AUSTRALIA'S DYNAMIC ELECTRONICS MONTHLY

et

APRIL 1987
NZ $3.95
(Incl GST)

STILL ONLY
$2.95

NOISE BEATER!
BUILD A CHEAP RADIO LINK

• AUTOMATIC PIANO
• EXCIMER LASERS

EXCLUSIVE:
FIRST
PRODUCT REVIEW!
Really smart (and successful) executives have always been quick to latch onto anything that will make them more efficient.

That's why some of the smartest and most respected business brains in Australia (and around the world) rely on their Toshiba T3100 or T2100, the most exciting new business computers in years.

They provide instant access to accurate information, making quick decisions considerably easier. And, because they are so compact, they can always be close at hand.

They have greater versatility than either the AT or XT (until now, the benchmark) and, of course, they are compatible.

Both come complete with a superb plasma screen that sets new standards of clarity and definition.

The Toshiba T3100 features internal hard disk storage and an in-built 720KB disk drive. The T2100 offers the choice of either internal hard disk with a disk drive or dual internal drives.

All at a price that makes other business computers as over-priced as they are over-sized.

So make the business decision that some very clever business people have already made. Toshiba T3100 and T2100. One less thing to go wrong.

TOSHIBA
ONE LESS THING TO GO WRONG.
Toshiba (Australia) Pty. Limited, Computer Products Division, 84-92 Talavera Road, North Ryde 2113.
Sydney (02) 887 3322, Melbourne (03) 566 1700, Brisbane (07) 352 9888, Canberra (062) 80 5100.
FEATURES

Excimer Lasers
At the razor's edge

Optical Fibres
Inside Telecom's optical fibre plans

Computer Music
A modern version of the Pianola

Inside Your Computer
Real machines

Gyrators
Replacing coils

Computing Integrated Manufacturing
Why so long?

Index 1985
Articles, projects, errata

REVIEWS

Yamaha DSP-1 Review

Fluke 9010 Troubleshooter

Buyers' Guide: Laptop computers

Buyers' Guide: Surround sound

PROJECTS

ETI-1616: 16-bit computer

ETI-286: Mutt minder

ETI-746: AM transceiver

ETI-285: Oscillators and amplifiers

OFFERS

Subscription offer

DEPARTMENTS

News Digest

Sight and Sound

Feed Forward

Advertisers Index

Dregs

EDITOR
Jon Fairall B.A.

ASSISTANT EDITOR
Simon O'Brien B.A. (Hons), M.A.

EDITORIAL STAFF
S. K. Hui B.Sc. (Hons), M.Eng.Sc. MIEE, MIREE
Terry Kee B.Sc. (Hons), M. Phl.

DRAUGHTING
Bruce Mennie

DESIGNER
Clive Davis

ART STAFF
Ray Birtch

PRODUCTION
Mark Moos

ADVERTISING MANAGER
Peter Hayes B.Sc.

ADVERTISING PRODUCTION
Brett Baker

SECRETARY
Naomi Lenthin

ACOUSTICAL CONSULTANTS
Louise Chaltra and Associates

PUBLISHER
Michael Hannan

MANAGING EDITOR
Brad Sowall

HEAD OFFICE
180 Bourke Road, (PO Box 227, Waterloo, NSW 2017)
Alexandria, NSW 2015.
Phone: (02) 963-9566.
Telex: AA74488 FEDPUB.
Federal Facsimile: (02) 963-2842.

ADVERTISING
Bourke Road, Alexandria, NSW 2015. Phone (02)
963-9566. Telex: AA74488 FEDPUB.
Victoria and Tasmania: Virginia Salmon, The
Federal Publishing Company, 22nd Floor, 150
Lonsdale Street, Melbourne, 2212 Bay Street, Port
Melbourne, Vic. 3207. Phone (03) 945-3111.
Facsimile: (03) 945-3144. Telex: AA34340.
FEDPUB.
South Australia and Northern Territory: Michael
Mullins, C/- John Fairfax & Sons, 101-105
Waymouth Street, Adelaide, 5000. Phone (08)
212-1212. Telex: AA82900.
Western Australia: Estelle de San Miguel, C/-
John Fairfax & Sons, 454 Murray Street, Perth
WA 6000. Phone: (09) 481-3171. Telex: AA62626.
New Zealand: John Easton, 3rd Floor,
Communications House, 12 Heath Street, Parnell,
Auckland. PO Box 8770, Symonds St.
37-391, Telex NZE85329. Phone 79-6548
(Auckland).

EDITIONS TODAY INTERNATIONAL is
published and distributed monthly by the
Electronics Division of the Federal Publishing
Company Pty Limited, 180 Bourke Road,
Alexandria, NSW 2015 under licence from Doubt
Bay Newspapers Pty Limited, General Newspapers
Pty Limited and Suburban Publications Pty Limited.
Printed by Hanaprint, Sydney. Distributed by
Magazine Promotions. *Maximum and
recommended Australian retail price only
Registered by Australia Post, Publication No.
NSP0407. ISSN No 0013-5218.

ETI April 1987 — 3

COYRIGHT ? 1985, Double Bay Newspapers Pty
Limited, General Newspapers Pty Limited and
Suburban Publications Pty Limited (trading as
"Eastern Suburbs Newspapers").
They come with a longer warranty than a Rolls Royce.

And they're quieter.

Interestingly enough, the warranty on a new Rolls Royce is only 3 years. The warranty on our 6 new compact disc players is 5 years. And we don't have to worry about the ticking of the clock. In fact, the only sound you'll ever hear from our new generation C.D.'s is the faithful, pin-sharp accuracy of the music.

If you're wondering why we compare ourselves to the technical excellence of the world's leading car, the answer is simple. We couldn't find a competitive C.D. player that could do the job.
Fluke. First Family of DMMs.

When accuracy, performance and value are important, professionals the world over look to Fluke — the first family of DMMs.

Reliable Fluke-quality 3½- or 4½-digit DMMs fit every need — from design engineering to industrial troubleshooting.

There's the low-cost 70 Series — the most DMM you can get for the money. The tough 20 Series — totally sealed and built to survive the dirtiest, grimiest, roughest jobs. The reliable 8020B Series — made to withstand the rigors of the field service environment. The precise 8060A Series — the most powerful and complete test and measurement system available in a hand-held package. And, of course, the versatile Bench/Portables that carry on the Fluke tradition for precision and durability in lab-quality bench instruments.

Fluke comes in first again with the world's largest selection of quality accessories to help extend the capabilities of your DMM even further.

There's no need to look anywhere else. Uncompromising Fluke design and leading edge technology are the reasons why attempts at imitation will never fool the millions of professionals that accept nothing less than a Fluke.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.

ELMEASCO
Instruments Pty. Ltd.

Talk to your local Elmeasco distributor about Fluke —

A.C.T. John Pope Electrical (062) 80 6576 • J Blackwood & Sons (062) 80 5225 • George Brown (062) 80 4355

N.S.W. Ames Agency 699 4524 • J Blackwood & Sons • George Brown 519 5855 Newcastle 69 6399 • Bryan Catt Industries 526 2222 • D.G.E. Systems (049) 69 1625

Petro-Ject 550 1388 • David Reid 267 1385 • W. F. Dixon (049) 61 5628 • Macelec (042) 29 1455 • Epson 707 2111 • Selectroparts 708 3244 • Geoff Wood 427 1676

N. TERRITORY J Blackwood & Son (089) 84 4255, 52 1788 • Thew & McCann (089) 84 4999

QUEENSLAND Auslec • Petro-Ject (075) 91 4199 • St Lucia Electronics 52 7466 • Cliff Electronics 341 4655 • L. E. Boughen 369 1277 • Fred Hoe & Sons 277 4311

The Electronic Shop (075) 32 3632 • Thompson Instruments (Cairns) (070) 51 2404

S. AUSTRALIA Protronics 212 3111 • Trio Electrix 212 6235 • Industrial Pyrometers 352 3688 • J Blackwood & Son 46 0391 • Petro-Ject 363 1353

TASMANIA George Harvey (003) 31 6533 (002) 34 2233

VICTORIA Radio Parts 329 3338 • George Brown Electronics Group 878 8111 • G.B. Telespares 328 4301 • A.W.M. Electrical Wholesalers • Petro-Ject 419 9377

J Blackwood & Sons 542 4321 • R.K.B. Agency 29 7336 • Sirs Sales (052) 78 1251 • Mektronics Co 690 4593 • Truscott Electronics 723 3094

W. AUSTRALIA Atkins Carlyle 481 1233 • Dobbie Instruments 276 8888 • Protronics 362 1044

ADVERTISING INFO No. 3
Amstrad leads in UK

The newest addition to the Amstrad range of computers, the PC 1512 (see ETI, February 1987), is now Britain's top-selling business micro. IBM has been the traditional leader in micro-saturated Britain, but Amstrad appears to have outsold them.

Figures released last week by the market research firm, Romtec, show that in December 1986, the first month in which the 1512 was widely available, Amstrad accounted for 26% of sales through dealers compared with IBM's 25%.

While this 25% is a fall of 13% from IBM's previous share of 38%, the company's unit sales have remained stable which indicates that Amstrad has increased the size of the total market with its new product.

Commenting on the news, Amstrad's Australian product manager John Chandler, said he was delighted with the figures but was not surprised to see the Amstrad doing so well. "Computing power plays a very important role in maintaining a competitive edge in business today," he said. "We knew from our research that although many business people recognize this, the financial commitment involved in purchasing the necessary equipment quickly dampens their enthusiasm."

Mr Chandler says he is confident that sales of the 1512 in Australia will follow the same pattern as those in the UK. "There has been tremendous interest in the 1512 since it was launched here in December last year," he said. "We have taken orders up to three months in advance."

When the Amstrad was released, it was the cheapest machine on the market, which helped it to move rapidly to a dominant position. Recent cost cutting by other distributors may well prevent Amstrad getting the market share here that it enjoys in the UK.

Telecom to charge bulletin boards

Telecom is currently formulating plans to begin time charging local calls. Under the new proposals, users on bulletin boards and other data services will be forced to pay for the length of time they use a connection. According to senior Telecom sources, there is no plan to extend the new policy to voice traffic, although this "is always under review".

Currently in Australia there is only one single fixed charge for a local call. Talk for five seconds or five hours and it still costs 18 cents. Recent studies at Telecom exchanges have shown that the average length of a voice call on the local network is 3.25 minutes, limited by "social" factors. The connection price reflects the costs of using the network for this period of time. However, network planners are concerned that no such constraint exists with data calls. There is nothing to stop people maintaining a connection for hours or even days. In fact, users browsing through bulletin boards have quite an incentive to maintain their calls for a considerable period of time.

Telecom is concerned because if current practices are allowed to continue, they may threaten the principles that currently determine the size of the network. Network planners use statistical analysis to estimate the maximum demand that will occur in the catchment area of an exchange during its busiest period. They then ensure that the exchange can just meet this demand. However, if the statistical length of calls increases, the number of cir-
Cellular phone service begins

Telecom's launch of the cellular telecommunication network in February not only introduced world-class mobile and portable communications, but also saw the entry into the Australian market of a range of Telecom endorsed mobile telephones and systems.

Although completely new to Australia, the cellular phone system seems certain to create the next car accessory boom.

The service is provided and maintained by Telecom and all equipment licensed for use must have a 35% Australia content.

For an outlay of $3300 to $6500, subscribers can install a phone which, when the car is not in use, can automatically divert any calls to a pre-programmed number.

Call diversion, a network function, makes the feasibility of a mobile and portable phone even more effective. A number of Mitsubishi features and functions, including a "hands free" remote microphone, one-hundred number memory, last number recall, on-hook dialling, programmable lock, hom alert and call-time display, provide many benefits new to the
SUPERSCOPE HAS THE JOB DONE WHILE CONVENTIONAL IRONS ARE JUST STARTING TO WARM UP

SUPERSCOPE - designed for impatient people
Impatience is a virtue - when time costs money; and good service technicians are certainly impatient when asked to stand around for several minutes waiting for a conventional iron to heat up. Superscope panders to anyone's impatience - in about 6 seconds.

SUPERSCOPE - heats 30 times faster
Unlike production line soldering, a service technician can't predict when a hot iron is wanted. Superscope reaches soldering temperature in the 5 or 6 seconds it takes to pick up the slender handpiece and cools almost as fast when put down - a nice safety feature.

Other SUPERSCOPE virtues —
Finger Tip Temperature control — The on/off switch contoured into the handle, gives you finger tip control over tip temperature and power output from 20°C to 500°C.
From 20w - 100w — Lets you solder a very wide range of terminations. A touch of the thumb switch for a light joint - or a sustained pulse of heat for the heavy power diode conductor or solid earth wire.
Low voltage - high safety — 4 volts at around 35 Amps gives you high soldering capacity but low risk to the user. The auto switch off control on the handle adds further safety.
Easy field maintenance avoids frustration — It's hard to think of another iron that lets hundreds of thousands of Australian users change tips and renew the heating element anywhere in the field without special skills.

WANT MORE INFORMATION THEN CONTACT
VICTORIA: (03) 338 1566 NEW SOUTH WALES: (02) 546 6144
QUEENSLAND: BRISBANE: (07) 52 5231 TOWNSVILLE: (077) 79 3855
SOUTH AUSTRALIA: (08) 352 1166 WESTERN AUSTRALIA: (09) 362 5011
TASMANIA: LAUNCESTON: (003) 31 5545 HOBART: (002) 34 2811

ADVERTISING INFO No. 4
mobile and portable communications market.

The cellular system operates in the 800 MHz band and is based on a series of transmitters which transmit and receive calls within areas (or cells) varying in size from around 2 km to 12 km, depending on population density.

Each cell has a base station which provides its own transmitter control and performance monitoring.

Every cell in the local network is tied into a central computer or mobile service switching centre (MSSC). Here the calls are automatically processed, the caller identification made and the call tied-in to the public telephone network.

As a car moves out of one cell into another, the MSSC detects the fading signal and the next cell picks up the call with no perceptible interruption.

The cellular system was introduced in the USA four years ago and is now used extensively in several countries, including Britain. It has been under test in Australia since November 1986.

Sydney is the first with a cellular network. Melbourne started in March, Brisbane starts in June, Adelaide in September and Darwin and Hobart in September. Perth, Alice Springs and other centres join the system in 1989. By 1990, the network should be Australia-wide.

All mobile cellular phones will have a nine digit number with 018 the first three digits.

CSIRO starts to pay its way

Recent announcements by the new CSIRO chief, Neville Wran, demonstrate that work that has been going on in the organization over the last 10 years is starting to pay off at last. In separate announcements last month, Wran indicated that CSIRO-designed robots will be used on Ford assembly lines in Victoria, that US Ford will be using CSIRO software to design its carburetors, and that CSIRO welding technology has earned more than $35,000 in export sales already this year.

Wran said CSIRO was playing an increasingly important role in the automotive industry. Evidence of this was its influence on a decision by Ford Australia to include Australian-made robots in its plant to build the new EA 26 Falcon.

"CSIRO's expertise in industrial computer programming was influential in persuading Ford to place a $6 million order for two flexible manufacturing systems, including 27 robots, with Australia's largest robot manufacturing company, Machine Dynamics," he said.

The contract is for the design, manufacture and installation of 22 gantry robots with auxiliary gripping, tooling and positioning devices, and is worth more than $5 million.

The project will take about 12 months to complete and the result will be two fully integrated production lines.

On one line, the robots will transfer door components for the 1988 Falcon and Fairlane range between robot welding stations, adhesive applications and a 200 tonne press.

On the other line, the Machine Dynamics robots will transfer front fender aprons during assembly and have the flexibility to process the left or right fender aprons individually or both simultaneously.

Mr Wran also announced that CSIRO's Division of Manufacturing Technology had been working closely with Ford Australia on the design of its new $60 million paint shop now nearing completion at Broadmeadows, and had contributed significantly to the cost-effectiveness of the original design before it went to tender.

Opening a new building for CSIRO's Division of Manufacturing Technology in the Melbourne suburb of Preston, Wran announced that the 1988 range of Ford cars in the US would have carbureted for bodies diecast using Australian computer software marketed by the Melbourne company Moldflow.

The software, known under the trade name 'Moldflow', was invented and developed by CSIRO's Division of Manufacturing Technology in close collaboration with Moldflow.

It has already been used to design diecasting tools for parts for Holden motors exported to Europe, and for transaxle castings for the Nissan range of vehicles in Australia.

Also at the opening of the new building in Preston, Science Minister Barry Jones commented on the large sum expended on R&D for the America's Cup.

The sum of $50 million, he said, was 10 times the annual budget of the CSIRO Division of Manufacturing Technology, and not far short of $67 million, which is CSIRO's total expenditure on research for the manufacturing sector.

"In other words, one sporting syndicate is prepared to spend, on an uncertain quest for a sporting trophy, 10 times the annual budget of one of the Divisions that we are asking to make a significant contribution to the entire nation's economic recovery."

"I think that as a nation, we really must re-examine our priorities urgently. What we need to do is to link our national pride to scientific and technological achievement. If we could do that, we would still have much to boast about instead of being disappointed about the loss of an intrinsically, almost worthless, silver mug."

Another speaker at the ceremony, Mr Peter Lawton, Executive Deputy Chairman of Siddons Industries, said a Siddons subsidiary, Weiling Industries of Australia (WIA), had already achieved sales in excess of $3.5 million for the "Synchropulse" welder, developed in conjunction with the CSIRO Manufacturing Technology Division.

The product has sold more than 700 units of $5000 each or more, and has been developed to the point where the company is prepared to sell in world markets. With no franchise lockouts, we are well on the way to developing markets in the USA, UK and New Zealand, as well as in Australia.

Additional staff are being employed in our Adelaide factory, which is being expanded to cope with the new demand. We have two other projects under way with the Division, and our Ramset division is discussing yet another collaborative research program."
Indian space program

Indian scientists are in preparation for two major space projects: the launch of the second generation augmented satellite launch vehicle (ASLV) from India itself and the Indian Remote Sensing Satellite (IRS) from the Soviet Union.

The five-stage, solid-propellant-based ASLV, planned for launch in late March from India's eastern missile range on Sriharikota Island, is designed to put a 150 kg spacecraft into a near-Earth orbit. The satellite will carry a payload for the study of gamma rays.

The launch of this rocket, an improved version of the first-generation SLV-3, was postponed from 1985 because of problems in the motor of the fourth stage.

During its second flight in 1988, ASLV will carry a joint Indian/West German payload for remote sensing with stereoscopic equipment. For the third ASLV flight, the Indian Space Research Organization (ISRO), in conjunction with the Council for Scientific and Industrial Research (CSIR), will develop a satellite payload to monitor the upper atmosphere.

IRS, to be launched from the Soviet Union, will be lifted into a polar orbit. It will gather information on agriculture, forestry and minerals.

Meanwhile, Indian scientists have a number of other projects on the boil. They are keeping INSAT-IC, the domestic satellite ready for launch on Ariane. They are also developing a bi-propellant polar satellite launch vehicle (PSLV) and a liquid fuel geostationary launch vehicle (GSLV), both of which are expected to take off in the late 1980s or early 1990s.

Another crucial area in which Indian space engineers are working is in the recovery of rocket boosters. It is proposed to recover the first-stage booster of PSLV with parachutes. Current plans call for PSLV to consist of a core booster with 125 tonnes of solid fuel and an additional six strap-on boosters, each with nine tonnes of solid propellant.

Britain and Russia to cooperate on Mars mission

Roald Sagdeev, the head of the Russian Space Research Institute, was in the UK recently to tell British scientists about opportunities for cooperation on their Mars missions, planned for the mid-1990s.

None of the plans involve landing cosmonauts on the planet, but provide information for a manned mission around the turn of the century.

According to New Scientist magazine, which covers the British science scene, David Southwood, professor of physics at Imperial College, London, was one of a group of British scientists talking to the institute about Britain's plans for participation in some of the Soviet Union's space missions. He says that Sagdeev told them of two proposed trips to Mars, one in 1992 and another in 1996.

In 1992, the Soviet Union will send an orbiter, a balloon and a vehicle called a penetrator to Mars. The penetrator will hit the planet's surface at 100 metres per second, and, together with observations from the balloon, will provide the Space Research Institute with information for a landing on Mars in 1996. Engineers and scientists have not decided yet at what altitude the orbiter will circle Mars, nor what experiments the orbiter and balloon will perform. The mission might also be delayed until 1994.
The mission in 1996 will bring materials from Mars back to Earth. However, Sagdeev told the British group that because of fears of contamination, the collected material would be analyzed on the Soviet Union's space station before returning to the Earth's surface.

Proposals for British scientific packages to ride on the Russian vehicle are currently awaiting funding, which in turn may well depend on the attitude of the British Government to cooperative space ventures with the European community.

Cheap GaAs on the way

An industry team led by Westinghouse has received a US$1.3 m contract from the US Air Force to develop a technology that can significantly increase the production and lower the costs of coated gallium arsenide (GaAs) integrated circuit wafers.

GaAs wafers transmit electrical signals six times faster, handle higher frequencies and withstand higher temperatures than their more common silicon counterparts.

Such high performance has assured these devices a role in the next generation of military systems, but to date their cost has been too high for most other uses.

Using metal organic chemical vapour deposition processes at a new laboratory in Pittsburg, the team will attempt a 20 fold increase in gallium water preparation, which involves coating sliced crystals of the semiconductor with an electronically active layer so that atoms of both crystal and coating are precisely aligned.

Such quality coatings, called epitaxial layers are essential to the successful fabrication of high speed integrated circuits from the wafers.

The coating process, metal organic chemical vapour deposition (MOCVD) takes its name from the gaseous compounds that are released into a reaction chamber to form layers of crystals on heated wafers. The compound is used to transport vapours of gallium and arsenic metals, and contain the organic elements carbon and hydrogen which decompose upon contact with the hot wafer to leave the metals deposited in epitaxial layers.

MODEM ADDENDUM

Feb ETI's modem buyer's guide priced the NICE MODEM 2 for $552. The correct prices are in fact $279 and $693 respectively, from Computer Haven, (02) 349-2366. To find the distributor nearest to you, phone NICE MODEM CO, ph (02) 869-8777 or (09) 321-6636. Also note that the guide was for 1200/75 and 300 baud modems only.

Cheap GaAs on the way

An industry team led by Westinghouse has received a US$1.3 m contract from the US Air Force to develop a technology that can significantly increase the production and lower the costs of coated gallium arsenide (GaAs) integrated circuit wafers.

GaAs wafers transmit electrical signals six times faster, handle higher frequencies and withstand higher temperatures than their more common silicon counterparts.

Such high performance has assured these devices a role in the next generation of military systems, but to date their cost has been too high for most other uses.

Using metal organic chemical vapour deposition processes at a new laboratory in Pittsburg, the team will attempt a 20 fold increase in gallium water preparation, which involves coating sliced crystals of the semiconductor with an electronically active layer so that atoms of both crystal and coating are precisely aligned.

Such quality coatings, called epitaxial layers are essential to the successful fabrication of high speed integrated circuits from the wafers.

The coating process, metal organic chemical vapour deposition (MOCVD) takes its name from the gaseous compounds that are released into a reaction chamber to form layers of crystals on heated wafers. The compound is used to transport vapours of gallium and arsenic metals, and contain the organic elements carbon and hydrogen which decompose upon contact with the hot wafer to leave the metals deposited in epitaxial layers.

MODEM ADDENDUM

Feb ETI's modem buyer's guide priced the NICE MODEM 2 for $552. The correct prices are in fact $279 and $693 respectively, from Computer Haven, (02) 349-2366. To find the distributor nearest to you, phone NICE MODEM CO, ph (02) 869-8777 or (09) 321-6636. Also note that the guide was for 1200/75 and 300 baud modems only.
LOW OHMS METER

How many times have you cursed your Multimeter when you had to measure a low-value resistance? Well with the "Low Ohms Meter" you can solve those old problems and in fact measure resistance from 1 Ohm down to 0.0001 Ohms. (EA Nov. '81) $89.00

SLIDE CROSS-FADER

Want to put on really professional audio shows? This slide cross-fader can provide smooth transitions from one program to another. The slide can be switched automatically from an in-fiftieth of a second in response to cross-fader movement, or you can use the switch to select the audio source. $39.95

12/240V 40W INVERTER

This 12/240V inverter can be used to power up more appliances rated up to 40W, or to vary the output of a small motor. As a bonus, it will also work backwards as a trickle charger to top up the battery when the power is off. (EA Jun. '81) $29.95

PARALLEL PRINTER SWITCH KIT

Tired of plug swapping when you want to change printer from one printer to another? This low-cost project should suit you down to the ground. It lets you have two Centronics type (or IBM) printers connected up permanently, so that you can switch one printer to one or the other at the flick of a switch. (ETI 80, Feb. '85) $79.95

CRYSTAL CONTROLLED TV PATTERN GENERATOR

Anyone wishing to obtain the optimum performance from a colour television set should invest in a crystal controlled pattern generator. Why not build this superb equipment, which has five crystal controlled pattems; dot, crosshatch, checkerboard, vertical and white noise? The kit includes a large A4 format hardcover, 600 pages, 204 diagrams and full parts list, (etl Exps., Jul. '86) $149.95

1W AUDIO AMPLIFIER

A simple but capable circuit, suitable for portable audio amplifier, ideal for use in home, office etc. (EA Nov. '84) $9.95

PREAMP FOR PUMPING AMP

A versatile preamp with adjustable bass, treble and equalisation. (EA Sep. '82) $24.95

STEREO ENHANCER

This simple circuit makes your Hi-Fi sound great! The kit includes a complete hardcover, 700 pages, 204 diagrams, full parts list. (etl Exps., Jul. '86) $49.95

HD METER

This handy digital meter is for use with the electronics experimenter in a genuine purpose built audio-amp. This meter will work from a wide range of input voltages, and has high sensitivity, is robust and reliable - easy to build! (ETI 84, Apr. '85) $49.90

MODEL ENGINE IGNITION SYSTEM

Get sure starts every time without glow plug burnouts on your model engine. (EA June '83) $49.50

DELUCE CAR BURGLAR ALARM

This kit can be used for your own car or for using one of the many different alarm units on the market. It includes key switch operation, delayed entry and exit, automatic reset, and provision for an auxiliary battery. Further more, the 10 most important features are tested by the ANA. (EA Exps., Mar. '84) $99.50

30 V/1 FULLY PROTECTED POWER SUPPLY

The last power supply we did cost was phenomenally popular - so we decided to build this PSU in the minute burglar alarm system. It's easy to build, costs less than $10 and is equivalent to the one in the kit at a cost of about $20. (TBI Dec. 80) $39.95

MULTI SECTOR ALARMS

Protect your home and possessions from break-ins by this multi-function burglar alarm system. It's easy to build, costs less than $10 and is equivalent to the one in the kit at a cost of about $20. (TBI Dec. 81) $39.95
SERIES 5000
INDIVIDUAL COMPONENTS TO MAKE UP A SUPERB HI-FI SYSTEM!

By directly importing and a more technically orientated organisation, ROD IRVING ELECTRONICS can bring you these products at lower prices than their competitors. Enjoy the many other advantages of RIE Series 5000 kits such as a "Superb Finish" front panels at no extra cost, top quality components supplied throughout. Over 1,500 sold.

For those who haven't the time and want a quality hi-fi, we also sell the SERIES 5000 kits assembled and tested.

POWER AMPLIFIER

WHY YOU SHOULD BUY A "ROD IRVING ELECTRONICS" SERIES 5000 POWER AMP

SPECIAL, ONLY $399

SAVE $50

- 1% Metal film resistors.
- RIAA +0-3dB NOTE: These figures are determined solely by passive filters.
- Full discrete audio components.
- 100% copper printed circuit boards.
- 100% copper transformer.
- 100% copper power supply transformers.
- BAKELITE: 100% better than 1N4001 (to 10MHz).

HUM:

- 50Hz
- 0.0003%
- 33Hz
- 0.0003%
- 20Hz
- 0.0003%
- 100Hz
- 0.0003%
- 1kHz
- 0.0003%
- 10kHz
- 0.0003%
- 20kHz
- 0.0003%

OUTPUT IMPEDANCE:

- 100 ohms

TOTAL HARMONIC DISTORTION:

- 1% at 100W (RMS) output (N-level)
- 0.01% at 10 (N-level) output (N-level)
- 0.001% at 1000W (RMS) output (N-level)

INTERMODULATION DISTORTION:

- 0.003% at 100Hz, 1kHz and 7kHz mixed input (N-level)

STABILITY:

- Unconditional.

Cat. No.

- $449

PREAMPLIFIER

THE ADVANTAGES OF BUILDING "ROD IRVING ELECTRONICS" SPEAKERS ON YOURSELF

SPECIAL, ONLY $359

SAVE $40

- USSR: $429

THIRD OCTAVE GRAPHIC EQUALIZER

SPECIAL, ONLY $209

SAVE $30

- USSR: $239

SERIES 4000 SPEAKERS

8 Speakers...

- Only $549

8 Speakers with Crossovers...

- $795

Speaker Cabinet Kit (complete)...

- $395

(Please specify cabinet to suit 7" or 8" mid-range woofers)

Crossover Kits...

- $295

Cables...

- $1,095

MULTI FUNCTION STEREO MIXER EQUALIZER

SPECIAL, ONLY $349

- USSR: $399

PHILIPS SPEAKERS

- $24.95

- $69.95

- $129.00

Rite Rod Irving Electronics

48 Ahearn St, MELBOURNE

425 High St, NORTHCOTE

Phone (03) 831-2828

Mail Order and Correspondence:

P.O. Box 320, CLAYTON 3168

Tel: AA 150938

MADE IN CHINA?

- $5.95

MAIL ORDER HOLIDAY POSTAGE RATES

TOLL FREE

(30) $543 7877

POSTAGE RATES

- $1.00...

- $2.00...

- $3.00...

- $4.00...

- $5.00...

- $7.50...

- $10.00...

FREE POSTAGE FOR ORDERS OVER $75 & UNDER 3KG!!

The above postage rates are for parcel post. For Race Freight, bulky and fragile items will be charged at different rates. Certified Post for orders over $75. Registered Post for orders over $250.

All sales tax exempt orders and enquiries to:

RITE RING ELECTRONICS WHOLESALE

(03) 543 2169 (3 lines)

Errors and Omissions Excepted

VIS A VIS

BASS PANELS

- $34.95
MINIATURE HEATSINK
A great item to have around the shop.
Great price too, because we import it to you!
Cat. H10695... From 1.90...
$0.40
$0.35

COMPUTER CABLE
CIC11 9-pin to 25-pin male to male cable (to IE422 specifications).
Copper conductor 6 x 0.15mm2.
10 metres $19.90
20 metres $39.80

CIC12 9-pin to 9-pin male to male cable (to IE422 specifications).
Copper conductor 6 x 0.15mm2.
10 metres $19.90
20 metres $39.80

CIC16 16-pin computer interface cable.
Copper conductor 6 x 0.15mm2.
10 metres $24.90
20 metres $49.80

CIC25 25-pin computer interface cable.
Copper conductor 6 x 0.15mm2.
10 metres $47.90
20 metres $95.80

RAINBOW CABLE
Suitable for PC connectors.
Cat. No. Description
W1214 28AWG x 18W $1.80
W1716 28AWG x 18W $1.90
W1770 28AWG x 21W $2.20
W1773 28AWG x 21W $2.90
W1734 28AWG x 34W $3.60
W1740 28AWG x 40W $4.40

MAINS MUFFLER
Suitable for small workstations.
Cable length 1.5m.
1000W $5.95
2000W $10.95

CABLE GIANT
Dedicated computer
interface cable.
Copper conductor 6 x 0.15mm2.
10 metres $1.90
20 metres $3.80

CABLE CIRCULAR
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+2
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+4
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+6
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+8
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+10
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+12
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+14
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+16
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+18
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+20
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+22
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+24
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+26
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+28
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+30
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+32
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+34
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+36
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+38
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+40
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+42
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+44
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+46
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+48
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+50
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+52
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+54
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+56
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+58
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+60
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+62
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+64
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+66
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+68
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+70
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+72
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+74
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+76
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+78
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+80
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+82
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+84
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+86
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+88
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+90
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+92
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+94
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+96
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+98
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00

CABLE MEGA+100
Cable for connecting monitors.
10 metres $4.50
20 metres $9.00
WA CAD/CAM centre

The State Government of WA, in co-operation with the McDonnell Douglas Corporation, has established a Manufacturing Technology Centre to boost the capabilities of local industry. The centre will have an initial role in advancing the application of computer-aided design and computer-aided manufacture (CAD/CAM). The Centre is located within the Department of Industrial Development.

Mr Mal Bryce, Deputy Premier and Minister for Industry and Technology said the Centre would create a long-term means of transferring selected manufacturing technology to local industry. It will also place computer-aided design and manufacture within the reach of all Australian manufacturers.

"Commercial and technical productivity around the world is feeling the impact of CAD/CAM," Mr Bryce quoted the recent America's Cup series as an example of superior technology deciding the actual winner.

"It is essential for Western Australian manufacturers to keep up with the latest techniques that produce a competitive edge. Companies not using CAD/CAM within the next five years will be left behind."

Mr Bryce said the Centre would be managed by a McDonnell Douglas Corporation expert in advanced manufacturing technology. Mr Dennis Stajic is the former manager of CAD/CAM training for McDonnell Douglas and has spent the past 12 months establishing the Centre for Industrial Technology in Sydney.

The establishment of the Centre originated from offset commitments the McDonnell Douglas Corporation has with the Federal Government.

CSIRO buys supercomputer

The CSIRO has bought a Control Data 205 supercomputer for $3.7 million.

Announcing the deal, the Minister for Science, Barry Jones, said it was imperative that a supercomputer be available to Australian researchers and companies. CSIRO's independent computing agency, CSIRONET, has been renting the machine for the past two years while its usefulness was being assessed. The purchase decision was taken because CSIRO will pay less to buy the computer than if it had continued with the lease agreement. The remaining 54 months of the lease would have cost about $US4.76 million.

"To ensure that the full potential of the Control Data 205 is realized, CSIRONET, CSIRO and the Department of Science are developing a national policy on supercomputing," said Barry Jones. "The aim of this policy will be to make the machine available as widely as possible to potential Australian users."

Negotiations were also underway to make the supercomputer available to university researchers on the same terms as CSIRO researchers.

Supercomputing had a shaky start in Australia in 1984 when CSIRO found there was little demand for the Control Data 205. Australia's first and only publicly available supercomputer, Usage has grown steadily as users in a wide range of high-technology fields become familiar with the machine's power and versatility. Today it is used primarily by CSIRO and university researchers, government departments such as the Bureau of Meteorology and, increasingly, private companies. To boost usage CSIRO provided access to the supercomputer at a nominal cost helping Australian researchers become familiar with the machine.

Cash for Impact Systems

The venture capital company, SA Ventures, has invested $760,000 for a five per cent share in Impact Systems.

SA Ventures is a subsidiary of the Adelaide-based Enterprise Investments group and was listed with Stock Exchange last December. The stake in Impact Systems is the eighth investment by SA Ventures but its first since its public issue. Impact Systems is primarily involved in the design, manufacture and distribution of laser computer printers.

Since being established in October 1983, turnover has gone from $1.1 million to almost $17 million in 1985/86. It's the only Australian manufacturer of laser printers, and commands a dominant share of the domestic market. It also has a marketing presence overseas and export sales are increasing via Impact offices in Amsterdam and San Francisco.
NEWS DIGEST

The SGS shuffle

One of his major challenges will be to improve the corporation’s performance in Australia, particularly with ASICs. In one move, SGS has joined with its distributor, RA & Technological Advisory Service for the range of SGS semiconductors. The service operates from 178 Pacific Hwy, St Leonards, NSW 2065. (02) 438-5388.

Coherent light record

AT&T Bell Laboratories researchers are claiming the highest transmission rates for coherent lightwave systems, sending 2 Gbit/s for 170 kilometres without a repeater. That’s a record bit-rate-distance product for coherent systems, and a distance record for any system operating at two gigabits per second. The company also set the previous record for coherent systems at one gigabit per second for 200 kilometres in 1986.

“We’ve shown that coherent systems can operate at two gigabits by stretching available technology to its limit,” said Alan Gnauck, a member of staff in the Lightwave Systems Research Department. “We now have to create more powerful lasers, better electronics and more sensitive detectors to transmit at higher bit rates without significant penalties.”

Coherent systems step down incoming optical signals from optical to microwave frequencies, using superheterodyne techniques. The receiver adds light from a local oscillator laser to the incoming optical signal and produces an intermediate frequency from these light streams. The intermediate frequency is sufficiently low so that signals can be processed efficiently by conventional electronic components. Coherent techniques and conventional electronics improve receiver sensitivity and wavelength selectivity as well because sharp electronic filters can be used.

Improvements in wavelength selectivity may one day permit hundreds, perhaps even thousands of channels, to be multiplexed, or combined, onto a single fibre. To date, the experimental record for multiplexing channels is 10.

Researchers used a buried heterostructure, 1.5-micrometre wavelength injection laser, standard AT&T production fibre and a dual-detector balanced receiver to achieve the record result.

These achievements can be set aside AT&T Bell Laboratories’ other startling record. The company reported a 1986 fourth-quarter loss of $US170 million.

The Micromania board

Micromania, the computer sales outlet on Sydney’s Parramatta Road, has started its own bulletin board service. The service will be on-line 24 hours a day for six days and another half day per week. It will provide a comprehensive product and price catalogue, plus information on new products and also interesting topics of a technical nature from time to time.

A database of public domain software will be available for downloading by registered users of the service. There is no fee or subscription required to become a registered user. Registered users will be charged for minutes on-line time at any one session which may be increased or decreased depending on the amount of traffic.

New Telecom fund to back Aust research

Telecom Australia has established a $6 million annual fund for the research and development of Australian telecommunications products.

Managing Director, Mr Mel Ward, said the fund was part of Telecom’s continuing commitment to encourage local industry to develop and manufacture high-tech products. He said Telecom and the business community should look for innovative and ‘Australian ways’ of researching and introducing telecommunications products.

According to Managing Director, Mr Mel Ward, the new fund is “significant because it complements our current approach to Australian-based research and development. We do support industry through research and development contracts for specific Telecom-initiated projects, but we are now prepared to make additional financial resources available to entrepreneurs who wish to develop ideas and concepts for products which can be used on the Australian telecommunications network and the world market.”

“Telecom may wholly fund the future costs or partly fund them in return for appropriate industrial property rights. Selected projects may also have the assistance of Telecom’s engineering knowledge and facilities as development aids.”

Mr Ward said he was confident that the fund would gain widespread acceptance by the business community.

Enquiries and applications should be directed to Mike Hannagan (03)604-5101 or Jeff Levers (03)604-5195 at the Telecom Technical Liaison Office, 3/172 William St, Melbourne, Vic 3000.
COMING EVENTS

APRIL

Computer Network Security, a three day seminar presented by Donald W. Davies between 6-8 April at the Old Melbourne Hotel. Ph (02)498-7877, (008)22-6776 (interstate).

Les Bell will hold a series of national seminars on Mastering PC-DOS/MS-DOS. Adelaide 6-7 April, Brisbane 23-4 April. Ph (02)290-3555 (Sydney), (03)67-7117 (Melbourne), (09)324-1142 (Perth), or (008)22-4514.

Supporting Personal Computers a three day seminar given by Les Bell. Melbourne 1-3 April, Adelaide 8-10 April, Brisbane, 27-9 April, Perth 6-8 May. Ph Sydney (02)290-3555, Melbourne (03)67-7117, Perth (09)324-1142 or (008)22-4514.

Guide to the Unix Operating System presented by Greg Rose, Sydney 7-8 April, Melbourne 31 March-4 April. Ph Sydney (02)290-3555, Melbourne (03)67-7117, Perth (09)324-1142, or (008)22-4514.

The fourth workshop on small computer systems, organized by the Queensland Institute of Technology, is on 13-15 April and calling for papers. Contact Dr C. Chesmond, QIT Dept of Elec Eng, on (07)223-2484.

Labex '87, international lab and equipment and products exhibition is on in Brisbane at the Science Pavilion, RNA Exhibition Grounds, 31 March to 2 April. Contact BPI on (02)266-9799.

ATUG '87 4th Australian Telecommunications Exhibition & Conference will be held at the Hilton Hotel in Sydney 7 to 9 April. Contact Riddell Exhibitions on (03)429-6088.

Microelectronics Conference VLSI, Melbourne 8-10 April, will examine all aspects of the industry. Contact the Conference Manager, 11 National Circuit, Barton ACT 2600. Ph (062)73-3633.

The What's New in Electronics Exhibition — electronics in process control — will be held 14-15 April at the State Sports Centre, Underwood Rd, Homebush, NSW.

The 17th International Symposium on Industrial Robots will be held 26-30 April at the Chicago Hilton & Towers. Contact Rl/SME Public Relations, 1 SME Dr, PO Box 930, Dearborn, MI 48121. Ph 313/271-0777.

