FOR YOUR LABORATORY, YOUR PRODUCT, OR YOUR PRODUCTION LINE

STABILITY - VOLT

ACCURACY 1%
INDEPENDENT OF LOAD
NO MOVING PARTS
HIGH POWER FACTOR
HIGH EFFICIENCY
NEGligible TIME CONSTANT
LOW DISTORTION
LOW TEMPERATURE RISE

AUTOMATIC VOLTAGE REGULATORS
95-130 VOLT INPUTS . . . 110, 115, 120 VOLTS OUTPUT ± 1%

The UTC automatic voltage regulator is NEW. It involves no moving parts and effects instantaneous correction for either transient or chronic line voltage fluctuations.

STANDARD TYPES

<table>
<thead>
<tr>
<th>Type No.</th>
<th>Capacity VA — 60 Cyc.</th>
<th>Net Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR-1</td>
<td>15</td>
<td>$12.00</td>
</tr>
<tr>
<td>AR-2</td>
<td>30</td>
<td>15.00</td>
</tr>
<tr>
<td>AR-3</td>
<td>60</td>
<td>21.00</td>
</tr>
<tr>
<td>AR-4</td>
<td>120</td>
<td>28.00</td>
</tr>
<tr>
<td>AR-5</td>
<td>250</td>
<td>46.00</td>
</tr>
<tr>
<td>AR-6</td>
<td>500</td>
<td>67.00</td>
</tr>
<tr>
<td>AR-7</td>
<td>1000</td>
<td>110.00</td>
</tr>
<tr>
<td>AR-8</td>
<td>2000</td>
<td>200.00</td>
</tr>
</tbody>
</table>

Designs for 220 volt service available at 25% increase in price. For 50 cycle units increase price 25%; for 42 cycles, 35% increase; for 25 cycles, increase price 100%. Special secondary voltages available to customers' specifications at small increase in price.

SPECIAL UNITS

The unique design of these regulators makes possible the construction of special units with relative ease. The output can be arranged to provide filament and plate voltage, or any other special voltages that may be required. Write for details.

UNITED TRANSFORMER CORP
150 VARICK STREET NEW YORK, N. Y.
EXPORT DIVISION: 100 VARICK STREET NEW YORK, N. Y. CABLES: "ARLA"
CONTENTS—JANUARY, 1941

DOORKNOBS .. Cover
Ultrasound-frequency transmitter tubes used in the Western Electric absolute altimeter. The D-15648 is capable of generating 5 watts at 750 Mc (20 centimeters wavelength)

SOUND IN MOTION PICTURES, by Nathan Levinson 16
A review of the progress in recording methods and equipment in the movies from 1927 to the present

A DEMONSTRATION SYSTEM FOR FREQUENCY MODULATION, by Marvin Hobbs 20
A complete low power f-m broadcast station for use in demonstrating f-m receivers when high quality programs are not available from local stations

BELL-JAR EXHAUST, A NEW METAL TUBE PUMPING TECHNIQUE 24
Pictures showing manufacturing processes used in the metal tube newly redesigned by General Electric engineers

LOUDSPEAKER NETWORKS FOR FREQUENCY DIVISION, by J. K. Hilliard 26
Design procedure for separating the low frequencies from the high frequencies in woofer-tweeter speaker combinations

NEW INDUSTRIAL TUBE CONTROL CIRCUITS, by Gilbert Smiley 29
A review of several unusual tube circuits, widely applicable to industrial control problems, with the complete circuit diagrams of each

SINE WAVES IN RC OSCILLATORS, by Paul S. DeLaup 34
A statement of the conditions under which resistance-capacitance oscillators will produce sine waves, with experimental confirmation

THE SIXTEENTH ANNUAL I. R. E. CONVENTION 37
Program of technical papers for the New York Meeting, January 9, 10, 11

FIRE PROTECTION IN BROADCASTING, by Harry Grant 38
The special types of extinguishers applicable to the protection of the power and signal circuits of a broadcast plant

A PHOTOTUBE VAPOR ANALYZER, by V. F. Hanson 40
By measuring the absorption of ultraviolet radiation in passing through poisonous vapors, a protective measuring system may be set up

THE FOURTH ANNUAL BROADCASTING CONFERENCE 42
Program of the Ohio State Meeting at Columbus

R-F MATCHING SECTIONS, by A. C. OMBERG 43
A reference sheet for determining the inductance and capacitance necessary to match a transmission line to a complex antenna impedance

DEPARTMENTS

CROSSTALK ... 15 TUBES ... 65
REFERENCE SHEET 43 THE ELECTRON ART 77
TUBES AT WORK 44 THE INDUSTRY IN REVIEW 87
INDEX TO ADVERTISERS 99

ELECTRONICS®. January, 1941, Vol. 14, No. 1. Published monthly; price 50c a copy. Allow at least ten days for change of address. All communications about subscriptions should be addressed to the Interior of Circulation, 35 West 46th Street, New York, N. Y.

Subscription rates—United States and possessions, Canada, Mexico, Central and South American countries, $5.00 a year; $1.00 for ten years. All other countries 50 shillings for one year, 60 shillings for three years. All other countries 15 cents for one year, 85 cents for three years. Entered as Second Class postage, August 27, 1915, at Post Office, Albany, New York, under Act of March 3, 1879. BRANCH OFFICES: 26 North Michigan Avenue, Chicago; 45 Faneuil Hall, Boston; 41 Peachtree Street, Atlanta; 400 Cordova Street, San Francisco; 212 Carter House, Aldwych, London, W.C. 2; Washington; Philadelphia; Cleveland; Detroit; St. Louis; Boston; Atlanta, Ga.

www.americanradiohistory.com
OLD Man Centralab presents his little brother . . . aptly called the ELF Radiohm.

Designed and constructed like the popular MIDGET Radiohm it has the added feature of still smaller size.

In spite of its small size it too features CENTRALAB'S long straight resistor strip in the inner circumference of the case . . . a particular advantage in producing good curve characteristics and low noise level on small controls.

Can be supplied with S.P.S.T. Switch with or without dummy lug. Switch rated at 2 Amperes at 125 volts. Underwriters approved.

TAP POSITIONS at 31, 44, 56 and 68% of rotation based on 300 degrees total rotation.

Send for Specification form 691

CENTRALAB: Div. of Globe-Union Inc.
MILWAUKEE, WISCONSIN
NOW — FOR THE FIRST TIME

Low-price Direct-current Recorders

for Low-range and High-sensitivity Measurements

Milliammeters
Microammeters
Millivoltmeters
and
Ammeters
Voltmeters

APPLICATIONS
Here are just a few of the many possible uses for these recorders:

1. Development work—permanent records of circuit conditions will minimize the need for cut-and-try work, and will facilitate the duplication of test set-ups.
2. Smoke density—a recorder, used with auxiliary equipment, is an inexpensive way to obtain permanent records of smoke density, so that you will have proof for city inspectors.
3. Vacuum-tube circuits—to record plate current or voltage.

TYPICAL CHARACTERISTICS OF A POPULAR RATING

<table>
<thead>
<tr>
<th>Range</th>
<th>0 to 1 ma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance</td>
<td>16 ohms, approx.</td>
</tr>
<tr>
<td>Response time</td>
<td>3 sec, approx.</td>
</tr>
<tr>
<td>Dimensions</td>
<td>8 9/16 by 10 9/16 by 5 31/32 in.</td>
</tr>
<tr>
<td>Scale length</td>
<td>3 1/2 in.</td>
</tr>
<tr>
<td>Chart speed</td>
<td>3 in. per hour</td>
</tr>
</tbody>
</table>

Obtaining a permanent record of a tube plate current with a CF-2 d-c milliammeter.
WE'LL KEEP THE "Doubtful Few" OFF YOUR ASSEMBLY BILLS

Parker-Kalon's Unequalled Quality-Control Laboratory eliminates the extra costs built up by "doubtful" screws

Fastening devices cost little... when they work right. When they don't, they cost plenty! The "Doubtful Few"... the imperfect units in a lot that won't drive properly, or fail in service... carry with them a high bill for extra time and labor, interrupted work and customer dissatisfaction.

To protect you against the cost-boosting "Doubtful Few", the Parker-Kalon Quality-Control Laboratory was established. Without counterpart in the industry, it makes it possible to hold Parker-Kalon Hardened Self-tapping Screws, Socket Screws and other fastening devices to higher standards than ever before could be attained!

Specify Parker-Kalon for fastening devices that ALWAYS WORK RIGHT AND HOLD TIGHT. Send for folder and free samples. Parker-Kalon Corp., 192-194 Varick Street, New York.

Quality-Controlled PARKER-KALON Fastening Devices

SOLD ONLY THROUGH RECOGNIZED DISTRIBUTORS

Guarantee
OF HIGHEST QUALITY ON ALL ESSENTIAL CHARACTERISTICS

COSTS NO MORE to get this Parker-Kalon Quality-Control Guarantee with every box of... Hardened Self-tapping Screws, Types, sizes, head-styles for every assembly of metal or plastics, Cold-forged Socket Screws, CapScrews, SetScrews, Stripper Bolts made to a new high standard of quality, WingNuts, Cap Nuts, Thumb Screws, Cold-forged. Neater, Stronger

January 1941 — ELECTRONICS
To Get the Most from Your Tube Dollar
Be Sure to Specify GL-880's

GL-880 is the largest of the G-E developed tubes for high-frequency (FM and television) services. Its background is more than 28 years of G-E tube experience.

GL-880's ingenious "folded" anode reduces internal lead lengths by 10 inches without sacrificing cooling surface. High efficiency is obtained even at high frequencies.

Dual grid leads for separation of excitation and neutralization minimize neutralizing problems.

Easy to Drive
With only 1500 watts driving power at the grids, two GL-880's will deliver an easy 50 kw of FM at 50 mc.

Here's Real Versatility
Primarily for FM and Television, yes, but GL-880's have unusual efficiency at international and standard broadcast frequencies, and as modulators. A pair will give a 50-kw plate-modulated carrier at 25 mc!

Be sure to ask your nearby G-E representative for full information on the complete line of G-E transmitting tubes for all services. There are G-E offices in 80 principal cities. General Electric, Schenectady, New York.
Practically every Major Airline

Uses Eimac TUBES

Dependability, stamina and outstanding performance capabilities are perhaps more important to airline communications than to any other service. That's why Airline radio engineers are the ranking leaders—why equipment they select is the very finest.

It is no mere coincidence that Eimac Tubes were selected by most every major airline in the U. S. A. in actual performance; Eimac has established itself as the leader in this field—tried and tested. This fact should have an important bearing upon your choice of vacuum tubes. See nearest representative, or write.

Eitel-McCullough, Inc. - San Bruno, California

EIMAC REPRESENTATIVES

California, Nevada
HERB BECKER, 1550 W. 10th St., Los Angeles, Cal. Wash. Or., Idaho, Mont.

GENERAL SALES CO.
Verner O. Jensen, 2605-07 Second Ave., Seattle, Wash.
Colo., Wyo., New Mexico, Arizona, Utah

PEEL SALES ENGINEER
JAMES MILLAR, 516 Ninth ING CO., E. R. Peil, 154 St. N. E., Atlanta, Georgia. E. Erie St., Chicago, III.

P. E. N. Y., N. J., Penn., Md., Del., J. EARL SMITH, 2821 Live Dist. of Col., Maine, N. H., Oak St., Dallas, Texas.

Chicago, Illinois, Wisconsin
ADOLPH SCHWARTZ, G. G. RYAN, 140 W. RICHARD A. HYDE, 4253 14th St., Denver, Colo., New York.

QUINTMAN ST., Flushing, WASHINGTON BLVD., Chicago, Ill.

UNITED AIR LINES

EASTERN AIR LINES

BRANIFF AIRWAYS

G. A. O'Reilly...TWA engineer...says: 'We have many Eimac 450-T's with nearly 10,000 hours of satisfactory service.'

January 1941 — ELECTRONICS
IF YOU HAVE TWO apples, they may look alike. But one can be dry and mealy, while the other gives you an extra measure of juice and goodness. It's the same with capacitors. For that extra measure of value, look to the hidden ingredients.

Looking like any other capacitors, C-Ds are different underneath. Hidden in the ingredients is an extra measure of quality. This quality accounts for the longer life, greater dependability, extra service engineers enjoy in C-Ds. You can expect extra service every time you specify Cornell-Dubilier capacitors. It's built in!... a product of C-D specialization — actually, extra years of capacitor experience. Next time, get the capacitor that offers you extra value at no extra cost.

Remember! Only C-D union-made capacitors give you the EXTRAS at no extra cost.

Get the extras — WITH CORNELL-DUBILIER CAPACITORS!
Field Test Proves Accuracy of Clark Line Voltage Regulation

PROBLEM

Maintaining voltage during final test of electric refrigeration motors.

CONDITIONS

Motors have full load current of about 2½ amperes at 115 Volts.

Power factor, when running, is about 60%.

Starting current is about 10 to 11 times the full load running current.

Power factor at starting is unknown, but must be very low.

Clark Size 2 Regulator has capacity of about 25 amperes at 115 Volts, hence starting one motor is an overload on the Regulator.

Under certain temperature conditions in the refrigerator, the motors can stall, giving locked rotor current for a couple of minutes before thermal devices trip and take motor off line.

Low load Power Factor is over .90, the Starting Power Factor below .30, and Running Power Factor .60.

RESULT

The Clark Autovolt Regulator was adjusted to 113 Volts (correct output voltage).

During starting period of one motor, output of Regulator showed very slight increase (less than one volt) then dropped to exactly 113 Volts.

Regulation was maintained at low load .90 Power Factor, and at approximately 10% load .60 Power Factor, with no noticeable variation in the Voltmeter.

During starting period the load was 120% at something less than .30 Power Factor, with total rise of less than 1 Volt.

YOUR INTEREST

Equally fine Voltage Regulation can be obtained in your plant.

Just state your voltage conditions, and "3C" engineers will gladly co-operate.
THREE MILLION POUNDS
ON THIS PIECE OF PORCELAIN

ALL LAPP TOWER INSULATORS INCORPORATE THE SAME ENGINEERING DESIGNS

Visitors at the Lapp plant are often most amazed at this demonstration—the proof test of a porcelain base insulator with 1,500,000-lb. loading. On design test, this same unit withstood 3,000,000 lbs.

We are proud of a porcelain cone of two-and-a-half-in. wall thickness that will stand up under 3,000,000 lbs. of compression loading. But we don't claim any magic for it. It's merely the application of sound engineering principles in mechanical design and in porcelain production.

Back of every Lapp development is the same kind of thinking. Products for radio transmission include tower footing and guy insulators, porcelain water cooling systems and pressure gas-filled condensers. Every engineer contemplating installation of a new transmitter, or modernization of present equipment, should hear the Lapp story.

LAPP INSULATOR CO., INC., LEROY, N.Y., U.S.A.
Introducing a New Era in Testing!

For the first time in instrument history, all the features listed above have been combined in a single, low-cost instrument to herald a new era in testing!

Originally designed for radio circuit testing, the RCA JUNIOR VOLTOHMyst has proved unexcelled for use in all electrical fields where extreme sensitivity, accuracy and ruggedness are important factors. It utilizes the famous Rider VoltOhmyst electronic push-pull circuit. Thus, instead of being applied directly to the circuit under test, the meter is driven by the electronic circuit which, in turn, is energized from the circuit being tested.

By this means, the high input resistance of 11,000,000 ohms can be maintained on all d-c voltage scales, giving a maximum sensitivity of 3,666,666 ohms per volt. This extreme sensitivity also allows resistance measurements from 0.1 ohm to 1000 megohms. As maximum meter driving power is limited by the capabilities of the electronic circuit, full meter protection is obtained on d-c voltage and ohms measurements. A shielded lead with an isolated probe is furnished to insure negligible circuit disturbance during d-c voltage measurements.

SPECIFICATIONS

D-C VOLTMETER...6 ranges of 0-5, 10, 30, 100, 300 and 1000 volts with a constant input resistance of 11,000,000 ohms. This permits true dynamic testing under actual operating conditions. Full meter protection.

OHMMETER...6 ranges of 0-1000, 10,000, 100,000, 1,000,000, 10,000,000, 1,000,000,000 ohms. No zero reset required when changing scales. No leads to short. Full meter protection. All ohms read on one scale having low end expanded for greater accuracy.

A-C VOLTMETER...5 ranges of 0-10, 30, 100, 300, 1000 volts. Isolated a-c circuit uses copper oxide rectifier giving 1000 ohms per volt sensitivity.

METER ACCURACY...2% at full scale. Matched pair multiplier resistors accurate to 1%. Rugged meter movement withstands mechanical shocks.

ASK FOR RCA CATALOG NO. 105—Describes Junior VoltOhmyst, also the full line of RCA Oscillographs and Test Equipment for a wide variety of industrial needs.

RCA JUNIOR
VOLTOHMYST

Only $34.95 complete
with leads and probes

RCA MANUFACTURING CO., INC., CAMDEN, N.J., A service of the Radio Corporation of America

January 1941 — ELECTRONICS
OIL BURNER IGNITION offers an ideal application for Isolantite®. Its high strength minimizes risk of mechanical failure; its non-porosity and high puncture voltage offer equally important advantages from the electrical standpoint. Vitrified at high temperatures, Isolantite is impervious to oil and moisture. In addition to oil burner ignition insulators of the types illustrated, Isolantite supplies complete ignition assemblies, including electrodes, to many of the leading oil burner manufacturers.

In FM, TOO, Isolantite is the logical choice. Typical instance of its use is at W1XOJ, the Yankee Network station at Paxton, Mass., which was designed and built by Radio Engineering Laboratories. Photo shows power amplifier unit, with plate lines supported by Isolantite stand-off insulators. Isolantite engineers will be glad to cooperate in solving your special insulator design problems.

LIBERAL USE OF ISOLANTITE in this Hammarlund transmitting kit is typical of its widespread application in progressive design for both amateur and commercial use. Low loss factor, high strength, and close mechanical tolerances are outstanding advantages of Isolantite, and are important factors contributing to its broad, diversified utility.

VERSATILITY OF ISOLANTITE is illustrated in this photo of the Western Electric 50 kilowatt transmitter at WJSV, Washington, D. C. Stand-off insulators, coil forms, condenser insulation, notched bars for inductance supports, and lead-in insulators are standard Isolantite insulator designs adaptable to many types of equipment.

TRANSMISSION LINES engineered by Isolantite are made in large and small sizes, with single or double internal conductors. Bulletins describing Isolantite's Transmission Line, solderless fittings, and accessories are available on request. Write us outlining your problem and we will send you complete information. (Isolantite Transmission Lines are sold nationally through Graybar Electric Company.)

Registered trade-name for the products of Isolantite, Inc.
Transformers for Electronic Circuits

... in all ratings; for all requirements

Continuous research work by our engineers since the early days of radio has made and maintained the AmerTran trademark a symbol representing the ultimate in transformers for communication and electronic circuits. This also explains why our products are preferred and used by so many of the largest equipment manufacturers and best-equipped broadcasting stations. Today our list of products covers the complete range of transformer requirements for electronic tube circuits—from the smallest audio unit used in an air-craft radio receiver to the giant power and modulation transformers for a 50,000 watt broadcast transmitter. Furthermore, all types and sizes can be produced economically either singly or in quantity to meet your particular specifications.

Let us submit data on transformers for your requirements.

AmerTran

American Transformer Company

178 Emmet St.

Newark, N. J.

Manufacturers since 1901 at Newark, N. J.

January 1941 — Electronics
SPECIAL AVIATION TESTS

HIGH FREQUENCY... An oscillator delivering frequencies from 100 to 1200 cycles supplies sufficient power output for operating relay coil circuits at high frequencies without reducing the applied voltage.

VIBRATION... A vibration testing machine proves the ability of Dunco relays to withstand specified vibration tests. Speeds up to 60 cycles per second at various amplitudes may be obtained with this test equipment.

CURRENT... Storage batteries delivering any d-c voltage from 2 to 24 volts provide for strenuous load tests. Inrush currents up to 500 amperes and continuous currents up to 250 amperes at 24 volts are obtainable.

ALTITUDE... A bell jar, vacuum pump and altitude meter for simulating conditions of altitudes as high as 30,000 feet enable a study of contact action under such conditions.

SHOCK... A shock testing device covers the exacting Navy requirements in this important test and enables Dunco to study relay performance under abnormal conditions.

HIGH-SPEED TIMING... An oscilloscope and high-speed motion picture camera provide a means of studying high-speed contact action which cannot be seen with the eye.

...but every DUNCO RELAY is just as carefully tested!

Just as each Dunco aviation type relay or solenoid is designed, constructed and tested for aviation's exacting requirements, so are Dunco industrial units specifically designed and tested for the specific conditions under which they are to operate. Only by such care to detail can the utmost in relay dependability be obtained. Only as a result of such care, could Dunco Relays have become first choice of so many of the nation's leading and most discriminating users. Catalog on request... Dunco Relay Engineering help at your service.

A POPULAR NEW SENSITIVE RELAY

Dunco Type "S" Relays set new standards of performance in combining a high degree of sensitivity with fast, low-power operation. Unexcelled for use with sensitive control units such as mercurial thermostats; for electronic uses such as welding timers; burglar alarms operating from dry cells and many others. Write for details.

STRUTHERS DUNN, Inc. 1526 Cherry Street, Philadelphia, Pa.

ELECTRONICS — January 1941

13
MALLORY Improved Vitreous Resistors have a performance record second to none. This was recently borne out by their selection, after exhaustive tests, by the manufacturer of one of America's most popular electric ranges.

Connected in series with the heating element to keep a warming compartment at the proper temperature... Mallory Resistors give long life and dependable performance. In every essential, they are as superior as quality materials and workmanship can make them. They assure maximum wattage dissipation, high resistance to humidity, and high resistance to permanent change due to overloads.

If resistors are included among your needs, either as original equipment... or for processing, maintenance, or experimental work, you can depend on Mallory.

P. R. MALLORY & CO., Inc.
INDIANAPOLIS INDIANA
Cable Address—PELMALLO

Send for this catalog
Your technical source files are incomplete if you do not have this catalog of Mallory approved precision products.
The 1940 award of Eta Kappa Nu, honorary electrical engineering society, has been given to Jesse E. Hobson, central station engineer, Westinghouse Electric and Manufacturing company, East Pittsburgh. This award is for young engineers graduated not more than 10 years and less than 35 years of age and was inaugurated in 1936 to recognize "meritorious service in the interests of their fellowmen". In making their choice for the award, the judges pay attention to all of the candidates activities, technical, civic, social and cultural.

Two Honorary Mention Awards were given, one to Stuart G. Hight of the Bell Telephone Laboratories and one to Donald G. Fink, Managing Editor of Electronics.

Without understating to the slightest degree Messrs. Hobson and Hight, Electronics is tremendously pleased with the award to Mr. Fink. The Award permits us to say certain things about Mr. Fink which for modesty's sake would otherwise not have appeared here. So that all of the readers of Electronics may know, we publish what Eta Kappa Nu says about him:

"Donald G. Fink entered the Massachusetts Institute of Technology in September 1929, and graduated in June 1933 with the B.S. Degree in E.E. He continued at the same institution for another year, doing graduate work in various courses in electrical engineering and physics. Since that time he has done graduate work at Columbia and the Stevens Institute of Technology."

"He developed an early interest in radio, having qualified for an amateur radio license at the age of 16. His interest in television began at M.I.T. where he progressed through all the subordinate positions on the staff of Tech Engineering News to Editor-in-Chief."

"His ability as an editor began at M.I.T. where he progressed through all the subordinate positions on the staff of Tech Engineering News to Editor-in-Chief."

"In June 1931, he became editorial assistant on the staff of Electronics, a McGraw-Hill publication dealing with the uses of vacuum tubes in commerce and industry. In 1939, he became associate editor of the same publication, and in 1937, managing editor, which position he now holds. He has also served since 1938 as radio editor of Aviation magazine."

"He was co-author of a book entitled 'Neon Signs,' and has instructed evening courses in advanced electronics at the New York YMCA Technical School. He delivered a series of lectures on atomic physics and electronics to members of the engineering staff of Westinghouse Lamp Company at Bloomfield. These lectures formed the basis of a book entitled 'Engineering Electronics' published in 1938. It has been used as an introduction to the subject in 60 colleges and universities. Another series of lectures was delivered to the above group on 'The Sources and Uses of Radiant Energy.'"

"In January 1940, Mr. Fink published a book entitled 'Principles of Television Engineering'. Since August 1940, Mr. Fink has served as a panel member of the National Television System Committee which is now engaged in setting up standards for commercial television transmission. He is chairman of the Publications Committee, Radio Club of America; member of the Institute of Radio Engineers, Tau Beta Pi, Sigma Xi, and Pi Delta Epsilon. In addition to his technical accomplishments, Mr. Fink has been a particularly active leader in the life of the young people in his home community."

The publishers of Electronics and his associated editors are proud of this recognition of his accomplishments.
Synchronizing Sound . . . In the production of motion pictures, the scene is photographed and the accompanying music recorded separately. Later, in the operation shown above, the two are synchronized as the sound is dubbed on the film
The sound motion picture has not yet attained such an age that many persons will have completely forgotten the thrill which they experienced at their first viewing of a talking picture. Yet in that brief span of approximately a dozen years since the "Jazz Singer" took the country by storm, the technique of sound recording for motion pictures, and the equipment and film stocks employed in the process, have enjoyed an uninterrupted and almost unbelievable degree of development.

The practice of making duplicate or triplicate sound records of a scene to insure a single satisfactory finished record has long since been discontinued, and the type of action portrayed on the screen is today in no way limited in scope by restrictions imposed by the recording equipment.

The sound records of the earlier talking pictures were sixteen-inch disc records, similar in general appearance and composition to ordinary phonograph records. They were recorded at a rotational speed of 33 1/3 rpm, to permit a playing time equal in length to the time required for projection of a complete reel of picture. The recording channel proper consisted of several condenser microphones and their associated amplifiers, a mixer table, booster and main recording amplifiers and a number of bridging amplifiers whose input circuits were multiplied across a "bridging bus" formed at the output of the main recording amplifier. The output circuit of each bridging amplifier was connected to the cutting head of a wax recording machine through a calibrated attenuator.

The cutting heads employed in the production of Vitaphone records exhibited a frequency-response characteristic which, for a constant input level, produced a record of constant amplitude for all frequencies in the interval between 40 and 400 cps, and a record of constant velocity in the interval between 400 and 5000 cps. The low frequency response of the cutter was reduced to avoid overloading of the record by the high-energy, low-frequency components normally present in speech and music. The cutter showed a very rapid decrease in response at frequencies above 5000 cps. The curve of Fig. 1 indicates the combined frequency-response characteristics of an early wax recording head and an early disc reproducer head.

The original records were cut on soft wax blanks whose surface had been brought to a high degree of polish by the use of sapphire shaving knives. The production of a good record required the use of a freshly shaven wax blank whose temperature was held within rather narrow limits to prevent smearing or chipping of the wax during recording. The novelty and uncertainty injected in the production of motion pictures by the advent of sound made it necessary to provide means for the director of a picture to check the character of the sound record immediately upon completion of the shooting of each scene. Therefore playback reproducers were provided which permitted rerecording of the record cut in the soft wax. Records which had been so reproduced were, of course, unsuitable for later processing and for this reason, it was necessary to cut two or three records of each scene photographed.

At the completion of shooting and editing of a picture it was necessary to combine the individual recordings of each scene which appeared in the finished picture in such a manner that the single record associated with each reel of the picture would contain just that dialogue, music, and sound effects necessary for the scenes appearing in that reel. The process of combining a number of original recordings of dialogue, music, and sound effects into a single final record is known as "dubbing", or "rerecording". The difficulty of selecting a few words or sentences from a number of individual disc records and combining these in proper order and in exact synchronism with the action taking place on the screen presented no small problem. In fact, the difficulties of this process of selection and combination were so great that only one of the Hollywood studios, Warner Bros., was ever equipped to rerecord from disc records on a large scale.

Nor were the troubles encountered in disc recording ended when the final records for a picture had been completed. The maintenance of synchronism between picture and sound in the theater was dependent upon accurately placing the theater reproducer at the start mark on the record and simultaneously placing the picture start mark in the picture gate of the projector. If the picture film was torn during projection and had to be spliced, it
was necessary to remove one or more frames of the picture from the reel and consequently at each splice in a reel, synchronism between picture and sound was destroyed by an increasing amount. Since the picture and sound record were separate, it was not an unusual occurrence to find the record corresponding to one reel of a picture being reproduced with a different reel of that picture. While this may have tended to create audience diversion during the screening of a dull picture, it helped in no way to maintain the dignity of the theater management. Furthermore, after a certain number of playings the records exhibited a very pronounced loss of quality and often became extremely noisy. All of these factors tended to detract materially from the technical and entertainment values of a picture and were responsible in no small measure for the change from disc recording to sound-on-film recording.

Recording on Film

The recording channel employed for producing the early film sound track was practically identical to that employed for producing disc records. The signal output of the bridging amplifiers was merely delivered to the film recording machine instead of to the wax cutting head. While differing in many details, all film recording machines provide a light-tight housing in which the film is exposed, magazines for the unexposed and exposed stock, means for moving the film at a uniform rate of speed past a light beam which exposes the film in accordance with the waveform to be recorded, the light source, modulator unit and optical system. The combined frequency-response characteristic of an early film recording machine and an early film reproducer is shown in Fig. 2.

The sound track produced on film varies in width from 76 to approximately 100 mils and occupies a position adjacent to one set of the film sprocket holes. All track may be broadly classified as being of either the variable density type or variable area type and each possesses certain advantages and disadvantages not possessed by the other. Two methods of producing variable density track were employed during the early period of film recording. In the first, typified by the Aeolight recording at one time extensively employed by the Fox Studios, the signal to be recorded modulated the light produced by a gaseous discharge tube and the resultant variable intensity illumination was photographed on the uniformly moving film in the recording machine after being passed through a very narrow fixed slit. The second and more widely used method of producing variable density track involves modulating a beam of constant intensity light by means of a light valve and photographing the illuminated variable width slit formed by the light valve ribbons on the moving film. This type of record subjects each point on the sound track to an exposure of constant intensity, but of a duration determined by the character of the signal being recorded.

