements.
For further details on assemblies and present and subsequent RG approvals, write to Dept. D-613.

Manufacturer of America's most complete line of solid dielectric cables

Federal 'Telephone and Radio Corporation

Manufacturers of Thermoplastic Insulated Wire, Cables, Cord Sets and Tubing to Government Specifications

the resonance circuit to compensate for the energy dissipated in the circuit, thereby obtaining a much higher Q. In fact, radio engineers have for many years used regenerative circuits to improve the selectivity of tuning circuits. Apparently Towsley ${ }^{1}$ was the first to apply regeneration to dielectric measurements. The approach and the circuit described in this paper are different and the apparatus is simpler making accurate measurements possible up to three hundred megacycles.

Circuit Diagram

Figure 1 shows the circuit which has been in use for over a year. It is composed of a conventional coil, a micrometer electrode system shunted by a voltmeter and a negative resistance in series. The negative resistance is supplied by the real component of the input impedance of a cathode follower circuit with a capacitative load and certain values of grid-to-cathode capacitance. A negative resistance in parallel with the electrode system will also produce satisfactory results, but the value of negative resistance necessary and the dependence of the resonance frequency on the vacuum tube circuit make such and arrangement more unstable than the series circuit. The familiar susceptance variation or Hartshorn technique is used to evaluate the dielectric in terms of micrometer readings, the width of the resonance curve and the voltages with the specimen in and out. The expression for the input impedance to the cathode follower circuit is

$$
\begin{aligned}
Z_{\iota I} & \cong \frac{g_{m}}{\omega^{2} C^{\prime}{ }_{K} C^{\prime}{ }_{g K}{ }^{\prime}} \\
& -j\left(\frac{1}{\omega C_{K}^{\prime}}+\frac{1}{\omega C^{\prime}{ }_{g K}}\right)
\end{aligned}
$$

provided $r_{p} \gg X_{k}, X_{y k} \gg R_{k}^{\prime}$,

FIG. 1-Circuit used for making lowloss measurements at 1 mc

...memory for an electronic brain

- Goodyear Aircraftys Electronic Differential Analyzer provides a method of studying performance of dynamic systems without computations by a corps of mathematicians.

Since there is a direct analogy between the dynamic behavior of electrical and mechanical systems, the performance of one system can be predicted by a study of the other. Thus, by setting up the proper electrical circuits, problems in such varied fields as aircraft design and control, vibration analysis, industrial control, structures, turbines and engines, and other dynamic systems can be solved with the Differential Analyzer.

The memory for this electronic "brain" is provided by a Brush Recording Analyzer. Here, results from as many as six different computations are recorded simultaneously. Permanent visual records are made instantaneously, eliminating laborious plotting.

Investigate Brush instruments for studies of d-c or a-c voltages or currents, strains, displacements, light intensities, temperatares, and other static or dynamic conditions. Write for information. The Brush Development Company, Dept. K-9, 3405 Perkins Avenue. Cleveland 14, Ohio, U. S. A. Canadian Representatives: A. C. Wickman (Canada) Limited, P. O. Box 9, Station N, Toronto 14, Ontario.

Heart of each Brush Recorder is the Brush Magnetic Penmotor-a bighspeed, direct-u'riting element for instantaneous, permanent recording. Flat frequency response and linear phase shift with frequency permit accurate reproduction of both transient phenomena and steady state signals.

PIEZOELECTRIC CRYSTALS AND CERAMICS • MAGNETIC RECORDING E EILECTROACOUSTICS • ULTRASONICS • INDUSTRIAL \& RESEARCH INSTRUMENTS

Excellent positions are available for senior electronic engineers on long range military and civilian programs.
Challenging and interesting work-with unique advancement opportunities are offered to men with exceptional electronic abilities.

Manufacturers of LINK TRAINERS • FLIGHT SIMULATORS • GUNNERY AND NAVIGATIONAL TRAINERS • SERVO MECHANISMS • SERVO AMPLIFIERS • GRAPHIC RECORDERS • PRECISION GEAR BOXES • FRACTIONAL H.P. WIDE RANGE VARIABLE SPEED DRIVES • SPUR GEAR DIFFERENTIALS • FRICTION AND OVERDRIVE CLUTCHES • INDEX DIALS and Special Electronic Devices
$R^{\prime}{ }_{g \kappa}$ and $\mu \gg 1 ; g_{m}, r_{p}$ and μ are the transconductance, plate resistance and amplification factor of the tube and $X_{\kappa}, R_{\kappa}^{\prime}, X_{g \kappa}$ and $R_{g \kappa}^{\prime}$ are the series equivalents of the corresponding elements in Fig. 1. If $Z_{i n}$ is shunted by C, such that X, $\left.\ll R_{i n}\right\rangle>X_{i n}$ then

$$
Z_{i n} \cong-\frac{C_{K}^{\prime} C^{\prime}{ }_{o K}^{\prime}}{g_{m} C_{s}^{2}}-i \frac{1}{\omega C_{s}^{2}}
$$

These equations are only approximations but they represent the operating conditions accurately for all practical purposes. Thus, to a very good approximation, the negative resistance is $-C^{\prime}{ }_{K} C^{\prime}{ }_{g K} / g_{m} C_{2}{ }^{2}$. The reactive component of $Z_{\text {in }}$ offers no difficulty since it can be

FIG. 2-Curves demonstrate closeness of fit of measured curves to conditions for theoretical resonant curves
made small in comparison to the reactance of the inductance and electrode and remains constant during a measurement. The equation for the resonance curve in terms of the voltage V and the total equivalent conductance G_{1} across the electrode system is

$$
\begin{aligned}
2 \log \left(C_{r}-C\right) & =\log \left(\frac{V_{\mathrm{r}}^{2}}{V^{2}}-1\right) \\
& +\log \left(\frac{G_{t^{2}}}{\omega^{2}}\right)
\end{aligned}
$$

where C_{r} and V_{r} are the capacitance and voltage at resonance. Thus if

$$
\left(\frac{V_{V^{2}}}{V^{2}}-1\right) \text { is plotted versus }
$$

$\left(C_{r}-C\right)$ on $\log \log$ paper a straight line with slope 2 should be obtained. Figure 2 illustrates that this requirement is met by the high-Q circuit under consideration. Figure 3A shows the familiar resonance curves obtained for the corresponding data, using a voltmeter with

Your sealed assemblies can be

kept $][\operatorname{cold~}]$ with
 Kovar-GlassSeals

Kovar Meial, the ideal alloy for glass seat ing, is furnished in the form of tubes, lods, sheet, foil and fabricaled shapes.

Metal-to-glass seal making has been highly perfected by Stupakoff. When you specify Stupakoff Seals, you get welldesigned, accurately-made products that are easy to assemble, mechanically strong, have high flashover ratings, provide high resistance to thermal shock and are dependable. They are made in a wide variety of standard types and sizes, or in special designs to meet your specific needs.
Stupakoff seals are all made with Kovar Metal, which is readily bonded with hard glass producing no undesirable structural stresses. It has substantially the same expansitivity as hard glass from $-80^{\circ} \mathrm{C}$ to the amnealing point of glass. These characteristics of Kovar make Stupakoff Seals dependable.

Write for samples and prices of typical Stupakoff Kovar-Glass Seals.

CERAMIC \& MANUFACTURING COMPANY Latrobe, Pennsylvania

Representalive Siupanoff Ceramic products.

STUPAKOFF PRODUCTS

For Electrical and Eleetronic Applications

Abstract

- ASSEMBLIES-Sinpatoff assemblies inclande melallized ceranic luduction COILS for radio receivers aud transmitters; metallized ceramic Sharts for air-tuming condensers: NETMLIZED PLITES for mathings fived rigid assemblins; erramic trimmer conderners.

CERAMICS-Stupakolf has long leeen a leading supplier of ceramic products for a wide variety of electrical and electronic applications-precision made for all wollages, fromencies and temperatures. RESISTOR CERAMICS - Stapakoff rem-perature-Sensitive Redistors are used for temperature indicating or measuring equipment such as だadisosonde, for infra-red hipht source athd for heating elements. Supplied complete with terminals. in the form of mods, tubes, dises, bars, rings, ete.

STUPALITH - 1 group of ceramics having remarkable ability to withstand extreme thernal shock. SIUP'ILITII mar be made to base zero, low-positive or low-negative exparsitivities. Formed by conventional methorls. Sately ased at temperaturesup to 220 F.
CERAMIC DIELECTRICS - Siupatofs mates general purpose Ceramic Dielertries liar by-pass, lead through blonking, standoffs and lrimmer applieations. Tenperathre campensaling Ceramic Dielectrics have coefficient = from I'-100 to $\mathrm{N}-2700$, and high E smatreials up to K-6000.

Wate in the form of thbes, dises and smerial shapes, plain or -ilvercal. See photō below.

In clock radios, remember, buyer attention focuses on the clock.

That's why Sessions custom-styl. ing of hands, dial, and bezel as well as operating features gives you an advantage over designers limited to stereotyped stock models. No matter what your requirements-mechanical or artistic-you can count on Sessions' flawless attention to detail to meet your specific needs. What's more, the price is low-lower than any other dependable switch timer.

Sessions movements are famous
for their split-second accuracy and quiet operation. The compact, subsynchronous motor has fewer mov. ing parts-means greater dependahility. Substantial savings are passed on to yon.

Take advantage of the lessons learned by other leading manulacturers of clock radios. In your new designs, use Sessions Switch Timers. For complete technical details, write The Sessions Clock Company, Timer Division, Dept. 48, Forestville, Connecticut.

THE ELECTRON ART
linear input impedance.
Stable Q's as high as 170,000 have been obtained. With a commercial generator and power supply, Q's of the order of 100,000 were found to have random fluctuations and drift of the voltage at the resonance peak of about 5 percent over a period of five minutes. The stability obviously improves as the Q is lowered. At 1,000 the voltage peak was stable to better than ± 1 percent over a period many times longer than the time required to make a set of measurements. The stability of the circuit was found to

FIG. 3-Curves show voltage across electrodes plotted against vernier capacitance. Numbers on curves represent the approximate $\mathrm{C}_{\mathrm{r}} / \mathrm{C}=\mathrm{Q} / 2$
be better than the commercial generator and power supply employed. With such a device the power factor of materials such as polystyrene and teflon can be measured to three significant figures from one kilocycle to 300 megacycles. An extremely low-loss fused-quartz specimen was found to have a power factor an order of magnitude smaller than polystyrene and teflon.

When operating the circuit at Q's

Copper Alloy Bulletin

"Bridgepgrt" MILLS IN BRIDGEPORT, CONM. AND INDIANAPOLIS, IND. - IN CANADA: NORANDA COPPER AND BRASS LIMITED, MONTREAL

Showing progressive operations in the manufacture of clamp for telephone headset jack. Courtesy, Connecticut Telephone \& Electric Corporation, Meriden, Connecticut.

Careful Planning Before Production Avoids Trouble in Deep Drawing Brass

As in all things, experience in the deep drawing of brass and other cop-per-base alloys is the best teacher. The reshaping of flat metal into various cup-shaped objects on an efficient production basis is an intricate procedure, and involves skills and know-how. It is, therefore, wise to investigate the problem carefully before attempting to go into production. Help for the determination of the proper alloy for the particular job, and often suitable fabricating techniques as well, can be obtained from our Metallurgical Laboratory and from our literature such as Bridgeport's "Technical Handbook."

The illustration shows the progressive operations used in the production of a clamp for a telephone headset jack. This involves the deep drawing of a rectangular cup, which is not easy. Secondary blanking operations on the bottom of the cup and the formation of the brackets are shown in the small samples in the foreground. Considerable experimental work was done and further developments of the tools were
necessary, which involved making two draws to obtain sufficient depth of cup. It was also found advisable to increase the width of the strip metal. The change to a lard oil lubricant was also helpful.

Factors to Consider

The following check-list should be helpful in demonstrating the various points which must be carefully considered before drawing work is actually begun.

1. Stock-The flat metal must be wide enough to compensate for contraction of the blank during cupping. Alloy, gauge, tolerance requirements; temper; diameter of arbor are essential.
2. Punch and Die Radii-Normal die radius is between 5 and 10 times the thickness of the metal. Too large or too small a die radius may cause trouble.
3. Die Finish - Careful polishing of the die is important, since there is a great deal of motion between the metal and the die. Dies should be
lapped in the direction of metal flow.
4. Blank Holder Pressure - If the blank is not held tightly, the circumferential forces in the perimeter of the blank will produce wrinkling. If blank holder pressure is too great, thickening of the blank will be prevented, and may result in fracturing of the cup.
5. Diameter Reductions-In the production of a normal cup for redrawing, the most satisfactory diameter reduction ranges between 40 and 46%. This produces a cup about equal in height and diameter. In making greater reductions, difficulty is encountered in regulating blank holding pressures, and there is danger in the softer alloys of fracturing the cup. In progressive die operations, such as the clamp described above, successive redraws after the cupping operation are held to approximately 15%, since there are no intermediate anneals.
6. Lubricants-A lubricant must be used to reduce friction to a minimum and prevent metal-to-metal contact. It must first wet the surface thoroughly, and have sufficient body to stay in place under forming and drawing pressure. The choice of lubricant for a job depends on several factors, including the severity of work, equipment used, production run, means of application and cost. Usually simple soap solutions are satisfactory, but lard oils, vegetable oils and other lubricants are often used.
7. Metal Surface Finish-This is important especially in deep drawing operations such as in progressive and eyelet types of work.
This list is intended simply to point out some of the factors influencing success in drawing. Specific problems naturally arise in every individual job. Bridgeport will be glad to help customers with these problems by sharing its vast reservoir of experience acquired in the production and fabrication of copper-base alloys. (6831)

BY BELL AIRCRAFT

Supersonic Aircraft (X-1)
Aircraft to Vary Wing Sweepback in Flight (X-5)

Jet-Propelled Fighter in U. S. (F-59)

Commercially Licensed Helicopter

BELL AIRCRAFT CORPORATION

to accept the challenge of development work in

LONG RANGE PROGRAMS
 on
 GUIDED MISSILES

AIR-BORNE EEECTRONIC EQUIP'T ROCKET ENGINES
 plan to see our representative R. C. Marks af the Whitcomb Hotel during I. R. E. West Coast Conven-

P.O. BOX 1

BUFFALO 5, N. Y.
above a few hundred, effects due to nonlinear elements become noticeable in the distortion of the resonance curve. The negative resistance circuit itself produces no observable nonlinearity, because low amplitudes are used and a large amount of stabilizing negative feedback is provided. However, if a voltmeter with a nonlinear input impedance is connected directly across the electrode system, effects such as those illustrated in Figs. 3 B and 3C are easily obtained. To eliminate this difficulty, which obviously makes accurate resonancecurve measurements impossible, it is necessary for the voltmeter input impedance to be linear or to isolate the voltmeter from the system by means of an amplifier with a linear input impedance.

The micrometer electrode system and associated equipment used at the National Bureau of Standards are shown on the opening page of this department.

In the center is located the micrometer electrode and coil mounted on the negative resistance circuit. Power supplies are shown in background.

Reference

(1) 1948 Annual Report of Conference on Electrical Insulation, National Research Council.

Self-Erecting Weather Station

Complete and accurate weather predictions can only be obtained by studying meterological information taken at a large number of widely spaced stations. The accompanying photographs show a weather station that is designed to be dropped from an aircraft by parachute. Upon hitting the ground, the weather station goes into action quickly and automatically, and it transmits weather information by radio to appropriate recording instruments in a main station.

As shown in Fig. 1 the station as it is dropped from the plane resembles a bomb. When the unit is released over a desired location,

Measure it!

Only $1^{\prime \prime} L \times 5 / 16^{\prime \prime} \mathrm{W} \times 1 / 4^{\prime \prime} \mathrm{H}$ \star And into this tiny space a complete three-element thermostat is housed. Severe temperature changes can't strain the bimetal (principal cause of calibration changes) because of the special strain relief construction. Precision calibration is effected by extra fine threaded adjustment screw. Electrolytic silver contacts are used, too. Temperature ranges up to $400^{\circ} \mathrm{F}$. are available.

Here's the mechanically rugged unit you should investigate for positive control. Ulanet engineers will be glad to help you if you state the application you have in mind.

MODEL 13

GEORGE ULANET COMPANY
 41.7 MARKET STREET

NEWARK 5,
NEW JERSEY
If your problem is Heat Control your solution is Ulanet -
Precision Thermostats \& Thermal Timers Exclusively Since 1931

In their popular "R.B.A." Heavy Duty Industrial Switch The Trumbull Electrical Manufacturing Co. uses Cosmalite Tubing to insulate its body bolts.

The combined electrical and physical properties of CLEVELITE* and COSMALITE* are essential wherever strength, low moisture absorption, high dielectric strength, low loss and good machineability are of prime importance!

DEPENDABLE - ECONOMICAL - LONG LASTING . . . Why Pay More? Made in diameters, wall thicknesses and lengths to meet special or new adaptations . . . in various grades to meet the most exacting needs. Your inquiry will receive immediate attention.

* Trate Marks

You or I can walk into any sporting goods store and buy a good fishing rod for a very few dollars. But when we decide to treat ourselves to "the best there is", the choice narrows 'way down.

That illustrates very well the sales story we have to tell here at Wheeler. Our field is one containing many excellent manufacturers and plenty of tough competition. But through the years we've come to specialize in certain well-defined classifications.

We make magnet wire, for example, principally in the smaller gauges now in great demand, with a wide range of special insulations.

We make coils and transformers to the specifications of a limited group of customers who demand extreme precision and absolutely top controlled quality.

Most of these materials and components now go into key electronic devices . . . computers and control mechanisms, electrical apparatus, and so forth. If that is your field we'd like to talk to you.

MAKES THESE PRODUCTS A

the wheeler insulated wire co., inc., 1101 east aurora st., waterbury 20 , conn. Division of The Sperry Corp.
the parachute is automatically opened by a line rigged from the plane. Simultaneously, an electric clock, which controls subsequent operations of the station, is turned on.

The impact of the landing sets off a small explosive charge which disengages the parachute and prevents the station from being pulled along the ground. Either immediately or after a pre-set dormancy period, another explosive charge causes the station to rise to an upright operating position. This is done through an arrangement of six legs to which springs are attached. The explosive charge operates a release, permitting the

FIG. 1-Experimental model of the airlaunched auiomat.c weather station develoned by the Natinnal Bureau of Standards for the Navy Bureau of Ships. The station has landea, out the leg-release device has not yet functioned
springs to pull the legs into position. A third explosive charge extends a telescopic vertical antenna to a height of some 20 feet. The erected station is shown in Fig. 2. The station is then ready for automatic transmission at intervals predetermined by the built-in timing mechanism.
The automatic station could be adapted to transmit various kinds of information, but in the standard design only temperature, pressure, and humidity data are reported. Separate mechanisms responsive to changes in these atmospheric conditions each cause an associated resistor to vary. At predetermined intervals the timing mechanism

CHECK THE COMPLETE LINE OF G-E Automatic Voltage Stabilizers

```
- FOR IMPROVED REGULATION
FOR DECREASED COSTS
```


Need Dependable Voltage Control for One of These Applications?

Radio transmitters and radar equipment Laboratory and factory testing equipment Motion picture projectors
Precision photographic equipment
Electron microscopes
Calibration of electric instruments
Color comparators
Wheel balancing equipment
Radio testing devices
Telephone apparatus
Motion picture sound equipment
Photometers
X-ray filament circuits
Electronic apparatus
Electrochemical analysis
Full wave rectifiers
Electric furnaces
Heater units
Srequency oscillators
Communication systems
Temperature controls
Television equipment
Signal and alarm systems
Sound recording equipment
Life testing of bulbs
Small motors of instrument recording apparatus Photographic lighting systems
(especially color-photography lighting)
Automatic developing and printing machinery
Photo-engraving equipment
Photocell fire control apparatus
Dielectric heaters
UHF beam relays
Aircraft landing systems
Simulated flight trainers
Electronically operated weight machines
Electrostatic paint spraying outfits
Magnetic measuring gauges
Oscillographs
Electrophoresis equipment
Moisture detection equipment
Gas analyzers and detectors
Instruments used to measure a difference (such as in bridge circuits)

wevddr toughest transformers

 strafes why CHICAGO Transformers are preferred by engineers, why they fully meet the express requirements of today's tubes and circuits: Here are the "inside facts" of CHICAGO "Sealed-in-Steel" design

(1)
Exclusive one-piece drawnsteel case, unsurpassed for strength, moisture-resistance, better electrostatic and magnelic shielding, mounting ease, and streamlined appearance.

Uniformly-wound precise coil structures-cooler operation and better electrostatic shielding in power units-minimum leakage, optimum coupling in audio units.

Core of high-grade non-aging silicon steel brought to high efficiency by scientific heat-treating in CHICAGO'S own annealing ovens.

Core and coil vacuum-impregnated with varnish. Final high-temperature baking achieves a perfectly impregnated coin

All internal free space is filled by special, moisture-resistant compound. Prevents corrosion operation than in conventional air-surrounded mountings.

Checked by quality controls at every stage of manufacture, rigidly inspected, "torturedependable life in actual service,

SEND FOR "NEW EQUIPMENT LINE" CATALOG
You'll want the full details on CHICAGO'S New Equipmen Line-the famous Sealed-in-Steel line that offers advanced engineering design to fit today's circuits. Lists units for all purposes: Power, Bios, Filoment, Filter Reactor, Audio, MIL-T-27, Modulation, Stepdown and Isolation. Write for you FREE catalog today-or get a copy from your distributor.

H-Type. Steel base cover deep-seal soldered into case. Terminals hermetically sealed. Ceramic bushings. Studmounted unit. Meets MIL-T-27 Specifications
 S.Type. Steel base phenolic terminal phenolic termina board. Convenient
numbered solder lug numbered solder lug
terminals. Flangemounted unit.

C-Type. With 10' color-coded stripped color-coded stripped trought out through frought out through fibre board ase mounted unit.

CHICAGO TRANSFORMER

oivision of essex wire corporation

3501 ADDISON STREET CHICAGO 18, ILLINOIS
turns on the radio transmitter and connects one resistor after another to a critical point in the transmitter circuit. The transmitter is designed so that the emitted radio signal pulses on and off at a rate proportional to the value of the resistor so connected. The station is calibrated before use by subjecting it to known temperatures, pressures, and humidities and measuring the resulting pulse rates. At the receiving station the transmitter pulse rate can then be read as tempera-

FIG. 2-After the station lands, explosive charges disengage the parachute. raise the station to an upright position, and erect a telescoping antenna
ture, pressure or humidity, depending on the phase of the predetermined clockwork cycle.

- The radio transmitter proper consists of a crystal oscillator followed by a radio-frequency amplifier stage. A relay in the plate circuit of a separate relaxation oscillator turns the crystal oscillator on and off at a rate proportional to the value of whatever resistor is temporarily inserted (by the clock mechanism) into the relaxation oscillator circuit. When the station is to be used as a beacon, the radio transmitter and its control mechanisms may, of course, be simplified.

The clock, in addition to inserting the several weather-responsive resistors into the circuit in a predetermined sequence, connects two other resistors at appropriate intervals. These are a reference

RED BANK DIVISION OF BENDIX AVIATION CORPORATION RED BANK, NEW JERSEY

Export Sales: Bendix International Division, 72 Fifth Avenue, New York 11, N.Y.

Write for this colorful and informative book -it's free. You'll find it looded with facts and figures about all types of dymamotors.

RCA

 cally sealed and fungus-proofed power transformer for military use.

For military requirements . . . built to military specifications

Because of its experience, engineering skill, and vast production facilities, RCA is singularly well equipped to manufacture in quantity, special transformers, chokes, filters and coils, rigidly designed to military specifications.

As one of the major suppliers of specialized electronic and television components, RCA is geared to handle your individual requirements without delay.

RCA Application Engineers are at your service-and will be pleased to confer with you on your specific military component designs. For further information, write or phone RCA, Commercial Engineering, Section 42 HS , Harrison, N. J., or your nearest RCA field office.

FIELD OFFICES: (EAST) Humboldt 5-3900, 415 S. 5th St., Harrison, N. J. (MIDWEST) Whitehall 4-2900, 589 E. Illinois St., Chicago, Ill. (WEST) Trinity 5641, 420 S. San Pedro St., Los Angeles, California. FLECTRONIC COMPONENTS

FIG. 3-Inner view of experimental model of the air-launched automatic weather station
resistor and an identification resistor, both of constant value. The pulse rate produced by the fixed reference resistor is observed during initial tests of the transmitter. Any subsequent deviation in the reference resistor pulse rate warns the receiving station that a correction factor must be applied to the pulse rates of the weatherresponsive resistors. Such deviation could arise from transmitter damage or aging. The identification resistor is of a value selected to produce a pulse rate characteristic of the particular station; this enables the receiving station operator to identify the station.

A special technique is used to insure maximum accuracy of the transmitted data despite possible deformation of the weather-responsive mechanisms due to landing impact: a buzzer vibrates each weather-responsive device for a short time before its associated resistor is inserted in the relaxation oscillator circuit. This forced vibration counteracts friction, which may have been increased by landing-impact deformation, and thus aids in the attainment of a true equilibrium condition.

The developmental model of the weather station had an output of the order of 5 watts. Operating on a frequency in the neighborhood of 5 megacycles, it performed reliably over land at ranges of more than 100 miles. The dry batteries used provided power for transmission of weather reports at 3 -hour intervals

makers of steatite, titanates, zircon porcelain, ferramics, light duty refractories, chemical stoneware, impervious graphite

MASTERS OF MARKING - Since 1911

Markem methods, machines, type and inks have been marking the protlucts of industry for forty years. Markem machines can mark up to many thousands of pieces per hour. They make clear, durable imprints on flat, curved or irregular surfaces of paint, paper, wood, glass, metal, leather, plastic, rubber, fabric, composition and pressure sensitive tapes. No special skill is uceded for their operation. Legend and color of imprint maty be quickly and easily changed.

MAKE YOUR MARK WITH MARKEM

When your products need marking for Identification, Control or Market - ask Markem. Suhmit your problem, together with a sample of the item to be marked. Markem Machine Company, Keene 5, New Hampshire.

> sub-miniature moisture-proof

THE ECONOMICAL SOLUTION where moisture proof resistive elements of comparatively small size are required for commercial applications Type S-15 is $3 / 8^{\prime \prime}$ long by $1 / 4^{\prime \prime}$ diameter; type S-30 measures $3 / 4^{\prime \prime}$ by $1 / 4^{\prime \prime}$ diameter. Both types are moisture proof and capable of high performance over long periods of continuous service. IN-RES-CO Resistors for every ordnance or civilian requirement are available at a cost that solves circuit design problems both performance wise and cost-wise. Check up now, on the complete line of IN-RES-CO quality wire wound resistors

for more than 15 days.
The station, called the Grasshopper, was developed at the National Bureau of Standards for the Navy Bureau of Ships.

Zero-Impedance Power Supply Termination

Jordan J. Baruch
Acoustics Laboratory
Massuchusetts instilute of Technology Cambridye, Hassachusetts

In Tile design of regulated powęr supplies, the regulator must perform two functions. One of these is to hold the output voltage constant despite small changes in the input voltage. The second is to hold the output voltage constant despite changes in load current. In general, the series-regulated power supply does both of these jobs with a single regulator section. In many cases, however, it will prove advisable to relegate these two functions to separate sections of the regulator system. The second section, then would provide a low-impedance output for the system.

Much has already been written on the regulation of series-regulated power supplies. In most of these papers, however, a single section is used for both voltage regulation and for the provision of a low output impedance. In the proposed system, a simple regulator section will be described which provides the necessary low output impedance although it is not primarily intended to operate as a regulator for changes in input voltage. Consider the circuit shown in Fig. 1.

We can perform a differential analysis of the output impedance by solely concerning ourselves with the

FIG. 1-Basic circuit of zero impedance power supply termination

Again the time has come

to ask your company,

and every company, to

FOR every ton of ingot steel produced, at least a half-ton of iron and steel scrap must have previously reached the furnaces. Steel is currently being produced at full capacity, more than 100 million ingot tons annually-and there is a developing scrap shortage of serious proportions. Just as in the early years of World War II, the steel industry asks the help of all industry to relieve the situation.

TWO IMPORTANT THINGS 7000

(1)CLEAN OUT YOUR PLANT SCRAP. This is a job that every company can do. Old, worn-out or out-moded and replaced machinery and equipment, rails, structural parts,
etc. constitute the "heavy melting scrap" which the steel industry needs most. Clean up your plant and yards-move out this heavy scrap into the channels of use.

(2)HURRY BACK YOUR WORKING SCRAP. Don't let the waste of metal-workingturnings, borings, punchings, crop ends, etc.lie around the plant a day longer than necessary. Keep it moving, back to the furnaces. And doubly important, be sure to classify and segregate your alloy steel scrap. Thus handled, it not only commands a higher price, but will help to conserve the nation's supply of critical alloys, practically all of which are highly essential.

Contributed in the National Interest by ALLEGHENY LUDLUM STEEL CORPORATION

Henry W. Oliver Building • Pittsburgh 22, Penna.

T
HIS isn't the simplest nor the most complicated trans. former STANCOR has designed. It is a good example, however, of the kind of custom transformer design probhowever, of the kind of custom transformer design prob-
lem that STANCOR'S experienced engineers meet and solve every day as a matter of course. That's why we are solve every day as a matter of course. That's why we are
confident that, whatever your special transformer problem may be, STANCOR engineers can and will solve them. Write today! Your inquiries will be promptly answered.

STANDARD TRANSFORMER CORPORATION
3578 elston avenue, chicago 18, illinols

O

FIG. 2-Complete schematic of zero impedance circuit used in conjunction with conventional series voltage regulator circuit
voltage regulation. All the quantities we express will be considered differentials. In addition, we will assume that the plate current drawn by tube V_{1} is insignificant compared with that drawn by V_{z} and hence:

$$
i_{o}=i_{1}-i_{d}
$$

If the power supply does have a zero internal impedance however, $i_{d}=0$ and $i_{1}=i_{0}$. We will assume this to be the case. A differential analysis of the supply can then be made as follows:

$$
\begin{align*}
& Z_{o}= e_{o} / i_{o} \tag{1}\\
& i_{o}=i_{1}=g_{m 2} e_{p 2} \tag{2}\\
& e_{p 2}= \mu_{1} \frac{R_{L}}{r_{p 1}+R_{L}} e_{o} \frac{R_{2}}{R_{2}+R_{1}} \tag{3}\\
&-i_{o} R_{1} \frac{r_{p 1}}{r_{p 1}+R_{L}} \\
& \frac{i_{o}}{g_{m 2}}+i_{o} R_{i} \frac{r_{p 1}}{r_{p i}+R_{L}} \tag{4}\\
&=-e_{o} \mu_{1} \frac{R_{L}}{r_{p 1}+R_{L}} \frac{R_{2}}{R_{2}+R_{1}} \\
& Z_{o}=-\frac{1}{g_{m 2}}+R_{i} \frac{r_{p 1}}{r_{p 1}+R_{L}} \tag{5}\\
&\left(\mu_{1} \frac{R_{L}}{r_{p 1}-R_{L}} \frac{R_{2}}{R_{2}-R_{1}}\right)
\end{align*}
$$

and hence for $Z_{0}=0$

$$
\begin{equation*}
r_{p 1}=-\frac{R_{L}}{1+R_{i} g_{m 2}} \tag{6}
\end{equation*}
$$

Thus, for the zero-impedance condition, the amplifier tube should be operated in the region of negative plate resistance. We see that it is essentially possible, by this means, to obtain a zero-impedance power supply. The analysis holds true, of course, only if the input voltage to the system is constant and may be represented as being in series with a fixed resistance. An additional way in which the behavior of this

When It's A Fuse you Need . . think first of 15

SPECIAL FUSES, FUSE CLIPS, FUSE BLOCKS AND FUSE HOLDERS

Sometimes a special fuse or fuse mounting is required. In such cases we welcome your requests either to quote - or to help in designing or selecting the special type of fuse or fuse mounting best suited to your particular conditions.
Submit description or sketch, showing type of fuse to be used, number of circuits, type of terminal, etc. If your protection problem is still in the engineering state, tell us current, voltage, load characteristics, etc.
At any time our staff of fuse engineers is at your service to help solve your problems in electrical protection.

USE THIS COUPON - Get All The Facts

1410 CHESTNUT AVE., HILLSIDE 5, N. J.

For Engineers... YOUR CAREER OPPORTUNITY of A LIFETME...at RCA-NOW!

If you are facing a big question: "What is the best move I can make to further my career?" we believe you will find the answer on this page.

Today, as never before, RCA is engaged in far-reaching electronic developments that have created a need for career men of talent. This means you have the chance of a lifetime to make a permanent connection with RCA in a position offering you the opportunity of a successful career in the field of your choice. Here is what RCA offers.

Wide Choice of Projects

Unusual opportunities await qualified ELECTRONIC, ELECTRICAL and MECHANICAL ENGINEERS . . . PHYSICISTS... METALLURGISTS ...CHEMICAL and CERAMIC ENGINEERS - in research, development, design and
application, also in technical sales. Positions open provide qualified engineers the opportunity to choose the area of activity they like best.

POSITIONS OPEN
IN THE FOLIOWING FIELDS:
TELEVISION DEVELOPMENT-
Receivers, Transmitters and Studio Equipment
ELECTRON TUBE DEVELOPMENTReceiving, Transmitting, Cathode-Ray, Rhototubes and Magnetrons TRANSFORMER and COIL DESIGN
COMMUNICATIONS-
Microwave, Mobile, Aviation, Specialized Military Systems
RADAR-
Circuitry, Antenna Design, Computer, Servo-Systems, Information Display Systems
INDUSTRIAL ELECTRONICS-
Precision Instruments, Digital Circuitry, Magnetic Recording, Industrial Televi-
Magnetic Recording, Indus
sion, Color Measurements
NAVIGATIONAL AIDS
TECHNICAL SALES
ELECTRONIC EQUIPMENT FIELD SERVICE

If you qualify for any of the positions listed above, write us for a personal interview-include a complete resumé of your education and experience. Write to:
Mr. Robert E. McQuiston, Specialized Employment Division, Dept. T-36, Radio Corporation of America, 30 Rockefeller Plaza, New York 20, N. Y.

Good Living Conditions. You have a choice of residential locations offering suburban-convenience or quiet, countryside living. Good shopping facilities, schools, churches, medical services and modern hospitals are close by. Excellent opportunities for graduate study.

Position Security. These are not temporary positions. Activities are focused not only on the long-range national detense program, but also on a diversified line of products for commerciall use. You and your tamily are protected by Company-paid hospital, surgical, accident, sickness, and life insurance. A modern retirement program helps provide for your tuture.

Professional Status. RCA engineers enjoy the highest professional recognition among their colleagues. You work in close collaboration with scientists and engineers who are distinguished in the industry. You receive recognition for your accomplishments.

Laboratory Facilities. At RCA, unexcelled laboratory resources and advanced technical apparatus are available. You have unlimited opportunities for the complete expression of your talents in the fields of electronics.

Rapid Advancement. Opportunities at RCA are exceptional, for you to move ahead in the career of your choice. You can advance to high-level and supervisory positions which are filled from RCA's engineering staft. Salaries, determined on the experience and ability of individual applicants, are reviewed at regular intervals for increases on a merit basis.

more GEO. STEVENS coll wiwdine EQUIPMENT IS IN USE THAN ALL OTHER MAKES COMBINED!

- MORE OUTPUT . . . LOWER

 COSTS . . . from EXCLUSIVE SPEED FEATURE. Universal motors permit variable speeds without changing belts and pulleys. Coil design permitting, speeds as high as 7500 RPM are not uncommon.- PORTABILITY. Conveniently carried from place to place. Machines come mounted on bases to constitute one complete unit.
- MUCH LOWER ORIGINAL COST. The same investment buys more GEO. STEVENS machines than any other coil winding machines.
- LONG LIFE. Most of the original

GEO. STEVENS machines bought 14 years ago are still operating daily at full capacity.

- MUCH FASTER CHANGING OF

 SET-UPS than any other general purpose coil winding machine. Quickly changed gears and cams save time between jobs.- VERY LOW MAINTENANCE. Replacement parts are inexpensive, can be replaced in minutes, and are stocked for "same day" shipment, thus saving valuable production time.
- EASIEST TO OPERATE. In one hour, any girl can learn to operate a GEO. STEVENS machine.

Progressive universal winding machine, Model 125, handles space wound coils and solenoids up to $8^{\prime \prime}$ in length, progresssive universal coils up to $4^{\prime \prime}$ in length and $3^{\prime \prime}$ in diameter, universal coils up to $3 / 4^{\prime \prime}$ in width, and I.F. coils. Wire sizes are from 20×44 gauge. Cams are stocked from $1 / 11_{1}^{\prime \prime}$ to $3 / 4^{\prime \prime}$ in decresments of $1 / 4^{\prime \prime}$. Sizes larger than $3 / 44^{\prime \prime}$ or less than $1 / 6^{\prime \prime}$ decresments are made upon request. Head to tailstock is over $8^{\prime \prime}$; base $22^{\prime \prime}$

Change gears and idler forming the pattern are enclosed in front. Traverse rack is driven by change gears and idler enclosed in back of the head. The traverse rack has a mandrel return crank and a stop to insure return to identical starting position. Large ball bearings on head stock spindle give long life and easy running. Ball bearing tailstock with spring tension lever permits quick change of coil forms.

Motor equipment:- $1 / 4$ H.P. Universal motor, V belt driven, double spool carrier tension device with oilite bearings, and adjustable tension friction brake for changing winding tension of the wire.

Dial Counter (Model 50 or 51) with $6^{\prime \prime}$ full vision clock dial, accurately registers all turns.

> There is a GEO. STEVENS machine for every coil winding need. Machines that wind ANY kind of coil are available for laboratory or production line. . . Send in a sample of four coil or a print to determine which model best fits your needs. Special designs can be made for special applications. Write for further information today.

FIG. I-Close-up view of measuring head fixed to test specimen
corder. The measuring head (see Fig. 1) consists of a dial indicator (range depends on deflection to be measured) coupled to a 26 -volt, 400 cycle aircraft autosyn. A five-conductor cable connects the transmitter to the recorder, which consists of a servo system and recording drum.
Rotation of the drum is proportional to the deflection of the piece being tested and the load component being recorded by a pen which is controlled by the weighing system of the tension-compression machine. The unique feature of this device is the measuring head which can be installed to the test fixture so that linkages that are small and difficult to measure with other devices can be tested for deflection. The electronic stressstrain recorder at present is equipped to record deflections from 0.0001 inch to 10 inches simply by interchanging dial indicators.

Figure 2 shows a test arrangement of a subassembly of a machine gun mount on the tension-compression machine. Strain data of component parts of the machine gun subassembly were also taken during the test.

FIG. 2-Test arrangement for recording deflections and measurements of strain with electronic stress-strain recorder

Ever

 hear of a bank that
gave money away?

Every day, a bank gives away tens of thousands of dollars in exchange for checks drawn on other banks.

These checks are worthless pieces of paper until they're cleared at a central clearing house. Until that time, the bank bas literally given its money away!

It's vital for a bank to keep its books
balanced by clearing these checks in the shortest possible time.

Yet their central clearing houses are hundreds of miles away from mary banks! What do they do?
They make a wise investment! They ship their checks the fastest possible way - by Air Express!

Wherher your business is banking or ball-bearings, here are the unique advantages you can enjoy with regular use of Air Express:

IT'S $\operatorname{EASTEST}$ - Air Express gives the fastest, most complete door-to door pick up and delivery service in all cities and principal towns, at no extra cost

IT's MORE CONVENIENT - One call to Air Express Division of the Railway Express Agency arranges everything.

1t's dependable - Air Express provides one-carrier responsibility all the way and gets a receipt upon delivery.
it's prdfitable-Air Express expands profit-making opportunities in distribution and merchandising.

For more facts call Air Express Division of Railway Express Agency.

GETS THERE FIRST

"Black boxes" to your specifications RESERRGH-DEVELOPMENT-PRODUCTION

Electronic Associates, Inc., is a coordinated group of electronic engineering consultants fully equipped to perform electronic research, development and production. They include engineering, production, and administrative personnel capable of handling a wide range of problems including design studies, applied research, and the production of highly complex electronic devices.

Plant facilities comprise laboratories; model, welding and machine shops; paint, anodizing, and test departments; assembly and tool rooms; foundry and other contributing functions of production.

A few of the many products the Concern has manufactured are illus. trated here.

> See us ot Booth 10
> Pacific Electronic ExhibitAugust-22-23-24

More defailed information will be furnished on request.

Electronic Associatzs, inc. Long Branch, New Jersey

...for the exclusive notch for really anchored leads

SPEER
-esistar CORP.

ST. MARYS, PENNSYLVANIA

Complete your circuits with R. F. coils...chokes...tubular and dise capacitors.. .high voltage condensers...capristors by

JEFFERS ELECTRONICS, INC.
DU BOIS, PA.
Another Speer Carbon Co. Subsidiary

FULL RANGE OF MIL-T-27 Hentirodile hermetically

 SEALED UNITSNYT hermetically sealed transformers are available in all standard sizes to meet MIL-T- 27 specifications, and especially designed constructions for a wide variety of military as well as civilian applications. Designed and built to meet the most exacting specifications. Production facilities for quantity production of all sizes.

the HORNET

HORNET transformers, pioneered by NYT, are of open type construction, utilizing Class H insulating materials. Approximately onefourth the size and weight of comparable Class A units. Filament and plate supply transformers and chokes. Units can be designed for ambients up to 190 deg . C., altitudes up to 60,000 feet; power ratings from 2 VA to 5 KVA .

Engineering and development facilities

NEW PRODUCTS
(continued)
operation the network is inserted in the line between the source and the load. An internal variable capacitor is provided on each output channel for the adjustment of any appreciable change of capacitance introduced by the addition of channels. A switch is provided for terminating the source with an internal adjustable 73 -ohm resistive load. This termination can be readily set for zero reflection by means of a screwdriver adjustment.

Line Amplifier
Radio Corp. of America, Camden, N. J. Type MI-12160 plug-in line amplifier with self-contained power supply may be used as a master mixer for up to four preamplifiers, a booster amplifier for supplying zero level to a telephone line, a line amplifier capable of operating from a telephone line, a driver amplifier supplying driving voltage for up to 500 power amplifiers, a monitor amplifier supplying two watts of audio power to a speaker, or a bridging amplifier for bridging a low impedance line. It provides excellent frequency response from 30 to 15 ,000 cycles with low distortion.

