Batteries

Which Battery to Use? Optimize battery life...

NiCad Regenerator ... restore their health ...

Voltmeter ... and monitor them.

50 More Computers! Middle to high-end

Sord Socius M5 Computer Review
EXCELTRONIX (416) 921-8941 1-800-268-3798

Catalog shipping rates are incorrect. Please call us for correct charges.

Monitors

Zenith ZVM-122 Amber $195
Zenith ZVM-123 Green $129
Amdek Colour-1 $395
Amdek Amber - 300A $259

Multiflex KIT

- S100 Based
- Z-80A Processor
- runs CP/M
- EPROM Programmer
- BASIC Package includes
- CPU card w. 64K
- Video Board
- Disk Controller
- SA455 Drive
- CP/M Operating System

Options

Power Supply: 5V 4A, 12V 2A, -5V 0.5 A, -12V 0.5A

Keyboard (no case) $99

Memory Chips

4164 - 150 ns (1x64K single (+ 5V) supply) $8.44
4116-200ns (1x16K) $1.74
4116-150 ns (1x16K) $1.99
2114L-200 ns (1kx4 static) $2.49
6116-150 ns (2x8 static RAM) $8.94
(Pin compatible with 2716 uses negligible amount of power)
2016-150 ns (2x8 static) $8.74
2102L-200 ns (1x1 static) $1.94
5101-CMOS RAM $3.84
2708 (1kx8) EPROM $0.74
2716 (2x8) EPROM single + 5V $4.94
2732 (4kx8) EPROM single + 5V $7.94
2532 (4kx8) EPROM single 5V $8.74
2764 (8kx8) EPROM single 5V $11.94

Diskettes

5¼" Diskettes Boxes of 10
Maxell MD-1 $36.00
Maxell MD-2 $52.95
Verbatim $34.00
CDC $27.95
Dysan $33.95
3M $32.95
Ectype (with library case worth $4.95) $27.44
2 Ectype Diskettes In a plastic binder sheet $5.89

Special Free calculator when you purchase 5 boxes of 3M diskettes.

Joysticks

Self-Centering $39.95
With two adjustable controls $49.95
Super offer $69.00
Kraft Joystick $69.00
TG Joysticks $75.00
DeLuxe Model $64.95
TG Paddles $59.00
DeLuxe Table Top Model $59.00

Featuring the

Multiflex Apple™ Compatible Drive only $269

1 YEAR WARRANTY
1000'S SOLD AN EXCELLENT CHRISTMAS GIFT IDEA

PRICE POLICY
Remember that at Exceltronix all prices are negotiable for quantity purchases. If you cannot afford large quantities on your own how about starting a Co-op.

MAIL ORDERS
Send a certified cheque or money order (do not send cash). Minimum order is $10 plus $3 minimum for shipping. Ontario residents must add 7% provincial sales tax. Visa, Mastercard and American Express accepted. Send card No., signature, expiry date and name of bank.

MAIL ORDERS
Send a certified cheque or money order (do not send cash). Minimum order is $10 plus $3 minimum for shipping. Ontario residents must add 7% provincial sales tax. Visa, Mastercard and American Express accepted. Send card No., signature, expiry date and name of bank.

MAIL ORDERS
Send a certified cheque or money order (do not send cash). Minimum order is $10 plus $3 minimum for shipping. Ontario residents must add 7% provincial sales tax. Visa, Mastercard and American Express accepted. Send card No., signature, expiry date and name of bank.

MAIL ORDERS
Send a certified cheque or money order (do not send cash). Minimum order is $10 plus $3 minimum for shipping. Ontario residents must add 7% provincial sales tax. Visa, Mastercard and American Express accepted. Send card No., signature, expiry date and name of bank.

MAIL ORDERS
Send a certified cheque or money order (do not send cash). Minimum order is $10 plus $3 minimum for shipping. Ontario residents must add 7% provincial sales tax. Visa, Mastercard and American Express accepted. Send card No., signature, expiry date and name of bank.
BEFORE YOU BUY ANY IBM COMPATIBLE PRODUCTS; CHECK WITH US FIRST. FOR BEST PRODUCTS AND PRICES.

1-800-268-3798 (416) 921-8941

Telex 065-24218

EXCELTRONIX wishes you a Merry Christmas.

November Software Specials

<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Witness</td>
<td>$42.95</td>
</tr>
<tr>
<td>Sea Dragon</td>
<td>$41.00</td>
</tr>
<tr>
<td>Evolution</td>
<td>$39.00</td>
</tr>
<tr>
<td>Apple Panic</td>
<td>$36.00</td>
</tr>
<tr>
<td>Frogger</td>
<td>$41.00</td>
</tr>
<tr>
<td>Flight Simulator</td>
<td>$48.00</td>
</tr>
<tr>
<td>Pinball</td>
<td>$39.00</td>
</tr>
<tr>
<td>Fork I</td>
<td>$29.50</td>
</tr>
<tr>
<td>Deadline</td>
<td>$48.00</td>
</tr>
<tr>
<td>Ulysses</td>
<td>$47.00</td>
</tr>
<tr>
<td>Temple of Apsial</td>
<td>$46.50</td>
</tr>
</tbody>
</table>

NEW Book Specials

<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locksmith</td>
<td>$125.00</td>
</tr>
<tr>
<td>DOS Tool Kit</td>
<td>$89.00</td>
</tr>
<tr>
<td>Crosswire</td>
<td>$36.50</td>
</tr>
<tr>
<td>Screen Writer II</td>
<td>$59.95</td>
</tr>
<tr>
<td>Lisa</td>
<td>$119.95</td>
</tr>
<tr>
<td>Zaxxon</td>
<td>$49.50</td>
</tr>
<tr>
<td>Computer Baseball</td>
<td>$39.00</td>
</tr>
<tr>
<td>typing Tutor II</td>
<td>$24.50</td>
</tr>
<tr>
<td>Flip 'n File 50</td>
<td>$29.00</td>
</tr>
<tr>
<td>David's Midnight Magic</td>
<td>$39.00</td>
</tr>
</tbody>
</table>

PRINTER SPECIALS

<table>
<thead>
<tr>
<th>Printer</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gemini 15X</td>
<td>$699</td>
</tr>
<tr>
<td>EPSON MX80FT</td>
<td>$795</td>
</tr>
<tr>
<td>EPSON MX100</td>
<td>$995</td>
</tr>
<tr>
<td>EPSON RX80 (NEW)</td>
<td>$495</td>
</tr>
<tr>
<td>Gemini 10X</td>
<td>$359.00</td>
</tr>
<tr>
<td>EPSON FX80 (NEW)</td>
<td>$798</td>
</tr>
<tr>
<td>TTX PRINTER</td>
<td>$789</td>
</tr>
<tr>
<td>WIZARD BPO-16, Apple</td>
<td>$184.00</td>
</tr>
<tr>
<td>EMP Mini Modem</td>
<td>$124</td>
</tr>
<tr>
<td>Smart Modem</td>
<td>$399</td>
</tr>
<tr>
<td>Micro Modem</td>
<td>$459</td>
</tr>
<tr>
<td>Z-80 Card</td>
<td>$58</td>
</tr>
</tbody>
</table>

CHRISTMAS GIFT CERTIFICATES AVAILABLE.

AN EXCELLENT GIFT FOR THE COMPUTER ENTHUSIAST!

16K RAM Card

* Offers 64K memory expansion for the Apple II/II+.
* Provides compatibility with CP/M and other Disk Operating Systems.

$55.00

Multiflex EPROM Programmer

FEATURES:
* EPROM programmer for APPLE computers.
* Programs 2716, 2732, 2732A, 2764.
* ZIF socket for the EPROM.

$69

80-Column Card

FEATURES:
* Runs CP/M on your Apple.
* Memory expansion for the Apple II/II+.

$84

PROTO BOARDS

$14.00

Excelfronix Computer Division Computers at unbeatable prices! (416) 921-8941, 319 College St., Toronto, Ontario

Circle No. 7 on Reader Service Card.
OUR FAMOUS 6502 BOARD
NOW NEW & IMPROVED VIDEO SECTION

This 6502 board is a vast improvement on others available:
- 64K RAM (4164 chips)
- 80 x 24 video included on board
- Floppy Disk Controller included
- FIVE additional slots
- Z80 blank PCB Included
- Powerful power supply (5V 5A, -12V 2A up to 3A peak, -5V 0.5A, -12V 0.5A)
- Hydro-approved whereas many others are not!
- Superb quality plastic case
- Excellent keyboard including numeric keypad
- EPROMS (blank) included

NOW you receive a FREE Z80 PC BOARD AND FREE 128K RAM Disk PC BOARD when you order the complete package (either Kit or A&T) (BLANK)

CALL FOR PRICING

We have the Best Prices on IBM Peripheral Boards and Cases. Also our own 8088 Boards with most Peripherals on Board. Check with us before you buy anywhere else.

Peripherals for your APPLE™

<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>16K RAM Card - complete A&T</td>
<td>$55.00</td>
</tr>
<tr>
<td>Eprom Programmer- A&T with</td>
<td>$69.00</td>
</tr>
<tr>
<td>software to program 2716, 2732, 2732A and 2764.</td>
<td></td>
</tr>
<tr>
<td>Z80 Card - (no software) A&T</td>
<td>$57.00</td>
</tr>
<tr>
<td>80x24 Video Board (runs CP/M & Pascal)</td>
<td>$73.00</td>
</tr>
<tr>
<td>Wizard Printer Interface card with Epson personality Eprom (works great with GEMINI 10X) Complete</td>
<td>$79.00</td>
</tr>
<tr>
<td>Our own Printer interface card A&T with blank personality Eprom</td>
<td>$49.00</td>
</tr>
<tr>
<td>128K RAM Disk A&T (no software)</td>
<td>$199.00</td>
</tr>
<tr>
<td>APPLE™ Compatible Disk Drives attractively packaged, ready to plug in</td>
<td>$269.00</td>
</tr>
<tr>
<td>Disk Drive Controller A&T</td>
<td>$79.00</td>
</tr>
<tr>
<td>Our Disk Drive Controller, A&T, with two blank 2716's</td>
<td>$49.00</td>
</tr>
<tr>
<td>GEMINI 10X Printers</td>
<td>$359.00</td>
</tr>
<tr>
<td>Wild Card provides back-up copies of protected software with just the push of a button</td>
<td>$139.00</td>
</tr>
<tr>
<td>Our Crazy Card provides back-up copies of protected software with just the push of a button only</td>
<td>$59.00</td>
</tr>
<tr>
<td>PDA 232</td>
<td>$118.00</td>
</tr>
</tbody>
</table>

Huge variety of Surplus stock at low, low prices. New shipments arriving. No reasonable offers refused.

Surplustronics, 310 College Street, Toronto, Ontario, M5T 1S3 (416) 925-8603.
Our Cover
Various batteries and related circuits are covered in this issue; photo by Bill Markwick. The Sord M5 is reviewed on page 39; photo by the Unknown Editorial Assistant.

December 1983
Vol. 7 No. 12
ISSN 0703-8984
PC Bubble Card

EcoSea Technologies Corp. has announced the release of the world's first magnetic-bubble memory card for the IBM PC and IBM PC-XT.

The Pure Data PDIB128 and PDIB384 provide either 128K or 384K respectively, of non-volatile memory storage using only one slot of the IBM 'backplane'. Unlike a floppy disk, the cards are entirely solid-state, with no moving parts. This means that the devices are impervious to dust, dirt, fumes or vibration.

Another first is the feature of password protection in hardware. The end users can create their own password to provide the ultimate in security for their PC system. Once created, the password can be used to "lock-up" either the computer itself, the bubble card only, or both devices. This password protection cannot be bypassed by any means, and no method exists to "read" the password.

Used as a virtual disk drive, the bubble card is many times faster than a floppy disk drive, and much more reliable. The bubble card operates as a standard DOS 2.0 disk-type device, is compatible with all DOS software, and does not require any patching of system files. The PDIB128 and the PDIB384 use two I/O lines and no memory space. Both DMA and interrupts are supported, but not required.

Comprehensive diagnostic software and other utilities are provided free of charge with the card, along with a full illustrated installation and operation manual.

EcoSea Technologies Corp., 465 King Street East, Unit 13, Toronto, Ontario M5A 1L6 (416) 366-1001 is Canadian distributor for these and other products manufactured in Canada by Pure Data Ltd.

Chopper Analyzer

Helicopter maintenance time can be significantly reduced by a British instrument which is capable of analysing rotor performance and offering balance corrections in flight. Eliminating the dangerous, time consuming and often inaccurate conventional methods of assessment, the microprocessor-based Rotortuner uses a low-power short-range radar unit on the body of the helicopter to measure damper performance and blade position. Variations in height and angular displacement are displayed at each selected flight speed. These findings analyse during flight any necessary adjustments to be made to the weights on the blade tips, blade bolts, balance points or blade sweep. As the instrument includes a memory, findings can be combined with known characteristics of the system, with a trend analysis from one servicing to the next and with data from other aircraft in the production series. It can then recommend the maintenance test procedure to be adopted. By additionally providing a logical sequence for these tests to be carried out and also eliminating any need for reference to data tables and charts, it further reduces maintenance time.

The analyzer is marketed by Helitune Ltd., 65a Reading Rd., South Fleet, Hampshire, England GU13 9QL Telephone: Fleet (0251) 4798 Contact: David Bloxham, Commercial Director Enquiries from potential customers/agents are welcomed by the company.
Tingle Filter

Electricians and contractors in rural areas should recognize the profit potential of this newly developed Tingle Voltage Filter for applications on farms where stray or tingle vol-
tage related animal productivity declines are a problem. Tingle vol-
tage or stray voltage is a pheno-
menon resulting from small electric
typical, usually 2 to 3 volts, being
present between grounded metal
farm equipment (such as watering
troughs, feeders, metal penwork
etc.) This potential causes many be-
havior problems in farm animals
who come in contact with the equip-
ment.

Most farms will have some de-
gree of tingle related problems,
which can result in many problems
to the farmer; milk productivity
losses, breeding problems, mastitis,
pig scours, and general stress reac-
tions are common.

New PCB DIN’s

Preh, a leading manufacturer of
DIN connectors for computer and
telecommunications applications,
has introduced a new line of recep-
tacles that permits peripheral
grounding of the inserted connector
shell.

The aspect of a reliable ground
connection between the DIN recep-
tacle and cord plug is important due
to R.F.I. problems in computer ap-
lications. The grounding also
eliminates the problems associated
with static electricity.

Preh, is now represented in
Canada by Atlas Electronics Limited,
50 Wingold Avenue, Toronto,
Ontario, with branch offices in Mont-
real, Ottawa, Winnipeg, Calgary,
and Vancouver.

American Telephone & Tele-
phone Co. is planning to introduce a
microcomputer system within the
due six months, according to a new
37-page research report from Intern-
ational Resource Development Inc.
The report predicts that the micro-
computer will use 32-bit architecture
based on Western Electric’s Bellmac
microprocessor, and that the soft-
ware will be based upon Bell Labora-
tories’ Unix operating system. The
combination of the longer word
length (32 bits, as compared with 16
bits on the IBM Personal Computer) and
the powerful Unix-based soft-
ware, will enable the new AT&T
microcomputer to “upstage” the
IBM PC, according to the report.

AT&T will have difficulty
catching up with IBM’s lead because
of the accelerating production of
PCs. “We are aware of specific IBM
component and sub-system contracts
which point to definite production
plans for two million PCs in 1984,”
says the report, which states that
AT&T will be “lucky if Western can
manage to make 30,000 of the
AT&T micros in 1984.”

Bell Laboratories has received its
20,000th patent. World famous as
the research and development arm of
AT&T, Bell Labs has averaged near-
ly a patent a day since its founding in
1925, with innovations including
long-distance TV transmission in the
1920’s, microwave radio transmis-
sion in the 30’s, the transistor in the
40’s, semiconductor electronics in
the 50’s, communications satellites in
the 60’s, digital switching in the 70’s,
and lightwave transmission in the
80’s.

The 20,000th patent — another
lightwave innovation — is for a new
technique, using a gas to etch ex-
 tremely smooth surfaces on semi-
 conductor compounds which offer ad-
vantages over silicon for many
devices. The ultra-smooth surfaces
 are of particular interest for use in
tiny lightwave circuits comparable to
today’s electronic integrated circuits.

The Bank of Montreal has com-
mitted to become the first multi-
national corporation to use Tele-
globe Canada’s new international
private satellite business services. Us-
ing a small 4.5 m earth station anten-
na mounted atop the 72-story First
Canadian Place building in Toronto,
Telelobe Canada will provide the
Bank with a highly reliable and cost-
effective integrated digital communi-
cations network, initially between the
Bank’s offices in First Canadian
Place and Bucklersbury House, Lon-
don, England. The service is schedul-
ed to begin in January.

New Trim Pots

Preh has just released its new Trim-
ing Potentiometer for P.C. board
mounting and automatic insertion.
Measuring 8.6 mm, it is available
in bakelite or Cermet and is completely
washable. The wiper assembly
is shroud protected and the actuator
has an inside taper to accommodate
automatic adjustment tools. A
choice of hex or cross slot actuators
is available, allowing adjustment
from either the top or bottom.

For further information, please
contact Atlas Electronics, 50
Wingold Ave., Toronto, Ont. M6B
1P7 (416) 789-7761.

The world’s first regular broad-
cast service of computer programs —
Telesoftware — is to be started in
Britain by the BBC this year (1983).
Test transmissions have already been
broadcast.

Most of the early programs will
be educational ones, intended mainly
for use in schools and colleges. In-
deed, one of the major suppliers will
be the British Government’s $20
million Microelectronics Education
Programme, which was set up to
train teachers and provide software.
Later a full range of programs will
be transmitted, for home and busi-
ness applications, and there will also
be video games.
WINNER: Ultra-modern! Super-efficient!

Please note the distinct features Winner offers:
- Dual microprocessors 6502 & Z-80A
- RS-232 built in
- Disk drive interface card built in
- 40/60 column text display and auto change video output port by soft switch
- 76K RAM with 4 expansion slots
- 16K ROM
- DOS 3.2 & DOS 3.3 capability
- Apple & CP/M compatible
- ASCII keyboard with function keys and a numeric keypad

*Upper/lower case
*Streamline case
*OS could be changed when desired without affecting other memory RAM

$995

"ADD VISION TO YOUR COMPUTER WITH THE MICRON EYE"
- solid state - programs included - hardware, software & optics included, $449.00

Roland CB-141 COLOR B
Composite System Colour Display
- Continuous, 14-inch display.
- With its built-in amplifier and speaker, it accommodates games, video monitor, etc.
- Low cost but provides high performance with sound circuit & headphone jack.
- Protected from an erroneous operation of a floppy disk drive unit and dealt with a shield treatment for a magnetic interruption against other electronic units.

$449.00

TTX™ 1014 RELIABLE DAISY WHEEL RO PRINTER

$749

1014 FEATURES
- Serial and Parallel Interface
- Word Star® Compatible
- Quiet Operation

1014 FEATURES
- Programmable Pitch and Line Spacing
- Compact and Durable
- Micro, Mini, Mainframe Compatible

Integral Pin Feed Guide (Adjustable)
- Ribbon Cartridges and Printwheels Readily Available

Also Available The CP80 DOT MATRIX $495. Same as Epson 80.

Additional Hardware & Software for the SINCLAIR ZX81
AVAILABLE ON REQUEST.
THE ORION II 64K COLOUR COMPUTER $495.00

64K with dual Basic, Apple Soft & Integer Basic

ORION II
Fully assembled 100% soft & hardware Apple™II plus compatible computer (AMB-1 + keyboard + Case + power supply and speaker, regular basic & integer basic $495.00

ORION III
Same as Orion II, plus upper and lower case with numeric keypad with multi function keys $595.00

Same 64K computer with 1 drive, 1 controller and 12" green monitor

Orion II $995.00
Orion III $1,095.00

INTRODUCING THE VZ200 $165.00

A Personal computer thats full featured, simple, universal and AFTER AFFORDABLE!

Introductory Special 16K RAM $89.00
Reg. $99.00

Sound output
Full on screen editing
Fast Z80/A CPU
12K ROM, 4K RAM expandable to 64K
Built in RF output to TV and Video o/p to monitor
Complete with AC adapter, Demo program, all cables required, TV/Transformer, switch and 8 manuals
Light and portable — easily fits in briefcase

PERIPHERALS ARE REASONABLY PRICED. YOU CAN AFFORD TO GROW WITH THE VZ200

NEW $165

Full Featured
- 9 Colours
- Full size, moving-key keyboard
- 45 Automatic repeat keys

- 16 Pre-defined single character graphic keys
- Low and high resolution graphic modes

CALL FOR MORE DETAILS

WOWIE! LOOK AT THIS! 6502 BOARDS & ACCESSORIES

ALC-1 $75.00
16K RAM (Language) Card

AKB-2 $109.95
Keyboard; Numeric key pad with function keys, replacement for APPLE II

AC-2 $99.00
Beige APPLE II Case (for above keyboard) Case & Keyboard numeric

APS-2 $99.00
Switching Power Supply for APPLE II; +5V @ 5 amps, +12V @ 3 amps, -5V @ ½ amp, -12V @ ½ amp, c/w on/off switch & connecting wires

AAA-2 $109.95
Disc Drive, 5½", APPLE II Compatible, Excluding Controller Card

AAD-1 $99.00
with controller

ABO-1 $109.95
Disk Drive Controller Card for two drives; Apple II Compatible

APPLE II is a registered trade mark of Apple Computer Inc.

Circle No. 6 on Reader Service Card.
Electronic Mail
Is the postman hanging up his bicycle clips for the last time? We’ll let you decide.

By Roger Allan

THE DEVELOPMENT OF new technologies for high-speed transmission is a logical extension of the growth of data processing evident over the last 20 or 25 years. Without the necessary data transmission links, economies associated with large scale processing of data would generally not be available to relatively small branch offices of large corporations and governments. The linking of even quite large regional branches to centralized data banks or the access by small outposts to powerful programming is made more attractive by the development of improved transmission quality and volume capability by common carrier networks.

It would be expected that expansion of computer based electronic mail would closely follow, upon the establishment of easy to use decentralized processing and access systems. Mail and message functions should almost be a by-product of the new technologies. While the initial impetus is to link dispersed branches of large corporations, once the necessary transmission facilities, networking and software are in place for these purposes, then the means for links between more disparate organizations would also be in situ.

It has been depicted that the development of electronic mail should chronologically fall into three main evolutionary stages:
- characterized by the communication, primarily inter-company, of like machines: fax-to-fax, communicating-typewriter-to-communicating-typewriter, Telex-to-Telex, et al;
- characterized by the capability of totally different kinds of equipment to “talk” to each other;
- characterized by satellite and fibre optic links (see “Fibre Optics”, ETI, June 1982) established reducing line costs.

Interfaced equipment for a variety of communications and processing functions will have proliferated. This final stage would also be marked by serious competition for control and direction of electronic mail, and for control interfaces between equipment to see that the entire system is used efficiently and economically as possible, usually to the financial benefit of the government of the day.

However, the provision of software for linking the many types of presently incompatible electronic office equipment both within and between businesses may prove to be a considerable obstacle to the adoption of integrated electronic mail systems. An internationally accepted protocol for communicating word processors, called Teletex, has been devised. Meanwhile, attempts are being made to develop the first formal representation encompassing all types of electronics message systems (EMS). Besides the problem of a common language, the development costs required to integrate individual office systems already established into a general electronic mail network will tend to constrain the rate of development of a general system.

Another problem for users of electronic communications systems is the perceived lack of security of information transfer. To a large extent, this can be overcome by encryption of messages, although probably no encryption technique is impossible to break and it could make the encryption of messages too expensive. Until potential users come to accept this aspect of electronic mail, physical delivery will continue to have an important advantage in this respect.

As such, the development of electronic mail will be related to the extent to which the current mail system meets user requirements. Complaints made by postal
The major impact of electronic mail will be on business communications. The facsimile unit shown is a Canadian unit from Rapicom, Ottawa.

The facsimile process is an outgrowth of British Telecom's "Bureaufax" system inaugurated in 1980 which provided high-speed facsimile transmission to and from a large number of overseas countries (59 in 1982). It was primarily designed for business users. In the same year, it very rapidly resulted in the establishment of INTELPST, involving the satellite transmission of facsimile documents via Canada INTELSAT) between London and Toronto for both business and non-business users. This system has now been expanded to provide high-speed electronic mail links between 100 towns and cities in Britain, some dozen cities in Canada (with more coming on stream each month, and some cities having a number of pick up and delivery stations) and relatively similar numbers of stations in the Netherlands, the United States, Australia, Germany, Argentina and Switzerland. More countries are expected to join shortly.

As explained by John Hovey, Service Manager at Rapicom's Ottawa office, the manufacturer of the equipment used by Canada Post (Rapicom 3300 Desk Top Digital Facsimile Transceiver and the Rapicom 6300 Digital Facsimile Transceiver), the process of transmission is quite straightforward. The sheet containing the communication is inserted into a device which looks like a photocopier. There it is configured by being scanned by a charge coupled device (CCD), the information is processed, compressed, passed through a modem and transmitted at high frequency in digitized form over ground lines. For transmission within Canada, the connection between stations is strictly by telephone links, though for overseas transmission the INTELSAT satellite system is used. When the communication is received at the other end, it is formatted, printed a la photocopier, put in an envelope and consigned to the customary post office dissemination process. The transmission rate is 9600 bits/second.

According to David Weinberg, Manager of Canada Post's Electronic Messaging Service in Ottawa, the cost is $5 for two pages, regardless of where in the world the message is to be sent. Upon the extent to which developments in electronic mail techniques and facilities will generate additional communications as opposed to diverting communications from the customary mail system. It is felt that in the early stages such techniques can be expected to increase the number of communications, but that in the long run there will be a substantial and permanent diversion of communications away from the traditional or customary methods.

Basic Types

There are essentially two generic types of electronic mail systems: facsimile and "pure" electronic.

Knocking the Postie

Prima facie evidence of dissatisfaction with the speed and/or reliability of the postal system for some business needs is the growth of courier services. Although courier services have been in existence since the early 1930s, growth in the industry has been especially strong over the last decade. Similarly, the growth of document exchange centres providing reliable and speedy services for specialized business needs is a further example of document transmission outside the national postal systems. The "pressure" created by commercial users for reliable alternatives to the postal system is probably closely related to the existing standard of service. One writer has indicated that both British and West German authorities are less optimistic about the success of an electronic mail system than commercial systems producers because of the high standard of the present system. The Postfax system in Britain, for instance, is not thought to be widely used because next day delivery is virtually assured for domestic users.

There is, however, little doubt that the major initial impact of electronic mail systems will be on intra- and inter-business communications. Significant inroads can be expected in government related mail and in mail received by households from business and government under future electronic mail systems. The initial diversion of mail away from the postal system is likely to be in areas which provide, at present, a significant proportion of the cross-subsidy for services to remote areas and registered publications. This will probably place a higher burden on those users not able to divert mail electronically, specifically the householders.

Further, in the long-term, courier services are likely to face significant competition from electronic systems. In a widely quoted dramatic example, 90% of one major U.S. courier service's income in 1969 was from cancelled cheque deliveries. After the introduction of the Federal Reserve electronic funds transfer system, this proportion had dropped to 42% by 1975. While this example does not specifically involve electronic mail, similar such occurrences are expected. Courier services may benefit in the short term, however, from some services, such as facsimile, where one "leg" of transmission may require rapid physical delivery from a receiving terminal or to a sending terminal.

From the point of view of the national postal services, a critical aspect is
WE'RE HERE AT LAST! NOW OPEN DIRECTLY TO THE PUBLIC
C & H ELECTRONICS PLUS

- MAIL ORDER DEPARTMENT -

Call 9 to 5 Mon. to Fri. - 10 to 2 p.m. Sat.

NOT ONLY DO WE HAVE MORE TO OFFER, BEING A NATIONAL WHOLESALER ACROSS CANADA, ALL OUR PRODUCTS HAVE A FULL 180 DAYS WARRANTY (UNLESS STATED OTHERWISE). WE CARRY ONLY THE BEST QUALITY MERCHANDISE AT THE LOWEST PRICES AROUND. PLUS FREE DELIVERY ANYWHERE IN CANADA! (NO MORE PARKING HEADACHES OR FRUSTRATING LINE UPS) ON ORDERS OF $300.00 OR MORE.