Variable area track is produced by permitting the light from a constant intensity source to strike the mirror of a galvanometer, and after reflection therefrom, to pass through a narrow slit of fixed width, through a suitable optical system and then upon the sound track being exposed. Oscillations of the galvanometer mirror, which are produced by signal currents corresponding to the sound to be recorded, cause the light beam striking the recording slit to illuminate a greater or lesser length of that slit. The sound track resulting by this process of recording is essentially an oscillographic trace of the signal current.

Although the average early sound-on-film records were little, if any, better from a quality standpoint than the disc records which they replaced, they so facilitated the production, editing, and projection of sound pictures that by 1931 practically all sound recording was being done on film. Editing the sound record of the finished picture was tremendously simplified, since the process of intercutting various sound track sequences presented no greater problems than intercutting the corresponding picture sequences. This, of course, resulted in enormously simplifying the process of rerecording. It was now only necessary to provide reels of properly intercut dialogue and properly intercut reels of music and sound effects and to re-record these in synchronism with the picture to provide a single reel or final negative. Film recording provided other advantages, however, which were scarcely less valuable than the improvement possible in rerecording methods. Unlike the requirements in wax recording where many precautions were necessary, the film recording machine could be placed at a considerable angle and be used through a wide range of temperatures with no change in quality of the finished record. The light valves or galvanometers, once properly adjusted, are comparatively rugged devices and require much less frequent inspection and maintenance than wax cutting heads. Perhaps the only single outstanding advantage of wax over film records lies in the fact that the wax record may be immediately played back for checking purposes, whereas some interval of time must elapse between the recording process and the time at which completely processed prints

![Fig. 1—Frequency response characteristic of typical early wax recorder and reproducer heads](image1)

![Fig. 2—Frequency response characteristic of an early film recorder and film reproducer](image2)

![Fig. 3—Frequency response characteristic of a modern film recorder and film reproducer](image3)
on the set for such scenes of a picture which involve the photography of action which must be accurately synchronized with the musical score. For example, during the production of elaborate musical numbers involving complicated dance routines, straightforward production technique would demand that the director of the picture divide his attention between the action proper, the performance of the orchestra employed, and the degree of synchronism maintained by the various groups involved in the complete scene being photographed. A flawless performance on the part of the actors could be rendered worthless by a slight error on the part of some member of the orchestra, while a perfectly performed musical score might be rendered valueless by imperfect synchronization or action on the part of the principals appearing in the scene. It is obvious that the difficulty involved in securing a completely satisfactory record of such a scene is greatly increased by the number of the performing groups. The process of pre-recording the musical score for such scenes in a picture and reproducing these records on the set while the action is being photographed relieves the director of all concern regarding the orchestral performance, and permits both the director and the principals involved to concentrate their attention on securing a perfect performance. Since the record may be reproduced a number of times with the same results, the scene may be rehearsed until a perfect performance is secured. The motors employed for driving the playback reproducer and the camera on the set are electrically interlocked, so absolute synchronism between the photographic and sound records is assured.

During the early period of film recording, the quality of the records produced was very much inferior to that of present day sound track, and it is interesting to consider in some detail the numerous improvements in recording equipment, technique, and materials which have made possible the present type of high fidelity recording.

The variable density type of record is essentially a half-tone photograph of the recorded sound wave. It will be evident, therefore, that undistorted reproduction of a variable density record can only be obtained when the entire range of exposures are restricted to the straight line portions of the H & D characteristics of the films employed, and when the over-all gamma of the print sound track, as appreciated by the phototope in the sound reproducing mechanism, is equal to unity. Although the science of sensitometry was well developed long before the advent of the sound picture, little use had been made of it in the processing of motion picture films, and the sudden demand made upon the laboratory for proper processing of sound track necessitated an over night revision of processing control methods. While it was possible for an experienced person to judge the quality of a picture negatively by inspection with sufficient accuracy for practical purposes, this method was wholly inadequate for the determination of proper sound track processing, and had to give way to accurate sensitometric control of both negative and print development. The introduction of the Eastman type II-B sensitometer in 1931 was of great value in the study of sound track processing, since it provided a means of accurately and consistently impressing a series of known exposures on the film whose characteristics were under investigation. So powerful a tool did sensitometric control provide that within a few years after its introduction for sound track purposes, it was almost exclusively employed for the control of both sound track and picture processing in the laboratory. As a result of this step, the degree of uniformity and general print quality prevailing throughout the motion picture industry today, is almost unbelievably higher than that existing in 1930.

(Continued on page 73)
A Low-Power Transmitter for Demonstrating F-M Receivers

Because high fidelity programs are not available at all times on f-m stations at present, engineers of E. H. Scott Laboratories have built a demonstration system with which they can test and demonstrate f-m receivers.

The operation of experimental wideband frequency-modulation transmitters during the past year has given ample proof of the superior audio quality which can be provided with freedom from background noises within the service area of the station. However, through practical necessity many of these f-m stations have not provided a continuous service of program material capable of demonstrating the improved quality possible from the greater range of high audio frequencies. In some cases a large percentage of the programs have been carried by telephone lines of relatively limited frequency range and in other instances most of the material has been derived from transcriptions. While the latter type of program has provided some degree of high fidelity, it is only in the direct studio pickups that an approach to the capabilities of the system has been made.

Several f-m demonstration systems similar to the equipment described in this article have been constructed at the E. H. Scott laboratories for the purpose of providing high quality program material, regardless of the availability of regular programs. This equipment has already proved to be of great value and will continue to be for some time to come because it allows complete flexibility in demonstrating receivers.

The basic material for this system consists of a high fidelity microphone and audio preamplifier followed by a linear frequency modulating circuit, a stable oscillator, cascaded frequency multiplying stages, and a means for coupling the output signal to the receivers. The audio and r-f circuits of this system have been built into one unit and have been assembled in a rack and panel arrangement with the separate filament and high voltage power supplies, cathode ray oscillograph equipment and a phonograph turntable, as shown in Fig. 1. This unit may be classified as a signal generator or perhaps more appropriately as a miniature f-m transmitter because of its fixed output level and its fixed central frequency. While provision for an a-m signal at 600 kc was made in the equipment shown here, this feature was not included in all of the systems and is not shown in the circuit diagram. Also the phonograph turntable was omitted on most of the systems, because a good demonstration can be made only with high fidelity transcriptions whose frequency range is much greater than commercial recordings ordinarily available.

As shown in Fig. 2 the r-f signal is generated at a relatively low frequency by a 6J5 oscillator and is frequency modulated by a 6AG7 reactance control tube in a variable inductance circuit. Two frequency tripler stages bring the output signal up to 41.4 Mc and another 6AG7 tube feeds it into a low impedance transmission line which matches the antenna input circuit of the f-m receivers. The basic frequency modulator circuit and tripler tube arrangement were suggested by Mr. D. E. Foster of the R.C.A. License Laboratories. No variable output attenuator is provided, because the signal is treated simply as though it was being received from a local station and no useful purpose would
be achieved by varying its level during a high fidelity demonstration. Since a signal of 5,000 to 10,000 microvolts represents an average f-m signal within the metropolitan service area of a transmitter a level of that order is very suitable for demonstrating noise free high fidelity, although much stronger or much weaker signals will serve the purpose equally well. The basic consideration in this respect is that the f-m carrier-to-noise ratio should be such that a signal-to-noise ratio of at least 60 db is obtained at the receiver output terminals.

The following conditions were found to be essential to the proper operation of these units.

1. Overall fidelity should be a maximum from the microphone to the loudspeaker of the receiver inclusive.
2. The correct degree of high audio frequency pre-emphasis should be provided.
3. Frequency modulation should be linear at all audio frequencies up to and including ±75 kc.
4. Microphonism and noise in the modulating tubes should be at a minimum.
5. The system should be free from hum pickup in the audio and microphone circuits and from hum modulation at the oscillator of the signal generator or the receiver.
6. The center frequency, as affected by the parameters of either the oscillator or the frequency modulator, should be reasonably stable.
7. The system should be free from amplitude modulation.

Fidelity and Noise Considerations

In Fig. 3 the frequency response characteristics of the microphone and the loudspeaker system are plotted together and in Fig. 4 these two characteristics are combined with similar data for the complete electrical system from the audio input at the signal generator to the output transformer of the receiver. Although these responses are shown up to 10,000 cps only, listening tests indicate that they hold up well for several thousand cycles beyond this
point. It is apparent that insofar as audible response is concerned the quality performance of this system is comparable with that which may be expected from commercial f-m transmitters using present day audio equipment. The characteristics of the studio are not presented here because this equipment has of necessity been operated under various acoustical conditions, although an effort has been made wherever possible to make an approach to a properly treated studio. However, when comparing actual sounds with those which are reproduced by the loudspeaker it is well to bear in mind that both the transmitting and receiving studios may have a marked effect upon the apparent fidelity.

The audio frequency pre-emphasis circuit, which consists of the parallel combination of a 20 µuf condenser and a 5-megohm resistor in series with a 50,000-ohm resistor in the grid circuit of the 2nd 6AC7 audio amplifier, provides a convenient means of adjusting the overall electrical fidelity and the audio voltage available for modulation. All of the receivers with which this equipment has been used have incorporated audio de-emphasis circuits of the correct time constant to compensate for the pre-emphasis at the transmitter as specified by the F.C.C. standards. Therefore, it was necessary for the pre-emphasis circuit in our demonstration equipment to correct for the receiver de-emphasis and also to make up for any other frequency deficiencies. While this correction might be carried to almost any degree empirically, it appears to be more satisfactory to use high fidelity audio equipment having practically a flat response from 50 to 15,000 cps because of the gain lost by the pre-emphasis circuit. Under these conditions, if the process of modulation can be accomplished without a loss of high frequencies, the degree of pre-emphasis required at the transmitter is of the order which might be expected to compensate for the de-emphasis at the receiver. In the circuit of Fig. 2 the low value of plate load resistor in the second 6AC7 audio circuit ahead of the modulator tube avoids any loss of high frequencies due to the capacity in the modulator grid circuit.

The greatest possibility for unsatisfactory results with a demonstration system of this type rests with the frequency modulator stage. If any appreciable distortion is produced at this point, the quality of the output will be greatly affected and the audible effects will be very noticeable because of the wide frequency capabilities of the system. The 6AG7 tube operates very well in this respect when properly biased and provides linear modulation over an ample range. Cathode ray oscillograph observations of the wave form of the audio output of the receiver, when various audio frequencies are applied to the audio input of the signal generator, reveal that the sinusoidal wave shape is maintained throughout the frequency range. However, because of the pre-emphasis circuit, overloading for the high audio frequencies of equal voltage occurs at much lower levels than for the low audio frequencies. The cathode ray oscillograph provides a convenient means of observing the level of modulation without introducing any distortion of the audio wave form.

To avoid distortion it is also important that the plate circuits of the 13.8 Mc and 41.4 Mc frequency triplers be capable of accepting with a minimum of attenuation the modulated frequency spectrum, which is a total of 50 kc wide in the first tripler stage and a total of 150 kc wide in the second tripler. The circuits tuned to 13.8 Mc are capacitively coupled by a 1000 µuf condenser common to the two fixed condensers, providing a degree of overcoupling which allows the desired bandpass. The inductances of this circuit are tuned by means of brass cores. The coils of the 41.4 Mc circuits, which do not lend themselves so well to capacitive coupling because of lead inductances, are placed about 1 inch apart on a common form to provide the required degree of overcoupling. These circuits are tuned by 25 µuf air dielectric trimmers. Additional loading of 25,000 ohms was added on the plate and grid sides to flatten the response characteristic.

It was found that the 6AC7 tubes and the 6AG7 modulator tube quite often exhibited microphonism and a quiet condition was obtained only by mounting each of these tubes on rubber cushioned sockets and also by selecting the quietest tubes of a given lot. A 6AC7 was used in preference to a 6J7 in the first audio stage following the microphone in order to obtain a considerably better signal-to-noise ratio, which is due largely to the operating condition of low plate current and high mutual conductance. By using this tube many weak sounds, which were completely masked by the first audio tube noise when using the 6J7, could be heard with a fairly good signal-to-noise ratio. It is probable that a still better signal-to-noise ratio could be obtained by using a high Q triode as the first tube and by adding additional stages to bring the audio gain up to the desired level. The only other defect of the 6AC7 for this purpose, other than microphonism, is a type of transient tube noise of a broken character. This condition was also remedied by selecting quiet tubes, which could be found by going through a lot of six or more. In the quietest con-
sition it was found that the overall signal-to-noise ratio of the system was determined largely by the first audio tube, which seems to be a common characteristic of some f-m transmitters now on the air.

The Power Supplies

The hum problem is so closely associated with the power supply that the two may be discussed simultaneously. In the first model of this equipment an attempt was made to operate the filaments, plates and screens from a common power supply with ac applied to the filaments. However, after a few listening tests it appeared far better to keep all leads having any 60 cps potential completely removed from the audio section of the unit. Also, since there was some possibility of hum modulation due to ac on the filament of the frequency modulator or oscillator, it was decided to use dc for all of the filaments, except that of the rectifier in the high voltage supply. The filament voltage is obtained from a copper oxide rectifier and is filtered in a conventional manner as shown in Fig. 2. By locating the ac “on-off” switch near the power supplies, there is no necessity to bring any leads from the ac line near the microphone cable or audio system.

The high voltage power supply is well filtered with a dual section inductance-capacity filter and each plate and screen circuit which showed any tendency to be affected by hum voltage was filtered by resistance-capacity combinations. Both power supplies are mounted considerably below the microphone and audio circuits to eliminate induction effects from the chokes and power transformers. As an added precaution the microphone cable has been double shielded to prevent pickup from stray hum fields.

It will be noted that an r-f filter has been inserted in both the high voltage and filament leads entering the chassis from the power supplies. These networks prevent r-f energy from feeding into the power supply cables and radiating through the ac line.

Frequency Stability

The power supplies also have a considerable influence on the frequency stability of a signal generator of this type. It was found that there was very little drift due to the components of the oscillator stage itself when the modulating circuit was completely disconnected from it. However, when the control tube was properly connected and in operation, any variations in the line voltage had a marked effect upon the oscillator central frequency. As the line voltage varied slightly, the potentials of the 6AG7 changed, causing a temporary surge of frequency modulation. It was apparent that this condition could be remedied by providing a voltage regulated power supply which would completely regulate the filament, grid, screen and plate voltages of the control tube.

However, it was found to be sufficient for our purpose to reduce the L-C ratio of the oscillator circuit to the point where it was just possible to obtain a ± 8.33 kc linear deviation, which after two stages of tripling resulted in a net modulation deviation of ± 75 kc. With the audio signal available and by supplying the bias of the control tube with a 4½ volt C battery, it was possible to reduce the frequency fluctuations to a point where no audible effects were produced, al-though they were still detectable with a discriminator meter. A certain amount of long period drift was present, due, apparently, to a variation in the mutual conductance of the oscillator and modulator tube and possibly some heating effect. However, this drift is of little consequence in our demonstration work, because it is not sufficient to produce audible effects and if correct tuning is desired the receiver can be retuned after a few minutes of operation. It is apparent that the degree of frequency stability required for a simple f-m demonstration system is not comparable with that required by a commercial transmitter.

Operation of the System and Studio Technique

To avoid acoustical feedback it is necessary to locate the signal generator and the microphone in one studio and the receivers in another. The signal is fed by means of a low impedance transmission line, which is connected directly to the antenna terminals of the receivers to avoid radiation. Close proximity of the listening and transmitting facilities allows the listener to compare the actual sounds with those reproduced by the loudspeaker by passing from one studio to the other. An important point to observe in locating the signal generator and microphone is to provide either a sound proof studio or a quiet location. Outside noises or machinery vibration within the building can produce a sufficient back ground to mask any noise free characteristics.

Several instruments and sound producing devices capable of generating a wide band of frequencies or a series of relatively pure tones (Continued on page 85)
Bell-Jar Exhaust—A New Metal Tube Production Technique

Considerable reduction in material and production costs may result from the radical re-design of the metal tube, plus a simpler and faster method of exhaust and sealing, developed by General Electric engineers in the laboratories at Schenectady and now under production tests.

2 (Above) The lead-wire prongs, with the glass beads, are fitted into the iron header and heated until the glass forms a perfect insulating seal between wire and header. A new glass, matching the thermal expansion of ordinary iron, was developed for the beads.

3 (Below) The element structure, the same as used in conventional metal tubes, is then mounted on the prong wires and the metal shell placed over it. The whole assembly is then placed under a bell jar for pumping.

1 (Above) The header of the new tube contains glass beads as lead insulation. Here the lead wires (which serve also as the terminal prongs) are fed into revolving spindles. After each wire is heated, powdered glass drops on it, melts and deposits as a bead on the wire.
Here the bell jars have been lowered in position. During exhaust the metal envelope is suspended by an electromagnet, allowing the exhaust to occur through the opening between header and shell. The exhaust tubulation is thus eliminated, and pumping speed greatly increased. The reentrant glass cup (third from left) contains liquid air to trap moisture during exhaust. When the exhaust is complete the shell drops onto the header and molten solder seals the gap.

After completion of the exhaust, the tubes are aged 20 minutes in this rack at varying over-voltage and over-current conditions. By watching the lamps, the operator can tell the condition of each tube during the aging period.

The characteristic check, not unlike that given to conventional metal tubes, includes tests for heater current, gas current, screen and plate current, noise and microphonics. The new tubes are not commercially available but several thousand test samples are now in operation in radio receivers.

The simplicity of the new tube structure, compared with a double-ended conventional metal tube of the same type. The same element structure is used in both tubes. J. E. Beggs, at left, played an outstanding part in the development of the new tube, as well as in that of the older metal tube.
The demand for extremely high quality reproduction of sound has created several gradual changes in the design of loudspeakers and their associated equipment. The complexity of the apparatus depends upon the efficiency of the electro-mechanical system, the amount of acoustic power to be radiated, the frequency ranges to be covered, and especially the solid angle through which uniform distribution of sound quality is to be obtained.

In order to satisfy these requirements, the most satisfactory solution to date has been by the use of a two-way system where the frequency range is divided into two parts and one or more loudspeakers are utilized for each of the frequencies ranges. The speakers employed are, of course, radically different from each other in design, each unit being particularly suitable for its own intended range. It is not possible to design speakers easily which will efficiently and faithfully reproduce frequencies in one band and provide sharp attenuation for those frequencies outside of the desired band. For this reason it is necessary to supply an electrical network somewhere in the system so that each set of loud speakers will have transmitted to it the correct frequency band. These networks have been commonly known as "dividing networks". Usually the dividing network is placed between the output transformer and the voice-coils of the speakers. The designs given in this article are intended for this type of operation.

The crossover frequency, the frequency at which the power is to be separated between the two bands of frequencies, is governed by several factors. If the frequency is too low, the high frequency unit and horn must also be of comparatively large size which defeats the purpose of the two-way system. On the other hand, if the crossover frequency is too high, there is danger of running into characteristic decrease in response which appears in large cone speakers. Where economy in cost and space is the most important factor, a fairly high crossover should be utilized (approximately 800 cps), whereas a more optimum crossover for best all around considerations may be in the vicinity of 400 to 600 cps.

Characteristics of Dividing Networks

A dividing network should be chosen which gives fairly rapid attenuation beyond the cutoff point in order to keep any appreciable low frequency energy out of the high frequency unit and to minimize the effect of irregularities due to peaks which exist beyond the crossover frequency.

From an analysis of large numbers of speaker systems, it appears that dividing networks should provide at least 12 db attenuation one octave away from their cut-off. Attenuation of more than 18 db per octave is not necessary or desirable because of the increased losses in the transmitting range and the cost of the additional filtering which would be employed.

The two-way dividing network consists of a low pass filter and a high pass filter designed to operate from a common source at their input terminals. Two general methods are in use, connecting the filters in series or parallel to their input terminals. These two types of networks are (1) the filter method and (2) the section method.

Table 1 — Design Formulas for Fig 1

<table>
<thead>
<tr>
<th>Formula</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_1 = \frac{R_1}{\omega_1})</td>
<td>henries</td>
<td>farads</td>
</tr>
<tr>
<td>(L_2 = \frac{2R_1}{\omega_1})</td>
<td>henries</td>
<td>farads</td>
</tr>
<tr>
<td>(L_3 = \frac{R_2}{2\omega_1})</td>
<td>henries</td>
<td>farads</td>
</tr>
<tr>
<td>(L_4 = \frac{(1+m)R_2}{\omega_1})</td>
<td>henries</td>
<td>farads</td>
</tr>
<tr>
<td>(L_5 = \frac{1}{1+m} \cdot \frac{R_1}{\omega_1})</td>
<td>henries</td>
<td>farads</td>
</tr>
<tr>
<td>(C_1 = \frac{1}{\omega R_0})</td>
<td>farads</td>
<td>farads</td>
</tr>
<tr>
<td>(C_2 = \frac{2}{\omega R_0})</td>
<td>farads</td>
<td>farads</td>
</tr>
<tr>
<td>(C_3 = \frac{1}{2\omega R_0})</td>
<td>farads</td>
<td>farads</td>
</tr>
<tr>
<td>(C_4 = \frac{(1+m)}{\omega R_0})</td>
<td>farads</td>
<td>farads</td>
</tr>
<tr>
<td>(C_5 = \frac{1}{1+m} \cdot \frac{1}{\omega R_0})</td>
<td>farads</td>
<td>farads</td>
</tr>
</tbody>
</table>

January 1941 — ELECTRONICS

By John K. Hilliard

Sound Department, Metro-Goldwyn-Mayer Pictures
Dividing Networks

The current emphasis on high-fidelity reproduction of sound has given the woofer-tweeter combination new prominence. Hence this practical design procedure for frequency-dividing networks, of the low-loss inductance-capacitance type should be of interest to engineers in the audio-frequency field.

(2) the constant resistance method. Different design methods are used for the two types. The filter method is more commonly used because it is somewhat more flexible. Hence it will be discussed first.

In arranging a lowpass and a highpass filter for series or parallel operation, it is only necessary to employ special design methods in connection with the first half sections in each of the filters. The remaining sections of the filters are designed in accordance with conventional filter practice. For the first half filter sections, m-derived types are used. The filters having mid-shunt terminals for parallel operation and mid-series termination for series operation. The number of sections depends upon the rate of attenuation desired in the suppressed frequency bands. Where it is desired to secure an attenuation rate of change of about 12 db per octave one filter section is sufficient.

Where a rate of change of about 12 db per octave is satisfactory, half sections can be used.

Figure 1 shows four dividing networks units, two of which are parallel types and the other two series types. Network A is secured by the use of a basic type "T" full section of the parallel type, a low pass section being used for the low frequency side and a high pass section for the high frequency side. Network B is obtained by the use of n-type low pass and high pass sections with the series type circuit. Networks C and D are secured in the same manner, except that "L" type low pass and high pass sections are used.

Constant Resistance Networks

A constant resistance dividing network is one whose resistance at the input terminal is constant with change of frequency for the proper resistance loads at the output terminals (see Fig. 3). The constant resistance networks can only be designed for 6 or 12 db per octave and for this reason can only be used in these specific cases. However in the large majority of cases, 12 db per octave is used and these networks can be utilized. One of the features of this design is that in the manufacture of the networks the inductance coils are all of the same value, as are all the capacitors. The parallel method such as Fig. 3D is extensively used. Figure 4 shows the data for these networks for various crossover frequencies.

In preparing the curves it was assumed that the coils and condensers were nonresistive. In practice where the component electrical elements contained some resistance, the curves will be slightly different, especially in the crossover range which in some cases has the effect of shifting the crossover slightly away from the theoretical cut-off point. The added resistance also consumes power in the transmission band and where this loss is an important item, the resistance should be as low as possible.

For instance, in a 100-watt system, 1 db loss in transmission through the corresponds to a reduction of available power to about 79 watts dividing network since 1 db = 10 log (100.79). Ordinarily

Fig. 2—Graphical data for selecting the L and C elements of the dividing networks in Fig. 1, in terms of the cross-over frequency, assuming a ten-ohm voice-coil impedance

Fig. 3—Simple constant-resistance networks and design equations, limited to 6 or 12 db attenuation per octave outside the pass region
the loss can be reduced to about 0.5 db which is about as low as commercially practical. The impedance obtained at the input terminals of the dividing network in Fig. 2 varies from network to network. In general the impedance of any of the corresponding series and a parallel type are inverse to each other. In practice where the speakers are arranged in series parallel combinations to give load resistances as closely as possible to \(R \), ohms at the high and low range output terminals, the input impedance will not adhere strictly to the image (or reflected) impedance characteristics. However the shape of the attenuation curve is changed very little and for this reason it is usually neglected in design data. Usually the low frequency dynamic speakers have a mechanical anti-resonance at frequencies below 100 cps. This results in the low frequency speakers having a relatively high input impedance at the lower frequencies. For this reason in some cases more uniform overall attenuation results have been secured in connection with low frequency loudspeaker units by using dividing networks of the series type.

The location of the dividing network in the circuit varies, depending upon the type of system and emergency precautions required. As previously stated, it is customary to place the dividing network between the power amplifier and speaker. This is done primarily to eliminate the need for more than one power amplifier. Where more than one power amplifier is available, the dividing network can be placed ahead of these amplifiers and as a result the network can be considerably smaller in size due to the fact that less power is transmitted by it. In this setup a more favorable impedance characteristic can some times be maintained throughout the frequency range. However, where an accurate balance between high and low frequency units should be maintained, care must be taken to determine that these amplifiers maintain constant gain at all times and with the use of inverse feedback, undoubtedly this condition can be easily maintained. In this connection where it is desirable to radiate more low frequency power than in a balanced setup, more power from several amplifiers in parallel can be used in the low frequency branch.

In well designed two-way horn systems, in most cases it will be found that the distortion present in the system ahead of the speaker is sufficiently great so that a low pass filter will be required to cut off the higher harmonics. This is particularly true in systems which are designed to reproduce records, signals from radio transmitters which are overmodulated or otherwise distorted. These low pass filters are usually constructed so that considerable attenuation takes place above 8000 cps, depending upon the amount of distortion present.

It has been found that only in the highest grade of sound reproducing channels or radio transmission systems can these units be operated without some attenuation at the higher frequencies and this fact must not be overlooked if the best results are to be obtained.

In the design of the two-way loudspeaker system and network, the load impedance is made approximately 2\(\frac{1}{4} \) to 3 times greater than the source impedance (power amplifier output impedance). For instance, if the individual impedance of the high and low frequency units are each 10 ohms, best results are achieved by operating from a 4 ohm power amplifier impedance (output transformer secondary). The improvement from this method of operation is derived from the damping action caused by the low impedance of the power amplifier transmitted through the network which shunts the loud speakers to a comparatively low value in order that very little counter emf is developed across the terminals. The low impedance also tends to maintain a constant velocity radiation regardless of impedance change of the speaker. The performance of the network is changed only slightly by this unsymmetrical impedance at both ends and can be disregarded up to a 3 to 1 ratio. The network is designed on the basis of the loudspeaker impedance and not the source impedance.
Control Circuits for Industry

Applications of the gas tetrode, type 2050 or 2051, to a variety of time delay and phototube relay circuits, plus a description of their uses in controlling injection molding machinery, printing presses, bells in a church tower, laundry air-doffers and washing machines. Written from extensive experience in the field.

By GILBERT SMILEY
General Control Company

for accurate and reliable control equipment, particularly for injection molding machines in which all phases of the molding cycle must be accurately maintained if a uniform and satisfactory product is to be secured.

Injection molding machines consist of a separable die or mold into which the plastic is injected under pressure after being plasticized by passing through a heating chamber. To secure flow of the plastic into the often intricate recesses of the die, considerable pressure is required. As a rule the die is closed by a hydraulic cylinder operating through a mechanical toggle that locks it shut under very high pressure. The injection plunger, also hydraulically operated, then picks up a measured "charge" of granular plastic, forces it under great pressure into the heating chamber and forcing an equal quantity of already heated and plasticized material through a nozzle and system of gates into the die cavities. The injection plunger then "dwell," keeping the plastic in the water cooled die under pressure during the primary cooling period to prevent excessive shrinkage. To facilitate ejection some slight shrinkage is desirable, so at the termination of the plunger dwell there is a further period of die dwell, after which the die opens and the piece or pieces are ejected. Some further time is then required to complete the plasticization of the charges in the heating chamber, after which the die recloses and the cycle repeats. Thus the complete cycle consists of die closure, plunger advance, plunger dwell, die dwell, and die open period.

Since the molding press is hydraulically operated, control is best effected through solenoid valves operating on the hydraulic system. The solenoid valves are, in turn, controlled by the electronic timing device. Such a timing device is shown in the accompanying illustration and the circuit is given in Fig. 1. Most of the units supplied have been for 230 volt 50 or 60 cps operation. Hence the 2051 gas tetrode was used, as this voltage does not exceed its ratings. To follow the circuit it is best to refer to Fig. 2 which illustrates the simple elementary timing circuit employed.

As shown, the device is reduced to

External appearance of the molding-machine control equipment shown in Fig. 1

ELECTRONICS — January 1941
its simplest working components. With a source of alternating current connected to \(L \) and \(L_n \), the tube heater will be energized by the transformer, \(T \), and rectification will occur in the grid-cathode circuit. As a result, a charge of the indicated polarity will accumulate in \(C \). When the switch is closed, the cathode is directly connected to \(L \), and the full line voltage is applied to the plate-cathode circuit. However, the grid is biased negative by the charge accumulated in \(C \), which charge effectively blocks space current until sufficient time has passed for the charge to be dissipated through \(R \).