F-M Tuner

Collins Audio Products Co., Inc., P. O. Box 368, Westfield, N. J., has

Engineering Data

on ARNOLD TAPE-WOUND CORES
 SUPERMALLOI*

 DELTAS

 DELTAS}BULLETIN TC-101
August 15,1951

The Arnold Engineering Company same susian of alleger luolum steal corporation

Timing precesion
 PERFORMANCE

Manufacturers, recognizing that components of quality insure outstanding product performance, look to Haydon ${ }^{(3)}$ at Torrington for timers and timing devices. All Haydon timers are made with the same precision as the Haydon motor - your guarantee of satisfactory performance. If you need a special design, you'll find Haydon's extensive engineering and development facilities without equal for service and results.
A few examples of basic Haydon timing units are featured below.

SERIES 80IO INTERVAL TIMER WITH BUZZER

Compact, low cost timer for volume production. Wide range of intervals. Audible (buzzer) signal optional. Quick break. Load contact rated 10A, $1 / 2$ HP 250 VAC

SERIES 8006 INTERVAL TIMER

Designed for heavy duty, this unit is available in quantities in standard models. Wide range of intervals. HOLD feature optional. Quick break. Totally enclosed. Switch rated 28A, 1 HP 250 VAC.

SERIES 5900 TIME DELAY RELAY

For use where positive, accurate time delay relay is imperative. Automatic reset. Fixed models for volume production; adjustable models in 4 delay ranges for general use.

SERIES 5700 ELAPSED TIME INDICATOR

Synchronous timing motors with cyclometer type counters for metering elapsed time. Rugged models for wide range of timing, recording operations; in several registers, resettable or nonresettable.
()

For complete design and engineering specifications, write for catalog: Jiming Motors No. 322 - Timers No. 323 - Clock Movements No. 324. Yours without obligation.

HAYDON
AT TORRINGTON
announced the model HP-14 f-m tuner. Its output circuit may be operated directly into any load from 500 ohms to $\frac{1}{2}$ megohm. The output level is approximately 3 volts, depending upon what load the tuner operates into. Power source is 110 volts a-c, 60 cycles; power consumption, 100 watts; sensitivity, between 5 and 10 microvolts. Audio response is flat to beyond 15 kc .

Resistance Decade Box

Electronic Instrument Co., Inc., 276 Newport St., Brooklyn 12, N. Y., has announced the model 1171 resistance decade box in factory wired and kit form. It supplies resistance values from 0 to 99,999 ohms with 0.5 -percent precision. Dimensions are $3 \frac{1}{2} \mathrm{in} . \times 12 \mathrm{in}$. $\times 3$ in. In kit form the unit is priced at $\$ 19.95$; factory wired, it costs $\$ 24.95$.

Radiation Survey Meter

Tracerlab, Inc., 130 High St., Boston 10, Mass. The Cutie Pie portable radiation survey meter is particularly useful for measuring beta and gamma radiation in labo-

pulse-forming Network

Capacitors

are

dependable

for guided missiles—aircraft—land and sea radar equipments

The keystone to good service on network capacitors is complete information. Your G-E representative has a check-list of twenty-three questions that must be answered to assure you of dependable capacitor performance. And on important propositions, to simplify your design problems, it is highly desirable that a design engineer be called into the discussions as early as possible. Arrangements for such consultations can be made through any Apparatus Sales Office of the General Electric Company.

Whether you expect a service life of 10,000 hours or just 60 seconds, G.E. networks, designed to meet exacting specifications, will give you the reliable performance you require.

Pulse networks are a highly specialized field of capacitor engineering and experience is an important part of proper design work. G.E. has built networks for every type of pulse radar equipment since the inception of radar.

Since 1944, G.E. has been running continuous life tests on many types of networks to obtain more complete research data. These tests are being used to establish life limitations under various conditions of highly critical temperatures and voltages on all types of dielectrics, bushings, materials for coil forms and treating processes. Take advantage of this wealth of information and experience. Your inquiry addressed to Capacitor Sales Division, 42-304, General Electric Company, Pittsfield, Mass. or your nearest Apparatus Sales Office, will receive prompt attention.

FREEG WRITE TODAY FOR YOUR CIANH 1952 RADIO SHACK CATALOG ALL NEW! 192 PACES!

 over IS.000 producis LOUEST NET PRICESa designer on engineer a purchasing agen an experimenter
IF YOU ARE
a manufacturer a technician an instructor a serviceman a broadcaster a radio amateur a custom builder
ratories handling levels of radioactivity of the order of millicuries. A new circuit, making full use of the principle of inverse feedback, permits extremely stable operation and a large reduction in the time constant which is now only 1.5 seconds on all ranges. Calibration accuracy is ± 10 percent of full scale and is maintained throughout the specified battery life of approximately 800 hours. The meter is provided with three full-scale ranges of 15 , 150 and 1,500 milliroentgens per hour.

Variable Inductor

C. G. S. Laboratories, Inc., 391 Ludlow St., Stamford, Conn. The Increductor is a new type of electrically controlled variable inductor with no moving parts. It is variable over a useful inductive range of 100 to 1,200 to 1 , or even more in some applications. It is low in loss, maintains high Q even at megacycles, is controlled with minimal power, and is compact and light in weight. These characteristics are attained by the use of separate control and signal windings, specially arranged on a ceramic core having unusual magnetic properties.

Amplifier System

Altec Lansing Corp., 9356 Santa Monica Blvd, Beverly Hills, Calif., announces a new amplifier system

180 Channel WILCOX Communications System Chosen for Eastern's Entire Fleet of SUPER CONSTELLATIONS and MARTIN 4-0-4's

Eastern Air Lines demanded the finest communications equipment available to match the advanced, efficient operation of their modern new fleet. No greater compliment could be paid to Wilcox radio equipment than to be selected for this challenging assignment.
The Wilcox 440A VHF Communications System covers all channels in the $118-136 \mathrm{Mc}$. band. It is light in weight, small in size, and easy to maintain.

UNIT CONSTRUCTION FOR EASY HANDLING

The 50 -watt transmitter, high sensitivity receiver, and compact power supply are each contained in
a separate JAN AI-D case. Any unit may be instantly removed from the common mount.

FINGER-TIP REMOTE CONTROL

All transmitter and receiver functions are available by remote control. A new channel selector system assures positive operation and minimum maintenance.

DEPENDABILITY AND EASY MAINTENANCE

Simple, conventional circuits minimize the number and types of tubes and require no special training, techniques, or test equipment.

Write 7aday fOR COMPLETE INFORMATION ON THE WILCOX 440A 180 CHANNEL VHF COMMUNICATIONS SYSTEM

WILCOX ELECTRIC COMPANY

ANTENNAS

NEW PRODL
designed es
music syste.
A-433A prea.
power amplifies trols are located which connects tờ fier by 6 -foot flexio quency response is , C minus 1 db from 20 tc and is within 3 db of. up to 100,000 cycles. The deliver full 27 watts of au at less than 5-percent harm tortion; 20 watts at less thar. cent harmonic distortion; ai watts at less than 0.5 -percent monic distortion.

Precision Ceramics

Thor Ceramics, Inc., 225 Belleville Ave., Bloomfield, N. J., has developed a new steatite insulating ceramic which can be milled, drilled, pressed, planed, lathe-turned, ground or worked by any other process applicable to metals. The new ceramics combine the advantages of close-tolerance production with ideal electrical characteristics. Their hardness-crush resistance factor of $100,000 \mathrm{lb} \mathrm{psi}$-facilitates high-speed precision production to meet JAN specifications or manufacturers' requirements at low unit cost.

Power Amplifying Tube

British Industries Corp., 164 Duane St., New York 13, N. Y. The KT66 tetrode was designed especially for use in the output stage of quality audio amplifiers. It is also used as an oscillator or r-f power amplifier for frequencies up to 30 mc . The tube is a highslope indirectly heated beam

Disc Cathode Speeds AssemblyImproves Performance

- Electronics manufacturers find it pays to be a customer of Superior. They receive good service, quality products and the benefits of Superior's methods and metals research that constantly improves upon already good products.
An example is the new, improved Disc Cathode. Investigation proved that a slight flaring of the open end minimized the danger of heater cathode "shorts" caused by scraping of the heater wire coating during insertion, while speeding the operation.

This feature added to an already excellent cathode, resulted in a
part that does a better job at a lower cost.
The Disc Cathode is only one of the hundreds of products which Superior supplies . . . but the same program of product improvement is applied to all of them. That's why most manufacturers in the electronics field are already friends and customers. If you are one of the exceptions, it will pay you to find out more about Superior and Superior products.Forinformation, consultation about production problems, design help or research assistance, write today to Superior Tube Company, 2500 Germantown Ave., Norristown, Pennsylvania.

Which Is The Better For Your Application...

SEAMLESS . . ? The finest tubes that can be made. Standard production is $.010^{\prime \prime}$ to $.121^{\prime \prime}$ O.D. inclusive, with wall thicknesses of $.0015^{\prime \prime}$ to $.005^{\prime \prime}$. Cathodes with larger diameters and heavier walls will be produced to customer specification.

Or LOCKSEAM* . . . ? Produced di. rectly from thin nickel alloy strip stock, $.040^{\prime \prime}$ to $100^{\prime \prime}$ O.D. in standard length range of 11.5 mm to 42 mm . Round, rectangular or oval, cut to specified lengths, beaded or plain.

Expanded Facilities . . . more space, equipment and taained co-workers help to meet growing demand.

Inspection and Gaging . . . equipment for checking "E" dimensions of Disc Cathodes.

52,600 Seamless Nictel Cathodes, compared under a lens with an ordinary pin.

*Mfd. under U.S. Pats.-Sunerior Tube Company - Electronic Products for export through Driver-Harris Company, Harrison, New Jersey - Harrison 6-4800

Because the contact is the key to the success of any electric connector, Cannon has always applied the highest order of skill and care to this all-important detail. Cannon pin and socket contacts are all precision machined from solid bar stock. Silver or gold plating maintains high conductivity after years of constant use. Phosphor bronze "napkin ring" of the socket keeps pressure on large areas of heavy metal, preventing current loss. There are no thin metal
tangent contact points in Cannon contacts. (See below). Solder cups are carefully tinned by hand to keep the solder inside the cup. Cannon socket contacts are full floating to assure perfect alignment. You'll find these design features throughout the great variety of precision contacts used in all Cannon connectors. For real value demand Cannon.

Cannon design (above left) makes contact on large, heavy metal surfaces. Current is not carried through spring section. In Cannon Connectors there section. In cannon the metal tangent contact points, like the design shown at right.

CANNON ELECTRIC

Since 1915
LOS ANGELES 31, CALIFORNIA REPRESENTATIVES IN PRINCIPAL CITIES

In Canada \& British Empire: Cannon Electric Co., Ltd., Toronto 13, Ontario. World Export (Excepting British Em pire) : Frazar \& Hansen, 301 Clay St San Francisco, California.
tetrode suitable for either single or push-pull audio operation and may be employed as a triode with screen connected through a 100 -ohm resistance to the anode. It can work interchangeably with the Ameri-can-type 6L6 tube in any circuit.

Five-Inch Scope

General Electric Co., Syracuse, N. Y., has announced the type ST-2C five-inch oscilloscope designed especially for use in microwave installations. The vertical sensitivity a-c input is 0.075 volt rms per inch; the vertical amplifier frequency response is 20 cycles to about 3 mc . The entire vertical amplifier, sweep and low-level horizontal stages are supplied with d-c operating potentials from an elec-tronically-regulated power supply which allows the oscilloscope to be used under unusually severe powerline fluctuations. To aid in amplitude measurements of voltages under test, a voltage calibrator is included which may be varied in seven steps, from 0.3 volt to 300 peak-to-peak volts.

Galvanometer Shunt

Audio Instrument Co., 133 W . 14th St., New York 11, N. Y. Model 170 galvanometer protector increases the speed and convenience of use of a Wheatstone bridge by adjusting itself automatically and continuously during bridge balancing operation. The galvanometer retains enough sensitivity to indicate balancing effect at all settings, yet is completely protected against

Big New MB Shaker!

Here's heavy duty capacity for your vibration testing to military specification MIL-E-5272 and 41065-B

Vibration testing reveals in advance how your products will behave in service. It's a "must" for military equipment. This new MB model C-25 shaker, one of the largest developed, provides large "brute force" for meeting military vibration testing specifications. Rated at 2500 pounds continuous vector force, it has capacity to produce 15 g with 100 lb table load or 20 g with 58 lb table load.

An electromagnetic exciter, MB model C-25 features accurate, continuous, easy control of force and frequency. Electrically interlocking controls assure proper operation.

Whether your own vibration testing requirements are of large order or small, you can get the answer to your problem at MB. Models start at 10 pounds force output. Resonant beams for special problems also available.

Make MB your headquarters for help and advice on vibration problems. You'll save yourself time and work. Write for new Bulletin No. 1-ve-s on vibration exciters.

1060 STATE STREET, NEW HAVEN 11, CONN.

NEW STEVENS THERMOSTAT

fast response - close temperature control

Specifically engineered for electronic, appliance and apparatus applications, compact Type M Stevens Thermostats assure fast response and close temperature controlcharacteristics of larger Stevens Thermostats.

Action of new Type M thermostat is extremely precise because bi-metal element is electrically independent. Bi-metal disc rests on top of rigid Monelbacked contact disc, which carries current on its silver side because of minimum electrical resistance. Since bi-metal carries no current, artificial cycling and lifeshortening "jitters" are eliminated.
Double, heavy-duty silver contacts in series minimize arcing, further increase thermostat life. Heatresistant stainless steel or Inconel return spring assures positive On or Off position. Silver-plated brass or steel terminals, mounted on non-conducting Alsimag base, are furnished in standard or special shapes.

Get faster response and closer temperature control on small current differentials. Specify Stevens Type M Thermostats on your appliances and industrial apparatus-for better performance, longer life.
damage. The protector uses a network of nonlinear and linear resistors.

Ion Trap

The Indiana Steel Products Co., Valparaiso, Ind. The E-Zee-On ion trap possesses a uniform field pattern and can be adjusted in a matter of seconds with one hand. It is a slip-on, grip-snug beam bender made of one piece, permanently magnetized Cunife that cannot be put on backward and requires no manual clamping. Because of its uniform weight distribution it will not jar loose, slip or come out of adjustment.

Literature

Flat Ceramic Capacitors. Sprague Electric Co., North Adams, Mass. Ratings and sizes of standard Bulplate flat ceramic capacitors are shown in engineering bulletin 602. The capacitors discussed are made in six different physical sizes in single and multiple capacitance combinations with voltage ratings up to 5,000 volts.

Air-Cooled Transmitter. Allen B. DuMont Laboratories, Inc., 1000 Main Ave., Clifton, N. J., has published a 16 -page bulletin on its 5 -kw Oak air-cooled transmitter. Bulletin TTD-T102 contains illustrations, block and circuit diagrams, chief features and specifications of the unit.

Potentiometer Controller. Minne-apolis-Honeywell Regulator Co., Wayne and Windrim Aves., Philadelphia 44, Pa. Specification sheet

YOU CAN BE SURE.. IF IT'S Westinghouse

Transformer

Space-saving problem

than ordinary cores, easily fie the smaller MOLDARTA transformer case.

MOLDARTA, a low power factor, low loss material, also served as the perfect insulator. Thus the large standoff insulator was eliminated ...the desired compactness was attained . . . and a difficult spacesaving problem was solved.

If you bave a taugh transformer problem, take advantage of the facilities of Westingbouse for quick, practical solutions. Transformers specially designed for all types of electrical and electronic circuits, as well as a wide selection of standardized designs... produced in quantity.... with quality. Call your nearby Westinghouse representative, or write Westinghouse Electric Corporation, P O. Box 868, Pittsbungh 30, Pennsylvania. J.70569

The Westinghouse solution: MOLDARTA and Type C HIPERSIL cores, two Westinghouse engineered products.

Westinghouse Type C HIPERSIL cores, $1 / 3$ smaller

Westinghouse

Stabilized

- HYSTERESIS MOTOR

Approximate motion curves for standard and damped hysteresis motors with load inertia of 180 ounce-(inches)2 by weight, rotating 1800 rpm .

THE new Model GL 513 Elinco motor is excellent for all sound and optical work, for goniometer drives, and all other applications where a high degree of motional stability is essential. It permits higher basic motor speeds for a given load inertia without increase in flutter . . . allowing greater power output for fixed motor size.
The curves compare a standard $1 / 16 \mathrm{hp}$ hysteresis motor with the new GL 513: note that the non-hunting motor not only radically reduces the duration of any oscillation, but also cuts the magnitude of the initial swing about 50%. Furthermore, whereas the standard motor, after one oscillation, damps out a connected load of only 9 oz.in.' by weight, the GL 513 shows a value of $180 \mathrm{oz} . \mathrm{in} .{ }^{2}$
Model GL 513 is currently available for reasonable future delivery; other stabilized units, with other speed and voltage ratings as well as multiple-speed units, are under development.

ELECTRIC INDICATOR CO.
 PARKER AVENUE - STAMFORD, CONN.

MANUFACTURERS OF SPECIALLY-DESIGNED PRECISION MOTORS AND GENERATORS-GOVERNORCONTROLLED; SELF-SYNCHRONOUS; DRAG-CUP; DC \& AC TACHOMETER; SHUNT; SERIES; COMPOUND; PERMANENT-MAGNET; SPLIT-FIELD; SEPARATELY-EXCITED; UNIVERSAL; INDUCTION; RELUCTANCE; HYSTERESIS; DC \& AC SERVO; REELMOTORS; TOTALLY-ENCLOSED; AC DYNAMÍCALLY-BRAKED; MULTIPLE-SPEED.

No. 175 gives engineering data on the new ElectroniK strip chart pneumatic control potentiometer. Illustration, specifications, dimensional diagrams and ordering information are included.

Engineering Bulletins. Melpar, Inc., 452 Swann Ave., Alexandria, Va, has available for the asking three engineering bulletins, the star't toward monthly recordings of the company's developments. Volume I, No. 1 deals with potting resin for subminiature assemblies and subassemblies; No. 2 gives instructions for use of Melpak IV-M and Melcoat I casting resins; No. 3 describes the model MP1539 miniature radar beacon.

Retaining Rings. Waldes Kohinoor, Inc., 47-16 Austel Place, Long Island City 1, N. Y. A new series of engineering bulletins covering all types of Truarc retaining rings, grouped by specific ring function, was recently issued. All charts give complete engineering specifications including allowable thrust loads, force required to flatten bowed type rings, gap widths, rpm limits and many other helpful data.

Tapes for Television. Minnesota Mining \& Mfg. Co., 900 Fauquier Ave., St. Paul 6, Minn. An illustrated 8 -page folder is devoted chiefly to the Scotch electrical tape No. 22, designed for tv deflection yokes because of its high dielectric strength and heat resistance with thin caliper. Description of the No. 33 tape that protects against moisture, corrosion and abrasion is also included.

Strip Chart Recorder. Minneapo-lis-Honeywell Regulator Co., Wayne and Windrim Aves., Philadelphia 44, Pa. Instrumentation data sheet 9.1-7 describes the Brown ElectroniK strip chart recorder which, when coupled with a Kelvin bridge measuring circuit, comprises a modern method of measuring rotor temperatures. Besides describing the instrument and its method of installation, it discusses the Kelvin bridge prin-

Do you fit in the Boeing picture?

Bocing's world-wide reputation for sound engincering achievement is founded on men. Bocing engineers and pleysicists are graduates of many miniversitics aud technical schools. They come from every state in the Union. Under inspiring leadership they have been welded into one of tlic most potent forces in any field of scientific advance.

If you can mosasure up to Bocing standards, there is an attractive future for sou in this renowned group. In addition to the prestige which attaches to being a menber of the

Bocing engincering tean, there are other defunte advantages
1 The dhatlenge of working on such vital proratms as the $12-57$ and $13-52$ jet lombers guided missiles and other revolutionars developments.

2 Stabilits of career opportunity with an en 2 gineering division that is still miming stend ily after 3a years.

3 The invigorating atmosphere of the Pacific Northwest-hunting, fishing. sailing. skimg. temperate cimate all vear aroumd

4 The availability of homsing. Newcomere to Sattle are able to ret accommodations-and that's unique in a great aircraft manufactur ing center.

5 Cond salatijes. And they wrow with you
6 Mowine atal travel expense allowance

Bocing's immochate needs call for experienced and jumior acronantical, mechanical. electrical, clectronics, cibil, acoustical and weights cngincers for dosign and research; for servo-mechanism desigeners and amalysta; and for phesicists and math cmaticians with advanced degrees.

Write today to the address below or use
the convenient coupon.

JOHN C. SAMDERS, Staff Engineer-Personnel DEPT. H-8
Boeing Airplane Company, Seattle 14, Wash.
Engineering opportunities at Boeing interest me. Please send me further information.

Name
Address
City and staye

Quality Electronic Equipment

... deserves Quality Cabinets

THE finest electronic equipment in the world is being provided for our armed services today. If you're helping to produce this quality equipment . . . and need a dependable supply of cabinets to match its high standard of construction, there's a good chance CorryJamestown can help you speed your production as well as maintain the quality of your finished equipment.
A high regard for quality has always been sccond nature with us during our 30 years of fabricating steel, stainless steel and aluminum. What's more, our three large plants, our modern fabricating facilities, our skilled craftsmen and our engineers are teamed to go right to work on your contract . . . and to make deliveries on time. We'll gladly give you more information about our facilitics, capacity, etc.

CALL, WRITE OR WIRE US TODAY!

CORRY-JAMESTOWN MFG. CORP.
CORRY, PENNSYIVANIA

ciple and lists the required instrumentation, system benefits and other technical data.

Tube Characteristics. Raytheon Mfg. Co., 55 Chapel St., Newton 58, Mass. An 8-page booklet is filled with tabular material giving complete characteristics for a wide variety of special purpose tubes. It includes information on subminiatures, magnetrons, klystrons, rectifiers, voltage regulators, radiation counters, transmitting tubes and transistors.

Paper Tubulars. Cornell-Dibilier Electric Corp., South Plainfield, N. J. Bulletin NB142 gives the outstanding features, uses and dimensions of the Pup general-purpose metallized paper tubular capacitors that may be used over a temperature range from -40 to +60 C without derating. The capacitors described are particularly suitable for portable equipment where space is limited.

Laboratory Instruments. Polarad Electronics Corp., 100 Metropolitan Ave., Brooklyn 11, N. Y., has issued a 10 -page catalog describing a line of laboratory instruments including its all-band spectrum analyzer, microwave signal sources, video amplifier and laboratory power supplies. Illustrations, chief features and specifications of each are given.

Civil Defense Communications. General Electrical Co., Syracuse, N. Y. A new brochure pictorially presents typical communications systems now in use which can be co-ordinated into a dependable emergency communications network in any community. The brochure also describes the company's technical advisory service for civil defense radio communications. It lists GE specialists in 22 district offices throughout the country who are available without charge to analyze existing communications systems and recommend methods of forming them into a single network to operate in any peacetime or wartime emergency.

Strain and Stress Studies. Electronic Tube Corp., 1200 E. Mer-
how to get small DEFENSE parts in A HURRY... without prefaliciated metal WORRIES

maid Lane, Philadelphia 18, Pa., has issued a single-sheet bulletin on the H-42A Strainalyzer for dynamic strain and vibration studies from 0 to $50,000 \mathrm{cps}$. The unit described is designed especially for stress studies of rockets, jet engines, aircraft and the like, and permits simultaneous observation and recording of electronic traces of four phenomena in correct time and phase relationship. General uses, specifications and components are shown.

Temperature-Compensated Strain

 Gages. Baldwin-Lima-Hamilton Corp., Philadelphia 42, Pa. A new 2-page bulletin, No. 174, describes, shows graphic performance and gives specifications for ten new type SR-4 resistance wire strain gages. The gages covered are only slightly affected by temperature variations within certain ranges when bonded to steel or aluminum.Picture Tubes. Zetka Television Tubes, Inc., 131-137 Getty Ave., Clifton, N. J., has announced a two-color, 12 -page catalog covering thoroughly its $16,17,19$ and $20-\mathrm{in}$. round and rectangular picture tubes. Every tube shown is detailed with descriptive copy, diagrammatic drawings and technical descriptions.

Stabilized Crystals. The James Knights Co., Sandwich, Ill. A full line of modern stabilized crystals for every electronic application is illustrated and described in cata\log 51. Dimension drawings and general specifications on all the company's crystals and holder types, old replacement types as well as new, are included in the publication, the chief purpose of which is to provide busy engineers with complete data on new crystal advances.

Parts and Components. The Muter Co., 1255 South Michigan Ave, Chicago 5, Ill., has prepared a new catalog of radio, tv and electronic parts and components. The three sections already completed include: Form 100 on Ceramicapstemperature compensating, general purpose, disc and variable

GILFILLAN OFFERS..

- excellent financial opportunity. Bccause Gilfillan jobs require to ρ specialists, most jobs fall into higher pay categories.
- secure, long-term careers with a progressive 40-year-old company.
- outstanding engineering opportunity, ranging from major systems design to detailed circuit design.
- advancement in both pay and responsibility according to ability.

ELECTRONIC ENGINEERS

Having design experience in one or more of the following: General radar and computing systems
Servo mechanisms Indicator systems
Radar transmitter modulators and high voltage power supply systems
Wide band IF amplifiers and receivers General pulse circuits
MICRO-WAVE ENGINEERS... Having design experience in transmission line components, micro-wave antennas and feeds.
PHYSICISTS... Having practical experience in analysis of radar and raciar control systems.

DEGREE NOT ESSENTIAL but applicants should have minimum of five years' experience and familiarity with design requirements for military specifications.
ADEQUATE MOVING ALLOWANCE...for family and furniture. Your family will enjoy living in Southern California. Wonclerful climate the year around. Adequate housing, unexcelled erlucational facilities.

Interviews can be arranged at convenient cities WRITE OR CONTACT MR. HOMER TASKER,

Chicf Enginecr, Gilfillan Brothers 1815 Venice Blvd., Los Angeles 6, Calif.

all replies strictiy confidential

TWO NEW TWIN POWER SUPPLIES

MODEL 610-F

- lowers Ehectronic Regutation.
: シ̈ Inderpendent Sources of Power
0-32 (
- 0-325 - C
- 0-325 V.B.C. at $0-200$ Mils if the Sources
- Botli D.C. Outputs Metered for Voltage
- or Curren
- and 1?. I.A.C. Outputs Provided.
A.C. Ripple Less than 10 Milivolts.

MODEL 1210

- IPreise Electronic Requiation.

2 Independent Sources of lower (i)0 V.C. at 0-150 Miltiamperes. Con (ilumasly Aajustable. $0-500$ V. $)$. (at $0-300$ Mils if the 2 Sources Hoth DC Out.

Outpats Metered for Voltage or G.3 ar Liz.6 V.A.C. Outputs Provideal. A. ('. Ripple Less Than 10 Millivolts

Also available with regulated bias output. able saving in space and cost. Write for complete specifications on these and orher Furst Twin Power Supply Models.

FURST تIECTRONICS

10 S. Jefferson St., Chicago 6, III.

THE SUPREME BRUSH AND CONTACT MATERIAL

for BRUSTES

- for high current density
- minimum wear
- low contact drop
- low electrical noise
- self-lubrication
for
CONTACTS
- for low resistance
- non-welding sharacter

Gropholloy is a special
silver-impregnoted grophilo

Accumulated design experience counts -
call on us?

GRAPHITE METALLIZING CORPORATION
 1055 NEPPEAHAN AVENUE, YOKKERS 3, NEW YORK

ceramic capacitors; Form 200 on resistors-wire-wound Candohms, Zipohms and sensitivity controls; and Form 300 on Spirashield-the wiring shield for critical r-f and a-f circuits. Copies of these and other sections still to be released may be had without charge by a request on a company letterhead.

Soldering Flux. Mico Instrument Co., 80 Trowbridge St., Cambridge, Mass. A four-page bulletin deals with Solderux fluxes, a group of very effective soft-soldering agents based upon sound chemical principles not used previously in soldering practice. Complete description and a price list of the pastes, creams and liquids are included.

Crystal Probes. United Technical Laboratories, Morristown, N. J., offers a folder describing the many uses of its Klipzon high-frequency germanium crystal probes. Of special interest is the description of use as a means of one-man orientation of tv antennas for best directional characteristic. An additional folder is also available describing Klipzon self-holding test prods, Mini-Prod connectors and Mini-Prod adapters.

Components Booklet. Citation Products Co., 233 E. 146th Sti, New York 51, N. Y., has issued a booklet containing dimensional diagrams and technical data on a line of products including terminal lugs, terminal boards, cable assemblies, metal stampings, plastic fabrication and screw machine parts.

High-Voltage Capacitors. Sprague Electric Co., North Adams, Mass. Engineering bulletin 212B gives complete sizes and ratings for a line of Hypass three-terminal network feed-through capacitors. The capacitors described are especially suited for suppression of radio interference and harmonic generation in high-voltage circuits in transmitters and industrial electronic equipment.

Vacuum-Sealed Transformers. The Halldorson Co., 4500 Ravenswood Ave., Chicago 40, Ill. Catalog No. 18 lists a complete line of radio

3J/160E (TRIODE)
Filament 10 volts 29 amp .
Ratings Eb 3 kV .
1b 1 amp. Pp 1 kW .
Max. trequency $120 \mathrm{Mc} / \mathrm{s}$.
Max. height $5 \cdot 2$ ins.

Ib 5 amp.
Pr 20 kW . Max
frequency $30 \mathrm{Mc} / \mathrm{s}$. Overall diameter 8.031 ins. Max. height 15.125 ins.
 VALVES Incorporate thoriated tungsten filaments. Efficient air-blast cooling. Require exceptionally low filament power. Facilitate the design of simpler and smaller radio equipment

Standard Telephones and Cables Litnited

 An / T \& T Associateradio division, oakleigh road, new southgate, london, n.ll - england

SURE SOURCE FOR SPECIAL LAMINATION SHAPES

Special shapes are often the only way to meet rigid specifications . . the only way to reduce weight, to save space.
Whether your problem is a transformer, a rotating device, a choke or a saturable reactor, check with Thomas \& Skinner. With their quarter century of experience, they can offer you a solution that will incorporate all the latest advances in technology and design.

For peak performance to rigid specifications, make Thomas \& Skinner your sure source for special laminations.

THOMAS \& SKINNER
Specialists in magnetics-permanent
magnets and laminated cores.
THOMAS \& SKINNER
SteEl products company
1122 East 23rd Street • Indianapolis, Indiana

HEILAND RESEARCH CORPORATION
130 East fifth Street Denver, Colorado, USA

TELEVISION PRINCIPLES

Just Out

1. A practical treatise on the principles and tion. Emphasizes basic TV transmitter and rece ceiver design, and such subjects as video amplifers cathode followers, grounded-grid amplifiers, signal-to-noise ratios in head-ins, intermediate prequency amplifiers, and detection. Contains helpful referonce clarts. curves, and tables. By Robert B. Elec. Co. 281 . Elec. Co. 281 pages, 85 illus.
55.50

FUNDAMENTALS
OF ATOMIC PHYSICS
2. Gives engineers groundwork fundamentals. in the simplest possible treatment. Covers the kinetic theory of gases, the charge and mas of electron, electronics, photoelectric ofof the origin of spectral lines

matter waves, isotopes, and other important factors Supplies an understanding of the quantitative rels. tions involved in atomic and nuclear structures. By Saul Dushman, Researeh Consultant, Gen. Eleo
Co., Schenectady, N. Y. 294 pages, IIIus., $\$ 5.50$

BASIC ELECTRON TUBES

Just Out
3. A guide to the principies and fundamentals of book covers tubes. For a variety of tubes, the diagram, the physical theory and finally the mathematics concerned in the tube's operation Throughout, it progresses from the most baste and cated tubes. tubes, high-rscuum high-vacuum and gas photo cathode-ray tubes, thermionic gas diodes, etc
By Donavan V. Geppert, Gen. Eleo
$\xrightarrow{\substack{\text { By Donavan V. Geppert, } \\ \text { Co., Syracuse. N. . . . } \\ \text { illus., } \$ 5.00}}$

ELECTRICAL TRANSMISSION LINES

4. For electrical and electronic 4. engineers, and those inter ested in power and communicathons, here is a concise, author of circuits with distributed constants, which is valid at all frequencies, followed by chapters on the application of this theory to radio frequency lines, power limes, telephone lines, fllters, and ware guides. By Hugh H. Skilling, Professor of ment Stanford U. 437 and Head of the Depa

SEE THESE BOOKS 10 DAYS FREE

and tv transformers. Many items are listed that are of interest to a wide range of industries. Among such items are isolation, stepdown, filament and voltage-regulating transformers.

Electric Control Potentiometers. Minneapolis-Honeywell Regulator Co., Brown Instruments Division, Wayne and Windrim Aves., Philadelphia 44, Pa. Catalog 15-15 is a 36-page booklet covering Electronik potentiometers for both contact and proportional control. Engineering and constructional data, types of control, partial list of available ranges, application data and accessories are described.

Broadcasting Brochure. Radio Corp. of America, Camden, N. J. A new brochure provides complete description and specifications for the model BTL-1A studio-transmitter link equipment that may be used in the 890 to 911 -mc band for tv aural channels, by a-m stations in the 925 to 940 -mc shared service band and by f-m stations in the 940 to $952-\mathrm{mc}$ band. Copies are available to broadcast station engineers requesting it on their letterhead.

Replacement Needle Chart. Electrovox Co., Inc., 60 Franklin St., East Orange, N. J., offers a colorful $11-\mathrm{in} . \times 17-\mathrm{in}$. chart showing not only all of the phonograph needles in use by leading recordplayer manufacturers, but cartridge makers as well. Name of maker, needle model by maker's number, illustration of actual needle, and replacement number and list price are given.

Engineering Bulletin. Schaevitz Engineering, Camden, N. J. A four-page bulletin illustrates and technically describes the company's linear and rotary variable differential transformers, linear and angular accelerometers, pressure transducers, rotary accelerators, slip rings and recorder systems.

Subminiature Capacitors. Sprague Electric Co., North Adams, Mass. Bulletin 213A shows new ways of mounting subminiature metal-en-

Outgrown your present black-and-white print equipment? Meet today's Bruning - it makes other machines look slightly horse-and-buggy. It's the talk of the trade!
talk about volume... with a Model 93 Bruning you can print up to 105 square feet per minute! Ancl that's finished prints - prints that come out flat, dry, neatly stacked, and ready for immediate use.

TALK ABOUT EASY OPERATION ... since Bruning B.W nachines use no vapors and emit no fumes, they require no special exhaust installation. You merely comect them to your electrical circuit and you're ready to make prints. And when a Bruning machine is rolling, all you do is set the desired speed and feed in the paper. That's all. No trained operator is needed.

TALK ABOUT EASY MAINTENANCE ...all essential bearings are permanently lubri-cated-also self-aligning. The adjustable
speed drive is a patented, stepless trans mission that runs for years withont atten tion. Parts that do require occasional attention are accessible in minutes.
talk about flexibility ... Bruning BW machines can handle any black-and-white print jobs, and six different models offer a complete range of speeds and capacities. Too, there are 85 varieties of Bruning sensitized papers, films and cloths - far more than any other manufacturer oflers.
SEE FOR YOURSELF the speed and ease of operating a Bruning BW machine. It's an eye-opener even if your present equipment is just a few years old. A complimentary demonstration, or our explanatory booklet, is yours for clipping the coupon.

The revolutionary, new BW Copyflex model.

BRUNING

Specialists in copying since 1897

Dept. Z-81 100 Reade 5t. New York 13, N. Y.	
Please send me your free booklet A-1053A.I would like to see a Bruning BW machine demonstrated.	
Name	Title
Company	
Streel	
City	State

X-YAR is non-corrosive, non-creeping - leaves wire ready for soldering. Now in use by leading manufacturers of electrical products. Write for FREE SAMPLE for testing.

FIDELITY CHEMICAL PRODUCTS CORP. 472 Frelinghuysen Avenue, Newark 5, New Jersey

cased paper capacitors as well as a complete line of subminiature $125-\mathrm{deg} \mathrm{C}$ capacitors. The latter type described may be had in voltage ratings from 100 to 1,000 volts d-c in both inserted tab and extended foil constructions. The bulletin giving complete details is available upon letterhead request.

Products Catalog. The Astatic Corp., Conneaut, Ohio. Catalog No. 51 covers all the company's products manufactured for civilian markets. Printed in three colors, it includes illustrations of all items, as well as full descriptive and performance data on all models of tv and f-m boosters, microphones and stands, phonograph pickups and cartridges, needles, recording heads and related equipment. The index is crossreferenced.

Analog Computers. Geo, A. Philbrick Researches, Inc., 230 Congress St., Boston 10, Mass., has published a catalog and manual on a line of high-speed all-electronic analog computers for research and design. Included are illustrated descriptions of a wide variety of components, a table of operators and responses and a selected bibliography.

Selenium Rectifiers. Sarkes Tarzian Inc., Bloomington, Ind., recently issued a 64 -page handbook on Centre-Kooled selenium rectifiers for radio, tv and electronic applications. Included are circuits, characteristics curves, illustrations, application notes and stack connection information. Price is 25 cents.

Logarithmic Amplifier System. Kalbfell Laboratories, Inc., 1076 Morena Boulevard, San Diego 10, Calif. A recent mailing piece shows how a line of plug-in amplifiers connected together can constitute a convenient system having good sensitivity, high input impedance and low output impedance for driving a rectifier type meter. Units described are the model 104 A preamplifier, model 105A Logaten driver amplifier and model 106A detector amplifier. A price list is included.

* MAGNECORDER

FOR FIDELITY AND DEPENDABILITY

... on the beach-head ...for the broadcast *

FEATURES

PT7 occommodates $101 / 2^{\prime \prime}$ reelsandoffers 3 heods, positive fiming ond bushbut.
ton control. PT7 shown in complete console model is available for portable or rack mount.

Going in for a landing with the Marines takes rugged dependability. Magnecord tape recorders meet this requirement and provide split-secondprecision recording on the beach-head. Serving all over the world in vital communication assignments, Magnecorders undergo the severest conditions and still continue to record with high fidelity right at the moment they are needed.
At KIRO, Seattle, Wash., delayed programs and "on location" remotes are handled with complete confidence since Magnecorders were installed. In the field or at the station, Magnecord professional tape recorders are the first choice of radio engineers everywhere.

SERVOTHERM PRODUCTS

BOLOMETER AND PREAMPLIFIER

Thermistor bolometers are FAST, sensifive INFRARED and HEAT detectors. Especially RUGGED for industrial, scientific, and military applications. PREAMPLIFIER provides NOISEFREE initial amplification and mount.

THERMISTOR POWER SUPPLY

Provides voltages required by BOLOMETER bridge and PREAMPLIFIER. Regulated and filtered permitting THEORETICAL NOISE LIMITS of amplification, while operating from 60 CYCLE line.

SERVO
CORPORATION OF AMERICA

DEPT. E-8
NEW HYDE PARK, N.Y.
in YOUR NEXT DESIGN...

take full advantage

 OF THE SUPERIOR TOROIDAL COILS Characteristics of...Where a circuit calls for an efficient coil of a high Q factor - when space and weight are limited, specify DX TOROIDS.
DX TOROIDS require less space for a given in. ductance. They have no coupling effects in adjar cent circuits as their fields are entirely contained within the perimeter of the coils. Shielding does not affect the \mathbf{Q}.
DX TOROIDS have a wide application in a number of electronic equipments-particularly airborne radar and miniature assemblies. Toroidal "off-center" and focus coils; band pass, high and low pass filters; inter-stage and output transformers improve performance with substantial savings in space.
DX Radio Products Company has devoted 10 years to the development of design and methods of winding TOROIDS. Our experience and extensive facilities are at your service. Just tell us your requirements. We will design your coils or build them to your exact specifications and submit samples promptly.

Write or Wire DX Today

GENERAL OFFIGES: 2300 W. ARMITAGE AVE., CHIGAGO 47, ILL.

chopper

A model for every use. 10 - 500 cycles AC
 Meets AN Specifications also 60 cycles
 Single pole and double pole
 Make-before-break contacts
 Contacts in air or in liquid

22 ELKINS STREET SOUTH BOSTCN $27, M A S S$.

NEWS OF THE INDUSTRY

icontinued from page 148)
new color television system (see p 90), has reorganized and established nine new panels. Chairman W. R. G. Baker also announced the appointment of Elmer Engstrom, vice-president in charge of research at RCA Laboratories, as vice-chairman of the NTSC. Other vice-chairmen are Donald G. Fink of Electronics and David B. Smith of Philco Corp.

The nine new panels, their chairmen and vice-chairmen are as follows:

Subjective Aspects of ColorA. N. Goldsmith of New York, chairman ; D. E. Hyndman of Eastman Kodak Co., vice-chairman.

Color System Analysis-D. G. Fink of Electronics, chairman; A. G. Jensen of Bell Laboratories, vice-chairman.

Color Video Standards-A. V. Loughren of Hazeltine Electronics Corp., chairman; W. T. Wintringham of Bell Laboratories, vicechairman.

Color Synchronizing StandardsD. E. Harnett of General Electric Co., chairman; M. R. Briggs of Westinghouse Electric Corp., vicechairman.

Compatibility-D. E. Noble of Motorola Inc., chairman; R. DeCola of Admiral Corp., vice-chairman.

Field Testing-T. T. Goldsmith of Du Mont Laboratories Inc., chairman; G. E. Gustafson of Zenith Radio Corp., vice-chairman.

Network-F. Marx of American Broadcasting Co., chairman; R. E. Shelby of National Broadcasting Co., vice-chairman.

Coordination-D. B. Smith of Philco Corp., chairman; I. J. Kaar of General Electric Co., vice-chairman.

Definitions-R. M. Bowie of Sylvania Electric Products Inc., chairman; M. W. Baldwin, Jr. of Bell Laboratories, Inc., vice-chairman.

The entire NTSC is composed of twenty organizations. These units with their representatives and alternates (in parentheses) are as follows:

Admiral Corp.-R. DeCola (Joe Marty, Jr.) ; Bendix Radio Div.A. C. Omberg (John Miller) ; Color Television, Inc.-Samuel Smith (A. S. Matthews) ; Crosley Division

Andruev VHF ...U UF "TEFON"...w TV TRANSMISSION LINES

ANDREW offers a complete series of Andrew coaxial transmission lines...specifically designed for VHF and UHF 'TV frequency ranges $-54-890$ MCs.

