CONVERT YOUR VHF TV TO UHF

PUSHING CROs

GET YOUR AUSTRALIAN DICK SMITH CATALOGUE FREE THIS MONTH
Look-alikes aren't that simple.

You could buy a lower priced soldering station that looks very similar to the Weller WTCPN. But it wouldn't perform like it.

By changing the heat sensing tips, the Weller WTCPN automatically controls output and temperature in three stages (315°C, 370°C and 430°C). Once selected, you can be assured of constant, accurate temperature control without dials to turn or settings to watch. To make working with sensitive components that safe and simple, Weller has incorporated state-of-the-art technology into an attractive impact resistance case, that's ideally suited for assembly work.

Don't be fooled by look-alikes. Check with your Electronics Distributor.

The Weller WTCPN
A LARGE PART OF THE RESOURCES of this magazine is devoted to projects. The projects are read by people looking for circuit ideas with just as much interest as those who intend to build them.

While we make our own decisions about these projects there are also some to be made by the project builder. As a reader you have two main choices when buying up for a project. You can buy in kit form or scour around for the individual parts.

Often readers have something to say about the price and quality of available kit forms for the projects. While readers pass on their thoughts on prices to the kit suppliers I'm sure they often neglect to say what they really want to buy in terms of quality.

Buying in kit form will save you the frustration of the extinct component. Sometimes the shops can even arrange some saving on the cost of the individual parts. More often the cost of the kit will be around the individual part's cost plus something for packaging.

However, prices vary and it's up to you to decide whether you are getting value for money. It seems ironic, but often the most expensive part of the project will be the power supply and hardware items like the pc board, front panel, the box and switches.

As these items cost a lot, kit suppliers can decide to cut both the quality and the price. It is then up to you to decide what you want. Of course, if you continually ask the kit supplier for a price cut you know what you can expect.

The other way to buy up for a project is to purchase the component parts separately. This allows you to use parts you already have, and allows you to choose and design your own case and to change the quality of particular components. This is the way that parts sometimes seem into being sent to extinction by the mere fact of publication.

Although many projects seem to last forever, it is the ones with the extinct component that cause the most frustration for our readers and ourselves. If you want to shop around you should start with the electronics shops. For the hard to find parts you can always ask the manufacturer for the name of a shop with stocks.

David Kelly
Editor
Next generation satellite

Aussat is calling for Registrations of Interest from suppliers for the manufacture of second generation satellites, satellite control facilities, and associated equipment.

Aussat's second generation system will provide replacement communications capacity for the first generation of satellites and prospectively a range of new communications and other satellite related services.

Mr Dick Johnson, Aussat's Deputy General Manager has suggested a comprehensive industry briefing for all interested parties to be held in Sydney later this year. "As was the case for the first generation Aussat, draft specifications for the system will be circulated for comment prior to a call for tenders," Mr Johnson said.

Aussat is aiming to issue a formal call for tenders in mid 1987 with the scheduled date for the finalisation of the contract by mid 1988.

"This will enable Aussat to launch second generation satellites in 1991 in good time to replace the first satellites which will be nearing the end of their seven year life," Mr Johnson confirmed.

He also mentioned that the substantial recent increases in launch insurance premiums are a matter of great concern for satellite operators worldwide. Accordingly, one option of great interest to Aussat was the prospect of a single comprehensive contract to cover all aspects of the second generation satellite system procurement, including the launch phase and associated launch insurance, such that satellite delivery from the contractor to Aussat would take place in orbit.

Considerable interest will be raised by the prospect of substantial Australian industry participation in the new satellites. According to Wayne Knowland, head of the group specifying the new satellite, considerable Australian input was technically possible.

Meanwhile a basic design concept was being developed which would include, for consideration, a number of additional applications, such as the provision of meteorological capability, remote sensing, mobile communications services and scientific applications.

Satellite news — May

Aussat announced in March the signing of a contract with SBS. Contracts signed to date soak up about half of the total planned Aussat capacity and include use of 15 x 12 watt transponders and 7 x 30 watt ones. The ethnic broadcaster will be using the satellite to reticulate signals around Australia as its network rapidly expands. SBS began transmission to Hobart on 16 March, putting it into all the major population centres on the east coast.

Aussat seems reasonably confident it can sell the rest of its capacity during the lifetime of the current satellites. Plans for the launch of the third satellite are now well advanced; the launch is scheduled aboard Ariane for the middle of the year.

Meanwhile at the more pedestrian C band, OTC is getting used to its shiny new Intelsat V, which took over from Intelsat IVA at last year's end. Like the IVA, the V is a Hughes built craft, but with considerably more power. As a result, OTC is getting into the provision of small dish earth stations with a vengeance. It unveiled its Satnet III system to the media on 4 March in Sydney; this system uses the extra power of Intelsat to reduce the size of the dish to the extent that the entire station can be carried up a building in a lift, or indeed, bolted to the side of it.

According to Equatorial Satellite Systems, which manufactures the system, most of the construction work will be done at its Melbourne plant. ESS is owned 90% by local interests, with the US parent owning the remaining 10% and supplying some of the proprietary bits and pieces involved in the spread spectrum reception.

One of the main impediments to the introduction of the system has been conflict between Telecom and OTC regarding the transmission of inter-Australian services. In January and February, Telecom personnel took industrial action against OTC to protest at the international carrier 'poaching' on internal traffic. The dispute was solved by OTC caving in. Thus international links and networks provided by the service will only have one Australian base.

Not that the 'poaching' is only one way. Aussat makes no secret of its plans to get into the international arena with the provision of services to New Zealand and the South Pacific. Initially, these services will all be contained within specific countries. New Zealand, for instance, will be using Aussat as part of the telephone trunk network. However, the pressure for technically obvious solutions to overseas communications problems will continue to provide a source of friction between the two organisations.

Other users are also getting into the swing with Intelsat V. The satellite is now carrying five TV channels that can be received with moderate sized
"With my HP CAD sail a boat that

Ask Ben Lexcen what his most valuable design tool is and he'll tell you it's his Hewlett-Packard Computer Aided Design system. Here he talks about his experience with the HP system and offers some salient advice to the new generation of designers who will follow in his wake.

Have you always felt at ease working with computers?

"No way! Really I was a latecomer to computers because I didn't have any formal training and I was frightened of them. In fact, I used to dream up some wonderful excuses to avoid getting involved with them.

"But, of course, I realise now that if you're going to be a leader in any field, not just design, you've got to utilise the leading technology. And really this HP stuff is so easy to use, I'm not sure what I was frightened of."

Which parts of a boat do you design with the help of the computer?

"Virtually the whole lot, with the exception of tiny mechanical things. But we use it to design the shape and structure of the boat, and the sails.

"We use it to do all the hydro-dynamic considerations such as the total drag of the hull unit. Plus we use the computer to test different hull shapes."

What aspect of your involvement with Hewlett-Packard strikes you as being particularly beneficial?

"Well, once you become involved with HP, you'll soon realise that apart from their technical excellence and innovation, one of their major strengths is that they have the people to help you get the best results from CAD.

"Because HP supply the hardware and the software, you've got a terrific advantage over the guy who tries to work with a lot of different suppliers. I mean it counts for a lot when the person who writes the software understands the workings of the processor.

"If you've got questions or problems, you can get answers and solutions from the one place. And believe me, that can save a lot of time and worry."

How has the HP equipment assisted in the day-to-day running of your office?

"Well, it's staggering how much faster we can get things done since we plugged into HP. This is mainly due to the fact that the computer does so much of the calculation which we used to labour over manually."
"For instance, now I can create the basic shape of a boat in a matter of hours whereas it used to take about a month. It might take me about ten minutes to do a keel whereas before it might have taken a week."

Does saving so much time mean that you have to compromise on quality or accuracy?

"Absolutely not. The equipment is dead accurate and I can do a more thorough job for far fewer man-hours.

"In fact, we are so confident in the HP equipment that when we've settled on the design of the boat to defend the America's Cup, we won't tank test it in Holland, we'll test it here in the computer. And when you're talking about a million dollar boat, you've got to be damn sure you've got the right equipment to do it."

What of CAD in the future?

"Look - I'm sure that if Australian designers don't grab CAD with both hands and run with it, the rest of the world will pass us by. And once we all realise its potential, you're going to see a lot of very happy and satisfied people in all sorts of design offices."
TRIO-KENWOOD

CS 1065
60MHz
3 channel 6 trace
1mV/div.
12kV acceleration
5nS/div. sweep
Delayed sweep
Improved dynamic range
Automatic video synch.
Vertical axis signal output
Variable hold-off.
Single sweep mode.

CS 1045
40MHz
3 channel 6 trace
1mV/div.
12kV acceleration
10nS/div. sweep
Delayed sweep
Automatic video synch.
Vertical axis output
Variable hold-off.
Single sweep mode.
Improved performance.

CS 1044
40MHz
2 channel 4 trace
1mV/div.
6kV acceleration
20nS/div. sweep
Variable hold-off.
CH1, CH2, ALT, CHOP, ADD
Vertical axis output.
Automatic video synch.
Compact & lightweight.

And here's another twelve models to choose from:

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency</th>
<th>Channels</th>
<th>Resolution</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO 1303D</td>
<td>5MHz</td>
<td>1</td>
<td>1mV/div.</td>
<td></td>
</tr>
<tr>
<td>CS 1352</td>
<td>15MHz (Port)</td>
<td>2</td>
<td>1mV/div.</td>
<td></td>
</tr>
<tr>
<td>CS 1021</td>
<td>20MHz</td>
<td>2</td>
<td>1mV/div.</td>
<td></td>
</tr>
<tr>
<td>CS 1025</td>
<td>20MHz</td>
<td>2</td>
<td>1mV/div.</td>
<td></td>
</tr>
<tr>
<td>CS 1040</td>
<td>40MHz</td>
<td>3</td>
<td>1mV/div.</td>
<td></td>
</tr>
<tr>
<td>CS 1060</td>
<td>60MHz</td>
<td>3</td>
<td>1mV/div.</td>
<td></td>
</tr>
<tr>
<td>CS 1100</td>
<td>100MHz</td>
<td>3</td>
<td>1mV/div.</td>
<td></td>
</tr>
<tr>
<td>CS 2075</td>
<td>70MHz</td>
<td>3</td>
<td>1mV/div.</td>
<td></td>
</tr>
<tr>
<td>CS 2110</td>
<td>100MHz</td>
<td>3</td>
<td>1mV/div.</td>
<td></td>
</tr>
<tr>
<td>CS 2150</td>
<td>150MHz</td>
<td>3</td>
<td>1mV/div.</td>
<td></td>
</tr>
<tr>
<td>MS 1650B</td>
<td>Memory</td>
<td>4</td>
<td>1mV/div.</td>
<td></td>
</tr>
<tr>
<td>MS 1660</td>
<td>Memory</td>
<td>4</td>
<td>1mV/div.</td>
<td></td>
</tr>
</tbody>
</table>

For maximum performance and quality at the best price, call us for details or demonstrations of Kenwood oscilloscopes. We are located at:

SYDNEY:
Centrecourt
25-27 Paul Street North, North Ryde.
P.O. Box 261 North Ryde NSW 2113.
Phone (02) 888 8777. Telex AA25021

MELBOURNE:
1064 Centre Road, Oakleigh South.
Private Bag No. 1, Oakleigh South 3167.
Phone (03) 575 0222. Telex AA33012
disks at the latitude of Sydney. These include all the American networks, a US Army network and a Japanese carrier. Dick Smith Electronics hopes to be selling a low cost system capable of bringing in these signals before the year’s end.

Overseas, most interest is being generated by the ill fated British Aerospace ECS-1, which was built for Eutelsat, the European consortium that reiterates TV signals like those from Rupert Murdoch’s Sky Channel. It’s the first of five planned satellites that will link all of Europe together.

It was launched in July 1983, and commissioned in December of that year. However, by November 1985 about 1/5 of the way through its planned lifetime, signal strength started reducing. To date, this has been compensated for by increasing the strength of the transmit station by 3 dB. There is another 3 dB in reserve in the uplink, after which the receiver front end on the satellite will start distorting.

According to engineers at British Aerospace, the problem is probably in one of the 20 watt travelling wave tube amplifiers from the West German company, AEG, and not repairable. To add to the agency’s problems, ECS 3, which would have taken most of the load off ECS 1, was lost on launch in September.

Remote sensing also continues to attract a considerable amount of interest. The French Spot 1 was launched earlier this year. It has a resolution at visible and infrared wavelengths of about 10 metres, as opposed to the 30 metres of Landsat 5, the fifth in the Landsat series. Spot images will be sold to a company called Spot Image which was set up in 1982, and now employs distributors around the world. Landsat has also gone commercial, with the Earth Observation Satellite Co selling its images. Competition between the two systems is likely to be fierce, as the Americans fight to hang on to their lead in space technology.

In Australia, the processing of satellite images is probably the most advanced arm of the space industry. The CSIRO has now entered into a contract with MPA of Melbourne for the sale of a system called Micro Brian, a system based on Brian (Barrier Reef Image Analysis) which uses Landsat images to map the barrier reef. CSIRO and MPA have transferred the system to a microprocessor and packaged it for commercial release at a price said to be about half that of its rivals.

Another development likely to be of concern to industry watchers is the fate of Aussat’s tenders for the second generation satellites, which are being called now. The current generation will run out of steam in 1991, so Aussat is getting to work now. It is likely there will be significant Australian participation in the project this time.

NEWS DIGEST

COMPANY NEWS

Sprague Electric Company has expanded its Australian operation with the opening of an office at 11 Rushdale St, Knoxfield, Vic 3180. (03) 763-8333.

Tony Currie has joined Sprague Electric and will be responsible for sales and technical support in Victoria.

A new company, Cliff Electronics (Aust) Pty Ltd, has been formed to distribute Cliff Plastic Products (UK) and Cliff Electronic Components (UK) throughout Australia. Products include jack plugs, jack sockets, knobs and cabinet accessories, handles, corners and feet, fuse holders, XLR connectors and pcb racks.

Cliff Electronics (Aust) will also be distributing a wide range of test equipment including Fuke, Aaron, Topward, Datacom Northwest and Coline.

Information, catalogues and prices are available from Cliff Electronics, PO Box 732, Fortitude Valley, Qld 4004. (07) 848-9714.

Melbourne company, Nitec has advised a change of address from North Fitzroy to 209 Richardson St, North Carlton, Vic 3054. The telephone number is (03) 850-6993.

All Electronic Components, 118-122 Lonsdale St, Melbourne, has been appointed sole Victorian distributor of Jaycal products. Services available include sourcing, supply and assembly of components, manufacture of printed circuit boards, panels, chassis and racks. Plated through hole pcb facilities and the latest membrane switch technology are available.

Dunas Electronics is a new firm on the Australian market specialising in the manufacture of printed circuit boards. It offers West German high quality standards, with short delivery terms at reasonable prices (e.g. single sided pcb from 8 cents per square centimetre, including material).

Dunas Electronics is contactable at 23 Victoria St, Burwood, NSW 2134. (02) 747-5449.

STC Measuring Instruments has appointed Mr Ron Sinclair responsible for marketing Anritsu measuring instruments throughout NSW and Qld. Ron comes to STC from Telecom.

IBM/Intel split

In a somewhat surprising move, IBM which owns 20 per cent of Intel Corp and uses the Intel 8086 microprocessor chip, has announced its intention to sell as much as a third of its 22.5 million shares.

According to a recent US report, IBM has claimed a need to raise $300 million, but the report suggests the move may have been prompted by Intel’s move into the field of application specific ICs at the expense of RAM chips and microprocessor development. It suggests that IBM still considers RAM the main chip technology driver. Nevertheles, both companies expect IBM to remain a major Intel customer.

The sportsman’s special

Jaycar has released a new TV antenna for $59.95 initially designed for the Sydney viewing area, but which can be used in other parts of Australia.

The idea behind it came about when Jeff Fenech had his big title fight in Sydney some months ago. The fight wasn’t televised in Sydney, but it was in other areas, one of these being Wollongong. So Jaycar had an antenna designed and manufactured in Australia specifically to pick up channels 4 and 5A.

Jeff Fenech has his second title fight in Sydney in late May. So be ready!

VCR course

If you are unable to attend a conventional night or day school course but want to learn more about video cassette recorders RMIT is offering a brief course designed to help those people that have to travel long distances or cannot afford the time to attend week long courses. A certificate will be issued on satisfactory completion. For more information or enrolment details contact Mr Rod Humphris or Mr Bob Blythe on 663-5611.
Letters to the Editor

Technicians' Association
It is regrettable that 'Name Withheld' (ETI, Nov '85) feels threatened by what I believe are despicable practices on the part of large companies. Fortunately such companies are in the minority. I am in the same boat as Name Withheld and have turned my attention to the more reputable companies.

Three years ago most of the major Japanese companies saw the need to rationalise their spare parts services. There were many problems to begin with but now Toshiba, Sharp, AWA, Sanyo, NEC, Rank Arena and quite a few lesser names have a service equal to none. National did not make it, as action by the WA government has shown.

I hail the suggestion of an electronic service association. There is a saying, "If you see a need you're elected." Go to it, Mr Name Withheld, I'll be your second member.

M. de Bortella
Hydra Electronic Service
Derby, WA

National replies
We appreciate the opportunity to respond to letters to the editor, which have criticised National Panasonic Australia on the supply of spare parts and video service manuals (Nov ETI, "National again," etc).

To help in the service of the approximately 1200 National, Panasonic or Technics models likely to be in the market at any time, a 3300 square metre central spare parts warehouse carrying 51,000 line items is operated by the service division administration office at Artarmon, NSW. This operation procures all spare parts for supply to our state service centres, which stock an average 9000-12,000 line items at the capital city branch offices.

Should customers encounter problems with spare parts supply or service, the service centre managers endeavour to resolve them at branch level, even to the point of exchanging a complete module (or pc board).

In any case, the central warehouse is able to despatch 90 per cent of all orders, if available, within 1-2 working days.

There are presently around 15 authorised wholesale outlets to supply members of the service industry who are not part of our network of 707 authorised service agents and service dealers. Obviously, this network alone creates a large demand for technical information in the form of service manuals. However, we have undertaken to make available service manuals in the form of micro-fiche for approximately $10 each. Micro-fiche readers are available from other sources for approximately $80 upwards.

In addition, we have provided copies to J.R. Publications to produce video manuals similar to the J.R. TV service manual.

As much as we try, with a large organisation such as ours, there is always the possibility that someone is going to experience a problem in going through the normal channels.

We wish to assure our customers and those in the service industry that they can bring their problems to the attention of the service centre manager for assistance in resolving the matter.

Brian Jones
NSW Service Centre Manager
National Panasonic (Australia)

AM stereo
Having been involved with car receivers and AM stereo reception since its official inception, your editorial in January ETI has prompted the following observations.

There can be little doubt that an AM stereo programme from a 'suitable' transmitter and heard via a wideband tuner can sound objectively very good and even rival FM stereo in its initial impact. However, car reception is another story. As soon as a vehicle is mobile, the rot sets in. Our company has tested and installed several leading brands of AM stereo receivers and we have yet to find one which we can unreservedly recommend to consumers.

For example, in the narrowband receivers, the poor audio sound quality and below average stereo separation (compared to FM) partly serves to impress customers to pay more money for an apparent small improvement in sound dispersion.

With wideband sets, antennas have to be fully extended to minimise the annoying hiss levels and local fading, while interference from high tension SEC lines and trans tends to cause intermittent stereo dropouts. At night, 9 kHz whistles make the receiver unlistenable, and, to top this off, the wideband receivers reveal the vicious treble boost and 'edgy' distortion being broadcast by the AM stereo stations for those without AM stereo.

Additionally, modern varicap tuned receivers with untuned broadband RF amplifiers inevitably suffer from poor cross-modulation performance, falling far short of the 'old-fashioned' permeability tuned designs.

In short, and despite the encouraging claims made by the stations and importers, AM stereo could be in danger of emulating the success of quadrophony and the Elacasette. To improve its chances of survival—remembering consumers did not 'demand' AM stereo—the stations must minimise their audio processing and allow a little more dynamic range in their programmes. They must encourage importers and manufacturers to offer sets with wideband facilities, whistle filters, improved AGC performance, and impulse noise blanking for AM.

Then, the listening public may willingly switch to the AM band again.

N. Hughes
Hughes Communications
Carnegie, Vic

Saving lightbulbs
Regarding your article on protecting lightbulbs (ETI, Nov '85) from the thermal shock of the inrush current on a cold filament, may I suggest the use of a slightly modified standard household dimmer. If the rheostat is replaced with an identical value with a piggyback switch, the light can be switched off by turning the knob rather than flicking a toggle switch. This automatically holds the switch-on voltage to the bulb at the minimum dimmer output.

Another lurk to extend the life of the bulb is to place a resistor in series with the dimmer rheostat that prevents the full mains voltage being applied to the bulb. This is especially valuable to consumers who live close to a substation. If Aussie power authorities are anything like NZ power boards you just might find the substation output a teeny bit higher than the supposed maximum permitted, which can shorten the life of your lightbulbs significantly. There are pros and cons to this method because the lower light output, requiring a higher wattage bulb consuming more electricity, may be more expensive in the long run than the shortened life of the bulb.

Ian Orchard
Christchurch, NZ
PUSHING CROs

The difference between a good CRO and a bad one is usually the bandwidth, so that's the area of much development. But manufacturers are pushing analogue and digital technologies, as well as some finer points for all they're worth.

THE CATHODE RAY oscilloscope is one of the most venerated electronic instruments. Learning how to use it successfully is one of the most important tasks for the would-be designer or troubleshooter. But the CRO isn't perfect. It has limitations imposed by the circuit under test, the way it's built and nature itself. Modern CRO makers are pushing back these limits continuously.

The problem with oscilloscopes is essentially one of bandwidth. We would always like to be able to see events in a circuit more clearly, and by and large that means having more bandwidth. It is possible to get quite exceptional performance with modern day CROs, but only with some fairly exotic techniques. Another partially related problem is that we would like to exploit the advantages of digital circuitry, but this imposes extra bandwidth constraints on the design. Finally, we would like to make it all cheaper.

Bandwidth

Bandwidth in a CRO, as elsewhere, is taken at the 3 dB point, i.e. at the point where the amplitude of the displayed waveform has dropped to half in nominal voltage. Some of the cheapest oscilloscopes on the market, such as the DSE Q1280, have bandwidths around 6.5 MHz, which is quite adequate for audio work.

Oscilloscopes for serious work start at about 15 MHz, which is good enough for most TV troubleshooting, although most TV techs would probably be a lot happier with 35 MHz, a typical figure for general purpose work. Digital and rf work requires much wider bandwidths, 100 MHz at a minimum, and there is a growing market for high-end equipment running at 350 MHz or so.

Bandwidth is the basic criterion by which oscilloscopes are judged. As a general rule, it's related to price more closely than any other parameter. This is not surprising, since the amount of design effort required multiplies in direct proportion to the speed things are to run. The limiting factor is most often the display tube. Essentially, the problem is that the higher the frequency required, the faster the trace must move from side to side, and the faster it must respond to up and down movements of the vertical amplifier.

The speed at which the trace will move depends on a number of factors. Most immediately, it depends on the gradient of the electrostatic field between the plates, i.e. increase the voltage on the deflection plates and the trace will move faster. This works fine up to certain limits but it imposes all kinds of power supply and heat dissipation problems on the system.

A second alternative is to decrease the acceleration voltage on the beam itself. This follows because the actual deflection of any individual electron in the beam is a resultant of acceleration and deflection voltages, which work at right angles to each other. In terms of the amount of deflecting force acting on the electron, increasing one is the same as decreasing the other. The problem with this approach is that the acceleration voltage increases the energy with which beam electrons hit the screen. If you make it too low they won't emit any light when they strike the screen and there will be no visible indication of beam position. Not very useful, you might think.

A third alternative is to increase the aspect ratio of the tube, i.e. the ratio of length to breadth. Other things being equal, the longer the tube, the smaller the angle through which the beam needs to be deflected and thus the smaller the deflection voltage needed to be. Of course, the longer the tube, the higher the voltage required on the accelerating plates, and this is difficult it becomes to mount the tube in a practical unit.

Above 200 MHz

In practice, all these alternatives come up against limitations imposed by things outside the tube. There is a limit to how much voltage can be supplied, how quickly it can be supplied, a limit to length, and so on. It appears that by optimising all these elements, modern oscilloscopes can push back the 100 MHz barrier. To go faster, other methods need to be explored.

One way of doing it, which seems to double the upper frequency limit to about 200 MHz, is post deflection acceleration. The basic principle here is to move the deflection plates backwards in the tube towards the cathode of the gun, and carry out the deflection on the tube while the electrons are moving with rather low energy. Only when they are pointing in the right direction are they accelerated.

The big problem here is one of linearity.

Figure 1. Patterns of distortion.

Jon Fairall
The acceleration voltage operates parallel with the axis of the tube, but if the beam has already been deflected, it is travelling at some angle to the axis. The effect of the accelerating voltage is thus to bend the beam inwards, resulting in non-linearities like pin cushion or barrel distortion (see Figure 1). Curing this results in a complex array of voltage plates around the tube, but it can be done reasonably successfully.

The death knell of normal electrostatic tubes is sounded when things are happening so fast that the time taken for individual electrons to move through the deflection fields becomes a significant percentage of the time taken to record an event on the screen. Imagine, for instance, if we wanted a single cycle of a very fast sine wave on the screen. If the period of the wave was exactly the same as the transit time of an electron through the field, the net deflection of the electron would be precisely zero.

An obvious way to reduce this problem is to reduce the size of the deflection field, thus reducing the transit time. This is fine except that it would also reduce the effect of the deflection plates, requiring yet higher voltages between them.

A better solution is to use a transmission line to do the deflecting. The deflection plates are divided into a number of narrow plates down the length of the tube connected to each other by a small inductor. The deflection voltage is passed from one to the other at precisely the same rate as an electron travels down the beam. This means that at every point on its path down the tube, a given electron is subject to precisely the same deflection field. The limit to this technique is set by the frequency response of the LC circuits, formed by the inductors and the plates. It allows one to go up to about 300 MHz.

Other techniques can be used to make a CRO run faster than this, although they all have in common a method of matching the speed of the electrons in the beam with the propagation of the deflection information. Typical of these are travelling wave tubes. Using such techniques, it has been possible to push experimental CROs up into the gigahertz region.

The exigencies of practical design problems, things like weight and power supplies and so on, have meant that commercially available CROs have considerably lower bandwidths. Philips has recently released a 350 MHz CRO with travelling wave tube deflection for instance. There are a few current production CROs that go faster: the Tektronix 7104 and HP 5411OD among them.

Decoupling

There is one final method that can be used to extend bandwidth, and that is to attempt to decouple the screen from the input signal. In this method, the write speed of the tube has a variable relationship to the read time of the probe. One method of doing this is to use the profiled peristaltic charged couple device (PPCCD) made by Philips. It loads the input signal into 256 semiconductor capacitors, referred to as wells. Clock pulses cause the wells to first store and then transfer the charge to the next well, clearing the first well for the next input. It is possible to do this very fast, thus information can be read in at speed and read out at leisure. The net effect of putting a signal through a PPCCD is thus to spread it out in time. It means a low frequency tube can be used to capture extremely fast signals.

Another, even more ingenious method, is to think through some of the basic objections to electrostatic tubes again. All of these problems can be alleviated if the tube screen is made very small. Of course, the problem is that you then can't see anything. Unless, of course, you magnify the screen image in some way. One promising method is to present the output of a minitube to a CCD. The CCD output is then sent to a large screen for final display.

An even more radical departure is to question the necessity for a tube at all. The ideal here is that the CCD can be used as the basic sensing unit instead of the tube. Of course, this isn't something restricted to oscilloscopes. Almost everywhere tubes are used, people are trying to replace them with solid state technology.

The problem is simply one of developing a read and write system with sufficient definition to be practical. Current technology allows manufacturers like Tektronix to build CCD sensors with 1024 x 1024 resolu-
Yesterday you had no choice...

...today you haven’t got one either!

Philips’ new 350 MHz generation: performance that gives you no choice.

Now, the introduction of Philips' new 350 MHz generation means there's virtually no choice if you need today's most advanced technology in real-time high-frequency oscilloscopes.

These powerful instruments have a broad 350 MHz bandwidth and 1 ns risetime, representing leading-edge technology in real-time oscilloscope design. Writing speed is an ultra-fast 4 div/ns, ensuring secure capture and full waveform display of both single-shot and low-repetition signals.

Advanced user features
Numerous advanced user features provide the simplest possible operation. Like intelligent beam-finding, enabling multi-parameter auto-setting of amplitude, timebase, trigger functions and screen display position.

Buffered switching ensures that read-outs and indicators always show current status. Voltage/time cursors simplify direct amplitude and time measurements. Full LED/LCD indications show status at a glance. And on-screen read-outs provide full operator guidance.

IEEE remote control option
Manual or remote control, via an IEEE remote control option, gives users the best of both worlds: flexible stand-alone operation, or programmable system-oriented applications.

Portable and rugged
Easy portability, built-in ruggedness and a comprehensive range of purpose-built accessories are still more reasons why, after Philips' new VHF generation, you still have no choice in high-technology real-time scopes!

For full information about the new VHF generation from Philips, contact:
Philips I & E, T & M Department,
SYDNEY: Box 119, North Ryde 2113,
Tel. (02) 888-82-22 or call free (008) 22-66-61
MELBOURNE: Locked bag no. 5, Oakleigh South 3167,
Tel. (03) 525-5295 or call free (008) 33-5295.

Philips new T & M Branches: Adelaide — Tel. (08) 363 0911
Brisbane — Tel. (07) 44 0191

PHILIPS
Test & Measurement

IEEE 488
IC 825

ETI READER SERVICE 104
tion, and to chase 2048 x 2048. If that could be translated into pixels on an LCD raster it would be madder than solve any imaging problems and extend bandwidth well into the gigahertz region.

Digital oscilloscopes

Digital techniques have penetrated the oscilloscope market as everywhere else although it must be conceded, without the usual degree of success. It is still possible to get analogue CROs with incomparably better bandwidth performance than digital CROs at any given price, and there are no immediate signs of this improving. Notwithstanding this, modern digital design has resulted in some very fast digital CROs, if you can pay for them.

The problem is fundamental to the digital design. When a signal is read into the front end of a digital oscilloscope, it is first coupled and amplified in the normal fashion, and then fed to an analogue-to-digital converter (ADC). The ADC takes samples of the input waveform at a certain time interval, changes the voltage level of the signal into a digital word, (usually 8 bits long) and feeds it out into the rest of the machine where it can be subjected to all the advantages of digital circuitry. It can be stored, manipulated, displayed and so on, easily and cheaply.

The problem, however, is the speed at which the digitising process is done. This is set by the ADC, these days usually a fully integrated bit of circuitry. Common ADCs available in the shops have conversion speeds from a few milliseconds down to perhaps a few microseconds and prices ranging from a few dollars up to perhaps $250. In the extreme you can find ADCs with conversion speeds in the 20 ns range that will cost about $130. To go much faster you need high quality industrial stuff, for which you may pay several hundreds of dollars.

