

2n 7his qosue...The Editors Report On ELECTRONICS PARK

PICTURE PROJECTION Perfected by

The 2\％＂magnetic projection tri－ ode 3NP4 has a face as small as a compact and is only $10 \frac{1}{2}$＂long．

HERE＇S THE OPPORTUNITY THAT MANUFACTURERS

 OF TELEVISION RECEIVERS HAVE BEEN AWAITING！ ．．．。。。． 10 SIGNIFICANT FEATURES－$\quad 1$ Flat $16^{\prime \prime} \times 12^{\prime \prime}$ non－reflecting picture
－provicles fatigueless viewing from
－less than 5 feet and upward！
－ 2 Wide－angle visibility－square
－corners．
－ 3 True photographic black and white
－picture quality－no discoloration．
－ 4 Compact unit－suitable for table
－model cabinets
－ 5 Long－life，low－cost picture tube．

6 Manufacturers can most economi－ cally extend their product range into projection television by adapting their $10^{\prime \prime}$ EM chassis for use with PROTELGRAM．
7 Easy to service
8 High contrast ratio and broad gray tone range．
9 Simple optical adjustment system
10 Quality built after more than 10 years of development．

NORELCO PROTELCRAM consists of a projection tube，an optical box with focus and deflection coils，and a 9.5 kv regulated high－volt－ age supply unit，making possible large－size home projection．More than ten years of exhaustive research resulted in this ideal system for reproducing a projected picture．The optical components are de－ signed to produce perfected projection for a $16^{\prime \prime} \times 12^{\prime \prime}$ image，the optimum picture size for steady，distant observation and also for proper viewing at less than 5 feet．

electronics

PUBLICATION

OCTOBER • 1948

RADIO-CONTROLLED JET FIGHTER Cover
Electronic equipment mounted in nose of P80 permits pilotless flights directed from truck in background and motherplane (see p 126)
TELEVISION TRANSCRIPTIONS, by Thomas T. Goldsmith, Jr. and Harry Milholland 68
Recording images on film, directly from a cathode-ray monitor
SERRASOID F-M MODULATOR, by J. R, Day 72New phase-shift device with low distortion and noise for use in broadcasting
THE EDITORS REPORT ON ELECTRONICS PARK 77The full story, with emphasis on the engineers, supervisors and workers on whom the future depends
PEAK-TO-PEAK VOLTMETER, by F. H. Shepard, Jr. and Edmund Osterland 101
Narrow voltage pulses are measured by stretching the pulses
SATURABLE REACTORS AND MAGNETIC AMPLIFIERS, by Frank G. Log 104Practical effect of materials on characteristics are discussed; illustrative applications show utility of these components
TELEVISION SYNCHRONIZING SIGNAL GENERATOR, by A. J. Baracket 110
Driving, blanking and sync signals to fit FCC and RMA specifications
SINGLE-SIDEBAND CRYSTAL FILTERS, by Paul K. Tayior 116
Multiple-section filters are used for the carrier frequency and the two sidebands
TELE SERVICE AREAS, by John H. Battison 122Charts show approximate distances to $5,000 \mu \mathrm{v}$ per m and $500 \mu \mathrm{v}$ per m contours
BUYERS' GUIDE ADDITIONS AND CORRECTIONS 244Changes and additions to be used as a supplement to the 1948-49 guide

BUSINESS BRIEFS	64	ELECTRON ART	128		NEW BOOKS
CROSSTALK	67	NEW PRODUCTS	133		BACRTAIK
TUBES AT WORK	124	NEWS OF THE INDUSTRY		INDEX TO	ADVERTISERS

DONALD G. FINK, Editor; W. W. MacDONALD, Manoging Editor; John Merkws, Vin Zelles Frank H. Recl:-tt, A. A. Mckenzie, Associate Editcrs; Williom P. O'Brien, Assistant Editor; !! : Adz a;, Jcan C. Brons, L tine Web=r, Z"iorial Ascitunts; G"-c'ys T. Montgomery,
 Director; Dexter Keezer, Director Economics Dep.itm.....i

KEITH HENNEV', Consulting Editor

H. W. MAteER, Publisher; WAllace B. BLODD, Manager; D. H. Mil'er, H. R. Denmegd, Jr., New York; Wm. S. Hodg'kin-on, New England; F. P. Coyle, Warren Shew, Philadelphia; C. D. Wardaer, Chicago; J. L. Ptitlips, C'evaiand, J. W. Oftercn, San T: nci-ce; Carl W Dysinger, Los Ange!es; Ralph C. Maultsby, Athanta; Paul West, Lendon, Englana; J. E. Beckeurn, ¿r., Dircctor ci Circulatian
 Hi : AcGRAW (1360-1948), Founder PUBLICATION OFFICE 99-129 Narth Broadway, Albeny 1, N. Y., U. S. A. EDITCRIAL AND EXECUTIVE O-FICES, 330 West 42 nd St., Ne's York 18, N. Y., U. S. A.-Merber A. B. P. Member A. B. C.

When Hastings Laboratories engineered a new, more precise type of anemometer some very real problems were encountered. One was to find an inside instrument that would accurately indicate the direction and velocity of the wind passing the anemometer located outside. Because of Marion's recognized reputation for manufacturing fool-proof, trouble-free meters and instruments, it was natural for Hastings to turn to Marion for this vital component.

Marion then designed, engineered and manufactured two matched meters for this purpose. Now, matched Marion meters and these matchless new Hastings anemometers are helping weather forecasters, air pilots and navigators measure the wind more accurately all over the world.

When you have a problem involving electrical measuring or indicating we will be glad to have you turn to us. We have helped others. And, because we know "Marion" means the "most" in meters, we believe we can help you.

THE NAME MARION MEANS THE MOST IN METERS
Write for complete information

MARION ELECTRICAL INSTRUMENT COMPANY

NOTICE

PHOTACT

TRADEMARK

PHOTACT is a K\&E trademark that is registered in the United States Patent Office. It is the name given by KEUFFEL \& ESSER CO., for the
 customers, to certain papers and cloths and a developer and a fixer for making reproductions. The name PHOTACT may be properly used only in connection with genuine K\&E products.

KEUFFEL \& ESSER CO. EST. 1867

NEW YORK - HOBOKEN, N. J.
chicago • st. louls • detroit - san francisco LOS ANGELES - MONTREAL
Drafting, Reproduction, Surveying
Equipment and Materials
Slide Rules Measuring Tapes

How a quartz ring drove the first crystal clock in 1928

Heart of the crystal clock built 20 years ago at Bell Labora. ories was this quartz ring, adjusted to a frequency of 100 kc. With the crystal cut to correct proportions in this onmular

In the complete oscillator, the crystal was mounted inside a chamber in which the termperature was kept constant within $0.01^{\circ} \mathrm{C}$, and placed in within a hermetically sealed beessure to maintain uniform pressure. The frequency of the oscillator output was reduced to 1,000 cycles by means of sub. multiple generators.

shape, positive and negative temperature coefficients of frequency effectively neutralized each other. Resultant temperature coefficient was less than 1 part in 10^{6} per degree C.

In the clock mechonism, a 1,000-cycle synchronous motor, driven by the output of the sub-multiple generators, was geared to the clock hands. geared this clock in 1928 Accuracy of was within 1 part in 106. Ac-
was curacy of its present-day succuracy of its preseni-day suc
cessor is of the order of 1 part in 10^{8}-an advance made pos. sible by continuing research.

Where a second is

. . . in the clock that varies less than $1 / 1000$ th of a second a day

There's a clock at Bell Telephone Laboratories -evolved by the scientists there-that keep: accurate time within 0.001 second a day. It is the latest step in a series of developments that began 20 years ago when Bell Laboratories built the first crystal clock.

Why are the men of Bell Lahoratories, whose basic interest is commumicotions, so concerned with time? Because the study of communications is largely the study of frequency - and frequency is the inverse of time. To deal with frequencies in megacycles refuires accurate measurement of fractions of miero-seconds.

In their early studies of piezoelectric crystals for frequency control, Bell scientists saw the desirability of using them also as a source of accurate time.

Two obstacles stood in the way of devising a crystal clock: the relatively high temperature coefficient of crystals, and the faet that their frequencies were too high to drive a synchronous motor. Ammular crystals, with extremely low temperature coefficients, solved the first problem. Sub-multiple generators solved the second, accurately dividing the crystal frequency. Thus the barrier between frequency standards and time standards was finally broken down.

BELL TELEPHONE LABORATORIES

World's largest organization devoted exclusively to research and development in all phases of electrical communications.

0
 long time long,

...in a frequency standard that's accurate to 1 part in 10^{8} a day

Continuing research on piezoelectric crystals at Bell Laboratories resulted in a development of far-reaching importance-the GT cut.

This opened the way to revolutionary advances in instruments for time-frequency measurements. The GT-cut crystals make possible entirely new standards of accuracy. because of their extremely low temperature coefficient-less than 19 parts in 10^{8} per degree C , far lower than produced by any other method of cutting.

Moreover, GT-cut crystals are admirably adapted to wire-suspension mounting, which virtually nullifies the effect of shock on frequency. This greatly enlarges the range of conditions under which accurate measurements can be made.

The Western Electric Primary Frequency Standard is the embodiment of these new concepts in design. It is a $100-\mathrm{kc}$ source that combines accuracy and ruggedness to a remarkable degree. Frequency variation is less than 1 part in 10^{8} over a 24 -hour period; yet the Standard, far from being confined to the laboratory, performs with equal accuracy on ships, planes and vehicles - even in earthquake areas! Wherever there is a need for time-frequency measurements, or the synchronous operation of two or more systems, the Frequency Standard is ready and able to take on the job.

How the Frequency Standard maintains its accuracy

QUALITY COUNTS-

TUBES ARE KNOWN BY

Rauland

hallicrafters

 tage-regulator tubes from Hytron, there must be a reason. Companies with top names can afford to select only top quality components. To have sold over 2,500,000, these Hytron OA2,OB2,OC3/VR105, and OD3/VR150 tubes must offer something special. They do! Better performance. Their advanced engineering - rigidly controlled processing and assembly - and tougher-than-JAN factory tests make these apparently simple tubes actually easy to make - better. Yes, you are in good company if you instinctively associate V-R tubes with Hytron. Army, Navy, Air Force, AEC, famous universify research laboratories - as well as industrial leaders - repeatedly order Hy tron V-R tubes. Pick either the standard OC3/VR105 and OD3/VR150 or the spacesaving OB2 and OA2; you, too, will prefer Hytron. That goes double, if you're "from Missouri." Find out for yourself why so many turn automatically to Hytron.

I

General

THEY KEEP
THE COMPANY

Communication Company

SPECIALISTS IN RADIO RECEIVING TUBES SINCE 1921

Models courtesy of Allen-Howe Electronics Corp.

TYPICAL "AMPEC" - (actual size, back view) shows how you can get complete electrical cir-cuits-tube sockets, capacitors, resistors and wir-ing-in one miniature Centralab amplifier unit.
*Centralab's "Printed Electronic Circuit" - Industry's newest method for improving design and manufacturing efficiency!
CIZE and weight are vital to Allen-Howe, hearing aid manufac
turers. That's why this firm's engineers chose Centralab's Printed Electronic Circuit to help them design and build smaller, lighter, more efficient units. Just as important to Allen-Howe is product dependability. Months of actual experience using Printed Electronic Circuits have proved to them how very rugged these miniature audioamplifiers are . . . just how well they resist humidity and moisture. That's why they continue to use Centralab's revolutionary P.E.C. integral ceramic construction: Each Printed Electronic Circuit is an integrå assembly of "Hi-Kap" capacitors and resistors closely bonded to a steatite ceramic plate and mutually connected by means of metallic silver paths "printed" on the base plate.

This outstanding hearing aid development, illustrated above, was the result of close cooperation between Centralab and Allen-Howe engineers. Working with your engineers, Centralab may be able to fit its Printed Electronic Circuit to your specific needs. Write for full information, or call your nearest Centralab Representative.
Centralab
IN 1948!

Division of GLOBE-UNION INC., Milwaukee

S-T TRANSMITTER

- Conservatively rated 10 watts output. Continuously adjust able 1 to 10 watts, for maximum tube life.
- Remarkably easy installation.
- Single unit. Entire transmitter is complable indoor conditions. All maintenance done und 675 watts total input.
- Low power consumption: 675 wars thecial test equipment.
- Can be tuned and adjus meter and tuning controls im
- Instant accessibility. All meter and when front doors are open. mediately at hand when front doors are opety to personnel.
- Rear doors interlocked for maximu
- Simp!e and easy to change tubes.

WHAT THE SYSTEM DOES FOR YOU...

- Operates in band 920 to 960 MC . This includes the band permanently assigned by FCC for S-T broadcast service.
- Permits you to meet all FCC FM broadast system requirements.
- Remote controlled over single-pair telephone linc.
- Uses standard type "N" RE fittings throughout.
- Provides high fidelity performance:
-Less than 1% distortion from 50 to 15,000 cycles.
-Noise level better than 65 db .
- Frequency response well within $\pm 1 \mathrm{db}$ from 50 to 15,000 cycles.
- Designed for anatended remote operation.

fordependable hroadcusting

- Double-conversion supertal condyne circuit, fully crystal corm trolled for maximu
frequency stability.
- Standard receiver tubes through
out. 95 db below 1 watt
- Sensitivity - 95 db belof mance). (forspecified system performand 135 watts.
- Total power input only for mount-
- Compactly assembled for cobinet ing in standard rack.
made
- All tuning adfu from the front.

S-T ANTENNAS

- 40-inch reinforced aluminum parabol
with dipole feed.
Power gain each antenna 15.3 db
standard dipole. Total gain over full frequency
- Low standing-wave ratio over adjustment.
- range ($920-960^{\circ} \mathrm{MC}$) withonstruction permits
- Two-damp mounting construction member firm attact
or pole.
- Easy to install and from adverse effects of
- Fully proter ing.
- Designed for 100 m.p.h.

ATLANTA 3, GA
137 Spring Street N.W Walnut 9767
BOSTON I, MASS
140 Federal Street Hubbard 1800 CHICAGO 54, ILL. $1 \| 22$ Merchandise Mart Whitehall 3915
CINCINNATI 2, OHIO
215 W .3 rd Street
Parkway 3431

801 N. Lamar Stree
LD 224
650 17th'Street
Keystone 7171
KANSAS CITY 6, MO
66 W. 14th Street

CLEVELAND 4, OHIO Elitiamson Bldg id \& Public Squar LOS ANGEIES 14, CALIF Suite 1300-1301
Security Title Insurance Bldg
530 West Sixth Street

MINNEAPOLIS 2, MINN.
12 Sixth Street NEW YORK 22, N. Y 570 Lexington Avenue Wickersham 2-1311
HILADELPHIA 2, PA
1405 Locust Street

SYRACUSE 1, N. Y.-Syracuse 6.441I

SAN FRANCISCO 4, CALIF
235 Montgomery Street Douglas 3740 SCHENECTADY, N. Y Bldg. 267, Rm. 209 Schenectady 4-2211 SEATTLE 4, WASH. 710 Second Avenue Main 7100
WASHINGTON 5, D. C. 806 15th Street N. W. Executive 3600

LEADER IN RADIO, TELEVISION AND ELECTRONICS

For fast service call G.E.

Designed for a wide variety of laboratory measurements, especially those where high sensitivity and a long scale arc are required. Electrostatically and magnetically shielded, Model 622 is ideally suited for precise measurements of potential and current at the very low energy levels frequently encountered in nuclear physics, electronics and electro-chemical research. Microammeters, milliammeters, millivoltmeters and voltmeters are available in single and multi-range D-C types; milliammeters and voltmeters in thermo and rectifier types for RF and A-C.

Complete_ information on Model 622 is available from your nearest Weston representative, or by writing ... Weston Electrical Instrument Corporation, 618 Frelinghuysen Avenue, Newark 5, N. J.

Hsill

 Oustuments

TYPE CVH, an important newcomer in a famous line -a Sola Constant Voltage Transformer designed for use with equipment that requires a source of undistorted voltage. These new transformers, available in 250,500 and $1,000 \mathrm{VA}$ capacities, provide all of the voltage stabilizing characteristics of the standard Sola Constant Voltage Transformer, with less than 3\% harmonic distortion of the output voltage wave.

Since the output voltage wave is essentially sinusoidal, these transformers may be used for the most exacting applications such as general laboratory work, instrument calibration, precision electronic equipment or ather equipment having elements which are sensitive to
power frequencies harmonically related to the fundamental.

As in all Sola Constant Voltage Transformers the regulation is automatic and instantaneous. There are no moving parts, no manual adjustments and every unit is self-protecting against short circuit.
Type CVH represents an outstanding advance in automatic voltage regulation and an important contribution to precise electronic equipment.

WRITE FOR THESE BULLETINS

DCVH.136-complete electrical and mechanical characteristics of the new Type CVH Constant Voltage Transformers.

DCV-T02 - complete engineering hand̈book and catalog of standard Constant Voltage Transformers availiable for remedial or built-in applications.

[^0]
IF YOU MAGHINE COPPER
 THIS REVERE METAL WILL SAVE YOU MONEY

Revere makes Free-Cutting Copper Rod, and if you are making electronic devices requiring machined copper parts of high conductivity, it will pay you to investigate the savings made possible by this metal. We would suggest that you make trial runs to prove what it will do under your own shop conditions. That was the procedure followed by The Trumbull Electric Mfg. Co., Plainville, Conn., with these results:

Part \# 18107 and 18108, contacts for the Type D switch illustrated, were designed around this alloy. Trumbull states: "On both these parts we found we could make them in one operation instead of two. That is; due to the smooth free cutting of the metal, it was unnecessary to perform a facing operation.. Our Screw machine foreman advises that, in his opinion, both these parts could be made four times as fast as out of ordinary electrolytic copper rod."
\#3731, 60 amp . post stud. $-5,760$ pieces run in 19.6 hours with no machine down-time; 10,425 pieces of ordinary copper rod run in 66.6 hours with 11.8 hours machine down-time. In addition to the extra time required, three sets of dies were used for the regular rod. "The savings of the free-cutting material over ordinary copper were figured at $\$ 1.81$ per thousand, in cluding in these costs both material and direct labor."
\#16552, space washer. "Savings per thousand over electrolytic copper were 77ϕ. This figure included the material differ-
ence and direct labor. In addition, there was an 18% saving in machine down-time."
\#K-60-1A, 70-200 amp. stud. "The use of Free-Cutting Copper Rod on this part very definitely increased production and practically voided machine down-time.
In a letter to Revere, Trumbull added: "In general, at least for most of the parts we have used, we find that there is at least a 25% saving in machine time of free-cutting over regular copper. In addition, the workers are enthusiastic about this material, particularly when running studs, because of the fact that it is no longer necessary for them to keep a constant close watch on the machine to see that the turnings do not become tangled up with the moving parts of the machine."
The Trumbull experience is being duplicated in other machine shops. If you have not tried this Revere Metal, we suggest you get in touch with your nearest Revere Sales Office.

COPPER AND BRASS INCORPORATED Founded by Paul Revere in 1801 230 Park Avenue, New York 17, New York
Mills: Baltimore, Md.; Chicago, Ill.; Detroit, Mich.; New Bedford, Mass.; Rome, N. Y. - Sales Offices in Principal Cities, Dissributors Everywhere.

Exdusive Monufacturers of Communications Network Components

Sub-miniature band pass. Includes 3 coils and 4 condensers. Volume-41/2 cubic inches.

The big three out of 30 types of toroidal coils we are supplying. TC-1 any ind. up to 10 hys. TC-2 any ind. up to 30 hys. TC-3 any ind. up to .750 hys.

Crystal filter for narrow band pass applications too critical even for toroidal coils.
Wide band sharp cutoff band pass. Size: $2 \times 31 / 2 \times 65 / 8$.

Cycles Deviation
Tone channel filter for extremely high crossover attenuation require" ment. Size: $2 \frac{1}{2} \times 2 \frac{1}{2} \times 5$.

Burnell YONKERS 2, NEW YORK

For top-flight quality and rock-bottom economy

in telecast programming . . . DU MONT Type 5130-B

16 mm SOUND

- Superlative movie programming utilizing economical 16 mm sound films-that's the meaning of this latest Du Mont achievement.
Designed and built "from scratch" to meet the exacting needs of movie telecasting. Not to be confused with usual improvisations. Definitely, with this unique projector, movie telecasting comes of age.

Ready for the heavy-duty service normal to telecast operations. All parts readily inspected, checked, replaced, when needed. Self-contained. Fully enclosed. Streamlined. Smartly designed.
Better movie presentations over the air are bound to follow the installation of such equipment by telecasters seeking the largest audiences.

> Details on request. Meanwhile, submit your telecasting problems and requirements.

FEATURING...

Complete with sound preamplifier and necessary power supplies. Sound system response of 50105000 cycles-quality of reproduc. tion limiled solely by film sound track.
Ample reel reservoir capacity permitting use of 4000 ft . feature movies.

Synchronous locking type driving molor ensuring perfect tlein with television sync generator.
lamp assembly and pull-down mechanism available for instant replacement.

Adjustment for both positive and negative film.
Light output far exceeds previous equipment, permitling use of low sensitivity pickup tubes even with narrow vertical blanking interval.

For direct throw on television mosaic or with infermediate translucent screen and prism for utilization of Image Orthicon Camera for film pickup.

Built for continuous use on an average of 20 hours weekly. At leasi 3000 hours' life expectancy for major components.
sum, the stability and performance which television film pickup has needed for many years.

Callen b du mont laboratories, inc.

ALLEN B. DU MONT LABORATORIES, INC. - TELEVISION EQUIPMENT DIVISION, 42 HARDING AVE., CLIFTON, M, J. - DU MONT NETWORK AND STATION WABD, 515 MADISON AYE., NEW YORK 22, N. Y. • DU MONT'S JOHN WANAMAKER TELEVISION SIUDIOS, WANAMAKER PLACE, NEW YORK 3, N. Y. - STATION WTTG, WASHINGTON, D. C. MOME OFFICES AND PLANTS, PASSAIC. N. J.

Finest Cored Solder

TECHNICAL ADVANTAGES

0 Multicore Solder

- Thr $\begin{gathered}\text { - } \\ \text { - } e p a r o t e ~ c o r e s ~ o f ~ f l u x ~ e l i m i n a t e ~ p o s s i b i l i t y ~ o f ~\end{gathered}$ no fux in o portion of the wire, which may occur in single cored solder. Guaranteed continuity of the flux stream prevents "dry" icints, i.e, those having high electrical resis-ance.
- Altrough there are three cores of fldx in Multicore, the potal percentage of flux to solder is no greater that in single cored solder.
- Ver, rapid melting results from the multiple core construction which provides thinner walls of solder that are found in same gauge singe cored solder.
- Mulicore's unique properties make perfect joints possible on difficult metals and alloys, even if oxidized.
- Abi ily to tin rapidly produces per"ect joints with less solder. Greater coverage per pound.

Ersin Flux

Ersin Flux is an exclusive produd of Multicore Soleers limited, and is only suppled as part of Multicore Solder. It is a high grade, water white rosim, homogeneously activcted.

- Corlers on rosin a vigorous fluxing action without affe:ting the non-corrosive and proccted features of the original rosin.
- Soldered joints made with Ersin Flax do not corrode even after prolonged exposure to a degree of tumidity.
- Reduces the surface tension of nolten solder, caving it to wet metals rapidly, in=reasing speed of cperation with resultant product on economies.
- Free from objectionable odor. Nor-toxic in use.
- Leares nothing bul pure rosin on the work after soldering, and may be used wherever plain rosin is specified.

The only 3 core solder made
 with ERSIN FLUX...the original non-corrosive, extra-active flux

ALLOY AND MELTING POTNTS OF ERSIN MULTICORE SOLDER

$\begin{gathered} \text { Alloy } \\ \text { Tin/Lead } \end{gathered}$	Multicore Color Code	Solidus ${ }^{\circ} \mathrm{C}$.	Liquidus ${ }^{\circ} \mathrm{C}$.	Recommended bit temperature ${ }^{\circ} \mathrm{C}$.	USES
60/40	Red	183°	190°	230°	High quality work requiring low melting point alloy.
50/50	Yellow	183°	212°	252°	Hand soldering. Radio, tele. phone and electrical equip. ment; batteries.
45/55	Crimson/Buff	183°	227°	267°	
40/60	Green	183°	$238{ }^{\circ}$	$278{ }^{\circ}$	
30/70	White	183°	257°	297°	Fuses, motors, dynamos.
20/80	Purple	183°	276°	316°	Lamps, motors, dy nomos.

STANDARD GAUGES

			Approximate Number of Feet per lb. Alloy					
			60/40	30750	45/55	40/60	$30 / 70$	20/80
-	1.128	3.251	25.2	24.1	23.5	23.0	21.9	20.8
2	0.104	2.642	38.1	36.5	35.2	34.9	33.1	31.5
13	0092	2.337	48.7	46.6	45.3	44.5	42.3	40.3
4	0.080	2.032	64.4	61.7	59.2	58.6	56.0	53.3
16	0.064	1.626	1005	96.4	94.3	92.1	87.5	83.3
18	0.048	1.219	178.5	171.0	167.8	163.5	155.5	148.0
19	0.040	1.016	257.5	246.5	240.4	235.5	224.0	213.0
:0	0036	0.914	318.0	304.5	302.5	291.0	276.5	263.0
:2	0.028	0.711	5260	503.0	492.0	481.0	457.0	435.0

ERSIN MULTICORE SOLDER IS made in a wide range of gauges, as shown. It can also be supplied in any intermediate size. For general radio and electronic producfion $13,14,16$ and 18 5.W.G. are the most widely used gauges.

FEDERAL SPECIFICATIONS ERSIN Multicore Solder meets all requirements of Federal Specification OQ-5-571-b Seplember,1947.
entilled "Solders Solt Tin lead" entilled "Solders Soft Tin lead"
as certified by the New York Testing laboratory Incorporated.

ALL GAUGES AND ALLOYS READILY
AVAILABLE FROM NEW YORK STOCK.

Address U.S.A. ond Canadion inquilits fo:
Write for Helpful Booklet, "SOLDERS AND SOLDERING"

ERSIN

PROBLEN:
 How to produce better,

ANGWER:Westinghouse
EXAMPLE: Resistance Welding Controls
yOU CAN BESURE...
IF IT'S

Westinghouse

faster, cheaper

Electronic Controls

Speed Production Cut Costs

Want to speed fabrication? Reduce handling and welding time? Get top-quality welds? Then investigate Westinghouse electronic resistance welding controls. You can select the basic patterns of controls you need -synchronous or non-synchronous. Each is a complete, unified, factoryassembled package that eliminates awkward, cumbersome equipment of the past. Every part has been especially designed for heavy-dury industrial use. Controls are within easy reach of the operator. Circuits have been simplified; troublesome gadgets eliminated; designs on-the-job tested and performance proved. Everything has been designed and built with one purpose in mind - to make resistance welding more practical . . . more efficient than ever before.
Check Westinghouse Electronic Welding Controls today. See their simplicity . . . their compactness. For complete detailed information, call your nearest Westinghouse representative or write to Westinghouse Electric Corporation, P. O. Box 868, Pittsburgh 30, Pennsylvania.
J.60681

Synchro-Trol . . Synchronous-Precision
 A-C Control for Resistance Welding

All timing and sequence functions in one factory-assembled and tésted unit.
Synchronous-precision timing ... more uniform welds . . . fewer rejects . . . lower costs.
Easy operation-finger-tip control where you want it.
Less floor space required-saves up to 50% of that formerly required.
Locking doors protect controls against unauthorized tampering.
Less skilled help needed for installation and operation.

Weld-0-Timer . . . Non-Synchronous Control for Improved Welding

Unusual flexibility permits many combinations of standard sub-units in one factoryassembled unit for specific resistance welding requirements.
Installation is easy . . . units are supplied completely wired and factory-tested.
Tested, improved circuits provide timing consistency. Each sequence circuit is equipped with voltage regulating tubes.
Standardized Weld-O-Timers are alike in design... well suited to modern plant layouts. Circuits and terminal markings, regardless of combination, are similar for all units.

Wherever There's a CORE and COIL Choose REDR MIT Power and Audio Transformers Chokes • Filters

- TYenanti E̊lechic, Inc.

30-A Rockefeller Plaza - New York 20, N. Y.

NOW! rocps to 10 mc

...with the New -hp- 650A RESISTANCE-TUNED OSCILLATOR

Here it is . . a another bpp- "firs" . . . a new resistance-tuned oscillator that not only covers a frequency range of 10 cps to 10 mc , but brings to the r-f and video field all the speed, accuracy and ease of measurement traditional to famous $-h p$ audio oscillators. And, this important addition to the -bp- line incorporates all the family characteristics of other -bp-oscillators . . . no zero setting,

SPECIFICATIONS

FREQUENCY RANGE: 10 cps to 10 mc FREQUENCY CALIBRATION: 0.9 to 10. Multiplying factors are: MF
$\times 10 \mathrm{cps}$
X 100 cps
XIkc
Xloke
Xlokc
XIO
XIme
Xime $\quad 0.9$ to 10 mc
STABILITY: $\pm 2 \%, 10$ eps to $100 \mathrm{kc} ; \pm 3 \%$, 100 ke to 10 mc including warmup, line voltage, and tube changes
OUTPUT: 10 milliwatts or 3 volts into 600 ohm resistive load. Open circuit volt age is at least 6 volts. 600 ohm reflected impedance. Output impedance of 6 ohms also available.
FREQUENCY RESPONSE: Flat within ± 1 $\mathrm{db}, 10 \mathrm{cps}$ to 10 mc .
DISTORTION: Less than 1% from 100 cps to 100 kc . Approx. 5% from 100 kc to 10 mc .
OUTPUT MONITOR: Vacuum tube voltmeter monitors output level in volts or beyond monitor is accurate within $+5 \%$ all levels and frequencies.
OUTPUT ATTENUATOR: Output level attenuated 50 db in 10 db steps, providing continuously variable output voltage from +10 dbm to $-50 \mathrm{dbm}, 3$ volts to 3 millivolts, or down to 30 microvolts with voltage divider.
HUM VOLTAGE: Less than 0.5% below maximum attenuated signal level.
POWER SUPPLY: 115 volts $50 / 60 \mathrm{cps}$. Con sumption 135 watts. Plate supply elec tronically regulated.
MOUNTING: Cabinet or relay rack. Panel size $19^{\prime \prime} \times 101 / 2^{\prime \prime}$. Depth $13^{\prime \prime}$ minimum adjustment during operation, virtual inlined circuits for long, trouble-free performance.

The result is a highly stable, wide-band precision instrument which provides output flat within 1 db from 10 cps to 10 mc , and a voltage range of .00003 to 3 volts. Output impedance is 600 ohms or 6 ohms with output voltage divider.

LIKE OTHER -hp- resistance-tuned oscillators, the new 650A gives you the advantage of decade frequency ranges, a $94^{\prime \prime}$ scale length, and a 6 to 1 microcontrolled vernier drive. A complete vacuum tube voltmeter, included in the 650 A circuit, monitors output in volts or db at the 600 ohm level. A continuously variable output voltage is obtained by means of an output attenuator of 50 db , variable in 10 db steps and an amplitude control which adjusts the level to the monitor vacuum tube voltmeter.

Where it is desirable that the measurements be made with a low source impedance, an output voltage divider unit is supplied. This attachment consists of a cable, which may be extended to the point of measurement and provides an internal impedance of 6 ohms. It also reduces the outpur voltage 100 to 1 .

THE COMPACT, efficient $-h p-650 \mathrm{~A}$ is available now for making a wide number of measurements . . . testing television amplifiers, wide-band systems, filter transmission characteristics, tuned circuits, receiver alignments. And . . . it serves admirably as a power source for bridge measurements or as a signal generator modulator.

1495
For full information...write today
Hewlett-Packard Company - 1495A Page Mill Road • Palo Alto, Calif.

Attention FM Engineers!
Full information on the new -hp-
FM TEST EQUIPMENT Available on Request write Today!

KARP METAL PRODUCTS CO., INC.

215-63rd Street, Brooklyn 20, New York
Custom Craftsmon in Sheet Netal

The Richardson Company offers you the services of an established, experienced, manufacturing organization with ample facilities for quantity production of Laminated INSUROK, proven by years of experience to be one of the world's truly fine punching stocks.

The RICHARDSON COMPANY
 GENERAL OFFICES: LOCKLAND. OHIO - FOUNDED IN 1838

 Sales Headquarters: MELROSE PARK, ILLINOIS

Abstract

Can be welded, brazed, or soldered to case, forming a strong, permanent, hermetic seal that eliminates moisture problems and often permits more compact, light-weight design.

The best way to evaluate these glass bushings for capacitors, modulator transformers, and other slectronic equipment, is to see them. If you will send us a sketch and ratings of bush. ings you are now using, we will furnish you with samples of one or more of our standard glass bushings. Or write for Bulletin GEA-5093 which contains complete listings of our sfandard designs, allowing you to select the particular bushing you require. Power Transformer Sales Division, Ganeral Electric Co., 16-215 Pittsfold, Mass.

General Electric is now offering to other manufacturers the glass bushings that it has used so successfully on capacitors, rectifiers, modulator and instrument transformers, and other electrical equipment. These bushings are cast of an exceptionally stable, low-expansion glass. Metal hardware is a special nickel-alloy steel, fused to the glass in casting. Bushings are attached directly to the apparatus without gasketsby soldering, welding or brazing the metal bushing flange to the metal case.

The resulting joint between bushing and equipment is permanent, vacuum-tight, and of high mechanical strength. It is especially desirable for equipment subject to vibration, shock, fungus growth or severe changes in temperature. These glass bushings are currently available to meet dry, 60 -cycle, flashover values of from 10 to 50 kv , and in current ratings of 25 and 50 amperes (large sizes up to 800 amperes). They may be single or multi-conductor and can be provided with a top flange to permit mounting tube sockets directly on the bushings. Diameters range from $15 / 8$ to $33 / 8$ inches and weights from $21 / 2 \mathrm{oz}$. to 4 lb .

GENERAL

 ELECTRIC

Recommended for use under stringent conditions such as encountered in television, auto radio applications, and sets for export use.

Samples on request to quantity users. Write for Sprague Data Bulletin 201A.

Wherever small, paper capaciors are required to operate under exacting conditions of heat, moisture or vibration, Sprague Phenolic Molded Tubulars are setting new, higher standards of efficiency.

SPRAGUE ELECTRIC COMPANY, NORTH ADAMS, MASS.

vhf communication package

- The Collins 3000A-1 provides radiophone facilities for transmission and reception in the frequency range of 118 to 136 mc . It is expressly designed for airlines and airport tower vhf communications.

The installation consists of a Collins 242B-1 vhf transmitter (r-f, modulator, relay control, and high and low voltage power supply units), and a Collins $51 \mathrm{M}-2$ vhf receiver, all compactly integrated in a Collins cabinet.

The r-f section permits transmission on either of a pair of frequencies not more than 1% separated, anywhere within the band, and has a power output of 50 watts. The number of channels can be increased by the addition of r-f units, each unit having two channels. By selection of vhf units and a Collins remote control unit the installation can provide transmission on as many as eight frequencies.

The transmitter units are designed for 19 " rack panel mounting. Convenience for maintenance has been an important design consideration. All tubes and adjustments are available from the front of the cabinet. Thorough engineering throughout insures dependable, uninterrupted performance at either a local or remote position.

The $51 \mathrm{M}-2$ is a fixed channel crystal controlled dual-superheterodyne receiver, and is highly sensitive and selective. It includes all modern circuit features, such as flat avc, noise limiter, and squelch. Write us for further information.

the right material for your job

IfIf you want to get the electrical insulating material best suited to improve product performance, here's an engineering service worth investigating. Experienced ContinentalDiamond engineers will welcome the opportunity of working with you from the start of a job to its completion. Backing them up is a complete line of insulating plastics with unusual combinations of electrical, chemical and mechanical properties. There's Diamond Fibre for toughness, wear resistance, and light weight, Vulcoid for superb arc resistance, toughness, good dielectric strength and fair moisture stability, Dilecto for structural
strength and dimensional stability. All in all, there are five different C-D Plastics subdivided into grades to fit your specific application.

Take advantage of this complete plastics service designed to help you improve product performance, lower unit costs. For personal engineering help or prompt delivery of insulating plastics, call your nearest C-D office today.

C-D HIGH-STRENGTH PLASTICS

Diamond Fibre-Vulcanized Fibre

Vulcoid-Resin Impregnated Fibre
Dilecto-Laminated Thermosetting Plastic
Celoron-Molded High-Strength Plastic
Micabond-Bonded Mica Splittings

DE-5.48
BRANCH OFFICES: NEW YORK 17 - CLEVELAND 14 - CHICAGO 11 - SPARTANBURG, S. C. - SALES OFFICES IN PRINCIPAL CITIES WEST COAST REPRESENTATIVE: MARWOOD LTD., SAN FRANCISCO 3 - IN CANADA: DIAMOND STATE FIBRE CO., OF CANADA, LTD., TORONTO 8

You get all these features ONLY in the Western Electric 5A Monitor

 for FM Broadcasting

 for FM Broadcasting}

CENTER FREQUENCY MONITOR:
Accuracy-better than ± 500 cycles. (± 200 cycles if occasionally adjusted to agree with a primary standard)
Meter Range- $\pm 3,000$ cycles
Terminals for connecting remote meter

PROGRAM MONITORING CIRCUIT:
Output suitable for either aural program monitoring or FM noise and distortion measurements
Frequency Response一 $\pm 0.25 \mathrm{db}, 30$ to 30,000 cycles, withoat de-emphasis; with de-emphasis, response is within $\pm 0.5 \mathrm{db}$ of the standard 75 microsecond de.emphasis curve Audio Output Power-output level adjustable up to +12 dbm-permits direct switching of program monitor from transmitter input to 5A Monitor output
Harmonic Distortion-less than $1 / 4$ of 1% from 30 to 15,000 cps
Ouiput Noise-at least 75 d helowsignalat 100% modulation

POWER SUPPLY: Newly designed 20C Rectifier (furnished as a part of the 5 A Monitor) provides electronically regulated d-c with less than I millivolt ripple from 105-125 volts a-c 60 cycles. May be remotely located if desired.

MODULATION PERCENTAGE MONITOR:

Accuracy-better than 5\% for all readings
Modulation Range Capability-up to 133% ($\pm 100 \mathrm{kc}$)
Terminals for connecting remote meter

MODULATION

 PEAK INDICATOR:Indication Lamp - flashes when a selected level of modulation is exceeded
Peak Limit Range - continnously adjustable bet ween 40% and 140% modulation

AM NOISE DETECTOR:

An exclusive feature in the 5A Monitor. The output of this detector-which may be read directly on an electronic volt. meter or noise meter - is automatically referred to 100% amplitude modulation thus simplifying measurement of transmitter AM noise.

The 5A Monitor includes numerous other valuable features such as: dual thermostats and dual heaters for each crystal-means for checking the inherent noise level of the monitor from its input to output terminals-requires only a low RF input level (l watt) which can vary from 0.3 to 3.0 watts; i. e., a 10 to 1 variation without affecting the performance of the monitor. To get the complete story on this outstanding monitor value, call your Graybar Broadcast Representative or mail the coupon below.

Western Electric

Distributors: In the U. S. A.- Graybar Electric Company.
In Canada and Newfoundland-Northern Electric Company, Ltd.

-QUALITY COUNTS -

Graybar Electric Company
420 Lexington Avenue, New York 17, N. Y.
Please send me Bulletin T-2437, including curves, schematics and block diagram of the 5A Monitor.

NAME
STATION
ADDRESS
CITY \qquad

Applied

Research

Laboratories

specifies
Sorensen
electronic
voltage
regulation
$\mathrm{O}_{\text {nly }}$ Soreresen electronic volages regulators offer as much as 0.1% regulation accuracy under simultaneous line and load changes.
Shown above is the ARL Projection Comparator Densitometer. Applied Research Laboratories, internationally
known manufacturers of precision spectographic and densitometric equipment, have standardized on Sorensen AC line voltage regulators because only Sorensen units provide the 0.1% regulation accuracy necessary for the scanning lamp. six important sorensen features: - Precise regulation accuracy; - Excellent uave form; - Output regulation over wide input voltage range: - Fast recovery time; • Adjustable output voltage, that once set, vemains constant; - Insensitivity to line frequency fuctuations between 50 and 60 cycles.
If you calibrate meters, need quality control on test lines, work with X -ray equipment, or are a research physicist or chemist, there is a standard Sorensen AC or DC unit to solve your voltage problem. The Sorensen Catalog contains complete specifications on standard Voltage Regulators and Nobatrons. It will be sent to you upon request.
the first line of standaris electronic voltage regulators.

SORENSEN \mathcal{E} Company, Inc.

Stamford, Connecticut
Represented in all principal cities.

Designexs and Moamufucturers of

Communications, CNicrowave and Eblectro-CNechanical Ésuipment

PRESS WIRELESS MANUFACTURING COMPANY, INC.

(Combining Press Wireless Manufacturing Corporation and Milliken Machine Company)

- To the many friends of Press Wireless Manufacturing Corporation and of Milliken Machine Company, we take pleasure in announcing that these two long established concerns are now united under the name Press Wireless Manufacturing Company, Inc.
- The new company has continued intact the ex-
ceptional engineering staffs and production facilities of its predecessors and now offers to government and industry a complete service for the design and manufacture of a wide variety of communication, microwave and electro-mechanical equipment.
- Press Wireless Manufacturing Company, Inc., places at your disposal a coordinated and experienced team, which has consistently delivered successful military and commercial equipment and which knows how to interpret intangibles and create efficient designs where no precedent exists.

WE WELCOME YOUR INQUIRIES

PRESS WIRELESS MANUFACTURING COMPANY, INC.
First in "Packaged" Communitenfons Equipment-from Anfonna Tower to Oparating Consolo Manufacturing Plants Located at Hicksville, L. I., and West Newton, Mass.

I

Check the features of Centralab's revolutionary new Rotary Coil and Cam Index Switch. You'll agree it's one of the most important switch developments of the year! (1) New tested stepstrength of 48 inch pounds. (Standard RMA step-strength-only

24 inch pounds.) (2) Guaranteed minimum life - 150,000 cycles (RMA Standard - 10,000 cycles.) (3) Removable spring can be replaced without removing switch from chassis. Get all the facts. Write for Bulletin 995.

Four Positions Give You Wide Choice of Switching Combinations
Pt — Positive Index SR - Spring Return

Two position positive index.

6 Three position index - fwo posilive spring return from counterclock wise.

3 Two posifion spring relurn from clockwise.

$\$$ Four position, three posifive, spring refurn from counter-clock wise.

4 Three position positive index.

5 Three position spring relurn from both sides to center.

10 Four position, fwo positive, spring refurn from clockwise, counter-clockwise.

Electronic Industry

2 For utmost reliability in small physical size, low mass weight, use CRL Hi-Kap - miniature ceramic disc capacitors. Write for Bulletin 933.

1 Let Centralab's complete Radiohm line take care of your special needs. Wide range of variations: Model " R " - wire wound. 3 watts; or composition type, 1 watt. Model "E" - composition type, $1 / 4$ watt. Direct contact, 6 resistance tapers. Model
" M " - composition type, $1 / 2$ watt. For complete information, write for Bulletin 697

LOOK TO CENTRALAB IN 1948! First in component research that means lower costs for the electronic industry. If you're planning new equipment, let Centralab's sales and engineering service work with you. Get in touch with Centralab!

Centralab

DIVISION OF GLOBE-UNION INC., MILWAUKEE, WIS.

with the new (8\%)AMPLIFIER

WITS neatly into your audio cabinet-attractive, sturdy, quiet. But what a uallop it packs when you want attention from Mr. Big - the listener!

Based on engineering developments by CBS engineers, the Limiting Amplifier has been designed by General Electric to give you greater coverage and more potential listeners without changing your present transmitter or antenna.

For more information, call your nearest G-E broadcast equipment representative, or write us. General Electric Company, Transmitter Division, Electronics Park, Syracuse, Neu' York.

MEMO TO
 STATION MANAGERS:

Increases modulation and thus makes signal reach farther, sound clearer.

Raises effective signal strength-this means increased coverage.

Low installation costquickly, easily mounted in G-E Audio Cabinet Rack.

In FM, too - protect your listeners against receiver distortion caused by transmitter overswing. Dynamic range, so important in FM, is maintained.

MEMO TO ENGINEERS:

Increases average level of modulation as much as 8 to 10 db .

- Anticipatory circuit prevents overmodulation-even on the first half cycle of the overmodulation peak. Automatic recovery time improves program fidelity!

Prevents distortion and ad iacent channel splatter.

G-E popular hinged panel construction-easy to get at.

Vertical mounted for better ventilation.

G-E Limiting Amplifier at the 50,000 watt transmitter of WTOP, Washington, D. C.

OHMITE Resistance "Know-How"

here's a valuable source of design information

IF YOU have a design problem involving rheostats or resistors, call on Ohmite for assistance. The accumulated experience of the entire Ohmite engineering staff . . . the combined thinking of its many resistance specialists . . . are all available to you for the asking. Ohmite engineers are well qualified to help analyze your requiremense an 1 select the correct units to fit your specific application. Years of experience in building dependable rheostats and resistors, in helping others solve specialized resistance problems, is your assurance that Ohmite "know-how" can help you. We invite you to submit your problems to us.

MODEL EOO
FIVE SIZES

Model 6D: - 100 Amp

Model 412-50 Amp

Model 312-25 Amp

Model 212-15 Amp

Model 111-10 Amp

Send for Catalog and Engineering Manual No. 40

Write now, on company letterbead, copy of this he pful 96 paje Ohmite ca-aloz.

OHMITE MANUFACTURENG COMDANY 4817 Fournoy Chicage 44, III.

Compact-Dependable
Here's a line of non-shorting, rotary tap switches that combine high currentcapacity and a large number of taps, with unusual compactness. Their sturdy one-piece ceramic bodies provide permanent insulation, as the ceramic is not affected by arc-ng. The heavy silver-to-silver contacts have a self-cleaning action, and (except for Model 111) are totally enclosed and protected. Switch shafts are electricaly dead-insulated by strong ceramic hubs. A positive cam-and-rolle: mechanism provides "slow-break quick-make" action-particularly designed for alternating current use. Two or three of these Ohmite tap switches can be mounted in tandem to form multiple-pole assemblies.

If Recorders came

with Mileage Meters...

Presto 6 N would be MILES AHEAD

Yes, day after day and year after year over 3,000 Presto 6 N recorders are hard at work in broadcasting stations, recording studios, educational institutions and government agencies throughout the world.

6 N recorders purchased ten years ago are performing as well today as when they were new. This outstanding record of the 6 N recorder in action is proof again that Presto design is built for hard, continuous duty and Presto materials are the finest obtainable.

So when you're looking for a new recorder, remember: By actual test the best recorder for the most people is Old Faithful, the Presto 6 N .

RECORDING CORPORATION, Paramus, New Jersey • Mailing Address: P. O. Box 500, Mackensack, N.. J.
In Canada: WALTER P, DOWNS, Ltd., Dominion Sq. Bldg., Montreal

World's largest manufacturer of instantaneous sound recording equipment and discs

MOLDED INSULATED TUBULAR GP CERAMICONS

Have extremely rugged, molded insulation, axial leads. Capacity range $10.5,000$ MMF. Smallest size $.250^{\prime \prime} \times .562^{\prime \prime}$ max.

DIPPED INSULATED

 GP CERAMICONSFor use where space is at a premium and radial leads are desired Capacity range $10.15,000$ MMF. Smallest size $.240^{\prime \prime} \times .460^{\prime \prime}$ max.

NON-INSULATED
GP CERAMICONS
Smallest size units. Have baked enamel caating. radial leads. Capacity range $10-15,000 \mathrm{MMF}$. Smallest size $.200^{\prime \prime} \times .400^{\prime \prime}$ max.

INSULATED STAND-OFF CERAMICONS

Rugged, molded insulated construction. Mounts with 6.32 nut. Style 323 mounts $19 / 32^{\prime \prime}$ high above chassis. Capacity range $0.5-700 \mathrm{MMF}$. Style 324 mounts 27/32"high. Copocity range 710-1,500 MMF. Available with 20 gauge wire lead or post type top terminal.

For Any and All By-Passing Requirements ERIE CERAMICONS

Erie Ceramicons fulfilall the req. uisites for efficient by-passinglow inductance, compact design, and conservative 500 volt D. C. rating. Erie Resistor offers the most complete line of ceramic bypass units available. Each design has been thoroughly proven in domestic and military equipment. Check the products listed on this page for your future designs. Full description and specifications will be sent on request.

NON-INSULATED STAND-OFF CERAMICONS
Style 318 (left) mounts $1 / 2^{\prime \prime}$ high above chassis, has 032" diameter wire top terminal. Capacity range $1-560 \mathrm{MMF}$. Style 319 (right) mounts $.520^{\prime \prime}$ high, has . $067^{\prime \prime}$ diameter top rerminal. Capacity range $2-1,000 \mathrm{MMF}$. Both styles have 3.48 thread.

SIDE-LEAD STAND-OFF CERAMICONS

Wire leads are correct height from chassis for shortest possible connection to tube sockets. Siyle 2322- (lefi) 45/64 ${ }^{11}$ high. Copocity range 5-2,500 MMF. Style 2336 (right) $15 / 16^{\prime \prime}$ high. Capocity range $6-5,000 \mathrm{MMF}$.

Electronies Dicision

 ERIE RESISTOR CORP., ERIE, PA.LONDON, ENGLAND TORONTO, CANADA

FOR UHF COMMUNICATIONS EQUIPMENT ERIE BUTTON SILVER MICAS
These extremely compact silver mica condensers have 360° current path from short, heavy terminals to ground, providing very low inductance. Made in Stand-off and Feed-thru styles.
Capocity range 15-1,000 MMF in .447 ${ }^{11}$ diameter, 1,000-6,000 MMF in $.651^{11}$ diameter.

WIRING

is the Life-Line of every electrical product
${ }^{\circ}$

Whatever your product, you can more surely predict dependable performance-in-use when it is Rockbestos-wired.
For Rockbestos wires, cables and cords are permanently insulated with impregnated felted asbestos - the ageless, heat and flame resistant insulation that insures top wiring dependability under even the most gruelling conditions.

Protect your product's life line with the wire that does so much more for so little more . . . Rockbestos.

WRITE TODAY - for your copy of the new No. 10-F Catalog, sectioned for easy reference to Appliance, Aircraft, Electronic, Fixture, Switchboard, Lighting and Magnet Wires; Apparatus Wires and Cables; Power and Cor trol Cables.

ROCKBESTOS PRODUCTS CORPORATION 464 NICOLL 5T., NEW HAVEN 4, CONN.
NEW YORK CLEVELAND DETROIT CHICAGO PITTSBURGH ROCKBESTOS

Take a close look at the insulation on this Warner "ICB" Electric Clutch-Brake. The wire that conveys the current from the collector ring to the magnet requires an insulation that is heat resistant to $300^{\circ} \mathrm{F}$. at 110 v .

When the Warner Electric Brake Manufacturing Company put this problem up to Bentley, Harris, they got complete performance data on BH Extra Flexible Fiberglas Sleeving and samples for laboratory test. Here is what they found:

BH Fiberglas Sleevings are made to meet specific requirements - double-braided, triple-braided, heat resistant to $1200^{\circ} \mathrm{F}$. if necessary. Remarkably flexible - can be spread to cover knobs or terminals, cannot dry out. Non-fraying - without use of hardening varnish or lacquer.

If you have a problem of insulation breakdown caused by high heat, extreme cold, harmful gases, grease or moisture, try BH Fiberglas Sleeving ii your plant, in your product. ments for insulation of electric brakes used on industrial machinery."

$$
\begin{aligned}
& \text { BH iberellas: } \\
& \text { SLEEVIGS }
\end{aligned}
$$

"BH Non-Fraying Fiberglas Sleevings are made by an exclusive Bentley, Harris process (U. S. Pat. No. 2393530). "Fiberglas" is Reg. TM of Owens-Corning Fiberglas Corp.

Bentley, Harris Mfg. Co., Dept. E27, Conshohocken, Pa
I am interested in BH Non-Fraying Fiberglas Sleeving for \qquad
operating at temperatures of \qquad ${ }^{\circ} \mathrm{F}$. at \qquad volts. Send samples so I can see for myself how BH Non-Fraying Fiberglas Sleeving stays flexible as string, will not crack or split when bent.

NAME \qquad COMPANY \qquad $-$

ADDRESS \qquad

Send samples, pamphlet and prices on other BH Products as follows:
\square Cotton-base Sleeving and Tubing
\square Ben-Har Special Treated Fiberglas Tubing
${ }^{T}$ AILORED to your needs as builder or designer of new broadcastirg equipment, Type G--7D21 is the right tube for medium-power FM. Check the low drive requizement of 120 w -real economy!-against an output (Fush-pull in open-line circuits with proper external shielding) of well over 3 kw . Note the con$\mathrm{v} \in$ nience of forced-air cooling!

Study the tube's other advantages given above, then add plusfeatures like silver-plated contacts tc reduce e-f losses; strong, lastirg Fernico metal-to-glass seals; trim contour and compact construction to match the other advanced cormponents of your ultramodern tťnsmitter.
One of a distinguished family 0 ring-seal power tubes for FM and television, the GL-7D21's
brilliant all-around performance also marks these larger types:
GL-5513. A 220 -mc forced-aircooled triode, with typical Class C output (per tube) of 2.45 kw . GL-5518. A 110 -mc forced-air. cooled triode with typical Class C output (per tuke) of 6.4 kw .
GL-9C24. A $220-\mathrm{mc}$ triode, cooled by water and forced air, with typical Class C output (per tube) of 9 kw .

In this group is a tube directly suited to your requirements, no matter what type or size transmit. ter now is on your drawingboards. For prices and detailed information phore your nearby G-E electronics office, or wire or write to: Electronics Department, General Electric Company, Schenectady 5, New York.

Sketch shows how easily the GL-7D21 can be plugged into a coaxial sodket. Ring-seal design also provides anple contact surface for all terminals.

CHARACTERISTICS

Filament vollage current

Interelectrode capacitances:
grid-plate
input
0.4 mmft

397 mfd
14 nmfd
Frequency at max ratings
Type of cooling
Max plate ratings, Class C telegraphy: voltage torced-air
current
dissipation

1200 w

general

Mow for \mathcal{C} oporatror MIDGET AC TELEPHONE TYPE RELAYS!

POTTER \& BRUMFIELD, foremost supplier of relays to industry, now makes available for the first time their Series MTA telephone type relays for AC operation up to 220 volts 60 cycles. "Smaller than your thumb", this midget relay, weighing only $1-1 / 4$ oz., measures $1-1 / 2^{\prime \prime} \times 1-7 / 32^{\prime \prime} \times 1 / / 16^{\prime \prime}$.

With the MTA sefles, rectfication is no longẹ needed to objain chatter free operation: This relay is the same isize ats the long famious' MT seriés which is supplied for DC operations

The MTA is fitted with twin palladium contacts whtch will carry approximatiely 2 amperes noninductive load and is available in single or doruble spring stack with any contact combination up to 12 sptings. The baked varnish impregnated coil will stand constant duty with dissipation of only .50 to .75 watts and will operate on varying line source within 18% of rated voltage without hum

Either the MTA for AC or MT for DC meet UL

Find JAN specifications and are ẹsséntially shock or vibration proof. They a are practicularly suited to aircraft application.

Defveloped to meet the requirements of today's exacting miniafurization program, the MTA relay is only one of POTTER \& BRUMFIELD'S answers to. the demand for reliable miniature compoment parts for cointrol equipinient.

150 standard basic modelis for power, telephone. plate circuit. motor starting and all gȩneral applications, ox we will design and produce practical relays for special requirements. Tear-out this ąd ahd pth it to your letterhead for New Relay Catolog.
Poter \& Prumbield EXPORT 2020 ENGINEERING BLDG.. CHICAGO 0,111 . CABLE ADQRESS ENOTS Your Electronics Parts Distributor stocks many moders of P\& \& relinys

The Eimac 4-125A

Look about you
check the equipment shows thumb through the trade magazines
talk to design engineers ... yes, the Eimac 4-125A power tetrode is the standout vacuum tube, accepted in al.l fields of electronic endeavor for its stability, long-life and dependability.
Each tube is backed by the combined engineering resources of Eitel-McCullough plus over a million hours of proven field-service. It's Pyrovac* plate is highly resistant to momentary overloads and contributes to the tube's long life. Processed grids control primary and secondary emission, providing a high degree of operational stability. The tube is ruggedly designed to withstand abnormal physical as well as electrical abuse.
Detailed data and application notes are immediately available and statistics for unusual applications will be supplied on request.

EITEL-McCULLOUGH, INC. 204 San Mateo Ave., San Bruno, California

Export Agents: Frazer \& Hansen, 310 Clay Street, San Francisco 11, California
Grid-Screan Amplification factor (Averrage) 6.2
AUDIO FREQUENCY POWER AMPLFIER AND MORULATOR

Chosen after exhaustive tests by leading manufacturers of television, F-M, quality radio and all exacting electronic applications. Available for immediate delivery in all sizes, solid and stranded, in over 200 color combinations . . . ready to demonstrate anew the Efficiency and Economy of CORNISH WIRES AT WORK.

COmplete engineering data and samples on request

"made by engineers for engineers"

CORNISH WIRE GOMPANY, Inc.
 Chicago 11
 15 Park Row, New York 7, N. Y.
 1237 Public Ledger Bldg., Philadelphia 6

$\rightarrow 2$Iliance Model B is another new, 4-pole shaded type induction motor. It is especially adapted to fan blades and other mechanical loads.

This motor is made in three standord stack thicknesses with variable horsepower ratings for particular operating conditions such as fan loads-other mechanical loads -continuous or intermittent duty. And to further meet varied load requirements, Alliance Model B can be supplied semi-enclosed as illustroated or completely enclosed with oil tubes and oilers.
With a range of power ratings from $1 / 100$ hip. up to $1 / 25$ h.p. and a speed of 1550 rpm, Model B, like all Alliance motors lends itself to mass production at low cost.

ALLIANCE MANUFACTURING COMPANY E ALLIANCE, OHIO Export Department: 401 Broadway, New York 13, N. Y., U. S. A.

for mobile two-way radio

ALLIED'S NEW COPAXIAL RELAX

NEW RELAY GUIDE
This new folder shows 24 small, compact Allied Relays with a carefully zetailed table of characteristics and specifications. Write for Your free copy today.

The new Allied "RA" relay transfers 52 ohm antenna transmission line (type RG-8U Cable) from receiving to transmitting position. It is now used in police car radios and is highly recommended for both mobile and stationary applications.

This new relay is equipped with two Co-Axial cable fittings and one insulated transmitter line terminal. Co-Axial fittings for antenna and receiver connection are die cast as part of the metal housing. They will accommodate Signal Corps cable connector PL-259. Auxiliary double-pole, double-throw contacts can be supplied when specified.

ALLIED GONTROL GOMPANY Y ING. 2 EAST END AVENUE, NEW YORK 21, N. Y.

ENGINEERING FEATURES OF THE ALLIED TYPE "RA" RELAY
Contact Rating: Antenna transfer contacts will handle a maximum of 75 watts of radio frequency up to 150 megocycles when inserted in a properly terminated 52 ohm line. Auxiliary contacts have a non-inductive rating of 1 ampere at 24 volts D.C. or 115 volts A.C
Coil Rating: Up to 110 volts D.C. and 115 volts A.C. 60 cycles.

Coil	D.C.	D.C.	D.C. No. Volts
31	6.	.46	13.
34	12.	.22	54.
38	26.5	.083	320.
40	48.	.060	800.
43	110.	.026	4100.

(This table is based on an average power rating of 2.5 watts. Minimum operating voltages are 80% of voltages shown above.)
Dimenslons: $2^{\prime \prime} \times 27 / 8^{\prime \prime} \times \mathrm{T}^{3 / 4} \mathbf{4}^{\prime \prime}$. Weight: 4 oz.

"REELlWHINT"

"Resin-Five" Is More Active . . . More Efficient . . . More Stable . . . Than ANY Rosin Flux . . . And Yet

NON-CORROSIVE NON-CONDUCTIVE

ODORLESS!
. . . Yes -"RESIN-FIVE" is virtually without odor at relatively high tempera. lures!

MOBILITY!
. . "RESIN-FIVE" is so mobile it is highly effective in sweating seams. The activity and stability of "RESIN.FIVE" Flux make this an accom. plished factl

"Resin-Five is Available In 5 Core Sizes with Varying Percentages of Flux Content. Diameters ranging from .010" to $250^{\prime \prime}$ - All Practical Alloys!

ACTIVITY UNEQUALED!
. . . Just Think Of This -"RESIN-FIVE" will solder easily and readily such metals as Zinc, Brass, Nickel Silver, Nickel-Plate, Copper and Ferrous Alloys. REMEMBER "RESIN-FIVE" IS NOT CORROSIVE AND IS NOT CONDUCTIVE!

Contact Kester's Technical Department and get the facts on this unusual product.

NON-CORROSIVE
 NON-CONDUCTIVE

KESTER SOLDER COMPANY

4201 W. Wrightwood Avenue, Chicago 39, Illinois
Factories also at Newark, N. J. - Brantford, Conada

STABILITY!
"RESIN-FIVE" is STABLE under the most extreme sol. dering temperatures and the Flux still does the jobl

THEY MAKE WORK EASIER...in fact, American Phillips Screws make assembly a pleasure because, as one user says: "They're 3 times faster to find and drive!"' And they're far easier to handle, to drive at angles, and into cranky inside corners. Any worker who "goes crooked" with slotted screws will "go straight" with American Phillips... the only screw with the tapered, engineered recess. Fatigue is banished. Production stays up all day long. And time-savings, too, stay up around 50\%.

THEY MAKE SFIING EASIER...American Phillips Screws look new, modern, craftsmanlike... plainly say: "Here's a top-quality product"' And when your dealers sell the whole story of American Phillips extra holding strength, vibrationresistance, and greater dependability in strenuous use...then watch sales-resist ance melt away. Get these double-barrelled production and sales advantages for your product. Write.

AMERICAN SCREW COMPANY, PROVIDENCE 1, RHODE ISLAND

Chicogo II: 589 E. Illinois st.

1 The new Portable Fieldd. Intensity Meter, $\begin{array}{r}\text { RCA TyFe WX-2-shown one-third actual }\end{array}$ size. A loop aztenna is built right into the lid!

- Weighing only $121 / 2$ pounds-including batteries, here's a small, compact field-intensity meter of high accuracy that carries around like a portable radio ... and operates almost as simply. You tune in a signal, adjust a built-in calibrating oscillator and receiver gain . . and read signal intensity directly in microvolts-per-meter. No charts, curves, or correction factors to worry about. No computations to make.

Designed with a wide sensitivity range of 10 microvolts/meter to 10 volts/meter, Type W/X-2A enables you to make field-strength readings any-where-from the very shadow of your transmitter, to the roughest location "down-in-the-

* Subject to change without notice.
noise." Plenty of front-end selectivity, too. Loop antenna Q is approximately 100 at one megacycle; An r-f amplifier stage provides a very high order of image rejection.
Power supply; Ordinary flashlight dry cells for the quick-heating tube filaments-and a 67 -volt battery of the size used in camera-type radios for the B supply.
A lot easier now to get the facts on your coverage, service area, and antenna efficiency . . . with RCA's new portable WX-2A. Ask your RCA Broadcast Sales Engineer for the facts. Or write Department 36-J, RCA Engineering Products, Camden, New Jersey.

SLCNBSC "LISE BSUS"

 for domestic hot water heaters

When water in municipal systems contains dissolved minerals and chlorine, it becomes a fairly efficient electrolyte.

To avoid électrolytic corrosion which may occur if dissimilat metals are in contact with the water, the Toastmaster Water Heater employs "LIFE BELT" heating elements attached to the outside of the tank. In such an application, the ability of the elements to give long, trouble-free, economical service rests solely upon the quality of the electrical resistance material used. To assure top-level performance for a lifetime, the McGraw Electric Co., maker of the Toastmaster Water Heater, specifies Nịchrome.*

The tank of the Toastmaster Heater is further protected by McGraw's new "Ionodic" system of corrosion prevention, where a magnesium
rod anode, immersed in the water, saves the cathodic material of the tank from electrolytic attack.

Thus the manufacturers are able proudly to state: "We guarantee the Toastmaster Electric Water Heater for 10 years, and we deem this to be a conservative commitment. Many water heaters made by this company are still in daily use after several times this length of service, and elements in the old water heaters show little wear and no loss of efficiency."

Profit by the example of the McGraw Electric Co. and specify Nichrome. And remember, Driver-Harris manufactures over 80 alloys designed to fill the numerous requirements of the Electrical and Electronic industries . . . fully described in our catalog R-46.

Driver-Harris Company
HARRISON, NEW JERSEY
BRANCHES: Chicago, Detroit, Cleveland, Las Angeles, San francisco, Seattle
Manufactured and sold in Canada by
The B. GREENING WIRE COMPANY, LTD., Hamilion, Ontario, Canada

Mechanical and electrical stresses encountered in electrical equipment confront the designer with many factors to weigh in selecting the insulating material which will provide optimum performance characteristics.

In some applications, what might seem conservative design from the standpoint of electrical stress is explained by other performance essentials. Why, for example, for insulating commutator bars in small de motors, should a material of such high dielectric strength as mica segment plate be used, when electrical stress between bars is only a few volts? The reasons are found in other requirements that only mica satisfies: temperature resistance, moisture resistance, non-carbonization under poor commutating conditions, a uniform rate of compression and ability to stay in place under repeated temperature fluctuations.

In large rotating machines, peripheral speeds are high: extreme compressive, flexural, tensile and abrasive forces are encountered. Voltage may also be quite high. Because efficiency depends upon the amount of conducting (and not insulating) material in the slots, electrical insulation must be quite thin yet possess high dielectric strength.

WEIGH ALL FACTORS

Insulation performance requirements are as varied as the types of electrical equipment manufactured. Standard methods of testing established by the ASTM supply important values for comparison, specification and design.

FLEXURAL STRENGTH TEST ${ }^{1}$

This test determines the load in pounds required to break a test specimen of sheet or plate material loaded at the center as a simple beam. Supports and loading nose of the testing apparatus have contact edges rounded to a radius of $1 / 8^{\prime \prime}$ for material $1 / 8^{\prime \prime}$ thick or over, and to a radius of $1 / 16^{\prime \prime}$ for thinner materials. Distance between the supports is $4^{\prime \prime}$ for edgewise tests and eight times material thickness for flatwise tests.

Test specimens are $1 / 2^{\prime \prime}$ in width, except for specimens over $1 / 2^{\prime \prime}$ thick being tested flatwise, where the width is made equal to the specimen thickness.
Test reports include: (1) directions of cutting and loading the specimen; (2) thickness and width of each specimen to the nearest .oo1"; (3) the room temperature; (4) breaking load in pounds; (5) maximum fiber stress in pounds per square inch calculated from the formula:

$$
\mathrm{S}=\frac{3 \mathrm{Pl}}{2 \mathrm{bd}^{2}}
$$

where $S=$ maximum fiber stress, $\mathrm{P}=$ breaking load in pounds, $1=$ distance between supports, $b=$ width of specimen, and $\mathrm{d}=$ depth of specimen.

COMPRESSIVE STRENGTH TEST ${ }^{1}$

Apparatus for the compressive strength test is illustrated in Figure 1. Test specimen for sheets 1 " thick or over is a 1 " cube with faces flat and perpendicular

LAMICOID SHEETS - AVERAGE VALUES

	Flexural NEMA GRADE Strength, psi $1 / 16^{\prime \prime}$ to 1"	Compressive Strength Flatwise,psi $1 / 16^{\prime \prime}$ to $1^{\prime \prime}$	Dielectric Strength v / m, $1 / 16^{\prime \prime}$ to $1 / 8^{\prime \prime}$ Short Time
X	23000	35000	500
P	15000	22000	500
XX	16000	34000	500
XXP	16000	25000	500
XXX	15000	32000	470
XXXP	15000	25000	470
C	20000	38000	150
CE	17000	36000	360
L	20000	35000	150
LE	19000	37000	360
A	16000	36000	160
AA	20000	38000	50

to the axis. Where shects are less than $I^{\prime \prime}$ thick, the specimen consists of a pile of sheets 1 " square at least 1 " high.

Where material under compression fails by a shattering fracture, the compressive strength has a definite value. Where the material does not fracture, the value obtained for compressive strength is an arbitrary value, depending upon the degree of distortion allowed as indicating failure.

Test reports include: (1) significant dimensions of each specimen: (2) load on each specimen in pounds at time of failure; (3) ultimate compressive load strength in pounds per square inch calculated from measured area before load is applied; (4) description of material and how it acts under test; and (5) room temperature.
${ }^{7}$ ASTM Designation D229-46.

Figure 1 - Typical design of tool for making compressive strength tests.

Tests-Kels to hisulation Selection

PERFORMANCE-PROVED ELECTRICAL INSULATION FOR EXACTING APPLICATIONS

A limiting factor in performance efficiency and service life of electrical equipment is the dependability of the insulating materials used. Electrical, chemical and physical environments each demand performance standards that make the selection
of the right material a difficult design problem. To meet varied needs, Mica Insulator Company has developed a complete line of products, each offering specific advantages depending upon requirements. Typical applications are illustrated.

LAMICOID brackets provide the high mechanical strength necessary for bracing end-windings against short circuit stresses. This thermosetting laminated material may be used for spacers placed at frequent intervals between coils, as well as for braces to which the coils are lashed with strong cords. Clamps or cleats of the same material may be atlached to provide rigidity to prevent movement of the coils.

MICANITE segment plate composed of amber mica splittings, finds primary application in flush-rype commutators, as in this de motor, where mica and copper wear down uniformly

 6% binder, and is manufactured for minimum compressibility under heat and pressure. Films do not slip or exude cement when properly assembled.

EMPIRE varnished Fiberglas provides high tensile strength, small stretch and flexibility needed when insulating leads to this $15,000 \mathrm{KVA}$, 3 -phase, 6o-cycle outdoor type transfomer. Varnished Fiberglas is a Class B insulation which will withstand a "hottest-spot" temperature of $130^{\circ} \mathrm{C}\left(266^{\circ} \mathrm{F}\right)$. The impregnating varnish, from which electrical characteristics are derived, shows unusual resistance to corona and ozone. especiatly important for highvoltage applications. Vamished Fiberglas also resists moisure and most acids.

Fifty-five years of specialized experience in the development, manufacture and improvement of electrical insulating materials has enabled Mica Insulator Company to keep pace with the increasingly exacting requirements of electrical equipment builders. We welcome the opportunity to work with you in the selection and application of our complete line of materials. Consult our Technical Service Department on your insulating problems.

WEGAN HELP YOU WITH

Our experience - in engineering, designing, and building performance into energy-storage and discharge capacitors-may provide just the help you are looking for.

Do you make discharge welding or photographic flash-tube equipment? Radar equipment? Flash beacons, aircraft signalling, or similar devices? Or research tools, from spectroscopes to cyclotrons? We have furnished a large proportion of the capacitors used for all of these applications.

- Unusual applications, too-like those listed below -are a specialty with us. Whatever your problem, let our engineers give you a hand. Apparatus Dept., General Electric Company, Schenectady 5, N. Y.

NEED SQUARE WAVES? Pulse-forming networks can provide them. Networks are used where the normal capacitor discharge wave shape is not suitable and where an impulse must have definite energy content and duration. The Type E network, produced by General Electric, consists of capacitor and coil sections, adjusted to close tolerances, and hermetically sealed in single metal containers. Built by the thousands for radar, they are now available for commercial use.

GENERAL (2) ELECTRIC

Some call it:
SLIP RING ASSEMBLY
Some call it: COLLECTOR RING ASSEMBLY

Some call it: ROTOR ASSEMBLY
whatever you call it . . .

SPECIALTY

When you break wires to permit free rotation-that is where this PMI specialty comes in. We are currently handling all phases of this type of work, including design, manufacture of prototypes and production assemblies. PMI experience includes monitoring, video and power circuit requirements. We are manufacturing on a volume basis production assemblies ranging from 3 -circuits to more than 200 . Let us consult with you on your requirements.

Engineers, Designers, Production and Maintenance men . . . in fact everyone in the electrical and electronic industries can use the MITCHELL-RAND WALL CHART OF TABIES AND DATA to excellent advantage. Easy to read . . it contains data and tables used most offen . . . write for your copy today . . . on your company letterhead.

THE MTTCHELR-RAND WALE SMET MEASURES 21 BY 34 TNCNES AND CONTATNS

TAP DRILL SIZES
TWIST DRILL SIZES
MACHINE SCREW SIZES FRACTIONS TO MILIMETERS . . . MILLIMETERS TO INCHES . . METRIC EQUIVALENTS (Lengths, Areas, Volume, Cqpacity and Weight)... STANDARD ARMATURE WEDGE SIZES . .. COSINES LAW . . OHMS LAW . . . VARNISHED TUBING SIZES . . . ELECTRICAL SYMBOLS . . . VALUE TABLE OF TRIG ANGLES . COMPARISON OF THERMOMETRICAL SCALES . . . COPPER WIRE CARD ... ALLOWABLE CARRYING CAPACITIES INSULATION THICKNESSES AND DIELECTRIC STRENGTH.

| M-R THE ELECTRICAL insulation hendquarters for 58 rears. | There are no réstrictions to the Mitchell-Rand offer to distribute Wall Charts to members of the Electrical and Electronic Industries except that requesis must be on company lefterheads-write for your copy Poday, free for the casking. |
| :---: | :---: | for DEPENDABILITY

The dependability of $\mathbf{H ı}_{\mathbf{I}} \mathbf{Q}$ components contained in your finished product will enhance your reputation as a manufacturer of quality equipment. The dependability of $\mathbf{H}_{\mathbf{I}}-\mathbf{Q}$ components is the result of meeting exacting specifications which insure their conformance to your requirements...temperature coefficients within recommended tolerances, insulation resistances to minimum standards, capacities as specified. $\mathbf{H}_{\mathbf{I}}-\mathbf{Q}$ dependability results from the use of highest quality materials and from constant surveillance throughout processing...your assurance of efficient, dependable service. Write for detailed information and engineering specifications

CERAMIC CAPACITORS

Hi-Q Ceramic Capacitors of unquestionable stability assure you the ultimate in performance for all electronic appliances. Let us assist you with your Ceramic Capacitor problems.

CHOKE COILS

STAND-OFF CONDENSERS

WIRE WOUND RESISTORS

Electrical Reactance

DESIGN ENGINEERS

Temo to... MYCALEX 410 - MOLDED about ...MY CALEX

 NOW PRICED TO MEET RIGID anden or complete equipmen components importance - where mechan electrical In the design of componentation qualities are of cringth is essential. . then remember munications - where insula fixed factor - where stricy circuit need exacting requirements. ical precision must accurately meet highns-in with your most special applications. characteristics must accuralation that designs-in many made for special applicaion.MYCALEX is today's improved insulation - de signed to meet the exacting demands of all lypes of high-frequency circuits. MYCALEX is unusual in that it possesses a combination of peculiar characteristics that make it ideally suited for insulation in all types of electronic circuits. In tomorrow's designs focommunications and industrial control equipment. MYCALEX 410 will be specified more than ever
before because of its... Low dielectric loss. High dielectric strength. High arc resistance. Dimensional stability over wide humidity and temperature changes . Resistance to high temperatures. Mechanical precision. Mechanical strength. Ability to mald metal inserts in place. If you have any insulation problems, our engineers will be glad to help you in their solutions.

MYCALEX CORP. OF AMERIGA

"Owners of 'MYCALEX' Patents"

The new Lapp Gas-Filled Condensers save about 30% of space requirements as compared with previous units. Current paths are only one-third as long, with consequent lower losses. Current ratings, effective voltage ratings and safety factors have been increased. On variable models the tuning shaft is at ground potential, which eliminates need for special insulated tuning shafts. Punc-ture-proof. Constant capacitance without need for "warm-up," Lapp Gas-Filled Condensers are a source of proved dependability for capacitance at high voltages or high currents for radio or industrial electronic circuits. Write for bulletin No. 265.

LAPP INSULATOR COMPANY, INC., LE ROY, NEW YORK

These general-purpose panel instruments are particularly suitable for use in radio equipment and industrial applications where accuracy and quality are required and space is at a premium. Many of the instruments have been newly styled
for better readability and for the smooth, modern appearance that will help give your panels a wellengineered look.

Thermocouple-type instruments, for measurements of high-frequency alternating current in radio or other electronic circuits, are available. There is also a complete line of rectifier types (a-f), for measuring alternating current or voltage at high frequencies or where the source is not sufficient to operate conventional a-c instruments. Typical applications include television transmitters, radar wave meters, testing equipment for electronic circuits. For a full story of G-E instruments, send for Bulletin GEC-227.

GENERAL (2才) ELECTRIC

Suitable for wall or panel mounting, these cage-type, enameled resistor units employ a strong, high-heat-resisting silicate-compound body which withstands sudden and extreme temperature changes without weakening or in any

way being injured. The resistance wire has a low temperature coefficient so that the resistance remains nearly constant as the temperature increases. Ample protection to the units is provided by the perforated metal case. Each unit is rated at 85 watts and is available in resistance values from 0.5 to 100,000 ohnos; one to four units in a cage. For moze complete information please contact your G-E representative.

NEED A "LOW YA",
 VOLTAGE STABILIZER?

General Electric's latest additions to its line of automatic voltage stabilizers are three 115 -volt, 60 -cycle designs in $15-, 25$-, and 50 -va ratings. Check the low prices-you may now be able to utilize the advantages of an automatic volcage control for your application. The price consideration plus the low case height and small size will make these units especially applicable to radio chassis and other shallow-depth installations. Other features include totally insulated design, which is necessary where isolation is required between primary and secondary circuits, and universal lead
construction which makes these units adaptable to various wiring and mounting arrangements. If you have an application problem, contact your G.E representative, or check bulletin GEA-3634B.

SOMETHING NEW IM
 GIRCUIT CONTROL DEYIGES

Simplify your circuit designs by replacing complicated and costly components with simple, economical G-E Thermistors. These electronic semiconductors are unique in that the resistance changes rapidly with slight variations in temperazure-electrical resistance decreases as temperature rises, and increases as temperature falls. G-E Ther-

mistors give you these five advantages: flexible in application, small in size, available in various shapes, indefinitely stable, and they are economical. These new circuit devices are especially adaptable as sensitive elements in flow meters, liquid-level gages, time-delay relays, vacuum gages, switching devices, and modulating thermostatic circuits. Check coupon for technical report CDM-9.

henmetic seal eliminates molsture problems

The new cast-glass bushings with their sealed-in metal hardware can be readily welded, soldered, or brazed directly to the apparatus, thus eliminating gaskets and providing a better seal than ever before. The small, compact structure of the bushings often makes it possible to

reduce the overall size and weight of the electric apparatus. Bushings are practically unaffected by weathering, microorganisms, and thermal shock. Their great mechanical strength makes them well suited for use in airplanes, etc., where they are subject to continual vibration. Available in ratings up to 8.6 kv and for currents to 1200 amperes. Check bulletin GEA-5093.

MORE SOLDERIME WITH LESS POWER

G.E.'s midget soldering iron can do a big job for you with only one-fourth the wattage usually used. This handy 6-volt, 25 -watt iron is only 8 inches long (with $1 / 8^{\prime \prime}$ or $1 / 44^{\prime \prime}$ tips) and weighs but $13 / 4$ ounces. It was especially designed for close-quarter, pin-point precision soldering. The "midget" offers you all these advantages: low-cost soldering; "fingertip" operation; quick, continuous heat; easy renewal; long life; low maintenance. The iron is a real aid in manufacturing radios, instruments, meters, electric appliances, and many other products requiring precision soldering. Irons and specially designed $115 / 6$-volt transformers are available from stock. Check bulletin GES-3488.

Here's Real News!
 AC-DC TELEVISION MADE POSSIBLE FOR THE FIRST TIME

Trend Is to New Low Prices for Lighter, Smaller $7^{\prime \prime}$ and $10^{\prime \prime}$ TV Sets handles am-FM-TV COMbINATION All Resulting from Federal's New Miniature 500 MA Selenium Rectifier

Yes, this mighty miniature makes big television headlines! Its hitherto unapproached power-handling capacity promises a virtual revolution in television design. Think of the possibilities ... a single Selenium Rectifier power supply able to handle an AM-FM-TV combination ... AC-DC television... drastic reductions in size, weight and price of $7^{\prime \prime}$ and $10^{\prime \prime}$ sets.
These important savings result not only from the small size of this new Federal Miniature Selenium Rectifier, but its elimination of large, heavy, expensive transformers and expendable rectifier tubes in the power supply. What's more, it can be used with smaller condensers with lower voltage ratings.

Here's the diagram of a suggested circuit for an AC-DC power supply for $7^{\prime \prime}$ and $10^{\prime \prime}$ electrostatic deflection tubes.

Federal Telephone and Radio Corporation

In the 1948 electronics Issue of the BUYERS' GUIDE the following list of 270 manufacturers' advertising appears

This list is indicative of the all-inclusive scope of specifying, buying and reference advertising of products which appears in the Buyers' Guide - and is convincing evidence of the industry-wide acceptance of the issue for its advertising value.

Acme Electric Corp
Adams and Westlake Co.
Advance Electric and Relay Co
Airtron
Allen Co... Inc., L: B
Allen Co...Inc., L: B.
Allued Control Co., Inc.
Alimetal Screw Products Co
American Gas Accumulator Co
American Lava Corporation
American Phenolic Corporation
American Platinum Works
American Television and Radio Co
American Transformer compa
Amperite Co.
Arma Corporation
Art-Lloyd Metal Products Corp
Art Wire and Stamping Co.
Astatic Corporation
Atomic Instrument
Audio Development Co.
Audio Devices, Inc.
Aviometer Div., Roanwell Corp.
Ballantine Laboratories, Inc. Barker and Williamson. Ine. Barty Corporation
Beach-Russ Company
Bead Chain Menufacturing Co
Bendix Aviation Corp
Bendix Aviation Corp., Red Bank Div
Benwood-Linze Co
Best Manufacturing
Beta Electronics Co Co., Ine B-G Electronics. Inc
Biwax Corporation
Bliley Electric Company Boland and Boyce Inc., Publishers Boont Cor Radio Corporation
Borg Corporation, George W. Gibbs Div
Boston Insulated Wire and Cable Co
Bradley Laboratories, Inc.
Bradshaw Instruments Co
Bradshaw Instruments Co
Brainin Co., C. S.
Brand and Co., William
Brociner Electronics
Brown-Bridge Mills, Inc
Browning Laboratories. Inc
Buck Engineering Co., Inc
Burgess Battery Company
Burnell and Company
Cambridge Thermionlc Corp.
Cannon Electric Development Co
Carter Motor Co
-Bl Manufacturing Co.
Centralab, Div. of Globe-Union, Inc
Chatham Electronics, Inc.
Chicago Transformer, Div. of Essex
Wire Corporation
Cinaudagraph Speakers, Div. of Alreon
Mfg. Co. Mfg Co.
Clark Crystal Comp
Cleveland Container Co
Collins Audio Products Co., Inc.
Communication Products Co., Inc
Concord Radio Corporation
Continental-Diamond Fibre Co
Cornish Wire Co., Inc.
Cramer Co., Inc., R W
Cross Co., \mathbf{H}.
DeCoursey Engineering Laboratory
Dial Light Company
Drake Manufacturin of America
Oriver Company. Wilbur B.
Driver-Harris Company
Eastern Air Devices Inc
Ebert Engineering and Mfg Co
Edison, Inc.. Thomas A.. Instrument Div
Eisler Engineering Co., Inc.
Eitel-McCullough, Inc.
El-Tronics Inc
Electrical Industries, Inc
Electrical Reactance Corp
Electricoil Transformer Co
Electro-Seal Corporation
Electro-Tech Equipment Co., Inc.

Electronic Controls Co.. of New York
Electronic Measurements Company
Electronic Transformer Co., Inc.
Elliott Manufacturing Co.
Engineering Company, The
Erie Resistor Corporation
Essex Electronics
Federal Telephone and Radio Corp
Ferrantil Electric. Inc.
Field Electrical Instrument Co.
Fisher Radio Corporation
Ford Instrument Co., In
Franklin Fibre-Lamitex Corp
Franklin Mfg. Corp., A. W.
Gamewell Co
Gear Specialties
General Aniline and Film Corp
General Ceramics Mig. Co
General Control Companytite Corp
General Electric Company
General Electronics Inc.
General Plate Div. of Metals and Controls
General
Globe Industries, Inc
Handy and Harman
Harnett Electric Corp
Haydon Manufacturing Co.. Inc
Haydu Brothers
Heinemann Electric Company
Herbach and Rademan, Inc
Hewlett-Packard Company
Hillburn Electronic Products Co
Hunt Corporation
Illinois Condenser Co
Indiana Steel Products Company
Industrial Timer Co. Inc.
Instrument Parts Corporation
Instrument Resistors Co.
Insulation Manufacturers Corp. Insuline Corporation of America International Machine Works I-T-E Circuit Breaker Co.
J-B-T Instruments. Inc.
Jenning Radio Manufacturing Co
Kahle Engineering Co.
Karp Eletal Products Co., Ine
Keithley Instruments
Kenyon Transformer Co., Inc
Kepco Laboratories
Kester Solder Co,
Knights Co., Jam
Kobzy Tool Co
Kollsman Ins
ment Div. of Square
Kurman Electric Co., Inc
$\mathrm{K}-\mathrm{V}$ Transformer Corp.
Lampkin Laboratories Inc
Lapp Insulator Co., Inc
Lavoie Laboratories
Legri S Co., Inc.
Lenkurt Electric Co
Lord Manufacturing Co
Machlett Laboratories, Inc
Magnetic Core Corp.
Mallory and Co., Inc., P. R Marion Electrical Instrument Co ME Manufacturing Co. Measurement Engineering Lid. Measurements Corporation Mitchell-Rand Insulation Co., In Moyen. C P
Multicore Solders Ltd
Mycalex Corporation of America
National Co., Inc
National Carbon Company, Ine.
National Electronics Inc.
National Moldite Co.
National Varnished Products Corp
New York Transformer Co Co.
Northern Communication Mfg. Co
Northern Radio Co.. Inc. Mfg. Co

Ohmite Mfg. Co
Panoramic Radio Corp.
Paper Machinery and Research, Inc.
Par-Metal Produtes Corp.
Phalo Plastics Corp.
Phillips Control Corporation
Pickering and Co., Inc
Polytechnic Research Company
earch and Development
Potter Instrument Co.
Precision Paper Tube Co
Premax Products, Div. of Chisholm
Ryder Co
Ryder Co., Inc.
Printloid, Inc Corp
Printloid, Inc
Pyroferric Co.
Radio Corp. of America
Radio-Music Corporation
Radio Receptor Co..,
Reeves-Hoffman Corporation
Reeves Instrument Corporation
Reeves Soundcraft Corp
Rex Rheostat Co.
Robinette Co.. W
Rome Cable Corporation
Sag Harbor Industries, Inc
Schweitzer Inc.. Peter J. "S" Corrugated
Quenched Gap Co. OI
Scott. Inc., Herman Hosmer
Seeburg Corporation, J. P.
Selectar Industries, Inc.
Servo-Tek Products Co., Inc.
Sherron Electronics Company
Shure Brothers Inc.
Shure Brothers, Inc
Sidward Mfg. Co
Sigma Instruments, Inc
Signal Engineering and Mfg. Co.
Smuckler and Co.. Inc., A. F.
Sorenson \& Co., Inc.
Sound Apparatus Co
Spellman Television Co., Inc.
Sperry Cyroscope Co.
Sprague Electric Company
Standard Arcturus Corp.
Standard Electrical Products Co.
Standard Pressed Steel Co.
Star Expansion Products Co., Inc
Stevens Manufacturing Co., Inc., Geo
Super Electric Products Corp.
Superior Electric Co.
Superior Tube Company
Tech Laboratories, Inc.
Telechron Inc.
Telex, Inc.
Terminal Radio Corp
Tetrad Corporation
Thermionic Engineering Corp
Thordarson Dlv.. Maguire Industries
Trans-sonics.
Transvision Inc.
Tung-Sol Lamp Works Inc.
Union Carbide and Carbon Corp.
United Condenser Corporation
United Transformer Co.. Inc. Corp.
Universal Winding Co
Vacuum-Electronic Engineering Co.
Varflex Corporation
Vickers, Inc.
Walker Co., George
Ward Leonard Eiectric C
Ward Products Corporation
Waterran Produtes Co., Inc
Western Electric Company
Westinghouse Electric Corp.
Weston Electrical Instrument Corp.
White Dental Mfg.Co., S.S.
Williams and Co.. C. K.
Wilson Co., H. A
Zophar Mills, Inc

And this bonus has proved a boon to subscribers - if we can believe only half of what they tell us. Letters from all over the country, and abroad too, have literally poured in. The main themes have been the technical value of the Guide, its usability and the fact that it's so much of a time saver. Design engineers tell us they use it daily - keep it © their thows - no longer have to thumb through countless individual company cataloguer - pperchasing agents use it for product sources, etc. And many large manufachurerst have requested copies in lots of 25 to 100 to be used by their entire engineering staffs or in their reference libraries. Flattering? Yes, but more important to us is the fact that in rodicates that it dovetails in with industries' needs.

That doesn't mean that our editors or researchers are going to rest on their laurels. Hardly. They look forward to and are now planning improvements and additions. You, the subscriber, can help by making suggestions, letting us know how you use the Guide, what we've omitted that you find necessary in your work. Remember it's YOUR BOOK -and your comments and suggestions are valuable yardsticks if we are to tailor the Guide more closely to your needs.

TO ADVERTISERS

In making your 1949 advertising and promotion plans, we urge you to include adequate use of the 1949 Mid-June Buyers' Guide issue of ELECTRONICS. Remember-it is a 13th issue and should be included in your 1949 budget. You can get the complete facts regarding the Guide from your ELECTRONICS representative or write direct.

A MCGRAW-HILL PUBLICATION• 330 WEST 42 nd STREET, NEW YORK 18 , N. Y.

electronics edition - October 1948

DRY ELECTROLYTICS FOR TELEVISION RECEIVERS

Solar's new Type DY-TV series of dry electrolytic capacitors assures dependable operation under the severest conditions found in television receivers.

An especially developed Solar processing technique makes possible small yet sturdy capacitors designed for high temperature operation with no sacrifice in long life or electrical characteristics.

Because of the remarkable film stability of Solar's DY-TV series of electrolytics, there is but an extremely small change in power factor and leakage current from room temperature to $85^{\circ} \mathrm{C}$.
Type DY-TV capacitors, with their special film formation, do not "run away" when voltage is applied after idling under no-voltage conditions at 85° C. These characteristics are retained even after extended shelf life.

Investigate this remarkable achievement in capacitor design today! Write today for catalog.
Solar Manufacturing Corporation 1445 Hudson Blvd., North Bergen, N. J.

SOLAB
 solar capacitors "Quality Above All"

BUSINESS BRIEFS

By W. W. MacDONALD

Seems that a taxi equipped with radio came upon a car wedged between railroad tracks at a grade crossing. The cabbie called his dispatcher who called the telephone company, who called the railroad, who called the towerman, who flagged the oncoming fast freight in the nick of time.

TV set production continues to hold up while seasonal slump hits other lines. Six months production of TV among RMA member companies totalled 278,896 , as against $659,313 \mathrm{fm}-\mathrm{am}$ sets, and $6,771,210$ straight-am receivers. June video production was 64,353 for five weeks, a record high. The industry is now hoping to produce 850 ,000 units this year, and RCA predicts 1.6 million will be produced in 1949. Dollar volume in television will by then have outstripped income from sound-only sets, by a large margin.

A Correspondent wants to know who is making a predetermined electronic counter that will figure out a race horse's chances of winning from his past record. This is just one step from a predetermined horse race, which, we understand, is illegal. Anyone having such a gadget, please send us the plans in a plain envelope.

Now that High-Band television stations (channels 7 through 13) are getting on the air, there is a flurry of surveying to determine coverage compared with the lowband outlets. The N. Y. Daily News station, WPIX, on channel 11, reports 88.6 percent of set owners interviewed get station ok, other 11 percent cannot receive it.

Video in Hotels is having a big effect on the bell-boy business. A recent survey of New York Hotels shows that room service sales in video-equipped rooms increased from $\$ 35$ to $\$ 175$ per month following installation of telesets.