Teflon insulators, with a dielectric constant of $2.0,1 / 3$ that of steatite and a loss factor of 0.0004 , $1 / 10$ that of steatite-minimize impedance discontinuity, increase efficiency . . Andrew further compensates for insulators in $31 / 8^{\prime \prime}$ and $61 / 8^{\prime \prime}$ line as illustrated-on smaller diameters, insulators are secured in a rolled groove on the inner conductor. A complete line of hangers, elbows, gas barriers and other accessories are available.

FREE

Andrew Bulletin 73-to help you select correct transmission line for your TV station-a complete table of power ratings and loss data for use over entire UHF and VHF TV bands- No obligation - write for your copy today!

[^15]
Important SAVINES to VOLUME users of small. parts

If you need small tubular metal parts like these in large VOLUME, Bead Chain's MULTI-SWAGE Process can mean important savings to you.

Much Cheaper Than Solid Pins

Many prominent users of solid pins for electronic and mechanical purposes bave cut costs by switching to MultiSwaged tubular pins . . . without sacrificing strength or accuracy.

Typical Applications-

As terminals, contacts, bearing pins, stop pins, male-female connections, etc., in a wide variety of products such as Business Machines, Ventilator Louvres, Toys, Radio and Television Apparatus, Terminal-boards, Electric Shavers, Phonograph Pickups, etc.

Send part (up to $1 / 4^{\prime \prime}$ dia. and to $11 / 2^{\prime \prime}$ length) and your specs for a quotation or write for DATA BULLETIN.

[^16]

Q MEASUREMENT

 BY MARCONIFamous for years in the field of radio measurement, Marconi Instruments offer TF 329 G for 50 kc through 50 mc measurement and the TF 886A for the range $15-170 \mathrm{mc}$. Covering the whole gamut of broadcasting, am, fm and tv , they are universal instruments in radio engineering, allowing the measurement of $\mathrm{Q}, \mathrm{L}, \mathrm{C}, \mathrm{R}$, dielectric loss, power facior, permittivity, frequency and a host of others. Write now for fuller details.

$$
\begin{array}{cc}
\text { TF 329G } & \text { TF 886A } \\
50 \mathrm{kc}-50 \mathrm{mc} \pm 2 \% & 15-170 \mathrm{mc} \pm 2 \%
\end{array}
$$ $10-500 Q \pm 5 \% \quad 60-1200 Q \pm 10 \%$ $4 \mathrm{C}-450 \mu \mu \mathrm{f} \pm 1 \% \quad 12-85 \mu \mu \mathrm{f} \pm 1 \%$

Have you got our 44 page booklet Measurements by \mathbf{Q} Meter, a complete treatise on the subject with full operating instructions?

MARCONI INSTRUMENTS 23-25 Beavar Street, New York
CANADA: CANADIAN MARCONI CO., MARCONI BUILDING. 2442 TRENTONAVENUE. MONTREAL ENGLAND: MARCONI INSTRUMENTS LIMITED. ST. ALBANS, HERTS.

Visit us of Booth 518-Pacific Electronic Exhibit

AVCO Mfg. Corp.-L. M. Clement (P. F. G. Holst) ; Allen B. Du Mont Lab., Inc.-Allen B. Du Mont (T. T. Goldsmith) ; Electronics-D. G. Fink (G. R. Towne) ; Federal Telecommunications Laboratories, Inc. -Emile Labin (N. H. Young); General Electric Co.-I. J. Kaar (J. E. Keister) ; Alfred N. Gold-smith-A. N. Goldsmith (D. E. Hyndman); The Hallicrafters Co. -H. J. Adler (L. R. Mead) ; Hazeltine Electronics Corp.-A. V. Loughren (K. McIlwain); Hogan Laboratories, Inc.-J. V. L. Hogan (F. A. Hester) ; Motorola, Inc.D. Noble (E. B. Passow) ; National Association of Broadcasters-E. K. Jett (Neal McNaughton); Philco Corp.-D. B. Smith (F. J. Bingley) ; RCA Laboratories-E. Engstrom (G. L. Beers) ; Sylvania Electric Products Inc.-R. M. Bowie (B. F. Tyson) ; Tele-Tone Radio Corp.-M. L. Levy (R. S. Mautner) ; Westinghouse Electric Corp. -M. R. Briggs (R. Harmon); Zenith Radio Corp.-G. E. Gustafson (J. E. Brown).

New Anti-Cancer
 Weapon Planned

The powerful, supervoltage rays of radioactive cobalt will soon be studied as a new aid to cancer sufferers. A special apparatus for administering the rare isotope will be delivered to the Oak Ridge Institute of Nuclear Studies and M. D. Anderson Hospital by General Electric X-Ray Corporation of Milwaukee within the next several months.

Located in Oak Ridge, Tenn., adjacent to the Atomic Energy Commission plant, the Institute (O.R.I.N.S) will cooperate with the M. D. Anderson Hospital of Houston, Tex., affiliated with the University of Texas, in extensive tests on radioactive cobalt and its effects on cancers.

The radiation emitted by cobalt 60 , as it is known, is equivalent to the x-rays produced by high-voltage tubes operating at about 1,200 ,000 electron volts. Four cobalt wafers, each less than one inch square and less than an eighth of an inch thick, are being irradiated in the Chalk River, Canada, atomic

Standard RADIO INTERFERENCE and FIELD NTENSITY Measuring Equipment Complete Frequency Coverage - 14 kc to 1000 mc !

14ke to 250ke
Commercial Equivalent of AN/URM-6.
Very low frequencies.

15 mc to 400 mc
Commercial Equivalent of TS-587/U.
Frequency range includes FM and TV Bands.

NM-20A 150kc to 25mc

Commercial Equivalent of AN/PRM-1. Self-contained batteries. A.C. supply optional. Includes standard broadcast band, radio range, WWV, and communirations frequencies.

UHF!

375 mc to 1000 mc NM - 50A

Commercial Equivalent of AN/URM-17.
Frequency range includes Citizens Band and UHF color TV Band.

These instruments comply with test equipment requirement of such radio interference specifications as JAN-1-2.25, ASB, Cs3.2, 16E4(SHIPS), AN-I-24a, AN-I-42, AN-I-27a, AN-1-40 and oth rs.

STODDART AIRCRAFT RADIO CO. 6644-A SANTA MONICA 8LVO., HOLLYWOOD 38, CALIFORNIA Hillside 9294

522 West Madison Street Chicago 24, Illinois

IS YOUR RECTIFICATION

DPAD-GREEN COMPANY

71-2 WARREN ST., NEW YORK 7, N. Y. PHONF: BEekman 3.7385.6 HEAT FOR ALL TYPES OF SOLDERING

With 250-Watt WELLER GUN

No need to change tools for light or heavy soldering. The 250-watt Weller Soldering Gun does both with controlled dual heat. 5 -second heating saves time and current on every jol. Your Weller Gun pays fór itself in a few months.

Check These
Time-and-
Money
Saving
Features

TRIGGER-SWITCH CONTROL - Governs heat for light or heovy work. Saves power because no need to unplug gun between jobs.
SOLDERLITE-Spotlights the work, Lets you see what you're doing at all times.
5-SECOND HEATING - No waiting, no wasted current. Saves hours and dollars each month.
LONGER REACH-Lets you get at any job with ease. Slides between wiring - into the tightest spots. STREAMLINED-Compact and comfortable to hold. Pistol-balanced for fast precision soldering. RIGID-TIP - Chisel-shaped. More soldering area for faster heat transfer. "Over-and-under" terminals give bracing action.
DUAL HEAT--Single heat 200 watts; dual heat 200/250 watts; 120 volts, 60 cycles.
See the new 250 -watt Weller Soldering Gun today at your distributor-or write for bulletin direct. SOLDERING GUIDE-Get your new copy of SOLDERING TIPS-revised, up-to-date and fully illustrated 20-page booklet of practical soldering suggestions. Price $10 c$ of your distributor, or order direct.

energy reactor, for use in the new unit. The cost of an equivalent amount of radium $(\$ 26,000,000)$ would be several thousand times greater.

While radioactive cobalt has been tested before on cancer, this has been chiefly in the form of local therapy, usually requiring surgical planting in the tissues, whereas the new apparatus will make it possible to direct the rays at sizeable areas from a distance and to reach deep or otherwise inaccessible cancers.

Manipulating the isotope and adapting it to easy application has posed major problems for GE design engineers. They have now developed a housing and an electri-cal-mechanical system that makes it possible for doctors and their aides to give treatments by remote control, to limit the radiation to the patient under treatment, and to return the isotope to a safe position automatically in case of power failure.

The cobalt will be encased in a housing made of a special tungsten alloy known as Hevimet, which is considerably more dense and therefore less transparent to radiation than lead. The operator, located in an adjoining room, will be protected by thick concrete walls, but will,be able to see the patient through a window consisting of 15 inches of x-ray protective material.

Radio-cobalt takes 5.3 years to lose half of its effectiveness-the rate at which it is said to decay thus making it well adapted to continued use for cancer therapy without frequent correction of calculations by the physicist or radiologist.

The Oak Ridge Institute of Nu clear Studies is a nonprofit educational corporation comprised of 26 southern universities, organized to make AEC facilities available to universities for research and graduate work.

Engineering Positions Available

Civil service examinations have been announced for filling electronic engineering positions at the Naval Air Development Center, Johnsville,

No's. 8001, 8002, 8003 and 8004 inkwriting galvanometers have sensitivities from 3.5 to 40 volts per cm ., resonant frequencies from 15 to 120 cps ., resistances from 1000 to 2000 ohms, frequency response up to 350 cps., and a singlejewel pivot construction. Units are designed for multiple operation up to 10 channels in a total width of 12 inches.

DIRECT:COUPLED AMPLIFIER

No. 8100 direst coupled amplifier has a voltage amplification of 13,000 with a maximum output of 70 volts. Frequency response from d.c. to 10,000 cps. is flat within 0%. Input impedance is 2 megohms; output impedance is ohms. Inpur may 0.1 mv per 0.1 mv . to $1000 . \mathrm{mv}$ per day. Attenuator is stepped for factors from 1 to 1000.

OSCILLOGRAPH

A M PLIFIER
No. 8121 special amplifier has a time constant of 1 second, an exponential response to a square wave at high gain, input impedance of 1 megohm, and input form 0.1 mv . to 1000 volts. At low gain, No. 8121 becomes a DC amplifier with a voltage gain of 100 and an input of $10 \mathrm{mv} . / \mathrm{mm}$.

H|GH-GA|NAMPLIF\|ER

No. 8130 amplifier has a voltage gain of $1,000,000$ and includes a built-in pre-amplifier. Frequency response is from 1 to 200 cps . Input may range from 10 microvalts to 100 millivalts. This amplifier is particularly suited for Biological studies.
Many other types of recording and amplifier circuits are available and special equipment can be assembled to meet particular specifications.

OSCILLOGRAPHS

Recorders can be supplied with 1 , 3 or 9 chart speeds ranging from 0.1 $\mathrm{mm} . / \mathrm{sec}$. to $250 \mathrm{~mm} / \mathrm{sec}$. See specifio cations of OSCILLOGRAPH GALVAN OMETER for frequency range.

207 Main Street

EDIN COMPANY, INC

Worcester 8, Mass.
Please send complete information on:

(NO.)
(STREET)
(CITY)
(STATE)

COMPANY
OSITION

By connecting variable elements to their control knobs with S.S. White flexible shafts, you can mount the coupled parts where and how desired to satisfy all wiring, assembly, space, servicing and operating conditions. The shafts are especially designed to provide smooth, responsive control whether operating in curves or in a straight line.

What's more, S.S.White flexible shafts are quickly and easily installed, require no alignment, and retain their sensitivity throughout the life of the equipment.

For details,

WRITE FOR BULLETIN 5008

It gives essential facts and data on flexible shafts and tells how to select and apply them.

We're now ready to serve you at our

 WESTERN DISTRICT OFFICE TIMES BUILDING LONG BEACH, CALIF.to meet your requirements on S.S. White flexible shafts, aircraft accessories, resistors and plastic products.

THE
 INDUSTRIAL DIVISION

 Dept. E, 1.0 East 40th St. NEW YORK 16, N. Y.

[^17]Pa. The salaries range from $\$ 4,600$ to $\$ 7,400$ a year.

To qualify, applicants must have completed appropriate undergraduate college study and, in addition, must have had graduate study or professional experience, or both, in one of the following fields: sonar, radar, radio, control, radiation and engineering evaluation.

Further information and application forms may be obtained from most first- or second-class post offices, from civil service regional offices, or from the U. S. Civil Service Commission, Washington 25 , D.C. Applications will be accepted until further notice by the Recorderof the Board of Examiners, Naval Air Development Center, Johnsville, Pa .

Broadcast Bureau Appointments

The Federal Communications Commission has announced the following appointments in its new Broadcast Bureau, which is headed by Curtis B. Plummer:

Joseph M. Kittner, chief of the Aural Facilities Division; Cyril M. Braum, chief of the Television Facilities Division; Dwight D. Doty, chief of the Renewal and Transfer Division; Frederick W. Ford, chief of the Hearing Division; and Paul Dobin, chief of the Rules and Standards Division.

BUSINESS NEWS

The Industrial Control Co. has moved its facilities from Long Island City to a new location on Straight Path and Arlington Ave., Wyandanch, L. I., N. Y.

Cam-Stat Inc., manufacturer of regulators, thermostats and other precision equipment, has moved to new and larger quarters at 11833 West Olympic Boulevard, Los Angeles 54, Calif.

Air Associates, Inc. has expanded facilities by leasing additional plant capacity at Orange, N. J., for the manufacture of electronic equipment. The new plant provides 65,000 sq ft of floor area which raises the corporation's total factory area,

DOUBLE BARREL Advertising

Advertising men agree-to do a complete advertising job you need the double effect of both Display Advertising and Direct Mail.

Display Advertising keeps your name before the public and builds prestige.

Direct Mail supplements your Display Advertising. It pin-points your message right to the executive you want to reach-the person who buys or influences the purchases.

More and more companies are constantly increasing their use of Direct Mail because it does a job that no other form of advertising will do.

McGraw-Hill has a special Direct Mail Service that permits the use of McGraw-Hill lists for mailings. Our names give complete coverage in all the industries served by McGrawHill publications-gives your message the undivided personal attention of the top-notch executives in the industrial firms. They put you in direct touch with the men who make policy decisions.

In view of present day difficulties in maintaining your own mailing lists, our efficient personalized service is particularly important in securing the comprehensive market coverage you need and want.

Ask for more detailed information today. You'll be surprised at the low over-all cost and the tested effectiveness of these hand-picked selections.

McGRAW-HIIL PUBLISHING CO, INC.

330 West 42nd Street NEW YORK 18, N. Y.

Four exclusives are yours with the Northern Radia FREQUENCY SHIFT CONVERTER -utmast simplicity of operotion, precision tuning, highest quality performance, and smallest size in the industry.
For single and diversity FS receiving systems, this dual channel unit converts mark and space tones into DC pulses, and drives teleprinters and other recorders directly. Its unique $2^{\prime \prime}$ osetiloscope provides the indusiry's most meaningful tuning pattern for precise receiver adjustment-during initial setup and while keying. Its specially designed limiter and discriminator afford an exceptionally high degree of performance. Polar or neutral output is available. Keying speeds up to 600 w.p.m. ${ }^{1} t^{\prime}$'s only $19^{\prime \prime}$ wide $\times 7^{\prime \prime}$ high $\times 15^{\prime \prime}$ deep.
This unit may also be used as make and break CW or ICW demodulator.
See the specifications on this oustanding model in the 1951 Electronics Biyers Guide. For complete dato on the precision-builh Northern Radio line, write today for your tree latest Cotolog E-8.
NORTMERAS RADRO COMTPAMY, in.
143-145 West 22nd Street New York 11, N. Y.

Pace-Setters in Quality Communication Equipment

SIGMUND COHN CORP., 44 Gold Street, New York 7

including the Teterboro plant, to more than $185,000 \mathrm{sq} \mathrm{ft}$.

The Wilcox-Gay Corp., Charlotte, Michigan, has leased an 85,000sq ft plant in Burbank, Calif., for the manufacture of tv, radio and recording products.

Melpar, Inc., Alexandria, Via., has opened a branch plant at 10 Potter St., Cambridge, Mass., to be devoted primarily to applied research and advanced development work on electronic equipment for the armed forces.

Columbia Broadcasting Sys'tem inaugurated its commercial color television service with a special program over CBS-TV stations in New York, Boston, Philadelphia,

Newest model CBS color to camera weighs only 29 pounds, against the 100 pounds of a standard black-and-white camera. It is less than $1 / 2$ cu ft as contrasted with the 3 cu ft of the black-andwhite camera

Baltimore and Washington, D. C., on June 25, 1951. Approximately 20 hours of color tv weekly was expected to be scheduled by fall.

PERSONNEL

Louis T. Rader, formerly division engineer of General Electric's Manual and Accessory Control Engineering Division, has been appointed assistant manager of engineering of the company's Control Divisions at Schenectady, N. Y.

Harvey J. Finison has been promoted from assistant chairman of

Fast, rugged, convenient-and inexpensive. The Green Engraver is tops for low-cost performance -zips out precision work on metal, plastics or wood... cuts four lines of letters from 3/64' to 1 " on curved or flat surfaces . . operates by tracing . . . makes anyone an experi... engraves panels, name plates, scales, dials, molds, lenses and instruments. (Also widely used for routing, profiling and three dimensional modeling.) Electric etching attachment available.
Special attachments and engineering service avail able for production work.

FREE-Fact-packed folder. Send for yours, today

GREE INSTRUMENT COMPANY

363 PUTNAM AVENUE
CAMBRIDGE, MASS.

Built Right! priced Right! CECO universal IMPEDANCE BRIDGE

BROWN ELECTRO-MEASUREMENT CORP.

Instrument \square Specialists
4635-37 S. e. hawthorme blyo.
 reluctance bridge unit providing rugged construction, eltrical and mechanical simplicily, and hig
provides an electrical indication of angular displacement with high signal-to-noise ratio.
operates as a torsional spring with adjustable stiffess coefficient.
supplies a torque proportional to excitation and independent shaft rotation.

The Doelcam Microsyn can be designed for special applications in a wide variety of sizes. Units ore available in instrument housings or as rotor and stator combinations to provide for ividual mounting.
or more details, write to:

DOELCAM CORPORATION

56 Elmwoed Street, Newion 58, Massachusemt.
Gyroscopic Flight Test and Contiol Instrumentation

ELECTRO TEC
RESOLVERS, MOTORS,
SELSYNS HNSTRUMENTS

- Speclal surface deposits MINIMIZE FRICTION, PREVENT TARNISH

Electro Tec Miniature Slip Rings and Commutators are the product of an exlusive manufacturing echnique that results in precision concentricity, higher dielectric strength, longer life.
 thousands of applications has resulted in wide adoption by most leading anufacturers of precision equipment. entail or engineering (PATENTS PENDING)

THE MERCURY DELAY LINE

is at present the most practical device available in production quantities useful for delaying pulse signals. Whether the delay is in milliseconds or microseconds, in single or in multiple units, we are prepared to serve you in laboratory or production models with economy based on simplified design procedures and long experience.
Most delay lines are tailored to fit individual circuits, but here are typical design characteristics of different lines we manufacture.

OPERATING FREQUENCY - 10 to 30 mc .

- WEIGHT - $21 / 4$ pounds for a 200 -usec line to 30 pounds for a 1500 -usec dual line.

THIRD-TIME-AROUND ECHOES
-down a controlled number of db from first path signals

- BANDWIDTH-depends upon delay and operating frequency, but α typical case is 5 mc . Shown in the graph is the test response curve of α production line.

Our Delay Line Application engineers will be glad to advise you if you write us your need or if you call Boston, HI-2-1810.

Also available for the asking is a helpful booklet on the use of the Mercury Delay Line

43 Leon Street
Boston 15, Mass.
electrical engineering research to chairman of the electrical engineering department at Armour Research Foundation of Illinois Institute of Technology.

Harry F. Olson, director of the Acoustical Research Laboratory of RCA Laboratories, Princeton, N. J., has been elected president of the Acoustical Society of America for the year 1952.

Luther W. Hill, on leave of absence from the post of president of the Carolina Telephone and Telegraph Co., has been named director of the Communications Equipment Division, National Production Authority, U. S. Department of Commerce.
E. C. Quackenbush, previously associated with manufacturers of connectors and wiring devices, has joined Cannon Electric Co. to head the engineering department of its newly created Eastern Division in East Haven, Conn.

John T. Holleran, with General Electric Co. since 1923, has been appointed manager of the Fort Edward and Hudson Falls operations of the company's Transformer and Allied Product Divisions at Fort Edward, N. Y.

James W. McRae, formerly director of transmission development, has been promoted to vice-president in charge of the systems development organization at Bell Telephone Laboratories, New York, N. Y.

J. W. McRae

A. K. Wright

Alfred K. Wright has been promoted from chief radio engineer to vice-president and director of engineering at Tung-Sol Lamp Works, Inc., Newark, N. J.

DAMNOX

Canvas \& Leather Products

TOOL ROLLS
B.AGS \& CASES

BG BAGS
CW BAGS
RADIO EQUIPMENT ELECTRONIC EQUIPMENT RADAR EQUIPMENT
C. R. DANIELS, INC.

75 West St., New York 6, N. Y.
549 W. Randolph St., Chicago 6, Ill.

 Industrial Clamps.

Sold Thru Distributors
WILTON TOOL MFG. CO.
925 T Wrighiwood Avenue
CHICAGO 14, IUINOIS

transformer

NEW BOOKS

(Continued from page 150)
cascaded filters, and the last on pulse response of transmission lines.

The material is covered very well for an introductory text on pulse techniques. For engineers who have not had a background in transient analysis and are now encountering pulse equipment in the field the book should prove very useful. For the younger men who have had network and transient analysis in school, the first half of the book should prove to be an interesting brief review.

Chapters 6 to 9 are a little too brief for a complete study of the field but they do give a comprehensive survey of pulse applications. The book should prove very valuable to application engineers who need an introduction to practical pulse techniques.-Nathan MarChand, Marchand Electronic Laboratories. Greenwich, Conn.

HOT TINNED TO YOUR SPECIFICATIONS DRAWN CASES WITH INSIDE FIT COVERS IN SMALL SIZES

WRAPAROUND, LOCK SEAM CASES IN MEDIUM AND LARGE SIZES
OUTSIDE FIT DRAWN COVERS IN LARGE SIZES

CAREFULLY SELECTED STEEL FOR THE BEST COMBINATION OF STRENGTH, WEIGHT AND SPACE FACTORS
ROUNDED CORNERS FOR NEAT, STREAMLINED APPEARANCE
SHIPMENTS FROM STOCK ON STANDARD STYLES

Standard cover
 modifications are

Electronic Fundamentals and Applications

By John D. Ryder. Prentice-Hall, Inc., New York, 1950, 806 pages, $\$ 9.00$.

This book, written by the head of the electrical engineering department at the University of Illinois, is a welcome addition to the Pren-tice-Hall Electrical Engineering Series edited by W. L. Everitt. The book is intended for instruction of senior and graduate students in engineering and physics who intend to make professional use of electronic techniques. Great care has been used in the choice of symbols; bold-face letters are used meticulously throughout the book to in= dicate phasors (vectors, having direction and magnitude), but the treatment is not unnecessarily mathematical. Simple differential equations and complex algebra suffice. A good variety of problems of moderate difficulty are appended to each chapter. Numerical answers are not given, and few problem solutions are worked out in detail in the text proper. These omissions detract from the value of the book to the student who must study by himself.

The book follows a three-part

MODEL PFR
 POLINEAR RECORDER

In almost endless variety of sizes, insulation and colors to your specifications, Runzel products are available to assist you in your wiring problems.

Shielded wire and cords . . . popu lar hook-up and lead-in wire . . speaker cords and all types of in sulated wire products.

Precision made RUNZEL products are the finest. Write for samples

1 11F - CORD \& WIRE CO. if $15 \begin{gathered}7723 \text { Montrose Avenue } \\ \text { Chicoge } 4 \text {, illinois }\end{gathered}$

FOR AUTOMATICALLY PLOTTING
both ANGULAR and STRAIGHT LINE functions on either POLAR or RECTILINEAR
coordinates in any
COMBINATION ..

- Records boin AC and DC veit-- aje levels
- Designed for STANDARD $81 / 2 \times$ 11 chart sheet
- polar and linear turntable movement
- TURNTABLE instantly set to any chart position
- Auxiliary Electrical linkage for synchronizing to turntable motion:
Oscillators Rotational Devices Test Turntables Analyzers
- Interchangeable range potertiometers
- Dependable and service free operation

Typical applications:
Beam Pattern Plotting of entennas, microphones, loudspeakers, lighting fixtures, ultrasonic devices;
Frequency Response Records of microphones, loudspeakers, omplifiers, Filiers, Radio and television circuits;
Rectilinear Curves on vacuum tubes, potentiometers, amplifiers, count ing and computing devices.

SOUND APPARATUS COMPANY ${ }^{\text {sikiljuc. }}$

 Insiriments Ensineered for Individnal Requirements

ALDEN COMPONENTS FOR PLUG-IN UNIT CONSTRUCTION

Until recently there has been no one place where components specifically designed for plug-in unit construction were available. It was necessary for engineers to design and have parts custom made or improvise with standard components in makeshift arrangements. To provide the type of design necessary, Alden engineers are working with the industry developing a whole series of components specifically for plug-in construction.
The first problem undertaken by Alden engineers was a base specifically for plug-in unit construction. . . . The conventional tube type bases proved unsatisfactory; they didn't stand up, the boss broke and the pins bent. To overcome these difficulties Alden designed an entirely new base . . . the Non-Interchangeable Series bases have no molded center boss to break, pins are strong and stubby-do not bend or break out and are Non-Interchangeable to prevent danger of mismating and costly burned out units.
Out of this work we feel that Alden's is the one place where you now can take your unitizing problems and obtain the standard bases, sockets, mountings and housings to answer most of your needs. As illustrated below, the Alden Non-Interchangeable and miniature bases have tremendous flexibility and are fast becoming the standard for plug-in construction.

20 Pin Non-Interchangeable Bases \& Sockets

The scope of the Alden " 20 " base as a mounting medium is almost unlimited . . . cards, brackets and bails can be easily and securely attached with standard assembly tools. For holding components and miniature tube sockets the Alden Terminal Card Mounting System on the Alden Base gives ease of layout and wiring assembly. Open units for heat dissipation or shielded units for protection against dust or rough handling both lend themselves to mounting on the Alden Base with the same facility.

11 Pin Non-Interchangeable Bases \& Sockets

Smaller than the " 20 " but with the same features, the Alden "11" base and sockets are rugged for long life and Non Interchangeable to isolate critical voltages or signals and prevent burned out units. The retention force of pins and socket clips can be varied from light to heavy. Locating rings and alignment indicator quickly center base and socket for insertion. These and other features make it practical to incorporate plug-in construction in your design.

7 and 9 Pin Miniature Bases \& Sockets

Miniature and sub-miniature circuits, potted circuits, and miniaturized components easily becuits, and miniaturized components easily be-
come compact, sturdy plug-in units with the Alden 7 and 9 pin miniature plug-in bases and sockets. A wide selection of housings and mounting components are available for use with these bases.

Of particular importance is the Alden Terminal card Mounting System. Miniature circuits can be assembled on the card and the assembly can be mounted on the base to form a complete miniature unit. Unit Construction."
plan: physical electronics, characteristics of electron tubes, and electronic circuits. In the first category are six chapters on fundamental particles, electron ballistics, cathode rays, emission, space charge and gaseous conduction. Electron tubes are described in chapters on diodes, triodes, multielement tubes, gas diodes and control tubes, and photoelectric tubes. Circuits are described in chapters on small-signal amplification, largesignal audio and radio-frequency amplifiers, oscillators, modulators, demodulators, wave-shaping circuits and gas-tube circuits. The final chapter is an up-to-date summary of solid-state electronics.

The treatment of small-signal and large-signal amplification is comprehensive and particularly well-written. Recent developments are included; the phasitron f-m modulator is briefly described, as is stagger tuning of wideband amplifiers. Throughout the book, tables of performance and figures-of-merit are given, referring to particular tube types and circuit arrangements. There are a few deviations from accepted terminology; for example, "photoemissive cell" is used for phototube. But these are few, and detract little from the general excellence of the book. It should prove a most helpful addition to the growing list of standard texts on electronic techniques.-D.G.F.

Theory and Application of Industrial Electronics

By John M. Cage. McGraw-Hill Book Co., New York, 1951, 290 pages, $\$ 4.75$.

The author states in his preface that this book is written primarily for college graduate and undergraduate courses in industrial electronics. Since the book comprehensively and broadly covers the subject without being superficial, it will also be interesting to others wishing to gain a general knowledge of the subject.

Although little not previously published material is presented, this is the first book of its kind which has offered an integrated treatment of electronic circuits and devices

SUPERIOR TV BAR GENERATOR

Makes Perfect Pattern Adjustments Simple (See Full Description in Superior 'Factory $A d^{\prime}$)

COMPLETE WITH TEST LEADS AND SIMPLE INSTRUCTIONS

- Provides linear pattern to adjust VERTICAL linearity,
- Provides linear pattern to adjust HORIZONTAL drive.

Width, peaking, linearity, contering.

- Provides vertical swoep signal for adjusting and synchronizing vertical oscillator discharge and output tubes.
- to vroves vertical sional to replace vertical oscillator
- Provides horizontal sweep signal for adjusting and synchronizing horizontal oscillator A.F.C. and output tubes.
- Provides horizontal sweep signal to check H.V. section - Provides and pulse operating power supplies

FREE_WITH EACH PURCHASE OF A SUPEOur complete package of TV literature comprising: - HINTS FOR BETTER PICTURES ON G30TV G30TV DIAGRAM © ILLUSTRATED TV CONVERSION MANUAL AGC CIRCUIT DIAGRAM * RESISTOR \& MICA CODE CHARTS and also our latest catalogs
BROOKS RADIO \& TELEVISION CORP. 84 Vesey St., (Dept. E) New York 7, N. Y.

s.s.White mosbo RESISTOR-S Alestiveather Resitces

Whato t'ourtesy lhutovall Corp., New York, N. Y

S.S.WHITE RESISTORS

are of particular interest to al who need resistors with inherent who need resistors with inherent ity in all climates.

HIGH VALUE RANGE
18 to $10,000,000$ MEGOHMS
1000 OHMS to 9 MEGUHMS

ARE USED IN THIS ULTRA SENSITIVE ELECTRONIC PHOTOMETER

in this instrument-designed for measurement of very low light values -S.S.White Resistors serve as the grid resistance in the all-important high-gain D.C. amplifier circuit. The manufacturer, Photovolt Corp.. New York, N. Y., reports that the resistors "work very satisfactorily"-which checks with the experience of the many other electronic equipment manufacturers who use S.S. White resistors.

WRITE FOR BULLETIN 4906

It gives essential data about S.S.White Resistors, including construction characteristics, dimensiens, etc. Copy with price list on request.

 NEW YORK 16, N. Y. , WESTERN DISTRICT OFFICE: Times Building, Long Beach, Calif.

Custom assemble your own high fidelity phono-radio-television ensemble. All famous name components at lowest prices. Send for Free hi-fi catalog to Dept. E.

PRECISION

SERIES L-400

DCJUR MODEL
L.402

FEATURES:

- $13 /{ }^{\prime \prime}$ diommfer
- 3 matts fuily
- enclosed
- 5 to 125,000 ohms
- aceliracy up to 0.5%
- linearity vis to
0.1%
- 300^{5} rotation mechanical and eledrical
- on-aff switch
- gamging up to 10 units
double end shafl ovailable

DEJUR
MODEL

Built to JAN-R-19 specificatlons: Othokmodels from 1-3/16" to 5" diameter.

- DC VOLPMETERS
- AMMETERS
- millivolt meters
- milliammeters
- as rectifier trpes (self-contained)

1 $1 /$
Paned INsTRUMENTS
Also available ${ }^{1} 1 / 2^{\prime \prime} \cdot 31 / 2^{\prime \prime} \cdot 4^{\prime \prime}$ panel meters in all standard manges. JAN-1-6 and A. S. A.
DeJUR
MODEL

FEATURES:

Precision built Dejur $11 / 2^{\prime \prime}$ instruments for applications where space must be conserved © DeJUR rugged censtruction Both models in all ronges and sensitivities - External shunts and mullipliers available for various ranges Complete magnetic shielding and methods of lighting scale - Approved source for government services meets JAN specifications.

Pawer RHEOSTATS

Built to JAN-R-22 specifications, DeJUR Rheostats are available in 25 or 50 wall sizes, single or dual ganged. Resistances up to 50,000 ohms in the 25 watt sixe and 75,000 in the 50 watt size.

outside the field of communications.
A general discussion of rectifiers and thyratron circuitry includes useful generic curves relating output current in terms of load circuit parameters.

Two chapters are devoted to servo theory, which include an unusually thorough presentation of this subject and its applications.

Electronic motor speed controls and generator voltage regulators are outlined, and an adequate survey of thyratron and ignitron applications in welding is followed by an analysis of basic resistance welding control circuitry. The latter is clearly introduced by a presentation of basic electronic timing circuits.

A discussion of induction and dielectric heating offers a satisfactory introduction to these subjects.

The description of industrial vacuum tube amplifiers is particularly good and may be useful as a reference in many industrial circuit designs. The chapters on electronic measurements and on oscillators and pulse techniques are also excellent and comprehensive.

The book is amply supplied with practical applications, and yet includes substantial basic theory and mathematical background.

Adequate references are included in the bibliography of each chapter so that more complete study may be made of any phase of the subjects covered if desired. Also included are problems which combine an exercise in theory and simpler practical application for use of the student.-James H. Burnett, Electrons, Inc., Newark, N. J.

Electromagnetic Problems of Microwave Theory

> By H. Motz. A Methuen monograph, John Wiley \& Sons, Inc., New York, 1951, 182 pages, $\$ 2.00$.

This monograph deals with the determination of electromagnetic fields that exist in such microwave components as klystrons, magnetrons and waveguides. This book should be particularly valuable to physicists and engineers doing adlvanced research and development work on these components. It may not be too useful to the practical

Ungais

 litlle AngelsDO A HEAVENLY SOLDERING JOB
Pick any job and you'll find a pip of a tip $t 0$ use with the trim, slim Ungar Pencil. Any of the 8 Ungat Angels interchange in the No. 776 Handle to make a honey of a tool that does
work faster and better than larger, heavier irons. Whatever your problem, you'll bless the day you discovered these saintly soldeting cherubs!

> No. 537.C 1/8" PENCIL TIPS, 20 Watts For Light Duty Work. Recommended for mill merers and insmmens, small and TV, printed circuits, delicare elec. fronis assemblies, aircraft insirumers Wrir tor Cor
Ungar electric roots, Iwc. Los Angeles 54, Callt.

GECTRONICALLY REGULATED LABORATORY power supples

 AC CT at 3A unregulated

WIDTH 14 HEIGHT 8^{\prime} WT: 17 LB5.

- RIPPLE OUTPUT: Less than 10 millivolts rms

For complete information write
for Bulletin E

—of "Standard's" UNBRAKO Standards. Write on your business letterhead, today.

"Standard" Recommends Standards

- ${ }^{-1}$ STANDARD PRESSED STEEL CO.
 JENKINTOWN 10, PENNSYIVANIA

FOR MILITARY APPLIGATIONS

aAYTHEO

CUSTOM-BUILT TRANSFORMERS

Since 1927, Raytheon has been a leading producer of custom built magnetic components for military and commercial applications. Typical units include: single or polyphase power transformers, pulse transformers, blocking oscillators, servo transformers, chokes, audio components, filters, saturable magnetic components, etc. Cased or open types to meet the most exacting MIL specifications as well as Underwriters' Laboratories and R.M.A. requirements.

FOR POSITIVE VOLTAGE GONTROL

NEW, ULTRA COMPACT, Raytheon miniature audio type transformers with new patented, compression terminals. Designed for minimum space requirement and assembly ease in communications equipment.

Designs available in ratings from 5 to 10,000 watts. A wide range of catalog types, or custom-engineered to meet special needs.

VOLTAGE STABILIZERS

The first choice of manufacturers of electrical equipment for more than two decades. Compact, rugged, light weight and with no moving parts, they can be built into equipment or used as an accessory. Compensates for widely varying input ($\pm 15 \%$) within $1 / 20$ second; maintains voltage within $\pm 1 / 2 \%$ of rated output. Insures peak performance of any AC operated electrical equipment.
WRITE FOR COMPLETE INFORMATION
Address Magnetic Components Division, Dept. 6460-A

MICO

 Precision Apparatus TOROID COLL WINDERS

Wide-range, laboratory-type machines available for winding samples and small production runs of toroid coils. Production machines built to meet specific requirements.
MICO INSTRUMENT CO.
76E Trowbridge St., Cambridge, Mass.

In Accordance With Your Prints

Extensive modern plant, complete equipment, engineering and toolmaking skill for producing your stamped metal parts accurately, economically, promptly. Moderate die charges. Facilities for large volume production. We welcome stamping problems.

TERMINALS for ELECTRIC WIRES

Specialists in the terminal field, we have dies to produce over 400 different kinds of separate terminals. Every modern facility to meet your standard or special requirements.

PATTON-Mac CUYER COMPANY Edgewood Station Providence 5,RI.

THE NEW

$4-15$

OSCILLOGRAPH

Long the world's most popular oscillograph, the Type S-14 has been redesigned and improved to meet exacting demands of modern research. The NEW Type S-14C 'Economy' Oscillograph is the simplest to operate and maintain, and the most versatile in application. No research or testing laboratory is complete without it.

- Wide range of galvanometer types and characteristics. Natural frequencies to $10,000 \mathrm{cps}$; sensitivities to $50,000 \mathrm{~mm}$ per ma; single and polyphase watts.
- Precision optical system for very high writing speeds and highquality records.
- Continuous-drive magazine for records to 100 or 200 feet long.
- Wide range of record speeds Any of 9 speeds available by shifting single external belt. Standard speeds: $40,20,10,4$, $2,1,0.4,0.2$ and $0.1 \mathrm{in} . / \mathrm{sec}$.

Develops NEW Relay

 Timing Adjustment> Another triumph of EDISON ingenuity! Like most other modern electrical relays and components, the EDISON Model 501 Thermal Time Delay Relay is hermetically sealed in glass. One phase of the manufacture which concerned EdISON engineers was a minute variance in calibration which sometimes occurred between the final timing setting and the hermetic sealing operation.

—TThe solution to this problem was found in the patented design of the adjusting screw featured in the illustration above which permits final calibration adjustments to be made after sealing and guarantees pinpoint accuracy in every production relay. All adjustments are factory preset; not changeable after delivery.
SPECIFICATIONS:
Vibration....................... $1 / 16^{\prime \prime}$ amplitude at 55 cps.
Impact........................ 50 g .
Delay Periods............... 5 minutes
(Special models to 25 minutes; without temperature compensation).
Ambient......................... 60 to $+85^{\circ} \mathrm{C}$.
Contact load.................choice of 3 or 6 amperes to $450 \mathrm{~V} . \mathrm{ac} / \mathrm{dc}$.

Ask for free copy of Bulletin E-3007.

VISIT US AT BOOTH 607 • PACIFIC ELECTRONICS EXHIBIT CIVIC AUDITORIUM - SAN FRANCISCO - AUGUST 22-23-24

See the new edison miniature time delay relay
OTHER INSTRUMENT DIVISION PRODUCTS
Sealel Thermostats • Electronic Temperature Controls • Temperature Monitors • Electrical Resistance Bulbs • Sensitive Relays
ments (or antennas) and discontinuities. This text contains a large number of references, so that the reader can readily study any particular subject in greater detail by going back to the source material. —Joserh Racker, New York, N. Y.

Quartz Vibrators

By P. Vigoureux and C. F. Booth. His Majesty's Stationery Office, London, England, 1950, 371 pages, $\$ 6.75$.

The Piezoelectric effect was known for approximately 40 years before the crystal unit became a useful item. It then remained a product of craftsmanship with limited use until about 1938, when demands for large quantities for the Services developed considerable activity in this field. As a result, the past few years have seen rapid advancements in the science of piezoelectricity and its applications. With respect to quartz, emphasis has been given to a study of the modes of motion in plates, evaluation of the elastic and piezoelectric constants, standardization, higher precision, the growing of synthetic quartz, the study of aging, and efforts to render manufacturing techniques well-definable processes. Widespread efforts on all of these phases have created a keen interest and the desire for dissemination of views. Consequently, a book on quartz vibrators by men with as wide a background and experience as the authors should be well received at this time.

Vigoureux's previous book was one of the earliest in this field and was used as a guide and reference in this country in the early stages of crystal unit development. Most of the material in the earlier book has been included but has been almost completely rewritten. Particularly, the notation has been modified to be more in accordance with general usage.

Mr. Booth's experience in the radio laboratories of the General Post Office and his past contact with the quartz processing industry of the United Kingdom has given him a broad experience in the manufacture and application of crystal units. He has also been ac-

THE
 INDUSTRIAL pDCKITISCOPE
 AND
 LINEAR TIME BASE

by Waterman

5 /bs.
$11^{\prime \prime} \times 5^{\prime \prime} \times 31 / 2^{\prime}$ MODEL S•21•A

for high speed DIE-LESS DUPLICATING

The new Di-Acro POWERSHEAR has remarkable speed and accuracy for the production of small parts. 1. CONTINUOUS SHEARING ACTIONno clutch to engage! Feeding speed determines shearing speed.
2. VARIABLE SPEED - cycle quickly set for each shearing operation. 3. EASE OF OPERATION - fatigue is reduced, production soars.
4. "SINGLE STROKE" SHEARING non-repeating safety clutch for jobs not adaptable to continuous shearing.