In the extreme, the very best of ADCs will sample every few nanoseconds and cost hundreds of dollars. Now, to see how strong a constraint this is on oscilloscope performance, consider that typically, 40 or so sample positions are required to generate a convincing sine wave shape on the screen. This means a period of perhaps 80 to a hundred nanoseconds if the ADC can sample every 2 ns, or a frequency of 10 MHz.

This way of looking at digital CRO performance can generate a certain amount of confusion, however. Although the bandwidth is only 10 MHz in our example, the ability of the system to respond to transients is very much better than one would assume from this figure. In fact, it will respond to anything larger than the sampling period, say 2 ns or 500 MHz, and is likely to be limited by the amplifier or tube rather than the sampling. Of course, the displayed wave shape will have no necessary relationship to the waveshape on the inputs. All a single sample will allow you to infer is a spike. This all tends to mean that digital CROs are very good at looking at square waves, and indeed, this is where they find their major use.

There are a number of ways to improve the performance of digital CROs to continuous waves. One method is to reduce the number of samples and then to interpolate between points so that one generates a smooth wave on the screen. It has the advantage of making the wave look more like the input, hopefully, but at the cost of reducing the ability of the system to track transients.

In fact, some extremely sophisticated algorithms have been developed to allow curve fitting to extend the range of digital CROs. The latest Kikusui, the 7000 series, use 20 ns ADCs, which should lead to a bandwidth of only 1.25 MHz if we use the 40 sample standard. However, the makers claim to be able to see single shot events up to 20 MHz and repetitive signals up to 100 MHz. The 20 MHz claim is close to the Nyquist frequency, and ensures that any voltage excursion will be detected in at least one sample. The 100 MHz limit is the result of continual correlation of the input signal over time; perfectly valid if the input is a sine wave.

The Hewlett Packard HP54201A/D takes samples continuously at 40 ns and then measures the phase relative to the trigger position. In this way the sample point is displayed at the correct point on the timebase. After sufficient repetitions, sufficient points will have been collected to make a sine wave. With this architecture, bandwidth is once again limited by amplifiers and displays, not the digitising process.

Another method is to increase the number of ADCs. The ADCs are connected in parallel, and made to sample the input one after the other. In theory, the only limitation on this is imposed by the speed of the system clock, and even this can be over-
Do you look for a standard HCMOS supplier or for the one that sets the standard?

Right now, we have a complete range of high-speed CMOS (HCMOS) logic IC's. And we have them in both DIL and in our space-saving SO-package, now a JEDEC world standard. For your HCMOS needs come to us, Philips Elcoma, the Australian source.

Plug our pin and function-compatible 74HCT IC's straight into your LSTTL sockets – often without redesign! LSTTL level compatibility with dramatically reduced power consumption. Without sacrificing system speed, and at the right price.

Using MOS already? Then look at our 74HCT for TTL-level CMOS and NMOS systems, or our 74HC for all-CMOS systems.

Or, design-in HCMOS and enjoy all of its benefits. Like freedom from latch-up and high

HE4000B family has taught us a thing or two. About quality. And about design.

Our patented HCMOS input structure, for example, makes it possible for us to produce 74HC (CMOS input levels) or 74HCT (LSTTL input levels) with a single mask change. So the type range is available in both versions.

Need samples or data? Then call your nearest Philips Electronic Components and Materials office. We're ready with full technical support and documentation. Plus a User Guide, set to become the standard for designing with HCMOS.

The name is Philips
The product is HCMOS

Philips Electronic Components and Materials
11 Waltham Street,
Artarmon, N.S.W. 2064
Telex AA20165 AUSLCEC+

Sydney (02) 4393322
Melbourne (03) 5423333
Adelaide (08) 2430155
Perth (09) 2774199
Brisbane (07) 440191

Save board space. Our SO-versions are up to 65% smaller than comparable DILs, and are up to 10 times lighter.

reliability (5 FITS). Noise immunity critical? Then think about 74HC.

Space and cost conscious? Then use SO-versions and benefit from Surface-Mounted Device (SMD) technology.

At Philips, we know about CMOS. Ten years as European leader with the
MICROPHONE OF THE MONTH

...A CLOSE LOOK AT ONE OF OUR 100

SM5B
UNI-DYNAMIC

SM83
OMNI-CONDENSER

SM7
UNI-DYNAMIC

SM82
LINE LEVEL CONDENSER

SM91
HALF-CARDIOID CONDENSER

SM81
UNI-CONDENSER

SM87
SUPER-CARDIOID CONDENSER

SM5B

Studio Cardioid Dynamic

Gives you new freedom in maneuvering booms

Specifically designed to provide maximum wind noise suppression during fast boom swings on television production and motion picture sound stages, or in outdoor locations. Highly effective layer of acoustically-transparent dense foam minimizes wind sounds while providing superb pickup of program material.

Extremely "Forgiving"

An outstandingly uniform cardioid polar pattern—in all planes, and all frequencies—results in singlar lack of off-axis coloration even at the low end. Gives the performer complete freedom of movement.

Super Natural Sound

Smooth, wide range frequency response with a controlled presence rise makes it ideal for vocal pickup, scoring assignments, and accurate voice reproduction. (Radio D.J.'s love it.) Humbucking coil, balanced circuit, and absence of transformers or response-correction inductors suppress electrical noise due to hum fields. One of a kind... From Shure, of course.

Write:
Audio Engineers P/L 342 Kent St.
Sydney, 2000 (02) 29 6731
Audio Engineers Qld. (07) 44 8947
Marketec (WA) (09) 242 1119

Sound of the professionals

ALL YOU NEED TO KNOW IS ON SCREEN

ONLY WITH THE HITACHI V1100A
4 CHANNEL 8 TRACE
100MHz DELAYED SWEEP SCOPE

- Built-in DVM and Counter
- Measures voltage and time differences and ratios between cursors and phase shifts
- Four independent channels
- User defined 30 character on-screen comments

Check the full spec and arrange a demonstration

IRH COMPONENTS
SYDNEY: 32 Parramatta Road.
Lidcombe 2141 Tel. (02) 648 5455
TLX AA24449 FAX (02) 647 1654
MELBOURNE: 74 Raglan Street.
Preston 3072 Tel: (03) 484 5021
TLX AA32422 FAX (03) 480 2772
PERTH: 5/59 East Parade
East Perth 6000 Tel: (09) 325 9333

ETI READER SERVICE 105
come by running several clocks at different phase angles. The LeCroy 9400 uses this method with 15 ADCs each sampling at 3 ns to give an effective time between samples of only 200 ps, equivalent to 5G samples/s. In such a situation it is possible to run into much the same sorts of problems that limit analogue CROs. In the case of the LeCroy, the three dB point is at 125 MHz and determined not by the sampling, but by either the preamplifier or the tube. But notice that in order to get this type of performance it’s necessary to go to 15 ADCs, so that the price of the ADC section probably adds considerably to the cost of the unit.

Computers

Another trend in modern digital oscilloscope design is to use the display and computing power of a small computer. In most cases this means developing a plug-in board for an IBM PC, or more likely, an IBM clone. At its simplest level, the board will contain the front end of a standard CRO, the preamps and ADCs, and probably a buffer, and then input this into the bus of the computer for the manipulation required.

There are a number of spurts to this development. The most powerful is the good old bottom line; all things being equal it’s cheaper, since half the CRO is already provided in the PC. The second is the wealth of manipulation software that can be provided very easily by the computer. It’s no big problem to derive a numerical output giving voltages of various kinds, frequencies and period, spectrum analysis and so on.

It can also be interfaced very easily into

Figure 2. The path of an electron when its trip time through the deflection field is the same as the period of the input.
FEATURE

the rest of a development system. This might contain all the normal development tools, logic analysers, in-circuit emulators and so on in addition to the oscilloscope, all contained in one box. In fact, many people see this as a logical extension of current technology. It becomes a one stop instrument, capable of making virtually any conceivable measurement.

Composite CROs

The composite oscilloscope adopts the philosophy that while digital treatment of the signal path is difficult, the advantages of computerisation do not need to be entirely foregone.

As a general rule, a microprocessor sits between the front panel and the CRO itself, so that controlling the CRO becomes a matter of talking to the micro. This type of architecture leads to some important advantages. Firstly, it matters not whether the operator is in front of the CRO, twiddling knobs on the panel, or half a mile away connected into a telephone line. Typically, this remote control function is implemented over some of the standard test instrument interfaces like GPIB or IEEE.

Secondly, it allows the instrument to be programmed. This is a major advantage where the instrument is to be used in a regular test situation. It is quite possible, for instance, to define a test sequence for a particular piece of equipment, and make the CRO set itself appropriately for each measurement.

Many such CROs have the ability to generate test on the screen as well. This gives added advantages with programmable CROs, since all the instructions for a test routine can be displayed on the screen. Another common feature is the provision of cursors for voltage, time and triggering information.

Probably the most important advantage though, is that the processor can be used to intelligently preset the adjustments on the CRO before the operator starts fiddling with the knobs. Thus, when the oscilloscope...
Now Kikusui puts great features and high reliability within the scope of your budget...

Kikusui's 2 year warranty is a sign of the quality and reliability you can expect from either the professional 6000 series or the low cost, compact 5000 series oscilloscopes.

Our 6000 series 150MHz and 100MHz scopes give you 3 vertical channels - not just 2 - plus two simultaneous trigger views. And with peak-to-peak level-lock triggering there's no need to reset the trigger between measurements. Kikusui also give you multiple X-Y modes for phase measurements, patented linear auto focus to maintain bright signal traces, and 2 nanosecond resolution on the timebase.

Our 3 channel 5000 series scopes offer eight traces (including a trigger view) and vertical triggering, to display asynchronous signals simultaneously; ideal for comparing 'good' and 'bad' signals from different units, when trouble shooting. All 5000 series scopes provide level-lock triggering and variable hold-off, so you can stabilize complex or aperiodic signals in digital or video circuits. With the addition of DC trigger coupling, even very slowly varying waveforms can be triggered with ease.

As you would expect, all Kikusui scopes come complete with a detailed user/service manual, 2 high quality probes and BNC to 4mm adaptors.

PROFESSIONAL COS-6000 SERIES with 5 channels

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency</th>
<th>Channels</th>
<th>Resolution</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>COS-6150</td>
<td>150MHz</td>
<td>5</td>
<td>2nS/div</td>
<td>$4010</td>
</tr>
<tr>
<td>COS-6100A</td>
<td>100MHz</td>
<td>5</td>
<td>2nS/div</td>
<td>$3764</td>
</tr>
</tbody>
</table>

COMPACT COS-5000 SERIES

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency</th>
<th>Channels</th>
<th>Resolution</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>COS-5100</td>
<td>100MHz</td>
<td>3</td>
<td>2nS/div</td>
<td>$3225</td>
</tr>
<tr>
<td>COS-5060A</td>
<td>60MHz</td>
<td>3</td>
<td>5nS/div</td>
<td>$2271</td>
</tr>
<tr>
<td>COS-5042</td>
<td>40MHz</td>
<td>3</td>
<td>5nS/div</td>
<td>$1645</td>
</tr>
<tr>
<td>COS-5041</td>
<td>40MHz</td>
<td>2</td>
<td>20nS/div</td>
<td>$1395</td>
</tr>
<tr>
<td>COS-5020</td>
<td>20MHz</td>
<td>2</td>
<td>20nS/div</td>
<td>$629</td>
</tr>
</tbody>
</table>

* Price includes 2 quality probes with each unit. Warranty is 2 years.
* ADD sales tax to prices if applicable. Prices subject to exchange variation.

EMONA INSTRUMENTS

DIVISION OF EMONA ENTERPRISES PTY LTD

1st Floor 720 George Street
Phone: (02) 212 4599

DISTRIBUTORS

NSW: Davred Electronics, Sydney, Phone 267 1385
Graff Wood Electronics Pty Ltd, Rixlea, Phone 810 6845
Martin De Launay (Newcastle) Pty Ltd, Phone 52 8306
WA: Hanco Engineering Pty Ltd, Perth, Phone 381 4477
VIC: Radio Parts Group, Melbourne, Phone 329 7888
QLD: Baltec Systems Pty Ltd, Brisbane, Phone 369 5900
ACT: Electronic Components Pty Ltd, Fishwick, Phone 80 4654
SA: Int'l Communication Systems, Port Adelaide, Phone 47 3498
TAS: George Harvey Electrical, Hobart, Phone 34 2233

EMI READER SERVICE 108
FEATURE

receives an input, it is possible to have the processor set appropriately on time/div and volts/div so that something is displayed even before the operator touches anything.

Interestingly, many of the operational features of composite CROs are being reintroduced on fully digital machines. The HP54110D reduces all its functions to a key-
pad and single rotary knob.

Storage

Probably one of the most useful add-ons to the conventional oscilloscope is the ability to store waveforms after they have been received on the input sockets. It comes into its own where signals occur only once, or where they occur so slowly that a meaningful display is impossible to obtain.

The two different types are, as might be expected, analogue and digital. Digital storage CROs develop naturally out of the types of digital techniques we have already discussed. Digital storage is achieved by the addition of some memory between the ADC and the tube. The storage imposes no special constraints on the design of the CRO, indeed, it follows naturally from its digital architecture to such an extent that digital oscilloscopes without storage facili-
ties are rare, and certainly represent a wasted opportunity.

Analog storage, on the other hand, is a lot more interesting. Storage is achieved in the tube itself, and depends on special techniques of tube construction. A metal mesh, especially coated with a deposit of highly in-
sulating secondary emission material, is placed immediately behind the screen. During display, the electron beam strikes part of the mesh. These parts emit secondary electrons and so are left positively charged. Thus, forms the pattern of charged particles on the mesh from a replica of the original screen pattern.

To re-display the information the mesh is illuminated by two flood guns. These send a stream of electrons down the tube, spraying all parts of the screen equally. Electrons are accelerated by the positively charged parts of the mesh on to the screen. The negatively charged parts of the mesh form an effective barrier to the flood guns, thus preventing them from getting to the screen.

The advantage of this method as with all analogue oscilloscopes is that it’s fast. It also has the ability to capture as many wave-
forms as can be displayed on the screen. A digital CRO on the other hand, needs to

have special sections of memory defined to store a single waveform; often with a trade off between resolution and the number of waveforms stored.

On the other hand, the advantage of digital storage, and it’s often a decisive advan-
tage, is that it will store waveforms indefinitely. The charge on the mesh of an ana-
logue CRO dissipates rather rapidly, and will generally disappear within an hour or so. Furthermore, it’s easy to interface a digital CRO to mass storage of some type so that huge amounts of storage space become available for later display on the CRO or even for display on a computer screen.

As with ordinary CROs the cost of storage oscilloscopes is closely related to speed. At low levels the difference is not significant, and it seems that the extra cost imposed by the special tube of an analogue scope is matched by the extra cost of ADC and memory in a digital one. However, as speed increases, the problems inherent in ADCs start to assert themselves and prices rise far more quickly for digital oscillos-
scopes than their analogue equivalents.

Special thanks to Philips, Hewlett Packard and Tektronix for information on oscillo-
scope theory used in preparing this article.
Be part of Today!

When we analyse the recent past and project the immediate future, computers and communications technologies play a vital part, but we must avoid the tendency to look only to the hardware level. The fact that technologists have appropriated words like 'communications', 'information' and 'data' and given them electronic rather than social meanings, should not disguise the fact that in the final analysis, communications involves people and ideas, not electronic bit and bytes.

People and Ideas ... that's the side of Australia's Communications Revolution we tell about in this informal look at today's world of computers and telecommunications.

At your Newsagent now!

Or simply send $4.95 plus $1.00 post and packing to — Federal Marketing Book Sales, P.O. Box 227, Waterloo 2017 NSW.

353 different ways to grab a hold

The HCK high quality, low cost range of test accessories is now available in Australia from Tecnico. You can hook, clamp, probe and connect with an amazing variety to allow you to test in complete safety. A full range of connecting leads and cables in PVC, Teflon or Siliconised rubber completes the picture. Get details and a data sheet by phoning your nearest Tecnico office today.

Top-line filters for clean lines

When you need a filtered inlet for business machines, micro-computers, medical or test equipment then Tecnico have all the protection your circuitry will need with Belling-Lee filters. These compact, snap-in filters put a stop to mains borne interference, even having a line fuse and double pole switch. There's much more in our comprehensive range.

Belling-Lee Filters... there's simply no substitute.
Behind the daunting displays of the latest hi-fi and computers lie some murky issues of policy, marketing and making the dollar. Louis Challis found that the new goods often meant old problems.

Louis Challis

In the first section of my Las Vegas CES report I highlighted some of the more eye-catching aspects of the show. There were also, however, so many other features of the CES that were aimed at the subliminal, intriguing the deeper thinking members of the technical and commercial world, who took the time and trouble to go to Las Vegas. This particular article attempts to examine many of these.

Probably the most serious issue raised by the Winter CES was the problem of copyright and software infringement in the USA. On the 9th January a 12-member congressional delegation, which was invited to CES for that specific concern, served as panelists in two special sessions. The first of those sessions was devoted to examining the legal implications of copyright issues and the second session examined the implications of copyright infringement in the domain of international trade.

As the largest and most auspicious congressional delegation to attend CES, the Congressmen and Senators had the opportunity to see first hand the state of the art in terms of audio, video and computer products whilst simultaneously being asked to state their position in the continuing US battle of audio royalty taxes.

Moves have been afoot in the US for some years now to tax all purchases of magnetic tape in its different formats (particularly compact audio and video cassettes) at the point of sale. The intent of that scheme is to collect a large purse of money which would then be shared amongst the producers of software (particularly the entertainers) to reimburse them (in part) for the loss of royalties resulting from illegal copying of programs.

But a little thought soon reveals the problems with such a proposal. It would be almost impossible to equitably distribute the royalties in such a way as to recompense those people who suffer the greatest losses from pirating. This is because there really is no rational, sensible or legitimate way through which anyone could decide to whom and in what way, let alone where, such payments should be made.

What would most likely result from the scheme, would be a large top-heavy bureaucratic system capable of absorbing most of the money allocated to this purpose in paying members' salaries. What little money left after creating this new 'monster' might ultimately find its way to the wrong people. Recognition of these factors and the inequity of the current proposals has deterred the US government and the courts from jumping the veritable frying pan into the fire.

Both the recording industry staff as well as hardware manufacturers realise what dangers they face in any new meddling by the bureaucracy into the unregulated domain that they have so nicely carved up for themselves. They are really loath to propose any new system which does not positively protect their long term interests. The result of this present reticence on both sides is something of a stalemate. Neither side in this Mexican standoff wishes to be the first to pull the trigger.

While the verbal arguments progress, both sides are lobbying strongly in Washington DC for change without really identifying the scope of such changes. In the meantime, the hardware manufacturers are producing millions of portable CD players which incorporate compact cassette players to simplify the task of copying CD discs straight on to tape. The third generation of double compact cassette players has been released, designed for both high speed and normal speed copying of compact cassettes.

Last, but not least, the latest generation of hi-fi video recorders is now on the market and although ostensibly for hired software, the sales blurs stress their ability to copy programmes straight off the inbuilt TV tuner or an associated video recorder.

The ironies of this peculiar situation are not lost on the market place where piracy has now tended to become the rule. Sales of conventional microgroove records in the US have dropped to an almost all time low and although sales of CDs are booming, this is primarily because of the 'new buyer' demands associated with new CD players. People are still digesting nearly all the discs that can be produced but this situation may well change dramatically because of piracy associated with the new hi-fi video (audio) recorders, video PCM recorders (like the latest Super 8 Sony unit) and the soon to be released digital audio recorders.

In Australia, plans for the first CD pro-
production facility are now on the drawing board and we can expect that the Australian situation will soon mirror the American one. The Australian government has announced plans to modify the copyright act to provide maximum fines of $250,000 for companies involved in film and record piracy. This amended legislation does not resolve the associated problems of home piracy.

Hype

Nowhere was the impact of the CD player more evident at Las Vegas than on the stands of speaker manufacturers and to a lesser extent those of the amplifier manufacturers. One of the most important commercial aspects of what makes the CD player such a bonanza for the audio retailer is that it practically forces consumers to upgrade other parts of their stereo system. Speaker manufacturers are generally a very 'crafty' breed, they were amongst the first to use terms like 'digital ready' and "CD compatible". These terms have little by way of factual meaning, but that's no reason not to 'psyche' the consumer into believing so.

Cerwin Vega and Bose were amongst the latest American manufacturers to build their advertising campaigns around CD discs. The copy that they use is simple, direct and very effective. It explains that digital recordings create new demands on speakers and, as you might well guess, Cerwin Vega has discovered a 'brand new technology' designed "specifically for digital audio". They are simultaneously heavily promoting the concept of "vertical line array" which places the mid range drivers in a vertical line with the tweeter and which they claim creates "symmetrical sound waves" and "wider dispersion".

Bose and Cerwin Vega devote less attention to the specifics than they do to the generalities of getting the most out of the CD. Now that the CD has become a mass market device, they have a whole new generation of potential speaker buyers to whom they can sell. Considering the way that CD players are now being sold in America, there is a strong chance that the salesman doesn't have time to tell buyers what kind of quality speakers or technical requirements are demanded by their new systems. As a consequence, ads have been prepared for hi-fi magazines, and even audio retail outlets' display boards stressing the new "digital ready" tag.

Cerwin Vega, Bose and many other manufacturers in the US are stressing the concept of "sound dispersion" while firms like JBL and Altled Lansings are stressing the professional side of their sound equipment, particularly the live concert end, where they have made such remarkable advances over the last few years.

Virtually all of the speaker manufacturers at the CES were stressing the need to upscale speakers to match the potential of the expanding dynamic range recorded on the new software. This was being stressed for car systems, as well as for home systems. These claims have recently been confirmed by the majority of those audiophiles whose speakers were designed and purchased in the halcyon days of microgroove recordings. Many of the less fortunate members of our society who purchased miniscule bock-case speakers which generally have pitifully little acoustical output below 100 Hz, have now found that they are generally incapable of reproducing programme content the dynamic range of which exceeds 50 or 60 decibels. When these speakers are faced with 80 or 90 decibels of dynamic range, terrible things often seem to happen inside these little 'shoe boxes'. Over the last two years, I have both seen and heard many stories of otherwise excellent speakers which have suffered an early demise under the awesome influence of CD players coupled to powerful amplifiers. It seems that many of these system owners have been beguiled into attempting to play the music at levels they believed appropriate. Obviously, these 'peccadillos' have created a significant market for new speakers.

The salesmen in the retail outlets both here and overseas have been quick to respond with advice on "more appropriate digital ready" speakers. But their perceptions of the way in which those speakers ought to perform are somewhat different from mine. It was my observation that the majority of salesmen and manufacturers, who used terms like "CD compatible" or "digital ready" to describe their wares, are all too often offering the very products you should most avoid.

The fundamental problem associated with a critical appraisal of the testing and specification requirements of loudspeaker systems for use with CD players was addressed by a number of papers presented at the CES. It is also an issue which many of the best known American hi-fi magazines are now taking up in their editorial pages.

Although they have acknowledged the problem, the test procedures that they are using for speaker reviews have not yet stressed the need for appropriate safeguards to ensure the longevity of the speakers being tested. During discussions with four of the best known American hi-fi reviewers, they mentioned their intent to change this situation.

The International Electro-Technical Commission working group TC29 dealt with this problem back in 1979. That was well in advance of the release of CD players. The basic problem is, however, that neither Japanese, European nor American manufacturers have yet accepted those standards as the appropriate procedure for rating the power handling capacity of speakers intended for the consumer market.
New disks

On a different tack, I saw very few releases of new magnetic materials at the CES. One notable exception was a new line of the micro disks being shown for the first time by TDK. Whilst you may well be aware of the 3.5" micro-floppies, it is unlikely that you will be aware of the new micro-miniature floppies that TDK has developed for potential audio, video and computer based applications. These particular floppy disks are only slightly larger than a 50 cent coin and use a new range of rare earth magnetic materials for the coated surface. They have been specifically designed to provide information densities substantially greater than those provided by the latest generation of Video 8 cassette recorders, which I thought were already state of the art in that respect.

Although I attempted to obtain more information from the TDK representatives at the show as to who the potential purchasers and users of these 'micro-floppies' might be, they were holding their cards very close to their chests. Judicious questions asked at the nearby 3M stand elicited that these particular floppies have been specifically developed to meet the requirements for a new range of personal video products including still cameras and micro-miniature personal computers.

3M, as it happens, was releasing a brand new range of improved video tapes, as well as an exciting new range of professional and consumer colour films to directly compete with Kodak. Having evaluated samples of that film, I am now in a position to vouch for its quality and versatility.

Computers

One area of the CES which I did not expect to see was the influx of computer peripherals, such as printers, laser writers and memory devices, and unusual computer developments which were being displayed at the show.

All of the major Japanese manufacturers appeared to be there, and most of them were displaying the next generation of low cost computer compatible printers with prices that were astounding low. Matsushita (National), Brother, Silver Reed, Sanyo and Epson were all displaying new printers many of which had exciting features and all of which claimed improvements in reliability when compared with the previous generation. Prices were as low as $US299 with parallel interface capabilities, optional memory cards, spell check capabilities, and many other features that only used to be found in printers at three times the price.

Small printers and plotters with multi-colour capability were there in large numbers and at selling prices well within the budget of the amateur user.

Best buys

The last noteworthy feature of the Las Vegas CES was the amount of audio and video software that was being sold over the counter to the attendees at below wholesale prices. Obviously, the companies concerned considered this was a good way to make sure that their products end up either in shops or homes of the most influential members of the marketing world. The result of this approach was, needless to say, remarkably successful with crowds vying to buy the latest software at less than one-third of the normal retail price.

The Winter Consumer Electronics Show at Las Vegas has many parallels with an American election campaign in terms of venue, style and political overtones. Although we are proud of our electronics shows in Australia, they are in no way comparable to the CES where the latest and greatest are on display for all to see.

ELECTRONICS OPPORTUNITIES TODAY

Advanced Technology Recruiters has specialised in recruitment in the Electronics Industry for the last eight years. Our consultants all have considerable experience in different disciplines within the tremendous growth area of high-technology.

These vacancies are only four of the varied and interesting jobs we have available.

ELECTRONICS ENGINEERS

Designing microprocessor based communications equipment used by a large international information provider. Hardware design skills are a necessity, this is a great opportunity for someone seeking to broaden their responsibilities.

TEAM LEADER

This Australian company has developed several world firsts in an exciting and unusual applications area and has many other leading-edge projects to be taken to completion. The ability to lead several teams in both micro and mini hardware design is a necessity.

SERVICE TECHNICIANS

If you are a good diagnostician and enjoy field service in minis and peripherals then we have a great Australian third party maintenance company eager to meet you.

PROJECT ENGINEERS

Today's buildings are being filled with silicon! Building Management Systems now control and monitor facilities such as air-conditioning, fire protection, lift controllers, security and access. Designing systems to cope with these disparate demands requires engineers who can integrate their thinking as well as several hundred micros.

If you are keen to pursue these or any other career opportunities please give Mike Avey a call on 238.2146 for more information or a confidential discussion.

Alternatively, send your resume to Advanced Technology Recruiters Pty Ltd, Level 66, MLC Centre, Sydney, NSW 2000. Total confidentiality is assured.

ETI May 1986 — 25
GEOFF'S MOVED!

Don't forget Wood for Chips!

- LARGER PREMISES
- BIGGER STOCKS
- EVEN BETTER SERVICE

GEOFF WOOD ELECTRONICS P/L
229 BURNS BAY ROAD
LANE COVE 2066
TEL: 427 1676
at the leading edge

100 MBYTE OPTICAL DISK DRIVE MAKES AUSTRALIAN DEBUT

US manufacturer, ISI, has commenced shipments of its model 525 IBM-PC compatible Write-Once/Read-Mostly drive. Supplied as a user installable kit the 525 is designed as a rapid access (100 msec) archiving and distribution medium for backing up hard disk drives as well as an Online Direct-Access storage for local and distributed databases. The removable cartridge will withstand electromagnetic fields, heat, light and even scratching offering a data integrity exceeding that of the Winchester drive it is designed to back up.

PRIAM CLUSTER TOWER SERVES UP TO 8 IBM PC COMPATIBLES

Designed as a starter for those nearly at the stage of purchasing a local area network, but confused by the array of options, the Cluster Tower provides immediate shared storage up to 292 Mbyte and dual, concurrent printer support. At the same time it is designed to suit any DOS compatible LAN purchased in the future.

PRIAM RELAUNCHES ITS 14 inch DRIVE SERIES.

Following an upsurge in demand for their 6650-10 Winchesters, with SMART, SMD or Priam interface, predictions indicate a record year for the line. Users are citing years of reliable service for the pioneer design a feat some users are claiming is not matched by more recent introductions. Daneva is preparing to restock the old trouper and would like to hear from Australian vendors needing support.

WHEN YOUR OUTA SPACE, INNER-SPACE FROM PRIAM

Priam's Inner Space series offers high performance high capacity drives for the IBM-AT, XT and PC. The drives, which come complete with cables, software and mounting slides for slipping into the slots in the AT, are user installable and are available in formatted capacities of 42.7 and 59.8 Mbyte.