MAY

Communications USA (telecommunications, radio and satellite equipment) in Sydney 11-15 May. Contact Ken MacKenzie on (02)264-7044.

Australian Software Engineering Conference — ASWEC 87 — is scheduled for 13-15 May at the Defence Force Academy, Canberra. Contact the Conference Secretary Commercial, Unit 3, 2 New Maclean Street, (PO Box 79) Edgecliff 2027. Ph (02)327-4622.

Ausgraph '87 is on 11-15 May in Perth. Contact Conference Secretariat on (03)367-9955.

In a CAD/CAM Congress at the Regent Hotel, Melbourne, 17-20 May, a panel of experts will discuss technical computing applications. Contact (03)51-9153.

Photographics '87, an exhibition of the equipment and technology of photographics will be held 23 to 26 May at the RAS Showgrounds in Sydney.

JUNE

Communications '87, the Australian International Office Technology Exhibition, is on 1 to 4 June at the Royal Exhibition Building, Melbourne. Contact Australian Exhibition Services on (03)267-4500.

PC87, The Ninth Australian Personal Computer Show is on 1 to 4 June at the Royal Exhibition Building, Melbourne. Contact Australian Exhibition Services on (03)267-4500.

Office Technology '87 will be held 1 to 4 June in Melbourne. Contact Australian Exhibition Services on (03)267-4500.

The 1987 Computing Systems Conference will be held 17 to 19 June in Brisbane. Contact the Institute of Engineers, Australia, 11 National Circ., Barton, ACT 2600. (062)73-3633.

Videoex '87 Exhibition & Conference is on in Melbourne over three days in June. Contact Riddell Exhibitions on (03)429-6088.

The Australian Hi-fi Show '87 will be held Sydney 19-21 June at the Airport Hilton; Brisbane 3-5 July at the Gold Coast International Hotel; Melbourne 17-19 July at the Dallas Brooks Hall; Adelaide 24-26 July at the Adelaide Hilton.

Videoex '87 to be held 30 June to 2 July at the Sheraton Hotel, Auckland. Contact the Secretariat on (09)68-6955.

The Third National Space Engineering Symposium will be held 30 June to 2 July at the Australian Defence Academy in Canberra. Contact The Conference Manager on (062)73-3633.

JULY

Automach '87, an exposition on automated manufacturing and sponsored by the SME, is scheduled for 7 to 10 July in Sydney. Contact Adolph Greco on (02)875-2377.

The 1987 Perth Electronics Show is on again at the Claremont Showgrounds, Perth from 29 July to 2 August. Contact address: 94 Hay St, Subiaco, WA 6008. (09)382-3122.

AUGUST

A symposium on signal processing and its applications will be held at the University of Qld 24-28 August. Those interested in participating contact the Conference Secretariat, ISSPA 87, Uniquest Ltd, University of Qld, St Lucia, Qld (07)377-2733.

ANZAAS Townsville Conference, 24-28 August. Examination of databases, communications and networks, videotext, etc. Contact G. Gupta, Department of Computer Science, James Cook University, Townsville, Qld 4811.

Nelson '87 national electronics conference will be held 24-28 August at Auckland University, New Zealand. Contact B. S. Furby on (02)957-3017.

SEPTEMBER

IREECON '87 will feature digital technology when it is held 14 to 18 September at the Royal Agricultural Showground, Sydney. Contact Heather Harriman on (02)327-4822.

The 4th Australasian Remote Sensing Conference will be held 14-18 September at the Adelaide Convention Centre. Contact John Douglas, South Australian Centre for Remote Sensing on (08)260-0134.

Labex '87 international laboratory equipment and products exhibition is on 21 to 24 September at the Royal Exhibition Building, Melbourne. Contact BPI Exhibitions on (02) 266-9799 or (03)699-9151.

ETI April 1987 — 17
EXCIMER LASERS

The biggest in the world is powerful enough to replace all our existing power stations for a nanosecond; the smallest could be used to cut open your eye. Excimer lasers will be one of the great tools of the twenty-first century.

Malcolm Gower
M.C. Gower is with the Laser Division of the Rutherford Appleton Laboratory, Chilton, Oxford, UK.

EXCIMER lasers produce extremely intense bursts of ultraviolet light. Their ability to do so is generating a great deal of interest in areas as diverse as chemical synthesis, defence, surgery, and semiconductor processing and chip manufacturing. The short-wavelength photons they produce have enough energy to break most of the chemical bonds that bind molecules together, thereby fragmenting or stimulating them to change their form. This ability to control the chemical state of matter and change it in a desirable and very selective way is at the heart of many of the most exciting applications of excimer lasers.

The most common type of excimer laser uses molecularly diatomic rare-gas halides as the active species from which the laser
light is produced. In their common, unexcited form, atoms of the rare gases neon, argon, krypton and xenon are unreactive or inert and do not readily form molecules. But if an electron is knocked off an atom to ionize it, the atom can become extremely reactive and form molecules, particularly with negative halogen ions, which have an additional electron attached to them.

Rare-gas halide molecules are held together by electrostatic forces, similar to the way alkali halide (salt) molecules are formed.

Rare-gas halide molecules have a transient nature. With a lifetime of a few billionths of a second before spontaneously emitting ultraviolet photons and falling apart, they cannot be bought in a bottle but must be created in the laser vessel in situ. This is usually done by high voltage electrical discharges in gas mixtures of halogen-bearing molecules and rare-gas atoms. The unexcited rare-gas halide molecules which form the lower laser level are unstable, so at any instant there are very few of them in the laser vessel.

Nearly all the rare-gas halide molecules in the vessel are excited and have energy available for extraction as ultraviolet laser photons. The wavelength of the laser light is determined by the type of molecule created and can be selected simply by changing the gas mixture originally added to the laser tube, as shown in Table 1. The pulsed energies of the light obtainable from typical commercial excimer lasers are also listed. Such devices can produce pulsed bursts of light lasting approximately 2×10^{-8} second at up to 500 times a second.

Nuclear fusion

Much larger excimer lasers can be built in the laboratory. A KrF laser at the Los Alamos National Laboratory, USA, will soon be producing four terawatts (4×10^{12} watts) of ultraviolet light. This power is several times more than the combined capacity of all the electricity generating stations in the world today, but the laser can produce it for only about 5×10^{-9} of a second. The aim of this extremely large laser is to be used eventually in a laser-driven nuclear fusion power plant for the relatively cheap pollution-free production of electricity. It is presently being used to study the nuclear fusion reactions produced when the focused laser light ionizes, heats and compresses to high density tiny glass microspheres containing deuterium and tritium gas.

To obtain more fusion energy from the pellets than is put in by the laser light, the plasma created should last for at least 2×10^{-8} second and have a temperature close to that on the Sun (10^6 degrees), while maintaining a density more than 30 times that of solids. Experiments have shown that such high temperatures and densities are more readily achieved by using short-wavelength ultraviolet laser light to irradiate and compress the target. Because excimer lasers can efficiently convert electricity to pulsed bursts of ultraviolet photons (conversion efficiencies of over 10 per cent have been demonstrated) and can in principle do so many times per second, they are considered to be the most likely driver source for any laser-induced fusion power plant which may eventually be constructed.

Ultraviolet laser light spreads out much less when travelling over large distances than does longer-wavelength visible and infrared light, so such high-energy excimer lasers are also of interest as Earth-based directed-energy beam weapons for defence.

Semiconductors

The ability of ultraviolet excimer laser light to break molecules apart so easily is now being exploited in the semiconductor industry. For example, highly uniform conductive metal coatings can be deposited on the component surfaces of a silicon chip by using the laser to release metal atoms from gaseous molecules above the surface. This step in silicon chip fabrication is called chemical vapour deposition and is conventionally done by means of plasma techniques which, in general, are far more destructive to the silicon wafer and less controllable than the laser technique. Thin crystalline layers of silicon can also be grown by depositing atoms of silicon. Furthermore, by simultaneously locally melting the silicon wafer with an excimer laser, the technique can be adapted to implant dopants into the bulk silicon. Such implantation is used to create the p or n junctions which combine to form the miniscule circuit elements in the chip.

Present non-laser methods of implanting dopants into silicon by ion bombardment in plasmas tend to leave the silicon crystal lattice damaged, so it is essential to recrystallize (anneal) the silicon wafer in a high-temperature area. Apart from adding another slow step to the production process, high-temperature annealing of the whole wafer can also lead to distortions of the circuit elements on the chips. On the other hand, the excimer laser method of implanting can simultaneously locally anneal the silicon wafer as well as achieve very high, supersaturated concentrations of dopant atoms.

There is another process, too, in producing silicon chips that can be improved upon by the excimer laser. Extremely small complicated circuit patterns to be fabricated on the silicon wafer are initially drawn on by reproducing master mask patterns of the circuit. The mask patterns are laid over a thin, light-sensitive plastic polymer film called the photoresist, coated onto the silicon. In a way similar to that in which a camera works, lenses or mirrors project an image of the illuminated mask onto the photoresist. In the exposed, bright regions of the mask pattern, the photoresist is then removed by chemical development. Ions are subsequently implanted into the silicon through the gaps in the photoresist. This process of optical replication of mask patterns onto the silicon wafers is known as photolithography; incoherent lamp sources illuminate the mask.

Recently, however, ultraviolet excimer laser light sources have demonstrated several unique advantages over lamps in such work. The most striking advantage is that the laser can produce images which are nearly 10^6 times brighter than those produced by a lamp. This means that the exposure time of the photoresist can be made negligibly small, allowing a substantial increase in the chip throughput of a photolithography machine. Furthermore, because the wavelengths produced by excimer lasers are in general shorter than those produced by high-powered lamps, smaller feature sizes on the mask can be replicated on the chip. This allows many more, smaller circuits to be packed onto the chip, so that each chip can perform a greater number of operations at a greater speed.

TABLE 1.

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>Energy/Pulse (mJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArF</td>
<td>193</td>
</tr>
<tr>
<td>KrF</td>
<td>249</td>
</tr>
<tr>
<td>XeCl</td>
<td>351</td>
</tr>
<tr>
<td>XeF</td>
<td>308</td>
</tr>
</tbody>
</table>

The wavelength of light produced by an excimer laser depends upon the type of molecule created. It can be selected simply by changing the gas mixture originally added to the laser tube, as in the left hand column. In the right hand column are the pulsed energies of the light obtainable from typical commercial excimer lasers.
EXCIMER LASERS

Another advantage of the excimer laser is that the extremely short burst of ultraviolet photons can also directly remove (etch or ablate) the photoresist from the exposed regions without the need for wet chemical development. So the excimer laser source may mean cutting out another processing step in chip production.

Clean etching

Ultraviolet excimer laser light directly etches plastics materials by producing a micro-explosion through efficient, rapid breaking of the chemical bonds that hold the polymer together. Unlike lasers working at longer wavelengths, the excimer laser produces no melting and very little heating of the surrounding unexposed material. Remarkably steep clean-walled cuts are produced in the crater left behind. This type of clean etching also applies to biological tissue. The possibility of performing extremely clean cuts without charring and damage to surrounding tissue has aroused a great deal of interest in medical centres around the world.

The first study of a medical application of excimer lasers was to do with cutting and reshaping cornea tissue in the eye. Unlike light of a longer wavelength, ultraviolet radiation does not pass through the cornea layer at the front of the eye. In an operation known as radical keratotomy, pioneered in the Soviet Union, a diamond knife is used to make radial incisions in the cornea. Because the cornea as well as the lens can focus light, a change in its radius of curvature can lead to a permanent correction of defects caused by the lens, such as short sightedness. It has recently been shown that masking techniques enable this type of surgery to be done by means of an excimer laser, with a quality and precision far exceeding that achieved with a knife. Moreover, the laser can reshape the cornea by machining rings and crescent shapes. It can also make the precise incisions necessary for subsequent corneal transplants or removal of cataracts.

Balloon angioplasty

Work is also going on to investigate the use of the excimer laser to unblock arteries, a procedure known as angioplasty. Blockage near the heart by accumulation of plaque, the condition known as atherosclerosis, eventually leads to a heart attack. Most widespread of surgical methods now used to alleviate this condition is extremely invasive open heart surgery, in which surgeons bypass the blockage by grafting a new artery around it. Less invasive is a recently developed technique called balloon angioplasty, in which a fibre is threaded through the arteries to the blockage and a balloon on the end is then inflated to open it out; the patient remains conscious throughout. But the technique can also damage arterial tissue. An alternative method might be to use light from an excimer laser, passed down through an optical fibre in the artery, to burn through the blockage cleanly. Initial studies have shown that for soft, non-calciﬁed plaque the excimer laser can remove the constriction efficiently and cleanly. Calciﬁed blockages are much more difficult to remove.

Among other medical applications being studied are very precise neurosurgical cutting in the brain and spinal column. Most applications of high-power visible and infrared lasers use the laser merely as a sophisticated cutting and welding torch. However, the most exciting potential applications of excimer lasers make use of the high powers which they are capable of producing and the ability of the ultraviolet photons to induce changes in the chemical state of matter in a most efﬁcient way. Many new applications of excimer lasers may be expected to develop as scientists and engineers become increasingly aware of their tremendous potential.

LABORATORY POWER SUPPLIES

APLAB offer a complete range of regulated DC bench/rack power supplies combining high precision and regulation capabilities with continuously adjustable outputs.

Designed with single, dual and multiple outputs, these power supplies can be used in either constant voltage or constant current mode of operation.

Standard models include:

<table>
<thead>
<tr>
<th>SINGLE OUTPUT</th>
<th>DUAL OUTPUT</th>
<th>MULTIPLE OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTPUT: Output</td>
<td>OUTPUT: Output</td>
<td>OUTPUT: Output</td>
</tr>
<tr>
<td>VOLTAGE: Current</td>
<td>VOLTAGE: Current</td>
<td>VOLTAGE: Current</td>
</tr>
<tr>
<td>0-30V 0-1A to 30A</td>
<td>0-70V 0-2A to 10A</td>
<td>0-30V 0-2A to 5A</td>
</tr>
</tbody>
</table>

SCIENTIFIC DEVICES AUSTRALIA PTY. LTD.
VIC. 2 JACK S RD. SOUTH OAKLEIGH. 3167
PHONE (03) 579 3622 TELEX: AA32742
NSW. 559A WILLOUGHBY RD. W I L L O U G H B Y 2068
PHONE (02) 952084 TELEX: AA22978
S. A. 31 HALSEY RD. ELIZABETH EAST. 5112
PHONE: (08) 255 6575 TELEX: AAB8125

20 — ETI April 1987 ADVERTISING INFO No. 7
TOWARDS AN ALL-FIBRE NETWORK

An update on progress of changing the telephone network from copper to glass.

N. R. Crane
N.R. Crane is from the Network Engineering Department, Telecom, Melbourne.

Australia's transmission network is a dynamic mix of cable and radio systems. It is continually being expanded and upgraded to meet the telecommunications need of the community. Currently, the digital transmission capacity of the network is being substantially augmented to provide for increasing data traffic and for network development leading to an integrated digital network and an integrated services digital network.

Although the initial development was by pulse code modulation systems in the network and by digital radio systems in the long distance network, a rapidly increasing proportion of new digital transmission capacity is now being provided by optical fibre transmission systems.

Approximately $42.5m will be spent on the purchase of optical fibre cable and associated transmission equipment for the 1986-87 installation program, much of which will be purchased in Australia. There are, of course, very substantial benefits for the Australian economy in maximizing the proportion of Telecom's annual material purchase ($140m in 1986-87) placed with Australian industry. There are also important benefits for Telecom in purchasing locally. These may be summarized as:

- greater ability to influence designs to suit Australian conditions;
- additional expertise available in Australia for Telecom to draw on;
- less complex delivery arrangements; and
- shorter delivery lead times.

Fibre in the network

Until the early 1980s all trunk bearers in Australia were analogue, provided on open wire, pair cable, coaxial cable or by radio. The coaxial cable system capacity progressed from 1260 circuits in the 1960s to 3600 circuits by 1981. The later higher capacity coaxial cable systems required repeaters at 4.5 km spacing, which were located in manholes, power fed over the cable and subject to lightning damage. The line equipment was mostly supplied by STC, Siemens and NEC, with some local content.

The 1982 trial NEC optical junction systems were installed in metropolitan Brisbane, Melbourne and Sydney. These systems used multi-mode fibre and line equipment operating in the 850 nm region, at bit rates of 34 and 140 Mbits/s, with repeater spacing of typically 9 km. Equipment supervision and orderwire facilities were conveyed on metallic pairs within a hybrid cable. These early systems soon proved viable and have subsequently proven very reliable.

In 1982 the Melton-Ballarat 140 and 565 Mbits/s single-mode optical fibre (SMOF) field trial was initiated to prove the technology prior to embarking on a very extensive intercapital program. To avoid lightning damage, completely non-metallic cable was used. As a result, it was necessary to provide local power for repeaters and in-band transmission for order wire and supervision functions. The maximum repeater spacing considered possible was about 30 km. Events rapidly overtook the trial and in mid 1984 tenders were called for the Melbourne-Sydney SMOF system, for delivery from July 1986. The initially planned Melbourne-Sydney repeater spacing was about 27 km for both 140 and 565 Mbits/s systems. Better than predicted cable performance together with statistical design techniques has led to revised repeater spacings in excess of 50 km and 45 km respectively.

Further commissions have been made for the Darwin-Katherine 140 Mbit/s SMOF system and initial 140 Mbit/s bearers of the Sydney-Canberra portion of the Melbourne-Sydney route. The Darwin-Katherine system is one of the first remote systems in the world and incorporates some solar powered repeater sites.

Telecom is currently being supplied single-mode equipment as follows: 2-, 8- and 34-Mbit/s equipment locally developed by STC, 140-Mbit/s equipment locally developed by NEC and Siemens, 565 Mbit/s equipment locally adapted by Plessey and analogue TV equipment developed by Siemens. The degree of local development varies and is in response to tough specifications and unique facilities required for often harsh Australian conditions. Local content varies from about 50 per cent to 70 per cent and gross optical transmission equipment purchases (excluding cable) are around $18.5m per annum.

Telecom's first major installation in the customer access network (CAN) is the multi-mode optical fibre (MMOF) loop network installed in the Melbourne central business district. This $3m pilot project passes about 50 major business offices and telecom has gained technical and economical benefits from this competent and competitive industry, and was keen to see a similar industry established to supply optical fibre cable.

establishes an optical fibre network which can be used to support a wide range of services. The initial application of the network will be to link a number of Telecom buildings, which are being equipped with local area networks. Video equipped links are being provided to the research laboratories at Clayton and the external plant laboratories at Maidstone. These arrangements will be used to test concepts and techniques and to demonstrate how the network can support new products.

A number of point-to-point cables have also been installed in the CAN to meet specific customer needs.

Development of supporting industries

Australia has a well developed metal cable industry that has proved over a long period that it is capable of providing Telecom's metal cable requirements at lower cost than overseas manufacturers. Telecom has gained technical and economic benefits from this competent and competitive industry, and was keen to see a similar industry established to supply optical fibre cable.

Telecom first became contractually involved in the development of the optical fibre industry in 1976. Then a contract was let to AWA to develop the chemical vapour deposition in-tube process, for the manufacture of solid-core step index optical fibre.

Since that time, as Telecom's interest in optical fibre cable systems has increased, industry has responded with an investment of approximately $43m in two fibre plants and three cable plants. All of these are world-class facilities and currently produce all the optical fibre cable purchased by Telecom. During this period the Australian cable industry was kept informed of Telecom's needs and expectations, through regular liaison meetings at the technical and management levels.

By 1978 Telecom's interest in optical fibre systems was beginning to gather pace and small quantities of step index MMOF cable were purchased from AWA and Dainichi Nippon for research purposes. This was followed in 1980 by the purchase from Sumitomo of 8 km of six-fibre graded index MMOF cable for the Clayton-Springvale research laboratories installation in suburban Melbourne.

As Telecom's plans became clearer, it was necessary to develop optical fibre cable designs suitable for use in Australia. Companies were invited to tender for this work and contracts were subsequently let to Austral Standard Cables (ASC) and Pirelli. One of the most important outcomes of this work was the adoption of the slotted core design by Telecom for external optical fibre cable. The contracts had the dual benefits of better defining Telecom's needs and improving local industry's ability to meet these requirements.

During 1982 four field trials were held. Cable totalling 1100 fibre-kilometre (Fkm) was purchased from Mitsubishi (Furukawa), ASC, Sumitomo and ASC respectively for these projects.

Cable for the Melton-Ballarat 140 and 565 Mbit/s field trial was installed in 1985. The 74 km of eight-fibre SMOF cable required for this project was supplied by local manufacturers ASC and Olex, using imported fibres cabled in local plants, and by Siemens. The Siemens cable was fully imported, of a different de-
ALL-FIBRE NETWORK

This cable will be produced by ASC at its Clayton (Vic) plant, Olex at its Tottenham (Victoria) plant and Pirelli at its Dee Why (NSW) plant. The fibre requirement is now being provided by Optix from its Tottenham (Victoria) plant using Sumitomo technology, and by Optical Waveguides Australia (OWA) from its Noble Park (Victoria) plant using Corning technology.

Future trends and developments

Single-mode optical fibre will have a prominent role in the expansion of Telecom’s digital transmission network for many years. Extensive use in the junction and trunk inter-exchange networks will continue and use in the CAN is expected to grow.

In the near future, there is the possibility of even longer repeater spacings for long haul systems by utilizing the 1550 nm window and Telecom is already negotiating on this. By the mid 1990s, expansion of the intercapital network will probably be by 2.4 Gbit/s systems (30,720 VF circuits) using existing cable and repeater spacings. Thereafter, emerging heterodyne techniques may allow repeaterless operation for hundreds of kilometres, coupled with significantly greater capacity, further reducing the cost of long distance systems.

Perhaps the most exciting prospects in terms of manufacturing volume will be in the CAN, where virtually unlimited bandwidth can be made available to customers for telephone, video telephony, subscription TV, high definition TV and all manner of data transaction purposes.

This aspect is being examined in the pilot MMOF network in the Melbourne CBD. It is also proposed to test the use of MMOF in the CAN, with a pilot installation commencing in 1987 in the Sydney CBD.

Cost studies have indicated that by the early 1990s optical fibre cable systems could become an economically attractive alternative to the use of copper pairs in the residential CAN, particularly for enhanced services, basic access and primary rate ISDN services. The extent to which optical fibre is used in the CAN will be heavily dependent on the cost of associated opto-electronic devices.

Acknowledgement is made of the permission of the Chief General Manager, Telekom Australia, to publish this paper, and the assistance of Messrs R. Lewis, J. Clark and L. Vaux in the preparation of the paper is acknowledged.
Computer music means sound reproduced through loudspeakers, right? Not necessarily. This article describes a system in which the computer plays the piano — dynamics and all. A commercial package possible? Maybe ...
The practicalities

In attempting to make a state-of-the-art computer-operated piano, several problems need to be addressed. The type of mechanism to 'play' the piano is foremost. Keyboard instruments such as the piano or organ lend themselves to a mechanism that replaces human fingers. Fairly successful mechanical violins were once produced, and with ingenuity it is probable any instrument could be similarly adapted. However, the piano is probably the most suitable, as a player mechanism basically entails a means of providing a variable velocity force to each key. Solenoid-operated systems have previously been marketed; an example is the SuperScope tape-recorder-operated system developed by the Marantz Co in the early 1980s. A more sophisticated, though non-commercial system was developed about the same time by electronics engineer Wayne Stahnke in America. Working for the San Sylmar Museum in California, Stahnke developed a computer-based mechanism that controlled the velocity of each key's actuating solenoid. The final result, according to listener's accounts, is superb but the total cost (development and construction) was enormous. This instrument is capable of replaying performances exactly as recorded, but the player mechanism and associated electronics are relatively cumbersome. The SuperScope system, while cheap at around $2000, failed to deliver all the nuances and power of a virtuoso performance. The lack of sophistication prevented its ultimate success, although many were sold around the world.

Pneumatic versus electrical power

While an electrically powered instrument may seem most appropriate in these electronic times, the advantages of a vacuum powered system are many. Foremost is the similarity of a pneumatic to a human finger in its manner of striking a piano key. A pianist will hit each key with an initial force that quickly reduces; the exact opposite to the operation of a solenoid. Placing a capacitor in series with a solenoid gives an electronic approximation to this but multiply this 88 times, and the cost and bulk become limiting. Another often underestimated factor is the total power required. A concert pianist can generate up to 1 kW of instantaneous energy at the keyboard, and if the reproducing mechanism can't match this, the performance quality is compromised. A vacuum system with suitable reservoirs can provide this power easily.

Finally comes size, weight and cost of the mechanism. Given mass production techniques, and using traditional materials, the vacuum system offers many advantages.

Assuming the use of a vacuum powered system, the next problem is how to control the force applied to each pneumatic when re-creating the dynamics. A lesson can be learnt from the original reproducing pianos by studying the method they employed to such great success. The regulating systems differed between brands, but they all ultimately performed the same task. In principle, the player mechanism, called a 'stack', had some 88 individual key-actuating pneumatic bellows mounted on a ducting system supplied via two vacuum regulators. A valve to switch each pneumatic was incorporated within the unit that connected either regulated vacuum or atmosphere to the pneumatic as dictated by the piano roll.

Dynamic control was achieved by dividing the stack at approximately the centre of the keyboard, and applying, via a regulator for each side, a controlled vacuum. Controlling the vacuum was achieved by a variety of complex methods, the basic principle being the introduction of a restriction in the vacuum supply line to each side. This implies that all notes played together within one or other side of the stack receive the same vacuum but, as later explained, careful coding can allow one or more notes to appear louder within the group.

The next aspect concerns the integration of electronics into a vacuum system. Many pneumatic control systems in industry do this to a high degree of sophistication. Making an electrical signal operate a pneumatic was also commonplace in the 1920s. In 1978, leading enthusiast of the reproducing piano Denis Condon and I developed an electro/pneumatic vacuum regulator for use in a piano playing 'machine' that featured in many concert performances in Australia and New Zealand. Audiences heard the Grieg Piano Concerto performed with a full symphony orchestra, and a recording was subsequently issued worldwide to excellent reviews.

Other recordings were later released, including the Tchaikovsky Piano Concerto (No. 1) and many solo piano pieces, all from reproducing piano rolls made by Percy Grainger. That this machine was capable of providing comparable performances to that of a live virtuoso indicates what we can expect.

The computer

So, we felt that on the basis of developments in the 1920s, a machine to operate the piano would be the least of our problems. Using a computer to provide the information that recreates the recorded performance is similarly relatively easy. (This blase comment is made in hindsight after many years of development!) At this stage, I have written all the programs necessary to store reproducing piano rolls as digital information in an Apple computer, and then have the computer operate an original Ampico reproducing piano as if it were playing from the roll. Some interesting statistics come out of this endeavour, and are worth relating. Devotees to the IBM genre are perhaps curious why an 8-bit machine was used. Basically, 16-bit personal computers were not around when the project was commenced, but the final success has testified to the power of 8-bit computers, and adapting a 16 'bitter' is probably overkill.

In 1978, leading enthusiast of the reproducing piano Dennis Condon and I developed an electro/ pneumatic vacuum regulator for use in a piano playing 'machine' that featured in many concert performances in Australia and New Zealand. Audiences heard the Grieg Piano Concerto performed with a full symphony orchestra.
square wave. This frequency was established originally as the highest rate a cassette tape recorder could handle, as the genesis of the system was based on a cassette being a replacement for the piano roll. As a computer can handle higher input/output rates, the number of 'scans' per second could be subsequently increased if compatibility with an existing system was not a criterion. To enable the large amount of data to be economically stored, the computer program was designed to initially 'squeeze' the zeros to a more compact form as the majority of the scan incorporates those notes not being played. However, further processing of the data was needed if realistic RAM usage versus playing time was to be realized.

The subsequent processing, performed by an additional program, requires that each data 'word' comprising the 100 bits, be compared to the next word. The end result is that only the differences between the words are retained, and the replay program reconstitutes the data as it is played. The final figures average out to 16K of RAM providing about three minutes of music. This varies tremendously with the nature of the performance, as slow pieces have fewer changes between subsequent words (or scans), compared to faster performances. This means that most items of the repertoire require less than the 40K of RAM available on the Apple. For selections requiring more memory, such as a complete concerto, an extension memory card is used, available for peanuts on an Apple IIe anyway.

To maximize RAM availability in the Apple, and to create the highest possible disk storage space, a simplified DOS that features high speed data transfer was developed. A 64K Apple is required, and all programs are stored in the upper 16K normally occupied by BASIC. It transpires that for a typical Apple 40 track drive, a 5½" diskette can provide an average of 40 minutes of music per side, and as two drives are used, over an hour or so playing time results from a maximum choice of 24 items at any one time.

Interfacing to a piano
The current standard for electronic musical instruments is the MIDI interface. It was developed as a means of information transfer between a wide range of electronic devices, including computers and electronic keyboard instruments. Its suitability as an interface for the system under discussion is not in question, but the MIDI convention is more complex than needed. The interface developed by me (in pre-MIDI days) uses a much simpler data format, where one binary bit is one note, a word is 100 bits, and an expression for one word encompasses all notes within that word. Also, the stored data is formatted to occupy minimal memory and disk storage space. However, if compatibility to the MIDI standard was necessary, a driver program to take the data and rearrange it to suit could be used.

Like MIDI, a serial data stream is used in this system, requiring a length of single-core shielded cable. The exact format of the signal is not being discussed, as patents are being considered. However, the receiving/decoding electronics are extremely simple, merely involving several 555 timers and shift registers (unlike MIDI with its UARTS, etc). To produce the output signal, use is made of the games port on the Apple. This versatile output port has several so called annunciator outputs, addressable by software. The interface consists simply of a 16-pin DIL header with the shielded cable connected to the appropriate annunciator and earth. Cable lengths are not critical, as the signal is integrated by a resistor/capacitor network before its subsequent transmission down the cable, and lengths of 40 feet or more have been used successfully.

The performance software
The foregoing has described a practical scheme now operating in several homes. The system presently specifies an original Ampico reproducing piano, an instrument scarcer than gold-filled hen's teeth. However, the pushup player mechanism used in the previously mentioned public performances represents stage one in the...
development of an improved, smaller version.

The musical performances now used are all from reproducing piano rolls recorded in the first half of the century. While these musical offerings are highly valued by musicologists and can form a basis for a collection, recordings from today's artists would be necessary for economic viability. A method of recording live performances is presently being researched, and it seems that only minor technical difficulties are likely in the realization of a suitable recording system. The main problem concerns the dynamics of the performance, both in recording and playback.

Experience has shown that between 16 and 20 discrete levels of volume are all that are needed for the most discerning ear, with soft playing (pianissimo) requiring most of the attention. Recording the volume of each note by measuring the force or velocity of the key is done in most electronic pianos as a matter of course. However, playback assumes that each key is controlled independently, which is not the case here. Recall that only two vacuum levels are available at any one time; one for the treble notes, one for the bass. To cause a key note to sound within a chord, where the note and chord are all under the control of the same regulator, requires the key note to be played just before the chord. This allows the note to have a higher vacuum than the chord but the listener still hears them all at the same time. Obviously, any recording using this system would need processing to create the effect.

It is important to stress that for reasons of economy, any commercial system must be as simple as possible. The end justifies the means in many instances, and fooling the ear is valid if a successful but simple system results. In a commercial system, the ability to record from the piano could be an optional extra. Fitting this would present extra difficulties, although the SuperScope system provided this facility as standard. However, unlike the SuperScope system which used a tape-recorder, a computer based scheme could offer editing features. The existing system allows the speed of the performance to be varied, and an editing program is currently being written.

Looking to the future

If a viable self-playing system is finally developed, the implications for the entertainment industry are numerous. Performances by top line jazz, popular or classical pianists will become available on the run-pus room piano.

Imagine the changes in social habits. It is unlikely people would gather to hear recordings of pianists via the hi-fi set. But issue invitations for a soirée of music on a piano, and gatherings reminiscent of more genteel days could become the latest alternative to barbecues and video parties. Songs around the piano, or a concert featuring famous pianists will become living room past-times. Piano teachers and conservatories could also find application for a system that plays a piano as effectively as a live pianist. A more contentious use would be in places of entertainment, such as bars, restaurants and clubs, in the provision of dinner music.

Other benefits that would accrue include yet another use for the home computer. As indicated, a basic 64K computer is adequate, and software for all the common varieties is only a matter of adaptation. With even larger computers, words to songs could be displayed on the screen; a sort of solid state pianolo roll. And of course, interfacing via the MIDI port to an electronic instrument is also possible. Where circumstances preclude a conventional piano, owners of any appropriate electronic keyboard could benefit by playing the available recordings using these instruments, widening interests and markets accordingly.

Significantly, however, the piano can now re-enter the home musical scene, made more useful by the computer that previously spent its time shooting aliens.

Conclusion

This article has attempted to show that it is both economically viable and musically valid to interface a computer to a conventional piano by way of a vacuum powered player. The suggested player is of the pushup variety, although integrated units are just as possible. A practical system is currently operating. Some 1400 individual performances are currently stored on approximately 100 disks. Selection and cataloguing is facilitated with a database program. By adapting an actual piano, rather than an electronic equivalent, the ultimate in sound is realized. Obviously, the better the instrument, the better the sound; an argument that applies to all means of sound reproduction. If ever loudspeakers can really replace the vibrating strings of a piano, then the proposed system becomes obsolete, but until then . . .

Peter Phillips is a TAFE teacher of Industrial Electronics, and has written numerous articles on electronics for this magazine. His involvement in computers, electronics and music has culminated in the system described by this article. Interested readers are invited to correspond with him through our office.
"WHICH RADIO DO I NEED?"

...THE ANSWER IS IN THE PALM OF YOUR HAND

Whatever task you have to do the ICOM IC-40 is the one that can handle it.

It's ideally suited for farming, transport, sports, bushwalking & boating. Whatever the communication problem you need to solve this is the radio that's being proven every day in a million different uses.

Contact your local dealer for a demonstration of the most advanced CRS portable available in Australia.

Please post to:

ICOM AUSTRALIA PTY. LTD.
7 DUKE STREET WINDSOR 3182.
VICTORIA.

Name

Address

City Postcode

or phone ICOM on (03) 51 2284

ICOM
The World System

Lift the efficiency of your service department.

Call (02) 560 0666

for more information or an obligation-free demonstration of TSM.

Thinking Systems
180 PARRAMATTA ROAD, STANMORE NSW 2048
Setting new standards for programmable calculators!

The TI-95 PROCALC™ sets new standards in programming power, calculating power and memory power.

Having the right tool for the job always makes the work easier and faster, and the TI-95 PROCALC™ keystroke-programmable is setting new standards for advanced scientific calculators.

Introduces “windows” to programmable calculators! Combines redefinable function keys with display windows to label the functions. No longer does state-of-the-art capability mean hard-to-remember key sequences or symbol-cluttered keyboards.

A new standard in calculating power. Packs more than 200 functions in a menu-oriented, easy-to-learn, easy-to-use package for advanced students and professionals. TI's AOST™ Algebraic Operating System with visual audit trail makes entering calculations as easy as writing them down.

A new standard in programming power. The TI-95 programs as easily as it calculates without compromising power. Straightforward language includes branching, subroutines, tests, flags, file operations and alpha capability.

A new standard in memory power. You can partition 8K bytes of internal random access memory to suit your needs. Maximums: 900 data registers. Or 7200 program steps. Or 6200 bytes of file space to store custom programs and data.

Includes comprehensive user's guide, programming guide and hard-plastic case. Optional statistics and math software and 8K Constant Memory™ cartridges available.
Extension of CD standard

Phillips and Sony Corporation announced recently that they are expanding the applications of optical playback media with the development of two new consumer electronics products based on the popular compact disc technology.

The CD disc with video allows the combination of both video and CD sound of five minutes duration (video clip) and 20 minutes of high quality digital sound on a CD disc (5 inch/12 cm). The audio portion of the new video single can also be played on existing CD players. In order to distinguish the video single from the regular compact disc, the colour will be golden.

The optical disc family now offers the software industry a medium combining CD sound with the superior quality of the optical video disc. It covers the full spectrum of software programming including music, music video, video clips, feature films, etc. While the new 5-inch disc will be an ideal medium for popular video clips, cartoons, and film trailers, the eight- and 12-inch discs offer excellent opportunities for a variety of entertainment programming, such as concerts, opera and ballet, video clip compilations and films.

In the future, both companies said, it is anticipated that combination players capable of reproducing all discs in the video and audio optical disc family will become available in order to meet consumer needs.

The companies also announced plans to work jointly to develop specifications for a convenient CD audio single compatible with existing CD players. The increasing popularity of the CD format has made it necessary to develop a CD successor to analogue 7-inch records, of which hundreds of millions are sold every year. The companies said that they are currently considering making the CD audio single a 3-inch disc capable of carrying up to 20 minutes of digital audio music and compatible with existing CD players by means of an adaptor. They stressed that extensive consultation with both software and hardware companies will be necessary before releasing the final specification.

The ‘golden disc’ is expected to have its first viewing at the Chicago CES in June.

Extended JVC guarantee

Hagemeier (Aust) BV, marketers of JVC products, has announced that as from last February, a five year warranty applies to all JVC hi-fi equipment sold.

Hagemeier’s Managing Director, Edwin Koemans, pointed to confidence in product quality as the reason and also invoked a reassuring slogan for JVC products, “Invest in quality”. JVC celebrates its sixtieth anniversary this year.

The current JVC line-up includes over 40 products designed to cater for all segments of the hi-fi market.

The sound of the hatchback

Engineers at Mitek (USA) have developed a range of speakers for hatchbacks, vans and four-wheel drives that avoids rebuilding sections of these vehicles.

The MTX “Road Thunder” series comes in three models: the 3558, an 8", two-way, 100 W model; the 4558, a 10", three-way, 150 W model; and the 5558B 12", a three-way, 150 W model. Because of its size the 5558B comes as a complete enclosure, whereas the other two use two separate enclosures.

The speakers use polypropylene drivers along with a Thiele/Small aligned vented cabinet which MTX claims results in an extremely efficient system.

The speakers are covered in heavy duty aviation carpet in order to protect the interiors of vehicles when they are installed. Use outdoors is easy, depending on the length of speaker cable.

The speakers carry a 12 months’ warranty. Enquiries should be directed to Arena Distributors, 642 Albany Hwy, Victoria Park, WA 6100. (09) 361-5422.

NTSC-PAL system converter

Conversion of American NTSC tapes to PAL for replay on Australian television sets is an expensive exercise. However GEC claims to be attacking the price barrier with the HD8000 Video System Converter. This, it says, enables video users to realistically consider the economics of purchasing their own system converter.

The HD8000 has been developed with the budgets of universities, sub-broadcast production houses, government and industrial video users in mind. Using the latest digital technology such as 64K RAM, high speed ICs and a high density printed circuit board concept makes the HD8000 an economical compact system converter.

An in-built time base corrector enables the use of any video tape recorder as a source without picture distortion. This is often caused by the relative instability of a VCR compared to broadcast signals.

GEC video systems division, which is distributing the HD8000 NTSC-PAL systems
Among the released another range of VCRs under the title "National Generation" videos. It includes the new NVG20A which is a heavy duty balanced CD and a rack mount auto reverse cassette recorder.

The M-600 series mixer is the largest mixer ever produced by Tascam. All inputs and outputs (except direct out) are electronically balanced and a compliment of 16 pin busses makes them compatible with 16-track recorders. Twenty-four and 32-input models are available with either single monitor (16 returns) or dual monitor (32 returns). All inputs and outputs are wired to 24-pin D-sub connectors which may be connected to an optional balanced patch bay unit. A stereo input module is also available.

The new Tascam rack mount CD player features balanced XLR-type connectors and Teac’s 2D low distortion circuitry. The player can be controlled via a remote function socket enabling remote fader start or dual machine control. The price of this unit is $1356 plus tax.

The Tascam 112R cassette recorder features auto reverse and a three-head reproduction system. It incorporates a hysteresis tension servo control to minimize wow and flutter and distortion. The 112R offers system expansion with a 16-pin connector on the rear panel which accepts an optional remote control and carries a number of expansion signals for multi-deck operation. As well as these products Tascam has announced a new cue/review deck, a balanced patch bay, and an advanced patch bay, and an expansion circuity. The player can reproduce programs, particularly for Melbourne's real estate channel operated by Corporate Data Systems. Videotape masters are produced on the recam system, then dubbed to low-band U-matic for transmission. The 500 W transmitter, situated in the Melbourne central city area, radiates on 2.1 GHz. Corporate Data Services is the holder of one of the two private licences granted for this type of service. Along with the recam system, PVS has also purchased a total of nine three-tube cameras from GEC Video Systems, including five WV888, two WV555, one WVN3 and one WV777 cameras primarily used on PVS's telecine chains for the transfer of standard and Super 8, 16 mm and slides to videotape.