Any plant doing high speed precision shearing on smaller parts cannot afford to be without the DI-ACRO POWERSHEAR. Available in $12^{\prime \prime}$ and $24^{\prime \prime}$ shearing widths, capacity 16 gauge sheet steel. Also standard model.
dOES PRECISION WORK ON aLL SHEARABLE MATERIALS MICA LEATHER ALUMINUM STAINLESS STEEL PLASTICS SILVER SILICON STEEL and Many BIMETALS MAGNESIUM CHROME MOLY Other Materials FIBRE COPPER LEADED BRASS
SEND FOR 40 PAGE "DIE-LESS DUPLICATING"CATALOG giving full details on Di-Acro Powershears, so Di-Acro Renders, Brakes Rod Parters, Notchers, Rollers and Punches.

321 8THAVE.

Time Base, a completely independent and self powered instrument expands the utility of Model S-11-A to a point previously unrealized. Although physically constructed to mount directly beneath Model S-11-A, this linear time base is designed to operate successfully with most of the presently available oscilloscopes.

Model S-11-A POCKETSCOPE
Vertical and horizontal channels: 0.1 v rms/inch with response within -2 DB from DC to 200 KC . Repetitive time base continuously variable from 3cps to 5OKC with + sync.

Model S-21-A Linear Time Base
Linearized periodic or trigger sweep from $1 / 2$ cps to 50 KC . Output 20 v peak with DC coupling. Positive or negative blanking signals of 100 v peak. Positive and negative sync.

WATERMAN PROOUCTS CO., INC.
PHILA DELPHIA 25, PA. CABLE ADDRESS: POKETSCOPE

WATERMAN PRODUCTS INCLUDE:
S-10-B GENERAL POCKETSCOPE
S-14-A HI-GAIN POCKETSCOPE
S-14-B WIDE-BAND POCKETSCOPE

S-15-A TWIN TUBE POCKETSCOPE
Also RAKSCOPES, LINEAR AMPLIFIERS, RAYONIC ${ }^{\circledR}$ TUBES and other equipment

Recognition of the unusual versatility and application of the portable Model 5-11-A Industrial POCKETSCOPE has rocketed since its introduction to the industry. Now Model 5-21-A Linear the utility of Model S-11-A to a point

NEW "Y" ELECTRIC

PRODUCTIMETER
for use on light applications

Hi-Speed... Accurate...Long Life...Totally Enclosed

- This small " Y " Electric Counter is designed primarily for use on light applications ... built to give accurate count at high, low or intermediate speeds - up to 1000 counts per minute. Counter gives maximum readability at all angles. Design fits all
mounting conditions . . . panèl mounting or base mounting. Hardened steel parts for long life and dependability.
dURANT MANUFACTURING CO.
1912 N. Buffum St.
112 Orange St.
Milwaukee 1, Wis
Providence 3, R. I.
Representatives in Principal Cities

ECLIPSE-PIONE ER
 Announces the New Line of PYGMY SYNCHRDS

Eclipse-Pioneer has added a tiny new member to its great family of famous Autosyn* synchros. It's the new AY-500 series, a precision-built pygmy weighing only $13 / 4 \mathrm{oz}$. while scaling only $1.278^{\prime \prime}$ long and $.937^{\prime \prime}$ in diameter (the same diameter, incidentally, as a twenty-five cent piece). Its accuracy and dependability are assured, thanks to Eclipse-Pioneer's 17 years of experience and leadership in the development of high precision synchros for aircraft, marine and industrial applications. For more detailed information on the AY-500 and other E-P Autosyns, such as the remarkably accurate AY-200 series (guaranteed accuracy to within 15 minutes on all production units), please write direct to Eclipse-Pioneer, Teterboro, N. J.
*reg. trade mabk bendix aviation corporation
look for the PIONEER mark of quality reg. u.s. pat. off.

Typical Performance Characteristics

	One AY-201-3 Driving		One A Y-500-3 Driving
	One AY-500-3 Control Transformer	Two AY-500-3 Control Transformer	One AY-500-3 Control Transformer
INPUT			
Voltage	26 -volts, single-phase	26 -volts, single-phase	26 -volts, single-phase
Frequency	400 cycles	400 cycles	400 cycles
Current	88 milliamperes	110 milliamperes	55 milliamperes
Power	0.8 watts	1.2 watts	0.9 watts
Impedance	$105+\mathrm{j} 280$ ohms	$100+$ j220 ohms	$290+\mathrm{j} 370$ ohms
OUTPUT			
Voltage Max.			
(rotor output)	17.9 volts 40 miltivolts	16.2 volts 40 millivolts	14.1 volts 40 millivolts
Voltage at null	40 miltivolts 310 millivalts/degree	40 millivolts 280 millivolts/degree	245 millivolts/degree
Voltage phase shift	23 degrees	26 degrees	44 degrees
System accuracy (max. possible spread)	0.6 degrees	0.6 degrees	0.75 degrees

Other E-P precision components for servo mechanism and computing equipment: Servo molors and systems e rate generators - gyros - stabilization equipment - turbine power supplies e remote indicatingtransmitting systems and special purpose electron tubes.

For detailed information, write to Dept. C

ECLIPSE-PIONEER DIVISION of

TETERBORO, NEW JERSEY

aVIATION CORPORATION
Export Sales: Bendix Infernational Division, 72 Fifth Avenue, New York 11, N. Y.
tive in the exchange of knowledge with this and other countries.

The principle purpose of this book is contained in the authors' statement, as follows: "It is hoped that the reader interested in the subject will gain a usable knowledge both of the theoretical aspects of piezoelectricity and of its practical applications in the production of crystal units, commencing with raw crystal and finishing with the performance of the equipment in which they function as component elements."

As the title implies, the material is limited solely to quartz. In this respect the book does not cover the field of piezoelectricity or crystallography. However, the treatment of quartz is fairly complete with respect to crystal structure, piezoelectric effects and the electrical, mechanical and optical properties. X-ray effects and the effect of heat on physical properties are comprehensively covered. In the chapter on Piezoelectrical Phenomena in Quartz, a comparison is made between the elastic constants and moduli as given by three wellknown exponents, Messrs. Cady, Mason and Voigt. An appendix covers the theoretical treatment of the natural frequency and coupling factor as determined by computing the stored energy. A full chapter is devoted to the theory of the quartz resonator as analyzed by use of the circle diagram, which has proved to be a very useful and convenient method.

While the theoretical aspects of quartz crystals are covered sufficiently to give the reader a wellrounded insight, by far the major contents cover their production and application. The treatment of production begins with the occurrence and examination of quartz crystals and covers in detail all processes, including the testing of the completed unit. Some consideration is given to the design of a production plant. This section is greatly enhanced by the generous use of good photographs. The reader is warned by the authors that not all manufacturers use the same processing methods, but the ones shown have been used in mass production and are therefore considered reliable.

The various applications covered

QUAKER CITY GEAR WORKS

1910 N. FRONT ST. PHILADELPHIA 22, PA.

IMMEDIATE CAPACITY FOR DEFENSE
SUB-CONTRACTS
STRAIGHTENING \& CUTTING
Perfect straight lengths to 12 ft . .0015 to 125 diameter WIRE FORMS
.0015 to .080 diameter

SMALL METAL STAMPINGS

.0025 to .035 thickness
.062 to 3 inches wide. \star
Specializing in Production of Parts for Electronic and Cathode Ray Tubes

Write for Illustrated Foider
Send Blueprinis or Samples for Eslimate
ART WIRE \& STAMPING CO. 227 High Street Newark 2, N. J.

Specifically designed for precision waveform anarrsis and amplitude measurement of eideo signals in television circuits. Alsa ideally suited as a
general purpose instrument in many applications due to its wide frequency response, high sensitivity, and excellent synchronizing capabilities.

Engineers and Consultants to the Nation's Great TV Stations

Another Capacitor
 Froblem Solved-

Jennings Vacuum Capacitors have proven their rugged strength and in-built quality by giving years of trouble-free service under the most difficult conditions in many parts of the world.
We picture here a Jennings Capacitor installation for the antenna coupling and "rejector" (trap circuit) for the South African Broadcasting Corp., Lid., located a few miles from Johannesburg, South Africa.

These Jennings units have helped greatly
to reduce the cost of maintenance under extreme climatic conditions throughout this large area.

Jennings Vacuum Capacitors are available in any capacity from 1 mmid. to 2000 mmfds. in either variable or fized form. They carry high current and voltage and yet reduce the space requirements to a minimum.

Write us for information regarding your own Capacitor or electronic problem. Lit. erature available.

Jennings radio manufacturing co, - 970 Hclaughlin ave. • P. o. BoX 1278 - SAK JOSE 12, CAL

THS E ETI

World-wide recognition for this outstanding line of electric soldering irons -

- specified by the big names for the TOUGH JOBS:

WESTERN ELECTRIC, BENDIX, MINNEAPOLIS HONEYWELL RADIO CORP. OF AMERICA, STROMBERG CARLSON, SPERRY, WESTINGHOUSE, EMERSON, KAISER, etc.
T PLUG OR SCREW IIPS 40 to 700 Walls $1 / 8^{\prime \prime}$ to $13 / 4^{\prime \prime}$ Iip Dio. follow the leoders and you'll specity HEXACON They ll effproblems. Write for literature.

Here's the famous HATCHET

TYPE

These irons feature better balance for reduced operator fatigue. Eff. ciency is stepped up, and quality of work is improved. The ideal iron for inaccessible and intricate jobs.

HEXACON ELEGTRIC CO.
130 W. Clay ave. roselle park. N. J.

WINCHESTER ELECTRONICS, INCORPORATED

high volfage • heavy duty • pressure tight

Heavy Duty Connectors are ovailable in various sizes:-

Plug Code No	Recpt. Code No.	Low Vol. Contacts	High Vol. Contacts	Size A- N Shell
450	451	-	1	\#18
455PR	456PR	-	2	\#24
$2018 P R$	202BPR	12	3	\#36
301	302	20	1	\#40
421	422	20	3	\#44
901	902	26	-	+28
	Ue Mark	Pat. No. 2513080		

CIRCUIT CONNECTORS

SERIES 200 to 900

(Mounted in Stondord "A-N" Shells)
The High Voltage (Center) contacts are separated by deep barriers in the molded melamine inserts for resistance to high voltage breakdown. These contacts can be removed for soldering cable wires and replaced in the field. Other contacts are for lower voltage. All contacts are precision machined brass or phosphor bronze gold plafed over silver and pressure tight sealed in the insent with individual neoprene seal rings.

The MONOBLOC* inserfs of molded melamine are mounted and sealed with neoprene seal rings in standard $A \cdot N$ shells in the sizes as indicated.

Write or telephone our Engineering Department for additional details.

Winchester ETectronics INCORPORATED GLENBROOK, CONNECTICUT, U.S.A.

Standard
 TIMERS

AN ECONOMICAL INVESTMENT IN LONG-LIFE PERFORMANCE AND EXTREME ACCURACY. RUGGED, FOR HEAVY-DUTY SERVICE: FLEXIBLE IN APPLICATION.

Model Sivale	Totalizes	Accuracy	
S-100	$1 / 5 \mathrm{sec}$	6000 sec.	$\pm .1 \mathrm{sec}$.
S-60	$1 / 5 \mathrm{sec}$.	60 min.	$\pm .1 \mathrm{sec}$.
SM-60	$1 / 100 \mathrm{~min}$.	60 min.	$\pm .002 \mathrm{~min}$.
S-10	$1 / 10 \mathrm{sec}$.	1000 sec.	$\pm .02 \mathrm{sec}$.
S-6	$1 / 1000 \mathrm{~min}$.	10 min.	$\pm .0002 \mathrm{~min}$.
S-1	$1 / 100 \mathrm{sec}$.	60 sec.	$\pm .01 \mathrm{sec}$.
MST	$1 / 1000 \mathrm{sec}$.	.360 sec.	$\pm .001 \mathrm{sec}$.
MST-500	$1 / 1000 \mathrm{sec}$.	30 sec.	$\pm .002 \mathrm{sec}$.

The clutch coil can be connected directly in the plate circuit of electronic tubes. For this use the coil has a resistance of $\mathbf{2 0 0 0}$ ohms and requires 50 to $\mathbf{6 0}$ milliamperes. When ordering for this purpose, always specify 120V DC clutch coil. Write for Bulletin 153.

TwE Standard Electric Time Co.
 97 Logan Street STANDARD Springfield, Mass.

 EQUIPMENT SLIDES
Remler slide rails for rack or cabinet mounting permit complete withdrawal or inspection of top and bottom of apparatus chassis. Positive ... self-locking. Full roller type . . . handles equipment up to 50 lbs . Stainless steel for

Try Remler for Service-Tested "Hard-to-Get" Components

Custom Componento
 Metal-plastic componente designed and manufactured to order. Write for quotations specifying electrical and mechanical character. istics. Describe application. No obllgation.

military applications; cadmium plated cold rolled steel or bonderized cold rolled steel. Nickel plated brass rollers; roller studs in stainless or copper flashed cold rolled steel.

Remler Company Ltd. 2101 Bryant St. San Francisco IO, Calif.

Since /9/8 pionerrs in electronics and plastics

NOTHELFER
WINDING LABORATORIES
9 ALBERMARLE AVE. TREAKTON 3, N. 1.

BACKTALK

(continued from page 152)
maximum efficiency can be achieved.
The field engineer assigned to such a program will find himself confronted with many problems which are nontechnical, and which will arise generally from the relationship of the engineer with the people with whom he works. Roughly, the relationships may be divided into three classes:
(1) Relationship with military
(2) Relationship with co-workers
(3) Relationship with employer

Relationship With Military

In dealing with officers of the military, problems not normally encountered in civilian practice may arise. Because of the complexity of military organizations, armies generally operate with firmly fixed lines of organization known as "chains of command." Fields of responsibility are assigned to each person within the military structure. The engineer will be assigned a field of responsibility within the military organization. Usually, an officer will be designated whose responsibility will include the activities of the engineer. The military field engineer may find that the officer directly in charge of coordinating his activities has a technical background and will understand the complexities of field problems. In other cases, the coordinating officer will be purely an administrator. In this event, the field engineer is faced with the necessity of presenting problems in a clear-cut, nontechnical method so that they will be fully understood.

Often, more than one officer will be concerned with the activities of a field engineer. For this and other reasons, clear, concise reports should be rendered as frequently as conditions warrant, as new field problems arise, or as existing problems are solved. Copies of these reports (consistent with security regulations) will serve as a valuable aid to the employer of the engineer in providing an insight into the problems existing at the field level.

Relationship With Coworkers

In some cases, the personnel with whom the field engineer works will

ACME RADIO RANGE FILTERS

On air lines all over the world, thousands of Acme's Radio Range Filters have given faithful service for years. Like most Acme designed filters, they are light, compact, hermetically sealed. They carry CAA type certificate No. 1120. Write for catalog sheet.

300 Na . Leke Ave., Pasadena 4, Calif. Formeriy Acme Metal Die, Inc.
Wave Fitters - Delay Lines - Magnetic Amplifiers - Special Trans ormers \& Chokes - Toruidal, Universal \& Solenoid Wound Inductors

INCREASED ACCURACY

- SWEEPS . $01 \mathrm{sec} / \mathrm{cm}$ to $0.1 \mu \mathrm{sec} / \mathrm{cm}$ Accuracy 5\% or greafer.
-. $04 \mu \mathrm{sec}$ RISE TIME
- FULLY REGULATED POWER SUPPIY.
- NEW SQUARE WAVE VOLTAGE CALIBRATOR 3\% Full Scale Accuracy.

TEKTRONIX TYPE 511 AD OSCILLOSCOPE Price $\$ 845.00$ f. o. b. Factory Increased accuracy in sweep time calibration is made possible by the us of dual Sweep Multiplier dials, the 2 megohm variable cabon resisfo formerty usect has beenem replaced by combination of 1% fixed Sesidors and a qariable elemet which campases only 70% of the total Electronc regatation of all DC poltages presocrs fe inherent accuracy regardless of severe line valtage priations.

TEKTRONIX, INC.

712 S.E. Hawthorne Blyd Portfand 1s\% Ore.

THEY ALL
 Sound

 BETTER WITH A

50 WATT AMPLIFIER

send for Zree catalog Dept. b-1
McINTOSH Engineering laboratories, inc. 320 Weter Street, Binghomton, N. Y.

Sales Offices in AII Principal Cltie 3243 N. California Ava. Chicago 18 , Illinol.

MODEL 105

Another OAK RIDGE PORTABLE PRECISION TESTER

The Ook Ridge Multitester is designed to double your bench space-engineered to give 20% greater accuracy than any other popular priced Multitester.

Ranges:

$D C$ and $A C$ Volts: 0-2.5-10-50-250-1000-5000 Output: 0-2.5-10-50-250-1000
DC Milliamps: 10-100-500
DC Microamps: 100
Decibels: -12 to +55 in 5 ranges
Ohms: $0-2000,0-200,000,0-20$ meg.
Oak Ridge are creators of the world famous miniature precision test instrument line:

- Synchro Sweep Generotors
- Signal Generators
- Kilovoltmeters
- Substitution Testers
- Cathode Ray Tube Testers
- Dynamic Tube Testers
- Multitesters

Available at your local distributor or write direct.

OAK RIDGE PRODUCTS

37-01 Vernon Blvd. Long istand City 1, N. Y. Mis. Division of VIDEO TELEVISION, INC.
be American military people. In other locations it may be foreign personnel with whom the field engineer will have everyday contact.

In either event, there will exist a certain unfamiliarity which must be bridged before the engineer is "accepted." The field engineer is a guest of the military unit or the foreign country in which he is working. It is easy to gain entree if the ordinary rules of conduct for a guest are followed.

There are several taboos. The guest who criticizes the method by which his host prepares food is no more welcome than the field engineer who makes unfavorable comparisons between the methods used by the personnel with whom he works, and the method he learned at school or the method HE uses.

Naturally, situations will arise where the experience and knowledge of the field engineer will indicate that a change in technique is advisable. One measure of the engineer's success is the manner in which such changes are suggested. Before suggesting a change, he would be wise to investigate fully the existing situation, and ascertain whether peculiarities of the local scene or requirements of military organization dictate different methods from those which would be used normally.

The military field engineer should not expect preferential treatment by virtue of his civilian status. Certain personal discomforts will be encountered which will be greater than those in comparable civilian positions. These should be accepted with good grace. Because he is a civilian, less grumbling will be tolerated from the engineer than from a soldier. Generally, the field engineer is where he is through choice. The soldiers with whom he is working are there as part of their military duty.

Again, due to the civilian status of the engineer, a certain delicacy of position will result. He will be able to advise only. While some mention has been made of chain of command, the field engineer will find that although he has been assigned a field of responsibility within his chain of command, he has no place directly in the line of

WRITEFOR FACTUALDATA ANDPRICES

- - MAIL THIS COUPON

Your name
Firm name

Address.

City.
tate

WESTERN GOLD \& PLATINUM WORKS

Smelters • Refiners • Manufacturers 589 BRYANT STREET SAN FRANCISCO 7, CALIF.

See our display at the 7th Annual Pacific Electronic Exhibit, Civic Auditorium, Son Francisco, Space \#114, Aug. 22, 23, 24

put

BACK ISSUES to work

Whatever you do with this magazine after you've clipped pertinent articles or advertisements, please don't destroy it.

HRRE'S WHY:

Churches, Boy Scouts, civic and veterans organizations will welcome all the wastepaper you have. They can get a good price for it. Increase their funds.

And, you can make a direct contribution to American mobilization by saving paper of all types - whether in magazine form or not. Since the Korean War began, there's been a great increase in the demand for products manufactured from wastepaper.

Save it for your favorite organization. Chances are they have scheduled pick-ups.

HOBSON PRECISION COMPONENTS

$$
\text { ELECTROLYTIC MOUNTING PLATES Fit } 1 \mathrm{in} . \& 13 / 8 \mathrm{in} \text {. condenser cans }
$$

HOBSON BROS. - 4049 W. Fullerton St. - CHICAGO 39, ILL.

WASHERS-ALL KINDS

WASHER SPECIALISTS for nearly
BEVELED half-a-century. Dies in stock will produce most sizes. Big runs made with automatic presses. An economical, accurate, and highly reliable source for washers, also all kinds of metal stampings. HAVE WHITEHEAD'S CATALOG ON FILE; write for it.

CUP
D-HOLE
RETAINER
LOCK
SPACERS
SPRING TENSION
SQUARE HOLI
STAR LOCK
THRUST
TONGUE

PRECISION TEN-TURN POTENTIOMETER

1. You get permanent aceuracy because the resistance wire is locked in place. It is precision positioned and moulded integrally with the housing.
2. You set permanently accurate settings, smooth aetion and low uniform torque provided by the stainless steel, precision sround, double thread lead screw guiding the moving contact
-1. You get precise positioning of the moving contact because of the wo bsarings supporting the rotor assembly.
3. You set good risid terminals be: cause they are moulded integrally with the housing.

- Terminals soldered to ends of reEistance element before moulding. Entire resistance circuit is on integral part of the housing.

1. You get accurole setting and resetting due to anti-backlash spring in contact gulde.

7 You get a fine resolution because wire $431 / 2^{\prime \prime}$ length of resistance wire in the spiral element.
-P You get a resistance output directly proportional to shaft rotation withIn $\pm 0.1 \%$ of the total resistonce. Every potentiometer is automatically machine tested for linearity

$$
\begin{aligned}
& \text { LINEARITY } \pm 0.1 \% \\
& \text { ACCURACY }
\end{aligned}
$$

Units for immediote shipment;
1,000 to 30,000 ohm range.
Speciol resistance values made to order.
write today for
tnginitrinc information

Available now. This new, versatile Type 1477-A Delay Line permits delay intervals ranging from 0.05 microseconds to 0.9 microseconds. Compact yet flexible design facilitates circuit installation.
Other designs with variations of impedance, bandwidth and delay are available. Inquiries solicited.

SPECIFICATIONS

Sections: 18
Characteristic Impedance: 680 ohms Delay per section: 0.05 microsecond Total Delay: 0.9 microsecond Bandwidth: 4.3 megacycles Overall Dimensions: $93 / 4^{\prime \prime} \times 7 / 8^{\prime \prime} \times 11 / 4^{\prime \prime}$ Price: $\$ 12.50$ f.o.b. our plant
command. The duties of the engineer, almost without exception, will be confined to those of a technical nature. Any attempt to command on his part will result in a complete negation of his position and create resentment on the part of all concerned. Leadership is best demonstrated by example. It will be difficult for the trained engineer to observe instances of inefficient or incorrect methods and yet refrain from saying, "This is the method which must be used."

The technique of diplomatic suggestion must be employed, particularly when working with foreign nationals. Great care should be taken not to offend personal or national pride. It should be remembered that most of the countries which are friendly to us and have need of our services have suffered greatly during the past war. Education, manufacturing techniques, all the processes which contribute to technical advancement, have been retarded under the pressure of war or occupation. Therefore, while some disparity between American and foreign methods may exist, it should never be attributed to a lack of ability, but rather to a lack of opportunity.

Relationship With Employer

Of equal importance to the success of the engineer's assignment is his relationship with his employer. In many cases, the employer has been selected by the military because the employer is the manufacturer of military equipment and is, therefore, eminently qualified to provide trained engineers familiar with such equipment.

A general corollary which may be drawn is that no engineer can function efficiently without the full backing and assistance of the home office. Correspondence from the field engineer should be answered promptly and correctly whether the problems posed are technical or personal. The term Field Engineer means exactly that-an engineer functioning in the field, independent of the laboratory and administrative facilities normally available. No field engineer can function efficiently if he feels stranded and forgotten, several thousand miles from

SUPPRESS RADIO INTERFERENCE!

Real Accuracy

$V^{\text {for radio inspection and }}$ quality control
\checkmark for R-F calibration
\checkmark for susceptibility, spurious radiation and other tests

Low-cost Stichding

$\sqrt{ }$ for sensitive medical instruments
\checkmark for diathermy apparatus
\checkmark for induction heating
... and similar equipment that must meet FCC interference regulations.

A attenuation as 0.15 to $10,000 \mathrm{mc}$.-and evenhigher with special design. They're installed complete in a few hours-are easy to enlarge or move to a new location. Used and approved for today's most exacting shielding jobs. Write, wire or 'phone for details.

> ACE ENGINEERING and MACHNE CO.,-HC. 3644 N. Lawrence Streat
> Phifadelphia 40, Pa.
> REgent 9-1019

MICH DIIAL
 TEN TURN-COUNTING DIAL

Mieredial is composed of two concentrically mounted dials . $;$ one for counting incraments of sach turn and the other for counllag toms. The ins eremental dlal has 100 cqual divisions and is attached rigidily to the shatit so there is no backlash. Thus the centect pasition is indiceted to an indexed accuracy of 1 part in 1000 . Rotation is continuous in cither direction. There ere no stops on the Mierodial asse mbly.
COMPAGT. . . Mierodial has rame. ©.D. as Mieropot . . . requires no more a pand spacs.
CLBAR RLADINO Forect fast reading leats showed only $1 / 20$ h as many crrors with Mieredial open window as with next most lesible dial. Tum counter distingulshes betwean 0 and 10 turn readings, and acealerates to avoid confusion on readines nedr integral tums. Precise readings ere made from larger dial with maximum separation of sraduations ond wide angle vistibitity.
CONVENICNT . . . dellyered completely assombled with dials synchronizad. Easily mounted in a few seconds. All dials may be locked.

Microdial... turn-counting dial, primarily designed for use on Micropot ten turn lineal potentiometers... use it on any multiturn device hoving len turns of less.

BORG EQUIPMENT DIVISION

THE GEDIRGE W. HORG CDIEIPDILATIDN DELAVAN•WISCONSIN

CRC PERFETION THROVGH ASSPECTION IN EVERY DANO COL

- Form Wound
- Paper Section
- Acetate Bobbin
- Bakelite Bobbin
- Cotton Interweave
- Coils for High Temperature Applications

ALSO,
TRANSFORMERS MADE TO ORDER

Inspection and testing! No Dano coil can be "shipped out" unless it passes methodical testing and inspection in all vital stages of production operations. That's why you can always be sure of perfect performance in every Dano coil.

THE DAMO ELECTRIC CO.

MAIN ST., WINSTED, CONN.

RECOGNIZED . . FOR SERVICE TO THE INDUSTRY

Simplifying HF Power Measurement Madel 67 TERMALINE DIRECT-READING R-F WATTMETER

30 mc to 500 mc
(to 1000 mc if specified)
50 ohms Triple Range $0-25$ watts $0-100 \quad "$ $0-500 \quad "$

Type N Input Connector (Adaptor for PL-259 supplied)

- Model 67 is the same type absorption instrument as the well-known AN-ME. $11 / \mathrm{U}$ (our Model 611) R.F Watemeter. Specifically designed for fixed station transmitters to 500 watts output. it may be used nicely on low range for mobile gear. Provided with an aluminum cased, shock. mounted meter. Model 67 is as simple to use as a DC voltmeter. Now in general use throughout the industry, TERMALINE W'attmeters may be depended upon for fast accurate and repeatable power readings.

NON-RADIATING ... Accuracy - 5\%

RUGGED CONSTRUCTION

...Size-17" $\times 9^{\prime \prime} \times 6^{\prime \prime}$ Wght. -30 pounds

SINUSOIDAL TYPE


```
CONDENSED SPECIFICATIONS
    Total resistance.
    Percent resistance within brush circle
    Angle of rotation
    Angle of rotation.
    Torque (
    Torque (Approximatz)
    Rire.
    Angular acca
    Amgular accuracy
    plitude accuracy
    Maximum volts across winding
    Maximum speed
    Expected Life.
```

Illustration shows RL-1IC unit, RL-14MS unit is approximately twice as large. Minor variations of these standard designs, available on special order, permit operation at high rotational speeds with some lass of accuracy but, with a substantial increase in expected life. Sine and cosine voltages are produced simultancously. Resistances other than those shown above are available within certain limits.

FOR COMPLETE DETAILS SEND FOR BULLETIN F-68-A
his usual environs.
The converse is also true. The home office is completely helpless unless it receives a complete and accurate flow of information. In order that administrative personnel in the home office may plan for future requirements and meet present demands, the field engineer must provide the necessary information. Of course, all such information must conform to local security requirements. An apparently harmless piece of information relative to training procedures or supply requirements can, in the wrong hands, be used as an accurate gauge to the size and fitness of military units. In many cases, the reports will be carried by postal systems of foreign nations, with a consequent lack of military security.

William J. LaPerch RCA Service Co.. Inc. Field Engineer Assigned to MIDAP Belgiuon

Mixed

DEAR Sirs:
In Your December 1950 issue under the heading "Mixed" on the Cross Talk page you stated: "Unfortunately the mixed-highs technique cannot be used in the field sequential (CBS) system."

I would like to describe a possible method for using the mixed-highs technique in a field sequential system, thereby making more efficient use of the frequency spectrum than the present CBS system. The ideas expressed are solely the opinions of the writer.

The system provides a complete picture in four fields and yet would appear to have better apparent definition than the CBS system which requires six fields. The following information is contained in the four fields that are transmitted:

Field 1-Green plus mixed highs
Field 2-Green plus mixed highs
Field 3-Blue plus mixed highs
Field 4-Red plus mixed highs
As in the present black and white system, line interlacing is employed between adjacent fields.

At the receiving end, a green filter is used for fields 1 and 2. A blue filter is used for field 3 , but during this field the scanning spot

BASE, RARE AND PRECIOUS METALS AND ALLOYS

SMALL UNITS
SMALL SIZES
CLOSE TOLERANCES
Nickel alloy, filament wire and ribbon: flat, grooved, crowned.

Grid wire electroplated.
Alloys for special requirements, bare or enamelled.

Further details upon request.

SECON

METALS CORPORATION

228 East 45th Street, New York 17, N. Y. MUrray Hill 7-1594

PICKERING

 SOLENOIDS

For DC Circuits

Pickering engineering service is available for special applications where Pickering standard Solenoids do not apply.

For details and liferature address Department
PICKERINA \& CO., INC.
Manufacturers of world-famous clectro-magnetic phonograph cartridges and audio equipment. Oceanside, L. I., New York

NEW HERMES, Inc. - 13-19 University Place, New York 3, N. Y.
CANADA: 359 St . James 5 t ., Montreal

- The only portable machine which reproduces 15 sizes from one master alphabet.
- The only one with adjustable
copy holding slides for multiline engraving in one set-up.
Self-centering holding vise for nameplates and dials.

NEW HERMES, Inc. - 13-19 University Place, New York 3, N. Y.
World's Largest Manufacturer of Portable Engraving Machines

THE DEFENCE RESEARCH BOARD REQUIRES

A SONICS SCIENTIST

SALARY: Dependent on qualifications and experience.
DUTIES: To be responsible for a sonics section with a staff of several junior scien tists; will be required to work on fundamental sonics problems in voice communication, speech intelligibility: measurement of hearing losses in humans and noise and blast problems.
QUALIFICATIONS: A physicist or biophysicist with a Ph,D. degree; good grounding in acoustics with two or more years' experience in sonics research. British subject.
APPLY TO: Director of Research Personnel,
Defence Research Board,
Department of National Defence,
"A" Building, Ottawa, Ontario.
Please refer to Competition G-8.

the Better

PLASTIC

U. H. F. INSULATION BECAUSE OF:-

- outstanding electrical properties
superior machinability
- huperior heat resistance
- high heat rensional stability and extremely low

Rexolite 1422 has been specifically designed and developed to meet the growing need for a lightweight - low cost U. H. F. insulating material.
Rexolite 1422 is available for immediate delivery as centerless ground rod in any diameter up to $1^{\prime \prime}$. Also cast in larger diameter rods and sheets.
Meets JAN-P-77 and MIL-P.77A spec. ifications.
The unusual chemical inertness and physical properties of Rexolite 1422 allow its use where other materials fail.
For use in: connectors, coaxial con. nectors, waveguide, antennas, leads and spacers. spreaders and air wound coil supports, coil forms.

Write today for technical bulletins and samples. Our en. gineering staff is always at your dis. posal.

Manufacturers of Non-strip wire, High Tempera ture Electrical Tubing and other extruded plastic

products.
 THE REX CORPORATION
 60 LANSDOWNE STREET

CAMBRIDGE 39. MASS.
on the tube is enlarged (defocused) either electronically or optically so that the resultant line is twice as wide as the line on the previous green field. Thus instead of the normal two interlaced fields required for complete picture coverage the picture is completely covered in one field. The identical procedure is used for field 4 except a red filter is used. By making the scanning spot larger we are essentially reducing the number of elements required for one complete picture coverage. For a compatible system the elements for the blue and red picture would be reduced to approximately 66,750 rather than the 267,000 elements used in a complete black and white frame.

Several independent observers ${ }^{1}$ have proved experimentally that the the human eye cannot tell the difference between 267,000 color elements per picture and 66,750 color elements per picture as long as mixedhighs are used to obtain the detail. In this sequential system the persistence of vision phenomena is used to combine the low-definition color with the mixed-highs. The mixedhighs are presented as a green picture in order to keep the number of required fields per complete color picture to a minimum. From experiments that others have made it does not seem to make much difference whether the mixed highs are presented as a green picture or as a white picture. Evidently this is due to the fact that the eye is most sensitive to green colors.

The mixed highs are sent with fields 3 and 4 so that a slightly better black and white picture will result if the system is compatible. If compatibility is not desired then maybe a slightly more realistic picture would result if the scanning spot at the iconoscope were also enlarged when frames 3 and 4 were transmitted.

If each field were transmitted at a 60 -cps rate and a line frequency of $15,750 \mathrm{cps}$ were used, then the system would be a compatible. However, for pictures containing large solid areas of one color, there might be a noticeable flicker. It might be more desirable to transmit the fields at a higher rate such as 120 cps . If this frequency were used the actual frame flicker frequency would be

EMPIRE Devices

Pulse width less than 0.001 microseconds, spectrum flat within 0.5 DB from 0.01 MC to 1000 MC ; Pulse repetition rate 2 to 2500 CPS; Output level continuously adjustable from 7 to 70,000 microvolts per megacycle bandwidth; $\| \mathrm{m}$ pedance 50 ohms; Permanent accuracy and stability.
Application: Standard signal source for study and measurement of RF Interference. Calibrating standard for noise meters. Bandwldth measurements. Transient response and receiver alignment.

UHF ATTENUATOR

 Model AT-5050 ohm precision pad; VSWR-1.1 from DC to 4000 MC ; Attenuation from $1 \begin{array}{ll}\mathrm{DB}\end{array}$ tenuation from 1 DB
to $80 \mathrm{DB}_{\text {; }}$ Accuracy3%.

NOISE AND FIELD INTENSITY METER Model Nf-105

Frequency range 20 to 400 MC ; Built-in standard impulse noise and sine wave calibrators; Regulated " A " and " B " supply; Slide back and meter indication; True peak reading meter; Sensitivity 2 to 100,000 microvolts.
Accessories: Broad band antenna, Dipoles, Magnetic and electric field probes, Line probes, Inverter for battery operation and Remote indicator,
Further technical data available Your inquiries are invited

Empire Devices, Inc.

 38-25 BELL BOULEVARD BAYSIDE, N. Y.30 cps whereas with the CBS system it is 24 cps . It would also get around the 120 -cycle power supply hum problem that exists with the present CBS system.

One possible solution to the whole color television controversy might be to adapt, for the time being, the above-described compatible color system so that present television set owners could still receive the black and white version of the color transmissions on their receivers (without any modifications at all), and yet those who were anxious to receive color could buy an adapter and attach it to their present set. A perfect color picture would result except for the slight color flicker problem previously mentioned. At some later date (say 5 or 10 years from now when more research has been accomplished in both black and white and color television problems) one might consider changing both the black and white and the color standards since it is now apparent that even the black and white transmissions are not using the available bandwidth very efficiently. ${ }^{2}$

References

(1) Paper presented by A. V. Loughren of Hazeltine Electronics Corp. at Lrong Island Subsection of IRE on Nov 22,1950 . (2) R. B. Dome, Frequency-Interlace Color Television, ELectronics, Sept. 1950. P. Mertz and F. Gray, Theory of Scanning and Its Relation to the Characteris tics of the Transmitted Signal in Telephotography and Television, BSTJ, Jul. 1934 .
J. M. Lester Hempstead, N. Y.

Crossed Bridges

Dear Sirs:
The Editors of Electronics and J. F. Graham are to be congratulated on the thought-provoking paper entitled "Automatic A-C Bridges" which appeared in the February issue (p 110) of the magazine.

In it Graham points out the desirability of using a bridge circuit where the contours of unbalanced impedances form a rectangular grid. However, since the contours are arcs of circles, this is just one more of those engineering ideals we are tempted with. Graham neglects to mention that a good approximation can be attained by operating the bridge in the region of a contour of infinite radius. In

Thepright choice for ACCURACY
ECONOMY ... and STABILITY in circuits where wire wound resistors are often times too expensive and the characteristics of carbon composition resistors are not suitable. Deposifed carbon resistors are especially adapted to high frequency applications that require high stability and close tolerance of resistance values. Manufactured to customer's specifications. For complete data nail coupon.
ELECTRA MFG. COMPANY resistor division
2537 Madison Ave. - Kansas City 8, Mo. FOR 25 YEARS A MANUFACTURER OF PRECISION ELECTRICAL EQUIPMENT

ELECTRA MFG. COMPANY 2537 Madison Ave. . Kansas city 8, Mo.

Please send Bulletin E.I-Complete Data on Deposited Carbon Resistors.

NAME
COMPANY \qquad
ADDRESS \qquad

CITY

STATE

BACKTALK
separating his Fig. 15 into parts B and C , Graham infers that something horrible happens as the radius becomes infinite. Actually the contour system is not merely continuous; it is very favorable for self-balancing bridges in that phase changes are slow and the contours run at right angles when the bridge is resonant. Graham also states that if this capacitive reactance is greater than the inductive reactance, balance cannot be obtained in a normal Owens bridge circuit. This statement is not true near resonance; if the Q of the inductive arm of the bridge is kept low, balance may be obtained without difficulty. In particular, if the Q is adjusted to unity and $X_{s}=R$, the bridge will be balanced at resonance. By properly selecting the resonant frequency, the grid system near balance will be so spaced as to give good sensitivity. Because of the low Q involved, the bridge should not be too frequency-sensitive and might well suit applications such as Graham describes.
F. Chown
A. V. Roe Canada Ltd Toronto, Ontario, Canada

Electronics Quiz

LaSt month's problem involved two capacitors connected in series with a switch and a 50 -volt battery. Originally the switch is open, but the capacitors are charged to voltages of plus 20 and minus 40 (with respect to the battery voltage). The problem was to find the final voltage after the switch was closed. Robert C. Burns, of Hicksville, N. Y., who submitted the problem, gives the solution as follows:

After the switch is closed the change in voltage on C_{1} must equal the change in voltage across C_{2}. The sum must equal the battery voltage. Thus

$$
\begin{aligned}
\left(20+\Delta E_{1}\right)+\left(-40+\Delta E_{2}\right) & =50 \\
-20+\Delta E_{1}+\Delta E_{2} & =50 \\
\Delta E_{1} & =70 \\
E_{1} & =35
\end{aligned}
$$

Then the final capacitor voltages would be

$$
\begin{aligned}
& E_{c 1}=20+35=55 \\
& E_{c 2}=-10+35=-5 \\
& \text { New Quiz Problem }
\end{aligned}
$$

A new quiz problem will be published in this department in next month's issue.

Professional Services

```
AMERICAN SPEEDLIGHT CORP
(AFFILIATED WITH J. G. SALTZMAN, INC.
    HARHY L. PALKKER, PRESIDENT and
    Speciallst in Flash and Electronlc Equipment
        Consultation-Derelopment
    Consultation-Derelopment-Design and
480 Lexington Avenue New York 17, N. Y
```


CROSBY LABORATORIES, INC

Murray G. Crosby \& Staff
Radio-F.lectronic Engineering.
lesearch \& Development
, Commminations. T
Ofires. Laboracory \& Model Shop at:
Garden Cis 7-0284

```
DUBROW DEVELOPMENT CO.
    Design - Development - Mfr.
        Quality Electronic Equipment
347 High St.
                            Burlington, N. J
            Burlington 3-0446
```

 EDGERTON, GERMESHAUSEN
 \& GRIER, INC.
 Consulting Engineer
 Fesearch Development and Manufacture
 Specialists in High-Speed Photography
 160 Brookline Avenue. lboston 15. Mass.

ELECTRONIC ENGINEERING CO. of CALIFORNIA

Radio and Electronic Consulting and Desigming.
180 S . Alvarado
DUnkrk 2-7353
Los Angeles
Callfornia

ERCO RADIO

LABORATORIES, INC.

Radio Communications Equipment
Engineerlng - Design - Develnpment - Production Pioneers in Frequency Shift Telegraph
Garden City - Long Island - New York

GEORGE H. FATHAUER

Development and Design of FM, TV, VJTF Communications Equipment Complete Laboratory and Model Shop Facilities 4005 E. Michigan St. Telephone Indianapolis 1. Indiane

BLackstone 1330

HERMAN LEWIS GORDON

Registered Patent Attorney
Patent Investigations and Opinions Warner Building. Washington 4, D. C. NAtional 2497

```
HANSON-GORRILL-BRIAN INC.
Products \& Mfg. Development ELLECTRICAL - ELFCTRONIC HYDRAULIC - MECHANICAL One Continental Hill Glen Core, N. Y. Glen Cove 4-1922
```


WHEN
 TIME
 IS

SHORT

put the solution of your problems up to a specialized Consultant whose professional card appears on this page. His broad experience may save you months of costly experimentation.

ELECTRONICS

330 West 42nd St., New York 18, N. Y.

R. W. HODGSON

PATENT-INVFATION RESFARCII \& DEVEL
ODASET ENGINEFR SPECIALIZING IN FLEMTRONICS
Gaik+t-nf-the-Month Club Blds.

GLadstone чtivo Hitason 2-2311 STate 4-9018

HOGAN LABORATORIES, INC. John V. L. Hogan, Pres.

Applied Research, Development, Engineering Fst. 1929. Exceptionally competent staff. Flectronics, Optics, Mechanisms, Facsimile Communication, Elertro-sensitive recording media, Instrumentation.
155 Perry Street. New York 14 CHelsea 2-785:

MEASUREMENTS CORPORATION

Research E Manufacturing Engineers Harty W. Houck Jerry B. Minter

Sbecialigts in the Design and
Development of Electronio Test instruments Beonton. N. J.