Question: Has room service added crackerjack, popcorn or peanuts to the menu? Answer: At those prices, it's not peanuts.

Current slump in the phonograph business has convened many a pow-pow in record circles. Co-lumbia-Philco development of long-playing records (p 86, September) is one attempt to blow life into the business, would have more effect if whole industry adopted the system for future releases. As it is, record boys predict a big fight between LP and standard disks.

It was only a matter of time, etc. The roadside circuit now has the tele-juke, a box with records and video. A record for a nickle, or three minutes of visual entertainment. You takes your pick. For those who want the whole ball game, the machine will take up to 25 nickles at a crack. A side panel gives the customer access to the tuning control with a choice of four stations, but experience teaches that this little door should be kept locked tight, with the key in the hands of the brawniest bartender.

Latest version of the electronic rat trap (selling for \$198) is set over a rodent runway. An electric eye picks up the intruder, causes a pair of charged tongs to close, then lift sideways, depositing the lifeless body to one side. Whole cycle takes about 2k minutes.

Technical writers with an engineering background, primarily communications, are needed by the Signal Corps. Salaries range from $\$ 3,727$ to $\$ 5,232$. Write Chief, Signal Corps Publications Agency, Fort Monmouth, N. J., or call Eatontown 3, 1060, ext. 767, S. S. Oliver.

Pulling power of "giveaway" radio programs was dramatically proved when Fred Allen's rating
fell to an all-time low in competition with "Stop The Music." Many broadcasters, usually alarmed at FCC meddling with program content, have applauded the Commission's recently proposed action against "lotteries." Seems we are all in agreement on this one.

How Many People, in which industries, could use a complete industrial television package consisting of transmitter and receiver, for what specific purposes, if the cost was under $\$ 5,000$? One of our readers thinks he can build a good rig for that price but wants to feel the water before jumping in. Any comment?

New Business tied in with the 70group airforce is beginning to show in electronic circles. One concern reports new orders totalling $\$ 900,000$ in recent weeks, all from aircraft manufacturers, calling for electronic, electrical and mechanical gadgets.

NAB group worrying out playingtime versus fidelity of magnetic tapes has tentatively decided on two standards, with tops of 7,500 and 15,000 cycles. They hope to limit high-fidelity speed to between 15 and 22.5 inches per second with minimum playing time of about half hour per reel.

Ten Years Ago, we were amazed at fact that there were then more radio tubes in use than there were people in the country. Today, more than that many tubes are sold in a year. Six months total reported by RMA was just over 100 million bottles. About three quarters of these were for new sets, 20 million for replacement, nearly 7 million for export. Government agencies took half a million. These are big figures. But radio tube sales are dwarfed by electric bulbs. Total sales of latter in 1947: 1.6 billion.

Hangover Cure for 12 -inch surplus cathode-ray tubes (type 12GP7) replacing conventional 7 -inch types in television receivers (p 66, August) is to stick a
piece of blue cellophane over the screen. The big bottle uses two phosphors, blue for transients and yellow for persistency. An optical filter largely masks the latter.

Rates for television transcriptions (movies taken off picture tube screen suitable for rebroadcast, see p 68 , this issue) have been issued by Paramount Pictures, Inc. They will record a ten minute show for $\$ 200$, and sell release prints on $35-\mathrm{mm}$ film, with sound track at $\$ 36.00$ for 10 minutes in lots of 10 or more. Rates for an hour are $\$ 550$ and $\$ 216$ on the same basis. Also available at lower cost are $16-\mathrm{mm}$ prints.

Designers Planning next year's radio cabinets may be interested in west coast reports from furniture buyers, indicating a strong swing to traditional styles, including French and American provincial. Darker finishes are in vogue in modern styles.

Nick Lefor (W2BIQ) says that 75 percent of the engineers employed by Airadio are amateurs, and that 75,20 and 10 -meter 'phone operators predominate.

Television in Great Britain is now dwarfed by Stateside industry. Licenses for television receivers, required of every set owner in England, totalleu 54,850 at end of June, and are increasing at rate of 2,350 a month. Total sets in U.S.A. are now just over 500,000 and rate of increase is about 60,000 a month. All forms of broadcast set licenses in England now exceed $11,000,000$. The British are bearing down on the license deal: 839 successful prosecutions for nonlicensed reception in the month of June.

Among recent college graduates taken on by GE are 1046 electrical, mechanical and industrial engineers, 50 chemistry graduates, 15 physicists and 250 graduates of liberal arts and business courses. Looks like physics is still something of a specialty, despite big reputation physics majors got during the war at Radiation Laboratory and elsewhere.

Better Sealing Means Longer Life for MALLDRY Cardboard Tubulars

Careful pouring of end seals protects Mallory cardboard tubulars against impurities that cause deterioration.

Send for the Mallory Capacitor Catalog which contains useful data on tubulars and on other Mallory electrolytic capacitors.

MALLORY cardboard tubular capacitors come in the standard fypes shown above-but their serrice potential is far above standard-thanks to the extra care used in their manufacture.

In an electrolytic capacitor, quality depends largely on purity. At Mallory, controlled freedom from contamination in handling, plus the precaution of carefully applied inner seal and generous end seals, provide the extra measure of quality you expect in Mallory Approved Precision Products.

Mallory cardboard tubulars are made and priced for trouble-free operation in low cost equipment. The complete line of Mallory Capacitors includes units for every type of service-all made to the high quality standards of Mallory Approved Precision Products.

Buy Mallory Assured Quality At Regular Price Levels

> MÄLLOR $Y_{\text {canacrions }}$ (ELECTROLYTIC, OIL and WAX)

P. R. MALLORY \& CO., Inc., INDIANAPOLIS 6, INDIANA

ELECTRONICS...DONALD G. FINK...E Ditor...OCTOBER, 1948

- BITS . . . Claude Shannon's articles in the Bell System Technical Journal, explaining at length the important new concepts on the bandwidth required to transmit intelligence in the presence of noise, are destined to become classics in the literature of communications. While not claiming to have måstered the subtleties of the argument at the present writing, we do want to pass on the new word "bit", a contraction of "binary digit" suggested by J. W. Tukey. Binary digits, or bits, are important because pulse circuits, whether used in pulse code modulation or in electronic computers, are most reliable when they operate, flip-flop fashion, with only two states, on and off. So the discipline of such circuits is most easily analyzed in binary notation. It turns out that a decimal digit is 3.32 bits. Accordingly the value of a twenty-five cent piece, being expressible in two decimal digits, is expressible in 6.64 bits. We thought it was two bits, but we failed to reckon with Shannon and Tukey.
- DECIMAL . . . An old-time contributor to this journal, Walther Richter, in a recent speech coined a neat phrase when he said that electrical engineers could be divided into two groups, those working on the right side of the decimal point, and those working on the left. The communications engineer is, very largely, a microwatt-microvolt-microampere man. The power engineer is, in contrast, a kilowatt-kilovolt-kiloampere character. To Mr. Richter's apt division, we would add the group of decimal-point straddlers, the industrial electronic engineers who progress from the right to the left side, taking a microwatt impulse and bringing it to bear on a kilowatt system. These electronic universalists are familiar with the left and the right, and their number grows. More power (megawatts) to them.
- MKS . . . The growing acceptance of MKS units in electronic practice is not without important excep-
tions. The IRE technical committee on electroacoustics has recently discovered that this system of units has, apparently, never been used in the acoustical field and has urged that this omission be rectified forthwith. Fortunately, the conversion from the metric units commonly used to MKS units is accomplished simply in powers of ten. But, unfortunately, there are no simple names for acoustic quantities expressed in these units. The acoustical ohm, for example, is translated literally into emkayess-ese as "joule per stere per stere per second", than which we cannot imagine a less handy term. The committee is now searching for suitable short-form names for MKS acoustic units, and will recommend the same for the forthcoming revised ASA standard terminology on this subject. This is good work. Other committees might well examine their fields for similar omissions.
- GEO-RESCUE . . . Some months ago we related the story of the Bell Labs engineer who, lost on the way to a dinner party, was "talked in" to his friend's house through mobile radio installed in his car. Now comes the story of the geophysical exploration party which, roaming over the flatlands searching for suitable test sites, become completely lost. Having explained their predicament to the field office by radio, the members of the party were instructed to explode a charge of dynamite, which they carried for seismic exploration, at a pre-arranged time. The blast, traveling through the earth, was intercepted by a pattern of geophones connected with the field office, while an oscillograph recorded the times of arrival of the shock wave at several locations. A short computation, essentially the loran problem worked backwards, revealed the location of the lost geophysicists. Informed by radio, the party took a bearing for home and got there. Readers will recognize this technique as a solid-land version of the sofar system, which locates ships at sea by precisely the same technique (June, 1948 issue, p 98).

FIG. l-General view of transcription equipment. Two units are used to provide uninterrupted recording of lengthy programs

TELEVISION

By THOMAS T, GOLDSMITH, JR, and HARRY MILHOLLAND
Director of Research
Allen B. DuMont Laboratories, Inc. Senior Enginees.
B. Dumont Laboratories

FIOR MANY YEARS photographic recording has been employed by television engineers to preserve a record of station operation and outstanding programs. The staff of A. B. DuMont Research Dept. has been engaged in studying photographic recording for over ten years. The early efforts used still cameras or nonsynchronous movie cameras which produced results suitable for record purposes. But the quality of such recorded programs was not sufficient for rebroadcast because of insufficient detail and contrast range, as well as stroboscopic-flicker effects caused by lack of synchronization.

With the coming of network television, the need for broadcast-qual-
ity photographic transcriptions of television programs has emerged. To meet this need, DuMont Laboratories has developed a transcription system, with the results described in this paper. Teletranscriptions have already proved useful in providing delayed-broadcast network service beyond the limits of coaxialcable and radio-relay circuits. For this purpose they will undoubtedly serve for many years, until network connections are more widely available and less expensive than at present. Transcriptions also serve many other purposes, such as promotional advertising, as aids to criticism of program techniques and content, and as legal records including documentation of station operation for
the records of the FCC. Similar techniques, employing rapid development of film, serve for theater television.

Frome Synchronization

In setting up a teletranscription system, the choice between $35-\mathrm{mm}$ and $16-\mathrm{mm}$ film must be made. Ideally, $35-\mathrm{mm}$ film is to be preferred since it imposes no limitation on the detail of the transcribed image. In practice, however, $16-\mathrm{mm}$ film is preferable on the score of economy, not only in the cost of film stock, but also in the cost and main-

[^1]

EIG. 2-Monitor with side panel removed to show mechanical arrangement

FIG. 3-Side view of the Eastman Kodak model of the camera. A rapid pull-down mechanism moves film between frames in less than $1 / 120$ th second

TRANSCRIPTIONS

Recording television images on film, directly fróm a cathode-ray monitor, preserves programs for rebroadcast, legal records, and network syndication. Broadcast quality is achieved in equipment which transfers from the 30 -frame rate of television to the 24-frame movie standard
tenance of the camera equipment. Using fine-grain stock, the film can be exposed and processed so as to retain the full detail of the image. Accordingly, $16-\mathrm{mm}$ equipment was adopted in the equipment described.

An early attempt to solve the frame-synchronization problem resulted in a camera which operated at 15 frames per second, that is, one-half the television frame rate. The exposure time and the pulldown time of this camera were approximately equal, so it photographed one complete television frame and skipped the succeeding one while the film was being pulled down. This system produced a nonstandard film which could not be used in standard 24 -frame movie
projectors. Moreover, the film could not be used for rebroadcast at 30 frames, because of the flicker and discontinuity of motion caused by the missing frames.

This project was abandoned in favor of building a camera which would record directly at 24 frames per second from 30 -frame television images. The process is essentially the inverse of the projection system used in televising standard 24 -frame film. The 24 -frame film may be used in standard $16-\mathrm{mm}$ sound projectors for nontelevision uses, or in television projectors. The prototype camera was constructed. When the princip'e was proved, the prototype was taken to the Eastman Kodak Company, which produced a com-
mercial version of the camera.
The sound-recording aspect of teletranscriptions was also a matter requiring attention. Separate sound-on-film recording facilities are employed to assure high quality of reproduction. The two film records, one for picture and the other for sound, are processed separately, using process techniques best suited to each type of recording. The sight and sound portions are combined in a composite 24 -frame film. For documentary purposes it may be satisfactory to employ a single camera with sound-recording facilities incorporated in it, the so-called single system, but the processing must then be a compromise between that for best picture and that for best
sound reproduction quality.
Figure 1 shows a general view of the transcription equipment. Two identical cameras and monitors are used to permit uninterrupted recording if the program lasts more than one-half hour: Each camera has reels which hold 1,200 feet of stock, which allows about 33 min utes of recording. When switching from one monitor-camera to the other, care is taken to assure that the average brightness of the two monitors is closely the same. This measurement is performed with a photographic exposure meter held successively in the same position before the two screens when both carry identical test patterns. Records are kept of power-supply voltages and beam currents in the monitor picture tubes to assure reproducible results from day to day.

Uniform Focus

The monitor circuits and picture tubes have been designed with particular care to remove imperfections that might be tolerated in a home receiver. For example, the highvoltage power supply has excellent regulation to avoid changes in picture size with changes in average brightness. The high-voltage supply is a 25,000 -volt unit conservatively operated at 17,000 volts. The monitor picture tube is a 12 -inch magnetically-focussed and deflected unit. The area scanned is 6 by 8 inches. This small area assures uniform focus and a flat field. The tubes are conventional, but are carefully selected to have uniform phosphors and good focus over the

FIG. 5-Typical scene as reproduced on $35-\mathrm{mm}$ movie film
area scanned.
It is possible to operate the system with negative or positive images on the monitor, but experience has proved the positive image preferable. The film image is then a negative and the composite print (made from the negative picture film and sound film) is a positive. If time is very short, the negative film image may be transmitted without making the composite positive print, merely by reversing the polarity of the television camera output. But the best quality has been found to result consistently from a composite positive print made from a negative.
To assure that the film shall not limit the resolution of the system,

FIG. 4-Time relationships between television signal, shutter and pull-down mechanism. Accurate setting of shutter is essential to avoid overlapping or underlapping exposures
very-fine-grain film is used, that is, positive stock ordinarily used for making projection prints. DuPont type 602A has been found highly satisfactory. This film, speed approximately Weston 8 , is slow compared with negative stock and reversal film, but it has extremely fine grain and wide latitude. Also, it costs about one third as much as faster films, and this may be a very important factor in an extensive recording project. The same type of film is used for picture negative, sound negative and composite positive. A special processing technique, is used to develop the picture negative. Otherwise the processing is conventional.

To assure adequate exposure using slow film, a bright monitor image and fast lens are required. The image, produced on the 6 -by- 8 -inch rectangle, has a highlight brightness above 100 foot-lamberts. The lens is a standard Kodak camera lens of two-inch focal length and maximum aperture f1.6. The lens is operated at fixed focus of five feet and a fixed aperture of $f 2$. The latter setting is not changed, since it would change the cone of light within the camera and would interfere with the proper operation of the shutter. If any change in the aperture is required, neutral-density filters are placed on the lens as required. Optical resolution of the lens is not critical. Any good

FIG. 6-Televised reproduction of scene shown in Fig. 5
taking lens is satisfactory but projection lens are to be avoided.

Using this optical system and film, the full horizontal resolution of the original television image is preserved in the film. In fact it is possible to identify in the film images the fine-structure noise present in the original television image. The contrast range of the system is likewise limited by the television image, not the film. Using a conventional photographic gray scale of 11 steps between black and white, the monitor has been found capable of rendering 7 steps of gray, plus black and white. The latitude of the film is sufficient to cover this range by a wide margin.

The monitor brightness and contrast controls are adjusted by eye to give the most even rendition of the gray scale, as viewed on the film after processing. This process matches the transfer characteristic of the television system to the gamma characteristic of the film. Electrical gamma-correction circuits are also available in the equipment. Particular care was taken in the design and adjustment of the scanning circuits in the monitor to preserve a high degree of linearity. Figure 2 shows an interior view of the monitor.

The camera employs a rapid pulldown mechanism and a specially designed shutter which exposes two complete fields of television scan-
ning on each frame of motion-picture film. An interior view of this camera is shown in Fig. 3. The shutter closes for exactly one-half of a television field, and the pulldown takes place in something less than one fifth of the complete pull-down-plus-exposure cycle. This cycle occurs at a rate of 24 frames per second, at a shaft speed of 1,440 revolutions per minute.

Sequence of Operation

The timing sequence and phase relationships of the television signal, the blanking cycle of the shutter, and the motion of the film during pull-down are shown in Fig. 4. At the top is a timing indication expressed in intervals of $1 / 120 \mathrm{sec}$ ond. This interval is a subdivision of both the 30 -frame-per-second television-picture interval and the 24-frame-per-second film picture interval. The next line indicates the television blanking interval and the useful television picture interval. Here the television field interval of $1 / 60$ second provides one half of the interlaced picture, and the succeeding $1 / 60$ second field interval provides the other interlaced half. Accordingly, two fields of television scanning constitute one complete frame of television picture in an elapsed time of $1 / 30$ second. On the next line is shown the camera-shutter characteristic, which must be very carefully adjusted. On the bot-
tom line the film pull-down cycle is illustrated.

The most critical characteristic in the recording camera is the timing of the shutter-blanking and exposure interval. The absolute intervals are the most important, and if they are appropriately adjusted the exact phase relationship is not very critical. As shown in Fig. 4, the phase relationship has been so adjusted that one of the points for opening (or closing) the shutter is placed directly under the television blanking interval. The other shut-ter-point occurs approximately in the middle of the television field interval. If this shutter is not adjusted correctly, a bar, caused by overlapping or underlapping exposures, is likely to appear in the recorded film picture. Such a bar is noticeable as a flicker of several lines in the picture.

It is customary to drive a recording camera by synchronous motor. If the television signal and the recording camera are controlled by the same power lines, the camera runs in exact synchronism with the television synchronizing generator. In many cases, however, it is necessary to record programs which have originated in a region beyond the limits of the synchronized power lines. On nonsynchronous power supplies, two regions of overlap may appear and move up or down the picture at a rate equal to the difference frequency between the 60 cycle supply controlling the synchronizing generator and the 60 -cycle supply driving the synchronous motor of the camera.

Many films have been recorded in the nonsynchronous manner. To do so successfully it is desirable that the shutter angles be accurately adjusted so that the overlap bars are eliminated. It is better to have a slight overlap, rather than an underlap, to minimize the bar effect.

To show the quality of pictures obtainable, Fig. 5 is a blown-up print of an original photograph taken on $35-\mathrm{mm}$ film, while Fig. 6 is a photograph of the same subject taken from the face of a cathoderay tube. Very little difference exists between these two photographs.

The motion-picture film compares favorably with the results obtained with a still camera.

SERRASOID

> Design data for an improved four-tube phase-shift type modulator that initiates 100 percent modulation with noise 80 db down and 0.25 percent harmonic distortion in broadcast service. Low relative cost suggests potentially greater utilization of the educational frequencies. Variations of the basic circuit open new fields of application

By J. R, DAY
Radio Engineering Labs., Inc. Long Island City, N. Y.

THE development of a simple f-m modulator has been one phase of a broad program to enlarge the technical horizons of f-m broadcasting. In particular, it was aimed at providing one solution to the problems of relay and chain broadcasting. Such service requires that the noise background and distortion be very low in the individual links so that the final signal may still meet the relatively high standards required for any $\mathrm{f}-\mathrm{m}$ broadcasting system. Such chain systems have
been operated satisfactorily using available equipment, but it cannot be said that, in the more extensive chains, the limiting noise rests with the audio facilities at the origin. This latter condition has always been regarded as a minimum requirement of a really good $\mathrm{f}-\mathrm{m}$ broadcast setup.

Careful examination of the problems in a reasonably extensive chain yields the conclusion that an 80 db ratio of 100 -percent modulation to noise in the modulator would be satisfactory. In addition, a maximum figure of 0.25 -percent harmonic distortion for 100 -percent modulation with single tones from 50 to 15,000 cycles was set as a

The first successful method of producing frequency modulation was the phase-shift method. Despite certain shortcomings in inherent noise, distortion at the lower modulating frequencies, and a tendency of the center frequency to drift, it carried the burden of launching the $f-m$ system successfully.

- The invention of the double channel modulator, which was brought to a high degree of perfection through the work of John Bose, eliminated these difficulties. It, however, had the commercial disadvantage common to all frequency modulators of requiring a large number of tubes. This disadvantage is not of much importance in transmitters of powers above 1 kw , os the cost of the modulator then becomes a relatively small part of the total. For transmitters of low power, however, the modulator becomes a major item. Herein lies opportunity for great improvement.
- I have always feit that the phase-shift method of producing frequency modulation would be the surviving method and that someone some day would overcome its greatest weakness by finding the means of increasing the initial phase-shift without compromising ony of the requirements of distortionless noise-free f-m
- This James R. Day has done. Not only has he done it without compromise, but he has in fact improved performance to hitherto unattained levels.
- The significance of this development is that by its simplicity and reliability it has opened up all sorts of new broadcasting possibilities. One can visualize the operation of unsupervised transmitters of a few watts power, controlled from pulpits, schoolhouse assembly halls, and similar places, the transmitter requiring no more attention thon the common, everyday public address system.
- The invention has opened up some amusing possibilities. If, as seems likely, the Serrosoid becomes the accepted method of producing frequency modulation, the phrase-makers who have dubbed the phase-shift method the "indirect method" will find themseives in an awkward situation. Some of us have lived long enough to recall the days when the automobile was referred to as the "horseless carriage."
-E. H. ARMSTRONG
correlative objective. Since a practical modulator involves accessory circuits such as an audio amplifier, which can be expected to make some definite though small contribution to the numbers above, the actual net requirements on the modulation process are somewhat more severe than the overall figures. It is evident that such performance will also be of significant application in a single f-m broadcast setup, apart from the special question of relaying.

Means of generating frequencymodulated currents fall into two general classes, the reactance-modulated type, and the phase-shift type. In the first, the frequency of an oscillator is caused to vary linearly with modulation through the agency of a reactance tube or its equivalent, which is an integral part of the frequency-determining circuit. Because of the modulation and linearity requirement such an oscillator in general is not stable enough for broadcast service. Automatic frequency control is therefore employed. In the phase-shift type of modulator the frequency of the carrier oscillator is not varied, and therefore a stiff control such as a quartz crystal can be used to secure the desired stability, which then is completely independent of the modulation process. Modulation of the frequency in such a system is secured by varying the phase of the frequency-stabilized wave. The frequency will be deviated from its controlled value only during the time the phase is changing, and the deviation, other things being equal, is proportional to the rate of change of phase.

The Serrasoid is the latter type. Although it is capable of broader

F.M MODULATOR

Size comparison between the Serrasoid modulator (outhed in white) and the ariginal Duth-Channel modulator at the right. Center rack and upper section of left rack are used for other quipment. Photograph taken at the Armstrong f-m broadcast station W2XMN-W2XEA at Alpine, N. J. where the new modalator has been in service for six months
application, the numbers involved for the $\mathrm{f}-\mathrm{m}$ broadcast case provide the clearest illustrative material. As noted above, frequency deviation is proportional to rate of change of phase. For sinusoidal modulation this is simply expressed by saying that the peak frequency deviation is equal to the product of the peak
phase shift and the modulating frequency. The new circuit is conservatively capable of a peak phase shift of ± 150 degrees, but ± 90 degrees or $\pm 1 \frac{1}{2}$ radians is used as the basis for 100 -percent modulation at 50 cycles. For $1 \frac{1}{2}$ radians and 50 cycles the peak deviation therefore will be ± 75 cycles. Since 100 -percent modu-
lation in $\mathrm{f}-\mathrm{m}$ broadcasting is a deviation of $\pm 75,000$ cycles, a frequency maltiplication of 1,000 is indicated. Actually, 972 is used since it can be factored into a convenient assortment of doublers and triplers. In all that follows we shall dizenss a modulator for a frequency of 97.2 megacycles which starts at
a base frequency of 100 kilocycles.
Figure 1 is a schematic diagram of the essential parts of a complete broadcast Serrasoid. Audio amplifiers and frequency multipliers have been omitted since they are conventional and employ small standard type tubes. Tube V_{1} is a pentode oscillator controlled by quartz crystal Y. The crystal operates very close to its series resonant frequency. The net reactance of the crystal arm may be conveniently varied by a series capacitor for fine frequency adjustment of about ± 0.005 percent. This crystal is oven controlled in the broadcast case to a net stability of ± 0.0002 percent, which is also the stability of the final carrier frequency. The operation of the oscillator is such that plate current is drawn only during a small part of the cycle. Negative going pulses shown in Fig. 2A are generated at the plate of V_{1}. These pulses are differentiated by C_{3}, R_{4}, and grid-cathode conductance of V_{24} to yield still shorter pulses several times the cutoff voltage of V_{24}. The corresponding short positive pulses at the plate of this latter tube are bottom clipped (to clean the base line) by cathode follower $V_{2 B}$. Resistor R_{7} is selected so that this tube is biased beyond cutoff between pulses by the automatic grid bias of C_{4} and R_{8}. The pulses at the cathode of $V_{2 B}$ appear as shown in Fig. 2B. The two halves of V_{2} perform the functions of a
single pentode that might have been used in the same place, with the additional advantage that the final waveform is developed in a lower impedance than is practicable with a pentode.

Linear Sawtooth Wave

According to the numbers of the illustrative case these pulses recur at a rate of 100 kilocycles, that is, corresponding points or events on consecutive pulses are 10 microseconds apart. Tube $V_{3,4}$ constitutes a nonoscillatory sawtooth generator timed by the pulses from $V_{2 B}$. The slowly increasing portion of the sawtooth has a slope corresponding to the charging of C_{7} through R_{10} to the relatively steady voltage at the junction of R_{9} and R_{10}. This period coincides with the time between pulses at the grid of $V_{3,}$, cutoff bias having been developed on C_{5} by previous pulses. The quickly decreasing portion of the sawtooth occurs at the time of positive pulses on $V_{3 A}$, when C_{7} is discharged nearly to cathode potential by the platecathode conductance. In round numbers the discharge point is about 5 volts from cathode or ground potential and R_{10} and C_{7} are adjusted to give a rising rate of about 4 volts per microsecond to the increasing portion of the wave. As will be shown the whole linearity of the modulation process depends on the straightness of this sawtooth wave. In its simple form, it would have
too much exponential curvature to be useful. This condition is corrected by the bootstrap connection comprising the cathode follower $V_{3 n}, R_{11}, C_{6}$, and R_{8}. The normally constant voltage at the positive end of R_{10} has superimposed upon it the rising voltage on C_{7} so that the drop on R_{80} and hence the charging current is maintained practically constant. Resistor $R_{\text {e, }}$ as in other bootstrap applications could be a diode with its anode at plate supply potential, but for the voltage magnitudes involved here the resistor is more than adequate. The d-c voltage at the junction of R_{9} and R_{10} is about +190 volts for a $B+$ value of 250 volts.

Pulses are Frequency-Modulated

The sawtooth wave thus developed is directly coupled to the grid of $V_{t A}$. This tube is cathode biased by its plate current so that conduction begins when the sawtooth is about half way up; the passage from the beginning of plate current flow to grid current consuming about 0.25 microsecond. Because C_{8} is large and holds the bias constant during the sawtooth period, grid current stops the charging of C_{i}, and the latter half of the sawtooth rise is clipped. The resulting waveform is shown in Fig. 2C the dashed line indicating the waveform without the direct coupling to the grid of $V_{s A}$. Thus, the plate current of $V_{* 1}$ flows only during the

FIG. 1-The modulator proper showing the crystal oscillator, clipper, sawtooth generator and bootstrap cathode follower, and f-m pulse output tubes. The frequency multiplier stages that follow are conventional
latter half of the sawtooth wave. If the bias for V_{44} is varied, the leading edge of this current pulse will vary in time or phase, an advance resulting from a lowering of the bias and a retardation from an increase. It is in this way that phase modulation in the unit is accomplished.

Audio or program is applied at the indicated terminals. Values of R_{15} and C_{8} are so proportioned that for constant audio input amplitude versus frequency, the resulting amplitude at C_{8} is inversely proportional to audio frequency over the range upward from 50 cycles. This circuit is included so that the peak phase shift shall be inversely proportional to modulating frequency and the resulting frequency response of the frequency modulation shall be flat. The function and the network are the familiar corrector present in all phase-shift type frequency modulators. In order that at 50 cycles the phase of the pulse edge be shifted $\pm 1 \frac{1}{2}$ radians, approximately 50 volts rms is required at the input to the corrector. In the complete modulator a two-stage amplifier provides the gain to raise the standard input of $\pm 10 \mathrm{dbm}$ to this level. Since feedback is used in this audio amplifier to provide linearity, the effective modulation sensitivity is also stabilized to a marked degree. This sensitivity depends only on the audio gain and the stability of R_{10} and C_{r}, and ordinarily is stable to within 1 percent for the standard ranges of temperature, line voltage, and tube changes.

Figure 2D illustrates the waveform at the plate of V_{44}, the dashed lines showing the extreme positions of the leading or negative going edge during 100 -percent modulation at 50 cycles. For 100 -percent modulation at 100 cycles the excursion is one half that shown, and so on. This wave is differentiated by C_{10}, R_{10}, and the grid cathode conductance of $V_{A B}$ so that the latter is cut off for a short time each cycle beginning at the leading edge. The resulting positive-going pulses at the plate of $V_{s B}$ are shown in Fig. 2E. These pulses are frequency modulated approximately ± 75 cycles at 100 -percent modulation. They are applied to the grid of the first of a string of frequency multipliers. The plate

FIG. 2-Waveforms, oscillator to output
loads of this and subsequent multipliers are resonant at the various harmonics, and therefore, involve only sinusoidal c-w currents. In the broadcast version these multiplications are $3,3,3,3,2,3$, and 2 , for a total of 972 times, yielding a carrier frequency in this illustration of 97.2 megacycles with a deviation of ± 75 kilocycles at 100 -percent modulation.

Circuit Design Factors

Before proceeding to a discussion of distortion and noise in a system of this sort several salient features may be pointed out. First, in common with all phase-shift modula. tors, there is no interaction whatever between the functions of modulation and carrier-frequency control, and the final stability is exactly that of well engineered crystal control. Exclusive of the frequency control the modulation proc-
ess is accomplished in three standard receiving type tubes operating under cutoff to saturation or cathode follower conditions. As a result the process is remarkably independent of tube changes or aging. There are no resonant circuits and no reactances. Largely to eliminate the commercial tolerances of resistors and capacitors, C_{3}, C_{7}, C_{10}, and R_{11} are factory adjusted, and thereafter no adjustments even of a maintenance nature are necessary, except after outright component failure. Tubes V_{1} through V_{4} drain about 20 milliamperes at 250 volts.

Possible Voriations

An interesting aspect of the development of this modulator lies in its apparent simplicity. Until certain special factors were fully appreciated performance was indifferent and the simultaneous attainment of low distortion and low noise hardly seemed practical without considerable elaboration. A good many detailed variations from the sample circuit shown are operative, and some yield high performance. But without the observance of certain principles, design can be surprisingly difficult. The important rules affecting linearity and noise are enumerated below.

Having selected the sawtooth waveform as the basic timing or phase-shifting mechanism, it developed that linearity could not be preserved if it was amplified or caused to appear as a current variation in a plate-loaded tube, no matter how attractive such a step may have appeared at first. Other means of straightening the sawtooth beside the bootstrap arrangement shown are entirely practical provided the sawtooth waveshape as such is not amplified. In particular, in the modulation process the tube performing the timing, $V_{A 4}$, cannot carry currents of sawtooth shape and still preserve linearity in the timing process. It was found also that the amplitude of the current pulses in V_{44} should be constant during the modulation cycle. To insure this condition the plate supply voltage is maintained constant by $C_{\%}$. The supply voltage is low, about 30 volts, giving a small cutoff voltage.

Noise arises in such a system in the form of random variations in
the time of occurrence of corresponding events in consecutive cycles. Such timing variations ordinarily are the result of superposition of noise voltages on the desired wave-form. The noise voltages originate either in tube current variations or as Johnson noise in resistors. The effects of both kinds of noise are reduced by increasing the time rate of change of voltage in the sides of the pulses, and by maintaining low circuit impedances at certain points. For instance, impedances controlled by R_{3}, R_{7}, and R_{10} are in a position to contribute to the residual modulator noise unless maintained below values appropriate to the pulse amplitudes appearing across them. This is another way of saying that the circuit bandwidth should be as great as possible so that the pulse rise-time is short. Noise originating from uniformly distributed random voltage variations causes frequency modulation noise with a triangular distribution spectrum, extending linearly up from zero at zero modulating frequency. For the band up to 15,000 cycles the integrated noise power from a given resistance is approximately 44 db greater than would be the case for a flat noise spectrum. The 75 microsecond deemphasis in the $\mathrm{f}-\mathrm{m}$ receiver reduces this effect by 13 db . The reduction factor is different if the original noise is other than triangular. For instance, Johnson noise in R_{10} is modified in its spectrum by C_{7} before it can phase modulate pulses determined by the sawtooth. It is a straightforward matter to show by calculation that if the linearity were secured without the bootstrap or its low-voltage equivalent, that is, by making the supply voltage very high, the noise generated by the necessary large resistor would be excessive by a considerable factor. Thus it comes about that the bootstrap or its low vo'tage equivalent is uniquely essential to securing simultaneously low noise and low distortion. By similar reasoning it can be shown that the lowest noise is obtained when the corrector capacitor C_{3}, is directly at the modulator cathode. If the corrector were to be located at a lower level in the audio section, tube and Johnson noise originating
after it would have a 31 db handicap and with practical tubes and circuit constants, this effect would be insurmountable. The possibility of noise phase modulation in the first tube after V_{4} is minimized by making this a frequency multiplier so that the noise deviations are multiplied by a smaller factor than those originating in V_{s} and earlier.

Performance

The general performance of the Serrasoid system in the particular case shown, and following the design rules noted can be summarized as follows. The linearity of the phase-shift process is readily made to be equivalent to less than 0.1-percent f-m distortion for peak phase shifts of ± 135 degrees. It should be noted that nonlinearity in the phase-shift process results in f-m distortion proportional to the order of the harmonic generated. Thus 1 percent third harmonic expressed as distortion of the phase shift is equivalent to 3 -percent distortion measured as frequency modulation. In the commercial f-m broadcast modulator the distortion is largely controlled by the included audio amplifier, and the overall figure is held to less than 0.25 percent for 100 -percent modulation at 50 cycles. At high frequencies where the peak phase shift is less the distortion falls until it is entirely accounted for in the audio circuits. At the upper end of the audio spectrum, distortion owing to tuned circuits in the frequency multipliers rises slightly, but by reasonable design is held below 0.25 percent, measured without de-emphasis. It is much easier to contrive that the distortion be this low than it is accurately to measure it once secured!

The $\mathrm{f}-\mathrm{m}$ noise originating in the modulator and in the band from 50 to 15,000 cycles, measured with 75 -microsecond de-emphasis is somewhat better than 80 db below 100 -percent modulation. This noise is made up of approximately equal contributions from the crystal oscillator plate circuit and the plate circuit of V_{44}. It can be reduced still farther by designing for greater pulse bandwidth and higher tube currents, and by the special artifices described below. Microphonism is no practical problem at all with non-
selected ordinary tubes. Because of the simplicity of the circuits involved shielding and isolation by ordinary means serves to suppress the noise effects of r-f feedback from high-level sections of the transmitter.

Increasing Phase Shift

There are two ways by which the total phase shift can be increased over the practical maximum of ± 150 degrees. One of these is by cascading, or iterated modulation. The pulses at the plate of $V_{4 B}$ are similar in form and amplitude to those at the plate of $V_{2 A}$. If, instead of coupling here to the grid of a multiplier, these pulses are fed to a duplicate of the circuit extending from $V_{2 B}$ to $V_{4 B}$ inclusive, another complete modulation process will have been encompassed. One stage of such cascading doubles the peak phase shift with the same percentage of $\mathrm{f}-\mathrm{m}$ distortion and yet raises the f-m noise by less than 3 db. Thus the effective signal to noise ratio is improved by at least 3 db . The price paid for this iteration is two and a half additional tubes and a doubling of the audio power required to modulate. The process can be extended beyond two modulations. The other method involves generating two or more interlaced sawtooths at submultiples of the crystal frequency by means of a step-counter frequency divider; separately modulating pulses from each of the proportionately longer submultiple sawtooths; and recombining the sets of modulated pulses. The submultiple frequency, of course, must be more than twice as high as the highest modulating frequency involved.

In general, by the use of cascading and interlacing, as noted, by the use of a modification of the scheme employed in the Armstrong dual channel phase shift modulator, and by several other arrangements too detailed to describe here, the application of this system can be extended to cover a very wide field.

Commercial versions of the new modulator have been in use for the past six months at W2XMNW2XEA, Alpine, New Jersey, and in the studio-transmitter link used to program KSBR, Mount Diablo, California.

BIRD'S-EYE VIEW-From a low-flying helicopter, here is how Electronics Park looks to a camera aimed due west and down-

The Editors Report on ELECTRONICS PARK

To build a combined headquarters, engineering heaven and de luxe manufacturing plant for its expanding electronics business, General Electric has invested heavily in a new plant at Syracuse. Here, along with the physical details, is the story of the people--the engineers, supervisors and workers-on whom hinges the future of Electronics Park

PART I-The Park and Its People

IN the rolling farmland near Syracuse, N. Y., has arisen an industrial phenomenon, a 155 -acre campus combining research, engineering and production on a scale never before seen in the electronics business. This is Electronics Park, the headquarters of the Electronics Department of the General Electric Company. Nine buildings have been completed, stocked with machinery and equipment, and brought to operating status.
The Park is no idle experiment in bigness. When the war ended, GE had a greatly expanded electronics business located in 22 plants-with no headquarters
plant. The company's long experience in the lamp business-and electronics closely parallels it in many respects-pointed the way to a headquarters plant for engineering, manufacturing, sales and marketing operations. And so Electronics Park may be said to be a modernized version of Nela Park. Both have the "campus" atmosphere, the last word in engineering" facilities coupled with manufacturing operations and many satellite plants in various parts of the country.

Compared to competitors' plant facilities, the Park undoubtedly appears to be a "luxury" operation to many industry visitors. Contrasted to this attitude
is the GE philosophy as expressed by Dr. W. R. G. Baker, vice-president in charge, who explains that management merely has provided the best possible postwar facilities and atmosphere for its engineers, office and production workers, and salesmen-all of which has already resulted in improved productivity as compared to similar GE electronics operations before the war

The editors of Electronics undertook some months ago to study the operations at the Park. This report results from weeks of interviewing the engineers, the executives and the production workers. Its purpose is to describe features of the organization, its systems, techniques, facilities and methods. Some of these ingredients of creative productivity are, of course, equally applicable to many another plant or laboratory in the industry, and may well be adopted with profit by others.

The genesis of the Park goes well back into GE history. Since the early experiments of Langmuir, Alexanderson, Hull, Dushman, White, Coolidge and Whitney, electronic theory and practice had an important place in the GE picture. But electronics manufacture never loomed large in dollar volume compared with the company's apparatus business, for example. For years GE was completely out of the radio receiver business and practically all other phases of the electronics industry with the exception of building transmitters and receivers for the government and a comparatively small amount of industrial electronics equipment.

This was the result of arrangements approved by the government under the consent decree of 1932 whereby GE voluntarily liquidated practically all its previous activities in the field, most of which went to RCApatents, products, machinery and engineers. GE went back into receiver production in 1937 at Bridgeport, Connecticut, squeezing into the household appliance plant. Since then, the various divisions of the Electronics Department have been living in other peoples' attics scattered over the eastern half of the country.
The vast expansion of electronic production brought to GE by the war further decentralized production. Even before the war's end, it was clear that the scattered electronic manufacturing plants could not be brought back to Schenectady, which was already over-

THE PARK-155 acres of upper New York State farmland were converted into Electronics Park, headquarters of GE's Electronics
crowded with nonelectronic activities. Planning for the Park began, in fact, as early as 1942.

Why Syracuse Was Chosen

The first big decision was to find a site that would serve as headquarters and an engineering center for the Electronics Department, and have a large enough manufacturing plant to take care of practically all business in a normal year. The four major considerations in choosing a location were: (1) availability of labor to support contemplated production; (2) availability of air, rail and highway transportation, hotels and other community facilities; (3) reasonably central location with respect to sources of raw materials and markets for finished goods; (4) sufficient nearness to the research centers of GE to permit frequent contacts.

Department. Location is five miles northwest of heart of Syracuse and a hall-mile from Liverpool. Of the nine buildings in the Park.
one commands and five serve the three biggest, in which the actual manufacturing is done

Over a hundred communities were considered, some of which met all of the above requirements. Syracuse, however, had two plus values-a large group of employees that had operated the GE war plants at Thompson Road and Wolf Street, and convenient means for graduate study by engineers and other employees at Syracuse University. Therefore, Syracuse was chosen.
The 200,000 population of Syracuse is large enough and its industry sufficiently diversified so the Park's activities will not seriously affect the economy of the community. The city has a record of favorable union relations, and careful analysis shows that the Park can take a maximum of about 6,000 workers from the area without disrupting labor conditions in other Syracuse industries.

The site was picked next- 155 acres of farmland about 5 miles northwest of the heart of town, on good roads and within the freight yard limits of Syracuse. Architects were engaged and commissioned to give GE a modern plant designed specifically for its electronics business.

Construction Problems

No job of this size could be undertaken without running into the usual labor difficulties. For example, the building design called for $1,800,000$ bricks-presenting a tremendous job to get from the area enough bricklayers to finish the project. It was necessary, in fact, to obtain men from surrounding cities to handle the job.

Grading for Electronics Park was started in the fall of 1944, but the contractor worked only a few days before snow came. The ground was not seen
again until the end of March, 1945. Construction started in September, 1945. In spite of difficulties of obtaining material as well as labor, the contractor started setting steel for the Transmitter Building in April, 1946. One year later this building was in operation, and production was humming. By early 1948 all main units were completed.

Units of the Park

The three largest units, the Receiver Building, Transmitter Building and Specialty Building, are combined engineering and sales offices and manufacturing plants devoted to their respective products. The remaining six buildings provide services and staff functions common to all activities. They include the Administration Building, Reception Building (which also includes an auditorium, the main hospital, employee relations offices, company store, classrooms, and a photo laboratory), the Laboratory Building, Service Building, Boiler House and Restaurant. Smaller units are available for special purposes, such as a hilltop test site for radar, and a nonmetallic building for testing radar antennas.

Construction of this plant required 500,000 blueprints, and over 100 engineers worked for a full year designing the layouts. Over 7,000 tons of steel were used in erecting the framework of the buildings and over 70,000 cubic yards of concrete were poured, much of it in bitter winter weather.

All offices and factory areas are air-conditioned. Fluorescent lighting and attractive tile floors are used in the offices and in all the factory buildings. The flooring in offices and labs is laid on concrete over a
system of six-inch floor ducts. This permits obtaining a new power or telephone outlet within a few inches of a desired new location anywhere on the floor. Partitions are the Hauserman metal type that can be set up, moved or removed almost overnight to accommodate the continually shifting office and lab requirements.

There are 57,000 square feet of windows in the Park. Supplementing the natural lighting are 28,000 lighting fixtures of the fluorescent troffer type, with 100 -watt units in the factory areas and 40 -watt units in office areas.
The roofing, except for copper flashing on the office buildings for appearance, is of precast concrete slabs and standard built-up tar feit and slack. A tunnel approximately a mile and a half in length interconnects all buildings and carries domestic water, steam, a condensate return and telephone lines.
At seven points in the Park there are driven grounds tied together by a $\frac{1}{4}$-inch by 2 -inch copper bus that runs through the tunnel system. Less than an ohm of resistance can be measured between any two of them. Each steel column in each building has its own copper conductor running to this ground system, as also do all water mains and all of the external shields for each shielded room.

The Boiler House has three $60,000 \mathrm{lb}$ per hour oilfired boilers which provide heating as well as process steam at an operating pressure of 75 lb . At present two 400,000 -gallon fuel oil tanks are provided. Inasmuch as this huge project depends on a single 16 -inch water line from Syracuse, a 1,200,000-gallon water reservoir will be installed to insure a continuous water supply for production needs and fire protection.

Power is received from the Central New York Power Corporation over two 115 -kv lines. This voltage is reduced to 13.8 kv at a substation in the Park, for distribution to 35 unit substations located in penthouses
on factory roofs and in basements of office buildings.
Within the Park there is a total of $3 \frac{1}{2}$ miles of track and interconnecting switches, arranged so that incoming material can be unloaded at the receiving dock in the desired building while other freight cars are being loaded at outgoing platforms. One GE 50-ton Dieselelectric locomotive handles traffic after receipt from the railroad.

Because the winters in this part of the country have low temperatures and occasional heavy snows, the service group has 3 V-plows, 2 Snogos that pick up and blow snow to the side of the road, a Jeep sidewalk plow, and several bulldozers. Adequate space surrounds each building and the roads so that snow will never have to be hauled away by trucks. Inside the Park are over $5 \frac{1}{2}$ miles of road, all paved with concrete and blacktop, plus about a mile of concrete walks going across the lawns.

The Management Team

By mid-1948 the Park was erected, staffed and operating. The plant is there, a large investment that has to be managed along creative, productive and profitable lines of action. The Park, in Dr. Baker's opinion, is only incidentally buildings, equipment and machinery. Primarily the Park is people-the ideas they have, the work they do, the decisions they make.

In an outfit of this size, decisions are always potentially dangerous. For example, it takes over 20,000 radio receivers of any new model merely to sample the Receiver Division's dealers. So the right decisions on chassis design, cabinet styling, quantities the market will absorb, and pricing all are extremely important.

The big decisions are made by the management team shown in the organization chart. The Electronics Department is one of the nine operating departments comprising GE, shown at the top of the diagram. Each

DECENTRALIZED OPERATION-Organization chart showing relationship of Dr. Baker's Electronics Department to the other eight
operating departments that constitute General Electric Company. with divisions under his wing shown in the lower rows

THEY RUN THE SHOW-Five engineers and a salesman, heading the world's largest concentration of electronic engineering and manufacturing facilities. Left to right: G. F. Metcalf of Specialty Division: A. A. Brandt. General Sales Manager: V. M. Lucas of

Government Division; vice-president W. R. G. Baker; C. A. Pries of Transmitter Division; I. J. Kaar of Receiver Division. Not pictured is J. M. Lang of Tube Divisions, located in Schenectady rather than in the Park

Department is in effect a separate business, independent in its engineering, manufacturing and sales, headed by a general manager who in most instances is a vicepresident of GE. The departments are assigned budgets at the beginning of the year by the head office, and are responsible only for returning the budget, with a profit at the end of the year.

The Electronics Department management is divided into two teams, the staff divisions (advisory) and the operating divisions. The staff functions, shown in the third row of the diagram, include services common to all operations, and are largely nontechnical. For example, E. H. Vogel, manager of marketing on the staff, represents the vice-president and advises the operating divisions on such matters as general departmental and divisional sales policies, product planning and pricing, merchandising plans and programs, advertising for all products, and market research.

Similarly, the other staff divisions advise the operating divisions on all important decisions, and are brought into operation as their particular services and experience are needed.

The technical staff unit is the Electronics Laboratory, whose function lies midway between the pure research work carried on in Schenectady and the operating laboratories concerned with development specifically for production. Its job is to develop ideas from the pure research stage to the advanced develop-
ment stage, and it serves all the operating divisions.
The operating divisions at the bottom of the chart are, like the company's big departments, virtually independent businesses, working from a budget and returning it with a profit. Each division has its corps of engineers and production men, its own engineering labs and manufacturing plants, its own sales people. The heads of the divisions are thus primarily business men with broad management responsibilities. Like Dr. Baker, most of these men came up through the technical ranks of the company.

Operating Divisions

Largest of all the operating divisions is the Receiver Division, with close to 5,000 employees and about 1.5 million square feet of space. About half of these employees and 400,000 square feet of this floor space are in the Receiver Building in the Park, and the remainder is in satellite plants outside the park. This Division makes all kinds of radios and television sets en masse as its principal function and also supplies components, like loudspeakers, to other manufacturers.

Whereas many of its competitors procure the bulk of their engineering from the license laboratories to keep this expense at a minimum, the Receiver Division has preferred to stay in the engineering business and work to achieve the higher volume level required for the break-even point in order to absorb engineering costs. Since seasoned engineering organizations can-

OUTPUT-Examples of many of the products made in the Park In quantities ranging from one of a kind to hundreds of thousands, they fill freight cars and trailer trucks that leave the Park destined
for distributors and customers throughout the nation. Products like large international broadcast transmitters and shortwave receivers are delivered to International G.E. Co. for export
not be created overnight, the existence of a receiver engineering organization is important insurance for the future. Furthermore, GE derives a great deal of prestige, as well as some material gain, through introduction of engineering advances even though these are available immediately to competitors through crosslicense agreements.

The receiver engineer must often work toward two entirely opposite goals at the same time. On the one hand, he tries to design a set so there are one or more subassemblies that can be put together separately out in the open, where the work is much easier than deep inside a crowded chassis. On the other hand, a subassembly involves extra expense for producing the separate chassis and for combining it with the main chassis, hence the ultimate goal is to get rid of separate units. The head end of a television receiver is an excellent example of a legitimate and economical subassembly because it involves assembling a dozen sets of tuned circuits positioned around a selector switch, followed by alignment of each tuned circuit.
The Transmitter Division, whose chief function is to build big electronisms, comes next with about 2,500 employees, 90,000 square feet of floor space for offices and development laboratories, and a manufacturing floor equal to 210,000 square feet. The Transmitter Division divides its allegiance approximately equally between government and commercial customers. This was the first of the manufacturing buildings in the Park to go into production.

Although deadlines, economic factors, and the matter of eye appeal plague engineers in the Transmitter Building, commercialism is not nearly so evident as in receiver engineering. The work of the transmitter engineer is more diversified. There are about 192 graduate engineers in this division, of which 126 are in the engineering groups, 37 in factory inspection and test groups, and 29 in field engineering.

The Specialty Division, with some 500 employees and over 100,000 square feet of space, makes special electronic items. Measurement equipment for the new field of nucleonics is now one of the items receiving high priority. The Specialty Building is in the center of the Park.

Finally there is the Government Division, which utilizes about 50,000 square feet of space throughout the Transmitter and Specialty Buildings, and, in addition, about 200,000 square feet in the Thompson road plant in Syracuse. It has every possibility of expanding as government contracts are received for electronic equipments needed by our armed forces. Most of this business involves radar and other highly complex electronic equipment; in line with tradition, GE accepts many tough engineering jobs from government agencies.

At the beginning of World War I GE was doing government electronic business and has been in it ever since. The Government Division is strictly a quality business in every sense of the word, since the best is none too good for our armed forces. Govern-

THINGS AHEAD

IDEAS, some well along in development, that may become the products of tomorrow:

Low cost, simplified television receivers
Color television, electronically on a single picture tube
Metal television picture tube
Portable f -m receiver
Radio remote control unit for appliances and for models
Printed radio receiver, untouched by human hands
Simplified superregenerative $\mathrm{f} \cdot \mathrm{m}$ receiver circuit
High-frequency heater for thawing frozen foods in homes
Microwave 60 -second electronic range for restaurants and homes
Electronic equipment for guiding and controlling missiles and rockets
Pocket-size atomic radiation detectors with alarm
All-electronic aerial superhighways for air navigation and traffic control
Magnetic learn-to-read unit that pronounces worcis printed on keys which move pickup head to different parts of magnetized paper disc
Advanced radar navigators for airplanes and ships
Higher-powered television transmitters
Super-powered broadcast transmitters
Facsimile equipment for police, industry
Personalized two-way radio sets
ment equipment is built to customer's specifications; there are no standard lines. The customer here always wants something new-rarely if ever is a product reordered, because by that time either the requirements have changed or there have been improvements in the design.

Government engineering occupies the entire second floor of the Specialty Building, with another wing downstairs for its executives. When a design is finished

EECEIVER BUILDING LAYOUT-Design engineers work upstairs. with production supervisors and the sales staff under them in the
and ready for production, some of the engineers move over to the Transmitter Building with it to see that production snags get ironed out promptly.

The General Sales Division management headquarters are in the Administration Building at the Park. It is responsible for the sale of the department's commercial products and for operation of the field sales organization in nine districts throughout the country, employing about 110 people. The manager of the division is also responsible for establishing adequate methods and channels of distribution, including distributor appointments and cancellations; for determining and administering commission plans for district managers and representatives; for the preparation of orders received and sales billed quotas for the districts and distributors; and for sales training programs for district representatives. He also shares with the product divisions the responsibility for product planning and pricing; merchandising plans and programs; production releases and scheduling.

Headquarters for the Tube Divisions of the Electronics Department are in Schenectady where one of the 5 tube factories of the divisions is also located. Original plans called for moving the divisions to the Park, in a separate building. The lack of labor available in Syracuse for all electronics manufacturing, and the cost of the move were heavy factors against it. Another factor was the close relationship between the industrial and power electronics tube work and the company's industrial machinery made or designed at Schenectady and sold through the Apparatus Department. These divisions make a large variety of industrial, transmitting, receiving and cathode-ray tubes in many satellite plants.

Plans for Expansion

The Electronics Department's policy is definitely to limit the Park operations to a payroll of roughly 6,000
front of the building. All moving-conveyor assembly lines for radio and television receivers are in 55.000 sq ft center section

TRANSMITTER BUILDING LAYOUT-Engineers for the Transmitter Division are upstairs here, with supervisory and production plan. employees, and to operate sate!lite plants for production beyond this point. For example, the Department has satellite plants in Buffalo, Clyde, Utica and Schenectady, N. Y., in Wabash, Indiana, in Owensboro, Ky., in Tell City and Huntingburg, Indiana, and in Irvington, N. J. These plants have, in all, 9,000 other employees and produce products like tubes, receivers and cabinets.

Expansion of the department's television receiver business this year has resulted in a plan to make all television receivers at the Park. By the year's end practically all radio receiver manufacture will be out of the Park in satellite plants and the entire Receiver Building manufacturing floor will be devoted to television. Since television receivers still need the atten-
ning offices for Transmitier under them in front of building. All assembly work is done either on the 67 benches or on the floor
tion of development engineers to keep things running, production in the Park will benefit from the close proximity of the television engineering and manufacturing groups.

The overall limitation placed on the Park's size by the availability of labor is an important advantage. The satellite plan of manufacture has an element of flexibility that would be missing in a larger concentration of facilities. Whenever more space is needed now, either temporarily or permanently, additional plants are acquired in cities having the required labor. Lines in heavy production, in which the engineering phases are essentially completed, get moved first to these outside plants.

SPECIALTY BUILDING LAYOUT-Specialty's engineers are down. Division offices and labs occupy the entire second floor. The

Specialty Division factory is essentially a big job shop

PART II-The Engineering Organization

TWO SIDES OF A WALL-When a Receiver Division engineer becomes suspiciaus of a loudspeaker, he can bring it to this lab and run off a complete response curve in a few minutes. The loudspeaker is mounted in an opening in a wall between the

soundproof room and the measurement room, facing the microphone. A motor drive sweeps an audio signal generaior gradually from 50 cycles to 20,000 cysles. while an inking pen traces on graph paper the amplified output of the microphone

ENGINEERING is one of the keystones of the structure of Electronics Park. The manpower devoted to engineering is a high proportion of the total working force. The manhours devoted to engineering, in development and production, are proportionately high, and engineering costs follow suit. Add to this the fact that in no other industry is the utility and cost of the end-products more closely tied to the technical skill of the men who design and make them.

It is not strange, therefore, that a major portion of the effort in planning the Park went into providing the best engineering facilities available. But facilities have to be operated, so the story of the engineering organization starts with the men. How are
they recruited and trained, how assigned to jobs, inspired to top effort? What are their pet gripes? These questions answered, it is pertinent to inquire what they have to work with, and what problems they wrestle with. In that order, then, let us consider the engineering organization of Electronics Park.

Recruiting and Training Men

Except in unusual cases the newly graduated engineering student has never faced the basic engineering challenge: with data not known to be sufficient, and with a time schedule not known to be adequate, he must design equipment for some new application without losing sight of the basic requirements of cost,

ENGINEERS IN CLOVER-Favorite site for field tests of communication equipment is lawn surrounding the lake in the Park, giving
direct line-of-sight path to transmitting antenna atop Transmitter Building in background
efficiency, and dependability. GE has come to regard this aspect of an engineer's training as its own responsibility. Each year it absorbs into its laboratories, offices, and factories hundreds of young graduates from all parts of the country and from all types of colleges.

Channelizing such widely divergent backgrounds into occupations best suited for each calls for a flexible training program at all levels of aptitude and specialization. The best-known aspect of this is the Test Program. With few exceptions, most GE engineers select their specialized field via this medium.

Finding a Niche

For a period of from one to two years each newlygraduated student engineer is assigned to many of the major departments. His responsibility is to test the products manufactured by those departments, and during the course of this work he observes the problems and methods that are peculiar to each activity The average assignment period is three months. By the end of his test period he can select with some confidence the kind of work that offers greatest interest and opportunity to him. The majority of engineers at the Park are graduates of the Test Program. This system provides the Electronics Department with a continuing influx of young men with new ideas.

Electronics Park is, of course, one of the major steps for Test Program engineers. In addition, the Park has its own Test Program wherein graduates
are transferred from building to building within the Park at approximately three-month intervals. This program is for those who have definitely chosen electronics as their life work.

Evening schedules of classes are provided at Syracuse University for engineers desiring to study toward their Master's and Doctor's degrees. These courses have been approved for benefits under the GI Bill. For other engineers, GE pays approximately two-thirds of their tuition if they complete their course satisfactorily. For those who do not, GE pays a third of the tuition. Courses are conducted at Electronics Park as well as in Syracuse University classrooms, and the thesis can be accomplished in any of the labs in the Park. At the present time, over 100 engineers at the Park are studying for advanced engineering degrees.

Another source for Electronics Department engineers is in Schenectady, where some thirty to fifty test engineers are selected throughout the company for an intensive course on engineering analytics. The course is a startling experience for every man who takes it. For four hours he is subject to intensive lectures by specialists called in from design sections or research laboratories. He is busy taking notes, for he knows that most of the material cannot be found in textbooks, and he likewise knows that the material might provide a clue to his weekly problem assign-ment-a clue which might reduce the 20 to 30 hours normally required for solution to 10 hours.

THEY RUN THE ENGINEERS-Reporting directly to division managers and responsible for the engineering of the Park's present and future products are these four division engineers and the manager of the Laboratory. Seated, left to right: J. J. Farrel of

Transmitter; L. R. Fink of Electronics Laboratory; W. J. Morlock of Specialty. Standing: E. F. Herzog of Government; N. F. Shoistall of Receiver. Not shown is O. W. Pike of the Tube Divisions. Section engineers report directly to their division engineers

Only about half of those who complete the first year of this advanced engineering training will continue with it. The elimination is carried out in a spirit of mutual agreement; some have found the going too stiff, while others have taken up permanent jobs in a GE division where additional training of this nature is not essential.

Types of Engineers

There are at least seven distinctly different categories in which the graduate of the Test Program or the engineering newcomer can end up: Research, advanced development, product design, manufacturing supervision, field engineering, sales engineering and commercial engineering. Each calls for its own particular combination of aptitudes, personality traits, and engineering knowledge. Furthermore, the duties of each vary greatly with the divisions-Transmitter, Specialty, Tube, Receiver, Government, Laboratory or Sales.

The chap whose interest is chiefly in the highly theoretical aspects of a problem, almost approaching

ENGINEERS IN THE PARK

Design and Development Engineers 553
Engineers in Sales, Manufacturing, Etc 80
Total Engineers 633
Total Employees at Park 6,200
those of a physicist, invariably ends up as a research engineer in the Laboratory. He has few cost responsibilities, seldom a delivery date to think of and delves only into the laws of nature.

The fellow who likes to work with his hands may end up as a product design engineer. In this category are most of the engineers in the Park. They take an idea and a blank piece of paper and produce working models and blueprints for production. They have to consider costs, eye appeal, delivery dates, and a multitude of related practical factors. A product design engineer, also known as a development engineer, is assigned to develop a particular product for which there is an order or a possible market, and he sticks to that job until a finished working sample is produced-or rather works on it whenever he gets a chance, because there is always a fire to be put out somewhere in connection with production of things he previously designed.

The organizing type of engineer is likely to end up as a manufacturing supervisor or section engineer because he likes to work with people. A factory train-

WINDOWLESS HEAVEN-Shielded room inside one of the Beceiver Division laboratories, with desk lamps for delicate tests when
overhead fluorescents prove too noisy. All laboratories are airconditioned, hence lack of windows here is no hardship
ing course is conducted for the express purpose of developing men interested in both engineering and production.

Combine an interest in people with good engineering know-how, plus a love for change and travel, and you have the making of a field engineer. Combine a liking of people with a dislike for the slide-rule engineering of his college days, and you have a sales engineer, simultaneously looked up to and down at by his fellow engineers. He can be as much as 75 percent engineer and still be a topnotch salesman because of the market nature of the product he sells.

Add diplomatic qualities and market analysis to an ability to look ahead and you have the commercial engineer, who provides liaison between engineering, sales and advertising and is broadly responsible for consumer acceptance of a product. He is a main source of ideas for new products because he is continually in touch with customers' needs. Part of his work involves writing the specifications he considers desirable for a new product, and later making sure that the final product is good enough to merit customer acceptance.

The engineer is encouraged and aided in obtaining professional recognition and prestige by membership and committee participation in engineering organizations, by delivering talks and papers before engineering
and other groups, and by writing articles and books.
The secret of getting top-level engineering productivity lies in morale, particularly in the inspiration which can be passed to and from the engineer and his immediate supervisor. Throughout the engineering organization at the Park, there are generally no more than 12 engineers, and often as few as 5 , under each supervisor. This makes for rapid two-way communication of ideas, discussion of gripes, and correction of difficulties.

Morale-Building Techniques

Each supervisor is aided in working with his group by reference to a nine-point job program developed from a company-wide survey of employees. If productivity lags, the fault can usually be found in the fact that the company has not considered one or more of the nine elements inherent in a good job: Compensation, working conditions, supervision, job security, respect for basic human dignity, promotion practice, information on management aims, belief in the individual job's importance, and satisfaction in a job well done. Inevitably, GE loses some engineers to other firms. Such moves are seldom discouraged by the management, and as a result GE can claim to have trained the best engineers of many a competitor.

Beyond the salary question, the gripes are scattered

FAMICIAR BREADBOARD-A pause for meditation cften pays furing the breadboard stage of developing α new electronic product. Here is the true old fashioned breadboard, using woodscrews to hold the parts on the wood base

BOOM FOR RADAR-Nonmetallic structure nearing completion at back of Park, for testing huge radar antenna arrays regardless of outdoor weather conditions. Even sprinkler system inside is removable for sensitive tests

HOT BOX-Here receivers and components can be tested or operated for hours at temperatures up to 150 F and humidities up to 100 percent, to simulate ambient conditions encountered in any part of warld whexe electronic equipment is used

HEFINED BREADBOARD-A communication engineer in the Elsctronics Laboratory likes his breadboard circuits to be up in the dir, accessible from both sides and supported by a relay rack. Other engineers fastea panels to small wood blocks

MEASURING THROUGH LUCITE-Test program engineer check. ing television monitor unit by inserting prods through holes over dangerous high-voltage terminals. Transmitter test section has now been in operation over a year without an accident
and to a large extent self-contradictory. One engineer goes so far as to measure with a recording thermometer the temperature of his air-conditioned office and to complain when it deviates beyond narrow limits, while another engineer objects that he cannot open the windows, sealed for the air-conditioning, to smell the clover on the Park grounds.

Regular meetings of all engineers in each division are held for discussions of any matter concerning the men and their relation to the company. Engineers interviewed say that these meetings are remarkable for their lack of double talk; an unpopular answer to a question is never evaded. Topics of discussion include salaries, employee benefits and services, the budget, profit and loss figures, plans for new products, and the competitive position of the Electronics Department with respect to the entire industry.

Engineering Facilities

The facilities for the engineering staff are of two types: an office and adjoining small laboratory where each engineer spends most of his working time, and specialized laboratories and a library.
The basic engineering office houses four to six men, and is approximately 12 by 23 feet in size. Adjoining it is a laboratory about 23 feet square, for the personal use of the men inhabiting the office. An elaborate system of conduits permits electric power of various voltages and frequencies to be brought out at each lab, as well as air under pressure, vacuum lines and specialized test signals, including video signals produced by the central video generator in the receiver plant.

The equipment in each lab depends on the particular problem at hand. In receiver development, signal generators, vacuum-tube voltmeters, Q -meters, and

HELP-YOURSELF STOCKROOM-For engineers who like to pick and choose, this Transmitter lab stockroom ranks tops in popularity. Cabinets have numbered drawers, and samples of parts are mounted on boards having corresponding drawer numbers
oscilloscopes are to be found in nearly every lab, and more specialized equipment is available wherever needed. Each engineer is encouraged to requisition test equipment whenever and wherever it will fill a. need.

Many of the specialized facilities are located in the Laboratory Building. These include the Park library, a model shop staffed with skilled mechanics and wiremen, a small chemical laboratory for testing materials, a plating laboratory, painting laboratory, welding laboratory, metallurgical laboratory and photographic darkrooms.

Most of the development laboratories, particularly those devoted to receiver development, have individual shielded rooms within which may be found electrical quiet, so elusive near manufacturing plants. Specialized antenna erecting and testing facilities are also available in profusion. On top of the Receiver and Transmitter Buildings' roofs art a number of 30 -foot steel poles mounted on gear-and-crank mechanisms which permit a single man to raise or lower them. A special nonmetallic building 60 feet high, for testing radar antennas without interference from metal objects, is located in one corner of the Park. This contains a steel monorail crane support and a sprinkler system, but these may be temporarily removed. Radar and similar line-of-sight transmitters may be tested in the clear at a site on top of a nearby hill.

One objection many engineers have to working in a large organization is the tendency toward excessive standardization of equipment and methods. The Park management has attempted to avoid this pitfall, as witness the case of the lab benches. Five distinctly different styles of lab bench are in use, one for each of the four divisions and one for the laboratory. One design could have been imposed by the management,

SWITCHES TO ORDER-Instead of ordering specially made samples of complicated wafer switches and waiting weeks for shipment, engineers in one Receiver lab assemble their own at this cabinet, which contains all necessary parts
but the engineers couldn't get together on one design so Dr. Baker approved them all. Receiver benches are eight feet long, while Specialty benches are five feet long with drawers underneath at the right. The Receiver boys are quick to point out that the Specialty drawers are usually blocked by a soldering iron cord.

Six to twelve engineers share the same stenographer, an arrangement made possible by the fact that few of the engineers dictate correspondence and reports, preferring to write them out longhand for retyping. The stenographer is her own boss, an arrangement that avoids conflicting directions and leads to a display of tact on the part of the engineers.

Getting a Project Started

Ideas for new or improved products come from many sources. Perhaps the most valuable are those relayed from the consumer to the engineering staff via the commercial, field and sales engineering forces. Three noteworthy engineering developments of the Electronics Department, the self-contained antenna in standard radio sets, the variable-reluctance pickup and the high-brightness television picture tube, all started with suggestions from customers. Not infrequently the engineers themselves come up with an idea for a new product, but usually the engineer thinks in terms of improvements rather than innovations.

Whatever the source, the idea for a new or improved product is channelled initially to the commercial engineers and the sales department. This custom is a reflection of Dr. Baker's settled policy of developing only products that can be sold at a profit. The commercial and sales groups, aided by the staff's marketing manager, study the suggestion, calculate its ultimate selling price, then judge whether the market will take it at that price. If the answer is

PLAYING WITH PLUMBING Typical workbench scene in Government Division lab assigned to microwave development problems. Jumpers can be inserted in power panel at rear to feed any desired type of power to any particular bench
favorable, the idea achieves the status of an engineering project involving analysis, circuit design and breadboard-building to see whether the idea can be reduced to practice.

The projects thus approved go on a waiting list, from which they are removed in a priority rotation established by the division manager and his project committee. One of the divisions keeps track of available project engineers on a wall chart which shows the week-to-week progress of current work and thus gives some advance prediction of availability of engineers.

Often the work may be assigned to a project team, since it is not always possible to get the required combination of leadership, cost consciousness, engineering talent and originality in a single individual.

When the project engineer gets the project, with it goes a definite time schedule and cost budget. He is responsible to his supervisor for putting the project through within these established time and money limits, or else he must do a sales job to get more of each. The project engineer then requests other engineers to assist him in the work, and he's off to the races.

The first duty of a project engineer is to query the Laboratory in the Park to see if any new ideas are at hand or in the offing that can be applied to the job at hand. The Research Laboratory at Schenectady is also approached for this purpose, as is everyone else in the Park who may have thoughts or ideas to contribute: All this is routine, made compulsory to insure that the development team starts where others left off, rather than from scratch. Commercial engineers in that particular activity are asked what competitors are doing. Competitive products may even be purchased and dissected as a prelude to creative development work.

With all the facts at hand, actual design starts. Mak-

ROOFTOP PANORAMA-Radio communication test point on Transmitter Building roof, with land-line telephone "just in case"

FOR TELEVISION RELAYING-Parabolic reflector for microwave television relaying, ventilated to catch less wind. Engineer holds waveguide terminus that bounces signals back to reflector
ing it work comes first, and here each engineer has his own preferred type of breadboard. Some like to work on a flat metal panel supported by wood blocks. Some like their panels to be vertical, mounted on relay racks. Some simply let the parts flop around on the workbench for the early hook-ups, so changes can be made more readily. The higher the frequency, however, the more nearly must the breadboard version approach the final precisely machined layout.

Engineers having specialized knowledge and experience with components, cabinet design, mechanical design, theoretical principles and mathematical procedures are always available to help the engineer who is in charge of a project. In the component parts sections of the divisions are other specialists, thoroughly familiar with all parts available from other GE departments and from outside manufacturers.

Technical assistants perform the many routine timeconsuming tests asseciated with dévelopment work. These are in no sense flunkies, however; each engineer is expected to clean up his own workbench, put away his own tools and instruments and run his own errands.

Sometimes the engineer builds in finished modelshop form the product that he designed. This is authorized on small rush jobs where there isn't time available to train others, or where the quantity needed is so small that it wouldn't pay to train others.

Transition to Production

As the project proceeds, there comes a time when the development engineer has to quit shelling corn, and

Dass un whatever be's got to the next team in line. Separating the engineer from his brain child often requires real ingenuity on the part of the supervisor. No one can predict in advance how long it will take a particular engineer to develop an unknown new product to the stage where it is ready for production. Early estimates must be revised frequently as work progresses, and each revision makes the enginerr less respectful of deadlines.

An engineer's goal is perfection. Knowing this, and knowing that perfection is never achieved, the wise supervisor works close enough with his men to know when the product is good enough, then takes it away by one means or another. It is rumored that one supervisor actually stole the finished sample while the engineer was out to lunch, and turned it over to production minus last-minute finishing touches.

The philosophy of the supervisor is to encourage his engineers to make and discover enough mistakes fast enough so that they can all be cleared up before production starts. Allowing an engineer to scratch his head carefully for an extra seven months during development is expensive, yet gives no insurance whatsoever against production troubles. Engineers are helped in this activity by an industrial design section which is primarily responsible for final appearance of the product, but also contributes to initial design innovations before the bugs are ironed out. Responsible to the manager of marketing, this section makes
plastic pre-production models of portable radios and clay transmitter models, for instance. The hope and dream of the supervisor is that all early design bugs be little ones, such as are, caused by tolerance clashes or mechanical misfits.

With electronic manufacturing back to its highly competitive pre-war status, quality of performance is no longer enough to insure sales. Overall appearance and styling must likewise be top-notch in the eyes of the customer, whether the product be a receiver, a transmitter, a tube tester, or even a tube. Today no design is permitted to leave a design section in the Park until it has been made up in model form from wood or plaster.

Even in the professional field of precision instruments, the engineer is faced with the problem of building a unit which will work and at the same time be commercially attractive. In time an engineer acquires this ability-a "must" to satisfy the commercial people and his designer's instinct.

Field Engineering Procedures

Whereas the Receiver Division sends out service manuals to take care of its troubles in the field, the Transmitter Division sends out a service man instead -an engineer who applies on the job those final touches that design engineers would like to do themselves. Field engineering achieves its greatest importance in the Transmitter Division, where each customer is fol-

EVOLUTION OF A RADIO RECEIVER

The development engineer here was asked to produce a table model set that would outperform competitive models. With a close deadline, the logical approach was to put in extra tubes and parts whenever in doubt. The resulting chassis, at extreme left, worked beautifully and was put into production, but manufacturing costs were out of this world because the chassis was flush level full of parts.

The engineer was kept on the job. One by one he removed bypass capacitors and isolation resistors, measuring effect on performance each time. At regular intervals a cost-reduction committee met to evaluate accumulated savings. By the time the engineer had half-emptied the chassis, the committee authorized launching of a new model (center chassis), and the assembly line was reprocessed for it.

Still costs were too high, so the project was continued. Soon the version at the right, stripped down almost to the bare chassis, will go into production

lowed up and served directly by the factory personnel.
The field engineer by necessity has a degree in electrical engineering, plus at least a year in the test course. His job is to supervise the installation of GE transmitters and other equipment, as well as to take care of troubles that develop in the field. Thus, a high degree of tact and diplomacy is required.

Knowing the field engineer's aversion to red tape, GE requires reports only once a week. Longhand reports in pencil are okay, with no copies. When these reports come in, they are typed up and copies are routed to all interested persons. They may suggest design improvements and point out defects just as would a supercritical customer. The tough job at headquarters is to determine who or what is at faultengineering, production, the tubes in the product, or the customer.

Responsibilities of the Laboratory

Between the fundamental work of the Research Laboratory at Schenectady and the applied development of the Division engineers lies the field of activity of the Electronics Laboratory. Here programs of advanced development or applied research are generated in all lines of the Department's activities, working about three years ahead of production.

The Laboratory was started during the war years, and much of its effort is still concentrated on development programs for the military. It is growing at a rate determined by its ability to recruit and absorb men with the peculiar qualifications for advanced development. The present staff consists of approximately 80 people, of whom about 40 hold engineering degrees. The remainder are laboratory assistants, model shop mechanics, and the necessary clerical help. In addition, there is continuing rotation of from 6 to 12 assigned people from the company's training programs. While most of them move on to new threemonth assignments elsewhere in the Department or in the company, all are candidates for replacement in the Laboratory.

The responsibility of development engineers in the Laboratory Building is to think first of the future and to take calculated risks in reducing research to practice as fast as possible, for the advancement of the electronic art and for the overall profit of the Department's operations. It is not expected that everything tried will work, nor is it expected that everything which works will get into production. All that is expected of the Laboratory is a continued output of ideas, ready for the next stage of development by the operating divisions.

PATENT LOG EOOK-Each engineer has one, in which circuits, ideas for new products, mathematical developments, and invenions are jotted down for possible use by patent depariment. Each
patent application is good for a $\$ 25$ bonus. Tcp man patentwise at the Park is Bob Dome, with 52 to his credit. Patent logs are examined requalarly by men assigned to patent department liaison

PART III-The Production Technique

TELE COMING 'ROUND THE BEND-Chassis for 10 -inch table model is two-thirds completed as it comes around this endless link-chain conveyor. Special jig on conveyor, fitting into holes

FINAL productirn blneprints are converted into finished products in the Receiver, Transmitter and Specialty Buildings. The differences in manufacturing techniques in these three buildings are directly related to the type of j -oduct manufactured. A girl on a receiver line may do her assigned work in 30 seconds, whereas a girl at a berrch in the Transmitter Building may work for days on the same unit.
In discussing production at the Park, certain definitions are necessary. Production means getting ready for manufacturing-doing everything except putting together the product. It is primarily moving of materials so they will be at the right places at the right time. The receiving room and the stock room are in charge of the Production Supervisor. Manufacturing is making things. Production starts long before manufacture and goes on concurrently with manufacture. Inspection is mechanical, involving checking of such things as dimensions, firishes and tolerances. Test is both electrical and mechanical, involving checking of electrical values or electrical performance characteristics of individual components and both physical and electrical specifications of the finished products.
punched in chassis for the purpose, permits setting chassis at various angles and turning it over whenever necessary as it moves down the line

All four of these elements, integrated throughout all buildings, are the Park's manufacturing technique.

Broad decisions as to which division will make a particular product or line of products are made generally by the vice-president in consultation with the interested division managers and their staffs. Within each division, committees headed by the manager and containing members of commercial, sales and engineering sections meet weekly to determine the future of a product. One purpose of these meetings is to schedule future production so as to keep labor requirements as nearly uniform as possible and within the allocated labor quota for the division. One rigidly enforced rule is that every promise of delivery of a design or a production quota must be confirmed in writing if initially made verbally. Enough differences of opinion rise in the normal course of events without having arguments over who promised what.

Incentive Pay

In all Divisions, as many assembly workers as possible are employed on a basis whereby they can earn extra pay for extra output. During the period when

MASS PRODUCTION-General view of manufacturing floor of Receiver Building, with television receiver assembly lines in foreground. By Christmas every line here will be making tele
sets, and ordinary receiver production will be transferred to outlying satellite plants. Fluorescent lamps directly over each line and ceiling fluorescents provide 50 foot-candles at working level

Prices for incentive work are set either by time studies, by tables, or by comparison. All three methods take into consideration the native and acquired skill and knowledge of the employees, the amount of past training and education required, and the effort required in applying the skills on the job. The perfect system for measuring the relative amount of mental and physical effort required on various jobs has not yet been devised; perhaps it will never be, but the manufacturing staff is constantly working toward that end.
There is no attempt to lure labor from other manufacturers in Syracuse by offering higher wages. Records show scores of cases where workers left for higher wages only to come back a few weeks later to the clean working conditions, good lighting, air-conditioned comfort, and straightforward management at the Park.

Inspection of Parts

Inspectors in all divisions are on hourly pay to insure careful work, and many of them are engineering graduates. Inspection is based on modern techniques of statistical quality control sampling. As an example, if an incoming shipment contains 100 units the inspector will test 20 and pass all if there are no rejects. If there is one reject he tests 40 more, and passes the remainder if these 40 are all good. If he
finds more than one reject in the first 60 , however, he either makes a 100 -percent test or rejects the entire lot, depending on how badly the parts are needed.

Vendors who sell parts to the Park are rated every month on the quality of their product. Since the goal in the purchasing department is to have as many reliable vendors as possible on tap, for protection against shutdowns in any one vendor's plant, the purchasing staff will usually send representatives to the vendor's plant for a detailed look into the situation before black-balling.

Receiver Division Problems

The job of the Receiver Division is to manufacture radio and television receivers of uniformly high quality, according to schedules and at or below standard cost. After a receiver sample is delivered by Engineering, the Planning Section writes a detailed "process" (schedule of operations) and sets up the necessary physical facilities on the floor to care for the production of a given model. This process is based upon standard times and upon time studies made by the Wage Rate group. Concurrently Production takes over the vendors which have been established by the Purchasing group, schedules them and expedites material deliveries to meet the line schedules. As each given model progresses it is the responsibility of the Test and Inspection group to obtain, in conjunction with Planning, the necessary test and inspection facilities to care for the model adequately.

Before all the service divisions have completed their work, pre-production samples are built according to process insofar as possible and delivered to Engineering. Within two or three weeks thereafter a pilot run of 50 receivers is manufactured, using all the production facilities which will finally carry the processes, to check the equipment, allow training time for working leaders, and provide Test and Inspection Section with finished receivers for training purposes. This permits doing on a planned basis what is sometimes done on an unplanned basis at considerable extra cost.

After the pilot run, the line is manned. It becomes the responsibility of the Manufacturing Group to train new operators and to bring the line up to speed. Each line is provided with an organization chart showing the number of operators processed for the line, plus a line buildup schedule showing how many sets should be produced each hour during the period when the line is coming up to schedule. This training schedule is the result of considerable research; it is based on a formula which has been empirically derived to take into account such factors as the time-cycle, skill of workers, and rate of production desired.

Each line is divided into groups of ten to fourteen operators in charge of a working leader. These working leaders do the majority of training on the line. Absenteeism is cared for by training two or more girls to do the same job, enabling breaches in the line to be filled effectively.

Every attempt is made to allow nothing but quality

THEY FUN PRODUCTION-Managers of manufacturing, left to right: Harold Miller of Specialty, A. R. Goodwin of Receiver, and J. A. Barratt of Transmitter. W. B. Gillen, not shown, has cor-
responding Tube Divis ons job at Schenectady. Meeting production schedules, keeping costs down, keeping quality up and keep. ing workers satisfied are just a few of their responsibilities

IT WORKS-Adjusting horizontal and vertical linearity controls of new table-model television receiver, using video signal and 400 -cycle tone obtained from central signal source through coaxial lines. Picture tube is inserted only for alignment and test here, as sets are shipped without the tube
products to leave the assembly line. This is done by check and repair and repeated inspection both in and after the line. Receivers which are in difficulty are analyzed as rapidly as possible and sent to the repair group for modification. The controlling factor in the speed of all lines is quality. A line must stay below 10 percent rejections, and speed is held down until that quality level is realized. It has been found, however, that running a line below half speed does not accomplish a great deal in the way of training; the training is principally for speed, and not simply for memorizing a relatively simple operation.
Inspection cannot in itself insure quality because there is still the possibility of human error in the inspectors and final test men. Therefore, sampling inspection techniques are employed in the shipping room, where sealed cartons are actually opened and sets are tested again. This final inspector has the authority to shut down the entire production line until the trouble has been corrected if he discovers defective sets ready for shipment. Of course, he must be pretty sure of his ground when he shuts down a line because this makes many people above him unhappy.

Getting a television line started, as many manufacturers have learned, is more involved than ordinary radio production. To obtain large-scale manufacture for example, one line at the Park was re-processed four times, resulting in many new work assignments and redistribution of operators' positions. The final setup, however, employing three moving conveyor lines in series was soon producing 400 sets a day.

Transmitter Division Production

In contrast to the Receiver Division which deals in mass production for orders frequently running to hundreds of thousands of units, the Transmitter Divi-

WELDING REPLACES SOLDERING-With electronically controlled resistance welding, this operator is able to weld 15 grounding ribbons and one resistor lead to the chassis of a television set during the two-minute time cycle. A snap-action switch built into the welding electrode applies current automatically
sion rarely has an order for over a hundred units. Furthermore, some of these units sell to the customer for well over $\$ 500,000$ each. The transmitter manufacturing organization employs about 2,000 workers and has approximately 20 workers under each supervisor.

The two main types of products are radar units, communication transmitters and special electronic items for Government use, and a wide variety of products for commercial use, including broadcast equipment ($a-m, f-m$, television), communication equipment such as taxicab, police, aircraft and marine sets, carrier current communication and controls, electronic navigators, electronic heaters, and facsimile equipment.

Most of the component items required in the Transmitter Building are specially designed and must be made or procured in small quantities. The production section has the responsibility of procuring all items called for on the material lists furnished by the Engineering Section.

On items to be manufactured in the shop, the Planning Section works out each individual step in producing the item and sets a price for producing the item. From this, the price allowed each employee per piece for each step is set and vouchers are made up for use by the employees as pay vouchers. At the same time, raw materials needed are accumulated in the stock room after careful incoming inspection test.

The foreman in charge of assembly of a unit now has on hand the needed raw material, the components purchased outside, and the pay vouchers covering manufacture of components and assembly work. He starts one or two people on the smallest assembly, gradually building up his group to the required size for the order on hand. Finished subassemblies are

ELECTRONICS DOES IT-Thyratron-fube control for drive motor of endless conveyor on television line (above head of man, with cover removed). Speed control knob is alongside. Crossover cons veyor in foreground brings sets from end of first line (off picture at lower right) to start of second line
inspected and tested, and assembly of the complete unit is started. When finished, the Test Section proceeds to operate, adjust and test the unit in accordance with instructions issued by the Engineering Section. Most of the test work is done by Test Course engineers, working closely with supervisors. After satisfactory completion of tests, the manufacturing group gets a last chance for final mechanical inspection and touchup of the finish before the unit is shipped.

The test power house in the Transmitter Building provides a variety of voltages and frequencies, and these can be fed through a well-planned cable system to any test setup on the factory floor. Three temperature chambers are available for operating tests at extremes of cold, heat and humidity, as required for most government equipment and for some commercial equipment. Vibration and tilt tables that can duplicate the roll and pitch of a battleship, the vibration of an airplane engine, or the bouncing of a jeep over rough country are available for testing commercial as well as military equipments under simulated field operations. Shielded rooms permit measuring sensitivity and noise right on the factory floor. Dual lighting systems are provided in these rooms; fluorescent lights are normally used, but for delicate tests incandescent lamps can be turned on.

To insure maximum protection to the operator while conducting tests on live circuits, interlocked test cages, safety shields, a cȩntral grounding system, and many other safety devices are used. The success of these safety measures is indicated by the transmitter test section's record for 14 months of work- 534,250 manhours without a single lost-time accident among the employees.

Even the huge broadcast and shortwave transmitters are produced on an individual piecework basis computed according to the number of screws, wire, and parts each man installs. Workers with two distinct kinds of aptitude are used here. The true mechanic, who likes to mount things precisely and make them line up, is called an assembler and is used to do all of the mechanical assembly of a transmitter. The electrician type, on the other hand, likes to hook things up according to circuit diagrams; he is called a wire-

SCOREBOARDS FOR MISTAKES

Before each worker on every moving production line is a score card. Whenever an inspector or supervisor discovers a mistake, she goes right over to the worker responsible for that particular operation, and makes a mark on her score card. The psychology of this silent rebuke has been carefully analyzed; comparative tests made with and without the score cards show the system to be highly effective in keeping down rejects. A master scoreboard is kept for each line, in view of all workers, so they can see their hourly output and total rejections at a glance

man and follows the assembler to complete the job.
The Specialty Division is essentially a big job shop, where the setup of a mechanical machine like a drill press or milling machine is changed as often as 20 times a day. It uses few mass-production techniques; just as soon as a product develops enough sales volume to become interesting to another operating division, it may be snatched away from Specialty. Here the men usually work from samples rather than detailed drawings.

The goal is to get the time cycle for a particular operation down to a minimum. In the Specialty Division this can be anywhere from 3 minutes to 40 hours, in contrast to the Receiver Division's average cycle of less than a minute. The number of workers assigned to a particular order depends on daily production requirements as well as on the size of the order. So flexible is production planning here that a rush job can be got out practically overnight if need be.

Small orders, up to the limit of 25 units, are produced in Specialty's model shop, just off the production floor, where everybody is paid on an hourly basis.

The secret of efficient production in Specialty's model shop is elimination of the paper work associated with planning of production and setting of piecework rates. An engineer develops a new product and turns it over to a wire man. He in turn wires up and builds a production sample, then teaches girls to
make the rest of the run. All planning is done in the head of the wireman, with the girls memorizing their duties and using the production sample as their guide. With runs under 25 , it costs more to break down the job on paper into individual assignments than the job is worth.

Conclusion

These, then, are the men and the facilities of Electronics Park. On them lies the responsibility and the challenge to substantiate Dr. Baker's theory that one can have the excellent accommodations of the Park and still meet competition. So far, the theory has stood the test of performance.

An article of this detailed nature, covering such intangibles as how engineers think, would have been impossible without the cooperation of a large number of people. A complete list of the names of those who contributed so freely of their time, their ideas and their data would fill this page, hence only a few can be mentioned. Appreciation is expressed to Dr. W. R. G. Baker for making this article possible; to E. L. Robinson for making preliminary arrangements; to Andy Tobin for scheduling the interviews and serving as guide during the entire period; to George Burns of Schenectady for photography; and to practically everyone in the organization chart of the Park for their he!p.-J. m.

ORGAN-TYPE CONSOLE-For small production runs in Transmitter Building, long time cycles are most economical. Here one operator
does practically the entire job of assembling personal aircraft radios, working from a sample and eye-level instruction sheets

Controls and switches on panel

Chassis of electronic portion of the wide-range volimeter for measuring narrow pulses

Peak-to-Peak Voltmeter

Pulses and transients of short duration are measured by an instrument having extremely high input impedance. Pulse-stretching circuits are used and an amplifier feedback arrangement provides substantially zero-impedance output

By F. H. SHEPARD and EDMUND OSTERLAND
Consulting Engineer
Summit, New Jersey
Ballantine Laboratories, Inc.
Boontou. New Jersell

IN THE DESIGN of electronic a-c voltmeters and ammeters, a desirable trend has been toward development of average or rms-reading instruments in order that the measurements may more accurately indicate actual power regardless of frequency or waveform.

There is also an increasing demand for instruments yielding peak or peak-to-peal indication of repetitive waveforms. This requirement is a more particular one in the instance where the average value over one cycle is negligibly small, as in the case of television synchronizing pulses, and in a wide variety of timing and controlling operations. Here, the energy level as represented by rms values may be unimportant, and the maximum (or minimum) excursion
of the wave is the dimension to be measured together with wave shape and timing information.

In the design of electronic equipment such as high quality amplifiers, modulators, transmitters and recorders, it is the peak values of signal that extend beyond the linear range and cause undesirable transients, distortion and intermodulation. If the transients are of short duration, they are not measured by rms meters.

Measurement of the absolute indication of narrow voltage pulses imposes a rather difficult requirement on available materials and techniques. The voltmeter, to justify the term, must fully respond to the pulse without consuming it. The difficulty becomes immediately apparent when the usual
diode peak-reading voltmeter is connected to a source of pulses of 2 microseconds width which are repeated say 10 times per second. Since the storage capacity in the diode circuit must be great enough to keep the output ripple small, the total energy continually dissipated by the diode load resistor must be supplied in less than 2 microseconds.

For example, if the peak 2-microsecond pulse voltage being measured is 10 volts, the energy in a 1 -megohm diode load resistor will be 1×10^{-4} watt. This continuous power must be supplied in a small percentage of the time (0.002 percent). To supply this continuous diode load power, the source being measured must supply an instantaneous power of 5 watts. Since this
is a rather high power level, neither the source being measured nor the diode of the voltmeter will handle it and the reading will be in error.

As the pulse width or the repetition rate is further diminished, the error is greater still. The effect is also more pronounced when the peak voltage being measured is below about 5 volts since then the curvature of the diode characteristic makes the diode impedance abnormally high and still further limits its peak power-handling capability. The combined effects described limit the best conventional diode peak voltmeter to measurements above a few volts and having a duty cycle not less than 0.1 percent.

The modern cathode-ray oscillograph yields both voltage and wave shape indications and with proper amplification and intensified trace formation, this instrument can identify practically any recurrent wave to the user when suitably calibrated. However, the combination of a stable electronic circuit and a precision meter will afford indications that can be made reliable within one or two percent whereas an accepted reading error of 5 percent accompanies the oscillograph indication. The latter figure may easily rise to 10 percent when the factors of calibration source error and its associated reading error are taken into account.

The basic design of the peakreading voltmeter under consideration is the amplifier-rectifier type such as has been popular for a-c measurements in the past decade ${ }^{1}$. Each portion of the present instrument, however, demands a new approach to secure the desired response to steep wavefronts and narrow peaks.

Rectifier

The circuit employed to increase the rectified energy available for driving the output meter is illustrated in Fig. 1. The input wave encounters a typical diode rectifier in the first stage. Capacitor C_{1} is, however, smaller and higher in impedance than is usual, permitting the grid of triode T_{2} to rise to the peak value of a sharp spike without rounding it off. This diode and capacitor combination functions as
a pulse stretcher, the output voltage being depicted in Fig. 1, along with the graphical representation of voltages in the other stages. The time scale shown is an approximate one but serves to indieate the effective increase in energy.

Since the impedance of the voltage source at the grid of T_{2} is relatively high, T_{2} is used as an impedance step-down repeater amplifier to drive a second conventional
diode rectifier T_{3} with the relatively long-duration (stretched) pulse ta charge its output load capacitor C_{5}. Since the signal pulse has been appreciably lengthened, the duty cycle of diode T_{3} has been improved considerably and no difficulty is had charging C_{2} to the full peak value of the signal voltage. Triode T_{s} repeats this d-c voltage into a lowimpedance measuring meter.

Capacitor C_{2}, together with R_{2},

FIG. 1-Circuit and waveforms of pulse stretchers and impedance step-down repeaters

FIG. 2-In the preamplifier circuit, the use of feedback permits the amplifier to have substantially zero output impedance
determines the time constant of the meter circuit and at the same time, the low-frequency limit of operation. With the component values shown, this circuit responds uniformly to pulses of the same peak level when the pulse width varies from a maximum (square wave) to a minimum of less than 2 microseconds at 20 pps .