IBM-PC XT is the registered trade mark of International Business Machines.
CAT. CONNECTORS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>W11260 2</td>
<td>Way plug</td>
<td>$1.70</td>
</tr>
<tr>
<td>W11260 5</td>
<td>Way plug</td>
<td>$1.95</td>
</tr>
<tr>
<td>W11260 7</td>
<td>Way plug</td>
<td>$2.20</td>
</tr>
<tr>
<td>W11260 10</td>
<td>Way plug</td>
<td>$3.00</td>
</tr>
<tr>
<td>W11260 14</td>
<td>Way plug</td>
<td>$3.40</td>
</tr>
</tbody>
</table>

CONNECTORS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>W11272</td>
<td>24 way solder plug</td>
<td>$1.20</td>
</tr>
<tr>
<td>W11272</td>
<td>36 way solder plug</td>
<td>$1.50</td>
</tr>
</tbody>
</table>

SOLDERING SYSTEM

- 60/40 Solder, plenty of loose solder
- 40/60 Soldering iron (LED readout meters tip lamp)
- Safety holder includes ceramic short circuit protection
- 60/40 soldering iron

TRANSFORMERS

- ECONOMY transformers
 - Plenty of spare parts

BREADBOARDS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1001 100 Holts</td>
<td></td>
<td>$2.75</td>
</tr>
<tr>
<td>P1003 400 Holts</td>
<td></td>
<td>$10.75</td>
</tr>
<tr>
<td>P1005 200 Holts</td>
<td></td>
<td>$13.00</td>
</tr>
<tr>
<td>P1007 400-600 Holts</td>
<td></td>
<td>$13.00</td>
</tr>
</tbody>
</table>

WORLD MODERN CHIP

- Save $20, SPECIAL $29.95

FUSE SPECIAL 3AG

Two values, 3 Amp and 1 Amp, for 105-999, $5 each

CENTRONICS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1200 36 way plug IDC</td>
<td>$12.50</td>
<td></td>
</tr>
<tr>
<td>P1203 36 way IDC</td>
<td>$13.50</td>
<td></td>
</tr>
<tr>
<td>P1205 50 way plug IDC</td>
<td>$14.50</td>
<td></td>
</tr>
<tr>
<td>P1207 24 way solder plug IDC</td>
<td>$15.50</td>
<td></td>
</tr>
</tbody>
</table>

FUSE SPECIAL 3AG

Two values, 3 Amp and 1 Amp, for 105-999, $5 each

CABLES

- 13/12 TLD, plenty of spare parts

10W HORN SPEAKERS

White dome speakers, 8 ohms

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>L12100 4 16 RED</td>
<td></td>
<td>$1.00</td>
</tr>
<tr>
<td>L12101 16 RED</td>
<td></td>
<td>$1.00</td>
</tr>
</tbody>
</table>

DIP SWITCHES

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>S13045 10</td>
<td>Way plug</td>
<td>$3.00</td>
</tr>
<tr>
<td>S13045 10</td>
<td>Way plug</td>
<td>$3.25</td>
</tr>
</tbody>
</table>

PROFESSIONAL SERIES RACK MOUNTING CABINETS

- 12 Professionally designed racks, 6 x 750 mm, 15.24 mm, 19"-wide frames

COMPUTER CABLES

- IBM-compatible

LIFE PACKAGING

- 500 Pack: $12.50

IBM

COMPATIBLES from $899

- Increase the life of your system

LOGIC PROBE 380U

- Features: DMM memory, 1 channel, 1 signal

MAIL ORDER HOTLINE

- (03) 543 7777 (2 lines)

HIGH EFFICIENCY RACK MOUNTING

- Black powder-coated steel

COMPUTER CABLES

- IBM-compatible

HIGH EFFICIENCY RACK MOUNTING

- Black powder-coated steel

IBM

COMPATIBLES from $899

- Increase the life of your system

LOGIC PROBE 380U

- Features: DMM memory, 1 channel, 1 signal

MAIL ORDER HOTLINE

- (03) 543 7777 (2 lines)
Hi-fi VCR records TV & radio stereo

Akai has announced a new flagship to its video cassette recorder line up, the VS-606.

The Akai VS-606 is said to be state of the art video linked together with true hi-fi sound like having two decks in one — a high quality video deck, and an audiophile-class audio tape deck. The result is apparently superb hi-fi playback and not only in normal speed, but also in the long play mode.

The VS-606 boasts a built-in stereo tuner which enables the recording of TV programmes in stereo and converts current mono TV into a state of the art stereo TV.

A 'super still' picture has been achieved in the pause mode by having four heads, one for each recording and playback function. This feature reportedly gives exceptional picture quality in both normal and long play modes.

An interactive monitor system displays the operating instructions on the TV screen.

The slim line design of the VS-606 coming in both black and silver makes it an attractive addition to any home entertainment unit.

Automatics improve reception on synthesised tuner

Onkyo's T-9090 quartz synthesised FM tuner, part of the Japanese audio company's top-of-the-line 'Integra' series, features an automatic precision reception system — a microcomputer-controlled system that automatically controls five different reception modes to obtain the best reception quality possible at all times. Onkyo claims good quality reception even in difficult reception areas.

The T-9090 provides preset tuning for 20 stations. An auto scan memory function automatically scans the FM band and places every FM station above a certain signal strength in the memory.

Another feature incorporated in the T-9090 is the Delta Power Supply, which reduces distortion and noise and expands the dynamic range.

Also included are a multi-function digital display which shows memory channels, signal strength (in decibels), tuning levels and tuned frequency; and timer program tuning, allowing up to five different stations to be recalled for audio timer recording.

New KEF loudspeaker range

KEF, Britain's largest manufacturer of loudspeakers has released a new range of high performance domestic speakers.

The C series uses a new type of polypropylene material in the cones to substantially improve efficiency and reduce colouration, as well as using a new enclosure design and computer applied technology in crossover development.

At the lower end of the price scale are the KEF C10 and C20 models designed for bookshelf use.

The next model in the range is the C30 which includes a new 200 mm polypropylene mid/bass unit for reportedly greater mid-range sensitivity and improved bass damping, and a new high sensitivity dome tweeter.

The C40 is generous in both volume and drive units and is designed to operate as a floor or stand mounted model, preferably clear of room boundaries. A 200 mm polypropylene bass driver is used for bass frequencies while a similar sized unit is used for the upper bass/mid-range portion.

Top of the new C series of KEF speakers is a slim floor standing model, the C80. It draws significantly on the 104.2 design. The 25 mm tweeter is identical to that in the 104.2; though the complex double driver bass system of the 104.2 has been simplified with conventional drive technology.

KEF has re-employed the B139 bass radiator although upgraded and improved from its original design.
Stereo double reverse cassette deck
The Teac W-880RX gives double auto reverse recording playback, continuous playback of two tapes, continuous playback of a selection of tracks (in the order of your choice), and of course a tape copying function.

JVC autofocus VideoMovie GR-C2
The new GR-C2 offers TCL-1S autofocus which uses an image sensor module that reads and analyses visible light to determine proper focus, unlike infrared or ultrasonic systems. It also boasts a three-way power supply, automatic white fader, low light sensitivity of 15 lux, and automatic backspace editing.

AXR series connectors
STC-Cannon has introduced a new series of audio connectors which upgrade the XLR range. The AXR series is suitable for audio/video and other low level circuit applications where reliability and elimination of rf and electromechanical interference is necessary. All AXR series connectors are interchangeable with XLR and XLB series. STC-Cannon is at 248 Wickham Rd, Moorabbin Vic 3189. (03)555-1566.

Surround sound amplifier
The Nec AV-300E amplifier features three types of processors to achieve the surround sound of 'presence and expansion'. The Dolby surround provides optimum sound reproduction from Dolby stereo programs; the matrix surround reproduces stadium acoustics with stereo sound from four separate speaker systems; the hall surround provides optimum sound reproduction for music programs.

New DSE car hi-fi
Dick Smith Electronics has launched a new range of car hi-fi equipment from Aspe. The range is headed by an AM/FM stereo, auto reverse cassette at $399 and tapers to a budget priced stereo casette which retails for around $99. There are five radio/cassettes, a 100 W graphic equaliser and eight speakers in the range so far.

Recording Society of Australia
This little known group is seeking a bit of public interest. It was founded in 1964 by a group of enthusiastic amateurs with a common interest in sound recording on magnetic tape. The society offers its members practical advice, demonstrations, displays and opportunities to gain experience in the proper selection and use of equipment. Each club year an annual tape recording contest is held. For more information contact the Secretary, RSA, C/- Box 23, Black Rock, Vic 3193. (03)589-5768.

New Mordaunt Short loudspeakers
Concept Audio is distributing two new models of loudspeakers from Mordaunt Short of the UK. The MS.15 is a slim model suitable for positioning on rigid shelves or stands and sells for $598 per pair. The MS.25TI is the successor to the MS.20 model and retails for $698 per pair.

NAD tuner
The NAD 4130 tuner uses a MOSFET front end that NAD claims is immune to strong signal overload. Other features of the tuner are the use of three ultra-linear ceramic IF filters for improved selectivity and wide stereo separation, and NAD's dynamic blend circuit intended to reduce noise in weak stereo signals.

Colour video projection system
The industrial products division of National Panasonic (Australia), through GEC, has released a new Panasonic 3 m (120") colour video projection system. The PT-102, weighing 35 kilos, with dimensions 290 mm (h) x 576 mm (w) x 584 mm (d), presents a new brightness and lightweight portability in high resolution video projectors.

The PT-102 uses three liquid loaded CRTs. This liquid cooled system is more effective than air, therefore a stronger electron beam can be used to achieve greater brightness. Panasonic also claims to use specially moulded plastic lenses to maintain this high brightness projection, resulting in luminous flux of 400 characters in colour. High resolution is achieved with 550 lines using video input and 800 lines for RGB input.

The PT-102 provides full television signal format compatibility. Its 45-system capability enables display of CCIR or EIA standard signals in PAL/SECAM/NTSC colour formats and M-NTSC in videotape playback with 4.43 MHz subcarrier. Selection can be manual or automatic.

Computer text and graphics can be displayed with very high resolution. With RGB input the PT-102 can project a clear sharp image of up to 2000 characters in colour. When using RGB input you can also select 'Fine Blue' for greater clarity of blue characters or 'Blue Mono' which gives a white on blue display.

The PT-102 comes ready to be used for ceiling mounting and front projection, but it is an easy matter to adjust for floor mounting as well as rear projection. As well as being portable, the PT-102 offers variable screen size and a viewable picture can be projected on to most curved or flat screens ranging in size from 1.5 m (60") to 3 m (120").

Optional remote control allows the operator to turn power on and off, adjust the picture, select input, and switch between display modes. Three sizes of cable (15 m, 30 m and 50 m) are also available, as optional extras.
The Japanese firm Nec, already well established in the field of computers, has ventured into the manufacture of CD players. Not an unexpected widening of activities, but NEC may have to check where the grass is greener.

Louis Challis

NEC OF JAPAN is one of the many new manufacturers to enter the field of compact disc player manufacture. Because of its greater experience in the fields of computer and communication equipment, Nec has tended to stress its expertise in those fields in its consumer advertising in the USA and Europe. Whilst there is probably some technical association between these fields, that marketing approach does not conjure up the sort of persuasive images that some of Nec's competitors are able to generate.

Design and appearance
The CD-509E is a neat, modest and conservative looking CD player which does not share the brassy, bold or even flashy characteristics of many of its competitors. It comes with a very effective infrared remote control but unlike many other new CD player designers those at Nec believe that most purchasers want a minimum number of functional controls.

The controls and primary displays are arranged as a band across the upper section of the front escutcheon with silk screened lettering in contrasting orange and white. At the lower left hand corner is the power ON/OFF and almost immediately above is the slide-out drawer for loading the compact disc. Adjacent to this is a reasonably large OPEN/CLOSE button with orange lettering to attract your attention.

In the middle of the band are two displays with the words DISC, REPEAT, A-B, and a large PLAY and MEMORY which indicate with reds and greens the operating mode of the player. To the right of this is a small green plasma display that indicates the track number, index number or the elapsed time in minutes and seconds for the track being played.

The display function mode is controlled by a small display button on the central band below the display module; three other secondary controls for MEMORY, CLEAR, and A-B REPEAT are also located immediately below the display. The MEMORY button provides the ability to memorise track sequences for replaying, the CLEAR button allows you to cancel all of those memorised sequences and the A-B REPEAT button allows you to select two points anywhere on the disc between which the player will automatically cycle.

To the right of the display module is a large PLAY/PAUSE button featuring the now standardised play and pause symbols. To the right of this are four controls for indexing the disc forward or reverse in incremental track numbers below which are the more conventional FAST FORWARD and REVERSE buttons. At the lower right hand corner is a headphone VOLUME control adjacent to which is a conventional 6.3 mm tip ring and sleeve headphone socket and the detector for the remote control.

On the rear of the cabinet, a pair of RCA coaxial sockets provide outputs to a preamplifier or receiver and a matching colour coded interconnection lead is also provided. The remote control is extremely neat, light and soon proved to be very simple to use. It reproduces all of the main controls provided on the front panel with the exception of the OPEN/CLOSE button and combines the REPEAT/CLEAR button as a single functional key.

The cabinet is constructed from a combination of anodised aluminium extrusion,
The layout is neat, clean and effective with the absolute minimum number of interconnections, all of which are executed by means of plug-in sockets, colour coded wiring harnesses and matched by well designated printed circuit board annotation. A number of unused sections of the board indicate that it was designed to provide additional functions and potential in a more advanced model.

The CD player section uses a triple beam laser system which is undoubtedly one of the most advanced that I have yet tested. Because of the increasing numbers of CD disc manufacturers (not all of whom have diligently followed the minimum standards of performance specified by Sony and Philips in the original "Red Book"), it has become expected of third generation CD players that they achieve higher standards of tracking accuracy when faced with sub-standard discs. The laser tracking system’s control circuitry is located immediately at

plastic chassis and folded steel top, side and bottom covers. Inside the unit, you are immediately aware of the small number of transistors and ICs used and very much aware of the size and complexity of the 11 large scale integrated circuits mounted on the main mother board. Some of these are NEC manufactured; others are sourced from the other major Japanese manufacturers whose products we have recently reviewed.

MEASURED PERFORMANCE OF NEC COMPACT DISC PLAYER

MODEL NO. CD-109
SERIAL NO. 0702032

1. FREQUENCY RESPONSE 20 Hz to 20 kHz ± 0.5 dB
5 Hz to 22 kHz ± 0.5 dB

2. LINEARITY @ kHz
NOMINAL LEVEL | LEFT OUTPUT | RIGHT OUTPUT
---|---|---
0 dB | 0.0 | 0.0
0.5 | 1.0 | 1.0
1.0 | 2.0 | 2.0
1.5 | 3.0 | 3.0
2.0 | 4.0 | 4.0
2.5 | 5.0 | 5.0
3.0 | 6.0 | 6.0
3.5 | 7.0 | 7.0
4.0 | 8.0 | 8.0
4.5 | 9.0 | 9.0
5.0 | 10.0 | 10.0
5.5 | 11.0 | 11.0
6.0 | 12.0 | 12.0
6.5 | 13.0 | 13.0
7.0 | 14.0 | 14.0
7.5 | 15.0 | 15.0
8.0 | 16.0 | 16.0
8.5 | 17.0 | 17.0
9.0 | 18.0 | 18.0
9.5 | 19.0 | 19.0
10.0 | 20.0 | 20.0

3. CHANNEL SEPARATION FREQUENCY
RIGHT INTO LEFT dB

100Hz | -38.5
1kHz | -38.6
10kHz | -69.3
20kHz | -60.2

4. DISTORTION (@ kHz)
| Level | 2nd | 3rd | with 5th | THD%
|---|---|---|---|---
| @ kHz | 0 | -0.1 | -0.10 | -10.1 | -10.1
| 1.0 | -4.3 | -3.7 | -3.7 | 0.007
| 3.0 | -7.6 | -7.6 | -7.6 | 0.005
| 6.0 | -10.9 | -10.9 | -10.9 | 0.005
| 10.0 | -14.2 | -14.2 | -14.2 | 0.004
| 20.0 | -17.5 | -17.5 | -17.5 | 0.003
| 30.0 | -20.8 | -20.8 | -20.8 | 0.002
| 40.0 | -24.1 | -24.1 | -24.1 | 0.001
| 60.0 | -27.4 | -27.4 | -27.4 | 0.001

5. EMPHASIS FREQUENCY
| Recorded Level | Output Level (L) | Output Level (R)
|---|---|---
| kHz | dB | dB | dB |
| 1 kHz | -0.5 | 0.0 | 0.0
| 3 kHz | -0.5 | 0.0 | 0.0
| 6 kHz | -0.5 | 0.0 | 0.0

6. SIGNAL TO NOISE RATIO
Without Emphasis 94.1 (Lin) 99.2 (dB(A)
With Emphasis 99.0 (Lin) 103.2 (dB(A)

7. FREQUENCY ACCURACY
19.999 kHz ± 0.3 Hz for 20 kHz test signal

8. SQUARE WAVE RESPONSE
(See attached photo)

9. IMPULSE TEST
(See attached photo)

DIRTY RECORD TEST

ETI May 1986 — 33
below the player section, which is constructed with a folded steel chassis and precision plastic mouldings. Although the unit appears to be relatively simple in its construction the test results indicate that considerable research and ingenuity has gone into its design and fabrication.

Objective testing

The objective testing of the unit proved to be something of an eye opener in a number of different ways.

The frequency response is not as flat as that provided by most of the other third generation CD players which I have recently evaluated; it is more in keeping with the second generation of CD players. The response is 0.3 dB high between 5 Hz and 100 Hz, smoothly rolls through the 0 dB point at 1 kHz, is -0.1 dB all the way through to 17 kHz and then exhibits a +0.5 dB 'glitch' between 17.5 kHz and 22 kHz with the peak at 20 kHz. This degree of flatness is, however, perfectly acceptable and does not necessarily mean that the audible response would be impaired as a result of this characteristic.

The low frequency response is extremely flat and on the basis of the measured results extends well below 5 Hz, the lowest test frequency available to me. The digital-to-analogue conversion linearity displayed by this player (and a second unit which I evaluated) is very unusual. The linearity is almost perfect down to -40 dB, starts deviating significantly between -50 and -70 dB, is 5.5 dB low at -80 dB and 12 dB low at -90 dB. In between -60 dB and -90 dB, the digital-to-analogue conversion is positively 'awry' and we obtained similarly bad results in the second unit. The second unit was 12 dB low at -80 dB which was even more disturbing than the 5.5 dB error of the first player. This characteristic left me a little disturbed because it only confirms my long held belief that not all CD players are equal — specifically in terms of digital-to-analogue conversion linearity and most particularly, in terms of measurable distortion.

The channel separation of the unit is good at 100 Hz and 1 kHz but drops fairly rapidly in the 10 kHz to 20 kHz region where the separation drops to 69 dB and 60 dB respectively. The distortion characteristics of the unit at 1 kHz are excellent down to -40 dB, adequate at -50 dB and unusually high at -60 dB. At the -60 dB level, this manifests itself as an unusually high level of distortion products at the 3rd, 5th, 7th, 9th, 13th and 15th order harmonics (see photograph). The measured distortion performance at -70, -90, and -90 dB revealed distortion values of 6.4%, 35% and more than 100% respectively. These are the highest distortion values that I have yet seen in a CD player and similar characteristics were displayed by both of the units tested.

The measured distortion characteristics at 100 Hz were also higher than expected at the -40 and -60 dB levels which only reinforced my concern regarding the design of the digital-to-analogue converter.

The indicated signal-to-noise ratio of the player with and without emphasis is excellent being better than 96 dB (unweighted) and better than 100 dB (A-weighted). The measurements of this result, however, are accentuated by the non-linearity of the D-to-A conversion.

The frequency accuracy of the player is +3 Hz for the 19.999 kHz signal whilst the square wave and impulse responses are generally acceptable, although an unusual level of jitter was evident on the 100 Hz square wave signal.

The impulse test shows a clean response and the evaluation of the tracking mechanism with both the dirty test results, interruption in information level and black dot read-out capabilities were truly outstanding. The player did not display any sign or trace of 'glitches', inconsistency, or potential problems with the most demanding (worst) test CDs that I was able to provide. With eccentric discs beyond manufacturers' and "Red Book" acceptance tolerances, the Nec CD-509 behaved in a truly exemplary manner. Only when subjected to test discs with eccentricities greater than 1.5 mm did the tracking mechanism fail to perform. Under these conditions, the control mechanism spewed out the disc quite uncerremoniously.

Apart from the peculiarities of the linearity test and a remarkable degree of distortion at low signal levels, the objective performance of the CD-509 was in all other respects excellent.

When it comes to operating characteristics, the Nec CD-509 has many good features in its favour. The choice of controls and the way that they have been structured by the designers makes this CD player one of the most convenient and ergonomically simple players to control that you could possibly buy.

Both the main control panel and the portable infrared remote control are top from the point of view of convenience. Nowhere did this show up better than in the laboratory testing and both my family and I found this to be equally true in the domestic situation.

Subjective testing

When it came to listening, the CD-509 displays some vices as well as many attributes. I listened to a number of new test discs including Charles Dutoit playing Franz von Suppe's "Overtures" (Decca 414 408-2) which sounded just a little too strident. By contrast Julian Lloyd Webber's "Pieces" (Polydor 827 352-2) was smooth, exhilarating and very exciting, although at low levels it displayed an unusual audible characteristic on which I couldn't quite put my finger.

The Nec CD-509 CD player is not the cheapest player on the market and doesn't really begin to match the outstanding third generation CD players available in terms of objective performance, but does offer an ergonomic, functional tracking performance which very few other players can outperform.

Nec's basic design in the CD-509 has all the ingredients that the intending purchaser is looking for. However, Nee will have to spend a little more time and effort in basic research in order to obtain a decent digital-to-analogue conversion LSI chip which really does work if it wants to get an "A" instead of a "C" on its 'report card'.
I just found a way to halve the size of our power supply.

So the product you’re designing calls for a multi-character (or multi-line) display. If you must be able to read it at a distance or up close, in bright ambient light or with no ambient light there are really only two possibilities. LED displays or our Itron Vacuum fluorescents.

Itron Vacuum Fluorescents make real sense. The first thing they’ll do is probably cut your power supply requirements in half when compared with LED’s. Their low current requirements lower your manufacturing costs and make portable equipment smaller and lighter. They may even make battery power viable for you.

Then they have other advantages too! They come in an extremely wide range of configurations including full upper and lower case alphanumerics and dot addressable graphics. You can choose from three bright colours and with selective filtration you can get almost any colour you want.

When you only want a few look at our complete modules, all you have to do is send them the data and they’ll display it for you. Or, if you’ll need large quantities it is probably more economical to just take the display and drive it yourself. - That’s flexibility.

So, if you need multi character displays call us for a brochure and compare the advantages of Itron Vacuum Fluorescents for yourself.

Associated Controls
In Sydney call Dorothy or Barbara on (02)709 5700
In Melbourne call Jennifer or Sandra on (03)561 2966
In Adelaide call Paul or Jeff on (08)297 2033
A LESSON IN LISTENING
— Dali 8 loudspeakers

Somewhere between technical characteristics and sound impressions lies that hazy, irreducible area we leave to aesthetic response — or taste. Dali has mystifyingly exploited that gap with a product that should charm the listener.

Louis Challis

WHEN YOU CONSIDER its size, Denmark appears to produce relatively more acoustic products than any other country in the world. Denmark is the home of Brüel & Kjaer, Ortofon, Bang & Olufsen, Jamo, Dina, Dynaudio, Peerless, Vifa and Scan Speak Loudspeakers, and much more recently a new firm, Dali, whose products are being introduced into Australia.

The reason for this interest in high fidelity, and most particularly loudspeaker development, is undoubtedly the large number of electronic and electro-acoustic engineers that are produced in Denmark's technical university on the outskirts of Copenhagen at Lyngby. There, laboratory facilities are almost second to none in Europe; the university receives almost unbelievable financial support and assistance from the Danish Government, as well as from Brüel & Kjaer, which still produces more than 50% of the world's primary acoustical instrumentation.

The people behind Dali (Peter Lyngdorff, Mike Gerutto and Christian Hoffman) have respectively been involved in the Denmark Hi-Fi Club, electrical engineering and reviewing for Scandinavian hi-fi magazines. They have their own laboratory facilities stacked with appropriate Brüel and Kjaer equipment and they have been able to apply both modern technology and more importantly comprehensive subjective assessments to produce six different models of loudspeakers ranging in size from the small Dali 2 to the rather large Dali 8. These speakers are relatively inexpensive in Denmark and are consequently able to compete effectively with local products, as well as imports.

Design and appearance
The Dali 8 speakers are unusually tall with a wall veneered cabinet, over most of
the face of which is a black cloth covered speaker grille. Behind the grille, which is retained by four plastic push-in clips, is an array of five speakers arranged in a four-way system. The Australian version differs slightly from the continental one as the bottom corner of the speaker grille is rectangular in shape, whilst the Danish market version is much more fancy with the name "Dalí" deeply engraved into the woodwork at the bottom.

With the grille removed, your eyes are immediately assailed by the number speakers, which many purchasers may well find daunting. The two bottom speakers are a pair of 200 mm diameter woofers each arranged with a full rubber annular edge suspension ring. The designers claim these rings effectively attenuate the transmission of driver vibration into the main cabinet, as well as provide significant damping for the cast speaker basket frame. They also claim that this improves the bass response when compared with unisolated versions.

Of course, as we noted with the B&W 330s, this also provides a convenient means of increasing the total power handling capacity, the bass response and the relative sensitivity of the bass section of the speaker relative to the other drivers in the array. The mid range driver is a 110 mm diameter conventional paper cone speaker, the high frequency unit is a 35 mm dome tweeter, whilst the super tweeter has only an 18 mm diameter of almost miniscule proportions.

For some unexplained reason, the designers have set the mid range and tweeter arrays on one side of the cabinet for the left speaker and on the opposite side for the right speaker. Much to my surprise, the rear of the cabinet incorporates a loading port to provide the extended bass response. This particular approach, of placing the loading port at the rear of the cabinet, is one which

a large number of Australian radiogram manufacturers used in the late 50s and early 60s to provide a relatively inexpensive means of enhancing the low frequency performance of their speaker cabinets. Obviously, the distance between the back of the speaker and the wall surface behind can be of major significance. The position chosen for the loading port and the wall spacing behind provides a means of tuning the low frequency performance because of the increased path length provided by the surface between the back of the speaker and the adjacent wall.

Thiele's work on this subject indicates that this is not the most appropriate place for the loading port because of the phase cancellation that can result but the designers do not state why they have chosen to return to this long since discarded design.

In the terminal recess at the back of the speaker, the designers have placed an attenuator switch, which provides a -2 dB attenuation for the overall high frequency response. Why the designers chose to incorporate this particular control with such limited performance is not at all clear as I see few practical advantages for it. Had they chosen an attenuator with 3, 4 or 5 dB of attenuation, I would have been far happier. With only a 2 dB range of control, I doubt that very many of the intending purchasers will ever use the switch or even know when to use it.

The inside of the cabinet uses an open cellular polyester foam as the absorbive medium and the cabinet is reasonably braced to reduce the potential effects of cabinet resonance. The speakers are supplied with four stick-on plastic feet which are supplied loosely in the box for the owners to apply on those occasions when the speakers are to be mounted on hard flooring.

Objective testing

I conducted the first series of laboratory tests in my anechoic room. They revealed an on-axis response which does not really resemble the "lovely smooth" curves published in the glossy brochure which the importers were kind enough to supply with the speakers.

The low frequency response, although not as smooth as the published curves, is nonetheless reasonably good and does provide an effective -6 dB point at 30 Hz (compared to the manufacturer's claims for a -6 dB frequency of 28 Hz). The associated claim that the frequency response is 3 dB down at 33 Hz was not substantiated in my measurements. The peaky response at 40 Hz would reasonably be expected to make the speakers sound 'rich' in the bass end, and the low frequency response below the 40 Hz is still reasonably good all the way down to 20 Hz. The mid and high frequency response is not particularly smooth, primarily because of the interaction between the individual drivers, and consequently, the overall frequency response curve is neither smooth nor exciting.

ETI May 1986 — 37
The Microbee Hacker's Handbook will tell you how to:

- Get more from the Bee's graphics capabilities.
- Set up for telecommunications on the Bee.
- Play music on the Bee.
- Build a joystick and a light pen for the Bee.
- Get hardcopy — cheaply.
- Expand your 16K Bee to 32K.
- Make the Bee a better games machine.
- Turn your Bee into a facsimile decoder.
- Solve equations on the Bee... and much more!

$6.50 at your newsagent now.

OR you can obtain your copy by mail order direct from:
Federal Marketing Book Sales
P.O. Box 227, Waterloo, N.S.W. 2017
Please add $1 to the cost of the magazine to cover postage and handling.

The primary and underlying reason for the speaker's inability to achieve a smooth low frequency performance is the rear loading port, which will further 'modify' the performance in most residential situations.

The mid frequency performance of the speakers up to 7 kHz is reasonably good and, if it were not for the interaction between the outputs of the mid range, tweeter and super tweeter, the resulting frequency response would undoubtedly have been much flatter. The on-axis high frequency performance in the 10-20 kHz region is acceptable, although as soon as the microphone is off the direct axis of the super tweeter, the output droops quite markedly in the 15-20 kHz region.

The near-field measurements at 50 mm from the face of the individual speakers reveals that each of the drivers produces reasonably consistent output, whose overall levels are fairly well adjusted for the order of performance being sought. The level recording also displays the extent to which there is interaction between the speakers. It is evident that the low frequency drivers and the rear loading port output are likely to have substantially more interaction when evaluated in a conventional living room environment than shows up in our anechoic chamber evaluation.

A close examination of the impedance characteristic reveals that the lowest value of impedance has been sensibly controlled to 7.5 ohms and that the fundamental resonances occur at 18 Hz and at 52 Hz with somewhat lower peaks occurring at 500 Hz and 7 kHz. These values of impedance would not be disturbing to most amplifiers and these speakers could therefore be safely paralleled with most other 8 ohm speakers.

The phase response of the Dali 8 speakers shows two primary reversals and an overall phase response which, although reasonably good, is not really 'phase linear'.

The reasons for this lack of phase linearity are not hard to find when you realise that the effective centres of radiation of each of the drivers cannot be correctly aligned in a speaker cabinet with a flat front. Improvements in phase alignment could only be achieved with a sloping speaker front panel, which is not currently a design feature in the Dali speaker range.
nances' like those exhibited at 5.5 kHz, 8 kHz and 18 kHz gives clear signs that the speaker is likely to have a pronounced colouration on some music, which will either please or disturb the owner according to taste.

By contrast, the polar plots of 1 kHz, 3 kHz and 6.3 kHz are good with more than adequate dispersion and balanced output. The 10 kHz polar response is different from that provided by most other speakers with a positive asymmetry evident, providing an almost flat response from -5° through to +70° for the primary are falling between the expected speaker positions. If the left and right speakers were interchanged, the opposite effect would result and consequently the correct placement of each speaker pair is of vital importance. The high frequency polar plots are particularly good and I would expect them to remain so for frequencies up to at least 15 kHz.

The measured distortion characteristics of the Dali 8 speakers are different from what I would have expected. With 90 dB output at 2 m (96 dB at 1 m) the distortion at 100 Hz is particularly low at only 0.92%, but the distortion levels at higher frequencies are conversely much higher (1.8% at 1 kHz) and early signs of voice coil 'softening' were detected at 6.3 kHz. This was most pronounced during the measurements of polar response.

As a result of the signs of thermal non-linearity in the tweeter, I was forced to perform the distortion measurements at 6.3 kHz at a reduced level of 86 dB (ie, 10 dB below the normal level). Even then, the level of distortion was 1.4% indicating that there might be problems in sustaining very high outputs if there were either consistent or unusual levels of high frequency content in the music.

Subjective testing

The subjective testing of the speakers proved much better than I had suspected from the objective test results. I carried out the subjective evaluation over a period of three weeks using a wide range of classical and popular music.

The first series of tests that I performed used the standard voice content material on Elton John's CD "Ice on Fire" (Rocket 826).
Even our tiniest transformer has to earn its stripes.

The distinctive three striped Ericsson symbol is not handed out willy-nilly to any product that rolls out of the factory.

Even the tiniest transformers are torture tested and only the fittest are awarded the Ericsson stripes.

At Ericsson, we appreciate your reasons for insisting upon Quality and Reliability—we too employ our transformers in our other products.

The Ericsson Transformer range includes:
- Miniature audio transformers
- Telephone line isolation transformers
- High voltage isolation transformers
- General communication transformers
- Runway lighting transformers
- Telecom approved transformers
- Epoxy cast transformers

Of course, if our standard range doesn't quite meet your specifications, please feel free to consult our design advisory service.

After all, we've learned a lot about transformers in the past 45 years.