Eugene Mittelmann, E.E., Ph.D.
Consulting Engineer \& Pburcir
High Frequency Heating-Industrial Elurtront: Applied Physice and Mathemation
549 W. Washington Blrd. Chicago 6. Ill
State 2-802
$\square \longrightarrow$

NIAGARA ELECTRON LABORATORIES CONSULTATION - DESIGN - CONSTRUCTION MFG. THE THERMOCAP REIAY
Specializing in solution of problems of electronio and electro-physical instrumentation for the research or analytical laboratory. Industrial plant
problems also invited.
Andorer, New York Cable Address: NIATRONTAB

PHYSICAL RESEARCH ASSOCIATES

Consulting Physicisis \& Enpineers
Arthur M. Vigilante. Director
Research, Development. Design and Manufactute of Detection and IRecording Systems. Imhnstrial and Analytical electro-physica
\#l Azurelee Drive
Malibu 8444
Malibu. Calif

```
PICKARD AND BURNS, INC.
    Consulting Electronic Engineers
        Analysis and Eraluatio
            of Radio Systems
        Masearch, Derelopment R& Desimn
240 Highland Ave., Needham 94. Mass.
```

ALBERT PREISMAN
Consulting Engineer
Telerision, Pulse Techniques, Video Amplifiers, Fliasing Networks, indretial Appliance Ampliated with
MANAGEMENT-TLALNING ASSOCLATES

$$
330 \mathrm{~s}-14 \mathrm{th} \mathrm{St} \text {., N.W. Washington } 10 . \mathrm{D} \text {. }
$$

JOSEPH RACKER COMPANY

Radar Consultants E Editors
Technical Manuals
Research and Development
67 West 44th Street. New York
Murray Hill 2-9026

SKINNER, HARLAN AND IRELAND, INC.
Consulting Engineers
Spectalizing in Magnetic Materials and Their Application

Office and Laboratory Indianapolis 7, Indiana

ALFRED W. SUTTER
 Consulting Engineer

CONTRACT NEGOTLATION \& RE-NEGGTLATION recleamlation o termination
IROCUREMENT ADMINISTRATION
141 E. 44 th St., N. Y. 17 , N. Y. Murray Hill 2.2655

THE TECHNICAL
 MATERIEL CORPORATION

Communications Consultants Systems Enotneering
Generai Offces and Laboratory
121 Spencer Place. Mamaroneck, N. Y.

TELECHROME, INC. Electronic Design Specialists color telexision equipmiat J. R. Popkin-Clurman, Pres. \& Ch. Engr. 88 Merclek id. Amityrille, L. I., N. Y

WHEELER LABORATORIES, INC.

 Iadio and ElectronicsConsulting-Research-Development R-F Circuits-Lines-Antennas Harold A. Wheeler and Engineering Staff Grest Neck. N. Y. Great Neck 2-7806

YARDNEY LABORATORIES, INC.
 Research - Design - Development
 Electro-Chemical Generators of Energy
 105 Chambers Street
 WOrth-2-3534, 35, 36 New York 7, N. Y.

DEVELOPMENT ENGINE最 PROJECT ENGINEER

We require the services of the following engineers to design and develop precision test instruments.

- SENIOR DEVELOPMENT ENGINEER preferably with a master's degree or equivalent training and five to eight years of industrial experience.
- SENIOR PROJECT ENGINEER with five to eight years of industrial experience.

These are permanent positions with a progressive organization offering stimulating work, congenial associates, pleasant surroundings, and advanced personnel policies.

Submit resume of education and experience.

BOONTON RADIO CORPORATION bOONTON, NEW JERSEY

DESIGN ENGINEERTEST EQUIPMENT

For designing and developing production test equipment for audio and power transformers. Position permanent with unlimited opportunities. Apply by letter only.

> NEW YORK TRANSFORMER CO., INC.
> Alpha, New Jersey

We Offer
 INDUSTRIAL TRAINEE PROGRAMS

Electronic Electrical Inspectors-qualifies personnel for wiring, soldering, cable making, circuit tracing and testing, and quality control.

Mecahnical Inspectors-qualifies personnel for blueprint reading, tolerance checks, and quality control.
Short intensive training, available resident or in plant.

Write for details to
M-1318, Electronics
330 W .42 St.. New York $18 . \mathrm{N} . \mathrm{Y}$.

RLPLIES (Box Yo.): Address to offce nearest you NEW YORK: $\$ 30 \mathrm{~W}$. \&2nd St. (18)

CHICAGO: 520 N. Michigan Ave. (11)

POSITION VACANT

ENGINEER, THOROUGHLY experienced in mechanization and elimination of hand operations. Also with production experience in mass produced, low cost electronic assemblies, preferably with direct experience in the manufacture of radio rotary switches or volume con trols. P-1254, Electronics.
AIRCRAFT INSTRUMENT project engineers For development of engiue and flght type electronically operated aircraft instruments Position is with a small rapidly growing com pany that has an excellent reputation and cants must be fully experienced. Complete cants must be fully experienced.

SELLING OPPORTUNITY OFFERED

MOLDER OF Teflon shapes requires resident representative for sale of our product on commission basis to the Aviation, Electronic. Radar and Alomic Energy projects in the following trade territories; Cleveland, Dayton apolis, Des Moines. RW-1289. Electronics.

POSITIONS WANTED
GRADUATE ENGINEER would like to represent a reliable concern in the Dayton, Ohfo
area. Have had considerable experience with governmental procedure. Experienced in high frefuency and electromechanical computing devices. PVV-1281, Electronics.
PH D. AGE 48. married-experience research, broduction, management in USA and Europe espec. electronic components-resistors, capacilors, ceramic to metal seals-and insulating ploved, excellent commercial abilities, foreign languages and knowledge of current European conditions seeks interesting position with Euronean branch of American company preEuronean branch of American company pre-
ferably is Paris, France. PW-1195, Electronics.

BUSINESS OPPORTUNITY
If you are planning
on expanding, or increasing your producion in other areas because of the crisis, write or call Masor G. A. Gilbert or J. G. Ihnet. City ProIndustrial Survey of watertown. South Dakota.

PATENTS

Consult: 7. H. Polnchek
Reg. Pat. Attorney, 1234 Broadway, New

DO YOU HAVE YOUR SHARE OF GOVERNMENT BUSINESS?

Is your

government business properly handled?
A former highly-placed Army Signal Corps procurement official capable of operating effectively throughout the area of government contract relationship is now available
a. Bidding procedures
b. Contract negotiation
c. Contract and specification changes
d. Inspection procedure
e. Price adjustments
f. Government financing
g. Equitable terminations

Will consider full time position or will take your account with a few other non-competing lines.

> PW-1276. Electronics

330 W. 42 St., New York 18, N. Y'.

CALIFORNIA

Manufacturers Representative Growing organization has capacity for another fislioft sales and engineering service of unusual quality.
H. G. WEIGHTMAN

140 S. Glenoaks Blvd. Burbank, Calif

Experienced electronic and mechanical engineers

Organization established in 1942. Electronic research, development, and production must expand to meet long-term, pre-Korea commitments. Openings in all branches of electronics, including

RECEIVERS TRANSMITTERS ANTENNAS
 RADARS
 RELATED EQUIPMENT

Positions available for men with at least 5 yrs experience
Write or telephone Howard J. Gresens at
Airborne Snstruments $\underset{\substack{\text { INCORPORATED }}}{ }$ Caboratory 160 Old Country Road, Mineola

Long Island, N. Y.
Garden City 7-6880

A TOP FLIGHT

Product Engineer

WANTED

To head the Product Engineering Section of an Electronic Manufacturing Organization

- THAT -

- has grown steadily since its organization six years ago.
- has been primarily a research \& development engineering team.
- IS NOW ENTERING A LONG tERM MANUFACTURING pROGRAM bASED ON OUR DEVELOPMENTS . . CURRENT VOLUME $\$ 5,000,000.00$

THE MAN WE WANT

- KNOWS HOW TO DESIGN FOR ECONOMICAL MANUFACTURE IN LOTS OF TEN TO TEN THOUSAND
- knows that quality is the result of design, and not inspecTION
- has ten years of varied experience in the electronic indusTRY
- Can superivise and inspire a small fast working group
- CAN REDUCE COMPLEX AND NOVEL EQUipment designs to easily produced assemblies
- Likes to work where every new task is a new challenge
- WAnts to learn more about miniaturization and automatic PRODUCTION

All replies will be held confidential

IF YOU ARE THIS MAN

Write Dr. W. G. Tuller, Chief Engineer MELPAR, INC.
452 Swann Avenue
Alexandria, Virginia

A CHALLENGE to Outstanding ENGINEERS PHYSICISTS

POSITIONS with SCOPE and IMAGINATION NOW OPEN

Minimum Requirements Are:
Four years experience in advanced research and development on Hadar Systems, Computers, Wave Guide and Antennas, Servomechanisms, Pulse Techniques, Gyroscopic Equipment and Felaled Fields Please send resume and salary requirements to:

the W. L. MAXSON

CORPORATION
460 W. 34th St., NEW YORK 1, N. Y.
,

BENDIX RADIO DIVISION

TV RECEIVER DESIGN ENGINEERS -Progressive TV Design Section has excellent opportunity for highly experienced men with proven ability. Desirable openings also available for promising young engineers. We will be pleased to discuss salaries at all levels.

ELECTRONICS ENGINEERS - At all salary and experience levels.

RESEARCH ON: Antennae, Servomechanisms, Microwave cots. and other phases of communications and navigation equipment.

PRODUCTION DESIGN OF: Military and commercial communications and navigation equipment.
FIELD ENGINEERS - Supervise installation and maintenance of radio and radar equipment. Factory training will be given. Base salaries from $\$ 4200$ to $\$ 6900$ per year. 25% bonus for time spent overseas. Traveling and living expenses paid by Bendix. Insurance plan.

TEST AND INSPECTION ENGINEERS - Practical knowledge of radio, radar, or IV manufacturing processes. Good knowledge of radio fundamentals essential. Base salaries from $\$ 3900$ to $\$ 5880$.

TECHNICAL WRITERS - Knowledge of radar fundamentals or radio required. Work closely with engineers to gather material for instruction and maintenance manuals. Base salaries from $\$ 3400$ to $\$ 4300$.

LABORATORY TECHNICIANS - Require knowledge of radio fundamentals and skill in use of measuring instruments and laboratory equipment. Previous industrial experience essential. Salaries from $\$ 262$ to $\$ 321$ per month.
bASE SALARIES FOR ALL POSITIONS LISTED ABOVE ARE SUPPLEMENTED BY UP TO 30% FOR REGULARLY SCHEDULED 48-HOUR WEEK.

Housing is no problem in Baltimore.
Excellent group insurance and family hospitalization plan.

Attractive retirement plan for professional personnel.

Wrife for application
Engineering Personnel Supervisor Department E
BENDIX RADIO DIVISION of Bendix Aviation Corporation Baltimore 4, Maryland TOwson 2200

RESEARCH - DEVELOPMENT - DESIGN

ENGINEERING WITH A FUTURE

The steady growth of several established research and development projects has created a number of exceptional engineering opportunities with a future.

PHYSICISTS-ENGINEERS

Positions are now available in our organization for qualified physicists and engineers with backgrounds in circuit analysis, microwaves, servomechanisms, analog com puters, etc. Openings exist at several levels with salaries dependent on education, ability, and experience.

If you are qualified and interested in a position which combines stability and unusual opportunity, write, giving full details to Mr. C. G. Jones, Manager, Salary Personnel.

GOODE $\sqrt{\sqrt{Y} E A R}$ AIRCRAFT CCORPORATION

Akron 15 , Ohio

Leading Radio Correspondence School seeks DIRECTOR OF INSTRUCTION

An electronics engineer with academic leanings will enjoy this varied and challenging assignment. Should have B.S. or M.S. from recognized engineering college. Requires practical experience in radio, television and electronics. Responsibilities include direction of department, creation and revision of instructional material. Teaching experience not essential. Attractive salary, bonus and profit-sharing plan. Age 32 to 45 P-1288, Electronics
330 W. 42 St., New York 18. N. Y

Admiral

Electronic Engineers

Needed Immediately for
Long Range Research Program

Admiral Corporation, one of America's largest electronic and appliance manufacturers, needs electronic engineers for long range research program covering both consumer as well as governmental projects. Project and senior project engineers with minimum of two to five years' experience needed immediately. Top pay with excellent opportunities for advancement. Send resume of experience and education to Engineering Personnel Manager

ADMIRAL CORPORATION

Dept. E, Chicago 47.

Wanted

ENGINEERS

and
SCIENTISTS
Unusual opportunities for outstanding and experienced men.
These top positions involve preliminary and production design in advanced military aircraft and special weapons, including guided missiles.

Immediate positions include:
Electronic project engineers
Electronic instrumentation engineers Radar engineers
Flight test engineers
Stress engineers
Aero- and thermodynamicists
Servo-mechanists
Power plant installation designers Structural designers
Electro-mechanical designers
Electrical installation designers Excellent location in Southern California, Generous allowance for travel expenses.

Write today for complete information on these essential, longterm positions. Please include resume of your experience \& training. Address inquiry to Director of Engineering,

NORTHROP AIRCRAFT, INC.
1009 E. Broadway
Hawthorne (Los Angeles County) California

PHYSCIISTS

 and
ELECTRONIC ENGINEERS

Both junior and senior engineers as well as administrative personnel with technical background are needed for employment with expanding research and development organization specializing in Instrumentation, Radio Telemetering, Missile Guidance, Telemetering Data Treatment and special electro-mechanical devices. New laboratory facilities located in research center. Corporation has five year history and is operating on pre-Korean contracts.

Replies held in strictest confidence.

Please send complete resumes to:

APPLIED SCIENCE CORPORATION

 OF PRINCETONPost Office Box 44
Princeton, New Jersey

AC SPARK PLUG DIIISION

of

GENERAL MOTORS CORPORATION

PRECISION INSTRUMENT PLANT
Positions now available for highest caliber personnel in the field of airborne automatic electro-mechanical control equipment.

MECHANICAL DESICN ENGINEERS EleCTRONIC ENGINEERS SERVO ENGINEERS JUNIOR ENGINEERS

New and expanding division of an established firm with 20 years of successful experience in the instrument field. Work involved deals with the manufacture and development of highly complex equipment of the most advanced type.

Write or Apply

AC Spark Plug Division GENERAL MOTORS CORPORATION

 1925 E. Kenilworth Place Milwaukee 2, Wisconsin
WANTED

PRINTED CIRCUIT ENGINEER

for permanent position with
IBM

Electrical or chemical engineer familiar with printed circuit techniques to assist in an expanding development program. Reply direct to Mr. P. T. Vanness, Personnel Manager, International Business Machines, Dept. 1723, Poughkeepsie, New York.

Engineers

Physicists
Chemists

Metallurgists

A Reminder
 from
 GENERAL ELECTRIC

Tremendous material resources . . . the stimulation of highly creative work . . . long-range security and professional recognition these are but a few of the assets General Electric offers you in unusual positions now available in:

Advanced Development, Design, Field Service and Technical Writing.
If you have a Bachelor's or Advanced Degree in Flectrical or Mechanical Ensineering. Physics, Metallurgy or Physical Chemistry and experience in the Electraining and experlence to the fullest in openinge in connection with:

- MILITARY RADIO \& RADAR MOBILE COMMUNICATION MULTIPLEX MICROWAVE COMMUNICATIONS
. . ELECTRONIC COMPONENTS
.. TELEVISION, TUBES and ANTENNAS.

Please send resume to: TECHNICAL PERSONNEL ELECTRONICS PARK

GENERAL (8) ELECTRIC

 Syracuse, New York
ATOMIC ENERGY INSTALLATION

NEEDS ELECTRONICS ENGINEERS

Two to ten years' experience in research, design, development or test. Patent history desirable but not necessary. A variety of positions open for men, with Bachelor's or advanced degree, qualified in one or more of the following fields:

```
- RELAYS
    - TELEMETERING
    - PULSE CIRCUITS - UHF TECHNICIANS
    - SERVO-MECHANISMS - INSTRUMENTATION
    - LOW POWER APPLICATION - QUALITY CONTROL
        test equIPMENT RELATING to the above
```

 CAREER
 DRAFTSMEN
 EXPERIENCED CAREER DRAFTSMEN WITH NO COLLEGE DEGREE.
 These are PERMANENT POSITIONS with Sandia Corporation in Albuquerque, New Mexico. Sandia Laboratory is operated by Sandia Corporation, a subsidiary of Western Electric Company, under contract with the ATOMIC ENERGY COMMISSION. This laboratory offers good working conditions and liberal employee benefits, including paid vacations, sick leave, and a retirement plan.

Albuquerque, center of a metropolitan area of 150,000, is located in the Rio Grande Valley, one mile above sea level. The "Heart of the Lond of Enchantment." Albuquerque lies at the foot of the Sondia Mountoins, which rise to 11,000 feet. Climote is sunny, mild ond dry the year 'round.

Make Application to:

PROFESSIONAL EMPLOYMENT DIVISION SANDIA CORPORATION

SANDIA BASE

YOU are an engineer or a physicist
and
YOU have skills and interests related to diverse armament development projects . . . , and
YOU are capable of assuming greater responsibility . . and
YOU prefer the personalized attitudes and policies and the demands for ingenuity and versatility offered by a small progressive company-
WE would like to make your acquaintance

Experienced in any of the following fields

GYROSCOPES

 COMPUTERS SERVOMECHANISMS INSTRUMENTATION FIRE CONTROL RADAR CONTROL CIRCUITS ELECTRICAL COMPONENTSExcellent Working Conditions Permanent Positions Good Starting Salaries
Opportunity for Prolessional Growth and Advancement

APPLY by sending complete resume to

Technical Personnel Office

ARMA CORP.

254 36th St., Bklyn. 32, N. Y.

PHILADELPHIA AREA
 Aircraft Industry ELECTRONIC ENGINEERS

-All Grades-

Men whose education and Interest or experience qualifles them for the development or desion of
alrborne or ground radio, radar, or other electronic equipment can work under ideal conditions. Wa have openings in our small, efflicient group (under
20 people) where the work is personalized and 10 dividual ability can be recognized and rewarded. Write or telephone Chief Engineer
Kellett Aircraft Corporation
Central Airport, Camden 11, N. J. Merchantville.8-4800'

Founded 1929

ELECTRONIC ENGINEERS

SENIOR ENGINEERS or PHYSICISTS Degree and experience in Radar, Pulse Circuits, Digital or Analogue Computers, or Servomechanisms JUNIOR ENGINEERS and recent graduate in EE or Physics.

electronic encineering company

OF CALIFORNIA
180 S. Alvarodo St. Los Angeles 4, Callf

We want Representation in 4 Markets New York - Boston

Chicaǵo - Los Angéles

Prominent Middle West manufacturer of electronic equipment wants qualified manufacturer's representative.

We are especially interested in a company or man now contacting manufacturers and wholesalers on electronic, electrical and radio component products. Our product has widespread application in major appliances and related production. Design experience is valuable.

This would be a straight commission arrangement. Please give us full details on lines you now handle, area covered regularly, and other pertinent facts.

Address: RW-1302, Electronics
520 N. Michigan Ave., Chicago 11, Illinois

CHIEF ENGINEER

Progressive middle-size Chicago electrical components firm is seeking a qualified man to direct all phases of its engineering program. Engineering degree required. Must have successful experience in administering engineering program. This is an unusual opportunity for a strong idea man with administrative talent. Salary commensurate with ability and background. Replies held in strict confidence. P-1295, Electronics
520 N. Michigan Ave., Chicago 11, Ill.

WANTED

Sales Engineer to cover Long Island on protected basis for manufacturer's representative having outstanding line of nationally advertised electronic instruments covering range from DC to micro waves. Salary-Commission-Expenses, State education, experience, past earnings.

SW-1252, Electronfes

330 W. 42 St., New York 18, N. Y.

WANTED

Research and Development Engineers and Physicists with educational background in mechanical, electrical or electronic engineering, physics or engineering physics for openings in plant and laboratory instrumentation, physical measurements, geophysics, and industrial electronics. Prefer persons with two to four years experience in experimental research design and development of instruments, intricate mechanisms, electronic apparatus, optical equipment, servo-mechanisms or allied fields. Positions are of immediate and permanent importance to our operations.

Write Personnel Director

Research and Development Department
PHILLIPS PETROLEUM COMPANY Bartlesville, Oklahoma

Engineers and Technicians

Land-Air, Inc., engaged in a major expansion program, has immediate and near future requirements at Holloman Air Force Base (vicinity Alamogordo, New Mexico) for electronic, mechanical and optical engineers and technicians to work with cinetheodolites, special optical instruments, recorders, radars (and special electronic telemeters) devices as used for guided misment Work consists of operation, maintenance, design development and construc nance, a sign, development and ion with the sangen and on the range.
Salary offers, based on application or personal interview, are commensurate With education, training, experience, posiMonthly salary ranges: Engineers- $\$ 460$. Month Technicians- $\$ 360-\$ 480$.

Personal and family transportation rembursed, paid group insurance and other benefits. Write for application form to:

> LAND-AIR, INC.

Holloman Air Force Base, New Mexico

ENGINEERS

If You're Interested in Yourself-We're Interested in YOU!

You may think this an unusual attitude for an employer to take, but the fact is, "selfinterest" is often overlooked and even considered undesirable by some employers.
But here at Honeywell, we believe selfinterest is healthy for our employees and for this company. And we back up our belief not only with money, security and the usual "fringe benefits," but also by giving people satisfying, challenging work and opportunity for advancement NOW - not tomorrow or next year.
Consider the self-interested engineer. He wants always to use the latest in electronic and engineering techniques. He wants to work at his full creative capacity. He wants to show more than just a fraction of his actual potential. Because he knows that in this kind of position lies his best opportunity to further his career.

So-here at Honeywell-we take great care to put a self-interested engineer in his proper field-research, development or design. We let him loose in basic research. Or we give him meaty problems in electronics and electro-mechanical devices. We let him tear into gyro, servo-mechanism, relay, heat transfer, electrical contact phenomena or aeroelasticity. In other words - we give him the work he wants and needs to do.

Yes, Honeywell goes for self-interested engineers. We want them when we find them and we keep them when we get them.
If this kind of thinking appeals to you, the chances are you'll be mighty valuable to yourself and to us by working at Honeywell. Why not start right now to do something about it? Depending on the location you prefer, write to H. D. Elverum, Personnel Department EL-2, Minneapolis 8, Minn. or W. Reiterman, Personnel Department EL-2, Philadelphia 44, Pa., giving your qualifications and experience. Your letter will be held in the strictest confidence, of course.

[^18]

Development Engineers for Electronic Aircraft Armament

ELECTRONIC INSTRUMENTATION - ELECTRONIC COMPONENTS • SERVOMECHANISMS - RADAR • ELECTRONIC PACKAGING • CALIBRATION AND TESTING ENGINEERS FOR PRODUCTION

Job openings range from recent graduates to Engineers with years of experience. Attractive employee benefits include group insurance and pension plans; paid halidays and vacatians.
Send complete resume, listing salary requirements and availability, to:
Technical Employment Supervisor, Station 483-J

THE EMERSON ELECTRIC MFG. CO. 8100 Florissant - St. Louis 21, Missouri

LEADERS IN THE ELECTRICAL INDUSTRY SINCE 1890

> CORNELL AERONAUTICAL LABORATORY, INC.

an affiliate of Cornell University
employs about 700 people on vital research work in all branches of aeronautical science. We are gradually expanding our nent positions open for:

ELECTRONICS ENGINEERS PHYSICISTS
MECHANICAL ENGINEERS AERODYNAMICISTS afronautical engineers chemical engineers
in such fields as:
GUIDED MISSILES
BASIC AND APPLLED PHYSICS ELECTRONIC COMPUTERS SYSTEMS ANALYSIS
AIRCRAFT PRECISION INSTRUMENTATION WIND TUNNEL RESEARCH DEVELIGHT RESEARCHERING HEAT TRANGFER THERMODYNAMICS

Minimum requirement is a B.S. Advanced degrees are even better, but experience to back up the degree is really best. We pay industrial wages. Other tangible advantages here (for example, orr selfsponsored internal research policy) should
be of particular interest to men with be of particular interest to men with
intelligence, ingenuity, and initiative. Send intelligence, ingenuity, and initiative. Send us youz resume; all inquiries are strictly
confidential. Promising candidates will be confidential. Promising candidates will be
invited to Buffalo for interviews at Laborainvited to Buff
tory expense.

CORNELL AERONAUTICAL

 LABORATORY, INC.P. O. Box 235, Buffalo 21, New York

ELECTRONIC ENGINEERS
 AND
 PHYSICISTS

FOR RESEARCH IN

 TELEVSION AND ALLIED FIELDS
EXCELLENT OPPORTUNITIES

 FOR SPECIALISTS IN- UHF CIRCUITS
- cathode ray tube design - ELECTRONIC CIRCUITS
- Vacuum tube techniques

QUALIFIED APPLICANTS ARE INVITED TO WRITE:

MANAGER, TECHNICAL EMPLOYMENT
Westinghouse electric corp.
306 4TH AVE., PITTSBURGH, PA.

WANTED! WANTED!

RADAR-COMMUNICATIONS AND TEST EQUIPMENT

 hydpgen generator, etc. New in knapsack. C.A.A.
aphnowed
 mes. wirl reduced sensitivity, Contains oscillator ant mixer cavity, IF sirip, pow, supaly. Input $60-$
2600 cyc. 115%. Lxcellent condition.
T-50 Radiotelegraph Transmitter complete with powe
 N゙-A!P-5 300-1500 mes. xmitter cavity nseillato nsing 3ce2 lighthouse. Inles Irower output 30 watis. wintrall thbes... $\$ 149.50$ SK-IM liadar Recriver Indicators. Freq. 195 mcs concition .. $\$ 125.00$
 receiver, Xnitter, dynamotor, antemmalete. contain box. Coils, etc. Power input 24-28v. Jrand new . $\$ 125.00$
NAyY RU Command Equidnent. Similar to ${ }_{183}$
DU-L Direction Finciang Fontipment for scre-183 and covier for direction tinding in freq. wilh any re- $200-$
1600 c . New. Complene SCR-515 (13C-645) contains xmitter, receiver. dyna-N/PPN-1 FULEEKI! Ground portable, beacon re sponder. Unit will whk into the AN/ArN-2 trans ponder for purposes of homing. C. W. comminication Can atso be carried on between plane and kround. pack phones, etc. Brand new in krapsack. AN'

 $200-1750 \mathrm{KC}$ Complete with BC-433-(i preiver
BC-431. 1. $\mathrm{C}-21,1-81,1-82$, BK22, etc. very nood condition $\$ 129.95$
SCR-3H0 Frequency Moduated Transceiver. Freq set ind to mos. complete with 18 tubts, handhatiers pack lixcellant condition. Weight approx.
35 Jbs . with bittery. each..................... $\$ 275.00$ CS Marine Radio Telemhone and Telegraph Xmit ting and Receiving Lubipment. Freq. range $1500-$
12000 K C. Consista of xmitter, receiver, antenna loading coil, remote control box. power unit, cables. loading coil, remote control box. Dower mit, cables. an 110 A AC power supply for stationary use at addi-

ScR-536 Xrmitter-Receiver (handy-talkie). Freq. range 38855500 kC Complate with coils. tules, erystals.
Very good condition............................ $\$ 89.95$ $N / \Delta I^{7} .1-10$ Panoramic Adaptor for use with any re-
ceiver with following IFs: 455 KC . 5 mics, 30 mes. Unit will give panoramic presentation
 but can be clanged with Power input aldition of a propee Dower transformer. Excelient condition...... $\$ 175.00$
0 CM R.F. package. 2700 mcs . Consists of 1PC-1007 modnlator $\&$ l'C-1091 RF head. Power output approx fTT-39/4PG-5 10 CM LATTR R. F. head $\&$ modulatol
 SCR-510 Fred. Modulated Pcrtable Transoeiver. Coverapart Complete equipment consisting of BC-62l transceiver, power supply PE-9iA, T-17 mike,
handset. An 45 antenna, batery operated or 6 or CR-610 similar to sCR-510 excedt for frea. range AN/APA-I1 Pulse Analyzen to work with Search Repulse Width, wave slape, can be displayed on an chi tube. Unit can also be used us a standard oscilloscope
for general servicing work. Input is $115 \mathrm{v}-400-2600$ cyc. but can be changed with the auldition of a 60 eve. ery good condition
SCR-69\% Field Radio. Light weight version of SCT-281. A3-5; contes with transceiver BC-1306. GN-45 or 58 hand generator, antenna system, microphone, headset, etc. In excelent condition.
FE-2at AC Power Supply for stationary use can be supplied at additional cost.
SCR-522 VHF Airborne Command Einitipment. Freq. transmitter. Crsstal controlled. Complete equipment. Consists of trans/rec, control box lic- 602.
dynamotrr 1 E . 91 AN 104 A , antenna, plugs. etc. We can supply PE-98 dynamotor for 12 v input at

COMMAND EQUIPMENT

ARC-5	$274 N$	OTHERS
RECEIVERS		

$\$ 2.25$
$1: 28$
.98

MISCELLANEOUS SPECIALS!

Sound Powered Chest and Headsers MI-2454-1 tyife 0 mifg RCA Brand neys in original

Goniometer for SCR-2\% Dif Direction Finder
R1,-7 Internhone Cont ral Box.

BC-1206 Recener Recriver Remor Control $200-400 \mathrm{KC}$. 280
Excellent
 bunds. Fixcellent
BC-788 (ibson Girl soiokC. Good condition..... $\begin{array}{ll}39.95 \\ 3.95\end{array}$ BC-1016 Tape Recorfer. Complete. Now
\qquad
\qquad PC-608 intonatic kever for scisisz
C-608 antonatic keser for sctis22.............. TC-12Ri linhthouse tube preumplifter. Excel.... 3.95 Single 5 Elemust. Antenna Dual 6 Element.. 14.95
N/APA-17 Radiar Direction Finding Antenna back to hack parabola, freq. range $300-1000$
mes. Horizontally and vertically polarized. BC-996 Interthone Amplifier. Good

BC-996 Interghone Amplifier. Good Alr -13 Loading Condenser. Excel

Power Sunplies, Carrying Complete with al

BC-923 lieceiver Verver gool Very good A-5.5 Dummy Anterinas. Very good

CORDS AND PLUGS
CG-(172/1i3) CPN-8 CM Coax l'atm chale.

CD-508A w/ SW 14-U i-2 Cord 4t

83-168 Adapter. New.
$83-1 \mathrm{R}$ Cuax. Comnector
8:-1J Feed Thri.
BC-221 FREQUENCY METER

\section*{ RADIO TUB
 | TYPE | PRICE | TYPE | PRICE | TYPE |
| :---: | :---: | :---: | :---: | :---: |
| OA2 | \$2.00 | 2J32 | 69.95 | 5CP1.... |
| OA3 | 1.50 | 2)36 | 105.00 | 5CP7A... |
| OA4G. | 1.35 | 2J38 | 17.95 | 5D21.... |
| OB2 | 3.00 | 2J42 | 150.00 | 5JP1..... |
| OC3 | 1.75 | 2 149 | 109.00 | 5JP2.... |
| OD3 | 1.50 | $2 J 50$ | 69.50 | 5JP4..... |
| C1A | 4.95 | $2 J 61$ | 75.00 | 5LP1.... |
| C1B | 6.95 | $2 J 62$ | 75.00 | 5LP1 A.... |
| 1 B 21 A | 2.75 | 2K25 | 47.50 | 5R4WGY.. |
| 1 B22 | 3.95 | 2K28 | 37.50 | 6C21.... |
| 1B23 | 9.95 | 2K29 | 27.50 | C6A |
| 1824 | 17.95 | 2K41 | 99.00 | C61 |
| 1826 | 2.95 | 2K45 | 199.50 | 7BP7.... |
| 1 B27 | 19.50 | 2V3G | 2.10 | 7DP4.... |
| 1 B32 | 4.10 | 3824 | 5.50 | 12AP4... |
| 1 B 38 | 33.00 | EL3C | 5.95 | 15E |
| 1 B 42 | 19.95 | 3C24 | 1.95 | 15R |
| 1 B56 | 49.95 | 3C31 | 5.95 | NE16 |
| 1860 | 69.95 | 3C45 | 13.95 | FG17 |
| 1N21 | 1.35 | 3DP1 A | 10.95 | RX21.... |
| 1N21A | 1.75 | 3E29 | 15.50 | 35 T |
| 1N21B | 4.25 | SN4. | 5.50 | 45 Special. |
| 1N22 | 1.75 | 4A1 | 1.75 | RK39.... |
| 1N23 | 2.00 | 4B26. | 6.95 | VT52.... |
| 1N23A | 3.75 | 4C27 | 25.00 | RK72.... |
| 1 N23B | 6.75 | 4C28 | 35.00 | RK73 |
| 1N27 | 5.00 | 4E27 | 17.50 | 100TH |
| 1N48 | 1.00 | 4J25. | 199.00 | FG105 |
| 1S21. | 6.95 | 4J26 | 199.00 | F123A... |
| 2B22 | 4.95 | $4 \longdiv { 2 7 }$ | 199.00 | 203.A.... |
| 2B25 | 3.75 | 4J30 | 395.00 | 211 |
| 2 C34 | . 35 | 4)31 | 99.00 | 217C |
| 2C39 | 32.00 | 4J32 | 99.00 | 242 C |
| 2 C 40 | 27.00 | 4J33 | 99.00 | 249C |
| 2C43 | 27.00 | 4J37. | 99.00 | 250TL |
| 2 C 44 | . 90 | 4J38 | 89.00 | 274B |
| 2D21 | 1.75 | $4 J 39$ | 99.00 | 304TH |
| 2 E 22 | 3.75 | 4J41 | 99.00 | 304TL |
| 2E30 | 2.75 | 4J52 | 350.00 | 307A |
| $2 J 26$ | 27.75 | C5B | 2.95 | 310A.... |
| $2 J 27$ | 29.95 | 5BP1 | 4.95 | 311 A.... |
| 2J31. | 29.95 | 5BP4 | 4.95 | 312A |
 This Month's Special 4C28
 PRICE TYPE $\begin{array}{ll}4.95 & 876 \\ 6.95 & 878\end{array}$
 PRICE
 1.95
 1.95
 1.75
 199.50
 12.95
 75.00

6.95
 6.95
 .35
 .55
.69
 .29
 .69

.69
 17.95
 \begin{tabular}{r|rr}
1.50 \& $991 \ldots \ldots$ \& .45

2.45 \& E1148 \ldots. \& .29

11.00 \& $1280 \ldots$. \& 1.95

 $3.15 \quad 1611 \ldots \ldots \quad 1.95$
 $\begin{array}{lll}8.95 & 1613 \ldots . & 1.38 \\ 3.95 & 1616 \ldots . & 2.95\end{array}$
 $\begin{array}{llrr}4.50 & 1619 \ldots & .89 \\ 1.45 & 1620 & 5.95\end{array}$
 $9.951622 \ldots 2.75$
 $\begin{array}{lll}11.95 & 1624 \ldots . . & 2.00 \\ 15.95 & 1625 \ldots .\end{array}$

11.50 \& $1629 \ldots$

5.95 \& 1851

9.95 \& 2050
\end{tabular}
 .69

1.85
 $49.952051 \ldots 1.80$
 | 7.95 | $8012 \ldots$ | 4.25 |
| :--- | :--- | :--- |
| 4.95 | 8013 | |$\ldots .2 .95$
 $\begin{array}{llr}2.95 & 8013 A & 5.95 \\ 4.95 & 8014 \mathrm{~A} & 29.95\end{array}$
 $5.598020 \ldots 3.50$
 52.508025

80.50

9001 $\quad 6.95$
 \begin{tabular}{r|rr}
80.50 \& $9001 \ldots$ \& 1.75

4.95 \& 900

 $39.509003 \ldots .1 .75$

1.79 \& $9004 \ldots$

37.50 \& $9005 \ldots$
\end{tabular}
 1.75

.75
 $3.959006 \ldots$
 OTHERS
 \begin{tabular}{|c|c|c|c|}
\hline PRICE \& TYPE \& PRICE \& TYPE

\hline 4.95 \& 323A \& 25.00 \& 724A

\hline 15.00 \& 327A \& 3.95 \& 724B

\hline 27.50 \& 350A \& 7.95 \& 725A

\hline 27.50 \& 350B \& 5.95 \& 726A

\hline 17.50 \& 357A \& 27.50 \& 726B

\hline 27.50 \& 368AS \& 6.95 \& 726C

\hline 18.95 \& 371B \& 1.95 \& 728AY.

\hline 19.50 \& 385A \& 4.95 \& 730A

\hline 3.75 \& 388A \& 2.95 \& 801A

\hline 29.50 \& 393A \& 8.95 \& 802

\hline 3.95 \& 394A. \& 8.95 \& 803

\hline 7.95 \& MX408U \& . 75 \& 804

\hline 7.95 \& 417A... \& 17.95 \& 805

\hline 10.00 \& 434A \& 17.95 \& 806

\hline 55.00 \& 446A \& 1.95 \& 807

\hline 2.95 \& 450TH \& 45.00 \& 808

\hline . 95 \& 450TL \& 45.00 \& 809

\hline . 45 \& 464A \& 9.95 \& 810

\hline 6.95 \& 471A \& 2.75 \& 811

\hline 3.95 \& 527 \& 15.00 \& 813

\hline 4.95 \& WL530. \& 22.50 \& 814

\hline . 35 \& WL531. \& 12.50 \& 815

\hline 2.95 \& 700A/D \& 25.00 \& 816.

\hline . 35 \& 701 A \& 7.50 \& 829

\hline 1.95 \& 703A \& 6.95 \& 829A

\hline 1.95 \& 705A \& 3.95 \& 829B

\hline 9.00 \& 706AY. \& 48.50 \& 830B

\hline 19.00 \& 706CY \& 48.50 \& 832

\hline 8.95 \& 706A \& 17.95 \& 832A

\hline 8.95 \& 707B \& 27.00 \& 833A

\hline . 75 \& 714AY. \& 5.95 \& 834

\hline 18.00 \& 715A \& 7.95 \& 836.

\hline 10.00 \& 715B. \& 15.00 \& 837

\hline 4.95 \& 715C \& 25.00 \& 838.

\hline 19.95 \& 717A \& 1.75 \& 845

\hline 3.00 \& 718AY/EY \& 48.50 \& 849

\hline 15.00 \& 719A \& 29.50 \& 851

\hline 14.50 \& 720A/B/C/ \& D/ Y \& 860

\hline 4.95 \& \& 96.00 \& 861

\hline 7.95 \& 721 A \& 3.95 \& 866A

\hline 7.95 \& 722A \& 3.95 \& 869B

\hline 3.95 \& $723 \mathrm{~A} / \mathrm{B}$ \& 24.95 \& 872 A

\hline

4.95 \& $876 \ldots \ldots$

6.95 \& $878 \ldots \ldots$

9.95 \& 884

6.95 \& 885
\end{tabular}}

ATTENTION PURCHASING AGENTS AND BUSINESS MANAGERS
We purchase complete inventories and electronic parts and tubes for cash. CAN WE HELP YOU TO OBTAIN URGENTLY NEEDED ELECTRONIC MATERIALS? OUR ORGANIZATION IS DEDICATED TO SERVE THE ELECTRONIC FIELD.

YOU CAN REACH US ON TWX NY1-3235

TEST EQUIPMENT

ATTENTION PURCHASING AGENTS AND BUSINESS MANAGERS

WE BUY-WE SELL-WE EXCHANGE-WILL
PAY CASH FOR YOUR INVENTORY N
MATTER HOW SMALL OR LARGE. MATTER HOW SMALL OR LARGE -TURN YOUR OVERSTOCIGED

Test Equipment

Microwave K Band 24,000 MC
TSKI-SE Spectrum Analyzer
K Band Flop Attenuator

X Band 10,000 MC

TS 12 Unit 1 USWR Measuring Amplifier, 2 channel
TS 12 Unit 2 Plumbing for above TS 83 X Band Power and Frequency Meter TS $35 \times$ Band Pulsed Signal Generator TS 36 X Band Power Meter
TS 45 Band Signal Generator
TS $146 \times$ Band Signal Generator
TS 263 Novy Version of TS 146
TS 62, TS 102, TS 168
X Band Magic T Plumbing
X Band Tunable Crystal Mounts
TVN \#3EV Bridge, Cy 94

S Band 3000 MC
TS 102, TS 270
TS 125, TS 155, TS 127
RF 4 Electrically Tuned S Band Echo Box BC 1277/60ABQ S Band Pulsed Signal Generator
PE 102 High Power S Band Signal Generator

L Band

Hazeltine 1030 Signal Generator 145 to 235 Megacycles
Measurements Corp. type 84 Standard Signal Generator
TS 47, 40 to 400 MC Signal Generator TS 226, AN/UPMI

Audio Frequencies
RCA Audio Chanalyst

Broadcast Wave Bands

162C Rider Chanalyst
Short Wave Adapter for 162C
TS 174 Signal Generator

Oscilloscopes

TS 239A Lavoie APA10, APA28
BC 1287A used TS 34 Oscilin LZ sets
Supreme 564 loscopes WE TS 126
Other Test Equipment and Meters
TS 15/A Magnet Flux Meter
General Radio V T Voltmeter 728A
Calibrotor WE 1-147
General Radio 1000 cycles type 213
Limit Bridges
Boonton Standard instructions
Model 40 Pyromete:
Rowson, meters 0-10 Microompere 0.2 Millivolt
RADAR Sets 8e Parts APS 3-APS 4-R-111/APR5A
Minimum Order $\$ 25.00$ Prices Subject To Change

A LEADING SUPP

5071930 DELCO, 115 V., 60 Cy., 7000 RPM. TELECHRON SYNCHRONOUS PRICE $\$ 6.50$ EA. B3, 110 V., 60 Cy., 4 W., 2 RPM TELFCHRON SYNCHRONOUS PRICE $\$ 5.00$ EA BC, 110 V , 60 MY. BC, $110 \mathrm{~V}, 60 \mathrm{Cy}, 6 \mathrm{~W} ., 60 \mathrm{RPM}$. 6 . 4,00 YIC EASTERN AIR DEVICES, Type J33 Sy. Synchonous, 115 V., 400 Cy., 3 , 8000 RPM. PRICE $\$ 15.00$ EA.