As a matter of fact, the grid-cathode voltage at any instant is composed of an alternating voltage, the magnitude of which is a function of the position of the slider on \(V \), and the voltage across \(C \). If \(T \) is connected so that, when \(L \) is positive with respect to \(L_n \), point \(B \) is negative, consequently, movement of the slider toward \(B \) increases the negative component of grid alternating voltage when \(L_n \) is positive. Since the tube will "fire" or ionize only when \(L_n \) is positive, the adjustment of the slider on \(V \) permits a considerable reduction in the component of grid voltage supplied by \(C \) in order to prevent ionization of the tube. Since the time cycle between closing the switch and the instant when the total grid voltage falls to a point permitting space current is expressed by the equation:

\[
t = RC \ln \frac{E}{E_0}
\]

it is obvious that \(t \) may be increased by decreasing \(E_0 \), other factors being the same. Since \(E \) is the voltage across \(C \), which may be reduced by moving the \(V \) slider towards \(B \), the maximum time period may be adjusted by this slider. \(E \) is across \(C \) when the switch is closed. Thus, if a maximum time period of, say, two minutes is required, approximate values of \(R \) and \(C \) are selected and the slider is set to yield two minutes with \(R \) at a maximum. \(R \) is then varied to secure time intervals between zero and the selected maximum. The phasing of the transformer to make \(B \) negative with \(L \), positive is used instead of the opposite phasing as it tends to reduce the magnitude of \(R \) and \(C \).

The tube fires at the expiration of the time period and supplies the load, \(L \), (which may be a relay) with rectified alternating current within the limitations of the tube, if the constants of \(L \) are suitably selected. \(L \) remains energized until the switch disconnects \(K \) from \(L_n \), which instant \(L \) is deenergized and \(C \) starts to be recharged. By properly proportioning \(C \), \(R \), \(D \), and \(F \), recharging of \(C \) requires but a few cycles, after which the cycle may be repeated. Resistor \(D \) is included to limit grid current during the charge period and during "firing." The screen serves a dual purpose as it increases the control factor (about 100 in the 2050–2051 as compared with 10 in the 884–885) and also takes the brunt of the ion discharge during firing, protecting the cathode and grid, whose functions are more electronic than ionic because of this construction. The resistor \(F \) is simply to connect \(K \) to \(L_n \).

Returning to Fig. 1, in the light of the foregoing discussion it can be seen that the circuit consists, essentially, of three units such as the one shown in Fig. 2. In the injection molder cycle, after allowing the tubes to warm up the action is as follows:

1. Unit as shown with a-c switch closed, die solenoid closed through \(R_n \). Die advances.
2. Die closes fully at which point the limit switch closes energizing the plunger solenoid, advancing the plunger and starting the time cycle of the left hand tube.
3. Left hand tube times out, operating \(R \), deenergizing plunger solenoid after suitable dwell, returning plunger, establishing a shunt circuit around limit switch through \(R_2 \), and starting cycle of the center tube.
4. Center tube times out, operating \(R_n \), deenergizing die solenoid, opening die and limit switch (now safely shunted) and starting time cycle of right hand tube.
5. Right hand tube times out operating \(R_n \), destroying shunt circuit, recycling left hand tube and deenergizing \(R \), which action recycles center tube and \(R_n \), which, in turn, energizes the die solenoid, starting a new complete cycle and, simultaneously, recycles the right hand tube and \(R_n \).

When the "auto-1 cycle" switch is closed the timing out of the right hand tube does not destroy the shunt and all three units remain timed out with relays energized. Pushing

Figure 1—Time control circuit for an injection molding machine, based on three \(R-C \) delay circuits using gas-grid relay tubes.
either the local or remote "1 cycle start" buttons will destroy the shunt, producing the results as in 5 above, but not before \(R_s \) is operated. Thus the total cycle cannot accidentally be shortened with consequent overheating of the plastic, a condition more serious than overheating.

The actual construction followed shows to some extent in the photograph. The use of grid controlled gas tetrodes permits the direct operation of industrial control relays without intervening sensitive relays, a factor that makes this type of unit industrially usable. Because of the heavy vibration on and about molding presses, the ordinary high vacuum tube, sensitive relay combination is practically useless. A further factor in favor of the gas tubes lies in the definite and abrupt distinction between non-conduction and conduction. The load current comes up promptly from a few micro-ampere to a substantial value at the moment of firing. With high vacuum tubes the load current rises gradually with a consequent gradual increase in armature pull, making accurate timing problematical under severe conditions of vibration.

All components are selected for their mechanical and electrical excellence. Oil-filled, oil-impregnated condensers capable of withstanding extreme temperatures, the best available resistors, transformers, switches and parts are the rule. The writer also wants to give an record as favoring nothing but a good tough wafer socket with a cutting grip on the tube prongs.

A word is not amiss concerning the use of electronic timing equipment versus mechanical, synchronous clock or hydraulic systems, or other timing methods that might conceivably be employed. In the electronic units the only moving parts are the relays. This constitutes a definite advantage over mechanical and synchronous timers as there is so much less to get out of mechanical order. As compared with hydraulic or pneumatic timers, the variables of temperature, humidity, viscosity and wear introduce a degree of inaccuracy far greater than any conceivable from a time constant \(R-C \) circuit made with reliable components. In fact the mechanical simplicity and high repeat accuracy of the gas-tube timing device is its principal selling point, regardless of cost.

From Printing Presses to Church Bells

This same type of circuit is applicable to a number of industrial problems that otherwise might be much more difficult of solution. A few of these are of sufficient interest to merit mention.

A large envelope printing concern was troubled with failure in automatic envelope printing presses. One envelope would jam and others would rapidly pile up behind it until twenty or thirty were intimately entwined with the entrails of the press before the operator noted the trouble, stopped the machine and cleared up the mess. The machines now are equipped with electronic delay units so arranged that each envelope, on emerging, recycles the timer, the cycle for which is set at \(\frac{1}{2} \) second with envelopes emerging every 1 second. As long as the timer is recycled before timing out by the emergence of an envelope, the machine goes merrily along, but, in the event that an envelope jams and fails to emerge, the time cycle is completed, the relay operates and the machine is stopped, with, at the most, two spoiled envelopes, and greatly reduced clearing time. The circuit of this unit is essentially that of Fig. 2 with the switch normally closed. Each envelope opens the switch for a few cycles, recharging \(C \), which prevents operation until the time cycle expires or another envelope recycles the device.

Stop motion devices of this nature are readily applied to any machine from which products emerge at regular intervals. In this particular instance a Microswitch was used to operate the timer, but the method may be extended to a photoelectric recycling for small, light parts or to heavy limit switches where large parts are used.

Similar timing units have been applied to gas fired ovens in which a delay is desirable after starting a blower to permit complete exhaustion of fumes before starting the gas. In this instance the delay is initiated by the closing of wind switches operated by the blower blast, which positively insures exhaust. At the expiration of the delay (in this instance, five minutes) the timer operates to condition the gas circuit, which can then be started, but which cannot be started prior to the delay. Failure of the blower blast, even momentarily, completely recycles the timer and shuts off the gas as a safety measure.

Perhaps the most unique tube timer installation was on a motor-driven church bell installation, where bells aggregating many tons were mounted in a somewhat shaky tower. The bells could not be permitted to exceed a normal swing, as the strain of swinging them over and over would be too much for their supporting structure. The desired cycle was briefly:

1. Bell hanging straight down, motor turned on, raising bell, for example, to right.
2. Bell raised to right until cam on bell shaft actuates limit switch, shutting off motor and recycling timer.
3. Bell starts down swing as free...
pendulum, reclosing limit switch and starting timing cycle.

4. Bell swings down through dead center, up to left and then back to dead center, at which instant timer times out, restarting motor and hence, restarting the whole cycle. Possible because bell swings at constant pendulum rate.

Incidentally, an additional limit switch was connected across the line so that, should the first switch fail to stop the motor, the second would throw a dead short on the line, blowing the fuses. To date, no fuses have been blown.

The Gas Tube Relay

Another interesting application of the gas tetrode is its use as a relay when an extremely low voltage, low current or high resistance contact must operate a power relay circuit. Figure 3 shows an appropriate circuit that has been found most useful in reducing the load on very light or fragile contacts which are sometimes encountered in instrumental work. The theory of this circuit needs but little explanation. With transformer, T, placed as in Fig. 2 the tube is biased through R and D. When the contacts, C, close, the bias is removed and the grid returns to cathode through D permitting the tube to fire, energizing load, L. The current through C can be kept extremely low by making R and D large, say five or ten megohms.

The utility of the gas tetrode is by no means exhausted by the applications here cited. Its use in photoelectric circuits is equally important, as, due to its high control factor, low grid current and high output it can be worked directly from phototubes to control considerable power. An example is shown in Fig. 4. This circuit illustrates the extreme simplicity made possible by the use of the gas tetrode. The unit is assembled in a single case with a lens for the light source and uses a mirror for the light beam. By using a projector bulb, a sufficiently concentrated light source is provided. The phototube and resistor R shunt the heater, the drop in which provides the necessary bias, and the lamp B operates in series with the heater, thus killing two birds with one stone, as the lamp becomes the dropping resistor. The resistor M serves as a by-pass for the inductive discharge of the relay coil during the non-conducting half cycle.

The circuit, is, of course, subject to many modifications, but it shows how simply a photoelectric relay can be made. There is so little to the unit that there is practically nothing to go wrong, an advantage in an industrial design. Such photo-relays have operated satisfactorily in many difficult applications, with long light throws and under severe vibration and temperature conditions.

In certain instances where relatively great sensitivity is required, the gas tetrode has been used as an amplifier coupled to the phototube. Along these lines are such applications as the counting of textile threads by a modified sound on film optical setup, and the control of the articulated rails of textile finishing tenter frames by a photoelectric means. In both instances a small light differential is involved making action more positive when amplification is employed.

The basic circuit used includes some rather novel practices, as shown in Fig. 5. In this circuit a diode rectifier is connected "backwards" to produce an output of the polarity indicated. This output is, in turn, applied to the phototube circuit, D, the drop wire V, and the amplifier tube in such a way that any increase in amplifier plate current will increase the drop in resistor R, increasing the negative bias in the gas tetrode grid-cathode circuit. By adjusting the slider on V the bias on the amplifier can be adjusted so that the firing point of the gas tetrode will coincide with a desired light value on the cell.

A variation of this circuit is shown in Fig. 6. Here a single phototube is connected to produce a rather unique control function. It will be noted that the circuit is such that increased conductivity of the tube (from increased illumination) will make the grid of amplifier 1 more positive and that of amplifier 2 more negative and vice-versa. Thus, increased illumination will cut off the plate current of amplifier 2, destroying the negative bias on gas tetrode 2 and energizing relay 2. Decreased light energizes relay 1. By proper adjustment of the potentiometers practically any desired range.
of illumination can be accommodated and the illumination levels for the energization of the relays can be widely spaced, brought together or even overlapped.

This discussion would be incomplete without a discussion of another rather ingenious circuit, shown in Fig. 6. This device for which this unit was developed is used to stack hot towels, pillow-slips, etc emerging from a laundry mangle on a conveyor. The material in question is almost too hot to handle, and girls assigned to this work can stand but a few minutes without being relieved.

The Air-Doffer

The air-dofer, as the device is called, operates by blowing the hot article from the point where they are about to drop off the conveyor belt onto a rack, across which they hang in a neat stack. The conveyor belt consists, actually, of several parallel webs, and through one of the interstices the light source throws its beam up to a mirror and back into the cell. Since the essentials of both circuits have been given in the discussion of Figs. 2 and 4, the operating cycle will be discussed without recourse to theory.

1. The leading edge of the article to be doffed intercepts the light beam energizing relay 1, opening its contacts and recycling gas tetrode 2 and relay 2.

2. The article advances, its leading edge dropping down over the end roll of the conveyor, directly beneath which is a perforated pipe system and in front of which is a rack onto which the article is to be doffed.

3. As the following end of the article is about to leave the conveyor, it restores the light beam, closing relay 1, which energizes the solenoid valve admitting air to the blower pipe, starting the article in its flight from conveyor to rack, and starting the timing period of gas tetrode 2.

4. Gas tetrode 2 times out, opening the solenoid valve circuit, stopping the blast and restoring the circuit to start a new cycle.

By proper design of the pipe system and accurate regulation of air pressure and timing, articles can be stacked with amazing accuracy. After flying several feet through the air, the margins of similar pillow slips will all hang within one-eighth inch. The air blast is a short puff, that, literally, picks the article up and hangs it over the rail. This unit is uncannily accurate in operation and almost unbelievable to watch in action. The simplicity and repeat accuracy of the control contributes much to its effectiveness, for, as can be seen from the diagram, there is very little to get out of order.

Relays for D-c Power Supply

So far this article has been largely confined to extolling the praises of the gas tetrode. If the writer seems to have plunged this development it is because it has proved a most useful electronic tool in industrial control work. Although its utility in alternating current applications is unquestioned, in direct current problems it is often more convenient to use other types of tubes rather than to provide means of extinguishing the gas arc.

A typical example of this situation is illustrated in Fig. 7. This control was developed to operate an automatic dishwasher from 230 volts direct current. The operation may best be understood by a description of the operating cycle with reference to the circuit.

1. At the start of the cycle the unit is connected to the d-c mains as shown. Condensers C_1 and C_2 are charged to the full 230 volt potential of the indicated polarity.

2. The start button is pressed shunting the left hand contacts of relay 1. This establishes a series circuit through relay 1, the two filaments, the pilot light, the stop button and the contacts of relay 4 which series circuit energizes the tube filaments, pilot lamp and relay 1, which latter operates to:

(a) Shunt the start button, left hand contacts

(b) Apply 230 volts to the wash motor, center contacts

(c) Disconnects C, from the 230 volt minus and connect R_2, across C_1, starting the discharge cycle.

3. The quick-heating type 30 tubes are ready to operate promptly, but some time (about two and one-half minutes) is required for C_1 to discharge through R_2 to the point where the bias on 30 tube number 1 permits relay 2 to operate.

4. Relay 2 operates, in turn energizing relay 3 which disconnects the wash motor and starts the rinse valve. At the same time C_2 is connected to R_1 for discharge.

5. C_1 discharges in about ten seconds at which time relay 4 operates, opening the holding circuit described in 2 above and turning everything off.

Thus the device provides a complete automatic cycle, circulating the alkaline wash solution with a motor driven pump for 2½ minutes, shutting off the pump and turning on a hot water rinse for 10 seconds and then turning everything off, including itself. Relays 2 and 4 are Sigma type M which have a Microswitch movement giving snap action and as much freedom from vibration as can be found in a sensitive relay. The only load on their contacts is the coil current of relays 1 and 3, which latter are heavy industrial control types with blow-out coils on the contacts carrying motor current.

By operating the filaments, pilot lamp and the coil of relay 1 in series, protection against failure of tubes is insured and such failure is indicated by the fact that the pilot will not light. A stop button is provided to "kill" the entire system in case the operator, for example, forget to lower the side panels of the washer after loading, which would squirt water all over the lot, including himself.

The various circuits disclosed herein are in the main the subject of patents issued or pending. They have been included to illustrate methods of attack rather than to suggest specific solutions for general problems.

![Fig. 7—A time-cycle circuit operated from 230 volts d-c for controlling rinsing and washing operations in a commercial laundering machine](www.americanradiohistory.com)
SINE WAVES
IN R-C OSCILLATORS

While it is well known that sine waves can be produced in circuits containing no inductance, the fundamental principles underlying their generation are not widely understood. This timely article derives expressions for the condition of oscillation and the frequency, and presents experimental confirmation.

The production of oscillations in circuits without inductance is well known. The relaxation oscillator consisting of condenser and resistance, for example, has been studied in detail before. However, production of a sine wave form in such circuits is a comparatively recent development. There are only a few references in the literature to sine wave oscillations produced without inductance. Monnier and Bazin studied this type of oscillation produced in a bridge type circuit and derived an expression for frequency. Mention should also be made of the work of Morin, Tank and Graf and Van der Mack and Van der Pol. At a recent meeting of the New Orleans Academy of Sciences, Dr. J. C. Morris, reporting on some studies of the transitron oscillator, stated that he had obtained oscillations of sine form from the transitron circuit even when the inductance was removed from the circuit, providing the resistance in parallel with the condenser was sufficiently high.

It is the object of this paper to develop the fundamental basis of operation of this circuit and, in particular, to derive an expression for the frequency of oscillations in terms of the resistances, capacitances and tube constants. An experimental check of the frequency equation was made, together with a study of the conditions for oscillation.

Theory of the Circuit

The diagram of connections of the circuit is shown in Fig. 1, and the equivalent circuit in Fig. 2. The resistance r_1 is the combined resistance of R and R_c in parallel. The instantaneous alternating currents are assumed to flow in directions shown. By applying Kirchhoff's laws to the circuit we have:

$$r_1 i_1 + \frac{f_1}{c_1} \frac{di_1}{dt} + \frac{f_2}{c_2} \frac{di_2}{dt} = 0 \quad (1)$$

$$e = r_1 i_1 \quad (2)$$

$$e = \frac{f_1}{c_1} \frac{di_1}{dt} + \frac{f_2}{c_2} \frac{di_2}{dt} \quad (3)$$

Combining the above three equations, it follows that:

$$r_1 \frac{di_1}{dt} + i_1 c_1 + r_1 (\frac{dE}{dt} + \frac{i_1}{c_1} \frac{di_1}{dt}) + r_2 \frac{di_2}{dt} = 0 \quad (4)$$

From which we obtain by differentiation of Eqs. (1), (2) and (4) respectively:

$$r_1 \frac{di_1}{dt} + i_1 c_1 + \frac{i_1}{c_1} \frac{di_1}{dt} = 0 \quad (5)$$

$$\frac{i_2}{c_2} = r_1 \frac{di_1}{dt} - \frac{di_2}{dt} \quad (6)$$

$$-\frac{dE}{dt} = \frac{1}{c_1} \frac{di_1}{dt} + \frac{1}{c_2} \frac{di_2}{dt} \quad (7)$$

Fig. 1—Fundamental circuit of the inductance-less sine wave generator

Fig. 2—Equivalent circuit of Fig. 1. The tube is represented by the transconductance G

Fig. 3—Plate resistance (grid 2 taken as the plate) as a function of the applied voltage, for the type 58 tube

[Equations and diagrams as per the text]
Substituting $e = r_i i$, and rearranging terms we have:

$$\frac{d^2 e}{dt^2} + \left(\frac{1}{r_1 c_1} + \frac{1}{r_2 c_2} + \frac{e}{r_2 c_2 c_3}\right) \frac{de}{dt} + \frac{e}{r_2 c_2 c_3} = 0 \quad (9)$$

The above differential equation has two variable e and i, but they are not independent. The following relation holds:

$$i = G e \quad (10)$$

where G is the a-c transconductance of the tube (see reference 5 for discussion on this point). By experiment, G is found to have a negative value. Substituting (10) in (9) there follows:

$$\frac{d^2 e}{dt^2} + \left(\frac{1}{r_1 c_1} + \frac{1}{r_2 c_2} + \frac{1}{r_2 c_2 c_3}\right) \frac{de}{dt} + \frac{e}{r_2 c_2 c_3} = 0 \quad (11)$$

In order that continuous oscillations be present, the coefficient of the second term must be zero or negative. We have then as a condition for oscillation, remembering that G is negative, that:

$$\frac{1}{r_1 c_1} + \frac{1}{r_2 c_2} \leq \left|\frac{G}{c_3}\right| \quad \text{or} \quad c_3 \frac{1}{r_1} + \frac{1}{r_2} \leq \left|\frac{G}{c_3}\right| \quad (12)$$

This expression shows why the circuit fails to oscillate when the resistances are not sufficiently high.

If the circuit is adjusted so that it is near the condition of oscillation cutoff, then the coefficient of the second term of equation (11) may be set equal to zero and the equation becomes:

$$\frac{d^2 e}{dt^2} + \frac{e}{r_2 c_2 c_3} = 0 \quad (13)$$

whose solution, as is well known, is of the form:

$$e = A \sin 2 \pi f t$$

and the frequency has the value:

$$f = \frac{1}{2 \pi \sqrt{r_2 c_2 c_3}} \quad (14)$$

Experimental Check of Frequency Equation

An experimental check of the frequency equation has been made by the writer. The apparatus was constructed as shown in Fig. 1. A type 58 tube was used with $E_G = -4.7$ volts, $E_r = 20$ volts and $E = 84$ volts. Leads across C were loosely coupled to the grid of a stage of amplification whose output was connected to a cathode ray oscillograph. This extra stage was used because of the disturbing effects which the resistances and capacitances in the oscillograph might have had on the circuit.

The other plates of oscillograph were connected to a source of 60 cps ac through a suitable protecting condenser. The resistances r_i and R were adjusted until oscillation frequency was such that a stationary Lissajous pattern was obtained on the cathode ray screen. Since the ratio of the two frequencies is equal to the ratio of the vertical to the horizontal loops in pattern, the frequency of the oscillator was thereby determined. In making these measurements it was important to adjust the resistances so that oscillations were near the cutoff point, since the equation to be checked [Eq. (14)]

![Fig. 4—Vector diagram of the circuit operation (refer to Fig. 2)](image)

![Fig. 5—Transconductance as a function of voltage applied to grid 2 of a type 58 tube](image)

TABLE I

<table>
<thead>
<tr>
<th>Observed frequency (cps)</th>
<th>R ohms</th>
<th>Current thru R ma</th>
<th>R ohms</th>
<th>E volts</th>
<th>r₁ ohms</th>
<th>r₂ ohms</th>
<th>C₁ µf</th>
<th>C₂ µf</th>
<th>Calculated frequency (cps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>3,900</td>
<td>5.22</td>
<td>12,760</td>
<td>84</td>
<td>408,200</td>
<td>2,987</td>
<td>.1</td>
<td>.9</td>
<td>16.2</td>
</tr>
<tr>
<td>30</td>
<td>3,900</td>
<td>5.22</td>
<td>12,760</td>
<td>84</td>
<td>116,400</td>
<td>2,987</td>
<td>.2</td>
<td>.4</td>
<td>30.2</td>
</tr>
<tr>
<td>60</td>
<td>3,900</td>
<td>5.22</td>
<td>12,760</td>
<td>84</td>
<td>115,800</td>
<td>2,987</td>
<td>.1</td>
<td>.2</td>
<td>60.8</td>
</tr>
<tr>
<td>90</td>
<td>6,040</td>
<td>4.8</td>
<td>13,600</td>
<td>84</td>
<td>30,000</td>
<td>4,170</td>
<td>.1</td>
<td>.26</td>
<td>89.6</td>
</tr>
<tr>
<td>300</td>
<td>61,000</td>
<td>1.95</td>
<td>19,170</td>
<td>127</td>
<td>7,900</td>
<td>14,300</td>
<td>.1</td>
<td>.25</td>
<td>299</td>
</tr>
<tr>
<td>420</td>
<td>4,810</td>
<td>5.04</td>
<td>13,150</td>
<td>84</td>
<td>16,000</td>
<td>3,510</td>
<td>.1</td>
<td>.025</td>
<td>424</td>
</tr>
<tr>
<td>480</td>
<td>9,400</td>
<td>6.92</td>
<td>12,250</td>
<td>127</td>
<td>7,770</td>
<td>5,370</td>
<td>.1</td>
<td>.025</td>
<td>490</td>
</tr>
</tbody>
</table>

TABLE II

<table>
<thead>
<tr>
<th>R ohms</th>
<th>R₂ ohms</th>
<th>r₁ ohms</th>
<th>r₂ ohms</th>
<th>C₁ µf</th>
<th>C₂ µf</th>
<th>G by Eq. 12 mhos</th>
<th>G by measurement mhos</th>
</tr>
</thead>
<tbody>
<tr>
<td>40,000</td>
<td>19,100</td>
<td>12,900</td>
<td>15,100</td>
<td>.1</td>
<td>.1</td>
<td>.00014</td>
<td>.00018</td>
</tr>
<tr>
<td>30,000</td>
<td>17,900</td>
<td>11,200</td>
<td>15,000</td>
<td>.1</td>
<td>.2</td>
<td>.00022</td>
<td>.00021</td>
</tr>
<tr>
<td>25,000</td>
<td>17,200</td>
<td>10,200</td>
<td>17,700</td>
<td>.1</td>
<td>.2</td>
<td>.00021</td>
<td>.00023</td>
</tr>
<tr>
<td>20,000</td>
<td>16,400</td>
<td>9,020</td>
<td>16,600</td>
<td>.1</td>
<td>.2</td>
<td>.00033</td>
<td>.00026</td>
</tr>
<tr>
<td>15,000</td>
<td>15,600</td>
<td>7,650</td>
<td>30,000</td>
<td>.1</td>
<td>.4</td>
<td>.00026</td>
<td>.00039</td>
</tr>
<tr>
<td>10,000</td>
<td>14,430</td>
<td>6,900</td>
<td>18,140</td>
<td>.1</td>
<td>.2</td>
<td>.00028</td>
<td>.00032</td>
</tr>
<tr>
<td>5,830</td>
<td>12,800</td>
<td>2,950</td>
<td>406,200</td>
<td>.1</td>
<td>.9</td>
<td>.00056</td>
<td>.00035</td>
</tr>
</tbody>
</table>
holds only for this limiting condition. The observed and calculated values of frequency are given in Table I. As can be seen, there is very close agreement between them, the largest error is of the order of 2 per cent.

It may be well to discuss more fully the details of the calculations. It should be noticed that \(r_1 \) is the combined resistance of \(R \) and the plate resistance of tube (considering grid 2 as a plate). The value of \(R_p \) varies with the voltage applied, so that it is necessary to determine it at various values of voltage. To check this resistance \(R \) was removed from circuit and the direct current \(I \) to grid 2 measured at various values of \(E \), then \(R_p = \frac{\Delta E}{\Delta I} \) was calculated.

The values are plotted in Fig. 3. A sample calculation follows.

Observed frequency 30 cps

\[
R = 3900 \text{ ohms} \\
E = 84 \text{ volts} \\
\text{Current through } R = 5.22 \text{ ma} \\
E_p = 84 - (3900 \times 0.00522) = 63.6 \text{ volts} \\
\text{From Fig. 3 at 63.6 volts } R_p = 12769 \text{ ohms} \\
\tau_1 = \frac{R \times R_p}{R + R_p} = 2987 \text{ ohms} \\
\tau_1 = 116400 \text{ ohms} \\
c_1 = 0.2 \mu f \\
x_2 = 0.4 \mu f \\
f = \frac{1}{2 \pi \sqrt{c_1 x_2}} = 30.2 \text{ cps.}
\]

Experimental check of condition for Oscillation

According to Eq. (12), oscillations should cease when:

\[
\frac{C_e}{r_0 c_1} + \frac{1}{r_1} = (Q)^2
\]

The resistances in the circuit were adjusted until oscillations stopped. The values of the constants are given in Table II, together with the calculated value of \(G \) which may be compared with the value of \(G \) obtained by measurement of \(\Delta I \) caused by \(\Delta E_r \). By definition \(G = \frac{\Delta I}{\Delta E_r} \) where \(I \) and \(E_r \) are the d-c values. The resistance \(R \) was removed from circuit while making measurement of \(G \). \(I \) is the direct current to grid 2. It is seen from the table that a satisfactory agreement holds between calculated and observed values of \(G \).

A rather interesting effect takes place when the filament current is cut off while the circuit is oscillating. As the cathode cools, a point is reached at which the oscillations stop, but upon further cooling, another point is reached at which oscillations are resumed. This effect takes place only when \(R \) has a high value.

By the above procedure Eq. (14) for the frequency of oscillations of sine form for circuit of Fig. 1 was derived from theoretical considerations and experimentally verified over a fairly large range of values of capacity and resistances.

It is interesting to note, in the mathematical derivation, how a second order term, which is usually associated with an inductance in the differential equation for oscillating circuits, is introduced into the final equation, representing the behavior of a circuit containing only resistances and capacities. For another example of an analogous situation see references 1 and 7. A search of the literature showed that Eq. (14) had been derived by Tank and Graf for a symmetrical two tube circuit. See also references 1 and 2.

Additional insight into the behavior of the circuit in Fig. 1 may be obtained by a consideration of the vector diagram of currents and voltages (Fig. 4): Since \(G \) is negative, \(i \) is 180° out of phase with \(e \). Consider the component of \(i \) perpendicular to \(e_0 \). This component is 90° behind \(e_0 \) and, therefore, produces the same effect as if an inductance were present.

We can also derive Eq. (14) from the vector diagram if we assume that the currents are of sine form. The condition for oscillation is that:

\[
i_1 = i \cos \theta \\
i_2 = \frac{c_1}{c_2}
\]

\[
i_3 = i_1 (\frac{1}{r_1} + (\frac{1}{2r_2} + \frac{1}{2r_1})^2 \cos 90° - \frac{1}{2r_2} \sin 90°)
\]

Solving the above equation for \(f \) we have

\[
f = \frac{1}{2 \pi \sqrt{\frac{c_1 c_2}{r_1 r_2}}}
\]

which agrees with Eq. (14).

References

1. A. Monnier and J. Bazin, Comptes Rendue, vol. 239 (March 1900).
9. Van der Mark and Van der Pol, Physica 1, 287 (1934).
Institute of Radio Engineers
Sixteenth Annual Convention
January 9, 10, and 11, 1941. Hotel Pennsylvania, New York, N. Y.

Program of Technical Papers

THURSDAY, JANUARY 9
10:30 A. M.—12:30 P. M.

Address by L. C. F. Horle, retiring president, and introduction of F. E. Terman, president for 1941. Technical session. President Terman presiding.

2:30 P. M.—4:30 P. M.

"Magnetic Recording and Some of its Applications in the Broadcast Field," by S. J. Begun. The Brush Development Company, Cleveland, Ohio.

FRIDAY, JANUARY 10
10:30 A. M.—12:30 P. M.

Technical Session. O. B. Hanson presiding.

2:30 P. M.—4:30 P. M.

Technical Session. F. R. Lack presiding.

SATURDAY, JANUARY 11
10:30 A. M.—1:30 P. M.

Technical Session. President Terman presiding.

2:30 P. M.—4:30 P. M.

Technical Session. C. M. Janaky, Jr. presiding.

FIRE PROTECTION IN BROADCASTING

Fire fighting in broadcast studios and transmitters is a specialized problem because of the electrical equipment involved and because shutdown must be avoided if at all possible. The action of carbon dioxide on electrical fires is discussed and the apparatus for applying it to the fire is described.