For further information, or the address of your nearest distributor, please contact LM Ericsson Pty Ltd, 61 Riggall Street, Broadmeadows, Victoria 3047. Phone (03) 3092244.

ERICSSON

It should come as no surprise.
Polar response plots.

MEASUREMENT PERFORMANCE OF DALI 8
SERIAL NO. 10420

FREQUENCY RESPONSE : 32 Hz
CROSSOVER FREQUENCIES : 500 Hz, 2.8 kHz, 13 kHz
SENSITIVITY : (for 90 dB average @ 2m)
 8.0 VRMS = 8 Watts (nominal into 8 ohms)

HARMONIC DISTORTION :
(for levels as indicated)

<table>
<thead>
<tr>
<th>Frequency</th>
<th>100 Hz</th>
<th>1 kHz</th>
<th>6.3 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd</td>
<td>-96 dB</td>
<td>-96 dB</td>
<td>-85 dB</td>
</tr>
<tr>
<td>3rd</td>
<td>-63.0</td>
<td>-34.9</td>
<td>-51.3</td>
</tr>
<tr>
<td>4th</td>
<td>-44.7</td>
<td>-67.3</td>
<td>-37.3</td>
</tr>
<tr>
<td>5th</td>
<td>-9.0</td>
<td>-73.3</td>
<td></td>
</tr>
<tr>
<td>THD</td>
<td>0.92%</td>
<td>1.8%</td>
<td>1.4%</td>
</tr>
</tbody>
</table>

INPUT IMPEDANCE :

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Hz</td>
<td>7.3 ohms</td>
</tr>
<tr>
<td>1 kHz</td>
<td>10.6 ohms</td>
</tr>
<tr>
<td>6.3 kHz</td>
<td>15.9 ohms</td>
</tr>
<tr>
<td>Minimum at 125 Hz</td>
<td>7.2 ohms</td>
</tr>
</tbody>
</table>

213-2) and Ella Fitzgerald’s and Louis Armstrong’s “Porgy & Bess” (CD Verve 827 475-2) to evaluate voice realism.

The results of these tests were remarkably good and I started to understand more clearly why the Dali designers placed such a strong emphasis on subjective evaluation of their speakers. I listened to a number of other conventional recordings and CD discs of spoken voice and singers and was unable to shake my initial impression that the speaker performance on recorded voice is grade A.

The next series of subjective tests was an evaluation of response with selected low frequency content, the most important of which was the Swedish Hi-Fi Institute’s “Ljud och hur det ska lata” record. The results were quite outstanding and the response at 100 dB was clean, deafening and most impressive. The speakers were able to induce window and glass panel resonances in my bookcase that I have never noticed before (and that is no modulation of the speakers!).

In the classical field, I listened to two new outstanding CDs: Julian Lloyd Webber’s “Pieces” (Polydor 827 352-2) and Herbert von Karajan’s “Dvorak’s New World 9th Symphony”. The audible characteristics of the speakers, although noticeably coloured at high frequencies were still unquestionably exciting and impressive. The speakers displayed excellent stereo imaging, excellent transient response and no audible signs of speaker distress at listening levels of up to 100 decibels. At higher levels, I was able to detect pronounced distortion in the mid frequency region but still no significant distortion at very high frequencies.

The Dali 8 speakers have a number of attributes which will endear them to intending purchasers. The most important is their subjective performance which I rate as being above average in most critical areas. The speakers do exhibit a pronounced colouration which most listeners are likely to find pleasing rather than disturbing, and this is supplemented by a speaker cabinet design which requires only a modest area of floor space and even though relatively tall, creates only a modest visual impact.

At a recommended retail price of $2200 per pair, they are not cheap but if you have that sort of money to spend on speakers I would commend a full subjective evaluation, before purchasing an alternative system.
Computer

Avtek DIP SWITCH MINI RS 232 PATCH BOX $399

Components

FLOPPY DESK 27128, 2716..4-95

Unlimited

PRE-PAK electronics p/l 1a WEST ST, LEWISHAM, NSW 569-9797 24 HR PHONE ORDER SERVICE Phone or mail order BANKCARD accepted
New generation signal generator

The new signal generator SMG from Rohde & Schwarz offers excellent modulation characteristics, with easy and universal sweep capabilities.

The SMG is a low-noise signal source with crystal-referenced signals in the range from 0.1 to 1000 MHz with 1 Hz resolution. It features a precise output level adjustable between -137 and +13 dBm (+16 dBm for special applications) in steps of 0.1 dB. Most applications are therefore for measurements on transceivers and aeronautical, telemetry, navigation and broadcasting equipment.

High frequency stability and resolution, low residual FM (1 Hz at 250 MHz) and sweep operation with phase-continuous frequency changes allow measurements even on narrowband test items and SSB receivers.

Particularly important for two-SSB measurements is the low SSB noise of typically -126 dBc at 20 kHz from the carrier at 500 MHz (bandwidth 1 Hz). SSB noise is reduced even more towards lower frequencies, it is typically -140 dBc at 100 MHz.

The extremely short setting times of 15 ms for frequency and level are important for both test routines where time is at a premium and for fast sweep operation.

The signal generator offers versatile AM, FM, phase脉冲 and FSK modulation. For two-tone modulation, internal and external sources can be switched on simultaneously. The standard modulation oscillator (fixed frequencies) may be replaced by the AF synthesiser option SMG-B2 which can be used as an internal modulation source and also as an audio signal source (10 Hz to 100 kHz) for external applications. The AF output signal is selectable from 1 mV to 1 V with a resolution of 1 mV.

For further information contact Rohde & Schwarz, 13 Wentworth Ave, Darlinghurst, NSW 2010.

Rechargeable soldering iron

One of the neatest little pieces of workshop equipment to come on to the market for some time is the Protec Rechargeable Soldering Iron. It is cordless and comes with a sleek black protective stand which also functions as the charging unit.

The soldering iron has built-in solder point illumination. Replacement tips come with an Allen key and cleaning pad, and the tips have very heavy gauge leads so they won’t be affected by corrosion.

Power is supplied by a nicad battery which takes about 4 to 5 hours to become fully charged. However, when fully charged the soldering iron heats up ready for use in just 20-25 seconds.

The Protec is sold complete with the battery, a plugpack power adaptor, a leaning sponge and an easy-to-follow instruction pamphlet. It is available from Rod Irving Electronics, (03)543-7877 for around $60, with a 12 months warranty.
CCTV design service
AWA Rediffusion is offering a design and installation service for industrial and security television systems. Enquiries can be directed to offices in major capital cities; a full engineering facility is available at the NSW head office, 376 Eastern Valley Way, Roseville, NSW 2069.

Audio monitor power amp
The MPA-2100 audio monitor amp released by Lenco has the following specifications. Frequency response: 1 Hz to 100 kHz ±0.5 dB; power: 100 watts into 8 ohms and 400 watts into 8 ohms both channels (mono strapped); 0.005% thd, 8 ohms, 1 kHz, 100 watts.

Intelligent portable programmer
The new SE-4943 portable programmer promises reduced programming times by at least a quarter with its new algorithms. Another attractive feature is the size of the programmer which will fit into a briefcase and weighs only 1.5 kg. Serial and parallel interface are standard. For more information contact Alfatron, 1761 Ferntree Gully Rd, Ferntree Gully, Vic 3156. (03)758-9000.

Portable oscilloscope
The new 20 MHz Norma oscilloscope is a light, portable device with two channels designed for use in education and training, in the lab, and in development or test and field service. It features bright image and 2 mV sensitivity. Further information is available from Paton Electrical, 90 Victoria St, Ashfield, NSW 2131.

Memory scope
Another scope around is the new 2 channel, 20 MHz Trip/Kenwood release which maintains the stored signal even when the power is off. It has a maximum digitising rate of 1 μs per word with dual clocks and simple single button operation with GPIB communication. The scope can be operated in normal scope modes. For more information contact Parameters, in Sydney on (02)888-8777 or Melbourne on (03)575-0222.

Micro-ohmmeter
Keithley Instruments has extended its range of precision measurement equipment with the model 580 micro-ohmeter. This device offers 10 micro-ohm sensitivity with the ability to clamp the output voltage to 20 mV for "dry circuit" applications. The meter is useful for contact and connector tests, in aerospace and defence applications and in electronic component and materials testing. More information is available from Scientific Devices, 2 Jacks Rd, South Oakleigh, Vic 3167. (03)579-3622.

Modula-2 compiler for 8086/88
Logitech Inc has released version 2 of its Modula-2 compiler for 8086/88 microcomputers. Modula-2 is a modern language suitable for system design. Low level routines may be implemented efficiently without sacrificing the benefits of a high level modular programming language. Its advantages are flexible routines for data transfer between different types of variables, interrupt handling, and access to underlying hardware and operating software. For more information contact BJE Enterprises, 35 West Pde, Eastwood, NSW 2122.

Hand-held cable fault finder
A hand-held fault-finding device, the CL250 contact locator, is said to be able to locate faults in cables up to 25 km long. The simply operated device automatically carries out adjustment and calibration. For more information contact Electrical Equipment Ltd, 11-17 Wilmette Pl, Mona Vale, NSW 2103.

21A EPROM programmer
The 21A is a low-cost PROM programmer from DATA I/O. This small, compact self-contained programmer can program up to 256K MOS, CMOS or even EEPROMs. It is tailored precisely to suit companies with limited budgets. It may be a little inflexible compared with other more expensive programmers in the market, but why pay for expandable facilities, add-on programming capabilities which you don’t need?

The unit has a built-in RS232 interface and an LED digit array display, allowing it to be connected to a host development system. The display shows the ROM type, command used, address and the checksum.
The entire keyboard only has 24 'soft-touch' keys for easy start but has the full capability to edit the data, give commands, address the RAM buffer etc.
All together these features make this a very useful, very compact, (only eight inches wide, barely five pounds) unit. Lidcombe, NSW 2141.

Data I/O products are available...
SERIES 5000

INDIVIDUAL COMPONENTS TO MAKE UP A SUPERB HIFI SYSTEM!

By directly importing and a more technically orientated organisation, ROD IRVING ELECTRONICS can bring you these products at lower prices than your competitors. Enjoy many other advantages of RIE Series 5000 kits as an "Supereq, Wires" front panel at no extra cost, top quality components supplied throughout. Over 1,000 sold.

For those who want the want and quality for hi-fi, we also sell the Series 5000 kits assembled and tested.

POWER AMPLIFIER

WHY YOU SHOULD BUY A "ROD IRVING ELECTRONICS" SERIES 5000 POWER AMPLIFIER

- 1% Metal Film Resistors are used where possible.
- Aluminium alloy chassis and heatsinks are used.
- All components are top quality.
- Over 1,000 of these kits now sold.
- Super Finish front panel supplied at no extra cost.

Please note that the "Supereq, Wires" heatsink for the Power Amplifier is not supplied with ROD IRVING ELECTRONICS and is being supplied to other kits as part of the kit supplied.

SPECIFICATIONS:

<table>
<thead>
<tr>
<th>POWER AMPLIFIER 100W RMS into 8 ohms</th>
<th>POWER AMPLIFIER 100W RMS into 4 ohms</th>
<th>30W RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Response</td>
<td>Input Impedance</td>
<td>Frequency Response</td>
</tr>
<tr>
<td>3Hz-15kHz</td>
<td>45kΩ</td>
<td>25Hz-15kHz</td>
</tr>
<tr>
<td>20Hz-85kHz</td>
<td>68kΩ</td>
<td>20Hz-15kHz</td>
</tr>
<tr>
<td>Total Harmonic Distortion</td>
<td>Input Sensitivity</td>
<td>Input Sensitivity</td>
</tr>
<tr>
<td>0.01% at 1kHz</td>
<td>1V RMS</td>
<td>0.5V RMS</td>
</tr>
<tr>
<td>Output Power</td>
<td>Output Power</td>
<td></td>
</tr>
<tr>
<td>100W RMS</td>
<td>50W RMS</td>
<td></td>
</tr>
<tr>
<td>Gain Control</td>
<td>Gain Control</td>
<td></td>
</tr>
<tr>
<td>0 to 20dB</td>
<td>0 to 20dB</td>
<td></td>
</tr>
<tr>
<td>Protection Devices</td>
<td>Protection Devices</td>
<td></td>
</tr>
<tr>
<td>Overload, Underload, Overcurrent</td>
<td>Overload, Underload, Overcurrent</td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td>Dimensions</td>
<td></td>
</tr>
<tr>
<td>300 x 50 x 125mm</td>
<td>300 x 50 x 125mm</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>Weight</td>
<td></td>
</tr>
<tr>
<td>2.5kg</td>
<td>2.5kg</td>
<td></td>
</tr>
</tbody>
</table>

Cat: K-45771
Price: $1,015
Assembled and tested $1,395

PREAMPLIFIER

THE ADVANTAGES OF BUYING A "ROD IRVING ELECTRONICS" SERIES 5000 PREAMPLIFIER KIT ARE

- 1% Metal Film Resistors are supplied.
- 14 metres of Low Capacitance shielded Cable are supplied at bit extra in case of mistakes.
- English "Lutric" switches as supplied (no substitutes here.)
- Specially imported black anodised aluminium knobs.

Available, Assembled and Tested. We believe that dollar for dollar there is not a commercial unit available that sounds as good.

SPECIFICATIONS:

<table>
<thead>
<tr>
<th>PREAMPLIFIER 220V AC</th>
<th>PREAMPLIFIER 240V AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Impedance</td>
<td>Input Impedance</td>
</tr>
<tr>
<td>10kΩ</td>
<td>10kΩ</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>Frequency Response</td>
</tr>
<tr>
<td>50Hz to 15kHz</td>
<td>50Hz to 15kHz</td>
</tr>
<tr>
<td>Total Harmonic Distortion</td>
<td>Total Harmonic Distortion</td>
</tr>
<tr>
<td>0.01%</td>
<td>0.01%</td>
</tr>
<tr>
<td>Signal to Noise Ratio</td>
<td>Signal to Noise Ratio</td>
</tr>
<tr>
<td>95dB</td>
<td>95dB</td>
</tr>
<tr>
<td>Intermodulation</td>
<td>Intermodulation</td>
</tr>
<tr>
<td>0.001%</td>
<td>0.001%</td>
</tr>
<tr>
<td>Dimensions</td>
<td>Dimensions</td>
</tr>
<tr>
<td>250 x 120 x 90mm</td>
<td>250 x 120 x 90mm</td>
</tr>
<tr>
<td>Weight</td>
<td>Weight</td>
</tr>
<tr>
<td>1.5kg</td>
<td>1.5kg</td>
</tr>
</tbody>
</table>

Cat: K-44791
Price: $795
Assembled and tested $1,095

THIRD OCTAVE GRAPHIC EQUALIZER

SPECIFICATIONS:

<table>
<thead>
<tr>
<th>GRAPHIC EQUALIZER</th>
<th>GRAPHIC EQUALIZER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Impedance</td>
<td>Input Impedance</td>
</tr>
<tr>
<td>10kΩ</td>
<td>10kΩ</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>Frequency Response</td>
</tr>
<tr>
<td>3Hz-15kHz</td>
<td>3Hz-15kHz</td>
</tr>
<tr>
<td>Total Harmonic Distortion</td>
<td>Total Harmonic Distortion</td>
</tr>
<tr>
<td>0.01%</td>
<td>0.01%</td>
</tr>
<tr>
<td>Signal to Noise Ratio</td>
<td>Signal to Noise Ratio</td>
</tr>
<tr>
<td>95dB</td>
<td>95dB</td>
</tr>
<tr>
<td>Intermodulation</td>
<td>Intermodulation</td>
</tr>
<tr>
<td>0.001%</td>
<td>0.001%</td>
</tr>
<tr>
<td>Dimensions</td>
<td>Dimensions</td>
</tr>
<tr>
<td>250 x 120 x 90mm</td>
<td>250 x 120 x 90mm</td>
</tr>
<tr>
<td>Weight</td>
<td>Weight</td>
</tr>
<tr>
<td>1.5kg</td>
<td>1.5kg</td>
</tr>
</tbody>
</table>

Cat: K-44590
Price: $295
Assembled and tested $395

SERIES 4000 SPEAKERS

8 Speakers $49
8 Speakers with Crossovers $57
Speaker Boxes (assembled with grill and speaker cutout) $30
Complete kit of parts (speakers, crossover, screws, interconnection boxes) $89

Assembled, tested and ready to connect to your system.

The third octave graphic equalizer

Errors and Omissions Excepted.
A TALE OF ICs AND HYBRIDS

In the '60s and early '70s the strength of the Australian electronics industry depended a good deal on significant barriers to imports. Out of the industry's collapse that followed the removal of those barriers has come a much more sophisticated trade.

JOHN WARD IS quite definite: "All this talk about a Technology Park I've heard before. We had one here ourselves. It used to be the case we produced everything we needed. If an engineer was making a radio, he could walk across the road and talk to a guy designing valves; turn left and find someone making switches. Now we've only got 110 people on the staff and we import just about everything."

In Adelaide, the old hands are less than impressed by the state government's new initiatives to attract high technology investment in the state. Time gives them the right to a certain cynicism. After all, those who remember the collapse of Australia's tariff barriers in the '70's, and the loss of jobs that followed, take government wisdoms with a pinch of salt.

Philips has been in South Australia for a long time, almost since the beginning of electronics. It did indeed have a huge investment in a manufacturing plant at Hendon; like most other international companies of the period, Philips found it profitable to be there. At Hendon, it had begun the manufacture of semiconductors in the early '50s: initially diodes, then later transistors. At one stage the company produced a wider range, in smaller quantities, than almost any other plant in the world.

By today's standards it wasn't really an efficient way of organising manufacture, but in a world where trade links were much longer and more expensive than they are today, it made good economic sense. The plant treated jobs and capital on a large scale. As it became easier to move goods around the world, however, tariff barriers were increasingly seen as shoring up inefficient Australian industries rather than encouraging local production. It took the government of Gough Whitlam to grab the nettle and remove tariffs in the mid '70s. Within years the Australian industry was decimated by cheap imports, as local subsidiaries of overseas giants collapsed their local operation and became importers.

At Hendon manufacturing was reduced steadily from 1975 onward, to the extent that by 1980 there was real fear of the plant being closed. In that year, however, a decision was made to use the manufacturing base at Hendon for the production of hybrid circuits, and later for the manufacture of custom ICs. Given the mood of the times it was a courageous decision. In fact one suspects it may well have been a decision born of desperation as much as anything.

It was also the correct decision. Business, since the nadir of 1980, has boomed as the electronics industry learnt how to exist in a more competitive environment. Today, there is no doubt that the optimists rule in Adelaide. John Ward again: "In 1975 it looked like we didn't have a hope, but here we are in 1986, and business has never looked better". Ward is Technical Manager of the Philips plant in the suburb of Hendon, the only place in Australia, as he tells you with a certain pride, where they make both ICs and hybrids under one roof.

Today's markets

Every year this decade Ward and his staff have watched the demand for their services
rise. Major customers, as might be expec
ted, are Telecom with the Defence Depart-
ment coming in a poor second. Among
smaller companies, the security industry
is heavily represented, but other small opera-
tors with designs for hybrids or ICs keep
coming through the doors.

It is, nevertheless, a small market. On the
other hand competition is also small. There
are only two other hybrid makers, Plessey
and Hybrid Microsystems, and one other
custom chip house: AWA. According to
Ward, the market is pretty segmented, with
Plessey and AWA taking the lion’s share of
the defence business, and Philips getting
most of the rest.

Ward says one of the major advantages
Philips has over other operators in the field
is the existence of both hybrid and chip fac-
tories under one roof. This means it can
give impartial advice to the customer who is
unsure of the most cost effective solution to
a problem. For instance, one problem en-
countered at the beginning of any project is
to find the best method of fabricating a cir-
cuit. Should it be done on a circuit board,
on a hybrid, on a custom chip, or on some
mixture of the two?

As a general rule, the more expensive the
start-up cost, the less expensive the unit
cost. So, it costs essentially nothing to
develop a printed circuit board from a sche-
mate of a circuit, but the unit cost of manu-
ufacture, even in quantity, is substantial. The
start-up costs of a hybrid are quite high, of
the order of $5000 or so, but unit cost is
lower. Custom chips cost $50,000 or so to
set up, but the unit cost is negligible. Which
is best in a given situation depends for the
most part on the simple question of how
many units will be sold. Increasingly, this
quarter of Australian industry is coming to
the belief that it can sell sufficient units to
make the set-up costs worthwhile.

One of the big problems, according to the
Manager of Philips Microelectronics, Dave
Segal, is convincing prospective customers
to leave a significant part of the manufactur-
ing cycle out of their control. Since hybrids
and chips are always part of some large
manufacturing process, the entrepreneur
has to be convinced that product will be
available when required. In this regard
there is no substitute for a convincing track
record.

Does Australia really need this kind of
competence? Ward argues strongly that it
does. Microelectronics is inherently labour
saving, he believes. And to the extent that
labour costs are one of the big problems fac-
ing electronics in this country, microelec-
tronics is on to a good thing.

There is no doubt but that industry as a
whole has been slow to move to a new
type of manufacturing. The reasons are
probably more psychological than technical
or financial; designers familiar with a tech-
ology are naturally reluctant to move into
a new area if the old way still appears to
work. To a certain extent, the future of hy-
brids is probably tied up with associated
technologies like surface mounting. This
technology is also growing slowly, for much
the same reasons. If one goes well or disap-
ppears, they all will.

The interesting question is whether events here will move in the same direction
as they have in the US, where the advent
of these new technologies has meant the diver-
gence of manufacturing and design func-
tions. Like Australia, the US has been slow
to adopt SMD techniques, in contrast to the
Japanese who are racing into it. If it be-
comes widely accepted in Australia that
design and manufacturing do not go hand in
hand, then the future for hybrid and custom
chip technologies will be assured. For
Philips then, the challenge might be to ward
off the new generation of manufacturers
who come in under them.

If nothing else though, Philips is one of
the great survivors and AWA one of the
oldest firms in the country.
BIG BOARD II

Jim Ferguson, designer of the "Big Board" distributed by Digital Research Computers, produced this stunning computer "Big Board II".

FEATURES:

- 4 MHz Z80 CPU AND PERIPHERALS CHIPS: The Ferguson computer runs at 4 MHz. Its monitor code is lean, uses Mode 2 interrupts, and makes good use of the Z80-A DMA chip.
- 64K RAM + 4K STATIC CRT RAM 24K (E) EPROM STATIC RAM: "Big Board II" has the three memory banks; the first memory bank has eight 4164 RAM's that provide of user space and 4K of monitor space. The second memory bank has two 2K and 8 SRAMS for the memory-mapped CRT display and space for six 2732s or 2K x 8 static RAMS, or pin compatible (EPROM). The third memory bank is for RAM or ROM added to the board via the STD bus. Whether bought as a bare board, a full kit, or assembled and tested, it comes with 450s2732A EPROM containing the monitor.
- MULTIPLE DENSITY CONTROLLER FOR SS/DS FLOPPY DISKS: The "Big Board II" computer has a multiple density disk controller, it can use 793 8677 controller chips. The board has two connectors for disk signals with 24 pins for 5 1/4 drives, the other with 50 pins for 8 drives.
- EXCELLENT ON-BOARD VIDEO: The Big Board II computer uses a 6845 CRT controller and 8002 Video Attributes controller to produce a quality terminals. Characters are formed by a 5 x 7 dot matrix on 15.75kHz monitors and a 7 x 9 dot matrix on 15.75kHz monitors. The display is user programmable with the default display 24 lines of 80 characters.
- STD BUS TERMINAL: "Big Board II" brings its bus signals to a convenient place on the board where user can solder a better monitor, card buses can be plugged directly into it, and it can be connected to bus circuit by industry standard card banks.
- A Z80 A 100 = EIGHT PROGRAMMABLE COUNTER/TIMERS: The "Big Board II" has two Z80-A CTCS. One is used to clock data In and out of the Z80-A 100, while the other is for systems and application.
- PROM PROGRAMMING CIRCUITRY AND SOFTWARE: The "Big Board II" computer has optional drivers for programming 2716s, 2732s, or pin compatible (EPROM).
- CP/M CAPABILITY: CP/M with Russell Smith's CBIOS for the "Big Board II" is available as a board system monitor. Features commands such as Go to, Alter, Fill, Move, Display, or Test Memory. Also Read and Write sectors Boot Normal, Unknown and General Flex.
- PC board is double sided, plated through solder masked, 11 x 11 1/2 inch. Includes the powerful 3rd generation Motorola 6809 Processor. Ideal for colleges, O.E.M.'s, Industrial and scientific uses.

6809 UNIBOARD

Many software professionals feel that the 6809 features probably the most powerful instruction set available today on ANY 8 bit micro. Now, at last, all of that Immense computing power is available at a truly unbelievably low price.

CHECK THE FEATURES!!!

- 64K RAM using 4116 RAMS.
- 8000E Motorola CPU
- Double Density Floppy Disk Controller for either 5 1/4 or 8 inch drives. Uses WD 1705.
- ASCII Keyboard parallel input interface. (6522).
- Serial I/O (6551) for RS232C or 20 MA loop.
- Centronics compatible parallel printer Interface (6522).
- Bus expansion interface with DMA Channel (644).
- Dual timer for real clock application.

Complete Kit, fully socketed, all options standard, no extras to buy!

YOUR CHOICE OF DISK OPERATING SYSTEMS

FLEX tm from TSC $359
OS9 tm from Microwave $459

ON SPECIAL SAVE $30

SAVE $501

IBM XT TYPE COMPUTER CASING

Give your kit a computer a totally professional appearance with one of these "IBM Type" casings. Includes room for 2 x 5 1/4 inch disk drives, connection ports and mounting accessories etc. Dimensions: 490 x 360 x 140mm. Cat. X1090 $20. Now $99
NEW COMPONENTS

Motorola: low-cost FET DIPs

Motorola has introduced a new line of medium power TMOS field effect transistors in single or quad configurations.

These devices — the IRFD120/123, IRFD110/113, and IRFD9120/9123 series of single FETs and the IRFE110/113 and IRFE9120/9123 series of quad FETs — designed for low-voltage, high-speed switching applications, are available in 4-pin (single) and 16-pin (quad) low cost plastic DIP packages. The silicon gate design allows for fast switching speeds needed for today's demanding consumer applications.

The quad TMOS FETs are available with the same electrical characteristics as the single FETs. These devices further increase board component density while dissipating 1 watt per device (3 watts maximum per package).

ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Sym</th>
<th>IRFD120</th>
<th>IRFD123</th>
<th>IRFD110</th>
<th>IRFD113</th>
<th>IRFD9120</th>
<th>IRFE9123</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakdown Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V<sub>BRS</sub>)</td>
<td>100</td>
<td>60</td>
<td>100</td>
<td>60</td>
<td>100</td>
<td>60</td>
<td>100</td>
<td>V<sub>dc</sub></td>
</tr>
<tr>
<td>Drain Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous T<sub>c</sub> = 25°C</td>
<td>1.0</td>
<td>0.8</td>
<td>1.0</td>
<td>0.8</td>
<td>1.0</td>
<td>0.8</td>
<td>1.0</td>
<td>A<sub>dc</sub></td>
</tr>
<tr>
<td>Pulsed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>3.2</td>
<td>8.0</td>
<td>6.4</td>
<td>8.0</td>
<td>6.4</td>
<td>8.0</td>
<td>A<sub>dc</sub></td>
</tr>
<tr>
<td>On-Resistance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain-Source</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V<sub>DS</sub> = 10V<sub>dc</sub>, I<sub>B</sub> = 0.8 A)</td>
<td>2.4</td>
<td>3.2</td>
<td>0.6</td>
<td>0.8</td>
<td>0.6</td>
<td>0.8</td>
<td>0.8 ohms</td>
<td></td>
</tr>
</tbody>
</table>

Transparent plastic conductor

A new polymer that is both transparent and a good conductor of electricity has been designed, synthesised and characterised by researchers from the Institute for Polymer Science and the department of Physics at the University of California, Santa Barbara.

This novel material — poly(isothianaphthene), or PITN — is one of the earliest products from the new field of molecular engineering.

Synthetic polymers, commonly called plastics, are made by linking a large number of identical chemical building blocks, called monomers, into long molecular chains. The first material of this type, celluloid, was created in 1868. Since then plastics have been valued for light weight, pliability, mouldability and electrical insulation.

Until a few years ago the idea that an organic substance could exhibit the electrical, optical and magnetic properties characteristic of a metal was considered something of a contradiction in terms. The first product made from a conducting polymer appears to be a lightweight plastic battery.

A preliminary description of PITN was published last June in the *Journal of Chemical Physics* and the results of further characterisation studies appeared in December in the *Journal of Synthetic Metals*. Briefly, the process of creating PITN began by modifying the chemical structure of polymer thiophene with the addition of a benzene ring to reduce the energy gap and therefore enhance conductivity. It was also found that PITN was electro-chromatic, that is, similar to LCDs.

In conducting polymers the electron motion is mostly restricted to travel along the long molecular chains. And as electrons move they cause the molecules to deform. By contrast, electrons moving through a metal or semiconductor do not affect the position of the atoms and are free to move in any direction. So, where electron movement in a regular conductor might be compared to rolling steel balls on a hard floor, in the polymer case it is roughly analogous to rolling them on a soft mattress. Increasing the conductivity of such polymers involves the still imprecise art of altering their atomic structure to free up more electrons and reduce the molecule's resistance to electron motion.

Fairchild 32-bit CMOS

Fairchild is entering the 32-bit CMOS microprocessor market with a three-chip module that offers five times the performance of a Digital Equipment Corp VXA-11/780.

The Clipper module executes instructions in 30 ns, or at a 5 million instructions per second clip. It will enable microprocessor-based systems to do tasks that were until now only in the preserve of mainframes or superminicomputers: simulation and the design of very large scale integrated circuits, for example. The Mountain View company's module uses the basic elements of a reduced-instruction-set architecture and runs under the Unix operating system.
Edgewise panel meters
Kuwano Electrical has released its series of edgewise panel meters featuring a flat, stackable design, with self-shielded ring core magnet movement. They are available from Paton Electronics, 90 Victoria St, Ashfield, NSW 2131.

TI adds functions to Schottky families
Texas Instruments has announced the addition of 17 functions to its Advanced Schottky (AS) and Advanced Low Power Schottky (ALS) family of TTL devices. The new components include line drivers, comparators, parity generators/checkers, buffer/drivers, a shift register, hex buffers and 16-bit error detection and correction circuits. The total available AS/ALS products is now over 300.

12.5 MHz 80186 Intel microprocessor
Intel has introduced the 80186-12 microprocessor, a 12.5 MHz version of its 16-bit 80186. The new version offers higher speed, reduced interrupt latency time, reduced memory access latency time and greater than 6 Mbyte per second bus transfer rate. For more information contact Intel at Level 6, 200 Pacific Hwy, Crows Nest, NSW 2065. (02)957-2744.

Fairchild’s 212 modem chip
Fairchild has introduced the µ-A212A monolithic IC which meets Bell 212A standards for 1200 baud modems, and includes a fall-back mode to 300 bps. The 28-pin switched capacitor µ-A212A also performs dialling, handles handshaking protocols and establishes operating modes under microprocessor control. With a small amount of external circuitry, RS232 and telephone lines can be interfaced.