To adapt this rectifier circuit to the widest variety of applications, an amplifier preceding it is a necessity. The amplifier designed for this purpose provides wide input voltage range coverage with simple switching, uniformly high input impedance and low output impedance, adequate output voltage swing and high stability.

The amplifier is required to produce a linear output versus input relationship over a 10 to 1 amplitude range to satisfy the decade switching feature (the indicating meter is of the logarithmic scale type calibrated from 1 to 10). Furthermore, the low-voltage limit must exceed several volts to avoid encountering the curved portion of the diode characteristic. Finally, the stability must be such as to introduce negligible errors when factors of line voltage variation and tube changes are considered.

The present design yields a peak-to-peak voltage swing of 9 to 90 volts and the sensitivity of the meter circuit is adjusted so that these figures correspond to minimum and maximum scale deflection respectively. The incorporation of about 25 db negative voltage feedback insures amplifier stability equivalent to the attenuator and output indicating meter tolerances (± 1 percent).

Design of Amplifier

Initial experiments with the rectifier section showed that the signal voltage source impedance to the rectifier must be kept low if optimum peak response is to be had.

This factor demands the application of an amplifier ahead of the rectifier section even if only as an impedance transformer. It further requires the amplifier to have an output impedance of about 100 ohms if C_{1} is to charge up to the peak value of a $1-\mu \mathrm{sec}$ pulse in 0.01 $\mu \mathrm{sec}$ (or 1 percent of this pulse in-

FIG. 3-Wide-band operation is indicated by voltage-versus-frequency characteristic
terval). The latter figures do not inclide the forward resistance of the diode or inductance of wiring and circuit elements.

The requirement of low driving impedance has been met by a method which has received relatively little attention. By its use, the apparent output impedance of the amplifier may be reduced to zero (or may be made negative if desired to compensate for positive resistance in the diode).

Figure 2 shows the basic amplifier circuit. Negative feedback from the plate of output tube T_{2} to the cathode of the first amplifier stage T_{1} causes output load variations to be reflected through the nominally high impedance of T_{2} into the amplifier circuit. In this way, the cathode current at the output stage is effectively modulated by output load variations.

If the output load is low, the output current and cathode current of T_{2} will be increased. The increased cathode current of T_{2} results in an increased positive feedback voltage from the cathode of T_{2} to the cathode of T_{1}. This acts to effectively increase the output current. The reverse of the above is true when the output load impedance is high. The proper amount of positive feedback as shown enables the amplifier to have substantially zero output impedance within the output current limits of T_{2}.

The principle employed in reducing the output impedance of the amplifier had been suggested some years $\mathrm{ago}^{2,3}$ and had also seen practical application in loudspeaker amplifiers where excellent damping of cone resonances was observed ${ }^{4}$. A typical voltage versus frequency characteristic for a sine-wave input
is shown in Fig. 3.

Second Amplifier

Additional gain is obtained by a two-stage preamplifier similar to that shown in Fig. 2 but omitting the positive feedback feature. The use of two separate, independent, cascaded amplifiers of two stages each permits use of an attenuator between the units.

The range switch includes a section which is interposed between the units and provides $10: 1$ stepdown from maximum gain. By employing this arrangement as the first step of the attenuator, any slight noise or hum appearing in the input tube is thus reduced 20 db on all ranges but the first. The other ranges are accommodated by attenuation in the input to the amplifier. With the proper choice of compensated resistor elements, this has been found to be a most reliable method of range multiplication.

In the final version of the voltmeter, a full-wave meter rectifier circuit is used so that peak to peak values are indicated by the meter. This is believed to be of greater interest in the majority of cases than half-wave operation where polarity of only one sign would be registered. The instrument shown covers a range of 0.001 volt to 1,000 volts peak to peak or 0.00035 to 355 volts in terms of rms values of a sine wave.

References

(1) S. Ballantine, Electronic Voltmeter Using Feedback, Electronics, p 33, Sept. 1938.
(2) H. Bartels, Elek. Nach. Tech., 9, 1) 319, Sept. 1434
(3)'G. S. Brayshaw, Regeneration in Linear Amplifiers, Wireless Eng. 14, p -97, Noy. 1937.
(4) H. F. Mayer, Control of Amplifier internal Impedance, Proc. I.R.E., $2 \boldsymbol{7}$, 1776 , Mar. 1939.

FIG. 1-Presaturated reactors can be variously arranged. The simplest form is two identical units (A), but equivalent results are obtained by winding the coils on one core (B) and (C). This configuration (B) can be combined with recifiers to produce a doubler

Saturable Reactors

By FRANK G. LOGAN

Vice President and General Manayer Vickers Electric Division. Vickers, Inc Saint Louts, Missouri

BEFORE launching into a discussion of the subject, it is desirab'e to distinguish between saturable reactors and magnetic amplifiers. Without attempting to formulate definitions of these established terms it is, nevertheless, desirable to review some of the accepted differences recognized by workers in this field. It is impractical, even artificial, to distinguish between these devices on the basis of construction, function, or circuitry. To delineate the areas covered by the two terms on the basis of common usage is futile because they are used interchangeably, the older term, saturable reactor, being the more widely recognized.

A clear means of demarcation seems to be that every magnetic amplifier includes, as an essential component, a ferromagnetic device with adjustable inductance. Commonly, the amplifier is supplied with power from an alternating current source so that this ferromagnetic device can be a saturable reactor, or transductor as it is termed in Europe. From this viewpoint, a saturable reactor is a part of a magnetic amplifier. This viewpoint is not essential, but if followed consistently could avert ambiguity.

Saturable Reactors

Several simple saturable reactor arrangements are shown in Fig. 1. The one in Fig. 1A can be made by
connecting a pair of conventional two-winding transformers. The a-c or power windings may be connected in series or in parallel. The d-c or control windings are wound and connected with respect to the a-c windings that no net voltage of the fundamental power frequency appears across the control circuit terminals. The arrangements shown in Fig. 1B and 1 C are quite similar in control characteristics to that at Fig. 1A. There are, however, slight differences involving transients and leakage reactances. Many variations of this basic circuit are possible, but all have similar performance characteristics. The manner of operation of the simple saturable reactor has been amply discussed in the literature and need not be reviewed nor enlarged upon here. The self-saturating type of reactor is of greater interest and, although it has been discussed in the literature, a brief explanation of Fig. 2 will show the essential features of its operation.

The circuit of Fig. 2A serves to demonstrate the operation of self saturation. While the circuit itself is of little practical value, it is the simplest self-saturating type of reactor circuit, and its oscillograms showing the effect of control premagnetization apply almost exactly to practical circuits. The circuit consists of a saturable reactor, a rectifier, a load and an a-c source all in series. The reactor has an auxiliary winding which is supplied with control current from a high-impedance source. The oscillograms in Fig. 2B show the load and supply voltages as functions of time and
indicate the manner in which the load voltage can be adjusted by means of the control premagnetization. (The resemblance of this type of control to thyratron control is obvious.) Corresponding magnetic conditions in the core are shown in the lower oscillograms (Fig. 2C), which illustrate the effect of the control current on the minimum or initial flux density B_{0}, and also upon the undirectional pulsating load current. Adjustment over the range of control shown in the diagram (Fig. 2D) is effective in changing the output in a 100 -ohm load from 1.5 milliamperes to 150 ma. It should be noted that the maximum flux density at the minimum current or cut-off condition (Fig. 2E) is so adjusted that the hysteresis loop is symmetrical and shows a total excursion of flux density of just less than twice the saturation flux density of the material.
There is a rather sharp increase of the load current as the core flux density reaches saturation. Because of this action the circuit yields to analysis on the basis of sharp firing. Such analyses have been made and give calculated waveforms and transfer curves that are in fair agreement with measurements.

As previously mentioned, the single reactor is of little practical value unless provision is made for minimizing the fundamental component of current induced into the control

This article, submitted June 20, 1948, is based on the paper presented by the author at the symposilum on magnetic materials sponsored by the Naval Ordnance Laboratory and held in Washington, D. C., June 15, 1948 .

(D) or a full-wave circuit (E). These elements can be grouped (F), (G) and (H) for three-phase cperation. Further elaboration of the single-phase circuits to obiain continuous rectified feedback current (I) and (J) results in the self-saturating magnetic amplifier

and Magnetic Amplifiers

Use of saturable reactors as components of magnetic amplifiers is described. The author discusses effects on performance of core material and assembly, and points out importance of reproducibility of core materials and rectifier properties. Applications are described
winding. This may be done by inserting a high impedance in the control circuit or by connecting two reactors or arranging several windings in such a way that the induced current is minimized. The last alternative is illustrated by the circuits of Fig. 1D and 1E. The circuit of Fig. 1D is called a doubler; it gives alternating-voltage output. The circuit of Fig. 1 E is called a full-wave circuit; its output is d-c.

Effect of Core Material

The contrast between the sensitivity of the simple saturable reactor circuit and that of the self-saturating type may be seen in Fig. 3A. The transfer curves shown in this diagram were taken for two sets of reactors of approximately the same mean flux path, one constructed with standard E-I silicon steel laminations and the other with gapless medium-nickel iron alloy (Allegheny Ludlum 4750) ring laminations. In each case, data is shown for both the simple reactor circuit and the self-saturating type.

Two important differences are evident: (1) the increased sensitivity of the self-saturating circuit and (2) the improvement of performance obtainable with the better steel. With silicon steel, the selfsaturating circuit is five times more sensitive than the simple reactor, while with the 4750 nickel steel gap-
less core, the self-saturating circuit for whech data is shown is about 50 times more sensitive than the simpler circuit using the same core. Furthermore, in this same circuit, the 4750 iron has an advantage of 40 times in sensitivity over silicon iron. This makes evident the superiority of the better steel. Of course, the data are not strictly comparable because of the difference in geometry of the cores, but the curves shown may be taken as representative of conditions obtained in two types of cores which do have approximately the same mean magnetic path length. The peak ampereturns of the load current is over 1,000 imes the control ampereturns for saturation for the selfsaturating circuit with nickel-steel core, while the ratio in the case of the sarne circuit with the air-gap silicon steel core is approximately five for the particular set of data shown in Fig. 3A.

Similar contrasts of the sensitivity of the self-saturating circuit for other core materials, such as Permalloy, Permenorm 5000-Z and Supermalloy show increases in sensitivity over 4750 of the order of 2.5 times for the Permalloy and about 25 time; for Permenorm.

The single-phase doubler and fullwave circuits may be arranged for polyphase operation. Several such circuits are shown in Fig. 1F, 1G,
and 1 H . The first (Fig. 1F) is a simple 3 -phase Y-connection with the control windings arranged so that no voltage component of fundamental frequency appears at the control circuit terminals. Other circuits shown include (Fig. 1G) the 3-phase full-wave circuit and (Fig. 1 H) the 6 -phase circuit with interphase transformer. The polyphase circuits are commonly used for larger power outputs, particularly where fast response and optimum utilization of reactor structure are important. The latter condition develops in virtue of the fact that the several polyphase circuits have different internal impedances when made with identical reactors, permitting the load impedance, which may be fixed by external consideration, to be matched more closely.

Magnetic Amplifiers

Because the change in load current can be greater than the change in control current that produced it, saturable reactors can be used as amplifiers. To improve their performance, feedback is commonly used, particularly in the simple circuits that do not employ self-saturation. Usually the load current is rectified in a full-wave bridge and introduced in a special feedback winding on the reactor structure in such a manner as to aid the control current ampere-turns. Two single-
phase feedback circuits are shown at Fig. 1I and 1J. As in the simple reactor circuits, the main windings may be connected in series or in parallel, and the load may be placed in either the a-c or d-c circuit.

Transfer curves of a reactor with adjustable feedback are shown in Fig. 3B. The effect of increasing the positive feedback factor is shown by the increased slope of the transfer characteristic. Of course, this increase in sensitivity with positive feedback is obtained at the expense of the speed of response of the reactor circuit and the stability of the system in which the reactor is used. Negative feedback results in an extended range of linearity of the transfer curve.

In both cases, window space is occupied by the feedback winding, so that the reactor structure must be derated by an amount which increases with the degree of feedback. As an example, in order to provide 100-percent feedback, (feedback turns equal to main turns), a simple reactor would have to be derated by 50 percent. For simple reactors without self-saturation, the use of feedback permits convenient adjustment of sensitivity in the range between that of the simple reactor and that of the self-saturating type and even beyond. The characteristics of the rectifiers are not critical.

The use of large amounts of positive feedback results in a trigger action that is apparent in the +2 curve of Fig. 3B. This trigger action can be exploited to advantage, as in the use of reactor circuits to give relay action which is quite sensitive and capable of high speed, shock-proof operation.

The performance of a magnetic amplifier system, particularly one
of the self-saturating type, depends on the properties of the components which are used. The possibilities of the various circuit arrangements have been explored and the limitations on performance are known. In the self-saturating circuit, performance depends as much on the characteristics of the rectifier as it does on the properties of the magnetic core material. In discussing the performance of magnetic amplifier circuits, I shall mention the effect of both rectifier and core material characteristics and I shall attempt to do so upon two different levels: (1) what is now commercially feasible with normal manufacturing and quality-control techniques and (2) what seems to be the ultimate in performance of the best of present materials on a laboratory basis.

The principal performance characteristics of magnetic amplifiers include power gain, power output, speed of response, and weight per unit output. Other factors which may be of interest are shock resistance, ambient temperature limits, stability and linearity.

For optimum performance, the magnetic core material should have the following characteristics: (1) high saturation induction for low pounds per watt, (2) high differential permeability in the second and third quadrants of the hysteresis loop for maximum sensitivity, (3) high resistivity and ability to be made in thin laminations for low eddy-current shielding to give fast response, and (4) stability of magnetic characteristics under changing temperature and mechanical strain and shock conditions.

To be suitable for use in the commercial manufacture of reactors for magnetic amplifier circuits, the core

FIG. 2-Action of presaturation can be visualized from a reactor having control and power windings (A). Different values of control current produce different. intervals during which voltage appears across load (B) because they shift operating position on the hysteresis curve (C) giving response shown at (D)
material should have other characteristics in addition to those required for optimum performance. In the first place, it is of the utmost importance that the magnetic core material have properties which are reproducible between different batches and are the same for all the material in each batch. This is the single most important requirement for high-permeability core material for magnetic amplifiers.

Core Assembly

Considerable handling is involved in stacking laminations and in placing a winding upon the stacked core, therefore, it is desirable that the core materials be reasonably free from adverse effects resulting from moderate mechanical stresses. It does not seem feasible at present to consider the use of toroidallyshaped tape cores for low-level amplifiers (0.1 to 10 watts output) and there is no method presently available, to my knowledge at least, of obtaining satisfactory stacking factors with unit cores that are assembled before annealing and are used just as they come from the oven.

It is also necessary that the laminations have adequate interlamination resistance, which may be developed in stacks made of laminations with commercially available film coatings of the oxide type. Present practice consists of insulating the laminations before assembly with clear lacquer or impregnating the core after assembly with a wax.

The structure of magnetic amplifier cores has been a matter of discussion for some time. Performancewise, there are only minor differences between the core-type reactor arrangement, the threelegged reactor, and the four-legged reactor. For laminated, gapless cores, the simple arrangement using core-type reactors seems most practical. The limits on performance of circuits using reactors of this kind, particularly those made with high permeability core materials, are fairly well known, and the effects of core and copper geometry upon the various performance factors are understood in a general way. While the question of core and copper geometry for optimum performance remains an open one, rather definite conclusions may be eventually
reached following a critical study of the problem. Early work along these lines indicates the feasibility of such a study.

Development work has been done on the basis of somewhat more limited objectives. A time constant of 1 cycle on a power supply period basis for the transient response of practical amplifiers is the present limit, while power gain, which is affected by the desired time constant, may be approximately one or two thousand if quick response is not desired. The watts per pound figure may be taken as approximately thirty for low-level 400-cycle reactor circuits. With rectifiers, mounting brackets and resistors included in an amplifier assembly, the watts per pound may become ten or fifteen for low-level, 400 -cycle units. If these three factors are the only ones of importance, that is if cost and space are not involved, it seems quite feasible to reach rather definite conclusions concerning optimum core geometry. If, on the other hand, space is also important and high gain may be sacrificed, the rectifiers would be of different design, as would the optimum core shape.

Reproducible Core Material

The importance of the reproducibility of magnetic characteristics of the core material for magnetic amplifiers is shown by Fig. 3C. This graph shows measured magnetization curves of several samples of high permeability core materials, all of approximately eighty-percent nickel. The solid lines represent the catalog information given by the manufacturer as the average and extremes of the normal magnetization curve. The dashed-line curves show several measured curves for cyclic magnetization and indicate that the extremes given by manufacturer are not at all pessimistic. A range of maximum reversible permeability of 85,000 to 25,000 it seen to exist in the measured curves, which were taken for representative samples. A range of maximum normal permeability of 300,000 to 60,000 , or $5: 1$, is shown in the data.

The sensitivity of a magnetic amplifier circuit using reactors made with Hymu 80 or Mumetal, materials similar to that of Fig. 3C, depends on the slope of the upper
branch of the hysteresis loop, particularly in the region of zero magnetic flux density and the coercive force value of magnetic intensity. The slope of this portion of the hysteresis loop is dependent to a large extent upon the maximum value of the normal permeability. Changes of normal permeability in the ratio of 5 to 1 result in changes of magnetic amplifier sensitivity of approximately the same ratio. This condition is intolerable from the standpoint of large-scale manufacture of magnetic amplifier systems with fixed or published characteristics. Variations of this kind and magnitude are not amenable of compensation by other than laboratory methods which are often too costly for this type of product.

I think it safe to state that those who are interested in the manufacture of magnetic amplifier components and systems would be gratified if means were found to manufacture a core material with characteristics reproducible to plus or minus ten or even twenty percent, even if this were done at the expense of radically reduced values of maximum permeability and increased cost. As a matter of fact, I feel that this would be a more valuable contribution to the art than the development of core materials of even greater permeability than those presently available.

Characteristics of Rectifiers

The performance of the rectifiers used in saturable reactor systems, particularly those employing the self-saturation feature, affects the characteristics of the circuit. The question of rectifier performance is one which parallels in importance that of the magnetic properties of the core materials. Explicit characteristics desired of rectifiers for magnetic amplifier applications are: (1) sturdiness and (2) low forward combined with high back resistance.

Sturdiness, veliability and long life are essential because magnetic amplifier applications often involve conditions of high-intensity shock and require operation without replacement of parts or servicing for 10,000 hours or more. Because none of the components, except possibly the rectifier, are difficult of manufacture to meet these requirements,
 (A)

CONTROL AMPERE TURNS
(B)

(c)
STATIC CHARACTERISTICS OF COMMERCIAL SELENIUM AND GERMANIUM RECTIFIER cells

FIG. 3-(A) Core material and circuit defermine response of amplifier. (B) Positive feedback gives snap action; negative feedback improves linearity. (C) Properties of cores vary between samples.
(D) Rectifiers are also important

FIG. 4-Presaturated reactors and magnetic amplifiers have been used in various applications, as these simplied diagrams show: (A) line voltage regulator, (B) automatic battery charger, (C) theater lighting control, (D) constant potential rectifier, (E) welding rectifier, also shown in block form (F), (G) servo motor power amplifier, and (H) two-stage audio amplifier
the use of dry-disc rectifiers rather than electronic units is usually indicated. At any rate, they are in common use in magnetic amplifier circuits.

Low forward resistance and high inverse resistance are desirable for obtaining maximum sensitivity consistent with the properties of the magnetic core material. Low forward resistance results in an increase of output for a given control signal. The lower back current resulting from the use of high inverse resistance rectifiers results in less demagnetization output for a given control current.

Figure 3D shows the characteristics of two small, commercial rectifiers. The rectification ratios are seen to lie between 1,000 and 2,000 , while the forward-versus back-current ratios are 50 and 65 . It is desirable for magnetic amplifier circuits that the current ratio be raised to 500 to 1,000 . Such a ratio is not considered unobtainable for specialpurpose units by rectifier manufacturers. Commercial requirements in the field of dry-dise rectifier units have been so unlike those for the special units discussed, that there has been little development work aimed at the special characteristics required of rectifiers for reactor circaits. No doubt such improvement in rectifiers can be made without an overdy extended development program.

Rather large changes of operating temperature should not be reflected in equivalent changes of electrical characteristics of the rectifiers, particularly the inverse resistance, nor should the rectifier characteristics change radically over the period of their useful life. Rectifiers should have the maximum inverse voltage rating consistent with a high value of forward-versus back-current ratio so that they are light in weight and give optimum amplifier sensitivity. They should not change when unused or should recover rapidly from nonuse such as shelf storage or equipment idleness. Like core materials, rectifiers for magnetic amplifiers should have reproducible characteristics as commercially available units with published resistance characteristics. This requirement is particularly true of the low-level units, espe-
cially sensitive types, but is not of great consequence at higher power levels, present published rating data being sufficient.

Applications of Magnetic Amplifiers

Just as the saturable reactor is a basic component of the magnetic amplifier, so the magnetic amplifier can be used as a basic subassembly in various equipments. The characteristics of the amplifier will be determined by the equipment with which it is to be used, and the amplifier will have to be designed accordingly.

- One of the commonest applications of saturable reactors is for line voltage regulation in which the self-adjusting property of the reactor is used in place of a manually adjusted tap on a transformer to compensate for input voltage or load current changes. The next step in complexity beyond a single saturable reactor is to substitute a separately controlled reactor (Fig. 4A). Line-to-line voltage regulation is obtained by an autotransformer a portion of which is a presaturated reactor controlled by a magnetic amplifier operating from voltage changes across the output. A bleeder reactor prevents the regulator from losing control at no load.

Automatic battery chargers have long used magnetic amplifiers, especially in Europe. In this application the requirement is to maintain constant charging voltage and to limit the current (at the beginning of the charging cycle) to a safe value. A doubler circuit (Fig. 1D) and a full-wave rectifier can be combined to perform this function (Fig. 4B). Variations in output voltage and input current (coupled to the magnetic amplifier through a transformer) operate the control winding.

Another popular application is in theatre lighting control (Fig. 4C). A low-power control circuit, excited from the power line, produces the direct current to govern a magnetic amplifier of the full-wave type (Fig. 1E), which is also excited from the power line. The output of the amplifier in turn regulates the saturation of the main reactor in series with the lamp bank. Because the primary control circuit and the magnetic amplifier are both excited
from the same power line, effects of fluctuations in supply voltage can be counter-acted to some extent. The line voltage has to be about 10 percent higher than the rated operating voltage of the lamp bank to allow for the drop in the main reactor.

The functions of voltage regulation and rectification can be combined in a single unit. A 3-phase unit, suitable for such applications as controlling the speed of a large d-c motor, (Fig. 4D), obtains the fixed reference voltage through a constant voltage transformer across one of the power phases. This voltage is rectified and the current so obtained is used to control three full-wave magnetic amplifier operating from a 3-phase transformer and interphase transformer (compare with the single-phase circuit of Fig. 1E). To increase the sensitivity of the system, positive feedback is used, and to improve transient response, damping windings in series with a capacitance are added. The output voltage (motor speed) can be controlled by the potentiometer in the constant-voltage circuit.

Some applications require that the output be stabilized against several possible variations. The battery charger (Fig. 4B) is one example of this case. The welding rectifier (Fig. 4E) is another example. The output current must be stabilized against changes in output load (current and voltage) and line voltage. The 3-phase doubler circuit has three control windings. One winding is excited by rectified 3phase voltage from the supply line, the second is excited by current proportional to the load current, and the third by current proportional to the load voltage. All of these control currents pass through a common potentiometer by which the welding current can be set. A potentiometer across the output further provides adjustment of the voltage-proportional control current for no-load reference. Four sets of rectifiers are required: the self-excitation rectifiers of the doublers, the power rectifiers in the output, and the two sets of rectifiers (for input voltage and output current) for the control windings. A single rectifier suffices for the output volt-
age control circuit because it is already across the power rectifiers (but a rectifier is necessary to provide high impedance to induced reverse currents). A block diagram (Fig. 4F) shows the nature of the feedback paths of this system.

The foregoing systems have operated at 60 cps . Fast response is not required of them and it is most convenient to excite all elements of the system from the same supply. However, if fast response is necessary, a higher operating frequency should be used because then, for the same impedance, the inductances of the windings can be less, which reduces the time constant of the system. In general, equivalent magnetic amplifiers operating at different frequencies can respond in the same number of cycles, thus the higher frequency unit has the faster response.

A fast-acting servo amplifier can be operated from a $400-\mathrm{cps}$. source (Fig. 4G). A 2-phase system is frequently used with a 2 -phase induction motor, although a 3 -phase system would be similar. Doublers in push-pull with each other produce a null so that the system has a quiescent point between forward and reverse motor drive. The control windings are excited by electronic tubes; the rheostats in the cathodes permit balancing the amplifier at the required null, or varying the null. Primary control of the amplifier is, as usual, through the grids of the tubes.

An audio amplifier (Fig. 4H) illustrates the use of high-frequency excitation to obtain fast response. Essentially each of the two stages is a carrier-type amplifier. Two pairs of doublers, connected in pushpull to reduce even harmonic distortion as well as to provide symmetrical operation, are excited from a $10,800-\mathrm{cps}$ source (180 th harmonic of 60 cps). These two stages are connected by an interstage transformer. Pairs of full-wave rectifiers are used before the interstage and output transformers. A single-button carbon microphone feeds the 5 milliwatt input transformer to develop full power in the 5 -ohm 6.5watt voice coil of the loudspeaker. The operating points of the reactors of each stage are set by a bias battery and biasing resistors.

Television Synchronizing

Abstract

Horizontal and vertical driving pulses, the composite blanking signal and the composite synchronizing signal, all within FCC and RMA specifications, are produced. Linearity test signals can be mixed with blanking for testing picture monitors and receivers; simultaneous cathode-ray monitoring of all frequencies is provided

THE instrument to be described provides the means for insuring synchronism between the scanning of a picture at the receiver and the scanning of a subject at the transmitter. Features are provided that are not usually found in a synchronizing generator which are specific aids in television station operation and maintenance.

The generator meets the RMA recommendations for the standard signal, that is, the horizontal and vertical driving pulses, the composite blanking signal and the composite synchronizing signal.

Linearity test signals are provided at 900 cycles and at 157.5 kc mixed with blanking by means of a switch for use in testing scanning
linearity of picture monitors and television receivers. These produce 15 horizontal bars and 10 vertical bars on a raster permitting a rapid check of sweep linearity. In addition, the 157.5 -ke test signal serves as an accurate 10 percent H (6.35 $\mu \mathrm{sec}$), electronic marker for use with an ordinary oscillograph in the precise setting of pulse widths and front porch.

The leading edges of the equalizing pulses are also the leading edges of horizontal and vertical synchronizing pulses, thus insuring perfect interlacing.

Two 3-inch cathode-ray tubes permit simultaneous monitoring (without switching) of all frequencies in the synchronizing gen-

FIG. 1-Interrelation of units forming the sync generator
erator. Thus, frequency counts may be checked or adjusted without the use of an external oscilloscope.

A crystal oscillator at 157.5 kc or a highly stable self-excited oscillator at 157.5 kc may be selected by a switch for the master oscillator. The self-excited oscillator is used in synchronizing the generator, by means of the provided lock-in circuit to the 60 -cycle power line or to a remotely generated synchronizing signal.

Negative feedback is used in many of the circuits to minimize the effect of changes in tube characteristics and variations between tubes. A double-regulated supply is used having an internal impedance of less than 0.15 ohm.

Circuit Breakdown

The generator consists of the following units:

1. Timing generator
2. Blanking-driving unit
3. Sync shaping unit
4. Regulated low-voltage supply
5. High voltage supply for the cathode-ray monitors
6. Power control panel containing switches and fuses.

Figure 1 is a block diagram showing the interrelation of the units in the development of the standard signals. Accurately timed signals at $157.5 \mathrm{kc}, 31,500$ cycles, 15,750 cycles, 900 cycles and 60 cycles are developed in the timing generator for use in the other units.
The blanking unit utilizes the 60cycle signal and the 15,750-cycle signal in the development of verti-

Signal Generator

By A. J. BARAGKET
Head of Television Video Development Section Television Transmitter Division Allen B. DuMont Laboratories, Inc. Clifton, New Jersey

cal driving and horizontal driving pulses and in the development of the composite blanking signal. It also uses the $157.5-\mathrm{ke}$ signal and the 900 cycle pulses in the development of the composite linearity test signal which becomes available mixed with blanking.

The sync shaping unit utilizes the 31,500 -cycle pulses and the $15,750-$ cycle pulses with suitable delays (for accurate synthesis of the horizontal and vertical sync pulses) in a specially designed delay line contained in the blanking-driving unit for the formation of the high-frequency components of the composite synchronizing signal. The 60 -cycle pulse from the timing generator is used undelayed in the development of the low-frequency component of the composite synchronizing signal.

To meet the severe requirements of the RMA-recommended synchronizing signal generator signals, there must be precise time relationship among the pulses developed by the timing generator. This may be obtained by starting at a high frequency and by suitable frequency division deriving the lower frequency pulses. An alternate method is to begin with the lowest frequency and obtain the higher frequency signals by suitable frequency multiplication. In the timing generator shown in Fig. 2, the former method is used because it may be effected by simpler circuits.

In the circuit diagram of Fig. 2, the two basic oscillators are the $6 \mathrm{AC7}$ crystal oscillator and the 7F8 master oscillator, both operating at
157.5 kc . The 6SN7 blocking oscillator frequency dividers are used to derive the lower frequencies required. The first division is by 5 to 31.5 kc , the equalizing pulse frequency. From 31.5 kc there is one division by two to 15,750 cycles, the horizontal rate, and another division by seven to 4,500 cycles. The frequency of 4,500 cycles is divided by five to 900 cycles, one of the linearity test signal frequencies.

Division of 900 cycles is done by five to 180 cycles which is in turn divided by three to 60 cycles, the field repetition rate. Sawtooth wave forms at 60 cycles and at 900 cycles are fed respectively to the deflecting plates of the low-frequency and the high-frequency cathode-ray monitors, to serve as time bases for the presentation of the count-down frequencies on the monitor screens.

Frequency Indicators

Figure 3 shows the presentation on the screens of the cathode-ray tubes. The left-hand screen is that of the high-frequency monitor whose horizontal time base is 900 cycles. The dots represent the master oscillator or crystal oscillator frequency 157.5 kc . There are five dots along each line or step in the vertical "ladder" indicating a division from 157.5 kc to 31,500 cycles.

The bright dots on the high-frequency monitor correspond to the 15,750-cycle horizontal repetition rate. There are seven steps in each of the ladders, indicating a frequency division from 31,500 cycles

Complete synchronizing signal generator
to 4,500 cycles ; in other words each ladder represents 4,500 cycles. The presence of five ladders for each cycle of the time base points to a frequency division from 4,500 cycles to the time base frequency of 900 cycles.

On the right-hand or low-frequency monitor, the ladder steps represent 900 cycles. Since there are five of them to each ladder, the indication is frequency division

FIG. 2-Timing generator circuits of the Du Mont TA107 A/B sync generator
from 900 cycles to 180 cycles. The three ladders per cycle of the time base indicate a frequency division from 180 cycles to 60 cycles.

The blanked out section in the middle of the low-frequency scan being derived from the power line further confirms the time base of 60 cycles and indicates synchronism with the line. When the generator is not locked to the 60 -cycle power line, the blanked out section moves across the time base. This presentation has been found highly useful in the analysis at a glance of synchronizing generator failures due to improper timing.

The type of blocking oscillator frequency divider circuit used is the cathode - tuned - circuit - stabilized type, Fig. 4. Firing of the blocking oscillator results in a surge of current through the cathode circuit which is normally tuned to a frequency half that of the trigger repetition rate. This results in a ringing of the tuned circuit due to its Q. The cathode voltage wave form is that of a damped sine wave lasting for $2 \frac{1}{2}$ cycles (for a 5 to 1 count down) before the blocking oscillator fires again. The grid to ground and
the grid to cathode voltage waveforms are shown in the diagram of Fig. 4. As indicated, discrimination is very good against all trigger pulses other than the one producing proper count down.

In the design of the timing circuits, extreme care was taken to minimize any possibility of frequency modulation of the timing pulses. Considerable attention was paid to the chassis layout especially
with respect to keeping high level pulse points away from the afc circuit. The blocking oscillator grids are returned to +250 volts giving a steep capacitor voltage discharge waveform and consequently improving freedom from jitter.

The source of B voltage is a double-regulated power supply with an output impedance of less than 0.15 ohm . This eliminates the possibility of extraneous signals modu-

FIG. 3-Presentation of count-down frequencies on cathode-ray monitors
lating the blocking oscillator grid base, a common source of frequency modulation.

The $157.5-\mathrm{kc}$ and 900 -cycle outputs of the timing generator are fed directly to the blanking unit for use in the production of a linearity test signal mixed with blanking. The 60-cycle pulse output of the timing generator is routed to the blank-ing-driving unit and the sync shaping unit for use in the generation of RMA driving pulses, and the lowfrequency components of RMA blanking and sync pulses.

To conform to the strict requirements of the RMA recommended synchronizing signal, it is good design practice to use the same signal for the formation of the leading edges of all of the pulses which make up the synchronizing signal. In the synchronizing signal generator under discussion, the leading edges of the equalizing pulses are used to form the leading edges of the horizontal and the vertical synchronizing pulses. This is done by adding a horizontal component and a vertical component, both of which

FIG. 4-Cathode-stabilized blocking oscillator frequency divider
have been delayed a precise time by a lumped LC delay line in the blanking unit, to the equalizing pulses and clipping the result as indicated in Fig. 5.

Two separate delay lines are used, one for the 31,500 -cycle signal and the other for the 15,750-cycle signal. Each line consists of 70 π sections with a total delay of 10 percent of the horizontal period or approximately 6.3 microseconds. Provisions are made for tapping connections in any one of the sections in both lines. This permits very accurate shaping of the sync pulses as well as very precise setting of the front porch. Multivibrator stability is in part a function of the trigger pulse rise time. To maintain as short a rise time as practical in the delayed 15,750 and 31,500 -cycle trigger pulses, the delay line is designed for a frequency band of over three megacycles. Figure 6 shows the schematic of a single section of the delay line.

Equalizing Pulses

The equalizing pulses shown as G in Fig. 5 are generated directly by multivibrator V_{17} in the sync shaping unit, block diagram of Fig. 5. They are amplified and limited by V_{18} and mixed with the

FIG. 5-Timing diagram shows the formation of the composite synchronizing signal and block diagram of sync shaping unit
other synchronizing signal components in the plate circuits of V_{28} V_{8} and V_{3}.

Horizontol Pulses

Figure 5 is a timing diagram indicating the synthesis of the composite synchronizing signal from its various components. The horizontal pulses are formed by adding delayed 15.750 -cycle pulses to the equalizing pulses, amplifying, limiting and keying-out undesired 31,500 -cycle pulses. The result before final clipping is shown at U of Fig. 5.

Tube V_{1} in Fig. 5 is the horizontal pulse multivibrator whose output (O in Fig. 5) is permitted to clear through V_{g} only during the horizontal pulse interval.

The 15,750 cycle pulses (Q in Fig. 5) are then amplified and limited in V_{3} and mixed in the common plate circuit of V_{18} and V_{8} with the vertical and equalizing pulse components of the composite synchronizing signal.

The first and last sections of U

FIG. 6-Single pi section of delay line
in Fig. 5 show the horizontal component of the mixed signal at V_{0}. The raised portion of this component indicates the overlap between the equalizing pulse and the delayed horizontal pulse. This is later clipped off in limiters V_{s} and V_{11} as shown in the first and last sections of V in Fig. 5.

The keying out of the horizontal pulses during the equalizing pulse interval is accomplished by the gating of keyer tube V_{2} by pulse P in Fig. 5 derived from the equalizing pulse interval multivibrator V_{s} through amplifier V_{5}. The elimination of unwanted equalizing pulses is obtained by first pushing them down into a region lower than that of the desired horizontal pulses by means of 15,750-cycle pulses shown as T in Fig. 5 and later removing them by clipping. Waveform T is derived from the alternate equalizing pulse keying multivibrator V_{6} through keying tube V_{7} and ampli-fier-limiter V_{s}. The pushed down equalizing pulse is shown in the first and last sections of U in Fig. 5.
The elimination of alternate equalizing pulses must not take place during the equalizing pulse interval. For this reason keying tube V_{7} by means of the equalizing interval pulse P permits the alternate equalizing pulse keying signal S to be applied only during the horizontal pulse interval. The output of $V_{\text {B }}$ is T in Fig. 5. The duration of the

FIG. 7-Functions of stages in the blanking-driving unit
horizontal pulses in the output signal V is 8 percent of $H(+0$ -1 percent).

Vertical Pulses

The vertical pulses in the composite synchronizing signal consists of a group of six at a 31,500 cycle rate. The group repeats itself once each scamning field, see center section of V in Fig. 5. The duration of each pulse is 43 percent of H where H is the line period and the group must appear during the vertical blanking interval between the first and second group of six equalizing pulses.

The timing of the vertical pulse interval is determined by the trailing edge of a pulse, J in Fig. 5, three lines wide from the 60-cycle vertical pulse centering multivibrator V_{12}. The vertical pulses are generated at a 31,500 -cycle rate in the vertical pulse multivibrator V_{15}. These are shown at I in Fig. 5. One of its pulses, upon coincidence with the trailing edge of the vertical centering pulse K, is permitted by keyer tube $V_{1:}$ to trigger the vertical pulse interval 60-cycle multivibrator $V_{\text {I }}$ whose pulse width is normally set equal to three horizontal lines or the interval required by six vertical pulses at the 31,500 cycle rate.

Waveform L in Fig. 5 is the output of V_{1+}. The vertical pulse interval gate, in turn, permits the vertical pulses to be amplified by keyer tube V_{18} only during the vertical pulse interval. The result is M in Fig. 5. In turn, the six vertical pulses during the vertical pulse interval are amplified and limited by tube V_{3} and appear in the common plate circuit of V_{3}, V_{8} and $V_{1 s}$. Thus, into a common plate load are fed the horizontal pulses during the horizontal pulse interval from tube $V_{:}$, the equalizing pulses during the equalizing pulse interval from tube $V_{\text {Ls }}$ and the six vertical pulses during the vertical pulse interval from tube V_{r}. The mixed signal, U, is amplified and limited by V_{9} and V_{10} and appears at the cathode and plate of output tube V_{11} as a positive and negative composite synchronizing signal. Figure 5 shows the final sync output signal at V.

The block diagram of the blank-ing-driving unit is shown in Fig. 7.

The 15,750-cycle pulses trigger the horizontal blanking multivibrator V_{5} whose output is fed into blanking mixer V_{b}. The 60-cycle pulses trigger the vertical blanking multivibrator V_{7} whose output is fed to the grid of the second triode of blanking mixer V_{b}. In the blanking position of the linearity test switch, the mixed vertical and horizontal blanking signals are limited and amplified in tube V_{8}. and applied to the grid of blanking output tube V_{n}. At the cathode and plate of output tube $V_{\text {u }}$, appear respectively the positive and negative composite blanking signals.

The 157.5 -ke signal derived from the timing generator is amplified and shaped in V_{5} and mixed in V_{11} with the 900 -cycle pulse derived from multivibrator $V_{1 u}$. In the blanking and linearity bars position of the linearity test switch, these are inserted into the blanking signal in the common plate load of blanking mixer $V_{"}$ and linearity mixer V_{11}. The mixed blanking and linearity test pulses are clipped in limiter $V_{4,}$ and applied to the grid of output tube $V_{\text {.. }}$. In this position of the switch the output signals at J_{11} and $J_{n \prime}$ consist of the composite blanking signal mixed with vertical and horizontal linearity signals. In the linear ity bars position of the selector switch only linearity test signals are permitted to appear at

FIG. 9-Block diagram of low-voltage power supply
the blanking signal output jacks. Figure 8 shows a test pattern generated by an iconoscope film chain driven by the sync generator. The linearity test switch is in the blanking and linearity bars position.

The horizontal driving pulses originate in the 15,750 -cycle multivibrator V_{1} and are directly applied to the grid of the horizontal drive output tube V_{2}. They appear as positive and negative horizontal driving signals respectively at J_{b} and J_{4}. In a similar manner the vertical driving pulses originate in the 60 -cycle multivibrator V_{3}; the output is applied directly to the grid of vertical output tube V_{1}. Vertical

FIG. 8-Camera chain output picture signal with the linearity test switch of sync generator set at blanking and linearity bars for adjusiment of monitor sweep linearity
driving pulses appear in positive and negative polarity at jacks J_{12} and $J_{1 u}$. At Y and Z of Fig. 5 are shown the waveforms of the horizontal and vertical driving pulses produced by the circuits.

Power Supplies

The high-voltage supply is used to provide the accelerating potential for the cathode-ray tube monitors in the timing generator.

A double-regulated low-voltage supply is used to provide 250 volts and 350 volts for the three signal units. This supply has an output impedance of less than 0.15 ohm at 1,000 cycles. The change from no load to full load at 400 milliamperes results in a change of only 0.1 volt at the output. A block diagram of the low-voltage supply is shown in Fig. 9. Transients from the ordinary power supply filter circuit are eliminated by use of an "electronic choke" in the form of a first regulator for the 350 volts ahead of the final regulator for the 250 volts.

A number of these synchronizing generators have been in operation during the past two years with excellent results.

Acknowledgment

Acknowledgment is made to the following men of the Du Mont Laboratories who took part in the development and product design of the synchronizing generator: H. Beste, L. Durgin, C. Quirk and L. Spooner, and to N. Accardo and M. Demeyer, who aided materially in the test of models.

Single-Sideband CRYSTAL FILTERS

Abstract

X-cut crystals are used in multiple-section filters for the upper and lower sidebands and the carrier frequency. The carrier filter has a passband 16 cycles wide between $3-\mathrm{db}$ points and the sideband filters are flat within 0.6 db for nearly 6 kilocycles

0NE PROBLEM involved in the development of an improved type of radio receiver for twin-channel, single-sideband reception was the design and construction of three crystal filters.

These were used to separate the carrier from the sidebands of an amplitude-modulated wave train at an intermediate frequency of 100 kc and to isolate each of the two sidebands.

Specifications called for a carrier filter less than 25 cycles wide at points whose response was 3 db down from maximum, and 175 cycles wide at points 50 db down, with a maximum attenuation of over 70 db available.

Since both speech and musical programs were to be received with high fidelity, each sideband (channel) filter was specified to have a passband 6 kc wide, flat within $\pm 0.5 \mathrm{db}$ except at the edges where a $2-\mathrm{db}$ drop from maximum response could be tolerated. These edges were taken to be 100 cycles and 6 kc respectively from the intermediate carrier frequency of 100 kc .

A maximum relative attenuation of at least 85 db was desired at all frequencies separated by more than 4 kc from the passband midfrequency. This would provide for a $40-\mathrm{db}$ attenuation of adjacent-channel signals of equal strength in addition to a possible unfavorable selective fading differential of 45 db between the two channels.

A piezoelectric crystal such as quartz acts electrically ${ }^{1}$ like the LC circuit shown in Fig. 1. For a range near the resonant and antiresonant frequencies of this electrically

By PAUL K. TAYLOR
Government Sound Engineering Section Engineering Products Dept. RCA Victor Division Radio Corporation of Anerica Camden, New Jersey

equivalent circuit, the crystal presents a reactance whose variation is shown by the full-line graph of Fig. 4. Suppose that two crystals are so cut that the resonant frequency of one coincides with the antiresonant frequency of the other. The reactances of both crystals are then as depicted by the full-line and dashed-line graphs of Fig. 4.

Theory

If these crystals be connected in a bridge circuit similar to Fig. 6, or its equivalent lattice, Fig. 2, we have the structure of a simple narrow bandpass filter. The dashedlines in Fig. 2 indicate lattice arms of the same type as those actually shown. In Fig. 6, the dashed-lines indicate that $X X$ are the two halves of a single crystal having divided plating. Likewise for YY.

The bridge circuit of Fig. 6 is that of a pure reactance bridge. This will be perfectly balanced when the reactance between points 1 and 2 of the circuit is equal to that between 1 and 4 and of the same sign. The same is true for the reactance between 2 and 3 and that between 3 and 4 . There are two frequencies at which this will occur. On Fig. 4, these are designated $\mathrm{f} \infty_{1}$, and $\mathrm{f} \infty_{2}$, for the attenuation (theoretically) reaches an infinite value at these frequencies. Actually, the attenuation will
merely rise to a maximum value, called an attenuation peak, at each of the two frequencies of balance as shown in Fig. 5. As the frequency of an input signal is increased from $f \infty_{1}$, toward f_{4}, the attenuation will continuously decrease until it (theoretically) reaches zero at f_{A}, the series-resonant frequency of one of the pairs of crystals.

For frequencies between f_{A} and f_{b} the reactances of the two pairs of bridge arms are at each point of opposite sign. Hence, signals whose frequencies lie within this range will pass through the filter (theoretically) with no attenuation. Actually some attenuation is experienced in this range, the amount depending on the Q factor of the crystals and associated circuit elements. For this reason, characteristics of the filters developed in this work are shown as relative attenuation versus frequency rather than actual attenuation. The region between f_{A} and f_{B}, as shown in Fig. 5, is the passband of the filter.

In practice, capacitors C_{A} are placed in parallel with input and output terminals of the filter. Others, C_{B}, of much smaller capacitance, are connected from input to output as bridging capacitors.
The parallel capacitors adjust the separation between resonant and antiresonant frequencies of the bridge arms and hence control the width of the passband. The bridging capacitors change the shapes of the reactance graphs of the bridge arms somewhat, thereby changing the frequencies at which the two reactance curves cross where of like

Table I-Effect of Temperature on Attenuation Characteristic

db Down	Frequency (kc) of Lower Side	Difference cps	Frequency (kc) of Upper Side	Difference cps			
2	93.92	93.93	+10	99.890	99.868		
6			100.060	100.035	-22		
10	93.58	93.62	+40	100.152	100.127		
20	93.41	93.44	+30	100.300	100.278		
30	93.29	93.35	+60	100.405	100.360		
40	93.16	93.21	+50	100.505	-25		
	Average	+38	Average				-45
			-25				

sign. Adjustment of the bridging capacitors, therefore, controls the frequencies of the attenuation peaks of Fig. 5.
The resonant and antiresonant frequencies of a quartz crystal are separated by only about 0.4 percent of resonant frequency (for X-cut crystal). Since, as seen in Fig. 4, the passband is only double this amount, some other circuit element must be introduced if wide passbands are desired. Such an element may be an inductance placed in series or in parallel with each crystal of the circuit. These two types of connection result in filters having low image impedance and high image impedance, respectively.

To avoid stray couplings in the channel filters herein described, a reasonably low image impedance was chosen. This choice called for a coil to be connected in series with
each crystal of the filter circuit. The widening of the filter passband by the use of coils is due to the fact that their addition produces a large increase in the separation of resonant and antiresonant frequencies of the bridge arms and furthermore extends the upper edge of the passband considerably beyond the higher of the two antiresonant frequencies of the bridge circuit, Fig. 9 and 10.

For the passband region, the image impedance of the filter is a pure resistance whose value changes from near zero at the passband edges to a maximum midway between them. Terminating resistances considerably lower than the midband impedance are used in the filters actually built to secure ${ }^{2}$ a better average impedance match over the whole passband.

If all the coils used in the wide-
band filter are wound to have equal resistances, or if supplementary resistors are inserted to make all arms of the equivalent bridge circuit have equal resistances, it is possible ${ }^{1}$ to consider these resistances as being brought outside the bridge circuit proper and incorporated in the terminating resistors. This leaves the bridge as a pure reactance bridge. Under this condition neither the sharpness of the cutoff at the passband edges, nor the steepness of the attenuation characteristic of the filter is impaired by the resistances of the coils inserted in the filter lattice.

Mason ${ }^{1}$ has given mathematical formulas from which the values of the circuit components of a filter section can be computed after certain constants have been chosen. These are (1) the frequencies of the edges of the passband, (2) the
frequencies of the peaks of infinite attenuation, and (3) the midband image impedance of the desired filter. The formulas refer to the electrical equivalents of the crystal filter lattice as shown in Fig. 3 and 8.

A sample 6-kc filter calculation using the wideband filter formulas, resulted in the following values. Chosen

$$
\begin{aligned}
& Z_{11}=2,(100) \text { ohms } \\
& f_{\mathrm{A}}= 99.50 \mathrm{kc} ; \mathrm{FB}_{\mathrm{B}}=106.70 \mathrm{kc} \\
& f_{1}= 98,70 \mathrm{kc} ; f_{2}=107.50 \mathrm{kc} ; \\
& j \infty_{3}=\infty
\end{aligned}
$$

Having obtained the values of the equivalent electrical components of a crystal filter section, the next step is to transfer the computed series resonant frequencies f_{2} and f_{3} of the crystals to actual dimensions of the quartz crystals themselves. Equations for accomplishing this depend upon the type of crystal cut decided upon., :

Calculated

$$
\begin{aligned}
& I_{0}=L_{1}=+4.22 \mathrm{mh} \\
& C_{0}=52.84 \mu \mu f ; C_{1}=54.86 \mu \mu \mathrm{f} \\
& L_{2}= 20.73 \mathrm{~h} ; \mathrm{C}_{2}=0.1206 \mu \mu \mathrm{f} ; f_{2}= \\
& L_{3}= 100.70 \mathrm{kc} \\
& 10.53 \mathrm{~h} ; C_{3}=0.1234 \mu \mu \mathrm{f}: f_{3}= \\
& 10.2 \mathrm{kc}
\end{aligned}
$$

The - 18.5 -deg X-cut crystal had previously been generally used as a filter crystal due both to its high Q and freedom from the troublesome face shear mode of oscillation. However, this cut has quite a large temperature coefficient of over 20 parts per million per degree centigrade,
The +5 -deg X-cut crystal with a width-to-length ratio of 0.35 has a temperature coefficient of only about 4 parts per million per degree centigrade.* Moreover, it is easily cut from the mother quartz (involving rotation only about the X or electrical axis). It has the disadvantage of having a relatively large coupling to the face shear mode when wide crystals are used.

Because of the two advantages mentioned, the +5 -deg X-cut crystal was chosen for the present filter construction. A single-section channel filter was found to have a spurious resonance due to the coupling to the shear mode. The response occurred at a frequency approximately 116 percent of the passband midfrequency and reduced the attenuation to within 11 db of that of the passband itself.

FIG. 12-A double-section 6 -kc-channel crystal filter. Capacitors C_{1} permit fine adjustment of passband width, C. fine adjusiment of attenuation peaks, L are passband widening coils, R_{1} are terminating resistors, R_{f} are interstage impedancematching resistors and Y are +5 -deg X-cut crystals

When a filter of four sections was tested, however, no observable indication of any secondary response at all was present. This is evident in the graphs of Fig. 14 and Fig. 15 where the attenuation is 87 db or greater for all frequencies more than 1.2 kc (1.1 percent) higher
than the upper edge of the passband. This desirable result was due to the slight differences in crystal frequencies for the four filter sections resulting from the choice of different peaks of maximum attenuation for each section.

By the use of equations given by

Top and bottom views of two-section 6-kc bandpass crystal filter chassis

FIG. 13-A double-section 20 -cycle crystal filter. Capacitors C_{3} control passband width, R_{3} are terminating resistors, R_{4} and R_{5} are interstage impedance-matching resistors and X are +5 -deg X-cut crystals. These components are shown in the illustrations on this page

Atwood ${ }^{3}$ we find for the $+5-\mathrm{deg}$ X-cut crystal that $f=110.5 / y^{\prime} \mathrm{kc}$.

This equation is strictly accurate for only very narrow crystals, of which y^{\prime} is the length. The crystals were designed to have a width/ length ratio of about 0.35 in order to secure the +5 -deg X -cut
crystal minimum temperature coefficient of 4 parts per million per degree centigrade previously mentioned. As X-cut crystals of larger and larger widths are used, the crystal frequency constant decreases somewhat from that of a very narrow crystal." For a width/

Crystal mounting and coil details for 6-kc bandpass crystal filter

Top and bottom views of two-section 20 -cycle filter chassis for 100 -kc carrier
length ratio of 0.35 the decrease is 1.8 percent. Hence the equation is modified for the crystals used in the present project to

$$
f=108.5 / y^{\prime} \mathrm{kc}
$$

A preliminary study of the effect of interelectrode and stray capacitances together with midband frequency and bandwidth requirements for the 6 -ke bandpass filters dictated the use of very thin crystals. Having chosen a minimum feasible thickness and a width/ length ratio of around 0.35 the equivalent motional capacitance of a sample crystal was found by measurement of its static capacitance together with its resonant and antiresonant frequencies. Substitution of this value for C_{2} or C_{3} in Mason's equations determined the image impedance Z_{0} of the filter. This value of Z_{0} was, therefore, used in calculating all the electrical components of the $6-\mathrm{kc}$ bandpass filters.

Construction of Channel Filters

To obtain the sharp cutoff and laree attenuation required by the specifications, a filter of four sections was built for each of the $6-\mathrm{kc}$ channel filters. Two shielding cans were used as containers for each complete filter, each can containing two filter sections. After the filter was mounted, dry air was passed through the can which was then hermetically sealed.

Each single-filter section consists of two crystals with divided plating, two coils in shielding cans, each equipped with adjustable powderediron cores, two small, fixed, moldedmica capacitors and a tiny bridging capacitor. The latter is formed by two short lengths of bus bar mounted about 4 -inch apart on the bottom of the Bakelite crystal mounting base.

The circuit of each double-section filter is shown in Fig. 12. Resistor R_{n}, shunted between the interconnection of each two sections and the chassis, together with the resistances of the input and output coils, provides a T pad to serve for interstage impedance matching. External terminations were used with each double section filter.

Each series coil is a universalwound coil on a $\frac{1}{2}$-inch-diameter

FIG. 14-Attenuation characteristic of a four-section crystal channel filter for 94-99.9 kc

Isolantite form. The coil is equipped with an adjustable pow-dered-iron core, and in use is mounted in the shielding can.

Construction of Carrier Filter

The narrow-band filter for the 100 -kc intermediate-frequency carrier was much simpler in design and construction than the channel filters described above.

Calculated values of the motional capacitance together with the chosen theoretical passband width of 40 cycles, and the chosen frequencies of the attenuation peaks, determined the value of image impedance.
Here, again, as for the 6-kc channel filters, terminating resistors of smaller size than the image impedance were used to give a better impedance match throughout the passband. Figure 13 is a schematic diagram of the wiring of this double-section narrow-band filter.

Each single section consists merely of two divided-plating crystals, two small mica capacitors and the terminating resistors. The three resistors (at the center of the under-chassis view) constitute a pi-type attenuation pad of about 7 db between the two sections. Input and output terminating resistors are mounted externally to the shield can.

Results and Conclusions

Each of the two complete foursection 6-kc channel filters had an insertion loss within the passband

FIG. 15-Attenuation characteristic of a four-section crystal channel filter for 100.1-106 ke
itself of about 24 db . To compensate for this loss, the filter was fed from and into vacuum-tube circuits. The tube supplying the signal to the input of the filter was a 6J5 used in a cathode-follower circuit for easy impedance matching. The output of the filter was fed to a 6SK7 pentode amplifer. The result was a gain within the passband of 1.5 db measured from input to cathode follower to output of the pentode amplifier. The same type of tube-circuit arrangement was used with the carrier filter.

The attenuation characteristics of the lower and upper channel four-section crystal filters are shown in Fig. 14 and 15. The average characteristics are as follows:

Width of passband between points 2 db down, $5.94 \mathrm{kc} ; 2 \mathrm{db}$ point adjacent to carrier, 134 cycles from carrier, passband flat within $\pm 0.6 \mathrm{db}$ over a bandwidth of 5.73 kc ; bandwidth at 85 db down, 8.10 kc ; attenuation greater than 87 db for all frequencies separated more than 4.17 kc from the passband midfrequency. Tests of the $6-k c$ channel filters at 25 C and 50 C respectively show a slight narrowing of the passband with rise in temperature averaging about two-and-one-half cycles per centigrade degree of temperature change. This is shown in Table I.

In Fig. 16 are shown two passband and attenuation characteristics of the double-section carrier filter. These were measured re-

FIG. 16-Attenuation-frequency characteristic and effect of temperature change
on the 100 -kc 2 -section carrier filter
spectively at 25 C and 50 C . A rise of temperature is observed to cause the characteristic as a whole to shift to slightly lower frequencies. The shift averages only 0.44 cycles per deg. The bandwidth of the filter characteristic measured at room temperature is 16 cycles at a relative attenuation of $3 \mathrm{db}, 22$ cycles at $6 \mathrm{db}, 86$ cycles at 50 db and 180 cycles at 78 db . The latter attenuation is maintained for all frequencies outside the 180-cycle band mentioned.

The author desires to express his appreciation for helpful guidance, valuable suggestions, and continued interest to E. D. Blodgett, Thomas Jacobi and L. L. Lakatos of the Engineering Products Department of the RCA Victor Division. He is also thankful to the staff of the RCA Crystal Engineering Department for preparation and mounting of the crystals, and to the RCAVictor Division of the Radio Corporation of America at Camden, New Jersey, whose facilities made possible the development herein described.

References

(1) W. P. Mason, "Electromechanical Transducers and Wave Filters," Chap. VIII, D. Van Nostrand Co., Inc., 1942 . (2) E. ,A. Guillemin, "Communication Networks," Vol. II, Chap. VIII, Art. 6 : Chap. X, Art 2, John Wiley and Sons, 1935.
(3) J. B. Atwood, The Equivalent Electrical Circuit of Quartz Crystals, RCAC Fing. Report F-72-7, 1/19/39, Sheets 6, 12 , and 15 .
(4) R. A. Heising, "Quartz Crystal Applications," p 538, D. Van Nostrand Co., (5) 1946 .
(5) W. P. Mason, Electrical Wave Filters Employing Quartz Crystals as Elements, B.S.T.J. 133, p 410, July 1934.

PRODUCTION TOOLED

Cinch-Erie

 EXP 8365 Miniature Tube Socket
A joint development of ERIE RESISTOR CORP. and CINCH MANUFACTURING CORPORATION

Bayonet shield base when shielding of tube is necessary.

Three lengths of shield cans are available: Nc. 8660 , height $13 / 8^{\prime \prime}$ No. 8661, height $13 / 4^{\prime \prime}$ Nc. 16 G 12564 , height, $21 / 4^{\prime \prime}$

With built-in Ceramic Condensers, Plexicon Tube Sockets provide the most effective method of by-passing . . . with condenser close to tube element providing shortest path to ground. Capacity up to 1,000 MMF - any tube element may be coupled or by-passed as desired.

Any or all terminals of this socket may be bypassed to ground or coupled.

Also available in Octal, Loktal and Noval type sockets.

Mounting Strap, EXP 8556

Erie Ceramic Condensers

Write for detailed information, and in ordering specify capacities required and position of condensers.

AVAILABLE AT LEADING ELECTRONIC JOBBERS
everywhere

Tele Service Areas

By JOHN H, BATTISON
Allocations Engineer
American Broadcasting Co., Inc. New York, N. Y.

THE accompanying charts, based upon FCC assumptions and data, provide a quick approximation of television service areas for the $5,000 \mu \mathrm{v}$ per meter (solid line) and $500 \mu \mathrm{v}$ per meter (dashed line) contours. Receiving antenna height is assumed to be 30 feet above average terrain.

To determine the distance from a channel 2 $20-\mathrm{kw}$ transmitter 2,000 feet above average terrain to the $5,000 \mu \mathrm{v}$ per meter contour, enter the appropriate chart at the left and follow the effective radiated power line across to its junction with the solid curve for 2,000 feet. Then read off the distance in miles (29 miles, in this case) from the scale at the top of the graph. The $500 \mu \mathrm{v}$ contour from a similar transmitter would be found at 60 miles, using the dashed line for height and the lower scale of miles.

Power and antenna height necessary for desired coverage can also be determined from the charts.

Meet MAllory Midgetrol

The First All New Variable Resistor in Years

- LOW NOISE LEVEL—both mechanically and electrically-stays quiet, too, even after tens of thousands of cycles.
- HIGHER STANDARDIZATION—faster delivery schedules-thanks to new design.

These are the FEATURES

- NEW TERMINALS-you can bend or twist terminals without breaking them.
- NEW TERMINAL LOCATION-farther away from mounting sur-face-eliminates need for extra insulation.
- ADAPTABLE TO TELEVISION—voltage characteristics make it adaptable for television receivers as well as radio sets and all applications requiring variable resistors.
- SAVES SPACE—can be specified where a larger control ordinarily would be needed.
- LIGHT-ideal for portable radio applications.
- FLAT SHAFT-for standardization and uniformity in productionadaptable to any type knob now used.
- NEW SWITCH—specially designed to give long, trouble-free life.

P. R. MALLORY \& CO., Inc., INDIANAPOLIS 6, INDIANA

TUBES AT WORK

Including INDUSTRIAL CONTROL
 Edited by VIN ZELUFF

Airborne Magnetometer 124
RPM Counter 144
Metal Picture Tube 152
Amplitude-Selective Amplifier 156

- Airborne Magnetometer

Measurements accurate to one part in 50,000 of the earth's magnetic field are made with the airborne magnetometer developed by the Gulf Research and Development Co. engineers and geologists and recently demonstrated at Westchester County airport. The instrument is currently being used in prospecting for oil and mineral deposits. The odds of finding oil have been improved from approximately 16:1 to $5: 1$ by the use of such reconnaissance tools as airborne magnetometers, gravimeters and seismographs. Novel magnetic and circuit techniques are used in the magnetometer to obtain its high sensitivity.

Operating Principle

Geologists have used the correlation between the magnetic field of
the earth at its surface and the underground rock formations for many years. For these measurements on the ground, a delicately balanced instrument was used, but to survey large or rugged areas took a great deal of time and effort.

Several difficulties arise if a conventional magnetometer is used in an aircraft. Accelerations of the instrument must be counteracted. This requirement limits the design to one having no moving parts. Because of the speed of motion, the instrument must be automatically recording; an operator could not take readings fast enough in a plane flying at 120 mph . The magnetic fluctuations to be measured are so slight that they could be masked by unbalanced magnets and currents, so the instrument must be suspended a considerable dis-

In flight, the magnetometer operator at the right makes notations on the magnetic record of information provided by the sensing unit. At left, an operator checks the shoran pulses while the flight director corrects the caurse flown and advises the pilot

FIG. 1-Magnetomeier head depends for its action on the change in inductance as the core becomes saturated (A). The pulses produced by the head are converted to direct current and combined to give a signal proportional to the magetic field
tance from the mother plane.
To meet these requirements, a sensing element of the flux-gate type was developed, and by 1941 had been perfected sufficiently for airborne use. During the war the instrument was used for locating submerged submarines, for which application it needed to be sensitive only to short, intense discontinuities in magnetic field. It has been further refined to give an absolute indication and to hold its calibration.

Basically the sensing element consists of two thin cores of highly permeable alloy on which are wound two separate coils as shown in Fig. 1A. The sensitivity of the element is obtained by exciting these identical coils with alternating current ($1,000 \mathrm{cps}$).

As long as the impedances presented by both coils are equal, the voltages across the two primaries will be equal, whether the cores are saturated or not, because both cores will become saturated simultaneously, although with opposite polarities. However, if the element is placed in a fixed magnetic field, the

THEE IMC ENGINEER

hut not on your payroll

TUNE IN THE
ELECTRICAL
INSULATION
HEADQUARTERS

Because your IMC engineer represents not just one, but most of the recognized leading manufacturers of electrical in-sulation-each specializing in his own particular product-his experience in the insulation field is more complete. As a specialist in electrical insulation, he and the IMC organization behind him are qualified to . .

1. Assist you in the selection of the best insulating materials for the job.
2. Familiarize you with their proper application.
3. Suggest ways to eliminate waste.
4. Increase your production.

MANUFACTURERS CORPORATION

PRODUCTS LIST: Macallen Misa Products - Vartex Varnished Cloths and Tapes - Varslo Combination Slot Insulation-Fiberglas Elecfrical Insulation-Manning Insulating Papers and Pressboarcs-Dow Corning SilizonesDieflex Varnished Tubings and Saturated Sleevings - Na fional Hard Fibre and Fishpaper-Phenolite Bakelite-Fermacel Adhesive Tapes-Asbeslos Woven Tapes and Sleevings-Inmenco Cotton Tapes, Webbings, and Sleevings-Fedigree Insulating Varnishes - Wedgie Braind Wcod Wedges.

Sensing element of the airborne magnetometer and the gimbal mounting for positioning the unit parallel to the earth's magnetic field
two cores will become magnetically biased so that one will enter saturation in the direction of the external field before the other enters saturation in the opposite direction. Thus there will be a moment when the two coils do not present equal impedances.

A short voltage pulse will occur across a secondary winding (or its electrical equivalent) because of the phase shift of the moment of passing the knees of the magnetization curves of the two cores. For small external fields, the amplitude of this pulse is proportional to the field strength (The Gulf Airborne Magnetometer, R. D. Wyckoff, Geophysics, p 182, April, 1948).

Auxiliary Circuits

To use such an element in an airplane requires several auxiliary circuits. Figure 1B shows the detector circuit with which the pulses are picked off the sensing element by a differential transformer and converted to direct current by cathode followers. By design of the sensing circuit and coupling transformer, sufficient voltage is obtained at the input to the differential cathodefollower circuit so that no subsequent amplification is necessary.

Because of the permeability of the cores of the magnetometer head, the unit is saturated by relatively weak fields. To prevent saturation and also to provide a range (continued on p 140)

THE FRONT COVER

ELectronic equipment mounted in the nose of this P80 jet fighter permits the operation of all flight controls by radio from the ground during takeoff and landing and within easy radar range of the field. On longer flights control may be taken over by a mother plane.

Principal use planned for this drone is the conducting of tests considered too hazardous for a pilot to undertake, such as power dives requiring pullout at speeds no human can withstand. Tests of this nature are scheduled to take place at Muroc Air Force Base in California in the near future.

Space normally occupied by the engine in conventional ships contains, in this case, about three times as much equipment as that visible in the accompanying photograph. It includes an f-m transmitter and receiver, telemetering and television equipment.

A television camera monitors an instrument panel set up in the forward portion of the nose. The panel contains the attitude gyro, airspeed indicator, altimeter, tachometer, magnetic compass, accelerometer, elevator trim tab position, correlating counter, dive flap down light and fire warning light.

Four motion picture cameras in the plane are started and stopped by remote control. One is in the cockpit to photograph the regular instrument panel, one alongside the television camera in the nose and two mounted in the fuselage to photograph either wing tip.

The correlating counter on the instrument panel in the nose is used, along with pips entered at intervals directly on movie film in each camera, to correlate all movies with the plane's actions at a given moment and also with a fifth camera photographing the television receiver screen in the truck. By use of television, the plane can be flown by remote control from inside the truck, except for take-off and landing.

Pictured testing the electronic equipment is civilian radio-control engineer Richard W. Hill, of the instrumentation section of the Flight Test Division at Air Materiel Command headquarters, Wright-Patterson Air Force Base, Ohio. U. S. Air Force photo by CWO Stephen P. Mongelluzzo.

Pick the power you need

take the performance for granted

756A

Ample power capacity for the great majority of applicationspluspeak performance. Frequency range 65 to 10,000 cycles. Coverage angle $60^{\circ} \cdot 10^{1 / 4 "}$ in diameter, $3^{1 / 4}{ }^{\prime \prime}$ deep. Enclosure space $2 \frac{1}{2}$ cubic feet.

30 WATTS

728B

Ideal for use wherever extra high power is needed. Frequency response 60 to 10,000 cycles. Coverage angle $50^{\circ} .1211 / 32^{\prime \prime}$ in diameter, 3 25/32' ${ }^{\prime \prime}$ deep. 3 cubic feet of enclosure space.

These three direct radiators will meet practically all your requirements-in broadcast stations, wired music, program distribution and sound systems, highquality home radios and record players. Pick the ones you need on the basis of power requirements. You'll find superior quality of reproduction in all of them.

Get the full story of this Western Electric line from your local Graybar Broadcast Representative—or write Graybar Electric Company, 420 Lexington Avenue, New York 17, N. Y.
distributors: in the u s. A. Graybar Electric Company. in Canad and newroundlandNorthern Electric Company, Ltd.

Western Electric - QUALITY COUNTS -

THE ELECTRON ART

Edited by FRANK ROCKETT

Magnetic Field Patterns Shown by Electron Microscope 128
The Eriscope Camera Tube. 130
The Miller F-M Circuit. 130
Precision Circuit Printing 190
The Synchrostrob Timer. 196
Survey of New Techniques. 200

Magnetic Field Patterns Shown by Electron Microscope

Extension of the experimental method adapted at the National Bureau of Standards for visually studying magnetic fields provides a powerful means for investigating space-charge fields, fields produced by contact potentials, configurations inside waveguides, and the microstructure of metals. The method, developed by L. L. Marton, is the electronoptical analogy of the Schlieren effect in optics. By it, static magnetic and electric fields can be examined without the disturbing effects of probes; it is being used to measure the magnetization of wire used for sound recording and for storing data to be used by electronic computers.

Dark-Field Image

Figure 1A shows an image produced by the modified electron microscope used in the quantitative study of magnetic fields. The electronoptical arrangement by which this image is produced is shown in Fig. 1B. Electrons from source A are normally brought to a focus by lens C at point D. However, if there is a disturbing field at B such
as a magnetized wire, it will distort the electron trajectories so that a dark image of the obstruction will be formed on screen E placed in the conjugate plane. The lens will also bring to focus on this plane an image of the disturbing field. A stop intercepts the undisturbed electrons focused at D. The darkfield image at E is made visible by a fluorescent screen or is recorded as a micrograph. Figure 1 C is an approximate picturization of the action involved.

Figure 2 shows the image produced when a presaturated thin laminar steel sample with a feather edge is placed in the electron microscope between the source and the lens. The objective lens was slightly misaligned in making this picture to bring one edge of the objective parallel to the observed edge. In this way the direct rays were intercepted by the objective aperture, only the electrons scattered at the edge of the specimen reaching the final image plane to form the image. The faint pattern at right angles to the edge of the bright line, visible wherever the line is in-

FIG. 1-(A) Opposite polarities of adjacent magnetized regions on both sides of a wire deflect electrons of microscope to produce bright semicircles on a fluorescent viewing screen. The optical system (B) intercepts direct rays unaffected by field of wire as shown by solid lines; dashed lines show how field of wire is focused on screen by same lens. An approximate perspective drawing (C) shows paths of deflected elec. trons. This electron analogy of the optical Schlieren effect adds another type of object, namely fields, that can be observed in electron microscopes
terrupted, is assumed to be due to the fringe field of ferromagnetic domains or of grain boundaries. In this way a visual representation of fringe fields from the small domains of spontaneous magnetization in ferromagnetic materials is

FIG. 2-Micrograph made with modified electron microscope of the fringe field along the edge of a steel sheet indicates that magnetic domains or grain boundaries are a few microns apart (magnification about 50,000 diameters)

For the MEASUREMENT of

 Q, INDUCTANCE and CAPACITANCE

 Q, INDUCTANCE and CAPACITANCE}

Radio frequency circuit design often requires the accurate measurement of Q, inductance, and capacitance values. For this application, the 160-A Q-Meter has become the universal choice of radio and electronic engineers throughout the country.

Each component part and assembly used in the manufacture of this instrument is designed with the utmost care and exactness. Circuit tolerances are held to values attainable only in custom built instruments.

Consider, for example, the Q tuning capacitor assembly of the 160-A Q-Meter, specially manufactured for maximum range, low loss, and minimum residual inductance. The ultimate design of this unit was reached only after months of intensive engineering research to produce the finest in performance, quality, and workmanship.

This is but one of the many desirable features of the 160-A Q-Meter which contribute to its outstanding accuracy and dependability.

Be sure to include the 160-A Q-Meter in your new equipment plans for 1948.

Write for Catalog "E"

BOONTON CRADIO

Shown above is the Q funing capacitator assembly of the 160-A Q-Meter. Note the following design features of this unit - features which insure reliable, trouble-free operation.
A. Parallel connection of dual rotor and stator assemblies minimizes internal inductance and resistance.
B. Spring silver fingers contact both sides of silver dise to provide low series resistance.
C. Three point pyrex ball stator suspension reduces losses and permits accurate stator alignment.
D. Four point panel mounting designed to produce maximum structural rigidity and capacitance stability.
E. Precision-cut brass spur gears and stainless steel shafts, mounted in oversize bearings, assure long, trouble-free service.
F. Common stator mounting for main and vernier stator plates reduces loss and internal series resistance of vernier capacitor section.
G. Positive shaft stop protects main rotor assembly and gears against mechanical overload.

SPECIFICA TIONS

Oscillator Frequency Range: 50 kc . to 75 mc . in 8 ranges. Oscillator Frequency Accuracy: $\pm 1 \%, 50 \mathrm{kc} .-50 \mathrm{mc}$.
$\pm 3 \%, 50 \mathrm{mc} .-75 \mathrm{mc}$.
Q Measurement Range: Directly calibrated in $\mathrm{Q}, 20$ 250. "Mul-tiply-Q-By" Meter calibrated at intervals from $\times 1$ to $\times 2$, and also at $\times 2.5$, extending Q range to 625.
Q Measurement Accuracy: Approximately 5% for direct reading measurement, for frequencies up to 30 mc . Accuracy less at higher frequencies.
Capacitance Calibration Range: Main capacitor section 30-450 mmf, accuracy 1% or 1 mmf whichever is greater. Vernier capacitor section +3 mmf , zero, $-\mathbf{3} \mathbf{~ m m f}$, calibrated in 0.1 mmf steps. Accuracy $\pm 0.1 \mathrm{mmf}$.
designers and manufacturers of the o meter - ox checker FREQUENCY MODULATED SIGNAL GENERATOR - BEAT FREQUENCY GENERATOR AND OTHER DIRECT READING INSTRUMENTS
obtained from which the field distribution and domain sizes can be computed.

The Eriscope Camera Tube

By Boyd France
McGraw-Hill World News
Paris, France
High resolution and sensitivity are obtained in the French television camera tube called the eriscope. Like the image orthicon, this tube separates the functions of forming and scanning the image.

Comparative tests of the eriscope and the image orthicon conducted at the Zurich Polytechnical School

Like image orthicon, formation of electrical image and scanning are separate operation in eriscope; signal is amplified externally
indicated that the eriscope had the greater resolution; it produced sharper images with greater tonal range and haltfone definition and less spotting. All tubes now coming from the production line of the Society Radio Industrie de France have a definition of 800 lines, some are capable of 1,000 lines. All these tubes being made currently are for the state television company. The tests also showed that the image orthicon is the more sensitive. For picking up outdoor scenes with the eriscope, 100 lux is sufficient. Under artifical light it is necessary to increase the illumination to 500 lux because the tube is less sensitive to red than to blue light.

Forming and Scanning the Image

By separating the functions of converting light images into electrical ones and of scanning the electrical images, the elements of the
camera tube can be designed independently for maximum efficiency. The transparent photosensitive cathode, whose position is shown in the accompanying diagram, is an alloy of cesium and antimony. The optical image is formed on the interior surface of this cathode thus emitting electrons in proportion to the incident photons. These electrons are accelerated by an anode at 500 volts above the photocathode, the two electrodes forming a divergent lens for the electrons. A magnetic focusing coil gives the electrons a trajectory such as that shown in the diagram.

In this way the optical image has been converted into an electrical image, which in turn has been focused on the scanning target at the far end of the tube. The target is a semiconductor made of a sheet of mica coated thinly with metallic cesium. The electrons from the photocathode form an electrical image on this target corresponding to the optical image. The target is then scanned by a beam of electrons from an electron gun in the arm of the tube. This beam is magnetically focused to a spot whose size determines the resolution of the tube, and is magnetically scanned

Because image target has no mosaic, resolution is only limited theoretically by focus of scanning beam
over the image on the target. With a beam 0.10 millimeter in diameter it is possible to obtain a definition of 400 lines using an 80 square millimeter target. Higher resolutions are obtained by finer focusing.

The beam is charged to the same potential as the target. As it reaches the target, electrons are deflected from it in proportion to the surface charge of the target. These
deflected electrons are picked up by an anode on the surface of the tube producing the output signal, which is amplified externally. The undeflected portion of the beam momentarily erases the target image.

The Miller F-M Circuit and Its Use in Railroad Radios

By P. L. Bargellini

Florence, Italy
The increasing development of communication systems using frequency or phase modulation has stimulated the invention of several forms of modulators. In practical use these modulators suffer from poor carrier stability or great complexity in their stabilizing circuits, and limited ranges of linearity. Because of inadequacies in the react-ance-tube modulators being used in experiments with railroad radiophones, especially microphonics in the reactance tube, another type of frequency modulation circuit was devised.

Miller-Effect Modulator

Important properties of a frequency modulator are: (1) inertialess linear frequency controlling element, (2) simple production and injection of voltage for stabilizing carrier frequency, and (3) stability in the presence of mechanical vibration. Requirement (1) calls for an electronic modulating element of considerable simplicity. (The reactance tube suffers from the fact that it can never be a pure reactance, always having some residual resistance.) Requirement (2) is more simply satisfied if the frequency modulation is produced directly rather than indirectly as in some systems. A triode more adequately fills requirement (3) than a multigrid tube.
The means taken to meet these requirements is shown in Fig. 1A. By it, a pure reactance can be injected into the oscillatory circuit. The quadrature current is simply obtained from the grid-cathode space current of a triode that is excited by the controlled resonant L-C circuit and that has a purely resistive load. Analysis of the cir-
(continued on p 186)

NEW PRODUCTS

Edited by A. A. McKENZIE

Abstract

New equipment, components, tubes, testing apparatus and products closely allied to the electronics field. A review of catalogs, handbooks, technical bulletins and other manufacturers' literature

Polystyrene Capacitors

Solar Mfg. Corp., 1445 Hudson Blvd., North Bergen, N. J., now has available a complete line of polystyrene-film dielectric capacitors. Typical applications include timing and integrating circuit capacitors, r-f padding capacitors

and coupling capacitors in extremely high-gain amplifiers. Complete list of standard ratings is given in catalog bulletin SPD-600.

Klystrons

Radio Corp. of America, Harrison, N, J. First of a line of Klystron tubes for use in microwave relay

equipment are types 2 K 26 and 2 K 25 . These tubes can be used both for transmission and reception, serving as local oscillator in the latter service.

Conical Antenna

Telrex Inc., 26 Neptune Highway, Asbury Park, N. J. Model 4XTV an-

tenna gives conical performance without the bulk of solid spinnings. It features gain, bandwidth and resolution.

Impedance Meters

Sperry Gyroscope Co., Great Neck, N. Y., announces a series of nine instruments for determining impedance by measuring standing wave ratios and node positions in microwave transmission lines.

They can also measure relative power, attenuation and wavelength in the line. Accuracy is 2 percent for 650 to $40,000 \mathrm{mc}$. Catalog sheets are available.

Molded Transformer Cores

Stackpole Carbon Co., St. Mary's Pa. Cores are available for horizontal deflection and flyback transformers. Two standard types

are availab'e. Type 10034 is a large rectangular unit with sliding hub designed for universal use with any television tube. A smaller spool type 10748 is recommended for tubes smaller than 10 inches where space is at a premium.

F-M Tape Recorder
Ampex Electric Corp., 125 Howard Ave., San Carlos, Calif. De-

signed expressly for $f-m$ broadcast service, the new Ampex tape recorder has a response within plus or minus 1 db between 30 and 15,000 cycles as well as other features designed for broadcast facility. Tape speed is 30 inches per second and the unit has a time capacity of 35 minutes.

Keyboard Oscillator

Weinschel Engineering Co., Dept. E, 123 William St., New York 7, N. Y. This stable oscillator with low distortion is of the resistancetuned type using negative feedback. Pushbuttons on the panel provide frequency variation. The unit

6 REASONS WHY 6,000,000 RAYTHEON SUBMINIATURE TUBES Are Warking For American Industry Today

1. REDUCED PRODUCT SIZE . . . INCREASED PRODUCT ACCEPTANCE. Raythoon filamentary Subminiatures are fat. Batteries can be little instead of big because af extremely bow filament droin.
2. PLUG MRO STANDARD SOCKETS - OVER ONE NND ONE-MALF MILIION IN USE. AII Raythean Subminiatures can either be soldered or welded into the circuit, or plugged into the sockets availab e from several manufacturers.
3. NINE TEARS CONTINUOUS PRODUCTION EXPERENCE. Total customer returns of defective tubes in 1947 just under 1% of sales.
4. SUBMINIATURE TUBE APPLICATION IN GINEERING available nationally since 1939.
5. READIIY AVAILABEE FROM STOCK IN MEWTON, CHICAGO AND LOS ANGELES. Over half a million of the tubes described below are available at all times. They are standord throughout the world.
6. at ycur local distributor. Over thr hundred Raytheon Special Purpose Tube distributors strand ready to serve you quickly and intelligently.
"More than all other makes combined I

can be used as a signal source for distortion or bridge measurements, and also as an interpolation oscillator. Frequency range is from 1 cycle to 100 kc .

Capacitance Bridge

General Radio Co., 275 Massachusetts Ave., Cambridge 39, Mass. Type 1611-A capacitance test bridge measures over the range $1 \mu \mu \mathrm{f}$ to $10,000 \mu$. . Accuracy of \pm (1 percent +1 u.f). Dissipation factor range is 0 to 60 percent. Frequency

of the test voltage is 60 cycles. A feature of the bridge is the zerocompensating circuit that balances out the initial capacitance and dissipation factor at zero setting of the dials.

Variable Waveform Generalor

Centro Research Laboratories, Briarcliff, N. Y. The variable waveform generator is an audio generator whose output waveform is built up by addition of a fundamental wave and four sequential harmonics. The harmonics are precisely synchronized and variable over 360
degrees. Level of the fundamental and of each of the harmonics is independently variable.

Rodent Control

LFC Corp., 65 Broad St., Rochester 4, N. Y. The Guard consists of a metal case housing a framework that supports electronic unit, motor for driving the electrocuting arms, mirrors for the light system, and other components. In action, the unit is placed over a rat run and is actuated by breaking of a light beam by a passing animal. It is

gently squeezed, electrocuted, and ejected to the side. Total death cycle is about $2 \frac{1}{2}$ minutes.

Visual Alignment Generator

Philco Corp., Philadelphia, Pa., Model 7008 is a new visual alignment generator equipped with crys-tal-diode high-frequency probe for use in examining the response curve of individual stages and the 4.5 mc video trap. It can also be used to obtain correct termination of r - f transmission lines or measure standing wave ratio.

Portable Tape Recorder

Webster Electric Co., Racine, Wisconsin. The Ekotape recorder and reproducer uses magnetic tape with a fast forward speed and fast re-

wind. It is equipped with an 8 -inch speaker and an oversize motor with high inertia flywheel. Motor drive and capstan operate continuously so that tape starts and stops instantaneously.

Electronic Thermostat

Spencer-Kennedy Labs., Inc., 10 Follen St., Cambridge, Mass. Model 400 A bridge-controlled thyratron thermostat is designed for use with furnaces, molds, chemical baths, ovens, and similar devices. Two types of control are possible, by means of a resistance thermometer,

or by change of resistance of the heater winding itself. Temperatures from 20 to $1,200 \mathrm{C}$ can be maintained to an accuracy of plus or minus 0.1 C when a resistance thermometer is used.

Projection System

Radio Corp. of America, Camden, N. J. Model TLS-86 is a reflective optical projection system employing an all-electronic tuning system.

Life-size pictures for large audiences are then projected either on a reflective-surfaced opaque screen or on a translucent screen.

Television Signals

Telequip Radio Co., 1901 South Washtenaw Ave., Chicago 8, Ill. A combination sync generator, mono-
(Continued on p 206)

PRICES ano AUDIODISCS

a Statement On Our Price Policy

As of September 1st, aluminum prices are again increased. This means higher cost for the principal raw material used in the manufacture of AUDIODISCS. In fact, the cost of the aluminum base has always been the main item in the cost of production. Thus, any increase in aluminum prices is of major importance.
But beyond the cost of raw materials and labor there is a basic factor which determines the cost of manufacturing professional recording discs. This factor is the extent to which the particular process of manufacture enables the producer to turn out a large proportion of first quality discs. There are several methods of production used. None of these will give anything like a 100% yield. It is, however, obvious that as the percentage of yield increases there is a resulting drop in the average cost of aluminum, lacquer and labor.

Fortunately, our patented, precision-machine process-now used for over a decade and continuously improved-gives a more consistent yield of high quality discs than any method of production now used. And we have tested every other process in use.
So our position with respect to the present increase in aluminum prices is this:

1. We are not increasing prices of AUDIODISCS as of September 1st
2. We shall make every effort to absorb this new aluminum price raise and thus continue our prices at the present level. Our calculations indicate that with some improved efficiency, now under way, and continued large volume production, we shall be successful in this hold-the-price effort.

Audiodiscs are manufactured in the U.S.A. under exclusive license from PYRAL, S.A.R.L., Paris.

Audio Devices, Inc., 444 Madison Ave., N.Y. C.

Export Dept: Rocke International, 13 East 40th Street, New York 16, N. Y.

they speak for Themselves
 cudigdises

NEWS OF THE INDUSTRY

Edited by JOHN MARKUS

Abstract

Australia's rural radiophone; course in automatic control; radio net for India planned; radio license increase

West Coast IRE Convention

The program of technical sessions of the IRE West Coast Convention to be held September 30 to October 2, 1948, at the Hotel Biltmore, Los Angeles, Calif., has been announced as follows:

Thursday, Sept. 30

00 P.M. to $4: 45$ P.M.-ChairmanBernard Walley of RCA Victor, Los Angeles.
A Low Cost Program Switching System, Langevin. Gifford and A. P. Chesney of Langevin. Antenna Input
Receivers, by D.
E. Research, Inc., California.

Operation of AMI Broadcast Transmitters into Sharply Tuned Antenna Systems, oy W. H. Doherty of Bell Telephone Laboratories, Whippany, N. J.

1:15 P.M. to 4:45 P.M.-Chairman-A. R. Willson of Boeing Aircraft Company, Seattle:
The Outlook for Electronic Computers, by J. L. Barnes of the University of California at Los Angeles.
Input and Output Equipment for Electronic Computers, by C. H. Page of the Bureau of Standards.
Electronic Techniques Applied to Analog an

Design and Use of the Reevac, a General Purpose Electronic Digital Computer by Dr. Herbert Zagor of Reeves Instrument Corporation, New York City.
$s: 00$ P.M. to $10: 30$ P.M.-Audio Sym-
posium - Chairman - E. S. Naschke, Chairman Sacramento Section IRE. Friday, Oct. 1
9:00 A.M. to 11:40 A.M.-ChairmanO. A. Steele, Chairman Portland Section

A New Type of Direct Reading R. F.

Final details for West Coast IRE Convention are discussed by L. W. Howard (left) president of Triad Transformer and West Coast Electronics Manufacturers president. Robert L. Sink (standing) of Consolidated Engineering, and Convention chairman Loyd Sigmon, chief engineer at KMPC

[^2]RMA Board of Directors for 1948-1949

Berkeley, Chairman San Francisco Section IRE:

Signal to Noise Ratios of Linear Detectors, by R. H. DeLano of Hughes Aircraft Co.

A Mass Spectrometer Designed for Industrial Use, by C. E. Berry, R. L. Sink, and Carl Spaulding of Consolidated Engineering Corp.

Problems in the Design of Megawatt Output Klystrons for Pulsed Operation, by Marvin Choderow and E. L. Ginzton of Stanford University.

Application of Microwave Spectroscopy to Determination of Interatomic Distances in Molecules, by D. K. Coles of Westinghouse Research Laboratory.

Saturday, Oct. 2

9:00 A.M. to 12:00 Noon-ChairmanC. N. Tirrell, Naval Electronics Laboratory, San Diego; Chairman San Diego
Section IRE:

Systems Engineering Aspects in Military Communications, by W. S. Marks of tary Communications, by W. S. Marks of Monmouth.

The V.H.F. Omnidirectional Range, by C.A.A. Radio Development Division representative, R. E. McCormack.

Design of a Radar Set for Commercial Airlines, by F. G. Suffield, consulting engineer.

Design of Antennas for Optimum Directivity, by T. T. Taylor of Hughes Aircraft Co.

Band Width Reduction in Communication Systems, by W. G. Tuller of Melpar, Inc.

Television for Australia

Television Isn't quite Down Under yet. The Commonwealth Postmaster General has invited bids for two experimental television transmitters, one each for Sydney and Melbourne. These would bring a third of Australia's population within line of sight.

A home television set with a 9 inch screen could be produced by Philips' Australian branch plant in about a year for $\$ 325$, a spokesman of the company stated. But before the sets can be built, the government must promulgate transmission standards.

There is every indication that both television and f-m are to be a state monopoly; a-m radio is not completely nationalized yet, and a large number of commercial stations remain in operation.

Short-Wave System for East Africa

Construction work has begun on the first of 48 Marconi shortwave transmitters to be installed in East Africa to provide ground-to-air
(Continued on p 258)

MEETINGS

SEPT. 27-29: FM Association Second Annual Convention, Sheraton Hotel, Chicago, Ill.
SEpt. 27-Oct. 1: Third National Plastics Exposition, Grand Central Palace, New York.
Sept. 30-Oct. 2: Pacific Electronic Exhibition and IRE west coast Annual Convention, Biltmore Hotel, Los Angeles, Calif.
Oct. 4-7: 53rd annual meeting of International Municipal Signal Assn., Inc., Hotel Statler, Buffalo, N. Y.
Oct. 5-7: AIEE Middle-Eastern District Meeting, Washington, D. C.

Oct. 7-9: Second joint meeting, URSI and IRE, National Bureau of Standards, Washington, D. C.
Oct. 12-16: Fifth National Chemical Exposition, Coliseum, Chicago, Ill.
Oct. 18-22: AIEE Midwest Fall General Meeting, Hotel Schroeder, Milwaukee, Wisconsin.
Oct. 23-29: Annual convention, American Society for Metals, Benjamin Franklin Hotel, Philadelphia.
Oct. 25-28: Annual Fall meeting of the Institute of Metals, Division American Institute
of Mining and Metallurgical Engineers, Hotel Adelphia, Philadelphia.

Oct. 25-29: National Metal Exposition, Commercial Museum and Convention Hall, Phila.
Oct. 25-29: Annual Convention, American Welding Society, Bellevue-Stratford Hotel, Philadelphia.
Ост. 25-29: 64th semiannual convention, Society of Motion Picture Engineers, Hotel Statler, Washington, D. C.
Oct. 27-28: Annual Convention, Society for Non-Destructive Testing, Hotel Adelphia, Philadelphia.
Nov. 4-6: National Electronics Conference, Edgewater Beach Hotel, Chicago.
Nov. 8-10: Twentieth Rochester Fall Meeting of members of IRE and RMA Engineering Dept., Sheraton Hotel, Rochester, N. Y.
Nov. 29-Dec. 1: Conference on electronic instrumentation in nucleonics and medicine, sponsored by IRE and AIEE, Engineering Societies Building, New York City.
Nov. 29-Dec. 4: 18th National Exposition of Power and Mechanical Engineering, Grand Central Palace, New York.

PLASTIC BOMBPROOF FOR VIDEO

This 7×8-ft slab of Plexiglas was recently installed by the Cadillac Plastic Co. of Detroit at Briggs Stadium in that city as a protection for television equipment. The $1 / 2$-inch sheet will offset the impact of a 9 -ounce ball travelling at over 100 miles per hour, according to researchers at Rohm \& Haas Co., Philadelphia, makers of Plexiglas

AUDIO TRANSFORMERS foz [UNIForm response TRANSFORMERS for [LOW DISTORTION

 ghile for Culalog neve stock line
Full Frequency Range

30 to $\mathbf{1 5 , 0 0 0}$ Cycles, provides uniform response over this entire band with $\pm 1 / 2 \mathrm{db}$ up to 10 watts of audio power, within $\pm 1 \mathrm{db}$ over 10 watts. Standard RMA impedances. Hum balancing coil structures and nickel alloy shielding. Included are Input, Output, Driver, and Modulation Transformers; Modulation Reactors. Sealed in Steel construction, stud mounting, with pin-type terminals.