Every radio and television station is vulnerable to three types of fire, which have been designated by fire protection engineers as Class A, Class B, and Class C.

Class A—Fires in wood, paper and rubbish. Fires in this class require cooling and wetting to quench embers.

Class B—Fires in flammable liquids, gasoline, oil, etc. This class requires smothering and cutting off of the oxygen supply.

Class C—Fires in electrical equipment, insulation, etc. This class also requires smothering and cutting off of the oxygen supply.

Despite the fact that it is the Class C or electrical fire that causes the most trouble, every well equipped station must be prepared to cope with Class A fires. The extinguisher recommended by leading broadcast engineers for these fires which occur most often in studios and theaters and involve carpets, drapes or other furnishings, is the 21 gallon water-type. This unit, with which almost everyone is familiar, consists of a copper or brass cylinder which must be inverted before use.

Water extinguishers are of two general types. The older type contains a quantity of water in which is dissolved some sodium bicarbonate and a vial of sulphuric acid. When in use, the extinguisher is inverted and the acid is spilled from its vial to mix with the sodium bicarbonate solution thus forming a large volume of carbon dioxide gas.

The water is then expelled under pressure sufficient to form a stream of about 25 or 30 feet. The extinguishing effect is due entirely to the water and not to the carbon dioxide which acts only as a propelling agent for the water. In this type of extinguisher, sulphuric acid and sodium sulphate are mixed with the water. Because of the effect of these chemicals on certain materials, radio engineers specify a newer type of extinguisher which does not use acid, but obtains the same propellant action by the use of a cartridge containing carbon dioxide under high pressure. In this type the cartridge is punctured when the extinguisher is inverted, thus releasing the gas which forces the water out of the tank. The water, containing no acid, does no chemical damage to the premises.

Under no circumstances should water extinguishers be played on electrical equipment, and very rarely can they be used on flammable liquid fires. Electricution of the operator may result when the energized apparatus grounds through the stream and the fire-fighter's body. Also, wetting of insulation is always to be avoided. Using water on burning liquids usually succeeds only in spreading the fire, so these water units must be considered only for carbonaceous materials.

Carbon Dioxide as a Fire Extinguisher

So predominant is the electrical fire in radio work, that extin-
guishers for these Class C fires occupy the center of interest in almost every station. And, as far as N.B.C. and C.B.S. are concerned, the only recommended type is the carbon dioxide gas unit.

Carbon dioxide, as a fire extinguishing agent, was originally developed to smother fires in ships' cargo spaces and its early applications were all in this field. Its successful use came when strong steel cylinders to hold the gas under high pressure and non-freezing valves to release it very quickly, were developed.

Its principle is simply the rapid dilution of the normal 21 per cent oxygen content of the air to a point where combustion of a given material cannot continue. For example, gasoline requires an atmosphere of about 16 per cent oxygen in order to burn. Discharging carbon dioxide gas over burning gasoline cuts the oxygen content below this point and the fire dies instantly. The same principle applies to burning insulation in the case of electrical fires.

Telephone engineers discovered this phenomenon in the days when radio had given little thought to fire. Switchboards in exchanges had proved a definite fire hazard that called for radical new methods of extinguishing. Any agent that wet or attacked insulation materials was obviously unsuitable so carbon dioxide was tried. Because the gas penetrates crevices and passes around obstructions, it proved ideal for switchboards, especially in view of the fact that the gas leaves no residue or dampness and has a higher dielectric strength than air.

When carbon dioxide is compressed in the extinguisher (usual pressure is 850 lbs per sq in at 70° F) it becomes a liquid. When released, it comes from the discharge nozzle in the form of gas and snow. The liquid carbon dioxide expands to 450 times its original volume when released. Which accounts for the penetration of the gas. The fact that the gas comes from the cylinder at a temperature of 110° below zero F helps somewhat to cool burning materials, but the dilution of the oxygen content of the air is mainly responsible for the rapid extinguishing. Clouds of the gas, which resemble steam in appearance, can be used on energized equipment without danger and without the need of first switching off the potential.

In specifying carbon dioxide extinguishers for broadcasting properties, one can safely follow the recommendation of the larger networks. They are as follows:

- Studio control room—One 4-lb carbon dioxide unit.
- Projection boards and switchboards—One 10-lb carbon dioxide unit.
- Transmitters, motors and switches—One 20-lb carbon dioxide unit.
- Transmitter stations—One 75-lb carbon dioxide unit in basement, one 10-lb carbon dioxide unit near attic entrance.
- Transformer vaults and large switchboards—One 75-lb carbon dioxide unit.
- Fire corridors—One 20-lb carbon dioxide unit.

The capacity of carbon dioxide extinguishers which is given in pounds refers to the weight of the liquid carbon dioxide stored in the cylinder and not to the pressure. These capacities range from the smallest type, a two-lb unit equipped with pistol-grip and trigger, through several medium-sized units which are set on the floor when in use and carried by a handle on top, to the large size which is usually equipped with a wheeled carriage and long extension hose. Although 150-lb units are available for fighting large fires, the 75-lb unit is the largest unit commonly used in radio work.

Built-In Systems

At certain points in broadcasting equipment where the fire hazard is concentrated and exists in an enclosed space, built-in systems discharging carbon dioxide without human direction are sometimes used. One notable example is in the main terminal room of N.B.C. in Rockefeller Center, through which all of the programs of the Red and Blue networks must pass. The importance of rapid extinguishing of fire in this terminal room is obvious and a fixed automatic system was decided upon as the quickest and most effective way of coping with the fire problem. In this type of installation, carbon dioxide cylinders are fixed at a point a short distance from the enclosed area to be protected. A simple piping system leads to the space and discharge nozzles are located in the piping at various points in the room. When the gas is released, it billows from the discharge nozzles into the room, quickly flooding it with a high concentration of gas from ceiling to floor, making it impossible for fire to burn.

Automatic door closers and dampers are usually employed with such flooding systems to prevent escape of the gas until the cause of the fire can be located and removed. Discharge of the gas is usually made automatic through the use of air-filled actuators located over the hazard. When fire breaks out, the rapid temperature rise expands the air in the actuators and a release device opens the cylinder valves. Gas supplies are sufficient to bring the oxygen content of the air below

Carbon dioxide tanks of the built-in fire control system of the main control room of the N. B. C. studios at Radio City. Each tank holds 75 pounds of CO₂, which is automatically released in case of fire

14 per cent, at which point combustion cannot take place in the insulation or windings. This system of flooding with carbon dioxide eliminates completely the human element in fire fighting and is the ultimate in protection of hazardous points. Originally developed for protection of processing rooms where flammable liquids were involved, it has since been adapted to other uses, including electrical applications.
A Phototube Absorption Analyzer

To determine the concentration of solvent vapors in chemical processing, a stable absorption-type ultraviolet photometer utilizing two phototubes and balancing amplifier has been constructed. The device is capable of detecting a fraction of one part in a million.

A n instrument known as the "Tri-Per Analyzer" has been developed to determine micro quantities of trichloroethylene and perchlorethylene in air. It consists of an extremely sensitive and stable ultraviolet photometer with a built in sampling and standardizing system. Its operation depends on the partial opacity of solvent vapors to certain bands of light in the ultraviolet region of the spectrum. It has demonstrated the value of electronics in solving a difficult chemical control problem.

The instrument is used extensively for checking the operation of solvent extraction, degreasers and dry cleaning equipment using these solvents in order to preclude improper operation of such equipment. Such improper operation often results in economic losses and hazards to health.

It is common practice to make two determinations per minute of trichloroethylene vapor in concentration as low as 10 ppm (parts per million by volume) or as low as 0.3 ppm of perchloroethylene vapor in air. The analyses are made as rapidly as samples can be pumped through the instrument. While the instrument was developed primarily for these solvent vapors, it may be used equally well on many toxic vapors, some of which are listed in the table below:

<table>
<thead>
<tr>
<th>Substance to be detected</th>
<th>Sensitivity Parts per Million of Vapor</th>
<th>Sensitivity Parts per Scale Division</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>0.0001 (approx)</td>
<td></td>
</tr>
<tr>
<td>Xylene</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Monochlorobenzene</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Anilne</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Perchloroethylene</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Phosgene</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Pentachloroethane</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulphide</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Carbon Disulphide</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Gasoline (Blue Sunoco)</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

It is possible to check readings within one scale division. It is normally necessary to know if interfering substances listed under Table I are present when analyzing for a component of a mixture.

All substances absorb light at some region of the spectrum. If a special region exists where a vapor has a high absorption (opacity) and the diluent a high transmission, the concentration of the vapor can be measured in terms of light absorbed. The ideal instrument would be one using a monochromatic source of light of wavelength corresponding to the maximum absorption of the vapor and a minimum absorption of the diluent and a highly sensitive and stable light measuring device sensitive only to this wavelength.

Under these ideal conditions the Beer-Lambert law of absorption holds. This law states that the light absorbed in traversing a distance d through a light absorbent having an extinction coefficient e and a molar concentration c is:

\[I = I_0 e^{-dc} \]

where \(I \) is the intensity of the light traversing the empty cell and \(I_0 \) is the intensity of the light traversing...
the cell containing the substance being measured.

When the logarithm of this expression is taken

\[\log \frac{I}{I_0} = dce \]

it is evident that this relationship is ideal for measuring small quantities of the absorbing substance. Other analytical methods such as refractive index, thermal decomposition, etc. formerly used depend on a linear relationship resulting in an equal sensitivity over the entire range of concentrations.

Figure 1 shows the schematic arrangement of the instrument with wiring diagram and lamp control networks. Figure 2 shows the relative response of the G.E. F376 phototube, spectral output of the G.E. 5-watt sterilization lamp and the light absorption spectra or relative opacity of trichloroethylene.

The analyzer is self contained in a carrying case weighing 35 lbs. Figure 3 shows the instrument set up for use. Figure 4 shows the instrument with panels removed.

A 15-cm sample cell, which is provided with quartz windows is rigidly mounted on a heavy duralumin panel. One-eighth-inch pipe connections are made near the cell ends for circulating the sample. A micrometer screw is inserted in the cell to cast a shadow on the measuring phototube. The top of the screw is provided with a micrometer index. When solvent laden air is passed through the cell, the light absorbed by the solvent, is compensated for by reducing the shadow on the phototube by turning the screw. The reading of the screw is thus an index of the light absorbed. The instrument is calibrated in terms of solvent concentrations in ppm and the micrometer screw setting. Calibration curves are provided on the instrument panels.

A porous Alfrax filter is inserted between the light cell and the sampling line to keep dust from entering the light cell. An absorbent carbon tube controlled by a three way valve is used to remove solvent vapors from the air in order to set the zero point of the instrument. This absorbent carbon is effective in reducing the concentration of solvents from as high as 1000 ppm to less than 1 ppm. After the zero point is established the valve position is changed, by-passing charcoal tube so that the air sample passes directly into the light cell. A pump operating continuously circulates the sample at a rate of about 10 liters per minute.

The large compartment of the instrument contains the measuring phototube, which is mounted so that light from the low pressure mercury vapor lamp passes through the light cell onto the photosensitive surface of the tube. Below the lamp is a reference phototube to compensate for minute fluctuations of lamp intensity. A coarse adjustment to equalize the light to the phototubes is made by a variable slit which is adjusted by means of a screw on the outside of the case. A potentiometer in the phototube battery circuit is used for the fine balancing adjustment. A constant voltage transformer and a monocular square resonant constant current network delivers a constant light output in spite of wide changes in line voltage and lamp temperatures and pressures.

A type 32 tube operating at reduced filament and plate voltages is used as a sensitive electrometer light balance indicator. The tube control leads pass through the partition into the battery compartment. Grid bias control and phototube balancing potentiometers with the plate microammeter are mounted in the battery compartment. A switch is provided to ground the grid to standardize the electrometer.

The combination of voltage and current control with the compensating reference phototube, integral sample cell and light valve and rapid sampling and standardizing systems were all found necessary to provide the sensitivity and stability to measure changes in light intensity of less than .003 per cent.

Fig. 4—Above, the instrument with front panels removed. The two phototubes appear at the top and bottom of the larger compartment.

Fig. 3—Left, front view of the R. and H. "Tri-Per-Analyzer" which combines the sampler, standardizer and phototube detector.
FOURTH ANNUAL BROADCAST ENGINEERING CONFERENCE

OHIO STATE UNIVERSITY, COLUMBUS, OHIO...FEBRUARY 10-21

FIRST WEEK — FEB. 10-15

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speakers/Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 a.m. to 11 a.m.</td>
<td>SPEECH INPUT SYSTEMS</td>
<td>C. M. Lewis - RCA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J. D. Colvin - RCA</td>
</tr>
<tr>
<td>11 a.m. to 1 p.m.</td>
<td>SOUND REPRODUCTION FROM RECORDINGS</td>
<td>F. V. Hunt - Harvard University</td>
</tr>
<tr>
<td>2:30 p.m. to 4:30 p.m.</td>
<td>TELEVISION STANDARDS</td>
<td>W. R. G. Baker - General Electric Company</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COLOR TELEVISION</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peter C. Goldmark - Columbia Broadcasting System</td>
</tr>
<tr>
<td></td>
<td></td>
<td>THE STATUS OF TELEVISION</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Harry Sadenwater - Radio Corporation of America</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HEARING, THE DETERMINING FACTOR FOR HIGH FIDELITY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Harvey Fletcher - Bell Telephone Laboratories</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U-H-F TRANSMISSION</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kenneth A. Norton - Federal Communications Commission</td>
</tr>
<tr>
<td>9 a.m. to 11 a.m.</td>
<td>THE STATUS OF FREQUENCY MODULATION</td>
<td>Edwin H. Armstrong - Columbia University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F-M ALLOCATION AND COVERAGE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stuart Bailey - FCC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jansky & Bailey</td>
</tr>
<tr>
<td>11 a.m. to 1 p.m.</td>
<td>U-H-F ANTENNAS AND TRANSMISSION LINES</td>
<td>Andrew Alford - Mackay Radio and Telegraph Company</td>
</tr>
<tr>
<td>2:30 p.m. to 4:30 p.m.</td>
<td>TELEVISON FIELD PICKUPS</td>
<td>Harold P. See - National Broadcasting Company</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E. D. McArthur - General Electric Company</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ROYAL TABLE ON RECEIVERS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J. Kelly Johnson - Hazeltine Corp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E. B. Passow - Zenith Radio Corp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W. L. Dunn - Belmont Radio Corp.</td>
</tr>
<tr>
<td>9 a.m. to 11 a.m.</td>
<td>F-M FIELD TESTS</td>
<td>Raymond F. Guy - National Broadcasting Company</td>
</tr>
<tr>
<td>11 a.m. to 1 p.m.</td>
<td>OPERATING PROBLEMS IN F-M TRANSMITTERS</td>
<td>I. R. Weir - General Electric Company</td>
</tr>
<tr>
<td>2:30 p.m. to 4:30 p.m.</td>
<td>ROUND TABLE ON F-M PROBLEMS</td>
<td>E. J. Content - WOR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paul deMars - Yankee Network</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dan Gellerup - WTMJ</td>
</tr>
</tbody>
</table>

SECOND WEEK — FEB. 17-21

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speakers/Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 a.m. to 11 a.m.</td>
<td>THE STATUS OF FREQUENCY MODULATION</td>
<td>Edwin H. Armstrong - Columbia University</td>
</tr>
<tr>
<td>11 a.m. to 1 p.m.</td>
<td>F-M ALLOCATION AND COVERAGE</td>
<td>Stuart Bailey - FCC</td>
</tr>
<tr>
<td>2:30 p.m. to 4:30 p.m.</td>
<td>HEARING, THE DETERMINING FACTOR FOR HIGH FIDELITY</td>
<td>Harvey Fletcher - Bell Telephone Laboratories</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U-H-F TRANSMISSION</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kenneth A. Norton - Federal Communications Commission</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPERATING PROBLEMS IN F-M TRANSMITTERS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I. R. Weir - General Electric Company</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E. J. Content - WOR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paul deMars - Yankee Network</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dan Gellerup - WTMJ</td>
</tr>
</tbody>
</table>

SPECIAL FEATURES

Tuesday, February 11 — 8 p.m. Chittenden Hotel — E. K. Jett, "Communication in National Defense"

Thursday, February 13 — 6:30 p.m. — Dinner, Ft. Hayes Hotel

Saturday, February 15 — Basketball Game — Ohio State vs. Purdue

Tuesday, February 18 — 8 p.m. Chittenden Hotel — G. C. Southworth, "Wave Guides"

Thursday, February 20 — 6:30 p.m. — Banquet, Ft. Hayes Hotel

January 1941 — ELECTRONICS
R-F Matching Sections

A graphical method of computing the shunt and series elements of L-type matching sections for matching a complex impedance to a resistance such as those of an antenna and its transmission line, in terms of the antenna and line impedances

When a resistive impedance is to be matched to a complex impedance, for example, a transmission line to an antenna, a simple means of effecting a proper impedance match is the use of the L-type section, consisting of a series inductance and a shunt capacitance. A typical matching section of this type is shown in the accompanying circuit. The charts printed below have been prepared to allow a rapid determination of the shunt and series elements in terms of the terminating impedance values.

It is assumed that the complex terminating impedance (that of the antenna) is of the form $R + jX$, that the reactance of the series inductance arm is X_L, while that of the shunt capacitive arm is X_C.

Then X and X_L can be combined in series to form the total inductive reactance X_L. The impedance looking into the L-section, terminated by $R + jX$, will then be

$$Z_n = \frac{-jX_L (jX_L + R)}{R + j(jX_L - X_C)}$$

When the input of the L-section is terminated in a pure resistance R_n, the surge impedance of the transmission line, a proper match is obtained when the reactive component of Z_n is zero, and when the resistance component is equal to R_n.

With these conditions specified, the reactances X_L and X_C may be computed from

$$X_L = R \sqrt{r - 1}$$
$$X_C = R \sqrt{r - 1}$$

where r is the ratio R_n/R. The curves printed below give X_L and X_C in terms of r and R. As an example, suppose the antenna displays an impedance of $25 + j50$ ohms, and the surge impedance of the line is 250 ohms. Then $r = 250/25 = 10$, and $R = 25$. From the curves $X_L = 75$ ohms and $X_C = 90$ ohms. The shunt reactance is accordingly $-j90$ ohms, and the total series reactance is $+j75$ ohms, $+j50$ ohms of which is contributed by the antenna inductance. Hence the necessary additional series inductance is $+j25$ ohms. It should be noted that this type of network is useful only when r is greater than 1.
Color-Music for the Home

By Robert D. Burchfield

In spite of much opinion to the contrary, the author believes that color-music, synchronized with audible music, will meet with favor in the average home. Luminous color effects automatically controlled by radio and phonograph music will be called here "automatic color-music."

Electronic equipment is most suitable for synchronizing color effects with music. A popular automatic color-player, the Patterson-RCA instrument, is essentially a large-scale machine, using saturable reactors and thyratron tubes in connection with frequency filters and, of course, audio amplification. The color changes produced by it represent the variations in pitch of the music being interpreted, with red and orange for the low notes, yellow and green for the medium ones, and blue and violet for the high pitches. This "frequency analogy" of sound and light is widely accepted by workers in the art, since it has some psychological basis.

Equipment of the Patterson-RCA type was used in the Firestone "Singing Color Fountains" at the Chicago Century of Progress and at subsequent expositions (including New York World's Fair). In this spectacular exhibit a row of fountains serves as the display medium for the play of colored light—an arrangement that benefits by the added appeal of moving water. The popular success of such color-music presentations is evidence that some form of automatic color-organ would be appreciated by the average radio set owner—especially if he has a phonograph unit.

In U.S. Patent No. 2,131,934 the author describes a color player in which three small low-voltage lamps (red, green and blue), disposed behind a translucent screen, give a luminous interpretation of music according to the frequency analogy of sound and light. If a type 42 power pentode is used, the number of tubes in the circuit can be reduced to two. The results produced by apparatus of this type are marked by the presence of excessive flicker and low luminous output. By means of modification of the circuit, the author has simultaneously eliminated both of these shortcomings. The improved color-organ utilizes five receiving-type tubes and three 15 watt 110-volt lamps. Figure 1 shows this unit installed in a radio-phonograph. The lamps are inside the translucent glass sphere. Low, medium and high tones of music actuate the red, green and blue 15-watt lamps.

Reasoning that a dual instrument might be the answer, the author added a separate circuit and a separate group of lamps. The lamps of this supplementary group are disposed as indicated in Figure 2, and are served by a circuit similar to the first, but functioning according to the amplitude of the audible music. The lamp pairs 2 and 4 gradually light up in succession as the sound amplitude increases, and vice versa. The pair 1 is on with zero signal and dims as pair 2 brightens. The effect of such action is one of mounting and subsiding motion, beside color change. In this manner, crescents and diminishingoes are strikingly interpreted.

To the unaccustomed eye, the single-acting (color-change with pitch) instrument is adequate for musical accompaniment; but to the same eye the dual color-organ seems many times more remarkable.

January 1941 — ELECTRONICS
OF CINCH PARTS FOR 1941!

A review of successful radio performances include these "CINCH" parts. Presented here as a preview of "standard" in the sets of 41. From sockets to lugs in great varieties, parts for every purpose and need...CINCH design and workmanship assure the user complete satisfaction. For years its customers, leading set manufacturers, have relied on "CINCH" to meet the rapid improvements within the industry. "CINCH" parts come to you recommended by hosts of users...tested by time and service...and with an enviable record for meeting manufacturing emergencies.

"Cinch" and Quad Radio Sockets are licensed under H. H. Eby socket patents.

CINCH MANUFACTURING CORP., 2335 W. VAN BUREN ST., CHICAGO, ILL. SUBSIDIARY OF UNITED-CARR FASTENER CORP., CAMBRIDGE, MASS.

ELECTRONICS — January 1941
and it's a movement to DeJur-Amsco Meters, because they are meeting every requirement of modern manufacturing and testing procedure, performing equally well as components in manufactured equipment and for production measurements and testing.

Do your meter requirements call for High Accuracy? Dependable Performance? Modern Styling? Reasonable Cost?—whatever they may be, you can always depend on DeJur-Amsco Meters to do the job the way you want it done.

Of course, accuracy and dependability come first with you, as they do with DeJur-Amsco—and when you can realize important savings in the bargain, there's a line of meters that bears investigation.

Write today and let us tell you more about how DeJur-Amsco can step up performance and cut down costs for you.
A new synchronizer for shooting flash pictures brings new opportunities to camera fans because of its smooth performance and extremely low price. Its features are many: automatic safety retractable plunger; quick bulb change, sure contact socket; synchronization at any shutter speed with any bulb, etc.

- The National Vulcanized Fibre and Phenolite, laminated bakelite, insulating parts—thanks to their high electrical, mechanical properties and durability—are key factors in the perfect synchronization and long life of the Chardelle Meteor Flash. Both Phenolite and National Vulcanized Fibre possess outstanding qualities which make them practical in countless uses. They are available in sheets, rods, tubes and special shapes.

- Perhaps there is a place where you can use these versatile materials. Our technical staff's broad experience in the application of these remarkable products is available to you on any problem.
RELAYS

The Ward Leonard Line of Relays comprises light, intermediate and heavy duty, sensitive, transfer and time delay types for every application. They all have crisp action, are dependable and durable yet consume but little current. Various Ward Leonard Relays are described in "W.L. Relay Bulletins."

RESISTORS

More than 10,000 Electrical and Industrial Engineers are using Ward Leonard Data Sheets as Resistor reference guides. Ward Leonard Resistors cover a wide range of sizes, ratings, enclosures and terminals. You will most likely find your "special" is a Ward Leonard "standard." Send for "W.L. Resistor Bulletins."

RHEOSTATS

Ward Leonard Line of Rheostats includes everything from small types for fractional H.P., motors to the largest multiple units to control heavy current requirements. Ward Leonard Rheostat Bulletins fully describe types, drives, mountings and accessories. The Ward Leonard Line is complete. Send for "W.L. Rheostat Bulletins."

WARD LEONARD ELECTRIC COMPANY

Electric Control Devices Since 1892

Ward Leonard Electric Company, 32 South Street, Mount Vernon, N. Y.

Please send me bulletins on Relays () Resistors () Rheostats ().

Name

Firm

Address

City State

January 1941 — ELECTRONICS
FOR IMMEDIATE DELIVERY!

It's a honey!—this new Western Electric 250 watt transmitter. Engineered by Bell Laboratories for highest signal quality, utmost compactness, accessibility and distinctive styling. Low power consumption, low tube cost, low maintenance cost assure unusual operating economy. Get full details—Ask Graybar for Bulletin T-1752.

Outstanding Features

Frequency Response: flat within 1.5 db from 30 to 10,000 c. p. s.
Distortion: less than 5% in frequency range of 30 to 1200 c. p. s., less than 3% in range below 5000 c. p. s. at all values of modulation to 100%.
Noise Level: r. m. s. noise level is 60 db or better unweighted, 70 db weighted below signal level at 100% single frequency modulation.
Grid Bias Modulation of last RF stage.

Western Electric
Ask your Engineer!
for this application. However, the author's model has been in intermittent use for several months and the performance of the 71-A's has not changed to date.

In the circuit of the dual-action color-organ (Fig. 5) the circuit of Fig. 4 is combined with a similar circuit employing taps on the output transformer secondary instead of series filter elements. The action of this "intensity" or "amplitude" section is apparent from the diagram and from the previous description in connection with Fig. 2.

Although the idea of having two (or more) kinds of color changes in one display is not new in the realm of color-music, the author believes that it is new in connection with automatic color-music. Many variations of presentation and action are possible with multiple instruments, but the form described is practical and impressive. It features just enough complexity of effect to give the observer the impression of "seeing" music.

...

A Percentage Modulation Meter

By S. T. Carter

A DEVICE FOR THE MEASUREMENT of modulation percentage is generally too costly to warrant its use for purposes other than those of regular broadcast stations. While for services other than broadcast the use of an instrument of the type used at broadcast stations may be desired it is not generally necessary, while most composite units are in themselves often costly and more often have several adjustments to be made before actual measurements are made. The instrument described makes use of one meter for reading both the carrier current and the actual percentage of modulation through a switch arrangement, has no calibrating voltage to adjust and has only one variable control, the r-f or carrier input potentiometer. In addition to its use as a modulation meter and carrier shift indicator the
A manufacturer of mine safety devices now supplies a practical, foolproof CO alarm—another device designed around the unfailing contacts of the SENSITROL Relay. This device continuously samples the mine air; and the minute temperature changes which take place through combustion are used to operate the safety alarm. Positive operation is assured, even at extremely low energy levels, because the SENSITROL'S contacts are closed by magnetic force—entirely independent of the operating coils.

WHEN You THINK ABOUT NEW WAYS TO DO THINGS

...the unusual characteristics of the SENSITROL Relay, listed above, may suggest a new product; or, they may be just the thing to round-out or improve the design you have in mind. For no matter how limited the energy available, the SENSITROL will enable you to put it to work as a means of positive, low-cost control. Why not have full particulars on SENSITROL, as well as on other Weston sensitive and auxiliary relays, at your fingertips? Consult the nearest Weston sales office, or write to Weston Electrical Instrument Corporation, 618 Frelinghuysen Avenue, Newark, New Jersey.
The radio towers shown here exemplify three highly desirable Blaw-Knox characteristics—pleasing appearance, great coverage, low maintenance cost. Every station operator knows that these are profit-factors. Every station engineer knows that they are the result of able engineering and long experience. Blaw-Knox engineers will gladly discuss your antenna problems with you.

BLAW-KNOX DIVISION of Blaw-Knox Company
2077 Farmers Bank Bldg., Pittsburgh, Pa.
Offices in principal cities

Fig. 1—Circuit diagram of percentage modulation meter

Instrument may be used as an audio monitor by inserting a pair of headphones or an amplifier in the monitor jack.

This instrument may be constructed in any manner suited to its use, as a panel unit or for portable use in a small metal can. In either case the cost should be under $30.00, including the cost of the indicating meter.

The actual construction should present no problem, since in three different units constructed by the writer, all gave about the same results as far as sensitivity and frequency response were concerned. The frequency response is within 1 db from 30 to 9,000 cps, more than adequate for any purpose to which the meter may be put.

Figure 1 shows the circuit used. The r-f lead from its termination at the binding post through the 0.0001 uf condenser to the grid of the tube should be short, direct and well clear of all other wiring in order to minimize r-f in the second diode circuit.

After construction the resistors R_5 and R_6 should be adjusted. A minimum amount of coupling should always be used to the final amplifier stage of the transmitter, when making these adjustments, as well as in actual use. For the adjustment of R_s, set the peak-carrier switch S, to the center position (number 2). This position reads the carrier voltage. Advance the potentiometer control R_6.

January 1941 — ELECTRONICS
B\text{ased} on the principle of the well-known fixed-capacity Erie Ceramicons, these Ceramicon Trimmers provide a uniform, straight-line capacity change per degree of rotor rotation.

Erie Ceramicon Trimmers consist essentially of a silver electrode fired on the top surface of a steatite base, and a circular ceramic dielectric rotor with a coating of silver fired on its upper surface. Both the under surface of the rotor and the silvered ceramic base are lapped and held in close contact by a constant pressure spring, making the assembly dust proof. Due to the mounting base being made of a low dielectric-constant steatite, Ceramicon Trimmers may be mounted on a metal chassis with only a slight increase in the minimum capacity.

These units are made in three standard styles, illustrated at the left, each of which is available in three temperature coefficients of capacity; 0, \(-300 \times 10^{-6}/\degree C\) and \(-500 \times 10^{-6}/\degree C\).

The design and excellent operating characteristics of Erie Ceramicon Trimmers have been well proven in thousands of cases of actual operation. A data sheet has been prepared describing the characteristics and ranges of Ceramicon Trimmers in detail. Write for your copy.