HAYDON TIMING MOTORS

 $110 \mathrm{~V} ., 60 \mathrm{CY}$.TYPE 1600, $2.2 \mathrm{~W} ., 4 / 5$ RPM. PRICE $\$ 3.00$ EA TYPE 1600, 2.2 W., $1 / 240$ RPM.
TYPE 1600, 2.3 W, 1 RPM PRICE $\$ 3.00$ EA TYPE 1600, 2.2 W., $1-1 / 5$ RPM. PRICE $\$ 3.00$ EA. TYPE 1600, 3.5 W.,] RPM. WRICE $\$ 3.00$ EA. automatic engaging and disengaging shaft. TYPE 1800, 2.2 W., $1 / 60$ RPM.

SERVO MOTORS

CK1, PIONEER, $2 \phi, 400$ Cy. PRICE $\$ 10.00$ EA. CK2, PIONEER, $2 \phi, 400 \mathrm{Cy}$. PRICE $\$ 14.00 \mathrm{EA}$. tion ONEER, 2 , 400 Cy., with $40: 1$ reduc 10047-2-A, PIONEER, $2 \phi, 400$ Cy., with $40: 1$ reduetion gear. PRICE $\$ 10.00 \mathrm{EA}$. MJNINEAPOLIS HONEYWELL Type B, Part No. G303Ar, $115 \mathrm{~V} ., 400 \mathrm{Cy} ., 2$, built-in reduction gear, 50 lbs, in torque.
MINNEAPOLIS HONEYWELL PRICE $\$ 10.00$ EA. G403, 115 V., 400 Cy., Used with above? motor: PRICE \$10.00 EA, WITH TUBES

REMOTE INDICATING COMPASSES

26 V., 400 CY.
PIONEER TYPE AN5730-2 Indicator AN.3730-3 Transmitter. RICE $\$ 40.00$ PER $5 E T$ KOLLSMAN TYPE 680K-03 Indicator and 679 S 01 Transmitter. PRICE $\$ 15.00$ PER SET

D C MOTORS

DELCO TYPE 5069625 Constant Speed, 27 V .
D.C., 120 RPM. JOMN OSTER TYPE C-28P-1, PRICE 27 V., 0.7 Amp. 7,000 RPM, 1/100 H. P. 27 PRICE $\$ 500 \mathrm{Amp}$. JAEGER WATCH CO. TYPE 44K-2 Contactor Motor, 3 to 4.5 V. Makes one contact per GENERAL ELECTRIC TYPE 5BA PRICE $\$ 2.50 \mathrm{EA}$ 0.65 Amp., 14 oz. in torque, 145 RPM.

GENERAL ELECTRIC TYPE 5BPRICE $\$ 6.50$ EA 0.5 amps., 8 oz. in. torque, 250 RPM

GENERAL ELECTRIC TYPE 5BAPRICE \$6.50 EA. 0.7 Amps., 110 RPM, 1 oz. $f t$. torque.

BARBER-COLMAN CONTROL PRICE $\$ 6.50$ EA. AYLC 5091, 27 V., 0.7 Amps., 1 RPM, Type tains 2 adj. limit switches., 500 in. ConWHITE RODGERS ELECTRIC PRICE $\$ 6.50$ EA. WHITE RODGERS ELECTRIC CO., Type 6905
Ho. 3, $12 \mathrm{~V} ., 1.3$ Amps., $11 / 2$ RPM torque No. 3, 12 V., 1.3 Amps., $11 / 2$ RPM, torque
75 ln . lbs.

RECTIFIER POWER SUPPLY

GENERAL ELECTRIC TYPE 6RC146. Input 230 put 130 Ámps, adjustable input taps. Outduty. Size 46"/ at 28 Vigh $28^{\prime \prime}$ wide Continuous, deep. Size 46 high, $28^{\prime \prime}$ wide and 17.5'
PRICE $\$ 225.00$ EA.

OF ELECTRONIC

AIRCRAFT EQUIPMENT

\}

WINCHARGER CORP. PU-16/AP, MG750. Impuł 24 V . D.C., 60 Amps . Oútput 115 V,, 400 Cy., $1 \phi, 6.5$ Amps.

PRICE $\$ 75.00$ EA.
OLTZER CABOT TYPE 149 Amp, Input 24 V. D.C. at 36 Amps., Output 26 V., of 250 V.A., 400 Cy., and 115 V., 400 Cy., ot 500 V.A., 1ϕ. PRICE \$55.0́O EA.
PIONEER TYPE 12117. Input 12 V. D.C., Out put 26 V., 400 Cy . at 6 V.A.

PRICE \$30.00 EA
PIONEER TYPE 12117. Input 24 V. D.C., Out put 26 V., 400 Cy. at 6 V.A.
PIONEER TYPE 12116-2-A. Input 24 V. D.C. at 5 Amps. Output 115 V., 400 Cy., 1ϕ GENERAL ELECTRIC TYPE SDITN $\$ 100.00$ EA. 24 V. D.C. of 35 Amps. Output 115 y Inpu Cy., 485 V.A., $1 \phi . \quad$ PRICE $\$ 25.00$ EA LELAND PE 218 . Inpur 24 V . D.C. at 90 Amps Output 115 V., 400 Cy., i ϕ at 1.5 K.V.A PRICE $\$ 47.50$ EA

PIONEER AUTOSYNS

TYPE AY1, 26 V., 400 Cy.
PRICE $\$ 8.50$ EA
TYPE AY5, 26 V., 400 Cy
PRICE \$8.50 EA.
TYPE AY14G, 26 V., 400 Cy. PRICE $\$ 15.00$ EA.
TYPE AY14D, 26 V., 400 Cy. PRICE $\$ 15.00$ EA.
YYPE AY54D, 26 V., 400 Cy. PRICE $\$ 10.00$ EA
TYPE AY131D Precision Autosyn.
Price $\$ 35.00$ EA.
PIONEER AUTOSYN POSITION INDICATORS \& TRANSMITTERS

TYPE 5907-17. Dial graduated 0 to $360^{\circ}, 26$ V., 400 Cy . PRICE $\$ 25.00^{\prime} \mathrm{EA}$ TYPE 6007-39. Dual Dial graduated 0 to 360° 26 V., 400 Cy .

PRICE $\$ 40.00$ EA
PE 4550-2-A Transmitter, 26 Y., 400 Cy
2:1 gear ratio. PRICE \$20.00 EA

VOLTAGE REGULATORS

LELAND ELECTRIC CO. TYPE B, Carbon Pile
type. Input 21 to 30 VE type. Input 21 to 30 V. D.C. Regulated output 18.25 at 5 amps. PRICE $\$ 6.50$ EA. WESTERN ELECTRIC TRANSTAT VOLTAGE REGULATOR Spec. No. V-122855, Lood K.V.A. 0.5. Input 115 V.ís 400 Cy. Output adjustable from 92 to 115 V.

RATE OR TACHOMETER GENERATORS

EASTERN AIR DEVICES J36A, 02
RPM. MaX. speed 5000 RPM.
RPM. Max. speed 5000 RPM. \quad PRICE $\$ 12.50$ EA. ELECTRIC INDICATOR CO. TYPE B68 Rotation Indicator, $110 \mathrm{~V} ., 60 \mathrm{Cy.} ,1 \phi$.
GENERAL ELECTRIC TACHOMETER 14.00 EA. TOR TYPE AN5531-1. Variable frequency 3 o output. PRICE $\$ 20.00$ EA,
GENERAL ELECTRIC TACHOMETER GENERA. TOR TYPE AN5531-2. Variable frequency, 3ϕ output. PRICE $\$ 25.00 \mathrm{EA}$

ALL PRICES

F. O. B.

GREAT NECK
N. Y.

SYNCHROS

IF SPECIAL REPEATER, $115 \mathrm{v}, 400 \mathrm{Cy}$ $2 J I F 3$ GENERATOR, 115 V , 400 Pry $\$ 15.00 \mathrm{EA}$. JIGI CONTROL TRANSFOPRICE $\$ 5.50$ EA. V., 400 Cy . PRICE $\$ 3.50$ EA
2J1F1 GENERATOR, 115 V., 400 Cy . PRICE \$4.00 EA.
SSDG DIFFERENTIAL GENERATOR, $90 / 90$ Y
400 Cy. PRICE $\$ 20.00$ EA PRICE $\$ 20.00$ EA.
PRICE $\$ 50.00$ EA.
. E. KS-5950-12 Size $5 \mathrm{G}, 115$ V., 400 C PRICE $\$ 10.00$ EA

D C ALNICO FIELD MOTORS

DJEHL TYPE S.S. FD6-23, 27 V., 10,000 RPM. PRICE \$6.50 EA
DELCO TYPE 5069466, 27 V., 10,000 RPM. PRICE \$15.00 EA
DELCO TYPE 5069370, 27 V., 10,000 RPM. PRICE \$15.00 EA
SDELCO TYPE 5072400, 27 V., 10,000 RPM PRICE \$10.00 EA

BLOWER ASSEMBLIES

JOHN OSTER TYPE MX215/APG, 28 V. D.C., 7,000 RPM, 1/100 H.P. PRÍCE $\$ 8.50$ EA. WESTINGHOUSE TYPE FL, 115 V., 400 CY., PRICE \$7.50 EA.
DELCO TYPE 5068571 Motor and Blower As-
sembly, P.M. Motor, 27 V., 10,000 RPM.
PRICE \$15.00 EA.

GENERAL ELECTRIC

D C SELSYNS

8TJ9-PAB, TRANSMITTER, 24 V
PRICE $\$ 4.00$ EA.
8DJ11-PCY, INDICATOR, 24 -10° to $+65^{\circ}$ PR. Dial marked 8DJ11-PCY, INDICATOR, 24 V . Dial marked 0 to 360°

PRICE $\$ 7.50$ EA

MISCELLANEOUS

SPERRY A5 AMPLIFIER RACK, Part Ne PRICE \$20.00 EA
SPERRY A5 CONTROL UNIT, Part No. 644836 PRICE \$7.50 EA
SPERRY A5 AZIMUTH FOLLOW-UP
PRICE 5550 EA
SPERRY AS DIRECTIONAL GYRO, Part No 656029,115 V., 400 CY., 3 ф.

PRICE $\$ 25.00$ EA
PIONEER TYPE 12800-1 GYRO SERVA UNIT
115 V., 400 Cy., 3 . \quad PRICE $\$ 20.00$ EA
ALLEN CALCULATOR TYPE C1 TURN \& BANK INDICATOR, Part No. 2150028 V. D.C.

PRICE \$15.00 EA
TYPE CI AUTO-PILOT FORMATION STICK, PIONEER GYRO FLUX GATE AMPLIFIER TYPE 12076-1-A, 115 V., 400 Cy. PRICE $\$ 40.00$ EA.

 spected, individually boxed and full
for information on types not shown
W-E TYPE "EE" RELAYS

Unit
Price
53.50
1.25
1.50
1.30
2.00
2.65

SPECIALISTS IN FRACTIONAL HORSE POWER MOTOR SPEED CONTROL

SEARCHLIGHT SECTION

BEARINGS

$\xrightarrow{\text { Mfs. }}$ No.	No.	${ }_{5}$ ID	$\mathrm{OD}^{\mathrm{OL}}$	Thickness	Price
MRC5028-1	28-1	${ }_{5}^{51 / 2}$	${ }_{6} 1 / 2{ }^{\text {c }}$	$1_{9 / 1}^{*}$	$\begin{array}{r} \$ 3.50 \\ 3.50 \end{array}$
MRC7026-1	26-1	5 5/64	${ }_{6} 615 / 4$	$29 / 32$	4.55
MRC-7021-200	221-200	$41 / 8$	$59 / 32$	23/64	2.95
Fafnir B545	B545	$21 / 16$	$25 / 8$	1/4*	1.00
MRC 106 M2	06 M 2	$117 / 64$	$27 / 16$	25/64	1.75
MRC 106 Mi	$06 \mathrm{M1}$	$113 / 84$	$27 / 16$	25/84	1.60
Federal LS 11	1 LS 11	$11 / 8$	$21 / 2$	5/8	1.75
Norma S 11 R	S 11 R	$11 / 8$	$21 / 8$	3/8	1.25
Fafnir 3541	B 541	$11 / 16$	$11 / 2$	$9 / 32$. 55
Hoover 7203	7203	$5 / 8$	$19 / 16$	7/16	. 90
Norma 203 S	203 S	5/8	$19 / 16$	7/16	. 90
Schatz		$3 / 4$	$13 / 4$	$9 / 16$	1.00
N5 5202-C13M	-C13M	1/2	$13 / 8$	$13 / 8$	1.00
ND 3200	0	25/64	$15 / 32$	11/32	. 55
Fafnir S 3 K	S $\mathbf{3 K}$	3/8	7/8	7/32	. 45
MRC 39 R1	9 RI	11/32	$11 / 32$	5/16	. 45
ND CW 8008	8008	5/16	5/16	13/32	. 45
MRC 38 R3	38 R3	5/16	55/64	9/32	. 45
Fafnir 33K5	33K5	3/16	1/2	5/32	. 25
NEEDLE BEARINGS					
TORRINGTON	NGTON B10	$81 / 2^{\prime \prime}$		13/16"	306
Brand New METERS-Guaranteed					
0-1 Amp. R.F. $21 / z^{\prime \prime}$. $\$ 3.29 \mid 0-80$ Amp. D.C. ${ }^{21 / 8 " .} \$ 2.25$					
SELENIUM RECTIFIERS					
SPAGHETTI SLEEVING-assortment-99 feet..... $\$ 1.00$					
TYPE "J" POTENTIOMETERS					
150 SD	SD ${ }^{2000}$	SD	5000 3	8° 50K	SD*
300 SD	SD 2000	1/2*	10K	8* 70 K	SD
300 3/8	3/8 2000	SD*	$10 \mathrm{~K} \quad \mathrm{~S}$	D* 80K	S
$400 \quad 3 / 8$	3/8 2500	1/2'	15 K	4* 100K	3/8
$500 \quad 3 / 8$	3/8 2500	SD	${ }^{15 K}$	$D^{*}{ }^{200 \mathrm{~K}}$	SD*
1000 7/8	$7 / 8.3000$	3/8	25 K 3	8* 250K	
1000 SD*	SD* 4000	3/8	25 K S	D* 500 K	$1 / 2^{\text {F }}$
1500	SD 5000	SD*	30 K S	$\mathrm{D}^{*} 1 \mathrm{Meg}$	SD
Split locking bushing					
JONES BARRIER STRIPS					
Type Pri	Price	Type	Price	Type	Price
$2-140 \mathrm{Y}$ \$0.	\$0.13	4-141 W	\$0.30	9-141Y	\$0.64
$3-1403 / 4 \mathrm{~W}$	W 19	5-141	. 26	10-141	. 50
6.140	. 25	5-141\%	W . 37	17-141Y	1.17
10-1403/W	\%W . 53	7-141	. 36	3-142	. 21
$2 \cdot 141$. 13	7-141 6	W . 49	$8-142$. 69
3-1413W	W . 24	8-1413/4	W . 58	2-150	39
3-141 W	24	9-1+1	. 64	3-150	4

TIME DELAY RELAY

Raytheon CPX 24168 KS 10193-60 Seo. $21 /$ second vecycling time-spring return : licro-switch contace, $10 \pm .1101 d s$ on as
ong as power is applied ONLY
$\$ 6.50$

AN CONNECTORS

jmmediate service
PHONE! WIRE! WRITE! YOUR NEEDS

Specials

NEW COAXIAL CABLES

Add 25% for orders less than 1.000 feet.

* No minimum order-others 250 minimum.

COAXIAL CABLE CONNECTORS A00 010 宣

83	. 30		\$1.40			
$83-1 A$ $83-1 F$	1.30					
83-1H	. 09		63			
	80		1.95			
${ }^{83-1 \mathrm{R}}$. 15		1.67			2.00
83.185	15	UG24				
$83-2 \mathrm{AP}$	2.00	UG2	60	U		
2 H	25	UG27				
	1.30			UG281/U		60
83-21SF	2.10	UG30	2.50	UG290		
83-22AP	1.10	UG57/	2.30	UG499/		
DIFFERENTIAL						
$\begin{aligned} & 115 \text { V.,. } 60 \text { Cyc. } \$ 3.95 \text { ea. } \\ & \text { \# C78249. } \end{aligned}$						
Used between two \#Cr8z48's as dampener. Can he converted to 3600 RPM Motor in 10 minutes. Conversion sheet supplied. (Converted)..... $\$ 4.50$						
Mounting Bracketsdifferentials shown above (Bakelite for selsyns, and$35 ¢$						

2J1G1 SELSYNS \$2.95 BRAND NEW 400 CYCLE

POSTAGE STAMP MICAS

minf	minf	m	mmi	mm!	mmf	mid	mpil	mid
4	23	47	85	220	500	910	. 003	. 0062
5	24	50	90	240	510	. 001	. 0033	. 0065
7	25	51	100	250	560	. 0011	. 0035	. 0068
7.5	26	56	110	270	580	. 0012	. 0036	. 007
	27	60	120	300	600	. 0013	. 0039	. 0075
8.2	30	62	125	350	620	. 00136	. 004	. 008
10	33	68	130	370	650	. 0015	. 0044	. 0082
15	35	70	150	390	680	. 001625	. 005	. 009
18	39	75	160	400	750	002	. 0051	. 01
20	40	80	175	430	800	. 0026	. 0056	
22	43	82	180	470	820	. 0027	. 006	

8.2 mmf to 001 mffic

SILVER MICAS								
mms	mmp	minf	matmf	mmf		mfd	midd	mid
10	40	82	155	275	430	${ }^{180}$. 002	. 0039
18	47	100	170	300	466	700	. 0023	
	50	110	180	325	470	800	. 0024	. 0047
22	51		200	350		875	. 0026	005
23	60	120	208	360	500	900	. 0027	. 0051
		125	225	370	510		. 00282	. 0056
27	66	130	240	390	525	. 0011	. 002826	
			250	400	560	. 0016	003	. 0082
	75	150	270	410	570	. 00162	. 0033	
Price Schedule								
10 mmf to . 001 mpd . 10 e								
FILAMENT TRANSFORMER								

PULSE TRANSFORMERS

UTAH-9262 ${ }^{9278}{ }^{927}{ }^{9340}$
KESTERN ELECTRIC-D186173 D161310 GENERAL ELECTRIC-K2731, $80-\mathrm{G}$
CROSLEY-W-226262-4
DINION COIL-TR1048, TR1049

RELIANCE merahandzano co.

Arch St. Cor. Croskey Phila. 3, Pa. Telephone RIttenhouse 6-4927

SUPERIOR POWERSTAT
 Nay be separatid and used
wh. of ey 20 KVA units.

TRANSFORMERS

high voltage reactors

ELAPSED TIME METERS
Mfll by R. W. Cramer Co. Type RT-2H. $0.10,000$ hours hy tenths. 115 Volts 60 cycle. Large Quantity
Availabere

REACTORS AND CHOKES

95

 Test
 kavtheon WX-51t Mual Rated 1.55/1.55@0.25/

DC SERVO MOTORS

un top of motor. to keep, AC out of motor, $5 \times 5 \times 4$. $\$ 12.95$

\section*{| $1 N$ |
| :--- |
| 400 |}

RELAYS

RECTIFIERS

DECK ENTRANCE INSULATORS

(Bowl and Flange Type)

heavy duty

COPPER OXIDE RECTIFIERS

FPDERAR TEL, \& RAMO DC POWER S

Westinghouse Watthour Meters

METERS

3 MA DC $21 / 2^{\prime \prime}$ R-Simpson black scale 100 Microamos, DC- $\mathbf{2}^{1 / 22^{\prime \prime}}$ round-Sun $\$ 3.35$ 500 nia ${ }^{2}$ Fan type- $4^{\prime \prime}$ scale (rem. from equipt) 3.95 2 amp. RF $21 / 2^{\prime \prime}$
${ }_{5}^{\prime \prime}$
R \mathbf{A}.-General Electric.
5 amp. AC $41 / 2^{\prime \prime \prime}$ R.-JBT.....
50 amp. AC $31 / 2^{\prime \prime}$ R.—General
3 amp. RF $31 / 2^{\prime \prime}$ R.-Wenerton
MAGNETRONS

2J21A	2.536	2 J 61	706 CY
2 L 22	2 J 37	3.31	706 FY
$2 J 26$	$2 J 38$	5.23	706 GY
2 J 27	2.339	5.129	714AY
2 J 31	2 J 40	70013	718 AY
2 J 32	2.311	700 C	718 BY
2 J 33	2 J 48	700 D	$720 \mathrm{~B} / \mathrm{C} / \mathrm{DY}$
2 J 34	2.149	706 AY	725 A
		706 BY	730.8

KLYSTRONS			
${ }^{2} \mathbf{K} 23$	2 K 33	4174	723A/B
${ }^{2} \mathrm{CL25}$	${ }_{2} \mathbf{2 K 5 4}$	${ }_{7073}^{707 A}$	${ }_{726 \mathrm{~B}}$
2K29	2K55	723A	5611

OIL-FILLED HIGH VOLTAGE ISOLATION TRANSFORMERS
Pri. 400V 60 cy . Sec. 115 V 200 VA Insulated for 50 KV
DC-G. E. Form EIR- $36^{\prime \prime} \mathrm{H} \times 13^{\prime \prime} \mathrm{D}$. $\$ 25.00$ Pri. 115 V 60 cy . Sec. 115 V 250 VA insulated for 35 KV

VOLTAGE DIVIDER

G.E. Cat. $8248886 \mathrm{G}-1$ and $9001934 \mathrm{G}-1 \quad 17,246.400$

2ϕ LOW INERTIA SERVO MOTORS

KOLLSMAN Type $936-0240-85 / 68 \mathrm{~V}$ 100 cy 5 watts
 new ... $\$ 34.50$

	OIL	FILLED		CONDENSERS		
MFD	Vnc		Price	MFD	VDC	Price
2	600		\$ 4.45	. 1	2500	5.69
4	600		1.65	1-1	2500	3.85
4	600	R'd	1.65	32	2500	15.80
6	6.00		1.85	3x. 2	4000	2.95
8	600	R'd	1.85	1	5000	4.88
10	600	R'd	1.95	.01-.03	6000	1.65
8-8	600		1.95	. 1	7000	1.79
1	1000		62	. 045	16 KV	4.70
2	1000		89	. 05	16 KV	4.95
4	1000		1.85	. 075	16 KV	8.95
8	1000		2.45	25	20 KV	18.95
1	1500		89	50	220 VAC	4.95
4	1500		2.95	7	660 VAC	4.25
.1-. 5	2000		. 87	8	$660 V A C$	4.50
1	2000		1.95			

HIGH VOLTAGE TRANSFORMERS
G. E. \rightarrow Pri. 115 V 60 cy
G.E.-Pri. 115 V 60 cy $6250 / 3850 / 2600 \mathrm{Y} 5680$ Raytheon-Pri, 1 is 60 cy. Sec. $8500 / 6 A 50 \mathrm{~V}$ CT 43

	CRYSTAL		DIODES		
1 N 21	\$ $\$ 1.19$	1 N 23	\$1.49	1 N34	\$. 79
1N21A	1.69	1 N 23 A	3.25	1N38	1.66
1N21B	4.00	1 N 23 B	5.25	1N45	94
1N22!	1.09	1N27	1.79	1×52	1.05

ANTENNAS
AT-38A/APT (70 to 400 MC)
AT-49/APR-4 (300 to 3300 MC)
 AN-65A (P/0 SGR-521) AN-66A (P/O SCR-52)
ASB Yag- -5 element 450 to 560 MC ASA Yagi-Double stacked 370 to to 430 .

Terms 20% cash with order, balance C. O. D unless rated. All prices net F.O.B. our warehouse, Phila., Penna., subject to change without notice.

TYPE "J" POTENTIOMETERS

Resis.	Shaft	Resis.	Shaft	Resis.	Shaft
60	SS	5 K	1/4*	50K	$3 / 8{ }^{\prime \prime}$
60	9/16*	5 K	3/8 ${ }^{\prime \prime}$	50 K	1/2"
100	SS	5 K	$1 / 2^{*}$	100 K	
200	SS	10 K	$\mathbf{S S}$	150 K	1/2"
250	1/8*	10 K	$3 /{ }^{\prime \prime}$	200 K	$3 / 8{ }^{3 \prime}$
500	SS	10 K	1/2"	250 K	SS
500	$5 / 16^{\prime \prime}$	15K	SS	250 K	$3 / 4{ }^{\prime \prime}$
500	1/2"	15 K	1/2*	250K	3/8 ${ }^{\circ}$
500	5/8*	20 K	$\mathbf{S S}$	500 K	SS
650	1/2"	25K	SS	500 K	1/4
1 K	SS	25 K	1/4*	500 K	7/16*
2 K	3/8*	30 K	${ }^{1} 1 / 8^{*}$	1 Mer	
2500	SS	40 K		2.5 Me	
4K	SS ${ }_{\text {S }}$	50 K 50 K	SS	5 Meg	
	DUAL	J' PO	ENTIO	METERS	
50	SS	500	SS	1 Meg	
100	SS	1 K	SS	2.5 Me	
250	SS	2500	$\mathbf{S S}$	5 Meg	
330	SS	10K	SS	$1 \mathrm{~K} / 25 \mathrm{~K}$	/8 ${ }^{\circ}$

100K TRIPLE JJJ POTENTIOMETERS
SOUND POWERED TELEPHONES
U. S. NAVY TYPE M HEAD AND CHEST SETS
U.S.I. A-260 W.E. D-173013

ANY TYPE—\$14.88 EACH
.$\$ 8.92 \mathrm{ea}$.
TS. I0 Type Handsets......................... 8.92

AC Volts Inquit DC Volts Out	$\begin{array}{r} 18 \\ 1+5 \end{array}$	AC Volts Inmat DC Volts Out	$\begin{array}{r} -\quad 40 \\ -\quad 34 \end{array}$
1.3 Amps	\$3.85	0.6 Amps	\$4.60
2.4 Amps	4.95	1.2	5.95
6.6 Amps	7.75	3.2	8.95
13.0	12.75	6.0	15.50
17.5	15.75	9.0	17.50
26	22.75	12	26.95
39	35.50	18	32.50
52	38.50	25	42.50
70	49.50	36	55.50

130 VAC $1 / 2$ WAVE STACKS					
75 MA	\$ ${ }^{\text {. }} 88$	150MA	\$1.30	250 MA	\$1.75
100MA	1.10	260MA	1.57	400MA	2.60
GENERATORS					
- Eclipse-Pioncer type 716-3A (Navy Model NEA-3A)					
Output-AC IISV 10.4A 800 to 1400cy. I d; DC 30					
Volts 60 Amps. Brand New - Eclipse-Pioneer type 1235 -iA. Output- 30 Volts DC 15 Amps. Brand Now-Original Packing.. $\$ 15.50$					

THYRATRONS 8. IGNITRONS			
OA4G	FG-41	FG-271	722A
C1A	FG-57	393A	873
1 C 21	FG-67	394A	884
2.44 G	FG-81A	GL-415	885
2134	91	K U-610	1665
2 D 21	FG-95	KU-623	1904
2D23	FG-105	KU-628	2050
3 C 31	FG-166	KU-634	2051
$4 \mathrm{C35}$	FG-172	W1,-652	5550
C.53	FG-178	WL-672	5551
$\bigcirc \mathrm{C} 22$	RX233A	WL-677	5552
C6J	FG-235A	WL-681	5557
FG-17			5560

TEST EQUIPMENT

 Condition)

PULSE TRANSFORMERS

G.E. 68G-627
$\begin{array}{ll}\text { G.E. } 68 \mathrm{G}-627 & \text { Westinghouse 232-AW } \\ \text { G.E. } 68 \mathrm{G} 828 & \text { Westinghouse 232-BW } \\ \text { G.E. } 68 \mathrm{G929GI} & \\ \text { G.E. } 80 \mathrm{G13} 13 & \text { AN/APN-4 BBiock Osc }\end{array}$
Philco 352-7149
Phileo 352-7150
Philco 352.7071
Phileo $352-7178$
Raytheon UX-7350
G.E. $A P N-9(901756-501)$
AN/APN-9 $(901756-502)$

AN/APN-9 ${ }^{(352-7250)}$
Westinghouse PH.1
Westinghouse PA.
Westinghouse 132-AW
Westinghouse 139BW2F W.E. D- 163247
W.E. D-163325 W.E. D-164661

AN/APA-23 RECORDER

Sweeps any receiver through its tuning range and simals on paner chart. Power it1put-(motor) 27 V DC 1.5 A . and (recorder) $80 / 115 \mathrm{~V}$ AC $60-2600 \mathrm{cy}$
Originally designed to record pulse or sine-wave
 SX-28. BRAND NEW.

SPRAGUE PULSE NETWORKS

7.5 E3-1-200-67P', 7.5 KV, "E"' Circuit 1 Microsec.
200 PPS. 67 ohms 1 mped. 3 sections. $\$ 4.30$
 7.5 Et PPS. 67 ohms Imped, 3 sections. 56.75

16 microsec. 60 PPS. 67 othms impred...... $\$ 8.25$
E-4-91-401-50P. $15 K$
V 400 PPS. 50 ohms imped. 4 sections....... $\$ 12.00$ 15-A-1-400-50P. 400 PPS . 50 ohms imped Circuit, I microsec. 5 E7-2-200-50P, 15 KV "E " C Circuit, 2 microsec.

SYNCHROS

Size 1. 3. 5. 6. 7 and 8 generators, motors, control ransformers. differential generators, and differential motors in sto

AY-101D	5G	N	C-78248
AY-120D	5N	X	C-78249
AY-130D	6DG	2J1F1	C-78410
1 F	6G	2 J 1 Gl	C-78411
5 B	7DG	$2 \mathrm{~J} 1 \mathrm{H1}$	C-78415
5CT	7G	C-44968-6	C-79331
5D	A	C56701	C-78254
5DG	13	C-69405-2	C-78670
5 F	M	C-69406-1	
SEND FOR COMPLETE LISTING			

RADAR
 COMMUNICATIONS EQUIPMENT

23,000 to 27,000 Mc BENCH TEST PLUMBING

 Rtion of 45 BEND F Or H Plane, Choke to corer............\$12.09

8500-9500 MC BENCH TEST PLUMBING

AN/APS-15A "X Band compl. RF head and mod.

 (local osc \& beacon) 1824, TR, rctr amyj. duplexer, KW apx. input: 115,400 c, Modulator pulse durar ation $5-2$ microsec, apx. 13KV. PK. Pulse, with alltubes incl. $715 \mathrm{~B}, 829 \mathrm{~B}, \mathrm{BKR} 73$, tho 72 's. Complete 90 DEEGREE Twist. Giong
 PRESSUREGAUGE Mibs.

 15 DEG. BEND $10^{\prime \prime}$ choke to cove. IF amp..... $\$ 47.50$ $18^{\prime \prime}$ FLEXIBLE SECTION TR CAVIT HSWR MEAS. SECTION, \& L with 2 type,$\quad \$ 2.50$ Brobes MTII tull ware apart. Bell size guide. $\$ 10.00$ output pickup WAVEGUIDE SECTION i2" iong choke to corer Gau Radar for mounting two $723 \mathrm{~A} / \mathrm{B}$ klyssron with crystal DUAL Matching sluks, shields. (Back to back) with crystal mount. tiname termination attenuating DIRECTIONAL COUPLEE. UG-40/U Take of 20 D1
 Mount. Complete with ervstal mount. Iris coupling TR-ATR DUPLEXER section for abore.......s.s8.50 723AB MIXER-Beacon dual Osc. Mint, w/xtal holler TRATR SECT APS I5 for $1 B 24$ w/T24 ATI cavils STABILIZER CAVITY with bellows
 CM. "S'" CupVE is" iong 3 CM. "S"'CURVE G" 3 CM. CUTLER FEED DIPOLE. $11^{\prime \prime}$ from par \$6 3 Mount to feed back DIRECTIONAL COUPLER. One way $\$ 8.50$ 2J suide outhut MODULATOM, 14 Kw max rating. 8 km \min.
cycle,
2.5
2late voitage pulsed

 gude; thermistor bridge mith indicating meter, wave

3000 MC BENCH 10 CM RF PACKAGE, using 2.22 magnetron, fret

 out Uses 417A Klystron mixer, 6Ac7 preamp liulser
is 715 B HARD TUBE. Complete RF unit, pulser

TWIST 90 deg $2 /{ }^{\prime \prime}$ " radius. 90 deg. bend TWAST 90 deg. ${ }^{\prime \prime}$ chioke to cover w/press nipple $\$ 6.50$ ROTAR Mr JoINT Choje to choke w. deck mount. $\$ 5.75$

MAGGC TEE ELBOWS, F or il ian
WAVEGUIDE LENGT Bl ${ }^{\text {with }} 1$ R-Choke, 1 cover, ier length. ... S2 supplin
 ${ }_{A}^{6}$ ST is CCT. Choke to choke CG 98 B/APQ $1312^{\prime \prime}{ }^{\prime \prime}$ Flex.
 $2^{\prime \prime} 45$ deg liend SLUG. TUNER ATTENUATOR W F\% guide. Gold APS-10 TR/ATR DUPLEXER section vith additiona WAVEMETER, 8500 to 9400 Mes. "ith calibration 90 Micrometer adjust head. Ireaction type . $\$ 85$ (in)
APS. + COMPLETE 3 CM. RADAR SYSTEM. 40
$\begin{aligned} & \text { KW Dik transmiter, Iulse modulator, receirer. } \\ & \text { using } \\ & i 23 A B \\ & \text { power suply }\end{aligned}$
$\begin{aligned} & \text { 8ive Cycle, an antenna sustem. Complete radar set } \\ & \text { neatly packaged in less than } 16 \text { cubbic feet. Less }\end{aligned}$
$\begin{aligned} & \text { reatly packiaged in less than } 16 \text { cubbic feet. Less } \\ & \text { reeevine TyDe Tulbes, but including all others, in } \\ & \text { in }\end{aligned}$
$\begin{aligned} & \text { used but excellent condition-This price for } \\ & \text { laboratories. schools and experimental purpose }\end{aligned}$
only. See our ad in Electronics for July, 51 .

TEST PLUMBING

POWER SPLITTER: 726 Klystron input dual
MAGNETAON OOUPLING FOB TYPE Z 20 MAG.

RC 224-SCR 717 ANTENNA
Radar antenna designed for 10 cm 360 de gree rotation, Apx. 15 degree tilt. Heavy base capable of great weight support ant with $30^{\prime \prime}$ parabola, $7 / \mathrm{s}^{\prime \prime}$ rigid coax pressurized 28 VDC drive motor, position indicating selsyns. New, as illustrated, with 3000 MC pressurized feedback dipole
$\$ 87.50$

MICROWAVE ANTENNA EQUIPMENT

${ }^{3}$ CMA ANTENNA WITHI DISH 14 " Cutler Feed horizontal and rertical scan with 28 V
drive motor and drive meclanisms. Complete. Ner
 Dipole for above $\$ 12.00$ TDY "Jam,' Radar rotating antenna, 10 cm .30 dek.
 assembly ending in horn, radiating circularly polarized
beam. Waveguine input. Complete with tarige 850.00 Paranolic Peel. Radiation patupere aporox. 25 dek. in
 S.F. Radar Antenna. 10 cm . approx. $30^{\prime \prime}$ dish comp. with Selsyn and 150 V drive motor a........ $\$ 1870.00$

MICROWAVE TUBES MAGNETRONS

PULSE EQUIPMENT

MIT. MOD. 3 HARD TUBE PULSER: Output Pulse Power 144 KW (12 KV at 12 Amp). Duty Ratio.
001 Kax . Pulse duration: 5 . $1.0,0$ microsec.
 APQ-13 PULSE MODULATOR. Pulse Width 5 to 1.1
Nicro Sec. Rep. rate $64 \frac{1}{2}$ to 1348 PDS. Pk pWr. TPS.3 PULSE MOOULATOR. Pk. Dower 50 amp . 21 KIt (120) hine impedance 50 ohms. Circuit
sec. pulse
series charging, version of Desonance type. APS-10 MODULATOR DECK. Complete, less thites VARISTORS THERMISTORS

$140-600 \mathrm{mc}$ Directional Antenna

$140-310 \mathrm{mc}$ cone and $300-600 \mathrm{me}$ cone, each consisting
of 2 end fed half wave conical sections with enclosed matching stub for reactance changes with changing frequency.
Nerr:
chest complete with nast, guss, cables. carrying
AN MPG-I Antenna. Rotary feed thye high speed scanner antenna assembly, including horn parabolic
 Gov'\& Cost- $\$ 4500.00$
DBM ANTENNA. Dual hack-to-hack parabolas with
dipoles. Nrea. coverage $1,000-4500 \mathrm{mc}$ No frive
mechanism

30^{\prime} SIGNAL CORPS RADIO MASTS

Complete set for erection of a full flat top antenna. ten-foot sections for easy stowage and transportation. A perfect set-up for getting out. Supplied complete:
2 complete masts. hardware, shipping crate. Shipping

COMPLETE SELECTION OF RADAR REFLECTORS, PEELS UP TO 12 FT. IN LENGTH, DISHES UP TO 10 FT. IN DIAM.

COMMUNICATIONS EQUIPMENT CD.

P. I. plishner

Prone: Manin 4-8:37:3

MICROWAVE communications EQUIPMENT COMPANY
 SONAR

RADAR EQUIPMENT MARK 4

TRANSMITTER

 SPECIFICATIONS:Frequency (Mc). 700. R-f oscillator. . 700 magnetron. R-f transmis-
sion system . . $7 / 8^{\prime \prime}$ coax sion system.. $7 / 8^{\prime \prime}$ coax.
Modulator type. Hord tube. R-f peak power (kw) R-f average 20. power (kw) 0.046 Pulse rate(ppis). 1639.3. Pulse width ($\mu \mathrm{s}$) Mounting 1.5
... Below deck.

OPERATING CHARACTERISTICS:

Minimum range (yards), 1,000 Maximum range measuring capabilities (yards) 100,000 Power supply.-2.7-3 kva, 90130 voits (adiustable power transformer), 60 cps, single phase.

The transmitter uses a magnetron oscillator, the operating frequency being partially determined by the physical dimensions of the tube. Four classes of tubes are available, having nominal frequencies of $685,695,705$, and 715 megacycles. The receiver is designed to cover continuously the frequency range of 550 to 720 megacycles.

MODULATION GENERATOR

The modulation generator, the top unit in the cabinet, contains a 1639-cycle oscillator, a pulse generating circuit, and a rectifier-doubler and fitter network. Nonlinear coils are used for the generation of sharp pulses from the sine wave current output of the oscillator. These pulses, when passed through the pulse amplifier in the transmitter, are approximately microsecond in duration at the toop, and 2 microseconds af the base. Tis outpurs are used orillator output: the other is a 29.5 -kilocycle sinewave obtained from the palse by doubling and filtering.

RADIO RECEIVER

The receiver employs a converter tuned at the input with coaxial-line sections for maximum power transfer, a beating oscillator, four intermediate-frequency (i-f) amplifier stages, a detector and a low-frequency amplifier for monitoring observation.

POWER CONTROL PANEL

The front panel of the power control unit, contains the LOAD VOLT$A G E$ PLATE CURRENT, and PLATE VOLTAGE meters, the LOAD, MAG FIL, and PLATE CAP variable transformer controls, the RADIO SET-STANDBY HEATERS and PLATE voltage switches, and the indicator lamps. The variable transformer voltage regulators are mounted on the back vertical panel of the frame.

RADIO TRANSMITTER

Below the power control panel in the cabinet is the radio transmitter. It houses the complete high-frequency transmitting oscillator age supply is automatically connected when the unit is fully in place in the cabinet. The transmitter output is connected to the duplexing pancl through a coaxial line mounted on the frame.

HIGH VOLTAGE RECTIFIER

The lowest panel in the cabinet is the high valtage rectifier, a fullwave single-phase rectifier employing two high vacuum tubes suitble capable of supplying the plate potential required for transmitter.

DUPLEXING PANEL

To permit the use of a common antenna and transmission line, an arrangement of coaxial transmission line sections and a special gasfilled tube are provided,

PRICE COMPLETE WITH TUBES (AS ILLUSTRATED) $\$ 625$

SONAR - SONAIR - SONAIE

Magneto-striction heads - - High power oscillators - Rachelle Heads and hydrophones - - Training hoist mechanisms - - - Complete Sonar Systems, i.e. QBC, QBE, QBF, QCL, QCQ, etc.
write write
write

TEST SETS

MICROWAVE ANTENNA EQUIPMENT

AS 17/APS

Radar antenna designed for 10 cm 360 degree rotation, Apx. 15 degree tilt. Heavy base capable of great weight support and high wind stress. Brass gear train. Equipped with 30" parabola, $7 / 8^{\prime \prime}$ rigid coax pressurized, 28 VDC as illustrated, with 3000 MC pressurized feedback dipole $\$ 87.50$

SA Radar, 200 MC bedsuring array. Complete with drive mechanism. etc., life new.............. $\$ 850.00$
ASD 3 CM sector scan antenna. Complete with cutler ASD 3 CMI sector scan antenna, Complete with cutler
ffed dipole. $15^{\prime \prime}$ parahola, drive motor, position inffed dinole $15^{\prime \prime}$ parahola, drive motor, position $\$ 37.50$ Bellini-Tossi Direction Finder Cross Loop Assy's for
Nary Dav. Radar, New and complete
$\$ 275.00$ ASIUA/AP, 10 CMI pick up dipole assy, complete w/ AS $46 \mathrm{~A} /$ APG.4 Yagi Antenna, 5 element arrag. $\$ 22.50$

All merch, guar. Mail orders promptly filled. All prices F.O.B. N.Y.G. Send M.G. or Chk, Only shipping chgs, sent C.O.D. Rated concerns send P.O.
COMMUNICATIONS EQUIPMENT CO.