Public Address Range

50 to 10,000 Cycles, frequency response within $\pm 1 / 2 \mathrm{db}$ up to 10 watts of power, within $\pm 1 \mathrm{db}$ over 10 watts, throughout this range. Secondary impedances match 600 and $150-\mathrm{ohm}$ lines, 16, 8 and 4 -ohm reproducing systems. Listed are Driver and Output Transformers. Sealed in Steel construction, flange mounting, with solder lugs or wire leads.

Communications Range 200 to 3,500 Cycles, affords response with variations not exceeding $\pm 1 \mathrm{db}$ over the range of voice frequencies. For use with 600 or 150 -ohm lines. Input, Output, Driver and Modulation Transformers offered. Sealed in Steel construction, flange mounting, with wire leads or solder lugs.

WHERE
 BASIC

 DESIGHSTUBES AT WORK
(continued from p 126)
control, a direct current is fed to an auxiliary coil on the head to buck out a portion of the earth's field. Thus the magnetometer is

FIG. 2-Block diagram shows how pulses from sensing element are converted into direct current and $f e d$ to the recorder, and how a balancing current is obtained to restrict the range over with the head must operate
called upon only to measure the small unbalanced field. This bucking current is obtained automatically by a stepping switch actuated by the recording galvanometer as it reaches the end of its scale, shown in Fig. 2.

It is necessary that the sensing element be always oriented parallel to the earth's field for the recordings to have significance. This positioning is accomplished by a pair of orienting servos driving gimbals that are at right angles to each other. The sensing element is mounted on these gimbals.

Two auxiliary sensing elements can be used to detect the orientation of the earth's field. If the output from one of these auxiliary units is zero, it must necessarily be perpendicular to the earth's field. Thus these units are mounted mutually perpendicular to the sensing unit. The servo motors drive the auxiliary units to the positions at which their outputs vanish, thus placing the sensing unit parallel to the field. To avoid difficulties from the aircraft's magnetic field, the sensing element and its associated orienting mechanism are housed in a bomb-shaped "bird" that is lowered by its connecting cable to about 65 feet from the plane. The measuring and controlling circuits and recorder are carried in the cabin.

Reconnaissance Technique

Airborne magnetometers are calibrated at the laboratory and sent out to the field to be used in locating areas that can be expected to

Have the facts at your fingertips

With this compact folder, you can obtain information on TAMCO products readily. When you want approximate physical properties, a chemical analysis, or commercial applications of specific productsclear concise charts provide them at a glance. That's why you will want this helpful booklet whether you are interested in TAM ceramic, chemical or metallurgical products. Address your request to our New York City office.
More detailed information on Titanium or Zirconium products is available also upon request. These data have been compiled to meet the demand for authentic information on these products from the source most closely identified with their development. It may prove advantageous to discuss certain problems and applications with our sales engineers.

\starWhen you write for your reference folder, let us know if our Field Engineering can be of assistance at this time.

IF YOU NEED TIME =AGASTAT IS WHAT YOU NEEL

AGASTAT relay is an important instrument in electronic circuits requiring time delay . . . from .1 second to 5 or more minutes.
Instantaneously recycling, reliable and efficient. Available in standard types and with special mounting and terminal arrangements. Mounting and contact information, type description, etc. on request. Address Agastat Division.

RADIO MANUFACTURERS:

Take Advantage of SAMS' EXPERT SERVICE DATA PREPARATION FACILITIES

If you are interested in effecting significant economies in the preparation and printing of your service data manuals, you will want to follow the lead of other major manufacturers. More and more manufacturers of radio receivers, record changers, recorders and similar equipment, are turning to us for the preparation and publication of service manuals and literature. Our lab, oratories prepare complete, accurate, logical service data, relieving your service and engineering divisions of all burdensome details. Specimens of current work prepared for major manufacturers are available on request. Inquiries invited.
\star

Address Your Inquiries

to
Howard W. Sams \& Co., Inc.
Indianapolis 7, Indiana
\star

Truarc saves 5 minutes, 9 cents in materials per unit without re-design of electric sanders

OLD WAY
Special 1/4" cap screw and 1/4-28 fibre-insert nut holds idler arm and pulley assembly on Model A3 "Take-About" Sander, PorterCable Machine Company.

NEW WAY

Simple 1/4" C.R. shaft, grooved in automatic screw machine, equipped with Waldes Truarc Retaining Rings. Bowed external ring (\#5101-25) at top exerts resilient pressure taken up by Standard external ring (\#5100-25) at bottom. Assembly is secure against vibration, can be easily taken apart and re-installed many times with same Truarc rings.

Every sander through the production lines costs 9 cents less for materials, requires 5 minutes less labor -with just the simple change from cap screw and nut to Waldes Truarc rings by Porter-Cable Machine Company, Syracuse, New York. The change to Truare required no new design, no alterations in castings, but just the reappraisal of old methods.

Truare can help you cut costs and increase produc-
tion, too. Wherever you use machined shoulders, nuts, bolts, snap rings, cotter pins-there's a Truarc ring that does a better job of holding parts together. All Waldes Truarc Retaining Rings are precision engineered, remain always circular to give a never-failing grip.

Send us your drawings. Waldes Truarc engineers will be glad to show how Truare can help you.

The Shure " 900 MG " Pickup is an ideal instrument for tracking on the new micro-groove records. It tracks at 7 grams... has a needle force of 9 grams as added safety factor . . . uses a special offset osmium-tipped needle with a point radius of only $.001^{\prime \prime} \ldots$ and has an output of 1 volt! The Shure lever system has been adapted in the development of this new pickup -providing a high needle compliance. Listen to it-you will be thrilled with the results!

Model "900MG" Code: RUZUZ List Price: $\mathbf{\$ 1 2 . 5 0}$

Shure Pafents Issued and Pending. Licensed under the Patents of the Brush Development Co.

SHURE BROTHERS, Inc.

Microphones and Acoustic Devices

225 W. HURON ST., CHICAGO 10, ILL. - CABLE ADDRESS: SHUREMICRO

TUBES AT WORK
contain oil-bearing strata. A flight crew surveys a region by flying a grid pattern consisting of flights about 75 miles long and a mile or so apart. The pilot flies the plane back and forth along such a grid, keeping accurately on course by means of two transportable shoran stations. The flight director aboard the craft constantly checks the shoran indications so that later, in plotting the measurements on a map, they can be accurately located. To further correlate the plane's position with ground position, a continuous strip film picture of the terrain is made so that land marks can be readily identified. The shoran indications, strip film and magnetometer recordings are all correlated by recording identical serial numbers at each position at regular intervals.

Later the measurements are transferred to maps thus forming magnetic profiles of the district. On the assumption that the magnetic fluctuations that have been observed are caused by changes in the depth of the igneous bed (or basement) rock, the geologist predicts in what places domed formations likely to contain oil will be found. Of course other magnetic disturbances might have produced the observed contours. The know-how of geologists consists in recognizing the characteristics of the different factors that influence the slight local field contours.

Once a region has been located that appears a likely prospecting area, seismographic parties make detailed examinations to verify the inferences. These two techniques, magnetometer and seismograph surveying, relying heavily on electronics, are proving extremely valuable in the race to find oil as fast as it is being consumed.

RPM Counter

TURBine components for new jet engines are whirled at close to $100,000 \mathrm{rpm}$ and in temperature of 1,750 degrees F at Boeing Airplane Co. propulsion laboratory in proving jet engines under development.

An electronic rpm counter measures the speed of the wheel as it spins. One end of the spinning

Whatewe the sequisemerns.s. - there's an AMERTRAN

 for every electronic application

 for every electronic application}

Liquid Immersed Plate Trarsformers-AmerTran oil and Abestol immersed, for indoor and outdoor serviceprecise overvoltage protection by means of bushing mounted sphere gaps.

"W" Dry-Type Transmifter Components-Economical selfcooled transformers and reactars --for more efficient rectifier operation.

Hermetically sealed Trans-formers-Highly resistant to moisfure, shock, pressure and temperature variation. Either liquid-immersed or compound filled.

Transtat Type TH for $\mathbf{3}$ to 20 KVA-Manually operated a.c. voltage regulator providing arcless, stepless control. Brush track on coil periphery where it may be banded to insure trouble-free operation under exatting conditions of service.

PERHAPS your transformer problem calls for design and development. Maybe you require large transformers in small quantities. Or possibly you'd like to obtain the benefits of mass production and need transformers in large quantities.

No matter what your transformer requirements, you will find AmerTran engineers can solve them-tfficiently and economically.

In almost half a century of specialization, we have acquired a "know-how" and "can do" which are unsurpassed in the transformer industry. Typical applications of this background are the transformers shown on this page.

Our experience is ready and waiting to go to work on your transformer problem. Call in AmerTran today to tell you how we can give you the transformers you need . . . when you need them . . . at prices made possible only by real manufacturing efficiency

AMERICAN TRANSFORMER COMPANY

 178 EMMET STREET - NEWARK 5, N. J.

Over 20 years of fabricating experience

PLASTIC FABRICATING

BAKELITE AND FIBRE FABRICATED PARTS PUNCHING, DRILLING, MILLING. AND ENGRAVING

- BAKELITE SHEETS, RODS, TUBES •

Mail Us Your Prints or Samples for Quotations
ELECTRICAL INSULATION CO., INC.

DIREGT WRITING REGORDERS

Galvanometer available separately if desired

PERMANENT Records

> NO INK

RECTILINEAR Writing

RUGGED
Construction with

EXTREMELY HIGH
torque movement (200,000 dyne cms for 1 cm deflection)

WThile designed primarily for use in the Sanborn directwriting electrocardiograph (the Viso-Cardiette) this assembly (or the galvanometer alone, if desired) has sufficient potential value for varied industrial applications to warrant this announcement of availability for nonmedical uses.

The complete unit illustrated comprises the galvanometer and writing arm, with associated paper drive (No. $572 \mathrm{M}-500$). The galvanometer and writing arm are available as a separate unit (No. $572 \mathrm{M}-300$). Recording styli available in two types; fine line writing approximately $1 / 3 \mathrm{~mm}$; wide line writing approximately 1 mm . Recording paper can be furnished in 200 ft rolls, 6 cm wide (No. 572-737-P3).

TABLE OF CONSTANTS

Sensitivity
$10 \mathrm{ma} / 1 \mathrm{~cm}$.
Coil resistance 3,000 ohms, center tapped for push-pull operation.
Critical damping resistance
500 ohms.
Undamped fundamental frequency. $45 \mathrm{cycles} / \mathrm{sec}$
Stylus heater requires from external source . 1.25 volts, 3.5 amps, AC or DC

Maximum undistorted deflection . 2.5 cm . each way from center
Marker requires from external source . 1.25 valts, of 1.5 amps, $A C$ or $D C$

Paper speed
$25 \mathrm{~mm} / \mathrm{sec}$
Chort ruling
1 mm intervals
In the development stage are other Sanborn "medical recording" instruments which have apparent industrial applications. These include an Electromanometer for direct measurement of "pressures", and several models of multi-channel (2 to 6) recorders, both direct recording and photographic.

For complete information wrile, giving
details of proposed application to

INDUSTRIAL DIVISION SANBORN COMPANY
 39 Osborn St.
 Cambridge 39, Massachusetts

THM be Rot Ranger -aufomatically rotates one of 18 separate scales info position as you select the range.

SIMPSON MODEL 221 ROTO-RANGER

 HIĞH-SENSITIVITY A.C.-D.C. VOLT-OHM-MILLIAMMETERHere is the only multiple scale test instrument of its kind in the world. It definitely reduces the possibility of errors by providing a single scale for each range of this finest of volt-ohm-milliammeters. As the selector switch is mored to the range desired, an ingenious gearing mechanism rotates a d=um, bringing into place behind the meter window the proper scale for that range. Here is the equivalent of 25 separate instruments combited in one sturdy and compact unit. (18 scales; 7 additional direct reading ranges through use of high voltage and output jacks.) The patented Roto-Ranger principle eliminates the confusion of numerous readings on one scale, and the multiplying factors common to ordinary multi-range testers, by providing a separate scale for each range. There are no cramped calibrations in these full sized RotoRanger scales. Each is designed as it would be for a separate instrument.

SIMPSON ELECTRIC COMPANY 5200-5218 W. Kinzie St., Chicago 44, III.

Ranges

20,000 O Tms per Volt D.C , 1,000 Ohms per Volt A. 5 .
Volts, A.C. $2.5,10,50,250,1000,5000$
Volts, D.C: 2.5, 10, 50, 360, 1000, 5000 Milliamperes, D.C.: 11, 100, 500
Microamperes, D.C.: 100
Amperes. D.C.: 10
Output: 25, 10, 50, 250, 1000
Ohms: $0-3000$ (12 ohms cezter), 0-200,000 (1200 ohms center), 0-20 mecohms (120,000 ohms center
Size: $122^{\prime \prime} 7^{\prime \prime} \times 101 / 8^{\prime \prime} \times 53 / 3$
Weight: ε lbs. 9 oz.
Price, conplete with te:t leads and 28-Page Operatra's Manual........ -....................... $\$ 69.85$

Higi voltage probe $(25,000$ volts $)$ for TV, radar, x-rar and other high voltage tes's, dto available.

Ask your Jobber, or write for

In Canada: Bach-Simpson, Ltd., London, Ontario
complete descriptive literature

A separate scale for every rangeautomatically!

Large $51 / 2$ " meter with 18 separcie, full length scales!

ADC M USA WY sunson arcmic so. cencico. Ite.

Spin pit for testing turbine parts. Speed is measured by an electronic rpm counter. The mercury flash lamp held by the Boeing engineer permits photographs at 0.2 -microsecond exposure
turbine shaft is divided into two sections, half black, half white. A phototube, focused on the shaft, sends a current impulse to recording instruments each time the black portion passes its scanner. Timed and checked electrically, the speed is controlled within one-half of one percent accuracy.

The spinning is done in pits made up of layers of steel plate, with maple blocks on the inside. The steel shells test turbine components. Power for the tests is derived from compressed air, driving a small turbine which, through a shaft, is attached to the test article. A hoist supports the heavy weight of the cap plate, air turbine and accessories. The entire assembly is lowered into the pit, clamped in place and the air evacuated.

One pit has built-in heating coils of nichrome steel wire imbedded in clay holders to maintain constant temperatures of up to $1,750 \mathrm{deg} \mathrm{F}$. Automatic controls keep temperature to preset levels and also record the whole test. Highspeed rotation and extremely high temperatures combine to prove each new development in turbine parts before incorporation in an actual engine.

High-speed photographs, made with an ordinary 8×10 view camera, enable engineers to study test wheels as they break. A small mercury lamp is the light source for the one five-millionths of a second flash. The tripper con-

You may build the best appliance of its kind on the market - but if it sets up local radio interference-you'll have tough sledding against today's keen competition. Your customers are demanding radio noise-free performance in the electrical equipment they buy.

The answer, of course, is to equip your products with C-D Quietones. Why Quietones? First, because they're the bestengineered noise filters - second, because they guard your product's reputation by
giving long trouble-free service - third, because they're designed and built to meet manufacturers' specific needs - efficiently and economically.

Speed up sales - build prestige - boost profits with C•D Quietones. Your inquiries are invited. Cornell-Dubilier Electric Corporation, Dept. K-10, South Plainfield, New Jersey. Other large plants in New Bedford, Brookline and Worcester, Mass., and Providence, Rhode Island.

Make Your Product More Saleable with C.D Quietone Radio Noise Filters and Spark Suppressors
 Leading manufacturers rely on the quality and exactness of PARAMOUNT paper tubes for coil forms and other uses. Here you have the advantage of long, specialized experience in producing the exact shapes and sizes for a great many applications. Hi-Dielectric, Hi-Strength. Kraft, Fish Paper, Red Rope, or any combination. Wound on automatic machines. Tolerances plus or minus $.002^{\prime \prime}$. Made to your specifications or engineered for YOU.

PARAMOUNT PAPER TUBE CORP.

616 LAFAYETTE ST., FORT WAYNE 2, IND.
Manufacturers of Paper Tubing for the Electrical Industry

ACTUAL SIZE

CARBY

MANUFACTURERS OF PRECISION

EYELETS and MULTIPLE PLUNGER PRESS PRODUCTS

The Carby Manufacturing Company, spe. cialists in small diameter and long draw, through years of experience, engineering "know-how" and excellent production facilities, can accurately produce to the most rigid requirements every electronic requirement for

- GROMMETS
- EYELETS
- SOLDERLESS LUGS
- TERMINALS
- FERRULES

EYELETS: Eyelets can be produced with square, hexangular or round barrels with heads to match or in any wanted combination.
METALS: Available metals in .006 to .032 AWG. Accurately fabricated on eyelet machines or by plunger press to meet any requirements in

ALUMINUM COPPER BRASS STEEL NICKEL-SILVER

DELIVERY: Prompt delivery is a specialty of Carby. Our production facilities, modernly managed, is at your command to meet any reasonable requirement.
STANDARD OR MADE TO SPECS . .
Many standard shapes in stock but we specialize in fabricating special needs. Send in your blueprints for prices, deliveries, and engineering advice

CARBY MFG. CO.,INC.

62 COTTAGE PLACE Waterbury 5, Connecticut

Efficiency - combining low loss and low capacity for high fidelity transmission with minimum attenuation and signal distortion
Flexibility - new ease of handling, installing and maintaining
Shielding - for freedom from interference
Permanent Conductor Set - for electrical and mechanical stability
Spring Action - Eliminates necessity for providing slack in conductor when connecting terminals. Minimizes conductor breakage at the terminals.

WTAD-FM did. That's why they selected Andrew $61 / 8^{\prime \prime}$ coaxial transmission line. In spite of the 800 ft . long run, including a 750 ft . run up the tower, the overall efficiency is 90% !

Not only is this $61 / 8^{\prime \prime}$ line the most efficient standard RMA line used in broadcasting, but it offers the additional advantage of very high power handling capacity. It will handle up to 166,000 watts at 100 MC with unity standing wave ratio, allowing a wide margin for future power expansion.

Fabricated by Andrew in twenty foot lengths with connector flanges brazed to the ends, sections can be easily bolted together with only a couple of small wrenches. Flanges are fitted with gaskets so that a completely solderless, gas-tight installation results.

Still another advantage to buying Andrew equipment is that Andrew engineers are available to properly install it. NO OTHER TRANSMISSION LINE MANUFACTURER OFFERS YOU THIS COM. PLETE INSTALLATION SERVICE!

Here's what Mr. Leo W. Born, Technical Director of WTAD-FM, writes about Andrew installation service:-
"You will be interested to know that the installation of the Andrew coaxial line made by your organization bas been giving us trouble-free performance of bigh efficiency in the daily operation of WTAD-FM.

Knowing the great difficulties involved in the installation of such a large line on a 750 foot tower over a period of such inclement weather conditions, I feel that the excellent operation of the line is indeed a tribute to the men of your company who were on the job. Such performance is not accidental and we congratulate you on a tough job well done."
This again emphasizes Andrew's unique qualifica-tions:- Unsurpassed equipment and complete engineering service.
WANT THE MOST EFFICIENT ANTENNA EQUIPMENT FOR YOUR STATION? WANT EXPERIENCED ENGINEERS TO INSTALL IT? WRITE ANDREW TODAY!

WTAD.FM. Quincy illinois - one of America's finest FM Stations-showing 61/8" copper coaxial transmission
line manufactured and installed by Andrew.

TUBES AT WORK

sists of double concentric copper screens which line the test pit. At burst, the pieces of the test wheel crash into the screens, pushing them into contact and completing the flash circuit. By this technique, any portion of the wheel which breaks loose under such punishment immediately takes its own picture and establishes the point of failure.

The spin pits test the turbine wheels for the effects of weight and tensile strength of the materials; for rim-loading by their blades; profile, or cross-sectional shape; design of the shaft holes in their hubs.

Metal Picture Tube

A sixteen-inch cathode-ray tube having a metal shell is being made available to receiver manufacturers.

The envelope of the new tube consists of a cone of spun chrome steel alloy. A glass neck houses the electron gun assembly to permit customary mounting and operation of the focusing and deflection coils. The glass neck flares outward to a diameter of about four inches and meets the metal cone in a butt joint. Sealing the metal, which has the same coefficient of expansion as the glass, is accomplished with the aid of induction heating.

The glass front of the picture tube is drawn glass, polished on both sides, and this too is sealed to the metal cone with induction heating. The curvature of the glass face is such that nearly

New metal-shell picture tube

[^3]
ONE:PIECE NYION SUPPORT NUT simplifies coil assembly... speeds up production

Single molded nylon unit replaces complex assemblies of 3 to 5 parts

 unit but consisting of four separate prongshaped legs, is inserted in square hole of supporting plate. Since nylon itself is an insulator, the nut does not require a grommet. And Du Pont nylon remains stable at temperatares ranging from $-60^{\circ} \mathrm{F}$. to $200^{\circ} \mathrm{F}$.

Tuning slug (A) and screw ${ }^{(B)}$ are rotated, impressing thread shape of screw into nylon shank. Prong-shaped legs of shank flare outward, securing nut to plate. Nylon develops torque on screw thread to hold slug in adjusted position, despite vibration and variations in plate thickness and size of hole.

CAN NYLON HELP YOU MAKE A BETTER PRODUCT?

Here's a new, all-nylon coil support for radio and television sets. It does the same job that once required a complex assembly of 3 to 5 parts . . . yet it consists of only one molded nylon nut! The result-reduced parts inventory, quicker assembly, faster production.

In developing this new product, the manofacturer found all the desired properties in Du Pont nylon. Its light weight, strength in thin sections, resiliency, stability and insulating properties permit a new, multi-purpose design. And nylon's unique workability assures efficient, economical molding of the intricately shaped unit. It's one more case where an electrical manufacturer makes a better product with Du Pont nylon.

This Du Pont plastic can be molded or extruded. When designing electrical parts or wires, don't overlook its remarkable properties. Write
for free booklet, "65 Success Stories of Product Improvement." Filled with helpful facts. Just address: E. I. du Pont de Nemours \& Co. (Inc.), Plastics Department, Room 1410, Arlington, N. J.

CHECK THESE 7 BASIC fEATURES OF NYLON FOR ELECTRICAL USES

1 Good flexibility
2 High tensile strength
3 Extreme toughness
4 Abrasion resistance
5 Resistance to permanent set
6 Chemical resistance
7 Ability to be molded or extruded

Coil form fiss snugly in nylon nut . . . firmly gripped externally by six thin, flexible "fingers" on the inside wall of the support nut. The hollow tube is held securely in place by pressure of the nylon "fingers," although wall thicknesses of the tube may often vary as much as $1 / 32$ of an inch.

Nylon coil-support nut manufactured by Elastic Stop Nut Comporation of America, Union, New Jersey

PRECISION POTENTIOMETERS

Toroidal and Sinusoidal

For use in computing and analyzing devices; generation of low frequency saw tooth and sine waves; controls for radio and radar equipment; position indicators; servomechanisms; electro medical instruments, measuring devices-telemetering; gun fire control where 360° rotation, high precision and low noise levels are essential.
The type RL14MS sinusoidal potentiometer is illustrated. It is wound to a total resistance of 35,400 ohms and provides two voltages proportional to the sine and cosine of the shaft angle. It will generate a sine wave true within $\pm .6 \%$. Overall dimensions are $4 \frac{3}{8}$ " diameter x $411 / 32$ long plus shaft extension $\frac{t^{\prime \prime}}{4^{\prime \prime}}$ diameter x $1 \frac{1}{3}$ " long.

Write for Bulletin F-68

THE GAMEWELL COMPANY

Newton Upper Falls 64, Massachusetts

FABRICATED SHEET METAL PRODUCTS

to your specifications

COMPLETE facilities under one roof for quantity mass production-incluing welding, baking and finishing. Whistler and Wiedermann equipment for short runs. Tool and die engineering and designing.

Substantial sheet steel inventories permit speed, service and cooperation. Large assortment of stock and special dies for the radio and electronic field. Production and engineering under the personal direction of Mr. E. B. Gunzburg, president-who has had 34 years' experience in sheet metal fabrication.

Quality chassis, metal cabinets, instrument housings, panels, boxes, metal parts and stampings -sample models-in stainless steel or in any metal or any gauge. Close tolerances guaranteed.

Send your blueprints and requests for prompt attention and quotations.

ART-LLOYD METAL PRODUCTS CORP.

 laminated precious metal rings offer unusual operating characteristics at a real saving in cost over solid precious metal rings.

Silver or Gold, or Platinum, or Palladium, or their alloys, bonded to the required base metal, such as copper or bronze alloys, make possible contact resistance
. . Low noise level

- . Selected temper for
- . Corrosion resistance

These rings are now being used in special electric motors, calculators, and computators, Radar, and fire control instruments, potentiometers, and other electro mechanical devices. Our engineers will be pleased to make recommendations to meet your requirements. We would also be pleased to submit quotations to cover your specifications.

150 sq in. image area is provided.
The 16 -inch tube has a deflection angle of 53 degrees and, for critical resolution, deflection coils designed for this angle are recommended. However, coils designed for conventional tubes having a deflection angle of 50 degrees have been found to provide good resolution. Operating voltage of the second anode is recommended at about 10 kv although the tube is tested at 15 kv .

The potential of the steel shell is also 10 kv and it is planned to make available an insulating sleeve. A Tenite coating on the sleeve and an Aquadag layer might then be used to form a filter capacitor for the high-voltage power supply as is conventional practice with the 10BP4 and 10FP4. (Electronics, p 186, April 1948).

The metal tube is manufactured by Tel-O-Tube Corp. of America, at Paterson, N. J. and is used in a table model receiver of Starrett Television Corp. of New York.

Amplitude Selective Amplifier

By Charles E. Lowe Fenton, Michigan
In THE development of a servosystem for operation of a drag cup motor in response to the output signal of a magnetic bridge, it was found that the use of an amplitudeselective amplifier overcame many irritating and vexing problems.

Slight modification in normal re-sistance-coupled amplifier performance enables such amplitude discrimination to be obtained with few additional parts. Although in ordinary amplifier usage such a condition is known as bad transient response, in this application it acted as a cure-all with no ill effects.

The output signal of the magnetic bridge contained much second harmonic of the motor operating frequency throughout the nearbalance condition of the bridge and through the null point of the operating signal. This unwanted harmonic content tended to mask the null point as it decreased the sensing efficiency of the overall system at the critical time of balance indication. At the same time, the nonlinear operation of the bridge magnetic elements combined with the

Give your timers extra life with Telechron motors

There's longer service in any time switch or timer powered with an H-4 or H-5 Telechron synchronous electric motor. Efficient, dependable lubrication is assured by a special terminal-shaft bearing incorporating an oil gland that extends motor life.

These dependable, self-starting motors are designed for general-purpose time switches, dishwasher timers, stoker and oil-burner controls, appliance timers, defroster
timers, fast battery chargers and many other timing and switching devices. They operate in perfect synchronism with any commercial frequency . . . can't run fast or slow.

The H-4 motor is available in terminal-shaft speeds from 3 to 6 rph The H-5 motor is available in terminal-siaft speeds from 1 to 6 rph. Their conservative torque ratings at 60 cycles range from .20 pound-inch at 6 rph . to .50 pound-
inch at 1 rph. Like all Telechron motors, they are precision-built for long, dependable service by the largest producer of synchronous electric timing motors for over 25 years. Every one is Underwriters Laboratories approved. Why not talk over your special needs with Telechron's application engincers? Address Motor Advisory Service, Depi. M, Telechron Inc., Ashland, Massachusetts. A General Electric Affiliate.

THERMOSTATIC METAL TYPE delay Relays

PROVIDE DELAYS RANGING FROM I TO I2O SECONDS

FeAtures:-Compensated for ambient temperature changes from -40° to $110^{\circ} \mathrm{F}$.. Hermetically sealed; not affected by altitude, moisture or other climate changes . . Explosion-proof . . Octal radio base ... Compact, light, rugged, inexpensive . Circuits available: SPST Normally Open; SPST Normally Closed.

PROBLEMP Send for "Special Problem Sheet" and Bulletin.
AMPERITE REGULATORS

Ampente REGULATORS are the simplest, lightest, cheapest, and most compact method of obtaining current or voltage regulation . . For currents of 060 to 8.0 Amps . . . Hermetically sealed; not affected by altitude, ambient temperature, humidity. Write for 4-page Illustrated Bulletin.

Mmperite CO., 561 Broadway; New York 12, N. Y.

In Canada: Àtlas Radio Corp., Lid., 560 King St., W. Toronto
 is a factor

TYPE 20 by STANDARD is the answer. Superior engineering hermetic sealing and filling with dry nitrogen result in a highly stable plated type, wire mounted crystal unit.

Fundanental frequencies from me. to 50 mc . Harmonic mode 02% to $\pm 0.003 \%$ over ture range -55 to $+90^{\circ} \mathrm{C}$.

This unit can also be supplied in CT and DT cut, center mounted plated crystals in the frequency range from 200 ke to 1000 kc

Let us send you our FREE cata\log showing the STANDARD line of frequency control units. For special problems, our engineering department offers consultation service with no obligation

We manufacture quality Supersonlc and Ultra-sonic crystals.

STANDARD PIEZO CO.

Office \& Development Laboratories
CARLISLE, PENNA.

The Sperry Klystron Tube to generate ultra-high-frequency microwaves . . .

The Sperry Klystron Signal Source to "power" them.

The Sperry Microline to test and measure them...

These Sperry products equip the research or development engineer with every essential for development or design in the microwave field.

The Sperry Klystron Tube has already opened up new vistas in
navigation, aviation, medicine, radio, telephone, telegraph and other major applications. It is ready for many new local oscillator or high power uses.

The Sperry Microline includes practically every type of instrument for quick precision measurements in the microwave frequency bands.

This Sperry service - beginning with a source of microwave energy, the Klystron, and following through with every facility for measuring microwaves - opens up almost unlimited possibilities for industry.

We will be glad to supply complete information.

SPERRY GYROSCOPE COMPANY

 dIVISION OF THE SPERRY CORPORATION - GREAT NECK, N. Y. new york - los angeles - san francisco - new orleais - clevelano - seattle

FEATURES LIKE THESE
WIN TOP RATING by Station and Netwark Engineerd!
Flat out to 15 kc ! Extremely high output! Impedance selector! Dualtype shock-mount! Remarkably rugged! Individually calibrated!
Developed in cooperation with station and network engineers, the new " 650 " and " 645 " meet exacting requirements of modern high fidelity FM and AM broadcast service. Proved in studio and remote use. Polar pattern is non-directional at low frequencies, becoming directional at high frequencies. Recessed switch gives instant selection of 50 or 250 ohms impedance. Exclusive Acoustalloy diaphragm withstands toughest use. Many other important features assure the ultimate in broadcast quality. Satin chromium finish. Fully guaranteed.

Model 650. Output level - 46 db . List $\$ 150.00$
Model 645. Output level -50 db. List $\$ 100.00$
Broadcast Engineers: Put the " 650 "or " 645 " to the test in your station. Know the thrill of using the neurest and finest. Write for full details.

differentiation through the mutual inductance of the output winding, coupled to the bridge proper, created an output signal inconsistent in waveform. As a result, the speed of the motor did not bear a simple direct relationship to the primary control displacement and the final calibration of the system became partially dependent upon an unreliable and erratic variable

Presence of the second harmonic of the bridge excitation frequency in the bridge output signal was a necessary evil of the bridge design. Since it was designed to respond to minute direct currents in its input winding and to sense their direction as well as their amplitude, it was necessary to polarize the bridge arms with direct-current magnetization. In this way the aiding or opposing of this steady flux by the flux set up by the small current from the primary conversion element produced effects that indicated the direction of such current by the phase relationship of the output signal to the bridge excitation frequency. This latter frequency was also one of the phases of the motor excitation.

The sensing of reversal of input current direction by the bridge was indicated to the drag cup motor by a 180-degree change in phase of output signal. A balance for the bridge occurred with no incoming current from the conversion element or with the bridge input terminals shorted. At balance, the opposing alternating-current fluxes from the two bridge arms failed to give zero signal balance indication.

Since each half cycle of the opposing fluxes operated in separate directions along the B-H curve of the core from the operating point set up by the d-c polarization, the peak amplitudes of each half cycle of flux were not equal. Because of this difference, cancellation was not complete, and during every half cycle of the excitation frequency such a left-over bundle of flux appeared to cyclically excite the output winding. Thus, a second harmonic signal is generated. This signal reached its maximum value at the time of the null for the mo-tor-operating signal.

In this application, the drag cup

For the answers to your ELECTRONIC-MECHANICAL PROBLEMS...

CONSULT SHERRON'S ANALYTICAL ENGINEERING-MANUFACTURING SERVICE

In the completeness of its departments, manpower and the skills and experience of its personnel, the Sherron Electronics Co. is organized to meet any challenge in the design, development and manufacture of:

Communications equipment . . . Electronic Control equipment . . . Vacuum Tube Circuit development . . . Control of Measuring Devices . . . Instrumentation ... Television Transmitters . . . Television Test equipment . . . Test Equipment for Components.

In broad terms, Sherron's Analytical Engineering-Manufacturing Service means... complete design, development, engineering and manufacturing of "precision electronics" equipment. Comprehensive, confidential - this service is exclusively for manufacturers. It is defined by these facilities, personnel and operations:
DEVELOPMENT-DESIGN: Initiated in our electronics laboratory by experi-
enced physicists, engineers and technicians.

ELECTRO-MECHANICAL LABORATORY: Staffed by graduate mechanical engineers fully conversant with the requirements for "precision electronics."

COMPLETE SHEET METAL FACILITIES
WIRING DEPARTMENT: Headed by production electrical engineers.

SHERRON ELECTRONICS COMPANY
division of shembon metallic conponation
1201 flushimg ayenue - brooxlyn 6, hew york

RECENT SHERRON PROJECTS relating to electronics AND OTHER INDUSTRIES

COMMUNICATIONS

- Trans-Recëivers for pôrious uses
Television - FM - AM Transmifters
- Navigotional 'Qevices, includ. ing "Homing Equipment, Radar, etc:
- Micro-wave rechniques and Rödio Relay Links
- Ample Test Equipment to as. sure successful operation of above

ELECTRONIC CONTROL EQUIPMENT FOR

- Drone Aircraft Guided Missiles
- High Goin Amplifiers
- Computers and Calculators
- Servo Equipment
- Velocity Propagation mea. surement
- Test Equipment including In. strumentation för above

VACUUM TUBE CIRCUIT DEVELOPMENT

- New applications for existing vacuum tubets
- Precision test equipment for vacuum tubes

CONTROL OF MEASURING DEVICES

- Flow indicators
- Sorting, Counting
- Measurement of chemical titrations
- Surface strains, stresses, ofc.

INSTRUMENTATION

- Bridge meosurements
- Null defectors
- Vacuum tube voltmeter. ammeters
- Multi-wave shape generators

TELEVISION

- Television Signal Synthesizer Sync Generators
- Morioscope
- Shapers - Timers
- Wide band oscilloscope's
- Air monitors
- Field intensity equipinèrit
- Television fest equipment

Do you need a DRY BATHERY

 you can't find?

There is a SPECIALTY DRY BATTERY for your special need

If you are looking for hard-to-get or special dry batteries, write us. We design, create and manufacture to your requirements.

SEND FOR THIS FREE CATALOG

SPEGIALTY BATTERY GOMPANY
 A SUBSIDIARY OF THE RAYOV/AC RAY-O-VAC COMPANY
 MADISON 4, WISCONSIN

a really high-powered RRDIO ENGMNEFRING LIBRRBY

espectally selected by radto speoialliat! of MoGraw-Hill publloatlont
to give most complete, dopendable oovarage of facts neoded by all whore nelds are grounded on radic fundamentala
avallable at a special arloe and terms

These books cover circult phenomena, tube theory, networks, mounurements, and other subjocts-give spocialized treatmenta of ah aro books of recognized position in the literature of the fleld-books you will refer to and be referred to often. If you are a practical designer, researcher or engineer in any field based on radio, you need these books for the help they give in hundreds of problems

5 volumes, 3559 pages, 2558 illustrations
Eastman's FUNDAMENTALS OF VACUUM TUBES, 2nd edition
Terman's RADIO ENGINEERING, 2nd edition
Everitt's COMMUNICATION ENGINEERING, 2nd edition
Hund's HIGH FREQUENCY MEASURE MENTS
Henney's RADIO ENGINEERING HAND. BOOK, 3rd edition

SPICCIAL LOW PRICE - EASY TERMS
Spectal price under this offer less than cost of books bought separately. In addition, you have the privilege of paying in easy install ments beginning with 82.50 in 10 days after recelipt of books, and $\$ 5.00$ monthly thereafter. Already these books are recognized as atandard
works that you are bound to require sooner or Works that you are bound to require sooner or terms to add them to your library now.

FOR 10 DAYS' EXAMINATION SEND THIS

Mc Graw-Hill Book Co., Inc., 330 W. 42 nd St., N.Y. 18
Send me Radio Engineering Library for 10 daya eramination on approsal. In 10 dayg J will bent $\$ 2.50$ plus few cents postage, and $\$ 5.00$ monthly till Dostage on orders accompanied by remfttance of first instaliment.)

Name
$\Delta d d r e n s$
City ...
Zone
Company
Position
20.

The latest COSSOR CONTRIBUTION to electronic technique!

A. C. Cossor Ltd., pioneers in the fields of advanced electronic equipment, including the development of the cathode ray tube, now, with pardonable pride, offer the COSSOR TWIN-BEAM OSCILLOGRAPH to the electronic industries of North America.
In all fields of modern research and in all industrial laboratories - in fact, anywhere where competent quantitative measurements and immediate wavetorm analysis are a,
necessity, the Cossor Twin-Beam Oscillograph. Model 1035 , necessity, the Cossor

The instrument design incorporates a high speed, linear repetitive time base, featuring "Flyback"' suppression with further facilities of external triggering from both positive further facilities of external triggering from bom posile is and negative synchronizing volages. The 10 me scale is to 15 microseconds, and the time base waveform may be fed out for use with other equipment.

Other important factors which make this a really unique oscillograph, are the two independent systems of amplification with similar calibration arrangement. Voltage scale of amplifier Yl covers 7 ranges, 50 volts to 50 milivolts, having an efficient frequency response of 10 mcs . to 20 cps .
Voltage scale of Y2 covers 5 ranges, having a frequency response of 100 kcs . to 20 cps .

DRECT measurement of voltages DREET measurement of time intervals flat face TWIN beam tube CUN
TWIN-BEAM
OSCILLOGRAPH
MODEL IO35

Still another major technical advancement lies in the electrically shielded new Cossor type 89 Double-Beam tube, 4 inches in diameter, with a FLAT FACE, eliminating all possibility of distortion created by the conventional curved-faced type, and, in cddition, the graticule is engraved on both sides eliminating the common optical aberrations of parallax.
The instrument provides for mounting a camera directly to the face of the Cathode tube thus providing a permanent record of the waveform displayed.
Mains voltages may be adjusted between 105 to 255 volts and frequency between 50-100 cycles; power consumption 170 watts.
$\$ 505.00$ f.o.b. Montreal
(U. S. Funds)

COSSOR OFFERS MUCH MORE - COSTS MUCH LESS. IMMEDIATE DELIVERY FROM STOCK.
Write us for further details of both the new Cossor Oscillograph Model 1035 and camera attachment.

COSSOR (CANADA)LTD.

621 CRAIG STREET W, Montreal 3. Canada
*The A. C. Cossor organization has won world-vide recognition for its pioneer development of the X-Ray Tube, the Cathode Ray Tube and the Cathode Ray Oscillograph. It also developed the first Radar Receiver and the first commercial Television Receiver.

While it's "in the

The time to select relays is at the start of circuit design. Frequently, manufacturers save time and money-develop a better product, by consulting Leach during the first stages of their designing. Here's how-

Leach manufactures thousands of types of relays, for thousands of applications. Many are production items which may offer you savings in delivery time and unit cost. Through a slight change in circuit design you may gain the advantages of a standard type, at considerable savings and do a better job.

For your specific requirements, consult the competent staff of Leach electrical engineers. Custom designs are their stock in trade. Remember, for Better Controls through Better Relays, look to Leach. Write today.

TUBES AT WORK
(continued)
motor is subject to a braking action in the presence of such harmonics, distortion, or spurious frequencies, and maínly suffers a loss of efficiency and is not made unusable. Because of the limitations on the amplifier at a time when its sensitivity should be increased and the very irregular action of the servo-system as the control signal waveform varied, steps were taken to eliminate this nuisance.

Application of tuned circuits and of notch filters helped but reliability under varied conditions of operation was not obtained.

Circuit Operation

In the process of amplitude discrimination, the output signal of the bridge is first amplified and then the fundamental frequency is separated from the envelope of the second harmonic. The output of the amplifier goes through essentially the same waveform changes as the input signal with the exception that the output signal change occurs long before the same degree of input signal change. Watching the input and output signal simultaneously on a pair of oscilloscopes, one can observe only a slight change in the waveform of the input signal while the output signal is changing from complete second harmonic to complete fundamental. The change in output signal during the transition is continuous in that one frequency increases in amplitude while the other is decreasing.

At bridge balance, the amplifier still passes second harmonic signal, however, it is now limited to a much narrower range in the bridge calibration. The increased sharpness of bridge balance indication welcomes the damping action induced on the motor armature by the second harmonic drag. Thus the braking action of the second-harmonic signal of the motor operating frequency may be used for slight anti-hunting purposes to inhibit overshooting.

Bridge Signals

Figure 1 shows the changes in the bridge output from a balanced condition to one of complete unbalance. At Fig. 1A, the balanced bridge indication is an approximate sine wave, a second harmonic

AM.FM.TV

 RAYTHEON SPEECH EQUIPMENTFor the last word in complete, up-to-the-minute facilities ... or simple, low-cost equipment to suit your limited requirements...

Look to RAYTHEON for All Your Needs

RC-11 STUDIO CONSOLE

NOW WITH CUE POTS FOR TWO TURNTABLES

Provides complete high fidelity speech input facilities with all control, amplifying and monitoring equipment in one cabirfet. Seven built-in pre-amplifiers, nine mixer positions, cue attenuators for two turntables. Simple, positive controls reduce operational errors. Frequency response-2 DB from 30 to 15,000 cycles; Distortion-less than 1% from 50 to 10,000 cycles; Noise Level-minus 65 DB's or better. Meets all FCC requirements for FM.

RPC-40 PORTABLE CONSOLETTE

Ideal for remote pickups yet complete enough to serve as a studio console. Four input channels for microphones or turntables, high level mixing, two output lines. Two RPC-40's interconnected provide 8 -channel mixing-a feature of special interest to new TV stations planning future expansion.

A high-fidelity, single-unit amplifier and power supply. Over-all gain, 65 db ; frequency response flat from 30 to 15000 cps ; distortion less than 2% at +30 vu . Designed for rack or cabinet mounting. mor

RR-10 REMOTE AMPLIFIER SINGLE CHANNEL
A complete, self-contained unit with built-in power supply. An excellent low-cost amplifier for remote pickups requiring only one high-fidelity channel.

RL-10 VOLUME LIMITER
Engineered for high-fidelity AM, FM or TV speech input. Increases overage percentage modulation without distortion.

A lightweight, easy-to-carry combination of amplifier and power supply-simple and quick to set up. Provides three high-fidelity channels, excellent frequency response, high over-all gain.

RZ-10 PRE-AMPLIFIER

A plug-in type pre-amplifier or booster for microphones or turntables. Handles high input level. Noise level below 85 db from 0 vu output. Low distortion. Plug-in construction permits using one to four units for maximum flexibility.

RPL- 10 LINE AMPLIFIER
A single-control, two-stage amplifier featuring wide frequency response, low distortion, low noise level, freedom from RF pickup. Push-pull throughout. Mounts in standard rack or cabinet.

RAYTHEON MANUFACTURINGCOMPANY WALTHAM S4, MASSACHUSETTS

G-E thermocells are as small as it is practical to make them and still retain all of the advantages which broaden their field of application and simplify the problems of design engineers.

Design engineers will appreciate especially the octal base feature. Add in these other major advantages in G-E thermo-cells-then specify them for every job you have under consideration.

1. G-E thermocellis are filled with an inert gas and sealed to inhibit atmospheric contaminafion of both crystal and thermostat contacts.
2. Warm-up time is extremely short because of the low thermal capacity of the unit as a whole.
3. The heat loss is low, which permits low operating power and consequently less load and longer life for the thermostat contacts. Radiant heat loss is minimized by the polIshed chromium-plated shell.
4. Durable platinum-iridium thermostat contacts are used in G-E thermocells.

A typical example of the G-E line of thermocells is the Type G31:

Frequency Range 2500-10,000 K.C.
Size and Shape.............. . Same as 626
Freq. Adi. of Normal
Ambient Temperature. 0015%
Ambient Temp. Operating Range. . 0 to $55^{\circ} \mathrm{C}$.
Long Time Frequency Stability
better than
.
Healer Power. 2.6 Watts
Crystal Cuts Normally Used AT \& BT Electrodes and Mounting.... Pressure Airgap
Warm-up Time.h.................. 15 Minutes
For further information on this and other G-E thermocells, quartz crystals and germanium diodes write today to: General Electric Company, Electronics Park, Syracuse, New York.

185-G2
GENERAL (36) ELECTRIC

POPULATION-O

Transmitter. This transmitter was designed anc built
to provide long, trouble-free service with no attendants... even where the total population is Zero.

AEROPHARE

The 100 Watt Aerophare illustrated consists of the following units-- AK-3 automatic keyer; Model 100XL transmitter, (100 Watt carrier power, minimum of 30%-high level tone modulation for identification but with no provision for voice modulation); and antenna matching unit.

The smaller unit is similiar, except transmitter is of 50 Watts carrier power with 90% high level tone modulation for identification, or, 90% high level voice modulation. Microphone P-TSwitch, when depressed interrupts tone, permitting voice operation. This feature makes this unit ideal for airport operation where both aerophare and traffic control are needed.

Both units are completely "tropicalized" to allow operation under unusual climatic conditions. Each unit is ruggedly constructed and conservatively rated, providing low operating and maintainence costs. Engineering data on both units upon request.

> CONSULTANTS, DESIGNERS AND MANUFACIURERS OF STANDARD OR SPECIAL ELECTRONIC, METEOROLOGICAL AND COMMUNICATIONS EQUIPMENT.

DEALERS: Equipeletra Lido., Caixa Pastal 1925 Rio de Janeiro,
Brasil * Henry Neuman, Jr., Apartada Aéreo 138, Barranquilla, Calambia

In the field of electronics and the electrical goods industry, MOSINEE stands for paper-base processing materials with scientifically controlled chemical and physical properties, high quality standards and dependable uniformity... with good dielectric strength, high tensile or tear strength; proper softness or stiffness; creped with controlled stretch or flexibility; specified pH for maximum-minimun acidity or alkalinity: accurate caliper, density, liquid repellency or absorbency . . or orher technical characteristics vital to your quality standards and production requirements.
mosinee paper mills company - mosinee, wis.

FIG. 1-Bridge output signals showing transition from second harmonic to fundamental to indicate various degrees of unbalance
of the bridge excitation frequency. All of these peaks are of equal height. In Fig. 1B the peaks alternate in height and indicate a slight bridge unbalance for this is a sign of the fundamental making its appearance from the null value. In Fig. 1C, the unbalance has progressed to almost complete disappearance of the second harmonic component. In Fig. 1D, the final output of complete unbalance is an approximate sine wave which has a phase determined directly by which of the alternate set of peaks in Fig. 1B increased in height. If the bridge unbalance had progressed in the opposite direction, the resulting complete unbalance signal would have had a phase difference of 180 degrees from the phase shown.

A slight phase shift in the fundamental frequency occurs as the fundamental takes form. The shift makes this degree of reversal possible from the low and high peaks transition into the final frequency. This shift occurs as the fundamental slides over sidewise on the time

Ringing the Bell

Winding time and handling time are nicely synchronized on these No. 102 Universal Coil Winders-turning out ringer coils and relays at Federal Telephone and Radio Corporation-so that neither the finished coil nor the operator has to wait, one for the other.

One operator supervises the three winding heads simultaneously, and winding is so scheduled that while manual operations are being performed on one head, the other heads are producing.

This arrangement makes the most efficient use of both machine and operator. Further time-savers are the following

1. Electrically-controlled counter stops each head upon completion of coil-no operator attention needed.
2. Common setting for all heads in respect to wire traverse length and number of wire turns per layer.
3. Traverse length readily adjustable to maximum of $27 / 8 \mathrm{in}$.-without changing cams.
4. Flexibility in wire turns per layer through standard change gears.
5. Steel-strap control on unrolling tensions facilitates handling of even finest wires, and in-built calibration permits recording settings for re-use.
6. Winding speeds from 500 to 2500 rpm can be arranged.

Write for Bulletin 102L.

UNIYERSAL WINDING COMPANY, P. O. BOX 1605, PROVIDENCE 1, R. I.

SYNTHETIC SAPPHIRE

Has High Electrical Resistance

Linde synthetic sapphire offers specific advantages for electronic uses. Sapphire maintains these properties at elevated temperatures.

Write for the Linde Synthetic Sapphire Technical Data Sheet No. A-I. The Linde Air Products Company
Unit of Union Carbide and Carbon Corporation 30 East 42nd Street IIST New York 17, N. Y. In Canada: Dominion Oxygen Company, Limited, Toronto
The word "Linde" is a trade mnark of The Linde Air Products Company y

100 MA. UNIT

- Max. A. C. line input 130 volts rms
- Max. inst. peak current 1000 Ma.
- Max. Inverse peak voltage 360
- Average operating temp. $105^{\circ} \mathrm{F}$
- Dimensions: $4-1 / 16^{\prime \prime} \times 1-1 / 16^{\prime \prime}$ x 5/32"
- Other Sizes: 75 Ma , and 200 Mo.

precision-

 fabricated
PLASTIS DIALS

QUALITY and SERYICE AT A Price THAT'S RICHI

You can't go wrong when you depend on Sillcocks-Miller for plastic dials. These experienced engineers are recognized throughout the industry for their ability to fabricate plastic materials to close tolerances. The combination of this skill and complete production facilities provides a dependable source for the quality and service you want-at a price that's right.
Write for illustrated booklet or phone South Orange 2-6171 for quick action.
 SPECIALISTS IN MIOH QUALITY, PRECISION-MUADE plasties fabricated for commercial PLASTIES FABRICATED FOL REOUIREMENTS.
TECNMICAI AND INDUSTRIAL REOT

The magnets that brake your reel

Now it's G-E permanent magnets for greater accuracy in casting. The permanent magnets shown above develop a non-friction braking action directly in proportion to the speed of the plug. Maximum braking is applied at the start of the cast and, as the spool is slowing down, the braking effect decreases automatically.

G-E permanent magnets are continually finding wide application in many fields. The magnetic reel is but one example of the adaptation of an industrial magnet engineering principle to an entirely different field.

Perhaps there's a use for G-E permanent magnets in your product. Or, you may wish to improve your present magnet design for greater efficiency. Our engineers will be glad to work with you to improve your product. For details and your free copy of CDM-1, G-E PERMANENT MAGNETS, urite Metallurgy Division, Section CM-10, Chemical Department, General Electric Company, Pittsfield, Mass.

Smooth casting action with the Bristol Electromatic Reel

Three G.E Sintered Alnico magnets are mounted on a non-magnetic plate having adiustable air gap. A bi-metallic disc of copper and steel mounted on the end of the spool cuts the lines of force of the permanent magnets. The eddy currents induced set up electromagnetic poles which repel the permanent magnet poles producing a drag on the speed of the spool. Since the strength of the electromagnetic poles depends on the speed of rotation of the spool, this braking effect is automatically applied at all times in just the right amount. Outstanding advantages of this new reel are smooth casting action, greater accuracy, and freedom from backlash.

GENERAL (76) ELECTRIC

Fishing reel gears mast operate omoothly at a speed of 3000 revolutions per minute or more, when a cast is executed. These gears must also withstand the strain of hauling in a fighting fish of unpredictable size and strength, thus rendering a dual purpose: speed and velvety smoothness in one direction-strength and durability in the other.

Instruments and machines have individual gear problems. For over a quarter of a century, Quaker City Gear Works has solved thousands of them and produced millions of gears of every description up to $60^{\prime \prime}$ in diameter for manufacturers in many diversified industries.

Aircraft controls, dental drills, electric clocks, gauges, indicators, heat controls, machine tools, radar, radios, washing machines and motion picture projectors are but a few of the many conveniences of modern progress which depend upon the heartheat of Quaker City Gears. Your gear problem is our business, our large productive capacity is at your service.

YOUR INQUIRIES WILL RECEIVE PROMPT ATTENTION

The heart of the Outdoorsman Castomatic reel illustrated above is but one of many gear trains developed by our engineers and

1910 N. Front Street, Philadelphia 22, Pa

FIG. 2-Essential portions of amplitude discriminator amplifier showing cascaded discriminators and pulse reshaper
axis to help eliminate the second harmonic. This particular servosystem was designed to be a nullseeking self-balancing device and these slight phase errors only slightly affect motor speed and do not affect calibration. Otherwise the application of amplitude discrimination might not be permissible to such a system.

Discrininator Amplifier

In the circuit of Fig. 2, the first stage, tube V_{1}, can be used for amplification, or it may be identical in action with the following stage, including tube V_{2}, in which amplitude discrimination takes place. In this manner, both stages together may give a cascaded type of discriminator action to extra large signals. However, it will be shown that amplification ahead of the discriminator is most desirable in that it increases the rapidity with which the circuit indicates unbalance. This is similar to increasing the Q of a tuned circuit. Tube V_{8} is a driver for the motor-operating stage. It delivers a sine wave at the output of the driver transformer T_{1} for the rectangular input from the effects of amplitude discrimination ahead of it. This motor-operating sine-wave output remains almost constant up to the point of complete bridge balance at which time it rapidly changes to second harmonic of the bridge excitation frequency

The motor-operating signal had a frequency of 60 cycles to be adaptable to standard power line supply as well as portable power generation. Tubes V_{1} and V_{2} are normally biased by the contact potentials developed at their grids. However, in operation the positive peāks of the signal may draw grid current and so bias the grids to a value below cut-off in an amount

RATHEON AM-FM \& TV TRANSMITTERS are equipped with Adlake Relays

Raytheon Manufacturing Company's am, Fm and TV transmitters, including the famous "RF-3" 3-KW FM, "RA-5" 5-KW AM and the new "RTV-500" 500 watt TV and "RTV-5" 5000 watt TV equipment, employ Adlake Relays for control.
Silent and chatterless, Adlake Mercury Plunger Type Relays are an integral part of these streamlined transmitters which produce high fidelity modulation with a low noise level.
Besides silent operation, Adlake Relays bring these advantages to any job where relays are used:

- Hermetically sealed contact mechanism is impervious to dust, dirt and moisture.
- Liquid mercury-to-mercury contact prevents burning, pitting and sticking.
- Adlake design armors relays against outside vibration or impact; they are usable on either stationary or fixed equipment.
Whatever your relay needs are, there's an Adlake Relay to do the job. You'll like our free, illustrated folder giving full details. Write for it today to: The Adams \& Westlake Company, 1107 N. Michigan, Elkhart, Indiana.

THE

Adams \& Westlake

 COMPANYEsf. 1857 - ELKHART, INDIANA • New York - Chicago
Manufacturers of Adlake Hermetically Sealed Mercury Relays for Timing, Load and Control Circuits

(Above) Relay panel in Raytheon's RF-3A 3-KW FM AMPLIFIER (shown below)

OnITO
 PILOT LIGHT ASSEMBLIES

-Designed for NE-51 Neon Lamp Features

- THE MULTI-VUE CAP
- BULILT-IN RESISTOR
- 110 or 220 VOLTS
- EXTREME RUGGEDNESS
- VERY LOW CURRENT

Write for descriptive booklet

Telephone-SPring 7-1300

ZOPHAR

Waxes, Compounds and Emulsions

Materials for potting, dipping or impregnating all types of radio components or all kinds of electrical units. - Tropicalized fungus proofing waxes. Waterproofing finishes for wire jackets. - Rubber finishes. - Inquiries and problems invited by our engineering and development laboratories.

Zophar Mills, Inc. has been known for its dependable service and uniformity of product since 1846.

ZOPHAR MILLS, Inc.
 ESTABLISHED 1846

117 26th STREET, BROOKLYN 32, N. Y.

Save Time...Speed Assembly with CTC ALL-SET Boards!

On the assembly line and in the laboratory, CTC $A L L-S E T$ Boards are valuable time-savers.

With Type 1558 Turret Lugs, a new board now offers mounting for miniature components. $1 / 16^{\prime \prime}$ wide, $3 / 32^{\prime \prime}$ thick, only. (Type X1401E.)

With Type 1724 Turret Lugs, boards come in four widths: $1 / 2^{\prime \prime}$, $2^{\prime \prime}, 21 / 2^{\prime \prime}, 3^{\prime \prime}-$ in $3 / 32^{\prime \prime}, \quad 1 / 8^{\prime \prime}$, $3 / 16^{\prime \prime}$ thicknesses.

With the addition of the new miniature board, CTC $A L L-S E T$ Boards now cover the entire range of components.

All boards are of laminated phenolic, in five-section units, scribed for easy separation. Each section drilled for 14 lugs. Lugs solidly swaged into precise position . . . whole board ready for your assembly line.

SPECIAL PROBLEMS

Custom-built boards are a specialty with CTC. We're equipped to handle many types of materials including the latest types of glass laminates . . . many types of jobs requiring special tools . . and all types of work to government specifications. Why not drop us a line about your problem? No obligation, of course.

CAMBRIDGE THERMIONIC CORPORATION
437 Concord Avenue, Cambridge 38, Mass.

(c) 1948. Relden Manufacturing Co.. Chicaso, 111 .

SINGLE SIDEBAND SELECTIVITY with NO LOSS of AUDIO RESPONSE

WHEN connected to a conventional communications receiver, the General Electric Single Sideband Selector Type YRS-1 permits single sideband reception of modulated, unmodulated (CW) or single sideband transmissions. Although the system provides the effect of extreme selectivity, the audio fidelity of the selected sideband is restricted only by the fidelity characteristics of the receiver itself. Interference on either sideband can thus be minimized without impairing the quality of the signal you are trying to copy.

- Single sideband reception of modulated, unmodulated (CW) or single sideband transmissions.
- Provides the effect of extreme selectivity without restriction of audio fidelity.
- Push-button selection of either sideband -other sideband attenuated.
- Audio distortion associated with selective fading is greatly reduced.
- Intelligibility of fading signals is improved.
- Can be connected to practically any communications receiver having an intermediate frequency of approximately 455 KC .
- Normal operation is in no way disturbed when single sideband selector is not in use.

For complete information on the single sideband selector write: General Electric Co.,Electronics Park,Syracuse, N. Y.
essentially equal to the signal amplitude. The time constants of $R_{2} C_{1}$ and $R_{2} C_{2}$ should correspond to a frequency much lower than the frequency to be passed by the amplifier. A time constant of 0.1 second was found to be satisfactory in discriminating out a 60 -cps signal from the envelope of the second harmonic.

Values of C_{3} and C_{4} are equal and their time constant individually in connection with resistor R_{3} should correspond to a frequency of thirty cycles. The value of C_{5} is found by experiment. In combination with the inductance presented by T_{1} it reshapes the output signals of the transformer to the closest approximation of a sine wave that conditions permit.

Amplifier Operation

If the output signal of the bridge to the amplifier is as shown in Fig. 3 A , then the output of tube V_{1} acting as an amplifier is an amplified replica of the signal at the input to the grid of the following tube V_{2}. This is indicated by Fig. 3B.

The output of V_{2} appearing across R_{3} in the absence of the integrating capacitor, C_{4}, is as shown at Fig. 3C. This signal may have almost exactly rectangular waveform as indicated since the tips of the positive peaks are flattened by grid current into the high-resistance grid circuit. Also, the small portion of the waveform between cut-off bias and zero bias intercepted on the transfer characteristic of the tube has its curved sides straightened by the curvature of the characteristic.

The introduction of the integrating capacitor, C_{4}, changes the vertical edges of the rectangular pulses to exponential type curves. This is shown by the difference between the dashed lines and the solid curved lines in Fig. 3D. The combined effect of C_{5} and the inductance of T_{1} are shown by the approximate sine waves of Fig. 3E as they finish the reshaping of the pulses into a motor-operating signal of greater efficiency. This signal has its phase directly related to the higher peaks of the second harmonic signal. In this manner the bridge output phase relationship is maintained so as to provide directional response of the

ALPHA TRI-CORE sumituat SOLDER

save time - save materials - save money

Hard to imagine how a minor operation like soldering can cut into profits, or effect savings? Don't imagine! Look at the facts, as one manufacturer recently did in his own plant. By test, he found that Alpha Tri-Core Rosin-Filled Solder saved him 22% in time and 26% in materials, as compared with ordinary single core solders. Make your own comparative tests. They cost you nothing. . . and you save dollars! Send today for a sample supply or trial order.

NO OTHER SOLDER HAS THESE ADVANTAGES ALPHA TRI-CORE ROSIN-FILLED SOLDER

 - 3 flux cores of 99.9% pure, non-plasticized, water-white rosin for the price of 1 !

SOLDER SPECIALISTS FOR OVER 58 YEARS

- More useful solder in every pound; even distribution of flux throughout; no fluxless areas to waste soldering time or solder!
- Faster fluxing; narrow wall between cores and outside diameter speeds action, requires less heat! No toxic odors!
- Solderers prefer Alpha, 6 to 1, by actual test.
- Greater efficiency in small soldering operations, less heat, quicker acting.
- In addition, Tri-Core permits the use of lower-tin-content alloys with superior soldering results to that obtained from ordinary solders with 5-15\% more tin.
- Tri-Core available in diameters as large as $1 / 4^{\prime \prime}$, and heavier-down to .020 ," and finer.
other ALPHA PRODUCTS include TRI-CORE"ENERGIZED"ROSIN-FILLED SOLDER: TRI-CORE "LEAK-PRUF" ACID-FILLED SOLDER SOLID SOLDER WIRE; PREFORMS (rosin and acid-filled;) BAR SOLDER, ANODES AND FOIL.

[^4]

FIG. 3-Bridge signals of slight unbalance indication passing through the discriminator amplifier to be discriminated into a signal of complete unbalance
drag cup motor to the direction of bridge unbalance.

Advantages

From the change in the output to input signal waveform of Fig. 3, it will be noted that only a slight bridge unbalance is needed to give the identical change of signal arrived at through complete bridge unbalance as shown in Fig. 1. Although straight amplification of the null signal along with automatic control of amplifier gain might give almost equivalent results, if the unwanted harmonic signals are first removed, there are other important advantages of this system that make it very desirable.

If a measure of the sensitivity of the bridge circuit is assumed to be in the displacement of the bridge variable necessary to change the output signal from a complete null for the fundamental frequency, while the harmonics are present at a maximum, to the condition where the fundamental is a maximum and no harmonics are present, then, amplification of the bridge output signal is obtained in terms of a small-

Heavy-duly, generall purpose (WO-60C)-A "work horse" that withstands shock, dampness, dirt, fluctuating voltages. Plug-in ($5^{\prime \prime}$) C-R tube permits change to various screen persistencies. Vertical and horizontal amplifiers practically identical. Useful range: 0.5 to $\mathbf{3 0 0 , 0 0 0}$ cycles. Frequency response: $\pm \mathbf{1 0} \%$ from 5 to 80,000 cycles. Sensitivity: 0.056 peak-to-peak volt per inch. Exceptionally good phase-shift characteristics. Shown above measuring the vibration of a synchronous motor.

D-c and low-frequency $a=c$ (WO-27A)_This oscilloscope also observes a-c and d-c simultaneously. Frequency range: (d-c) to 100,000 cycles. Flat to zero cycles. Uses direct-coupled balanced amplifiers. Timing range: 1 to 30,000 cycles. Singlesweep and blanking circuits permit observation and photographic recording of one-time, high-speed transients. Vertical amplifier sensitivity: $\mathbf{0 . 0 8 4}$ volt ($\mathrm{d}-\mathrm{c}$) per inch. Shown in picture above measuring strain of test specimen in tension.

Portable, wide range (WO-79A)-Packed with laboratory features. Ideal for h-f circuits, television. Range: vertical amplr. $\pm 2 \mathrm{db}$ from 10 cycles to 5 mc . Horizontal amplr: $\pm 2 \mathrm{db}$ from 10 cycles to 500 kc . Vertical deflection sensitivity: 0.18 rms. volt per inch. New ($3^{\prime \prime}$) C-R tube features small bright spot and distortionless focusing. Triggered sweep with delay network . . . saw-tooth time base. Easy signal expansion to twice screen diameter. Shown above testing a television receiver.

Lasil word in versatility (Laborafory-iype 715-B) _Permits close study of very short, sharp-fronted pulses and unusual wave forms. Steady, clear traces even of random signals. Vertical amplr: $\pm 1 \mathrm{db}$ from 5 cycles to 11 mc . Horizontal amplr: $\pm 2 \mathrm{db}$ from $\mathbf{3}$ cycles to 500 kc . Vertical deflection sensitivity: $\overline{0} 06 \mathrm{rms}$. volt per inch . . . saw-tooth and triggered sweep . . . time-interval markers (one microsecond). Handles almost any job in oscillography. Shown aligning a distribution amplifier.

Available from your RCA Laboratory Measuring Equipment Distributor, or write Dept.37-J

sas fataro of

 CONTROL in lususty THERMEX opens up new opportunities in Plastics Molding ... timed by CramerAlmost instant heating of preforms prior to molding is possible with the Thermex Red Head high frequency dielectric heating unit, a development of The Girdler Corp. for use in the molded plastics industry.

This device produces high frequency heat that originates in the material instead of being applied to it, resulting in a more uniform, stronger product . . . as well as increased production, simplified operations . . . reduced time and unit costs.

The Thermex unit is equipped with a Cramer Running Time Meter and two type TEC Time Delay Relays that control the heating cycle with two distinctly different characteristics and in any selected sequence. Another instance where accurate control, dependable performance are assured by Cramer Timing.

relay
RUNNING TIME METER

a widely used cramer device . . THE SYNCHRONOUS MOTOR

Precision built, this compact, dependable permanent magnet type motor is the ideal power plant for time control instruments requiring constant speed at a given frequency. For comBulletin 10A.

If the performance of your product depends on precision timing, consult . . .

(continued)

FIG. 4-Discriminator action allowing input frequency to pass through amplifier
er displacement producing a given change of signal. Or in other words, the Q of the bridge is increased.

The circuit automatically introduces gain control in that the grid bias continually adjusts itself to signal levels. Final maximum output is soon reached with a small input signal and overloading of the output does not occur on larger signals. But perhaps the greatest good is achieved because the tips of the peaks of waveforms of radically different shapes can be somewhat depended upon to produce pulses in the discriminator plate circuit of the same phase and shapes. Hence, a certain amount of flexibility is added to the servo-system in allowing the input to the amplifier to operate at different levels of signal distortion.

Discriminator Action

The dynamic transfer characteristic of the discriminator tube is shown in Fig. 4 and 5 to clarify the separation of signals by this action. In Fig. 4, the peaks of the incoming signal are all of equal amplitude. These peaks manage to maintain the grid bias sufficiently low enough to permit the positive tips to just exceed zero bias and

FIG. 5-Discriminator action allowing only input frequency of highest peaks to pass through amplitier

BendíX regulated

make a big difference in reliability . . economy . . . WEIGht

Under the most severe conditions in which your electnonic installations are expected to operate, Bendix* regulated dynamotors will deliver dependable, uniform voltage. You can count on them to last longer, too, because they are manufactured with the same painstaking care which has made Bendix Aviation equipment famous for quality all over the world. Before you design, write our engineering department for detailed information on Bendix regulated dynamotors.
Dynamotors . Inverters . Convertors . D.C. Motors . Carbon Pile Volage Regulators RED BANK DIVISION of RED BANK, N. J.

Output voltage constant within plus or minus 2.5% at rated load, with as much as 30% input valtage variation.Consistent efficiency of associated equip ment under extremes of temperature, humidity, altitude and vibration.

Allows the use of smaller, lighter, less expensive components in design of electronic equipment.

Tube life materially lengthened due to narrow voltage tolerances.

- automatically rotates one of 18 separate scales into position as you select the range.

Simpson Model 221 Rota-Ranger

High-Sensit ivily A.C.-D.C. Volt-Ohm-Milliammeter
Here is the only nultiple scale test irstrumerr of is: lird in the world. It defiritely redues the possibi ity if errors ty poo cirg a single scale for ead range of this finest of vo -dim-milit mmeters. As the selector switch is moved to the rance desifed an ir je iogsenging mechanism rolates a drum. bringing inte place betind the me er vir dow the proper stile for that ra-ge Here is the exvalent of 25 soparate instruments comtired in ons surdy conpact ur i. (18 scales \bar{T} idditional direct reading ranges arough use of h gh voltate ard outout jacks.) The patelated Roto-Rynge: principle elinenates the caftion of numerous readings on one scele, and the mutiplying tacors comrion to ordinary tult-range testeri, 35 providing a sesarate scale for za二h range. There are ro cramped alibrations in these ill size Roto-Ranger scales. Each is de,igned as it would be fo: a sepzase instran en:

RANGES
Model 221 Volt-Ohm-Milliammeter
20,000 Ohms per Volt D.C., 1,000 Ohms per Output: 2.5, 10, 50, 250, 1000

Volt A.C
Volts, A.C.: $2.5,10,50,250,1000,5000$ Volts, D.C.: 2.5, 10, 50, 300, 1000, 5000 Milliamperes, D.C.: 10, 100,500
Microamperes, D. C.: 100
Amperes, D.C.: 10

High voltage test probe for TV, readar, z-rap
and other thigh voltage tesfs, allsa available.

TMAPSON ELECTRIC COMPANY 5200.5218 W. Kinzie St., Chicago 44, III.

In Canada: Bach-Simpson, Ltd., London, Ontario

FIG. 6-Different waveforms react the same to discrimination producing almost identical pulses
so draw grid current to recharge the grid circuit negatively. Only that portion of the waveform projecting above the cut-off bias is capable of influencing the plate current of the tube.
In Fig. 5, the positive peaks of the signal alternate in amplitude. If the lower peaks are below cutoff bias they have no effect upon plate current. The higher peaks manage to exceed the zero bias value and draw grid current to maintain an average grid bias proportional to their amplitude. In this case the frequency of the output plate current pulses corresponds to the frequency of the fundamental modulating the envelope of the second harmonic, and no second harmonic is present in the output since there are no plate current pulses to represent it.

The smaller the percentage of the signal amplitude that corresponds to five volts the sooner the early stages of bridge unbalance indication can be completely amplitude discriminated. With the circuit shown it was possible to cause all vestige of second harmonic to disappear and the fundamental to become a maximum with one twentieth of the former required pri-

PROBLEM－

G－E Textolite grade No． 11514 is constructed of glass fabric bonded with a 6－Esilicone resin．This grade will withstand pro： longed exposure to fem－ peratures as high as $250^{\circ} \mathrm{C}$ and has a low dielectric loss factor．

TEXTOLITE LAMINATED IS SUPPLIED IN FIVE FORMS

SHEETS，TUBES，AND RODS －These standard shapes are available in thousands of sizes．Up－to－date man－ fracturing methods facilitate quick deliveries．

FABRICATED PARTS－G．E． has modern fabricating equipment to machine Tex－ polite laminated plastics parts to your own specify－ cations．

MOLDED－LAMINATED PARTS－Textolite is custom molded directly to shape． Molded laminated products are among the strongest plastics parts produced．

LOW－PRESSURE MOLDED PARTS－Extremely large and irregular Textolite shapes are custom molded by the low－pressure Jami－ mating process．

POST．FORMEDLAMINATES －Sheets of Texiolite tami－ noted plastics are custom formed into simple shapes by this very inexpensive method．

If you are looking for an excellent high－temperature in－ sulation，G－E Textolite grade 11514 is your answer．But there are other grades of Textolite，too ．．．over fifty in fact，and EACH grade has an INDIVIDUAL COMBINATION of prop－ erties．None is exactly alike．

It is this wide selection of materials that really can help you．You can choose a grade which has exactly the right properties to accurately fill your particular requirements．A better product，produced at less cost，is often the result．
Investigate the varied grades of Textolite and the five forms in which it is produced．You＇ll profit．Plastics Division， Chemical Department，General Electric Company，Pittsfield， Mass．

GET THE COMPLETE STORY！

Send for the new bulletin G－E TEXTOLITE LAMINATED PLASTICS which lists grades，
properties，fabricating instruc－ tons and detailed information about the five forms of Texto－ lite．Fill in and mail the coupon below for your free copy．
PLASTICS DIVISION，CHEMICAL DEPARTMENT GENERAL ELECTRIC COMPANY（BA－10） ONE PLASTICS AVE．，PITTSFIELD，MASS．

Please send me the new G－E Textolite laminated plastics bulletin．

Name．

Firm

FIG. 7-Experimental circuit of amplifier for portable use
mary control displacement at the bridge input.

Stray 60 -cycle pickup was not the nuisance under this system that it was under ordinary voltage amplification. Such pickup did not modulate the second harmonic nor could it otherwise interfere with the higher level grid signals put into use by this method.

Radically different waveshapes may give fundamentally the same output pulses in the discriminator plate circuit. The curves that are shown in Fig. 6 show how this may be possible. Those parts of the curves between the two lines representing cut-off bias and zero bias determine the frequency of the output pulses. The tips of such wave variations are very similar in shape and become even more so in the plate circuit of the discriminator as they draw grid current and are altered by curvature of the transfer characteristic.

In Fig. 7 an experimental circuit for adaptation to portable use is given with the values for circuit components. Only the amplifier unit alone is shown since the input and output controls are part of other developments.

To one accustomed to thinking of amplification strictly in terms of actual amplitude or power increase, it is surprising to see the output signal anticipate the input signal in changing its waveform while no apparent change occurs in the input.

Pictured are three of the smallest air variables ever produced. Each of the three types is available in four different capacities.

SINGLE TYPE-Takes the place of adjustable padders for trimming RF and IF oscillator circuits. Available in four models: 1.55 to 5.14 mmf , 1.73 to $8.69 \mathrm{mmf}, 2.15$ to 14.58 mmf and 2.6 to 19.7 mmf .

BUTTERFLY TYPE - Applicable

 wherever a small split stator tuning condenser is required. Available in four models: 1.72 to $3.30 \mathrm{mmf}, 2.10$ to $5.27 \mathrm{mmf}, 2.72$ to 8.50 mmir , and 3.20 to 11.02 mmf .DIFFERENTIAL TYPE-For switching capocity from rotor to either of two stators, and for shifting tap on capacity divider. Available in four models: 1.84 to $5.58 \mathrm{mmf}, 1.98$ to $9.30 \mathrm{mmf}, 2.32$ to 14.82 mmf and 2.67 to 19.30 mmf .

For Full Details

Write For Latest JOHNSON Catalog

E. F. JOHNSON CO. waseca, minnesota

PLASTIC:

ARE ACCEPTED AS STANDARD

IN ALL INDUSTRIES

One cross recessed head screw, PHILLIPS, is the accepted standard throughout industry. In the 13 years since its introduction, its many advantages have been recognized and arplied in every field of manufacture.
For example, virtually the entire automobile industry has standardized on Phillips Screwslists them in their Standards Eook. Similarly, Phillips Screws are standard in most of the largest aircraft plants. Manufacturers cf every type of screw-fastened assembly, large and small, use Phillips Screws exclusively.
Such universal acceptance by industry is the best possible evi. dence that Phillips Screws alone have all the qualifications essential to a standard cross recessed head screw. For unequalled mechanical advantages, for dependable uniformity, for unlimited supply potential, for universal acceptance, you can depend on PHILLIPS.

APPLIAMC: $=$

GET ALL THE ADVANTAGES OF ASSEMBLY WITH CROSS RECESSED HEAD SCREWS ...

 Woot Sereus - Machine Screws - Selfitapidig Screws - Stove Bolts

GET THIS NEW BOOKLET of facts that prove the top value, top eco vomy of Phillips Recessed Head Screws. It's free . . . use the coupon.

Look for GRAPHITE ANODES when you're looking for BETTER TUBES!
 ing by the United Electronics Company and other tube manufacturers working jointly with Speer, has revealed that graphite - the only real low temperature anode - provides these outstanding advantages in transmitting tubes:
I. Higher Ratings-Tubes with Speer Graphite Anodes radiate heat faster, handle 200 to 300% more power than anodes made of popular metals.
2. Greater Stability at High Inputs - Even when tubes are operated in the neighborhood of 100 Mc 's or over, Speer Graphite Anodes will not warp.
3. Longer Life - Even under continued severe usage, Graphite Anode tubes last longer than metallic anode tubes because they operate at lower temperatures.

To meet the demands of modern equipment for superior tube performance, leading manufacturers use Speer Graphite Anodes for oscillators, amplifiers, doublers, modulators and rectifiersyour assurance of cooler, more efficient tube operation.

CARBON COMPANY brushes-contacts welding electrodes graphite anodes. rheostat discs • packing rings. carbon parts
ST. MARYS, PENNA. CHICAGG. CLEVELAND.DETROIT. MILWAUKEE.NEW YORK•PITTSBURGH

THE ELECTRON ART
(continued from p 130)

FIG. 1-($\bar{A})$ Basic principle of Miller effect frequency modulator circuit depends on variation of load resistance of tube reflecting a variable capacitance across its input. In practical adaptation of this principle (B) modulator tube is placed across oscillator and has a vacuum tube for load
cuit shows that, in the general case, the input admittance between grid and cathode has both real and imaginary components. But if the load is purely resistive, as in this special case, and the grid-plate and grid-cathode capacitances are of the same order of magnitude and the product of frequency, grid-plate capacitance, plate resistance and load resistance is considerably less than unity, the input becomes purely capacitive. This input capacitance is equal to $C_{G K}+C_{G \mathrm{P}}$ $(1+A)$, and its dependence on the amplification factor of the tube and plate circuit conditions is familarly known as the Miller effect.

Pure negative (capacitive) reactance can thus be injected into the tank circuit without the need for phasing circuits or multigrid tubes; the only requirement is that the plate load be purely resistive. To produce the frequency modulation, the gain A of the tube is varied by the additional elements shown at Fig. 1B. The amplification of the modulator tube is varied by placing in its plate circuit another tube as load which behaves as a variable resistance dependent on the audio-frequency signal voltage. The oscillator tube is connected in a Hartley circuit.

Because both cathode and grid of the load tube operate at r-f potentials, it is necessary to use

The DPA-37 is DPI's newest Ionization Gauge Control Circuit. It measures all the pressures commonly met in high-vacuum diffusion pump work. And it incorporates all the desirable features you would look for. For example:
DPA-37 is sensifive-Using the highly sensitive VG-1A Ionization Gauge Tube, DPA- 37 measures from . 0025 mm to .0000005 mm of Hg in four ranges by means of a specially designed amplifier circuit The zero setting may be checked instantly without interrupting normal operations.
DPA-37 is easy to operate-There are a minimum of steps necessary for taking a pressure reading. Just two dial adjustments-and the pressure is
obtained by multiplying the dial reading by the scale factor. No calibration charts needed.

DPA-37 is easy to maintain-All circuit tubes and nearly all other parts are standard radio type for simple, inexpensive maintenance. Less-than-normal loads on component parts assure long life for the circuit.
DFA-37 is economical-Lower fila-
ment current (only 2 MA) and a builtin automatic overload relay result in maximum life for the VG-1A Ionization Gauge by protecting it from the most abrupt surges of pressure.

The price for the DPA- 37 panel mounted is $\$ 350$. The cabinet mounted model illustrated is \$365. DPA-37 gives you more per dollar-costs less in the long run. For a more complete description of its features, write-

Yacuem E̊quifemen/ Division

Distillation Products, Inc.

727 RIDGEROAD WEST - ROCHESTER 13, N, Y.

570 Lexington Avenue, New York 22, New York
135 South LaSalle Street, Chicago 3, Illinois

[^5] or next month we may receive blueprints and specifications calling for still another flexibility, different in shape, thickness, dielectric or other ef processing operaadded to the hundreat with Mica and end tions which always start Mica - precisely made UP with MACALEN Mica - but to our own for customers' specifications. We have done so high quality standards. It in so many ways, much with Mica, processed ing to such standard and brought that processing to suything new seems forms and uniformity, that any thing nevertheless, our almost inconceivable - nevertheless, our business is not static. dependable beyond any question of depent - uniformity in day-to-day
doubt production - saves trouble, speeds

MACALLEN MICA

ALL FORMS, ALL QUANTITIES - ALL DEPENDABLE

when you think of MICA, think of MACALLEN

THE MACALLEN COMPANY - 16 macallen st., boston 27 , mass.
CHICAGO: 565 W. WASHINGTON BLVD. CLEVELAND: 1231 SUPERIOR AVE.
r-f chokes to separate the r-f and a-f portions of the circuit. The battery provides the proper bias for maximum linearity between a-f input, internal resistance of the load tube, and frequency deviation

FIG. 2-Frequency modulation radiotelephone train antenna was located near locomotive to create most adverse noise problem for purposes of testing
of the oscillator. Drift of the oscillator's center frequency is easily counteracted by superimposing a compensating voltage obtained by usual automatic frequency control techniques on the battery voltage. Although the frequency stability of this circuit is inherently comparable to that of all direct $\mathrm{f}-\mathrm{m}$ circuits, the simplicity of this circuit reduces the difficulties of stabilizing frequency. Of course, the frequency of the oscillator can be stabilized by a quartz crystal, in which case the Miller effect modulator can produce phase modulation, which can be used directly or fed to multiplier stages.

Erperiments with Rudiophome

This new modulator circuit has been used in equipment built for the Italian State Railways to determine the feasibility of very high frequency radiotelephone communications between a moving train and a fixed ground station. Troubles from microphonics en-

 microphones in one

Adjustable saddle permits semior non-directional operation. Fits any standard microphone stand. fDesk sland as shown af extra cost. \dagger

INSTANT SELECTION OF FOUR IMPEDANCES

The outstanding dynamic in its field, made even better with a new, long-life, trouble-free metal switch, designed exclusively for Turner. Professional in appearance and performance. High in convenience. Built-in tapped multi-impedance transformer with improved 4-position switch gives positive selection of $50,200,500 \mathrm{ohms}$, or high impedance output. One microphone serves any standard equipment. Voice coil and transformer leads are insulated from ground and microphone case. Line is balanced to the ground. Engineered with smooth wide-range response from 40 to 9000 c.p.s. Level: 52 db below 1 volt/dyne/sq.cm. at high impedance. Richly finished in baked gun-metal.

The Turner "U9S" is widely recommended for broadcast, public address, communications, sound systems, recording, and general purpose applications.

THETURNER
 COMPANY 905 17th Street N. E. Cedar Rapids, lowa

Licensed under U. S. patents of the American Telephone and Telegraph Company, and Western Electric Company, Incorporated.

For AIRCRAFT RADIO

Standardize on

For the first time you can standardize on only one crystal holder for every aircraft ranted, RH-7 miniaHermetically sealed and shock range from 1 to 75 mc ture holders cover a frequenc These CAA-approved cryswith tolerances of $\pm .005 \%$. Temperature range from $-55^{\circ} \mathrm{C}$ tal units operate in a temperd to withstand even the to $+90^{\circ} \mathrm{C}$ and are designditions. Available with pins most severe o

Standardize now with $\mathrm{RH}-7$.

Write for Bulletin RHC-X Ditminemo

THE ELECTRON ART
counted with reactance-tube modulators were eliminated by using the Miller effect modulator and frequency stability was better. These tests were made on carrier frequencies around 110 me with 40 watts output from the transmitters. For tests the antema on the train was purposely placed on the coach next to the electric locomotive, as shown in Fig. 2. The electrified sections of the right-of-way use 3,000 -volt overhead lines; a train is drawn by a $3,000 \mathrm{hp}$ locomotive.

The transmitter consisted of a Miller effect modulator using a 12 J 5 GT and a 12 AH 7 GT , a 12 A 6 oscillator multiplier, 12A6 frequency doubler, 832 frequency tripler, and 829B power amplifier. A total frequency multiplication of 18 is obtained to produce a modulation index of 4 , which is sufficient to give suitable noise suppression despite the adverse antenna location and the change in signal strength because of the cuts and built-up suburban districts through which the 24 miles of track between Rome and Tivoli pass.

Repeated tests on this line have consistantly indicated the possibility of establishing satisfactory commercial quality radiophone communication between the moving train and a fixed station at Rome with the exception of those places where the line enters tunnels of considerable length near Tivoli.

Precision Circuit Printing

By Clifton Tuttle
Vice Presiturnt. Research \& Development Kenyon Instrument Co. Inc.
Ilumitington Station

Printing electronic circuits has two advantages: it decreases the size and weight of the circuit chassis and components, and it makes production more economical through elimination of wire soldering and lessening of the numbers of units rejected because of errors in manual assembly. Both advantages are either directly or indirectly enhanced by the ability to reproduce conductive patterns with geometrical precision.

The process developed by this company is capable of high resolution of details in the production of

Effrnouncing

THE KOLLSMAN SYNCHRONOUS DIFFERENTIAL

The Kollsman Synchronous Differential solves many difficult problems for the design engineer. It is an electro-mechanical error detector with mechanical output for use in position or speed control servo systems.

This unit is composed of two small synchronous motors and a mechanical differential in a completely enclosed frame. The $1 / 4$ " threaded output shaft turns at a rate equal to $1 / 2$ the difference of the individual speeds of the two motors. When the input frequencies are equal, the shaft remains stationary.

The efficiency of this unit is greatly increased by the use of hysteresis-type motors. These
motors yield the greatest running torque found in self-starting synchronous motors. The units now being produced are designed to operate from a three-phase source over a $15-60$ cycle frequency range with an input voltage of .007 times the frequency, in cycles-per-minute. Similar units wound for higher voltages and two- or singlephase operations are also available.

The Synchronous Differential is but one of a complete line of special purpose motors developed by Kollsman for remote indication and control applications. Write for further information to: Koilsman Instrument Division, Square D Company, 80-6445 th Avenue, Elmhurst, N. Y.

A commutator formed in ceramic and a circuit formed on top and bottom of a thin. transparent plastic sheet
patterns because it is basically a photographic reproduction method. Commercial photographic materials usable in this process are capable of resolving lines less than 0.0005 inch in width which are separated by spaces of the same width. This inherent dimensional accuracy of the photographic material may be realized in accuracy of circuits or other patterns reproduced by the method.

Description of the Process

The first steps in the process are merely the following of the standard procedure of photography: printing opaque and transparent copies either by contact or by optical projection (at any desired reduction ratio) onto a commercial silver halide emulsion. This emulsion may be coated either as a photographic plate or film. Following exposure, the image is developed in the conventional manner, resulting in the reduction of the silver halide to metallic silver particles imbedded in the gelatine. These silver particles, because they are buffered by nonconductive gelatine do not form a conductive layer. In fact, the resistance of the conventional photographic image area is of the same order of magnitude as that of the nonimage area.

The next step in the process is one of physical replacement of the image areas by other materials. Silver, carbon, graphite, or other substances obtainable in finely divided powder form can be used. By this replacement the original base material, glass or film, bears a

7naict the "TIP-TOE" IRON
 Varglas Non-Fray Sleeving
 Chosen by Yale \& Towne Mfg. Co. for Articulated Iron

On the leads across the jointed sections of a hot iron is a "hot spot" for insulation. High temperatures and frequent flexing combine here to make the insulation job especially difficult. Yale \& Towne Mfg. Co. found the answer in VARGLAS Non-Fray Sleeving, Type HP.

VARGLAS HP Non-Fray Sleeving is formed of Fiberglas braid. Durability, especially under flexing, is increased through the "normalizing" process. A color is added to the Fiberglas for identification purposes. The satisfactory per-

Write for free samples and specifications of these Fiberglas and Silicone Sleevings.
formance of the "Tip-Toe" Irons supports Yale \& Towne's selection of VARGLAS.

For insulation problems of even more difficult nature, VARGLAS Silicone-impregnated Sleeving and Tubing offer a range of reliable, superperformance insulating materials that successfully work through temperatures from $500^{\circ} \mathrm{F}$ down to - $85^{\circ} \mathrm{F}$. These war-developed insulators won their ratings through meeting the drastic
demands of military aircraft for high dielectric, won their ratings through meeting the drastic
demands of military aircraft for high dielectric, low-space, dimensionally stable insulating media
that could serve in all temperatures encountered low-space, dimensionally stable insulating media
that could serve in all temperatures encountered from sea-level to substratosphere zones. We also
supply VARGLAS treated and untreated Lite-wall from sea-level to substratosphere zones. We also
supply VARGLAS treated and untreated Lite-wall Sleevings (ECC-A and ECC-B).

D. C. AMPLIFICATION
at moderate cost
The Microsen Balance principle, developed in our electrical instrument laboratory, makes possible for the first time at moderate cost, a D. C. Amplifier incorporating High Stability, Fast Response, Isolated Input, and Versatility.

Models available include Voltage, Current and Potentiometer Type Amplifiers, Direct Current Converters, Direct Current Transformers, and Engineered Designs to meet special requirements.

Line voltage variations of 15% cause output changes of less than $.5 \%$. No mechanical rectifiers or choppers. Standard tubes. Time constant from . O I to .2 seconds. Drift less than 5 Microvolts per day. Not affected by temperature variations.

May we send you our bulletin I43-E.

[^6]THE ELECTRON ART
faithful and strongly adhering replica of the original image in relief. The definition of detail in this new pattern is influenced only by the photographic image definition and the fineness of the powder used in the replacement step. At this point in the process, the pattern, if it is conductive, can be electroplated to build any desired thickness.

Because the original base, film or plate, is usually mechanically or electrically unsuitable for the ultimate use of the circuit or pattern, a final step is usually required. The entire pattern is transferred to a new base material. Several different types of transfer material are possible. It may be a thermoplastic or thermosetting resin or a ceramic.

Most experience has been with transfer to a thermosetting polyester resin. The resin may be clear or mixed with a filler such as asbestos fiber. To accomplish the transfer step, the image-bearing film is placed face upwards on a flat or curved plate. A hollow rectangle of polyvinyl-alcohol sheeting is placed around the part to serve as a dam for the viscous casting resin, and the polyester co-polymer with a slight amount of added catalyst is poured over the surface. The material, while in its viscous state, fills the interstices between the pattern segments. After the resin sets, the pattern becomes mechanically imbedded and probably chemically bonded to the polyester resin.

As a final step, the casting is lifted from the base plate and the original film base is removed with a differential solvent which leaves the resin base untouched. The pattern surface is then flush with the base surface in which it is imbedded.

Aside from the obvious applications of the described technique to the now conventional printed circuit production, it is possible that other uses may occur to the engineer. There may be, for instance, some applications in the scientific instrument and optical fields.

A few of the applications that have been considered are: (1) formation of complicated conductive patterns to be used as com* mutators, (2) making tapered re-
 permanent MAGNETS may be your answer, too...

"Packaged Energy" Saves Size, Weight, and Cost

Every day, Indiana permanent magnets are opening new fields, bringing new opportunities to science and industry. From magnetic can openers to cosmic ray research, these permanent magnets-of new designs and increased efficiency-enable equipment to do a better job. They add new functions . . step up performance . . cut costs. These magnet developments can mean extra profits for you-for "packaged energy" may have direct application to your own methods and products.

Our specialists have a complete range of magnetic alloys for casting, sintering, or forming permanent magnets as large or as small as you need. Strict supervision of every step in production assures magnets of exact characteristics, both magnetic and mechanical. The experience and know-how of more than 25,000 different applications are at your service. Let us help you with yom magnetic problems, too. Write today.

- Indiana-world's largest exclusive producer of permanent magnets-is the only manufacturer furnishing all commercial grades of permanent magnet alloys. The most commonly used are:
CAST:
Alnico I, II, III, IV, V, VI, and XII;
Indalloy; Cunico; Cobalt.
SINTERED:
Alnico II, IV, V; Indalloy; Vectolite.
DUCTII.E:
Cunico; Cunife 1 and II; Silmanal
FORMED:
Chrome; Cobalt; Tungsten.
Ask for free Book No. 4-E10 - our new permanent magnet reference manual. A note on your company letterhead will bring a copy to your desk.

THE INDIANA STEEL PRODUCTS COMPANY
PRODUCERS OF "PACKAGED ENERGY"
6 NORTH MICHIGAN AVENUE - CHICAGO 2, ill.
SPECIALISTS IN PERMANENT MAGNETS SINCE 1908
PLANTS: VALPARAISO, INDIANA; CHAUNCEY, N. Y.

Available Now!