For further information contact M.J. Andrews, GEC Video Systems Division, (02) 887-6222.

For the professionals

Amongst other things National Panasonic has released another range of VCRs under the title "New Generation" videos.

Almost all professional audio products released by Tascam are a mixing console, heavy duty balanced CD and a rack mount auto reverse cassette recorder. The M-600 series mixer is the largest mixer ever produced by Tascam. All inputs and outputs (except direct out) are electronically balanced and a compliment of 16 pin busses makes them compatible with 16-track recorders. Twenty-four and 32-input models are available with either single monitor (16 returns) or dual monitor (32 returns). All inputs and outputs are wired to 24-pin D-sub connectors which may be connected to an optional balanced patch bay unit. A stereo input module is also available.

The new Tascam rack mount CD player features balanced XLR-type connectors and Teac’s 2D low distortion circuitry. The player can be controlled via a remote function socket enabling remote fader start or dual machine control. The price of this unit is $1356 plus tax.

The Tascam 112R cassette recorder features auto reverse and a three-head reproduction system. It incorporates a hysteresis tension servo control to minimize wow and flutter and distortion. The 112R offers system expansion with a 16-pin connector on the rear panel which accepts an optional remote control and carries a number of expansion signals for multi-deck operation. As well as these products Tascam has announced a new cue/review deck, a balanced patch bay, and an advanced patch bay, and an expansion circuity. The player can reproduce programs, particularly for Melbourne’s real estate channel operated by Corporate Data Systems. Videotape masters are produced on the recam system, then dubbed to low-band U-matic for transmission. The 500 W transmitter, situated in the Melbourne central city area, radiates on 2.1 GHz. Corporate Data Services is the holder of one of the two private licences granted for this type of service. Along with the recam system, PVS has also purchased a total of nine three-tube cameras from GEC Video Systems, including five WV888, two WV555, one WVN3 and one WV777 cameras primarily used on PVS’s telecine chains for the transfer of standard and Super 8, 16 mm and slides to videotape.

For further information contact M.J. Andrews, GEC Video Systems Division, (02) 887-6222.

ETI April 1987 — 33
Installation of car stereo

The installation of your car stereo is critical in how it will sound. It is possible to improve the performance of your car stereo by as much as 30 per cent by simply following a few inexpensive installation tips.

A little thought before you start the job will often pay off upon its completion. How often have you seen front speakers mounted in the front kick panels almost totally out of sight? This speaker placement will give you ankles great sound but not your ears! Try mounting your speakers in the door with a clear line of sight to them. By bringing your speakers closer to your ears you won't have to turn your stereo up so loud. Be careful, however, with the placement of your front speakers so as not to interfere with the operation of your window winder mechanism or door handle.

Mount the speakers on a piece of 5x16 inch marine ply or similar. Screw this mounting board onto the metal door frame and then attach your speaker and door trim to it. Make sure there is no movement of the mounting board, speaker or door trim. Then seal your door trim to the door with a listen or similar. By securely attaching your speaker to the door and ensuring that there is no movement or air leaks around the trim, your bass response should improve substantially.

For rear deck mounting speakers it is also recommended to mount these speakers on plywood, (or even replace the parcel shelf with plywood). Once more ensure secure mounting of speakers.

By isolating road noise from the interior of your vehicle you can once more improve the performance of your car stereo. A simple method to cut down the road noise in your vehicle is to install some felt or dense foam rubber (yoga mats) under your car's carpet. You can also glue noise deadening material to the inside of your car's panels and engine compartment. This is available through most car accessory retailers.

A good quality speaker cable is also very important. Your speaker wire should be at least as thick as figure 8 lamp flex (like the wire you have on your bedside lamp). Good speaker wire improves the high frequency response of your system. If in doubt seek advice from your local hi-fi dealer.

A little extra thought and time spent on the installation of your car stereo will make dramatic improvements to its performance and your enjoyment.

Installation tips come from the Consumer Electronics Suppliers Association.

Broadcasters warn

Following an investigation of the current labelling of AM/FM stereo radio receivers by a national body of stereo AM radio broadcasters, Stereo AM Australia has (again) warned consumers wishing to hear both AM and FM stations in stereo to exercise caution when buying a new radio.

Only about 60 radio receiver models can currently claim (in labelling and advertising) to be truly "AM/FM stereo" or "stereo AM/FM", since only these radios have a stereo capacity on both AM and FM bands. However, many receivers currently in shops are labelled and promoted as "AM/FM stereo" while in fact they only have an FM stereo and AM mono capacity.

Stereo AM Australia's chairman, Chris Brammall, has said that the Trade Practices Commission has agreed there would be value in an industry education campaign to overcome possible consumer confusion over stereo AM radio labelling. The Commission believed this would help consumers identify the equipment appropriate to their needs.

Both the Victorian Consumer Affairs Ministry and South Australian Department of Public and Consumer Affairs have also said that there is potential for consumers to be misled.

"We believe that under Sections 52 of the Trade Practices Act some retailers and manufacturers could be, perhaps unwittingly, giving the public misleading and deceptive information on radio receiver units," added Chris Brammall.

"Our advice to consumers is to be very careful when they buy a new radio. For if you want stereo on both AM and FM bands, try the product first to make sure."

Akai to extend guarantee

Akai, issuing statements under its new banner of "customer caring spirit", has announced the release of a VHS E160 video tape, guaranteed for 1000 replays.

According to National Marketing Manager, John Karbowiak, the long guarantee is warranted by what Akai sees as consumer confidence in its product, manifested in 20 per cent of all retail tape sales.

SIGHT & SOUND NEWS

Turn your lounge room into a cinema

Pioneer has released a surround sound processor, the SPX 707, for the enhancement of your hi-fi or video sound, and emulation of the big cinema sound.

According to Pioneer, the effect of surround sound is created by a delay in the sound moving from front to rear speakers. Videos commonly nowadays have a specially recorded track which is accessed by the surround sound hi-fi component.

Where there are no special tracks, the SPX can simulate to closely achieve a stereo wide sound.

The SPX features a dolby decoder and a full remote control. It retails at $995 RRP.
About the Shure HTS 5000

"Once you have seen and heard a proper Dolby Stereo movie presentation in your own home, you'll never be satisfied with ordinary, garden-variety television."

(With the Shure HTS 5000) "... the whole effect was overwhelming. Dialog was crisp and clean, and the stereophonic music and special effects were reproduced by the system with stunning clarity and impact."

"You can actually achieve a much higher quality of sound than in most Dolby Stereo theatre installations."

Bert Whyte

"AS GOOD AS OR BETTER THAN THEATRE SOUND"

SHURE HTS 5000 HOME THEATRE SYSTEM

ADVERTISING INFO No. 35
YAMAHA DSP-1

AWARD WINNING SOUND PROCESSOR

The “audible magic” of the Yamaha DSP-1 won it the 1986 Australian CESA Award.

Louis Challis

At the end of 1984 I visited the Yamaha facilities at Hamamatsu, which is a small city almost halfway between Tokyo and Osaka. Whilst there I spent a significant proportion of my time in Yamaha’s ‘acoustical analysis section’ which has an instrumental laboratory and computing facilities. These were positively ‘mouth watering’. Not only did they have a series of reverberation chambers of world standing, large anechoic rooms and ‘state-of-the-art’ instrumentation but more significantly, they had been using the facilities for many years to leapfrog their competitors in the development of new analytical procedures for the assessment of room acoustics — with the emphasis on large halls and auditoria.

One of the most unusual aspects of its facilities was the ability to use large powerful computers to analyse all aspects of the acoustical performance of auditoria by a series of analytical processes which were, and I suspect still are, unique.

Although at the time I did not initially realize the implications, Yamaha’s research engineers have visited scores if not hundreds of auditoria and concert halls both in Japan and elsewhere in Europe and America. In each of these halls they had carefully measured and recorded the impulse response of the hall at different positions within the space (on the stage as well as in the audience area) so that each discrete echo and reflection, which controls the early decay times in the reverberation process, could be reproduced and/or utilized as a programming tool. The results of these analyses were then compared with classical acoustical theory, and then used as a basis for developing computer algorithms which allow the response.

Yamaha also has the means to turn these expressions into silicon. Whilst I was at Hamamatsu, I was shown how the integrated circuit development section of Nippon Gakki (Yamaha) have been in the forefront of the development of relatively inexpensive, large scale integrated circuits. It had also been working on powerful 8-bit
and 16-bit microprocessors. The need to provide ambience and realistic 'surround sound' provided Yamaha with all the impetus that it needed to take its advanced technology and inject it into its customer products division which is very much the older brother of the Nippon Gakki family.

Unlike the majority of other firms which have developed somewhat more staid electronic 'ambience' sound systems, Yamaha decided to break entirely new ground and to provide an ambience system which reproduces almost the full time history and frequency spectrum of a real auditoria's acoustical environment. Unlike the majority of other surround sound systems, it decided to provide this capability using six audio channels — two conventional main channels and four supplementary surround sound channels. To cater for the consumer market requirements for 'user friendly' simplicity, this ambience is provided at the 'touch of a button'.

The DSP-1 digital sound field processor has been "designed to reproduce the sound field experienced in a concert hall (and a lot of other different environments as well) in a normal listening room by simulating sound reflections from four primary directions utilizing the actual measured characteristics of the auditoria which are then fed to a series of extra amplifiers and surrounding speakers."

This previously unheard of feat is accomplished by a digital signal processor in which three ultra sophisticated digital integrated circuits are used. These LSIs generate the complex set of echo patterns and provide an unbelievable range of control for the user. The DSP-1 utilizes a 16-bit analogue-to-digital converter that operates on the sum of the input channels. It takes the resulting digital signal and separates it so as to generate four different ambience outputs. These four channels of digitally re-programmed data are then restored to...
MEASURED PERFORMANCE OF YAMAHA DSP-1 REAR OUT
(NATURAL SOUND DIGITAL SOUND FIELD PROCESSOR)

Harmonic Distortion

<table>
<thead>
<tr>
<th>@ 1kHz</th>
<th>@ 100kHz</th>
<th>At 6.3kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT =</td>
<td>1.0V</td>
<td>0.1V</td>
</tr>
<tr>
<td>2nd</td>
<td>82.3</td>
<td>63.1 dB</td>
</tr>
<tr>
<td>3rd</td>
<td>93.3</td>
<td>61.8 dB</td>
</tr>
<tr>
<td>4th</td>
<td>69.9</td>
<td>66.4 dB</td>
</tr>
<tr>
<td>5th</td>
<td>83.6</td>
<td>57.6 dB</td>
</tr>
<tr>
<td>THD</td>
<td>0.02</td>
<td>0.18 %</td>
</tr>
</tbody>
</table>

SERIAL NO.: 01262

INPUT IMPEDANCE: 56 k ohms

MAXIMUM INPUT
- Clipping level @ 1kHz: 7.0 Volts

OUTPUT IMPEDANCES: 1.4 k ohms

MAXIMUM OUTPUTS
- Clipping Levels @ 1kHz:
 - Main Channels: 6.9 Volts
 - Center Channel: 2.6 Volts
 - Surround Channels: 2.9 Volts
 - (depends on program selected)

FREQUENCY RESPONSE (See Curve)
- (-3db): Main Channels: 3.5 Hz - 130 kHz

GAIN
- Main and Processing: 0 ± 0.5 dB

NOISE & HUM LEVELS (see Curves)
- (Re Input/Output of 0.5V):
 - Main Channel: 86.8 dB (Lin) 96.3 dB (A)
 - Processing Channels: 68.3 dB (Lin) 72.3 dB (A)

SEPARATION (See Curve)
- @ 1 kHz:
 - Main Channels: 70dB.
an analogue form in four separate 16-bit
digital-to-analogue converters. This
conversion is carried out with the same 44-
.1 kHz sampling frequency used in the
compact disc player system.

A series of different (standardized) early
echo and reverberation characteristics for
several performance spaces and auditoria
have been encoded on a read-only
memory (ROM) chip. When the type of
environment the user wants has been se-
lected, the DSP-1 uses the encoded infor-
mation to process the incoming sound sig-
nal to simulate the characteristics of the
space. Thus, for example, if the selected
hall has a reflection from the side walls
and back walls that reaches the listener 25
and 50 milliseconds respectively after the
direct sound has been received, then the
DSP-1 will duplicate those reflections. It
does this by attenuating the input signals
and sending them to the two front and
two rear ambience speakers with the ap-
propriate delays. What makes the DSP-1
different from any other ambience system
on the market is its ability to generate up
to 80 discrete echoes around the listener
with the appropriate time delays and at-
tenuation as would be measured in the
original environment.

This achievement of this capability re-
quires preferably four additional amplifi-
speaker channels (over and above the two
main channels that you already possess) to
provide optimum performance.

However, in order to minimize the
problem for those people who do not wish
or can’t afford to buy that much extra
hardware, there is a built-in option for
combining two of the front ambience
channels into the two main channels.

Physical characteristics
The DSP-1 is simply hooked up to your
main amplifier in much the same way as
other signal processors, with the preferred
connections being between the pre-ampli-
ifier output and power amplifier input, al-
though a connection through the tape
monitor loop is also possible. The major
difference between this unit and any of
the others available is that it provides
three pairs of outputs, two of which are
directed to the main amplifiers and speak-
ers, one pair to the front ambience ampli-
fiers and speakers and the third pair to the
rear ambience amplifiers and speakers. A
fourth set of outputs has been provided
for separate mono full bandwidth channel
or for a sub woofer output (200 Hz low
pass signal) which is taken from the main
channel signals.

Sixteen different processing functions,
which Yamaha describe as ‘programmes’, are
incorporated in each of the two primary
processing modes. These are described as
Acoustic Surround, which is used for gener-
ating ambience, and Sound Effect for
the special musical effects. The Acoustic
Surround programs are called: Hall 1,
Hall 2, Hall 3, Chamber, Munster Cathed-
ral, Church, Jazz Club, Rock Concert,
Disco, Pavilion, Warehouse, Loft, Outdoor
Stadium, Presence, Surround 1, Sur-
round 2 and Dolby Surround.

The 16 effector programs are of primary
interest to amateur recording artists and
provide left-to-right channel delay, various
stereo echoes, two flanging programs, two
chorus programs, stereo phasing, tremolo,
symphonic tremolo, echo room, two pitch
change programs, which generate sounds
up to one octave up in either semi-tones
or in hundredth semi-tone steps and four
automatic planning programs.

Each of these functions is clearly indi-
cated by a light emitting diode (LED) dis-
play on the front panel, where the chosen
program number is indicated and by a 32
character alpha numeric display which
‘spells out’ the description in words.

Hall 1 is apparently the Berlin Philhar-
monic, Hall 2 the Old Opera House in
Frankfurt, Hall 3 the Concert House in
Stuttgart, Hall 4 the Herkulessaal in Mu-

ich. Hall 3 provides two sub-settings, the
first corresponding to the sound heard on
stage and the second to the sound heard
within the hall.

One of the most exciting aspects of the
unit is undoubtedly its power to generate
an unbelievably wide variety of additional
settings, which are quite different from the
standardized programs in terms of their
ambience effects and other important pa-
rameters. You can vary the apparent room
size, its ‘liveness’, the initial delay be-
tween the main channel sound and the
processed ambience sound and the turn-
over frequencies for both the low and high
pass filters. For the chamber Munster
Cathedral and church programs, you can
change the mid frequency reverberation
time, the reverberation level and much to
my surprise, the ratio of high frequency
reverberation time to mid frequency rever-
beration time. The reverberation times
can be varied between 0.3 seconds and 99
seconds, which is at the upper end of the
audibly disconcerting range.

With the Dolby surround decoding,
which utilises the standard filter delay
Dolby B configuration, the rear channel
delays can be varied between 15 and 30
milliseconds.

As if this weren’t enough, if you alter
one of the original factory encoded pro-
grams, you can save the changed parame-
ters in one of the 16 free memories and
even give it a name which is then stored

ETI April 1987 — 39
YAMAHA DSP-1

with the program for subsequent display on the 32 character display.

All of these changes and primary program control are achieved utilizing the neat little infrared transmitter which looks just like a remote control unit. It features a colour coded set of multi-user keys with four main settings at the top labelled MEMORY, ACOUSTIC SURROUND, SOUND EFFECTOR and USER PRO.

The 16 switches below them provide either the corresponding standard programs or the 16 programs that would correspondingly relate to the primary control functions. At the bottom of the remote control transmitter are 10 additional buttons which provide the facility to change the title or name stored in the user program, as well as keys to mute the sound from the speakers, to mute the effects, to increase or decrease the parameter value (in terms of balance, reverberation time up or down, level effect or the decimal value of a parameter such as reverberation time or cut-off frequency).

Objective testing

The frequency response of the main channels was 3.5 Hz to 130 kHz and the hum and noise levels for the main channel relative to 0.5 volts input level were a very healthy 86.8 dB unweighted and 96.5 dB (A-weighted). These figures will obviously be higher for higher inputs, especially as the clipping level for the main input was 6.9 volts, the outputs of the main channel for that same 7 volts recording clearly show. The distortion spires, dependent on the actual program, as well as keys to mute the sound from the speakers, to mute the effects, to increase or decrease the parameter value (in terms of balance, reverberation time up or down, level effect or the decimal value of a parameter such as reverberation time or cut-off frequency).

With the knowledge that the reverberation generation process is in fact closely duplicating the real phenomenon, I wasn't particularly surprised to find that the reverberation times and characteristics were both realistic and believable. The frequency flanging looks for all the world like the effect of attempting to record the frequency response of a loudspeaker in a real room, as opposed to the anechoic room which we utilize when measuring loudspeakers for inter-comparison purposes. All of the measured parameters of the unit are in very close agreement with the stated values as specified on the front panel display and I found that I could utilize the signals generated as quasi calibration signals for my laboratory instrumentation.

Subjective Testing

It is hard to find the appropriate superlatives to describe the degree of subjective realism which this unit can provide. I coupled the output of a Yamaha CD-2 player to a Yamaha C2 — a preamplifier whose stereo channels were then fed into the DSP-1. The primary channels were fed to a Yamaha M80 amplifier and then to a pair of B&W 801F speakers. The ambience and surround channel outputs were fed to a Yamaha M35 amplifier whose signals were fed to a pair of B&W DM10's and a pair of Fisher monitor speakers.

The results were audibly assessed by comparing the primary sound fed into the main channels, without any ambience or surround sound being added, with the resulting audible signals provided by the ambient speakers as each separate function was selected. Although I had doubted my ability to be converted so quickly, within a short space of time both one of my senior associates, my younger son and I were convinced that the DSP-1 was not just a new toy but more significantly a 'state-of-the-art' advance in audible signal processing. We played literally dozens of new discs, old records, extended samples of classical orchestral, as well as rock and pop music to assess the unbelievable, wide range of functional settings that were readily available at my fingertips.

The original recorded sound without the ambience or reverberation characteristics of the selected recording hall, auditorium or disco were magically transformed into precisely what they stated they were, with a degree of realism and audible characteristic which I found to be strangely uncanny — if not magical. I found that I could shut my eyes and imagine I was there without any problem whatsoever.

At a selling price of $1499 Yamaha Australia (and most probably Nippon Gakki in Japan) will be hard pressed to keep the supply up to the demand. This unusual device is equally at home in a recording studio, school hall, private home or music workshop. Each and every one of those potential users, once exposed to the power and 'audible magic' of this unit, is likely to be out there placing his or her order. If ever a piece of electronic equipment justly deserved a consumer electronics award for technological innovation this unit does and I was pleased to see that it won the 1986 Australian CESA Award.

40 — ETI April 1987
27 MHz AM transceiver

Build a hands-free operation, crystal-locked AM transceiver. Amaze your friends by talking to them over long distances!

S. K. Hui

Part 1

IT'S BEEN almost a year since ETI has published any radio frequency (rf) projects. Finally, here comes a well designed rf circuit for you, the ETI-684 am transceiver.

The idea of this project actually came from aircraft communication. On one occasion, the editor and I were invited to have a test flight in a locally designed ultra-light aircraft. This is the first two seater ultra-light approved by the Aviation Department. Its only problem is that it's impossible for the occupants to talk to one another, even though they're sitting shoulder to shoulder. The turbulence and engine noise make it almost impossible to communicate. Just imagine how troublesome it is for an instructor to teach a deafened pupil to fly!!

The simplest solution would surely consist of a mic, amplifiers and speakers connected together by wire. But this would be all this circuit could do. Clearly, rf link would be a lot more useful. Not only would it find applications in the above situation, but in many others: walkie-talkie, links between motorcycles, cars in convoy, etc. What makes it particularly attractive is the hands-free operation of the unit, making it suitable in areas where operators are too busy to 'press-to-talk'.

Design considerations

I did a lot of thinking on the type of modulation, the carrier frequency, cost, convenience of building and legal requirements of this project. There are four frequency bands worthy of consideration. A band around 910 MHz can be used but it's rather tricky to set things up there. Very few people would have the gear to deal with a frequency this high.

There is another band at around 203 MHz used by TV and radio but operating in this band might interfere with your neighbour's favourite newly wed game program. Around 88 to 90 MHz there is an empty slot in the broadcast band, but it's (a) illegal, and (b) in Dec '85 we ran another project using it.

After a lot of soul searching, it seemed to me that a 27 MHz crystal-locked AM system would be the best compromise between ease of construction, legality, antenna length, interference and power. The band is populated by radio remote control systems as used in toys and models, and by walkie-talkies. It also requires a long antenna for efficient radiation, but in this band, an output transmitting power of less...
Circuit design
The complete unit consists of two pc boards, one containing the transmitter and the other the receiver, separated by stand-offs. A battery is also included in the box. To make a viable communications system, two of the units are required. A block diagram (Figure 1) shows the essential features incorporated into the transmitter board. The receiver board is for converting the received rf into an audio signal and, therefore, as shown in Figure 2, has quite a different structure from that in Figure 1.

The transmitter board has a crystal-controlled carrier frequency generator which is enabled or disabled by the output of the voice controlled electronic switch. The reason for having this set-up will be apparent later. The amplitude of the carrier signal from the oscillator is then modulated by the audio signal in the modulator, hence the name amplitude modulation (AM). The AM signal is then further amplified by the tuned resonator before driving the antenna. An LED indicator is included which will be lit up when the unit is in transmitting mode. During standby, the unit is in receiving mode with the LED off.

Referring to Figure 2, the receiver board has a tuned filter set to 27 MHz to pick up the carrier signal. The signal is then amplified before getting to the AM

Box making
Before I committed myself to making a pc board layout, I tried to find a box of the correct size. The right sort of box has to be non-metal, low profile, reasonably cheap and common to obtain. Given the choice of boxes in the hobby shops, that left me with no alternative but to design my own custom made box tailored to the exact dimensions wanted.

The material I chose to use for the prototype was 3-ply wood. It can be obtained either from a model-making hobby shop or any timber selling place. Perspex is another material worth considering. But if you choose to follow the dimensions given here, the thickness of the 3-ply must be 4 mm. The box is built from six separate pieces labelled from A to F. The cutting dimensions of the six pieces shown in Figure 5 are all in millimetres (mm). Use Figures 5 and 6 to help you understand the next few paragraphs.

To cut a straight line on the 3-ply, the best tool is a sharp scalpel and an accurate metal ruler. Firstly, mark out the piece you want to cut on both sides of the wood. Score the wood along the marked lines with a scalpel and a ruler. Just break the wood along the cut. Cutting with a hand saw is not recommended as it leaves a rough edge to be smoothed out later.

After cutting the pieces, the next problem is to drill holes. Three of the holes (e, f and g) need to be counter sunk to account for the thickness of the wood on the sockets. Holes 1 and e are for the 3.5 mm phono sockets, SK1 and SK2. Hole g is for the antenna socket SK4, which is a 2.5 mm phono socket. Hole g is also countersunk to a 3.5 mm phono socket (SK3). If you want to use rechargeable batteries, skip that hole if you are going to use normal batteries instead (see battery section). Holes j and k are for two 4BA counterlink head screws.

To assemble the box, only panels from B to F are used, the lid (A) will be dealt with separately later on. The glue used was five minute quick dry Epoxy. The five pieces are glued together as shown in Figure 4. Check that the box is not tilted or twisted in any way. A right-angled ruler would help to get this right. Leave the box like that overnight to allow the epoxy to acquire its full strength. Next, smooth the box with sand paper. Use a coarse grade until the joints between panels are smooth, then finish off with a fine grade sandpaper.

At this stage, you will probably find that the lid won’t land on the box. Don’t worry, this is the way it should be. Use fine sandpaper to smooth off the side edges of the lid slowly until it just fits in. Further smoothing on the top and bottom edges is required until they are level with panels B and C when sitting on the box. The whole thing sounds a little tedious here but I’m sure any handy man could do a better job than me. The motto is: If you want a good looking box, take your time!!

Next is the paint job. A single coat of matte black will suffice to protect the timber of the box. However, if you want to tart it up a bit, there is no substitute for a lot of paint. Between each coat, use wet and dry sandpaper. The result, especially when the Scotchtape panels are in place, is a very professional looking unit.
Figure 3. Complete communication system. Crystals XT1 equals XT2, XR1 equals XR2, and XT1 minus XR1 equals 455 kHz.

hybrid receiver chip TDA1072A (IC2), the star of the show!! The majority of the functions done in the receiver board are controlled by this integrated circuit (IC). The IC has an internal double-balanced mixer, IF amplifier, balanced full wave detector, audio pre-amp, automatic gain control (age) amplifier and an indicator driver. The LED indicator driver has a dc voltage output proportional to the age signal.

The age dc voltage is buffered and used to shut down the rf amplifier when the received signal gets too strong. The chip makers claim 1.5 µV sensitivity but in real life, I could only get 30 µV. Fortunately, the tuned rf amplifier provides a signal gain of around 12 to 30, depending on how well it is tuned so that the overall sensitivity of the receiver board varies between 2.5 and 1 µV.

The audio output from the IC is not directly usable. A simple rf filter is needed to remove any high frequency mingled in the audio signal. The purified signal is then amplified to drive the headphone.

Signals that you hear in the headphones are not only received off air during transmission, but also via 'sidetone', ie, some of the signal from the microphone is fed around to the headphone so that you can...
hear yourself. It's a technique also incorporated in telephones.

Since the system is crystal-controlled, the crystals used in the transmitter and receiver have to be matched. The complete communication system shown in Figure 3 requires four crystals with XT1 equalling XT2 and XR1 equalling XR2. Furthermore, the frequency specified for XT1 (XT2) and XR1 (XR2) has to differ by 455 kHz. For example, in my prototype XT1 and XT2 are 27.165 MHz and XR1 and XR2 are 27.620 MHz. Usually they are sold in matched pairs.

Communication protocol

In any rf link, bandwidth is always the prime consideration in the design. In most cases, the less bandwidth you use in doing what you want, the better it is. That is the reason why in most walkie-talkie devices, half duplex is used. The communications channel is only wide enough to allow one way communications. Full duplex allows you to talk and listen at the same time, so, all things being equal, it requires twice the bandwidth.

The idea of having the voice-operated switch in the circuit is to eliminate the manually operated 'press-to-talk' button that is necessary in a half duplex system, giving the pilot hands-free operation on the unit. When turned on, the unit is usually in the receiving mode. If nothing is being received, all you hear is hiss.

The voice operated switch keeps the unit in this mode until the microphone picks up enough signal to toggle the electronic switch into transmit mode. It stays in this mode as long as the microphone signal persists. The switch does not toggle immediately but waits for a second or two. This is to prevent it leaving transmit mode if you happen to stop to draw breath.

Thus, the way to operate the system is to arrange for one person to talk, while the other listens. To terminate a message, some specific code should be used. The traditional 'over' is good enough. The receiver must now wait for one or two seconds before starting to speak, while the original radio is switching back into receive mode.

One word of warning: don't tune the sensitivity and the gain of the microphone amplifier up too high. It's not difficult to turn the amplifier up so high that your breathing, the wind or anything else will trigger the electronic switch. When this happens you will not be able to receive. Incidentally, one of the reasons we decided not to include a squelch system was that the background noise is the only indication the operator has that the unit is receiving.

ETI-746 — HOW IT WORKS

TRANSMITTER BOARD

On the transmitter board, you will find an audio microphone signal, the electronic voice-operated switch, the rf oscillator, the AM mixer and the tuned amplifier for radiation. Following the signal through the circuit, the first component comes in. At 3.55 mm. A 3.5 mm phone socket connects the microphone signal into the mic amplifier. For a single 9 V supply, the dc voltage on the output of the op-amp (JP-351) should normally be sitting at 4.5 V for maximum swing without clipping. To achieve that, pin 3 of the JP-351 should be at 4.5 V, ignoring the small amount of dc input offset voltages. This requires resistors R1 and R2 to be equal (so as to divide the 9 V to 4.5 V at pin 3). The input impedance seen by the microphone is R1 and R2 in parallel. As a rule of thumb, it should be about 10 times the impedance of the microphone. For a common 600 ohms mic, R1 and R2 are quickly worked out to be 12k each. Capacitor C1 and the combined resistance of R1 and R2 (6k) forms a low pass filter for the microphone signal. With the values chosen for C1, the cutoff frequency of the filter is about 12 Hz.

Integrated circuit IC1 forms a one stage amplifier for the mic signals. As JP-351 is a high gain bandwidth product op-amp, it is chosen to do the job. With the trimpot RV1 turned to minimum resistance, the gain of the amplifier is just:

\[1 + \frac{R4}{R3} \]

With RV1 turned to its full maximum resistance of 50kΩ, total gain of 1221 can be achieved. Such a high gain is provided for situations where it may be required, but it will not always be an advantage, in high noise environments, the noise itself will trigger the voice operated switch. Capacitor C6 and R3 form the low frequency roll-off mechanism of the amplifier at around 72 Hz. The amplified microphone signal is used to trigger the voice operated electronic switch and modulate the carrier signal amplitude in the modulator.

The modulated amplitude is more or less a constant for a given battery voltage, but the audio signal is not. The louder you talk, the more microphone signal you will get. The same result could be obtained by changing the gain of the op-amp (IC1) with RV1. The larger the audio signal from the op-amp output, the more modulation will be on the carrier. Therefore, to be exact, trimpot RV1 is actually a modulation control. Hence the labelling used on the front panel for RV1 is MOD.

VOICE-OPERATED ELECTRONIC SWITCH

The electronic switch consists of three transistors Q1-Q3, resistors R5-R12, R22, capacitors C9-C11 and diode D1. Part of the audio signal from the op-amp is tapped from RV2 via C7. Transistor Q1 is biased with collector-base feedback resistor R7 forming the first stage in the electronic switch. Transistor Q1 gives a further 50 in gain and buffers the signal with its high output impedance. The anode of this signal forms the input of the triggerable single shot modulator Q2. The timing circuit is formed by C10, R9, D1, C11 and R10. The almost squared audio signal (due to the gain in Q1) appearing on the collector of Q1 is ac coupled into R9 and D1. Initially, C11 stores it and any positive going signal appearing on R9 simply causes the diode to conduct. Capacitor C11 charges up. The negative going signal on R9 turns off the diode and stops the current from flowing back to R9 from C11. This negative going signal discharges through R9 into ground with a time constant equal to 200 μs.

Once the negative going signal has discharged, the cycle is ready to repeat itself. On the other hand, charge stored in C11 discharges with a much slower rate through a high resistance R10. If you keep yelping at the mic, a dc high voltage will be experienced across C1 and keep the transistor Q2 turned on.

Using the analogy of signal as water, the op-amp and Q1 are just hoses pumping water into a large bucket C10. This bucket empties itself to a smaller one, C11, which has a hole, R10, with water leaking through it.

The output of Q2 (invertor) to get the rigidity polarity and is further amplified by connecting it to a npn transistor Q3. The extra gain from Q3 is needed to achieve an extremely fast rising voltage on the collector of Q3. Some sort of 'kick'. Having C10 ten times bigger than C11, so that C11 can be charged up quickly, also helps provide fast attack. As soon as you start talking into the mic, the voltage on the collector of Q3 rises quickly to V+ and causes three things to happen: LED1 lights up Q4 so as to oscillate and so provide carrier generation; the signal is carried to the receiver board via a wire link (C) to disable the receiver chip TDA1072A (IC2).

OSCILLATOR AND MODULATOR

The oscillator comprises XT, R13-R16, C12 and Q4. Normally it is in standby condition and waiting for D2 to turn on. The conducting D2 connects a high voltage V+ onto R13 and allows the circuit to oscillate. Since the oscillator is crystal-locked, the oscillation frequency will be the same as the crystal frequency. The carrier signal is coupled to the gate 1 of the dual gate MOSFET-transistor Q5 for modulating and amplifying. The amplitude of the carrier signal is carried out at gate 2 of transistor Q5. A varying voltage on gate 2 would change the carrier signal amplitude on the drain output. This varying voltage is derived from the output of the op-amp IC1 via C8. Once again, the combined resistance of R21, R26 with C8 determines the low frequency cutoff point for the audio signal. It works out to be around 16 Hz.

RESONATOR

The resonator is formed with C17, L1 and the antenna ANT1. It is basically an LCR parallel tuned circuit which gives maximum impedance at 27.5 MHz frequency. The idea is to tune the coil L1 until maximum voltage appears on the drain of Q5.

RECEIVER BOARD

Signals picked up by antenna ANT2 are coupled to the first bandpass filter L3 and C21. A bandpass filter attenuates all other frequencies except the centre frequency which is tuned at 27.5 MHz. Output signal from the filter is further amplified by Q6 and the second tuned resonator formed by L4 and C24. The overall gain on the sig-
signal from the antenna input to the drain of Q6 is about 12 to 30. This is then coupled onto pin 14 of IC2 via C25.

The centre of attention in the receiver board is the TDA1072A (IC2). Inductor L5, C36, R35 and XR are the key components required by the internal oscillator in the chip. If the internal oscillator of the chip is running properly, its output signal should appear on pin 10. Pin 2 of the chip controls the standby operation of the IC. A high on this pin causes the chip to go standby and a low (0 V) enables the IC to receive. An internal double balanced mixer is used to generate the IF signal. The mixer output (pin 1) is the collector of a transistor pair which requires a positive dc voltage for biasing. Using a resistive load to supply the dc voltage would reduce the maximum IF output signal; an inductor should be used in coupling the mixer output to the IF amplifier (pins 3, 4). In the actual circuit, an rf transformer (T1) is used. The output signal from the transformer does not return to the IF amplifier immediately. The in-built high IF gain amplifier allows the IF selectivity to be provided by an external ceramic filter (CFW455E).

A buffered dc output which is a logarithmic function of the aerial input voltage over the full dynamic range is available on pin 9 for driving a field strength indicator. In the design, pin 9 is used to drive gate 2 of Q6 with the help of G7, D3, D4 and D5. Gate 2 on transistor Q6 controls the gain of the amplifier and will shut it down in the event of receiving a strong signal. In situations where the transmitter is too close to the receiver, signal received would be strong enough to swamp the rf input stage of the IC. Some kind of feedback mechanism to shut down the rf amplifier is quite essential. Finally, the demodulated AM signal appears on pin 6 which is connected to an internal audio preamplifier with an emitter-follower on the output stage. Such a low impedance output stage enables a low pass filter to be constructed externally, for filtering the residue rf component in the audio signal. The audio output from the low pass filter is tapped from the trimpot RV3 and mixed with signal from the output of IC1 via C7 (B). They are then amplified by a Darlington transistor Q8 to drive the headphones.
SALE

BOOKS - SAVE 50%

THE LOCAL AREA NETWORK BOOK
Defines and discusses localised computer networks. You'll learn how networks developed and what networks can do; what's necessary in components, techniques, standards and protocols; how some LAN products work, and how real LANs operate. From scratch and much more.
128 pages.
Cat. BS-0718

ONLY $7.98

CABLE TV
Designed for the engineer or technician wishing to improve his knowledge of cable TV. Component testing, troubleshooting, noise reduction, and system failure are discussed. Contains valuable information on the relatively new areas of fiberoptics and communications satellites.
392 pages.
Cat. BS-0566

ONLY $10.50

THE VIDEO PRODUCTION GUIDE
All that you ever wanted to know about professional video production but were afraid to ask! Divided into 4 parts - preproduction, production, post production plus other important topics (e.g. editing) - you are guided slowly through each phase of the art.
Approx 400 pages.
Cat. BS-CY727

ONLY $7.98

MICROCOMPUTER FOR BUSINESS APPLICATIONS
This book describes different types of minicomputers, their pitfalls and explains computer-related terms. If you are the potential buyer of a business computer system, this book will prove invaluable in helping you select the best system.
You must read before "plunging."
256 pages.
Cat. BS-0622

ONLY $15.95

INTRODUCING THE APPLE MACINTOSH
Introduces you to the design philosophy and physical structure of the Mac, and explores its displays, keyboard, mouse, software and accessories. Covers graphics, new processing, special promotions, BASF and windowing and discusses how the Mac fits into an office system.
152 pages.
Cat. BS-0714

ONLY $21.00

MICROCOMPUTER FUNDAMENTALS
This book is for all who want to learn about video tapes. Topics covered includes how to record, how to add a camera, how to make your own video tapes, how to add a second video, how to make features of your equipment & video format.
186 pages.
Cat. BS-0719

ONLY $11.50

ATARI GAMES & RECREATIONS
For beginners and advanced programmers who want to program in BASIC while you work with your own Atari 400 or 800. Plus plans challenging educational games and learn to create programs of your own.
368 pages.
Cat. BS-0691

NOW $19.98

NOW $11.98

HOW TO MICROCOMPUTERISE YOUR BUSINESS
This book takes the mystery and technicality out of computers - making your decisions about computerisation as rational and intelligent as any other business decision you make. Explains how computers can help you run a more efficient, more profitable business.
182 pages.
Cat. BS-0680

ONLY $7.98

TO CELEBRATE the RELEASE of our BRAND NEW CATALOGUE we have SLASHED the PRICES of many of our BEST SELLERS - but ONLY for APRIL, SO BE QUICK

NEW 1987 CATALOGUE
The new Jaycar 114 page Engineering Catalogue was released last month in Electronics Australia and Electronics Today. If you don't have one yet there are two things you can do. (1) Call in to any one of our retail showrooms and pick one up, they are only $1.00. (2) Send $1.00 plus $1.00 for P&P to Jaycar Electronics, P.O. Box 185 Concord 2137 and we'll post you a copy.

SHOWBAG
Back again for the 6th year! Once again we have a JUMBO bag weighing an average of 2.5kg! Each bag is slightly different but certainly contains an unbelievable assortment of electronic components, electronic hardware and much, much more!

EVER POPULAR TWEETY PIE DISCOUNTED

TO-3 HEAT SINK
We have made a bulk purchase of TO-3 metal fins as follows: Size: 38 x 38 x 26mm (high). Usual price: $1.95. This month only: $1.25, $1.99, $1.00.

MICROCOMPUTER FOR BUSINESS APPLICATIONS
This book describes different types of micros, highlights pitfalls and explains computer-related terms. If you are the potential buyer of a business computer system, this book will prove invaluable in helping you select the best system.
256 pages.
Cat. BS-0602

$19.98

How To Read Schematics
Explains circuit components and how they are represented in schematics. Then explains common circuit configurations such as serial-following and common circuits, etc. Essential if you want to understand schematics.
256 pages.
Cat. BS-0719

NOW $13.75

HOW TO READ SCHEMATICS
4th Edition
Explains circuit components and how they are represented in schematics. Then explains common circuit configurations such as serial-following and common circuits, etc. Essential if you want to understand schematics.
256 pages.
Cat. BS-0719

NOW $27.50

GET YOUR SHOWBAG
Back again for the 6th year! Once again we have a JUMBO bag weighing an average of 2.5kg! Each bag is slightly different but certainly contains an unbelievable assortment of electronic components, electronic hardware and much, much more!