NO FANCY OR EXPENSIVE DISPLAYS • JUST GOOD PRICES & EXCELLENT SERVICE

COMPUTERS

SOURCE 9000
*Well built 48K compatible (to you know what!), numeric keypad, ABS Case, heavy duty power supply, 8 expansion slots, U/L case .. $595.00 (REG $999.00)

SOURCE 6400
*The only hassle free-with APPLE-computer. Multi-System 64K memory board, 9 expansion slots and unrestricted memory. No ROM and fixable language. Therefore allowing user to create/operate any language with over 50 different expansion cards on the market.
*Includes numeric keypad, heavy duty power supply, U/L case, 25 function keys, card to run APPLEtm and more!
*No legal worries with APPLE on this one! .. $795.00 (REG $849.00)

SOURCE 2000
*The ultimate computer with both 6502 and Z-80 CPU’s, 64K expandable to 294K, built in disc printer interface, 40/80 column selectable, U/L case, 25 function keys, numeric keypad, heavy duty switching power supply LED reminder on board and (2) volume controlled speakers .. $995.00 (REG. $1149.00)

Surfboard beware

Apple Ile “Starter System”
*Includes 64K, 80 column card, drivecontroller, Apple III monitor and stand. .. $2495.00 (REG. $2795.00)

** COMING SOON IBM CLONES **

Source Cards
16K .. $65.00
Z-80 .. $65.00
80 column ... $79.00
Disc Controller .. $65.00
Freeze Play .. $39.00
(Wildcard emulator/disk documentations) ... $192.00
192K Disk RAM .. $499.00
(Virtual Disc Card with 2 software pkgs) ... $79.00
Grappler/printer .. $29.00
(For 80 col. card)

Perisoft Cards
Messenger ... $119.00
(Dual/link RS232C, built in firmware, 1 year warranty) $109.00
(Timelink) .. $109.00
(Built-in firmware, alarm clock, 1 year warranty)

Wizard Cards
16K .. $109.00
80 column ... $229.00
IPI Printer ... $95.00
16K Buffer card .. $199.00
(Above all 2yr warranty)

DISKETTES

Generics .. $23.00
BASF ... $29.00
Dysan ... $33.00
* All box in 10's & SS, DD
Send us any diskettes and a list of particular software’s you want & for $10.00 ea. we will have it mailed to you. (Providing its on our list)
($25.00 club registration fee)

PERIPHERALS

CUMANA “Rainbow I” Disc Drive ... $319.00
*IBM, D.D. Drive, Siemens based.

Silimline Drives ... $319.00

Zenith green screen monitors .. $129.00

NOTE: Call for quotes on hard disc drives, amber monitors or whatever you can’t find.

ACCESSORIES

Flo's File (holds 50 diskettes) .. $32.00
(Holds 50 diskettes)
Hayes Joysticks ... $59.00
Judge Joysticks (self centering) ... $59.00
Apple Stands (Fits 2 drives/monitors) .. $109.00
Printer Stands ... $109.00
8" high, paper feed slot
Muffin Fans (dual outlets) .. $50.00
Siemens Fans ... $95.00
(Surge suppression/filters/outlets)
Paper (100 sheets, 9x11 perforated) ... $38.00
Printer Ribbons ... $50.00
Printem Re-Inking (Saves on new ribbons) .. $129.00
Printer II Graphics Table .. $299.00
Light Pen/Interface/Gripper .. $269.00
Hayes Moderns .. $199.00

PRINTERS

OCTON Prowriter I (Parallel) ... $599.00
Prowriter II (Parallel) ... $1009.00
Starwriter F-10 (40 cps letter quality) ... $1779.00
F-10 Tractor option ... $299.00
OKI-DATA 180 cps Printers
Microline 92 .. $799.00
(6.5" hoe, letter quality, blade feed slot)
Microline 93 15" carriage ... $599.00
Microline 93A 15" carriage ... $999.00
Microline 94F (200cps) .. $1599.00
Microline 94S (200cps) .. $1599.00

EPSON
FX-100 .. $759.00
FX-80 ... $759.00
FX-80 FT ... $999.00
FX-82 ... $1599.00
NEC 8023A ... $399.00
Toshiba P1360 ... $499.00

EPSON FX-80 emulator, 120 cps, 9x9 dot matrix, true 1:1 dot ratio, bi-directional, slimline .. $999.00

SMITH CORONA
SP-1, letter quality .. $750.00

SPECIAL $579.00

* IF YOU DON'T SEE IT! ASK! *

C & H ELECTRONICS PLUS

MAIL ORDERS: Send certified cheque/ money order, Ontario residents must add 7% PST Visa card accepted: card no., name, signature, exp. date and bank name please!

ATTENTION: Clubs, schools, and co-op purchasers call for our special pricing catalogues.

23 Passmore Ave., Unit 11, Scarborough, Ontario. M1V 2J8.
(Just (1) light North of Finch right side of Kennedy Rd.)
(416)292-0813 - TELEX 065-25320 C & H TOR

Circle No. 26 on Reader Service Card.
Electronic Mail

receipt, the envelope can be sent through the regular mails at no additional cost, or sent special delivery ($1.06 extra in Canada, $5 in Germany, for instance). Further, the recipient can be telephoned upon receipt of the message, and can stop at the post office and pick it up. Theoretically, a message can be sent from Toronto to, say, Calgary and picked up at that end a mere few minutes after its receipt. It is supposed to be very good for typewritten matter and drawings, though it does not have the capability of colour.

Way of the Future?

According to Weinberg, "handwritten mail is on the way out," and electronic mail "is the way of the future. Unless Canada Post jumped into electronic mail, we would be left behind." Today, INTELPOST has not been pushed by Canada Post, but there is a large publicity campaign planned for the fall and spring of 83/84. Details as to the volume generated over the past three years was not available, though a spokesperson for Canada Post has said, "it's not much."

The two countries which have heavily invested in electronic mail via the national postal system (as opposed to private carriers or the adjuncts to various telephone companies) are Britain and the United States.

In Britain, the system is known as Telecom Gold, in which a laser beam optically reads the printed document and then transmits it to any one of several thousand electronic mail boxes, or vice versa. Further, the system links into international services so that documents can be transmitted to micro-computer users worldwide. Should the recipient not have a microcomputer, the mail is sent from the nearest receiving station by traditional methods for the last leg of its transmission journey.

It is, however, the U.S. Post Office's E-COM system which seems to be the current state of the art in this area.

As explained by E.M. Alexander of the RCA Corporation which provided the equipment for E-COM to the USPO, "INTELPOST is not the bellwether for future electronic mail systems," though E-COM is. The difficulty lies in the quality of the finished product; INTELPOST, being a facsimile reproduction system, isn't really very good, while E-COM uses good quality dot-matrix printers (numbering from 3 to 9, depending on the receiving station of which there are currently 25) on good quality bond paper and provides a quality which is superior and far more business-like than INTELPOST's finished product. Further, facsimile transmission requires the company to either possess a piece of special equipment into which the document can be fed, or to physically take it to the nearest USPO which would have such a device (similarly in Canada). With E-COM, on only needs a modem, and a member of staff who has received a few hours training and a practice session.

RCA first became interested in the subject and commenced research on how to do it some seven years before the USPO awarded them a $38.1 million dollar contract to provide the hardware, a training station and set-up help. The system developed is dependent on land lines using common carriers, due to FCC regulations. It is TTY synchronous, operating at 300 or 1200 baud rates, with 2400 baud (and up) rates available with additional equipment. When received by any one of the 25 offices currently available in the U.S., the computer, on-line twenty-four hours a day, automatically tapes the message at the front end by a dumb processor. The message is then automatically transmitted to the nearest available station to the recipient, where it is re-processed, electronically sorted, the message typed out (on 80-character lines at 600 lines per minute), automatically sorted, placed in the envelope which is typed, and sent either through the regular mail system or by special delivery. The modus operandi of the computer transmission follows the ASCII guidelines, specifically an eight bit, alphanumeric system providing upper and lower case. As such, a message, in a distinct envelope, can be received anywhere in the contiguous United States within two days.

The E-COM system will accept messages in three different formats:

- Single Address Messages (SAM) which are those in which a unique text accompanies each address;
- Common Text Messages (COT) which are those in which a common text is accompanied by a list of addresses (eg. for bulk mailings);
- Text Insertion Message (TIM) which are those in which a common text is accompanied by both a list of addresses and...
Moderately good quality typewriter ribbon. And a film type ribbon.

Examples of the reproduction quality of the electronic mail service. A good quality typewriter (a) produced the best copy, along with original line drawings (b). Photocopies (c) were somewhat fuzzy, and original photographs were not usable at all.

a unique text to be inserted in each printed message.

To date, the use of this system is running at about 1 million messages a month.

Small Business Users

At a cost of 31¢ (US) per page, and an additional 9¢ for subsequent pages, the price is comparable with regular mailing services. There are, however, two problems with the system. One is that a sender must send a minimum of 200 items per transmission, though this may be one item to 200 addresses. For small businesses this can be a problem, though there are intermediary companies which stand between the USPO and the user who will collect messages in less than 200 and "batch lot" them for an additional fee. Secondly, very small businesses who have not as yet purchased or leased a microcomputer for the initial composition of the message must likewise use an intermediary organization for an additional fee.

Without a great deal of publicity, and recognizing that there are a few wrinkles in the system to be worked out or adjusted, such as permitting smaller batch lots to bring more small businesses into using it, the provision for a business reply or courtesy card reply, et al, the system has nonetheless grown quickly. Further, according to Alexander, the USPO has "not received so much as a single complaint from a user." The expected volume of transmissions for this system is 1.1 billion pieces per year by 1986.

And as for the postman about to hang up his bicycle clips? Well, there will always be little towns and hamlets left to service.

INTELPOST permitted ETI to partake in a demonstration of the facsimile electronic mail system. The art department kindly made up a specimen melange of bits and pieces, which this author then physically took down to the Canada Post Office on Front Street, Toronto. First problem was that the pictures and diagrams were mounted on thin card. This didn't fit the machine, so with the help of a staffer and a pair of scissors we transferred the items to a piece of paper. The paper didn't fit the machine, being too wide. Further use of scissors. Finally it worked.

The item was transmitted at 10:30 Toronto time on a Friday, and was collected from the mail box by Our Man In Calgary, Mr. B.J. McLauren, at five-thirty the same day. He immediately signed it to the mails to be returned to us; it arrived on Monday morning.
MANY PEOPLE HAVE a tendency to replace conventional 'dry' cells with the rechargeable nickel-cadmium type simply to avoid replacement costs, but this practice may not be cost effective and can even lead to reduced equipment performance and greater cost. In order to make some form of meaningful comparison between types, it was necessary to select one common size of cell and look at the performance under similar load conditions. Also, because the performance of carbon-zinc cells is more dependent on usage than alkaline or NiCad cells, a definite statement as to which is best, cannot readily be made.

The purpose of this article is to try to present a guide to the selection of cell type best suited for an application, bearing in mind equipment performance, duty cycle, current demand, weight and cost. The information presented here has been obtained from the data sheets of many manufacturers and should not be regarded as typical of any particular make. Because of the variation in performance of carbon-zinc cells with differing loads, the presentation has been optimized to give a reasonable overall guide to performance without being too optimistic.

Cells Tested

The basic cells compared are the nickel-cadmium rechargeable type, the ordinary carbon-zinc dry cell, both normal and heavy duty (leclanché type), and the manganese dioxide-alkaline type. The size of the cells selected for comparison are the 'AA' or UM-3, SAA designation R6. In the case of the NiCad, this is a 450 mA hour capacity cell. The load characteristic selected was a current drain of 30 mA for four hours per day. This is typical of much portable equipment such as walkie-talkies, portable radios, calculators, etc. This was also the load which was easiest to compare on a range of data for various cells.

Result of Comparisons

Generally, the comparison here shows alkaline cells to have a performance about twice that of ordinary carbon-zinc cells; however, they can be many times better, depending on usage. Alkaline cells have higher efficiency when used for continuous or heavy load (high current) applications where the conventional carbon-zinc cell is less effective. The rechargeable NiCad is good for heavy current applications, provided the correct supply voltage can be achieved. Unfortunately, carbon-zinc and alkaline cells are not directly interchangeable with NiCad cells due to differing terminal voltages. This is caused by the different types of materials and construction used for these cells. The result is that while carbon-zinc and alkaline cells have a terminal voltage of 1.5 V, the NiCad cell has a voltage of only 1.2 V.
Which Battery to Use

NiCad cells.

Fig. 1. The discharge performance of various cells. The discharge characteristics of a lead-acid cell are shown for comparison. Note that terminal voltage cannot be used to indicate the state of charge of NiCad cells.

Figure 1 shows the performance of the various cells and that of a similar capacity lead-acid cell for comparison. It is important to note that the terminal voltage cannot be used to indicate the state of charge of the NiCad cell, but can be used as an approximate indicator for 'dry' cells. NiCad cells are about 25% to 30% heavier than 'dry' cells and because of them may be required for the same voltage, this could mean a substantial weight penalty in portable equipment.

Batteries At Work

The place where these various cells must work is in the equipment, and this is where many factors become important. The points to be considered are: duty cycle — is the load to be continuous or intermittent high current, or is it to be low current, continuous or intermittent? Operating environment — will the power be required at extremes of temperature? What is the design voltage of the equipment and can sufficient cells be accommodated to provide this? Replacement or recharging — in a particular situation one option may be preferable to the other, and which option is cost effective? Operational life — how long will the selected cell operate before recharge or replacement is necessary? Shelf or storage life — how good is a particular cell after a period of no use?

Duty Cycle

This will have a major effect on the performance of cell in any situation. Conventional carbon-zinc cells perform best at a relatively light load when operated intermittently. This allows a degree of recovery between periods of use. The service life of alkaline cells is relatively constant regardless of whether use is continuous or intermittent. This type of cell then shows its advantage mainly when continuous use is required. It can have a service life of three to ten times that of carbon-zinc cells in ideal circumstances.

Another advantage of the alkaline cell is its ability to supply considerably higher currents than the carbon-zinc type. In fact, the current available from alkaline cells can approach that from NiCad rechargeable cells in some circumstances. For high current loads, intermittent or continuous, the NiCad cell may be preferred, either because other cell types cannot supply the required current or because discharge is so rapid that continual replacement would be necessary. Substitution of carbon-zinc or alkaline cells with NiCads should only be undertaken after consideration of all the factors involved, including operating environment, equipment voltage requirements and storage life.

Operating Environment

Carbon-zinc cells deteriorate quickly at temperatures above about 50°C and become rapidly unable to deliver usable current below -18°C. Alkaline cells show better operating characteristics at extremes of temperature. Although it is difficult to determine the upper temperature limit of these cells, it is considerably better than carbon-zinc cells. Alkaline cells perform reasonably well down to temperatures of -40°C.

NiCad rechargeable cells have an operating temperature range of about -20°C to +45°C but should not be exposed to temperatures below 0°C while charging. Generally, their operating temperatures are about the same as for carbon-zinc cells. There may be some temperature rise in NiCad cells during charging or heavy discharge, and this factor should be considered if these cells are used as a replacement for 'dry' cells in sensitive or critical equipment.

Design Voltage of Equipment

This is an important factor when consideration is being given to replacing carbon-zinc or alkaline cells with rechargeable NiCad types or replacing NiCads with 'dry' cells. In equipment such as portable transceivers, satisfactory operation depends greatly on the available supply voltage. Some of this equipment is designed to operate from NiCad cells while the other is intended to use 'dry' cells. Most such equipment has a specified operating range of voltages and attempted use outside of this range will result in severely degraded performance, no operation at all, or possible damage to the equipment. Typical ranges for nominal 12 V equipment are 11 V to 14 V or 10 V to 15 V. There is a temptation to replace carbon-zinc or alkaline cells with an equal number of rechargeable NiCad cells but because of the difference in terminal voltage (1.5 V as compared to 1.2 V) a fully charged NiCad battery may not meet the minimum voltage requirements of equipment.

Figure 2 shows the performance of various battery types in a piece of 12 V rated equipment such as a portable transceiver. Note that if provision is only made for eight cells, then replacement with lower voltage types can result in insufficient supply for the correct operation of the equipment. Often the mere fact that the equipment operates at all under these conditions is more a tribute to the designer than the performance of the power source! On the other hand, replacement of NiCad cells with 'dry' cells could allow the equipment voltage specification to be exceeded.

Replacement or Recharging

Which is best here will depend very much on the user requirement. For example, a transceiver used by emergency services might be more quickly restored to service by replacement of batteries than by recharging. For personal use, where failure due to battery discharge is not so critical, recharging may be acceptable. If the equipment is in heavy or continuous use, then recharging may be a viable alternative to replacement.

The cost of any option will depend on how often replacement is required, the
FADSFOROABLE FEATURES, SIMPLE, UNIVERSAL, AND

TRANSFORMER/SWITCH AND RF OUTPUT LO TV AND VIDEO OUTPUT TO

320 ROM, ALT RAM EXPANDABLE TO 640

FULL ONSCREEN EDITING

SOUND OUTPUT

LOW AND HIGH RESOLUTION GRAPHIC MODES

16 PRE-DEFINED SINGLE CHARACTER GRAPHIC KEYS

FULL 51 KEY MOVING KEYBOARD

9 COLORS

COLOR DOT MATRIX PRINTER, 1M,

DATE RECORDER

LIGHT PEN

16K EXP. MODULE

AMP - COMPLETE WITH ALL ELECTRONIC PARTS.

TRIPLE REVERBERATION LEVEL DISPLAY

AS DELAY ELEMENT

“BUCKET WIDGETS DEVICE” ULTRASONIC

MEASURES

AUTOMATIC WIRE STRIPPER

$12.95 ea.

$0.75 ea.

$11.50 ea.

$9.50 ea.

$9.50 ea.

$8.70 ea.

$6.50 ea.

$3.95 ea.

$3.20 ea.

$3.20 ea.
Which Battery to Use

Fig. 2. The performance of various battery types in a 12 V operated handheld transceiver. Note that you cannot expect to replace eight dry cells with eight NiCads.

higher initial cost of rechargeable cells, (and you may need more of them), the cost of a charger and the cost of an additional battery pack if operation is needed while recharging is in progress. Another important factor, especially in an emergency environment, is the availability of power for recharging. If such a source is not readily accessible, a user may be ill-advised to use rechargeable batteries at all.

Operational Life

The effective operational life of a battery may become very important if access to replacement or recharged cells is difficult. As can be seen from Figure 2, the NiCad cells under this load will supply power for about 15 hours of operation. This is conditional on the battery being fully charged and in good condition. Ordinary carbon-zinc cells will provide about the same service life and heavy duty ones about twice this. Alkaline cells can be expected to have a greater operating life, about three times or better, than either NiCads or carbon-zinc as compared here.

There is a further factor which should be considered where the use of NiCad cells is contemplated. It has become recognized that NiCad cells tend to develop a 'memory' of their usage pattern. What appears to happen is that if a cell is used, say, only 50% of capacity and then recharged, after a few cycles of this pattern, the cell then becomes only capable of delivering 50% of rated capacity before going 'flat'. This condition can be reversed by correctly cycling the cell through several discharge and charge cycles, but unless this condition is recognized as developing, it may seriously degrade the operational life of the equipment in which it is used.

Shelf Life or Self Discharge

All cells will discharge by themselves when not in use, to a greater or lesser degree. This self discharge will determine the length of time for which a cell can be left unused and still be able to deliver a reasonable proportion of its original charge. The major factors which influence the rate of self discharge are storage temperature, amount of charge at storage, and the condition of the cell.

The definition of shelf life is somewhat variable, but for carbon-zinc and alkaline cells appears to be the time taken to decrease to 90% of initial capacity. Accepting this definition then, gives the following approximate shelf life times for cells in good condition.

Carbon-zinc cell 8 to 9 months
Alkaline cell Over 2 years
NiCad cell 3 days to 4 weeks

These storage times are based on a constant temperature of about 20°C to 25°C. Storage life may be improved by storing the cells at 5-10°C. Generally, higher temperatures cause more rapid degradation. Storage life is also shown in graphical form in Figure 3. An approximation for a lead-acid car battery type cell is shown for comparison. NiCad cells appear to show up poorly in this regard and some manufacturers now claim to have substantially improved this characteristic. The self discharge of NiCad cells depends on the type of cell, whether it is intended for high or normal current discharge. The condition of the cell is also important, whether it has been cycled correctly, the age (number of cycles), the environment in which it has been used and the state of charge at storage.

Consideration of the information provided here may be able to assist you to make a better informed decision as to the best power source for your battery operated equipment. It is not practical to cover all the eventualities and applications in a short article, but at least this should provide some guide to the cost effectiveness and practicability of the battery that you select. Most manufacturers will provide design and engineering data on request should you need to make a more detailed analysis of your particular needs.
At the time of going to press, the articles mentioned are in an advanced stage of preparation. However, circumstances may result in changes to the final contents of the magazine.

Micros in Appliances
With 1984 approaching, you'd expect your appliances to be listening in to your every word. Eric McMillan looks at the current state of the art and proves that you have nothing to worry about ... yet.

Travelling Wave Tube Amplifiers
Roger Allan continues his high-tech inquisition with a look at Travelling Wave Tube Amplifiers. Find out why travelling wave tubes need to be amplified.

PLUS!
- Accurate Risetime Measurements!
- Hearing Aid Induction Loops!
- Pop Amps!
- LM396 10 Amp Regulator!

Para-Q
The Para-Q (short for Paraquat) parametric equalizer is designed to take the funny stuff out of whatever signals you put through it.
NiCad Charger/Regenerator

To accompany our battery article, here is a NiCad charger which extends battery life by minimizing "memory" and metallic deposits.

by Mike Punnett

Nickel-Cadmium batteries (NiCads) are becoming increasingly popular as replacements for conventional dry batteries in a wide range of equipment. Properly used, they can give an enormous cost saving over the life of the equipment, but if misused, tend to fail early.

Since NiCads have a tendency to self-discharge over a few months, they have to be charged regularly. Furthermore, to avoid the inconvenience of a flat battery, they are often "topped up" with charge even when far from discharged. This leads to an effect known as whiskering, where fine deposits of cadmium build up, which can partially short-circuit the cell, as well as reducing the active electrode size. This leads to a loss of capacity; a 500mAh cell may be reduced to 300mAh after a year of light service and frequent charges.

It has been found that "cycling" NiCads can return them to an almost-new condition. This process involves discharging the battery hard (at the 1 hour rate, e.g. 500mA for a 500mAh battery), until it reaches the minimum safe voltage — NiCads can be easily damaged by over-discharging. A full charge at the 10 hour rate follows. This rather rough treatment disintegrates the whiskers of cadmium, and the full charge redeposits the metal on the electrodes. However, cycling NiCads "by hand" is a risky business, since they can easily be damaged.

The ETI NiCaddy was designed to cycle NiCads correctly and easily. It uses a minimum of components, and has two "programs": cycle and charge. Operating the unit is very straightforward: the NiCad is connected to it, and the appropriate button for the required program pressed. Cycle mode discharges the battery to its minimum safe voltage, and then switches to charge mode, in which the unit functions as a constant-current charger, automatically turning off when the battery reaches full charge. If the NiCad is already below its minimum safe voltage when connected up, the unit will automatically enter charge mode, overriding the switches, which are re-enabled when the battery rises above minimum safe voltage.

Construction

Construction of the unit is quite straightforward, either on the PCB or stripboard. Sockets are recommended for the ICs particularly IC2 which is a CMOS device. Do not forget the three wire links on the PCB.

NOTE:

IC1 is LM339
IC2 is 4011
Q1 is 2N3904
Q2 is TIP31A
Q3 is 2N2905
Q4 is 2N3053
D1 is 1N4148
ZD1 is 18V ZENER
ZD2 is ZENER (SEE TABLE FOR VOLTAGE)
LED 1,2 ARE any LED
BR1 IS 2A BRIDGE

20—DECEMBER—1983—ETI
The circuit will work with batteries of up to eight cells. Remember that R11 will get hot, since the battery is discharged through this. For power ratings over 4 W, this component should be mounted off the board, preferably outside the box, to aid heat dissipation. Some of the transistors are fitted with heatsinks; Q1 has an aluminum heatsink (see overlay), Q3 and Q4 have push-fit TO5 heatsinks.

Testing and Calibration

Check the voltages across C3 and C4. Both should be in the range 16.5-17.4 V. If not, the power supply section should be investigated. The precise values do not matter, since the calibration will allow for some variability.

If the power supply is working properly, the unit can be calibrated. RV1 is set to the minimum safe voltage for the battery; this is 1.1 V per cell (i.e., 4.4 V for a four cell battery). An accurate, high resistance voltmeter connected to pin 8 of ICI will enable the voltage to be checked. RV2 (full charge voltage) must be set properly, the unit can be calibrated. RV1 is set to the minimum safe voltage for the battery; this is 1.1 V per cell (i.e., 4.4 V for a four cell battery). An accurate, high resistance voltmeter connected to pin 8 of ICI will enable the voltage to be checked. RV2 (full charge voltage) must be set to the minimum safe voltage for the battery which is known to be in full working order; at this stage the circuit should perform as described above, except that it will not turn off after charging. The charging current can be checked; it should be 0.1 of the cell capacity (i.e., about 50mA for 500mAh (AA) batteries). The test battery is then left on charge for a long period — 20 hours if flat. This guarantees that it stabilizes at full charge voltage. Since the charging is constant-current, there is no risk of damaging the battery by charging for too long. At this point, RV2 can be slowly turned down until the circuit just switches off, and the setting re-checked. The unit is now completed.

Table 1

<table>
<thead>
<tr>
<th>No of cells</th>
<th>D3 voltage V</th>
<th>R9 ohms/watts</th>
<th>R10 ohms/watts</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.0</td>
<td>210/0.5</td>
<td>10/4</td>
</tr>
<tr>
<td>4</td>
<td>8.2</td>
<td>160/0.5</td>
<td>13/7</td>
</tr>
<tr>
<td>6</td>
<td>5.1</td>
<td>100/0.5</td>
<td>13/7</td>
</tr>
<tr>
<td>8</td>
<td>3.6</td>
<td>68/0.25</td>
<td>18/10</td>
</tr>
</tbody>
</table>

Special Package Deal

- **5¼" FULLHEIGHT, QUIET & PROVEN MITAC AD-1 DISK DRIVE SPECIAL**...
- **$325 WITH CONTROLLER CARD**...
- **$380**

ONLY $569

SP-1: 64K SYSTEM:...
- **$1039**
 1. **64K COMPUTER (SAME AS ABOVE)**...
 2. **DISK DRIVE MITAC AD-1**...
 3. **DISK CONTROLLER CARD**...
 4. **4" ZENITH GREEN MONITOR**

SP-2: 48K SYSTEM:...
- **$989**
 1. **48K COMPUTER (DELUXE MODEL BELOW)**...
 2. **DISK DRIVE MITAC AD-1**...
 3. **DISK CONTROLLER CARD**...
 4. **4" ZENITH GREEN MONITOR**

6502 COMPONENTS
- **48K AEtT MOTHERBOARD (W. BLANK EPROMS)**...
- **REGULAR KEYBOARD**...
- **KEYBOARD W. 4x4 NUMERIC KEYPAD**...
- **DELUXE PLASTIC CASE**...
- **90 DAY WARRANTY**

INNOVATIVE ELECTRONICS & DEVICES

145 SITKA DR., FORT MCMURRAY, ALTA. T9H 3C1

Phone: (403) 791-4048 DAY, EVENING CALL 791-1164
NiCad Charger/Regenerator

Modifications

The circuit was originally designed for AA size (500mAh) NiCads, since these are the most widely used, but it can easily be adapted for other sizes by changing R9 and R10. These are calculated from the quoted values simply by reducing the resistance and increasing the wattage in proportion to the capacity, so for a 1 Ah six-cell battery, R9 would be 50R 1W and R10, 6R 15W. (The values do not have to be absolutely exact, of course). For cells over 1 Ah capacity, it is best to uprate Q3 and Q4; since the circuit will be on for long periods, it is advisable to rate components generously, especially heatsinks. Replacing Q3/Q4 with TIP32/TIP31 respectively, mounted off the PCB on a suitable heatsink, will enable the unit to cope with cells up to about 4 Ah. As a rough guide, allow 1 Watt dissipation per Ah cell capacity when choosing heatsinks. Remember that the heatsink on Q1 may need uprating also. Allow a dissipation of 1.2 W per AH cell capacity.

HOW IT WORKS

The power supply section is quite straightforward, using a very simple voltage regulator. Vcc is not critical, but the reference voltage, Vref, must be stable, even though the precise voltage is not important. With a separate regulating transistor (Q1) the circuit shown is quite adequate. The two reference levels (the points at which discharge and charge respectively terminate) are derived by RV1 and RV2.

IC1 is a dual comparator which has a number of advantages over similar units, including single-rail operation, the ability to accept inputs at near-ground potential, very low offset, and open-collector outputs. In the circuit, the output of IC1a goes low to indicate that the battery has reached minimum voltage, and that of IC1b goes low when maximum voltage is reached.

IC2 is wired as two flip-flops, one for discharging (IC2a,2b) and one for charging (IC2c,d). Pressing "Cycle" sets the discharge flip-flop and clears the charge flip-flop (via D2). When the battery reaches minimum voltage, or "Charge" is pressed, the discharge flip-flop is cleared and the charge flip-flop is set. The battery reaching full charge clears the charge flip-flop but does not set the discharge flip-flop. The status LEDs are driven directly by the two flip-flops, which also drive the output stage. The latter consists of a discharge circuit — when Q4 is turned on, the battery discharges through R11 — and a constant current circuit consisting of Q3 and its ancillary components, which is turned on by an active-low signal (when IC2 pin 11 is high, Q3 is driven fully off and passes no current).