* TELEVISION POWER TRANSFORMERS

* DEFLECTION COILS
* VERTICAL OUTPUT TRANSFORMERS
* HORIZONTAL BLOCKING OSCILLATOR TRANSFORMERS
* VERTICAL BLOCKING OSCILLATOR TRANSFORMERS
N.Y.T. facilities are now expanded to supply all types of inductive television components in quantity. Estimates will be supplied promptly on standard units or types wound to your exact specification. In addition to television components, N.Y.T. offers complete manufacturing service on power transformers, chokes, and audio transformers. Mod-
ern plant and winding equipment assures finest quality at low cost. Call or write today for information.
IN ANY QUANTITY!
A L P H A
- NEW
J
ER \qquad
sistors of any complex function for resistance pots in computor systems. (3) making durable and decorative nameplates and dials for instruments, (4) making grid patterns for radioactivity and x-ray screens, using lead, gold or the new Hevimet alloy as the powdered metal, (5) making thermocouple or thermistor-bolometer elementary mosaics, and (6) production of optical grids of greater durability and stability than photographic grids. The first two applications require smoothness durability of the conductive coatings to withstand the action of a moving stylus. Tests have been carried up to several hundred thousand actuations of a rheostat stylus over such surfaces with success.

A dividend of the method, not stressed in the above description, is economy on short runs made possible by lowered (almost negligible) tool costs. Practically the only expense in changing from one part to another or from one circuit configuration to an entirely different one is the draftman's work of drawing new copy.

Photographic illustration of the results of this process are not particularly informative because the finished product looks like the original drawing. The accompanying photograph serves chiefly to indicate the type of circuits than can be rendered in this medium. The author expresses his gratitude for the cooperation and support of the Squier Laboratory of the Signal Corps in the pursuit of this project.

The Synchrostrob Timer

By Walter R. Berg
Ordnance Research Laboratory
The Pemusylvania State College (Now with Dictograph Products, Inc. Jamaica, N. ${ }^{Y}$.j

In viewing rotating machines by standard stroboscopic methods constant manipulation of the light source frequency is necessary in order to prevent the stroboscopic image from changing position. Furthermore, it is practically impossible to orient the image to a specified angular position manually. The circuit shown in Fig. 1 automatically holds the stroboscopic image at a

ABNOTAD

Specmalists and

Fnrincering
and

Manulacture

Arnold's business is permanent magnets, exclusivelya field to which we have contributed much of the pioneering and development, and in which we have set peak standards for quality and uniformity of product.

Our service to users of permanent magnets starts at the design level and carries on to finish-ground and tested units, ready for your installation. It embraces all Alnico grades and other types of permanent magnet materials-any size or shape-and any magnetic or mechanical requirement, no matter how exacting.
Let us show you the latest developments in permanent magnets, and how Arnold products can step up efficiency and reduce costs in your magnet applications. Call for an Arnold engineer, or check with any Allegheny Ludlum representative.

THE ARNOLJ) ENGINEERING CO.

PHRMANSNT

MACNDIS

Subsidiary of
ALLEGHENY LUDLUM STEEL CORPORATION 147 East Ontario Street, Chicago 11, Illinois

Specialists and Leaders in the Design.
Engineering and Manufocture of PERMANENT MAGNETS

FIG. 1-Circuil diagram of synchronizer Efect provides phase adjustment throughout 360 degrees
fixed angular position over wide variations in the speed of the rotating member. By means of coarse and fine phase shift controls the stroboscopic image can be held in any position over the entire 360 degrees.

A three-phase generator must be coupled to the shaft of the rotating member. The coarse phase shift, which is a six-position switch, selects each of the generator's three phases at 0 or 180 degrees, which affords a total variation of 360 de grees in six discrete steps of 60 de-

FIG. 2-The Synchrostrob is used with a tachometer and a Strobotac to observe rotating machinery
grees each. The fine phase shift control is a potentiometer which allows complete phase variation over any 60 -degree step. By means of a double triode the voltage from the phase shift network is half-wave grid rectified, amplified, and clipped. The resulting wave form has the steep wave front that is necessary to trigger most types of stroboscopic circuits.

The Synchrostrob was designed to trigger the contactor input of a General Radio Strobotac which, in turn, can be used to trigger a General Radio Strobotron if greater light intensities are desired. Other

HEAT IRミATIMG DEGASSING FURNACE

Write to $\left\{\begin{array}{l}\text { VACUUM ENGINEERING DIVISION, } \\ \text { National Research Corporation, } \\ \text { Cambridge 42, Massachusetts }\end{array}\right.$

NATIONAT
 NGINETIRING
 DIVISION

STANDARD ON AMERICAN AIRCRAFT SINCE THE DC-I

types of stroboscopic light sources can also be triggered with this circuit.

SURVEY OF NEW TECHNIQUES

Tracers for industrial research are being used in a large scale experiment conducted in the Cleveland plant of Republic Steel Corp. by Arthur D. Little Inc. Although 75 percent of radioactive tracers are still used in biological work, this industrial study is indicative of the potentiality of tracer technology in other fields. The experiment was conducted to determine methods for keeping undesirable sulfur out of steel. Sulfur enters steel from the coke, with the ore, limestone, scrap, or fuel oil. Some of it leaves the furnace in slag and flue gases. To tell where the sulfur in the finished steel came from, radioactive sulfur was introduced into the coke. The portion of sulfur in the finished steel that was radioactive was then known to have come from the coke. In this manner the contributions made by the various sources can be assessed. The tests indicated that there is no advantage in buying low sulfur coal from which to make the coke. Other applications of radioactive tracers in industry include automatically controlling Bessemer converters by introducing a known percent of radioactive phosphorus and metering the process to determine when the proper grade steel had been obtained. The major advantage of radioactive tracer research in industrial plants is that the experiments are carried out in the plant at operating scale; small scale laboratory experiments do not always correlate with factory results.

Synthetic mica, known as fluo-rine-phlogopite mica, has the desirable characteristics of muscovite and phlogopite forms of natural mica and is suitable for use as insulator and dielectric. Inherent in the synthetic process is the possibility that further research may reveal ways of directly fabricating mica components. The research and development program for the production of synthetic mica, jointly sponsored now by the Office of Naval

NEW OSCILLATOR with Greater

 Accuracy • Less Distortion • Better Zero Adjustment • New Operating Conveniences
CHECK THESE SPECIFICATIONS

$\sqrt{ }$ FREQUENCY RANGE: 20 to 20,000 cycles. $\sqrt{ }$ FREQUENCY CONTROL: main dial true logarithmic scale 12 inches long. Frequencyincrement dial calibrated from +50 to -50 cycles.
$\sqrt{ }$ FREQUENCY CALIBRATION: can be standardized within 1 cycle at any time by setting instrument to line frequency or zero beat.
$\sqrt{ }$ ZERO BEAT INDICATOR: neon lamp for zero beat at line frequency or zero scale.
$\sqrt{ }$ FREQUENCY STABILITY: drift from cold start less than 7 cycles in first hour and completed in 2 hours.
$\sqrt{ }$ OUTPUT INPEDANCE: 600 ohms, either grounded or balanced-to-ground, and essentially constant at all output voltages.
$\sqrt{ }$ OUTPUT VOLTAGE: approximately 25 volts open circuit. For matched resistive load voltage varies less than $\pm 0.25 \mathrm{db}$ between 20 and 20,000 cycles.
$\sqrt{ }$ OUTPUT CONTROL: calibrated from +25 db to - 20 db referred to 1 milliwatt info 600 ohms.

THE Type 913-A Bear-Frequency Oscillator, introduced by General Radio in 1942 immediately set a standard of excellence because of its high frequency stability, low distortion and constant output. Since then two improved models have increased its utility and acceptance.

The new Type 1304-A Oscillator is so different from the original that it is essentially a new instrument with many refinements in the circuit, in the oscillator, addition of buffer amplifiers, improved mixer and new amplifier. It is the finest beat-frequency oscillator obrainable.

Included in the features of the new instrument are:

- Cycles Increment Dial.

- Higher Accuracy of Calibration - adjusted to \pm (0.5 cycle + 1%)...closer than zero beat can be established with the beat indicaror.
- More Accurate Zero Adjustment - line voltage is fed into beat-indicator circuit, permitting oscillator output to beat with line frequency to calibrate instrument within 1 cycle.
- Improvement in Distortion Below 100 Cycles - through new circuits and buffer amplifiers.
- New Gear-Drive Dial - better bearings... smoother running gears... less backlash ... illuminated dial.
Check the abridged specifications at left. You'll agree that you cannot buy a more adaptable instrument.
TYPE 1304-A BEAT-FREQUENCY OSCILLATOR
$\$ 450.00$

Whico Amnouncers

New Bimeatlicic THPPEIEMENT for High Capacity CIRCUIT BREAKEFAS

The H. A. Wilson Company announces an important new addition to its "R" series of WILCO Thermometels (thermostatic bim 2tals) . . R-16.

Adv	vanta	-16
		Modulus of Elasticity $\quad 19,500,000$ Resistivity at $\left.\begin{array}{rlll}70 & F & 16 \\ 300 & F & 16 \\ 500 & F, & 20\end{array}\right\}$ ohms (sq. mil-ft.) Resistivity at $\left.\begin{array}{rrrr}700^{\circ} & F_{2} & 20 \\ 300 & F_{-} & 26 \\ 500^{\prime} & F_{-} & 32\end{array}\right\}$ ohms (cir. mil-ft.) Max. Operating Temp. $500^{\circ} \mathrm{F}$. Heat Treatment one hour at 550° F

- These and other advantages particularly commend WILCO R-16 for application in high ampere rated circuit breakers and similar devices where low electrical resistance is required.

R-16 joins a large family of WILCO Thermometals which have the adaptability to meet every condition of bimetal application... the quality to meet the highest standards of precision performance . . . plus availability in every desirable shape.

WILCO PRODUCTS INCLUDE: THERMOSTATIC BIMETALS: All temperafure ranges, deflection rates and electrical resistivities. ELECTRICAL CONTACTS: Silver, Platinum, Tungsien, Alloys, Sintered Powder Metal. SILVER CLAD STEEL: For industrial use. NI-SPAN C* Constant Modulus Alloy; also low and high expanding Ni-Span Alloys. JACKETED WIRE: Silver on Steel, Copper, Invar and many other combinations. SPECIAL ALLOYS: Ineluding high conductivity, high strength, Copper Alloys. ROLLED GOLD PLATE AND GOLD FILLED WIRE.
*Reg. Trade Mark, The International Nicke ICo., Inc.
THE H. A. WILSON COMPANY
105 Chnstnut Street, Newark 5, New Jersey
Qranch Offices: CHICAGO, DETROIT, IOS ANGEIES, PROVIDENCE

 contacts - precious metal bimetallic prodicis and special allors

THE ELECTRON ART
Research, the Navy Bureau of Ships and the Army Signal Corps, was initiated at the Colorado School of Mines; the Owens-Corning-Fiberglas Corp. is retained under a consulting contract, and pilot plant production is being conducted by the Interior Department's Bureau of Mines Electrotechnical Laboratory, Norris, Tenn. Knowledge of the production of silicate mineral crystals large enough to be split into sheets at the Kaiser-Wilhem Institute and the Siemens-Halske Concern in Germany has encouraged this development of synthetic mica.

INFRARED SPECTROSCOPY has been simplified by the development of a method for growing large crystals containing 42 percent thallium bromide and 58 percent thallium iodide by Francis Phelps and of polishing the soft semiplastic crystals by Edgar Robertson, both of the National Bureau of Standards. The prism so made has the large index of refraction of 2.6 in the visible region and 2.2 at 40 microns. The refraction changes greatly with temperature. This new prism extends the observable range to 40 microns (potassium bromide crystals permitted observation only to about 24 microns). Investigations in this unexplored region have already shown polystyrene and polyethylene to be very transparent and that many compounds containing chlorine, bromine, and sulfur have bands in this region.

Experiments in pulse code modullation can be readily carried out by a technique developed by D . B . Smith working under Prof. W. H. Radford at MIT. In place of the pulse coding tube developed by Bell Labs. (Electronics, p 126, Dec., 1947), a conventional cathode-ray tube can be used to code the signal. A coding mask, cut the same as the aperture plate, is placed in front of the cathode-ray tube screen. A phototube receives coded impulses of light as the beam sweeps across the screen at levels determined by the instantaneous sampled amplitude of the signal. With this relatively simple apparatus one can study pulse code modulation systems. At MIT the equipment is being used to investigate the trans-

to stay on the job a long... Iong ...time

Now, to help you fight corrosion, dust, lint, fungus, and heat, General Electric announces a completely new line of selenium rectifier stacks. Each stack in this new line is a complete unit ready for immediate installation-immersed in oil, hermetically sealed in a metal container, and protected by a tough, over-all coating.
For cool operation, the oil in these new General Electric rectifiers flows freely around the rectifier cells to dissipate heat during continued service. For easy assembly, the units have tinned soldering lugs, glass welded for a tight seal.
*trade-mark reg. u.s. pat. off.

Tell G.E. your problem of d-c supply Whenever you strike the problem of deciding which type of rectifier is best for your purpose-call on General Electric for an answer. General Electric engineers can give you an impartial solution, because G.E. makes all three-selenium, copper-oxide, and Tungar*-and now the new oil-filled selenium rectifiers.
For information on rectifiers-from the size of an aspirin to the size of a garageor for data on the new, oil-filed, hermetically sealed selenium rectifiers, write to Section A21-1031, Construction Materials Department, General Electric Company Bridgeport 2, Connecticut.
RECTIFIER STACKS

GENERAL (6

DEHYDRATED FOODS

ATOMIC ENERGY

Have you considered the possibilities of vacuum processing in your manufacturing? Perhaps your product can be produced better, faster, more profitably with the help of Kinney High Vacuum Pumps. Whatever the quantity and degree of vacuum you require, Kinney Pumps will deliver it on a production basis, dependably and economically.
Low pressure processing with Kinney High Vacuum Pumps has made possible the largescale production of many of today's wonder products.

Whether your vacuum requirements are measured in inches or microns, look to Kinney for reliable low pressure performance. Kinney Single Stage Vacuum Pumps will produce low absolute pressures to 10 microns or better; Compound Pumps to 0.5 micron or better,

Write for Bulletin V45.

KINNEY MANUFACTURING COMPANY 3565 WASHINGTON ST., BOSTON 30, MASS.
NEW YORK • CHICAGO • PHILADELPHIA • LOS ANGELES • SAN FRANCISCO FOREIGN REPRESENTATIVES
General Engineering Co. (Radeliffe) Ltd., Station Works, Bury Road, Radeliffe, Lancashire, England Horrocks, Roxburgh Piy., Lid., Melbourne, C. I. Australia
W. S. Thomas \& Taylor Pty., Ltd., Johannesburg, Union of South Africa
WE AESO MANUFACTURE LIQUID PUMPS, CLUTCHES AND BITUMINOUS DISTRIBUTORS

the electron art
mission of music by a 5 -pulse code.
CORONA at high altitude can be suppressed, in the case of ceramic bushings and other insulations upon which are imposed high potential gradients, by application of a semiconducting coating to the entire exposed insulation surfaces. The technique may be applied to such high-voltage equipment as radar and is particularly advantageous when used on airborne electronic equipment where space and weight must be held to a minimum. Coating solder-seal bushings of hermetically sealed components with material having a surface resistivity of about 3,000 megohms per square inch sufficiently distributes voltage stress to increase the high altitude a-c corona starting voltage by 200 percent or more and the average flashover voltage by 120 percent; d-c corona and flashover points are raised 70 percent. Similar improvements are produced on bushings at sea level. The magnitude of the resistivity of the semiconducting coating is such that there would be no serious current drain on actual electronic equipment treated in this manner.

Methods of detecting inception of corona, measurements of improvements obtained, and an analysis of electrostatic field configurations in the vicinity of a typical bushing have been described in High Altitude Flashover and Corona Correction on Small Ceamic Bushings, by W. W. Pendleton, A.I.E.E. Proc., 1947.

Highest powered magnetron developed so far for microwaves produces 50 kilowatts at 1,000 megacycles (1 kmc). Unlike most conventional tubes, the cathode is unheated, emission being produced by cathode bombardment with highspeed electrons each one of which releases three or four secondary electrons. The water-cooled tube was developed by the General Electric Research Laboratory under Signal Corps contract. Dr. R. B. Nelson, G. E. scientist, told a group of vacuum tube researchers convened at Ithaca in June that the limit to the power that can be produced at this high frequency is not yet in sight.

For maximum power, reliable operation and efficient performance, specify Phil-trol Actuators. Exclusive design features incorporated in one-piece solid frame construction make Phil-trol Actuators strong, durable units for a wide range of solenoid uses.

Outstanding construction features include: One-piece $1 / 8^{\prime \prime}$ iron frame, dovetailed and staked into end plate for a secure bond and extra strength; Plunger and plunger stops are made from specially processed steel and are available in three types of end shapes; Standard coils are fiber bobbins wound with enameled copper wire, and impregnated with insulating varnish; Entire frame and plunger stop are cadmium plated and plunger is chrome plated for smooth operation.

Five standard sized Phil-trol Actuators are available in either A. C. or D. C. desired voltage. Designed for "pull" application, they may be converted to "push" with but slight efficiency loss.

Phillips engineers, located in cicies listed below, will be glad to assist you in determining solenoid requirements. Special Phil-trol Actuators are designed to specification.

Send for Phil-trol Actuator Bulletin

Philtrol products
Relays, Actuators, Solenoids, Contactors, Starting Switches, Focus Coils, Ion Traps and Special Process Control Assemblies.

Phil-tual
ac.dC end plate design ac plunger stop design

Phil-tich

STANDARD PIUNGERS

A

x
10-32 TAPPED

8

w

Y

Phil-trol RELAYS:

There is a complete line of Philtrol Relays, all engineered to the highest standards, for electronic and industrial control, signal and traffic control, radio, communication, aircraft and other applications. Send for new Relay Catalog.
Type 27

National Switch Insulation is a highly efficient "sandwich" material consisting of a Phenolite core-for dimensional stability even under humid conditions-permanently bonded and molded with Peerless Insulation (Fish Paper) surfaces, to provide high arc (tracking) resistance.

This product is used effectively to insulate electrical switches and equipment where high dimensional stability and arc resistance are required in proximity to currentcarrying components.

For full details call or write

DELAWARE
Principal Cities

NEW PRODUCTS

(continued from p 134)
scope, picture generator, and distribution panel is available in combination or separately. The equipment produces synchronizing, driving, and blanking signals useful to manufacturers of television receivers. Two monographs giving further details have been published.

Pilot Light

Dial Light Co. of America, Inc. 900 Broadway, New York 3, N. Y. Designed particularly for use with the NE-51 neon lamp, the new Multivue cap refracts light in such a

way as to improve effectiveness of the low-wattage neon lamp in pilot light service.

Loudspeaker Baffle

Vibraloc MFg. Co., 3597 Mission St., San Francisco, Calif. The new general purpose loudspeaker baffle with Acousticurve design is adaptable to table, wall, or corner mounting. It may be had in a variety of

October, 1948 - ELECTRONICS

PLASTICON CPAPACITORS

PHOTOFLASH CAPACITORS

Cat．No．	Watt Sec．	$\begin{array}{\|c\|} \hline \mathbf{P k} \\ \mathbf{C h} \\ \mathbf{V} . \end{array}$	Dimen－ sions	Your Cost
AOCOE 22C3	7.6	2250	$4 \times 2 \times 1{ }^{1 / 4}$	\＄2．92
AOCOE3M2	9	3000	4×2x11／4＂	3.00
AOCOE4M1．5	12	4000	$4 \times 2 \times 11 /{ }^{\prime \prime}$	3.20
AOCOE55C1	15.1	5500	$4 \times 2 \times 1 / 44^{\prime \prime}$	3.56
AOCE4M12	100	4000		27.17
AOCE4M24	200	4000	8×4＂伯x33／4＂	38.81

PLASTICONS

Ry the use of synthetic plastic film dielectrics PLASTICONS can be made smaller，lighter，more efficient and more economical than older types of capacitors made with paper and mic： insulation．Plasticon films are chem－ ically purer and more uniform．Plasti－ eon capacitors have a longer life and can operate under more severe con－ ditions．

SPECIAL PLASTICONS

Taking advantage of the wide variety of plastic film dielectric character－ istics，Plasticons are engineered to meet many special applications．We can furnish capacitors for $200^{\circ} \mathrm{C}$ ；for pulse network duty；close tolerances； ultra high resistanef．Fend us your specifications．
 \section*{}
 \section*{}

GLASSMIKES ASG

Type AsG are blasticon A dielectric－silicone fluid impregnata capacitor etements in hermetically sealed glass tubes．Temperature range
$+125^{\circ} \mathrm{C}$ ．The smallest and 11 ghtest
voltage capacitors made．Type AsG are
low frecuency AC applications．

$\begin{aligned} & \text { Cat. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Cap. } \\ & \text { Mfd. } \end{aligned}$	$\begin{aligned} & \text { Volts } \\ & \text { D.C. } \end{aligned}$	$\begin{gathered} \text { Dimen- } \\ \text { sions } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Your } \\ & \text { Cost } \end{aligned}$
ASG	． 01	600		\＄ 88
ASG：	02	¢i00	＂呺1＂ヶ\％＂	． 94
AsG 3	05	600	${ }^{19} 9 \times 1{ }^{19} 1{ }^{16}{ }^{\prime \prime}$	1.03
ASG 4		600	74x14．＂	1.15
ASG 5	2\％，	600		1.32
ASG 6	5	600	13／823－1＂	1.53
ASG 7	． 005	1，000		． 88
AsG 8	． 01	1.000		． 94
Asg	02	1.000		1.00
ASG 10	05	1.000	${ }^{3} \times 1 \times 1^{3 y^{\prime \prime}}{ }^{\prime \prime}$	1.09
ASG 11	1	1.000	$3{ }^{3} \times 2$ 年＂${ }^{\prime \prime}$	1.26
ASG 12	25	1.000	29／2233／1＂	1.47
ASG 13	012	2.000		1.12
ASG 14	． 005	2.0001		1.21 1.32
ASG 15	． 01	2.000	＂19819\％＂	1.32
ASG 16	02	2,000		1.47
ASG 17	05	2,000		1.66
ASG 18	． 1	2.000		1.88 2.18
ASG 19	． 25	2.000 3.000	13／6x23／3／	2.18 3.03
SSG 20 ASG 21 Ster	． 001	3,000 3,000		3.03 3.09
ASG 22	． 002	3.000	106136＂	3.18
ASG 23	． 01	3.000	1981919\％	3.28
ASG 24	． 02	3，000	31013＂	3.44
ASG 25	． 05	3.000	29\％423＂	3.62
ASG 26	． 1	3.000	18424＂	3.82
ASG 27	． 001	5,000		3.82
ASG 28	．002	5.000		3.94
ASG 29	．00．3	5，000	＂晈1918＂，	4.09
ASG 30	． 01	5.000	行×1言＂，	4.26
ASG 31	． 02	5,000	3424＂	4.50
ASG 32	． 05	5.000	${ }^{136 \times 23}{ }^{\prime \prime \prime}$	
AsG 33	． 1	5，000	$13.8 \times 312^{\prime \prime}$	5．35
ASG 34	．101	7.500		
AsG 35	．002	7.500	＂近和的＂，	4.26
ASG 36	． 005	7.500 750	＂417＂	
ASG 37	． 01	7.500	－ 39×2	4.79 5.44
ASG 38	． 02	7.500 7.500		
ASG 39 ASG 40	． 05	7.500 10.000		6.76 4.29
ASG 41	． 001	10，000		4.41
AsG 42	．002	10，000	＂晈1的＂${ }^{\text {a }}$	
ASG 43	．005	10,000		5.29 6.17
ASG 44	． 01	10,000 10,000		6.17 7.35
ASG 46	． 03	10,000	$138 \times 3 \times 2 \times 1$	8.82
ASG 60	06	10.000	13\％$\times 3$ 江＂${ }^{\prime \prime}$	10.29
AsG 47	． 0005	15，000	＂9，4x23．1＂	8.53
ASG 48	． 001	15，000	＂的2＂咱＂	8.70
ASG 49	．002	15，000	$136 \times 2366^{\prime \prime}$	9.1
ASG 50	． 00005	20，000	13／8x ${ }^{1 / 2} \mathbf{2}^{\prime \prime}$	11.4
ASG 51	． 0001	$20,000$		12.0
ASG 52	． 0005	30	1退x ${ }^{\text {a }}$	13.2

RF GLASSMIKES

ghyle casi Tvie LaG has Q of 2500 to 5000 Rmike at 3500 w -500 V Test．Lower losses，more
easily mounted，smaller and more economleal thin easily mounted，
mica caracitors．

$\begin{aligned} & \text { Cat. } \\ & \text { No. } \end{aligned}$	Cap． Mid．	OD Dimensions	Your Cost
LSG500	． 00005	$196 \times 1{ }^{13} 8^{\prime \prime}$	\＄． 88
LSG101	． 0001	$18.6{ }^{13} \mathrm{SO}^{\prime \prime}$	． 88
LSG251	． 00025	19 攵136＂	． 88
LSG501	． 0005	19 鿬 1^{3} 价 ${ }^{\prime \prime}$	． 88
LSG102	． 001	$19.6 \times 1 \%$ \％	1.00
LSG202	． 002	3／4 $\times 1{ }^{10} 6$	1.44
LSG502	． 005	36130＂	2.06
LSG602	． 006	29 ¢2019／6	2.20
LSG103	． 01	＂合 $\times 13 / 4$	2.50

INDUSTRIAL and TRANSMITTING

DC RECTANGULARS

Cat． No．	$\begin{aligned} & \text { Cap. } \\ & \text { Mfd. } \end{aligned}$	Volts IC．	Dimensions	$\begin{aligned} & \text { Your } \\ & \text { Cost } \end{aligned}$
AOC6C1	1.0	tion	$2^{1 / 813 / 4110}$	\＄2．19
$\triangle \mathrm{OC6C2}$	2.0	（100）	$2^{3}{ }^{3} 113 / 41^{\prime \prime}$	2.65
$\mathrm{AOCbC4}$	4.0	tion	$3!251 / 21^{3} 1^{\prime \prime}$	3.30
$\triangle \mathrm{OC6C8}$	8.0	600	4 3 $33 / 4{ }^{11 / 1^{\prime \prime}}$	4.98
－ 066 Cl 10	10.0	600		5.60
AOCIM 1	1.0	1.000	$2^{3 / 8} 1^{34} 1^{\prime \prime}$	2.37
AOCIM2	2.0	1.000	41341 ＂	7
AOCIM4	4.0	1，000）	4 21／2 $18.86^{\prime \prime}$	5
AOCIM8	8.0	1，000	45／日 $33413 / 4$＂	5.43
AOCIM10	10.0	1.000	$4^{5 / 8} 331 / 413{ }^{\prime \prime}$	6.27
AOC2MO5	0.5	2.000	$28 / 813 / 41^{\prime \prime}$	2.84
AOC2M1	1.0	2，000	$31 / 211 / 1^{\prime \prime}$	3.47
\OC2M2	2.0	2，000	$31 / 21 / 21^{3} 16^{\prime \prime}$	4.02
AOC2M4	4.0	2，000	$33 / 233 / 11^{1 / 4} 1$	5.43
AOC3M1	1.0	3，000	$42312{ }^{3} 166^{\prime \prime}$	7.12
AOC3M2	2.0	3.000	$433 / 411{ }^{\prime \prime}$	9.05
AOC3M4	4.0	3.000	43／833／4 $21 / 4 \prime$	12.52
AOC4M1	1.0	4.000	$43311{ }^{4} 1$	16.17
． $10 \mathrm{C4} 42$	2.0	4，000	$43313{ }^{4}$	19.40
AOC4M4	4.0	4.000	4 33／4 410	29.64
， 0 C5M1	1.0	5，000	$4{ }^{4} 31 / 4{ }^{\prime \prime}$	19.40
AOC5M2	2.0	5，000	$3^{1} \frac{1}{2} 34^{4} \%^{\prime \prime}{ }^{\prime \prime}$	24.25
$\mathrm{AOC75C1}$	1.0	7.500		29.11
AOC10M1	1.0	10.000	$43334^{\circ} 16{ }^{\prime \prime}$	51.74

Cat．No．	Cap Mfd.	$\begin{aligned} & \text { Volts } \\ & \text { D.C. } \end{aligned}$	Dimen－sions		Your Cost
AOCO6C2	2.0	600		$2114{ }^{\prime \prime}$	\＄2．59
AOCO6C4	4.0	600		$2116^{\prime \prime}$	11
AOCO1M1	1.0	1.000	2^{3} 白	$211 /{ }^{\prime \prime}$	2.26
AOCO1M2	2.0	1.000	3362	2114	3.04
AOCO3MO1	0.1	3，000	2388	$211 /{ }^{\prime \prime}$	4.46
AOCO5MO1	0.1	5，000	$23^{\text {年 }}$	$211 / 4 "$	8.28
AOCO5MO25	0.25	5.000	316	$211 / 4$	9.05
AOCO5MO5	0.5	5，000	4 5／8	$211 / 4 "$	10.68
AOCOSMOO5	0.05	8.000	23	$211 / 4$	8.
AOCO8MO1	0.1	8.000	33.6	211	9.83
AOCO10MOO	0.05	10.00	$31 / 2$	211	11

LABORATORY CAPACITORS

Type LAG（Glassmike style）and Type LAC （rectangular carn）have the lowest dielectric aths－
sorption of any capactior made．Residuat charge is 01 ． 02% ．Dissipaton factor at 1 MC is ． 1002 to 0003 ．Capacitance and Q is constant from DC to 100 KC ．Resistance averages one milion megohnis per microfarad．Standard capacitance tolerance
$\pm 5 \%$ Type L units are used for ung athd integrating circuits．

Cat． No．	Cap． Mfd．	Dimensions	Your Cost
LAG101	． 0001	19／4013．46＂	\＄1．76
1．AG201	． 0002		1.76
LAG501	0005	19，至130＂	1.76
LAG102	001	19／6×13／8＂	1.76
LAG202	． 002	19／4813\％${ }^{\text {\％}}$	2.06
LAG502	． 005	3／4×13／4＂	2.88
LAG103	． 01	34013／4 ${ }^{\prime \prime}$	3.94
LAG203	． 02		5.12
LAC503	． 05	$296 \times 21 / 47$	6.17
LAC104	1	$214 \times 1 / 4 \times 1$＂	9.23
LAC：204	2		9.82
I．AC504	5	$4 \times 215 \times 1^{3} \mathrm{ma}^{\prime \prime}$	12．35
LAC：105	1.	$4 \times 3 \times 15$	18.87
LAC205	2.	$4 \times 3+\times 2^{1 / 7}$	30.16
L． C 505	5.	6x33／4 $\times 4^{9}$ 任＂	57.98

The above condensed rersion of the Plasticon Line will appear in the neu catalogs of leading eloctronic distributors．Planticons are manufactured by Condenser Products Company，Chicago 22，Illinois

For PERFORMANCE That Is Precisely Predictable

Special purpose transformers which meet the most rigid specifications are a Raytheon specialty. What more exacting test can you imagine than wartime service in naval SG and SO radar . . for which Raytheon Transformers were used exclusively?
Raytheon can furnish custom-engineered transformers designed to fit your special needs . . . in the size, type and quantity you require. As one of the oldest and largest producers, Raytheon has the experience and facilities to design, test and deliver transformers that you can incorporate in your product or equipment with complete confidence.

More than 30,000 successful designs have proved that Raytheon quality means peak performance. May we prove it to you with sample models engineered precisely for your most exacting requirements? Handy forms in Bulletin DL-K301 make it easy to specify your needs. Write for your copy.

CAYTHEOM

Excellence in Elechonics RAYTHEON MANUFACTURING CO.

Waltham 54, Massachusetts

RAYTHEON

Custom-Engineered TRANSFORMERS

...and VOLTAGE STABILIZERS

Bulletin DL-V- 304 tells the complete story on the new line of high performance, space and weight saving Raytheon Voltage Stabilizers. Write for it today.

Manufacturers of Insulated Wire, Cables, Cord Sets and Thermoplastic Tubing.

plications. Filament voltage is 2.5; filament current, 7 amp ; d-c output, 2 amp ; peak-current output, 10 amperes.

Industrial Timers

Montgomery Mfg. Co., 549 W. Washington Blvd., Chicago 6, Ill., has introduced two synchronous program timers, models TP and TS, designed especially for manufacturing establishments where permanent conduit or BX installations in standard switch box cases are desired. Model TP, for bell ring-

ing, can make a single circuit contact at any 5 -minute interval in 24 hours and repeat each day. Model TS incorporates a holding circuit which it closes on the first impulse and opens on the succeeding impulse.

Radio Noise Filters

The Filtron Co., 38-25 Bell Blvd., Bayside, L. I., N. Y. Type FA204

WIICOX-First Choice of
 PIONEAH Atir Lined

PIONEER EQUIPS GROUND *STATIONS WITH Wilcox Type 378 A Package Radio

\&ACKAGE DESIGN SPEEDS YOUR INSTALLATIONS
The Type 378A is complete from microphone to antenna, ready for connection to power mains. It is designed for aeronautical VHF ground-air communications at smaller traffic centers.

PROVEN COMPONENTS INSURE QUALITY AND PERFORMANCE - The Type 305A VHF Receiver and Type 364A VHF Transmitter (50 watts) are the principal components of the 378 A . Long used separately and field-tested by leading airlines, these units are now ovailable in package form.

NEW AIDS TO CONVENIENT OPERATION The telephone handset with its convenient push-totalk button, serves as both headphone and microphone, with on auxiliary loudspeaker for incom. ing calls. The 378A includes desk front, message rack, and typewriter space - there are no accessories to be added.

LOCAL OR REMOTE CONTROL-If desired, the contral panel can be removed and the 378A remotely controlled, either by re.installing the panel at the operating position or by simple adaptation to your existing control equipment.
*Pioneer aircraft are also 100\% equipped with the new WILCOX Type 361A Airborne VMF Communication System.

Write taday for complete information

Noblabits,

but we do make

 coil windings . . .Magic has no place in our scheme of things. We make no extravagant claims. We DO wind the best coils which 31 years of experience, skilled operators, latest equipment and professional know-how can produce. We should like to serve YOU.

Are you fussy? Then try us!

[^7]
Use one alone -

or stack'em like hot cakes...

I-FE OVAL RESISTORS SAVE SPACE!

When space is limited-as in aviation, sound, or electronics applica-tions-I-T-E Oval Resistors and Oval Resistor Assemblies may be the solution you're looking for.

Specially designed to meet the exacting and changing needs of the electronics industry, these modern, wire-wound power resistors are distinguished by their high unit-area wattage ratios, which are due in part to the heat dissipation qualities of the mounting brackets.

An I-T-E Oval Resistor-or an assembly of I-T-E Oval Unitshas a much higher wattage rating than that of a conventional round resistor of comparable size. You save space and, at the same time, gain the dependable performance of I-T-E quality resistors.

No matter what your resistor problem is-space, exacting service, or dependable performance-be sure to investigate I-T-E Oval Resistors. Complete technical information, as well as valuable application data, are contained in the new I-T-E Resistor catalog. Send for it today.

There's an I-T-E Resistor for Every Purpose \rightarrow

I-T-E OVAL RESISTORS				
Type	Watts	Length	Maximum Recommended Resistance	Mounting Centers
$\begin{aligned} & 108 \text { Oval } \\ & 200 \text { Oval } \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 1 / 4^{\prime \prime} \\ & 2^{\prime \prime} \end{aligned}$	$\begin{aligned} & 10000 \\ & 15000 \end{aligned}$	$\begin{aligned} & 2^{\prime \prime} \\ & \mathbf{2 3 / 4}^{\prime \prime} \end{aligned}$
316 Oval	55	31/2" ${ }^{\prime \prime}$	25000	41/4' ${ }^{\prime \prime}$
$\begin{aligned} & 424 \text { Oval } \\ & 600 \text { Oval } \end{aligned}$	$\begin{aligned} & 65 \\ & 75 \end{aligned}$	$\begin{aligned} & 43 / 4^{\prime \prime} \\ & 6^{\prime \prime} \end{aligned}$	$\begin{aligned} & 35000 \\ & 50000 \end{aligned}$	$\begin{aligned} & 51 / 2^{\prime \prime} \\ & 63 / 4^{\prime \prime} \end{aligned}$

$$
\begin{gathered}
\text { AIR EXPRESS } \\
\text { ghives ouvoll } \\
\text { hese avonatages }
\end{gathered}
$$

NEW PRODUCTS

(continued)
characteristics have also been improved. Output voltage range is 0.1 microvolt to 1.0 volt open circuit for an input of 2.2 volts across 600 ohms. Accuracy is \pm (3 percent + $0.5 \mu \mathrm{v}$) for output levels above 1 microvolt at frequencies below 20,000 cycles. Up to 100,000 cycles the accuracy is ± 5 percent. Distortion introduced by the instrument is about 0.2 percent.

Variable Resistor

P. R. Mallory \& Co., Inc., Indianapolis, Indiana. The new Midgetrol measures $15 / 16$ inch and has a number of other features such as a

Special pick-up and delivery at no extra cost. Your shipments are picked up promptly when you call; fast delivery to consignee's door.

You get a receipt for every shipment. One-carrier responsibility. Complete security.

Assured protection, too-free valuation coverage up to $\$ 50$; 10 cents for each additional $\$ 100$ or fractional part.

These advantages, plus 21 others, make Air Express the best and fastest way to ship. Your shipments go on every flight of the Scheduled Airlines - repair parts, equipment, finished items keep moving to where they're needed. Reach any U.S. point in hours. Phone local Air Express Division, Railway Express Agency, for fast shipping action. Specify "Air Express" on orders for quickest delivery.

FACTS on low Air Express rates

22 lbs. machine parts goes $\mathbf{7 0 0}$ miles for $\$ 4.73$.
10 lbs . printed matter goes 1000 miles for $\$ 3.31$.
30-lb. carton of new fashions goes 500 miles for $\$ 4.61$. Same day delivery in all these cases if you ship early.

AIR EXPRESS, A SERVICE OF RAILWAY EXPRESS AGENCY AND THE SCHEDULED AMEMAES OFTHEU.S.

flat shaft, or a special phenolic shaft for television applications. Specification sheets and a descriptive folder are available.

Crystal Oven

James Knights Co., Sandwich, Ill. A new crystal oven recommended for broadcast or standard frequency applications has a large 7 -pin base,

6.3 -volt heater, and operating temperature $50 \pm 1 \mathrm{C}$. The crystals are electrostatically shielded.

Pressure Element

Commercial Research Laboratories, Inc., 20 Bartlett Ave., Detroit 3, Mich. A new Type 5 direct pressure element replaces type 3 pressure element and type 3 gas sampling valve. Owing to the new design, the element is open for less

The NEW "dag" CRT Wall Coating

Here's an entirely new CRT Wall Coating, developed by Acheson Colloids specifically and solely for use on CRT glass envelopes.
"dag" CRT Wall Coating is very easily applied... adheres tenaciously to all types of glass... does not yield objectionable by-products on heating.

Prominent cathode-ray tube manufacturers have already found this opaque, electrically conductive "dag" CRT Wall Coating eminently satisfactory, especially in tubes intended for television reception.

Let Acheson Colloids help you with your CRT wall coating problem. Mail the coupon today for information on this or other electronic applications of "dag"' colloidal graphite dispersions.

Give me information on "dag" colloidal
graphife dispersions for:
Wall coating of CRT's
Electrostatic shielding
Corona prevention Dry-film lubrication Copper oxide rectifier disc coating Electrical resistances Filament cement

Acheson Colloids Corporation

Port Huron

Michigan

Would
 INSTANTANEOUS

recording of electrical phenomena from
D. C. to 100 c.p.s. help in your research?

It's a fact - permanent, instantaneous ink-on-paper recordings by Brush Oscillographs make their use almost unlimited!

Accurate recordings of voltages, pressures, radiation intensity and countless other phenomena can be made over a frequency range of D.C. to 100 c.p.s. Either A.C. or D.C. signals can be measured Whenever desired, recordings may be stopped for notations on chart-paper.

Investigate Brush measuring devices before you buy ... they offer more for your money.
Why not have a Brush representative call? At no obligation, of course.

Just call or write - today - you'll find it worth a few seconds' time!

3405 Perkins Avenue - Cleveland 14 , Ohio, U.S.A. MAGNETIC RECORDING DIV. • ACOUSTIC PRODUCTS DIV. INDUSTRIAL INSTRUMENTS DIV. - CRYSTAL DIVISION

[^8]
than 0.001 second permitting its use in tests on high-speed engines over the whole engine cycle.

Television Capacitors

Sprague Electric Co., North Adams, Mass. A new line of capacitors designed for television serv-

ice is rated at $85 \mathrm{C} u p$ to 450 volts. Shelf life of these electrolytic units has been improved.

LP Needles

Electrovox Co., Inc., 66 Franklin St., East Orange, N. J. Microgroove needles of sapphire and osmium

alloy needed for the new long playing records are available in two styles illustrated.

Signal Generator

Ferris Instrument Co., Boonton, N. J. Model 24-B a-m and f-m signal generator provides frequencies from 5 to 220 mc with either internal or external modulation. It is designed primarily for production checking $\mathrm{f}-\mathrm{m}$ and television receivers. Any seven spot frequencies in the range are available with an
 carry a Standard Multiplex Telephone Trunk Link.

The system is easy to install, thoroughly reliable in operation, and simple to service.

Each equipment deals with up to 24 channels which handle any kind of A.F. traffic in the $300-3400 \mathrm{c} / \mathrm{s}$ range, including teleprinter and automatic telephone signals.
Time-sharing Multiplex ensures low crosstalk and noise levels, and fading does not affect speech levels.
A UHF carrier is used and the normal line-of-sight range may be extended by automatic repeaters.
Complete terminal equipment occupies a double cabinet 7^{\prime} wide x $2^{\prime} 4^{\prime \prime}$ deep $\times 6^{\prime} 6^{\prime \prime}$ high, and aerials may be up to 100^{\prime} away from the equipment.

Write for our Bulletin No. 511 which gives further facts and figures.

Standard Telephones and Cables Limited Radio Division

 OAKLEIGH ROAD, NEW SOUTHGATE, LONDON, N. 11, ENGLAND aligned for quick, convenient connections. Built to quality standards beyond the already rigid specifications for AN Connectors. Amphenol pioneered in the engineering of this rugged and efficient line of connectors for use in military aircraft. To be sure of top performance, specify Amphenol AN Connectors and Fittings.

Write jor the new AN Catalog A-1. It's abundant with the latest connector information and contains timesaving listings and indexes for the engineer and buyer. Mail your request on company letterbead to Department 13-B.

additional number by changing coil drums. The instrument has a builtin power supply. Details of the various features are available.

Special Amplifier

BROWNING Laboratories, Inc., Winchester, Mass. Amplifier TAA16 is used in the determination of voltage standing wave ratio when used with square law detector probes and slotted waveguides. Two inputs are available. Operations can

be wide band or highly selective as needed. There is an integral power supply, electronically regulated. Full-scale meter readings are obtained with 15 microvolts input under wide band operation.

Isolation Transformer

Radio Corp. of America, Camden, N. J. The type WP-24A Isotap var-iable-voltage isolation transformer has been designed for speedy receiver servicing. Choice of test voltages provided consists of 117-

THE pinch hitter who swats the ball over the heads of the outfielders for a homer has "the extra something that spells top performance."
In any field it's the extra something that makes top performance possible.
Nowhere is this rule more forcefully demonstrated than in Seletron Selenium Rectifiers. Their extra rugged construction and high precision standards have enabled them to establish unbeatable performance records in every type of application. Efficient-depend-able-durable, under the severest service conditions.
Leading engineers and designers specify and recommend Selenium Rectifiers.

Furnished in a wide range of voltages and currents to meet individual requirements.

CODE NUMBER	$5 L 1$	$5 M 1$	$5 P 1$	$5 R 1$	$5 Q 1$	
Current Rating	75 ma	100 ma	150 ma.	200 ma.	250 ma	
Plate Height	$1^{\prime \prime}$	$1^{\prime \prime}$	1	$3 / 16^{\prime \prime}$	1	$1 / 2^{\prime \prime}$
$\prime \prime$	$1 / 2^{\prime \prime}$					
Plate Width	$7 / 8^{\prime \prime}$	$1^{\prime \prime}$	1	$3 / 16^{\prime \prime}$	1	$1 / 4^{\prime \prime}$
	$1 / 2^{\prime \prime}$					

Professional

 TAPE RECORDING
with FM QUALITY and EASY PORTABILITY

The basic Magnecorder recorder mechanism (PT6.A)

The New 3 Element

MAGNECORDER

The Magnecorder meets the highest broadcast standards, and it costs you less. You buy and combine only the units you need:
Magnecorder (PT6-A) - Basic recorder mechanism.
Portable Mixer-Amplifier (PT6-P) - Recording and reproducing portable field amplifier. Can be used as highquality remote amplifier. Mixes three low-level microphones.
Rack Mount Amplifier (PT6-R) - Recording and reproducing amplifier for studio rack mounting. With PT6-A makes complete studio recorder-reproducer.

7t'\& Partalle! Tt'\& Flexille!

Weight - PT6-A, 23 pounds; PT6-P, 29 pounds.
Wow and Flutter - . 2%
Frequency Response - 40 to 15,000 cycles; + or -2 db .
Tape Speed. - 15 inches or $7 \frac{1}{2}$ inches per second (Interchangeable).
Motor - Synchronous 1/50 HP.
Single Control
Rewind - 45 seconds.
Reels - Standard 7-inch 8MM film reels
Current failure never throws tape. Instantly interchangeable from portable to rack mounting.

Write today for detailed specifications
 Tllaquecord
 INCORPORATED

general plate Laminatedstocis

No one is in a better position to cut your electrical contact and precious metal costs than General Plate . . pioneers in laminated metals. Through long years of experience in the manufacture of precious to base metal combinations . . . and work with leading manufacturers of electrical and industrial products, General Plate gives you laminated metals that provide economical solutions to your problems.

General Plate Laminated Stock saves money because it eliminates a large waste of expensive silver. By
bonding silver or other precious metal to inexpensive base metal you get the high cost metal only where it's needed. The laminated construction not only lowers costs but increases operating life and makes fabrication of parts easier.
General Plate Laminated Stock is available in sheet, inlaid stripes, elevated stripe, edgelay, as well as tube and wire . . . buttons for spot welding or soldering; rivets or as completely fabricated parts made to your specifications. Write for information or engineering assistance.

GENERAL PLATE DIVISION

COSMALITE* COIL FORMS

Each specially designed and produced by us to give exceptional performance. and at a saving in cost to this country's lead. ing manufacturers of radio and television receivers.

Your specifications as to punching, threading, notching and grooving are followed with the most exacting care. Ask about our many stock punching dies available to you.

Are you familiar with our \#96 COSMALITE for coil forms in all standard broadcast receiving sets; SLF COSMALITE for permeability tuners: COSMALITE deflection yoke shells, cores and rings?

Spirally wound kraft and fish paper Coil Forms and Condenser Tubes.

* Trade Mark Registered

ThecIEVELAND CONTAINERC. 620 BAR BERTON AVE. CLEVELAND 2, OHIO 2 - All-Fibre Cans. Combination Metal and Paper Cans - Spirally Yound Tubes and Cores for all Purposes - Plastic and Combination Paper and Plastic Items

names in high precision electrical components is now able to make prompt deliveries on standard and special types of equipment. Every instrument built conforms with JAN I-6 and JAN R-19 specifications as well as A.S.A. standards.
Functional designing, ruggedness, accuracy and dependability are all

DeJUR RHEOSTAT-POTENTIOMETERS

There are models for electronic devices, radio transmitters, dynamic voltage control, portable power amplifiers, mixing panels, spot welding, motor control, etc. Available in standard, multiple or ganged units, and units with special resistance values and tolerances.

DeJUR ELECTRICAL INSTRUMENTS The DeJUR $11 / 2$-inch Model 112 Meier, measuring only $13 / 4$ inches square ond $25 / 32$-inch deep is capable of doing a man-sized iob where space is at a premium. This meter is built with fine watch precision. Available in standard ranges.
 the many types of precision instruments offered are:

- Voltmeters
- Ammeters
- Milliammeters
- Microammeters
- Volume Indicators
- Potentiometers

We solicit your inquiries and the coupon below is for your convenience.

Manufacturers of precision equipment
for over a quarter century

[^9]

Haydon engineers, in conjunction with the Eagle Signal Corporation, specified and produced to order the timing motor used in the Eagle's Microflex timer. The Microflex provides an exact adjustable delay between the closing of a control circuit and the subsequent opening or closing of a load circuit . . . a timer for industrial use where accuracy and dependability are paramount. The Microflex is but one example of Haydon's timing flexibility . . . based on teaming timing needs with such standard features of all Haydon motors as:

- Adaptability for individual requirements . . . 60 standard speeds and other variations.
- Accuracy for all timing purposes
- Ruggedness for maximum service

Thousands of industrial applications have proved the advantages of Haydon timing motors ... designed to fit your particular timing needs... showing that it takes teamwork to make timing accuracy profitable.
If it's time for timing, it's time for Haydon. Engineering Data Catalog and expert field service available on request. For immediate reference, see Haydon Catalog, Sweet's File for Product Designers.
Write 2410 Elm Street, Torrington, Connecticut HAYDON

MANUFAGTURING COMPANY, INC. TORRINGTON
 HARNESS TIME TO

SUBSIDIARY OF GENERAL TIME INSTRUMENTS CORPORATION

NEW PRODUCTS
by the user. The unit is of the moving magnet, interchangeable coil type and is designed for continuous duty. Minimum full scale range is 0 to 0.1 milliampere and maximum is 0 to 12 amperes. Sensitivity is 1 part in 1,000 .

Transcription Player

Califone Corp., 1041 N. Sycamore Ave., Hollywood 38, Calif. introduce a new portable transcription player. It reproduces with both 16 -in. transcriptions at $33 \frac{1}{3} \mathrm{rpm}$ and regular phonograph records at 78 rpm. It features a wow-free

9 -in. turntable, a pickup with replaceable permanent needle, a wide range amplifier and a heavy duty 6-in. speaker.

Small Radiation Meter

Tracerlab, Inc., 55 Oliver St., Boston 10, Mass. The Model SU-1A small portable radiation survey meter facilitates measurement of radiation in places difficult of ac-

KAY ELECTRIC COMPANY

KAY INSTRUMENTS COVER ALL BANDS

Including the proposed HF-TV Bands (475-890 MC)

The MEGA-MATCH (Standard)
Simultaneous visual display of reflected energy from antennas and terminations when used with standard oscilloscopes. Band width of display 30 mc anywhere between 10 and 250 mc . Completely electronic. Includes no slotted lines, mov* ing parts, bridges or other frequency sensitive devices. scope display indicates amount of reflected energy vs irequency. Precision frequency meter indicates frequency anywhere along the oscilloscope display. Reflection coetficients as low as can be observed. Internal delay cable allows display of External delay cable may be used to display reflected energy from termidelay cable may be used to display reflected energy from
nations of any practical impedance. Reflection coficients, nations of any practical impedance of terminating impedance ran be calculated from display-By use of auxiliary variable ian be calculated from display- By use of auxiliay cient and resistive and reactive components of terminating impedance may be calculated.

Price $\$ 695$ f.o.b. factory

THE MEGA-MATCHI (Modified)
The Mega-Match (Modified) meets all of the specifications and includes all the features of the standard model between 10 to 500 mc . With a slight increase in minimum observable reflection coefficient, this model can be used up to lo00 mc. Fence a visual display of reflected energy over band width Ep to 30 mc can be obtained from 10 to 1000 mc . This periormance provides an instrument suitable for use in testing antennas, terminaions, and r.f. input circuits in the proposed horh a convenient panel bands and standard and modified models of the Mega-Match available as a sweeping oscillator.

Price $\$ 895$ f.o.b. factory
Note: Standard models now in customers' hands modified at factory at price of $\$ 200$ f.o.b. factory.

MEGA-SWEEP pulse modulated by the MEGA-PULSER

THE MEGA-SWEEP
The Mega-Sweep, a wide range sweeping oscillator has been widely used as a source of frequency modulated test signal. Its features include a wide sweep (up to 3 me). ow amplitude medigible tion while sweeping (ess than ther than swept band, low output output sice (00 irequa and numerous others. It has been advertised as covering the frequency range of 50 kc to 500 mc since this range covered most requirements. By simple internal adjustment which can be made either by the customer or at our factory, its range can be extended to 1000 mc . The Mega-Sweep is therefore applicable to the proposed high frequency television bands and other high frequency work, By simple connections and adjustments the Mega-Sweep can serve as a carrier source when pulse modulated by the Mega-Pulser, providing ultra narrow pulsed r.f. at any frequency to 1000 mc .

Price $\$ 395$ f.o.b. factory

THE MEGA-PULSEIK

Provides very narrow pulses ($0.025,0.05,0.1$ and 0.25 microseconds wide), cmplitude 100 volts positive or negative across 50 ohms, repetition rate from internal trigger $100,1000,2000 \mathrm{pps}$. Output pulse delayed 0.25 microseconds from trigger pulser available (positive or negative) for starting sweep of auxiliary oscilloscope. Car be externally triggered by either positive or negative pulses. Output pulses .05 microseconds and greater flat-top, rise and fall time all output pulses 0.01 microseconds. Provides a spectrum which more than covers present or proposed television video amplifiers. The Megat-Pulser may be used to pulse modulate the Mega-Sweep with sweep width adjusted to zero. This combination provides a pulse modulated carrier up to
studying transient response of broad band r.f. circuits. Price $\$ 195$ f.o.b. factory

WRITE FOR FULL SPECIFICATIONS

KAY ELECTRIC CO., 25 MAPLE AVE., PINE BROOK, N. J. Telephone: CAldwell 6-3710

For every requirement

All MODELS HAVE THE SIMPLIFIED LOGARITHMIC SCALE

Ideal for the fccurate measurement of $A C$ voltages in the Audio, Supersonic, Carrier Current and Television ranges.

Use of Lograrithmic voltage scale assures uniform accuracy of reading over whole scale while permitting range switching in decade steps.

Each Voltmeter equipped with an output jack so that the instruments can be used as a highgain stable amplifier.

SPECIFICATIONS

MODEL 300
RANGE-. 001 to 100 volts.
FREQUENCY - IU to 150,000 cycles. ACCURACY- 2% at any point on scale. AC OPERATION-110-120 volts.

MODEL 304
RANGE-. 001 to 100 volts.
FREQUENCY- 30 c.p.s. to 5.5 megacycles ACCURACY-0.5 DB.
AC OPERATION-110-120 volts.
MODEL 302
RANGE- .001 to 100 volts
FREQUENCY-5 to 150,000 cycles.
ACCURACY- 2% at any point on scale. DC OPERATION-self-conlained batteries.

BILLITIINE LABORATORIES, INC.
BOONTON, NEW JERSEIUSA
cess. The unit has three full-scale ranges of approximately 25,250 and 2,500 milliroentgens per hour. It is powered by ten small batteries mounted in a replaceable lucite enclosure within the main instrument case.

Regulated Power Supply

The Howard Co., 934 Argyle Road, Drexel Hill, Pa. The new 300 -volt, $200-\mathrm{ma}$ power supply is regulated

within 1 volt from zero to full load with line voltage variation from 105 to 125 volts. Ripple is less than 10 millivolts at full load with 115 volts input.

Microgroove Changer

Webster-Chicago Corp., 5622 Bloomingdale Ave., Chicago 39, Ill. Model 133 has been designed to play new long-playing records at

33.3 rpm . The unit will handle up to ten 12 -in. or twelve $10-\mathrm{in}$. records for a total playing time of four hours. Retail price is $\$ 38.75$.

High-Fidelity Recording

Precision Audio Products, Inc., 1133 Broadway, New York 10, N. Y. The Wiremaster, a new wire recorder, has 13 tubes with push-pull 6V6 output and records and reproduces a frequency response of 40 to 10,000 cycles. Its 8 -in. extended

THOUSANDS OF FILTRONS - radio interference filters - are standard equipment on the majority of current Aircraft production. Thousands of others are in use in vital equipment, where radio interference must be suppressed.

Filtron's experienced Engineers, recognized authorities in the noise-suppression field, are available - immediately - to measure the RF interference caused by your product, and to specify a standard Filtron, or design the proper filter to meet Army, Navy, Air Force or FCC interference specifications.

Filtron will design the RIGHT filter for your circuit conditions, with exactly the right attenuation, ampere rating, voltage drop, temperature rise, mechanical arrangement, and space and weight limitations. Filtrons of any current or voltage
rating will be designed to meet your application.

Filtron's production capacity and skill will meet your delivery requirements.

All measurements are made in our new modern specially-designed shielded Radio Noise Suppression Laboratory.
"Filtron," the largest exclusive manufacturer of Radio Noise Filters, offers you the PROMPT services of their Engineers and facilities to make your product "Noise Free."

RADIO NOISE FILTERS FOR:

Electric Motors
Electric Generators
Electronic Contıols
Electronic Equipment
Fluórescent Lights
Oil Burners

Signal Systems
Business Machines
Electronic Heating Equipment

Electric Appliances
Electronic Signs

38-25 BELL BOULEVARD
BAYSIDE, NEW YORK CITY, N. Y.

At long last-

The G.M. counter tube reaches maturity in the new all metal *THYRODE 1B85

Victoreen radiation measuring instruments for laboratory and field determinations together with such components as the VX series subminiature electrometer tubes, vacuum sealed hi-meg resistors and G-M counter tubes have made notable contributions to the present refinement of radiation instrumentation.

McGraw-Hill Industrial Mailing Lists are a direct route to today's purchase-controlling executives and technicians in practically every major industry.

These names are of particular value now when most manufacturers are experiencing constantly increasing difficulty in maintaining their own lists.

Probably no other organization is as well equipped as McGraw-Hill to solve the complicated problem of list maintenance during this period of unparalleled changes in industrial personnel. These lists are compiled from exclusive sources, based on hundreds of thousands of mail questionnaires and the reports of a nationwide field staff, and are maintained on a twenty-four hour basis.

Investigate their tremendous possibilities in relation to your own product or service. Your specifications are our guide in recommending the particular McGraw-Hill lists that best cover your market. When planning your industrial advertising and sales promotional activities, ask for more facts or, better still, write today. No obligation, of course.

McGraw-Hill Publishing Co., Inc. dIRECT MAIL DIVISION
330 West 42nd Street
New York, 18, N. Y.
 ENGINEERED FOR ENGINEERS

OSCILLOSYNCHROSCOPE

Model OL-15B

Designed for maximum usefulness in labora. tories doing a variety of research work, this instrument is suited to radar, television, communication. facsimile, and applications involving extremely short pulses or transients. It provides a variety of time bases. triggers. phasing and delay circuits, and extendedrange amplifiers in combination with all standard oscilloscope functions.

THESE fEATURES ARE IMPORTANT TO YOU

- Extended.range amplifiers: vertical. flat within 3 db 5 cycles to 6 megacycles; horizontal, flat within 1 db 5 cycles to 1 megacycle.
- High sensitivity: vertical, 0.05 RMS volts per inch; horizontal 0.1 RMS volts per inch.
- Single-sweep triggered time base permits observation of transients or ir-
regularly recurring phenomena.
- Variable delay circuit usable with external or internal trigger or separate from 'scope.
- Sawtooth sweep range covers 5 cycles to 500 kilocycles per second.
- 4,000 volt acceleration gives superior intensity and definition.

For complete data, request Bulletin 4810-MO

SWEEP CALIBRATOR

Model GL-22
This versatile source of timing markers provides these requisites for accurate time and frequency measurements with an oscilloscope:

- Positive and negative markers at $0.1,0.5,1.0,10$, and 100 microseconds.
- Marker amplitude variable to 50 volts.
- Gate having variable width and amplitude for blanking or timing.
- Trigger generator with positive and negative outputs.
Further details are given in Bulletin 4810-MC.

SQUARE-WAVE MODULATOR AND POWER SUPPLY

Model TVN-7
Here is the heart of a super high frequency signal generator with square wave, FM, or pulse modulation. Provides for grid pulse modulation to 60 volts, reflector pulse modulation to 100 volts, square wave modulation from 600 to 2.500 cycles. Voltage-regulated power supply continuously variable $280-480$ or $180-300$ volts dc. For additional data and application notes, see Bulletin 4810-MM.

STANDING WAVE RATIO METER AND HIGH GAIN AUDIO AMPLIFIER Model TAA- 16

Write for Bulletin 4810-MA containing full details of this useful instrument.

- Standing wave voltage ratios are read directly on the panel meter of this sensitive, accurate measuring instrument.
- Frequency range 500 to 5.000 cycles per second.
- Two input channels with separate gain control for each.
- "Wide-band" sensitivity 15 microvolts full scale.
- "Selective" sensitivity 10 microvolts full scale.
- Bolometer/crystal switch adjusts input circuit to signal source.

In Canada, address Meagurement Engineering Ltd., Arnprior, Ontario.

BROWNING Laboratorles. Inc. Winchester, Mast. NGINEERED FOR ENGINEERS
line, antenna, and related equipment, with type numbers, descriptions and prices for over 600 items. A cross index is enclosed with the bulletin.

Fiber. Spaulding Fibre Co., Inc., 310 Wheeler St., Tonawanda, N. Y. Various types and grades of fiber rod are summarized and listed in a recently issued brochure.

Fasteners. Shakeproof Inc., 2501 North Keeler Ave., Chicago 39, Ill., has issued a booklet entitled "Fastening Suggestions" that describes a number of special fastener problems and their solution.

Shielded-Section Capacitor. Cornell Dubilier, South Plainfield, N. J. A shielded multiple section capacitor type MC-9A63 has four 0.02 -microfarad sections with voltage ratings for 500 v d-c. Details are given in sheet NB-107.

Rectifier. National Electronics, Inc., Geneva, Ill., has recently released full technical information on the new single ended 2 -ampere industrial rectifier tube type NL649.

Brushes. Stackpole Carbon Co., St. Marys, Pa. A 44-page "Fractional Horsepower Equipment User's Guide" just issued contains helpful information on selecting and applying brushes for longer life and better performance.

Battery Terminal. James A. Stanley Co., 277 Broadway, New York 7, N. Y. A brochure can be had describing the new B-319 battery terminal that employs a springtension connection to a storage battery terminal post. The new terminal is particularly useful in mobile radio installations.

A-C Motor Control. Louis Allis Co., Milwaukee 7, Wis. Characteristics of the Ajusto-Spede are presented in four pages. The device is characterized as an a-c motor having infinitely adjustable speed.

Photoelectric Counter. Photoswitch, Inc., 77 Broadway, Cambridge 42, Mass. Bulletin PA482

MEMO TO PRESIDENTS

 WHO WATCHED THE BAND GO BY!HERE'S ONE parade that isn't "all over but the shouting" after the band has passed. It's the Payroll Savings Plan for the regular purchase of U.S. Security Bonds by employees.
Though the formal spring campaign to sell Bonds is over, any company can still move forward with the parade. Right now thousands of companies are putting additional push behind their Payroll Savings Plans. Managements of many companies that have not yet participated are now installing the Plan.

It's a "look-ahead" plan, that benefits employee, company, and nation. Every $\$ 3$ invested in Bonds pay $\$ 4$ at maturity. Persomel records in the plants with active P.S.P. programs show improved employee attitudes-evidenced by less absenteeism and fewer accidents-as the individual's sense of security grows with Bond purchases. And every Security Bond dollar built up in the Treasury retires a dollar of the national debt that is potentially inflationary. It means less bidding-up of prices. Moreover, Bond buyers are better citizens because they have a tangible stake in the nation's future.

It's just as easy to take action now as when the campaign was at its height. Just call your Treasury Department's State Director, Savings Bonds Division, and ask for the material that helps to get a Payroll Plan started or to keep it rolling.

The Treasury Department acknowledges with appreciation the publication of this message by

ELECTRONICS

This is an official U.S. Treasury advertisement prepared under the auspices of the Treasury Department and the Advertising Council.

S8-B General Purpose, 12 to 24 elements, for laboratory or field use, quick-change transmission for wide range of record speeds, automatic titling and numbering, automatic record-length control, tuning fork time marker, galvanometer attenuators, governor motor.
(Bulletin SP165)
S8-C General Purpose, 24 to 36 elements. otherwise same as type S8.B.
(Bulletin SP165)
S8-D
General Purpose, 12 to 24 ele. ments, similar to type $\mathrm{S} 8 \cdot \mathrm{~B}$ except without automatic controls.
(Bulletin SP175)
S12-A Small Portable, General Purpose, the smallest complete 12 -element oscillograph.
(Bulletin SP167)
S6-A Geophysical, 12 elements.
S6-B Geophysical, 24 elements.
S14-A Student's Oscillograph, 6 to 12 elements, ultra-simple, low in cost.
(Bulletin SP183)
S15-A Portable Selif.powered, 6 ele. ments, for use where very small size is essential and power is not available.
(Bulletin SP193)
SC16-A Cathode Ray. 6 elements. very high frequency response and writing speed, record speed to 6000 inches per second.
(Bulletin SP194)
RS9-A Automatic Oscillograph. 12 elements, for switchboard or portable use, for automatic recording of faults or staged system testing. high.speed starting.
(Bulletin SP196)
Whatever your requirements may BE THERE IS A
hathaway oscillograph for you

WRITE FOR TECHNICAL BULLETIN

Tough Material...

but not too tough for WATERTOWN

For years, Watertown has been tackling jobs like thas one for R-B-M Division of Essex Wire Corporation, Logansport, Indiana, and coming up with the right answer.
R-B-M needed molded plastic parts for two new devices recently announced - reversing and non-reversing industriat contactors. These contactors are used on hoists, overhead doors, machine tools and other industrial equipment where long dependable service is mandatory.
Melamine was selected for the job - it safely withstood all the elements of tropical warfare in vital aircraft engine parts, and its high arc resistant characteristic makes it ideally suited for electrical insulation.
Melamine, while more difficult to mold and machine than phenolic or cold molded insulation, is preferred as its slightly higher cost is more than offset by its superior insulating quality. Watertown engineering developed a method to mold these complex parts with all their slots, holes, recesses, studs, bosses and metal inserts at a reasonable price.
Experience since 1915 with every type of plastic and countless jobs involving compression, transfer or injection molding enable Watertown engineers to tackle just about anything involving plastics. Perhaps you have a problem, too.
THE WATERTOWN MANUFACTURING CO. 777 ECHO LAKE RD., WATERTOWN, CONN.

Introducing

VARIAN ASSOCIATES

Specialists in research, development, and pilot manufacture of vacuum tubes and other devices in the electronic, microwave, and physical research fields.

Technical staff includes:

Russell H. Varian
H. Myrl Stearns

Fred L. Salisbury

Sigurd F. Varian
Elliott Levinthal
Don L. Snow

Consultants and directors comprise scientists who participated in the original klystron and microwave research and development and in important phases of nuclear physics.

Incorporated April 20, 1948

ELECTRONIC TESTING AND TUBE FABRICATION LABORATORY - MODEL MACHINE SHOP

98 WASHINGTON STREET
SAN CARLOS, CALIFORNIA
 Standard Propellers... for measuring natural frequencies or speed of rotating objects, checking or calibrating tachometers, oscillators, impulse generators, similar equipment. C. G. CONN LTD., DEPT. 1012 ELKHART, IND.

FOR FINER LATERAL REPRODUCTION

(and other benefits explained in Bulletin No. 3)
COLUMBIA BROADCASTING SYSTEM and
AMERICAN BROADCASTING COMPANY
(as well as hundreds of independent stations) hove placed

GRAY TRANSCRPPTION ARMS and EQUALIZERS

on every transcription table

Ideal for the New Long Playing Micro-Groove Records The Gray Transcription Arm gives you improved quality of reproduction, greatly extended life of stylus and recordings, economical operation, as well as low first cost. Due to such features as adjustable stylus pressure, frictionless motion, self-leveling base and the accommodation of any standard cartridge, arm obsolescence is precluded.

The Gray \#601 4-position Equalizer for GE Cartridge, finest performance and workmanship, ideal response curves. Matches pickup to

Write for our Bulletin \#5 on Selected GE Reproducers, with Diamond Styli for almost unlimi-
ted life. ted life. microphone channel.

GRAY RESEARCH \& DEVELOPMENT COMPANY, Inc.

Keep high voltage off your test instruments!

You can make high voltage and television measurements on a low voltage multimeter with complete safety if you use these Reiner H. V. M. leads. They have special high-voltage type resistors built into the prod handles. The entire voltage drop is virtually complete

REINER H. V. M. LEADS are available in the necessary ranges for all popular V.T. Volimeters. Special ranges and sensitivities can be supplied on order. Write for bulletin \#111.

use REINER HIGH VOLTAGE MULTIPLIER LEADS

accurate within 2\%

before the wire lead of the cord is reached, leaving the tip of the lead relatively "cold". Supplied in standard scale ranges from 5,000 to 30,000 volts and in sensitivities of 5,000 to 25,000 ohms per volt. Write for price and application chart-bulletin \#111.

Now . . the TV high voltage test problem solved with safety and operational confidence.

A súper high voltage, custom-molded test probe, "Application Engineered" for the job the jobsted on the job . . . approved for the job.

Designed for SAFETY FIRST.
Rapid removal and interchange of the cartridge multiplier permits the TV probe to be used with more than one multi-range test set, vio purchase of appropriate cartridge.*

Series TV High Voltage Test Probes are now on display at leading radio parts distributors and are available as follows: TYP-High Voltage Test Probe LESS multiplier cartridge. \$12.35 Net
TV-1-Model TVP WITH Cartridge for Precision Series EV-10 VTVM. $\$ 15.45$ Net
TV-2-Model TVP WITH Cartridge for Precision (or ony) 20,000 ohms per volt test set with built-in 6000 'V. D.C. range. $\$ 15.45$ Net
*Stock and special value multiplier cartridges available to match popular high sensitivity test sets.

Series TV High Voltage Test Probes provide direct kilovoltmeter facilities with existing high sensitivity test, sets, and VTVM's such as the "Precision" models described below: Write for illustrated 1948 catalog describing complete line of electronic test instruments.

> ——MODEL 85——

Lab. Type 20,000 ohms per volt AC-DC test set. 34 rotary selective ranges to 6000 V ., 60 Megs., 12 Amps., 70 DB, $41 / 2^{\prime \prime}$ meter. $\$ 38.75$
— MODEL 858-L —

20,000 ohms per volt Multi-Master, AC-DC V-O-M. 54 push-button operated ranges to 6000 V.O-M. 600 Megs., 12 Amps., 70 DB. $41 / 2^{\prime \prime}$ meter. $\$ 54.10$
— MODEL EV-10-MCP -

Multi-range, zero-center VTVM plus AC-DC $\mathrm{V}-\mathrm{O}-\mathrm{M}$ facilities to 6000 V., 2000 Megs. 12 Amps., 70 DB. With large $\mathbf{7}^{\prime \prime}$ meter. $\$ 89.95$
— MODEL 10-54-P -

Electronamic Tube Tester, and 20,000 ohms per volt AC-DC V-O-M. Ranges to 6000 V. 12 Amps., 60 Megs., 70 DB. $41 / 2^{\prime \prime}$ meter. $\$ 13{ }^{\prime} 4.40$

NEW PRODUCTS
(continued)
copies of bulletins 4452 and 4453 describing heavy-duty solenoid contactors.

High-Frequency Resistors. International Resistance Co., 401 N . Broad St., Philadelphia 8, Pa . Complete specifications and characteristics for type MP high-frequency resistors are given in a 4 page technical data bulletin F-1.

Motor Controls. Square D Co., 4041 N. Richards St., Milwaukee 12, Wis. New products and modified listings for holders of the Electric Motor Control catalog were issued as of July 28, 1948.

Crystals. Reeves-Hoffman Corp., 321 Cherry St., Carlisle, Pa. A catalog covers the complete line of quartz crystal units for calibration, mobile, aircraft, and commercial crystal applications. Bulletin RHC features a small universal holder for frequency coverage from 50 kc to 100 mc .

A-M Transmitters. Radio Corp. of America, Camden, N. J. A 24page descriptive brochure provides comprehensive information on $5-\mathrm{kw}$ and $10-\mathrm{kw}$ a-m broadcast transmitters. It is profusely illustrated with schematic diagrams, specifications, layouts, and photographs. Write Department 516.

Capacitor, Tetrode, and Socket. Eitel-McCullough, Inc., San Bruno, Calif. Variable vacuum capacitors that can be mounted singly or in gangs, the type 4-400A r-f amplifier power tetrode, and the special air-system socket are all pictured in brochures available from the company.

Metal Problems. International Nickel Co., Inc., 67 Wall St., New York 5, N. Y. A new booklet entitled "66 Practical Ideas for Metal Problems in Electrical Products" should be interesting reading for the designer of electronic products with problems in choice of proper metal for fabrication.

Assorted Instruments. Kalbfell Laboratories, Inc., 1076 Morena Blvd., San Diego 10, Calif. A heterodyne detector, bridged-T filter, decade amplifier, and the

For Inverting D. C. to A. C. . . . Specially Designed for operating A. C. Radios, Television Sets, Amplifiers, Address Systems, and Radio Test Equipment from D. C. Voltages in Vehicles, Ships, Trains, Planes and in D.C. Districts.

Curtis Type " M " Terminal Blocks are now available in convenient kits . . . with sufficient components to make up a number of custom or one-time blocks. Easy and quick
you can build blocks with an assortment of terminals from 2 to 12. Molded terminals provide ample insulation from metal base. Type " M " kits are the answer for engineering, research, maintenance and repair. Order your supply today!

Write for your for of Bulletin DS-122

CIJRTIS DEVELOPMENT \& MFG. CO.

Terminal Block Sales
5 North Crawford Avenue Chicago 24, Illinois

Four commonly used voltages from a single compact unit! Separate voltage supplies, ordinarily derived from three or four cumbersome power units, now concentrated in one!. That is what the Kepco Multiple Power Supply brings to busy engineers in the industrial laboratory, for greater convenience and speed in experiments and research work.
Any voltage you need is instantly available through the Kepco Multiple Power Supply-for heater, plate and grids-for studying the characteristics of vacuum and gas filled tubes. Contains:
Two continuously variable B supplies from 0 to 300 volts or currents up to 120 ma . One continuously variable C supply from minus 50 to plus 50 volts at 5 ma .
One heater supply delivering 6.3 volts at 5 amperes.
The two B supplies originate from a common power transformer; the C supply

LKepco MULTIPLE SUPPLY

originates from a separate power transformer and rectifying circuit. B supplies cannot be burned out even if terminals are shorted. Control circuit eliminates the use of heavy duty power potential dividers.

Complete voltage control from front panel, including power switch and pilot light indicating "Off" and "On." All voltages brought out to binding posts along lower edge of front panel.
Strong construction; all component parts of highest quality. Dimensions: Length 16"; height $8^{\prime \prime}$; depth $83 / 4^{\prime \prime}$. Weight 28 lbs.

Complete details on request
Kepco Laboratories, Inc.
149-14 41st Avenue, Flushing, N. Y.

FASTER, SIMPLER
AUDIO ANALYSIS with Model AP-1

PANORAMIC SONIC ANALYZER

Reduce time, complexity and cost of making audio measurements with the unusual advantages offered by the Panoramic Sonic Analyzer. By resolving a complex audio wave into a spectrograph showing the frequency distribution and voltage amplitude of the components, Model AP-1...

- Eliminates slow point-by-point frequency checks - Provides a quick overall view of the audio spectrum - Enables determination of changes in waveform content while parameters are varied - Furnishes simple presentations for production line testing.

Use Model AP. 1 for analyzing . . . - Harmonics - Infermodulation - Vibration - Noise - Acoustics - Materials
Features... Confinuous scanning from 40$20,000 \mathrm{cps}$ in one second - Wide input voltage range - Linear and log voltage scale - Closely logarithmic frequency scale - Built-in voltage and frequency calibrafor - Simple operation.

Visit our Booth $\# 7$
National Electronics Conference

micro-miker are briefly listed on a specification sheet.

Components. Aircraft Radio Corp., Boonton, N. J. A series of bulletins made up in catalog form covering a wide variety of test equipment, microwave accessories and electronic component parts. Photographs and mechanical drawings are included.

Wire Catalog. Alpha Wire Corp., New York 13, N. Y. A complete line of wire and wire products for the radio, automotive and electrical industries is covered in the twelve-page catalog no. 48. Specifications for each type are given.

Coil Winding. Universal Winding Co., P.O. Box 1605, Providence 1, R. I. Information covering improvements in coil winding equipment and new ideas in the winding operation may be found in a series of single sheet publications.

Capacitor Information. Herlec Corporation, 422 North Fifth St., Milwaukee 3, Wisconsin, recently issued two new catalog sheets. One deals with types, physical dimensions and standard values of 'bypass and audio coupling capacitors together with diagrams of ""Bulplates," incorporating several capacitors. The other gives a general description, specifications, and instructions for ordering metal cup capacitors.

Antennas. Tricraft Products Co., 1535 N. Ashland Ave., Chicago 22, Ill., presents in a 16 -page booklet the electrical performance data on the models 300 and 400 all-wave television and f-m antennas. Two descriptive catalog leaflets are also included.

Machining Plastics. Monsanto Chemical Co., Springfield, Mass. Bulletin 52 tells how to do it if the cost of a polystyrene plastic article is below that warranting the use of an expensive mold.

Tube Applications. Radio Corp. of America, Harrison, N. J. Several new tube application notes numbered AN-134 through AN-137 have recently been issued dealing with adjustment of filament voltage

Finished speaker test for buzz, spurious response and acoustical characleristics.

SELECTION by TEST means FINER SPEAKERS for YOU

FROM the primary elements that enter into the assembly of a General Electric speaker, down to the completed unit, tests are made continuously to maintain quality standards.
Before it is shipped, every G-E speaker is given a final testbuzz, spurious response and acoustical characteristics are carefully checked.
Every speaker must meet that final test satisfactorily before it can be shipped. Such care in checking results in greater acceptance, customer satisfaction-and volume sales for you.
To all the outstanding features in G-E speakers add the one element that assures those features-for your benefit . . . for customer confidence . . . Tests.

Write today for all the information you require on G-E quality speakers-or enclose your order. General Electric Company, Electronics Park, Syracuse, New York.

New R-F Oscillator

for general laboratory use and as a signal source for

R-F bridges
Write today for Bulletin 408 containing complete informotion and specifications on the Type 410-A R-F Oscillator

NOTE THESE FEATURES

- 100 ke to 10 Mc
- High output—approximately 30 volts
- 50-60 \& output impedance
- Internal modulation
- Output voltmeter
- Excellent stability
- Accurate, individually - calibrated frequency scale.
- Expanded frequency scale.
 TECHNOLOGY INSTRUMENT CORPORATION 1058 MAIN STREET, WALTHAM 54, MASS. Midwest Office: Alfred Crossley \& Associates, 549 W. Randolph St., Chicago 6, III. STAte 7444
ALTEC LANSING NOW "PACKAGES" ALL COMPONENTS FOR A COMPLETE HIGH FIDELITY RADIO-PHONOGRAPH SYSTEM TO BUILD INTO YOUR HOME

The Altec Lansing Custom-in-Built Music System consists of the famous Altec Lansing Duplex speaker, a special Altec Lansing amplifier, a newly designed TRF Altec Lansing AM-FM tuner, and the Webster 70 record changer with GE variable reluctance pick-up. Integrated with the structure of your room, this system transcends completely the inherent acoustical and electronic limitations of conventional radio-phonographs, eliminates radio "furniture," and reproduces the

[^10]
full range of sound (35 to 16,000 cycles). It achieves the highest faithfulness to living sound now known to science. Built-in Altec Lansing Daylight Television can also be included. Complete installation instructions come with each system.
A brochure will be sent on request.
ALTEC

LANSING

 custom-in-builtbome music system

Where SPACE and PBRFORMANCE are Vital DUMONT OFRERS anvult

SMALIEST PAPER CAPACITOR yet 100\% MOISTUREPROOF

are the largest selling miniature paper capacitors in the world.

- Good for $100^{\circ} \mathrm{C}$
- Leads CANNOt pull out
- CAP.from . 0001 to 2 MFD from 100 volts to 1000 volts.

of the 1 B 3 by observation of filament temperature, reduction in peak inverse voltage rating, overload protection for horizontal deflection circuits, and single-section filament operation of 3 S 4 and 3 V 4 .

Marine Radiophones. Rex Bassett, Inc., Fort Lauderdale, Fla. A folder lists the various two-way marine radiotelephones for tug boats, fishing vessels, tankers and yachts.

Tubes. Radio Corp. of America, Harrison, N. J. Specification sheets on the type 812-A power triode, type 672-A thyratron, and the type 4 X 500 A power tetrode are now in printed form.

High-Power Solenoid. B/W Controller Corp., Birmingham, Mich. Bulletin SOL-2 devotes four pages to an illustrated description of the Hi Power small space, a-c solenoid. Specifications, charts and dimensional drawings are included.

Cast Parts. Austenal Laboratories, Inc., 224 E. 39th St., New York 16, N. Y. A 16-page booklet entitled "New Horizons with Microcastings" contains a number of interesting examples of parts produced by the Microcast process for use in the electronics field.

Synthetic Elastics. E. I. duPont de Nemours and Co., Inc., Fairfield, Conn. Properties and uses of Fairprene, a synthetic elastic composition are described in a 12 page manual. Each of the three groups of Fairprene products is illustrated.

Air-spaced Cables. Transradio Ltd., 138A Cromwell Road, London SW7, England. Publication 27 lists new types of Co-Ax airspaced articulated r-f cables. They can be used for flexible highpower transmission lines, very low-capacitance cables, and photocell leads.

Transformers. Electro Engineering Works, 6021 College Ave., Oakland 11, Calif. Using modern techniques, this company makes all types of radio, industrial, audio, and other transformers as

INSURE ACCURACY AND RELIABILITY

 IN HÁpmitinsulation testers

Photo and lllustration courtesy of
Canadian Line Materials, Ltd. Toronto, Canada

The "Hipot" Test Stick is used to test Bushings and Insulators on high voltage transmission lines from 11 to 230 K'V. It consists of telescoping bakelive stick sections each containing a series of S.S.White Resistors to step the voltages down to minute values for measurement.

The manufacturer, Canadian Line Materials, Ltd., Toronto, Canada says -"We have always found S.S.White Resistors of highest quality. They have characteristics which insure con-
(Above) Schematic wiring diagram of the "Hipot" test stick Each tele. scoping stick section contains a number of S.S. White Resistors hooked up in series. This permits the resistances to be varied from 72 to 312 megohms. sistently accurate and dependable readings on the indicating instruments."

WRITE FOR BULLETIN 4505
It gives essential data about S.S.White Resistors including construction, characteristics, dimensions, etc. Copy with price list on request.

S.S.WHITE
 the s.s. white dental mfe. co.

(2)Cyclohm 2500 Motors are designed with greater precision and compactness than any other motors of their type-and the result is greater output . . . perfect rigidity ... quieter performance. Synchronous type for instruments, timing devices and facsimile operations . . . Non Synchronous for general applications . . Speed Reducer for work requiring slow speeds and high torques. Ball bearings or sleeve bearings.

300 IN. OZ. AT 1 RPM

 with gear unitVarious speeds, voltages and frequencies available. Write for complete information.

CYCLOHM MOTOR CORP.

Division Howard Industries, Inc.
5-17 46th Road, Long Island City 1, N. Y.
 MOTORS

HEAT RESISTANT WIRES FOR EVERY APPLICATION

Do your new circuit designs call for heat resistance wire that's tough and ruggedwire that can take it day after day through countless hours of operation? Then check Lewis Asbestos Covered Wire before you specify. Regardless of what your wire problem is-dropping excessive voltages-filament dropping resistor in the line-high current conductors, it doesn't matter, just . . .

Let Lewis Build The Wire For You

Send your electronic control, communications or appliance wiring specifications for a recommended solution by our engineers. FOR A TRIAL ORDER OR A CARLOAD consult

THE LEWIS ENGINEERING CO.
21ノiにo
Didri-si_sfi
NAUGATUCK
CONNECTICUT

suitable to Volume

Production...it may
pay you to call upon

United-Carr and its
subsidiaries. They
have helped many

* SPEED PRODUCTION
* TURN OUT FINER FINISHED PRODUCTS

well as magnets and saturable reactors, according. to a catalog sheet just issued.

Industrial Glass. Kopp Glass, Inc., Swissvale, Pa. A new 24-page bulletin just printed in color describes glass products for industry, including some for the electronics field.

Vibration Control. Vibrashock Division of Robinson Aviation, Inc., Malcolm Ave., Teterboro, N. J., announces a new catalog, particularly for product design engineers, showing complete suspensions for the mounting of equipment in standard and special sizes. The many factors entering into vibration control are treated.

Insulation Testing. Associated Research, Inc., 231 S. Green St., Chicago 7, Ill. Bulletin 302 explains the applications and use of the model 404 Hypot, an instrument which independently tests breakdown, leakage, and shorting of insulation with the use of lights to discriminate between them. Range is from 0 to 4,000 volts.

Plastics. General Electric Co., Chemical Dept., Pittsfield, Mass. Bulletin CDP-578 is a 15 -page illustrated description of molded and laminated plastics. Also discussed are sealing caps and sleeves, mycalex, silicone rubber, and h-f insulation. Property tables are included for reference.

Permanent Magnets. General Electric Co., Chemical Dept., Pittsfield, Mass. CDM-12 is an eightpage illustrated bulletin describing cast and sintered Alnico, Cunife, Cunico, Vectolite, Silmanal and various permanent magnet holding assemblies. Special alloys are also discussed.

Interlock Switch. Micro Switch, Freeport, Ill. Data sheet no. 45 describes the 1 AC 1 and 1 AC 2 interlock door switches designed for use on h-f radio, radar, x-ray and television equipment cabinets, induction heating equipment, and electronic controls of all types.

Electromatic Tester. Tinius Olsen Testing Machine Co., 1022 Easton Rd., Willow Grove, Pa. Bulletin 37

HARDWICK, HINDLE

Tthese fine sliding contact rheostats are widely used in laboratories. They serve as rheostats or potentiometers; -portable, easily mounted, with fine gradations of adjustment.

These sturdy, improved tubular rheostats are used for accurate adjustment of voltage or current in meter-checking laboratories; -as field rheostats for generator and motor control;-as filament and plate control in radio and audio transmitting and amplifying apparatus;-for control of illumination and heat control in electric furnaces and ovens; as well as in general laboratory use.

Available in 3 sizes: 200,400 and 750 watts with any one of 3 types of control.

Hardwick, Hindle resistors and rheostats offer many exclusive advantages. We ask you to give our engineers an opportunity to discuss your specific requirements.

HMRDWICR, HINDLE,INC.

Rheostats and Resistors

Subsidiary of

THE NATIONAL LOCK WASHER COMPANY

NEWARK 5, N. J.
Established 1886
U. S. A.

BAR \& DOT GENERATOR

Efficient push-button unit for swift. precise adjustment of horizontal \& vertical sweep linearity of television receivers. Used in conjunction with Standard Synchronizing Signal and Monoscope Generator or other patlern or picture signal generator. Requires only $51 / 4^{\prime \prime}$ of standard rack space. Five convenient pushbuttons allow instantaneous selection of: - Standard blanking Vertical bars only - Horizontal bars only - Vertical \& horizontal bars . Complete dot pattern. Has phasing control for adjustment of vertical bar position. Power supply is self contained.

CRYSTAL CONTROLLED MULTI-FREQUENCY GENERATOR

A 10 frequency, 400 cps moduloted crystal controlled oscillator, ideal for production line adiustment of stagger tuned I.F. amplifiers in television sets. Available with crystals ranging from 17 to 40 mc . provided to exact frequency and in sequence specified by customer. Each fre. quency is immediately selectable by means of a push bution. Output adjustable. Power supply is self contained.

Write for bulletins $2000 \& 1900$

IEL Instrument Co. Inc.

50 PATERSON AVE.
Easł Rutherford, New Jersey RUtherford 2-9720
is a four-page folder devoted to the Electromatic low-capacity universal testing machine. The unit gives wide spread ranges of 250 to 1 , extension ranges of 200 to 1 and straining ranges of 400 to 1 . Complete specifications are listed.

Waterproof Connectors. Cannon Electric Development Co., 3209 Humboldt St., Los Angeles 31, Calif. A new 6-page bulletin W-248 gives dimensional data on the three sizes of type W waterproof connectors, together with photos of underwater geophysical applications. These plugs and receptacles are built to withstand pressures up to 250 pounds or approximately 550 ft underwater for all types of circuits in radio, sound, or power.

Electrical Connectors. Mines Equipment Co., Dept. 12, 4215 Clayton Ave., St. Louis 10, Mo. Bulletin MC108 illustrates and describes in detail a line of molded neopreme rubber electrical connectors and associated equipment. Products are identified by short three-letter symbols. Tabular index is included.

Cylindrical Capacitors. CornellDubilier Electric Corp., South Plainfield, N. J. Descriptive bulletin NB-105 treats of the compact cylindrical-type capacitors, RC-111 and RC-112. Ratings are $0.005 \mu \mathrm{f}$ at 6,000 volts $d-c$ and 0.05 uf at 6,000 volts $d-c$, respectively. They are designed for safe operation from -55 to +100 C , are hermetically sealed, and Dykanol impregnated and filled.

Technician's Catalog. Walter L. Schott Co., 9306 Santa Monica Blvd., Beverly Hills, Calif. The 1948 catalog lists and describes a complete line of hardware, chemicals, tools, finishing materials, and service items for the electronic technician. Prices are included.

Insulation Tester. Herman H. Sticht Co., Inc., 27 Park Place, New York, N. Y. Illustrations, general description, outstanding features and specifications of the Minor Megohmer insulation tester are found in bulletin 450 . The portable instrument weighs three pounds. It has a d-c generator with a 500 -volt d-c output, and measures up to 50 megohms.

Designed for
 Application

The No. 69040 Series of
PEFMEABILITY TUNED CERAMIC FORMS

In addition to the popular shielded plug tin permeability tuned forms, 74000 series, the 69040 series of ceramic permeability funed unshielded forms are avoilable as standard stack itemis. Winding diameters and lengths of winding space are $13 / 32 \times 7 / 32 ; 1 / 4 \times 3 / 8$; and $1 / 2 \times 1 / 15$, for the 69041,69043 and 69045 respectively. Nos. 69043 and 69046 have powdered iron slugs while Nos. 69041 and 69045 have copper slugs.

JAMES MILLEN MFG. CO., INC.

MAIN OFFICE AND FACTORY MALDEN
MASSACHUSETTS

Additions and Corrections
 PRODUCT LISTINGS

The following listings are to be used in conjunction with the June 1948-1949 ELECTRONICS BUYERS' GUIDE for information on manufacturers' names, addresses and products omitted or incorrectly listed in that issue.

AMPLIFIERS—Audio Frequency
Allied Radio Corp., 833 W . Jackson Blvd., Planet Radio Mfg. Corp., 6508 Euclid Ave., Cleveland 3 , Ohio

AMPLIFIERS—Audio Input Systems
Allied Radio Corp, 833 W. Jackson Elvd. Chicago 7, 111.

AMPLIFIERS—Decade
Keithly Instrument Co., 1508 Crawford Road, Cleveland 6, Ohio

AMPLIFIERS_Facsimile

Acme Telectronix, Div, of NEA Service Inc., West Third and Lakeside, Cleveland 13, Ohio

AMPLIFIERS—Peak Limiting

Acme Telectronix, Div. of NEA Service Inc., West Third and Lakeside, Cleveland 13, Ohio

AMPLIFIERS_Photocell

Acme Telectronix, Div. of NEA Service inc., West Third and Lakeside, Cleveand 13, Ohio

AMPLIFIERS—Wideband

Tel-Instrument Company, Inc. 50 Paterson Ave., East Rutherford, N. J.

ANTENNAS—Television

Intra-Video Corp. of America 851 Madi-
son Ave., New York 21, N. \mathbf{Y}.

ATTENUATORS

Shallcross Mfg. Co., 10 Jackson Ave.,
Collingdale, Pa.

CAPACITORS-Oil Impregnated

Crown Capacitor Corp., Minot \& Depot Sts., Wrentham, Mass.

CAPACITORS—Paper Tubular

Crown Capacitor Corp., Minot \& Depot Sts., Wrentham, Mass.

CAPACITORS—Wax Impregnated

Crown Capacitor Corp., Minot \& Depot Sts., Wrentham, Mass.