ATARI GAMES & RECREATIONS
For beginners and advanced programmers who want to program in BASIC while you work with your own Atari 400 or 800. Plus plans challenging educational games and learn to create programs of your own.
368 pages.
Cat. BS-0691

NOW $19.98

NOW $11.98

CABLE TV
Designed for the engineer or technician wishing to improve his knowledge of cable TV. Component testing, troubleshooting, noise reduction, and system failure are discussed. Contains valuable information on the relatively new areas of fiberoptics and communications satellites.
392 pages.
Cat. BS-0566

ONLY $10.50

MICROCOMPUTER FOR BUSINESS APPLICATIONS
This book describes different types of minicomputers, their pitfalls and explains computer-related terms. If you are the potential buyer of a business computer system, this book will prove invaluable in helping you select the best system.
You must read before "plunging."
256 pages.
Cat. BS-0622

ONLY $15.95

INTRODUCING THE APPLE MACINTOSH
Introduces you to the design philosophy and physical structure of the Mac, and explores its displays, keyboard, mouse, software and accessories. Covers graphics, new processing, special promotions, BASF and windowing and discusses how the Mac fits into an office system.
152 pages.
Cat. BS-0714

ONLY $21.00

MICROCOMPUTER FUNDAMENTALS
This book is for all who want to learn about video tapes. Topics covered includes how to record, how to add a camera, how to make your own video tapes, how to add a second video, how to make features of your equipment & video format.
186 pages.
Cat. BS-0719

ONLY $11.50

ETI 684 INTELLIGENT MODEM
Ref: ETI most of 1986
This is a full brown auto dial - auto answer - full duplex intelligent modem. The Jaycar kit for the complete project comes as two components viz: Modem Cat. KE-4716 $379.00
Power Supply Cat. KE-4716 $49.95
TOTAL $428.95

BUY BOTH FOR $379.00
SAVE ALMOST $50.00
For full specifications see the Jaycar 1987 Catalogue

CONCORD OPEN SATURDAYS 9am - 12 NOON
SALE SALE SALE SALE SALE SALE SALE SALE SALE SALE

WORLD CLASS
ADCOLA SOLDERING
DESOLDERING
STATION
See our new catalogue for full details
POWER CONTROLLER
60 Watt Soldering
Pencil CT-6 Cat. TS-1478
$39.95
80 Watt Soldering
Pencil CT-7 Cat. TS-1480
$42.50
BONUS: Purchase this soldering station in April and receive 2 rolls of solder FREE.

JAYCAR JVE-1 VIDEO
DETAIL ENHANCER
Connects between 2 VCRs to improve the quality of a recording of an original tape.
625 line PAL-D 50 frame unit. Can be used as a distribution amplifier.
Cat. AV-9501
FULL DETAILS IN 1987 CATALOGUE.
APRIL SPECIAL
FREE PLUGPACK WORTH
$12.95
(Cat. MP-9200)
ONLY $79.95

ECHO CHAIN
Also known as a keyfinder. Put it on your keyring and when you want your keys - just whistle and it will whistle back to you. These were selling for as much as $15.
We have a limited quantity to clear out for only $3.95 each.
This is less than half what you would expect to pay.
Cat. XM-0000
$3.95 each

WE'RE OVERSTOCKED
MAGNAVOX
8MV-003
8/30 replacement
Update your 8/30 speaker boxes today and turn them from 30 watt rms system speakers into a 120 watt system!
These are direct replacements and fit into the 8/30 cabinet.
Resonant frequency 31Hz; range from 50 to 10kHz. Sensitivity 95dB.
Cat. CW-3110
NORMALLY $99.50
SAVE $20.00
ONLY $69.50 ea

LIGHT DEPENDENT
RESISTORS
$8.50 ea
Quality Philips brand.
Epoxy housed, vertical or horizontal mount.
Dark resistance min 10M ohm
Light resistance 30-300 ohms
Cat. RD-3480
FULL SPECS IN CATALOGUE

ATTENTION ♦ BONAX WIRELESS
ALARM SYSTEM
OWNERS
We have a small quantity of components left to coil the Bonax Alarm system.
This is an ideal time to add to your own system. All you need to do is plug it into the mains and mount it somewhere.
Normally $99, we have 11 only at $50 each. We also have two control panels reduced from $289 to $160.
This stock is available only through Mail Orders. Phone (02) 747 1888

SOLDER REEL
200 gram reel. 1mm univolt gauge. Suitable for all types of electronic soldering.
Resin cored and includes bit sorting.
Cat. NS-3010
NORMALLY $7.95 reel
$6.50 reel
$5.50 ea
5 reels
SAVE UP TO $2.45

SAVER BARGAIN
10 AMP DIGITAL
MULTIMETER +
TRANSISTOR TESTER +
CAPACITANCE METER
LOOK AT THESE FEATURES:
0.5" high digits with quality probes supplied. LED and buzzer continuity test.
precision thin film resistors used for long term stability
CMOS logic 1000 - 2000 hour battery life
fuse protection
Complete with battery and spare fuse
Floating decimal point
auto polarity
impact resistant case
FOR FULL SPECS SEE THE JAYCAR 1987 CATALOGUE
CATALOGUE
SAVE $20.00
APRIL ONLY
ONLY $109.00

SOLAR POWER
150 EXPERIMENTS
This experiments kit enables the inquirer to verify many of the fundamental physical aspects of solar energy. The 150 experiments include: solar furnace, stroboscope, electroplating, electronic thermometer, solar powered fan, etc.
Include all necessary components for all experiments. Does not require batteries. Gift boxed - measures 410(W) x 305(D) x 85(H)mm. For ages 10+
Cat. K-6999
USUALLY $39.95
NOW ONLY $29.95
SAVE $10.00

METEX BARGAIN
NEW FOR 1987
FULL SPECS IN CATALOGUE

ALARM STICKERS
Large 125mm x 75mm Suitable for house, factory, caravan, etc.
Will stick on the outside, i.e. sticky on the back.
Cat. LA-5102
NORMALLY $1.95 ea
SPECIAL 5 for $5.00
SAVE $4.75
SMALL 73mm x 33mm Specifically designed for cars. Stick on the front so you can stick them on the inside glass. Thieves will not know whether you have an alarm or not.
Cat. LA-5100
NORMALLY 95c each
SPECIAL 10 FOR $5.00
SAVE $4.50

ATTENTION ♦ BONAX WIRELESS
ALARM SYSTEM
OWNERS
We have a small quantity of components left to coil the Bonax Alarm system.
This is an ideal time to add to your own system. All you need to do is plug it into the mains and mount it somewhere.
Normally $99, we have 11 only at $50 each. We also have two control panels reduced from $289 to $160.
This stock is available only through Mail Orders. Phone (02) 747 1888

SOLDER REEL
200 gram reel. 1mm univolt gauge. Suitable for all types of electronic soldering.
Resin cored and includes bit sorting.
Cat. NS-3010
NORMALLY $7.95 reel
$6.50 reel
$5.50 ea
5 reels
SAVE UP TO $2.45

WARNING
EXPIRED ALARM SYSTEM

These items are expired and should be disposed of.

WARNING
EXPIRED ALARM SYSTEM

These items are expired and should be disposed of.

WARNING
EXPIRED ALARM SYSTEM

These items are expired and should be disposed of.

WARNING
EXPIRED ALARM SYSTEM

These items are expired and should be disposed of.

WARNING
EXPIRED ALARM SYSTEM

These items are expired and should be disposed of.

WARNING
EXPIRED ALARM SYSTEM

These items are expired and should be disposed of.

WARNING
EXPIRED ALARM SYSTEM

These items are expired and should be disposed of.

WARNING
EXPIRED ALARM SYSTEM

These items are expired and should be disposed of.

WARNING
EXPIRED ALARM SYSTEM

These items are expired and should be disposed of.

WARNING
EXPIRED ALARM SYSTEM

These items are expired and should be disposed of.

WARNING
EXPIRED ALARM SYSTEM

These items are expired and should be disposed of.

WARNING
EXPIRED ALARM SYSTEM

These items are expired and should be disposed of.
Speaker Prices Slashed

5" MIDRANGE POLYPROPYLENE
Power handling 80 watts rms system into 8 ohms. Resonant frequency 600Hz and a sensitivity of 89dB/W@1 metre.
Cat. CM-2085

FOSTER 8" WHITE CONE
Best 8" woofer we've seen. Looks great - sounds great. Ferrofluid 30 watts rms. Frequency response 50 - 5000Hz. Resonant frequency 30Hz. 90dB/0.5 metre SPL.
Cat. CW-2111

GRILLE CLOTH
High quality, acoustically transparent. Ideal for all speaker cabinets. 1.5 x 1 metre roll. Colour black.
Cat. CF-2752

FOSTER DOME TWEETER
D2S2N25 model. System power 150 Watts rms. Resonance frequency 1.2kHz. Frequency range 3kHz - 30kHz. 91dB/W@1 metre SPL.
Cat. CT-2018

PIioneer 12" Guitar Speaker
Around half the price of other makes. A superb Pioneer unit. 100 watts rms. Frequency response 80 - 4000Hz. SPL 100dB/0.5m. Huge 4,002 gram magnet.
Cat. GS-2080

Pioneer 418 12" Woofer
White cone and chrome surround with superb space. A winner. 65 watts rms. Frequency response 25 - 2000Hz. Resonant frequency 25Hz. SPL 87dB/0.5m.
Cat. CW-2121

Polypropylene
Handles 70 watts rms system into 8 ohms. Resonant frequency 24Hz and frequency response of 24Hz - 6kHz. 91dB/W@1 metre. Electro-magnetic O = C/ES 0.386 and a peak cone excursion of 2.5mm.
Cat. CW-2116

Speaker Sealant
Special non-hardening sealing compound. Ideal for airtight seal between speaker drivers and cabinet. Essential for acoustic suspension designs. 2 metre roll.
Cat. CF-2762

NEGATIVE AIR IONISER
The Country Air negative air ioniser was advertised extensively around a year ago for $30. We have bought the manufacturers distressed stock and can pass on massive savings to you! A high quality product.
Cat. YX-2902

5kHz. 91 .9dB/W@ 1)
THE ULTIMATE PERFECT PARTNERS
AEM 6000 POWER AMPLIFIER
By David Tillbrook. This superb power amplifier has an output of 240 watts rms into 6 ohms or a massive 360 watts rms into 4 ohms. The Jyarc kit includes all parts including 900VA toroidal transformer.
Cat. KM-3200
"ULTRA FIDELITY" PREAMPLIFIER
Ref: AEM OCT - DEC 1985
Cat. KM-3200
Power Amp $998
Pre Amp $359
$1357
APRIL BARGAIN
BUY BOTH FOR ONLY $1257
SAVE $100
PLAYMASTER 60/60 STEREO AMPLIFIER
WITH AUSTRALIAN MADE TRANSFORMER
Cat. KA-1650
MORE POWER!!
$299
DUAL TRACKING POWER SUPPLY
Ref: EA Feb 1987
Will supply up to ±15V at 500mA. At 15V it will supply 3A and at 10-16V 2 amp.
Cat. KA-1682
$129.50
3 BAND SHORTWAVE RADIO
Great for building SWL or amateurs.
This TX will tune from 0.1MHz to 17MHz.
The project features high sensitivity, one IC in
the RF section and high performance at a low,
low cost. Battery operated.
Cat. KA-1581
BI-FET PREAMP
Pre-built unit - superb spec.
Cat. AA-0011
6 WATT MICRO AMP
1 CHANNEL
amplifier for Walkman.
Cat. AA-0340
ONLY $69.95
ONLY $13.95
NEW GENERATION CORDLESS PHONE
MICROPROCESSOR CONTROLLED
- 200 METRES RANGE AND ABSOLUTE SECURITY
Quite simply the finest cordless phone we
have appraised. Naturally it is in open
compliance with the 1986 Telecom specifi-
cations and is Telecom approved.
The range with the IS 30MHz or FXTX FM
system is fabulous - in fact at the very
short range of cordless phones of yester-
year.
FEATURES:
- Automatic answering
- Security code system with 18,384
- Last number redial
- LED Indicator on handset for low battery
- Indicator
- Hearing aid compatible
Cat. YT-7005
$269
PLACE YOUR MAIL ORDERS BY FACSIMILE
(02) 744 0767
LOW DISTORTION AUDIO OSCILLATOR
See EA December 1986
Unmuted version
Cat. KA-1680
$139.00
GORE HILL OPEN SATURDAY UNTIL
4pm
ROAD FREIGHT ANYWHERE IN AUSTRALIA $13.50
117 Yerja St. (02) 297 1514
Mon. - Fri 8:30 am - 9:30 pm
Thurs until 9:30 pm, Sat 9 am - 12 noon
JAYCAR ELECTRONICS
INCORPORATING ELECTRONIC AGENCIES
QLD. BURANDA
196 Logie Rd. (07) 303 0777
Mon. - Fri 9 am - 5:30 pm
Thurs until 9:30 pm, Sat 9 am - 12 noon
JAYCAR (QLD)
CARLINGFORD
211 Forest Rd. (02) 570 7000
Mon - Fri 9 am - 5:30 pm
JAYCAR (NSW)
HURSTVILLE
155 Pararamatta Rd. (02) 745 3077
Mon. - Fri 9 am - 5:30 pm
JAYCAR (NSW)
GORE HILL
188 Pacific Hwy (Cor Bellevue Ave)
(02) 439 4769
Mon. - Fri 9 am - 5:30 pm
Sat 9 am - 4 pm
JAYCAR (NSW)
Kit advice

AS AN AMATEUR radio operator I found the ETI-1533 heavy duty switching regulator (Nov/Dec ’86) to be potentially a very useful project. Unfortunately all the kit suppliers I have tried so far in Victoria, NSE and WA have elected not to do it.

The bulk of the project I already have including rating out a TDK PG 35-35 inductor. The trouble is obtaining the PCB. My query is: could you please tell me who might be stocking this PCB, at least. Surely someone must have ordered the artwork to make a board. I am sorry that Ian Thomas went to all the trouble of designing and building the project and ETI running it especially in two parts, then to get the thumbs down from the kit suppliers. I guess the problem gets back into that argument of complete kit and cost of them vs separate component availability.

If suppliers at least handled the PCBs then the many like me who have much of the hardware would subsequently go on to build the kit.

I would certainly support the argument of kit suppliers supplying short form kits, eg, PCB and semiconductors, as well as complete kits instead of suppliers always making available only long-form (complete) kits.

Dr Ross Wines
East Doncaster, Vic

The PCB for this project is available from RCS, contactable (02) 759-5473. A complete list of kits and their suppliers is included in the January ’87 Yearbook Issue of ETI.

Seconding the motion

I AM IN the process of building up the ETI-684 modem as published in your magazine during 1986. My main problem is that there is no supplier in New Zealand for a complete kit of components or for the 2764 EPROM used in the design of the modem.

I have put some thought into this matter and it seems that some people have a disadvantage in building up your projects, not only in New Zealand but also in Australia. That is the large market of people not wanting to purchase the complete kit but rather a short form kit (ie the printed circuit board’s plus the semiconductors and special components required for the project). This form of kit set was once very popular in NZ and several companies did very good business out of them.

Perhaps some of the companies that sell the kits in Australia could offer this from along with the full kit sets to help promote their sales. I know from my own experience that tracking down of special components is a long and often frustrating pastime and that if I could purchase the short form of a kit I would rather do that than waste my time on the phone.

Grant Rogerson
Trentham, NZ

Whether a weather station

I AM A SUBSCRIBER to ETI, and have been so for some years. I also have had a passing interest in the weather (like most people I know).

Unfortunately, I know little — actually nothing — about electronics, and I was wondering whether you, your project engineers or your readers could help me — by providing a circuit, kit or some other electronic method for recording the basic elements of weather, such as temperature, and maybe even adding humidity and air pressure.

With such a kit, and a (simple?) interface with a computer — a Microbee preferably — each home could become a mini weather station, providing useful data, with the possibility of providing better information on local conditions than the weather bureau can provide. (This at times, would not be hard!) It would be great if such a device could work ‘stand-alone’, either with a daily or weekly transfer of data to the home computer.

Further, an amateur network of weather stations could develop, thus providing the basis for a huge database of information which would enable the experts to provide accurate forecasts (or is this an unobtainable dream?). Not on the trail of your Weather Catastrophe article (ETI Feb) I feel that such a kit could give us warning ... of the inevitable!

Raymond Brooks,
Warrimoo, NSW

We would be happy to run a project for a weather station. Anyone with ideas should get in touch with me.

— Ed.

The great kit offensive

APPROXIMATELY ONE MONTH ago I ordered an ETI-5000 power amplifier kit from one of the major kit suppliers. This project was received with the following faults:

1. Base slightly dented due to transformer weight and bad packaging.
2. Lid badly dented and paint flaky for same reason.
3. Only three BF470 transistors supplied (eight required).
4. Two 47R resistors not supplied at all.
5. Eight 270K resistors supplied instead of 270R.
6. 56R resistors substituted for 47R; in my opinion this is not a suitable alternative.

The company has twice been contacted concerning these faults but to date has not rectified the problem. My project has now been held up for a month.

This standard of kit make-up service is bloody abysmal.

Nicholas Potter
Dickson, ACT

MSX v IBM

WHAT IS MSX? The MSX story is almost unbelievable. It started about two years ago and all the popular computer magazines in Australia ignored it. They stand accused of pandering to their principal advertisers without showing any responsibility or regard for their readers. Strong stuff! Judge for yourself ...

The following well-known computer manufacturers combined to produce inexpensive home computers which would be totally compatible with one another. Both software and hardware would be interchangeable. It was to be the new generation of home PCs. The companies were Canon, Goldstar, JVC, Mitsubishi, Panasonic, Pioneer, Sanyo, Sony, Spectravideo, Toshiba and Yamaha. An impressive list.

The BASIC was written by Microsoft. The CPU is the well-known Z-80A. Emphasis was made to sound, sprites and colour. The sound channels alone are a most impressive eight-octave, three-channel polyphonic. It has everything the reviewers had been asking for, and more.

MSX magazines from Britain carry advertisements from major program houses. Their programs are available in chain-stores such as Woolworths, Boots and others. The programs are on disk, cassette, cartridge and card. Have we
read about the MSX system in your magazine? All we get is IBM, IBM-clones, IBM-compatibles, IBM this and IBM that. Your readers have every reason to feel cheated.

Your readers should be interested in knowing that MSX is the most logical progression from the VZ-200/300. Printers, plotters, data recorders and more importantly, their hard-earned knowledge can all be carried forward to the MSX system.

Cost? Well, get this? The Sony HB-75AS which has in-built printer and recorder interfaces, and has three in-built personal data programs, not to mention both VHF and RGB outputs, is only $399.

If your policy includes service to your readers then why not feature a review of the Sony? It might just revive a flagging interest in home computers.

Gordon A. Browell
Biggenden, Qld

Sparks from an electrician

I AM WRITING to you to comment on a statement made by Ian Thomas (ETI, December 1986, p 46).

The comment was, and I quote, "I most vigorously recommend using a double-pole mains switch as I have absolutely no faith whatever in the electricians switching the active in the power point".

Now I don't know about the electricians in Australia, but here in New Zealand, we have to train for four years to become registered as an electrician, and in those four years you learn how to wire up a power point in the first month.

Also here in New Zealand, we have very strict regulations on testing the installation before lighting occurs.

I enjoy reading your magazine and look forward to another good year of reading.

B. K. Edney
Wellington, NZ

Cable Sceptic

AS A LONG time reader of ETI, I would like to congratulate you and the staff of ETI for the very high standard of the magazine throughout the year and for the great projects and feature articles. I know that there are a lot more coming and I look forward to them with anticipation.

I was intrigued by the article on audio cables by Louis Chalitis in the December issue, for the reason, as much as anything else, that I was (and still am) one of the sceptics as to the value of so-called 'super cables'. That is not to say that I do not agree with the stated merits of a high damping factor in amplifier-speaker systems but I cannot see how a cable resistance of a fraction of an ohm can have any significant effect (on damping) on a speaker system having a resistive component of impedance of many times that. If it were so, could not a speaker system manufacturer allow for that by reducing the effective series resistance of any given system by a small (and specified) amount, leaving all other parameters the same, and thereby achieving the same results as (claimed) for the super cables?

If small values of cable (and connector) resistances have such an adverse effect as claimed by some, then I wonder why hi-fi amplifier designers have not (or have they?) used a technique known as 'remote feedback'? The concept is well known in instrumentation and remote sensing applications where the effects of cable resistance (etc) have to be minimized.

Herman Nachnovitch
Gulgong, NSW

Bit image drawer

Have you ever tried to design your own characters for the MPS 803 printer only to receive a mess of dots as your final product? Well, this program eliminates the chances of this. All you have to do is plot out your character on the screen using the cursor keys for movement and the F7 key to draw. When you are satisfied with your design just press F7 and your character is printed out. Don't forget to turn it on or your design will be lost!

J. Vella
Tregear, NSW
Bomb deflector

The aim of this simple game for the Microbee is for the player to deflect falling bombs using a deflector shield. To move the shield quickly press Z for left, X for right, and for slow alterations press < for left and > for right. You are awarded a point for every missile you deflect, if you miss 10 missiles then the game is over.

J. Hirose
Takamatsu, JAP

Draw 64

This is a drawing program which is controlled by the joystick in port 2, and the top row of the keyboard. Pressing the 'fire' button and required direction will move the cursor around the screen. The INST/DEL key will delete the current cursor position, and the CLR/HOME key will clear the screen. The remaining keys in the top row changes the colours.

J. Avia
Frenchs Forest, NSW
This program for the Microbee helps to keep track of your budget and is useful for checking your balances with your bank statements. The program deducts amounts for the various budget items and keeps a balance of each item. A trial balance is given to compare with your bank statement. Amounts can be transferred within the account and item deduction can be changed for inflation.

D. R. Barney
Edmonton, Alta

Budget savings account
If you want an adjustable power supply capable of delivering a fairly high voltage at a reasonable current, it is impractical to use it at a low voltage if a large current is drawn. An enormous amount of heat would be dissipated in the regulator (assuming a series pass one is used). Thus a second power supply is needed.

If the transformer used is a centre-tapped one, the following circuit can be used to give the appearance of two power supplies, with a minimum of extra components (a switch and two resistors).

A four-diode bridge is used, so that when the switch is in the 'high' setting the rectifier gives the full transformer voltage, but when it is set on 'low' it only produces half that voltage as a centre-tapped circuit is used.

If the switch is DPDT it can also be used in the regulator section to choose the required voltage. I have included two simple examples using different approaches based on the 350 three-terminal adjustable 3A series regulator.

Both A and B are used with a 12-0-12V transformer, and provide 0.12V when the switch is in the 'low' setting. These values can easily be changed by altering the values of the resistors.

When the switch is in the 'high' position, regulator A provides a range of 0-24V, and regulator B provides a range of 12-24V, giving finer adjustment.

I have used a power supply based on this principle for the past year, and I have found it exceedingly useful.

A. Conway
Doncaster, Vic

Efficient power supply

Minimart

FOR SALE: INTO RS232/D8-25 Interfacing? Save money and make your own interface. Break-out boxes, 2-way gender benders, etc. Plated through boards $5 each, 4-way gender bender boards $16.

For more information, send SAE to Don McKenzie, 39 Ellesmere Crescent, Tullamoine 3043.

WANTED: CIRCUIT DIAGRAM for B&K precision 3020 sweep/function generator. Made by Dynascan Corporation, BII (03) 791-2976, Dandenong 3175.

FOR SALE: POWER SUPPLY IBM 63 W, 5V-7A, 12V-2A; -12V-0.25A; 5V-3A. Will run 1616 computer. $50. (062) 31-6219.
The combination of the semiconductor memory manufacturing industry and Cannon connectors has provided a unique IC Memory Card suitable for numerous applications.

- Replacement of floppy disc drives.
- External memory for computer peripherals.
- Strategic operating instructions/memory for NC machines and robotics.
- Control data.

Products available
S-RAM, D-RAM, MASK ROM, PROM, EPROM, & EEPROM.
For further details contact your nearest Cannon dealer.

STC-CANNON COMPONENTS PTY. LIMITED
248 Wickham Road, Moorabbin, 3189,
Melbourne (03) 555 1666, Sydney (02) 863 2293,
Adelaide (08) 363 0055, Brisbane (07) 832 5511.
A safe buzzer

One of the most useful tools in the electronics technician's toolbox consists of a battery and a buzzer in series, perhaps built into the case of a discarded torch, wired up to a pair of probes or clips. This is fine for checking wiring but cannot be used safely for tracing semiconductor circuits because of the voltage needed.

Apart from the possibility of actual damage to sensitive components, there is the real likelihood of a semiconductor junction being mistaken for a connection or short-circuit. Also there is a problem in the slow response of the buzzer: a good connection must be made for at least 100 ms (approx) to get any response. This may not sound much, but in practice can lead to missing a vital identification when you're checking out a 50-pair cable or multi-pin connector.

This design overcomes all these difficulties; it will indicate for connections less than 500 ohm, presents about 700 mV to the circuit under test and requires contact for about 1 ms to give a short buzz. The 100kΩ combination determines the minimum buzz time. The buzzer used was a miniature 6-12 V electronic type (eg, Sonalert). Values in the series resistor chain should be adhered to but 100n capacitors are not critical, serving only to prevent false triggering.

D. Butler
Oaklands Park, SA

Feed Forward needs your minds. If you have ideas for circuits that you would like to enter in our idea of the month contest, programs for the computing columns or just want a word with the editor, send your thoughts to:

Feed Forward
ETI, Federal Publishing
PO Box 227
Waterloo, NSW 2017

Contributors can look forward to $20 for each published idea/program which should be submitted with the declaration coupon below.

Programs MUST be in the form of a listing from a printer. You should indicate which computer the program is for. Letter should be typewritten or from a printer, preferably with lines double spaced. Circuits can be drawn roughly, because we have a draughtsman who redraws them anyway, but make sure they are clear enough for us to understand.

'Ride of the month' contest

Scope Laboratories, which manufactures and distributes soldering irons and accessory tools, is sponsoring this contest with a prize given away every month for the best item submitted for publication in the 'Ideas for Experimenters' column — one of the most consistently popular features in ETI Magazine. Each month, we will be giving away a Scope Soldering Station (model ETC60) worth approximately $191.

Selections will be made at the sole discretion of the editorial staff of ETI Magazine.

RULES

The winning entry will be judged by the Editor of ETI Magazine, whose decision will be final. No correspondence can be entered into regarding the decision.

The winner will be advised by telegram. The name of the winner, together with the winning idea, will be published in the next possible issue of ETI Magazine.

Contestants must enter their names and addresses where indicated on each coupon. Photostats or clearly written copies will be accepted. You may send as many entries as you wish. This contest is invalid in states where local laws prohibit entries. Entrants must sign the declaration on the coupon that they have read the above rules and agree to abide by their conditions.

COUPON

Cut and send to: Scope-ETI 'Idea of the Month' Contest,
Computing Column, ETI Magazine, PO Box 227,
Waterloo NSW 2017.

"I agree to the above terms and grant Electronics Today International all rights to publish my idea/program in ETI Magazine or other publications produced by it. I declare that the attached idea/program is my own original material, that it has not previously been published and that its publication does not violate any other copyright."

* Breach of copyright is now a criminal offence.

Title of idea/program ...

Signature ...

Date ...

Name ...

Address ..

...

Postcode ..

56 — ETI April 1987
It's April! You'll think we're joking when you see this month's BARGAINS!! Get down to your local DSE store now

Matte Silver Spray Paint
Anti-grease silver paint for a smooth, elegant finish to that special project. Quick drying paint is ideal for front panels, cases, etc. 150g spray can. Cat N-1076

$2.47 Was $4.95

Nickel Screening Conductive Coating
Electro-conductive spray turns plastic project boxes into electrically conductive surfaces. Ideal for RF screening and many other useful applications. Cat N-1049

$13.95 Was $27.50

Matte Black Spray Paint
A quick drying matte finish spray. Suitable for giving your project that professional finish. Cat N-1070

$2

VDX 1000 Videotext Decoder
Now you can have Videotext information in your home! Hundreds of pages of information can be viewed in a colour or monochrome TV. The Videotext computer bank. Once you become a registered user of the Videotext service you can access one of the greatest libraries of current information available, news, entertainment, medical/legal advice, shopping, goods for sale, business information and much more! Normally you'd have to own a computer and expensive peripherals to access Videotext — but now, DSE makes it available to everyone! Cat X-9700

$299

Magnavox World Receiver
Your passport to international entertainment. Tune into local AM, FM plus SSB and 11 SW bands. • PLL for precise tuning • 16 preset memory function • Auto search • Direct frequency key in and triple speed manual tuning • Connections for antenna, headphones, DC and line out. Cat D-2000

$699 SAVE $100

Telephone-Type Cable 12 Conductor
The type of wire used by Telecom for telephone wiring. Ideal for intercoms or other multi-wire circuits individually insulated and colour coded. Solid copper conductors, Cat W-2140 $1.55/m 100m or more $1.40/m

Coaxial Cable
High quality low loss TV coax, for low signal area installations. Air cored (dielectric), similar size to 3C-2V.

Shielded Audio Cable Mono Light Duty
PVC covered, light duty, very flexible cable that is ideal for patch cords, small microphones, etc. Colour — grey.

Cat W-2030 45c/M 100m or more 41c/m
Giant Handbook of Electrical Circuits

Raymond A. Collins — 880 pages. Giant isn’t the word; it’s a whopping 880 pages! With 60 chapters covering everything from crystal sets to computer circuitry, you’re sure to find what you want here! Cat B-1780

Was $32.95 $20

Australian Marine Radio Handbook

This book will help boat owners find out just how simple choosing, fitting and using a marine radio can be. Packed with all the essential details, here is a book that will not only inform, but can lead to lives being saved as well. Cat B-9604

Was $1.95 $1

VHF-UHF Manual

Evans & Jessop. This huge hard covered manual deals with the techniques and equipment applicable to frequencies above 30MHz with particular emphasis on microwaves. Cat B-3064

Was $43.95 $30

Active-Filter Cookbook

Everything you could possibly ever want to know about active filters is in this book. From how to build an active filter, to the many different types available, and the ones to suit your needs, etc. — all of practical interest to the hobbyist and technicians. A wealth of information contained in 240 pages, by author Don Lancaster. Cat B-1590

Was $26.50 $20

CB PLL Data Book

A mine of information for the avid CB'er. Contains details on the phase locked loops used in just about every CB ever made. So what? It also tells you how to modify the PLL circuitry to give more channels, to push it, repair it, to do just about anything except talk. (They're working on that one!) And if you repair CB's, this is indispensable for the technical data it gives — data you won't find anywhere else. Cat B-2326

Was $18.95 $13

Save on reading at DSE!

DESCRIPTION

Cat No	WAS	NOW
LM335H Precision Temp Sensor | Z-6050 | $4.45 | $2.00
TLC 251K Low Power Amp | Z-6021 | $5.15 | $2.00
DS557 Silicon Transistor | Z-1340 | $2.5 | $1.5
74LS244 Low Schottky IC | Z-5294 | $2.75 | $1.5
DS547 Silicon Transistor | Z-1300 | $2.5 | $1.5
2SC710 RF Signal Transistor | Z-2512 | $2.95 | $1.5
2N4427 RF Transistor | Z-2506 | $3.99 | $2.00
4116 Dynamic Ram | Z-9310 | $1.00 | $0.25
TBA820M K 2W 8pin Audio Amp IC | Z-2507 | $4.45 | $2.00
2SC2694 RF Power Transistor | Z-2505 | $4.95 | $2.50
LM394C Dual Dif Supamax — ½ price | Z-8083 | $7.15 | $3.55
Voltage Regulator 5 volt 1 amp | Z-6545 | $1.50 | $1.00
41256 256K Dynamic Ram | Z-9313 | $10.95 | $7.95
MRF660 RF Transistor | Z-2508 | $19.95 | $12.00
4528 10 IC CMOS | Z-5748 | $2.75 | $1.00
A superb source book for novices and experienced hobbyists and fundamental circuit concepts, hints, devices, components, materials and haven't got a late edition of the course) as the "Bible" of the electronics industry. If you haven't got a late edition of the Phillips General Catalogue, you're not in electronics. Semiconductors, IC's, electronics! Invaluables! This informative source book has been written for hobbyists and technicians. Covers laser radiation, construction, design and much, much more. Cat B-1851

Was $12.95

$8

Australian CB Radio Handbook

A complete guide to CB Radio including latest marine radio service details. Which system is best? What is the range of CB? What type should you buy? How to conduct yourself on air. The latest edition includes the new regulations and channel allocations. Cat B-2325

Was $4.95

$3

Transistor Equivalents

This reference book enables the user to find substitutes for approximately 9,500 European, American and Japanese transistors. Cat B-4507

Was $22.95

$16.96

THE HARD WORD COSTS LESS

AT DSE WE'RE PLUGGED INTO THE HOBBYISTS NEEDS — AND SO WILL YOU BE!

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>Cat No</th>
<th>WAS</th>
<th>NOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plug & Socket 9 pin valve</td>
<td>P-1910</td>
<td>$2.65</td>
<td>$1.85</td>
</tr>
<tr>
<td>6 pin Din Panel Socket</td>
<td>P-1562</td>
<td>$2.65</td>
<td>$1.85</td>
</tr>
<tr>
<td>2 pin Din Panel Socket</td>
<td>P-1522</td>
<td>$2.65</td>
<td>$1.85</td>
</tr>
<tr>
<td>Socket Bread Board</td>
<td>P-4616</td>
<td>$34.95</td>
<td>$26.95</td>
</tr>
<tr>
<td>Plug & Socket Stereo Metal 2pin</td>
<td>P-1860</td>
<td>$4.95</td>
<td>$2.95</td>
</tr>
<tr>
<td>Coax Plug Plastic</td>
<td>P-2021</td>
<td>$4.95</td>
<td>$2.95</td>
</tr>
<tr>
<td>75 ohm TV Coax Plug</td>
<td>P-2020</td>
<td>$5.95</td>
<td>$2.95</td>
</tr>
<tr>
<td>RCA Plastic Plug</td>
<td>P-1420</td>
<td>$5.95</td>
<td>$3.00</td>
</tr>
<tr>
<td>BNC Plug</td>
<td>P-2210</td>
<td>$5.95</td>
<td>$3.00</td>
</tr>
<tr>
<td>3.5mm Stereo Plastic Plug</td>
<td>P-2210</td>
<td>$5.95</td>
<td>$3.00</td>
</tr>
<tr>
<td>RCA Plastic Plug</td>
<td>P-1422</td>
<td>$5.95</td>
<td>$3.00</td>
</tr>
<tr>
<td>PL259 UHF Line Plug</td>
<td>P-2310</td>
<td>$2.35</td>
<td>$1.50</td>
</tr>
<tr>
<td>Connector N Female Line (save $5.00)</td>
<td>P-2405</td>
<td>$7.95</td>
<td>$2.95</td>
</tr>
<tr>
<td>40 Pin DIL IC Socket — ½ price</td>
<td>P-2420</td>
<td>$4.95</td>
<td>$2.95</td>
</tr>
<tr>
<td>4 way Output Star Plug</td>
<td>P-1670</td>
<td>$2.55</td>
<td>$1.95</td>
</tr>
<tr>
<td>26 pin DIL IC Socket</td>
<td>P-4245</td>
<td>$7.95</td>
<td>$5.00</td>
</tr>
<tr>
<td>Relay Socket PCB Mounting</td>
<td>P-4234</td>
<td>$3.95</td>
<td>$2.25</td>
</tr>
<tr>
<td>6 pin DIN Line Socket — ½ price</td>
<td>P-1564</td>
<td>$1.05</td>
<td>$0.50</td>
</tr>
<tr>
<td>Adaptor "F" Male to RCA Female — ½ price</td>
<td>P-4210</td>
<td>$1.25</td>
<td>$0.65</td>
</tr>
<tr>
<td>SO239 UHF Panel Socket</td>
<td>P-2340</td>
<td>$1.25</td>
<td>$0.65</td>
</tr>
<tr>
<td>15 Pin D Type Plug</td>
<td>P-2687</td>
<td>$3.50</td>
<td>$2.25</td>
</tr>
<tr>
<td>Coax Joiner Adaptor</td>
<td>P-2070</td>
<td>$1.40</td>
<td>$0.80</td>
</tr>
<tr>
<td>UHF Joiner</td>
<td>P-2380</td>
<td>$1.95</td>
<td>$1.15</td>
</tr>
<tr>
<td>36 way Amphenol (save $4.00)</td>
<td>P-2680</td>
<td>$12.95</td>
<td>$8.95</td>
</tr>
<tr>
<td>40 way DC Connector Card</td>
<td>P-2762</td>
<td>$11.95</td>
<td>$8.95</td>
</tr>
<tr>
<td>Edge (save $3.00)</td>
<td>P-1410</td>
<td>$5.50</td>
<td>$4.00</td>
</tr>
<tr>
<td>RCA Line Socket</td>
<td>P-1410</td>
<td>$5.50</td>
<td>$4.00</td>
</tr>
<tr>
<td>Adapt 6.5 Stereo/Socket/6.5 Plug</td>
<td>P-6580</td>
<td>$1.65</td>
<td>$1.25</td>
</tr>
<tr>
<td>Q Range 2 Pin Chassis Socket</td>
<td>P-3115</td>
<td>$8.50</td>
<td>$5.00</td>
</tr>
<tr>
<td>Plug 2.5mm Power DC-2</td>
<td>P-1645</td>
<td>$7.00</td>
<td>$5.00</td>
</tr>
<tr>
<td>Socket 3.5mm Inline Mono</td>
<td>P-1634</td>
<td>$8.00</td>
<td>$5.00</td>
</tr>
<tr>
<td>UHF Tee Connector</td>
<td>P-2384</td>
<td>$4.95</td>
<td>$3.95</td>
</tr>
</tbody>
</table>
You won’t believe your luck! All this month we’re being terribly foolish; with bargains galore — Hurry!! Get down to your nearest DSE store.

1200MHz Amateur TV Converter
This converter module is identical to those used in block type satellite TV receivers. Ideal for the reception of wide band signals. Can be connected directly to conventional TV set. Cat D-8310 $59.95

Oskerbloc's UHF Power/SWR Meter
Oskerbloc — the world’s most respected name in amateur circles — is available at DSE. It’s a “must” for all UHF 2m enthusiasts. Ensures your antenna is working properly every time. Cat Q-1341 $65 Save $20

Oskerbloc's VHF Power/SWR Meter...
Performs the same super job on UHF CB. Cat Q-1342 $99 Save $46

.... and for HF users!

2 Metre 5dB Gain Mobile
Fantastic value! 5.2 dB gain corrosion-resistant stainless steel mobile antenna for the 2 metre band. Cat D-4320 $79.95

'Folded J' 2 metre Vertical
A huge price reduction! Easily installed 'Folded J' 2 metre base station antenna. Hurry, before they all go! Cat D-4211 $99 Save $70 $19.95

GV-16 1.5W VHF Hand-Held Transceiver
Low priced, hand-held. But you don’t lose on performance: It covers all 800 channels in the 144-148MHz band, with all the features like repeater splits, thumbwheel tuning, detachable antenna, built-in condenser mic, slider volume control and much, much more! Included Nicad. Cat D-3620 $269 Save $20

FC-700 Antenna Tuner
Match your transceiver and antenna perfectly! The FC-700 will give you the most from your rig. Antenna matching can be as easy as turning a dial. Gives maximum power and maximum performance from your valuable gear! Includes large power/SWR meter built-in dummy load AND covers all UHF band. All this, and there’s less than 0.5dB insertion loss! Cat D-2917 $250

FRA-7700 Active Antenna
Fantastic! With the FRA-7700 Active Antenna you can pick up stations you didn’t believe possible. Great for home unit dwellers! Cat D-2845 $119 $30 off!

A large price reduction! 1.5W 144-145MHz transmitter. Cat D-2845 $269 Save $20

Quality Yaesu gear at prices to clear!

Yaesu SP55 Mini Extension Speaker
Intended especially for communications use: transceivers, scanners, etc. Just 100 x 65 x 35mm (75mm high in mounting bracket supplied) and rated at 12V. Suits most transceivers (4 ohms Imp) complete with 1.5m cable and 3.5mm plug. Cat D-2913 $40 Save over $17

FRG-8800 DC Kit
Allows operation of your FRG-8800 on 12V DC. Great for field operation, monitoring, etc. Great value too! Cat D-2822 $3 Save $5.75!

SB-10PTT Switch Unit
Suitable for both the FT-7200RH and the FT-720/RH, the SB-10 allows virtual hands-free operation with the headset earphone/microphone. A must for road safety! Cat D-3519 $35 Save over $23

Mobile Bracket
Oops! Over $20 just fell off the price. Super convenient mobile bracket allows you to instantly connect your FT-290R for mobile use. Cat D-3511 $55 Save over $20!

BE QUICK!! THESE PRICES CAN’T LAST!
We’ve gone overboard on amateur bargains!
CB Price
Squelch

Compact CB
big on
features!

Measures a mere 160 x 44 x
122mm. But it’s big on
features and performance!
Digital frequency display,
variable squelch, ANL-Off.
Digital signal/RF power
meter and TX/MOD indicator.
And more! Cat D-1450

Save $40 $99

Mono Band RF
Signalizer All
Mode AM/FM/
CW/SSB

Improve your signal! One touch
Gain Attenuator spanning an
incredibly wide range. Adjustable
from Gain +20dB to Att. -25db
by simple knob operation.
Cat D-3828

Save $15! $54.95

27MHz Super
Heavy Duty

Save an amazing $20! A 27MHz
mobile antenna that’s ideal for
4WD vehicles or anywhere the
going gets rough. Cat D-4078

Save $20 $79

27MHz 100"
Base and Lead

High efficiency 27MHz Mobile
Antenna with heavy duty spring,
base and supply lead! Save over
$10! Cat D-4081

Save $10 $69.95

Pocket
Com II
Walkie
Talkie

Full two way
transmission and it fits
into your pocket.
A great gift for any
child. Also ideal for
the more serious use.
Buy a few and start a
spy ring! Completes with DOC.
Specification RMF001
Cat D-1101

Save $5 $10.95

AM/FM/CB/SW/
VHF with inbuilt
Radio D.F.