PARTS LIST

Resistors (all 1/4W 5% unless stated)
R1,7,8 2k2
R2,3,6 10k
R4,5 1k2
R9,10 See text
RV1,2 10k multi-turn preset pot
Capacitors
C1 100uF 40V PCB mounting electrolytic
C2 100uF 25V PCB mounting electrolytic
C3,4 220n polyester
Semiconductors
IC1 LM339
IC2 4011B
Q1 2N3904
Q2 TIP31A
Q3 2N2905 (but see text)
Q4 2N3053 (but see text)
D1 18V 400mA Zener
D2 1N4148 or similar
D3 400mA Zener (see Table 1)
LED1,2 Any 0.125" LED
BR1 2A bridge rectifier
Miscellaneous
PBI,2 Min push-to-make switches
SW1 Two-pole power switch
PS1 1A power fuse and holder
T1 Power transformer, 15V 1A secondary (but see text)
Two 14-pin DIL sockets, case to suit, battery connectors, heatsinks as required (see text).
Expanded Scale Voltmeter Covering The 10-15 V Range

A simple, low-cost instrument that can be built into power supplies or used as a portable or fixed 'battery condition' monitoring meter.

COMMON STORAGE batteries to power nominal 12 V DC electrical systems have a terminal voltage that ranges from a little over 10 volts when discharged to around 15 volts when fully charged, the operating voltage being somewhere in the range 11.5 V to 13.8 V. Lead-acid batteries, for example, may have a terminal voltage under rated discharge that commences at around 14.2 V and drops to about 11.8 V. A 12 V (nominal) nickel-cadmium battery may typically have a terminal voltage under rated discharge that starts at 13 volts, dropping to 11 volts when discharged.

Equipment designed to operate from a nominal 12 V DC supply may only deliver its specified performance at a supply voltage of 13.8 V — mobile CB and amateur transceivers being a case in point. Other DC operated equipment may perform properly at 12.5 V but 'complain' when the supply reaches 14.5 V.

To monitor the state of charge/discharge of a battery, a battery-operated system or the output of power supplies, chargers, etc., a voltmeter which can be easily read to 100 mV over the range of interest, i.e., 10 to 15 volts, is an invaluable asset. This project does just that.

This instrument, being of the true analogue type, is intended for exacting measurement and is better characterized as a test instrument.

The Circuit

An LM723 variable voltage regulator IC is employed to set an accurate 'offset' voltage of 5 V, and the meter (M1) plus the trimpot RV2 and R3 make up a 5 V meter, with the trimpot allowing calibration. The negative terminal of the meter is connected to the output of the 723 so that it is always held at 5 V 'above' the circuit negative line. The positive end of the meter goes to a zener which will not conduct until more than 5 V appears between the circuit +ve and -ve lines. Thus the meter will not have forward current flowing through it until the voltage between the circuit +ve and -ve rails is greater than 10 V, and will read full scale when it reaches 15 V (after RV2 is set correctly).

The meter scale limits may be adjusted by setting the output of the 723 higher or lower (adjusted by RV1) and setting RV2 so that the meter has an increased or decreased full-scale deflection range.

A variety of meter makes and sizes may be used.

Construction

Mechanical construction of this project has been arranged so that the pc board can be accommodated on the rear of any of the commonly available moving coil meter movements. We chose a meter with a 55 mm wide scale (overall panel width, 82 mm). A meter movement with a large scale is an advantage as it is considerably easier, and more accurate, to read than meters with a smaller scale. It also pays to buy a 2% fsd accuracy meter for best accuracy.

Having chosen your meter, drill out the pc board to suit the meter terminal spacing first. The components may then be assembled to the board in any particular order that suits you. Watch the orientation of the 723, ZD1, the FET and particularly D1. The latter is an 'idiot diode'. That is, if you have a lapse of concentration or forethought and connect your project backwards across a battery, the fuse will blow and not the project.

Fuses are generally found to be cheaper than this project!

Seat all the components right down on the pc board as the board may be positioned on the rear of the meter with the
Expanded Scale Voltmeter

components facing the meter. The size of C2 may give you little trouble. We used a ‘Monobloc’ type capacitor — as commonly used on computer pc boards as bypasses. Alternatively, a 100n tantalum capacitor (+ve to pin 2 of ICI) may be used. The actual value or type of capacitor is not all that critical.

We have used multiturn trimpots for RV1 and RV2 as they make the setting up a whole lot easier.

PARTS LIST

Resistors
- 10k cermet multiturn horizontal trimpot
- 470R
- 390R
- 1k
- 100n tantalum

Capacitors
- 4u7 tantalum
- 100n ceramic
- 10u/10 V tant.

Semiconductors
- ZDI 4V7, 400 mW or 1W zener
- 2N3819
- 1N4002 or similar

Miscellaneous
- 1 mA meter (see text)
- 500 mA fuse and in-line fuse holder
- pc board; meterscale to suit meter.
Battery Condition and Terminal Voltage

The 12 V battery, in its many forms, is a pretty well universal source of mobile or portable electric power. There are lead-acid wet cell types, lead-acid gel electrolyte (sealed) types, sealed and vented nickel-cadmium types, and so on. They are to be found in cars, trucks, tractors, portable lighting plants, receivers, transceivers, aircraft, electric fences and microwave relay stations — to name but a few areas.

No matter what the application, the occasion arises when you need to reliably determine the battery's condition — its state of charge, or discharge. With wet cell lead-acid types, the specific gravity of the electrolyte is one reliable indicator. However, it gets a bit confusing as the recommended electrolyte can have a different SG depending on the intended use. For example, a low duty lead-acid battery intended for lighting applications may have a recommended electrolyte SG of 1.210, while a heavy-duty truck or tractor battery may have a recommended electrolyte SG of 1.275. Car batteries generally have a recommended SG of 1.260. That's all very well for common wet cell batteries, but measuring the electrolyte SG of sealed lead-acid or nickel-cadmium batteries is out of the question.

With NiCads, the electrolyte doesn't change during charge or discharge. Fortunately, the terminal voltage is a good indicator of the state of charge or discharge. In general, the terminal voltage of a battery will be at a defined minimum when discharged (generally between 10 and 11 volts), and rise to a defined maximum when fully charged (generally around 15 volts). Under load, the terminal voltage will vary between these limits, depending on the battery's condition.

Hence a voltmeter having a scale 'spread' to read between these two extremes is a very good and useful indicator of battery condition. It's a lot less messy and more convenient than wielding a hydrometer to measure specific gravity of the electrolyte!

The charge and discharge characteristics of typical lead-acid and sealed NiCad batteries are given in the accompanying figures.

Note that the fuse (to protect the project) is inserted in an in-line holder in the external connecting leads.

Calibration

For this you will need a variable power supply covering 10 to 15 volts and a digital multimeter (borrow one for the occasion).

First set the 10 V point. Connect the digital multimeter across the power supply output and adjust the power supply to obtain 10.00 volts. Set the mechanical zero on the meter movement to zero the meter's pointer. Connect the unit to the power supply output and adjust RV1 to zero the meter needle.

Next, set the power supply to obtain 15.00 V. Now adjust RV2 so that the meter needle sits on 15 V (full scale). Check the meter reading with the power supply output set at various voltages across the range. We were able to obtain readings across the full scale within ± half a scale reading (± 50 mV). With a 2% meter, the worst error may be about ± one scale division.

When set up, our unit drew 12.5 mA maximum current drain, which is probably typical, but current drain may be around 20 mA or so maximum. Note that when the input voltage is below 10 V, the meter needle will move in the reverse direction.
Survey of 50 Systems

This month, we conclude last month’s survey of fifty lower-cost microcomputers by presenting sixty higher-cost machines. As usual, we apologize for any inaccuracies, and we point out that prices may vary from store to store. Happy drooling.

<table>
<thead>
<tr>
<th>System</th>
<th>Operating System</th>
<th>RAM</th>
<th>Printer I/O</th>
<th>Disk Drives</th>
<th>Screen Format</th>
<th>Graphics</th>
<th>Sound</th>
<th>Colour</th>
<th>Keyboard</th>
<th>Software Included</th>
<th>Primary Market</th>
<th>Manufacturer</th>
<th>Price</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orion 1 A</td>
<td>CP/M</td>
<td>64K</td>
<td>S & P Exp</td>
<td>Two 5 1/4" floppy</td>
<td>80x24</td>
<td>N/A</td>
<td>N</td>
<td>N</td>
<td>Detachable</td>
<td>Extensive</td>
<td>Business</td>
<td>$500.00</td>
<td>Multi-user capabilities</td>
<td></td>
</tr>
<tr>
<td>Columbia VP</td>
<td>CP/M-86, MSDOS</td>
<td>8088</td>
<td>S & P</td>
<td>Two 1/4 height DDS floppy</td>
<td>80x40x25</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Detachable</td>
<td>Extensive</td>
<td>Business</td>
<td>$495.00</td>
<td>Perfect Series Fast Graphics, BASIC A</td>
<td></td>
</tr>
<tr>
<td>Xerox 16/8 Prof. Comp</td>
<td>CP/M-86</td>
<td>8086 & 280A</td>
<td>S & P</td>
<td>Opt 2 floppy or 1 hard, 1 floppy</td>
<td>80x24</td>
<td>Opt</td>
<td>N</td>
<td>N</td>
<td>Detachable</td>
<td>Extensive</td>
<td>Business</td>
<td>$3500.00</td>
<td>Stand-alone or workstation capabilities</td>
<td></td>
</tr>
<tr>
<td>Canon AS-100</td>
<td>CP/M or DOS</td>
<td>8088</td>
<td>Opt S or P</td>
<td>Opt 5" or 8" floppy or 5" hard</td>
<td>80x25</td>
<td>Opt</td>
<td>N</td>
<td>Opt</td>
<td>Detachable</td>
<td>Extensive</td>
<td>Business</td>
<td>$1500.00</td>
<td>Xerox Star 70</td>
<td></td>
</tr>
<tr>
<td>Heath HZ-89</td>
<td>DOS</td>
<td>8088</td>
<td>Opt S or P</td>
<td>Opt 5" or 8" floppy or 5" hard</td>
<td>80x25</td>
<td>Opt</td>
<td>N</td>
<td>Opt</td>
<td>Detachable</td>
<td>Extensive</td>
<td>Kit version of Zenith Z-89</td>
<td>$3000.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heath HZ-100</td>
<td>DOS</td>
<td>8088</td>
<td>Opt S or P</td>
<td>Opt 5" or 8" floppy or 5" hard</td>
<td>80x25</td>
<td>Opt</td>
<td>N</td>
<td>Opt</td>
<td>Detachable</td>
<td>Extensive</td>
<td>Kit version of Zenith Z-100</td>
<td>$3000.00</td>
<td>Xerox Star 70</td>
<td></td>
</tr>
</tbody>
</table>

Survey of 50 Systems

This month, we conclude last month’s survey of fifty lower-cost microcomputers by presenting sixty higher-cost machines. As usual, we apologize for any inaccuracies, and we point out that prices may vary from store to store. Happy drooling.

<table>
<thead>
<tr>
<th>System</th>
<th>Operating System</th>
<th>RAM</th>
<th>Printer I/O</th>
<th>Disk Drives</th>
<th>Screen Format</th>
<th>Graphics</th>
<th>Sound</th>
<th>Colour</th>
<th>Keyboard</th>
<th>Software Included</th>
<th>Primary Market</th>
<th>Manufacturer</th>
<th>Price</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orion 1 A</td>
<td>CP/M</td>
<td>64K</td>
<td>S & P Exp</td>
<td>Two 5 1/4" floppy</td>
<td>80x24</td>
<td>N/A</td>
<td>N</td>
<td>N</td>
<td>Detachable</td>
<td>Extensive</td>
<td>Business</td>
<td>$500.00</td>
<td>Multi-user capabilities</td>
<td></td>
</tr>
<tr>
<td>Columbia VP</td>
<td>CP/M-86, MSDOS</td>
<td>8088</td>
<td>S & P</td>
<td>Two 1/4 height DDS floppy</td>
<td>80x40x25</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Detachable</td>
<td>Extensive</td>
<td>Business</td>
<td>$495.00</td>
<td>Perfect Series Fast Graphics, BASIC A</td>
<td></td>
</tr>
<tr>
<td>Xerox 16/8 Prof. Comp</td>
<td>CP/M-86</td>
<td>8086 & 280A</td>
<td>S & P</td>
<td>Opt 2 floppy or 1 hard, 1 floppy</td>
<td>80x24</td>
<td>Opt</td>
<td>N</td>
<td>N</td>
<td>Detachable</td>
<td>Extensive</td>
<td>Business</td>
<td>$3500.00</td>
<td>Stand-alone or workstation capabilities</td>
<td></td>
</tr>
<tr>
<td>Canon AS-100</td>
<td>CP/M or DOS</td>
<td>8088</td>
<td>Opt S or P</td>
<td>Opt 5" or 8" floppy or 5" hard</td>
<td>80x25</td>
<td>Opt</td>
<td>N</td>
<td>Opt</td>
<td>Detachable</td>
<td>Extensive</td>
<td>Business</td>
<td>$1500.00</td>
<td>Xerox Star 70</td>
<td></td>
</tr>
<tr>
<td>Heath HZ-89</td>
<td>DOS</td>
<td>8088</td>
<td>Opt S or P</td>
<td>Opt 5" or 8" floppy or 5" hard</td>
<td>80x25</td>
<td>Opt</td>
<td>N</td>
<td>Opt</td>
<td>Detachable</td>
<td>Extensive</td>
<td>Kit version of Zenith Z-89</td>
<td>$3000.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heath HZ-100</td>
<td>DOS</td>
<td>8088</td>
<td>Opt S or P</td>
<td>Opt 5" or 8" floppy or 5" hard</td>
<td>80x25</td>
<td>Opt</td>
<td>N</td>
<td>Opt</td>
<td>Detachable</td>
<td>Extensive</td>
<td>Kit version of Zenith Z-100</td>
<td>$3000.00</td>
<td>Xerox Star 70</td>
<td></td>
</tr>
</tbody>
</table>
Computer Survey

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System: Portable</td>
<td>Operating System: CP/M</td>
<td>Operating System: MS DOS</td>
</tr>
<tr>
<td>Processors: 8088</td>
<td>Processors: Z80</td>
<td>Processors: 8088 & CMOS</td>
</tr>
<tr>
<td>RAM: 128K</td>
<td>RAM: 64K</td>
<td>RAM: 128K</td>
</tr>
<tr>
<td>Disk Drives Inc: Two 3½ SS DD floppy</td>
<td>Disk Drives Inc: Opt SS DD 3½ floppy</td>
<td>Disk Drives Inc: One or Two 8” floppy</td>
</tr>
<tr>
<td>Screen Format: 80x25</td>
<td>Screen Format: 80x24</td>
<td>Screen Format: 80x24</td>
</tr>
<tr>
<td>Sound: N</td>
<td>Sound: N</td>
<td>Sound: N</td>
</tr>
<tr>
<td>Colour: N</td>
<td>Colour: N</td>
<td>Colour: N</td>
</tr>
<tr>
<td>Keyboard: Detachable</td>
<td>Keyboard: Detachable, Qwerty</td>
<td>Keyboard: Detachable</td>
</tr>
<tr>
<td>Software Included: MS DOS</td>
<td>Software Included: CP/M</td>
<td>Software Included: CP/M, word processor and spread sheet</td>
</tr>
<tr>
<td>Primary Market: Business</td>
<td>Primary Market: Business</td>
<td>Primary Market: Business</td>
</tr>
<tr>
<td>Manufacturer: Computer Devices</td>
<td>Manufacturer: Sony</td>
<td>Manufacturer: NEC</td>
</tr>
<tr>
<td>Available From: Datanex</td>
<td>Available From: Sony</td>
<td>Available From: Microcomputers of Canada</td>
</tr>
<tr>
<td>Price: To be announced in Sept.</td>
<td>Price: $4900.00</td>
<td>Price: $495.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System: Neiman-Persico</th>
<th>System: NEC Advanced Personal Computer</th>
<th>System: NCR Decision Mate V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System: CP/M</td>
<td>Operating System: CP/M-80, CP/M-86</td>
<td>Operating System: Choice</td>
</tr>
<tr>
<td>Processors: Z80A</td>
<td>Processors: Z80 & 8088</td>
<td>Processors: Z80 & 8088</td>
</tr>
<tr>
<td>RAM: 64K</td>
<td>RAM: 128K</td>
<td>RAM: 64K</td>
</tr>
<tr>
<td>Disk Drives Inc: Opt SS DD 3½ floppy</td>
<td>Disk Drives Inc: Two 3½ floppy</td>
<td>Disk Drives Inc: Two 3½ floppy</td>
</tr>
<tr>
<td>Screen Format: 640x400</td>
<td>Screen Format: 80x24</td>
<td>Screen Format: 80x24</td>
</tr>
<tr>
<td>Sound: OPT</td>
<td>Sound: OPT</td>
<td>Sound: OPT</td>
</tr>
<tr>
<td>Colour: N</td>
<td>Colour: N</td>
<td>Colour: N</td>
</tr>
<tr>
<td>Keyboard: Detachable</td>
<td>Keyboard: Detachable, Qwerty</td>
<td>Keyboard: Detachable</td>
</tr>
<tr>
<td>Primary Market: Business</td>
<td>Primary Market: Business</td>
<td>Primary Market: Business</td>
</tr>
<tr>
<td>Manufacturer: Neiman-Persico</td>
<td>Manufacturer: NCR</td>
<td>Manufacturer: NCR</td>
</tr>
<tr>
<td>Available From: Total Office Systems Inc.</td>
<td>Available From: NCR</td>
<td>Available From: SGV Marketing</td>
</tr>
<tr>
<td>Price: $4900.00</td>
<td>Price: $495.00</td>
<td>Price: $495.00</td>
</tr>
</tbody>
</table>

Other: Portable & printer included

Price: $2795.00

Price: N/A

Price: N/A

Price: N/A

Price: $495.00

Price: $495.00

Price: $495.00
Computer Survey

System: TI Professional
Operating System: CP/M
Processors: 8088
RAM: 64K
Printer I/O: S & 5 Exp
Disk Drives Inc: 330K floppy
Screen Format: 80x25
Graphics: 720x300
Sound: N
Colour: Opt
Keyboard: Detachable
Software Available: Supports MSDOS, CPM80, CPM86, USCD
Software Included: Opt
Primary Market: Business
Manufacturer: Texas Instruments
Available From: Lapar
Price: $3975.00
Other: Voice management system available

System: CPM86, USCD
Operating System: CP/M
Processors: 8086 & 80286
RAM: 128K
Printer I/O: S & P
Disk Drives Inc: Two 5 1/4" DD floppy disks
Screen Format: 80x25
Graphics: 640x400
Sound: N
Colour: N
Keyboard: Detachable
Software Included: CP/M & MS DOS
Software Available: Extensive, IBM Compatible
Primary Market: Business
Manufacturer: Tomcat
Available From: Tomcat Computers
Price: $2995.00
Other: Opt colour/green/LCD display

System: Osborne Executive
Operating System: CPM & UCSD
Processors: Z80A
RAM: 128K
Printer I/O: 2 S
Disk Drives Inc: Two 5 1/4" floppy disks
Screen Format: 80x24
Graphics: 640x400
Sound: N
Colour: N
Keyboard: Integrated
Software Included: Wordstar, Mailmerge, Supercalc, Personal Pearl, C & M BASIC
Software Available: Extensive
Primary Market: Home or Business
Manufacturer: Osborne Canada
Available From: Lapar
Price: $3495.00

System: Sord M23P
Operating System: CP/M Compact
Processors: Z80A
RAM: 128K
Printer I/O: S, P & 3 Exp
Disk Drives Inc: Two floppy disks
Screen Format: 80x25 monitor
Graphics: 640x200
Sound: N
Colour: Opt
Keyboard: Integrated
Software Included: BASIC, spread sheet
Software Available: Extensive
Primary Market: Business
Manufacturer: Sord
Available From: Micom Computer Systems Inc.
Price: $2995.00
Other: Opt colour/green/LCD display

System: Telcon Zorba
Operating System: CP/M
Processors: Z80A
RAM: 64K
Printer I/O: IEEE, P & S
Disk Drives Inc: Two 5 1/4" DS DD floppy disks
Screen Format: 80x25
Graphics: N/A
Sound: N
Colour: N
Keyboard: Detachable
Software Included: Wordstar, Mailmerge, Calcstar, BASIC
Software Available: Extensive
Primary Market: Business
Manufacturer: Telcon Ind. Inc.
Available From: Micro Bazzar
Price: $2995.00
Other: N

System: Sharp YX 3200
Operating System: CP/M & FDOS
Processors: 64K
RAM: 128K
Printer I/O: P & S Exp
Disk Drives Inc: Opt 5 1/4" or 4" floppy disk
Screen Format: 80x25
Graphics: N/A
Sound: N
Colour: N
Keyboard: Integrated
Software Included: 2 BASICS
Software Available: Extensive
Primary Market: Home or Business
Manufacturer: Sharp
Available From: Total Office Systems
Price: $3995.00

System: Televideo TS 803
Operating System: CP/M
Processors: Z80A
RAM: 64K
Printer I/O: S
Disk Drives Inc: Two 5 1/4" floppy disks
Screen Format: 80x24
Graphics: 640x240
Sound: 64K
Colour: N
Keyboard: N
Software Included: CP/M
Software Available: Extensive
Primary Market: Business
Manufacturer: Televideo
Available From: Datames
Price: $3704.00

System: Sord M68
Operating System: CP/M
Processors: MC68000, 286A
RAM: 256K
Printer I/O: 2 S & P & IEEE
Disk Drives Inc: Two 5 1/4" floppy disks
Screen Format: 80x25
Graphics: 640x400
Sound: Opt
Colour: N
Keyboard: Detachable
Software Included: N/A
Software Available: Extensive
Primary Market: Business
Manufacturer: Sord
Available From: Micom Computer Systems Inc.
Wouldn't you like to have a new skill you could call your own? Learn TV, audio, and video servicing with at-home training from NRI.

You can learn to service and repair TVs, stereos, electronic musical instruments and amplifiers, car and portable radios, record and tape decks, videocassette recorders and disc players, almost any kind of electronic equipment on the market. And you can learn to do it at home, in your spare time, without quitting your job or wasting time and gasoline on night school. NRI will train you. We've trained over a million and a quarter others, with effective methods proven over 69 successful years.

Hands-On Training
NRI training is practical training all the way. Throughout your course, you'll perform hands-on experience projects that make theory come to life and give you real understanding.

Includes Both 25" TV and VCR, Plus DMM and More
As part of your training, you'll build your own 25" Heath/Zenith color TV a state-of-the-art unit with infrared remote tuning, programmable channel selection, and the incredible space phone for remote calling. You also get a front-loading remote-controlled videocassette recorder to play your videotaped lessons and learn about servicing this complex instrument.

You'll learn troubleshooting techniques using a professional 3½-digit digital multimeter. You'll use it when assembling your TV to check demonstration circuits you build on the NRI Discovery Lab, and in your professional work. It's the equipment and training you need for success.

Exclusive NRI Training on Videotape
In addition to profusely illustrated lessons, you get NRI Action Videocassettes—videotaped lessons that show you graphic presentations of electronic systems, vivid closeups of servicing techniques and professional "shortcuts" to study and replay as often as you want.

Training For Success
NRI not only prepares you to become a top technician, we get you ready for independence. NRI Video/Audio servicing gives you a great new way to earn extra money doing part-time servicing for appliance and department stores...building a good-paying new career with an electronics firm...or even starting your own business. You can start small, even part-time in your basement or garage, make the most of your opportunities to grow into a successful businessman.

Free Catalog...Mail Card Today
Send the postage-paid card for our free 104-page color catalog describing our courses in full, showing all equipment, lesson outlines, and career opportunities. It also shows other exciting courses like Microcomputers, Electronics Design, Industrial Electronics, Digital Electronics, and more. Mail the postage-paid card today for your copy, and see how you can make the most of your talent. If card has been removed, please write to:

NRI SCHOOLS
McGraw-Hill Continuing Education Center
330 Progress Avenue
Scarborough, Ontario M1P 2Z5
or telephone 416-293-8787