CHOKES_Fi/ter

Empire Coil Co., Inc.,
New Rochelle, N.
238 Huguenot St.,

COIL ASSEMBLIES

Fugle-Miller Laboratories, 398 Main St. Metuchen, N. J.

COILS—Antenna

Fugle-Miller Laboratories, 398 Main St. Metuchen, N. J.

COILS—Choke

Empire Coil Co., Inc., 238 Huguenot St. ugle-Miller Laboratories, es, 398 Main St.

COILS-Magnet

Fugle-Miller Laboratories, 398 Main St. Metuchen, N. J.

COILS—Multiple Wound

Fugle-Miller Laboratories, 398 Main St., Metuchen, N. J.

COILS—Pickup

Fugle-Miller Laboratories, 398 Main St., Metuchen, N. J.

COILS—Power \& a-f Coils \& Windings
Fugle-Miller Laboratories, 398 Main St., Metuchen, N. J.

COILS—r-f \& i-f Receiving \& Trans mitting
Fugle-Miller Laboratories, 398 Main St. Metuchen, N. J.

COILS—Relay \& Solenoid
Fugle-Miller Laboratories, 308 Main St. Metuchen, N. J.

COILS-Television Focusing

Fugle-Miller Laboratories, 398 NIain St. Metuchen, N. J.

COILS—Transformer Coils \& Windings
Fugle-Miller Laboratories, 398 Main St. Metuchen, N. J.

COMMUNICATION SYSTEMS - Facsimile
Acme Telectronix, Div. of NEA Service Inc. West Third and Lakeside, Cleve. land 13, Ohio

CONNECTORS-Cable Connectors \& Couplings
Electro-Connector Corp., 110 W. Oxford St., Pliila. 22, Pa

CONTROLS-Alarm System

Photobell Company, 116 Nassau St., New York $\overline{7}$, N.

CONTROLS—Counter

Photobell Company, 116 Nassau St., New
York

CONTROLS—Fluid Conductivity

General Controls Co., Glendale, California

CONTROLS—Inspection

Photobell Company, 11f Nassau St., New York 7, N. Y.

CONTROLS—Photoelectric

Photobell Company, 116 Nassau St., New York 7, N. Y

CONTROLS—Skew

Acme Telectronix, Div, of NEA Service Inc., West Third and Lakeside, Cleveland 13, Ohio
(Continued on page 247)

For new simplicity, wide range, and bigh acciuracy in the control of modern electronic circuits...

Provides many times greater resistance control in same panel space as conventional potentiometers!

F YOU are designing or manufacturing any bype of precision electronic equipment be sure to investigate the greater convenience, utility, range and compactness that can be incorporated into your equipment by using the revolutionary HELIPOT for rheostacpotentiometer control applications...and by using the new DUODIAL turns-indicating knob described at right.

Briefly, bere is the HELIPOT principle... whereas a conventional potentiometer consists of a single coil of resistance winding, the HELIPOT has a resistance element many umes longer coiled belically into a case which requires no more panel space than the conventional unit. A simple, foolproof guide controls the slider contact so that it follows the helical path of the resistance winding from end to end as a single knob is rotated. Result...with no increase in panel spate requirements, the HELIPOT gives you as much as 12 times * the control surface. You get far greater accuracy, finer settings, increased rangewith maximum compactness and operating simplicity!

COMPLETE RANGE OF TYPES AND SIZES

The helipot is available in a complete range of types and sizes to meet a wide variety of control applications

MODEL A: 5 watts, 10 turns, $46^{\prime \prime}$ slide wire length, $13 / 4$ " case dia., resistances 10 to 50,000 ohms, 3600° rotation.
MODEL B: 10 watts, 15 turns, $140^{\prime \prime}$ slide wire length, $31 / 4^{\prime \prime}$ case dia, resistances 50 to 200,000 ohms, 5400° rotation.
MODEL C: 3 watts, 3 turns, $131 / 2^{\prime \prime}$ slide wire length, $13 / 4$ " case dia., resistances 5 to 15,000 ohms, 1080° rotation.
MODEL D: 15 watts, 25 furns, $234^{\prime \prime}$ slide wire length, $31 / 4^{\prime \prime}$ case dia., resistances 100 to 300,000 ohms, 9000° rotation.
MODEL E: 20 watts, 40 turns, $373^{\prime \prime}$ slide wire length, $31 / 4^{\prime \prime}$ case dia, resistances 150 to 500,000 ohms, $14,400^{\circ}$ rotation.

Also, the helipot is available in various special designs... with double shaft extensions, in multiple assemblies, integral dual units, etc.

Let us study your potentiometer problems and suggest how the HELIPOT can be used - possibly is already being used by others in your industry - to increase the accuracy, convenience and simplicity of modern electronic equipment. No obligation, of course. Write today outlining your problem.
*Data for Model A, $13 / 4$ " dia. Helipot. Other models give even greater control range in $3^{\prime \prime}$ case diameters.

The inner. or Primary dial of the DUODIAL show's exact angular position of shaft during earb revolution. The outer, or Secondary dial shows number of complete revolutions made by the Primary dial.

A multi-turn rotational-indicating knob dial for use with the HELIPOT and other multiple turn devices.

THE DUODIAL is a unique advancement in knob dial design. It consists essentially of a primary knob dial geared to a concentric turns-indicating secondary dial-and the entire unit is so compact it requires only a $2^{\prime \prime}$ diameter panel space!

The dUODIAL is so designed that - as the primary dial rotates through each complete revolution-the secondary dial moves one division on its scale. Thus, the secondary dial counts the number of complete revolutions made by the primary dial. When used with the HELIPOT, the DUODIAL registers both the angular position of the slider contact on any given helix as well as the particular helix on which the slider is positioned.

Besides its use on the HELIPOT, the DUODIAL is readily adapt. able to other helically wound devices as well as to many conventional gear-driven controls where extra dial length is desired without wasting panel space. It is compact, simple and rugged. It contains only two moving parts, both made entirely of metal. It cannot be damaged through jamming of the driven unit, or by forcing beyond any mechanical stop. It is not subject to error from backlash of internal gears

TWO SIZES - MANY RATIOS

The DUODIAL is now available in a $2^{\prime \prime}$ diameter model and soon will also be available in a new $43 / 4^{\prime \prime}$ diameter model for main control applications. Standard turns-ratios include 10:1, 15:1, $25: 1$ and $40: 1$ (ratio between primary and secondary dials). Other ratios can be provided on special order. The $10: 1$ ratio DUODIAL can be readily employed with devices operating fewer than 10 revolutions and is recommended for the 3 -turn HELIPOT. In all rypes, the primary dial and shaft operate with a $1: 1$ ratio, and all types mount directly on a $1 / 4^{\prime \prime}$ round shaft.

Send for this
 HELIPOT AND DUODIAL CATALOG!

Contains complete data, construction details, elc., on the many sizes and types of HELIPOTS . . . and on the many unique features of the DUODIAL. Send for your free copy today!

CORPORATION
Due to circumstances beyond control the above advertisement did not appear in the 1948 Buyers' Guide issue of ELECTRONICS. You may wish to file this data with your Buyers Guide issue

PROBLEM: A group of physical chemists doing research in semi-conductor properties required a very low ripple compact adjustable power sup-

Power supplies up to 200,000 volts DC, regulated or unregulated, built to specitieations. Compactness, low cost and rapid
delivery featured delivery featured.
Submit your high voltage power supply requirements to us for a prompt bid on
price anad delivery.

OTHER BETA PRODUCTS INCLUDE:
KILOVOLTMETERS: Up to 50 KV ot 50,000 ohms per volt, $20 \mu \mathrm{a}$ drain.

PORTABLE POWER SUPPLIES: Adjustable from 0 to 30 KV DC. Regulated and unregulated units available.

ELECTRONIC MICROAMMETERS: 0.01 $\mu \mathrm{a}$ full-scale to $100 \mu \mathrm{a}$ full-scale in 5 decade ranges. Cannot be damaged by overload.
ELECTRONIC RHEOSTATS: Resistance continuously variable from above 100,000 megohms to below 100,000 ohms. Good for voltages up to 15 KV .

Send for descriptive literature
Sales Engineers throughout the country are at your service to discuss our products more thoroughly with you.
ELECTRONICS CO.
1762 Third Ave., Now York 29, N. Y.

From every angle you'll find Essex Extra Test Magnet Wire a smooth product to use in your winding department. In the battle for profitable production it minimizes time lost because of hard and springy wire...tacky insulation film .. poor size uniformity from spool-to-spool . . . and frequent tension adjustments. The chances are, Essex Extra Test Magnet Wire can prove its superiority for you.
SMOOTH OPERATION

ESSEX WIRE CORP.

FORT WAYNE 6, INDIANA

2

Plants: Anaheim, Calif.; Detroit, Mich.; Fort Wayne, Ind. Warehouses and Sales Offices *Atlanta, Ga.;" ${ }^{\text {Boston, Masa.;"Chicago, Illinois }}$ Cleveland, Ohio; Dallas, Texas; Dayton, Ohio; "Detroit, Mich: ; ${ }^{*}$ Kansaa City, Mo.;" Los Angoles, Calif.; Milwaukee, Wia.;*Newark, N.J.; Philadel: ${ }^{\text {Phian }}$ San Diego, Calif.; *San Francisco, California

EXPORT SALES OFFICE - LIONEL-ESSEX INTERNATIONAL CORPORATION, 15 E. 26 th ST., NEW YORK 10, N.Y.

BAACH-INTERNATIONAL

Dimensions $24^{\prime \prime} \times 24^{\prime \prime} \times 72^{\prime \prime}$ high

INTERNATIONAL MACHINE WORKS

Manufacturers of High Vacuum Pumps, Auto matic Machinery for Incandescent Lamps, Electronic Tubes since 1916.

2027-46TH STREET
NORTH BERGEN, N. J., U. S. A.
Tel. UNion 3.7412,
Cable Addrigss "Intermach" North Bergen, N. J. `

ECLIPSE
announces
a new line of deluxe DESK PANEL CABINET RACKS

- Available in six sizes from $83 / 4^{\prime \prime}$ panel space to $35^{\prime \prime}$. All units $15^{\prime \prime}$ deep.
- Black or grey ripple finish, as specified.
- Rigidly constructed of 16 gauge steel.
- Panel mounting holes tapped 10-32 for either Western Electric or Amateur notched panels.
- All doors provided with flush catches.

These cabinet racks are the newest product in o quality line of metal equipment. A partial list of products includes chassis, panels, cases, standard and deluxe cabinets, sloping front cabinets, ampli. fier foundations and standard and deluxe cabine racks. Each isem is made in o variety of stoc

CATALOG SENT ON REQUEST
ECLIPSE MANUFACTURING CO., INC.
CABINETS - PANELS - CHASSIS
294 Eust 137th Street New York 54, M. Y.

ADDITIONS AND CORRECTIONS (continued)

CONVERTERS-f-m

Acme Telectronix, Div. of NEA Service Inc., West Third and Lakeside, Cleve. land 13 , Ohio

FILTERS-Band Elimination
Filtron Co., The, 38-25 Bell Blvd., Bay side, Long Island, N. Y.

FILTERS-Band Pass
Filtron Co., The, 38-25 Bell Blvd., Bayside, Long Island, N. Y.

FILTERS-Electric Wave Section
Filtron Co., The, 38-25 Bell Blvd., Bay side, Long Island, N. Y.

FILTERS—Noise
Filtron Co., The, 38-25 Bell Blvd., Bayside, Long Island, N. Y.

FILTERS-uhf \& vhf

Filtron Co., The, 38-25 Bell Blvd., Bayside, Long Island, N. Y.

FORKS-Electrically Driven Tuning

Acme Telectronix, Div. of NEA Service Inc., West Third and Lakeside, Cleveland 13 , Ohio

GALVANOMETERS

Acme Telectronix, Div. of NEA Service Inc., West Third and Lakeside, Cleveland 13, Ohio

GENERATORS, SIGNALS-r-f
Tel-Instrument Company, Inc., 50 Pater son Ave., East Rutherford, N. J.

GENERATORS, SIGNAL-Sweeping
Tel-Instrument Company, Inc., 50 Paterson Ave., East Rutherford, N. J.

GENERATORS, SIGNAL - Television Synchronizing
Tel-Instrument Company, Inc., 50 Paterson Ave., East Rutherford, N. J.

GENERATORS - Television Linearity Checking
Tel-Instrument Company, Inc., 50 Paterson Ave., East Rutherford, N. J.

HEARING AID CHOKES
Microtone Company, The, 4602 Nicollet Ave., Minneapolis 9, Minn.

HEARING AID TRANSFORMERS
Microtone Company, The, 4602 Nicollet Ave., Minneapolis 9, Minn.

HEARING AIDS
Microtone Company, The, 4602 Nicollet Ave., Minneapolis 9, Minn.

LOUDSPEAKERS
Best Manufacturing Co., Inc., 1200 Grove St., Irvington 11 , N. J.

LUGS AND TERMINALS

Sheffco Mfg. Co., 116 W. Ruby Ave., Pallsades Park, N.

METAL PARTS - Small Metal Stampings
Sheffico Mifg. Co., 116 W. Ruby Ave., Palisades Park, N. J.

METERS_-Photoelectric Reflection

Acme Telectronix, Div, of NEA Service Inc., West Third and Lakeside, Cleveland 13, Ohio

MICROWAVE TRANSMISSION LINKS 8. MICROWAVE ACCESSORIES

Technicraft Laboratories, Inc., Box 1908, Waterbury, Conn.

PERMANENT MAGNET

 HORN UNITSThese units, highly popular in all types of service, embody many improvements. Two groups, with Alnico \checkmark Magnets and Alnico Blue Dot Magnets. All steel parts plated to prevent corrosion. Also fitted with corrosion proof metal or plastic diaphragms. Voice coil impedance on all units: 15 ohms, except dwarf size-which is 8 ohms. Special ohmages on request.

NOW FURNISHED WITH WATERPROOF CASING

All units, from junior to giant size, may now be had with heavy spun aluminum case, forming a close fitting hermetically sealed, watertight housing for outdoor use. Waterproof type at slight extra cost. mounting will no extra cost.

Write for Catalog or Complete Racon Line
RACON ELECTRIC CO., INC.
52 E. 19th Street, New York, N. Y.

Convenient Decimal scale Registration!
\star Direct Decimal Scale Registration \star Scaling Factors of 10,100 and 1000
\star Low Resolution Time - 5 Microseconds \star Self-Contained Mechanical Register \star Regulated High Voltage Power Supply \star Provision for Clock Time f

* High Sensitivity -0.25 Volt * Stable, No

Adjustments * High Quality

For Radioactivity

 Measurements!
the New potter DECADE SCALER Model 2092-\$495.00

FOR COMPLETE LITERATURE OR CONSULTATION ON HIGH SPEED COUNTING, TIMING AND CONTROL PROBLEMS CALL OR WRITE DEPARTMENT GP, TODAY.

POTTER INSTRUMENT COMPANY

IN C O R PO R A TE D 136.56 ROOSEVELT AVENUE - FLUSHING, NEW YORK

ADVANCE-AMPHENOL-AEROVOX - ASTATIC ALTEC-LANSING

- \& W-BUD BURN BACH burgess par your CARDWELL-DRAKE CENTRAABB-CIN AUDAGRAPH-CORNELL-DUBLIER EIMAC-ELECTROVOICE-GE-JFD-IRC-JENSEN MALIOR' - Littlefuse - meissner-millen MILLER - HATIONAL - OHMITE - RCA - SANGAMO SHURE - UTAH - STEVENS - StANCOE - WELIER UTMYERSITY - SYIVANIA - THORDARSON - WEBSTER PICKERING ICC - PRECISION - UNTIED ELECT. CALL JACK KIRSCHBAUM AT DIGBY 9-4714

1. Consult the Milford free engineering service
2. Phase one of 15
 basic Milford rivet setting machines offering unlimited versatility.
3. Select exactly the right semi\& $\triangle D \left\lvert\, \begin{aligned} & \text { right semi- } \\ & \text { tubular or split } \\ & \text { rivet or cold- }\end{aligned}\right.$ $\pi \infty<\infty<$ headed (2) $\begin{aligned} & \text { fastener from } \\ & \text { Milford's } \\ & \text { complete line. }\end{aligned}$

BTV-TT
\& MACHINE COMPANY 1000 MERWIN ROAD. MILFORD, CONN. 1000 WEST RIVER ST. ELYRIA, OHIO

ADDITIONS AND CORRECTIONS (continued)
MOTORS—Servo
Hansen Mfg. Co., Inc., Princeton, Indlana
MOTORS-Synchronous
Hansen Mig. Co., Inc., Princeton, Indiana

MOTORS-Timing

Hansen Mfg. Co., Inc., Princeton, Indiana

MULTIVIBRATORS

Acme Telectronix Div. of NEA Service Inc., West Third and Lakeside, Cleveland 13, Ohio

MUSIC SYSTEMS-Industrial \& Commercial
Allied Radio Corp., 833 W. Jackson Blva. Chicago, 7, Ill

OPTICAL EQUIPMENT AND OPTICAL SPECIALTIES
Acme Telectronix, Div. of NEA Service Inc., West Third and Lakeside, Cleveland 13, Ohio

OSCILLATORS-Audio Fork Controlled

Acme Telectronix, Div. of NEA Service inc. West Third and Lakeside, Cleve land 13 , Ohio

OSCILLOGRAPHS-Recording

Acme Telectronix, Div, of NEA Service Inc. West Third and Lakeside, Cleveland 13, Ohio

PHONOGRAPHS-Electric Phonographs \& Record Players
Shevers Inc., Harold, 33 W. 46th St., New York 19, N. Y.

PICKUPS—Photoelectric

Acme Telectronix, DIv. of NEA Service Inc., West Third and Lakeside, Cleveland 13 , Ohio

PLUGS AND JACKS

Electro-Connector Corp., 110 W. Oxford St., Phila. 22, Pa.

POTS-Soldering

Tech Laboratories, Inc., 337 Central Ave.,

POWER PACKS

Electronic Controls Co. of New York, 3124 Avenue I, Brooklyn 10, N. Y.

POWER SUPPLIES

Electronic Controls Ca. of New York, Fugle 3124 Avenue 1, Brooklyn $1 \mathrm{~N}, \mathrm{~N} . \mathrm{Y}$. Fugle-Miller Laboratories, 398 Main St., Metuchen, N. J.

POWER SUPPLIES-Electronically Regulated
Acme Telectronix Div. of NEA Service Inc., West Third and Lakeside, Cleveland 13, Ohio
Fugle-Miller Laboratories, 398 Main St., Metuchen, N. J.

POWER SUPPLIES—High Voltage

Fugle-Miller Laboratories, 398 Main St., Metuchen, N, J.

POWER SUPPLIES—Voltage Regulated

Acme Telectronix, Div. of NEA Service inc., West Third and Lakeside, Cleveland 13, Ohio

RECEIVERS-0-m Fixed Frequency

National Electronics Laboratories, Inc., 200 King St., Alexandria, Va.

There's a True Thrift Lesson in-

If a drawing is worth keeping - it is worth making on dependable Arkwright Tracing Cloth. The trifling extra cost insures years of permanence - no chance of becoming dogeared and torn by use nor opaque and illegible by age, as perishable tracing paper is apt to do. Arkwright is woven, bonded and processed for enduring transparency. It is real economy - good business - to use Arkwright, always!

Send for generous working samples of Arkwright and judge its superiority over any substitute. Arkwright is sold by leading drawing material dealers everywhere. Arkwright Finishing Co., Providence, R. I.

> The Big Six Reasons Why Arkwright Tracing Cloths Excel
> 1. Erasures re-ink without feathering.
> 2. Prints are always sharp and clean.
> 3. Tracings never discolor or go brittle.
> 4. No surface oils, soaps or waxes to dry out.
> 5. No pinholes or thick threads.
> 6. Mechanical processing creates permanent transparency.

ARKWRIGHT TRACINGCLOTHS

AMERICA'S STANDARD FOR OVER 25 YEARS

We undertake the Design, Development and Manufacture of any type of Optical-Mechanical -Electrical Instrument. Including Cameras for special purposes.

Avimo Limited, Taunton, England \cdot Telepbone Taunton 3634

Mosione Power SUPPLY

0-500 VOLTS D.C. AT 300 MA. WITH POSITIVE OR NEGATIVE GROUND

The Model 204A Regulated Power Supply will provide from 0.500 volts of well regulated and well filtered D.C. The output voltage is continuously variable without switching and either positive or negative side may be grounded.

SPECIFICATIONS:

OUTPUT VOLTAGE

High Voltage: $0-500$ Volts D.C. continuously variabie (Without switching). Current: 300 Ma .
Low A.C. Voltage: 6.3 Volts A.C. at 6 amps. center-tapped, unregulated

REGULATION

Within 1% for voltage between - $30-500$ volts, from no load to full load.
Within 1% for line voltage variations from 105 to 125 volts at full load current for any voltage between $30-500$ volts and within
2% at 10 volts.

hum Voltage

Within 10 Millivolts at any voltage or load within ratings.
LINE INPUT
105-125 Volts A.C. 50-60 cycles.
OUTPUT TERMINATIONS
High and low voltage outpuls available from front and rear of unit. Posifive or negative terminal of high voltage output may be grounded as desired.

Detailed specifications will be forwarded upon request without obligation.

ELECTRONIC MEASUREMENTS COMPANY RED BANK

Would a slight change from the" standard" electrical specifications improve the performance of your finished product? If so, get in touch with Acme Electric engineers for assistance in designing a "special" transformer from standard parts.

ENCLOSED TYPES

The dies for making fransformers that fit into this enclosed case, alone would cost you thousands of dollars. Acme produces to save you this expense.

Here is a typical air-cooled de. sign which can be produced to meef a variety of applications. Write for Bulletin 168 A for further details.

ACME ELECTRIC CORP.

3110 Water St. Cuba, N. Y.

ADDITIONS AND CORRECTIONS

RECEIVERS—a-m/ $\boldsymbol{f}-\boldsymbol{m}$ Communication

National Electronics Laboratories, Inc., 200 King St., Alexandria, Va.

RECEIVERS-f-m

National Electronics Laboratories, Inc., 200 King St., Alexandria, Va.

RECEIVERS—Fixed Frequency

National Electronics Laboratories, Inc., 200 King St., Alexandria, Va.

RECEIVERS—Police \& Fire

National Electronics Laboratories, Inc., 200 King St., Alexandria, Va.

RECEIVERS—Television

Shevers Inc., Harold, 33 W. 46th St., Tele New York 19, ${ }^{\text {Ning }}$ Corp., 601 W. 26 th St., New York 1, N.'
Telicor Corp.
York 21,
8.
Y.
RECEIVERS—uhf
National Electronics Laboratories, Inc., 200 King St., Alexandria, Va.

RECEIVERS——rff

National Electronics Laboratories, Inc., 200 King St., Alexandria, Va.

RECEIVERS, HOME—a-m/f-m Combinations
Shevers Inc., Harold, $33 \quad$ W. 46th St.,
New York $19, ~$ N. Y.
RECORDERS—Facsimile
Acme Telectronix, Div. of NEA Service Inc., West Third and Lakeside, CleveInc., West Thi

RECORDERS_Film

Acme Telectronix, Div. of NEA Service Inc., West Third and Lakeside, Cleveland 13 , Ohio

RECTIFIERS—Dry Disc

Electronic Controls Co. of New York, 3124 Avenue I, Brooklyn 10, N. Y.

RESISTORS-Temperature Sensitive
Carborundum Co., Globar Div., Niagara Falls, N. Y.

RESISTORS—Voltage Sensitive
$\underset{\text { Falls, }}{\text { Carbor }}$. \mathbf{Y}., Globar Div., Niagara Falls, N.

SCANNERS—Reflected \& Transmitted Light
Acme Telectronix, Div. of NEA Service Inc., West Third and Lakeside, Cleveland 13, Ohfo

SOCKETS-Tube

Electro-Connector Corp., 110 W . Oxford St., Phila, 22 Pa.

SOUND SYSTEMS-Complete

Allied Radto Corp., 833 W. Jackson Blvd.,
Planet Radio' Mfg. Corp., 6508 Euclid Ave., Cleveland 3, Ohio

STANDARDS-Frequency

Acme Telectronix, Div. of NEA Service Inc., West Third and Lakeside, Clevelomed 13, Ohio

STANDARDS-Laboratory Time

Acme Telectronix, Div. of NEA Service Inc., West Third and Lakeside, Cleve-
land 13 , Ohio

Annauncing

A Nem Praduct by
 Chicaga Candenser Carparation

We have been ticensed to manufacture

Fabricated Plate Electralytic Condensers

For all purpases
We are nou ready to supply your needs Your specifications for quotations will be qiuen prompt attention

Chicaga Condenser Corporation
3255 West Armitage Aue. - Chicaga 47, IU.

Since 1933 PYROFERRIC has been the standard source for IRON CORES manufactured to desired permeability, frequency, " Q ", resistance and physical strength . . . to fit any circuit.

PYROFERRIC, with its background of research and experience, will gladly consult with you on your IRON CORE requirements.

DYROFERRIC CO.

621 EAST 216 ST., NEW YORK 67, N. Y.

This portable, packaged unit will charge all kinds and shapes of magnets. Unique "fluxguide" fixtures developed by our engineers take full advantage of the charging current and accommodate multipole and addly shaped magnets.
The charger weighs 75 pounds, can be moved about, and saves much valuable space. Plugging into any 110 volt AC outlet, it is completely safe and simple to operate for production charging by unskilled personnel.
The descriptive folder, E-10, gives complete information on the charger, shows typical fixtures and lists some of the many manufacturers, airlines, repair services and laboratories who use the Model 107. Write for this folder today and feel free to outline your magnet charging problems without obligation.
RADIO FREQUENCY
(110) LABORATORIES, INC. Boonton, New Jersey

ADDITIONS AND CORRECTIONS (continued)

SWITCHES-Mercury

General Electric Co., Tube Div., Schenectady 5, N. Y.

SYNCHRONIZERS—Electronic

Acme Telectronix, Div. of NEA Service Inc., West Third and Lakeside, Cleveland 13 , Ohio

TELEVISION SYSTEMS_-Industrial

Telicor Corp., 851 Madison Ave., New York 21, N. Y.

TESTERS-Microwave Radar Testing

 EquipmentTechnicraft Laboratories, Inc., Box 1908, Waterbury, Conn.

TOOLS-Soldering Guns

Weller Mfg. Co., 806 Packer St., Easton, Pa.

TRANSFORMERS-Microwave

Technicraft Laboratories, Inc., Box 1908, Waterbury, Conn.

TRANSMITTERS—_f-m

National Electronics Laboratories, Inc., 200 King St., Alexandria, Va.

TRANSMITTERS—Facsimile

Acme Telectronix, Div. of NEA Service Inc., West Third and Lakeside, Cleveland 13 , Ohio

TRANSMITTERS-Fixed Frequency

National Electronics Laboratories, Inc., 200 King' St., Alexandria, Va.

TRANSMITTERS—Fixed Station Communication
National Electronics Laboratories, Inc., 200 King St., Alexandria, Va.

TRANSMITTERS_Portable and Mobile Radio-Telephone
National Electronics Laboratories, Inc., 200 King St., Alexandria, Va.

TRANSMITTERS—Pulse Time Modulation
National Electronics Laboratories, Inc., 200 King St., Alexandria, Va.

TRANSMITTERS—Radio Range

National Electronics Laboratories, Inc., 200 King St., Alexandria, Va.

TRANSMITTERS—uhf

National Flectronics Laboratories, Inc., 200 King St., Alexandria, Va.

TRANSMITTERS—-vhf

National Electronics Laboratories, Inc., 200 King St., Alexandria, Va.

TUBE PARTS

Bases

General Electric Co., Tube Div.. Schenectady 5, N. Y.

Caps

General Electric Co., Tube Div., Schenectady 5, N. Y.

Cathode Sleeves \& Tubes

General Electric Co., Tube Div., Schenectady 5, N. Y.

Pickering reproducers have always been built to the highest standards of the critical listener willing to pay a premium for excellence in record reproduction.
The growing demand for Pickering quality and the resulting increase in production have made possible substantial price reductions.

Revised manufacturing techniques have enabled us to actually improve quality and lower prices at the same time.
We take great pleasure in giving our customers the benefit of lower production costs.

Model S-120M
 with $.0027^{\prime \prime}$ Sapphire Stylus
 Former List Price-\$25.00
 Now $\$ 16.50$

Model D-120M
with .0025" Diamond Stylus
Former List Price-\$60.00
Now \$41.50

THE NEW
NATIONAL HFS
\$125
(power supply extra)

Complete Coverage

 27 mcs-250 mcs!Covers all mobile communication services, as well as fixed services. Receives CW, AM OR FM! Superheterodyne with superregenerative $2 n d$ detector.

Mobile, Portable or Fixed!

Operates from standard 110 volt, 60 cycle National 5886 power supply, National 686S 6 volt vibrator-type power supply or batteries! Builtin speaker. Light.

See your neares National dealer listed in the classified section of your 'phone book.

ADDITIONS AND CORRECTIONS (continued)

Cathode Ray Tube Side Contacts

General Electric Co., Tube Div., Schenectady $5, \mathrm{~N}$. Y .

Grids and Supports

General Electric Co., Tube Div., Schenectady 5, N. Y.

Heat Radiators

General Electric Co., Tube Dir., Schenectady $5, \mathrm{~N} . \mathrm{Y}$.

Metal Supports

General Electric Co., Tube Div., Schenectady $5, \mathrm{~N}$. Y.

Mica Supports

General Electric Co., Tube Div., Schenectady $5, \mathrm{~N}$. Y.

Water Jackets

General Electric Co., Tube Div., Schenectady 5, N. Y.

Wire Parts

General Electric Co., Tube Div., Schenectady 5, N. Y.

TUBES_Phototubes and Photocells

American Scientific Co., P O. Box 1, High Bridge Station, New York $52, \mathrm{~N}$. Y.

WASHERS—Metal

Sheffico Mfg. Co., 116 W. Ruby Ave., Palisades Park, N. J.

WAVEGUIDES-Flexible

Technicraft Laboratories, Inc., Box 1908 , Waterbury, Conn.
Titeflex, Inc., $410 \underset{N}{\text { Newark }}$ Frelinghuysen Ave.,
WAVEGUIDES—Rigid
Technicraft Laboratories, Inc., Box 1908 , Waterbury, Conn.

WIRE—Fine Wire Specialties

Sheffico Mfg. Co., 116 W. Ruby Ave., Palisades Park, N. J.

NAMES and ADDRESSES ADDITIONS and CORRECTIONS

Acme Telectronix, Div. of NEA Service Inc., West Third and Lakeside, Cleve-
Allied Radio Corp., 833 W . Jackson Blvd., erican Scientif
American Scientific Co., P.O. Box 1, High Bridge Station, New York 52,
De Jur-Amsco Corp., Northern Blvd. at Electro-Conn, Long Island City 1 , N. Y. St., Phila 22, Pa. Co. of New York, 3124 Avenue I, Brooklyn 10, N. Y. Electronic Instrument Co., Inc., 377 Blake
Ave. Filtron Co., The, $38-25$ Bell Blvd., Bayside, Long Island, N. I
Fugle-Miller Laboratories, 398 Main St., Metuchen, N. J.
General Electric Co., Tube Div., Schenctady ${ }^{5}, \mathrm{~N} . \mathbf{Y}$.
Hansen Mfg. Co., Inc., Princeton, Indiana Intra-Video Corp. of America, 851 Madison Ave., New York 21, N. Y. 37 th St., Long Island City 1, N. Y. Microtone Company, The, 4602 Nicollet Microtone Company, The, 4602 Nicollet
Ave.i Minneadolis 9, Minn. Photobeli Company, 116 Nassau St., New Planet Radio Mfg. Corp., 6508 Euclid Sheffe Me., Cleveland Co., ${ }^{3} 16$ Ohio W. Ruby Ave., Palisades Park, N. J. Shevers Inc., Harold, 33° W. 46 th St., New York 19, N. Y
Technicraft Laboratories, Inc., Box 1908, Waterbury, Conn. LOEKSEAM* Rectangular NICKEL CATHODES
Here are the "new shapes", in which Superior Lockseam* nickel cathodes are available. Full information on dimensions, tolerances and materials will be supplied upon request.

L-TI

RECIANGULAR, NO BEAD

L-T2

RECTANGULAR, ONE BEAD-Major and Minor

RECTANGULAR TWO BEADS-Major and Minor

RECTANGULAR, ONE BEAD-Major Only

RECIANGULAR, ONE BEAD-Minor Only

For other electronic and non-electronic tubing applications, use Superior Seamless and WELDRAWN \dagger-and save!

SUPERIOR TUBE CO.

ELECTRONICS DIVISION

2500 Germantown Avenue Norristown, Pa.

[^11]
POLARAD

TELEVISION

SYNCHRONIZING GENERATOR
Model PT 101-Television

FEATURES

- Built-in 3^{n} oscilloscope with synchronized sweeps for - Viewing Timing and Video Output pulse wave fornis. - and rise time. leading edge of master osclliator pulse. leading edge of master oschrator puse.
Means for checking synchronizing pulses in odd and
even

SPECIFICATIONS

525 line, interlocad, 60 fields, 30 frames, RMA Synchronizing pulses heid to tolerance specified in the NRT1'B report of 1945. Output Pulses: Synchronizing, Video
Blanking. Camera Blanlinig. Horizontal Driving, Vertical Blanking Cumera Blankigg Horizontal Driving, Vertical
Driving Pulses. 5 volts across 100 ohm termination. Dual output jacks. 115 volts $50 / 60 \mathrm{cps}$. Complete with tubes.

TELEVISION MONOSCOPE SIGNAL SOURCE
Model PT 102

- Composite Video Signal Wide Band Video Ampli. fier, 6 DB down at 10 MC - Dual outputs for feeding two 75 or 100 lines
- Black positive or Black - Regative output

600 lines greater than 600 lines
INPUT: Vertical and Hordzontal Driring and Kinescope Blanking Pulses. OUTPUT: Composite Video
 rolts $50 / 60$ cps,
Complete with tubes and including high and low voltage power

9 FERRY STREET NEW YORK 7, N. Y.

M2ITH:

Television engineers and consultants to the nation's great felevision stations.

THIS SELF-LOCKER WOn't SHAKE LOOSE!
THBRHD
Reg. U.S. Pat, Off.

The Knurling of this "Unbrako" Socket Set Screw, as shown, "swages the threads", so that it becomes a most excellent "Self-Locker" . . for use with the 5 standard points that do not lend themselves to knurling. This "Unbrako" Socket Set Screw positively will not shake loose, regardless of the most chattering vibration. Sizes available from \#4 to $11 / 2^{\prime \prime}$ diameter, and in a full range of lengths. Ask for your copy of the "Unbrako" Catalog ... it is useful and informative.
Our patented "Unbrako" Self-Locking Knuried Socket Set Screws and Stripper Bolts lock in

Write us for the name and address of your nearest "Unbrako" Industrial Distributor most any industrial screw application. They won't shake loose. Millions and millions in use.

Knurling of Sockes Screws originated whth T"Unbrako" in 1934.

STANDARD PRESSED STEEL CQ.

JENKINTOWN, PENNA.

BOX 596
CHICAGO - DETROIT • INDIANAPOLIS • ST. LOUIS • SAN FRANCISCO

INSTRUMENT RESISTORS CO., 1056 COMMERCE AVE., UNION, N. J.

AND ELECTRICAL COILS
Over 25 years' experience in the manufacture of specials at cost that compares favorably with standard types. Built-in quality proved by years of actual use.

PROMPT DELIVERIES!

NOTHELFER

WINDING LABORATORIES
9 ALBERMARLE AVE., TRENTON 3, N. J.

ADDITIONS AND CORRECTIONS (continued)
Tele King Cord., 601 W. 26th St., New

Tel-Instrument Co., Inc., 50 Paterson Ave., Whe East Rutherfort, N. J.
Weller Mfg. Co., 806 Packer St., Easton.
Pa.

TRADE NAMES

ADDITIONS and CORRECTIONS

AMERTRAN

American Transformer Co.

DURATIP

Weller Mfg. Co.

EMPIRE

Empire Coil Company, Inc.
FLEXITIP
Weller Mfg. Co.
INDUSTRIAL TELECEIVERS
Industrial Television, Inc.

KNIGHT

Allied Radio Corp.

MULTIVIDEO

Industrial Television, Inc.

SOLDERLITE

Weller Mfg. Co.
SPEED IRON
Weller Mfg. Co.

SYNCHRON

Hansen Mfg. Co., Inc.

TECH LAB

Tech Laboratories, Inc.

TELEPHOTO

Acme Telectronix, Div, of NEA Service Inc.

Due of an error, the listings of the General Controls Co. of Glendale, California incorrectly referred to an advertisement on page 111 which was an advertisement of the General Control Company. 1204 Soldiers Field Road, Boston 34, Mass. There is no connection between the two companies.

Due to an error, the listings of the Northern Radio Co., 314 Bell St., Seattle 1, Wash. incorrectly referred to an advertisement on pages 190 and 191 which was an adver. tisement of Northern Radio Co., Inc., 143. 145 W. 22nd St., New York 11, N. Y. There is no connection between the two companies.

Electronic Controls Co. of New York advertisement incorrectly listed as Page 224 instead of Page 244.

Manufacturers of glass bonded mica wereincorrectly listed, they should have only included the following:

Electronics Mechanics. Inc.,
70 Clifton Blvd.
Clifton, N. J.
General Electric Co.,
Chemical Dept.
Pittseld, Mass.
Mycalex Corp. of America,
60 Clifton Blvd.,
Clifton. N. J.

RAWSON METERS

MULTIMETERS and REGULAR METERS $A C$ and DC types, high accuracy, multiple ranges, 2 microamperes to 1 ampere milliamperes to 3 amperes AC
ELECTROSTATIC VOLTMETERS
Ranges $150-\mathrm{v}$. to $35,000-\mathrm{v}$. AC or DC. Resistance exceeds million megohms. Can measure static electricity.

FLUXMETERS

Laboratory and production measurements on magnets and magnetic circuits. Single push button return-to-zero.
WATTMETERS
High sensitivities, low power factors. New types soon to be announced.

Special apparatus built to order
RAWSON ELECTRICAL INSTRUMENT COMPANY 111 Potter St.

Cambridge, Mass.
Representatives
Chicago Los Angeles New York City

PROMPT DELIVERT!

> Stainless Steel MACHINE SCREWS and Rivets

© CREWS, nuts, washers, pins Allmetal carries the largest stock in the country of stainless steel fasteners and screw machine parts. Our complete facilities for heading. tapping, drilling, reaming, slotting, turning, stamping. broaching and centerless grinding make possible prompt delivery of specials, too. Write finr our free 83-page calalog today.

We also carry:

K 0 B Z Y Quality

GETS WIDE APPROVAL

LAMINATIONS . . HOUSINGS . . CONTACTS . . LUGS MISCELLANEOUS METAL STAMPING PARTS
Here is the quality that comes from years of experience and modern facilities. We work very closely with our customers, designing to their specifications. Our mechanical engineering department is able to tool up for special parts. Put your needs up to us for entirely
saisfactory results.
Send tor your copy

Noin you can have *DYNAMIG NOISE SUPPRESSIQN with Your Present Radio-phonograph or Amplifier

These 3 simple steps add realism to your music reproduction.

1. Plug in the "Little Wonder" *Dynamic Noise Suppressor between your pick-up and amplifier.
2. Plug in the socket adapter to the powertube socket.
3. Insert the matched low-needle-talk pick-up in your pick-up arm.
That's all that is necessary to reduce background noise with negligible loss of depth and brilliance . . . giving you a gratifying sense of "presence" in your music reproduction.
LOW PRICE $\$ 82.50$ list Includes tubes, matched pick-up, remote control, cables, fittings, adapters, instructions.

The remote control, for setting the exact degree of suppression you find most pleasing, can be mounted wherever you wish ... at the instrument or even in another part of the room. The 3-tube suppressor unit can be placed anywhere in the cabinet.
The "Little Wonder" realizes the full capabilities of your present equipment ; can be used, with suitable pick-up, on the new, long-playing records, too For full specifications, write Dept EL Or, even better, heare a demonstration at your distributor's.
*Licensed under U.S. and foreign patents pending and issued.

Automatrc Frequenery Control

on DC to AC CONVERTERS

AVAILABLE IN 22 TYPES AND 3 FRAME SIZES BY

gothared

Abstract

DC to AC Rotary Converters having Automatic Frequency Control are now being offered in all models. Input voltages from 6 to 230 V DC ; output: 110 to 1000 VA at 60 cycles, 90 to 800 VA at 50 cycles.

SPECIALLY DESIGNED for Television Sets, AC Radios, Radio-Phonographs and Recorders. For use where the power source is direct current: such as ships, vehicles, trains, office buildings, and urban DC areas.

GOTHARD Manufacturing Go.
 2114 Clear Lake Ave. Springfield, Illinois
 Export Division: 25 Warren St., New York 7. N. Y.

NEWS OF THE INDUSTRY
(continued from page 138)
and point-to-point communications for the rapidly expanding civil aviation services and for administrative, public and meteorological traffic. The new system will operate throughout Kenya, Uganda and Tanganyika.
Two of the latest types of Marconi transmitters have been chosen for the service: type TGS. 541-a 200 -watt transmitter with a frequency range of 1.5 to 23 mc ; and type TGS. 501-a 100 -watt set covering the 1.5 to $13-\mathrm{mc}$ range. Special features include crystal control with provision for rapid selection of any one of six working frequencies.

Australia's Rural Radiophone

First installations are now being made in the Broken Hill district in New South Wales, of a radiophone set which will link Australian ranchers to the telephone network. The equipment was developed by the research laboratories of Electronics Industries Ltd., Melbourne, in cooperation with the Commonwealth Postmaster General's Department.

The subscriber merely lifts a standard telephone handset from the instrument and depresses a key to connect him with the operator. Calls are accepted for any point in Australia and most overseas countries.

The base station transmitter is amplitude-modulated and has an output of 200 watts. It covers subscribers within a range of 200 miles. Subscriber sets are operated from a 12 -volt storage battery and transmission is also by a-m.

Automatic Control Course

Instrumentation for the process industries will be the subject matter of a third short course to be conducted by Texas A \& M College in cooperation with several industrial concerns at College Station, Texas, October 26-28. Manufacturers of instruments and automatic controls are participating by showing educational exhibits.

The program will be of special value to instrument, process design

QUALITY COILS

 TOYOUR SPECIFICATIONS
We manufacture quality coils for the radio and electronics industry. Universal, bank-wound, universalprogressive or solenoid coils made to JAN specifications. Let us know your requirements: We will quote promptly.
FULIL-MILLER LABORATORIES
METUCHEN
NEW JERSEY
398 Main St.
Me 6-2245

Littelfuse Makes Headline News with "In-Line" Fuse Retainer

Littelfuse's latest development: the "in line" fuse retainer for fingertip ease in fusing. Precisely molded of high impact bakelite and designed primarily for low voltage applications: car radios, heaters, spot lights and other automotive trouble spots where a fool-proof easy. to-handle fuse installation is desired. The strongly spring-locked retainer opens with a "push-and-twist" of the finger tips. Inside, the fuse rests against knife-edged, cup contacts that assure greatest degree of contact with lowest voltage drop. Doubled wall thickness at juncture of shoulder and lower body.

ULTRA SENSITIVE D. C. AMPLIFIER

An Electronic Replacement For Sensitive Galvanometer Systems

The Model 53 Breaker-type D.C. Amplifier was developed for the measurement of d.c. and low frequency a.c. voltage in the microvolt and fractional microvolt region. It is compact, portable, and makes an excellent replacement for the suspension galvanometer. The output of the amplifier is sufficient to operate standard meters and recording devices directly.
It has been employed for the amplification of infra-red detectors, thermocouples, voltaic photocells, and the like, both in research and industrial applications.

Among the advantages of this amplifier are the following:

1. Noise level that approaches the theoretical limit imposed by Johnson noise.
2. Extremely low zero drift (less than $.005 \mu \mathrm{~V}$ after warmup).
3. Freedom from the effects of vibration such as found in moving vehicles.
4. Response characteristics permitting overall amplification flat from 0 to 10 cycles per second.
5. Reliability, as demonstrated by units which have been in continuous operation for several years.

THE PERKIn- ELIMER CORPORATION

For Complete Information Write Dept. 50.

A wealth of data to help you plan-design-construct MICROWAVE EQUIPMENT

H
ERE'S a goldmine of data that saves you time and effort -puts at your fingertips the specific material you want when you're planning, designing and constructing microwave equipment. This book is packed from cover to cover with authoritative reference data on coaxial lines and flexible cables-practical structures and components of wave guides -dielectric materials and their properties-cavity resonators, etc. :. . all considered from the ultra-bigh-frequency point of view.

Just published!

MICROWAVE TRANSMISSION DESIGN DATA

[^12]T HIs book brings you vital information to aid you in the engineering design of all kinds of microwave eatuipment It discusses briefly transmission line theory-from the high frequency point of view-then brings you the practical working data you need on the job. Orer two hundred dagrams-graphs-charts-tables, etc., illust mate the text
mater, making it clear and easy-to-follow. The material is concise-well-organized-useable ., the kind of information an englneer must have to design a transmission system emoloying waveguides.

Read the chapter headings.

General Considerations for Microwave Transmission Lines		7. General Formulas for Wave Guides
		8. Attenuation in W
2.	Attenuation. Impedance Matching, and	8.
	Reflections on mission Lunes	9.
3.	Impedance Rel	10. Miscellaneous Wave-
		guide Structures
4.	General Formulas for	11.
		ti Dielectr
	lexible Cables	
	-	

tions for Microwave
Transmission Lines ance Matching, and Reflections on Transmilssion Lulnes
. Impedance Relations Lines General Formulas for Fiexible Cabl
6. Coaxial Ifine Struc formers and Trans

SEE IT 10 DAYS FREE - MAIL COUPON
MCGRAW.HILL BOOK CO.,
330 W. 42 nd Street, NYC 18
Send me Moreno's MICROWAVE TRANSMISSION In 10 days I will send $\$ 4.00$, plus a few cents postage or return the book dostuaid. (l'ostage maid rin eash orders.
Name
Addrens
('ity and State.
Company
rosition

Microwave Transmission Design Datio

Ware Guides
8. Attenuation in Wave - Guides

Obstacles, DiscontinMiscellaneous Junctions guide Structures Wave Guides Filled with Dielectric Ma-
2. Dielectric Materials
3. Carity Resonators

FM TRANSLATOR General Electric Model XFM-1

Post-war version
of the old G.E. J.F.M-90
Translator which was used and enjoyed by fens of thousands of discriminating radio listeners.

Covers 88.108 mc range, dial 12 inches long, uses guillotine tuning for highest efficiency, high stability. Designed for export, hos power inputs for 110 to 250 volts, $50 / 60 \mathrm{cy}$. Used in conjunction with good audio section or separate amplifier will prọvide best FM listening you ever heard. In attractive notural walnut cabinet $-103 / 4^{\prime \prime}$ high $\times 153 / 4^{\prime \prime}$ wide $\times 113 / 8^{\prime \prime}$ deep, complefe with 8 tubes. Tropic-proof construction. Quantity limited, no more avoilable. Get your order in while they lastl Special price \$49.50

GE PRE-AMPLIFIER

Just arrived in stock, the new GE Phonograph Pre-Amplifier with built-in power supply for use on 105.125 V . AC only. Does not use AC-DC type power circuit, has self-contained power, transformer and is completely isolated from power line. For use with GE Varioble Reluctance Cartridge. Net . $\$ 9.57$

MICRO-GROOVE CARTRIDGE

103 West 43rd St., New York 18, N. Y.
and operating engineers. Lectures have been scheduled to cover such subjects as measurement and control of temperance, pressure, liquid level and time.

Registration fee is $\$ 5.00$. Further information may be obtained by writing Professor P. G. Murdoch, Chemical Engineering Department, Texas A \& M College, College Station, Texas.

Plan Radio Net for India

To relieve the overburdened telegraph system in India, a radio communications network covering the ten leading cities is due to be set up shortly. Official estimates are that initial cost will be about $\$ 1,300,000$ and annual recurring costs about $\$ 210,000$.

Each of the ten cities will have a $10-\mathrm{kw}$ high-speed short-wave transmitter and a triple diversity receiver. Both will be teleprinterequipped.

Radio License Increase

More than 635,000 separate radio authorizations, covering stations and operators, were outstanding with the FCC at the close of the fiscal year. This represents an increase of nearly 90,000 over the previous year. Breakdown is as follows:

* Fstimated.

The station figures do not represent the actual number of transmit-

Braley

 RECTIFIERSINSTRUMENT RECTIFIERS
FOR BETTER
A.C. SCALE

For really accurate determination of very low A.C. current-use Bradley "Caprox" instrument rectifiers. Especially designed for use where stability and permanence of calibration are important. Shown above: CX-2E Series. Vacuum-processed, gold-coated, full-wave bridge. Rated 4.5 volts A.C. 3 volts D.C. 5 milliamperes D.C.

PHOTO CELLS

SIMPLIFY PHOTO-ELECTRIC APPARATUS

Luxtron* photo cells convert light into electrical energy. No external voltage is required to operate meters and meter relays directly from Bradiey photo cells, improving conirol over your processes, reducing your costs. Housed model shown. Many different sizes and shapes, mounted and unmounted.

Our engineers will select or develop rectifiers or photo cells to meet your needs exactly. Write for BRADLEY LINE showing basic models.

Proof of Performance...

The fact that over 50% of the purchasers of the Tektronix Type 511 Oscilloscope have re-ordered additional instruments after having placed a Type 511 in service provides positive evidence of the usefulness and value of this instrument.

The above calegory of Type 511 users includes the foremost Universities, Nuclear Physics groups, Industrial and Governmental research organizations throughout the country. A list of those in your vicinity will be provided upon request.

TYPE 511 FEATURES

- Continuously variable sweep speed,
- Vertical deflection sensitivity: 0.27 V 1o 200 V per cm. (peak to peak).
- Direct reading sweep speed indication.
- Sweep magnifier for any 20% of normal sweep.
- Vertical amplifier band pass, 10 mc .1 stage 8 mc .2 stages.
- Fully compensated for optimum transienf response.
- Triggered, recurrent or single sweeps.

Price $\$ 795.00$ f.o.b. Portland

Your inquiry will bring more detailed information and name of the nearest Field Engineering Representative.

Phone, EAst 6197
Cables, TEKTRONIX

712 S. E. Hawthorne Blvd. Portland 14, Oregon

RESEARCH \& DEVELOPMENT ENGINEERS

PhD's, Master, Bachelors in Physics or E. E.

[^13]
ters, since a single authorization can cover a number of associated mobile units. Year-end figures for mobile units are not available.

BUSINESS NEWS

Brociner - Mass Instruments, Inc., New York City, has been organized for the development and manufacture of photoelectric colorimeters, photometers and related equipment in the electronic instrument and clinical fields.

Mayflower Electronic Devices, Inc., West New York, N. J., has formed a client research department to engage in research on dielectric heat and electronic sealing.

Eltran Corp., St. Anne, Illinois, has purchased the business of Radell Corp., Indianapolis, Indiana, to complete its line of loudspeakers.

Cutler-Hammer, Inc., Milwaukee, Wisconsin, manufacturers of electrical apparatus, has acquired the business of the West Electric Products Co., Los Angeles, Calif.

Cook Research Laboratories, Chicago, Ill., has begun construction of a one-story addition to its present facilities. The new building will

Sketch of new Cook Research Lab
approximately double the floor space available for design, development, instrumentation and testing.

International Television Corp. recently purchased the Minerva Radio Corp. plant at 238 William Street, New York City. The additional $50,000 \mathrm{sq} \mathrm{ft}$ of space will facilitate full-scale production of a complete line of television receivers.

American Standards Association, INC., is the new name of the ASA New York City. The incorporation recognizes the enlarged activities

EISLER

ELECTRICAL \& ELECTRONIC EQUIPMENT
ELECTRONIC TUBE EQUIPMENT
 RADIO TUBE EXHAUSTING MACHINE

We Make Complete Equipment Equipment
For The Manufacture Of Incandescent Lamps Radio and Elec tronic Tubes.
TRANSFORMERS OF ALL TYPES

CHAS. EISLER

EISLER ENGINEERING CO., INC.
751 So. 13th St. (Near Avon Ave.). Newark 3, N. J.

LOW LOSS PLUGS AND FREQUENCY CONNECTIONS. SUPPLIED IN I AND 2 CONTACT TYPES:
101 Series can be furnished with $1 / 4^{\prime \prime} .290^{\prime \prime}$. $5 / 16^{\prime \prime}, 3 / 8^{\prime \prime}$ or $1 / 2^{\prime \prime}$ ferrule for cable entrance. Knurled nut securely fastens unit together. Plugs have ceramic insulation and sockets have bakelite. Quality construction. Fine finish. Assembly meets Navy specifications.
For full details and engineering data ask for Jones Catalog No. 16.
JONES MEANS
Proven QUALITY
HOWIND B. JOLES DIVISION
2460 W. SEORGE St

PRECISION

 producing

DI-FORMED PAPER TUBES

at no extra cost!

Precision DJ-FORMED Paper Tubes have made a most important improvement throughout coil industry. Now ALL coil manufacturers and users can take advantage of the opportunity to obtain Precision DI-FORMED square and rectangular paper tubes for coil bases, at no extra cost!
Results: greater strength-automatic stacking-elimination of coil forming after winding-closer engineering of coils, saving wire. Precision characteristics, spiral winding, better insulation, space and weight saving are improved. Tubes also made round, oval, any shape.
Write for samples-also new Mandrel List. Many new sizes.

PLANT NO, 2

The theory and application of electronics in industry

INDUSTRAAL ELECTRONICS ReFERENCE BOOK

By Electronics Engineers of the Westinghouse Electric Corp.

This book was compiled to answer the need for complete and clear information on the application and design of industrial electronic equipment. Written by a group of engineers, each an expert in his particular branch of electronics, the Industrial Electronics Reference Book contains the most recent information on the subject. The material is directed at the practicing engineer. Its aim is to give him a better understanding of the scope and limitations of electronic apparatus as it is applied to industrial processes. measurements at ultra-high frequencies, made in ranges of 3 milliamperes and over. Streamlined to make convenient use in coaxial cables or fittings possible.

- TYPE R, for radiant energy measurements.

Write Department VE for latest informative bulletins

FIELD ELECTRICAL INSTRUMENT COMPANY

109 E. 184 ST. • NEW YORK 53, N. Y.

High Sensitivity . . . Logarithmic AC VOLTMETER 50 MICROVOLTS TO 500 VOLTS

SELF-CONTAINED ALL AC OPERATED UNIT

An extremely sensitive amplifier type instrument that serves simultaneously as a voltmeter and high gain amplifier.

- Accuracy $\pm \mathbf{2 \%}$ from 15 cycles to 30 kc . $\pm 5 \%$ from 30 kc . to 100 kc.
- Input Impedance 1 megohm plus 15 uuf. shunt capacity.
- Amplifier Gain 40000
Also MODEL 45
WIDE BAND
VOLTMETER
.0005 to 500 Volts!
5 Cycles 1600 kc .

A few of the many uses:

- Outpur indicator for microphones of all - Gain and frequency measurements far all types.
- Low level phonograph pickups.
- Acceleration and other vibration measuring pickups.
- Sound level measurements. - types of audio equipment.

Densitometric measurements in photog-

- Liphy and film production.
with photocells.
IVrite for Complete Informalion
Instrument Electronics
41-17A Douglaston Parkway DOUGLASTON, L. I., N. Y.

ILLINOIS CONDENSERS BELONG in the best Electroníc Sets

"The Trade Mark of "Time Tested Quality"

- Look to lllinois for a complete line of electrolytic capacitors for every electronic application. When you need a capacitor that has superior ability to withstand extreme temperature changes; that's manufactured to exacting specifications; that's time tested through 14 years of high quality production experience-you want an lllinois condenser!
- Write for our latest catalog.

HLINOIS CONDENSER CO.
 1016 NORTH THROOP STREET - ChICAco 22, IIt:

SMALI PRRTS

Filaments, anodes, supports, springs, etc. for electronic tubes. Small wire and flat metal formed parts to your prints for your assemblies. Double pointed pins. Wire straightened and cut diameter up to $1 / 8$-inch. Any length up to 12 feet.
LUXON fishing tackle accessories.
Inquiries will receive prompt attention.

ART WIRE AND STAMPING CO.

Newark 2. N. J.

DUAL SPEED HYSTERESIS

Synchronous Motors

- NO NOISE
- NO VIBRATION
- HUNT and "WOW" ELIMINATED
- INDEPENDENT of LOAD INERTIA

> Applications:
> Disc, wire and film recorders
> Sound cameras and projectors
> Facsimile equipment
> Television equipment
> Timing devices
> Stroboscopic work
> Teletype equipment

We can furnish on quantity orders COMBINATIONS of any two of the following speeds:

$$
\begin{aligned}
600 & \text { R.P.M. } \\
900 & \text { R.P.M. } \\
1200 & \text { R.P.M. } \\
1800 & \text { R.P.M. } \\
3600 & \text { R.P.M. }
\end{aligned}
$$

Instantly reversible with D.P D.T. switch! H.P. ratings $1 / 150$ to $1 / 30$ depending on speed combination selected. Round Frame, Resilient Mount, Rigid Base.

The hysteresis design of these new Synchronous Motors lowers noise and vibration level to a fraction of that normally present in conventional salient pole construction. Unaffected by lood inertia.

These Hysteresis Motors are now standard equipment on many high quality Recorders.

What are your requirements?

CLAROSTAT MFG. CO., Inc. 2857 H . 6 th St., Brooklyn. N. Y

[^14]NEWS OF THE INDUSTRY
at Pennsylvania State College, was recently named associate professor at Illinois Institute of Technology.
R. Jack West, associated with Wired Radio of Canada Ltd. since 1935, was recently appointed vicepresident of the company.

Charles A. Nuebling, formerly with Servo Corp. of America and Sperry Gyroscope Co., is now director of electronics for W. L. Maxson Corp., New York City, which recently expanded its engineering activities to include radar and associated high-frequency research and development.

GEORGE M. LEBEDEFF, quality control specialist and formerly chief engineer of Heintz \& Kaufman Ltd., has joined Lenkurt Electric Co., San Carlos, Calif., as a carrier engineer.

G. M. Lebedeff

L. Marton

Ladislaus Marton, chief of the electron physics section, National Bureau of Standards, has spent the summer in Europe surveying current work in the field of electron microscopy.

LEONARD MILTON, formerly senior engineer at Solar Mfg. Corp., North Bergen, N. J., is now chief engineer at Filtron Co., Inc., Bayside, New York.

Harold W. Schaefer, until recently in charge of engineering development and research, has been appointed assistant manager of the Westinghouse Home Radio Division, Sunbury, Pa. During the war he was associated with the OSRD in charge of engineering manufacturing of the proximity fuze.
R. W. Ferrell, former counsel for General Electric's Electronics Department at Syracuse, N. Y., has been appointed assistant manager

That's all the lime it takes for a Weller Soldering Gun to heat. Pull the trigger switch, make contact, and you solder. Then release the trigger and off gaes the heatautomatically. No wasted time. No wasted current. Na need ta unplug the gun between jobs. The Weller Gun's Flexitip heats only when in use-no retinning or redressing when properly used with genuine Weller Tips. This inter mittent 5 -second heating soves hours and dallars-your Weller Gun will pay for itself in o few months.

Other advantages? Just check the features of the Weller Gun illustrated. See why it's called the "handful of soldering convenience".

Solderlite, extra length, and the easily shaped Flexitip means real soldering ease. And because the transformer is built innot separate - the Weller Gun is a complete, self-contained unit, compact, convenient, safe.

For laboratary and maintenance wark, we recommend the efficient $8^{\prime \prime}$ model-DX-8 with dual heat; or 4 "types $\mathrm{S}-107$ single heat and D-207 dual heat. Order from your distributar or write for bulletin direct.

MELLER
 mANUFACTURING COMPANY

806 Packer Street - Easton, Pa.

Focus attention at the point of sale with Central＇s custom－built＂spot＂merchan＊ disers．These self－sufficient silent sales． men identify your product，create a de－ sire for it ．．．and sell！Any size，shape ot style can be created for you by our master designing department ．．creat． ors of metal products and displays for top manufacturers for over 36 years．

Write today for desriptive folder．

Sheet Metal Works，Inc． 2645－49 Clybourn Ave． Chicage 14，III．

FREE
 ALLIED＇S
 NEW 1949 RADIO CATALOG

Everything in Radio and Electronic Supplies Complete，Expert Service for Radio Engineers

You＇ll find everything you need in radio and electronic equipment for laboratory and development work，in the new 180－page ALLIED Catalog．Rely on one dependable source for the world＇s largest stocks－thou－ sands of parts，tubes，tools，books，test in－ struments，sound apparatus－ready for in－ stant expert shipment at lowest market prices． Write today for your FREE copy of ALLIED＇s newest Buying Guide．

ALLIED RADIO

ALLIED RADIO CORP．，Depf．11－K－8
833 W．Jackson Blvd．，Chicago 7，III． \square Send FREE New ALLIED Catalog．
\qquad
\qquad
\qquad

For

Dutstaniding Core

Performance

Quency（kC）
Lenkurt Trancors are now being made to the remarkable Q char－ acteristics above．Infinite care is required to make such parts． Available in a broad variety of low－cost standard cores and assemblies，or special items．

Write for catalog

LENKURT ELECTRIC CO．
SAN CARLOS，CALIFORNIA

LENKURT KNOWS HOW

BARRYMOUNTS Control VIBRATION and IMPACT

\author{

- . . with special emphasis on the field of electronics
}

We offer a complete line of highly engineered Vibration and Impact isolators for commercial, industrial, and military applications . . . also an engineering consulting service on special problems.

Catalog on Request

A letter from you will give us the opportunity to demonstrote how we can help you.

A WELL KNOWN NAME IN RADIO FOR OVER A QUARTER OF A CENTURY

2utu N. MAPLEWOOD AVENUE•CABLE: GENEMOTOR

NEWS OF THE INDUSTRY
of the receiver division at Electronics Park.

Edwin F. Stevens, formerly chief engineer of International Electronic Laboratories and Lon-Ga-Tone, Inc., is director of sales engineering and research of the newly formed client research department at Mayflower Electronic Devices, Inc., West New York, N. J.

Hobart C. McDaniel, formerly commercial engineer with Westinghouse Lamp Division in Bloomfield, N. J., has been appointed manager of the technical press service in the public relations department of Westinghouse Electric Corp., Pittsburgh, Pa.
A. A. EMLEN, formerly vice-president in charge of engineering at American Transformer Co. and then at Newark Transformer Co., has joined the engineering staff of the Peerless Electrical Products Division of Altec Lansing Corp., New York City.

A. Earl Cullum, Jr. has been awarded the Presidential Certificate of Merit for meritorious service from August 1942 to February 1946 in his work in radio and radar countermeasures as associate director of the Radio Research Laboratory at Harvard University.

Benjamin A. Fisher. formerly professor of electrical engineering at the University of Denver, was recently appointed associate professor at Illinois Institute of Technology.

Maxwell K. Goldstrin, associated with the Naval Research Laboratory since 1939, has been named to organize and direct the Programs Research Unit of the Research Group of the Office of Naval Research. He holds the Distinguished Civilian

REVOLUTIONARY New SOLDERING IRON 1rensysule Solderron

- Weighs onlv 3 ounces, yet it can do the job of a 200 watt iron
- Readily interchangeable tip-heads; no cleaning or
- Easy to use for every type of soldering.

Fingertip control ... Permits long periods of soldering without fatigue High working output Low current drain.
 EFFICIINT, ECONONICAL: The "Soldetron", pays for itself in a few months need for frullent control feature minimizes tip corrosion and eliminates the places rrequent cleaning. . Long, thin tip permits soldering in inaccessible Various types are avalible, and can be removed and inserted in one easy motion No morn funsius whilifrozen tips. He Heater element is incorporated in each tip-hoidd. To test the life of the tip-heads they were heated to approxi-
mately $1800^{\circ} \mathrm{F}^{\circ}$: during this severe test, the tip-theads did not burn out.

PRICE, including transformer and Tip-Head "A", \$13.95.
See your distributor, or for further information write to:
TRANSVISION, INC., Dept. e. n. NEW ROCHELLE, N. Y.

MOUEA $\angle B$ U.4S
MOU:

RECHARGEABLE - NON-SPILL

 VITAMITE 1 OZ. BATTERIES(Smaller than 2 Pen-Lights)

IDEAL FOR USE WITH

Miniature And Sub-Miniature Filament Type Tubes for HEARING AIDS, PORTABLE EQUIPMENT, ETC.

LaRger models also available Write for Data and Literature
THE VITAMITE COMPANY
227 West 64th street New York 23, N. Y

WASHERS • SMALL STAMPINOS • WIRE PARTS

To your SPECIICATIONS

- any quantity
any material
- any finish

LONG OR SHORT RUNS

- For prices and delivery send blue-print or sample.

Ghiffra fihnufacturing ©in.

116 W. RUBY AVE. PALISADES PARK. N. J.

4 TERRIFIC BUYS!

FM and TELEVISION SWEEP SIGNAL GENERATOR $\$ 34.95$
Accurate!-Aligns FM and television receivers, Frequency range 2-227 MC. Output modulated or unmodulated. High frequency insulation throughout, built-in power line filter and special Midine capacity tuning condenser. Easy to operate-use it to adust to tional opportunity to purchase instrument of this
kind direct from manufacturer at a tremendous kind di
soving!
 AM SIGNAL generator $\$ 32.50$
8 RF bands Frequency coverage 100 KC , 75 MC. Ultra stable 2 terminal RF oscillator, internot modulator. 3 step RF attenu-
AC only. An ator, Cathode follower output tube indispensable service shop instrument

INTERCOM SYSTEM \$14.95
Master and sub in black plastic with 50 feet of Master and sub in black piastic was tube amplifier. 105-125 Volts. AC-DC. (Formerly piced at $\$ 37.50$) lots of 6 - $\$ 12.95$

DYNAMOTOR $\$ 5.95$

For transmitters of Public Address Outfits; Mobile or Yacht Installations. Output 500 Volts at 200 MA continuous or 400 MA intermirtent.
 Input 12 or 24 Volts. DC. Type PE 135AX; power supply for BC223. All Items Backed by ECA with RMA Guarontee Enclosed find check (or money order) \square in full $\square \mathbf{2 0 \%}$ Send mb FREE ECA Bargain Bulletin

$$
\begin{array}{lll}
\text {. FM Sig. Generator } \$ 34.95 & \ldots . . \text { Dynamotor } \$ 5.95 \\
\text {. AM Sig. Generator } \$ 32.50 & \ldots . \text { Intercom } \$ 14.95
\end{array}
$$

Name
Address

City.
State
ELECTRONIC CORP. OF AMERCA
353 W. 48th St.
New York 19, N. Y.

BINDING POST

AVAILABLE NOW WITH CAPTIVE HEAD

The Superior Electric Company has developed this binding post to give complete insulation, 30 ampere current capacity and 1000 volt working voltage. The captive $1 / 2^{\prime \prime}$ hexagonal head eliminates fumbling-makes a fast, complete, multi-purpose electrical connector.

Features Fine Connections

1. Permanent clamping of wire up to \#12 through center hole
2. Looping of wire around center shaft and clamping.
3. Plug-in of standard $3 / 4^{\prime \prime}$ banana plug.
4. Clip-lead connection by turning hexshaped head to end of shaft.
5. Spade lug connection.

The 5-WAY Binding Post. available in tough red or black phenolic plastic, is offered for immediate delivery. Write for descriptive literature today.

THE

SUPERIOR ELECTRIC COMPANY
410 Meadow Street BRISTOL, CONN.

NEWS OF THE INDUSTRY
(continued)
Service award for his work on the radio direction finder and a commendation from the Chief of Naval Research for his contribution to navigation systems in all-weather flying.

Carl D. Pierson, Jr. has been appointed instructor in electrical engineering at Illinois Institute of Technology. From 1941 to 1948 he was senior engineer and division engineer of the Belmont Radio Corp. in research and development.

Leander W. Matsch, former supervisor in electrical engineering research at the Armour Research Foundation, is the recently appointed professor of electrical engineering at Illinois Institute of Technology.
A. M. Zarem, inventor of the Zarem camera used in the photographic microtime technique developed at the Navy Test Station in Pasadena, Calif., has been appointed chairman of physics research and manager of the new Los Angeles Division of the Stanford Research Institute.

Ray Davis Kell, director of television research at the RCA Laboratories, Princeton, N. J. was the 1948 recipient of the Stuart Ballantine Medal of the Franklin Institute for outstanding pioneer work in television and for his efforts in the development of color television.

METEOR HUNTER

Electronic metal-defecting wheelbarrow used by H. O. Stockwell for fragments of a meteor reported to have exploded in midair in Norton, Kansas

SHOLILL COLL CORF

 4O EDE SL HEN THR

TECHNICAL MANUALS

CUSTOM DESIGNED TO YOUR SPECLFICATIONS

Planned, written and illustrated by a select staff . . . experts in creating radio and electronic manuals for civilian \& military use.

When you call upon Boland \& Boyce to create your manuals you are relieved of every detail in their preparation. The entire operotion is taken over and completed by a specialized staff with years of experience in publishing books \& manuals.
First the requirements for your manual are completely surveyed. The working conditions to which they will be put are studied and the operations or equipment described in the manual are thoroughly analyzed. A complete outline is then prepared and submitted for your approval, along with a dummy of the manual as it will appear when finished. Upon your approval the job is completed and delivered with your satisfaction guaranteed.

Boland \& Boyce manuals incorporate only the most modern editorial and illustrative style. Each project is treated with individual attention in technique of presentation and editorial approach. The Boland \& Boyce military and civilian manuals now in use throughout the world are our best recommendations.
U. S. Navy
U. S. Signal Corps.

Sylvania Electric Products, Inc.
The National Company
Western Electric Co.
Bell Telephone Laboratories
Maguire Industries, Inc.
Allen B. Dumont Laboratories, Ine, General Electric Co.
Mine Safety Appliances Co.
Write or wire Boland \& Boyce today for more Information.

BOLAND \& BOYCE INC., PUBLISHERS

[^15]
NEW BOOKS

Alternating-Current
 Circuit Theory

By Myril B. Reed, Prof. of Elec. Eng., Univ. of Ill. Harper \& Brothers, New York, 1948, 603 pages, $\$ 5.50$.
THIS FIRST volume in Harper's new Electric Power Series is intended as a textbook for the third-year engineering course in a-c theory. Its content was developed over a tenyear period of alternate writing and classroom testing, to provide a basic text that would serve as a background for all the major fields of specialization in electrical engineering.

Topics covered include sine wave and vector representation of a-c, algebra of complex numbers, I, E, P and energy relations in R, C and L, solution of circuits, Fourier series, transients, mesh equations, network theorems, wye and delta connections, measurements, matrices, steady state operation of transmission lines, and electric filters. Many problems are provided, including some that are intentionally made too long or too difficult for the usual homework assignment; these require extra time or extra help from the instructor.--J.м.

Elements of Electrical Engineering

By Walter J. Creamer, Professor of Communication Engineering and Head of the Department of Electrical Engineering, University of Maine. McGraw-Hill Book Co., Inc., New York, 344 pages, $\$ 4.00$.
THE transition from abstract science courses to applied engineering courses is made less abrupt by this book. It contains a fusion of basic and applied material, presented to guide students in learning to approach concrete problems from their background of fundamental concepts.

The first two chapters concern electrical quantities and laws, and the second two concern conductors, insulators, and methods of measuring networks. Thus from chapter to chapter there is a progression from the abstract to the applied. Also within chapters the same development has been followed. The chapter on electromechanical action, for example, begins with con-

Problem:

To hold "Nominal
Voltages" to within
± 0.1 volts..........

Solution:
Use STABILINE IE

Your utility company may quote a nominal voltage-but power suppliers are allowed to vary, within certain limits, from the nominal. This condition, plus load changes in your own operation, results in voltages other than nominal. A STABILINE. Automatic Voltage Regulator Type IE in your power line assures you of constant voltage. It's instantaneous in action - completely electronic in operation. Holds delivered voltages to within ± 0.1 volts, regardless of line variation \therefore. within ± 0.15 volts for any load current change or load power factor change from lagging .5 to leading . 9 . Maximum waveform distortion never exceeds 3 percent.

Bulletin 547 gives you information on this and other Superior Electric voltage control equipment. Write for your copy toclay.

THE

This versatile metal forming machine was developed for use in model shops, experimental laboratories and production departments where it often replaces dies for all types of precision forming operations. Di-Acro Brakes will form a great variety of materials including bronze, stainless steel, aluminum and bi-metals.

WRITE FOR CATALOG. New edition of 40 -page Di-Acro Catalog contains detailed information on all Di-Acro Brakes, Shears, Benders, Notchers, Rod Parters, Punches and illustrates how these precision machines can be used individually or cooperatively for "DIE-LESS DUPLICATING".

NEW BOOKS
siderations of ionic formation and concludes with the cause, effect, and cure of electrolytic corrosion of buried pipes; the bulk of the chapter is devoted to batteries.

This book is also indicative of the growing importance of electronics. The title and position of the author in his department are significant; also, in this book the bulk of which is devoted to electric machines the concluding chapter is on electronics for both communication and industrial applications.F. H. R.

Books Received for Review

IONOSPIFERIC RESEARCH AT WATH ERUU OBSERVATOKY, WESTERN AUSTRALIA, J UNE 1938-JUNE 1946 . By L. V. Berkiter and H. W. Wells, Carnegie Institution of Washington Publication 175, Washington, L. C.. $1!+8$, 125 pages paper binding $\$ 2$; in cloth, $\$ 2.50$. Devoted mainly to tahles of results, this volune includes a summary of results together With brief description of equipment and methods used. A bibliograpliy of publica in the Department of Terrestrial Magnetisin is aso furnished.

RADAR. By Orrin E. Dunlap, Jr. Harper \& Brothers, New York, 1948 (revised), 268 pages, \$3.00. A popular account of all types of radar equipment and the story of its development. The revised edition explores postwar advances and indicates the many peace-time uses of the tech. nique.
TELEVISION . . . HOW IT WORKS. By John F. Rider and others. John F. Rider Publisher, Inc., New York 1948. 203 pages $\$ 2.711$. A paper bound volume printed on $81 / 2 \times 11$ in. stock. Elements of transmitti.g equipment are described in order to facilitate an explanation of the overall system. The bulk of the material covers from the point of view of the service man.

ANTENNA MANUAL. By Woodrow Smith. Editors and Engineers Bonrow Barbara, Calif., 1948,306 pages, $\$ 3.50$ Written for the arerage radioman rather than the engineer, this book sums up the elements of propagation before launching into a nommathematical description of many types of antenitas and methods of feeding power to them. Waveguides and antennas for microwaves are purposely omitted.
Teleyviow excratopedis By Stanley kempner, Fairchild Pub. Co. N. Y. 1948,415 pages, $\$ 6.50$. Chronological history of television from 600 BC to $1947-42$ pages: biographical sketches of contributors to development of tele-vision- 93 bages: definitions of technical Sylvania market survey- 7 pages; blbliSyvania market su
ography- 17 pages.

BATTLEFRONTS OF INDUSTRY. By David O. Wrodloury. John Wiley \& Sons, Inc., New York, N. Y., 19.18, 42 pages, War in covering desimnhouse in world of everything from electric torpedoes to the machinery for producing the atomic bomb, with anecdotes of problems encountered and solved in the labs, in the factories, and on the warfronts.
WORTERBUCH DER ELFKTROTECHNIK, ENGLISCH-DEUTSCH. By G. Swo boda and R. Filipowsky. Manzsehe Verlagshnchhandlung, Wien I, Kohlmarkt 16, Austria, $1: 14,312$ pages, pajer cover, $\$ 4.30$. Pucket-size dictionary listing elec tronic terma alphateticaliy in English each followed by the equivalent German term.

Covers All Twelve Channels

The Profitable TV Antenna

Premax No. T-448 Television Antenna is radically new and has been severely simplified in design for quick, service-plus a low cost that means real profit for the dealer or service man.
It covers ALL 12 CHANNELS! Tests show a relative redrop from 0 to - 8 after 90 meg. - coming back to +2 to 3.5 on Channels 7 to 13 .
Consists of two separate arrays on same mast, each fully adiustable in vertical and horizontal planes, Interconnected by a NEW circuit licensed under AA\&K patents. Can be had for all frequencies or either band. Write for complete details and price.

PRHIAX PZODUCHS DIVISION CHISEOLM-RYDRR CO. IMC.

4902 Highland Ave., Niagara Falls, N. Y.

Cavite
 steatite ceramic

COMPOUNDS

Eciontifically compounded for merlfic application from wares, reala, amphalts, gitehea, wim, rand minerais. Avallahle in wide range of meiting points and hardneswos. Apecial putiling eompuands arp heat rondincting and crask reslstant at extremely low temperatores. Herommendations, specifio
data, and samples will be furnished on requeat.

for	
IMPREGNATING	SEALING
radio collı	eendensers
transformer ooils	battories
Ignition colls	switch base torminals
wire coverinss	socket terminals
paper tubee and forms porous ceramles	Hight fxtures
	POTTING
DIPPING	Radio Transformers
Coils	Light Units
Transformers	Loading Collo
Condensera	Condensers

3445 HOWARD STREET SKOKIE, ILLINOIS

Red Streak Acid-Free tapes and flat papers are uniform in thickness and will conform to your most critical specifications. Tests for free acids and alkalines are made by pH method. In use by prominent manufacturers everywhere. Available in materials and thicknesses listed below. Write us direct or contact your paper merchant.
. 005 Gummed White Flexible Holland . 005 Gummed Red Rope
. 002 Gummed Glassine
$.003-.004-.005-.006-.007-.010$ Gummed Kraft
.005-.007-.010 Gummed Dark Gray Fish
The Right Acid-Free Tape for you is.
RED STREAK

Backtalk

This department is operated as an open forum where our readers may discuss problems of the electronics industry or comment upon articles which ELECTRONICS has published.

Wow

Dear Sirs:

In the article "Wow Meter for Turntable Testing" in the March issue, Messrs. Sansbury and Pappenfus discuss the many sources of audible wow in phonograph record reproduction. While the elimination of wow in the mechanism used to drive records is important, it is far more important at this stage of development of the record art to give attention to the wow resulting from eccentricity in the centering of the record spindle hole with respect to the grooves, a fault given only passing mention in the article.

I am not sufficiently familiar with the production techniques of the industry to be able to say just why it is that so many commercial records are so noticeably defective in this respect, but there are few defects more in need of correction. The authors set up a criterion of a permissible frequency variation of three tenths of one percent.

This means that at a radius of five inches on a record, the eccentricity of the spindle hole would have to be kept within about one sixty-fourth of an inch in order that there should be no perceptible wow. At smaller distances from the center the tolerance is proportionally reduced.

When one notes that eccentricities of as much as one thirtysecond of an inch are common and even larger amounts not infrequent, it is readily understood that wow should be so often evident. It is my guess that by far the greatest amount of wow found in home reproduction and in broadcast records is due to this eccentricity.

I believe further that a great deal of poor reproduction not ordi-

Never before a value like this $31 / 2 \mathrm{KW}$ bombarder or high frequency induction heater . . . for saving time and money in surface hardening, brazing, soldering, annealing and many other heat treating operations. Is

> Portable. . mounted on four rubber coasters. Width $141 / 2^{\prime \prime}$; depth $27^{\prime \prime}$; height $421 / 2^{\prime \prime}$; weight $300 \#$.

Operates from 220 volt line. Complete with foot switch and one heating coil made to customer's requirements. Send samples of work wanted. We will advise time cycle required for your particular job. Cost, complete, only $\$ 975$. Immediate delivery.
Scientific Electric Electronic Heaters are made in the following ranges of power: 1-2-3-5-71/2-10-121/2-15-18-25-40-60-80-100-250. KW.

Division of
" S " corrugated duenched gap co.
105-119 Monroe St., Garfield, N. J.

MICROMETER

 frequency METER Transmitters $\begin{array}{r}\text { Checking }\end{array}$ fram 100 Kc to 175 Mo . LAMPKIN LABORATORIES, INC. Bradenton, Fla., U. S. A. es7l Brya Mawr Ave.

Custom Built Equipment

Mechanical-Electrical-Electronic Complete Units. Metal Parts Cabinets, Chassis, Boxes

, Inc.

34-37 Marcy St. FREEHOLD, N. J.
ZIETRO ENGINERING WORKS
Ho2t college avenue. OAkiand Voltage filament and Specializing in High for Electronic Projects

- Prompr

LOCKING TYPE
 Stainfess Steel

TUBE CLAMPS
Send for illustrated catalog and ongineering data THE GEORGE S. THOMPSON CORPORATION South Pasadena, California

OF

TUNGSTEN and MOLYBDENUM

Quality and accuracy in our fabrication of Tungsten \& Molybdenum Rib bons have characterized our service to the Electronic industry.

A development of
H. CROSS CO.

15 Beekman St., Now York 7, N.Y

Ideal tool for manufacturers,
electricians, maintenance men, "cpectricians, maintenance men
 sizes \#8 to \#30 wires per hour. No. $733-12$ to 20 wireOther types available. "Speedex" Wire Stripper Kit complete with wire stripper and apecial, permanent steel box. Stripper - De I,uxe Specdex Model Tripper Kit-complete with Automatic Model Tool and all blades...... List \$17.00 No. 733-K-Standard Speedex Stripper Kit complete with all blades
Write today for catalog of 3,000 electronic products GENERAL CEMENT MFG, CO.

Rockford, Illinois, U. S: A.

WE manufacture a complete line of equipment SPOT WELDERS, electric from 14 to 50 KVA

AC ABC INCA NDESCE NT LAAMP manufacturing equil
from 100 to
400 Amps FLUORFSCENT TUBE MAKING BQUIPMFNT WET GLASS SLICING and cutting machines for laboratory use GFNERAL, GLASS working machines and burners
COLJLGE GLASS WORKING units for students and laboratory
731 So. 13th St. (rear Avon Ave.) \quad Newark. New Jersey

Antenna Coils, Grid Clips, Dial Cord Springs and Precision Springs of all types pertaining to RADIO and TELEVISION.

WEBSTER SPRING CORPORATION

97 South 5th Street
Brooklyn 11. New York

COLLINS ANNOUNCES:

COLLINS CUSTOM COMPONENTS

A complete high fidelity radio receiving system from antenna to loud speaker matched by engineers.

FM • AM • TV • PHONO
Matched units-May be purchased separately or as a complete package-Add-a-unit system.

THE COMPLETE SYSTEM COMPRISES:

1. New, improved Collins 19 tube FM/AM tuner with Bass and Treble tone controls, FM squelch, Pickup equalizer tube.
2. High fidelity amplifier (12 watts, triode output)
3. Record Changer (intermix, with G.E. cartridge)
4. $12^{\prime \prime}$ P.M. speaker (wide range)
5. Antenna system (for FM and TV)
6. Transcription player (dual-speed, precision arm)
7. Television chassis ($12^{\prime \prime}$ and $15^{\prime \prime}$ screen)
P. O. BOX 368

WE-2-4390
WESTFIELD, N. J.

EOWTHYFWTRTL Leads With SMALLEST-End-0n Lead Sulfide Tube Ever Put Into Steady Production
 *LITILE MINIATURE IN ELECTRONIC field ready for biggest jobs

 THE New Continental CE-703 Filld READ LeadSulfide cell will revolutionize Electronic Sulfide cell will revolutionize Electronic Equipment manufacture. It will have the instant approval of equipment designers who have long sought a practical sub-miniature cell in applications where banking of numerous cells in a small space is required. It will open up new fields in the designing of photoelectric equipment at a great saving on materials and space. It's of the photoconductive type with high voltage sensitivity and good response to infra-red radiation up to 3μ.

[^16]narily attributed to wow should be so attributed. Wow is most evident when sustained musical notes are being reproduced. For music without sustained notes or for speech, the only audible effect for a nonexpert may be a sense of flatness or general displeasure.

For these reasons, and because it seems to me that there should be no great technical obstacles preventing it, the record manufacturers should make a determined effort to improve hole centering accuracy and should reject as defective any records not passing a reasonable specification for it.
T. H. Projector

National Bureau of Standards Wushington, D. C.

Citizens Transceivers

DEAR SIRS:
IT HAS been called to my attention, relative to my article on Citizens Band Transceivers in August 1948 Electronics, that the BC-645, under conditions of extremes of temperature or humidity, variations of plate voltage or filament voltage, or ageing, may shift its transmitted frequency beyond the maximum specified for $F C C$ Class B equipment. This has not been verified by the author, but any prospective users of this equipment should be warned that such shifts may exist. It must be borne in mind, in fact, that the frequency-determining elements of the BC-645 transmitter are solid, tuned lines, not crystals, and that crystal stability cannot be expected of this equipment.

I do not believe that the statements in my article are erroneous, but no attempt was made to subject the equipment to a complete set of tests representative of those required for FCC type approval of commercial equipment.

William B. Lurie Brouxville, N. Y.

THE EDITORS are often called upon to forward mail to authors . . . a recent epistle turned out to be a wedding invitation from a reader, a high government official of a European country, who recognized the byline of his distant relative.

PROFESSIONAL SERVICES

Consulting — Patents — Design — Development — Measurements
 in

Radio, Audio, Industrial Electronic Appliances

THE BARRY CORPORATION vibration Specialists in int control of noisa
 Engineering Development Manufacturing
 179 Sldney Street $\underset{\substack{\text { Teleytiones: } \\ \text { ELIOt } \\ 0801-0140}}{\text { Cambrid }}$

H. RUSSELL BROWNELL Consultant

Specializing in Measurements \& Testing Instruments \& Tichniques-Fiec
188 West 4th St. Chelsea 2-4208 Now York 14, N. Y.

CANOGA CORPORATION

Electronic Engineers

Radar, Pulse Techmilyues, MTI Systems, Pulse and Televikion Recejvers. Vileo Ampliflers, Test Equipment, Microwave Antema Apylications, Electronic Controls. and Microuave Finijument
SHOP AND DABORATORY 14315 Bessemer st. Van Nuys, Calif. STate 5-9722

EDGERTON, GERMESHAUSEN \& GRIER, Inc.

Consulting Engineers

Research, Development and Manufacture of Electronic and Siroboscople Fiquipment 155 Massachusetts Arenue, Cambridge 39, Mass.

ELECTRO IMPULSE

 LABORATORYConsulting Physicists Radio Interferpnce and Noise Mifters: Interference Suppression Methods for Ignition Systems and P. O. Box 250 Red Bank $\underset{6-4247}{\text { Red Bank, New Jersey }}$

Professional Assistance . . .

in solving your most difficult problems in the specialized field of electronic devices is offered by consultants whose cards appear on this page.

ERCO RADIO LABORATORIES, INC.

Radio Communications Equipment Englneering - Design - Development - Production Ploneers in Frequency Shift Telegtaph Garden City - Long Island - New York

FRANKEL \& NELSON

Consultants in Mathematical Physics 7716 Firenze Are. Los Angeles 46, Calif. Granite 6970

GENERAL

INSTRUMENT \& ENGINEERING
consultation research developaent in
ETAECTRONICS. E. E., PHYSICS
100 Barr Bulding
Washington B, D. C.

ELECTRO-MECHANICAL RESEARCH INC.
Specialized Research and Manufacture
High and Low Frequmy circuit Derelonment
Electronic Measuring and Test Equipment
Optrial Gorophysical Fauipmeat
Magnetic suserntinility Meters
Ridgefielt, Conn.

ELECTRODYNE CO.

Electronics Mechanics Optics
researcit and development Cathode ray recorders custon built to your own
sperifleallons. lrompt dellery Speriflicallons. lirompt dellvery.
Suerlalists in pschological and biological instrumentation and industrial problems.
gog literature acailable on request.
R99 Boylst on St.
16oston 15, Mlas.
1'Lones Copley 7-0055
lioston 15, Mass. Conley 7 -0nif

ELECTRONIC ENGINEERING

 CO. of CALIFORNIARadio and Electronte Consulting and Designing.

PAUL E. GERST \& CO.
CONSULTING ENGINEERS Specialists in Electrical Pruduct Deaign
E7. Machinery Apparatus \& Applications
7. Appliances, Hi-Frequencies Ayparatus 11 Sa . Desplaines St. Chicago 6. Il.

GLOBE PRODUCTS CORPORATION

Electrunic Division

PAUL E. GERST \& CO. consulting engineers 甶. Machinery Apparatus \& Applications Electronics, Radio Communications 11 S α Desplaines St. Chicago 6. Il.

PAUL GODLEY CO.

Consulting Radio Engineers great notch, n. J.

Est. 1926
Little Falls 4-1000

LERU LABORATORIES, INC.

Design and Development of Electronic Equid-
ment for industrial and scientifle purposes
Special experience in microwaves, spectrum anslyzers, photo-electric circuits, test equipment, etc. 360 Bleecker Street WAthns 9-4194

MEASUREMENT ENGINEERING LIMITED

Consultants on Special Equipment for measurments and production tests, communications and sudlo systems.

61 Duke St.
Toronto, On
Arnprior, Ont.
2235 Addington Ave Montreal. Que.

Eugene Mittelmann, E.E., Ph.D.
Consulting Engineer © Physicist
High Frequency Heating - Industrial Electronios Applied Phystes and Mathemalics
549 W. Washington Blrd. Chicago 6, 11.
State 8021

ALBERT PREISMAN

Consulting Engineer
Television, Pulse Techniques, Video
Amplifiers, Thasing Net works
Industrial appliances
adustria applian
MANAGEMENT-TRANNING ASSOClATES 3308-14th St., N.W. Washington 10. D.C.

RADIO ENGINEERING COMPANY	
Design and Development	
R.F. IF. Ose. Coils	Stable Oscillator Circuits
Test Equlpment	Insirumentation
Measurements	Frequency Calibration
F.M.-A.M. Receivers-I COMILLETE LAJOO	sh Fidellty Audio Systems ATOIIY FACll,ITIES
8 Stagte Street, New Yor	4. N. Y. Whitehall 4-5266

A. F. SMUCKLER \& CO.
 Electronic Engineers
 Electronic Product Manufacturing
 Contractors to United States Government
 GRamercy 5-8151

SPECTRUM ENGINEERS

Electronic \& Mechanical Designers
540 North 63rd St., Philadelphia 31, Pennsylvania GRanite 2-2333: 2-3135

TELEREGISTER LABORATORIES

Development - Design
Studies and Investigation
Automatic Data Handling Storage Coded Pulse Techniques

ENGINEERS PHYSICISTS

The' establishment of a new section in our research laboratory requires the services of Electronic Engineers, Servo Engineers, and Physicists.

IPOSITIONS AVAILABLE AT ALL LEVELS!

An excellent opportunity exists to grow with this expanding group and receive responsibilities commensurate with your ability and experience.
Microwave radar, television, telemetering, ultra-high frequency communication, cryogenic, high altitude physics, auto-pilot, and computor experience is especially valuable.

EMPLOYMENT SECTION
BENDIX AVIATION CORPORATION
Research Laboratories 4855 Fourth Avenue Detroit, Michigan

WANTED
 SENIOR
 ELECTRICAL ENGiNEER
 OR
 PHYSICIST

M. S. preferred with experience in development of radar, television or digital computer circuits and systems.

Here is an excellent position with future opportunity for the right man in a rapidly expanding aggressive engineering firm. We now have over 150 graduate engineers and scientists engaged in research and development in the field of communications, computing systems, and electro-mechanical devices. Furthermore, it is a thrill to live in Minnesota in the Land of 10,000 Lakes.

Write for application giving a brief outline of scohlastic and employment background.

ENGINEERING RESEARCH

 ASSOCIATES, INC.1902 W. Minnehaha Avenue ST. PAUL 4, MINN.

Radio and Radar Development and Design Engineers
 Openings at
 HAZELTINE ELECTRONICS CORPORATION

Please furnish complete resume of experience with salary expected to: Director of Engineering Personnel
HAZELTINE ELECTRONICS CORPORATION
Little Neck, L.I., N.Y.
(All inquiries treated confidentially)

CHIEF ELECTRICAL ENGR PROJECT ENGRS SENIOR ENGRS

Must have extensive experience in home radio receivers and/or television, design \& development.

> Address Replies To

Vice President in Charge Engineering
AIR KING PRODUCTS CO., INC. 170-53rd St. Brooklyn, N. Y.