Top value for the avid radio listener
— or the boat owner. This quality
radio receiver has a built-in radio
direction finder to pinpoint your
position against AM radio stations.
Plus you get 6 bands including all 40
CB channels plus shortwave AND
VHF! And More! Cat D-2832

Save $20! $129

Tools

$/$Saver Sheet
Metal Bender

Why buy instrument cases whey you
can easily make your own with DSE S/S
Metal Bender. You’ll save $/$$ making your own heatsinks, RF
shields, trays and covers. Provides a
clean, smooth bend up to 90° on
metals to 18 gauge. Pays for itself in
no time! Cat T-5250

Save $20! Now $59.95

Hot Melt Glue Gun

Want to bond virtually anything to
anything? You need a hot glue gun!
It operates from mains power,
heating the glue sticks to operating
temperature very quickly. Pistol
shape design for ease of use.
Complete with mini stand.
Interchangeable tips. Free pack of
ten glue sticks to suit. Value $5.45
Cat T-4840

Was $16.95 Now $19.95

Scope Cordless
Solder Gun

For soldering where you want it.
when you want it. Powerful enough
to handle the same jobs as 60W
mains iron, but built in NiCads give
you up to 100 solder jobs. Includes
plugpack. Heats in just six seconds.
Supplied with charger, two spare
parts and two spare bits.
Cat T-1600

$69

Solder Stand with
Magnifier

The helping hand when you need it.
most: when you have a “hot stick” in
your hand! Heavy duty die-cast base,
solder stand, clips for holding PD,
etc. — plus a unique magnifying lens
for those close assembly jobs.
Cat T-5710

$19.95 $15.95 Now

38 Piece Deluxe
Repair Kit

Everything for quick and easy wiring
repairs. Ideal for automotive and
hobby use. Here’s what you get:
• Multimeter + Crimp Tool + Pliers
 2 Screwdrivers + Neo Tester (rated
 at 500V) + Selection of crimp lugs.
 All in a handy, heavy duty carrying
 case. Cat T-4652

Was $99 Now $27.95

Baby Driver Set

Handy plastic wallet containing 5 of
the most widely used drivers. Ideal
for electronics, model makers,
repairs, etc. Cat T-4340

Was $9.45 Now $5.95

Push Button
LCD Multimeter

Where else but DSE could you
find a quality LCD multimeter at
this incredibly low price. Features
push button range selection, large 13mm LCD display, bench
stand, diode check facility and
overload protection. Cat T-1444

Save $30. $49

Budget Price
Pocket Size

This budget priced tester is a
valued addition to any tool kit.
The 0.5 digit LCD provides
accurate readings at a glance.
RF shielding ensures stable
readings. Overload protected, all
ohms ranges handle 250V AC or
350V DC indefinitely! Cat Q-1520

$49.95

Free protective cover value
$10.95. Cat Q-1522

AF Signal
Generator

Square/Sine wave output audio
signal generator, essential for
work on large range of circuits.
With wide 20Hz-200KHz output
and high accuracy. It is the
perfect partner for the RF
generator. Cat Q-1310

$140

Save $30!

Dual Trace
20MHz CRO

A professional standard 20MHz
oscilloscope! Bandwidth: DC to
20MHz (±3dB), Impedance: 1m
ohm to 25pF
+2%. Algebraic addition:
+ch+ch -ch-Ch. Sweep
time: 0.1us/DIV - 2s/DIV
+/-3% (10°C - 35°C) steps in
1-2-5 sequence. And More!
Cat Q-1260.

$849

Save $100!

Sheet Metal Saver

It is incredibly tough and
when you handle it with our
Exclusive DSE’s Sheet Metal
Saver. It can bend, smooth
and shears up to 1.5mm
thick! Only 610x132x3mm
tall! The 0.7mm thick self
standing, diode check facility
and overload protection. Cat T-4520

$59.95

Save $30!

Metal Bender Saver

A 27MHz mobile antenna that’s
ideal for 4WD vehicles or anywhere
the going gets rough. Cat D-4078

Save $20 $79

Wide Area Gluing

38 Piece Deluxe
Repair Kit

Everything for quick and easy wiring
repairs. Ideal for automotive and
hobby use. Here’s what you get:
• Multimeter + Crimp Tool + Pliers
 2 Screwdrivers + Neo Tester (rated
 at 500V) + Selection of crimp lugs.
 All in a handy, heavy duty carrying
 case. Cat T-4652

Was $99 Now $27.95

Baby Driver Set

Handy plastic wallet containing 5 of
the most widely used drivers. Ideal
for electronics, model makers,
repairs, etc. Cat T-4340

Was $9.45 Now $5.95

Push Button
LCD Multimeter

Where else but DSE could you
find a quality LCD multimeter at
this incredibly low price. Features
push button range selection, large 13mm LCD display, bench
stand, diode check facility and
overload protection. Cat T-1444

Save $30. $49

3.27MHz Magnet
Base Antenna
Centre loaded stainless steel
construction with heavy magnetic
base & 3.3m coax cable with
PL-259 plug. Cat D-4412

$24.95

Save $5

Save $5

$10.95

Free protective cover value
$10.95. Cat Q-1522

AF Signal
Generator

Square/Sine wave output audio
signal generator, essential for
work on large range of circuits.
With wide 20Hz-200KHz output
and high accuracy. It is the
perfect partner for the RF
generator. Cat Q-1310

$140

Save $30!

Dual Trace
20MHz CRO

A professional standard 20MHz
oscilloscope! Bandwidth: DC to
20MHz (±3dB), Impedance: 1m
ohm to 25pF
+2%. Algebraic addition:
+ch+ch -ch-Ch. Sweep
time: 0.1us/DIV - 2s/DIV
+/-3% (10°C - 35°C) steps in
1-2-5 sequence. And More!
Cat Q-1260.

$849

Save $100!

Sheet Metal Saver

It is incredibly tough and
when you handle it with our
Exclusive DSE’s Sheet Metal
Saver. It can bend, smooth
and shears up to 1.5mm
thick! Only 610x132x3mm
tall! The 0.7mm thick self
standing, diode check facility
and overload protection. Cat T-4520

$59.95

Save $30!

Metal Bender Saver

A 27MHz mobile antenna that’s
ideal for 4WD vehicles or anywhere
the going gets rough. Cat D-4078

Save $20 $79

Wide Area Gluing

38 Piece Deluxe
Repair Kit

Everything for quick and easy wiring
repairs. Ideal for automotive and
hobby use. Here’s what you get:
• Multimeter + Crimp Tool + Pliers
 2 Screwdrivers + Neo Tester (rated
 at 500V) + Selection of crimp lugs.
 All in a handy, heavy duty carrying
 case. Cat T-4652

Was $99 Now $27.95

Baby Driver Set

Handy plastic wallet containing 5 of
the most widely used drivers. Ideal
for electronics, model makers,
repairs, etc. Cat T-4340

Was $9.45 Now $5.95

Push Button
LCD Multimeter

Where else but DSE could you
find a quality LCD multimeter at
this incredibly low price. Features
push button range selection, large 13mm LCD display, bench
stand, diode check facility and
overload protection. Cat T-1444

Save $30. $49
UP TO 50% OFF AND MORE!!

More Bargains!

Cable BNC to BNC
for video: W-12815
Was $7.95 Now $5.95
Universal Test Lead W-4528
Was $19.95 Now $16.95
PC board 12 x 12 bakelite H-5510
Was $10.95 Now $7.95
Draw component lead (save over ½ price) H-2565
Was $4.15 Now $2.00
Tag 6 pole H-6626
Was 0.80 Now 0.50
Vernier 6:1 ratio drives
(½ price) H-3901
Was $3.25 Now $4.10
Tag 2 pole (½ price) H-6622
Was 0.85 Now 0.40
Plastic instrument case
(½ price) H-2525
Was $37.95 Now $18.95
Metal cabinet 102 X 56 X 83mm
(½ price) H-2741
Was $4.70 Now $2.35
tag 12 pole strip H-6712
Was $5.05 Now $2.50
tag 4 pole strip H-6704
Was $3.45 Now $2.00
tag 4 pole H-6624
Was $1.25 Now 0.75
Heatsink 75m 2 x TO-3 H-3461
Was $6.55 Now $3.25
Instrument case 200 x 135 x 95
(½ price) H-2506
Was $14.25 Now $7.12
33uF 10 volt electrolytic cap R-3330
Was 0.10 Now 0.01
Trimpot multturn PC 100K R-1910
Was $1.25 Now 0.75
Resistor pack 1% 300pc
1/4 watt R-7020
Was $19.75 Now $10.00
47uF 25v electrolytic cap R-3450
Was $3.95 Now 0.35
0.047uF 100v green cap R-2080
Was 0.30 Now 0.10
Resistor pack 1% 1000pc
1/4 watt R-7015
Was $17.55 Now $10.00
Pot-w/round 6mm 3m
200 ohm R-6911
Was $4.10 Now $1.00
1/4 pot carbon SG in
500K ohm R-1812
Was $1.20 Now 0.50
1/4 pot carbon SG in
100K ohm R-1824
Was $1.30 Now 0.50
2.2uF 25v electrolytic cap R-4300
Was 0.30 Now 0.10

Half Price

Cable
Mini twin heavy duty cable
(½ price of $15 per roll) W-2012
Was 0.40 Now 0.20
SC2/A twin shield figure 8
(½ price or $30 per roll) W-2036
Was 0.85 Now 0.40
Hook up wire 23/0.20 black
(½ price or $10 per roll) W-2282
Was 0.30 Now 0.15
Hook up wire 10 X 0.12 red
($5 per roll) W-2220
Was 0.15 Now 0.07
Hook up wire 23/0.20
(½ price or $10 per roll) W-2260
Was 0.30 Now 0.15
Hook up wire black 10/0.254
($9 per roll) W-2245
Was 0.20 Now 0.12
Hook up wire green 10/0.12
($5 per roll) W-2225
Was 0.12 Now 0.07

Huge Hobbyist’s Savings
We told you you’d be laughing!

Resistance Substitution Wheel
Convenient size with large, easy to read value selection that enables you to select values from 5 ohms to 1M ohm in 36 steps. Complete with leads and insulated crocodile clips. Cat Q-1410
$12.95 Was $16.95

Moving Coil Panel Meter
A high quality moving coil meter with full scale accuracy better than 2%. Pre-calibrated; easily adapted to suit virtually any requirement! Cat Q-2020
Great Value!
Only $8.95

$12.95 Was $16.95

Save over $6!

LCD Multimeter Cap/Transistor Checker
The very latest — and the very best — digital multimeter. And multi is the word. Also checks capacitors PLUS transistors and diodes. It’s got an audible continuity checker! Cat Q-1500
$99 Save $40!

Personal LCD with Auto Ranging
An amazing feature-packed 3.5 digit multimeter that’s the size of a pocket calculator: only 10mm thick! It may be small but boasts a number of impressive features. Cat Q-1655
$49.95 Save $10!

DICK SMITH ELECTRONICS
PTY LTD

SWITCH ON TO DSEE BEFORE THE BARGAINS SWITCH OFF

Switch p/button SPST illum
12V yellow S-1523
Now $10.95
Relay MH34P 4PDT
185 ohm 12V S-7020
Was $14.95 Now $9.98
Switch H-19 button red S-1078
Was $3.25 Now $2.25
Switch ultra mini PCB
90° toggle S-1245
Was $3.95 Now $1.95
Waterproof Toggle S-1195
Was $7.65 Now $5.95
Switch mini p/button
PDPT S-1253
Was $4.95 Now $3.45
12 V mini relay S-7112
Was $4.95 Now $3.95
Switch slide S-1230
(save $1) S-2060
Was $1.30 Now $0.30
Switch slide S-2050
Was 0.95 Now 0.50
Switch PCB mount PDPT
(only 1¢) S-1850
Was 0.10 Now 0.01
Switch levelling action 4PDT
(save $1.50) S-1391
Was $2.75 Now $1.25
Switch mini PCB
90° toggle PDPT S-1249
Was $3.25 Now $1.25
Switch bank of 4 PDPT
Interlock S-1294
Was $5.45 Now $3.45
S/W mini push PDPT
on/off S-1287
Was $4.95 Now $2.95
Switch mini toggle
r/angle PDPT S-1177
Now $1.40
Globe illiput 6.3V S-3836
Was 0.55 Now 0.25
Switch single bank PDPT S-1906
Was $2.45 Now $1.05
Switch u/minic PC/C
toggle PDPT (save $2) S-1251
Was $3.60 Now $1.60
Holder fuse chassis PC
mount (½ price) S-4258
Was 0.65 Now 0.32
Thermal fuse 250V 10A
S-4425
Was $1.35 Now 0.60
Globe socket S-3880
Was $1.05 Now 0.60
Switch u/minic p/button SPDT
(½ price) S-1253
Was $3.05 Now $1.50
Bezel; ult/miniled 2V
green S-3529
Was $1.85 Now $1.00
Switch pull on/push off
DC24V 1CA S-1190
Was $4.67 Now $3.00
Switch u/minic PCB 90°
toggle PDPT S-1247
Was $2.75 Now $1.75
Plug & socket 9 pin valve S-1910
Was $2.65 Now $1.85
6 pin DIN panel socket S-1562
Was 0.95 Now 0.65
2 pin DIN panel socket S-1522
Was 0.55 Now 0.35
Metric Screw Packs

<table>
<thead>
<tr>
<th>Description</th>
<th>Asst P/H</th>
<th>Quantity</th>
<th>Cat No Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/Tap Screws</td>
<td></td>
<td>160pc H</td>
<td>$1500 $1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150pc H</td>
<td>$1500 $1.00</td>
</tr>
</tbody>
</table>

Grommets

Heavy duty grommets made of Black Rubber. Essential when cable passes through a meat chassis as they will prevent frayed cables and live chassis.

Cat H-1719

<table>
<thead>
<tr>
<th>Hole Size Bore No.</th>
<th>In Pack Price 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>12mm 9</td>
<td>$1.25 $1.15</td>
</tr>
</tbody>
</table>

Insulated Spacers

The ideal spacer for insulating the chassis from your PC board. They come complete with screws.

25mm 4 H-1872 $3.25 $2.48

Coloured Plastic Knobs

What a colourful idea! Now your project can really look the part with these snazzy coloured knobs. Use them to colour code sections (great on multi-channel mixers, lighting consoles, etc). 16mm diam, standard metric (fluted shaft) fitting. Inserts can be changed to suit the occasion! Choice of four of their colour.

All one price: $87 each!

Orange Cat H-3802, Red Cat H-3800. Green Cat H-3806, Blue Cat H-3804.

Versatile Power Heatsink

The ingenious design of this heatsink makes it possible to mount it either flat on a panel, or at right angles to it (eg inside a case). The side fins also have tongue and groove so they be joined sideways. Drilled version takes 2X 3-4's. Size is 78 x 110 x 33mm. Cat H-3460

Undrilled 1-4 $6.36 ea
5 or more $5.72 ea

STORE LOCATIONS

- **NEW**
 - Albury (060) 613 6200
 - ACT 95 Gladstone St

- **NSW**
 - Hornsby (02) 8405 4000
 - cr Pacific Hwy & Kingston Rd
 - Underwood (07) 341 0444

- **ACT**
 - Canberra (02) 797 4888
 - VIC

- **QLD**
 - Brisbane (07) 347 1234
 - QLD

- **SA**
 - Underwood (07) 341 0444
 - SA

- **TAS**
 - Hobart (03) 621 0600
 - TAS

Assorted Metric Screw Pack

Over 200 pieces of the most popular small sizes: M2.5, 3 and 4 nuts and screws - cross, round and countersunk head. Plietted finish, ideal to have on hand in the workshop! Cat H-1860

$4.97

MAJOR DICK SMITH ELECTRONICS AUTHORIZED RESELLERS

- **WA**
 - Bunbury 6230 6230
 - Bunbury

- **NT**
 - NT

Dick Smith Electronics

[Address and Contact Information]

Dick Smith Electronics

[Address and Contact Information]
ANNOUNCING

SHOTGUN DIRECTIONAL MICROPHONE — kit contains cut tubes and all necessary parts for use in building a super directional, highly sensitive microphone. All electrical components are supplied that are necessary in constructing this device. The unit also includes our high gain amplifier circuitry as well as our RCA type headphones. The combined circuit can be obtained such as in a hole or a pair of earbuds. This is often used in professional applications, particularly in film and television.

MINI-LONG RANGE VOICE TRANSMITTER — Listening device allows the user to monitor and record any conversations in any premises where there is no need for audio recording. The unit is equipped with a microphone and a high gain amplifier. The microphone is designed to pick up any sound within 30 feet of the unit. The amplifier provides a clean and clear audio signal, allowing the user to monitor the conversations through the speakers.

INSTANT INVISIBILITY — Our very best top quality. These are the devices used by the professionals. They are completely invisible. The device is attached to the headgear and is activated automatically for increased resistance. The device is powered by a rechargeable battery. The device can be easily removed and replaced as needed.

LONG RANGE PARABOLIC MICROPHONE — With a parabolic microphone, the user can hear up to 5 miles away without the need for a line of sight. The device is designed to capture sound waves from all directions and can be adjusted to focus on a specific area.

FM BROADCAST TRANSMITTER — Unique circuit allows you to broadcast over long distances using a radio frequency. The broadcast signal can be heard within a range of 5 miles. The device is compact and portable, making it easy to use in a variety of situations.

HIGH VOLTAGE GENERATOR — Produces a variable output from 0 to 200 volts DC. The device can be used for a variety of applications, including laboratory experiments and research.

GRAVITY GENERATOR — Unique machine that produces a powerful gravitational field. The device includes a generator and a receiver, which can be used to study the effects of gravity on objects. The device is compact and portable, making it easy to use in a variety of situations.

REMOTE WIRELESS MICROPHONE REPEATER — Allows you to transmit your voice over long distances using a radio frequency. The device includes a microphone and a transmitter, which can be used to transmit your voice to a receiver. The device is compact and portable, making it easy to use in a variety of situations.

HIGH PERFORMANCE PORTABLE BATTERY OR AC POWER SUPPLY — High power supply that can be used with all our equipment. The supply is designed to provide a constant voltage, ensuring consistent performance.

FIELD STRENGTH METER — This device is a great aid when using any wireless transmitter that transmits in the broadcast band. The meter is designed to provide a reading in milliwatts, allowing the user to monitor the power level of the transmitter. The meter is easy to use and provides accurate readings.

VOICE OPERATED WIRELESS PHONE SYSTEM — This system allows you to communicate with any other device in your area using a wireless phone. The system includes a transmitter and a receiver, which can be used to communicate with other devices. The system is designed to be easy to use and provides clear, reliable communication.
A New Era in Project Building

POLICE CALL UNSCRAMBLER — Allows you to decipher those mysterious communications on the airwaves by simply connecting this neat little unit to the earphone jack on radio. USA . . . $247.90 [kit] or $370.90 assembled and tested.

MAGNETIC FIELD DISTORTION DETECTOR — This new ultra-sensitive device allows one to detect and record any magnetic disturbances, usually detected by aircraft, automobiles, etc. This sensing is a signal that the Earth’s magnetic field is changing, with a change in this field of force. This is a great research tool with many practical applications in communications, magnetism, and science. This device is available from a kit for $279.90 or assembled and tested for $370.90.

PORTABLE HIGH ENERGY SOURCE/PLASMA PROPELLANT DEVICE — Produces megawatt pulses of electrical energy capable of destroying wire, carbon, foam, heat, thick layers of lead, welding, etc. This device is classified as a D-6A or D-6B. Use with welding, plastic surgery, etc. Caution: These are hazardous electrical devices. Use only for lab use.

HIGH GAIN ANTENNA — Designed to be used with our FM receivers for picking up the ground extending the range of any wireless devices. This is also used with the FM antennas for transmitting devices. D-60, available at $9.90 with high gain power.

POLYTRON X-RAY MACHINE — Easy to construct, the Poltron X-ray machine is an effective X-ray scanning device. Its low cost and simplicity make it ideal for use in medicine, industry, and education. This machine is available for $299.90 assembled or $379.90 complete with all parts.

BATTERY CHARGERS/ELIMINATORS — Plans to construct three different units. Kits are available at $279.90 [kit] or $379.90 assembled and tested.

COPPER — Particle beam generator/Proton Accelerator — Complicated device to build; plans are included. Larger versions can be built. This device can handle radiation of the body and eyes. D-60, available at $9.90.

VOICE SCRAMBLER — Miniature solid state module can turn speech sounds into unrecognizable noise that can be used for privacy in conferences and meetings. D-60, available at $9.90.

LASER — Nitrogen laser — Now, at last, a simple, economical gas laser operating in the UV range at 377nm. The power output is 100kW. This device is adjustable between 50 and 1000 pulses per second. This device is ideal for research and development in the field of laser technology. D-60, available at $9.90.

ULTRASONIC GENERATOR — This device is capable of emitting ultrasound. It is powered by an energizer unit that has a frequency of 100 kHz. This device is ideal for use in medicine, dentistry, and other applications. D-60, available at $9.90.

LETTER — Universal battery power supply. For all small electronic devices, this unit provides a stable and consistent power supply. D-60, available at $9.90.
MUTT MINDER

Man’s best friend can develop some very anti-social habits, especially towards those who deliver mail, go jogging or ride a push-bike through a dog infested neighbourhood. This little project will make the mutt keep his distance.

DOGS AND SOME other animals have ears with a quite different frequency response from people. They can hear sounds quite well at high frequencies which are inaudible to us. One can use this simple fact of life to build a device that will sound extremely loud to a dog but be inaudible to humans. That is what this project is about.

It emits ultrasonic audio waves from a transducer on the front panel at a frequency around 20 kHz. Most people will not hear anything at this frequency, although children and young women, who have extremely good high frequency hearing might be able to detect a high pitched whistle. However, dogs will hear it as a deafening howl, which nine times out of ten they will avoid like the plague.

To use the Mutt Minder, just wave the box in front of the dog and press the button briefly. If this is done a couple of times it will quickly associate you with an unpleasant noise and stay away. Some authorities issue a caution though; don’t depend on the device too much. Some dogs that are trained to attack may well get more aggressive rather than go away. You should only use it when you have reason to fear for your safety.

It’s also worthwhile noting that you should only use the minder in short bursts. Firstly, the transducer is very current hungry, so it will drain the batteries quite quickly if used for an extended period. Secondly, extended exposure to humans can cause nausea in sensitive people.

Construction

The kit is supplied complete with box, transducer and a wire mesh which is the thing that actually emits the ultrasonic. The first step is to check that you have all the parts, paying particular attention to the circuit board. Make sure it is free of bridged and broken tracks and clean it properly. If holes have not been drilled it will be necessary to do this now. Apart from the big hole on the front of the box for the transducer, it will also be necessary to drill a hole for the switch and the trim-pot. To drill the switch hole, place the piezo in position, and determine the best position for the switch before drilling the hole. The trimpot hole can be marked by putting the trimpot in the board, and the board in the box resting on a piece of insulating styrofoam. Then drill the hole such that you can insert a screwdriver through it to turn the trimpot.

The next step is to mount the flying leads. First, put the bare board in its proper position in the box, together with the switch, piezo and battery. Measure sufficient length of lead to make all the required connections and solder them onto the board. Then mount all the components, taking care to preserve the proper polarity. Pay special attention to the transformer. It has two sets of leads, one connected to the 1000 ohm windings and one set to the 8 ohm windings. You can determine which is which with a multimeter, although don’t expect the windings to read the correct resistance since there is quite a range of tolerance. Remove the high resistance leads and solder the low resistance leads onto the board.

It is best to mount the small bits first, then the transformer. Mount the IC and

ETI-286 — HOW IT WORKS

A 555 timer, IC1, is connected as an astable oscillator set somewhere between 16-21 kHz, and along with R1, R2 and C2 determines the frequency and symmetry of the output waveform. Adjustment of this frequency is by trimmer RV1. Output is taken from pin 3 and is resistively coupled to the base of Q1. This is operated in a class C mode.

Positive pulses occurring at the collector of Q1 drive TR1 through inductor L1 which forms a resonant circuit with the internal capacity of TR1. It should be noted that TR1 has an inherent capacitance of about 150μF and this must be tuned out via the series inductance of L1 for efficient power transfer. Note that L1 may be tunable for maximizing results at a set frequency.

T1 is the 8 ohm section of a transformer and serves as an audio choke while offering only its dc resistance for feeding the collector of Q1. The battery is a standard 9 volt transistor radio or can be a rechargeable nicad.
Q1 last of all.
Because the circuit board is so small it is easy enough to mount by putting a bit of styrofoam underneath, then dropping some blobs of silicon on top. The wire mesh can now also be placed over the big hole and the transducer mounted in place. Once again use some silicon to hold it in. Finally, screw the switch through the hole in the side. Now solder the flying leads onto the tags of the transducer and the switch.

Testing
Use a multimeter to check for the absence of shorts or other gross defects when the switch is closed. Then rotate RV1 fully counter clockwise (low frequency end) and connect the battery, connecting the meter in series with the supply. Note a current drain of about 250 mA when you turn the unit on, together with (maybe) an unpleasant whistle coming from the unit. Turn RV1 clockwise and note that the drain goes up to 350 mA. You should set RV1 so that you can’t hear the transducer when it’s on.

ETI 286 — PARTS LIST

<table>
<thead>
<tr>
<th>Category</th>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistors</td>
<td>R1,2</td>
<td>2k2</td>
</tr>
<tr>
<td></td>
<td>R3</td>
<td>10k</td>
</tr>
<tr>
<td></td>
<td>R4</td>
<td>1k</td>
</tr>
<tr>
<td></td>
<td>RV1</td>
<td>2k trim</td>
</tr>
<tr>
<td>Capacitors</td>
<td>C1</td>
<td>100µF, 25 V electro</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>10n ceramic</td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>1µF, 50 V electro</td>
</tr>
<tr>
<td>Inductors</td>
<td>L1</td>
<td>1 mH</td>
</tr>
<tr>
<td>Semiconductors</td>
<td>IC1</td>
<td>555</td>
</tr>
<tr>
<td></td>
<td>TR1</td>
<td>D40DS piezo transducer</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>pc board</td>
<td></td>
</tr>
<tr>
<td></td>
<td>wire mesh</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D battery</td>
<td></td>
</tr>
<tr>
<td></td>
<td>clip</td>
<td></td>
</tr>
<tr>
<td></td>
<td>push-button switch</td>
<td>110 x 6 x 30 mm box hook-up wire</td>
</tr>
</tbody>
</table>

This project was provided by SYM Electronics (03) 500-0078, and is available in kit or completed form.
16-BIT COMPUTER

In this fourth article of this series we examine the operations of the 1616 computer and assess its viability in the marketplace.
Software calls. The commands invoke are contained within the 1616's operating system, including the MC6800 bus, with schematic diagrams. The 1616's documentation covers 206 pages and includes:

- The 1616/OS User's Manual (50 pages): discussion and documentation of the use of 1616/OS and its commands, including the line editor, the screen editor, disk files, I/O redirection, shell (batch) file programming, etc.
- The 1616/OS Programmer's manual (55 pages): description of the general approach to developing 1616 programs and the resources available to application programs, including the operating system calls.
- The 1616 assembler manual (42 pages): all about the use of this MC68000 assembler.

The 1616/OS commands

There are 50 commands which are recognized and executed by 1616/OS. Because the actual MC68000 programs which these commands invoke are contained within 1616/OS these are called 'inbuilt' commands. Programs which are loaded from disk (or RAM disk) and executed are called 'transient' programs because they need only exist in memory as long as they are running, after which they may be overwritten.

EDIT: The 1616 screen editor

EDIT, the 1616/OS inbuilt screen editor has been written so that its commands are compatible with the single line editor which is used for 1616/OS command entry. The editor is used to read in, modify and then write out a disk-based file. It is very similar to MicroPro's popular 'Wordstar' program in non-document mode. Like virtually all the resources of 1616/OS, the screen editor is accessible from within application programs and it is capable of operating within screen 'windows', so the standard screen editor may be integrated into another program running in the 1616.

The command to enter the editor is:

EDIT FILENAME

The optional number after the file name specifies the width of the editor's tab stops. With heavily indented files it is sometimes useful to reduce the tab stop width from the default of eight.

Once within the editor you are presented with a status line at the top of the screen. It shows status information, the current position within the file and the name of the current file. This line is also represented with a status line at the top of the editor. It is sometimes useful to reduce the tab stop width from the default of eight.

The 1616 assembler manual (42 pages): description of the general approch to developing 1616 programs and the resources available to application programs, including the operating system calls.

ASSEMBLER MACROS

An assembler macro is a prototype of a sequence of assembler instructions which is defined in your source file. You give the prototype a name when defining it and henceforth whenever this name is used as an assembly source instruction the macro's prototype is expanded out and assembled. Using a macro as an instruction in this manner is known as a 'macro invocation'. A macro invocation statement usually includes operands which modify the way in which the macro is expanded.

Macros are simply a fancy text substitution mechanism; there are various ways of controlling how the substitution occurs, and the eventual output is machine language source containing no macro invocations.

As an example, let us consider a section of 1616 assembler code which draws a diagonal line across the VDU screen:

```assembly
move.1 #0,d1 * x start
move.1 #0,d2 * y start
move.1 #53,d0 * line draw system
call number
trap #7 * perform the system call
```

A preferable approach to this is to use macros as follows:

```assembly
drawline macro * macro prototype
definition
move.1 1,d0 * x start
move.1 2,d2 * y start
move.1 3,a0 * x end
move.1 4,a1 * y end
move.1 #53,d0 * call number
trap #7
endm
```

Note that this macro produces no code output when its prototype is defined. We first need to invoke the macro, as follows:

```assembly
drawline #0,#0,#53,#199
```

When this invocation is expanded out, each of the operands is slotted into the appropriate place in the prototype and the resulting text is assembled. Macros may be nested, which means that a macro prototype definition may include invocations of other macros.

Cursor movement

The cursor movement commands allow you to display and/or alter different parts of the text file by moving to different positions within it.

- E up one line
- QE up to top of page
- R up one page
- QR to start of file
- D right one character
- F right one word
- QD right 80 characters
- B start/end of line
- X down one line
- QX down to bottom of page
- C down one page
- QC to end of file
- S left one character
- A left one word
- QS left 80 characters

Scrolling

The scroll commands move the screen display without altering the relative cursor position. Handy when you are used to them.

- Z scroll up
- W scroll down

Text deletion

There are a number of commands for deleting ranges of text before or after the cursor.

- G delete char forward
- T delete word forward
- QY delete line forward
- H,DEL,BS delete char backward
- Y delete line
- V delete line backwards

Block commands

The block commands are used by marking out the beginning and end of a 'block' of text (which is then highlighted on the screen) and then manipulating this block as a whole.

- KB mark block start
- KK mark block end
- KY delete marked block
- KH hide block
- KW write block to file
- QB go to block start
- OK go to block end
- KV move marked block to cursor
- KC copy marked block to cursor

File commands

Various file I/O commands and system access commands are available from within...
the editor.
- KR read in (merge) a file
- KX write out file, quit
- KD write out file, continue editing

Miscellaneous
The miscellaneous commands include setting and moving to file markers, merging files, partial screen freezing, etc.
- KO exit without saving file
- KE execute a 1616/OS command
- QG go to line number
- KF partial screen freeze
- QF find pattern
- L repeat last pattern find
- N repeat last substitution
- KI escape to 1616/OS
- KO-9 set block markers 0 to 9
- QA go to a block marker
- KA substitute pattern
- N repeat last substitution

The partial screen freeze feature (KF) allows you to display part of the current file on the screen whilst editing a different file on the screen whilst editing a different system.

The video control functions include the following:
- KI escape to 1616/OS
- KF partial screen freeze
- KG go to a block marker
- QA substitute pattern
- N repeat last substitution

These functions include all the standard file control routines as well as block definition, label assignment, and common storage definitions, label assignments or macro definitions which may be included in programs at assembly time.

Hardware control:
There are a number of system calls which manipulate I/O devices. Use these wherever possible, rather than directly manipulating I/O devices.

A system call is performed by putting the call number into d0 (data register zero) and any required arguments into d1, d2, d0, a1, and a2 and then executing the 68000 "TRAP #7" instruction. If the system call does not require five arguments then not all of the registers need be initialized.

Any return value from the system call will be in d0. If the system call does not return a value then the contents of d0 are undefined. All system calls preserve all registers except d0, however, it is poor programming practice to reply upon this. All parameters passed to system calls are considered to be long integers (32-bit quantities). The returned value is also a long.

Normal 1616 programs will make extensive use of system calls; for this reason an assembler macro package which greatly simplifies the use of system calls comes with the 1616 assembler. An example of a system call is given below.

IN-BUILT COMMANDS
The in-built commands are all listed here as a guide to the features of 1616/OS.

MEMORY MANIPULATION COMMANDS
- MDB, MDW, MDL: memory dump byte, word, long
- MRDB, MRDW, MRDL: memory repetitively dump byte, word, long
- MFB, MFW, MFL, MFA: memory block move
- MSAVE: save memory on disk file
- MLOAD: load disk file into memory
- DISK FILE COMMANDS
 - CTYPE: change the type of file(s)
 - COPY: copy and/or join files
 - DELETE: delete file(s)
 - DIR, DIRS: directory listing
 - RENAME: change a file’s name
 - LOG: log onto a new block device

CASSETTE TAPE COMMANDS
- TSAVE: save disk file(s) on tape
- TARCHIVE: save changed disk files on tape
- TLOAD: load a file from tape
- ITLOAD: load all files from tape
- TVERIFY: verify all files on tape

MISCELLANEOUS COMMANDS
- BASE: convert number(s) to and from binary, decimal or hex
- EXPF: evaluate an arithmetic expression
- CIO: copy characters from standard input to standard output
- ECHO: echo command line arguments onto standard output
- EDIT: edit a file
- FKKEY: reprogram a function key
- GO: execute a machine language program
- HELP: obtain help about in-built commands
- PAUSE: temporarily suspend command processing
- QUIT: exit from command interpreter
- SERIAL: reprogram a serial port
- SETDATE: set current date/time
- SSLOAD: load a file
- SSIO: reassign standard input/output devices
- SYSCALL: manually perform a system call
- TERMA, TERM: enter serial terminal mode
- DATE: display current time/date
thus reducing file sizes and promoting consistency in the use of labels and macros. Conditional assembly is also there; the assembler has pseudo-instructions which may be used to control whether or not sections of code should be assembled.

SSASM also sports that most useful feature: assembly macros (see box). There is a file supplied with SSASM which contains macro code for performing each of SSASM's 100-odd system calls. This file may be 'included' in other programs so that the programmer can encode system calls in a quicker, more readable and less error-prone manner. The SSASM tape includes some demonstration programs which show the use of the assembler, system calls and the system call macro include file.

1616: THE FUTURE

The first and most obvious question everyone has asked when enquiring about or purchasing the 1616 is “when will the disk controller be available?” The answer is very soon. We have already started work on the controller and will have some definite details for the next article.

You must keep in mind that these articles are written six to eight weeks in advance of publishing. As this is being written in early February, it is highly probable that by the time the article is in print a demonstrable prototype will be up and running. Thus if your curiosity gets the better of you, contact Applix directly.

SOFTWARE:

Again, by the time you read this article, a full featured BASIC interpreter will be available. This will run on both tape- and disk-based systems and will cost around $50.

What about disk operating systems? A new release of 1616/OS will be supplied with the disk controller. This is simply a matter of adding a block device driver but we will also be adding some more features. Any programs developed on tape can be simply loaded into the RAM disk and transferred to disk. We will be looking at porting a full C compiler to 1616/OS.

Applix will be endeavouring to port Digital Research's GEM operating system to the 1616. Briefly, GEM is a window-based operating system very similar to that on Apple's Macintosh. This is the same operating system as the Atari ST series uses, and will allow the 1616 to run many of the commercial software packages available for that machine including many programming languages.

We have a number of third party developers looking at porting Microware's OS-9 operating system and also Whitesmith's UNIX look-alike, IDRIIS to the 1616.

WHO'S BUYING THE 1616?

We were astounded by the variety of people interested in the 1616, and expect to reach our target of 500 units shortly. The more people who buy it, the more opportunity we have to develop new products for it, the better it will be for everyone.

It seems that a lot of people are sick of the typical off-the-shelf, box computers and there is a real demand for down-to-earth, affordable systems.

Any hardware or software developers interested in doing work with the 1616 should contact Applix. We are willing to offer any help or advice to get new products off the ground and to discuss marketing opportunities.

1616 memory usage

The memory usage map for a 1616 with a 256K RAM disk selected is as follows:

- $0000-$003FF: machine vector table and some system use
- $00400-$033FF: 1616/OS internal data areas
- $03400-$038FF: unused, free for application programs
- $03c00-$03fff: unused, reserved by Applix
- $04000-$05ce00 (approx) application program code, data and stack areas
- $04000-$041ff: 1616/OS file buffer area
- $42000-$7fff: RAM disk storage area and checksum tables

1616 Programming

It is desirable that 1616 programs blend into the 1616/OS environment by working in a standard, predictable manner. The program conventions which should be observed are:

1. Programs should, where possible, obtain their user-provided information from the command line arguments.
2. If a program detects an error on the command line it should print out a usage message in a standard format.
3. Programs should not produce unnecessary output. Programs which display copyright messages, programmer's names, version numbers, etc, are often awkward to use in an operating system with the I/O redirection features of 1616/OS.

The standard start address for programs is $4000, however programs may be loaded in at higher addresses. The arguments which were typed on the command line when a program is run are accessible from within that program. These arguments are such things as file names, option selections, numeric data, etc.

A program has available to it all of the memory from $4000 to the bottom of the machine stack. The amount of available memory depends upon the selected RAM disk size. The usual free memory size is 1/4 of a megabyte.
POWER, PRICE, FLEXIBILITY AND COMPATIBILITY IN A 16 BIT KIT.
THE AMAZING 1616.

At last a kit computer that sports similar features, specifications and classical design architecture to current PC's.

The 1616 offers the latest microprocessor, loads of onboard memory, expansion slots for your favourite add-ons and more! As well as software with the power to pull all these features together and make the 1616 function as a useful, high performance personal computer priced to suit any budget.

THE CHALLENGE THAT IS WELL REWARDED.

Built up in easy stages, the 1616 offers a unique insight into the workings of 16 bit computers. Each stage can be tested by diagnostic functions, to ensure correct construction. In its complete form, the 1616 is comparable with today's commercial PC's, or, in partial form, it is perfect for research adaptations.

HARDWARE THAT PROVIDES POWER AND FUNCTION.

Just imagine; a 68000 CPU, high resolution colour graphics, stereo sound, memory and software with an abundance of I/O and unlimited expansion capabilities.

COMPETITIVE PRICES, TAX INCENTIVES AND FLEXIBLE PURCHASING.

The 1616 is available as a Basic Kit for $449 with the Board, Chips and Components. The Keyboard is $139 and the Power Supply Unit is only $69. Applix can arrange discounts for bulk purchases as well as all necessary tax exemptions for educational and business customers.

THE 1616 KIT COMES AS A BARE BOARD, A BASIC KIT OR FULLY CONSTRUCTED.

SORRY, IT DOESN'T WORK! APPLIX GUARANTEES IT WILL!

If properly constructed the 1616 will function perfectly, however, if you do encounter problems, Applix will, for a flat fee, guarantee to correct them.

FEATURES THAT ARE BOTH ORIGINAL & COMPATIBLE

- Motorola 68000 (16 bit) Processor
- 512K bytes RAM as standard
- Graphics: 320x200V 16 colours, 640x200V any four of 16 colours.
- Standard RGBI Interface or composite video (shades of grey).
- * Stereo sound.
- * On-board high speed cassette interface, RAM disk software support in ROM.
- * Uses standard IBM-style detachable Keyboard.
- * Four 80 pin expansion slots.
- * Centronics compatible parallel printer port.
- * Dual serial ports.
- * General purpose analog & digital I/O port.
- * Analog two-button joystick port.
- * Powerful monitor, full screen editor, terminal emulation, communications, operating system and more.

CONTACT APPLIX TODAY!

Applix Pty. Limited
324 King Georges Road, Beverly Hills.
P.O. Box 103, Beverly Hills 2209. NSW
Telephone: (02) 758 2688

ADVERTISING INFO No. 16
Train at Home for a Better Career!
(39 ways ICS can help improve your life)

The decision to invest your time, energy and money in preparing for a new career is one of the most important decisions you will ever make. It can offer you the chance to qualify for the job you want...more money, more prestige and a better life.