New project cases
Amalgamated Instrument Co is supplying a range of weatherproof enclosures for projects. The boxes were originally designed for swimming pool equipment using a plastic material, ASA, reputedly more resistant to ultra violet than ABS. The front is made of a toughened acrylic, also resistant to ultra violet. Four mounting brackets are supplied for surface mounting but they can also be panel mounted with some ingenuity.

The cases retail at $22.50 from AIC, Unit 7, 21 Tepko Rd, Terrey Hills, NSW 2084. (02)450-1744.

Precision op-amp
New style hermetically-sealed ceramic DIP (cerdip) versions of the industry-standard line of OP-07, OP-27, and OP-37 precision op-amps have been introduced by Analog Devices, Inc. Complementing the company’s plastic DIP and TO-99 metal can versions, the 8-pin cerdip units meet the demand for applications requiring a hermetically-sealed DIP package.

Designated by a ‘Q’ suffix, the AD OP-07Q, AD OP-27Q and AD OP-37Q are said to offer the same high-performance guaranteed specifications as the metal can versions. In addition to facilitating the use of automatic handling equipment, the cerdip versions also guarantee performance for use in military as well as industrial environments. Applications for the op-amps include signal conditioning, data acquisition and use in instrumentation.

Each amplifier type offers grades characterised for different performance levels over temperature. Maximum specifications for offset voltage, offset voltage drift, and long-term stability are guaranteed for any type’s best grade at 25 µV, 0.6 µV/°C and 1.0 µV/month, respectively. The AD OP-07 is available in the 0 to +70°C and −55 to +125°C temperature ranges, the AD OP-27 and AD OP-37 in the −25 to +85°C and −55 to +125°C ranges.

Specified performance for bandwidth and input noise differentiate the amplifiers. The AD OP-07 specifies typical biased-loop bandwidth of 0.6 MHz and maximum input noise of 0.6 µV_p-p (0.1 to 10 Hz). Maximum input noise for the AD OP-27 is lower at 0.18 µV_p-p (best grade) and guarantees a minimum gain-bandwidth product of 5 MHz (all grades). The AD OP-37 also guarantees noise of 0.18 µV_p-p (best grade), but additionally guarantees a minimum gain-bandwidth product of 45 MHz (all grades).

For further information contact Parameters, Centrecourt, 25-27 Paul St Nth, North Ryde, NSW 2113. (02)888-9777.

FRAM gets going
Ramtron Inc of Colorado Springs has just signed a deal with General Motors to explore the possibilities of frerro electronic RAM in cars. Ramtron is a subsidiary of the Australian owned Newtech Development Corp.

FRAM features non-volatile memory, TTL level supply and signals, together with equal and very fast read/write times. Currently Ramtron is demonstrating 1K chips in which each memory cell is just 2 microns by 2 microns. In addition, Ramtron has also succeeded in demonstrating ferro electronic transistors.

One of the developers of the process is Carlos Araujo, who says that there are many applications for non-volatile chips in cars, especially as they come more and more to depend on computer technology. He says applications in the near future include ignition control, control of variable gearing and the collection of service data.

ETI May 1986 — 51
UHF TUNER

The government's intention to move TV stations from the VHF band to the UHF band became earnest fact when the special broadcasting service switched off its VHF transmitters. While ETI doesn't stand in the way of progress, it does sympathise with those clinging on to their old tellies who can't pick up UHF!

Gerry Nicholson

The tuning pot is bottom right with LIVE CHASSIS CAN KILL

Many colour televisions imported into this country have live chassies. If you come into contact with such a chassis and some earth point at the same time, you will be electrocut-ed.

A live set is one which has the neutral of the mains connected directly to the chassis. In some cases, someone may have reversed the mains leads and the active will be connected to the chassis which is very dangerous.

Most live sets have a warning on the back. However this warning may be on a paper sticker which can come off.

The easiest way to recognise a live chassis is by the lack of a mains transformer. However, the set may employ a switched mode power supply, in which case it will be isolated. In a rare case the set may employ an autotransformer but it will still be live.

WITH THE DEMISE of SBS TV on VHF Channel 0, many people with early model receivers are now unable to receive this service unless they purchase a new set, a VCR or a down-converter. Alternatively, they can convert their existing sets. This article describes a method of converting an existing receiver for less than $50 and still obtain perfect results.

The circuit described uses a Philips vari-cap tuner ECL 2060. This tuner covers bands 2 channels 0 to 4, band 3 channels 5 to 11 and bands 4 to 5 UHF. (Reconditioned ECL tuners can be purchased for $25 from Nicholson Electronics, 48 Earnest St, Belmore, NSW 2192. (02)750-5242.)

Construction

Although we are presently only interested in the UHF band, with the addition of a few parts (shown in Figure 1) you may tune all VHF channels as well. The circuit described is adaptable for most receivers. If
The only way to really be certain whether the chassis is isolated or live is to measure the resistance between the pins of the plug and the chassis. If the ground is connected to the chassis, you have a conventional set. If not you have a problem. Either the earth is disconnected, or you have a live chassis set. You can determine which by measuring between the other two pins and the chassis.

If either of them is connected directly to the chassis you have a live chassis. The only safe way to work with a ‘live set’, is to use a 240 V to 240 V isolating transformer with a sufficient power rating to power the set in question. As mentioned in this article, if you are converting a live set, isolate the antenna input with high voltage capacitors, ie, 0.001 µF, 600 V and make sure the switch and potentiometer shafts are plastic or insulated with plastic.
4. If input from VHF antenna is 12V, connect to existing tuner.

AGC from existing tuner will be applied to receiver chassis (ground).
HOW IT WORKS — ETI-744

Most of the work for this project is done inside the tin can, which is a standard UHF/VHF tuner design with electronic tuning. The VHF section forms an IF for the UHF, so there is only one output for both VHF and UHF tuning, but a separate input for both bands.

The high voltage connection formed by the TAA550 is a simple zener diode voltage regulator. When connected into RV1 it yields a nominal 0-28 volts for tuning. R2, R3 and the pot RV2 condition the AGC from the set for input into the can. C2 is used for smoothing the 12 V supply.

PARTS LIST — ETI-744

<table>
<thead>
<tr>
<th>Resistors</th>
<th>all 1/4 W, 5% unless noted</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1, 2, 3</td>
<td>3k3</td>
</tr>
<tr>
<td>R5</td>
<td>220k 1/4W</td>
</tr>
<tr>
<td>R6</td>
<td>1M</td>
</tr>
<tr>
<td>R7</td>
<td>1k</td>
</tr>
<tr>
<td>RV1</td>
<td>100k potentiometer</td>
</tr>
<tr>
<td>RV2, 3</td>
<td>10k trim pot</td>
</tr>
<tr>
<td>RV4</td>
<td>4k7 trim pot</td>
</tr>
<tr>
<td>Capacitors</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>10μ, 63 V electro</td>
</tr>
<tr>
<td>C2</td>
<td>0μ1, 100 V</td>
</tr>
<tr>
<td>Semiconductors</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>1N4147 or equiv</td>
</tr>
<tr>
<td>ZD1</td>
<td>TAA550 regulator</td>
</tr>
<tr>
<td>Q1</td>
<td>BC557 or equiv</td>
</tr>
<tr>
<td>SW1</td>
<td>OPDT</td>
</tr>
<tr>
<td>SW2</td>
<td>DPST</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
</tr>
<tr>
<td>1 Philips tuner ECL 2060; 7 lug tagstrip; 5 lug tagstrip; 75 ohm socket and coax cable; rainbow ribbon; knob for the pot.</td>
<td></td>
</tr>
</tbody>
</table>

Price estimate: $45

Note: With positive AGC, R6, R7, Q1 & RV4 are not required. With negative AGC, R2, R3, RV2 are not required. See text.

you choose the UHF only option, the new tuner must be placed in parallel with the existing one. Alternatively, it is possible to remove the existing unit completely.

You may connect the antenna input in parallel with the existing input or supply a separate UHF input socket. If the chassis is live you will need to add suitable capacitors in series with both the braid and the centre lead of the UHF input cable and use a tuning pot with a plastic shaft or add a plastic extender. (See box.)

Firstly, you need to supply a variable voltage for tuning the tuner. This is achieved by placing 0 to 28 V on pin 2 of the module. The easiest way to do this is to locate a high voltage source of 100 Vdc to 250 Vdc. The supply to the video output stages is usually quite suitable. This voltage is dropped via a 220k resistor, R5, into ZD1 TAA550, a high stability 33 V regulator. C1 acts as a filter cap to form a simple zener.
regulator circuit. If you have trouble locating a voltage of this value, any high voltage will do, provided you change R5 so that the current through it is between 0.5 mA and 1 mA.

RV1 (100k) tunes the complete UHF band. The pot can be mounted almost anywhere you wish on extended leads and tuned with a reasonable sized knob or by adding a vernier. In the former case tuning is slightly critical but with a little practice you should have no trouble. (We have converted quite a number of sets without verniers and have had no complaints.)

The 12 V supply can be developed by removing the 12 V supply to the existing tuner and wiring it via SW1a as shown in the circuit diagram. The IF input lead should be removed from the existing tuner and wired to the centre of SW1b as shown in the circuit diagram. If you decide to replace the tuner completely then, of course, you can eliminate SW1 and permanently wire the 12 V supply to the new tuner.

Finally the rf AGC should be connected. Most transistorised tuners used in early model colour receivers use forward AGC control. That is, the forward bias to the rf transistor is increased with an increase in signal strength. In most cases the rf transistor is an npn device so the bias increases in a positive direction. This is just what we require. The tuner's existing AGC should be left as it is and connected via R3 to pin 13 of the ECL 2060. The 10k pot, RV2, is included to allow the UHF AGC delay to be adjusted.

In a rare case you may find that the existing VHF tuner uses a pnp transistor. If so, the rf AGC bias will increase from positive to negative and will need to be inverted to control the ECL 2060. Figure 2 shows how to do this replacing resistors R2, R3 and RV2.

It's not really worth the trouble to build a board for this project. We mounted the components on some tag strips as you can see from the photo. If necessary you could solder them directly on to the pins of the module. Another option might be to use a bit of veroboard bolted to the cabinet. How you actually do it will probably depend on how much space you have.

The tuner may be mounted in any suitable position but should be as close to the existing tuner as possible. If the receiver has a wooden cabinet the tuner's back cover can be screwed into position. If the cabinet is plastic use contact cement or double sided tape. Because of the wide variety of receivers about, the position of the tuning pot, the VHF antenna socket and the VHF/UHF switch is left to your discretion.

Testing

Once you have completed the wiring you can switch the set on to test the conversion. Check that the VHF tuner operates as before, then switch SW1 to UHF and adjust RV2 for maximum snow on the screen (assuming no station is tuned). Turn RV1 fully anticlockwise then slowly clockwise until a UHF transmission appears. (Without a vernier you need to turn RV1 very slowly.) Keep turning slowly until the picture breaks into sound, then reverse until the picture and the sound are both clean. Finally, turn RV2 (AGC offset) anticlockwise until the picture becomes snowy then advance it until the snow just disappears. Then reassemble the set.

Pot RV1. Notice the earth wire on to the body of the pot. If you locate the pot differently be sure to take this wire to a valid earth.

The back of SW1. Notice the shield earth is taken to the chassis.
To order from Jaycar Telemail-
Simply phone (008) 022 888
Toll free and pay the price of a local
call. If that’s busy, use
our Telemail Hotline
(02) 747 1888 for orders
and enquiries.

LS CHIPS AT SILLY PRICES.

<table>
<thead>
<tr>
<th>LS</th>
<th>Description</th>
<th>WAS</th>
<th>SPECIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 5000</td>
<td>745000</td>
<td>80¢</td>
<td>40¢</td>
</tr>
<tr>
<td>25 5002</td>
<td>745002</td>
<td>80¢</td>
<td>40¢</td>
</tr>
<tr>
<td>25 5008</td>
<td>745008</td>
<td>1.08</td>
<td>55¢</td>
</tr>
<tr>
<td>25 5020</td>
<td>745020</td>
<td>80¢</td>
<td>40¢</td>
</tr>
<tr>
<td>25 5074</td>
<td>745074</td>
<td>1.25</td>
<td>62¢</td>
</tr>
<tr>
<td>25 5085</td>
<td>745085</td>
<td>1.75</td>
<td>90¢</td>
</tr>
<tr>
<td>25 5109</td>
<td>745109</td>
<td>1.25</td>
<td>62¢</td>
</tr>
<tr>
<td>25 5125</td>
<td>745125</td>
<td>1.25</td>
<td>62¢</td>
</tr>
<tr>
<td>25 5139</td>
<td>745139</td>
<td>1.45</td>
<td>72¢</td>
</tr>
<tr>
<td>25 5148</td>
<td>745148</td>
<td>2.95</td>
<td>1.97</td>
</tr>
<tr>
<td>25 5153</td>
<td>745153</td>
<td>2.25</td>
<td>1.06</td>
</tr>
<tr>
<td>25 5164</td>
<td>745164</td>
<td>1.80</td>
<td>09¢</td>
</tr>
<tr>
<td>25 5174</td>
<td>745174</td>
<td>1.60</td>
<td>09¢</td>
</tr>
<tr>
<td>25 5175</td>
<td>745175</td>
<td>1.65</td>
<td>09¢</td>
</tr>
<tr>
<td>25 5244</td>
<td>745244</td>
<td>2.95</td>
<td>1.47</td>
</tr>
<tr>
<td>25 5273</td>
<td>745273</td>
<td>3.95</td>
<td>1.97</td>
</tr>
<tr>
<td>25 5392</td>
<td>745392</td>
<td>3.50</td>
<td>1.75</td>
</tr>
</tbody>
</table>

Prices include tax.
As there are so low already do not take 15% off.

"UNIVERSITY OF HARD KNOCKS"

Board game for VIC 64.
Load the cassette into your VIC 64 which
contains 5000 questions.
Then lay out the attractive vinyl covered
playing board and play the game.
Car. 189.000

WAS $49.95
ONLY $35.00
SAVE 30%
(Do not take another 15% off.)
MOST OF US, I suppose, tend to take the mains power supply for granted. Indeed, ordinarily supply authorities maintain the supply voltage within strict limits but, unfortunately, significant voltage variations do occur, particularly during electrical storms. We have all observed the lights dimming and the television momentarily blacking out on a stormy night. Such periods of electrical disruption are commonly referred to as 'brown-outs'. Brown-outs may be caused, for example, by lightning, line faults, or overloading by nearby electrical equipment.

Any disruption to, or significant variation from, normal supply voltage can be particularly hazardous to motor operated equipment, such as refrigerators, air conditioners and compressors. Either too high or too low a supply voltage can cause a motor to overheat and, if not adequately protected, to eventually burn out. Momentary disruptions to the supply voltage can cause a motor to stall and, again if not adequately protected, the motor may burn out when power is restored.

The need for protection of electrical equipment against supply voltage disruptions or abnormal voltages is recognised by equipment designers. Appropriate protection systems are available, although presumably intended in the main for industrial equipment eg. multi-phase equipment but there is still a lot of electrical equipment around which seems to be inadequately protected. One reason for this might be cost.

At the top of the scale, a microprocessor based system designed to protect against all conceivable kinds of fault would be very expensive indeed. Of course such a system would not be justified for, say, the domestic fridge, but even the simpler protection devices available are not cheap. To be fair, most domestic appliances do have some form of protection, usually in the form of a circuit breaker or thermal cut-out switch which operates in the event of an overload. Such devices, however, generally respond to an over-current or over-temperature condition rather than to voltage and may react too slowly to prevent at least some stress in equipment if the power supply misbehaves. Consequently, what is needed is a dependable 'do it yourself' device which will protect the most vulnerable equipment.

The ETI brown-out protector will automatically switch off power for a few minutes to allow a system to equalise in the event of a power disruption. Designed to be connected between a 240 Vac outlet and a load (equipment to be protected), it senses when the supply voltage goes outside safe limits and then cuts out power to the load. When normal supply voltage is restored, there is a time delay before power is cut in again. Two front panel adjustments are provided, making this device suitable for a wide variety of applications. One adjustment, labelled RANGE, sets upper and lower limits of mains voltage at which the circuit will cut out power to the load. These limits (ie. threshold levels) are calibrated from ±5 per cent to ±25 per cent deviation from nominal 240V. The other adjustment, labelled TIME, is calibrated from 1 to 60 seconds or minutes, depending on the position of a switch on the front panel.

There is no provision for trimming adjustments on the pc board. Any such adjustment, eg. to compensate for variations due to component tolerances, would require suitable test equipment and possibly involve fiddling with live mains voltages, something clearly to be avoided. Therefore, the calibration accuracy of the circuit relies on the use of close tolerance components where specified on the circuit diagram and parts list. If these are adhered to, calibration should be within reasonable limits for all practical purposes.

Nevertheless, a TEST facility is included to enable a quick check at any time that the circuit is working properly. Pressing this button simulates a mains line voltage drop of approximately 33 per cent, which should trigger the circuit if all is in order. A visual indication is provided by an LED which turns on when the circuit is triggered and goes out when the circuit cuts back in. A second LED lights up continuously if the power is on, whether or not the circuit is triggered.

Construction

The electronic circuitry for the prototype, including the transformer and power supply, is constructed on a single pc board and mounted in a large plastic instrument case. No special problems should be encountered in wiring up the board. Simply follow the circuit and the component overlay diagrams. The larger components, such as the relay and the transformer, might be mounted last as a matter of convenience.

Particular care should be taken with the external mains wiring to ensure that the right wires go to the right terminals on the board. The mains ACTIVE goes directly from the input cable to one terminal of the fuse holder and from the other to the appropriate terminal on the board. An external wire link is made from the ACTIVE terminal on the board to the LOAD terminal, which connects with one of the switch contacts of the relay. The other LOAD terminal goes to the ACTIVE terminal of the socket mounted on the back panel. In some special applications, the load may be another relay or device which requires an independent connection, in which case, the
wire link between the ACTIVE and LOAD terminals should be omitted.

Be sure to use 240 V mains rated insulated cable for all external wiring associated with the mains. When wiring has been completed and everything has been double-checked, ensure that all exposed connections, particularly the fuse-holder terminals, are properly insulated to prevent shock by accidental contact.

Testing

When everything checks out OK, plug into the nearest power point and switch on. Initially, both LEDs should light up then, after a delay set by the TIME setting, the TRIG LED should go out.

Press the TEST button and this LED should go on again for the selected time interval. Repeat this with a load, say a reading lamp, plugged into the back. In this case, the lamp should go out and then turn on again after a delay equal approximately to the TIME setting. If this test checks out OK, the unit should now be ready for use.

Use

Using the unit is straightforward: simply plug it into any 240 V mains outlet and plug the load into a socket on the back panel. Then, adjust the front panel controls to the desired settings and switch on.

The optimum settings for different appliances may vary, so advice from the manufacturer, if available, should be consulted. Failing this, the following may be a useful guide. In a typical domestic situation, the normal mains voltage at the point of supply can be expected to be within, typically, ±6 per cent of nominal 240 V. In addition, SAA wiring rules allow up to 5 per cent voltage drop in the wiring. This represents a total of +6 per cent and -11 per cent maximum deviation. Within these limits, the mains voltage may be considered normal. However, if the load is an electric motor, it will probably consume a heavy current on starting many times greater than the normal current rating of the motor. This imposes a temporary abnormal loading on the mains. The effect of this is offset, to some extent, by an inbuilt time constant in the sensing circuit which tends to ignore momentary line voltage changes outside the set limits, provided that they are of very short duration. However, it is as well to allow a small margin to prevent false triggering due to motor start-up. With this in mind, a RANGE setting of between 15 per cent and 25 per cent would probably be reasonable for a typical appliance.

Please note that this brown-out protection will not prevent momentary line voltage changes which could be critical for delicate equipment. In this case, a separate transformer is recommended.

Price estimate: $55.18

* R1 and R2 may prove difficult to obtain. If you can't find ½ W, 2% types you may replace them with 180k, ¼ W, 1%. If you do, R3 must also be replaced with a 160k, ¼ W, 1% to preserve the comparator voltage.

PARTS LIST — ETI-1531

<table>
<thead>
<tr>
<th>Resistors</th>
<th>all ¼ W, 5% unless noted</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1, 2</td>
<td>330k, ½ W 2%*</td>
</tr>
<tr>
<td>R3</td>
<td>8k2</td>
</tr>
<tr>
<td>R4</td>
<td>20k, 1%</td>
</tr>
<tr>
<td>R5, 9</td>
<td>30k</td>
</tr>
<tr>
<td>R6</td>
<td>220k</td>
</tr>
<tr>
<td>R7, 11</td>
<td>15k, 1%</td>
</tr>
<tr>
<td>R8, 10</td>
<td>12k</td>
</tr>
<tr>
<td>R12</td>
<td>820R</td>
</tr>
<tr>
<td>R13, 14, 15, 16, 17, 24</td>
<td>22k</td>
</tr>
<tr>
<td>R18</td>
<td>15k</td>
</tr>
<tr>
<td>R10</td>
<td>10M, 10%</td>
</tr>
<tr>
<td>R20</td>
<td>1k8</td>
</tr>
<tr>
<td>R21, 22</td>
<td>1k, ½ W</td>
</tr>
<tr>
<td>R23</td>
<td>100k</td>
</tr>
<tr>
<td>RV1</td>
<td>10k linear</td>
</tr>
<tr>
<td>RV2</td>
<td>1M linear</td>
</tr>
</tbody>
</table>

Capacitors

C1	100µf 16 V electro
C2	10µf 25 V tant
C3	1µf 25 V tant
C4	10n poly
C5	47n poly

Semiconductors

D1, 2, 3, 4, 5, 6...	IN4004
D7, 8, 9...	IN4148
LED1, 2	3 mm LT201R or sim

Q1 ... BC548, BC337, etc
IC1 ... 7812
IC2 ... LM339
IC3 ... 4001
IC4 ... 4541

Miscellaneous

T1 ... 2851
RLY1 ... 12 V coll, 10 A/240 V contacts
PB1 ... momentary pushbutton
F1 ... 3AG 5 A-10 A fuse

Panel mounting fuse holder; pcb terminal block (6 terminals); ETI-1531 pc board; 1 m flex with plug; 3-pin mains socket; LED mounting bezels; 300 x 145 x 75 mm case; front panel; 2 x 14-pin IC sockets (optional); 1 x 16-pin IC socket (optional); 6 self-tapping screws; hookup wire.
The circuit may be divided broadly into a comparator section and a timer.

The comparator section is unusual. It consists of four comparators IC2a to IC2d arranged in pairs, with the outputs of each pair connected to complementary inputs of a flipflop formed by CMOS NAND gates IC3a and IC3b or IC3c and IC3d, respectively.

An OR gate consisting of diodes D7 and D8 and resistor R15 connects the outputs of the two flipflops via R16 to pin 6 of timer IC4. R16 and C4 filter out transient voltage pulses which might otherwise falsely trigger the timer.

At the input side of the comparator, a potential divider, consisting of resistors R1, R3 and R4 and diode D5, is connected between mains ACTIVE and EARTH. This converts the ac mains voltage into a proportional dc voltage, which is filtered by R6 and C3 to remove ac ripple and goes to a common input of comparators IC2a to IC2d.

The remaining four comparator inputs go to respective points of a potential divider which is connected across the output of a voltage regulator, IC1. An optional resistor R2 and diode D6, corresponding to R1 and D5, are included so that the circuit will work if ACTIVE and NEUTRAL are reversed for any reason, but otherwise take no part in circuit operation.

You may be wondering why four comparators and two flipflops are used in the comparator section when it appears, at first sight, that one or two comparators would be enough. The reason is that, unlike conventional comparator circuits, the comparator section is designed to respond to four input threshold levels. Two of these correspond to selected mains voltage levels above and below nominal 240 V, at which point the circuit will respond by cutting out power to the load. In addition, for each cut-out threshold level, there is a different cut-in threshold level. This gives the circuit hysteresis and hence a degree of immunity from noise on the ac mains.

The timer consists of a 4541 CMOS IC. This useful device includes an oscillator and a 16-stage binary counter all in the one package. A timing sequence is initiated when the pin 6 input voltage goes from logic high to logic low. The output (pin 8), initially in the low state, goes high after a time determined by the oscillator frequency, set by RV2, and the division ratio of the binary counter, which is set by the position of switch SW1. RV2 gives an oscillator frequency range of 100 Hz to 20 kHz. SW1 selects a division ratio of 2^10 or 2^15, which represents a timing ratio of 2^12 = 4. Although not quite equal to a ratio of 60:1, it is enough for all practical purposes to allow two timing ranges to be calibrated, conveniently, from 1 to 60 seconds and from 1 to 60 minutes (approximately).

Consider now what would happen if the mains voltage were to go outside the upper and lower limits set by RANGE control RV1. The comparator section would detect this and generate a high output voltage at the pin 6 input of IC4. This will reset the internal binary counters and force the output (pin 8) of IC4 low. This output is connected by R20 to the base of Q1 which controls relay RLY1. So Q1 will turn off causing relay contacts SW2a to open, switching off power to the load. When the mains voltage is restored to normal, the voltage at pin 6 of IC4 will go low, initiating a timing sequence. At the end of the selected timing period, the output (pin 8) of IC4 will go high, causing the relay contacts to close and switch on power to the load.

A visual indication of circuit operation is provided by LED2. When the circuit is triggered by a mains fault condition, relay contacts SW2b close and LED2 lights up (provided mains power is available). The LED remains lit when normal mains voltage is restored, until the end of the timing period. This feature provides a useful check on circuit operation. In addition, LED1 acts as a POWER ON indicator.

HOW IT WORKS — ETI-1531

ETI May 1986 — 61
tion unit is not intended to replace any existing protection devices in equipment, such as overload circuit breakers, which on no account should be removed from equipment.

Neither is this unit intended, nor suitable, for use as a transient voltage protector for sensitive electronic equipment.

Acknowledgement is made of technical advice given by Mr Henningham of Ulcan County Council, which assisted in the preparation of this project and is much appreciated.

NEARLY BROWNED OFF

It is bad enough when an expensive home appliance fails because of some line or power supply fault, but when it is equipment upon which one’s livelihood depends the consequences can be disastrous. This brings me to an experience I had a couple of years ago which provided the stimulus for this project.

I own a small orchard and, during the picking season, store fruit in a refrigerated cool-room prior to shipment to market. It is essential for fruit to be kept cold during storage as otherwise it may spoil. At that time, as in this last season there were quite a few electrical storms in the area with consequent disruptions to mains supply. On more than one occasion the refrigeration system motor stalled, started to overheat and finally was switched off by an inbuilt thermal cut-out unit before too much damage was done. The cut-out unit for this system has to be manually reset, so if someone had not been around on those occasions to reset it (or had not known how to), the result could have been a lot of spoiled fruit.

To understand how an electrical disruption causes the electric motor to overheat, it may be helpful to look briefly at how a refrigeration system works.

A typical refrigeration system comprises an electric motor driving a compressor which, in turn, circulates a refrigerant fluid in a closed cycle around the system. In one part of the cycle the fluid is in a highly compressed, hot state. Heat from the fluid is dissipated into the atmosphere and the fluid liquefies. In another part of the cycle, the liquefied refrigerant passes into a low pressure section (evaporator) in which it turns into a gas and absorbs heat from the surroundings in the process.

When going flat out, a typical compressor can generate pressures of 200 psi (1400 kPa) or more. Consider what would happen if the mains power cut out for a few seconds while the motor was running. The motor would stop, the pressure to restart when power was restored. But, if the pressure in the system hadn’t had time to equalise, it might easily be enough to prevent the motor from starting again. Obviously, in this case, the motor would overload and possibly burn out unless the power is switched off very quickly. For that reason, refrigeration system manufacturers frequently warn that in the event of a power supply disruption the power should be switched off for a few minutes to allow pressure in the system to equalise.

MINIMART

FOR SALE: V2200/300 UNIQUE and first class software, monitor/debugger $14.95, extended BASIC $12.50, array utility $14.95, protect utility $14.95 and more. W. Oobrist, 59 Cobham Ave, West Ryde, NSW 2114.

FOR SALE: MICROBEE BITS: serial to parallel Interface $75; EPROM programmer $50; printer cable $30; EDASM on disk $20; all onl. Ring Ron (02) 680-3453 (h).

FOR SALE: TEKTRONIX 2215 oscilloscope. 60 MHz, dual channel, delay timebase, as new condition still in box. Sell for $2000 ono. Greg (03)359-2408.

FOR SALE: CROMEMCO Z2D. Fast 10M hard disk; 192K; terminal; printer; multi-user Unix-like O/S. Development software includes 8 languages and many utilities. $6500. Ph Mark (03)481-6222 ah.

FOR SALE: ZX81 INCL RAM pack, recorder, green screen monitor, keyboard, software, magazine. $300 the lot. Ring (03)49-5587 after 7 pm.

FOR SALE: SCANNER LISTING of Australian civil/military VHF/UHF aeronautical frequencies. Approx 500 sorted freq/location/service. $5. D. Vale VK3CDI QTHR, PO Box 2395, Mildura, Vic 3500.

WANTED: CONTACT with someone with AM- STRAD 6128 programmes of Morse and RTTY. Charles Aston, PO Box 2, Blaxland NSW 2774. (047)39-2646.

FOR SALE: NATIONAL PROTOTYPE professional reel to reel b&w VTR. Could possibly work. Experimental value. $50. If curious ring Peter (02)558-5137.

WANTED: SCIENCE FAIR "Globe Patrol", "SW Radio Kit" (No 28110) DX160, FRG7, Drike R-7, Icom, JRC, Tricity etc receivers and handbooks, also old WRTVs. (042)29-2573 Tony.

FOR SALE: APPROX 200 valves all new, $1.50 each. Send SAE for list. G. J. Birch, 2 Blackall Terrace, Nambour, Qld 4560. (07)41-2221.

FOR SALE: STC GENESIS G77 video terminal, amber screen, LAN workable $200; Phillips PM1220 40 cm high resolution monochrome video monitor $150. J. Wicks (03)547-7787.

FOR SALE: 2 ONLY TEAC FDS50A-02-U disk drives $150 ea; 2x 8 static RAM 50 off HM6116PS $2.20 ea; flex disk plus folio for 6609 $80. J. Wicks (03)547-7787.

The 2 volumes that we've written for the intelligent layman as an introduction to electronics theory and methods. Volume 1 discusses electronic systems in general: what they do, how they do it and how a complex electronic system can be broken down into fundamentals. Volume 2 introduces digital instruments, computers and peripherals, and oscilloscopes.

Order yours now from: Federal Marketing Book Sales P.O. Box 227 Waterloo, N.S.W. 2017

ELECTRONICS — IT'S EASY!

A two volume set that's written for the intelligent layman as an introduction to electronics theory and methods. Volume 1 discusses electronic systems in general: what they do, how they do it and how a complex electronic system can be broken down into fundamentals. Volume 2 introduces digital instruments, computers and peripherals, and oscilloscopes.