Capacities

<table>
<thead>
<tr>
<th>Style</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS5D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPO</td>
<td>< 5</td>
<td>> 30</td>
</tr>
<tr>
<td>N300</td>
<td>< 7</td>
<td>> 50</td>
</tr>
<tr>
<td>N500</td>
<td><10</td>
<td>>110</td>
</tr>
<tr>
<td>TD2A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPO</td>
<td>< 3</td>
<td>> 12</td>
</tr>
<tr>
<td>N300</td>
<td>< 5</td>
<td>> 20</td>
</tr>
<tr>
<td>N500</td>
<td>< 7</td>
<td>> 45</td>
</tr>
<tr>
<td>TS2A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPO</td>
<td>< 3</td>
<td>> 12</td>
</tr>
<tr>
<td>N300</td>
<td>< 5</td>
<td>> 20</td>
</tr>
<tr>
<td>N500</td>
<td>< 7</td>
<td>> 45</td>
</tr>
</tbody>
</table>

RESISTOR CORPORATION, ERIE, PA.

ELECTRONICS — January 1941
With the development of the new 88-A, 50 watt recording amplifier, Presto offers you for the first time a completely calibrated instantaneous recording system. The frequency response of the 88-A amplifier is matched to the characteristics of both the Presto 1-C cutting head and the Presto recording disc. Changes in response due to varying groove diameter are taken care of by the Presto 160-A automatic equalizer.

Using this complete system you can make Presto instantaneous recordings which will reproduce a frequency range from 50 to 9,000 cycles, uniformly, from start to finish.

A selector switch on the 88-A control panel pre-emphasizes the high frequency response to match the NBC Orthacoustic or either of the two high fidelity lateral reproducing systems now standardized in most broadcasting stations.

The 88-A amplifier has a gain of 85 db providing all the amplification necessary between your program lines or preamplifiers and the cutting head. The power output is 50 watts with 1% distortion. It mounts on a 14" x 19" rack panel and has a built-in power supply. List price is $250.00.

Add the 88-A amplifier and Presto 1-C cutting head to your recording installation. The results will be a revelation to you. Complete specifications are given in a new Presto catalog sheet just issued.

The adjustment of the carrier meter on the new equipment can be made in several ways. If a calibrated modulation meter is available it may be made directly from this source. A steady tone should be used to modulate the transmitter to some convenient value, 70, 80 or even 100 per cent. Then the carrier is adjusted so the meter position shows a reading of half scale with the switch in position 2. The peak-carrier switch is then set to read the proper positive or negative peak (position 1 or 3). Adjust R_p until the meter indicates the proper percentage. In the event the two meters cannot be made to read the same value, the coupling to the final amplifier should either be tightened or loosened and the value of R_p changed to again bring the carrier reading back center scale. The instrument may be calibrated with the aid of an oscilloscope, using 100 per cent modulation as a calibration point.

In the event there is no oscilloscope or calibrated meter at hand, Fig. 2 shows another method of calibration. An 8 μf paper condenser is shunted across the 0.0001 μf mica unit of Fig. 1. A variable source of direct voltage is connected to the input of the 6C6 tube through the audio choke as shown. With the carrier input control set at three-fourths of full scale the d-c voltage is adjusted until the meter indicates the half-scale required. Then a variable source of alternating voltage is connected to the r-f input terminals and adjusted until the carrier meter just starts to show an upward movement. This value is 100 per cent modulation. The carrier-peak switch is then shifted to read peaks and the value of R_p adjusted until the instrument indicates 100 per cent modulation. The alternating voltage used in this adjustment should have...
The AMERICAS in '41

Naturally, the United States of America must assume leadership in solidifying the New World, so that all outside nations must respect its Peoples. A United States industrially strong, is the bulwark by which this vision shall become a reality.

Superior Tube Company is a young organization, but measured by its service to all types of industry, we have achieved a position that compels us to look to the far distant future.

An addition to our buildings and equipment is under way, so that by the second quarter of this year the output of Superior small tubing will be as much as 75% greater than in the year just closed.

We believe that, while we have a vital place in the Defense Program, we are obligated to maintain a continuous flow of tubing to the many customers who have helped so earnestly to establish us. Regardless of their line of business, they need us and we propose to see to it that their trust in Superior has not been misplaced.

Our plant by April should be a rather extraordinary production unit. We expect to make things hum in '41.

SUPERIOR TUBE CO.

["Small Tubing is our only business, and we know it."]

NORRISTOWN, PENNSYLVANIA

Tubing from 5/8" OD down... SUPERIOR Seamless in various analyses. WELDRAWN Welded and drawn Stainless. BRAWN Welded and drawn "Monel" and "Inconel". SEAMLESS and Patented LOCKSEAM Cathode Sleeves.

"FOR FINE SMALL TUBING"
In Full Dress... RELAYS...in Overalls!

The speaker of the evening wears full-dress... while the "public address" technician does his work in overalls. But, with both, it's the DOING of a JOB that counts.

RELAYS, too, wear a coat of polished chrome and gleaming bakelite... or the dull raiment of strict utility. In either case... you depend on RELAYS by GUARDIAN for that unfaltering performance that only a QUALITY product can deliver.

Whether your electrical control problem calls for deluxe CUSTOM-TAILORING... or "mass-production-at-a-price", you get the best control for the job using

RELAYS by GUARDIAN

GUARDIAN offers matched-to-your-product electrical control. From more than 7000 standard control parts, GUARDIAN engineers can give you a "special" relay... perfectly matched to your job... to your size... to your price and production schedule.

Get Guardian's 1941 Catalog now... or send your control problems for FREE ENGINEERING ADVICE. Find out how Guardian's accuracy, speed and economy keeps purchasing happy... production pacified... engineering contented... field service at a minimum.

Write for New Guardian Catalog "E" Today. No Cost or Obligation.

GUARDIAN ELECTRIC
1625 W. Walnut St.
Chicago, Illinois

good wave form. The 110-volt 60-cps supply should serve very well.

If a beat frequency oscillator or other source of variable frequency voltage is available the frequency characteristics of the instrument may be determined. With the direct voltage used to simulate the carrier and the a-c input voltage constant, the frequency of the a-c voltage is varied through the audio range. The deviations may be read on the instrument itself, with the peak-carrier switch set to read peak values.

A Solenoid-Whip Aerial

By WILLIAM R. WILSON
Royal Canadian Mounted Police

A SOLENOID-WHIP AERIAL was developed over a year ago for the Royal Canadian Mounted Police intermediate frequency two-way police radio system in the Province of Manitoba. This aerial produces an increase in field strength of four times as compared to a whip aerial of the same height, or, in other words, it is equivalent to an increase in transmitter power of 16 times.

Before proceeding to describe the solenoid-whip aerial, it might be well to examine the problem of feeding a very short aerial on the medium frequencies. The aerial at its base will look like a highly capacitive reactance in series with a very small loss and radiation resistance. Measurements made on an 8-foot whip aerial on 4165 kc would indicate that the aerial was simulated by 15 µµf in series with a resistance of less than 1 ohm. Difficulty was experienced in measuring accurately the loss and radiation resistance of the aerial due to its very small value. We may then draw the aerial circuit as in Fig. 1.

It will be observed that if Cc is large compared with C, that most of the r-f current will circulate through Cc and not through C, and the antenna radiation and loss resistance. Most of the output power will then be dissipated in Rc. It was found by experiment that it was possible to increase the field strength from 700 microvolts per meter to 1200 microvolts per meter at one mile by reducing the capacity across the aerial base insulator from approximately 8 µµf to 3 µµf. It is obvious

January 1941 — ELECTRONICS
YES, WE'RE BUSY . . . but we still find time to welcome new business; and we still maintain the exacting standards which have made us a leading, dependable source of supply for low-loss Steatite and Ultra-Steatite Insulators. Let us quote on your next requirements.

GENERAL CERAMICS COMPANY
RCA Building, New York · Steatite Division: Keasbey, N. J.
INTRODUCING the "DP-D"

...a new CANNON Plug and Socket combination to accommodate all external connections to any unit of Aircraft Radio Equipment. Especially adaptable to rear chassis connection for Air Transport Radio (ATR) units.

In one standard assembly combination provision is made for disconnecting; (1) Power, control, microphone and audio leads; (2) Heavy current up to 40 amperes per contact, or a total of 160 A. using 4 contacts in parallel; (3) High voltage up to 1500 volts; (4) Frequency selector motor leads; (5) Antenna transmission lines (co-axial circuits); (6) Power packs and dynamotors; (7) Timing shafts; (8) Control panels; (9) Jack boxes, etc., etc.

Male and female halves are mounted in strong, accurately die-cast, close-fitting, aluminum-alloy shells which eliminate the necessity for any additional "hold-down" provisions on plug guide pins... Plug and socket contact assemblies are interchangeable between their respective die-cast shells and the shells themselves may be mounted interchangeably... Straight and 90° Connector Shells are available for converting either half of the assembly to pendant mounting.

This new plug assembly is but one of the CANNON line of Cable Connectors, now comprising more than 1000 different fittings, which are pre-eminent in the fields of Sound, Aircraft, Geo-physical Research, Instrument-Control-on-Ships and Laboratory Panels.

CANNON ELECTRIC DEVELOPMENT CO.
3209 HUMBOLDT ST., LOS ANGELES, CALIFORNIA

CANNON PLUGS

from the above description that it is most important that the capacity between the base of the aerial and the car be kept as low as possible by careful consideration to its mounting and stray wiring capacities. As a result of these measurements it was thought desirable to mount the resonating inductance at the base of the aerial and coaxial with it so that the stray capacities could be kept to a minimum and also so that its field would produce useful radiation. The gain in field strength on 4165 kc resulting from this change was found, however, to be only 10 per cent. The size of the resonating coil was 3½ inches diameter by 3½ inches long wound with No. 12 wire on a bakelite form. The diameter and length of the resonating inductance mounted at the

Fig. 2—Circuit of solenoid whip antenna

LIGHT ON A NOVELTY

Shown recently at Chicago's Merchandise Mart was this combination lamp and radio receiver with tuning dial in the base and the volume control immediately above. The main upright is of moulded bakelite and—in case you're interested—the shade is of celanese taffeta.
ACCOMPLISHMENT
the growth of a new product in the United States

During the year 1940 the I. T. & T. Selenium Rectifier has quickly found popularity over a wide range of applications wherever continuous current is obtained from alternating current sources.

With its remarkable efficiency, ruggedness, wide temperature range, low back leak, compactness and light weight, the I. T. & T. Selenium Rectifier looks forward to 1941 with confidence for still wider ranges of application.

*Curve shows actual monthly growth in sales during 1940.

INTERNATIONAL TELEPHONE DEVELOPMENT CO., INC.
137 Varick Street, New York, N. Y.
THIS is the Simpson movement—the famed full bridge type movement with soft iron pole pieces. It is the surest and simplest proof that Simpson Instruments are today’s biggest values in electrical instruments.

Here is a finer, more rugged, more expensive type of construction. It not only permits greater accuracy but maintains this accuracy, year after year. Yet, thanks to Simpson’s long experience and efficient modern methods of instrument manufacture, this lasting accuracy costs no more than you’d pay for ordinary instruments.

Simpson Instruments could rest their case on “Exhibit A.” But beyond this finer movement they offer greater beauty, finer craftsmanship that have played their part to make Simpson Instruments so popular for both original equipment and production testing.

Write for complete new literature

HERE’S A LOW-COST ANSWER TO EVERY TESTING NEED

- The Simpson line of Micro-Testers is the original line of small, compact, uniform-size testing instruments. It includes nine testers which, singly or in combinations, cover every servicing or production testing requirement. Handy size, light weight—they are ideal for portable work or to supplement panel instruments.

Model 280, shown here, is typical of the advanced design found in the entire line. It combines an indicating instrument with a current transformer to cover five ranges yet sells for $9.75.

SIMPSON ELECTRIC CO., 5212 Kinzie St., Chicago, Ill.

SIMPSON INSTRUMENTS THAT STAY ACCURATE

base of the aerial were then varied and the field strength measured keeping a constant power output from the transmitter all subsequent measurements being made on 4165 kc. It was necessary to vary the height of the whip aerial which was mounted on the top of the solenoid as the length of the solenoid was varied so that the overall height from the bottom of the solenoid to the top of the whip aerial remained constant at 8 feet. The solenoid was mounted on the same base insulator as was used for the whip aerial. The solenoids were wound on dry wooden dowels which had been boiled in paraffin for several hours. The wire size was No. 12 B. & S. and in all cases they were wound at 6 turns per inch and their inductance was adjusted so that the electric length of the solenoid and whip aerial was 1 wavelength. It was found that by making the solenoid long and slender that the field strength could be increased by 2.4 times. A solenoid 2 inches in diameter and 2 feet long wound with 141 turns was about the optimum size and resulted in the maximum gain in field strength. By increasing the length of the solenoid to 4 feet and making its diameter 1.25 inches, the field strength was reduced 8 per cent. This would appear to be due to the rapid reduction in the Q of the coil due to its large ratio of length to diameter. There are two factors contributing to this large increase in field strength: one is that the stray capacities to the base of the whip aerial are reduced considerably and the other reason is that useful radiation is obtained from the resonating coil when its length is made long.

It has been found that by winding the 2-foot solenoid on a bakelite form and making it inductive at its base, i.e.
The COLONEL’S LADY and JUDY O’GRADY Are NOT Sisters Under Their Skins!

1. A glass tube, continuously drawn with utmost precision to the size of a small pencil lead, is the beginning of an IRC Type BT Insulated Resistor.

2. The tube with a coating of Metalized type resistance material permanently bonded to its outer surface, and stabilized by a baking process.

3. Special leads for easy soldering have enclosed, positive contact to element which cannot open. Insertion of leads inside the element tube aids rapid heat dissipation, drawing heat out of the resistor.

A finished 1-watt unit. Element is completely sealed by molded insulating phenolic. Moisture cannot enter. No possibility of grounding. Leads anchored inside insulation cannot turn or pull loose.

Flattering and widespread imitation following IRC's development of the Insulated Resistor with its obvious advantages as compared with old-style, non-insulated units has resulted in such uniformity of appearance that it is difficult to distinguish one make from another. This similarity, however, is only skin deep—only as deep as the insulation.

What lies beneath is of the utmost importance from the standpoint of performance. The outside insulation is important only because it protects the inside resistance element, prevents shorting and facilitates rapid and economical assembly. Not this protection but what it protects is the final determining factor of quality—and it is underneath this insulation that insulated resistor similarity ends.

As an outstanding example, the IRC type BT insulated resistors, comprising the unique “Metalized” filament element and specially developed insulating phenolic covering, have humidity characteristics hitherto unobtained. More than 10 cycles of alternate two hour immersions in 100°C and 0°C salt solution followed by two hour loadings at normal rating result in an average change in resistance value of less than 10%.

In connection with the present defense program such performance is essential for dependable communication equipment but it is also obviously very important for all commercial applications.
slightly longer electrically than a \frac{1}{2}\text{-}wave aerial so that it would resonate a condenser of approximately 200 \mu F connected between the plate of the power amplifier and ground as shown in Fig. 2, that a gain in field strength of 4 times results as compared to a whip aerial the same height. This is equivalent to an increase in transmitter output power of 16 times. There are a number of factors contributing to this increase in field strength over the former solenoid-whip aerial. They are:

(a) The bakelite construction.
(b) The base of the aerial is now a high impedance high voltage point.
(c) Useful radiation is obtained from the field set up by the tank current flowing through the solenoid.

Figure 3 shows the method of mounting the solenoid-whip aerial on the car. The steel brackets are isolated from the solenoid by a 10-inch length of bakelite for the reasons as already outlined.

At the present time the Royal Canadian Mounted Police have ten police cars in the rural districts around Winnipeg equipped with intermediate frequency two-way radio using the solenoid-whip aerials. The approximate maximum daylight ranges which may be obtained from police cars using solenoid-whip aerials and a 13-watt telephone transmitter are somewhat greater than the following figures; the ground conductivity values are also indicated.

West of Winnipeg 70 miles 170\times 10^{-15} \text{ emu}.
North-East of Winnipeg 60 miles 190\times 10^{-16} \text{ emu}.
South of Winnipeg 60 miles 150\times 10^{-15} \text{ emu}.
North of Winnipeg 46 miles 90\times 10^{-15} \text{ emu}.

These ranges are obtained when the atmospheric noise on 4165 kc could be classed as average daylight conditions. The ranges are naturally variable over a period of time due to the variability of atmospheric noise and under conditions of very heavy static which may occur on some nights, they may be reduced approximately 50 per cent. The percent intelligibility on telephony at these ranges is very high under the average conditions as mentioned.

The ranges using a standard 8-foot whip aerial with a 10-watt telephone transmitter are as below. The decrease in transmitter power from 13 to 10 watts would result in only a 12 per cent decrease in field strength, a negligible amount.

West of Winnipeg 50 miles.
North-East of Winnipeg 40 miles.
South of Winnipeg 37 miles.

The ranges using the 8-foot whip aerial were not tested under identical conditions but they serve sufficiently well for comparative purposes. The signal level at these ranges is not as high as the signal level at the limits of the range with the solenoid-whip aerial as listed above.

Variations in ground conductivity
DESIGNERS—if you’ve got a job on your hands that calls for cost-cutting and space-saving, look to Stackpole for your switches. The four compact, inexpensive types illustrated here have innumerable applications for handling small power circuits.

TYPE SS-9
—a single pole, double throw slide switch for use as a record reject switch or any other application requiring a momentary contact switch which is returned to its normal position when operating pressure is removed.

TYPE SS-3
a double pole double throw switch with Underwriters’ Approval which suggests itself for the following uses: Change-over switch for 110 volt battery sets; Band change switch; Phone-radio switch, and many other uses. Supplied also as SS-4—a double pole single throw type.

TYPE SS-1
a single pole, single throw switch with Underwriters’ Approval for 10 amp. 125 volts. Also supplied as Type SS-2 with three terminals and double throw for: Two-position tone control; Sensitivity control; Change-over switch for AC-DC sets; Line switch for small sets; Small motor control; Tap switch for power transformers; etc.

TYPE SS-7
a three position slide switch which may be used as a three position tone switch, two speed small motor switch with off position or as a bright—dim—off light switch.

STACKPOLE MAKES:
1. VARIABLE RESISTORS—For use as volume controls, tone controls, potentiometers for controlling voltages, rheostats for controlling current.
2. FIXED COMPOSITION RESISTORS—Insulated resistors rated at 1/12 watt, 1/4 watt and 1 watt. Noninsulated resistors rated at 1/2 watt, 1 watt and 3 watt. Resistance range 10 ohms to 20 megohms.
3. SLIDE OPERATED SWITCHES—A complete line of slide operated switches either indexed or momentary contact type ranging from single pole, single throw to six pole, double throw. Many of these types have been approved by the Underwriters.
4. ROTARY INDEX SWITCHES—For use as tone control, sensitivity controls, or any other application requiring indexed switch positions. Available only in single pole type with maximum of four positions.
5. TOGGLE SWITCHES—Tab mounting snap switches with external toggle. Approved by the Underwriters.
6. IRON CORES—Compressed powdered iron cores for use in permeability tuning, inductance trimming or fixed inductance IF coils.

WRITE FOR SAMPLES AND PRICES
In addition to the above radio products the Stackpole Carbon Company manufactures every known type of carbon products.

FIXED RESISTORS
STACKPOLE CARBON COMPANY
ST. MARYS, PENNA., U.S.A.

These products are sold only to manufacturers of original equipment.

ELECTRONICS — January 1941
ONE of General Electric's five top award winners in the recent Modern Plastics Competition was a molded Textolite contactor shaft which incorporates the following 8 parts and functions in a single piece of material:

1. Bearings on which to rotate an assembly of parts.
2. Support for magnet armature.
3. Individual bearing, stop, guides and barriers for each of five contact tips.
4. Guides and barriers for each of five flexible braid connectors.
5. Spring seats for each of five movable contact tips.
6. Molded arms with which to operate up to seven auxiliary switches that may be used in the final application.
7. Molded arms with which to operate mechanical interlocks.
8. Complete high quality insulation for all of the above parts.

Because the shaft is a single piece of material, the possibility of loosening of parts is eliminated, making for permanent maintenance of factory adjustment and long life. Because the material is in itself high quality insulation, it permits the closest possible spacing of the parts that must be alive, such as contact fingers, terminals and connectors. The Textolite material also adds to the life of the main bearings, and makes them free from corrosion or lubrication troubles.

For a free copy of our new booklet, "One Plastics Avenue," write Section H-15, Plastics Department, General Electric Co., One Plastics Avenue, Pittsfield, Mass.

PLASTICS DEPARTMENT
GENERAL ELECTRIC

January 1941 — ELECTRONICS
TUBE REGISTRY

TUBE REGISTRY

TUBE TYPES Registred by R.M.A.
Data Bureau During November 1940

Type 50A5 (GL)
Prototype 50L6GT
Beam power amplifier, heater type; T-9 integral glass envelope base; seated height 2½ inches, 8-pin lock-in base.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_t</td>
<td>50 v</td>
</tr>
<tr>
<td>I_t</td>
<td>0.15 amp</td>
</tr>
<tr>
<td>E_s</td>
<td>200 v (max)</td>
</tr>
<tr>
<td>I_s</td>
<td>110 v</td>
</tr>
<tr>
<td>R_o</td>
<td>90 ohms</td>
</tr>
<tr>
<td>f_m</td>
<td>50 ma</td>
</tr>
<tr>
<td>f_m(nom)</td>
<td>1.5 ma</td>
</tr>
<tr>
<td>r_e</td>
<td>10,000 ohms</td>
</tr>
<tr>
<td>R_i</td>
<td>3,000 ohms</td>
</tr>
<tr>
<td>P_s</td>
<td>4.7 watts (10%)</td>
</tr>
<tr>
<td>Basing</td>
<td>6AA-L-O</td>
</tr>
</tbody>
</table>

Type 3S4 (GB)
Power amplifier pentode, filament type, T-5A glass envelope base; seated height 1¼ inches (max) 7-pin button base.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_t</td>
<td>2.8 or 1.4 v</td>
</tr>
<tr>
<td>I_t</td>
<td>0.05 or 0.1 amp</td>
</tr>
<tr>
<td>E_s</td>
<td>62.5 v</td>
</tr>
<tr>
<td>I_s</td>
<td>7.2 ma</td>
</tr>
<tr>
<td>r_m</td>
<td>1.5 ma</td>
</tr>
<tr>
<td>r_m(nom)</td>
<td>150 ohms</td>
</tr>
<tr>
<td>r_e</td>
<td>0.1 megohm</td>
</tr>
<tr>
<td>R_i</td>
<td>5000 ohms</td>
</tr>
<tr>
<td>P_s</td>
<td>180 milliwatts (10%)</td>
</tr>
<tr>
<td>Basing</td>
<td>7A-A-O-O</td>
</tr>
</tbody>
</table>

Type 14E6 (GL)
Prototype 7E6 (GL)
Duo; medium-mu triode; heater type T-9 integral glass envelope base; seated height 2¼ inches, 8-pin lock-in base.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_t</td>
<td>12.6 v</td>
</tr>
<tr>
<td>I_t</td>
<td>0.15 amp</td>
</tr>
<tr>
<td>E_s</td>
<td>220 v</td>
</tr>
<tr>
<td>I_s</td>
<td>5.9 ma</td>
</tr>
<tr>
<td>r_m</td>
<td>6 ohms</td>
</tr>
<tr>
<td>r_m(nom)</td>
<td>100 ohms</td>
</tr>
<tr>
<td>r_e</td>
<td>8500 ohms</td>
</tr>
<tr>
<td>R_i</td>
<td>1000 ohms</td>
</tr>
<tr>
<td>P_s</td>
<td>0.05 watts</td>
</tr>
<tr>
<td>Basing</td>
<td>6W-1-L</td>
</tr>
</tbody>
</table>

Type 35Y4 (GL)
Prototype 3525GT
Half-wave rectifier; heater type (tapped), T-9 integral glass envelope base; seated height 2 inches, 5-pin lock-in base.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_t</td>
<td>35 v</td>
</tr>
<tr>
<td>I_t</td>
<td>0.15 amp</td>
</tr>
<tr>
<td>E_s</td>
<td>7.5 v</td>
</tr>
<tr>
<td>$E_{s(m)}$</td>
<td>7000 v (max)</td>
</tr>
<tr>
<td>I_s</td>
<td>2500 v (max)</td>
</tr>
<tr>
<td>r_m</td>
<td>100 ohms (max)</td>
</tr>
<tr>
<td>r_s</td>
<td>600 ohms (max)</td>
</tr>
<tr>
<td>$E_{s(m)}$</td>
<td>2800 ma</td>
</tr>
<tr>
<td>P_s</td>
<td>20 v</td>
</tr>
<tr>
<td>Basing</td>
<td>5A-L-O</td>
</tr>
</tbody>
</table>

TUBES REGISTERED with the R.M.A. Data Bureau during the month of November, 1940 and during 1934, 1935 and 1936

SEVERAL readers have inquired why tubes released as early as 1934 are listed currently in this Department. While it is true that the primary purpose of the list is to bring new tubes to the attention of readers, the secondary purpose is to compile ultimately a complete list of all tubes, receiving, transmitting and industrial, for reference use. The latest tubes are listed first each month. A semi-annual index is published to aid readers in locating data on the new as well as the older types—The Editors.

Type 1F4
Power amplifier pentode, filament type, ST-14 glass envelope, seated height 4½ inches, 5-pin octal base.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_t</td>
<td>2.0 v</td>
</tr>
<tr>
<td>I_t</td>
<td>1.12 amp</td>
</tr>
<tr>
<td>E_s</td>
<td>185 v</td>
</tr>
<tr>
<td>I_s</td>
<td>4.5 v</td>
</tr>
<tr>
<td>r_s</td>
<td>8.3 ma</td>
</tr>
<tr>
<td>r_m</td>
<td>18,000 ohms</td>
</tr>
<tr>
<td>P_s</td>
<td>0.010 watt (5%)</td>
</tr>
<tr>
<td>Basing</td>
<td>5K</td>
</tr>
</tbody>
</table>

Type 1F6
Duo-pentode diode, filament type, ST-12 glass envelope, seated height 3½ inches, 6-pin base.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_t</td>
<td>3.9 v</td>
</tr>
<tr>
<td>I_t</td>
<td>0.06 amp</td>
</tr>
<tr>
<td>E_s</td>
<td>189 v (max)</td>
</tr>
<tr>
<td>I_s</td>
<td>1.5 v</td>
</tr>
<tr>
<td>r_s</td>
<td>2.2 ma</td>
</tr>
<tr>
<td>r_m</td>
<td>0.1 ma</td>
</tr>
<tr>
<td>r_m(nom)</td>
<td>1 megalohm</td>
</tr>
<tr>
<td>P_s</td>
<td>0.010 watt (5%)</td>
</tr>
<tr>
<td>Basing</td>
<td>5W</td>
</tr>
</tbody>
</table>

TELEVISION PROGRESS SHOW

Exhibits of television progress featured the opening of the first national convention of the Television Engineers' Institute of America in Hollywood. C. Fred Wolcott, chief engineer of the Gilfilan Laboratories and George H. Seward, president of the T. E. I. A. are shown as they arranged a convention demonstration.

ELECTRONICS — January 1941 65
To insure precise quality and rugged dependability in your speech input equipment.

Substitutes, whose only merit can be a claim that they are "just-as-good", are never the equal of the original. When ordering new speech input equipment, insist upon Daven Attenuators, particularly when these precision components cost you no more. Daven leadership in the field is clearly indicated not only by the caliber but also the number of organizations who are satisfied users.

Our catalog lists the most complete line of precision attenuators in the world. However, due to the specialized nature of high-fidelity audio equipment, a large number of requirements are encountered where stock units may not be suitable. If you have such a problem, write to our engineering department.

THE DAVEN COMPANY
158 SUMMIT STREET • NEWARK, NEW JERSEY

--

Type 6F6
POWER amplifier pentode, heater type, metal envelope, seated height 2\(\frac{1}{4}\) inches, 7-pin octal base.

- \(K_a = 6.3\) v
- \(I_a = 0.7\) amp
- \(K_t = 230\) v
- \(I_t = 6\) ma
- \(R_e = -16.5\) v
- \(R_m = 7000\) ohms
- \(P_t = 3.2\) watts (8%)

Type 6F6 (G)
POWER amplifier pentode, heater type, ST-14 glass envelope, seated height 1\(\frac{1}{2}\) inches, 7-pin octal base.

- \(K_a = 6.3\) v
- \(I_a = 0.7\) amp
- \(K_t = 230\) v
- \(I_t = 6\) ma
- \(R_e = -16.5\) v
- \(R_m = 7000\) ohms
- \(P_t = 3.2\) watts (8%)

Type 6E6
DOUBLE triode power amplifier, heater type, ST-14 glass envelope, seated height 1\(\frac{1}{2}\) inches, 7-pin base.

- \(K_a = 6.3\) v
- \(I_a = 0.6\) amp
- \(K_t = 230\) v
- \(I_t = 32\) ma
- \(R_e = -25\) v
- \(R_m = 3500\) ohms per plate
- \(E_r = 27.5\) v
- \(I_z\) (zero signal) = 18 ma per plate
- \(R_1 = 14,000\) ohms per plate
- \(P_t = 1.6\) watts

UNCLE SAM MONITORS THE ETHER

Unlicensed stations carrying on illegal communications have made it necessary for the F.C.C. to cope with this problem in a simple but effective manner. Here Lewis K. Meriwether is shown driving the radio monitoring automobile which not only is equipped to record illegal transmissions on wax cylinders, but has apparatus for direction finding to spot the sought station to within 100 yards.

January 1941 — ELECTRONICS
Why Not Modernize NOW!

IN MARCH of next year, most broadcasting stations shift to new frequencies, requiring a corresponding change in frequency in their frequency monitor. In preparation for this shift, why not modernize your entire monitoring equipment to take care of the F.C.C. Rule allowing only 20-cycle tolerance for all broadcasting stations? The G-R Type 25-A Frequency Monitor is approved by the F.C.C. for the new Rule and bears F.C.C. Approval No. 1461.

So why don’t you kill two birds with one stone and shift to the new frequency and to the new tolerance in your monitoring equipment and get it over with?