At ICS, we've spent a hundred years training people for exciting, profitable careers. The ICS program offers you the most personalised education available. Every student is a "class of one." You study at home in spare time...go as fast or slow as you want.

Rather than learning from just one tutor, you learn through a system that combines the best skills of many people. The staff guides you, grading exams and offering helpful comments or suggestions as needed. Easy-to-check tests are included throughout each course so you can see your own progress.

You waste no time travelling to and from class. And ICS lessons are easy to understand because they're complete with drawings, diagrams and photographs. Tools, calculators, electronic instruments, drawing materials, fabric swatches, reference books...whatever you need to complete your training is included with your program at no extra cost.

Statistics show that specialised career training has helped thousands of men and women make more money, get better jobs, even start whole new careers. Compare your present salary with the money you could be making in any one of the careers listed on the coupon. And it's not the money alone that is important! Being around people you like, doing something you really enjoy, feeling successful in your career...all these can make a big difference in your future and in your entire outlook on life!

SEND FOR FREE FACTS! NO OBLIGATION EVER! WE PAY POSTAGE WHEN YOU USE THE FREEPOST LABEL.

GW
THE ALTERNATIVE 20 MHz OSCILLOSCOPE

While other 20MHz CRO's are content to be like the rest, GW offers you the real alternative. The GOS-522 is a 2 Channel, CRO with a unique 'ALTERNATIVE TRIGGERING' mode between Channels 1 and 2. This allows you to compare test points between good and bad boards simultaneously!

GW Instrument's GOS-522 offers more 'real' facilities for your dollar:
- Fast 20ns/DIV sweep speed - for high precision
- Large 6 inch rectangular, internal graticule CRT
- Trigger Level Lock and Variable Hold-off - for operating ease
- DC Trigger Coupling - for low frequency signals
- AUTO NORMAL and SINGLE SHOT sweep modes

GW's "ALTERNATE TRIGGERING" MODE:

CH1 CH2

WITH PROBES: $733 excl. tax $855 incl. tax

WITHOUT PROBES: $698 excl. tax $815 incl. tax

ADVERTISING INFO No. 17

NO POSTAGE NECESSARY when you use the FREEPOST label.

ICS
Freepost 22
398 Pacific Highway
Lane Cove, NSW 2066

We Pay Postage

INTERNATIONAL CORRESPONDENCE SCHOOLS
SINCE 1891
398 Pacific Highway, Lane Cove, NSW 2066

YES! Please send me without cost or obligation, free facts on how I can study for the career I have chosen. TICK ONE BOX ONLY.

- Personal Computing
- Fitness & Nutrition
- Auto Mechanic
- Hotel/Motel Mgmt.
- Interior Design
- Small Business Mgmt.
- Dressmaking & Pattern
- Graphic Design
- Electronics Technician
- Computer Programming
- Computer Programming
- Business Mgmt.
- Marketing Mgmt.
- Business Mgmt.
-English Composition
- Accounting for Managers
- Bookkeeping
- South African Practice
- Drafting
- Drafting
- Drafting
- Computer Programming
- Accounting
- Marketing

Please complete:
Mr./Mrs./Ms.___________ Age___________
Address__________________________
Postcode__________________________

ADVERTISING INFO No. 22
20MHz SCOPE WITH ALTERNATE TRIGGERING

The GOS-522 is an ideal general purpose scope which we've selected because of its excellent triggering functions. Two channels with big 150mm (6") screen and internal graticule. Fast 20ns/div sweep speed for high precision. Features alternate triggering mode to ensure stable display of both channels - saves a lot of knob twiddling! Trigger circuit is d.c. coupled too for low frequency signals. Trigger level lock and variable hold-off all add to ease of use. Auto. normal and single shot sweep modes. Call in for a demo, you will be delighted with the performance and the price.

- **$732 ex tax**
- **$855 inc tax**

Compact and easy to operate for hobbyists and professionals.

CHECK TRANSISTORS, CAPACITORS AND CURRENT TO 10A

One multimeter does the lot - Vdc from 200mV to 1000V, Vac from 200mV to 750V, Ac from 200mA to 10A, Ac from 20mA to 10A, Ohms from 200ohm to 20Megs, Diodes, Continuity beeper, Capacitance from 2nF to 20uF. Plus measure hFE for PNP and NPN transistors from 0 to 1000. Single rotary dial for unambiguous range selection. Auto-polarity 3½ digit display. Bright yellow case so you won't lose it! EDM1111A $118.88 inc. tax ($103.03 ex tax).

HANDY POCKET MULTIMETER

Measures only 126mm x 70mm x 24mm yet incorporates full 3½ digit multimeter including a continuity buzzer. Single rotary switch for fast convenient operation. Checks diodes too. Measures Vdc from 200mV to 1000V, Vac 200 and 750V. Adc from 200μA to 2A, Ohms from 200ohm to 2Meg. Special 1.5V battery test range with 1mV resolution and a continuity range which beeps when resistance is below 1000ohm. Bright yellow case so you can't mislay it! EDM-700 $64.40 inc. tax ($55.52 ex tax).

ADJUSTABLE VOLTAGE & CURRENT REGULATOR L200C

Handles output currents up to 2A and voltages in the range 3V down to 2.85V. Thermal overload and short circuit protected. Input over-voltage protected to 60V. Only $3.50.

P.C. BOARD ETCHER

Our bubble-etcher is ideal for prototypes and small runs. Uses a minimum of etching material — ammonium persulphate — which is a clear solution so you can easily see the etching take place. Simply dissolve crystals in warm water, pour into tank and switch on air pump. The P.C. board is suspended in the etchant and the movement of the fluid washes away the dissolved copper, leaving it etched clean in a few minutes. The vertical slit is only 12.5mm wide. Two sizes suit boards up to 225 mm x 115 mm. $45.00 for 300 mm x 255 mm (12" x 10") $109.00. Comes complete with double insulated 240V air pump, hose, clamps etc.

BUILD YOUR OWN P.C BOARD ETCHER

One of the best features of our bubble etcher is its ability to use the old etching solution again.
AUDIO & VIDEO
- **Car Audio (J. Fairall)** Apr 13
- **Digital Audio Tape** Nov 70
- **Racemac at the Indianapolis 500 (B. Dance)** Dec 104
- **Sleeping Giant: Videodiscs (B. Smith)** Nov 114

BUYERS' GUIDE
- **Printers** Nov 95
- **Compact disc players** Dec 95

COMMUNICATIONS
- **Australian Frequency Allocations** Jan 60
- **Back on Full Power (A. Cushen)** Sep 16
- **Beyond the Torres Straights (T. King)** May 95
- **Cellular Radio (J. Fairall)** Jan 10
- **Communications Receivers Cost Less (A. Cushen)** Aug 14
- **Electronic India (T. King)** Dec 68
- **Esperanto — the universal language (A. Cushen)** Jan 89
- **Future lies with Viatael (J. Fairall)** Aug 20
- **Increased Activity in Costa Rica (A. Cushen)** Feb 79
- **Interference Risk from Over-the-horizon Radar** (A. Cushen) Jun 96
- **Kilohertz Comment (A. Cushen)** Feb 80
- **Kilohertz Comment (A. Cushen)** Mar 93
- **Kilohertz Comment (A. Cushen)** Oct 10
- **Kilohertz Comment (A. Cushen)** Nov 13
- **Latin American News (A. Cushen)** Dec 18
- **Looking for Clearer Frequencies (A. Cushen)** Mar 111
- **Marine Waves (H. Grasswill)** Jan 90
- **Moves at HCJB (A. Cushen)** Oct 10
- **Nicaraguan Radio uses Well-tried Format (A. Cushen)** Jul 100
- **NT Serviced by Shortwave (A. Cushen)** Mar 91
- **NZ Voice on SW (A. Cushen)** Sep 17
- **Political Broadcasts (A. Cushen)** Jul 101
- **Popular Session Ends (A. Cushen)** Jul 100
- **Propagation conditions (A. Cushen)** Dec 18
- **Radio in Macau (T. King)** Oct 86
- **Radio in Moscow Covers the Word (A. Cushen)** Nov 12
- **Radio Spreads the Word (A. Cushen)** Sep 86
- **Red Cross Radio in World Trouble Spots (A. Cushen)** Mar 93
- **Reports on Montreal (A. Cushen)** Nov 73
- **Signalling African History (A. Cushen)** Dec 72
- **Shortwave Listening (A. Cushen)** Apr 85
- **Shortwave Listening (A. Cushen)** Jul 48
- **Shortwave Listening (A. Cushen)** Aug 14
- **Shortwave Radio for the Disabled (A. Cushen)** Aug 93
- **South Africa on SW (A. Cushen)** Dec 14
- **Tantalizing Tropics (A. Cushen)** Oct 84
- **VOA Relay in Israel (A. Cushen)** Nov 12
- **Voice of Germany from Africa (A. Cushen)** Nov 12

COMPUTING
- **How it runs (J. Aerts)** Jul 94
- **Chip-8 interpreter for VZ (C. Griffin)** Oct 28
- **Inside your computer 1: Processor and memory (J. Fairall)** Jun 70
- **Inside your computer 2: Catching the bus (P. Cohen)** Jul 90
- **Inside your computer 3: Disk drives (P. Cohen)** Aug 54
- **Inside your computer 4: Disk operating systems (P. Cohen)** Sep 58
- **Inside your computer 5: Keyboards and ASCII (P. Cohen)** Oct 68
- **Inside your computer: Printers (P. Cohen)** Nov 96
- **Inside your computer 6: RS232 (P. Cohen)** Dec 64
- **Making your Microbee talk (J. McCormack)** Jan 74
- **MIDI: real computer music (N. Hancock)** Oct 18
- **Modifying the VZ2200 16K Expansion Module for the VZ300 (S. Olney)** Feb 72

MICROBEE PROGRAMS
- **Bank** Aug 64
- **Car chase** Dec 38
- **Club data** Sep 62
- **Cross lines** Dec 37
- **Darts** Nov 61
- **ETI-666 software control** Jul 83
- **Halley’s comet** Mar 85
- **How much is a million** Sep 65
- **Koolcat** Jul 82
- **Maths** Aug 64
- **Multigraph** Sep 64
- **Quiz show simulation** Oct 47
- **Reacantce** Mar 86
- **Real 3D graphs** Nov 63
- **Recall** Jul 83
- **Three dimensional PI chart** Mar 96

VZ PROGRAMS
- **Ballon safari** May 93
- **Flatten** May 93
- **Home brew label maker** Oct 47
- **The drop** May 93

GENERAL
- **A Career in Electronics (J. Fairall)** Oct 95
- **Atomic Fusion (A. Concannon)** Sep 106
- **Automotive Electronics (J. Fairall)** Nov 116
- **Calculated Fun (I. Compton)** Oct 70
- **Commet Halley (J. Fairall)** Feb 84
- **Index 1985** Apr 77
- **New Perspectives on Holography** Nov 22
- **Security: where you’re vulnerable (R. Koph)** Aug 90
- **South Australia: the technical state** Dec 89
- **Towards a Better Mousetrap (J. Fairall)** Sep 68
- **Voyager at Uranus (J. Fairall)** Apr 108

ELECTRONIC SHOWS
- **Adelaide Show Time (J. Fairall)** Aug 26
- **Showtime in Las Vegas — Winter CES (L. Challis)** Apr 20
- **Behind the Glitter — Winter CES PI 2 (L. Challis)** May 23
ETI April
IDEAS FOR EXPERIMENTERS

Baby pacifier
Computer Aided Design (J. Fairall)
Microcontroller (M. G. Thor)
MicroBrian told me
Perpendicular Magnetic Recording (M. P. Sharrock & D. P. Stubbs)
Semiconductor Processing Advances (K. Ryan)
Teaching the Electronic Brain (J. Fairall)

VLSI Testing (B. Dance)

PRODUCT REVIEWS

Aiwa V-800 stereo system (L. Challis)
Aki MG12112 mixing recorder (N. Hancock)
Alpine 5900 car CD player (L. Challis)
Amstrad 6126 (J. Fairall)
Anritsu MS610A spectrum analyser (P. Williams)
AOR AR-2002 scanner (P. Williams)
ATS-803 receiver (P. Williams)
B&W DM330 loudspeakers (L. Challis)
Casio RZ-21 sampling drum machine (N. Hancock)
Cassette tape: Hitachi UD90; BASF CR-1190; Denon HD990; Fuji GT190; Konica GM190;

PROJECTS

171 Arbitrary waveform generator (N. Hancock)
172 Bit pattern detector (N. Hancock)
173 Electro static discharge detector (J. Thomas)
174 Frequency Standard (N. Hancock)
282 Telephone scrambler (S. K. Hu)
293 Lotto number generator (J. Fairall)
296 Simple VCR alarm (G. Nicholson)
345 Demister timer (N. Hancock)
1402 Digital sampler Pt 1 (G. Thрут & A. Robb)
1402 Digital sampler Pt 2 (G. Thрут & A. Robb)
1402 Digital sampler Pt 2 (G. Thрут & A. Robb)
1406 Parametric equalizer (N. Hancock)
1407 Dynamic noise reduction system (N. Hancock)
1531 Digital frequency doubler (N. Hancock)
1530 Vibration detector (N. Hancock)
1531 Brown-out protector (H. Nacinocevich)
1532 Temperature controlled soldering iron (H. Nacinocevich)
1533 Heavy duty switching regulator Pt 1 (J. Thomas)
1532 Heavy duty switching regulator Pt 2 (J. Thomas)
609 MIDI thru box (S. Leadley & M. Horn)
609 MIDI matrix (N. Hancock)
644 Intelligent modem Pt 2 (S. K. Hu)
644 Intelligent modem Pt 3 (S. K. Hu)
644 Intelligent modem Pt 4 (S. K. Hu)
644 Intelligent modem Pt 5 (S. K. Hu)
647 Super II V2202 modification (M. Sorell)
689 Bus sharing for Commodore 64 & Vic 20 (M. Hopkins)
697 Simple forth controller board (D. Jenkinson)
1601 RS232 for Commodore (N. Hancock)
1602 Function switches for the C64 (J. & V. Rose)
1603 Commodore 64 tape pirate (J. & V. Rose)
1604 Dual Microbe joystick (P. Jardine)
NOTES & ERRATA

Project 142, dc Power Supply, February 1979: The circuit and wiring diagrams for this project contain a mistake that all builders should be aware of — even at this late stage. Wires from the transformer T1 (PF4244 240V/32V 300 VA) are incorrectly labelled orange and white on the circuit. They should be transposed so that ‘orange’ should connect to the rectifier rather than ‘white’ as is shown, and ‘white’ should connect to the circuit board instead of ‘orange’.

Project 169, Low distortion audio oscillator Pt 2, November ’85: Resistors, R38-R49, are labelled incorrectly on the overlay. The right ordering is printed here. Also on the overlay, the pc board track from pin 2 IC3 was shown leading to pin 16 IC5. Rather it should lead to pin 15 IC5. To correct this, cut the track from pin 2 IC3 at pin 16 IC5, and attach fly wire between the cut track and pin 15 of IC5. The correct layout is also reproduced.

Project 170, Precision CRO calibrator, Feb ’85: In order to make the attenuators conform to the front panel artwork, use the following resistor values: R1=220R, R18=33R, R22=2R2, R23=33R, R29=220R, R30=330R, R34=22R, R35=33R.

Project 284, VCR alarm, Nov ’86: The piezo electrottransducer specified for this project also includes an oscillator in one package. We used Dick Smith Part No L7024 in the prototype. L7027 may also be used with a 2k7 resistor in parallel.

Micro-Educational P/L
8/235 Darby St NEWCASTLE 2300
Australia's largest computer mail order company.

FREE
OUR LATEST LIBRARY DISK FOR YOUR APPLE, IBM, OR MACINTOSH
(Add $10 for Mac 3.5" disks)
These disks contain the best in public domain software.
Send 6 x 36c stamps for post.

Ask for your FREE CATALOG

Dear George,

Please rush me a free library disk for my IBM/APPLE/MACINTOSH
(Add $10 for Mac disks)
Enclosed Please find 6 x 36c stamps.

NAME: ____________________________
ADDRESS: _________________________

P/Code: __________________________

Advertising Info No. 19
If you're looking for a versatile low cost audio test station, try this one. We present a multipurpose, all singin', all dancin' combination audio oscillator, signal tracer, audio transducer tester, etc, etc, that's designed to fit into the standard case. Included in this article is some backup theory on op-amps and Wien bridge oscillators, for your further enlightenment of linear electronics.

Peter Phillips

Last month we presented an amplifier as a project for this series. In case you thought an audio oscillator should have been produced first, we now cover all bases by offering them both together. This project combines, on the one printed circuit board, a sine-square audio oscillator and a 2 watt audio amplifier module. The whole lot fits into the same size case as the regulated power supply described in part 2 (Nov '86) and provides a complete audio test station. It is intended that all projects for the series will use this size case, providing a lineup of useful test equipment that looks the part. Next month's design is an analogue frequency meter, and other similar items will follow.

The amplifier can serve as a signal tracer, a speaker, microphone or pickup tester, and can also boost the signal output of the audio oscillator to around 12 volts peak-to-peak. The oscillator is a sine-square Wien bridge circuit with a frequency range of 23 Hz to 23 kHz. The circuit is interesting in that no hard-to-get stabilizing thermistor is required, and it uses garden variety operational amplifiers without the need for a dual polarity power supply. The pcb layout is arranged so that either one or both sections can be built, and the oscillator circuit is simple enough to be constructed on vero board if desired.

Because of the instructional nature of this series, the operational amplifier is discussed, along with a description of the Wien bridge audio oscillator. The amplifier section was described fully last month, and readers can refer back for full details of its operation and circuit description.

The circuit

Figure 1 shows a block diagram of the complete unit including the relationship of the controls. The principles of an oscillator were covered previously in CWE 3 (Feb '87), and it remains to discuss actual circuits. Summarizing, an oscillator, as shown in Figure 2, is an amplifier with both positive and negative feedback that cancel each other at a specific frequency. By making the characteristics of the positive feedback circuit variable, a frequency adjustable sine-wave oscillator is achieved.

The design provides three decades to cover the frequencies from 23 Hz to 23 kHz. A decade change means the preset frequency has been altered by a factor of 10, either increasing or decreasing. Variations from 23 Hz to 230 Hz are covered by the lowest range, 230 Hz to 2.3 kHz and 2.3 kHz to 23 kHz by the other two. Most professional audio oscillators cover four or five decades, but are more complex and costly. As later described, it is possible to add another dec-
ade, but due to the limitations of the op-amp, scale accuracy suffers. The project is intended to be simple yet versatile, and overcoming this problem would mean the abandonment of the amplifier module as an integral component due to space limitations. However, if the forthcoming frequency meter is built, the scale inaccuracies won't matter.

Two operational amplifiers are used, one for the oscillator, the other for the squarer. An understanding of op-amps is essential for the circuit description to be meaningful, and a brief discussion of these versatile devices is included along with the principles of the Wien bridge oscillator.

At this stage, a quick scan of the contents of CWE 3 (Feb '87) is advised to refresh your memory on feedback.

The op-amp

Operational amplifiers are available as ICs in a wide range of type numbers. They all differ in some respects, but have one thing in common: a very high open loop gain. When an amplifier of any type has a high gain, the external feedback networks determine the circuit's operation. It is valid to assume that an op-amp has an infinitely high gain, which means that it can be ignored as a device, and the circuit viewed as a whole. Amplifier circuits incorporating op-amps require the gain to be reduced by negative external feedback. Figure 3 shows two circuits: (a) of an inverting amplifier where the output signal is of opposite phase or polarity to the input, and (b) where they are in phase.

The feedback network in both cases is made up of two resistors, \(R_r \) and \(R_i \), connected from the output terminal back to the inverting \((-\) input, providing negative feedback. Connection to the non-inverting \((+\) terminal would result in positive feedback. The gain and input resistance equations are also shown for both circuits. Notice how the input resistance for the non-inverting circuit is infinity (ideal value only, lower in practice); a useful feature if the application requires a high input resistance. Establishing the gain for both circuits merely requires the selection of suitable resistance values. Usually \(R_i \) has a maximum value of 1M ohm.

Because the op-amp has such a high gain, the input voltage \(V_d \) (difference voltage), at the actual input terminals of the IC is negligible. This means that for circuits that use negative feedback, the dc voltage or waveform is the same at both inputs, an important point to remember when fault finding. Op-amps generally utilize a dual polarity power supply, obtainable from two batteries or power supplies as shown in Figure 3(c). This is necessary as the internal circuitry of the device is direct coupled, and allows the output waveform to swing both positive and negative. A dc path to ground must also be provided for the small bias currents flowing from both IC inputs.

Not all op-amp circuits use negative feedback.
feedback. The notable exception is the comparator circuit, which needs a very high gain. Figure 4 shows the basic circuit, which rates as the simplest op-amp circuit of all. Again a dual polarity power supply is shown, with two input signals labelled V_1 and V_2. The output of a comparator is always one of two values, called $-V_{sat}$ and $+V_{sat}$. V_{sat} (saturation) is nearly equal to the supply voltage, either positive or negative, depending on the polarity of the output. If V_1 is greater than V_2 (more positive than), the output will saturate in the negative direction, to a value determined by the power supply. Figure 4(b) shows the output waveform when a sine wave is applied to one input and a fixed dc value to the other. Now you know how the squarer circuit of the project works.

There are numerous applications for op-amps, and whole text books have been written on the topic. The current project has the interesting twist in that a single polarity power supply is used throughout, by using input biasing techniques.

The Wien bridge oscillator

The Wien bridge oscillator doesn’t necessarily need an op-amp, and many discrete component circuits have been published. However, by using an op-amp, physical size of the circuit layout is reduced, and in this case offers a good excuse for their introduction.

Figure 2 shows the general block diagram of any Wien bridge oscillator circuit, without showing where the ‘bridge’ bit comes in. Figure 5 is a basic circuit diagram, drawn to show how the two feedback legs represent the classic diamond or bridge configuration. The negative feedback is provided by R_t and R_i as for Figure 3(a), and the positive feedback incorporates a series and a parallel RC circuit. Because of the RC circuits, the feedback will be exactly positive only at a specific frequency, determined from equation 1.

$$F_{osc} = \frac{1}{2\pi RC}$$ (1)

This equation assumes equal values for both RC legs which is necessary for the Wien bridge’s operation anyway. The positive feedback network is frequency sensitive because the impedance of a capacitor varies inversely with frequency. This variation of impedance also causes a change in the phase difference of the signals either side of the capacitor. At one frequency only, the waveform at the positive terminal of the amplifier will be exactly in phase with the output waveform, causing positive feedback. Also, the signal level at this input will be one third the amplitude of the output signal. To compensate, the gain of the amplifier must equal 3, set by the negative feedback, therefore, giving a combined loop gain of unity (or 1). Too little gain prevents oscillation, too much produces a distorted output.

Figure 5 is a ‘bare bones’ circuit, and needs more sophistication to be practical. The first difficulty to overcome is maintaining the overall loop gain at unity. Practical circuits often use a temperature sensitive resistor (thermistor) for R_t, which serves to correct for variations in the amplitude of the output waveform. The project uses a dc controlled FET, the advantages of which include the cost/availability factor. Another advantage is the settling time. In thermistor-based circuits, range changing can often lead to output

Figure 3. The operational amplifier.

Figure 4. The comparator.

Figure 5. The Wien bridge oscillator.
The circuit diagram is shown divided into four blocks. The amplifier section is virtually identical to that described last month. The minor differences are caused by the use of a regulated 15 V power supply, resulting in slight variations to component sizes. A notable difference is the omission of an adjustment within the biasing network for the output transistors of the amplifier. The previously used variable resistor has been replaced with a fixed value resistor, R8, eliminating the need to perform any set-up adjustments for the biasing. Should crossover distortion be present, increase this resistor value. The input coupling capacitor C1 should have a 630 volt rating for maximum protection when using the amplifier as a signal tracer. R12 is a load for the amplifier if the speaker is switched off, and is mounted across the output terminals.

The Wien bridge oscillator section is based on a 301 op-amp. This device requires external frequency compensation, achieved by C19. To allow the use of a single rail power supply, the inputs are biased at half the supply voltages, provided by R15, R16 and C16. The positive feedback network comprises the six capacitors, C12 to C17, selected in pairs by SW3, the dual-ganged linear potentiometer RV3 and resistors R19 and R22. The capacitors should ideally be chosen by measurement to ensure each range varies by exactly 10. R21 ensures that the dc resistance from pin 3 to ground roughly equals that from pin 2 to ground, minimizing offset errors resulting from the dc voltages developed by the internal bias sources from the IC.

The negative feedback loop must ensure a constant gain of 3 over the entire range and control is provided by the FET Q7. C2 couples the signal to D1, blocking the dc voltage present at the output. The signal developed across R24 is rectified and smoothed by D1 and C20. R20 is a load across C20 to give a fast response and also connects the gate of Q7 to ground. A negative voltage is therefore produced at the gate terminal that varies the resistance of the FET proportionally. C11 couples the drain of the FET to the inverting input of the amplifier IC1. The impedance of the path made up of C11, R18 and the source-drain resistance of the FET is the variable control, provided by the output signal that maintains the output at the present level. RV4 and R23 also provide negative feedback, and RV4 is the adjustment to get the controlled feedback into its working range.

The output signal of the oscillator is coupled via R25 and the parallel capacitor C22 to the selector switch SW3 and the input of the comparator IC2. RV2 is a 331 comparator, operating from a single rail power supply. A dc reference voltage is established by the potential divider R26 and R25 at the inverting input of the comparator. A symmetrical square wave is obtained by adjusting RV5. The output of the comparator is attenuated by R26 and R25 to equal that of the sine wave. R27 is a pull-up resistor for the open-collector output of the 331.

The selected waveform is coupled to the level control RV6 which has its wiper ac coupled by C24 to the emitter follower, Q6. This amplifier has a gain of 1, and acts as a buffer, giving an output impedance for the generator of around 150 ohms. C25 isolates the dc voltage at the emitter of Q6 from the output terminals. The capacitors C22, C23 and C18 all serve to clean up the square wave by removing ringing effects and overshoot caused by the fast switching characteristics of the 331 comparator. C18 is mounted across the output terminals of the signal generator.

The power supply is regulated by the three terminal regulator IC3 to provide 15 volts dc. Decoupling is provided between the amplifier section and the oscillator section by R14 and C8. Further decoupling is also provided with the amplifier via R6 and C2. C8 improves the response of the regulator.

Both by altering the value of R with a dual-ganged potentiometer, and the value of C using a two-way multiple switch to select various capacitance values. The range is selected by switching a new value of C into both legs, and the frequency within the range by adjusting R simultaneously in both legs. The project uses a dual-ganged 10k linear pot to adjust the frequency, and a wafer switch to select a capacitor pair. Because the frequency varies inversely with the value of R, a non-linear relationship exists, giving a cramped frequency scale at the high end of the range; a characteristic of the Wien bridge oscillator.

Construction
This project is more complex than previous ones in the series, but readers can simplify it if required. The circuit for the oscillator could be constructed on vero board if necessary, and the amplifier section deleted. The pcb layout is arranged so that the two sections are separate, giving flexibility to suit individual needs. Before mounting any components, prepare the board by drilling the mounting holes to suit the standoffs being used. The case should also be drilled for these, using the pcb as a template. The 240 volt lead will require filing a semicircle out of the pcb at the point shown on the layout diagram. The rest of the case can now be prepared by drilling all holes and attaching the front panel (Scotchcal), if being used. Position the transformer to allow room to mount the pcb on the rear of the case and run the 240 volt lead through a grommeted hole, drilled adjacent to the relief filed into the pcb. Insulate the 240 volt connections carefully, and connect the earth lead to a lug held by a transformer mounting bolt. The internal speaker was attached face down in the prototype without drilling any holes for a sound outlet.

Printed circuit board assembly should start by mounting resistors, wire links and diodes, followed by the capacitors and pre-set pots. Finally, connect the semicon.
Commissioning

Once a final check for shorts and wiring errors, turn RV4 fully clockwise (minimum voltages shown on the circuit for the oscillator section). At this stage it is unlikely values are correct, it is safe to proceed. If the oscillator is working, but if these do not give the dc value shown at pin 3 of IC2. Then using a CRO, adjust RV5 for an equal mark-space for the square wave at the output terminals. If using an ac voltmeter, carefully adjust RV5 to give the highest reading (around 1.1 volts rms). If a CRO is available, confirm that a reasonably constant output level is obtained over the full frequency range for both waveforms. Also, verify the frequency calibration if possible using a frequency counter. The scale is correct for the 10k linear pot sold by Dick Smith; pots from other sources may give variations to the supplied scale. Decade errors will require checking.

Parts List — ETI-285

<table>
<thead>
<tr>
<th>Resistors</th>
<th>all 1/4 watt 10% unless noted</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>220R</td>
</tr>
<tr>
<td>R2</td>
<td>1k</td>
</tr>
<tr>
<td>R3</td>
<td>68k</td>
</tr>
<tr>
<td>R4, 17, 30</td>
<td>10k</td>
</tr>
<tr>
<td>R5</td>
<td>120R</td>
</tr>
<tr>
<td>R6, 25</td>
<td>330R</td>
</tr>
<tr>
<td>R7</td>
<td>18R 1/2W</td>
</tr>
<tr>
<td>R8</td>
<td>56R 1/2W</td>
</tr>
<tr>
<td>R9</td>
<td>33R</td>
</tr>
<tr>
<td>R10, 11</td>
<td>0R22 (optional, wire links if unavailable)</td>
</tr>
<tr>
<td>R12</td>
<td>150R 1/2W</td>
</tr>
<tr>
<td>R13</td>
<td>6k</td>
</tr>
<tr>
<td>R14, 47R</td>
<td>1/2W</td>
</tr>
<tr>
<td>R15, 16, 19, 22, 27</td>
<td>1k</td>
</tr>
<tr>
<td>28</td>
<td></td>
</tr>
<tr>
<td>R18</td>
<td>56R</td>
</tr>
<tr>
<td>R20</td>
<td>8k</td>
</tr>
<tr>
<td>R21</td>
<td>33k</td>
</tr>
<tr>
<td>R22</td>
<td>47k</td>
</tr>
<tr>
<td>R23</td>
<td>3k</td>
</tr>
<tr>
<td>R24</td>
<td>2k</td>
</tr>
<tr>
<td>R25</td>
<td>4k</td>
</tr>
<tr>
<td>R29, 33</td>
<td>680R</td>
</tr>
<tr>
<td>R31</td>
<td>18k</td>
</tr>
<tr>
<td>R32</td>
<td>1k</td>
</tr>
<tr>
<td>R1V</td>
<td>1M ohm log</td>
</tr>
<tr>
<td>R2V, 4, 5</td>
<td>10k, 10 turn trim pot</td>
</tr>
<tr>
<td>R3V</td>
<td>10k, 1k linear, dual-ganged</td>
</tr>
<tr>
<td>R6V</td>
<td>1k linear</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitors</th>
<th>all 25 V electro unless noted</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>100n polyester, 630 V</td>
</tr>
<tr>
<td>C2, 4, 24</td>
<td>220µ</td>
</tr>
<tr>
<td>C3</td>
<td>2µ2 tantalum or mono</td>
</tr>
<tr>
<td>C5</td>
<td>10n ceramic or polyester</td>
</tr>
<tr>
<td>C6, 7</td>
<td>1000µ</td>
</tr>
<tr>
<td>C8</td>
<td>100n mono or ceramic</td>
</tr>
<tr>
<td>C9, 11</td>
<td>100µ</td>
</tr>
<tr>
<td>C10, 21</td>
<td>47µ</td>
</tr>
<tr>
<td>C12, 15</td>
<td>680n polyester</td>
</tr>
<tr>
<td>C13, 16</td>
<td>82µ</td>
</tr>
<tr>
<td>C14, 17</td>
<td>6.8n polyester</td>
</tr>
<tr>
<td>C18</td>
<td>100µ ceramic</td>
</tr>
<tr>
<td>C19</td>
<td>80µ ceramic</td>
</tr>
<tr>
<td>C20</td>
<td>10µ</td>
</tr>
<tr>
<td>C22, 23</td>
<td>150µ ceramic</td>
</tr>
<tr>
<td>C25</td>
<td>470µ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semiconductors</th>
<th>FET type 2N5458</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1, 7</td>
<td>BC549 or similar</td>
</tr>
<tr>
<td>Q2</td>
<td>BC549 or similar</td>
</tr>
<tr>
<td>Q3</td>
<td>IC1</td>
</tr>
<tr>
<td>Q4</td>
<td>BD139</td>
</tr>
<tr>
<td>Q5</td>
<td>BD140 (preferably Beta matched to Q4)</td>
</tr>
<tr>
<td>Q6</td>
<td>BD547 or similar</td>
</tr>
<tr>
<td>Q7</td>
<td>BD8140</td>
</tr>
<tr>
<td>Q8</td>
<td>BD110</td>
</tr>
</tbody>
</table>

| Miscellaneous | pcb or vero board; Scotchcal front panel; aluminium case* 152 (w) x 132 (d) x 103 (h) mm; transformer, 240:15 volt ac 1 amp (eg, type 2155); 6 x 4 mm panel mount sockets, 4 x control knobs; 4 x pcb supports; rainbow cable hook-up wire; coax, 240 V lead and plug; heatsinks; grommet; small speaker, 8 or 16 ohm; nuts and bolts; cable clamp; 2 lugs. |

Price estimate: $45-$55

*The case size was based on the Dick Smith case, catalogue no. H-2330. However, although this unit has the same dimensions, a recent discovery shows they are for 3 x w x h. The larger aluminium case, no. H-2335 can be used if necessary, but the front panel design will need enlarging to suit.
capacitor values for C12 to C17.

An extra decade can be obtained by including two extra band switching capacitors (both 680p) and replacing the wafer switch with a 4-way 2-pole type. The additional components could be mounted on the switch and extra wires run to the pcb. However, the frequency of the output will not agree with the scale for the upper 25 per cent, and the maximum output frequency will be around 180 kHz rather than the theoretical value of 230 kHz.

Once the oscillator is functioning, the amplifier can be commissioned. Full details for this were given last month and only one adjustment is now necessary. Transistors Q4 and Q5 should be now soldered into position, metal face in, and RV2 adjusted to give about 7.7 volts at the emitters.

The whole unit can then be finally assembled. It is important to earth the metal case to the signal common with a connection adjacent to the 4 mm sockets. Also ensure that R12 and C18 are soldered across the appropriate 4 mm front panel sockets.

ETI 285

- **SIG. GEN**
- **AMP OUT**
- **AMP IN**
- **GND**
- **VOLUME**
- **ON**
- **SPKR**
- **LEVEL**
- **BAND**
- **SINE**
- **SQUARE**
UNDERSTANDING UNIX
James R. Graft, Paul H. Wang
The exploding popularity of the UNIX operating system is one of the most important trends in computing at the moment. UNIX is available on hundreds of different computer systems, from minicomputers to mainframes and supercomputers. Understanding UNIX offers a broad overview of the system, including a tutorial on how to use UNIX, a complete picture of the UNIX structure, and a review of the specific applications, tools, and features that are available. The book is designed to have depth and breadth.
Cat. B $44.95

IBM COMPATIBLE GRAPHICS DRIVES
Tried of paying out more for Japanese Dsk Drive than the direct import Hong Kong disk drives are offered? Try these! These drives are Japanese Mechanical components, and cost only a fraction of the price.
Cat. No. C11601 Mfg. Price $225
SPECIAL, ONLY $179
C11601 1MB drive

CENTRICONS GENDER CHANGERS
Female to Female
Saves money on replacing nonmatching Centronics cables.
At 38 pin serial straight through.
Cat. X15663 Male to Male
Cat. X15661 Female to Female

IBM XT GRAPHIC CARDS
Colour Graphics Card...
Graphics Card...
Floppy Disk Drive Controller Card...
High Resolution Mono Card...
Atari compatible...

51" DIKS SPECIALS
All prices are for disk drives included.
$79.50...
$79.50...
$69.50...
$69.50...
$69.50...
$69.50...
$69.50...
$69.50...
$69.50...

CAME A-40 PRINTER
Send Impact Desk Matrix
140 C.P.S.
110 Letter Quality Mode
10 cts. Buff
Cat. C105040...
$595

NEC DISK DRIVES
1/2" MK Drive
$265
1/2" MK Drive with a touch of enhanced graphics adapter card
$395

5 1/4" SLIMLINE
Switch between 1.2 MB to 720K formatted
Double sided, double density.
Access Time 3.5m
Cat. C11190...
$255

20MHz MONITORS
$169
Stylish 20MHz RFT Monitors with 12" non-magnetic display. Available in green or amber.
Green X14503 normally $235, NOW $169
Amber X14502 normally $235, NOW $169

PAPER TAMER
Restores order to the top of your desk or work area.
Keeps your desk organized.
Stores up to 500 continuous sheets.
Saves space, paper, and time.

INTRA 14" RGB HIGH RESOLUTION COLOURED MONITOR
Compatible with IBM and compatible with Eagle Cards. Why pay more?
Reduced to: $250.00
Display: 30 pins
Sync: H. 15kHz, V. 50Hz
Dimensions: 20" x 20"

INTRA 14" RGB COLOURED MONITOR
Resolution: 512 x 384 pixels.
Display Colours: 16
Sync: 30pins
Sync: 75kHz
Sync: 80Hz
Dimensions: 20" x 20"

MAIL ORDER HOTLINE...
FREE 335757...
TOLL FREE... LOCAL: 543 7377

PAPER TAMER...
Restores order to the top of your desk or work area.
Keeps your desk organized.
Stores up to 500 continuous sheets.
Saves space, paper, and time.

INTRA 14" RGB HIGH RESOLUTION COLOURED MONITOR
Compatible with IBM and compatible with Eagle Cards. Why pay more?
Reduced to: $250.00
Display: 30 pins
Sync: H. 15kHz, V. 50Hz
Dimensions: 20" x 20"

INTRA 14" RGB COLOURED MONITOR
Resolution: 512 x 384 pixels.
Display Colours: 16
Sync: 30pins
Sync: 75kHz
Sync: 80Hz
Dimensions: 20" x 20"

MAIL ORDER HOTLINE...
FREE 335757...
TOLL FREE... LOCAL: 543 7377

2 4 WAY DATA TRANSFER SWITCHES
If you have two of your computer devices that need to share a third or fifth, then these inexpensive data transfer switches will save you the time and hassle of constantly changing cables and leads around.
No power required.
Speed and code transparent.
Three-Five interface connections on rear panel.

2 4 WAY CENTRICONS DATA TRANSFER SWITCHES
These switches support the 20 pin Centronics interface used by Centronics, Epson, NEC, IBM, Apple, Star, and many other peripheral manufacturers.
No power required.
Speed and code transparent.
Three-Five interface connections on rear panel.

MAIL ORDER HOTLINE...
FREE 335757...
TOLL FREE... LOCAL: 543 7377

2 4 WAY DATA TRANSFER SWITCHES
If you have two of your computer devices that need to share a third or fifth, then these inexpensive data transfer switches will save you the time and hassle of constantly changing cables and leads around.
No power required.
Speed and code transparent.
Three-Five interface connections on rear panel.

2 4 WAY CENTRICONS DATA TRANSFER SWITCHES
These switches support the 20 pin Centronics interface used by Centronics, Epson, NEC, IBM, Apple, Star, and many other peripheral manufacturers.
No power required.
Speed and code transparent.
Three-Five interface connections on rear panel.

MAIL ORDER HOTLINE...
FREE 335757...
TOLL FREE... LOCAL: 543 7377

2 4 WAY DATA TRANSFER SWITCHES
If you have two of your computer devices that need to share a third or fifth, then these inexpensive data transfer switches will save you the time and hassle of constantly changing cables and leads around.
No power required.
Speed and code transparent.
Three-Five interface connections on rear panel.

2 4 WAY CENTRICONS DATA TRANSFER SWITCHES
These switches support the 20 pin Centronics interface used by Centronics, Epson, NEC, IBM, Apple, Star, and many other peripheral manufacturers.
No power required.
Speed and code transparent.
Three-Five interface connections on rear panel.

MAIL ORDER HOTLINE...
FREE 335757...
TOLL FREE... LOCAL: 543 7377

2 4 WAY DATA TRANSFER SWITCHES
If you have two of your computer devices that need to share a third or fifth, then these inexpensive data transfer switches will save you the time and hassle of constantly changing cables and leads around.
No power required.
Speed and code transparent.
Three-Five interface connections on rear panel.

2 4 WAY CENTRICONS DATA TRANSFER SWITCHES
These switches support the 20 pin Centronics interface used by Centronics, Epson, NEC, IBM, Apple, Star, and many other peripheral manufacturers.
No power required.
Speed and code transparent.
Three-Five interface connections on rear panel.