Order yours now from: Federal Marketing Book Sales P.O. Box 227 Waterloo, N.S.W. 2017

$5.95 per volume

Please add $1 to the cost of each volume to cover postage and handling.

ETI May 1986 — 63
This book is intended for owners of Microbee computers who have become reasonably competent BASIC programmers, and now wish to explore the mysteries of assembly language. It is assumed that you already have an Editor-Assembler fitted to your machine so that you may 'learn by doing'.

Although many articles and books have been written on Z80 assembly and machine language programming, the author believes that none adequately deals with the initial steps, so that they leave the prospective programmer confused and disheartened. This book endeavours to guide the uninitiated step by step through the early stages of assembly language programming.

Although written specifically for the Microbee owner, it is also to a large extent applicable to any home computer which uses the Z80 CPU. In spite of starting at square one, by the end of the book you should be able to write mathematical programs, games programs with moving graphics, (Asteroids, Frogger, etc.), sound effects, and be able to drive a printer; all running many times faster than the equivalent BASIC programs. In addition, you will have a much better understanding of how the computer works, and will then be in a position to read more advanced texts on programming and operation.

$9.95 at your newsagent now!

OR You can obtain your copy by mail order direct from:
Federal Marketing Book Sales
P.O. Box 227
Waterloo, N.S.W. 2017
Please add $1 to the cost of the book to cover postage and handling.

Win this VERSATILE CRO

It could be yours!

suitable for education, hobby or service

THE RITRON HUNG CHANG DUAL-TRACE
20MHz OSCILLOSCOPE FROM ROD IRVING ELECTRONICS

GREAT FEATURES INCLUDE:

* Built-in in-circuit component tester
* Z axis (intensity modulation)
* very low power consumption
* video sync filter

THIS COMPETITION IS EASY TO ENTER, NO PURCHASE REQUIRED

NAME

ADDRESS

TELEPHONE

64 — ETI May 1986
Check our test equipment range!

FREE FREIGHT ANYWHERE IN AUSTRALIA DURING MAY!

12 months warranty!
Includes two free probes!

HUNG CHANG (RITRON)
20 MHz DUAL TRACE OSCILLOSCOPE

- Wide bandwidth and high sensitivity
- Internal graticle rectangular bright CRT
- Built in component tester
- Front panel trace rotator
- TV video sync filter
- 2 axis (Intensity modulation)
- High sensitivity X-Y mode
- Vary low power consumption
- Regulated power supply circuit

COMPONENT TESTER is the special circuit with which a single component or components in circuit can be easily tested. The display shows faults of components, size of a component value, and characteristics of components. This feature is ideal for troubleshooting solid state circuits and components with no circuit power. Testing signal (AC Max 2 mA) is supplied from the COMPONENT TESTER in terminal and the result of the test is fed back to the scope through the same test lead wire at the same time.

CRT:
- CRT: 6" (150mm) Fl-aspect high brightness CRT with Internal Graticule, Effective display area: 5 x 100 mm
- Acceleration potential: 7kV

VERTICAL:
- Operating Mode: CH-A, CH-B, Dual, DUAL, ADD (CH-B can be inverted)
- Dual modes: After, 0.7 div, 0.5 mm/div, Ch1, Ch2: 0.5 div
- CHOP frequency: 200kHz approximating
- Deflection factor: 5mm/div; 100μv/div ~ 3%, 12 ranges in 1-2-5 step with fine control
- Bandwidth: DC - 20kHz (~ 3dB); AC 1kHz - 20kHz (~ 3dB)
- Rise Time: Less than 3μs
- Overload: Less than 5μs
- Input Impedance: 20kΩ, 20kΩ, 20kΩ, 20kΩ
- Maximum Input Voltage: 500V p-p (55kHz AC/AC Peak)
- Channel isolation: Better than 100MHz

HORIZONTAL:
- Sweep Mode: MANUAL and AUTO
- Time Base: 0.2μs/div; 0.5μs/div; 2μs/div; 20μs/div; 200μs/div; 2s/div
- Sweep: 3 ranges in 1-2-5 step with fine control
- Sweep Amplifier: 5 times (50Ω MAX)
- Linearity: 3%.

TRIGGERING:
- Separately: INTERNAL, 1 div or better for 30kHz - 20MHz (Triggerable to more than 20MHz)
- EXTERNAL: 1 div or better for DC - 20MHz (Triggerable to more than 20MHz)
- Source: TV, CH-A, CH-B, LINE and EXT
- Slope: Positive and negative, continuously variable with level control (FULL AUTO for the rear)
- Coupling: AC, OFF, PE, and TV. Sync Vertical and Horizontal Sync
- Separate Circuits allow any portion of complete TV waveform to be synchronized and expanded for viewing (TV (Line) and TV (Frame) are switched automatically by 20kHz). TV-V, TV-F, 15kHz to 0.1kHz, TV-H and VSync to 0.3μs/div.

X-Y OPERATIONS:
- X operations: CH-A, CH-B, CH-B, CH-B

COMPONENT TESTER:
- Built in component tester: Max AC IV of the terminal with no load. Max current 2mA when the terminal is shorted. Internal resistance is 4.7k ohm.

605 & 705A SPECIFICATIONS

<table>
<thead>
<tr>
<th>Range</th>
<th>Bandwidth</th>
<th>Accuracy</th>
<th>HFE Test</th>
<th>DC Current</th>
<th>AC Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>200Ω</td>
<td>100mA</td>
<td>±5%</td>
<td>±5%</td>
<td>±5%</td>
<td>±5%</td>
</tr>
<tr>
<td>1kΩ</td>
<td>1mA</td>
<td>±3%</td>
<td>±3%</td>
<td>±3%</td>
<td>±3%</td>
</tr>
<tr>
<td>10kΩ</td>
<td>100mA</td>
<td>±1%</td>
<td>±1%</td>
<td>±1%</td>
<td>±1%</td>
</tr>
<tr>
<td>100kΩ</td>
<td>3mA</td>
<td>±0.1%</td>
<td>±0.1%</td>
<td>±0.1%</td>
<td>±0.1%</td>
</tr>
</tbody>
</table>

Other Specifications

- Intensity Modulation
- Frequency: 10kHz (50Ω), 20kHz (50Ω), 50kHz (50Ω)
- X-Y Frequency: 5kHz (50Ω), 10kHz (50Ω), 25kHz (50Ω)
- X-Y Waveform: 10kHz (50Ω), 20kHz (50Ω), 50kHz (50Ω)
- Trace Rotation: Electrically adjustable on the front panel
- Power Requirements: 120VAC ±15%, 50/60Hz
- Weight: 15kg
- Size: 440mm x 240mm x 320mm

705A SPECIFICATIONS

- Power Requirement: 120VAC ±15%, 50/60Hz
- Weight: 14.5kg
- Size: 440mm x 240mm x 320mm

705A 31/2 DIGIT MULTI/CAPACITANCE METER

See specification table below for details.

Cat. Q11040 $119

605 31/2 DIGIT MULTIMETER

New replacement for VF1100. See specification tables below for details.

Cat. Q11035 $79.95

ANALOGUE WORKSHORPE

KT370

FEATURES:
- Fuse and diode protection
- NFE measurements 0 - 1000 (by 10 range)
- Mirror scale for more accurate reading

SPECIFICATIONS

- Ranges:
 - DC Voltage: 0 - 0.1, 0.25, 0.5, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000V (0.05%)
 - AC Voltage: 0 - 10, 20, 50, 100, 200, 500, 1000V (0.05%)
 - DC Current: 0 - 0.05, 0.1A, 0.5A, 1A, 10mA, 20mA, 50mA, 100mA, 200mA
 - Resistance: 0 - 2000Ω, 20kΩ, 200kΩ, 2MΩ, 20MΩ, 200MΩ
 - Load Current: 0 - 150mA, 1A, 15A, 150mA
- Accuracy:
 - DC Voltage, AC Voltage, Current: ±2% of Full Scale
 - Frequency: ±2% of Full Scale
 - Power: 1.5V, 9V, 12V, 100V
- Frequency: ±2% of Full Scale
- Diode: ±4% ±2% (Y)
- C.C. Circuit: ±4% ±2% (Y)
- Size & Weight: 147 x 9 x 7mm and 400g approx.

For specifications, see Page 20

Cat. Q11026

$34.95

BESwick 88100 PROBE SET

CONTAINS: Compensated probe lead with
- Deratable 6 inch earth lead
- Retractable hook
- 100mA
- Tip Insulator
- Shocking lock

$34.95

(For specifications, see Page 20)

ROD IRVING ELECTRONICS

125 High Street, NORTHCOATE, 3207
VICTORIA, AUSTRALIA
Phone (03) 699 6555
Fax (03) 699 6565
Mail Order and correspondence: P.O. Box 85, CLAYTON 3168
TEL: (03) 919 8544

MAIL ORDER HOTLINE (03) 543 7877 (2 lines)

POSTAGE RATES
- $1.99 $2.99
- $2.99 $3.99
- $3.99 $4.99
- $4.99 $5.99
- $5.99 $9.99
- $9.99 $12.99
- $12.99 $14.99
- $14.99 $16.99
- $16.99 $18.99
- $18.99 $20.99

This is for basic postage only. Correct postage for orders over $50 includes "Insured" delivery. Prices quoted are over $50 include "Insured" delivery.

ALL SALES TAX exempt only or all sales tax exempt orders and all sales tax exempt orders and corresponding items will be charged at different rates.

We reserve the right to change prices without notice. We are not responsible for orders not received. We are not responsible for any errors or omissions. End of Line.
The brand-new 100 page 1986 Jaycar Catalogue is cram-packed with thousands of items. We have hundreds of new products for 1986. You can secure your copy NOW by simply sending a large SAE or posting the coupon below.

★ ★ SPECIAL EXCLUSIVE OFFER!! ★ ★
You can save $10 on a 12 months subscription to Electronics Today! Fill out the form below and receive not only the Jaycar Catalogue for FREE but ETI for 12 months POSTAGE INCLUDED for only $20! This is the cheapest current subscription to ETI available.*

*NOTE: This is an exclusive Jaycar/ETI offer, and is NOT CONNECTED with circulation offers elsewhere in this magazine.

YES! Please rush me a copy of the 1986 Jaycar Engineering Catalogue.
Name: _____________________________
Address: ___________________________
Postcode: __________________________

POST TO:
JAYCAR ELECTRONICS
P.O. BOX 185, CONCORD NSW 2137

YES! Please also enter my subscription for 12 issues of Electronics Today International (postage paid) for the unbelievably low price of $20.
Name and address as shown to left.
□ I enclose cheque/money order for $20
□ Please debit Bankcard/Mastercard/Visa/American Express

Offer valid until May 31, 1986.
(Please make cheques payable to Electrical Publishing Company.)
DIGITAL SAMPLER

Part 2 Getting it together

ETI acknowledges the back to basics school of rock and roll. But on to finer arts. We've a special interest here in electronic sound and music (funny about that!) and are proud to give you this tidy little device which records short bursts of sound and can be used as a digital delay. Vive la synthèse!

Last month sampling theory and its implementation were discussed. This month we will develop a practical sampling system, putting some life into these ideas.

The first section to look at in this digital sampler is the gain block (see Figure 1). If a low sensitivity microphone is used as input it is possible for the signal to be as low as 30 mVp-p. On the other hand some synthesizers have outputs in the 1 and 2 volt range.

Now if the ADC requires a 0 to 5 V input (as is common), the gain will have to range between 167 and unity. Hence the op-amp IC1c, as shown in the circuit diagram, is arranged in non-inverting mode with a gain ranging from one to 278. When multiplied by the attenuation of the input summing network the gain is 193, which is sufficient.

Following the gain block we have a fourth order anti-aliasing filter. This is designed to attenuate all input frequency components above 4 kHz by 24 dB per octave. This will in turn reduce any aliasing effects by a proportionate amount. In the circuit diagram the filter is implemented as two second order filter sections connected in series, IC1a and IC1b. This type of filter section is called an infinite-gain multiple-feedback circuit. Filter sections of this form use a minimum of capacitors and resistors and hence are most cost effective.

Next is the ADC. Much of the circuit design must start with the ADC since its conversion time dictates how fast the system may sample and hence the final bandwidth. The specification calls for a 4 kHz bandwidth so we must sample at greater than 8 kHz by the Nyquist theorem.

Hence:

\[\text{Conversion time} < \frac{1}{8 \times 10^7} \]

\[= 125 \mu s \]

The ADC that has been chosen for this project is shown in the circuit diagram as IC2. The ADO820 is a relatively cheap converter but has a number of very desirable features. Firstly the conversion time is well below what is needed, in fact, it is approximately 2 µs! As well there is a built-in sample and hold amplifier. This gives an aperture time for the system of around 100 ns and is well within the limit of 160 ns that was calculated for a 4 kHz signal in Part 1.

In selecting the DAC we needed to find a chip that was both cheap and could run off a
Figure 1. Block diagram.

PARTS LIST — ETI-1402

<table>
<thead>
<tr>
<th>Part Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistors</td>
<td>1/4 W</td>
</tr>
<tr>
<td>R1, R2, R3</td>
<td>18k, 82k, 1k8</td>
</tr>
<tr>
<td>R4</td>
<td>1k8</td>
</tr>
<tr>
<td>R11, R12, R30, R33</td>
<td>100k, 47k</td>
</tr>
<tr>
<td>R13, R47</td>
<td>4.7k, 1u4</td>
</tr>
<tr>
<td>R14, R45, R48</td>
<td>1k, 1k8</td>
</tr>
<tr>
<td>R24</td>
<td>5k6</td>
</tr>
<tr>
<td>R25, R35, R37</td>
<td>220R</td>
</tr>
<tr>
<td>R26, R27, R38, R41</td>
<td>1u4 35V tant</td>
</tr>
<tr>
<td>R28, R29, R31, R47</td>
<td>10k, 47k</td>
</tr>
<tr>
<td>R23</td>
<td>15k</td>
</tr>
<tr>
<td>RV1</td>
<td>10k log</td>
</tr>
<tr>
<td>RV2</td>
<td>50k log</td>
</tr>
<tr>
<td>RV3</td>
<td>100k linear</td>
</tr>
<tr>
<td>RV4</td>
<td>20k linear</td>
</tr>
<tr>
<td>RV5</td>
<td>500k log</td>
</tr>
<tr>
<td>Capacitors</td>
<td></td>
</tr>
<tr>
<td>C1, C6, C8, C15, C16</td>
<td>2µ2 35 V tant</td>
</tr>
<tr>
<td>C2</td>
<td>1n8 greencap</td>
</tr>
<tr>
<td>C3, C12</td>
<td>1n2 greencap</td>
</tr>
<tr>
<td>C4, C9</td>
<td>6n8 greencap</td>
</tr>
<tr>
<td>C5</td>
<td>1n8 greencap</td>
</tr>
<tr>
<td>C7</td>
<td>1µ 35 V tant</td>
</tr>
<tr>
<td>C10</td>
<td>220p polyvinyl or ceramic</td>
</tr>
<tr>
<td>C11</td>
<td>6n2 greencap</td>
</tr>
<tr>
<td>C13</td>
<td>10n greencap</td>
</tr>
<tr>
<td>C14</td>
<td>2n2 greencap</td>
</tr>
<tr>
<td>C17</td>
<td>1000µ 16 V axial electro</td>
</tr>
<tr>
<td>C18, C20, C21</td>
<td>100n ceramic</td>
</tr>
<tr>
<td>C19</td>
<td>100µ 16 V axial electro</td>
</tr>
<tr>
<td>C22</td>
<td>1n ceramic</td>
</tr>
<tr>
<td>Semiconductors</td>
<td></td>
</tr>
<tr>
<td>D1-8, D2, D4</td>
<td>IN4148, IN914 etc</td>
</tr>
<tr>
<td>IC1.1, IC1.2</td>
<td>BC549, 2N3304 etc</td>
</tr>
<tr>
<td>IC1.4</td>
<td>TL074 or equivalent</td>
</tr>
<tr>
<td>IC2</td>
<td>ADC0820 National</td>
</tr>
<tr>
<td>IC3</td>
<td>ZN429 Ferranti</td>
</tr>
<tr>
<td>IC5, IC6</td>
<td>HM6116</td>
</tr>
<tr>
<td>IC7, IC8, IC9, IC10</td>
<td>4040, 4013, 4011, 4000</td>
</tr>
<tr>
<td>IC12, IC13</td>
<td>4071, 79L05</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
</tr>
<tr>
<td>SK1, SK2, SK3</td>
<td>6.5 mm standard phono socket</td>
</tr>
<tr>
<td>SK4</td>
<td>5.5 mm plastic (insulated) phono socket</td>
</tr>
<tr>
<td>SW1</td>
<td>DPDT switch</td>
</tr>
<tr>
<td>SW2, SW3</td>
<td>SPDT switch</td>
</tr>
<tr>
<td>PB1</td>
<td>momentary action pushbutton</td>
</tr>
</tbody>
</table>

5 knobs; diecast or zippy box 190 x 60 x 110 mm; 1 x 9 V battery; 1 x 9 V battery clip; battery holder; ETI-1402 pc board; 1 x 3.5 mm to 6.5 mm jack adaptor; 1 x 9 V plugpack (200 mA); stand-offs; nuts; bolts; washers; ribbon cable; rubber feet; front panel.

Price estimate: $118
Letters refer to connections on the board.
The input signal is ac coupled via C1 to one point of the summing junction formed by R1, R2 and R3. RV1 controls the amount of output fed back to the junction for regeneration. IC1c is configured to provide variable gain from unity to 279 via R4 and RV2. IC1a, IC1b and associated components form the second order low pass filter sections, combining to give a fourth order anti-aliasing filter. The band limited signal is then biased up to +5 V and fed to the ADC, IC2. C7 aids in reducing converter error in the lower range of input signals to the ADC.

After reconversion by the DAC IC3, the signal is coupled to the sixth order clock rejection filter formed by IC4c, IC4b, IC4c and associated components. The output is coupled via C15 to one side of the mix pot, RV3. The other side is a divided version of the input signal. R48 is included for current-limiting should the output be accidentally shorted. This is really only necessary when MIX is adjusted to give only the sampled signal. IC4d, R26, R27, D1 and D2 form the precision sample follower required for the envelope following provided by C16 and R28. This signal is then summed via R29 with the EXTERNAL TRIGGER input via R30. The node is biased to approximately +20 mV by R31. The junction is fed to one side of comparator IC1d. Bias resistors R33, R34 and R35 enable the other input to be varied via RV4 between +5 V and 1 V. When set to ~10 mV, a short circuit of the EXT TRIG input to ground will cause the comparator to switch, going positive. Thus a trigger signal is applied to the trigger network via the current limiting resistor R38. Diode D3 prevents the line going negative when the comparator returns to the non-triggered, negative state. Similarly setting the threshold to the associated resistor level requires the higher level positive pulse from either EXT TRIG or the envelope following circuit for trigger signal generation.

Biasing the triggering network for the moment, let's look at the control section. Assuming the system is in the rest state then STANDBY will be high (as will be shown later). The system clock is generated by the feedback loop of IC11a, IC11b and IC11d and associated timing components R44, R45, C22 and made variable between 1.2 kHz and 48.5 kHz by RV5. As STANDBY is high, the clock is gated off by IC12d. When a SYSTEM RESET signal is sent from the triggering network, meaning the device has been power cycled, the 12-bit counter, IC7, and D type flipflop, IC8, are reset. This in turn sends STANDBY low, so the clock is gated on and begins driving the counter. The first 11 bits provide the memory addressing for both memories. Each memory is individually selected by bit 12. The chip select inputs are toggled via IC11b. (Q1, Q2 and associated resistors are simple inverters discussed later on.) Initially bit 12 is low and the first memory, IC5, is selected. The counter counts up through 211 or 2048 addresses and then the count goes high. Memory IC6 is then selected and the counter's first 11 bits repeat the 2048 addresses. The inverted bit 12 is also fed back to the flipflop clock input. This effectively returns STANDBY to the high state after the counter memories have completed their cycles.

So that takes care of memory addressing. The read/write side is also quite straightforward. When in PLAY mode SW1 holds the clock gated off by IC12b. So the ADC does not receive a CONVERT command, thereby maintaining its bus outputs in a high-impedance state. IC12a holds the memories in READ mode. If an external memory contents are read out on to the bus and through the DAC/output network. In RECORD mode the clock is passed through IC12b and to chip select (CS) and CONVERT.

On a negative transition of the clock the conversion will start. Upon completion COMPLETE will go allowing the clock to pass through IC12a and switch the memories into WRITE mode. The data from the ADC is then written into memory at the relevant address of that clock cycle. This then repeats until the memory is full.

Let's now examine the trigger network whilst set to PLAY. The only gates relevant are IC9b and IC9c. If TRIGGER is pressed the resulting low pulse causes the combination of C21, R41 and IC10b to produce a high pulse of about 1 ms duration. This provides the system with an external trigger reset and initiates playback of whatever is in memory. If TRIGGER is re-pressed at any time, even before the cycle is finished, the system immediately re-initiates playback from the beginning. Alternatively if an external trigger signal occurs, whilst switch SW1a is set to PLAY, the output of IC9b will go low, causing a similar low-going trigger pulse via D8, D8 protects the output of IC9b from being grounded by the TRIGGER switch. R40 functions as a pull-up on the line.

When switched to RECORD the network is designed to only provide one RESET pulse, even if retriggering occurs during the cycle. This is achieved by using the STANDBY signal to gate the triggering signal off once recording. In INTERNAL mode the only gates of interest are IC9d and IC9c. IC9b is held high by SW1a and consequently the EXTERNAL TRIGGER line is isolated. As soon as TRIGGER is pressed the output of IC9d goes high (STANDBY is still high, remember). This passes through IC9a and inverter IC9c to produce a SYSTEM RESET. Immediately STANDBY goes low so no later trigger pulses can pass through IC9d.

The DELAY function also requires the system to be in INTERNAL and RECORD mode. It operates exactly as above, but with the TRIGGER continually held low. As soon as STANDBY goes high after a recording, the SYSTEM RESET is sent high causing STANDBY to go back low and the whole thing to repeat. The inverter IC10a on the clock input to the counter ensures the recorded samples are one memory address location behind the playback samples.

The tricky part is the EXTERNAL record. This must operate in a mode where the system is armed and awaiting a trigger signal. Before being armed SYSTEM RESET is low because both inputs to IC9d are high. Any pulses appearing on the EXT TRIG input will pass through IC10d and have no effect. As soon as TRIGGER is pressed IC9d, IC9a and IC9c change state and SYSTEM RESET goes high. Simultaneously the RESET high signal is applied to IC9a causing it to remain low, even after STANDBY goes low a few nanoseconds later. The system is now 'armed' and awaiting the next EXTERNAL TRIGGER pulse, which causes IC9a and IC9c to flip and RESET to go low. Immediately IC10c goes high, thereby preventing any further trigger pulses passing through IC10d. What could be simpler?

That leaves just the power supply. Two supplies are generated: analogue (+5 V) and digital (+5 V). They have separate commons to improve noise performance, coupled via C18. This provides for return currents when ac signals are transferred between analogue and digital commons.

If system is to assume there is no external supply. In this case the memory must have power maintained. By keeping both chip selects high the memories stay in a low power consumption mode. The standby supply is labelled VA, ZD1 and D4 drop around 4 volts leaving 5 volts between VA and digital common. D5 prevents supply to any other part of the circuit. Therefore the two inverter transistors Q1 and Q2, having no base voltage, are off. Both chip selects are held at VA by pull-up resistors R42 and R43. If the battery is removed C17 maintains the battery and the battery is removed C17 maintains supply via R37. This also limits initial charging current.
single 5 V supply. As a result the Ferranti ZN429 was chosen. The differential non-linearity is quoted at ±1/2LSB of the full scale and hence will be perfect for our needs.

Since one of the specifications calls for a memory power back-up to retain a sample after power-down we needed a RAM that has low standby current drain. This choice was rather simple since the 6116's (ICS and IC6) are CMOS and readily available. Standby current is given as 20 µA typically. Also the data organisation for this application is ideal, being 2048 word x 8 bits.

The output clock rejection filter was chosen to be sixth order. This gives a respectable 36 dB rejection at the Nyquist frequency. Again this is made up of three infinite-gain multiple-feedback sections shown as IC4a, IC4b, and IC4c. All the filter sections were designed so that the circuit element calculations gave preferred values within an error of 2%. Hence if close tolerance components are used in construction, the response should be maximally flat and fall off at the desired frequency.

The mix control is used when the sampler is in delay mode. This controls the proportion of non-delayed sound with the delayed that appears at the output. By changing the mix you can vary the loudness of the echo that comes after the sound has been made.

Regeneration has two functions. Firstly, it provides multiple echoes, like those you would hear in a cave. The amount of regeneration then controls the number of echoes you hear or it can be used when you wish to over-dub on a sample already within the memory.

Probably the most unique section is the triggering and control. The ADC requires a CONVERT control signal to begin conversion and sends a COMPLETE signal when finished. The memory needs a READ/WRITE signal to control either reading out data from an address on to the bus or writing from the bus. The DAC requires no control, converting whatever is on the bus. Obviously some care must be taken to make sure both the ADC and memory are not outputting at the same time, causing bus contention (the ADC outputs go high-impedance when not enabled). The whole conversion process, be it playback or record, is controlled by stopping or resetting the address counter.

In PLAY mode the ADC is effectively disabled and the memories held in the READ state. Upon triggering, the counter is reset and enabled. Counting up and consequent memory-reading continues until the counter completes its cycle and is disabled. Alternatively if re-triggered before the end of play the counter resets, beginning the cycle again. PLAY mode recognises all three trigger inputs.

In RECORD mode, once triggered, the cycle goes as follows:
1. ADC signalled to CONVERT;
2. COMPLETE indicates the converted sample is available on bus;
3. the data is then written into memory; and
4. the address counter is incremented.

This repeats until the memory's 4096 locations are filled. The control will not...
recognise another trigger input until the cycle has finished. The reason for this is clear — if it was able to retrigger at any time, as in PLAY mode, then if trying to record continuous noise (such as a whistle) the whole thing would keep retriggering. Consequently the recording would never be completed.

INTERNAL triggering allows recording as soon as INTERNAL TRIGGER is pressed. EXTERNAL allows recording whenever either EXTERNAL input crosses the threshold setting. This is adjustable to account for both positive going voltage changes of any size or a short circuit to ground on EXT TRIGGER. As will be seen further when we discuss applications of the project, there is a need to trigger off a wave form's envelope. To accommodate this the low level trigger signal which is taken after input filtering passes through a rectifier-filter section acting as an envelope follower. The non-linearities and voltage drop associated with a normal diode have been overcome by using a precision rectifier, IC4d. IC1d is configured as a comparator, which translates the various trigger pulses to a positive-going logic pulse.

The DELAY function operates in a continual record/playback cycle. Each cycle takes place over one clock period. On the first half of the cycle the ADC produces a sample which is stored. On the second half, the memory address is incremented and the content, a sample stored 4096 cycles before, is read out to the DAC. Consequently a delayed signal is produced. The delay length is defined by how far the system is clocking through 4096 locations. The key step is the address increment half-way through the cycle, achieved by inverting the counter clock, IC10a.

Finally the power supply. The system requires both a digital +5 V and analogue ±4.5 V to be derived from the external 9 V supply. In order to achieve this, separate commons are necessary, with both supplies using the same +V rail. The +V is derived by a divider network across the 9 V rail. The ±4.5 V is derived by a divider network.
across the 9 V. This ensures the two voltages are equally balanced around analogue common regardless of supply fluctuations.

The battery-backup is configured to automatically come into use when the external supply drops below 9 V. This is a better alternative to using a socket switch, which allows the possibility of the supply being off while still plugged in. When using battery backup, power is supplied only to the memories and the circuitry required to keep both in the not-selected state.

Construction

Assuming you have a drilled pcb and all components at hand we can start building.

Start with the six links, ensuring they are kept insulated over all top tracks. Note there are also seven single spot links as shown on the overlay. Next the 47 resistors and nine diodes go in (R48 is mounted off the board). Don’t forget to solder on the top side where needed. All ICs go in next, taking normal CMOS precautions. Note that they all point the same way. Now the capacitors go in, ensuring correct polarity for all tantalums and electrolytics. Finally the two transistors can be inserted. The pad layout for Q2 is a little different, so check it against the overlay.

Put the pcb somewhere safe and prepare the housing. We used a strong diecast box, but if you aren’t going to be throwing it around, a plastic box may do. Do all drilling at once. There are 18 holes in all. (If you miss any now you’ll have to drill them later and risk showering the pcb with metal fil-

ETI May 1986 — 73
Precise 11CO2 (ings). We used the box upside-down, with all controls in the base and the pcb mounted on the lid. The box can then be painted or decorated as desired.

Begin assembly with the three metal phono sockets. As all these connect to analogue common this means the box itself (if metal) will be at analogue common also. So a bit of care is needed in mounting the power socket, which has its negative pole at -V. As insulated 3.5 mm sockets are not readily available, you have three choices. You can cut the plug off and solder direct to the pcb (yuk); you can try and use nylon washers to insulate a metal 3.5 mm socket (yuk); or you can use an insulated 6.5 mm socket (Radio Spares carries them) and an adaptor (neat!). Of course if you can find a plastic 3.5 mm socket — use it!

Next, after trimming the shafts as necessary, mount the pots. Take care to get them all in the right place. (The log pots usually have a D code). Finally, fix the four switches and the battery holder. Note the PLAY/RECORD switch is DPDT, the other two are SPDT. We used a metal spring clip (RS again) for the battery holder.

As there are 26 interconnections to be made to the pcb, ribbon cable is recom-
Before starting this, wire the three socket commons together. Note that the input socket switch should also be commoned. This ensures the input is grounded when not in use. There is also some wiring between pots, sockets and switches that should be done before beginning the ribbon wiring. R48 should be soldered directly to the mix pot wiper as shown in the wiring diagram.

Starting with a length of 12-way ribbon, separate the wires back about 2 cm and strip each one. These go into 12 pads in the top corner of the board, as seen from the overlay/wiring diagram. Mark each wire colour on the diagram as you go. This will make the job a lot easier later. Now lay the board out end-on to the battery end of the box. Leave enough distance to allow any later board-handling to be done without needing to flip over the box too. Cut the cable to length — this lot goes mainly to the switches. Measure to the furthest switch and separate back as needed. The wiring diagram is based on toggle switches which connect the opposite pole to the direction they are switched. If you are using slide switches then you may need to reverse the outer pole wiring. Repeat the ribbon wiring with a 5-way strip and a 9-way strip. (As we used all DPDT switches in the prototype, a spare terminal was used to anchor the positive battery lead.)

Now, check everything. Common slip-ups include incorrect pot wiring and weak or splayed ribbon/pot connections. If all looks good give the whole thing a brush down and, being truly optimistic, mount the board to the lid using standoffs.

In the next issue of ETI (June) we’ll resume with details of the sampler’s applications.
THE LOGIC OF DIGITAL

Imagine a world where humans only sport two fingers, one per hand. Mathematics would require a system with only the two numerals 0 and 1, and our dexterity would be severely compromised. Welcome to the world of the digital circuit!