Many new electrical and mechanical features are incorporated in the G-R Frequency Monitor. Some of these are:

1.—Large deviation meter with 30-0-30 cycle scale
2.—High-stability oscillator circuit as used in primary standards
3.—Amplifier to isolate crystal oscillator
4.—Input amplifier to isolate transmitter
5.—New foolproof temperature-control system
6.—Improved high-stability frequency deviation-meter circuit
7.—AVC circuit on deviation meter
8.—Simplified operation
9.—New simplified layout for easy replacements
10.—Diode voltmeter to adjust input level

G-R Monitors are equipped with dress panels so that you can now secure a monitor to match any of five standard broadcast-equipment panel finishes from stock. Unfinished panels can be supplied for finishing by the user and subsequent assembly by us so that your monitor can have ANY panel finish you desire.

You can’t go wrong in selecting a G-R Monitor. G-R has pioneered in broadcast frequency measuring equipment since broadcasting started. G-R Monitors are used by hundreds of the leading stations.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>175-C</td>
<td>Frequency Monitor</td>
<td>$8330.00</td>
</tr>
<tr>
<td>681-B</td>
<td>Frequency Deviation Meter</td>
<td>$145.00</td>
</tr>
<tr>
<td>370-L</td>
<td>Quartz Plate</td>
<td>$85.00</td>
</tr>
<tr>
<td>25-A</td>
<td>Frequency Monitor</td>
<td>$8560.00</td>
</tr>
</tbody>
</table>

G-E NERAL R A DIO C OMPANY
CAMBRIDGE, MASSACHUSETTS
Branches in New York and Los Angeles

ELECTRONICS — January 1941
many improvements in new 23C Speech Input

Now offers uniform frequency response from 30 to 15,000 cycles—total gain of 96 db. Provides complete audio system in one factory-wired and tested unit. Simple to install, operate, maintain. Get full details from Graybar Electric Co.
Minimum Power Loss – Maximum Efficiency
FOR HIGH FREQUENCY APPARATUS
with Bakelite Polystyrene Insulation

UNEXCELLED by any other organic insulation, because of superior low-loss characteristics and exceptional resistance to moisture, Bakelite Polystyrene plastics present unlimited opportunities for greater efficiency in high frequency apparatus.

Among the numerous Bakelite Polystyrene parts providing improved dielectric performance, there are many made by American Phenolic Corporation. These include low-loss coil forms for high frequency receivers and low power transmitters, as well as sockets that eliminate draft at tube bases. There are also sturdy insulators for stand-off and feed-through purposes that reduce surface leakage to a minimum. Outstanding, too, are specially designed low-loss insulating beads permitting flexing of high frequency or high voltage leads without uncovering the wire.

Learn how Bakelite Polystyrene plastics can be profitably employed in your own electronic equipment by enlisting the cooperation of Bakelite Research and Development Laboratories.

BAKELITE CORPORATION
Unit of Union Carbide and Carbon Corporation
50 East 42nd Street, New York

Consider these advantages of BAKELITE POLYSTYRENE for high frequency equipment

- POWER FACTOR
 - (60 to 50,000,000 cycles)
 - .0002 – .0003

- DIELECTRIC CONSTANT
 - (60 to 50,000,000 cycles)
 - 2.50 – 2.60

- LOSS FACTOR
 - (60 to 50,000,000 cycles)
 - .0005 – .0008

- DIELECTRIC STRENGTH
 - (50 cycles)
 - 500 to 525 volt/mil

- VOLUME RESISTIVITY
 - Over 10^9 megohm cms.

- ARC RESISTANCE
 - (proposed A.S.T.M. method)
 - 120 to 140 secs.

ELECTRONICS — January 1941
Type 1H4 (G)
Prototype 39
Triode detector amplifier, filament type, ST-12 glass envelope, seated height 3½ inches, 8-pin octal base.

\[E_r = 2.0 \text{ v} \]
\[I_r = 0.06 \text{ amp} \]
\[E_i = 180 \text{ v} \]
\[I_i = -13.5 \text{ v} \]
\[R_i = 3.1 \text{ ma} \]
\[Z_m = 900 \text{ ohms} \]
\[Z_r = 10,300 \text{ ohms} \]

Type 5W4
FULL-WAVE, high-vacuum rectifier, filament type, metal shell, seated height, 2½ inches, 5-pin octal base.

\[E_r = 5.0 \text{ v} \]

CONDENSER INPUT
TO FILTER

\[E_m = \text{(per plate, rms) = 320 v (max)} \]

CHOKE INPUT TO FILTER

\[E_m = \text{(per plate, rms) = 500 v (max)} \]

\[I_m = 100 \text{ ma per plate) = 45 v} \]

Dial or Jewel
PILOT LIGHT ASSEMBLIES

Pilot lights often perform important functions. Whether used for illumination or signals on airplane instrument panels, radios, on electrical equipment and appliances of many kinds, they must operate with unfailing regularity! That's why so many of America's leading electrical manufacturers depend upon DRAKE for the assemblies they need. Precision built in large volume, to highest standards, they serve faithfully for years. Special designs or standard units in large variety.

May We Send You Our Catalog?

DRAKE MANUFACTURING CO.
1710 W. HUBBARD ST. • CHICAGO, U.S.A.

ALLIED . . . TYPE HX RELAY

A new series of four relays for modern mobile, marine and industrial equipment. They are small, rugged units of high-current capacity and low coil wattage operation.

Insulation is Alsimag. Contacts are ¼” silver with wide spacing sufficient to handle 15 amperes at 110 volts A.C. and 7 amperes at 115 volts D.C. non-inductive. Contacts available in 2-pole double-throw, and 3-pole double-throw. Coil operation can be had from 5 volts to 250 volts A-C, and from 1 volt to 125 volts D-C.

Also manufacturers of a complete line of relays for all communication and electronic uses.

Write for complete descriptive literature and prices.

ALLIED CONTROL CO., INC.
227 FULTON STREET • NEW YORK CITY

PIONEER PRODUCTS FOR AIRCRAFT SOUND and other POWER SUPPLY USES

DYNAMIC MOTORS

Pioneer Dynamic Motors, famed for dependability, sturdy construction, efficiency and regulation, 2 to 600 watts input up to 1200 volts.

Write or Wire for Information
PIONEER GEN-E-MOTOR CORPORATION
Dept. 94, 665 West Superior St., Chicago, Ill.
Export Address: 25 Warren St., N. Y., N. Y.

Inquiries and orders should be addressed to Export Department of above office.

February 1941 — ELECTRONICS
Type 1F7 (G)

DOUBLE diode pentode, filament type, ST-12 glass envelope, seated height 3⅛ inches, 8-pin octal base.

- $E_0 = 6.3\, v$
- $I_s = 0.2\, amp$
- $E_1 = 150\, v$
- $I_1 = 0.05\, amp$
- $E_2 = 250\, v$
- $I_2 = 0.0266\, amp$
- $E_3 = 4.5\, v$
- $I_3 = 0.14\, amp$
- $r_s = 3.0\, ohms$
- $r_o = 50,000\, ohms$

Basing 6L7

Type 6L7 (G)

PENTAGRID mixer converter, heater type, ST-12 glass envelope, seated height 3⅛ inches, 7-pin octal base.

- $E_0 = 6.3\, v$
- $I_s = 0.03\, amp$
- $E_1 = 250\, v$
- $I_1 = 0.06\, amp$
- $E_2 = 353\, v$
- $I_2 = 0.021\, amp$
- $E_3 = 353\, v$
- $I_3 = 0.06\, amp$

Basing 7D

Type 6L6

Beam power amplifier, heater type, metal shell, seated height 3⅛ inches, 7-pin octal base.

- $E_0 = 6.3\, v$
- $I_s = 0.03\, amp$
- $E_1 = 250\, v$
- $I_1 = 0.06\, amp$
- $E_2 = 100\, v$
- $I_2 = 0.041\, amp$
- $E_3 = 250\, v$
- $I_3 = 0.06\, amp$
- $r_s = 2.5\, ohms$
- $r_o = 2.5\, ohms$

Basing 6L6

Type 6J5 (G)

Detector amplifier triode, heater type, ST-12 glass envelope, seated height 3⅛ inches, 6-pin octal base.

- $E_0 = 6.3\, v$
- $I_s = 0.03\, amp$
- $E_1 = 250\, v$
- $I_1 = 0.06\, amp$
- $E_2 = 100\, v$
- $I_2 = 0.041\, amp$
- $E_3 = 250\, v$
- $I_3 = 0.06\, amp$
- $r_s = 2.5\, ohms$
- $r_o = 2.5\, ohms$

Basing 6L6

Type 6K5 (G)

High-MU triode, heater type, ST-12 glass envelope, seated height 3⅛ inches, 7-pin octal base.

- $E_0 = 6.3\, v$
- $I_s = 0.03\, amp$
- $E_1 = 250\, v$
- $I_1 = 0.06\, amp$
- $E_2 = 3\, v$
- $I_2 = 1.1\, ma$
- $r_s = 70\, ohms$
- $r_o = 50,000\, ohms$

Basing 6L6

Send for your Calculator today. Use Coupon or write on company letterhead giving name and position.

ELECTRONICS — January 1941
THE RELAY
THAT SURPRISED EVEN ITS DESIGNERS
OFFERS 4 DEFINITE BENEFITS TO USERS

1. Reduced user's assembly cost (relays are pre-adjusted)
2. More reliable operation (contacts have heavy pressures—are self-cleaning)
3. More positive action (armature restored by leaf spring)
4. No overheating (coil is self-protecting).

You can enjoy these benefits. Write Dept. B for information.

AN OFFER . . .
Tell us (1) Your product or operation (2) Function and performance details (3) Whether chief objective is improved performance or reduced cost. We'll send a helpful recommendation, free. Write Dept. B.

AUTOMATIC ELECTRIC
Relay Makers Since 1898
1033 West Van Buren Street, Chicago

Attention! MANUFACTURERS OF TELEPHONE RECEIVERS AND HEARING AIDS—

Manufacturers, research workers, otologists, service agencies and laboratories will find this combination ideal for accurately measuring the efficiency and frequency response characteristics of telephone and hearing aid receivers under the same conditions which exist when the receiver is worn on the ear. The Model 505 Artificial Ear has been completely redesigned, simplified and reduced in cost. The Model 300A Electronic Voltmeter will be found extremely useful around the shop and laboratory for other measurements. Voltmeter range 0.01 to 100 volts, 10 to 150,000 cycles, logarithmic scale, AC operation. Adapters can be furnished for various types of hearing-aid receivers. In use by leading manufacturers and U. S. Government departments.

Send for Bulletin 6G

BOONTON Ballantine Laboratories, Inc. NEW JERSEY, ELEKTROACOUSTICAL INSTRUMENTS

Type 1C7 (G)
Prototype 1C6
PENTAGRID converter, filament type, ST-12 glass envelope, seated height 3½ inches, 8-pin octal base.

Type 6C5
Detector amplifier triode, heater type, metal envelope, seated height 2½ inches, 6-pin octal base.

Type 6C5 (G)
Detector amplifier triode, heater type, ST-12 glass envelope, seated height 3½ inches, 6-pin octal base.

ENGINEERS BROADCAST

Thomas F. Joyce, RCA vice president, conducts a round table discussion with a group of RCA engineers over WFIL. Seated left to right are Dr. G. A. Morton, electronic research engineer; Mr. G. L. Beers, television research engineer; Mr. Joyce, and Dr. H. F. Olson, acoustic research engineer.

January 1941 — ELECTRONICS
Sound in Motion Pictures

(Continued from page 19)

One of the most disturbing characteristics of the earlier film sound records, was the high level of film background noise. The average level of this noise was determined by the unmodulated track density in the case of the variable density record, and by the width of the clear portion of the unmodulated sound track in the case of the variable area record. The noise level of a typical unmodulated sound track was seldom more than 30 to 35 db below the maximum sound level that could be obtained from a fully modulated track. As a consequence, those intimate scenes in a picture which required the use of relatively low level dialogue or background music suffered greatly during reproduction.

The introduction of sound track employing noise reduction in 1930 extended the volume range of the sound record by 10 to 15 db and made possible sound-on-film recording with a much greater volume range than that which could be obtained on discs. Basically, noise reduction on variable density film is secured by making the average transmission of the print sound track proportional to the amplitude of the sound being recorded at any given instant. In variable area sound track, to reduce noise, the average width of the clear portion of the track is made proportional to the amplitude of the sound being recorded at any given instant.

At approximately the same period during which noise reduction was being adopted, the technique of recording had become sufficiently standardized so that some thought could be given to the improvement of frequency characteristics and to microphones, amplifiers, and theater speaker equipment. The first of the Western Electric moving coil microphones and of the RCA velocity microphones were made available to the industry in 1930. Whereas, it had been necessary to mount the microphone amplifier employed with the condenser microphone as close to the microphone as practical, the moving coil and ribbon type microphones were used in new transmitter.

For when Aircraft, Police, and Marine Radio engineers want a light weight, efficient, and dependable Genemotor, they think of Carter. There is a Carter Genemotor or Converter for every requirement. Write for further information.

Carter Motor Co.
1606 Milwaukee Ave. Cable: Genemotor Carter a well known name in Radio since 1922

"APIEZON"
OILS, GREASES AND WAXES
for high vacuum work
have vapor pressures as low as 10^-7 mm. of Hg, and even unmeasurable at room temperature.

THE Apiezon products which we now carry in our Philadelphia stock, include special oils for oil-diffusion vacuum pumps, and a variety of oils, greases and waxes for sealing joints and stop-cocks in high vacuum systems. Bulletin 1505-E listing physical characteristics and prices will be forwarded upon request.

JAMES G. BIDDLE CO.
ELECTRICAL AND SCIENTIFIC INSTRUMENTS
1911-13 ARCH ST. PHILADELPHIA PA.
permitted a considerable length of cable between the microphone and the microphone amplifier. Microphone boom construction was correspondingly simplified and considerably greater ease of following action on the set with the microphone resulted. In addition, both of the new microphones exhibited very much better frequency-response characteristics than did the condenser microphone.

The first of the so-called wide-range recordings was released in 1932. These served to indicate not only the added naturalness which could be achieved by extending the frequency range, but, and what was probably more important, it brought to the attention of the equipment manufacturers and recording engineers the high degree of distortion which existed in the various components of the recording and reproducing channels. Whereas, the earlier standard recordings in many cases exhibited quality which was somewhat telephonic in character, the extended range recordings exhibited an unpleasant boomeness and excessive sibilance which was extremely annoying. Investigations which followed indicated the necessity for equalizing the recording channel in such a manner as to decrease the low-frequency response on dialogue recordings. A portion of this equalization has been found necessary to compensate for the difference between the dialogue level existing at the position of the microphone during recording and the higher reproduction level existing in the theater. Another portion of this equalization, somewhat variable in amount, appears necessary to eliminate boomeness, or low-frequency reverberation, of studio sets. Within the past few years, some thought and study has been directed to the determination of the character and amount of recording channel equalization necessary to compensate for variations in speech effort and corresponding changes in spectral energy distribution of the actors' voices during their performances.

Changes in degree of channel equalization and the insertion of low and high-pass filters of various sorts did little more, however, than reduce the degree of objectionable distortion existing during projection. It, therefore, became necessary
to investigate in detail the distortion characteristics of each component of the recording system as completely as possible. It was soon found that few, if any, of the amplifiers employed in the recording channel were nearly as free of distortion as had been assumed and a long program of amplifier redesign was undertaken. New distortion testing equipment made it possible to analyze accurately the amount of distortion caused by the recorder modulator units and by film processing, while further studies indicated the need for higher-powered, lower distortion theater amplifier and speaker equipment.

Amplifier distortion was reduced to an acceptable value by the use of transformers having improved frequency-response and impedance characteristics, and the use of larger vacuum tubes, by judicious use of negative feed-back and in cases where considerable power output was required, by the use of carefully balanced push-pull stages. The development of heater type vacuum tubes had progressed to a stage which permitted the design of completely a-c operated amplifier equipment for the entire recording channel. As a result of these improvements in design, the amplifiers employed today have extremely low signal distortion at full recording levels and have excellent frequency-response characteristics. The bridge amplifiers employed by Warner Bros., for example, has a gain of 11 db at 1000 cps, with a maximum deviation from this value of but 0.3 db between 30 and 12,000 cps, and will deliver a power output level of +22 db referred to six milliwatts with a distortion of less than 0.5 per cent at all frequencies between 60 and 8,000 cps. The combined hum and noise level of either of these amplifiers is approximately -85 db with respect to six milliwatts.

The distortion introduced by the recording machine modulator unit has been brought to a satisfactory low value by redesign of the light valves and galvanometers and by decreasing the effective width of the recording slit image on the film. Further reduction of distortion in original recording has been made possible by the use of pushpull sound track. It is interesting to note that one of the first patents on push-pull recording was issued in 1911.
GLASS TO METAL SEALS

- Especially finished and polished Tungsten and Molybdenum rods to meet the requirements of this important field of vacuum engineering.
- Molybdenum, if treated and finished for this purpose, is easy to work and is most economical.
- Our Tungsten and Molybdenum are perfectly homogeneous and are free from flaws and cracks.

AMERICAN ELECTRO METAL CORP.
Research Laboratories and Offices:
320 YONKERS AVE., YONKERS, N. Y.
Factory: Lewiston, Maine
Cable Address: Cutanit Yonkers New York
Telephone: Marble 7-9611

but no practical application was made of this method in motion picture production until 1935.

In Class A push-pull recording two sound records are photographed side by side along one edge of the film, one being 180 degrees out of phase with the other. Each of the tracks is in itself similar to a standard sound track and by combining the signal resulting from the two sound tracks out of phase, the even order distortion components introduced by undesirable film and processing characteristics are practically eliminated.

Class B push-pull recording differs from Class A in that each of the individual tracks recorded contains only one-half of the sound wave form. That is to say, all of the positive half-cycles of the sound wave are recorded on one of the tracks and all of the negative half-cycles of the sound waves are recorded on the other track. During reproduction of Class B sound track the original wave form is obtained by proper re-combination of the wave forms appearing on the two sound tracks.

The equipment used in the production of sound motion pictures will be discussed in Part II, to appear in an early issue of ELECTRONICS.

· · ·

ELECTRON MICROSCOPE

Dr. Gordon Scott of Washington University Medical School (St. Louis) examines the image on the fluorescent screen of an electron microscope. The specimen is inserted into the microscope at the point indicated by the arrow.

January 1941 — ELECTRONICS
THE ELECTRON ART

Secret use of inventions, cathodoluminescence in television, a new thermal resistance unit, principles of nomography, technique of single flash photography, and vacuum tube reconditioning are reviewed this month.

Secret Use of Inventions and Patent Law

CONTINUING ITS EXCELLENT SERIES OF ARTICLES ON VARIOUS PHASES OF PATENT LAW THE ALLIS-CHALMERS ELECTRICAL REVIEW PRESENTS AN ARTICLE ENTITLED "CAN YOU KEEP A SECRET?" BY D. JOURNEAUX IN THE DECEMBER 1940 ISSUE. THE INVENTOR OF A NEW PROCESS OR MACHINE MUST DECIDE BETWEEN KEEPING IT A SECRET AND TAKING HIS CHANCES ON ITS REMAINING UNDISCOVERED OR USED BY OTHERS, OR EXPOSING IT TO COMPETITION BY GETTING A PATENT. THERE ARE SEVERAL IMPORTANT ASPECTS TO THIS PROBLEM AND MR. JOURNEAUX DISCUSSES THEM, MAKING FREE USE OF COURT OPINIONS.

The advantages of patenting an invention are obvious. If the inventor chooses secrecy, however, not only is he entirely powerless to stop a competitor who has later invented the same invention, but he may even conceivably see this competitor obtain a valid patent thereon. Also, it should be borne in mind by anyone tempted to keep secret his invention that in the present stage of industrial activity the same improvement is often invented independently by several people. That this is so is shown by numerous instances of patents for the same invention being applied for by several inventors. The protection afforded by secrecy which may have been depend- able when those acquainted with manufacturing problems were few and far between, therefore, seems destined to become more and more illusory as industry continues to expand.

Cathodoluminescence in Television

A DISCUSSION OF LUMINESCENCE AND LUMINESCENT MATERIALS BY H. W. LEVERENZ APPEARED IN THE OCTOBER, 1940 ISSUE OF THE RCA REVIEW. IN THE INTRODUCTION MR. LEVERENZ SAYS: "THIS ARTICLE ON THE SUBJECT OF CATHODOLUMINESCENCE IS OFFERED SO THAT THOSE IN THE RADIO AND TELEVISION ART MAY HAVE AN OUTLINE OF THE HISTORICAL, THEORETICAL AND PRACTICAL FEATURES OF THE LAST ACT IN TELEVISION'S COMPLICATED TASK OF SEEING AT A DISTANCE. THE LAST ACT COMPRISES CONVERTING MODULATED ELECTRICAL IMPULSES AND ELECTRON CURRENTS INTO VISIBLE IMAGES WHICH GIVE THE SENSE OF UNINTERRUPTED CONTINUITY AND MOTION." SYNTHETIC LUMINESCENT MATERIALS HAVE BEEN KNOWN FOR 537 YEARS, BUT THEY DID NOT RECEIVE CONCENTRATED ATTENTION IN THE RESEARCH LABORATORIES UNTIL ABOUT TEN YEARS AGO WHEN CATHODE-RAY TELEVISION STARTED TO COME INTO PROMINENCE.

There are three common ways of using thermistors in electric circuits. In the first or externally heated method the resistance of the thermistor is controlled by the ambient temperature. The second or directly heated method

ELECTRONICS — January 1941

Thermistors, Their Characteristics and Uses

A NEW CIRCUIT ELEMENT WHOSE ELECTRICAL RESISTANCE VARI ES RAPIDLY WITH CHANGE IN TEMPERATURE IS DESCRIBED IN AN ARTICLE BY G. L. PEARSON IN THE DECEMBER 1940 ISSUE OF THE BELL LABORATORIES RECORD. IT IS CALLED THE THERMOMETER, WHICH IS A CONTRACTION OF THE WORDS "THERMAL RESISTOR." THESE NEW THERMISTORS ARE MADE FROM A CLASS OF MATERIALS KNOWN AS SEMICONDUCTORS WHICH HAVE RELATIVELY LARGE NEGATIVE COEFFICIENTS IN CONTRAST WITH METALS WHICH HAVE SMALL POSITIVE TEMPERATURE COEFFICIENTS OF RESISTANCE. THE ACCOMPANYING DIAGRAM SHOWS THE RESISTANCE VS TEMPERATURE CHARACTERISTICS FOR URANIUM OXIDE, NICKEL MANGANESE OXIDE, SILVER SULPHIDE AND, AS A COMPARISON, THE CURVE OF PLATINUM WHICH HAS A SMALL POSITIVE TEMPERATURE COEFFICIENT AND WHOSE SPECIFIC RESISTANCE IS LOW. THE CURVE FOR SILVER SULPHIDE IS LINEAR AND SHOWS A LINEAR RELATIONSHIP BETWEEN THE LOGARITHM OF THE SPECIFIC RESISTANCE AND THE TEMPERATURE BELOW 179 DEGREES C. AT THIS TEMPERATURE A CHANGE IN CRYSTAL STRUCTURE OCCURS WHICH DECREASES ITS SPECIFIC RESISTANCE BY A FACTOR OF ABOUT 70. AT HIGHER TEMPERATURES THE COEFFICIENT IS SLIGHTLY POSITIVE.

There are three common ways of using thermistors in electric circuits. In the first or externally heated method the resistance of the thermistor is controlled by the ambient temperature. The second or directly heated method

WAR DEPARTMENT'S AMATEUR CONTROL STATION

The War Department radio station WAR is available for direct communication with amateurs on Tuesday, Wednesday, Thursday and Friday evenings between 7 and 9 PM EST. It operates on a frequency of 4,025 kc. The army amateur radio system will be available for use during an emergency. Private Norton C. Richardson is sending a message and Major David Talley checks it.

www.americanradiohistory.com
allows the electric current in the circuit to pass directly through the thermistor, thus heating it and changing the impedance in the circuit. The third or indirectly heated method uses a thermistor having a separate heating coil placed in a controlling circuit; the heat generated in it regulates the thermistor resistance. It should be pointed out that silver sulphide or uranium oxide thermistors are usable only in alternating current circuits because the continued passage of direct current produces a polarisation with an accompanying large increase in electrical resistance. Nickel manganese oxide does not polarize and is therefore equally stable in either a-c or d-c circuits.

A number of uses are suggested for this new circuit element. One of them is that of a resistance thermometer. In such an instrument the measuring current is kept so low that it produces no appreciable heating and the thermistor resistance is dependent only on the ambient temperature. Thermistors may also be used to compensate for changes in resistance due to ambient temperature change in circuits having a positive temperature coefficient of resistance. This is accomplished by associating the thermistor with the circuit elements so that the change in resistance with temperature of the combination is equal and opposite to that of the remainder of the circuit.

Because of the resistance vs power

Non-Corrosive

PERMO METAL is a SMOOTH, WEAR RESISTING, NON-ABRASIVE, NON-CORROSIVE alloy with low coefficient of friction, made of precious metals (Osmium, Ruthenium, etc.).

Instrument bearings, long life fountain pen tips, phonograph needles and contacts . . . are just a few of countless uses of these remarkable alloys.

A greatly enlarged Metallurgy Division makes these alloys available to industry on an increased scale. An additional service of preliminary assembly of material to holder or shank is also available. Write for detailed data.

PERMO PRODUCTS CORP. Manufacturing Metallurgy
6427 Ravenswood Ave. CHICAGO, ILLINOIS

HARVEY products are designed to deliver satisfactory communication under extreme operating conditions.

HARVEY will ask you to pay a little more, for the extra security, the extra long life, the extra usability you receive from its products.

HARVEY equipment in standard models serves users at sea, on land, in the air, on every continent (including Antarctica). A conservative policy of applying ALL necessary safety factors to equipment designed to meet special conditions consistently satisfies Navy and Army buyers in the United States and abroad.

January 1941 — ELECTRONICS
characteristics of thermistors, they are very useful as sensitive current and power-measuring devices. The extremely small capacitance contributes to their suitability for use in ultra-high frequency circuits. When placed in suitable bridge circuits thermistors may be used as flow meters, vacuum gages, or to measure other physical quantities dependent on the flow of thermal energy from a hot body. High sensitivity bolometers for the measurement of radiant energy have been built using directly heated thermistors for the temperature-sensitive element. A standard relay may be made into a slow-acting device by putting a directly heated thermistor in series with its winding. The extent of delay depends on the thermistor characteristics, the relay constants and the circuit conditions. False operations of relays resulting from high voltage surges may be prevented in this manner. Indirectly heated thermistors may be used as variable resistance devices which are operated by an electric current through the heating coil rather than by a sliding contact as in a standard rheostat. These devices have the advantage that their resistance change is continuously variable and that they may be operated electrically from a distant point.

TRANSMUTATION OF ELEMENTS

Dr. C. C. Lauritsen, of the California Institute of Technology at Pasadena, conducting experiments with an "atom smasher." Every 20 seconds an automatic camera records the action of the elements under investigation. The device shown is one of several units used at California Institute of Technology, most of which follow original designs of Cal Tech physicists.
Announcing the BOONTON type 150-A FREQUENCY MODULATED GENERATOR

Here is a signal generator developed specifically for use in the design of FM equipment. Built into it are the features requested by FM engineers. Both Frequency and Amplitude Modulation available separately or simultaneously. All controls direct reading. Expanded scale meters. Power line regulation optional.

Brief Specifications
Frequency Range 41-50 MC and 1-10 MC
Output from 0.1 µV to 0.1 Volt with attenuator, and 0.1 Volt to 1 Volt with special tap.
Deviation from zero to 200 KC Internal AF-100, 400, 1K, 4K and 10K cycles.
RMA Pre-emphasis circuit. Vernier F. Control for selectivity.

May We Send You Detailed Information?
BOONTON RADIO CORPORATION
Boonton, New Jersey
U. S. A.

S. S. WHITE REMOTE CONTROL FLEXIBLE SHAFTS

...were specially developed for Aircraft Radio... by S. S. WHITE engineers back in the early days of aviation. Featured by small diameter and minimum torsional deflection under load, in either direction of rotation, S. S. WHITE Remote Control Shafts provide the essential smooth operation and close, sensitive adjustment... For use with these shafts S. S. WHITE also developed a special metallic casing of small O. D. Together, shaft and casing make a light-weight combination that has long been a stand-by in the aircraft radio industry. ... We invite inquiries about aircraft radio and other remote control problems and will gladly quote on specific requirements. Write us.

S. S. WHITE
The S. S. White Dental Mfg. Co.
INDUSTRIAL DIVISION
Department E, 10 East 40th St., New York, N. Y.

Principles of Nomography

From time to time the Electronics Reference Sheet appears in the form of a nomographic chart. Such a chart is a representation of an equation or formula in such a way that a simple solution is provided by simple mechanical means. An outline of the principles underlying nomographic charts, together with several examples, is contained in an article entitled "Nomography for the Electrical Engineer," by Guido E. Ferrara in the December 1940 issue of Electrical Engineering. The convenience of nomographic charts is obvious from the following brief summary of their principal advantages: (1) The number and variety of problems to which they can be applied is quite large. (2) There is no difficulty when the number of variables is large, or when the variables are raised to fractional powers. (3) Once the chart for any particular problem has been prepared, chances for errors are minimized. (4) The charts are simple and certain in use, so that calculations can be left to the care of unskilled subordinates.