MAIL ORDER HOTLINE...
FREE 335757...
TOLL FREE... LOCAL: 543 7377

2 4 WAY DATA TRANSFER SWITCHES
If you have two of your computer devices that need to share a third or fifth, then these inexpensive data transfer switches will save you the time and hassle of constantly changing cables and leads around.
No power required.
Speed and code transparent.
Three-Five interface connections on rear panel.

2 4 WAY CENTRICONS DATA TRANSFER SWITCHES
These switches support the 20 pin Centronics interface used by Centronics, Epson, NEC, IBM, Apple, Star, and many other peripheral manufacturers.
No power required.
Speed and code transparent.
Three-Five interface connections on rear panel.

MAIL ORDER HOTLINE...
FREE 335757...
TOLL FREE... LOCAL: 543 7377

2 4 WAY DATA TRANSFER SWITCHES
If you have two of your computer devices that need to share a third or fifth, then these inexpensive data transfer switches will save you the time and hassle of constantly changing cables and leads around.
No power required.
Speed and code transparent.
Three-Five interface connections on rear panel.

2 4 WAY CENTRICONS DATA TRANSFER SWITCHES
These switches support the 20 pin Centronics interface used by Centronics, Epson, NEC, IBM, Apple, Star, and many other peripheral manufacturers.
No power required.
Speed and code transparent.
Three-Five interface connections on rear panel.

MAIL ORDER HOTLINE...
FREE 335757...
TOLL FREE... LOCAL: 543 7377

2 4 WAY DATA TRANSFER SWITCHES
If you have two of your computer devices that need to share a third or fifth, then these inexpensive data transfer switches will save you the time and hassle of constantly changing cables and leads around.
No power required.
Speed and code transparent.
Three-Five interface connections on rear panel.

2 4 WAY CENTRICONS DATA TRANSFER SWITCHES
These switches support the 20 pin Centronics interface used by Centronics, Epson, NEC, IBM, Apple, Star, and many other peripheral manufacturers.
No power required.
Speed and code transparent.
Three-Five interface connections on rear panel.

MAIL ORDER HOTLINE...
FREE 335757...
TOLL FREE... LOCAL: 543 7377
Rod Irving Electronics
No. 1 for peripherals!

Now you can buy absolute top quality 5¼" disks that are also the cheapest in Australia!! They even come with a 5 year guarantee, which indicates the quality of the Microdot disks. So why pay 2-3 times the price for the same quality as Microdot?

CHECK THESE PRICES!

DESCRIPTION
1-9 BOXES 10+ BOXES
5¼" S/S D/D $14.95 $13.95
5¼" D/S D/D $18.95 $17.95

5¼" D/S "NO FRILLS" DISKS FROM $1 EACH!!
Bulked packed, Microdot D/S D/D without boxes, or labels, or brand name, just their white card jacket!
1-99 DISKS 100+ DISKS 1,000+ DISKS
$1.30 ea $1.20 ea $1.00 ea

(TAX EXEMPT PRICES LESS 20¢ PER DISK)

3½" "NO FRILLS" DISKS!
Bulked packed, D/S D/D disks with white boxes, but no labels or brand name. (These are a top name brand, but we can’t tell you which.)
1-99 DISKS 100+ DISKS 1,000+ DISKS
$47.50 $45.50 $42.50

(SEND $5 FOR SAMPLE DISK!) (TAX EXEMPT PRICES LESS 40¢ PER DISK)

IBM* XT COMPATIBLE COMPUTERS
from $795*

Check these features and our prices. We’re sure you’ll agree they’re exceptional value for money!

• Assembled & Tested in Australia!
• Tested by us for 24 hours prior to delivery!
• AT style keyboard
• 8 Slot motherboard
• Operating manual
• 150W power supply
• 6 Months warranty!

(Japanese drives available for an extra $50 each)

* $795 COMPATIBLE COMPUTER
256K RAM Single Drive, Graphics and Disk Controller Card... $795

256K RAM COMPATIBLE COMPUTER
2 x 360K Disk Drives, Multifunction Card, Colour Graphics, Disk Controller, 1 Parallel Port. (Includes Timer Disk) $1,095

640K RAM COMPATIBLE COMPUTER
2 x 360K Disk Drives, Multifunction Card, Colour Graphics, Disk Controller, 2 Serial, 1 Parallel Port. (Includes Timer Disk) only $1,195

IBM* AT COMPATIBLE
Assembled & Tested in Australia!
• 1 M/Byte Main Board
• 1.2 M/Byte Floppy Disk Drive
• Colour Graphics Display Card
• Floppy & Hard Disk Controller Card
• Printer Card and RS232
• 200W Power Supply
• 6 Months Warranty

6 Months warranty! only $3,695

RETAIL INQUIRIES: Rod Irving Electronics,
MELBOURNE, 48 A’Beckett St. Phone (03) 663 6151
NORTHCOTE 425 High St. Phone (03) 489 8866
MAIL ORDER: (03) 543 7877 or P.O. Box 620, CLAYTON 3168

WHOLESALE INQUIRIES: Ritrionics Wholesale, 56 Renver Rd. CLAYTON 3168. Phone (03) 543 2166.
IBM Compatible

Computer Products

<table>
<thead>
<tr>
<th>Description</th>
<th>Sale Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>XT 640K RAM MAIN PCB</td>
<td>410.00</td>
</tr>
<tr>
<td>TURBO 840K RAM Fujitsu</td>
<td>440.00</td>
</tr>
<tr>
<td>TURBO 1024K RAM V20 CPU</td>
<td>470.00</td>
</tr>
<tr>
<td>MONO GRAPHIC/PRINTER CARD</td>
<td>152.00</td>
</tr>
<tr>
<td>COLOUR GRAPHIC CARD</td>
<td>110.00</td>
</tr>
<tr>
<td>DISK DRIVE CONTROLLER</td>
<td>65.00</td>
</tr>
<tr>
<td>MULTI I/O PLUS II</td>
<td>130.00</td>
</tr>
<tr>
<td>MULTI I/O WITH DISK/DR CD</td>
<td>170.00</td>
</tr>
<tr>
<td>MULTI F/CARD 364K RAM</td>
<td>275.00</td>
</tr>
<tr>
<td>360K RAM CAD RAM</td>
<td>125.00</td>
</tr>
<tr>
<td>HARD DISK CONTROLLER CAR</td>
<td>290.00</td>
</tr>
<tr>
<td>135W POWER SUPPLY</td>
<td>135.00</td>
</tr>
<tr>
<td>METAL CASE F/F TOP SIDESW</td>
<td>90.00</td>
</tr>
<tr>
<td>ATX KEYBOARD 5160</td>
<td>150.00</td>
</tr>
<tr>
<td>XT KEYBOARD 5160</td>
<td>135.00</td>
</tr>
<tr>
<td>PARALLEL PRINTER CARD</td>
<td>43.00</td>
</tr>
<tr>
<td>ENHANCE COLOUR GRAPHIC CD</td>
<td>59.00</td>
</tr>
<tr>
<td>NATIONAL 380K DB/DC DRIVE</td>
<td>220.00</td>
</tr>
<tr>
<td>280 HARD DISK FAST SPEED</td>
<td>840.00</td>
</tr>
<tr>
<td>SUPER 5 EN/10 PRINTER</td>
<td>549.00</td>
</tr>
<tr>
<td>PRINTER/COMPUTER SWITCH 2/1</td>
<td>120.00</td>
</tr>
<tr>
<td>KEYBOARD DRAWER METALCASE</td>
<td>90.00</td>
</tr>
<tr>
<td>CRYSTALS</td>
<td></td>
</tr>
<tr>
<td>3.2768MHZ</td>
<td>4.90</td>
</tr>
<tr>
<td>3.57696MHZ</td>
<td>4.90</td>
</tr>
<tr>
<td>4.09600MHZ</td>
<td>4.90</td>
</tr>
<tr>
<td>10.0000MHZ</td>
<td>5.90</td>
</tr>
<tr>
<td>14.3182MHZ</td>
<td>5.90</td>
</tr>
<tr>
<td>7106 LCD DRIVER</td>
<td>12.00</td>
</tr>
<tr>
<td>7107 3/4 DIGIT LED DRF</td>
<td>12.00</td>
</tr>
<tr>
<td>3/4 LCD DISPLAY</td>
<td>10.00</td>
</tr>
<tr>
<td>PRESSURE SENSOR K101A</td>
<td>72.00</td>
</tr>
</tbody>
</table>

80286 XT SPEED CARD $750.00

Direct plug-into any PC/XT & selectable between 8086/80286 CPU 700% XT-speed.

MONO/COLOR PRINTER CARD $250.00

Combine Hercules card and color graphic (40x200) card into one card with printer port, suit PC/XT which hasnt got graphic card.

<table>
<thead>
<tr>
<th>Components</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>E2716</td>
<td>8.80</td>
<td>76452</td>
</tr>
<tr>
<td>E2732</td>
<td>9.00</td>
<td>CA3140</td>
</tr>
<tr>
<td>E2734</td>
<td>8.80</td>
<td>AY3-1015</td>
</tr>
<tr>
<td>E27218</td>
<td>10.50</td>
<td>AY3-3600</td>
</tr>
<tr>
<td>E27256</td>
<td>13.50</td>
<td>AY3-9010</td>
</tr>
<tr>
<td>NEC 4164</td>
<td>2.50</td>
<td>6602</td>
</tr>
<tr>
<td>NEC 41256</td>
<td>2.50</td>
<td>6627</td>
</tr>
<tr>
<td>NEC 41-256</td>
<td>2.50</td>
<td>6622</td>
</tr>
<tr>
<td>NEC 8237</td>
<td>2.50</td>
<td>6622</td>
</tr>
<tr>
<td>NEC 8250</td>
<td>2.50</td>
<td>6622</td>
</tr>
<tr>
<td>NEC 8253</td>
<td>2.50</td>
<td>6622</td>
</tr>
<tr>
<td>NEC 8255</td>
<td>2.50</td>
<td>6622</td>
</tr>
<tr>
<td>NEC 8259</td>
<td>2.50</td>
<td>6622</td>
</tr>
<tr>
<td>NEC 8267</td>
<td>2.50</td>
<td>6622</td>
</tr>
<tr>
<td>NEC 8268-2</td>
<td>2.50</td>
<td>6622</td>
</tr>
<tr>
<td>NEC 81555</td>
<td>7.50</td>
<td>760A</td>
</tr>
<tr>
<td>NEC 8237</td>
<td>13.50</td>
<td>760A</td>
</tr>
<tr>
<td>NEC 8250</td>
<td>17.00</td>
<td>760A</td>
</tr>
<tr>
<td>NEC 8253</td>
<td>6.50</td>
<td>760A</td>
</tr>
<tr>
<td>NEC 8255</td>
<td>6.50</td>
<td>760A</td>
</tr>
<tr>
<td>NEC 8259</td>
<td>6.50</td>
<td>760A</td>
</tr>
<tr>
<td>NEC 8267</td>
<td>6.50</td>
<td>760A</td>
</tr>
<tr>
<td>NEC 8268-2</td>
<td>6.50</td>
<td>760A</td>
</tr>
<tr>
<td>NEC 81555</td>
<td>7.50</td>
<td>760A</td>
</tr>
<tr>
<td>NEC 8237</td>
<td>13.50</td>
<td>760A</td>
</tr>
<tr>
<td>NEC 8250</td>
<td>17.00</td>
<td>760A</td>
</tr>
<tr>
<td>NEC 8253</td>
<td>6.50</td>
<td>760A</td>
</tr>
<tr>
<td>NEC 8255</td>
<td>6.50</td>
<td>760A</td>
</tr>
<tr>
<td>NEC 8259</td>
<td>6.50</td>
<td>760A</td>
</tr>
<tr>
<td>NEC 8267</td>
<td>6.50</td>
<td>760A</td>
</tr>
<tr>
<td>NEC 8268-2</td>
<td>6.50</td>
<td>760A</td>
</tr>
<tr>
<td>NEC 81555</td>
<td>7.50</td>
<td>760A</td>
</tr>
<tr>
<td>NEC 8237</td>
<td>13.50</td>
<td>760A</td>
</tr>
<tr>
<td>NEC 8250</td>
<td>17.00</td>
<td>760A</td>
</tr>
<tr>
<td>NEC 8253</td>
<td>6.50</td>
<td>760A</td>
</tr>
<tr>
<td>NEC 8255</td>
<td>6.50</td>
<td>760A</td>
</tr>
<tr>
<td>NEC 8259</td>
<td>6.50</td>
<td>760A</td>
</tr>
<tr>
<td>NEC 8267</td>
<td>6.50</td>
<td>760A</td>
</tr>
<tr>
<td>NEC 8268-2</td>
<td>6.50</td>
<td>760A</td>
</tr>
</tbody>
</table>

IBM COMPUTER RELATED PRODUCTS – NEW PRODUCTS

EPROM WRITER CARD CA3001

Direct read/writ/copy 2716-27512 eproms with variable voltages to suit diff. eproms one ext. ZIP socket but expandable to 6. $290.00

CA3004 $325.00

Same as CA3001 but can copy 4 eproms simultaneously.

Z-NIX MOUSE

PC XT Compatible $145.00

AEM CODE TO SPEECH KIT 45051 FOR PC/XT/AT $120.00

Other Computer $145.00

24 Way 0.156 Spacing Edge Connector for Commodore 64 Special $6.50

60 Way 0.1 Spacing Edge Connector for TI 99/4A $8.40

Others Available On Request.

HI-COM UNITRONICS INT. P/L

<table>
<thead>
<tr>
<th>HI-COM UNITRONICS INT. P/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 PRESIDENT LANE, CARINGBAH,</td>
</tr>
<tr>
<td>N.S.W. 2229</td>
</tr>
<tr>
<td>PHONE: (02) 524 7878</td>
</tr>
<tr>
<td>P.O. BOX 625, CARINGBAH 2229</td>
</tr>
<tr>
<td>Visa, Bankcard and Mastercard Welcome</td>
</tr>
</tbody>
</table>

Mail Order Postage

Less than $50 $3.50
$50-$99 $4.50
$100-$250 $7.00
Above $250 $10.00

Heavy items adds extra.
FLUKE 9010A TROUBLESHOOTER
A look inside the Fluke way out of processor troubles. It’s not as confusing as you think.

Jon Fairall

Like any electronics magazine, ETI gets lots of invitations to look at bits and pieces of equipment; and we respond by reviewing anything that might potentially be of interest to our readers, from high level oscilloscopes down to tiny pocket calculators. One thing that we, and most other magazines, have steered clear of, is digital troubleshooting equipment.

The reasons are many, not the least being a nagging suspicion that it’s all too esoteric and complex to be worth the trouble. Unfortunately, processor-based equipment isn’t going away. In fact, the areas where the analogue artisan can now feel comfortably unthreatened seem to be shrinking daily. Even in our tiny lab (two engineers, no R&D grant, one soldering iron and “that’s my multimeter sport”), the influence of digital techniques perniciously intrudes. The trouble is, when digital circuits go wrong or won’t work, how do you fix them? Unlike analogue equipment, they’re not amenable to inspection by an oscilloscope. A multimeter can sort out some of the more obvious construction errors, but as soon as anything a mite complicated starts to occur, it’s useless.

So, with these thoughts in our minds, we girded up our metaphorical loins and approached the Fluke 9010A microsystem troubleshooter. Elmeasco, which sells it in Australia, very kindly provided us with its standard, home-brew training manual which turns out to be surprisingly good. What’s more, the operation of the 9010 seems intuitively easy. I suspect, however, that what makes it easy is understanding the problem it’s designed to solve. Once you understand that, the rest follows.

Fortunately enough, problems in digital circuits, or at least the majority of them, are relatively easy to categorize. One type of problem exists where a line is tied high, low or shorted to some other line. This will typically be the case where the line you test is tied to a specific component that has failed. A second type of problem is one where the relationship between various lines on the board is disturbed. This will typically be the case where you don’t have direct access to the component that has failed. A third type of problem is where the timing of the circuit is haywire. Generally this is caused by failure either of the system clock or the circuitry used to process it.

The first thing to do is get acquainted with the physical layout of the beast. The troubleshooter comes in a designer-grey case with a distinctly non-typewriter keyboard at the front, a single line display panel and five LED status lights up the side. There are various input/output ports on the back panel and under the front of the machine. One of these front ports takes the cable to the probe. The probe is much the same shape and size as a standard CRO probe, except that it is equipped with two lights, one red and one green. The red light denotes a high, the green a low, and both together indicate that the node under test is switching between the two. Both lights flash to indicate a high impedance node.

The other cable from the front of the 9010 goes to the pod. The pod is a small calculator-sized box in matching grey, with a ribbon cable coming out of it that plugs into the processor socket on the device under test. This gives some hint of the tremendous flexibility of the instrument, because the pod is tailored specifically for the microprocessor it is designed to test. It contains all the software and hardware to match the 9010 to the processor. This means not only that a large range of current processors can be supported, but also that future developments can be catered for without redesigning the whole box and dice. Current pods support Z80s, 6500 family, 8000 family, the 68000 and so on.
According to Elmeasco, the first 32-bit pods will be available next year, indicating that the unit will be valuable in trouble-shooting state-of-the-art boards for at least the rest of this decade.

So what does it do? Elmeasco provided me with something called a TK80, an anonymous board of uncertain function to use as a target for the 9010. The processor is an 8080, so the first step is to plug the relevant pod into the 9010 and into the processor socket, and turn everything on. The Fluke will test itself and the pod to ensure that any faults discovered really are in the unit under test, not in the test equipment.

Essentially the troubleshooter now looks at the system from the processor site and checks the operation of everything it can see. The first step is to teach it what the unit under test should look like. This can be done by plugging in a known good board and pushing the LEARN button, by giving it the information in a tape drive, by feeding it down an RS232 link or by manual entry. The first alternative is obviously the easiest, although it takes a while. The tape drive is quick and simple.

Once the 9010 knows what to look for, the operator can order a number of tests. The bus test will check that no lines are tied high, low or together (this test can actually be done without the benefit of the LEARN function). The RAM test will write 0 to every memory, toggle it and read back a logic high. It also does a test to ensure that there are no pattern errors in the RAM, i.e., errors where the value of one bit affects the value of some other. It does a ROM test by comparing known ROM with the contents of the ROM in the device under test. It also reads and writes to all the I/O lines it can find.

Because the pod is plugged into the processor socket, it is possible to read and write to any location on the board to which the processor has access, including all the memory, the I/O and the control lines. A number of things are possible because of this. For instance, one can run the device under test from any particular memory location in either its RAM or ROM. One can test that faults have been rectified, or download a machine code program into RAM. There are also some special functions like RAMP which will automatically step from 00 to FF in single step increments. The WALK key presents some data to the bus and then steps it to the right. Other functions allow one to increment, decrement, toggle, AND, OR and so on.

It's also possible to program the 9010, for situations where a repetitive test sequence is required. Programming works on much the same basis as that of a calculator. Push the PROGM button, and it will record in sequence all your keystrokes. To get out of the programming mode you push the PROGM button again. To make it more powerful, there is also a facility for conditional branching on the basis of results coming back from the device under test.

The 9010 is an excellent way to find faults in digital boards. A typical system consisting of the 9010A and an 8-bit pod costs from $12,275. A cheaper version consisting of the 8-bit pod and a 905 which does without the programming facilities, costs from $9300. Eighteen interface pods are available covering over 50 microprocessors and another three are expected to be released later this year.
For all your components!
Test gear, data books.
Huge range of active and passive components.

FLUKE Multimeters
Amidon Ferrite Products

Are you pulling out your hair trying to find parts for the PLAYMASTER AM/FM tuner kits???
Give us a call! We have most parts (incl. semi’s) in stock.

30 Lacey Street,
CROYDON, VIC. 3136
Ph: 729-3360/3094
Mail Orders Welcome

NICE MODEM
$699 (incl. Sales Tax)
Made in Australia

- Hayes Smartmodem compatible
- Auto-dial both DTMF (tone) and PULSE
- Auto-answer and Auto-disconnect
- Ring Back Security facility
- Audio and Visual Indicators
- Compact Elegant Design
- Fully Australian Designed and Manufactured.
- 12 Month Warranty.

Nice Modem Three incorporates all the features other than 1200 bps full duplex for $499, expandable to 1200 bps full duplex.

- Transmission modes are:
 CCITT V.22 — 1200 bps Full Duplex
 Originate and Answer
 BELL 212A — 1200 bps Full Duplex
 Originate and Answer
 CCITT V.23 — 1200/75 baud Half Duplex, with built-in baud rate conversion
 CCITT 21 — 300 baud Full Duplex
 Originate and Answer
 BELL 103 — 300 baud Full Duplex
 Originate and Answer

CONTACT YOUR LOCAL COMPUTER DEALER or CALL
Geoff Arthur (02) 869 8777,
Andrew Haynes (09) 321 6636

The NICE COMPUTER COMPANY of AUST Pty Ltd
GPO Box S1517 Perth 6001,
P0 Box 51, Asquith 2078

TRADE ENQUIRIES WELCOME

Department of Technical and Further Education

GRADE 2, School of Applied Electricity
Sydney Technical College
Position No. 30/016 (Re-advertisement)
$24,440 range $26,164 pa
Provide technical support to senior staff in the specification, assessment, prototype evaluation, sample testing and management of major plant requirements.

Essential: Qualifications and experience as outlined in the PSB Determination available from Inquiry Officer. General Applicants may be required to undertake a test of proficiency.

Inquiries: Mr F. Nimmett, (02) 217-3680.
Application forms can be obtained by telephoning (02) 219-9557 and (02) 219-9559, or by contacting your nearest TAFE college. Envelopes containing application forms should be clearly marked "Confidential" and forwarded to the Recruitment Section, Department of Technical and Further Education, PO Box K638, Haymarket 2000.

SAVE on new
cost tools &
components
FOR DESIGNERS AND PROGRAMMERS

HARDWARE

EPROM ERASER with TIMER, LAST
PROGRAMMER (216-27512), Its IBM-PC
51 Compatible System 844k
499.00

SOFTWARE

NORTON Programmers Editor (Magic)
PROTEL PCB Layout System Version
3.0-EGA Compatible with FREE
Schematic Library
Hi-Tech C Cross Compiler (Z-80, ROMchip)

CHIPS

8749 Microcomputer
8031
NEC V20-2 Speed Chip
89C

GUI Text-Speech Set

39.95

30.00

95.00

290.00

24.00

14.50

45.00

29.95

All prices include Sales Tax, Overnight Delivery $7.50 Australia Wide (Except Systems).
Phone now for our free information pack on (07) 369 5900 or write to P.O. Box 107 Paddington, Q. 4064.
Visa, Master Card & Bank Card accepted.

Our new showroom is at:
26 Mayneview Street, Milton, Q.
Ph: 07 369 5900.
BUYERS’ GUIDE TO LAPTOP COMPUTERS

Welcome to our survey of the laptop computer market. It is an interesting survey if only because it reveals a wide variety of specifications and prices. Perhaps this reflects an unstable market; one that is not yet quite sure who the customers are or what they want. All of the devices described herein are small, and the columns for size and weight reflect briefcase sizes and totable weights. The manufacturers have yet to work out exactly who will pay a premium for this, or indeed, if they will.

One thing everyone agrees on is that portability is a must. Virtually all of these units can operate away from the mains; mostly via battery, but some from 12 Vdc. They are thus models of engineering efficiency in terms of power saving circuitry.

The general configuration of these machines is common across the range. They all tend to be limited by the requirements of the keyboard and the screen. A keyboard needs to be a certain size if it is to be useful, so does the screen. Both also need to be protected in a sometimes harsh environment, so the standard pattern is to put the screen on a lid which folds down on top of the keyboard, thus protecting both at the same time. Power requirements, weight and space mean that the screen is almost universally an LCD display. Some manufacturers are playing around with plasma screens, but these yield better legibility at the price of large power requirements and thus short battery life.

There are a wide variety of ways of providing mass storage in laptop computers. One very elegant system favoured on the Time Kookaburra and some others is to provide a RAM disk on board, with an external disk drive. The external drive requires mains power, and is designed to sit on a desk, leaving the portable free of the engineering requirements of a disk drive. Another alternative is to supply an in-built hard disk like Data General has done on the DG1. This gives something like 10 Megabytes of mass storage on board. Almost all of them provide a 3.5 inch or 5.25 inch disk drive system either on board or externally.

Almost all the laptops come with a quite extensive range of enhancements necessary to turn them into sophisticated computer systems. Video output to allow them to drive monitors, sometimes in colour, is quite common. Rather less common are modems. Only two supply them as an internal option, and a few more externally. This seems a little strange given the fact that laptops are designed to be used on the move.

One area where there is a wide discrepancy is in the software that comes bundled with the package. Some come fully featured with wordprocessor, database and spreadsheet in firmware. Others come with nothing; you have to supply all your own.

<table>
<thead>
<tr>
<th>Brand</th>
<th>Model</th>
<th>PC Compatib</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bondwell</td>
<td>8</td>
<td>y</td>
</tr>
<tr>
<td>Chendai</td>
<td>Lap 1</td>
<td>XT</td>
</tr>
<tr>
<td></td>
<td>Lap 2</td>
<td>XT</td>
</tr>
<tr>
<td>Data General</td>
<td>DG1 Model 2</td>
<td>y</td>
</tr>
<tr>
<td>Epson</td>
<td>PX-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PX-8</td>
<td></td>
</tr>
<tr>
<td>Ericsson</td>
<td>Portable PC</td>
<td>y</td>
</tr>
<tr>
<td>HRC-Time</td>
<td>Kookaburra</td>
<td></td>
</tr>
<tr>
<td>Hewlett-Packard</td>
<td>Portable Plus</td>
<td></td>
</tr>
<tr>
<td>IBM</td>
<td>5140</td>
<td>y</td>
</tr>
<tr>
<td>NEC</td>
<td>Multispeed Portable</td>
<td></td>
</tr>
<tr>
<td>Olivetti</td>
<td>M15</td>
<td>y</td>
</tr>
<tr>
<td>Sharp</td>
<td>PC2500</td>
<td></td>
</tr>
<tr>
<td>Tandy</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Toshiba</td>
<td>T1100 Plus</td>
<td>y</td>
</tr>
<tr>
<td></td>
<td>T3100</td>
<td>y</td>
</tr>
<tr>
<td></td>
<td>T2100</td>
<td>y</td>
</tr>
<tr>
<td>Zenith</td>
<td>Z-171</td>
<td>y</td>
</tr>
<tr>
<td></td>
<td>Z-181</td>
<td></td>
</tr>
<tr>
<td>Size (mm)</td>
<td>Weight (kg)</td>
<td>Power</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>390 x 310 x 90</td>
<td>7.5</td>
<td>240 Vac; 12 Vdc battery</td>
</tr>
<tr>
<td>390 x 310 x 90</td>
<td>7.5</td>
<td>240 Vac</td>
</tr>
<tr>
<td>370 x 30 x 80</td>
<td>10.5</td>
<td>240 Vac; 12 Vdc battery</td>
</tr>
<tr>
<td>297 x 216 x 34</td>
<td>1.6</td>
<td>240 Vac; battery</td>
</tr>
<tr>
<td>297 x 216 x 47</td>
<td>2.3</td>
<td>240 Vac; battery</td>
</tr>
<tr>
<td>115 x 390 x 310</td>
<td>7.6</td>
<td>240 Vac</td>
</tr>
<tr>
<td>285 x 325 x 58</td>
<td>4</td>
<td>240 Vac; battery</td>
</tr>
<tr>
<td>330 x 254 x 76</td>
<td>4.1</td>
<td>240 Vac; battery</td>
</tr>
<tr>
<td>360 x 309 x 67</td>
<td>5.5</td>
<td>240 Vac</td>
</tr>
<tr>
<td>345 x 75 x 300</td>
<td>5.4</td>
<td>240 Vac; battery</td>
</tr>
<tr>
<td>280 x 355 x 70</td>
<td>5</td>
<td>240 Vac; battery</td>
</tr>
<tr>
<td>300 x 45 x 210</td>
<td>1.3</td>
<td>240 Vac; 12 Vdc battery</td>
</tr>
<tr>
<td>38 x 300 x 215</td>
<td>1.36</td>
<td>240 Vac; 12 Vdc battery</td>
</tr>
<tr>
<td>55 x 216 x 298</td>
<td>2</td>
<td>240 Vac; 12 Vdc battery</td>
</tr>
<tr>
<td>66 x 307 x 305</td>
<td>4.5</td>
<td>240 Vac; battery</td>
</tr>
<tr>
<td>311 x 360 x 80</td>
<td>6.9</td>
<td>240 Vac</td>
</tr>
<tr>
<td>311 x 360 x 80</td>
<td>6</td>
<td>240 Vac</td>
</tr>
<tr>
<td>240 x 330 x 168</td>
<td>6.5</td>
<td>240 Vac; battery</td>
</tr>
<tr>
<td>340 x 295 x 80</td>
<td>5.4 (incl batt)</td>
<td>240 Vac; 12 Vdc battery</td>
</tr>
<tr>
<td>Brand</td>
<td>Model</td>
<td>Bits</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>Bondwell</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Chendai</td>
<td>Lap 1</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Lap 2</td>
<td>16</td>
</tr>
<tr>
<td>Data General</td>
<td>DG1 Model 2</td>
<td>16</td>
</tr>
<tr>
<td>Epson</td>
<td>PX-4</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>PX-8</td>
<td>8</td>
</tr>
<tr>
<td>Ericsson</td>
<td>Portable PC</td>
<td>8</td>
</tr>
<tr>
<td>HRC-Time</td>
<td>Kookaburra</td>
<td>16</td>
</tr>
<tr>
<td>Hewlett-Packard</td>
<td>Portable Plus</td>
<td>16</td>
</tr>
<tr>
<td>IBM</td>
<td>5140</td>
<td>16</td>
</tr>
<tr>
<td>NEC</td>
<td>Multispeed Portable</td>
<td>16</td>
</tr>
<tr>
<td>Olivetti</td>
<td>M15</td>
<td>16</td>
</tr>
<tr>
<td>Sharp</td>
<td>PC2500</td>
<td>8</td>
</tr>
<tr>
<td>Tandy</td>
<td>102</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>8</td>
</tr>
<tr>
<td>Toshiba</td>
<td>T1100 Plus</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>T3100</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>T2100</td>
<td>16</td>
</tr>
<tr>
<td>Zenith</td>
<td>Z-171</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Z-181</td>
<td>16</td>
</tr>
<tr>
<td>Name</td>
<td>External</td>
<td>Serial</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>ASM</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>n/a</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>n/a</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>n/a</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Wordstar; Supercalc; dBASE II</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BASIC; Turbo Pascal</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>n/a</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>n/a</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>n/a</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

ETI April 1987 — 93
BUYER’S GUIDE TO SURROUND SOUND

Surround sound systems are part of the growing trend towards the integration of domestic audio-video systems. They are designed to decode the extra audio tracks present on video tapes, and direct them to speakers scattered around the TV viewing room. In this way, something of the ambience of the cinema can be recreated in your living room.

There are several different ways of actually doing the decoding. They can range from using the same protocols as are used in the cinema, through to synthesizing stereo when only a mono track is present on the tape.

Surprisingly, the more expensive units have no amplification on board. The idea here is that each speaker or set of speakers ought to have its own. This is fine in a professional or semi-professional environment, but is not likely to impress a cost-conscious home user. Other units have an on-board amplifier, so that some of the speakers can be driven directly.

<table>
<thead>
<tr>
<th>Brand</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akai</td>
<td>AS-P302</td>
</tr>
<tr>
<td>Aphex Systems</td>
<td>AVM8000</td>
</tr>
<tr>
<td>Fosgate</td>
<td>3601</td>
</tr>
<tr>
<td>NEC</td>
<td>AV-300E</td>
</tr>
<tr>
<td>Pioneer</td>
<td>SPX707</td>
</tr>
<tr>
<td>Raidek</td>
<td>SD100</td>
</tr>
<tr>
<td>Shure</td>
<td>HTS5000</td>
</tr>
<tr>
<td>Sony</td>
<td>SDP-505ES</td>
</tr>
<tr>
<td></td>
<td>SH-AV22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brand</th>
<th>Variable Delay</th>
<th>Audio Processir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akai</td>
<td>n</td>
<td>-</td>
</tr>
<tr>
<td>Aphex Systems</td>
<td>n</td>
<td>cinema mode; dolby MP; SQ8</td>
</tr>
<tr>
<td>Fosgate</td>
<td>n</td>
<td>ambience; theatre; panorama; stadium</td>
</tr>
<tr>
<td>NEC</td>
<td>y</td>
<td>matrix; dolby; hall</td>
</tr>
<tr>
<td>Pioneer</td>
<td>n</td>
<td>theatre; stadium; dynamic expander</td>
</tr>
<tr>
<td>Raidek</td>
<td>y</td>
<td>cinema matrix</td>
</tr>
<tr>
<td>Shure</td>
<td>adjustable digital 16-36 microseconds</td>
<td>cinema dolby Acra-Vector decoder acoustic space generator process</td>
</tr>
<tr>
<td>Sony</td>
<td>y</td>
<td>matrix; dolby; hall</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>BGV mixing; mic mixing</td>
</tr>
</tbody>
</table>

94 — ETI April 1987
<table>
<thead>
<tr>
<th>Dimensions (mm)</th>
<th>Weight (kg)</th>
<th>Warranty (mths)</th>
<th>Audio Inputs</th>
<th>Video Inputs</th>
<th>Power per Channel (W)</th>
<th>No. of Speakers</th>
<th>Subwoofer Output</th>
<th>Noise Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 x 78 x 260</td>
<td>4.9</td>
<td>24</td>
<td>2</td>
<td>4</td>
<td>25</td>
<td>2</td>
<td>n</td>
<td>dolby surround</td>
</tr>
<tr>
<td>5 x 230 x 425</td>
<td>3.4</td>
<td>12</td>
<td>2</td>
<td>0</td>
<td>—</td>
<td>8</td>
<td>y</td>
<td>nil</td>
</tr>
<tr>
<td>10 x 89 x 229</td>
<td>4.7</td>
<td>12</td>
<td>2</td>
<td>—</td>
<td>44</td>
<td>3</td>
<td>n</td>
<td>dolby surround</td>
</tr>
<tr>
<td>9 x 430 x 340</td>
<td>9.5</td>
<td>12</td>
<td>5</td>
<td>4</td>
<td>30 x 4; 60 x 2</td>
<td>4</td>
<td>y</td>
<td>dolby</td>
</tr>
<tr>
<td>10 x 75 x 332</td>
<td>5.7</td>
<td>36</td>
<td>2</td>
<td>—</td>
<td>30</td>
<td>4</td>
<td>y</td>
<td>dolby surround</td>
</tr>
<tr>
<td>15 x 44 x 254</td>
<td>4.9</td>
<td>12</td>
<td>1</td>
<td>0</td>
<td>25</td>
<td>2</td>
<td>n</td>
<td>nil</td>
</tr>
<tr>
<td>10 x 427 x 382</td>
<td>4.5</td>
<td>12</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>y</td>
<td>dolby; stereo; dolby surround</td>
<td></td>
</tr>
<tr>
<td>10 x 85 x 350</td>
<td>7.4</td>
<td>12</td>
<td>2</td>
<td>0</td>
<td>20</td>
<td>4</td>
<td>y</td>
<td>dolby surround</td>
</tr>
<tr>
<td>10 x 86 x 236</td>
<td>2.8</td>
<td>24</td>
<td>5</td>
<td>2</td>
<td>—</td>
<td>4</td>
<td>n</td>
<td>nil</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Video Processing</th>
<th>Remote Control</th>
<th>Synthetic</th>
<th>Channel Separation</th>
<th>Degree of Separation (dB)</th>
<th>Price ($)</th>
<th>Distributor</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>y</td>
<td>n</td>
<td>matrix</td>
<td>60</td>
<td>599</td>
<td>ETI April 1987</td>
</tr>
<tr>
<td>n</td>
<td>y</td>
<td>n</td>
<td>—</td>
<td>60</td>
<td>2500</td>
<td>East Coast Audio</td>
</tr>
<tr>
<td>n</td>
<td>y</td>
<td>y</td>
<td>proprietary</td>
<td>40</td>
<td>1995</td>
<td>Southern Cross Audio Video</td>
</tr>
<tr>
<td>n</td>
<td>y</td>
<td>y</td>
<td>matrix</td>
<td>—</td>
<td>899</td>
<td>Raidek</td>
</tr>
<tr>
<td>n</td>
<td>y</td>
<td>y</td>
<td>logic steering</td>
<td>68</td>
<td>899</td>
<td>Raidek</td>
</tr>
<tr>
<td>n</td>
<td>n</td>
<td>n</td>
<td>logic steering</td>
<td>40</td>
<td>599</td>
<td>Audio Engineers</td>
</tr>
<tr>
<td>y</td>
<td>y</td>
<td>y</td>
<td>logic steering</td>
<td>—</td>
<td>2649</td>
<td>Audio Engineers</td>
</tr>
<tr>
<td>n/a</td>
<td>n</td>
<td>y</td>
<td>matrix; logic steering</td>
<td>—</td>
<td>1599</td>
<td>Raidek</td>
</tr>
<tr>
<td>n</td>
<td>n</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>379</td>
<td>ETI April 1987</td>
</tr>
</tbody>
</table>
REAL MACHINES

What machines are available on the market? This instalment looks at the relative merits (and demerits) of two standards. It also covers the delicate question of software protection — and software piracy.

Phil Cohen

Now that you know how a small computer works and what it does (we hope), it’s time to start looking at some specific examples.

IBM

The machine of the moment is the IBM-PC. It’s unfortunate but true that IBM-PCs and machines similar enough to run the same software (called ‘IBM-compatibles’) have become a de facto standard for the microcomputer industry. ‘Unfortunate’ because there are a lot of better machines around, especially when it comes to keyboard layout. There will be even more of them in the future but they will all be held back to an extent by having to conform to the IBM ‘standard’.

The base model IBM-PC is usually provided with one 5½” floppy disk drive and around 256K of memory. It is built into a large metal cabinet which has a single motherboard (IBM calls this a ‘planer board’ to avoid charges of sexism!) with space for a number of plug-in boards to handle printers, extra memory, and so on.

In fact, many people are coming to regard 512K or 640K of memory as standard for any PC because there is so much software around these days requiring that much memory. To expand a PC to 640K of memory you usually have to plug just one extra board into one of the slots on the motherboard.

Most of the memory boards on the market have more than just memory on them too. Typically they will have a serial port and a real-time clock as well.

A real-time clock is a very useful addi-
tion for business systems. Basically it's an electronic clock run by a battery, which keeps track of the time even when the computer is turned off.

The 'PC keyboard is notorious for being one of the worst features of the IBM machine. In particular, it lacks basic things like an indicator to show that the shift lock is on.

Other failings include such fundamental things as price (although IBM has started bringing it down of late). However, for all its faults it's a good solid machine and the 'PC (and IBM) will be around for some time.

Apples
Of course, the home computer market was started by companies like Apple; IBM came in later and more heavily. There are still plenty of the old Apple II machines around, particularly in schools and technical colleges.

The original Apple was ridiculously puny by today's standards with only a few K of memory, and it's still a problem to use more than about 64K on a modern Apple. Like the 'PC, the Apple is built around a series of slots on its motherboard, which can be used to expand the machine in almost any way you like.

It was those slots that made the Apple such a success. The company made no secret of the ways in which people could build cards to plug into the machine, and there are even cards around that replace the entire Apple processor with a new one—a Z80. With that sort of flexibility it's not surprising that the Apple was popular with researchers and the like.

There is still software being produced for the Apple, and I suspect there is still more software available for the old machine than there is for the IBM, although for how long that will remain true I wouldn't like to say.

Talking of slots, it's interesting to note that Apple's latest machine the Macintosh (named, with typical ignorance of marketing techniques, after a US strain of Apple)

66

The 'PC keyboard is notorious for being one of the worst features of the IBM machine.
In particular, it lacks basic things like an indicator to show that the shift lock is on.

99

has no slots at all. The company decided to make the 'Mac' a 'closed architecture' microcomputer—much to the surprise of everyone who knew why the original Apple had been such a goer. I notice that Apple's latest move is to try to add slots to the Mac.

A major difference between the Apple and the 'PC is in the processor. The Apple is built around an 8-bit processor called the 6502, while the 'PC is built around the 16-bit 8086 range. A few years ago this was made out to be a big selling point for the 'PC, but the public is not so easily fooled. In fact, things like disk access speed are much more important than processor size when it comes to determining just how fast a given machine will go.

Software protection
One subject sure to cause an argument at any place where software buyers and sellers meet is protection.

When the mass-marketing of software first started a few years ago, it was sold either on cassette tape or disk, and if you wanted to copy a friend's software all you had to do was hand over a blank tape or disk and get a photocopy of the manual.