We'll give you tomorrow.
<table>
<thead>
<tr>
<th>System</th>
<th>Tomcat 3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System</td>
<td>MSDOS, CP/M-80, CP/M-86</td>
</tr>
<tr>
<td>Processors</td>
<td>8086 & Z80A</td>
</tr>
<tr>
<td>RAM</td>
<td>128K</td>
</tr>
<tr>
<td>Printer I/O</td>
<td>2 S</td>
</tr>
<tr>
<td>Disk Drives Inc</td>
<td>8" floppy, 5¼" hard</td>
</tr>
<tr>
<td>Screen Format</td>
<td>640x400</td>
</tr>
<tr>
<td>Graphics</td>
<td>80x25</td>
</tr>
<tr>
<td>Sound</td>
<td>N</td>
</tr>
<tr>
<td>Colour</td>
<td>Opt</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Detachable</td>
</tr>
<tr>
<td>Software Included</td>
<td>CP/M-86, CP/M-80, MS-DOS</td>
</tr>
<tr>
<td>Software Available</td>
<td>Extensive</td>
</tr>
<tr>
<td>Primary Market</td>
<td>Business</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Tomcat Computers</td>
</tr>
<tr>
<td>Available From</td>
<td>N/A</td>
</tr>
<tr>
<td>Price</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System</th>
<th>Intertec SUPERBRAIN II JR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System</td>
<td>DOS & CP/M</td>
</tr>
<tr>
<td>Processors</td>
<td>Twin Z80A</td>
</tr>
<tr>
<td>RAM</td>
<td>64K</td>
</tr>
<tr>
<td>Printer I/O</td>
<td>3 S</td>
</tr>
<tr>
<td>Disk Drives Inc</td>
<td>Two 5¼" floppy</td>
</tr>
<tr>
<td>Screen Format</td>
<td>80x24</td>
</tr>
<tr>
<td>Graphics</td>
<td>Opt</td>
</tr>
<tr>
<td>Sound</td>
<td>N</td>
</tr>
<tr>
<td>Colour</td>
<td>N</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Integrated</td>
</tr>
<tr>
<td>Software Included</td>
<td>CP/M, DOS, BASIC</td>
</tr>
<tr>
<td>Software Available</td>
<td>Extensive</td>
</tr>
<tr>
<td>Primary Market</td>
<td>Business</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Intertec Data System</td>
</tr>
<tr>
<td>Available From</td>
<td>E.M.J. Data Systems</td>
</tr>
<tr>
<td>Price</td>
<td>$2495.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System</th>
<th>IBM PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System</td>
<td>DOS, UCSD P-System & CP/M-86</td>
</tr>
<tr>
<td>Processors</td>
<td>6502A</td>
</tr>
<tr>
<td>RAM</td>
<td>64K</td>
</tr>
<tr>
<td>Printer I/O</td>
<td>8 Exp. slots</td>
</tr>
<tr>
<td>Disk Drives Inc</td>
<td>Opt. 5¼" floppy</td>
</tr>
<tr>
<td>Screen Format</td>
<td>80x24</td>
</tr>
<tr>
<td>Graphics</td>
<td>Opt. 640x200</td>
</tr>
<tr>
<td>Sound</td>
<td>N</td>
</tr>
<tr>
<td>Colour</td>
<td>Opt</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Detachable</td>
</tr>
<tr>
<td>Software Included</td>
<td>Operating Systems</td>
</tr>
<tr>
<td>Software Available</td>
<td>Extensive</td>
</tr>
<tr>
<td>Primary Market</td>
<td>Business</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>IBM</td>
</tr>
<tr>
<td>Available From</td>
<td>Local Dealers</td>
</tr>
<tr>
<td>Price</td>
<td>$5299.00</td>
</tr>
<tr>
<td>Other</td>
<td>$2995.00 - 128K</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System</th>
<th>Commodore BX 128-80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System</td>
<td>CBM</td>
</tr>
<tr>
<td>Processors</td>
<td>6509 & 8088</td>
</tr>
<tr>
<td>RAM</td>
<td>128K</td>
</tr>
<tr>
<td>Printer I/O</td>
<td>IEEE & S</td>
</tr>
<tr>
<td>Disk Drives Inc</td>
<td>Opt disks</td>
</tr>
<tr>
<td>Screen Format</td>
<td>80x25</td>
</tr>
<tr>
<td>Graphics</td>
<td>720x350</td>
</tr>
<tr>
<td>Sound</td>
<td>Y</td>
</tr>
<tr>
<td>Colour</td>
<td>N</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Integrated</td>
</tr>
<tr>
<td>Software Included</td>
<td>CP/M and/or ZDOS</td>
</tr>
<tr>
<td>Software Available</td>
<td>Extensive</td>
</tr>
<tr>
<td>Primary Market</td>
<td>Business</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Commodore</td>
</tr>
<tr>
<td>Available From</td>
<td>Local Dealers</td>
</tr>
<tr>
<td>Price</td>
<td>$3745.00</td>
</tr>
<tr>
<td>Other</td>
<td>Kit version of Zenith Z-89</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System</th>
<th>Zenith Z-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System</td>
<td>Choice</td>
</tr>
<tr>
<td>Processors</td>
<td>8088 & 8085</td>
</tr>
<tr>
<td>RAM</td>
<td>128K</td>
</tr>
<tr>
<td>Printer I/O</td>
<td>2 S</td>
</tr>
<tr>
<td>Disk Drives Inc</td>
<td>One 5¼" floppy DS DD</td>
</tr>
<tr>
<td>Screen Format</td>
<td>80x24</td>
</tr>
<tr>
<td>Graphics</td>
<td>225x640</td>
</tr>
<tr>
<td>Sound</td>
<td>N</td>
</tr>
<tr>
<td>Colour</td>
<td>Opt</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Integrated</td>
</tr>
<tr>
<td>Software Included</td>
<td>CP/M and/or ZDOS</td>
</tr>
<tr>
<td>Software Available</td>
<td>Extensive</td>
</tr>
<tr>
<td>Primary Market</td>
<td>Business</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Zenith</td>
</tr>
<tr>
<td>Available From</td>
<td>Zenith</td>
</tr>
<tr>
<td>Price</td>
<td>$4675.00</td>
</tr>
<tr>
<td>Other</td>
<td>Kit version of Zenith Z-100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System</th>
<th>Apple IIe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System</td>
<td>DOS</td>
</tr>
<tr>
<td>Processors</td>
<td>6502A</td>
</tr>
<tr>
<td>RAM</td>
<td>64K</td>
</tr>
<tr>
<td>Printer I/O</td>
<td>3 S</td>
</tr>
<tr>
<td>Disk Drives Inc</td>
<td>Opt. 5¼" floppy</td>
</tr>
<tr>
<td>Screen Format</td>
<td>80x24</td>
</tr>
<tr>
<td>Graphics</td>
<td>280x192</td>
</tr>
<tr>
<td>Sound</td>
<td>Y</td>
</tr>
<tr>
<td>Colour</td>
<td>Y</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Integrated</td>
</tr>
<tr>
<td>Software Included</td>
<td>DOS, BASIC</td>
</tr>
<tr>
<td>Software Available</td>
<td>Extensive</td>
</tr>
<tr>
<td>Primary Market</td>
<td>Business</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Apple Canada</td>
</tr>
<tr>
<td>Available From</td>
<td>Local Dealers</td>
</tr>
<tr>
<td>Price</td>
<td>$2895.00</td>
</tr>
<tr>
<td>Other</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System</th>
<th>Heath HZ-89</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>Heathkit</td>
</tr>
<tr>
<td>Available From</td>
<td>Heathkit</td>
</tr>
<tr>
<td>Price</td>
<td>$2285.00</td>
</tr>
<tr>
<td>Other</td>
<td>Kit version of Zenith Z-89</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System</th>
<th>Heath HZ-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>Heathkit</td>
</tr>
<tr>
<td>Available From</td>
<td>Heathkit</td>
</tr>
<tr>
<td>Price</td>
<td>$3499.99</td>
</tr>
<tr>
<td>Other</td>
<td>Kit version of Zenith Z-100</td>
</tr>
<tr>
<td>System:</td>
<td>Columbia VP</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Operating System:</td>
<td>CP/M-86, MSDOS</td>
</tr>
<tr>
<td>Processors:</td>
<td>8088</td>
</tr>
<tr>
<td>RAM:</td>
<td>128K</td>
</tr>
<tr>
<td>Printer I/O:</td>
<td>S & P</td>
</tr>
<tr>
<td>Disk Drives Inc:</td>
<td>Two ½ height DSDD floppy</td>
</tr>
<tr>
<td>Screen Format:</td>
<td>80x40/25</td>
</tr>
<tr>
<td>Graphics:</td>
<td>640x200</td>
</tr>
<tr>
<td>Sound:</td>
<td>N</td>
</tr>
<tr>
<td>Colour:</td>
<td>Y</td>
</tr>
<tr>
<td>Keyboard:</td>
<td>Detachable</td>
</tr>
<tr>
<td>Software Included:</td>
<td>System, Other:</td>
</tr>
<tr>
<td>Software Available:</td>
<td>Primary Market: Business</td>
</tr>
<tr>
<td>Sound:</td>
<td>Graphics: 640x200</td>
</tr>
<tr>
<td>Screen Format:</td>
<td>Disk Drives Inc: Two ½ height DSDD floppy</td>
</tr>
<tr>
<td>Printer I/O:</td>
<td>RAM: 256K</td>
</tr>
<tr>
<td>Price:</td>
<td>54950.00</td>
</tr>
<tr>
<td>Other:</td>
<td>Available From: Hamax Data Systems</td>
</tr>
<tr>
<td>Price:</td>
<td>$1495.00</td>
</tr>
<tr>
<td>Other:</td>
<td>IBM compatible, portable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System:</th>
<th>Hyperion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System:</td>
<td>MS DOS</td>
</tr>
<tr>
<td>Processors:</td>
<td>8088</td>
</tr>
<tr>
<td>RAM:</td>
<td>256K</td>
</tr>
<tr>
<td>Printer I/O:</td>
<td>S, P & IEEE</td>
</tr>
<tr>
<td>Disk Drives Inc:</td>
<td>Two 5 ¼” DD DD floppy</td>
</tr>
<tr>
<td>Screen Formats:</td>
<td>8x25</td>
</tr>
<tr>
<td>Graphics:</td>
<td>64x2x50</td>
</tr>
<tr>
<td>Sound:</td>
<td>Programmable</td>
</tr>
<tr>
<td>Colour:</td>
<td>N</td>
</tr>
<tr>
<td>Keyboard:</td>
<td>Detachable</td>
</tr>
<tr>
<td>Software Included:</td>
<td>Multiple, test editor, 2 others</td>
</tr>
<tr>
<td>Software Available:</td>
<td>Primary Market: Business</td>
</tr>
<tr>
<td>Primary Market:</td>
<td>Manufacturer: BYTEC Mang. Corp.</td>
</tr>
<tr>
<td>Available From:</td>
<td>Price: $4910.00</td>
</tr>
<tr>
<td>Price:</td>
<td>Other: IBM compatible, portable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System:</th>
<th>Hewlett-Packard 200 Model 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System:</td>
<td>Opt</td>
</tr>
<tr>
<td>Processors:</td>
<td>MC68000</td>
</tr>
<tr>
<td>RAM:</td>
<td>128K</td>
</tr>
<tr>
<td>Printer I/O:</td>
<td>S & IEEE</td>
</tr>
<tr>
<td>Disk Drives Inc:</td>
<td>Two 5 ¼” DD DD floppy</td>
</tr>
<tr>
<td>Screen Format:</td>
<td>80x25</td>
</tr>
<tr>
<td>Graphics:</td>
<td>300x400</td>
</tr>
<tr>
<td>Sound:</td>
<td>N</td>
</tr>
<tr>
<td>Colour:</td>
<td>N</td>
</tr>
<tr>
<td>Keyboard:</td>
<td>Detachable</td>
</tr>
<tr>
<td>Software Included:</td>
<td>Choice of BASIC, HPL or PASCAL</td>
</tr>
<tr>
<td>Software Available:</td>
<td>Primary Market: Business</td>
</tr>
<tr>
<td>Primary Market:</td>
<td>Manufacturer: Hewlett Packard</td>
</tr>
<tr>
<td>Available From:</td>
<td>Price: $6079.00</td>
</tr>
<tr>
<td>Price:</td>
<td>Other:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System:</th>
<th>Epson QX-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System:</td>
<td>Rareics</td>
</tr>
<tr>
<td>Processors:</td>
<td>Z80A</td>
</tr>
<tr>
<td>RAM:</td>
<td>256K</td>
</tr>
<tr>
<td>Printer I/O:</td>
<td>S, P & Exp</td>
</tr>
<tr>
<td>Disk Drives Inc:</td>
<td>Two 5 ¼” DD DD floppy</td>
</tr>
<tr>
<td>Screen Format:</td>
<td>80x25</td>
</tr>
<tr>
<td>Graphics:</td>
<td>640x400</td>
</tr>
<tr>
<td>Sound:</td>
<td>N</td>
</tr>
<tr>
<td>Colour:</td>
<td>N</td>
</tr>
<tr>
<td>Keyboard:</td>
<td>Detachable</td>
</tr>
<tr>
<td>Software Included:</td>
<td>Indexer, Word Processor, Mail System, Graphics</td>
</tr>
<tr>
<td>Software Available:</td>
<td>Primary Market: Business</td>
</tr>
<tr>
<td>Primary Market:</td>
<td>Manufacturer: Epson</td>
</tr>
<tr>
<td>Available From:</td>
<td>Price: $4300.00</td>
</tr>
<tr>
<td>Price:</td>
<td>Other: CP/M Compatible</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System:</th>
<th>Hitachi MB 16001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System:</td>
<td>DOS, CP/M</td>
</tr>
<tr>
<td>Processors:</td>
<td>8088</td>
</tr>
<tr>
<td>RAM:</td>
<td>128K</td>
</tr>
<tr>
<td>Printer I/O:</td>
<td>S, P & Exp</td>
</tr>
<tr>
<td>Disk Drives Inc:</td>
<td>Two floppy disk drives</td>
</tr>
<tr>
<td>Screen Format:</td>
<td>80x25</td>
</tr>
<tr>
<td>Graphics:</td>
<td>640x400</td>
</tr>
<tr>
<td>Sound:</td>
<td>N</td>
</tr>
<tr>
<td>Colour:</td>
<td>Opt</td>
</tr>
<tr>
<td>Keyboard:</td>
<td>Detachable</td>
</tr>
<tr>
<td>Software Included:</td>
<td>MS DOS, CP/M, BASIC</td>
</tr>
<tr>
<td>Software Available:</td>
<td>Extensive</td>
</tr>
<tr>
<td>Primary Market:</td>
<td>Manufacturer: Hitachi</td>
</tr>
<tr>
<td>Available From:</td>
<td>Price: $5500.00</td>
</tr>
</tbody>
</table>
WHY SPEND A FORTUNE ON A DIGITAL CAPACITANCE METER?

As a matter of fact you don't have to pay $200 to $500 and up anymore for a Digital Capacitance Meter that is both dependable and rugged with good accuracy. The MC100A comes completely assembled and calibrated and at $89.95 is an outstanding value. The extensive range of capacitive ranges, 5% (± one count) on uF and calibrated and at $89.95 is an extremely practical and easy to use instrument for the hobbyist technician or engineer.

CHECK THESE OTHER FEATURES
- Basic accuracy 2% (± one count) on pF, nF ranges, 3% (± one count) on uF range.
- Uses single 9V battery (not included).
- Decimal points light up when battery is low or when capacitor is overrange.
- Full 4 digit high efficiency LED display uses special circuitry to save on batteries.
- Maximum conversion time for 9,999 uF is less than 6 seconds.
- Constructed with a tough impact resistant plastic case.
- '90 day parts and labour warranty.

$89.95

CHRISTMAS SPECIALS

Gentek Computers Inc.

PRESENTS

A Computer Saleabration

- DISC FILES (Holds 50 Discs) $19.95
- DISC FILES (Holds 100 Discs) $37.95
- SPEECH/MUSIC SYNTHESIZERS C/W Software & Manual $99.95
- JOYSTICKS Auto Center $34.95
- JOYSTICKS Manual $19.95
- DUAL DISC INTERFACE $289.00

UNITRON U2200 - MICRO COMPUTER

- DUAL MICROPROCESSOR 286/80GB
- 64K RAM (UPGRADABLE TO 256K RAM)
- MULTI-FUNCTION DETACHED KEYBOARD

APPLE™/CPC™ COMPATIBLE

DUAL DISK INTERFACE COMPLETE PKGS. AVAIL.

FOR MORE INFORMATION & PRICES CALL:
787 ALNESS ST., UNIT 18, DOWNSVIEW, ONT. M3J 2X4
(416) 665-0234 OR IN QUEBEC (514) 489-0359/0427

Circle No. 11 on Reader Service Card.

32—DECEMBER—1983—ETI
<table>
<thead>
<tr>
<th>System</th>
<th>Apple III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System</td>
<td>SOS</td>
</tr>
<tr>
<td>Processors</td>
<td>6502B</td>
</tr>
<tr>
<td>RAM</td>
<td>256K</td>
</tr>
<tr>
<td>Printer I/O</td>
<td>S & 4 Exp.</td>
</tr>
<tr>
<td>Disk Drives Inc.</td>
<td>One 5¼" DD floppy</td>
</tr>
<tr>
<td>Screen Format</td>
<td>80x24</td>
</tr>
<tr>
<td>Graphics</td>
<td>560x192</td>
</tr>
<tr>
<td>Sound</td>
<td>Opt.</td>
</tr>
<tr>
<td>Colour</td>
<td>Opt.</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Integrated</td>
</tr>
<tr>
<td>Software Included</td>
<td>SOS</td>
</tr>
<tr>
<td>Software Available</td>
<td>Extensive</td>
</tr>
<tr>
<td>Primary Market</td>
<td>Business</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Apple</td>
</tr>
<tr>
<td>Available From</td>
<td>Local Dealers</td>
</tr>
<tr>
<td>Price</td>
<td>$3895.00</td>
</tr>
</tbody>
</table>

ADDRESSES:

Canon Canada Inc., 3345 American Dr., Mississauga, Ontario, L5N 1N4. (416) 678-2730.

Commodore Business Machines, 3370 Pharmacy Ave., Agincourt, Ont, M1W 2K4. (416) 499-4292.

Computer Systems Design, P.O. Box 32, Lake Wilcox, Ontario, L0G 1X0. (416) 773-0467.

Computron, 55 Torbay Road, Markham, Ontario, L3R 1G7. (416) 447-0828.

Data Cal Techonology Ind. Corp., 224 Slater Rd., Cranbrook, British Columbia. (604) 489-5343.

Easna Services Ltd., 31 Progress Court, Unit 1, Scarborough, Ontario, L3C 1P6. (416) 437-2444.

Healthkit, 1478 Dundas St. East, Mississauga, Ontario, L4R 2R7. (416) 277-3191.

IBM Canada Ltd., 3500 Steeles Ave. East, Markham, Ontario, L3R 2Z1. (416) 447-2111.

Lanpar, 85 Torbay Rd., Markham, Ontario, L3R 1G7. (416) 475-9123.

Micro Bazaar, 23 Westmore Dr., Unit 5, Rexdale, Ontario, M9V 3Y7. (416) 745-4740.

NSN Options, 250 Wyecroft Rd., Unit 11, Oakville, Ontario, L6K 3T7. (416) 842-6530.

Prelco Electronics, 2767 Thamesgate Dr., Mississauga, Ont., L4T 1G2. (416) 678-0401.

PWT Computer Group, 1305 Matheson Blvd., Mississauga, Ontario, L4W 1R1. (416) 624-7455.

Radio Shack Computer Centre, 329 Bay St., Toronto, Ontario. (416) 365-7207.

SGV Marketing 1520 Trinity Dr. Unit 16, Mississauga, Ontario, L5T 2L6. (416) 673-2323.

ETI Classified’s Work!

One of the best ways to judge if other advertisers are getting good results from a publication is to see if the space booked is stable, going down or increasing.

Classified ads in ETI have increased 88% in the last seven months. In addition ETI circulation is still increasing giving better and better value.

Reach 30,000 Canadian readers for as little as $20.

MAIL ORDERS

Add $3.00 for shipping & handling. Offers are subject to change. Include name of bank and signature. Send certified cheque or money order. Do not send cash. No CODs please.

COMPUTERS • SOFTWARE • COMPONENTS • ACCESSORIES • BOOKS • RENTAL

Circle No. 20 on Reader Service Card.

ETI—DECEMBER—1983—33
Designing Micros Part 4

Last month, Owen Bishop explained what a ROM chip is. This month, he tells you why. Read on.

A short program which enables the MPU to get started on its more important tasks is called a boot-strap program. It helps the MPU pull itself up by its bootstraps! Since such a program must already be in the computer from the moment power is switched on, the obvious course is to place it there permanently in ROM.

Most computers have additional ROM programs to instruct the MPU how to do other kinds of routine jobs, such as send output to the display. Quite often a message such as "APPLE II" or "MEMORY SIZE" is placed on the screen when the computer is switched on. The program to do this is held in ROM. The complete program may occupy a few kilobytes of memory. Such a program is generally called a monitor program. This is another use of the word 'monitor', the name usually given to a purpose-built computer video display (as opposed to a domestic TV set being pressed into service as a computer display).

The monitor program is usually written in machine code (see October's article), for this is the most compact way of instructing the MPU and allowing it to operate at its maximum speed. Most computer users prefer to communicate with the MPU by using a high-level language, such as BASIC. MPUs do not understand BASIC, so a program written in machine code is needed to interpret programs written in BASIC. Then the MPU can understand what it must do. The interpreting program (or interpreter) can be loaded from tape or disk into RAM, but since such a program is likely to be required every time the computer is used, it is more convenient to hold it in ROM. Thus the ROM of a microcomputer may have, say, 12K of ROM which holds all the routines (in machine code) for interpreting BASIC commands and executing them.

When buying a microcomputer it is essential to find out whether you need to buy BASIC on a disk and load it every time you want to use it, or whether the BASIC is resident in ROM. Usually the memory space quoted for a computer is the amount of RAM it has. A computer which is listed as having 48K will allow you to use almost the whole of that for your programs if its BASIC is in ROM. On the other hand, if the computer has 56K but no resident language, the language may use up 12K of that space when loaded in RAM, leaving you with only 44K for your own programs.

A Change Of Character

Another use for ROM is to hold tables which are to be frequently used by the computer. A good example is the 'character generator' ROM. Before it can put a character onto the screen, the MPU must find out exactly what pattern of dots are required to produce the letter, numeral, or symbol that is to be displayed. These patterns are held in the character generator ROM. The MPU reads the appropriate pattern from the ROM and sends it to the video area of RAM, causing the character to be displayed.

It is feasible to manufacture several different character generator ROMs, each containing a different selection of characters. There can be different typefaces, or the selection of letters and symbols can be chosen according to the country in which the computer is to be used. For example, Video Inc. manufactures a series of such EPROMs for the Apple II including the French, German, Spanish and Katakana (Japanese) alphabets, and one holding mathematical and Greek symbols.

Another type of plug-in ROM which is widely used holds a complete games program, educational program, or utility program. Instead of loading the program

Fig. 1. Addressing three 4K ROMs.
from tape or disk, the user simply plugs in a module containing a pre-programmed ROM. The Atari and Tandy TRS-80 Colour Computer are examples of machines with this facility, as are many of the more specialized TV games machines.

Addressing Memory

We have often referred to the MPU addressing a given byte in memory at a particular address, without giving any indication of how this is done. Let us look into this in a little more detail. As an example, consider a ROM (it might be a regular mask-programmed ROM or some type of PROM) which stores 4 kilobytes. Each bit of these 4096 bytes is represented by a memory cell. This very-large-scale integrated circuit (VLSI) therefore contains 32768 memory cells, each consisting of a transistor which is set on or off depending upon whether it corresponds to a 0 or a 1. It also contains the logic circuits required to ensure that when any one of the 4096 possible combinations of voltage levels (the 4K addresses) is put on the lower 12 lines of the address bus (lines A11 to A0), the eight bits of information stored by the corresponding eight transistors will be gated onto the eight lines of the data bus.

The extreme complexity of such a circuit is difficult to imagine, yet it is commonplace on the computer circuit board. To accommodate a monitor program and a resident language we may need three such ICs, giving a total ROM memory of 12K. Suppose that this is to run from the very bottom of the computer's memory (from address 0000 onwards). The addresses corresponding to the three ICs will be shown in Table 1. From the binary address it is clear that the lower 12 address lines are responsible for differentiating between all the addresses held in a single ROM. The state of the upper four address lines (A15 to A12) tell us which, if any, of the three ROMs is to be addressed at any particular time. Thus the address 4295 (1007 in hex) appears on the bus as:

```
0001 0000 1100 0111
```

and refers to ROM1. The address 8391 (2007 in hex) appears on the bus as:

```
0010 0000 1100 0111
```

and is located in ROM2. All three ROMs receive the signals on lines A11 to A0. How can we ensure that only ROM1 responds to the address 10C7, while only ROM2 responds to 20C7?

<table>
<thead>
<tr>
<th>ROM NO.</th>
<th>DECIMAL</th>
<th>ADDRESS RANGE</th>
<th>BINARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 to 4095</td>
<td>0000 to 0FFF</td>
<td>0000 0000 0000 0000 to</td>
</tr>
<tr>
<td>1</td>
<td>4096 to 8191</td>
<td>1000 to 1FFF</td>
<td>0000 1111 1111 1111 to</td>
</tr>
<tr>
<td>2</td>
<td>8192 to 12287</td>
<td>2000 to 2FFF</td>
<td>0000 0000 0000 0000 to</td>
</tr>
</tbody>
</table>

Brunelle Instruments Inc.

The Multimeter you've been waiting for... at the price you've been hoping for!

$114.95

- Handheld 7-function, 35 ranges with 200 uA AC and DC, Hi-low ohms diode check.
- Built-in transistor test function.
- Overload protection. 2 amp fuse protects all meter ranges.
- Safety designed input jacks and test leads, tilt stand for bench use. Easy external battery access.
- Calibration certificate traceable to NRC supplied with meter.
- 1 year parts/labor guarantee.

SEE IT, TEST IT, COMPARE IT!

Brunelle Instruments Inc.

826 Belvedere St., Sherbrooke, Quebec. J1H 4B8

1-819-569-1335 Telex 05.836266

Mall Orders accepted. Send certified cheque or money order. Quebec residents add 9% P.T.T. and $3.00 for shipping.

Circle No. 17 on Reader Service Card.
Designing Micros Pt. 4

The outputs of the ROMs to the data bus are tri-state outputs. That is to say, they normally present a very high impedance; they are virtually disconnected from the bus, and they are incapable of either sending or receiving signals. Each ROM has one (or more in some cases) special input known as chip select (CS). The bar over the CS indicates that this is an active-low input. When the CS inputs are made high, data outputs go to a low-impedance state and whatever data is present on the set of cells currently being addressed is put on to the data bus. Fig. 1 shows how we control which ROM is to be active at any given time.

Go Low To Go

The function of the circuit is to enable one ROM at a time by making its CS input go low. The ROM to be selected is determined by the signals present on the upper four address lines and on a control line which indicates when the MPU is ready to read data. In the Z80 this is the MREQ line, which is active-low. The 74LS138 is a 3-to-8-line decoder which is typically used for decoding address lines in computers.

Lines A12, A13 and A14 go to the A, B, and C inputs of this IC. Their states are treated as a three-bit binary input. Outputs Y0 to Y7 are normally high, but provide that the IC is enabled, one of the outputs is low at any one time, depending on the binary input to A, B, C. Thus, when A is low, B is high and C is low, this corresponds to 010 (equivalent to decimal 2), and output Y2 goes low. This makes the CS input of ROM2 low, so ROM2 is enabled while the other ROMs remain disabled in the high-impedance state. The location in ROM2 which is to be addressed is then determined by the state of the other ROMs.

The decoding of inputs A, B and C as described above, takes place only if the decoder itself is enabled. It has three enable inputs, G1, G2A and G2B. To enable the chip, G1 must be high and either G2A or G2B must be low. You will notice the convention on the diagram that small circles are drawn at G2A and G2B to indicate that they are active low. The outputs also have these circles, for the same reason.

There are several possible ways of using the enable inputs to make sure that the chip is enabled only when address line A15 is low and the MREQ line is low. Too. The solution shown here is to NOR A15 and MREQ together and feed the result to G1. This makes G1 high only if both A15 and MREQ are low. Inputs G2A and G2B are not used and are grounded.

Let us sum up the procedure of reading from ROM. In order to address any particular cell of ROM, the MPU puts its address on the bus. In the example given, the address will be received along lines A0 to A11 in all three ROMs. The states of lines A12 to A14 are to be decoded by the 74LS138 and line A15 must be low to allow the decoder to be enabled. Then the MPU takes its MREQ output low to indicate that it wishes to read data. This makes the NOR gate output go low, enabling the decoder. One of its outputs then goes low, enabling one of the ROMs. The ROM so addressed puts the data on the bus and this is read by the MPU.

The procedure outlined above must be carried out according to a strict time schedule. For instance, if the decoder acts too slowly, the MPU may be trying to read data before it is there. Some mention of this problem was made in Part 1, and we shall discuss it again in connection with RAM, next month.

Fig. 2. A simple resetting circuit.

ROM At The Top?

Readers who have taken the trouble to look at the circuit diagram of a computer and compare it with Fig. 4 may find that the ROM of their computer does not appear to be decoded to the low addresses in memory. This is the case if the computer concerned is based on the 6502 MPU. Unlike the Z80 and several other MPUs, the 6502 does not begin reading its program at 0000 after being reset. The 6502 has the special feature of zero-page addressing; this means that addresses in the range 0000 to 0FFF can be addressed by using the lower byte only (00 to FF). This greatly simplifies and shortens programs, making this area of memory a very useful place in which to store frequently referred-to variables and tables. To take advantage of this facility, this part of memory must be allocated to RAM. Consequently, it is better if ROM is located at the top end (higher addresses) of memory instead. When the 6502 is reset, it first reads the two bytes which are stored at FF00 and FF01, addresses almost at the top of memory. It is essential to place ROM so that it covers these addresses.

Memory cells FF00 and FF01 in ROM contain the two bytes which are the address of the beginning of the monitor program. In the Apple II with the Autostart ROM, for example, these bytes are 62 and FA, respectively. The 6502, having read these two bytes, sets its program counter to the address they indicate (FA62 in this example) and then goes to that address to begin reading and executing the monitor program.

Integrating ICs

Nowadays there is a move toward reducing the number of ICs required in computer systems. This is particularly important for special-purpose computers that are to be used in control applications, such as those in washing machines or video-recorders. The program required may be relatively small (perhaps only 2K or 3K) so there is no reason why the ROM should not be accommodated on the same slice of silicon as the MPU. If we have ROM, why not have RAM as well, and any other useful devices such as input/output ports and timers? A good example of this approach is the Zilog Z8 'computer-on-a-chip'; a similar device is the Mostek MK3870. The Z8 not only has an MPU but also 2K of ROM, 128 bytes of RAM (enough to use as a 'scratch-pad' to hold temporary data), four eight-bit I/O ports, two counter/timers, and an asynchronous serial interface. The ROM in the Z8 has to be mask-programmed, so this IC is not one that the hobbyist is likely to be using. The professional can obtain a version of the Z8 or the MK3870 with an EPROM mounted on it in piggy-back style. This can be programmed during the course of development and after all has been settled, the final program can be mask-programmed into the internal ROM of the production version.

A special version of the Z8, known as the Z8671, has the ROM pre-programmed with a Tiny BASIC interpreter as well as its monitor program. This can be used as the basis of a simple computer system. It has 144 bytes of RAM for use as a scratch-pad, but it can address up to 124K bytes of external RAM or ROM for the storage of programs. This version with its general-purpose BASIC in ROM has a wider appeal than custom-programmed versions, so it can be manufactured in quantity. Prices are falling and already several development boards are on sale which feature this IC. The phrase 'chips with everything' can now be taken to mean 'chips with everything on them'!

Next month, RAM: Reading, 'Riting, but no 'Rithmetic.
The multitude of operating modes of the HM605 make it a universal oscilloscope — one which satisfies a wide variety of laboratory demands. Its expanded Y-axis sensitivity of 1 mV/cm allows extremely small signals to be displayed. Despite this high sensitivity, vertical amplifier drift is extremely low. Vertical overscanning of the usable screen area is indicated by LEDs. A built-in delay line permits viewing of the trigger leading edge. Triggering is possible up to at least 80 MHz. Triggering facilities allow, among other things, the display of two non-time-related signals. Line triggering, single sweep, and variable hold-off time are also available. A sweep range of from 5 ns/cm to 2.5 sec/cm ensures high resolution as well as display of extremely slow signals. Analysis of small signal sections of a waveform is possible using the sweep delay feature, which allows X-expansion by 1000 or more.

A rectangular 14 kV CRT with an illuminated graticule provides exceptionally bright, sharp displays. The HM605 incorporates a switchable fast-rise-time 1 kHz/1 MHz square wave generator for high frequency probe compensation and system checks — a unique feature for scopes in this price range. This feature makes it possible to check transmission performance of the Y-amplifier, compensation of modular attenuation probes and optimum utilization of the entire bandwidth of the instrument and probes.

As with all new HAMEG flat-line oscilloscopes, a component tester is also incorporated in the HM605. The outstanding price/performance ratio of this oscilloscope is not likely to be matched by the competition in the near future.
Product Review

Brother EP20 Electronic Typewriter

Computer technology is adapted to the typewriter in this tiny but versatile unit.

By Bill Markwick

THE BROTHER Company, well-known for its larger typewriters, has had the portable EP20 on the market for just less than one year. Its price of just under $300 aims it at the low-end portable market, but its unique features put it in a class by itself.

The first thing you'll notice about the EP20 is its tiny size (315 x 237 x 44 mm) which allows it to fit into a briefcase, and the second is that it has a full-size QWERTY keyboard that sits comfortably under the fingers for touch-typing. The keyboard has all the functions of a larger typewriter: tabs, margins, backspace and so forth, and also a second shift key which allows 44 special characters, such as foreign language accents and math symbols.