The mathematics of nomography is contained in the elementary theory of third-order determinants. In the study of analytic geometry, a geometrical meaning was given to a third-order determinant. In the accompanying diagram, the line MN intersects the three curves 1, 2, 3 at points whose coordinates are X, Y, X, Y, X, Y. By similar triangles,

$$\frac{Y - Y}{X - X} = \frac{Y - Y}{X - X}$$

Or

$$Y, X, + Y, X, + Y, X, - Y, X, - Y, X, = 0$$

From algebra, it can be shown that Eq. 2 is the expansion of the third-order determinant.

$$Y, X, 1 \quad X, Y, 1 \quad X, Y, 1$$

We then have the following theorem. If a third-order determinant has the value of zero, then the points X, Y, X, Y, X, Y are collinear. Therefore,
A Decade of Progress in the Use of Electronic Tubes

A review of the progress of the last ten years in the use of electronic tubes is reviewed in the December 1940 issue of Electrical Engineering. The review is divided into two parts. Part I covers the field of communication and Part II covers fields other than communication. They were written by Messrs. S. B. Ingrom and W. C. White, respectively. No attempt has been made to make this review comprehensive in the sense that it includes all items of individual interest. Rather than this the object has been to trace the most significant trends of development.

... NATIONAL DEFENSE RESEARCH COUNCIL APPOINTEE

To appreciate the full capabilities of this tube a high fidelity audio system should be investigated. A high fidelity audio system consists of not only a high fidelity amplifier but also a high fidelity speaker system.

SPECIFICATIONS

8 tubes—Frequency range, band one: 340 to 1650 kc., band two: 40 to 513 mc.—Power output 150 milliwatts undistorted—Power consumption 120 watts—Controls: Band switch, Phone switch, Main tuning, Afin gain, Tone control. "5" meter adjustment.—Operates on 115 voltage, 60 cycles AC.

Model S-31 Tuner, Complete with 19" x 8 1/4" rack panel, metal cabinet and tubes. $69.50.

Model S-31A: high fidelity, 25 watt amplifier, complete with cabinet and tubes. $49.50.
PRACTICAL DATA FOR THOSE WHO DESIGN AND BUILD TRANSMITTERS

Aerovox capacitor catalog

● This new loose-leaf catalog and engineering manual is available to engineers, designers and builders of commercial-grade transmitters, P-A systems, electronic and allied equipment. Contains page after page of listings of extra-quality heavy-duty capacitors of such types as mica, oil, and plug-in electrolytics, of particular interest to those who build to last and to safeguard enviable reputations.

Aerovox has extended its already outstandingly complete choice to include these extra-quality heavy-duty capacitors. What were special types yesterday now become standard Aerovox capacitors today, in taking care of the most critical requirements.

Ask for Your Copy...

● If you are engaged in designing and building commercial equipment, write on your business letterhead for a copy, registered in your name.

The Challenge of CHANGE...

✓ Change, with all its problems, offers Opportunities, as well.

Men in every branch of radio face changes so rapid and drastic that last year's outlook is this year's history.

Through the years our policy has been directed toward helping men in radio become better radio men in better jobs...with modern advanced technical training. The fact that men in over 350 broadcasting stations are CREI students or graduates is evidence that our training is bringing results.

Your own radio experience backed by CREI advanced technical training will prepare you to step into the better salaried positions that await trained men. CREI home-study courses in practical radio engineering are prepared for experienced radio men who realize the value and necessity of training for and not hoping for a better job!

Write For Facts Today—in our free booklet and personal recommendations. In your inquiry, please state briefly your experience, present position and education.

CAPITOL RADIO ENGINEERING INSTITUTE
Dept. E-1, 3224-14th St., N.W., Wash., D.C.

FERROCART IRON CORES

Secure IMPROVED PERFORMANCES. Cores and prices to meet every need—you CANNOT AFFORD TO USE ANYTHING INFERIOR.

Proven the most dependable and uniform (electrically and physically) for permeability tuning and push-button remote tuning—wave traps, I F transformers and antenna coils—sensitive television circuits, etc.

Our engineers with PRACTICAL KNOWLEDGE collaborate in securing optimum original designs in your circuits suitable for commercial manufacture.

FERROCART CORPORATION OF AMERICA
(Devoted exclusively to engineering and production of magnetic iron cores)

Laboratories and Works
Hastings-on-Hudson, N. Y. U. S. A.
Cable Address "HARAFORE" Chicago Office:
John F. Church 4753 North Broadway
Telephone: Longbeach 0777

January 1941 — ELECTRONICS

www.americanradiohistory.com
Single-Flash Photography

Single-flash photography is discussed in an article by John M. Clayton in the November 1940 issue of the General Radio Engineer. The Strobotac and Strobolux can be used quite successfully for taking single-flash pictures when the area to be illuminated is relatively small. The Strobolux furnishes about ten times as much light on a single flash than when it is flashed continuously from the Strobotac. The duration of a single flash is about 1/30,000th of a second.

The principal problem is the synchronization of the flash with the opening and closing of the camera shutter. The Strobotac and the Strobolux are supplied with appropriate terminals and connecting cords so they may be operated on single flashes. The two instruments are connected by these cords and the plug is inserted in the contactor jack of the Strobotac. When the wires attached to the plug are short-circuited, a single flash is produced. The exact method of synchronizing the camera shutter with the flash of the Strobolux will depend upon the individual problem and the ingenuity of the user. In many cases where the motion of the subject is cyclic and the exact phasing of the motion is not important, the Strobotac can be set off by hand. It is necessary with photographs taken in this manner that they be made in subdued light because the shutter of the camera will be open for a considerable time before and after the flash.

Exact synchronization between a sequence in a mechanical operation and exposure is required in certain applications. It is frequently possible to fit a simple make-and-break contact on a rotating shaft or moving part.

If the phenomenon to be photographed is accompanied by sound, it is possible to set off the light flash by means of a microphone and amplifier. Phasing is accomplished by changing the position of the microphone so that it is nearer or further away from the sound source. The Strobolux can also be made to respond only to sounds of a particular frequency by using a sound analyzer in conjunction with the microphone. By this method it is possible to obtain single-flash photographs of certain types of machine operations which produce a complex sound wave. The photoelectric cell can also be used to set off the flash light at the proper time. It is only necessary that the moving body interrupt the beam of light between the light source and a phototube or photoelectric cell. Synchronization is obtained by varying the distance between the subject and its position when the beam is interrupted.

It is generally advisable to develop films of this type of photography in a developer of the maximum contrast type. An increase of 50 per cent to 100 per cent in development time is also recommended for increasing the contrast.
An Engineering Scoop!

TURNER PUSH-PULL VIBRATORS

The TEN engineering advancements in Turner Push-Pull Vibrators are revolutionizing the industry! The diagram shows why Turner Push-Pull Vibrators give more stable operation, longer life and fewer service problems. Push-Pull employs an equal amount of magnetic power to push, then pull the reed and its contacts. Note self-cleaning contacts, micro-adjustment of contact points of factory, elimination of old style stock type assembly—low drain and high output. Packed in factory-sealed cartons, to assure you of new merchandise. Open terminals of contacts allow testing of vibrators. Guaranteed one year. Model to meet all replacement calls. Enjoy the best—they cost no more! Call your jobber, and write for Free Manual to The Turner Company, Dept. E, Cedar Rapids, Iowa.

Vacuum Tube Reconditioning

A simple and inexpensive reconditioner for transmitting tubes which considerably increases their life is described by Charles W. Singer in the November 1940 issue of *Pick-Ups* (Western Electric Co.). In practically all types of broadcast transmitters, the tubes, whether they are high- or low-powered, air- or water-cooled, will in time become gaseous and therefore useless. This usually happens when a tube has been operated beyond the guaranteed period and there is no recourse except to discard it. However, this gaseous condition can be remedied and many additional hours of life realized by the use of the device outlined by Mr. Singer. To illustrate the usefulness of the device, the author describes the case of a W.E. 342A water-cooled tube which had been used in the WOR 50-kw transmitter. After being in operation for 5,000 hours this tube developed a series of flash arcs which would ordinarily cause it to be removed after sign-off and discarded as too risky to use. This tube was placed in the conditioning unit for degassing, the entire treatment taking only twelve minutes, and then reinstalled in the transmitter. By this short treatment more than 4,000 hours have been added to its useful life.

The construction and operation of this conditioner is quite simple. The entire unit costs less than $100 and at WOR this investment was returned by the savings in the cost of tubes in less than six months. The circuit of the tube conditioner is shown in the accompanying diagram. The principle of operation of the circuit is to apply a high alternating voltage of the order of about 25,000 volts between the grid and the filament and grid of the tube. The application of this high voltage cleans up any gaseous condition in the tube.

The second part of the treatment consists of filament aging at normal operating temperature for several hours. The tube is placed in the transmitter socket with standard water-cooling conditions and the filament lighted at normal operating voltage as measured at the tube terminals. Lighting the filament at normal operating temperature tends to clean up residual gases.
RELAYS
★ OF THE HIGHEST QUALITY
★ TO YOUR SPECIFICATIONS
★ AT ECONOMICAL PRICES
★ WITH FAST SERVICE
PHONE! WIRE! WRITE!
To the Nearest Branch Office
BOSTON, MASS. SEATTLE, WASH.
11 Beacon St. 100 Westlake Ave.
NEW YORK CITY CLEVELAND, O.
D. R. Bitran Sales Co. Paul M. Cornell
53 Park Pl. 1270 DeSoto Ave.
CHICAGO, ILL. DALLAS, TEX.
L. G. Cushing Co. Ernest L. Wills
540 N. Michigan Ave. 7735 Euclid St.
MICH., MO., AND IND.
Paul Sales Engineering Co.
651 E. Erie St., Chicago, IlL.
★ ★ ★ OUR REPRESENTATIVE WILL SHOW YOU ★ ★ ★
VARIOUS TYPES OF "ADVANCE" RELAYS,
DISCUSS YOUR RELAY REQUIREMENTS
WITH YOU, AND SUBMIT PRICE QUOTATIONS.

Advance
ELECTRIC COMPANY
1260 W. 2nd St. Los Angeles, Calif.

COILS
Electrical Windings

A COMPETENT and experienced orga-
nization devoted to the design and
manufacture of coil windings.
Paper-interlayer sections—form wound
and bobbin wound coils.
Equipped for prompt production
on quantity or small orders.
N. DINION, Pres. & Gen.-Mgr.

REPRESENTATIVES
W. A. JORDAN PARAGON SALES CO.
236 Madison Ave. 100 W. Franklin
New York, N. Y.
GILBERT GIBSON A. J. LEBBE SALES CO.
82 St. Paul St. 1030 Euclid Ave.,
Rochester, N. Y. Cleveland, Ohio

MAGNETIC WINDINGS COMPANY
Sixteenth and Butler Streets EASTON, PENNA.

and also to clean off both the filament
and grid surfaces. The tube is then in
shape to be tested in the transmitter
under normal starting and running
conditions. If the high voltage treat-
ment is omitted the filament aging
procedure is still of some value. It
has been found that these treat-
ments are effective in cutting down initial
flashing during operation, even though
the tube is returned to the spare shelf
for a week or so prior to being
installed for regular service.

Degenerative Electrometer
Tube Amplifier

DIRECT CURRENTS in the range of 10\(^{-10}\) to 10\(^{-6}\) amper are successfully mea-
sured with an instrument described by
G. P. Harnwell and L. N. Ridenour
in the October 1940 issue of *The Re-
view of Scientific Instruments*. The
principle involved is an extension of
the use of a degenerative amplifier
with ordinary receiving tubes as a
meter for measuring small direct
currents. A low grid-current input
tube, such as the Western Electric
D96475 or the General Electric FP-54

Circuit for measuring extremely
minute currents with high accuracy

is used in the instrument whose circuit
is shown in the accompanying
Diagram. The amplifier described
is quite stable and relatively free from
drift.

The values of the battery potentials
and resistances are determined by the
static characteristics of the tubes used.
The control grid potential of the
D96475 should be -3 volts and the
space charge grid and plate should be
at +4 volts. The potentials applied
to the two other tubes are of the same
order of magnitude: much lower than
the standard ratings. The filament
are also run under voltage. The ef-
efective amplification constants are low
because of the low load resistance.
However, the overall amplification fac-
tor is large enough so that fluctuations
in batteries or tube parameters have
a negligible effect on the fidelity of the
instrument.

★ This typical Clarostat wire-wound con-
trol is backed by 20 years of specialized
experience. During that time Clarostat
specialists have wound billions of feet of
resistance wire of all sizes, from half
the thickness of human hair, on up to the
large wire sizes. The winding machines
used are designed and built by Clarostat
mechanics. They are unique in the industry.

That such outstanding experience means
something to users of wire-wound resistors
and controls is confirmed by Clarostat's
acceptance among commercial-communica-
tion companies, broadcasters, Army and
Navy, movie companies, instrument makers,
and other critical buyers. They will accept
no substitute for thorough engineering.

So consider that 20-year background be-
hind Clarostat products. After all, it's that
background, more than so much bakelite
and wire and metal—yes, and lavish
claims, that determines the true worth of a
resistor or control.

Send Your Problem...
★ No matter what your resistance or con-
trol problem may be, send it along for
our engineering collaboration, specifica-
tions, quotations, samples, free-to-leaf
engineering data covering complete line,
sent on request.

Clarostat Manufacturing Company
Incorporated
285 North Sixth St.
Brooklyn, N. Y
In conclusion the author wishes to acknowledge the frequency response data for the microphone and speaker systems as furnished by the Brush Development Co. and the Jensen Radio Manufacturing Co., respectively.

January 1941 — ELECTRONICS
THE INDUSTRY IN REVIEW

News

* Hugh S. Knowles, vice-president and chief engineer for the Jensen Radio Mfg. Co., Chicago, announces the construction of a new sound room which will permit a more accurate determination of the response and directional characteristics of loudspeakers at low frequencies, and will greatly facilitate precision acoustical measurements. Rigging is being provided for outdoor measurements as well.

Leach Relay Co., Los Angeles, Cal., manufacturers of electrical equipment for the aircraft, radio and other industries, recently started construction on a sixty-thousand-dollar addition at 5915 Avalon Blvd. Most of the added space will be used for assembly purposes. Also expanding is the Cinema Engineering Co. with enlarged quarters at 1508 S. Vermont Ave., Burbank, Cal.

Ground-breaking ceremonies for the National Broadcasting Company’s new million dollar studio building were held recently in San Francisco. The American Export Airlines, Inc., has signed a fifty-two-week contract with the NBC International Division for a series of three fifteen-minute programs a week over international stations WRCA and WNBI. The program, known as “American Aviation,” will be heard in Spanish, Portuguese and English throughout Latin America.

* Color television, using a standard type receiver with no additional equipment other than a revolving disk, was demonstrated at Schenectady recently to members of the National Television System Committee by Dr. E. F. W. Alexanderson, consulting engineer of the General Electric Company. George Henry Payne, member of the Federal Communications Commission, was also present. For the demonstration, Dr. Alexanderson installed a two-color 24-inch revolving disk before the iconoscope pick-up tube of the transmitter at the studio. Six executives of R.C.A. Communications, Inc., were present at this recent meeting at a meeting of the R.C.A. Board of Directors. John B. Rostro is now Vice President and Traffic Manager, C. W. Latimer is Vice President and Chief Engineering Officer; H. H. Beverage, Vice President in charge of Research and Development; F. W. Wozencraft, Vice President and General Counsel; L. G. Hills, Vice President and Controller; and A. B. Tuttle, Vice President and Treasurer. Airadio Company, of Stamford, Conn., who are licensed under AT&T and Hazeltine Service Corporation patents, are now manufacturing a new type of ATR mount as per Aeronautical Radio Specifications and the Civil Aeronautics Authority Type Certificate. R. T. Bokaz is chief engineer and M. B. Andrews, formerly a supervisor of radio equipment at American Airlines, is service manager.

The International Telephone and Telegraph Corp. has recently completed the installation of new radiotelephone and radiotelegraph circuits at La Paz, Bolivia, 15,000 feet above sea level. E. J. Smith, who supervised the new installation at La Paz, was formerly associated with Bell Telephone Laboratories of New York and also with Standard Telephones and Cables Ltd., of London. He is now Managing Director of Cia. Internacional de Radio Boliviana . . . Dr. D. E. Noble, former professor at the University of Connecticut recently presented a paper to the members of the Institute of Radio Engineers in New York in which he described the successful use of frequency modulation equipment as used by the State Police of Connecticut. An important aspect of the new system is that it can be adapted to the radio channels now assigned to police service. . . . Major Edwin H. Armstrong, Professor of Electrical Engineering at Columbia University, has been awarded the Holley Medal of the American Society of Mechanical Engineers, for his work on frequency modulation. The Holley Medal is presented periodically by the ASME for distinguished service in engineering and science.

Literature

Electrically Operated Switches. Circular 500, available from Automatic Switch Co., 51 East 11th St., New York City, contains illustrations and brief descriptions of each of their standard switches. Included are automatic transfer switches, remote control switches, contactors, relays, etc.

Radio Products. Catalog No. 400 contains twenty pages of descriptive matter on radio products available from National Co., 61 Sherman St., Maiden, Mass. The products listed include diodes and knobs, condensers, couplings, coils and chokes, plate and grid grips, shields, cabinets, sockets, insulators, amplifiers and modulators, oscilloscopes, transmitters and receivers.

Screw Catalog. A fully indexed book which contains 112 pages of information on screws, bolts, nuts and rivets is available from Central Screw Co., 3591 Shields Ave., Chicago, Ill. This book is known as Catalog “K.”

Radio Service Encyclopedia. Fundamentals of Television Engineering is the title of Supplement 12 to the Mallory-Taxley Radio Service Encyclopedia available from P. R. Mallory & Co., Indianapolis, Ind. Supplement 12 contains many diagrams, illustrations, patterns, etc., and is a reprint of F. Alton Everest’s article which appeared in the Television Engineering Section of Communications. This will be the last of the current series of technical bulletins for the present. This Supplement was published to help service engineers, experimenters and amateurs. The editors of the Encyclopedia would like comments from its readers as to whether this service ought to be continued.

Parts and Accessories. A general catalog (Section VII of Catalog K) which contains descriptive matter on parts and accessories for audio transformers, switches, diodes and knobs, plugs and jacks, coil forms, r-f chokes and relay racks is now available from General Radio Co., Cambridge, Mass.

Voltage Regulators. American Transformer Co., 178 Emmet St., Newark, N. J., have available Bulletin No. 51-2 which describes their complete line of type “TH” Transtat voltage regulators. The bulletin also contains a nine page technical article with twenty-six circuit diagrams explaining methods of connecting voltage regulators for various applications.

Transmitters. An eight page bulletin available from Federal Telegraph Co., 200 Mt. Pleasant Ave., Newark, N. J., describes two new transmitters designed to cover a wide variety of applications including aeronautical, point-to-point, marine land stations, police and commercial or military fixed frequency, single or multi-channel radio telegraph or telephone services. Specifications are included for both of the Models FT-300 (a 3 kw unit) and FT-500 (a 5 kw transmitter).

Phototube Applications. Form PT-20R1 gives complete information in simplified form, on phototubes and their applications, in a sixteen page booklet prepared by RCA Mfg. Co., Camden, N. J. The phototube’s usefulness in light-operated relays, color discriminating devices, automatic counters, for light measuring, and for film sound reproduction, is explained in detail.
New Products

Relays
A NEW SERIES OF RELAYS designed to meet requirements for a small, rugged unit of high current capacity and low coil wattage operation is announced by Allied Control Co., 227 Fulton St., New York. Applications are in mobile marine and aircraft fields as well as for industrial uses where compactness is a factor. Insulation is alsimag bakelite or high-frequency bakelite. Contacts are 1-inch silver with wide spacing sufficient to handle 15 amps at 110 volts ac and 7 amps dc at 110 volts. Contacts are available in 2-pole double-throw. Coil operation can be had from 6 volts to 250 volts ac, and from 2 volts to 115 volts dc. These new relays are known as type HR and type HX relays.

Dictating Machine
THE SOUNDSCRIBER CORPORATION, of New Haven, Connecticut, has announced the production of a new type of dictating recorder using wafer-thin alloy discs. The set consists of a recorder with a microphone, and a transcriber.

The disc is of a metal alloy, 0.006 inch thick, 7 inches in diameter, and is practically indestructible. It can be dropped, bent, and written on without destroying the sound tracks. Fifteen minutes recording is attained on each side by the use of low turntable speed and close groove spacing. The disc can be filed like a letter, mailed without special packing and weighs one-third of an ounce.

The microphone has a selector lever on its base to accommodate a wide range of levels. It can record a whisper or all the voices at a conference up to a distance of 20 feet. For normal dictation, it is set on the desk about 3 feet from the speaker, who may move his head or shift about without paying any attention to the instrument.

The dictating recorder has a 7-inch turntable, and the recording head is equipped with a permanent diamond-tipped needle embossing the sound groove in the disc without chips or shavings. This unit also includes a built-in loud speaker and play-back head with a permanent sapphire-tipped needle. Dictation may be instantly played back on the same instrument by simply turning a control which automatically lifts and locks the cutting head while the disc is being played back.

The transcriber contains the play-back features of the recorder, but is also provided with a gooseneck "soft-speaker," audible only at the secretary's ear. A Jack is provided for those who prefer the old method. Remote controls for hand or foot are provided so that the disc may be instantaneously stopped and started, and the needle may be stepped back for repetition several grooves at the convenience of the transcribing operator.

Voltage Control
POWERSTAT VARIABLE TRANSFORMERS for line voltage control and electrical testing are now manufactured by the Superior Electric Co., 65 Harrison St., Bristol, Conn. in single and three phase capacities up to 27.5 kva for operation on 115, 230 and 440 volt circuits. Types are available for controlling voltage from zero to above line value, and for line voltage correction to take care of ten to fifteen per cent variations from normal line values. Electrical and mechanical variations can be made to meet individual requirements.

Heavy Duty Break-In Relay
WARD LEONARD ELECTRIC Co., Mount Vernon, N. Y., announces a new break-in relay used in phone transmitters for push-talk operation. When the relay coil is energized the antenna is switched from the receiver to the transmitter position. The oscillator is turned "on" and the receiver plate circuit is opened. High test insulating materials used in the new heavy duty type consist of a Lucite cross arm carrying the contact fingers and Insolantite blocks mounted on a Bakelite base supporting the contact posts. All contacts are rated at 25 amps. These relays are described in a supplementary data sheet, Circular 507B, which will be sent on request.
Extruded Plastic Tubing

A new extruded plastic tubing with high heat resistance is announced by the Irvington Varnish & Insulator Company, 24 Argyle Terrace, Irvington, N. J. The new tubing, known as Irv-o-lite XTE-100, is in many respects similar to Irv-o-lite XTE-30 tubing, described in the May issue of ELECTRONICS, but has better resistance to sustained high temperatures.

This tubing maintains all its characteristics at a continuous temperature of 178°F. It is suited for electrical insulation purposes, and has a dielectric strength, when dry, of 750 volts per mil and of 400 volts per mil after 24 hours soaking in water. The tubing is flexible, smooth inside and out and has a tensile strength of 2000 pounds per square inch, with high resistance to tearing and abrasion. XTE-100 is unaffected by petroleum solvents, is not attacked by a 10 per cent solution of sulphuric acid, and will resist most acids and alkalis in concentrations up to 30 per cent by weight. It does not support combustion, will not lose form up to 240°F. Immersion in transformer oil at 220°F for 48 hours produces only a slight swelling at the exposed ends of the tubing.

Irv-O-Volt, a varnished inside-and-out tubing, another product available from Irvington Varnish & Insulator Company

General Electric Products

Several new products are available from General Electric Co., Schenectady, N. Y.

A photoelectric gage which gives a continuous and accurate indication of variations in the width of moving steel strip without making contact with the metal has been announced. The width of the strip can be measured at any point or points in the mill and variations from the required width can be accurately transmitted to any number of desired stations such as the control pulpit, etc. While the strip is moving through the mill, adjustments to the edging rolls can be made by the operator to correct deviations from normal width. The gage was developed primarily for use on hot-strip mills, but is also applicable to other industrial jobs involving width control of moving strips of metal. In operation, both edges of the strip are followed simultaneously by narrow light beams and true indication of its width is given regardless of any sidewise movement of variations continuous and from General Electric jobs involving width control of moving steel, primarily for width. The gage was

CONQUERORS OF TIME!

Hunter Pressed Steel Company
Lansdale, Pennsylvania

It took millions of years for Mother Nature to prepare the crude oils which make it possible to fly modern Giants of the Air in record-breaking time.

And it has taken years of experience, too, to contrive the thousand and one essential parts which go to make up these Conquerors of Time.

Wherever skillful engineering and experience, forged by time, are tied together—there, too, the name KENYON is likely to be found.

Typical of this is the splendid Radio Compass manufactured by Fairchild Aviation Corporation which is illustrated here. Engaged in important Defense Production they have recognized that dependability is the keynote of success.

We are proud of the fact that KENYON has been designated as a source of supply for their transformer requirements—just another bit of accumulating evidence of Kenyon Superiority.

Bring your transformer problems to us and benefit by the wide experience that only time makes possible. Our engineering department is always at your service.

KENYON TRANSFORMER CO., Inc.
840 Barry St.
NEW YORK, N. Y.

ELECTRONICS — January 1941
LEADERSHIP!

For Accurate Temperature Control

PROCTOR relies on WILCO

Of course Proctor Electric Company uses Wilco Thermostal metal in its sensational new "Never-Lift" Iron! Because, like hundreds of other leaders throughout industry, Proctor knows that Wilco is first—in accuracy...in sensitivity...in thorough dependability!

THE H. A. WILSON CO., 105 CHESTNUT ST., NEWARK, N. J.
Branches: Detroit, Mich. and Chicago, Ill.

WILCO THERMOMETAL
(Thermostatic Bi-Metal)

PERMANENT MAGNETS
ALL SHAPES — ALL SIZES
FOR ALL PURPOSES

Stamped, Formed, and Cast; Chrome, Tungsten, Cobalt and ALNICO** (cast or sintered) under G. E. license.

THOMAS & SKINNER STEEL PRODUCTS COMPANY
114 E. 22nd STREET INDIANAPOLIS, INDIANA

Laminations for Radio Transformers — Tools Dies — Heat Treating — Stampings

39 YEARS EXPERIENCE

KELLOGG SWITCHBOARD & SUPPLY CO.
THE LOGICAL SOURCE FOR

Aircraft Radio Accessories

Manufacturers of Microphones (hand and throat), Headsets, Capacitors and miscellaneous apparatus such as plugs, jacks, keys, switchboard lamps, lamp bases, lamp caps, multi-conductor plugs and sockets, insulated wire, cords, cord assemblies, etc., etc., Head and chest sets, Control Boxes, Filters built to your specifications. Let us solve your problems.

Suppliers to All U. S. Government Departments and Commercial Aviation

KELLOGG SWITCHBOARD & SUPPLY COMPANY
618 SOUTH CICERO AVENUE • CHICAGO, ILLINOIS

January 1941 — ELECTRONICS

of the strip. The movements of the light beams are photoelectrically transmitted to indicating instruments.

Three types of general purpose photoelectric relays and several types of light sources and accessories are described in bulletin 1758-C. The relay models include CR7505-K1 and K2 for indoor use on 110 volt, a-c power supply. It works on five foot-candles at the photosensitive element with approximately 5 watts power consumption. Model CR7505-L2 relay, for indoor use on 115 volts d-c, has the same operating characteristics as the K2 model, except that the power consumption is approximately 7 watts. The third of these models is the CR7505-23 which is an outdoor relay enclosed in a fabricated case. A large directional lens system and sun shield minimizes the effect of slanting rays from the sun. Some of the accessories, which are more thoroughly described in bulletin 1758-C, include various types of light sources, lenses and masks, phototube holder, and an infrared filter mask. Illumination data is also given.

General Electric Co., has extended the type CF line of inkless recorders to include 4-c instruments (type CF2) available as voltimeters, ammeters, millivoltmeters, milliammeters, and microammeters in ratings down to 125 microamperes full scale. CF2 recorders are portable, may be wall or pole mounted, and are available for indoor or outdoor application. Providing continuous operation for 30 days without attention, they are suitable for installation where frequent servicing is impractical. Operating temperatures range from -10° F. to 120° F.

The 1000-watt f-m transmitter, Type GF-101-B, consists of two sections, the type GF-1B exciter (250 watts) which is the basic unit of the line, and a 1000 watt r-f power amplifier. Together, they are designated as Type GF-101-B. Each section is completely self-contained and can be easily moved if necessary. If greater coverage is desired, the standard 10 kw amplifier, Type GF-101-B, can be added to Type GF-101-B to make the complete 10,000-watt transmitter, Type GF-110-B. Three-thousand-watt and fifty-thousand-watt transmitters are also available.

A new portable sound level meter, lighter and more compact, has been built by Walter Mikelson and others of the G.E. engineering laboratory at Schenectady. The meter weighs 19 lbs and has a range of 24 to 120 db. The amplifier consists of five resistance-coupled stages. The instrument is designed to perform in accordance with A.S.A. standards for sound level meters.

Line Voltage Compensator

A new device to assist in correcting a fluctuating electric supply line is a voltage compensator, known as the Type LC Transtat available from American-Transformer Co., 178 Em- net St., Newark, N. J. It is a manually operated unit especially designed to permit compensation for small volt-
age variations in a-c circuits. Since it functions with equal effectiveness, regardless of changes in power factor, frequency and amount of load, it is suited for use with all types of electrical equipment in maintaining input voltage constant so as to enable both efficient operation under all conditions and maximum operating life. The voltage may be adjusted smoothly and without circuit interruption to within a fraction of a volt of the desired value. This new voltage compensator is a continuously adjustable, transformer-type voltage regulator designed to cover only a limited voltage range. It consists of a small, adjustable, autotransformer-type regulator which is connected across the line and an auxiliary buck-and-boost transformer with its secondary winding connected in series with the line. Voltage regulated either side of a center-tap in the winding of the regulator element is fed to the primary winding of the transformer, enabling either a bucking or boosting voltage to be set up in the secondary winding which is in series with the line. Standard types permit full correction over a range of ± 10 per cent and are available for service in 115, 230 and 460 volts, 50 to 60 cps, circuits. Equipment for single-phase and polyphase service is made in ratings from 2.5 kva to 85 kva output.