REPLIES (low No.): Address to office nearest you
VEW YORK: 3so W. 42nd St. (18)
SAN FRANCISCO: 68 Post St. (11)

POSITIONS VACANT

TECHNICAL WRITERS. to 30 years. KnowlTECHNICAL WRITERS. to 30 years, Knowl-
edge of electronics required, also apprentice
writers with basic radio experience. Boland \& Boyce Publishers, 460 Bloomfield Ave., Montclair, N. J.

EMPLOYMENT SERVICES

SAILARIED POSITIONS \$3,500-\$35,000. If you are considering a new connection commumi-
cate with the undersigned. We offer the origcate with the undersigned. We offer the orig-
inal personal employment service (38 years recognized standing and reputation). The procedure, of highest ethical standards, is in= dividualized to your personal requirements and develons overtures without initiative on your part. Your identity covered and present position protected. Send only name and address $\underset{\text { for details. }}{\text { Buffalo } 2, ~ N . ~} \underset{\text { Y }}{ }$. W. Bixby Inc., 266 Dun Bldg.,

EXECUTIVES $\$ 3,000-\$ 25,000$, This reliable service, established 1927, is geared to needs of high grade men who seek a change of connection under conditions assuring, if employed, and address only for details. Personal consultation invited. Jira Thayer Jennings, Dept. E: 241 Orange St. New Haven, Conn,

POSITIONS WANTED

EXECUTIVE ASSISTANT, 33, business administration, education, radio and electronic edge all phases electronics. PW-6306, Electronics.

ELEECTRONICS ENGINEER, Spanish speaking, desires position in Latin America, preferably years experience in all phases of radio communications in responsible positions. Now available. PW-6312, Electronics.

[^17]
TELEVISION ENGINERRS

A well established electronics manufacturer, located in the suburban New York City area, is interested in locating high grade television development engineers. This company is expanding its television activities and seeks capable men with backgrounds sufficiently complete to merit
responsible positions. responsible positions.
Please give all details concerning yourself, your background and your previous earn"Chief capacity, Address Your letter to the "Chief Engineer".

```
        P-6212 Electronics
```

330 West 42 St., New York 18, N. Y.

TELEVISION ENGINEERS

The Crosley division, Avco Manufacturing Corporation is expanding its television ing Corporation is expanding its television receiver activities on a long lerm basis, pervisory and senior engineers.

Requirements: College degrees. Three or more years' experience in television and radar design and development of which at least two years have been spent in advanced or product development of television receivers. Speciclists in circuit elements will be considered.

Ideal working conditions in well equipped modern laboratories with unlimited opportunities for advancement. Forty hour week, insurance, hospitalization and pension plans. Responsibilities and excel lent salaries based on experience and ability.

Replies (which will be kept confidential) stating age, experience, education and sal ary requirements should be addressed to:

Director of Research and Engineering CROSLEY DIVISION
aVCO MANUFACTURING CORPORATION
1329 Arlington St.
Cincinnati 25, Ohio

PROJECT ENGINEERS

Real opportunities exist for Graduate Engineers with design and development experience in any of the following: Airplane Stability and control. Servomechanisms, radar, microwave techniques, microwave antenna design, communications equipment, electron optics, pulse transformers, fractional h.p. motors.
Send complete resume to employment offec.
SPERRY GYROSCOPE CO.
DIVISION OF THE SPERRY CORP.
GREAT NECK, LONG ISLAND

WANTED
 ELECTRONIC ENGINEER

B. S. in Electrical Engineering or Physics With some experience in electronic circuit design work. Should be familiar with wid band amplifiers and pulse techniques.
Electronic Design and Development En-gineer-M. S. or PhD. degree in Electrical Engineering or Physics-will require a minimum of approximately eight years of extensive original electronic design experience in fields of radar or pulse techniques.
Electrical Engineer-5 to 8 years experience in low wattage, wide band ampliers, subminiature tubes and pulse fechnique. Location: Southeast, local area housing available.

We need three of the Electronic Engineers with B.S. degrees; one of the Design and Development Engineer; and one Electrical Engineer with five to eight years experience.

330 West 42 (6363, Electronics

WANTED

RADIO AND TLLEVISION ENGINEERS
The RCA Industry Service Laboratory (formerly License Laboratory), New York, has positions open for engineers having qualifications for development and consultation work. Good technical education and some
experience
required. Interesting broadening experience, and wide contacts. Write fully to
DIRECTOR, INDUSTRY SERVICE LABORATORY RCA LABORATORIES DIVISION 711 Fifth Avenue, New York 22, N. Y.

GRADUATE PHYSICIST

or Electronics Engineer with good background in gaseous conduction wanted by established New England radio tube mas filled tubes.
filled tubes. P-635\%, Electronics
330 West 42 nd Street, New York 18, N. Y.

POSITIONS WANTED

(Continued from opposite page)
RESEARCH AND Development Engineer. BSEE 7 yrs director of insulation develop. ments in wire, cable and equipment feld. Also 8 yrs. development and manufacturing experience in incandescent and fluorescent lamps. 6040 , Electronics.
ELECTRONIC ENGINEER, experienced in radio, radar and television, desires position combining technical knowledge with backbusiness management. PW-6143, Electronics. ENGINEER SEEKS position as Assistant to Executive in Los Angeles area or as salaried Field Engineer with manufacturer or representative headquartered in Los Angeles, 17 years application, design, development and supervisory experience in radio, electronic and electrical equipment. $21 / 2$ years fleld engineer
SELLING OPPORTUNITIES WANTED
SALES REPRESENTATIVE-Excellent contacts with Chicago area radio and electrical manufacturers. Desires to represent established Electronics.
ENGINEER ACTIVE and experienced in electrical, radio and electronic fields with headboth is available on Pacific coast to represent eastern or midwestern manufacturer saleswise and intechnical capacity. RA-6088, Electronics.

SAVE RESEARCH TIME BY CONSULTING The Indispensable Bibliographical Reference ELECTRONIC ENGINEERING MASTER INDEX
Descriptive Literature on Request ELECTRONICS RESEARCH PUBL, CO.,

AVAILABLE FOR IMMEDIATE DELIVERY DYNAMOTORS

NEW
Government Inspected Nationally Known Manufacturers TYPE DA-3A 28V SPECIAL! \$9.95
Input 28VDC 10.5 Amps
Hi Volt Output 300VDC .260 Amps Med. Volt Output 150VDC . 010 Amps Low Volt Output 14.5VDC 5.0 Amps Temp. Rise $40^{\circ} \mathrm{C}$ Duty Continuous RPM 4700

MODEL D-104 12V
Input \#1 12VDC RPM 4700
Input \#2 12VDC Duty Cont.
Output \#1 225VDC 100 Amp
Output \#2 440VDC 200 Amp
MODEL 5053
DC Input 28V, 1.40 Amps
DC Output 250V, .060 Amps

250 CFM- $24-28$ volts-operates on AC or DC made for ordnance department, originally used for air conditioning in tanks.

Price Each \$12.95

ALSO IN STOCK

Electrolytics, Capacitors, Micas, Pots, Rheostats, Wire, Trimmers, Special Purpose Tubes and many other hard to get items. All Nationally Known Brands.

WRITE PHONE
 VISIT

For Complete Listings and Detailed Information

Components Supply Company

168 Washington St. N. Y. 6, N. Y.
Beekman 3 8717-8-9
Open Account Shipment To Rated Concerns. Others C.O.D.

FOR SALE

200-Foot Self-Supporting Triangular Wooden Tower

Built for microwave research . . . capable of withstanding wind velocity of 100 miles per hour ... suitable for many uses. Triangular base 40 feet per side. Includes 180 feet of Cyclone fence, tubular steel elevator tower, 3 hp . elevator motor, approved lightning rod system . . . enclosed room at top. Readily demountable for shipment. Address inquiries to Radio Sales Department

Federal Telephone and Radio Corporation
 100 Kingsland Road, Clifton, New Jersey

RADIO CABINETS

and wood cabinets of all types built to your specifications.
"Engineered Wood Production"
THOMAS MANUFACTURING CO. NTEENAH, WISCONSIN

Chief Engineer

Available

Graduate: Thoroughly experienced in design, development and production of Television, Home Receivers and Electronic Equipment. Cost conscious, sales minded, production-wise. Capable Executive, Engi-production-wise. Capable Execut Employed neer and Development Worker. Employed at present by Radio-Television manuac-
turer in above capacity. Will move to turer in above capacity. Will move to
East or West coasts. Finest trade referEast or
ences.
PW-5821, Electronics
330 West 42 nd Street, New York 18, N. Y.

Abstract

SERVOMECHANISMS The book AUTOMATIC REGULATION is a dis. tinct aid to anyone engaged in the study, desion, analysis, specification, or test of servo-mechanisms. Vol. I, 207 papes, 6×9, cloth, 160 graphs and illustrations, including 530 response curves.. $\$ 3.50$ AHRENDT \& TAPLIN Box 4673 Washington, O. C.

Northern Ohio SALES REPRESENTATIVE

Solicits connection with mamufacturers of high quality electronic components and equip. ment.

Fully experienced
J. R. DANNEMILLER ASSOCIATES
4334 Groveland Cleveland 18, Ohio

(ALL TUBE TYPES IN STOCK NOW-SUBJECT TO PRIOR SALE—PRICES SUBLECT TO CHANGE WITHOUT NOTICE)

(ID SEARCHLIGHT SECTION \mathbb{D}

YOUR HEADQUARTERS FOR INDUSTRIAL EQUIPMENT

RCA 630 T.S.
 POWER TRANSFORMER

This transformer designed for
heavy duty television service. Pri. mary 115 V .60 cy . @ 400 ma .
Sec. $\# 1325-0-325 \mathrm{~V}$. @ 40 m
 List price $\$ 10.00$ Your cost $\$ 18.25$

PLATE TRANSFORMER

Primary 220 or llov.. 50/60 Cy Sec. 2050 CT @ I amp. Used in a bridge circuit, this transformer will deliver 2000 V . DC @ 487 ma \$17.95

TRANSFORMER

Here is a transformer versatile enough to run almost any piece of Surpius gear-gives you B-, bias and fil. voltages. 110
Sec. $=11-325.0 .325 \mathrm{cy}$. @ 250 ma Sec. $\# 2-0-180 \vee$, @ 40 ma
Sec. $\# 3-5 \mathrm{~V} .3 \mathrm{amps}$
Sec. $=5-12$ V@ 10 amps
A real steal
$\$ 7.95$

TRANSFORMER

 amps:-Sec \#4 6.3 V. @ . 6 amps: metically sealed-A good buy.
$\$ 5.50$

INPUT

TRANSFORMER
Western Electric Spec. \#D168816 600 OHM Line to single grid- 3 3/8" wide $\times 41 / 2^{\prime \prime}$ high $\times 1 \frac{13 / 4^{\prime \prime} \text { deep } . . . \$ 1.85}{}$

DMDFX618

Heavy Duty continuous-28 Volts input @ 18 amps. DC
output 1000 Volts @ 150 ma -also 380 volts @ 400 ma. Complete with filter-whilo
they last.....$\$ \$ 19.95$

SPECIAL

Synchronous Type Pair in Series for $1 / 0$ v. AC

SYNCHRO—DIFFERENTIAL
Model \#1943—C78249-CAL-1/280 Bendix Aviation $115 \mathrm{v}=-60 \mathrm{cy} .6^{\prime \prime}$ length to
$\$ 9.95$

ANTENNA MANUAL
Here is the latest dope on an tennas. 350 full pages on beams, stacked arrays, colinear arrays, etc. a wonderful manual without mathematics so anybody can understand how and why $\$ 3.50$

DO YOU OWN AN SCR-522?
We have a complete power supply, including a sep arate voltage requlated bias supply chassis and sche matic-all in kit form. This kit will supply all volt
age necessary for operation of the set. All parts guar anteed, Complete at the amazingly
low price of $\$ 14.95$

IT'S SENSATIONAL
Hottest Item Out! Make your SCR-522 Receiver operate on 144 to 148 MC with ONE DIAL controt in less
than 1 hour! Parts and instructions..... $\$ \mathbf{3 . 0 0}$

Model 200-EA. 5-ELEMENT 2 METER BEAM KIT Folded di-pole driven element. All aluminum con coaxial cable. Amateur net price..... \$8.40

A-BT-Cut Xtal

1000 KC mounted in a holder-very fow
tically no drift
$\$ 4.95$

RELAY

Telephone Type-dual coll relays, designed for two separate
circuits- 2000 HMS per coilType 1-Double pole, singlo 6637. Type 2-Four pole, sin:
gle throw. $\#$ D-6636. Each.
$\$ 2.49$

METER

$81 / 2^{\prime \prime}$ Marion-0 to I MA. for laboratory or shoo meter large enough to read from sev$\stackrel{\text { oral feet away-a aond value }}{ }$ $\$ 12.00$
Can also be provided in 400 mierramps $\$ 13.00$
FIELD STRENGTH METER
requency fango 3.5 through 148 mc,-pane witched (8 bands) complete with tube and quite sensitive at upoer frequencies waves \$29.95

	CONDENSER 4 Mfd.- 1500 Working Volts-DC $37 / \mathbf{g}^{\prime \prime}$ wide $\times 48 / \mathrm{a}^{\prime \prime}$ high $\times 11 / 4^{"}$ deep. Each $\$ 2.95$
	CONDENSER yranol-Catalog \#23F49-G2 1 Mfd . 000 Volts-DC working- $31 / 2^{\prime \prime}$ wide x $1 / 4^{\circ}$ high $\times 41 / 2^{\prime \prime}$ deep.

ANTENNA

LEAD IN BOWLS Made of genuine Pyrex-3^{-}in diameter; brass rod $51 / 2$ long-complete with ruber and waterproo
 Special- $\$ 1.49$

SPEAKER

$6^{\prime \prime}$ Speaker Complete with Output Transformer- $1500 \quad 0 \mathrm{HM}$ Camplete with single Output- 5000 @ each 6V, 43 etc.-a good buy
$\$ 2.30$
POWER TRANSFORMER

700 Volts DC transiormerPri, 117.5 Volts-

Sec. \#16.3V.@1.2 amps Sec, 开2725-0.725V.@60ma Sec. \#3 5V., @ 3 amps
$\$ 2.95$

INDUSTRIALS——ABS_
 SCHOOLS - AMATEURS

Let us quote on components and equipment that you require. We have too many items to be listed on this page. Place your name on our mailing list now for new catálog

20\% DEPOSIT WITH ORDERS UNLESSRATED

NIAGARA RADIO SUPPLY CORP.
NEW YORK 6, N. Y.

Phone
Dlgby 9-1132-3-4 All Prices F. O. B. N. Y. C

(ID) SEARCHLIGHT SECTION

CONSTANT V'REGULATOR NEW RAYTHEON in $95-130 \mathrm{~V} / 60$ cy; Output $115 \mathrm{~V} / 60 \quad$ Watt CASTTHEON in 198 to 242 Vinpt/50-60 cys; $0 u t-$ put $220 \mathrm{~V} / 500$ Watts/ 0.5% Rgitn Rack mtg SOLA CONSTANT V'REGLTR USN Cased in 95 to
$190 \mathrm{~V} / 50-60$ cys: Outpt 125 to $220 \mathrm{~V} 2 \mathrm{KW} / 17.4$ Amps/Constant Duty. LN*................ $\$ 130.00$ SAME UNIT NEW. USN COSt $\$ 369$. SPECIAL,

CONDENSER VARIABLE 360° SINEWAVE 4 taps 90° QUADRANTS for SINEWAVE freqs generaMeter GE/DO $58 / 200$ microamp Vom scale $/ 4$

 WESTON SQ $31 / 2 ; B C / 476 / 15 V A C M$ METER. $\$ 3.98$ WSTGHSE $0-150$ VAC $/ .25$ to 125 cycles. Meter. $\$ 3.95$
WSTGHSE RA 35 SQ $31 / 2^{\prime \prime}$ B' $/ 476 / 7.5 \mathrm{VAC}$ $\begin{array}{llllll}\text { WSTGHSE RA } & 35 & \text { SQ } 31 / 2^{\prime \prime} & B^{\prime} / 476 / 7.5 V A C \\ \text { Meter } . . . & \ldots & \ldots & \ldots & \ldots & \ldots\end{array}$
Meter
WESTON $21 / 2^{\prime \prime} /$ Tuning Meter 5 ma movement. $\$ 1.98$ GERF/O-1 Amp/21/2" $\mathrm{B}^{\prime} \mathrm{Cor} 5 \mathrm{amp}$ each.... $\$ 3.95$
WSTGHSE $0-100 \& 100-0-100$ microamp/DUALAN, WSTGHSE $0-100 \& 100-0-100$ microamp/DUALAN, HEINEMAN MAGNETIC BKRS 10 ma , 220 ma 3 ,
 SOD, KLIXON \& $\dot{\mathrm{C}} \mathrm{H} \mathbf{5}, 10,20,25,33,35 \& 60$
70 Amps, 98 \& 10 for $\$ 8.00$ THERMOSTAT 850 F $/ 20 \mathrm{~A}$ adjustable

STANDARD ELECTRIC SI TIMER ACCY 005 Sec $1 / 100$ Seed \& 60 Secd DIAL $24 V$ DAROMETRIC POTENTIOMETER ALTITUDE CON TROL Sensitive bellows mfgrd COOK R-142/55586/ AB Control 175 meg. $3 . . .$. moisture proof head $31 / 2$ L/15" D $\$ 28.75$ @ for $\$ 55$.
TRUMPET \& DRIVERS multicellular 250 Watt 9 Unit W.E. blast \& moisture proof
MOTOR I HP/3 PH/Cont Duty/3450RPM $\$ 3.95$

NAVY LINE FILTERS $10 \mathrm{amp} / 130 \mathrm{~V}$ AC DC Cased filters 0.1 to $1000 \mathrm{mc's} /$ USN. . . $12 \$ 1.29$ mc's USN Cased Cont duty $\$ 4.50 @$; TWO for $\$ 8.00$ mC's USN Cased Cont duty $\$ 4.50$ @

ABOVE SIZES EACH 30t @. . TTEN FOR $\$ 2.50$

100000	155000	240000	353500	575000
110000	166750	245000	380000	600000
115000	169360	250000	400000	620000
120000	188000	265000	402000	621000
125000	185000	268000	422000	654000
130000	2001000	275000	458000	750000
135000	220000	294000	478000	761300
140000	22500	307500	500000	800000
145000	229000	314000	520000	900000
147000	235500	330000	521000	93000
150000	238000	333500	570000	950000
ABOVF SIZES EACH 40t.....TEN FOR $\$ 3.50$				
1 Meg	2 Meg	3.5 Meg	4.23 Meg	10 Meg
1.2	2.855	3.673	4.5	11.5
1.5	3	3.9	5	12.83
1.8	3.673	4	9.05	20

ABOVE SIZES EACH 75t.......TEN FOR $\$ 6.50$

Vacuum Precision Hivalt Resistors (C) $2, .25, .6, .75, .83, .99$ megohms
SPECIAL $\$ 1.5,2,3.75$ megohms 0.5% accuracy
 SEALED, 10 or $12 \mathrm{Meg} / 10 \mathrm{KV} / 9 \mathrm{~W}, \$ 1.35 @ 10$ for $\$ 10.00$
MVZ8/20Watt $/ 30 \mathrm{Megohms} / 25 \mathrm{KV} \$ 1.98 @ 6$ for $\$ 10.00$ MVZ8/25Watt $/ 30 \mathrm{Megohms} / 25 \mathrm{KV} \$ 1.98 @ 6$ for $\$ 10.00$
$M F B 105 / \mathrm{Meg} / \mathrm{S}^{2}$ /accy/Jan. R-29 $1.98 @ 6$ for $\$ 10.00$
 $200 \mathrm{~B} / 175 \mathrm{Watt} / 0-135 \mathrm{~V}$ GR
$200 \mathrm{C} / 860 \mathrm{Watt} / 0.135 \mathrm{~V}$ GR
$100 \mathrm{R} / 0-2300 \mathrm{r} 270 / 2 \mathrm{KW} / 1150 \mathrm{r} 220 \mathrm{Vin} \ldots$.
AN /APR4 RECEIVER \& COILS Write for details OIL 5MFD/600WV/220VAC\& brckts 2 for . 98
FP Type $30 \mathrm{mfd} / 450 \mathrm{~V}$ \& $2 \times 20 \mathrm{mfd} 25 \mathrm{~V}$ also $0 \mathrm{nelomfd/}$

SWITCHES, MICRO, TOGGLE, etc.
(A) MU/Leaf Switch 31/2"/DPNO \& NC/15A $1 / 2^{\prime \prime}$ (B) MiCROSWITCHM Pin Plunger SPDT iOA @ C) MICROSWITCH Plunger SPDT/10A @ D) MICROSWITCH Plunger SPNO/10A E) ARROW H \& H PLUNGER SPNO/6A @ (G) AH \& H Toggle 6A/DPDT 30 d @ 4 for.. 1.00 (H) MICROSWITCH PLUNGER SPNONC @... 59 (I) MICROSWITCH PLUNGER Button SPDT @. . 69 (J) MICROSWITCH SPNO/30 Amp/Cased @. 1.25
(K) SWITCHETTE DPNO \& NC 30e@; SPNO @

BATTERYS
STORAGE
DRY
TYPES

(A) BR18/BB52/5az/36V minSBaty $\$ 1.49$ @ 8 (B) BURGESS 3 V F2BP/dated $6 / 47$ Sperial 5
 D) BB54/2V 27 amp WILLARD S'Baty E) WILLARD $4 V / 40 A H$ /TBY S'Baty. (F) BB206U $/ 2 \mathrm{~V}$ 11AH WILLARD S'Baty..... $\$ 1.89$

POCKET VOM OHMETER ZERO Same Both Ranges MOLDED CASE
$31 / 8 \times 57 /{ }^{\prime} \times 21 / 4^{\prime \prime}$ $31 / 8 \times 57 / 8 \times 21 / 4^{\prime \prime}$ ETCHED PANEL
WHITE LETTERS WHITE LETTERS
GACVOLTRANGES 6ACVOLTRANGES
$0-15 / 30 / 150 / 300 \&$ $0.15 / 30 / 150 / 300 \&$
$1500 \& 3000$ VOLTS 6DC VOLT RANGES $0.7 .5 / 15 / 75 / 150$ \& 750 \& 1500 VOLTS 4 DC CURRENT R's $0-1.5 / 15 / 150$ ma \& 0-1.5 Amps 500 ohm \& 1 mea ohm COMPLETE BAT \& Test leads. . $\$ 13.90$

RF SIGNAL
GENERATOR FM-TEL IV-AM 150 KC to 50 mc's on fundamentals \& 11 to 50 mc's harmonics modulation on \& off. positive ATTENT UATOR
Stable GndP ost PORT. Stable GndP ost PORT. tion Complete $11 / 2 \mathrm{~V}$ \& 45 V baty\&leads $\$ 27.75$

BENDIX TA $12 / 100$ Watt XMTR LN* Separate ECO easily converted to $20,40,80$ muning for ea ECO 3000 divs 4 separate output divs 4 separate output
tanks Selector channel switch simultaneously switch simultaneously
changes ECO, IPA \& Output tanks with tubes used
LN* "TAB"' SPECIAL.

KIT 866A TUBES \＆level down Grids．Noise TRANSFORMER inpt audio osc Amp \＆Hd－ $115 V A C / 50-60 \mathrm{cys}$, Outpt phone monitor Jack Jess
$2.5 \mathrm{VCT} / 10 \mathrm{~A} 10 \mathrm{KV}$ in． 2．5VCT／10A 10KV in－tubes \＆pWr sup wt 5Lbs
sitn，Sockets SPECIAL $71 / \mathrm{L} 31 / 2 \mathrm{~W} 5$＂H＂SPE－ sitn，Sockets SPECIAL $71 / 8$ L31／2W5＂H＂SPE－ \＄5．95 TRANSFORMER GE $115 \mathrm{VAC} / 50-60 \mathrm{cys}, \mathrm{I} n \cdot$ sltd $12.5 K V$ wka Sockets $\$ 12.95$ CLIPPER KIT\＆TUBES information for convert－

That＇s a Buy

OXBORO
GRAPHIC TAPE
RECORDER RECORDING \＆integrating Mechanical Program Cams \＆counting mechanism Adaptable to Mechanical \＆Electric Recording New $\$ 39.95$ BC968A TrainerTAB SPECIAL

自

完共 COLIINS ART13 COLLINS ARTI AMP．Dynamic or Carbon mik or line inpt，outGE GL434A similar to 7 C29 TRIODE
useable maxinpt I10 me＇s UPtol200 Watts input，UP to 600 W output． 3 Terminal Grid \＆C．T．fllament，forced
air Cooling $75-200 \mathrm{CFM}$ ，Ef $10-11 \mathrm{~V}$ air Cooling 75－200CFM，Ef 10－11V
Dsgn for RADAR／BC－677 operated 215 Dsgn for RADAR／BC－677 operated 215
mc ＇s $12 \mathrm{KV} / 310 \mathrm{ma}$ inpt＂TAB＂SPE．

MISTORS NEW 1N34\＄1．08＠，2for\＄2．10，10for\＄9．85 1N21，21A，22，23，23A each $\$ 1$ ． 12 for $\$ 10.00$ 1N23B，1N26＠\＄2．10for\＄17．50 D168391 Compensator THERM \＄2＠；3for\＄5 D170396 HF pwr meas 90\＆＠，3for $\$ 2.50$

RELAYS \＆SOLENOIDS

（A）WE D163482／45000hm／SPDT adj （B）AUTOMATIC RA74 Remote Control Reset $\$.98$ ping Twin Coil 24to30V／DP 10 Circuit．．．．．．． 8.95 （C）W．E．263A Telephone 275 ohm dual coil 2 section each 25 pole DTNO palladium cts．．．．．．．．．．．． 10.95 （D）W．E．Tel D169316 13000hm／DPiNO\＆iNC． .98 （E）SB Telephone Coili $000 \mathrm{hm} \& 1000 \mathrm{hm}$ SPNC．． 98 （F）CLARE A12280／115V－60cy／3SPDT \＆\＆

 （H）CH／B8／operates7to24VDC／200tol200amps． 298 （I）W．E．U682 Telephone coil 500 ohm 12PN0 pal－ adium contacts adjustable tension
（J）PHILTROL SOLENOID $400524 / 1 / 2^{\prime \prime}$ CORE $21 / 4^{\prime \prime}$ FIROk 24VDC 3.6 ohm Coil
FIRE EXTINGUISHER Carbontetrachloride Mfgrd PYRENE one gal Cap－2001b meter selfcharging LN＊，
 ANTENNA P108／165CMiath＊\＆Coax Cnnctr 198 ANTENNA At1／APN2／30CM 12 ${ }^{\prime \prime}$ loth＊\＆Coaxial Cnnctn waterproof pasket\＆flange mobile meto SPECIAL \＄1．49＠with PL259 ．．．．． 1.75 ANTENNA AN30 Telescopic whip i2＂to9ft NEW O＇SEAS packgd each $\$ 1.49$ ， 2 for $\$ 2.49$ ANTENNA AN130B Spring Swiveled whip End Loaded 33 Igth $\$ 1.25$ © ； 2 for $\$ 1.98$ Ant MS49－54 whip

1.00
.69

6K5GT.
6K6GT．．．

$6 \mathrm{~K} 7$.
$6 \mathrm{~K} 8 . .$.
$6 \mathrm{~L} 6 . . .$.
$836 .$.
WL 63
L632
$32 .$.
\ldots
6 L ．\ldots ．．．．$\left.1.04\right|_{864} ^{86} \ldots \ldots$ ． 67 ex breakage
WrIte for Other Typeo
ge relay AMPLIFIER NEW Contains 25 RELAYS including atching Relay \＆ sensitive relays，parts Jacks，Rstrs，Conden SPECIAL \＄18．95
 PHOTOFLASH \＆ 2 KRYPTON LAMPS NEW SET CON－ TAINS PWR
SUPPLY LAMPS
 Reflectors，HV rectifier，Condensers $2 \times 25 \mathrm{mfd}$ ，HV transformer，Relay，light output 12，000，000 Jumens， 15to30000flashes for Color\＆BWfilm KIT includes IN－ STRUCTIONS \＆PARTS to CONVERT＂12to 24VDC
unit for 115VAC OPERATION＂TAR＂SPE CIAL for ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 59.95$ PHOTOFLASH L503 \＆RECTIFIED POWER SUPPLY for 115VAC operation READY TO WORK．．．． 99.50 PHOTOFLASH CONDENSERS 8mfdGE／660VAC／3000VDC intermittent
8 mfdGE
4 for 11.95
$16 \mathrm{mfd} / 660 \mathrm{VAC} / 3000$ VDC intermittent
$15 \mathrm{mfd} / 330$ VAC／ 2000 VDCintermittent $25 \mathrm{mfd} / 330 \mathrm{VAC} / 2000 \mathrm{VDCint}$ ermittent
$16 \mathrm{~mm} /$ PAN $/ 50$ Film GSAP Camera 54 for 8.98 $16 \mathrm{~mm} /$ PANFilm Gun Camera GSAP 10 for 1.98 FUSES 3AG－1／8， $1 / 4,1 / 2$ Amp．06e＠ 20 for 1.00 3AG－1，2，3，4，10，15，20Amp．036＠ 40 for 1.00 3AG－SloBlo 10，20 Amp，．12\＆＠ 10 for 1.00 4AG－Sloblo $3,5,10,15,20 \mathrm{Amp}$ ． $12 \downarrow @$ ， 10 for 1.00 7AG－200macl0＠；8AG•1／32，1．09\＄．．（ 12 for 1.00 Little Fuse 1000V．3／8．1／2．1Amp 30 ＠ 4 for 1.00 BUSS 4000V－1／2Amp 675 ＠ 4 for 2.25
WRITE FOR OTHER SIZES

Hoid

RELAYS
GUARDIAN 500AC／opl8－24VAC／4PSTNO／ （K） （L） GE 1 ．． 4.95 （M）ALLIED STK $/ 64012000 \mathrm{hm} / \mathrm{SPDT} / 5 \mathrm{C}$ cts． 1.98 （M）ALLIED （N）GE CR2791B100J3 3PDT／24V／5A Con
 （0）S＇DUNN $17 A \times \times 109 / 115 \mathrm{VAC} / \mathrm{SPNO} / 6$ to 30 A
 （Q）GE CR2791－B100F $3 / 2 \ddot{4} \dot{V}$ DPDT／5Amp Cts 98 （R）GUARDIAN 125DC／4tol2VDC／SPDT／8 Amp

 （T）R22 12V／DPDT\＆SPNO／15AmpContacts．．． 1.69 （U）A Bradley 702／110VAC／3PSTD break 25 Amp （V）ALLiED BJ GV／DPDT／5Amp Contacts．．．．． 1.49 （V）ALLIED BJ／7．5VAC／DPDT 5AmpContacts．1．98 （V）ALLIED AS $24 \mathrm{~V} / 5 \mathrm{~A} / \mathrm{SPDT} / 5$ Amp Con
 Amp Ceramic HF ins 75 tolloV $\$ 2.75 @ \& R e c$ （X）A Bradley overload adjig．1 $1 \overline{15} .2 / 12 / 986.3$

(T) SEARCHLIGHT SECTION T

PARABOLOIDS

Ideal for microwave experimental work. Spun Magnesium dishes Reinforced Perimeter 171/2" Diameter x 4" Deep Two sets mounting brackets on rear. Open center hole $11 / 2^{\prime \prime} \times 15 / a^{\prime \prime}$ Per Pair, Brand New

MERCURY CONTACT RELAY

Western Electric D-168479
For applications in all types of high speed switching devices. Long service life, high operating speeds. Large current and voltage handling capacity, uniform and constant operating characteristics under adverse atmospheric conditions. Hermeticallysealed mercury-wetted contacts in gas-filled glass envelope. Free pole double throw contacts.
1000 hours life at 60 operations per second. Two coils of 700 ohms, and 3300 ohms. Operating current, colls series aiding- 6.6 Technical Data on request. sories aiding- 5.2 mils. Four page rechnical data on request.
Brand New in Original Cartons, \$4.75

- SELENIUM RECTIFIER
Bridge Type Input: 36 V . AC Output: 28 V. DC., 1.1 Amps Brand New \$2.75

RADAR ANTENNAS
Following types available, brand new in original export packing cases: SO-1 (10 cm.)............................ . $\$ 149.50$ SO-3 (3 cm.)............................ $\$ 139.50$ SO-8 (10 cm. $\$ 139.50$ SO-13 (10 cm.$) \ldots$. TDY (10 cm) ${ }^{\circ} \ldots$.

RADAR EQUIPMENT

Radar Repeater Adapters, Antenna Control units with P P I units, Transmitter Receiver units, etc. for SO Radar.

All Brand New Equipment.
Complete Set SO- 3 Tender Spares com prising a complete 3 CM Radar installation and large quantity of spares. Consists of 39 cases of equipment.
Brand New
. \$2,500.00
Spare parts for SG 1 Radar in stock RADAR TUBES
4C35, 2J62, 3B24, 3C45, 7BP7, 9LP7, etc.

DYNAMOTORS-500 Watt
 Navy Type CAJO-211444

Input: 105-130 Volts D.C., 6 amps. Outpu 13 or 26 Volts D.C. $(26$ V. at 20 amps in series of 13 V . at 40 amps . in parallel), Designed for radio use, fully R.F. filtered complete with separate Square D line gwitch box.

BRAND NEW $\$ 59.50$

PANORAMIC ADAPTER AN/APA-10
Includes 21 tubes and 3^{n} scope tube. Conserted

PEAK-TO-PEAK V.T.V.M.
Designed by Radiation Labs. M.I.T. for the U. S. Navy.

Type TS-487U
A portable instrument designed to measure peak-to-peak voltages of recurrent waves, particularly of the type normally found in radar video circuits. It is especially intended for use in setting the levels of video and synchronizing voltages in radar equipment where the relationships between these voltages are important to the operation of associated equipment.

$$
\text { BRAND NEW Price } \$ 69.50
$$

SYNCHROS

(Selsyns, Autosyns, etc.) Navy types: 1F, 5B, 5CT, 5DG, 5G, 5F, 5SDG, 5SG, 5SF, 6DG, 7G, etc.
Army types: 2J5FB1, 2J5S1, 2J1F3, CAL 18300, C 78414, C 78863, C' 78411, etc. Also:
Pioneer Precision Autosyns type AY 101D. brand new available in quantity.
Output:
 1200 volts D.C. at 1.5 MA
6.4 A.C. volts at 0.8 A (ins. for 1500 v , D.C. ncludes tubes: $1-5 \mathrm{R} 4 \mathrm{GY}$. 1-2x2, 1-6AK cathode ray tube socket, resistance capacitance filter, two focus controls, an intensity control and BaK5 reinserter circuit

MOTOR GENERATORS

Brand New War Surplus Machines Built by Allis Chalmers Co. to U. S. Navy Specifications. Input: 115 V . D.C. at 14 amps. 3600 rom Output: 120 V A.C., 60 CY. 1 ph. at 10.4 amps. 1000 Watts continuous duty. Ball bearings.
Splashproof. Fully enclosed. Centrifugal starter.
reng adjustable to load
Length 26"'; Width 127/8"; Height $13^{\prime \prime}$
Price $\$ 125.00$
Same machine but for 230V. D.C. input Price $\$ 125.00$

Spare parts kit with extra brushes, brush holders, field coils, bearings, etc., for
$\$ 29.50$
G. E. AMPLIDYNES

Type 5AM21JJ7, New.....
Type 5 AM45DB20, NEW. \qquad
G. E. SERVO AMPLIFJERS

Type 2CVICI, New. $\$ 29.50$

LLSMAN COMPASSES
Type B-16 complete with spare pilot lamp BRAND NEW $\$ 9.75$
 BRAND NEW \$1.00

(ID) SEARCHLIGHT SECTION ©

MICROWAVE PLUMBING

PULSE EQUIPMENT

MICROWAVE PLUMBING

 "S" MAND Mrxer Assembly, with crsstal noumt, pick.

 WAVEGUIDE SECTON. MC \& t5A, rit. angio bend

等

 SHORT RIGHT RGGGLE BEND-1/4 ic.
 1.25 CENTIMETER

 DAPTER rd. cover to ai. cover.

MICRO WAVE GENERATORS AN/APS-ISA "X." Band conmpl RF head and modu-

 "S'" BAND AN/S-2. Complete RF head and mo.00

 Modulator-motor-alternator unit for aihote...s 8 7.00
Hecelver-rectifier power unit for abore
72. Rotating antenna with parabolic reflector for above.

COAX CABLE

COAX CONNECTORS

3 CM. PLUMBING

(STD. $1^{\prime \prime} \times 1 / 2^{\prime \prime}$ GUIDE UNLESS OTHERWISE FLEX section. Sq. fiange to circ. Flange

 TR tubb (41-TR-1)
 choke to cover, with 180 deg. bend of $24_{2}^{\prime \prime}$ rad. at ROTARY joint with slotted section and type 58.50 WAVPEGUICE SECTION, 12iviong chobe to cover. 45 deg. twist \& $21 /{ }^{\text {r }}$ radius, 90 deg, bend......... 9.50 SLUG THItered output and aitenuating slugs... $\$ 20.00$
 WAVEGUIOE SEECTIONS $21 / 2$ for. long, silver Dlated With choke flange......... piane, 18 iong. $\$ 4.00$ ROTARY JOINT, choke to choke....................
ROTARY JDINT, choke to choke, with deck mountIng RUE WAVEGUOE, \& lonn cover to choke $\$ 10.50$ DUPLEXER SECTION for 1 1824.
CIRCULAR CHOKE FLANGES, solid brass.
ith circ. or sq. flanges............................. . $\$ 3.50$

> APS-10 MIXER 2 K $25 / 723$ AB. X band local oscillator mount with (1) choke coupling to beacon reference cavity: (2) choke coupling to TR. and receiver: (3) Iris coupling with AFC attenuator to antenna waveguide; (4) Radar. AFC crystal mount; (5) Receiver crystal mount; (6) Attenuating slugs. Mig. DoMornay. Budd. $\$ 22.50$ TR/ATR Duplexer section for above........ $\$ 4.00$

TUBE	MAGNETR FRO. RANGE.	RONS PWR OUT.	PRICE
2J311	2820-2860 mc.	265 KW .	\$15.00
2J21-A	9345-9405 me.	50 KW .	\$25.00
2 J 22	3267-3333 mc.	265 KW.	\$15.00
2 J 26	2992-3019 me.	275 KW.	\$15.00
2 J 27	2965-2992 mc.	275 KW.	\$15.00
2 J 32	$2780-2820$ mc.	285 KW .	\$15,00
2 J 38 Pkg .	$3249-3263 \mathrm{mc}$.	5 KW .	\$25.00
2J39 Pkg.	$3267-3333 \mathrm{mc}$.	8.7 KW .	\$25.00
2 J 55 Pkg .	9345-4405 mc.	50 KW .	\$25.00
$3 \mathrm{~J} 31{ }^{\text {a }}$	(24,000 me.	50 KW .	\$35.00
714 A			\$15.00
720 BY	2800 mc .	1000 KW .	\$50.00
725-A			\$25.00
730-A			\$25.00
KYLSTRO	723 A		\$12.50
7071: wioc	ITY		\$20.00
MAGNETS			
For 2J21, 725-A. 2J22, 2J26, 2J27, 2J31, 2.132 4850 Gauss, $6 / 8{ }^{\prime \prime}$ bet. pole faces, $3 / 4$ " pole diam. $\$ 8.00$			
1500 Gauss, $11 / 2^{\prime \prime}$ bet. pole faces, $15 / 8{ }^{\prime \prime}$ pole diam. ${ }^{\text {d }}$ (00			
TUNABLE PKG'D *'C			
(21559 2675	$9900 \mathrm{Mc*}$	QK61 2975-	00 Mcs.
New-\$45 each New-\$55 each			

MICROWAVE TEST EQUIPMENT

range. Lighthouse tube oscillator with attenuator \& output meter. 115 VAC input, reg. Pwr. supply,

 with square flanges.. transmiss...... cm . Wavemeter, Micrometer head mounted on X Mand guile. Freq. range approx, 7900 to 10,000

MODULATOR UNIT BC 1203-B

Provides 200-4.000 PPS. Swreen time 100 to 2500 microsec. in 4 steps, fixed mod. pulse, suppression pulse, sliding modulating pulse, blanking roltage, marker pulse, sweed voltages, callibration voltages,
til. voltages. Operates 115 vac $50-60$ cy. Sliding pulse variable in phase up to 2500 microsec. Amplitude of suppression pulse adjustable between Ampli- 10 and 35 Y , and width variable between the. limits of 10 microsed. or less to 1800 microsec. or more at at
recurrence rate between 200 and 300 cps. Provides recurrence rate between 200 and various types of voltage pulse outputs for modula tion of a signal generator such as GR $\# 804 \mathrm{~B}$ or
804 C . New $\$ 125.00$

MIT MODEL 3 HARD TUBE PULSER Output Pulse Power: 144 KW (12 KV at 12 amp).
Duty Ratio: 001 max. Pulse duration: $5,1,0$, Duty Ratio: . 001 max. Pulse duration: $5,1,0$,
2.0 microsec. Input voltage: 115 , 400 to 2400

APQ-13 PULSE MODULATOR. Pulse Width . 5 to 1.1 Micro Sec. Rep. rate 624 to 1348 Pps. Pk Dwr. out
85 KW . Energy 0.018 Joules. $\$ 49.00$ TPS.3 PULSE MDOULATOR. Pk, power 50 amp. 24 KV (1200 KW pk) ; pulse rate 200 PPS, 1.5 microsec: pulse line impedance 50 ohrns. Chrcuit-series

> PULSE NETWORKS
 circuit, 1 microsecond pulse length, 350 PPS, 50
ohms impedance. $\$ 45.00$
 pedance $\$ 6.50$

PULSE TRANSFORMERS

W.E. \#DI66173 III-Volt input transformer, W.E. Impedance ratio 50 ahms to 900 ohms. Freq. range: 10 kc to 2 me. 2 sections parallel comuected, pot-
ted in oil 12.00 W.E. Ks 9800 Input transformer. Winding ratio between terminals $3-5$ and $1-2$ is $1,1: 1$, and between terminals 6-8 and $1-2$ is $2: 1$. Frequency range:
$380-520$ c.p.s. Permalloy core................... $\$ 2.00$ G.E. \#K2731 Repetition Rate: G35 PPS, Pri. Imp: 5 Ohicros, Sec. Imp: ${ }^{450}$ Ohms, Pulss Width: 1 28 KV PK. Peak Output: 800 KW . Binlar 2.75 W.E. \#Di69271 Hi Volt input pulse Transformer. $\$ 9.96$ G.E. K2450A Will receive $13 \mathrm{KV} . \mathrm{I}^{4}$ micro-second
 G.E. \#K2748A 1’ulse Input. line to magnetron. . $\$ 12.00$ Utah Pulse or Blocking Oscilfator Transformer

MICROWAVE ANTENNAS

AN MPG-1 Antenna. Rotary feed type high speed scanner antenna assemble, including horn baraholic
 APS-4 3 cm . antenna, Complete. $141 / 2^{\prime \prime}$ dish. Cutler feet dinole directional coupler, all standard $1^{\prime \prime}$ x $1 / 2^{\prime \prime}$ waveguide. Drive motor and gear mechanisms for
horizontal and vertical scan. New. complete. $\$ 65.00$ AN/TPS-3. Parabolic dish type reflector approx. 10^{\prime} REAYY SYSTEM PARABOLic REFLECTORS; ap-
 TDY "JAM", RADAR ROTATING ANTENNA, 10 cm . SO-13 ANTENNA. $2 t^{\prime \prime}$ dish with feedback dipole 360 deg. rotation, complete with drive motor and selssn,
New
Used DBM ANTENNA. Dual back-to-back parabolas with dipoles, Freq. coverage $1,000-4500 \mathrm{mc}$. No dive AN/128A ANTENNA."Two vertica, dipoles working against a square reflector apx, 3 . 4 . Range: $\$ 40.00 ~$
200 me. AS 125/APR CONE type receiving antenna, 1000 to 3201 mexacycles. New. $\$ 4.50$
$140-600$ MC. CONE tyve antenia, complete with 25^{\prime} sectional steel mast, guys, cables. carrying case,
etc. New

RADAR SETS

RC 145 IFF SET. Consists of BC 1267 xmtr-rcvr, remote antenna
power subvly BA
controller
$105-\mathrm{A}$.
1
 SN RADAR-GE, low power, 5 and 25 ranges. "S.s. band. Extremely compact. ideal for demonstration and laboratory work. 115 F 60 C operation.
 20,000 to 80,000 vals range. 250 KW . npur to 706 magnetron. Thyratron nodulator. tsise rate. Complete set including spare rioe and additional information.
TELESCOPIC 30 FT. MAST SETS
Heavy duty rugged plywood. Crated in 3 sections with coupling and rigging material. Two masts per set

JUST ARRIVED!!
600,000 AIRCRAFT BULBS MAZDA \#623, 24-28VDC, 6C.P. TUNG-SOL \#1251, 24-28VDC, 3C.P.

VIBRATORS

PRICE. $\$ 1.00$ EA.

GREAT TUBE VALUES

O1-A	45	7 E 5	-	81	5
1 B 24	4.85	${ }^{710}$	72	885	15
1 H	55	12 A	. 35	837	
1	69	${ }^{12 \mathrm{GP}}$	14.95	883	
1 T 4	69	12 K 8 Y	65	860	15.00
2 C 21	69	${ }^{12 S F 7}$	49	881	
${ }_{23}^{2 \mathrm{C} 22}$	25.00	${ }_{15 R}^{1287}$	1.72	874 876	
2 J 22	15.00	${ }_{28 \mathrm{D}}{ }^{\text {7 }}$. 75	889 R	78.58
$2 J 26$	15.00	330 (Spec).	70	${ }_{1613}^{1005}$	35
${ }_{2}^{2 J 31}$	15.00 25.00	${ }_{3575}^{351}$. 69	${ }_{1619}^{1613}$	95
2 J 32	15.00	45: Spec)	59	1624	
2 J 38	25.00	50L6	79	1629	
$2 J 55$	25.00 25.00	${ }^{35} / 51$	72	8012	95
${ }^{3 J 31}$	25.00	211	385	${ }_{9004}^{9002}$. 6
${ }_{3}{ }^{2 \times 2} 4.8$. 65	225	3.85 8.80	${ }_{9006}$	
$3 \mathrm{3PP1}$	2.25	250 R	${ }^{7} 9.95$	CESO^{72}	95
$3 \mathrm{Cl24}$ 3 C 30	70	${ }_{255-A}^{268-A}$	20.00 19.50	EFS ${ }_{\text {E }}$	79
	. 5	417 A	22.50	F-127.	20.00
${ }_{3}^{3 \mathrm{GP} 1 / \mathrm{Si}}$	3.50	5330	${ }^{90} 500$	${ }_{\mathrm{F}}^{\mathrm{FC}} \mathbf{2} \mathbf{2 5 1}$	165.00
${ }^{\text {3D21-A }}$	1.50 2.25	531	45.00 3.95	GC ${ }_{\text {ch }}$	40.00 75.00
$3 \mathrm{EP1}$	2.95	559	${ }_{9}^{4.00}$	GL 62	${ }_{75.00}^{75.00}$
$3 \mathrm{GP1}$	+120	${ }_{615}^{562}$	${ }^{90.00}$	ML 100	
		703-2	7.00	OK 59	45.00
58P1	1.20 4.95	70	2.75	OK 60	45.00 55.00
	3.75 3.50	7^{707} - B	+20.00	OK ${ }^{\text {O2, }}$	55.00
	3.50 8.00	${ }_{715-\mathrm{B}}^{714}$	15.00 12.00	RCA 932*	6.5
5 J 30	39.50	${ }^{720 \mathrm{BY}}$	50.00	VR 130	1.25
	1.60	721	25.00 3.60	VR ${ }^{\text {V }} 135$	25
6 C	58	${ }_{723-\mathrm{A} / \mathrm{B}}$	3.60 7.75	VR 150-30	75
	2.00 1.00 1	${ }_{724-\mathrm{B}}^{724}$	1.75	VU 120.	00
		72	25.00	WL53	
61	1.00	72	10.00	WN 150	3.00
	${ }_{1.00}^{70}$	${ }_{801-A}^{800}$	2.10	${ }_{+}^{\text {WTith }}$ + ${ }^{260}$	S.00.
GT	. 79	804	9.95	* Photoce	

CROSS POINTER INDICATOR
Dual 0.200 microamp. movement in 3^{n} case. Each movement brought out to 6 -term receytacle at rear.
Originally used in LLS equipment. New......... $\$ 2.50$

VOLTAGE

 REGULATORSMfg. Raytheon: Navy CRP-301407: Pri: 92 $138 \mathrm{v}, 15 \mathrm{amps}, 57$ to $63 \mathrm{cy}, 1$ phase. Sec 115 v. $7.15 \mathrm{amp}, .82$ KVA, . 96 PF . Con tains the following components

REGULATOR TRANSFORMER: Raytheon UX-9545 . 22 -138 . 60 cy, 1 PH. Nec. 2000 1580 . FILTER REACTOR: $.156 \mathrm{hy}, 5 \mathrm{amds}, 4000$ vest. Ray TRANSFORMER:
 ${ }^{250}$ Entire unit enclosed in grey metal cabinet with

POWER EQUIPMENT

Step down transformer: Pri: $440 / 220 / 110$ volts a.c. 60 cycles, 3 KVA. Sec. 115 v. 2500 volt insulation. Size
 000 V @ 144 ma . with choke. On immersed. $\$ 6.00$ Fil. Transformer: Pri: 220 v.a.c., 60 cy; 05KVA. sec,

 $21,000 \mathrm{~V} .100 \mathrm{ma}$. Voltage Reg. Transtat Amertram; type PH 2 KVA load. Input

OIL CONDENSER

STANDARD BRAND

1 mfd .10 KVDC \#141 191
06 mfd. 15 KVDC, $25 \mathrm{~F} 585-\mathrm{G} 2$
1.5 mPd .6000 vdc
.25 mfd .20 .300 vdc

10 mfd 1000 VDC
3×10 mfd. delta connected synchro-capacitor, 90

POWER CHOKES

> Swing. Choke: 4.5 to .8 hy ; 2 to 1 amp....... $\$ 10.95$.03 hy, 2 amp.

$25 \mathrm{hy}, 65 \mathrm{ma} \quad .$| $\$ 1.15$ |
| :--- |
| 1.50 |

TRANSTATS

(AMERTRAN)

cyput: Max. output: 113
100 amp cre new, \$75

[^18]
STANDARD BRANDS PRECISION CAPACITORS

D. $160270: 1$ mfd (${ }^{200}$ vdc. -40 to plus 65 deg

 D. 164966 der 2.04 mpd (18) 200 vdc, 0 to plus 55 dea
 ${ }_{0}^{85}$.161270: C C mfd @ 200 pdc , temp comp- 40 to plus QBG-1. ECho Ranging Driver-Receiver, underwater sound stgnal transmission and reception unit witt

300000 SHOCK-MOUNTS STANDARD BRANDS AVAILABLE IN 20 WEIGHTS \& SIZES SEND YOUR REQUIREMENTS

BIRTCHER TUBE CLAMPS

\qquad $926-\mathrm{B} 5$
$926-\mathrm{B} 33$ $926 . \mathrm{C}$

WIRE WOUND POTENTIOMETERS

RELAY DPDT, 12 V. D.C. DUNCO \#CX3190 B
CONTACTS 16 V. @ 6 AMP D.C. Latching Type
A Complete Line of D.C. Relays in Stock.

DYNAMOTORS

$\begin{gathered} \text { Type } \\ \text { BD }^{77 \mathrm{KM}} \end{gathered}$	Input		Output		Radio Set	Price ${ }^{*}$
	Volts	Amps	Volts	Amps		
	14	40	1000	. 350	BC 191	\$20.00 N
						\$14.00 LN
PE 73	28	19	1000	. 350	BC 375	\$24.50 N
DM 21	14	3.3	235	. 090	BC 312	\$3.45 LN
DM 21CX	28	1.6	235	090	BC 312	\$3.45 N
DM 25	12	2.3	250	050	BC 367	\$2.49 LN
DM 28R	28	1.25	275	. 070	BC 348	\$5.75
DM 33	28	7	540	. 250	BC, 456	\$5.50 N
DM 42	14	46	515	. 110	SCR 506	\$6.50 LN
			1030	. 050		
			2/8			
PE 55	12	25	500	. 400	SCR 245	\$5.25 LN
PE 86	28	1.25	250	. 060	RC 36	\$3.95 N
PE 101 C	13/26	$12.6 /$	400	. 135	SCR 515	\$5.25 N
		6.3	800	. 020		
			9 AC	1.12		
BD'AR 93	28	3.25	375	. 150		\$4.95 N
23350	27	1.75	285	. 075	APN-1	\$3.50 N
35X045B	28	1.2	250	. 060		\$3.50 N
2A.0515	12/24	4/2	500	. 050		\$3.95 N
B-19 pack	12	9.4	275	. 110	Mark II	
			500	. 050		\$9.95 N

MISCELLANEOUS COMPONENTS

 \#DE11 1.66 amps. Full Wave Bridge, F. T. \& R. EL. RECTIFIER: Input: $30 \mathrm{vac}, 60$ ey. Out: 24 vdc, POWER SWITCH. 4 pos. 60 amps, 600 vac. AlTow ROTARY \because SPARK GAP 24 vde motor, 4 spark $\$ 5.0$
 SELSYNS, $110 \mathrm{r}, 60 \mathrm{cy}$, sizes........... $\$ 7.755_{\text {per pair }}^{\text {pit }}$

SYNCHROS

IF Special Repeater, 115 volts, 400 cycle. Will operate on 60 cycle at reduced voltage.
Price $\$ 15.00$ each net.
IG Generator, 115 volts, 60 cycle. Price $\$ 17.50$ each net
ICT Control Transformer, 115 volts, 60 cycle.
Price $\$ 22.50$ each net.
2JIGI Control Transformer, 115 volts, 400 cycle.
Price $\$ 2.00$ each net.
5G Generator, 115 volts, 60 cycle. Price $\$ 25.00$ each net.
5SG Generator, 115 volts, 400 cycle. Price $\$ 10.50$ each net.

PIONEER AUTOSYNS

AYI, 26 volts, 400 cycle.
Price $\$ 4.00$ each net.
AY20, 26 volts, 400 cycle.
Price $\$ 4.50$ each net.
AY 30,26 volts, 400 cycle.
Price $\$ 10.00$ each net.

PIONEER
 PRECISION AUTOSYNS

AY101D, new; calibration curve. Price-Call or Write.
AYI31D, new; calibration curve. Price-Call or Write.

GENERAL ELECTRIC

D. C. SELSYNS

8TJ9-PDN Transmitter, 24 volts Price $\$ 3.00$ each net.
8DJIl-PCY Indicator, 24 volts. Dial marked -10° to $+65^{\circ}$. Price $\$ 4.00$ each net.
8DJII-PCY Indicator, 24 volts. Dial marked 0 to 360°.
Price $\$ 6.50$ each net.
Resistor and Rectifier for operation from 110 volts, 60 cycle source. Price $\$ 1.00$ each net.

PIONEER TORQUE UNITS

 12602-1-A.Price $\$ 30.00$ each net. 12606-1-A.

Price $\$ 35.00$ each net. 12627-1-A.

Price $\$ 70.00$ each net.

PIONEER TORQUE UNIT AMPLIFIERS
12073-1-A. $\$ 17.50$ each net.

RATE GENERATORS

PM2, Electric Indicator Company, . 0175 V. per R. P. M.
Price $\$ 7.00$ each net.
F16, Electric Indicator Company, two-phase, 22 V . per phase at 1800 R. P. M.
Price $\$ 14.00$ each net.
B-68, Electric Indicator Company, Drag Cup, 110 volts, 60 cycle, one phase. \$14.00 each net.

INVERTERS

12117-4, Pioneer. Input 24 volts D. C. Output 26 volts, 400 cycle. Price $\$ 12.00$ each net.
12117, Pioneer, Input 12 volts D. C. Output 26 volts, 400 cycle.
Price $\$ 15.00$ each net.
12123-1-A, Pioneer. Input 24 volts D.C. Output 115 volts, 400 cycle, 3 phase. Voltage and frequency regulated. 100 V . A.
Price $\$ 70.00$ each net.
153F, Holtzer Cabot. Input 24 volts D. C. Output 26 volts, 400 cycle, 250 V.A., and 115 volts, 400 cycle, 3 phase, 750 V.A. Voltage and frequency regulated. Price $\$ 150.00$ each net.
MG750, Wincharger, PUl6. Input 24 volts D. C. Output 115 volts, 400 cycle, 1 phase, 6.5 amps. Voltage and frequency regulated.
Price $\$ 35.00$ each net.
149H, Holtzer Cabot. Input 28 volts at 44 amps. Output 26 volts at 250 V. A. 400 cycle and 115 volts at 500 V . A. 400 cycle.
Price $\$ 39.00$ each net.
149F, Holtzer Cabot. Input 28 volts at 36 amps. Output 26 volts at 250 V. A. 400 cycle and 115 volts at 500 V . A. 400 cycle.
Price $\$ 29.00$ each net.
661102, Sperry Phase Adapter. 115 volts, 400 cycle. Used for operating 3 phase equipment from a single phase source.
Price $\$ 12.75$ each net.
WRITE FOR COMPLETE LISTINGS

SINE-COSINE GENERATORS

 (Resolvers)FJE 43-9, Diehl, 115 volts, 400 cycle.
Price $\$ 20.00$ each net.
DUAL AUTOSYN INDICATOR
Type 5003A, contains 2 autosyns, one of which may be removed and used as a transmitter making an ideal position indicator. Dial 2 $3 / 4^{\prime \prime}$ diameter, 32V. 60 Cy .
$\$ 7.50 \mathrm{Ea}$.
D. C. ALNICO FIELD MOTORS

5069600, Delco, 27.5 V., 250 R.P.M.
Price $\$ 4.00$ each net.
5069466, Delco, 27.5 V., 10,000 R. P. M.

Price $\$ 2.85$ each net.
5068571, Delco, 27.5 V., 10,000 R. P. M.

Price $\$ 3.70$ each net.
SS-FD6, Diehl, 27.5 V., 10,000 R. P. M.

Price $\$ 3.65$ each net.

D. C. SERIES MOTORS

5BA10AJI8D, General Electric, 27 volts, 0.7 amp., 110 R. P. M. Price $\$ 2.80$ each net.
C-2BP-1A, John Oster, 27 V., 7,000 R. P. M. 7 amps., $1 / 100 \mathrm{H} . \mathrm{P}$. Price $\$ 3.75$ each net.

D. C. SHUNT MOTOR

5066665 , Delco, Reversible, 27.5 V ., 4000 R. P. M. Flange mounted. Price $\$ 4.50$ each net.

A. C. MOTORS

5069625, Delco, Constant Speed, 27.5 V . A. C. or D. C., 120 R.P.M. Has built-in reduction gears and governor Price $\$ 4.25$ each net.
5071930, Delco, 115 V., 60 cycle, 7,000 R. P. M.
Price $\$ 4.25$ each net.
36228, Hayden Timing Motor, 115 V., 60 cycle, 1 R. P. M.

Price $\$ 2.75$ each net.
Two-phase low-inertia motors, Pioneer, Diehl and MinneapolisHoneywell.
Price-Call or Write.

(T) SEARCHLIGHT SECTION ©

SURPLUS NEW EQUIPMENT

KVA 80% P. Folt Cont Duty
10.4 Am
INPUT-II5 Volt 14 Amps C .
Centritugal starting, frequenc. adjest ball bearings, 3600 R.P M. Fully enclosed splashK
$\mathrm{Mt} \mathrm{I}^{\prime \prime} \mathrm{W}$. by Allts Chalmers to rigid. Navy Specs.
@ $\$ 100.00$
BOWL IPSULATORS

Clear glase, Corning Glass Wirls Vo. 67076. Type Compromises flanged towl $43 / 8^{\prime \prime}$ h $\times 6-15 / 16$ O.D.
at base. Center lead-in pin $3 /{ }^{\prime \prime}$ dia. $111 / 2^{\prime \prime}$ long.
Mounts by

METER RECTIFIER
Full Wave Weston par mumber J89367. For use with model 301 meters Terminals marked A.C.
plus and minus (Ten for $\$ 12.50$

STRIP HEATERS

 $60 c$ each.

BC-1161-A RADIO RECEIVER
150 to 210 Megacycles. Operates off 115 volt 60 cycle Fower supply, Inductance tuning for R.F., Antenna, detector and oscillator. With a few modi-
flcations this unit inakes an ideal F.M. Receiver. Each set complete with clrcuit diagram and the 14 following tubes: $1-6 \mathrm{SN} 7$ Cathode Follower; $1-\mathrm{F}$
6 H 6 sesond Detector; $2-6 \mathrm{SH} 7$ 1st and 2nd R. Amp.; 1-6SHR Video Amp.; $3-6 \mathrm{AC7} / 1852$ ist, 2nd, 3rd IF Amp.; 2-6AB7/1853 4th, 5th IF Complete in a metal cablnet $10^{\circ \prime}$ high $1612^{\prime \prime}$ wide and $15^{\boldsymbol{1}}$ deep. $\$ 34.50$

BC-1160-A TRANSMITTER 157 to 187 Megacycles. Operates off 117 Volt 60
cvele. Contains 115 volt, 1525 R.P.M. Blower, General Ractio 200 B 1.5 Amp. Variac 10 tubes, $0-5$ Kilovolt $31 \alpha^{\prime \prime}$ meter transformers, relays, circuit breakers too numerous to list. Complete in metal
cabinet $173^{\prime \prime} \times 18^{1 / 2^{\prime \prime}} \times 18^{\prime \prime}$ with circuit diagram.
$@(\$ 9.50$

CODE TRAINING SET AN/GSC-T1
Made by T. R. McElroy, Boston
Operites off $6.12,24$ or 110 v D.C. or 110 V or
230 Vott, 60 ovcle. An excellent unit for schools or clubs for code Araining. This unit is designed for group training of telegraph code to students whereby each
stulfent sends a message from any prepared text to the instructor. It provides a
a
througual signal
a
hlinker or ani audible signal throurh a monitoring speaker. Has volume control, variahle frequency oscillator, a plone jack for a moni-
toring headset, pitch and tone control, rotary toring headset, pitch and tone control, rotary nower fupdyly selecting the operating voltage and Complete with spare fuses, power cord and battery
adapter ; 10 Teleeraph Kevs with 10 ' line each,
 Conmpere in chest $101 / 2^{\prime \prime} \times 17^{\prime \prime} \mathrm{L} \times 131 / 2^{\prime \prime} 11$-Net Can be use Can be used anywhere-batteries A.C. or D.C.
Durable-Good for a lifetime of Service!
524.50

SPECIAL METERS

Frequency Meter-Dual Range-covers frequency

PHASE ROTATION INDICATOR A rotating mechanical meter desimed to indicate phase rotation on 110,220 and 550 rolt $25-60$ tion of the direction of rotation of motors, opera tionl of controls, etc A small portable , ${ }^{2 \prime 2}$, round meser with push-for-test button and $36^{\prime \prime}$ three
test rearl
Hest Voltape Polarity Thase Rotation Tester- Triplett
$3: 3 \overline{1}$ AYP-Checks 115,220 and 440 line voltage337 AYP-Checks 115,220 and 440 line wortage-
locates open circuits, blown fuses, damaged wiring locates open circuits. blown fuses, damaged wiring.
etc. Indicates whether A.C. or D.C. and polarity of D.C. Checks phase rotation to determine direction of rotation of motors, operation of controls,
eft. CConsists of a
$3^{\prime \prime}$ square meter and a small polarized vane movement in a small handy sized
cise Complete with $36^{\prime \prime}$ leads with test prods $\$ 8.50$ case complete with $36 "$ eads with test prods 88.50
HOUR METFR Totals to $93,999.9$ hrs $\&$ repats WII NH-35. 31/2 $\mathrm{r}(\mathrm{l} \mathrm{fl}$ case. Operates on 230 voll 60 cerle ${ }^{\text {D.C. MiLiAMMETER Weston } 271 \text { fan type. } 11-0-1}$ BPY \& $60-0-60$ M.V. mvt. Scale cal $600-0-600$

PORTABLE CHRONOMETRIC

TACHOMETER

To measure speeds from 0 to 20,000 R.P.M. with scale calibrations in 10 R.P.M. divisions, Divide and you can read surface speeds up to 10,000 ${ }^{-} 2^{\prime \prime}$ open face dial provides unequaled readability Each division on large dial indicates 10 R.P.M Reach division on small dal mings are sinilar hour meters. Results of tests remain on dial until aext test taken. Complete with 2 tips, peripheral wheel, \& operatin instructions-No stop-watch or other timing mecha 43 A-6. Complete in velvet lined case $5^{\prime \prime} x$. morie $11 / 2^{\prime \prime}$. List price $\$ 75.00$..................@ $\$ 24.50$

MULTIPLE RANGE, CONTINUOUS INDICATING
PORTABLÉ TACHOMETER
Three ranges In R.P.M. \& three ranges in F.P.M Large ${ }^{300-1200,}$ dial shows $1000-4000,3000-12.000$ R. P.M. M. Large $4^{4^{\prime \prime}}$ dial shows INSTANTANEOUSLY any revolving shaft or surface.
Complete with 4 tips, peripheral wheel, extension rod and overating instructions. No stop watch o other timing mechanism required complete in relvet lined case $7^{7^{2} / \sigma^{\prime \prime}} \times$ Nonn $^{\prime \prime}$ price $\$ 75.00$.

RADIO SET SCR 518
HIGH ALTITUDE ALTMETER
$0-20,000$ (\& 30,000) feet, 515 m.c. 24 volt 300 watts. Complete with 29 tubes and accessories with
OPERATNG INSTIUCTIONS AND CIRCUIT DIAGIBAMS

ACROSS-THE-LINE-STARTER Manually operated, with adjustable compensated overload relay, and manual start and stod reatures Adjustable compensation relay for 90 , 100 and
100% overload. Supplied with one thernal overload element for motor rating of 1.32 Anups \min. and 1.42 amps maximum. Can be used for any motors with ratiings up to 17.2 Amps, and up to 440 rolts single or 3 phase with the use of the proper thermal
elements. A complete list of elements available a connection diagram is of elentents available and proof box which measures $71 / 2^{\prime \prime} \mathrm{H} \mathbf{I} 51 / 2^{\prime \prime}$ W $\quad \mathrm{x}$ Cutler Hammer type 6922HIA-meets Navy Specs
$17 \mathrm{Cl0}$..............................@ $\$ 4.50$

TERMINAL BOARDS

 ${ }^{6-T e r m i n a l ~ C o n n e c t i o n s ~} 41 / 2{ }^{\prime \prime} \mathrm{L} x$
8-Terminas Conne

AUTOMOTIVE GENERATOR Autolite \#GAF 4001. 6 Volt D.C. Apdrox. 12 Amps at 1200 R.P.M. Counter Clockwise rotation
shaft on one end and right angle gear drive for distributor timing on ot her end, with 6 volt cut-
out and mountink base for $+\%$ " bolts. \ldots. $\$ 15.00$

150 VOLT A.C. METER Triplett 331-JP, 31/2" Rd flush case

30 AMP A.C. METER riplett 331-JP, 31/2" Rd flush case

Both meters for $\$ 7.95$

Als items are Surplus-Now-Guaranted. C. O. D.'s not sent Unless accompanied by 25% Deposit. , in etc.o on open account MANUFACTURERS, EXPORTERS, DEALERS-We invite your inquiries circular.
MARITIME SWITCHBOARD
336 Canal Street
Worth 4-8217

New York 13, N. Y.

We carry a complete line of surplus new meters suitable for every requirement, such as portable, panel,

OVER 50,000 METERS IN STOCK
We also have in stock various surplus components,
tubas, code keying and recording units, code trainlng tubes, code keying and recording units, code trainlng
sets, tachometers, analyzers, tube testers, converters, precision resistors, current transformers, transmitters, eecivers. condensers, and other electronic units, parts
and accessories.

(ID SEARCHLIGHT SECTION (ID

MICROMAX
 POTENTIOMETERS
 L \& N INDICATORS - CONTROLLERS - RECORDERS

Model S_-RECORDER_CONTROLLER 2 Thermocouples-one control point-2 sets H.C.L. Contacts-115V. AC motor.

> Ranges $0-1200^{\circ} \mathrm{F} / \mathrm{A}$ $0-1800^{\circ} \mathrm{F} \mathrm{C} / \mathrm{A}$
$\$ 195.00$
Model S-RECORDER-CONTROLLER
Single Point-Chart tear-off feature-
Single Point-Chart tear-off featur
H.C.L. Contacts-115 V. AC Motor.
$0-1500^{\circ} \mathrm{F} \mathrm{C}$
$\$ 195.00$
Model S--RECORDER-CONTROLLER
H.C.L Contacts- 115 V. AC motor

Extra set on-off contacts.
Range
$0-1500^{\circ} \mathrm{F}$
C / A
$\$ 195.00$
SELENIUM RECTIFIERS
New-Fresh Stock-Not over 6 mos. old
Full wave bridge. . single phase. resistive inductive load. . continuously rated conservative design.

Type	Max. Input	Max. D. C. 35° Output	Price
5B-1	24	18V 3.1A	\$5.03
5B-1	24	18 V (1) 5.2 A	6.73
108-1	. 24	18 V @ 10 A	8.71
18-1	24	.19 V 1.6 A	4.04
$16 \mathrm{~B}-1$. 24	19V@16 A	16.40
24B-1	24	.19V@24 A	23.76
18-2		37 V @ 1.2A.	7.21
3B-2	48	37 V (1) 3.1 A	9.60
5B	48	37 V @ 5.2 A	13.37
108-2	. 48.	. 37 V @ 10 A	17.18
168-2	. 48	. 37 V @ 16 A	30.89
248-2	. 48	37 V@24	44.67
5B-6	144	110 V (a) 5.2 A .	35.70
2B-6.	144.	112 V @ 2.4 A .	21.86
18-6	144	114 V @ 1.2 A	17.34
2B-7	168	131 V @ 2.4 A	25.51
18-7	168.	133 V @ 1.2 A	19.68
5B-7	168.	133 V @ 5.2 A .	41.10

MICROVOLTER—FERRIS Model 20B
2 to 100,000 microvolts output. continuously variable. operates on 115 V . 60 cycle AC from 455 K .C. to $22 \mathrm{M} . \mathrm{C} . \mathrm{C}$. . with or without 400 cycle 30% modulation . . . frequency may be varied $\pm 2 \%$ by screwdriver adjustment.

Your Price \$100.00
WHSE PORTABLE GALVANOMETER

Type PX-12-7 M.A. movement, special scale, solid connecting terminals, contains a 1 volt internal cell
whicl which ran he easily re-
moved for conversion to DC AMMETERS \& VOLTMETERS. with leather case \& canvas carrying strap.

A buy at $\$ 4.95$

AGASTAT TIME DELAY RELAY
Type ND-21, Diagram type, 24 V mom. coil, SPDT, $0-5$ sec. cont. duty, up to 15 sec. inter-
mimensions $23 / 4$ " $\times 21 / 4$ " $\times 41 / 4$ " for 24 V . DC operation.

Price $\$ 4.50$

Model S——RECORDER—CONTROLLER

H.C.L. CONT

Ranges
$0-1000^{\circ} \mathrm{FC} / \mathrm{A}$ $0-1500^{\circ} \mathrm{FC}$ C/A $0-1800^{\circ} \mathrm{F}$ C/A $200-2000^{\circ} \mathrm{FC} / \mathrm{A}$ $1000-2000^{\circ} \mathrm{F} \mathrm{C} / \mathrm{A}$
Model S
\$210.00

MODEL R RECORDERCONTROLLER

H.C.L. Contacts AC motor. Ranges | $0-800^{\circ} \mathrm{FC}$ |
| :---: |
| $0-1400^{\circ} \mathrm{F} / \mathrm{A}$ | Model R

$\$ 175.00$
RECTIFIER TRANSFORMERS
PRI—105/110/115/120 V.—50/60
Cycles-Open Frame Construction

18 V @ 5	Amps.	5	5 lbs	
18 V (a) 10	Amps.	10	Ibs.	6.7
18V @ 25	Amps.	25	lbs.	14.9
18 V @ 50	Amps.	. 30	lbs.	24.7
36 V @ 2.5	Amps.		5 lbs	5.2
36 V @ 5	Amps.	10	lbs.	6.5
36 V (1) 10	Amps.	20	lbs.	10.9
36 V @ 25	Amps.		ibs.	

PRI-115 Volts-50/60 Cycles
Open Frame Construction
SEC- $135 / 145 / 155 / 165 \mathrm{~V}$ @ ${ }^{(5)}$ Amps 5 lbs .5 .25 $135 / 145 / 155 / 165 \mathrm{~V}$ @1.5Amps 15 lbs. 7.95 $135 / 145 / 155 / 165 \mathrm{~V}$ @ 5 Amps 35 lbs. 24.50 HIGH VOLTAGE CAPACITORS
1 MFD 20 KV DC $18{ }^{\prime \prime} \times 131^{1 / 2}{ }^{\prime \prime} \times 5^{\prime \prime} \ldots .$. \$25.00 001 MFD 50 KV DC-51/4"x73/4"x4" insu-
lators $4^{\prime \prime}$ dia. $7^{\prime \prime}$ high 12.50 Cap. Volts

	1000		-3	-						
	1000		23/4 \times	-1						
	1000			116						
. 1 M1fo										

RHEOSTAT			
Ohms	Amps	Size-Diam	Price
-87	2^{13}		$\begin{array}{r}1.75 \\ \hline 1.75 \\ \hline\end{array}$
10	${ }_{9}^{9.2}$	${ }^{14}{ }^{6}$	5.95 6.50
30	1.7- . 9	24:	1.5
32	${ }^{2.4}$	3j"	4.9
50	1.11	$2^{\prime \prime}$	2.5
75	3.5	$\stackrel{10}{* *}_{\substack{*}}$	7.
100 200 200	${ }^{1} .25$	$\stackrel{3}{1{ }^{\prime \prime}}$	2.
250	2.5-. 51	$6{ }^{\prime \prime}$	7.5

HEINEMAN CIRCUIT BREAKER

For use with low voltage, D.C; 100 Amps.
 $35 \mathrm{Amp}, 120 \mathrm{~V}$ AC, Curve 2, CAT.AM $1510 \mathrm{R}-35$
1.5 Amp, 117.5 V AC , Instant Trip

MODEL S—2 2 PT. RECORDER
110 V . AC Motor Range $0-1800^{\circ} \mathrm{F} \mathrm{C} / \mathrm{A}$
$\$ 235.00$

> MODEL CINDICATORCONTROLLER CH.L. Contacts-115V. AC Miot Ranges: 0$1500^{\circ} \mathrm{F}$ I/ $1 / \mathrm{C}^{\circ} 0-1800^{\circ} \mathrm{F}$ C/A. $0-2000^{\circ} \mathrm{C} / \mathrm{A}, 200-$ $2000^{\circ} \mathrm{F} \mathrm{C} / \mathrm{A}$. Model C $\$ 135.00$
$\$ 135.00$

MODEL S—RECORDER

with alarm feature using relay \& cam operated contacts. Can be used as on-off conroller without temperature setting device. Range $0-1800^{\circ} \mathrm{Fr} \dot{\mathrm{C}} / \mathrm{A}$.
$\$ 180.00$

GE STEPDOWN TRANSFORMER

PRI 115/230 V 60 cycles.
SEC 32 V. Rating . 5 KVA
Isolation type cat 61 G 60 enclosed, bell end, cont. duty.

STRUTHERS-DUNN RELAYS

D.P.S.T., Normally open, $115 \mathrm{~V}, 60$ Cycle, A.C. coil, 30 Amp contacts, fibre base, with 4 .holes | tor mounting. Dimensions, $43 / 2$ |
| :--- |
| $33 / 4$ | STEPDOWN TRANSFORMER—SPECIAL Made by GE . . . heavy duty . . . considerable over-design . . . open frame . . . ideal for rectifier application, size $31 / 2{ }^{\prime \prime} \times 31 / 2^{\prime \prime} \times 4^{\prime \prime}$. Primary- 115 V 60 cycles.

HEAVY DUTY STEPDOWN

 TRANSFORMERSInput: 115 V . (with 8 taps in primary).
Output: from 16 to 10.5 v . (in 8 steps) Capacity: $1.2^{\circ} \mathrm{KVA}$ Sec. Amps:
Size: $13^{\prime \prime} \times 10^{\prime \prime} \times 5^{\prime \prime}$. Approx. Weight: ${ }^{30}$ Lbs Size: $13^{\text {"x }} \mathrm{x} 10$ "x 5 ". Approx. Weight: 30 Lbs
Your Cost
10 for
$\$ 100.00$
POWER TRANSFORMER
Pri.-440/220 V 60 Cy Sec- $125 / 115 / 105 \mathrm{~V}$ Rating . 8 KVA RCA Open construction. overall dimensions: 5% " $\mathrm{H} \times 71 / 2$ " $W \times 8^{\prime \prime} \mathrm{D}$. Tounting dimensions: $67 / 8 \times 57 / 8$. Price
. $\$ 12.50$
TRANSTATS-3 K. V. A.

Type RH Input: 115 V. Max. Amps: 26 A. Made as a line voltage corrector 10% of input voltage, or can be connected to give
plus 20% or minus
also be reconnected to be used as an isolated type stepdown with variable secondary. Input: 115 V . Output: $0-30$ Volts at 30 Amps . No Knob.

A Real Buy ot. \$18.00
(same type but. 25 KVA . Input: 103-126 V. Output: 115 V. -2.17 A.) Price... $\$ 6.50$

ALL PRICES INDICATED ARE FOB, OUR WAREHOUSE, NEW YORK, N. Y.
Shipments Transportation Charges Collect Will Be Made Via Railway Express Unless Sufficient Postage Is Included, Or Other Instructions Issued. We Will Refund Excess Postage In Stamps.

POWERTRON Electrical Equipment Co.

(Ti) SEARCHLIGHT SECTION ©

1 K.W. POWER SUPPLY KIT

 2500-0.2500 Volts @ 500 MA 2000-0-200 Volts@500 MA (oil-filled Xformer from BC610) \$39.95 1-Swinging choke14.95

1-Smoothing choke
7.95

1-Filament Xformer
9.95

2-2 Mfd.—3000 v. Condensers, ea 3.45 2-872A Tubes each 1.95
2-Plate Caps for 872 A each .20
2-Sockets for 872A each 1.19
2-Hash Filter Chokes.
pr. 79
educed to
579.50

All parts New! Reduced to

ARMY PARTS SALVAGE SCOOP NET \$2.95. TWO FOR \$5.00
Army PE-157 Vibrator-type power supply, 2 volt6 volt type. Chuck full of transformers, resistors, condensers, relays, etc. One relay,
which is a 10,000 plate type, is worth more than which is a 10,000 plate type, is worth more than
the sale price. Also α handy dual section the sale price. Also a handy dual section
selenium rectifier rated at $11 / 2$ amps. Has α selenium rectifier rated at $1 / 2$ amps. has a $6 \times 6 \times 12$. A red hot value priced less vibrators and speaker.

All Prices Subject To Change Without Notice All merchandise guaranteed. Mail orders promptly filled. All prices F.O.B. New York City. Send money order or check. Shipping charges sent
C.O.D. Minimum order $\$ 5.00 .20 \%$ Deposit required with all orders.
SELENIUM RECTIFIERS Full Wave Bridge Type

INPUT OUTPUT		
up to 18 v AC	up to 12 v DC	1/2 Amp. \$0.98
up to 18 v AC	up to 12 v DC	1 Amp .1 .95
up to 18 v AC	up to 12 v DC	3 Amp. 3.45
up to 18v AC	up to 12 v DC	5 Amp. 4.45
up to 18 v AC	up to 12 v DC	10 Amp. 7.45
up to 18 v AC	up to 12 v DC	15 Amp. 9.95
up to 18 v AC	up to 12 v DC	30 Amp . 14.95
up to 36 v AC	up to 28 v DC	1 Amp . 3.45
up to 36 v AC	up to 28 v DC	5 Amp .3 .45
up to 36 v AC	up to 28 v DC	10 Amp. 12.45
up to 36 v AC	up to 28 v DC	15 Amp .18 .95
up to 115 vaC	up to 100 v DC	. 25 Amp. 2.95
up to 115 V AC	up to 100 v DC	${ }^{6} 6$ Amp. 6.95
up to 115 vaC	up to 100 v DC	5 Amp. 19.95
up to 115v AC	up to 100v DC	3 Amp . 12.95

TUBES
 (BRAND NEW)

(STANDARD BRANDS)

(ID) SEARCHLIGHT SECTION ©I

GENERAL RADIO VARIAC 2 KVA

4 QUADRANT PHASING CONDENSER
4 Stator Single Rotor. 0-360 Degrees Rotation ….................... 2.95 each

STEPDOWN TRANSFORMER

WIRE WOUND RES!STORS

Standard Make 6 Watt type AA, 20-25-50-200-470-2500-

 10000-16000-20000-30000 hms

.15 ea.
.20 ea.
.24 ea.
1 \% PRECISION RESISTORS
Standard Make
200-2500-5000-8500-10000 ohms
$\$.39$ ea.
200-2500-5000-8500-10000 ohms $100000-750000-1 \mathrm{meg}$.49 еа.
U. H. F. COAX. CONNECTORS UG12U-831R-831J-UG21U-831AP83 ISP . 39 ea.

W. W. POWER RHEOSTATS

50
150
0 hm
150
50

H. V. VARIABLES

Steatite Insulation
50 MmF Soacing
250 per section .l.

Tremendous stocks on hand. Please send requests for quotas. Special quantity discounts. Price f.o.b. N. Y. 20% with order less rated, balance C. O. D. Minimum order $\$ 3.00$.

50 MICRO AMP METER

This is the exact meter utilized in the Genera! Electric model YMW-1A LabType Unimeter.

- 50 Microamp Movement $\pm 2 \%$
- 2500 Ohms Resistance $\pm 2 \%$
- Knife Edge pointer

Uncrowded Multi-Range Scaje
$4 \times 41 / 2^{\prime \prime}$ Black Bakelite Case
additional odditional

BRAND NEW only $\$ 9.75 \mathrm{ea}$.

METER SPECIALS

$1 / 2^{\prime \prime}$ GE $0-1 \mathrm{MA}$ Basic
$2^{\prime \prime}$ GE $0-30$ amps, D.C.
$\$ 3.95$
$2^{\prime \prime}{ }^{\prime \prime}$ GE GE $0-30$ amps, D.C............................ GE $0-5 \mathrm{ma}$ (amp scale).) 1.95 GE 0-1.2 ma ($0-100$ scale)...$\cdot{ }_{2} .49$ GE 0-1 ma (volt scale). 2.49 Gruen $0-3 V$ DC (1000 ohms-volt) 2.45 Weston 150-0-150 Microamps. GE 0.30 volts D.C.
Weston -10 to 4 DB
Westinghouse 0.50 amps $\dot{A} \dot{C}$
Triplett $0-75$ amps. AC.
WE $0-80 \mathrm{ma}$ DC.
GE 200-0-200 volts DC.
McClintock $0-1 \quad \mathrm{ma}$..
Westinghouse $0-2 \mathrm{ma} \dot{D} \dot{C}$
Westinghouse 0-20 ma DC
GE $0-15 \mathrm{ma} D C$ (square).
, Westinghouse $0-150 \mathrm{~V}$ AC

DAVEN AUDIO FREQUENCY METER MODEL $837 E$

Direct readings from 0.30 KC in 4 separate ranges on $6^{\prime \prime}$ Weston Model 271 Fan Meter. Built-in
voitage regulated power supply operates from II5 voitage 60 cegules, has high input impedance. with
volt pick-up can be used to determine frequency in vibration tester. With suitabie mixer can check deviation of R.F. carrier from standard. Mounts of $83 /{ }^{8 \prime} \times 19^{\prime \prime}$ rack panel. Complete with tubes.
Slighty used but perfect. 0 only.............. $\$ 59.50$

"A POWERFUL BABY"

This plate transformer built to rigid Signal Corps spec. Input 118 volts, 25 to 60 cycles. Has 2 sepa-
rate 118 volt primaries and can be used on 110 or rate 118 volt primaries and can be used on 110 or
220 volts. Secondary 800 volts center tapped at 775 inills. Exceptional regulation even when loaded to $900 \mathrm{mills!}$ Fully cased-4 mtg holes, 37 libs. net wt.
$61 / 2 \times 61 / 2 \times 71 / 8$. Peak value at 7.95 . 10 for $\$ 70.00$

"BRUTE FORCE'

This fully encased choke 6 Henry at 550 mills. 28 hms de resistance. Built to rigid Signal Corps specs. Net weight 16 lbs. $51 / 8 \times 41 / 4 \times 5 \%$. A great

FILAMENT TRANSFORMER

Two separate 118 volt. 25 to 60 cy cye er rimaries.
Can bo used on 110 or 220 voits secon dary 5 volts Can beused on l10 or 220 volts, Second dary 5 youts.
 cased. $\$ 30$ for $\$ 30$.

VERSATILE POWER
These transformers have many uses-filament, iso-
These transformers have many uses-filament, isolation, stepdown, bias, etc. 2 separate primaries for $110 / 220$ voit
Al have $25-60$ cycle operation. Primaries. Can be used in series or parallel.
Type 501115 volts 500 mills and 6.3 volts 5 amps. Type 505 - 115 volts 900 mills and 6.3 volts 2 amps. ype $502-0.70 .75$ volts at 2.5 amps . ($35-37 \mathrm{vimps}$. series)
Fully encased-4 mtg. holes, $51 / 8 \times 41 / 4 \times 51 / 8.8$ each
Your cost any type 10 for $\$ 17.00$

AN/APT-2 AIRCRAFT RADAR JAMMER

425-750 mcs. Contains 10
tubes: 807 (2)-703A (2)(1) ${ }^{807}{ }^{807}$ (2)-703A (2)5R4GY (1)-2×2 (1)-931A 400 cycle pwr supply com plete with all tubes otc.
BRAND NEW.. $\$ 19.95$ each

MEGOHM METER

Industrial Instruments Model L2AU $110 / 220$ volts 60 cycle input. Direct reading from $0-100000$ megohms on $4^{\prime \prime}$ meter. Can be extended to 500000 megohms with external supply. Sloping hardwood cabinot $15^{\prime \prime} \times 8^{7 \prime} \times 10^{\prime \prime}$. Brand now with tubes plus running spare parts including extra tubes. Great value only $\$ 69.95$.

SPERTI RF
VACUUM SWITCH 9200 volts peak, 8 amps. Used

CHOKE BARGAINS

POWER PLANT (PE 197)
4-cylinder Hercules Gas driven engine. Output 110
volts 60 cycle, voltage regulated, $5 \mathrm{KW}-6.3 \mathrm{KVA}$ at volts 60 cycle, voltage regulated, 5 KW - 6.3 KVA at
80% Pwr. Ptr. Single phase. complete with run80% Pwr. Ptr. Single phase, complete with running spare parts, meter panel, battery, tools, reWeight 1200 lbs Weight
emergency power. Brand new............... $\$ 575.00$
Scope Transformer hermetically sealed 1,800 volts, $4 \mathrm{ma}, 6.3$ volts, $9 \mathrm{amp} ., 21 / 2$ volts, 2.5 cmps ., $5 \times 31 / 4 \times 33 / 4 \ldots \ldots . . \$ 5.95$
Precision $15 \mathrm{Meg} .1 \%$ Accuracy Resistor. Non-inductive, 1 watt, hermetically sealed in glass .39 c each; 10 for $\$ 3.50$.

OIL CONDENSERS

MIDGET VARIABLE BARGAINS Hammerlund MC 250 S 250 mmf Hammerlund MC 320 S 320 mm Hammerlund APC 100100 mm
 National TMS $150 \mathrm{mmf} . \ldots: .79$

PEAK ELECTRONICS CO.
188 Washington St., New York 7, N. Y.

PHONE CO.7-6443 DEPARTMENT EA SEND FOR BULLETIN

(ID) SEARCHLIGHT SECTION 里

NEW GUARANTEED SURPLUS

AIRCRAFT AMPLIDYNES

G.E.

5AM31NJ18A. Inpet 27 V.D.C. (1) 44 amps. Outzut co V.E.C. (1) 8.8 amps. max 530 watts. Stock \#SA-111. Price $\$ 14.50$ ea. SAM31NJ9-Similar to above. Stock \#SA196. Price $\$ 14.50$ ea.

Servo Motor
Pioneer Type CK-2. 2 phase 400 cycle. Fixed phase 26 V ., var. phase. 49 V. max. $1.050 \mathrm{oz} / \mathrm{in}$. stall
torque. Stock \#SA-97. Price \$4.75 ea. net.

RATE generators

Elinco PM-z
2.0 v . DC per 100 rpm . USA-53. Price $\$ 7.50$ ea. ELINCO F-16. 2 Phase AC. 1.3 v AC per 100 rpm .60 cy . output at 1800 rpm . Stock \#SA-193. Price $\$ 12.50$ euch.

SPERIT PHASE ADAPTOR - 661102 115 volts 400 ey. Used for operating 3 phase equipment from single phase source. Stock $\#$ SA- 194. Price $\$ 6.75$ each.

Delco PM Motor-5068571
 Alnico field. 27 v. DC. $10,000 \mathrm{rpma}$. $1^{\prime \prime} \mathrm{x} 1^{\prime \prime} \mathrm{x} 2^{\prime \prime}$ ${ }_{21 / 32}^{0.125}$ ig. diam. Shaft. 151. Price $\$ 3.75$ each.

400 CYCLE WESTINGHOUSE FL BLOWER

115 v. 400 cy. 17 c.f.m. Includes cajacitor. Stock \#SA 144. Price $\$ 6.75$ each.

DYNAMOTORS
D-101. $27 \mathrm{v} . \mathrm{DC}$ in @ 1.5 amps. DC output 285 v . 187. Price $\$ 1.50$ each. DM-40A. 14 v . DC in @ 3.4 amps. DC output 172 v . @. 138
amps. Stock \#SA-188. Price $\$ 3.25$ each.

MICROWAVE ANTENNA-

AS-217A/APG 15 B . 12 Cm dipole and 13 in sh Parabola housed in weatherproof Rada spinner motor for canie scan. Stock \#SA-95. Shipping wt. \#SA-95.
70 lbs.

Price $\$ 9.50$ ea.

Remote Position Indicating System

6-12 V. 60 cycles 5 inch indicator with 0 to \#SA-115. Heavy duty transmitter. Stock \#SA-115. Price $\$ 9.95$ per system

12 V D.C. MOTOR John Oster B-9-2

$$
1.4 \text { amps. }
$$

5600 rpm .
13" Diam. x $33 / 4$ " Lag. Spline shaft. C. W, roation. Stock \#SA-46. Price $\$ 3.75$ each

Timing Motor Synchron 10 RPM $24 \mathrm{~V} . \mathrm{DC}$. Hanson Mfg. Co. Stock \#SA-110. Price $\$ 3.75$ each.

DC Timing Motor-Hfayden $1 / 2 \mathrm{rpm} .29$ voits. 100 mils. Stock \#SA-157. $\begin{gathered}\text { Price } \$ 3.95 \text { ea. }\end{gathered}$

28 VOLT DC DELCO CONSTANT SPEED MOTOR A-7155
$1 / 30 \mathrm{hp} .3600 \mathrm{rpm}$. Cont.
duty. ${ }_{2} 1 / 2^{\prime \prime}$ diam. $x^{\prime \prime} 5 / 2^{\prime \prime}$
le. "/is" shaft extension.
5/32" diam. 4 hole base mounting. Stock $=$ SA-94. Price $\$ 6.50$ each.

NOTE

All merchandise is new and guaranteed to meet manufacturer's specifications. Delivery from stock.

SELSYN SPECIAL

W.E. KS-5950-L2 Size 5. 115 v. 400 cycles. Use on reduced 60 cycles. Stock \#SA-182. Price $\$ 3.75$ each
 Blower Assembly MX-215/APG
John Oster C-2P-1L
28 V . DC. 7000 RPM $1 / 100$ H.P. \#2 L-R Blower
Stock \#SA-202. Price $\$ 3.75$ each.
G.E. 10 rpm de

Motor 5BAlOFJl2
Output 40 lb, in
at 10 rpm. 24 V.
$\left(\begin{array}{l}\text { amp. }\end{array}\right.$ Seriew-wound.
wire reversible
Ideal for relay servo-systems. Stock \#SA-
17. Price $\$ 8.75$ earh.
17. Price $\$ 8.75$ earh.