Getting acquainted

Power it up using the supplied AC adaptor, or four D-cells, and insert the paper. Press the paper-feed button, and the platen winds it in for you; there's the usual paper release lever for adjustments. You now have three options via a slide-switch: You can type directly to the paper, as you'd expect, or you can use the 16-character correction buffer before printout, or you can just use the buffer for practice typing without printing. Select the correction mode, which is the one you'll probably be using the most, and begin. As you type, the characters march past in the little window above the keyboard. If you should change your mind before typing 16 characters, there are control keys for moving the little cursor to insert and delete characters. When you've typed in the full 16, the miniature print head begins to print out the first keystrokes that you entered. Towards the end of the line the entire buffer is printed and a little motor whirs the print head back for another go. You soon get used to the fact that the keyboard is 16 characters ahead of the printer, and you'll soon be catching all your mistakes before they reach the paper.

The impression you'll be left with from typing away is the remarkable smoothness and silence of the EP20. There's only a slight ticking noise as it prints out, and only a gentle whir as the head returns to the left. Try putting in accents: type the one you want and the cursor will wait until you type the letter under the accent. Beautiful! The only drawback is that a 5 x 7 matrix can't do proper descenders, the part of the letter that pokes down below the baseline; letters such...
Sord M-5 Review

Like programming video games? Hate writing assembler code? Have lots of money to throw around? Anthony DeBoer looks at the computer for you.

ONCE UPON A time, there was but one computer. It was lonely. Some time after this, however, there were many computers to keep it company, so many, in fact, that they had to be cloned to keep up with demand. Shortly after this, the Sord M-5 arrived on the scene.

Opening the box in which an M-5 arrives, you find a cute little computer, about the size of a good book (or a pair of paperbacks), nicely done up in two shades of grey and one of yellow. Examining it more closely, you find it has those eraserhead keys we've all come to know and love, a space key instead of a space bar, and an external power supply. The joysticks (the manufacturer calls them joypads) are the flat pad variety that are rather cumbersome to use. The intrepid user soon finds that the top back half of the machine's cover lifts off to reveal, yes, a cartridge slot. In other words, it looks much like your basic modern, mass-produced microcomputer.

Before we throw it in the corner with all the others of its ilk, let's give it half a chance and turn it on. It is, in fact, not until you turn it on that the M-5 shows any redeeming features at all. This machine has an extremely fast, compact BASIC that enables one to write decent video games without having to use machine code at all.

For $460, the purveyors of this machine are willing to part with not only the machine itself, but also a pair of joypads, a BASIC-G cartridge, a case, and whatever other trivia is considered needful. This is rather steep for such a small machine, but on the other hand, the price might eventually come down.

Eraserheads
The keyboard is the standard QWERTY arrangement, with one major exception: the space bar is missing. One finds, all the way to the right, just under the return key, a key marked SPACE. One does get used
MPF III

64K DYNAMIC RAM A full 64K of random access memory provides the power you need to store a wealth of data or run sophisticated programs. 20K of ROM is expandable to 24K to suit customer applications.

80 COLUMN VIDEO DISPLAY The standard 80 column display is double that of most personal computers. Upper and lower case characters can be simultaneously displayed. The display also features a screen editor with the capabilities to insert, delete, or clear the screen.

90 KEY ULTRASLIM DETACHABLE KEYBOARD Besides the conventional 56 main key layout, the MPF-III comes with a numeric keypad, special function keys and user function keys.

36 TONE SOUND GENERATION CHIP The MPF-III has a 36 tone sound generation chip that can be programmed according to your musical tastes. Sounds emitted include piano, bell, gunfire, bombing or laser.

7 INTERFACES FOR A WIDE ARRAY OF I/O DEVICES The MPF-III has a standard 7 interface port configuration that gives you the ability to interface with disk drive, printer, cassette recorder, Z-80 CP/M card, Chinese character card and monitor or television.

3 EXPANSION PORTS FOR EASY EXPANDABILITY Designed with user flexibility in mind, the MPF-III offers 3 expansion slots for special user application.

“MVM-12 12” Monochrome Video Monitor

<table>
<thead>
<tr>
<th>Feature</th>
<th>Green $209.00</th>
<th>Amber $239.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Resolution 12” Non-glare Screen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P31 Green or C134 Amber Screen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTSC Composite Video Input Interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ergonomic Design with Full Tilt and Swivel Capabilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compatible With Most Popular Micros</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Multitech Slimline Disk Drive

<table>
<thead>
<tr>
<th>Feature</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Video Bandwidth of 18 MHz</td>
<td></td>
</tr>
<tr>
<td>Resolution of 1000 Lines Centre, Minimum 800 Lines Corner</td>
<td></td>
</tr>
<tr>
<td>Scanning Frequency of 15750 Hz Horizontally, 55 Hz Vertically</td>
<td></td>
</tr>
<tr>
<td>120 Day Warranty</td>
<td></td>
</tr>
</tbody>
</table>

535 Queen St., W., Toronto, Ontario, Canada, M5V-2B4 (416) 864-0332

Circle No. 18 on Reader Service Card.
STAR 64 BRUTE

Dual microprocessors 6502 & Z-80A, RS-232 built in, Disk drive interface card built in, Video output port by soft switch, 75K RAM with 4 expansion slots, DOS 3.2 & DOS 3.3 capability.

ATI FDD-810

The "FDD-810" mini floppy disk drive is a high performance and economical micro floppy type disk drive which is specially designed for APPLE IITM personal computer. SLIM TYPE DISK DRIVE IS 1/4 THE HEIGHT OF CONVENTIONAL MINIFLOPPY DISK DRIVES. HALF TRACKING ABILITY — AUTO EJECT — FULLY COMPATIBLE WITH APPLE IITM — USES STANDARD 5 1/4" DISKETTE — HIGH-RELIABILITY, LOW NOISE DC MOTORS PROVIDE AN MTBF OF OVER 8,000 HOURS, BACKED BY A 120 DAY PARTS AND LABOUR WARRANTY. ATI FDD-820 SLIM LINE DISC DRIVE — ZEAL SENSOR ABILITY — Boots up immediately without any sound. ATI DISC DRIVES are distributed by Micro Computech and are now available at your local dealer.

COPAM PC301

The COPAM PC301 is a 16-bit computer system designed specifically to be compatible with the popular IBM personal computer. The COPAM computer consists of system unit, 2 disk drives and keyboard.

SYSTEM UNIT:
- 16-bit computer
- RAM 128K expandable to 256K
- Multi function card — 2 channels serial asynchronous communications port
- Calendar/clock function, powered by rechargeable battery
- Disc controller card handles up to 4 disc drives
- Colour display card
- Text mode 40 col x 25 row, 80 col x 25 row
- Graphic mode 320 dots x 200 lines, 640 dots x 200 lines
- High wattage power supply
- Five expansion slots.

KEYBOARD:
- Fully detachable keyboard
- Compatibility with IBM PC keyboard
- Transmit serial 16550
- 95 keys
- 10 Function keys
- 15 numerical keys
- 57 Alphabet/number keys
- 8 cursor control
- 5 other keys.

DISK DRIVE:
- The PC301 comes with 2-5 1/4" doublesided, double density disk drives
- Unformatted media 500K bytes track 6520 bytes
- Formatted (16 sectors, IBM format) media 327K bytes, track 4096 bytes.

OPERATING SYSTEM:
- Provides you with Microsoft MS DOS, allowing purchase of prewritten and designing of software packages. MS DOS 2.0 & 1.1 can run on COPAM PC301.

PERIPHERAL CARDS, PRINTERS, MONITORS & MODEMS AVAILABLE... CALL FOR BEST PRICES.

Mail Orders

Send a certified cheque or money order (do not send cash). Minimum order is $10. ADD minimum 5% for shipping cost. ANY EXCESS WILL BE CREDITED. Ontario residents add 7% provincial sales tax. **VISA** and **MASTERCARD** accepted. Send Card No. signature expiry date and name of bank.

535 QUEEN ST., W., TORONTO, ONTARIO, CANADA, M5V-2B4 (416) 864-0332

ALL PRICES ARE IN CANADIAN FUNDS, 9% FEDERAL SALES TAX INCLUDED

Call for more Information & Pricing
to this after a while, but it's a problem at first. The keys themselves are of the dark grey rubber pencil-eraser variety, each being square (or in some cases rectangular), with the lower right-hand corner cut off (except for the keys all the way on the right side, for which it's the lower left-hand corner). The keyboard is quite usable, although it's not exactly the expensive professional variety you would expect at the price given.

In addition to the usual SHIFT and CTRL keys, you get a FUNC key, which allows access to a number of keywords. FUNC-A, for example, causes the word "AUTO" to appear, just as if you had typed the whole thing yourself. There are also three modes: normal lower case, capitals, and graphics, this last allowing you to type in the graphics symbols that appear in yellow on the key caps.

Screen editing is also provided. You can move up to an offending line with the cursor arrows, delete things, insert things, and then hit return to re-enter the line. You soon discover that whenever you hit return, BASIC tries to act on the line you were on, regardless of what it consists of. This is an advantage, in that you don't need to copy over an entire line to change it, but can also be a disadvantage since it makes it impossible to splice bits of different lines together. It can also provide the occasional shock if you hit return over a line consisting of the word "NEW".

Plug-ins

With the review machine came five cartridges: two BASIC's, two games, and a spreadsheet program.

The first BASIC, BASIC-I (meaning "Introductory"), seemed to be just a simple beginner's version of the other, BASIC-G (which stands for your choice of "Graphics" or "Games"). BASIC-I is a fairly decent BASIC, as such things go, but you need BASIC-G to get at all the capabilities of the machine, which is what the proud owner of an M-5 will naturally want to do. As far as we could tell, anything you could do in BASIC-I could be done just as well, if not better, in BASIC-G.

The two games, "Tank Battalion" and "Step Up" (a Donkey Kong variant), were mildly entertaining, but not as good as they could have been with real joysticks. The FALC spreadsheet was functional if somewhat unwieldy.

Turning the machine around, you find other connectors. There are two DIN plugs, for the power and cassette interface, a 16-pin connector marked "PRINTER", two joystick connectors, and RCA jacks for sound, video, and RF. Around the corner is a mysterious little switch, marked "H" and "L", that the manual doesn't mention.

Internally, the machine has a Z-80A processor running at the nice even speed of 3.579545 MHz. Well, why use two crystals when one will do? There's nothing wrong with letting the whole machine run at the speed of its video output. Some internal firmware is included, containing standard stuff that most, if not all, cartridges would need, and at least one custom chip.

Basically BASIC

BASIC-G is a fairly powerful BASIC with lots of features. Among the most notable are sprites and interrupts. (More on these later). The BASIC is quite easy to use, especially once you get used to all the nice little features (the editing and so on).

This BASIC is of the integer-only persuasion, which is good for its intended purpose of playing games, where speed is everything, or almost everything, but decidedly bad if you want to do scientific calculations or anything involving floating-point numbers. The BASIC-G manual mentions something called BASIC-F, which might be more useful here.

On power-up, the review machine claimed to have 7067 bytes free, although the technical literature mentions that 32K of external RAM can be added. This almost-8K is certainly enough for most simple BASIC programs.

One thing that you notice almost immediately is that this BASIC doesn't like it when you concatenate two keywords. You can't say "PRINTA" or "IF B = C THEN GOTO592". You have to put in the spaces and say "PRINT A" or "IF B = C THEN GOTO 592". When you list your program, it will automatically insert all appropriate spaces for readability, lowercase BASIC keywords, and uppercase variables. Program listings look nice with this computer.

One bug with the program listings is that the LIST command, given a single line number (LIST 400, for example), will list from that line through to the end of the program. To list a single line, you have to type in LIST 400,400.

You can redefine the character fonts if you wish. The command STCHR "EF8485C58585F5" TO &45,1 will, for example, change the capital E to a miniature ETI logo. You can have lots of fun making the screen completely unreadable by changing all the characters. This pales after a while.

You eventually discover that a string variable cannot hold more than 18 characters. One supposes that this makes life easier for the BASIC, and you usually don't need more. The more elaborate applications that might need longer strings are generally done on larger machines with real keyboards and lots of disk space anyway.

Aliens

The M-5 can generate some extremely
sprite reside in the dark, if somewhat respectable graphics. No less than 32 sprites reside in the dark, if somewhat respectable graphics. No less than 32 go off and do something else. Two important sprites fly off in random directions. The machine then moves the sprite as directed. The BASIC program can then go off and do something else. Two important advantages arise from this fact, that a BASIC program does not need to move the sprites itself. First, the program is simpler. Secondly, and more importantly, the program executes more quickly, since the heavy work is done in machine code. This is probably the single most important feature in making BASIC video games run quickly.

You can join four small sprites into one big 16 x 16 bit sprite. You can also double the size of the sprites. You can thus create really large sprites that blow up very realistically (just like the rocks in Asteroids) when hit, by having the component sprites fly off in random directions. This can keep the kids thrilled for hours.

100 GOTO 100

One of the most notable features of the M-5 is its interrupt-driven BASIC. What, you may ask, is an interrupt? Well, an interrupt is an event, either in software or hardware, that causes the computer to set aside whatever it's doing at the moment, go do something in response to that event, and then return to its original task. The M-5 provides six different interrupts: ERROR (whenever it hits a BASIC error), EVENT (a timer that can be set to provide an interrupt every second or so), ALARM (at a given time on the M-5's 12-hour clock), COINC (two sprites colliding), JOY (any movement of the joypads), and KEY (any keyboard key, or the joystick fire buttons being depressed).

To use an interrupt, you give the computer a command like ON COINC GOSUB 1000, followed by COINC ON to enable the thing. Your program can then meander merrily along, hapilly flinging sprites across the screen at each other. Whenever two sprites manage to impale themselves on each other, the subroutine at line 1000 will be called. This routine can then sort out the debris. Add interrupt routines for EVENT (let the aliens change direction and drop bombs twice a second), JOY (so you can fly around), and KEY (so you can blaze away at them with your laser cannons), and you have a complete video game. The main part of the program simply sets everything up and then does nothing: 100 GOTO 100. Whatever anything happens, it wakes up, handles it, and goes back into its infinite loop.

Two complaints about the interrupt capabilities: First, on a COINC Interrupt, it is difficult to tell immediately exactly what hit what. There is a function, <COINC(N)>, that tells you what, if anything, sprite X hit, but there should really be a better way. Second, there should be an interrupt on MOVE completed, such that you could then cause whatever had been moving to do something else.

These features, the sprites and the interrupts, make the BASIC ideal for programming games in. Your program provides only the control functions — what the screen should look like, what moves around and how, and what happens when things collide — and BASIC handles the real work in its machine code. The result, since so little is done at the speed (or lack thereof) of BASIC, is that games act as if they were written in assembler, without the associated programming headaches. You can write decent video games without being a programming genius.

Sounding Off

Also included in the M-5's internals is an SN76489AN sound generator chip. This can produce all kinds of weird and not so weird sounds. For example, the command PLAY "EA06E" causes the first bar of "Lucy in the Sky with Diamonds" to be played. You can change the tempo, the volume, the type of sound, and so on. The PLAY command can be made to play harmonies, by giving it three things to play at once. Sharps, flats, triplets, octaves, dotted notes, rests, and staccato are included.

Should your musical tastes be less conventional, you can access the sound generator directly. There are four channels, three of which produce tones. The fourth produces noise (explosions, etc.). Everything needed to produce the sound effects for your video games is here.

On the other hand, a really high brow video game would be done completely without sound effects. To be technically accurate, it would have to reflect the reality that sound doesn't travel through the vacuum of space. Besides, it's really neat to be able to kill in silence.

Moving Up

Beyond the games and graphics that the machine is so good at, there seems to be little room for expansion. One glaring omission that the experienced programmer will notice immediately is that there appears to be no provision for a disk interface. Such an interface might possibly be made through the cartridge connector, though. The technical manual mentions a serial interface that can be connected here, but absolutely no mention of a disk controller is made. Without disks, you can save programs only on cassette, which limits both what you can do and how eager you will be to do it. The FALC spreadsheet cartridge, for example, is rendered nearly useless by the lack of a disk.

A printer output is provided. Although we have not seen the printer that is supposed to go here, its capabilities supposedly include reproduction of graphics from the screen.

Conclusions

The one thing that the M-5 does exceptionally well is to program games in BASIC. Its capabilities make it an extremely worthwhile machine, if you're willing to pay the price. If, on the other hand, you're into serious data processing, and you want to save your programs on a disk at the end of the day, $460 could go a long way toward buying a clone. The Sord M-5 is a computer for people who want a cute little machine to have lots of fun with.
OSCILLOSCOPES!
The Best Buys Available

Model 65810
100 MHz Bench/Portable Scope

$2695.00
Probes & FST included

VERSATILITY +
- Will Display 4 Analog Traces (independently adjustable) or 8 Logic Channels, or 3 Analog and 8 Logic
- 2ns/Div. Sweep Speed
- 16 kV CRT Potential for A Bright Clear Display
- Scale Illumination
- Delayed Triggered Sweep

Model 65601
Dual Trace Bench/Portable Scope

$795.00
Probes & FST included

Featuring at no extra cost 'The Component Tester'
- 20 MHz (-3dB) Bandwidth
- Trace Rotator
- 2 mV Vertical Sensitivity
- HF Rejection

Model 65635
Dual Trace Bench/Portable Scope

$995.00
Probes & FST included

- 35 MHz (-3dB) Bandwidth
- Delayed Sweep (selectable)
- Single Sweep (selectable)
- 6" CRT Display
- 1 mV Optimal Sensitivity
- X-Y or X-Y-Z Operation
- 120V AC Line Operation
- x5 Sweep Magnifier

MULTIMETERS!
Go for Quality --- Go for The Best Value

Models 78020, 78021, 78022

- AUTO ZERO
- AUTO POLARITY
- 3% DIGIT LCD
- FULL OVERLOAD PROTECTION ON ALL RANGES
- RECESSED - SAFETY DESIGNED INPUT TERMINALS

Supplied with:
- 28 Page Operating and Maintenance Manual
- Calibration Certificate Traceable to NRC
- Schematic with complete Parts Listing
- Safety Test Leads
- One-year Warranty

$159.00*
+ 0.1% DC
+ 2000 hrs Bat. life

$120.00*
+ 0.25% DC
+ 10 Amps AC+DC
+ 200 hrs Bat. life

$99.00*
+ 0.25% DC
+ 100 hrs Bat. life
* F.S.T. extra

5% Discount for Cash, Certified Cheque, or Money Order
DEALER INQUIRIES INVITED

Metermaster
A Div. of R.H. NICHOLS CO. LTD.
Head Office: 214 Dolomite Drive, Downsview, Ontario M3J 2P8

TORONTO (416) 661-3190 MONTREAL (514) 337-0425 EDMONTON (403) 432-7746 OTTAWA (613) 238-7707

Circle No. 14 on Reader Service Card.
Who needs to bother winding miles of wire onto a bobbin when high voltages can be generated with some inverters and a handful of diodes and capacitors? Rory Holmes shows how it’s done.

In this month’s Designer’s Notebook we shall be looking at a variety of interesting voltage multiplier circuits that can be built using ordinary CMOS gates and common-or-garden 1N4148 signal diodes. DC-to-DC converters for a number of applications became possible by simply driving voltage multiplier chains with an AC clock signal, again implemented with CMOS gates. The initial supply voltage can be multiplied both positively and negatively to give, for example, a split rail op-amp supply from a standard 5 V TTI supply. Negative and positive voltage references used in analogue-to-digital conversion and other signal conditioning circuits can also be generated, as can general purpose high voltage bias rails.

By using a novel ‘chain’ of inverter gates to independently drive each node of a diode-capacitor ladder, some rather unique circuits result.

Chain Reaction

First, let’s look at the usual multiplier circuits shown in Fig. 1a. These are normally used with rectifier-type diodes, low frequency AC inputs (sine waves) from transformers, and electrolytic smoothing capacitors. At first glance there seems to be no common pattern between them, and little similarity to the multiplier chains used in TVs and other high voltage power supplies.

However, in all cases the AC input waveform is fed via capacitors to appear at those circuit junctions marked ‘A’ in Fig. 1a, while those junctions marked ‘D’ will maintain a steady DC potential relative to the ground point. We can thus redraw the circuits by connecting up the capacitors in two series chains (assuming their values are altered accordingly) and still preserve the same circuit action. One chain carries the AC signal, while the other accumulates the DC voltage shifts. Figure 1b shows these redrawn circuits, which now appear as extensions of the standard ladder network. The doubler, of course, remains in its original form since it only has one set of capacitors.

Starting with the doubler, we can build a very simple DC-to-DC converter in one CMOS gate as shown in Fig. 2. The Schmitt inverter gate is configured as a square wave oscillator running at about 100 kHz — the multiplier capacitors C2 and C3 will therefore have a low impedance at this frequency, which is also within the switching speed capability of the 1N4148s. For this reason, rectifier diodes such as the 1N4001, which have much slower switching speeds, cannot be used in these circuits.

The oscillator output at point ‘A’ will therefore be switching between the 0 V and 10 V supply levels. When the output is at logic low, capacitor C2 will charge up positively (in the direction of the arrow) via D1. D2 is reverse biased and so effectively out of circuit. When point ‘A’ goes high to +10 V, the positive end of C2 at ‘B’ will be raised to +20 V. This reverse biases D1 and allows C3 to charge up through D2. The voltage on C3 is thus maintained at about +20 V less two diode drops (i.e., at 18 V) as the cycle repeats itself. This is known as a diode charge pump.

Building An Extension

This principle can be extended using exactly the same chainlike structure as illustrated in the positive and negative multipliers of Fig. 3. In both cases the inverter gates are cascaded and driven from a square wave oscillator at around 100 kHz. Each inverter gate contributes its own output current (a maximum of around 2 mA) via the capacitors into the multiplier chain; because of this, the available output current will always be the same no matter how many times the voltage is multiplied (two times in this case).

The positive multiplier output of Fig. 3a includes the initial positive supply potential, and so generates three times this voltage less the three diode drops of 0.7 V each. The negative multiplier of Fig. 3b, on the other hand, is referenced to the round rail, given twice the voltage (again less the diode drops).

As mentioned before, all the diodes are 1N4148s; the multiplier capacitors C2-4 are all non-critical and may be anything from 10 nF to 100 nF. C4 may be

Designer’s Notebook

ETI—DECEMBER—1983—45
a polarised tantalum capacitor of a few microfarads to provide further smoothing. Any type of CMOS gate which can be connected as an inverter could be used, as well as all the standard inverters, though the 4049B hex inverter offers slightly more output current. It's also possible to use the 74C series types such as the 74C04 or 74C14. Pin-outs for these chips are given in Fig. 4 and not on any of the circuit diagrams, since they differ from type to type.

Fig. 4. Pin-outs for the standard hex inverter packages which may be used in the circuits given in this article.

The oscillator implementation and its frequency are also non-critical; you could experiment with anything from several kilohertz to several hundred kilohertz. Remember, though, that as the frequency decreases, the impedance for a given capacitor value will increase, so increasing the impedance of the multiplier output.

Table 1 lists out the different voltages you can expect from different chain lengths and supply voltages, based on the circuits of Fig. 3. The number of stages refers to the number of capacitors that are actively driven from inverter outputs. Using this table it becomes very easy to design a generator for any voltage requirement; the output voltage could be clamped to the exact level required using an ordinary zener diode regulator. But remember there isn't much current available, and as the output is loaded, the voltage will decrease due to the supply impedance. The higher supply voltages will generally provide more output current. As an example, Fig. 5 shows a longer multiplier designed to give 110 V and built using only one hex inverter IC of the Schmitt trigger type (40106B). Using ceramic capacitors, this circuit could be built to a very small size.

Operating Principles

How do these multipliers actually work — the doubler circuit of Fig. 2 is straightforward, but what about the longer types? Voltage multiplier explanations are usually notoriously difficult to follow, let alone understand, and we shall therefore adopt a more graphic approach. If we measure the voltages at the lettered points in Fig. 3a and plot them against time, we get the waveforms shown in Fig. 6. These waveforms have been idealized for clarity — no account has been taken of the voltage drops due to the diodes in the circuit. From these it can be seen that the voltage across C2 (the difference between the waveforms A and B) is a constant 1V, where V is the supply voltage, while that across capacitor C3 (between points C and D) is 2V. We also know that the final output voltage across C4 is 3V. Moving down the chain towards the final output, then, we find that each capacitor maintains a DC charge which increases in integer multiples of the supply voltage. How so?

Consider capacitor C2 in Fig. 3a. At power-on it is discharged, but when point A switches low, it charges up to the supply voltage via D1 (neglecting diode drops). Point B is therefore at supply voltage. When point A switches high, then, point B is raised to twice the supply voltage. Point C must be at zero volts since it is the inverse of point A, so current flows via D2 (which is now forward biased) from point B into C3 until C3 is charged up to the voltage at B (i.e., twice supply). The next clock pulse takes point A low, so point B is at supply less the voltage that has leaked into C3, and C2 is topped up via D1 again. Meanwhile point C has switched to supply voltage, so point D is now at three times supply and D2 is reverse biased, preventing C3 from discharging back into C2. C3 can discharge into C4 via D3, however, so the voltage across C4 is maintained at three times supply.

It should now be clear that no matter what the length of the multiplier, each capacitor in the chain maintains a steady DC charge which equals that on the previous one plus the supply voltage, and each capacitor tops up the next one in the chain on each alternate half-cycle. Figure 7a, for example, shows five stages of a multiplier chain driven by a square wave signal, while Figs. 7b and 7c use a waveform to represent the voltage levels at each capacitor node for each half of the cycle. The direction and voltage of the DC charges on each capacitor is also shown — remember these are constant as shown by the graph of Fig. 6.

The Application of Science

Figure 9 shows the circuit of a split-rail power supply that generates ±10V from a 5V supply input. It could be used to power...
Table 1

<table>
<thead>
<tr>
<th>OUTPUT POLARITY</th>
<th>NO. OF STAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>8.6</td>
</tr>
<tr>
<td>+</td>
<td>3.6</td>
</tr>
<tr>
<td>-</td>
<td>18.6</td>
</tr>
<tr>
<td>+</td>
<td>8.6</td>
</tr>
<tr>
<td>+</td>
<td>34.6</td>
</tr>
<tr>
<td>+</td>
<td>16.6</td>
</tr>
</tbody>
</table>

Table relating supply voltage and number of stages to the (unloaded) output voltage, for positive and negative output multipliers based on the circuits of Figs. 3a and 3b and allowing OV7 for each diode drop.

low current op-amp circuitry and other CMOS circuits from a standard TTL power supply. Again, only one hex inverter pack is required and we recommend that the 4049B is used with its slightly higher output current capability. The circuit takes advantage of the three cascaded inverters that drive the positive multiplier chain, by also using them to form a 'ring-of-three' oscillator. The multiplier chain is therefore self-oscillating!

The positive side in turn drives the negative chain of IC1d,e and f. From Table 1 we would expect the available output voltages to be +17V2 and -12V2, which are then clamped to the ±10 V levels by zeners ZD1 and ZD2. Series limiting resistors for the zener diodes are unnecessary due to the current-limited output of the multiplier.

Fig. 8. Charging paths for an extended multiplier chain. The diagrams only show those diodes which are forward biased (conducting) during alternate half cycles of the drive waveform.

NIELSEN COMPUTERS INC.

GET A BUNDLE — SAVE A BUNDLE ON COMPUTERS AND ACCESSORIES FROM NCI. APPLE™ & CP/M™ COMPATIBLE COMPUTER.

<table>
<thead>
<tr>
<th>JOYSTICKS</th>
<th>KAYPRO COMPUTERS</th>
<th>PRINTERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hayes Mark III, Highly acclaimed</td>
<td>$69.95</td>
<td>Seikosha GP100</td>
</tr>
<tr>
<td>Hayes Mark III, For Apple II</td>
<td>$78.00</td>
<td>TTX1014 Daisywheel</td>
</tr>
<tr>
<td>K200</td>
<td>$47.00</td>
<td>MVP</td>
</tr>
<tr>
<td>Kraft Paddles</td>
<td>$63.95</td>
<td></td>
</tr>
<tr>
<td>MONITORS</td>
<td>KAYPRO SOFTWARE</td>
<td>SOFTWARE</td>
</tr>
<tr>
<td>Electrohome Colour ECM 1302-1</td>
<td>$339.00</td>
<td>Sound Computer</td>
</tr>
<tr>
<td>Electrohome Colour ECM 1302-2</td>
<td>$449.00</td>
<td>Bank St. Writer</td>
</tr>
<tr>
<td>Electrohome Colour ECM 1302-3 (BM-TM)</td>
<td>$495.00</td>
<td>VisiFile</td>
</tr>
<tr>
<td>12" Yan Jen Amber, Composite video</td>
<td>$198.00</td>
<td>Aztek</td>
</tr>
</tbody>
</table>

ATARI

New 680XL computer, 16K expandable | $249.00 | Joystick with 3 firing buttons, one on handle | $16.95 |
New 680XL computer with 64K built-in memory | $389.00 | 10' Joystick extension cord | $7.95 |
New 1050 Drive - cable included, direct connect | $599.00 | | |
Seikosha dot matrix printer with cable included | $199.00 | | |
direct connect | $499.00 | | |
Games — Pole Position | $54.95 | | |
— Donkey Kong | $54.95 | | |
— Star Raiders | $54.95 | | |
— Galaxian | $54.95 | | |
Joystick with 3 firing buttons, one on handle | $16.95 | | |
10' Joystick extension cord | $7.95 | | |

SOFTWARE

Bank St. Writer | $95.00 | Joystick with 3 firing buttons, one on handle |
VisiFile | $350.00 |
AceWriter | $209.00 |
AceCall | $209.00 |
Wizardry | $52.00 |
Zork | $45.00 |
Choplifter | $45.00 |
Aztek | $51.00 |

Circle No. 10 on Reader Service Card.