Cathode Ray Television Tube Lead Wire
A new corona-resistant wire has just been announced by Belden Manufacturing Company, 4680 W. Van Buren Street, Chicago. The construction of the new 8868 makes it suitable for the high voltages carried in cathode ray tube television circuits. A special rubber compound, high heat resisting Pyro-Glaze seal and braid of Belden fiberglass protect this wire against corona and heat. The wire is white and has an outer diameter of 0.200 in.

ELECTRONICS — January 1941

*This new Turnstile FM Radiator is newer than FM itself. Results of tests indicate it to be a revolutionary development important to every station planning FM transmission. Already proven, production is under way, and the technical facts are available today. Write or wire at once to JOHNS LINGO & SON, Inc. Dept. E-1, Camden, New Jersey. (Please indicate proposed FM frequency and power in inquiry.)
Today’s usage demands that instruments stand out and fairly invite you to read their long, legible scales from close up or at a distance. Model 426 is another of the new panel instrument case styles being added constantly to the Triplet line to make equipment such that larger meters can be applied. This handsome 6-inch rectangular molded case instrument offers unusually long readable scales—5.60’” DC, 5.30” AC. The case and base are molded, giving a completely insulated instrument with better reading. Model 426 is one of Triplet’s 36 case styles. These precision electrical measuring instruments are provided in round, square, fan and twin cases—2”, 3”, 4”, 5”, 6” and 7” DC instruments are the D’Arsonval type with an extra-light moving coil. Time-proven magnets with extra pole pieces are aligned to permanent precision accuracy. Trusted metal bar bridge construction. AC instruments are the double iron vane repulsion type with interchangeable coils. Electrodynamometer type instruments and instrument relays also are available. Two genuine sapphire bushings in every instrument. If servicing is required, thoroughly interchange-able parts make Triplet instruments the simplest of all to service. A complete line of portable instruments for exacting measurements also is offered. Test equipment also is manufactured for use in laboratory and radio testing fields.

Write for Catalog Section 211 Honan Avenue

THE TRIPLET ELECTRICAL INSTRUMENT COMPANY
Bluffton, Ohio

Here’s Help
for technical and business men

NEW 1940
Catalogue of
McGraw-Hill Books

OVER 1500 BOOKS DESCRIBED
Here is a guide to practical, expert information on many business and technical subjects. It contains clear, concise descriptions of more than 1500 authoritative, informative books written by leaders of business, industry and research. Get your copy now. In it you will find the up-to-date books that will give you the facts—experience—data—you need in solving your particular problems.

McGraw-Hill Books bring you the experience of experts in your field

Mail This Coupon for Your Free Copy

McGraw-Hill Book Co., Inc., 330 W. 42 St., N.Y.
Please send me a free copy of the New 1940 Catalogue of McGraw-Hill Books. I want to know more about:

(Name subjects of most interest to you.)

Name

Address

City State FL

Phonograph Pickup

THE ELECTROVOX Co., 424 Madison Ave., New York City, manufacturers of Walco Sapphire needles, have announced a light-weight phonograph pickup with a permanent-sapphire needle for installation on any manually operated phonograph. The manufacturers state that the point is good for 15,000 records, and that dropping the arm will not injure the needle or the record. Improved graining and polishing technique permits quantity production to a tolerance of ±1/16,000 inch.

Plug-In Electrolytics

SOLAR MFG. CORP., Bayonne, N. J., announces a new series of dry electrolytic capacitors, Type DO, in metal cans of the plug-in type to fit standard octal tube base sockets. These capacitors have been designed for use where quick servicing is necessary. Straps are available for mounting under condition of vibration, such as for air or marine service. These capacitors are available in usual ratings as well as multiple units.

Timers

A TIMER KNOWN AS “TANDEM” is available from Industrial Timer Corp., 101 Edison Place, Newark, N. J. The “Tandem” is rated by the manufacturers as having a one hundred percent timing cycle and/or delay cycle which can be selected in variable time controls from one second to fifty-five minutes in either or both operations.

Fluorescent Lamps

NEW 100-WATT MAZDA fluorescent lamps with twice the power of any Mazda F lamps are now available from West- inghouse Lamp Division, Bloomfield, N. J. Each lamp is five feet long and 21 inches in diameter, and is available in 3500° K white color. These lamps have a rated initial output of 4400 lumens, rated life of 2000 hours.
TO: H. W. Mateer
LOCATION: Manager, ELECTRONICS
SUBJECT: PROGRESS REPORT - 1940

FROM: Wallace B. Blood
LOCATION: Sales Manager
DATE: January 2, 1941

Dear Mat—

You know what a successful year ELECTRONICS has had in 1940, but here is a summation. Ordinarily one speaks of statistics as "cold facts," but we consider the following pretty "hot."

In 1940, the tenth-anniversary year of ELECTRONICS, all records were again topped...total advertising space and revenue, number of editorial pages, circulation.

Manufacturers supplying the electronic and allied industries used 585.07 pages in ELECTRONICS for their sales messages, an increase of 156.70 pages or 30.6% over the previous banner year of 1939.

During the year forty new advertisers started using ELECTRONICS as a medium for their sales work. They, alone, purchased a total of fifty pages during the year, and 90% of them continued to use this magazine after their initial appearance.

Circulation continued its steady rise, reaching approximately 15,000 net paid with the December issue. Our circulation in industrial plants increased more than 9% in the first six months, and we estimate that the year's increase in this important group will be about 20%.

ELECTRONICS has become one of the most important publications for sales approach to the defense industries. Manufacturers, recognizing our valuable coverage and penetration into the design headquarters of plants manufacturing defense equipment, increased their schedules and directed their copy to the attention of the engineers in these industries.

The editors of ELECTRONICS continued to offer more and more editorial service to our increasing number of readers. A total of 573.87 pages of editorial matter was presented during the year.

But, impressive as is this 1940 record, every indication is toward a 1941 even more successful. ELECTRONICS is proving to be the most economical means of penetrating to all important engineering organizations which are planning and putting into production the new devices in wire and wireless communication and industrial control.

WBB/HE

A swell report.
Let's give it.
Dry Electrolytics

Migamold Radio Corp., Flushing and Porter Avenues, Brooklyn, N.Y., announce the addition of a complete line of Type MP dry electrolytics. They are available in sufficient capacity and voltage ranges to accommodate practically all replacement requirements.

Standard lug mountings with both three and four terminals are available in both 1 inch and 1 1/4 inch diameters. Descriptive literature is available from the manufacturers.

Volmeter-Ohmometer

RCA Manufacturing Co., Camden, N. J., have incorporated in their new Junior Volt-Ohmyst model, the Rider circuit which provides a convenient push-pull electronic d-c voltmeter-ohmometer with a resistance range wide enough for engineering and servicing requirements. The features of Junior Volt-Ohmyst are similar to the laboratory type RCA 163 Volt-Ohmyst. The instrument is applicable to servicing radio and television receivers, transmitters, aircraft radio, sound amplification and reinforcement systems, facsimile and other types of equipment. The input resistance for measuring d-c voltages is constant at 11,000,000 ohms, allowing voltages to be read in high resistance circuits. A signal-tracing probe lead is provided with the instrument. The d-c voltmeter circuit has six ranges—0 to 5, 10, 30, 100, 300, and 1000 volts. The Junior Volt-Ohmyst is equipped to make isolated a-c voltage measurements, which are read on five scales of from 0 to 10, 30, 100, 300 and 1000, with a sensitivity of 1000 ohms per volt.

Standardized Mounting Strips

To facilitate the use in multiple of signal-lights, toggle-switches, and push-buttons, the H. R. Kirkland Company of Morrisville, N. J., announce the development of a line of standardized mounting strips, which have wide application in the signal, control, and general annunciator fields. The strips are made of stainless steel, and are available in three lengths to contain two units, three units, or five units per strip. There is a selection strip to match each length. The strips are flexible. One strip may contain any combination of devices, or the strips may be banked together. All of the devices are for service on voltages up to 220 volts.

Recorder and Reproducer

Miles Reproducer Co., Inc., 812 Broadway, New York City, manufacturers of Filmgraph devices for recording and reproducing sound on film electromechanically, have available a new model, ADB Filmgraph, which works automatically. This new model accommodates five hundred feet of film. The reels are seven inches in diameter and one inch thick, and since they are of the safety type can be mailed or stored. The film requires no treatment or processing of any kind and recordings can be played over many times without loss of quality.

Clinch Type Nuts

Elastic Stop Nut Corp., 2322 Vauxhall Rd., Union, N. J., are offering a clinch type of self-locking nut with a knurled shank for fastening sheet-metal assemblies in which the parts must be readily removed and returned to position. To install the nut, a hole is drilled in the structure and the Shank is pressed into the hole. The mouth of the Shank is then spread against the back of the structure to effect a clinching hold. The knurling engages the drilled surface and thus assists in eliminating any turning of the nut. These nuts are available in a complete range of sizes, thread systems, Shank length, and materials.
Mobile Amplifier

LAFAYETTE RADIO CORP., 100 Sixth Ave., New York City, designed their 30-watt mobile amplifier (model 402-T) especially for sound men who specialize in indoor rentals. Instead of being mounted in a housing provided with decorative handles. The amplifier is rated at 6 to 110 volts ac. Output is 30 watts, with 40 watts on peak. The equipment can also be used for mobile work.

Integrating-Sphere Densitometer

The Integrating-Sphere Densitometer is a new instrument for measuring the density or pattern of light and shade which comprises the image on a motion picture film. It was developed by Dr. J. G. Frayne and G. R. Crane of Electrical Research Products, Inc., Laboratories in Hollywood. In taking measurements, the densitometer traps that portion of a beam of light which succeeds in penetrating a test sample of motion picture film. The trap consists of a hollow ball or sphere, the inner surface of which is finished in white, and fitted with a photoelectric cell. Light entering the globular chamber is reflected many times and finally falls on the phototronic cell as a thoroughly mixed or integrated product. Its value or brightness is then translated into electrical current and registers, in terms of density, on a meter. This information enables technicians to regulate with great accuracy the chemical processes involved in developing or finishing the film. The densitometer operates in the same manner that a photographic exposure meter does except that it is more accurate, and can be used for controlling the development of both positive and negative film.

Code Practice Equipment

A COMPLETE NEW LINE of code practice oscillators and accessories are available from Bud Radio Inc., 5205 Cedar Ave., Cleveland, Ohio.

CPO-122 is an earphone model code practice oscillator capable of handling up to twenty pairs of earphones or up to five small magnetic speakers. It has a variable volume control and a variable pitch control so that both the

You Will Get TRANSFORMER DELIVERIES — NOT "PROMISES"

Under current conditions, you want Transformers—not delivery "promises". You've got to get them on time—to maintain production schedules. Ferranti still delivers on time—when promised! A complete stock at moderate cost, yet in keeping with "Ferranti Standards of Quality". We specialize in transformers for aircraft, marine and other severe conditions. Special transformers to overcome special problems. Prompt delivery on all orders, large or small!

... Write for complete descriptive literature and prices—NOW.

FERRANTI PRODUCTS

Transformers for every electronic, sound, communication, industrial, and laboratory use—miniature aero transformers for aircraft and portable work—high power plate and filament transformers—filters, equalizers, modulation sets, rectifiers, etc.—electrostatic voltmeters, portable voltmeters, ammeters, phase rotation indicators, special testing equipment, and numerous other instruments.

FERRANTI INCORPORATED

R.C.A. BUILDING, NEW YORK, N.Y.

PROFESSIONAL SERVICES

Laboratory Facilities

ELECTRICAL TESTING LABORATORIES

Tests of Vacuum Tubes
Tests of photo cells, glow lamps, cathode lamps, Tests of electrical switches, Beam Current
Tests of Electrical Relays
East End Avenue and 79th Street New York, N. Y.

HAROLD J. McCREARY

Consulting Engineer

Research

Development

Design

Factor Practice

Patent Studies

105 W. Adams St. Phone State 4003 Chicago, Ill.

JOSEPH RAZEK, PH.D.

Consulting Engineer

Electrical and Mechanical Engineering Problems

Instruments and Control Devices

Electronics

Specialists in Colorimetry, Spectrophotometry and Industrial Color Control

Laboratory and Shop Facilities

430 Greenview Lane Llanerch, Pa.

F. H. SHEPARD, JR.

CONSULTING ENGINEER

ELECTRONIC APPLICATIONS

Specialty Design

Industrial Control

Special Amplifier Design

Follow-Up Devices

Radio and Carrier operated Remote Control

6165 Cedar Ave., Merchantsville, N. J.

Telephone Merchantsville 1111

ELECTRONICS — January 1941

95
volume and tone may be adjusted to suit individual needs. The oscillator is housed in a streamlined metal case and is provided with red nameplates to identify the various controls. CPO-124 is similar to CPO-122 except that it is provided with a built-in loud speaker. Provision is also made to operate up to twenty pairs of carphones or up to five small magnetic speakers. Both the tone and volume are variable. CPS-123 is a three-inch magnetic speaker housed in a grey cradle enamelled case. This speaker is intended for use with the CPO-122 and the CPO-124. CPO-127 is a key and phones outlet box and is designed to provide a convenient means for terminating key and phones connections in classroom or group practice. Two appropriately marked jacks are housed in a balelle box which can be fastened to the bench at each student's position. Each outlet box is then wired to the master oscillator.

Recording Equipment

WILCOX-GAY Corp., Charlotte, Mich., have available their model "Recordio Junior" which is a radio, phonograph and home recorder combined in one instrument. Recording speed is 78 rpm for both radio and microphone recordings. The weight of the unit is twenty pounds. It measures 12x121x92 inches.

Power Line Filter

A NEW POWER LINE FILTER, for eliminating line interference, is announced by Belden Manufacturing Company, 4689 W. Van Buren Street, Chicago. The new unit, type 8100, contains two dual condenser sections and two dual high "Q" choke coils. It effectively prevents power line interference and eliminates man-made static on both broadcast and shortwave bands. It is highly efficient with all types of receivers. Ground is provided by a three-wire Belden power supply cord, eliminating possibility of shock from case. The unit has a rating of 3 amps at 115 volts.

A standard power line filter, 8105, is also available. It has a dual special high capacity low inductance condenser section and is otherwise similar to 8100. It effectively eliminates "back door" interference in practically all installations. Rating is the same as 8100.

Radio Direction Finder

THE ANSLEY RADIO CORP., 4577 Bronx Boulevard, New York City, has developed a new self-contained marine radio direction finder for small boats to be used for establishing offshore position. Model DF-1 has five tubes and seven tuned circuits which provide a range from 275 to 325 ke covering all marine radio beacon stations. A shielded loop antenna provides direction within one degree accuracy. The instrument carries a seven inch compass card (of non-magnetic construction) for easy reading. Model DF-1 was designed primarily for salt water use.

F-M Conversion Attachment

STEWART-WARNER Corp., Chicago, announces a conversion attachment which may be plugged into any present style radio equipped with a phonograph jack to adapt the set to F-M reception without further changes, rewiring, or other alterations. This new unit, known as the "Interpreter," consists of a small, compact cabinet, which may be placed upon the top of a standard set and attached to the latter with a simple plug-in connection. It provides automatic push-button tuning for six stations. Other stations may be tuned in with a single knob, operating an indicator pointer over the face of an illuminated, calibrated dial. An on-off switch is also included. The "Interpreter" circuit employs nine tubes, operating on a 110-volt 60-cps current supply. An extra jack is provided for phonograph pick-up for use with existing record players.

Oscillograph

HICKOK ELECTRICAL INSTRUMENT Co. (10307 Dupont Ave., Cleveland, Ohio) has available model RFO-5 oscillograph for complete visual analysis for F-M, S-M and television servicing. It offers single or consecutive stage-by-stage trouble shooting from antenna post to speaker. It has a self-contained wide band F-M oscillator for F-M and television receivers, and a narrow band F-M oscillator for S-M receivers, as well as a demodulator, video amplifier, signal tracer and visual a-c vacuum tube voltmeter rated at 0.2 to 1000 volts. The wide band F-M oscillator can be modulated from external sources such as a phonograph pickup, microphone or a-f oscillator, to provide an F-M transmitter for laboratory checks.

Tube Tester

SERIES 914 COUNTER TYPE tube tester and set analyzer features a seven-inch swivel mounted, easily read meter, that can be fully rotated in a complete circle, as well as back and forth.

Safety Grounding Connector

AMERICAN PHENOLIC CORPORATION, 1250 Van Buren St., Chicago, III., announced in an issue of Amphenol News that automatic safety grounding connectors for aircraft magneto applications were available. Army-Navy Specification 9554 has designated the size 18 "AN" connector with element No. 2S as an automatic grounding connector, and Amphenol engineers, working in conjunction with the aircraft manufacturers, have developed a versatile design. One of the important features of this connector is that the grounding element may be installed in any of the four standard 18 plug or receptacle shells, so that the grounding action can take place either at the end of a flexible cable or at the connector unit fastened to a bulkhead, firewall or directly on the magneto, etc.

Application for this connector is for automatically grounding the magneto to the engine frame when the plug is disconnected from the receptacle. This eliminates the danger of injuries which might be caused by the accidental starting of an engine should the propeller be moved during inspection, or while minor repairs are being made.

AN-3108 angle connector is for use where compact wiring in cramped quarters is necessary. It permits cable or flexible conduit to be brought out of the connector at a 90° angle.

January 1941 ELECTRONICS
“What Can It Do For Me?”

Advertising that is read with this thought in mind, may provide the solution to a problem that has kept you awake nights for weeks.

Remember, back of the signature of every Electronics advertiser is another organization, whose members have thought long and hard about your business in the course of introducing and applying their products or services to your industry.

If their offerings can improve the quality of your company’s product . . . or save your company’s money . . . they can contribute to your company’s income.

We all know, “It pays to advertise.” It pays just as big to investigate what is advertised!

Each month, Electronics advertisers, old and new, invite you and over 16,000 other subscribers to investigate further the advantages they can provide.

Departmental Staff

ELECTRONICS — January 1941
Transmission Equipment

The Ideal Commutator Dresser Co., 1631 Park Avenue, Sycamore, Ill., announces a new series of "Select-O-Speed" transmissions equipped with electric motorized control. These new models supplement the standard line from fractional to 7 hp capacity that are equipped with lever type and hand wheel control. The electric control is intended where the drive must be mounted on the ceiling, back of, or inside the equipment. A two button switch controls the speed. Changes in speed adjustments are easily made by pushing and holding either the fast or slow button until the desired speed is obtained. Electric motorized control is also available on some type of Ideal's S.O.S. variable speed transmissions.

Poly-Directional Microphone

A new Cardak (model 725) available from Electro-Voice Mfg. Co., 1239 South Bend Ave., South Bend, Indiana, has a constantly variable sound pickup pattern which enables the operator to select the correct directivity for each particular installation. It is especially suitable for orchestras who travel with their own sound systems and who encounter a variety of acoustic problems. The response is substantially flat from 30 to 10,000 cps. The average level is 1 volt/bar. Decibel rating is -52. A control on the instrument allows the microphone to function as a true cardioid for elimination of sound coming from the rear, or as a bi-directional for elimination of sideward reflected sound. It is adjustable for any combination of reflected sound direction.

Midget Signal Generator

The "Pen-OSCILLITE" is a self-contained, self-powered, fully shielded signal generator (multi-vibrator type) available from General Test Equipment Co., 922 Avenue O, Brooklyn, N. Y. This instrument, which is scarcely larger than a fountain pen, generates audio, i-f, broadcast, and short wave frequencies for complete receiver trouble shooting, for alignment, and for a number of other tests. A single battery generates a broadly tuned signal.

Interval Timer

The R. W. Cramer Co., Inc., Centerbrook, Conn., announce Model D2 interval timer which was designed primarily for the control of industrial equipment which can be automatically timed. It is a standard self-starting synchronous motor driven timer enclosed in a dust tight and splash proof aluminum housing. The housing is arranged for conduit connection and provided with a full vision non-clouding type window and external setting knob.

Louver Plastic Sheeting

A new type of SHEETING has been developed in "Plastocele," a cellulose acetate plastic, made by the E. I. du Pont de Nemours & Co., Wilmington, Del. The new sheeting "Louverglas" was conceived by L. C. Doane, of Doane Products Corp., and was developed in collaboration with the research staff of du Pont for the purpose of combining diffusion obtainable with an opal material with the directional efficiency obtainable with a clear material.

UNUSUAL OPPORTUNITY for RADIO SALES ENGINEER

Wanted: An engineer with good scholastic background in radio and electronic principles . . . some manufacturing, field or laboratory experience desirable but not essential . . . age preferably under 30; family situation must permit travel . . . Salary commensurate with ability.

Opening is with one of biggest Radio Companies . . . position has responsibility and offers a splendid opportunity for the right man.

SW-262, ELECTRONICS, 330 West 42nd St., New York City
INDEX TO ADVERTISERS

A

Acheson Colloids Corp. 78
Aeroplane Electric Co. 85
Advance Electric Co. 83
Aerox Corp. 82
Allied Control Co. 79
American Electric Metal Corp. 76
American Graflex Corp. 81
American Telephone & Telegraph 83
American Transformer Co. 83
Andah Co. 87
Automatic Electric Co. 73
B

Bakelite Corp. 69
Ballantine Laboratories, Inc. 73
Blindax Co. 52
Billey Electric Co. 68
Boston Radio Corp. 89
Bud Radio, Inc. 86

C

Callie Tungsten Corp. 50
Cannon Electric Development Co. 58
Catalyst Radio Engineering Institute 82
Carbide and Carbon Co., Charcoal Div. 86
Carter Motor Co. 73
Centralab Div. Globe Union, Inc. 2
Cinch Manufacturing Corp. 43
Clay & Co., C. P. 79
Clark Controller Co. 8
Clary Mfg. Co. 85
Cohn, Sigmond 73
Colburn Engineering Corp. 9
Cornell-Hubbard Corp. 7
Cross, H. 97

D

Dayco Co. 66
De Jur-Amoto Corp. 46
Doddle Radio, Inc. 83
Dugan Radio Corp. 97
Drake Mfg. Co. 20
Driver Co., Wilbur B. 81
Dunn, Inc., Struthers 13
Du Mont Labs., Allin B. 74

E

Eder Engineering Co. 97
Evel-McCallough, Inc. 6
Eric Resistor Corp. 53

F

Ferranti Electric, Inc. 91
Ferris Instrument Corp. 91
Ferris Corp. 92
Franklin Mfg. Co., A. W. 62

G

Gates American Corp. 100
General Ceramics Co., Inc. 57
General Electric Co. 64
General Radio Co. 67
Guardian Electric Mfg. Co. 86

H

Halliburton, Inc. 81
Harvey Radio Laboratories, Inc. 78
Hewlett-Packard Co. 74
Heitler & Kaufman, Ltd. 28
Hollywood Transformer Co. 97
Hunterm Pressed Steel Co. 89

I

International Resistance Co. 61
International Telephone Development Co. 59
Iodohite, Inc. 11

J

Jackson Electrical Instrument Co. 81
Jones, Howard B. 95

K

Kellogg Switchboard & Supply Co. 90
Kenyon Transformer Co. 89

L

Lampkin Laboratories 97
Lapp Insulator Co. 9
Ling & Son, Inc., John E. 91
Littelfuse, Inc. 74

M

Magnetic Windings Co. 85
Malloy & Co., P. R. 14
McIntyre-Hill Pilk Co. 93
Miller Mfg. Co., Inc., Janes 92

N

National Vulcanized Fibre Co. 47

O

Ohmite Mfg. Co. 71

P

Parker-Kalon Corp. 4
Paramount Products Corp. 78
Pioneer Gen-E-Motor Corp. 70
Precision Apparatus Corp. 90
Presto Recording Corp. 54

R

Rytheon Mfg. Co. 91
RCA Manufacturing Co., Inc. 10, Back Cover
Richardson Co. 75

S

Signal Indicator Corp. 97
Simpson Electric Co. 10
Solar Mfg. Co. 79
Stackpole Carbon Co. 63
Standard Pressed Steel Co. 84
Superior Tube Co. 55

T

Thomas & Skinner Steel Pipe Co. 90
Trinity Electrical Instrument Co. 92
Turner Co. 84

U

Union Carbide & Carbon Corp. 69
United Transformer Corp., Second Cover
Universal Microphone Co., Ltd. 97

W

Ward Leonard Electric Co. 48
Western Electric Instrument Corp. 51
White Dental Mfg. Co., S. N. 90
Wilson Co., H. A. 90

Professional Services 95

SEARCHLIGHT SECTION
(Classified Advertising)

EMPLOYMENT 98

USED EQUIPMENT FOR SALE
Callie Tungsten Corp. 98
Kahlen Engineering Corp. 98

RELAYED-FLUX" Microdyne

“The Standard by Which Others Are Judged and Valued”

The "RELAYED - FLUX" principle makes possible a moving system far beyond anything yet devised . . . a system that approaches the theoretical ideal of zero mass.

- Flat within $\pm 1\frac{1}{2}$ db to over 10,000 cycles.
- Sharp, clean-cut definition of the finest Moving-Inductor system.
- Vibratory Momentum near vanishing point.
- Absence of distortion.
- Free-floating stylus.
- Equipped with Jewel-Point.
- Point-pressure about 18 grams.
- Immune to climatic changes.
- Complete with arm.

With Our Compliments
A revised copy of "PICKUP FACTS" is yours for the asking. It answers many of the questions you want to know on record reproduction.

Also write for details on the NEW AUDAK HIGH FIDELITY CUTTERS.

AUDAK COMPANY
500 Fifth Avenue New York City
"Creators of High Grade Electrical and Acoustical Apparatus Since 1917"

ELECTRONICS - January 1941
The Unit That Makes Your Fixed Frequency a Certainty—not a gamble!

Many Service Tests on current installations, reveal frequency drifts of less than one cycle in a year or more

Has the forthcoming change in your frequency caused a problem? Why not put an end to your worries, by installing the Gates 25-A Frequency Control Unit? Once and for all you eliminate all chances of being off frequency. This automatic control unit provides you with a simple link arrangement and a self-contained unit with oscillator, first and second buffer stages and power supply. Actually it is a 7 watt transmitter in its own right, attachable to any other, regardless of size or make, by a simple link arrangement.

This automatic control unit provides you with dual crystals that assure constancy of frequency and eliminates danger of shutdowns. $373 is a small price for such protection.

The Gates 25-A Frequency Control Unit

Acoustical Device

A new treatment of the acoustical problem presented by record surface and mechanical noises present in phonographs was revealed to the Acoustical Society of America recently by Dr. Harry F. Olson of the RCA Research Laboratories at Camden, N. J. The name of the new device is “Tone Guard.” It is a tuned acoustical filter which captures extraneous sounds and destroys them. It employs a simple system of grooved wells around the edge of the phonograph compartment directly beneath the lid. “Tone Guard” is also applicable to soundproofing doors or windows.

Cone Speaker Projector

“Lighthouse” model RLP cone speaker projector is a newly designed product available from University Laboratories, 195 Christie St., New York City. It includes all the features of University’s cone speaker reproducers except that double the usual acoustic length is used in the projector. Due to the design of the bells, uniform 360 degree sound projection is possible. The bell diameter is twenty-four inches and overall height is twenty-eight inches. Model RLP was designed for all models of twelve-inch cone speakers.

Communications Receiver

Designed to serve every purpose of a commercial, amateur or short-wave listener, Hallicrafters, Inc. (Chicago), have introduced their SX-28 model communications receiver known as...

“Super Skyrider.” The instrument has fifteen tubes. The tuning range is from 550 kc to 42 Mc in six bands to provide good L/C ratios. The main dial has an auxiliary micrometer scale. The band-spread scale is calibrated for amateur bands from 80 to 10 meters inclusive.

January 1941 — ELECTRONICS
38 years of pioneering and developing steatite ceramic insulation convinces us that there are few applications where "standard" insulation will give best results. For that reason, neither time nor expense has been spared in developing materials and custom-manufacturing methods ahead of the times.

Our organization has unusual experience and skill in making insulating parts from blue prints. In many instances it is our privilege to help in making the blue prints and in selecting the "body" with the correct physical characteristics.

Why shackle your design to "standard" parts? Why not send us a blue print of your ideal design and let us show you what you can get from custom-built AlSiMag?
RCA-866-A/866 Half-Wave Mercury-Vapor Rectifier

RCA-866-A/866 Half-Wave Mercury-Vapor Rectifier Tube represents a big forward step in providing higher voltage at lower initial cost. Equally important is the amazingly long life achieved by virtue of the new edgewise-wound coated ribbon filament and other features of design and construction. Judged from any angle, it is far and away the finest rectifier tube value RCA has ever offered—both a money-saver and a truly de luxe performer.

This new tube supersedes the 866 and the 866-A and may be used in equipment designed for these types. It combines the high conductivity of the 866 at low plate voltages with the ability of the 866-A to withstand a high peak inverse voltage—and, in addition, gives plus performance all along the line.

RCA-866-A/866's new edgewise-wound filament has great mechanical strength and provides more cathode area for the same filament-power rating.

Important among other features of the tube is the special filament shield which makes practical the use of a very low starting voltage. A ceramic cap insulator and new dome-top bulb minimize danger from bulb cracks caused by corona discharge and resultant electrolysis.

Install 866-A/866's and forget rectifier tube problems for a long, long time to come!

RATINGS:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filament Voltage (A-C)</td>
<td>2.5 volts</td>
</tr>
<tr>
<td>Filament Current</td>
<td>5.0 amperes</td>
</tr>
<tr>
<td>Peak Inverse Voltage</td>
<td>10,000 max.</td>
</tr>
<tr>
<td>Up to 100 cycles per second</td>
<td>5,000 max.</td>
</tr>
<tr>
<td>Peak Plate Current</td>
<td>1.0 max.</td>
</tr>
<tr>
<td>Average Plate Current</td>
<td>0.25 max.</td>
</tr>
<tr>
<td>Tube Voltage Drop (approx.)</td>
<td>15 volts</td>
</tr>
</tbody>
</table>

$1.50

NET

RCA TRANSMITTING TUBES
PROVED IN COMMUNICATION'S MOST EXACTING SERVICES
RCA MANUFACTURING CO., INC., CAMDEN, N. J. • A Service of The Radio Corporation of America

In Canada: RCA VICTOR COMPANY LIMITED, MONTREAL