Peter Phillips

ASKING A CLASS of schoolboys what a digit is is a sure invitation for a few colourful suggestions. However, requests for a definition of the meaning of 'digital' as applied to electronics is likely to elicit a much less certain response although few people have not heard the word. Digital watches, records, dashboard instrumentation in cars and so on have made certain of that. The concepts embodied in a system that uses the digital principle has created a whole new field of endeavour, making possible most of the technological advances that make the term 'digital' commonplace.

Digital logic
Before looking at the electronic aspects, consider a mechanical example that is digital in principle. The simplest of all is the music box. These devices have a barrel containing projections called pins. As the barrel rotates, each pin is arranged to 'twang' a finger of steel that vibrates to produce a note. By arranging the pins correctly, a tune results. In digital terms, a pin creates a sound, its absence results in silence. At any given moment, the comb containing the tuned reeds is presented with digital information. If the comb has eight reeds, then the digital code on the rotating drum must contain the same number of 'bits' of information positioned lengthwise along the cylinder. The 8-bit 'number' is continuously updated to create continuity in the tune.

To keep the same reed vibrating all the time, pins for this reed must be placed in line around the drum, spaced to allow the reed time to sound before being struck again. This means a time delay is necessary, representing the speed at which the information can be processed by a given reed.

Thus, a digital device is one that utilises an on-off concept. There is no intermediate value, you either have the function or you don't. The pianola mentioned in the previous article of this series is another example of a purely digital device.

The term 'logic' refers to a method of reasoning consistently — without contradiction. For example, in logical terms a light is either on or off. If it is on, then it is not off. Conversely, when off, it's not on. Note that no consideration is given to the brightness of the light, levels don't enter into the reasoning. As the principle of digital electronics (or mechanics) only uses two states, then logical reasoning or just plain 'logic' is a perfect means of discussing and analysing its operation. Paraphrasing Dr Spock, "it is logical".

Some terms used in digital
A lot of jargon is used when discussing digital electronics and like any scientific area, a particular form of mathematics is used in digital. When discussing analogue electronics, decimal arithmetic is appropriate. This is because the values of voltages and currents range from one number up to any other.

The same is not true in the digital field; there are no levels, just one output or another. Thus, a number system with only two characters is used. This type of arithmetic is called 'binary' arithmetic, and uses the first two characters, '0' and '1', from the familiar decimal (or ten based) system. Binary means simply 'two numerals'.

It is interesting to note that all mathematical functions that can be done with ten characters can be done with two. When studying digital electronics, students are taught the elements of binary addition, subtraction and so forth. After practice, it becomes second nature to be able to perform binary arithmetic, and so gain insight as to how digital circuitry works.

Going one step further, just as algebra in conventional mathematics uses letters and numbers, so too the algebra for a digital circuit, known as Boolean algebra, utilises letters in conjunction with the numbers 0 and 1. Named after George Boole, this type of mathematical reasoning was adapted by Claude Shannon, an engineer working in a telephone exchange. George Boole was a nineteenth century logician, who introduced his mathematics to logic.

Other terms are used to describe digital signals. The two possible states that can exist in a digital circuit are referred to as a 'logic 1' and a 'logic 0'. When a binary number is present, it contains a certain number of 'bits'. A decimal number can contain many places, so just as the decimal number 1234567890 has nine places, the binary number 1010 has four bits. A binary bit is always either a 1 or a 0. In any whole binary number, the right hand bit is known as the 'least significant bit' or LSB, and the left most bit becomes the 'most significant bit' (MSB). A decimal number uses the terms most or least significant digit.

In some circuits, particularly computers, bits are arranged as 'bytes'. The number of bits to a byte depends on the application, and computer enthusiasts may be aware that most computers use either eight or 16 bits to make up a byte. A 'nibble' is half a byte, so four bits in an 8-bit byte system become a nibble. A grouping of bytes is known as a 'word'.

76 — ETI May 1986
So, there you have it. Bits, nibbles, bytes, words, binary numbers, Boolean algebra, there're all part of the lingo used to describe the digital system. There are many more terms, but these will do for now.

Digital's advantages

Many readers may have marvelled at some of the recent shots of Uranus, taken by the Voyager spacecraft as it hurtles into the never-never. This becomes more significant when you realise that many would be viewers despair when receiving a TV signal travelling less than 100 km. How then can a full colour picture travel millions of miles through space, impeded by solar activity and other distractions, sent on its journey by a transmitter with less power than the average domestic hi-fi set? Answer: as a digital signal.

In principle, the picture is digitised, with the receiving station on Earth looking for a signal made up of binary numbers. By also including error detecting and correcting information, and by allowing considerable time for the whole frame to be transmitted, an almost perfect picture can be constructed. This is despite signal strengths measured in microvolts, ravaged by interference and immense distances. An analogue signal, such as is normally used for local transmissions loses most of its information when it encounters the first hill.

Because the digital information relies on only two levels, equipment using this information merely needs to recognise and distinguish between either of these two. For tricky situations, extra data can be included to help the circuitry decide if a mangled binary bit is either 1 or 0. Thus, digital information can include codes that not only tell the decoding circuitry that there is a problem, but also help correct the error. The compact disc is one such domestic device that incorporates this type of technology.

Analogue-to-digital

Having shown some advantages of digital, some means must be provided to allow conversion of any analogue quantity to a digital equivalent when the original information is in analogue form. (Many digital circuits work from data that is already digital, such as calculators and computers. Here, the digital code is generated by a key press from a keyboard. Each key has its own code, being represented by a particular binary number.)

Converting a signal that is normally represented by a changing voltage, such as the output of a microphone, requires that each discrete voltage level is portrayed as a binary number. The question is, how many individual numbers are required? This decision depends on how many binary bits are at the disposal of the designer. If there are only two, then arranging the available 1s and 0s will provide four individual codes. If eight bits are available, then 256 different codes can be generated. The calculation to determine how many codes a group of bits can produce is 2 raised to the power of the number of bits.

Figure 1 shows how a sine wave can be converted to a digital signal made up of a series of 3-bit binary numbers. This is done by applying the signal to an analogue-to-digital converter ADC. The output will be a binary number ranging from 000 to 111; the input voltage level determines which of the eight possible numbers is to appear at the output. The original signal can be recreated using a digital-to-analogue converter (DAC), an approximation of the original waveform is a signal made up of individual steps, in this case eight. The DAC produces a voltage at its output proportional to the value of the binary number present at its input.

Using four bits allows an analogue signal to be digitised into individual levels comprising 16 steps. If eight bits are used, 256 steps are available and the eventual reconstruction to analogue form would result in a signal so close to the original that it wouldn’t matter. Increasing the number of bits brings about a corresponding improvement in the reproduction, although practicalities limit how far this can be taken.

In sound recording, it is now commonplace for the master recording to be in digital form. The advantage gained is that all subsequent copies of the original master have the same quality. This means that, in the first place the master contains no noise or quality reduction due to tape problems, and that a number of masters can be made allowing disc manufacturing using these copies of the original; each copied masters is as good as the first. Any subsequent problems are the result of the analogue discs made from the digital master. The CD system overcomes this by going one step further, and actually using digital information as the recording on the disc.

However, in the final result, an analogue signal converted to digital form for transmission or processing must eventually be reconverted back to an analogue form. So, despite the advantages of digital, the fact remains that most information is originally in analogue form, and must be presented in...
Digital gates

The simplest digital circuit is a switch. A telephone exchange uses lots of switching mechanisms to route signals from point A to point B. Originally, mechanical switches in the form of relays and other configurations were used to provide the path allowing any two phones to communicate. Newer designs use devices called "gates".

A gate is a logic circuit that produces an output of either 1 or 0 under certain conditions at its input terminals. As an analogy, consider a light being controlled by two switches. A number of possibilities are allowed depending on how the switches are connected. By connecting the switches in series, the light turns on if switch A and switch B are closed. That is to say, if both inputs equal a logic 1 the output (the light) is a 1. Parallel connection allows switches A or B to activate the light, meaning if either input equals 1 the output is a 1.

Less obvious is the arrangement that causes the light to extinguish if a switch is turned on. This would require a relay to be energised, with contacts controlling the light to open when the relay operates. By placing the switch to operate the relay coil, a light can be turned off if a switch is turned on. This is called, in digital logic terms, the NOT function. In other words, if the switch is a logic 1 the light turns off. That is, input a 1, and the output becomes a logic 0. Figure 2 shows the circuits referred to. Closing a switch (either A or C) is analogous to applying a logic 1, and causing the light (Z) to illuminate symbolises an output of logic 1.

Figure 2 also introduces three logic circuit symbols, as well as some Boolean algebra. Alongside each switching circuit is the digital 'gate' symbol that the circuit represents, beneath which is the Boolean expression for that gate. A lot can be learned by studying these three examples, and understanding each gate function.

Combining the AND and NOT ideas gives the NAND gate, while the OR and NOT provide the NOR function. As it turns out the NAND and NOR gates are the most popular logic gates, as they can be used to operate as any type of gate by connecting them in various circuit configurations. This allows designers to most effectively utilise all the gates on a particular circuit, providing space and cost savings. A NAND gate is then an AND gate followed by an inverter, similarly, an OR gate is that whose output is inverted to a NOR gate.

Figure 3 summarises the five gates, by showing how the output responds to the inputs. These gates are the building blocks of digital electronics, and understanding their operation is the key to an overall appreciation of the subject in general.

Digital flipflops

Logic gates can be considered as the 'active devices' of digital ICs. Virtually all the logic chips in current use employ an arrangement of interconnected gates, thus providing all the other functions used in digital circuits. The next most useful building block that results from such a collection of gates is the 'flipflop'. This device can be considered as a logic element that remembers an event. If you press a button to call a lift, or to operate the lights at a pedestrian crossing, it is sufficient to press the button once, and eventually the request is answered. The circuitry has remembered the input, and has responded after sequencing through its routine.

A variation on this is where an input is only allowed to be entered and remembered when the system says so. In a quiz show, the display circuitry indicating the contestant who pressed the button first needs to 'lock out' any other nearly simultaneous response. This requires that the other flipflops ignore their input. Timing becomes important in many other applications where causing a flipflop to respond to an input before its previous state was read and acted upon.
could result in chaos. Thus, most flipflops have an input that allows the information to be entered when the circuitry allows it.

The timing signal is often called a 'clock', and most flipflops have a terminal intended to be connected to this signal. The name of this input varies, depending on how it operates. One variety calls it the 'enable', others simply the clock terminal. An enable input allows the data to be entered while this input is at a logic 1, and a clock input generally operates by entering the data during the time the clock input changes. Because the clock signal can change from a 1 to a 0, or vice versa, it is necessary to identify which change activates the device. Thus, a clock input can require either a positive or negative edge to allow the data to be stored, depending on the IC type.

There are two basic types of flipflops, and these are shown in Figure 4. The 'D' flipflop has one data input and two outputs. The outputs are labelled Q and Q̅, with one being the opposite logic level to the other. The timing signal is applied to the clock terminal, and the logic level on the D input will appear at the Q output when the clock terminal allows it. If the clock is a single pulse, then the information will be retained until the clock is next activated, when the new information will be entered.

Some D flipflops use an enable rather than a clock input, meaning that the Q output will follow the D input when the enable is high. When used in this mode, the device is often called a latch. Notice that another input called the reset is shown. This is used to initialise the device by clearing the Q output to a logic 0. The clock terminal has no effect on this input; it is used normally as a means of starting everything up from a power-on condition to establish the initial conditions.

The other flipflop shown is the JK device. This flipflop has two inputs and is more sophisticated in its operation as a result. It becomes necessary to apply information to both inputs to ensure the desired output results. The way in which the output responds to the four possible variations of the inputs is shown beneath the JK symbol, remember of course that the outputs only respond when the clock terminal allows it.

Counters and shift registers

In the same way that gates can be grouped to produce the flipflop, counters, shift registers and the like are simply a number of flipflops interconnected within the IC. Counters all do the same thing, they count digital pulses. Because the device is digital, the output of the counter will be a binary number. Most counters have four outputs, and are designed to count either from 0 to 9, (known as a decade counter) or from 0 to 15. Various features are often incorporated, with up or down counting; the ability to preset the device to start counting from any number, reset to zero, etc is typical.

Counters are used in many ways, one possibility being as a frequency divider. A digital clock will often use counters to divide the reference frequency (often 50 Hz from the mains) to give one pulse per second. Thus, a group of counters is connected to count from 0 to 49, with the last output, the fiftieth, being a unique binary number that a group of gates sees as the right code.

![Figure 3. Simple digital circuits.](image)

![Figure 4. The JK and the D flipflops.](image)
to output a 1. Subsequent counters will be used to count this pulse to give the minutes, hours, even years.

A shift register, of which there are various types, uses flipflops to allow digital data to be moved. A group of D flipflops can be connected to transfer a single binary bit of logic 1 around in a manner that can create a light chaser effect. Shift registers are identified by the number of bits they handle, as well as their method of data transfer. A light chaser would use a 'serial-in/parallel-out' type, as would any circuit that has to handle data that is entered one bit at a time. In this way, single binary bits can be entered until the required number is reached, when the shift register will contain all the bits gathered as a group. This group is referred to as parallel data, and can be processed accordingly. The reverse can be provided by the 'parallel-in/serial-out' shift register, allowing serial data (or one bit after another) to be sent between two points along a single wire. Figure 5 shows the block diagrams of a four bit counter and a serial-to-parallel shift register. Figure 6 shows a block diagram providing the serial data transfer mentioned.

![Block diagram of a 4-bit counter and serial-in/parallel-out shift register.](image1)

Other digital ICs

Digital ICs apart from those already mentioned range from simple decoders to extremely complex subsystems. A microprocessor is about the pinnacle for a digital subsystem, and way beyond the scope of this article. By way of a brief run down of the varieties, digital ICs are available to perform binary arithmetic, decode digital information, act as timers, and so on. It is not practical to detail their operation, as this would require many chapters.

Other devices include memories, data selectors, and various types of gates designed to act as buffers. A buffer allows a load to be connected to an output, with the buffer providing the driving power for the load. Some buffers feature a third state, known as the high impedance state. This allows the output of the device to be either a logic 1 or logic 0 in the usual manner, or an open circuit. This permits outputs to be connected to a common line, called a bus, without causing conflict between them.

Digital IC families

The circuitry to create a gate function is fairly simple. It is possible to build gates using discrete components, but this is rarely done as the IC offers so many advantages. As most digital chips are merely a number of interconnected gates, the circuitry is not necessarily complex, just repetitive. The active devices used within the IC identify the logic 'family' that the IC belongs to. There are a number of these families and their subgroups, of which the two most popular are CMOS and TTL. Each type has advantages and disadvantages that dictate when one or the other is used.

TTL stands for transistor-transistor logic, and uses transistors within the IC to produce the particular function. This type of logic is probably used more extensively than any other, as it has the advantage of being able to operate at speeds of around 30 MHz or more. The difficulty with TTL is its power consumption, although as it can drive loads requiring currents of around 16 mA or more it is able to interface to other devices fairly readily. A subgroup of this family is the very popular LS variety. The TTL LS types incorporate special diodes known as Schottky diodes to reduce the power consumption without reducing the speed of operation. LS stands for low power Schottky, and the power required for an LS chip is generally only 20% of that for a standard TTL type.

Both the TTL and TTL LS logic chips operate from a 5 volt supply. This voltage should not vary more than 5% either way, illustrating a difficulty with this family. Another problem is that considerable 'noise' is generated on the dc supply line by the ICs, mainly when they switch between states, and it becomes imperative to attach 'despiking' capacitors between the 5 volt line and earth at various points throughout the circuit. These capacitors are usually 0.1 µF ceramics.

The CMOS family consists of ICs whose circuitry is made up of complementary MOSFETs. Several significant advantages result in using FETs as the active component within the IC, the main one being that very little power is consumed by the chip. Another advantage is that because minimal heat is generated within the integrated circuit, more complex circuits involving a larger number of devices can be built. Most of the fancy logic ICs are CMOS, including digital watches, calculators, microprocessors, memories, and special function types.

A problem with CMOS logic is that it can provide very little drive power to external devices, necessitating the use of 'buffer' ICs which connect between the load and the logic element. Other difficulties include a slow operating speed, typically 10 MHz, and the likelihood of a static voltage destroying the IC. Unlike TTL logic, CMOS has no stringent demands on the power supply, and can be used in equipment powered from batteries.
Practicalities of digital ICs

Like all integrated circuits, digital ICs come in a range of package styles and type numbers. The 7400 series is the most common TTL numbering scheme, starting its numbering from 7400 and extending up to (currently) 74670. A standard TTL IC is simply identified as 74XX, where XX is the number containing up to three digits following the 74.

The LS subgroup is identified as 74LSXX and duplicates all the standard TTL chips. Many LS devices are not available as standard TTL types, and it is now becoming difficult to purchase many of the once available standard TTL devices. Such is the popularity of the LS varieties. Other TTL subgroups are manufactured, designated by letters after the 74.

Identifying a TTL IC can only be done with a data book. Most parts suppliers sell these, and all the information one could possibly want is contained within these books. Some text books give abbreviated data on the more popular TTL devices, and this method of obtaining information is sometimes better for those in a hurry or unable to understand the wealth of information provided by manufacturers' data books.

The CMOS family is represented by the 4000 series. Another is the 74C series, a range of CMOS devices pin compatible with the 7400 TTL family. The 4000 series contains the widest variety; the numbering commences from 4000, and enters the 4500 range, even up to 4700. Again, manufacturers' data is essential if use is to be made of these devices.

Other digital ICs that are special purpose devices have their own numbering schemes. Microprocessors and their support chips are usually special devices belonging to a small family created by a particular manufacturer. Memory ICs form yet another group, with type numbering often relevant to only one manufacturer. The list goes on, bewildering to all but the most ardent followers of the technology. Because new devices are appearing nearly every week or so, it is impossible to keep track of the whole field. The trick is to stay with the devices that have been around for some time.

The digital field is an enormous topic. Many excellent texts on the subject have been written, and much can be learned by reading electronics magazines. Because it differs so greatly from conventional electronics, it is possible for beginners to become fairly expert in digital, without even knowing Ohm's law. Designing digital circuits can also be accomplished with a limited knowledge, and a lot can be learned by experimenting with the gates and flipflops discussed in this article.
ACTIVITIES FOR SCHOOLS

Attention students!
Besides the ETI 1986 Schools Electronics Competition there’s a lot out there in the electronics world happening in schools and for schools. In devoting a page each month in the magazine to school students we hope to arouse and maintain your interest in electronics.

So to that end we will use this page to publish details of other electronics competitions, design ideas and project ideas for our own 1986 Schools Comp. As well as this, we want to publish reports that tell us about your group, your schools, the problems you encounter with your projects — and of course the help you get. But this one is up to you. We need the information from you.

Other questions we have are: where are the girls? Have the sex roles changed? We’d like to hear some stories about girls out of the sewing room into the lab!

The address to send us details of your group’s adventures is 140 Joynt Ave, Waterloo, NSW 2017.

OTHER COMPETITIONS
AMP/TOWARDS 2000
The AMP Society is offering Australia’s largest science award for young people under 19. The award, to be offered in association with the televised programme “Beyond 2000” featured on the Seven Network, will be known as AMP’s “Beyond 2000” Science Award.

The competition, with prizes totalling more than $40,000, will be conducted in all states and territories later in the year with the assistance of the Australian Science Teachers Association.

Announcing the sponsorship, AMP’s NSW Manager, Mr Ian Worner, said that the “Beyond 2000” television programme on the Seven Network in 1985 became one of Australia’s most successful new programmes. This Australian-made production sparked a strong and positive reaction. A large section of the viewing public indicated interest in science and technology when presented in a dynamic fashion.

Competition facts
The award competition is open to all Australians under 19 on 1 September 1986. Judging criteria are:
• innovation;
• practicability;
• scientific and technological content.

The award aims at the working model type of entry or something that can be readily demonstrated. Research papers by themselves are not sought.

Entry fee is $1 payable to the State or Territory branch of the Australian Science Teachers Association which will do the initial judging and assist in final judging. Only one entry per person will be allowed. Entries must be substantially the work of the entrant. Projects are to be delivered to the local branch of the Science Teachers Association advised on the entry form.

Entry forms, available from AMP branches and science teachers, must be received by 30 August, 1986.

First prize is a trip for two (the winner and parent, guardian or chaperone) to the US.

State/Territory winners receive $500 and a trip to Sydney for final judging. The five State/Territory finalists will receive $100 each.

Other prizes include:
• 80 merit prizes of $25 each (five per region);
• 80 copies of the book “Beyond 2000” (five per region); and
• 8 school prizes for winners’ schools (video tapes of certain “Beyond 2000” programmes).

JACARANDA
Educational computing has escaped from the maths-science stranglehold of a few years ago if the entries in the 1985 Jacaranda National Educational Software Award are any indication.

The inaugural award of $1000 was won by “The Tycoon Itch”, a simulation that requires students to act as a shipping and commodity trading company’s board of management. The program demands the use of skills in geography, economics and accounting as the board guides its ship from port to port. The authors, Cyril Balkisson and Sydney Sanders, both work at Bramfield Park Primary School on the outskirts of Sydney. Their package will be published by Jacaranda Software in the middle of next year.

“Hume and Hovell”. by Clive Millsum of Cranbourne, Victoria, won second prize because of its sensible combination of excellent graphics with a carefully researched historical recreation of the explorers’ epic journey.

Dave Healy of Kingsley (WA) came third with “Numerama”, a simple, challenging open-ended maths activity. The judges agreed that although the central idea of the program was not new, it was the only package of its kind suited for use in the middle primary school.

The judges were Di Ryall (Apple Computer), Tony Salvas (State Computer Centre, Melbourne), Eric Davis (Centre 2000, Brisbane) and Bruce Mitchell (Jacaranda Wiley Ltd).

For further information contact Bruce Mitchell on (07)369-9755.
GET YOUR SCHOOL INVOLVED. YOU CAN HELP IMPROVE THE LEVEL OF AWARENESS AND UNDERSTANDING OF ELECTRONICS TECHNOLOGY AND WIN GREAT PRIZES FOR YOUR SCHOOL AT THE SAME TIME.

To enter you will need to form a group at your school to build and possibly design an electronics project. The winning school entries will be judged on the way students were involved in the theoretical and practical aspects of the competition. The only limitation on the design is that the published cost of its component parts should be less than $100.

To help schools get tutorial or financial assistance from local companies, Electronics Today will ensure any company's assistance is advertised in a special schools page in the magazine. Schools that let us know about the progress of their electronics group will also be reported in the magazine.

Where possible the students should be involved at a circuit design level, but the competition will be judged in a way which will not penalise groups that do not have the required electronics design skills. To help these groups, Electronics Today will publish a number of project designs which can be used to enter the competition.

A complete copy of the competition rules and objectives will be made available to any school that registers its interest in the competition. Just by registering you have a chance of winning electronics products for use by your school. Copies of the rules have also been sent to either the principal or science teacher at your school.

GREAT PRIZES FOR YOUR SCHOOL

$2000 WORTH OF ELECTRONICS FROM DICK SMITH ELECTRONICS! The winning school will get $2000 worth of electronics for its lab. This would make a great start to an electronics lab or help equip an existing one.

25 SOLDERING IRONS FROM SCOPE! The first 25 schools to submit registration forms and then go on to complete the competition will get a soldering iron worth nearly $30 from the leading Australian soldering tools manufacturer, Scope.

25 PACKS OF SOLDER FROM MULTICORE SOLDERS! Those first 25 schools to submit registration forms and go on to complete the course will also win packs of high quality, industrial grade solder worth $30 from Multicore Solders.

15 JUMBO COMPONENTS BAGS FROM DICK SMITH ELECTRONICS! The first 15 schools to enter the competition, whether they complete the competition or not, will win a jumbo bag of components with a retail value of at least $75. At your first electronics group meeting you can learn how to identify common components.

MORE PRIZES THROUGHOUT THE YEAR! Electronics Today will invite other electronics suppliers to join in and offer great prizes.

Sponsored by:
Electronics Today
Dick Smith Electronics
Scope Laboratories
Philips
Multicore Solders

HOW TO ENTER

Schools should register their interest as soon as possible so we can keep them up to date — they will also have a chance to win electronics products just by registering. Registering brings no obligation on the school, but it allows us to supply free support material and to keep you up to date.

Entrants are required to submit a written report and hardware by August, 1986. Full details are available when you register. There will be one international winner and a finalist from each State, Territory and New Zealand. The judging panel will include members of the Australian Science Teachers Association, science teachers, representatives of Electronics Today and Dick Smith Electronics. Electronics Today will have the responsibility of ensuring the fairness of the competition.

REGISTRATION FORM

COMPLETE AND SEND TO "SECONDARY SCHOOLS COMPETITION", ELECTRONICS TODAY INTERNATIONAL, PO BOX 227, WATERLOO, NSW 2017.

SCHOOL

ADDRESS

GROUP LEADER'S NAME

SCIENCE TEACHER'S NAME

DOES YOUR SCHOOL ALREADY HAVE AN ELECTRONICS GROUP OR COURSE?

ETI May 1986 — 83
IDEAS FOR EXPERIMENTERS

Plugpack mod

The following circuit was designed by David Shawcross of Kenwick, WA on discovering that the regulation of a cheaper Dick Smith plugpack was not up to standard. A M9525 plugpack was purchased in order to drive a Walkman-type tapeplayer. Although the labelled outputs are '3', '6' and '9' volts, inspection showed that the true figures were 5, 9 and 13 volts. What is more, once the unit was switched on to '9 volts' the output remained at this figure, even if the unit was switched to the 3 volt range: obviously a function of a largish filter capacitor on the output.

The simple mod sketched here will cure all these problems. The physical problems associated with it require a little patience. Firstly the plugpack must be sawn in half, carefully, so as to avoid damage to components just below the surface of the case. The circuit can then be assembled in 'bird's nest' form, tested, and then squeezed back into the case. To seal it use masses of Araldite.

Note that regulation decreases with output current due to the transformer. The maximum rating on the transformer is 200 mA.

IDEA OF THE MONTH’ CONTEST

Scope Laboratories, which manufactures and distributes soldering irons and accessory tools, is sponsoring this contest with a prize given away every month for the best item submitted for publication in the 'Ideas for Experimenters' column — one of the most consistently popular features in ETI Magazine. Each month we will be giving away a 60 W Portable Cordless Soldering Iron, a 240 Volt Charging Adaptor together with a Holder Bracket. The prize is worth approx. $100.

Selections will be made at the sole discretion of the editorial staff of ETI Magazine. Apart from the prize, each person will be paid $20 for an item published. You must submit original ideas of circuits which have not previously been published. You may send as many entries as you wish.

COUPON

Cut and send to: Scope/ETI ‘Idea of the Month’ Contest, ETI Magazine, P.O. Box 227, Waterloo NSW 2017.

'I agree to the above terms and grant Electronics Today International all rights to publish my idea in ETI Magazine or other publications owned by it. I declare that the attached idea is my own original material, that it has not previously been published and that its publication does not violate any other copyright.'

'Breach of copyright is now a criminal offence.'

Title of Idea

Signature

Date

Name

Address

Postcode

RULES

This contest is open to all persons normally resident in Australia, with the exception of members of the staff of Scope Laboratories, The Federal Publishing Company Pty Limited, ESN, The Litho Centre and associated companies.

Closing date for each issue is the last day of the month. Entries received within seven days of that date will be accepted if postmarked to and including the date of the last day of the month.

The winning entry will be judged by the editor of ETI Magazine, whose decision will be final. No correspondence can be entered into regarding the decision.

The winner will be advised by telegram the same day the result is declared. The name of the winner, together with the winning idea, will be published in the next possible issue of ETI Magazine.

Contestants must enter their names and addresses where indicated on each entry form. Photostats or clearly written copies will be accepted but if sending copies you must cut out and include with each entry the month and page number from the bottom of the page of the contest. In other words, you can send in multiple entries but you will need extra copies of the magazine so that you send an original page number with each entry.

This contest is invalid in states where local laws prohibit entries. Entrants must sign the declaration on the coupon that they have read the above rules and agree to abide by their conditions.

84 — ETI May 1986
An extra port for the Microbee

G. J. Martindale,
Mill Park, Vic 3082

In the Microbee computer, on-board decoding of the group of ports in the range 00(h) to 0F(h) is accomplished by IC27 (a 74LS85 4-bit magnitude comparator), two sections of IC31 (a 74LS04 hex inverter), and IC34 (a 74LS139 dual 2-to-4 decoder) which determine that:

(i) access to a port is required;
(ii) by decoding of the Z80 system address bits 0 to 7, which particular port is required.

Address line A4 is not included in the port decode circuitry and therefore some duplication of decoded ports occurs - that is, instead of the exclusive range of ports 00 to 0F(hex), the duplicate ranges 00 to OF and 10 to 1F are actually decoded. A READ or WRITE to say port 11(h) then produces the same effect as one to port 01(H), etc.

I have not yet found a routine in BASIC ("old" version 5.10 on my machine) which accesses any of the Microbee's internals via the alternative port addresses in the range 10 to 1F(h), however.

Therefore, if address A4 could be introduced into the port decode procedure, it will eliminate internal port assignment duplication and should, with a minimum of fuss, make another group of 10(h) ports available for internal 'add-ons' such as a real time clock, etc.

The diagram shows the arrangement I used to accomplish the extra decoding.

A 74LS139 dual decoder is used as follows. The first half is controlled solely by the status of address line A4 and switches an ENABLE signal to either the normal on-board decoder IC34 (for A4=0) or to its own second half (for A4=1).

The range of ports decoded 'on-board' is now exclusively between 00 to 0F(h).

The second half of the added 74LS139 then functions in similar fashion to the on-board 'groups-of-four' decoder, enabling the appropriate output depending on the status of addresses A2 and A3. The range of ports decoded by this section of the IC is, however, exclusively in the range 10 to 1F(h).

I constructed the extra port decoder for my 'Bee on a small piece of Veroboard and fixed it to the underside of the main board with some double sided adhesive foam strip. Flexible wire leads then run to appropriate circuit pickup points, while the new port ENABLE outputs were made available at Veroboard pins for later connection to add-ons.

Note that the Microbee circuit board track running between pin 6 of IC31 and pin 1 of IC34 is required to be cut to implement the extra port decoding.
Subscribe NOW to Electronics Today and **WIN!!!**

This superb Sony Hi-Fi and Video combination could be yours! **Worth over $10,000!!**

By subscribing to Electronics Today, you may very shortly be relaxing in front of your own Sony system, enjoying the superb listening pleasure that can only come from Compact Disc technology, and while basking in richer listening pleasure you could be watching, filming, or recording your selection using your new Sony Video-8 video system, both systems designed to be fully integrated with each other.