NIELSEN COMPUTERS INC.

NCI NIELSEN COMPUTERS INC. 275 Lancaster St. W. Kitchener, Ont. N2H 4V2 519-886-1282

ETI—DECEMBER—1983—47
Arthritis Facts:
- More than three million Canadians have arthritis.
- More than 30,000 arthritis victims are under 15.
- Nearly one million arthritis victims are between 30 and 45.
- 200,000 arthritis victims in Canada suffer every day with long-term disabilities.

Arthritis is everybody's problem and it's time we took it seriously. Contact The Arthritis Society office nearest you for the facts about this terrible disease.

THE ARTHRITIS SOCIETY
ZEUS-2001

- 6802A CPU, 4K Rom Self-test Routine
- Powerful 16K Dynamic Ram Motherboard
- 8 Expansion slots
- 16K special function keys for Basic, Pascal, Fortran & CP/M
- 16 bit address bus, 8 bit data/register
- Full ASCII keyboard with 72 keys
- Auto-repeat keys, PAUSE & BREAK keys
- Overdrive power supply with built-in fans
- 96 printable ASCII characters
- Heavy duty construction
- The computer is capable of running most complex languages.

SPECIAL INTRODUCTORY PRICE ...$798.00

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk drive</td>
<td>$348.00</td>
<td></td>
</tr>
<tr>
<td>Speech card</td>
<td>$ 98.00</td>
<td></td>
</tr>
<tr>
<td>RS-232 card</td>
<td>$ 88.00</td>
<td></td>
</tr>
<tr>
<td>RS-232 card</td>
<td>$ 88.00</td>
<td></td>
</tr>
<tr>
<td>Joy stick</td>
<td>$ 38.00</td>
<td></td>
</tr>
<tr>
<td>(Auto stop, auto boot)</td>
<td>$ 78.00</td>
<td></td>
</tr>
<tr>
<td>13 or 16 sector</td>
<td>$ 78.00</td>
<td></td>
</tr>
<tr>
<td>2-80 card</td>
<td>$ 88.00</td>
<td></td>
</tr>
<tr>
<td>(self-centre)</td>
<td>$ 68.00</td>
<td></td>
</tr>
<tr>
<td>Micolumn card</td>
<td>$ 88.00</td>
<td>(self-centering, adjustable, heavy duty metal case)</td>
</tr>
<tr>
<td>Graphic printer card</td>
<td>$ 98.00</td>
<td></td>
</tr>
<tr>
<td>16-K Buffer card</td>
<td>$108.00</td>
<td></td>
</tr>
<tr>
<td>16-K Printer/buffer card</td>
<td>$188.00</td>
<td></td>
</tr>
</tbody>
</table>

(WE ARE ALSO SPECIALIZED IN COMPUTER & ELECTRONIC PARTS OF ALL KINDS)

DEALERS REQUIRED. ALL ENQUIRIES ARE WELCOME CALL FOR QUANTITY PRICING.

MAIL ORDERS:
Send certified cheque or money order (do not send cash) Add 5% for shipping. Quebec residents add 9% PST.

ADDRESS FOR MAIL ORDERS: J.M.T, Inc., 400 St-Jean, Longueuil, Quebec, J4H 2X6
Tel.: (514) 674-8536 Tele: 055-61811 MOSCUECT
SHOWROOM & PERSONAL SHOPPING: (SERVICE CENTRE) MASTER VOX LTD., 400 St-Jean, Longueuil, Quebec. J4H 2X6 Tel.: (514) 670-1550

JLS can take you from

Boards to Boardrooms with our

new IBM PC compatibles

ASSEMBLED and TESTED IN TORONTO

- **OBM 100** - $495.00
 - Mother Board using 8088 micro processor
 - 48K EPROM space / 5 expansion slots
- **OBM 256** - $359.00
 - 256K RAM card
 - 64K on board / RS 232 port
- **OBM 400** - $299.00
 - Disk Controller
 - Drives 5½ or 8"

Complete Systems Available Under $3000.00

To Order or For More Information Call (416) 530-4548

VISA MASTERCARD ACCEPTED

PRICES SUBJECT TO CHANGE WITHOUT NOTICE

HAMEG 70 MHz Oscilloscope

Model HM705

Reg. $1,750

Special $1,550

Limited time offer.

The HM705 general purpose oscilloscope, with its many operating modes and triggering facilities, is designed for both laboratory and field use. Vertical amplifier performance and the high resolution of its timebase permit usable display of signals up to 100MHz. Even signals of only 5mm display height can be stably triggered at that frequency. With its built-in delay line, trigger leading edges of signals are made visible, providing a higher degree of time resolution. Individual sections of a signal waveform can be expanded by a factor of 1000 when using the sweep delay feature, and are limited only by the fastest sweep rate of 5 nsec/cm.

Modern technology is exemplified by all the features of this oscilloscope. The HM705 is an instrument of unusual flexibility equally applicable in all fields of communication, consumer, and industrial electronics.

Authorized Franklin ACE dealer
Mail orders accepted, send certified cheque or M/O. Add 5% for shipping. Ontario residents add 7% P.S.T.

general electronics

5233 Yonge St., Willowdale, Ont., M2N 5P8 (416) 221-6174.

- HAMEG SCOPES
- PARTS, KITS
- SURPLUS

IBM, IBMPC is a trade mark of International Business Machines Can.Ltd.

JLS Computers Inc. 67 Mowat Ave., Ste.343, Toronto Ont. M6K 3E3

Circle No. 24 on Reader Service Card.

ETI—DECEMBER—1983—49
Nuclear Applications in Archaeology

One of a pair of 300 pairs of rope sandals found in an Eastern Oregon cave. Carbon dating revealed that they are about 9000 years old.

Photo Courtesy of William F. Libby

The different scientific methods of analysis allow the archaeologist and the historian to uncover a wealth of facts from samples.

by Roger Allan

CUSTOMARILY, LAYMEN'S knowledge of the application of nuclear techniques to archaeology can be summed up with a single method: the dating process via Carbon-14. It is well known, earning the Nobel Prize in 1960, for its discoverer, Willard F. Libby. Its ripple effect on the study of Archaeology is incomparable, oftentimes related to the discovery of the periodicity of elements in the field of chemistry. But it is only one of a number of such nuclear applications, and while being the first, foremost and most generally useful of such techniques, cannot answer a number of questions about artifacts which Archaeologists need to know. It has its drawbacks. Its primary use is in the dating of wood and vegetable matter, with increasing difficulty in use for the dating of bone, textiles, ivory and iron (iron can in some circumstances be dated using this method because iron from very old samples contains carbon derived from wood charcoal).

A quick overview of the theory and process: The earth is being constantly bombarded with cosmic radiation, one form of which is neutrons. These react with nitrogen in the upper atmosphere to produce carbon-14. The flux of such neutron bombardment has been constant throughout history, up until about 1900 when man commenced to disturb the natural environment and unbalanced the carbon-14 constancy of uptake. This carbon-14 reacts in the atmosphere to form carbon dioxide. The carbon dioxide is taken up by all forms of vegetation, and hence into all life forms that eat vegetation. The amount of uptake ceases at the conclusion of the animal or plant's life, resulting in a set amount of carbon-14 in the artifact. Carbon-14 has a half life of 5730 years. By taking a sample of the artifact, one can measure the amount of remaining carbon-14, and hence date the artifact. (The word "artifact" properly means a man-made object, but is often used to mean any object under archaeological examination.)

There are a number of ways of actually doing the dating process. Libby initially used a process called a "screen wall" counter, basically a form of geiger
counter. There are two major processes used today, the gas proportional counter and the liquid scintillation counter. The decision as to which process to use is dependent largely on the size of the sample to be tested; the gas proportional counter can use small samples while the liquid scintillation counter can handle large samples, but not vice versa.

Gas Proportional
In the gas proportional process, a fine wire, charged to a high voltage, is strung down the center of a metal tube. The sample is introduced in the form of a gas produced from the carbon in the sample. When carbon-14 decays, the radiation it emits produces free electrons in the gas, which are collected by the wire where an electrical impulse is generated. This is counted and the number of impulses, expressed as disintegrations per minute (dpm). A fresh sample, that is, one that has recently died, will have a dpm rate of 15, one 5730 years old a dpm of 7.5 and so on. It is accurate up to about 50,000 years.

The difficulty with this system is the amount of background radiation affecting the counter while the sample is being tested. The overcome this, an anticoincidence counter is arranged such that if it registers a disintegration at the same time as the counter registers a disintegration, the disintegration is automatically discounted. This is because the disintegration registered by both counters could only have occurred by some external radiation source, and not from the sample being tested. The disadvantage to this system is that it must be made quite large to accommodate a large sample, since the gas is of a relatively low density. When the counter becomes large, the background rate goes up, the shielding and anticoincidence counter become still larger, and the advantages are generally outweighed by the disadvantage of size.

Liquid Scintillation
A second method to test for carbon-14 is the liquid scintillation counter system. The carbon in the sample is converted into an organic liquid such as benzene. Other chemicals, added to the benzene, emit flashes of light (scintillations) when radiation passes through them. The solution is placed in a glass bottle and monitored with photomultipliers which convert the scintillations into electrical impulses which can be counted. The difficulty with this system is that low backgrounds cannot be obtained because of the minimum amount of electrical noise in this type of system. However, for large samples, this disadvantage is overcome because the liquid is relatively dense.

There are a number of other similar
such processes, involving the half-lives of radioactive potassium-argon-40 (used to date Zinjanthropus, the "human" skull found in 1959 at Olduvai Gorge by Dr. Leakey), rubidium-strontium, lead-204 and some twenty others. Each has an especial, limited use and a writer on this subject quickly gets into the grey area between Archaeology and the dating of geological formations.

One of the most common artifacts found at an archaeological dig are potsherds, the remnants of broken pottery. A method for dating them, originally derived at Oxford University, involves thermoluminescence.

Thermoluminescence

The method itself is based on the principle that radiation distorts the electronic structure of insulating materials and so stores energy within the material. This process may be likened to the stretching of a spring. When the material is heated to a certain temperature, the forces holding the electrons "out of place" begin to "loosen", the structure relaxes as a stretched spring would and the stored energy is released. The released energy is emitted in the form of light. The radiation that produces this deformation comes mainly from naturally occurring radioactive materials like uranium, thorium and potassium which are present in the pottery in low concentrations. The soil in which the pottery was buried also contains naturally radioactive material which affects the pottery in the same way. Cosmic radiation also contributes to the radiation damage. As time passes, the pottery absorbs more and more radiation, starting from the last time the pottery released its stored energy, that is, when it was annealed (baked or fired).

By carefully powdering a sample, taking care not to heat it (so that the thermoluminescence is not inadvertently released), and then gently heating it in a precisely controlled oven, the release of light can be detected by photomultipliers and recorded. Then the examiner must deduct the amount of thermoluminescence expected to have been absorbed by the sample from the surrounding soil since the last time it was annealed, and further, deduct the amount of cosmic ray uptake. When all the arithmetic has been done, then a fairly accurate reading can be obtained as to the sample's age. Not only potsherds, but ceramic and terra-cotta statuary can be analyzed this way, resulting, on occasion, in the finding of forgeries. Its major disadvantage is that it is destructive.

A second method utilizing radiation damage was developed in the early Sixties and is called fission-track studies.

Tracking Uranium

Essentially, uranium-238 occasionally splits into two parts, similar to the reaction in a nuclear reactor. It does not, however, happen very often; only 84 spontaneous emissions occur per million atoms per million years.

When the fission occurs in a piece of pottery, the two parts of the split atom leave a tiny trail of damage in the crystal structure of the material. If this happens close to the surface of the specimen, the trail will penetrate the surface and can be detected.

The detection process consists of taking a tiny slice of the specimen (as small as a square millimeter) which is then cleaned and polished. An acidic solution is then applied to the surface. This attacks the specimen and eats away at its surface. The tracks of the fission become enlarged to such an extent that they can then be observed with an ordinary microscope. By counting these holes, or etch pits, in a known area, one obtains the number of fissions that occurred in that area since the pottery was annealed.

The second step in the dating process is to determine how much uranium is present in the area where the tracks were counted. By irradiating the specimen with a known quantity of neutrons, one can cause the uranium-235 atoms to fission.

Because the uranium-235 is customarily considered to be in a fixed proportion to the uranium-238 (though see OKLO, ETI, July, 1983), the number of new fission tracks in the area previously observed is a measure of the amount of uranium-238 in that area and may be easily calculated.

The accuracy of this method is dependent on the amount of uranium found in the clay from which the pottery was made, customarily 1 part per million. Such a concentration permits the determination of ages as recent as 100,000 years with an uncertainty of 10%. However, as the concentration of uranium goes up to, say, 100 parts per million, ages as recent as 1,000 years can be determined. With a concentration of 1%, ages as recent as 10 years can be determined. Further, glass, which has had uranium deliberately added as a coloring agent, can have its age determined by this method.

Fingerprints and Neutrons

Fingerprinting, that is, the determination of trace elements (less than 0.01%), is a non-destructive way of measuring very small quantities of elements such that similarities and differences can be determined, which in turn permit a better understanding of archaeological economics.

While trace elements can be determined by ordinary chemical methods large samples would be required that might ruin valuable objects. The main form of fingerprinting, the neutron activation process (NAA), has the great advantage that it is non-destructive. Analysis by means of this method (outlined in more detail in ART, ETI, July, 1983) consists of bombarding the atoms of a element in a sample with neutrons in a reactor. This causes some of the atoms to absorb a neutron. In most cases, this will result in some fraction of these atoms becoming radioactive.
For example, sodium: when bombarded by slow neutrons, the sodium absorbs a neutron to become a sodium nucleus with 12 rather than 11 neutrons (sodium-24). This decays to a magnesium atom, emitting a beta particle and energy in the form of gamma rays. The number and energy of the gamma rays is unique for the decay of sodium-24 and thus constitutes a kind of signature. Further, measuring the half-life of sodium-24 is also a means of identification. In other words, by this method one can determine that sodium is present by later observing the energies of gamma rays from sodium-24 and can determine how much is present by measuring how many such gamma rays are emitted. The sensitivity of this process is very good, with gold being capable of being detected in quantities as small as a millionth of one millionth of a gram (one picogram).

An example of the use of the NAA process involved determining the source of material for Indian arrowheads made of obsidian. At the University of Michigan, Adon A. Gordus was able to pinpoint the material used by the Hopewell Indians, a group that inhabited what is now Ohio, Illinois, Michigan and Wisconsin during the period 300 BC to 300 AD.

The puzzle was that while obsidian arrowheads were found in Hopewell burial mounds, the closest sources of that material are in the Western U.S., Mexico and Alaska.

Using NAA, Gordus analysed the arrowheads and the obsidian from all the North American sources for two elements, sodium and manganese. He found that only three sources contained these two elements in concentrations similar to those of the arrowheads. He then used NAA to check for 15 other elements in these sources and found that only the composition of obsidian from one source, Obsidian Cliff in Wyoming's Yellowstone National Park, corresponded to the composition of the arrowheads. Archaeologically, this means that there was some sort of trade route between the two areas.

A second example of NAA is more recent. Early photographic plates tend to become blanched with age, such that the picture can no longer be seen. However, by irridating the plate with slow neutrons, and then placing a photographic film in contact with the plate, the gamma decay will effect the modern photographic plate, permitting an image of the previously "unseeable" picture to become apparent.

Carbon-14 dating is only one of a number of nuclear applications which answer questions about archaeological finds.

One specific example of this is the 19th century picture currently in the Smithsonian Institution, taken by the English antiquarian, physicist and pioneer in optics and photography, William Henry Fox Talbot. Talbot's plate is now blank, but under NAA reveals the original picture, a table setting.

Sparks and Spectrums

A second form of fingerprinting involves spark source mass spectrometry. In this method, a sample from an artifact is subjected to a very hot, electrically produced spark. A small part of the specimen, usually metal, is vaporized and the individual atoms become electrically charged or ionized. This process takes place at one end of a curved metal tube that has been evacuated to a low pressure. The metallic ions are then accelerated in an electrical field of about 1000-2000 volts in such a way that a narrow beam of ions travel down the tube.

At the point where the tube bends, there is a magnetic field that bends the path of the ions. The important point is that the amount that the path of an ion bends is determined in part by its mass. The arrangement produces a separation of ions into numerous beams according to their mass. The beams eventually strike a photographic plate that upon being developed, shows a series of lines corresponding in position to the masses of the ions which struck the plate. The intensity or blackness of each line is a function of the concentration of the element at that mass number. By comparing such photographs from different sources, and different finished products, the archaeologist can determine ancient trade patterns, eg. equating a coin minted in Rome with a gold mine in Spain, for instance.

Lead Isotopes

A third type of fingerprinting used by archaeologists involves lead isotope ratios. The metal lead has been used by man in one form or another for thousands of years. It is obviously present in things made mainly of lead, but is also a minor constituent of many alloys, including bronze and brass. In addition, glazes containing lead have been used in pottery, and glass sometimes is colored by having lead compounds added to it.

The fingerprint for lead is the relative amounts of the four stable (non-radioactive) isotopes of lead found in nature: lead-204, -206, -207 and -208. The ratios of the lead isotopes in any given lead ore deposit were initially determined by the timing of the geological event that took place when the deposit was being formed.

The relative amounts of the isotopes in a sample can be determined with a mass
Energetic electrons, better known as beta rays, are not unique to any given lead isotope and their ratios is that these are reflected. The more lead there is in the surface, the more scattered radiation is measured by the counter. An example of its use was in the study of the famous English crystal glass known as Ravenscroft, produced towards the end of the 17th century. Analysis of pieces from that time and from a century later showed that the amount of lead used was increased as time went on.

One of the more interesting applications of nuclear processes to the study of archaeology involves the Mossbauer Effect, first determined in the late 1950s by Rudolf Mossbauer. He then discovered the key to a method in which the nuclear properties of certain elements can be affected by their chemical and physical circumstances. While relatively few elements can be studied by this means, iron happens to be the easiest, which is archeologically fortunate, since iron compounds, especially oxides, have been used to add color to pottery for thousands of years.

Resonance Absorption

In the case of iron, one begins with a specially prepared radioactive source containing cobalt-57. The radiation from this source is allowed to pass through a thin layer of the sample and then falls upon a detector where the amount of radiation is measured. While part of any radiation is absorbed when passing through any material, some of the radiation from the cobalt-57 source is very special, archeologically.

This special radiation, which consists of gamma rays with an energy of about 14 keV, tends to be preferentially absorbed by the nuclei of iron-57 atoms because it is exactly the right energy; in other words, the iron-57 is resonance-absorptive. The exactness is important, as the slightest alteration will destroy the resonance absorption.

Utilizing the Mossbauer effect, the scientist moves the radioactive source at various velocities back and forth and measures the radioactivity reaching the detector at each one. If the iron in the sample is at a particular state, dependent upon its heat when being annealed, a state...
which is different from the iron atoms in the decaying source, then a certain velocity will exactly compensate for the difference and restore the resonance absorption.

A graph showing the measured radioactivity at each of many velocities is called a Mossbauer effect spectrum, and will show one or more dips in it depending on how many and what kinds of iron compounds are present.

An example of its use is in the study of medieval English pottery. Researchers found that they could estimate the firing temperature of the pottery as well as tell the difference between pottery that was similar in appearance but from different sources. It is believed that this technique will eventually permit archaeologists to reconstruct some of the ancient practices such that they will know more about the technology of the people who made the pottery.

Occasionally, one-shot nuclear applications to archaeology are required. An example is the study of the Second Pyramid of Chephren in Egypt. This pyramid, which is about the same size as the Great Pyramid of Cheops, did not have as complex an internal structure as Cheops. In the latter, a hidden upper chamber was discovered in the 19th century, 3,400 years after its construction. But in Chephren’s pyramid, there is only one known chamber, and archaeologists had wondered if there existed a second, hidden chamber.

In 1960 a group from the University of California determined to answer once and for all if such a second chamber existed. They used the highly penetrating components of cosmic rays known as muons. Essentially, they tried to produce an X-ray picture of the pyramid. To do this a detection system was placed in the chamber located under the centre of the base of the pyramid. The detection system consisted of spark chambers and scintillation counters that enabled the group not only to detect the arrival of a muon but to tell exactly from the direction it came. Some 700,000 muons were detected and encoded on magnetic tape that was later fed into a computer.

The computer turned the process inside out. By pretending that the detector was the source of the muons, and by tracing each one back to an imaginary plane above the pyramid (analogous to an X-ray film), the computer was able to build up a picture on that plane. The greater the number of muons coming from a given point on the plane, the less stone they pass through on the way into the detector from that point.

The resulting picture, corrected for various geometric factors in the detector construction and location, clearly showed the four corners of the pyramid. The computer was also able to see the limestone cap that covers the point of the pyramid. Lastly, the study demonstrated once and for all that no secret or hidden chamber exists in this pyramid.

Essentially, then, the applications of nuclear technology to the study of archaeology are numerous. One can determine where something comes from (NAA) and where something does not come from (lead isotope ratios); its age (carbon-14), how it was made (Mossbauer effect), whether or not something exists (muons), and whether it got from point a to point b (spark source mass spectrometry). While certainly archaeology is as much art as it is science, the application of nuclear science provides a number of tools for the archaeologist to get on with the art portion of his work.
Dockworkers in New York City unload Canada's most amazing contribution to technology since the Canadarm: The Bionic Ratcatcher. The 57-tonne cat clone was a product of reverse microtechnology, though it includes two Z80 CPUs to assist in rat detection. The collar tag alone weighs 520 kg. New York City officials are optimistic that the Canadian-built unit will solve the city's rat problem, though they admit that there may be some interference with traffic.

To keep abreast of technological miracles like these, may we suggest a subscription to Electronics Today International? Even people who are not interested in oversize cats have said "Gosh, there are lots of other pages!" On those pages, you'll find projects for both the beginner and the advanced builder, basic electronic theory articles, and up-to-date reporting on the computer scene.

Have ETI delivered to your door each month; send $18.95 for one year (12 issues), or $33.95 for two (24 issues), using the coupon on this page, or send to:

Blatant Ripoff!!! The intricacies of inflation have forced us to raise the newsstand price of ETI. Subscriptions, however, remain the same price. There's a moral here.

You can save 43 to 49% depending on the term. Subscribe now!!!
ELECTRONICS

ELECTRONICS BEGINNERS

Welcome to the world of integrated circuit (IC) electronic projects. Understand and use low-cost 7400 series IC's to produce working electronic circuits including a power supply and a breadboard experimenter.

PROJECTS

BP46: ELECTRONIC PROJECTS FOR BEGINNERS $5.90
F.G. RAYER, T.Eng., Assoc.IRE
This book written by the very experienced author — Mr. F.G. Rayer — in and it the newcomer to electronics, will find a wide range of easily made projects. Also, there are enough considerate number of actual components and wiring layouts, to aid the beginner.

Furthermore, a number of projects have been arranged so that they can be constructed without any need for soldering, and, thus, would be suitable for children. Also, many of the later projects can be built along the lines as those in the earlier parts of this book with a considerable increase the scope of projects which the newcomer will find.

23: 38 TESTED TRANSISTOR PROJECTS $5.50
Mr. Richard Torrens is a well experienced electronics development engineer and has designed, developed, built and tested the many useful and interesting circuits included in this book. The projects themselves can be split down into similar building blocks, which are shown separated by boxes in the circuits for ease of design, and also enable any reader who wishes to combine boxes from different projects to realise ideas of his own.

BP49: POPULAR ELECTRONIC PROJECTS $6.25
R.A. PENFOLD
Includes a collection of the most popular projects of circuits and projects which, we feel sure, will provide a number of designs to interest most electronics constructors. The projects selected for each circuit are divided into four basic categories: Radio Projects, Audio Projects, Household Projects and Test Equipment.

ENGINEER'S GUIDE TO SOLID STATE ELECTRONIC PROJECTS $10.45
A.B. DICKEN
An ideal sourcebook of Solid State circuits and techniques used in this book. The projects themselves can be split down into different ranges and are divided into five main categories: Radio Projects, Audio Projects, Household Projects and Test Equipment.

BP71: ELECTRONIC HOUSEHOLD PROJECTS $7.70
R. A. PENFOLD
Some of the most useful and popular electronic construction projects are those that can be used in or around the home. The circuits range from such things as; '2 Tone Door Buzzer', intercom through Smoke or Gas Detectors to Baby and Alarm Systems.

BP74: ELECTRONIC GAMES $7.55
R.A. PENFOLD
In this book R. A. Penfold has designed and developed a number of interesting electronic games projects using modern integrated circuits. The text is divided into two sections, the first dealing with simple games and the latter dealing with more complex circuits.

BP75: MODEL RAILWAY PROJECTS $8.10
R.A. PENFOLD
Electronic projects for model railways are fairly recent and have made possible an amazing degree of realism. The projects in this book are designed to provide an inexpensive introduction to electronic projects for model railways and are intended for use in conjunction with commercially available model railway kits.

BP76: ELECTRONIC Timers $10.60
R.G. RAYNER
Want to design your own circuits with the IC. There are application chapters for timer-based integrated circuits, automotive applications, alarm and control circuits, and power supply and control circuit applications.

BP101: HOW TO GET YOUR ELECTRONIC PROJECTS WORKING $8.10
R.A. PENFOLD
We have all built circuits from magazines and books only to find that they don't work. This book will help you find out what is wrong.

PUBLIC DOCUMENTS

Tab1531: CONCEPTS OF DIGITAL ELECTRONICS $22.45
This book presents an introduction to digital electronics theory. Understand and use low-cost 7400 series IC's to produce working electronic circuits including a power supply and a breadboard experimenter.

Tab1341: DIGITAL ELECTRONIC PROJECTS $27.45
Build a deluxe code oscillator, a digital game called Climb-the-Mountain, a clock with alarm, a metric measuring wheel, a modular decade counter, even a 14-bit line generator. 17 projects. 48 pages.

Tab1431: DIGITAL ELECTRONIC PROJECTS $28.45
Outlines the operating characteristics of CMOS digital ICs and presents and discusses 110 CMOS digital IC circuits ranging from inverter gate and logic circuits to electronic alarm circuits. Ideal for amateurs, students and professional engineers.

PUBLIC DOCUMENTS

BP110: DIGITAL IC PROJECTS $8.10
F.G. RAYER, T.Eng.(IRE), Assoc.IRE
This book contains both simple and more advanced projects and it is hoped that these will be found of help to the reader who has a knowledge of digital circuitry. The text is divided into two sections, the first dealing with simple projects and the latter dealing with more complex circuits.

BP111: HOW TO GET YOUR ELECTRONIC PROJECTS WORKING $8.10
R.A. PENFOLD
Want to design your own circuits with the IC. There are application chapters for timer-based integrated circuits, automotive applications, alarm and control circuits, and power supply and control circuit applications.

PUBLIC DOCUMENTS

Tab1161: FULL WAVE POWER SUPPLY PROJECTS $7.30
Line supplies are an essential part of many electronic projects. The purpose of this book is to give a number of power supply designs, including simple unregulated types, fixed voltage regulated types, and variable voltage stabilised designs. Each project is a complete self-contained unit, including all the necessary components to make up a complete power supply for the electronic work shop. The designs provided are all low voltage type for semiconductor circuits. These other electronic projects are also covered in this book. A number of these are dealt with in the final chapter, including a cascade colour decoder and a circuit for use in the electronic work shop. The projects themselves can be split down into different ranges and are divided into five main categories: Radio Projects, Audio Projects, Household Projects and Test Equipment.

PUBLIC DOCUMENTS

BP151: ELECTRICITY THEORY $12.30
A.B. DICKEN
This book covers the fundamentals of Electricity theory. Understand and use low-cost 7400 series IC's to produce working electronic circuits including a power supply and a breadboard experimenter.

PUBLIC DOCUMENTS

Tab1201: ELECTRICITY THEORY $13.45
This book presents an introduction to digital electronics theory. Understand and use low-cost 7400 series IC's to produce working electronic circuits including a power supply and a breadboard experimenter.

PUBLIC DOCUMENTS

BP100: BEGINNER'S HANDBOOK OF ELECTRONICS $8.10
D. HEISERMAN

PUBLIC DOCUMENTS

BP110: ELECTRICITY THEORY $12.30
A.B. DICKEN
This book presents an introduction to digital electronics theory. Understand and use low-cost 7400 series IC's to produce working electronic circuits including a power supply and a breadboard experimenter.

PUBLIC DOCUMENTS

BP100: BEGINNER'S HANDBOOK OF ELECTRONICS $8.10
D. HEISERMAN
This book is a complete treatise of a particular branch of electronics. This book is a complete treatise of a particular branch of electronics. This book is a complete treatise of a particular branch of electronics. This book is a complete treatise of a particular branch of electronics. This book is a complete treatise of a particular branch of electronics. This book is a complete treatise of a particular branch of electronics. This book is a complete treatise of a particular branch of electronics. This book is a complete treatise of a particular branch of electronics. This book is a complete treatise of a particular branch of electronics. This book is a complete treatise of a particular branch of electricity theory. Understand and use low-cost 7400 series IC's to produce working electronic circuits including a power supply and a breadboard experimenter.