$\$ 7$ per 100

ELECTROLYTIC CONDENSERS

EE89A TELEPHONE REPEATER
Used to extend range teleg. \& 20 cyc. ring ing possible over line
complete $\mathrm{w} / 3 \mathrm{~S} 5$ tube
Feather

 Helneman
for AC-DC

Opt Bkr \begin{tabular}{l}
for $\mathrm{AC}-\mathrm{DC}$

AM

1510 M

\hline 10 Amp

\hline

15114 \& 80 Amp

1614 \& Amp

1614

each \& Amp

\hline
\end{tabular}

 BELOW ARE NEW, UNMARKED, TESTED FOR CA-

SELSYN TESTER

 40722 To test individual maz. $\begin{array}{cc}\text { lnit. \& Xmitters, for } \\ \text { ksolating } \\ \text { kin magnesyn } & \text { systems. }\end{array}$

ITEM AUDIO TRANSFORMERS

161 Washington St., N. Y. 6, N. Y.
WO rth 4-0865

NOW AVAILABLE

S62 Million

 Inventory Controls SWITCHESJACKS
OF
DYAMMOTORS

CONOENSERS

CABLES \& CORDS

ELECTRONIC AND ELECTRICAL AVIATION COMPONENTS

RECEVIERS
Recently Acquired from
KEYS
HEATH CO. OF BENTON HARBOR, MICH.
SOCKETS

WRITE • WIRE • PHONE

INSULLTORS
For Information on
TUBES

MITERS

> EQUIPMENT TO FILL YOUR PRODUCTION NEEDS

HEAOSETS

BREAKERS

RADAR

TRANSCEVEVRS

OFFERED BY
242 Territorial Rd.
Benton Harbor, Mich.
Phone: $5-7271$

"Since radio beqau" MRR has been identified with

HIGH QUALITY LOW PRICES

IMMEDIATE DELIVERY

We want to bur F 1 R $\begin{aligned} & \text { Any Quantity } \\ & \text { New or Used }\end{aligned}$ AS H

- TEST EQUIPMENT-meters-bridges-oscillators-etc.
- TELEVISION—sets-front ends-packs-strips-etc.
- RADIOS-record players-intercoms-cabinets-etc.
- ACCESSORIES-changers-motors-irons-phones-microphones-etc.
- COMPONENT PARTS-resistors-condensers-hardware-etc.
- TUBES-all types-receiving-transmitting-radar-etc.
- AMPLIFIERS \& RECORDERS-all types-tape, wire, and disc.
- BATTERIES-all types-dry-wet-etc.
- MACHINERY-screw machines-turret lathes-millers-grinders-etc.

ALSO ALL TYPES OF GOVERNMENT SURPLUS

WHAT
HAVE YOU?

All Inquiries and Offers Held in Strict Confidence
All Deals Processed Strictly According to Agreement

WHAT DO
YOU NEED?

Wire—Write—Phone—BArclay 7-3588—Mr. Marino—Mr. Tanza—Mr. Bender—Mr. Hewitt WE ARE PROUD TO OFFER

DIVERSITY RECEIVING EQUIPMENT

BRAND NEW! EXPORT PACKED!
Includes many spare parts . . . tubes, oscillators, transformers, condensers, meters, resistors, etc. Manufactured by Schuttig \& Company, Washington, D. C.

Write for free descriptive folder.

MARINO RADIO CO. Television, 2 alalis and Clectionic $M \cdot R$ Subplies

203 GREENWICH STREET (Near Fulton St.) NEW YORK 7, N. Y.

Bel TVG are our specialty WE HAVE OVER 200,000

we also have large stocks of:

AN Connectors	Controls	Relays
APC's	Crystals	Resistors
Binding Posts	Filters	Servo Ximrs.
Cable	Fuses	Shock-Mounts
Capacitors	Hardware	Sockets
Ceramicons	Iron Core Slugs	Spaghetti
Ceramics	Knobs	Switehes
Chokes	Potentioneters	Transformers
Circuit Breakers (sine-cosine)	Tubes	
Coils	Pulse Xfmrs.	And Others

MINIATURE

 RELAYS55251 TELECHRON, 24VICC, SFSN no. 300 . $553+0$ PRICE, $24 \vee D C$, SIST n.O. 300 ohm $553+2$ TELECHRON. 24VDC, Makes
 $55526 \mathrm{CCOK}, 24 \mathrm{VIDC}, \mathrm{Makes} 2$, Breaks One 55531 RBM 1224 DCD, Makes 4, Breaks 55589 RBM. $24 \mathrm{VDC}, \mathrm{JPsT}$ n.o. 300 ohm, ${ }_{55836}=1 /$ G.E. $24 \mathrm{VDC}, \mathrm{SrDT}, 250$ olnn,

55837 G.E. 21 NDC, Dowhle Make. 300 ohm.
RIU 1 U8G
55837 RBM, Same as R108G, \#R108R.
55837 ALLIED, Stune as RIOSG, \#lil 108.
DIG3221 AMER TOTALIZATOR. 24 VDC ,
GUARDIAN. 24VDC. SPST, n.o. 300 ohms, Anti-Chacity Arm, Ceramic Insulation,
FR 106
$23012-0$ RBM, 24 VDC, SIDT, 250 Ohms,
7251 ARC 24 VDC SPDT 300 ohm \#R406...
7252 ARC. 24 VDC, IDPST no. 300 ohm, Anti-Capacity Arns, Ceramic Masulation,
$\# R: 354$
A13415 CLARE, 12 VDC, DI'ST n. $0 ., 120$
A2:577 CLARE, 24 VDC, DPST n O., 250

zh77628.1 AUTOMATIC, 12 VTC, Make One, Break Thwo, 640 ohnis Dual Telephone Trpe Contact $\mathrm{s}=1244$
7472679 G.E. 3VDC, SIST n.o., 30 ohms 2VDC, SPTT, 125 ohms, \#R173.
73A23 ALLIED. $24 \perp \mathrm{NDC}$. Make 3. Break one
300 ohms, TB 302 PRICE ${ }_{2}^{2}+\mathrm{VDC}$, Make 3. Break one,

PULSE XFMRS

DONGAN TR 1043-A461 Ratio 1:1 high powe

W.E. (coreless tupe) A quasi-differentiating xfmr, Fri. When muned with a 01 mid resonates a 5020 cus. Split wound secondary terminates into
10000 ohms Army SC $\$ 2 \mathrm{C} 2260 / \mathrm{T} 2 \ldots . . \$ 2.25$ ea.
 FREED \#12524 $2: 1$ ratio-liigh repetition rate HORIZONTAL blocking ose. xfmr.........696 ea. VERTICAL blukting osc. xfmr..................69c ea,

SERVO OUTPUT

XFMRS

PP6L6 to Serwo merhanism with 10%
metal feed-hack winding.
core

DUAL unit PP6V6 to Servo mechanisu with 10%

AMERTRANFILTER REACTOR

TS2A VARIABLE CERAMICONS
CAPAC. 1.5 to $7: 1.5$ to $7.5 ; 3.5$ to $30 ; 5$ to 40
FEEDTHRU 55 mmf 二 $10 \% \ldots10$ ea.; $9.00 / \mathrm{C}$

H-F TIE

 POST

HI-VOLTAGE GLASS TO METAL SEALS (FEED THRU)

> MANY TYPES AND SIZES.

Send us blueprints or samples for our Quotes.

TERMS

Write Us Your Needs for 1 mmediate Quote PRICES FOB OUR PLANT. Min. Order $\$ 5.00$

Univeracs /sesercleop 324 CANAL ST. N. Y. 13, WA. 59642

DEPENDABILITY IN ELECTRONICS

WE ARE NATIONAL DISTRJBUTORS OF PARTS, TUBES AND EQUIPMENT. WE SOLICIT INQUIRIES FROM ORGANIZATIONS WHO APPRECIATE INTELLIGENT SERVICE AND HONEST PRICES, PARTICULARLY AT THESE CRITICAL TIMES.

REAL VALUES!
SCR 625
FAMOUS ARMY MINE-DETECTOR for prospectors-minersoil companies - plumbers - etc.,- etc., -etc. This sumit is steling orfered now it a eonsisiserablor reduction in Inice. Recently adertised at
$\$=9.50$
it is now
availanle in the same banid nave
wranpings in slititase
$\$ 59.50$
WHILE
LHEYE
LAST!

CABINET CH-118

Olive drab in color this cabinet has a full length the standard $19^{\prime \prime}$ painels with 60 inclies of height and 20 inches deep. It is shock monnted on a heavy steel platformi and has a two-inch protrusion and wiring. Louvered vents allow air $\$ 3450$ circulation top
F.O.B. Chicago
\$34.50

RA 52-RECTIFIER

A transtat controlled rectifier to produce high
voltage DC from 110 VACS 60 cycle source. Up to
 BC 768
Radio Receiver Chassis complete except for 13 tubes. This classis with standaril $19^{\prime \prime}$ panel front contains the receiver for 493.5 MC complete with power sumply and an additional low voltage power
surply that originally supplied the keger me fro as described below. 110 VAC 60 cycles is the primary Five $10 \mathrm{mfd}-600 \mathrm{VDC}$ of filled $G E$ condensers Ttro of $10.4 \mathrm{MC}, 6.3 \mathrm{VAC}$ Transformer and of coutse nower transtormers-chokes and miscellaneous parts. All units are in good condition as re-
moved trom new priuimment. Fien the saluage value is a great deal more than $\$ 9.95$

COMPASS INSTALLATION

Loof 201: Loons (tuanualy ratabiob, new

ling set of corming complete set.
MISCELLANEOUS SPECIAIS!

$$
\begin{aligned}
& \text { One Tube Interphone Amplifier Small } \$ 4.95 \\
& \text { Ont }
\end{aligned}
$$

One Tupe aluminume case fully enclosed

$$
\begin{aligned}
& \text { ator and selssn recelver.... } 182 \text { add } \\
& \text { A- } 11-2 \text { Transmituers Selsyn for } 8 \text { - }
\end{aligned}
$$

(1hoth I 82 \& Tans. Selsyin for $\$ 7.00$)
PF-101 Dynamoro
ar Weston Type in, inodel
BC-1023 Marker Beacon Receiver, complee
With tubes. sho \quad manual 9.95
 1:C-924 $2 \overline{2}-38 \mathrm{MC}$ FAT Transmitter, complete
with tubes BC-484 $27-38$ MC. FS Transinitter, less
dvnamotor 10 meter moditicution kit ror BC-ti0..... 3.95
tubes, dyminotor and control units.
ARL Control Box.
ARR2 Control Box.
CATHODE RAY TUBES
 Shipments FOB wareholuse. 20% Deposit on or. ders. regular sales tax to remittance. Prices sub. ject to change without notice.

ARROW SALES, Inc.
 1712.14 S. Michigon Ave., Chicago 16, III. DHONE: MArrison 7.9374

$\star \star \star \star \star \star \star \star \star \star$

 COMMUNICATION DEVICES CO.2331 Twelfth Ave.
New York 27, N. Y. Cable: COMMUNIDEV Tel. AD-4-6174, 5

R.C.A. Model MI-8167

TRANSMITTERS

Point-to-point communications
Freq. Range: 2000 to $20,000 \mathrm{Kcs}$.
Output: 350 Watts C.W.
250 Watts Radiotelephone Input: 190 to 250 Volts AC $50 / 60 \mathrm{cps}$. Size: $60^{\prime \prime}$ high, $17^{\prime \prime}$ wide, $27^{\prime \prime}$ deep Tubes: 807s, 813s, 805s, 866s Master Oscillator unit built-in, fully shielded and stable. All self contained including ontenna network. Crystal Multiplier units (available) fits in place of M.O. unit. Speech amplifier is only external unit and has $110 / 220$ y. AC input, four stages, high gain. Total net weight, 625 lbs .

Complete! New! Quantities!

Other Choice Selected Transmitters, Receivers and Combinations. Handy-Talkies, WalkieTalkies, Portable Radars Also Available.

Pictorial listings on request.
$\star \star \star \star \star \star \star \star \star \star$

TEST EQUIPMENT

HI POWER X BAND TEST LOAD, dissipates 350 watts of average power for $5 / 8^{\prime \prime} \times 1^{1 / 4^{\prime \prime}}$ waveguide, VSWR less than 1.15 bet. 7 and $10 \mathrm{KMC} \$ 150.00$

S Band Test Load TPS-55P/BT, 50 ohms
$\$ 12.00$
FI POWER S BAND TEST LOAD, dissipates 1000 watts of average power, for $11 / 2^{\prime \prime} \times 3^{\prime \prime}$ waveguide. Range 2500 so 3700 MC .
X Band Pick-up Horn, AT-48/UP with coaxial fitting $\$ 10.00$
TS-62 X Band Echo Box with r.f. cable and pick-up antenna.
TS-33 X Band Erequency Meter. 8500-9600 Mcs. Crystal detector and 50 micro-amp. meter. Indicates Resonance. Connection for scope available.

TS.45A-APM-3 Signal Generator. 8700$9500 \mathrm{mc} ., 110 \mathrm{~V} .60-800 \mathrm{cps}$.
30 MC I.F. STRIP, VIDEO, and AUDIO AMPLIFIER AND 110 -Volt $60-2600 \mathrm{cps}$ POWER SUPPLY. Bandwidth 10 mc: new, part of SPR-2 Receiver.
AMPLIFIER STRIP AM-SSA/SPR-2 contains I.F. amplifier, detector, video amplifier, pulse stretcher and audio amplifier and Rectifier Power Unit PP-155A/ SPR-2 bandwidth 10 mc , center frequency 30 mc , sensitivity 50 microvolts for 10 milliwatts output. Power supply $80 / 115 \mathrm{~V}$ ac, $60-2600 \mathrm{cps} 1.3$ dmps. Send for schematic... $\$ 65.00$ less tubes

S Band Signal Generator Cavity With CutOff Attenuator. 2300-2950 mc., 2C40 tube, with modulator chassis.... $\$ 30.00$

UPN-1 S Band Beacon Receiver-Transmitter $\$ 75.00$

TS-155 S BAND SIGNAL GENERATOR and Power Meter.

S-Band Mixer, tunable by means of slider, type N connector for the R.F. and local oscillator input, U.H.F. connector for the I.F. output, variable oscillator injection. $\$ 30.00$
S Band Crystal Mixer, variable oscillator injection S17.50 TS-110 S Band Echo Box $2400-2700 \mathrm{mc}$. portable
.$\$ 110.00$
X Band Thermistor Mounts, VSWR less than 1.4 8500-9600 MC Fixed triple tuned, $1 / 2^{\prime \prime} \times l^{\prime \prime}$ waveguide..... $\$ 40.00$ Fixed triple tuned $5 / 8^{\prime \prime} \times 1^{1 / 1 / 4^{\prime \prime}}$ waveguide
$\$ 50.00$
X Band Crystal Mount, 1/2"xl" waveguide
$\$ 25.00$
UG80/U $1 / 2$ "xl" to $5 \mathbf{B}^{\prime \prime}$ "xl1/4" adapter.
$\$ 5.00^{\prime}$
ESTERLINE Angus recording Milliammeter 60 cycles, 110 V . AC 1 ma full scale.
$\$ 160.00$
TS-89 Voltage Divider for measuring high video pulses, ratios $1: 10$ and $1: 100$ fransmission flat within 2 db 150 c.p.s. to 5 mc ., with cable for attaching to synchroscope
Waveguide Below Cut-off Attenuator L 101-A U.H.F. Connectors at each end calibration $30-100 \mathrm{db}$
... $\$ 15.00$
HYPERSIL CORE CHOKE, 1 Henry, Westinghouse L-422031 or L 422-32.... \$3.00
PULSE INPUT TRANSFORMER, permalloy core, 50 to 4000 kc ., WE-161310, impedance ratio 120 to 2350 ohms. . $\$ 3.00$
X Band attenuator, $11 / 4^{\prime \prime} x^{5 / 6 "}$ guide, single guillotine type, $0-30 \mathrm{db}$, V.S.W.R. 1.2 maximum. calibrated
$\$ 85.00$
High Voltage motor operated switch, 18 KV., 5 Amps peak, Schweitzer-Conrad No. QA-35582

TEST SETS

TS—126
TS— 226

COAXIAL CABLES

"JAN" APPROVED
Available From Stock

RG. No.	Price Per Thous. Ft.	RG. No.	Price Per Thous. Ft.
RG5U.	\$100.00	RG27U.	\$450.00
RG6U.	160.00	RG29U.	50.00
RG7U.	120.00	RG34U......	250.00
RG8U.	150.00	RG39U.	180.00
RG9U.	247.00	RG41U.	400.00
RG9AU	275.00	RG54U.......	75.00
RG10U	245.00	RG54AU...	60.00
RG11U.	150.00	RG55U	110.00
RG12U.	245.00	RG57U.......	125.00
RG13U.	225.00	RG58U......	70.00
RG14U.	300.00	RG58AU	125.00
RG17U.	650.00	RG59U.	70.00
RG18U.	950.00	RG62U.	75.00
RG19U.	1,250.00	RG63U.	175.00
RG20U.	1,550.00	RG65U	650.00
RG21U	295.00	RG71U....	200.00
RG22U	150.00	RG74U.	250.00
RG24U	450.00	RG77U	80.00
RG25U.	495.00	RG78U.	80.00

"UHF" Coaxial Connectors

NEW "JAN" APPROVED

No.	Jan. No.	Description	199	$\begin{gathered} 100 \\ \text { to } \\ 999 \end{gathered}$	1000 Over
83-1R	SO239	Receptacle	\$. 55	\$.50	\$.40
83-1 SP	PL259	Plug	. 55	. 50	. 48
83-168	UG176U	Adapter	. 18	. 17	. 15
83-185	UG175U	Adapter	. 18	. 17	15
83-1SPN	PL259A	Plug	. 60	. 55	50
83-776	UG203U	Plus	. 85	. 75	. 75
83-1RTY		Receptacle	. 75	. 65	. 65
$83-1 \mathrm{H}$	UG106U	Hood	. 12	. 10	. 10
83-1HP		Hood	. 27	. 24	. 24
$83-765$	UG177U	Hood	. 31	. 25	. 25
83-1 AC		Cap \& Chain	. 61	. 50	. 45
83-1BC.		Cap \& Chain	. 35	. 31	. 30
83-1T.	N358	T Connector	1.50	1.40	1.40
83-1 AP	N359	Adapter	. 35	. 30	. 28
83-1 AP	M359A	Adapler	. 80	. 75	. 70
83-1J..	PL258	Junction	1.00	. 90	. 85
83-1F	PL274	Feed Thru	1.50	1.40	1.35
83-22SP	UG102U	Twin Plug	. 90	. 90	. 90
83-22R.	UG103U	Receptacle	. 90	. 90	. 90
83-22AP	UG104U	Adapter	1.40	1.95	1.10
83-22J.	UG105U	Junction	1.50	1.40	1.40
83-22T	UG196U	T Connector	1.65	1.50	1.50
83-22F	PL275	Feed Thru	2.00	1.80	1.75
83-2SP.	PL295	Plug	1.94	1.75	1.70
83-2R.	SO265	Receptacle	1.44	1.30	1.25

LIFE ELECTRONIC SALES 345 BROADWAY NEW YORK 13, N.Y. Dlgby 9-4154

CONDENSERS - TRANSMITTING MICAS BATHTUBS • UPRIGHTS • SOCKETS CONTROLS - RHEOSTATS - MANY OTHERS $\bar{\equiv}$ =SEND US YOUR NEEDS \qquad FOR OUR QUOTATION

TELEPHONE

 RELAYS

CLARE, TYPES C, D \& E COOKE, AUTOMATIC-ELECTRIC ALL TYPES of COILS and PILE-UPS CLARE TYPE K MINIATURE TELEPHONE RELAYS.
4 POLE DOUBLE THROW COIL- 24 V . DC. 300 OHM. PRICE - $\$ 1.50$ ea. Send Us Your Specifications For Our Quote

Chase
Electronic Supply Co,
222. Fulton St.

New York 7, N. Y. Hollis 4-5033

FOR SALE:

One TS-146/UP X-band FM signal generator in good condition. Best offer.

FS-1:3:38, Electronics
520 N゙. Michigan Ave., Chicago 11, 111.

MARKTIME 5 HOUR SWITCH A 10 amp. timing derice. Pointer mores back to zuro.
after time elater after time elapses.
Ifr shives
TV suting off radtos and TV shitting on raden ro ko tio
bed. lismited supply at thispteclal 1RMCE... $\$ 4.90$ also araliable in $15 \mathrm{~min} .-30 \mathrm{~min} .-1 \mathrm{hr}$. at $\$ 5.90$ Steven-Arnold Resonant Relay. Only two types In stock. 442 and 240 CPS either one..... $\$ 4.50$ Both for $\$ 8.00$

ISOLATION TRANSFORMER \$1.95 Nat. kuoun Mpqrs. Su watl 2 windings. 115 Y 10 115
small radios ey ind medical and electronic dey

ELAPSED		
TIME		
METERS	GONIOMETERS	
$\$ 75.50$	\vdots	MIcro Switch Solenoids Relays
EST.	0	Electic Counters

64 Dey St., New York 7, N. Y.

CH a wole 3 s ampere 115 v . AC relay. $\$ 4.90$ GE 3 ampere Mercury switch

8 CONDUCTOR CO.- 139 CABLE 2 No 14 shlyplded or unshielded
2 So 14 and 6 No 20 . Wite for samples
HOLTZER.CABOT M.G. 2IB. CONVERTER

WESTON Model 528
3 Amp. and 15 Amp. A.C.
With terst leards in a leather casm.

1951 TV Remote Control Motor Unit
Readr to attach to any device that upula furnitu rom remote point. A complote $\$ 30.01 \$ \$ 3.95$ companies. Sorry, can't name it here!

\sqrt{r} GUARANTEED
 TEST EQUIPMENT

We believe we stock the most comprehensive variety of military and commercial electronic test equipment available. A partial list follows:

TS-1ARR			
TS-3A/AP	TS-87/AP	TS-226A	BC-906/D
TS-8A/U	TS-89/AP	TS-233/TPN-2	BC-949/A
TS-10A/APN-1	TS-96/TPS-1	TS-98/AP	TS-268
TS-12	TS-100	BC-1060/A	
TS-13	TS-101AP	TS-323	BC-1066/A
TS-14	TS-102/AP	I-56	BC-1201/A
TS-15B/AP	TS-108/AP	$1-95 / A$	BC-1203
TS-16/APN	TS-110/AP	I-106/A	BC-1287/A
TS-19	TS-118/AP	I-122	BC-1277
TS-27/TS	TS-125/AP	I-177	BE-67
TS-32A/TRC-1	TS-131/AP	I-178	LAD
TS-33	TS-153	I-208/A	LAF
TS-34	TS-155A/AP	I-212	LAG
TS-34A	TS-170/ARN-5	I-222/A	LU2
TS-35A	TS-173/UR	I-225	OA3
TS-36	TS-174	I-233	TTS-4BR
TS-45/APM-3	TS-175	TE-21/A	TTX-10RH
TS-47/APR	TS-184/AP	IE-36	TSS4SE
TS-51/APG-4	TS-197/CPM-4	IF-12/C	TSX4SE
TS-62	TS-203/AP	BC-221	
TS-69/AP	TS-204/AP	BC-376	

Each piece guaranteed. All accessories and instructions furnished. (We will purchase your test equipment at highest prices. Send your list for a prompt reply.)
Cable: WESLAB
Telephone: WE 5-4500

Weston SaboratariEs Westan 93. Wase.

DFFEIRS FIROM TEXAS

CUNNINGHAM ENGINEERING COMPANY

4798 PORT ARTHUR HIGHWAY

Voltage sensitive Relay. West. Type SV, glass housing with target. Hand calibrated for pickud
any preset 55 to 125 volts. Dropout is 98% of any preset 55 to 125 volts. Dropout is 98% of
pichup setting. Two reversible contacts.
Each $\$ 13.50$
LABORATORY TEST VOLTAGES-M-G Unit. Motor Single Fhase Synchronous 60cyc /l $/ 1 / 115 \mathrm{~V} /$ cyc/115v/1 Kw \& DC Gen 150v/.1 kw \& DC Gen $500 \mathrm{v} / .125 \mathrm{Kw}$ \& DC Gen $1000 \mathrm{v} / 3 \mathrm{Kw}$. Short-time F.T.\&R. Co. Wt. $485-1 \mathrm{~b}$. With controlls. Mfg. RIGID COAXIAL CABLE-I- $\% /^{\prime \prime}$ x $8 / /^{\prime \prime}$ Hard Ceramio bead. $51.5-\Omega$ 20-ft. joints. Ea. $\$ 40,00$ Iright-angle $\$ 12.50$. Expansion ioint, $\$ 100.00$. Rotary joint $\$ 140.00$. Gas seal $\$ 24.00$ Union solderless $\$ 34.50$. Wall entrance flange $\$ 3.00$. $7 / R^{\prime \prime} \times{ }^{1 / 4}$ Hard. Ceramic bead. $66-\Omega$. 20 -ft. joints
Ea. $\$ 22.50$. Solderless connectors $\$ 3.00$. $1 / 2^{\prime \prime}$ Flexible. Ceramic bear. $96-\Omega .{ }^{2} 36$-ft. lengths. ends litted with Amphenol. $93-\mathrm{M}$ Connector. No gas or watertight.Each. $\$ 10.50$
HIGH VOLTAGE CABLE-OLonite Corp. Single Rhielded \#10-AWG. Portable. Neoprene jacket Rated $25,000-\mathrm{VAC}$. Steady-state dialectric
strength exceeds 100,000 polts. BEAUMONT, TEXAS

Eastern Air Device Jiso Centrifugal Blower, 115 volt 80 cycles 0.1 amp. 1 PH 10 C.F.M. Continuous duty 1.0 M.F.D. Ca-

Eastern Air Device JnoE Dual Centrifugal Blower. ${ }^{115}$ volt fo cycles 0.1 amp. 1 PH
$20 \mathrm{C} . \mathrm{F} . \mathrm{M}$ Coninuous duty 1.0 MF . Capacitor siart with Ca duty 1.0 M.F.D. Caout Capacitor

Miniatare lamp T14/4, 3 volt .19 amp. Airplane Indicator, Amb. Ctd.

VOLTMETER Weston 833130 v . A.C. 400 cycles $21 / 4$ Hush hakelite Aircraft mounting black scale Fluorescent numerals re-
moved from new equipment......... $\$ 3.50$

AMMETER. $150 / 300$ dual range Triplet $341 \mathrm{~A} 31 /{ }^{\prime \prime}$ rectangular tush bakelite 5
amp Movement $\$ 4.95$ with external current transformer for 150 amp.

Only $\$$: 50
Siuart D Circuit Breakers Fush Type AN3161-35 35 amp. @ 30 volt D.C.

Siuare D Bat llandle Circuit Hreaker Type A.N3160-10 30 volt @ 10 amp

FOR SALE
 ELECTRICAL STEEL

We can offer about $26,000 \#$ of HI Grade Strip-. $005 \times 12^{3 / 8}$ " "Hipersil" 31/4\% Transformer grade - In Coils weighing about 900 \# each-Material new and prime but outside wrap weather discolored.

GLOBE TRADING COMPANY

1815 Franklin Detroit 7, Michigan Phone-WOodward 1-8277

SELENIUM RECTIFIERS

F.W.B., FWCT, 3 ${ }^{ \pm}$, Volt. DBLR, etc. Finest materials, workmanship and immediate deliveries COMPARE OUR PRICES
Full Wave Bridge Types

AMPS	18 V. AC/ 14 V. DC	36/28	54/40	110/100
1		2.50		
2	2.50	3.00	6.00	9.00
6	4.00	6.00	8.00	
8	6.00	800		
12	8.00	11.50		
24	13.00	22.00		

Selen. Rect. Transformer New, Herm. Sealed
110 V. 60 cy $/ 6,12,18,24,30, ~ \& ~$ - New General Radio Model $50-\mathrm{B}$ variacs $\mathbf{2}$. $\$ 3.95$ SPECIAL TYPES TO ORDER Inquire for quantity prices
BARRY ELECTRONICS CORP.
136 Liberty St.
New York 6, N. Y.
Phone: REctor 2-2563
25% deposit with orders-or send full remittance to save C.O.D. charues-rated firms (D\&B) net 10 days. All merchandise fully guaranteed

American \& Canadian enquiries to our Agents: POLAS MERCANTILE

115 Broadway
New York, 6
Telephone: Rector 2-B595
ALL OTHER ENQUIRIES

Leading Exporters and Stockists of all types of Radio Receiving and Transmitting Tubes. Current Pro-
 duction of main British Factories. Ex-Government Surplus, American, Canadian and British Tubes in Original Brands. Suppliers to Foreign Governments, Airlines, etc.

THE BEST IN ELECTRONIC SURPLUS

AVAILABLE FROM OUR STOCK FOR IMMEDIATE DELIVERY

TRANSMITTERS
T4/FRC, with Modulator MD 1/FRC, and
PP-1/FRC Power Supply
RCA-ET 4332 and 4336.
TDE, TBK, 8010, 8019, for Ships. ATD, for Aircraft.
BC-319, BC-604, BC-684, etc.
GE-2.5 KW, 2.0 to 20.0 mc , Al. MANY OTHERS!

TRANS-RECEIVERS

SCR-284, SCR-509 \& 510, SCR-511, SCR-609 \& 610, SCR-522, LINK Model 1498, TCS with $12 / 24 / 230$ DC and 110 V . AC Power Supplies, SCR-508/528/608/628.

AUDIO SOUND

Beachmaster 250 W.; Western Elec. Model HLAS-500W.; RCA 25W. (12V.)
Mobile ; RCA MI-2817-E Amplifier, 1.000 Watts (2-500 watt Channels) ; W.E. Speaker Units D-I73246 (25-30 Watts) and D-173232A (50-60 Watts)

TEST EQPT.

BC-221, TS-174, TS-47/APR, TU-57, TU-56, TS-45, TS-143, I-148, TS-305, others.

RADAR

SCR-545-A, Complete in Trailer Truck, with or without 25 KVA Gas-Engine Generator Unit. TPS-1 Portalle, Ground-Based Search Radar, PPI and Class A scopes. SF-1 Ship Radar, Complete, NEW, with many boxes of Spares. MARK V Training Radar, for schools, training.

RECEIVERS

RBM, RBS, RBO, BC-312, BC-342, BC-348, DZ-2 Direction-Finders with Loops, SCR-206 Direction Finders with Loops, SCR-291 Goniometers and Acces sories, R-2/ARR3. Others.

SPECIAL

Wilcox 36A Rectifier-Power Supply, for 3 KW modulated transmitter.
RADIOSONDE AN/AMQ-1, Meteorological Balloon transmitter with self-contained instruments.
"SNOOPERSCOPE" TUBES, British Infra-Red Image Converter Tubes, with matching Bausch \& Lomb front-end Lens.
SOUND-POWERED HEAD-CHEST SETS, RCA-2454-B, all New, export-packed.
32 V . DC to 110 V . AC KATO Converters, NEW, good to 300 watts.
Teletype, Wheatstone Perforator and Boehme Keying Head, Excellent Condition.

TELEMARINE COMMUNICATIONS COMPANY

CABLE ADDRESS: TELEMARINE, N. Y.

Phone-
LOngacre ${ }_{\text {4-4490 }}$
540 W. 27th St., N. Y. 1, N. Y.

WHOLESALE ONLY

ELECTRONIC COMPONENTS
AIRCRAFT EQUIPMENT
HYDRAULICS
RADIO \& ELECTRONIC SURPLUS
13933-9 Brush St. Detroit 3, Mich.
Phons Townsend 9-3403

ELECTRONIC TUBE-MAKING

 MACHINERYFor manulacturing radio tubes, electronic tubes, cathode-ray tubes, lamps. New and used. Reasonably priced, satisfaction
guaranked.
67 E. 8th St. ELECTRICAL SALES CO. Yew York, N. Y.

Collumbia electronics tio.

TELEVISION CAMERA

350 line resolution. Easily conversed to present RMA standards. Circuits available with camera. Complete, like new.

TEST EQUIPMENT

Complete Line!
SIGNAL GENERATOR 804-C DUMONT 224-A OSCILLOSCOPE I-77 HICKOK TUBE CHECKER l-208 FM SIGNAL GENERATOR RPC MODEL 644 MULTIMETER FERRIS MICROVOLTER MOD. 18-C.

IE-36 (New)	TS-100/AP
I-139 METER	TS-102A/AP
I-212	TS-111/CP
TS-3/AP	TS-127/U
TS-5/AP	TS-155
TS-10B/APN	TS-170/ARN-5
TS-15A/AP	TS-182/UP
TS-19/APQ-5	TS-184A/AP
TS-34/AP	TS-250/APN
TS-36/AP	TS-375/U
TS-61/AP	UPM-1(Complete)

RC-184 IFF EQUIPMENT Brand New. Complete.

COMPLETE RADAR
APS-4
MARK 16
APS6
$\begin{array}{rr} & \text { RECEIVERS } \\ \text { APR-4 APR-5 }\end{array}$
SCR-720 EQUIPMENT
SCR-584 PARTS

HEADSETS
Brand New
MK-20A/UP - New,
INDIVIDUALLY BOXED
SCR-291 DIRECTION FINDING
EQUIPMENT—NEW

MP-22 MAST BASE U/16 U PLUGS With Hardvare and MG19A-New Sracket.

R5/ARN-7

VARIAC TRANSTAT AMERTRAN

 Input 0-115 V., 50-60 cycles; output 115 V 100 amps. 11.5 Kva. Excellent con. dition.SEE COLUMBIA ELECTRONICS AD ON PAGE 346

COLUMBIA ELECTRONICS LTO
 524 5. San Pedro St., Los Angeles 73 Coble Address: COELECT
 wi items subect to prior sate

SOUNDTRONIGS SPECIALS

STANDARD BRAND RESISTORS

Muter Ceramic Cond 600 V 15. 22, $33.56 .75,82$,
180,220 Mffd...........5e ea.; $\$ 4.50$ Per 100

Amphenol 91-MC 400
3 CM Flex. Wale Guide $2^{\prime \prime}$ Long Sq to $\mathrm{Sq} \underset{\mathrm{Flange}}{\$ 1.75}$
Weston 663 Trype 5 Multi-Tester. Used but Guar.
Bendix FREQ Control Unit for 60 V Control of Gen. \# CAl 111000. Complete with Thbes. $\$$ Less

Arrow H di II 5.P.D.T. Turn Switel 10A CRyV. Single $3 /{ }^{\prime \prime}$ Hole Mtg.

Sprague Noise Filter $\overline{\text { T Amps }} 130$ VAC, 400 V. I.C.
\#.JX6

Large Quantity of Mica, Silver Mica, Trans. Mica Carge Quantite of Mica

SOUNDTRONIGS LABS.
 632 Arch St., Phila. 6, Pa, MA 7-2715

SURPLUS EQUIPMENT

POWER RHEOSTATS

llardwick-IIindle and Ward Leonard (Mfg.) 5 Ohms; 100 Watt: 4.48 amps 100 Ohms; 100 Watt:
1.0 amp

Boxed, Brand New with Knols $\$ 2.50$ each $\mathbf{\$ 2 5 . 0 0}$ per dozen PIONEER AUTOSYNS
 (Has hollow shaft)

PIONEER TORQUE UNITS

TYPE 12602-1-A	\$70.00 each
TYPE 12604-3-A	\$70.00 each

SYNCHROS

1F Special Repeater (115 V 400 Cycle)
$\$ 15.00$ each
C 78248 Transmitters (115 V , 60 Cycle)
20.00 each

SERVO MOTOR 10047-2-A-Pioneer; 2 Phase: 400 cyc; with 40: 1 Reduction Gear $\$ 10.00$ ea.

$\$ 10.00$ ea.

INVERTERS

PE 218 LELAND ELECTRIC
Output: 115 VAC; single phase PF 90; 380/500 Cycle: 1500 VA. 20 amps ; $8000 \mathrm{R}[\mathrm{M}$; Exc. rolts 27.5. Brand New. . . $\$ 39.95$ ea. 12116-2-A PIONEER
Output: 115 VAC; 400 cycle; single phase: 45 amp. Input: 24 VDC; 5 amp. $\$ 90.00$ 12130-1-A PIONEER
Output: 115 VAC; Single plase: 400 escle: Amps 88: 100 VA input: $18-28$ VDC: 20 amps. $\$ 800$

10486 LELAND ELECTRIC

Output: 115 VAC; 400 cycle; 3 phase: $175 \mathrm{YA}: 80$
PF. Input: 27,5 DC; 12.5 Amp; Cont Duty. 80

5ASI3INJ3 GENERAL ELECTRIC (PE-118)
 W. E. Spec. Ks-5601L. Input: 26 VDC at 100
Anups. 5D2INJBA GENERAL ELECTRIC: Output: 115

5AT121JJ2B GENERAL ELECTRIC Output: $115 \mathrm{VAC}: 400$ cerce: 3 phase; $175 \mathrm{VA}: 80$
Output: 115 VAC
400 CYC Output: $115 \mathrm{VAC} ; 400 \mathrm{CYC} ; 75$ VA; 3 Phase: ank
 10563 LELAND ELECTRIC

400 CYCLE MOTORS

Eastern Air Devices Type JM6B; 200 VAC; 1 AMP 3 Phase; 400 Cyc: 6000 RPM. $\$ 12.50$ ea

SEND YOUR REQUEST FOR ALL TYPES OF SYNCHROS
PLEASE ENCLOSE FULL AMOUNT WITH ORDER
ALL PRICES F.O.B. PASADENA UNLESS OTHERWISE SPECIFIED EQUIPMENT FULLY GUARANTEED Output: I15 VAC; 400 crele: 3 phase; 115 VA: 75
PF. Input: 28.5 VDC: 12 Anif..... $\$ 80.00$ ea. -
焐
D.C. MICROAMMETERS

$0-50$ Ua $3^{\prime \prime}$ sq. G.E. DO-50.......... 13.00
PORTABLE INSTRUMENTS
Molded Bakelite Case 7" $\times 41 / 2^{\prime \prime} \times 3^{\prime \prime}$
D.C. MICROAMMETERS
5...10... 50 . . microamperes

THERMOCOUPLE MILLIAMMETERS
1.5 . 5 . 10. . milliamperes

Available in multiple range combinations
PRECISION ELECTRICAL
INSTRUMENT CO.
146 Grand Street New York 13, N. Y.

WESTINGHOUSE TYPE HQS phase selector relays

For Selective-Pole Carrier Relaying. Brand New, Complete. Original cost $\$ 650.00$ per set. 3 units per set. Only 40 sets in stock. Write for circular available

$$
\$ 95.00 \text { each }
$$

ELECTRO SALES CO., INC.
108-110 Pearl St.,
Boston 10, Mass.

TEST CHAMBER

Hot and cold; age 1942; used six monthe. like new;
Inside dimensions $30^{\prime \prime} \times 58^{\prime \prime} \times 28^{\prime \prime}$ high; Temperature control-minus $57^{\circ} \mathrm{F}$ to plus $125^{\circ} \mathrm{F}$;
Electric heating bank 6. KW; Servel Air Compressor, 2 -stage; $\pi 1 / 2$ H.P., $3 / 60 / 220$ AC
Fans for circulation; inspection in operation Guaranteed condition; F.O.B. Brooklyn.
Kings County Machinery Exchange
408 Atlantic Ave. Brooklyn 17, N. Y.

[^19]

MARITIME INTERNATIONAL COMPANY

11 State Street, New York 4, N. Y.
Cable Address "Foxcroft"
Phones: Dlgby 4-3192-3

A. C. Power Anywhere with Katolight Plants and Generators

Three 400 -cycle, 40 KW ,
three-phase, AC generators, 120/208 volt, 1714 rpm, $\$ 850.00$.

Two 10 KW complete light plants, $1200 \mathrm{rpm}, 115 / 230$ volt, single-phase; $120 / 208$ or $220 / 440$ volts, three-phose, $\$ 1150.00$.
The above offered subject to prior sale.

Manufacturers of motor-generator sets, high-frequency generators, rotary converters, A.C. and D.C. generators.
KATO ENGINEERING COMPANY
105 Maxfield Avenue
Mankato, Minnesota

"Searchlight"

Opportunity Advertising

-to help you get what you want.

Take advantage of it-For Every Business Want "Think SEARCHLIGHT First"

COMMUNICA. TIONS CO.
393 GREENWICH STREET
NEW YORK 13, N. Y. BEEKMAN 3.6510
CABLE ADDRESS: COMPRADIO

- TUBES This Month's Special:

New Standard Brands, Only
723A/B - 24.50 1B22 - 3.50
2K25 - 35.00 1B29 - 3.50
2K26 - 3 B24 - 5.50
2K29 - 27.50 3E29/829B
2K45--170.00 14.75
$2 K 54$ - 8025A - 7.00
2K55 . 4/52 . 300.00
We stock

- RADAR

Marine, Ground \& Airborne

- SONAR
- TRANSMITTERS
from 25 watts to 5 kilowatts
- RECEIVERS
- BEACONS
- LORAN
- RADIOTELEPHONES
- TEST EQUIPMENT
- TELEPHONE EQUIPMENT

Portable and Stationary
Switchboards and Supplies

- MOTOR GENERATORS
- RECTIFIERS
- POWER SUPPLIES

Our Export Department Available
For Special Service To Overseas Customers WE MAINTAIN OUR OWN FULLY EQUIPPED TESTING LABORATORY IN THE SAME BUILDING AS OUR WAREHOUSE TO TEST ANY ITEM WE SELL.
We guarantee everything we sell

PHOTILIIN SALES

1062 N . Allen Ave. SYcamore 4-7156
Pasadena 7, Calif. RYan 1-8271

WRITE FOR NEW 24 PAGE

SURPLUS SALES CATALOG
WE WILL BUY YOUR NEW OR CLEAN USED ELECTRONIC SURPLUS: ARC-1 ARC-3, BC-224, BC-348, BC-312, BC-342 ATC, ART-13, APS-13, BC-221, LM ${ }^{\prime}$, TS-12, TS-13, TS-23, TS-34, TS-35, IE-19A I-222, SCR-522, TS-100, I-100, or any BC I, IE, TS, APR.

WRITE FOR PRICES

1. \& N 8662 Potentioweter

CELLENT \$300.0 L. ${ }_{2}^{\&}$ N. 4725 Wheatstone Bridge with 350.00 Weston 769 Electronic Andyzer LIKE NEW 225.00

Westori 799 Insulation Tester of 10.000 225.00
 W ston 665 Yolt-ohm-Miliameter, case and model 666 socket selector Briscol Dynamaster Recorder-Controller
KIRQ1531 for lesistance Thermometers KIRQ1531 for lesistance Thermometers
$130-145$ ohm 130-145 ohm........... PIKE NEW - CELLE Variac-General Radio Type 50AO-135V
@ 50 annas. 500.00
 shunt, 250° dial
$2^{\text {" }}$ Aireralt Meter
calibrated $50-0-50 \ldots$ milliameter scale
2.95

MGOF-G-1 Onan Hotor Generator
Motor $115 / 230 \mathrm{y} .60 \mathrm{cy}$. single phase.
Generator 115 V . AC. 480 cy .53 wes.on Model 506 Voltmeter io 20,000
Wes on Model
volts with 406 Model 505 multipliers
One of the largest and most complete elestronic of lubes. capacitors, pluts, accessories, transmit ters-recpivers. lest equimment, etc. Send us your

TERMS: Prices f.o.b. Pasadena, California $\mathbf{2 5} \%$ on all C.O.D. orders. Prices subject to change without notice.