This magnificent Sony Component System represents true, leading edge, technology. The 100 watt RMS per channel integrated stereo amplifier will give you plenty of power and can reproduce the most demanding in CD fidelity. The discrete three head design stereo cassette deck will improve the faithfulness of your recorded sound. Improved frequency response will be evident as your AM/FM precision quartz tuner eliminates interference. With 20 key direct music selection and infra red remote control, the Digital Compact Disc player satisfies your most demanding requirements in fidelity and convenience. The digital compatible APM speaker system has been specially designed to cater for near perfect CD reproduction. A 20" high resolution Profeel monitor, including speakers, represents the best in video display monitors while the complete Video-8 system combines quality with portability. To complete the finishing touches a tuner/timer for the PAK 88 system is included.
IMPROVE YOUR LIFESTYLE BY MAXIMISING YOUR LISTENING AND VIEWING PLEASURE!

By subscribing to Electronics Today you will be kept up to date with feature-packed articles, the latest news and everything that electronics enthusiasts, like you, need to know. There are always new techniques, new products and helpful stories to improve your knowledge and round-off your education.

Having Electronics Today delivered to you direct ensures you receive every issue without fail and saves you the time you would otherwise have to waste by having to go out and buy it.

YOUR FREE GIFT — JUST FOR SUBSCRIBING!
Your Electronics Today team have gone to great trouble to select a special extra added bonus that you will find is really useful. This super-versatile Swiss Army Knife has seven different features — from a wire stripper to a can opener — and is that indispensable tool you'll find hard to do without.

The Swiss Army Knife features include a large blade, small blade, can opener, screwdriver, cap lifter, wire stripper and key ring.

WIN THE HI-FI/VIDEO SYSTEM OF YOUR DREAMS!
HURRY — THIS IS A LIMITED OFFER.
Simply complete the subscription card in this magazine and send it FREE to us. Within six weeks you will receive your Swiss Army Knife and be enjoying articles in the first of your home-delivered ELECTRONICS TODAY magazine.

YOUR NO-RISK GUARANTEE
If, for any reason you are not completely delighted with ELECTRONICS TODAY... simply let us know, and we'll gladly refund the unused portion of your subscription.

YOU MUST ACT NOW
NSW Permit No TC86/532 issued under the Lotteries and Art Unions Act, 1901
VIC Raffles and Bingo permits Board Permit No 86/270 issued on 13/3/86
ACT Permit No TP86/162 issued under Lotteries Ordinance.
(Offer valid until 31 August, 1986.)

The exciting prize draw is also open to all subscribers who renew before the closing date. If the prize is not claimed within 12 months, a second draw will be run.
electronic music

REMOTE CONTROL PROJECTS
Primarily for the enthusiast who wishes to experiment with remote control. Full explanations of the how the circuits work are given and many of the designs can be adapted to circuits that have been published elsewhere. Covers remote control by ultra-sound and infra-red as well as radio control. 164pp.
D0046B $7.95

ELECTRONIC SECURITY DEVICES
Besides including both simple and sophisticated burglar alarm circuits using light, infra-red and ultra-sonics, this book also gives circuits for gas and smoke detectors, flood alarms, fire alarms, doorphones, etc. 102pp.
D0059B $6.95

HOW TO DESIGN ELECTRONIC PROJECTS
Tackles the problem of combining and integrating componentstowards a complete working project with the minimum of trial and error and without advanced mathematics. Guides the reader through examples with circuit analysis, possible solutions and practical design including component values. 101pp.
E0082B $7.95

Postage and packing additional: Please refer to reply card for charges.

test equipment and fault finding

ORDER TODAY — Simply return the coupon on page 91
computer hardware and techniques

AN INTRODUCTION TO Z80 MACHINE CODE
Starts with a general background to microprocessing and then details the full set of Z80/Z280 instructions. Also covers the use of address modes and gives machine specific listings and sample programs. 107pp.
K0180B $7.55

FORTH PROGRAMMING
Describes both FORTH-79 and fig-FORTH and shows how to write software using these languages and how to add new operations (words) and manipulate the stack. Includes more than 50 useful programs. 246pp.
K0299P $19.95

ALMOST EVERYBODY'S PERSONAL COMPUTER BOOK
Written for the computing beginner to break the enormous barrier of jargon and mystique that seems to surround computers. With a highly readable approach, the author introduces the basic concepts and develops them into a general discussion on personal computers including choosing and caring for a PC. Also offers an introduction to BASIC programming. 160pp.
H0144Z $5.95

MICROCOMPUTER DESIGN & TROUBLESHOOTING
Explains designing microcomputer systems and making them work without expensive commercial development systems or the need for costly test instrumentation. Includes a complete description of two microprocessors - the 8085 and the 6502. 346pp.
J0161P $26.75

Stock of some titles may be limited.

EASY ADD-ON PROJECTS FOR COMMODORE 64, VIC-20, BBC MICRO & ACORN ELECTRON
The simple and inexpensive projects include a pulse detector, model controller, light pen, lap sensor and more plus six projects that make up a weather station. 191pp.
J0165B $6.95

A Z80 WORKSHOP MANUAL
Intended for those who want to progress beyond programing in BASIC to topics such as machine code and assembly language programing or who need hardware details of the Z80-based computers. 184pp.
J0283B $8.95

SECRETS OF THE COMMODORE 64
A beginner's guide to the C64 with masses of useful information and programming tips as well as describing how to get the best from the powerful sound and graphics facilities. Includes two useful chapters on machine code. 109pp.
J0297B $5.95

MICRO INTERFACING CIRCUITS: BOOK 1
Guides those who are unaccustomed to microprocessor techniques but have some knowledge of electronics, through a practical approach to address decoding, parallel and serial interfacing, analogue to digital and digital to analogue converters, etc. 96pp.
J0325B $6.55

MICRO INTERFACING CIRCUITS: BOOK 2
Develops the practical side of interfacing introduced in Book 1. Discusses sound and speech generators, temperature and optical sensors, motor controllers, etc. 97pp.
J0326B 6.55

AT NEW LOW PRICES . . .

WILDCARDS 4
No tips, techniques or theory in this volume. It's mainly quality games with PCG graphics - games of strategy and games of fast reflexes, many of them taking full advantage of colour graphics. For simple Boxes (not so simple) to Radio with complex scenery: This is a book that teaches the fun way. 109pp.
K0024P $15.95

AN INTRODUCTION TO MSX BASIC
For those wanting to learn to program, Microsoft Extended (MSX) Basic offers a powerful and flexible version of the most popular computing language. This comprehensive introduction starts with the basics and progresses by stages to the more advanced programming techniques and includes coverage of advanced multicolor, sprite graphics, and the programmable sound generator. 88pp.
K0047P $6.95

Prices subject to change without notice.

INSTANT PROGRAMMING ON YOUR SEGA SC3000 COMPUTER
Spiral-bound for easy use, this is THE Sega SC3000 beginner's book! In carefully explained, easy to follow steps, it covers the function of each key and all of the commands needed for super fast mastery of BASIC programming. This is a book for do-ers. The second part of the book teaches the real art of programming with plenty of examples and subroutines. 84pp.
K0061P $12.95

THE BEST VIC/COMMODORE SOFTWARE
Trying to find the most suitable software for personal computers can be frustrating. The editors of Consumer Guide have compiled comprehensive reviews of VIC 20 and Commodore 64 programs based on ratings by user groups; further evaluation is given by the editors and Commodore software experts Jim and Ellen Strawma. Each review describes the program's purpose and features, detailing both the good points and bad. Each program has been rated for ease of use, clarity of written and on-screen instructions, and overall performance. The program's price, publisher, format and hardware requirements are also included. The reviews are presented in sets by topic: Word Processing, Business, Home, Education, Networking, Strategy Games, Arcade Games and Programming Aids. Spiral bound, 192pp.
K0062G $6.95

THE BEST APPLE SOFTWARE
Trying to find the most suitable software for personal computers can be frustrating. The editors of Consumer Guide have compiled comprehensive reviews of Apple II, II Plus and IIe programs based on ratings by user groups; further evaluation is given by the editors and Apple software expert Roe Adams. Each review describes the program's purpose and features, detailing both the good points and bad. Each program has been rated for ease of use, clarity of written and on-screen instructions, and overall performance. The program's price, publisher, format and hardware requirements are also included. The reviews are presented in sets by topic: Word Processing, Business, Home, Education, Networking, Strategy Games, Arcade Games and Programming Aids. Spiral bound, 160pp.
K0060G $6.95

DISCOVERING KNOWLEDGEMAN
According to prestigious Byte magazine, KnowledgeMan may be the most powerful relational DBMS currently available for microprocessors and this is a powerful introduction! After a general overview, data management and spreadsheet capabilities are explained in eight sets of detailed lessons structured to give maximum learning benefits. 342pp.
K0068P $34.95

FEDERAL DIRECT BOOK SALES
PO Box 227, Waterloo 2017

AN INTRODUCTION TO 6502 MACHINE CODE
Starts with a general background to microprocessing and then details all of the legal 6502 instructions. Also covers the use of address modes and gives machine specific listings and sample programs. 107pp.
K0178B $7.55
Can't find it?

SAVE with SIXI
6 Holders — only $37.50
6 Binders — only $39.95

So easy to order —
Simply return the Freepost coupon on page 91
Please allow $1.95 per binder for postage and packing

File it!

MORE SPECIAL BOOKS . . .

AUDIO ENTHUSIAST'S HANDBOOK
Covers the record/playback curve, stylus compliance, acoustic feedback, stereo tape track standards, compensating sideways drag, amplifier power ratings and more. $2.75 Retail, 95pp.
G0383B Reduced to only $2.00

CHOOSING AND USING YOUR HI-FI
Provides basic information on the technical specifications of hi-fi equipment. Offers advice on what to look for in equipment in order to obtain real high-fidelity sound and reproduction. $4.95 Retail, 88pp.
G0385B ONLY $3.95

THE 6809 COMPANION
This is not a beginner's introduction, but a thorough reference and discussion of the features of the 6809 microprocessor. An excellent reference! $6.95 RRP, 84pp.
J0154B $2.00

THE ART OF PROGRAMMING THE 1K ZX81
The features of the ZX-81 are explained in some detail as background to programming. These include the random number generator, graphics facilities and timer. PEEK and POKE are also explained. The well-written section on programming should make anyone with a 1K ZX-81 a whiz! $6.75 Full Price. 86pp.
K0226B A Ridiculous $2.00

ELECTRONIC CALCULATOR USER'S HANDBOOK
Formulas, data, methods of calculations, conversions and just about all the etc's are explained in detail. Explains how to calculate with only a four function calculator, including trig functions, hyperbolics, square roots and powers. 207pp.
M0245B Hyperbolocks? $2.00

MAGAZINE BINDERS $8.00
Ready to use binders with easy, clip-in fastener, covered in soft, decorator brown vinyl. Holds 12 issues of Electronics Today.

MAGAZINE HOLDERS $8.00
Big, easy to assemble holders, covered in soft, decorator brown vinyl. Holds 12 issues (at least) of Electronics Today.

MINI-MATRIX BOARD PROJECTS
This selection of 20 useful projects to build is an excellent introduction to constructing electronic projects. Those without any experience in electronics will find it easy to read and simple to follow. $6.75 RRP, 102pp.
D0062B Priced to clear $2.00

YOUR CALCULATOR AND YOUR MONEY
If you are interested in money and do even the simplest calculations, this book is a 'must.' It shows how to get the most practical use out of this efficient and powerful tool. The contents cover everything from simple arithmetic to compound interest, and depreciation. $4.75 RRP, 174pp.
M0246B $2.00

FUN & GAMES WITH YOUR ELECTRONIC CALCULATOR
Calculators might be a powerful and time saving tool, but they can also be an endless source of amusement and an excellent source of relaxation, as this book shows. What do 55 snakes in a 14 foot square pit do? (You'll have to read page 6 to find out.) $2.50 RRP, 63pp.
M0370B $2.00

THE BASIC BOOK OF HAM RADIO
This easy to read American Publication tells how the Amateur Radio Service works, how to obtain a Novice Licence, what to buy to get on the air and where the action is — awards, contests, public service, satellite communications, radio clubs and other ham activities. $5.75 RRP, 120pp.
N0257R Only $3.95

ORDER TODAY —
Simply return the order form on page 91
SON OF CHEAP VIDEO

Don Lancaster's sequel to *The Cheap Video Cookbook*, G0123P includes new and improved circuits to get alphanumeric and graphics video out of a microcomputer and on to an ordinary television screen.

G0345P $17.95

MICROCOMPUTER'S: A PARENT'S GUIDE

In clear, non-technical language that even the kids should understand, the authors explain what microcomputers are, what they can do, and what the future holds for the. $13.75 RRP.

H0275J Reduced to only $9.95

HART'S DICTIONARY OF BASIC

Contains over 800 entries that summarise the actions of almost every statement, command or functions you are likely to meet. Each entry is clear, concise and jargon-free. $15.75 RRP.

H0276J Almost one-third off! $10.95

ATARI PILOT FOR BEGINNERS

Shows how to make the Atari 400 and 800 home computers play music, display colourful animated pictures and do mathematics. Includes instructions in Pilot computer language. $21.95 RRP.

H0308H Now only $15.95

INSIDE BASIC GAMES

A look at games from the inside out: Teaches the reader how to design his own error-free, interactive BASIC programs. Rules, algorithms and coding differences for the PET, Apple II and TRS-80 are also included. $19.95 RRP.

K0189A Only $14.95

THE PASCAL HANDBOOK

Summarises the whole PASCAL vocabulary, including the variations introduced by the different commercial versions of PASCAL. Presented in an easy to use dictionary format. $23.50 RRP.

K0200A Bargain at only $16.95

TRS-80 COLOUR COMPUTER GRAPHICS

Explores the creative and imaginative blending of computers and colour. Shows how to create dynamic and interesting graphics to enhance your programs. $21.95 RRP.

K0201P Selling fast at $15.95

All telephone enquirers to Fulfilment Australia Pty. Ltd., (02) 816-2300

INTRODUCTION TO TRS-80 GRAPHICS

Beginning with the basic concepts of line drawing, the reader is soon lead on to geometric shapes, moving figure animation and more advanced topics. $22.95 RRP.

K0202A Now only $15.95

MOSTLY BASIC: TRS-80

Excellent ready-to-use programs for the TRS-80 which have been completely tested and debugged. Programs included telephone dialler, digital stopwatch, spelling test, house buying guide, gas mileage indicator and more. $19.95 RRP.

K0204P All that for $14.95

32 BASIC PROGRAMS FOR THE PET

Each chapter fully documents a different bug-free program. With a working knowledge of BASIC, these form a good foundation to develop broader or more specific programs. $29.95 RRP.

K0222A Only 60c a program! $19.95

YOUR MAIL ORDER COUPON

<table>
<thead>
<tr>
<th>BOOK TITLE</th>
<th>BOOK NUMBER</th>
<th>QTY</th>
<th>PRICE TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please tick box to indicate method of payment:

- Cheque/Money Order
- American Express
- Bankcard
- Mastercard
- American Express
- Bankcard
- Mastercard
- Credit Card No.

(Uns signed orders cannot be accepted)

Card Expiry Date

Signature

Allow up to 6 weeks for delivery

BOOK SALES

For airmail to Papua New Guinea, New Zealand Oceania and Southeast Asia, add $6.00 to these charges.

<table>
<thead>
<tr>
<th>BOOK TITLE</th>
<th>BOOK NUMBER</th>
<th>QTY</th>
<th>PRICE TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total price of books $
Add postage and handling $
(3.25 per book)

PLUS Binders @ $9.95 $
(Inc P+P)

TOTAL $

NAME:

ADDRESS:

POSTCODE:

TELEPHONE:

ETI May 1986 — 91
ETI-1402: Digital sampler
Now, for a fraction of the cost of the commercial product musicians can build this excellent sampler. The only likely difficult parts to procure are IC3, ZN429 available from Ferranti Computer Systems, 22 Mandible St, Alexandria, NSW 2015, (02) 698-5544, and IC2 the National AD0820 available from Geoff Wood. Both Jaycar (02) 745-3077 and Geoff Wood (02) 810-6845 will have the complete kit, possibly All Electronic Components as well. Boards will be available from Rod Irving (03) 543-7877, All Electronic Components (03) 662-3506 and RCS Radio (02) 587-3491.

ETI-1531: Brown-out protector
The one thing you shouldn’t do with ac motors is start them under load or operate them under reduced voltage. More common pieces of equipment like air-conditioners are designed not to start under load, but if there is a power interruption the result can be a burnt out motor. Enter the ETI brown-out protector. A complete kit will be available from Force Electronics in Adelaide (08) 212-5505 and you can try All Electronic Components (03) 662-3506. Boards will be available from Rod Irving (03) 543-7877 and RCS Radio (02) 587-3491.

Artwork
For those constructors willing and able to make their own pc boards and/or front panels, we can supply same-size film transparencies of the artwork, positives or negatives as you require. From the list given below, select what you want and address your request/order to:

* ETI-xxx Artwork
* ETI Magazine
* PO Box 227
* Waterloo, NSW 2017

When ordering, make sure you specify positives or negatives, according to the process you use. Your cheque or money order should be payable to ETI Artwork Sales. Prices for the artwork for this month’s projects are as follows:

<table>
<thead>
<tr>
<th>Artwork</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETI-1402 front panel</td>
<td>$8</td>
</tr>
<tr>
<td>side panel</td>
<td>$3</td>
</tr>
<tr>
<td>pc board</td>
<td>$5</td>
</tr>
<tr>
<td>ETI-1531 front panel</td>
<td>$5</td>
</tr>
<tr>
<td>pc board</td>
<td>$5</td>
</tr>
</tbody>
</table>

You might also care to know that almost every pc board (and most front panels) ever published by ETI may be obtained from:

All Electronic Components
118 Lonsdale St
Melbourne, Vic 3000

ENTER: .. IPP-512
READ : INTELLIGENT PROM PROGRAMMER

FEATURES INCLUDE:
* Computer or VDU control via RS 232 interface.
* Driver software included for most computers including IBM PC.
* Onboard processor with 64K RAM Buffer.
* Programs all single supply EPROMS from 2716 to 27512.
* Ease check — Read — Program — Verify.
* Gang operations from 1 to 4 PROMS.
* Fast programming algorithms.
* Up and down line load using Motorola, Intel, Tektronix, and ASCII formats.
* Requires only mains power.

MADE IN AUSTRALIA BY
PENNYWISE PERIPHERALS
518 Camberwell Rd. Camberwell Vic.
PH. (03) 299 2877 — TLX. AA 31820
Balloon Safari, The Drop & Flatten
Paul Sheppard, Christchurch, NZ

These three programs have been written for the standard VZ200/300 computers, in BASIC. They each have instructions within them. In the third program, SHIFT appears in some program lines. This means one should type those letters in quotes with the SHIFT key.

VZ 200/300

May 1986 — 93
How to beat the high cost of cheap meters.

You get what you pay for.

So get the Fluke 70 Series.

You'll get more mile for your money, whether you choose the affordable 73, the feature-packed 75 or the deluxe 77. All of them will give you years of performance, long after cheaper meters have pegged their fishhook needles for the last time.

That's because they're built to last, inside and out. So they're tough to break. They don't blow fuses all the time. You don't even have to replace batteries as often.

And they're backed by a 3-year warranty. Not the usual 1-year.

Of course, you may only care that the world-champion 70 Series combines digital and analog displays with more automatic features, greater accuracy and easier operation than any other meters in their class.

You may not care that they have a lower overall cost of ownership than all the other "bargain" meters out there.

But just in case, now you know.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.

Talk to your local distributor about Fluke.

FLUKE

- A.C.T. Actec Pty Ltd (02) 30 65 778
- George Brown 80 43 55
- N.S.W. Ames Agency 69 45 24
- George Brown (02) 51 85 555
- Newcastle 56 63 999
- Bryan Cell Industries 526 2223
- lattice Tools 702 1888
- D.E.I. Systems (03) 69 16 22
- Davent Electronics 267 1385
- W.F. Dixon (03) 61 56 28
- Macelinc (03) 29 14 155
- Ebson 707 21 11
- Selectro Parts 706 22 44
- Geoff Woods 810 64 45
- N. TERRITORY Thrrew & McCann (089) 84 49 98
- QUEENSLAND L. E. Boughen 369 12 77
- Coloursview Wholesale 275 31 88
- Frinch Hoe & Sons 277 43 11
- Nortek (07) 79 78 600
- St Lucia Electronics 52 74 66
- Selectro Parts (Old) 394 24 22
- S. AUSTRALIA Protronics 212 31 11
- Two Electrics 212 62 29
- Redarc Electronics 278 74 88
- A.M.W. Wholesale
- T A L M A N I A George Harney (003) 31 65 33
- (002) 34 22 33
- VICTORIA A.W.M. Electrical Wholesale
- Radio Parts 329 78 88
- G.B. Telephones 326 31 37
- Browntronics 419 79 66
- A.M.W. Agency 62 77 14
- A.J. Ferguson 347 66 88
- S.B.S Sales (052) 76 12 51
- Melectronics 690 45 83
- W. AUSTRALIA Atkins Carlisle 321 01 61
- Dobie Instruments 276 88 88
- Cairns Instrument Services 325 31 44
- Willims Trading 470 11 18

ETI READER SERVICE 124
BEYOND THE TORRES STRAITS

Amateur radio in Indonesia

Thomas E. King
VK2ATJ

Amateur radio and politics often make strange bedfellows. This love/hate relationship is the situation in a number of countries, none more striking perhaps, than Indonesia where government recognition of the king of hobbies and the hobby of kings has gone full circle.

AUTHORISED AMATEUR RADIO activities began in Indonesia in 1936 with the licensing of YB0AU. Nearly 20 years later on a government directive, two Dutch-born hams and several local Indonesian amateurs were gaoled for three months on a charge of engaging in 'subversive activities'. During 1985, 30 years after this unwarranted action, the son of the current president of Indonesia, Sigit, YBOBVY, was among the DXers, antenna experimenters, rag chewers and certificate hunters living in a country that is literally exploding with amateurs.

The boom was prompted initially by the signing of a presidential decree on amateur radio by President Suharto. Although this official stamp of approval was given in 1968 it wasn't until 1980 with the introduction of the Citizens Band Radio Service that the idea of personal communications began sky rocketing in the world's fifth most populous nation.

Two other recent events have pushed the hobby forward at a greatly accelerated pace: the introduction of 2 metres in 1981 and the establishment of district branches of the Department of Tourism and Postal Communications in 1984. This latter action, which means that exams can be taken at telephone offices, coupled with a rise in disposable income and readily available amateur equipment, has stimulated the growth of the hobby from 12,000 hams in 1983 to well over 45,000 by the end of 1985.

This year is certain to see an even greater rise in Indonesia's amateur population as more and more CBers become hams. At a single exam conducted in Jakarta recently, 3600 enthusiasts - many of them disen-chanted CBers - answered questions on rules, regulations and theory plus Morse code; about 2000 of them passed the exam becoming fully fledged licensed amateur radio operators.

There are three classes of amateur licences in Indonesia: YD, which allows a maximum of 10 W on 80 m and 2 m; YC, which permits 75 W operation on all bands except 20 m; and YB, the all-band 500 W non-restricted licence. YB licence holders make up only five per cent of Indonesia's amateur population with YC operators adding another 15 per cent. This leaves a whopping 80 per cent, or well over 30,000 YD hams, to populate the much populated 2 m band. (Eighty metres is of little interest because of a lack of equipment and limited space to erect an antenna.)

At the Club

Several 2 m rigs were blaring away when I walked through the doorway of YB0ZA, one of the most active and best organised of the 21 local secretariat club stations in Jakarta. (To locate YB0ZA one travels from the high rise Sari Pacific Hotel, turning left at the Mandarin Hotel. One should look out for a 23 metre high tower crowned with...
with 4, 14-element 2 m Yagis!) YBÖZAA is a good example of how club activity has not only kept existing enthusiasm strong, but has generated new interest in amateur radio.

Known as a 'local' club of ORARI (Organisasi Amatir Radio Indonesia), this amateur radio station in the Menteng region of Jakarta serves about 300 hams living in only a few square miles. "There should be 300 check-ins on tonight's nightly 145.550 MHz net," said Erlangga, YBOBZZ, one of the club's most vibrant members, "but we'll only get about 80-90 calls. It's a hot and humid Sunday evening in Jakarta so maybe some of our members are still at the beach."

While the net was in progress I sat drinking Indonesian brewed beer and looking at a wall full of QSL cards and the club's donated equipment. Meanwhile Hapsoro, YDOBBZ, and Toto, YCOIF6, were busy with the net and Erlangga was chatting with an expat Frenchman who was renewing his reciprocal licence.

With 87 check-ins duly logged the net came to a routine end. Not every net session is routine, however, as there have been telephone calls from government officials during net times requesting emergency communications. YBÖZAA has been called upon to provide link communications during events as diverse as floods, elections and religious festivals. The Menteng-sited station has also assisted on New Years Eve when 2 m mobile communications were needed to summon ambulances for traffic accident victims.

Not all of the club's activities are sombre. Some time back YBÖZAA members assisted in organising a combined ORARI fox hunt/field day/DX contest/bazaar. Some 15,000 people turned up for the big event to browse and buy.

And there were plenty of ways to spend rupiahs. ORARI-produced items were popular as a wide variety of merchandise from stickers and pins to jackets and caps was available at the bazaar. (The ORARI emblem is seen nearly everywhere which is one reason for the fairly widespread recognition of the organisation.)

The latest lineup of amateur radio equipment — primarily VHF gear from Icom, Kenwood and Yaesu — was also widely shown and sold at the ORARI field day. Contrary to what would normally be expected, the equipment didn't come directly from Japan. Nearly all VHF amateur gear shipped to Indonesia these days must arrive in knocked down condition according to government regulation. It's assembled in an industrial area, 30 km south of Jakarta. Despite this channel for local employment, duty is a very stiff 200 per cent which puts the price, for example of a Kenwood 7950, at rupiah 420,000 (or about $A525). This hefty price tag hasn't deterred many Indonesian amateurs from making a transceiver purchase. But the low power VHF transceivers purchased have deterred most amateurs from making many DX contacts.

Indonesian amateurs aren't all that interested in working DX anyway as only 11 DXCC and one 5BDXCC certificates have been issued in 11 years.

To satisfy award requirements for these certificates, Indonesian amateurs have to contact 100 different countries and in the one case needed to verify 100 separate countries on five bands. Because of their proximity, at least a few Indonesian award seekers are certain to have contacted two countries which are no longer independent nations, but are ones that still make news.

The call signs of ZJ Dutch Irian Jaya and CR8 Portuguese Timor will never be heard again but that's because amateur radio and politics make strange bedfellows.
Classic lines reflected through the warmth of rich Saxony Tweed, and the enduring style of flannel trousers. Jacket $220. Trousers $95.
YOUR ESTEEMED EDITOR let the hack loose at the computer show, PC86, in Sydney recently. Spare a thought for him, planted at the Microbee stand in 'investigate' mode, trying to get sense out of a mind-numbed spokesman on the new Gamma, while being kicked, shoved, headbutted, kneed in the groin and generally assaulted by a vast, unwashed mob of prepubescent boys. Where do they come from? Where do they disappear to? Do they ever solve their pimple problems? Do they have homes, with mothers who love them? Do they ever grow up? Probably not. They just get jobs selling for IBM.

The crowd watching the Commodore Amiga was generally better behaved. More glassy-eyed though. Do Commodores induce encephalitis, or is just plain silliness enough?

It was a relief to get around to the IBM stand, where a lady in obligatory black explained why IBMs aren't actually over-priced they just seem that way but you get a lot for the money don't you, and how cloners are totally immoral. Ah-hem. It does the heart good to know big blue is fighting back.

Speaking of which, readers of this column will be glad to know that ETI is in receipt of a communication datelined Taipei. This details news of the steam-rollering of 3000 fake computers by the government's anti-counterfeitting unit. A spokesman said the government was determined to crack down on fake products after complaints from its major trading partner. Important issues are raised by this missive: (a) what is a fake computer? (b) Is Commodore worried at all? Keep watching this space as more news comes to hand.

Useless hardware dept

The Australian College of Dermatologists has reported it has been unable to make hair regrow by using a laser-based product originated by Lasercare (Aust) Ltd. The company had claimed that hair regrowth was visible on 98% of clients. The College found no clinical evidence of regrowth in any subject during a 30 week study.

We publish this information as a public service to the ETI reader who forked out vast amounts of cash to have a laser shined on his pate. Stop looking in the mirror mate; those are burn marks, not new hair.

Useless software

According to the Professors Dryfus, computers can't think as well as we can. This profundity comes to you from the Berkley campus of UCLA, where Profs Hubert L. and Stuart E. Dryfus (otherwise known as the Bobby twins) both insist that: 'an analytic, chunk by chunk approach is fine for limited problem solving, but the highest form of human thinking is characterised by a fluid, experiential intuitive process that no machine has even approached'.

In order to confirm their hypothesis, they set a highly experienced chess master against another less skilled master. The stronger skilled master was forced to add numbers while playing the game. He still won. This does not prove that the experienced player is better than the inexperienced player, no sir, instead it proves AI is impossible.

Useless astronomical phenomena?

The hack staggered out of bed early one morning recently and bleary eyed confronted The Comet, then roared into work four hours earlier than usual and tried to, look superior when the boss rolled up. So that's a comet. Was it more malevolent than usual this time around? Two dictators out of office in six months is less than a harbinger of doom. It should come by more often.
VARISTORS
Australia’s widest range.
All applications. Biggest stocks.
Lowest prices. Quickest delivery.
What else?

Siemens is now the biggest and best source of varistors in Australia with a full size range for all applications up to 70 kA. This is of special interest to the telecommunications industry. Comprehensive stocks, plus Siemens position as one of the world’s largest manufacturers of varistors underwrites our promise of quick delivery and suitability.

Siemens innovation aims at achieving substantial cost reductions across a wide spectrum in the following applications:

- Power engineering
- Electronic communications
- Power electronics
- Measuring technique
- Processing technique
- Office electronics
- RFI suppression
- Stepped protection

This wide range of varistors is available through Siemens newly strengthened national distributor network. For further information, post the coupon or phone your nearest distributor.

Distributors
Victoria: Promark Electronics (Vic)
(03) 876 1255
New South Wales: Nexus Electronics Pty Ltd
(02) 439 5800
New South Wales: Promark Electronics Pty Ltd
(02) 439 5477
Queensland: ECQ Electronics
(07) 376 5677
South Australia: R.G. Pank Pty Ltd
(08) 51 2411
South Australia: Protronics Pty Ltd
(08) 212 1111
Western Australia: Reserve Electronics
(09) 328 9755
New Zealand: Delphi Industries Ltd
Auckland 563 259

Please mail me the new informative varistors brochure.

NAME
TITLE
COMPANY
ADDRESS
STATE
POSTCODE

Post this coupon now to Siemens Ltd.
Advertising Department, Melbourne.
544 Church St., Richmond 3121.
Get all of Yamaha’s latest audio equipment for only 33 cents.

Fill in this coupon and you'll get Yamaha’s free catalogue featuring the latest and complete range of compact disc players, cassette decks, turntables, cartridges, integrated amps, separate amps, tuners, receivers, graphic equalizers, headphones and system components. With each component comes something you wouldn't expect. **5 YEAR WARRANTY.**

Name

Address

Postcode

Yamaha Consumer Electronics Division, 1733 Market Street, South Melbourne, Victoria 3205.

Limited warranty.