PUBLIC DOCUMENTS

BP1403: CONCEPTS OF DIGITAL ELECTRONICS $11.45
This book presents an introduction to digital electronics theory. Understand and use low-cost 7400 series IC's to produce working electronic circuits including a power supply and a breadboard experimenter.

PUBLIC DOCUMENTS

BP1203: ELECTRICITY THEORY $11.75
This book presents an introduction to digital electronics theory. Understand and use low-cost 7400 series IC's to produce working electronic circuits including a power supply and a breadboard experimenter.

PUBLIC DOCUMENTS

BP1503: ELECTRICITY THEORY $12.30
A.B. DICKEN
This book presents an introduction to digital electronics theory. Understand and use low-cost 7400 series IC's to produce working electronic circuits including a power supply and a breadboard experimenter.

PUBLIC DOCUMENTS

BP1303: ELECTRICITY THEORY $12.30
A.B. DICKEN
This book presents an introduction to digital electronics theory. Understand and use low-cost 7400 series IC's to produce working electronic circuits including a power supply and a breadboard experimenter.

PUBLIC DOCUMENTS

BP1803: ELECTRICITY theory $12.30
A.B. DICKEN
This book presents an introduction to digital electronics theory. Understand and use low-cost 7400 series IC's to produce working electronic circuits including a power supply and a breadboard experimenter.

PUBLIC DOCUMENTS

BP1703: ELECTRICITY THEORY $12.30
A.B. DICKEN
This book presents an introduction to digital electronics theory. Understand and use low-cost 7400 series IC's to produce working electronic circuits including a power supply and a breadboard experimenter.

PUBLIC DOCUMENTS

BP1603: ELECTRICITY THEORY $12.30
A.B. DICKEN
This book presents an introduction to digital electronics theory. Understand and use low-cost 7400 series IC's to produce working electronic circuits including a power supply and a breadboard experimenter.

PUBLIC DOCUMENTS

BP1503: ELECTRICITY THEORY $12.30
A.B. DICKEN
This book presents an introduction to digital electronics theory. Understand and use low-cost 7400 series IC's to produce working electronic circuits including a power supply and a breadboard experimenter.
CIRCUITS

BP76: VOMS PROJECTS
R.A. PENFOLD
Although modern bipolar power transistors give excellent results in a wide range of applications, they are not without their drawbacks and limitations. This book will primarily be concerned with VOMS power RETs although power MOSFETs will be dealt with in the chapter on audio circuits. A number of VOMS specific circuits are covered under the main headings of: Audio Circuits, Sound Generator Circuits, DC Control Circuits and Signal Control Circuits.

BP84: IC 555 PROJECTS
R.A. PENFOLD

BP95: CMOS IC PROJECTS
R.A. PENFOLD
CMOS ICs are probably the most versatile range of digital circuits and are also some of the most expensive and easily available types of IC.

Mr. R.A. Penfold has designed and developed a number of interesting and useful projects which are divided into four general categories: I — Amplifiers II — Oscillators III — Trigger Devices IV — Special Devices.

MASTER HANDBOOK OF 1001 PRACTICAL CIRCUITS
TAB No.800
$20.45
Here are transistor and IC circuits for just about any application you might have. An ideal source book for the engineer, technician or hobbyist who wants to combine his circuitry and apply it to his system. A must for anyone who wants to combine his circuitry and apply it to his system.

THE MASTER IC COOKBOOK
TAB No.1599
$18.45

ELECTRONIC DESIGN WITH OFF THE SHELF INTEGRATED CIRCUITS
AB016
$13.45
This practical handbook enables you to take advantage of the vast range of applications made possible by integrated circuits. The book tells how, in step by step fashion, to select components and how to combine them into functional electronic systems. If you want to stop being a "cookbook hobbyist", this is the book for you.

EIGHTH EDITION

AUDIO

BP60: AUDIO PROJECTS
F.G. RAYER
Covers in detail the construction of a wide range of audio projects. The text has been divided into preamplifiers and mixers, power amplifiers, tone controls and matching and miscellaneous projects.

205: FIRST BOOK OF HI-FI LOUDSPEAKER ENCLOSURES
R.B. BABANI
$3.55
This book gives data for building most types of loudspeaker enclosures. The projects include box, folded horn, tuned port, klipschorn labyrinth, tuned horns, folded horn, tuned port, klipschorn labyrinth, tuned horn, folded horn, tuned port and multi speaker panoramas. Many clear diagrams for every construction showing the dimensions necessary.

COLIN CARSON
The vast majority of people who start up “Mobile Discos” know very little about their equipment or even what to buy. Many people have wasted a “small fortune” on poor, unwanted equipment which is of no use to them. The aim of this book is to give you enough information to enable you to have a better understanding of many aspects of “discos” gear.

HOW TO BUILD A SMALL BUDGET RECORDING STUDIO FROM SCRATCH...
TAB No.1764
$16.45
The author, A. Alton Everest, has gotten studios together several times, and presents twelve complete, tested designs for a wide variety of applications. If all you own is a mono cassette recorder, you don’t need this book. If you don’t want your new studio to wind up sounding like one, though, you shouldn’t do without it.

BP51: ELECTRONIC MUSIC AND CREATIVE TAPE RECORDING
M.B. BERRY
Electronic Music is the new music of the Twentieth Century. In this huge range of projects, the basic music system is made up of an electronic synthesizer and a multi-track tape recorder. This book outlines many electronic music projects and concepts of practical circuitry for the less complex items of electronic equipment. It then describes how the sounds are generated and how these may be recorded to build up the final composition.

BP63: ELECTRONIC MUSIC PROJECTS
R.A. PENFOLD
Although one of the more recent branches of amateur electronics, electronic music has now become extremely popular and can be found in every home. This book covers the basic design concepts and the equipment necessary to produce a musical sound system. A must for anyone who wants to combine his circuitry and apply it to his system.
Electronics

BASIC CARRIER TELEPHONE, THIRD EDITION
TAB No.1075 $20.15

One of the most fascinating and rewarding applications of electronics is the field of music, then this is the book for you. Included is data on synthesizers in general as well as particular models. There is also a chapter on the various accessories that are available.

Tabla:1583: ELECTRONIC DATABASE -- 3RD EDITION $30.00

The work that you are about to undertake will be easier and more pleasant if you have at your instant access to exactly the nonogram, chart, table or formula you need, when you need it. All this and more is included in this updated version of one of the most respected information sources in its field. This handbook is divided into six sections: Frequency Data, Communication Data, Passive Components, and Logic-Related Substrates. It contains over 400 pages of data on more than 500 different waveforms and components.

Tabla:1516: TOWERS INTERNATIONAL MICROPROCESSOR SELECTOR $31.45

Towers' books have gained an international reputation for completeness and usefulness. This volume gives you all the data you will normally need to select the right chip.

TABLE OF CONTENTS

Chapter One: The Microprocessors

Chapter Two: The Memory

Chapter Three: The Peripheral Devices

Chapter Four: The Interfacing

Chapter Five: The Applications

Chapter Six: The Troubleshooting

Appendices

Index

See order form in this issue. All prices include shipping. No sales tax applies. ETTI—DECEMBER—1983—59.
Playmate Part II

For aspiring artists we conclude our portable guitar amp with added ingredients fuzz and wah. Design and development by Phil Walker.

BEFORE WE CONTINUE with our analysis of the circuit theory, we have to apologize for the manpower shortage last month which meant that the Playmate circuit diagram missed out on our usual thorough checking. Naturally the perversity of the universe ensured that this was the project that had several errors, so we’re reprinting the circuit diagram with mistakes and duplicate component numbers corrected and all pots marked CW or CCW to tie up with the front panel wiring diagram. Meanwhile, back to the plot . . .

The State-variable Filter
Things start getting a bit heavy now! The following equations are the transfer equations for a state-variable filter such as that in Fig. 2:

\[V_x = [(R1/R3) \times V_{in} + (R2/R3) \times V_y] + R5/(R4 + R5) \times [1 + R3(R1 + R3)/(R1R2)] \times V_o \]

If \(R1 = R2 = R3 = R5 \), then:

\[V_x = - (V_{in} + V_y) + R1(1 + 2)/ (R4 + R1) \times V_o \]

\[V_o = - \frac{3R1V_o}{R4 + R1} \]

\[V_y = - \frac{1}{sCR} \times V_o \]

Substitute (2) and (3) in (1):

\[V_{in} = \frac{sCRV_o}{R1 + R4} \times (V_{in} + (-1/sCR) V_y) \]

\[V_{in} = (sCR + 3R1/(R1 + R4) + 1/sCR) V_o \]

\[V_o = \frac{3R1}{R1 + R4} \times V_o \]

\[V_y = - \frac{1}{sCR} \times V_o \]

Compare this with the equation for an LCR tuned circuit:

\[V_{in} = (j\omega L + 1/(j\omega C) + R) I_{out} \] (Fig. 3)

\[V_{in} = j\omega L + R + 1/(j\omega C) \] (LCR circuit)

\[I_{out} = \frac{3R1}{R1 + R4} + 1/(j\omega CR) \]

\[V_{out} = \frac{(R1 + R4)}{(R1 + R4)} \] (State variable filter)

From this it is apparent that these responses are similar except that the LCR circuit gives a current output rather than a voltage. For this type of LCR circuit, the frequency of minimum attenuation or maximum gain (the resonant frequency) is given by:

\[f = \frac{1}{2\pi\sqrt{LC}} \]

Fig. 1. (Right) The correct version of the circuit diagram — sorry . . .
For our circuit this is:

\[
\frac{1}{2\pi\sqrt{CR\cdot CR}} = \frac{1}{2\pi CR}
\]

The 'Q' factor influencing the bandwidth is given by:

\[
Q = \frac{2\pi f L}{2\pi \times (1/2\pi CR) \times CR} = \frac{3R1/(R1 + R4)}{R1 + R4} = 3R1
\]

Figure 4 shows the configuration necessary to use the LM13600 as a filter of this type. Last month we found that the transfer function of the LM13600 with no diode current is given by:

\[
l_{out} = \frac{l_{abc}}{26 \times 10^{-3}} \times V_{in}
\]

As we are using a capacitative load, this output current will generate a voltage of:

\[
V_{out} = l_{out} \times \frac{1}{j\omega C} = V \times \frac{l_{abc}}{26 \times 10^{-3}} \times \frac{1}{j\omega C} = V_{in} \times \frac{l_{abc}}{R1} \times \frac{1}{R1 + R} \times 26 \times 10^{-3} \times j\omega C
\]

Since we are not dealing with a normal type of op-amp, analysis of the circuit is not as easy as the normal filter, but the result is an equation of much the same form. We do not show all the derivation here as it would occupy most of a page. However, the end result is that the centre frequency of the filter pass band is proportional to the amplifier bias current. Therefore we have an easy way to control the wah wah effect.
Fig. 3. Generalized LCR tuned circuit.

Fig. 5. (Right) Component overlay for the preamplifier board.

Fig. 6. (Below) Overlay for the tone control board.

Fig. 7. (Far Right) Overlay for the power amp of the Playmate.

Construction
Except for the controls, almost all the components for this project are mounted on the three PCBs. The preamplifier board is the largest and most densely packed. It is advisable to use sockets for the ICs and don't forget the links. The capacitors used in the project should be as small as possible, otherwise you will have difficulty fitting them. A fine tipped soldering iron will be useful when assembling the boards and care should be taken to avoid creating short circuits between tracks with accidental solder splashes.

Ensure that all the diodes, transistors and other polarized components (especially IC3) are fitted the correct way round. On the power amplifier board the output transistors are mounted on top of a short length of ¼" x ½" aluminum angle which acts as a heatsink. The transistors and the angle are held in position by the transistor mounting screws.

Parts List

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1,2</td>
<td>270R 1/4W 5%</td>
</tr>
<tr>
<td>C1,2</td>
<td>4700u 25V electrolytic</td>
</tr>
<tr>
<td>IC1</td>
<td>7805</td>
</tr>
<tr>
<td>IC2</td>
<td>7905</td>
</tr>
<tr>
<td>ZD1,2</td>
<td>3V9 400mW zener</td>
</tr>
<tr>
<td>BR1</td>
<td>1 amp bridge rectifier</td>
</tr>
<tr>
<td>TI</td>
<td>9-0-9 12 VA transformer, 100mA or more</td>
</tr>
<tr>
<td>SW1</td>
<td>DPDT miniature rocker or slide switch</td>
</tr>
<tr>
<td>FS1</td>
<td>1A 200mm fuse and holder</td>
</tr>
<tr>
<td>LP1</td>
<td>120V panel neon with integral resistor</td>
</tr>
</tbody>
</table>
PARTS LIST

Resistors (All 1/4W 5%)
- R1, 3, 42, 43: 47k
- R2, 5, 6, 12, 21, 25, 32, 37, 38, 46-48, 50-52, 55, 56, 68: 10k
- R8: 220k
- R7, 18, 34: 470k
- R9, 14, 15, 33: 15k
- R10, 62-65: 47R
- R11, 17, 31, 36, 40, 44, 45, 53, 67: 100k
- R13, 22, 23, 28, 29, 35, 57, 58: 1k0
- R19, 20, 24, 26, 29, 27, 30, 41: 22k
- R49: 4M7
- R54: 33k
- R39, 60: 2R2
- R61: 6R8
- R66: 1M0

Potentiometers
- RV1, 3, 7: 100k linear
- RV2: 50k linear dual gang
- RV4: 100k linear dual gang
- RV5: 100k logarithmic with two-pole switch
- RV6: 22k linear
- RV8: 47k miniature horizontal preset

Capacitors (All polycarbonate except where stated)
- C1, 5, 10-12, 17, 23: 680n
- C2: 220n
- C3: 22u 16 V tantalum
- C4, 6, 9: 470n
- C7, 8: 1n5
- C13, 14: 10n
- C15: 33n
- C16: 15n
- C18: 68p
- C19: 10u 35 V tantalum
- C20: 100n
- C21, 22, 24, 25: 1000u 10 V axial electrolytic
- C26-29: 47u 10 V PCB electrolytic

Semiconductors
- IC1: CA3140
- IC2, 4: LM13600
- IC3: TL084
- IC5: TL082
- IC6: 741
- Q1, 2, 5: 2N3905 or equiv.
- Q3, 4: 2N3904 or equiv.
- Q6: TIP32 or equiv.
- Q7: TIP31 or equiv.
- D1-5: IN4148

Potentiometers
- IC2, 4: LM13600
- IC3: TL084
- IC5: TL082
- IC6: 741
- Q1, 2, 5: 2N3905 or equiv.
- Q3, 4: 2N3904 or equiv.
- Q6: TIP32 or equiv.
- Q7: TIP31 or equiv.
- D1-5: IN4148

Miscellaneous
- SW1, 2: 2-pole, 3-way miniature slide switch
- SW3: 1-pole, 2-way miniature slide switch

PCBs; case (220 x 105 x 230mm), Vero Ref. 75-2443A; wire (single, single screened and double screened); 4" or 5" loudspeaker (8 ohms, 5 W); standard 1/4" jack socket for input; stereo jack socket for foot switch (if required); 75 mm or 12 x 12 mm aluminum angle; two 9V batteries and clips.

Suggested Foot Pedal

The first diagram shows the circuit used with a three-connection (stereo) jack. This will duplicate the effect of the panel-mounted control. As the angular rotation of foot pedal controls is sometimes limited, some adjustment of position may be necessary to get best results. If the range of control isn't wide enough, change to a higher value. The link on SW2a should be removed for this circuit. The second diagram shows a simple circuit for use with ordinary jack connectors which can be used if the link between SW2a pole and off position is retained.

Mount the control switches and potentiometers on the front panel (see photo for our layout) and make the necessary interconnections and fit the three components needed around the balance control. The wiring from the front panel to the preamplifier/effects and tone control boards should be carried out using thin flexible wire for control signals and miniature screened cable for any sound signals. These should be short, but allow enough slack to be able to fit them in position easily (it is probably easier to connect all the wires to the circuit boards first). The power amplifier board was fitted to the metal base plate of our case using the angle on which the transistors were mounted. It was positioned so that it fitted neatly between the two batteries in the bottom of the case. Together with the loudspeaker, the amplifier board holds the batteries without any further help.

The small loudspeaker for this project was mounted on the plastic case of the box through which a number of holes were drilled to let the sound out. If required, a small mains power unit capable of 9-0-9 V at 100 mA or more may be used to power the unit.

A foot pedal control for controlling the wah wah effect could be plugged into a jack socket. This would need to be one of the three-connection or stereo type so that positive and negative supplies as well as the control signal could be connected.
VIC-20
High Res Graphics
J. Ennis

The recommended way to create high-res graphics on the VIC-20 is to bit-map as much of the screen as you have memory for. But even with memory expansion cartridges, the maximum size is about 160 by 160 pixels because character memory cannot be located in the expansion cartridge.

The following program does not try to bit-map the entire screen, so it avoids this limitation. When plotting graphs and the like, only a small portion of the screen is actually used.

To turn on a single pixel, the program PEEKs into screen memory at the place the pixel will appear when it is plotted. If the character there is a space, it POKEs another character in its place and then POKEs into character memory to turn on a single dot within that character.

Thus, when a graph is plotted, most of the screen is filled with spaces and the remainder with other characters.

Within the program the plotting of points on the screen is achieved by two machine-language routines which must be POKEd into memory before running. The first of these clears out the character memory in RAM, sets the character memory pointer to 5120 (decimal), clears the screen and sets the 8116 character size.

The second routine plots a point whose x and y co-ordinates are stores in locations 0 and 1 respectively. Both routines are relocatable but only work on the unexpanded VIC-20, although they could be modified.

Type in Program 1 and save it immediately, taking special care with the data statements; a mistake there may well crash the program later. Erase the first program, then type in Program 2 and save it on tape immediately after Program 1.

To use it, load and run Program 1, which POKEs the machine language into memory; unless there is a mistake, it will then automatically load and run the second program on the tape, the one that does the plotting.

When run as above, the second program will plot the graph, in Cartesian coordinates, of a function defined in line 5. To do this, it will ask for the domain of the function, i.e.: the range of values on the x-axis for which values of the function are to be plotted.

It will then ask for the plotting density, i.e.: how closely together it will plot the points, where 1 gives the highest density and 4 the lowest.

Once plotted, the graph will remain on the screen until the user presses the CTRL key and then the space bar.

Both parts of the program should be typed in without any spaces between words as this saves using too much memory space.

MACHINE-LANGUAGE GRAPHICS
Program 1

```
10 REM LOAD` MACHINE-LANGUAGE
20 CH=0:FORI=5892TO6119: EADA:POKEI,A:CH=CH+A:NEXT:IFCH=033481 THENPRINT"ERROR":END
30 FORI=5892TO6119:POKEI-100,PEEK(I):N=AT:POKE631,131:POKE 198,1:END
40 DATA173,3,144,9,1,141,3,144,169,8,141,15,144,169,253,141,5, 144,169,147,210,255
50 DATA169,9,133,251,169,30,133,252,169,150,160,0,145,251,200, 192,0,208,249,230,252,165
60 DATA252,201,32,208,237,169,20,133,252,169,0,133,251,160,0, 145,251,192,0,208,249
70 DATA252,252,165,252,201,30,208,235,96,169,0,133,251,133,252, 133,253,133,254,165,0
80 DATA252,173,3,144,9,1,141,3,144,169,8,141,15,144,169,253,141,5, 144,169,147,210,255
90 DATA169,9,133,251,169,30,133,252,169,150,160,0,145,251,200, 192,0,208,249,230,252,165
100 DATA252,201,32,208,237,169,20,133,252,169,0,133,251,160,0, 145,251,192,0,208,249
110 DATA230,252,165,252,201,30,208,235,96,169,0,133,251,133,252, 133,253,133,254,165,0
120 DATA252,173,3,144,9,1,141,3,144,169,8,141,15,144,169,253,141,5, 144,169,147,210,255
130 DATA169,9,133,251,169,30,133,252,169,150,160,0,145,251,200, 192,0,208,249,230,252,165
140 DATA252,201,32,208,237,169,20,133,252,169,0,133,251,160,0, 145,251,192,0,208,249
```

Program 2

```
5 D=2*PI/15: X=SIN(X)
10 POKE36678,9:PRINTCHR$(147)POKE(48)"VIC GRAPHICS"POKE(90)
20 INPUT"DOMAIN(A,B)";A,B
30 IF A>B THEN PRINT"ERROR";POKE36678,200:FORI=0TO1500
40 POKE36678,0:GOTO10
50 PRINT"PLOT DENSITY(1-4)";:POKE36678,1:D=C*(B-A)/175:U=0:L=0:FORI=A TO BSTEPD;C=FNA(I)
60 IF C>U THEN REST: H=175/(ABS(L)+U):W=175/(B-A):IFB<0 OR A>B THEN 0
70 POKE21,A*:FORI=0TO175;POKE1,I,SYNS4968:NEXT
80 POKE21,175-ABS(L):H:FORI=0TO175;POKE0,I,SYNS4968:NEXT
90 FORI=0TO175;C=FNA(I):X=(I-A)*W:Y=175-ABS(L):POKE 0,X,Y:POKE21,Y,SYNS4968:NEXT
100 POKE36687,180:FORI=0TO600:NEXT;POKE36687,0:WAIT6553,4:WAIT 197,32
110 POKE36687,27:POKE36689,240:POKE36687,PEEK(36687)AND254:POKE 198,0:GOTO10
```
CONGRATULATIONS
YOU HAVE JUST BOUGHT YOURSELF
A PERSONAL MICROCOMPUTER

NOW WHAT?
WE HAVE THE ANSWER!

I & S SOFTWARE LIBRARY
OFFERS 3 GREAT WAYS
TO BUY YOUR FAVOURITE PROGRAMS

1. I & S SOFTWARE LIBRARY CLUB is the only way to choose the right program for your applications. Try your favourite program at home for one week. If you decide to buy, you pay only the low member's price, if not, simply return it and owe nothing. It is that simple.

2. SOFTWARE OF THE MONTH CLUB offers you the lowest price and the newest software. You can build your library and save money too. Savings range from 40% or more off the manufacturer's retail price, usually 25% to 35%. NO obligation to buy. NO automatic shipment. FREE club brochure for the first year.

3. Our TRUE MAILORDER PRICES are the lowest in Canada. We will beat or meet any nationally advertised price or the difference will be refunded.

WE HAVE PROGRAMS FOR:
- APPLE
- ATARI
- COMMODORE 64
- IBM PC
- SINCLAIR ZX81
- TRS80
- TRS80 COLOUR
- VIC 20
- AMSTRAD
- ELCOM
- VIC 20
- COSMOS
- BBC
- IBM
- SHARP

These services are available by mail order only.

For more information write or call to:
I & S SOFTWARE LIBRARY, Inc.
#12, 10015 82 Avenue, Edmonton, Alberta T6E 1Z2
(403) 435-2923

Circle No. 40 on Reader Service Card.

Complete System
only $995.00

Includes:
- Disk Drive
- Controller
- Green Monitor
- 48K Computer
- Fully Apple™ II Compatible
- 90 Day Warranty

Printers
GEMINI 10X printer $375.00
GEMINI 15 printer $645.00
Epson RX-80 $499.00
EPSON MX-80 $899.00
TTX 15" Daisy Wheel $875.00

Disk Drive
Apple™ compatible, 5¼" $275.00

Monitors
COMREX 13" high res. colour $249.00
COMREX 15" high res. colour $499.00
AMDEK Colour $499.00
ECS 13" High res. $169.00

Cards
80 Column Card $89.95
Drive Card $58.95
250 Card $69.95
16K RAM Card $59.95
6502 Motherboard (bare) $29.95
Any (bare) Card $9.50
Memorex 5½" disk (box of 10) $28.99
Complete Kit (6502 Main Board) $190.00
(a) Keyboard with U/L case characters and numeric keypad $99.00
(b) ABS case with numeric pad only $79.00
(c) Both (a) & (b) $175.00
IBM Compatible Board, Tested and Assembled $599.00

Circle No. 9 on Reader Service Card.

Active Components
NUMBER ONE IN QUALITY SERVICE AVAILABILITY
THE WORLD'S MOST COMPLETE PROFESSIONAL AND HOME ELECTRONICS ENTHUSIAST INVENTORY
- Semiconductors + Memories
- Microprocessors + Support Circuits
- Microcomputer Systems + Peripherals
- Passive Electronic Components
- Hand Tools, Wire Wrapping, Soldering Equipment + Hardware

NOW AVAILABLE — FREE 1983 80-page catalogue
A complete listing of products and specifications
Call, write or circle the inquiry card for your free copy today.

MONTREAL
5043 rue Ferrier Montreal, Quebec H2H 2C2
(514) 731-7441

TORONTO
14 Carlton Street Toronto, Ontario M5B 1K5
(416) 977-5992

CALGARY
5000 MacLeod Tr. S. Calgary, Alberta T2A 1G9
(403) 268-0637

VANCOUVER
3070 Kingsway Vancouver, B.C. V5L 4N1
(604) 433-3221

Call, write or circle the inquiry card for your free copy today.

Circle No. 2 on Reader Service Card.

Circle No. 32 on Reader Service Card.

Circle No. 40 on Reader Service Card.

Circle No. 32 on Reader Service Card.
"Buy the memory expansion kit. It's a good deal."

"He says he likes the new fan, but would have preferred slave girls waving palm leaves."

"It's here at last! The triple-side, double-density diskette."

"It's really quite effective — though the little fellas squirm a lot when you try to strap them in."

"Don't tell me ... it's a light pen."

"That's really amazing. I remember when those mainframe computers were as big as footballs."
AT YEAR END WE SAY THANK YOU TO READERS AND ADVERTISERS. YOU HAVE MADE ELECTRONICS TODAY NUMBER ONE IN EVERY WAY.

Month-by-month ABC circulation

15,000
16,000
17,000
18,000
19,000
20,000
21,000
22,000
23,000

1981 1982 1983

ADVERTISING INFORMATION
(416) 423-3262

Sincerely,

Halvor Moorshead
Publisher.

A proven success!
Book Review

Mathematics for Electricity/Electronics

Miller/Culpepper, Collier MacMillan Canada Ltd., ISBN 0-02-818220-0. Paperback. ALTHOUGH THIS book is intended for use in an electronics course, it's an excellent choice if you'd like a reference book of basic information and equations. For instance, who can remember Delta-Wye transforms unless you use them daily? With this handy manual, you have the information you need, and wonder of wonders, it's all easy to find, thanks to excellent layout.

The book is divided into 30 chapters, or units. Each unit consists of an introduction to the basic topic, relevant tables and test problems for the eager. The main formulas are placed in boxed inserts for readability. The answers to the tests, unfortunately, are in a softbound book which must be purchased separately; after all, it's meant to end up in classrooms, and we can't have people peeking.

Taking the first unit, Resistance, as an example of the format, you'll find a one-page discussion of the various factors affecting the resistivity of conductors. Two pages of tables and examples follow; the tables include the determination of the resistance of a material given the dimensions, the effects of temperature, and standard wire gauges. The examples are expertly concocted by someone who has the rare ability to put himself in the place of the information-seeker. Seldom-used terms are neatly explained.

There is a lack of metric units, for which some may breathe a sigh of relief, but naturally the book's largest market would be in the U.S.

Problems accompanying each unit are of a practical nature; they describe the sort of situations one might be expected to find outside the classroom: for instance, finding the resistance of an electric clock coil given the length, wire, and temperature. You may rarely need to know about clock coils, but if you wind any type of coils, say, speaker crossovers, you can appreciate the practicality of the approach.

Unit 2 applies resistivity using Ohm's Law. Three examples are given, along with 25 questions. Interestingly, the authors give the old high school rule-of-thumb for remembering the Law: divide a pie into three and cover the unit to be found; the other two are then shown in the proper relationship. The problem with this, as I recall from high school, is that nobody can ever remember which letters go in which sections of the pie.

The following units cover manipulation of series and parallel resistances, with Unit 6 being particularly excellent at showing how to reduce complex resistor networks to easily usable equivalents. This should give a good grounding for later work in network analysis.

There are units on the basics of meter movements, and the ways to go about turning them into ammeters, voltmeters, or ohmmeters. Kirchhoff's Laws and series-parallel current flow are covered in a simple but concise manner; the authors have cleverly managed to cram the equivalent of an electronics course into three-page sections. (Quick: What are Kirchhoff's Laws?)

Inductance formulas are given in two units; you can even find formulas for winding your own coils, should you be so eager as to actually do that. I used to pass on building any project that required coil-wind-
Make your Apple™ or 6502 machine look like an IBM PC™. This attractive metal case with ABS front bezel looks just like you-know-who, but is punched internally to take all the 6602 mother boards, power supplies etc. that are now sold. Our black beauty power supply fits in just right with the power connector and switch accessible at the right hand side. In addition the case holds 2 standard disc drives (4 sile lines) with all holes pre-punched. There is also a cut-out for a 4½ inch muffin fan inside. Look at the photo, it really looks good.

IBM PC™ LOOK-A-LIKE CASE

316 College St., Toronto. M5T 1S3
(416) 925-1105 (416) 925-8291

OUR 6502 BOARD

Now only $29.95 still with all the versatility of the original and a full 8 slots.