Oil Condenser Specials

$10 \mathrm{mfd}-600 \mathrm{~V}$
$\$.75$
Three term. bot. mitg. channel type. Dims.
 commercial specs. for 600 V . operation up to 40 degs. " C ". Ideal for filter or power factor application where ruggedness and quality are paramount. Carton of 24 weight 42 lbs .5 .65 ea.
$16 \mathrm{mfd}-600 \mathrm{~V}$
$\$ 1.75$
Dual 8 mids. hermetically sealed and packed. Tobe type PT-SC. 11 measuring Plugs into standard four prong socket. Quantity discount.
$8 \mathrm{mfd}-1000 \mathrm{~V}$
\$2.39
Dual 4 mfds. hermetically sealed and packed, measuring $53 / 8^{\prime \prime} \times 33^{\prime 2} 4^{\prime \prime} \times 27 / 16^{\prime \prime}$. Case of 10 \$2.10.
$4 \mathrm{mfd}-600$ V. Type TLA . . . $\$ 1.40$
$4 \mathrm{mfd}-600 \mathrm{~V}$. Type TLAD. . $\$ 1.65$
$.2 \mathrm{mfd}-1000$ V. ST Bathtub. $\$.19$
1 mfd-600 V. ST Bathtub . . \$. 48 Large quantities of bathtub, channel and upright oil conds. from 25 V . to 25 KV Trans. and revng micas. Stand brand pots. (AB) wire wound pots and 25 W . rheos Inquiries solicited.

```
MONMOUTH RADIO LABS
BOX 159
OAKHURST, N.J.
```

EMPLOYMENT BUSIINESS EDIPMENT OPPORTUNITIES Whatever your need think "SEARCHLIGHT" FIRST

 Response: 250 to 2500 Cyc. $\pm 3 \mathrm{IDB}$ Glass sealed. ${ }_{=7254502}^{2}$
I'ri. Imperlance: 500 Ohms. Sec. Impedance: 25 Ohms. Size $13 / \mathrm{m}^{\prime \prime}$ Ist. A $1^{\text {1" }}$ Overall. Diagram on Case. Hermetically sealed New. $\operatorname{SPECIAL}$ FILTER COND.
3×12 Mfd. (O) 4000 V.D.C. (Vil flled. Standolt
 MOBILE GENERATOR FILTERS
Tobe $\# 110^{-1}$. $6-30$ V.D.C. 55 Amps. Completely Shld. Ideal for Aircraft, Marine ${ }^{\text {Mnspaliat }}$ Amately
 heave threaded post terminals. \$1.95 Shielded. Too Terminals..................... $\$ 1.95$

 Shog. wh approx SELENIUM RECTIFIERS
Half wave tRatings with 500 Nid. Cab on Outpu
 \#1H4, A.C. Input: 28 V ., D.C. Output: 24 V . ${ }^{\text {(}}$ (Cht. lijts CIRCUIT BREAKEXS
Heary duty moulded Case. ${ }^{250}$ (G.A.C. 35 Amps (G.E. and Trumsell) Double Pole Single Switch. Type M (sit I, $120-240$ V. 20 Amp. Double Trum. $=$ J-5s4 2 pole 120 V.A.C. 25 Amps. Dual switch LINEN PHENOLIC TUBBING
O.D. $13 \mathrm{~s}^{\prime \prime} 3 / 32^{\prime \prime}$ wall. Over 3 Ft. Iong. Un
varnished orange linen finish... AC OR DC SOLENOID
Pull type. Laminated "U"e core. laminated "I'"
moving pole, in center. Riveted construction. Angle brackets for horizontal metg. Travel distance of nole. $1^{1 / 4 " . ~ W i n d i n g . ~} 400$ turns \#23 enameled wire.
DC resis. 2.6 ohms. For 9 to 12 rolts. 60 crele

25% deposit req
Prices subject to change without notice

UNITED SURPLUS MATERIALS

312 S. HALSTED STREET
CEntral 6 -4897
CHICAGO 6, ILLINOIS
Electronic, Aviation, Telephone \& Teletype Parts and Equipment

HIGH FREQUENCY EQUIPMENT

We design high frequency equipment. Let us know your needs.

GE-Leland Murray MG scts 5 HP Motor $440 / 2203 \mathrm{ph} 60 \mathrm{cy}$. generator self excited | 3 ph |
| :--- |
| conn |
| $\$ 650$ |

Large quantity transformers $115 / 6.3$ volts 25 VA to 150 VA
Several Selsyn generators various types 115 vollts 60 cy.

EDWARD WOLF CO.
360 Norfolk St. Dorchester, Mass. Geneva 6-6278

COAXIAL R F CONNECTORS

THE RADIOUISION COMPANY
56 Lispenard Street
New York 13, N. Y. BArclay 7-2685

W A N TED

WANTED

$\begin{array}{cc}\text { YOUR SPARE SURPLUS EQUIPMENT } \\ \text { DYNAMOTORS } \\ & \text { - SELSYNS © AUTOSYNS © INVERTERS } \\ \text { RECEIVERS OS TEST EQUIPMENT }\end{array}$ - TRANSMITTERS No Quantity Too Small or Too targo
bOX 356-SE EAST PASADENA STATION SALES PASADENA 8, CALIFORNIA

WILI RUY
 MN-26-K or -J
 COMPASS RECEIVERS

APN-9, TS-67, R-89B/ARN-5, ARC-1, ARC-3, ART-13, BC-221, BC-348, SCR-522, MN-53, MN-61, RA-1, MN-31 MI-32 ARN-7, ANY BENDIX OR AIRCRAFT RADIO EQUIPMENT, DYNAMOTORS, I NVERTERS, TEST EQUIPMENT WITH "TS." OR "I." PREFIXES

State Condition and Best Price
AIRCRAFT RADIO INDUSTRIES, INC 70 E. 45 St. New York 17, N. Y.

WE PAY TOP DOLLAR for all types of

\$ SURPLUS ELECTRONIC EQUIPT Regardless of Condition. Ready Cash for: : ART.I3 Xmilter : $1-100$ Test Sets - DY-17Dynamotor: BC-348 Revr. : TS. 12 Test Sots : BC-788A. AM, B or

 - BC-611 Handio | Palkie (or any part) : Any Test Equipment |
| :---: | Plus anything you have in Electronics Equipment. Send your complete list, present con

WEST REGION ELECTRONICS Dept. E-4
1437 S. Norton Ave., Los Angeles 19, Calif. \$

WANTED

BOONTON Q METERS
Repiy:
V-1332, Electronics
330 W. 4Znd St., New York 18, N. Y.

EQUIPMENT

 WANTED!We want to buy all types of surplus electronic equipment. We are one of the largest buyers in U.S. We buy more because we give every seller top prices and a fair deal. TELL US WHAT YOU HAVE. USE COUPON BELOW-AND MAIL TODAY!

| Use following numbers to indicate conditions: $N-1$, brand new; $N-2$, used, like new; $N-3$, used. | | |
| :--- | :--- | :--- | :--- |
| ITEM | CONDITION | PRICE WANTED |

To: COLUMBIA ELECTRONICS LTD., 524 S. San Pedro St., Los Angeles 13, Calif. Name
Address
SEE COLUMBIA ELECTRONICS AD ON PAGE 342

WESTERN ELECTRIC VACUUM TUBES
Types 101F, 102F, 272A, 274A or B, 310A or B, 311A, 313C, $323 A, 328$ A, 329 A, 348 A, $349 A, 352 A, 373 A, 374 A, 393 A, 394 A, 121 A$ Ballast Lamps.

W-6863, Electronics
330 W. 42 nd St., New York 18, N. Y.

 WANTED
 DYNAMOTORS

DM-34, DM-35, DM-36 and DM-37, Must be new. Any quantity.

$$
330 \mathrm{~W} .42 \text { St.. New York i8, N. Y. }
$$

WANTED

Tubes, Test equipment, Condensers, $\&$ general inventories. Highest prices paid.

$$
\mathbf{W}-9948 \text {, Electronics }
$$

330 W. 42nd St., New York 18, N. Y.

NEED ART-13; ARC-1; ARC-3; DY-17; TS-12; TS-13; MN-26 J or $\mathrm{K} ; \mathrm{BC}-342$; BC-312; 1-100; BC-348; BC-611 Handie Talkie (or any part); BS-67; teletype; test or any other equipment. Will trade. Write:

BOB SANETT (W6REX)
4668 Dockweiler, Los Angeles, California

WANTED

Teletypewriters complete, components or parts. Any quantity and condition. W-6\%6t, Electronics
330 W, 42 St., New York 18, N, Y.

```
If there is anything you want
    that other readers can supply
OR . . . something you don't want-
    that other readers can ust-
            Advertise it in the
SEARCHLIGHT SECTION
```


$\star \star$ CHEAPIES $\star \star$

C197/ARC-3 CONTROL BOXES. OZ-2 COMPASS RECEIVERS. Frea. range 15 to lise Kc in 6 bands. 5 gain tuning condenser. plete with \& tubes, 1 is for radio tuners, hi-fidelitg
systems. Exlnt. shape, only............ $\$ 24.95$

BC-906 LAB. PRECISION FREQ. METER or other uses. Easily moditied for lower TV channels. Contains $0-500$ DC Micro-Ammeter. Operates on simple DC power (1.5V and 45 V)
Precision Vernier dial. Dinde-Triode Precision Vernier dial. Diode-Triode tube.
With aluminum carrying case. Less $\mathbf{\$ 7 . 9 5}$
antema and ehurts.............
TURBO SUPERCHARGER AMPLIFIERS. CRSE and chassis make a nice foundation for test equidresisters. condensers, tube sockets, other useful parts. 1000 's sold at two \& three times this low
price. While they last, less tubes..............98e Wrice. While they last, less tubes.................98e
APG-I5 ANTENNAS. A powerful microwave antena, AS-217-A工'G $15 \mathrm{~B}, 12 \mathrm{CM}$ dipole and $13^{\prime \prime}$ farabola housed in weatherproof radome 10^{*} dia.
24 V DC spinner motor for conic scan........ $\$ 9.95$
APT-1 AND APQ-2 TRANSMITTERS Originally used as jammers-now for ham use. mitter. Built-in noise generator and amplifier which use standard tubes. APTC-1 approx
$30-70$ MC, FIS for 10 and 6 meters. APQ-2 approx, 450 NC. FB for citizens band, relay
stations and experimental use original cirulit intact, less tubes and
hower. Shpg. Wt. apnox. $35-1 \mathrm{bs}$. $\$ 9.95$

ORDER DIRECT FROM THIS AD! frompt, speedy shipment. Cash seith order. MintShoments by truck or RR express collection. Caliornia buyers please add state sales tax. All prices

ALVARADIO SUPPLY CO.

New "SEARCHERGT" Advertisements received by August 3rd will appear in the September issue subject to limitations of space available.

> Address copy to Classifel Alverlising ELECTRONICS

330 West 42 nd St. New York I8, N. Y.

RADAR
SCR 545A Search and Track, Complete trailer, power supols and spare parts. Nearly new. Write for description and price. PORTABLE PUMP ASSEMBLY
Leland, 110 v. 60 c. 1 ph . $1 / 3 \mathrm{H.P}$. motor snd D. IRoper $\# 2$ hydraulic pump. 300 lbs . PSI max., 125 lbs. PSI continuous SEARCH LIGHT
Signaling, $12^{\prime \prime}$ Curtis Lighting, Inc. 115 v. a-c or d-c, 1000 ratt. Complete w/bulb. Comes w/mounting assembly that gives
360° horizontal rotation and 180° rertical rotation..... $\$ 27.50$ WATER COOLING HEAT EXCHANGER:
10 KW , Westinghouse RU-3-B. Includes radiator, fan, pump
 housing 2
MOTOR
Bendix $1 / 15 \mathrm{HP}$
c. 1 Dh. 175
RPM. $\$ 4.75$ GENERATOR Bendix model NFA 3 . Out-
put 115 $\begin{aligned} & \text { a-c } \\ & 10.4 \\ & \text { amDs, }\end{aligned}$ 800 cy . SP. and 28.5 v. d-c Selp amps @ 2400 RPM. New. Orite splined drite BATTERY CHARGER TRANSFORMER G. E. Cat. \#ws-99316 Nec. $105-90-75-60-45-30 \quad$ ©
© 6 emps (er tap. Voltage reduce 10% and 20% thru reduce: primary; two C 5r. 18 amp and two $x 7$ V. 10 filaments:
 56 lbs. New, orig. packinz.

POWER SUPPLY COMPONENTS

 TRANSFORMERSPlate, American Transformer Co. Spec.
 Plate, American Transformer Co. $\$ 65.00$ 29108. Same as above but center-tapped
to handle 1 amp © 8800 $\$ 75.00$

Fusment, American Transformer Co. SDec. 29106, Type WS, 050 KV . $50 / 60 \mathrm{cy}$ sl'. 33 KVA test, $12 \mathrm{KV} \mathrm{d}-\mathrm{c}$ operating. 1ri. 115 vis Sec. 5 .. 10 amps w/integral
stand-otr insulator and socket for $\# 771$. s7\%, etc. rectitler tubes 2 for $\$ 22.50-1$. CAPACITORS
4. it. mid., 1265 г. 60 c. a-c or $4000{ }^{\text {p }}$ d-a puwer factor correction 5.0 KV . AR. 25-.25, 6 ± 90 \& d-c.or 125 @ 12.000 F. d-c., Fast Cat. $=A-548$, oil...... $\$ 3,75$ $1.25 / 1.25 \mathrm{mid} ., \$ 500$ F. Cat. $\$ \mathbf{\$ 1 2 . 5 0}$ $2 \times .15 \mathrm{mfd}$. © 8000 v. or . 075 mfd . @ RESISTORS
Fixed, w.w. 160,000 ohm, 200 w . ferrule Fixed, iv. w. 5,000 obm, 200 w. ferrule ends
METERS
$3^{\prime \prime}$ Westinghouse \& Weston $0-1 \mathrm{mR}$ d-c 01. NX3 3" Westingliouse \& Weston $0-120$ amp cludes doughnut current transformer $40 / 1$
ratio. Mod. NA 45 \& $476 \ldots88 .50$ RELAY
Magnetic overload, Allen-Bradley \#810, RECTIFIER
Dry Disc, 6.5 v. a-c FWCT 2.2 v. d-c @
3 amps TRANSTAT $115 / 230$ v. $50 / 60$ c. $0-260$ 甲 $\quad 2.5$ amp out-
put CONTACTOR Allen-iradley \& Westinghouse, 115 ₹. 60 cy . coil, DPST. 15 amps VIG VOLTAGE RECTIFIER POWER SUPPLY
 Wt. 2040 ibs. Units are new, complete with spare tubes and remote control. Write for detailed information.

PANEL METERS also Lab Instruments
L \& N No. 4870 Conductivity Bridge
L\& N No. 1870 Conductivity Bridge For Panel Meter Listing refer
to our ad July Electronics
AMERICAN ELECTRONICS 29 South Park Ave.
Rockville Centre, L. l., N. Y.
Tel. Rockville Centre 6-0207

3,000 CYCLE GENERATOR FOR SALE

Driven by 3 phase, 60 cycle, $220 / 440$ volt mo:or. Output 2 KVA. 115 volts. In Perfect motor. Output 2 KVA. 115 volts. In Perfect Minutes at a Time; Tatal Operation 2 hours.
$330 \mathrm{~W} .42 \mathrm{St} . \mathrm{S}^{2}$, New York $18, \mathrm{~N} . \mathrm{Y}$

If there is anything you wantor something you don't of this paper can supply want that other readers -or use-advertise it in

SEARCHLIGHT SECTION

CLASSIFIED ADVERTISING DIVISION

TUBE REBUILDING

Large Transmitting and Power types
Economical - Guaranteed freeland products co. 700 DRYADES ST., N. O., LA.

SURPLUS COMPONENTS FOR SALE

Bathtubs, oils, micas, xformers, chokes, relays, trimmers, sockets, odd items, etc. Surplus lots purchased. EMPIRE ELECTRONICS
Box 41, Midwood Stat., Brooklyn 30, N. Y. Phone BRyant 9-1220

FOR SALE

Beryllium Copper Strip $0062(+$ - . 0005$) \times 5^{\prime \prime} \times 60^{\prime \prime}$ No. 1 - B \& S Hard 700\# Available GLOBE TRADING COMPANY 1815 Franklin Street Detroit 7 , Michigan

CONDENSERS

OUR SPECIALTY
OIL FILLED \& TRANSMITTING MICA TYPES
All Values and Voltage Ratings We Invite Your Inquiries
TECHNICAL RADIO PARTS CO. 557 McDonald Ave., Brooklyn 18, N. Y.

SEARCHLIGHT SECTION

COAXIAL CONNECTORS

 $65 c$$65 c$
65 c
65 c
61

FULL-WAVE BRIDGE RECTIFIERS

Infrared Snooperscope mage Converter Tube FiSensi-
vity simplifice design
$2^{\prime \prime}$ dia. vity simpliffed design ${ }^{2 \prime \prime}$ dia.
villemite screen-Resolution up

MICROWAVE

Klystron Mtg., Assy (723AB) \& Cping to
Two Tywe ' ${ }^{2}$ ", Co-As Fittings. $\$ 6.98$

.75 Capacito

E.	Thermistors
1.29	D 167019 Vol
7.98	Limiler 2.9
15.98	D168391 Ther

INDEX TO ADVERTISERS

Ace Fnginering A Machime Co., Inc Achemori Cobloirls Corp
Acme Electrol
Idams A Westlake Compans. The Idvertising Contmil
Aronatitial Commonications Eqnipment, lae
derowox Corp.
Aircratt-Marine lrominets, Ine
lirpax products Company
lilegherodincts Co
Allen (o.. Inc., L. H.
Allen. Manotarturing Combany
Allied Control Commany, Ine
Amerivan Gas Aecomolater Compans
Imerican Lava Corp.
Amprath smerome corperation
Ameriean Smetting \& Refining
Fiderated Metals Division.
Ameriatan Telavision \dot{A} Ratio Co
Amprican Time Prodincts. Inc.
Imperes Electronic Corp.Thiril C Amperite Company. Ine. Imper Flectric Corporation nimew Corporation

Dyest off Corts Division of General
Arkwriglit Jinishing Combany
Irmold Fuminerering Company
Art Wire d Stamping Co
Automatie Elertric sales corporation 28 .

Ballantine Labomatorits. Inc Barry forporation
Bead Chain Mamufacturiug Ca
TeHl Tircrat Corporation
Bendix piation Curpororien
Ectiose- Pionuer corporation
ked bienk bivisiun
Bentley. Harris Mfer.
Burkeley srientifir Corparation
Bird Elactronia Corj
Sirmingham Sound Reproduedrs, Litd Bishober corporation
Hoeing Manufacturing Colboration Bawnton Razdio Cornoration.
Isorg Curin. George w
Bowser. Inc
Brand © Co. Ince, William
Bridgrbort Brass Co.
Krooks Kadio \& Telovision Corb
Brown Electro-Measuremint Cory Ibrimh fovelonment Compatigy 130rnell and Company.
Bussmann Mfg. Co.

Calnivar Company, Microware Div
Cannon Electric Co
Contralab. Div. Globe-tuion. Inc i1, 12, Copper Corn. Copper Sul). of Kennecott Chicaga Telephone supply

Chieara Trian
Esiner Wire Comar live of
Cinch Manntacturp
Clare and (o.. C.
Cleveland Cont inner Compan
Clippard Instrument Laboratory, Inc
Collims Rubration, Sigmond
Conmpass Communications
Complenser Products Coms Company Continentid-IDamond Dibre Cornell-Dnbilier Electric. Cormpany Corning Glass Works. Coto Coil Cown Mfy. Corp Coto-Coil Co.. Inc.
Cramer Co.. Inc., R. W
Cromes Ca... it Inc., R. W
Crowley \mathbf{x} Co., Inc., Henry

Daniels. Inc., C. R I) Dancen Cortric Company

Defense Research Board Pero Radio joiv., (renerad Molors Corl Doelcal Light Corp
ow Corning Corparation
river Combsaliy. Wilhor
briver-ilarris Company
DuMont Laboritories. Inc.o. Ahen is and Co., (Inc.)
E. T. loolychemicals Dept DIriunt Minmatacturing
stern Air Duvices. Imo
Gastman Viodak Company
Indistrial plootographid. IDiv Folin Company, Ine.
Edisent. In
解
Eitel-McCullough. Inc.
Afetra Mlg. Co
Alertric Indicator Co
Electriral Industries. Inc
Electrical Reactance Corp
El-Tronics, The.
Etpcirohic Jssoriates. Ine Electronic Tub
Afectro Teq (orporatio
Empire Ibeviren. Inc
Erip Resiotor Corp
29%
175

141

182

Fairuhid Camera d Instrument Corp Federal Telenhone $\&$ Radio Corporation. 295 Ferrox cube Corp. of America.
Pidelity Chamicial Products Corp
Five Star Co.
sformer Co. Inc
Fuspte corporation

Gair Company, lur.. Kolvert 309
General Ceramics \& Steatite Corporation.
Gpieral Electria Company
Apparatus Dopot.36. 3\%. 48, 235, 253
Chemical Demi.
ISlertronics Dept.
General Imdustries Co
General Precision Laboratorr, Ine
Gentral Radio Company
Giffilian " Ifrothers
Gifilan lseothers
Grabhite Metallizing Corb
Grayhill
Gref Inst rument Co
Gries Reprodncer Cors

Hardwick. Hindle. Ine.
Hathaway Instrament Co
Haydon Company. A. W
Havdon Mamufacturing Co.. Inc
Heath Company
Howland Research Corporation
Heinemanh Electric Co
Hewlett-Packiard Company
Hexacon Electrie Company
Hobson Ibros.
Hollistor Mills, Ine., The
Hourhton laboratories. Ine
Hytron Radios Electronics Corb
mproved Stamless Wire Company, The Indfanat Steel IProduets Company Industrial Condenser Corp
Industriai Timer Corporation
Instrument Resistors Compien.
Internationad Kissistance (o....
Irvington Varnish \& Insulator
-IPTRTBCUISYIIONVSERIES ES-500A High Sensitivity-Wide Range 5" OSCILLOSGOPE
with PUSH-PULL VERTICAL and HORIZONTAL AWPLIFIERS
20 mv . per inch " Y " Sensitinity
150 mv . per inch "W" Sensitivity

IMPORTANT FEATURES

* High Sensitivity, Extended Range, Push.Pult, Voltage Regulated Vertical Amplifier - 10 cycles to 1 MC response. Input 2 megs. 22 mmfd.
* Frequency Compensated "V" Input Step Attenuator.
* Vertical Phase-Reversing Switch.
* Extended Range, High Sensitivity, Push-Pull Horizontal Amplifier - 10 cycles to 1 MC response at full gain. Input $1 / 2 \mathrm{meg}$. and 20 mmfc .
* Linear Multi-Vibrator Sweep Circuit - 10 cycles to 30 KC plus line and external sweep.
* 4-Way Synch. Selection - Internal Positive, Internal Negative, External and Line.
* " 2 " Axis Modulation terminal for blanking, etc.
* Internal, Phasable, 60 cycle Beam Blanking.
* Sweep Phasing Control. Wide-angle bridge circuit.
* Direct H and V Plate Connections; all 4 plates.
- Audio Monitoring Phone Jacks.
* High Intensity CR Patterns through use of adequate high voltage power supply with 2×2 rectifier.
* Tube Complement and Circuit - 6C4 " V " cathode follower, 6CB6 " V " amplifier. 6C4 " V " phase in verter. Push.Pull GAUG's CR driver. 7N7 H amplifier and phase inverter. Push-Pull 6aU6' H CR driver. tifiers. VR. 150 soltage res 7 Four. Way Lab. Type input Terminals - Take banana plugs, phone tips, bare wire or spade lugs
\star Light Shield and Mask removable and rotatable.
* Extra Heavy-Duty Construction and components to assure "Precision" performance.
Heavy Gauge, Anodized, No-Glare, Aluminum Panel
\star Fully Licensed under W.E. Co. patents.
\star In lourred. biack ripple, heavy gatge steel
ase. Slze $81 /{ }^{\prime \prime}$ " $141 /{ }^{2 \prime \prime} \times 18^{\prime \prime}$. Complete with
mantal................... NET PRICE $\$ 169.50$
See this
new "PRECISION" 5" Oscilloscope
on display and available of leading radio equipment distributors.
Precision Apparatus Co., Inc.
92.27 HORACE MARDING BLVD

ELMARARST 10, N. Y.

It's time we got working mad!

As we listen to the latest insults from Moscow, we're likely to get fighting mad.

Instead, we'd better use our heads and get working mad.

It is clear by now that Stalin and his gang respect just one thing-strength. Behind the Iron Curtain they've been building a huge fighting machine while we were reducing ours. Now we must rebuild our defenses-fast.

As things stand today, there is just one way to prevent World War III. That is to re-arm-to become strongand to stay that way!

This calls for better productivity all along the line. Not just in making guns, tanks and planes, but in turn. ing out civilian goods, too.

Arms must come first. But we must produce arms at the same time we produce civilian goods.

We can do this double job if we all work together to turn out more for every hour we work-if we use our ingenuity to step up productivity.

All of us must now make sacrifices for the common good. But we're working for the biggest reward of all -peace with freedom!

THE BETTER WE PRODUCE THE STRONGER WE GROW

FOR A FREE COPY OF "THE MIRACLE OF AMERICA"
MAIL THE COUPON to Public Policy Committee, The Advertising Council, Inc., Dept. B.P., 25 West 45th Street, New York 19, N. Y.

Name...
Address

McGRAW-HILL PUBLISHING COMPANY

Jelliff Manufacturing Corporation, C. O. . 200 Jennings Radio Manufacturing Co..... 298 Johnson Co.. E. F Jones Div., Howard B. Cinch Mfg. Corp

Kahle Ebsineering Co
Karb Metal Products Co., In Kartron
lielloge Switchboral \& Supply Compan Kenyon Transformer Company. Inc
licr Company
Kollsman Manfacturing Company
Colisman Instrument Corp.

Laborators For Rlectronies. In Lambia Electronics Corp
Lampkin Laboratories
Lapp Insulator Co.. In
Lath Reflay Compans
Leeds \& Northrup Co
enkuri Electric Co
and Electris Manulaturing Co
Littelfise. Inc.
Luthan Manufacturing Company Lust. Henry H.

Mack Molding Company, Ins
Haghecord. Ine. Hanning. Naxwell of Moore. Ine Harconi lustruments. Led Narion Electrical Inst rument Co Markem Machine Company Mis Mamblacturing Co., Inc HeGraw-Hill Book Co.. Inc
Ir-lntosh Enginerring Laboratories, Ine Metal Texile Corporation

Division forman
liva Insniator Co for
Hillen Mte. Co.. Ine.. James
Dilo ladio \& Electronies Corp
Miniature Prevision lsearings,
Mimesora
Hosiume pipar alills Componin
Mosthre Paper Mills Company
Mnirhazad \& Co.. Ltd
Myalex Corp. of America.
208
273
214, ${ }_{2}^{20}$
R...21
0. 18
. 187
286
187
2
210
250
250
259
270
301
188
188
シャ
64
293
152
152
166
Lif.......... $\begin{aligned} & 166 \\ & 311\end{aligned}$
for Vacuum-tight TERMINALS and FEED-THROUGH INSULATORS
for Moisture-impervious PRINTED CIRCUITS
for Electrical characteristics ranging from insulator to semi-conductor to low resistance conductor in the same unit.
for Metal Faced Teflon sheets, bars, cylinders and certain fabricated parts for particular problems.


```
Vational Commany. Inc
Na,ional Moldite Co..
Nationin Trasarch Corp
Cw Herme
New York Transformer Co.. Inc
North Imeriean Iviation. Ine.
Korth Elecotric Mfe. Co.
Sorthern Radio Co.. Ine
Nothelfer Winding Laboratories
Oak Ridre Products
Olymbir Motais Products Co. Co ', Neill-Irwin Mfe. Co
Opad-Green Company
Paper Machinery \(\mathcal{A}\) Research. Inc Paramonnt I aper Tube Corp.
Patten-MacGuyer Co.
Phalo Planties Corporation
Plekering \& Co.. Ine.
Pix Manufacturing Co lio
Plaskon Ibivision, Libbey-Owens-Ford
Glass \(\mathbf{C o}\)
Plarad Efectronics Corporation
Preter Instrument Co., Inc
Precision Apparatus Co., Ine.
Precision Metal Products Co. of Mabien
Precision Paper Tube Co.
Presto Recording Corporation
Pyramid Electrit Co
```

Radio Corp. of Ameriea
Radio Vaterials 14, 15. 238, 215, Back Cover
Radio Materials Corporation
Radio Receptor Company, Ine
kadio Shack Corp

193
\cdot
$15:$

Radio Wire Television. Inc
Railway Express Agency, Iir Express Division
Rayheon Manufacturinur Ca............. $\underset{\sim}{2} 47$
R-iB-M Division, Essex Wire Corp..............
$\mathbf{1 5 8}$
Reeves-Hofman Corporytion
lemublic Foil or alail nills, Ine
first again with TEFLON \dagger

HERMETICALLY SEALED TO METALS

(Patents Pending)

The fluoro-carbon metal fused seal is a true hermetic seal capable of holding a vacuum for sustained periods. It is recommended where severe service conditions are encountered-vibration, shock, high and low ambient temperatures, thermal shock, extreme climatic conditions.

Because Teflon is being allocated by the Government, only those problems which Government, only those problems which
bear National Production Authority Sanction can be considered at this time.

For further information, write.
 are encountered-vibration, shock, high

Resistance Products Co 180
kex Corporation 308
Krex Kheostat Co.......................... 311
Richardson Company 311

Itobinson Aviation, Ine 218
Rohilen Mtg. Co
Kumarl Cord \mathbb{N} Wire Co

Simeo lrowlucts Company................ 14^{2}
Samgamo Etectrie Combany 30
Sarkes Tarzian. Ine.
scientitie Electric Iniv. of "N Cormanted Gurnehed Gitp Co.
Necon Metals Corporation
Survo Corboration of Ameriaci. 2 . 2
Srssioms Clock Compans, Timer Div.... 230
Set screw \& Mfg. Co. 176
Nigmit Inolruments, luc
176
Snvelar Mite Cor
205
Sula Eluctri Compan 219
Sorenmen and Company, Ine
Soume Apparatus Company
Sonthwewtern Industrial Electronics Co.
Specialty Buttery Company........... 1.54
Sperar Revistor Corp
154
Sponge Rわhbor l'roducts Company..... 31
Spragne Electric Company
31
Stackpole Carbon Co.
139
Standarl Nitectrie 17
Standard pieza Cumpany 46

Pidzo Complany 164
Stubularl Pressad ntacl Co.............. 29.1
ard Telesphones \mathbf{N} Cables. I.tid
Standard Transformar Corp.
269
Statham Laboratoric.s
Staver Company. Incorjorated
24:

Nevens Irnold. Ine

209

stevens Mfa. Co.. Hé. Gero. . 2.4

Stevens Mamofacturing Co.. Inc.
246
Stewaril Mannfacturing (o.. D.M
260
Stoddart Aircraft Radio Co.
105
Stokrs Machine Co.. F. J. 27

Stupakitt ceramin Mer finmo...... 5 .
Superior Limetric Co.
Superior Instrumant Co
Superior Tube Company
Sylvania Electric l'roducts, lme.......it 14

Taylor IVibre Co. 1.53
Tinvior Tubes. Ine.

- 16

Tantor Tubers. It
160
Tel-Inst mment Co.. Ine
301
Teletronics I aboratory, Ine. 311
Tefex, Electro-dromstie Division. 188
Thomas \& Skinner Sterl I'roducts Co..
$2: 0$
Transradio, Ltel.
Tung-kol Lamp Works. Inc.........16A. 1613

Ueinite Co.
34
Ulanet Compans. George
2:3
lnger Electric Tools. Inc. 2901
United Mamafacturing \& Service Co...

United Strates Fiectronics Corporation.. 352
United States Gasket Company 351
Lnited Tranaformer Co.Second Cuver

U. S. ELECTRONICS

- Versatility in engineering
- Adherence to specifications
- Quality production procedures

Cathode Trap Coils * L.f. Transformers * Width Control Coils - Heoter Choke Coils * Video Peaking Coils * R.F. Coils * Horizontal Line. arity Control Coils * Horizontal Oscillator Coils * Oscillator ond Solenaid Cails * Sound Discriminotion Transformers * Sound I.F. Transformers - Picfure I.F. Transformers. Write today for catalog or samples.

United States Electronics Corp. tyndhurst, New Jersey

PROFESSIONAL SERVICES
 SEARChLigllt SECTION (Classified Adiertising)

EMPLOYMENT
Positions Vacant $.313 \cdot 319$
Selling (y_{j} portunties Wanted 313
313
BUSINF:
Offered 313
EoUlPMFNT
(User or
For Site 320-348
ADVERTISERS JMDES
Admimal Corporation
316
Nirborne [nstrments Laboratory, lincAicraft Armaments, IncAircratt Radio Industries, Inc................ 346
Nivarado Suplly Co.........
Imerican Electral Sales Co

Americin lilectronics| $\therefore \quad 347$ |
| :--- |
| $\therefore \quad 342$ |
| |

An lied sectron 347
316
Applied Science Corn of Princeron.Artow Corporation318
336
Barry Electronics Corn. $\begin{array}{r}\therefore \quad 356 \\ 10, \\ \hline 14\end{array}$
Bendix Aviation Corp. 315
339
Boonton Katio Corp.
Boonton Ralio Cor
C $A \quad H$ Sales Co +313
$\cdots 3$
Chase flectronics Supply Co 316
.339
Culumbia Flectronics, Litd $.342,346$
Commontications Devices Co.338
337
Communications Equipment Co.....330, 331, 332
Cottone Meronatical Laboratory, Ine..... 319 319
340
Cumningham Engirieering Co
Electro Impulse Laboratory. $\begin{array}{r}\square \\ \hdashline 337 \\ \hline 843\end{array}$
Flectronic Fnsmuering Co. of Calif. - 318
Emerson Electric 326
319
Enpite Eectronics 347
347
EPCO
Freeland Products Co. 347
317
General Electric Co... AC Spark llug Div. 316
General Mutors Corp., AC
Green, Could - 315
Hall Electric, LethGarmar co., Thehyyen liorothItemational liusiness Machines.............. 316
o 11 dsochates
Kato Engineering Co
Kelien Mirctarl Corp.
Kings County Machinery Exchange
Land- لir lne.
Lectronic Research Taboratones
biberty Electronics, Inc
Life Filectronic Sales.
Lowenthal Co.. T.
Maritime International Co
Mogull Co., Inc.. Alexander
Maritime Switchboard
Maxson Corp.. The IV^{V}.
Melpar Inc.
Minneapolis llonevivell
Nommonth Radio Laboratories,
New Sork Transformer Co
Norman Radio Distributors, Jinc
Northrop Nircraft, Iuc.
Phillips Petoleum Co.
Photocon satles
Precision Electrical Instrument Co
Ratio \& Electronic Surplus
Radio Development \& Sales Co.
Radio Hatm Shack, Inc.
Radionision Co., The
Rajah Fabrics Corp.....
Reliance Merchandising
Sandia Coly
Servo-Tek Products Co., Inc
Servo-Tek Prodact
Somntronics Libs
TAB
TAB
Telemarine Communications Co
Universal Genera! Corp.
United Surplas Materials
Viking Fiectronics Cors,
Wells Sales. Inc.
Weighman Jfertsert G.
Westinghonse Electric Corp
Weston Laboratories
Vest Region Elect …................... $3+0$
Vestern Fle
Wilgreen
Wolf Co., Edwatd 345
This index is published as a convenience to the
reagers. Every care is taken to make it accurate, but
ELECTRONICS assumes no responsibility for errors or omissions.

AX-9903/5894 CHARACTERISTICS

Filament Voltage	
Series	12.6 v .
Parallel	6.3 v .
Filament Current	
Series	0.9 a .
Parallel	1.8 a.
Naximum	
d.c. Plate Voltage	600
d.c. Grid \#2 Voltage	250
d.e. Grid \#1 Voltage	-175
Plate Dissipation (w.)	2×20
d.c. Plate Current (ma.)	2×100
Grid to Plate	mmfd.
Input -	mmfd .
Output - . . .	1 mmfd .
MOUNTING POSITION: Base up or down. Horizontal with anode leads in harizontal plane.	
Fits 829B Type Socket.	

The AMPEREX AX-9903/5894 is an improved version of the 829B. The design of this tube incorporates features which produce considerably smaller output capacitances and which, therefore, result in higher resonant frequencies (approximately 500 mc . instead of 250 mc.). In addition, because of the low inductances of the connections between the cathode and screen-grid, more stable operation at high frequencies is effected.

A most desirable design characteristic, also, is the incorporation of internal neutralizing condensers which are connected directly to the control-grids, making impossible self-oscillation in a tuned-plate, tuned-grid transmitter.

- Of importance in this new design are such features as:

1. Direct and short connection between the pins and the anode, causing lower inductance and resistance.
2. No insulating parts (mica or ceramics) between anodes, resulting in lower losses af high frequencies.
3. "Screened" micas, thereby preventing possible losses due to contaminated mica.
4. Zirconium-coated moly anodes, giving a higher degree of vacuum than possible with nickel anodes and barium getters.

- For the full story on how to use the AMPEREX AX-9903/5894 in your particular application, write to Application Engineering, Department N. Or if you prefer, ask for an AMPEREX representative to call.
- Immediate delivery* Order from your local electronics parts distributor. If unavailable, write direct to our plant.
*Subject to prior sale AMPEREX

RCA

 Apphentioving
[^0]: F. J. STOKES MACHINE COMPANY, SO46 TABOR ROAD, PHILADELPHIA 20, PA.

[^1]: PYRAMID ELECTRIC COMPANY 1445 sudson Boulevard North Bergen, N. J., U. S. A.
 telegrams: wux North Bergen, N. J.
 CABLE AQDRESS: Pyramidusa

[^2]: \square Please send me " 40 Uses for Germanium Diodes." Enclosed is 25 ¢
 \square Please send me "Electronic Shortcuts for Hobbyists." Enclosed is 25 ¢

[^3]: Name
 Street

[^4]: "Color" as used herein implies the presence of brightness, hue and saturation. "Chromaticity" implies the presence of hue and saturation components only.

[^5]: The problem of how to deny navigational aid to enemy aircratt in the event of wor is tremendcus. Just how complex it is becomes opparent to anyone glancing ot an aeronautical chart, or listening for a quarter hour to airways communications channels. How can we, for example, silence radio ranges, beacons, loran and all the rest without jeopardizing our own transportation at sea and in the air?

 Making a minimum a-m broadcast service available at all times without offering aid and comfort to the enemy, and his missiles, is a small part of the whole task. The editors hope that this article may stir up ideas applicable to other services

[^6]: (2) F. Ir. du Pre and E. S. Rittner, Concerning the Mechanism of Operation of the L-Cathode, paper presented before American Physical Society, New York, Jan. 1951.
 (3) Eisenstein, "Advances in Electronics," p 24 , Academic Press Inc., New York,
 1948 .

[^7]: This article is based on a paper presented at the fifth amnual NARTB Broadcast Engineering Conference, April 1951, in Chicago.

[^8]: This article is based on a paper pre sented at the 1950 National Electronics Conference. The Conference paper appears in the NEC Proceedings.

[^9]: and Voltage, Rev. Scien. Inst., 17, p 130, April 1946.
 (3) C. W. Clapp and R. V. Pohl, X-Ray Thickness Gauge for Hot Strip Rolling Mills, Electrical Engineering, 67, $p 441$, May 1948.
 (4) J. A. Uttal, Voltage Stabilizers, Electronic Industries, p 90 , August 1945 . (5) R. Pepinsky and Paul Jarmotz, An Inductively Coupled Series Tube D-C High Voitage Regulator, Rev. Scien. Inst., 19 p 247, April 1948.
 (6) R. Frerichs and R. Warminsky, Die Messung von Beta und Gamma Strahlen durch inneren Photoeffekt in Kristall phosphoren, Naturwiss., $33, p 251,1946$. - 7) R. Frerichs, The Cadmium Sulphide A-Ray Detector, Jour. App. Physics, 21, 1) 312 , April 1950.
 (8) J. E. Jacobs, The Electrical Conposed to of Cadrnium Sulphide when ExEngineering, 70 A Agadation, Electrical

[^10]: This article is based on a paper presented at the 1950 National Electronics Conference. The Conference paper appears in the NEC Proceedings.

[^11]: CEROC is a registered trademark of the Sprague Electric Company.

[^12]: SPECLALTY BATMEIY COMPANY A subsidiory of the (RAYO.VAC Ray-o-V as Company MADISON 10, WISCONSIN

[^13]: MANUFACTURERS OF R. F. COILS AND ELECTRONIC EQUIPMENT

[^14]: Original paper given at the 1950 Conference on Flectrical Insulation the ahstract of which appears in the 1950 Ammal Report of Conference on Electrical Insulation, National Research Conncil.

[^15]: I ANDREW CORPORATION
 363 E. 75 th Street, Chicago 19
 Please send me a copy of Bulletin 73 describing VHF and UHF Television Transmission lines.

 Name.
 Title.
 Company.
 Address.
 City

[^16]: The BEAD CHAIN ${ }^{\circledR}$ mfg.co.
 88 Mountain Grove St., Bridgeport 5, Conn. fremerpoopoo-0000000000000000000: Monufocturers of BEAD CHAIN - the kinkless chain of a thousand uses, for pull and retaining chains and other industrial uses; plumbing, electrical, jewelry, fishing tackle and novelty producis.

[^17]: Western District Office - Times Building, Long Beach, California

[^18]: Honeywell
 First in Controls

[^19]: FOR SALE: GOOD USED STEM MACHINES
 and other glass working equipment.
 HAYDU BROTHERS PLAINFIELD, NEW JERSEY