Phase Shift Capacitor-4 stator single rotor $0-360^{\circ}$ phase shift. (Use in complex wave synthesis.) Stock \#SA-114.

Price \$4.75 ea.

400 Cycle Inverters

Ploneer-12116-2-A, $12123-1-\mathrm{A}$.
Holtzer Cabot-MG-149F. MG-149H General Electric-5D21NJ3A, 5AS131JJ. Leland-10563 and PE-218.

INVERTER-Wincharger PU7/AP-Input 28 v . DC at 160 amperes. Output 115 v 400 cy. @ 2500 V.N. Voltage and frequenc regulated.
\#SA-164.

800 Cycle Inverter

Navy Type CRv-21AAR. GE. 5AS121LJ2.
 Stock \#SA-192 Price $\$ 39.50$ each.

LP-21-LM Compass Loops

Original Cartons
stock \#SA-99.
Price $\$ 9.50$ each.

110 RPM MOTOR

G.E. 5BA10J18D. 27 V. @ $0.7 \mathrm{amps} .10 z / \mathrm{ft}$. corque. $18{ }^{3}$ " $^{\prime \prime}$ diam. $\mathrm{x}^{31 / 2}{ }^{\prime \prime} \mathrm{lg}$. Operates on

Include
for P.P.
handling
Price
$\$ 2.95$ eal. net

Stock \#SA-167. Price $\$ 2.75$ each.
biveed bearings. Split tator. Silver plated coxial type. $5-10 \mathrm{mmf}$.

TWX Pat-199.

Write for complete listing, or call ARmory 4-3366

4 Godwin Ave.

Open account shipments to rated concerns. All prices F.O.B. Paterson, N.J.

Paterson, N. J.

(ID) SEARCHLIGHT SECTION TID

RELIANCE
 HAS WHAT YOU WANT TOO IN ELECTRONIC SPECIALS

RELAYS

Coli
10,000 ohm- 10 Ma
$7,000 \mathrm{ohm}-21 / 2 \mathrm{Ma}$.
$1,800 \mathrm{ohm}-20 \mathrm{Ma}$.
$2,000 \mathrm{ohm}-5 \mathrm{Ma}$.
1,200 ohm- 10 Ma.
$1,200 \mathrm{ohm}=10 \mathrm{Ma}$.
$250 \mathrm{ohm}-25 \mathrm{VDC}$
$200 \mathrm{ohm}-25 \mathrm{VDC}$
$60 \mathrm{cy}$.115 VAC
60 cy .60 VAC

${ }_{1031}^{1012}$	
$\xrightarrow{1034}$	(Ad'ust sigin
101	(C
	Leach

Stepping Relsy-6 Pole, 11 Position, 24 VDC coll, Federal

HARDWARE

HOSE CLAMPS-AERO SEAL, QS 100M4-1/2" nom.
 G. R. BÄNAMA Plugs and Jacks smail, uninsulated
 fnely powdered iron slug (50 Me)
 $\begin{array}{ll}3 / 16^{\prime \prime} \times 3 / /^{\prime \prime} \times 1 / 2^{\prime \prime} \\ 5 / 32 \times 1 / 4^{\prime \prime} \times 7 / 16^{\dot{n}} & 3 / 32^{\prime \prime} \times 14^{\prime \prime} \times 7 / 16^{\prime \prime} \\ 3 / 16^{\prime \prime} \text { round } \times 3 / 6^{\prime \prime}\end{array}$ Thousands in stock................................ 81.00
insulated Holders for $10 ¢$ nsulated Hoiders for 18220 or 10 TELFPHONE FIEIAD WIRE (W-110-B). One Mile spools. 2 twisted wires, each 4 strands steel and 3
strands copper. Only............... $\$ 14$ per mile

PULSE TRANSFORMERS

 Western Electric Permalloy core, KS $9800-\mathrm{A} 45$, $13 / 4 \times 1 \quad 3 / 4 \times 31 / 2^{\prime \prime}$ fully cased, 3 windings ratios $1+01.1,1+02$
Westinghouse $352-7250-2 A, 15 / 16 \mathrm{dig}$. x $15 / 8^{\prime \prime} \mathrm{high}$, DC Reststance 10 ohm $31 / 2 \mathrm{chm}$, sine Weavinghouse $352-7287 \mathrm{Hypersll}$ vore, two windings, - 3 db 50 kc , to 330 kc ., core approximately G.E. $7472407{ }^{7} / 16^{\prime \prime}$, fosterited ${ }^{\text {Windings, }}$, core $5 / 8 \times 13 / 8 \times 3 / 16^{*}$

GTE. 7467888,3 Windings, DC $1 / 2 \mathrm{ohm}, 10 \mathrm{ohm}, 20 \mathrm{ohm}, 11 / 8 \times 1 \quad 3 / 8$ y $25 / 16^{\prime \prime}$ fully cased, rise $800 \mathrm{KVA}, \mathrm{G} . \mathrm{E}$. No. 7710417,50 ohms pulse cable connection, 450 ohm output; 9,500 velt input,

GEARS

Cat.		Plte	ee	P.D	Face(In.)	Hole(In.)	Material	
2301	Miter	48	18	3/8	7/64	3/16	Stainless	$\$.20$
2304	Miter	48	18	3/8	7/64	$1 / 8$	Brass	. 10
2308	Worm	48	1	5/16	$9 / 16$	3/16	Stainless	. 25
2310	Helical 45°		8	5/16	3/8	3/16	Steel	15
2314	Hellical (tits 2310)		18	23/32	1/4	1/4	Steel	15
2334	Worm Gear (Antl backlash)	32	48	$11 / 2$	1/8	1/4	Brass	40
2312	Worm (0ts 2334)	32	4	19/16	$9 / 16$	1/4	Steel	20
2330	Spur \& Hub	48	78	$15 / 8$	5/64	3/16	Stainless	20
2332	Spur (Antl backlash)	48	72	$11 / 2$	$1 / 18$	$1 / 4$	Stainless	35
2340	gpur \& Hub	48	36	3/4	1/8	3/16	Fibre (Alum. Hub.)	. 10
2352	Spur \& Hub	48	57	$13 / 16$	$1 / 8$	1/4	Fibre (Alum. Hub)	10
2336	Spur \& Hub	48	24	1/2	3/16	1/4	Brass	. 10
2338	Spur \& Hub	48	36	3/4	1/18	3/16	Aluminum	10
2342	Spur \& Rub	48	40	15/16	$1 / 8$	$1 / 2$	Steel	. 10
2348	Spur \& Hub	48	54	$11 / 8$	1/16	1/8	Brass	.15
2350	Spur	48	60	$11 / 4$	1/16	1/2	Stainless	10
2356	spur	48	60	$11 / 4$	1/8	1/4	Brass	10
2370	Spur	48	102	$21 / 8$	5/64	1/2	Brass	15
Cat.	No. Pltch	Teeth		Face (In.)	Stem	(tn.)	Material	Price
2321	Stem plinon 48	12		13/32	11/16	8x3/16	Stainless	\$.10
2322	Stem pinlon 48	10		3/18	$111 / 32$	$\times 3 / 16$	Stainless	10
2324	Stem pinion 48	15		1/8	27/32	x3/16	Stainless	10
2328	Stem pinlon	16		3/16	13/32	$\times 5 / 32$	Stainless	REAL
BUY	cial sample offer-2 each of - 3.50.	bov	plus	25 other	types gea	bushings	and bearings-A	REAL

RELIANCE $m_{\text {ecrcandizing }} C_{\text {Company }}$ fenible PA. Arch St. Cor. Croskey, Philadelphia 3, Pa. $\underset{\text { \$ininimum }}{\text { Minder }}$ Telephone RIttenhouse 6-4927

PRECISION RESISTORS
1% or better
Any Order For 100 pleces...... 10% OFF

6.68	12.32	16.37	123.8	414.3
10.48	13.02	20.	147.5	705
10.84	13.52	62.54	220.4	2193
11.25	13.89	79.81	301.8	10,000
11.74	14.98	105.8	366.6	59,148
1/2 WATT-254				
. 250	2.04	97.8	300	4,451
. 334	2.25	125	400	5,000
. 502	11.1	180	723.1	5,900
557	13.15	210		6,500
627	46	235	2,500	7,000
76	52	260	2,850	7.500
1.01	55.1	270	3,427	8.000
1.53	75	298.3	4,000	8,500
10,000	15,000	17,000	25,000	100,000
14,825	15.750	20.000	37,000	150,000
1 WATT-30c				
1.01	3.39	10.1	270	5,000
2.58	5.05	10.9	1.250	7.000
5	5.21	100	3,300	9,000
18,000	30,000			75
20,000	50,000	55.000	. 0.00	75,000
1 WATT-40¢				

$1 \mathrm{Megohm}, 1 \mathrm{~W}, 1 \%, 65 \notin, 5 \%, 40 \notin$

115 V., 60 Cyc., $31 / 4^{\prime \prime}$ dia. $\times 4 \frac{1}{2 \prime \prime}$ body. Used in Also 50 V., 50 Cyc. $\$ 4.75$ pair.

SELSYN
DIFFERENTIAL \#C78249 ONLY $\$ 2.25$ ea.

BIG VALUES w SURPLUS

Starting

 Reactors Type 1IK2840G2 Rated at 440 Volts, 3 Phase, 60 $\begin{array}{ll}\text { Cycles, } 16.8 \\ \text { Am- } \\ \text { peres. } \\ 15-20 ~ & H P\end{array}$ peres. 15-20 HP. Waterproof steelcase. $17^{\prime \prime} \times 15^{\prime \prime} \times$ 10°. Brand New! In original factory In ori
cases.
$\$ 9.90$

Inter-Communication Sets Manufactured by Dictograph Designed to bring to
homes and offtces the convenience of twoway contersation telephone, housethold electric current, or radio. It catu be set up in wish . . . being limited only by the length of the wire you use. Inter-Communication sets will perate efficiently up to 800 feet using 14 -gauge BRAND NEW, Pair $\$ 9.95$

11.5 KVA; 50/60 cy. Commutator Range $0-115 \mathrm{~V}$.
Max. Amp. 100 . Can be reconnected for 230 volts

MOTOR GENERATORS

Input: 115 Volts, $D C$ at 14 amperes. 3600 speed, ball bearings. Output: 1.25 KVA: 80% P.F.; 120 VAC. 60 cy. single ph.. 10.4 Amperes. With resistive control of voltage output and frecuency built-in and with (centrifical automatic controller
luilt-in, permitting line-start operation. luilt-in, permitting ninestart
Fully enclosed. Splash-proos.

BRAND NEW! In Original
 Factory Cases

Same machine for 230 Volts, D. C. Operation

$\$ 100$

\$120

Vibrator Power Supply

PE-204A
innut Voltage: 12 Volts DC
Output Voltages: Two windings
$4.3 \operatorname{VDC} @ 50 \mathrm{MA}$ 4.3 VDC @ 50 MA Two windings $45 \mathrm{VDC} @ 0.5 \mathrm{MA}$ Two windings

Parts alone worth double the money.

U. S. Navy Specifications

Spare parts kit of brushes, brushholders, ball bear ings, fleld coils, etc. in steel case, Price $\$ 10$.

ALL ITEMS LISTED BELOW ARE "BRAND NEW" UNLESS OTHERWISE SPECIFIED

SYNCHRO'S

Ford Instrument Synchro Generator, ${ }^{7}$ G Mod. 3 115/90 volts 60 Cycles.
 Diehl Synchro Transmitter, Type C78414 Control Instrument Synchion Motor.........ice $\$ 4.35$ Control Instrument Synchro Motor, TYpe 5 FF MK 4

MOTORS AND GENERATORS

 OLD, $1 / 100 \mathrm{HP} 700 \mathrm{RPM}$..... F . Price $\$ 2,50$ Universal Electric Shunt Motor, KS5603L02, 28
Volts,. 6 Amps. 5000 RPM.

 G. E. Motor, Mod. ${ }^{2}$ BA10AJI8D, 27 Price $\$ 5.50$ G. E. Motor, Mod. SBA10AJ18D, 27 Volts 0.7

 G. ${ }^{440 / 3 / \text { Boct. } 2.5} \mathbf{H P}, 1750 \mathrm{RTM}$.....Price $\$ 28.50$
 G. E. Motor, 230 Volts DC. 6.75 General Industries phono Motor, iz3i00, 115 VAC 60 cy. 0.5 A. 80 RPM.............'Price $\$ 5.75$
Generai Industries Phono Motor, 23200 .

INVERTERS AND DYNAMOTORS

PEl03 Ballentine Dynamotor, input 6-12 Volts output 500 Volts, 160 Ma . without filter Price $\$ 9.95$ PE206 Inverter, input 27 volts DC. output 80 PE218 Inverter, input 27 Volts DC output 115 | Like New |
| :--- |
| Price $\$ 22.50$ | Dynamators for SCR-522, input 28 Volts DC. out put 13-150-300 Volts. Rebuilt Like Pew G. E. Dynamotor, 5D48B8A. input 14 Volts DC. olutput 1000 Volts at 350 Ma. complete with

filter MG. 132 A Inverter, input 11.5 Volts DC, output

METERS

Bristol Pyromastor Potentiomoter Type 440MFL, 115 Volts. 60 Cycles, Range $0-2000^{\circ}$ F. $\begin{aligned} & \text { Used } \\ & \text { but Guaranteed }\end{aligned}$. Price $\$ 125.00$ Hoyt Portable Ammeter, Mod. 515, 0-15. Amperes G. E. Voltmeter, Mod, AB-13, 0-150 Volts AC,

MAGNETRONS

KLYSTRONS
Westinghouse, Type $417 \mathrm{~A} . \ldots$. Price $\$ 9.00$
Westinghouse, Type $723 \mathrm{~A} / \mathrm{B}$. . Price $\$ 5.00$

TRANSFORMERS
Stepdown Transformer 575/230/115, 60 eycle $\$ 100$ Westinghouse Transformer Primary 110 Volts, 60 Westinghouse Transformer Primary 110 Volts, 60
cycle, Secondary 20 Volts, 200 watts Price $\$ 3.95$

BATTERIES

8 Volt Dewar Wet Cell Battery, 15 amp. -hours. Complete with electrolyte and filler syringe. Volt Willard Battery, replacement for G. E. Volt Searchlight Battery, 80 Ampere hours $\$ 10.65$
(all batteries shipped dry)

AMPLIDYNES

. E. Amplidyne, Hot. 5am45Dis20. input 115 Volts, single phase, 60 čycle 5.0 Amps. output
 G. E. Amplidyne, Mod. 5AM21JJ7, input 27 Volts.

VOLTAGE REGULATORS Eclipse Voltage Regulator, Type 1001, set at 115
Volts AC Price $\$ 3.25$ Eclipse Voltage Regulator, Type 1002 , set at 27.7
Volts DC...................................$~$ Leland Voltage Regulator, 11651, set at 18 volts

An Outstanding Value
List price $\$ 3000$-Our price $\$ 475$ WESTINGHOUSE INDUCTION HEATER $450 \mathrm{KC}, 10 \mathrm{KW}$, Radio Frequency Generator.
$450 \mathrm{MC}, 140 \mathrm{Amps}$. Input $220 / 440 \mathrm{y} 3 \mathrm{Ph} .60$ $450 \mathrm{MC}, 140$ Amps. Input $220 / 440 \mathrm{~V} 3$ Ph. 60
cy. $48^{\prime \prime} \mathrm{W} \times 48^{\prime \prime} \mathrm{II} \times 30^{\prime \prime} \mathrm{D}$ complete with Pol-
WL lowing tubes: Water croled. USED 678,1 SW4. Watercmoled. US
BUT LOOKS LIKE NEW.
$\$ 475$
impossible to list all of our items and components. tell us your needs. All prices F.O.B. Boston. Orders accepted from rated concerns on open accounts. Net 30 days.

Dept. E-10, 110 Pearl Street, Boston 10, Mass.

Build YOUR OMN TEST EQUIPMENT $\$ 39{ }^{50}$
 NEW 1948 HEATHKIT

 nothing ELSE TO BUYHEATHKIT SINE AND SQUARE WAVE AUDIO GENERATOR KIT
The ideal companion instrument to the Heathkit Oscilloscope. An Audio Gener ator with less than 1% distortion, high calibration accuracy, covering 20 to 20,000 cycles. Circuit is highly stable resistance capacity tuned circuit. Five tubes are used, a $65 J 7$ and $6 K 6$ in the oscillator circuit, a 6517 square wave clipper. a $65 N 7$ os a cathode follower output and 5 Y 3 as transformer power supply

The square wave is of excellent shape between 100 and 5,000 cycles giving adequate range for all audio, FM and television amplifier testing.
Either sine or square waves available instantly of a toggle switch. Approximately 25 V of sine AC available at 50,000 ohm output impedance. Output +1 db . from 20 to 20,000 cycles. Nothing else to buy. All metal parts are punched, formed and cadmium plated. Complete with tubes, all parts, detailed blueprints and instructions.
HEATHKIT SIGNAL TRACER KIT Reduces service time and greatly increases profits of any service shop. Uses erystal amplifier available for from antenna ta speaker. Locapes faults imalable for amplifier testing. Connection for VIVM on panel allows visual trasing and gain measurements. Also tests phonograph pickups, microphones, PA systems, etc. Frequency range to 200 Mc. Complete ready to assemble. 110 V 60 cycle transformer operated. Supplied with 3 tubes, diade probe, 2 color panel, all other parts. Easy to assemble, detailed blueprints and instructions

Small portable $9^{\prime \prime} \times 6^{\prime \prime} \times 43 / 4^{2^{\prime \prime}}$. Wi. 6 pounds. Ideal for taking on service calls. Complete your service shop with this instrument.

HEATHKIT SIGNAL GENERATOR KIT Every shop needs o good signal generator. The Heathkit fulfills every servicing need fundamentals from 150 Kc . to 30 megacycles with strong harmonics over 100 mega cycles covering the new television and FM bands. 110 V 60 cycle transformer operated power supply.
400 cycle audio ovailable for 30% modulation or audio testing. Uses 6 SN7 as RF oscillator and audio amplifier. Complete kit has every part necessary and detailed blueprints and instructions enable the buitder to assemble it in a few hours. Large easy to read calibration. Convenient size $9^{\prime \prime} \times 6^{\prime \prime} \times 4^{3 / 4^{\prime \prime}}$. Weight $41 / 2$ pounds.

$\$ 2450$
Nothing
ELSE TO buy
the new heathkit vacuum tube VOLTMETER KIT
The most essential tool a radio man can have, now within the reach of his pocketbook. The Heathkit VTVM is equal in quality to instruments selling for $\$ 75.00$ or more. Features 500 microamp meter. transformer power supply, 1% glass enclosed divider resistors, ceramie selector switches, 11 megohms input resistance, linear $A C$ and $D C$ scale, electronic $A C$ reading RMS. Circuit uses 6 SN7 in 5×5 as transformer power supply rectifier. Included is means of calibrating without standards. Average assembly time less than four pleasant hours and you have the most useful test instrument you will ever own. Ranges $0-3,30,100,300,1000$ volts $A C$ and $D C$. Ohmmeter has ranges of scale times 1, 100, $1000,10 \mathrm{M}$ and 1 megohm, giving range iohm to 1000 megohms. Weight 8 lbs.

5" OSCILLOSCOPE KIT

A necessity for the newer servicing technique in $F M$ and television at a price you can offord. The Heathkit is complete, beautiful two color panel, all metal parts punched, formed and plated and every part supplied. A pleasant evening's work and you have the most interesting piece of laboratory equipment available.

Check the features - large 5" 5BP1 tube, compensated vertical and horizontal amplifiers using 65 JJ 's, 15 cycle to 30 M cycle sweep gener ator using 884 gas triode, 110 V 60 cyele power transformer gives 1100
volts negative and 350 volts positive. valts negative and 350 valts positive.
Convenient size $81 / 2^{\prime \prime} \times 13^{\prime \prime}$ high, $17^{\prime \prime}$ deep, weight only 26 pounds.
All controls on front panel with test voltage and ext. syn post. Complete with all fubes and detailed instructions. Shipping weight
35 pounds.

Order today while surplus túnes make the price possible.
 The HEACTI COMMPANY

DEPT. E . . BENTON HARBOR, MICHIGAN

HEATHKIT

$\$ 195.0$

(1) SEARCHLIGHT SECTION T

Sales Bulletion

Desirable Select Surplus Items of Electronic Equipment, New, Unused

BC-375E TRANSMITTERS

TYPE BC-375E AIRCRAFT RADIO TRANSMITTERS, 100 WATT FREQUENCY RANGE 200-500 KC AND 1,500-12,500 KC EACH. Complete as follows:
Quan. Type No.
1-BC-375E
Transmitte
Mount
1-FT-115-B
1—FT-151-A or C
1 -TU-5B
-$1-T U-6 B$ 1 -TU-8B
1-TU-9B
1 -TU-10B
1 -TU-26B
1-BC-306-A
1-FT-142
1-PE-73-C
1-FT-107
2-PL-59
2-PL-61
—PL. 64
war surplus units all new and packed in original crate.

NAVY TDE TRANSMITTER

Navy Model TDE Radio Transmitter is designed for medium and short wave telegraph and telephone operation. Frequency range 300 to $18,000 \mathrm{Kc}$. Output CW 125 watts. Phone 25 watts operates on 230 volts D.C. Transmitter motor generator filters and controls all located in one steel cabinet as shown in illustration.

GASOLINE AND DIESEL

ENGINE GENERATORS

We have available gasoline and Diesel engine generators of all types. Contact us if interested in any of these remarkable new surplus units.

RADIO TELEGRAPH TRANSMITTER MODEL ET-8023 D1

This Radiomarine Transmitter has a power output of 200 watts and is either master oscillator or crystal control in operation. Emission CW or MCW. Frequency range 2,000 to $24,000 \mathrm{Kc}$. in nine overlapping bands. New in original export packing. Supplied complete with one set of operational tubes and typewriter table.

All material offered subject to prior sale

FRENCH-VAN BREEMS, Inc.

Electronic Engineering Experts

(i) SEARCHLIGHT SECTION \mathbb{I}

RELAYS FOREVERYPURPOSE Over a Million in Stock!

(ID SEARCHLIGHT SECTION

HUNDREDS OF GREAT VALU

NEW DUAL SPEED PHONO-MOTOR

For Recording or Playback!

Heavy Duty, Rim Drive Motor-built by a leading mfr . for RCA. Will Play or Record on either $33 \% 3$ or 18 RPM. Ideal for playing new Micro-Groove records.
Weighted $10^{\prime \prime}$ Turntable assures good recording and playbures good Complete parts including Motor, Turntable, switch, drive wheels etc. less mtg.

S-895.

Sensational General Electric FM T T NER

 Model XFM- 1$\$ 4050$
Complete with
8 Tubes
This amazing new GE FM Tuner is a superb instrument, oftered by Newark at a sensational price! It's easily connected to any AM recener from 88 to 108 Mc. Full view $12^{\prime \prime}$ slide rule dial. Two controls: on/off, volume-control, and tuning. Handsome cabinet $153 / 4^{\prime \prime} \mathrm{W}, 103^{\prime \prime} \mathrm{H}$, $111 / 2$ "D. Universal 6 tap Power Trans, for all line voltages 103 to 260 volts $50 / 60$ cycles,
AC. Shpg. Wt. 20 lbs. Cat. No. A-302.

TRANSFORMER

 SPECIALSPOWER TRANSFORMER-Pri: 120V, tapped at $110 \mathrm{~V}, 60$ cycles. Sec: 768 V , CT at 305 Ma Electrostatically shielded. Flush Type
Hgt. 12 lbs
pe M
hss. No. S-851.
'3.95
FILAMENT TRANSFORMER-Electrostatically shielded. Flush mtg. Pri: 117 V , 60 cycles. Sec: 5 V at 6 amps . and 6.3 at
$6 \mathrm{amps} .3^{11 / 16} \times 3^{3 / 16} \times 3^{13 / 10^{*}} \mathrm{H}$ overall. 5 lbs No.
$\mathrm{S}-852$.
${ }^{5} 1.95$
CHOKE- 4.2 Hy at 300 Ma DCR 78 ohms. Fully enclosed in metal case. Four 8 lbs.
s2.95
50 MA POWER TRANSFORMER-Fully enclosed, flush mtg. Socket for 5 Y3 Rectifier built into top and internally wired.
Pri: $117 \mathrm{~V}, 60 \mathrm{cy}$. Sec. $\# 1: 530 \mathrm{~V}, \mathrm{CT}$ at 50 ma . Sec. \#2 supplies 5 V at 2 amps. to socket. Sec. \#3: 6.3 V at 1.9 amps. Elect rostatically shielded. $21 / 2 \times 3 \times 31 / 4 / 2$ above
chassis. 8 lbs. No. S-837.
UNIVERSAL 55 MA POWER XFORMER -Has Tap Switch to adjust primary input from 110 to 245 volts, 60 cycles, in 6 stages. at 55 . Ma, $5 B$ at 2 amps.; $6.3 V$ at 3.15 . Electrostatically shielded. Mtg. Cntrs.

'2.49
160 MA POWER XFORMER-Pri: 110 V , 60 cycles. Sec: $720 \mathrm{~V}, \mathrm{CT}$ at 160 Ma ;
6.3 V at 4 amps. 5.0 V at 3 amps. Fully enclosed, flush mtg. Overall: $41 / 4 \times 3 \frac{3}{4} \times$ $31 / 8^{n} .81 \mathrm{lbs}$
No, $5-793$
53.49

POWER TRANSFORMER-1345V each side of CT at 500 ma . Primary tapped flange mtg. Screw Terminals. $\$ 4.95$
No. S-877.
MULTIPLEFILAMENT TRANS FORMER-Primary $105 / 115 / 125 \mathrm{~V}$ at 60 cycles. 6 separate secondaries all CT as follows: 3 windings at 6.4 V at 8 amps . 2 windings at 2.6 V at 2.5 amps.; 1 winding
 $41 / 4 \times 5 \times 5$
No, $5-880$

Reduced to $\$ \mathbf{8} \mathbf{8 0} \begin{gathered}\text { Reg. } \$ 115.00 \\ \text { SAVE } \$ 30.50\end{gathered}$ We made a tortunote purchase from a world-famous monufacturer of test equipmentl Now you can afford this fine instrument ...sove $\$ 30.501$. This oscilloscope has many outstanding features not faund in run-of.ehermill scopes - such as: Buittin hequighty 10 and to 60 kc . Sine Wove response of vertical ampli. cps to $60 \mathrm{kc}$. . Sine Wove response of vertical ampli*
fier $\pm 10 \%$ from 10 cps to 40 kc . Usable range 10 cps 10200 kc . Grey crackle cabinet $141 / 4 \mathrm{D} \times 8 \mathrm{~W}$ $143 / 8{ }^{\prime \prime} \mathrm{H}$. Shpg. Wgt. 30 lbs . No. A-2

Terrific Television Buy!

 Tech-Master 630-TK 10" Kit Complete with All Parts, Insituctions, and 30 RCA rubes BP4.) Duplicotes in every respect the famous RCA 630TS, generally accepred as best engineered TV set available!

This Soundview 630TK kit is an exact copy of famous RCA 630TS Television set. Contains efficient RCA front end 13-channel tuner-completely factory wired and aligned with 3 RCA matched tubes, plus built-in wave for 10 BP 4 if desired). Dual controls for picture and FM sound, and for horizontal and vertical control. Kit is supplied with RCA schematic and service manual, but less wire, solder, and mtg. screws. Cat. No. A-19752. Shpg. wt. 85 lbs.
Hanc Rubbed Walnut Cabinet No. A-19753
$\$ 42.50$

Send Orders to New York or Chicago

NEW YORK Offices \& Warehouse 242W.55.hSt.,N.Y. 19

Famous Make 3" SCOPE

 Cat. No. Description EACH $\begin{array}{ll}\text { Cat. No. } \\ \text { S-614 } & 0-8 V \\ \text { WC } & \text { 3" } \\ \text { Rescription } \\ \text { Rd }\end{array}$ 5-615 50-0-50 Ma, DC, Zero Center, $\$ 2.95$ S-616 0-1 amp, RF-3" square Bake- ${ }^{\text {lite Case...... }} 45$S-437 0-150 DC Microamps $2^{\prime \prime}$ ri, Bake- $\$ 3.45$
S-777 0-100 DC Ma $2^{\prime \prime}$ rd. Bakelite $\$ 2.95$
S-166 \quad 150-0-150 DC Microamps, Zero Center, Bakelite Case (Separate $\$ 3.95$
S-664 0-10 DC Ammeter, $3^{\prime \prime}$ rd. Bakelite $\$ 2.95$
S-874 0-5 ma. DC $4^{\prime \prime}$ square. Bakelite $\$ 5.95$
S-875 0-500 ma. DC 2" rd. Bakelite $\$ 2.95$
S-917 0-1 amp. 4" square Bakelite Case. \$5.95

NEWARK TV ANTENNAS

Cover all 13 Channels. Hairpin type dipoles with reflectors-high over low frequencies, Sturdy, tempered aluminum elements. 5 ft , mast, with hardware
and instructions. 10 lbs.
Mo. A- $30400 . ~$
High Frequen
High Frequency Attachment Hairpin Dipole and Reflector (Channels 7-13) for any standard antenna.

Chymencon ELEETAIC company. Ic

NEWARK ELECTRIC CO. maintainsthe Largest Stock in the Country of Standard Equipment including

Aerovox - Amphenol Atlas Alfiance American TV \& Radio Astatic - Arrow H A H Audlo Devices Audak Brush Barker \& Williarnson Burgess - Bliley Barker \& Howard Belden - Bogen Brownlng Labs. Cornell-Oubilier Cannon Oinch Centralab Collins Continental Carbon Continental Carbon Croname Drant Elincor Eby Esico Federal Greenlee Gordon Speclaltles General Industries Garrard Guardian GE - General Cement Gothard - Hickok Hammarlund Hallicrafters IRC' Jeffers Jahnson Jones Jensen Jackson Kester Littlefuse Masco Mallory McMurdo Silyer Melssner - National Ohmite. Par Metal Park Plckering Precision © RCA Rider - Rek-O-Kut Reeves © Rauland Simpson - Shure Sylvanla - Stancor Supreme Sonar Stephens Turner Transvision Triplott Thordarton - UTC University Ward Vibroplex Weller Webster Weston
\qquad
LOWEST PRICES

IMMEDIATE DELIVERY

24 Hour Service on Mail Orders

(Ti) SEARCHLIGHT SECTION (TI

SURPLUS MATERIAL-Shipped Immediately

TUBES! GUARANTEED!

EDLIE ELECTRONICS, INC.

5% or better tolerance, Price $\$.15$
22,000
50
${ }_{30}^{35}$
The following sizes
1% or better. Price $\$.10$
41,8

41,808	105.8	4.4
4,285	53.32	4.4
1,123	33.22	3.94
1,988	23.29	3.5
414.3	113.52	1.563
3.56 .6	13.333	.29
20.4	10.2	.268
147.5	5.1	.25

RADIO NOISE FILTERS

These line noise filters are available in large quanMallory NF tities and pror-Housed in a bathtub type container and rated at 7 amps, 50 volts D.C. Mallory NF7.3A-Housed in i..........Price $\$.35$
 mamphenol AN3108 plugs win male and Price ${ }^{\text {and }} 95$ Mallory NF7-4-Housed in rectanzular case $3^{\prime \prime}$ I
 Bendix model 3937 . Generaior Filter- 50 amps. ${ }_{4}{ }^{*} \times 33^{2} 4^{*} \times 8^{\prime \prime}$ D.C.-Housed in shielded rentainers Line Noise Fiitor-Unshielded and mounted on a bracket Suitable for use on regular power lines- -
Consists of two .01 molded condensers and 140 turn solenold choke coil........ Price only $\$ 140$

TRANSTAT VOLTAGE REGULATORS

Model \#29144
Fixed Winding 115 Volts-60 cycles
Commutator range $75-120$ Volts Commutator range $75-120$ Volts Hoximum output $25 \mathrm{KVA} \times 6^{\prime \prime} \times 6^{\prime \prime}$ Type RH

Price $\$ 6.95$ Fixed Winding 115 Voits- 400 cycles Commutator ranges $75-120$ Volts Load- in Shiel

4000-6000 VOLT LOW

 CURRENT DC SUPPLYBrand new completely wired and tested. Ready to operate from 115 volt power line. D.C. output is $2000-3000$ Volt D.C. Supply similar to abore, but with lower output voltage, Ready to operate
from 115 Volt power line. Price Complete $\$ 2.95$
Write for Latest Catalog

TELEPHONE DIgby-9-3143
NEW YORK 6, N. Y.

DIVERSITY RECEIVING EQUIPMENT BRAND NEW!
 - Lots of extra parts, Meters, Condensers, Transformer, etc.
 - 2 extra sets of spare tubes (Besides set in unit)
 - Designed to operate from a 100-260 volt, 25-60 cycle single phase power source
 - Power consumption approximately 70 to 80 watts
 - Front panel finished in baked black wrinkle lacquer
 - Tube line up: 3-6A6; 1-77; 1-IV; 1 neon; 1-80; 1-6F8G; 2-6SJ7; 1-VR150/30
 - Overall dimensions: $19^{\prime \prime}$ wide $\times 14^{\prime \prime}$ deep $\times 21^{\prime \prime}$ high—Export packed $21^{\prime \prime}$ wide $\times 20^{\prime \prime}$ deep $\times 36^{\prime \prime}$ high
 - Equipment weight: 111 lbs . Export packed 211 lbs .
 2 COMPLETE INSTRUCTION BOOKS SUPPLIED WITH EACH UNIT.
 PRICE
 Special $\$ 149.50$

BRAND NEW BC 223AX

Latest model of the 223 series. Has built-in phantom antenna. Frequencies from 2 to 5.25 mc with three plug-in tuning units, complete as shown less xtals, tubes, and power supply. Tube line up consists of 2-801A and 3-46; output 25 watts CW, 10 watts phone. Shipping wt. 160 lbs.

SPECIAL \$29.95
Complete set of tubes for above unit $\$ 4.95$

Specially designed for operating AC Radios, Public Address Systems, Small Television Sets, Amplifiers, Intercall Systems and Radio Test Equipment from 12 Volt DC source. 125 Watt, 60 Cycle, 110 V output.

SPECIAL \$19.95
\qquad

(ID SEARCHLIGHT SECTION ©

RADIOMEN'S HEADQUARTERS F WORLD WIDE MAIL ORDER SERVICE ! !

COMPRESSED AIR INSTANTLY, Anywhere!!

Portable Air Compressor and
storage tank. Ruggedly bullt of
best materials best materials, using lifetime luing rod and oil impregnated main bearing on shaft. Unusual design rorever eliminates ralre trouble, the most common fault in air
compressors. PATENTED undout compressors. PATENTED unique
air intake system increases effl air intake system increases eff-
clency tremendously over other connpressors so that air output is
much greater than that from much greater than that from heavier motors. Will deliver approximately 3500 cu . inches of air Der minute at maintained pressure of one minute. Comes complete with 100 lb . gauge, al pressure ot any palue, which will setting of output maintained. Works from any $1 / 4$ H. F. motor. Useful ticides, annealing or brazing with natural ants, insect ing tires, eto. Price \$14.50 postage prepaid anywhere in the U. S. Efficient, completely adjustable syphon type spray gun complete with 12 ft . of 100 lb . tested also arailable for only $\$ 7.75$ with pint container. Send for free catalogs of radio parts and surplus

VACUUM TUBE VOLT-OHM-CAPACITY METER

 There are more features engineered into this all purpose Instrument than in any other instru-ment on the market regardless of price. It was designed not only to meet yresent conditions but to be readily adaptable to future needs. At the sensationally low price of this precision in measul 5 inch easy to read meter.

- 6 DC voltage ranges from 0 to 1000 V (Input resistance as high as I megohm pr volt.) - racy of this VACUUM TUBE VOLTMETER). - 6 Resistance ranges from 2/10 ohmi to 1000 megohms.
- 4 Capacity ranges from 000025 to 20 MFD
- A zero center range for balancing FM discriminators.
- Isolating resistor buit into probe.

This outstanding development of one of the leading manufacturers of test equipment conts

Minimum order $\$ 3.00$-All prices subject to change- 25% deposit with COD orders.

BUFFALO RADIO SUPPLY, 219-221 Genesee St., Dept. 9-E BUFFALO 3, N. Y.

SURPLUS
 LABORATORY EQUIPMENT

We have in stock, for immediate
ments, fully tested and guaranteed. General Radlo: 107 M Variable Inductors;
$224 \mathrm{~A}, 724 \mathrm{~A}$, Wavemeters; $716 \mathrm{~B}, 740 \mathrm{BG}$
 alyzer; 619 E Heterodyne Detector: 821 A Twin-T Bridge: 775A Frequency Limit Ferris: 18 B Signal Generator; 33A, 34A
Boonton: 120A V.H.F. Circuit Checker; 140A Wide Range BFO; 156 A FM Signal Generator.
Hewlett-Packard: P-6255B Interpolation Oscillator $510-1000$ \& 1280-2520 CPS.
L\& N: 4223 Precision Resistor; 7655 Cortable indicators and Standard Cell.
Mllen: P4E Synchroscopes.
Western Electric: RA 90A High Voltage Power Supplies; SID 353384 VT Regu lated Power Supplies; TS/5AP Range CalD 152213 Modulator Oil Units. TS9; APQ-5 Range Calibrator Modulator; 157 A Output

Transformers; Breakdown Testers, 500 volt.
Weston: Model 1; 0-300 M.A.; 0-500 Volt 0.1500 Volt: $0-150$ M.A.: $0-300$ M.A. D.C 785 Industrial Analyzer.
Dumont: 213 Modulation Monitor. G.E.: LU Radar Test Equipment. Distillation Products: Pirani Gauge. Industrial Instruments: $R N-1$ Wheatstone Bridges; MB8 Megohm Bridge.
Shallcross: 621 Limit Bridge.
WRITE FOR COMPLETE PRICE LIST
All Equipment-F.O.B., New York City.
THE NATIONAL INSTRUMENT CO.
FAR ROCKAWAY, N. Y.
Cable Address: NATINSTRU. New York

Special Values
 D. C. MICROAMMETERS

 ${ }_{0}^{0-100}$ ua. 21/2", Gruen $\underset{0}{ }-100$ ua. 41 .".

R, F, MILLIAMMETERS
$0-100 \mathrm{Ma} .31 /{ }^{\prime \prime}$ ", Weston $425 \ldots . .$. . $\$ 9.00$
 SHUNTS
150 or $240 \mathrm{Amps}-50 \mathrm{Mv}$-alrcraft type $\$ 1.00$ PRECISION ELECTRICAL INSTRUMENT CO. 146 Grand Street New York 13, N. Y.

BARGAIN BUYS

COMPLETE RADAR SETS:
APR/l with Tuning Unit- $\$ 150.00$
Also crvailable-10 cm-SL-1; $3 \mathrm{~cm}-$ TUNING UNITS:
TN/54 for APR/4—\$125.00 (New)

| $3 B-1$ | $\ldots . . \$ 3.00$ | $723 A / B$ |
| :--- | :--- | :--- |$. \$ 5.00$

METER:
$3^{\prime \prime}-0.150 \mathrm{v}$ DC (10 ma movement) $\$ 2.50$
Minimum order $\$ 5.00$; F.O.B. New York Write for listings of other surplus bargains
LERU LABORATORIES, INC.
360 Bleecker St. New York 14, N. Y

MICROPHONES

Unbreakable dynamic-adjustable Impedanc
SOUND ENGINEERS BUY DIRECT 50% discount
Off the regular Jist
SEND FOR FREE CATALOG
ST. LOUIS MICROPHONE CO.
2728 Brentwood Bivd.

ART-13 POWER SUPPLIES AND LOW FREQUENCY OSCILLATORS

High Power R.F. Ampliflers, Special Equipment on request.

SPECTRA PRODUCTS
155 Chambers St
New York 7. N. Y

TS268/U CRYSTAL TEST SETS MICROWAVE \& RADAR USE

New war surplus-overseas packed, original cost $\$ 125$. Your cost only $\$ 17.50$.
C. E. MAASS

I31 Pennsylvane.
Tuckahoe, N. Y.

(1i)

RADIOMEN'S HEADQUARTERS $\underset{\text { Y }}{*}$ WORLD WIDE MAIL ORDER SERVICE !!

BUFFALO RADIO SUPPLY, ONE OF AMERICA'S LARGEST ELECTRONIC DISTRIBUTORS, IS IN A POSITION TO SUPPLY MOST OF THE REQUIREMENTS OF FOREIGN PURCHASERS, DIRECTLY FROM ITS GIGANTIC STOCKS OR THOSE OF ITS AFFILIATES. EXPORT INQUIRIES ARE SOLICITED BOTH FROM EXPORT HOUSES AND FROM FOREIGN GOVT. PURCHASING COMMISSIONS HERE AND ABROAD. EXPENSE CAN BE REDUCED AND REQUIRE-

MENTS FILLED WITH A MINIMUM OF DELAY BY CONTACTING BUF. FALO RADIO SUPPLY INITIALLY.

GENERAL ELECTRIC RT-1248 15-TUBE TRANSMITTER-RECEIVER TERRIFIG POWER-(20 wats) on any two instantly selected, easily pre-adjusted frequelicies from 435 to
500 Mc . Transmitter uses 5 tubes including Western Fifectric 316 A as final. Receiver uses 10 tubes including
 $7 \mathrm{H7}$, $7 \mathrm{EG} \mathrm{E}^{\prime} \mathrm{s}$ and $7 \mathrm{F7} 7^{\prime} \mathrm{s}$. In addition unit contains 8 relays clesigned to operate any sort of external equipment when actuated by a received signal from a similar set elsexhere. Originaly desitgoed for 12 volt operation,
power supply is not included, as it is a cinch for any experimente: to connect this unit for 110 Ac, using any power supply is not included, as it is a cinch for any experimenter to connect this unit for 110 AC, using any
supply capable of 400 DC at 135 FA . The ideal unit for use in mobile or stationary service in the Citizen's Radio Telophone Band where no license is neeessary. Instructions and diagrams supplied for running the RT-1248 transmitter on elther code or roice in AM or FM transmission or recention, for use as a mobile public address system, on 80 to 110 Mic, as an FM broadcast reciver, as a Farsimile transmiter or receiver, as an Amaters
Television transmitter or receiver for remote control relay hookups for Geiger-Mueller counter applications Television transmitter or receiver for remote control relay hookups, for Geiger-Mueller counter applications.
It sells for only $\$ 29.95$ or two for $\$ 53.90$. If desired for marine or molvile use the dyamotor which will work It sells for only $\$ 29.95$ or two for $\$ 53.90$. If desired for marine or mobile use the dy

BC-DRAD NEW
BC-2L1 FREQUENCY METERS with calibrating Crystal and calbbration charts. A precision frequency standard that is useful for innumerable appllca tons for laboratory technician, service man, amateur, and experimenter at the give away price of only $\$ 75.00$.
 1949 MODEL MUTUAL CONDUCTANCE TUBE TESTER $\begin{gathered}\text { with new } 9 \text { pin sorket to handle } \\ \text { all fulur thre }\end{gathered}$
$\$ 49.95$
 No possibility of good tubes reading "Bad" or bad tubes reading "Good" as on dynamic conductance testers or other ordinary
emission testers. Attractive panel and case equal to any on the market in appearance. . Large $41 / 2$ " meter . A . Calibrated Micromho scale as well as a Bad-Good scale. Front panel fuse. . Inclividual sockets for all tube base types-voltages location of elements on tube base... Indicates gas content and detects shorts or opens on each individual section of all loctal, octal and miniature tubes including cold cathode, magie eye alli voltage regulator tubes as well as all ballast resistors. Name of the nationally kn reading "Good" as on dynamic conductance testers or other Model "C"-Sloping front counter case. P . P . Handsome hand-rubbed portable case

S595 Takes Both BIG BARGAINS

1000 CYCLE AUDIO FILTERS
Navy PD52010-1 low pass audio, fllers as Enentloned in the "Peaked Audio" article in
June CQ, and deslgnated by the abore number. June CQ, and designated by the above number. are the exart electrical and physical equivalent
of commercial audio filter units selling for $\$ 35.00$ wholesale. "They are infnitely, better than the surplus ' Radio Range Filters", being solid for reducing QRM, and at 2 KC off resonance for example, a 2 section eliter using available through the use of the Q5-er, (the BC453 section of the 274 N which has provided the amateur's previous highest standard of NAVY PD52010.1 with diagram. $\mathbf{\$ 5 . 0 0}$.

SPLATTER CHOKES

These Tapped "SPLATTER CHOKES" used between Class C stage and Modulator to eliminate obliectionable side band splatter. DC
resistance 50 olmis. Our part No. $8660-\$ 1.50$

SCR-274N COMMAND SET

The greatest radio equipment value in history A mountain of valuable equipment that includes 3 receivers that use plug-in coils, and consequently can be changed to any frequencies desired without conversion. Also included are two Tuning Control Boxes; 1 Antenno Coupling Box; four 28 V Dynamotors (easily converted to 110 V . operation); two 40 Watt Transmitters including crystals, and Preamplifier and Modulator. 29 tubes supplied in all. Only a limited quantity available, so get your order in fast. Removed from unused aircraft and in guaranteed electrical condition. A super value at $\$ 34.95$, including cronk type tuning knobs for receivers.
${ }_{6}^{\mathrm{RF}} \mathrm{F}$ - 1579 consists of a three stage, casrade 6 S17's and
 with 60 cycle, 110 V power supply on the same $131 / 2 x$
$141 / 2$
chassis, which is protected by a substantial stepl $111 / 2$ chassis, which is protected by a suhtantial stefl
cover over tubes and parts. Made by Western metecover over tubes and parts. Made hy western litec-
tric with typical quality components such as a hinsky power transtormer and oil condensers, this wit is obviously intended to give years of trouble-free sersire with no more need for repairs than a teleothne.
Disconnecting one wire each. fr . Disconnecting one wire each. fronn the special invut
and output fllters, will result in as hish a tile
 diagram and parts list inclutled- $\$ 14.95$.

Super Special***Highest quality all chrome bullet
MIKE of topfight nationally known brand- $\$ 5.95$

TERRIFIC VALUE-

PORTABLE ELECTRIC DRILL

Only s20.05 equipped with $14^{\prime \prime}$ Jacobs Geared Chuck and Key
Most convenient type switch, natural grip handle, and balance like a six-shooter 1 'rocision cut gears-turbine type cooling blower-extra long brushes.
No istalling under heariest pressure because of powerful 110 Volt AC-DC m thrust bearing.
other bearings self-aligning life-time Iubricating Chrssler Oilite type. Marle for tonghest year-in and year-out sersice in Plant or on construcion jobs.
Anazing perpetual factory guarantee assures you of a liftime of trouble-free use 25% deposit on C.O.D.'s. Full refund if returned prepaid within five days.

PE-109 32-VOLT DIRECT CURRENT POWER PLANT This power plant consists of a gasoline engine that is direct coupled to a 2000 watt 32 volt DC operate many of the surplus items that require 32 volts DC. The price of conis power plant is on ony \$75.0. We run and test every unit before shipment. We can also supply a couverter that will
supply 110 V AC from the above unit or any $16-32 \mathrm{~V}$ DC source for $\$ 12.95$.

Cable Address: BUFRAD FOB BUFFALO UNLESS NOTED
Minimum order $\$ 3.00-$ All prices subject to change- 25% deposit with COD orders.

Industrial Power Supply Equipment

TRANSMITTING	THYRATRONS
RK75/307A 4.50	2D21 Min.
450TH/6C21 22.50	3 C 23
750TL 47.50	FG81A
WL533 750W U.H.F. Triode 17.50	C6A
714AY Magnetron ... 9.50	All Tubes New, Stondard
730A Magnetron . . 10.75	
RECTIFIERS - Dry Dise Type Continuous Duty Ratings	
- 3.5V. A.C. 1.8 V . D.C. 1.0 Wave Bridge	$.90$
$\text { - } 6.5 \text { V. A.C. }-2.2 \text { V. D.C. }$ Full Wave Center Tap.	Amps. 1.20
- 36V. A.C. 200 Mil D.C. H.	. 75
- 36V. A.C. 2.2 Amps. D.C. Bridge	Wave 3.75
- 54 V . A.C. -1.6 Amps. D.C Wave Bridge	E. Full 4.40
- $\begin{array}{r}154 V \\ \text { Bridge }\end{array}$ A.C. 600 Mil D.C.	Wave 6.85
- 180V. A.C.- 400 M.A. D.C Wave Bridge	.e. Full 6.90

TUBES

THYRATRONS	
2D21 Min.	1.25
3 C 23	4.75
FG81A	4.75
C6A	8.50
All Tubes New,	$d \text { of }$

RECTIFIERS

FG32	4.00
371 B	5.95
531	18.00
872	1.75
3 B 22	2.95
$\begin{aligned} & \text { 4B28/289414 } 6 \text { Amp. } \\ & \text { Rectigon } \ldots \ldots . . \\ & \hline .9 .95 \end{aligned}$	

RECTIFIERS - Dry Dise Type -

 Continuous Duty Ratings3.5V. A.C. 1.8 V . D.C. 1.0 Amps Full
Wave Bridge Wave Bridge
Full Wave Center D.C. @ 3.0 Amps

- 36V. A.C. 200 Mil D.C. H.W

CONDENSERS

500 Mfd 200 V dry Electrolytic. 2 Mfd 600 V Tubular Oil.
10 Mfd 600 V Oil
2 Mfd 2500 V Oil.
2.40
2.75
$.25 / 256000 \mathrm{~V}$ D.C. or 125 Mfd
12000V D.C. Oil.....................
1.0 Mfd 25 KV 36.00
$.001 / 25 \mathrm{KV}$ Mica
50 MMF 32 KV Tubular vacuum
4.95

RELAY

RC-117-Westinghouse Time Delay Current Relay, Type SC-M. 2 to 1 amp A.C. or D.C. .8 amp continuous rating. Rating $20-40 \%$ drop out ratio. Net Wt. 3 lbs. Dim. 3" W W x
$5^{\prime \prime} \mathrm{D} x 3^{\prime \prime} \mathrm{H}^{\prime} .12 .95$ $5^{\prime \prime} \mathrm{D} \times 53 / 8^{\prime \prime} \mathrm{H}$.

METERS
Weston Model 476-3" A.C. Ammeter, 3 Amps. full scale, Calibrated $0-120$ Amps., with $40 / 1$ current trans

Net wt. 3 pounds
M-143 A.B. Weston Kilovoltmeter-3". Model M-143 A.B. Weston Kilovoltmeter-3". Model $301,20 \mathrm{KV}$. @ 1000 ohms per volt, flush type
calibrated for steel panel mountings with 20 calibrated for steel panel mountings with 20 and standoff insulators............. $\$ 18.00$ Net wt. 4 pounds.

Multimeter, Supreme model 543-S \$12,95
R. F. ammeter Weston 425-0-3 amps $\$ 5.95$

NEW RA38 POWER SUPPLIES

$115 \mathrm{~V} ., 60$ cyc. input adjustable output $0-15$,000 V . A.C. or D.C. @ 500 Mils . Complete with extra set of new tubes and remote control. Shipping weight 2100 lbs
$\$ 250.00$

TRANSFORMERS

Net Wt. 134 lbs Dim. $25^{\prime \prime} \mathrm{W} \times 16^{\prime \prime} \mathrm{D} \times 17.2^{\prime \prime} 1$ (Encl. 8 ${ }^{\text {n }}$ shaft ext.

TRANSTATS

- 115 V. 50/60 cycle input 103-126 V. output @ 2.17 amps .
- $115 / 230$ V. $50 / 60$ cycle input $0-260$
V. output @ $21 / 2$ amps............. $\$ 2$
- GR Variac, 115 volts $50 / 60$ cycle in-
put 0-135V output @ 5 amps cosed. $\$ 14.50$
- 115 V. 50/60 cycle input, 0-135 V.
output@10 omps.................. $\$ 24.50$
THERMOSTAT SWITCH
Fenwall - $50^{\circ}+400^{\circ}$ F. 110-220 V.
Fenwall - $50+400^{\circ}$ F. $110-220$
2500 watt contacts, adjustable.
2500 watt contacts, adjustable........ $\$ 1.60$
noninductive Wire Wound 1 meg. 1/10\%

T-102-Filament Transformer American Transformer Co. Spec. 29106, Type WS . 050 KVA, 50/60 cyc. Single phose, 35 KV 'A test 12 KV D.C. operating. Primary 115 V ., secondary 5 V ., 10 amps with integral standoff insulator and socket for 250T, 371, 872, 5563, etc rectifier tubes

WESTINGHOUSE-Type "AB"

De-ion circuit breakers

Thermal trip-without enclosure 3 pole-50 amp frame size
Style 545-389 D 15 amp rating..... 9.50 ed. Style $545-391$ D 25 amp rating. 9.50 ea . Style 545-393 D 50 amp rating. .9 .50 ea.

HEATERS

H-149-Chromolox strip heaters, 300 W., 115 V. $\left(1 / 4 \times 11 / 2 \times 12^{\prime \prime}\right) \ldots . . .$.
"UHF" COAXIAL CABLE CONNECTORS

COAXIAL CABLES

Prices based on minimum quantity of 500° of a type.

BIRTCHER TUBE CLAMPS 926 A.... 19¢ ea. 926 B5... 19 ea
 926 B1 ... 19́dea. 929 1....29dea

TYPE F2L MICA CAPACITORS CM 70 TYPE

. 024 MFD 1500 Volts Wkg. ea. 75 t . 033 MFD 1500 Volts Wkg ea. 75 é . 056 MFD 1500 Volts Wkg..ea. 75 e . 0001 MFD 5000 Volts Wkg. .ea. 75 t

LIFE ELECTRONIC SALES

91 GOLD STREET, N. Y., N. Y. TELEPHONE DIGBY 9-4154-5

X BAND VSWR TEST SET TS-12/AP, complete with linear amplifier, direct reading VSWR meter, slotted waveguide with gear driven traveling probe, matched termination and various adapters with carrying case, new.
X BAND PICK-UP HORN AT-48/UP, with coaxial fitting. $\$ 5.00$

X BAND POWER METER, TS-36/AP, new.

X BAND WAVE METER, TS-33/AP, new.
X BAND POWER LOAD, TS-108/AP, new.

TUNING UNITS for APR-4 and APR-1 recelvers, TN-19 975-2100 mc and TN-54 2140-4000 mc, new.

10 Cm OSCILLATOR BC-1096-B with 30 mc pre IF amplifier 1078 B , klystron power supply and $417-\mathrm{A}$ klys tron, 110 v 60 cps , new in transitcase, p/o SCR $584 . . .$.

CALIBRATED S BAND fixed attenuator, 19.8-20-2 db, type N fittings...... $\$ 10.00$

MICROWAVE TEST CABLE, 15 ' RG-9U cable with UG-24U connectors 15 feet (
LOSSY CABLE, 10 db at 3300 megacycles, type N connectors $\$ 3.00$

TYPE N CONNECTORS AND ADAPTERS, UG-10, 12, 21, 22, 24, 25, 27, 29, 30. $58,59,83,86,167,190,201,245$, and UHF Connectors SO-239, PL-259, 83, 1AP, UG-266, complete with center contacts, immediate delivery.

S-BAND RECEIVER TRANSMITTER RT-72/UPN-1, less tubes, for battery operation.

RADAR JAMMER, T-26/APT-2, 435715 megacycles, 110 volts, 400 cps , new . $\$ 40.00$

GD-3 SHIPBOARD RADAR EQUIPMENT, complete with all accessories, operates on 115 volts, 60 cps , new.

SA-1 RADAR TRANSMITTER, Receiver and Indicator, 115 volts, 60 cps , new.

RADAK RECEIVER, BC 1068-A, $1502 / 60$ megacycles, individual tuning for the r.f. stages, bandwidths 4 megacycles, 115 volts, $60 \mathrm{cps}, 14$ tubes........ $\$ 45.00$

GENERAI RADIO PRECISION WAVEMETER, type 724 A , range 16 ke to 50 megacycles, 0.25% accuracy, V. T. V. M. resonance indicator, complete with accessories and carrying case, new.

ELECTRO IMPULSE LABORATORY

66 Mechanic St., Red Bank, N. J.
Red Bank 6-4247

SELENIUM BECTIFIDRS
 AND SPECIALIZED ELECTRONIC COMPONENTS

List Shown Below,

ELECTROLYTIC CAPACITORS	
	Lots of 10 of of 100
100 MFD 50 VHC	\$2.20 $\$ 19.00$
50 MFD 15c BDC	$2.60 \quad 18.50$
	4.70 43.00 4.50 88.00
${ }^{20-20 ~ M F l}{ }^{10} 450 \mathrm{VDC}$	$2.50 \quad 20.00$
15 MFD 450 VilC	$2.50 \quad 20.00$
15-15 MFD 450 VDC	$\begin{array}{lll}3.00 & 22.00\end{array}$
	$4.20 \quad 36.00$

O-30 A.D.C. Weston W shunt $21 / 20$ Rd.. aircraft	
type 0 -50 A.C. Weston 3013 3/2\% Rd., Enclosed shunt	+2.95
O-60 A.D.C. West, w. shunt, $23 / 2^{\prime \prime}$ Rd., gircraft	
O-120 A.D.C. West, w, shunt, 23 R Rd., aircraft	${ }^{3.25}$
type	

To avoid shipping errors, kindly order by type \#

An amazing value for

RADAR RESEARCH and EXPERIMENTAL LABORATORIES

Type TS-100/AP TEST OSCILLOSCOPE for pulse timing and test applications

This versatile, accurate, precision built instrument is designed for precise measure ment of short time intervals with circular sweep, and for test 'scope applications with linear sweep.

CIRCULAR SWEEP

Sweep rate: 1.5 microseconds per inch; 12.2 microseconds per revolution.

Sweep accuracy: - 0.03 microseconds; sta ble crystal oscillator holds sweep accuracy.
Range of measurement: time intervals from 0.5 to 600 microseconds can be measured by utilizing the delayable intensity gate and selecting any one of the first 100 revolutions after triggering.
Trigger voltages: 120 volts positive; 75 volts negative: duration- $3 / 4$ microseconds.
Trigger stability: 0.1 microseconds with respect to circular sweep; can be operated at recurrence frequencies from 300 to 1500 per second.
Synchronization: event whose time duration is to be measured must be triggered from the test oscilloscope.
Signal deflection: radial by center wire; sensitivity- 225 volts per inch.
With circular sweep, the TS-100/AP is use ful for calibrating pulsers and coincidence circuits, for measuring radar ranges (to delay lines, pulse lengths, pulse separations, and for measuring time duration of any event not exceeding 600 microseconds.

LINEAR SWEEP

Sweep rate: 12, 120, and 360 microseconds for 3 -inch sweep.
Sweep accuracy:- 2%
Sweep accuracy:-2\%.
Sweep synchronization: sweep starts at trigger or after delay adjustable from 2 ternal migosecong
Internal triggering: from self-contained source of 120 volts positive or 75 volts negative providing $3 / 4$ microseconds trig ger at $300-1500$ pulses per second.
volts at 10,000 ohms with 100 positive 15 volts at 10,000 ohms with 100 volt/micro seconds rise, or negative 50 volts at 500
ohms with 200 volt/microseconds Deflection: 150 volts/inch thru condensers for either vertical plate, or to upper plate thru single-stage amplifier having gain of 12, upper frequency cut-off at 3 mc., lower frequency cut-off at 100 cy cles; maximum peak input $21 / 2$ volts. $31 / 2$ volts.
With linear sweep, the TS-100/AP is useful for testing synchronizers, testing radar sets, lining up receivers, and for measuring pulse lengths up to 1200 microseconds. Availability of the sweep voltage makes this instrument applicable to electronic modulation of FM osciliators for modulator measurements.

Self-contained in louvred metal case $8^{\prime \prime}$ wide, $121 / 2^{\prime \prime}$ high and $161 / 2$ inches deep; removable cover protects the control panel when the instrument is not in use; the cover contains spare fuses, test leads and power cord.

Quantity limited-ORDER NOWget your TS.100/AP while this offer lasts. Give complete shipping instriv with your order.

The RRAIDII(O) SHIACMKCoy

CABLE ADDRESS - RADIOSHACK
167 WASHINGTON ST., BOSTON, MASS., U.S.A.

ATTENTION

laboratories and engineers
HIGH-QUALITY FILTERS-BRAND NEW -AT A FRACTION OF ORIGINAL COST Dimensions $21 / 2 \times 21 / 2 \times 1 / 1 / 2$
1000 Cycle Narrow Band Pass Audio Filtors, mado by UTC for the Flux Gate Compass.

CHARACTERISTICS

-Intended to work from a cathode follower or
-Tunable orer a narrow range around 1000 cyoles Can be adjusted for zero phase shlft at one frequency in the pass band.
3-Attenuation approx. 40 db . at 500 oyoles and 2000 cscles.

4-NO insertion loss-actual voltage sted-up in the Dass band, due to filter conffuration.

Prica $\$ 3.45$ Each
SPECIAL - Western Electric Filter D103972.
Now-Each
Many W.E. Tubes in Stock-Inquiries answered 12.000 wolt teat DC HC Raytheon choke-30 Heary
.03 amps. Type UX-8887D-New-Each... 4.95

New Bulletin off press-write

GREENWICH SALES CO.
59 Cortlandt $5 t$.
Tel. Dlgby 9-3813 New York 7, N. Y.

FOR SALE TEST EQUIPMENT

1-Ferris Generator Model 18B
1-H.P. Distortion Meter Model 325B
6-GR. Output Meters-Model 583A
4-Daven Output Meters Model O.P. 961
4-Boonton QX Checkers With Coils
4-G.R. Variable Inductance Models J, K, L, and D
5-R.N.I. Wheatstone Bridges Made By Industrial Instruments
2-G.R. Precision Condensers Model 722M
2-Rubicon Potentiometers Model 2701
1-Lavoie Wave Meter Model 105
2-G.R. Resistance Decade Boxes Models 602D and 602F

Many Others.
Write for free circular-Apply

ELECTRONIC CORPORATION OF AMERICA

353 West 48th St. New York 19, N. Y. Phone-CI rcle 6-1985

MEMOVOX REFERENCE RECORDING EQUIPMENT

Record $621 / 2$ Minutes on each side of α 161/2" MemoDisc.
4 Model AA Dual Rack-Mounted continuous recorders.
3 Model AP Poriable Recorders. Com plete with Playbacks, Monitors, etc., and a large quantity of MemoDiscs.

WRITE FOR COMPLETE INFORMATION AND PRICES

THE NATIONAL INSTRUMENT CO. FAR ROCKAWAY

NEW YORK

Operates on Flashlight batteries, spoed depending
on the voltage. Fairly strong on 6 volts, fult power operates on Flashight batteries,
on the voltage. Fairly strong on 6 volts, full power
and speed on 27 volts. Designed to be used in and speed on 27 volts. Designed to be used
bombsights, automatic pilots, etc., 250
$\$ 5.00$ bombsights, automatic pilo
RPM. FEW MORE AT..

12 volt, 100 Watt Soldering Iron..

HAYDON SYNCHRONOUS MOTOR
to operate switches, etc., can
 special PRICE
\$3.85
Many other speeds available at $\$ 4.95$

TELEMARINE'S SELECTED ELECTRONIC SURPLUS

5-Meter Walkie-Talkie

 Model BC-322 Transceiv-er; simple, popular com-
munications unit. Freq. er; simple, popular commange $52-65$ me. Ureq.
only two tubes, types 33
ons only two tubes, types 33
and 30 . Includes a 51 C andstal in a crystal cali-
brator circuit. Range 5 to 50 miles, depending upon location and altitude.
Operates from single bat. tery hlock (not supplied) arailable from mfr., or
other sources. Supplled with handset, less anten-
na. battery. Excellent na, battery
PRICE, EACH
$\$ 20.95$
$\underset{\substack{\text { Telescopice antenna. } \\ \text { aloore } \\ \text { Each }}}{\text { forn }}$

FREQUENCY METER TS-69/AP

Frequency range 400 mc to $1,000 \mathrm{mc}$, continuous ldeal for labs, schools, or
for hams experimenting for hams experimenting with eqpt, for cirilan finished metal case, dim $6^{\prime \prime} \times 6^{\prime \prime} \times 22^{\prime \prime}$ contains vari-
alie length coax resonating abile length coaxresonating carity with crystan $0-200$ microammeter, Veeder-Root counter and calibration charts insure extreme precision. Telescopic antenna, and coax
metal carrying case for
entire equipment. New entire equil

COMPLETE,EACH
\$42.50

AMPLIDYNE MG SET

Motor 110 220, 60 C. A. C.

For Automatic or Remote Control of heavy equipment. Mrd. by General Electric. Generator is Type V-5875677, motor i3AB58; Nary type CG21 ABU , Generator delivers 250 volts. DC, 375 watts. Motor- 115 or 230 rolts 1 -phase, 60 cycles AC, rated at $3 / 4$ IIP RPM-1725. Includes capactor for starting, and instructions for 115 or 230 volt connections. Generator section can be removed, and entire assembly shortened to make valuable $3 / 4$ 1L. P. AC motor. Quantity sufficient to warrant this consersion.

PRICE, EACH
$\$ 60.00$

SCR-536 HANDY-TALKIES
We hase just a few of these mopular Handy-Talkies, and they won't last long. All are in very excellent condition, and complete with cry: stals (receiving and transmitting) and batteries. All are in top operating condition and preset at carious operating frequencies ranging from 3.5 to 6.0 me. Some available for operation in 80 meter ham band. We will supply units with matcherl frequencies as long as quantity permits. First come, frst served!

PRICE, EACH
$\$ 50.00$
Extra Set Batteries (A\&B). $\$ 3.00$

32 VDC 110 AC CONVERTER

Mfil by Kato Fagineering, for marine or farm installation. Rotary type, compact and ruggedly built
for continuous duty. Rubler shock mounting on filter case, with complete input and output filtering. Output-110 polts, 60 cycles AC . 225 KVA , but. New units only.
PRICE, EACH
\$39.95
Quantities, 10 or more, Each $\$ 34.95$

RADIO TRANSMITTERS

Immediaté Delivery from Stock
BC. 325 Transmitter. 400 W -A1, Inn W.-A2 \& A3.
 PRICE, EACH . $\$ 500.00$

TCR—Radiomarine Transmitter, 125 watts (conservative) A1, A2, \& A3.
For ship or shore statich radio telephony. 6 chan-
 supply for in or $220,5,50 /(60$ cylles AC) in one EACH \$600.00

DECK ENTRANCE INSULATORS

 Bowl and Flange TypeManulacturent hy OHIO bRAss co. for Amy and ary use. Has heayy gill lanized metal flange 87/8
 long. Insuat on distance leetween top bell and
filange is $4^{1 / 2}$, ${ }^{\text {In }}$ Individually packed in cartons. Quanticies available.
NEW, price cach $\$ 3.00$
Spare porcelain bowl, only, each.... \$. 75
CAPACITORS 1 fini widd 12WY electrolytice con-

All Prices F.O.B. N.Y.C. All Material Offered Subject to Prior Sale

TELEMARINE COMMUNICATIONS COMPANY

Phone-LOngacre 4-4490-1
280-Ninth Ave., N. Y. 1, N. Y.

$\$ 3.95$
10 for $\$ 35.00$ PORTABLE D. C. AMMETER HOYT TYPE 515 RANGE 0-15 AMPS

 $21 /{ }^{\prime \prime}$. Snaps in place in black wrinkle-finished steel case $51 / 4^{\prime \prime} \times 6^{\prime \prime} \times 23 / 8^{\prime \prime}$. Furnished with 3 ft .
color-coded rubber insulated clip leads.

Basic movement-approximately 12.5 ma. Shunt readily replaced permitting conversion to
ower range scale. Individually packaged in moisture-vaporproof packing.
TV and SCOPE POWER TRANSFORMER-Pri EAD J-36 Rate Generator.
TRANSFORMER-Westinghe $\$ 7.00$
$200 \mathrm{MA}, 5 \mathrm{~V} 3 \mathrm{~S}, 21 / 2 \mathrm{~V} 2 \mathrm{~A} .6 .3 \mathrm{~V} 1 \mathrm{~A}, 12.6 \mathrm{VCT}$ TRANSFORMER-Westinghouse hypersil core-Pri
 HYDRAULIC SERVO CONTROLS-Sverry Type F FILTER CHOKE-IIermetically sealet 10 H at 400 ELINCO PM-2 Rate Generator............... $\$ 20.00$ GENERAL ELECTRIC Liquid Level Transmit. WESTERN ELECTRIC SOUND POWERED HANDSET. WESTERN ELECTRIC SOUND POWERED CHEST SET. .. $\$ 14.88$

TUBES							
	5HP4 . . . $\$ 2.40$	72413	33.22	1629	29	8020	. 97
${ }_{341}^{2 \times 2,879} \cdots \cdots, 49$	FG-172 .. 14.80	811	1.71	1636	\$3.77	9001	. 97
3. ${ }_{\text {3, }}$	204 A 17.90	832 A	2.33	2050	. 83	9002	. 39
5 PPI 1.48	WE-249C : 1.88	1625	$\begin{array}{r}2.25 \\ \hline 19\end{array}$	2051	. 49	9003	. 39
51FP7 88	304 TL ... 1.88	1626		8013	. 98	9004	. 29

WRITE FOR OUR BARGAIN BULLETIN
Lectronic Research Laboratories

5832 Hegerman St.
Philadelphia 24, Pa.
Phone-Cumberland 8-4737

BOONTON

140-A BEAT FREQUENCY GENERATOR Range 20 CPS to 5 MC . Output Voltage 1 MV to 22 vits. We have one unit for immediate dellvery. reconditioned
guarantedd
THE NATIONAL INSTRUMENT CO.
far rockaway
NEW YORK

SHEET METAL MACHINERY

NEW and Used - Brakes - Shears Forming Rolls - Folders - Punches -Di-Acro, Pexto, Niagara \& Whitney Equipment.
R. D. BROOKS CO., INC.

361 AtIantlo Ave., Boston, Mass.

ELECTRONIC SPECIALS

 RA-38 power supplies- $0-15000 \mathrm{~V}-500 \mathrm{MA}$ $\$ 275.00$ RA-58 power supplies- $0-15000 \mathrm{~V}-35 \mathrm{MA}$ Switches for above- $15000 \mathrm{~V}-1.5 \mathrm{Amp}$. Oil
 Relays-6VDC-5PST \& 5PDT-120 ohms2200 turns $\$ 1.25$
Relays-Sensitive-8000 ohms-SPDT-Silver Contacts SPDT-Silver contacts 95 Relays - \rightarrow Allied Control-DPDT-24VDC-.079A-Type BJ Condensers - WE-D $168574-16 \mathrm{MFD-120}$
VAC $400 \mathrm{Cy}-400 \mathrm{VDC}$........... $\$ 2.75$
Condensers- $3 \times 8 \mathrm{mfd} 600 \mathrm{~V} \quad 65 \mathrm{c}-3 \times 2 \mathrm{mfd}$ 4000V $\$ 2.75$
 Phone cord extenslons- 10 ft . with PL55 \& JK26.
Tuning units-GP "A"-(Contains several
LABORATORY SPECIAL - WE K58801 Precision Potentiometer-l10VAC mo-
tor drive with selsyn............$\$ 37.50$

MANUFACTURERS SPECIAL - 10,000 7 E5 high Frequency triodes, good up to 750 me. JaN inspected. For the lot

Transformers- 3000 items of transformers in stock.

Test equipment-Over a thousand items in stock of practically every type. Let in hard to get electronics.

MONEY BACK GUARANTEE ON DEFECTIVE MATERIAL
SUBJECT TO PRIOR SALE.
VETERANS SALVAGE CO., INC.

9 Kulik St.

Passaic-3.6370

Clifton, N.J.

BOONTON 120A VHF CIRCUIT CHECKER

This instrument was developed by the Boonton Radio Corp. to permit checking at VHF: Capaci. tance, Inductance and complete Resonant Circuits. Ideal for Television and $F M$ Tuners, Quality con: mmediate delivery.
Catalog price is $\$ 320.00-0 \mathrm{ur}$ price is $\$ 150.00$ f.o.b. subject to prior sale.
THE NATIONAL INSTRUMENT CO. FAR ROCKAWAY, N. Y.

UNUSUAL BARGAINS VIBRATOR

Hi-freq. extra-heavy duty, Rauland \#JV-0014. Input 6, 12 or 24 volts; output 200 cycles $\pm 1 \% ; 20$ extraheavy contacts, rated at 35 amps continuous duty, each pin. In case 2 ${ }^{\text {pin. }} 1 / 2^{\prime \prime} \times 5{ }^{\prime \prime}$ case $2^{\prime \prime}$.
BRAND NEW, in orig. boxes. . $\$ 4.95$
ANTENNA SWITCH, 3PDT
Extra-heavy contacts porcelain stand-offs; on base $7^{\prime \prime} \times 8^{\prime \prime} \times$ $1 / 4^{\prime \prime}$; insulators alone worth more than price of switch.
Per dozen. \$9.95
EACH.

ELECTRONIC SUPPLIES

317-E East 2nd St.
Tulsa 3, OkJahoma

WANTED

WANTED

Western Electric Carrier Telephone, Carrier Telegraph Equipment and Components. Filters, repeating coils, transformers, equalizers. Types CF1, CF2, H, C, and other carrier equipment. Telephone and telegraph repeaters.

W-4435. Electronics
330 West 42 ni Street, New York 18, N. Y.

WANTED

TEST EQUIPMENT

All types of Laboratory Test Equipment, new, used or surplus. Send description to

> W-4861, Electronics

330 West 42 nd Street, New Tork 18, N. Y.

WANTED, AIRCRAFT RADIOS

AN/ART-13, BC-348, RTA-1B, AN/APN9. R5A/ARN-7, AN/ARC-1, AN/ARC-3.
SCR-718, BC-7SS-C, I-152, MN-26-C, Test SCR-718, BC-7SS-C, I-152, MN-26-C, Test
Setswith TS- or I- prefix. State quantity, Sets with TS- or I- prefix. State quantity,
condition and best price frst letter condition and best price flrst letter. HI-MU ELECTRONICS BOX 105, NEW HAVEN. CONN,

FOR SALE

TRANSFORMERS

Western Electric transformer 223A per D-163041 torroid type core impedwance 600 to 600 $\$ 1.95$ core 95 W.E. transformer D-i6i634 torroidal ${ }^{\$ 5}$ w.E. retard coil 307B per D-íisisis. $\$$ 10 herries W.E. telephone induction coil 178A per

FILTERS

W.E. $128 B$ per D-165796 V.F. low pass 600 ohm impedance $\$ 3.95$ W.E. D-165627 band pass 600 ohm
impedance.......................... 1.95 MICA CONDENSERS
. 00005 CD 5000 test transmitting type
 per 100 $\$ 18.50$ per $100 \ldots .$.

SILVERED MICAS

W.E. . 0994 type AR per D-162051 w. $\pm 3 / 2 \% 250$ wvdc................. 0. MICELLANEOUS
W.E. regulated power supply KS15036, 115 AC opercted, 135 volt, DC Varistor 34A per D-162482........... $\$ 1.95$ Telephone switchboard cords, 2-conductor tinsel rubber covered $61 / 2$ long, both ends lugged..per 100 \$4.00 per $1000 \$ 35.00$

Write for Quantity prices No orders less than \$5.00 accepted

Rallway COMMUNICATIONS, INC.
P. O. Box 1783 Phone 2-6487 Lincoln, Nebraska

TELEVISION CAMERA EQUIPMENT

Available for immediate delivery. DUMONT Type 5027-A IMAGE ORTHICON PICKUP HEADS, with type 5047-A ELECTRONIC VIEW FINDERS, complete with all tubes,-including 2P23 Image Orthicons.

Factory Reconditioned-Perfect Condition f.o.b. N.Y.C. Subject to prior sale.

```
WRITE FOR COMPLETE INFORMATION
```

The national instrument company far rockaway.

NEW YORK

FOR SALE SYNCHROS

FORD INSTRUMENT CO. Navy Type 5 SDG
(400 cy . Differential Generators) 250 available. Brand new in original sealed containers.

Priced right for quick sale.
330 West 42 nd Stre Electronics

ELECTRONIC TUBE-MAKING

 MACHINERYFor manulacturing radio tubes, electronic tubes, cathoderay tubes, lamps. New and used. Feasonably priced quaranteed. 67 E. 8th St.

PL 1 -150 Plug for dynamo.....
socket. on Xmiter RC-223. .

SPECIAL! SCR-522
Famous SCR-522 VHF transmitter and receiver freq. range $100-156 \mathrm{mcs}$. four channel push button operation - crystal controlled less cables and dynamotor.
NEW
$\$ 49.95$
$\$ 34.95$
A NATURAL!!!

- The Ideal Companion for Out-
door Activities
- Arecision Built Must Beautifully Desioned
- Excellent Tone Quality
dio Battery Operated Ra.
- Reflex Typo Camera
- 16 Pictures LESS BATTERIES on Stand- 26.57
ard \#127 INSULATORS.

Strain, porcelain, $33_{6} \times \frac{12}{12}$ for $\$ 1.20$ Sprearler round 36 for $\$ 5.40$
 near each end.............12t each Glass. Pyrex $\# 63,1^{\prime \prime}$ pin hole for 8000 volt power line............. 8 for $\$ 1.20$
 Cat. No. (F) Bush-

Cat. No.	(F)		Bush.			Pr		Cat.			Bus			Pri	
WW	Ohms	Watts	ing	Shaft	Mfgr.	en.	ten	No.	Ohms	Wetts	ing	Shaft	M fgr.	ca.	ten
.004B8	10000	3	38		Trefz	\$.29	\$.24	. 033	3000	25	38	$1{ }^{18}{ }^{\prime \prime}$	Dejur	\$.60	\$. 50
.005B10	25000	3	1,2	5%	Trefz	. 30	. 25	. 045	100/100	50	$3^{8 \prime}$	$1{ }^{18}{ }^{\prime \prime}$. 80	. 70
.036B3	'1000	4	88°	18\%	Trefz	. 26	. 21	. 079	400/400	50	8	$1 \frac{1}{16}{ }^{\circ}$		1.00	. 85
.149B1	5000	4	$1 / 2$	5/8SL	Trefz	. 28	. 23	Helipot	20000/5\%	-5	d		Helipot	4.00	3.50
.025B1	15000	4	$8 / 88$	$1 \frac{1}{17}{ }^{\prime \prime}$	Trefz	. 30	.25	Ohmite CARBON	NS 20	25	878	$1 / 2{ }^{\circ}$	Ohmite	. 50	. 40
.083Z1	20000	4	Pane!		Dejur	. 80	. 75	. 101	500	2	1/2'	11/2"	All. \& Bra.	. 25	. 20
.172Z1	20000	10	Panel		Muter	2.50	2.00	.152B1	2000	2	8\%			. 25	. 20
.048B1	50	25	\%"	-	Dejur	. 50	. 40	. 2772	25000	1	$8{ }^{\circ}$		Clarostat	. 20	. 15
.147B1	200	25	1.	8/8'SL	Dejur	. 55	. 45	.125B1	50000	2	14*		All. \& Bra.	. 25	. 20
. 032 B 1	500	25	$8{ }^{8}$	120	Dejur	. 60	. 50	.171B	100000		1/2		Clarostat	. 25	. 20
.178B1	1000	25	3/6	${ }_{16}{ }^{\text {² }}$	Dejur	. 55	. 45	.150B1	500000	1	$1 / 2$	1"SL		. 28	. 23

TERMS - Mail orders promptly filied—all prices F.O.B. Boston, Mass. Send M. O, or check, ShipSEND FOR OUR
CATALOGUE NOW!
Inquiries from Dealers, Schools
and Industrial Firms Ínvited

NOTE OUR
24 TREMONT ST.

ELECTRONIC SALES CO. ADDREsS
BOSTON 8, MASS.
\#B103-Provides from 1 KV to 5 KV D.C. at 1 ma. for Television Nuclear Research, etc.
External power required 6.3V 60 cycle A.C. and 250V D.C.

Entirely enclosed in Aluminum Case.... $3 \frac{5 / 8}{6} \times 43 / 4 \times 41 / 4^{\prime \prime}$ high

Other voltages available \#B101-10 KV • \#B102-30 KV

Laboratory models available for prompt shipment. Inquiries for production runs are solicited.

Precision manufacturers of all types of IF and RF coils, chokes, and transformers.

cheson Colloids Corporation.
Acme Electric Corporation.
Adams and Westlake Company
dvance Eiectric and Relay Co....... ment Inc.
Allen Co., Inc, I. B. .
Alliance Manufarturing rompany
Allied Control Company, Inc
Allied Radio Corporation
Alimetal Screw Products co., Inc
Alpha Metals, Ine.
Altec Lańsing Corporation
American Gus Decumulator Co.
American Phenolic Corporation
American Smelting \& Kefining Co
American Television \& Radio Co.
American Time Prodncts, Inc...
American Transformer Compans:
Amperite Company
Anaconda Wire and Cable co..
ndresy Corporation
rkwrig Fugineering Company
Arnold Engineering Company
Art-L
Art Wire and stamping Company
Astatic Corporation
Audak Company
Audio Development Compaing
ludio Derices, Inc.
Ivino Limited

Baer Company, N. S...
Ballantine Laboratories. lnc.
Barnstead Stili \& Sterilizer Co.
Barry Corporation
Belden Manufucturing Compung
Bell Telephone Laboratories.
Rn, Red lank
Bentley, Harris Mfg. Co.
Beta Electronics Compan
Biwax Corporation
Blaw-Knox Company
Bliley Electric Company
Boland and Boyce, Inc.. Publishers
Boonton Radio Corporation
British Industries Corp
Brook Electronics, Inc.
Brown-Bridge Mills, Inc
Browning Laboratories, Inc.
Brush Development Company
Buek Engineering Co., Inc..
Burnell and Company

Cambridge Thermionic Corp
annon Wlectric Development Co..
Capitol Radio Engineering Institute
Carby Manufacturing Co., Inc.
Carter Motor Company
Central Sheet Metal Works, Inc.
Centralab, Div. Glove-Union Inc. Chicago Condenser Corporation hicngo Transformer, Div, of Esse inch Manufa
Clarostat Mifg. Company, Inc.
Claveland Container Company
Cohn Corporation, Sigmund.
Colling Audio Products Co., Inc
Collins Radio Company
Condenser Products Company
Conn, Lta.. C.
Continental-Diamond Fibre Co.
Cornell-Dabilier Electric Corp.
Cornish Wire Company, rnc.
Cossor (Canada) Ltd
Coto-Coil Company, Inc......
Cramer Company, Inc., R. \mathbf{w}.
Curtis Development \& Mig. Co
Cyclolim Motor Corporation.

Dano Electric Company
Decimeter, Incorporated
DeJur-Amsco Corporation
Dial Light Company of America
Driver-Harris Company
Dumont Electric Corp.
du Pont de Nemours and Coo, E. I....14, 56 Durst Manufacturing Co. 273

[^19] 8

Electrical Insulation Co., Inc Electrical Reactance Corp. Electro Engineering Works Electro-Volee, Inc.
Electronics Corp. of Americia Electronic Measurements Co.
Electrons, Ine
Erie Resistor corp
Essex Electronics
Eissex Wire Corp.

Hederal Telephone \& Radio Cor
61. 151

Field Electrical Instrument Co.
Fiela Electrical Instru
Filtron Company, Inc
Formica lnsulation company
Fugle-Miller Laboratories

Grmewell Company
General Cement Mfg. Co.
General Electric Company
Apparatus Dept.
Chemical Dept.
Clectronic's Dept. ... $8,9,32,3 \%$, 16.6. 176
General Plate Div. of Metals and Controls Corp.
cxemeral Radio Company 201
Gothard Mannfacturing Co.
Graphite Metallizing Corp. 6
Gray Research and Development co. Inc. 23

ensen Manufacturing Co. ${ }_{184}$
Johnson Company. E. F.................. ${ }_{2} 84$

Kahle Fingineering Co
Karp Metal Produets (o. Inc
Kay Electrie Co..... Company, Inc
Kepco Iaboratories, Tnc.
Kester Solder Company
Keuffel and Esser Company....
Kinney Manufacturing Company
Kobzy Kon Instrument Dir., Square
Company Instrument Div., Square D 19
275 $\begin{array}{r}20 \\ 225 \\ \hline\end{array}$ 225
46 46
236
43

app Insulator Compa

tench Relay Company

Legri 8 Company, Inc

Lenkurt Vlectric Companty

Linde Air Products Co.

Littelfuge, inc.

[^20]October, 1948 - ELECTRONICS

CATHODE-RAY TUBES

by the Tube Division of RCA was approximately double that of the next-largest manufacturer

4 Precision Swn

Engineored by DAVEN
 FEATURING LOW AND UNIFORM CONTACT RESISTANCE

The four precision controls illustrated are but a few of the DAVENengineered switches now filling important war assignments. Each unit tepresents the skilled adaptation of basic DAVEN techniques to the problems of the specific application. The distinct advantage ef this method of engineering switches is the assurance of a result ideally suited for the
job, plus important savings in time and cost of development. DAVEN. engine ered switches are built in a wide range of sizes, of many types of materials, with varied numbers and arrangements of poles, positiens, decks and terminals, in shorting and non-shorting types. A DAVEN engineer will glädly work with you on your switch problems.

From this tiny ${ }^{2} I_{2}$-inch tube

 Norelco PROTELGRAM now offers

Television

. . . in a choice of picture sizes!

r w, for the hitst time, Norelco Protelgram makes possible a variety of picture sizes from 130 square inches to 12 square feet. from the same basic Prothlgram unit!

Many of America's progressive TV manufacturers are already foaturing the popular 192-square-inch picture $\left(16^{\prime \prime} \times 12^{\prime \prime}, 20^{\prime \prime}\right.$ diagonal, square corners). Soon they will introduce two companion sizes- 130 square inches with $16^{\prime \prime}$ diagonal and rounded corners, and 234 square inches with $20^{\prime \prime}$ diagonal and rounded comers

The newest development of Protelgram television, which projects a giant $3^{\prime} \times 4^{\prime}$ picture on a home-movie screen, has already been annowinced by several wellknown makers of quality television receivers.

Protrlgram provides life-size, more life-like television that is big, clear, bright, sharp, flicker-free, reflectionless, easier on the eyes...at the lowest cost per square inch of viewing area. And the compactness of the Protelgram unit makes possible a varicty of cabinet designs to fit every home requirement.
Protilgram has been chosen by leading TV manufac turers because it is the answer to the demand for bigger, better, more true-to-life television. Protelgram is available to all interested manufacturers. Its profit potentialities are unlimited. For further information, write today to North American Philips Company, Inc., Dept. PA-8, 100 East 42nd Street, New York 17, N. Y.

the fountainhead of modern tube development is rca

... the five most popular kinescopes from one dependable source

RCA now has a popular type of kinescope to eccommodate television receiver designs in practically every class and price range.

Concentrated production on these five accepted types results in longer production runs, which in turn, make possible lower cost, more uniform, and better quality tubes for our customers.

All five types are currently being mass-produced at the famed RCA tube plant in I.ancaster, Pennsylvania. In addition, a large new plant is under construction at Marion, Indiana, where the pro-
duction will be centered on the RCA-16-inch metal-cone kinescope.

RCA Application Engineers are ready to cooperate with you in applying these kinescopes and their associated components to your specific designs. For further information write RCA, Commercial Engineering, Section 42 HR , Harrison, N. J.

RCA, LANCASTER, PA.

[^0]: Transformers for: Constant Voltage - Cold Cathode Lighting - Airport Lighting - Series Lighting - Flvorescent Lighting - Luminous Tube Signs Oil Burner Ignition - X-Ray • Power - Controls - Signal Systems • etc. - SOLA ELECTRIC COMPANY, 4633 W. 16th Street, Chicago 50, Illinole

[^1]: This article is based on a paper presented before the New York Convention of the S.M.P.E., October 1947.

[^2]: Phase Meter for Low Level Signals, by M. K. Goldstein of Naval Research Laboratory.

 The Determination of the Shunt Resistance of Cavity Resonators by Means of an Electrica! Network Analyzer, by ${ }_{F} \mathrm{~F}^{\text {. W W. Schott and K. } \mathrm{K} \text {. Spangenberg of }}$ Stanford University
 A Method of Obtaining the Product of Two Voltages, by M.A.H. El-Said. Paper presented by D. E. Sinclair of General Radio

 Propagation Measurements at High Radio Frequencies over Flat Desert Terrain, by J. P. Day and L. C. Trolese of Naval Electronies Laboratory.
 2:30 P.M. to 5:15 P.M.-Chairman-L. E. Reukena of University of California,

[^3]: 363 EAST 75TH STREET, CHICAGO 19
 eastern office: 421 seventh avenue, new york city

[^4]: ALPHA METALS, INC; ; 371 HUDSON AVENUE, BROOKLYN I, NEW YORK

[^5]: Manufactarers of Moleculax Stills and High-Vacuum Equipment; Distillers of Oil-Soluble Vitamins and Other Concentrates for Science and Industry

[^6]: Makers of 'Amerisan' Industrial Instruments, Hancock Valves, Ashcroft Gauges, Consolidated Safety and Relief Valves. Builders of 'Shaw-Box' Cranes, 'Budgit' and 'Load-Lifter' Hoisis and other lifting specialties.

[^7]: COTO-COIL CO., INC.
 COIL SPECIALISTS SINCE 1917
 63 Pavilion Ave.r Providence 5, R. I.

[^8]: Canadian Representative: A. C. Wickman, (Canada) Lfd., P. O. Box 9, Station N, Toronto 1

[^9]: | Voltmeters Ammeters Milliammeters Other. | Microammeters Volume Indicators Potentiometers |
 | :---: | :---: |
 | Name. | |
 | Firm... | |
 | Street. | |
 | City. | State. |

[^10]: 161 Sixth Avenue,
 New York 13, N. Y.
 1161 N. Vine Street, Hollywood 38, Calif.

[^11]: *Superior Tube
 Co. Potents \dagger TReg. U. S. Trade Mark

 For Superior tubing on the West Coast, call PACIFIC TUBE COMPANY, 5710 Smithway Street, Los Angeles 22, Calif.
 ANgeles 2.2151 . ANgeles 2.2151.

[^12]: By THEODORE MORENO, Project Engineer, Sperry Gyroscope Company; Research Associate, Massachusetts Institute of Technology. 250 pages, 202 illustrations, $\$ 4.00$

[^13]: Long established electro-mechan:cal engineering organization is expanding its electronic department to include research and development on missiles, microwave systems, radar, communications, navigational devices, antennas, and associated equipment.

 A few exceptional pos:tions are open for top-flight senior engineers. Must have extens've experience on analys's of electron'cs systems, and ability to create new basic approaches to involved engineering problems. Commercial and university background des red. Please furnish complete resume, salary requirements and availibility to: Personnel Manager

 Engineering Division

 ## W. L. MAXSON CORPORATION

 460 West 34th Street
 New York 1, New York

[^14]: In Canada: CANADIAN MARCONI CO.. Lid Montreal. P.Q.. and branches

[^15]: Radio Maintenance
 Technical Manuals
 Radio Data Book
 Manual Division M-3 Video Handbook ontclair, N. J. CHICAGO: 228 No. LaSalle St.

[^16]: *Can be made as small as $3 / 16^{11}$ dia. by $1 / 2^{\prime \prime}$ in length. Standard size $1 / 4^{\prime \prime} \times 3 / 4^{\prime \prime}$. Write for data on any larger sizes required.

[^17]: (Coutinued on opposite page)

[^18]: 400 CYCLE TRANSFORMERS
 INVERTERS
 PE 206.A, Input: 28 VDC © 38 amp, Output: 80 volts @ 500 volt-amps, 800 cycles, Leland, New,
 complete with enclosed relay, filter, instruction complete with enclosed relay, filter, instruction PE 218: Input: $25-28$ VDC @ 92 amps. Output: 115

[^19]: Eastern Air Devices, Inc.
 Eisler Engineering Company, Inc.......... 246
 Eitel-McCullough, Inc.......................... 89

[^20]: Macallen Company
 188
 220
 Mapmecordy Incorporatod
 Makepeace Company, D. E.
 Mallory and Company, Inc., $\dot{\mathbf{P}} . \dot{R}$....
 .66,
 Manning, Maxwell and Moore, Inc
 Marion Clectricalinstrumen
 McGraw-Hill Book Company
 Measurements Corporation
 16s. 259