SOLID ABS CASE

<table>
<thead>
<tr>
<th>CASE TYPE</th>
<th>NUMERIC</th>
<th>STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>KB Case</td>
<td>$59.95</td>
<td>$39.95</td>
</tr>
</tbody>
</table>

ASCII KEYBOARDS

Our ASCII keyboards are by ALPS, a famous Japanese switchmaker and feature high quality debossed switches. Full upper and lower case capability. Direct plug-in compatible with all 6502 boards and "SURF" board. Available in numeric and std style.

- Standard KB: $39.95
- numeric KB: $99.00

POWER SUPPLY

Our famous "BLACK BEAUTY" power supply, now reduced in price but not in quality. Our ratings are 5V-5A; 12V-2.5A; 5A-4A; 12V-1.5A for real. Make sure that any other power supply that lays claim to this rating actually does so. Labels are cheap and we have seen many of the old silver power supplies unchanged except for the label. Easily beats all the rest: $99.95

UNITRON 2200 CASE

An attractive case and keyboard combination that gives that modern look to your 6502 machine. The case fits the older numeric keyboards and the PCB goes into the case just fine. Comes in an attractive carrying carton. Case and KB case together: $89.95

- Case only: $69.95
- KB Case only: $29.95
- Keyboard and KB case: $119.95

UNITRON 2200 PCB

A great new PCB, with Z-80, Disc controller, 64K and soft switch on board. Made to run with CP/M systems under Z-80 control. Fits into the 2200 case above and use the 2200 KB and case listed. Bare PCB: $44.00

SYSTEM SAVIOUR

Hot and getting hotter??? Got an older power supply???

Then you need a SYSTEM SAVIOUR. This is no religious object, it is a nicely packaged 3½“ muffin fan in a molded plastic housing that fits against the slots on the side of our 6502 computer case and draws out the hot air. Widely used by all major political parties, especially the NDP, now at a new low-low price. Complete with 2 grounded 3 wire switched sockets, pilot light, surge protector and on-off switch to turn off your machine. Widely used by all political parties, especially the NDP, now at a new low-low price. Complete with 2 grounded 3 wire switched sockets, pilot light, surge protector and on-off switch to turn off your machine: $69.95

GREAT DEAL

THE GREAT DEAL CARRIES ON FOREVER AND GETS BETTER

We made an even better buy on over 1000 sets of power supply, 6502 board, numeric keyboard and numeric ABS case (solid coloured ABS All the way through, not just painted plastic) and can now offer the great deal with numeric case and keyboard for the amazing price of $275.00. Along with any 4 of the peripherals listed above as a bare pcb with parts layout. The price is the same for numeric or non-numeric style of KB and case for this great deal. Please specify numeric or non-numeric when you order, Except 128K, wildcard.

MAIL ORDERS

We accept; Personal Cheques, Postal Money Orders, Certifted Cheques, Travelers Cheques, Visa, Mastercard, Bank Draft. We ship C.O.D., only by CANPAR and Truck. We do not use Canada Post C.O.D. We will send your goods via CANPAR or Canada Post unless you say otherwise. You will be charged $3.00 for delivery and handling or more if your goods are heavy than the $3.00 weight or if you specify another delivery service that charges more. All Goods are 7% sales tax. We sell wholesale to any retail store or other reseller with a sales tax exemption # as long as a realistic quantity is bought. We ship within a week if in stock and we will cancel any backorders over 4 weeks unless otherwise instructed. 20% Restocking Charge.
INSIDE

- IBM Clones
- Echo II Review

- Birth of a Dialing Terminal
- Pied Piper Review
- Accounts on a Computer
- And More . . .

December Issue on sale now
at your newsstand and at 100
computer and electronic stores
across Canada

Save up to 47% by subscribing. One year (12 issues) $19.95, two years (24 issues) $34.95. Send to Computing Now! Subscription Department, Suite 601, 25 Overlea Blvd., Toronto, Ontario M4H 1B1.
Two wires for opto-switch
F. Arfort

Here's a simple way to run two wires instead of four to a remote opto-switch, as in the case of a wind speed indicator which provides pulses proportional to the rotational speed of a perforated disc.

An opto-coupler consisting of a LED and a phototransistor, either of the packaged variety or made from discrete devices, normally requires four connections. However, twin-pair cable is common, cheap and convenient and it's more economical (and more elegant) to use two wires rather than four for a remote sensor. The further away the sensor may be located from the indicator, the more attractive a two-wire system becomes.

In the circuit, resistor R1 provides a 'starting' current for the LED. Current through R1 and R2 will provide a certain dc level at the output when the path between the LED and phototransistor is blocked. When the path is unblocked, the phototransistor saturates, virtually shorting out R1, thus providing more current through R2, increasing the output dc level. This change can be sensed and used as required.

1. A load must be present to switch the transistor on and consequently the LED.
 The fuse fail indicator must not be used when the power supply is greater than 15 V.

Fuse fail indicator
R.N. Sinclair

This circuit indicates an open circuit fuse by flashing the LED D1.

The circuit is based around the popular 555 timer IC which is arranged as a multivibrator with its frequency/period determined by C1, R3 and R4. R1 is the current limiter for D1.

When the fuse is intact, the BC558 is off but when the fuse fails and there is an open circuit the BC558 switches on, supplying power to the input of the 555 (pin

Affordable Precision

Arkon is now handling the Hitachi line of high-performance digital multimeters. These precision instruments are able to meet the most stringent requirements of both engineer and hobbyist, yet fit comfortably in the palm of the hand and are easily transported.

In addition to these meters, Arkon also carries the complete line of Hitachi scopes and other test equipment by such manufacturers as Hioki and Lutron. In stock as well is a good selection of components including semiconductors and ICs, kits, tools, and manuals. Everything that's needed to get the job done.

Make it a point to drop by soon for a demonstration, or visit us at the Home Entertainment Fair, booth 124, from December 8 to 11.
Low-Cost Mains Time-Delay Switch
Alex Gray

This circuit offers a cheap, reliable replacement for mechanical and pneumatic time-delay switches such as used for corridor lights. It can also be used to protect equipment which is upset by power being applied and removed too rapidly.

When the switch is closed and reopened, the load is switched on for a preset time - 1.1R.C. During this period, the circuit also switches on its own power. At the end of the time-delay both the load and the circuit are disconnected. In the event of a circuit failure, the push button will still allow the load to be switched on for safety (e.g. in corridor lighting).

If the switch is a normal latching type, the load will be powered as long as the switch is closed, subject to a minimum period. This prevents rapid cycling of the power on and off and may be used to protect equipment susceptible to damage from this situation.

The usual precautions with AC wiring must be observed. In particular, remember that, although the 555 is on a 12V supply, that supply is superimposed on 120 V AC above ground. The switch and the 470nF capacitor must be types designed for high voltage operation.

Reuse spent solder braid
Peter Alter

Don't throw away those used pieces of Dri-Wick or other brands of desolder braid. It is an excellent, very low resistance conductor.

It can be used as a ground strap from circuit boards and connectors to the chassis or central earth point. Covered by spaghetti or heat shrink tubing, it makes an ideal low impedance lead for power supplied and amplifiers etc.

It has much lower resistance than hook-up wire, doesn't cost anything, and being rigid makes a good supporting strengthen for the pc board.
ETI Special Publications

If you enjoy ETI, why not try some of our highly successful special publications.

- **Personal Computer Guide**
 - 100 pages
 - $3.95
 - For the person interested in choosing a computer system of his or her own. A collection of fifteen in-depth computer reviews from ETI magazine, as compiled by Steve Tipton. Also included are articles on how to buy and maintain your computer, an appraisal of the current status of most major computer languages, and notes on the future of the computer as a tool for education and entertainment.

- **Hobby Projects**
 - 100 pages
 - $3.95
 - First published Summer 1980. Contains 25 of the best projects from ETI magazine, packed into one small volume. The projects are suitable for the beginner, from simple electronic circuits to more complex designs, including: Audio Amplifiers, Power Supplies, SMD Components, and more.

- **Electronic Circuit Design**
 - 92 pages
 - $3.95
 - A compilation of major articles on circuits for microprocessors, including: Designing a microprocessor, Building a microprocessor, and more. Includes many diagrams and schematics.

Available from your favourite newsstand, electronics store, or direct from ETI at Suite 601, 25 Overlea Boulevard, Toronto, Ontario M4H 1B1. Please add $1.00 for postage and handling.
CLASSIFIED ADVERTISING

ETI's classified advertising section allows you to reach about 30,000 Canadian readers nation-wide for $1.00 per word. For as little as $20 per insertion (there's a 20 word minimum) you can promote your business from coast-to-coast.

WHAT DO YOU DO?
Send us your typewritten or clearly printed words, your permanent address and telephone number and your money (no cash please). Make your cheque or money order payable to 'ETI Magazine'. We're at Unit 6, 25 Oversea Blvd., Toronto, Ontario, M4H 1B1.

WHAT DO WE DO?
We type-set your words (and put the first word and your company name in BOLD capital letters). If we get your message by the 14th of the month, it will appear in ETI 1½ months later. For example if we receive it by October 14th you (and thousands more) will see it in the December issue.

DIGITAL ORGAN KITS for sale. Demo LP ($8.00) and free brochure available from SELTRON INSTRUMENTS, 35 Southbridge St., Leamington, Ont. N8H 4N4.

SATELLITE T.V. project July, Aug., E.T.I. Hard to get parts, Ga As Fets, microwave P.C. board, LNA's downconvertors, dishes etc. Send S.A.S.E. to COLEAS SYSTEMS, RR#2, Tantallon, N.S. BJO 3J0.

DIGITAL interfaced DC motor speedcontrol. 8bit in, DC out at up to 20amps. Great for DIGITAL interfaced DC motor speedcontrol. ($8.00)

DIGITAL ORGAN KITS for sale. Demo LP WARE, Box 673, Niagara Falls, Ontario L2E L3R 3V7 for free information.

PLANS to build your own backyard satellite RR#2, Tantallon, N.S. BOJ 3J0.

SEND board, LNA's downconvertors, dishes Hard to get parts, Ga As Fets, microwave P.C. 74-DECEMBER-1983-ETI 6592 System Computer, 64K memory, multifunction numeric keyboard, upper-lower case, with 22" green monitor, 1 disk drive with controller, Z-80 card, AppleTM and CPMTM software compatible. All for $1250, shipping included. Send certified cheque or M.O. Ont. Res. add 7% Sales Tax. APL MICROWARE, P.O. Box 21, Oakville, Ontario L6J 4Z5.

COMPUTER programming aid — A 16 bit Dec/Bin/Hex slide converter $3.75 ea. R. HARDER, 995 Shakespeare Ave., North Van., B.C. V7K 1E7 ($16.25 for 5 conv.)

SPECIAL Resistors — 100/$1.00; Capacitors — 20/$1.00; Diodes — 15/$1.00; Transistors — 15/$1.00; list - products & kits - $0.50 for postage. All orders add 10% for P/H, Ont. res. add 7% tax. Send orders to: ELECTRON COMPUTERS, P.O. Box 613, Stn. 'U', Toronto, Ontario M8Z 5X9.

PORTABLE AM and FM Booster Antennas. Tested speakers, surplus tubes and other radio parts. List/order from: ELDON ELECTRONIC ENTERPRISES, 10653 - 137A Street, Surrey, British Columbia, Canada V3T 4J7.

AMAZING Electronic Projects and Devices. Ultrasonics, hand held disrupters, repellers, lasers, battery pocket sized, high-powered, tesla coils, force fields, atomic, surveillance, mini-transmitters, plus much more. Catalogue $1. Mail order only. DUKER ENTERPRISES 8932 - 155 St., Edmonton, Alta. T5R 1W4.

INDUSTRIAL CONTROL COMPUTER. 8085 based, on board Eprom, RAM, RS232, power supply. Able to upload/download data or programs from host or development system. 261/O lines, 16 of them buffered for 500ma at 35V DC. Bare board + doc. $39.95, complete kit $115.00. Ass. + tested $140.00. ELECTRON SPECIALTIES, 7794 Kittridge Dr., Mississauga, Ont. L4T 3J6.

RADAR detectors (both bands), describers (sync., inverted video and variable), phasors, lasers, surveillance equip., satellite dishes, and lots, lots more. Catalogue $2 refundable. No cheques. F.T.S. ELECTRONICS, Box 574, Brantford, Ont. N3T 5N9. Same day service.

ZX81 Interface kit, featured in April ETI $34.95. New low prices on following items. Expander for experimenters, adds two 22/22/156 and one 23/23/.1 connectors to the Timex/Sinclair bust $19.95. Also ZX81 video amp, adds composite video output $4.95. Add $2.00 P/H & each order. JDC 5-14 Sentinel Rd., Downsview, Ont. M3M 2Y5.

EXPERT services offered in Micro Electronics design, PCB layout and stuffing with quick turnaround by: PERFECTUAL MOUTIONS ENT, 2643 Kennedy, Scarborough M1H 3H5, 293-4864.

SURF Board owners, now you can have detail service schematics. Send $20.00 certified cheque or M.O. payable to G. STVRNA, P.O. Box 13055, Kanata, Ont. K2K 1X3.

SEND me $2.00 for Christmas, I'll send you my catalog with Timex Sinclair Computers.

COMPUTER SOURCE CENTRE, P.O. Box 3637, Station A, Ottawa, Ont. K1Y 4J7.

STUDENT discounts on resistors, capacitors, I.C.'s, semiconductors. Pick up your free HOBHILT catalog at the store: 7545 Langelier, St. Leonard. Tel: (514) 259-5581. Or mail your name and address to HOBHILT ELECTRONICS, 7303A Dumessin, St., Leonard, Que., H1S 3A7.

HAS your DMM or Frequencymeter TALKED TO YOU lately? If not, then you need FREQUENTALKER™ Imagine: you don't have to look up while measuring. It tells you in plain English what's on the display. Easy interfacing to any digital equipment (please specify with order). Send $129 to microNOVA ELECTRONICS, P.O. Box 1284N, Halifax, N.S. B3K 4H4.

74—DECEMBER—1983—ETI
Tech Tips

Etching tank
N.F. Bush

A discarded plastic bottle is a simple, but effective, etching tank.

I was recently making up several PCB boards and found that I did not have a suitable etching tank. The containers which I have used on other occasions were flimsy and etchant was always split all over the place. So I grabbed an old bottle and cut it out as shown on the diagram.

I was amazed at how successful it was as I could move it around and didn’t spill a drop.

The used etchant can be discarded easily by unscrewing the lid and pouring it out. There’s not much mess to clean up afterwards and the bottle can be washed thoroughly and stored until needed again.

Quality Boards & Kits All Apple™ Compatible

PC-1000 Basic on your command
$650.00

- monitor
- disk drive not included

Featuring:
- 94 function keys
- 10 user programmable keys
- auto line feed
- upper/lower case

PC-5500
- 64K PERSONAL COMPUTER
- 188 FUNCTION KEY
- 10 USER DEFINE KEY
(KEEP MEMORY 5 YEARS)

DISK DRIVE EXCLUDED.
$850.00

New Printer Buffer Card
- High Res.
- Graphic Dump
- Expandable Buffer (16k-64k)

128K RAM CARD
Soft ware not included.
Christmas Special
$195.00

New 6502 Mark IV
64K RAM plus built in Z-80

- Disk Controller Card
- RI Column Card
- New EPROM Programmer Card
- New RAM Card
- Communication
- 6522 Vis Card
- Micro Card
- 8018 Card
- A/D D/A Card
- Speech Card
- 6522 Via Card
- Serial Card
- Signal Card
- Buffer Printer

Price for above PCB $10.00 ea., $15.00 ea.,
$25.00 ea., kits also available.

Flashlight Communicator
Chris McRae
This simple, portable, visually-aligned transceiver is quite effective and can be easily built into a flashlight.

The lamp current, modulated at an audio frequency, modulates the light beam. The light beam is detected by a photodarlington transistor and drives a small speaker for audio output.

The lamp is driven by an ac signal which cuts the RMS voltage to about one-third of the six volts, which is why a 1.5 V bulb is used in a 6 V circuit.

The photodarlington can be mounted on the axis of the beam or you may get better sensitivity by placing it so that it faces the reflector of the flashlight just above the bulb (the bulb filament is at the focal point of the reflector).

Fidelity is not high due to the low pass characteristics of the bulb filament, but I have been able to have intelligible conversations at distances up to 30 metres.
Brother EP-20 Electronic Typewriter

as "g" or "y", or letters with descending accents, will ride up a bit higher than the rest. On the other hand, a 5 x 7 print head keeps the cost down.

Calculating

In the upper right corner, you'll find five buttons marked with the usual calculator functions. A typewriter with a built-in calculator? So it is. As you're typing up a storm, you can do four-function calculations up to 12 digits and print them along with the text. If you just want to calculate without actually printing it, you can switch to the non-print mode. There's a Clear key next to the LCD readout, but it has to be used with care, because it likes to print out the contents of the buffer before clearing the display. The delete key can be used to get rid of unwanted characters if you've been calculating and don't want numbers printed.

Other features include a Repeat key which repeats the last character entered, including Return and Backspace, which have auto-repeat anyway. The Tab and Margin functions are set electronically; just space to the desired point and press a button. Up to 16 tabs can be set. There is no visual indication of where the margins or tabs are located.

Summary

A number of people, including other reviewers, have said that while the EP20 is an interesting toy, it has no real uses. I didn't find this at all. Here are the reasons I have one:

First of all, for the same price as the average electric, you get the 16-character correction feature. This may not sound like much, but I've found that the main reason I use a word processor is to be able to instantly correct typing errors as they happen; it would be nice to be able to manipulate text, but that's unlikely to be available for the price.

Secondly, the machine is easily portable and fits in a small space. I've never really wanted to type on a bus or airplane, but I like being able to slide the typewriter into a bookcase when desk space is needed; you can't easily do this with most portables.

Thirdly, the EP20 is virtually silent in operation. This means that you can type late at night or when someone is listening to the stereo.

On the negative side, there's the high cost of replacing the ribbon cassettes. Brother has a thermal paper available which eliminates the need for a ribbon, but the thermal quality isn't up to the excellent quality of the ribbon printout. The return function is very slow, presumably to reduce strain on the tiny motor; this wasn't a serious drawback. I wasn't too keen on the smoked acrylic print head cover; it tended to obscure the text for quite a few lines, and you couldn't leave it off because the platen rollers are incorporated into it.

But these points don't detract from the fact that the EP20 is one of the best applications of microcircuitry I've seen in a long time; it's a pleasure to own and use one.

"I'm so glad I found a bank that still gives personal service. I hate those impersonal automatic tellers."

Where to Buy

Fluke 70 Series Digital/Analog multimeters are available in Canada through the Jet Stock program of Allan Crawford Associates Ltd., or from the following distributors:

Vancouver, B.C.
R.A.E. Industrial Electronics Ltd. 291-8866
Instrument Service Laboratories Ltd. 278-4511
Victoria, B.C.
Queale Electronics Ltd. 388-6111
Nanaimo, B.C.
Queale Electronics Ltd. 758-8166
Vernon, B.C.
Interior Electronics Ltd. 545-2394
Kelowna, B.C.
Interior Electronics Ltd. 860-0585
Kamloops, B.C.
Interior Electronics Ltd. 374-5002
Edmonton, Alta.
Cardinal Industrial Electronics Ltd. 483-6266
Instrument Service Laboratories Ltd. 463-7488
Calgary, Alta.
Cardinal Industrial Electronics Ltd. 259-6817
Regina, Sask.
Radio Supply & Service Ltd. 352-8642
Winnipeg, Man.
Wes Electronics Ltd. 632-1260
London, Ont.
C.M. Peterson Co. Ltd. 434-3204
Toronto, Ont.
Electro Sonic Inc. 494-1555
C.M. Peterson Co. Ltd. 247-5437
Armatek Controls Ltd. 251-3111
Transmission Canada Inc. 675-5980
Peterborough, Ont.
Weesco-Peterborough 745-2493
St. Catherine, Ont.
C.M. Peterson Co. Ltd. 685-7377
Kitchener, Ont.
C.M. Peterson Co. Ltd. 745-0981
Sarnia, Ont.
C.M. Peterson Co. Ltd. 344-3382
Windsor, Ont.
C.M. Peterson Co. Ltd. 253-1161
Hamilton, Ont.
C.M. Peterson Co. Ltd. 528-0151
Thunder Bay, Ont.
C&F Electronic Distributors Ltd. 345-6515
Sudbury, Ont.
Sonic Northern Ltd. 674-0764
Timmins, Ont.
Sonic Northern Ltd. 264-1228
Sault Ste. Marie, Ont.
Sonic Northern Ltd. 254-1418
Ottawa, Ont.
Electronic Wholesalers Ltd. 746-4413
Montreal, Que.
Electronic Wholesalers Co. Ltd. 769-8851
Franklin Electric Canada Ltd. 341-6260
St. Jean, Que.
Produits Electroniques en Gros (St. Jean) Cie. Ltee. 348-4961
Chicoutimi, Que.
Franklin Electric Canada Ltd. 545-8313
Noranda, Que.
Simtronique Inc. 762-1874
Halifax/Dartmouth, N.S.
Weesco-Maritimes 465-3730
St. John's, Nfld.
Rideout Tool & Supply Ltd. 745-2240

76—DECEMBER—1983—ETI
The Digital vs. Analog battle is over.

$125* buys you the new champion. The new Fluke 70 Series.

They combine digital and analog displays for an unbeatable two-punch combination:

Now, digital users get the extra resolution of a 3200-count LCD display.

While analog users get an analog bar graph for quick visual checks of continuity, peaking, nulling and trends.

Plus unparalleled operating ease, instant autoranging, 2,000+ hour battery life and a 3-year warranty.

All in one meter.

Choose from three new models. The Fluke 73, the ultimate in simplicity. The feature-packed Fluke 75. Or the deluxe Fluke 77, with its own multipurpose protective holster and unique "Touch Hold" function (patent pending) that captures and holds readings, then beeps to alert you.

Each is Fluke-tough to take a beating. American-made, to boot. And priced to be, quite simply, a knockout.

So call for more information.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.

Fluke 73

- Analog/digital display
- Volt, ohms, 10A, diode test
- Autorange
- 0.7% basic dc accuracy
- 2000+ hour battery life
- 3-year warranty

Suggested Canadian price including duty and federal sales tax. Provincial taxes extra.

Fluke 75

- Analog/digital display
- Volt, ohms, 10A, mA, diode test
- Autorange/range hold
- 0.5% basic dc accuracy
- 2000+ hour battery life
- 3-year warranty

Fluke 77

- Analog/digital display
- Volt, ohms, 10A, mA, diode test
- Autorange/range hold
- 0.3% basic dc accuracy
- 2000+ hour battery life
- 3-year warranty
- Multipurpose holster

* Suggested Canadian price including duty and federal sales tax. Provincial taxes extra.
Mathematics for Electricity/Electronics

The section on peak/RMS follows. The explanation given here is not of the same calibre as the rest; I can understand the reluctance to get into a subject requiring a knowledge of statistics sampling, but there must be thousands of students and hobbyists who know only that peak equals RMS times 1.414, or at best, the root of the means squared.

This brings up another interesting point. The root of two is shown in this section as 1.414, yet some of the examples in the book have been worked out to eight decimal places or more. This is an impossible degree of accuracy, but on the other hand, it lets you know whether or not your calculator is bang-on, or whether you've hit it by a lucky accident.

Inductive reactance, basic capacitance, and basic transformers are well-explained, and lead into eight units which are concerned with the characteristics of RC circuits. The beginning unit of these covers the RC time constant. This one seemed to me to sum up even more than the RMS problem the tightrope on which handbook authors teeter: if you insert clarifying text, you may get taken to task for overdoing things. If you don't, people will say that the equations are inadequately explained. With this in mind, I thought that there should have been a better explanation of why the mysterious 63.2% keeps turning up in time constants. At some point, the student will likely stumble across the fact that it derives from e, the base of the natural logs, but it would be nice to have it spelled out.

Now we get to the fun stuff. If you can get the hang of capacitive reactance, you're on your way to understanding impedances, and then it's only a step to complex circuit design. The author have wisely chosen the simpler formulas which read out in ohms; for example, the RMS sum of reactance and resistance yields the impedance in ohms. Now, I'm not saying that the j operator shouldn't be used instead; only that it's cumbersome, and delays being able to grasp the intuitive idea of impedance. Once you get the impedance concept stuck into your head, it's only a matter of learning any necessary equations. Until then, the student may only be parroting symbols without knowing why.

The book ends with units on series and parallel LC circuits; the format is the same as those mentioned in the last paragraph. The appendices are jammed full of useful information; some of it a recap of the units themselves, and some of it additional.

This is a text that should be owned by anyone interested in electronics. The negative points mentioned are, of course, a difference of opinion as to how much supplementary text should be included in a reference book. The superbly organized layout makes it a pleasure to use, and even stimulates the reader into doing more research on a topic. Oh, yes, I almost forgot. Mr. Kirchhoff pointed out that voltage drops around a circuit add to the supply voltage, and that current is the same in all parts of a series circuit.

by Bill Markwick

Organize Your Workbench
With Our Binder Series

Should you decide to celebrate the coming of 1984 by cleaning up your workshop, we offer the usual ETI binder. It holds 12 issues which can be inserted or removed without cutting or punching.

In addition, we now offer our device for storing special editions, the Moorshead Publications Binder.

Who?
Moorshead Publications: now that we consist of ETI, Computing Now!, and Teaching Electronics and Computing, we decided that answering the phone with 'ETI' just didn't make it.

So -- the binders are available for $9.25 each, with an additional 7% sales tax for residents of Ontario (similar binders are available for Computing Now!; same price, same address).

by Bill Markwick

ETI
The best 60MHz scope costs only $1725.00
It's from Kikusui.

That's right. Only $1725 for Kikusui's top-of-the-line 5060 model oscilloscope. And we also have four other scopes for as low as $895 in our new 5000 Series.

Not only that, we're offering a **two year warranty** on each of them, compared to other big name companies' limited one year warranties.

When it comes to performance, our 5000 Series has the edge over the Tektronix 2200 Series in lab quality, chop frequency, and trigger view. Ours also have more display modes, higher acceleration for better brightness, and sharper focus for better resolution.

Each scope in our 5000 Series is crafted so that it can be used for production, field service, consumer electronics servicing, or even personal use. The 5060 is a 60MHz scope with 3 channels, eight traces, delayed sweep, delay line and alternate sweep, and priced at $1725. Models 5040 and 5041 are 40MHz, dual channel scopes, featuring peak-to-peak automatic triggering, automatic focus control and a delay line. If you're interested in a 20MHz scope, we have our 5020 and 5021 models with features similar to our 40MHz scopes. Both the 5041 and 5021 also have delayed sweep. Prices at $1360 for the 5041, $1145 for the 5040, $965 for the 5021 and $895 for the 5020. So, whatever model suits you best you can't get a better scope for the money.

Of course, there's a reason we're able to offer these bargains and quality. We're one of the biggest manufacturers of scopes in the world, with over 30 years in the business. Another reason is KIK's nationwide network of lab quality maintenance facilities.

Write us and we'll send complete specifications back to you. Or just take a little time to call us. It's a small price to pay to get big time quality and service.

Vancouver 604-430-1410 • Calgary 403-250-2034 • Ottawa 613-838-3397 • Montreal 514-336-0392 • Toronto 416-671-3920

NAME
ADDRESS
PHONE NO.

AMOUNT ENCLOSED

MAIL ORDER TO: Interfax Systems Inc., 3395 American Dr., Unit #12, Mississauga, Ont. L4V 1T5

SHIPPING: Courier collect preferred by Interfax, advise alternate method or pick-up at local Interfax office.

KIK COS5060 1725.00
KIK COS5041 1360.00
KIK COS5040 1145.00
KIK COS5021 965.00
KIK COS5020 895.00

PLUS P.S.T.

TOTAL

Price is in Canadian funds, duty & PST included, P.S.T. extra. Two probes & two year warranty included. F.O.B. Interfax System 3% discount for cash, cert. chq. or m.o.

Circle No. 23 on Reader Service Card.
Imagine that there was a single source for all your Interconnection needs. There is. A P PRODUCTS has the most complete line of Interconnection products and accessories. DIP, Socket and Card-Edge connectors, all styles and sizes of Headers, and D-Submin in both IDC and solder versions. A P PRODUCTS offers flat cable in both gray and rainbow, in a wide variety of widths. And, our new low cost IDC assembly tool can help put everything together without putting a crimp in your budget.

Imagine that you could find high quality IDC products at affordable prices. You can. A P PRODUCTS understands your prototyping needs. Our IDC products are manufactured to give you the accurate, dependable connections you must have. They are designed to save you time. And, they are priced to save you money.

Imagine that there's an easy way to find the A P PRODUCTS you need. There is. The A P PRODUCTS Interconnection rack at your electronics dealer has the complete line of connectors, cable, tooling, and accessories. Over one hundred and sixty products in all. You'll be able to find what you need fast. So you can get back to your project in a hurry.

Imagine that you need more information. No problem. Just call Lenbrook Electronics. Markham, Ontario — (416) 477-7722 St. Leonard, Quebec — (514) 323-3242 Surrey, Vancouver — (604) 585-9599