Quite a trade in copied software went on for a few years, with people swapping interesting packages with each other like bubble gum cards. Then, inevitably, the people who were selling the software started thinking about how much more money they would make if it was impossible to copy software and everyone had to buy the package.

So software protection was born. There are a number of different forms, but the most common rely on the complexities of the disk controller inside the computer. A typical 'protection scheme' is to have a vital part of the program hidden on the disk in such a way as to make it unreadable.

A common way to do this is to rearrange the sectors on part of the disk so that they do not conform to the pattern of the rest of the disk. When the software is started up, it changes the settings of the disk controller in the computer and reads the hidden part of the software into memory. But if you try to copy the whole disk using a standard copy program, it will not 'know' what the special format of the hidden part of the disk is, and will, therefore, not be able to copy it.

Simple. But there are two major problems. Firstly, people who spend hundreds of dollars on a piece of software want to
THE WORLD WIDE HOBBY!
AMATEUR RADIO
ARE YOU A MEMBER OF THE WIA?

Why not become a radio amateur by joining the Wireless Institute of Australia? The Institute can assist and advise you in how to obtain a Department of Communications licence, which will allow you to communicate with others having similar interests in Australia and throughout the world.

The Wireless Institute of Australia is a non-profit society founded in 1910. Since its inception it has nurtured the interests of all Australian amateurs by liaison at all Governmental levels.

Apart from many other benefits as a member, you receive a monthly plastic encapsulated 64 page magazine called Amateur Radio in your letter box each month.

This magazine contains information on all aspects of the hobby such as Technical Projects, Hints and Kinks, Computer Programs, Free Classified Advertisements and Technical Reviews. Regular columnists give details of Contesting, Awards, DX News, Ionospheric Predictions and Solar Activity, Overseas News and VHF/UHF Activity, to name but a few.

SUPPORT YOUR HOBBY — become a member!

For further information, including a sample magazine, write to:
WIRELESS INSTITUTE OF AUSTRALIA
PO BOX 300
CAULFIELD SOUTH, VIC. 3162

Registered Address: 37/105 Hawthorn Road, Caulfield North, Vic.

BKP-A0470128
be able to copy it just so they can have a ‘backup’ in case of coffee spillage, etc. Secondly, a number of clever people have developed special copy programs that can read the hidden software, no matter what disk format it used. There are even special hardware arrangements which allow you to take a ‘snapshot’ of the hidden software once it has been loaded into memory, and get around the problem that way.

An alternative to the hidden software arrangement is the ‘dongle’ (one of my favourite words!). A dongle is a small piece of hardware, usually built into a plug, which is inserted into one of the sockets on the machine when you want to use the software in question. The first thing the software does when you start it up is look to see if the dongle is there. If it is not, the software refuses to run. This allows copying of the software for back-ups, but not use of the software by anyone who does not have the dongle.

Of course, you could copy the dongle, but that is generally considered to be too much trouble.

The arguments for and against software protection are many and various, and a debate has been firing on the subject ever since home computer software has been sold.

Software ‘piracy’ refers to when someone sets themselves up with a special copying program, and starts selling copies of a software package he or she has copied. This is, of course, immoral, not to mention illegal. When I lived in Hong Kong you could buy a copy of any piece of software to run on the Apple for just over the price of a blank disk — and you could buy it a matter of days after it was released in the US!

Glossary
16-bit: Being able to handle information in batches of 16 binary digits at a time.
6502: The 8-bit processor used in the Apple range of computers.
8-bit: See 16-bit.
8086: The 16-bit processor used in the IBM-PC.
Backup: Taking a copy of a disk in case of damage to the original.
Closed architecture: A lack of slots.
Disk access speed: The speed at which a computer can find a given piece of information on a disk.
Dongle: A piece of hardware that software will look for before it decides whether to operate or not. The dongle prevents use of the software on more than one machine at a time, no matter how often the software might be copied.

Format: The way in which sectors are arranged on a disk.
IBM: International Business Machines — also known as ‘Big Blue’ in the computer industry because of the colour of its computers’ cabinets.
IBM-PC: IBM’s late and very significant entry into the personal computer market. An office, rather than a home computer.
IBM-compatible: Used to describe a computer that can run most of the software that an IBM-PC can run.
Macintosh: A seminal machine developed by Apple.
Piracy: Selling copies of software.
Planar board: What IBM calls a motherboard.
Protection scheme: A method of making the copying of software for profit difficult.
Real-time clock: A clock built into a computer, so that the time and date can be used in programs.
Slot: A long socket on a motherboard for extra boards to be plugged into.
Snapshot: A method of recording the contents of memory, normally for the purpose of avoiding protection schemes.
Z80: An 8-bit processor.

$13,000 REFERENCE MONITORS
also available in kit form.

Readers of overseas hi-fi magazines often wonder why imported quality loudspeakers sell for over twice the price in Australia. The answer is simple — but for good reasons not advertised.

Fully imported speakers incur such cost factors as:
- 25-30% freight
- 55% import duty

Not one of these factors improve the sound — they only contribute to the extremely high Australian price tags.

A pair of fully imported 4-way DYNAUDIO reference speakers is today priced at $13,250 in Australia.

By importing the drivers only and utilizing world renowned Australian technology (Thiele & Small), together with local genuine timber craftsmanship, it is now possible to acquire a pair of these speakers fully assembled at less than half this price.

For the technically-minded hi-fi enthusiast further savings are possible by assembling the speakers yourself. Pre-built enclosures and crossovers make this task a mere breeze. A good soldering iron and a Phillips head screwdriver will save you a further 30%. Should you happen to be in the furniture production industry, enclosure plans can be supplied with the kit (drivers and crossovers) for even greater savings.

To audition the $13,000 DYNAUDIO reference monitors, contact SCAN AUDIO for full details and the name of your nearest authorised DYNAUDIO specialist.

Dynaudio

Sole Australian Distributor:
SCAN AUDIO Pty Ltd, 59 Crown Street, Richmond, Vic. 3121.
Phone: (03) 459 5199 (Melbourne)
(02) 871 564 (Sydney)
(07) 357 7431 (Brisbane)

SATELLITE-1
92800 pair
(51400 unassembled)
(5948 excl. cabinets)
Matching subwoofer available.

PROFILE-2
90000 pair
(51700 unassembled)
(5148 excl. cabinets)

PROFILE-3
53800 pair
(59400 unassembled)
(51938 excl. cabinets)

PROFILE-4
55800 pair
(53600 unassembled)
(52368 excl. cabinets)
One of the long lost elements of low frequency design is the inductor. Exiled due to large size and high cost it was one of the first casualties of the integration revolution. But now the gyrator provides a path for its reinstatement.

Glen Thurecht

In modern day electronic design with low frequencies, the inductor is rarely used. This is due to fundamental problems in constructing the devices for operation at these frequencies. Such inductances would have to be of high values so as to give reasonable values of reactance. This, in turn, means a large number of turns on a good quality former and, therefore, the physical size is large, the cost is high, and non-ideal performance is obtained due to the series resistance in the wire. As a result of these limitations circuit designers make do with resistors, capacitors and active devices such as transistors and operational amplifiers.

This switch to resistor/capacitor (RC) type design was pushed along by the fact that inductors could not be incorporated into integrated circuits. Filter design was one of the first casualties of the change in philosophy. Inductor/resistor/capacitor (LRC) circuits for producing filters which had been the norm in the day of the vacuum tube were quickly replaced with active RC filters. This type of design could be completely integrated or generated cheaply and easily around a building block such as an op-amp. To achieve the high order filters (ie, sharp transfer characteristics from pass band to stop band) that had previously been designed with inductors, a number of RC sections could be cascaded. However, in doing this the tolerances needed for the capacitors and resistors increase greatly. Indeed, it is not uncommon for some high order RC filters to have 0.1% component tolerances specified.

On the other hand, this is not a problem in the design of high order LRC circuits. Here the tolerances are about an order of magnitude lower. If 0.1% components are specified in an RC design, 1% components can generally be used in the equivalent LRC design.

The low sensitivities of the LRC designs was one of the driving forces that led to
The added expense of a two op-amp gyrator is almost always traded for the higher performance and lower component tolerances.

The limitations on the maximum Q that can be obtained by these circuits are the result of the following factors:

1. Amplifier gain that must be high;
2. Amplifier input impedance that must be high; and,
3. Stray capacitance that can either increase or decrease the Q depending on where the stray capacitance is located.

As has been mentioned, this circuit produces a semi-floating inductance. These elements are found in bandpass and highpass circuits. The low pass circuit, however, requires an inductor that does not have one terminal grounded but is fully floating as is illustrated in Figure 4(a).

One way to produce a floating inductor is to place two semi-floating gyrators back-to-back which provides an input terminal and an output terminal. This method has been used in the past but is not popular since both gyrators have to be highly matched. If there is any imbalance between the two gyrators this appears as a parasitic inductance to ground. Thus a dilemma: in order to have low tolerances in circuit components we attempt to implement an LRC design using gyrators but...

Figure 1. This circuit shows one of the many possible configurations of a gyrator. The circuit forms the equivalent of a semi-floating inductor.

The development of the gyrator or simulated inductor in the 1950s, '60s, and '70s. This is an active device that behaves as an inductor at its input terminals. By placing a voltage source on the input terminals, A-B, and calculating the input current it can be shown that the gyrator behaves exactly as an inductor would. The input impedance can then be calculated from the equation:

$$Z_{in} = \frac{V_{in}}{I_{in}}$$

At low frequencies its impedance is small and at high frequencies its impedance is large.

The circuit drawn in Figure 1 shows one of the many realizations of a gyrator and its equivalent. It can be used just as any passive inductor could be. In fact, it is a better device than an inductor constructed in a conventional way because the series R component is extremely low. Since an ideal inductor has no losses, it is this series R component that is responsible for all power dissipation and hence the maximum Q (quality factor) that can be obtained. Qs of 100 or more and inductances of Henries or tens of Henries are possible at low frequencies.

Note that this circuit produces an inductor that has one side grounded. This is termed a 'semi-floating' inductor and is extremely useful for producing parallel resonant circuits. Figure 2 shows a parallel resonant circuit using a gyrator and its frequency response. This circuit shows the high Qs that can be obtained at these low frequencies.

Gyrators can be constructed from many different circuit configurations. The two op-amp gyrator is the most common form used in high quality simulation but single op-amp gyrators may also be made. The big disadvantage of the single op-amp gyrator is that close tolerance components are needed to achieve Qs of even small values. Also the circuit parameters have temperature coefficients that are much greater than in a two op-amp gyrator. Figure 3 shows some single op-amp gyrators. The circuit of Figure 3(a) requires $R_1 = R_2$ for high Q but also $R_1 > R_2$ for stability.

Two op-amp gyrators, by contrast, have extremely high Qs, need low component tolerances, and have very good temperature stability. With the cost of operational amplifiers being so small these days the

Figure 2. (a) LRC bandpass circuit; (b) equivalent circuit with inductor replaced by gyrator; (c) frequency response of the filter showing how high selectivity can be achieved with a high Q resonant circuit.

ETI April 1987 — 101
GYRATORS

Figure 3. Some single op-amp gyrator configurations. Although simpler than two-amp gyrators, the Qs obtainable are not as high.

since we need a floating inductor we must use high tolerance components to obtain the balanced gyrators.

A solution to this problem was found by L. T. Bruton in 1969. He used a method of transforming an LRC low pass circuit into a form which could be realized using semi-floating gyrators. This transformation is simple in application and is shown in Figure 4. All that is required is to take the original LRC circuit as shown in Figure 4(a) and transform the components as in Table 1. Table 1 shows that resistors are replaced by capacitors, inductors are replaced by resistors and capacitors are replaced by a new circuit element called a 'frequency-dependent negative resistance' (FDNR). These FDNRs can then be synthesized by a gyrator circuit. Figure 4(b) shows the transformation of the original LRC circuit and 4(c) is the implementation using gyrators. Note that in order to simulate an FDNR the same configuration as the gyrator inductor is used except one resistor is replaced with a capacitor.

As a mathematical divergence, the transformation used by Bruton is a magnitude scaling of 1/S. The transformation is valid since any circuit can be magnitude-scaled without changing the transfer function T(s).

Now that we have developed the gyrator inductor and the gyrator FDNR, any LRC-type circuit can be implemented with ease. Many books have been written cataloguing the LRC values required for particular responses. These values can be quickly transformed into a circuit using gyrators instead of inductors thus reducing much of the design time.

When high quality, high order filters are required this design technique fills a gap that other methods cannot cope with. At frequencies up to about 20 kHz, digital filters can provide extremely high cut-off rates, good temperature co-efficient and require no high tolerance components. At frequencies around 100 kHz, the high order LRC circuit can be designed using practical construction is reliable and easily achieved. It provides a viable alternative to the high tolerance RC active filter networks presently popular. With all its advantages the gyrator may yet help the inductor find its way back into low frequency design.

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>1/S TRANSFORMED ELEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>C</td>
</tr>
<tr>
<td>L</td>
<td>R</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

Table 1. Summary of the Bruton 1/S transformation used for eliminating 'floating' inductors.

practical construction is reliable and easily achieved. It provides a viable alternative to the high tolerance RC active filter networks presently popular. With all its advantages the gyrator may yet help the inductor find its way back into low frequency design.

It is surprising that this design technique has not been more widely used. The

When high quality, high order filters are required this design technique fills a gap that other methods cannot cope with. At frequencies up to about 20 kHz, digital filters can provide extremely high cut-off rates, good temperature co-efficient and require no high tolerance components. At frequencies around 100 kHz, the high order LRC circuit can be designed using practical construction is reliable and easily achieved. It provides a viable alternative to the high tolerance RC active filter networks presently popular. With all its advantages the gyrator may yet help the inductor find its way back into low frequency design.

It is surprising that this design technique has not been more widely used. The

When high quality, high order filters are required this design technique fills a gap that other methods cannot cope with. At frequencies up to about 20 kHz, digital filters can provide extremely high cut-off rates, good temperature co-efficient and require no high tolerance components. At frequencies around 100 kHz, the high order LRC circuit can be designed using practical construction is reliable and easily achieved. It provides a viable alternative to the high tolerance RC active filter networks presently popular. With all its advantages the gyrator may yet help the inductor find its way back into low frequency design.

It is surprising that this design technique has not been more widely used. The

When high quality, high order filters are required this design technique fills a gap that other methods cannot cope with. At frequencies up to about 20 kHz, digital filters can provide extremely high cut-off rates, good temperature co-efficient and require no high tolerance components. At frequencies around 100 kHz, the high order LRC circuit can be designed using practical construction is reliable and easily achieved. It provides a viable alternative to the high tolerance RC active filter networks presently popular. With all its advantages the gyrator may yet help the inductor find its way back into low frequency design.

It is surprising that this design technique has not been more widely used. The

When high quality, high order filters are required this design technique fills a gap that other methods cannot cope with. At frequencies up to about 20 kHz, digital filters can provide extremely high cut-off rates, good temperature co-efficient and require no high tolerance components. At frequencies around 100 kHz, the high order LRC circuit can be designed using practical construction is reliable and easily achieved. It provides a viable alternative to the high tolerance RC active filter networks presently popular. With all its advantages the gyrator may yet help the inductor find its way back into low frequency design.
CAD/CAM
Automation in manufacture.
From concept drawings/schematic diagrams to processed data (e.g. plots, paper tapes for NC control, floppy discs, mag. tapes or hard copy printouts). Also Micro CADAM.

FINITE ELEMENT MODELLING
Using CADAM (incl. 3-D) - sophisticated analyses for Aerodynamics, Stress & Thermodynamics using the NASTRAN F.E.M. diagnostics package.

P.C.B. Design

TRAINING CENTRE
Accredited training for CAD/CAM designers & operators.

CONSULTANCY SERVICE TRULY INDEPENDENT
Contact Candy Poto or Peter Reid NOW!

Image Analysing Services P/L
3 Shearson Crescent
Mentone, Vic. 3194
Tel (03) 584 8088

Revealing new dimensions for science and industry.

ADVERTISING INFO No. 29

RESISTOR NETWORKS
NOW EX-STOCK IN AUST.

SPRAGUE ECONOLINE™ thick-film
Resistor networks include multiple isolated resistors, pull-up/pull-down and interface networks in low profile 6-pin, 8-pin or 10-pin conforma-coated single in-line packages (SIPs). Pins are set on 0.100-in. centers. Packages are 0.200-in. high.

Sprague supplies standard Type 210C SIP networks with resistance values from 22 ohms to 1 Megohm, a standard resistance tolerance of ±2% or ±2%, whichever is greater, and a temperature coefficient of resistance of ±200 ppm/°C. TCR tracking is ±50 ppm/°C. Operating temperature range is -55°C to +125°C.

ALSO AVAILABLE FROM SPRAGUE ELECTRIC
- DIL Resistor Networks
- RC Networks
- Terminators
- Resistor/Capacitor Networks
- Surface Mount Networks
- Capacitor Networks
- Transistor Arrays
- Diode Arrays

WHY NOT BUY THEM FROM THE PEOPLE WHO MAKE THEM
Call Or Write For A Free Sample.

THE MARK OF RELIABILITY
56 SILVERWATER RD., AUBURN, N.S.W. 2144
TEL: (02) 648 1661
TLX: 72906
FAX: (02) 647 2260

ADVERTISING INFO No. 31

ADVERTISING INFO No. 30

DAVID TILBROOK DOES IT AGAIN!

$799 PAIR
VIFA
AEM-6102 KIT SPEAKERS.

We're talking about the exciting David Tilbrook designed speaker kit which uses VIFA's high performance drivers from Denmark. His 2-way, digital ready 100 Watt capable masterpiece. The name Tilbrook is synonymous with brilliant design and performance characteristics and this system keeps the legend alive and well. When you compare the price of this kit with similar, fully imported loudspeakers, you will be saving from $350 to $800.

The performance of the speakers is outstanding. Australian Hi-Fi Magazine recently acclaimed: "Well, Mr. Tilbrook and Scan have certainly done their homework. The AEM-6102 is simply superb. A very accurate design and exhibits remarkable low levels of distortion and colouration - across the board." Such performance can only be achieved when every component is just right and the drivers are of advanced construction. Which is why VIFA drivers are chosen for such fine speakers as Mission, Dalí, Rogers, Jamo, Vandersteen, Heybrook, Bang & Olufsen, D.O.M. and Magnat just to mention a few.

Nearly a thousand of the AEM-6102 speakers have already been built in Australia with superb results. For only $799 a pair including drivers, pre-built cross overs and flatpack cabinets you can be the owner of one of these sonic masterpieces.

For more information, please write to Australian Sole Distributor:
SCAN AUDIO Pty. Ltd.,
52 Crown Street, Richmond, 3121.
Phone (03) 429 2199, Telex 39921.
Genuine O.E.M. enquiries welcome.

Stocked and demonstrated by:
NSW: All Jaycar Stores (02) 267 1614
QLD: Jaycar, Buranda (07) 393 0777
SA: The Stereo Shop, North Adelaide (08) 212 2416
TAS: NWS H. F. Burnie, (03) 31 5008
WA: Classic Sound, North Perth (09) 324 2499
NT: Sound Spectrum, Darwin (08) 89 50 000

ADVERTISING INFO No. 30

RESISTOR NETWORKS
NOW EX-STOCK IN AUST.

SPRAGUE ECONOLINE™ thick-film
Resistor networks include multiple isolated resistors, pull-up/pull-down and interface networks in low profile, 6-pin, 8-pin or 10-pin conforma-coated single in-line packages (SIPs). Pins are set on 0.100-in. centers. Packages are 0.200-in. high.

Sprague supplies standard Type 210C SIP networks with resistance values from 22 ohms to 1 Megohm, a standard resistance tolerance of ±2% or ±2%, whichever is greater, and a temperature coefficient of resistance of ±200 ppm/°C. TCR tracking is ±50 ppm/°C. Operating temperature range is -55°C to +125°C.

ALSO AVAILABLE FROM SPRAGUE ELECTRIC
- DIL Resistor Networks
- RC Networks
- Terminators
- Resistor/Capacitor Networks
- Surface Mount Networks
- Capacitor Networks
- Transistor Arrays
- Diode Arrays

WHY NOT BUY THEM FROM THE PEOPLE WHO MAKE THEM
Call Or Write For A Free Sample.

THE MARK OF RELIABILITY
56 SILVERWATER RD., AUBURN, N.S.W. 2144
TEL: (02) 648 1661
TLX: 72906
FAX: (02) 647 2260

ADVERTISING INFO No. 31

ADVERTISING INFO No. 30
Introducing OrCAD/SDT, a complete and affordable schematic capture package, developed for IBM personal computers and compatibles.

Now a complete schematic design tool with extensive part library, schematic output, bill of materials, net listing and design checking.

PRICE and PERFORMANCE together.

OrCAD with 1 year of program and manual updates

$1275.00 (ex tax)

For FREE demo disk and literature please contact:

PROMETHEUS SOFTWARE DEVELOPMENTS
191 Riversdale Road
Hawthorn Vic. 3122
(03) 819 6088

PHOTOPLOT FREE!
PROTEL - P.C.B. is now available from R.C.S. Design Pty. Ltd., the complete service bureau.

PROTEL - P.C.B: Low cost professional quality multilayer printed circuit board design program; features include:

- standard or EGA graphics card
- load from a net list
- plot sequence optimisation
- power and ground planes
- layer swapping
- smaller text
- block copy and rotation
- area fill
- track stack
- boards as large as 32" x 19"
- expanding and contracting zoom
- gerber plot file generation
- bill of materials
- grid size down to 1 mil

All copies of PROTEL - P.C.B. Rev. 3.0 purchased from R.C.S. Design come with an order to the first Gerber plot completed free of charge at R.C.S. Design, which includes plotting time and phototools.

R.C.S. Design Pty. Ltd.
728 Heidelberg Road,
Alphington, 3078, Victoria
(03) 49 6404 (03) 49 6792

MACH SYSTEMS AUSTRALIA

Q. WHO IS MACH SYSTEMS?
A. We are a contract assembly house. Whatever stage of production needed, we fulfill.

- Research and Development
- P.C.B. Artworks
- Component Sourcing
- Component Insertion
- Wave Soldering
- Board Cleaning
- Testing
- Specialist Assembly

The concept of Mach Systems is to support the Australian electronics industry in as many aspects as a complete manufacturing facility can.

From Prototyping to Production
"DEDICATED TO TECHNOLOGY"

70 Keys Rd, Marrickville, Victoria 3189
Telephone (03) 555 0133 FAX (03) 555 2572 Telex AA151952

ADVERTISING INFO No. 33

104 — ETI April 1987
The best feature of ProDesign II is NOT its low price.

The best feature of ProDesign II is NOT its outstanding performance.

The best feature of ProDesign II is NOT its extensive hardware compatibility.

The best feature of ProDesign II is its ease-of-use

PRODESIGN II. Anybody can do it!
Computer integrated manufacturing, once the impossible dream, is now being realized. It's a slow implementation that uses stacks of computer power and is falling foul of the economics of standardization.

Consider the scene: it's an old movie from the 1950s. The factory of the future. It's all white, spotlessly clean. If only humans were present they could eat their food off the floor. Robot conveyors move bits and pieces from machine to machine, constructing goods for a society of hedonists to consume at their leisure.

The modern realization of that dream is computer integrated manufacturing (CIM). Essentially, the idea is that a person should be able to tell a computer what to make, push a button and watch the factory make it. Out the back door will come the finished product, totally untouched by human hands.

Today is perilously close to tomorrow, and we are still a long way from the dream of hedonism and an automatic factory. Factories are as noisy and dirty as they've always been. Computerization seems to have made scarcely a dent, except, perhaps, in the car industry. The electronics industry, which one would expect to be leading industries in technology, shows little signs of embracing CIM.

To be sure, modern electronic components are usually made in relatively clean environments, and there is little heavy machinery to make a noise, but they still feature row after row of people in a drudging way stuffing circuit boards. So what's going on? Why is CIM taking so long to bear fruit?

Trends
Technically, there is nothing terribly difficult in the idea of a fully automated factory process. Designers know how it should be done; doing it, however, is quite another question.

Consider the design cycle. An idea must be defined and refined into a product. It must be prototyped and tested. Somehow or other, all the information necessary to construct the product must be assembled and the product rolled off the production line. Finally, the product must be tested to see if it performs like the prototype, and even more importantly, like the real thing.

Computers can play a part in all these steps. There is no substitute for a good idea of course, but computers can help in qualifying and quantifying all sorts of aspects of a design. There have been two parallel trends at work over the past few years. One has been the growth in the market for simple computer aided drafting packages. In a technical sense, they offer nothing that has not been around for years. The achievement is that whereas once, not so long ago, a large mainframe was required to run them, now the same functions can be achieved on a desktop.

The other trend has been the introduction of other types of packages designed to make life easier for the engineer by taking the drudgery out of many of the jobs he has to do.

The key to this, of course, has been industry standardization on the IBM-PC and its clones. With a de facto standard, software designers have been able to concentrate on optimizing their design for a single piece of hardware. The results, especially in CAD have been impressive. It is now possible to get packages like Protel or smartWORK for around $1000 that will allow an operator to draw up a circuit board, call components from a library, and even do simple design rule checking.

At the same time, the technical capability of many of these systems has been increasing rapidly. Automatic placement and routing is now available on many systems, for a price, sometimes even on the PC. These systems will take a schematic, determine the optimum placement of the components, i.e., the placement that minimizes the amount of board real estate, and then route tracks to their appropriate destinations. Current state-of-the-art is more or less successful in achieving these aims, with Racal's RedCAD system probably the best known. How well the systems work depends on the complexity of the board. It will place 80 per cent to 90 per cent of tracks without manual intervention on a reasonably complex board.

More sophisticated packages will supply output to simulators for checking. Simulation, the ability to determine the behaviour of the circuit before it has been built, is potentially one of the most valuable tools developed over the last few years. Simulation becomes absolutely essential with very complex circuits, especially when the circuit is to be integrated. If the circuit is very complex, the probability that it will work first time is virtually nil. On the other hand, the cost of prototyping might well be prohibitive. As a result, the ability to do the prototyping on the computer, so to speak, is invaluable.

As things stand, simulation still has a way to go before it can drop down to the level where it is generally available. The Mentor Graphics system is a typical low cost system with a professional simulation package on board. It can be purchased with programs for gate array or pc board drawing, the drawing of schematics, and documentation. For this it requires an Apollo workstation with bulk memory and hard disk. It sells for between $55,000 and $80,000 depending on the exact hardware configuration.

However, a reasonably complex board will easily defeat this type of simulation package. The raw processing power required can't be minimized, at least at this point in time, even given the cleverness of software engineers. A company like AWA, for instance, which routinely has the need to simulate very complex circuits, has a set of Apollo workstations using Mentor Graphics software tied into a VAX 785. According to the engineering manager at AWA, Clive Potter, even with the VAX doing 1.5 million calculations a second it can still take up to four hours to run a simulation. Price: astronomical.

Even then, the capability of modern systems depends very much on whether the circuit is analogue or digital. Simulation for digital devices is far easier than analogue. A digital gate can be described in a few parameters; an analogue component might well require hundreds of cross-referenced parameters to make it meaningful. This requirement alone explains why it is possible to make digital circuits more complex than analogue ones. You can build an analogue circuit, but you can't simulate it.

The other major function of current CAD systems is documentation: the ability to go through a schematic and generate a list of all the parts and then interface to other programs from which suppliers, costs, production schedules and so on can
be generated. Very simply, the CAD system can save many hundreds of man-hours in preparing for a production run, or even calculating whether its viable or not.

Manufacturing
Further downstream from the computer, and the concept of CIM starts to come apart at the seams. To make a working electronic circuit, artwork must be created to etch the copper tracks onto the board, holes must be drilled, parts inserted, and the whole placed in a box. If the device is an integrated circuit, an analogous process must take place. The artwork must be created on glass, and then reduced in size until its smallest features are only as big as the process will allow. Then the silicon is covered in photoresist, exposed to light and etched. So a pattern can be created in a layer of material on top of the silicon. The process can be repeated many times to create extremely dense chips.

Intelligent machines exist to do all these jobs without human intervention. Drilling machines, component insertion equipment and even board etching machines, are readily available requiring only the name of the board to complete their function. Indeed, many machines would be impossibly difficult to build or operate without the processor. IC insertion machines for instance, memorize the position and orientation of every IC on a complex board, and can then reorient themselves as many times as required to accurately stuff the board with components.

Problems arise when one tries to connect these various machines together. As things stand, it's impossible for manufacturers to connect the machine to the CAD system directly, because they have no mutually understandable language. It should not be a difficult thing to do, since the equipment is already based on microprocessor control. In circuit board factories, a partial solution is found in numerical control. Output from a CAD system is taken to the factory and translated onto a tape or floppy disk system as a program that can be run whenever a particular board is to be made. There are a few CAD packages with customized interfaces. For instance, PCad runs something called PCDrl, which can drive numerically controlled drills given the appropriate interface. The facility remains the exception rather than the rule, however.

The reason for this state of affairs is grounded in the good business sense of the vendors. Making your machine compatible with your neighbour's is simply inviting your neighbour in to steal your business. Historically, the computer industry has thrived on lack of standardization. It has only been when consumers have demanded it that the standards have appeared.

Until recently, consumers were not demanding it. The problem too has been a psychological one. It's been difficult enough for a beleaguered factory manager to keep up with all the smart machines without wondering how it could be done better. Recently, however, factory managers all over the world have been realizing the savings that could be made by linking all their bits and pieces together into one whole.

EDIF
Over the last two years there has been growing discussion about ways of making this whole possible. As a result, a number of standards have been discussed. For instance, IGES targets PCB board design as an extension of its major thrust, which is for mechanical description. VHDL is being promoted in the US by the military, and addresses both integrated circuit and system design to the exclusion of functional or logic description. It, in fact, includes no mechanical description at all. A third standard is also being touted around, called E3x3, but it appears to be rather specialized for graphic drivers.

The first real ray of hope for the consumer came in late 1985 with the formula­tion of the electronic design interchange format (EDIF). EDIF is a public domain format for the interchange of all forms of electronic design data between different systems. It is the first standard that makes some pretence at being broad enough to cover all aspects of design and manufacture.

According to US surveys, acceptance of EDIF is assured even within the equipment manufacturing industry. Within a year of the release of version one, surveys by the US magazine Electronic Times found 65 per cent of respondents were planning to use it, 35 per cent were developing interfaces for it and 7 per cent had already done so.

However, EDIF is already proving something of a movable feast. Version 1.1.0, released in late 1985, has already been superceded by Version 1.2.0, and further changes are in the offing. Cynics remember RS232. There are good reasons for the updates however. Version 1.1.0 had a great deal of difficulty with schematics. In fact, it could get confused between the names of ports and signals. Version 1.2.0 removes some of these difficulties.

No matter how much of a standard EDIF is, or how many versions it finally comes to, its existence might mean the real beginning of factory automation, bringing with a new round of social problems and opportunities.
It takes Europe's No. 1 CAD company and the world's No. 1 PC to bring real PCB-CAD to Australia.

The introduction of a remarkable new system from Racal-Redac, Europe's number one PCB-CAD company, means that real CAD is now within the reach of even the smallest PCB design company.

Having already achieved two world 'firsts' with the introduction of PCB-CAD systems using both mini and micro computers - Racal-Redac have now developed 'Redboard' - the world's first, real PCB-CAD system for a personal computer.

Computer-aided systems now offer the only really effective means of tackling PCB design. Growing changes in PCB technology and the complexity of many PCB's now put their efficient design far beyond the capability of traditional manual techniques.

Using real PCB-CAD should not be confused with word-processing computer-workstations (which offer no design capability). Redboard offers all the features found in more expensive CAD systems, including automatic component placement, automatic routing, and automatic checking.

Redboard works with the IBM personal computer, and, when using with our 'Redline' schematic program, offers a complete PCB design system from circuit diagram to artwork.

In addition, you also gain the benefit of being able to use the IBM-PC as a multifunction workstation - offering a wide range of applications programs such as word-processing, document handling, project management and accounts.

Redboard, it's the world's first real PCB-CAD system for the IBM-PC and it's available now.

RACAL-REDAC

Racal Electronics Pty. Limited
47 Talavera Road North Ryde
N.S.W. 2113 Australia Tel: (02) 888 6444
Telex: AA20365 FAX: (02) 887 4058
Melbourne: (03) 699 2133

ADVERTISING INFO No. 30
DREGS

History
Recently, someone phoned our office wanting detailed advice on a project of monumental antiquity, so the Hack was sent to look up a back copy of ETL. We have a dungeon here, where very old copies of magazines are kept. It's not below ground, but on top of the building, right next to the lift shaft. It is nevertheless, a place of shadows and spiders and darkness, a place where light penetrates only reluctantly through a window last cleaned for the abdication of Edward VIII. Massive cobwebs entangle the odd solitary fly who seeks to bespoil a back copy of this humble mag, standing in its box, along with all the other mags produced through history by this company.

The Hack sat down with the June 1979 copy of ETI and realized he was holding something precious . . . the first copy of the Dregs page.

Typically, the human system was involved. The Dregs Hack of the time had an anal complex which even the most vigorous psychotherapy has failed to alleviate.

There was also a reflection on a certain category of reader: How's this for a letter to the editor: "Having read your stereo amplifier project, I find that I could not possibly afford the parts necessary to build it. Could you therefore send me the prototype. I would be pleased to refund any postage necessary . . ."

The Hack considered this bit of information for a while. Was there some insight here? He pondered. He strolled back to the office and answered the phone. On the other end, a bloke in Perth waited, breath bated for a pearl of wisdom from the ETI technical enquiry line. The call had already cost him $47.50. "Look, mate, I don't know why it doesn't work, but we've got a real good prototype here."

The moral here is: sometimes we can help, sometimes we can't; but the advice is always worth thinking about.

Mea Culpa
Last month the Hack revealed his extreme prejudice by waxing cynically lyrical about one Mr Jack Toyer, rainmaker, who claims to have an electromagnetic energy generator that punches a hole in the stratosphere.

Unfortunately, the self same Hack was sent out to a press conference a little time later where some other inventor was releasing his rather less sensational but eminently more presentable invention, and he happened to run across Irene Vanderzwart, General Manager of the Inventors Association. This good lady promptly proceeded to berate the Hack for his lack of faith: "They laughed at Einstein," she said, and "think about all the great Australian inventions that have gone overseas because people laughed at them."

Yes indeed. Upon sober reflection the Hack must say a profound mea culpa. Indeed, one should never laugh at northern gentlemen with strange ideas, no matter how silly they sound.

Base mounts mean that LED's are an ideal replaceable alternative to lamps. The long life stability of LED's reduces your maintenance costs. Base mounted LED's are now available with suitable resistors for a range from 6 to 48 volts, in AC or DC. E.S. Rubin can specify exactly the LED units for your requirements together with the appropriate holder fittings. Our range covers from Midget Flange and Midget Groove to Telephone Slide and up to E10 MES and BAY Bayonet. E.S. Rubin, the brilliant alternative for all your indicator equipment requirements.

E.S. RUBIN
ELECTRICAL

Head Office: 73-77 Whiting St, Artarmon NSW 2064
Phone (02) 439 2333 Telex 121175 Fax (02) 439 2278
Vic. 136-145 Berkeley St, Carlton 3053 Phone (03) 347 6588 Telex 30946
SA. 19 Woodville Rd, Woodville 5011 Phone (08) 228 1111 Telex 81229
WA. 7 Rosslyn St, West Leederville 6007 Phone (09) 382 2619 Telex 94623

ADVERTISING INFO No. 37

110 — ETI April 1987
Illuminated Temp. readout monitors actual tip temperature.

Select the tip temp. required.

Zero Voltage switching for maximum component safety.

Ceramic encapsulated element for lowest earth leakage.

60 Watts of back-up power with 30W Pencil optional.

Screw type connector prevents accidental plug removal.

Anti Seize tip retention design - reduced risk of thread seizure by removing locking nut to cooler end of barrel.

30 Watt Soldering Pencil is an optional tool to replace 60W standard tool. Special miniature tips are available.

Damaging Spikes and induced tip voltages likely to damage MOS devices are virtually eliminated by Z.V.S.* circuitry.

*ZERO VOLTAGE SWITCHING OF HEATER TIPS FOR 60 WATT IRONS REPLACEMENT TIPS FITTED AS STANDARD TIPS FOR 30 WATT PENCIL

TIPS FOR 60 WATT IRONS

<table>
<thead>
<tr>
<th>0.8mm</th>
<th>0.8mm</th>
<th>0.4mm</th>
<th>1.6mm</th>
<th>3.2mm</th>
<th>1.2mm</th>
<th>1.2mm</th>
<th>0.4mm</th>
<th>1.6mm</th>
<th>2.0mm</th>
<th>0.8mm</th>
</tr>
</thead>
</table>

REPLACEMENT TIPS

- N.S.W.
- S.A.
- VIC.
- WA.
- Q.L.D.

WANT MORE INFORMATION THEN CONTACT

VICTORIA
ELECTRO TOOL: (03) 844 1811
RADIO PARTS: (03) 329 7888 (02) 211 8122 (060) 21 8177
TELEPARTS: (03) 317 0785
SCHOOL OF ELECTRONICS: (03) 388 7051
MAGNAFIX: (03) 317 0222
ALL ELECTRONICS: (03) 362 3500
BELL ELECTRONICS: (03) 356 5444
BALLarat ELECTRONICS: (03) 311 9447
S.E.
GERARD & GOODMAN: (03) 209 1811
SCHOOL OF ELECTRONICS: (03) 356 0277
GHE ELECTRONICS: (03) 316 6533 (03) 34 2333
W.A.
ATKINS CARLTON: (08) 48 1223
COVENTRY MOTOR REPLACEMENTS: (09) 276 0111
N.S.W.
C.L.C. AGENCIES: (02) 750 4505
O.H. COLTHER (04) 677 455
EBERHARD PY 1/2 (02) 707 3111
PRONABR ELECTRONICS: (02) 439 5477
DAVCO HEID ELECTRONICS: (02) 352 1585
SELECTED PARTS: (02) 208 3224
T.V. PARTS: (02) 747 6767

WANTED:

ADVERTISING INFO No. 38

JMS214
Avocet puts you in the chips!

Now you can use your PC to develop software for virtually any microprocessor. Quickly. Easily. Inexpensively.

THE AVOCET CROSS-ASSEMBLER FAMILY.

AVMAC "Macro Cross-Assembler
MSDOS", PCDOS" US$349
VAX "UNIX" US$995
XASM Cross-Assembler
CP/M", CP/M-86 US$250

Target Microprocessors Supported:
6804 6502/65C02 Z8
6805 6800/68301 Z80
6809 NEC 7500 68HC11
1802/1805 8085 HD64180
8048/8041 COP400 68020
8051 FB/3870 68052/511

New AVMAC Macro Cross-assemblers offer these important features:
- Powerful macro facility, relocatable code, and librarian, cross-reference and procedure, plain English English messages, and much more.

Avocet cross-assemblers, simulators, emulators and EPROM programmers will help you put your design ideas into more chips than any other software development system on the market. You don't need a mainframe, or even a dedicated system. All you need is a PC, a good idea...and Avocet. It's as simple as that.

Avocet has been creating tools for software development since 1979 to help design engineers find easier and more productive ways to develop software for virtually any microprocessor—without switching development systems.

Our customers turn ideas into real products. From data entry through assembly, debugging and final EPROMs, Avocet has everything you need to transform your personal computer into a fully integrated development system.

Cross-assembler capabilities.
No matter what the application, our family of cross-assemblers runs on any computer, in VAX or UNIX or DOS and is written in an easily language for most microprocessors.

Taking the bugs out.
Avocet's new debuggers will eliminate "crash and burn" from your vocabulary in two ways.
First, AVSIM software simulator/debuggers allow you to test program modules on your PC. No special hardware is required for executing your target code interpretively in a crash-proof, interactive environment. AVSIMs full screen display lets you see at a glance what your program is doing.

When you're ready to test your program in a working model, Avocet's TRICE in-circuit emulators allow you to examine target memory and register, set breakpoints, single-step, trace and more. A standard serial interface lets you control emulation and download code from your PC.

And best of all, TRICE costs less than US$600.

Progressive EPROM programming.
Avocet EPROM programmers work with over 37 different devices including EPROMs through 27512, CMOS and PALs, and VAX EPROM emulators to provide fast "adaptive" programming. These intelligent, self-contained units work with any personal computer.

Made to order.
AVOCET software systems are manufactured in Melbourne. We turn your order around in just 24 hours.

Just call, toll free, (008) 334 839 (in Melbourne 481 0155) and we'll rush your order, send you more information, give you great technical backup, or introduce you to our dealer nearest you.

AVOCET SYSTEMS Pty Ltd
PO Box 1066, North Fitzroy, Vic, 3068. Phone 481 0155, Fax 489 4646, Telex 151675

ADVERTISING INFO No. 39